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Everyone’s Guide to the
Feynman Lectures on Physics

Feynman Simplified gives mere mortals access to the fabled Feynman Lectures on Physics.

Quantum mechanics is rarely taught well in introductory physics courses, largely because this
challenging subject was not well taught to many of today’s instructors. Few had the opportunity to
learn quantum mechanics from some who understood it profoundly; almost none learned it from one of
its creators. Here more than anywhere else, Feynman excels. Here more than anywhere else,
Feynman Simplified can help you learn from the very best, but at a humane pace. 



This Book
Feynman Simplified: 3A covers the final third of Volume 3 of The Feynman Lectures on Physics.
The topics we explore include:
 

Quantum Behavior of Elementary Particles
Angular Momentum & Rotations of Any Spin
Electron Atomic States & The Periodic Table
Philosophy of Wave Functions & Probability
Macroscopic QM: Superconductivity
Entanglement, Schrödinger’s Cat & Teleportation
EPR Paradox: QM vs. Local Realism
Alternative Interpretations of QM

To find out about other eBooks in the Feynman Simplified series, click HERE.

I welcome your comments and suggestions. Please contact me through my WEBSITE.

If you enjoy this eBook please do me the great favor of rating it on Amazon.com or BN.com.

http://www.guidetothecosmos.com/feynman_simplified.html
http://www.guidetothecosmos.com/
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Summary of 
QM Part One

Particle-wave duality: Everything in our universe has, in varying degrees, the properties of both
classical particles and classical waves. In particular, particles have wavelengths given by: λ=h/p.

Uncertainty Principle: the wave properties of particles preclude the possibility of simultaneously
measuring both their position and momentum with unlimited precision, as quantified in four equations:

Δx Δpx ≥ ħ/2
Δy Δpy ≥ ħ/2
Δz Δpz ≥ ħ/2
Δt ΔE ≥ ħ/2

where ħ=h/2π=1.055×10–34 joule-sec, and h=6.626×10–34 joule-sec is Planck’s constant.

A quantum state defines all the variable properties that an entity can have, such as position, linear
momentum, energy, spin, and angular momentum. It does not define intrinsic properties, such as
charge and mass. In general, different types of particles can be put into a given state, and can be
moved from one state to another. It is beneficial to think of a quantum state as a vector that defines a
location in the space of all possible properties.

Spin is a quantized form of angular momentum that is an intrinsic and immutable property of each type
of elementary particle. All fermions have half-integral spin: s=n/2, for some odd integer n>0. All
elementary fermions have spin s=1/2, as do protons and neutrons, which are composite particles.
Bosons have integral spin: s=0, 1, or 2. 

There is an essential distinction between a particle’s spin and its component of spin along any axis.
Like other forms of angular momentum, spin is a vector with magnitude and direction. The spin of
every particle never changes, although the orientation of its spin may change. The primary fermions,
those with spin 1/2, can have a component of spin along any selected axis of +ħ/2 or –ħ/2, which are
called spin up and spin down. The Z and W bosons with spin 1 can have a component of spin along
any selected axis of +ħ, 0, or –ħ. In general, a particle of spin s can have a component of spin along
any selected axis of –sħ, –(s–1)ħ, …+(s–1)ħ, +sħ; the allowed values of spin components are always
separated by integral multiples of ħ. Photons have spin 1, but cannot have a zero component of spin
along any axis, because they are massless. A particle with spin s has a spin vector whose magnitude
equals √{s(s+1)}; this magnitude is rarely mentioned, since it is so much easier to say “spin s.”

Measurement is a contact sport, more like boxing than dancing. Observation requires interaction.
Substantial interactions alter the behavior of what is observed. Every measurement forces the
observed entity into a definite state, one with an allowed value for that measurement. Particles have



no memory of their prior history. If an atom’s spin is measured to be +1 along the z-axis, nothing else
about its spin is knowable.

Feynman’s General Principles of probabilistic quantum mechanics are:

First: the probability Prob(y) of event y is proportional to the square of the magnitude of probability
amplitude ø(y), which is a complex number. If event y can occur in only one way, P(y) is:

Prob(y) = øø* = |ø|2

In Dirac’s bra-ket notation, the amplitude that A results in, or goes to, B is <B|A>. This is analogous
to the dot product of normal vectors A and B. For example, in the two-slit experiment:

ø(y) = <particle arrives at y | particle leaves source S>
ø(y) = <y|S>

Second: when event y can occur in N indistinguishable ways, the amplitude of y equals the sum of the
amplitudes for each separate way:

<y|S> = ΣK <y|K><K|S>, sum K=1…N

We sum amplitudes only when each separate path results in exactly the same final state.

As the two-slit experiment demonstrates, with no substantial disturbances, it is impossible — for both
man and nature — to distinguish the paths by which particles travel to reach an event y. Paths are
distinguished only when particle-waves along those paths are substantially disturbed. What matters
is the magnitude of the disturbance, not whether it occurs naturally or is human-directed. But due to
our scale, any human-directed interaction will almost certainly substantially disturb a quantum
system.

Third: when event y can occur in N distinguished ways, the probability of y equals the sum of the
probabilities for each separate way:

Prob(y) = ΣK |<y|K><K|S>|2, sum K=1…N

Fourth: the amplitude for a sequence of events equals the product of the amplitudes for each separate
event. The amplitude for a particle to go from S to x and then from x to y is: <y|x> <x|S>.

Fifth: For multiple particles, if ø1 is the amplitude of particle 1 going from S1 to F1, and ø2 is the
amplitude of particle 2 going from S2 to F2, then the amplitude for both events to occur is ø1 × ø2.

Sixth: When two intrinsically identical particles can enter, exit, or be in the same state, their
amplitudes interfere. If the particles are bosons governed by Bose-Einstein statistics, their
amplitudes add. If the particles are fermions governed by Fermi-Dirac statistics, their amplitudes
subtract. There is no third alternative. For two identical particles 1 and 2, and any two
indistinguishable states A and B, the combined amplitude is:



Fermions: <1|A><2|B> – <1|B><2|A>

Bosons : <1|A><2|B> + <1|B><2|A>

Particles with different spins are distinguishable.

All fundamental particles of each type are intrinsically exactly identical. While not fundamental, all
protons are exactly identical to one another as are all neutrons.

The class of fermions includes protons, electrons, neutrons, neutrinos, and quarks. All particles that
form material objects are fermions with spin 1/2.

The class of bosons includes photons, gluons, W±, Z0, and the Higgs boson. All forces between
elementary particles are carried by bosons. Photons are the force exchange particles of
electromagnetism. Gluons mediate the strong force. The W± and Z0 intermediate vector bosons
mediate the weak force. See Higgs & Bosons & Fermions... to further explore elementary particle
physics.

The probability that N identical bosons are in a common state is larger by a factor of N! than the
probability of N non-identical particles being in that state.

The probability of one more boson entering a state occupied by N identical bosons is N+1 times
greater than it would be if the state were empty. Bosons are groupies: the bigger the party, the greater
the attraction.

The gregarious behavior of bosons underlies Einstein’s laws of radiation and the operation of lasers.

Fermions are antisocial; they never exist in the same state as another identical fermion. This is called
the Pauli Exclusion Principle. Two fermions are not in the same state if their spins are different.

Nature has room for both groupies and individualists.

Similarity of Vectors & States

In normal 3-D space, a vector v specifies any selected point within the space. In quantum mechanics,
|S> specifies a state, any selected set of particle properties.

In 3-D, we choose a complete set of orthonormal basis vectors ex, ey and ez.

In QM, we choose a complete set of orthonormal basis states |J>, J=1,…,N.

Orthonormal means for each J and K: eJ•eK=δJK in 3D; and <K|J>=δJK in QM. Here δJK is the Kronecker
delta, which equals 1 if J=K and equals 0 otherwise.

In QM, a basis is “complete” if every possible state is some linear combination of basis states — for

http://www.guidetothecosmos.com/series10.html


any state |φ>:

|φ> = ΣJ aJ |J> = a1 |1> + a2 |2> + … aN |N>
|φ> = ΣJ <J|φ> |J>

where aJ = <J|φ> are complex numbers. The set of all aJ completely defines |φ>.

Differences Between Vectors & States

In 3-D, the dot product is commutative: A•B = B•A. But, in QM the product of two states is not
commutative: <φ|ψ> = <ψ|φ>*, which is the complex conjugate of <ψ|φ>. The complex conjugate of a
complex quantity is obtained by replacing i with –i. In general <ψ|φ> and <φ|ψ> are not equal.

Since <φ|ψ> = ΣJ <φ|J> <J|ψ> for all states φ and ψ, Feynman writes the open equation:

| = ΣJ |J> <J|

Open equations are valid when multiplied by any bra and/or by any ket.

Other Bra-Ket Notes 

Bras and kets are essential intermediate steps in solving problems, but they are not end results by
themselves. Calculations of measurable quantities must not end with expressions having unmatched
bras or kets.

Bra and ket are complex conjugates: <ψ| = |ψ>*. This means <ψ| and |ψ> are different, in general.
Either could properly represent a quantum state. Feynman says he always uses kets |ψ> to identify
states, for consistency.

Operators transform one state vector into another. Any action that changes particle states is
represented in quantum mechanics by an operator. As an example:

<χ|A|ψ> = ΣJK <χ|K> <K|A|J> <J|ψ>

denotes the product of state χ with the vector resulting from A operating on state ψ, which is shown
expanded in basis states. Knowing <K|A|J> for all basis states J and K completely determines A.

Operators are often represented as N×N matrices, where N is the number of basis states. Matrix
component AKJ equals <K|A|J>. If multiple operators act on a state sequentially, we express that using
the product of those operators. Matrix products are not commutative, so the order of factors is
essential. The first operator to act holds the right-most position, with the second immediately on its
left, and continuing on to the last operator to act in the left-most position. For two operators, A
followed by B, the expression is:



<χ|BA|ψ> = ΣJKL <χ|L> <L|B|K> <K|A|J> <J|ψ>

Waves in an Energy Potential: the probability amplitude for a particle of momentum p and energy E
(kinetic plus mass), with potential energy V, is proportional to:

exp{(E+V)t/iħ–p•r/iħ}

The Hamiltonian equation governs the time evolution of states:

iħ d|Ψ(t)>/dt = H |Ψ(t)>

Review of Two-State Systems

For a system with two basis states |1> and |2>, any state |Ψ> can be expressed as a linear combination
of the basis states:

|Ψ> = |1> <1|Ψ> + |2> <2|Ψ>
|Ψ> = C1 |1> + C2 |2>

The Hamiltonian equation yields two independent differential equations:

iħ d(C1)/dt = H11 C1 + H12 C2

iħ d(C2)/dt = H21 C1 + H22 C2

We can also write this more compactly:

iħ dCj/dt = Σk Hjk Ck , for any j, sum over k

Here H12 is the amplitude for state |2> to transition to state |1>, and H21 is the amplitude for state |1> to
transition to state |2>.

Assuming the Hamiltonian components are constant in time, the Hamiltonian equation has two
solutions that are stationary states, states of definite energy. These are:

|ψ+> = |+> exp{E+t/iħ}, with E+ = E0+E*
|ψ–> = |–> exp{E–t/iħ}, with E– = E0–E*

where,

E0 = (H11+H22)/2 
E* = √[ (H11–H22)2/4 + H12 H21 ]

|+> = a1+ |1> + a2+ |2>
|–> = a1– |1> + a2– |2>



In V3p10-2, Feynman says the coefficients of the basis states, the a’s in the above equation, are
complex constants that satisfy:

1 = |a1+|2 + |a2+|2
1 = |a1–|2 + |a2–|2

a1+ / a2+ = H12 / (E+ – H11)
a1– / a2– = H12 / (E– – H11)

In the special case of a symmetric two-state system, where H11=H22 and H12=H21=–E*:

a1+ / a2+ = –E* / (E+ – E0) = –1
a1– / a2– = –E* / (E– – E0) = +1

|+> = { |1> – |2> } / √2
|–> = { |1> + |2> } / √2



Summary of 
QM Part Two

Particle Exchange Model of Force

Quantum Field Theory (QFT) states that the electromagnetic, strong, and weak forces arise from
fermions (particles of matter) exchanging virtual particles (most commonly bosons). Virtual particles
are not directly observable and may have exotic properties, including negative energy and imaginary
momentum. Gravity has not been successfully incorporated within the QFT model. The force-
exchange bosons are:
 

Photons for the electromagnetic force
W+, W–, Z0 for the weak force
Gluons for the strong force

Barrier Penetration

A particle’s probability amplitude A declines exponentially within a barrier in which its kinetic
energy is negative and its momentum p is imaginary, according to:

A ~ exp{(i/ħ) ∫p dz}

Here z is the distance inside the barrier. What penetrates the barrier is the particle’s probability
amplitude, something that has no physical reality. A particle on one side of a classically impenetrable
barrier has a small but non-zero probability of appearing later on the opposite side of the barrier. But
quantum mechanics says no real particle can ever be observed to have negative energy, negative
mass, or imaginary momentum; hence particles can never be observed within such barriers.

Matrices are arrays of components laid out in rows and columns. In quantum mechanics, the
components are typically amplitudes or numbers. An n×m (“n-by-m”) matrix has n rows, m columns,
and n•m components. For matrices, A, B, and C, and scalar s, basic matrix arithmetic includes:
 

1. Multiplication by scalar s: Aij=sBij

2. Matrix addition: Aij=Bij+Cij

3. Matrix multiplication: Cij=Σk AikBkj

4. Unit matrix δij has components: 1 if i=j, else zero
5. If A–1 is the inverse of A, A–1A=AA–1=δij

6. Only non-singular n×n matrices have inverses.



The general equation for the determinant of an N×N matrix M is:

Det |Mij| = Σ Sign(abc…)•M1a•M2b•M3c•…

Here, abc… is a permutation of the integers 1 through N. The sum extends over all permutations, and
Sign(abc..) equals +1 for even permutations and –1 for odd permutations.

In a magnetic field, the Hamiltonian equation for an electron can be written in terms of Pauli spin
matrices:

iħ d |Ψ>/dt = –µ σ•B |Ψ>

Electron atomic orbital states are characterized by three integer quantum numbers: principal
quantum number n; angular momentum quantum number j; and magnetic quantum number m, which
is the component of j along any selected axis. Modern convention employs lower case l rather than j,
but I follow Feynman’s notation to enhance eBook readability. Each orbital electron state is further
subdivided into two spin states.

Electrons in Crystals

Feynman says an electron added to an array of identical, electrically neutral, equally spaced,
immovable atoms “can ride right through the crystal and flow perfectly freely even though it has to hit
all the atoms [in its path]. … That is how a solid can conduct electricity.”

In a one-dimensional crystal, the Hamiltonian equations for an added electron are:

iħ dCn/dt = E0 Cn – A Cn–1 – A Cn+1

Here E0 is the zero-point energy of a stationary electron; Cn is the amplitude for the electron to be at
atom #n; and A is the amplitude for the electron to transition to an adjacent atom. For atomic spacing
b, the stationary states are given by:

Cn = exp{i(knb–Et/ħ)}
E(k) = E0 – 2A cos(kb)

The electron’s energy is in a conduction band between E0–2A and E0+2A, with wave number k
between –π/b and +π/b. Interaction with matter changes the electron’s effective mass to:

meff = ħ2 / (2Ab2)

The same mathematics applies to the propagation of other entities through crystals, including:
 

An electron in an excited state.
A missing electron, called a hole.



Added energy, called an exciton.

An N-atom ring molecule is analyzed as an infinite line of atoms that repeat every N atoms. The
eigenstates are (for integer m):

an(k) = exp{iknb}, for n=1…N
km = (2π/Nb)m, for –N/2<m≤+N/2
E = E0 –2A cos(2πm/N)

An N-atom linear molecule is analyzed as an infinite line of atoms with zero amplitudes at atom n=0
and n=N+1. The eigenstates are (for integer m):

an(k) = sin(knb), for n=1…N
k = πm/[b(N+1)], for m=1…N
E = E0 –2A cos(kb)

Semiconductors are good insulators at low temperatures, and are modestly conducting at room
temperature. Electric current in a semiconductor is carried by both negative carriers (free electrons)
and positive carriers (holes, vacant electron orbits in crystal atoms). The minimum energy required
to create a negative/positive carrier pair within a semiconductor is its band gap, Egap. Electron-hole
pairs can be created by: photon absorption in solar cells; ionization by high-energy particles; and
conversion of thermal energy. In a pure crystal, negative and positive carrier densities are equal.
Adding dopants increases one carrier density while reducing the other; their product is always
proportional to: exp{–Egap/kT}.

In a semiconductor carrying current j, in a traverse magnetic field B, the Hall effect forces carriers of
both polarities toward the same side of a crystal, creating an electric field E, with E=–jB/qN, where
N is the dominant carrier density, and q is the carrier unit charge.

Continuous wave functions in continuous space are analyzed as wave functions in a crystal in the
limit of zero atomic spacing. We replace summations with integrals, and define two infinite sets of
basis states: |x>, the state of a particle being at x; and |p>, the state of a particle having momentum p.
In the |x> basis representation, wave function ψ is:

ψ(x) = <x|ψ>

Here ψ(x) is the amplitude for a particle to be at position x at time t, whereas |ψ> is a particle state
that might be spread across all x. Other restated equations are:

<ø|ψ> = ∫ <ø|x> <x|ψ> dx
<ø|ψ> = ∫ ø*(x) ψ(x) dx

The probability that an electron is between x and x+Δx, for small Δx, is:

Prob(x) Δx = |ψ(x)|2 Δx



In the limit that Δx goes to zero, Prob(x) is the probability density of finding the particle near x.

Feynman chooses this normalization for momentum amplitudes:

<p|x> = <x|p>* = exp{–ipx/ħ}
Prob(p) = |<p|ψ>|2 / h (not ħ)

The Dirac delta function is defined as the limit as ε goes to 0 of:

δ(x) = exp{–x2/ε2}/(ε√π)
∫ δ(x) dx = 1, over all x

Schrödinger’s equation for non-relativistic velocities in energy potential V is:

1D: iħ dψ/dt = –ħ2/2m ∂2ψ/∂x2 + V ψ
3D: iħ dψ/dt = –ħ2/2m Ď2ψ + V ψ

Here Ď = (∂/∂x,∂/∂y,∂/dz) is the gradient
and Ď2 = Ď•Ď  = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

Symmetry & Conservation Laws

Feynman says: “for each of the rules of symmetry there is a corresponding conservation law.” This
is called Noether’s Theorem. Feynman says: “A physical system is symmetric with respect to the
operation Q when Q commutes with U [or H], the [operators for] the passage of time.”
Mathematically, this means: QH=HQ. If a Hamiltonian H has a symmetry whose operator is Q, and Q
has an eigenstate |ψ>, then Q|ψ> yields the same result forever, absent external interference. This
establishes a conservation law: Q|ψ> is conserved.

The following symmetry operations are universally valid.

Translation in Space
Translation in Time
Spatial Rotation
Motion at Constant Velocity
Identical Particle Exchange
Quantum Phase Change
CPT Symmetry

The following symmetry operations are valid for all but the weak interaction.

Spatial Reflection
Time Reversal
Electric Charge Polarity Reversal
Matter & Antimatter Exchange



A symmetry operator operating on a non-degenerate eigenstate can only change its phase angle.

Symmetry under time translation implies conservation of energy.

Symmetry under x-axis translation implies conservation of linear momentum in the x-direction. The
x-momentum operator is px=kx/ħ, with ∂ψ/∂x = (px/ħ)ψ. The same is true for y and z.

Symmetry under z-axis rotation implies conservation of angular momentum in the z-direction. Spin
m in the z-direction is equivalent to angular momentum Jz=mħ. The same is true for x and y.



Chapter 25

Particle Physics: 
Λ0 Decay

In the next two chapters we apply our knowledge of quantum mechanics to frontier science: high-
energy physics, the study of elementary particles and their interactions.

Let us first review what we learned about elementary particles in Feynman Simplified 1A Chapter
2, much of which was discovered after Feynman gave these lectures. The elementary particles, those
believed not to be made of anything smaller, are listed here.

Figure 25-1 
Elementary  Particles without Higgs

The four particles in the right column are bosons, the carriers of forces. The twelve particles in the
left three columns are fermions, the particles of matter. Each of the twelve elementary fermions has a
corresponding antiparticle not shown in the figure. The four bosons are their own antiparticles.

Each box in Figure 25-1 provides data for one particle, starting with the large one-letter symbol
above the particle’s name. The three numbers on the left side of each box are: the particle’s mass,
electric charge, and spin. Electric charges are stated in units of the proton charge. The small numbers
in the figure may be hard to read, so we’ll discuss them shortly.



The pleasingly symmetry of this 4-by-4 array is somewhat misleading. The right hand column contains
four bosons: the photon, gluon, Z, and W. However, the boson on each row is not uniquely associated
with the other particles on the same row. That’s quite different from the other three columns, where
all particles on the same row are intimately related.

The six quarks occupy the upper two rows of the left three columns. The top row contains the up,
charm, and top quarks that all have electric charge +2/3. The second row contains the down, strange,
and bottom quarks that all have charge –1/3. The quarks’ names are entirely fanciful. In the subatomic
realm, all spatial directions are equivalent; our customary notions of up, down, top, and bottom are
meaningless. None of the quarks is more strange or less charming than the others.

The six leptons occupy the lower two rows of the left three columns. The bottom row contains the
electron, muon, and tau that all have charge –1. The next row up contains the electron neutrino, muon
neutrino, and tau neutrino that all have zero charge.

The four bosons have spin 1, while the quarks and leptons all have spin 1/2. All quarks and leptons
are fermions, the particles of matter. The four bosons are the exchange particles of forces: the photon
for the electromagnetism; gluons for the strong force; and Z and W for the weak force.

Particle masses are measured in electron volts (eV), the energy an electron gains traversing a one-
volt potential; MeV means million eV, and GeV means billion eV. In discussing particles, we employ
the standard particle physics convention for the speed of light: c=1.

From left to right across the top row, the masses of u, c, t, γ are: 2.4 MeV, 1.27 GeV, 171.2 GeV, and
zero. In the second row, the masses of d, s, b, g are: 4.8 MeV, 104 MeV, 4.2 GeV, and zero. In the third
row, the neutrino masses are discussed below, and the Z mass is 91.2 GeV. In the fourth row, the
masses of e, µ, τ, and W± are: 0.511 MeV, 105.7 MeV, 1.777 GeV, and 80.4 GeV.

Setting the neutrinos aside for the moment, the three generations of fermions are distinguished by their
masses. In each row, the third generation particles are substantially more massive than the second
generation, which in turn are substantially more massive than the first generation (left most column).
Third generation particles can decay (transform) into second generation particles, which can decay
into first generation particles. These decays happen rapidly; lifetimes range from millionths of a
second to trillionths of a trillionth of a second. The first generation particles are stable (they appear
to be eternal), because they have nothing lighter to decay into.

The masses of the three types of neutrinos remain unknown. We do know their masses are very small,
and that the three mass values are all different. The values shown in Figure 25-1 are measured in
particle reactions. Surprisingly, cosmological measurements provide a much more stringent limit: the
sum of the three masses is less than 0.1 eV. In some sense, it is easier to measure the mass of the
universe and subtract everything else than to measure the neutrino masses directly.

Not shown in Figure 25-1 is the Higgs boson, discovered in 2012. It should go with the other four
bosons, but that would spoil the nice 4-by-4 array. The Higgs boson was widely hyped as the “God
particle”, but it is no more or less divine than any other particle. The Higgs boson is credited with
being the source of the other elementary particles’ masses. Particles that interact strongly with Higgs



become very massive; those interacting weakly with Higgs have low masses. Photons and gluons are
massless because they don’t interact at all with Higgs. The Higgs has zero electric charge, mass 125.2
GeV, and a lifetime of 1.56×10–22 sec. Its hallmark characteristic is that it has spin 0; this is unique
among elementary particles, although many composite particles also have spin 0.

While elementary particles are thought to get their mass from the Higgs boson, the mass of composite
particles comes from a quite different source. The proton mass, for example, is the sum of the masses
of its constituent quarks plus their kinetic and interaction energies. Only the quark masses are due to
Higgs effects; these amount to about 1% of the proton mass. Thus, about 99% of the mass of all
normal matter is not due to Higgs effects, making it seem a bit less Godly.

Although not elementary, the proton and neutron are worth mentioning. A proton is comprised of two
up quarks and one down quark; it has charge +1, mass 938.3 MeV, spin 1/2, and is stable (its lifetime
is measured to be at least 1.9×10+34 years). A neutron is comprised of two down quarks and one up
quark; it has zero charge, mass 939.6 MeV, spin 1/2, and its lifetime is 881.5 seconds.

Lambda-Zero Decay

Our first topic is the decay of the Λ0 (“lambda-zero”), and how angular momentum conservation
affects that decay, which Feynman discusses in V3p17-11.

The Λ0 is a heavier cousin of the neutron. Its mass is 1115.7 MeV, about 19% more than a neutron. It
has zero electric charge, spin 1/2, and even parity. The Λ0 decays through the weak force with a
lifetime of 2.63×10–10 sec. This is a remarkably long lifetime compared with typical strong-force
reaction times of 10–24 sec.

The Λ0 is comprised of three quarks: one up, one down, and one strange. Its decay occurs in three
stages, and involves a virtual W– boson and an anti-up quark (u).
 

1. s decays to u + W–

2. W– decays to d + u
3. u, d, u, d and u quarks combine

In stage (3), the five quarks can combine in two different ways: 36% of the time they make a neutron
(udd) and a neutral pion (uu); and 64% of the time they make a proton (uud) and a negative pion (du),
as shown in the two Feynman diagrams in Figure 25-2.



Figure 25-2 Two Λ0 Decay  Modes

Let’s consider the dominant decay mode that results in two charged particles:

Λ0 decays to p+ and π –

Whenever one particle decays into two other particles, the decay products must have specific energy
values in the center of mass (CM) reference frame, due to energy and momentum conservation. Let’s
see why. The total energy in the CM frame before and after the decay must be equal, hence:

mΛ = mp γp + mπ γπ

Here, c=1, γ=1/√(1–v2) is the usual relativistic factor, v is velocity, m is mass, and the subscripts
indicate to which particle each quantity pertains. In the CM frame the Λ0 is stationary, hence it has
v=0 and γ=1. The total momentum in the CM frame before and after the decay must also be equal,
hence:

0 = mp γp vp + mπ γπ vπ

Unfortunately, these equations don’t reduce to anything simple, in general. In the Λ0 case, however,
TCM, the CM kinetic energy of the decay products, is quite low, as shown here:

mΛ=1115.68 MeV
mp = 938.27 MeV
mπ =139.57 MeV

TCM = 37.84 MeV



Here the CM momenta of the proton and pion are each 100.58 MeV, and their velocities, 0.107c and
0.585c respectively, are only modestly relativistic.

The Λ0 and the proton have spin 1/2, and the pion has spin 0. Figure 25-3 shows this decay in the CM
frame, with the z-axis set parallel to the spin of the lambda.

Figure 25-3 Lambda Decay  Geometry

In Figure 25-3, the Λ0 spin is represented by the short vertical arrow, and θ is the angle of the
proton’s velocity relative to the lambda spin direction, which is the z-axis.

From the conservation of momentum, in the CM frame, the pion’s velocity must be exactly antiparallel
to the proton’s velocity. What we discover about the angle of the proton’s velocity will immediately
determine what the pion does as well. Let’s find out what we can learn about angle θ.

Consider the simplest case first (always a good starting point) of θ=0, as shown in Figure 25-4.

Figure 25-4 Lambda Decay  Spin Up

When θ=0, the proton is moving up the z-axis, and the pion is moving down the z-axis. Because both
are moving along the z-axis, Jz, the z-component of angular momentum of both particles must be zero.



(Recall that Jz=xpy–ypx, and x=y=0 along the z-axis.) Before the decay, the only angular momentum is
the lambda spin, which equals ħ/2 in the +z-direction. After the decay, the only possible z-component
of angular momentum, Jz, is the proton’s spin, since the pion has zero spin. Therefore, to conserve Jz,
the proton’s spin must be up in the +z-direction; it cannot be spin down.

While the above logic is entirely valid, it may seem overly classical. Feynman therefore offers a
second argument that is more quantum mechanical.

Define |Λ> to be the state of the Λ0 before decaying, and |p@θ=0> to be the state of a proton moving
at angle θ in the CM frame. We need not be explicit about the pion, since its state is completely
determined by the proton’s state.

All known laws of nature, and therefore all the Hamiltonians we use to represent natural phenomena,
are symmetric under rotation. Additionally, |Λ> and |p@θ=0> are symmetric under rotations about the
z-axis.

As defined in Chapter 23, Rz(ø) is the operator for rotating the z-axis by angle ø. According to what
we discovered about symmetries in that chapter, Rz(ø), |Λ>, and |pπ,θ=0> satisfy these equations:

Rz(ø) |Λ> = exp{iø/2} |Λ>
Rz(ø) |p@θ=0> = exp{iø/2} |p@θ=0>

The key points demonstrated by these equations are: (1) Rz(ø) can change an eigenstate by only a
phase angle; (2) this phase angle is a constant of the motion that never changes regardless of how the
state evolves, since RzH=HRz; and (3) the phase angle for spin 1/2 particles is ø/2, as given in the
rotation tables at the end of Chapter 17.

We also discovered in Chapter 23 that the phase angle ø/2 is proportional to Jz. These equations
prove, therefore, that angular momentum is conserved and that the proton must be spin up if θ=0.

Define A to be the amplitude for the lambda to decay to a proton at θ=0 with spin in the +z-direction,
that is:

A = <p@θ=0, s=+z | H | Λ, s=+z>

Here we extended the state definitions to include spin orientation s.

Now consider the same decay, but this time with the lambda spin in the –z-direction, as shown in
Figure 25-5. 



Figure 25-5 Lambda Decay  Spin Down

The same logic, with the opposite sign, shows that for θ=0 the proton must be spin down to conserve
angular momentum. Define B to be the amplitude of this decay:

B = <p@θ=0, s=–z | H | Λ, s=–z>

If the decay process were symmetric under reflection — if it conserved parity — that would ensure
B=±A, as we now demonstrate. If the configuration of Figure 25-4 were reflected in the horizontal
plane, the z-axis and the proton direction would flip, pointing downward, parallel to the lambda spin,
resulting in the same configuration as in Figure 25-4, whose amplitude is A. Since the parity operator
can only change an eigenstate by a factor of ±1, this would mean B=±A. Recall that axial vectors, like
spin, do not change when reflected in a plane perpendicular to their direction (see Feynman
Simplified 1D Chapter 49).

However, since this decay process requires a weak interaction, reflection symmetry and parity
conservation are not guaranteed: A and B have no definite relationship.

To review: θ is the angle between the Λ0 spin and the proton’s velocity. We define A and B to be the
amplitudes for this decay at these special values of θ:

A = amplitude at θ = 0
B = amplitude at θ = π

At both angles, the proton and Λ0 spins must be parallel to conserve angular momentum. Our next step
is to calculate the amplitudes for intermediate angles. As Feynman says, in V3p17-13, with: “these
two amplitudes we can find out all we want to know about the angular distribution of the
disintegration.”

We achieve this by defining a new axis called z* that is rotated by angle θ from the z-axis about the
axis perpendicular to the screen (call that the y-axis). This rotation is performed by the Ry(θ)
operator, defined in Chapter 17. A Λ0 with spin up along the z-axis can either be spin up or spin down
along the z*-axis with amplitudes given by Ry(θ):



<Λ s=+z* | Λ s=+z> = +cos(θ/2)
<Λ s=–z* | Λ s=+z> = –sin(θ/2)

We next calculate the amplitude for the proton to be moving in the +z*-direction for each spin
possibility, as shown in Figure 25-6. 

Figure 25-6 Lambda Decay  Options

Part (1) of the figure shows the initial Λ0 spin orientation in the +z-direction. Part (2) and part (3)
show the proton direction of motion in the +z*-direction, and at angle θ relative to the z-axis. In part
(2) the proton spin is in the +z*-direction, and in part (3) the proton spin is in the –z*-direction.

We will calculate part (2) first. In principle this could occur in two indistinguishable ways, so we
must sum the amplitudes for each way. The two ways correspond to Λ0 spin up or spin down in the
+z*-direction. Each of these two amplitudes is itself the product of two other amplitudes: the
amplitude for Λ0 to have that spin; and the amplitude that a Λ0 of that spin would decay to a proton
with spin in the +z*-direction. We therefore get this quite long expression:

<p along z*, s=+z* | Λ s=+z>
 =<p, s=+z*|H|Λ s=+z*> <Λ s=+z*|Λ s=+z>
    +<p, s=+z*|H|Λ s=–z*> <Λ s=–z*|Λ s=+z>

We know from above that the Hamiltonian component in the lowest line is zero, due to conservation
of angular momentum: a proton emitted along the Λ0 spin axis must have spin parallel to the Λ0. In the
middle line, the Hamiltonian component equals A and the rotation factor equals cos(θ/2). This
reduces the long expression to:

<p along z*, s=+z* | Λ s=+z> = +Acos(θ/2)

Similarly, for part (3), the proton moving in the +z*-direction with spin in the –z*-direction:

<p along z*, s=–z* | Λ s=+z>
=<p, s=–z*|H|Λ s=+z*> <Λ s=+z*|Λ s=+z>
+<p, s=–z*|H|Λ s=–z*> <Λ s=–z*|Λ s=+z>



Here the Hamiltonian in the middle line is zero by angular momentum conservation, reducing the
expression to:

<p along z*, s=–z* | Λ s=+z> = –Bsin(θ/2)

These protons are moving in the +z*-direction, which is at angle θ relative to the z-axis.

Now consider an experiment that detects protons from Λ0 decay and measures the angle between the
proton velocities and the Λ0 spin in the CM frame. Assume the experiment does not measure the
direction of the proton spin: it tallies all protons regardless of whether they are spin up or spin down.

Here is your pop quiz: is the probability of a proton at angel θ equal to the square of the sum of
amplitudes, or the sum of the squares of amplitudes?

dee-dee, dee-dee, dee-dee, dee-dee…ready to check your answer?

Protons with opposite spins are not identical; they are distinguishable even if we do not bother to
distinguish them. We therefore sum squares.

Prob(p@θ) = |A|2 cos2(θ/2) + |B|2 sin2(θ/2)

Using the half-angle formulae, we can rewrite this as:

Prob(p@θ) = β (1 + α cosθ)
α = (|A|2 – |B|2) / (|A|2 + |B|2)
β = (|A|2 + |B|2) / 2

In V3p17-14, Feynman says experiments confirm this cosine dependence, and provide a measured
value of α that is –0.62 ± 0.05. From that we can find the |A/B| ratio.

α = (|A/B|2 – 1) / (|A/B|2 + 1)
α + α |A/B|2 = |A/B|2 –1
α +1 = |A/B|2 (1 – α)
|A/B|2 = (α+1) / (1–α)
|A/B|2 = (0.38±0.05) / (1.62–[±0.05])
|A/B|2 = 0.235±0.038
|A/B| = 0.485±0.040

Therefore B is about twice as large as A, confirming that parity symmetry is violated in the Λ0 decay.

Feynman then seeks the probability that the proton will be spin up along the original z-axis. We
already have the essential pieces that answer this question. We have the amplitudes for the proton to
be spin up and spin down along the z*-axis. Applying Ry(–θ) projects these amplitudes back onto the
z-axis.

|p, s=+z> = <+z|Ry(–θ)|+z*> |p, s=+z*>
   + <+z|Ry(–θ)|–z*> |p, s=–z*>



|p, s=+z> = [cos(θ/2)] [Acos(θ/2)]   
   + [–sin(θ/2)] [–Bsin(θ/2)]

|p, s=+z> = A cos2(θ/2) + B sin2(θ/2)

The probability is the magnitude of this amplitude squared.

Chapter 25 Review: Key Ideas

The Λ0 (“lambda-zero”) is a more massive cousin of the neutron in which one of the neutron’s down
quarks is replaced by a strange quark. The Λ0 has a remarkably long lifetime of 2.63×10–10 seconds. It
decays through the weak force, primarily to a proton and a negative pion.

In the CM frame of that decay, let θ be the angle between the proton’s velocity and the Λ0 spin. Let A
be that amplitude at θ=0, and B be that amplitude at θ=π. At both of these angles, the proton and Λ0

spins must be parallel, due to the conservation of angular momentum. The probability of the proton’s
velocity being at an intermediate angle θ is:

Prob(p@θ) = |A|2 cos2(θ/2) + |B|2 sin2(θ/2)

Experiments determine that |A/B| = 0.485±0.40. Since A/B is not ±1, parity is not conserved in this
weak interaction.



Chapter 26

Particle Physics: 
 Neutral Kaons

The exotic properties of neutral kaons present some of the most beautiful demonstrations of quantum
principles in particle physics. Their once inexplicable properties drove physicists to embrace
“strangeness.”

In V3p11-12, Feynman begins a long discussion of how little was known about neutral kaons 50 years
ago. Rather than detailing everything we didn’t know then, let’s instead discuss all that we do know
now.

Particle Conservation Laws

Recall our discussion of elementary particles in the prior chapter. These are the particles that we
believe are the most fundamental pieces of nature, those that are not made of anything “smaller.”
These include: four force-carrying bosons; the Higgs boson; twelve fermions; and the  corresponding
twelve antifermions. The fermions are further subdivided into six quarks that participate in the strong
force, and six leptons that do not.

Historically, physicists identified a steadily increasing number of rules governing the creation and
annihilation of various types of elementary particles in different types of reactions. For example, we
have long believed that the total number of leptons is always conserved. Lepton conservation means
no reaction ever changes the total number of leptons of all six types minus the total number of
antileptons of all six types. No evidence has ever been found that invalidates the absolute
conservation of leptons.

With our modern understanding of particle physics, called the Standard Model of Particle Physics, we
can state these conservation laws more succinctly:

In all processes driven by either the strong force or the electromagnetic force, the total number
of fermions minus antifermions of each type is always conserved. The number of bosons is not
conserved, neither within one type nor summed over all types.

This means the total number of up quarks minus anti-up quarks never changes, and similarly for each
of the other eleven types of elementary fermions. This amounts to twelve separate conservation laws.
In all these particle conservation laws, one sums the number of particles and subtracts the number of
corresponding antiparticles.



In the past, a major principle of particle physics was the conservation of baryons (protons, neutrons,
and their heavier cousins). This conservation law explained why the following reaction has never
been observed:

p+ + p+ never goes to π+ + π+ + π0

Above, we have 2 baryons on the left and none on the right; hence this reaction violates the
conservation of baryon number.

While baryon number conservation is still a valid principle, it isn’t the most insightful description of
nature. Baryon conservation is simply a consequence of the conservation of quarks of each type, and
the way that quarks combine.

A π+ has 1 up quark and 1 anti-down quark, while a π0 is a linear combination of up+anti-up and
down+anti-down. The above reaction has 4 up quarks on the left and only 2 on the right. It also has 2
down quarks on the left and –2 down quarks on the right. The reaction is doubly forbidden because it
violates the conservation of two types of quarks.

If that were the end of the story life would be simple, too simple to allow the existence of interesting
things such as stars, planets, and life.

The complication, and our opportunity for existence, comes from the weak force. Only the weak force
is known to change one type of elementary fermion into another. This enables nuclear fusion that
powers the stars and produces all elements heavier than helium, which is quite important for carbon-
based life forms. Since changing fermion types can occur only through the weak force, such reactions
proceed at vastly lower rates (less probability per second) than reactions driven by the strong or
electromagnetic forces.

The ability of the weak force to change one fermion into another is not universal. Weak force
phenomena are typically a bit complicated.



Figure 26-1. Weak & Weaker Transitions

In Figure 26-1, the bold arrows indicate transitions between fermion types that the weak force
enables at relatively high rates — high relative to other weak interactions. These include transitions
between up and down quarks, and between electrons and electron-neutrinos.

The dotted arrows indicate transitions between fermion types that the weak force enables, but at much
lower rates. These include transitions between up and strange quarks, and between down and charm
quarks.

Note that none of these transitions changes the total number of quarks minus antiquarks, nor the total
number of leptons minus antileptons. In appropriate circumstances, all these transitions can proceed
in either direction.

None of these transitions can occur in isolation. When a down quark transitions to an up quark,
electric charge increases by +1. That transition can only occur in tandem with another reaction that
changes electric charge by –1, such as an electron-neutrino transitioning to an electron. Additionally,
energy must be conserved in all reactions. Since a charm quark has more mass than a down quark, a
down-to-charm transition must occur in tandem with another reaction that supplies the required
energy.

We also know that transitions occur in which neutrinos change types. Those reactions are not well-
understood at this time, but they most probably involve the weak force.

