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Everyone’s Guide to the
Feynman Lectures on Physics

Feynman Simplified gives mere mortals access to the fabled Feynman Lectures on Physics.

Quantum mechanics is rarely taught well in introductory physics courses, largely because this
challenging subject was not well taught to many of today’s instructors. Few had the opportunity to
learn quantum mechanics from some who understood it profoundly; almost none learned it from one of
its creators. Here more than anywhere else, Feynman excels. Here more than anywhere else,
Feynman Simplified can help you learn from the very best, but at a humane pace. 

This Book

Feynman Simplified: 3A covers the first half of Volume 3 and chapters 37 and 38 of Volume 1 of
The Feynman Lectures on Physics. The topics we explore include: 
 

Why the Micro-World is Different.
Quantization and Particle-Wave Duality
Indeterminism and the Uncertainty Principle
Probabilities and Amplitudes
Identical Particle Phenomena
Bosons and Spin One
Fermions and Spin One-Half
Time Evolution and the Hamiltonian Operator
The Two-State Ammonia Maser

Readers will greatly benefit from a prior understanding of the material in Feynman Simplified 1A,
1B and 1C. A familiarity with elementary calculus is assumed.

To find out about other eBooks in the Feynman Simplified series, and to receive corrections and
updates, click HERE.

Please help us make Feynman Simplified even better! Physics books are never completely error-free,
and all become outdated when new discoveries are made. I welcome your comments and suggestions.
Please contact me through my WEBSITE.

If you enjoy this eBook please do me the great favor of rating it on Amazon.com or BN.com. 

http://www.guidetothecosmos.com/feynman_simplified.html
http://www.guidetothecosmos.com/
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Chapter 1

What Is 
Quantum Mechanics?

Much of the material in this chapter supplements the Feynman Lectures.

Quantum mechanics is the physical theory of elementary particles, how they interact with one another,
and how they form atoms and larger structures.

It is often said that quantum mechanics is strange, “unnatural”, and bizarrely contrary to our innate
sense of how things “really” are. For example, quantum mechanics says objects can be in different
places at the same time, and can be simultaneously right-side-up and upside-down. It says particles
are both everywhere and nowhere, until we look at them.

To that last assertion, Einstein scoffed: “Would the Moon disappear if we did not look at it?” Moon
no, but electrons yes.

Other eminent physicists have also found quantum mechanics astonishing, including two Nobel
Laureates honored for developing quantum mechanics:

"If quantum mechanics hasn't profoundly shocked you,
you haven't understood it yet"

— Niels Bohr

"I think that I can safely say that
no one understands quantum mechanics"

— Richard Feynman

Quantum mechanics is strange, but true.

Quantum mechanics correctly describes nature’s fundamental processes, the nuts-and-bolts of reality
at its core. This strange theory is one of the most extensively tested and precisely confirmed creations
of the human mind. The everyday world we perceive is a hazy, superficial, diluted version of the
tempestuous reality at nature’s core. Perhaps, it is our perception of reality that is unnatural.

How can Feynman say “no one understands quantum mechanics” when he and many others have filled
library shelves with books explaining it? Let me address that with an analogy. Many people say they
understand computers because they can email and surf the web. But few dive inside the box. And
even fewer comprehend the internal structure of all those gray plastic centipedes that populate its



guts. We know how to use quantum mechanics, but its gray centipedes are still bewildering.

Quantum mechanics is truly how the world works: it is the heart of physics.

Although many conclusions of quantum mechanics defy our intuition, physicists believe we now know
all its rules. We can solve all its equations, even if we must laugh at some of the answers. In this
sense, quantum mechanics is a mystery that we have solved but not fully digested.

Key Principles of Quantum Mechanics

The greatest physical theories blossom from just a few remarkable but simple-sounding ideas.
Galileo’s Principle of Relativity has one idea: only relative velocities are physically meaningful.
Einstein’s Special Theory of Relativity has one: the speed of light never changes. Einstein’s General
Theory of Relativity has one: locally, gravity is equivalent to acceleration.

I say quantum mechanics has two key principles. These two ideas are so interrelated that they could
be combined into one idea. Perhaps, but it is easier to learn them separately, and put them together
later. The two principles are:

1. Quantization

2. Particle-Wave Duality

We will first describe what quantization means, then examine the development of particle-wave
duality, and ultimately discover how duality leads to quantization.

Quantization

Quantization is the simple notion that some things in nature are countable — they come in integer
quantities.

Money is quantized. In the U.S., the amount of money in any transaction is an integer multiple of 1¢.
In Japan it’s 1¥. Particles and people are also quantized: there is no such thing as 1.37 electrons or π
people. Conversely, at least on a human scale, water, air, space, and time appear to be continuous. As
our understanding has advanced, we have discovered that more and more entities that seem
continuous are actually quantized. Perhaps we will ultimately discover that everything really is
quantized.

The staircase and ramp in Figure 1-1 illustrate the difference between quantized and continuous. On a
ramp, every elevation is possible; just slide along to the right spot.



Figure 1-1 Staircase and Ramp

On a staircase, only a few discrete elevations are possible. One can be as high as the second step, or
the third step, but never as high as the 2.7th step, because no such step exists. On a staircase,
elevation changes abruptly and substantially.

The micro-world of atoms and particles is replete with significant staircases — the steps are large
and dramatically impact natural processes in this realm. We, however, live on a much larger scale,
billions of times larger. As one’s perception zooms out from the atomic scale toward the human scale,
the steps in nature’s staircases appear ever smaller and ever more numerous, as depicted in Figure 1-
2.

Figure 1-2 Staircase Viewed On Ever-Larger Scales

Eventually, the steps become too small to be seen individually, and we observe smooth ramps instead
of staircases.

Nature does not have one set of laws for the atomic scale and another set of laws for the human scale.
Nature’s laws are universal; these steps exist always and everywhere. But at our level, the steps are
so small that they almost never make a discernible difference.

In our macro-world, planets can orbit stars at any distance, baseballs can have any speed, and nothing
is ever in two different places at the same time.

In the micro-world, electrons circle nuclei only in specific orbits, only with specific energies, and
are everywhere simultaneously, until the macro-world intervenes.

Quantum mechanics is all about understanding what happens when the staircase steps are important,
when quantization dominates.

The Beginning of Quantum Theory

Feynman Simplified 1B Chapter 20 discusses how and why the first glimmers of quantum mechanics
emerged in 1900, when Max Planck “solved” the Ultraviolet Catastrophe in the theory of thermal
radiation.

Thermal radiation is the light (often infrared light) that objects emit due to their heat energy, the
random motion of “hot” atoms. Recall that classical physics predicts thermal radiation has the same



wave amplitude at each frequency. Since frequency f has an unlimited range, when one integrates to
infinite f, the total radiation becomes infinite. Lighting a match should cremate the entire universe —
clearly that is ridiculous. For theorists it was a catastrophe at high frequency, ultraviolet and beyond.

To fix this, Planck postulated that thermal radiation is quantized. He said energy is emitted only in
integer multiples of hf: he said the emitted energy E must equal nhf, where n is an integer and h is a
constant named in Planck’s honor. For a high enough frequency f, the available energy is less than
1•hf. Allowing only integer multiples of hf precludes any n•hf except 0•hf. This truncates high
frequency emission and makes the integral finite. Planck offered no physical rationale for quantizing
thermal emission; he viewed it as simply a mathematical formalism that worked.

Truly, this was a solution without an explanation. But a profound explanation came five years later.

Einstein & The Photoelectric Effect

In 1887, Heinrich Hertz observed that when light strikes a metal, an electric current is produced
sometimes. Careful experiments determined this photoelectric effect is due to light knocking
electrons out of the atoms of the metal. In 1839, A. Edmond Becquerel discovered the closely related
photovoltaic effect in which light sometimes elevates atomic electrons to higher energy states. Both
originate from the same basic physics. But mysteriously, both effects only happen sometimes.

Knocking an electron away from a positively charged nucleus requires energy. Since light carries
energy, any beam of light of sufficient intensity should eject electrons. But here’s the mysterious part:
blue light ejects electrons but red light doesn’t. Even extremely intense beams of red light fail to eject
electrons. Conversely, even low intensity beams of blue light eject a few electrons.

What’s wrong with red?

Einstein solved this mystery in 1905 by proclaiming that light is both a particle and a wave. This was
heresy ─ every other physicist was certain that waves and particles were entirely distinct and
incompatible. Yet, Einstein claimed these two very different phenomena are actually two aspects of a
more fundamental entity.

Einstein said light beams are composed of vast numbers of individual particles, which we now call
photons. He said each photon’s energy E is proportional to its frequency f, according to: E=hf. Blue
light has twice the frequency of red light, hence a blue photon has twice the energy of a red photon.
When a beam of photons strikes a metal surface, Einstein explained, the fundamental interaction is
one photon hitting one electron ─ there’s no double-teaming. It takes one good whack to eject an
electron; a thousand little nudges wouldn’t do the trick. An electron is ejected only if a single photon
has sufficient energy. A blue photon does have enough energy, but a red photon doesn’t. That’s why
blue works and red doesn’t.

Einstein realized his concept of light being individual particles fit perfectly with Planck’s
quantization of thermal radiation. Since particles always come in integer quantities, it is evident that
the energy of radiation must be quantized, an integer multiple of the energy of one photon, hf. (Recall



that Feynman said: “The real glory of science is that we can find a way of thinking such that the law
is evident.”)

Let’s go back to 1900 and understand why Einstein’s claim that light is both particle and wave was so
revolutionary.

Particles Versus Waves

Physicists in 1900 were universally convinced that there were two completely separate and
incompatible entities in nature: particles and waves. Particles were simpler, just very small versions
of golf balls. Waves were much more complex. Their essential differences are tabulated below:

 

Particles always come in integer numbers and are precisely localized. They require no medium to
travel through and can move at any speed. Conversely, waves can have any amplitude; with waves it
is how much, not how many. Waves spread throughout all available space, and exhibit complex
diffraction and interference effects that particles never do. Waves are the organized motion of a
medium, such as air molecules for sound waves. Waves cannot exist without a medium, and their
speed is determined by the properties of their medium, not by their source.

We cover the basics of particle motion in 1 chapter, Feynman Simplified 1A Chapter 6, and the
behavior of light waves in 9 chapters, Feynman Simplified 1C Chapters 30 through 38.

If all that doesn’t convince you that waves and particles are completely different, consider their
force-free equations of motion, with A being amplitude and a being acceleration:

Particle: 0 = a
Wave: 0 = d2A/dx2 +d2A/dy2 +d2A/dz2 –d2A/dt2

It was obvious to everyone that particles and waves had nothing in common. Obvious to everyone,
that is, except Einstein.



One might say Einstein thought “outside the box.” But, it may be more accurate to say that he never
even noticed that there were boxes.

Particle–Wave Duality

Einstein said light is both a wave and a particle. Louis de Broglie expanded on this idea and said
particles are also waves. In particular, de Broglie said every particle has a wavelength λ given by
λ=h/p, where p is the particle’s momentum. This remarkable combination, now called particle-wave
duality, became the essential foundation of quantum mechanics. It also ultimately led to conclusions
that Einstein could never accept.

Einstein opened Pandora’s box and was never able to squeeze Uncertainty back into the box.

We now know “particle” and “wave” are really labels for the opposite ends of a continuous
spectrum, similar to the labels “black” and “white.” Everything in our universe is really a shade of
gray. In our macro-world, everything is almost completely black or white. But in the micro-world,
gray rules. Sometimes particle-waves are more particle-like and sometimes more wave-like, but
fundamentally, everything is always really both.

Two-Slit With Classical Particles

Let’s examine the impact of particles having wavelengths using the iconic experiment of quantum
mechanics: the two-slit experiment discussed in Feynman Simplified 1C Chapter 31.

To establish a baseline, first imagine running the experiment with classical particles: tennis balls. A
ball throwing machine S shoots tennis balls in random directions toward a net that is broken in two
places. Some tennis balls pass through the holes, but are randomly deflected. These eventually reach
the backboard F, shown in Figure 1-3, where we tally each ball’s impact point. Let the figure’s
vertical axis be y and let y=0 be the horizontal midline, which is the axis of symmetry of our
apparatus.

Figure 1-3 Two-Slit With Classical Particles



Call the upper hole #1 and the lower #2. After thousands of balls have reached F, we plot a
probability distribution P1(y), the probability that a ball passing through hole #1 reaches F at vertical
position y. We similarly plot P2(y) for balls passing through hole #2, and P1+2(y) for balls passing
through either hole. In our experiment, P1(y) is quite broad but peaks along the line from S through
hole #1. P2(y) is also broad and peaks along line from S through hole #2.

Clearly, P1+2(y) = P1(y) + P2(y). For tennis balls, and all classical particles, probabilities simply add;
balls that reach F have gone through either one hole or the other. Additionally, each classical particle
is a single entity that arrives at a single localized point.

None of this is surprising; it’s what we expect particles to do.

Two-Slit With Classical Waves

Now, let’s do a similar experiment with a classical wave. In Figure 1-4, waves from source S strike
an opaque barrier with two small slits, producing two coherent wave sources with zero phase shift
and equal amplitudes and frequencies.

Figure 1-4 Two-Slit Experiment With Waves

The two waves interfere on a detection screen F. Define D to be the slit separation, L to be the
distance between barrier and F, and as before, y is the vertical axis with y=0 on the midline. The
apparatus is symmetric about the midline and L>>D.

If we close one slit, the wave intensity broadly and smoothly spreads across F, peaking along a line
from S through the open hole. By symmetry, we get the same total intensity when either hole is open
and the other is closed.

But with both holes open things become much more interesting: we get the interference fringe pattern
shown at the right side of Figure 1-4. We mastered wave interference in Feynman Simplified 1C
Chapter 31, but let’s review it again so you don’t have to switch back and forth between eBooks.

The waves passing through each slit are coherent with zero phase shift and equal amplitudes and



frequencies ω. As the two waves proceed to F, they may travel different distances, changing their
relative phase shift.

For the wave passing through slit #1, the upper slit, its wave equation at point y on F can be written:

Acos(ωt+z1k)

where wave number k equals ω/c, z1 is the distance from slit #1 to y, and A is the wave amplitude at
F. We assume any path length differences are << L, so the 1/r amplitude dependence can be ignored.

Similarly for the wave from slit #2:

Acos(ωt+z2k)

Now, consider how these two waves combine on F.

Waves from slit #1 and slit #2 travel the same distance to reach y=0: z1=z2, by symmetry. Therefore
their relative phase shift remains zero, as it was at the barrier. At y=0, the waves interfere entirely
constructively. Their combined amplitude is 2A, making their combined intensity 4A2<cos2(ωt)> =
2A2. Recall that < > means time average over a full cycle. The two waves produce a high-intensity
white fringe surrounding y=0.

As y increases, z1 decreases while z2 increases. At some y value, the difference in slit distances, z2–z1,
equals λ/2. There the lower wave arrives one-half cycle after the upper wave, resulting in entirely
destructive interference: their combined amplitude is zero. The waves produce a zero-intensity black
fringe.

At about twice that y value, z2 becomes one full wavelength longer than z1, z2–z1=λ. Since a full cycle
delay is equivalent to zero phase shift, here interference is again entirely constructive, producing
another white fringe. The pattern repeats up and down screen F, producing an alternating pattern of
black and white fringes of nearly equal width.

We can calculate z1 and z2 for any y value on screen F, recalling that the slits are at vertical positions
±D/2, and assuming L >> D or y.

z1 = √(L2+(y–D/2)2) ≈ L + (y–D/2)2/2L
z2 = √(L2+(y+D/2)2) ≈ L + (y+D/2)2/2L
Δz = z2–z1 ≈ yD/L

(The convention on Δq and dq is: Δq is a difference of any magnitude between two values of any
variable q, whereas dq implies an infinitesimal change in variable q. The latter are of particular
interest in the calculus of derivatives and integrals.)

For any y, the combined amplitude A1+2 and intensity I1+2 are:

A1+2 = Acos(ωt+z1k) + Acos(ωt+z2k)



A1+2 = 2A cos(ωt+[z1+z2]k/2) cos(Δz k/2)
I1+2 = <A1+2

2>
I1+2 = 4A2 (1/2) cos2[Δz k/2]
I1+2 = A2 (1+cos[Δz k])

As we see, the intensity varies between 2A2 and zero, averaging A2, which is the sum of the intensity
of each wave separately. The combined intensity peaks at y=Δz=0, and drops to zero when cos[Δz
k]=–1, where:

±π = (Δz) (k)
±π = (yD/L) (2π/λ)
y = ± λL / 2D

The corresponding beam angles are:

θ ≈ tanθ = y/L = ± λ / 2D

The angular span of a full cycle, one white and one black fringe, is 2θ = λ/D.

These are wave interference effects to which classical physicists were well accustomed.

Two-Slit With Real Electrons

In V1p37-4 and V3p1-4, Feynman suggested performing the two-slit experiment using electrons in
place of classical particles or classical waves. Because of the extremely short wavelength of
electrons, such an experiment is so technically challenging that no one, Feynman included, expected
that it could actually be done in the foreseeable future. He invited his students to consider this as just
a thought experiment.

However, nothing inspires experimental physicists more than the world’s preeminent theorist saying
an experiment is impossible. It’s like waving a red flag at a bull.

An Italian group led by Guilio Pozzi achieved the first successful electron interference experiment in
1974. In 1989, Akira Tonomura of Hitachi followed with an improved experiment. Rather than trying
to make slits of the required minuteness, both experiments used optical separators. In 2013, a U.S.-
Canadian team led by Herman Batelaan published the grandest such experiment so far. They made
two physical slits in gold foil that were 62 nm wide and 272 nm apart. Their source emitted electrons
of energy 600 eV, corresponding to a wavelength of 0.008 nm. One of their images is shown in Figure
1-5. It clearly demonstrates interference fringes, proving electrons have wave properties.



Figure 1-5 Two-Slit 
Experiment With Electrons

Looking closely at the image, we see countless tiny discrete dots. Each dot corresponds to a single
electron impact. Since waves impact broad areas not single points, the tiny dots prove electrons have
particle properties. The combination of both effects proves electrons are simultaneously particles and
waves.

Here is the most staggering conclusion. In this experiment, electrons were emitted at a rate of one per
second, so only one electron at a time went through the apparatus. This means each electron must have
gone through both slits simultaneously and interfered with itself at the detector. This is nothing like
your grandfather’s electron.

This two-slit experiment, suggested by Feynman, reveals the ultimate expression of particle-wave
duality.

In V3p1-1, Feynman says the two-slit experiment “is impossible, absolutely impossible, to explain in
any classical way, and … has in it the heart of quantum mechanics.” He said this experiment
encapsulates all the mysteries of quantum mechanics, and adds: “We cannot make the mystery go
away by ‘explaining’ how it works.

To paraphrase Hermann Minkowski on spacetime: particles of themselves and waves of themselves
will sink into mere shadows, and only a kind of union between them, particle-waves, shall survive.
There is no longer any doubt: particle-wave duality is a fundamental property of nature.

We have lost both our classical particles and our classical waves, but as Feynman points out in V3p1-
1, at least they have become the same entity: we now need only deal with particle-waves.

The Glory of Unification

Einstein unified two seemingly distinct phenomena — particles and waves — into a single entity.
This was one of many occasions in which Einstein found the underlying unity of apparently disparate
entities and thereby advanced our understanding of nature. Newton unified all gravitational effects in
a single theory of universal gravity. Maxwell and Faraday unified electricity, magnetism, and light.
Einstein unified particles and waves, then he unified space and time, then mass and energy, and finally
spacetime and mass-energy. Each unifying advance brought a more profound understanding of our
natural world.



Chapter 1 Review: Key Ideas
 

1. Quantum mechanics is the physical theory of elementary particles, how they interact with one
another, and how they form atoms and larger structures.

2. Quantum mechanics is truly how the world works: it is the heart of physics.

3. Although many conclusions of quantum mechanics defy our intuition, physicists believe we now
know all its rules. We can solve all its equations. In this sense, quantum mechanics is a mystery
that we have solved but not fully digested.

4. The two key principles of quantum mechanics are:

Quantization
Particle-Wave Duality

5. Quantization is the notion that many things in nature come in integral numbers, like steps on a
staircase. In the micro-world, staircases dominate; their steps are large and abrupt. In the macro-
world, the steps are so small and so numerous that nature’s staircases seem like ramps.

6. We now know “particle” and “wave” are really labels, like “black” and “white”, for the
opposite ends of a continuous spectrum. Everything in our universe is really a shade of gray. In
our macro-world, almost everything is almost completely black or white. But in the micro-
world, gray rules.

7. Every particle has a wavelength λ determined by its momentum p: λ=h/p.

8. Classical particles and classical waves do not exist. Both are now replaced with particle-
waves.



Chapter 2

Particle-Wave Duality 
& Uncertainty

Particles Are Wave Packets

Much of this section supplements the Feynman Lectures.

How can a particle, which seems localized, also be a wave that strives to spread across all space?
Said another way, how can there be a wave-like entity inside a particle?

Particles can indeed be composed of waves in the form of wave packets, as illustrated in Figure 2-1.
Here five waves of different frequencies combine to form a wave packet. Each of the five waves on
the left spreads evenly throughout all space; they are completely un-localized. Yet their sum is
somewhat localized, being confined within a horizontal distance Δx. It looks somewhat particle-like.

Figure 2-1 Waves Making a Wave Packet

But on the other hand, each of the five waves on the left has a definite frequency, which their sum
does not. The wave packet is a composite of frequencies spanning a range Δf.

Particle-wave duality leads us to model all entities as wave-packets, each spanning a distance Δx and
composed of frequencies spanning a range Δf. When an entity is more localized (small Δx) it is more
particle-like. When an entity is spread broadly (large Δx) it is more wave-like with a better-defined
frequency (small Δf).

Wave packets impose tradeoffs. Adding more different frequencies reduces a wave packet’s width 
Δx, but at the expense of broadening its frequency spread Δf. Adding fewer different frequencies
reduces Δf at the expense of broadening Δx. The wave packet-particle’s position can become less
uncertain (smaller Δx) only if its frequency becomes more uncertain (larger Δf), and vice versa.

The tradeoff is mathematically inescapable: Δf and Δx are inversely proportional. We can express



that relationship in terms of momentum p:

Δx ~ 1/Δf
f ~ 1/λ ~ p
Δx ~ 1/Δp
Δx • Δp = constant

This is the basis of the Heisenberg Uncertainty Principle: particle-waves have an irreducible
minimum product of (the uncertainty in position) × (the uncertainty in momentum).

When the uncertainties have normal Gaussian distributions, and the Δ’s represent one standard
deviation, the proper mathematical statement of Heisenberg’s Uncertainty Principle is contained in
four equations:

Δx • Δpx ≥ ħ/2
Δy • Δpy ≥ ħ/2
Δz • Δpz ≥ ħ/2
Δt • ΔE ≥ ħ/2

where ħ = h/2π

The conditions described above are optimal. Uncertainties could be worse (more uncertain) than
above, but they can never be better.

These uncertainties are the direct consequence of particles having wavelengths.

Phase Space

This section supplements the Feynman Lectures.

One way to think about the uncertainty principle is in geometric terms. Einstein excelled at
transforming complex dynamics into geometry, which is generally simpler and more intuitive.

Consider Δx • Δpx ≥ ħ/2. It says the product of two quantities has a minimum value. We can think of
the product of two quantities as representing an area. In this case, an area that is Δx wide by Δp long.
What the uncertainty principle is saying, in these terms, is that a particle-wave requires some
minimum area — it demands an area of at least ħ/2. It is impossible, Heisenberg says, to squeeze a
particle-wave into anything smaller.

Now, this minimum area can have almost any shape, as illustrated in Figure 2-2. It can be square, long
and narrow, or even curved. But the area on a (x,px) plot cannot be smaller than ħ/2.



Figure 2-2 Phase Space for x,px

This (x,px) expanse is called phase space. Phase space is a mathematical tool, not a representation of
any real physical object. In classical physics, each particle occupies a single point in phase space,
with a definite position and momentum. And a wave occupies a single horizontal line (one momentum
value, but spread across all x values). In quantum physics, particle-waves occupy an area. This is the
essential distinction between the quantum and the classical viewpoints.

For the single spatial dimension x, the corresponding phase space is two-dimensional. Since the
uncertainty principle applies equally and independently to all three spatial dimensions, the complete
phase space representation is six dimensional: (x,y,z,px,py,pz). In 6-D phase space, a particle-wave
must occupy a volume of at least ħ3/8.

There is no need to add E, t and go to an 8-D phase space. Since E2=p2c2+m2c4 for any particle-wave,
knowing the three Δp’s defines ΔE.

The only limitation to this geometric analogy is that one cannot trade x real estate for z real estate; the
minimum area requirement applies separately for x, y, and z.

Can We Peek Under The Curtain?

That nature prevents us from knowing fundamental quantities with unlimited precision is anathema to
physicists. Since the dawn of quantum mechanics over a century ago, physicists have tried hundreds
of clever schemes to circumvent the uncertainty inherent in particle-wave duality. All such schemes
have failed; exhaustive searching has found no chinks in quantum mechanics’ armor.

In V3p1-6, Feynman examines the failure of one such scheme.

For the electrons that we know and love, going through two slits simultaneously is “utterly
impossible” some say. Some suggest sneaking a spy into the two-slit experiment to reveal which slit
each electron “really” goes through. As shown in Figure 2-3, a light source shines downward



covering both slit exits. After going through the slits, electrons traversing the spy light beam deflect
the beam’s photons. We collect the deflected photons with an optical system that focuses light from
the upper slit at one point and from the lower slit at another point. This informs us which slit (or slits)
each electron went through.

Figure 2-3 Spy  Light Spans Slit Exits

Will we see light flashes from one slit or the other as each electron-particle goes by, or will we see
simultaneous flashes from both slits as each electron-wave goes by? Will the intensity distribution be
the broad smooth curve of a classical particle, like that on the extreme right? Or will we see the
interference fringes of a classical wave, like the pattern next to F? Surely with this setup, we can now
determine whether electrons are fish or fowl.

Let’s see about that.

No one has yet done a two-slit experiment of this type. But innumerable experiments have never
detected the same electron in two places simultaneously. Whenever measurements determine an
electron’s location, the result is one and only position. As we will discuss throughout this eBook,
measurement requires a substantial interaction, and substantial interactions localize particles to
specific positions. Thus we can say with confidence that our spy light will never detect simultaneous
flashes from both slits.

This leaves three possible outcomes for each electron that strikes F:
 

1. We detect a light flash from slit #1
2. We detect a light flash from slit #2
3. We detect no flash

Our experiment can separately determine the probability distribution of impact points on F for each of
the three outcomes. In the above order, the probability distributions actually observed are:
 

1. P1, classical particle through slit #1
2. P2, classical particle through slit #2



3. Interference, classical wave

When we identify which slit each electron passes through, the interference effect vanishes. If we turn
off the spy light, the interference pattern returns.

Detecting where electrons go, changes where they go.

This is not completely unexpected if we consider what “detection” entails. To measure an object’s
location, momentum, or other characteristics, we must cause an interaction. Measurement is a contact
sport, and the contact is more like boxing than dancing. In this case, we bombard electrons with
photons. We detect an electron’s position only when it substantially deflects a photon in a collision.
Recalling Newton’s third law, this happens only when the electron’s momentum changes as much as
the photon’s momentum. Measuring an electron’s position requires changing its momentum and
possibly destroying the coherence of the two electron-waves exiting the slits.

Can we probe less invasively? Let’s try reducing the intensity of our spy light.

Lower intensity means fewer photons. At very low intensity, not every electron is struck by a photon;
some electrons travel from slit to screen without interaction. We then have two types of events: those
with collisions, where we know which slit was traversed; and those without collision, where we
don’t. We find that events with collisions have the probability distribution of classical particles with
no interference, while events without collisions have the probability distribution of classical waves
with interference fringes.

We have gained no new information. This is because, while there are fewer photons, each has the
same energy as before. Fewer collisions occur, but each collision that does occur entails the same
substantial change of the electron’s momentum.

Instead of reducing photon numbers, let’s instead reduce each photon’s energy — let’s use redder
light. We repeat the experiment many times, each time reducing the spy light photons’ energy and
increasing their wavelength.

At first, longer wavelengths make no difference. Electrons hit by our spy light do not produce
interference fringes. But eventually, our photons are gentle enough not to destroy the electrons’
coherence. At some spy light wavelength, call it λγ, the electrons produce a hybrid probability
distribution; wave interference peaks and troughs start to breakup the broad smooth particle curve.
When the spy light wavelength is several times λγ, the broad smooth curve is entirely replaced by
interference fringes.

Astonishingly, the wavelength λγ at which interference returns is the wavelength at which we can no
longer tell which slit each electron traversed. It seems like a conspiracy.

We measure an electron’s position by bombarding it with photons, capturing deflected photons, and
using their initial and final trajectories to locate the collision. The collision location, and hence the
electron’s location, is measured with a precision of one photon wavelength. Here’s a crude but apt
analogy. Imagine trying to find a glass vase in a dark room. We might throw golf balls in various



directions. The sound of shattering glass reveals where the vase was to within ±2cm. If one used
basketballs, the position would be known to ±12cm. For beach balls, it might be ±75cm. For photons
it’s ± half a wavelength.

What is λγ in our spy light two-slit experiment? Define λe and pe to be the electron’s wavelength and
momentum, and pγ to be the spy photons’ momentum. For each λp=h. Recall from above that the
interference fringe pattern repeats with an angular width of Δθ=λe/D. If spy photons deflect electrons
exiting the slits by an angle 2Δθ, the black and white interference fringes will be smeared out to a
uniform gray. That deflection corresponds to a momentum change:

Δpe/pe = Δθ = λe/D
Δpe = pe λe/D = h/D

The electron’s momentum change equals the photon’s momentum change (action=reaction). We detect
deflected photons only if their trajectories change substantially. Assume as a rough approximation that
this means the photon’s momentum change equals its total momentum:

Δpe = Δpγ ≈ pγ

h/D = h/λγ

λγ = D

Interference effects are averaged out when λγ is less than the slit separation D, and they appear when
λγ>D, when the spy photons’ wavelengths are too large to determine which slit the electrons traverse.

Lest we bemoan a conspiracy to withhold “truth”, this is nothing more than nature’s inexorable logic.
As often discussed in Feynman Simplified 1C Chapters 30 through 38, waves interfere when and
only when they are coherent, having the same frequency and stable phase shifts. Substantial
interactions, either due to random macroscopic chaos or to intentional measurements, destroy
coherence and interference.

In V3p1-9, Feynman raises the question of why we don’t see interference fringes with macroscopic
particles. As Feynman says, interference is everywhere in nature, it’s just a question of scale. For a
57-gram tennis ball served at 263 km/hr, momentum p = 4 kg m/s, corresponding to a wavelength of
1.6×10–34 m. That is impossible to detect.

Sliding Slits

In V3p1-11, Feynman examines another attempt to defeat the uncertainty principle. This time the
barrier with two slits is mounted on rollers, allowing it to slide in the vertical direction, as shown in
Figure 2-4. Again, D is the slit separation and L is the distance from barrier to screen F.



Figure 2-4 Two Slit with Barrier on Rollers

Consider two electrons traversing opposite slits and converging on F at y=0, as shown in the figure.
The electron from the upper slit must be deflected downward by the barrier to reach y=0. This means
the barrier must be deflected upward by the electron (action=reaction). Similarly, the electron from
the lower slit must deflect the barrier downward to reach y=0. Thus by measuring the barrier’s
motion, we can determine which slit each electron traversed, without having to interact directly with
the electron.

How clever. But not clever enough to defeat quantum mechanics.

It’s best to use electrons from an extremely distant source S, with momentum p incident normal to the
barrier. The momentum transfer required for an electron to reach point y on F is:

upper slit: Δp1/p = θ1 ≈ tanθ1 = (–D/2 –y)/L
lower slit: Δp2/p = θ2 ≈ tanθ2 = (+D/2 –y)/L
Δp = Δp2–Δp1 = pD/L

Note that if the electron source was nearby, the electrons would have to bend more, and the total Δp
would be larger. Our plan is to identify which slit electrons traverse by observing the barrier’s
recoil. As shown above, Δp does not depend on y; Δp has the same value for every position on the
screen.

As Feynman explains, for this scheme to work, we must know, for each electron transit, both the
barrier’s vertical position and momentum change. However, everything in nature is a particle-wave;
the barrier itself is subject to quantum mechanics. The uncertainty principle limits our ability to
precisely know both the barrier position and its momentum. Measuring its momentum to a precision
ΔpB results in an uncertainty ΔyB in the barrier’s position of:

ΔyB ≈ h/ΔpB = h (L/pD) = (h/p) L/D = λL/D

In our analysis of the normal two-slit experiment, we found that the distance Δy on screen F at which



the interference pattern repeats is:

Δy = λL/D

This means the fringe pattern width Δy is comparable to the barrier position uncertainty ΔyB.

The conclusion is: measuring the barrier momentum precisely enough for slit identification results in
a barrier position uncertainty comparable to the width of one black and one white fringe. As the
barrier jitters up and down, the interference pattern is averaged out to the smooth broad distribution
of a classical particle.

