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1 Introduction

1.1 Intended audience

These lecture notes outline a single semester course on non-relativistic quantum mechanics

which is primarily intended for upper-division undergraduate physics majors. The course
assumes some previous knowledge of physics and mathematics. In particular, prospective
students should be reasonably familiar with Newtonian dynamics, elementary classical
electromagnetism and special relativity, the physics and mathematics of waves (includ-
ing the representation of waves via complex functions), basic probability theory, ordinary
and partial differential equations, linear algebra, vector algebra, and Fourier series and
transforms.

1.2 Major Sources

The textbooks which I have consulted most frequently whilst developing course material
are:

The Principles of Quantum Mechanics, P.A.M. Dirac, 4th Edition (revised), (Oxford Univer-
sity Press, Oxford UK, 1958).

Quantum Mechanics, E. Merzbacher, 2nd Edition, (John Wiley & Sons, New York NY,
1970).

Introduction to the Quantum Theory, D. Park, 2nd Edition, (McGraw-Hill, New York NY,
1974).

Modern Quantum Mechanics, J.J. Sakurai, (Benjamin/Cummings, Menlo Park CA, 1985).

Quantum Theory, D. Bohm, (Dover, New York NY, 1989).

Problems in Quantum Mechanics, G.L. Squires, (Cambridge University Press, Cambridge
UK, 1995).

Quantum Physics, S. Gasiorowicz, 2nd Edition, (John Wiley & Sons, New York NY, 1996).

Nonclassical Physics, R. Harris, (Addison-Wesley, Menlo Park CA, 1998).

Introduction to Quantum Mechanics, D.J. Griffiths, 2nd Edition, (Pearson Prentice Hall,
Upper Saddle River NJ, 2005).
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1.3 Aim of Course

The aim of this course is to develop non-relativistic quantum mechanics as a complete
theory of microscopic dynamics, capable of making detailed predictions, with a minimum
of abstract mathematics.

1.4 Outline of Course

The first part of the course is devoted to an in-depth exploration of the basic principles
of quantum mechanics. After a brief review of probability theory, in Chapter 2, we shall
start, in Chapter 3, by examining how many of the central ideas of quantum mechanics
are a direct consequence of wave-particle duality—i.e., the concept that waves sometimes
act as particles, and particles as waves. We shall then proceed to investigate the rules of
quantum mechanics in a more systematic fashion in Chapter 4. Quantum mechanics is
used to examine the motion of a single particle in one dimension, many particles in one
dimension, and a single particle in three dimensions, in Chapters 5, 6, and 7, respectively.
Chapter 8 is devoted to the investigation of orbital angular momentum, and Chapter 9 to
the closely related subject of particle motion in a central potential. Finally, in Chapters 10
and 11, we shall examine spin angular momentum, and the addition of orbital and spin
angular momentum, respectively.

The second part of this course describes selected practical applications of quantum
mechanics. In Chapter 12, time-independent perturbation theory is used to investigate the
Stark effect, the Zeeman effect, fine structure, and hyperfine structure, in the hydrogen
atom. Time-dependent perturbation theory is employed to study radiative transitions in
the hydrogen atom in Chapter 13. Chapter 14 illustrates the use of variational methods in
quantum mechanics. Finally, Chapter 15 contains an introduction to quantum scattering
theory.
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2 Probability Theory

2.1 Introduction

This section is devoted to a brief, and fairly low level, introduction to a branch of mathe-
matics known as probability theory.

2.2 What is Probability?

What is the scientific definition of probability? Well, let us consider an observation made on
a general system, S. This can result in any one of a number of different possible outcomes.
Suppose that we wish to find the probability of some general outcome, X. In order to
ascribe a probability, we have to consider the system as a member of a large set, Σ, of
similar systems. Mathematicians have a fancy name for a large group of similar systems.
They call such a group an ensemble, which is just the French for “group.” So, let us consider
an ensemble, Σ, of similar systems, S. The probability of the outcome X is defined as the
ratio of the number of systems in the ensemble which exhibit this outcome to the total
number of systems, in the limit that the latter number tends to infinity. We can write this
symbolically as

P(X) = lim
Ω(Σ)→∞

Ω(X)

Ω(Σ)
, (2.1)

where Ω(Σ) is the total number of systems in the ensemble, and Ω(X) the number of
systems exhibiting the outcome X. We can see that the probability P(X) must be a number
between 0 and 1. The probability is zero if no systems exhibit the outcome X, even when
the number of systems goes to infinity. This is just another way of saying that there is no

chance of the outcome X. The probability is unity if all systems exhibit the outcome X in
the limit as the number of systems goes to infinity. This is another way of saying that the
outcome X is bound to occur.