Particle conservation laws require that the number of strange quarks is conserved in strong or
electromagnetic force reactions. This is why the Λ0 decay discussed in the prior chapter proceeds
through the weak force. The Λ0 is the least massive three-quark particle that contains a strange quark.
In every particle decay without exception, the sum of the masses of the decay products must be less
than the mass of the decaying particle. (If that isn’t clear, think about the total energy in the original



particle’s center of mass frame before and after the decay.) This means the Λ0 can only decay to
particles that have no strange quarks. Because the number of strange quarks has to change in Λ0 decay,
this decay can only occur through the weak force.

Before physicists knew about quarks, Murray Gell-Mann and Abraham Pais explained the long Λ0

lifetime by introducing a concept called strangeness. Each particle was assigned a strangeness
quantum number S, and a new law required the conservation of strangeness in all but weak force
reactions. The Λ0 has strangeness –1, protons and pions have strangeness zero, so the Λ0 decay results
in a strangeness change of ΔS=+1, thus requiring the weak force and greatly extending the Λ0 lifetime.

The strangeness concept succeeded in explaining why some particles had such long lifetimes. It also
explained why certain reactions occurred and other seemingly similar reactions did not. This was an
important step toward the later development of the quark model, the concept that all strongly
interacting particles are composed of quarks.

Unfortunately, the sign convention that Gell-Mann and Pais selected resulted in assigning the strange
quark S=–1. This is much like the unfortunate sign convention for electric charge in which positive
current flowing left is actually due to negative electrons flowing right. In both cases, by the time
physicists developed complete theories, these sign conventions were too deeply ingrained to be
reversed.

When additional types of quarks were discovered, the logical extension of strangeness resulted in
quantum numbers and conservation laws for charmness, topness, and bottomness — a linguist and
political-correctness nightmare.

It is far better to say that each fermion type is conserved except in weak interactions that conserve
only total quark number and total lepton number. This simpler rule eliminates the need for the
separate conservation laws for strangeness, charmness, topness, and bottomness. I often refer to
strangeness conservation for clarity, for historical reasons, and because that is common usage.

Kaons & The Strong Force

Kaons, once called K-mesons, are copiously produced in strong force reactions. The four types of
kaons produced in strong force reactions have the following symbols, quark contents, strangeness
quantum numbers, and masses:

K+: us; S=+1; 493.67 MeV
K–: su; S=–1; 493.67 MeV
K0: ds; S=+1; 497.65 MeV
K0: sd; S=–1; 497.65 MeV

The superscripts indicate the particles’ electric charge. Note that the K+ and K– are antiparticles of
one another, as evidenced by their opposite quark compositions. Similarly, the K0 and K0 (“K-zero-
bar”) are different particles that are antiparticles of one another, because they contain opposite
quarks. (In physics texts and research papers, antiquarks and neutral antiparticles are denoted with



bars above their symbols, but that isn’t possible in an eBook, so I use underlines.)

Since each kaon contains one s or s quark, and since strong force reactions conserve the number of
strange quarks, strong reactions must produce kaons in conjunction with other particles containing the
opposite s or s quarks. Two such reactions are:

π – + p+ goes to Λ0 + K0

n0 + p+ goes to p+ + p+ + K– + K0

In the first reaction, S=0+0 on the left and –1+1 on the right, conserving strangeness. In the second
reaction, S=0+0 on the left and 0+0–1+1 on the right, again conserving strangeness.

Strangeness conservation in strong interactions also explains why:

K0 + p+ goes to Λ0 + π+

K0 + p+ never goes to Λ0 + π+

In the first reaction, S=–1+0 on the left and –1+0 on the right. In the second reaction, S=+1+0 on the
left and –1+0 on the right, which is forbidden in a strong force reaction.

Kaon Decays

By the norms of particle physics, the K+ and K– decay very slowly, with a lifetime of 1.238×10–8

seconds. Their two principle decay modes are:

K± —> µ± + neutrino

K± —> π± + π0

The long lifetime confirms that these are weak reactions in which strangeness is not conserved.

The neutral kaons are far more interesting. They can decay via the weak force into:

K0 or K0 —> π++π – or π0+π0

As Gell-Mann and Pais pointed out, since both neutral kaons can decay to a pair of pions, there is a
non-zero amplitude for each of the particles to transform into the other, with the weak force acting
twice, through these reactions:

K0 —> 2 pions —> K0

K0 —> 2 pions —> K0

In my copy of the Feynman Lectures, which is the book’s first edition, the equations in V3p11-17
contain a numb er of errors. In a recent edition, the derivation is done substantially differently, but in



a manner that raises technical issues that I discuss in the last section of this chapter. And, after 50
years, all editions of these lectures are considerably outdated.

My approach will therefore deviate from the Feynman Lectures, and will instead reflect our modern
understanding of neutral kaons.

Gell-Mann and Pais realized that K0 and K0 are not two independent particles. Instead, their decay
processes unite them as the basis states of one combined two-state system. The neutral kaons were the
first discovered example of a more general phenomenon: neutral particle oscillations, which have
also been observed with B0s, D0s, and neutrinos.

In all the two-state systems we have examined before, the components of the Hamiltonian were real
numbers. This is because those systems did not decay; the total number of particles in those systems
never changed. Now we have something different: neutral kaons do decay. Therefore the solutions to
the kaon two-state system must decrease exponentially over time. We can accommodate decay by
including imaginary amplitudes in the Hamiltonian.

Let’s examine that mathematically. For a stable system, the diagonal components of the Hamiltonian
are real numbers that equal the energy of the basis states, thus:

Hnn = E0

iħ dCn/dt = E0 Cn

Cn = exp{E0t/iħ}

This solution rotates within the complex plane, with a changing phase angle and a constant magnitude.

Now consider a complex diagonal component of the Hamiltonian:

Hnn = E0 – iβ
iħ dCn/dt = (E0 – iβ) Cn

Cn = exp{E0t/iħ} exp{–βt/ħ}

We see that E0 leads to an oscillating factor, the basis states “sloshing back and forth”, while –iβ
provides the decaying exponential factor. This is why we now introduce complex amplitudes.

We begin analyzing the neutral kaon system by selecting basis states |K0> and |K0>, and defining:

C+ = <K0|ψ>
C– = <K0|ψ>

The plus and minus signs match the strangeness quantum numbers of the K0 and K0
.

The Hamiltonian, with complex amplitudes, is:

H++ = E0 – iβ
H+– = a – iα



H–+ = a – iα
H– – = E0 – iβ

where:

a – iα = <K0|K0> = <K0|K0>

Following our well-trod path for analyzing two-state systems, the Hamiltonian equations are:

iħ dC+/dt = (E0–iβ) C+ + (a–iα) C–

iħ dC–/dt = (E0–iβ) C– + (a–iα) C+

As before, adding and subtracting the above equations yields the stationary solutions.

iħ d(C++C–)/dt =(E0–iβ)(C++C–)+(a–iα)(C++C–)
iħ d(C+–C–)/dt =(E0–iβ)(C+–C–)–(a–iα)(C+–C–)

For the stationary states, define:

|K1> = (|K0> – |K0>) / √2
|K2> = (|K0> + |K0>) / √2

C1 = (C+ – C–) / √2
C2 = (C+ + C–) / √2

The energy levels of the “stationary” states are:

E1 = E0 – a
E2 = E0 + a

With decaying particles, no state is completely “stationary.” What we are referring to are those states
whose basis state amplitudes maintain constant ratios; the states that maintain their essential character
as their overall magnitudes decrease exponentially.

In the kaon rest frame, these energy levels must match the measured masses, which yields:

E0 = 497.65 MeV
2a = 3.5x10–12 MeV

The K2 is minutely more massive than an average K1. We must say “average K1” because unstable
particles do not have definite masses. The Uncertainty Principle states that the precision of an energy
measurement ΔE, measured over a time interval Δt, can never be better than: ΔE Δt = ħ/2. The time
interval for a mass measurement of a K1 is limited to its lifetime. Hence the least mass uncertainty
occurs when the K1 mass has a Gaussian distribution whose full width is Δm1 = ħ/Δt. With the
measured K1 lifetime quoted below, Δm1=7.65x10–12 MeV. This means the variation in mass of a K1 is
about twice the K2–K1 average mass difference Δm21. This is illustrated in Figure 26-2.



Figure 26-2 K1, K2 Mass Distributions

The K2 mass distribution is represented in the figure by a bold vertical line, because its full width of
1.3x10–14 MeV is about 600 times smaller than the K1 mass distribution.

The stationary states have the following time dependence:

C1(t) = C1(0) exp{E1t/iħ} exp{–(β–α)t/ħ}
C2(t) = C2(0) exp{E2t/iħ} exp{–(β+α)t/ħ}

We can determine β and α from the measured mean lifetimes.

K1: t1 = 8.954×10–11 sec
K2: t2 = 5.116×10–8 sec

(β–α)/ħ = 1/8.954×10–11 sec = 1.117×10+10/sec
(β+α)/ħ = 1/5.116×10–8 sec = 1.955×10+7/sec

β/ħ = 5.594×10+9 / sec
α/ħ = 5.574×10+9 / sec

We can also express the tiny mass difference in the same units.

2a/ħ = 3.5x10–12 MeV / 6.582x10–22 MeV-sec
2a/ħ = 5.32×10+9 / sec
tΔm = ħ/2a = 1.88x10–10 sec

There are three time constants in this system: (1) the K1 lifetime t1; (2) the K2 lifetime t2; and (3) the
two-basis-state oscillation time tΔm. The measured time constants have these relationships:

tΔm = 2.1 t1

t2 = 571 t1

We can rewrite the stationary states highlighting these time constants.



C1(t) = C1(0) exp{–imt/ħ} exp{–it/tΔm} exp{–t/t1}
C2(t) = C2(0) exp{–imt/ħ} exp{+it/tΔm} exp{–t/t2}

Since the decay time constant t1 is less than the oscillation time constant tΔm, this system is an over-
damped harmonic oscillator, as described in Feynman Simplified 1B Chapter 14. C1 rapidly
vanishes, leaving only C2.

From the stationary state solutions, we can calculate the basis state amplitudes.

C1 = (C+ – C–) / √2
C2 = (C+ + C–) / √2

C+ = (C1 + C2) / √2
C– = (C2 – C1) / √2

For t >> t1, C1 vanishes and we are left with:

C+ = +C2 / √2
C– = +C2 / √2

A K0 produced in a strong reaction at t=0 has:

C+(t=0) = 1
C–(t=0) = 0
C1(0) = C2(0) = 1/√2

At a time t, with t1 << t << t2, this particle becomes:

C+(t) = +exp{–imt/ħ} exp{–it/tΔm} / 2
C–(t) = +exp{–imt/ħ} exp{–it/tΔm} / 2

What all this means is that the original K0 has a 50% probability of decaying into a pair of pions, and
a 50% probability of becoming a symmetric superposition of K0 and K0 — its original self and its
antiparticle in equal measures: a quantum version of Dr. Jekyll and Mr. Hyde. A K0 produced in a
strong reaction has exactly the same fate.

The K2 slowly decays while remaining a superposition of matter and antimatter. Its quark composition
is always (ds+ds)/√2.

Recall that CP symmetry is the combination of charge polarity reversal (C) plus spatial inversion (P),
which amounts to the exchange of matter and antimatter. Like parity P, elementary particles
(generally) are eigenstates of definite CP — when operated on by CP, their amplitudes are multiplied
by either +1 or –1. This means particles have a conserved CP quantum number that is either +1 or –1.
If CP is a universal symmetry of nature, the CP quantum number of all closed systems never changes.

Also like parity, the CP quantum number of two particles equals the product of the CP quantum



numbers of each particle separately. Pions have CP=–1, but a pair of pions has CP= (–1)2 = +1. The
CP of a K1 is +1, while the CP of a K2 is –1. This means a K1 can decay to two pions, but a K2 cannot,
if CP is conserved.

When a K1 decays to two charged pions, about 218 MeV of mass energy is released. By comparison,
when a K2 decays to three charged pions, which have CP=–1, only about 79 MeV of mass energy is
released. This means the K2 decay proceeds at a much lower rate than the K1 decay.

Now we come to more recent discoveries.

Kaon Regeneration

A remarkable quantum phenomenon occurs when a beam of long-lived neutral kaons passes through a
material object.

In 1955, Abraham Pais and Oreste Piccioni predicted that a K2 beam traversing matter regenerates a
coherent K1 beam. This is because normal matter preferentially absorbs the K0 component of a K2

beam, as we will now explore.

From above, absent an absorber, the basis state composition of a K2 beam is:

|K2> = (|K0> + |K0>) / √2

For simplicity, assume that in passing through a thin block of matter, a fraction f of the K0 component
of this beam is absorbed and none of its K0 component is absorbed. The basis state composition of the
beam becomes (recalling that |K0>=(|K1>+|K2>)/√2):

(|K0> + (1–f)|K0>)/√2
  = {(1–f)(|K0>+|K0>)/√2} + {f|K0>}
  = {(1–f)|K2>} + {f(|K1>+|K2>)/√2}
  = (1–f +f/√2)|K2> + f|K1>/√2

The key feature is the reappearance, the regeneration, of K1 particles. Half of these regenerated K1’s
rapidly decay to pairs of pions, leaving the other half to rejoin the K2 beam.

In 1960, an experiment lead by Oreste Piccioni observed this kaon regeneration process.

An old physicists’ adage laments: “Yesterday’s sensation is today’s calibration and tomorrow’s
contamination.” As science continually advances, our machines become more powerful. Phenomena
that were once barely detectable eventually are seen routinely, and become useful benchmarks. Even
later, they become so ubiquitous that they must be methodically eliminated to unmask even rarer
phenomena. In brief: even thrilling discoveries become boring and burdensome.

As an example, less than a decade after my father first observed kaon regeneration, the pion-muon
discriminator in our CP-violation experiment was calibrated using regenerated kaons. Once



calibrated, we took special measures to ensure unintended kaon regeneration did not contaminate our
data.

Now, let’s discuss why matter preferentially absorbs K0 and not K0. Neutral kaons are absorbed by
matter through their strong force reactions with the protons and neutrons that all normal matter
contains. Recall that the strong force conserves the net number of each type of quark, and that the K0

contains one strange quark, while the K0 contains one antistrange quark. By “net” number, we mean
the number of particles minus the number of antiparticles.

Protons and neutrons are the two least massive baryons, a class of particles that have a net quark
number equal to +3. Protons and neutrons contain up and down quarks, but no strange quarks.

Some of the more massive baryons, called hyperons, contain one or more strange quarks, but none
contain any antistrange quarks, which count as –1 quark. A baryon with one antistrange quark would
need four normal quarks to reach the required net quark number of +3. While a pentaquark, four
quarks plus one antiquark, is not impossible, none has ever been observed. Also, a pentaquark would
necessarily contain at least one quark-antiquark pair, making it extremely short-lived.

All this means that many types of hyperons can be produced by K0 collisions with matter, but cannot
be produced by similar K0 collisions. With more reaction opportunities, K0 has a much greater
absorption rate in normal matter than K0.

Examples of hyperon production in K0 collisions are listed below, with each pair of lines describing
one reaction. In each pair, the first line shows the reaction symbolically (with the hyperon name),
while the second line shows the quark content of each particle.

K0 + p+ —> Λ0 + π+ (Λ0=Lambda0)
ds + uud —> uds + ud

K0 + n0 —> Σ0 + π0 (Σ0=Sigma0)
ds + udd —> uds + dd

K0 + n0 —> Σ– + π+ (Σ–=Sigma–)
ds + udd —> dds + ud

K0 + p+ —> Ξ0 + K+ (Ξ0=Xi0)
ds + uud —> uds + ud

K0 + p+ —> Ω– + K+ + K+ (Ω–=Omega–)
ds + uud —> sss + us + us

CP Violation

In 1964, James Cronin and Val Fitch observed the long-lived neutral kaon decaying to two charged
pions, in violation of CP conservation. For this discovery, they were awarded the 1980 Nobel Prize.



My own thesis experiment later discovered a CP-violating asymmetry in long-lived neutral kaon
decays to:

π+ µ– vµ versus π – µ+ vµ

If nature were perfectly matter-antimatter symmetric, the rates of the above decays would be exactly
equal. In fact, the rates differ by 0.3%. Our experiment eliminated the possibility that CP-violation in
the two-pion decay could be some unexpected effect of the then-still-mysterious strong interactions.

Our current understanding attributes CP-violation in kaon decays not to an asymmetry in the decay
process itself, but rather to an asymmetry of unknown origin in the eigenstates. Some models redefine
the decay eigenstates to be:

|KS> = {(1+ε)|K0> – (1–ε)|K0>} /√2
|KL> = {(1+ε)|K0> + (1–ε)|K0>} /√2

α |KS> = |K1> + ε|K2>
α |KL> = |K2> + ε|K1>

Here α2 = (1+ε*ε), and ε is a complex number.

The |KS> and |KL> are “stationary” states in the sense that they decay while maintaining a constant
ratio of basis state amplitudes. They are called the short-lived |KS> and long-lived |KL> neutral kaons,
or more briefly, the K-short and the K-long. Adding the complex number ε means neither |KS> nor
|KL> are states of definite CP, and that the |KL> has a small but non-zero amplitude to decay to two
pions.

The measured value of ε is:

ε = (2.228±0.011)×10–3 exp{i (43.5±0.5)º }

When Madame Wu published her famous discovery of parity violation in 1956 (see Feynman
Simplified 1D Chapter 49), physicists were shocked. Yet, there was some consolation in the fact that
the parity violation was a 100% effect — the weak force violated parity completely. Nature was
surprising, but decisive. By comparison, CP violation is even more distressing: why is nature 99.7%
of what we had expected?

Fifty years later, we still have no comprehensive explanation for the origin of this tiny asymmetry.

Self-Interaction Issues

This section addresses an advanced issue that some may consider overly technical.

Some editions of the Feynman Lectures include the following self-interaction processes in the
analysis of the neutral kaon system:



K0 —> 2 pions —> K0

K0 —> 2 pions —> K0

Such reactions can be safely included here due to the feebleness of the weak force — the magnitudes
of the transition amplitudes are about 10–15. However, self-interactions involving other forces require
extreme finesse. Consider, for example,  this electromagnetic self-interaction:

e– —> e– + photon —> e–

Summing all the Feynman diagrams for all combinations of such reactions yields infinities that
seemingly give the electron an infinite mass and an infinite charge, which is clearly nonsense.

This isn’t a strictly quantum problem; related problems arise in classical physics as well. The
potential energy of charge q in the electric field of charge Q is proportional to –qQ/r, where r is the
distance between the charges. Classically, electrons are point-particles of zero size. If one tries to
calculate the self-energy of one electron, the energy of its charge q in the electric field created by its
charge q, the result is –q2/0=–∞.

Calculations of self-interactions are explosive, in general, which is a clear indication of our
incomplete understanding of these effects. We seem to have about as many problems with zero as we
have with infinity.

One of Feynman’s achievements that made the theory of quantum electrodynamics (QED) successful
was eliminating these infinities through renormalization. To renormalize QED, one assumes that, in
the absence of any interactions, an electron has an infinite bare mass and an infinite bare charge.
These bare infinities are arranged to cancel the self-interaction infinities, yielding finite residuals that
match the observed electron mass and charge. You might imagine what mathematicians think of that.
While he didn’t win the Field’s Medal, Feynman did receive the Nobel Prize in Physics because his
calculations match nature extremely well, which is what physicists care most about. The predictions
of QED have been confirmed to as many as 12 decimal digits, and none of its predictions have ever
been falsified by experiments. In 1999, Gerald ‘t Hooft received the Nobel Prize for refining the
renormalization procedure, making it mathematical rigorous (at least in the opinion of physicists).

Chapter 26 Review: Key Ideas

The following conservation law applies to each of the twelve types of elementary fermions:

In all processes driven by either the strong force or the electromagnetic force, the total number
of fermions minus antifermions of each specific type is always conserved.

The number of bosons is not conserved, neither within one type nor summed over all types.

Only the weak force is known to change one type of elementary fermion into another, in the manner
illustrated in Figure 26-1. The weak force can change some types of quarks into others, but it does not
change the total number of quarks. The weak force can also change some types of leptons into others,



but it does not change the total number of leptons.

There are four kaons. The K+ and K– are antiparticles of one another. Similarly, the K0 and K0 (“K-
zero-bar”) are different particles that are antiparticles of one another, because they contain opposite
quarks. The K0 and K0 are not two independent particles, but rather the basis states of one combined
decaying two-state system. This was the first discovered example of neutral particle oscillations. To
accommodate decay, the Hamiltonian of this two-state system has complex components:

H+ + = E0 – iβ
H+ – = <K0|K0> = a + iα
H– + = <K0|K0> = a + iα
H– – = E0 – iβ

Absent CP-violation, the neutral kaon “stationary” states are:

|K1> = (|K0>–|K0>)/√2
|K2> = (|K0>+|K0>)/√2

The mass difference mK2–mK1 is 3.5x10–12 MeV.

This system has three time constants:

K1 lifetime t1 = 8.954×10–11 sec
K2 lifetime t2 = 5.116×10–8 sec
Oscillation time tΔm = 1.88x10–10 sec

A K2 beam traversing matter regenerates a coherent K1 beam, because normal matter preferentially
absorbs K0 over K0.

Because CP-violation is observed in neutral kaon decays, the decay eigenstates are the short-lived
neutral kaon |KS> and the long-lived neutral kaon |KL> defined as:

α |KS> = |K1> + ε|K2>
α |KL> = |K2> + ε|K1>

Here α2 = (1+ε*ε), and ε is a complex number measured to be:
ε = (2.228±0.011)×10–3 exp{i (43.5±0.5)º }

Parity violation in weak interactions is a 100% effect. By comparison, CP violation is only a 0.3%
effect. Fifty years later, we still have no comprehensive explanation for the origin of this tiny
asymmetry.



Chapter 27

Angular Momentum

In Chapter 23, we discovered that the conservation of angular momentum is linked in quantum
mechanics to the symmetry of natural laws under rotation. Recall how quantum state |ψ> is changed
by a rotation of the coordinate system by angle θ about the z-axis:

Rz(θ) |ψ> = exp{iJzθ/ħ} |ψ>

Here Jz is the z-component of angular momentum of state |ψ>. If natural laws are symmetric under
rotation about the z-axis, Rz(θ) commutes with any Hamiltonian H, and the quantity Jz is conserved.

In Chapter 25, we examined how angular momentum conservation determines the angular distribution
of protons coming from decaying Λ0s.

In this chapter, we will explore the role of angular momentum conservation in other atomic systems.

Radiation by Excited Atoms

We know that electrons in atoms are confined to specific orbits characterized by three quantum
numbers: n, j, and m. The principal quantum number n determines the orbits’ average inverse radius
<1/r>. Quantum number j specifies the orbit’s total angular momentum, and m specifies the component
of angular momentum along any selected axis (we usually select the z-axis).

The second law of thermodynamics favors processes that convert potential energy into kinetic energy.
Because kinetic energy can be distributed in more ways than can potential energy, the same amount of
energy has more entropy if it’s kinetic rather than potential. Recall from Feynman Simplified 1B
Chapter 23 that a system’s entropy is proportional to the logarithm of the number of microscopically
distinct, but macroscopically indistinguishable, internal arrangements of that system.

No form of energy has more entropy than radiation. This is why an electron in a higher energy atomic
orbit, an excited state, is driven to emit radiation and drop to a vacancy in a lower energy orbit.

Let’s examine how an emitted photon is affected by an electron’s initial angular momentum.

We start with the simplest case. Consider an atom in an excited state with angular momentum parallel
to the z-axis that emits a photon in the +z-direction. Two scenarios are shown in Figure 27-1: an
initial excited state |A> with j=1 and m=+1; and an initial excited state |C> with j=1 and m=–1.



 
Figure 27-1 

States |A> & |C> Emitting Photons

In Figure 27-1, state |A> transitions to state |B> with amplitude α, and state |C> transitions to state |D>
with amplitude β. Each gray disk represents an atom. The bold arrows in |A> and |C> represent the
atom’s initial angular momentum, while the white arrows in |B> and |D> are reminders of what that
angular momentum was originally. The wavy lines represent emitted photons.

To conserve angular momentum along the z-axis, the photon in state |B> must have spin +1, and the
photon in state |D> must have spin –1. As we discovered in Chapter 23, this means the photon in |B>
has RHC (right hand circular) polarization, and the photon in |D> has LHC (left hand circular)
polarization.

In V3p18-2, Feynman notes that to be more precise, we should say α and β are the amplitudes for
photons to be emitted within an infinitesimal solid angle dΩ surrounding the +z-axis during an
infinitesimal time interval dt. We write this as:

<B|A> dΩ dt = α dΩ dt
<D|C> dΩ dt = β dΩ dt

Since a photon cannot have spin 0 along any axis, a photon cannot be emitted parallel to the z-axis by
an atom with m=0 along that axis.

We will now proceed to relate amplitudes α and β by employing inversion and reflection symmetries.
Feynman says rotations, translations, and inversions should generally be performed by changing the
coordinate axes rather than by changing the objects being considered. However in this case, it will be
much easier to see what is happening if we change the objects rather than the coordinate axes.

Let’s first recall how axial and polar vectors respond to inversion (see Feynman Simplified 1D
Chapter 49). When an object is inverted, we reverse the polarity of the x, y, and z coordinates of each
piece of the object. In this process, each component of every polar vector reverses polarity, but no
component of any axial vector changes. Polar vectors include position, velocity and momentum. Axial



vectors include angular momentum and torque. Recall that angular momentum L equals r×p; under
inversion, both r and p reverse polarity and so L does not.

We will now invert and then rotate state |B>, and find that the result is state |D>.

Consider Figure 27-2, in which states |A> and |B> are exactly as above.

Figure 27-2 
Invert & Rotate |B> To Get |F>

State |E> is state |B> inverted through the atom’s center. In |E>, the photon is moving toward –z. The
atom’s original angular momentum (white arrow) is an axial vector that does not change under
inversion. Similarly, the photon’s angular momentum does not change direction; it is still pointing
upward, but referenced to its motion toward –z that now has LHC polarization.

State |F> is state |E> rotated by 180º about the y-axis that points into the screen. This rotation turns the
atom’s original angular momentum (white arrow) upside-down. The photon retains LHC polarization
because rotation does not change its spin-velocity relationship.

Comparing Figures 27-1 and 27-2, we see that state |D> looks identical to state |F>. In quantum
mechanics, this means the two states can differ by at most a phase angle. We can further constrain this
phase angle by performing a second inversion and rotation. Two inversions are equivalent to a null
operation. As we discovered studying the rotation of bosons and fermions, two 180º rotations can
change an amplitude only by a factor of ±1. All this means:

α = ± β

Parity Considerations

We know that parity is conserved in electromagnetic interactions. Let’s see how parity conservation
affects the emission process we are discussing.



The states examined above are not states of definite parity, but we can construct combinations of
those photon states that do have definite parity. Recall that we obtained state |E> by inverting state
|B>. Both states involve an atom with m=+1 along the z-axis. In |B>, the photon moves toward +z with
RHC polarization; relabel this state |RHC,+z>. In |E>, the photon moves toward –z with LHC
polarization; relabel this state |LHC,–z>. With P being the parity operator for inverting objects (or
coordinate systems), this means:

|LHC,–z> = P |RHC,+z>
|RHC,+z> = P |LHC,–z>

Now define |ψ+> as the state of any photon emitted parallel to the z-axis by an atom with m=+1.
Express |ψ+> as a linear combination of |RHC,+z> and |LHC,–z> with unknown coefficients λ and µ.

|ψ+> = λ |RHC,+z> + μ |LHC,–z>
P|ψ+>= λ |LHC,–z> + μ |RHC,+z>

For |ψ+> to be a photon state of definite parity, we must have:

P |ψ+> = ±|ψ+>

This requires:

µ = ±λ = 1/√2
|ψ+> = ( |RHC,+z> ± |LHC,–z> )/√2

Here, the plus sign corresponds to even parity and the minus sign to odd parity.

The parity of the initial and final atomic states could be the same or could be the opposite. That
results in two distinct situations with two distinct photon angular distributions. Let’s examine both
possibilities.

The first possibility is that the initial and final atomic states have opposite parity. Here, the photon
state must have odd parity for the entire atom-photon system to conserve parity. This means:

|ψ+> = ( |RHC,+z> – |LHC,–z> )/√2

Let’s rotate this state by 180º about the y-axis. As we discovered above, this reverses the polarity of
m, and the photon direction but not its polarization. Changing m from +1 to –1 changes |ψ+> into |ψ–>.

According to the rotation tables:

<m=–1|Ry(180º)|m=+1> = 1
|ψ–> = Ry(180º) |ψ+>
|ψ–> = ( |RHC,–z> – |LHC,+z> )/√2

We highlight two amplitudes from the prior four equations:



<ψ+|RHC,+z> = +1/√2
<ψ–|LHC,+z> = –1/√2

The upper line corresponds to amplitude α from the prior section: the amplitude for an m=+1 state to
emit a photon moving toward +z with RHC polarization. The lower line corresponds to amplitude β
from the prior section: the amplitude for an m=–1 state to emit a photon moving toward +z with LHC
polarization. This proves that:

α = –β, for a photon state of odd parity

If the initial and final atomic states have opposite parity, which is very common, the transition is said
to produce electric dipole radiation.

The second possibility is that the initial and final atomic states have the same parity. Here, the photon
state must have even parity for the entire atom-photon system to conserve parity. This transition is
said to produce magnetic dipole radiation. The photon state is then:

|ψ+> = ( |RHC+z> + |LHC–z> )/√2

Rotating by 180º about the y-axis yields:

|ψ–> = Ry(180º) |ψ+>
|ψ–> = ( |RHC–z> + |LHC+z> )/√2

<ψ+|RHC+z> = +1/√2
<ψ–|LHC+z> = +1/√2

α = +β, for a photon state of even parity

We can now calculate the amplitude for a photon to be emitted in any direction. Define the photon
direction to be the z*-axis. Define the z-axis to be the direction of the atom’s angular momentum, so
that m=+1 in the z-direction. Let θ be the angle between the z- and z*-axes, and define the y-axis such
that z* is obtained by rotating the z-axis by angle θ about the y-axis.

We can use the rotation tables for Ry(θ), listed at the end of Chapter 17, to project the state m=+1
along the z-axis onto the states m=+1, 0, and –1 along the z*-axis. For example:

<+1,z*|Ry(θ)|+1,z> = (1+cosθ)/2

The amplitude to emit a RHC photon along the z*-axis equals the product of (amplitude of RHC
parallel to m) × (amplitude of m=+1 along z*-axis), which is:

For RHC: (α) (<+1|Ry(θ)|+1>) = α (1+cosθ)/2

The amplitude to emit a LHC photon along the z*-axis equals the product of (amplitude of LHC
antiparallel to m) × (amplitude of m=–1 along z*-axis), which is:



For LHC: (β) (<–1|Ry(θ)|+1>) = β (1–cosθ)/2

Recall that for an odd parity photon state β=–α, and for an even parity state β=+α.

Appropriate combinations of the above provide the amplitudes for x- and y-polarizations.

Light Scattering

In V3p18-3, Feynman applies the results of the prior section to a “somewhat more complicated
problem—but also one that is somewhat more real”: the scattering of light by atoms.

We assume an atom is in its ground state with j=0 and m=0. Assume also that a RHC polarized photon
approaching from the –z-direction is absorbed by the atom, and then subsequently re-emitted with
RHC polarization at angle θ relative to the z-axis. This two-step process is illustrated in Figure 27-3.

Figure 27-3
Light Scattering

In the first step, going from state |A> to state |B>, the conservation of angular momentum requires the
atom to enter its j=1, m=+1 state after absorbing the photon. Call the amplitude for this process μ.

In the second step, going from |B> to |C>, the photon is emitted with RHC polarization with the
amplitude we calculated above:

α (1+cosθ)/2

The amplitude for the total process is the product of the amplitudes for each step, which we label as
follows:



<R@θ|S|R> = α µ (1+cosθ)/2

Here S is the scattering operator. The left side of the equation reads: a RHC polarized photon is
scattered, resulting in a RHC photon emitted at angle θ.

The atom could also emit a LHC polarized photon at angle θ. If we assume the photon state has odd
parity (β=–α), the amplitude for this total process is:

<L@θ|S|R> = – α µ (1–cosθ)/2

We could repeat this analysis for an incident LHC polarized photon, which drives the absorbing atom
into the m=–1 state. By the same logic employed in the prior section, and again assuming odd parity,
the amplitude for the atom to absorb a LHC photon and enter the m=–1 state equals –µ.

The amplitudes for the total processes for a LHC incident photon are:

<R@θ|S|L> = – α µ (1–cosθ)/2
<L@θ|S|L> = (–α) (–µ) (1+cosθ)/2

Now, examine what happens if the incident photon has +x-polarization.

The principle here is simple enough: x-polarization is a superposition of RHC and LHC. We know the
amplitudes for RHC and LHC, hence we combine these amplitudes using the superposition
coefficients.

From Chapter 15, the superposition coefficients for x- and y-polarizations are:

|x> = (|RHC> + |LHC>)/√2
|y> = (|RHC> – |LHC>)/(i√2)

Let’s take one example: an incident x-polarized photon, with an emitted RHC photon at angle θ.

<R@θ|S|x> = {<R@θ|S|R>+<R@θ|S|L>}/√2
<R@θ|S|x> = α µ {(1+cosθ)–(1–cosθ)}/(2√2)
<R@θ|S|x> = α µ cosθ/√2

For an emitted LHC photon at angle θ we have:

<L@θ|S|x> = {<L@θ|S|R>+<L@θ|S|L>}/√2
<L@θ|S|x> = α µ {–(1–cosθ)+(1+cosθ)}/(2√2)
<L@θ|S|x> = α µ cosθ/√2

Reversing the polarization relationships yields:

|RHC> = (|x> + i|y>)/√2
|LHC> = (|x> – i|y>)/√2



<x|RHC> = 1/√2
<x|LHC> = 1/√2

<y|RHC> = i/√2
<y|LHC> = –i/√2

From these amplitudes we calculate the amplitude that the emitted photon has x-polarization.

<x@θ|S|x>
  = {<x|R><R@θ|S|x>+<x|L><L@θ|S|x>}/√2

<x@θ|S|x> = (αµcosθ)/2 + (αµcosθ)/2
<x@θ|S|x> = α µ cosθ

The amplitude that the emitted photon has y-polarization is:

<y@θ|S|x>
  = {<y|R><R@θ|S|x>+<y|L><L@θ|S|x>}/√2

<y@θ|S|x> = (iαµcosθ)/2 + (–iαµcosθ)/2
<y@θ|S|x> = 0

The last equation means that, for plane polarization, the scattered light is polarized in the same plane
as the incident light.

In V3p18-4, Feynman remarks that the results just obtained were also obtained in our classical
analysis of light scattering (Feynman Simplified 1C Chapter 35). There we assumed atoms acted
like harmonic oscillators.

Feynman says:

“Perhaps you are thinking: ‘It's so much easier in the classical theory; if it gives the right answer
why bother with the quantum theory?’ For one thing, we have considered so far only the special
—though common—case of an atom with a j=1 excited state and a j=0 ground state. If the
excited state had spin two, you would get a different result. Also, there is no reason why the
model of an electron attached to a spring and driven by an oscillating electric field should work
for a single photon. But we have found that it does in fact work, and that the polarization and
intensities come out right. So in a certain sense we are bringing the whole course around to the
real truth. Whereas we have, in Vol. I, done the theory of the index of refraction, and of light
scattering, by the classical theory, we have now shown that the quantum theory gives the same
result for the most common case. In effect we have now done the polarization of sky light, for
instance, by quantum mechanical arguments, which is the only truly legitimate way.

“It should be, of course, that all the classical theories which work are supported ultimately by
legitimate quantum arguments. Naturally, those things which we have spent a great deal of time
in explaining to you were selected from just those parts of classical physics which still maintain



validity in quantum mechanics.”

Positronium Annihilation

Positronium is a bound state of an electron and an antielectron — a positron. Being half matter and
half antimatter, it is not surprising that positronium is relatively short-lived. It could be described as
an “atom” with a short half-life.

Feynman says positronium is “very pretty” and “quite interesting and, although somewhat
complicated, we hope not too much so.”

Like hydrogen, positronium has excited states, but we will examine only its ground state, which has
orbital angular momentum j=0. Also, like hydrogen, positronium contains two spin 1/2 fermions,
whose spin-spin interactions cause hyperfine splitting of the ground state. As we discovered in
Chapter 16, this results in a spin-zero singlet state and a spin-one triplet state. In the absence of
external magnetic fields, the three triplet substates all have the same energy, which is higher than the
energy of the singlet state.

Because the positron’s magnetic dipole moment is 1000 times larger than the proton’s, the hyperfine
splitting in positronium is about 1000 times larger than in hydrogen.

When the positron and the electron annihilate, their mass energy is converted into the kinetic energy of
two or more photons. Subatomic annihilation has no macroscopic analog — it is absolute destruction
that leaves no trace whatsoever of the original particles.

Let’s first consider the singlet state. As in hydrogen, the singlet state |j,m> = |0,0> is an antisymmetric
superposition of antiparallel spins, represented by:

|0,0> = {|e+,p–> – |e–,p+>}/√2

Here e+ denotes an electron with spin +1/2, p– denotes a positron with spin –1/2, etc. In its rest
frame, the singlet state annihilates with a mean lifetime of 1.25×10–10 seconds into two 511 keV
photons. These photons, in the gamma ray energy range, must have exactly the same energy and
exactly opposite momenta in the CM frame. Since the singlet state has spin zero, it has no spin axis or
other preferred direction. This means all photon directions are equally probable, their angular
distribution is uniform in the CM frame.

Now let’s consider the polarization of the photons emitted in the disintegration of singlet state
positronium, as illustrated in Figure 27-4.



Figure 27-4

Decay  of e+e– to 2 Photons

We may describe photon polarization in various ways, but RHC and LHC polarizations are the easiest
to relate to angular momentum. Since the initial state |A> has zero angular momentum, angular
momentum conservation requires that the two photons in the final state have equal but opposite
angular momenta. This means they must both have the same circular polarization: either RHC, as in
|B>; or LHC, as in |C>. With both photons RHC polarized, the upper photon in |B> has spin +1 along
its direction of motion +z, while the lower photon has spin +1 along its direction of motion –z, which
is the same as spin –1 in the +z-direction.

We will get back to the singlet state shortly, but let’s first consider the triplet state. It has angular
momentum j=1, and three substates with m=+1, 0, and –1. The m=±1 substates cannot decay into two
photons, because two spin 1 photons can only have total spin +2, 0, or –2 in any direction. (If that
isn’t clear, compute the possible sums of ±1 and ±1. Photons can never have spin 0 along any axis.)

What about state |10>, the state with j=1 and m=0? As it turns out, a two-photon decay is also
impossible for |10>. Let’s see why.

Consider a two-photon final state, such as |B> in figure 27-4. Rotating |B> by 180º about the y-axis
results in the same state that we started with; it simply exchanges the two photons. Being bosons, we
know that the transition amplitudes to the original |B> and to the photon-exchanged |B> must be equal:

Ry(180º) <B|10> = + <B|10>

However, rotating |10> by 180º about the y-axis multiplies that state by cos(180º), according to the
Chapter 17 rotation tables for j=1, m=0. This means the amplitudes to transition from the original |10>
and the rotated |10> must have opposite signs:

Ry(180º) <B|10> = – <B|10>

The only solution to both requirements is <B|10>=0. This means the spin-one triplet state must decay
to three photons, rather than two. The three-photon decay rate is less than the two-photon rate, which



extends the triplet state lifetime to 1.42×10–7 seconds, over 1000 times longer than the singlet state
lifetime.

Angular momentum and parity can also be conserved by: the triplet state decaying to any odd number
of photons greater than three; or by the singlet state decaying to any even number of photons greater
than two. But, the decay rates drop by a factor of one million for each additional pairs of photons.

When positronium forms, the two spin orientations are typically random, resulting in the longer-lived
triplet state 75% of the time and the shorter-lived singlet state 25% of the time.

Now, we return to the singlet state two-photon decay shown in Figure 27-4. We learned above that,
due to angular momentum conservation, the decay must result in the following two states (or a linear
combination thereof):

|B>: two RHC polarized photons
|C>: two LHC polarized photons

Because parity is conserved in electromagnetic processes, the actual state must have the same parity
as positronium.

Let’s consider how parity acts on these states. In the analysis of Figure 27-2, we found that P, the
parity/spatial-inversion operator, acting on a RHC polarized photon reverses its direction of motion
and also changes its polarization to LHC. Similarly P acting on a LHC photon reverses its direction of
motion and changes its polarization to RHC. Because, in the positronium rest frame, both |B> and |C>
have two photons moving in opposite directions, reversing their directions has no effect. The only
effect of P operating on |B> and |C> is to invert their polarizations, which means exchanging |B> and
|C>.

