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PREFACE

As the title indicates, this volume proceeds into
geometric material that is, in some sense, relevant to the
study of quantum mechanics. I have already extensively pre-
sented material along these lines in my earlier books, but
the subject is vast, and ever-growing! Note, for example, the
connection to such topics in mathematics as Lie group represen-
tation theory, global analysis, functional analysis, symplectic
manifolds (and via this route with number theory, automorphic
function theory, Kihler manifolds, algebraic geometry), and
the theory of partial differential equations!

A comprehensive treatise on the mathematics of quantum
mechanics is obviously needed. One such is being written by
P. Chernoff and J. Marsden. Right now, the book by Prugovecki
[1]) is a good standard reference. Thus, one of my main purposes
in this work is to provide to the scientific world material
which will feed into this goal. In addition,'I will cover many
topics which interest me personally, and some of my own Tesearch

is included here.
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PREFACE TO THE SECOND PRINTING
MARCH 1977

This volume contains a good deal of original material,
which probably (at least judging by reviews) is not particu-
larly well known even now. I am convinced that understanding
quantum mechanics is not as simple and straightforward a
matter as the physicists would have it--and differential
quantum-Lie theoretic problems are a good deal closer to the
real questions than much of the standard, functional-analysis
oriented material. This concern for developing the differen-
tial geometric thread is the unifying thread through the
diverse topics treated here! Most of them form an elaboration
of certain material that is done only crudely or in special
situations in the physics literature.

In particular, Chapter 4 on "current algebras" is
probably the most significant for further development. I
started work on this topic at the suggestion of Murray
Gell-Mann. He thought that a direct analysis of the way these
objects appeared in quantum mechanics would lead to interest-
ing properties of elementary particles, just as the study of
skew-Hermitian representations of finite dimensional Lie
algebras leads to useful information in atomic and nuclear
physics. Alas, this turned out to be too vain a hope. On
the one hand, even the mathematical theory of these objects--
which are in fact infinite dimensional Lie algebras--is very
difficult (not too much non-trivial information is known,
certainly nothing comparable to what is known about finite
dimensional Lie algebras!) and, on the other hand, every
attempt to explicate how these Lie algebras may appear in
interesing physical situations led right back to quantum
field theory and all its difficulties. However, there are
certainly important objects--no doubt both the mathematical
and physical world will be studying them some day--and I
have written out for future reference a few facts about them.
Note particularly the material in Sections 9-11: After
constructing "groups'" whose "Lie algebras" are the "current
algebras", I believe it is clearly perceived to be possible
to construct at least some useful unitary representation
(which are needed for quantum mechanical purposes) by general-
ézigg methods of the theory of induced representations-vector

undles.

I regret that there is still no even remotely adequate
book on the mathematics of quantum mechanics. (Apparently,
the Chernoff-Marsden effort mentioned in the original Preface
did not materialize.) Quantum Mechanics is a marvelous
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subject, with tentacles reaching into many parts of mathe-
matics. (The faithful readers of my books will, no doubt,
be aware that I am not happy with recent attempts to develop
it mathematically from a strict functional analysis point of
view.) There are tremendous and fascinating possibilities
(basically still unrealized) for rewarding collaboration
between mathematicians and physicists.

Finally, I might mention that I have written a short
introduction to some of the ideas of quantum mechanics as
an Appendix to Nolan Wallach's Symplectic Geometry and Fourier

Analysis, the fifth volume of the companion series, Lie Groups:
istory, Frontiers and Applications.
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Chapter 1

POISSON BRACKET SPACES

1. INTRODUCTION

In this chapter we shall investigate a circle of questions
relating classical and quantum mechanics, Lie group theory and
differential geometry.

Recall from LAQM the following general setting for problems

in classical mechanics, Let M be a manifold. A Poisson bracket

structure on M is defined by giving the following data:
a) An algebra F of C* real-valued functions on M.

b} A Lie algebra structure {,}: FxF + F such that

{fl,f2f3} = {fl,fz]f3+f2{fl,f3]

for fl.fz,f3 e F.
An automorphism of the structure is a linear map A: F - F such
that

A(L£].£,)) = (A(£,),A(f,))
ACE £,) = ACE)IA(E,)

An infinitesimal automorphism is a linear map X: F - F such that

X({£,,£,1) = {X(£;),£,} + {£;,X(£,)).
x(flfz] - x(f]}fz * IIX[fz}.
An infinitesimal automorphism X is inner if there is an h e F

such that

X(f) = {h,f} 1.

for all f e F,

1



A one-parameter group t - At of automorphisms has X as

infinitesimal generator if:

3
3 (AL(0) = X(A(£))

for all f e F, -= < t < =,

If X 4is inner, then 1.2 takes the following form:
Tr (A () = [h,A(£)

1.3 is then a general form of Hamilton's equations of classical
mechanics, with h the "Hamiltonian".

A good deal of "mechanics" - both classical and quantum -
is involved in the study of such structures. A standard way of
defining a Poisson bracket structure on M is to be given a
closed, 2 differential form w on M of constant rank. As in

LAQM, we can then let F be the space of functions f on M

which are constant on the characteristic curves of w. The Poisson

bracket of two such functions is then defined as follows:

{fl’f2} = xf](fz)’

where Xf is a vector field such that:
1

dfl = Kfll w

The automorphisms of the Poisson bracket structure are then

obviously tied in with the automorphisms of the form w.

Accordingly, most of the work in this chapter shall be concerned

with the study of groups of automorphisms (and Lie algebras of
infinitesimal automorphisms) of closed differential forms,

independently of the question of automorphisms of Poisson bracket

1.5



structures. In turn, this will lead us to study such standard
differential-geometric objects as "complex analytic manifolds”

and "Kihler manifolds". Such material has great independent

interest and importance in mathematics, of course. Accordingly,

we shall take some space to describe their most important properties,
¥We shall begin with a more leisurely exposition of the theory of

complex manifolds than was presented in DGCV.

r COMPLEX STRUCTURES ON THE REAL VECTOR SPACE

Let V be a vector space with the complex numbers as
field of scalars. By restricting the field of scalars down te
the real numbers, it can also be considered as a real vector
space, How does one recognize in terms of this real vector space
structure that the complex structure was originally present?
There are essentially two ways of answering this question.

The first works only with V itself. Turning things around,
we know that V 1is a real vector in which one knows in addition
how to multiply a v e V by a complex number. In particular,
let us denote the product of a v e V and the particular complex
number i = v~1 by: J(v). Then, the mapping v =+ J{v) 1is an
R-linear mapping: V + V such that:

2

J* = {identity) 2.1

Conversely, if one is given a real vector space V, together
with an R-linear map J: V = V satisfying 2.1, one can make V

into a complex vector space by using the following formula:
(a+bi) (v) = av+bJ(v) 2.2

for a,b e R,
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Exercise Show that 2.2 defines V as a genuine complex vector
space.
We can put these remarks together to give the following

result,

Theorem 2.1, Given a real vector space V, there is a one-one
correspondence between complex vector space structures on V
which reduce - when the field of scalars is restricted from C
to R - to the given real structure and R-linear maps J: V =+ V
which satisfy 2.1.

Now for an alternate approach., Suppose that V is a real

vector space. Construct its "complexification", V' = V 2 C,

(Here, "C" 1is regarded as a real vector space, so that the temsor

product is considered as the tensor product of real vector
spaces.) Now, V' can be regarded as a complex vector space,

using the following formula:
c(vscll =V & (cclj
for c,c, € C, velV.
Since C = R # iR, we can also write:
V' = V e iV,

with the complex structure on V' defined by 2.3 given by the

following more explicit formula:
{a+bi]{vlgiv2] =
(avlvbvzjmi(hvl*a?zj
for a,b e R, ViV, € Vv

We can also define an R-linear map v' » v'* on V', called

complex conjugation, in the following way:

2.5



(vl'ivz}* = '\.'l-ivz 2.6
for VysVy € V.

Thus, V may - as a real vector space - be identified with the

space of elements v e V' such that v* = v,

Now, suppose that V itself has a complex structure, defined,
say, by an R-linear map J: V = V satisfying 2.1. Extend J

to be a complex linear map: V' =+ V', using the following formula:
J{v1+iv2] = J(vlj + iJ{vz} 2.7

for ViV, € Vv

Thus extended J again satisfies 2.1. Now, because of 1.1,

the eigenvalues of J are +i. Let V_ and V_ be the space
of eigenvectors of J corresponding to the eigenvalues +i and
-i,

Exercise Show that:

V, = {v-iJ(v): v e V]

Fe

Z.8
V_ = {v+iJ(v): v e V]
V' is a direct sum (as a complex vector space)} of the complex
2.9
vector spaces V_ and V_,
(VI* =V, 2,10

Conversely, suppose we do not assume that such a J exists,
but that V' = V & C is decomposed into a direct sum of complex

vector spaces V. ' and V' which are related via 2.10.

Exercise Show that there is a J: V + V satisfying 2.1 such



that V,, V_ take the form 2.8,
After these exercises are done, the reader will recognize

that the following result has been proved.

Theorem 2.2, Given a real vector space V, there is a one-one
correspondence between complex structures on V which reduce
to the given real structure and direct sum decompositions
Vi =¥V eC=V,_ eV of V into complex subspaces which go into
each other via complex-conjugation, i.e. which satisfy 2,10.

So far, we have worked on a given vector space. Now, let
us apply these simple algebraic remarks to the case of

vector spaces which are the tangent spaces to a manifold.

3. COMPLEX STRUCTURES ON MANIFOLDS

Let M be a manifold. It has been explained in Chapter 32 of
DGCV what is meant by saying that M has a structure of "complex
analytic" manifold. We require that M be covered by an atlas
of coordinate patches, in each of which there is a diffeomorphism
with an open subset of C™, such that in the overlap of two such
coordinate patches the different ways of labelling points of M
by complex numbers are related by complex - analytic functions
in the usual sense. Now, an "almost complex manifeld" only has
this property "up to the first order"”. In other words, each
point p of M is contained in a family of coordinate patches,
in each of which there is a diffeomorphism with an open subset
of Cn, such that the different ways of labelling p by complex
numbers are related by transformations which are complex analytic
only "up to the first order™.

This, at any rate, is the intuitive idea of "almost complex



structure". Luckily, the formalism of manifeld theory enables

us to give a more precise technical definition.

Definition. An almost complex structure on the manifeld M is

defined by a field p = Jp of linear transformations Jp: Mp - HP'
one given for each p e M, which varies smoothly (i.e. in a C
way) with p, such that:

Jpz = (identity) 3.1

for each p e M.

As explained in Section 2, such a structure enables us to
define a structure of a complex vector space on the real tangent
space Mp to each point p e M, To see the relation to the
"intuitive" idea of almost complex structure defined above, we
may remark that, intuitively, the tangent space Mp to a point
p €M can be used to represent points of M near p 'up to
the first order'". A consistent way of introducing a complex
structure in each such tangent space then enables up to regard
points of M as labelled by complex-analytic parameters "up to
the first order".

Such a field p = Jp of complex-structures for the tangent
spaces to M can also be defined in terms of F(M)-module

language.

Alternative definition. An almost complex structure for M is

defined by an F(M)-linear map J: V(M) = V(M) such that:

2

J* = -{identity) .2

The relation between the two sorts of J's is given as

follows:



JP(K{P)] = J(X) (p)
for peM, X e V(M).
Because it is technically more convenient, we will work here
with the F(M)-module version of J.

Now, the alternative definition of complex structure on a

real vector space - as a decomposition of V ¢ C into complex

subspaces V_, V_ - suggests an alternative way of regarding J.

Set:
V(M) = V(M) & C
Again, since C = R ¢ iR, vc{M] can be regarded as a direct
sum:
?C{M) = V(M)aiV (M)
In turn, 3.5 suggests an interpretation of VC(M) as the

“"complex-valued vector fieldsomn M",

Exercise, Let FC(H] be the complex-valued, c” functions on
M. Show that VC(H] can be identified with the space of

derivations of FC(H}.

Given an F(M)-linear map J: V(M) = V(M) satisfying 3.2,

extend it to an Fc[M)-linear map, J: V:{M} - VC(H]. as follows:

J(X+iY) = JX+iJY

for X,Y e V(M)
Set:

*
Vo (M) = {Z eV (M): J(2) = iz}
vc'(M) = {Z eV _(M: J(2) = -12)

Exercise, Show that:

5.

3.

3.

5



vc*(m = {X-iJ(X): X e V(M)}
VC'(H] = {X+iJ(X): X e V(M)]

Now, we want a way of recognizing when an "almost complex
structure” arises from a "complex analytic structure".

Technically, it is most convenient to proceed as follows:

Definition. An almost complex structure on M, defined by an
F(M)-linear map J: V(M) = V(M), is said to be locally flat
if each point p e M 1lies in a coordinate patch, with a real

coordinate system [xl,...,xn, yl....,yn] of functions such

that:
) -
() -

for 1 < j < n,

Exercise. Suppose that (xl'....,yn‘} is another coordinate
system valid in the patch, which also satisfies 2.11, Set:

zj* = xj' + iyj' € FC{M]

j = 1,...,n,

Show that the [zl',...,z“'] are given in terms of complex

analytic functions of the {zl,....zn), with zj = xj + iyj.

Using this exercise, we can assign a complex analytic
structure on M to each locally flat almost complex structure,.
Namely, to each coordinate system (xl....,yn] satisfying 2.11,

define zj = xj+iyj € FC{M], and the diffeomorphism

3.9

3.10
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P+ {zl[p},...,zn(p}} of the patch with an open subset of ¢,
The result of the exercise guarantees that, in the overlap of

two such patches, the complex coordinates are related by complex-
analytic functions. This is precisely what is required to define
a "complex analytic structure" for M. Summing up, we have

proved:

Theorem 3.1. To such a locally flat almost complex structure one

can assign a structure of complex analytic manifold on M.

Conversely, each structure of complex analytic manifeld in M

arises in this way from & unique almost complex structure on M,
Now, the following idea of "integrable" structure is, in

principle, different from "locally flat".

Definition. The almost complex structure is integrable if:

v, e, v. ) c v . 3.12

The conditions 3.13 are called the integrability conditionms.

Using 3.9, they can be rewritten in a more convenient form,

using only V(M).
Theorem 3.2. Conditions 3.12 are satisfied if and only if:
[X,Y]+J[IX,Y)+J[X,IY]-[JIX,JY] = O 3.13
for X,Y e V(M).
Proof Define a map : VC(M) + VC(M] as follows:

v(Z) = Z#+1J(2).
Notice that:

#n(Z) = 0 if and only if 7 e vc’(M).

Using 2.9, 2.12 takes the following form:
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T ([X-1JX, Y-iJY]) = © 3.14
for X,Y e V(M).
But, the left hand side of 3.14 works out as follows:
w([X,Y]-[JX,JY]
-1[JX,Y)-1(X,JY])
= [X,Y]-[JX,JY]-i[JX,Y]-1i[X,JY]
+ 1J[X,Y]-4J[JIX,IY]+J[JX,Y]+J[X,JY]

Setting this equal to zero, and equating the real and imaginary

parts gives 3.13.

Exercise. Given an almost complex structure, defined by an

F(M)-linear map J: V(M) = V(M), set:

T(X,Y) = [X,Y]-[JX,JY)+J[X,JY] 3.15
+ J[JIX,Y)

Show that T is an F(M)-linear map: V(M)xV(M) - V(M). By the
general principles of differential geometry, such a map defines
a tensor field on M. 1Its vanishing is then necessary and
sufficient that the almost complex structure be integrable.

It is called the integrability tensor.

Theorem 3.3. If an almost complex structure is locally flat,

then it is integrable,.

Proof. Since T defined by 3.14 is F(M)-linear, to prove
that it vanishes it suffices to show that it vanishes for
any choice of F(M)-module basis of V(M). But, a coordinate
system {xl,...,yn ) satisfying 3.11 provides such a basis,

since, because of 3.11, each term on the right hand side of 3.15
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. .2
vanishes for X,Y 55 Of oo

The converse of this is much harder (for c” structures)
to prove, and was first given by Newlander and Niremberg [1].

We shall state it without proof.

Theorem 3.4. An integrable almost complex structure is locally
flat. Thus, in view of Theorem 3.1, the integrable structures

correspond to the complex-analytic manifold structures on M.

Exercise. There is an alternate way of describing the integrability
condition 3,13, in terms of differential forms instead of vector
fields. Let Fc"(m = FT(M)eC = FT(M)eiF" (M) be the complex
r-forms on M. The decomposition V_(M) = Vc*(Mjmvc'(H) defined

by 3.7, 3.8 defines a similiar decomposition
1 1,0 0,1
FO(M) = F 707 (M) & F 720 (M)

[FCI'O(M] is the space of complex-valued differential 1 forms

w such that
w(V.' (M) = 0.)
This decomposition defines a decomposition

-1 5
T 172
FOM) = X F (M)
51"52'1‘

of r-forms into forms of type (51,52}. (For example, a 2-form
is in Fcl'I(M] if it is the sum of exterior products of forms

in FEU'I(M] and Fctl’o)(u)]. Show that there is an operator

5.,5 5.+1,s5
a: F, 12 » B TR0 such that:

d =3 + 3%,
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(3* 1is the operator « -+ (3u*)*, where * denotes complex-
conjugation). Show also that the integrability conditions 3.13

are satisfied if and only if:

3t - p

4, INVARIANT COMPLEX STRUCTURES ON MANIFOLDS

Suppose now that M is a coset space G/L of a connected
Lie group G, with L a closed subgroup of G. 1In this section,
we will investigate almost complex and complex structures on M
with regard to which G acts as a group of automorphisms.

Let g be the Lie algebra of G, considered as a Lie
subalgebra of V(M). Let L be the subalgebra of G corresponding
to the subgroup L. Let J be the F(M)-linear map: V(M) = V(M)

defining an almost complex structure on M,

Exercise. Show that G acts as a group of automorphisms of the
almost complex structure determined by J (that is, each g ¢ G
leaves invariant the tensor field on M determined by J) if

and only if:
[X,J(¥)1 = J(IX,Y]) 4.1

for all Y e V(M), all X e G.

-

Now, let p be the identity coset of M = G/L. Then,
the map X » X(p) identifies G/L with Mp. The value of J
at p maps Hp into itself, hence carries over to a linear map,
that we again denote by J, of G/L + G/L. Condition 3.1

carries over to the following condition
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Ad X(J(V)) = J Ad X(Vv)
for X e L, v e G/L,

Now, let us investigate the conditions that the almost
complex structure be integrable., Let T be the integrability
tensor, defined by 3,14, Since it too is obviously invariant
under G, to prove that the structure is integrable it suffices
to prove that T wvanishes at p. To facilitate writing this
condition, let us suppose that the map J: G/L + G/L arises

from a map J': G + E such that:
J'(%) cL
('3© 1
(In other words, we require that J be the map induced on the

quotient vector space by J'). Then, the condition that T= 0

can be written as follows:
[X,Y]-[J'X,J'Y])+J' [X,]'Y]

+ JUIY) e L
for X,Y e G.

In summary, conditions 4.2-4.5 are the conditions that G/L
admit on invariant complex structure.

We will not attempt a general classification of these
conditions. However, we will discuss a few simple situations
where one can indeed analyze these conditions in a relatively

simple way.

4.2

i,
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First, let us discuss the case where G and L are
"complex'" Lie groups, i.e. where their Lie algebras have the
structure of complex vector spaces, with respect to which the
Lie bracket operation is complex bilinear. The conditions for
this are readily derived following the linear algebra pattern
discussed in Section 2.

Exercise. Let G be a real Lie algebra. Show that the complex
vector space structures on G Such that it becomes a Lie algebra over

the complex numbers are in one-ont correspondence with the real

linear maps j: G + G which satisfy the following conditions:
it = -1
JOX,Y]) = [5(X),Y] 4.6
for X,Y e G.

Given such a complex Lie algebra structure for G, show that a

real subalgebra L is also a complex subalgebra if and omnly if:
i e L. 4.7

Now, let us suppose M = G/L 1is such that G is such a
complex Lie algebra, with L a complex subalgebra. Let j be

the map: G + G satisfying 4.6-4.8. Set:
J* = 3§ 4.8

Then, we see that conditions 4.4-4.5 are satisfied, i.e. the
invariant almost complex structure defined on G/L by J (which
is the quotient J' induces in §f§] is integrable. This

proves the following rather trivial result:

Theorem 4.1. Let G be a connected, complex Lie group (i.e., a
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Lie group whose Lie algebra has a structure of complex Lie algebra),
and let L be a connected complex subgroup. Then, the coset
space M = G/L has a G-invariant complex manifold structure.

Now, it is less trivial that there are Lie groups G which
are not complex groups, but which have subgroups L such that
G/L has a G-invariant complex structure. We will only investigate
the conditions for this in case the map J' satisfies a further

condition, namely:
J' is a derivation of G, i.e.
JUCIX,Y] = [J'X,Y]+[X,JY] 4.9
for X,Y e G.
Theorem 4.2. Suppose that G is a direct sum (as a vector space)
of L and a linear subspace M, and that J' is a derivation:
G + G such that:
J'(!._.] =0 4.10
J'3(X) = X for X eM 4.11
Suppose also that:
[J'X,J'Y]-[X,Y] e L 1.12
for X,Y e M.
Let M = G/L, with L a connected subgroup of G where Lie
algebra is L. Then J' defines a G-invariant complex structure
on M.
Foer the proof, one has only to notice that 4.5, 4.9, and

4.11 combine to give condition 4.12.

This result is most useful in case L is a symmetric subalgebra
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of G, i.e. M can be chosen so that:

JUM) € M

=
£
[
-

In this case, 4.12 is obviously satisfied. These symmetric
spaces M = G/L which admit invariant complex structures - which
were first studied by E. Cartan - are very important im various
branches of mathematics, e.g. algebraic geometry and the theory
of automorphic functions. Further discussion can be found in

the book by Helgason [1].

5. KAHLER MANIFOLDS

In order to present the idea of a "K&hler manifold"™, let
us return to the study of a general manifold M, without assumptions
about possible homogenity of M. Suppose given a Riemannian
metric on M, i.e. an F(M)-linear map £: V(M)»V(M) = F(M) which

is non-degenerate and symmetric, i.e.
B(X,V(M)) = 0 implies X = 0,

Recall that a complex structure on M is defined by an F(M)-
2

linear map J: V(M) =+ V(M) which satisfies: J° = -1, and the

integrability condition 3,13,

Definition., A Kihler structure on the manifold M is a pair

(8,J) of a Riemannian and complex structureon M, which satisfy the

following conditions:
B(X,JY) = -8(JX,Y) 5.1

for X,Y e V(M)
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Ve (JY) = J(VyY)

for X,Y e V(M)

In 5.2, Vv denotes the torsion-free affine connection associated
with the metric 8. (See DGCV, p. 273. This connection is

called the Riemannian connection). Condition 5.2 means that

the covariant derivative of the J-tensor with respect to this
affine connection is zero.

Now, conditions 5.1 and 5.2 are independent of each other.
In order to study the interrelation between these two conditions,
it is convenient to give a separate name to the structures which

only satisfy 5.1.

Definition. A Hermitian structure on a manifold M is a pair

(8,J) of Riemannian and complex structures which satisfy
condition 5.1 only.
Given such a Hermitian structure, one can define a

2-differential form w by the following formula:
w(X,Y) = B(X,JY)
for X,Y e V(M).

w 1is called the fundamental 2-form of the Hermitian

structure, Notice that w is a 2-form of maximal rank,

i.e, w(X,V(M)) = 0 implies X = 0. However, w 1is not
necessarily a closed form. In fact, a basic result in

Kahler manifold theory, which we will prove below, is that w
is closed if and only if the structure (8,J) is Kahler. One
of the reasons that Kihler manifolds are of interest in physics

is that the fundamental 2-form w (which we shall see in a

5.2
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moment is closed) defines a Poisson bracket structure which is
of interest in various problems of mechanics.

Theorem 4.1, Given a Hermitian structure (g£,J), there is an

affine connection ¥': V(M) x V(M) - V(M) such that:
PR | )
vx Y I(vx\' JWXJ{Y]]
for X, Y e V(M)
vx'(JY] = J?I'Y
Ty  (B(Y,2)) = B(9y'Y,2)
+B(Y,v1'2)

for X,Y,Z e V(M)

This connection is called the Hermitian affine connection.

Proof. Let us define ¥' by formula 5.4, We must first show
that 7' 1is a genuine affine connection. As explained in
DGCV, Chapter 19, to do this we must show that ¥' satisfies

the following conditions:

?ExY = fo’Y

Uy (£Y) = X(£)Y+£9," ()

for X,Y e V(M), £ e F(M).

However, 5.7 readily follows from 5.4.

Let us now prove 5.5
1 = : -
VI (JY) T[vaY J?XJ{JY]]
= 1
f[vaY+vaY)

7y e L
va JY T(vaJY'va]
= -Vx'Y

4

5.5

5.6

o7
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which proves 5.5. 5.6 is proved similarly.
We now introduce the torsion tensor T, of the affine

connection V', (See DGCV, p. 266).

T(X,Y) = 9y 'Y=V, "X-[X,Y] 5.8

for X,Y e V(M}.

We can, of course, calculate T wusing 5.4 and the fact that the

torsion tensor of the Riemannian affine connection ¥V is zero:

T(X,Y) = $(9,Y-J9,JY

X

- v I+J?YJX}-[X.Y]

Y

= %-( (X, Y]-J9yJY+J9,.JX) 5.9

Theorem 5.2. The torsion tensor T vanishes if and only if the
Hermitian structure (g,J) is Kahler.

Proof. Suppose first that the Hermitian structure is Kahler.
Then, vaY = vaY. hence, using 5.4, va = vx.Y. i.e.

the Hermitian connection equals the Riemannian connection.

But, the latter connection is torsion-free, hence T = 0.

Conversely, suppose T = 0. Then, by 5.6, the covariant
derivative of the g-tensor with respect to the V'-tensor vanishes.
As was shown in DGCV, p. 273, there is but one connection
satisfying these two conditions, hence: ¥V = ¥'. 5.5 then shows
that the covariant derivative of the J-tensor with respect to
7 is zero, i.e. the structure (#,J) is Kahler,

We can now "extend the ground field" from R to C, i.e.

introduce VC(H) = V(M) @ C, and extend tensor-fields (such as
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B8, T and J) that were defined initially as F(M)-linear
ohjects associated with V(M) to FC(H}-linaar objects
associated with VEEH]. Thus, VC[M] splits as a direct sum:
* -
VC(M] = Vc M) = Vc (M), 5.10

with:

J(X) = iX or +iX 5.11
ey -
for X e Vc (M) or Vc (M).

Then, also:

0 = s{vc*(nj,vc‘(n}] = a[vc‘(ua. vc'{u}}. 5.12
Proof. Given X,Y e vc*(nj,

B(IX,JY ) =-B(J*X,Y) = 8(X,Y)
= i%8(X,Y) = -8(X,Y), which implies B(X,Y) = 0.

Now, let (zj), 1<j, k<n, be a system of complex analytic
coordinates valid in a coordinate patch of M. Then, the

complex vector fields [E%T , E%T'] form a basis for VC(H}.
i ]

Further,
3 +
EE; € Vc (M)
Set:
3 3
gk B(SE; ,55;,) 5.13
Then,
= &
gjk gkj ’ 5.14

i.e. (gjk] is Hermitian symmetric
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g = gjkd:j-dzk*
w = -igjkdzjh dz, *

Proof

(o]
5

(i o)+ ol 9 )

ar

) - -ig,

S 3
IB(E:P' z ik

i k
5.16 follows from this Trelation.

Lemma 5.3. dw = 0 if and only if:

L 3k
Zl EZJ

Proof. This follows from 5.15

du = -i(dgy) dz; A dn*

ag . CY-
S k k .) *
I(Ei— dzi + !—zi—‘ dzl dzj N dzk
Equating to zero the term containing only one factor dzj*
gives 5.17. The other term vanishes also by Hermitian symmetry,
i.e., 5.14,
Lemma 5.4, T, the torsion tensor associated with the affine
connection V', vanishes if and only if:
v 3 ) +w 3 ) =0
3 Ezk' 3 5L
'r""zj rzkt ]
Proof. Let us use formula 5.9 for T to prove this. Note
first that 5.9 implies that:

(ot ) -0 - ot i)

5.

5

.15

.16

18

.19
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Hence, T = 0 if and only if:
3 3 K
T(EEJT ; 55{‘) 0.

However, 5.9 is used to show that 5.17 is the condition needed for
this:

Now, let us work out the conditions that 5.17 held, in terms
of the metric tensor [gjk} defined by 5.12. To do this, let
us use the following formula, which is proved (in the case of

"real" vector fields) on p. 273 of DGCV:
ZB8(7,X,Y> = Z(8(X,Y))-B(X,[Z,Y])
- Y(B(X,2))+8(Z,[Y,X] 5.19

+ X(B(Y,Z))-B(Y,[X,Z])

Using this,

28 Va g—zu 3 gTE
3zy 5.20
- 33— (85) - 50— (£3)
zj 1k FE; ik
LS 5.21

. . .3 3
I, {Ejk] + g;; (84y)
Notice that 5.16 implies the vanishing of 5.20 and 5.21.

Theorem 5.5 A Hermitian manifold is Kdhler if and only if its

fundamental two form is closed.

Proof Suppose first that the metric is Kahler. Then, VvV = 7',
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hence the covariant derivative of the B8 and J tensors with
respect to V 1is zero. Now, w 1is constructed from £ and J,
using formula 5.3. This implies that its covariant derivative

is zero. The proof that dw = 0 will follow from a general

fact about torsion-free affine connections, which we leave as

an exercise,.

Exercise Suppose that ¥V 1is a torsion-free affine connection

on a manifold M, and that ¢ is an r-differential form such

that: FX(B) = 0 for all X e V(M). Show that d& = 0,
Conversely, suppose that dw = 0. Then, 5.16 holds. This

implies that 5.20 and 5.21 vanish, which in turn proves that 5.17

holds, which implies that T = 0,

Problem In the above proof, we had to use local complex analytic
coordinate systems in order to express the condition: dw = 0 in
a simple form. Is there a proof that dw = 0 implies VvV = 7'
that is more "intrinsic", i.e. does not use such local coordinates,

but that uses the integrability conditions for J directly?

6. TINVARIANT CLOSED 2-FORMS ON HOMOGENEOUS SPACES

As we have just seen, a Kihler metric on a manifold M 1leads
to a closed 2-form. If a transformation group G leaves invariant
the Kdhler metric, it also leaves invariant the form. We shall
now investigate the conditions this imposes on G if it acts
transitively on M., In fact, we shall work in considerably
greater generality than the "Kdhler" situation, and investigate
the existence of a closed 2-form on a homogeneous space G/L,
without assuming that the form is the fundamental form of a

Kahler metric.
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Let M be a manifold, let G be a Lie algebra of vector
fields on M, and let w be a closed Z-form on M which is

invariant under G, i.e. is such that:
X(w) = 0 for all X e G.

(We do not necessarily assume that w is of maximal rank,
hence the work in this section will cover a large amount of

material that is invelved in mechanics).

Let us work out the algebraic consequences of 6.1, and the

condition that du = 0. Let p, be a point of M, and let
be the isotropy subalgebra of G at Py i.e. the set of

Xe § such that:

x(pn} = 0.

For X,Y e E. set:

o (X,¥) = w(X,Y) (py) .

- -

Thus, wy is a skew-symmetric, bilinear form: G x G +R.

Note that 6.2 implies that:
wy(L,G) = 0
Exercise Show that 6.1 implies the following condition:
mﬂ([I,Y],Z}+mD(7,[K,Zl} =0
for X e E; Y, € E-

The algebraic conditions 6.4 and 6.5 do not involve the
condition: dw = 0. To understand this condition, note that:

For X e G,

6.1

6.2
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0 = Xado = X(w)+d(Xs w)
= d(Xs w)

Hence, for X,YZ e G,

0= d(XJu)(Y,I)

= Y((X2w)(2Z))-2((X*a)(Y))
- (X w)(IY,21)

= Y(u(X,2))-Z(u(X,Y))
- w(X,[Y,2])

= w([Y,X], D)% (X,[Y,2])

- wl([Z,X),Y)-w(X,[2,Y])

- w(X,[Y,Z2]1)

= w([Y,X],2)-w([Z,X],Y)

- w(X, [Z,Y])

Let us sum up as follows:

Theorem 6.1 Let wo be the form on G x G, defined via 6.3 -

as the value of w at Py- Then, 6.4-6.5 are satisfied. Further,

wo([Y,x].Z)-mU([Z.X],Y]
- mU(K,[Z,Y]] = 0
for X,Y,I e g.

Remark Condition 6.7 is readily understood in terms of Lie

algebra cohomology. @y defines a 2-cochain of E, with

coefficients in R defined by the "zero" representation of G.

Then, 6.7 meens that the coboundary of @ is zero, i.e. that

Wy is a cocycle.

6

.6
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Conditions 6.4-6.5 and 6.7 are also sufficient to determine w

in case G acts transitively on M.

Problem Suppose that M 1is the coset space G/L, where L is
a connected, closed subgroup of the connected Lie group G. Let Py be
the point of M represented by the identity coset., Suppose that
wy is a skew-symmetric, bilinear form on g which satisfies
6.4-6.5 and 6.7. Show that there is a G-invariant, closed
2-form w on M whose value at Py is @o
Now we shall investigate methods to determine all possible

forms which satisfy 6.7.