2.3 Combining Probabilities

Consider two distinct possible outcomes, X and Y, of an observation made on the system
S, with probabilities of occurrence P(X) and P(Y), respectively. Let us determine the prob-
ability of obtaining the outcome X or Y, which we shall denote P(X | Y). From the basic
definition of probability,

P(X | Y) = lim
Ω(Σ)→∞

Ω(X | Y)

Ω(Σ)
, (2.2)
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whereΩ(X | Y) is the number of systems in the ensemble which exhibit either the outcome
X or the outcome Y. Now,

Ω(X | Y) = Ω(X) +Ω(Y) (2.3)

if the outcomes X and Y are mutually exclusive (which must be the case if they are two
distinct outcomes). Thus,

P(X | Y) = P(X) + P(Y). (2.4)

So, the probability of the outcome X or the outcome Y is just the sum of the individual
probabilities of X and Y. For instance, with a six-sided die the probability of throwing any
particular number (one to six) is 1/6, because all of the possible outcomes are considered to
be equally likely. It follows, from what has just been said, that the probability of throwing
either a one or a two is simply 1/6+ 1/6, which equals 1/3.

Let us denote all of theM, say, possible outcomes of an observation made on the system
S by Xi, where i runs from 1 to M. Let us determine the probability of obtaining any of
these outcomes. This quantity is unity, from the basic definition of probability, because
each of the systems in the ensemble must exhibit one of the possible outcomes. But, this
quantity is also equal to the sum of the probabilities of all the individual outcomes, by
(2.4), so we conclude that this sum is equal to unity: i.e.,

M∑

i=1

P(Xi) = 1. (2.5)

The above expression is called the normalization condition, and must be satisfied by any
complete set of probabilities. This condition is equivalent to the self-evident statement that
an observation of a system must definitely result in one of its possible outcomes.

There is another way in which we can combine probabilities. Suppose that we make
an observation on a system picked at random from the ensemble, and then pick a second
system completely independently and make another observation. We are assuming here
that the first observation does not influence the second observation in any way. The fancy
mathematical way of saying this is that the two observations are statistically independent.
Let us determine the probability of obtaining the outcome X in the first system and the
outcome Y in the second system, which we shall denote P(X ⊗ Y). In order to determine
this probability, we have to form an ensemble of all of the possible pairs of systems which
we could choose from the ensemble Σ. Let us denote this ensemble Σ ⊗ Σ. The number
of pairs of systems in this new ensemble is just the square of the number of systems in the
original ensemble, so

Ω(Σ⊗ Σ) = Ω(Σ)Ω(Σ). (2.6)

Furthermore, the number of pairs of systems in the ensemble Σ ⊗ Σ which exhibit the
outcome X in the first system and Y in the second system is simply the product of the
number of systems which exhibit the outcome X and the number of systems which exhibit
the outcome Y in the original ensemble, so that

Ω(X⊗ Y) = Ω(X)Ω(Y). (2.7)
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It follows from the basic definition of probability that

P(X⊗ Y) = lim
Ω(Σ)→∞

Ω(X⊗ Y)

Ω(Σ⊗ Σ)
= P(X) P(Y). (2.8)

Thus, the probability of obtaining the outcomes X and Y in two statistically independent
observations is the product of the individual probabilities of X and Y. For instance, the
probability of throwing a one and then a two on a six-sided die is 1/6× 1/6, which equals
1/36.