P |B> = |C>
P |C> = |B>

This means neither state has definite parity. The actual final state of positronium decay must be a
linear superposition of |B> and |C>.

Now what is the parity of positronium? Advanced quantum theory, confirmed by experiment, shows
that any elementary fermion and its antiparticle have opposite parity. (Elementary bosons are their
own antiparticles, so this logic does not apply to bosons.) Theory and experiment also show that the
parity of a composite system, such as positronium, equals the product of the parities of all its
constituents multiplied by (–1)j, where j is the system’s total angular momentum.

Hence, the parity of the singlet (j=0) state of positronium is:

(parity of e–) × (parity of e+) × (–1)0 = –1

A linear superposition of |B> and |C> that has parity –1 (odd parity) is:

|F> = (|B> – |C>)/√2



Let’s confirm the parity of |F>.

P |F> = (P|B> – P|C>)/√2
P |F> = (|C> – |B>)/√2 = – |F>

For the decay of the singlet state of positronium, the only final state that conserves both angular
momentum and parity is |F>, a spin zero, antisymmetric superposition of a RHC-pair and a LHC-pair
of photons moving in opposite directions in the positronium rest frame.

Entanglement

The photons from positronium decay are a prime example of entanglement, a uniquely quantum
phenomenon. The two photons are not independent particles, each with its own wave function.
Instead, the two photons are entangled, sharing one common wave function.

In V3p18-7, Feynman highlights a stunning consequence of entanglement. Imagine having a source at
x=y=z=0 that produces one singlet-state positronium “atom” each second, with the atom at rest in the
lab frame. Now imagine scientist Alice monitoring a photon detector at x=y=0, z=+D, and scientist
Bob monitoring a photon detector at x=y=0, z=–D. Whenever a photon from positronium annihilation
hits Alice’s detector, its partner must hit Bob’s detector, because the annihilation photons must move
in exactly opposite directions in the positronium rest frame. Now imagine that each detector flashes a
red light when a RHC photon arrives and a lavender light when a LHC photon arrives.

Alice and Bob both see red and lavender with equal probability, because state |F> is an equal
superposition of RHC and LHC. Neither can predict what color the next light will be, but the odds are
50-50, just as though each scientist was flipping a perfect coin. The interesting thing is: they are
flipping the same coin. Whenever Alice sees red so must Bob; when she sees lavender so does he. It
never happens that one sees red when the other sees lavender, even if they are light-years apart.

This begs the question: If Alice’s photon has an equal chance of being red or lavender, how does
Bob’s photon “know” what Alice’s photon is going be? This question launched a vigorous debate that
continued for many decades. We will come back to this “Einstein-Podolsky-Rosen (EPR) paradox” in
Chapters 34 and 35.

There is one last twist to the positronium story.

Imagine now that Alice and Bob change their detectors to trigger on x- and y-polarizations instead of
RHC and LHC polarizations. Recall the quantum mechanical relationships between these states.

|RHC> = (|x> + i|y>)/√2
|LHC> = (|x> – i|y>)/√2

|x> = (|RHC> + |LHC>)/√2
|y> = (|RHC> – |LHC>)/(i√2)



The photons have amplitude 1/√2 to be RHC, in which case the amplitude to have x-polarization is 1/
√2 and the amplitude to have y-polarization is i/√2. The photons also have amplitude –1/√2 to be
LHC, in which case the amplitude to have x-polarization is 1/√2 and the amplitude to have y-
polarization is –i/√2.

Therefore, the amplitude for Alice to detect x-polarization when Bob detects y-polarization is:

<AxBy|F>
  =<Ax|RHC> <By|RHC> <RHC|F>
     + <Ax|LHC> <By|LHC> <LHC|F>

<AxBy|F>
  = (1/√2) (+i/√2) (+1/√2)
    + (1/√2) (–i/√2) (–1/√2)

<AxBy|F> = i/√8 + i/√8 = i/√2

And the amplitude for Alice to detect x-polarization when Bob detects x-polarization is:

<AxBx|F>
  =<Ax|RHC> <Bx|RHC> <RHC|F>
    + <Ax|LHC> <Bx|LHC> <LHC|F>

<AxBx|F>
  = (1/√2) (1/√2) (+1/√2)}
    + (1/√2) (1/√2) (–1/√2)

<AxBx|F> = 1/√8 – 1/√8 = 0

By symmetry,

<AyBx|F> = <AxBy|F> = i/√2
<AyBy|F> = <AxBx|F> = 0

This means the probability of the two polarizations being equal (xx or yy) is zero, and the probability
of the polarizations being orthogonal (xy or yx) is 100% (50% for each of xy and yx). Note that in
V3p18-8, Feynman calculates <AxBy|F>=i, which would incorrectly make the total probability of
perpendicular polarizations (xy and yx) equal to 200%. This error persists in even recent editions.

Chapter 27 Review: Key Ideas

• Parity operator P acting on circularly polarized photons reverses the direction of motion and
exchanges RHC and LHC polarizations. Since all the processes discussed in this chapter are
electromagnetic, they all conserve parity.



Elementary fermions and their antiparticles have opposite parity. Bosons are their own antiparticles.
The parity of a composite system equals the product of the parities of all its constituents multiplied by
(–1)j, where j is the system’s toal angular momentum.

• For an atom in an excited state, with angular momentum j=1 and component of angular momentum
m=+1 along the z-axis, let α be the amplitude to emit a RHC photon in the +z-direction, and let β be
the amplitude to emit a LHC photon in the –z-direction. The amplitude to emit a circularly polarized
photon at angle θ relative to the z-axis is:

For RHC: α (1+cosθ)/2
For LHC: β (1–cosθ)/2

Neither RHC nor LHC have definite parity. The actual photon state is a linear combination of RHC
and LHC that does have definite parity. In electric dipole radiation, the atom’s parity reverses,
requiring the photon state to have odd parity and making β=–α. The photon state is:

|ψ>={(1+cosθ)|R,+z> – (1–cosθ)|L,–z>}/√8

Here, |R,+z> is the state of a RHC photon moving toward +z, and |L,–z> is the state of a LHC photon
moving toward –z.

In magnetic dipole radiation, the atom’s parity is unchanged, requiring the photon state to have even
parity and making β=+α. The photon state is:

|ψ>={(1+cosθ)|R,+z> + (1–cosθ)|L,–z>}/√8

• Light scattering by an atom can be considered a two-step process: absorption followed by
emission. We will assume both steps change the atom’s parity. Let µ be the amplitude for an atom to
absorb a RHC photon and enter a j=1, m=+1 state. It follows that –µ is the amplitude to absorb a LHC
photon and enter a j=1, m=–1 state. With scattering operator S, the amplitudes for incident RHC or
LHC photons to scatter at angle θ with RHC or LHC polarizations are:

<R@θ|S|R> = + α µ (1+cosθ)/2
<L@θ|S|R> = – α µ (1–cosθ)/2
<R@θ|S|L> = – α µ (1–cosθ)/2
<L@θ|S|L> = + α µ (1+cosθ)/2

If the incident photon has +x-polarization, the amplitudes for the polarization states of the emitted
photon are:

<R@θ|S|x> = α µ cosθ/√2
<L@θ|S|x> = α µ cosθ/√2
<x@θ|S|x> = α µ cosθ
<y@θ|S|x> = 0

The last equation means that, for plane polarization, the scattered light is polarized in the same plane



as the incident light.

• Positronium is a bound system of an electron and an antielectron (a positron). Like hydrogen, the
orbital ground state has four spin states: a spin-one triplet state, with m=+1, 0, and –1; and a spin-
zero singlet state. The orbital ground state has parity –1 (odd). Due to the conservation of both
angular momentum and parity, only the singlet state can decay to two photons; the triplet state must
decay to three photons, and therefore its lifetime is 1000 times longer (1.42×10–7 vs. 1.25×10–10

seconds).

For the decay of the singlet state of positronium, the only final state that conserves both angular
momentum and parity is a spin zero, antisymmetric superposition of a RHC-pair and a LHC-pair of
photons moving in opposite directions in the positronium rest frame.

• Entanglement is the uniquely quantum phenomenon of two or more particles sharing one common
wave function. The two photons from positronium decay are a prime example.

Scientists Alice and Bob, monitoring photon detectors on opposite sides of a singlet-state positronium
annihilation source, will always see both photons with the same circular polarization, even though
each has a 50-50 chance of being either RHC or LHC. It never happens that one sees RHC when the
other sees LHC, even if they are light-years apart.

If Alice and Bob switch their detectors to x- and y-polarizations, the amplitudes for Alice and Bob to
detect x-polarization and y-polarization are:

<AxBy|e+e–> = i/√2
<AxBx|e+e–> = 0
<AyBx|e+e–> = i/√2
<AyBy|e+e–> = 0

This means the probability of the two polarizations being equal (xx or yy) is zero, and the probability
of the polarizations being orthogonal (xy or yx) is 100%.



Chapter 28

Rotations Of Any Spin

For your convenience, all rotation matrices derived here are presented at the end of this chapter.

There are three key principles when summing angular momenta from several sources.

Firstly, M = Σn mn.  M, the z-component of angular momentum of a system, is simply the sum of the z-
components of angular momenta of all the parts of that system.

Secondly, any entity’s total angular momentum J is unchanged by rotation.

Thirdly, the final state with maximum total spin is the linear sum of the original states with equal
coefficients, equal in both magnitude and phase angle.

No other new principles of physics are introduced in this chapter. What follows is an algebraic tour
de force on the summation and rotation of objects with extreme spin values.

Recall that a particle or system of particles can be characterized by jħ, its total angular momentum,
and mħ, its component of angular momentum along any selected axis. Both j and m are quantized; they
must be integer multiples of 1/2, and m has (2j+1) possible values, ranging from –j to +j in integer
steps. Absent external forces, j and m are conserved. Physicists generally select the z-axis, and only
rarely mention the ubiquitous factor ħ.

Each elementary particle has an intrinsic total spin j that never changes under any circumstances
whatsoever. All elementary fermions have total spin 1/2. Photons, gluons, and the Z0 and W± bosons
have spin 1. The Higgs boson has spin 0.

The spin of a system of several particles is the vector sum of the intrinsic spins of each particle plus
any orbital angular momenta they might have. Orbital angular momenta are always integer multiples
of ħ (no half-integers here). While a system’s total angular momentum J can be difficult to calculate,
its total z-axis component M is simply the arithmetic sum of the m values of all its particles and of all
their orbital motions.

We denote an angular momentum state by |j,m>. The more common states are:

total spin 0: |0,0>
total spin 1/2: |1/2,+1/2>; |1/2,–1/2>
total spin 1: |1,+1>; |1,0>; |1,–1>

Our objective here is to determine the projection of state |j,m> onto all possible states |j*,m*> in a



coordinate system whose axes are rotated by operator R relative to our original coordinate axes.

Rotating coordinate axes cannot change j, because angular momentum is conserved. But rotation does
change the coordinate axes and the components of j along the new axes, which mixes m-states. The
projection amplitudes we seek are the components of the rotation matrix:

<j,m*|R|j,m>

As discussed in Chapter 17, all possible rotations can be accomplished with a specific sequence of
rotations by some set of three Euler angles. The rotation sequence, from coordinate system S to
coordinate system T, is defined as:
 

1. Rotate about the z-axis by angle β.
2. Rotate about the new x-axis by angle α.
3. Rotate about the new z-axis by angle γ.

(In various chapters, Feynman switches between x and y as the second Euler rotation axis. Either
choice is valid, but for consistency, I always use the x-axis in step 2.)

Therefore, we can represent any rotation matrix R by:

R = Rz(γ) Rx(α) Rz(β)

Rz(β) is particularly simple:

Rz(β) |j,m> = exp{imβ} |j,m>

<j,m*|Rz(β)|j,m> = exp{imβ} δm,m*

Since Rz is a diagonal matrix, we can simplify the equation for the components of R.

Rkn = Σlj Rz,kl(γ) Rx,lj(α) Rz,jn(β)
Rkn = Σl Rz,kl(γ) Rx,ln(α) exp{inβ}
Rkn = exp{ikγ} Rx,kn(α) exp{inβ}

The only challenge then is calculating Rx(α).

In Chapter 17, we calculated spin 1 rotation matrices based on the assumption that a spin 1 system
can be represented as the sum of two spin 1/2 components, whose rotation matrices we calculated in
Chapter 8. We will now employ the same assumption to address even larger total spin values.
Feynman offers no proof of this assumption. However, since the spins of all elementary particles are
1/2 and 1, any entity with a larger spin must actually be a physical combination of particles with
lesser spins. Rotating the larger entity is the same physical act as rotating all of its parts.

Starting in V3p18-10, Feynman derives the rotation matrix for spin 3/2, and later derives it for any
spin value.



Rotation Matrix for Spin 3/2

A specific example of a spin 3/2 entity is deuterium, an atom comprised of three spin 1/2 particles: an
electron orbiting a nucleus containing one proton and one neutron. By selecting three distinct
particles, we avoid the complications of identical particle effects.

We represent each of the 8 possible spin states of deuterium by the m values of the three particles,
with one being: |+-+>. For this derivation, it does not matter which particle has which spin; we are
just dealing with three spins.

We are interested in the 8 states of definite total angular momentum j=3/2. These can be grouped in 4
distinct sets depending on their number of + spins:

|ψ3>: m = +3/2: |+++>
|ψ2>: m = +1/2: {|++-> + |+-+> + |-++>}/√3
|ψ1>: m = –1/2: {|--+> + |-+-> + |+-->}/√3
|ψ0>: m = –3/2: |--->

In |ψ2> and |ψ1>, the three combinations are equally weighted. By symmetry, each particle’s spin has
the same effect. The factor of 1/√3 normalizes |ψ2> and |ψ1>.

It is very important to note that the three combinations are all added; none are subtracted. This is
because the total spin is 3/2 only when each combination has the same sign. Let’s understand why by
considering a different combination:

|Q> = {|++-> – |+-+> + |-++>}/√3

Now focus on the first two terms by defining state |V>.

|V> = |++-> – |+-+>

The spin of the first particle is the same in both terms, but the spins of the second and third particles
reverse. Those two spins combine as:

|+–> – |–+>

This is a singlet state of spin 0, just as we saw in positronium and also in the hyperfine splitting of
hydrogen. This means |V> is a combination of spin 0 and spin 1/2, which makes its total spin j=1/2.
This makes |Q> a combination of j=1/2 and j=3/2, which is not a pure j=3/2 state. Since rotation
cannot change j, a state like |Q> is not a possible outcome of rotating a spin 3/2 particle. The only
possible outcomes have all combining terms with equal coefficients.

This is a general principle that applies to summing any spins: the final state with maximum total spin
is the combination of the original spins with equal coefficients.



Next, let’s confirm that the four |ψ> states have the indicated m values. If each is rotated by angle β
about the z-axis, the state is multiplied by exp{+iβ/2} for each particle — electron, proton, or neutron
— with spin up (+1/2) and by exp{–iβ/2} for each particle with spin down (–1/2). The total impact
of this rotation is:

Rz(β} |ψ3> = exp{iβ(+1+1+1)/2} |ψ3>
Rz(β} |ψ3> = exp{iβ(+3/2)} |ψ3>
m of |ψ3> = +3/2

Rz(β} |ψ2> = exp{iβ(+1+1–1)/2} |ψ3>
Rz(β} |ψ2> = exp{iβ(+1/2)} |ψ3>
m of |ψ2> = +1/2

Rz(β} |ψ1> = exp{iβ(+1–1–1)/2} |ψ3>
Rz(β} |ψ1> = exp{iβ(–1/2)} |ψ3>
m of |ψ1> = –1/2

Rz(β} |ψ0> = exp{iβ(–1–1–1)/2} |ψ3>
Rz(β} |ψ0> = exp{iβ(–3/2)} |ψ3>
m of |ψ0> = –3/2

Recall from Chapter 17 these amplitudes for Euler angle rotations of spin 1/2 particles:

a = <+T|+S> = cos(α/2) exp{+i(β+γ)/2}
b = <–T|+S> = i sin(α/2) exp{+i(β–γ)/2}
c = <+T|–S> = i sin(α/2) exp{–i(β–γ)/2}
d = <–T|–S> = cos(α/2) exp{–i(β+γ)/2}

We next calculate four key components of rotation matrix R by assuming each of the three particles is
rotated independently.

<ψ3|R|ψ3> = <+++|R|+++> = a•a•a = a3

<ψ3|R|ψ2

  = <+++| R{|++-> + |+-+> + |-++>}/√3
  = {aac + aca + caa}/√3 = a2c√3

<ψ2|R|ψ3>
  = {<++-| + <+-+| + <-++|} |R|+++>/√3
  = {aab + aba + baa}/√3 = a2b√3

<ψ2|R|ψ2>
  = {<++-| + <+-+| + <-++|} R|++->/3
    +{<++-| + <+-+| + <-++|} R|+-+>/3
    +{<++-| + <+-+| + <-++|} R|-++>/3



  = {aad + abc + bac}/3
    + {acb + ada + bca}/3
    + {cab + cba + daa}/3

= a2d + 2abc

There are 12 more components to go. But I have a simple way to obtain these using symmetry.

Note that swapping + and – spins (denoted: + <=> –) on the right (the Dirac bra) exchanges:

|ψ3> <=> |ψ0>
|ψ2> <=> |ψ1>
a <=> c
b <=> d

This gives us four more components.

<ψ3|R|ψ3> = a3 <=> <ψ3|R|ψ0> = c3

<ψ3|R|ψ2> = a2c√3 <=> <ψ3|R|ψ1> = c2a√3
<ψ2|R|ψ3> = a2b√3 <=> <ψ2|R|ψ0> = c2d√3
<ψ2|R|ψ2>=a2d+2abc<=>
          <ψ2|R|ψ1>=c2b+2cda

Now, note that swapping + and – spins on the left (the Dirac ket) exchanges:

<ψ3| <=> <ψ0|
<ψ2| <=> <ψ1|
a <=> b
c <=> d

This gives us the last eight components.

<ψ2|R|ψ3> = a2b√3 <=> <ψ1|R|ψ3> = b2a√3
<ψ2|R|ψ2>=a2d+2abc<=><ψ1|R|ψ2> =b2c+2bad
<ψ2|R|ψ1>=c2b+2cda<=><ψ1|R|ψ1>=d2a+2dcb
<ψ2|R|ψ0> = c2d√3 <=><ψ1|R|ψ0> = d2c√3

<ψ3|R|ψ3> = a3 <=> <ψ0|R|ψ3> = b3

<ψ3|R|ψ2> = a2c√3 <=> <ψ0|R|ψ2> = b2d√3
<ψ3|R|ψ1> = c2a√3 <=> <ψ0|R|ψ1> = d2b√3
<ψ3|R|ψ0> = c3 <=> <ψ0|R|ψ0> = d3

All these results are tabulated in matrix form at the end of this chapter.

Composition of |J,M> Sums



For clarity, we will now use J and M for the quantum numbers of a combined system, and j and m for
the quantum numbers of its constituent particles.

Summing angular momenta from several sources entails a great deal of algebra and combinatorics,
and the three key principles given at the start of this chapter. These are:

Firstly, M = Σn mn. M, the z-component of angular momentum of a system, is simply the sum of the z-
components of angular momenta of all the parts of that system.

Secondly, any entity’s total angular momentum J is unchanged by rotation.

Thirdly, the final state with maximum total spin is the linear sum of the original states with equal
coefficients, equal in both magnitude and phase angle.

We found that the final state’s total spin is reduced when the spin combinations are summed with
opposite polarities. In particular, one possible sum of two spins with j=1/2 is:

|+-> – |-+>

Clearly this sum has m=0, because each term has two opposite spins. Less clear, but no less true, is
the fact that this is a singlet state with j=0, due to the minus sign between the two terms. If we add the
two terms instead of subtracting them, m would still equal 0 but j would now equal 1. Adding the two
terms results in the m=0 part of a spin 1 triplet.

The same idea pertains to more complex situations. If we combine five spin 1/2 particles, the
possible |J, M> outcomes are:

J = 5/2; M = +5/2, +3/2, +1/2, –1/2, –3/2, –5/2
J = 3/2; M = +3/2, +1/2, –1/2, –3/2
J = 1/2; M = +1/2, –1/2

We see that M=+1/2 occurs for three different J values. For M=+1/2 and J=5/2, all terms with all
different combinations of three spin up and two spin down are combined with the same polarity.
When one term has the opposite polarity, a pair of particles form a spin 0 singlet, leaving the other
three particles summing with the same polarity to form a J=3/2 state. In other combinations of mixed
polarities, two pairs of particles form two spin-zero singlet states, leaving the last particle to supply
all of the angular momentum, resulting in a J=1/2 state.

We can write the following general equation describing how n states with |jn, mn> combine to form |J,
M> states:

|J, M> = Σn <J, M | jn, mn> |jn, mn>

with the constraint that M = Σn mn.

The numbers <J, M | jn, mn> are called Clebsch-Gordon coefficients. Tables of these coefficients are
available online.



Rotation of Any Spin

In V3p18-19, Feynman derives the matrix for a rotation about the y-axis by angle θ for any spin value
j. That rotation corresponds to an Euler rotation with angles: α=θ, β=+π/2, and γ=–π/2. For spin 1/2,
the rotation tables yield:

a = <+T|+S> = +cos(α/2)
b = <–T|+S> = –sin(α/2)
c = <+T|–S> = +sin(α/2)
d = <–T|–S> = +cos(α/2)

In V3p18-12, Feynman quotes this result:

<j, m*| Ry(θ) | j, m>
  = [(j+m)! (j–m)! (j+m*)! (j–m*)!]1/2

    × Σk {(–1)k a(2j+m*–m–2k) c(m–m*+2k) / D}

where D = [(m–m*+k)! (j+m*–k)! (j–m–k)! k!]

The above sum extends over all values of k for which all factorials have arguments ≥0. Note that
0!=1, by definition.

This is the ugliest equation I have ever seen, and that is saying a lot.

I provide here a few tables for the simpler cases.

• For two non-identical spin 1/2 particles:

J=1, M=+1: |+1/2,+1/2>
J=1, M = 0: {|+1/2,–1/2> + |–1/2,+1/2>}/√2
J=1, M=–1: |–1/2,–1/2>
J=0, M = 0: {|+1/2,–1/2> – |–1/2,+1/2>}/√2

• For a spin 1/2 and a spin 1 particle:

J=3/2, M=+3/2: |+1/2,+1>
J=3/2, M=+1/2: |+1/2,0>√2/3 + |–1/2,+1>/√3
J=3/2, M=–1/2: |–1/2,0>√2/3 + |+1/2,–1>/√3
J=3/2, M=–3/2: |–1/2,–1>
J=1/2, M=+1/2: |+1/2,0>√3 – |–1/2,+1>/√2/3
J=1/2, M=–1/2: |+1/2,–1>√2/3 – |–1/2,0>/√3

• For two non-identical spin 1 particles:



J=2, M=+2: |+1,+1>
J=2, M=+1: {|+1,0> + |0,+1>}/√2
J=2, M = 0: {|+1,–1> + |–1,+1> + 2|0,0>}/√6
J=2, M=–1: {|0,–1> + |–1,0>}/√2
J=2, M=–2: |–1,–1>
J=1, M=+1: {|+1,0> – |0,+1>}/√2
J=1, M = 0: {|+1,–1> – |–1,+1>}/√2
J=1, M=–1: {|0,–1> – |–1,0>}/√2
J=0, M = 0: {|+1,–1> + |–1,+1> – |0,0>}/√3

Spin 3/2 Rotation Matrix

Below is the complete rotation matrix for spin 3/2 particles for any set of Euler angles:

Here we use these amplitudes for Euler angle rotations of spin 1/2 particles:

a = <+T|+S> = cos(α/2) exp{+i(β+γ)/2}
b = <–T|+S> = i sin(α/2) exp{+i(β–γ)/2}
c = <+T|–S> = i sin(α/2) exp{–i(β–γ)/2}
d = <–T|–S> = cos(α/2) exp{–i(β+γ)/2}

Chapter 28 Review: Key Ideas

Summing angular momenta from several sources entails a great deal of algebra and combinatorics,
and three key principles that are:

Firstly, M = Σn mn.  M, the z-component of angular momentum of a system, is simply the sum of the z-
components of angular momenta of all the parts of that system.

Secondly, any entity’s total angular momentum J is unchanged by rotation.

Thirdly, the final state with maximum total spin is the linear sum of the original states with equal
coefficients, equal in both magnitude and phase angle.



Chapter 29

Electron Wave 
Functions in Hydrogen

In V3p19-1, Feynman begins this lecture by saying:

“The most dramatic success in the history of the quantum mechanics was the understanding of the
details of the spectra of some simple atoms and the understanding of the periodicities which are
found in the [Periodic Table] of chemical elements.”

This chapter derives the atomic structure of hydrogen, including all the excited states of its electron.
The next chapter qualitatively explains the structure of the Periodic Table.

We will make some simplifying assumptions. We will do our analysis in the proton’s center of mass
frame — that is, we shall assume the proton is stationary. Also, we will use non-relativistic equations
and assume that all particle spins remain fixed.

These are excellent approximations, in this case, that deviate only modestly from a completely
precise, but much more complex, analysis.

Angular momentum conservation requires the sum of (spin angular momentum) plus (orbital angular
momentum) to remain constant. Since we assume all particle spins are constant, this means the
electron’s orbital angular momentum must also be constant.

Schrödinger Equation for Hydrogen

With these approximations, let wave function ψ(x,y,z,t) be the amplitude to find the electron of a
hydrogen atom at position (x,y,z) at time t. The evolution of ψ through space and time is given by
Schrodinger’s equation (see Chapter 22):

iħ dψ/dt = –ħ2/2µ Ď2ψ + V ψ

Here Ď2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, and V is the electrostatic potential due to the proton. We will use m
to denote the magnetic quantum number (z-component of orbital angular momentum), and µ to denote
the electron mass.

The zero-point of any form of potential energy is arbitrary, because only potential differences have
physical consequences. We make the standard choice: V=0 for an electron that is infinitely far from
the proton. We also set the center of our coordinate system at the stationary proton. The potential is



then:

V(r) = – e2/r

where r is the electron’s radial coordinate, and e2=qe
2/4πε0.

Our equation is now:

iħ dψ/dt = –ħ2/2µ Ď2ψ – (e2/r) ψ

We seek stationary solutions of this equation, which means solutions of the form:

ψ(x,y,z,t) = ψ(x,y,z) exp{–iEt/ħ}

Plugging that into our equation results in:

E ψ = –ħ2/2µ Ď2ψ – (e2/r) ψ

Since V is a function of radius, polar coordinates (r,θ,ø) will be more convenient here than rectilinear
coordinates (x,y,z). These coordinate systems are related by:

x = r sinθ cosø
y= r sinθ sinø
z = cosθ

Translating Ď2 into polar coordinates results in a rather messy equation. (However, in rectilinear
coordinates, there are three interconnected equations that are much harder to solve.)

Case of Spherical Symmetry

Let’s begin with the simplest case: a spherically symmetric electron wave function, which is called
an s-orbit. In this case, ψ is a function of radius r, but ψ does not vary with either the polar or
azimuthal angles. This means wave function ψ will be a state of zero orbital angular momentum, since
as we are well aware by now, states of non-zero angular momentum do change under rotation.

Spherical symmetry simplifies Ď2. For any spherically symmetric function f:

Ď2f = ∂2f/∂x2 + ∂2f/∂y2 + ∂2f/∂z2

Ď2f = ∂2(rf)/∂r2 / r

Our equation becomes:

E ψ = –ħ2/2µ {∂2(rψ)∂r2/r} – (e2/r) ψ
∂2(rψ)/∂r2 / r = – (2µ/ħ2) (E + e2/r) ψ

In V3p19-3, Feynman makes two substitutions to reduce clutter. These substitutions amount to



analyzing the physics in natural units — measuring quantities in units that are characteristic of the
natural phenomenon, rather than anthropic units, such as meters and seconds. The substitutions are:

ρ = r / rB, which means: r = rB ρ
ε = E / Ry, which means: E = Ry ε

where:

rB = ħ2/µe2 = Bohr radius = 0.529 angstroms
Ry = µe4/2ħ2 = 1 Rydberg = 13.6 eV

Note that:

rB Ry = [ħ2/µe2] [µe4/2ħ2] = e2/2

In natural units, our equation is:

∂2(ρψ)/∂ρ2 / (ρrB
2) = –(2µ/ħ2){Ryε + e2/ρrB} ψ

∂2(ρψ)/∂ρ2 / ρ = – rB (2µ/ħ2){rBRyε + e2/ρ} ψ
  = – (ħ2/µe2)(2µ/ħ2) {rBRyε + e2/ρ} ψ
  = – (2/e2) { [e2/2] ε + e2/ρ} ψ

∂2(ρψ)/∂ρ2 / ρ = – (ε + 2/ρ) ψ

∂2(ρψ)/∂ρ2 = – (ε + 2/ρ) ρψ

How do we solve this differential equation for ψ?

Unfortunately, there is no general procedure for solving differential equations. This is because there
is no general procedure for solving an arbitrary integral. But, over the years, people have developed
a lot of tricks. The more tricks you learn and the more experience you gain, the more successful you
become at this challenge. This is one reason to learn from the best.

Recall from Chapter 22 that, at large distances r from the proton, the electron’s wave function ψ
decreases exponentially with r. This is because the electron is bound and V>E at large r. We therefore
factor out the exponential by making this substitution:

ρψ = g(ρ) exp{–βρ}

Let’s calculate the second partial derivative of the right hand side of the above equation.

∂( g(ρ) exp{–βρ} )/∂ρ
  = exp{–βρ} ∂g/∂ρ – β g exp{–βρ}

∂2( g(ρ) exp{–βρ} )/∂ρ2

  = – β exp{–βρ} ∂g/∂ρ + exp{–βρ} ∂2g/∂ρ2



     – β ∂g/∂ρ exp{–βρ} + β2 g exp{–βρ}

  = [–2β ∂g/∂ρ + ∂2g/∂ρ2 + β2g] exp{–βρ}

Our differential equation becomes:

∂2(g exp{–βρ})/∂ρ2 = – (ε + 2/ρ) g exp{–βρ}

[–2β ∂g/∂ρ + ∂2g/∂ρ2 + β2g] = – (ε + 2/ρ) g

∂2g/∂ρ2 –2β ∂g/∂ρ + (β2 + ε + 2/ρ) g = 0

Believe it or not, we really are making progress.

Now, since β is an arbitrary parameter in our substitution, we can set it to any value we wish. Let’s
choose β2=–ε, reducing our equation to:

∂2g/∂ρ2 –2β ∂g/∂ρ + 2g/ρ = 0

If not for the ρ in the denominator of the third term, this would be a linear differential equation with
constant coefficients that we learned how to solve in Chapters 12 through 14 of Feynman Simplified
1B. Here we have a more complex differential equation, but it can be solved with a power series.
Let:

g(ρ) = Σk ak ρk

where the a’s are constants, and the sum might extend from k=0 to k=+∞. The above sum is called a
Taylor series expansion. Almost any physically realistic function can be represented by a Taylor
series, which makes this a standard technique in every theoretical physicist’s toolbox. This technique
works well when the coefficients ak approach zero for large k.

Putting the Taylor series into our equation yields:

0 = Σk ak {k(k–1)ρk–2 –2βkρk–1 +2ρk–1}

Note that for k=0, we get 0=2a0/ρ, which means the Taylor series that solves this differential equation
must have a0=0 and we can start the summation at k=1.

We have above three independent sums, allowing us to redefine the summation index of each term to
obtain the following:

0 = Σn {(n+1)nan+1 –2βnan +2an} ρn–1

Here the sum is from n=1 to n=+∞. In the second and third terms, we set n=k. In the first term we set
n=k–1, and note that k=1 (n=0) makes no contribution to the sum. This allows all three summations to
begin at n=1.



The above equation is valid for all values of ρ. This can only be true if the coefficient of each power
of ρ is zero. This is an important rule for polynomials that is well worth remembering. The proof of
this rule is given at the end of this chapter. This means:

0 = {(n+1)nan+1 –2βnan +2an}, for all n

Rearranging yields:

an+1 = an {2(βn–1)/n(n+1)}

This equation is valid for all n ≥ 1. With any choice of a1, we can recursively calculate a2, then a3, etc.
We can calculate all the an’s in terms of the variable β. Recall that β is related to the electron’s energy
by:

β = √(–ε) = √(–E/Ry)

E must be negative for a bound electron. Hence, any value of E<0 yields a real value of β, a valid
Taylor series for g(ρ), and a mathematical solution to Schrödinger’s equation of the form:

ψ(ρ) = g(ρ) exp{–βρ} / ρ

In V3p19-4, Feynman says: “We have a solution, but what does it represent physically?”

Consider how this solution behaves at large ρ, where we know that any real wave function must
decrease exponentially. For large ρ, the dominant terms in a polynomial generally come from the
highest powers of ρ. For these, we can approximate the equation for the an’s by:

an+1 = an {2β/(n+1)}

Each higher term is multiplied by 2β and divided by its term number. For large n this means:

an+1 = a1 (2β)n+1 / 2β(n+1)!

g(ρ) ~ Σn [(2β)n/n!] ρn

But this is just the power series expansion of an exponential. Recall that:

exp{x} = Σn xn / n!

Thus for large ρ, the solution we found for g(ρ) increases exponentially as:

g(ρ) ~ exp{2βρ}

Putting this into the equation for ψ yields, for large ρ:

ρψ = g(ρ) exp{–βρ}
ψ(ρ) ~ exp{+βρ} / ρ



This is impossible. No physically realistic wave function can increase exponentially as its
independent variable grows without limit.

While perhaps initially distressing, this derivation confirms that only certain electron energies can
lead to solutions of Schrödinger’s equation. To obtain a bound solution, the Taylor series must be
truncated in order to avoid its divergence at large n. This means each solution must have:

an+1 = an {2(βn–1)/n(n+1)} = 0, for some n

If an+1 = 0, all a’s with larger indices will also be zero, thereby preventing the wave function from
exploding exponentially at large radii.

Therefore, for some n:

βn = 1
√(–E/Ry) = 1/n
E = – Ry/n2

Physically realistic electron wave functions correspond to integer values of n, which is called the
principal quantum number. Each value of n corresponds to a bound energy (E<0) given by the above
equation.

Recall that this is the same equation we derived in Feynman Simplified 3A Chapter 3.

There, we derived this equation assuming the circumference of an electron’s orbit must be an integral
number of wavelengths, which is equivalent to assuming the electron’s orbital angular momentum
must be an integral multiple of ħ.

Here, we have derived this equation based on Schrödinger’s equation of motion.

The complete spherically symmetric solutions are:

En = – Ry/n2

ψn(ρ) = gn(ρ) exp{–ρ/n} / ρ

gn(ρ) = Σk ak ρk, sum over k=1 to k=n

ak+1 = –ak {2(1–k/n)/k(k+1)}

Let’s examine the solutions for a few values of n.

The minimum energy level, the ground state, has n=1, with:

E1 = – Ry

ψ1(ρ) = a1 exp{–ρ}



The wave function ψ1(ρ) peaks at the atom’s center, at the proton, and decreases exponentially with
radius. Recall that ρ is in units of the Bohr radius, so ψ1(ρ) drops by a factor of e from the center to
one Bohr radius.

In V3p19-5, Feynman says something that might be misleading. He says the electron “is most likely to
be found right at the proton.” While no other single point has a higher amplitude than the center, it is
important to recognize that ψ is an amplitude density. The magnitude of the amplitude squared must
be integrated over a non-zero volume to obtain a meaningful probability. The volume of a shell of
radius ρ and thickness dρ equals 4πρ2dρ. Hence, for ψ1, the probability of the electron being a
distance ρ from the atom’s center is proportional to ρ2exp{–2ρ}. The probability of finding the
electron near ρ=0 is zero. The electron’s most likely radius is where the derivative of its probability
distribution is zero.

0 = ∂(ρ2 exp{–2ρ})/∂ρ
0 = 2ρ exp{–2ρ} – 2ρ2 exp{–2ρ}
0 = 1 – ρ
ρ = 1 Bohr radius

We can also check the average potential energy <V> of this orbit. First, we must normalize ψ, by
integrating ψ*ψ multiplied by the volume element 4πρ2dρ from ρ=0 to ρ=+∞. In integral tables, we
find this definite integral:

∫ xn exp{–ax} dx = n!/an+1; for x from 0 to +∞

1 = A ∫ ψ*ψ 4πρ2 dρ
1 = 4πA ∫ exp{–2ρ} ρ2 dρ
1 = 4πA [2/23]
A = 1/π

Next, we integrate the normalized ψ*ψ times the volume element times the potential over all ρ:

<V> = 4πA ∫ exp{–2ρ} ρ2 (–e2/ρrB) dρ
<V> = –(4e2/rB) ∫ exp{–2ρ} ρ dρ
<V> = –(4e2/rB) [1/4]
<V> = –e2/rB = –27.22 eV = 2Ry

As we discussed in Feynman Simplified 3A Chapter 3, the electron’s kinetic energy equals –Ry (>0),
exactly –1/2 times the average potential energy. The electron’s total energy equals 2Ry–1Ry=1Ry (<0).
The Virial theorem explains why a system at equilibrium in a 1/r potential must have this ratio of
potential to kinetic energy.

The next higher energy level has n=2. Here we have:

E2 = – Ry/4 = –3.4 eV
a2 = –a1 {2(1–1/2)/2} = –a1/2
ψ2(ρ) = a1 (1 – ρ/2) exp{–ρ/2}



For n=3, we have:

E3 = – Ry/9 = –1.5 eV
a2 = –a1 {2(1–1/3)/2} = –2a1/3
a3 = –a2 {2(1–2/3)/6} = –a2/9 = +2a1/27
ψ3(ρ) = a1 (1 – 2ρ/3 + 2ρ2/27) exp{–ρ/3}

These three s-orbits are illustrated in Figure 29-1, where the intensity of black is proportional to the
electron’s probability density.

Figure 29-1 Hy drogen s-Orbits
Top to Bottom: n=1, 2, 3

We see in Figure 29-1 that the probability density of the n=1 orbit drops continuously from the center
outward. For n=2, the probability density passes through zero once (one white ring), while for n=3, it
passes through zero twice.

Orbits With Angular Momentum

Only s-orbits, which are spherically symmetric, have zero orbital angular momentum. Let’s now
examine orbits with non-zero orbital angular momentum.

As before, j is the total orbital angular momentum quantum number, and its component along any
selected axis is the magnetic quantum number m. The total orbital angular momentum equals jħ, and
its component equals mħ.

For principal quantum number n, the allowed values of j and m are:



j = 0, 1, 2 … (n–1)
m = –j, –(j–1) … 0 … +(j–1), +j

The states of various total orbital angular momenta are historically denoted by a single letter, as
follows:

j=0: s
j=1: p
j=2: d
j=3: f
j=4: g
j=5: h

There are no known elements that normally have electrons in orbits with j>3, although excited
electrons may briefly occupy higher j orbits.

Now, we will solve the Schrödinger equation for wave functions that are not spherically symmetric.
Recall this equation from earlier in this chapter.

iħ dψ/dt = –ħ2/2µ Ď2ψ – (e2/r) ψ

where Ď2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 in rectilinear coordinates.

For the spherically symmetric case, in polar coordinates, we used:

Ď2f = ∂2(rf)∂r2/r

Now, for wave functions that vary with polar angle θ and azimuthal angle ø, we need the full polar
coordinate form of Ď2, which is:

Ď2f = ∂2(rf)∂r2/r
   + {∂(sinθ ∂f/∂θ)∂θ + (∂2f/∂ø2)/sinθ}/(r2 sinθ)

Many courses in quantum mechanics tackle this formidable equation head-on, but Feynman has a
better way. We will use what we have learned about angular momentum.

Firstly, since the electrostatic potential is spherically symmetric (varying only as a function of r), it
cannot exert a torque on the electron (the force is radial and has zero lever arm). This means total
angular momentum is conserved about every axis. Since we are assuming that the electron and proton
spins remain fixed, this means total orbital angular momentum is conserved about every axis — the
electron’s j quantum number is constant in time and invariant under rotation.

Now consider an electron that is somewhere along the +z-axis at a distance r>0 from the center. The
key insight is: this electron’s magnetic quantum number m, its z-component of orbital angular
momentum, must be zero. We can see why this is true by recalling the classical equation for angular
momentum:



L = r × p
Lz = x py – y px

On the z-axis, x=y=0, the momentum has no lever arm on the z-axis, and therefore Lz=0.

Define Fj(r) to be the amplitude for an electron to be on the z-axis, at distance r from the center, with
total orbital angular momentum j, and m=0 along the z-axis.

By knowing the amplitude in one direction, we can calculate the amplitude in any direction using
rotation operators. Define the z*-axis to be the direction of the original z-axis after the operation
Ry(θ)Rz(ø), as illustrated in Figure 29-2.