A Brave New World of Uncertainty

In English, what Heisenberg announced in 1927 is universally called the “uncertainty” principle.
Unfortunately, “uncertainty” connotes a human quandary, which is not the correct interpretation. The
uncertainty principle is not about our ignorance. In the original German, Heisenberg said
“ungenauigkeit”, which is better translated as “unexactness” or “imprecision.”

The uncertainty principle declares that nature is a bit fuzzy. There is an intrinsic imprecision in some
fundamental quantities, including position, time, energy, and momentum. Even with the best
imaginable instruments, we can never know with unlimited precision both the location and momentum
of an electron. We can’t know because nature does not simultaneously establish both these
quantities with unlimited precision. Nature is inherently fuzzy, but in a very precise way.

In v1p1-10 Feynman says: “We would like to emphasize a very important difference between
classical physics and quantum mechanics”.

The laws of classical physics are completely deterministic. The entire future of every particle is
predetermined with absolute precision, and has been since the Big Bang, if not before.

Conversely, imprecision / indetermination / uncertainty / fuzziness are inescapable in the quantum
world. No particle’s future is predetermined or can be predicted with certainty. By extension, this
means no system of particles — atoms, humans, stars, galaxies, even the entire universe — has a
precisely predetermined future.

Physicists were once sure we could measure anything and predict everything, with sufficient
instruments. Now we must retreat to the goal of predicting probabilities.

For physicists, this is a traumatic setback, one that Einstein and others never accepted.

Einstein, Newton, and the little scientist in all our souls, believed the universe is a giant clockwork.
Like a perfect clock, it ticks inexorably forward, governed by immutable laws, toward a
predetermined future. They believed humanity could aspire to understand those laws and glimpse that
future.



Quantum mechanics rudely wakens us from our utopian dreams to face the dreary reality that we are
just playing craps. We can never again claim to predict exactly what electrons or anything else will
do. We can only predict exactly the probabilities of various possible future outcomes.

Einstein bewailed: “God does not play with dice.” Niels Bohr, his dear friend and colleague, replied:
“Don’t tell God what to do with His dice.” As Feynman often admonishes, we must accept nature as it
is, not as we wish it were.

Principles of Probabilistic Quantum Mechanics

In V3p1-9, Feynman lists principles governing probabilistic quantum mechanics. He defines an “ideal
experiment” as one in which all the initial and final conditions are as precisely known as quantum
mechanics allows. He defines an “event” as a specific set of these initial and final conditions. For
example, the two-slit experiment is ideal, at least theoretically. One event might be: an electron
leaves source S, arrives at position y on detector F, and no spy light flashes are observed. Here are
the principles that countless experiments have confirmed:

1. In an ideal experiment, if event A can occur in only one way, the probability of that event,
P(A) is:

P(A) = øø* = |ø|2

where ø(A) is a complex number called the probability amplitude of A, and ø* is its complex
conjugate. The probability of A is the square of the magnitude of the probability amplitude of A.

It is essential to understand the distinction between probability and probability amplitude. In
quantum mechanics, “probability” has the same meaning as in mathematics: it describes the
likelihood of some outcome. The term “probability amplitude” is unique to quantum mechanics;
it has no analog in either our daily experience or in normal statistics. Being complex numbers,
probability amplitudes are able to describe the interference effects of waves, which can
combine either constructively or destructively. Probabilities always add, but probability
amplitudes always interfere, either adding, subtracting, or somewhere in between.

2. When state A can occur in N different, undistinguished ways, we have:

ø = ø1 + ø2 + … + øN

P(A) = øø* = |ø|2

The probability amplitudes are summed, properly accounting for interference among the terms,
and then that sum is squared. Note all N ways must produce the same state A.



3. When event A can occur in N different, distinguished ways, we have:

P(A) = |ø1|2 + |ø2|2 + … + |øN|2

P(A) = P1 + P2 + … + PN

The probability amplitudes are squared first, eliminating the possibility of interference, and then
those squares are summed. This summing of probabilities is the standard of classical physics.

Quantum mechanics teaches us how to calculate ø and how to determine what is distinguished.

In V3p1-10, Feynman says:

“One might still like to ask: ‘How does it work? What is the machinery behind the law?’ No one
has found any machinery behind the law. No one can ‘explain’ any more than we have just
‘explained.’ No one can give you any deeper representation of the situation. We have no ideas
about a more basic mechanism from which these results can be deduced.”

While this may not be a “deeper representation”, I can say something about when we square the sum
of amplitudes (#2 above) and when we sum the squares of amplitudes (#3 above). The determining
factor is coherence, or lack thereof.

Everything has wave properties. When coherent waves combine, they interfere, and one must sum
amplitudes before squaring to get intensity. Without coherence, one sums probabilities, the square of
amplitudes, in the classical manner.

Initially coherent waves, traveling different paths, retain their coherence if they remain undisturbed.
Any substantial interaction disrupts coherence. That interaction could arise randomly from the chaotic
macro-world, or it could arise from human measurement that determines the wave’s path. The
dividing line between distinguished and undistinguished is defined by the magnitude of any disruptive
interactions.

The key factor is not human intention or knowledge. It is the magnitude of the change in wave
frequency and/or phase due to external interaction. This was demonstrated in our discussion of the
spy light. Coherence, and therefore interference, is lost when and only when the spy light photons are
energetic enough to distinguish which slit the electron traverses. Whether or not humans actually
record spy light flashes is irrelevant.

Many have proposed various “hidden variable” theories to circumvent the uncertainty principle’s
destruction of the beloved deterministic, clockwork universe. These theories claim elementary
particles have internal characteristics, of which we are not yet aware, and that these hidden
characteristics control the particles’ behavior according to completely deterministic laws.

Einstein and two junior associates, Boris Podolsky and Nathan Rosen, made the first such proposal in
a brilliant paper in 1935. Combining the first letter of each author’s name, this concept is called the



EPR paradox. Einstein claimed to show that the predictions of quantum mechanics were so absurd
that it must be an incomplete theory — it must be missing something hidden. EPR, and the many
variants that it spawned, claim particles are always in well-defined states, with positions and
momenta with zero uncertainty. If we were able to observe particles’ hidden variables, they claim, we
would see that nature is deterministic. The uncertainty espoused by quantum mechanics, EPR says,
arises from our ignorance of these hidden variables.

The EPR saga continued for the rest of the 20th century. It witnessed many brilliant theories and
amazing experiments. Long after Einstein and Feynman had passed, this issue was definitively settled:
every possible class of hidden variable theories has been refuted by observations that only quantum
mechanics can explain.

I plan to fully address EPR, as this fascinating subject deserves, later in the Feynman Simplified
series.

Chapter 2 Review: Key Ideas
 

1. Heisenberg’s Uncertainty Principle is stated in four equations:

Δx Δpx ≥ ħ/2
Δy Δpy ≥ ħ/2
Δz Δpz ≥ ħ/2
Δt ΔE ≥ ħ/2

where ħ=h/2π=1.055×10–34 joule-sec, and
h=6.626×10–34 joule-sec is Planck’s constant

2. The Uncertainty Principle forces us to abandon the hope of exactly predicting the future.
Instead, we must resign ourselves to the goal of exactly predicting the probabilities of all
possible future outcomes.

3. Observation requires interaction. Substantial interactions alter the behavior of what is observed.

4. The probability P(A) of an event A that can occur in only one way is:

P(A) = øø* = |ø|2

where ø(A) is a complex number called the probability amplitude of A.

When event A can occur in N different, undistinguished ways, we have:

ø = ø1 + ø2 + … + øN

P(A) = øø* = |ø|2



Note, for the above, all N ways must produce the same state A.

When event A can occur in N different distinguished ways, we have:

P(A) = |ø1|2 + |ø2|2 + … + |øN|2
P(A) = P1 + P2 + … + PN



Chapter 3

Particles, Waves 
& Particle-Waves

This chapter is more qualitative than quantitative. Starting in V3p2-1, Feynman explores particle-
wave behavior, delineating the still-useful and the now-outdated aspects of classical ideas of waves
and particles. Subsequent chapters provide comprehensive quantitative analysis.

In the prior chapter, we learned that, in quantum theory, the probability of finding a particle at
location x at time t is proportional to the magnitude-squared of a probability amplitude ø(x,t), which
is a complex number.

One example is ø = Aexp{–iωt+ik•r}, for frequency ω, wave number 3-vector k, and position vector
r. We write exp{y} rather than ey for better ereading clarity. Amplitude ø describes a classical wave
that fills all of space; its magnitude-squared is A2 everywhere. This could be the equation for a plane
wave of light or sound. Because ø has a definite frequency and wave number, it has a definite energy
and momentum:

E = ħω
p = ħk

Conversely, if a particle is confined within a region of width Δy, the probability of finding it outside
Δy must be zero. This means, the magnitude of the probability amplitude, and hence the amplitude
itself, must be zero outside Δy. Mathematically, a wave-packet of limited spatial extent does not have
a definite frequency. In quantum mechanics, de Broglie’s equation λ=h/p extends that indefiniteness to
the wave-packet’s momentum.

Let’s gain some insight into the uncertainty principle by examining two attempts to simultaneously
measure particle-wave location y and momentum p.

Y & P Measured by a Barrier With Aperture

Consider a parallel beam of particle-waves incident on a barrier with a small aperture that is
followed by a detection screen, as shown in Figure 3-1. Let D be the aperture width, L be the distance
between barrier and screen, and let y=0 on the horizontal axis of symmetry.



Figure 3-1 Plane Wave Diffracting 
from Barrier with Aperture

Assume the incident particles have momenta py=0 and pz=p0. What do we know about the particles
after they pass through the aperture?

Particles exiting the aperture must have y values between +D/2 and –D/2.

Feynman cautions: we might assume the particle’s exiting y momentum is zero with zero uncertainty,
“but that is wrong. We once knew the momentum was [entirely] horizontal, but we do not know it any
more. Before the particles passed through the hole, we did not know their vertical positions. Now that
we have found the vertical position … we have lost our information about the vertical momentum!”

According to particle-wave duality, these particles have a wavelength λ=h/p0. We know waves
diffract after passing through apertures (see Feynman Simplified 1C, Chapter 31); so must these
particle-waves.

At each point along the screen, such as point C indicated in the figure, there is some probability of
detecting a particle hit. Unlike classical waves, each particle-wave hits the screen at one and only
one point. But the probability of a particle-wave hit is distributed across the entire screen. A typical
probability distribution is shown on the right side of Figure 3-1.

The uncertainty in y momentum can be can approximated by the angular width of the central peak of
the probability distribution. As we discovered in the above-mentioned chapter, the angle of the first
minimum intensity, θMIN, is:

θMIN = λ/D

This means the spread in y-momentum is:

Δpy = p0 λ/D = h/D

The product of (the y position uncertainty) × (the y momentum uncertainty) is:

Δy Δpy = (D/2) (h/D) = h/2



If we had been more precise in defining uncertainties, the constant on the right side would be smaller.

A brief mathematical side note: uncertainties should correspond to 1σ, one standard deviation. For
example, with a probability distribution P(x) centered at x=0, σ2=∫x2P(x)dx. For P(x)=1/D for |x|<D/2
and P(x)=0 for |x|>D/2, σ2=(1/3)(D2/4), so σ=D/√12, not D/2 as we used above.

Nonetheless, the essential point is clear. We can make Δy smaller by shrinking the aperture, which
increases Δpy. Making Δpy smaller requires increasing Δy. We can trade one uncertainty for another
but we cannot make both uncertainties arbitrarily small.

Feynman says some might protest that, after a particle hits the screen, we can precisely know both its
position and momentum. We could, in principle, measure with great precision both the energy E and
position y of the particle when it hits the screen. Combining that with the particle’s y position at the
slit (0±D/2), we can calculate its y momentum:

py = (y±D/2)/(Lc) √(E2–m2c4)

For sufficiently large L, the uncertainty Δpy can be made arbitrarily small.

In V3p1-3, Feynman says:

“It is quite true that we can receive a particle, and on reception determine what its position is
and what its momentum would have had to have been to have gotten there. That is true, but that is
not what the uncertainty relation [Δy Δpy ≥ ħ/2] refers to. [That relation] refers to the
predictability of a situation, not remarks about the past.”

Feynman’s point is that the uncertainty principle limits what we can know about what a particle’s
condition is before it is measured.

Y & P Measured by a Diffraction Grating

We next employ a diffraction grating to simultaneously measure the y position and y momentum of a
particle-wave. A diffraction grating allows us to measure the wavelength of the particle-wave. We
refer to the analysis of diffraction gratings in Feynman Simplified 1C, Chapter 33.

Consider the grating shown in Figure 3-2, which features N=5 diffracting grooves, each separated by
distance D.



Figure 3-2 Diffraction from Grating

For a plane wave of definite wavelength λ, incident normal to the grating, an mth order beam is
emitted at angle β, according to:

sinβ = mλ/D

To make the discussion simpler, take the case of m=1. Eager readers can work through the analysis for
arbitrary m.

The emitted beam arrives at a remote screen, where we display its intensity profile, seen in the lower
right portion of the figure. The m=1 beam requires that groove-to-screen path lengths increase by 1λ
per groove. This means the top groove has a path length (N–1)λ longer than the path length of the
bottom groove. In Figure 3-2, that extra path length is labeled S.

Also in Feynman Simplified 1C Chapter 33, a diffraction grating’s resolving power is calculated,
based on the Rayleigh criterion. A grating can distinguish two wavelengths that differ by Δλ when:

Δλ/λ = ±1/Nm = ±1/N for m=1

That analysis assumed all grooves contributed to the m=1 order diffraction beam. Now let’s examine
more closely what that means. Imagine that the incident plane wave has just been switched on. At the
detection screen, the first particles to arrive are those from the bottom groove, which is the closest.
We will call that groove #1, and call the first arrival time t1. Groove #2 is λ farther away, so its
contribution arrives λ/v later, where v is the particle-wave velocity; call its arrival time t2. Since
λf=v for any wave, we can write t2=1/f. The top groove’s contribution arrives at tN=(N–1)/f.

The key point here is that the full diffraction pattern shown in the figure, and the full resolving power
of the grating, is achieved only when the incident wave lasts longer than tN.



Imagine for example, that the plane wave has a duration equal to 2/f, two full wave cycles. At t3,
diffracted beams arrive at the screen from grooves #2 and #3. Groove #1 is no longer being excited
by the incident wave and is no longer radiating. Contributions from grooves #4 and #5 haven’t
arrived yet. The groove #2 and #3 beams interfere, producing a diffraction pattern whose width and
resolving power correspond to two grooves, not N grooves. At t4, beams arrive from grooves #3 and
#4. We again get a two-groove diffraction pattern, which is displaced from the pattern at t3.

We never get the full N-groove pattern, unless the wave persists for at least N full cycles.

If the duration of the incident particle-wave is Δt=J/f, the best wavelength resolution possible is:

Δλ/λ = ±1/J

We define the particle-wave’s direction of motion to be y and its momentum and energy to be py and
E. We will approximate Δt=J/f to be the uncertainty in the time of the particle-wave, and Δy = v Δt to
be the uncertainty in its position.

Note that:

ΔE = h Δf
v = λf, so 0 = λ df + f dλ
df/f = –dλ/λ = 1/J
h = pλ, so dp/p = – dλ/λ

Since we are dealing with uncertainties like ±Δλ, the above minus signs are irrelevant. Combining
these equations:

ΔE Δt = (h Δf) Δt = h (f/J) (J/f)
ΔE Δt = h

Δpy Δy = (py Δλ/λ) (v Δt) = py (1/J) v (Jλ/v)
Δpy Δy = py λ = h

Feynman points out that all the above (except λ=h/p) result from the fundamental properties of
classical waves, not from quantum mechanics. Recalling the wave packet of Figure 2-1, a wave
packet confined to distance L has an uncertain number of wavelengths of “something like” ±1. This
corresponds to a wavelength uncertainty of ±1/L. Similarly, a wave packet confined to a time interval
T has a frequency uncertainty of ±1/T.

In V3p2-4, Feynman says the classical notion of definite momentum fails when a particle-wave is
confined to a small space, according to Δp ~ h / Δx. Similarly, the classical notion of definite energy
fails for small time intervals, according to ΔE ~ h / Δt.

Diffraction from a Crystal



Crystals are solids that are composed of repeating patterns of atoms. In V3p2-5, Feynman gives a 2-D
analogy: wallpaper, whose repeating pattern, sometimes simple and sometimes more complex,
repeats across the entire wall. The pattern that repeats is called the unit cell, and the manner in which
the repetition occurs is called the lattice type.

X-rays are often used to study crystal structures, since their wavelengths are comparable to atomic
spacings. Indeed, as discussed in Feynman Simplified 1C, Chapter 33, x-ray crystallography is the
most precise method of determining the atomic structure of anything that can be crystallized, from the
simplest compounds to DNA containing billions of atoms. To get a strong reflected x-ray beam, we
want constructive interference from each plane of atoms in the crystal. This is again a diffraction
problem.

Figure 3-3 shows an incident x-ray beam at angle θ to the crystal plane that reflects, also at angle θ,
and goes off to the upper right. We define d to be the spacing of adjacent crystal planes.

Figure 3-3 X-ray  Diffraction from Cry stal

Constructive interference requires the path lengths for reflections from adjacent planes to differ by an
integer number of wavelengths. This means:

2d sinθ = nλ, for any integer n>0

If there were atoms halfway between the upper and middle planes of Figure 3-3, they would interfere
completely destructively for the n=1 beam, since 2(d/2)sinθ would equal λ/2. This means the crystal
orientation relative to the x-ray beam is critical.

Interestingly, the angles at which diffraction occurs, the angles with constructive interference,
determine the lattice type, whereas the ratios of intensities at the various angles reveals the structure
of the unit cell.

As with most scientific endeavors, getting the most out of x-ray crystallography requires a profound
understanding of the underlying physics plus a good deal of creativity and craftsmanship — there’s a
reason outstanding performance is called the “state of the art.”

Figure 3-4 shows an x-ray image of ZnS, zinc sulfide, taken by Max Laue, who received the 1914
Nobel Prize for discovering x-ray diffraction by crystals. This provided strong evidence that x-rays



are a form of light.

Figure 3-4 X-ray Crystallographic 
Image of ZnS by Max Laue

Figure 3-5 shows an x-ray crystallographic image of an enzyme of the SARS virus. This highlights the
crucial role of x-ray crystallography in biology and medicine.

Figure 3-5 X-ray Image of SARS 
Protease by Jeff Dahl



In V3p2-5, Feynman points out that for long wavelengths, particle-waves do not scatter coherently in
a crystal. For λ>2d, the equation 2dsinθ=nλ has no solutions except n=0. A particle-wave incident
normal to the crystal’s exterior surface propagates in a straight line. In general some incoherent
scattering and possibly other interactions will attenuate the incident beam, causing an exponential
decrease in its amplitude. But that attenuation is sometimes very modest. As mentioned earlier in this
course, visible light attenuation in glass is only 2% per km.

An interesting example of the absence of diffractive scattering of long wavelengths occurs in atomic
reactors. Neutrons with low energies and λ>2d traverse graphite without coherent scattering. But
higher energy neutrons with λ<2d are coherently scattered. This phenomenon allows the production of
very low energy neutron beams. It also proves that neutrons have wave properties just as electrons
do. And as Feynman says, neutrons “are obviously particles, for anyone’s money!”

Uncertainty and the Size of Hydrogen

In V3p2—5, Feynman uses the uncertainty principle to calculate the size of the lowest-energy electron
orbit in a hydrogen atom. This is an approximate analysis, enlightening but not rigorous.

Suppose an electron orbits the nucleus at radius r. If r were zero, we would know the electron’s
position with zero uncertainty and it would have to have infinite momentum, according to the
uncertainty principle. For a position uncertainty ≈ ±r, the momentum uncertainty ≈ ±ħ/r. Equating the
momentum uncertainty with the electron’s total momentum means the electron’s kinetic energy is:

mv2/2 = p2/2m ≈ ħ2/(2mr2).

Also, at radius r, the electron’s potential energy is –e2/r (see Feynman Simplified 1C Chapter 35).
Hence the electron’s total energy is:

E = ħ2/(2mr2) –e2/r

As r decreases, the first term above increases while the second decreases (becomes more negative).
Nature always seeks the minimum energy, which is where dE/dr=0.

0 = dE/dr = –2ħ2/(2mr3) +e2/r2

0 = –ħ2/m +e2r
r = ħ2/(me2), for hydrogen
r = 0.529 angstroms = 0.529×10–10 m

This is called the Bohr radius, denoted a0. It provides a rough estimate of the size of a hydrogen atom.
As we will soon discover, electron atomic states are more complex than simply “orbiting at radius r.”
Defining a “radius” is somewhat subjective; quoted measured values include 0.25 and 0.37
angstroms.

We can rewrite the equation for electron energy as:



E = (ħc/r)2/2mc2 – (e2/ħc) (ħc/r)

Here, ħc is a common combination whose value is 197.33 MeV fermi, in particle physics units. The
expression e2/ħc is the famous fine structure constant α. Physicists usually quote its reciprocal: 1/α
equals 137.036. (In the early 20th century, when 1/α was known to only 3 digits, Sir Arthur Eddington
“proved” 1/α was a prime number. More precise measurements refuted this notion. We now know α
to better than 10 digits.)

With these two common constants, the electron energy at the Bohr radius is:

ħc/r = (197.33 MeV fermi) / (0.529×10+5 fermi)
ħc/r = 3.73×10–3 MeV

(ħc/r)2/2m = (3.73×10–3 MeV)2/(2×0.511 MeV)
(ħc/r)2/2m = +13.61 eV

–e2/r = –(3.73×10–3 MeV) / (137.036)
–e2/r = –27.22 eV

E = +13.61 – 27.22 = –13.61 eV

The total energy is negative because the electron is bound to the nucleus. Energy is required to move
an electron away from the positive nucleus to a remote location where its potential is defined to be
zero.

This energy, called the Rydberg constant in honor of Johannes Rydberg, is very precisely definable
and is measured to 20 parts per billion. Since the electron’s kinetic energy is 40,000 times less than
its mass, our use of non-relativistic equations is entirely justified.

Another key point is that the electron’s potential energy equals –2 times its kinetic energy. Known as
the virial theorem, this is a general rule for systems subject to gravitational or electrostatic forces. It
applies to the time-averaged kinetic and potential energies in stable systems, those that have reached
equilibrium. The virial theorem applies to any force related to potential energy U by F=–grad(U).

The virial theorem leads to an intriguing conclusion about the potential energy released when very
distant bodies are pulled together. Half of the released potential energy becomes kinetic energy, and
the other half must be dissipated to achieve a stable orbit.

Why Atoms Are Stable

This section supplements the Feynman Lectures.

Classical physics cannot explain why atoms are stable, but quantum mechanics can. As discussed
extensively in Feynman Simplified 1C, Maxwell’s equations show that any accelerating electric
charge radiates energy in the form of light. An orbiting body — Earth orbiting the Sun, or an electron



orbiting a nucleus — is accelerating because its velocity is continuously changing direction. For a
circular orbit, a=v2/r.

This means electrons orbiting nuclei must radiate energy. As their total energy, kinetic plus potential,
decreases, their orbit must get smaller. Eventually, every electron in every atom must be confined
within the nucleus of its atom. If you do the math, “eventually” means billionths of a second. If that
did happen, atoms would be inert, unable to form molecules and compounds. They would also be
trillions of times smaller. Earth would collapse to a tiny ball less than 200 meters wide and have a
surface gravity of billions of g’s.

Fortunately, classical physics is wrong.

Atoms are stable because electrons have wavelengths, as Niels Bohr first explained.

The following discussion is illustrative, but not fully realistic. The left side of Figure 3-6 depicts an
electron orbiting a nucleus. For clarity, we split the electron’s orbit at A and straighten it out, forming
the rectangle shown in the upper right. The electron’s wave amplitude, the black sinusoidal curve, is
shown within the electron’s orbit.

Figure 3-6 Bohr Model of an Atom
Circumference is Multiple of Wavelength

What we’ve done here is similar to making a flat map of Earth, something that is intrinsically
spherical. Just as maps of Earth are often cut at the International Date Line, our map of the electron
orbit is cut at A. Like Earth maps, our map shows A at both left and right ends. Both A’s represent the
same part of the electron orbit. What occurs at the left A must also occur at the right A, just as an
island on the International Date Line must appear identically on both sides of a map of Earth.

We come now to the key physics. The wave amplitude at left A must equal the wave amplitude at right
A, because they are the same point. An electron wave cannot have two different values at A, or
anywhere else. This means the electron wave must complete an integer number of full cycles in one
orbit, going from A around and back to A. The wave in the upper rectangle fails this requirement,
while the wave in the lower rectangle passes.

We discover that an electron’s orbit is quantized; its circumference must be an integer multiple of the
electron’s wavelength:

2π r = nλ

Since zero wavelength and zero wave cycles do not correspond to any real particle-waves, the
smallest possible orbit occurs when n=1. Electrons can never have smaller orbits. Electrons in the



n=1 orbit cannot radiate, lose energy, and spiral into the nucleus.

Therefore atoms are stable.

The quantization of electron orbits in atoms is entirely contrary to our macro-world experience.
Planets can orbit stars at any distance. Airplanes can fly at any height, and at any speed. But, electrons
are permitted only a few possible orbits, corresponding to only a few possible energies.

It is impossible to overstate the importance of this one fact. Without it, no chemical or biological
reactions would be possible. Even the entire evolution of the universe would have been very
different, and vastly less interesting.

Electron Atomic Energy Levels

This section supplements the Feynman Lectures.

For a single electron orbiting a nucleus with Z protons, the kinematic equations are:

ma = F
mv2/r = Ze2/r2

v2 = Ze2/mr

Now add the Bohr requirement: 2π r = nλ.

2π r = n (h/mv)
mvr = nħ

The last equation says electrons’ angular momenta, mvr, are quantized in integral multiples of ħ.
Quantizing angular momentum is mathematically equivalent to quantizing orbital circumference.
Continuing:

m2 (Ze2/mr) r2 = n2ħ2

r = n2ħ2 / Zme2 = n2 a0

En = –Ze2/2r = –13.61 eV Z2 / n2

The result we just derived based on particle wavelengths is the same as the result Feynman derived
based on the uncertainty principle. This demonstrates the self-consistency of quantum mechanics.

As a result of the quantization of orbital size, energy levels are also quantized, although the steps are
unequal, as shown in Figure 3-7.



Figure 3-7 Electron Energy  Levels in Hy drogen

Electrons in atoms are restricted to a very limited number of energy levels.

We still haven’t explored the full complexity of electron orbits, but the most important physics is right
here.

Feynman labels the lowest level E0 to emphasize it is the ground state. While that is customary
elsewhere, the energy levels in atoms are conventionally numbered E1, E2, …, where the index n is the
principal quantum number, the electron shell number of the Periodic Table, as I’ve shown above.
For the known elements, n ranges from 1 through 7. As we’ll discover later, the nth orbit can contain
up to 2n2 electrons.

For atoms with multiple electrons, the above equation must be revised due to electron-electron
interactions. One can roughly say that inner electrons partially shield the nuclear charge, reducing the
effective charge experienced by outer electrons, and requiring us to replace Z with a lesser value.

Electron Transitions & Light Frequencies

In V3p2-7, Feynman explains how atomic spectra result from the quantization of electron energies.
Electrons can drop from a higher-energy orbit to a lower one by emitting a photon. If it drops from
orbit m to orbit n (m>n), the change in electron energy and the photon energy are:

ΔEe = –(Em – En) = (Z2e2/2a0) (1/m2 – 1/n2) < 0
Eγ = ħω = –ΔE > 0

The emitted photon carries off the energy that the electron loses. Since m and n are small integers,
there are only a limited number of frequencies such photons can have. Each element has a different



number of protons in its nucleus, which leads to a different set of energy levels. This means each
element has it own unique set of frequencies, its own spectrum, of light that it can emit.

The reverse process also occurs. An electron can jump from orbit n to orbit m by absorbing a photon
of energy ħω, if and only if:

ħω = (Em – En)

This means each atom absorbs light only at those frequencies at which it can emit light.

Figure 3-8 shows the spectra of hydrogen, helium, and carbon. In each row, the emission and
absorption lines are shown, with low frequencies at the left and high frequencies at the right.

Figure 3-8 Emission & Absorption Lines for
Top to Bottom: Hy drogen, Helium & Carbon

Clearly, each element leaves a unique fingerprint in the light it emits and absorbs. Analyzing the
spectra of the remotest galaxies reveals that they are made of the same elements that we are. At the
core, everything in the universe is made of the same few parts.

Philosophical Implications

In V3p2-8, Feynman says that in developing quantum theory, physicists were forced to reevaluate
what scientific theories can achieve. Quantum mechanics revealed that some quantities cannot be
simultaneously measured, and that some quantities cannot be known until they are measured. Leading
theorists came to believe that our models need not predict anything that is unmeasurable.

For example, if we do not measure through which slit an electron passed, our theories need not tell us
that electron’s path. Bohr said: “Nothing exists until it is measured.” What happens to a particle
between measurements, these theorists say, is not a question science can or should try to answer.

Feynman says:

“The basis of a science is its ability to predict. To predict means to tell what will happen in an
experiment that has never been done. How can we do that? By assuming that we know what is
there…We must take our concepts and extend them to places where they have not yet been
checked…We do not know where we are [wrong] until we ‘stick our neck out’…the only way to
find out that we are wrong is to find out what our predictions are. It is absolutely necessary to
make constructs.”

Feynman thought too much is made of the indeterminacy that quantum mechanics espouses. He said
classical physics is not as deterministic as some assume. Classically, if we did know the exact



position and exact velocity of every particle in the universe, then yes we could predict the future
precisely. But that is so unrealistic as to be meaningless.

Feynman says

“Given an arbitrary accuracy, no matter how precise, we can find a time long enough that we
cannot make predictions valid for that long a time. Now the point is that this length of time is not
very large…it turns out that in only a very, very tiny time we lose all our information. If the
accuracy is taken to be one part in billions and billions and billions…[then in less] time than it
took to state the accuracy… we can no longer predict what is going to happen…Already in
classical mechanics there was indeterminability from a practical point of view.”

Indeed, in the years since his lectures, chaos theory, a branch of mathematics, has emerged. Chaos
theory analyzes the rapidity with which tiny changes avalanche in large systems and randomizes their
behaviors. They famously say a butterfly flapping its wings in the Amazon can cause a tornado in
Kansas.

Chapter 3 Review: Key Ideas
 

1. The wave properties of particles preclude simultaneously measuring their position and
momentum with unlimited precision.

2. The uncertainty principle provides a reasonable estimate of the radius of the lowest energy orbit
of an electron in a hydrogen atom. Called the Bohr radius a0, it is given by: ħ2/(me2) = 0.529×10–10

m.

3. The Bohr model of atoms states electron orbits are quantized; the circumference of their orbits
must be an integer multiple of their wavelength: 2π r = nλ. In the  smallest possible orbit, where
n=1, electrons cannot radiate, lose energy, and spiral closer to the nucleus. This makes atoms
stable, and enables chemical and biological reactions.

4. In the Bohr model of a single electron orbiting a nucleus with Z protons, the allowed orbital
radii and energies are:

rn = n2 a0 / Z
En = –Ze2/2rn = –13.61 eV Z2 / n2  

5. The virial theorem states that an orbiting body’s potential energy equals –2 times its kinetic
energy, in stable systems subject to gravitational or electrostatic forces.

6. Since electron energies are quantized, when they move from orbit m to orbit n, they must emit or
absorb a photon whose energy exactly balances the change in electron energy: ħω = (Em – En).
This means each element emits and absorbs a unique set of light frequencies, a unique spectrum.





Chapter 4

Probability Amplitudes

In V3p3-1, Feynman explains his plan to teach quantum mechanics as it had never been taught before.
The traditional teaching approach is to follow the development of quantum theory through the
different stages that physicists went through as their knowledge matured. Feynman elects to bypass all
that and go straight to the most modern version of quantum theory.

Feynman takes beginning students right to the cutting edge.

My goal is to ensure that, for you, this isn’t the bleeding edge.

Henceforth, for brevity, I will often say “particle” or “wave” instead of “particle-wave”, since we
now know that everything is actually a particle-wave. Also, I will often shorten “probability
amplitude” to simply “amplitude.”

In quantum mechanics, we frequently use the term state to describe the condition of a particle or
system. A quantum state defines all the variable properties that entities can have, such as position,
momentum, energy, and angular momentum. A quantum state does not define the intrinsic properties
that each particle has, such as charge and mass. In general, different types of particles can be put into
a given state, and can be moved from one state to another.

It is beneficial to think of a quantum state as a vector. It defines a location in the abstract space of all
possible properties.

Often only some of a particle’s variable properties are of interest. For example, we might be
concerned with directions and energies of photons but not their polarizations or locations. In such
cases, we often say photons are in the same state if their directions and energies are the same,
regardless of differences in other variables.

Combining Amplitudes in Bra-Ket Notation

In this lecture, Feynman discusses more general principles of quantum mechanics, and assigns
numbers to some of them. I will try to follow that format for your convenience, but you should know
that there is no standard numbering scheme for these principles as there is for Newton’s and Kepler’s
laws.