2.4 Mean, Variance, and Standard Deviation

What is meant by the mean or average of a quantity? Well, suppose that we wished
to calculate the average age of undergraduates at the University of Texas at Austin. We
could go to the central administration building and find out how many eighteen year-olds,
nineteen year-olds, etc. were currently enrolled. We would then write something like

Average Age ≃ N18 × 18+N19 × 19+N20 × 20+ · · ·
N18 +N19 +N20 · · ·

, (2.9)

where N18 is the number of enrolled eighteen year-olds, etc. Suppose that we were to pick
a student at random and then ask “What is the probability of this student being eighteen?”
From what we have already discussed, this probability is defined

P18 ≃ N18

Nstudents

, (2.10)

where Nstudents is the total number of enrolled students. (Actually, this definition is only
accurate in the limit thatNstudents is very large.) We can now see that the average age takes
the form

Average Age ≃ P18 × 18+ P19 × 19+ P20 × 20+ · · · . (2.11)

Well, there is nothing special about the age distribution of students at UT Austin. So,
for a general variable u, which can take on any one of M possible values u1, u2, · · · , uM,
with corresponding probabilities P(u1), P(u2), · · · , P(uM), the mean or average value of u,
which is denoted 〈u〉, is defined as

〈u〉 ≡
M∑

i=1

P(ui)ui. (2.12)

Suppose that f(u) is some function of u. Then, for each of the M possible values of u
there is a corresponding value of f(u) which occurs with the same probability. Thus, f(u1)

corresponds to u1 and occurs with the probability P(u1), and so on. It follows from our
previous definition that the mean value of f(u) is given by

〈f(u)〉 ≡
M∑

i=1

P(ui) f(ui). (2.13)
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Suppose that f(u) and g(u) are two general functions of u. It follows that

〈f(u) + g(u)〉 =

M∑

i=1

P(ui) [f(ui) + g(ui)] =

M∑

i=1

P(ui) f(ui) +

M∑

i=1

P(ui) g(ui), (2.14)

so

〈f(u) + g(u)〉 = 〈f(u)〉 + 〈g(u)〉. (2.15)

Finally, if c is a general constant then

〈c f(u)〉 = c 〈f(u)〉. (2.16)

We now know how to define the mean value of the general variable u. But, how can
we characterize the scatter around the mean value? We could investigate the deviation of
u from its mean value 〈u〉, which is denoted

∆u ≡ u− 〈u〉. (2.17)

In fact, this is not a particularly interesting quantity, since its average is zero:

〈∆u〉 = 〈(u− 〈u〉)〉 = 〈u〉 − 〈u〉 = 0. (2.18)

This is another way of saying that the average deviation from the mean vanishes. A more
interesting quantity is the square of the deviation. The average value of this quantity,

〈

(∆u)2
〉

=

M∑

i=1

P(ui) (ui − 〈u〉)2, (2.19)

is usually called the variance. The variance is a positive number, unless there is no scatter
at all in the distribution, so that all possible values of u correspond to the mean value 〈u〉,
in which case it is zero. The following general relation is often useful

〈

(u− 〈u〉)2
〉

=
〈

(u2 − 2 u 〈u〉+ 〈u〉2)
〉

=
〈

u2
〉

− 2 〈u〉 〈u〉 + 〈u〉2, (2.20)

giving
〈

(∆u)2
〉

=
〈

u2
〉

− 〈u〉2. (2.21)

The variance of u is proportional to the square of the scatter of u around its mean value.
A more useful measure of the scatter is given by the square root of the variance,

σu =
[ 〈

(∆u)2
〉 ]1/2

, (2.22)

which is usually called the standard deviation of u. The standard deviation is essentially
the width of the range over which u is distributed around its mean value 〈u〉.
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2.5 Continuous Probability Distributions

Suppose, now, that the variable u can take on a continuous range of possible values. In
general, we expect the probability that u takes on a value in the range u to u + du to be
directly proportional to du, in the limit that du → 0. In other words,

P(u ∈ u : u+ du) = P(u)du, (2.23)

where P(u) is known as the probability density. The earlier results (2.5), (2.12), and (2.19)
generalize in a straightforward manner to give

1 =

∫∞

−∞

P(u)du, (2.24)

〈u〉 =

∫∞

−∞

P(u)udu, (2.25)

〈

(∆u)2
〉

=

∫∞

−∞

P(u) (u− 〈u〉)2du =
〈

u2
〉

− 〈u〉2, (2.26)

respectively.