“o
Theorem 6.2 Suppose that w, is a skew-symmetric, bilinear

form: G = G+ R, Let B: G x G +R be a symmetric, non-degenerate form
such that:
B([X,Y],Z)+B(Y,[X,Z]) = O

6.8
for X,Y,I ¢ g.
Let A be a linear transformation: g - g such that:
wy (X,Y) = B(AX,Y)
6.9
for X,Y e g.
Then, @e satisfies 6.7 if and only if A 1is z derivation of
G, i.e.
ACTX,Y]) = [AX,Y]+[X,AY] 6.10

for X,Y e G.
Proof Using 6.9, the left hand side of 6.7 is:
B(A([Y,X])Z)+B( [Z,X],AY)

-B(AX, [Z,Y])
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= , using 6.8,

B(A([Y,X]),2)-B(Z,[AY ,X]D)
+ B([AX,Y],2)
We see that this is zero if and only if 6.10 is satisfied.

Remark: If G is the direct sum of an abelian and a semi-
simple Lie algebra, then a B satisfying 6.8 exists. If,
further, G is semisimple, then B may be taken as the Killing
form of 9. and it is known that the derivation A is inner,

i.e. there is a We G such that:

A(X) = [W,X]
for all X e g.

In terms of this W, we have then:

wo (X,Y) = B(AX,Y)

B([W,X],Y)

‘BW,[X,Y]]

'B([x|Y]] »

where:

8(X) = B(W,X)

Condition 6.12 is well-known in the theory of cohomology of
Lie algebras. It expresses the fact that the coboundary of the
l1-cochain @ of 9 {with coefficients in R) is Wy o In the
next section we shall investigate the consequences of this

"cobounding" conditien.

Exercise Suppose that W is given in terms of B and the

6.

.11

12

.13
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derivation A by feoermula 6.9. Show that Wy satisfies 6.4

and 6.5 if and only if the following conditions is satisfied:
A(L) =0 6.14

In particular, if A 1is an inner derivation, given in terms of

6.11 by an element W ¢ G, then 6.14 is satisfied if and only if:
(w,L] = o, 6.16

i.e. if L 1ies in the centralizer of W in G.

- =

7. INVARIANT CLOSED 2-FORMS DETERMINED BY ELEMENTS OF THE
DUAL SPACE OF THE LIE ALGEBRA

Let G be a connected Lie group, L a closed subgroup.
Denote by G the Lie algebra of G, and by gd the dual space
of the vector space G, i.e. the space of real linear maps
8: g + R.

let g + Ad(g): G ~ G denote the usual "adjoint"
representation of G by linear transformations on G. Thus,
if X e 9. and if t + exp (tX) is the one parameter subgroup

of G determined by X, then
exp(t Ad g(X)) = g exp (tX)g ) 7.1

The representation g - Ad g of G by linear transformations
on G "dualizes'" to define a representation g = Add(g] of G

by linear transformations on G, by means of the following

formula:
add(g) (0) () = e(ad(g Hx) 7.2

for B8 e G, X e G.
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Suppose now that & is an element of Gd such that:

Add(e)(e) = o

7.3
for all & e L.
Define a skew-symmetric bilinear transformation Wy GxG=+R
by means of the following formula:
uo{x.Y) = -8([X,Y]) 7.4

Remark: In terms of Lie algebra cohomology theory of G
(with coefficients in R, determined by the trivial representation
of G) 7.4 expresses the fact that the 2-cochain ©q is the

coboundary of the l-cochain @.

Exercises With wy defined by 7.4, show that 6.4-6.5 and 6.7
are satisfied. In particular, show that g determines a
closed 2-form w« on the coset space M = G/L which is invariant

under the action of G, such that:

w(X,Y) (pg) =g (X,Y) 7.5
for X,Y e G,

where Py denotes the identity coset of G/L. In particular,
if the second cochomology group of G with coefficients in R
vanishes, then every G-invariant, closed 2-form on G/L is

d which is invariant

determined in this way by an element of G
under Add(L].

These results are due to B, Kostant [1]. He
emphasizes a slightly different point of view; namely, comsider
the orbits of Add(G] on gd. If & 1lies on such an orbit, let

L denote the isotropy subgroup of G at e, Then, formula 7.4
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determines a G-invariant, closed Z-form w on G/L. Further,

w has no characteristic vectors, i.e. w is a non-degenerate
2-form, hence determines a Poisson-bracket structure on the
functions on G/L. In turn, this geometric structure (which

we call a canonical structure) provides methods for constructing
various infinite-dimensional unitary representations on Hilbert
spaces, which have been extensively studied by KirilloV and
Kostant, However, our main interest in these structures is that
they seem to be associated with the mechanical systems which appear
in Nature in maximally simple and "solvable" form, such as the
harmonic oscillator and hydrogen atom. We shall now study one

class of such structures.

8. INVARIANT CANONICAL STRUCTURES ON COSET SPACES OF
SEMISIMPLE LIE GROUPS

With the ideas developed in the last two sections, we are
in position to tackle a number of interesting and important
problems concerning the classification of various invariant
geometric structures one can impose on a given coset space G/L.
We shall now discuss one of the simplest of such problems, the
classification of invariant canonical structures. For the reader's
convenience, I will now recapitulate the ideas in a form suited
to treating this problem.

Let M be a manifold. A closed 2-form w on M which
has no non-zero characteristic vectors (i.e. which induces a
non-degenerate, skew-symmetric, bilinear form on each tangent space

to M) defines a canonical structure for M. A diffeomorphism

¢: M+ M is a canonical automorphism if:
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$*(w) = w.

Such a canonical structure defines a Poisson-bracket operation

(fl,le > {fl.fz} on functions on M. It is defined as follows:

(f,,£,} = -Ifl[fz)

for fl.f2 e F(M),

where xf is the vector field on M such that:
1

df = Ifli w
If M is a coset space G/L, a canonical structure is
said to be G-invariant if the natural geometric action of G
on G/L defines G as a group of canonical automorphisms. In
this section, we shall suppose that this is satisfied, and that
in addition G is semisimple. By the results of Section 6,

there is then an element Z e G such that:

w(X,¥)(py) = B([Z,X],Y)
for all X,Y e G,

where p, is the identity coset of M = G/L, and where B( , )
is the Killing form on the semisimple algebra G. (Thus,
B(X,Y) = trace(Ad X Ad Y). See Jacobson [1], LGP and VB, vol.
Chapter I for material about the Killing form. In particular
recall Cartan's theorem: G is semisimple if and only if the
Killing form is non-degenerate.)

So far, w could be any closed, G-invariant 2-form on M.
The condition that « define a canonical structure is that it

have no non-zero characteristic vectors, which - in view of the

8.2

11,
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G-invariance - is equivalent to the following condition:
w(X,0)(py) = 0 implies X e L B.4

Combining £.3 and 8.4 then proves the following result:

Theorem 8.1, Let G be a semisimple Lie group, M = G/L a
coset space of G which admits a G-invariant canonical structure.

Then, there is an element Z e G such that:

L = centralizer of Z in G,
i.e. the set of X € G such that 8.5

[X,Z] = 0.

Further, the form « determining the canonical structure is
determined in terms of I by formula §.3.

0f course, the determination of the invariant canonical
structure in terms of the element Z e G is dependent on the
choice of the point Py € M to evaluate the form w. Changing
this point to a point Py = g[pu] e M, with g e G, amounts to
changing Z to Ad g(Z). Thus, the G-invariant canonical

structures are parametrized by points of the orbit space
Ad G\ G 8.6

If G is a compact, semisimple Lie group, the enumeration

of the orbit space 8.6 is essentially known by the work of

E. Cartan (See LGP and Helgason [1]). IF G is non-compact,

a complete description of the orbit spaces is not known, save

in certain special cases and situations. However, a considerable
amount of partial information is known, since the algebraic

problems involved here are very similar to those involved in the
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study of infinite-dimensional representations of Lie groups. Inm
the next few sections we shall describe certain of these special

situations,

8. COSET SPACES OF SEMISIMPLE LIE GROUPS WHICH ADMIT INVARIANT
KAHLER METRICS

Let M= G/L be a coset space of a semisimple, connected
Lie group which admits an invariant, positive Kahler metric.
Also, suppose that G acts effectively on G/L, i.e. no element

of G except the identity acts as the identity on G/L.

Exercise. Show that this is so if and only if no invariant
subgroup of L 1is also an invariant subgroup of G.

Let Z be the element of G satisfying 8.5, i.e. which determines
L as the centralizer of Z in G.

Exercise., Show that the condition that G/L admit an invariant,
positive Kahler metric forces L to be compact,

By the "conjugacy of maximal subgroups theorem” of E. Cartan
(see Helgason [1]), there is a maximal, connected, compact

subgroup K of G such that:
Lc K € G. 9.1

This triple of groups determines a fiber space G/L =+ G/K,

with fiber K/L.

Theorem 9.1, If G/L admits an invariant, positive Kahler

metric, then:
rank G = rank K, 9.2

where K is the maximal compact subgroup of G.
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Proof, By Cartan's theorem, X 1is a symmetric subalgebra of

G, i.e. there is a linear subspace P C G such that:

Further, gu = K + iP is a "compact real form" of G, i.,e. it

is the Lie algebra of a compact Lie group, whose complexification

is the same as the complexification of G. We see that:

L = centralizer of I in gu. e.4

This implies 9.2, since I belongs to a Cartan subalgebra of gu
{Recall that the "rank"™ of a Lie group is the common dimension
of all its Cartan subalgebras. Thus, rank G = rank gu’ and it
is known that all Cartan subalgebras of the compact semisimple

Lie algebra gu are abelian and mutually conjugate.)

Theorem 9.2. Suppose conversely that G is a connected, semisimple
Lie group, that K is a maximal connected compact subgroup of

G, that L is a connected subgroup of K such that L 1is the
centralizer in G of an element I e¢ K. Then, M = G/L admits

a G-invariant, positive Kahler metric.

Proof. Let Py be the identity coset of G/L. Let B{ , )
again denote the Killing formon G. Let G = K * P bhe the
Cartan decomposition of G, satisfying 9.3. Let w be the
G-invariant, closed 2-form on M defined by formula 8.3, We
must show that w« is the fundamental Z-form of a G-invariant

Kahler metric. To do this, we shall find the relevant G-invariant

complex structure on M,
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Let G. =G + iG be the complexification of G. Since
Z lies in a compact subalgebra of G, the eigenvalues of Ad I
acting in G_. are pure imaginary. Let G (I), denote the space

of elements X e @c such that:

[va] = i)‘xr 0.4

with 2 e R and 1 > 0,

Exercise. Show that G, (Z) is a complex Lie subalgebra of G..

Further, show that:
real dimension Gcfg+(2} = dimension G/L 9.5

Now, G 1is a real subspace of G.» and L is a real subspace
of G,(Z). Thus, using 9.5, we see that G/L is isomorphic -
under the injection map G + G_ - to G./G (Z). Further, G_
and G_(Z) are complex vector spaces, This then gives a complex
vector space structure to the vector space G/L, which in turn
is identified with the tangent space to M = G/L at the

identity coset point Py+

Problem. Show that M has a unique G-invariant complex manifold
structure, such that the complex vector space structure induced on

Mﬁ = G/L agrees with that defined via the isomorphism between
0

G/L and gc!g*(Z} defined above.

Problem. Complete the proof of Theorem 9.2 by showing that there
is a G-invariant positive Hermitian (with respect to the complex
structure defined in the previous exercise) metric en M whose
fundamental 2-form « is given by formula B.3. Deduce that

the Hermitian metric is Kiahler.



37

Remark: The class of G-invariant positive Kiahler manifolds
constructed using these results are very important for various
applications to pure mathematics. First, we may consider the

case where G itself is compact, semisimple. The class of
manifolds obtained in this way includes the various types of
projective Riemannian and "flag" manifolds. The simplest type

of such space important in physics is the 2-sphere SU(2)/U(1).
Another is M = SU(3)/U(2), the 2 (complex) dimensional projective
space. As shown in LGP, when one decomposes the action of

G = SU(3) on C” functions on M, one obtains the representations
of SU(3}) modulo its center that seem to appear in the

"Eightfold way" classification of elementary particles.

Another important class of spaces is that where:
G = simple, connected, non-compact

K =L = maximal compact subgroup.

Exercise, Show that M = G/K admits an invariant Kahler metric

if and only if the center of K is one-dimensional.
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Finally, we might mention that, as a consequence of theorems
proved by E. Cartan and Harish-Chandra, this class of spaces
admits geometric realizations as "symmetric bounded domains" in
complex Euclidean space. These spaces are important in the theory
of functions of several complex variables, particularly the

theory of automorphic functions.

10. CANONICAL COSET SPACES OF THE POINCARE GROUP

Let G be the connected Poincare group, which is the
semidirect product of SO*{I.S) (the connected Lerentz group)
and R‘, the space-time translation group. Now, it is well-known
that the irreducible unitary representationsof G determine
the relativistically invariant, "free" quantum mechanical
particles, It is then interesting to see that the canonical
coset spaces G/L of G are related to the free, relativistically
invariant "classical mechanics" particles., (This has been
particularly emphasized in work by R. Arens [1]).

We shall briefly investigate this point of view in this section.

Theorem 10.1. The second cohomology group Hztg,R] of the
Poincare Lie algebra, with coefficients in R determined by the

trivial representation of G, is zero.

Proof. 1 shall use the ideas concerning Lie algebra cohomology
theory described in my series papers "Analytic continuation of
group representations. (A brief explanation is also given in VB,
vol. II, Chap. 2). Let Cz(ﬁ,R] be the 2-cochains, i.e. the skew-

symmetric, bilinear maps
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M:G‘G*Ro

Let G act - via a sort of "Lie derivative"-in Cz(G.R] as

follows:

X(w) (Y],Y,) = w([X,Y1,Y,) + w(¥,,[X,Y,])

10.1
for X,YI,YZ e G.
L 2 . 2 2
et 1°(G,R) be the cocycles in C"(G,R). Let B {g,R]
be the coboundaries, i.e. the image of Cl{g.k] under the
coboundary operator. Then,
B2(6,R) c 2%(G,R)
n?(6,R) = 2%(G,R)/B%(G,R). 10.2

Now, via the action 10.1 of G, one readily verifies that G
leaves the subspaces Bz{g,R) and zz[g.a] invariant. G is

the direct sum

L =# T

of a semisimple subalgebra L, an abelian subalgebra T, such that:

LTI c T

=

By the theorem of "complete reducibility" of finite dimensional
representations of a semisimple Lie algebra (see Jacobson [1] or
VB, vol. II, Chap. 2) there is a linear subspace A C.szg,R)

such that:

22(6,R) = A » BX(G,R) 10.3
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L(A) © A 10.4
Problem. Show that 10.1, 10.3 and 10.4 implies that:
L(A) = 0 10.5

Using 10.5, we shall now prove that A = 0 which (in view
of 10.3) would finish the proof. Suppose that o e A. Consider
w restricted to T. It is a skew-symmetric bilinear map:

4

TxT+R. Now, T 1is isomorphic to R 10.5 means that w

is invariant under the action of the Lorentz group on Rd.

Exercise. Show that there is no non-zero bilinear, skew-symmetric
map: R « r?* + R which is invariant under the action of the
Lorentz group. Similiarly, show that there is no bilinear,
skew-symmetric map: L » L + R which is invariant under the
adjoint representation of L.

We deduce the following facts from this exercise:
w(T,T) = 0 = w(L,L) 10.6
Finally, we must also have:

w(T,L) = 0, 10.7

4 and on L itself

for otherwise the representations of L on R
would be dual to each other, which they are not. (Exercise:
Prove this).

10.6 and 10.7 then imply that A = 0, which completes the

proof of Theorem 10.1.

Problem. Refine the above argument to give sufficient conditions

that a general semidirect product algebra G =L & T, with L
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semisimple, T abelian, have vanishing second cohomology group
Hz[g,R}. Can you construct an example of such a G for which

HZ(Q,R} is not equal to zero?

Remark: Recall that the second cohomology group HZ{Q,R] plays
a key role in another mathematical topic important for physics,
namely the classification of central extensions and ray-
representations of G. See VB, vol. II.

Return to the case where G is the connected Poincare group.
Let M = G/L be a coset space of G which admits an invariant
canonical structure defined by a closed 2-form w. By Theorem 10.1,

there is then an element @ e gd such that:

w(X,Y) (py) = e([X,Y]) 10.8

for X,Y e G

-

a([%,g]] =0 10.9
For X ¢ L, there is a Y e G such that:
e([X,Y]) # 0 10.10

11. LAGRANGIAN SUBMANIFOLDS AND FIBRATIONS

Let M be a manifold, with a canonical structure defined by

a closed 2-form w. Let p be a point of M. A linear subspace

¥ Hp is said to be a Lagrangian subspace of Mp if:

wly,y) = 0, 11.1

and y 1is contained in no 1arier subspace with property 11.1,
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Exercise. Show that a linear subspace vy ¢ Mp

subspace of Mb if and only if 11.1 is satisfied, and:

is a Lagrangian

2 dim v = dim M,

A submanifold N Cc M is called a Lagrangian submanifold of

the form « if, for each p e N, the tangent space Np C HP is

a Lagrangian subspace of Mp‘

A fiber space map =: M + B is called a Lagrangian fibratien

if, for each b e B, the fiber w'l(b] is a Lagrangian submanifold
of the form w.

Let G be a group of canonical automorphisms acting on M.

A fiber space map w»: M + B is said to be a G-covariant Lagrangian
fibration if G also acts on B as a transformation group, and
if = dintertwines the action of G on both of these spaces,

The simplest case of a Lagrangian fibration is that where
B is an arbitrary manifold, M is the cotangent bundle te B,
and the form w on M is ds, where 8 is the "contact 1-form"
on M. (See VB, vol. II, Chap. 1). This is also the situatien
occurring in classical mechanics, of course. For example, if
[%), 1 <1i, j = n, are coordinates of the "configuration space"”

E, let (qi, Fi] denote coordinates of M = Td[B] defined as

follows:
q;(b,8) = q;(b) 11.2
p;(b,8) = B(5o= 11.3
i
for b e B, B e Bbd.
(Bbd denotes the dual space to the tangent space Bh. i.e, the

space of l-covectors to B at b). Thus, the contact one-form @
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on M= Td(B] is defined by the following formula:
§ = pidqi 11.4

(Summation convention is in force on the indices 1i,j,...).
Then, the canonical structure on M is defined by the following

closed Z-form :

w = de = dp; A da, 11.5

A submanifold N of M is then a Lagrangian submanifold if
the following conditions are satisfied:

dim N = n
11.6

w Testricted to N is zero.

In particular, we see that the submanifolds defined by setting the
p; = constant are Lagrangian., Using 11,3, we see that they

are just the fibers of the map M = Td(B) - B, i,e, the spaces

of cotangent vectors te points of B.

In this case, we can construct examples of G-covariant
Lagrangian fibrations in the following way: Let G be an
arbitrary group of diffeomorphisms of EB. Each g e G then
acts on covectors to B in the following way:

gle)(v) = [g;ltv]]
11.7

for v e T(B), 8 e T9(B).
This formula then defines a transformation group action of G

on TY(B) = M.

Exercise. Show that G, defined via 11.7 as acting on Td(B},

acts as a group of canonical automorphisms, with the map =: Td(B)+B
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intertwining the action of G. In other words, [Td(B], B,n)

defines a G-covariant Lagrangian fibration of M = Td(B}.

12. A GROUP-THEORETIC CONSTRUCTION OF LAGRANGIAN SUBMANIFOLDS

In this section we shall give a useful general construction
of Lagrangian submanifolds, Let G be a connected Lie group.
Let G be its Lie algebra, Let Z be an element of G which

satisfies the following three conditions:

Ad Z acting in G is completely

reducible 12.

There is a non-degenerate, symmetric, bilinear form

B: G =G+ R such that:

B({Z,X],Y)+B(X,[Z,Y]) = 0O 12.

for X,Y e G.

Ad Z acting in G has only real

eigenvalues. 12.

With conditions 12.1 and 12.3, we can split up € into the

direct sum {as a vector space) of three subalgebras, go, G,, G s
G, = {X € G: [X,Z] = 0}
12.
= centralizer of Z in G.
G, = subspace of G spanned by the
eigenvectors of Ad I for 12.

positive eigenvalues.
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G_ = subspace of G spanned by the
eigenvectors of Ad I for 12.6

negative eigenvalues.

Exercise. Show that G

++ G_ are indeed Lie subalgebras of G,

and that G is decomposed, as a vector space, as this direct sum,

(They are not ideals of G, so that this is not a "direct sum” in
the sense of Lie algebra theory).

Let G,, G,, G_ be the connected subgroups of G
generated by the subalgebras 90' G,» G_. Let M be the coset
space GIGU. From the work of previous sections, we see that M
has a G-invariant, closed 2-form w, which defines a canonical

structure on M, such that:

w(X,Y) (py) = B(Z,[X,Y]) 12.7

for all X,Y e G,

-

where Po is the identity coset element of M,
Lemma 12.1. B(Z,G,) = 0 = B(Z,G)) 12.8

Proof. We deal with G,. The proof for G_ 1is similiar. Now, G,

is spanned by elements X ¢ G such that:

[Z,X] = aX, with 1 > 0.
Hence, using 12.2,
0 = B([Z,2],X) + B(Z,(Z,X])
= AB(Z,X),

which forces: B(Z,X) = 0, which implies 12.8.

Lemma 12.2. « is zero on the orbit submanifolds G p,, G p, of M.

Proof. First, note that 12.7 and 12.8 imply that « restricted
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to the orbits vanishes at Pg- Then, the fact that « is
irvariant under the action of G on M implies that « vanishes

at all points of the orbits,

If G is semisimple, we can show that these orbit submanifolds

are Lagrangian.

Theorem 12.3. Suppose in addition that G is semisimple, and
that B is the Killing form of G. Then,

dim G, = dim G_ = 3 dim M 12.8

-

In particular, the orbits G p, G p are Lagrangian submanifolds

of M,

Proof. Consider the bilinear map o: G x G_ + R defined as

follows:

a(X,Y) = «(X,Y) fpnj
12.9

for X eG,, YeG

Exercise. Show that relation 12.8 is equivalent to showing that
the map a 1is non-degenerate, i.e. that the following conditions

are satisfied:

a(X,6_)= 0 implies X =20 12.10
oG, ,Y) = 0 implies Y = 0 12.11
for XeG,, YeG_.

We shall now prove 12.10.
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a(X,Y) = B(Z,[X,Y])
= B([Z,X],Y)

Thus, if X e G, and a(X,G ) = 0, then [Z,X] = 0, which
implies X e G,, which forces X = 0. The proof of 12.1 is
similiar, which proves 12.8.

Let 91 = subalgebra of G spanned by eigenvectors of
Ad Z with non-negative eigenvalues. Let Gl be the connected
subgroup of € generated by 91‘

Exercise. Show that G, is an invariant subgroup of G]'
Then, we have:

GIJ c G1 < G.

This induces a fibration.

m: M = GfGﬂ - Gfﬁl. 12,12

The fibers are the translaters under G of the orbits

Glpo. Now, Glpu - G+pn. This proves the following main result:

Theorem 12.4. Suppose that ( is semisimple. Then, the fibers
of the map = indicated by 12.11 are Lagrangian submanifolds of
the form «. In particular, the fibration is a Lagrangian

fibration of the form w.
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Remark: The coset space GKG1 plays a basic role in the
representation theory of semisimple Lie groups. '"Induced"
representations defined by cross-sections of homogeneous vector
bundles on this space (see LGP) are the basic objects, which
often define irreducible unitary representations of G.

B. Kostant has remarked [1] that these seem to be close relations
between these induced representations and representations defined

by the means of the canonical structure on G!Gn.



Chapter 11

THE GEOMETRY OF COMPLEX PROJECTIVE SPACES
AND THE STATE SPACE OF QUANTUM MECHANICS

X INTRODUCTION

It is known that a "Poisson bracket" structure
for spaces of observables is associated with a geometric
structure - namely, a "symplectie" structure - for the
state space. (See LAQM and VB.)

From the point of view of differential geometry, the
"Kahler manifolds" form one important class of symplectic
manifolds. The simplest sort of non-flat Kahler manifolds
are the complex projective spaces. This suggests that the
complex projective spaces are interesting spaces to study.

However, in addition to this "deduction" of a
reason to study the finite dimensional complex projective

spaces at this point, there is the more important fact that

they are related to quantum mechanics. (Recall that the complex
projective space associated with an infinite dimensional complex
Hilbert space is the state space of a gquantum mechanical

svstem when it is looked at in the usual "Schrodinger picture"

way.)

49
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Now, the "symplectie manifolds" of most interest
to physics are of "infinite dimensional” type. The theory
of these structures is not yet in as definitive a form as one
would like, from the point of view of these applications.
Accordingly, I shall not attempt to discuss the infinite
dimensional situation systematically, but shall deal with
the finite dimensional ones in a way that I believe will give
clues as to how to deal with the infinite dimensional situation.
When appropriate, I shall also insert direct comments about
how one might deal with the infinite dimensional generalizattions.
Mathematically, the work in this chapter will also
be on two levels of the concreteness-abstraction scale. Although
we are dealing with a specific sort of space, which may be as
readilv studied with classical methods, I believe it is
valuable to lock at it from certain pgeneral differential-geometric
points of view. Accordingly, I will insert some sections which

explain the general background of the ideas, as they are encountered.
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2. THE PROJECTIVE SPACE OF A FINITE DIMENSIONAL VECTOR SPACE
Let X be a 'Field" in the sense of algebra. (Thus,
K has the algebraic properties of the real or complex numbers.
The reader who does not want to worry about this level of
abstraction can think of K as the real or complex numbers.)
Let H be a finite dimensional vector space, over K
as the field of scalars. Denote tvpical elements of H by
the letter .
Let P(H) be the space whose "points" are the one-
dimensional, linear subspaces of H, Thus, each non-zero
element ¢cH is contained in precisely one such subspace, namely

the space of vectors §' of H of the form:

v' = k¢,

for kek.

This is an element of P(H), which we denote by (¢). Let us

define a map »:H-(0) =+ P(H) by setting

alg) = ()

for yeH - (0).

P(H) is called the projective space associated with

the vector space H. = is called the proiection map.
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Remarks: One might encounter vector spaces with two or more
fields of scalars. For example, a complex vector space of
dimension n is a vector space with respect to the real numbers
(since R is a subfield of C) of dimension 2n, and an infinite
dimensional vector space over the field § of rational numbers.
A notation for dealing with this situation might be: PK{H):
meaning "the projective space defined by regarding H as a
vector space over K."

One might hope to examine geometriec situations in
P(H) by referring them back, via r, to H. In the language
of classical projective geometry, this is called "introducing
homogeneous coordinates.”

What are c¢lassically called "non-homogeneous coordinates"
for P(H) are related to the topic we now discuss, namely a
manifold-like structure for P(H).

Let H' be a linear subspace of H of codimension one.
(Recall that the codimension of a linear subspace H' of H
is the dimension of the quotient space H/H'. Everything is,
for the rest of this section at least, defined relative to
the field K of scalars, which is fixed.) Each one dimensional
subspace of H' is obviously a subspace of H; hence F(H') may
be identified with a subset of P{(H). Such a subset of P(H) is

called a hyperplane of P(H)

We shall now show that P(H) - P(H') may be identified

with H'itself. To this end, let ¥y be any element in H-H'.
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Assign to ¢'eH' the element:
ple*) = tt‘+¢n) 2:1

of P(H).

Exercise. Show that the assignment 2.1, '+ p(¢), is a one-one,
onto mapping from H' to P(H) - P(H').

Remark: 1In classical language, P(H') is called a hyperplane

at infinity of P(H). The assignment to a point peP(H) - P(H')
of the element ¢'eH' such that: p = p(¢'), is called the

assignment of inhomogeneous coordinates to points P(H) - P(H').

A subspace of P(H) of the form P(H) - P(H'), for some

subspace H', is called an affine subspace of P(H).

In case K = R or C, these assignments can be used

to define a manifold structure for P(H). Suppose that:

dim H = n+l.
Then dimension H' = n.
Exercise. Show that there are linear subspaces Hi""'ﬂ;+l of
codimension one such that each point of P(H) belongs to one
L ] L]
of the subsets P(H) - P{HIJ,...,P{H) - P(Hn+1).

Show also that there is a manifold structure for
P(H) such that each of the "inhomogeneous coordinate" maps:
P(H) - P(H') =+ H' defined by formula 2.1 are diffeomorphisms,

with H' carrying the manifold structure which is customary for
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finite dimension vector spaces. If X = C, show further that
P(H) can be given a complex manifold structure, so that the
coordinate maps are complex analytic mappings.

Remark. One might now proceed to develop ideas of algebraic
geometry in this framework; in the case where K is a general
field, one would mimic standard ideas of manifold theorv.
Unfortunately, the accessible textbooks in algebraic geometry
develop a separate way of looking at these ideas, which often

masks their geometric origin.
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3. THE TANGENT VECTOR BUNDLE FOR A PROJECTIVE SPACE

Let H continue to be a finite dimensional wvector space,
with XK a field of scalars. For a point peP(H), consider an

element ¢eH=-(0) such that:
p = ()
Consider the quotient vector space
H/(y).

Definition. A tangent vector to P(H) at the point (¢) is

a K-linear map v:(y) =+ H/(¢). The collection of such maps

form a K-vector space (under addition), called the tangent

vector space to P(H) at the point (¢), denoted by P(HJ(’).

(In the case that K = R or C, we shall soon see why the name
"tangent space” is justified.) Notice that the dimension of

P(H}(‘J is equal to:
dim H - 1.
P{H)(’} could be identified with H/(¢) itself, if a specific repre-

sentative ¥y for (§) were chosen, i.e,a v:P(H){‘) could be

identified with the image
vieg) in H/ ().

However, if one wants to maintain complete "covariance," the
distinetion between F’IH}'{\.J and H/(¢) as vector spaces should

be maintained.
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Definition. The tangent bundle to P(H), denoted by T(P(H)),

is the space of ordered pairs (p,v), where:
peP(H) 3  veP(H) .

Thus, T(P{H)) is a vector bundle one P(H) with the projection
map (p,v) =+ p), with the fiber the K-vector spaces formed
by the tangent spaces.
Let A be a K-linear transformation: H + H. Associate
with A a map XA: P(HY =+ T(P(H)), xh{{w}} a y EP[HJ(w}, where v

is defined as follows:

vig') = image of A(¢') in H/(w),

3.2
for v'e(w).
Notice that KA is a cross-section map: P(H) » T(P(H)). It
will play an important role in quantum mechanies. Further,
we have
Theorem 3.1. XA((&)} = 0 if and only if
Alyp) = xy for some icK, 3.3

i.e., ¢ is an eigenvector of A.

One could proceed further in this direction to define
precisely algebraically the objects which, when K = R or C,
reduce to the familiar differential-geometric objects. This
is a "game" which the algebraic geometers enjoy playing. Perhaps

I might pursue it further later on in this treatise.
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%. THE TANGENT BUNDLE TO REAL OR COMPLEX PROJECTIVE SPACE

In section 3 we have defined an algebraic object
which we have called the "tangent bundle." Now, we look at
the construction analytieally, in case K = C or R.

First, let us be more explicit about the manifold

structure for P(H). Suppose
dimension H = n + 1.

Let p be a point of P(H), and let H' be a linear subspace of

H of codimensicn 1 such that:
H'ne = (0)

We shall coordinatize the affine space P(H) - P(H"), ie

exhibit a correspondence between it and Kn, such that p goes

4.1

: n . .
into the zero element of K. These marpings are, as we menticned

in Section 2, the coordinate charts defining the manifold

structure for P(H).

Let Voo $yaeeeaby be a basis for H, such that:

1
=

(wu)

(vl.....wnl are a basis for H'

4,4

Each point veH - H' then has a unique expansion of the following

form:
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knt= to'i'kl&l'l'...*kntn. 4.5

with ko#03 kg.k eK. Assign to (¢)eP(H)-P(H') the element

1-.0-0|
(kl,...,kn)tKn. By 4.3, p goes into (0,...,0).

Exercise. Show that the assignment
() =+ (kl,...,knJeKn

defines a one-one, onto map between P(H)-P(H') and K". calculate
explicitly the transition map K" . " resulting from coordinatization
using two different bases of H.

With the results of this exercise, one shows readily

that P(H) has a real-analytic manifold structure for K = R,
and a complex analytic manifold structure for X = C.

Let us now see why the vector bundle T(P(H)) constructed
purely algebraically in Section 3 is really the "manifold"
tangent bundle to P(H). Let ¢ be a point of H - (0), with
{$) the projection in P(H). Let t =+ p(t), -l<t<l, be a one
parameter family of one dimensional subspaces of H, i.e. a curve
in P{H), sueh that:

pl0) = (¥).

Suppose that t + #(t) is a curve in H - (0) such that:
pit) = (b {t)).

Define ch{H)(p} so that:

v(¥(0)) = projection in H/ (W)
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Let us regard v defined by 4.6 as the "tangent vector"” to
the curve t =+p(t) if t = 0.
Problem., Show that the curves t =+ p(t), plft) in P(H) which

equal (¢) at t = 0 have the same tangent vector at t = 0

(relative to the manifold structure defined already) if and only
if v = Vya where vy is the element of P(H)t') defined analogously
to 4.6.

This identification then permits us to identify the
tangent bundle to P(H) in the sense of manifold theory with
the tangent bundle defined algebraically in Section 3.