Recall the two-slit experiment: particles, emitted by a source S, encounter a barrier with two small
slits. Those particles that transit the slits arrive at a detection screen F, where their impact point is
recorded.



The first general principle of quantum mechanics is that the probability P(y) of a particle arriving at
point y is proportional to the square of the magnitude of a probability amplitude ø(y), which is a
complex number.

Paul A. M. Dirac developed the standard notation for probability amplitudes, called the bra-ket
notation. The format of Dirac’s notation is:

The amplitude that A results in (or goes to) B is written: < B | A >

Note that this notation is read from right to left. 

Recalling our analogy of a quantum state as a vector in property space, <B|A> is analogous to the dot
product of vectors A and B — <B|A> measures the degree to which A and B have the same
properties.

For the two-slit experiment, we write:

ø(y) = <particle arrives at y | particle leaves S>

Or even more simply:

ø(y) = <y|S>

Here, for any specific y, <y|S> is a single complex number. More precisely, ø(y) is a scalar function
of the variable y. That’s a fancy way of saying: at every y, ø(y) is a single number.

The second general principle of quantum mechanics states that when an event y can occur in two or
more ways that are undistinguished, ø(y) equals the sum of the probability amplitudes of each
separate way. For example, if the amplitudes of three undistinguished possible paths to reach y are ø1,
ø2, and ø3, the total amplitude to reach y is:

ø(y) = ø1 + ø2 + ø3

Note that this principle applies only if every undistinguished path reaches the same state y.

In Chapter 2, we discussed the specific meaning of “distinguished” in quantum mechanics. When
waves combine after traveling different paths, they interfere if they haven’t been substantially
disturbed. A substantial disturbance alters a wave’s frequency and/or phase sufficiently to randomize
its phase angle relative to other waves. That destroys coherence and eliminates the possibility of
interference.

As the two-slit experiment demonstrates, with no substantial disturbances, it is impossible to
distinguish which paths particles travel to reach an event y — impossible for both man and nature.
Paths are distinguished only when waves are substantially disturbed. What matters is the magnitude
of the disturbance, not whether or not it is human-directed. But due to our scale, any human-directed
interaction will almost certainly substantially disturb a quantum system.



For the two-slit experiment, if the paths through slits #1 and #2 are undistinguished, the amplitude to
reach y is:

<y|S> = <y|1><1|S> + <y|2><2|S>

We read the Dirac notation <y|1><1|S> as: “(the amplitude of a particle from S passing through slit
#1) multiplied by (the amplitude of a particle from slit #1 arriving at y).” 

Here, we used what I will call the fourth general principle of quantum mechanics: the amplitude for
a sequence of events equals the product of the amplitudes for each event separately.

The third general principle of quantum mechanics states that when an event y can occur in two (or
more) ways that are distinguished, the probability of y, P(y), equals the sum of the squares of the
amplitudes of event y to occur each way separately. In Dirac notation:

|<y|S>|2 = |<y|1><1|S>|2 + |<y|2><2|S>|2

Note that |z|2 denote the magnitude squared of the complex number z, whereas the | between < and >
means “results in.” Again, unfortunately, we have multiple uses for the same symbols.

Let’s now do some bra-ket calisthenics addressing a more interesting situation. Augment the two-slit
experiment by adding a second barrier with three slits between the original barrier and screen F, as
shown in Figure 4-1.

Figure 4-1 Experiment with 
Two Barriers & Five Slits

There are six ways for a particle to go from S to a point y on F. One way passes through slit #1 and
then slit #b, for which the amplitude is:

<y|b><b|1><1|S>

The total amplitude for a particle to leave S and arrive at y is the sum of the amplitudes of all six
ways:

ø(y)=<y|a><a|2><2|S>+<y|a><a|1><1|S>



+ <y|b><b|2><2|S> + <y|b><b|1><1|S>
+ <y|c><c|2><2|S> + <y|c><c|1><1|S>

We can write that more compactly as the sum over q=a,b,c, and m=1,2:

ø(y) = Σqm <y|q><q|m><m|S>

Calculating Amplitudes

Next we need to know how to calculate a probability amplitude for each specific alternative.

Take the simplest case first: a free particle traveling through empty space with no forces acting on it.
We recall the wave equation:

Wave height(t,r) = A exp{–i(ωt–k•r)}

Since E=ħω and p=ħk, we could equally well write:

Wave height(t,r) = A exp{(Et–p•r)/iħ}

In V3p3-4, Feynman says the amplitude µ for this wave to propagate from event (t1,r1) to event (t2,r2)
is:

μ = <t2,r2|t1,r1> = A exp{(E[t2-t1] –p•[r2–r1])/iħ}

While this looks like a familiar wave equation, Feynman cautions that the wave function that is a
solution to this wave equation is a mathematical construction not directly associated with any real
physical entity. Indeed, the wave function of a two-particle system is a function of eight variables, the
four coordinates of each of the two particles.

The only connection to physical reality that a solution of these wave equations has is that the square
of its magnitude is the probability of a real event.

For multiple particles, we have a fifth general principle, similar to the fourth for multiple actions of
one particle. If ø1 is the amplitude of particle 1 going from S1 to F1, and ø2 is the amplitude of particle
2 going from S2 to F2, then the amplitude for both events to occur is ø1 × ø2.

Feynman emphasizes another point. In discussing the original two-slit experiment, we wrote the
amplitude for a particle to go from source S through slit #1 and arrive at point y on screen F as:

<y|1><1|S>

Everything we really need to know about the particle’s initial condition is <1|S>. We don’t need to
know what source S is or how it works. Just one complex number is all we need. Someone could
completely change how particles are emitted. None of those details concern us, as long as we know



<1|S>.

Two-Slit with Spy Light in Bra-Ket Notation

Let’s reexamine our two-slit with spy light experiment (from Chapter 2) using < | >’s. The setup is
repeated here in Figure 4-2. Electrons from source S strike a barrier with two slits. Those electrons
passing through each slit may deflect photons from a spy light shining down into the screen of your
ereader. An optical system collects deflected photons and focuses them on two light detectors;
photons from slit #1 are focused on detector #1 and those from slit #2 are focused on detector #2. The
slits are separated by distance D and are a distance L from screen F. As before, L>>D.

Figure 4-2 Two-Slit with Spy  Light

Recall the result we found in Chapter 2. With the spy light off, waves from the two slits maintain
coherence and produce the interference fringe pattern shown next to F. With the spy light on and set to
a short wavelength, λ<D, electrons that deflect photons lose coherence and produce the smooth broad
distribution on the far right of the figure. With the spy light on and set to a long wavelength, λ>D,
electrons that deflect photons are not substantially disturbed and they produce interference fringes.
For all spy light conditions, electrons that avoid deflecting photons maintain coherence and produce
interference fringes. When the spy light wavelength is greater than D, we cannot tell which slit
electrons traverse — no optical system can separate the images of slit #1 photons versus slit #2
photons, when λ>D.

Now let’s define amplitudes for various events:

ø1 = <y|1><1|S>, S thru slit #1 to y
ø2 = <y|2><2|S>, S thru slit #2 to y
εJK = photon from slit #J hits light detector #K
ε0 = no photon detected from either slit

Ideally, ε11=ε22=1 and ε0=ε12=ε21=0, which means photons from slit #1 always hit detector #1, photons
from slit #2 always hit detector #2, and no electrons go undetected. We would then be 100% certain
from which slit each photon originated. Very high intensity spy light with λ<<D approaches ideal



discrimination, while completely disrupting the coherence of every electron. At reduced spy light
intensity, some electrons avoid photon collisions, decreasing the correct identification magnitudes ε11

and ε22, and increasing ε0. At long spy light wavelengths, the misidentification amplitudes ε12 and ε21

increase in magnitude.

Recall that no experiment ever finds the same electron in two places at once, so we never detect
photons in both detectors from a single electron.

We will include all ε terms in our analysis to obtain a completely general result.

Using the standard symbols e for electron and γ for photon, the amplitudes we want are:

e in slit #1 and ϒ in detector #1 = ø1 ε11

e in slit #1 and ϒ in detector #2 = ø1 ε12

e in slit #2 and ϒ in detector #1 = ø2 ε21

e in slit #2 and ϒ in detector #2 = ø2 ε22

e in slit #1 and no ϒ detected = ø1 ε0

e in slit #2 and no ϒ detected = ø2 ε0

Now, the amplitude for an electron to arrive at y and a photon to hit detector#1 is the sum of two
terms:

ø1 ε11 + ø2 ε21

The first term is for the electron to traverse slit #1 and deflect a photon that hits detector #1. The
second term is for the electron to traverse slit #2 and deflect a photon that hits detector #1. Similar
expressions apply to the other combinations of events.

Let’s examine the probability P(y,1) of an electron arriving at y and a photon hitting detector #1.

P(y,1) = |ø1 ε11 + ø2 ε21|2

Similarly, the probability P(y,2) of an electron arriving at y and a photon hitting detector #2 is:

P(y,2) = |ø1 ε12 + ø2 ε22|2

Next, consider this important case: P(y,1or2), the probability of an electron at y with a photon hitting
either detector, when spy light wavelength λ<D and we can distinguish which slit was traversed.

P(y,1or2) = P(y,1) + P(y,2)
P(y,1or2) = |ø1 ε11 + ø2 ε21|2 + |ø1 ε12 + ø2 ε22|2
NOT: P(y,1or2) = |ø1 ε11+ø2 ε21+ø1 ε12+ø2 ε22|2

Feynman strongly advises avoiding the common mistake in the last line. Events (y,1) and (y,2) are two
distinct, distinguishable final states, requiring we add their probabilities not their amplitudes.
Although arguing with Feynman is a real long shot, someone might claim that they don’t care which



detector the photon hits, that they choose not to distinguish which slit was traversed, that they won’t
even bother to record detector hits, and so amplitudes should be added before squaring.

That is wrong! Nature doesn’t care whether or not we examine data. Nature’s actions can’t depend on
decisions that we could make after the action is finished. Fringe patterns can’t suddenly come and go
depending on what we decide after the fact.

The critical point is the occurrence of substantial interactions that disrupt coherence. For a photon to
hit a detector, the photon-electron collision must substantially change the momentum of both particles.

Never add amplitudes when the final states are different and distinguishable, even if the experimenter
chooses not to distinguish them.

If our optical system had zero misidentification (ε12=ε21=0), our result would simply be the classical
result for a particle without wave properties: the probability of an electron reaching y through slit#1
times the probability of detecting a deflected photon.

P(y,1) = |ø1|2 |ε11|2

Conversely, if the spy light wavelength λ>>D and any deflected photon is equally likely to hit either
detector (ε11=ε21), then:

P(y,1) = |ø1 + ø2|2 |ε11|2

This is the result for a classical wave producing interference fringes, with the added requirement of
detecting a photon in either detector.

For spy light wavelength λ~D, P(y,1) is a mixture of partial coherence and partial incoherence.

Spin

Throughout the remainder of this chapter, and indeed our entire course on quantum mechanics, we
will deal with spin, an iconic quantum property. Spin is a form of angular momentum that is intrinsic
to each elementary particle.

By analogy a rotating top has spin. Like all forms of momentum, spin is a vector. The direction of the
spin vector is along the axis of rotation, and the length of the spin vector, called the total spin, equals
the amount of angular momentum. Like all vectors, we can define the component of spin along with
any selected coordinate direction.

But since nothing in the micro-world is exactly the same as anything in the macro-world, quantum
spin is different from that of a child’s spinning top. Most importantly, quantum spin is quantized.

The primary fermions — quarks, leptons, protons, neutrons, and electrons — are all spin one-half: s
= 1/2. Their component of spin along any chosen axis can only be +ħ/2 or –ħ/2. Physicists call these



two options spin up and spin down. Other fermions also have half-integral spin: s = 1/2, 3/2, …

Bosons, the force carrying particles, have integral spin: s = 0, 1, or 2. Their component of spin along
any chosen axis can only be: –sħ, …, 0, …+sħ. Photons have spin 1, but since they move only at
speed c, they never have spin component s=0, only s=+1 or –1. Gluons and the weak force bosons, Z
and W, have spin 1. The Higgs boson has spin zero. If the graviton exists, it must have spin 2.

Above we discussed the components of spin along some axis. Spin is a vector that can point in any
direction. If an electron has spin +1/2 along the z-axis, that does not mean its spin components are
zero along other axes. Indeed, the length of an electron’s spin vector is more than 1/2. That length is
rarely referred to, but the spin vector’s length is called total spin. A particle with spin s has total spin
S = ħ√[s(s+1)]; S = ħ√(3/4) for spin 1/2 particles, and S= ħ√2 for spin 1 particles.

Note that any particle’s component of spin along any axis can change only by integer multiples of ħ.

Neutron Scattering from a Crystal

In V3p3-7, Feynman presents a remarkable lesson in what is and what isn’t distinguishable.

We previously discussed x-ray crystallography, the scattering of x-rays from a solid material whose
atoms are arranged in a continually repeating pattern. We discovered that x-rays are coherently
scattered at angles at which the equally spaced emitters interfere constructively.

In this study, we consider the scattering of neutrons by a crystal. Since neutrons have zero net charge,
they do not interact with electric charges. Neutrons interact with, and can be scattered by, the nuclei
of crystal atoms.

We learned in the last chapter that very low energy neutrons are not scattered coherently by crystals.
If their wavelengths are greater than twice the crystal layer spacing: (λ>2d), constructive interference
is impossible. Conversely, high energy neutrons can knock atoms out of the crystal lattice, which is a
more violent collision than we wish to study here. We will therefore use neutrons of moderate energy
that can scatter coherently but not disrupt the crystal structure.

Detecting neutrons is much more difficult than detecting protons, electrons, and other charged
particles that leave in their wake long trails of ionized atoms. Neutron detection is accomplished
primarily by observing charged particles that are released in neutron-nucleus interactions.

Let’s imagine placing a neutron detector array around a crystal to measure the angle θ at which
neutrons scatter from the crystal. We will assume all nuclei act identically, and number them 1, 2, …
N. (N is going to be a very big number, but not to worry, there are more integers than nuclei in the
observable universe.) The amplitude for a neutron from source S to be scattered at angle θ by crystal
nucleus K is:

ø(θ,K) = <θ|K> σ(θ) <K|S>



Reading from right to left, the overall amplitude ø equals (the amplitude for a neutron to go from
source S to nucleus K) × (the amplitude of a neutron to scatter at angle θ) × (the amplitude for a
neutron to go from nucleus K to a detector at angle θ). This is almost like assembling Legos — we
can snap parts together to make anything we can imagine.

A moderate energy neutron cannot dislodge an atom from the crystal; the recoil momentum is
effectively transferred to the entire crystal. This means it is impossible to know from which nucleus
the scattering occurred. There are N undistinguished ways for a neutron to scatter; we therefore sum
the amplitudes before squaring.

Φ(θ) = ΣK ø(θ,K) = ΣK <θ|K> σ(θ) <K|S>

Since the scattering sources are at different distances from the detector, there will be interference
effects and we expect coherent scattering at specific angles, as illustrated in Figure 4-2a.

Figure 4-2a Spin-less Neutron 
Scattering vs. Angle

In some crystals, neutron-nucleus interactions are more complex due to spin. 

Like all spin 1/2 particles, a neutron is always either spin up or spin down. But nuclei can have a
variety of spins. 

A nucleus has spin zero if equal numbers of protons and neutrons have their spins pointed in opposite
directions. Some nuclei, however, have an odd number of fermions, resulting in an overall spin of
1/2; they are either spin up or spin down.

The neutron’s spin orientation is irrelevant when it interacts with a spin zero nucleus. But spin matters
when a neutron interacts with a spin 1/2 nucleus. In the latter case, there are two possibilities: (1) the
neutron and nuclear spins don’t change; or (2) if the spins were initially in opposite directions, they
can both flip. Angular momentum conservation prohibits only one spin flipping. If no spins change,
spin is not a factor and scattering proceeds exactly as if spins didn’t exist. The same coherent
interference effects are observed as seen in Figure 4-2a.

Now comes the most interesting alternative: spin flipping. Imagine source S produces neutrons that
are all spin up, and imagine we arrange for our crystal nuclei to be all spin down. If the neutron and
the nucleus it hits both flip spin, we could in principle know that the neutron spin changed and also
know which atom it scattered from, namely the only atom that is now spin up. (The immense difficulty



of finding which one of a trillion atoms has changed spin is “only” a technical problem that is
irrelevant to nature; nature’s determining factor is whether or not that one atom is distinguishable in
principle.)

Since we can know which atom scattered the neutron, the N alternative scattering sources are no
longer undistinguished. Now we add probabilities, not amplitudes. The amplitude for spin-flip
scattering from nucleus K and the probability of spin-flip scattering from all nuclei are:

øFLIP(θ,K) = <θ|K> σFLIP(θ) <K|S>
PFLIP(θ) = ΣK |øFLIP(θ,K)|2
PFLIP(θ) = N |øFLIP(θ,K)|2

By excluding interference effects, spin-flip scattering is incoherent with the broad smooth distribution
shown in Figure 4-2b. Whether or not I choose to measure the scattered neutron’s spin, and whether
or not I choose to identify which nucleus has flipped spin, the fact that the spins have changed makes
spin-flip events distinguishable. The final states are substantially different, which nature recognizes
even if I don’t. It isn’t about me.

Figure 4-2b Spin-Flip Neutron 
Scattering vs. Angle

If we combine all events, those with spin flips and those without, the scattering distribution becomes
a mixture of coherent and incoherent scattering, as shown in Figure 4-2c.

Figure 4-2c Any  Spin Neutron 
Scattering vs. Angle

To review the key physics:



If alternative final states are distinguishable, even in principle if not in practice, we sum the
probabilities, the square of amplitudes, of each alternative final state.

If alternative final states are indistinguishable, even in principle, we sum the amplitudes of each
alternative final state, then we square that sum to obtain the probability.

Feynman cautions us again not to strive to connect probability amplitudes with any physical reality.
No one knows how to incorporate spin into a classical wave concept. These quantum mechanical
concepts are mathematical tools that we learn to manipulate to predict outcomes.

Identical Particle Interactions

Special circumstances arise in quantum situations involving identical particles, because they are
indistinguishable.

We will consider scattering events between various types of particles. For simplicity, we examine
these in their center of mass frame, the reference frame in which the total momentum is zero. Less
commonly but more precisely, this is also called the center of momentum frame. By labeling it the
CM frame, we can have it both ways. Collisions are almost always easier to analyze in the CM
frame.

Let’s start with two non-identical particles: an oxygen-16 nucleus and a helium-4 nucleus. The latter
is also called an alpha particle. The collisions will be at energies low enough to ensure simple
scattering, rather than anything more exciting such as nuclear reactions. The nuclei scatter because
they are both positively charged. From a classical prospective, they repel one another with the
electric force.

Scattering might well occur with different probabilities at different angles. We will measure this
dependence by surrounding the interaction point with detectors, as is done at colliding-beam particle
accelerators, including the LHC. Let f(θ) be the amplitude that each nucleus scatters at angle θ, in the
CM frame. Figure 4-3 shows two scattering events. On the left, each nucleus is deflected by angle θ,
while on the right, each is deflected by angle π–θ. Particles are seen exiting at the same angles in both
events. The difference between these events is: on the left, the helium nucleus goes up, and on the
right it goes down.

Figure 4-3 Scattering of Helium and Oxy gen Nuclei
At Angles θ (Left) and π–θ (Right)

If our detectors discriminate between helium and oxygen nuclei, we can count only helium nuclei that
go up and thereby directly measure |f(θ)|2, the probability of scattering at angle θ.



Conversely, if our detectors respond equally to either nucleus, we will measure a combined
distribution:

P(either nucleus at θ) = |f(θ}|2 + |f(π–θ}|2

Do you know why we add probabilities and not amplitudes? Check your answer at the end of this
chapter.

The above result, adding probabilities, is correct for helium-4 nuclei colliding with any other nucleus
— except one. Can you guess which one? Again the answer is at the end of this chapter.

Now let’s try something more interesting: scattering two electrons. In the first case, we choose two
electrons that are both spin up, as shown in Figure 4-4.

Figure 4-4 Scattering of Electrons with Spin Up
At Angles θ (Left) and π–θ (Right)

Since these are identical particles, we cannot distinguish between each electron scattering at angle θ
(left side of figure) and each electron scattering at angle π–θ (right side). We therefore expect to add
amplitudes f(θ)+f(π–θ) and then square, exactly as we have so diligently learned.

But that’s not nature’s way. Here we discover a new principle: the Exclusion Principle, espoused by
Wolfgang Pauli. We can call this the sixth general principle of quantum mechanics.

Like many physicists, Pauli had an unusual sense of humor. He famously berated another physicist’s
theory by saying: “This isn’t right. This isn’t even wrong.” Perhaps he meant that clever people can
learn from ideas that are wrong but that nonetheless illuminate essential points. But some ideas are so
ridiculous that they provide no insight whatsoever.

In any case, Pauli’s exclusion principle says fermions are anti-social — two identical fermions will
never share the same quantum state. Bosons, conversely, are gregarious — the more bosons are in
one quantum state, the more likely it is that others will join them. The exclusion principle means that
identical fermions interfere with a minus sign. The correct probability P(θ) for identical electron
scattering at angle θ is:

P(θ) = |f(θ) – f(π–θ)|2

An essential key to the minus sign is that both electrons have spin up. If one were up and the other
down, the final states would be distinguishable, not identical.

If we collide electrons with opposite spins, as in Figure 4-5, we can distinguish, in principle,



whether the particles scattered by angle θ or by angle π–θ.

Figure 4-5 Scattering of Opposite Spin Electrons
At Angles θ (Left) and π–θ (Right)

Therefore the left and right side processes are incoherent, do not interfere, and we add their
probabilities:

P(θ) = |f(θ)|2 + |f(π–θ)|2

Finally, consider scattering electrons of random spins, and count all electrons that reach our detectors
equally, regardless of their spin. We expect each incident electron to have a 50% probability of being
spin up and a 50% probability of being spin down.

Half the collisions will be between electrons with the same spin. These interfere with a minus sign;
we subtract amplitudes, and square that sum to obtain probabilities.

The other half of the collisions will be between electrons of opposite spin. Those cannot interfere;
we sum the squares of amplitudes to obtain probabilities.

The total of all that is:

P(θ) = 1/2 { |f(θ) – f(π–θ)|2 + |f(θ)|2 + |f(π–θ)|2 } 

Promised Answers

The first question was: if our detectors respond equally to either helium or oxygen nuclei, should we
add amplitudes or probabilities? Oxygen is clearly distinguishable from helium; just try breathing
them. Therefore the final states are not identical, and we add probabilities:

P(θ) = |f(θ)|2 + |f(π–θ)|2

The second question was: if we replace oxygen nuclei with different nuclei, for which nuclei is the
above equation wrong? If both nuclei are helium-4, we can no longer distinguish which one went up
and which went down. We must, therefore, add amplitudes before squaring. Note helium-3 yields the
same result as oxygen; neither is identical to helium-4.

Chapter 4 Review: Key Ideas



A quantum state defines all the variable properties that entities can have, such as position, momentum,
energy, spin, and angular momentum. A quantum state does not define the intrinsic properties that each
particle has, such as charge and mass. In general, different types of particles can be put into a given
state, and can be moved from one state to another. It is beneficial to think of a quantum state as a
vector; it defines a location in the space of all possible properties.

The standard notation for probability amplitudes, due to Paul Dirac, is:

<B| is called a bra
|A> is called a ket
<B|A> is a bra-ket

<B|A> is the amplitude that A results in, or goes to, B. <B|A> is analogous to the dot product of
vectors A and B.

In bra-ket notation, the general principles of quantum mechanics are:

First: the probability P(y) of event y is proportional to the square of the magnitude of amplitude ø(y),
which is a complex number. For the two-slit experiment, “event y” is a particle arriving at y. We
write:

ø(y) = <particle arrives at y | particle leaves S>

Or: ø(y) = <y|S>, and P(y) = |ø(y)|2

Second: when event y can occur in N undistinguished ways, the amplitude of y equals the sum of the
amplitudes for each separate way:

<y|S> = ΣK <y|K><K|S>

Note that this applies only if all N ways result in the same event y.

Third: when event y can occur in N distinguished ways, the probability of y equals the sum of the
probabilities for each separate way:

P(y) = ΣK |<y|K><K|S>|2

Fourth: the amplitude for a sequence of events equals the product of the amplitudes for each event
separately. The amplitude for a particle to go from S through slit #1 and from there to y is: <y|slit#1>
<slit#1|S>.

Fifth: For multiple particles, if ø1 is the amplitude of particle 1 going from S1 to F1, and ø2 is the
amplitude of particle 2 going from S2 to F2, then the amplitude for both events to occur is ø1 × ø2.

Sixth: Identical particle statistics. When two identical particles can enter, exit, or be in the same
state, their amplitudes interfere. If the particles are bosons governed by Bose-Einstein statistics, their



amplitudes add. If the particles are fermions governed by Fermi-Dirac statistics, their amplitudes
subtract. There is no third alternative. For two identical particles 1 and 2, and any two states A and
B, the combined amplitude is:

Fermions: <1|A><2|B> – <1|B><2|A>

Bosons : <1|A><2|B> + <1|B><2|A>

Fermions with different spins are not identical.

Spin is a form of angular momentum that is intrinsic to each elementary particle. Particle spins are
quantized. The primary fermions have spin s = 1/2. Their component of spin along any chosen axis
can only be +ħ/2 or –ħ/2, called spin up and spin down. Bosons have integral spin: s = 0, 1, or 2.
Their component of spin along any chosen axis must be: –sħ, …, 0, …+sħ. Photons have spin 1, but
cannot have a spin component of zero along any axis. The full length of the spin vector is called total
spin S; S = ħ√[s(s+1)]. Any particle’s component of spin along any axis can change only by integer
multiples of ħ.



Chapter 5

Identical Particles

In the last chapter, we encountered some special circumstances associated with identical particles.
We are all familiar with macroscopic things that are “identical”, including identical twins, and
identical postage stamps. But in truth, no two macroscopic objects are ever absolutely identical. Each
new dime from the U.S. Mint in Philadelphia contains over a trillion, trillion neutrons, protons, and
electrons. While new dimes may appear identical, no one would claim each has exactly the same
number of neutrons.

But in the micro-world, all fundamental particles of each type are exactly identical. I’m not saying
physicists can’t see differences; it’s much more than that. We are sure nature can’t detect any intrinsic
differences between one electron and another. They may be in different places and have different
energies and spin orientations, but their intrinsic properties are absolutely identical in a way that has
no macro-world analogy.

We know this is true because of the unique quantum behavior of identical particles.

When two particles 1 and 2 are in two different states A and B, one particle in each state, two
alternatives are possible: 1 in A and 2 in B (<1|A><2|B>); or <1|B><2|A>. If the particles are truly
identical, the two alternatives are indistinguishable and their amplitudes interfere. If the particles are
in any way distinct from one another, the alternative states are not identical and their amplitudes do
not interfere.

We observe interference effects with pairs of electrons, proving that nature cannot distinguish one
electron from another. The same interference effects are observed with pairs of protons, pairs of
neutrons, and also pairs of fundamental particles of each type. All fundamental particles of each type
are intrinsically absolutely identical.

Bosons and Fermions

Let’s reexamine the two-particle collision, viewed in the CM frame, discussed in the last chapter and
shown again in Figure 5-1. The colliding particles will now be identical, which requires that their
spin states be identical.



Figure 5-1 CM collision of Two Identical Particles

On the left side, each particle scatters by angle θ, for which we assign the amplitude f(θ). On the right
side the same particles scatter by angle π–θ, with amplitude f(π–θ). Since the left-side and right-side
final states are the same, the probabilities of the two alternatives must be equal. Thus:

|f(θ)|2 = |f(π–θ)|2
f(π–θ) = f(θ) exp{iø}

Equal probabilities ensure equal magnitudes, but the amplitudes can differ by phase angle ø. This
means, if we start with the left side of Figure 5-1, where the left particle goes up, the amplitude is
f(θ). If we next exchange the two identical particles, we have the right-side collision with amplitude
f(θ)exp{iø}. And, if we exchange them again, we multiply by exp{iø} once again, and go back to the
left-side collision with amplitude f(θ)exp{i2ø}. But since two exchanges return us to the original
state:

f(θ)exp{i2ø} = f(θ)
exp{i2ø} = 1
exp{iø} = ±1

Which sign does nature pick? Both.

For bosons: exp{iø} = +1
For fermions: exp{iø} = –1

Physicists describe this distinction as being two types of statistics. Nature is divided into bosons
governed by Bose-Einstein statistics (the + sign), and fermions governed by Fermi-Dirac statistics
(the – sign). Both statistics have momentous consequences.

Next, consider the scattering of two composite particles. Protons and neutrons, collectively called
nucleons, are each composed of three quarks. Protons have two up quarks and one down quark, while
neutrons have two downs and one up. If we identify the black-centered circles in Figure 5-2 as up
quarks, and the white-centered circles as down quarks, these collisions involve two protons.

Figure 5-2 Collision of Two 3-Quark Nucleons



All quarks are spin 1/2 fermions, and all quarks of each type are identical. Hence, the left and right
final states are identical; neither we nor nature can tell whether or not the protons swapped an up
quark.

Two positively-charged protons repel one another. In low-energy collisions, that repulsion prevents
the protons from getting close to one another. This is because their electrical potential energy is +e2/r.
As r, the distance between them, reduces, their kinetic energy must convert into potential energy. If
their kinetic energy is initially low, it runs out before r becomes very small.

Since the range of the strong nuclear force is only about the diameter of a proton, quark-exchange is
possible only if r is about 1 fermi. But in high-energy collisions, quark-exchange is appreciable.
There is an amplitude for scattering without quark-exchange and an amplitude for scattering with
quark-exchange. We must add the amplitudes of these indistinguishable alternatives.

Recall that spin is a form of angular momentum. Three spin 1/2 quarks combine to make a spin 1/2
proton. Experiments show that the quarks within protons also have orbital angular momentum. The
orbital angular momenta combine with the three spins in some way, not fully determined, to produce a
spin 1/2 proton.

Two protons and two neutrons, all spin 1/2 particles, combine to make an alpha particle, the nucleus
of helium-4, which is a spin zero boson. Adding another proton and two more neutrons yields the
nucleus of lithium-7, which is a spin 3/2 fermion.

Whatever an object’s composition, it is ultimately either a fermion if its overall spin is half-integral,
or a boson if its overall spin is integral. There is no middle ground.

Due to the sign with which the amplitudes of identical particles combine, bosons and fermions have
dramatically different behaviors.

Let’s next consider the behavior of groups of bosons, focusing on groups of photons.

Two-Boson States

We begin with two bosons that are either emitted into or scattered into similar final states, as
illustrated in Figure 5-3. For now, it doesn’t matter how the particles get there, our interest is in the
final states.

Figure 5-3 Two Bosons Enter Similar State



Here particle A enters state 1 and particle B enters a very similar state 2. (Feynman will shortly make
states 1 and 2 identical.) Considering particle A by itself, the amplitude that it goes to state 1 is:
<1|A>. The amplitude for B to go to state 2 is: <2|B>. Hence, according to our fifth general principle,
the amplitude that A goes to 1 and B goes to 2 is:

<1|A><2|B>

with probability

P(1A,2B) = |<1|A><2|B>|2 = |<1|A>|2 |<2|B>|2

To reduce clutter, define a1 = <1|A> and b2 = <2|B>.

Going back to Figure 5-3, it might happen that particle A goes to state 2 while particle B goes to state
1. The amplitude for that is:

<2|A><1|B> = a2 b1

with probability P(2A,1B) = |a2|2 |b1|2

Assuming the particles or final states are not identical, the probability that either particle goes to state
1 and the other particle goes to state 2 is:

P(AB,12) = |a1|2 |b2|2 + |a2|2 |b1|2

Now Feynman takes the limit as state 2 becomes identical to state 1: the two A amplitudes must
become equal, as must the two B amplitudes. Namely:

a2 goes to a1 , which we will call a, and
b2 goes to b1 , which we will call b

So that P(AB,12) = 2 |a|2 |b|2

Next, Feynman makes particles A and B identical bosons, so that event (1A,2B) is indistinguishable
from event (2A,1B). We now add amplitudes before squaring.

P(AB,12) = |a1 b2 + a2 b1|2

P(AB,12) = |2ab|2 = 4 |a|2 |b|2

This means two identical bosons are twice as likely to be in the same state as two non-identical
particles.