Exercises

1. In the “game” of Russian roulette, the player inserts a single cartridge into the drum of a
revolver, leaving the other five chambers of the drum empty. The player then spins the drum,
aims at his/her head, and pulls the trigger.

(a) What is the probability of the player still being alive after playing the game N times?

(b) What is the probability of the player surviving N− 1 turns in this game, and then being
shot the Nth time he/she pulls the trigger?

(c) What is the mean number of times the player gets to pull the trigger?

2. Suppose that the probability density for the speed s of a car on a road is given by

P(s) = As exp

(

−
s

s0

)

,

where 0 ≤ s ≤ ∞. Here, A and s0 are positive constants. More explicitly, P(s)ds gives the
probability that a car has a speed between s and s+ ds.

(a) Determine A in terms of s0.

(b) What is the mean value of the speed?

(c) What is the “most probable” speed: i.e., the speed for which the probability density has
a maximum?

(d) What is the probability that a car has a speed more than three times as large as the
mean value?
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3. An radioactive atom has a uniform decay probability per unit time w: i.e., the probability of
decay in a time interval dt is wdt. Let P(t) be the probability of the atom not having decayed
at time t, given that it was created at time t = 0. Demonstrate that

P(t) = e−wt.

What is the mean lifetime of the atom?
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3 Wave-Particle Duality

3.1 Introduction

In classical mechanics, waves and particles are two completely distinct types of physical
entity. Waves are continuous and spatially extended, whereas particles are discrete and
have little or no spatial extent. However, in quantum mechanics, waves sometimes act as
particles, and particles sometimes act as waves—this strange behaviour is known as wave-

particle duality. In this chapter, we shall examine how wave-particle duality shapes the
general features of quantum mechanics.

3.2 Wavefunctions

A wave is defined as a disturbance in some physical system which is periodic in both space
and time. In one dimension, a wave is generally represented in terms of a wavefunction:
e.g.,

ψ(x, t) = A cos(k x−ωt+ϕ), (3.1)

where x represents position, t represents time, and A, k, ω > 0. For instance, if we
are considering a sound wave then ψ(x, t) might correspond to the pressure perturbation
associated with the wave at position x and time t. On the other hand, if we are considering
a light wave then ψ(x, t) might represent the wave’s transverse electric field. As is well-
known, the cosine function, cos(θ), is periodic in its argument, θ, with period 2π: i.e.,
cos(θ + 2π) = cos θ for all θ. The function also oscillates between the minimum and
maximum values −1 and +1, respectively, as θ varies. It follows that the wavefunction
(3.1) is periodic in x with period λ = 2π/k: i.e., ψ(x + λ, t) = ψ(x, t) for all x and t.
Moreover, the wavefunction is periodic in twith period T = 2π/ω: i.e.,ψ(x, t+T) = ψ(x, t)

for all x and t. Finally, the wavefunction oscillates between the minimum and maximum
values −A and +A, respectively, as x and t vary. The spatial period of the wave, λ, is
known as its wavelength, and the temporal period, T , is called its period. Furthermore,
the quantity A is termed the wave amplitude, the quantity k the wavenumber, and the
quantity ω the wave angular frequency. Note that the units of ω are radians per second.
The conventional wave frequency, in cycles per second (otherwise known as hertz), is ν =

1/T = ω/2π. Finally, the quantity ϕ, appearing in expression (3.1), is termed the phase

angle, and determines the exact positions of the wave maxima and minima at a given time.
In fact, the maxima are located at k x−ωt+ϕ = j 2π, where j is an integer. This follows
because the maxima of cos(θ) occur at θ = j 2π. Note that a given maximum satisfies
x = (j −ϕ/2π) λ+ v t, where v = ω/k. It follows that the maximum, and, by implication,
the whole wave, propagates in the positive x-direction at the velocity ω/k. Analogous
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d
plane
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n

Figure 3.1: The solution of n · r = d is a plane.

reasoning reveals that

ψ(x, t) = A cos(−k x−ωt+ϕ) = A cos(k x+ωt−ϕ), (3.2)

is the wavefunction of a wave of amplitude A, wavenumber k, angular frequency ω, and
phase angle ϕ, which propagates in the negative x-direction at the velocity ω/k.