Figure 29-2. z* = Ry(θ)Rz(ø) z

As shown in the figure, Ry(θ)Rz(ø) begins with a rotation by angle ø about the z-axis, followed by a
rotation by angle θ about the new y*-axis. We know that rotations do not change r and j, but they do
mix m-states. Since r and j are invariant under rotation, so is Fj(r).

The amplitude for an electron to be on the z-axis, at distance r from the center, in orbital angular
momentum state |j,m> equals the product of {projection amplitude of |j,m> along z onto |j,0> along z*}
multiplied by {Fj(r), amplitude to be at distance r along z*-axis with |j,0>}. This is written:

ψj,m(r) = Yj,m(θ,ø) Fj(r)

Yj,m(θ,ø) = <j,0| Ry(θ)Rz(ø) |j,m>

The electron states given by ψj,m(r) should be considered basis states: each ψj,m(r) is a solution of the
Schrödinger equation, and so is any linear combination with the same j.



This particular combination of angular functions, called spherical harmonics, occurs frequently in the
analysis of wave phenomena using polar coordinates. Since both atomic scale and cosmic scale
entities have spherical geometries, the spherical harmonics Yj,m(θ,ø) are used in both quantum
mechanics and in classical physics.

Another common representation of spherical harmonics uses the associated Legendre functions
Pj

m(cosθ) :

Pj
m(cosθ) exp{imø} = Yj,m(θ,ø)

It is helpful to know both representations. Both are often referenced and tabulated in many books and
online.

The spherical harmonics Yj,m(θ,ø) are mutually orthogonal. It is sometimes useful to normalize them as
well. In V3p19-7, Feynman says there are several normalization conventions. He recommends:

Yj,m(θ,ø) = <j,0| Ry(θ)Rz(ø) |j,m> √{(2j+1)/4π}

Normalizing Yj,m(θ,ø) isn’t important to us here, because we will ultimately normalize the entire wave
function.

The Yj,m functions for j=0, 1, and 2 are tabulated here.

In these tables, the first column provides the symbol used for each value of j. These symbols
originated well before anyone understood the underlying physics. While somewhat archaic, they
remain in frequent use.



The second column, labeled P, is the parity of the electron’s orbital state, which equals (–1)j.

General Solution for Hydrogen

Ignoring normalization, the form of the general solution that we have derived is:

ψ = Yj,m(θ,ø) Fj(r) exp{–iEt/ħ}

We have solutions for Yj,m(θ,ø). Now let’s find solutions for Fj(r).

We return to the full polar coordinate version of the Schrödinger equation.

iħ dψ/dt = –ħ2/2µ Ď2ψ – (e2/r) ψ

or

–(2µ/ħ2) {iħ dψ/dt + e2/r} ψ = Ď2ψ

When we plug the general solution into this equation, the factor exp{–iEt/ħ} will be common to all
terms; the only change it makes is replacing the time derivative term with Eψ. After cancelling the
common exponential, we obtain:

–(2µ/ħ2)(E+e2/r)Yj,m(θ,ø)Fj(r) = Ď2Yj,m(θ,ø)Fj(r)

–(2µ/ħ2)(E+e2/r) Yj,m Fj = Yj,m ∂2(rFj)∂r2 /r
   + [Fj/(r2 sinθ)] ∂(sinθ ∂Yj,m/∂θ)/∂θ
   + [Fj/(r2 sin2θ)] (∂2Yj,m/∂ø2)

We next move all the r-dependent terms to the left side of the equation by multiplying everything by
r2/Fj and rearranging.

–{(r2/Fj) [∂2(rFj)∂r2/r +(2µ/ħ2)(E+e2/r) Fj]} Yj,m =
 [∂(sinθ ∂Yj,m/∂θ)/∂θ + (∂2Yj,m/∂ø2)/sinθ] /(sinθ)

Let’s convert to natural units as we did in the spherically symmetric case.

ρ = r / rB = r/(ħ2/µe2)
ε = E / Ry = E/(µe4/2ħ2)

This yields:

–{(ρ2/Fj) [∂2(ρFj)∂ρ2/ρ +(ε+2/ρ) Fj]} Yj,m =
   [∂(sinθ ∂Yj,m/∂θ)/∂θ + (∂2Yj,m/∂ø2)/sinθ] /(sinθ)

In V3p19-10, Feynman makes two key points. Firstly, the right hand side (RHS) of this equation does
not depend on the orbital radius ρ — its value is the same value for all values of ρ — which means



the left hand side (LHS) must also have the same value for all values of ρ. This seems remarkable
because the LHS is full of ρ’s. Yet, after all the math is done, the value of the LHS cannot be a
function of ρ. Please be sure to grasp this essential point — perhaps this will help: d(RHS)/dρ=0
means d(LHS)/dρ=0.

The second key point is that the LHS term in { }’s has no angular dependence except Fj, which
depends on the total orbital angular momentum j. The combination of these two key points means the {
} term must be some quantity, call it Kj, that depends only on j, and not on m, ρ, θ, or ø.

We can therefore rewrite the above equation as:

–{(ρ2/Fj) [∂2(ρFj)∂ρ2/ρ +(ε+2/ρ) Fj]} Yj,m

    = – Kj Yj,m =
   [∂(sinθ ∂Yj,m/∂θ)/∂θ + (∂2Yj,m/∂ø2)/sinθ] /(sinθ)

We now split this into two separate equations. First is the angular equation:

– Kj Yj,m =
   [∂(sinθ ∂Yj,m/∂θ)/∂θ + (∂2Yj,m/∂ø2)/sinθ] /(sinθ)

Second is the radial equation:

–{(ρ2/Fj) [∂2(ρFj)∂ρ2/ρ +(ε+2/ρ) Fj]} Yj,m

   = – Kj Yj,m

We rearrange the latter yielding:

∂2(ρFj)∂ρ2/ρ +(ε+2/ρ) Fj = Fj Kj / ρ2

Our plan is to use the angular equation to calculate Kj, and then use Kj and the radial equation to
calculate Fj.

So, what is Kj?

Since Kj does not depend on the z-component of orbital angular momentum m, we are free to evaluate
the first equation for any value of m. We choose m=j. Let’s calculate Yj,j (still ignoring normalization).

Yj,j(θ,ø) = <j,0| Ry(θ) Rz(ø) |j,j>

As we have often discussed, Rz(ø) is particularly simple. In this case:

Rz(ø) |j,j> = exp{ijø} |j,j>

Next, the y-rotation. We recall (Chapter 17) that for a spin 1/2 entity:

<m=+1/2| Ry(θ) | m=+1/2> = +cos(θ/2)



<m=–1/2| Ry(θ) | m=+1/2> = –sin(θ/2)

A |j,j> entity is equivalent to 2j spin 1/2 entities that are all spin up. Projecting a rotated |j,j> state
onto <j,0| is equivalent to projecting j rotated spin +1/2 states onto <+1/2| and projecting j rotated
spin +1/2 states onto <–1/2|. The amplitude for the spin 1/2 rotations is:

[+cos(θ/2)]j [–sin(θ/2)]j

    = [–cos(θ/2) sin(θ/2)]j

    = [–(sinθ)/2]j

Putting the two rotation factors together, we get (ignoring normalization):

Yj,j(θ,ø) = [sinθ]j exp{ijø}

We now evaluate two pieces of the angular equation.

First ∂(sinθ ∂Yj,j/∂θ)/∂θ :

sinθ ∂Yj,j/∂θ = j[sinθ]j cosθ exp{ijø}

∂ (sinθ ∂Yj,j/∂θ) /∂θ  
   = {j2[sinθ]j–1 cos2θ – j[sinθ]j sinθ} exp{ijø}

Second ∂2Yj,j/∂ø2 :

∂2Yj,j/∂ø2 = [sinθ]j (–j2) exp{ijø}

Now put the pieces together:

– Kj Yj,j =
   {∂(sinθ ∂Yj,j/∂θ)∂θ + (∂2Yj,j/∂ø2)/sinθ} /(sinθ)

– Kj Yj,j

   = {j2 [sinθ]j–2 cos2θ – j [sinθ]j} exp{ijø}
       – j2 [sinθ]j–2 exp{ijø}

= j [sinθ]j–2 {j cos2θ – sin2θ –j } exp{ijø}

= j [sinθ]j–2 {– j sin2θ – sin2θ} exp{ijø}

= – j [sinθ]j {j + 1} exp{ijø}

= – j(j+1) Yj,j

Kj = j(j+1)

After all that, Kj is quite simple. We now plug Kj into the radial equation:



∂2(ρFj)∂ρ2/ρ +(ε+2/ρ) Fj = Fj j(j+1) / ρ2

∂2(ρFj)∂ρ2 = –{ε +2/ρ –j(j+1)/ρ2} ρFj

This is the same equation that we had in the spherically symmetric case, except now we have the
additional j(j+1) term on the right.

In V3p19-11, Feynman addresses the physical significance of this seemingly “mysterious” term.
Consider the classical physics problem of an object of mass µ orbiting a central potential, such as a
planet orbiting a star. The conservation of total energy U, potential plus kinetic, can be written:

U = V(r) + µv2/2 = constant

Now, we split the object’s velocity v into a radial component vr and a tangential component rω
(ω=dθ/dt), yielding:

U = V(r) + µr2ω2/2 + µvr
2/2

Next add the requirement that total angular momentum L is conserved.

L = µr2ω = constant
L2 / 2µr2 = µ2r4ω2 / 2µr2 = µr2ω2/2

We plug this expression into the energy conservation equation.

U = V(r) + L2/2µr2 + µvr
2/2

U = V*(r) + µvr
2/2

with V*(r) = V(r) + L2/2µr2

Since L is constant, V* is a function of r only. We can consider V* to be the effective potential for
orbits with angular momentum. For a given r, a certain amount of energy is tied up in the form of
angular motion, and is therefore unavailable for radial motion. This is mathematically similar to the
potential V(r): for a given r, the V determines how much energy is available for motion.

In quantum mechanics, we found that the angular momentum term is:

j(j+1)/ρ2

To convert this from natural units to conventional units, multiply by RyrB
2 and get:

Ry rB
2 j(j+1)/ρ2 = (µe4/2ħ2)(ħ4/µ2e4) j(j+1)/r2

Ry rB
2 j(j+1)/ρ2 = j(j+1) ħ2/2µr2

We see that quantum mechanics has the same angular momentum term, with L2 replaced by j(j+1)ħ2.

Let’s now solve the radial differential equation following the same procedure we used in the
spherically symmetric case.



∂2(ρFj)∂ρ2 = –{ε +2/ρ –j(j+1)/ρ2} ρFj

Replace ρFj with g(ρ) exp{–βρ}. As before:

∂2(g(ρ) exp{–βρ})/∂ρ2

  = [–2β ∂g/∂ρ + ∂2g/∂ρ2 + β2g] exp{–βρ}

[–2β ∂g/∂ρ + ∂2g/∂ρ2 + β2g]
  = –{ε +2/ρ –j(j+1)/ρ2} g

∂2g/∂ρ2 –2β ∂g/∂ρ +{β2+ε+2/ρ–j(j+1)/ρ2}g = 0

Again we set the arbitrary parameter β=√(–ε), recalling that ε is negative for a bound electron. This
reduces the equation somewhat.

∂2g/∂ρ2 –2β ∂g/∂ρ +{2/ρ–j(j+1)/ρ2}g = 0

Now let g(ρ) = Σk ak ρk, with the summation being from k=0 to k=∞. The equation then becomes:

Σk ak {k(k–1)ρk–2 –2βkρk–1 +2ρk–1 – j(j+1)ρk–2}
   = 0

Σk ak {k(k–1) – j(j+1)} ρk–2

   = – Σk ak {–2βk +2} ρk–1

As before, since the sums are independent, we may shift the summation indices independently in order
to obtain the same power of ρ in each term. Replace the summation index k, with k+1 on the left hand
side.

Σk ak+1 {(k+1)k – j(j+1)} ρk–1 
      = Σk 2ak {βk–1} ρk–1

The summation on the left side begins with k=–1, and on the right side begins with k=0. Examine the
k=–1 sum.

a0 {0 – j(j+1)} ρ–2 = 0

For this to be true for all ρ, a0 must equal 0. This means we can start both sums at k=0, and write:

0 = Σk [ak+1 {k(k+1) – j(j+1)} – 2ak {βk–1}] ρk–1

Now examine the k=0 terms.

0 = [a1 {0 – j(j+1)} – 2a0 {–1}] ρ–1

0 = a1 j(j+1)

Since we are solving for states with j>0, this means a1=0.



For all other powers of ρ, the summation equation is valid for all ρ only if the expression in [ ]’s
equals zero for all values of n. This means:

0 = ak+1 {k(k+1) – j(j+1)} – 2ak {βk–1}
ak+1 {k(k+1) – j(j+1)} = 2ak {βk–1}
ak+1 = 2ak {βk–1} / {k(k+1) – j(j+1)}

This equation imposes two constraints.

The first constraint is the same as in the spherically symmetric case: to prevent wave functions that
increase exponentially at large radius, βk must equal 1 for some value of k, which we will call n.
Hence, β=1/n for some integer n.

The second constraint is new. We found above that if j>0, a1 must be 0. This would make all other a’s
equal zero, if not for the denominator. If the denominator were always non-zero, every ak+1 would be a
finite multiple of ak and would therefore be zero. This provides no solution at all for the electron
wave function. However, the denominator does equal zero when k=j, making the equation
meaningless for k=j. The equation thus imposes no requirement on aj+1: it can be anything. And
subsequent a’s can also be non-zero, as determined by the equation.

Therefore the sum over k is constrained to terms with k=j+1 through k=n. Note that we have valid
solutions only if j<n.

As before, since the only allowed values of β are 1/n for some integer n, the energy of allowed
electron orbits is once again given by:

1/n = β = √(–ε)
1/n = √(–En/Ry)
En = – Ry/n2

All the pieces of the electron wave function are put together in the review section below.

Proof of Polynomial Theorem

We prove here the theorem quoted above for a Taylor series. We represent a function f(x) by a
polynomial summed from n=0 to n=+∞. If:

0 = f(x) = Σn an xn, for all x

the only solution is an = 0 for all n.

For x=0, the equation reduces to 0 = a0. That’s one down, infinitely more a’s to go.

Next take the derivative of f(x), and evaluate that at x=0:



0 = df/dx = Σn n an xn–1

0 = df(x=0)/dx = 1•a1•1 + Σn>1 n an (0)n–1 
0 = a1

The derivative of df/dx, evaluated at x=0, proves that a2=0.

Successively evaluating higher order derivatives at x=0 proves that an = 0 for all n.

QED

Chapter 29 Review: Key Ideas

• For an electron in a hydrogen atom in a spherically symmetric s-orbit, in a stationary state with time
dependence exp{–iEt/ħ}, Schrödinger’s equation in polar coordinates is:

∂2(rψ)/∂r2 / r = – (2µ/ħ2) (E + e2/r) ψ

where r is the electron’s radial coordinate, and e2=qe
2/4πε0. We convert to natural units using:

ρ = r / rB; rB = ħ2/µe2 = Bohr radius
ε = E / Ry; Ry = µe4/2ħ2 = 1 Rydberg

We also make these substitutions:

ρψ = g(ρ) exp{–βρ}, with β=√(–ε)

g(ρ) = Σk ak ρk, a Taylor series expansion

Our differential equation becomes:

0 = Σk {(k+1)kak+1 –2βkak +2ak} ρk–1

To be valid for all ρ, the quantity in { }’s must be zero for all n, resulting in discrete eigenstates with:

En = – Ry/n2

ψn(ρ) = gn(ρ) exp{–ρ/n} / ρ
gn(ρ) = Σk ak ρk, sum over k=1 to k=n
ak+1 = –ak {2(1–k/n)/k(k+1)}

• Orbits with angular momentum are not spherically symmetric, and require spherical harmonics
defined by:

Yj,m(θ,ø) = <j,0| Ry(θ)Rz(ø) |j,m>

We can separate the angular dependence Yj,m(θ,ø) from the radial dependence Fj(r), which is the



solution of:

∂2(ρFj)∂ρ2 = –{ε +2/ρ –j(j+1)/ρ2} ρFj

With the same substitutions used above, we find:

ak+1 = 2ak {βk–1} / {k(k+1) – j(j+1)}

This equation requires: β=1/n for some integer n; k>j; and j<n.

• The electron wave function in a hydrogen atom, for quantum numbers n, j, and m, is:

ψn,j,m(θ,ø,ρ,t) = α Yj,m(θ,ø) Fn,j(ρ) exp{–iEnt/ħ}

En = – Ry/n2

ρ = r / rB = r / (ħ2/µe2)

ak+1 = 2ak {k/n–1} / {k(k+1) – j(j+1)}

Fn,j(ρ) = exp{–ρ/n} Σk ak ρk-1

Here α is the normalization factor, µ is the electron mass, and the sum over k goes from k=j+1 to k=n.



Chapter 30

The Periodic 
Table of Elements

This chapter describes qualitatively the structure of the Periodic Table of Elements.

Hydrogen Wave Functions Overview

Let’s review the key features of the wave functions of electrons bound in hydrogen atoms that we
derived in the prior chapter.

Nature severely restricts the allowed orbits of bound electrons, as described by quantum mechanics
and Schrödinger’s equation. We derived a discrete set of orbital basis states, each of which is
characterized by three integers:

n determines <1/r>, the orbit’s average inverse radius. The principal quantum number n can
have any integral value greater than zero. The maximum n found in known elements is 7.

j specifies the orbit’s total angular momentum: L=jħ. The orbital angular momentum quantum
number j can have any integral value from 0 through n–1.

m specifies the component of orbital angular momentum along any selected axis, typically the z-
axis. The magnetic quantum number m can have any integral value from –j through +j.

The wave functions ψn,j,m(θ,ø,r,t) of these orbital basis states can be separated into these factors:

ψ = α Yj,m(θ,ø) Fn,j(r) exp{–iEnt/ħ}

α provides normalization

Yj,m(θ,ø) is the angular dependence

Fn,j(r) is the radial dependence

exp{–iEnt/ħ} is the time dependence

The energy of each basis state is given by:

En = – Ry/n2



Here Ry = –13.6 eV is the Rydberg constant.

Each orbital basis state, each unique set of the three quantum numbers n, j, and m, can accommodate a
maximum of two electrons, one with spin up and another with spin down.

Hydrogen s-Orbits

The lowest energy state is the spherically symmetric 1s-orbit for which n=1, j=0, m=0. In V3p19-12,
Feynman notes that this ground state is non-degenerate: there is only one orbital state with this energy.

Each higher value of n also has exactly one spherically symmetric s-orbit; these are named “ns”, as in
2s, 3s, etc. The radial dependence of each s-orbit is defined by Fn,0(r), which equals an exponential
multiplied by a polynomial in r of degree n–1. For example, the polynomial for the 3s-orbit is:

F3,0(r) = {1 –2ρ/3 +2ρ2/27} exp(–ρ/3}

with ρ = r / rB

and Bohr radius rB = 0.0529 nm

A polynomial of degree n–1 has n–1 roots, which means Fn,0(r)=0 at n–1 values of r. The 1s wave
function decreases monotonically from r=0, and is never zero. The 2s wave function is zero at one
value of r, the 3s wave function is zero at two values of r, etc. At every value of r for which Fn,0(r)=0,
there is a spherical nodal surface; ψ=0 at every point on the surface of the sphere with that radius.

The exponential radial factor declines less rapidly for larger values of n, which means the wave
function extends to larger radii for larger n.

The first three s-orbits are illustrated in the left most column of Figure 30-1, where darker areas
indicate higher probability densities.

Figure 30-1 Hy drogen Orbits 1s Through 3d



Hydrogen p- & d- Orbits

For each n>1, there are exactly three p-orbits with j=1 and m=+1, 0, and –1. And for each n>2, there
are exactly five d-orbits with j=2 and m=+2, +1, 0, –1, and –2. The lowest-energy p- and d-orbits are
illustrated in the middle and right columns of Figure 30-1, respectively.

The radial dependence of orbits with non-zero angular momentum also equals an exponential
multiplied by a polynomial in r:

Fn,j(ρ) = exp{–ρ/n} Σk ak ρk-1

But the difference here is that the sum over k is from k=j+1 to k=n, which excludes powers of the
radius less than j. Hence, the polynomial in r still has degree n–1, and still has n–1 roots, but j of
those roots are at r=0.

This means all orbits with j>0 have ψ=0 at r=0. This makes sense classically: an orbit that passes
through the center has zero lever arm and therefore zero angular momentum. In quantum terms, if an
orbit has a non-zero amplitude at r=0, its angular momentum j must be zero.

As j increases, more terms with low powers of r are excluded from the Fn,j(ρ) polynomial,
increasingly skewing it toward higher powers of r. The result is that, as total angular momentum
increases, the wave function is excluded from a progressively larger central zone surrounding the
nucleus. This changes the wave function’s shape, but does not change <1/r>, the average inverse
radius, which is still determined only by n.

Eliminating low powers of r has another effect. The lowest energy p-orbit, 2p, has no spherical nodal
surface. It is zero only at the center, ρ=0, because its polynomial has only one term:

F2,1(ρ) = a2 ρ exp{–ρ/n}

Similarly, the lowest energy orbit with total angular momentum j has no spherical nodal surface for
any value of j. Note in Figure 30-1 that state 3d also has no spherical nodal surface.

From the prior chapter, the angular dependence of each p-orbital basis state is:

|j,m> = |1,+1>: +sinθ exp{+iø} /√2
|j,m> = |1, 0 >: +cosθ
|j,m> = |1,–1>: –sinθ exp{–iø} /√2

The m=0 p-orbital basis state has a nodal plane: ψ=0 on the z=0 plane, where θ=π/2. The m=±1 p-
orbital basis states are zero on the z-axis, where θ=0 or θ=π.

In V3p19-13, Feynman emphasizes that what we have described are a complete set of basis states,
and that any linear combinations of these states are also valid electron wave functions in hydrogen
atoms.



For example, as shown above, the 2p m=0 basis state is oriented along the z-axis, with a cosine
dependence on the polar angle. Feynman asks about the existence of states “along the x-axis or along
the y-axis. Are these perhaps the m=+1 and m=–1 states? No.”

Recall that the three m-states are stationary states of the same definite energy, with the same time
dependence factor, exp{–iEt/ħ}, which is shared by any linear combination of these states. Feynman
says the following |j,m> combinations define p-orbits oriented along each axis:

z-axis: |1,0>
x-axis: {|1,+1> + |1,–1>}/√2
y-axis: {|1,+1> – |1,–1>}/i√2

The angular factors, Yj,m(θ,ø), of p-orbits involve sine and cosine functions to the first power. By
contrast, d-orbits involve those functions to the second power. The angular dependence of each d-
orbital basis state is:

|j,m> = |2,+2>: +sin2θ exp{+i2ø} √(3/8)
|j,m> = |2,+1>: +sinθ cosθ exp{+iø} √(3/2)
|j,m> = |2, 0 >: +(3 cos2θ –1) / 2
|j,m> = |2,–1>: –sinθ cosθ exp{–iø} √(3/2)
|j,m> = |2,–2>: –sin2θ exp{–i2ø} √(3/8)

In general, orbits with total angular momentum j involve sinusoids to the jth power.

Periodic Table of Elements

We will now apply our discoveries regarding single electron wave functions in hydrogen atoms to
more complex elements with many electrons.

Each electron orbital state with quantum numbers |n,j,m> may contain up to two electrons, one with
spin up and the other spin down. Each group of |n,j> states has 2j+1 different m-states that may
contain up to 4j+2 electrons. The maximum number of electrons with principal quantum number n, the
capacity of the n-shell, is:

Max in n = Σj (4j+2), for j=0…(n–1)
Max in n = 4(Σj j) + (Σj 2), for j=0…(n–1)
Max in n = 4 n(n–1)/2 + 2n
Max in n = 2n2 –2n + 2n = 2n2

An atom with Z protons in its nucleus is defined to have atomic number Z and is called element #Z.
Generally, nuclei also contain some neutrons. All atoms of a given element must have the same
number of protons, but they may have different numbers of neutrons, in which case they are said to be
different isotopes of that element. Lead, for example, always has 82 protons, but lead has 38 known
isotopes that contain from 96 to 133 neutrons.



If an atom with Z protons is electrically neutral, it must have Z electrons. Each electron is attracted by
the nuclear charge +Z, but is also repelled by the negative charges of the Z–1 other electrons.

To calculate the electron wave functions of an atom with Z protons and Z electrons, we could use a
trial solution of the form:

Ψ = ψ(r1, r2, … rZ) exp{–iEt/ħ}

where r1, r2, … rZ are the position vectors of electrons #1 through #Z. The Schrödinger equation for
spherically symmetric states is:

Eψ =
 –ħ2/2µ { Σj ∂2(rjψ)/∂rj

2/rj }
 – { Σj Ze2/rj } ψ
 + { Σj>k e2/|rj–rk| } ψ

Here, the second line contains the sum of Z second order partial derivatives, one with respect to the
radial coordinate of each electron. The third line contains the sum of the negative potential energy of
each electron in the Coulomb field of the nucleus. The fourth line contains the sum of the positive
potential energy of each pair of electrons due to their mutual Coulomb repulsion.

All this is the simplest case, without spin interactions and without angular momentum. Needless to
say, no one has ever solved the complete multi-electron problem analytically.

It is possible, however, to gain some qualitative insights into how real electron wave functions vary
with atomic number Z.

We will simplify the problem with several approximations. We assume each electron occupies the
lowest available energy state. We will treat electrons as independent particles, subject to a few
constraints. In accordance with the exclusion principle, at most two electrons can occupy each unique
orbital state, each unique set of n, j, and m quantum numbers. We begin with one electron in the
Coulomb potential of a one-proton nucleus. We next add a second proton and a second electron. We
assume the second electron experiences the potential of two protons shielded by a spherically
symmetric charge density from the first electron. We continue in this way, adding protons to the
nucleus and adding electrons to hydrogen-like |n,j,m> states, until we reach Z electrons orbiting a
nucleus of Z protons.

As we have seen, the radial distributions of electron wave functions grow more complex as n
increases. As a result, shielding by “inner” electrons changes the effective Coulomb potential seen by
“outer” electrons, making their effective potential more complex than simply 1/r.

Let’s see how far these simplifying approximations can take us.

Z=1: Hydrogen

This is the only case that is simple enough to solve analytically. We found that the ground state, 1s,



has energy E1=–13.60 eV, which in chemical units is 1312 kJoules/mole. An atom’s ionization
energy, Wi, is the energy required to remove one electron. For hydrogen, Wi=–E1. An element with a
low ionization energy easily loses electrons in chemical reactions, while one with a high ionization
energy does not.

Z=2: Helium

Both electrons in helium occupy the 1s ground state (with opposite spins), and each partially shields
the other from the nuclear charge. The ionization energy of helium is 24.59 eV. We might say this
means each electron sees an effective potential of 1.8 protons (1.8=24.59/13.60). Helium has the
greatest ionization energy of any element. Also, since its electrons completely fill the n=1 shell, a
helium atom exerts no detectable attractive force on additional electrons. This combination means
helium atoms never share electrons with other atoms and are therefore chemically inert.

Z=3: Lithium

With the first two electrons filling the 1s ground state, the third electron must enter an n=2 state. This
raises an interesting question and some important physics: which angular momentum state within the
n=2 shell has the lowest energy?

In an atom with only one electron, that electron experiences the same –Ze2/r potential everywhere.
This is why the energies of hydrogen states depend only on their average inverse radius, which is
solely determined by the principal quantum number n.

But in a multi-electron atom, electrons that are closer to the nucleus partially shield its attractive
charge from electrons in more distant orbits. Due to this shielding, outer electrons experience a less
negative potential and less binding energy. Electrons in s-states have a substantial amplitude to be at
the atom’s center, and thereby have some exposure to the full nuclear charge. But, electrons with
orbital angular momentum have zero amplitude to be at the atom’s center, as we discussed earlier.
They therefore are more shielded by inner electrons and have less binding energy. The higher its
orbital angular momentum becomes, the more an electron is shielded, and the less binding energy it
has. Since binding energy is negative, electrons in high j-states have higher (less negative) energies.

This effect in multi-electron atoms is illustrated in Figure 30-2, where the horizontal axis is the
principal quantum number n, and the vertical axis is indicative of which states have higher energy, but
is not a true linear scale.



Figure 30-2 Multi-Electron Energy  Levels

The key point is that energy levels in multi-electron atoms depend on both n and j, in sharp contrast to
hydrogen-like energy levels.

The third electron of lithium, therefore, enters the 2s-orbit, not the higher energy 2p-orbit. The
ionization energy of lithium is 5.39 eV, much less than hydrogen because 2s states have a larger
average radius than 1s states.

Z=4: Beryllium

The fourth electron completes the 2s state, giving beryllium a relatively high ionization energy: 9.32
eV.

Z=5 to 7: Boron to Nitrogen

Electrons in the same |n,j,m> state have the same orbital motion. This intensifies their mutual
repulsion, reduces their binding energy, and increases their total energy. Therefore, electrons do not
share the same |n,j,m> state if a different state of the same orbital energy is available. This is why the
next three electrons after beryllium enter three different 2p obits. The ionization energies are: boron
8.30 eV; carbon 11.26 eV; and nitrogen 14.53 eV. Note that ionization energy steadily increases from
Z=5 to Z=7. The nuclear charge is increasing, while electron shielding changes slowly because the p-
orbits are oriented in different directions.

Z=8 to 10: Oxygen to Neon

Now that all 2p-orbits contain one electron, the next three electrons must fill out those orbits. This is



less energetically favorable, as evidenced by oxygen’s ionization energy of 13.62 eV, which is 0.91
eV less than nitrogen despite oxygen having a greater nuclear charge. The ionization energy of
fluorine is 17.42 eV, and of neon is 21.56 eV. Neon completes the n=2 shell, making it a noble gas
and chemically inert, just like helium.

Z=11 to 18: Sodium to Argon

The 11th and 12th electrons fill the 3s state. The ionization energy for sodium is only 5.14 eV, and for
magnesium is 7.65 eV. The 13th, 14th, and 15th electrons enter three different 3p-orbits. The
ionization energies are: aluminum 5.99 eV; silicon 8.15 eV; and phosphorus 10.49 eV. The 16th, 17th,
and 18th electrons fill the 3p-orbits. The ionization energies are: sulfur 10.36 eV; chlorine 12.97 eV;
and argon 15.76 eV.

Comparing the sequence of elements lithium-to-neon with sodium-to-argon, the pattern of electron
orbits and ionization energies is quite similar. This explains the similarity of chemical properties of
corresponding elements: lithium to sodium; carbon to silicon; fluorine to chlorine; and neon to argon.
This is why these pairs of atoms are placed in the same columns of the Periodic Table.

Z=19 and 20: Potassium and Calcium

After 3p, we might well expect the next ten electrons to enter the five 3d-orbits (3d does not mean
3D; all orbits are three dimensional). But the 3d-orbits offer some surprises. Looking again at the
energy level diagram, enlarged below in Figure 30-3.

Figure 30-3 Enlargement of 3d, 4s Levels

Figure 30-3 shows that the energy of 3d-orbits is very slightly higher than the energy of 4s-orbits,
confirming the increase in energy of higher angular momentum orbits in multi-electron atoms.

The 19th and 20th electrons, therefore, enter 4s rather than 3d-orbits, even though 4s has a higher
value of <1/r> and is in that sense “outside” the 3d-orbit. Both types of orbits are distributed over a



wide range of r, as illustrated by Figure 30-4, hence “inside” and “outside” describe only average
radii. For Z=19 and Z=20, the ionization energies are: potassium 4.34 eV; and calcium 6.11 eV.

Figure 30-4 4s & 3d Radial Distributions

This figure compares the unnormalized Fn,j(ρ) for 4s and 3d hydrogen-like orbits, from ρ=0 to ρ=30
Bohr radii. The average inverse radii, <1/r>, for 3d and 4s-orbits correspond to 9 and 16 Bohr radii,
respectively. However, 4s-orbits have substantial amplitudes near ρ=0, whereas 3d-orbits do not.
Electrons in n=1 and n=2 shells more effectively shield 3d-orbits than 4s-orbits.

Z=21 to 30: Scandium to Zinc

The next three electrons enter 3d-orbits. The ionization energies are: scandium 6.56 eV; titanium 6.83
eV; and vanadium 6.75 eV. As the 21st, 22nd, and 23rd electrons enter 3d-orbits, they increasingly
shield the “outer” 4s electrons from the nuclear charge.

When the 24th electron arrives, it and the 20th electron both enter the last vacant 3d-orbits, leaving
only one electron in the 4s-orbit. Filling a shell is very advantageous; even half-filling a subshell is
advantageous.

The 25th electron refills the 4s state; this is manganese. The next three electrons (corresponding to
iron, cobalt, and nickel) complete three previously half-occupied 3d-orbits.

The 29th electron (copper) repeats the pattern set by the 24th. It and the 25th electron both complete
the 3d shell, leaving one electron in the 4s-orbit. The 30th electron refills the 4s state; this is zinc.

The ionization energies are: chromium 6.77 eV; manganese 7.43 eV; iron 7.90 eV; cobalt 7.88 eV;
nickel 7.64 eV; copper 7.73 eV; and zinc 9.39 eV.

Since the 3d-orbits are closer to the nucleus than the 4s-orbits, as electrons fill 3d, the state of the
outermost electrons changes very little. This explains why the chemical properties of these elements
are so similar.

We have now discussed the aspects of electron orbits of most interest to physicists, so we won’t



continue through the remaining 70+ elements.

Topology of Molecules

Our analysis of the quantum states of electrons in atoms also explains the topology of molecules.

Oxygen, for example, has four 2p electrons. This means one p-orbit is filled and two are half-filled.
The half-filled orbits allow oxygen to form chemical bonds with two other atoms. The p-orbits of an
isolated oxygen atom are mutually orthogonal (a 90º angle between each pair), but that can change
when atoms form molecules. In water, two hydrogen atoms bond with one oxygen atom. The two
hydrogen electrons are more strongly attracted to the oxygen nucleus than to the hydrogen nuclei.
While not completely removed from the hydrogen atoms, these electrons enter oxygen’s half-filled p
states, giving the oxygen atom a net negative charge and the hydrogen atoms a net positive charge. The
hydrogen atoms push each other apart, due to their net positive charges. This effect stretches the bond
angle to 104.5º from the intrinsic 90º angle between p-orbits.

The same effect occurs in H2S and H2Se. Sulfur and selenium have electron orbital structures similar
to oxygen; sulfur has four 3p electrons, and selenium has four 4p electrons. Since both sulfur and
selenium are larger atoms than oxygen, the two hydrogen atoms with which they bond are farther
apart, reducing their repulsive force. The hydrogen bond angle is 92.1º in hydrogen sulfide, and 91º
in hydrogen selenide.

Similar logic applies to nitrogen, which has three 2p electrons that half-fill each of the three 2p-
orbits. In an isolated nitrogen atom, these orbits would be mutually orthogonal. In ammonia, NH3,
which we studied in Chapters 10 and 11, the hydrogen atoms again have a net positive charge and
thereby repel one another. This stretches the hydrogen bond angle to 107.8º. Once again, larger atoms
with the same electron structures have the same trend. Phosphorus has three 3p electrons and the
hydrogen bond angle in PH3 is 93.5º. Arsenic has three 4p electrons and the hydrogen bond angle in
AsH3 is 91.8º. Warning: don’t measure these bond angles at home. While both phosphine and arsine
are commonly used in semiconductor fabrication, both are extremely toxic.

Chapter 30 Review: Key Ideas

• Each state with a unique set of quantum numbers n, j, and m, may contain up to two electrons, one
spin up and the other spin down. Each group of |n,j> states has 2j+1 different m-states that may
contain up to 4j+2 electrons. The maximum number of electrons with principal quantum number n, the
capacity of the n-shell, equals 2n2.

• All orbits with j>0 have zero amplitude at r=0. As j increases, the Fn,j(ρ) polynomial is increasingly
skewed toward higher powers of r, excluding the wave function from a progressively larger central
zone surrounding the nucleus. This changes the wave function’s shape. but does not change <1/r>, its
average inverse radius, which is still determined only by n.



• Orbital stationary states with the same n and j have the same energy. Any linear combination of such
states is also a stationary state with the same energy. Feynman says the following combinations define
p-orbits oriented along each axis:

z-axis: |1,0>
x-axis: {|1,+1> + |1,–1>}/√2
y-axis: {|1,+1> – |1,–1>}/i√2

• Higher angular momentum orbits in multi-electron atoms are shifted to higher energies, because they
are more effectively shielded from the nuclear charge by “inner” electrons.

• In general, an orbit with total angular momentum j has an angular dependence that involves
sinusoids raised to the jth power.

In V19-18, Feynman says: “The Schrödinger equation has been one of the great triumphs of physics.
By providing the key to the underlying machinery of atomic structure it has given an explanation for
atomic spectra, for chemistry, and for the nature of matter.” It also explains the structure of the
Periodic Table of Elements.



Chapter 31

Quantum & 
Algebraic Operators

In V3p20-1, Feynman says:

“There are many ways of approaching the subject of quantum mechanics, and most books use a
different approach from the one we have taken. As you go on to read other books you might not
see right away the connections of what you will find in them to what we have been doing.
Although we will also be able to get a few useful results, the main purpose of this chapter is to
tell you about some of the different ways of writing the same physics. Knowing them you should
be able to understand better what other people are saying.”

In the early days of classical physics, people wrote out all the x-, y-, and z-components of every
natural law. Some people still do. Most however, now write these equations using vectors, making
the equations simpler and more compact. While it is true that to obtain practical answers one must
eventually enter component values, vector notation unquestionably simplifies complex mathematics.

Similarly, we have used operators and state vectors to make quantum mechanical equations less
cluttered and make their meaning more evident.

A state vector |ψ> has mathematical similarities to geometric vectors, but is more abstract, being a
label for the physical condition of a quantum entity. Using state vectors, the natural laws of the
quantum realm can be written as algebraic equations. Feynman provides the example of representing
any state |ψ> as a linear combination of basis states:

|ψ> = Σj Cj |j>

Here, Cj = <j|ψ> is the amplitude for state |ψ> to be in state |j>, and the set of states |j>, for j=1…N,
forms a complete orthonormal basis.

We have used operators to describe how states change when they are rotated, projected onto a
coordinate system with inverted axes, or simply left undisturbed to evolve over time. For example:

|ø> = A |ψ>

represents operator A changing state |ψ> into state |ø>. Feynman says the definition of operator A is
given by the algebraic equation:

<k|ø> = Σj <k|A|j> <j|ψ>



Here <j|ψ> is the “amount” of state |ψ> in basis state |j> — the amplitude of |ψ> being in |j>, or
equivalently, the projection of |ψ> onto |j>. Similarly, <k|ø> is the “amount” of basis state |k> in state |
ø>. The complex number <k|A|j> defines how much basis state |j> is changed into basis state |k> by
operator A — the projection of A|j> onto |k>. The set of amplitudes <k|A|j> are the components of a
matrix that represents the operator A, according to:

Akj = <k|A|j>

So, Feynman says, the operator equation |ø>=A|ψ> is a more abstract, more “high-class”, way of
writing the algebraic equation <k|ø> = Σj <k|A|j> <j|ψ>.

The algebraic equation is expressed in one particular basis set, any set we wish to select. The
operator equation is universal, independent of basis states. The distinction is perhaps more
philosophical than practical, since obtaining practical results requires defining basis states. The
operator-algebraic distinction is similar to the distinction between:

c = a × b

and

cx = aybz – azby

cy = azbx – axbz

cz = axby – aybx

Once one knows the components of a vector, matrix, or operator in any basis, one can calculate its
components in any other basis using a suitable transformation.

In V3p20-2, Feynman says that the operator methodology opens new opportunities. An operator A
might produce a new state A|ψ> that may be unrelated to physical reality, but nonetheless useful
analytically.

Recall some of the operators we have used in this course: the rotation operator Rz(θ); the parity
operator P; and the Pauli spin operators σx, σy, and σz.

We also defined in Chapter 23 the angular momentum operator Jz in terms of a rotation about the z-
axis by an infinitesimal angle ε:

Rz(ε) = 1 + (i/ħ) ε Jz

or

Rz(ε) |ψ> = |ψ> + (i/ħ) ε Jz |ψ>

Both of the above equations express the same physics.

Rearranging the prior equation yields:



Jz |ψ> = (ħ/iε) {Rz(ε) |ψ> – |ψ>}

Thus Jz |ψ> is a state that is proportional to the difference between two other states: Rz(ε)|ψ> and |ψ>.

Also in Chapter 23, we defined the x-momentum operator px in terms of the displacement operator
Dx(δ), which displaces the x-axis by +δ, thereby subtracting δ from all x-coordinate values.