Next, Feynman becomes more precise about defining scattering amplitudes. Imagine that state 1 is
defined as those particles that hit detector D1 whose cross sectional area is σ1. Redefine the amplitude
for particle A, assuming it was by itself, as:



probability of A hitting D1 per unit area = |a1|2

To get the probability of A hitting D1 anywhere, we integrate over the detector’s cross section, which
we denote: ∫A |a1|2. We assume area σ1 is so small that the scattering amplitude doesn’t vary across its
surface. This is written:

probability of A hitting D1 anywhere = ∫A |a1|2
probability of A hitting D1 anywhere = |a1|2 σ1

Similarly, state 2 is defined as particle B hitting detector D2 whose cross sectional area is σ2. For
particle B, assuming it was by itself, we get:

probability of B hitting D2 per unit area = |b2|2
probability of B hitting D2 anywhere = ∫B |b2|2
probability of B hitting D2 anywhere = |b2|2 σ2

The joint probability that A hits D1 and B hits D2 is as before, but with the σ factors:

P(1A,2B) = |a1|2 |b2|2 ∫A ∫B

P(1A,2B) = |a1|2 |b2|2 σ1 σ2

This is the probability for two independent non-identical particles. If we now require that both non-
identical particles hit D1, the probability is:

P(1A,1B) = |a1|2 |b1|2 σ1
2

Now go back to two detectors and make A and B identical bosons, the events (1A,2B) and (2A,1B)
are indistinguishable. We therefore add amplitudes before squaring:

P(AB,12) = |a1 b2 + a2 b1|2 σ1 σ2

Next, we will combine detectors D1 and D2 into a single detector D with cross section σ. It turns out
that properly counting combinations suddenly becomes surprisingly tricky. During his lecture,
Feynman’s explanation was quite brief, even by Caltech standards. A terse footnote, added on V3p4-
5, helps some, but still leaves me scratching my head and reaching for paper and pen. Let’s
understand this using some graphics.

To calculate P(AB,12), two identical bosons in two different detectors, we integrate over both D1 and
D2. The upper half of Figure 5-4 shows one outcome: A in the upper part of D1 and B in the lower part
of D2. The lower half of the figure shows a different outcome, in which A and B are exchanged. The
two outcomes are different but indistinguishable; we therefore add the two amplitudes.



Figure 5-4 Two Identical Bosons 
in Two Detectors

When we combine two detectors into one, we get four combinations. In the upper half of Figure 5-5,
two outcomes are shown: (1) A in the upper part of detector D and B in the lower part of D; and (2) A
in the lower part of D and B in the upper part. Assuming D fires in the same way regardless of where
it is hit, these outcomes are indistinguishable. Here, the integral ∫A over the cross section of D is
represented by the black-centered circle, and the integral ∫B is represented by the white-centered
circle.

Figure 5-5 Two Identical Bosons 
in One Detector

In the lower half of the figure are two more outcomes that result from exchanging A and B in the prior
outcomes. The trouble is, the four outcomes are not all distinct. The upper left outcome and the lower
right outcome are the same — the same impact points are hit by the same particles. This is just one



outcome, but the double integral picks up the same outcome twice. The upper right and lower left are
also the same outcome that is counted twice.

The double integral double counts outcomes.

For two identical particles, the double integral overcounts outcomes by a factor of two. We therefore
divide our result by 2 to compensate.

P(AB,D) = |a1 b2 + a2 b1|2 σ1 σ2 / 2
P(AB,D) = |a b + a b|2 σ2 / 2
P(AB,D) = 2 |a|2 |b|2 σ2

This is twice the probability of two non-identical particles hitting detector D.

N-Boson States

Now let’s up our game to N bosons in N similar states, all headed toward one remote detector D, as
shown in Figure 5-6. (We will soon get to N identical bosons in one state, such as in a laser beam.)

Figure 5-6 N Bosons in Similar States

We label the bosons A, B, C, … and the final states 1, 2, 3, …N. As before, we normalize the
amplitudes so that a single, lone boson has probability P of hitting detector D whose cross sectional
area is σ, according to:

P(A,D) = |a|2 σ

If the particles are all different, they act independently, and the joint probability that all N hit the
detector is the product of their independent probabilities:

P(N different bosons, D) = {|a|2 |b|2 |c|2 … } σN

If, however, these are all identical bosons, photons for example, then the combinations multiply.
Generalizing the results of the last section, the number of permutations (the number of distinct re-



orderings) of N objects is N! = 1×2×3…×N. Three identical bosons A, B, and C have 6 permutations:

ABC, ACB, BAC, BCA, CAB, CBA

Each permutation is a different but indistinguishable outcome, and each is obtainable from another by
the exchange of two bosons. We therefore need to add the amplitudes for N permutations.

But as we found above, the N-fold integral overcounts the number of distinct outcomes. For N=2, the
double integral overcounts by a factor of 2. What correction do we need for N bosons?

Consider the case of three bosons, N=3. Before we get to exchanging bosons, let’s take one specific
set of A, B, and C impact points, and see how many outcomes the triple integral counts. In Figure 5-7,
specific integration points in the three integrals are marked with a black-centered circle, a white-
centered circle, and a heart, respectively.

Figure 5-7 Six Outcomes from Triple Integral

One real event, the impact of A at one point, B at a second point, and C at a third point, is counted 6
times by the triple integral. If we added a fourth boson, the 4-fold integral would count 4 outcomes
for each of the 6 outcomes in the figure, resulting in 24 outcomes counted for one real event for N=4.
Evidently, the number of outcomes counted per real event by an N-fold integral is N! Another way to
say this is: for each real event, the N-fold integral will count N! permutations.

We have not yet included identical particle exchange. As we saw above, each of the 6 outcomes in
Figure 5-7 has 6 particle-exchange permutations, yielding 36 total outcomes for N=3. Evidently, that
would be N!2 counted outcomes for N identical bosons. The true number of distinct permutations is
actually N!, which means our N-fold integral overcounts by a factor of N! The correct result is:

P(N) = | all N! permutations of abc…|2 σN / N!
P(N) = N! | abc…|2 σN

This is larger than the probability for non-identical particles by a factor of N!. That factor can be
phenomenally large: 59! is about 1080, equal to the number of nucleons in our observable universe.
For many situations, N, the number of elementary particles can exceed millions.

In V3p4-7, Feynman calculates the probability of a boson joining a group of N other bosons in a
common state, when all are identical particles. Call the new boson W and let w be the amplitude for
it to be in this state when no other particles are present. We expand the above equation from N to
N+1, and obtain:

P(N+1) = (N+1)! | abc…w|2 σN+1

P(N+1) = (N+1) |w|2 σ {N! | abc…|2 σN}



P(N+1) = (N+1) |w|2 σ {P(N)}

Hence, the probability of W entering a state occupied by N identical bosons is N+1 times larger than
it would be if the state were empty. Bosons are groupies: the bigger the party, the greater the
attraction.

Chapter 5 Review: Key Ideas
 

1. In the micro-world, all fundamental particles of each type are intrinsically exactly identical.
Additionally, it seems there is only one way to combine three quarks to make a proton, and only
one other way to combine three quarks to make a neutron. While not fundamental, all protons are
exactly identical as are all neutrons. Even nature cannot distinguish between identical particles,
as proven by interference effects.

2. When two identical particles can enter, exit, or be in the same state, their amplitudes interfere. If
the particles are bosons governed by Bose-Einstein statistics, the amplitudes add. If the
particles are fermions governed by Fermi-Dirac statistics, the amplitudes subtract. There is no
third alternative.

3. The probability that N identical bosons are in a common state is larger by a factor of N! than the
probability of N non-identical particles being in that state.

4. The probability of one more boson entering a state occupied by N identical bosons is N+1 times
greater than it would be if the state were empty. Bosons are groupies: the bigger the party, the
greater the attraction.



Chapter 6

Impact of Identical Particles

In the last chapter, we discovered the remarkable behaviors of identical particles. This chapter
examines some consequences of those uniquely quantum mechanical behaviors. Our topics include
lasers, black body radiation, superconductivity, and the structure of atoms that enables chemistry and
life.

Light Emission & Absorption

The prior chapter demonstrated that the probability that an atom will emit a photon into state ø is
enhanced by a factor of N+1 if there are already N photons in that state. This means of course that the
amplitude is enhanced by √(N+1).

Feynman introduces here a principle of quantum mechanics that is proven in the next chapter. This
principle allows us to more profoundly examine Einstein’s laws of radiation and Planck’s equation
for black body radiation. This new principle is:

<ξ|ø> = <ø|ξ>*

This says the amplitude to go from state ø to state ξ equals the complex conjugate of the amplitude to
go from ξ to ø. The forward and reverse amplitudes are complex conjugates of one another.

Let’s apply this to atoms radiating and absorbing light.

Define |N> to be a state containing N photons, and define A to be the amplitude that a photon enters
this state when it is empty. The last chapter showed:

<N+1|N> = √(N+1) A

Here <N+1|N> is the amplitude to add a photon to a state already containing N photons.

With our new principle, the amplitude for a photon to exit a state with N+1 photons, leaving N
photons behind, is:

<N|N+1> = √(N+1) A*

Here A* is the amplitude to absorb a photon from state ø if it contains one photon.

Let’s restate the prior equation for one less photon: the amplitude for a photon to exit a state with N



photons, leaving N–1 behind, is:

<N–1|N> = (√N) A*

Now, imagine a box whose interior surfaces are ideal mirrors. Let the box contain N photons and one
atom. We assume all N photons are in the same state ø; all have the same frequency, same velocity,
and the same polarization. The probability that the atom will absorb a photon from state ø, leaving N–
1 photons behind, is:

PABSORB = N |A*|2 = N |A|2

The last equation says the probability of absorption is proportional to the intensity of light, not a
surprise.

The probability the atom will emit a photon into state ø is:

PEMIT = (N+1) |A|2

This equation was first derived by Einstein, as discussed in Feynman Simplified 1B Chapter 20.
Einstein said the emission process has two parts: spontaneous and stimulated. An isolated atom
spontaneously emits photons at a rate determined by |A|2. When N other photons are already in the
state that the emitted photon will enter, the atom’s emission rate is stimulated, increased by N |A|2,
which is proportional to the intensity of photons already in the final state.

As we describe in the above referenced chapter, this is the basis for the operation of lasers. In brief,
large numbers of atoms placed in excited states stimulate one another to emit photons with the same
frequency and velocity, forming a coherent beam of photons — a laser beam.

Planck’s Black Body Spectrum

Feynman Simplified 1B Chapter 20 also discusses Planck’s development of the quantum theory of
black body radiation. Let’s re-examine it in terms of what we now know about the quantum behavior
of bosons.

Begin with a box containing photons and atoms in thermal equilibrium. In V3p4-8, Feynman supposes
that, in each frequency band ω±dω/2, there are N atoms with two electron energy levels separated by
ΔE=ħω. Call the lower energy level the ground state, and the upper energy level the excited state. As
shown in Figure 6-1, electrons can absorb a photon of energy ħω and rise from the ground state to the
excited state (left side of image). Electrons can also emit a photon of energy ħω and drop from the
excited state to the ground state (right side of image).



Figure 6-1 Atomic Absorption 
& Emission of Light

Let NG and NE be the average number of atoms in the ground and excited states, respectively.
Recalling Boltzmann’s law from Feynman Simplified 1B Chapter 20, with k being Boltzmann’s
constant and T being temperature, the population ratio of such states at equilibrium is:

NE / NG = exp(–ħω/kT)

Define Nγ to be the number of photons in any specific state in the frequency band ω±dω/2. At
equilibrium, the photon absorption rate equals the photon emission rate at that frequency.

Emission Rate = NE(Nγ+1) |A|2
Absorption Rate = NG Nγ |A*|2
Thus: NE(Nγ+1) = NG Nγ

Combining this with the population ratio:

(Nγ+1)/Nγ = NG / NE = exp(+ħω/kT)
Nγ +1 = Nγ exp(+ħω/kT)
Nγ = 1 / {exp(+ħω/kT) –1}

We aren’t there yet. This expression tells us the number distribution of photons in a specific state with
frequency ω. We need to multiply that by the number of states with that frequency. These are called the
number of modes.

Let’s examine the modes in one dimension along a line of length L. As Figure 6-2 shows, just like a
violin string, the amplitude of each allowed mode must be zero at both ends of the line.



Figure 6-2 Some Allowed 
Modes For Length L

The allowed wavelengths are integer submultiples of 2L: λJ=2L/J, for any integer J>0. Each value of
J is one mode. In terms of the wave number k:

kJ = 2π/λJ = Jπ/L

Define: Δk = ΔJ π/L

For a line much longer than the wavelength of any light of interest, L>>λ, the ratio ΔJ/Δk approaches
the derivative dJ/dk. We can then calculate dM, the number of allowed modes in an interval k±dk/2:

dM = (ΔJ/Δk) dk = (L/π) dk

We now have dM/dk in one dimension. The next step is to expand this to three dimensions. Wave
number k becomes a vector k with components (kx, ky, kz), and the line of length L becomes a cube of
volume V=L3.

dM = V/π3 dkx dky dkz

The three components of k range from 0 to +K. K is a very large number, but not infinite. Experiments
and Planck’s quantization “trick” show that the intensity of black body radiation approaches zero at
high frequencies.

The expression dkx dky dkz is an infinitesimal volume in a 3-dimensional k-space, illustrated in Figure
6-3. We need to find the number of modes between k and k+dk, where k is the length of the wave
number 3-vector. We know how to do this in normal 3-D space.

Figure 6-3 Infinitesimal Volume in k-Space

In real 3-D space, dx dy dz is the equivalent infinitesimal volume element. Expressed in polar
coordinates this volume element is:



r2sinθ dr dθ dø

Space is spherically symmetric, and waves travel through space in the same way, at the same
velocity, in all directions. To find the total volume between r and r+dr, we integrate over θ (0 to π)
and over ø (0 to 2π). That yields the volume of a shell of radius r and thickness dr:

4π r2dr

This 3-D physical space volume is equivalent to the volume we seek in k-space, except that the three
k components range from 0 to +K. The volume they enclose in 3-D k-space is 1/8 of a full sphere.

Replacing dkx dky dkz with 4πk2dk/8 yields:

dM = V/(2π2) k2 dk

Feynman prefers having the three k components range from –K to +K, which requires replacing V/π3

by V/(2π)3. We get the same result either way. In V3p4-11, Feynman recommends memorizing either
the above expression for the number of modes in 3-D k-space, or the equivalent: dM = V/(2π)3 d3k.

Up to this point, our mode analysis is correct for any type of wave. Now, let’s make it specific to
light. We use k=ω/c, and multiply the number of modes by 2 for the two polarization states that
photons can have.

dM = V/(π2c3) ω2 dω

We next calculate the energy dE in the frequency band ω±dω/2.

dE = (energy/photon)×(#modes)×(#photons/mode)

Putting in all the pieces, and noting that k is once again Boltzmann’s constant and no longer the wave
number:

dE = (ħω) (Vω2/π2c3) (1 / {exp(+ħω/kT) –1}) dω

Light intensity I is energy per unit area per second. The volume V swept out by a light beam per
second equals the beam’s cross sectional area times light’s speed c. Hence:

I(ω)dω = dE c/V
I(ω) = (ħω3/π2c2)/{exp(+ħω/kT) –1}

This is Planck’s black body spectrum.

Feynman reminds us that we derived the same equation by assuming atoms were quantized harmonic
oscillators (see Feynman Simplified 1B Chapter 20). In V3p4-9, Feynman says:

“That is one of the marvelous miracles of quantum mechanics…There is no way to make up your
mind whether the electromagnetic field is really to be described as a quantized harmonic



oscillator or by giving how many photons there are in each condition. The two views turn out to
be mathematically identical.”

Liquid Helium

At very low temperatures, helium has several remarkable properties that arise from the fact that it is a
spin zero boson. One of these phenomena is superfluidity, the ability of a liquid to flow with zero
viscosity, the total absence of friction or turbulence.

In V3p4-12, Feynman explains that at low enough temperatures, the Boltzmann factor exp{–E/kT}
effectively “freezes” out all but the lowest energy state, the ground state. At the helium-4 superfluidity
transition temperature, 2.17K (–271ºC, –456ºF), kT = 1.9×10–4 eV. This is much less than the energy
needed to elevate an atom to an excited state, making it extremely unlikely that a helium atom can be
bumped up to a higher energy state, even if jostled by its neighbors.

Unable to either gain or lose energy, helium atoms can only go with the flow. The transition to
superfluidity occurs suddenly as the temperature is reduced.

Feynman said, as everyone believed at the time, that superfluidity could not occur in helium-3,
because it is a spin 1/2 fermion.

One of my classmates apparently wasn’t entirely convinced. In 1971, Doug Osheroff and colleagues
discovered superfluidity in helium-3 at 0.0025K, for which they were awarded the 1996 Nobel Prize.
It seems helium-3 can form the equivalent of Cooper pairs, in which two electrons with anti-parallel
spins combine to make a spin zero boson, the process that enables superconductivity.

This confirms what Feynman himself often said, scientific truth is not determined by the
proclamations of our Prophets, however esteemed, but by observing and learning from nature.

Pauli Exclusion Principle

We now turn from bosons to fermions, which as Feynman says: “act in a completely different way.”

In Figure 6-4, two identical fermions A and B enter two similar states.

Figure 6-4 Two Identical Fermions 
Entering Similar States



The amplitude for A to go into state 1 is a1, and the amplitude for B to go into state 2 is b2. The
amplitude that both events occur is:

a1 b2 = <1|A> <2|B>

Conversely, the amplitude of A going to state 2 and B going to state 1 is:

a2 b1 = <2|A> <1|B>

Since A and B are identical fermions, we must subtract amplitudes to obtain the amplitude that A
goes to either state and B goes to the other state.

a1 b2 – a2 b1 = <1|A> <2|B> – <2|A> <1|B>

In the limit that states 1 and 2 become identical, with the same spin and direction of motion, a1

becomes a2 and b1 becomes b2. This means the above amplitude becomes zero. Combining fermions is
much simpler than combining bosons (zero is simple). A fermion will never exist in the same state as
another identical fermion. (Two fermions are not in the same state if their spins are different.)

This antisocial behavior is called the Pauli Exclusion Principle.

As a consequence, two electrons cannot have the same atomic orbit unless they have different spins.
Since all of the Big Three particles of matter — electrons, protons, and neutrons — are spin 1/2
fermions, their spins along any selected axis can only be +1/2 or –1/2, which are more commonly
called spin up and spin down.

Each electron atomic orbit, defined by its distribution in space and angular momentum, can have only
two electrons, one with spin up and the other with spin down.

In V3p4-13, Feynman muses about what the universe might be like if fermions behaved like bosons. If
so, any number of electrons could occupy the lowest energy orbit closest to the nucleus. Indeed it
would be much more likely than not that they all would occupy the same state. This also applies to
protons and neutrons inside the nucleus. All particles would occupy the lowest energy states, with
their spins aligned in the same direction. No chemical reactions would occur, because all electrons
would already be in the lowest possible energy level. We carbon-based life forms wouldn’t need to
worry about any of the other possible consequences of repealing the exclusion principle.

Fortunately, fermions are antisocial and atoms are much more interesting as a result.

Hydrogen has only one proton and one electron, so the exclusion principle does not apply.

Helium has two protons, two neutrons, and two electrons. All occupy the lowest energy level,
denoted n=1, that is available to their species. To do that, all pairs have their spins anti-parallel. As
we said earlier, helium-4 is a spin 0 boson. In helium the n=1 shell is full. All orbits in the n=1 shell
are spherically symmetric, are denoted “1s” orbits, and are as close to the atom’s center as the
uncertainty principle and Bohr quantization allow.



Beyond helium, additional particles enter the n=2 shell, which has the second lowest energy orbits.
This shell is more diverse. The n=2 electron orbits are of two types: a single “2s” spherically
symmetric orbit; and three asymmetric orbits called “2p”. Each of these four n=2 orbits can
accommodate two electrons, one with spin up and the other with spin down, for a total of 8 electrons.

Figure 6-5 illustrates some of the more common electron orbits in atoms. The 1s orbit is a simple
ball. The 2p orbits are asymmetric, with the electron wave at each end having opposite phases,
represented in the figure by different shadings. Mathematically, one side is proportional to cos(ωt)
while the opposite side is proportional to cos(ωt+π). The p orbits have one symmetry axis, as do
American footballs. The axes of the three p orbits are mutually orthogonal in each shell.

Figure 6-5 Some Electron Orbits

The n=3 shell is even more diverse, with one “3s”, three “3p”, and five “3d” orbits. Again each orbit
accommodates two electrons with opposite spins, for a total of 18 electrons. The 3d orbital looks like
a barbell of one wave phase surrounded by a donut of the opposite phase.

The n=4 shell has one “4s”, three “4p”, five “4d”, and seven “4f” orbits, and accommodates a total of
32 electrons. The higher-numbered shells are progressively more complex.

One general rule is: shell n accommodates up to 2n2 electrons.

Electrons are less tightly bound in outer orbits than inner orbits. For example, 25 volts is required to
pull an electron out of a 1s orbit in helium, while only 5 volts extracts an electron from a 2s orbit in
lithium. An atom’s outermost, most loosely bound electrons, are most easily transferred to or shared
with other atoms, enabling chemistry.

Antisocial fermions also make matter rigid and stable. Any attempt to squeeze together two objects
requires forcing their electrons into less space. Since electrons are already in the lowest energy states
that the exclusion principle allows, the only “space” they can be pushed into is higher energy states.
At several volts per electron, and nearly a trillion electrons per cubic centimeter, crushing even a tiny
piece of solid matter requires hundreds of thousands of joules.



Two-Nucleon Systems

Feynman ends this lecture discussing two-nucleon states.

A proton and a neutron can combine to form the stable nucleus of deuterium, hydrogen-2. But neither
two neutrons nor two protons form stable pairs. We know two protons repel one another electrically,
but the strong force is strong enough to overcome that. Helium-3, two protons and one neutron, attests
to that. The key issue, Feynman says, involves the exclusion principle.

Experiments show that the strong force is stronger between nucleons whose spins are parallel than
between nucleons with opposite spin. Two protons (or two neutrons) cannot exist in their lowest
energy state (1s) if they have the same spin, and the next higher energy state isn’t bound.

The only bound two-nucleon system is the spin 1 deuteron, the nucleus of deuterium, one proton and
one neutron with parallel spins. Parallel spins enhance the strong force attraction, and are permitted
by the exclusion principle because the particles are non-identical.

Chapter 6 Review: Key Ideas
 

1. The gregarious behavior of bosons underlies Einstein’s laws of radiation. The probability that
an atom will absorb a photon from a state containing N photons is proportional to N. The
probability that an atom will emit a photon into a state containing N photons is proportional to
N+1.

2. Feynman recommends memorizing the number of modes, M, in 3-D k-space: dM = V/(2π)3 dkx

dky dkz = V/(2π)3 d3k, where the k’s, the wave numbers in each dimension, can be positive or
negative.

3. Gregarious bosons and Einstein’s laws of radiation explain Planck’s black body equation for the
light intensity, the energy per unit area per second, emitted by a body of temperature T:

 I(ω) = (ħω3/π2c2)/{exp(+ħω/kT) –1}

4. Fermions are antisocial; they never exist in the same state as another identical fermion. This is
called the Pauli Exclusion Principle. Two fermions are not in the same state if their spins are
different.

5. Due to the exclusion principle, each electron orbit in an atom, defined by its distribution in
space and angular momentum, can have only two electrons, one with spin up and the other with
spin down. This leads to the rich structure of atoms that enables chemical processes.

6. Nature has room for both groupies and individualists.



Chapter 7

Spin One

In V3p5-1, Feynman declares that he will henceforth describe quantum mechanical phenomena in
purely quantum terms, with no attempts at classical analogs or explanations.

He starts with the quantum phenomena of particles with spin one. We previously described spin as an
intrinsic form of quantized angular momentum that elementary particles possess. Two key points to
stress are: (1) a body with spin one has a spin component of either +ħ, 0, or –ħ along any selected
axis; and (2) measuring a body’s spin along one axis nullifies any knowledge of its spin along all
other axes. Physicists generally say the spin is +1, 0, or –1, leaving the ħ unmentioned but understood.

Feynman says spin one is “sufficiently complicated that it can stand as a prototype which can be
generalized for the description of all quantum mechanical phenomena.”

What we learn in this chapter about the interplay of quantum states will provide a foundation for
exploring many other quantum phenomena.

Stern-Gerlach Device for Spin Separation

In 1922 Otto Stern and Walther Gerlach developed a device that sorts atoms according to their
magnetic moments along any selected axis. Any object with spin has a magnetic moment; along any
axis, the magnetic moment is proportional the component of spin along that axis. Stern and Gerlach
proved that quantum entities cannot spin in any direction, like a child’s top. They showed that
quantum spin is quantized, as we have previously described. Stern was awarded the 1943 Nobel
Prize.

In V2p35-3, Feynman gives a detailed explanation of how a Stern-Gerlach device works, which I
will briefly summarize here. Between the pole faces of a normal magnet, the magnetic field is
uniform. But in a Stern-Gerlach device, one pole face is tapered, as shown in Figure 7-1, resulting in
a magnetic field that varies across the pole gap, being highest at the tip of the taper.



Figure 7-1 Tapered Magnet 
in Stern-Gerlach Device

This field gradient exerts a force on magnetic dipoles that is parallel to the pole gap (vertical in the
above image). Particles with magnetic dipole moments deflect toward one pole or the other,
depending on their spin orientation. Stern-Gerlach devices are most effective with beams of
electrically neutral particles, since charged particles will experience a much greater force from the
qv×B term of the Lorentz force.

In V3p5-2, Feynman imagines an enhanced version of the basic Stern-Gerlach device that is
illustrated in Figure 7-2. Atoms (or particles) enter from point A, pass through a collimator, traverse
three magnets, pass through a final collimator, and arrive at point B. The collimators define a narrow
beam. In this 2-D image, the tapering of the magnet pole faces isn’t visible; the upper poles of each
magnet are tapered in the third dimension, in and out of the screen.

Figure 7-2 Fey nman’s Stern-Gerlach Device

The lower half of Figure 7-2 is a magnified view of beam deflections inside the device. It shows that
atoms with positive magnetic moments in the z-direction deflect upward, those with negative moments
deflect downward, and those with zero moments in the z-direction are not deflected.

The three-magnet arrangement first separates the beams, and then recombines them. If all three



pathways are open, as in Figure 7-2, the net effect of the entire apparatus is to leave the atoms
completely unaltered.

But we have options. Absorbers can be placed midway through the device to block one or more of the
three pathways. This enables selection of those atoms (or particles) with desired spin components
along the z-axis. For example, if we block the “0” and “–” beams, the beam at B will contain only
atoms with spin +1 along the z-axis. Such a beam is variously described as polarized, filtered, or in
a definite spin state.

To eliminate needless complications, Feynman stipulates that atoms are at rest at points A and B.
Unspecified mechanisms accelerate the atoms at A and decelerate them at B.

We will employ a shorthand notation to describe various Stern-Gerlach device configurations. While
different from Feynman’s notation, ours is more suitable for ereaders. The following symbols denote:
a beam enters from the left, traverses a Stern-Gerlach device labeled S that passes only those atoms
with spin +1 along the axis of device S, after which the beam exits to the right.

–> {S:+} –>

The above device passes only the spin + beam because it contains absorbers that block the spin –1
and spin 0 beams. As Stern-Gerlach devices may be oriented in any direction, their magnetic fields
can select spin along any axis. We define |+S> to denote a pure state of spin +1 with respect to the
axis of device S.

Examples of this notation are:

–> {A:+} –> device A passes only spin |+A>

–> {B:0} –> device B passes only spin |0B>

–> {C:+–} –> device C passes |+C> and |–C>

–> {D:–} –> device D passes only spin |–D>

–> {E:none} –> device E passes no atoms

–> {F:all} –> device D passes all spins

We can put two devices, S and T, in a row by writing:

–> {S:–} –> {T:all} –>

Here, atoms go through S first, and subsequently go through T. After S, the beam is in a pure spin |–S>
state, and passes through T unaltered because T passes all spins.

Conversely, in the following configuration, no atoms pass through the second device:



–> {S:–} –> {S:0} –>

Recall our prior notation: <U|V> is the probability amplitude that an atom in state V goes into state U.
Here we can write:

<+S|+S> = 1, 100% likely that +S goes to +S
<0S|+S> = 0, it never happens

In V3p5-5, Feynman lays out a matrix listing all nine combinations of <To|From>:

Matrices are used to describe quantum phenomena. The more interesting phenomena have non-zero
off-diagonal components.

Two Devices with Rotation

Now let’s get more elaborate. What happens if we send atoms through two sequential Stern-Gerlach
devices when the second is rotated? Let T, our second device, be rotated about the y-axis (the beam
axis) by angle θ relative to S, the first device. Figure 7-3 shows the view looking down the beam axis
from starting point A.

Figure 7-3 Device S Followed by  
Device T Rotated by  θ



Our devices are configured:

–> {S:+} –> {T:+} –>

How many atoms pass through device T? Unless θ=0, the answer is less than 100% of the atoms that
pass through S. This is because the atoms exiting device S are in a pure |+S> state, which is different
from |+T>. This is similar to expressing a vector in two different coordinate systems. It’s the same
vector, but its components are different in different coordinate systems.

In our present case, state |+S> is represented in the rotated system by various amounts of |+T>, |0T>,
and |–T>. Those amounts are written: <+T|+S>, <0T|+S>, and <–T|+S>. Similarly for states |0S> and
|–S>. In total, there are nine coefficients for transforming 3 S states into 3 T states. These nine
coefficients form a 3×3 transformation matrix.

In the next chapter, we will derive some transformation matrices for various rotations.

If an atom in the |+S> state enters T it must end up in some combination of T states with total
probability 1; it has to go somewhere. Mathematically, we write:

|<+T|+S>|2 + |<0T|+S>|2 + |<–T|+S>|2 = 1

Three Sequential Devices

Next, imagine three sequential Stern-Gerlach devices: S, T, and U. Let S and T be as above, with T
rotated about the y-axis by angle θ, and let U be parallel to S. In our notation, this configuration is:

–> {S:+} –> {T:0} –> {U:+} –>

Feynman asks: will all the atoms that pass through T also pass through U? Do the atoms that
previously passed through S retain any knowledge of once being in state |+S>? The answer is No.

Every measurement forces the observed entity into a definite quantum state, a state with an allowed
value for that measurement. In this case, only three values are allowed: +1, 0 and –1 along the
measurement axis.

Quantum states do not record prior history. Particles and atoms have no clocks and no diaries. They
exist entirely in the Now.

When an atom exits T in |0T>, nothing additional can be known about its spin. It makes no difference
whether T is preceded by one S device, 79 S devices, or none. Since T is rotated relative to U, state
|0T> is a combination of the three U states, with amplitudes that depend on the rotation angle. If, for
example, 1/3 of the atoms exiting T also exit U, then no matter what precedes T, that 1/3 ratio will
never change.

Consider an example using two experiments:



Expt. “00+”: –> {S:0} –> {T:0} –> {U:+} –>

S passes spin 0 along the z-axis, then T passes spin 0 along its rotated axis, and finally U passes spin
+1 along the z-axis.

Expt. “000”: –> {S:0} –> {T:0} –> {U:0} –>

S passes spin 0 along the z-axis, then T passes spin 0 along its rotated axis, and finally U passes spin
0 along the z-axis

For these two experiments, the amplitudes that an atom exiting S passes through both T and U are:

Expt. “00+”: <+U|0T> <0T|0S>
Expt. “000”: <0U|0T> <0T|0S>

The ratio of amplitudes of these two experiments is:

<+U|0T> <0T|0S> / <0U|0T> <0T|0S>
= <+U|0T> / <0U|0T>

This result depends only on the configuration of T and U, not on S. This is true even if U is not
parallel to S. That should be clear since the last result shows that we can remove S without changing
this ratio.

Basis Vectors & Basis States

In normal 3-D space, a vector v is represented by an ordered triplet of numbers (vx, vy, vz) that are the
vector’s components along each axis of a chosen coordinate system. Define basis vector ex to be a
unit vector in the x-direction, and similarly for ey and ez. To conveniently represent any vector in 3-D,
our coordinate axes, and therefore the three basis vectors, must be mutually orthogonal. In this case,
we have these relationships:

ej • ej = 1 for j = x, y, and z, and
ej • ek = 0 for j ≠ k = x, y, and z

The first equation says the e vectors are unit vectors, and the second says they are orthogonal.

This can be written more compactly by introducing the Kronecker delta δjk, which equals 1 if j=k and
equals 0 if j≠k. Then:

ej • ek = δjk

Any vector in 3-D space can be written as a linear combination of basis vectors. In particular:

v = vx ex + vy ey + vz ez



where vj = v•ej, for j = x, y, z

In the same manner, in quantum mechanics, we can represent any state as a linear combination of
basis states. An essential step in addressing any quantum situation is identifying a set of basis states
that are mutually orthogonal and that span the entire range of possible states. The latter requirement
ensures that every possible state is some linear combination of the basis states.

(The terms basis vectors and basis states are more commonly used than Feynman’s terms, base
vector and base state. But both have the same meaning.) 

Just as with basis vectors, generally there are a great many, if not an uncountable number, of possible
sets of basis states. All are equally valid. Referring back to the last section, in our idealized thought
experiment, two equally valid choices of basis states are:

|+S>, |0S>, |–S>; and
|+T>, |0T>, |–T>

Let’s go back to the experiment with S and T illustrated in Figure 7-3, and set the absorbers to this
configuration:

–> {S:+} –> {T:0} –>

Feynman reminds us that atoms exiting T are in pure |0T> state and have no memory of once being in
state |+S>. Feynman says:

“Some people would say that in filtering by T we have ‘lost the information’ about the previous
state |+S> because we have ‘disturbed’ the atoms when we separated them into three beams in
the apparatus T. But that is not true. The past information is not lost by the separation into three
beams, but by the [absorbers].”

He demonstrates this with the following sequence of thought experiments.