In case K = C, one seeg that the affine space
coordinate charts: P(H) - P(H') + C" constructed above
define a complex manifold structure for P(H). We should then
be able to define an R-linear operator J: T(P(H)) =+ T(P(H))
such that: Jz = -(identity), defining the complex structure
on P(H). The definition of this J can be described as follows:

Exercise. Suppose that H is a complex vector space. For

{w)eP(H), v:P(H](‘) set:
Jlv) = iwv 4.6

Show that J:T(P(H))} + T(P{H)) defines a complex manifold structure
for P(H) which agrees with the complex manifold structure defined
via the affine space coordinate charts.

We shall now see that this way of looking at the
manifeld structure of P(H) - identifying the tangent bundle
to P(H) defined via manifold theory with the "algebraic"
bundle described in Section 2 - is very convenient for describing

other geometric properties of complex projective spaces.
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5. THE KAHLER STRUCTURE FOR COMPLEX PROJECTIVE SPACES

Let H continue to be a finite dimensional complex

vector space. In addition, let us suppose that H has a Hilbert

space structure, defined by an R-bilinear map ‘*1’*2

of H*H =+ C such that:
‘ -
"1’1"2" o "'2-"'1’
/ foa = <o v,/
c*l C*E, c¢¢1 ¢2r = <0 *1 pg)
for ¥y.¥,cH; cec.
<p/p>>0 for $eH - (D).
(Notice that we use physicist's notations for Hilbert spaces;

* denotes complex conjugate of a complex number,

Recall that the orthogonal complement of an element

veH is defined as the space of #cH such that:
<8/9> = 0,

and denoted by t*.

Thus, H/(¢¥) can be identified (because the form 5.1
is positive) with t*. P(H)(') may then be defined as the
space of C-linear maps

vilp) = il

Define a Hilbert space structure on P(H){*) - also

denoted by <« / » =via the following formula:

Yy =+ ¢¢11¢2>

5.1
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fvl{wlfvzfv)?
(vlfvz) = 5-3
T TE L

for V19”2?P‘H)(¢)- {(Note that formula 5.3 is independent of

the ¢ chosen to generate the one-dimensional linear subspace
(e).)

Define an R-bilinear, symmetrie map
B:P(H]{w)tP(H)(m} + R

by the following formula:

1
B(vl,vzl =3 (e, fu,> + cvzfv

174 >) 5.4

1

for Vl‘“z‘P[Hjtwl'

Define an R-bilinear, skew-symmetric map w = P(H}(‘)xP(HJ(’] + R

by the following formula:

. 1
u(vl,vz) = 5T (cvlfvzr - ¢v2!vl>} 5.5

As (¢) varies over P(H), 8 defines & Riemannian
metric for P(H). w defines a symplectic structure which is
non-degenerate, i.e. a "canonical" structure for P(H).
{(Exercise. Show that du = 0, so that w really does define a
symplectic structure.)

Let J:P(H]{w) - P(HJ(*) be defined as follows:

J{v) = iv for VEP{H)(#) 5.6
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Then, y.,g and J are interrelated as follows:

u{vl.vzl T B{Jvl,vzi

h =]
for vl,vst(.(H}}.

As explained in Chapter II, relation 5.7, together with the
integrability of the almost complex structure defined by J
and the condition dw = 0, amount to saying that the triple

(B,0,J) define a Kdhler structure for P(H).

Let us now compute the distance between two points
of P(H) defined by the metric g.
Exercise. Let t =+ ${(t), a < t > b, be a C" curve in H-(0).

Set:

Vi) (o)) = 8 - </ s $it)

at '
() 7u(t)st/2

regarding v(t) as a C-linear map: (¢(t)) =+ $(£)". Show that
v{t) may be identified with the tangent vector to the curve

t =+ (p(t)). Show, as a consequence, that the length of the
curve t -+ (¢(t)) with respect to the Riemannian metric defined

above is equal to:
b
j <v{t)!v(t)>1’2dt.
a
Let ¢;.¥, be elements of H-(0). To study their

projections in P(H), we might as well suppose that they are

of unit length, i.e.,

.7
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oyl = 1wyl =2 5.8

(Recall that || |] is the standard notation in Hilbert

space theory for the norm, i.e.

I1el] = <e/9>2/2),

Consider the inner product ¢¢1ft2> as a complex

number:

<¢l!.2> L reiu, 5.9
with r and a real, Thus,

<¢1!e_i°*2> =r §.10

Hence, in studying the image of ¥10¥, in P(H), we may suppose
that:

“1’*2’ is a real number 5.11

Let & be the angle between ¥y and *2‘ such that:

[
A
@
|a
o
S
L8 ]
-

[
[

cos 8 = '(wlftzhl 5.11

E}ercisg. Show that there is an element 13:H such that:
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<¢1,’¢3> = 0 5.12
[Hegll =2 5.13
¥, = cos B &1 + sin 8 ¥y 5.14

Now set:

p(t) = cos t ¢ + sin t » 5.1
1 3
Thus, ${0) = ¥y pl{o) = ¥y-
qctnf“t> =0 5.16

Consider the curve t =+ ($(t)), 0 <t <8, in
H-{0), It goes from (#1] to (t?J. Its length in the B-metrie

is: (because of 5.15)

]
_’.Biv'(t.“si'(t)]l”dt

. 8 5.17
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Exercise. Show that the curve t * (¥(t)), 0 < t < &, given
by 5.18, going from {wl} to (le is a geodesic of the B metric,
Hence the distance from (il) to (iiJ with respect to the

B-metric is #, where 8 is the unique number between 0 and

n/2 such that:

<o loy>|
eo =_-..__..‘TL-.-_...2._ 5.18
oy 111v,11
Exercise. Define a functien d:P(H)xP(H) + R by the following
rules:
0 < dlle)),(9,)) < v/2 5.19
for (vl}.(#Q)cP(H)
l<#179,2]
cos d((wl),(wz}J = S.20
eyl 1T To,11

for t1,¢2cH-{B)

Show (independently of Riemannian geometry or finite dimensionality

of H) that d is a metric space funetion for P{H).

Remark. In case H is infinite dimensional, this result

will provide a eonvenient way to define a topoleogv for P(H).
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This is important for quantum mechanics, where P(H) plays the
role of "state space."

We now turn to the study of the relation between
R-linear transformation on H and distance-preserving

transformations on P{(H).
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6. LINEAR AND ANTI-LINEAR AUTOMORPHISMS OF COMPLEX PROJECTIVE SPACE
Let H be a complex vector space, (not necessarily
finite dimensional) with a Hilbert space inner product
{*1'*2} + <¥;/¥,>. Let P(H) denote the projective space of one
dimensional complex-linear subspaces of H. Let d ( , ) be the
metriec distance function on P(H), defined by formula 5.20.
Let A:H + H be a one-one, R-linear map. We shall first find
the conditions that A pass to the quotient to define a map:
P(H) -+ P(H), and then investigate the conditions that this
map preserves the distance function 4.
Let us suppose that A does pass to the quotient.
Fix a yeH. Then, A(¥) and A(i¥) must project into the same

element of P(H); i.e. there exists a complex number i(y),

such that:
ACiw) = a(9)ACe) 6.1
Also,
-Alw) = A(ii¢) = aliw)A(iy)
= =Aliw)/aty)
Hence,
A (dgdale) = -1 6.2

Lemma 6.1. A(y) is not real, for all pcH-(0).
Proof. Suppose otherwise. Since A is R-linear, we have,

from 6.1 ,

Alip) = ACA(w)w),
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or

ACip-A(ypde) = 0,

or

i‘ = 1‘.)*1

since A is one-one. This is the desired contradiction.

Lemma 6.2, If ¥ 29, are linearly independent over the complex
numbers, so are A(tl), A('z).

Proof. Otherwise, there would be a relation of the following

form, with a complex number c.
h(*lb + cﬁ(*QJ =0

Set:
c = a+ bi

A(¢2) = a'+b'i,

with a,b,a'.,b'eR.,
By Lemma 6.1, b'" # 0. 6.2 now takes the following form:
Al#y) + Alag,) + iA(by,) = O
HNow,
Aliv,) = Ay, )Aly,) = (a'+b'1)Aly,)

= A(a'vz) + iA{b'ti}.
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Hence,

Aliv,) -~ Ala's,)
iAly,) = oy 8.4

Combining 6.3 and 6.4:
Alyy) + Alag,y) + A{EL (ie, - 3'123} =0

Since A is one-one, this forces a complex linear dependence
relation between v, and ¢,, which is a contradiction.

With these two lemmas, we can now determine more
precisely the structure of the function ¢ -+ A(y) from H + C.
Let ¥ya¥, be two complex linearly independent elements of

H. Then,

A{i(¢1+¢215 A{¢1+¢2)A(t1+¢2} = 1(¢1+¢ZJ(A{01) + A(tzi}

h(tl)&(vll + 1(&21A(t?}

Since A(oli. A(azl are complex linearly independent, we have:

A{tlJ = 1{t1+w2) = \(wzi. 6.5

Let us anply this te vy and i*z. We then have:

Aivy) = aCey) = a0,
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Let us set ¥, = ¥ in relation 6.2:
A ? = -1,

In particular, we have proved:

A(9) = ti 6.6

for all weH.

The +i possibility corresponds to the case where A is a complex-
linear map. The -i possibility corresponds to the "anti-
linear" case, according to the following definition:

Definition. A map A:H + H' between complex vector spaces

is anti-linear if it is R-linear, and if:
Alcy) = c®*A(y)
for ¢eH, ceC

We can now sum up as follows.
Theorem 6,3. Let H be a complex vector snace, and let A:H + H
be a one-one, R-linear map. Then, A passes to the quotient to
define a man P(H) -+ P(H) if and only if A is linear or anti-
linear.
Remark. Notice that the proof given above indeed only requires
that A be one-one, and that the Hilbert space structure for
H was not used,.

How, let us reimpose the Hilbert space structure on

H, and use it to construct it to construct the Riemannian metric,
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and the correspending distance function d( , ), as explained
in Section 2. Let A:H =+ H be a one-one, complex linear or
anti-linear map. We shall now find the conditions that the
map A induces on P(H) preserves the distance function d,
i,e, that it be an isometry.

Now, by its definition

[<¢y 79,21

cos d{(¢,),(p,)) =
179**%2
e 1111w, 11
Hence, the condition that A act as isometry on P(H) is that:

[<Aw, /Ay ,>| . [<ey 7 w2>|
laey L1 el Tleg T we,0)

for *1)*2 e H.
In particular, note the following fact:

If 1,9, are perpendicular and non-zero,

S0 are A(tli.ﬁ(tzJ.

Suppose now that '1"2 are two elements of H such

that:

<o /85> = 05 [legl] =1 = |fesll.

«10
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Notice that 6.9 gives us no direct information about
||At¢1)||. Suech information ecan be obtained by applying a

suitable "polarization" process to €.9. Namely, set:
‘l E ﬂtl + b‘z

¥2

‘b.1 + a':w
with a,b real numbers.
L] L]
Then, ttlftzr = 0, hence also, by 6.9,

0

] L)
¢ﬁjlfﬁf2:

caA(*l) + bAt?f - bA(tl) + aﬁtgr

2 2
-ab| Ay, |° + ab]|Ay,|]

This identity forces - since a, b are real numbers -

Hav 112 = |lae,l1? 6.12

Theorem 6.4, If A is on R-linear map: H + H which acts on

P(H) preserving the distance function, then there is a positive

. e Linelt s

for all ¢eH

real number such that:
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Proof., Let wl*w be arbitrary elements of H, with ||p1|| = 1.
We can then construct (by the Gram-Schmidt orthogonalization

process, for example) an element *2‘H such that:
[Tepl] = 15 <o /9,5 = 0.
¥ = ay, + be,, with a,b real.

set: o = [|An,|]| = , by 3.12, [|Av,]]. Then, [[¢]1? = a?sn?;

2 2 2
Lael1? = a®[lae, 117 + b?[]ap, |2

02(a2+b2).

which prove 6.13.

At most changing A to A' = :é— s, We may suppose
o
without loss in generality that:
IAel] = [lell 6.

Quantum mechanically, 6.14% means that the transformation

¢ + A(y) "preserves probabilities.” Such transformation
were first studied svstematically by Wigner [1], who also
proved the basie faet that such probability preserving trans-
formations (not assumed, a-priori, te be linear) arose from a

unitary or anti-unitary transformation on H.

14
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Definition. A transformation A:H + H is said to be an isometry

of the Hilbert space structure if it is complex linear, and

if:

<A¢IIA¢2> = ‘*1!*2’ 65.16

for tl.tzcﬂ.

A is said to be an anti-isometry if it is anti-linear and if

<A¢1fﬁp2> = <¢2f¢1> 6.17
for ¥y,¥,eH

A is said to be unitary if it is an isometry and A-l exists;

A is anti-unitary if A is an anti-isometry and A"Y exists.
Exercise. If A:H + H is complex linear and satisfies condition
6.1%, show that A is an isometry. If A is anti-linear and

satisfies 6.1%, show that it is an anti-isometry.

Problem. If A:P(H) » P(H) is a distance preserving
map, show that is arises in this way from an iscmetry or anti-
isometry of H.(This is, roughly, equivalent to Wigner's theorem.)
Problem. Describe, in abstract groups theoretical language,

the relation between the group of R-linear isomorphisms: H + H
which are either unitory or anti-unitory and the group of
distance-preserving isomorphisms: P(H) -+ P(H). Discuss the

interesting subgroups and invariant subgroups of these groups.
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7. QUANTUM OBSERVABLES AS FUNCTIONS ON COMPLEX PROJECTIVE SPACE

The complex projective space associated with a
Hilbert space is important for quantum mechaniecs, since it plays
the role of the "state" space, similiarly to the role the
cotangent bundle in configuration space plays in classical
mechanies.

Let us briefly recall this connection, using the
ideas developed in LMP, Vol. II. In the standard approach
to quantum mechanics one is given a Hilbert space H. (In the
simplest examples of particle quantum mechanics, H is the
space of "Schrodinger wave functions," with the Hilbert space
inner product < / > related to the "probabilistic" features
of quantum mechanics. )

Recall alsoc that an "observable" is a Hermitian
operator: H =+ H. Given such an operator A, one can define

a real-valued function f,:P(H) -+ P(H) by the following

formula:
£o0(p)) = <tAe> 7.1
<p/g>
for v ¢ H

Quantum mechanically, 7.1 is the "expectation value" of the
"observable A" in the "state (¢)." From the mathematical point

of view it is interesting as a realization of the "cbservables"
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as real-valued functions on the space of "states." (Recall
that such a realization is typical of mechanies, whether of
"eclassical”™ or "quantum" tvpe.)

Now, let us suppose that H is finite dimensional,
so that P(H) is a manifold in the standard sense. We shall
compute df, and the integral of fﬁ over P(H) with respect to
the volume element defined by the Riesmannian metric on P(H)
defined in Section 6.

Since A is Hermitian, iA is skew-Hermitian. Set:

glt) = explith), 7.2

= ¢ t <=

Then, t =+ g(t) is a one parameter group of unitary operators

on H. Each g(t) permutes the one-dimensional subspace of H,
hence each g(t) acts as a diffeomorphism of P(H). It is readily
verified that this diffeomorphism is an automorphism of the
Kdhler structure on P(H). Thus, t =+ g(t) acts on P(H) as a
ane-parameter group of Kihler metric automorphisms.

Let X be the vector field on P(H) which is the
infintisimal generator of the one parameter group t + g(t).
Recall that, we have defined in Seection 3, XB as a vector field
on P(H), for any linear transformation B:H -+ H, wvia the

following formula:
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Xg (e (o) image of B(y)

in H/(p)

L]
-
-

=J
"
Ll

for all ¢'e(y).

Problem. Show that X, the infinitesimal generator of the

group t -+ g(t) given by 7.2, is given by the following formula:

X = xiA 7.4

Show also that:

df, = X S, 7.5

where w is the 2-form of the symplectic structure defined
by the Kahler metric on P(H).
Exercise. Show that df, = 0 at a point (¥)eP(H) if and only
if % is an eigenvector of A.
Remark: These results are literally only true for the case
of finite dimensional H, because it is only for these that
we have a properly defined manifold structure. However, in
the infinite dimensional case, they remain true in some "symbolie"
sense, thus giving us a way to think of quantum mechaniecs in
a way that is more geometrie than customary.
Having discussed the derivatives of the fA' let
us consider the integrals:
Theorem 7.1. Suppose H is a finite dimensional complex vector
space. There is a constant ¢ such that i for each Hermitian

operator A:H -+ H,
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f fﬁ{p) dp = e trace (A4), 7.6
P(H)

where "dp" denotes the volume element differential form on

P(H) defined by the Riemannian metric 8.

Proof. Let G be the group of unitary transformations of

the vector space H. G passes to the quotient to act on P(H).

Exercise. Show that G acts transitively on P(H). Identify

the Lie group which is the isotropy subgroup.

G is a compact Lie group. Let dg be its bi-invariant
volume element differential form, normalized so that the total
volume of & is equal to one.

Now, the compact G acts transitively on P{H), and
the volume element dp is invariant under €. Up to a constant
multiple, there is but one volume element invariant under G;
it is related to the biinvariant volume element dg on 3, as
indicated in the following exercise.

Let %, be a fixed element of H such that: |1#1|f = 1,

Exercise. ©Show that there is a constant ¢' such that:

[ o = ot [regtoyae 7.7
P(H) s

for all continuous functions f on P(H).
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We shall compute the integral of fh over P(H) using 7.7, and
some standard orthogonality relations about integrals over
G of matrix elements of irreducible representations. (For
this, see LMP, Vol. II or Wallach [11]).

Let LS RRREEL M be an orthonomial basis for Hl with
¥y the fixed element involved in 7.7. Choose indices 1,3
running from 1 to n, with the summation convention, and let

aij{gJ be the matrix element function on G such that:
3{‘1) z aji(g}oj
The orthogonality relations are now:
.[Gaji{g)‘aj,i.{ngg T NOs50450

Hence, using 7.7-7.8, we have:

f fl{pldp

P(H)

c! 1; <gtliﬁgil’dg

= e J;;ail(gJ*ujl(ch vih‘wi’dz

= , using 7.9,

c'n {'i!ﬁ’i’

e'n trace (A).

7.

7.
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This finishes the proof of formula 7.6, hence also of Theorem 7.1.
Remarks: The unknown constant ¢ in 7.6 may be put in another

form. In 7.6, set A = (identity operator). Then,
trace A = n = dim H.

fA is of course identically one. Hence, the left hand side
of 7.6 is equal to the volume V(n) of P(H) with respect to the

Riemannian volume element dp. Thus, we have:

v

"
0
b=

b
Q
e

0
w

7.10

Now, the wvolume V is not uniquely determined, since
the metric on P(H) is determined only up to a constant multiple.
However, the matric can be normalized using the curvature.
Exercise. Suppose that the Kihler metric on P{H) is normalized
so that the maximum value of its sectional curvatures is equal
to one. Compute V as a function of n.

So far, we have been working with finite dimensional
vector spaces H, which are only indirectly of interest for
quantum mechanics. However, recall one of our basic themes -
we are studying finite dimensional situations in part because
of clues we can get for possible generalizations to infinite

dimensional situations. We can apply this here, and make
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certain speculative suggestions about what happens in the
infinite dimensional situations.

Let us combine 7.6 and 7.10 as follows:

£
P(H)

dp = E%El trace (A).

A |
Suppose H is an infinite dimensional Hilbert space. Let

HyoHysees

be a sequence of finite dimensional subspaces of H such that:

Hl - H2 Coasa

dim (H ) = d(n)

The union of the subspaces Hn is dense in H.

One might call a structure (H,Hn, n=1,...) satisfying 7.12-

7.1% a filtered Hilbert space structure for H. (In PALG I

have presented some material related to this concept.)
Then, P(Hn) iz a subspace of P(H), for all n. A

given Hilbert space structure on H restricts to define a

Hilbert space structure on Hn’ hence also a metric on P{HnJ.

Suppose that:

7.11

7.12
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lim E%E% = V.

n+=

Let An:Hn -+ Hn be the operator such that:

An(t) = orthogonal projection of A(w)

on Hn. for W:Hn

Suppose that A is a "trace-class"™ or "nuclear" operator.

(See Gelfand-Vilenkin [1] or Yosida [1]). Then "trace A"

is defined as a real number, and it has the property that:

trace A = 1lim trace (A )
n+w n

Let f:P(H) - R be a real valued function. Let us

define the integral over P{(H) as the following limit, if it

exists:

J;(H}f dp = lim J;(Hn)f(pn)dpn

Nne+=

Putting all this together, we have the following formula,

a trace class Hermitian operator A:

f(pldp = V trace (A)
P{H)

7.186

7.18
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Ramifications of these ideas should be investigated
further, since they seem to be important for understanding,
on the one hand, infinite dimensional “"integral geometrv,"
and on the other hand they should be very useful in quantum
mechanics and statistical mechanics. I hope to go into this

myself at a later point of this treatise.



Chapter II1
THE GEOMETRY OF SCATTERING THEORY

1. INTRODUCTION

In FA, LMP, vol. II, and PALG I have already presented some
of the fascinating mathematical ideas implicit in the area of
physics called "scattering theory". In this chapter, I want to
delve into the material more deeply from the point of view of
differential geometry and Lie group theory.

As an introduction, I shall briefly define the basic
mathematical objects needed to describe the scattering of two
relativistic, spin-zero particles, in the form usually to be found
in the physics literature.

Let p denote an element of i Physically, p denotes
the relativistie Y-momentum of particles. Consider p as an
ordered pair (E, 5) of a real number E (the energy of the
particle) and a vector ; e R® (the momentum of the particle in
the sense of ordinary, 3-dimensional mechanics). Define the Lorentz
inner product as follows:

If Py = (El, 511, P, = (Ei, Ez)‘ then
{c = veloeity of light)

In 1.L; 51'52 denotes the usual Euclidean, positive-definite
inner product for vectors in Ra.

Now, consider a scattering situation, consisting of two spinless
particles of Y-momentum PysP; € R* coming in, and two spinless

particles P3» Py going out, as symbolized by the following

85
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diagram:

Py P3
1.2
Ps Py
Suppose the particles are of mass My My Mgy, i.e.,
mi2 = PyrPys i=1,2,3,4. 1.3

Definition The kinematic space, denoted by M, for this scattering

situation consists of the 4-tuples of vectaors (pl,pz.pa,pu) such

that:
P1+P2 = p3+pu 1.4
Pi*p: = m,2, i=1,2,3,b 1.5
ipi T 3 L L B R .
Let s,t be the functicns: M + R defined as follows:
_ 2
§ = (p1+p2) 1.8
- 2
t = (pl—pa) 1.7

{Physically, 8 1is called the center of mass energy, t 1s called

the momentum transfer).

The functions s,t are the invariants of the action of the

Lorentz group L on M. A scattering amplitude function is a

function f: M+ C which is invariant under the action of L.

We shall suppose, for simplicity - or at least until another



87

assumption seems reasonable on either mathematical or physical
grounds - that f is infinitely differentiable, i.e. of
differentiability class C .

We can now indicate how such a scattering amplitude function
gives rise to a "scattering operator". Let Hi’ i=1,2,3,4,
denote the hypearboloid of R4, i.e., the set of vectors P; € R

such that:
pg = ml 1.8
1.8
(In the physics literature, this is called the mass-shell.)

Let dpy denote the Lorentz-invariant volume element on Hi:

Exercise If P; = (Ei, 313, show that
dp;
I, |

dPi &

where dﬁi is the Euclidean volume element form on Rg.

Let H, denote the Hilbert space of &, complex valued, rapidly
decreasing functions ¢: M; + C, with the Hilbert inner preoduct

defined as follows:

<l =f ¥(py ) *¥(p;)dp, 1.10
M
i

The Lorentz group, S50(1,3), acts unitarily on Hi’ via its

geometric action on Hi'

Let H be the tensor product Hilbert space Hl ® Hz. Elements
of H represent the Hilbert space of "incoming" states, of the
scattering situation. Also, H' = H3 ® Hu are the "outgoing"
states. Geometrically, an element ¢ e H is a function 1(91,923
on M,xM,. Similiarly, an element ¢' e H' is a function t'(?a,puJ

on Hsﬂﬂu .
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Definition Let § be a linear operator: H + H'. Then, a funetion

f on M is said to be a scattering amplitude function associated

to the operator S if:

<! |5|'J-’7’ & J‘W'(Paqu)*f(i’lrpz aPa:PquPlaPz)dP 1.11
M

for v e H, ' e H',

where "dp" denoctes a suitable Lorentz-invariant volume element
on M. (In fact, "dp" can be chosen as the volume element
associated with the Riemannian metric on M given by its natural

imbedding into rit

-
The physicists use the Dirac notations to symbolize relation

1.11:

<p3spy 18Ipyap,>
1.12
= 6{p1+p2-p3-1"“)f(pllpzlpalpu)
We see that 1.11 is just the form 1.12 takes when one integrates

over test-functions v e H, ' e H'.

Exercise Show that relation 1.11, plus invariance of f under the
action of the lLorentz groups (E,(pl,pz,pg,pu)} * (Epl,...,lpu)

on M, implies that § intertwines the action of the Poincare
group on H and H'.

Such a scattering amplitude function f is a function of s
and t, since s and t serve to parametrize the oribt space of
the action of L on M. However, there are other ways of
presenting such f's. We shall consider the one most relevant

to the study of the "partial wave expansion" of a scattering
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amplitude.

For each positive real number b, Jet Nb denote the set of

all vectors (pa,pu) e RI'IMRI'l such that:
2 _ 2. 2 . 2
p3 e ma £l pll - ml} .
1.13
Pa*p, = (v/6,0)
Let us parametrize Nb explicitly. Set:
Py " (Egssa)i Py = (EH:EH)
Then, condition 1.13 means that:
-+ -+
53+Eu = b; Py * =Py 1.14%
2
E
Ta -532 = m32 1.16
-]
2
E
- -3, = m° 1.16

o
We shall now eliminate E, and E, from these equations,

and obtain an equation for 53 alone:

= 2 < 2 2
E, -c$u+m* -¢$3+%
E3=p"F- ::r‘pa*'mu,
332 = iﬁ (h—?JE'ch32+m“2 + cztﬁaz*maz)}-mgz
[~

b 2/5 2 2, +2. 32 2
et TPy TRy Ry YRy CeBmg
c

or
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Wb F 7. 22 _b 2
o TPy tRy T Tyt My oMy
Wb s 2. 2. (btc(m 2om.2))
- (p3 *mh ) 4 3
e n
z
. 2, 2
Paz {(b+c (m“ =My o qu 1.17
Hb02

Notice that this relation shows that 53 lies on a sphere in R3

whose radius is given by the right hand side of 1.17.

Exercise Show that the map (p,;,p,) = ﬁa defines a diffeomorphism

2 is the

of M, with the sphere in RS, of radius X, where X
right hand side of 1.17.
To understand the geometric meaning of "partial wave analysis",

for each positive real number b and each vector ED e R® define

a map
¢h‘ ﬁﬂ' Na +* M
by the following formulas:
2, 2 =+ Z =+
¢b,50(P3:Pu) = ((evfmy"+p " »pg ), (b-evmy " 49,7 )5P40p,) 1.18

(Physically, ED is then the 3-momentum of the first particle).
If f: M+ C is a scattering amplitude funetion, it can be pulled

back under ¢b E to define a function
o

£ =+ = - R(f .
b,py ¢b.pU (£} on N

Usually the dependence on EU is suppressed, and this function is

denoted simply by fp. Further, since (p3+94)2 = 5(¢b,§ (pyspy)) = by
0

the label "s" is essentially just the same as the label "b", and the

physicists usually make no notaticnal distincticon between them.
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There is a further symmetry to exploit; f is invariant under
the action of the Lorentz group L on M. Now, an 2 e L acts

on M wvia the "diagonal" action:

1(P13P23P319u) = {Lpltzpzyapaslpq)*

f is invariant under the actien, i.e.
f{ltplleipatPu>) = f(P11P21P31Pu) 1.18

for (pl,pz,pa,pu) e M, L e L.

(The generalization to allow particles with "spin" involves allowing
f to transform under L as one of a number Flseensfy of functions
which transform under L wvia a finite dimensional representation
of L. In the physics literature, these are called "covariant
amplitudes”, see Barut [1]).

The action of L e L on p e Y is just the usual action of
L = 50(1,3) by its 4-dimensional, real representation. Let K

be the subgroup of k e L such that:

K(E,p) = (E,k(P)), 1.20

3 3

where 5 + kE is a linear transformation R°+ R” which preserves

the inner product. Then ¥ is isomorphic te S0(3,R), the notation

group of Hg. Let K be the subgroup of k & K such that:

0
k(By) = Bye

Then, KU is isomorphic to S0(2,R). Now, the invariance 1.19

of f under K

0 pulls-back via the map by E to give invariance of
0

T, & under K_..
b,pg 0

.....
WG
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In summary, £y E is a function on the sphere of radius A
: ]
0
3

in R (where A’ is the right hand side of 1,17, which is invariant

under the action of a one parameter group of rotations, Kge
It is then appropriate to expand fbsEu in terms of "spherical
functions", i.e. eigenvalues of the Laplace-Beltrami cperator on

the sphere which are invariant under the action of KU' The parameter
A is given as a function of b, i.e. =, when e, m,, m; are held
fixed (as they will be in any specific physical situation, of

course). Now, in appropriate coordinates for the sphere, these

spherical functions are just the Legendre functions Pn( }. Thus,

the "partial wave expansion" of f will take the following form:

fI”Eu = I (2n+da (bIP 1.21
n
Now, the physicists make no notational distinetion between fb 5
?
0

and f and between b and s. Thus, in their notation, the
expansion 1.21 would take the following form:

f = L (2n+l)a ()P 1.22

n
For example, in the simplest case where all the masses are equal,
m=m = m, T Mg T oM, and where ¢ = 1, the expansion 1.22 take

the more explicit form:

2t
fis,t) = L (2n+1]an(s)Pn(; + ____f) 1.23
n s=Uum

(See Collins and Squires [1]1, p. 21).
We now see an interesting deformation problem: Describe what
happens to the expansion 1.21 as b + 0 or =, with all the other

parameters held fixed. From the relation defining Nb 3 , hamely:
]
0
2

SN2

2 2 2
= 1 : A? - (b+c ':]Tlu -
2

[

.24

4be
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wee see that this deformation problem corresponds geometrically to
a problem of expansion over a sphere whose radius goes to infinity

or Zero.

Remark: There are even more interesting deformation problems, where
one allows all the free parameters to approach limiting values, and/or
extends the vectors and functions to complex values. Of course,

a good deal of the emphasis of physicsts concerned with "S-matrix
theory" is the study of these problems. One of my aims in this

book is to develop systematic and general mathematical methods

for their study.

-----------
yrignied
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2. THE KINEMATIC SPACES

Now we shall translate the material in Section 1 {(which is
more-or-less the standard material in physics beooks) into a
more general context.

let V be a real, finite dimensional vector space, with a
symmetric, bilinear, non-degenerate form: VxV-+R given on V.

We shall denote the image of (vl,u2) e VxV under this form by:

For v e V, set:
2

W = Vv,

Let r be an integer greater or equal to one, and let
mlz,...,mr2 be real numbers. Let M be the space of r-tuples
(vl,...,vr) of elements of V, such that:

2 2 2
1 ,...,vrz = m, 2.1

M will be called a kinematic space. Denote a typical point

of M by p. Thus, M is the subset of V', the Cartesian

product of r-copies of V with itself, defined by conditions 2.1.

Definition A point p = (vl,...,vr) e M is in general position
if the dimension of the linear subspace of V spanned by the vectors
VisearaVy, of V is equal to:
(r-1) if (r-1) < dim V
dim Vv if (pr-1) > dim V.,
i,e. if the dimensien of this linear subspace is as large as

possible, consistent with the constraint 2,1(b) and the fact that

the vectors spanning it lie in a finite dimensiconal subspace V.
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Let G be the group of linear transformations g: V = V

which leave the form invariant, i.e. such that:

EV1 "8V % ¥V,

2.3
for ViV, € v
G acts on M as a transformation group, in the following way:
If p= (vl,....vr>,
2.4
gp = {gvl,...,gvr}

If p= (vl,...,vrl, let U(p) be the subspace of V spanned by
the vectors (vl,...,vr}. Let GP be the isotropy subgroups

of G at p, i.e. the set of g e G such that:

g{vl) ] vl,...,g(vr) i, 2.5

Then, g acts as the identity in U(p), hence g passes to the
quotient to define a linear transformation in the vector space
V/u(p). Let U(p}& denote the orthogonal complement to U(p) in

V, i.e. the space of vectors v e V such that:

v-U(p) = 0 2.6

Let rad(U(p)) be the radical of U(p), i.e. the vectors v e U(p)

such that 2.6 satisfied. 1In other words,

uep) nouept 2.7

rad U(p)

Consider the quotient projection map:

up)' - VUG 2.8

The kernel of this map is obviously the radical of U(p). 6P acts

on U(p) and V/U(p). The map 2.8 intertwines the action of cP
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on U(p)" and V/U(p).
Now, let us suppose that:

rad U(p) = (0), 2.9
i.e. that the form restricted to U(p) is non-singular. Then,
one sees readily that,

V= U(p) & UCp) 2.10

2.10 shows that U(p) can be identified with the quotient space
V/U(p). Let G' be the group of all linear transformations mapping
U(p)‘ into itself that preserve the form. Then, the above remarks
define a group homomorphism: eP » @',
Exercise Show that this homomorphism is an isomorphism between
cP  and G', if 2.9 is satisfied.
Definition Let M° consist of the points p e M such that:

p is in general position, i.e.