Dx(δ) = 1 + (i/ħ) δ px

Dx(δ) |ψ> = |ψ> + (i/ħ) δ px |ψ>

Quantum operators act on quantum states. By contrast, algebraic operators act on functions. For
example, the operator d/dx can act on function f(x) to produce df(x)/dx, the x derivative of f.

We use both types of operators in quantum mechanics, often in the same equations. Sometimes the
same notation is used for both. In truth, the distinction is somewhat pedantic.

In this chapter only, we will for clarity underline quantum operators and use bold italics for algebraic
operators that also have quantum operator counterparts. Standard mathematical operators such as d/dx
will not be changed. For example:

Quantum vs. Algebraic

H |ψ> vs. H ψ(x)
px |ψ> vs. Px ψ(x)

One final general comment on operators: some quantum operators have the special property of being
Hermitian. Consider the complex conjugates of the components of a quantum operator:

Akj = <k|A|j>
(Akj)* = (<k|A|j>)*
(Akj)* = |k> Z <j|, for some Z
(Akj)* = <j|Z|k>
(Akj)* = Zjk

This says the jk-component of operator Z equals the complex conjugate of the kj-component of
operator A. Operator Z is called the Hermitian adjoint of operator A. In quantum mechanics, many
important operators have the special property that Z=A. Such operators are called Hermitian, or self-
adjoint.

Average Energy in Discrete Basis

Since measurement is a cornerstone of science, we now address the process of measuring the
properties of a quantum system. Specifically, we consider measuring the energy of an atom that has a
discrete set of basis states.



We have extensively discussed stationary states, states with definite energy. Imagine a situation in
which a large number of atoms are known to exist in the same stationary state. An example might be
hydrogen atoms at such a low temperature that kT is much less than the energy of the lowest excited
state. Such atoms would be extremely unlikely to have any energy other than E0, the ground state
energy of hydrogen. If we measure the energy of one hydrogen atom after another, we will presumably
find that each atom has energy E0, and therefore, their average energy is also E0.

Now consider a more interesting situation of a system in state |ψ> that is not a stationary state of
definite energy. An example would be hydrogen atoms at a very high temperature. We know that any
state can be represented by a linear combination of eigenstates, basis states of definite energy. Let Ej

be the energy of eigenstate |j>, for j=0, 1, .... We then have:

|ψ> = Σj Cj |j>

If we measure the energy of each of a large number of atoms in state |ψ>, we will sometimes measure
E0, sometimes E1, etc. If an atom is measured to have energy Ej, this means that atom was in state |j>
when it was measured. In fact, the probability of measuring Ej is identically equal to the probability
of the atom being in state |j>, which is:

Prob(Ej) = Prob(j) = |Cj|2

Note that if the states |j> form a complete basis set, as every proper basis set should, we will never
measure an energy that is not one of the eigenvalues Ej.  

I pause here to mention a very important issue that Feynman chooses not to address in this course.
This issue is called the “measurement problem” or “wave function collapse.” Quantum mechanics
says that a state like |ψ> is a superposition of basis states |j>, with amplitudes to be in each of many
different states simultaneously. If undisturbed, |ψ> is not in one basis state or another, but is in all
these states simultaneously. However, when state |ψ> suffers a substantial external interaction, such as
a measurement, |ψ> instantaneously “collapses” to one and only one eigenstate of that measurement. In
this case, the eigenstates of definite energy are the states |j>. This means that, when we measure the
energy of |ψ>, one Cj becomes 1 and all other Cj’s become zero, and all this occurs instantaneously
throughout all of space. No one has yet provided a detailed physical explanation for exactly how this
“magic” occurs. We will discuss this further in Chapter 34 of this eBook. Meanwhile, back to
Feynman’s lecture.

After making M energy measurements, we obtain the average energy of state |ψ> by simply summing
the measured energy values and dividing by M. Alternatively, for each value of j, we can count how
many times we measure the value Ej, call that number Mj, and then obtain the average energy as
follows:

<Eψ> = { Σj Mj Ej } / Σj Mj

<Eψ> = { Σj Mj Ej } / M
<Eψ> = Σj (Mj/M) Ej



For very large M, Mj/M approaches Prob(j); this is what mathematicians mean by “probability.” In
any real experiment, M is a finite number and there will be statistical fluctuations: the Mj/M’s will
differ somewhat from the Prob(j)’s. Yet, in all normal circumstances, the mean value — the
expectation value — of Mj/M = Prob(j).

A general principle of statistics pertains to measurements of any physical quantity. If the
measurements are independent samplings of a uniform population (such as atoms in the same state),
σMj, the root-mean-square (rms) deviation of Mj, equals:

σMj = √{ M p(1–p)}, with p = Prob(j)

When there are many probable outcomes and the probability of any particular outcome is small
(p<<1), the above simplifies to

σMj = √{ Mj }

This is a very important result, well worth remembering. When an experiment detects 100 Higgs
bosons, or 100 photons from a galaxy 13 billion light-years away, the rms statistical uncertainty is
√100 = 10.

In V3p20-4, Feynman says with delight: “Now watch this trickery.”

For our quantum state |ψ>:

<Eψ> = Σj (Mj/M) Ej = Σj |Cj|2 Ej

<Eψ> = Σj Ej Cj* Cj

<Eψ> = Σj Ej <ψ|j> <j|ψ>
<Eψ> = <ψ| { Σj Ej |j> <j|ψ> }

or

<Eψ> = <ψ|ø>
with |ø> = Σj Ej |j> <j|ψ>

Since |j> is an eigenstate, we know:

H |j> = Ej |j>

Inserting this into the prior equation yields:

<Eψ> = <ψ| { Σj H |j> <j|ψ> }
<Eψ> = <ψ| { H |ψ> }
<Eψ> = <ψ| H |ψ>

Remarkably, the eigenstates of definite energy have been eliminated from our equation. We don’t need
to know a system’s eigenstates, or their energy levels, in order to measure that system’s average



energy. We only need to know the Hamiltonian components Hjk in terms of any basis states. We can
then write:

<Eψ> = Σjk <ψ|j> <j|H|k> <k|ψ>
<Eψ> = Σjk <ψ|j> Hjk <k|ψ>

Feynman says we can check the last equation for the special case of basis states that are stationary
states, where the Hamiltonian is diagonal and H|k>=Ek|k>.

<Eψ> = Σjk <ψ|j> δjk Ek|k> <k|ψ>
<Eψ> = Σj <ψ|j> Ej <j|ψ>

This confirms the earlier equation.

This is a general result that is true for any quantum operator. We can, for example, replace the energy
operator H with the z-component of angular momentum operator Lz.

<Lzψ> = <ψ| Lz |ψ>

Feynman says one could prove this by identifying a situation in which a system’s energy is
proportional to the z-component of its angular momentum. Since the prior equation holds for any form
of energy in any situation, it also holds for the z-component of its angular momentum.

The general statement is: for any physically observable quantity A associated with a quantum
operator A, the average value of A for any state |ψ> is:

<Aψ> = <ψ| A |ψ>

Average Energy in Continuous Basis

Next we consider measuring the energy of an atom represented in a continuous set of basis states.
Specifically, we will consider a one-dimensional coordinate basis |x> and a one-dimensional state |
ψ>, where by definition <x|ψ> = ψ(x).

The prior summation equation employing discrete basis states was:

<Eψ> = Σjk <ψ|j> <j|H|k> <k|ψ>

We now replace the double summation with a double integral, integrating over two continuous bases:

<Eψ> = ∫∫ <ψ|x> <x|H|X> <X|ψ> dx dX

Whereas a single integral is a sum along a line, a double integral is a sum across a 2D-plane — the x-
X plane in this case. One evaluates double integrals in two steps: (1) integrate over one variable; then
(2) integrate over the other variable, both in the normal manner. It makes no difference which variable



is integrated first.

Here we assume |ψ> and ψ(x) are normalized to yield a total probability of 1.

We can rewrite the prior equation as:

<Eψ> = ∫ <ψ|x> <x|ø> dx

with

<x|ø> = ∫ <x|H|X> <X|ψ> dX

Note that:

<ψ|x> = <x|ψ>* = [ψ(x)]* = ψ*(x)

Also note that <x|H|X> is the continuous equivalent of the discrete <j|H|k>.

From Chapter 22, we use Dirac’s delta function to collapse the integral over X. We also use
Schrödinger’s equation from that chapter to obtain: 

<x|ø> = ø(x) = { –ħ2/2m d2/dx2 + V(x) } ψ(x)

Define the Hamiltonian algebraic operator H as:

H = –ħ2/2m d2/dx2 + V(x)
<Eψ> = ∫ ψ*(x) H ψ(x) dx

Feynman notes that in the upper line, potential energy V is effectively a number, and all numbers can
be considered multiplicative operators: V(x){ψ(x)} = V(x) × ψ(x).

The Hamiltonian operators H and H are both energy operators, but with a difference. The former is
an algebraic operator that acts on a function to produce a new function: Hψ(x)=ø(x). The latter is a
quantum operator that acts on a state to produce a new state: H|ψ>=|ø>. The former assumes a
coordinate representation that, which can be any representation we choose. The latter makes no
reference to any particular representation, but to solve any problem, some representation must be
eventually chosen. In my view, the difference is modest.

Feynman notes that if ψ(x) is not normalized, the prior equation should be written:

<Eψ> = ∫ ψ*(x) H ψ(x) dx / ∫ ψ*(x) ψ(x) dx

Feynman comments on the similarity between two forms of the same relationship.

<Eψ> = <ψ| H |ψ>

<Eψ> = ∫ ψ*(x) H ψ(x) dx



He says these two forms arise in coordinate representations involving local operators. He says an
operator is local if A, its quantum operator form, and A, its algebraic operator form, are related by:

A ψ(x) = ∫ <x|A|X> <X|ψ> dX

Some operators are local and some are not.

The one-dimensional integrals are easily extended to three dimensions as follows:

<Eψ> = ∫∫∫ ψ*(r) H ψ(r) dx dy dz

H = –ħ2/2m {d2/dx2 +d2/dy2 +d2/dz2} + V(r)

provided ∫∫∫ ψ*(r) ψ(r) dx dy dz = 1

To extend these equations to multi-particle systems: replace vector r by a set of vectors, one for the
position of each particle; and replace the three second-order partial derivatives by the sum of three
such derivatives for each particle’s coordinates.

The first of the above three equations enables us to calculate the energy of any system, provided we
know its wave function. But, remarkably this equation can be useful even if we don’t know the wave
function.

In V3p20-7, Feynman gives an interesting real-life example. No one can solve the Schrödinger
equation for the ground state of helium, because there are simply too many complex terms. We can
however make some educated guesses as to what the wave function might be.

We can use a trial wave function |ψ> and the above equation to compute <Eψ>. Unless we
miraculously guess the true wave function, our trial <Eψ> will be higher than the true ground state
energy. (To understand why, think of |ψ> as a linear combination of states |j> of definite energy,
including the true ground state |0>. If |ψ> is not exactly equal to |0>, our trial <Eψ> will contain
contributions from higher energy states that are greater than E0.)

Next, we can try a second possible solution |ø>. Whichever solution gives a lower energy is probably
closer to the real solution. We can repeat this process, hoping to get ever closer to the true ground
state |0>.

Clever theoretical physicists (many are very clever indeed) use trial solutions with variable
parameters, say p and q, thereby obtaining <Eψ> as a function of those parameters: <Eψ(p,q)>. They
explore whole classes of solutions at once, and find the values of p and q that yield the lowest energy.

What we just described is actually how theorists obtained an approximate solution for the wave
function of the ground state of helium.

Position Operators



Having addressed the average energy of any state |ψ>, let us now calculate its average position. For
simplicity, we will consider only one dimension, and seek the average x-coordinate of state |ψ>.

Imagine that we have a large collection of atoms in state |ψ>, and that we measure the x-coordinate of
one atom after another. For a very large number of measurements, the average x-coordinate is
expected to be:

<xψ> = ∫ x Prob(x) dx
<xψ> = ∫ <ψ|x> x <x|ψ> dx
<xψ> = ∫ ψ*(x) x ψ(x) dx

This equation has the same form as the average energy equation, but with H replaced by x. If we
wish, we can think of x as an algebraic multiplicative operator: x{ψ(x)} = x times ψ(x). We can
imagine some state |α>, such that:

<xψ> = <ψ|α> = ∫ <ψ|x> x <x|ψ> dx

We can expand any <ψ|α> in x-coordinate representation as:

<ψ|α> = ∫ <ψ|x> <x|α> dx

Comparing the last two equations, we find:

x <x|ψ> = <x|α>
x ψ(x) = α(x)

Feynman cautions that the first line above does not imply: x |ψ> = |α>. Cancelling <x| on both sides is
equivalent to erroneously cancelling vector a on both sides of: a•b=a•c.

In v3p20-9, Feynman says: “We have not bothered to try to get the x-representation of the matrix of
[operator x ]. If you are ambitious you can try to show that”:

<x|x|X> = x δ(x−X)

Deriving this relationship is a modest challenge. You can check your answer at the end of this chapter.

If we set |X> = |x>, we obtain “the amusing result that”:

x |x= x |x

This odd equation says the quantum operator x acting on |x>, a state of definite position x, has the
effect of multiplying that state by x.

To obtain the average value of x2, use the x operator twice: x x.

<x2
ψ> = ∫ <ψ|x> x x <x|ψ> dx



Average Momentum

Expanding on this approach, we can calculate the average momentum of any state |ψ>. As before,

<pψ> = ∫ p Prob(p) dp

Normally, probability equals the magnitude of an amplitude squared, as in Prob(x)=ψ*(x)ψ(x).
However, as discussed in Chapter 22, Feynman chooses a different normalization for momentum
states: Prob(p)=ψ*(p)ψ(p)/h. For clarity, I will write 2πħ instead of h so you won’t have to carefully
examine each “h” to see if it has a tiny bar — all h’s will be barred.

<pψ> = ∫ <ψ|p> p <p|ψ> dp/2πħ
<pψ> = ∫ ψ*(p) p ψ(p) dp/2πħ

As above, we can define a new state |β> and a new operator p, as follows:

|β> = p |ψ>

This equation says: quantum operator p acting on state |ψ> produces state |β>. Using |β>, we rewrite
the prior equations as:

<pψ> = ∫ <ψ|p> <p|β> dp/2πħ
<pψ> = <ψ|β>

With the same logic used for the position operator, we can prove:

<p|p|P> = p δ(p–P)

p |p> = p |p>

In V320-10, Feynman begins developing a key point. The above equations describe the meaning of the
momentum operators p and p in terms of their action on momentum states |p> and momentum functions
ψ(p) in a momentum representation. Can we also describe their action in a coordinate
representation — how do they act on position states |x> and position functions ψ(x)?

Let’s go back to:

<pψ> = <ψ|β>

and expand this in coordinate representation:

<pψ> = ∫ <ψ|x> <x|β> dx

Fine, but the above equation requires <x|β>=β(x) in coordinate representation, and all we know so far
is <p|β>=β(p) in momentum representation. Recall from Chapter 22, the following relationship
between a state |ψ> in momentum representation and the same state in coordinate representation.



<p|ψ> = ∫ exp{–ipx/ħ} <x|ψ> dx

The above integral is over all values of x. With this equation, we write two expressions for <p|β>:

<p|β> = ∫ exp{–ipx/ħ} <x|β> dx

<p|β> = p <p|ψ> = p ∫ exp{–ipx/ħ} <x|ψ> dx
<p|β> = ∫ p exp{–ipx/ħ} <x|ψ> dx

Feynman obtains the last line by moving p inside the integral, saying: “Since the integral is over x we
can put p inside the integral.” I think this is incorrect…(waiting for lightning to strike)… This p is not
an operator, but the momentum variable that is in general a function of x. We are most interested in
bound states, particles bound by a potential V. Since p2/2m=E–V, and V is a function of x, p is also a
function of x. Perhaps Feynman intended ∫dx as a “partial” integral, akin to a partial derivative in
which only x varies; however, “partial” iintegration is beyond ordinary calculus, and merits a
thorough explanation.  Nonetheless, we continue.

Feynman says that, by comparing the first and last of these three equations, one might be tempted to
say:

<x|β> = p <x|ψ> = p ψ(x)

Feynman says: “No. No!”

Our objective is to find β(x), but p ψ(x) is a function of both p and x. (I wonder if Feynman was so
emphatic because the whole class got it wrong.)

In any case, we must find a way to separate p from ψ(x). The answer is using integration by parts
and recognizing that:

(iħ) ∂ [exp{–ipx/ħ}] /∂x = p exp{–ipx/ħ}

This makes our integral:

<p|β> = ∫ (iħ) ∂[exp{–ipx/ħ}]/∂x ψ(x) dx

Recall the clever technique known as integration by parts:

uv = ∫d(uv) = ∫udv + ∫vdu
∫udv = uv – ∫vdu

Here we set u = iħ ψ(x), and dv = d[exp{–ipx/ħ}]. Integration by parts yields:

<p|β> = iħ ψ(x) exp{–ipx/ħ} 
              – iħ ∫ exp{–ipx/ħ} (∂ψ/∂x) dx

Here we use the partial derivative because ψ is a function of multiple variables and we wish to vary



only x. The above must be evaluated at the integration limits: x=–∞ and x=+∞. For any bound
particle, ψ(x=±∞) must be zero, which eliminates the upper line, leaving us with:

<p|β> = – iħ ∫ exp{–ipx/ħ} (∂ψ/∂x) dx

Comparing this with the earlier equation yields:

<x|β> = β(x) = – iħ ∂ψ/∂x

Going back to our equation for the average momentum in coordinate representation, we can now
complete the task.

<pψ> = ∫ <ψ|x> <x|β> dx
<pψ> = ∫ <ψ|x> (ħ/i) (∂ψ/∂x) dx

Operator Correspondence

We now arrive at the key point. In V3p20-11, Feynman emphasizes the following pattern. We compare
below amplitude equations with coordinate representation integrals for the average values of energy,
position, and momentum.

<Eψ> = <ψ|ø>, with |ø> = H |ψ>
<Eψ> = ∫ ψ*(x) ø(x) dx, with ø(x) = H ψ(x)

<xψ> = <ψ|α>, with |α> = x |ψ>
<xψ> = ∫ ψ*(x) α(x) dx, with α(x) = x ψ(x)

<pψ> = <ψ|β>, with |β> = H |ψ>
<pψ> = ∫ ψ*(x) β(x) dx, with β(x) = Px ψ(x)
Px = (h/i) ∂/∂x

This highlights the connection between the quantum operators and the corresponding algebraic
operators, shown below on the left and right, respectively.

H |ψ> <=> H ψ(x); H=–(ħ2/2m)∂2/∂x2 +V(x)
x |ψ> <=> x ψ(x) = x ψ(x)
px |ψ> <=> Px ψ(x); Px = (ħ/i) ∂/∂x

The extension to three dimensions is evident. The other momentum operators are:

py <=> Py = (ħ/i) ∂/∂y
pz <=> Pz = (ħ/i) ∂/∂z

The three component momentum operators can be combined to form a momentum vector-operator:



p <=> P = (ħ/i) (∂/∂x, ∂/∂y, ∂/∂z)

Because both types of operators involve the same physics, most physics books and papers use the
same symbols for the quantum operators and the corresponding algebraic operators. We also use the
same symbols everywhere in this course except in this chapter where we are focusing on their
relationship.

Let’s now see how these operators are used.

Note the result of using momentum operators twice.

Px Px = {(ħ/i) ∂/∂x} {(ħ/i) ∂/∂x} = –ħ2 ∂2/∂x2

P • P = –ħ2 {∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2}
H = (1/2m) P•P + V(r)

Feynman says this equation should look familiar “if you haven’t forgotten your classical physics”: it
says total energy = kinetic energy (p•p/2m) plus potential energy.

In V3p20-13, Feynman says: “This result has impressed people so much that they try to teach students
all about classical physics before quantum mechanics. (We think differently!) But such parallels are
often misleading. For one thing, when you have operators, the order of various factors is important;
but that is not true for the factors in a classical equation.”

In Chapter 23, we defined the momentum operator px in terms of the displacement operator Dx. Recall
that for an infinitesimal displacement dx (shifting the x-axis toward +x by the amount dx, or
equivalently subtracting dx from each x-coordinate value), the action of the displacement operator on
state |ψ> is:

Dx(dx) |ψ> = exp{ikx dx} |ψ> = (1 +ikx dx) |ψ>
px = ħkx

Dx(dx) |ψ> = (1 + i dx px/ħ) |ψ>

∂ψ/∂x = {ψ(x+dx) – ψ(x)} / dx
∂ψ/∂x = {Dx(–dx) |ψ> – |ψ>} / dx
∂ψ/∂x = – i (px/ħ) |ψ>
px = (ħ/i) ∂/∂x

This matches what we derived earlier in this chapter. Note we must use Dx(–dx) to obtain the value of
ψ at x+dx, due to the definition of Dx.

Now imagine a collection of particles numbered 1, 2, …, N. In one dimension, the wave function is a
function of each particle’s x-coordinate: ψ(x1, x2, …xN). If we now add δ to each x-coordinate, the
wave function becomes:

ψ(x1+δ, x2+δ, …xN+δ) – ψ(x1, x2, …xN)
  = δ { ∂ψ/∂x1 + ∂ψ/∂x2 + … + ∂ψ/∂xN }



δ (i/ħ) psum ψ
  = δ (i/ħ) { p1 + p2 + … + pN } ψ

psum = p1 + p2 + … + pN

Here psum is the algebraic momentum operator for the entire collection of particles and pj is the
algebraic momentum operator for the jth particle. We see this result matches the normal rule that the
momentum of a total system is the vectorial sum of the momenta of each of its components.

Angular Momentum Operators

Next let’s examine angular momentum operators. In Chapter 23, we defined the angular momentum
operator Jz in terms of the rotation operator Rz. We will consider here only orbital angular momentum,
and exclude any spin angular momenta. For an infinitesimal rotation by angle ε (rotating the
coordinate system about the z-axis by angle ε, or equivalently rotating objects or states by angle –ε),
the action of the rotation operator on state |ψ> is:

Rz(ε) |ψ> = (1 + i Jz ε/ħ) |ψ>

Figure 31-1 illustrates the relationships between polar coordinates (r,θ,ø) and rectilinear coordinates
(x,y,z) of a point Q, as given by:

x = r sinθ cosø
y = r sinθ sinø
z = r cosθ

Figure 31-1 Polar & Rectilinear Coordinates

Positive angular momentum in the z-direction, Jz>0, corresponds to a steadily increasing azimuthal
angle ø. To see how the rectilinear coordinates change with this rotation, we take their partial



derivatives with respect to ø.

∂x/∂ø = – r sinθ sinø = –y
∂y/∂ø = + r sinθ cosθ = +x
∂z/∂ø = 0

From these derivatives, we can calculate the change in |ψ> as ø increases. To reduce clutter in the
next dozen lines, I will use ψ as an abbreviation of |ψ>.

dψ = (∂ψ/∂x)(∂x/∂ø)dø + (∂ψ/∂y)(∂y/∂ø)dø
dψ = {(∂ψ/∂x)(–y) + (∂ψ/∂y)(+x)}dø
dψ = {–y ∂/∂x + x ∂/∂y} ψ dø

We get another equation for the change in ψ from the rotation operator Rz(dø):

Rz(dø) ψ = (1 + Jz dø i/ħ) ψ
dψ = Rz(dø)ψ – ψ = Jz dø (i/ħ) ψ

Matching the two equation for dψ yields:

Jz dø (i/ħ) ψ = {–y ∂/∂x + x ∂/∂y} ψ dø
Jz = (ħ/i) {–y ∂/∂x + x ∂/∂y}

This can also be written:

Jz = x Py –y Px

The result matches the classical equations for angular momentum: L=r×p and Lz=xpy–ypx.

While it is comforting that many quantum operators match classical equations, some do not. Indeed, if
all quantum operators matched classical equations, quantum mechanics would not reveal any new
physics — what fun would that be?

Thankfully there are differences. Here is one. In classical physics, x and px commute, as shown by:

x px – px x =  0, classically

But the corresponding quantum operators do not commute, as we see when the equivalent combination
operates on ψ(x).

{x Px – Px x} ψ(x) = (ħ/i){x ∂/∂x – ∂/∂x x} ψ(x)
{x Px – Px x} ψ(x) = (ħ/i){x ∂ψ/∂x – ∂(xψ)/∂x}
{x Px – Px x} ψ(x) = (ħ/i){x∂ψ/∂x –ψ –x∂ψ/∂x}
{x Px – Px x} ψ(x) = –(ħ/i) ψ(x)

In the second line above, ∂/∂x operates on everything to its right, which is the product xψ.



While one can do the math on the operators themselves, those still developing their skills will find it
easier to analyze the action of these operator combinations on a state or function, such as |ψ> or ψ(x).

The last equation above means the difference of the operators taken in opposite sequences is a non-
zero constant, given by:

x Px – Px x = iħ

This demonstrates again that Planck’s constant sets the scale at which quantum mechanics diverges
from classical physics. On scales much larger than ħ, these operators virtually commute and quantum
mechanics and classical physics both work. On scales where energy, momentum, time intervals, and
distances are comparable to ħ, only quantum mechanics correctly describes nature.

The operator combination just discussed has a special name: the commutator. For any two algebraic
operators or any two quantum operators A and B, their commutator is defined as:

[A,B] = A B – B A

If [A,B] = 0, the operators are said to commute; if [A,B] is non-zero, they do not commute. This is
called the commutation rule. Commutators are a staple of quantum mechanics, and also other
advanced fields of physics.

One can easily verify that y and px commute.

[y,px] ψ = (ħ/i) {y∂ψ/∂x –∂(yψ)/∂x} = 0

In V3p20-15, Feynman suggests you hone your skills proving:

[Jx,Jy] = iħ Jz

You can check your answer at the end of this chapter.

Feynman points out that non-commuting operators are not unique to quantum mechanics. Matrix
products do not commute. Rotation operators do not commute: he suggests you try rotating a book 90º
about the x axis and then 90º about the y-axis, and compare the result with the same rotations in the
opposite order.

Time Dependent Averages

The final topic on operators in this chapter concerns changes of average values over time. We found
earlier that, for any operator A, its average value was determined by:

<Aψ> = <ψ|A|ψ>

In what ways can <Aψ> depend on time? Clearly, a time dependence can only come from either or
both quantities on the right side of this equation: ψ and A. The operator A could, for example, involve



a time-varying potential, such as V(x,t). The state |ψ> could also vary with time; for example, it could
be the wave function of a moving particle.

Let’s examine the possibilities by taking the time derivative of the above equation.

d<Aψ>/dt = (d<ψ|/dt) |A|ψ>
     + <ψ| (dA/dt) |ψ>
     + <ψ|A| (d|ψ>/dt)

We can derive expressions for two pieces of this equation. Firstly, the Hamiltonian determines how |
ψ> changes:

H |ψ> = iħ d|ψ>/dt

We get a second piece by taking the complex conjugate of the last equation. Recall that i*=–i, <ψ|=|
ψ>*, and H=H*.

<ψ| H = –iħ d<ψ|/dt

Putting these into the time derivative equation yields:

d<Aψ>/dt = (<ψ| H |A|ψ> (–1/iħ)
    + <ψ| (dA/dt) |ψ>
    + <ψ|A| H |ψ> (+1/iħ)

d<Aψ>/dt = (i/ħ) {<ψ| H A |ψ> – <ψ| A H |ψ>}
    + <ψ|(dA/dt)|ψ>

d<Aψ>/dt = <ψ| (i/ħ)[H,A] + dA/dt |ψ>

We can define a new operator α, such that:

d<Aψ>/dt = <ψ|α|ψ>

We have shown that:

α = (i/ħ)[H,A] + dA/dt

If operator A has no time-dependence, our result reduces to:

α = (i/ħ)[H,A]

Consider an example. Let A be the position operator x, with H given by:

H = (–ħ2/2m) d2/dx2 + V(x)

α = d<xψ>/dt



α |ψ> = (i/ħ) {Hx – xH} |ψ>

The potential V(x) cancels in the commutator because x and V are both multiplicative operators: xV|
ψ>=Vx|ψ>. We need deal only with the derivative term. (Again, in the next few lines we abbreviate |
ψ> with ψ.)

α ψ = (i/ħ) (–ħ2/2m) { d2(xψ)/dx2 – xd2ψ/dx2 }
α ψ = (ħ/2im) {d/dx (x dψ/dx +ψ) –xd2ψ/dx2}
   =(ħ/2im){dψ/dx +xd2ψ/dx2 +dψ/dx –xd2ψ/dx2}
α ψ = (ħ/2im) {2dψ/dx}
α ψ = (ħ/im) {(i/ħ) px} ψ
α = d<xψ>/dt = px / m

The last equation again matches classical physics: dx/dt=px/m=vx.

Another example: let A be the position operator px.

α = d<px>/dt
α |ψ> = (i/ħ) {Hpx – pxH} |ψ>
α |ψ> = {H d/dx – d/dx H} |ψ>

The derivatives d/dx and d2/dx2 commute, leaving only V(x) in the commutator.

α |ψ> = {V d/dx – d/dx V} |ψ>
α |ψ> = V d|ψ>/dx – V d|ψ>/dx – |ψ> dV/dx
α = d<px>/dt = –dV/dx

This also matches classical physics: dp/dt=ma=F=–dV/dx.

Feynman stresses that we have examined average values produced by quantum and algebraic
operators acting on large numbers of entities. These equations tell us nothing about what happens at
the individual particle level.

The key distinguishing feature of quantum mechanics that we have identified is that xp–px is not zero
as in classical physics, but rather it equals some small number iħ. Small yes, but as Feynman says:
“the whole wondrous complications of interference, waves, and all, result from the little fact that”
this small number is not zero.

In V3p20-17, Feynman ends this lecture saying:

“The history of this idea is also interesting. Within a period of a few months in 1926, Heisenberg
and Schrödinger independently found correct laws to describe atomic mechanics. Schrödinger
invented his wave function ψ(x) and found his equation. Heisenberg, on the other hand, found
that nature could be described by classical equations, except that xp−px should be equal to iħ,
which he could make happen by defining them in terms of special kinds of matrices. In our
language he was using the energy-representation, with its matrices. Both Heisenberg’s matrix



algebra and Schrödinger’s differential equation explained the hydrogen atom. A few months later
Schrödinger was able to show that the two theories were equivalent—as we have seen here. But
the two different mathematical forms of quantum mechanics were discovered independently.”

Problem: Position Operator Matrix

Feynman suggested the challenge of deriving the matrix elements of the position operator.

Recall the definition of the Dirac delta function from Chapter 22:

<x|ψ> = ∫ δ(x–X) <X|ψ> dX

Earlier in this chapter, we found:

<xψ> = ∫ <ψ|x> x <x|ψ> dx

Now replace <x|ψ> using the Dirac delta function.

<xψ> = ∫ <ψ|x> x {∫ δ(x–X) <X|ψ> dX} dx

Since the delta function is zero everywhere except x=X, we can rearrange the double integral to
yield:

<xψ> = ∫∫ <ψ|x> x δ(x–X) <X|ψ> dX dx

Now compare this with the equation derived earlier for the matrix elements of the quantum
Hamiltonian operator H in a continuous basis:

<Eψ> = ∫∫ <ψ|x> <x|H|X> <X|ψ> dx dX

By analogy, the matrix elements of the quantum position operator x are given by:

<xψ> = ∫∫ <ψ|x> <x|x|X> <X|ψ> dx dX

This means:

<x|x|X> = x δ(x–X)

QED.

Problem: Jx, Jy Commutator

Feynman suggested the challenge of calculating [Jx,Jy]. Here is the answer.

[Jx,Jy] ψ = Jx Jy ψ – Jy Jx ψ



Jx Jy ψ = (ħ/i)2 (y∂/∂z–z∂/∂y) (z∂/∂x–x∂/∂z) ψ
Jx Jy ψ = (ħ/i)2 (y∂/∂z–z∂/∂y) (z∂ψ/∂x–x∂ψ/∂z)
Jx Jy ψ = (ħ/i)2 (y∂ψ/∂x +yz∂2ψ/∂z∂x
    –yx∂2ψ/∂z2 –z2∂2ψ/∂y∂x +zx∂2ψ/∂y∂z)

Jy Jx ψ = (ħ/i)2 (z∂/∂x–x∂/∂z) (y∂/∂z–z∂/∂y) ψ
Jy Jx ψ = (ħ/i)2 (z∂/∂x–x∂/∂z) (y∂ψ/∂z–z∂ψ/∂y)
Jy Jx ψ = (ħ/i)2 (zy∂2ψ/∂x∂z –z2∂2ψ/∂x∂y
   –xy∂2ψ/∂z2 +x∂ψ/∂y +xz∂2ψ/∂z∂y)

Partial derivatives commute with one another: ∂2ψ/∂z∂y=∂2ψ/∂y∂z, etc. Also the position operators
commute because they are simply multipliers. This means all the above terms with second order
partial derivatives cancel when we subtract JyJxψ from JyJxψ — that’s four cancelling pairs. The only
parts that do not commute have the form [x,∂/∂x]ψ, where one partial derivative is eliminated. After
all the cancellations, only two first order partial derivative terms remain.

[Jx,Jy] ψ = (ħ/i)2 (y ∂ψ/∂x – x ∂ψ/∂y) ψ
[Jx,Jy] ψ = (ħ/i)2 (–Jz)(i/h) ψ
[Jx,Jy] = iħ Jz

QED.

Chapter 31 Review: Key Ideas

• This chapter illuminates different conventions used in the physics literature. Quantum operators
act on quantum states producing new states. By contrast, algebraic operators act on functions
producing new functions. The distinction is somewhat pedantic. In this chapter only, we underline for
clarity quantum operators and use bold italics for algebraic operators. Standard mathematical
operators such as d/dx are not changed. For example:

Quantum vs. Algebraic

H |ψ> <=> H ψ(x); H=–(ħ2/2m)∂2/∂x2 +V(x)
x |ψ> <=> x ψ(x) = x ψ(x)
px |ψ> <=> Px ψ(x); Px = (ħ/i) ∂/∂x

Operators Py and Pz are similarly defined, and with Px form a vector-operator that condenses the
Hamiltonian equation to:

H = (1/2m) P•P + V(r)

For any operator A, its Hermitian adjoint Z is defined by:

Zjk = (Akj)*



If Z = A, A is called Hermitian or self-adjoint.

• If M independent measurements are made on quantum entities in a uniform population (such as
atoms in the same state), each measured value must equal one of the eigenvalues of that population.
Assume a quantum system with discrete eigenstates |j>, j=0, 1, … and eigenvalues Ej. Let the number
of measurements with value Ej be Mj, with M=ΣjMj. The average measured value is:

<Eψ> = Σj (Mj/M) Ej

For large M, each Mj/M approaches the expectation value Prob(j), the probability of |j>, and σMj, the
root-mean-square deviation of Mj, equals:

σMj = √{ M p(1–p)}, with p=Prob(j)

If the probability of any particular outcome is small (p<<1), this becomes:

σMj = √{ Mj }

For any physically observable quantity A associated with a quantum operator A, the average value of
A for any state |ψ> can be expressed independently of basis states:

<Aψ> = <ψ| A |ψ>

For a system with continuous, normalized states, this becomes:

<Aψ> = ∫∫ ψ*(x) <x|A|X> ψ(X) dx dX

• Commutators have important consequences in quantum mechanics. For operators A and B, their
commutator is:

[A,B] = A B – B A

If [A,B] = 0, the operators commute, otherwise they do not commute. Examples are:

x Px – Px x = iħ
x Py – Py x = 0
[Jx,Jy] = iħ Jz

This demonstrates that ħ sets the scale at which quantum mechanics diverges from classical physics.
On scales >> ħ, these operators virtually commute and quantum mechanics and classical physics both
work. On scales with energy, momentum, time intervals, and distances comparable to ħ, only quantum
mechanics correctly describes nature.

• The time evolution of the average <Aψ> of a large sample of measurements corresponding to
operator A is:



d<Aψ>/dt = <ψ| (i/ħ)[H,A] + dA/dt |ψ>

Examples and their corresponding classical analogs are:

d<xψ>/dt = px/m <=> dx/dt=p/m=v
d<px>/dt = –dV/dx <=> dp/dt=ma=–dV/dx=F



Chapter 32

Probability & 
Wave Functions

Feynman’s last lecture contains profound insights into quantum mechanics in general, and an extensive
exploration of specific low-temperature phenomena. I have rearranged this material, putting the
general insights in this chapter and the low-temperature physics in the next chapter.

The Continuity of Probability

A fundamental principle of quantum mechanics is that the probability, Prob(r,t), of finding a particle
at position r at time t equals |ψ(r,t)|2, the square of the magnitude of its wave function at r and t. The
total probability of finding a particle anywhere must always equal 1.

In V3p21-3, Feynman emphasizes that total probability is not only conserved globally, but more
importantly, it is also conserved locally. Let’s understand what this means by first considering a
simpler case: the global and local conservation of electric charge.

Global charge conservation means the net amount of electric charge everywhere is the same at every
time t. By "net amount" we mean the total of all positive charges minus the total of all negative
charges. Local charge conservation adds an additional requirement: if net charge decreases in one
region, charge must flow out through that region’s boundaries into neighboring regions. This means
electric charge cannot disappear here and reappear at some distant location; it must move
continuously from one region to another, being conserved at every step along the way. Local
conservation tells us something important about how charge is conserved globally, and inspires us to
understand electric currents of flowing charge.

In this section, Feynman suggests an analogy between conservation of charge and conservation of
probability. Global probability conservation means the integral of Prob(r,t) over all r equals 1 at
every time t. Feynman suggests local probability conservation means that, if total probability
decreases in one region, probability must “flow” out through that region’s boundaries into
neighboring regions.

Can we find a probability “current” associated with this “flow”? Feynman says: “This current would
be a vector which could be interpreted this way—the x-component would be the net probability per
second and per unit area that a particle passes in the x-direction across a plane parallel to the yz-
plane. Passage toward +x is considered a positive flow, and passage in the opposite direction, a
negative flow.”



We begin with the equation for probability, and take its partial derivative with respect to time.

Prob(r,t) = ψ*(r,t) ψ(r,t)
∂(Prob)/∂t = ψ* ∂ψ/∂t + ψ ∂ψ*/∂t

We next use the Hamiltonian to find ∂ψ/∂t.

iħ ∂ψ/∂t = H ψ
∂ψ/∂t = (–i/ħ) H ψ
∂ψ*/∂t = (+i/ħ) H* ψ*
∂(Prob)/∂t = (–i/ħ) ψ*Hψ + (+i/ħ) ψH*ψ*
iħ ∂(Prob)/∂t = ψ*Hψ – ψH*ψ*

We now use the normal Hamiltonian, in operator form.

H = (1/2m) P•P + V(x)

iħ ∂(Prob)/∂t = ψ*Vψ – ψV*ψ*
     +(1/2m) {ψ* P•P ψ – ψ P•P ψ*}

The two potential terms in the upper line cancel. For the lower line, Feynman provides yet another
clever trick. Consider the following, shown in one-dimension to reduce clutter, and recall that Px=
(ħ/i)∂/∂x:

∂/∂x {ψ* Px ψ} = ∂/∂x {ψ* (ħ/i) ∂ψ/∂x}   
   = (ħ/i) ψ* ∂2ψ/∂x2 + (ħ/i) ∂ψ*/∂x ∂ψ/∂x

∂/∂x {ψ* Px ψ}* = ∂/∂x {ψ (–ħ/i) ∂ψ*/∂x}
   = –(ħ/i) ψ ∂2ψ*/∂x2 – (ħ/i) ∂ψ/∂x ∂ψ*/∂x

Now add the last two equations.

∂/∂x {(ψ* Px ψ) + (ψ* Px ψ)*}
   = (ħ/i) ψ* ∂2ψ/∂x2 – (ħ/i) ψ ∂2ψ*/∂x2

Restoring y- and z-derivatives is straightforward:

(i/ħ) P• {(ψ*P ψ) + (ψ*P ψ)*}
   = (ħ/i) (i/ħ)2 {ψ* P•P ψ – ψ P•P ψ*}

P• {(ψ*P ψ) + (ψ*P ψ)*}
   = {ψ* P•P ψ – ψ P•P ψ*}

We can now rewrite our primary equation as:

iħ ∂(Prob)/∂t = +(1/2m) P• {(ψ*Pψ) + (ψ*Pψ)*}



∂(Prob)/∂t = –(i/ħ)P• {(ψ*Pψ) + (ψ*Pψ)*}/2m

Note: (i/ħ)P is the divergence vector-operator (∂/∂x, ∂/∂y, ∂/∂z), written as an inverted Δ. It is a real
(not a complex) quantity.

Feynman notes that the expression in { }’s is real, being the sum of a quantity and its complex
conjugate. This should not be surprising since it comes from the time derivative of ψ*ψ, a quantity
that is always real.

We can now define a probability current Ĵ, and simplify the probability derivative.