Firstly, arrange three devices, S, T, and U, with U parallel to S. In the first experiment, call it “+0+”,
S and U are identical, both passing |+S>, while T is rotated at an unspecified angle θ and passes |0T>.
Define N to be the number of atoms exiting S. Some fraction α of those will pass through T; the
number exiting T is αN. Of those, some other fraction β will pass through U; the number exiting U is
βαN. Thus we have:

Expt. “+0+”: –> {S:+} N –> {T:0} αN –> {U:+} βαN –> 

After each device, we added above the number of atoms that pass through that device.

In the next experiment, call it “+00”, reset U to pass only |0U>. Of the αN atoms exiting T, a fraction ε
pass through the re-configured U.

Expt. “+00”: –> {S:+} N –> {T:0} αN –> {U:0} εαN –>



We next remove all absorbers from T and repeat each of the last two experiments, which we now
label “+all+” and “+all0”, with “all” representing a completely unblocked device.

Expt. “+all+”: –> {S:+} N –> {T:all} N –> {U:+} N –>

Expt. “+all0”: –> {S:+} N –> {T:all} N –> {U:0} 0 –>

When S = U, opening T increases the pass rate:
   βαN becomes N

When S ≠ U, opening T decreases the pass rate:
   βαN becomes 0

Feynman says it may seem surprising that removing absorbers drops a pass rate. But, he adds, we
have seen such surprises before. In the two-slit experiment, opening a second slit reduces the intensity
at half the points on the detection screen, due to destructive interference.

The complementary effect is explored in Feynman Simplified 1C Chapter 36, where adding a third
Polaroid filter allows light transmission through an otherwise opaque pair of orthogonal filters. There
the third filter was oriented at 45º and placed between the orthogonal pair.

Feynman says, in V3p5-10, that the effect in our current case is due to interfering amplitudes. It’s not
interference in the same sense as in two-slit experiments, diffraction gratings, and optics. Those
situations require careful analysis of varying path lengths and changing phase angles. Here, the
situation is much easier: pathways are simply being switched on and off.

Let’s see the exact effect of switching pathways on and off.

First, consider the pair of experiments with both S and U passing |+S>, one with T passing |0T> and
the other with T passing all spins. We said states can be represented using any basis states. We can
represent |+S> using the T states as a basis. For some a, b, and c:

|+S> = a|+T> + b|0T> + c|–T>

If T passes only |0T>, the state entering U is: b|0T>. We can next represent that state in a basis of S
states, which are identical to U states. For some d, e, f:

|0T> = d|+S> + e|0S> + f|–S>

Hence the state exiting U is bd|+S>, when T passes |0T>.

But if T passes all spins, the state exiting T is unaltered by T; it remains:

a|+T> + b|0T> + c|–T> = |+S>

which U passes in its entirety. As Feynman says, T separates the beam into three parts and then
recombines them exactly — “Humpty Dumpty has been put back together again.”



Next, consider the pair of experiments with different S and U: S passing |+S> and U passing |0S>.
When T passes only |0T>, the state entering U is: b|0T>, as above. The final state is b times the part of
|0T> that U passes: b•e|0S>. While when T passes all spins, the state entering U is |+S>, which U
totally blocks.

Rules for Basis States

Feynman does the same analysis slightly differently. For the case of identical S and U, and T passing
all spin states, he says the amplitude of passing U is the sum of the amplitudes for three different but
undistinguished paths. The three paths are those of the three beams passing through T. The amplitude
for the |+T> path is:

<+S|+T><+T|+S>

This is (the amplitude of going from |+S> to |+T>) × (the amplitude of going from |+T> to |+S>).

We can write the sum of three such amplitudes more compactly as:

Q = ΣJ <+S|J><J|+S>

where J is summed over all T states.

When T passes all spins, T really has no effect — nothing would change if T were removed. In this
case, we can remove T from the above equations and rewrite them as:

ΣJ <+S|J><J|+S> = <+S|+S> = 1
ΣJ <0S|J><J|+S> = <0S|+S> = 0
ΣJ <–S|J><J|+S> = <–S|+S> = 0

All this results from the fact that S states and T states are basis sets.

If we now rotate U to some other angle ø, the amplitude would become:

ΣJ <0U|J><J|+S> = <0U|+S>

Indeed, Feynman says this is a general rule that applies to any initial and final state. Replacing the
initial and final states with more generic symbols, we can state the rule in a general form:

ΣJ <ψ|J><J|φ> = <ψ|φ>

This rule holds provided the |J> states are a complete orthonormal basis. Orthonormal means <J|K> =
δJK, and complete means every possible state |φ> is a linear combination of |J> states.

Setting ψ=φ, we get:

ΣJ <φ|J><J|φ> = <φ|φ> = 1



Let’s next derive another important rule by examining the representation of state |φ> as a linear
combination of three basis states |J>:

|φ> = a1 |1> + a2 |2> + a3 |3>

where aJ = <J|φ>, or more compactly

|φ> = ΣJ <J|φ> |J>

It is essential that the sum of the squares of the aJ’s equals 1: the sum of the probabilities of the
particle being in some combination of basis states must be 100%. Hence:

1 = ΣJ |<φ|J>|2 = ΣJ <φ|J><φ|J>*

Combining that with an earlier result:

1 = ΣJ <φ|J><J|φ> = ΣJ <φ|J><φ|J>*
0 = ΣJ <φ|J> {<J|φ> – <φ|J>*}

This must be true for any state φ and any set of basis states J. This requires:

<J|φ> = <φ|J>*

This important relationship is valid for any J and φ.

The Power of Basis States

In V3p5-12, Feynman demonstrates the utility of employing basis states.

Suppose, he says, we have a three-state system such as atoms with spin one. We send those atoms
through device S to obtain a pure state, and then send those atoms through a very complex apparatus
A, and finally filter the atoms exiting A with device U, which need not be identical to S. All this is
symbolized by:

–> {S:+} –> {A:???} –> {U:+} –>

Feynman says:

“By A we mean any complicated arrangement of Stern-Gerlach apparatuses with mask
[absorber] or half-mask, oriented at peculiar angles, with odd electric and magnetic fields…
almost anything you want to put. (It’s nice to do thought experiments — you don’t actually have
to go to all the trouble of actually building the apparatus!)”

The standard notation for the amplitude to go from state |+S> go through A and end in state |0U> is:

< 0U | A | +S >



which we read right to left as: 
<end | through | start >.

Recalling our analogy of a quantum state as a vector, A is an operator that transforms vectors in some
way, such as a rotation, and <ψ|A|φ> is analogous to the dot product of ψ with the transformed vector
Aφ.

If A does nothing to alter the particle-wave states, we can write either of the following equivalent
expressions:

<0U|A|+S> = <0U|1|+S> = <0U|+S>

Since there are limitless possible initial and final states, understanding <0U|A|+S> might seem
hopeless. But using the rules of the last section, we can represent any initial and any final state using
any basis states we wish. We choose three states denoted |1>, |2>, and |3>. We then have (with J and
K summed over 1, 2, and 3):

<0U| = ΣK <0U|K> <K|
|+S> = ΣJ <J|+S> |J>
<0U|A|+S> = ΣKJ <0U|K> <K|A|J> <J|+S>

For any initial state φ and final state ψ, this is:

<ψ|A|φ> = ΣKJ <ψ|K> <K|A|J> <J|φ>

This means any device A, regardless of its complexity, is completely characterized by just nine
complex numbers, the nine amplitudes:

<K|A|J>

In V3p5-14, Feynman says:

“This then is the machinery of quantum mechanics for a spin one particle. Every state is
described by three numbers which are the amplitudes to be in each of some selected set of
[basis] states. Every apparatus is described by nine numbers which are the amplitudes to go
from one [basis] state to another in the apparatus. From these numbers anything can be
calculated.”

Feynman’s statements can be generalized to systems with any number of basis states.

The nine amplitudes of a spin one apparatus are often written in matrix form:

| <+T|A|+T> <+T|A|0T> <+T|A|–T> |
| <0T|A|+T> <0T|A|0T> <0T|A|–T> |
| <–T|A|+T> <–T|A|0T> <–T|A|–T> |

Components of matrix A are identified by indices: AKJ = <K|A|J>.



Now imagine that apparatus A actually consists of two independent devices B and C. What we
previously described as “atoms enter A in state |J> and exit A in state |K>” is now replaced by “atoms
enter B in state |J>, exit B and enter C in state |M>, and exit C in state |K>.” The amplitude is now
written:

<ψ|CB|φ> = ΣKMJ <ψ|K><K|C|M><M|B|J><J|φ>

As before, we can represent B and C by 3×3 matrices. The matrix A is the product of the matrix C
times the matrix B: A=CB. Since matrix multiplication is not commutative, one must multiply matrices
in the proper order: CB≠BC in general. By convention, the proper order puts the first device to act on
the right, the next device to act to its immediate left, and so forth. In this case, atoms enter B before C,
so matrix B is on the right.

The rule for matrix multiplication can be read from the last equation:

A = C B
AKJ = ΣM CKM BMJ

AKJ = ΣM <K|C|M> <M|B|J> 

Unpolarized Beams

Often the original source of beams of atoms is unpolarized. A solid or liquid is heated; the most
energetic atoms escape into the vapor phase, and a portion thereof form the source for Stern-Gerlach
and other experiments. Since heat energy has no preferred direction, atoms exiting a furnace have
randomly distributed spin orientations.

This means we expect the probability of an atom being in state |+S> to be 1/3, and the same for |0S>
and |–S>, for any set of basis states S. In V3p5-17, Feynman stresses that equal probabilities do not
mean equal probability amplitudes. The atom’s initial state |ψ> is not known to have equal
amplitudes for each basis state:

|ψ> ≠ (1/√3)|+S> + (1/√3)|0S> + (1/√3)|–S>

The above state has specific phase relationships and interference possibilities that unpolarized states
do not have. We only know that:

1/3 = |<ψ|+S>|2 = |<ψ|0S>|2 = |<ψ|–S>|2

The probability that such an atom initially happens to be in state |+S>, goes through device A, and
ends up in state |φ> is: |<φ|A|+S>|2/3. The probability that an atom from an unpolarized beam goes
through A and ends up in state |φ> is the sum of probabilities for each initial spin state:

|<φ|A|+S>|2/3 + |<φ|A|0S>|2/3 + |<φ|A|–S>|2/3

The choice of basis states S is arbitrary. If we instead use T states as a basis set, with:



|JS> = ΣK <KT|JS> |KT>

we would get the same result, for unpolarized beams.

ΣJ |<φ|A|JS>|2 = ΣJK |<φ|A|KT> <KT|JS> |2
ΣJ |<φ|A|JS>|2 = ΣK {|<φ|A|KT>|2 (ΣJ |<KT|JS>|2)}
ΣJ |<φ|A|JS>|2 = ΣK |<φ|A|KT>|2 (1)

Chapter 7 Review: Key Ideas
 

1. Stern-Gerlach devices separate atoms (or particles) into beams of pure spin states.

2. Every measurement forces the observed entity into a definite state, one with an allowed value
for that measurement. Particles have no memory of their prior history. If an atom’s spin is
measured to be +1 along the z-axis, nothing additional can be known about its spin.

3. Any quantum state can be represented as a linear combination of basis states, which are
mutually orthogonal and span the entire range of possible states. Generally there are many
possible sets of equally valid basis states. For a set of N basis states |J>, J=1…N, these
relationships hold for any states ψ and φ, and with J and K summed from 1 to N:

<J|K> = δJK = 1 if J=K, and = 0 if J≠K

|φ> = a1 |1> + a2 |2> + … + aN |N>
for aJ = <J|φ>, |φ> = ΣJ <J|φ> |J>

1 = ΣJ |<φ|J>|2 = ΣJ <φ|J><φ|J>*
1 = ΣJ <φ|J><J|φ> = <φ|φ>

<ψ|φ> = ΣJ <ψ|J><J|φ>
<ψ|φ> = <φ|ψ>*

4. The standard notation for the amplitude to go from state |φ>, through apparatus A, and end in
state |ψ> is:

< ψ | A | φ >

5. For N state systems, every state is completely described by N complex numbers: the amplitudes
to be in each of the N states of any selected basis set. Every apparatus A is completely described
by N×N complex numbers: the amplitudes for A to transform one basis state into another. “From
these numbers anything can be calculated.” Apparatus A is represented by a quantum operator A
with N×N amplitudes that are often arrayed as a matrix: AKJ = <K|A|J>.



6. Two sequential apparatuses B and C, with B preceding C, which are represented by matrices BKJ

and CKJ, are equivalent to a single apparatus A whose matrix is the product of matrix C times
matrix B. The matrix equations are:

A = C B
AKJ = ΣM CKM BMJ

AKJ = ΣM <K|C|M> <M|B|J>

Matrix multiplication is not commutative: CB≠BC in general.



Chapter 8

Rotations for Spin ½

This chapter is entirely devoted to mathematically deriving transformation matrices for rotations of
basis states, using the specific example of spin 1/2 particles.

In V3p6-2, Feynman suggests some might wish to skip the math and just use the results, which I
provide in the review section at the end of this chapter.

Even if you skip everything else in this chapter, be sure to read the last section.

While this chapter is more math-heavy than most, what we learn here about the properties of spin 1/2
particles explains the fundamental behavior of all material objects, because all matter is composed
entirely of spin 1/2 particles.

Feynman describes this lecture as:

“a sort of cultural excursion. …it is intended to show that the principles of quantum mechanics
are not only interesting, but are so deep that by adding only a few extra hypotheses about the
structure of space, we can deduce a great many properties of physical systems.”

“…as long as our laws of physics are incomplete — as we know they are — it is interesting to
find out whether the places where our theories fail to agree with experiment is where our logic
is the best or the where our logic is the worst. Until now, it appears that where our logic is the
most abstract it always gives the correct results — it agrees with experiment. Only when we try
to make specific models of the internal machinery of the fundamental particles and their
interactions are we unable to find a theory that agrees with experiment.”

In the last 50 years, great advances have been achieved in the theory of fundamental particles. The
Standard Model of particle physics effectively models almost all particle interactions. The number of
unanswerable questions is much smaller today than it was when Feynman gave these lectures.

Feynman adds:

“We are going to derive all the coefficients for the transformation from one representation to
another by pure reasoning — plus a few assumptions. Some assumptions are always necessary in
order to use ‘pure’ reasoning.”

Transforming Basis States



Let’s review how transformations fit into our quantum description of nature.

In the last chapter, we discovered that any quantum state can be represented as a linear sum of basis
states. For example state |U> can be represented as:

|U> = ΣJ <J|U> |J>

where J is summed over all basis states |J>, and <J|U> is the amplitude for something in state |U> to
be found in state |J>. We can think of <J|U> as measuring the overlap between the two states; it is the
dot product of vectors J and U within the space of all states.

In any quantum situation, there can be many (even infinitely many) sets of equally acceptable basis
states. For convenience, we choose basis states that are orthonormal and complete. Orthonormal
means for any two basis states |J> and |K>:

<J|K> = δJK = 1 if J=K, = 0 if J≠K

A basis set is complete if every possible state is some linear combination of basis states.

We also discussed transforming from one set of basis states to another. If we know <J|U> for all |J>,
we know the complete representation of |U> in basis states |J>. We can transform to basis states |L>
according to:

|U> = ΣLJ <L|J> <J|U> |L>

When a basis set has N states, there are N2 transformation amplitudes <L|J> that allow us to transform
any state in the J basis to the corresponding state in the L basis. The <L|J> amplitudes can be arranged
into an N×N matrix.

The objective of this chapter is to derive a complete set of transformation matrices for rotations, for
the case of one basis set rotated relative to another.

Since any quantum state can be represented using basis states, each state is mathematically equivalent
to a vector in N dimensions, where N is the number of linearly independent basis states. We can
therefore employ the mathematics of N-dimensional rotational transformations. This mathematics was
fully developed long before quantum mechanics. We will not add much here to the theory of rotations.

The essential concept is: a vector V defined in one basis is transformed to a rotated basis by
multiplying it by one or more matrices. If we rotate once, by angle θ about the z-axis, the transformed
vector U is given by:

Uj = Σk Rjk Vk

where the components of R depend on θ and z, and the indices j and k range over all N basis states or
basis vectors. To rotate multiple times, we repeat the procedure. For three rotations, we could write:

Uj = Σkmn Tjn Snm Rmk Vk



Here R, S, and T each perform a rotation by some angle about some axis. Equivalently, we could
calculate matrix A, the product of matrices R, S, and T, and use A to perform the same transformation
in one step:

Ajk = Σmn Tjn Snm Rmk

Uj = Σk Ajk Vk

It is easier to derive the transformations individually, and later decide whether to employ them
serially or in combination.

For spin 1/2, there are only two states: +1/2 and –1/2, which we will further abbreviate to + and –. In
a Stern-Gerlach device, spin 1/2 particles separate into two beams, one less than the three beams of
spin 1 particles in the last chapter. For spin 1/2, a basis set needs only two states; N=2, and rotation
matrices have only 4 components. We choose to start with the simplest case.

Feynman discusses at some length the fact that the components of a rotation matrix are not uniquely
defined. As we know from the study of wave interference, only phase angle differences have physical
significance. If we add a constant phase angle to every wave, no element of physical reality changes.
Similar situations arise repeatedly with the rotation of quantum states; multiplying every state by
exp{iø} has no physical consequences. We will, therefore, arbitrarily assign overall phase angles as
is convenient and without exhaustive discussion. We also adopt the standard sign conventions: the
right-hand rule, and the determinant of all transformation matrices must be +1.

Rotational & Translational Invariance

The first point Feynman makes is that absolute angles have no physical significance: rotation matrices
depend not on angles, but only on angle differences. This principle, called rotational invariance,
states the laws of nature are the same in all directions. If the entire universe were rotated by 10
degrees, nothing would change. Rotational invariance is directly related to the conservation of
angular momentum; angular momentum would not be conserved if the laws of nature changed as we
turned.

Feynman doesn’t mention this, but associated with rotational invariance is translational invariance,
which states the laws of nature are the same here, as they are over there. This is directly related to the
conservation of linear momentum.

All this is interesting and important, but not particularly quantum.

Rotations About the Z-Axis

Consider two devices, S and T, which pass all spins (no absorbers) and are represented by dashed
rectangles in Figure 8-1. The magnetic fields of both S and T are in the +z-direction, pointing toward
you, perpendicular to the screen. A particle with spin + deflects up out of the screen in each device,



while spin – particles deflect downward. Recall that our Stern-Gerlach devices recombine all beams
after deflection.

Figure 8-1 Two Devices with Zero Rotation

S and T lie along a straight line parallel to the y-axis. In this orientation, S and T have zero rotation
relative to one another. The rotation matrix for transforming S states into T states is the identity
matrix:

| 1 0 |

| 0 1 |

The probability of a spin + particle being in state |+S> is 100%, as it is for being in |+T>. Similarly
for spin –, the probabilities are 100% for both |–S> and |–T>.

In Figure 8-2 shows the same devices, with T rotated by 90º about the z-axis.

Figure 8-2 Two Devices with 
90º Rotation about Z-Axis

For any T rotation angle about the z-axis, the probabilities remain 100% that a spin + particle is in
state |+T> and a spin – particle is in |–T>. This means the amplitudes must have magnitude 1, but they
can and do have different phases, as we show next.

Suppose that particles entering S are in a pure +x spin state. S separates particles according to their
z-spin components, but then seamlessly recombines them into one beam. As we learned in the last
chapter, a device that passes all spins makes no measurement and does not alter particles’ states.
Hence, the beam entering T remains in a pure +x spin state. But, since T is rotated by 90º, the +x-
direction corresponds to T’s –y’-direction. As represented in a T state basis, the beam’s spin states
are changed by this 90º rotation.

Since we showed that the magnitudes of the T states don’t change, the states can change only by a



phase angle. We also know that the + and – spins must change by different phase angles (both
changing by the same angle is equivalent to no change). Since only phase differences matter, we
assign a positive phase shift to spin + and a negative phase shift to spin –:

|+T> = exp{+iλ} |+S>
|–T> = exp{–iλ} |–S>

Now what is λ? Since rotations are related to sine and cosine functions that are continuous, an
infinitesimal rotation should result in an infinitesimal phase shift λ. For sufficiently small angles,
assume λ is proportional to the rotation angle ε: λ=mε, where m is an unknown constant.

Let T be rotated relative to S by a very small angle ε, and add another device U after T that is rotated
relative to T by the same angle ε also about the z-axis. The phase change for the second rotation must
equal that of the first rotation (absolute angles don’t matter; only angle differences matter). Hence:

|+U> = exp{+imε}|+T> = exp{+2imε} |+S>
|–U> = exp{–imε}|–T> = exp{–2imε} |–S>

We can continue repeating this indefinitely, eventually building up to a large rotation. Evidently, for
any angle ε, regardless of size, λ=mε and |+T> = exp{+imε} |+S>. Now what is m?

Let’s try rotating T by 360º, all the way around to its starting position, on a straight line with S. We
might rush to say that |+T> must equal |+S>, so exp{im2π}=1 and m=1. But Feynman says: “This
argument is wrong!”

To see the problem, try ε=180º. This flips T, which is certainly a physically significant change. For
ε=180º, the rotated states are:

|+T> = –1 |+S>
|–T> = –1 |–S>

These rotated T states are equivalent to the S states; multiplying both states by –1 makes no
difference. But the physical state is different: what S sees as +x spin, the flipped T sees as –x spin.
We return to the same physical situation only when ε = 360º. For 360º to be the smallest angle that
produces states equivalent to the original states, m must be 1/2. For mε=360º/2, |+T> and |–T> are
both multiplied by –1.

Therefore, to transform from basis state S to basis states T, which are rotated about the z-axis by
angle ø, the transformation equations are:

|+T> = exp{+iø/2} |+S>
|–T> = exp{–iø/2} |–S>

Rotations About the Y-Axis



Next we derive the rotation equations for two rotations about the y-axis: for angles 180º and 90º.

Consider the configuration shown in Figure 8-3, with device S preceding device T, with T rotated by
180º about the y-axis, which is the beam axis.

Figure 8-3 Two Devices with 
180º Rotation About Y-axis

The magnetic field direction is indicated by the arrow at the center of each device. Note that the field
is inverted in T.

Particles with spin + have a 100% probability of being in the |+S> state and 100% probability of
being in the |–T> state. Spin – particles are in the opposite states with 100% probability. Hence the
states are switched, possibly with phase angles β and γ:

|+T> = exp{iβ} |–S>
|–T> = exp{iγ} |+S>

Rotating by 360º leads to the same issues as before, so we conclude that a 360º rotation results in
each state being multiplied by –1. We accomplish a 360º rotation with two consecutive 180º
rotations. Call the 180º-rotated states T and the 360º-rotated states U. Using the above expressions
twice, we get:

|+U> = exp{iβ} |–T> = exp{iβ} exp{iγ} |+S>
|–U> = exp{iγ} |+T> = exp{iγ} exp{iβ} |–S>

|+U> = – |+S> = exp{iβ} exp{iγ} |+S>
|–U> = – |–S> = exp{iγ} exp{iβ} |–S>

exp{iβ} exp{iγ} = –1
exp{iγ} = – exp{–iβ}

Again the overall phase angle is arbitrary. By convention, we chose β=0, which yields for a 180º
rotation about y-axis:

|+T> = + |–S>
|–T> = – |+S>

We next turn to a 90º rotation about the y-axis. Since we know how to do 180º rotations, let’s see
what equating that with two 90º rotations yields. The most general form for any spin 1/2 rotation is:

|+T> = a |+S> + b |–S>
|–T> = c |+S> + d |–S>



Assume the above is the transformation for one 90º rotation. Now perform a second 90º rotation
about the same axis, going from T to U:

|+U> = a |+T> + b |–T>
|–U> = c |+T> + d |–T>

|+U> = (a2+bc) |+S> + (ab+bd) |–S>
|–U> = (ca+cd) |+S> + (cb+d2) |–S>

Now require this result to match that for a single 180º rotation:

+ |–S> = (a2+bc) |+S> + (ab+bd) |–S>
– |+S> = (ca+cd) |+S> + (cb+d2) |–S>

a2 + bc = 0
ab + bd = +1
ca + cd = –1
cb + d2 = 0

From the first and last equation, we see a2=d2. This means a=d or a=–d. However, a=–d would make
the second equation: a(b–b)=1, which cannot be right. So a=d. The second and third equations now
reduce to:

2ab = +1, so b = +1/2a
2ca = –1, so c = –1/2a

Putting all this into the first equation:

a2 + (1/2a) (–1/2a) = 0
a4 = 1/4
a = 1/√2

Our final result for a 90º rotation about the y-axis is:

|+T> = (1/√2) (+|+S> + |–S>)
|–T> = (1/√2) (–|+S> + |–S>)

Feynman also provides the equations for a –90º rotation about the y-axis:

|+T> = (1/√2) (+|+S> – |–S>)
|–T> = (1/√2) (+|+S> + |–S>)

Rotations About the X-axis

Before you panic, as I did, know that we now have all we need for any rotation about any axis, at
least for spin 1/2 in three dimensions.



Consider for example rotating about the x-axis. Rotating 90º about the y-axis moves the z-axis into the
orientation of the original x-axis. We then rotate by any angle θ about the new z-axis (old x-axis),
which we learned how to do above. Finally, Rotating –90º about the new y-axis brings the x-axis
back to its starting position. Try it with any 3-D object; it works.

In V3p6-11, Feynman remarks on how hard it is for us to intuitively grasp combined rotations: “It is
rather strange, because we live in three dimensions, but it is hard to for us to appreciate what happens
if we turn this way and then that way. Perhaps, if we were fish or birds…”

To calculate an x rotation, use the procedure discussed at the start of this chapter: multiply the three
matrices for (–90º y-rotation) × (rotation by angle θ about z-axis) × (+90º y-rotation). The result is:

|+T> = cos(θ/2) |+S> + isin(θ/2) |–S>
|–T> = isin(θ/2) |+S> + cos(θ/2) |–S>

Rotation by Euler Angles

Arbitrary rotations — any angles about any axes — the pièce de résistance of 3-D rotation, are
defined using Euler angles, which are shown in Figure 8-4. The transformation equations are given in
the chapter review section.

Figure 8-4 Euler Angles α, β, γ

Chapter 8 Review: Tables of Rotations

We tabulate here the equations for several rotation transformations between a set S of basis states and
a rotated set T of basis states. In all cases, the y-axis is the beam axis and the z axis is the axis of
separation of spins in a Stern-Gerlach device.



For spin 1/2 particles, each basis set has two linearly independent states, denoted + and –.

To rotate about the z-axis by angle ø:

|+T> = exp{+iø/2} |+S>
|–T> = exp{–iø/2} |–S>

To rotate about the y-axis by 180º:

|+T> = + |–S>
|–T> = – |+S>

To rotate about the y-axis by +90º:

|+T> = (1/√2) (+|+S> + |–S>)
|–T> = (1/√2) (–|+S> + |–S>)

To rotate about the y-axis by –90º:

|+T> = (1/√2) (+|+S> – |–S>)
|–T> = (1/√2) (+|+S> + |–S>)

To rotate about the x-axis by angle θ:

|+T> = cos(θ/2) |+S> + isin(θ/2) |–S>
|–T> = isin(θ/2) |+S> + cos(θ/2) |–S>

For Euler angles: 
  rotate first about the z-axis by angle β,
  then rotate about the new x-axis by angle α,
  then rotate about the new z-axis by angle γ:

<+T|+S> = cos(α/2) exp{+i(β+γ)/2}
<+T|–S> = isin(α/2) exp{–i(β–γ)/2}
<–T|+S> = isin(α/2) exp{+i(β–γ)/2}
<–T|–S> = cos(α/2) exp{–i(β+γ)/2}

For spin 1 particles, each basis set has three linearly independent states, denoted +, 0, –.

To rotate about the y-axis by angle θ:



<+T|+S> = (1+cosθ)/2
<0T|+S> = –(sinθ)/√2
<–T|+S> = (1–cosθ)/2

<+T|0S> = +(sinθ)/√2
<0T|0S> = +cosθ
<–T|0S> = –(sinθ)/√2

<+T|–S> = (1–cosθ)/2
<0T|–S> = +(sinθ)/√2
<–T|–S> = (1+cosθ)/2

To rotate about the z-axis by angle θ:

<+T|+S> = exp{+iθ}
<0T|0S> = 1
<–T|–S> = exp{–iθ}

The other six amplitudes are zero.

Spins & Rotations

Compare the equations for rotations by angle θ about the z-axis, the direction of the spin-separating
magnetic field. For spin 1/2 particles, the allowed z-axis spin components are s = +1/2 and –1/2. For
spin 1 particles the allowed spin components are s = +1, 0, –1. For both spin types and all spin
components, we have a remarkable general rule:

<sT|sS> = exp{isθ}

In V3p4-3, Feynman says there is no simple explanation for the Pauli Exclusion Principle, adding that
its proof requires relativistic quantum field theory. However, the following explanation seems simple.
If you see anything wrong with it, let me know.

When two particles, ϕ and θ on the left side of Figure 8-5, are rotated 180º around the dotted axis, the
result is what is shown on the right side of the figure. Similarly, rotating the right side produces the
left side.



Figure 8-5 Swapping Identical Particles

From above, we found that rotating a spin s particle by 180º around the axis parallel to its spin
multiplied its amplitude by exp{isπ}. The combined state of the two spin s particles on the left side of
Figure 8-5 is:

|A> = <left|ϕ> <right|θ>

After rotating both particles by 180º, amplitude A changes to:

|B> = [<left|ϕ> exp{isπ}] [<right|θ> exp{isπ}]
|B> = exp{i2sπ} <left|ϕ> <right|θ>
|B> = exp{i2sπ} |A>

This rotation is equivalent to swapping particles ϕ and θ, matching the right side of the figure. If ϕ
and θ are identical particles, we find:

For spin 1/2, exp{i2sπ} = –1, and |B> = – |A> .

For spin 1, exp{i2sπ} = +1, and |B> = + |A> .

This demonstrates that swapping fermions flips the sign of the amplitude, as Pauli claimed, while
swapping bosons leaves the sign unchanged.

If ϕ and θ are moved together into the same state, |A> and |B> become indistinguishable, which
requires we combine their amplitudes.

For spin 1/2, the combined amplitude is:

|A> + |B> = |A> – |A> = 0

This yields Fermi-Dirac statistics and explains why identical fermions are precluded from occupying
the same state.

For spin 1, the combined amplitude is:

|A> + |B> = |A> + |A> = 2|A>



This yields Bose-Einstein statistics and explains the enhanced probability of identical bosons
occupying the same state.



Chapter 9

Time Dependence 
of Amplitudes

This chapter focuses on the evolution of probability amplitudes over time. To illuminate the essential
physics, we consider a very simple situation, indeed one that is greatly over-simplified. (Physicists
sometimes use “toy models.” These are very simple models that we know are quite incomplete, but
that we can push around to see how far they can take us. The aim is not providing realism but rather
promoting understanding.)

In V3p7-1, Feynman compares entities that have a definite energy with those that do not.

A lone, stationary electron has a definite energy, its rest mass. Physicists have measured that value to
10 digits. But because electrons have existed for nearly 14 billion years (maybe longer), nature
knows their mass to at least 40 digits — that’s quite definite. Let’s see why.

In atoms, an electron in a stable orbit with the lowest possible energy has a definite total energy.
Electrons can also briefly occupy excited states of higher energy. In the latter case, their energy is not
as definite. An electron in an excited state doesn’t stay there long; it quickly emits a photon and drops
to a lower energy state. If Δt is the mean time an electron remains in an excited state, the mean
lifetime of that state, the uncertainty principle says the energy of that excited state is uncertain to ΔE =
ħ/(2Δt). Physicists don’t always mention that when quoting energy levels, but it is understood.

Some particles are stable, but others spontaneously decay, each with a specific mean lifetime. Such
particles do not have completely definite masses. For example, K*-mesons have a broad mass
distribution. Their average mass is 891.7 MeV, but the mass of an individual K* can vary
considerably. With a mean lifetime of 1.3×10–23 sec, the uncertainty principle spreads K* masses
across a resonance-like distribution with a width of 51 MeV.

Stationary States

Now, consider something with definite energy, such as an isolated atom at rest. Let E be its energy, by
which we mean c2 times its rest mass m. This mass includes the masses of its component particles and
their binding energies. If the atom was in an excited state, it would have less negative binding energy,
and its mass would be greater than in the ground state. When it emits a photon of energy ħω and drops
to the ground state, the atom’s mass decreases by ħω/c2.

For our toy model atom — at rest, isolated, and in its ground state — the quantum mechanical
amplitude to find that atom at position r is the same for all r: the atom is everywhere with equal



probability. (Not our usual notion of atoms.) Indeed, not just the probability but also the amplitude is
exactly the same everywhere.

The amplitude is the same at every point in space, but not at every moment in time. The amplitude for
the atom to be at location (x,y,z) at time t is:

ø(t,x,y,z) = A exp{Et/iħ} = A exp{–iωt}

where ħω = E = mc2, and A is a normalization constant. E, m, and ω are three equally valid ways to
describe the atom’s energy.

While it is strange to think of a particle being spread throughout all space, this results directly from
the uncertainty principle: ΔE=0 implies Δp=0 implies Δx=∞.