3.3 Plane Waves

As we have just seen, a wave of amplitude A, wavenumber k, angular frequency ω, and
phase angle ϕ, propagating in the positive x-direction, is represented by the following
wavefunction:

ψ(x, t) = A cos(k x−ωt+ϕ). (3.3)

Now, the type of wave represented above is conventionally termed a one-dimensional plane

wave. It is one-dimensional because its associated wavefunction only depends on the single
Cartesian coordinate x. Furthermore, it is a plane wave because the wave maxima, which
are located at

k x−ωt+ϕ = j 2π, (3.4)

where j is an integer, consist of a series of parallel planes, normal to the x-axis, which are
equally spaced a distance λ = 2π/k apart, and propagate along the positive x-axis at the
velocity v = ω/k. These conclusions follow because Eq. (3.4) can be re-written in the form

x = d, (3.5)

where d = (j−ϕ/2π) λ+ v t. Moreover, as is well-known, (3.5) is the equation of a plane,
normal to the x-axis, whose distance of closest approach to the origin is d.
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The previous equation can also be written in the coordinate-free form

n · r = d, (3.6)

where n = (1, 0, 0) is a unit vector directed along the positive x-axis, and r = (x, y, z) rep-
resents the vector displacement of a general point from the origin. Since there is nothing
special about the x-direction, it follows that if n is re-interpreted as a unit vector point-
ing in an arbitrary direction then (3.6) can be re-interpreted as the general equation of a
plane. As before, the plane is normal to n, and its distance of closest approach to the origin
is d. See Fig. 3.1. This observation allows us to write the three-dimensional equivalent to
the wavefunction (3.3) as

ψ(x, y, z, t) = A cos(k · r −ωt+ϕ), (3.7)

where the constant vector k = (kx, ky, kz) = kn is called the wavevector. The wave
represented above is conventionally termed a three-dimensional plane wave. It is three-
dimensional because its wavefunction, ψ(x, y, z, t), depends on all three Cartesian coordi-
nates. Moreover, it is a plane wave because the wave maxima are located at

k · r −ωt+ϕ = j 2π, (3.8)

or
n · r = (j−ϕ/2π) λ+ v t, (3.9)

where λ = 2π/k, and v = ω/k. Note that the wavenumber, k, is the magnitude of the
wavevector, k: i.e., k ≡ |k|. It follows, by comparison with Eq. (3.6), that the wave maxima
consist of a series of parallel planes, normal to the wavevector, which are equally spaced
a distance λ apart, and which propagate in the k-direction at the velocity v. See Fig. 3.2.
Hence, the direction of the wavevector specifies the wave propagation direction, whereas
its magnitude determines the wavenumber, k, and, thus, the wavelength, λ = 2π/k.

3.4 Representation of Waves via Complex Functions

In mathematics, the symbol i is conventionally used to represent the square-root of minus

one: i.e., one of the solutions of i2 = −1. Now, a real number, x (say), can take any value
in a continuum of different values lying between −∞ and +∞. On the other hand, an
imaginary number takes the general form iy, where y is a real number. It follows that
the square of a real number is a positive real number, whereas the square of an imaginary
number is a negative real number. In addition, a general complex number is written

z = x+ iy, (3.10)

where x and y are real numbers. In fact, x is termed the real part of z, and y the imaginary

part of z. This is written mathematically as x = Re(z) and y = Im(z). Finally, the complex

conjugate of z is defined z∗ = x − iy.
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k

λ

Figure 3.2: Wave maxima associated with a three-dimensional plane wave.

Now, just as we can visualize a real number as a point on an infinite straight-line, we
can visualize a complex number as a point in an infinite plane. The coordinates of the
point in question are the real and imaginary parts of the number: i.e., z ≡ (x, y). This

idea is illustrated in Fig. 3.3. The distance, r =
√

x2 + y2, of the representative point
from the origin is termed the modulus of the corresponding complex number, z. This is

written mathematically as |z| =
√

x2 + y2. Incidentally, it follows that z z∗ = x2 + y2 = |z|2.