2.11
satisfies 2.2
The form restricted to U(p) is non-singular,
i.e. rad U(p) = (D). 2.12

Exercise Show that M° is an open, dense subset of M. (In fact,
M-M° is an "algebraic subset" of M, i.e. a union of spaces defined
by algebraic conditions).

Also, note that:

g c m°
2.13
for g e G.
Note that:
dim GP = constant for
2.14

peM
Thus, the orbit structure G/M° is rather "nice". The troubles

one encounters near the boundary of M® in M are what the
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physicists call "kinematic singularities”.
We can now parameterize G\M, using the inner product form.

Choose indices 1 < a,b < r-1. Given p = (vi,...,v ) € M, set
s_.(p) = (v_*v y* 2.15
ab a'b 2
In 2.15, suppose that:

l1<a<bgr-l. 2.16

Then, one can regard (s_,) as an element of pir-1)(r-2)/2

Then, 2.15 defines a map:

b M - R(P—IJCP—Z)IE’ 2.17

Explicitly, the map ¢ sends p = (vl,...,vr) e M into the

element:

¢(p) = (s, (p)), 2.18

with the matrix {sab(p}} given by the right hand side of 2.15.
Let us now study the fibers of the map ¢ defined by 2.17-2.18.
First, the following fact follows from the condition that the

action of G on V leaves invariant the inner product:

The orbits ¢f G on M are contained in

the fibers of the map ¢. In particular, i
2.

¢ passes toc the quotient to define a map

of the orbit space G\M + giT-13(r-23/2

Let us now examine the extent of the validity of the converse

of 2.16. Suppose then that:

P = (V1:°--1“r)

p' = vl’]lc!,vr'J
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are the points of M which lie on the same fiber of ¢, i.e. which

satisfy the following conditions:
2 - ] L] 2
(v +v)° = (v "#+vy ") 2.21

On working out both sides of 2.16, and using the conditions 2.1,

we have the following conditions:

Let U(p) and U(p') be the linear subspaces of V spanned by

the vectors on the right hand side of 2.17. If dim U(p) = dim U(p'),
one can set up a linear isomorphism: U(p) + U(p') which preserves

the form B8. The Witt Theorem (See LMP, vol. II, p. 422) then

implies that this isomorphism can be extended to an isomorphism:

V + V which preserves the form , i.e. which belongs to G. We

can now sum up what we have proved as follows:

Theorem 2.1. If dim U(p) = dim U(p'), then there is a g e G
such that

gp = p'.
In other words, two points of M lie on the same orbit of G if
and only if they lie on the same fiber of ¢, and span a subspace
of V of the same dimension.

(r=1)(r-2)/2

Let us now examine the image ¢(M) C R of M.

Because of 2,1 (b), it is obviously determined by a single,

algebraic equation in R(r—l)(r—?)lz’ namely:
o= z: v
= =y,
M a,b @ b
2
= 2 }: v.oy + IR
a<b B a ®



= z _2__ 2 Z
= Eh (vg*vp) -my"-m,®) + LI m, 2.23

2 2 2z
= (s_, (pl-m_"= Y+ Im
§bah a "™ . a

These constraints plus the inequality constraints imposed by the

conditions that the vectors lie in the "physical regions” (in the
case V = R", with the inner product given by the Lorentz form) -~
are extensively treated in the physics literature. We shall not

emphasize the explicit, calculational side of the theory, since

it is our aim to try to discern general geometric features of the
gituation.

Copyrighted material
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3. FIBRATIONS OF THE KINEMATIC SPACES, AND PARTIAL WAVE ANALYSIS

M,V,r,*,6 be as in Section 2. Recall that each point »p

of M is an r-tuple (vl,...,vr) of elements of V such that:

Now, let s be an integer, 0 < s < r. Let V® be the Cartesian
product of s copies of V. Let 7 be the map: M + V® defined

by the following formula:
mp) = (vl,...,vs} 3.2

If q = (vl,...,vs) e Vs, set:

M(q) = n‘l(q).
Thus, M(g) is identified with the (r-s)-tuples (v5+1,...,v }
such that:
Vs+l+ ..+vr = v, 3.3
where
v o= Vl+...+vs 3.4

UP—S

Thus, M(g) 4is a subset of . A space of this form will be

called the kinematic space with inhomogeneous constraints.

Now, 1w is not quite a "fiber space” in the technical
sense, at least of the "local product" type. It is, in fact,
a sort of "fiber space with singularities". The "singularities",
i.e. the points where the linear map w induces on tangent wvectors
degenerates in rank, are related to what the physicists call

"kinematic singularities". However, one will not get involved in
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the technicalities of the theory of singularities of mappings, but
will proceed rather carelessly, at least in the use of terminology.
Now, a "geometric" approach to "partial wave analysis" of the
scattering amplitude has been suggested in Section 3 of Chapter V
of FA. Namely, given a "scattering amplitude" function f on M,
restrict f to each fiber M(q), and expand f in terms of
eigenfunctions of the Laplace-Beltrami operator of the Riemannian
metric induced on M(q) wvia its imbedding in V™ ® and the flat
Riemannian metric on V induced by the form B on V. For
example, suppose that each fiber of ® is a compact manifold, with

the metric on each M(gq) positive. Let wl be the

:q'*z N-L
appropriately normalized eigenfunctions of this Laplace-Beltrami

operator. Then, we have an expansion of the following general type:
- A 3.5
f(p) § aj(q)v]‘q(p},

for p € M(q). Then, the "partial wave amplitude" functions aj
are functiom on w(M).

The map m intertwines the action of G on the spaces M
and VS, For g e V%, let G(q) be the group of all g € G such
that:

g(vl*...+v3) = Wyt tvy 3.6

Then, G(q) acts on each space M(q) in the following way:
BV ypaeeesVy) = (gvr+l,...,gvr+sl
3.7
for (v ,yseeesvy) € g
The action 3.7 of this group transforms the partial wave expansion
3.5 in an obvious "covariant" manner.
For example, if V = R“, with B the Lorentz metric, and with
r= b, rnl?,...,rliu2 > 0, the situation reduces to that which physically

describes two-particle scattering. In this case, it is known that:
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G(g) = SO(3,R), and that M(g) is a Z-sphere. The functicns
wl,... are the usual "spherical harmonies"™, and 3.5 reduces to
the usual partial wave expansion in terms of Legendre functions.
Te prove this in a general manner, without expliecit calculation,
we will show, in Section 4, that the metric on M{q) is, in fact,
of constant curvature. Of course, what will be important is not
a general proof of something that is relatively easy to do by
explicit caleculation, but the embedding of the partial wave
expansion in the two particle case in a general scheme which may

be generalized to many particles.
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4. RIEMANNIAN GEOMETRY OF THE KINEMATIC SPACES

Let us suppose that G as defined in Chapter III. Now, M(v®)
is not a "random" space, but has special and important and beautiful
geometric properties. Unfortunately, most of the physics treatises
are so intent on working out the detailed formulas that they ignore
these features. Above all, each of the "kinematic" spaces described
in Section 3 inherits a Riemannian metric, since it may be imbedded
as a subspace of a Cartesian product of copies of R%. This metric
is "natural", in the sense that the transformation group induced
by the action of the Lorentz group acts as a group of isometries.

In this section we will describe certain features of these Riemannian
metrics. For the concepts of manifold theory and Riemannian

geometry used here, refer to DECV and Chapter I.

The Riemannian metric on the mass-shell hyperboloids in terms of
sterographic projection.

Adopt the following notation: V is a real, finite dimensional

vector space, with a symmetric, bilinear, non-singular form
(vl,vz) * vyt This form induces a flat Riemannian metric en V
and each of its linear subspaces. Let M be the submanifold of

V consisting of the points v € V such that:

vey = 1 4.1
Then, as for any submanifold of a Riemannian manifold, M inherits
a Riemannian metric from the flat Riemannian metric on V.
Exercise Show that this Riemannian metric on M has constant
curvature.
Suppose that Yy is a fixed point of V. Let U be the
orthogonal compliment of vy in V. U is alinear subspace of V, with

V the direct orthogonal sum of U and the one dimensional subspace
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spanned by w Let M' be the subset of M consisting of the

o
vectors v € M such that:

u'vu 1 h.2

Define a map ¢: M' =+ U as follows:

(V) = v-(v'vﬂ)vn
_— 4.3
l-vu'v

Definition The map ¢ defined by 4.3 is called the stereographic
projection of M on the linear subspace U, with the point Vo

as the projecting point.

Exercise To justify the name "sterographic projection™, show

that, in case V = Ra, vy ® (0,0,1), M = unit sphere in RE, ¢ is

the usual sterographic projection of the unit sphere minus the

north pole onto RQ.
The main property that interests us is that ¢ gives rise to

a simple formula for the Riemannian matriec on M induced from

the imbedding of M + V, with the flat Riemannian metriec on V

induced by the form (vl,vz) MARALT Namely, we have:

Theorem 4.1 ® is a conformal transformation between the
Riemannian metric on M and the flat metric on the linear subspace
Proof. We will verify this by a direct calculation based on 4%.3.
This will alse give us a useful formula for the Riemannian metric
on M.

Suppose that t + w{(t), 0 < t £ 1, is a curve in M. Set:

vt = g.f vit)

113

uft) v(t)-(v(t)‘vg)vn

f{t) = l-v0°v(t}

Then,

uU.
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£0)? Groetvien) = £ - o E

n

f(t){v‘-(v'°vquu) + (v-(v-vulvn}(vu-v')
= v - (v'-vﬂ)vn - (vu-v)v' + (vu-v){v'-vubvu

+ v(vu'v') - (v'vn)(vu'v')vu

f(tiv' - (v'-vﬂivu + v(vuvv') TR
Now, since the curve t + v(t) satisfies 4.1, we have:

vey' = 0 4.5
Squaring 4.4, and using 4.5, we have:
£ 5 ov) + G 4w

2 2

= f 1}2

vliey! # (v'-vuJ + (vn-v
=2(v'y }2v'v
0 0
= fzv"v'.

Thus, we have:

£ (G o)+ G5 0n)

hls
= [g? vit) « g? v(t)]

4.6 shows that ¢ preserves the angles between tangent vectors,
i.e. is a conformal transformation.
Corollary Let f be the function

v * l-v-un §.7
on M'. Let ds2 be the flat Riemannian metrie on U. Then,

£2encas?) 4.8

is the Riemannian metric on M induced from the flat metric on V.
Let us now derive the formula for the inverse map 0-1: U+ M.

Suppose u e U, and
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Using 2.3,
. u1+av0—av0 : ul
T-3 i-a
Also, wvev = 2, or
2
uy u1+a = 1.
L = 1t 1-a® | 1ta
¥
(1-a)? (1-a)? 1-a
or
a usu=1
1+u*u
l-a = 2
TFivu °
_ 2u
Y1 7 TFo-u
¢—l(u) - 2u+(u'u-1)v0 b.9
T+u-u

In summary, formula 4.9 gives a very convenient way to parametrize
the mags-shell hyperboleoid, and compute the Riemannian metric.

In fact, note,from 4.7 that:

=1# (usu-1)
e =1 Ty

2
usu+ 4,10

Thus, if ds2 is the Euclidean metrie en U, the metric obtained

by pulling back the metric on M by the map ¢+1 is given by the
following formula:
—— as? 4,11
{(usu+l)

For example, suppose that V is Rq, with the metric on V given
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by the Lorentz metric. Choose:

v, = (1,0,0,0),

0
Suppose that:
u = €0,k 5k, ky)
+ - o B 2 2op 2
K = Ckyakyaka)s kO = ko Sk, “ek ©

Then, 2.10 takes the following explicit form:

L 2 2 2

?;?:I;E (dkl +dk2 +dk3 ) 4.12

Exercise Show that, in this case, the map ¢-1 is a diffeomorphism

+
between the unit ball k“ < 1 of R3 and the upper sheet of the

hyperboleoid M, with the exterior ¢ »1 going into the lower
sheet by a diffeomorphism,

o
Exercise Identifying k = {kl,kz.k3) with an element of Ra.

=~
let B be the unit ball k2 < 1 of R3, with the metric defined
by 4.11. Compute directly that this metric has constant negative
curvature, This space goes under the name of "Poincare's realization

of the Lobochewski space".

The metric on the inhomogeneous kinematic manifolds.

Continue with V as above. Let r be an integer,
2 2

My T aamy, be positive real numbers, and let v be a fixed

0

element with wv.*v, = 1, and let A be a real number of V.

0D "0

Let H(Avn) be the set of r-tuples (vl,...,vr} of elements of

V  such that:

a) v1+...+vr = ivu
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For the sake of simplicity, we will suppose, in this section, that
the MypeeeyM,  —are equal to 1. Let U be the orthogonal

complement subspace to Vg Let UY be the Cartesian product

Ux...xU

of pr copies of U.

r

Define a map a: U = v" as follows:

u(ul,...,ur)

bha 3
( 1+u1-u1 1+ur'ur

2ul+(u2°ul—llvn Eur*'(uP ur_-l)vU ) W14

(Thus, if r = 1, @ reduces toc the map ¢'1 defined by 4.9). As we
have seen above, the image of a satisfies conditions 4.13 b).

r

Let h be the map: V =+ V defined as follows:

hl’vl,...,vr) IR SREETRA 4.15
Then, the inverse image u-lfﬂfhvﬂ)) is determined by the following
conditions:
ak(h) = v 4.16
where:
u*(h)(uli,..,ur)
= h(a(ul,...,ur)

combining %.14% and 4,15,

2u1+(ul'ul-1)vU . . ?ur+(ur-ur-1)vu
1+u1'u1 e l+ur'u

L,17

r

Thus, using 4.16, o™ (u(iv,)) is determined by the following

conditions:
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u u

ik r
+.DI+ = n' u.le
+ - 5+ -
e S | Uiy
u,*u,-1 u_*u_-1
Ot o = A ¥.19
ul.ul +u'."'“'lr‘

Consider the following Riemannian metric on U:

7l PR T s, Pe b ——— ﬂsrz, 4.20
. + . +
[ul uy 1) (ur u., 1)

where dslz,...,dsr2 are the metrics on the copies of U defined
by the quadratic form u + u-u.

Putting these remarks together, proves the following result:

Theorem 4.2 The induced Riemannian metric on u—ltﬁivn)) is the
metric 4.20, restricted to the submanifold of UT determined by
conditions 4.19 and 4.20.

Notice now that the constraints 4.18-4.19 involve rational
functions of the variables [ul,...,ur]. This feature shows that
our method of parametrizingthe kinematic sets has advantages
over the usual methods to be found in the physics treatises
which usually involve square roots in the constraints. For example,

let us work out the case: r = 2.

Then, 4.18 takes the following form:

Squaring 4.21 gives the relatien

2 2
g = M2

-5
(1+u1 )

2

(14u,")*

rd material
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Set: a = ulz. b = uzz. Then, conditions 4.21 and 4,22 take the

following form:

a _ b

(1+¢a)?  (1+b)°

1
=t

b=1 _
ot A

a

B

Set:

o = h(1+b1-b+l 4.2

Then, a = g}%

l+a = rfz

a _ (e=1){e+l) _ c2-1 4,25
z " F - ) "
(1+a) o Lo

Thus, the equaticns determining the values of a and b permissible
from 4.23 are:

(eZ-13(14)? = ue 4.26

Now, the equation 4.26 is a quartic in b, All we really need to
know is that the values are discrete. Thus, we have proved the
following general result,

Theorem 4.3 For r = 2, the inhomogenecus kinematic space M(lvul
is identified with the quadrice u+u = b, where b are the
solutions of 4,26,

Remarks In the case of interest in relativistic physics, i.e.

vV = Ru, U = R3, u*u < 0 for u e U, one can show that b has

but one solution in the region wu-u > 1, hence the manifold

H(AUO} is a 2-sphere. This is well-known but it is nice to see
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it recaptured so readily in this formalism.
We can alsoc now readily compute the metric dsz on the

manifold M(lvo). In fact, from 3.8 and 3.9, we have:

2 _ [l+a)2 2
dsl = (TTE) d52 s
hence

as? = u/(14b)% as,’ 4,27

In particular, this proves the following general result:

Theorem 4.4 The metric induced on M(iv,), in the case r = 2,
is the constant curvature metric.

This general result explains why "spherical functions"
always appear in partial wave expansions of the S-matrix, for
two particle scattering processes., In accordance with general
principles the functions in which cne expamds the scattering
amplitude are chosen as eigenfunctions of the Laplace-Beltrami

operator on the non-homogeneous constraint manifolds.



Chapter IV

TENSOR PRODUCTS AND CURRENT ALGEBRA

1. INTRODUCTION

In this chapter we shall gather together certain ideas concern-
ing the theory of tensor products of Hilbert spaces that seem
to play an important role in quantum mechanics and quantum
field theory. I shall emphasize certain natural geometric
ideas here. (See Guichardet [1] for an exposition from a more
precise functional analysis point of view.)

The main application that I hope to make of this material is
the study of representations of the "current algebras" that
appear in elementary particle physics and quantum field theory.
As I explained in my paper "Infinite dimensional Lie algebras
and current algebras'", these "current algebras" form a certain
class of infinite dimensional Lie algebras., Now, a main unseolved
problem in this theory is to construct a supply of linear repre-
sentations of these algebras that is adequate for the potential
physical applications. It seems likely that the theory of ten-
sor products of Hilbert spaces will ultimately provide a way
of constructing such representations. In this chapter, I will
provide a few further comments about this program, as well as

provide some further geometric information about the infinite

dimensional Lie algebras and groups which occur in current alge-

bra theory.

113
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2. THE FREE VECTOR SPACE GENERATED BY A SET

In this work, I have usually assumed that the reader is familiar
with the elementary ideas of linear algebra, and in particular, the
idea of "tensor product™., However, in the theory of representations
of infinite dimensional Lie groups and algebras - such as "current
algebras" - certain confusing and interesting complications are
involved. (For example, one must deal with tensor products of
various sorts of infinite families of vector spaces.) Accordingly,
it is worthwhile going over even very elementary material from
first principles.

In this section, let us consider the definition of a '"free
vector space defined by a set'". Let M be an abstract space of
points, without any particular further structure. Suppose fixed a
field of scalars; for simplicity we shall suppose that it is just
the real numbers, R. Let Fa{M) denote the space of real-valued
functions on M, i.e. an element f e Fa[M] is a map f:M =+ R.
(Warning: Do not confuse FaEM) with F(M), the real-valued c”
functions defined when M is a manifold. The subscript '"a"
stands for "all real-valued functions").

Fa(H} is a real vector space, since two such functions can
be added in the unreal way, and multiplied by scalars. Accordingly,
we may form its dual space Fa(H)d, consisting of the R-linear
maps of Fan] onto R itself. It too is a real vector space.

There is a natural imbedding of M as a subset of Fa(M]d.
Namely, to each p e M, associate the element

£ =+ £(p) = p(f)
of F Y.
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Definition The free vector space of formal linear combinations

of elements of M is the smallest linear subspace of FI[H)d

containing M. We denote this vector space by FV(M).

Exercise 2.1 Let PyreseaPy be a finite number of distinct
elements of M. Show that, as elements of FE(H}d, they are
linearly independent.

Using Exercise 2.1, we see that an element u € FV(M) may be

identified with a sum (in FE[M]d} of the form
U = CjpPy *..e* CoPps 2.1

where n is some integer, Pys+++sP, are distinct elements of
M Fa(M]d, and where Cyse++,C, are non-zero real scalars that
are uniquely determined by u. Thus, FV(M) may loosely be
described as the "formal linear combinations of elements of M,
with real numbers as coefficients." For example, if M has m
elements, FV(M) is naturally identified with Rm.

We now use this construction to define the notion of "tensor

product” of two vector spaces.

3. THE TENSOR PRODUCT OF TWO VECTOR SPACES

Now, suppose that V!,Vz are two real vector spaces. In this
book - and my previous books as well - I have been assuming that
the reader was familiar with the elementary notions of linear and
multilinear algebra, such as the "tensor product" notion. At this
stage, it is desirable to define it precisely in terms of the
"free vector space" notion of Section 2, in order to prepare the
reader for the generalization to be considered later of the tensor

product of infinite families of vector spaces.
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Let us apply the construction of Section 2 to the Cartesian

product set

M=V L

1 ¥ Vo

Thus, an element of FV(VI x VZJ is a linear combination of the
form:

c(vl,vz) * c'(vl‘,vz'J + ..

c,c',...€ R, vl,vl'.... € Vl'

with
vz,vz',... € Vz

In FV[levz}, let us consider the linear subspace spanned
by all elements of the form:
(Vlsvzj * {Vllsvzj - [V1+V1'.V2)

(Vlsvzj * [?1:V2'} - (V11v2+V2']

c(vy,vy) = (evy,v,)
c{vl.vzj - {vl,cvzj

7 ]
where vl,vl' € Hl,vz,vz € Vz,c € R.

Definition., The tensor product of the vector spaces Vi Vo,

denoted by V, = V,, is the quetient vector space of FV(VxV,)

by the linear subspace spanned by all elements of the form 3.1.

It is denoted by V, = V,. Given v, e V,, v, € V,, the image

of (vl,vz) in this quotient space is denoted by: Ve v, .

Exercise 3.1 Consider the map a:Vl X vz +> Vl ® VZ which assigns

to (vl,vz) € Vl X Vz its image vy ® Vg in the vector space VI ® VZ'
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Show that « is an R-bilinear map, i.e.
a(v1+v1'.v2} = a(vl.vz] + a[vl'.vzj
a(vy¥at¥a ') = alvy,¥p) + alvy,v,') %2
u[cvl,vz} = cu(vl,vz) = u[vl,cvz)
for vl.vl' € Vl; vz,vz' € Vz; c e R.
Exercise 3.2. Suppose that VI,VZ.?s are vector spaces and that
u':‘J1 b vz - Vs is an R-bilinear map, i.e. o' satisfies 3.2,
(with a' replacing a, of course.) Show that there is a linear
map a":V, # V, + V5 such that:
a' = a"a 3.3

This relation is most readily kept in mind by writing down

the following commutative diagram of maps:

V! ® ?2

A

Il =Y
Remark This is the "universality' property of the tensor product
construction. It is the one emphasized in the Bourbaki approach
to algebra. Despite its overall elegance, [ believe that the

more explicit definition given above is best for the physical

applications.

Exercise 3.3 Suppose vl,vz are finite dimensional vector spaces,

with dim Vl = nyg, dim VZ = n,. Suppose [vi]. i= I....,nl:

[vzaJ, a=1,.,..,n,, are bases of V, and V,. Show that the
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elements

from a basis for V, s V,. In particular, deduce that:
dim['v"1 ® Vz} = (dim Vl] dim{sz 3.5

Now, let us consider the action of tensor product relative to

linear transformations. Suppose that Vl, Vz, W], Hz are vector

spaces, with:

linear transformations between them.

Exercise 3.4 Show that there is a unique linear transformation,

denoted by A ¢ B: V, sV, -+ W, e W such that:

1 1 2°

(AﬂB)(vluvzl = (Avlﬂ Evz} 3.6
for vy € Vl'VZ € Vz.

A =2 B is called the tensor or product of A and B. (An older

terminology that is sometimes used is "Kronecker Product" or

"outer product".)

Remark It is here that the reader needs to sort out in his own

mind the difference between the vector space V, @ Vz and the

direct sum vector space V, @ V,. 0f course, as a set of points,
Vl @ Vz is the Cartesian product V, = V,. The map
(Vlﬂ"zl * (A\"l,sz]

then is identified the direct sum A 2 B of the linear trans-

formations. However, A # B and A ®# B have completely different
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properties, of course.
Exercise 3.5 With respect to given bases of Vi:V;.¥,,W,, compute

the matrices of the linear transformations A & B and A # B,
The tensor product construction plays a key role in group

representation theory. Suppose that Gy,G, are groups, Vl.Vz

vector spaces, and that pl(Gl), gzﬁﬂz] are representations of

G, and Gz by linear transformations on V, and V,, respectively.

Given (gl,gz] € Gl x GE' assign to it the linear transformation:
(pyep;) (8y,85) = pqy(gq) # o(g,) 3.7

Exercise 3.6 Show that 3.6 defines a linear representation
(gl,gz) - (plspz](gl,gzl of the direct product group Gl x G2

by linear transformations on Vl # Vz, £ ® Py is called the

tensor product of P1 and Py -

Remarks Again, one should keep in mind the difference between the

tensor product Py & Py and the direct sum Py & Py representation

of the group Gy * G on the direct sumvector space V; & V,:

(py 25)(8y,8;) = p(8y) & py(8,).
For example, one way of keeping in mind the difference is to note

that 8y * £y is nmever irreducible. (The subspaces V1$(o].[u]@vz],

for example, are left invariant by it.) One can prove that

P1 ® Py is an irreducible representation of 61 2 Gz if

pI[Gl] and pZ(Gz] act irreducibly on V, and Vz and if, for example,

Vl and Vz are finite dimensional
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Another confusing point to keep in mind is the difference
between Py ® Py as a representation of Gl x G2 and it as a
representation of the "diagonal" subgroup, in case G1 = Gz = @,
i.e. the subgroup of elements of G = G of the form (g,g). This
representation is not irreducible; in fact, reducing it to its
irreducible pieces is an important question for physics, involving
what the physicists call "Clebsch-Gordon coefficients™. The
reader will find an extensive discussion of much of this material
in LMP, wvol. II, at least for the groups of most immediate use in
physics.

Another important point is the tensor-product-of-representation
notion at the Lie algebra level. Let G,, gz be real Lie algebras,

with plfﬂl}, 92[62] linear representations of these algebras by

operators on V, and V,. ("Representation" means that Lie brackets
go over into operator commutation, of course) Then, the tensor

preduct representation Py ® By is a linear representation of the

direct sum Lie algebra G, # G, by linear transformations on

Vl * Vz, defined as follows:

(py2pp) (X17X5) ~ (vyevy) = p  (Xg)(vy) & vy + vy = py(Xp)(vy)

3.8
Exercise 3.7 Show that formula 3.8 really defines a representation

of the Lie algebra Gl # Gz'
Remarks One should note that the assignment (xl,xz) *pl(xlla pz(xz}

is not a Lie algebra representation, a fact that sometimes confuses
physicists. In fact, it is a linear mapping between the vector

space Gl ® G, and the space of all operators on V, & V., but
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the vector space gl o 92 is not in a natural way a Lie algebra.
One may, of course, consider the smallest Lie algebra of linear

transformations containing the nI[XI] 2 pzixzj. This was first

introduced by Wigner in his SU(4)-theory of "spin-isospin” symmetry
in nuclear physics. Work by Gursey, Radicati,and Sakita in 1964,
and then by many other physicists in the next few years after that,
attempted to generalize this to a "spin-unitary spin" SU(6)
symmetry in relativistic elementary particle physics, but there was
only limited success in either physical results or deep understand-
ing of the underlying physical and/or mathematical mechanism.
Finally, we may indicate a "geometric" way of looking at tensor
products that is important when one considers tensor products of
infinite families of vector spaces. Suppose that M,,M, are sets,

and V.,V

10V, are given as linear subspaces of Fa(MIJ'Fa(HZJ'

Exercise 3.8 Show that Vl ® V, may be identified with a subspace

of Fa{M1 X sz in such a way that:
(vyevy)(pyapy) = vilpy)v,ip,y) 3.9

for vy e V;, v, € V,, p; € My,py € My
Further, if MI,M2 are finite sets of points, and if Vl - Fa[Mlj.
V, = F,(M,), show that:

Vi# V= F (M x ME) 3.10

0f course, a relation as precise as 3.10 does not hold if

M are infinite sets. It is at this point that functional

1Mz
analysis subtleties enter in. For example, let us consider the

case where Ml,M2 are locally compact topological spaces, and
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that VI'VE consist of the compact-support, continuous functions.
(or, C€* functions perhaps, if Ml’MZ are manifolds). Then,

Vl = Vz may be identified, via 3.9, with a space of compact
support continuous functions on M; = M,. Typically, this space

2z
all continuous, compact

of functions is dense in the space of
support functions on M; = M,, when various natural topologies are
introduced for these function spaces. Frequently, the tensor prod-
uct provides "enough" functions on M, * M, to carry an analysis.
Another point of interest in connection with this "geometric"
interpretation of the tensor product is in connection with the idea
of "interaction" in quantum mechanics. To look at this in its
simplest form, consider two particles moving in R®. Introduce

3

3-vectors x = {xi}, ; = (yi} e R, 1 <i, j <3, A "Schrodinger

wave function" for the particle whose position is labelled X is

a complex-valued function X =+ wl(i) such that:

31247 2
_I-IrL](xJI dx = []e,]]° = 1. 3.11

(Refer to LMP, vol. II, for the notions to be discussed now.)
Let ‘u"1 be the complex vector space of such functions ¥y such

that
oyl <=,

i.e. which are "square integrable".
Similarly, introduce wave functions y »y,(¥) for the second
particle, and the vector space Vz of such wz's such that

o,l] < = .

Now, a wave function for the composite system of the two

particles is a complex-valued function w{i ,;) on R3 by R3,
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such that:
el = J]’Iﬂi.}nzdid; = 1. 3,12

The physical interpretation of ¢ may be described as follows:

If D is a domain in Rs x Rz,

fflvc.n12aa
D

is the "probability" that the
joint position (X,y) of the particles
lies in R° x R3.
Introduce V as the space of functions ds:R3 ® RS + C for which
||¢]] <« =. Then, we may imbed Vy # V, as a subspace of V as

follows:
For v, e vV, vy € VZ, identify
wl & wz with the function
(X,9) + ¥, (R, ()
(Of course, Vl ® Vz means here the tensor product in the sense
of complex vector spaces. Notice that all we have done up to now
in describing the algebraic properties of tensor products carries
over to an arbitrary field of scalars replacing the real numbers
e.g. the complex numbers.) We then obviously have the following
relation between the square-integral norms defined by 3.11 and 3.12
[Teg @ vl = Tlegll 11w, 3.13
In fact, relation 3.13, which here just follows from the explicit
definition of the norm and the Fubini theorem for product integrals,

is taken over in the abstract theory of Hilbert spaces in order to

define tensor products as Hilbert spaces.
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Relation 3.13 has a physical meaning also. Suppose D is

3 3

of the form D1 " DZ' where Dl'Dz are domains in R® * R™, Then,

[freweenpc 1Paas - (j]wltim|2d§)(J]w2(§J|3d§)
Dy D, .14

D 3

Thus, 3.14 means that the joint probability that the first particle
be in Dl' the second in DZ' is the product probability. This
is the appropriate law that the particles are to be regarded as
acting "independently" of each other.

An observable for the first particle is a Hermitian operator

A:V1 -+ VI. Similarly, an observable for the second is an Hermitian

operator B:V, + V, . Then, the operator A®]1+ 1=58 is the
appropriate one for the particles "without interaction".

For example, the "energy" operator for the particles might

take the following typical Schrddinger form:

2
Alyy)A = 2"‘:11 T iy
i%%
3.15
B(Y,) = ws az v 1
= +
)Ty wey e
where m,,m, are the "masses” of the particles, % *Vl(;].; *Vz(;)

are "the potentials", Then, the operator A e 1 + 1 @® B acting on

V, ®# V, may be extended to V, as follows:

2 2
+ - 1 3 1 3
vix,y) + Im; Exigxi * Zm, “9y;v; 3.16

1

¢ VRIN(EY) + V(H)eE )
This is the appropriate energy operator for the particles put

together, acting without interaction. An "interactiomn" might

typically be defined as an additional term acting on the right hand

side of 3.16 that is "local" and that does not preserve the
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subspace V, # V, of V, 1i.e. that introduces "correlations"
between the joint probabilities. For example, one simple form for
such an operator might be:
¥(EY) » VEY) v R,
where V is an "interaction potential" function.
Now, let us generalize this procedure to the case of the tensor
product of two Hilbert spaces. (Later on, we shall attempt to

extend the idea to cover infinite families of Hilbert spaces.)

4. TENSOR PRODUCT OF TWO HILBERT SPACES

In quantum mechanics, the basic vector spaces have an additional
"Hilbert space" structure. As explained in LMP, the structure differs
from that used by the mathematicians, since one should not assume
the "completeness' axiom for such spaces. In this section we shall
show how the Hilbert space structure may be exploited to give a
more elegant definition of the tensor product than was possible
for general vector spaces.

Let Hl'HZ be complex vector spaces, with Hermetian symmetric
inner products <|> that make Hy,H, into Hilbert spaces. For
example, <|> is an A-bilinear map

:H1 x Hl-*C such that:

<w1|w1> >0 if y, e H; is non-zero

<cw1|":> = cnﬂpllwr, = <¢1[cn.‘,r,

for *1'*1' € Hl' - o

Let M be the Cartesian product Hl x l-Iz and let FV(M) be
the free vector space spanned by M. (Now, however, let us use the

complex numbers, C as the field of scalars.)
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Let us define a mapping - again denoted by <[> - of Mx M + C
as follows:

S ST A R P DU L PR P L P 4.1

for wl.wl' € Hl; wz,wz' € H,y .
(0Of course, this formula is motivated by the "Schridinger wave
function" case considered in Section 3.)
Now, extend <|> to a mapping of FV(M) = FV(M) = C in the
following way:

If v =Eci Py v' e_Ecj'pj' are in FV(M), with
1 J

ci’cj e C, pi,pj' € M, then
<y/v'> = 2 c.tc.' <p.|p.> 4.2
iy 1 R

Formula 4.2 now defines <|> as a Hermitian symmetric, positive

semi-definite form on the complex vector space FV(M), i.e. we

only have
<v/v> > 0 for v e FV(M).