Ĵ = {(ψ* P ψ) + (ψ* P ψ)*}/2m
Ĵ = {(ψ* P ψ) + (ψ P* ψ*)}/2m
∂(Prob)/∂t = –(i/ħ) P•Ĵ

Or if you prefer:

∂(Prob)/∂t + (i/ħ) P•Ĵ = 0

This equation says the time derivative of probability plus the divergence of the probability current
equals zero, within whatever volume we choose. With Gauss’s divergence theorem, this means the
change in probability within any volume equals the probability current flowing into that volume
(inward flow is a negative divergence). This means probability can change only by moving
continuously from one place to another: probability is conserved locally.

Consider an example of a particle moving from region A to a neighboring region B. The probability in
region A decreases and its probability current has a positive divergence. At the same time, the
probability in region B increases and its probability current has a negative divergence. Hence
probability flows out of region A into region B, just as we would expect.

We will come back to the probability current in the next chapter.

The Meaning of Wave Functions

In V3p21-6, Feynman says:

“When Schrödinger first discovered his equation he discovered the conservation law [of
probability] as a consequence of his equation. But he imagined incorrectly that ψ*ψ was the
electric charge density of the electron and that Ĵ was the electric current density, so he thought
that the electrons interacted with the electromagnetic field through these charges and currents.
When he solved his equations for the hydrogen atom and calculated ψ, he wasn’t calculating the
probability of anything—there were no amplitudes [in quantum theory] at that time—the
interpretation was completely different. The atomic nucleus was stationary but there were
currents moving around; the charges ψ*ψ and currents Ĵ would generate electromagnetic fields
and the thing would radiate light. He soon found on doing a number of problems that it didn’t



work out quite right. It was at this point that [Max] Born made an essential contribution to our
ideas regarding quantum mechanics. It was Born who correctly (as far as we know) interpreted
the ψ of the Schrödinger equation in terms of a probability amplitude—that very difficult idea
that the square of the amplitude is not the charge density but is only the probability per unit
volume of finding an electron there, and that when you do find the electron some place the entire
charge is there. That whole idea is due to Born.

“The wave function ψ(r) for an electron in an atom does not, then, describe a smeared-out
electron with a smooth charge density. The electron [will be found] either here, or there, or
somewhere else, but wherever it is, it is a point charge. On the other hand, think of a situation in
which there are an enormous number of particles in exactly the same state, a very large number
of them with exactly the same wave function. Then what? One of them is here and one of them is
there, and the probability of finding any one of them at a given place is proportional to ψ*ψ. But
since there are so many particles, if I look in any volume dxdydz I will generally find a number
close to ψ*ψ dxdydz. So in a situation in which ψ is the wave function for each of an enormous
number of particles which are all in the same state, ψ*ψ can be interpreted as the density of
particles.

“So in the situation in which we can have very many particles in exactly the same state, …the
charge density and the electric current can be calculated directly from the wave functions and the
wave functions take on a physical meaning which extends into classical, macroscopic situations.

“Something similar can happen with neutral particles. When we have the wave function of a
single photon, it is the amplitude to find a photon somewhere. Although we haven’t ever written
it down there is an equation for the photon wave function analogous to the Schrödinger equation
for the electron. The photon equation is just the same as Maxwell’s equations for the
electromagnetic field, and the wave function is the same as the vector potential A. The wave
function turns out to be just the vector potential. … The moment that you have billions in the
same state (that is, in the same electromagnetic wave), you can measure the wave function,
which is the vector potential, directly.

“Now the trouble with the electron [a fermion] is that you cannot put more than one in the same
state. Therefore, it was long believed that the wave function of the Schrödinger equation would
never have a macroscopic representation analogous to the macroscopic representation of the
amplitude for photons… it is now realized that the phenomena of superconductivity presents us
with just this situation.”

We explore superconductivity in the next chapter.

Chapter 32 Review: Key Ideas

• The probability Prob(r,t) of finding a particle at position r at time t equals |ψ(r,t)|2, the square of the
magnitude of its wave function at r and t. The total probability of finding a particle anywhere must
always equal 1. This means probability is conserved globally. But more importantly, probability is



conserved locally as well. This is analogous to the conservation of electric charge.

We define the probability current Ĵ, and its relationship to the change of probability.

Ĵ = {(ψ* P ψ) + (ψ* P ψ)*}/2m

∂(Prob)/∂t + (i/ħ) P•Ĵ = 0

The time derivative of probability plus the divergence of probability current equals zero, integrated
over any volume we choose. With Gauss’s divergence theorem, this means the change in probability
within any volume equals the probability current flowing into that volume (inward flow is a negative
divergence). This means probability is conserved locally, within any selected volume.

• The wave function describes the amplitude of finding the electron at each location, at each moment
in time. But this does not mean an electron is smeared-out with a smooth charge density. If searched
for, an electron will be found at a specific point, with all of its charge at that point.

If an immense number of particles exist in exactly the same state, Feynman says: “ ψ*ψ can be
interpreted as the density of particles.”

• The wave function for photons is the same as the electromagnetic vector potential A, which we can
directly measure.

The remarkable thing about low-temperature phenomena, such as superconductivity, is that they allow
an immense number of fermions to combine into the same state, allowing direct measurement of their
wave function. The manner in which pairs of fermions can behave like bosons is the subject of the
next chapter.



Chapter 33

Superconductivity: 
QM Writ Large

The last of the Feynman Lectures on Physics begins with:

“This lecture is only for entertainment. I would like to give the lecture in a somewhat different
style—just to see how it works out. It’s not a part of the course—in the sense that it is not
supposed to be a last minute effort to teach you something new. But, rather, I imagine that I’m
giving a seminar … to a more advanced audience... So in this lecture I’ll describe the ideas all
the way along but just give you the results of the computations. You should realize that you’re not
supposed to understand everything immediately...”

Let me comment on what Feynman means by “seminar.” A physics seminar is not a normal course for
physics students; the audience consists of professors, Ph.D. physicists, and graduate students.
Seminars are primarily venues for presenting frontier research to colleagues engaged in the same or
in closely related fields. Presenters generally assume that the audience knows everything that has
already been discovered on the topic, and building on that, they describe their efforts to discover new
science. Seminars are an opportunity for presenters to impress their colleagues and further their
careers. Seminars are auditions, not classes. Attendees who are world-class experts in the particular
topic will likely understand every word and will learn something new. Others hope to understand
some of the discussion and learn what they can.

When Feynman gave seminars at Caltech, almost every physics faculty member and graduate student
attended. Legend has it that at one seminar, Feynman dashed into the room, by-passed any introductory
pleasantries, and immediately began furiously writing on the blackboard. One hour and many
blackboards later, Feynman turned to the audience for the first time and said: “Was that clear,
Murray?” Apparently, he hoped one person had understood — the other Nobel Laureate in the room,
Murray Gell-Mann.

In this “seminar”, Feynman continues:

“My subject is the Schrödinger equation in a classical setting—the case of superconductivity.

“Ordinarily, the wave function which appears in the Schrödinger equation applies to only one or
two particles. And the wave function itself is not something that has a classical meaning—unlike
the electric field… Nevertheless, there are some situations in which a quantum mechanical wave
function does have classical significance…

“It is the purpose of this lecture to show a connection between quantum mechanics and large-



scale effects…a special situation in which quantum mechanics will produce its own
characteristic effects on a large or ‘macroscopic’ scale.”

Superconductivity is the property of conducting electric current without resistance — not with a very
small resistance, but with absolutely zero resistance. Many materials, but not all, are superconducting
at sufficiently low temperatures.

Superconductivity was discovered in 1911 by Dutch physicist Heike Kamerlingh Onnes, who
received the Nobel Prize in 1913.

The essential distinction between quantum and classical physics is discrete versus continuous states.
In classical physics, particle energies are continuous, they can have any value across a wide range,
whereas quantum mechanics restricts particle energies to a limited, discrete set of values.

As Feynman explains in V3p21-1, at extreme low temperatures higher-energy atomic states are
“frozen out”, and behavior becomes dominated by the quantum mechanical discreteness of the
remaining states. This is why quantum effects can produce the macroscopic phenomenon of
superconductivity.

Boltzmann’s law says the population of a state with energy E is proportional to exp{–E/kT}
(Feynman Simplified 1B Chapter 16).

When kT is large, many states are populated with atoms and particles jumping freely from one
discrete energy level to another. The properties of different states are averaged, resulting in nearly
continuous behavior that is adequately described by classical physics.

When kT is small, energy level differences become formidable barriers. Only a few low-energy
states are populated. Here, Feynman says: “the quantum mechanical character of that ground state” is
apparent even macroscopically.

Schrödinger’s Equation 
in Magnetic Field

We will shortly develop the Schrödinger equation for an electron in a magnetic field. To obtain this,
we will employ several concepts that Feynman presents in his Volume II. Let’s briefly review those.

The first of these concerns vector fields. At each point r, a normal function f(r) has a value that is
simply a number. An example is T(r), the temperature throughout Earth’s atmosphere. Such a function
is sometimes called a scalar field, with “field” indicating an array of quantities defined throughout
space and “scalar” identifying these quantities as simple numbers. A vector field is a function that at
each point r has a value that is a vector. An example is W(r), the wind velocity vector field; at each
point r throughout Earth’s atmosphere, the wind has a speed and direction represented by a three-
component velocity vector.

The second concept is that a magnetic field B is described in terms of a vector potential A, according



to: 

B = curl A

The above vector equation can be written in component notation, without using the curl operator, as:

Bx = ∂Az/∂y – ∂Ay/∂z
By = ∂Ax/∂z – ∂Az/∂x
Bz = ∂Ay/∂x – ∂Ax/∂y

The term vector potential is an extension of vector field: A, is a vector field that specifies an
electrodynamic potential complimenting the electrostatic potential due to electric charges. Vector
potential A, is associated with currents, moving electric charges.

The third concept from Volume II describes how vector potential A affects moving charges. In V3p21-
1, Feynman says:

“The principle that describes the behavior of quantum mechanics in a vector potential is very
simple. The amplitude that a particle goes from one place to another along a certain route when
there’s a field present is the same as the amplitude that it would go along the same route when
there’s no field, multiplied by the exponential of the line integral of the vector potential, times
the electric charge divided by Planck’s constant.” (See V2p15-9.)

While all that may be “very simple” to Feynman, let’s go through this carefully. We write his
statement mathematically as:

<F|S>in A = <F|S>A=0 exp{ i(q/ħ) ∫Γ A•ds }

Here, the integral is along some path that we label Γ, from start S to finish F. This is what Feynman
called the “route.” The path can have any shape whatsoever. At each point P along path Γ, the
integrand is A•ds, where ds is the tangent vector at that point, as shown in Figure 33-1.

Figure 33-1 Path Integral Along Γ from S to F

This type of integral is appropriately called a path integral. Each path integral requires specifying
not only the end points S and F, but also the entire path. In general, a path integral has a different value
for different paths, even if the end points are the same.



In this case, the path integral is:

∫Γ A•ds

The presence of a magnetic field, specified by A, modifies the phase of a particle’s amplitude as it
traverses path Γ. We express this phase change by multiplying the particle’s amplitude by the
following complex exponential: 

exp{ i(q/ħ) ∫Γ A•ds }

With no magnetic field present (A=0), we denote the amplitude for a particle to go from S to F as:

<F|S>A=0

With a magnetic field, Feynman says this amplitude is modified to:

<F|S>in A = <F|S>A=0 exp{ i(q/ħ) ∫Γ A•ds }

Putting this modified amplitude into the Schrödinger equation gives us the equation for a particle with
charge q in a magnetic field specified by the vector potential A. For non-relativistic velocities and
ignoring spin, Feynman says this equation is:

iħ ∂ψ/∂t = (1/2m) (P–qA)•(P–qA) ψ + Vψ

Here, V is the electrostatic potential energy as before, and the normal momentum operator P is
augmented by –q times the vector potential A.

Feynman provides a justification of this equation. The rather lengthy mathematics is provided at the
end of this chapter.

Recall our prior discussion regarding probability currents. Without a magnetic field, we found

Ĵ = {(ψ* P ψ) + (ψ P* ψ*)}/2m
∂(Prob)/∂t = –(i/ħ) P•Ĵ

If we add a magnetic field, the only change is replacing P with P–qA.

Two Kinds of Momentum

We are quite accustomed to momentum being mass times velocity: p = mv. Yet in a magnetic field, we
find that both the probability current and the Schrödinger equation employ a different quantity in the
role of momentum, one that involves the vector potential A. What does this mean?

Feynman says both types of momentum are important, in different roles. He defines these as:



“mv-momentum”: p = mv

“p-momentum”: p = mv + qA

He adds that the same two types of momentum arise in classical physics as well. This is well
described in a classic physics textbook titled Classical Electrodynamics by J. D. Jackson. That fine
book is not easier to read than the Feynman Lectures.

In V3p21-5, Feynman explains why we need two types of momentum. Consider a solenoid that
initially has no current flowing through it. Imagine that at time t=0, a current J begins to flow, growing
rapidly and creating both a magnetic field B and an electric field E, as illustrated in Figure 33-2.

Figure 33-2 Charge q Near Solenoid

A particle with mass m and charge q is initially at rest, lying near to but outside the solenoid
windings.

The vector potential A is zero at t=0, but grows rapidly as the current increases. At time t=Δt, the
current and the vector potential both attain their maximum values: Jmax and Amax respectively. Maxwell’s
equations say: (1) the path integral of A around the solenoid (around the dashed circle for example)
equals the flux of B through that circle; and (2) a changing A creates an electric field E, in accordance
with:

E = – dA/dt

During the brief time interval Δt, the electric field exerts a force F on charge q, changing the
particle’s momentum p. These relationships apply:

F = q E



dp/dt = F = –q dA/dt
Δp = ∫ F dt = –q ∫ (dA/dt) dt
Δp = –q Amax

If J, and therefore A, increase linearly during Δt, the rate of change of p during Δt is:

dp/dt = –q Amax / Δt

If Δt is infinitesimal, the particle’s momentum change Δp occurs almost instantaneously. But, the
particle’s wave function ψ does not change as rapidly. The rate of change of ψ is determined by the
Hamiltonian equation. Since there is no electrostatic potential V in this case, the Hamiltonian is:

iħ 2m ∂ψ/∂t = (P–qA)•(P–qA) ψ

We see that ∂ψ/∂t is initially zero and increases in proportion to A2, which can be much less than Amax/
Δt if Δt is small enough. While the particle’s mv-momentum changes abruptly, its p-momentum does
not.

dp/dt = –q dA/dt
d/dt (p+qA) = d/dt (p-momentum) = 0

Feynman says, when magnetic fields are present, it is the p-momentum that is associated with the
momentum operator P and that (P–qA)/m is the operator for velocity.

Cooper Pairs

The phenomenon of electric current flowing without resistance derives from a remarkable behavior of
electrons flowing in crystals at very low temperatures.

In V3p21-7, Feynman says:

“It turns out that due to the interactions of the electrons with the vibrations of the atoms in the
lattice, there is a small net effective attraction between the electrons. The result is that the
electrons form together, if I may speak very qualitatively and crudely, bound pairs.”

Physicists were initially quite surprised to discover that electrons can bind together in any fashion.
They are negatively charged particles that repel one another, and they are identical fermions that
cannot share a common state. In isolation, these facts certainly preclude electrons binding to one
another. But, in the more complex environment of solid matter, other considerations apply.

In very simplified terms, as an electron moves through a crystal (a solid with a regularly repeating
pattern of atoms), its negative charge attracts atomic nuclei and repels lattice electrons, resulting in a
very slight shift of net positive charge, as sketched in Figure 33-3.



Figure 33-3 Cooper Pair Moving Through Cry stal

In Figure 33-3, black dots represent net positive charges, and open circles represent electrons
flowing through the crystal, with their velocities indicated by arrows. Positive charges moving
toward the right-hand electron, and negative charges moving away from it (not shown in figure),
create a small region of net positive charge. That positive charge attracts the left-hand electron,
facilitating its passage through the crystal.

“Pairing” decreases the energy of two conduction electrons by typically 0.001 eV. This tiny energy is
the effective binding energy of what is called a Cooper pair. Cooper pairs are unlike other bound
systems. The two electrons may be thousands of atoms apart, and many Cooper pairs can overlap
within the same space. Pairs continually form and dissociate. The two spin 1/2 electrons form a
composite boson with a total spin of either 0 or 1.

A theoretical understanding of this remarkable phenomenon was achieved by John Bardeen, Leon
Cooper, and John Schrieffer. For the BCS theory of superconductivity, the three authors received the
1972 Nobel Prize.

With a binding energy that corresponds to 11.6K (–261ºC), Cooper pairs are easily disrupted by
thermal motion, hence superconductivity exists only below a critical temperature, Tc, which is
different for each type of superconducting material. For our purposes, we will consider a
superconductor at 0K, absolute zero, to avoid the complications of disssociating Cooper pairs.

As identical bosons, Cooper pairs have an enhanced amplitude to occupy the exact same state. We
found in Chapter 5 that the probability for a boson to enter a state already occupied by N other
identical bosons is proportional to N+1. Hence as the temperature drops and Cooper pairs begin to
accumulate in their ground state, they overwhelmingly induce all Cooper pairs to enter the exact same
state.

In V3p21-8, Feynman defines ψ to be the wave function for one Cooper pair. We will factor ψ into a
real function ρ, a real phase function θ, and the normal energy exponential, as follows:

ψ(r) = exp{iEt/ħ} exp{iθ(r)} √{ρ(r)/q} 

The square root of charge factor makes ρ(r) the electric charge density, the particle density multiplied
by charge.



Recall the equation for particle probability current:

Ĵ = {ψ*(P–qA)ψ + ψ(P–qA)*ψ*} /2m

Into this equation, let’s insert ψ in the above form. Since the operator (P–qA) has no time derivatives,
the factor exp{iEt/ħ} passes through the operator and cancels in ψ*ψ. To reduce clutter, I will show
the result in one dimension.

Note first that:

∂/∂x exp{±iθ} = ±iθ ∂θ/∂x exp{±iθ}
∂/∂x √ρ = (1/2ρ) ∂ρ/∂x √ρ
ψ*ψ = ρ/q

We now evaluate Ĵ.

2mĴ = {ψ*(–qA)ψ + ψ(–qA)*ψ*}
      + (ħ/i) {ψ* ∂ψ/∂x – ψ ∂ψ*/∂x}

{2mĴ +2ρA} (i/ħ) =
     + ψ* (+i)∂θ/∂x ψ + ψ* ∂ρ/∂x ψ /2ρ
     – ψ (–i)∂θ/∂x ψ* – ψ ∂ρ/∂x ψ* /2ρ

{2mĴ +2ρA } (i/ħ) = 2(+i) ∂θ/∂x ρ/q

qĴ = (ħ/m) { ∂θ/∂x – (q/ħ) A } ρ

Generalizing to three dimensions, and substituting electric current J for charge q times probability
current Ĵ:

J = (ħ/m) { Ďθ – (q/ħ) A } ρ

Note that m and q are the mass and charge of a Cooper pair, each twice that of the electron.

Here, Ďθ is the gradient of θ, which is the vector (∂θ/∂x, ∂θ/∂y, ∂θ/∂z). Also, J is the electric current
density and ρ is the electric charge density, both of which are real physical quantities that describe the
superconducting electron gas. The gradient of θ is therefore also a real measurable quantity.

By equating current density with (charge density) × (charge velocity v), we obtain:

J = ρv = (ħ/m) { Ďθ – (q/ħ) A } ρ
mv = ħ Ďθ – q A

We see again the relationship between mv-momentum and p-momentum.



Superconductivity

Ordinarily, when electric current flows through a solid, current-carrying electrons are occasionally
scattered by atoms and diverted into another state. This continual loss of conduction electrons is what
we call electrical resistance.

However, in superconducting materials, current is carried by Cooper pairs that are united in one
common state. The amplitude for each pair to remain in that common state is extremely high, due to
boson statistics. The motion of lattice atoms, muted by very low temperature, is no longer sufficient to
scatter one electron out of its collective. Once initiated, an electric current will continue to flow
“forever.” Superconducting currents have been observed to persist for years without measurable loss,
and it is estimated that their lifetime is at least 100,000 years.

While normal metals are not superconducting above 30K (–243ºC), exotic materials have been
fabricated that are superconducting at up to 138K (–135ºC). However, no one has yet found the Holy
Grail of superconductivity: a practical material that can conduct large currents and remain
superconducting at temperatures above 77K, the boiling point of liquid nitrogen. The object of this
quest is fiscal rather physical. The most practical coolants are liquid nitrogen and liquid helium.
When I was a graduate student, it was commonly said that liquid nitrogen cost as much as milk, while
liquid helium cost as much as scotch whiskey. Both coolants now cost only one third of the
corresponding beverages, but liquid helium is still 50 times the cost of liquid nitrogen. Employing
superconducting on a large scale, such as AC power transmission from remote solar and wind energy
farms to consumers in majors cities, remains cost-prohibitive.

The Meissner Effect

Superconductors exclude magnetic fields from their interiors, if the fields are not too strong. If a
superconductor is exposed to an external magnetic field that ramps up from zero, the changing flux
density creates an electric field. That electric field drives a current in the superconductor that creates
an opposing magnetic field, precisely cancelling the external magnetic field. As Feynman says:
“Since all the electrons will move together, an infinitesimal electric field will generate enough
current to oppose completely any applied magnetic field.”

A dramatic demonstration of magnetic field exclusion is the Meissner effect. Imagine a magnet resting
on a superconducting metal, with everything initially at a temperature well above the
superconductor’s critical temperature. If we now cool everything to below the critical temperature, a
small current will flow in the superconductor, creating a magnetic field that opposes and cancels the
magnet’s field within the superconductor. The opposing magnetic field levitates the magnet up off the
superconductor, as shown in Figure 33-4.



Figure 33-4 Meissner Effect
Image by  Mai-Linh Doan

Feynman shows that the Meissner effect is explained by the equations derived here.

He first adopts the standard Coulomb gauge in which the divergence of the vector potential A is zero.
Since the electric and magnetic fields are calculated in terms of derivatives of A, the value of A itself
is not fully constrained. We are free to constrain it in any manner that does not affect E or B; most
often, physicists adopt the Coulomb gauge.

Feynman says that, in any equilibrium condition, the divergence of an electric current J must be zero,
“because there’s no place for it to go” — at equilibrium, current cannot continually flow into or
continually flow out of any selected region. The charge density ρ must also be constant and almost
completely uniform as unbalanced charges are rapidly neutralized in conducting materials. Knowing
all this, we take the divergence of J.

Ď•J = 0 = { ħ Ď•Ďθ –q div(A)} ρ/m
0 = Ď•Ďθ = Ď2θ
0 = Ď2θ = ∂2θ/∂x2 + ∂2θ/∂y2 + ∂2θ/∂z2

In V3p21-9, Feynman says: “the only way Ď2θ can be zero everywhere inside a lump of metal is for θ
to be constant.” Mathematically, Ď2f=0 does not imply f=constant; a simple counterexample is f=7x.
Feynman’s statement is based on physics, on the nature of being “inside a lump of metal”, an
electrical conductor. Unfortunately, he doesn’t explain this bit of physics here.

If θ is constant throughout the superconductor:

J = – q A ρ/m

From the equations of electromagnetism we also have:

Ď2A = – J / ε0c2

Combining the prior two equations yields:

Ď2A = A ρq / (ε0mc2) = A / λ2

with 1 / λ2 = ρq / (ε0mc2)

The solutions for A, in one dimension are:



A = A0 exp{–x/λ}

Here we rejected the unrealistic choice of +x/λ, as that would drive the solution toward infinity. With
the negative exponent, and x being the distance from the surface, A decreases exponentially from the
surface toward the interior of the superconductor, with a mean attenuation length of λ. For a metal
such as lead, λ is 20 nm, about 50 atomic diameters. This means only a very thin layer on the surface
of the superconductor carries the current that cancels the external magnetic field.

Flux Quantization

The London brothers, Fritz and Heinz, were two of a great many Jewish physicists (including Max
Born) who fled Nazi persecution in 1933. In 1935, long before the BCS theory of superconductivity,
London and London proposed their own theory of superconductivity. They predicted flux
quantization: in appropriate conditions, they said magnetic flux must be an integer multiple of a
specific value.

One condition involving flux quantization is illustrated in Figure 33-5. We begin with part (a) where a
ring of superconducting material, warmer than its critical temperature, lies in an external magnetic
field Bext. At this point, a magnetic field is present throughout the body of the ring.

Figure 33-5 Superconducting Ring & Magnetic Field

In part (b), the ring has been cooled to well below its critical temperature. Now, Bext is excluded from
the body of the ring by the small surface current described in the prior section, but Bext is still present
in the hollow core inside the ring. Note that the field lines near the ring are bent outward by the
cancelling magnetic field created by the superconductor.

In part (c), Bext has been turned off. Magnetic flux Φ persists in the hollow core because Maxwell’s
equations state that ∂Φ/∂t is proportional to the path integral of E around any circle that surrounds Φ.



In particular, we choose path Γ that is completely within the superconducting material, well away
from its surface, as shown in Figure 33-6. Since there can be no electric field within the interior of a
superconductor, this path integral equals zero, making ∂Φ/∂t zero as well. As Bext goes to zero, a small
surface current flows around the superconducting ring that maintains a magnetic field through its
hollow core, permanently trapping the magnetic flux.

Figure 33-6 Path Γ Around Ring

Figure 33-6 shows a top view of the superconducting ring and path Γ that encircles its hollow core.

In V3p21-10, Feynman says the argument he made for θ being constant “inside a lump of metal”
works for a solid block but not for a ring. Again he provides no explanation. Let’s explore the
consequences of this difference.

Recall a prior equation for the case of zero electric current:

0 = J = (ħ/m) { Ďθ – (q/ħ) A } ρ
ħ Ďθ = qA

Let’s now integrate this equation along path Γ. We start at the 3-o’clock position in Figure 33-6, at
ø=0, and integrate counterclockwise around the circle to ø=2π.

ħ ∫Γ Ďθ • ds = q ∫Γ A • ds

Maxwell’s equations say:

∫Γ A • ds = Φ

Here Φ is the magnetic flux passing through Γ. Our integral from ø=0 to ø=2π becomes:

∫Γ Ďθ • ds = (q/ħ) Φ

A useful theorem says that the integral of the gradient of any function g from point Y to point Z equals



g(Z)–g(Y). That theorem is more obvious if one considers its one-dimensional version:

∫Y 
Z ∂g(x)/∂x dx = g(Z) – g(Y)

The result is:

θ(ø=2π) – θ(ø=0) = (q/ħ) Φ

Recall that θ is the r-dependent phase of the wavefunction, according to: 

ψ(r) = exp{iEt/ħ} exp{iθ(r)} √{ρ(r)/q} 

Since ø=0 and ø=2π are the same point, we’d normally leap to say θ(ø=2π) must equal θ(ø=0). But
leap carefully; after all, this is quantum mechanics. Here, all we really know is that any wave function
ψ is single-valued, meaning it has only one value at each point in space and time. Hence, the quantum
requirement is:

ψ(ø=2π) = ψ(ø=0)

This will be true as long as:

exp{iθ(ø=2π)} = exp{iθ(ø=0)}
θ(ø=2π) = θ(ø=0)+2nπ, for any integer n

Combining this with the path integral of A yields:

2nπ = (q/ħ) Φ
Φ = 2nπħ/q

This means the trapped flux is quantized, always being an integer multiple of 2πħ/q.

The Londons derived this formula, and using the electron’s charge for q, they predicted the flux
quantum was 4×10–7 gauss-cm2. For comparison, Londons’ flux quantum is 1% of the flux of Earth’s
magnetic field through a circle with a cross-section of one human hair (0.1 mm diameter).

In V3p21-11, Feynman tells the amusing story of the search for the flux quantum:

“In 1961 such a quantized flux was looked for and found by Deaver and Fairbank at Stanford
University and at about the same time by Doll and Näbauer in Germany.

“In the experiment of Deaver and Fairbank, a tiny cylinder of superconductor was made by
electroplating a thin layer of tin on a one-centimeter length of No. 56 (1.3×10−3 cm diameter)
copper wire. The tin becomes superconducting below 3.8K while the copper remains a normal
metal. The wire was put in a small controlled magnetic field, and the temperature reduced until
the tin became superconducting. Then the external source of field was removed. You would
expect this to generate a current by Lenz’s law so that the flux inside would not change. The little
cylinder should now have magnetic moment proportional to the flux inside. The magnetic



moment was measured by jiggling the wire up and down (like the needle on a sewing machine,
but at the rate of 100 cycles per second) inside a pair of little coils at the ends of the tin cylinder.
The induced voltage in the coils was then a measure of the magnetic moment.

“When the experiment was done by Deaver and Fairbank, they found that the flux was quantized,
but that the basic unit was only one-half as large as London had predicted. Doll and Näbauer
got the same result. At first this was quite mysterious, but we now understand why it should be
so.”

The BCS theory explains that current in superconductors is carried by Cooper pairs, whose charge is
that of two electrons. Therefore the true flux quantum is:

Φ0 = πħ/qe = 2×10–7 gauss-cm2

Dynamics of Superconductivity

In V3p21-12, Feynman begins discussing magnetohydrodynamics, although he doesn’t use that name.
This is the study of the dynamics of electrically conducting fluids. Here the conducting “fluid” is a
stream of Cooper pairs. Even on the Feynman scale, magnetohydrodynamics is far too esoteric for an
introductory physics course. This section is a mix of partial proofs and quoted results. I will provide
only the major results.

Feynman says the equations of motion for a superconducting electron fluid are:

curl v = –qB/m

with v = {ħ Ďθ –qA} /m

m [∂v/∂t + v•Ďv]
   = q(E+v×B) – ħ2 Ď{Ď2(√ρ)} /2√ρ

The term in [ ]’s in the last equation is called the fluid’s comoving acceleration.

Josephson Junctions

In Chapter 20, we discovered a remarkable phenomenon that occurs when different semiconducting
materials are joined: the transistor. We now examine another remarkable phenomenon that occurs
when joining superconducting materials: the Josephson junction. Welsh theoretical physicist B. D.
Josephson predicted this effect in 1962, for which he received the 1973 Nobel Prize.

A Josephson junction consists of two superconducting regions separated by a thin insulator, as shown
in Figure 33-7.



Figure 33-7 Thin Insulator 
Between Two Superconductors

If the insulator is sufficiently thin, electrons in one superconducting region can pass to the other via
barrier penetration, a uniquely quantum mechanical effect.

To analyze this junction, we define ψ1 to be the wave function of Cooper pairs in region 1 and ψ2 to be
the wave function in region 2. Feynman stresses that at very low temperatures, essentially all
conducting electrons are in the same state ψ1 in region 1 and ψ2 in region 2.

We begin with the simplest situation. Assume both regions are made of the same material and there
are no external magnetic fields. We then have a two-state system that is symmetric. The two wave
functions are governed by:

iħ ∂ψ1/∂t = E1 ψ1 + K ψ2

iħ ∂ψ2/∂t = E2 ψ2 + K ψ1

Here, K is the amplitude for a Cooper pair to transition from one region to the other, and E1 and E2 are
the Cooper pair energy levels in each region. If the situation is completely symmetric, E1=E2.

Now imagine we attach the superconducting regions to opposite sides of a battery, thereby
establishing:

E1 – E2 = qV

For convenience, we set the zero-point energy midway between E1 and E2, such that:

iħ ∂ψ1/∂t = + ψ1 qV/2 + K ψ2

iħ ∂ψ2/∂t = – ψ2 qV/2 + K ψ1

Next, we again factor the wave functions in terms of real functions ρ and θ:

ψ1 = exp{iθ1} √ρ1

ψ2 = exp{iθ2} √ρ2

In V3p21-15, Feynman provides the following results from inserting ψ1 and ψ2 into the Hamiltonian
equations. I provide the derivation at the end of this chapter. To reduce clutter, define δ=θ2–θ1. The



results are:

ħ ∂ρ1/∂t = +2K√(ρ1ρ2) sinδ
ħ ∂ρ2/∂t = –2K√(ρ1ρ2) sinδ
ħ ∂θ1/∂t = –qV/2 +K√(ρ2/ρ1) cosδ
ħ ∂θ2/∂t = +qV/2 +K√(ρ1/ρ2) cosδ

The two ∂ρ/∂t equations say there is a current J flowing from region 2 to region 1, with:

J = J0 sinδ
J0 = (2K/ħ) √(ρ1ρ2)

This current is supplied by the external battery that maintains voltage V. We did not include that
current in our calculations. A complete analysis shows that the physical characteristics of the junction
(K and the ρ’s) drive the current J0, while the battery maintains constant charge densities ρ1 and ρ2.

The two ∂θ/∂t equations provide the derivative of δ.

∂(δ)/∂t = ∂θ2/∂t – ∂θ1/∂t = qV/ħ

Integrating this equation yields:

δ(t) = δ0 + (q/ħ) ∫ V(t) dt

Here, δ0 = δ(t=0), and q is the Cooper pair charge. The equation for current is again:

J = J0 sinδ

Feynman says the last two equations form the general theory of Josephson junctions.

For a 1 Volt potential and ħ=6.6×10–16 eV-sec, qV/ħ = 1/(3.3×10–16 sec) and sin(qVt/ħ) runs through 480
trillion cycles per second. Hence the average current over any appreciable time interval is zero.
Strangely, with zero applied voltage (battery replaced by a wire), a constant current flows with any
value from –J0 to +J0, as determined by the constant δ0. That current stops as soon as a non-zero
voltage is applied, as observed by Anderson and Rowell.

Now consider applying a two-component voltage of the form:

V(t) = V0 + ε cos(ωt), with ε<<V0

We then have:

δ(t) = δ0 + (q/ħ){V0t + ε sin(ωt)/ω}

Recall the equation for the sine of the sum of two angles:

sin(ø+β) = sinø cosβ + sinβ cosø



Now if β<<1, this reduces to:

sin(ø+β) = sinø + β cosø

We now evaluate sin{δ(t)} assuming qε/ħω << 1.

sin{δ(t)} = sin{δ0+(qV0t/ħ)}
     + (qε/ħω) sin(ωt) cos{δ0+(qV0t/ħ)}

The first term on the right side of this equation averages to zero, just as described above. We can
rearrange the second term to read:

sin{δ(t)} = (qε/2ħω) sin{ωt +δ0 +(qV0t/ħ)}

The right side also rapidly averages to zero unless:

ω = – qV0/ħ

This resonance phenomenon was first observed by S. Shapiro.

For the final topic of his two-year course, Feynman explores the interference between two Joseph
junctions, in what we now call a SQUID, a superconducting quantum interference device. Analogous
to the quantum interference in the two-slit experiment (remember Feynman Simplified 1A Chapter
1), when two Josephson junctions are linked in parallel, as shown in Figure 33-8, the currents through
the two junctions interfere quantum mechanically.

Figure 33-8 SQUID With 2 Josephson Junctions

Here Γ is a closed path that passes through P and Q, and encircles the hollow core of a SQUID.
Detectors monitor Jsum, the total current flowing through the SQUID from P to Q.

Define Ja and Jb to be the current flowing through junction a and junction b. Interference arises when Ja



and Jb arrive at Q with different phases.

Recall our earlier equation for the phase change along a path Γ:

Δphase = (q/ħ) ∫Γ A•ds

Let δP be the phase of the Cooper pairs at P. The phase at Q of the current passing through junction a,
the upper half of the SQUID, is:

δQ a = δP +(q/ħ) ∫Γ A•ds, along upper half

For the current passing through junction b, the phase at Q is:

δQ b = δP +(q/ħ) ∫Γ A•ds, along lower half

From Maxwell’s equations, we also know that the total path integral along Γ equals the magnetic flux
Φ through Γ, according to:

Φ = ∫Γ A•ds

Here the sign convention, per the right-hand-rule, requires traversing path Γ in the counterclockwise
direction. The integral along the lower half of Γ goes counterclockwise, while the integral along the
upper half of Γ goes clockwise. We must therefore flip the sign of the integral along the upper half of
Γ. This yields:

Φ = ∫Γ A•ds, P to Q along lower half
     – ∫Γ A•ds, P to Q along upper half

(q/ħ) Φ = δQ b – δQ a

Here again, q is the Cooper pair charge, which equals 2qe, twice the electron charge.

For convenience, assume half the total phase shift occurs on the upper path and half on the lower path.
We can then express the two currents as:

Ja = J0 sin{δP + qeΦ/ħ}
Jb = J0 sin{δP – qeΦ/ħ}
Jsum = Ja + Jb = J0 sin{δP} cos{qeΦ/ħ}

While we cannot predict the value of δP, we can predict that the current will be modulated
sinusoidally as a function of Φ. The current attains its greatest positive or negative value when:

qeΦ/ħ = nπ, for any integer n

Φ = nπħ/qe

This is the flux quantum that we found earlier when we analyzed a superconducting ring.



SQUIDs are the most sensitive devices for measuring magnetic fields. They can detect fields as small
as 10–15 Tesla, about 10 trillionths of Earth’s magnetic field.

Josephson Wave 
Functions Derivation

Here is the derivation of the wave functions of Cooper pairs on opposite sides of a Josephson
junction. The Hamiltonian equations are:

iħ ∂ψ1/∂t = + ψ1 qV/2 + K ψ2

iħ ∂ψ2/∂t = – ψ2 qV/2 + K ψ1

We factor the wave functions as we did earlier for Cooper pairs:

ψ1 = exp{iθ1} √ρ1

ψ2 = exp{iθ2} √ρ2

Recall the derivatives of these terms:

∂/∂t exp{iθ} = iθ ∂θ/∂t exp{iθ}
∂/∂t √ρ = (1/2ρ) ∂ρ/∂t √ρ

∂/∂t [√ρ exp{iθ} ]
  = {(1/2ρ1)∂ρ1/∂t + i∂θ1/∂t} [√ρ1 exp{iθ}]

We now put ψ1 in this form into the left side of the Hamiltonian for region 1, and separate the real and
imaginary terms.

iħ ∂ψ1/∂t
  = iħ{(1/2ρ1)∂ρ1/∂t+i∂θ1/∂t} √ρ1{cosθ1+isinθ1}
  = iħ√ρ1{(1/2ρ1)∂ρ1/∂t cosθ1 +i∂θ1/∂t cosθ1

     + (1/2ρ1)∂ρ1/∂t(isinθ1) +i∂θ1/∂t(isinθ1)}

= iħ√ρ1{(1/2ρ1)∂ρ1/∂t cosθ1 –∂θ1/∂t(sinθ1)
    + (1/2ρ1)∂ρ1/∂t(isinθ1) +i∂θ1/∂t cosθ1}

= iħ√ρ1{(1/2ρ1)∂ρ1/∂t cosθ1 –∂θ1/∂t sinθ1}
   – ħ√ρ1{(1/2ρ1)∂ρ1/∂t sinθ1 +∂θ1/∂t cosθ1}

Next, we put these expressions into the entire region 1 Hamiltonian equation, and separate the
imaginary and real parts that must equate independently. This results in two equations.

iħ√ρ1{(1/2ρ1)∂ρ1/∂t cosθ1 –∂θ1/∂t sinθ1}
   = +i√ρ1sinθ1 qV/2 +iK√ρ2sinθ2



– ħ√ρ1{(1/2ρ1)∂ρ1/∂t sinθ1 +∂θ1/∂t cosθ1}
   = + √ρ1cosθ1 qV/2 +K√ρ2cosθ2

Multiply the upper equation by cosθ1/i and multiply the lower equation by sinθ1 to get:

ħ√ρ1{(1/2ρ1)∂ρ1/∂t cos2θ1 –∂θ1/∂t cosθ1 sinθ1}
   = +{√ρ1sinθ1 qV/2 +K√ρ2sinθ2} cosθ1

– ħ√ρ1{(1/2ρ1)∂ρ1/∂t sin2θ1 +∂θ1/∂t sinθ1 cosθ1}
   = +{√ρ1cosθ1 qV/2 +K√ρ2cosθ2} sinθ1

Subtracting the lower equation from the upper one yields:

ħ√ρ1{(1/2ρ1)∂ρ1/∂t}
   = +K√ρ2 {sinθ2 cosθ1 – cosθ2 sinθ1}

ħ ∂ρ1/∂t = +2K√(ρ1ρ2) sin(θ2–θ1)

Now, going back to the real and imaginary equations from the Hamiltonian, multiply the upper
equation by sinθ1/i and multiply the lower equation by cosθ1 to get:

ħ√ρ1{(1/2ρ1)∂ρ1/∂t cosθ1sinθ1 –∂θ1/∂t sin2θ1}
   = +{√ρ1sinθ1 qV/2 +K√ρ2sinθ2} sinθ1

– ħ√ρ1{(1/2ρ1)∂ρ1/∂t sinθ1cosθ1 +∂θ1/∂t cos2θ1}
   = +{√ρ1cosθ1 qV/2 +K√ρ2cosθ2} cosθ1

Adding these two equations yields:

ħ√ρ1{–∂θ1/∂t}
   = +√ρ1 qV/2 +K√ρ2{sinθ2 sinθ1 + cosθ2 cosθ1}

ħ ∂θ1/∂t = –qV/2 +K√(ρ2/ρ1) cos(θ2–θ1)

The equations for ψ2 are simply obtained by switching the indices and the polarity of V.