If we measure any internal property of an atom, such as the states of its electrons, and if the
probability of each outcome never changes, we say the atom is in a stationary state.

Let’s contrast that with a non-stationary state. Imagine the atom might or might not absorb a photon,
elevating one of its electrons to an excited state. If the ground state and the excited state are not
distinguished, the outcome of any measurement would depend on the sum of two amplitudes, the
amplitude to be in the excited state plus the amplitude to be in the ground state. This summing of
amplitudes leads to interference effects.

The ground and excited states have slightly different energies, E and E*, resulting in different time
dependencies. For example, the following amplitude ø is a linear combination of ground and excited
states with different energies:

ø = A exp{Et/iħ} + B exp{E*t/iħ}
ø = A exp{Et/iħ} [1 + (B/A) exp{(E*–E)t/iħ}]

Assuming (E*–E) << E, ø oscillates rapidly at frequency E/ħ due to the first exponential, while
slowly waxing and waning at frequency (E*–E)/ħ, as the term in [ ]’s cycles between 1+B/A and 1–
B/A. The rate of waxing and waning is called a beat frequency.

One more point: shifting the energy scale has no impact on physical reality. If we add Δ to every
energy level, every amplitude is multiplied by a common factor: ø becomes øexp{iΔt/ħ}. This added
factor has no effect on |ø|2. If we add two amplitudes, both will contain this added factor, which again
disappears when calculating probabilities. We are therefore free to chose any zero-point for our
energy scale. In specifying an atom’s energy, we can include the rest masses of all its component
particles, or not. We can define the ground state energy to be zero, or we can define zero to be the
energy that all its pieces would have if they were separated by great distances. The latter is the most
common choice.

Uniform Motion



Enough rest; let’s get moving.

An atom at rest in one reference frame may be moving in another reference frame. In the atom’s rest
frame, its amplitude is:

ø(t,x,y,z) = A exp{Et/iħ}

The real part of ø, Re{ø}, crests along lines of constant time (t=n2πħ/E=n/f for any integer n). The
crests lie along the horizontal dashed lines in Figure 9-1, which is a plot of rest frame time t vs.
position x.

Figure 9-1 Re{ø} Crests Along Dashed Lines

Also plotted in Figure 9-1 are the moving frame time t* and position x*. The moving frame axes both
rotate toward the x=t line at 45º (see Feynman Simplified 1C Chapter 27). The crests of Re{ø} have
a different spacing along the t*-axis than along the t-axis. Also note that the dashed lines, which are
parallel to the x-axis, intersect the x*-axis. This means ø varies with x*; the amplitude is no longer
identical throughout all of space.

Recall the Lorentz transformation for time coordinates (see Feynman Simplified 1C Chapter 25):

t = (t*–x*β/c)γ

where βc = the relative velocity of the two frames, and γ=1/√(1–β2).

In the moving frame, the amplitude is:

ø(t*,x*) = A exp{E(t*γ–βx*γ/c)/iħ}

Using E*=Eγ and p*=βE*/c for the atom’s energy and momentum in the moving frame, we can rewrite
this equation as:

ø(t*,x*) = A exp{(E*t*–p*x*)/iħ}

Also recall the expressions for the position 4-vector, momentum 4-vector, and their invariant



product:

x*µ = (ct*, x*, y*, z*)
p*µ = (E*/c, p*x, p*y, p*z)
x*µ p*µ = E*t* – x*p*x + y*p*y + z*p*z

Being invariant, (x*µ p*µ) is the same in all frames. In the atom’s rest frame xµ pµ = Et.

The wave equation can also be written:

ø = A exp{–i(ωt–k•x)}

We know E = ħω, p=ħk, and k=2π/λ (see Feynman Simplified 1C Chapter 37). Hence:

p = ħk = ħ (2π/λ)
p = h/λ

λ = h/p

This is the famous de Broglie equation, and Feynman says this is how he derived it.

Note that:

|A exp{Et/iħ}|2 = |A exp{(E*t*–p*x*)/iħ}|2 = |A|2

This means the probability of finding the atom hasn’t changed; it still has the same probability of
being everywhere. The phase of the amplitude changes in the moving frame, but not its magnitude and
not the corresponding probability.

To localize a particle and recognize its motion, we must make a wave packet. We do so by summing
waves of different frequencies.

The group velocity of a wave packet is explained in V1p48-7; it equals:

vg = dω/dk

In the moving frame:

vg = d(E*/ħ) / d(p*/ħ) = dE*/dp*
E*2 = p*2c2 + m2 c4

2E* dE*/dp*= 2p*c2

dE*/dp* = p*c2/E*
vg = p*c2/(cp*/β)
vg = βc = v

This means a wave packet composed of many frequencies near E*/h has a group velocity equal to the
velocity v of a classical particle.



Effect of Potential Energy

We next address the impact of potential energy on the evolution of probability amplitudes.

The simplest case is a constant potential. Feynman suggests an electrically conductive box attached to
a battery. The electrical potential everywhere within the box is Φ, so that a particle of charge q has a
potential energy V= qΦ.

Let m be the rest mass, which may include internal energies, and let E remain the sum of rest mass and
kinetic energy. Since quantum mechanics is employed mostly to describe atomic phenomena, where
energies are much less than rest masses, we can generally use non-relativistic kinematics in quantum
mechanics. Thus, E=p2/2m+mc2. The particle’s total energy equals E+V, and the amplitude at time t at
location r is:

ø = A exp{ [(E+V)t–p•r] /iħ}

In V3p7-6, Feynman says it is a general principle that the coefficient of t in the wave equation is
always the total energy.

Recall there is some arbitrariness about the zero point on the energy scale, as that only involves a
universal phase shift. For example, if V is constant in time and the same at every point inside the box,
it merely adds a common phase angle that has no impact on physical reality.

Now consider a potential that is constant in time but varies spatially. Two electrically conductive
boxes, attached to different batteries, are connected by an electrically insulating tunnel, as shown in
Figure 9-2.

Figure 9-2 Two Boxes at Different Potentials

The potential is Φ1 in the left box, is Φ2 in the right box, and gradually transitions between them in the
tunnel.

The amplitude in each box is:

Left : exp{(E1+V1)t/iħ–p1•x/iħ}, with V1 = qΦ1



Right: exp{(E2+V2)t/iħ–p2•x/iħ}, with V2 = qΦ2

In V3p7-7, Feynman stresses a key point: due to energy conservation, the amplitude oscillates at the
same frequency throughout the apparatus, even though its wavelength changes. If all parts of a wave
do not oscillate at the same frequency, its waveform is torn apart.

Recall a related phenomenon: light refraction, which is explored in detail in Feynman Simplified 1C
Chapter 36. Light entering a dense medium refracts, changing direction and wavelength. Light
accelerates electrons in the medium, causing them to radiate. This secondary radiation cancels the
incident wave within the medium along light’s original direction of motion. This cancelling occurs
only because all field oscillations have the same frequency despite having different wavelengths.

In our current example, conservation of energy requires the total energy, E+V, to be the same
throughout. Both E and V change but their sum cannot. This is why the frequency is the same
throughout:

ħω1 = E1+V1 = E2+V2 = ħω2

The momenta and wavelengths in the two boxes are:

p1 = √{2m(E1–mc2)}
p2 = √{2m(E2–mc2)}

λ1 = h/p1

λ2 = h/p2

Barrier Penetration

In V3p7-8, Feynman examines a remarkable phenomenon: negative kinetic energy. That is impossible
in classical physics, but in quantum mechanics, negative kinetic energy has real and important
consequences.

Consider water in a lake created by a dam. The water level is much higher on the upstream side of the
dam than on the downstream side. Yet, water molecules cannot reach the downstream side because
they don’t have enough kinetic energy to rise up to the dam’s rim and flow over. To rise a distance h, a
molecule’s potential energy would have to increase by mgh and its kinetic energy would have to
decrease by the same amount. If the molecule’s initial kinetic energy were almost zero, rising up to
the rim would make its kinetic energy negative. Classically this is impossible. Our macro-world
experience supports that — 50,000 dams worldwide can’t be wrong.

But in the micro-world, particles can overcome barriers that we would normally consider too high to
scale. An electron with a kinetic energy of 1 electron volt (1 eV) has a chance of passing through a
thin strip that has a potential of –2 volts. Classically, the electron is forbidden to enter this strip
because its kinetic energy would be –1 eV. But in quantum mechanics, it’s possible — not likely
perhaps, but possible.



Indeed, this important phenomenon, called barrier penetration, is employed in most modern
microelectronics. It is also the essential physics in radioactive decay and in the fusion reactions that
power the stars. Let’s see how this bizarre and uniquely quantum phenomenon works.

Imagine a particle-wave traveling in the +x direction in a space that has two distinct regions. Let the
x=0 plane be the boundary between these regions: x<0 is region #1, and x≥0 is region #2. Using the
notation of the last section, in region #1 the wave’s potential energy is V1 and its kinetic plus rest
mass energy is E1. In region #2, the wave’s potential energy is V2 and its kinetic plus rest mass energy
is E2.

From the conservation of energy, we calculate the kinetic energy in region #2:

E1+V1 = E2+V2

E2 = E1+ V1 – V2

E2 – mc2 = E1 – mc2 + V1 – V2

What happens when V2 > E1–mc2+V1, and the kinetic energy in region #2, E2–mc2, is negative? Define ε
= –(E2 – mc2); in region #2, ε is positive.

–ε = E2 – mc2 = p2
2/2m

p2
2 = 2m (–ε)

p2 = i√(2mε)

Now define Λ = iħ/p2; in region #2, Λ is real and positive.

Λ = iħ / [i√(2mε)]
Λ = ħ / √(2mε)

For x≥0, in the classically forbidden zone, the amplitude is:

ø = A exp{[(E+V)t–p2x]/iħ}
ø = A exp{(E+V)t/iħ} exp{–(iħ/Λ) x/iħ}
ø = A exp{(E+V)t/iħ} exp{–x/Λ}

The most interesting part is the last term with the negative real exponent. Amplitude ø decreases
exponentially with increasing distance x into the classically forbidden zone, where the kinetic energy
K.E. is negative. This is illustrated in Figure 9-3, which plots the real part of ø vertically and x
horizontally.



Figure 9-3 Re{ø} vs. x. Exponential 
Decline Within Barrier

As the figure shows, there is some chance of the particle being inside the forbidden zone within a
region close to the boundary. The rate of exponential decline is inversely proportional to Λ; as the
kinetic energy becomes more negative, Λ decreases, and the amplitude declines more rapidly.

If the barrier is thin enough, a particle can pass completely through the barrier and emerge on the
opposite side, as shown in Figure 9-4.

Figure 9-4 Penetration of Barrier 
where Kinetic Energy <0

Here again the real part of the amplitude is plotted vertically versus the particle’s horizontal position.
For barrier thickness Δx and Λ defined as above, the attenuation of the amplitude in crossing the
barrier is:

exp{–Δx/Λ}

Beyond the barrier, the amplitude oscillates as before, with the same frequency and wavelength, but
with the attenuated amplitude.

A very important point is not mentioned in this lecture. The amplitude is non-zero within the classical
forbidden zone, Δx, above. But experiments will never detect a negative energy particle. The particle
may be found to the left of the barrier, or to the right of the barrier, but never within the barrier itself.
Quantum mechanics stipulates that when an object is measured, its state changes instantaneously,
becoming a state with an allowed value for that measurement. The result of every measurement must
be consistent with energy conservation, momentum conservation, and other fundamental principles.
Negative kinetic energy is not an allowed measurement outcome.

Between measurements, negative energy and other bizarre states are allowed. This is because,
between measurements, it is impossible to know what a particle’s energy, momentum, position, and



spin “really” are. Between measurements, those quantities are not real. This is a bit like: “Don’t ask;
don’t tell.”

In the prior two paragraphs, “measurement” means any substantial interaction that disrupts coherence.
Due to our macroscopic size, human-directed interactions disrupt quantum coherence. But human
involvement is not the essential factor. Even non-human natural macroscopic interactions disrupt
coherence. Negative energy and other bizarre states exist only in isolated havens on the quantum
scale.

We completely understand the rules of barrier penetration. We can calculate the answer to any
question. But no one can honestly say they are comfortable with the quantum “explanation” of this
phenomenon. We will return to such issues many more times.

Some simply refuse to accept the “unnatural” pronouncements of quantum mechanics, all of which
have been extensively and precisely validated by countless experiments. It’s best not to fight quantum
mechanics; resistance is futile.

Radioactivity & Nuclear Fusion

Inside nuclei, nucleons (protons and neutrons) occupy discrete energy levels, similar to electron
energy levels in atoms. In very heavy nuclei, such as uranium, protons in the highest energy levels
have negative binding energies — energy is released if they are removed to a great distance from the
nucleus.

Normally when two objects attract one another, potential energy is released as they move closer.
Binding energy is the amount of energy released as objects move from infinitely far away to their
adjoined states. The same amount of energy must be expended to pull the objects apart.

When a single attractive force dominates, binding energy is always positive.

Nuclei, however, are a bit more complex. The potential energy of protons near a nucleus results from
two opposing forces: (1) the strong force that pulls nucleons together; and (2) the electric force that
pushes positive charges apart. The strong force contributes a large negative potential well with a very
small radius; call that rN. The electric force contributes a more modest positive potential proportional
to 1/r2.

The resulting potential, the heavy black line in the upper portion of Figure 9-5, resembles a volcanic
caldera. To escape to a lower energy state far from the nucleus, a proton or alpha particle (the nucleus
of helium-4) must first scale the caldera’s rim.



Figure 9-5 Top: Potential of Heavy  Nucleus
Bottom: Real Part of Amplitude of Nucleon

In the upper portion of Figure 9-5, the energy level of the highest proton is labeled E. Without barrier
penetration, the proton would be unable to escape and this nucleus would remain intact forever. With
barrier penetration, a proton’s probability amplitude penetrates into the negative kinetic energy zone.
The amplitude attenuates exponentially at a rate determined by the barrier’s height and width. If the
attenuation is not excessive, there is a meaningful probability of the particle appearing outside the
caldera and escaping the nucleus with positive kinetic energy.

Individual protons or alpha particles can therefore escape a nucleus if they occupy energy levels with
negative binding energy. This process is one example of radioactive nuclear decay.

Due to its exponential character, the decay rates of different nuclei span an incredible range. Mean
decay times are as short as 20 trillionths of a trillionth of a second for hyrodgen-7, and as long as 3
trillion, trillion years for tellurium-128. During one mean decay time the number of surviving nuclei
drops by a factor of e (2.71828…). A closely related term is half-life; during one half-life the number
of survivors is cut in half. The conversion factor is: (one half-life) = (one mean decay time) × ln2.

Nuclear fusion, the process that powers stars, has similar characteristics, but operates in the opposite
direction. Fusion is the merging of two smaller nuclei to produce one larger nucleus. Fusion is
possible only if two positively charged nuclei can overcome their mutual electrical repulsion.

Due to enormous temperatures, nuclei in stellar cores have high kinetic energies. A miniscule fraction
of these nuclei have enough energy to defy Coulomb repulsion and come within range of the strong



force. In our caldera analogy, extremely energetic smaller nuclei are able to roll up the caldera’s
flanks and drop into the central pit, where they form a larger, stable nucleus. As they drop into the
deep potential well, these nuclei release fabulous quantities of energy — as much as 40 million times
more energy per kg of reacting matter than typical chemical reactions. This is the vast power source
inside all stars.

Well almost. The success rate is abysmally small. For our Sun, only about one in 30,000 trillion
nuclei fuse per second. And almost none of those actually make it to the caldera’s rim. Instead, most
tunnel through the upper flanks employing barrier penetration. They race toward the goal, get close,
and finish with a Hail Mary; their attenuated amplitudes sneak in for the score.

Without barrier penetration, nuclear fusion rates and stellar energy production would be vastly
diminished. Only the most mammoth stars would be able to initiate nuclear fusion. Our Sun isn’t
massive enough; it would not be a true star, and we would all be extremely cold.

Forces as a Classical Limit

In V3p7-9, Feynman demonstrates how classical concepts of force translate into the quantum world.

Consider the motion of a particle traversing an electric field, as illustrated in Figure 9-6. Let p, v, and
m be the particle’s original momentum, velocity, and mass. Let the x-axis be the particle’s original
direction of motion, and let y be the direction of the applied force F.

Figure 9-6 Particle Deflecting in Electric Field

The particle passes between two electrodes of length L, whose different potentials establish an
electric potential gradient along the y-axis. The particle’s potential energy V equals its charge q times
the electric potential. We will assume ϕ>0 and q>0. The force exerted on the particle is:



Fy = – dV/dy

In our setup, dV/dy is negative, making Fy>0, as Figure 9-6 shows. This force acts while the particle
is between the electrodes, a time interval of Δt=L/v. For a small deflection, the particle acquires a
component of momentum in the y-direction of:

py = Fy Δt
py = (–dV/dy) (L/v) > 0

Since there are a lot of signs coming and going, I will periodically indicate the overall polarity of
various expressions.

The deflection angle θ is:

θ = py / p
θ = – (L/pv) dV/dy > 0

Now, let’s examine the same situation using quantum wave concepts. We will assume the wavelength
λ=h/p is much smaller than any of the dimensions of our apparatus. In Figure 9-7, the particle is
replaced by a wave, with dotted lines marking wave crests. For clarity, the wave crest separations
are greatly exaggerated.

Figure 9-7 Wave Turning in Electric Field

We show two paths A and B on opposite sides of the wave front. Paths A and B are separated by
distance D. The probability amplitude is proportional to:

ø ~ exp{[Ut–p•r]/iħ}, with
U = V+p2/2m+mc2



Energy conservation requires that U be constant. This determines how changes in V affect changes in
p:

ΔV + 2p Δp /2m = ΔU = 0
ΔV = – Δp p/m

Where V is larger, p is smaller, and the wavelength λ=h/p is larger. As Figure 9-7 shows, the
potential is higher at path B than at path A. Thus between electrodes, the wavelength is longer along
Path B than Path A. Since the wave oscillates at the same frequency everywhere, the wave moves
faster on path B than path A, resulting in the wave turning toward A.

We next calculate the differences that arise between paths A and B as the wave traverses the
electrodes. The potential energy difference is:

VB – VA = ΔV = (yB – yA) dV/dy
VB – VA = ΔV = – D dV/dy > 0

This leads to a momentum difference of:

pB – pA = Δp = + (m/p) (D dV/dy) < 0

We want to compare where wave crests occur along paths A and B. At a fixed time, crests occur at
certain values of p•r. Since path B has a smaller momentum p, it must travel a longer distance r to
attain the same p•r at the same time as path A.

d(p•r) = 0 = r dp + p dr
rB – rA = dr = –dp (r/p) > 0

The cumulative path length difference after traversing distance r=L is:

Δr = – (m/p) (D dV/dy) (L/p) > 0

Since wave crests on path B are ahead of crests on path A by distance Δr, the wave turns toward path
A by angle θ.

θ = Δr / D
θ = – (mL/p2) dV/dy > 0
θQ UANTUM = – (L/pv) dV/dy > 0

This matches exactly with our calculation for a classical particle:

θCLASSICAL = – (L/pv) dV/dy

This demonstrates that the same result is obtained from classical equations based on F=ma as from
the quantum formalism based on phase angle changes due to energy differences (dV t/ħ).

As Feynman says in V3p7-10: “In the classical limit, the quantum mechanics will agree with



Newtonian mechanics.” We found something similar when exploring special relativity: in the
classical limit, special relativity agrees with Newtonian mechanics. Newtonian mechanics is well
confirmed for modest velocities and macroscopic energies. Quantum mechanics and special relativity
must the wealth of evidence in the classical realm.  

Precession of Spin ½ Particles

In the last section, the only assumption we made about force F was that it equals the negative gradient
of a potential, which is equivalent to saying F is a conservative force, as defined in Feynman
Simplified 1A Chapter 10. Recall that all fundamental forces are conservative.

A particle with magnetic moment µ in a magnetic field B has potential energy V= –µ•B. In a Stern-
Gerlach device, B has a gradient, which means V has a gradient. This exerts a force on particles with
magnetic moments that depends on their spin orientation. With what we now know, we can describe
this quantum mechanically: waves with spins in different directions experience different energy
potentials, resulting in different phase shifts that steer the waves in different directions.

We now switch to a uniform, constant magnetic field along the z-axis. A particle with magnetic
moment µz along the z-axis has an amplitude proportional to:

ø ~ exp{(–µzB)t/iħ}

For a spin 1/2 particle, it z-component of spin must be either up or down, hence its magnetic moment
along z is either +µ or –µ. We therefore have two possible amplitudes:

ø+ ~ exp{–µBt/iħ}
ø– ~ exp{+µBt/iħ}

In V3p7-11, Feynman considers the specific case of a muon decaying to an electron, a neutrino, and
an anti-neutrino, all of which are spin 1/2 elementary fermions.

µ decays to e + ν + ν

Energy conservation dictates that in any particle decay the rest mass of the original particle must be
greater than the sum of the rest masses of all the decay products. Since the muon mass is 105.7 MeV,
the electron mass is 0.511 MeV, and neutrinos masses are less than 0.2 eV, more than 105 MeV of
mass energy is converted into kinetic energy in each muon decay. Since that is much more than the rest
masses of any of the decay products, each can have a velocity comparable to the speed of light.

The vast majority of electrons from muon decay can have kinetic energies well above 0.511 MeV,
making them relativistic. It turns out that these relativistic electrons are preferentially emitted in the
opposite direction of the muon’s spin. This enables physicists to identify the spin direction of muons
at the instant they decay.

You should know that muon experiments are a proud Piccioni family tradition. My thesis experiment



employed muonic decays of neutral K-mesons to demonstrate an asymmetry between matter and anti-
matter. My father, Oreste Piccioni, used muonic decays to establish the distinction between strongly
and weakly interacting particles. His was the first particle physics experiment that went beyond mere
observation of naturally occurring events. Science historian Robert Crease selected my father’s
experiment as one of the twenty most beautiful in the history of all branches of science.

Figure 9-8 schematically illustrates a muon decay experiment. Muons enter from the left, and come to
rest in absorber A in the presence of uniform magnetic field B. Detector D counts electrons emanating
from muon decay. Neutrinos from muon decay, indicated by the dotted arrows, escape detection.

Figure 9-8 Muon Capture 
and Decay  in Magnetic Field

In this experiment, the incident muons are fully polarized, with spin +x, as indicated by the arrow
labeled “s” in the figure. We wish to determine whether muons’ spins change over time due to the
magnetic field. By producing a muon beam from a particle accelerator, we can very precisely know
when muons arrive at A. We can also precisely know when their decay electrons arrive at D. The
time difference is how long the muon persisted in the magnetic field before decaying.

The number of decaying particles declines exponentially with time, according to:

Number of decays at time t ~ exp{–t/τ}

where τ is the mean decay time. For muons, τ is a rather long 2.2 microseconds. Nature thus provides
us with muons whose time in the magnetic field spans a wide range: from zero to 10 or more
microseconds. With this experiment, we can measure the evolution of the amplitude for muons to be in
spin state +x after being in the magnetic field for time t.

Above, we derived the evolution of spin states that are parallel to the magnetic field (ø+ and ø–). How
do we relate that to spin states perpendicular to the field?

The end of Chapter 8 tabulates equations for transforming x and z basis states. A –90º rotation about
the y-axis, turns +x into +z; use |+S> = |+x> and |+T> = |+z>.

<+z|+x> = 1/√2 = <+x|+z>*
<–z|+x> = 1/√2 = <+x|–z>*

Thus the muons’ initial spin state is:



ø(t=0) = ( |+z> + |–z> ) /√2

Applying the time evolution terms to the z states, we obtain the amplitude at time t:

ø(t) = (|+z>exp{–iωt} + |–z>exp{+iωt}) /√2

where ω = µB/ħ

We can now transform back to the x-basis representation. Define A+x(t) to be the amplitude to be in
spin state +x at time t.

A+x(t) = <+x|+z> <+z|ø(t)> + <+x|–z> <–z|ø(t)>
A+x(t) = (1/√2)(exp{–iωt}/√2) + (1/√2)(exp{+iωt}/√2)
A+x(t) = ( exp{–iωt}+ exp{+iωt} )/2
A+x(t) = cos(ωt)

The probability of a muon having spin +x at time t is:

P+x(t) = cos2(ωt)

As shown in Figure 9-9, this function equals 1 whenever ωt = µBt/ħ = nπ, for any integer n, and
equals zero when µBt/ħ = (n+1/2)π. P+x(t) is a periodic function that repeats at frequency 2ω.

Figure 9-9 Probability  vs. Time 
of Muon in Spin State +x

Feynman states that the probability of a muon being in the +y spin state equals cos2(ωt–π/4), which
oscillates at the same frequency but with a one-quarter-cycle lag. Feynman says this shows that muon
spins rotate in the xy-plane. This is not hard to confirm.

Define a uvw coordinate system, with the u-axis parallel to the z-axis. A time t=0, let the v-axis be
parallel to the x-axis and let the w-axis be parallel to the y-axis. Rotate the uvw-axes at frequency 2ω
about the u-axis.

According to the rotation transformations in Chapter 8, for rotation of spin 1/2 states about the z-axis
by angle ø:



<+u|+z> = exp{+iø/2} = exp{+iωt}
<–u|–z> = exp{–iø/2} = exp{–iωt}
<–u|+z> = <+u|–z> = 0

The muon spin amplitudes in the u spin states are:

<+u|ø(t)> = (<+u|+z>exp{–iωt}+<+u|–z>exp{+iωt}) /√2
<+u|ø(t)> = (exp{+iωt} exp{–iωt} + [0] exp{+iωt}) /√2
<+u|ø(t)> = (1 + 0) /√2 = 1/√2

<–u|ø(t)> = (<–u|+z>exp{–iωt}+<–u|–z>exp{+iωt}) /√2
<–u|ø(t)> = ([0] exp{–iωt} + exp{–iωt} exp{+iωt}) /√2
<–u|ø(t)> = (0 + 1) /√2 = 1/√2

Now rotate about the w-axis by +90º, turning u into the xy-plane. With |+S> = |+u> and |+T> = |+v>,
the transformation amplitudes are:

<+v|+u> = +1/√2
<–v|+u> = –1/√2
<+v|–u> = +1/√2
<–v|–u> = +1/√2

The muon spin amplitudes in the v spin states are:

<+v|ø(t)> = <+v|+u><+u|ø(t)> + <+v|–u><–u|ø(t)>
<+v|ø(t)> = (+1/√2)(1/√2) + (+1/√2)(1/√2)
<+v|ø(t)> = 1/2 + 1/2 = 1

<–v|ø(t)> = <–v|+u><+u|ø(t)> + <–v|–u><–u|ø(t)>
<–v|ø(t)> = (–1/√2)(1/√2) + (+1/√2)(1/√2)
<–v|ø(t)> = –1/2 + 1/2 = 0

These equations show that the muon spin is always entirely in the +v-direction. Recall that +v was the
same as +x at t=0, and that the v-axis rotates within the xy-plane at frequency +2ω. This confirms that
the muon spin precesses about the magnetic field direction, the z-axis, at frequency 2ω.

Radiation & Entropy

As an aside, Feynman comments on why atoms are so much more likely to emit photons and drop to
ground states than to absorb photons and rise to excited states. It’s all about entropy. As Feynman
describes: “When energy is in the electromagnetic field, there are so many different ways it can be —
so many different places it can wander — that if we look for the equilibrium condition, we find that in
the most probable situation the field is excited and the atom is de-excited. It takes a very long time for
the photon to come back and find that it can knock the atom back up again.”



Entropy can be understood in terms of phase space, which is described in Chapter 2. For a given
amount of energy, nothing has greater momentum or traverses more space than light. This means that
transferring energy from an electron to light increases the occupied phase space and thus the amount
of entropy.

Chapter 9 Review: Key Ideas
 

1. If an atom had a definite energy, one specific value with zero uncertainty, the probability of
finding it would be the same everywhere throughout all of space. Its amplitude to be at location
(x,y,z) at time t would be:

ø(t,x,y,z) ~ exp{Et/iħ} = exp{–iωt}

2. The amplitude for a particle of momentum p and energy E (kinetic plus mass), with potential
energy V, is proportional to:

exp{(E+V)t/iħ–p•r/iħ}

3. Barrier Penetration. In a classically forbidden region, where a particle’s kinetic energy T is
negative, its amplitude is proportional to:

ø(x) ~ exp{–x/Λ}

where x is the distance into the forbidden zone, and Λ=ħ/√{–2mT}.

4. Barrier penetration enables radioactive decay and nuclear fusion, and is employed in most
modern microelectronics.

5. Feynman says: “In the classical limit, the quantum mechanics will agree with Newtonian
mechanics.” Planck’s constant h sets the scale at which quantum mechanics becomes important,
just as the speed of light sets the scale at which special relativity becomes important.

6. A spin 1/2 particle with spin in the xy-plane, in a magnetic field along +z, precesses according
to: P+x(t) = cos2(µBt/ħ); P+y(t) = cos2(µBt/ħ–π/4).



Chapter 10

The Hamiltonian

We have so far introduced many rather abstract concepts and notations. The first third of this chapter
is a comprehensive review of that material.

Our description of quantum mechanics has been very abstract. One might ask: “Can’t you just explain
that in English?” Actually, No. Quantum mechanics is a highly abstract theory because it describes
phenomena with which none of us has any direct experience. No human language has words that
adequately describe these phenomena. The only language that can address the micro-world is
mathematics.

I have 100 trillion, trillion electrons in my hand, but I have never held an electron in my hand and
examined it in detail. All I can tell you is that an electron is |ψ> = exp{Et/iħ…. Unfortunately, my
description is entirely abstract. Its only virtue is that it works. We can use these abstract descriptions
to explain the behavior of atoms, fundamental physics, chemistry, and biology.

Quantum mechanics describes nature extremely well. Its predictions are confirmed by thousands of
very precise measurements. No flaw has ever been found in quantum mechanics. For the micro-
world, no alternative theory is even worth discussing.

On V3p8-1, Feynman begins this lecture stressing the similarities between the algebra of quantum
states and the algebra of traditional vectors. We stressed that analogy in earlier chapters, but it is so
beneficial that it merits repeating. Those who find this too repetitious might skip a section or two.

Similarity of Vectors & States

In normal 3-D space, a vector v specifies any selected point within space.

In quantum mechanics, |S> specifies a quantum state, any selected set of particle properties, which
might include energy, momentum, position, and spin.

In 3-D, we choose a complete set of three orthonormal basis vectors ex, ey and ez.

In QM, we choose a complete set of orthonormal basis states |J>, J=1,…,N.

In 3-D, an “orthonormal” basis means for each basis state J and K:



eJ • eK = δJK

where δJK is the Kronecker delta, which equals 1 if J=K and equals 0 if J≠K.

In QM, orthonormal means for each J and K:

<K|J> = δJK

In 3-D, a basis is “complete” if every vector in 3-D space is some linear combination of basis
vectors — for any vector v:

v = ΣJ vJ eJ = vx ex + vy ey + vz ez

v = ΣJ (v•eJ) eJ

where vJ = v•eJ, for J = x, y, z. The vJ are real numbers. The set of all vJ completely defines v.

In QM, a basis is complete if every possible state is some linear combination of basis states — for
any state |φ>:

|φ> = ΣJ aJ |J> = a1 |1> + a2 |2> + … aN |N>

|φ> = ΣJ <J|φ> |J>

where aJ = <J|φ> are complex numbers. The set of all aJ completely defines |φ>.

In 3-D, the dot product of two vectors A and B is:

A•B = ΣJ AJBJ = AxBx + AyBy + AzBz

A•B = ΣJ (A•ej) (ej•B)

In QM, the product of two states φ and ψ is:

<φ|ψ> = ΣJ <φ|J> <J|ψ>

Here: <…| is called a bra; |…> is called a ket; and <…|…> is called a bra-ket, following Dirac.

Differences Between Vectors & States

In 3-D, the dot product is commutative:



A•B = B•A.

But, in QM the product of two states is not commutative:

<φ|ψ> = <ψ|φ>*

where <ψ|φ>* is the complex conjugate of <ψ|φ>. The complex conjugate of a complex quantity is
obtained by replacing i with –i. In general <ψ|φ> ≠ <φ|ψ>.

In 3-D, three orthogonal basis vectors span the entire space, forming a complete basis set.

In QM, a complete set of basis states may be much larger, even infinitely large.

Since <φ|ψ> = ΣJ <φ|J> <J|ψ> for all states φ and ψ, Feynman says the following is the “great law of
quantum mechanics”:

| = ΣJ |J> <J|

Feynman calls this an open equation; it is valid whenever the equation is multiplied by any bra
and/or by any ket.

Feynman then chases the relationship <φ|ψ> = <ψ|φ>* around a full circle, seemingly just for fun.