Let VO be the subspace of the v, € FV(M) such that
<VDIFV(H]> =0, 4.3

i.e. V, is the "radical" of the vector space FV(M) with respect

to the form <|> . Then, the quotient vector space FV(M}!VD

inherits an inner product,

Definition The tensor product of the Hilbert spaces H,,H,, denoted
by Hy ® Hz, is the quotient vector space
FV(M)/V,,
with the quotient inner product,
We shall now leave to the reader the details of the verification

that this coincides with the purely algebraic definition of tenmsor
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product given in Section 3. This material is covered by the
following exercises.
Exercise 4.1 Given wl.vl',wl" c Hi.wz,wz'.wz" [ HZ" ¢ & C,
show that the following elements of FV(M) belong to L
(p*9,5,90") = (Wga¥g") - (¥g,00")
(Wga¥y + ¥5') = (Ua¥5) = (¥7.9,")
c(¥ys¥y") - (c¥y,9p")
c(wys¥y') = (¥g.c9;")
Exercise 4.2 Let H; » H2 denote the tensor product of the complex

vector spaces Hy,H,, defined using the abstract procedure of

Section 3. Show that the quotient map H; ~ Hy = M » FV(M]!VU

defines an isomorphism of Hy @ H, with F’J{M),"VIB 2
0f course, this definition of Hy ® H, as isomorphic to FV(H]{VO

gives, as a bonus, a natural Hilbert space structure to Hy = H,.
Exercise 4.3 Show that the Hilbert space structure defined in this
way on H; ® H, 1is defined by the following formula:

<Y, e wziwl' ® *z'b

= <y lug><, ]y, "> 4.4
for wlwl' € Hl' Vo wz' € ]-lz
Finally, we can show how these facts fit in with a more general
picture., Let Hl,}{2 be Hilbert spaces. Let FE(HI.C) denote the
vector space of all maps: H, = C. Then, given v, € Hy, we can
define an element ulﬁwlj € Fa{Hl,CJ as follows:
ay(¥) (') = < '|eyp> 4.5
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oy then defines a complex-linear map: Hl + Fa(Hl,C].
Further, oy is one-one. In other words, the inner product
exhibits H; as a vector space of complex valued funtions on
another space, namely on H, itself. Similarly, define
a,:H, = F_(H,,0).

Given wl € Hl' wz € Hz, define
u(ml.wz) e Fa(H1 x Hz] as follows:
aly,9,) (U9 49,") = aq () (97" Doy (65) (¥,")

<by' ey ><w," [y> 4.6

Then, a« 1is a map: Hl ® Hz + Fa[H] x H2’ C)

Exercise 4.4 Show that Hy ® Hz may be identified with the

smallest linear subspace of F&{Hfﬁﬁ).containing the functions

ﬂ[Hl x HZJ

5. HEURISTIC IDEAS ABOUT CONTINUOUS TENSOR PRODUCTS

The theory of tensor products of continuous families of vector
spaces is clearly necessary in order to treat the linear repre-
sentations of such infinite dimensional Lie algebras as the "current
algebras"™. However, this theory itself is not yet in a completely
satisfactory form. Indeed, it has certain badly understood features
which are probably closely related to the difficulties and complex-
ities of quantum field theory. In the next few sections we shall
present a number of ideas that should be present in some form or

another in an ultimate theory.
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Let H,M be topological spaces with w:H - M a map which
defines H as a vector bundle over M. Thus, for p e M, the
fiber w'l{p) = H(p) is a vector space, say, over the complex
numbers as a field of scalars. We assume also that the induced
topology on H({p) makes H(p) a topological vector space.

Let E be another topological space, with 7' a continuous,
onto map:E -M. For p e M, let E(p) denote the fiber ﬂ'-l(p}
of E over p. For p e M, let H'(p) denote the complex vector
space of continuous complex-valued functions ¢:E(p) + C. Let
H' be the space of ordered pairs (p,¥), where p e M, ¢ € H" (p).

Then, H' is a vector bundle over M also.

Let us suppose that we are given a map a:H + H', such that
a(H(p)) € H'(p) for p e M,
and a maps H(p) in a complex-linear way into H'(p). (This is

just a fancy way of saying that each fiber H(p) 1s identified-
via a-with a vector space of complex-valued functions on the
space E(p).)
Let T(H) denote the space of cross-section maps: M -+ E.
What we want to do is to use this data to define T[(H) as a space
of complex-valued functions on T[(E}. The "infinite tensor product"

GQH(p} is then the smallest vector space of functions on T (E)
P

containing T(H).
What we must do then is define the "value" of a v € T(H) on

a v' € I'(E), i.e. a real number that we denote by

aly)(y')
Now, the function p =+ a(y)(p)(y'(p)) a real valued function on M.
Intuitively, we want to define a(y)(y') as something like the

"product” I al(y)(p)(v¥'(p})} of the values of this functien.
peM
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If M were a finite space, we could adopt this literally as the
definition. However, the "continuous" case for M - which is the
primary case in which we are interested - presents certain diffi-
culties.

We shall discuss one approach to the problem. Let "dp"
denote a measure on M., One might expect to define this infinite
product by the following formula:

a(y){y') = exr:ffoaa({:(ﬂ(p} (y'(p)ldp 5.1
M

Certainly, if M is a finite space, this is a sensible formula,
which of course reduces (if the points of M have equal measure)
to the product of the values of the function. However, in the
continuous case, there are difficulties, since there are ambiguities
in the law of the branch of the logarithm that is to be chosen
for 5.1.

However, we shall suppose that there are subsets I'(H)',r(E)’
of T(H) and T'(E) for which formula 5.1 does make sense. Then,

the "tensor product QD H{p)" of the family {H(p):p € M} of
peM

vector spaces will be defined as the smallest complex vector space
of complex-valued functions on T(E)' containing the functions:

£oiv »aly)(y") of T(E)' = C

defined by 5.1. Of course, how to choose the subspaces TI'(H)' and
F(E)" and how to make sense of 5.1 must be studied at a more
explicit, case-by-case level. Accordingly, in the next few sections
we shall survey a few of the special cases that are most important

for the physical applications.

6. TENSOR PRODUCTS OF CONTINUQUS FAMILIES OF HILBERT SPACES

Suppose, as in Section 5, that =:H - M is a vector bundle,
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with a complex vector space structure on each fiber H(p) = ﬂ'kp}.
Let us suppose that there is also a Hilbert space inner product
<|> on each fiber H(p). Let us then choose the fiber space E
considered in Section 5 to be H itself. For ¥y e T(H),

y' e T(E) =T(H), pe M, let the value a(y)(p) on y'(p) be the

following complex number:

a(y)(P)(v'(P)) = <y'(p)Iv(p)> 6.1
In this case, let us compress our notation, and define:
<Ypslvy> = exp J-Ios <yy () ly,(p)> dp 6.2
M

for Y1:Yp € r(H).

(In other words, a(y)(y'), defined by 5.1, is in this case set

equal to <y'|[y>») Let us now proceed somewhat more formally.

Definition Let H + M be a vector bundle, whose fibers are complex
Hilbert spaces, Let dp be a measure on M, Let T be a space-
not necessarily even a linear space - of cross-section maps

y:M =+ H such that <71|72> is well-defined by 6.2. Let FV(I)

be the complex free vector space spanned by 6.2, with the inner
product <|> extended to FV(I) by bilinearity. Let vV, be the

subspace of v € (FV(Ir) such that <v|I> = 0 . Then, the quotient

Hilbert space FV(r)/V, is defined to be the continuous tensor

product (with respect to the measure dp) of the family {H(p):p € M}
of Hilbert spaces.

0f course, the question of the proper interpretation of 6.2
is still open, since we have not given a precise definition of the

right hand side of 6.2. Let us turn to a more specific situation
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where one can be more precise. Further this situation - involving
tensor products of Fock spaces - as important for quantum field

theory.

7. TENSOR PRODUCT OF BOSON FOCK SPACES

First, let us recall the definition of the Fock space. (For
example, see VB, vol. I., Chap. IX). Let H be a Hilbert space,
with elements of H denoted by ¢ . Let H',r = 0,1,2... be the
symmetric tensor product of r copies of H. Then, H® is a one
dimensional vector space, spanned by an element that is labelled
|o> . (Physically, |0> is the '"vacuum state".) Kl is H itself.
For r > 2, HY s spanned by symmetric products $,0.. .09 of

T

0

elements Viseees¥yp of H. Let B(H) be the direct sum H # Hl @ st...

of these spaces. It is called the boson Fock space. (The "Fermiomn"

Fock space corresponds to skew-symmetric tensors over H, but will
not be considered here.)
B(H) 1is made into a Hilbert space, using the following rules
for the inner products:
<HT|H®> = 0 for r # s. 7.1

cwln...owr]wl'u...owr'> = ;f-j:<w1|¢i;>....<¢rlwi;: 7.2
)

for ¢1...,wr,¢1',...wr' € H.
On the right hand side of 7.2, the sum is over all permutations
(1,..,r) = (il,..,ir} of the numbers from one to r. (This accounts

for the normalization Y ., which is of course just the number of
r!

such permutations.)
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In particular, note that:
<o, T1v,7> = <o lv,>T 7.3
for ¥,;,¥, € H, where wlr
denotes the product wlo...owl

of r copies of ¢;. If r* 0, set:

2 = |0>, the vacuum state 7.4

Now, for ¢ € H, set:

j
e(y) = X ¥ 7.5
jeo AT

Then, using 7.1 and 7.3, we have:
<e(¥q)ie(yy)> =
L x .
SHply, ¥,
ik /iK1 A

= exp(<y,|v,>) 7.6

In particular, we can define "log" for these elements by the
following formula:
log<e (¥ ) |e(¥,y)> = < lvy> 7.7

Now, let #:H - M be a vector bundle with Hilbert spaces for
fibers, and with a measure dp on M. Let B(H) be the vector
bundle whose fiber B(H)({p) over the point p e M 1is the bosen
Fock space B(H(p)) of the fiber H{p). For vy € I'(H), let e(y) be
the cross-secticn of B(H} such that:

e(y)(p) = e(vy(p)) for p ¢ M,
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Given Y127, € T(H), set:

vlvp = [ e @ v e 7.8
M
Then, the inner product 7.8 is the appropriate one to make T (H),
with the usual definition of addition of cross-sections, into a
Hilbert space. (With this structure, T(H) should be considered
as the generalized "direct sum" of the continuous family
{H(p) :peM} of Hilbert spaces.)

Let us now attempt to make sense of the precription given in
Section 6 for defining the continuous tensor product of the family
{BH(p) :peM} of Hilbert spaces., To this end, let e(l') consist
of the set of cross-sections of B(H) which are of the form e(y),
where <y is a cross-section of H. Let us use 6.2 to define an
inner product between two elements e[vl), e[vz) of e(I'), keeping

in mind that 7.7 gives us a valid and consistent definition of "log".

<e(yvy)lelyy)> = expflus <e(y)(p)lely,) (p)> dp
M

- exp [ <y, )y, () > ap
M

Then, using 7.8 as the definition of the "direct sum" inner product
on TI(H), we have:

<e(yy)]elyy)> = exp <y |y, 7.9

This formula may be interpreted another way. Let T be a
Hilbert space of cross-sections of Hl with the inner product of
the "direct sum" type 7.8. Let B(I') be its boson Feck space.

2
Then, for y € I', denote by e'(y) the element (0) + v + L= + ...

in B(T). As we have seen,

<e'(vy)le'(v,)> = exp <y fv,> 7.10.
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Then, the objects e(y) and e'(y) behave in exactly the same way
as far as inner products go. This suggests that we may identify

the continuous tensor product ﬁgBHip} with the Feck space BT
P
of the Hilbert space T of cross-sections of H.

Exercise 7.1 Carry out the details of the identification of BT
with the continuous tensor product FV(e(F)]{VO .

Exercise 7.2 Let T], j=2,3,..., be the space of symmetric tensors

2

over the vector space [ of cross-sections of H. Let H be the

vector bundle whose fiber Hj(p] over the point p 1is the space
of symmetric tensors of the vector space H(p). Show that rz may
be identified with the cross-sections F(Hj] of Hj. Show that the
Hilbert space inner products defined naturally on both spaces agree.

Explain how these facts play a basic role in the identification - in

Exercise 7.1 - of the tensor product Qa BH(p) with BI .
peM

Exercise 7.3 Suppose that the Hilbert space H is the direct sum
of two orthogonal subspaces Hy,H,. Show directly that B{H) is
isomorphic to the tensor product B[Hl} “ B(Hz). Discuss why this

result is the prototype of the ideas presented in this section.

Remarks. We have not been specific which space of cross-sections
rcr{d) to use. This might be left open, te be specified when the
bundle iz made more specific. For example, if M is a manifold
and if dp 1is a measure defined by a volume element differential
form on M, one appropriate choice might be te take T as the
continuous cross-sections which vanish outside of a compact subset

of M.
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The ideas sketched here concerning infinite tensor products
have been developed by Araki, Guichardet, Streater, Woods, and
Wulfshon. We refer to the book by Guichardet [1] for a more
systematic exposition, and references to further work. However,
the reader should understand that the theory is still in an unfin-
ished state. 1 have only aimed to give enocugh detail to suggest
ideas that may be applicable to the problem of representing "current
algebras". In fact, the formalism as it stands is not even applicable
to the simplest form of current algebra, namely those that are
gauge groups corresponding to a ‘'charge'" algebra that is a compact,
semisimple Lie algebra. We shall now show how it may be modified
in that direction.

8. HILBERT VECTOR BUNDLES WITH A DISTINGUISHED VACUUM STATE

CROSS-SECTION

The key feature of Fock spaces that enables one to define their
tensor product is that they come with a "vacuum" state. [ shall now -
following a suggestion to me by J. Feldman - develop the ideas only
on the assumption that the Hilbert spaces have a distinguished cross-
section.

Let w:E + M be a vector bundle, whose fibers {H(p)! have
Hilbert space structures, denoted by <1>» . Let Yo be a contin-
uous cross-section map: M =+ H such that

vy (P l¥o(P)> = 1 for p & M. 8.1

Suppose that M is a locally compact topological space, and

that dp 1is a measure on M such that the compact subsets of M

are measurable, and have finite measure. (Then, the continuous,
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compact-support functions are integrable with respect to this measure.)
4
For p e M, let yo(p} denote the vectors ¢ e H(p) that
satisfy: <Y°(p]|w>-0. Let I denote the measurable cross-section

map vy:M -+ H of the form
T=¥5 ¥ Yy 8.2
where <y satisfies the following conditions:
Yy» 85 @ cross-section map: M+H ,

vanishes outside of 8.3
a compact subset of M

lry(p) Il < 1 for all peM 8.4
Yi(ple 'roEp)L for all p e M. 8.5

Suppose now that 7.7' e, with

YRt Y'Y AL Ny
where Tl'*; satisfy 8.3-8.5. Then,
(P |y (p)> = 1+ <11(p)lvi{p)>-
Using the Schwarz inequality
l<y(@) ¥ (p)>-1] < Iy Il INy(@d Il < 1 .

Hence, 103[<T(pJ|Y'(p)>] may be defined by using the standard power
series of expansion. The function p + log<y(p)|y'(p)®> is of compact
support. Hence, we may define an inner product (of the "tensor product",

not the 'direct sum", type) in the following way:

<y|y'> = epr.1¢z<1(p]iT'(pJ>dP 8.6 .
M

As before, the inner product may be extended to FV(I), then defined
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on FV(r)/V%, to define a Hilbert space structure FV(I)/V?. We

will call this Hilbert space the generalized Fock tensor product

of the Hilbert spaces {H(p):p € M}, It might be useful - for example
in the problem of representative gauge groups - in cases where the

individual Hilbert spaces {H{p)}} are not themselves Fock spaces.

9. GAUGE LIE ALGEBRAS AND GROUPS

The gauge Lie algebras are the simplest examples of current alge-
bras. (They are given this name because they are the abstract Lie
algebras responsible for what physicists call "gauge transformations'.)
In this section we shall briefly discuss some of their properties.

First, suppose that g is a Lie algebra (over the real numbers,
as field of scalars). Let F be an algebra over the real numbers,
with the product law: FxF - F denoted by (fl,fz) +f1f2.

Let §p'§ € F be the tensor product of these two real vector
spaces. Denote the Lie bracket in G by [ , 1. Define a bracket
operation [ , ]l as a bilinear map: gF“?F - GF by means of the follow-
ing rule:

(X, ¢ £, I, @ £51 = [I;, X,] @ (£;£,) 9.1
for 11,12 € g;fl,f2 e F.
Theorem 9.1. Suppose that the given Lie algebra structure on G is

non-abelian. Then, the bracket [ , ]' defined by 9.1 defines Gp as
a Lie algebra (over the real numbers) if and only if the given algebra
structure on F is commutative and associative.

Proof. Let us first assume that 9.1 defines a Lie algebra structure

on ?F' Then,

(2) ¢ £1,5; @ £,]" = <[X; £, © £]".
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Hence, using 9.1,
[Ilnle = {flfz} = '[12311] (fzfl}- 9.2
But, the Lie algebra condition on the bracket [ , ] for G implies

that:
[I]_l-xz] = -[lexllt 9.3
9.2 and 9.3 imply the following relation:
[G,G] = (flfz-fzflj =0 9.4
for all fl,f2 e F.

The fact that G 1is non-abelian now forces:

£1£, = £,f

which implies that the algebra structure on F 1is commutative.
Exercise. Show, in a similar way, that the Jacobi identity for the
bracket [ , ]' implies that the algebra structure on F 1is associa-
tive.

Exercise. Show, conversely, that if F 1is a commutative associative

algebra, then 9.1 defines G as a Lie algebra over the real numbers,

called the gauge Lie algebra defined by G and F.

These exercises complete the proof of Theorem 9.1. Suppose that
F i1s a commutative associative algebra. Notice further that QF is
an F-module; where the module structure is defined by the following
formula.

£( ¢ £,) = X o (££)) 9.5

From now on, let us denote the Lie bracket operation on GF given by
9.1 with the symbol [ , ] also, i.e. we leave off the prime. Notice

then that, given I e Ggy the operater Ad I:EF . GF is a zero order
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differential coperator. In my paper [13], I call "current algebras"
these F-modules which have real Lie algebra structures such that
Ad I 1is a differential operator of arbitrary order.

Now, let us suppose that F is the algebra of C , real-valued
functions on a manifold M. An important general problem for current
algebra theory can be stated as follows:

Given an F-module I which has a Lie algebra structure

which makes it a current algebra over F, can one con-

struct a group whose Lie algebra is T 7

In the case where I=Gg this can be readily solved via the
‘"*gauge group" construction. Let (G be a connected Lie group whose
Lie algebra is G. Let gF denote the space of c* maps, ¢: M+ G.

-

Make GF into a group with the following operations:
(8,651 (p) = ¢1(P)¢,(p)
(607 ) = ¢y 7!

for p e M, t1» ¢2 e GF'
To show that Gp is the Lie algebra of Gp, we must show that
there is a one-one correspondence between those parameter subgroups

of Gp and the elements of G, with the usual relations holding be-

tween the products and commutaters of one parameter subgroup and the

bracket operation 9.1 in GF' Let us set up this correspondence in

the following way:

Given vy e gF’ write ¥y 1in the following form:

¥ o= Il @ f1+ P +In ® fn .

with Il,....l € 9; fl,...,f € F. Associate with v the following

n n

one parameter subgroup t + ¢, of Gg:
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¢ (p) = exp(tf,(P)I;+...+¢f (PIX ), 9.8
for -=<t<=, p € M,

Exercise. If v,y' are elements of Gp, with t - L ¢t‘th

parameter subgroups of Gp defined by 9.8 show that:

1 n
¢! = lim(¢ $ Y o, 9.9
t n+w{ t/n® t/n
¢, = limfe __ &' _ ¢ __ ¢ " 9.10
= lim 1 . .
Y ons= J/Tm Y -/ER -/Tn
where :, ¢E' are the one parameter subgroups of GF associated via

formula 9.8 with the elements

L]

¥ ey o+ yhiymsly,y']

of GF'

Exercise. Show that every one parameter subgroup of GF is of the
form indicated in formula 9.8.
These exercises then will complete the proof that GF can be

identified with the Lie algebra of GF'
There is an alternate way of defining Gp that is often useful.

Exercise. Show that g may be identified with the space of " map

IF
$:M+G, with the bracket defined by the following formula:

[¢,9'] = [e(p),e'(P)] . 9.11

Show that with this identification the one parameter subgroup t +¢-t
defined by an element ¢ € G_. is given by the following formula:

¢, (p) = exp(teé(p)) 9.12

for -m<t<=, p e M.

This is a more "geometric" way of defining G It may be

E
generalized in the following direction:
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Let 7:E+ M be a vector bundle over M. This bundle

will be called a Lie algebra bundle if each fiber = l(p)

has the structure of a Lie algebra. The space T of
cross-sections may then be made into a Lie algebra using

the fellowing formula:

[¥g,v320(P) = [y(P)ay,(p)]
for Y1:Yy € 'y peM.

Remark: The definition - via 9.11 - of Gp as the space of maps
¢:M »G corresponds to the choice of E=MxG, the product bundle. Thus,
in this case, the Lie algebra structure of the fiber n'l[p] does
not vary from point to point. More general cases are possible using
the theory of "deformations' of Lie algebras. (See my papers "Analytic
continuation of group representations’).

We now turn to a study of a general method of realizing current

algebras as the Lie algebras of infinite dimensional Lie groups.

10. REPRESENTATIONS OF CURRENT ALGEBRA AS LIE ALGEBRAS OF VECTOR

FlELDS

Let M be a manifold, and let F be the algebra of c”, real-
valued functions on M. Let T be an F-module, which is also a real
Lie algebra.
As for any Lie algebra, one can discuss '"'representation" of T, as Lie
algebra homomorphisms into various other sorts of Lie algebras. 1In
this section we shall discuss one sort of such representation that
seems to be of physical and geometric interest.

Let E be a manifold, with w#:E+ M a fiber space map of E onto
M. Let V(E) denote the c¢® vector fields on E. We shall consider

V(E) an F-module in the following way:
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fX = 7*(£)X -

for X ¢ V(E), £ € F(SF(M)).

Definition. Bra representation of I as vector fields is meant an

R-linear mapping vy =» IT of T + V(E) which is a differential
operator in the F-module sense described in Chapter I of Volume I.
The simplest example leads us back to the geometric meaning of
the 'gauge group". Let N be a manifold, G a Lie group which acts
as a transformation group on N. Then, the Lie algebra G acts as
a Lie algebra of vector fields on N. Let 11,....xn be a basis
for G.
Let E be the product MxN. Let [=Gp=G = F, the gauge Lie al-
gebra, Consider the set of vector fields X on E which can be

written in the following form:

I -y flxl o0t fnx-n ¥ ].U.Z

where fl""’fn are arbitrary C° functions on M. Since the

11,...,In are vector fields on E that are tangent to N, we have:

xi{fj) =0 for 1<j, j<n .

In particular, we see that the set of vector fields of the form 10.2
on E is isomorphic to gF' i.e. to Y-Il & fl R Xn @ fn we
associate the vector field I Sright hand side of 10.2. We see further
that the map vy = IT is a zeroth order differential operator.
Problem, Classify all Lie algebra homomorphisms: Gg = V(E) that are
zero - the order differential operators as F-modules.

This realization of G as a Lie algebra of vector fields on
E=MxN is also useful as a way of constructing a Lie group whose Lie

algebra is Ggp. For the set of all vector fields of form 10.2 forms
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diffeomorphisms of E generated by this Lie algebra.
Exercise, Identifying Gp as in Section 9 as the group of maps
¢:M -+ G, make GF act as a transformation group on E=MxN so that
the Lie algebra of vector fields so generated is precisely those of
the form 10.2Z.

The next step in the program should be to study representations:
FF + V(E) which are higher order differential operators. We shall
now study a typical case of this type.

Let us suppose that M=R7, (This is the important case for

physics). Denote a point of M by x, with components [xi), 1=<i,y=3.

Let ai-gﬁ- . Suppose again that E=MxN. Let G be a finite dimen-
1
sional Lie algebra with a basis (Ia]. l<a<n, and with Lie algebra

structure relations of the following form:
(X031 = Cape e 10.3

(Here, the C are the structure constants of the Lie algebra G.

abc
The summation convention is in force on the indices a and 1i).

Suppose now that Yai are vector fields on N. Define a map
a:Gp + V(E)
by the following formula:

alX, o £) = £Y_ + 3, ()Y, . 10.4

Then,
G{Ixa & fllxb @ fz]}

=C oo (£, Yo*dy (£1£2)Y ;) 10.5
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[a(X, s £)), a(X, © £;))
'[lea+ai(f1}Yai'£ZYb+aj[fz)ij]
£ £, (Y,
+35 (£7) £, 4,Yy]

10.6
+f13j(f2}[Ya,ij]
+aj[fljaj(f2}[Yai’ij]'
Thus ,
-::([Ia ® flj xb & fz]]
-[a(x, = £;), a(T, e f,)]
= (Y Y 1 -Cape Ye)
+3i(f1]f2{Cabc Yci-[Yﬂi'Yb])

10.7

*flai(fz](C i-[Y

a*¥pil)
+35(£))3,(F)) [V, Yy, 1

abe Yc

We can make several deductions from this formula:

Theorem 10.1. a defined by formula 10.3 is a Lie algebra homomorphism

of the gauge Lie algebra QF into the Lie algebra V(E) of vector

fields on E-Rst if and only if the following relations are satis-

fied:
[Ya,Ybl = Cabc Yc 10.8

(YaiYpj) = O 10.9

[Y .¥p4) = C 10.10

abc Yci
Relations 10.8-10.10 define a new Lie algebra, which we shall

study in Section 11. (Notice that this Lie algebra already appeared
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in the work presented in LAQM on representations of the gauge Lie
algebra).
Let us now investigate more general possibilities for the right

hand side of 10.6 than relations 10.7-10.9. To do this, set:

Yabi ® Cabe Yei™ [Yais¥p) 10.11
Then,

Cahc Yci-[va’Ybi]

10.12
*Chac Yei*[MpirYal = Ypai

Let us impose the following conditions:
[Yais¥pi) = © 10,13
(Yo Y 3] =0 = [‘rcj,'rabi] 10.14

With these assumptions, we see that a{@F] generates a Lie algebra

that we shall call L, with the elements of the form:

f Yabi 10.15

in the center of L. Let us denote by K the elements of L of

form 10.14.

Let K' denote the subspace of elements of K of the form 10.14,
with:
If{x}dx = { 10.16

g3

Thus, K' forms an ideal of L. Let L' denote the quotient Lie

algebra L/K'. Denote by f Y;, f Y;i' f Yébi the image of the ele-

ments £ Ya' £fY ., £Y

ai’ abj 0 L'. Let a':Gp + L' denote the map

it R
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@:Gp+L, followed by the quotient projection map: L+L'. Thus, we

have the following relations:
a'([X, fl,xb ® fz]]-la'(la @ flj.u'(lb ® fZ]]
= (Y oYyl " Cope Ye)
fjhi[fl]fz dx Y;bi'J}lai[ledx YBai
R R

Hence, after integrating by parts,
a'([X,  £,,5 & £,])-[a' (3, @ £),a' (X, ® £,)]
£ Ea (a1 ' -Cape YOI

tI;i(fI]fz(x)dx[T;hi‘Yﬁai]
o

10.17

R

Notice that the second term on the right hand side of 10.16 is a typi-
cal example of what the physcists call a "Schwinger term". Thus, we
see that we have devised a way of realizing the "current algebras"
that appear in quantum field theory and elementary particle physics
geometrically as Lie algebras of vector fields. The way is then open
to constructing the groups whose Lie algebras are the current algebras
by means of geometry, i.e. finding the groups of diffeomorphisms of E

generated by the Lie algebra of vector fields used to represent the

current algebra.

Problem and Example. Consider a typical current algebra from the geo-

metric point of view. For example, the following one is typical:

(Vo (x) Vo ()] = Cog Vas (x-) 10.18
Va(x) VN1 = Cog VY6 (x-y) 10.19

B8
*a}:("rgj (x,y))
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Vi), Vi1 = 0 10.20

In 10.17-10.19, the current algebra relations are presented in the

Bhae 8 Rl 00

intuitive form preferred by the physicists. Here, "x","y" denote

elements of RS. a,B denote "internal symmetry' indices. Let F

denote the compactly supported, ¢, real-valued functions on Rs.

Set:
vg{f} -Ivz(x) £(x)dx 10.21
RS
V;‘{f] -Ivg‘(x]f(x)dx 10.22
R3
ViL(£.E)) -." Vi y) £ (0 £, (y)dx dy 10.23
R3xR3

Then, relations 10.,17-10.19 take the feollowing integrated form:

o g Y

[Va(fl)-‘"o(fz” = CGBTVO{flfzj 10.24
a 8 - Y

[Vo{fl} .vi(fzj] cuBTVi[flfz) 10.25

B
+ V(a5 (£ £))
a 8
(VE(£1),V5(£,)] = 0 10.26

The second term on the right hand side of 10.24 is the "Schwinger
term". Without it, the relations 10.23-10.25 define a gauge Lie al-
gebra gF' (Notice that G is pot the "internal symmetry"” Lie alge-

bra with structure constants but a larger Lie algebra with the

Caﬂ?’
internal symmetry as a subalgebra.) Now,as the "problem" discuss
ways of realizing these relations as Lie algebras of vector fields.
An important special case is the '"Sugawara model,” which is obtained

by the following special form of the Schwerger term:
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Vg?[x,}'} = 8;; 8,8 S(x¥). 10.27

Then, 10.24 takes the following form:
a B " a
[vo(fl)’vi(fz}] cuﬁ?vi(flfz)

+I 3, (£,)£,(x)dx
3

10.28

R

Discuss the conditions this places on the Lie algebra L'. Can one

find a global group whose Lie algebra is defined by relations 10.23,
10.25, 10.277

Remark: Realizations of the Sugawara model by means of inhomogeneous
differential operators have been discussed already in my paper, "Current
algebra, Sugawara model, and differential geometry". What might be

done is to translate the more concrete way given there of realizing the

commutation relations into the framework sketched above.

11. THE GROUP STRUCTURE ON THE JET SPACES OF A LIE GROUP

In my paper titled "Current algebra, Sugawara model, and differen-
tial geometry", it was found that the appropriate "configuration space"
for the realization of the "Sugawara model" current algebra commutation
relations was a Lie group manifold. Then, the "phase space” is an
appropriate jet space of mappings of a manifold (in field-theoretic
application, typically RS} into the group. 1In this section we shall
discuss in an intrinsic geometric way some of the mathematical ideas
underlying this construction, without further explicit mention of the
possible current algebra applications.

Let G be a Lie group, and let M be a manifold. Let & be

the space of o mappings:M +-G. Recall the notion of "r-th order of
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contact"” of two such mappings. For example, if r=1, then $1,9, € r

are said to have first order contact at a point p e M if:

¢,(p) = ¢,(p)
¢14(P) = 8,4 (p) 1.1
for all v ¢ Hp'
{fIn fact, in this section we shall deal only with the case of first
order jets, for the sake of simplicity).
pefine ©T(M,G) as the quotient of Mx¢ by the following equiva-
lence relation:

(py,¢y) is equivalent to

(p;,¢,) if and only if

P17P2 11.2
4 and $, agree to the r-th

order at P1=P;-

Let = denote the map: Mx$ +M which is the Cartesian product
projection. 11.2 shows that w is constant on the equivalence classes,
and passes to the quotient to define a map, which we also denote by ,

of ©Y(M,G) -~ M. This will be called the projection map.

For p e M, let ﬂ'l(p] be the fiber of = above p. We will
denote this space by Br(H,G][p]. The main result is now:
Theorem 11.1. The Lie group structure on G induces a Lie group struc-
ture on the fiber BT(M,G](p], for each point p e M.
Proof. We shall give the proof only for r=1. Notice that ¢, the
space of all mappings:M+G, is a group, with the group structure given

by point-wise multiplication. (This is, of course, just the "gauge
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group" defined earlier). Let Po be a fixed point of M, and let

1 be the map:M+ G such that:
1{p) = e for all p e M.

(e 1is the identity element of the group G).
Let Qo denote the set of all ¢, © ¢ such that ¢ has first

order contact with 1 at Pys i.e. such that:
¢0(p01-e;¢0*(Hpo)-0 11.3
Lemma 11.2. ¢ defined by conditions 11.3 is an invariant subgroup
of #&.
Proof. Let ¢ e &, b, € ¢O. We must show that ¢ ‘n ¢-1 belongs teo
@o, i.e. that it satisfies condition 11.3.
Now,

(¢ 65 6711 (Py) = 6(p) e (P)ep) " = e

Suppose that t -+ o(t} 1is a curve in M, such that u{ﬂj-pu. with

vV e Mp its tangent vector. Then, the tangent vector to the curve
o

t s (4 0, ¢ Do) 11.4
at t=0 is the element (¢ ¢0 ¢-1}*(v] of Mp . The curve 11.4 is

o
now, by the meaning of multiplication in ¢, just the curve:

t o+ ¢(o(t))e (o)) e(a(t)) ] 11.5
Now, the right hand side of 11.5 can be written as follows:
t+ (ele(t))elpy) 1) (elp)e (o) olpy) 1) (8(p,) ea(t)) ™

Thus, we have:

(6 ¢, ¢ Do) = g(vg (Vg ], 11.6

where:
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g(t) = ¢(o(t))elp,) "} 11.7

8,(t) = #(p,)é (c(t))élpy) 11.8

The curves t + g(t), gu(t] are curves in G, equal to the identity
element at t=0. Their tangent vectors at t=0 are then elements
I, Ye E. (Identify G, the Lie algebra of G, with the tangent space
of G at the identity element).
Exercise. Suppose that t = gltt], gz[t} are curves in G, equal to
e at t=0, with tangent vectors X, Y e G at t=0. Show that the
tangent vector t=0 of the curve t - gl[t}gztt) (i.e. the product
of the curves) 1is the element X + Y of G.