ħ ∂ρ2/∂t = –2K√(ρ1ρ2) sin(θ2–θ1)
ħ ∂θ2/∂t = +qV/2 +K√(ρ1/ρ2) cos(θ2–θ1)

QED 

Finding Schrödinger’s Equation
For Electron In A Magnetic Field

As we did in justifying Schrödinger’s equation without a magnetic field, our approach here is to



derive an equation for an electron moving along an infinite line of atoms in a magnetic field. We begin
with an atomic spacing of b. Later, we will take the limit as b goes to zero and delete the atoms.

Let the atoms lie along the x-axis. For the case of no magnetic field, let the amplitude for an electron
to jump from one atom to either of its immediate neighbors be –K, and let the amplitude to jump to
more distant atoms be zero. As found in V2p15-9, adding a magnetic field replaces –K with:

–K exp{ i(q/ħ) ∫Γ A•ds}

For a line of atoms, path Γ is entirely along the x-axis and the path length is b. We need only concern
ourselves with the x-component of A(x) that we will simply call A. Define function f(u) as:

f(u) = (q/bħ) ∫Γ A dx, from x=u–b/2 to x=u+b/2

With this definition, u is the midpoint of the path. For an electron jumping from x–b to x, the integral
we want is:

(q/ħ) ∫Γ A•ds = + b f(x–b/2)

For an electron jumping from x+b to x, the integration limits reverse for the path integral on the left
side of the prior equation, but not on the right side; f(u) is still integrated from x=u–b/2 to x=u+b/2.
Here we have:

(q/ħ) ∫Γ A•ds = – b f(x+b/2)

We have solved the line-of-atoms problem several times before, including Chapter 18 (there the
transition amplitude was –A; here it is –K). As before, we define C(x) to be the amplitude for an
electron to be at the atom at position x. The rate of change of C(x) is given by the Hamiltonian
equation:

iħ ∂C(x)/∂t = (E0 + V) C(x)
   –K exp{–ib f(x+b/2)} C(x+b)
   –K exp{+ib f(x–b/2)} C(x–b)

Here, the upper line is the energy of the electron at position x, with V being the electrostatic potential
energy. The middle line is the amplitude for the electron to jump to x from x+b, and the lower line is
the amplitude to jump to x from x–b.

We now take the limit as b becomes infinitesimal. When we did this before, we found that the
important terms were of order b2, so as we take this limit, we will keep terms up to order b2 and drop
terms proportional to b3, b4, etc.

We first take the limit of f(u). As b goes to zero, ∫ΓAdx approaches A at the midpoint of the integral
multiplied by ∫Γdx=b. Since each exponent contains f multiplied by b, we need f up to order b1. Let’s
reduce clutter a bit more by defining e=q/ħ, and by dropping “(x)” where doing so will not be
confusing.



In what follows, we will repeatedly use Taylor’s theorem for the series expansion of derivatives of
any smooth function g(x):

g(x+Δ) = g(x) + ∂g/∂x Δ + ∂2g/∂x2 Δ2/2! + …

Recall the definition of f(u):

f(u) = (e/b) ∫Γ A dx, from x=u–b/2 to x=u+b/2

As b goes to zero, the limits of f(x+b/2) and f(x–b/2) are:

f(x+b/2) –> (e/b) A(x+b/2) b
   = e A(x+b/2)
   = e[A + ∂A/∂x (b/2)]

f(x–b/2) –> (e/b) A(x–b/2) b
   = e A(x–b/2)
   = e[A – ∂Ax/∂x (b/2)]

The exponentials become:

exp{–ib f(x+b/2)}
   = 1 –ibf(x+b/2) –b2f2(x+b/2)/2
   = 1 –ibe[A + ∂A/∂x (b/2)] – b2e2A2/2

exp{+ib f(x–b/2)}
   = 1 +ibf(x–b/2) –b2f2(x–b/2)/2
   = 1 +ibe[A – ∂A/∂x (b/2)] – b2e2A2/2

We next approximate the C’s.

C(x+b) –> C(x) + ∂C/∂x b + ∂2C/∂x2 b2/2
C(x–b) –> C(x) – ∂C/∂x b + ∂2C/∂x2 b2/2

Hold your breath as we put all this together. Let’s work first on the middle line of the Hamiltonian
equation, keeping terms up to b2.

exp{–ib f(x+b/2)} C(x+b)
   = {1–ibe[A + ∂A/∂x b/2] – b2e2A2/2}
       × {C + ∂C/∂x b + ∂2C/∂x2 b2/2}

= C + ∂C/∂x b + ∂2C/∂x2 b2/2 – Cb2e2A2/2
   –(ibe){CA + ∂C/∂x A b + C ∂A/∂x b/2}

Now the lower line.

exp{+ib f(x–b/2)} C(x–b)



   = {1+ibe[A – ∂A/∂x b/2] – b2e2A2/2}
       × {C – ∂C/∂x b + ∂2C/∂x2 b2/2}

= C – ∂C/∂x b + ∂2C/∂x2 b2/2 – Cb2e2A2/2
    +(ibe){CA – ∂C/∂x A b + C ∂A/∂x b/2}

The sum of those two expressions is:

exp{–ibf(x+b/2)}C(x+b)+exp{ibf(x–b/2)}C(x–b)
   = 2C +∂2C/∂x2 b2 – Cb2e2A2

     –2(ibe){ ∂C/∂x A b}

= 2C +b2 {∂2C/∂x2 – Ce2A2 –2(ie) ∂C/∂x A}

The Hamiltonian becomes:

iħ ∂C/∂t = (E0 + V)C – 2KC
   –Kb2 {∂2C/∂x2 – Ce2A2 –2(ie) ∂C/∂x A}

To rewrite this, note that:

{∂/∂x –ieA} {∂/∂x –ieA} C 
   = ∂2C/∂x2 – Ce2A2 –2ieA ∂C/∂x

Making this substitution, we obtain:

iħ ∂C/∂t = (E0 +V –2K) C
   –Kb2 {∂/∂x –ieA} {∂/∂x –ieA} C

Almost there!

We derived an equation for effective mass in Chapter 18, and then found in Chapter 22 that, in the
limit of b going to zero and the atoms being removed, the effective mass becomes the electron’s true
mass. That equation, with K as the transition amplitude, is:

meff = ħ2 / (2Kb2) –> m
Kb2 –> ħ2 / 2m

Substituting this, e=q/ħ, Px=(ħ/i)∂/∂x, and choosing E0=2K, yields:

iħ ∂C/∂t = V C
    –(ħ2/2m) (i/ħ)2 (Px – qA) {Px – qA} C

Since this equation is valid for every C, it must also be valid for the wave function ψ that is a linear
combination of the C’s. Generalizing to three dimensions, we finally obtain Schrödinger’s equation
for an electron in a magnetic field, matching what Feynman claimed.



iħ ∂ψ/∂t = (P–qA)•(P–qA) ψ/2m + Vψ

QED

Chapter 33 Review: Key Ideas

• Superconductivity is the property of conducting electric current with absolutely zero resistance.
From actual observations, the estimated lifetime of superconducting currents is at least 100,000 years.
Theoretical estimates exceed the age of the universe.

• Many materials, but not all, are superconducting at sufficiently low temperatures.

Atomic quantum effects produce the macroscopic phenomenon of superconductivity at extreme low
temperatures. This is because higher-energy states “freeze out”, and behavior is dominated by the
discreteness of the remaining states. Here, Feynman says: “the quantum mechanical character of that
ground state” is apparent even macroscopically.

• In the presence of magnetic fields, two types of momentum are important, each with a different role.
Feynman defines these as:

“mv-momentum”: p = mv
  “p-momentum”: p = mv + qA

Here A is the vector potential defined by:

B = curl A, divergence {A} = 0

He adds that the same two types of momentum arise in classical physics as well

• In simplified terms, the BCS theory of superconductivity says as an electron moves through a
crystal, its negative charge attracts nuclei and repels lattice electrons, resulting in a small region of
net positive charge. That positive charge attracts other electrons, facilitating their passage through the
crystal. Pairs of electrons are in a special sense attracted to one another in Cooper pairs, bound
together by typically 0.001 eV. The two spin 1/2 electrons form a composite boson with a total spin of
either 0 or 1. It is the Cooper pairs that carry electric current in superconductors. “Paired” electrons
may be thousands of atoms apart, and many Cooper pairs can overlap within the same space. Pairs
continually form and dissociate.

• The wave function for Cooper pairs and the equations for pair current and momentum are:

(√q) ψ(r) = exp{iEt/ħ} exp{iθ(r)} √{ρ(r)}
J = ρv = (ħ/m) { Ďθ – (q/ħ) A } ρ
mv = ħ Ďθ – q A



• The flux quantum associated with superconductors is:

Φ0 = πħ/qe = 2×10–7 gauss-cm2

• Feynman says the equations forming the theory of Josephson junctions are:

δ(t) = δ0 + (2qe/ħ) ∫ V(t) dt
J = J0 sinδ
J0 = (2K/ħ) √(ρ1ρ2)

• SQUIDs, superconducting quantum interference devices, are the most sensitive instruments for
measuring magnetic fields. They can detect fields as small as 10–15 Tesla, about 10 trillionths of
Earth’s magnetic field. The current J through a SQUID is proportional to:

J ~ cos{qeΦ/ħ}

• Feynman ends his course on quantum mechanics with this advice to his all-male class (unfortunately,
Caltech was not coed at that time):

“I am sorry to say, gentlemen, that to participate in this adventure [physical science] it is
absolutely imperative that you learn quantum mechanics as soon as possible. It was our hope that
in this course we would find a way to make comprehensible to you at the earliest possible
moment the mysteries of this part of physics.” 



Chapter 34

Collapse, Entanglement 
& Teleportation

The next two chapters explore developments in quantum mechanics in the 50 years since Feynman
gave his wonderful Lectures.

Wave Function Collapse

The greatest unresolved mystery of quantum mechanics is wave function collapse.

At the 1927 Solvay conference, a triennial conclave of physics luminaries, Einstein expressed
concern about the “entirely peculiar mechanism of action at a distance” in which quantum mechanics
says wave functions instantly collapse everywhere when interactions occur.

While seemingly bizarre, wave function collapse is essential to connecting quantum mechanics with
the established reality of classical scientific observation. For centuries, scientists have made
countless measurements of many physical quantities, including position, mass, velocity, and
temperature. Each measurement resulted in a single definite value. We have never found, for example,
a football or an electron that was simultaneously in two different locations.

Quantum mechanics, however, says an electron can be in different locations simultaneously. Its wave
function provides amplitudes at each different location, with corresponding probabilities that sum to
100%. But, when we measure the electron’s position, we never find it 25% here and 75% there; we
always find 100% of it in exactly one location. To be consistent with the reality of measurements
yielding single definite values, quantum wave functions must collapse at the instant of any substantial
disturbance. In particular, at the instant of measurement, quantum mechanics must yield a single
allowed value of that measurement: the wave function must instantly collapse to an eigenstate of the
quantity being measured.

What triggers the collapse of a wave function is substantial interference, whether or not that
interference is human-directed.

The two-slit experiment, which we discussed at the very beginning of this course, provides a vivid
example of wave function collapse. As sketched in Figure 34-1, this experiment consists of a particle
source S, a barrier with two slits, and a detector F. Coherent particle-waves passing through both
slits combine at the detector to produce interference fringes, alternating stripes of high intensity and
zero intensity.



Figure 34-1 Two-Slit Experiment

The two-slit experiment is easily performed if source S emits light, but is far more difficult if S emits
electrons. Dr. Tonomura accomplished the latter using an electron emission rate that allowed only one
electron at a time to traverse the apparatus. In Figure 34-2, the right-hand image, with 140,000
detected electrons, clearly shows interference fringes; this proves electrons are waves. In the left-
hand image, with only 200 detected electrons, the tiny dots prove electrons are particles since each
strikes only a single point on the detector.

Figure 34-2 Images by  Dr. Tonomura of Hitachi

The same electrons produced both images, the only difference is that there are many more of them in
the right image. Since only one electron was in the apparatus at a time, the undeniable conclusion is
that electrons have both particle and wave properties. Each electron must pass through both slits
simultaneously and interfere with itself at F, producing a single tiny dot. But the collection of those
dots is determined by the interference fringe pattern.

Figure 34-2 proves that each electron’s wave function extends broadly enough to span both slits, but
collapses to a tiny point as it interacts with the atoms in the detector.

At the detector, each electron’s wave is at least 10,000 times wider than the tiny dots. Somehow, of
the 108 spots where the electron might interact, a single impact point emerges. At that point, the
interaction probability instantaneously changes from 10–8 to 1, while the interaction probability
everywhere else simultaneously becomes zero. Each electron interacts once and only once, but
exactly where it will interact is completely undetermined until the instant the interaction occurs.

If wave function collapse was not universal and instantaneous, we would occasionally observe two
electron strikes from a single electron wave. One might imagine that two hits could occur if they were
nearly simultaneous and sufficiently separated: if a signal from the first, traveling at light speed,
couldn’t reach the second before its interaction. Two hits from one wave would violate the



conservation of electric charge, while communication at greater than light speed would violate
special relativity. Both of those hallowed principles are even more extensively and precisely
confirmed than is quantum mechanics. Indeed, no one has ever observed a violation of charge
conservation or faster than light travel, even though the latter is seemingly required by wave function
collapse.

To be consistent with observed reality, universal, instantaneous wave function collapse is essential,
but quantum mechanics offers no explanation for the mechanism that achieves this.

After nearly a century, Einstein’s quandary remains unresolved: exactly how does the wave function
collapse everywhere simultaneously?

Interpretation: Copenhagen & Beyond

The formalism of quantum mechanics is solid; its equations are clear, complete, and comprehensive.
Its predictions have been validated by tens of thousands of high-precision experiments. The equations
of quantum mechanics match what we observe in nature. The mathematical, mechanistic side of
quantum mechanics is one of science’s greatest triumphs. However, physicists have substantially
divergent views on its interpretation — what does quantum mechanics really tell us about the
fundamental processes of nature?

Newton and Einstein espoused a clear philosophy of nature. The success of their theories was
established by experimental confirmation, but physicists clearly understood the world-views upon
which their theories were based. In fact, Newton and Einstein established their world-views first and
then derived the formalisms of their theories. Einstein, for example, postulated the constancy of the
speed of light and from that derived the equations of special relativity.

Quantum mechanics is different: its formalism is clear but its world-view is fuzzy. With its
indeterminacy and wave function collapse, quantum mechanics remains incompletely digested more
than 100 years after its inception. We know how to do the math, but we are still searching for a clear
understanding of what quantum mechanics says about nature.

So far in this course, we have presented only the standard, conventional, most widely accepted,
world-view of quantum mechanics: the Copenhagen interpretation championed by Niels Bohr. It is
the default theory to which physicists return when other ideas fail. It has achieved great success, but
many physicists believe it lacks critical explanations, motivating them to intensively search for
alternative interpretations.

The sheer number of alternative interpretations attests to physicists’ great unease with the world-view
of quantum mechanics. The most prominent interpretations, with representative dates, are:
Copenhagen [1924]; pilot waves [1952]; many-worlds [1957]; modal [1969]; consistent histories
[1984]; many-minds [1988]; quantum event [1989]; and relational quantum mechanics [1996]. None
of the alternative interpretations has been widely accepted, at least not yet.

Through the course of this chapter and the next, we will describe the three most interesting



alternatives, starting with the most expansive.

Many Worlds / Parallel Universes

American physicists Hugh Everett in 1957, and Bryce Seligman DeWitt in the 1960s, proposed a
hypothesis that is variously called the “many worlds” or “parallel universes” theory. (Be aware that
there are many other “parallel universes” theories that have nothing to do with quantum uncertainty.)  

The Everett-DeWitt hypothesis is an alternative approach to the uncertainty that is central to quantum
mechanics, and is perhaps best explained by considering the fate of Schrödinger’s Cat. 

In this politically incorrect thought experiment, a healthy cat is sealed in a box with a radioactive
source, a bottle of poison gas, and a detector that opens the bottle when the source decays. Quantum
mechanics explains that radioactive sources decay at completely unpredictable moments but at
precisely predictable rates. As time passes, the probability that the source has already decayed
steadily increases. When that probability reaches 50%, we ask: “Is the cat alive or dead or both?”
Conventional quantum mechanics says both: the cat is in a quantum superposition of two basis states,
|alive> and |dead>, until we open the box and observe it. At that instant, the cat’s wave function
“collapses” to either: (1) |alive> with probability 100%; or (2) |dead> with probability 100%.

Everett and DeWitt suggest this alternative: when the box is opened, our universe splits into two
completely separated universes that are identical, with one exception. In one universe Schrödinger’s
cat is alive and in the other it is dead. One might say the cat is both alive and dead, but in different
universes, or if you prefer, in different realities.

Their approach avoids having to explain how wave functions “collapse”, but at the cost of an
exponentially increasing number of parallel universes. Every time a roulette wheel stops, our
universe would split into 38 new universes. And the measurement of a continuous quantity, such as
momentum, would split our universe into an infinite number of new universes. Since the universe
would split in response to every substantial interaction of every particle in the cosmos, the number of
new universes required per second is beyond imagination. Yet, Everett and DeWitt provided no
mechanism for creating this vast array of new universes.

Most physicists consider the parallel-universes / many-worlds hypothesis uneconomical, universe-
wise.

Entanglement

Entanglement is a startling consequence of quantum mechanics that physicists firmly accept, but
struggle to fully comprehend.

Particles are entangled if they exist in a common and inseparable quantum state. We have discussed
many examples of entangled states throughout this course. Two-state systems naturally produce
entangled states. In Chapter 27 we discussed positronium, an “atom” composed of an electron and a



positron, its antiparticle. The energy levels of positronium are split by the interaction of the spins of
the two particles. We found that the wave function of the ground state is a singlet state, an
antisymmetric superposition, described by:

|j=0,m=0> = (|e+, p–> – |e–, p+>)/√2

Here, |e+, p–> is the basis state of the electron having spin up and the positron having spin down,
while |e–, p+> is the basis state of opposite spins.

The electron and positron are entangled. The two particles share one common wave function; neither
has its own separate wave function. Each particle has a 50% probability to be spin up, and 50% to be
spin down. But the probability of their spins being opposite is always 100%. If we measure the
electron and find that it is spin up, the positron will instantaneously become spin down with 100%
probability.

In V3p16-11, Feynman discusses a pair of particles 1 and 2 in an entangled state defined by x1 and x2.
He says:

“Notice that describing the position of only one particle does not define a [basis] state. Each
[basis] state must define the condition of the entire system. You must not think that each particle
moves independently as a wave in three dimensions. Any physical state |ψ> … is therefore a
function of the two sets of coordinates x1 and x2. You see that such a function is not a wave in the
sense of an oscillation that moves along in three dimensions. Neither is it generally simply a
product of two individual waves, one for each particle. It is, in general, some kind of a wave in
the six dimensions defined by x1 and x2. If there are two particles in nature which are interacting,
there is no way of describing what happens to one of the particles by trying to write down a
wave function for it alone.”

The key point is: we cannot properly describe the interaction of two particles by describing only one.

As we discussed in Chapter 27, when singlet-state positronium decays, the electron and positron
annihilate one another, producing two photons that move away with equal energies and in opposite
directions in the CM frame. We found that the photons are always in a singlet state, an antisymmetric
superposition of opposite polarizations, described by:

ψ√2 = |A=RHC, B=LHC> – |A=LHC, B=RHC>

Here, |A=RHC, B=LHC> denotes photon A being RHC and photon B being LHC (left hand circularly
polarized).

Now consider what happens when two scientists, Alice and Bob, equipped with photon detectors,
stand on opposite sides of a stationary singlet-state positronium source. Assume that Alice is
somewhat closer to the source, so that photon A reaches Alice’s detector before photon B reaches
Bob’s detector.

The salient points seem to be:



 

1. Alice detects equal numbers of RHC and LHC photons, as does Bob.

2. Neither scientist can predict the polarization of the next photon: the odds are 50-50.

3. After each positronium decay, Alice and Bob always detect opposite polarizations — whenever
Alice detects a RHC photon, Bob will always detect a LHC photon.

4. Surely Alice’s measurement cannot affect the state of Bob’s photon.

Point #4 seems to contradict point #3; hence, some say this indicates a paradox.

Feynman says a “paradox” isn’t simply: “a conflict between reality and your feeling of what reality
‘ought to be’.” He says a “paradox” exists only when a theory makes inconsistent predictions.

For example, in Feynman Simplified 1C Chapter 28, we discuss the Twin Paradox of special
relativity. Al remains on Earth while Bert rockets to the Delta Quadrant and back. Once reunited,
each twin claims the other was moving, aged slower according to time dilation, and is now younger.
Since both can’t be younger, there is an apparent paradox. But, as we discussed, Bert had to
accelerate to make a round trip, and therefore cannot claim to have been in an inertial reference
frame, as required to invoke special relativity. Hence, there is no paradox; Bert is definitively
younger than Al.

In fact, while there are many fascinating surprises, there are no true paradoxes in special relativity,
general relativity, or quantum mechanics.

Getting back to Alice and Bob, Feynman says experiments confirm point #3: whenever Alice detects
RHC, Bob is 100% certain to detect LHC. He also says point #4 is wrong: Alice’s measurements do
alter the state of Bob’s photons. He says:

“[Nature] requires a description in terms of interfering amplitudes, one amplitude for each
alternative. A measurement … destroys the interference, but if a measurement is not made you
cannot still say that ‘one alternative or the other is still occurring’.”

To expand on Feynman’s statement, before the first measurement, the wave function was:

ψ√2 = |A=RHC, B=LHC> – |A=LHC, B=RHC>

Here, neither photon is in a state of definite polarization. When a polarization measurement is made,
quantum mechanics requires the wave function to collapse to an eigenstate of that measurement. Alice
must measure either RHC or LHC, but never (RHC+LHC)/2. If she measures RHC, the wave function
must have collapsed to:

Φ = |A=RHC, B=LHC>

Feynman would probably emphasize again that wave functions are mathematical constructs that have



no physical reality. When a wave function collapses throughout all of space simultaneously, no thing
has actually moved; all that has changed are the probabilities of various outcomes that were
previously indeterminant. While all this is entirely logical, a little voice in my head still asks how
exactly does Bob’s photon “know” it must now become 100% LHC.

Feynman is correct that Alice’s measurements do affect the state of Bob’s photons, but this wasn’t
properly confirmed experimentally until decades after his Lectures. To prove this, we must prove that
the photons continue to have the original entangled wave function ψ immediately before Alice’s
measurement. We must exclude a possible alternative espoused by classical physics. The classical
explanation is that, as the photons separate, their state is properly described by classical physics: (1)
50% of the time, photon A=RHC and B=LHC; and (2) 50% of the time, A=LHC and B=RHC. Italian
physicist Carlo Rovelli says this is similar to taking two gloves and randomly sending one to Alice
and one to Bob: of course the scientists always find opposite handed gloves — that’s not magic, that’s
simply the way gloves are made.

Much more sophisticated theories and much more sophisticated experiments were required to
definitively settle this “paradox”, as we will discuss in the next chapter.

Teleportation

Teleportation is the process of recreating material objects at a remote location without physically
moving them through space. Teleportation is possible using entangled quantum states. While “Beam
me up, Scottie!” is still just a delightful fantasy, physicists have succeeded in precisely transferring
complete quantum states without physically moving them. Quantum teleportation does however
require transmitting information and physically moving secondary physical objects by conventional
means. Furthermore, it cannot achieve faster than light travel.

Teleportation is not a copying process that duplicates an original master. Rather, teleportation
destroys the original master and creates a new master at a remote destination. If the master was
information, that information no longer exists at the origin. If the original master was a material
object, what remains at its former position will be an equal mass of deconstructed, disorganized,
subatomic particles. The new master will have exactly the same quantum state that the original once
had.

Even the most ardent Trekkie should decline an invitation to be the first teleported human or Klingon.

Teleportation Procedure

The procedure detailed below teleports 1 bit of quantum information (1 qubit) from a master particle
to a remote particle.

Let me explain what a qubit is. Conventional computers operate on bits; each bit can be in one of two
states: 0 or 1. Digital electronic circuit designs ensure that 0’s never unintentionally morph into 1’s or
vice versa. Integers are represented by series of bits. For example, the integer 137 can be encoded in



8 bits as 10001001 in the binary number system. That code represents 27+23+20 = 128+8+1 = 137.

Quantum computers operate on qubits. Each qubit is a coherent quantum superposition of state 0 and
state 1, written α|0> + β|1>, where α and β are complex numbers and |α|2 + |β|2 = 1. A qubit therefore
can represent any selected point on the 2-D surface of a Bloch sphere of radius 1,  named after
American physicist Felix Bloch.

Figure 34-3 Qubit |ψ> on Bloch Sphere

Figure 34-3 shows the 2-D spherical surface that represents all possible values of one qubit. The two
possible values of one conventional bit are the sphere’s north and south poles. The modify steps
described below correspond to rotating the qubit across the surface of the Bloch sphere without
disrupting its coherence.

Eight conventional bits, called one byte, can represent any number from 0 to 255. Eight qubits, a
qubyte, can simultaneously represent every number from 0 to 255, for as long as quantum coherence
persists.

Performing a computational procedure on one qubyte effectively performs that procedure
simultaneously on all superposition combinations, vastly increasing computing power. This is the
goal of quantum computing, which is now beginning to be realized.

In the simplest example of teleportation, the master originally contains 1 qubit of information that is a
superposition of two complementary states. For specificity, we’ll assume the complementary states
are spin +S and –S, although the procedure is also applicable to other situations.

The truly clever aspects of this procedure are the modify steps devised by Canadian physicists
Charles Bennett, et. al., and published in 1993.



6-Step Teleportation Procedure
 

1. Make entangled particle pair BC.
2. Send C to destination by normal means.
3. Conditionally modify B per state of master.
4. Measure z-spin of B and x-spin of master.
5. Transmit those spin values to destination.
6. Conditionally modify C; C is now master.

In Step 1, particles B and C are an entangled particle pair in a superposition of two complementary
spin states. We will assume that master, B, and C are identical particles — three electrons, for
example. Teleportation can be accomplished if B and C are identical particles and master is a
different particle, but that requires additional steps.

In Step 2, C is physically transported to the destination by conventional means. According to special
relativity, this cannot occur at more than light speed. To reduce communication delays, this transfer
could occur well before the decision to teleport information, but B and C must remain isolated from
external disturbances to maintain their entanglement.

In Step 3, the z-spin component of B is flipped conditionally. This operation, called CNOT for
conditional negation, flips B’s spin (exchanging up and down) if the z-spin component of master is
down, and does nothing if the z-spin component of master is up. The trick is performing CNOT
without measuring master’s spin, which would destroy essential quantum coherence. Perhaps
surprisingly, certain quantum devices can perform unitary operations such as CNOT without a direct
“measurement” and without loss of coherence — this is the real “magic.” A unitary operation is
equivalent to rotating the qubit to another point on the Bloch sphere without “touching” it. Performing
CNOT on B does not change the state of C, because CNOT does not collapse any wave functions.

In Step 4, we intrusively measure two spin components: B’s z-spin and master’s x-spin. This results
in four possible outcomes (B up/down × master left/right), which amounts to two conventional bits.
The states of both B and master are completely disrupted by the conventional measurement process.
The particle that was master still exists, but the essential characteristics that made it worth describing
are irrevocably lost.

In Step 5, the two measured spin values are transmitted to the destination, at no more than light speed.

In Step 6, the state of C is conditionally modified according to the spin measurements made on B and
master. The possible modifications are 180º rotations on the Bloch sphere about either the x- or z-
axis. Rotating about x flips up and down, and rotating about z flips left and right. These rotations, also
unitary operations, must be performed without measuring particle spins, which would destroy
quantum coherence. The rotations, if required, must be performed in this order:

a) If master’s spin was left, flip C left/right.

b) If B’s spin was up, flip C up/down.



All this results in master’s original quantum state being transferred to C at the remote destination.

Proof of Teleportation Procedure

This section provides mathematical proof of the procedure’s validity using the following notation for
quantum states:

|U> means spin up (+z)
|D> means spin down (–z)
|R> means spin right (+x)
|L> means spin left (–x).

For simplicity, I won’t show the overall normalization of each wave function, which is determined by
requiring |ψ| = 1.

First, we need to review some spin basics. From the spin rotation tables in Chapter 17, the
relationship between z-spins (up/down) and x-spins (right/left) is:

|U> = |R> + |L>
|D> = |R> – |L>

The result of rotating z-spins by 180º about z-axis is:

Start, any U/D: a|U> + b|D>
Restate in R/L: a|R> + a|L> + b|R> – b|L>
Rotate about z: a|L> + a|R> + b|L> – b|R>
Restate in U/D: a|U> – b|D>

Net effect: invert polarity of all |D> states.

We are now ready to confirm the teleportation procedure. We will deal with quantum states of three
identical particles. Let |L,U,D> denote master has spin left, B has spin up, and C has spin down. Our
objective is teleporting the initial state of master to the remote particle C.

Initial states after Step 1:

BC: ψ = |U,D> – |D,U>
Master: ψ = α|U> + β|D>

Initial 3-particle combined state:

ψ=+α|U,U,D>–α|U,D,U>+β|D,U,D>–β|D,D,U>

Step 3: We apply CNOT: flipping B if master is down. This yields:

ψ=+α|U,U,D>–α|U,D,U>+β|D,D,D>–β|D,U,U>



As Step 4 measures master’s x-spin, we restate ψ in terms of master spin states left and right:

ψ =
 +α|R,U,D> –α|R,D,U> +β|R,D,D> –β|R,U,U>
 +α|L,U,D> –α|L,D,U> –β|L,D,D> +β|L,U,U>

Step 4: we measure the x-spin of master and z-spin of B, with 4 possible outcomes. Let S=L,U denote
master’s spin was left and B’s spin was up, etc. Note that entanglement is built into ψ; a measurement
finding B is up eliminates all states with B down, but does not change the spin of C in any remaining
states. The four possible outcomes of Step 4 are:

S=R,U: ψ = +α|R,U,D> –β|R,U,U>
S=L,U: ψ = +α|L,U,D> +β|L,U,U>
S=R,D: ψ = –α|R,D,U> +β|R,D,D>
S=L,D: ψ = –α|L,D,U> –β|L,D,D>

Step 5: we transmit S to the destination by conventional means.

Step 6a: flip C right/left if master was right. As we saw above, this operation on C up/down states
flips the sign of C down states. In each of the four possible S outcomes, this yields:

S=R,U: ψ = –α|R,U,D> – β|R,U,U>
S=L,U: ψ = +α|L,U,D> + β|L,U,U>
S=R,D: ψ = –α|R,D,U> – β|R,D,D>
S=L,D: ψ = –α|L,D,U> – β|L,D,D>

Step 6b: we next flip C up/down if B was up. Recall that S=L,U denotes master’s original x-spin was
left and B’s z-spin was up, etc. In each of the four possible S outcomes, this yields:

S=R,U: ψ = –α|R,U,U> – β|R,U,D>
S=L,U: ψ = +α|L,U,U> + β|L,U,D>
S=R,D: ψ = –α|R,D,U> – β|R,D,D>
S=L,D: ψ = –α|L,D,U> – β|L,D,D>

In each of the four possible S outcomes, the final quantum state of C is:

C: ψ = ±(α|U> + β|D>) = ±(initial state of master)

As we know, multiplying ψ by exp[iθ] for any angle θ (0 or π in this case) changes ψ’s phase angle
but not its magnitude. Phase angles are important only when wave functions interfere coherently. In
isolation, phase angles are irrelevant. Therefore, the above procedure has indeed teleported a master
particle’s initial quantum state to a remote particle, but at the cost of disrupting the state of master,
transmitting 2 bits conventionally, and physically transporting half of an entangled pair.

Teleportation Considerations



Quantum teleportation, QT, cannot reach destinations that have not previously been reached by
conventional means. QT cannot teleport space explorers to distant planets until after halves of an
immense number of entangled pairs and considerable equipment have been delivered to those
destinations. Even then, one entangled pair is consumed for every quantum state teleported.
Transporting entangled particles while maintaining their coherence is much more difficult than
transporting conventional materials. These issues will likely severely restrict the applications of QT.

Teleportation is more than a mere pipedream. QT has been accomplished to a limited degree by the
above procedure. So far, a few qubits, but no physical objects, have been teleported. Error rates are
declining, but are still too high for practical applications. The greatest teleportation distance to date
is 144 kilometers (between the Canary Islands). That distance is comparable to the altitude of
orbiting satellites, proving the possibility of worldwide teleportation of quantum information.

Teleporting a person would require transferring the quantum states of at least 1028 particles and then
reassembling those particles. Hopping a plane, or a spacecraft, seems more practical. One might also
ask: “Is there anything in a person beyond the sum of their particle states?” Scientists aren’t aware of
anything additional, but would you bet your life on it?

Communicating on the QT

Quantum teleportation will enable communication that is vastly more secure than conventional
alternatives. Currently, secure communications rely on senders and receivers knowing secret
encryption keys for translating encoded messages. However, such keys can be copied by, leaked to, or
deciphered by adversaries. During World War II, for example, the British cracked Germany’s Enigma
code and the Allies captured Enigma machines. The U.S. also cracked Japan’s naval codes. Germany
and Japan paid dearly for being overly confident in their communication security.

In contrast, the “encryption key” of quantum communication is the physical possession of half of an
entangled particle pair, which unless meticulously isolated, decoheres destroying the key. Nature’s
quantum uncertainty guarantees message scrambling is absolutely random, and therefore
undecipherable.

One major disadvantage of quantum cryptography is that each entangled pair can only teleport one
qubit from one sender to one receiver. It might not be adequate to communicate lengthy, urgent, or
broadcast messages.

Chapter 34 Review: Key Ideas

• Wave function collapse is the greatest unresolved mystery of quantum mechanics. In 1927, Einstein
described it as the “entirely peculiar mechanism of action at a distance.” Quantum mechanics says
objects can exist in a superposition of different momenta, spins, locations, etc., but measurements
always yield single definitive values for these quantities. To reconcile quantum indeterminacy with
definitive measurements, quantum wave functions must collapse everywhere simultaneously when



disturbed by any substantial external influence, including scientific observation. No one understands
the “magical” mechanism by which wave functions actually do collapse.

• The mathematical formalism of quantum mechanics is one of science’s greatest triumphs. However,
physicists have substantially divergent views on its interpretation. What is the world-view of
quantum mechanics — what does quantum mechanics really say about the fundamental processes
of nature?

This course has previously presented only the standard, most widely accepted, world-view of
quantum mechanics: the Copenhagen interpretation championed by Niels Bohr. It has achieved great
success, but many physicists find it lacking critical explanations, motivating them to intensively
search for alternative interpretations. The sheer number of alternative interpretations attests to great
unease with the world-view of quantum mechanics. The most prominent interpretations, with
representative dates, are: Copenhagen [1924]; pilot waves [1952]; many-worlds [1957]; modal
[1969]; consistent histories [1984]; many-minds [1988]; quantum event [1989]; and relational
quantum mechanics [1996]. None of the alternative interpretations has been widely accepted, at least
not yet.

• Particles are entangled if they exist in a common and inseparable quantum state. For example, the
ground state of positronium is:

|j=0,m=0> = (|e+,p–> – |e–,p+>)/√2

Here, |e+,p–> is the basis state of the electron having spin up and the positron having spin down, and
|e–,p+> is the basis state of opposite spins. The two particles share one common wave function;
neither has its own separate wave function. Each particle has a 50% probability to be spin up, and
50% to be spin down. But the probability of their spins being opposite is always 100%. If we
measure the electron and find that it is spin up, the positron will instantaneously become spin down
with 100% probability.

• Teleportation is the process of recreating material objects at a remote location without physically
moving them through space. Teleportation is possible using entangled quantum states. Quantum
teleportation cannot reach destinations that have not previously been reached by conventional means.
Even then, one entangled particle pair is consumed for every quantum state teleported. Transporting
entangled particles while maintaining their coherence is much more difficult than transporting
conventional materials.



Chapter 35

EPR: QM vs. 
Local Realism

The story of entanglement begins with Albert Einstein, as does much of modern physics. In 1935,
Einstein and two junior associates, Boris Podolsky and Nathan Rosen, published a paper intending to
demonstrate the inadequacy of quantum mechanics. Known as the EPR paper after the authors’
initials, this is one of the most famous and most important contributions to the debate, development,
and understanding of quantum mechanics. The complete title is “Can Quantum-Mechanical
Description of Physical Reality Be Considered Complete?”

EPR asserted that a comprehensive physical theory must address everything that is real. They further
stated that a physical quantity must be considered real if it can be predicted with absolute certainty,
without disturbing the system of which it is a part. For example, if a particle’s position is precisely
determined even without being measured, that position is a real physical entity and any complete
theory of physics must definitively describe it. They claimed quantum mechanics, with its Uncertainty
Principle, fails this essential requirement.

EPR proposed a thought experiment that no one else had seriously considered: measurements of
entangled particle pairs.

Imagine two entangled particles, A and B, in a known state, moving away from point Q in opposite
directions. At some point, when their separation is sufficiently large, we will assume the particles
can no longer interact with one another.

If we then precisely determine the momentum of A, that act precisely and immediately determines the
momentum of B, due to the conservation of total momentum. By EPR’s definition, the act of measuring
A’s momentum makes B’s momentum real, even without measuring B. But, according to the
Uncertainty Principle, precisely knowing B’s momentum makes its location completely uncertain.

Conversely, if we instead precisely determine the position of A, that act precisely and immediately
determines the position of B, since their common center of mass is stationary. By EPR’s definition,
the act of measuring A’s position makes B’s position real, even without measuring B. But, again,
precisely knowing B’s position makes its momentum completely uncertain.

But, if the particles don’t interact after separating, how can the reality of B’s properties depend on
how we choose to measure A (its momentum or its position)? To Einstein, this was irrational. This
dilemma is called the EPR paradox.

EPR claimed there were only two possible resolutions of this paradox:



 

1. contrary to our assumption, particles can interact instantaneously, even when widely separated;
or

2. particle positions and momenta are always real and definite, independent of our measurements.

Alternative (1) violates the postulate of special relativity that nothing can move through space faster
than the speed of light. Alternative (2) violates the Uncertainty Principle of quantum mechanics.

Einstein rejected alternative (1), and concluded that quantum mechanics does not fully describe
reality and is therefore incomplete. Einstein believed quantum mechanics provides valuable insights,
but is only an intermediate step toward a more comprehensive understanding of nature’s fundamental
truths.

EPR suggested the possibility of underlying, but as yet undiscovered, elements of reality that
precisely determine the physical quantities that quantum mechanics says are inherently indeterminant,
such as position and momentum. These undiscovered elements of reality became known as hidden
variables. The basic idea is: nature seems uncertain only because we don’t see the whole picture —
if the hidden variables were revealed, we would clearly see that nature is devoid of uncertainty and
completely deterministic.

Pre-quantum physicists believed in Locality and in Realism (the combination of both is called Local
Realism).

Locality denies action-at-a-distance, particularly instantaneous action-at-a-distance: particles,
energy, forces, and information can flow from one location to another, but not faster than the speed of
light. An effect cannot precede the arrival of a signal traveling at light speed from its cause.

Realism demands that physical quantities, such as a particle’s energy, are real and precisely
determined, independent of their interaction with anything else, including our instruments.

Local Realism is implicitly assumed by classical (pre-quantum) science.

What had been a collegial philosophical debate was transformed by EPR into concrete, stark physical
terms, creating an existential confrontation between the two great pillars of 20th century physics:
relativity and quantum mechanics.

The EPRB Formulation

Einstein’s focus on complementary measurements of entangled particle pairs was brilliant. But the
particular formulation presented by EPR was problematic, particularly regarding experimental
testing. David Bohm developed a better formulation of Einstein’s concept. With Yakir Aharonov,
Bohm published his completed version in 1957, 22 years after the EPR paper. This formulation,
called EPRB, has been the basis of all subsequent work on the EPR paradox.



Bohm’s EPRB formulation is what we discussed earlier: two identical entangled particles, in a
singlet state with opposite spins, move far apart, and are then subjected to spin measurements. We
call the particles A and B, and denote the spin states U for up and D for down. Assume again that A is
measured before B.