<φ|ψ> = ΣJ <φ|J> <J|ψ>

Feynman says that since this is true for all ψ, we can simply drop ψ and write:

<φ| = ΣJ <φ|J> <J|

Apply the universal rule <A|B> = <B|A>* to the last equation:

<φ| = ΣJ <J|φ>* <J|

As we said above, we can represent any state by a linear combination of basis states. We do that for
ψ:

|ψ> = ΣK |K> <K|ψ>

Combining the last equations for <φ| and |ψ>, we obtain:

<φ|ψ> = { ΣJ <J|φ>* <J| } { ΣK |K> <K|ψ> }
<φ|ψ> = ΣJK <J|φ>* <J|K> <K|ψ>
<φ|ψ> = ΣJK <J|φ>* δJK <K|ψ>
<φ|ψ> = ΣJ <J|φ>* <J|ψ> = ΣJ <φ|J> <J|ψ>



Thus, we return to the equation we started with.

Other Comments on Notation

Bra and ket quantities are essential intermediate steps in solving problems in quantum mechanics, but
they are not end results by themselves. The measurable quantities that we seek to predict are the
probabilities of various outcomes, which have the form:

Probability = |<φ|ψ>|2

Calculations must therefore not end with expressions having unmatched bras or kets.

Bra and ket are complex conjugates: <ψ| = |ψ>*. This means <ψ| and |ψ> are different, in general.
Either could properly represent a quantum state. Feynman says he always uses kets |ψ> to identify
states, for consistency.

Chapter 8 introduced the concept of and notation for operators, which transform one state vector into
another. We previously discussed rotation operators, which have the effect of rotating basis states by
a specified angle about a specified axis. As we will soon discover, operators are also used to
represent the passage of time and all measurements of particle properties, such as momentum or spin.
Any action that changes particle states is represented in quantum mechanics by an operator.

As an example:

<χ|A|ψ>

denotes the product of state χ with the vector resulting from A operating on state ψ. The above
expression can be expanded in basis states as:

<χ|A|ψ> = ΣJK <χ|K> <K|A|J> <J|ψ>

Knowing <K|A|J> for all basis states J and K, completely determines the properties of A; those
amplitudes contain all the knowledge of A that exists. With the <K|A|J> we can calculate what A will
do to any state.

One can also define φ as the state resulting from A operating on ψ.

|φ> = A|ψ> = ΣK |K> <K|A|ψ>
or
|φ> = ΣJK |K> <K|A|J> <J|ψ>

<χ|A|ψ> = <χ|φ>
or
<χ|A|ψ> = ΣK <χ|K> <K|φ>

One can even write an open equation for A:



A = ΣJK |K> <K|A|J> <J|

This expression is valid whenever it is multiplied by any bra and/or by any ket.

Operators are often represented as N×N matrices, where N is the number of basis states. Matrix
component AKJ equals <K|A|J>. If multiple operators act on a particle sequentially, we express that
using the product of those operators. Matrix products are not commutative, so the order of factors is
essential. The first operator to act holds the right-most position, with the second on its immediate left,
and continuing on to the last operator to act in the left-most position. For two operators, A followed
by B, the expression is:

<χ|BA|ψ> = ΣJKL <χ|L> <L|B|K> <K|A|J> <J|ψ>

The World’s Basis States

In V3p8-5, Feynman examines at length the choice of basis states.

He states again the machinery through which quantum mechanics solves problems: identify a complete
set of basis states; then determine how the physics of the situation transforms each basis state. This
machinery works for any initial state, because any state |A> is a linear combination of basis states |J>.
The final state of |A> is the same linear combination of the final states of each |J>.

But which basis states should one choose? Typically there are many, if not an infinite number, of
choices. For example, spin 1/2 has the property that any measurement will find it either up or down
along any selected axis. Which of the limitless number of axes should we choose? Sometimes it
makes no difference: for an isolated hydrogen atom, all directions are equivalent. Sometimes
circumstances dictate a clear choice: for Stern-Gerlach devices, the magnetic field gradient defines
the most convenient axis.

When is a set of basis states complete? The short answer is probably never, except in extremely
simplified situations. One might treat a hydrogen atom as a single entity with basis states covering its
momentum and position possibilities. For some conditions, such as very low energies, this could be
adequate. But, we know hydrogen atoms have internal parts, which play important roles in many
phenomena. To analyze those phenomena, we must add basis states for the proton’s momentum,
position, and spin, and also for the electron’s momentum, position, and spin. For helium, there are 4
more particles, each with their own basis states.

The conclusion is: we will never have a complete basis set covering every possibility of each of the
1080 particles in the observable universe. We must exercise judgment and identify what is most
important and most useful.

Time Evolution of Basis States



We discussed operators that transform states, such as rotation operators. Another essential operator is
time. What happens to our basis states with the passage of time?

Even isolated particles can change over time. Particles also change when exposed to external fields
or other particles. Recall the example of spin precession of muons in a magnetic field.

Physicists define the operator U(t2,t1) to represent time advancing from t1 to t2. The amplitude for state
φ to change into state ψ during the time interval from t1 to t2 is:

<ψ|U(t2,t1)|φ> = ΣJK <ψ|K> <K|U(t2,t1)|J> <J|φ>

Knowing all the amplitudes <K|U(t2,t1)|J> completely defines U(t2,t1).

In V3p8-8, Feynman discusses a key application, saying:

“The high-class theoretical physicist working in high-energy physics considers problems of the
following general nature (because it’s the way experiments are usually done). He starts with a
couple of particles, like a proton and a proton, coming together from infinity…The things go
crash and out come, say two K-mesons, six π-mesons, and two neutrons in certain directions
with certain momenta. What’s the amplitude for this to happen?”

The mathematical procedure for dealing with such complex phenomena is: (1) define state φ
specifying all initial particle momenta and spins; (2) define state ψ specifying all the measured
properties of the final particles; and (3) take the limit as t1 goes to –∞ and t2 goes to +∞. (We take
these limits since experiments can never actually see what happens “inside”; we only know what goes
in and what comes out.)

The limiting case of U(+∞,–∞) is so common that it has a special name: the S matrix, where S stands
for scattering. Almost all high-energy physics experiments are scattering experiments.

For high energies, evaluating S requires relativistic quantum mechanics, which is beyond the scope of
this course (and you thought this was hard). In non-relativistic situations, we can evaluate S
incrementally. We divide the total time into a series of small time intervals, and then integrate.

For three times, t1, t2, and t3, we can define two U’s: U(t2,t1) and U(t3,t2). Each U is an operator, so the
sequence of U(t2,t1) followed by U(t3,t2) is represented by the product of those operators:

U(t3,t1) = U(t3,t2) × U(t2,t1)

Let’s now evaluate U(t2,t1) in the limit that the time interval dt=t2–t1 goes to zero. Define |Ψ(t)> to be
some state at time t. It evolves according to:

|Ψ(t+dt)> = U(t+dt,t) |Ψ(t)>

Expanding in basis states, this is:



<J|Ψ(t+dt)> = ΣK <J|U(t+dt,t)|K> <K|Ψ(t)>

Before we all drown in notation, let’s break this down into more manageable pieces.

The last piece, <K|Ψ(t)>, is the amplitude for state |Ψ(t)> to be in basis state |K> at time t; <K|Ψ(t)>
is a complex number that changes over time. We can think of |ψ> as a vector whose tip is moving
through the space of all states.

The complex number <K|Ψ(t)> changes because U operates on it; U drives that change.

We express how U drives change by writing:

<J|U(t+dt,t)|K>

This defines the change in each basis state |K>. U changes |K> into something else. We express that
something else as a combination of basis states |J>: the amount by which U changes |K> into |J> is
<J|U(t+dt,t)|K>.

Knowing how U changes each basis state enables us to calculate the change in any other state, like |
ψ>.

We understand the evolution of |Ψ(t)> by understanding how its amplitude to be in |K> changes into its
amplitude to be in |J>, for all |K> and |J>. Everything we need to know is given by:

<J|U(t+dt,t)|K>

Hope that helps.

The Hamiltonian

In general U(t+dt,t) can be quite complicated, but there are a few simple things we can say about it.

Firstly, if no time passes (dt=0), nothing can change; every state must remain as it is. This means:

<J|U(t,t)|K> = UJK(t,t) = δJK = 1 if J=K, =0 if J≠K

We can also reasonably assume that for a very small time interval Δt, the change in U is proportional
to Δt. This is just the property of a derivative: ΔU = dU/dt Δt. In general each component UJK of U can
change differently during time interval Δt. Let MJK be the proportionality constant for component UJK:

UJK(t+Δt,t) = UJK(t,t) + MJK Δt
UJK(t+Δt,t) – UJK(t,t) = MJK Δt

<J|U(t+Δt,t)|K> – <J|U(t,t)|K> = Δt <J|M|K>

Or, as an open equation, for any initial and final states:



U(t+Δt,t) – U(t,t) = Δt M

Now multiply this by |Ψ(t)>, and let Δt become the infinitesimally small dt.

U(t+dt,t) |Ψ(t)> – U(t,t) |Ψ(t)> = dt M |Ψ(t)>

Recall our earlier equation: |Ψ(t+dt)> = U(t+dt,t) |Ψ(t)>.

|Ψ(t+dt)> – |Ψ(t)> = dt M |Ψ(t)>
{|Ψ(t+dt)> – |Ψ(t)>} / dt = M |Ψ(t)>
d |Ψ(t)> /dt = M |Ψ(t)>

By convention, and for historical reasons, this equation is written:

iħ d|Ψ(t)>/dt = H |Ψ(t)>

Here H is the Hamiltonian operator. In V3p8-10, Feynman says this equation is: “the quantum
mechanical law for the dynamics of the world.” The Hamiltonian matrix contains all the physics that
causes states to evolve over time. In general, H is a function of time and position.

Feynman is bemused that the most important operator in quantum mechanics is named after William
Rowan Hamilton, a mathematical physicist who worked in the 1830’s. This really isn’t unusual; 25
centuries ago, Pythagoras had a great idea that we still frequently use and is still named in his honor. I
believe that for many centuries, the Feynman diagrams and the Feynman path integral formulation will
be taught using Feynman’s name.

Expanding the last equation in basis states yields:

iħ <K| dΨ(t)/dt > = ΣJ <K|H|J> <J|Ψ(t)>

We can write that in a more vector-like form:

iħ d(ΨK)/dt = ΣJ HKJ ΨJ

If we knew the Hamiltonian for all phenomena, quantum physics would be complete — job done,
over and out. Not to worry: we know the Hamiltonian for only some processes; employment
opportunities in physics still exist.

One general rule governing all Hamiltonians is:

HJK = HKJ*

This could be described as the principle of conservation of probability. More formally, this is called
the Unitarity Principle. This requirement ensures that any state operated on by H must become some
combination of final states, with a total probability of 100%. If H operates on a lone electron, exactly
one electron must remain, somewhere.



In the simplest case, with just one basis state, H has just one component. If H is constant in time, we
have:

iħ dΨ/dt = H Ψ

Ψ = A exp{Ht/iħ}

This means Ψ has a definite energy H, and has the same probability |A|2 of being everywhere in space.

The prior equation should remind us of the wave equation exp{Et/iħ}. Feynman says the coefficient of
t in this equation is always energy. This means in a one-state system, H=E. For this reason the
Hamiltonian is often called the energy matrix.

Two-State Ammonia Molecule

The next simplest systems have two basis states. Consider a system with two states that we
imaginatively name: |1> and |2>. We can express any state |ψ> as:

|Ψ> = C1 |1> + C2 |2>

We then have two independent Hamiltonian equations:

iħ d(C1)/dt = H11 C1 + H12 C2

iħ d(C2)/dt = H21 C1 + H22 C2

In V3p8-11, Feynman demonstrates the utility of these equations by picking: “an interesting but simple
example in which, by making some reasonable guesses about the Hamiltonian, we can work out some
important — and even practical — results.” (Some “practical results”; imagine that.)

The example is the ammonia molecule, illustrated in Figure 10-1. Ammonia consists of four atoms
arranged in a tetrahedral pyramid. Three hydrogen atoms, shown as black dots, form the pyramid’s
base, with one nitrogen atom, shown as an open circle labeled N, at the pyramid’s other corner.



Figure 10-1 Two States of Ammonia Molecule

In the image, the plane containing the three hydrogen atoms is shown in gray for emphasis.

Although this molecule has many rotational and vibrational degrees of freedom, we will assume no
changes in any of those states. We will focus on just two states. These are: |1> nitrogen above plane
of hydrogen atoms; and |2> nitrogen below that plane.

State |2> is just state |1> flipped upside down. Together these form a complete set of basis states.

At each time t, the state |Ψ(t)> of the ammonia molecule will be some linear combination of the basis
states:

|Ψ(t)> = C1(t) |1> + C2(t) |2>

In general, C1(t) and C2(t) are functions of time. The Hamiltonian equations are as above:

iħ d(C1)/dt = H11 C1 + H12 C2

iħ d(C2)/dt = H21 C1 + H22 C2

A two-state system has four Hamiltonian components: HJK is the amplitude to go from state |K> to state
|J>. The four amplitudes are:

H11 = amplitude state |1> goes to state |1> = E1

H12 = amplitude state |2> goes to state |1>
H21 = amplitude state |1> goes to state |2>
H22 = amplitude state |2> goes to state |2> = E2

H12 and H21 are amplitudes to change states. H11 equals the energy of state |1>: E1, while H22 equals the



energy of state |2>: E2.

At high temperatures, ammonia molecules dissociate; the atoms become energetic enough to separate.
At lower temperatures, the nitrogen atom does not have enough energy to move through the plane of
hydrogen atoms. Classically, for the nitrogen atom, the plane is an impenetrable barrier, a forbidden
zone. This would preclude transitions between |1> and |2>, meaning H12=H21=0.

But as we know, in the quantum realm, barrier penetration allows transitions through negative kinetic
energy zones. This means the nitrogen atom can tunnel through the hydrogen plane and “switch” sides.
Hence, quantum mechanics allows non-zero H12 and H21.

By the way: when a nitrogen atom “switches” sides, all four atoms move. The molecule’s center of
mass cannot move without an external force. Nitrogen has atomic mass 14 and three hydrogen atoms
have a total atomic mass of only 3. Hence when the nitrogen atom “switches” to the other side, the
hydrogen atoms actually move almost 5 times farther than the nitrogen.

States |1> and |2> are identical except for orientation. Since nature doesn’t distinguish “up” from
“down”, by symmetry, both states must have the same energy and other basic properties. This means
H11=H22 and H12=H21.

Define E0 = H11 = H22 and –A = H12 = H21. The differential equations become:

iħ d(C1)/dt = E0 C1 – A C2

iħ d(C2)/dt = E0 C2 – A C1

The ability to solve multiple coupled differential equations is a survival skill for theoretical
physicists. This one is much easier than most. Notice what happens when we add the two equations:

iħ d(C1+C2)/dt = E0(C1+C2) – A (C1+C2)
iħ d(C1+C2)/dt = (E0–A) (C1+C2)
(C1+C2) = 2α exp{(E0–A)t/iħ}

We choose the arbitrary integration constant to be 2α.

Now subtract the Hamiltonian equations:

iħ d(C1–C2)/dt = E0(C1–C2) + A (C1–C2)
iħ d(C1–C2)/dt = (E0+A) (C1–C2)
(C1–C2) = 2β exp{(E0+A)t/iħ}

Taking sums and differences of the two equations for (C1+C2) and (C1–C2), yields:

C1(t) = α exp{(E0–A)t/iħ} + β exp{(E0+A)t/iħ}
C2(t) = α exp{(E0–A)t/iħ} – β exp{(E0+A)t/iħ}

In V3p8-13, Feynman says: “We have the solutions; now what do they mean? (The trouble with



quantum mechanics is not only in solving the equations but in understanding what the solutions
mean!)”

We have found two independent solutions to two linear differential equations, which is as many as
there can be. Any linear combination of these two solutions must also be a solution. (See Feynman
Simplified 1B Chapter 14 for a discussion of linear differential equations.) We can use this fact to
match any initial conditions.

If, for example, we knew an ammonia molecule started in state |1>, we would select α=β=1/2.

Conversely, if we knew an ammonia molecule started in state |2>, we would select α=–β=1/2.

That takes care of initial conditions. Let’s next examine the time evolution of C1 and C2:

For α=β=1/2, we can rewrite these as:

C1(t) = exp{E0t/iħ} [exp{At/iħ} + exp{At/iħ}] /2
C2(t) = exp{E0t/iħ} [exp{At/iħ} – exp{At/iħ}] /2

C1(t) = exp{E0t/iħ} [+cos(At/ħ)]
C2(t) = exp{E0t/iħ} [– sin(At/ħ)]

The probabilities of being in each state are:

P1(t) = |C1(t)|2 = cos2(At/ħ)
P2(t) = |C2(t)|2 = sin2(At/ħ)

Note that P1(t) + P2(t) = 1, as it must.

As Feynman says, |1> and |2> are not stationary states; the probability of finding the ammonia
molecule “sloshes back and forth” between the two states. With α=β=1/2, the sloshing begins in C1 at
t=0. We could just as well chose α=1/2 and β=–1/2, which would start the sloshing in C2.

Now let’s find the stationary states. The most general solution is |ψ(t)> defined by:

C1(t) = α exp{(E0–A)t/iħ} + β exp{(E0+A)t/iħ}
C2(t) = α exp{(E0–A)t/iħ} – β exp{(E0+A)t/iħ}

|ψ(t)> = C1(t) |1> + C2(t) |2>

Choose α=1/√2 and β=0, and call the resulting state |ψ–>.

|ψ–> = exp{(E0–A)t/iħ} (|1> + |2>)/√2

|ψ–> is a stationary state of definite energy E–=E0–A. Here the amplitudes of states |1> and |2> have
the same phase; they oscillate together. If the system started in this state, it would remain there



forever, absent any other interactions.

Now chose α=0 and β=1/√2, and call the resulting state |ψ+>.

|ψ+> = exp{(E0+A)t/iħ} (|1> – |2>)/√2

|ψ+> is a stationary state of definite energy E+=E0+A. Here the amplitudes of states |1> and |2> have
opposite phases; they oscillate at the same frequency but with opposite polarity. If the system started
in this state, it would remain there forever, absent any other interactions.

In V3p8-14, Feynman notes that the ammonia molecule is like a pair of coupled pendulums. There is
one state of definite frequency, with energy E0–A, where C1 and C2 oscillate together. There is another
state of a different definite frequency, with energy E0+A, where C1 and C2 oscillate oppositely.

Chapter 10 Review: Key Ideas

See the beginning of this chapter for a concise review of basis state concepts, notations, and rules.
 

1. Since <φ|ψ> = ΣJ <φ|J> <J|ψ> for all states φ and ψ, Feynman says the “great law of quantum
mechanics” is expressed by an open equation:

| = ΣJ |J> <J|

This expression is valid whenever multiplied by any bra and/or any ket.

2. Bra and ket quantities are essential intermediate steps, but not end results. The measurable
quantities that we seek to predict are probabilities. Calculations must not end with unmatched
bras or kets.

3. Bra and ket are complex conjugates: <ψ| = |ψ>*. This means <ψ| and |ψ> are different, in
general. Either could properly represent a quantum state. Feynman says he always uses kets |ψ>
to identify states, for consistency.

4. The time evolution of quantum states is govern by the Hamiltonian equation:

iħ d|Ψ(t)>/dt = H |Ψ(t)>

5. For a two-state system, with basis states |1> and |2>, any state |ψ> can be represented as:

|Ψ(t)> = C1(t) |1> + C2(t) |2>

The Hamiltonian equation yields two independent differential equations:



iħ d(C1)/dt = H11 C1 + H12 C2

iħ d(C2)/dt = H21 C1 + H22 C2

With E0=H11=H22 and –A=H12=H21, the solutions are:

C1(t) = exp{E0t/iħ} [+cos(At/ħ)]
C2(t) = exp{E0t/iħ} [– sin(At/ħ)]

|ψ–> = exp{(E0–A)t/iħ} (|1> + |2>)/√2
|ψ+> = exp{(E0+A)t/iħ} (|1> – |2>)/√2

|ψ–> is a stationary state of definite energy E–=E0–A.
|ψ+> is a stationary state of definite energy E+=E0+A.

C1(t) and C2(t) are not stationary states; they are coupled, with probabilities “sloshing back and
forth” between them.



Chapter 11

Ammonia Maser

In the last chapter, we analyzed the ammonia molecule, modeling it as a two-state system. Let’s
briefly review.

The structure of the ammonia molecule is a tetrahedral pyramid, with three hydrogen atoms forming a
plane and one nitrogen atom at the other corner. The two states are defined as:

|1> Nitrogen above plane of hydrogen atoms

|2> Nitrogen below plane of hydrogen atoms

These states form a complete basis set. Any state |ψ> can be represented as a linear combination of
states |1> and |2>:

|Ψ(t)> = C1(t) |1> + C2(t) |2>

The Hamiltonian equation:

iħ dΨ/dt = H Ψ

yields two independent differential equations:

iħ d(C1)/dt = H11 C1 + H12 C2

iħ d(C2)/dt = H21 C1 + H22 C2

From the symmetry of the physical states, we expect H11=H22 and H12=H21. Defining E0=H11=H22 and –
A=H12=H21, the differential equations become:

iħ d(C1)/dt = E0 C1 – A C2

iħ d(C2)/dt = E0 C2 – A C1

The solutions, including arbitrary constants α and β, are:

C1(t) = α exp{(E0–A)t/iħ} + β exp{(E0+A)t/iħ}
C2(t) = α exp{(E0–A)t/iħ} – β exp{(E0+A)t/iħ}

Choosing α=1/√2 and β=0 yields state |ψ–>, and β=1/√2 and α=0 yields state |ψ+>.

|ψ–> = exp{(E0–A)t/iħ} (|1> + |2>)/√2



|ψ+> = exp{(E0+A)t/iħ} (|1> – |2>)/√2

|ψ–> is a stationary state of definite energy E–=E0–A.
|ψ+> is a stationary state of definite energy E+=E0+A.

All that is from the last chapter.

Let’s define a new pair of basis states:

|–> = (|1> + |2>)/√2
|+> = (|1> – |2>)/√2

We can show these states are orthonormal.

<–|–> = {<1| + <2|} {|1> + |2>}/2
<–|–> = {<1|1> + <2|1> + <1|2> + <2|2>}/2
<–|–> = {1 + 0 + 0 + 1}/2
<–|–> = 1

<+|+> = {<1| – <2|} {|1> – |2>}/2
<+|+> = {<1|1> – <2|1> – <1|2> + <2|2>}/2
<+|+> = {1 – 0 – 0 + 1}/2
<+|+> = 1

<–|+> = {<1| + <2|} {|1> – |2>}/2
<–|+> = {<1|1> + <2|1> – <1|2> – <2|2>}/2
<–|+> = {1 + 0 – 0 – 1}/2
<–|+> = 0

Looking ahead, we included the √2’s to provide the proper normalization. This means |+> and |–>
also form a complete set of orthonormal basis states for the two-state ammonia molecule.

Repeating the logic of the last chapter, this time using basis states |+> and |–>, any state |ψ> can be
represented as:

|Ψ(t)> = C+(t) |+> + C–(t) |–>

The Hamiltonian equation yields two new independent differential equations:

iħ d(C+)/dt = E0 C+ + A C+ = E+ C+

iħ d(C–)/dt = E0 C– – A C– = E– C–

The normalized solutions are:

C+ = exp{E+t/iħ}
C– = exp{E–t/iħ}



|ψ–> = exp{(E0–A)t/iħ} |–>
|ψ+> = exp{(E0+A)t/iħ} |+>

Transforming the Hamiltonian to the |+> and |–> basis states, the H matrix becomes diagonal:

| E+ 0 |
| 0 E– |

Feynman doesn’t mention this here, but I think it’s interesting that the difference between E+ and E– is
related to symmetry properties. In stationary state |ψ–> with energy E0–A, the amplitudes of states |1>
and |2> oscillate together. Conversely, in stationary state |ψ+> with energy E0+A, the amplitudes of
states |1> and |2> oscillate opposite to one another. Figure 11-1 schematically illustrates how basis
states |+> and |–> compare with basis states |1> and |2>.

Figure 11-1 Comparing Basis |–>, |+> 
with Basis |1>, |2>

State |–> is symmetric in the sense that it has the same amplitudes in |1> and |2>. Conversely, state |+>
is asymmetric with opposite amplitudes in |1> and |2>. The asymmetric distribution of |+>
corresponds to a higher frequency and therefore a higher energy.

In V3p9-2, Feynman compares the energy levels of different types of excited states. He notes that
raising an electron in an atom to a higher orbital shell requires 10 eV or more, corresponding to
visible or ultra-violet photons. Atomic vibrational degrees of freedom require only about 0.1 eV, and
can be excited by infrared photons. Rotational modes are even less energetic, around 0.01 eV, and can
be excited by far-infrared photons. The energy gap between the two states of ammonia is a mere 10–4

eV, corresponding to a photon frequency of only f = 24 GHz, which is in the microwave range with a
wavelength of 12mm.



Ammonia in an Electric Field

The states |+> and |–> are stationary; molecules in these states would remain there forever, absent
other interactions. The higher energy state |+> could transition to the lower energy state |–> by
emitting a photon. Or, the lower energy state could transition to the higher energy state by absorbing a
photon.

Let’s discover the impact of immersing ammonia molecules in an electric field.

The first topic is the electric dipole moment of ammonia. Nitrogen has a higher electronegativity than
hydrogen. This means nitrogen attracts electrons more forcefully than does hydrogen. When ammonia
forms, the three hydrogen electrons reduce their energies by moving closer to the nitrogen nucleus
than to the hydrogen nuclei. This gives the nitrogen atom a net negative electric charge, –0.344e, and
gives each hydrogen atom a net positive charge, +0.115e, where e is the charge of one proton.

Electric dipole moments are defined in terms of the product of charge multiplied by distance.
Normally, the orbits of electrons in atoms are centered on the nucleus. If an electron’s orbit is
displaced from that center by a distance d, a dipole moment µ results with µ=ed. The dipole moment
is a vector that points from the net negative charge toward the net positive charge.

Dipole moments are quoted in many different units, most commonly in electron-angstroms and in
Debye, named in honor of Peter J. W. Debye. One electron-angstrom corresponds to an electron
displaced by one angstrom, which equals 4.8 Debye.

The dipole moment of ammonia, µ, is 1.46 Debye or 0.30 electron-angstroms. This corresponds to
each hydrogen electron being displaced by 0.10 angstroms toward the nitrogen nucleus.

Figure 11-2 shows the orientation of the dipole moment for both ammonia states |1> and |2>.



Figure 11-2 Dipole Moment µ for Ammonia States

In an electric field ξ, an ammonia molecule has a lower energy if its dipole moment µ is parallel to ξ.
The molecule’s potential energy is decreased by V=µξ when µ is parallel to ξ, as for state |2> in
Figure 11-2. The potential energy is increased by V when µ is anti-parallel to ξ, as for state |1> in the
figure.

Unfortunately, physicists conventionally use E for both energy and electric field. Here, energy is E,
the electric field vector is ξ, and the magnitude of ξ is ξ.

In V3p9-5, Feynman notes regretfully that even with a complete knowledge of quantum mechanics, no
one has been able to calculate all the properties of the ammonia molecule, and other systems with
similar or greater complexity. We would like to be able to calculate ammonia’s µ and A, but we can’t.
With four nuclei and ten electrons, the equations are just too complex to solve. All the properties of
this important molecule are well known, but only through experiment and measurement.

We will assume that we can ignore all other degrees of freedom and address only two states: nitrogen
up and nitrogen down. On that basis, we can do a reasonable job of calculating what happens to the
molecule in an electric field.

Go back to the Hamiltonian, represented in basis states |1> and |2>.

We found that H12 is the amplitude for state |2> to transition to state |1>, which we previously called –
A. Furthermore, H21 is the amplitude for state |1> to transition to state |2>, which was also –A. If the
electric field is not strong enough to distort the molecule, we have no reason to expect these transition
amplitudes to change; we leave them equal to –A.

H12 = –A
H21 = –A



We also found that H11 is the energy of state |1>, and H22 is the energy of state |2>. These do change: H11

increases by V, and H22 decreases by V, with the orientation of ξ in Figure 11-2.

H11 = E0 + V
H22 = E0 – V

Since we will need solutions to two-state Hamiltonian problems often in the future, Feynman chooses
to solve this problem for any combination of HJK, and plug in the above values at the end. This makes
the current problem harder, but it will pay off later.

For arbitrary HJK, the differential equations are:

iħ dC1/dt = H11 C1 + H12 C2

iħ dC2/dt = H21 C1 + H22 C2

As we discovered in Feynman Simplified 1B Chapter 12 through 14, any set of linear differential
equations with constant coefficients can be solved with exponentials. Try exponentials for C1 and C2

that have the same energy E:

C1 = α exp{Et/iħ}
C2 = β exp{Et/iħ}

Plugging these into the differential equations, and cancelling the common exponentials in each term,
yields:

iħ (1/iħ) E α = H11 α + H12 β
iħ (1/iħ) E β = H21 α + H22 β

(E – H11) α = H12 β
(E – H22) β = H21 α

Multiply these two equations:

(E – H22) (E – H11) αβ = H12 H21 αβ
E2 – E (H11 + H22) + H11 H22 – H12 H21 = 0

Recall the quadratic equation and its solution:

ax2 + bx + c = 0
x= {–b ± √[b2–4ac]} / 2

Let’s define the square root to equal 2E*, and simplify it slightly:

2E* = √[ (H11+H22)2 – 4 H11 H22 + 4 H12 H21 ]
2E* = √[ (H11–H22)2 + 4 H12 H21 ]
E* = √[ (H11–H22)2/4 + H12 H21 ]



The solution to our quadratic equation is:

E = (H11+H22)/2 ± E*

In V3p9-7, Feynman suggests checking our result for some simple limiting cases — always a good
idea at the end of a long calculation.

For A = 0 (H12 = H21 = 0):
E = (H11+H22)/2 ± (H11–H22)/2
E = H11 or H22

That is correct. Without transitions between states |1> and |2>, both are stationary states with energies
E0+V and E0–V respectively.

Now try V = 0 (H11 = H22 = E0):

E = E0 ± √(–A)(–A)
E = E0 ± A

This confirms our result without the electric field. These checks don’t mean our calculations are
correct, but they would have spotted some gross errors.

Plugging in the values of HJK for our current problem:

E* = √[(2V)2/4 +A2]
E* = √[V2 +A2]
E = E0 ± E*

As before, the stationary basis states are:

|+> = {|1> – |2>} /√2
|–> = {|1> + |2>} /√2

And the stationary states of ammonia atoms are:

|ψ+> = |+> exp{E+t/iħ}, with E+ = E0+E*
|ψ–> = |–> exp{E–t/iħ}, with E– = E0–E*

In Figure 11-3, we plot the energy of the two stationary states versus the electric potential V=µ•ξ. The
two dotted lines mark E=±V, and the two solid curves plot E = E0±E* = E0±√[V2+A2].



Figure 11-3 Ammonia Molecule 
Energy  vs. Field Potential

We see that as the electric field increases, the splitting between the energies of the two stationary
states increases. For very large electric fields, the splitting is dominated by the dipole alignment, and
the possibility of nitrogen atoms “switching” sides become much less likely.

In V3p9-8, Feynman says: “This is an interesting point that we will come back to later.”

The Ammonia Maser

Before getting to all the nuts and bolts, here is an overview of an ammonia maser.

Masers are essentially lasers operating in a different frequency domain. “Maser” is an acronym for
Microwave Amplification by Stimulated Emission of Radiation. “Laser” is the same acronym with
“Microwave” replaced by “Light.” Since microwaves are a form of light, the distinction is not
fundamental.

In an ammonia maser, a beam of ammonia molecules is separated into two states: a higher energy
state |+>, and a lower energy state |–>. The |+> molecules are directed through a cavity with an
oscillating electric field that has a frequency of f = 24 GHz, which matches the transition energy
between the |+> and |–> states. The electric field stimulates the |+> state molecules to emit radiation
at the transition energy frequency, forming a coherent beam of microwave photons.

The basic physics is identical to that of lasers, which is discussed in detail in Feynman Simplified
1B Chapter 20.

The apparatus used to prepare a pure |+> state beam is similar to a Stern-Gerlach device. The Stern-
Gerlach device separates spin states by deflecting magnetic dipoles in a magnetic field with a large
gradient. Here we deflect electric dipoles in a device with a large electric field gradient.

Figure 11-4 illustrates this process. Ammonia molecules enter from the left, and pass through two



collimating slits, thereby forming a narrow beam. The beam is then exposed to an electric field that
increases rapidly in the direction of the downward arrow indicated in the figure.

Figure 11-4 Preparation of |+> Ammonia Beam

Due to ammonia’s electric dipole moment, the electric field decreases the potential energy of |–> state
molecules and increases the potential energy of |+> state molecules. Molecules in the |–> state deflect
downward toward the stronger field to maximize their potential energy decrease. Molecules in the |+>
state deflect upward toward the weaker field to minimize their potential energy increase.

Practical considerations limit the magnitude of artificial electric fields. As a result, in these devices,
V is always small compared with A. We can therefore simplify the energy equation by approximating
the square root.

E = E0 ± E*
E = E0 ± √[V2+A2]
E ≈ E0 ± {A + V2/2A}

State |+> has energy E+ = E0 + {A+V2/2A}
State |–> has energy E– = E0 – {A+V2/2A}

Note that the potential energy is proportional to V2.