As a result of this exercise, 11.3, 11.6 and 11.8, we see that the
tangent vector at t=0 of the curve given by 11.5 is zero. This

proves that:

=1 _
(¢ ‘,O ¢ )D(MPD} Ul

hence completes the proof of Lemma 1.2,

The completion of the proof of Theorem 11.1 is now routine.
Exercise. Show that GI[M,G}(pO) is equal to the space of cosets of
the group ¢ by the subgroup ¢0, i.e. that two maps ¢1,¢2:M+ G
meet to the first order at Py if and only if: ¢]¢51 e ¢,.

Having thus identified GI(M,G][pQ] with the coset space ¢f¢o s
we see that it inherits a group structure from the fact that ¢  is
an invariant subgroup.

Exercise., Suppose that M=R, po=ﬂ. Identify el[H,G][pO] with the
tangent bundle T(G) to G. Let a:GxG+ G be the map that defines

the group low on G. Identify

T(G x G) with T(G)RT(G).
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Then, a, maps T(G) @ T(G) linearly into T(G). Show that ths map
defines a group structure on T(G), and that this group structure is
the one which is defined on BIEH.G](po) by Theorem 11.1.
Exercise. Extend Theorem 11.1 to define a group structure on
8" (M,6) (p,), for all integers r.
Problem. Suppose that M is a product manifold M;xM,. Determine
how the group structure on ©°(M,G) is determined by the group struc-
tures on er(H,G] and efgnz,G].

Now, let B be the map: 91[H,G]{pa)-ﬁ defined by the condi-
tion:

B(8) = ¢(p,) 11.9

for all ¢ e ®. Notice that B is a group homomorphism of the group
BILM,G](pOJ into the group G.

Theorem 11.3. The homomorphism B defines BI(H.GJ(pO} as an abelian
extension of G, i.e. the kernel of B 1is an abelian invariant sub-
group of BI(M,G][pn].

Proof. Let ¢1,¢2 be map:M~+ G, such that:

¢1(p,) = e = ¢,(p,)- 11.10

Then, the images of $1:9, in BI{H,G)(po) lies in the kernel of

B. Set:

1.=1

b= 90,0, %,

To show that the kernel is abelian, we must show that the image of

¢ in Bl[M,G](pOJ is the identity element, i.e. that
¢a(M, ) =0 11.12
"o

Exercise, Show that:

(021 = ~4,.0 11.13
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(#1980 2(V) = ¢,2(¥) + ¢5x(V) 11.14

for veM .
Py

Repeated application of 11.13-11.14 shows that:
palv) = ¢l*(v} * *2*(V} - *1*(V} - @2*(V] =0,

for all v e M_ ,
Po

which proves 11.12, hence completes the proof of the theorem.

Problem. Suppose G has a basis (Ya), such that:

[Ya'Ybl = Cabc Yo o l<a,b,c<n=dim G,

1

Let H-RS, with p=(0). Let G denote the Lie group DI(M,G}(pOJ.

Show that G! has a basis labelled (Y},Y!.), 1gi<3, such that:
Yaa¥pl = Cape Yo
[¥};.Y5) = 0 11.15
(Yar¥pi) = Cape Yoi
BalY!) = Y
Ma . 11.16

B'[Y&i) =0

Notice then that the Lie algebra gl is the one defined by conditions
10.7-10.9, determining a representation of the gauge Lie algebra Gg.
In turn, notice that the ideas presented in my paper "Current algebras,
Sugawara model, and differential geometry" involve closely the jet
space BI(RS,G). since G is the configuration space of the dynamical
system which gives rise to the Sugawara model current commutation re-

lations.
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Problem. The ideas of this section may be generalized in various
directions. (Notice that they are not "deep'", but invoke what
mathematicians call "generalized nonsense".) One significant and
elegant generalization might be described as follows:

Let w:E+M be a fiber space mapping, with a Lie group structure
given on each fiber n'l[p}. Let ¢ be the space of C  cross-
section maps ¢:M-+E. Use the group structure on each fiber to define
the product of two elements of ¢. Say that this structure defines a
bundle of Lie groups if the product ¢1¢2 is also C", for ﬁl,ﬁz e ¢.
Define the jet spaces 6T(E) as usual. (See VB and Vol. I of this
treatie). Let w:07(E) » M, also denote the jet space projection map.
Show that = defines ©T(E) as a bundle of Lie groups, in such a way
as to reduce to the set up described in detail whose for the case
where E is the product MxE.

Problem. Suppose that w:E+ M is a bundle of groups, as defined in
the previous section. Let 7':E'+ M denote another fiber space whose

hose space is M., Let us say that the bundle of group E acts on the

fiber space E' if, for each p e M, the group E(p) is given as a

transformation group on the fiber E'(p). Formulate this precisely,
paying particular attention to the proper "smoothness" notions as p
varies over M, Show that the jet bundle of groups Br(E] defined
in the previous problem acts in a natural way on the jet bundles
Br(E‘]. Develop as many of the formal properties of this action as

you can, or have patience for.



Chapter V

TOPICS IN LINEAR QUANTUM FIELD THEORY

1. INTRODUCTION

Quantum field theory is a difficult, complicated and frus-
trating subject. In my previous books I have attempted to clarify
various mathematical topics that play a role in it and in related
areas of elementary particle physics. In this chapter I will
attempt a more systematic exposition of the material to be found
in the physicist's treatises concerning linear quantum fields.

(For example, those by Bjorken and Drell, Bogoluibov and Shirkov,
Gasiorowicz, Lurie, Schweber, and Speer).

Now, most of the material in these treatises is concerned with
the theory of linear quantum fields, and their associated symmetries.
The theory of non-linear, i.e. "interacting'", fields is then treated
by perturbation theory.

In this Part III I will only deal with the linear case. Nen-

linear situations will be treated in a later volume .

It is useful to keep in mind the general geometric framework
for understanding "quantization" which is described in my previous
books, particularly LAQM, VB, LMP Vol. II, and PALG. The most
general viewpoint emphasizes two spaces, the "states" and "observa-
bles”, a duality between them, an algebraic structure on the observa-

bles, and representations of the cbservables by means of operators
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in a Hilbert space. Quantum field theory is probably characterized,
in this general setting, by a certain "local" (relative tec space-
time) structure for the states and observables. However, we shall
not attempt to keep at this level of abstraction,

Instead, consider a "classical'field, It is convenient to use
the fiber space notions developed in GPS and in VB, Vol. I
to describe it. Suppose then that M is a manifold, and that
m:E + M is a fiber space, with M as base space. (In the typical
physical applications, M will be the "flat" space-time R4, although
in such applications as cosmology more general possibilities are
important.) Let T denote the space of cross-section maps y:M-+E,
and let Jr(E], r an integer, denote the space of 1-jets of

cross-sections. Recall that an r-th order system of differential

equations for cross-sections is a subset D of Jr(E] defined by

setting a finite number of functions equal to zero. Let PD denote
the space of cross-section maps vy:M - E which are solutions of D,
i.e. such that:

JY(y)yM <D 1.1

(Recall that J'(y), the r-jet of y, is a cross-section map: M+JT(E)).
The element of TD are the states of the classical fields.

The observables are defined as certain types of real-valued func-

tions on PD. A general method for defining cbservables and a

"Poisson bracket'" algebraic structure on them, in terms of differen-

tial forms, has been described in LAQM and VB, Veol. 1. In fact,

for the systems considered most often by physicists, which are typi-

cally linear or "weakly'" non-linear, such a general framework is
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awkward, since it does not directly take inte account the simpli-
fying feature of linearity. Accordingly, we shall sketch how to

replace this framework by a more satisfactory one in the case E

is a vector bundle with the real numbers as scalars, and D is a
system of linear differential equations, i.e, FD is an R-linear
subspace of T.

Thus, suppose that each fiber E(x)-ﬁ_l(x). for x e M, is a
real vector space. Let us suppose that it is a finite dimensional
vector space, for simplicity, although there would be no particular
conceptual difficulty in handling the infinite dimensional case.

d

(There would be technical complications, of course). Let E  be

the dual vector bundle over M, i.e. for x e M, the fiber Ed[x]

d

is the dual vector space of the vector space E(x). Let T de-

note the cross-sections of Ed which have compact support. For
d d

each y e I, define a real-valued function: rD + R as follows:

Y + I?d(x]('r(x))dx . 1.2
M

(Assume that "dx" is a fixed volume element differential form
on M.)
Let rg denote the space of all Yd e rd such that the function
on rD defined by 1.2 is identically zero.

Thus, an "observable" can be identified with an element of
the quotient vector space rdfrg. In fact, what the physicists

usually do is te deal directly with the "observables'" and forget

the "classical' states., Algebraic structures are imposed directly
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on the observables (via "commutation relations'), and the "quantum"
states are defined as elements of the Hilbert spaces on which one
represents the algebraic structure defined by the observables.

This is rather abstract. The physicists usually think of a
quantum field more concretely as a collection of operator-valued
"functions'" of space time points. It is easy, however, to pass
back and forth between the two ways of looking at quantum fields.
Suppose, for example, that E is the product R4xkn. An element

4 n

of I isa C mapping x -+ (Yn[x})’ l<a<n of R - R, T de-

D
notes the subset of those satisfying a given system of linear partial
differential equations.

l‘li can be identified with the space of compact support, C
mappings x -+ (fa[x]] of R4 ~ R™. The function f:rD + R defined
by 1.2 then takes the following explicit form:

£{v) -JF(fI(x]ylfx}+---+fn(x)yn(x])dx . 1.3
r?
Suppose now that the f's are provided with a suitable alge-
braic structure, and then represented by operators A; in a Hilbert
space H. One can define, formally, operator-valued "functions"

X o+ ¢a{x) of the point x by the rule:

Af wf(fltx]¢l[x)+---+fn(x]¢n(:~c)]dx . 1.4
R4
The operators ﬁlix],...,¢n(x} will then satisfy, as functions of
x, the same system of linear partial differential equations as do

the "“"classical" fields [Ya(x]]. (This is not quite obvious; for
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general systems it is not even clear that there is & proof availa-
ble, in terms of the available mathematical tools. However, it
will be proved for the Klein-Gordon field in the mext section.

No doubt the proof for the other equations of importance in physics

would follow similar lines).
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Z. THE NEUTRAL KLEIN-GORDON FIELD

This is the simplest example of a free relativistic quantum

4

field. Let x denote a point of R, the real space-time manifold.

Choose u,v as indices running from 0 to 3. Choose i,j as
"space" indices, running from 1 to 3. Let Xy denote the compo-

nents of x; Xy is the "time" component, x; are the "space"

components. Set a-—a—;
H qu

2 . 2.1
X

2 3
a= 3 - pIRE:

i=1
Let I denote the space of real valued, C  functions Y:Rd' * R.
Let T denote those elements of T which satisfy the following

D
equation (called the Klein-Gordon equation):

Oy +my =0 2.2

{m 1is a real positive number; physically, it is the mass of the
field).

d denote the space of real-valued, compactly supported, c®

Let T
functions f:R% - R. Let f define a real-valued function on I'p
as follows:
f(y) = ff(::]*r(x}dx . 2.3
R4
Theorem 2.1. The linear function f defines on I‘D, via fornula 2.3, is

identically zerec if and only if

fe(+nd) Y. 2.4

Proof. Let p denote another real four-vector, with components

(pu). (Physically, p denotes a relativistic "energy-momentum"
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vector. Define x.p as the Lorentz invariant inner product:
X*P = XgPy X Py X,Py XgPs - 2.5

Let p =~ f{p) denote the Fourier transform if x -+ f(x), i.e

£(p) = -(-2—:]2 fe""Pf(x]dx 2.6
4
R

f(p) exists because x + f(x) 1is rapidly decreasing.
Now, if 2.4 holds, it is obvious that the right hand side of
2.3 is zero for every function y which is a solution of
(O + mzj(Y]=U. Conversely, let us suppose that 2.3 is zero for
every such solution. Let us construct a family of such solutions.
Let N dencte the submanifold of RY consisting of the points
p e R4 such that:

PT = m". 2.7

Physically, N is the mass-shell hyperbolcid. Let de denote

the Lorentz-invariant volume element of N pgiven by the following

formula:
dp, ~ dp, ~ dp
dp=—2 -2 3 2.8
N IPUI
For each C , compact-support function p ¢ (p) on N, set:
Y(x) = J. 1P Xy (p) ey . 2.9
(Zﬂ}

Exercise. Show that ¥ is a real C solution of the Klein-Gordon

equation if:

W(P]’ = §(-p). 2.10

Show that:
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-~ &
fftx)-f{x)dx -J'ftmcp)d“p : 2.11
N
Thus, if f{TD)=ﬂ, then 2.10 implies that:

f(p) = 0 for all p e N. 2.12

Problem. If 2.11 holds, show that there is a C~ function
?ltp] on R4 vwhose Fourier transform is of compact support
such that:
£p) = (-pPend)E,(p). 2.13

(Hint: For this one has to know the '"Paley-Wiener theorem" which
characterizes the class of functions of p which are Fourier trans-
forms of functions of compact support. See Yosida [1]).

Now, applying inverse Fourier transforms to 2.12 shows that f
satisfies 2.4.

Thus, we may say that a suitable space of observables for the
free Klein-Gordon particle of mass m is the following vector

space
F' = F/(Q + n?)(F) , 2.14

where F denotes the compact support, ¢® functions on RY.
{The quotient vector space 2.14 is called the cokernel of the linear
transformation (0O + mzj.)

Now, we want to define a "Poissen bracket" structure for
F'. Since F' consists of the linear observables this will be
defined by a skew-symmetric, R-bilinear map w:F'xF' * R, or,
equivalently, by a skew-symmetric, bilinear map w:FxF * R such

that:
w((Q + n2)F,F) = 0. 2.15
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Such a map could be defined by means of the symplectic structure
on the state space of the classical problem. This approach has
been already described in PALG.

However, for purposes of generalization, it is more interest-
ing to forget about the states, and to try te define the form w
directly on the observables., We shall discuss this, beginning
with the physicist's point of view.

The physicists think of a free Klein-Gordon field of mass m

as a Hermitian-operator valued "functioen" x + ¢(x) such that:

(8 + n¥)(e0x)) = 0 2.16
[#(x),0(y)] = -ia(x-y), 2.17
1 j.ip-x
A - d.p, 2.18
(x) E;?E;;T Ne EB(P) NP

where €y is the function on N such that:

1 if py>0
€,(p) =
-1 if p0<0
Using 2.7, and writing:
x = (t,%) , 2.19
p = (1{32+m2'3) for p e N, 2.20

we have, using 2.7,

1 sian:+m!t e-iE-x d3§
Z
(2w) ; /$2+m2
R

2.21

a(t,x) =

& is one of the family of "invariant functions" or "propagators"
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which play a key role in the physicists approach to quantum field
theory. It is really a "distribution" or "generalized function",
of course.

Exeridse. Show that & «can be defined as a distribution (in

the Schwartz sense) on rapidly decreasing functions on R‘.

Now, define the map w:FxF = R

w(fl,fzj ij. h{x-y)flfx]fz{y)dx dy 2.22

R'xR

Exercise. Show that w can be defined also by the following momen-

tun space integral:

w(f,6,) == [eg)E P E, (P éyp , 2.23
N
where fl,f2 denote the Fourier transform of fl,f2 e F.
Problem. Discuss how formula 2.20 can be used to extend w to
larger classes of functions. For example, the extension to the
rapidly decreasing functions is immediate.

Remark: In the physics literature, 2,15 and 2.17 are most frequently

written in the following "covariant" form:

200 - J’ ey ()6 (nl-phyalp 2.24
21(21)

1

w(fy,£,) = —1—
VU2 iam

) f eo (P16 (m?-p?)E, (-p) £, (p)a’p 2.25
R‘

Now, we can start the main result concerning this type of
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free quantum field. Its proof is discussed in detail in PALG.
Theorem 2.1. There is a Hilbert space H, and a linear mapping

f > ¢(f) of F into skew-Hermitian operators on H, such that:

(D + m4)F) = 0 2.26
for fl, fz e F,

Further, this object fulfills all the conditions needed to define
a "quantum field" in the precise sense of Wightman, {(See Streater-
Wightman [1] and Jost [1]). If one defines the objects ¢(x)

"symbolically" as operators on H as follows:
o(5) = [ec0fmex , 2.28

then they have all the properties taken for granted in the physi-
cists approach.

In PALG, this result was proved by Fourier transforming f
to a function p =+ f(p] on R‘. then restricting f to be a
function on the upper sheet N, of the hyperboloid pz-mz. H'
is chosen to be the rapidly decreasing, Cw, complex-valued func-
tions on N_, with the Hilbert space structure that defined by
the volume element dyp, H is defined to be the Boson Fock space
associated with H', i.e. the Hilbert space of symmetric tensors
on H'. Finally, ¢(f) 1is defined as the difference of the
"annihilation" and "creation" vectors defined by f. As explained
in PALG, this amounts more abstractly to constructing the Heisenberg

Lie algebra G=F # R, with the Lie bracket defined by the form w;

constructing its complexification Gc'G # iG ; splitting up G_ as
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a direct sum §+ “ €+- and then requiring that the representation
¢ be such that G annihilate a vecter of H, which is called
the vacuum state. This algebraic structure for G. can be exhi-
bited more directly in terms of x-space, without going to momen-
tum space. This peint of view will be useful for other quantiza-
tion problems as well as for studying 'current algebras" and
"Feynman rules".

From the physicist's point of view, it can be described most

readily as follows: Formally write:

o(x) = ¢ (x) - &7 (x), 2.
with:

- & *

$ (x} =+¢ (x) 2.

(6 (x),e () = 0 = [¢7(x),8" (V)]

29

30

(47 (x),87 (1] = a,(x-y), 2.31
where ﬁ+{x) is defined as follows:
1 ip+x 2.2
a, (x) = J. e 8.(p)é(p“-m“)dp, 2.32
* 2(2m)° 0
Rd
with:
1 if po>0
&y (p) = 2.33
0 otherwise
Using 2.21, and the relation
ey (P) = &,(p)-8,(-p) 2.34

note that:
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ia(x) = &, (x) - &4,(-x)
&
A (x) = a(-x)
Let us now compute; using 2.26 as the definition of ¢{x):

[6(x),8(8)) = [6 (X)-¢" (), (¥)-¢ ()]
= -0, (x-y) + 4,(y-x)

= , using 2.32, -ia(x-y), which is

relation 2.14. Thus, we have derived the commutation relations

2.14 assuming the commutation relations 2.28.

We can convert the commutation relations Z2.28 into a more

legitimate form by using F again. For f € F, set:

¢,(f) = JI:L{I) f(x)dx

¢_(f) = J}_(x}f(x)dx .

Then, we have:

[o,(£1),6,(£)] = 0 = [¢_(£)),9_(f;)]

[6,(£1),0_(£,)] = w, (£],,),

where:

6, (£,6,) -fa,(x-y)fltx)fz(y}dx dy .

Note that:

#
W+(f1nf2) = w"‘(fZ’fl)

Thus, w, is an R-bilinear map: FxF + C which is Hermitian

symmetric, i.e. satisfies 2.36. Further, if El' £

2.37

2.39

2 denote the



Fourier transforms,
o (£, = + [o, (016D, (212, () "dp 2.40
#7172 0 1 2 ) )

Exercise: Prove 2.37.

In particular, note from 2.37 that:

w,(£,£) > 0 if 40 . 2.41
1 *
w(f1,£,) = Fla,(£1.6,) -0, (F,£,) ). 2.42

Putting the commutation relations for the Klein-Gordon field
in this algebraic form enables us to abstract a general algebraic
framework, within which one can probably encompass the most general
linear quantum fields. (Of course, the formalism must also be
modified to accomodate Fermions, as well as the Boson case treated

above. We shall tend to this later on).
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3. A GENERAL ALGCEBRAIC FRAMEWORK FOR BOSON LINEAR QUANTUM FIELDS

Let T be a vector space over the real numbers as a field
of scalars. Let w, be an R-bilinear, complex-valued, map: I'=[ =+ C,
which is Hermitian symmetric, i.e. which satisfies the following
relation:
&
w.‘,lest) = u"_‘_[Tlel] 3.1
for ?1,72 eT.
Construct a real Lie algebra G as follows:
As a vector space 0 is a direct sum
r«r«cC, 3.2
For notational convenience, v e I', we denote by Y+. v the
elements of GF: defined in the following way:
¥ =y 20 20 3.3
Y =0%y 20, 3.4

Denote by r*, ° the linear subspace of G as follows:

r* = {(y":y e 1}
3.5

I = {y :y e I'}.

Thus, G 1is, as a vector space, the direct sum of r*, r and C.
Define the Lie bracket structure on G as follows:
r*,r*y =0 = 17,17} 3.6
+ - .
[Tln?z] = 1N+(Tl,'\'2) 3.7

for Y1 Yy € r.

[G, C] = 0. 3.8
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Then, G 1is a Heisenberg Lie algebra, i.e., the derived Lie
algebra [G,G] 1is contained in the center of G. (See PALG for
a discussion of the elementary properties of Heisenberg Lie

algebras, and the associated groups).

0

Now, let T  be the linear subspace of G defined as follows:

rf - y*-y":y e T}. 3.9

Let us calculate the Lie bracket for the subspace Fu; using

3.6-3.7:
[Y1-¥1s Y3775
= dw,(yy,v,) + dw,(v,,y,)
. &
= '1(“]*(1'1'*2] - w+[Y11Y2) ] 3.10
for Y1s Yo € T.
Notice that the right hand side of 3.10 is a real number.
To make this relation more explicit, define w:TIxT * R as follows:
. t
W(Y:t?z) = '1(‘".‘,(71.?2)‘“34[71.72) ) 3.11
for Yir Yoo

Then, @ 1is a skew-symmetric, bilinear form. For ¥y € T, set:

G =T" + R. 3.13
Then, 3.10 translates into the following relation:
[Yg,wg] = wlvysyy) 3.14

for Y1 Yp € Pu.
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In particular, notice that v is a Lie subalgebra of G. The

pair [QG,QJ of Heisenberg Lie algebras is said to be a (real)

Heisenberg Lie algebra structure equipped with an annihilation-

creation operator structure. As an abbreviation, we will call

this structure a Heisenberg-Fock Lie algebra pair.

Definition. A vacuum state representation of such a Heisenberg-

Fock pair [GO,G) is a representation ¢ of G by complex-

linear operators on a complex vector space H such that:
¢(c) = -icx(identity operator) 3.15
for c e C.
H has a vector Yo such that:

¢(T ) (¥g) = 0. 3.16

The vector wu is called a vacuum state of the representation.

{(We do not necessarily require that it be unique).

Exercise. Show that such vacuum state representations may be
constructed purely algebraically by considering the universal
enveloping algebra U(G) of G (with complex numbers as scalars),
and dividing out by left ideals which contain the abelian sub-
algebra I of G.

Now, the representations considered by physicists - at least
for free fields - have a stronger property, which we define as
follows .

Definition., Let (§,¢,H,¢O} be a vacuum state representation
of the Heisenberg-Feock pair {9,90). We will call this represen-

tation a Fock representation if the following conditions are




satisfied:

H has a real-bilinear form: HxH + C

(¥14¥5) = <¥lo,> 3.17
such that:
&
<¢1|c¢2> = c<¢1|¢2> = <cw1|¢2> 3.18

for c e C;wl,wz e H

&
<Yyle,> = <@g, lv> . 3.19
The operator @[gu] are skew-Hermitian

with respect to the form < | >, i.e.

<py e C0Y,> = <o (X)vy u,> 3.20

for Vy1¥, € H, X e gn.

The vacuum state ¥p is unique (up to a

scalar multiple, and satisfies:
<¢0|w0> £o0 . 3.21
For vy e T,
& -
oy = ey, 3.22

*
where denotes the Hermitian adjoint for
operators on H with respect to the Hermitian

form <|> on H,

Remark: Notice that we do not require that the inner product
<| > be positive, i.e. that it define a "Hilbert space'", With-

out this condition, it may be called a Hilbert space of indefinite sign.
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Research Problem. Let G be the Heisenberg group whose Lie

algebra is G. (See PALG for the definition of the group-law
on G. As a set, G is equal to G.) Investigate using "analytic
vector" techniques, the integrability of the representation of
G to give a "global" representation of G,

There is a relation between the positivity of the form
y + w,{y,y) and the positivity of H that is very important for
the physics. Let us suppose that the form < |> on H is at

least positive on wo. We can then normalize ¥, so that:
Yo l¥p> = 1.
Thus, for y e T,
<t (v g le (v ey
= <6 0gle (v
= <yoletr ety
(using 3.22)
= <y [ 160Y7) 8 (v ) 1wy>
(using 3.16)
= <ygle, (v,¥)¥y> (using 3.7 and 3.15)

= W+(T|T)o 3,23

The subspace ¢(r+}[¢0J H 1is called the single particle subspace

of H. Thus, we see that the form < |> is positive on the
single particle subspace of H if and only if the form ¥ ~ w_(y,¥)

is positive.
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Exercise. Define the n-particle subspaces of H as the sub-
spaces obtained by applying polynomials in n creation operators.

{The cperators ¢[T+} are called creation operators, for obvious

physical reasons; they are interpreted physically as the operators
that generate 'particles" out of the "vacuum" state Vo Show
that <|> is positive on the n-particle subspaces, n=2,3...,
if the form vy = w+(T,T] is positive.

Problem. Suppose that T splits up into a direct sum of sub-

spaces [, & T, such that:

w,(ry,ry) =0
w,(yy.vy) >0
w,(vy,7y) <0
for Y, € Fysy, € Ty,
Analyze how this impasses a split up of H into subspaces on

which the form < |> is positive and negative.

Research problem. In the interesting infinite dimensional cases,

the form w, may not split up into the "direct sum" form 3.23,
at least in a natural way. Investigate - possibly through examples -
how such more subtle phenomena are reflected in the sign proper-
ties of <|> on H.

The question now arises of actually constructing Fock repre-
sentations of a Heisenberg-Fock pair [9,90] of Lie algebras.
In practice, i.e. in the simple free-field and finite dimensional

problems, this may be done in the following way: Exhibit a

complex Hilbert space H' - possibly of indefinite sign - and a
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real linear map:
a:T" + H'
such that:
<alyp)]aly)>’ = w,lyy,vy) 3.24

for Y1» Y3 er,

where < |>» is the Hilbert form on H'. Thus, one can con-
struct H as the Boson Fock space associated with H', i.e.
as the space of symmetric tensors S{H')] on H'. (See VB,
Vol. 1 and Guichardet [1]).
Exercise. Show explicitly how g is represented as operators in
H=5(H"'), in terms of the standard annihilation creation operators
on S(H').
Exercise. In the case where [g.qoj is the Heisenberg-Fock pair
constructed in Section 2 for the linear observables of the free
(neutral) Klein-Gordon field, construct a explicitly, defining
H' as the space of complex-valued functions on the upper part
of the mass-shell hyperboleid in momentum space.

So far in this chapter we have been considering I to be
an abstract vector space. To specialize to linear quantum fields,
we may take T and T' to be the space of compact-support c”
cross sections of vector bundles E, E' on a manifold M. Let
D:T" + T be a linear differential operator. We would then re-
quire that the form w_ :TxI' + C needed to make the definitions

also satisfy the following conditions:

w, (D(T'),T) = 0. 3.25
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Further, if G is a group of vector bundle automorphisms which
leaves D invariant, and if we wanted the corresponding "quantum
field" to be invariant under G, we would require that the form
w, be invariant under G. In sufficiently simple situations,
this completely determines w,, or at least strongly restricts its
possibilities.

Problem. Let G be the connected Poincaré group, E-RéxR. I the
Klein-Gordon differential operator. Investigate how G-invariance
determines w,. Also, investigate possible invariance under the
full Poincaré group, i.e. the group including parity and time-
reversal.

Problem. Investigate "'causality" properties of the free quantum
field associated with the neutral Klein-Gordon equation, i.e.

investigate the regions x and y vary over such that:

[#(x),¢(y)] = 0.

Problem. Carry out a parallel development to that in Section 2,

where one assumes anti-commutation relations:

[$0x),¢(¥)], = &7 (x-y)

for the Klein-Gordon equation. Show that "causality" would be

viclated if such commutation relations were adopted.
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4. THE CHARGE OPERATOR AND CHARGE CONJUGATION FOR THE KLEIN-
GORDON FIELD

The algebraic formalism developed in Section 3 was only de-
signed to cover the case of "neutral" quantum fields. I have found
it rather confusing to understand in the physics literature pre-
cisely what is meant by a "charged" particle. Accordingly, we
shall begin with the simplest example, the so-called "charged" or
"complex" Klein-Gordon field. (Notice that onme of the confusing
features of the physics literature is that physicists are so casual
in distinguishing between "real™ and "complex" vector spaces, des-
pite the fact that the most interesting experimental effects, such
as "time invariance", 'charge conjugation" and "antiparticles”
involve relatively subtle algebraic distinctions between real and
complex numbers).

Let us begin with two neutral non-interacting Klein-Gordon
fields x =+ ¢1(x), ¢2(x] with the same mass m , as explained in
Section 2. We shall treat them first from the physicist's point
of view. They can essentially be characterized by their decomposi-
tion into c¢reation and annihilation operators, and the commutation
relations:

61(x) = ¢7(x)-4;(x)
,(x) = 65 (x)-85(x)
[62(x)56,00)] = 0 = [6.(x),¢,(y)] 4.1
[4,(x),6,01)] = &% (x-y)
(¢,(x),e,(¥)] = id(x-y)

for a = 1,2.

[1’1("] v¢2(.7)] =0.
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Suppose that the ¢;{x),¢;(x],¢a(x) are operators in a Hilbert

space H, satisfying these commutation relations, with ¢a(x} Hermitian.
Definition. A skew-Hermitian operator Q:H - H is a charge opera-
tor for the field (¢1,¢2] if the following conditions are satis-

fied:
(Qé; ()] = (%)

4.2
[Qué,(x)] = -5 (x).
An element % e¢ H has charge q if:
Q(¥) = -i q . 4.3

Now, let:

$x) = 4;(x) + 1 6,(x).

x +¢(x) is no longer skew-Hermitian, of course. It satisfies the

following sort of commutation relatiomns:
[6(x),0(y)] = [o,(xI+i ¢,(x),é,(¥)*i ¢,(¥)]
=i A(x-y)-i a(x-y) =0 4.4
[6(x),6() "] = 24 8(x-y). 4.5

Now, consider the decomposition of ¢(x) into creation and

annihilation operators: Set:

6 (x) = #1(x)*i 63(x)

4.6
¢ (x) = 6,(x)+i ¢,(x).
4.2 implies the following commutation relations:
(Q,e(x)] = ¢,(x)-1 ¢,(x)
4.7

[Q,e(x)"] = i o()".
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We shall now show that x + ¢(x) may be regarded physically as
a "field" of "charge'" +1.

Let us suppose that these operators act on a Hilbert H ,

with a2 "vacuum" state wa such that:
91(x)(¥g) = 0 = ¢,(x) (¥g) 4.8

Q¥g) = 0.
Then,

$(x) (¥g) = &' (x) (¥p)
Q ¢(x) (¥g) = -1 ¢(x) (¥g). 4.9

According to 4.3, this means that the state ¢(x}(w0] has
charge +1., Similarly, t(x]*(tu) has charge -1, In other words,

#(x) creates ocut of the vacuum & particle of charge +1, while

*
¢(x) creates one of charge -1.
Definition. A unitary operator C:H - H is a charge conjugation

operator if:

C[wo) = ¥ 4.10
-1 *
C ¢(x)C = ¢(x) . 4.11
Suppose such a charge conjugation operator exists. Then,
Ce(¥g) = € 40C 1y
*
= $(x) 1'0'
C thus converts particles of charge q into particles of
charge -q. If ¢ is a state of H representing a "particle"

of charge q , then C(y) is called the anti-particle.

Exercise. If the fields act in the standard Boson Fock space

manner, show that such & charge conjugation operator may be con-
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structed.

The next step in the program might be to abstract from this
elementary material the notions of '"charge operator" and "charge-
conjugation operator" to more general quantum fields. Before this
is done, however, it would be better to understand the Dirac equa-
tion, where the theory of '"charge" is more subtle. We turn to
this task in the next section.

Problem. Translate these ideas into the language of "Heisenberg-

Fock Lie algebras" described in Section 3.
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5. JORDAN ALGEBRAS AND ANTI-COMMUTATION RELATIONS

As we have seen, to describe certain types of quantum fields
it suffices to comstruct certain types of Lie algebras, and then
to construct certain types of representations of these Lie alge-
bras. Now, certain types of fields - Dirac field is the simplest -
satisfy anticommutation relations. The corresponding abstract
structure is a "Jordan algebra'". We shall now present a brief
treatment of elementary algebraic facts about Jordan algebras that
we shall need.

Let H be a vector space over a field of scalars. If xl.xz

are linear operators on H , define the anticommutator of xl.xz

as follows:
{Kl.lz} = 3§ {11.12+1211)- 5.1
(Note that in using { , } to denote this anticommutator
we are running the risk of confusion with the "Poisson bracket"
of two classical-mechanics observables. However, since the notation
{ , } for the anticommutator is standard in the physical litera-
ture, it is hoped that the reader can sort out the possible ambiguity

for himself).