Quantum mechanics says the entangled singlet wave function is a quantum superposition, described
by:

ψ√2 = |A=U, B=D> – |A=D, B=U>

Prior to any measurement, the spin of each particle is indeterminant: each is equally U and D.
However, the act of measuring A’s spin instantaneously alters B’s spin, immediately forcing it to
become the opposite of A’s, thus ensuring total spin zero.

In the Bohm formulation, the paradox becomes: (1) are both particle spins actually well-determined
before the measurement of A, contrary to quantum mechanics; or (2) if quantum mechanics is correct,
how does the measurement of A dictate the state of B?

Bohm’s Pilot Waves

Bohm went further and developed an innovative alternative to conventional quantum mechanics. The
standard interpretation of particle-wave duality is that every entity has, to varying degrees, both wave
properties and particle properties — everything is both a particle and a wave. In Bohm’s alternative,
everything is a particle plus a wave. Every entity, Bohm said, has two parts: one part that behaves
like a classical particle and another part that behaves like a classical wave. (Louis de Broglie had
suggested a similar notion many years earlier, but quickly abandoned it.) An electron, Bohm said, is a
classical particle plus an associated pilot wave. The pilot wave spreads throughout space “sensing”
its environment, after which it somehow appropriately directs the motion of its associated particle. In
some versions of Bohm’s scheme, faster than light speed is not necessary, because pilot waves sense
the environment as it develops, even before physicists start collecting data.

In the basic two-slit experiment, for example, each pilot wave explores the geometry of the apparatus
and directs its particle toward a spot on the detector. After myriad particles are piloted through the
apparatus, interference fringes appear on the detector. Exactly where each particle hits the detector is
still governed by probability; God still plays with dice. But the difference Bohm proposes is that each
particle follows a predefined path from source to detector. The paths are assigned randomly,
according to a probability distribution determined after its pilot wave senses the environment but
before the particle leaves the source.

By analogy, consider a deck of playing cards. We shuffle the cards and then deal them. In Bohm’s
concept, each card ends up in a random place, but a place that was determined before the card was
dealt. By examining the deck before the first card is dealt, we can discover the final destination of
every card. Conversely, according to conventional quantum mechanics, each card finds its own path
to a random destination. Examining the deck before it is dealt provides no information about where
each card will land. In quantum mechanics, shuffling is unnecessary; randomization occurs as each



card flies through the air. It’s much harder for a quantum dealer to cheat.

If an external disruption is added to the two-slit apparatus, such as short-wavelength light shining on
one slit, pilot waves would re-direct their particles and the interference fringes would vanish.

In the EPRB scenario, Bohm says:
 

1. Particles in singlet states always have opposite spin.
2. The spin axis of each particle pair is set at the source.
3. The spin axis doesn’t change from source to detector.
4. Each particle always spins in a well-defined direction.

Naturally, Bohm says, measurements on separated pairs will discover opposite spins, regardless of
how and where the spins are measured.

Bohm said pilot waves have so far escaped detection because their energies are vastly smaller than
the energies of their associated particles. In his book The Undivided Universe, Bohm compares a
pilot wave to a radar beacon leading a ship toward port through thick fog — the ship might have
trillions of times more energy than the beacon, but follows it nonetheless.

Could Bohm’s pilot waves be Einstein’s hidden variables?

EPR Tests: QM vs. Local Realism

How can physicists determine whether Local Realism or quantum mechanics best describes nature?

The conflict may be clarified with this macroscopic analogy. Recall the gloves in the prior chapter.
Imagine I order a pair of gloves to be delivered in two boxes, one glove in each box. Not knowing
which is which, I mail one to Alice and the other to Bob. Since human intuition is grounded in Local
Realism, no one is surprised that Alice and Bob receive opposite-handed gloves. But what if these
were quantum gloves in a singlet state? Quantum mechanics says each glove has half a thumb on each
side as long as they’re boxed. When the first box is opened, one glove randomly and instantly
becomes totally left-handed and the other automatically and simultaneously becomes totally right-
handed. While the final result is the same in both theories, the quantum description of how it happens
profoundly shocks human intuition.

In the EPRB formulation, Local Realism says each particle always has a fixed well-defined spin, and
paired singlet particles have opposite spins. Conversely, quantum mechanics says the particles are
entangled, neither particle has a well-defined spin before an external interaction, such as a
measurement, but their total sum is always definitively zero.

In both theories, singlet particle spins are always measured to be exactly opposite one another. How
can we distinguish between two theories that predict the same outcome? How can we know the true
state of particle spins before measuring them?



BELL’S INEQUALITY

In 1964, Irish physicist John Stewart Bell found the path forward. He devised Bell’s Inequality Test
to prove whether or not particle spins are well-determined before they are measured. His clever idea
requires measuring how particle spins correlate when measured in different directions.

For specificity, let’s assume the singlet particles are photons with spin 1. Spin-measuring devices
will report their spins as either +1 or –1 along any direction we choose, but each measurement is
performed only along one direction. A device measuring spins vertically, as shown on Alice’s side of
Figure 35-1, will report either: +1 corresponding to +z-spin, or –1 meaning –z-spin. Another
measuring device rotated by angle θ about the y axis, as shown on Bob’s side, will report either: +1
meaning along the dashed arrow, or –1 meaning antiparallel to the dashed arrow.

Figure 35-1 Orientation of Spin Measurements

We will keep θ in the range –180º to +180º.

Quantum mechanics and classical physics both agree that spin-measuring devices oriented in the same
direction (θ=0) will report opposite spin values: we will always find one +1 and one –1. But things
get more interesting when the devices are pointing in different directions, when θ is non-zero.

Now imagine viewing all this by looking along the horizontal y-axis, as shown in Figure 35-2. On the
left, Alice’s detector reports +1 if her particle’s spin direction, the dotted arrow, is within the gray
zone that spans all angles within 90º of her detector’s measurement direction, the solid arrow.
Conversely, her detector reports –1 if the spin is in the white zone that spans angles more than 90º
from her detector orientation.



Figure 35-2 Detector Responses

On the right, Bob’s detector reports +1 if his particle’s spin direction, the dotted arrow, is within the
gray zone that spans all angles within 90º of his detector’s measurement direction, the solid arrow at
angle θ relative to Alice’s detector orientation. His detector reports –1 if the spin is in the white zone,
any direction more than 90º from his detector orientation.

Now consider what the entire apparatus looks like in the combined view shown in Figure 35-3. 

Figure 35-3 Combined Detector Response Zones

Here Alice’s detector is oriented toward +z, as before, and Bob’s detector is rotated clockwise by an
angle θ. Be aware that the definitions of grey and white zones in Figure 35-2 and Figure 35-3 are
different.

In classical physics, with or without hidden variables, particle pairs leave the origin spinning in
opposite directions along the same axis, as represented by the dotted arrows. The orientation of that
axis is random. A spin in the light gray zone would be reported +1 by both Alice and Bob. A spin in
the dark gray zone would be reported –1 by both. Spins in the white zones would be reported +1 by
one scientist and –1 by the other. The four possible combinations, with measured spins and the
product of the two measured spins are:

Alice’s in light gray: +1 



Bob’s in dark gray: –1 
Spin product: –1

Alice’s in dark gray: –1 
Bob’s in light gray: +1. 
Spin product: –1

Alice’s in upper white: +1 
Bob’s in lower white: +1
Spin product: +1

Alice’s in lower white: –1 
Bob’s in upper white: –1 
Spin product: +1

Each white zone spans an angle θ, and each gray zone spans an angle π–θ. Spin correlation C, defined
as the average over all spin orientations of the product of the two reported spins divided by the total
spin squared (1 in this case), is:

C(θ) = {–2(π–θ) + 2θ} /2π
C(θ) = –1 + 2θ/π

This is the prediction of classical physics, with or without hidden variables. For simple cases, it
matches what we expect. For θ=0, both devices are oriented toward +z and C=–1; spins are found
opposite 100% of the time. For θ=π, the devices are oppositely oriented and C=+1; spins are found
equal 100% of the time. For θ=π/2, the devices are perpendicular and C=0; the spins are uncorrelated
— regardless of Alice’s spin, Bob’s spin is just as likely to be +1 as –1.

What happens in quantum physics, where particle spins are not definite until measured? Assume
Alice’s spin is measured first and is reported +1, which is +z in the above figure. Bob’s spin
immediately becomes –z. If θ=0, Bob’s detector reports –1.

But, what does Bob’s detector report when θ is non-zero?

For spin –1 along the z-axis, the amplitudes for spin –1 and +1 along an axis rotated from the z-axis
by angle θ about the y-axis are (see rotation tables in Chapter 17):

<–1 at angle θ | –z> = (1+cosθ)/2
<+1 at angle θ | –z> = (1–cosθ)/2

The expectation value for Bob’s spin measurement equals:

–1×{Prob(spin=–1) +1×{Prob(spin=+1) =
   –1×(1+2cosθ+cos2θ)/4
   +1×(1–2cosθ+cos2θ)/4

= –cosθ



The expectation value of the product of Alice’s and Bob’s measured spins is:

C(θ) = (Alice’s spin) × (Bob’s spin)
C(θ) = (+1) × (–cosθ)
C(θ) = –cosθ

This is the result when Alice measures spin +1. You may wish to repeat this analysis for Alice
measuring –1; the result is the same.

Quantum mechanics and classical physics make the same predictions for θ = 0, ±90º, and ±180º. But
at other angles, their predictions differ slightly, as shown in Figure 35-4.

Figure 35-4 Spin Correlation vs. θ: Classical vs. QM

From these differing predictions, Bell found an inequality limiting spin correlations in all possible
classical physical theories based on Local Realism. Bell’s inequality is illustrated by this example.

Suppose measurements X and Y give the same result 99% of the time (they are 99% correlated,
CXY=0.99). Suppose also that Y and Z give the same result 99% of the time (CYZ=0.99). According to
the statistics of classical physics, X and Z must give the same result at least 98% of the time. Since X
and Y differ by 1%, and Y and Z differ by 1%, X and Z can differ by no more than 2% (CXZ≥0.98).
Their correlation is stated as an inequality because X and Z could differ by less than 2%; they could
in fact be identical (CXZ=1.00 if X=Z). The key point is that classical physics must conform to an
inequality, which is:

(1–CXZ) ≤ (1–CXY) + (1–CYZ)

We can also write this:

CXZ ≥ CXY + CYZ – 1

Classical physics conforms to this inequality because its spin correlation is linear in θ: C(θ) = –
1+2θ/π.



But, the spin correlation of quantum physics, C(θ) = –cosθ, is non-linear. For cosθ = 0.99, cos(2θ) =
0.96. This means X and Z could be only 96% correlated quantum mechanically, less correlated than
any classical theory could explain.

Quantum mechanics violates Bell’s inequality at some angles.

TESTING BELL’S INEQUALITY

John Clauser and Stuart Freedman of the University of California, Berkeley, performed the first
experimental test of EPRB in 1972. They used entangled photon pairs with complementary
polarizations. They measured correlations over the full range of θ, the angle between detector
orientations, and confirmed the prediction of quantum mechanics at all θ. They expressed the
polarization correlation in terms of a quantity δ from a different version of Bell’s inequality. Their
results are:

Prediction of classical physics: δ ≤ 0
Clauser measured: δ = +0.050 ± 0.008

Clauser’s measurement excludes the predictions of classical physics by over 6 standard deviations
(99.999,999,8% confidence level). However, the detector orientations were fixed during each data
run, and changed only between runs. Local Realists objected that pilot waves had ample time to sense
the detector orientations and guide their particle partners accordingly.

A famous experiment in 1982 by French physicist Alain Aspect et. al. also used entangled photon
pairs with complementary polarizations. Aspect measured polarization correlations using three
orientations corresponding to θ = 0, 22.5º and 45º. The orientations were switched every 10
nanoseconds, substantially less than the light travel time of 40 nanoseconds between detectors. By
switching detector orientations after photon pairs separate, Aspect intended to preclude possible pilot
wave involvement. However, some contested this claim because Aspect’s switching followed a set
pattern, which “clever” pilot waves might detect. The polarization correlations were expressed by a
quantity X that is peculiar to their setup. Their results are:

Classical physics: –1 ≤ X ≤ 0
Quantum physics: X = 0.112
Aspect measured: X = 0.101 ± 0.020

Aspect’s result excludes the predictions of classical physics by 5 standard deviations (99.999,8%
confidence level). His result is consistent with the quantum prediction, validating the assertion of
quantum mechanics that entangled particle polarizations are not determined prior to measurement.

In 2010, another photon experiment, by German physicist Thomas Scheidl et. al., placed polarization
detectors 144 kilometers apart, corresponding to 479 microseconds of light travel time. They
employed a quantum device (light emitting diode and 50-50 beam splitter) to randomly select detector
orientations every microsecond. The orientation options were θ = 0, 22.5º, 45º, and 67.5º. They
employed a different correlation criterion, expressed by a quantity Y. Their results are:



Classical physics: Y ≤ 2.00
Quantum physics: Y = 2.43
Scheidl measured: Y = 2.37 ± 0.02

Quantum mechanics actually predicts Y = 2.828 (2√2) for an experimental apparatus whose detection
and transmission efficiencies are 100%. Scheidl adjusted the QM prediction downward 14% to 2.43,
due to their equipment’s much lower efficiencies. The experiment’s agreement with quantum physics
is not good, being off by three standard deviations (0.27% confidence level for agreement).
Nonetheless, the predictions of classical physics are excluded by 18 standard deviations, well
beyond the pale. As an added bonus, the experimenters chose to do this experiment on the Canary
Islands — why suffer to do science?

Interpretation

One might think these experiments would settle the issue. Quantum mechanics certainly seems
victorious after a 75-year battle. Ah, but the devil is in the details.

No physical mechanism has been offered to explain how Bob’s spin is fixed by Alice’s measurement.
No EPRB experiment has ever observed anything connecting particles at greater than light speed.
Absent a plausible explanation for that “magic”, the EPR debate may never end.

Additionally, several “loopholes” still exist regarding the EPRB experimental validation of quantum
mechanics.

One loophole arises because photon detection efficiencies in these experiments are generally quite
low: 5% to 30% typically. Some physicists question whether the detected photons fairly represent all
entangled photon pairs emerging from the source. If an experiment detects a biased sample, its results
might be skewed.

Another loophole relates to exotic pilot wave conspiracies. Ideally, both detectors would make their
measurements simultaneously, and detector orientations would be selected independently, randomly,
and simultaneously. The Scheidl experiment seems to achieve this, but some hard core Local Realists
disagree. Derided by QM loyalists as “superdeterminists”, they point out that hidden variables might
control the detector orientation selection in addition to the photon spins. That might conceivably make
the detector orientations predetermined and coupled to the photon spins instead of being random and
independent.

A final loophole questions the statistical nature of these experiments. Physical theories predict a
correlation between the two particles of each entangled pair. Experiments estimate that correlation by
averaging over thousands of pairs. Are we sure such averaging truly reflects the pair correlation?

Most physicists think these loopholes represent obsessive nitpicking. They are convinced quantum
mechanics describes nature as it truly is: indeterminant, in precise accord with the Uncertainty
Principle.



Some few still believe the only uncertainty exists in our understanding.

Relational Quantum Mechanics

In 1994, Italian physicist Carlo Rovelli proposed an innovative alternative to conventional quantum
mechanics, which he calls relational quantum mechanics (RQM).

Western science has traditionally stressed reductionism: discovery by breaking everything down into
the smallest, and presumably simplest, parts — it is a “parts first” approach. Eastern philosophies are
often more holistic — a “whole first” approach. Taking an entirely different approach, Rovelli
believes relationships are everything.

In his 1996 paper titled “Relational Quantum Mechanics”, Rovelli says: “Quantum mechanics is a
theory about the physical description of physical systems relative to other systems, and this is a
complete description of the world.” The word “complete” is particularly compelling. (Recall that
completeness was the focus of Einstein’s attack on quantum mechanics.) Rovelli believes each object
in nature is no more and no less than the sum of its relationships with all other objects. He says it is
meaningless to attempt to describe an object in isolation, the historical approach of Western science.

Conventional quantum mechanics makes a clear distinction between the observed and the observer.
Elements of the micro-world are governed by quantum rules, while macro-world entities, including
physicists and their instruments, are governed by the rules of classical physics. It is not we who are
uncertain — all the fuzzy stuff happens on the “other side of the wall.” Rovelli says there is no wall
— everything in nature must be considered a quantum system: subatomic particles, instruments,
people, planets, stars, and even the entire universe.

Furthermore, Rovelli says observers’ descriptions of reality are valid only in relation to themselves.
Einstein, in his theory of special relativity, said observers in different reference frames measure
different values for basic quantities such as distance and time. Rovelli takes “relativity” to another
level.

A “measurement” or “observation” must be viewed as a physical interaction between the two
quantum systems: the observer X and the observed Z. That interaction produces a new quantum
system XZ, which is inherently unique to its constituents. If a different observer Y had measured Z,
their physical interaction could well have been quite different — Y and X could have obtained
different results from observing Z. Both results would be “correct”, but each is correct only relative
to its observer.

An additional consequence of RQM is that two observers can never measure exactly the same thing.
When X observes Z, the state of Z is forever changed. If Y later tries to reproduce X’s measurement,
Y will be measuring the new system XZ not the original system Z. This may result in a different
outcome.

RQM maintains that statements like “this electron is spin up” must be replaced by “device X reports
this electron is spin up.”



According to Rovelli, our quandaries of interpreting quantum mechanics arise from the invalid
assumption, implicit in classical thinking, that reality exists in isolation, that objects have real
properties independent of their surroundings.

RQM, Reality & EPR

Rovelli has a remarkable view of the EPRB paradox. He asks: “Where is the paradox?”

Recall the EPRB formulation: particles A and B emerge from a starting point in an entangled singlet
state, with equal amplitudes for spin combinations A+/B– and A–/B+. Eventually the particles will
be far enough apart that they can no longer communicate with one another, even at the speed of light,
within the time required to measure their spins. Thereafter, Alice measures the spin of A and Bob
simultaneously measures the spin of B.

RQM states that Alice’s interaction with A creates a new quantum system: Alice-A, an entangled
superposition of Alice-measured-A+ and Alice-measured-A–. Similarly, on the other side, Bob and B
become a quantum system: Bob-B, the entangled superposition of Bob-measured-B+ and Bob-
measured-B–. Since the measurements occur simultaneously at widely separated locations, neither
Alice nor Bob can immediately know the result of the other’s measurement. In fact, no one can
measure both particles’ spins simultaneously, nor can anyone immediately know the results of both
measurements.

Only at some later time, as constrained by the speed of light, can signals from Alice-A and Bob-B
combine at a common point. Since angular momentum is conserved in nature, when information from
those two entangled quantum systems combine, the conclusion must be that the spin of A measured by
Alice is opposite to the spin of B measured by Bob.

With RQM, there is no paradox.

Allow me to briefly digress and relate a personal story. While reading Carlo Rovelli’s excellent book
Quantum Gravity, I noticed a footnote at the bottom of page 217, which casually mentions that the
EPR paradox is resolved by RQM. My father, Oreste Piccioni, spent countless hours pondering the
EPR, and he and I had many fruitless discussions about this apparent paradox. Intrigued by the
footnote, I emailed Carlo, told him of our long discussions, and requested a more detailed
explanation. He graciously responded, and later decided to write a paper, published in 2008 with
Matteo Smerlak, entitled “Relational EPR.” This paper presents the RQM solution at a professional,
research science level. Carlo very kindly dedicated his paper to the memory of my father.

Peace in Our Time?

With relational quantum mechanics, both sides of the EPR debate can claim victory. The predictions
of quantum mechanics, which violate Bell’s inequality, are confirmed and are no longer startling. All
interactions are local, and no signals travel faster than light. If we accept that reality is relative,
following a tradition initiated by Einstein, quantum mechanics and Local Realism can peacefully



coexist.

Are Einstein and Bohr both smiling?

I fear that remains uncertain.

Chapter 35 Review: Key Ideas

• Albert Einstein, Boris Podolsky, and Nathan Rosen, published the EPR paper saying a
comprehensive physical theory must address everything that is real. They said a physical quantity
must be considered real if it can be predicted with absolute certainty, without disturbing the system of
which it is a part. They claimed quantum mechanics, with its Uncertainty Principle, fails this
requirement.

EPR proposed a thought experiment in which the properties of one entangled particle depend on how
its remote partner is measured. To Einstein, this was irrational. This dilemma is called the EPR
paradox.

EPR claimed there are only two possible resolutions of this paradox: (1) a violation of the principle
of special relativity that nothing can move through space faster than the speed of light; or (2) a
violation of the Uncertainty Principle of quantum mechanics.

• Locality denies action-at-a-distance, particularly instantaneous action-at-a-distance: particles,
energy, forces, and information cannot move faster than the speed of light. An effect cannot precede
the arrival of a signal traveling at light speed from its cause.

Realism demands that physical quantities, such as a particle’s energy, are real and precisely
determined, independent of their interaction with anything else, including our instruments.

Local Realism is assumed by classical (pre-quantum) science.

EPR created an existential confrontation between the two great pillars of 20th century physics:
relativity and quantum mechanics.

• How can physicists determine whether Local Realism or quantum mechanics best describes nature?

In the EPRB formulation, Local Realism says when two photons in a singlet state, emerge in opposite
directions from point Q, each always has a fixed well-defined spin, and the two particles always
have opposite spins. Conversely, quantum mechanics says the photons are entangled in a
superposition state, in which neither has a well-defined spin before a measurement, but their total sum
is always definitively zero.

In both theories, the photon spins are always measured to be exactly opposite one another. How can
we distinguish between two theories that predict the same outcome? How can we know the true state
of the photon spins before measuring them?



• John Stewart Bell found the path forward, devising Bell’s Inequality Test to prove whether or not
particle spins are well-determined before they are measured. His clever idea is measuring particle
spin correlations C(θ) as a function of the angle between detector orientations. The correlation
predictions of classical and quantum physics are different. For photons these are:

C(θ) = –1 + 2θ/π, for classical physics
C(θ) = –cosθ, for quantum mechanics

Quantum mechanics predicts less correlation at some angles than any classical theory could explain.

Experiments over the last 40 years confirm quantum mechanics convincingly, at least in the opinions
of most physicists.

• Carlo Rovelli proposes an entirely different world-view in his theory of Relational Quantum
Mechanics. He says relationships are everything. Rovelli believes each object in nature is no more
and no less than the sum of its relationships with all other objects. Rovelli says: “Quantum mechanics
is a theory about the physical description of physical systems relative to other systems, and this is a
complete description of the world.” Rovelli says it is meaningless to attempt to describe an object in
isolation, the historical approach of Western science.



Chapter 36

Review of 
QM Part Three

• In all processes driven by either the strong force or the electromagnetic force, the total number of
fermions minus antifermions of each of the twelve types of elementary fermions is always conserved.

The number of bosons is not conserved, neither within one type nor summed over all types.

Only the weak force is known to change one type of elementary fermion into another. The weak force
can change some types of quarks into others, but it does not change the total number of quarks. The
weak force can also change some types of leptons into others, but it does not change the total number
of leptons.

There are four kaons. The K+ and K– are antiparticles of one another. The K0 and K0 (“K-zero-bar”)
contain opposite quarks, making them different particles and antiparticles of one another. The K0 and
K0 are not two independent particles, but are the basis states of a decaying two-state system whose
Hamiltonian has complex components. Absent CP-violation, the neutral kaon “stationary” states
would be:

|K1> = (|K0>–|K0>)/√2
|K2> = (|K0>+|K0>)/√2

The mass difference mK2–mK1 is 3.5x10–12 MeV. This two-state system has three time constants:

K1 lifetime t1 = 8.954×10–11 sec
K2 lifetime t2 = 5.116×10–8 sec
Oscillation time tΔm = 1.88x10–10 sec

A K2 beam traversing matter regenerates a coherent K1 beam, because normal matter preferentially
absorbs K0 over K0. This is called the Pais-Piccioni effect.

Because CP-violation is observed in neutral kaon decays, the actual decay eigenstates are the short-
lived neutral kaon |KS> and the long-lived neutral kaon |KL> defined as:

α |KS> = |K1> + ε|K2>
α |KL> = |K2> + ε|K1>

Here α2 = (1+ε*ε), and ε is a complex number measured to be:



ε = (2.228±0.011)×10–3 exp{i (43.5±0.5)º }

In weak interactions, parity violation is a 100% effect, but CP violation is only a 0.3% effect. We still
have no comprehensive explanation for the origin of this tiny asymmetry.

• Parity operator P acting on circularly polarized photons reverses their direction of motion and
exchanges RHC and LHC polarizations.

Elementary fermions and their antiparticles have opposite parity. Bosons are their own antiparticles.
The parity of a composite system equals the product of the parities of all its constituents multiplied by
(–1)j, where j is the system’s total angular momentum.

• In electric dipole radiation, the emitting atom’s parity reverses, requiring an odd-parity photon
state.

In magnetic dipole radiation, the emitting atom’s parity is unchanged, requiring an even-parity
photon state.

• Positronium is a bound system of an electron and an antielectron (a positron). The orbital ground
state has a spin-one triplet state, and an odd parity, spin-zero singlet state. Conservation of both
angular momentum and parity allow only the singlet state to decay to two photons; the triplet state
must decay to three photons, making its lifetime 1000 times longer (1.42×10–7 vs. 1.25×10–10 seconds).

• Summing angular momenta from several sources entails three key principles:

Firstly, M = Σn mn. M, the z-component of angular momentum of a system, is simply the sum of the z-
components of angular momenta of all the parts of that system.

Secondly, any entity’s total angular momentum J is unchanged by rotation.

Thirdly, the final state with maximum total spin is the linear sum of the original states with equal
coefficients.

• The electron wave function in a hydrogen atom, for quantum numbers n, j, and m, is:

ψn,j,m(θ,ø,ρ,t) = α Yj,m(θ,ø) Fn,j(ρ) exp{–iEnt/ħ}
En = – Ry/n2

ρ = r / rB = r / (ħ2/µe2)
ak+1 = 2ak {k/n–1} / {k(k+1) – j(j+1)}
Fn,j(ρ) = exp{–ρ/n} Σk ak ρk-1

Here α is the normalization factor, µ is the electron mass, and the sum over k goes from k=j+1 to k=n.

Each state with a unique set of quantum numbers n, j, and m, may contain up to two electrons, one spin
up and the other spin down. Each group of |n,j> states has 2j+1 different m-states that may contain up
to 4j+2 electrons. The maximum number of electrons with principal quantum number n, the capacity



of the n-shell, equals 2n2.

• Feynman says: “The Schrödinger equation has been one of the great triumphs of physics. By
providing the key to the underlying machinery of atomic structure it has given an explanation for
atomic spectra, for chemistry, and for the nature of matter.”

• Quantum operators act on quantum states producing new states. Algebraic operators act on
functions producing new functions. For example:

Quantum vs. Algebraic

H |ψ> <=> H ψ(x); H=–(ħ2/2m)∂2/∂x2 +V(x)
x |ψ> <=> x ψ(x) = x ψ(x)
px |ψ> <=> Px ψ(x); Px = (ħ/i) ∂/∂x
P = (ħ/i) (∂/∂x, ∂/∂y, ∂/∂z)
H = (1/2m) P•P + V(r)

For any operator A, its Hermitian adjoint Z is defined by: Zjk = (Akj)*. If Z = A, A is called
Hermitian or self-adjoint.

• If M independent measurements are made on quantum entities in a uniform population, each
measured value must be an eigenvalue. For a quantum system with discrete eigenstates |j> and
eigenvalues Ej, let the number of measurements with value Ej be Mj, with M=ΣjMj. The average
measured value is:

<Eψ> = Σj (Mj/M) Ej

For large M, each Mj/M approaches the expectation value Prob(j), the probability of |j>, and σMj, the
root-mean-square deviation of Mj, equals:

σMj = √{ M p(1–p)}, with p=Prob(j)

If the probability of any particular outcome is small (p<<1), this becomes:

σMj = √{ Mj }

For any physically observable quantity A associated with a quantum operator A, the average value of
A for any state |ψ> can be expressed independently of basis states:

<Aψ> = <ψ| A |ψ>

For a system with continuous, normalized states, this becomes:

<Aψ> = ∫∫ ψ*(x) <x|A|X> ψ(X) dx dX

• The commutator of operators A and B is:



[A,B] = A B – B A

Examples are:

x Px – Px x = iħ
x Py – Px y = 0
[Jx,Jy] = iħ Jz

If [A,B] = 0, the operators commute.

• The time evolution of the average <Aψ> of a large sample of measurements corresponding to
operator A is:

d<Aψ>/dt = <ψ| (i/ħ)[H,A] + dA/dt |ψ>

Examples and their corresponding classical analogs are:

d<xψ>/dt = px/m <=> dx/dt = p/m = v
d<px>/dt = –dV/dx <=> dp/dt=ma=F=–dV/dx

• The probability of finding a particle anywhere must always equal 1. This means probability is
conserved globally. But more importantly, probability is conserved locally as well.

The probability current Ĵ, and its relationship to the change of probability is:

Ĵ = {(ψ* P ψ) + (ψ* P ψ)*}/2m
∂(Prob)/∂t + (i/ħ) P•Ĵ = 0

The time derivative of probability plus the divergence of probability current equals zero, integrated
over any volume we choose. This means probability is conserved locally, within any selected
volume.

• An electron’s wave function describes the amplitude of finding the electron at each location, at each
moment in time. But this does not mean an electron is “smeared-out” with a smooth charge density. If
searched for, an electron will be found at a specific point, with all of its charge at that point.

If an immense number of particles exist in exactly the same state, Feynman says: “ψ*ψ can be
interpreted as the density of particles.”

• The wave function for photons is the same as the electromagnetic vector potential A, which we can
directly measure.

The remarkable thing about low-temperature phenomena, such as superconductivity, is that they allow
fermions to “pair up” forming bosons, such as Cooper pairs, that combine in immense numbers in a
common state, allowing a direct measurement of their wave function.



• Superconductivity is the property of conducting electric current with absolutely zero resistance.
From actual observations, the estimated lifetime of superconducting currents is at least 100,000 years.
Theoretical estimates exceed the age of the universe.

Atomic quantum effects produce the macroscopic phenomenon of superconductivity at extremely low
temperatures. This is because higher-energy states “freeze out”, and behavior is dominated by the
discreteness of the remaining states.

• In the presence of magnetic fields, two types of momentum are important, each with a different role.
Feynman says the same two types arise in classical physics as well, and he defines these as:

“mv-momentum”: p = mv
“p-momentum”: p = mv + qA

Here A is the vector potential defined by:

B = curl A

In the Coulomb gauge, divergence {A} = 0

• Wave function collapse is the greatest unresolved mystery of quantum mechanics. Einstein
described it as the “entirely peculiar mechanism of action at a distance.” Quantum entities can exist
in a superposition of different momenta, spins, locations, etc., but measurements always yield single
definitive values for these quantities. To reconcile quantum indeterminacy with definitive
measurements, wave functions must collapse everywhere simultaneously when disturbed by any
substantial external influence, including scientific observation. While wave functions are
mathematical constructs without physical reality, no one understands the “magical” mechanism by
which wave functions collapse.

• The mathematical formalism of quantum mechanics is one of science’s greatest triumphs. However,
physicists have substantially divergent views on its interpretation. What is the world-view of
quantum mechanics — what does quantum mechanics really say about the fundamental processes of
nature?

• Particles are entangled if they exist in a common and inseparable quantum state. For example, the
state of the two photons emitted by the decay of singlet-state positronium is:

(|1RHC, 2LHC> – |1LHC, 2RHC>)/√2

Here, |1RHC, 2LHC> is the basis state of photon #1 being RHC and photon #2 being LHC polarized.
The two photons share one common wave function; neither has its own separate wave function. Each
photon has a 50% probability of RHC and 50% probability of LHC polarization. But the probability
of their polarizations being opposite is always 100%. If we measure photon #1 and find it is RHC,
photon #2 instantaneously becomes LHC.



• Teleportation is the process of recreating material objects at a remote location without physically
moving those entities through space. Teleportation is possible using entangled quantum states, but it
cannot reach destinations that have not previously been reached by conventional means. One
entangled particle pair is consumed for every quantum state teleported.

• Einstein, Podolsky, and Rosen (EPR) said a comprehensive physical theory must address
everything that is real. They said a physical quantity is real if it can be predicted with absolute
certainty, without measuring it. They claimed quantum mechanics, with its Uncertainty Principle, fails
this requirement.

Given two entangled, but separated particles, A and B, EPR claims that measuring different
properties of A makes corresponding properties of B real. But, if the particles are too far apart to
interact, how can the reality of B’s properties depend on how we choose to measure A? To Einstein,
this was irrational. This dilemma is called the EPR paradox.

EPR claimed there were only two possible resolutions of this paradox: (1) a violation of the
principle of special relativity that nothing can move through space faster than the speed of light; or (2)
a violation of the Uncertainty Principle of quantum mechanics.

• Local Realism (Locality plus Realism) is assumed by pre-quantum science.

Locality denies action-at-a-distance, particularly instantaneous action-at-a-distance: particles,
energy, forces, and information cannot move faster than the speed of light. An effect cannot precede
the arrival of a signal traveling at light speed from its cause.

Realism demands that physical quantities, such as a particle’s energy, are real and precisely
determined, independent of their interaction with anything else, including our instruments.

• In Bohm’s EPRB formulation, two photons in a singlet state emerge in opposite directions from
point Q. Local Realism says each photon always has a fixed well-defined spin, and the two photons
always have opposite spins. Conversely, quantum mechanics says the photons are entangled in a
superposition state in which neither has a well-defined spin before a measurement, but their total sum
is always definitively zero.

In both theories, the photon spins are always measured to be exactly opposite one another. How can
we distinguish between two theories that predict the same outcome? How can we know the true state
of the photon spins before measuring them?

John Stewart Bell devised Bell’s Inequality Test to prove whether or not particle spins are well-
determined before they are measured. His clever idea is measuring particle spin correlations C(θ) as
a function of the angle between detector orientations. At some angles, quantum mechanics predicts
less correlation than any classical theory could explain. Experiments over the last 40 years
convincingly confirm quantum mechanics, at least in the opinions of most physicists.

• Carlo Rovelli’s theory of Relational Quantum Mechanics proposes an entirely different world-



view. He says relationships are everything. Rovelli believes each object in nature is no more and no
less than the sum of its relationships with all other objects. Rovelli says: “Quantum mechanics is a
theory about the physical description of physical systems relative to other systems, and this is a
complete description of the world.” Rovelli says it is meaningless to attempt to describe an object in
isolation, the historical approach of Western science.

• Feynman ends his course on quantum mechanics with this advice: 

“I am sorry to say… that to participate in this adventure [physical science] it is absolutely
imperative that you learn quantum mechanics as soon as possible. It was our hope that in this
course we would find a way to make comprehensible to you at the earliest possible moment the
mysteries of this part of physics.”



Feynman’s Epilogue

On the last day of class, at the end of his two-year introductory physics course, Feynman gave his
farewell address:

“Well, I've been talking to you for two years and now I'm going to quit. In some ways I would
like to apologize, and other ways not. I hope—in fact, I know—that two or three dozen of you
have been able to follow everything with great excitement, and have had a good time with it. But
I also know that ‘the powers of instruction are of very little efficacy except in those happy
circumstances in which they are practically superfluous.’ So, for the two or three dozen who
have understood everything, may I say I have done nothing but shown you the things. For the
others, if I have made you hate the subject, I'm sorry. I never taught elementary physics before,
and I apologize. I just hope that I haven't caused a serious trouble to you, and that you do not
leave this exciting business. I hope that someone else can teach it to you in a way that doesn't
give you indigestion, and that you will find someday that, after all, it isn't as horrible as it looks.

“Finally, may I add that the main purpose of my teaching has not been to prepare you for some
examination—it was not even to prepare you to serve industry or the military. I wanted most to
give you some appreciation of the wonderful world and the physicist's way of looking at it,
which, I believe, is a major part of the true culture of modern times. (There are probably
professors of other subjects who would object, but I believe that they are completely wrong.)

“Perhaps you will not only have some appreciation of this culture; it is even possible that you
may want to join in the greatest adventure that the human mind has ever begun.

In my opinion, “the powers of instruction” are neither of “little efficacy” nor “practically
superfluous.”

I believe great teachers dramatically enhance students’ enjoyment, enthusiasm, achievement, and
success in both career and life. I cherish the memories of several great teachers who certainly
enriched my life. Feynman was one of the very best.

Feynman’s stated goal was to challenge and inspire those few who might one day become world-
leading physicists. I describe this goal as: “No Einstein left behind.” But, I believe educators should
strive to reach more than “two or three dozen” out of 200 elite students — the other 170 deserve
more. While almost everything in the Feynman Lectures is science that every successful physicist
must learn eventually, his content is too much, too complex, and too rushed for mere mortals.

My goal is to bring Feynman’s gift of science to all who love science. The Feynman Lectures
provide the greatest trove of profound insight ever presented in an introductory physics course. I hope



this treasure will inspire many bright young minds throughout the world. I hope Feynman Simplified
reduces your “indigestion” without diminishing the brilliance and passion of one of history’s greatest
physicists.



Meet The Author

Congratulations and thank you for reading my book. I know your time is valuable, and I sincerely
hope you enjoyed this experience.

I’d like to tell you something about myself and share some stories.

First, the obligatory bio (as if 3 “tweets”-worth can define anyone): I have a B.S. in physics from
Caltech, a Ph.D. in high-energy particle physics from Stanford University, and was on the faculty of
Harvard University. Now “retired,” I teach at the Osher Institutes at UCLA and CSUCI, where
students honored me as “Teacher of the Year.” In between, I ran eight high-tech companies and hold
patents in medical,x semiconductor, and energy technologies.

My goal is to help more people appreciate and enjoy science. We all know one doesn’t have to be a
world-class musician to appreciate great music — all of us can do that. I believe the same is true for
science — everyone can enjoy the exciting discoveries and intriguing mysteries of our universe.

I’ve given 400+ presentations to general audiences of all ages and backgrounds, and have written 3
printed books and 29 eBooks. My books have won national and international competitions, and are
among the highest rated physics books on Amazon.com. I’m delighted that two of these recently
became the 2nd and 3rd best sellers in their fields.

Richard Feynman was a friend and colleague of my father, Oreste Piccioni, so I knew him well before
entering Caltech. On several occasions, Feynman drove from Pasadena to San Diego to sail on our
small boat and have dinner at our home. Feynman, my father, my brother and I once went to the
movies to see “Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb.” It was
particularly poignant watching this movie next to one of the Manhattan Project’s key physicists.

At Caltech I was privileged to learn physics directly from this greatest scientist of our age. I absorbed
all I could. His style and enthusiasm were as important as the facts and equations. Top professors
typically teach only upper-level graduate classes. But Feynman realized traditional introductory
physics didn’t well prepare students for modern physics. He thought even beginners should be
exposed to relativity, quantum mechanics, and particles physics. So he created a whole new
curriculum and personally taught freshman and sophomore physics in the academic years 1961-62 and
1962-63.

The best students thrived on a cornucopia of exciting frontier science, but many others did not.
Although Caltech may be the world’s most selective science school, about half its elite and eager
students drowned in Feynman’s class. Even a classmate, who decades later received the Nobel Prize
in Physics, struggled in this class. Feynman once told me that students sometimes gave him the “stink
eye” — he added: “Me thinks he didn’t understand angular momentum.”

Some mundane factors made the class very tough: Feynman’s book wasn’t written yet; class notes



came out many weeks late; and traditional helpers (teaching assistants and upper classmen) didn’t
understand physics the way Feynman taught it.

But the biggest problem was that so much challenging material flew by so quickly. Like most elite
scientists, Feynman’s teaching mission was to inspire the one or two students who might become
leading physicists of the next generation. He said in his preface that he was surprised and delighted
that 10% of the class did very well.

My goal is to reach the other 90%.

It’s a great shame that so many had so much difficulty with the original course — there is so much
great science to enjoy. I hope to help change that and bring Feynman’s genius to a wider audience.

Please let me know how I can make Feynman Simplified even better — contact me through my 
WEBSITE.

While you’re there, check out my other books and sign-up for my newsletters.

Printed Books, each top-rated by Amazon readers:
 

Everyone's Guide to Atoms, Einstein, and the Universe
Can Life Be Merely An Accident?
A World Without Einstein

 

The Everyone's Guide Series of Short eBooks
 

Einstein:
His Struggles, and Ultimate Success, plus
Special Relativity: 3 Volumes, A to Z
General Relativity: 4 Volumes, from Introduction to Differential Topology

Quantum Mechanics: 5 Volumes, from Introduction to Entanglement

Higgs, Bosons, & Fermions… Introduction to Particle Physics

Cosmology
Our Universe: 5 Volumes, everything under the Sun
Our Place in the Universe: a gentle overview
Black Holes, Supernovae & More
We are Stardust
Searching for Earth 2.0

 

http://www.guidetothecosmos.com/


Smarter Energy

Timeless Atoms

Science & Faith
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