The deflecting force is proportional to minus the gradient of the potential energy. For an electric field
parallel to the y-axis:

Fy = – dV2/dy /2A

The beam of ammonia molecules in a pure |+> state next enters a cavity with an electric field that
oscillates at microwave frequencies — basically a microwave oven. This is illustrated in Figure 11-
5.



Figure 11-5 Ammonia Maser 
Operating on Prepared Beam

By matching the cavity frequency to the transition frequency of ammonia, molecules are driven to emit
photons of the same frequency. The transition frequency of ammonia is Ω=2A/ħ, where 2A is the
energy difference between the two states |+> and |–>.

Time-Dependent Field

Since masers employ time-varying electric fields, our next step is to solve the Hamiltonian equation
for a time-varying potential. We previously assumed H was constant, so this is something new. The
two differential equations are:

iħ dC1/dt = (E0+V) C1 – A C2

iħ dC2/dt = – A C1 + (E0–V) C2

As before, we add and subtract these two equations to yield two other equations in the stationary state
basis:

C– = (C1+C2)/√2
C+ = (C1–C2)/√2

iħ dC–/dt = (E0–A) C– + V C+

iħ dC+/dt = (E0+A) C+ + V C–

For a general electric field, even a sinusoidal one, these equations are not solvable with normal
analytic methods.

Feynman was famous for solving complex problems. He was a genius at seeing hidden
simplifications and making astute approximations. Every successful theoretical physicist has a
“toolbox” full of mathematical tricks, learned mostly from the university of fire and brimstone. We
have an opportunity here to observe master craftsmanship and add some wrenches to our toolbox.

We know that V is small compared with A, which at only 10–4 eV is small compared with E0. Feynman
therefore suggests using the trial solutions that follow. (As discussed more extensively in Feynman
Simplified 1B Chapters 12 through 14, solving differential equations requires perception and



perspiration. There is no harm in guessing; if you’re wrong, the equations will certainly let you
know.) Let’s try:

C+ = Γ+ exp{E+t/iħ}, with E+ = E0+A
C– = Γ– exp{E–t/iħ}, with E– = E0–A

In V3p9-10, Feynman explains that if the electric field were absent, Γ+ and Γ– would be complex
constants that determine the probabilities of being in stationary states |+> and |–>, as we have seen
before. If a molecule began in |–>, it would remain there forever, absent other interactions. Feynman
says:

“Now the idea of writing our equations in [this form] is that if [V] is small in comparison to A,
the solutions can still be written this way, but Γ+ and Γ– become slowly varying functions of time
— where by “slowly varying” we mean slowly in comparison with the exponential functions
[exp{E±t/iħ}]. That is the trick.”

We now plug our trial solution for C+ into its differential equation, recognizing the time-dependence
of Γ.

Try C+ = Γ+ exp{E+t/iħ}
dC+/dt = (E+/iħ} Γ+ exp{E+t/iħ} + dΓ+/dt exp{E+t/iħ}

iħ dC+/dt = E+ C+ + V C–

[E+ Γ+ + iħ dΓ+/dt] exp{E+t/iħ} =
   E+ Γ+ exp{E+t/iħ} + V Γ– exp{E–t/iħ}

[E+ Γ+ + iħ dΓ+/dt] = E+ Γ+ + V Γ– exp{(E––E+)t/iħ}
   iħ dΓ+/dt = V Γ– exp{–i(E––E+)t/ħ}

Similarly, skipping intermediate steps, we have for C–, Γ–:

iħ dC–/dt = E– C– + V C+

iħ dΓ–/dt = V Γ+ exp{–i(E+–E–)t/ħ}

Recall that E+–E– = 2A. Define Ω=2A/ħ. Since Ωħ=2A, Ω is the transition frequency between the two
stationary states of an isolated ammonia molecule.

Our equations are then:

iħ dΓ+/dt = V Γ– exp{+iΩt}
iħ dΓ–/dt = V Γ+ exp{–iΩt}

We next focus on the time-varying electric field. For specificity, Feynman chooses a sinusoidally
oscillating field given by:



ξ = ξ0 cos(ωt) = ξ0 (exp{iωt} + exp{–iωt})/2

We define V0=µξ0/2. With that definition, the equations become:

iħ dΓ+/dt = V0 Γ– (exp{i(ω+Ω)t} + exp{–i(ω–Ω)t})
iħ dΓ–/dt = V0 Γ+ (exp{i(ω–Ω)t} + exp{–i(ω+Ω)t})

Until this point, we haven’t made any approximations regarding the electric field or the Γ’s. Now is
the time.

Observe that dΓ/dt ~ V0 Γ. For small V0, this means the time derivatives of both Γ’s will be small on a
percentage basis. The Γ’s change much more slowly than the exp{i(ω+Ω)t} terms. The latter will not
contribute to dΓ/dt because they will rapidly average out to their mean values: zero. We therefore
drop these terms from the equations.

iħ dΓ+/dt = V0 Γ– exp{–i(ω–Ω)t}
iħ dΓ–/dt = V0 Γ+ exp{+i(ω–Ω)t}

Since exp{i(ω–Ω)t} has magnitude 1, the Γ’s cannot vary more rapidly than exp{V0t/iħ}. This is
because:

iħ dΓ/dt = V0 Γ implies Γ = exp{V0t/iħ}

If V0/ħ is much less than (ω–Ω), exp{i(ω–Ω)t} will run through several full cycles for each full cycle
of exp{V0t/iħ}. That would make dΓ/dt virtually zero. The only circumstance in which dΓ/dt can be
appreciable is when ω≈Ω.

Feynman therefore makes the approximation that ω=Ω, which yields:

iħ dΓ+/dt = V0 Γ–

iħ dΓ–/dt = V0 Γ+

Rearranging the second equation, and differentiating it yields:

Γ+ = (iħ/V0) dΓ–/dt
dΓ+/dt = (iħ/V0) d2Γ–/dt2

Now use the equation for dΓ+/dt :

V0 Γ– = iħ dΓ+/dt = iħ (iħ/V0) d2Γ–/dt2

d2Γ–/dt2 = – (V0/ħ)2 Γ–

The solutions are any combination of complex constants α and β, in:

Γ– = α exp{–V0t/iħ} + β exp{+V0t/iħ}



Plugging this into the equation for Γ+:

Γ+ = (iħ/V0) (V0/iħ) [–αexp{–V0t/iħ} +βexp{V0t/iħ}]
Γ+ = –α exp{–V0t/iħ} + β exp{V0t/iħ}

As one example, for C+ choose –α=β=1/2, and for C– choose –α=β=i/2:

C+ = cos(V0t/iħ) exp{E+t/iħ}, with E+ = E0+A
C– = sin(V0t/iħ) exp{E–t/iħ}, with E– = E0–A

The corresponding probabilities are:

P+ = cos2(V0t/ħ)
P– = sin2(V0t/ħ)

Recall, this assumes E0 is small compared with A, and that the derivatives of Γ are dominated by the
resonance at frequency Ω=2A/ħ.

The beam entering the cavity of the ammonia maser in Figure 11-5 is a pure |+> state, corresponding
to C+ above. After time T in the cavity, when V0T/ħ=π/2, all those molecules transition to the |–> state.
The molecules change states by emitting photons of frequency Ω, which is in the a microwave part of
the light spectrum.

If ammonia molecules remain in the cavity for a time interval greater than T, they begin to transition
back to the higher energy state |+> by absorbing photons from the cavity’s electric field. For maximum
efficiency, the cavity length L and the average molecule velocity v should be matched to the transition
time T, such that vT=L. Since such matching is never perfect, masers are never 100% efficient.

Non-Resonant Transitions

Now consider transitions when the cavity frequency is not exactly equal to the transition frequency Ω.

Let’s just take the simple case of weak electric field E and short time interval T, which together make
the transition rate small. Since we start with a pure state of |+>, we expect almost all molecules to
remain in that state and only a few to transition to the lower energy state |–>. This means |Γ+|2 remains
close to 1 and |Γ–|2 remains close to zero. We will set Γ+ = 1; if it has a phase angle, that will shortly
become irrelevant.

Recall a prior equation:

iħ dΓ–/dt = V0 Γ+ exp{+i(ω–Ω)t}
dΓ–/dt ≈ –i(V0/ħ) exp{+i(ω–Ω)t}
Γ–(T) ≈ ∫ (dΓ–/dt) dt, from t=0 to t=T
Γ–(T) ≈ –(V0/ħ) [exp{+i(ω–Ω)T} –1] / (ω–Ω)



Define ø = 2(ω–Ω)T.

[exp{+i2ø} –1] = exp{+iø} [exp{+iø} – exp{–iø}]
Γ–(T) ≈ –(V0/ħ) exp{+iø} [2i sinø] (2T/ø)
Γ–(T) ≈ (V0T/iħ) exp{+iø} [sinø] /ø

P(+ to –) = |Γ–(T)|2 ≈ (V0T/ħ)2 sinc2ø

Here sinc(x) = sin(x)/x, and P(+ to –) is the probability to transition from state |+> to state |–> during
time T.

The sinc2ø function is very sharply peaked, being essentially zero when |ø|>π. The peak width is
Δø=2π. Taking some representative numbers (T = 1 millisecond, and f = 24 GHz), this peak’s Q-
factor, height divided by width, is about 100 million. This justifies our assumption in the prior section
of setting ω=Ω.

Light Absorption

In V3p9-14, Feynman notes that equations derived in this chapter are applicable to many other
circumstances. While we spoke about ammonia, microwave frequencies, and fields inside cavities,
none of our calculations depended on those particulars. Our equations apply equally well to any atom
or molecule exposed to any form of light.

We can translate the electric field’s magnitude into light energy intensity I (see Feynman Simplified
1C Chapter 34, and recall that < > means time-averaged value):

I = ε0c <ξ2> = ε0c (max ξ)2 / 2
I = ε0cξ0

2/2
PABSORB = µ2/(2ε0cħ2) I T2 sinc2ø

For broad spectrum light, we must integrate the above equation over light’s frequency range, using
I(ω) for the intensity at frequency ω.

∫ I(ω) sinc2ø dω = ∫ I(ω) sinc2ø (dø/2T)

where ø = 2(ω–Ω)T.

Here again, the sharp resonance greatly simplifies the integral. Figure 11-6 compares sinc2ø with a
typical light spectrum I(ω).



Figure 11-6 Light Spectrum I(ω) 

Compared With Sinc2ø

The figure shows that I(ω) changes little across the narrow sinc2 peak. In reality, the effect is much
more dramatic. For clarity, the sinc2 peak shown is much broader than the real peak, whose height to
width ratio is 100 million to 1.

This reduces the integration range to an extremely narrow range near Ω:

∫ I(ω) sinc2ø dω = I(Ω) (2π/T)

PABSORB = πµ2/(ε0cħ2) I(Ω) T

In V3p9-15, Feynman says this equation is the “general theory of absorption of light by any
molecular or atomic system.” It is valid, he says, regardless of which state, |+> or |–>, has the lower
energy.

The transition probability is proportional to: time; light intensity; and the square of the coupling factor
between the two states, |+> and |–>. Here that factor is µ•ξ. In general, the coupling factor equals
<–|H|+> and is called the perturbation term.

Feynman Simplified 1B Chapter 20 explores Einstein’s laws of radiation, which include absorption,
spontaneous emission, and stimulated emission. P(+ to –) above corresponds exactly, Feynman says,
to BJK, the coefficient of absorption and spontaneous emission.

Feynman concludes this portion of Volume 3 saying:

“Our study of a simple two-state system has thus led us to an understanding of the general
problem of the absorption of light.”

Chapter 11 Review: Key Ideas
 



1. An isolated ammonia molecule (NH3) has two stationary states: |+> with definite energy E0+A;
and |–> with definite energy E0–A. Here, E0 is the average energy and –A is the amplitude for the
nitrogen atom to “switch” sides of the plane of hydrogen atoms. The transition frequency
between the stationary states of an isolated ammonia molecule is Ω=2A/ħ.

2. In the presence of a constant external electric field ξ, the energy gap between stationary states
widens. The energies become E0+E* and E0–E*, where E*=√[V2+A2], V=µξ, and µ is ammonia’s
electric dipole moment.

3. If an external electric field oscillates with frequency ω and magnitude ξ0, and V0=µξ0/2,  the two
solutions are:

C+ = Γ+ exp{E+t/iħ}, with E+ = E0+A
C– = Γ– exp{E–t/iħ}, with E– = E0–A

Γ+ = –α exp{–V0t/iħ} + β exp{V0t/iħ}
Γ– = +α exp{–V0t/iħ} + β exp{V0t/iħ}

where α and β are arbitrary complex constants. We can choose solutions whose probabilities
are:

P+ = cos2(V0t/ħ)
P– = sin2(V0t/ħ)

4. An ammonia maser operates by matching its cavity frequency ω to the ammonia transition
frequency Ω. This drives molecules to emit photons, all with frequency Ω. 

5. When a system (an atom or molecule) is exposed to light of frequency ω, with ω near a resonant
frequency Ω of that system, the probability of absorption during time interval T is:

PABSORB = sin2ø (V0T/øħ)2

where ø = 2(ω–Ω)T. For light intensity I(ω) this equals:

PABSORB = πµ2/(ε0cħ2) I(Ω) T

Feynman says this equation is the “general theory of absorption of light by any molecular or
atomic system.” It is valid, he says, regardless of which state, |+> or |–>, has the lower energy.

PABSORB is proportional to the square of the coupling factor between the two states, |+> and |–>.
Here that factor is µ•ξ. In general, the coupling factor equals <–|H|+> and is called the
perturbation term.





Chapter 12

Review of 
Quantum Mechanics

Part One

Quantum mechanics is the physical theory of elementary particles, how they interact with one another,
and how they form atoms and larger structures. Quantum mechanics is truly how the world works: it
is the heart of physics. Although many conclusions of quantum mechanics defy our intuition, we now
believe we know all its rules and can solve all its equations. In this sense, quantum mechanics is a
mystery that we have solved but not fully digested.

Feynman says: “In the classical limit, the quantum mechanics will agree with Newtonian
mechanics.” Planck’s constant h sets the scale at which quantum mechanics becomes important, just
as the speed of light sets the scale at which special relativity becomes important.

The two key foundational principles of quantum mechanics are:
 

Quantization
Particle-Wave Duality

Quantization is the notion that many things in nature come in integral numbers, like steps on a
staircase. In the micro-world, staircases dominate; their steps are large and abrupt. In the macro-
world, the steps are so small and so numerous that nature’s staircases seem like ramps.

Particle-wave duality states that “particle” and “wave” are just labels for opposite ends of a
continuous spectrum, like “black” and “white.” Everything in our universe is really a shade of gray. In
our macro-world, everything is almost completely black or white. But in the micro-world, gray rules.
Classical particles and classical waves do not exist. Both are now replaced with particle-waves.

Particle have wavelengths determined by their momenta: λ=h/p.

The wave properties of particles preclude simultaneously measuring their position and momentum
with unlimited precision. Heisenberg’s Uncertainty Principle quantifies this in four equations:

Δx Δpx ≥ ħ/2
Δy Δpy ≥ ħ/2
Δz Δpz ≥ ħ/2
Δt ΔE ≥ ħ/2



where 
ħ=h/2π=1.055×10–34 joule-sec, and 
h=6.626×10–34 joule-sec is Planck’s constant

The original German word “ungenauigkeit” is better translated as “unexactness” or “imprecision”,
rather than “uncertainty.” The uncertainty principle is not about our ignorance, but rather about the
indefiniteness of nature. Nature is fuzzy, but in a very precise way.

The Uncertainty Principle forces us to abandon the hope of exactly predicting the future. Instead,
we must resign ourselves to the goal of exactly predicting the probabilities of all possible future
outcomes.

A quantum state defines all the variable properties that entities can have, such as position,
momentum, energy, spin, and angular momentum. A quantum state does not define the intrinsic
properties that each particle has, such as charge and mass. In general, different types of particles can
be put into a given state, and can be moved from one state to another. It is beneficial to think of a
quantum state as a vector; it defines a location in the space of all possible properties.

Spin is a form of angular momentum that is intrinsic to each elementary particle. Particle spins are
quantized. The primary fermions have spin s = 1/2. Their component of spin along any chosen axis
can only be +ħ/2 or –ħ/2, called spin up and spin down. Bosons have integral spin: s = 0, 1, or 2.
Their component of spin along any chosen axis must be: –sħ, …, 0, …+sħ. Photons have spin 1, but
cannot have a spin component of zero along any axis. Any particle’s component of spin along any axis
can change only by integer multiples of ħ.

Measurement is a contact sport, more like boxing than dancing. Observation requires interaction.
Substantial interactions alter the behavior of what is observed. Every measurement forces the
observed entity into a definite state, one with an allowed value for that measurement. Particles have
no memory of their prior history. If an atom’s spin is measured to be +1 along the z-axis, nothing
additional can be known about its spin.

The Bohr model of atoms states electron orbits are quantized; the circumference of their orbits must
be an integer multiple of their wavelength: 2π r = nλ. In the smallest orbit, where n=1, electrons
cannot radiate, lose energy, and spiral inward. This makes atoms stable, and enables chemical and
biological reactions. For n=1, the Bohr radius is: a0 = ħ2/(me2) = 0.529×10–10 m. For a single electron
orbiting a nucleus with Z protons, the allowed orbital radii and energies are:

rn = n2 a0 / Z
En = –Ze2/2rn = –13.61 eV Z2 / n2

Since electron energies are quantized, when electrons move from orbit m to orbit n, they must emit or
absorb a photon whose energy exactly balances the change in electron energy: ħω = (Em – En). This
means each element emits and absorbs a unique set of light frequencies, a spectrum that is more
unique than a human fingerprint.

In stable systems subject to gravitational or electrostatic forces, the virial theorem states that an



orbiting body’s potential energy equals –2 times its kinetic energy.

Feynman enumerates these general principles of probabilistic quantum mechanics:

First: the probability P(y) of event y is proportional to the square of the magnitude of probability
amplitude ø(y), which is a complex number. If event y can occur in only one way, P(y) is:

P(y) = øø* = |ø|2

The standard notation for probability amplitudes, due to Paul Dirac, is called the bra-ket notation.
The format is:

The amplitude that A results in, or goes to, B is <B|A>. This is analogous to the dot product of normal
vectors A and B. For the two-slit experiment:

ø(y) = <particle arrives at y | particle leaves source S>
ø(y) = <y|S>

Second: when event y can occur in N undistinguished ways, the amplitude of y equals the sum of the
amplitudes for each separate way:

<y|S> = ΣK <y|K><K|S>, sum K=1…N

We sum amplitudes only when each separate path results in exactly the same final state.

In quantum mechanics “distinguish” has a specific meaning. When waves combine after traveling
different paths, they interfere if they haven’t been substantially disturbed. Substantial disturbances
alter a wave’s frequency and/or phase sufficiently to randomize its phase angle relative to other
waves. That destroys coherence and eliminates the possibility of interference.

As the two-slit experiment demonstrates, with no substantial disturbances, it is impossible — for both
man and nature — to distinguish which paths particles travel to reach an event y. Paths are
distinguished only when waves are substantially disturbed. What matters is the magnitude of the
disturbance, not whether or not it is human-directed. But due to our scale, any human-directed
interaction will almost certainly substantially disturb a quantum system.

Third: when event y can occur in N distinguished ways, the probability of y equals the sum of the
probabilities for each separate way:

P(y) = ΣK |<y|K><K|S>|2, sum K=1…N

Fourth: the amplitude for a sequence of events equals the product of the amplitudes for each event
separately. The amplitude for a particle to go from S to x and from x to y is: <y|x> <x|S>.

Fifth: For multiple particles, if ø1 is the amplitude of particle 1 going from S1 to F1, and ø2 is the
amplitude of particle 2 going from S2 to F2, then the amplitude for both events to occur is ø1 × ø2.



Sixth: Identical particle statistics. When two identical particles can enter, exit, or be in the same
state, their amplitudes interfere. If the particles are bosons governed by Bose-Einstein statistics, their
amplitudes add. If the particles are fermions governed by Fermi-Dirac statistics, their amplitudes
subtract. There is no third alternative. For two identical particles 1 and 2, and any two states A and
B, the combined amplitude is:

Fermions: <1|A><2|B> – <1|B><2|A>

Bosons : <1|A><2|B> + <1|B><2|A>

Fermions with different spins are not identical.

In the micro-world, all fundamental particles of each type are intrinsically exactly identical.
Additionally, it seems there is only one way to combine three quarks to make a proton, and only one
other way to combine three quarks to make a neutron. While not fundamental, all protons are exactly
identical as are all neutrons. Even nature cannot distinguish between identical particles, as proven by
interference effects.

The class of fermions includes protons, electrons, neutrons, neutrinos, and quarks. All particles that
form material objects are fermions with spin 1/2.

The class of bosons includes photons, gluons, W±, Z0, and the Higgs boson. All force-carriers are
bosons. Photons are the force exchange particles of electromagnetism. Gluons mediate the strong
force. The W± and Z0 intermediate vector bosons mediate the weak force. The Higgs boson is
credited with providing various amounts of mass to the other elementary particles. (See Higgs &
Bosons & Fermions....Oh My! to further explore elementary particle physics.)

The probability that N identical bosons are in a common state is larger by a factor of N! than the
probability of N non-identical particles being in that state.

The probability of one more boson entering a state occupied by N identical bosons is N+1 times
greater than it would be if the state were empty. Bosons are groupies: the bigger the party, the greater
the attraction.

The gregarious behavior of bosons underlies Einstein’s laws of radiation and the operation of lasers.
Gregarious bosons and Einstein’s laws of radiation explain Planck’s equation for the light intensity,
the energy per unit area per second, emitted by a black body of temperature T:

I(ω) = (ħω3/π2c2)/{exp(+ħω/kT) –1}.

Fermions are antisocial; they never exist in the same state as another identical fermion. This is called
the Pauli Exclusion Principle. Two fermions are not in the same state if their spins are different. Two
electrons cannot have the same atomic orbit unless they have opposite spins. This leads to the rich
structure of atoms that enables chemical processes.

Nature has room for both groupies and individualists.

http://www.guidetothecosmos.com/series10.html


Similarity of Vectors & States

In normal 3-D space, a vector v specifies any selected point within the space. 
In quantum mechanics, |S> specifies a state, any selected set of particle properties.

In 3-D, we choose a complete set of orthonormal basis vectors ex, ey and ez. 
In QM, we choose a complete set of orthonormal basis states |J>, J=1,…,N.

In 3-D, an “orthonormal” basis means for each J and K: eJ • eK = δJK. 
In QM, orthonormal means for each basis state J and K: <K|J> = δJK. Here δJK is the Kronecker delta,
which equals 1 if J=K and equals 0 if J≠K.

In 3-D, a basis is “complete” if every vector in 3-D space is some linear combination of the basis
vectors — for any vector v:

v = ΣJ vJ eJ = vx ex + vy ey + vz ez

v = ΣJ (v•eJ) eJ

where vJ = v•eJ, for J = x, y, z. The vJ are real numbers. The set of all vJ completely defines v.

In QM, a basis is “complete” if every possible state is some linear combination of basis states — for
any state |φ>:

|φ> = ΣJ aJ |J> = a1 |1> + a2 |2> + … aN |N>
|φ> = ΣJ <J|φ> |J>

where aJ = <J|φ> are complex numbers. The set of all aJ completely defines |φ>.

Generally there are many possible sets of equally valid basis vectors and basis states. Our choice of
basis is often driven by symmetries or by convenience, but is sometimes arbitrary.

In 3-D, the dot product of two vectors A and B is:

A•B = ΣJ AJBJ = AxBx + AyBy + AzBz

A•B = ΣJ (A•ej) (ej•B)

In QM, the product of two states φ and ψ is:

<φ|ψ> = ΣJ <φ|J> <J|ψ>

Here:

<…| is called a bra;
|…> is called a ket; and



<…|…> is called a bra-ket, following Dirac.

Differences Between Vectors & States

In 3-D, the dot product is commutative: A•B = B•A. 
But, in QM the product of two states is not commutative: <φ|ψ> = <ψ|φ>*, which is the complex
conjugate of <ψ|φ>. The complex conjugate of a complex quantity is obtained by replacing i with –i.
In general <ψ|φ> ≠ <φ|ψ>.

In 3-D, three orthogonal basis vectors span the entire space, forming a complete basis set. 
In QM, a complete set of basis states may be much larger, even infinitely large.

Since <φ|ψ> = ΣJ <φ|J> <J|ψ> for all states φ and ψ, Feynman says the following is the “great law of
quantum mechanics”:

| = ΣJ |J> <J|

Feynman calls this an open equation; it is valid whenever the equation is multiplied by any bra
and/or by any ket.

Other Bra-Ket Notes.

Bras and kets are essential intermediate steps in solving problems, but they are not end results by
themselves. Calculations of measurable quantities must not end with expressions having unmatched
bras or kets.

Bra and ket are complex conjugates: <ψ| = |ψ>*. This means <ψ| and |ψ> are different, in general.
Either could properly represent a quantum state. Feynman says he always uses kets |ψ> to identify
states, for consistency.

Operators transform one state vector into another. Any action that changes particle states is
represented in quantum mechanics by an operator. As an example:

<χ|A|ψ> = ΣJK <χ|K> <K|A|J> <J|ψ>

denotes the product of state χ with the vector resulting from A operating on state ψ, which is shown
expanded in basis states. Knowing <K|A|J> for all basis states J and K completely determines A.

Operators are often represented as N×N matrices, where N is the number of basis states: matrix
component AKJ equals <K|A|J>. If multiple operators act on a particle sequentially, we express that
using the product of those operators. Matrix products are not commutative, so the order of factors is
essential. The first operator to act holds the right-most position, with the second immediately on its
left, and continuing on to the last operator to act in the left-most position. For two operators, A
followed by B, the expression is:



<χ|BA|ψ> = ΣJKL <χ|L> <L|B|K> <K|A|J> <J|ψ>

For both spin 1/2 and spin 1, and for all spin components, the general rule for rotations about the
spin axis from basis states S to basis states T is:

<sT|sS> = exp{isθ}

Potential Energy. The probability amplitude for a particle of momentum p and energy E (kinetic plus
mass), with potential energy V, is proportional to:

exp{(E+V)t/iħ–p•r/iħ} 

Barrier Penetration. In a classically forbidden region, where a particle’s kinetic energy T is
negative, its amplitude is proportional to:

ø(x) ~ exp{–x/Λ}

where x is the distance into the forbidden zone, and Λ=ħ/√{–2mT}.

Barrier penetration enables radioactive decay and nuclear fusion, and is employed in most modern
microelectronics.

The Hamiltonian equation governs the time evolution of states:

iħ d|Ψ(t)>/dt = H |Ψ(t)>

For a system with two states |1> and |2>, the Hamiltonian equation yields two independent differential
equations:

iħ d(C1)/dt = H11 C1 + H12 C2

iħ d(C2)/dt = H21 C1 + H22 C2

For a symmetric system with E0=H11=H22 and –A=H12=H21, the solutions are:

C1(t) = exp{E0t/iħ} [+cos(At/ħ)]
C2(t) = exp{E0t/iħ} [– sin(At/ħ)]

|ψ–> = exp{(E0–A)t/iħ} (|1> + |2>)/√2
|ψ+> = exp{(E0+A)t/iħ} (|1> – |2>)/√2

|ψ–> is a stationary state of definite energy E–=E0–A.
|ψ+> is a stationary state of definite energy E+=E0+A.

C1 and C2 are not stationary states; they are coupled, with probabilities “sloshing back and forth”
between them.

An isolated ammonia molecule, NH3, has two stationary states: |+> with definite energy E0+A; and |–>



with definite energy E0–A. Here, E0 is the average energy and –A is the amplitude for the nitrogen
atom to “switch” sides of the plane of hydrogen atoms. The transition frequency between the
stationary states of an isolated ammonia molecule is Ω=2A/ħ.

In the presence of a constant external electric field ξ, the energy gap between stationary states widens.
The two energies become E0+E* and E0–E*, where E*=√[V2+A2], V=µ•ξ, and µ is ammonia’s electric
dipole moment.

If an external electric field oscillates with frequency ω and magnitude ξ0, and V0=µξ0/2, the two
solutions are:

C+ = Γ+ exp{E+t/iħ}, with E+ = E0+A
C– = Γ– exp{E–t/iħ}, with E– = E0–A, with

Γ+ = –α exp{–V0t/iħ} + β exp{+V0t/iħ}
Γ– = +α exp{–V0t/iħ} + β exp{+V0t/iħ}

where α and β are arbitrary complex constants. We can choose solutions whose probabilities are:

P+ = cos2(V0t/ħ)
P– = sin2(V0t/ħ)

An ammonia maser matches its cavity frequency ω to the ammonia transition frequency Ω, thereby
driving molecules to emit photons, all with frequency Ω.

When a system (atom or molecule) is exposed to light whose frequency ω is near a resonant frequency
Ω of that system, the probability of absorption during time interval T is:

PABSORB = sin2ø (V0T/øħ)2

where ø = 2(ω–Ω)T.

For light intensity I(Ω) this equals:

PABSORB = πµ2/(ε0cħ2) I(Ω) T

Feynman says this equation is the “general theory of absorption of light by any molecular or atomic
system.” It is valid, he says, regardless of which state, |+> or |–>, has the lower energy.

PABSORB is proportional to the square of the coupling factor between states |+> and |–>. Here that factor
is µ•ξ. In general, the coupling factor equals <–|H|+> and is called the perturbation term.



Meet The Author

Congratulations and thank you for reading my book. I know your time is valuable, and I sincerely
hope you enjoyed this experience.

I’d like to tell you something about myself and share some stories.

First, the obligatory bio (as if 3 “tweets”-worth can define anyone): I have a B.S. in physics from
Caltech, a Ph.D. in high-energy particle physics from Stanford University, and was on the faculty of
Harvard University. Now “retired,” I teach at the Osher Institutes at UCLA and CSUCI, where
students honored me as “Teacher of the Year.” In between, I ran eight high-tech companies and hold
patents in medical, semiconductor, and energy technologies.

My goal is to help more people appreciate and enjoy science. We all know one doesn’t have to be a
world-class musician to appreciate great music — all of us can do that. I believe the same is true for
science — everyone can enjoy the exciting discoveries and intriguing mysteries of our universe.

I’ve given 400+ presentations to general audiences of all ages and backgrounds, and have written 3
printed books and 29 eBooks. My books have won national and international competitions, and are
among the highest rated physics books on Amazon.com. I’m delighted that two of these recently
became the 2nd and 3rd best sellers in their fields.

Richard Feynman was a friend and colleague of my father, Oreste Piccioni, so I knew him well before
entering Caltech. On several occasions, Feynman drove from Pasadena to San Diego to sail on our
small boat and have dinner at our home. Feynman, my father, my brother and I once went to the
movies to see “Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb.” It was
particularly poignant watching this movie next to one of the Manhattan Project’s key physicists.

At Caltech I was privileged to learn physics directly from this greatest scientist of our age. I absorbed
all I could. His style and enthusiasm were as important as the facts and equations. Top professors
typically teach only upper-level graduate classes. But Feynman realized traditional introductory
physics didn’t well prepare students for modern physics. He thought even beginners should be
exposed to relativity, quantum mechanics, and particles physics. So he created a whole new
curriculum and personally taught freshman and sophomore physics in the academic years 1961-62 and
1962-63.

The best students thrived on a cornucopia of exciting frontier science, but many others did not.
Although Caltech may be the world’s most selective science school, about half its elite and eager
students drowned in Feynman’s class. Even a classmate, who decades later received the Nobel Prize
in Physics, struggled in this class. Feynman once told me that students sometimes gave him the “stink
eye” — he added: “Me thinks he didn’t understand angular momentum.”

Some mundane factors made the class very tough: Feynman’s book wasn’t written yet; class notes



came out many weeks late; and traditional helpers (teaching assistants and upper classmen) didn’t
understand physics the way Feynman taught it.

But the biggest problem was that so much challenging material flew by so quickly. Like most elite
scientists, Feynman’s teaching mission was to inspire the one or two students who might become
leading physicists of the next generation. He said in his preface that he was surprised and delighted
that 10% of the class did very well.

My goal is to reach the other 90%.

It’s a great shame that so many had so much difficulty with the original course — there is so much
great science to enjoy. I hope to help change that and bring Feynman’s genius to a wider audience.

Please let me know how I can make Feynman Simplified even better — contact me through my 
WEBSITE.

While you’re there, check out my other books and sign-up for my newsletters.

Printed Books, each top-rated by Amazon readers:
 

Everyone's Guide to Atoms, Einstein, and the Universe
Can Life Be Merely An Accident?
A World Without Einstein

 

The Everyone's Guide Series of Short eBooks
 

Einstein:
His Struggles, and Ultimate Success, plus
Special Relativity: 3 Volumes, A to Z
General Relativity: 4 Volumes, from Introduction to Differential Topology

Quantum Mechanics: 5 Volumes, from Introduction to Entanglement

Higgs, Bosons, & Fermions… Introduction to Particle Physics

Cosmology
Our Universe: 5 Volumes, everything under the Sun
Our Place in the Universe: a gentle overview
Black Holes, Supernovae & More
We are Stardust
Searching for Earth 2.0

 

http://www.guidetothecosmos.com/


Smarter Energy
Timeless Atoms
Science & Faith
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