Definition. A space J of operators on H is a linear Jordan

algebra if, for Xi:X, e J

x1+x2 and {xl,xz} e J.
{(0f course, we also require that a scalar times an X € { belong

to J. We shall compress notation by not specifying the field of

scalars chosen at each stage).
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We will attempt to abstract out of this definition the
concept of "“Jordan algebra", independently of its realization
as an algebra of operators, just as the '"Lie algebra' concept
was abstracted out of Lie algebras of operators (with the commu-
tator playing the basic role, of course). To do this, we will
look for a replacement for the "Jacobi identity" for Lie alge-
bras.

Suppose then that J is a linear Jordan algebra. Let
X,Y,Z e J. Since they are linear operators on H , the commuta-
tor [X,Y]=XY-YX makes sense as an operator on H , although
of course does not necessarily belong to J. However, we shall

prove the following identity:
[X,{Y,23] = {[X,¥],Z} + {Y,[X,2]}. 5.2

Proof. The left hand side of 5.2 is:

X(YZ+ZY)-(YZ+IY}X.
The right hand side is:

(XY-YX)}Z+Z(XY-YX)

+ Y(XZ-IX)+(XZ-ZX)Y

= XYZ-ZYX-YZX+XZY .

One sees now that this is equal to the left hand side.
Remark. Rule 5.2 can be summed up by saying that Ad X:Y + [X,Y]
is a derivation of the Jordan algebra.

Now, we have the following identity:

(x?,v3,x} = {(x%,0y,X}}, 5.3
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Precof. The left hand side of 5.3 is:
X vsvx?y« (xdysvx®yx,
The right hand side is:
2 2
XO(YX+XY)+(YX+XY)X",

We see explicitly that equality holds.

We also obviously have:
{X,Y} = {¥,X} 5.4
2
X° = ${X,X}. 5.5

Definition. Identities 5.3-5.5 provide the necessary data to

formulate the idea of an abstract Jordan algebra. It may now

be defined as a vector space, J , with a bilinear map
{ ¥ }:J“J "'J-
satisfying 5.3-5.5.
Having arrived at the Jordan algebra notion via an associa-
tive algebra, we can now reverse the process and associate an

associative algebra with any Jordan algebras so that the Jordan

product appears as the anticommutator.

Abstract Jordan algebras and their universal enveloping algebras.

Having defined an abstract Jordan algebra J via proper-
ties 5.3-5.5, let us define U(J), its universal enveloping
algebra, following the pattern used to define the universal en-
veloping algebra of a Lie algebra.

Let T[g) be the tensor algebra associated with the vector
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space J. Recall that it is the linear combination of mono-
mials of arbitrary degrees of the form Kl ®oaas @ Kr, with

the associative-algebra product defined as follows:
[xl B oeea @ xr)(Yl W e @ YS}
1 .:.-...gxraﬁ"lg...a‘ys R

Let } be the two-sided ideal of T(g} generated by all ele-

ments of the following form:
2{X,Y}-XY-YX , 5.6
where X,Y range over .J.

Let U(g) be the quotient of T[g} by the ideal !. It
inherits an associative-algebra structure, (the quotient map
T(J) ~ U{g) is a homomorphism in the sense of associative
algebras), that we denote by: XY. In view of the fact that I

contains all elements of the form 5.6, within U(g] we have:
2{X,Y} = X¥-YX. 5.7

Thus, we have a linear mapping g - U[EJ cf the Jordan algebra
intoe the associative algebra U(g] so0 that the abstractly-given
Jordan algebra on J goes over to the anticommutator in the
associative algebra structure of g. (We shall call such a

mapping an associative algebra representation of J .)

Exercise. Discuss the "universality" properties of this represen-
tation with respect to the "category" of all associative algebra
representations.

Remark: The definitive treatise for this area is that by
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Jacobson [l1]. The relation between a liner Jordan algebra and
its realization in terms of its enveloping algebra is more
complicated than for the analegous case of a Lie algebra.

One can construct “gauge" Jordan algebras analogously to
"gauge' Lie lagebras.(See LAQM for the "gauge Lie algebra" con-
cept).

Exercise. Suppose that J is a Jordan algebra, and that F

is a commutative, associative algebra. Set:

Define an algebra-type product for Jp  as follows:

(X & f,, Yo f,} = (X,Y} o f,f 5.8

12

for X, Y e {; f.,f. e F.

1*72
Show that 5.8 defines JF as a Jordan algebra. We mow turn to

another standard example of a Jordan algebra.

The Clifford algebra of a quadratic form.

Let V be a vector space over a field {in the sense of
algebra) of scalars that we denote by K. (In the applications
K will be either R or C. In any case, we will assume that
K has characteristic zero). Let B:VxV - K be a symmetric,
bilinear form on V , with values in K. (Such an object is
also called a "quadratic form", since it is determined by its
values v + B(v,v) on the diagonal subspace of VxV).

Now, set:
J=V e K, 5.9
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Define a Jordan algebra structure on J as follows:
{vljvz} - B[Vlrvz} 5-10

for VisV, € V.

{v,k} = kv 5.11
{kl,kz} - klkz 5.12
for ViVy,v, € V; k,kl,k2 e K.

The unit element "1" of K is then a unit of J , i.e.
{1,X} = X
for all X e J.

Now, let U(J) denote the universal enveloping algebra of
J. Let C{B) denote the quotient algebra defined by dividing by

the 2-sided ideal generated by all elements of the form
X-X1,

Definition. The associative algebra C(g) defined in this way

is called the Clifford algebra of the quadratic form §g.

A more direct way of defining C(J) would go as follows:
Let T(V) be the associative tensor algebra defined by the vector

space V, i.e. an element of T(V) is of the form:
k @ vy *(vi & Vy)u s

The multiplication in T(V) is defined as follows:
ky(k @ v, M{ﬁf @ vz)+ see)
- klk @ klvl # (klvi ﬂ v2] #

vik # v, ® [vi wvz] @ oeas))

= kv a{v @ via(v e vi ® vz]+ ‘en
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C(B) is now the quotient of T(V) by the twe-sided ideal
generated by all elements of the form:

i(vy = Vot V, o vl)-s(vl.vz).
Exercise. If V is n dimensional, show that the dimension of
C(B), as a vector space, is . 1f g s identically zero, show
that C(B) 1is isomorphic (as an algebra) with the Grassman alge-
bra of V , i.e. with the algebra {under wedge product A) of skew-
symmetric tensors on N ,
Exercise. If K=R, and if V is even dimensional, show that faith-
ful representations of C(B) by linear transformations may be
constructed by making V into a complex Hilbert space (possibly

of indefinite sign}, (vq,v,) =~ <v1|v2>, such that:

B(vpavp) = d(<vylvy> + <vylvy2),
constructing the Fermion Fock space, and representing C{(B) via
annihilation and creation operators.
Problem. Can the Fermion Fock space representations defined in
the previous exercise be generalized to more general ground fields

K?

Derivations and automorphisms of Jordan algebras.

Definition. Let J be a Jordan algebra, with the Jordan bracket

denoted by {X,¥}. A vector space automorphism A:J - J is an

automorphism if:
A{X,Y} = {AX,AY]} 5.13

for X,Y e J.
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A linear map B:J -+ J 1is a derivation if:
B{X,Y} = {BX,Y} + {X,BY} 5.14
for X,Y € J.

Exercise. If Bl' Bz are derivations of J, show that the
commutator [Bl,Bz]-Ble-an1 is alsc a derivation.
Thus, the space of derivation of J forms a Lie algebra,

called the derivation Lie algebra of J, denoted by EEQ).

The derivation Lie algebra of J should be regarded as the
Lie algebra of the group of automorphisms of J. To see this,
suppose that t - A(t), -=<t<=, is a parameter family of auto-

morphisms, i.e. that:
At} (XY} = {A(YX,A(t)Y]). 5.15

Differentiate both sides of 5.15 with respect to t

Y}. 5.16

B, = (§E AT + {AX, SR

Apply A(t)'l to both sides of 5.16, using 5.15, and set:

B(t) = A(D) Y §f . 5.17

The result is:

B(t){X,Y} = {B(t)X,Y} + {X,B(t)Y] 5.18
for all X, Y e J, all t.

5.18 then shows that:
B{t)e L(J) for all t. 5.19

The curve t » B(t) in L(J) asscciated with the curve

t +« A(t) in the group of automorphisms of J is called its
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infinitesimal gemerator.

Derivations of quadratic forms.

As an example of derivations, suppose that J 1is constructed
as a direct sum V = R, where V is a real vector space, with
a symmetric, bilinear form B:VxV + R such that the Jordan

bracket takes the following form:
{vl,vz} = B(vyvy) 5.20

for VisV, € \'}

{v,c} = v for v e V, c & R.

Let VAV denote the exterior product of two copies of V.
Let L denote the Lie algebra of derivations of J. Define a

linear mapping a:VAV +» L as follows:
a(vy,v ) (v) = Blv,vylvy-B(v,v )V,
a(vl,vz](c] = 0
for VisVy, V € ¥V, ¢ e R.
We leave it to the reader to show that this map is well defined
by formula 5.21.

Exercise. Show that a(VAV) is a Lie subalgebra of E. In

case V is finite dimensional, describe the Lie algebra struc-

ture of L.

Exercise. Compute a closed formula for the Lie algebra struc-

ture on VAV such that o becomes a Lie algebra homomorphism.
These constructions can most readily be understood in terms

of the Clifford algebra C(g). If v,,v, € VCC(8), then consider
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viv, as the product of the elements relative to the Clifford
algebra structure. Ad[vlvzjzv T VVVeVV Y, then maps V & R
into itself, and this mapping is essentially the mapping defined
by formula 5.21.

Exercise. Consider the elements Cz(B] consisting of polyno-
mials in V of degree at most two. Show that Cz[a) forms a
Lie algebra under commutator, Describe the relation between
this Lie algebra and L.

The Jordan algebras are important in quantum mechanics be-
cause they are the abstract mathematical structures whose repre-
sentations define the "anticommutation relations" satisfied by
certain types of quantum fields, i.e. those which describe parti-
cles having the "Fermion'property. We now turn to study a simple

situation of this sort,
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6. LINEAR QUANTUM FIELDS SATISFYING ANTI-COMMUTATION RELATIONS

Let us now use notations similar to those of quantum
field theory books. Let u,v denote "space-time" indices,
ranging from 0 to 3. Let i,j denote "space" indices,
ranging from 1 to 3. Let x-[xu] denote space-time points,
with components (xu), i.e. xn-t is the "time" component,

(xj]-; e R’ is the "space" component. Thus, we can write:

x = (t,X).

Set:
3

Bu "5 -

Let a,b be further indices running from 1 to n. Adopt
the summation convention on all the indices introduced up to
now. Consider operator-valued "functions" ¢a{x] of space-time
points x and the discrete indices a, acting in a Hilbert
space H. (Typically, a will be composed of two sorts of in-
dices; one, of a "vector, tensor or spinor" nature linked to
Lorentz group covariance and the property the physicists call
“"spin", the other set decoupled from Lorentz transformatioms,
and called "internal symmetry" indices. For example, these in-
dices may range over representations of SU(2Z) ("isospin") or
SU(3). However, we will attempt in this chapter to develop
general methods for dealing with broad classes of quantum fields).

Let us suppose that the ¢a[x) satisfy a first order,
linear, constant coefficient differential equation of the follow-

ing sort:
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aba ¢b(x] ab¢b(x] =0, 6.1
Let us also suppose equal-time anticommitation relations of the
following type:
{9, (t,%),0,(t,7)) = 8, 6 (%), 6.2
for ;, ; e Rs.

H i i -
In 6.1, 6.2, the ﬂab' Aab' Eab are constant matrices with com
plex coefficients while 6.2 has the usual interpretation in
terms of "generalized functions". We shall investigate the con-
ditions for compatibility between 6.1 and 6.2.

First, differentiate both sides of 6.2 with respect to t:

(899, (t,%),9, (£,))

+ {"a[tli}nau@b(t:;]} =0
From 6.3, we have:

Al A0, age, (8,506, (1,9

{11 W (t, JE) A'hb 0""5‘('"}’” = 0.

aa'
Using the field equations 6.1, this gives
A AL aien (0, K00A 000, (6,50, 4y, (2, ))
A0 (0,0 (1,30 A0, 18,0, L (6,51 +R 16y 1 (£,5)) = 0.

Using the postulated equal time commutation relations 6.2, we

have:
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0 i X o+ =+
hbb'kaa'aa'b'aistx-Y)

*

0 -
Abb 'A‘aa IBalbla(x—Y}
6.4
0 i Yer2 2
* Aaa'Abb'sa'h*aiétx Y)

*

0 - -
Aaﬂ'Abb'Ba'h'stx-Y] = 0.

Now, we can use the following relation, whose proof is left as
an exercise:
ez £ 8 (E-F)

Xy 6.5

. -3V (RT3 - 2 -7
aié(x y)= ayi §{x-v).

(0f course, in 6.5 one should follow the conventional rtules for
differentiation of "generalized functions").

Using 6.5, relations 6.4 are equivalent to the following purely

algebraic relations:

0 0
(Abhlhaa'*kaa'Abe]Baibl =0 6.6

0 i 0 ,i .
I:ﬁ"bb"ﬂkaa'-Jﬂ‘ar:l"'a‘hb']B:st'h' 0 . 6.7

Let us now put relations 6.6-6.7 into coordinate-free
form. Let V be a complex vector space of dimension n. Let
(vp,) be a basis for V. Let AU,A be linear transformations:
V+V such that:

n Y
A¥(v.) = A

ab"

b

A(vg) = A, vy 6.9
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Let B be the bilinear form:VxV -+ C defined:
B(va,vb) = Eab . 6.10

Then, 6.6 takes the following form:

0 0
0= (ApprRaar*Aaartpp B Vanvy)

6.11
= BAMY,) A% (v )+ (A% (v ) LA Lvy)) .
6.7 takes the following form:
0 = (Agb'ail'-ﬁgalﬁib')s(vﬂ' 'vbI]
= A (v A% (v )-8 (A% (v,) AT () 6.12

Notice that the steps are reversible, i.e. if 6.11-6.12 are
satisfied, then the equal time anticommutation relations 6.2
may be set up, and they are compatible with the field equations
6.1. Let us sum up as follows:

Theorem 6.1. Suppose that V 1is a complex vector space, with
AH.A a collection of linear transformations:V - V. Then, a
system of equal-time anticommutation relations for the linear

quantum field determined by the field equation:

A"'Bu + A

is determined by a symmetric, bilinear form 8:VxV - C such

that:

BA(Y,),A%(v,))+8 (A% (v)) ,A(Y,)) = 0 6.13

8(A (v), A% (v,0) = 8% (vp) At (v,)) 6.14

for all ViaVy € V.
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Remark: The same argument could be used to characterize equal
time commutation relations of the same form as 6.2. Then, the
matrix (Bnb} and the form £ would be skew-symmetric, and
6.13-6.14 would be satisfied.

Let us now suppose 6.13-6.14 are satisfied, and see how
the field equations 6.1 and the equal-time anticommutation rela-
tions can be characterized more algebraically in terms of
infinite dimensional Jordan algebras. Let T denote the vector
space of compact-support, C° maps: RS+ V. Thus, each vy e T
is of the form:

V(XY = vy R)vyee ey (R)vp, 6.15
where [Ta(i]], the components of v, C", complex-valued, com-
pact by supported functions of X e Rs. For each ¥y e I', con-
struct the curve t =+ ¢t(1r] in the space of operators in H,
defined as follows:

6 (¥) -IT,(?E}%{'L.?E]&? . 6.16
R3
Let us now compute the anticommutation relations 6.2 in terms
of the objects defined by 6.16. Suppose 7..Y;¥a is another

element of TI. Then,
{tt('l'] |¢t('l"]]'

.J]' Ta(;}T;{;){ta(t,i],¢b{t,§)]d§ dy
p3xp3

=, using 6.2,

j' Ya(R)vy )8, &X

R3

- [sr Gy Goak ‘19

RS
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Thus, 6.17 is the basis-independent form of the anticommutation

relations 6.2.
We can also write the field equations 6.1 in basis free

form. Using 6.8, 6.9 and 6.16, we have:

Z 000 = v (BAg e, (1,06
R3
= v ) (A (8, 5)+A 3,0, (1,5)) dR
3
R

= 4 (A6 AT3, () . 6.18

We can interpret these formulas in the following way:

Define & symmetric, bilinear form @A:TxT"+ C as follows:

BLY,Y'") = j'ami'),v'{ind?c‘ . 6.19
Set:
Jd=T2=C,

Make J into a Jordan algebra as follows:

fy.x'} = Bly.y") 6.20

{y,c}l = v

for y,y' e, ceC .

Then, giving the "linear quantum field" in the traditional
physicist's form, of equations 6.1-6.2, is equivalent to giving
a one-parameter homomorphism t - ¢, of J into the Jordan
algebra of operators on the Hilbert space H , which satisfies

the differential equations 6.18, We shall call this method of
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interpretation of what is meant by a linear quantum field the

Heisenberg picture interpretation. The equations 6.18 can

be satisfied by postulating the following form:

$.(¥) = alveds 6.21

where t * Y is a curve in T such that:

0 .
A2 (v eata (v )eay, = 0, 6.22
and where ¢ is a fixed homomorphism of J into the operators

on H. To satisfy the commutation relations 6.17, we must have

the following conditions:

2 BlrpYy) =0 . 6.23

Relations 6.13-6.14 give a set of necessary conditions for 6.13
to be satisfied. Showing that they are sufficient would involve
a detailed study of the "Cauchy problem" for the partial differen-
tial equations 6.22, a task we shall not go into at the moment.
Notice that what we have essentially done is to solve the "quan-
tum" mechanical equations of motion, 6.1, in terms of the equa-
tions of motion, 6.22, of the underlying "classical" field. This
is feasible because the classical equations are linear. (A
simple example of this phenomenon involving systems with a finite
number of degrees of freedom is the harmonic oscillator: Once
the classical equations of motion are solved, the quantum ones
are solved also by passing to the "Heisenberg" picture.)

In this section we have merely touched on what should be
a major subject of study. However, we normally emphasize the

approach to quantum field theory which treats space and time on

a more symmetric footing.
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7. FOCK STRUCTURES FOR JORDAN ALGEBRAS DEFINED BY QUADRATIC FORMS

The Jordan algebras encountered in quantum mechanics are

most often encountered via the "Fock space” construction., In
this section, we shall present a slightly more abstract version
of this construction, for use in the next section when we return
to the study of linear quantum fields.

Let V be a real vector space, with B8:VxV - R a symme-

tirec, real-valued bilinear form. Let J denote, as a vector
space, the direct sum V = R. Make { into a Jordan algebra as
follows:
{vl,vzl = E(vl.vz]
{v,c} = v 7.1

for v, Vis ¥V, € V; c e R,

Definition. A Fock structure for J is defined by an R-bilinear

map
a:VxV =+ C 7.2
such that:
n{vl,vz)* = u(vl,vzj 7.3
B(vyavy) = alvy,vy)ralv,,vy) 7.4

Given such a Fock structure, we shall define a new real
Jordan algebra J' which contains J as a subalgebra. J' will

be called the Fock or annihilation-creation Jordan algebra asso-

ciated with J and a.
As a vector space, g' is the direct sum of two copies of

V and C. Denote one such copy of V by V+, the other by V .
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Thus,
J'=vie v s, 7.
Define the Jordan bracket in J' as follows:
W'V =0 = (v ,¥V) 7.5
{V;,?i] = a(vy,v,) 7.6
for Vis V, 8 V.
{e, v’y = Ve, v} = v 7.7
for v e V.

Define g. the Jordan algebra with structure relations 7.1, as
a subalgebra of J', as follows:
Assign:

V=Y o+ vV, 7.8
Then, using 7.4-7.6, we have:

{vysvylh = {vi+v1.V;*vi}

= {vi.v;} + {VI,Vé}

(vy,vi} + Tvy,v))

u(vz.vl} + n{vl,vzl

B (Vl ovz} "
which shows that the mapping
+ -
V o+ ¥ +Y
R+ RcCC

indeed defines J=V # R as a Jordan subalgebra of g'.
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Once such a Fock structure is superimposed on J , it can
be used to construct linear operator representations of the
Jordan algebra J. Let J' be a Fock algebra containing J.
Let us say that a linear representation p:{' + (operators on a

Hilbert space H) is a Fock representation if the following con-

ditions are satisfied:

p(v)" = o(v7) 7.9
for v e V
p(e) = cx(identity operator) 7.10
for c e C.

There is a vector wu € H such that:
p(V7)(¥y) = 0 7.11

cwn[wﬂb =1 7.12

<o (Vg lo(v)¥y>
= u(vz,vlj 7.13

for vy,v, € V.

For v e V, p(v) is & bounded operator. 7.14

Remark. The more explicit Fermion Fock representation has all
of these properties. Let us recall how it is constructed:
(See VB, Vol. 1, Chapter IX). Suppose that V itself has a

Hilbert space structure < | >, such that
<Vliv2> = za(vl.v2] 7.15

for Vi,vy e V.,
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Let H=A(V), the space of skew-symmetric tensors on V,

p(v‘), p(v') the operators of "creation" and "amnihilation"

by v e V, defined imn VB, Vol. I, Chapter IX. (The fact that
elements of H, the "multiparticle" states of V, are chosen

as skew-symmetric tensors is the reason for associating the

name "Fermion" with the process. Physically, "Fermions" are
particles which satisfy the "Fermi exclusion principle”, i.e.

no two particles can be in exactly the same state, In terms of
the mathematics of quantum mechanics, this is usually interpreted
by saying that the "wave function" of a system of identical parti-
cles which are Fermions changes sign when the particles are
permuted. When suitably translated into Hilbert space language,
this means that the "multiparticle" states are chosen as the
skew-symmetric tensors on the single particle states).

Exercise. Using properties 7.9-7.13, compute the inner products
between various elements of H built up by applying "creation"
operators p{V+) to the "vacuum state" wo. Construct an
orthonormal basis for H wusing these formulas.

Exercise. Prove that 7.14 is a consequence of the properties
7.9-7.13, if one assumes that the operators in p{;) applied to
¥y span all of H.

Exercise. Compute the matrix elements functions

t > <yglexplto(v) [vy> 7.16
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Linear quantum fields in terms of modules.

Let F denote the algebra (over the real numbers) of Cu,
compact-support, real valued functions: R4 * R. As in Section
6, we shall denote points of r? by "x", so that an element
f eF is defined by a function x =+ f(x).

Let T ,T''" be F-modules, and let D:I'' = I' be a differen-
tial operator. We shall call the tuple (r,r',D) a linear
field. We shall attempt to define the basic concepts of quan-
tum field theory in terms of this mathematical structure.

First, the space of observables is the quotient vector
space

r/p(r+y. 7.17

A Bose structure for the observables is defined by a skew-

symmetric, R-bilinear, real-valued form on the observables. Al-
ternately (and more conveniently) it can be defined as a skew-
symmetric, R-bilinear form, typically denoted by w:I'xT = R,
such that:

w(D(r*),r) = 0. 7.18

Similarly a Fermi structure for the cbservables is defined by

a symmetric, R-bilinear form @8:TxI' + R such that:
B(D(r'),T) = 0. 7.19

A Fock structure for the observables is defined by an

R-bilinear map
a:I'x" - C

which satisfies the following conditions:
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a(D(r'),r) =0 7.20
&

alyy,v,) = aly,,yq) 7.21
for Y1s¥y € r.

Given such a Fock structure, one can define a Bose and Fermi

structure by separators a into its real and imaginary parts:

&-B d-iw ?.:‘!2
We can now define the "classical states". Let Fd. P‘d
denote the dual F-modules of ' and TI'. Thus, an element

Yd [ Fd is an F-linear map: ' * F. Define a bilinear map:

rxrd + R as follows:

(T.Yd)‘J. Yd(Y}(x}dx4 7.23
R4
Denote the right hand side of 7.6 by the following notaticon:

d
SYLNY *.

L] L]
Similarly, define a pairing: I xT d, R. Let us suppose that

the differential operator D:T' + I' has a dual differential

operator

with the following property:
<p(y') v = <, 0T (v, 7.24

Definition. A classical state of the system (I',[',D) is an

element Td € Td such that:

T vdy = 0. 7.28
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We can now show that each classical state associated
with the system (I,I'',D) determines a real-valued function
on the observables 7.1. In fact, notice that the function
y » <,y S 7.26
satisfies
oy’ ,y9> = 0Ty =0,
hence the function 7.8 passes to the quotient to define a linear

function

r(D(F) - R.

Let us now turn to the study of linear quantum fields in
the constant-coefficient case, where one can use the Fourier

transform as a tool,
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8. FOURIER TRANSFORM FOCK STRUCTURES FOR QUANTUM FIELDS DEFINED
BY CONSTANT COEFFICIENT DIFFERENTIAL OPERATORS

Let us now specialize the general framework discussed in
Section 7. Let M denote Rq. the space-time manifold , with
xt[xu]. O<p, v<3, denoting a point of M. Let V be a real
vector space of dimension n , and let T denote the C , rapidly
decreasing mappings y:M + V, considered as a module over F,
the C* compact support real-valued functions on M. Let D be

a first order, constant ccefficient differential operator: I' - I,

of the following form:

D(y) = A2 (v) + By , 8.1

where A“,B are linear transformations: V + V, and where

3
W

o

We are interested in the vector space T/D(l), which we
identify with the "observables" of the system. To study it,
introduce the Fourier transform in the following way.

Let M denote another copy of R4, with a point of M de-
noted by p-[pu). {Physically, M is the space of relativistic

energy-momentum vectors). Set:
X'P = XgPg X)81-X;Pp X3P3-

Let V =V ¢ C=V & iV denote the "complexification” of V. If
v-v1+iv2 is an element of Vi' then define its "complex conju-

gate" v as vy-iv,. Let I denote the space of c®, rapidly

decreasing functions £:M -+ V., such that:

f(p) = £(-p) 8,2
for p e M.
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If y e, define its Fourier transform ¥ e T as follews:

¥ » ik 1P Xy (xydx . 8.3
¥p) WJ; e y(x)dx

R
Then, this transform sets up an isomorphism between T and r

D goes over by Fourier transform to the following zero-th order

differential operator b:F + F:

D(YI(P) = A(P) (¥ (p))*B¥(p), 8.4

where:

A(p) = i(ppA”-pyat-p,aZ-paa’). 8.5

Notice that, for each p e R‘, A(p) is a linear trans-

formation: ?c + Vc. Further

A(p)*= A(-p). 8.6

{Notice that, conversely, 8.6 is the condition guaranteeing that
the operator D, defined via formula 8.4, actually maps I into
r.

Now, let N be a subset of points p e M satisfying the
following condition:

determinant (A(p)+B) = 0. 8.7

Let us assume that N is an oriented submanifold of, with a

volume element differential form denoted by

de.

Condition 8.7 then is equivalent (since V is finite dimensional)
to requiring that:

(A(P)*B)(V.) # V. 8.8
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We shall now define a Fock structure on T with the aid
of a certain type of algebraic structure on Vc. Suppose that,

for each p € N, “p is a Hermitian-symmetric form: Vclvg +C

such that:
ap (A(R)+B) (V) V) = 0. 8.9
Define a map
w:I'x[" = C
as follows:
IORAR EXCHORACIETE 8.10
N

We see that formula 8.10 satisfies all the conditions needed to
assure that o defines a Fock structure for (I',D), in the sense
defined in Section 7.

Of course, there are many possible choices of the forms
P o determining the Fock structure. In practice, the choice
is fixed much more rigidly by conditions of Lorentz invariance,
and the other qualitative properties that are desirable on
physical grounds (such as causality). We shall now examine the
conditions imposed by Lorentz invariance.

Let L be the simply connected covering group of the Lorent:z
group; as a matrix group L can be identified with SL(2,C).
(See LMP, Vol. I1I}). L 1is a 2-fold covering group of 50*{1.3).
the connected component of the Lorentz group. As such, L acts
as a transformation group on M and M (both identified with

R4 of course) so that:

£Xx+1x = 2p-ix = Lp-Lp

for L el, x eM, peM,
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Suppose also given a real-linear action p of L on V.
It can be extended to a complex linear action on Vo =V+iVv,
Definition. The differential operator D is said to be invari-

ant under p(L) if:
o (AP (2 Y = A(zp) 8.11

for L e L, p e M.

p(2)Be(2) ! = B 8.12
for & e L.

Remark: Conditions 8.11 mean, in the physicist's jargon, that
the operators A¥Y on V transform "like a four vector" under
p(L), while B transforms "like a scalar". One can find in
the books by Gelfand, Minlos and Shapiro [1] and Naimark [1]
the "classical" analysis of the conditions this imposes on the
representation p(L) and the operators ﬁ“, B. In VB, Vol. I,
I have given a presentation of the theory which emphasizes cer-
tain general features, such as the split up of v® into the
direct sum of two subspaces (which physicists call "the spaces
of "dotted" and "undotted" spinors), and the Lie algebra of
linear transformations on V generated by the operators AY,B
and p(L).

Suppese now that the representation p(L) satisfies 8.11-
8.12, and that the family of p -+ o of Hermitian forms on V.
defines a Fock structure for [I. We shall say that the Fock

structure is invariant under p(L) if the following conditions

are satisfied:
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ipeNfor2el,peN B.13

nlp[ptl]?lppcl)vzl = up(vzlvlz] B.14

for p e M; ViaV, € ?c; LelL.

Let us suppose that L acts transitively on N, We shall
show how the system p - ag of Hermitian forms which satisfies
8.14 is determined by this value at one point. Let Po be a
fixed point of N, Let K be the isotropy subgroup of L at
Pg- (Hence, N 1is identified with the coset space L(K).

Set:

Then, the invariance condition 8.14, when cut down to K , implies
the following condition:
uD(p(k]vl.n{k]vzj = pD(vl.vzl g8.15
for Vis Vy € Vc.
Set:
V0 = (Alpg)*B) (V). 8.16
Then, conditions 8.11-8.12 imply that:
oK) vy vl . 8.17
Hence, p(K) passes to the quotient to define a representation
p'(K) of K in
T
ag also passes to the quotient; condition 8.16 implies that it

is a Hermitian symmetric form on V' which is invariant under

p(K).
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Now, we can write the form a on T, defined by 8.10,
in an elegant form that exhibits more clearly the role that L
plays. Let di be the bi-invariant volume element on L.
Let us also suppose that K is compact. Recall that L is
assumed to act transitively on N.
Exercise. Show that the volume element dyp on N and L can

be chosen so that:

f{p)de -J.f(!.pnld!, 8.18
N L

for each rapidly decreasing function £ on N.

With formula 8.16, we can now write formula 8.10 as follows:

n(TlnTzl = fu'!'po (?I(IPU] l?z [!’pn))dg
L

=, using 8.14,

qutp(x")?lizpul.nu:-'lﬁztzpundn. 8.19
L
Notice that this formula frees us from the use of the differen-
tial operator D. We could now start off with an arbitrary
Hermitian-symmetric form ag on ?C, and define a via formula
8.17.

Exercise. Define a representation ¢ of L on T as follows:
o(2) () (x) = p(2) Py 1x). 8.20

With o defined by 8.17, show that:

alo(R)yqy, o)y, = alyy,vy), 8.21
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i.e. that the form a:I'x['+ C 1is invariant under the action
of L.
We can also write £.17 in terms of the Yy» Y; instead

of their Fourier transforms. To do this, use 8,3:

-ikp.+x
¥ () = =, Je 0y (0ax

(2m)
R-ﬂ
: -1
-1p,+L "x
- 12""3 0 v, (x)dx
(2m)
R4
-ip,+x
. lzJ"* 0 ¥, (4x)dx. 8.22
(2m)
Rﬂ
Now, for & e L, set:
o(2) () (p) = p(2)7(2 ). 8.23

Thus, we can rewrite 8.17 as follows:

u{TlaTz) = I‘lu( o(%) ['?l)(Pn) s o(1) ('?23 (pu)]dl' B.24
L

Remark: The reason for formula B.21 can best be understood in
terms of vector bundle theory. (See LGP and VBE). Let E be
the product vector bundle ﬁxvc. Let L act on E as follows:
L(p,v) = (LP,e(2)V) 8.25
for telL,peM ve V.-

Then, 8.23 defines a linear action of L on E., 8.21 defines
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o(L) as the natural action of L on the cross-sections of E.

Note that:

LY , 8.26

o)y =
i.e. the Fourier transform map vy + Y intertwinces the action

of L. Using 8.17 and 8.3, we have:

i2py - (x-y) : -
alyy,v,) = (:ﬂdﬂ’e 0 o (P (27 1)y, (¥),0(8 7 1)y, (¥))ax dy . 8.27
4

L R™*R

Now, for each x e Rd, let us define a bilinear mapping

ﬂ+{x):vcxvc + C as follows:

iipu-x -1 -1
JE ag(p(2) “vy,e(R) Tv,)dr. 8.28

L

4,(x) (Vl |"r2) =
(zm

Then, combining 8.25 and 8.26, we have:

aryvp) =f [0,y (v 0,008 gy 8.29
R4 r¢
For each x, 4,(x) 1is a Hermitian symmetric bilinear form
on V.. Of course, it will have singularities as a function of
x. (For example, notice that, for x=0, the defining integral

on the right hand side of 8.6 diverges, since the volume of L,

which is a non-compact group, is infinite). Further,
*
ﬁ+(x) = E'{.{-x] . 5030
Remark: Notice that, if V=R, p(L)=identity, that & (x) Te-
duces to the "positive frequency'" commutator function used in

the quantum field theory textbooks to quantize the neutral spin
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zero field. (See Schweber [1] for the most complete descrip-

tion of this topic). Explicitly, we have:

2% (x) =

L 4J'eotp1eip"‘dp. 8,31
27)
R4

Thus, formulas 8.26 and B.27 constitute a far reaching group-
theoretic generalization of this. Once we have derived these
formulas, we are not limited to the situaticn with which we
started, but may start with Vc an arbitrary complex vector
space, carrying a representation p(L) of the Lorentz group
L (or any extemsion of L), with ug an arbitrary Hermitian symme-
tric form, This is one way of understanding the fundamental
group-theoretic nature of the process of quantization of linear
fields.

Another important generalization would be to replace M by
a general coset space G/L. Then the integral 8.26 defining the
commutator function &_(x) by what I have called (in LGP,
Chapter 13) the "group-theoretic version of the Fourier trans-
form". In intend to go into these extensive generalizations and
ramifications at a later point in this treatise.

Finally, let us remark that the "derivation" of formula 8,27
is not complete, because we have not justified the interchange
of limits in 8.25. Of course, one might argue that this is a
traditional bit of sloppiness in mathematical physics, that
can be readily justified by being more careful and systematically

considering 4, as a "generalized function", i.e. essentially
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define &_ by the formula 8.27. One tip-off that this is
necessary for a rigorous mathematical interpretation is that

the defining integral 8.26 for 4, diverges for certain values
of x. Hoever, in the spin-zero case, one can, in fact, go
beyond this general remark and compute precisely the form of
4,(x) and its singularities. (See Schweber [1], p.182. Notice
that he gives explicit formulas for A(x) and ﬁ(l){x] in

terms of Bessel functions, and that ﬁ*(x] can be written in
terms of A(x) and btll[x}.} It is obviously an important
problem to do this for the generalized "positive frequency commu-
tator function' a+(x] defined by formula 8.26. In turn, this
involves a major expedition into Lie group harmonic analysis
theory. (For example, notice that formula 8.26 alsc makes sense
if Vc is infinite dimensional, and the analysis of the singu-
larties of A, (x) poses even more complicated harmonic analysis
questions in this case.) Again, I plan to go into this in more
detail in a later volume; at this point I believe it is more

urgent to continue to elaborate the fascinating general princi-

ples underlying quantum field theory.
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g. A GENERAL PRINCIPLE FOR THE CONSTRUCTION OF FOCK STRUCTURES

ON OBSERVABLES DEFINED BY PARTIAL DIFFERENTIAL EQUATIOCHS

In practice, i.e. in the quantum field theory textbooks,
the commutator (or anticommutator) functions for the fields of
spin ¢ or higher are constructed in terms of the corresponding
functions for the spin 0 field. Now, I don't know of any general
theorem why this should be so; partly it seems to be the most
convenient choice and partly it follows from the historical path,
i.e. the wave equations defining the higher spin fields were
chosen sc that their components satisfied the Klein-Gordon equa-
tion., (Notice, however, that this fact depends on the geometric
fact that Minkowski space has zero curvature. Presumably if one
systematically attempted to define quantum field theory on curved
Riemannian manifolds, this simplification would not be available.
Lichnerowicz [1] has developed a formalism to extend the theory
in this direction.] In this section we present a few remarks
that explain the general background for this phenomenon.

Let F be a commutative, associative algebra over the real
numbers, and let I be an F-module. Let D:T' + I be a differen-
tial operator. (See GPS , Chapter 1 for the definition of a
differential operator in this general context.) As before, the
real vector space T[/D(T') will be defined as the space of
observables of the classical field defined by D.

A commutator form for the observables will be defined as an

R-bilinear map o:I'xI' -+ C such that:

a(D(r),r) = 0. 9.1
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(For the moment, we do not assume any particular symmetry
or Hermitian symmetry properties for o, as we have done in
previous sections).

Now, suppose that D' is a differential operator: I' + T.

Set:
D" = D'D, 9.2
Suppose that a" is an R-bilinear map: r'xI' + C such that:
a"(D"(r),r)y =0, 9.3

i.e. o' is a commutator function for the differential opera-
tor DY,

Now, define o as an R-bilinear map: I'xI' -+ C as follows:
alyyavy) = a"(@'(vq)uyy) 9.4
for Yys¥y € r.

Notice that the following identity follows immediately from
9.2 and 9.3:
a(Dr,r) =0 . 9.5

Thus formula 9.4 gives a method of defining a commutator form
for the differential operator D in terms of the commutater
form ao" for the differential operator D".

Let us descendfrom these generalities to consider the tradi-
tional case, where D" is the Klein-Gordon differential opera-
tor, Let V be a real vector space, and let F be the space
of rapidly decreasing, real-valued functions f:R‘ + R. Let

x-(xu). 0<p, v<3, denote a point of R4; au-E%; . Let T denote
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the space of rapidly decreasing maps vy:x -+ yv(x) of R4 + V.

Set:

D(y) = ﬁ“au[v) + Ay, 8.6

where Au,A are constant-coefficient linear maps: V = V,
(Adopt the summation convention on the indices u,v). Suppose

that D' is of similar form:

D' = B”au + B, 9.7

However, let us impose the condition that D" 1is the Klein-Gordon

operator:
D" = guva”au + mz, 9.8
where
0 if ufv
- 1 if y=y=0

By
-1 if l<u=v<3 ,

Let us work out the conditions that D"=D'D:
- W M
D'D (B 3u+B][A 3, *A)
= gH V AV
B auau+{BA +BA) 3 9.9
+BA .

Thus , we have proved the following result:
Theorem 9.1. Let D be a first order, constant coefficient
differential operator of form 9.7. Let us say that a differential

operator D' is a Klein-Gordon divisor of D if D'D=right hand

side of 9.9, (The terminclogy is that used by Takahashi [1]).

Such a "divisor" is of the first order, constant coefficient
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form 9.7 if and only if the following conditicns are satis-
fied:

Hyv VU

B¥AY + BYA 28,

BAY + B¥A = 0 9.10

BA = mz.

Remark: The most familiar special case of these conditions

is the one first considered by Dirac. Recall that Dirac's
motivation for the introduction of what is now called the Dirac
equation for the electron field was that he wanted to introduce
a differential equation D=0 which was of first order in all
space-time derivatives (in order to satisfy "special relativity"
and to support a "probability" interpretation similar to that of
the Schrodinger equation) such that the components of thesolutions
v of D(y)=0, also satisfied the Klein-Gordon equation. The
simplest assumption that would reproduce this behavior involves

the following specializations:
A= im 9.11
(m is a real scalar, of course).

B = -im g9.12

With these assumptions the last two conditions of 9.11 are
automatically satisfied, and everything reduces to the follow-

ing conditions on the A¥:

A¥aVaepVak

U LV
2{AY,AT) = By 9.14
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Condition 9.15 in turn means that the A" determine a represen-
tation by coperators on V of the Clifford algebra associated
with the symmetric bilinear form on r* defined by the metric
tensor (EDU)' Thus, if one requires that V be finite dimen-
sional and that the operator D be "irreducible" in the sense
defined in Chapter VIII of VB, Vol. I (i.e. that the A" generate
a Lie algebra of operators on V which acts irreducibly) there
is but one choice for D , the Dirac equation described in all
the quantum field theory textbooks.

Now, let us return to the more general case where conditions
9.11 are satisfied. Since D" is the Klein-Gordon operator,

we may choose a commutator form
a":T*I = C

in the following way:

a"(¥y,75) -f 8, (x-y)B, (v (x),v,(y))dx dy . 9.15

R¥xp?

In 9.16, &4,(x) 1is the "positive frequency" commutator function
for the scalar Klein-Gordon equation (i.e. the generalized func-
tion determining the Fock structure for the scalar Klein-Gordon

field), and B, is an arbitrary symmetric, R-bilinear form:

VxV - R. (Of course, if one imposes invariance under a group of
transformations on V, B would be determined more explicitly).

If o is now defined by formula 9.4, we have:
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alyy,yy) = a"(D'(vq),vy)
= , using 9.16
ffﬁ+(x-ylﬂo (B“au (v) (x)+By, (x) ,v,(¥))dx dy
- - ffﬁ— (8, (x-y))By ((B¥y*By,) (x) v, (¥))dx dy. 9.16
U

This is a general basis-free formula for the commutator form;
special cases are described in considerable detail in quantum
field theory textbooks. (Schweber [1] and Takahashi [1] have the
most complete treatment of this topic).

Exercise. Work out the Fourier-transformed version of 9.17, and
the condition needed to be satisfied in order that 9,17 define «o
as a Fock structure form fer (I,D).

Research Problem. Separate a into its real and imaginary parts

B+iw. In terms of formula 9.17 (or its Fourier transformed ver-

sion) work out the "causality" properties of g and  w.
prop
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10. GENERAL REMARKS ABOUT SYMMETRIES AND CHARGES ASSOCIATED
WITH LINEAR NUANTUM FIELDS
Let F be a commutative, associative algebra over the
real numbers, and let T,I'' be F-modules. Let D:T' - T be
a linear differential operator,

Definition. A quantization of the observables associated with

the differential operator D is defined by a Hilbert space H
and an R-linear map vy + ¢(y) of T into the space of linear
operators on H such that:

$(D0') = 0. 10.1

Let us suppose that such a quantization is given. An
automorphism of the observable vector space associated with the
differential operator D is defined as a vector space automor-

phism A:T - T' such that:
A(D(T")) = D(T"). 10.2

Such an automorphism is (unitarily) realizable if there is a

unitary operator U:H - H such that:
¢$(A(Y)) = Ug(y)u? 10.3
for y e T.

An endomorphism of the observables is defined as an R-linear

transformation B:T - ' such that:
B(D(T'))c D(T"). 10.4

Such an endomorphism is said to be realizable (via a skew-

Hermitian operator) if there is a skew-Hermitian operatoer W:H + H
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such that:
$(By) = [W,¢(y)] 10.5

for all y e T.

The unitary and skew-Hermitian operators obtained in this
way are very important in classifying elementary particles and
their interactions., (Typical examples of such U's would be
the P,C operations, i.e. the unitary operators corresponding
to parity and charge conjugation. Typical examples of such W's
would be the charge, hypercharge, strangeness, isotopic spin
operators, i.e. all those quantum observables which are "additive"
with respect to interactions).

There is another possibility that is important for the
applications to elementary particle physics. Recall then an
R-linear automorphism U:H + H is said to be anti-unitary if it

satisfies the following conditions:
U(ce) = ¢ U(Y) 10.6

for y e H, c e C.

<Uwy) [U()> = <y, lvy> 10.7

for *1'*2 e H.

One may then say that an observable automorphism A 1is anti-

unitarily realizable if 10.3 is satisfied, with U anti-unitary.

For example, the "time reversal operator', usually denoted by
T, is anti-unitary. (This is necessary in order that the

“energy operator" associated with the Lie algebra of the Poincaré
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group have a positive spectrum).

Later on, we shall study in more detail the algebraic ques-
tions associated with these concepts, and the related problems
concerning the classification and interaction of elementary
particles. In the rest of this section, we shall restrict atten-
tion to an important special case, namely that associated with
the concept for a '"charged" particle. (In Section Z we have
already studied this in the simplest case, the charged, scalar
Klein-Gordon particle).

Let us suppose that I has a complex vector space structure,
For each real number X, let A(A) be the following automorphism
of T:

A (y) = elly. 10.8

Suppose that it satisfied 10.2, i.e. is a D-observable automor-
phism. Then, » =+ A(L) is a one parameter group of observable
automorphisms. A one parameter group i -+ U(A)} of unitary

operators en H such that:

U (MUC-) = eCet?y) 10.9
for each A e R.
is called the charge unitary group.

Its infinitesimal generator would be a skew-Hermitian operator

Q:H * H such that:
[Q,¢(v)] = ¢(iv) 10.10
for vy e T.

Such a @ is called a charge operator. The eigenstates of Q

are called the charge states. If ¢ ¢ H is such a state, with:



Q) = -iqy , 10.11

then gq is called the charge of the state (or "particle" which
is assigned to that state).

If I'" is another F-module with a complex vector space
structure, and if D is an R-linear differential operator:
' + T which is also complex-linear, we see that X -+ A(X) de-
fined by 10.8 will be an observable symmetry, i.e. will satisfy
10.2.

Let us now turn to the construction of the charge operator.
In Section 2, we have presented the traditional way of looking
at this question for the complex Klein-Gordon field. We shall
now abstract from this example a general method for constructing
a charge operator. (It is not clear to me whether the method
presented here covers all cases of physical interest. 1 have
found the whole question of the '"charge" operators and ''charge
conjugation” to be very unclear in the physics literature).

Let Tc be a complex vector space. (The module structure
of the cbservables will play no role here, so we will forget it.)

Let Dy:f_+ T'. be a complex-linear operator. (We will for

c
simplicity, ignore the general case where D0 is a map between
different spaces.)

Definition. A subspace FGCZFC is called a neutral subspace

for the complex differential operator D, if the following con-

ditions are satisfied:

Pa is a real linear subspace of Fc.
10.12

i.e. crﬂc ro for ¢ e R.



I = Fu+iFU;F0C,iF0 =0, 10.13

i.e. T 1is the "complexification"

of Tu.

Dy (o)< Iy 10.14

Now, let

F=rysT,

10.15
In 10.13, the direct sum is that in the sense of real vector
spaces. Hence, I 1is considered to be a real vecter space.
(If Tc is considered as a real vector space, it is isomorphic
to T, of course, but to be as clear as possible we shall keep
the ideas separate). Let D be the R-linear map:T + I defined
as follows:
D{Tl P "I'z) = DO(T].] ® nn("f’z] 10.16
for v;, v, € Ty.
Suppose that HO is a Hilbert space, and that vy -+ ¢D(T)

is a gquantization of D restricted to T by skew-Hermitian

0 0
operators on H, i.e. for vy e TU. ¢u(1] is a skew-Hermitian

operator on H, and:
@ﬂ(nn(rul} = 0. 10.17

Let us construct a quantization of D defined by 10.14,
This can be readily done using the tensor product of Hilbert
spaces noticn, (which we shall discuss in more detail in Chapter
ITI., Set:

H=Hy ® HD . 10.18
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For Y-vl & *2 e, set:
0 (v) = 65(yq) ® 141 @ ¢,(v,). 10.19
Explicitly, 10.17 means that ¢(y) acts on H as follows:

for *1- wz [ HD'

Let B be the linear transformation:T + I defined as follows:
Blyy @ vp) = -y, & (-v,). 10.21
Then, combining 10.14 with 10.19, we have:
B(D(y; ®7v,)) = B(Dy(yy) & Dy(y,))
= -Dg(y,) @ Dylyy) = DB(yy @ v,).
In particular, B is an endomorphism of the observables associated

with the operator D.

Exercise. Suppose (Q 1is a linear operator:H + H such that:

A e 1] =1 @ A
(A ) 10.22

(Q,1 = A] = -A =1
for each linear operator A:H, - Hy which is a linear combination
of the operators ¢u(ru).
Then, with &(I') defined by 10.17,

[Q,¢(¥)] = ¢(By), 10.23

i.e. Q is a realization by ocperators on H of the endomorphism
B.

Remark. To the best of my knowledge, there is nc general way of
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constructing Q to satisfy conditions 10.20. In the cases of
importance in physics, this can be done readily using a "Fock
space” structure for HO' We shall then have to assume an
operator Q exists satisfying 10.21.

Suppose now that vc-714ivz. with YysYz € Tos is an ele-
ment of [ _. We ask the following question: Can we assign an

operator ¢(Tc] to Ye such that:

(Q,e(y )] = ¢(iv )7 10.24
The answer to this is the following formula:
¢(v.) = ¢(v)+ie(By) , 10.25
where Y=Y ® ivz.

Proof of 10.22,

1f Yc'Tl"'iTz! Y-Yl L] Yzl then
iy =ivy=v,5 Y'=-v; ® vy
B(y)=y', B%=-(identity).
Using 10.23, with iy, replacing Yor
¢(iy ) = ¢(y')+ie(By')
[Q,6(r )] = é(By)+is (B%y)
ey )+id¢(By').

This proves 10.22.

Let us sum up as follows:

c
a complex-linear operator. Under the assumption there is a

Theorem 10.1. Let T _ be a complex vector space, D:I‘c * T

neutral subspace TgCT, for the operator D, and the other
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conditions described above are satisfied, there is a quanti:za-
tion vy, + ¢(v.) of D by non-Hermanian operators on a Hilbert
space H, and a skew-Hermitian "charge" operator Q:H + H such

that:
[Qué(v)] = ¢(iv,)

for all Yo € Fc.

Further Remarks. 10.23 shows that the Hermitian part of ¢(T:),

Ho(r )+l = e 10
defines the quantization of the corresponding "real' fields,
{$(y)}:

From 10.23 we can also derive the commutation relations of
the "complex" fields ¢(yc} in terms of those of the "real"
fields $(y). Suppose that w is an R-bilinear mapping:I'xI"~+ R

such that:
[6(y)8(¥")] = iwly,v") 10

for v, v' e T.

Then,
[¢[Tc}.¢(T;]] = [¢(y)+i¢(By),e(y")+i¢(By")]

= i(wly,y')-w(By,By')+iw(By,y")

+ iw(y,B ¥") 10.

[B0r) " se (v ] = [8(¥)-14 (BY) ,o(y ") +is (By")]

= i(uw(y,y")*tw(By,By ') *iuw(y,By ') ~iw(By,y")). 10,

The commutation relations simplify dramatically if the follow-

ing conditions are satisfied:

10.

26

.27

.28

29

30
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w(By,y")*w(y,By') =0 10.31
for v, v' e .

Exercise. Show that 10,27 is a necessary condition for the
existence of a skew-Hermitian charge operator @ satisfying
10.24 (with 10.23 satisfied, of course).

With 10,27, we have:

[6(v),8(y )] = 0

L]

for Yer Yo € rc

10.32

[4Cre) v (yo)] = 28 (uly,y')*iuly,By")). 10.33
Set:
Foalyo,ve) = dely,y')-ie(y,By").
Exercise. Show that o is a Hermitian-symmetric, R-bilinear
map:I‘ch‘Ic +C.
Notice that the commutation relations 10.28-10.29 can be

put into the following elegant form:

[6(y.),8(y. )] = 0
et 10.34

[6(r) 28 (Y )] = aly_,¥.)

1
for Yer¥e € rc .

It is curious (and confusing) that Hermitian symmetric forms
occur in two distinct places in the theory of linear quantum
fields: 1In the description of the "Fock" structure of skew-
Hermitian fields (as we have seen earlier in this chapter) and,
as in 10.30, in the commutation relations of "complex", i.e.

non skew-Hermitian fields.
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Given such a Hermitian symmetric form u:[‘cx]"c + C, one
can also postulate anticommutation relations for the fields
¢(y¢]. of the following form:

1
{e(y ) ,e(y )} =0
¢ ¢ 10.35
* ] ]
(v )y} = aly ,y,)

L
for YooY € Tc.

Thus, a basic problem is to determine all such Hermitian
symmetric forms on re - We shall worry about this later,

In this section we have described some basic properties
of the "charge" operator. We now investigate the relations be-

tween the '“charge" and the “charge conjugation" operator.
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11. CHARGE CONJUGATION OPERATOR FOR LINEAR REAL AND COMPLEX
QUANTUM FIELDS
We shall now review, and slightly generalize, our basic
definitions. Let T be a real vector space. Let B be an

R-linear map:I' +T such that:

B2 = (-identity) 11.1

Let ¥ = ¢(y) be an R-linear mapping of I into the space
of skew-Hermitian operators on a Hilbert space H. Such a map-
ping is called a quantization of TI. A skew-Hermitian

operator Q:H + H is said to be a charge operator for the quan-

tization (T,$) (relative to the endomorphism B) if the follow-
ing condition is satisfied:
[Q,¢(¥)] = ¢(By) 11.2

for all vy e T.

We denote the charge operator satisfying 11.2 by: (Q,B).
Definition. Let C:H - H be a unitary operator, and let A:Tl+T
be an R-linear vector space automorphism, The pair (C,A) is

said to be a charge conjugation operation for the charge operator
(Q,B) associated with the linear quantum field (T,¢) if the

following conditions are satisfied:
cQc = (. 11.3
co(v)c™! = a(an 11.4

for all y e T.

AB+BA = 0. 11.5
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2

c? « ei®(identity), 11.6

where 6 1is a real number.

We can now give a very elegant algebraic interpretation
of condition 11.5, Make T into a complex vector space as
follows:

{a+bi) (y) = ay = bEB(v) 11.7
for a, b € R.

Exercise. Show that 11.7 does indeed define I as a vector space
over the complex numbers.

Remark. This algebraic trick -- regarding a complex vector space
as a real vector space (of twice the complex dimension) together
with a real-linear map whose sequence is twice the dimension--

is very well known in differential geometry. See DGCV,

Chapter 32.

Recall (e.g. from LMP, Vol. II, Chapter III) the definition
of an"anti-linear" transformation of a complex vector space.
Definition. Let V be a vector space over the complex numbers.
A linear transformation W:V+V is said to be anti-liies1 (rela-
tive to the complex structure of V) if it satisfies the following
two conditions:

W is R-linear, i.e.
Wiav) = aW(v)
for a e R,v e V. 11.8

W(iv) = -W(v)

for v e V.



Exercise. With the complex structure defined in an T via
11.7 by bilinear transformation B, show that condition 11.5
associated with the "charge conjugation'" operation (C,A) is
equivalent to the condition that A be an anti-linear transfor-
mation: I - [,

Making I into a complex vector space, using formula 11.6,
let us define a new "non-skew Hermitian" or "complex" quantum

field ¢c as follows:
¢.(v) = ¢ (y)+ie (By) 11.9
for vy e T.
Notice that; using 11.6,
¢ (iv) = ¢ (-By) = -6(By)-18(B%Y)
= -¢(By)+ie(y)
= i¢.(v). 11.10

In particular, notice that 11.10 implies that ¢ defines a
complex-linear map from the complex vector space T to the com-
plex vector space of all linear operators on H. Further if
(C,A) 1is the charge conjugation operator for the guantum field
(¢,I'} we have the following relations between (C,A) and the
"complex" gquantum field (¢c,r]:
C ¢C(y]c'1 = ,using 11,9 and 11.4,
¢ (Ay)+i¢ (ABy)
= ¢(Ay)-1¢(BAY)

®
= -tc(AT} . 11.11

We may now abstract from this formula some general defini-
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tions, applying to complex quantum fields, independently of

their association from real (i.e. skew-Hermitian) ones:

Definition. Let T be a complex vector space, H a Hilbert
space, A:T - T an anti-linear transformation, Q a skew-Hermitian
operator: H -+ H, and U a unitary operator: H = H. Then, a

complex linear quantum field is a complex-linear mapping

¢c:r + {linear operators on H) such that:

(e (¥)] = ¢(iy) 11.12
coc™! - -q.
c #c(T)C-l - wc(AvJ* 11.13
for vy e T.

This definition is independent of the "commutation rela-
tions" that the field may satisfy. They may be "axiomatized"
in the following way:

Definition. Let T, ¢gs H, Q, C, A be as in the preceding

definition. Then, the field satisfies Bose commutation relations

if the following conditions are satisfied:
(6.(ry)se.(yy)] = 0 11.14
L]
[0.0vy) 2o (vp)] = alyy,yyds 11.15

where a is a Hermitian-symmetric map: I'xT - C,.

Similarly, the field satisfies Fermi anti-commutation rela-

tions if the following conditions are satisfied:
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4 (r1) 0. (r,)) = 0 11.16

*
{¢C(Ylj '¢c(T3]] = G(TI:TZ] 11.17
for Yyr Yp € T.
Finally, conditions 11.14 or 11.16 imply compatibility con-

ditions between A and a. Apply Ad C wboth sides of 11.14

using 11.12:

* -1 -1
alyyayy) = (€ ¢ (ry) €7, C ¢ (yp)C 7]

= ,using the fact that C is unitary, i.e. C'-C'l
(o (ypchH, o tvc™h
ct'l ' ct12
*
= [@c(ATl]l ¢c(kT2] 1.
Hence, we have:
a(Ay,Av,) = -aly,,vy) . 11.18

Recall that condition 11.17 means that A is an anti-unitary
operator relative to the form a. (See LMP, Vol. II}.
Exercise. Show that relation 11.17 also follows from the Fermi
anti-commutation relations 11.15-16.

Let us now see how these abstract ideas apply to vector
spaces of observables associated to first order, complex linear

differential equations.
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12, QUANTIZATION OF COMPLEX LINEAR QUANTUM FIELDS

Let V be a complex vector space. Let M be the space-
time manifold, i.e. R‘. Denote points of M by x; their com-

. e d
ponents by (xu). Set: Bu -:,x—u . Let T denotethe space of

rapidly decreasing maps vy:M -V, Let D:T +T denote the follow-

ing first order, constant-coefficient differential operator:
D(y) = M3, (v) + X(v), 12.1

where (Ku,I] are complex-linear transformations of V into
itself,
(Note that we are changing the notations slightly; e.g. the T
here plays the role of re in Section 11. We shall attempt to
work with complex vector spaces and their "complex" quantizations
directly, instead of working via skew-Hermitian fields).
We shall then attempt to quantize T, via a complex-linear

transformation

¢:T - (operators on a Hilbert space H),
such that:

$(D(r)) = 0. 12,2

(Note that ¢ is what was called ¢c in Section 11; we can
leave the subscript "c¢" off, since we shall not deal with Hermi-
tian fields in this section.)

Our first problem is to define an anti-linear map A:l' = T
such that:

A(D(T))Y I(r). 12.3

We shall not seek the most general solution to this problem,



(2%
L
L=}

but shall look foer A of the following form:

Aly)(x) = A(y(x)) 12.4

where A is an anti-linear transformation:V + V which satisfies
12.8. (For the sake of simplicity of notation, we use "A" both
as a linear transformation on I and on V). In order to

satisfy 12.3, we shall suppose that:
AD = *DA. 12.5

Using 12.1, we see that the conditions for 12.5 may be written
in the following form:

AXM = ix¥a 12.6
AX = £XA . 12.7

Let us also assume that the differential operator D is
irreducible in the sense defined in Chapter VIII of VB, Vel. I,
i.e. that the Lie algebra of linear transformations on V
generated by real linear combinations of the X" and X and
their commutators acts irreducibly on V. Dencte this Lie alge-
bra by G. V is finite dimensional, it follows by a theorem
due to E. Cartan (see VB, Vol. II, p.129) that G is semisimple,
or is the direct sum of a semisimple ideal and a one-dimensional

i

center. Thus, A" commutes with G.

By Schur's lemma,

AZ = scalar multiple of identity
Then, we can change A by a scalar multiple so that:
A% - 21, 12.8

In VB, Vol. I, Chapter VIII, Section 7, I have discussed



the existence and properties of such an A in case D was the
Dirac equation, or had properties similar to it, Let us abstract
from that discussion some general conditions.

Suppose that in addition to 12.6-12.7, the X",I satisfy
the following conditions:

There exists a complex-linear transformation

§:¥ -V such that:

sxM o= - 1M 12.9
X = X6, 12.10

Remark: 1In the case where D is a Lorentz invariant differential
operator, such a & may be constructed - as indicated in VB,

Vol. I - by means of the "PT" operator of the complex Lorentz
group.

Thus, we have the following alternative:

Either:
AXY = XMA; AX = XA; A% =1 12.11

or
sAXY = XMgA; SAX = -X8A, A% =1 12.12

or
AXY = XMA; AX = xA; A% = -1 12.13

or
SAXY = XMsA; SAX = -XéA; A% = -1, 12.14

In case 12.11 is satisfied, the subspace
Vg = {v e ViAv=v}

is a real subspace of V, such that:
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= o q . yH .
Vo=V, ® iVs; X [VD}C VU' I(Vu]C VU. 12,15

These conditions mean that, with Fn-set of maps:R‘ * Vg
D(PD)C FU and I‘-I":l @ iro, and the quantization of (I,D)
proceeds, as explained in previous sections, by "complexifying"
a skew-Hermitian quantization of rﬂ. The other cases, 1212-14,
involve more complicated algebra, which we shall not examine in
detail here. (I hope to do this at a later point in this work).
For example, if (BA}Z-l, notice that BA is an anti-linear
involution of V which commutes with the X" but anti-commutes
with X. One can then prove that with respect to a suitable
basis of V, the x¥ are real matrices, while X is pure
imaginary. This is the situation, for example, with the Dirac
equation, where it is known that in the "Majorana form"

the Dirac matrices can be taken to be real, The rest of the alge-
braic possibilities must be examined in a similar way.

Let us turn now to the gquestionof the construction of a
Hermitian symmetric form a:I'xI' » C which is suitable for set-
ting up of "commutation" or "anti-commutation" relations for the
fields ¢(T). For this purpose, it is convenient to introduce
the Fourier transform. Let M denote the real vector of rela-
tivistic momentum four-vectors; p-{pu) denotes a typical point.

For xe M, peM, set:

X'P T Buy*uPy T XoPpTXqP XaP3 X4Py-

Let M denote the space of rapidly decreasing c® mappings

¥y:M + V., For vy €T, denote its Fourier transform by ¥, defined

as follows:
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§(p) = —2 2J’e'ip'xY[x]dx . 12.16

Let D:T - T denote the Fourier transform of D:

D(¥) (p) = X(P)¥(P) * X¥(p), 12.17
with:
_ . v
A(p) = lguvpux 12.18
(g,, is the Lorentz metric tensor).

uv
Because the Fourier transform sets up an isomorphism between

r and T , I/D(I) 1is isomorphic to F/D(F). Let N be the

subset of M defined as follows:
N = {p € M:X(p)+X) (V)#V}. 12.19

Let A denote the Fourier transformation of A acting on
', where A arises from an anti-linear map:V + V satisfying

12.6-12.7. From 12.14, we have:

A(YI(P) = ACY (-P)). 12.20

Let de denote a measure on N. For each p e N, let

up:va + C be a Hermitian symmetric form such that:
GPE(I(P)+X)[V).V) = 0. 12.21
For ?1, ¥, € T, set:
a(¥y.¥,) = Iup[?rltpl »¥2(P))dyp. 12.22
N

Then, a defined by 12.21 is a Hermitian symmetric form on f,
hence, via the isomorphism 12.14, on T. Let us impose the key

condition 11.17, which links the "charge conjugation" operation
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to the commutation relations. Combining 12.19 and 12,21, we

see that 11.17 implies the following condition:

G[i;lﬂaﬁll = 'a(‘?z!?l]l
ar
Ja, (47, C9) AT ()
N
 ENAORNOIES
N

Now, let N,, N  be the following subsets of N:
N, = {p e Nipy>0} 12.23

N_={pe N:p0<0}. 12.24
Let us suppose that N=N_UN_ , and that the "total reflecticn"

or "PT" map p + -p preserves N, maps N, onto N_ , and

preserves the measure de.

Then, 12.22 takes the following form:
J'u_p(ﬁu'r‘l{p) AT 5 (p)) dyp
12.25

S ESAOBAGILES
N

Let us assume that 12.25 is true because the following relation

is true:
ap(Vovy) = -a_,(Avy,AV,) 12.26
for all p e N.

Notice that relation 12.26 determines the form o for pe N
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in terms of oy for pe N, Thus, we have; for Yi» Yy e T,

alyys7y) = (¥ .7,)

- [y @) T5 () e Gy P T, 0P ap

N,

= [(ap (31017, (P)) -0, (AT, (-P) AT, (- ) dyp
H-l-

« flap Gy )3, -0y R @ AG) ) IGp. 1227
N

*

Formula 12.26 is the key to understanding how "anti-particles"

are introduced when I is quantized. Suppose that we set:

8y 0rp0vg) = fay(F1(0),7,(e)) 4y 12.28
N»
uthl'TZJ = 'GI(AT?.’ATl)' 12.29
Then, we have:
a(TlnTz) = ul{leTz]*uz{TlgTz]- 12.30

Let us suppose that Hy, Hy are Hilbert spaces, and that
$,5 ¢, are complex-linear mappings: I' ~ (operators on Hl,sz
such that:

(640v)) s8,(v,)) = 0

*®
$.0vq) s9,(v5)] = ay(vy,75)
[010v1) »#,0(v2)] = a,(¥y.y, 12,51
[6,0¥1) 28,(¥,)) = 0
(6,070 48,0501 = ay(vy,¥,)

for Y1sYp € r.
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Now, set:

H=H & H,. 12.32

¢(y) = ¢;00) =1 + 1 = ¢,(y). 12.33

Exercise, With ¢ defined by 12.32, and with commutation rela-
tions 12.30, show that the commutation relations 11.14 are satis-
fied (with ¢c used in 11.14 identified with ¢).

In particular, 12.31-12.32 shows that the quantum field &(T)

is built up as a tensor product of two free non-interacting
fields, namely L2 and ¢, Let us call the states in H;
"particles”, and the states in H, their "anti-particles”. Notice
that the same construction applies in case one deals with the
"anti-commutation" relations 11.15-16,

Problem. Show how the charge operator ( and the charge conju-
gation operator C may now be introduced inte H, provided *1
and ¢, are defined in the standard "Fock" way, with a unigque
vacuum state.

Exercise. Apply this formalism to the Dirac equation. Verify
that, if it is quantized in this way (using anti-commutation rela-
tions, of course) the energy operator y - iaD[T] has & posi-

tive spectrum.
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