The angle, θ = tan−1(y/x), that the straight-line joining the representative point to the
origin subtends with the real axis is termed the argument of the corresponding complex
number, z. This is written mathematically as arg(z) = tan−1(y/x). It follows from standard
trigonometry that x = r cosθ, and y = r sinθ. Hence, z = r cos θ+ i r sinθ.

Complex numbers are often used to represent wavefunctions. All such representations
depend ultimately on a fundamental mathematical identity, known as de Moivre’s theorem,
which takes the form

e i φ ≡ cosφ+ i sinφ, (3.11)

where φ is a real number. Incidentally, given that z = r cos θ+ i r sinθ = r (cosθ+ i sinθ),
where z is a general complex number, r = |z| its modulus, and θ = arg(z) its argument, it
follows from de Moivre’s theorem that any complex number, z, can be written

z = r e i θ, (3.12)

where r = |z| and θ = arg(z) are real numbers.
Now, a one-dimensional wavefunction takes the general form

ψ(x, t) = A cos(k x−ωt+ϕ), (3.13)

where A is the wave amplitude, k the wavenumber, ω the angular frequency, and ϕ the
phase angle. Consider the complex wavefunction

ψ(x, t) = ψ0 e i (kx−ωt), (3.14)
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Figure 3.3: Representation of a complex number as a point in a plane.

where ψ0 is a complex constant. We can write

ψ0 = A e i ϕ, (3.15)

where A is the modulus, and ϕ the argument, of ψ0. Hence, we deduce that

Re
[

ψ0 e i (kx−ωt)
]

= Re
[

A e i ϕ e i (kx−ωt)
]

= Re
[

A e i (kx−ωt+ϕ)
]

= ARe
[

e i (kx−ωt+ϕ)
]

. (3.16)

Thus, it follows from de Moirve’s theorem, and Eq. (3.13), that

Re
[

ψ0 e i (kx−ωt)
]

= A cos(k x−ωt+ϕ) = ψ(x, t). (3.17)

In other words, a general one-dimensional real wavefunction, (3.13), can be represented
as the real part of a complex wavefunction of the form (3.14). For ease of notation, the
“take the real part” aspect of the above expression is usually omitted, and our general
one-dimension wavefunction is simply written

ψ(x, t) = ψ0 e i (kx−ωt). (3.18)

The main advantage of the complex representation, (3.18), over the more straightforward
real representation, (3.13), is that the former enables us to combine the amplitude, A, and
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the phase angle, ϕ, of the wavefunction into a single complex amplitude, ψ0. Finally, the
three dimensional generalization of the above expression is

ψ(r, t) = ψ0 e i (k·r−ωt), (3.19)

where k is the wavevector.

3.5 Classical Light Waves

Consider a classical, monochromatic, linearly polarized, plane light wave, propagating
through a vacuum in the x-direction. It is convenient to characterize a light wave (which
is, of course, a type of electromagnetic wave) by specifying its associated electric field. Sup-
pose that the wave is polarized such that this electric field oscillates in the y-direction. (Ac-
cording to standard electromagnetic theory, the magnetic field oscillates in the z-direction,
in phase with the electric field, with an amplitude which is that of the electric field divided
by the velocity of light in vacuum.) Now, the electric field can be conveniently represented
in terms of a complex wavefunction:

ψ(x, t) = ψ̄ e i (kx−ωt). (3.20)

Here, i =
√

−1, k and ω are real parameters, and ψ̄ is a complex wave amplitude. By
convention, the physical electric field is the real part of the above expression. Suppose
that

ψ̄ = |ψ̄| e i ϕ, (3.21)

where ϕ is real. It follows that the physical electric field takes the form

Ey(x, t) = Re[ψ(x, t)] = |ψ̄| cos(k x−ωt+ϕ), (3.22)

where |ψ̄| is the amplitude of the electric oscillation, k the wavenumber, ω the angular
frequency, and ϕ the phase angle. In addition, λ = 2π/k is the wavelength, and ν = ω/2π

the frequency (in hertz).
According to standard electromagnetic theory, the frequency and wavelength of light

waves are related according to the well-known expression

c = ν λ, (3.23)

or, equivalently,
ω = k c, (3.24)

where c = 3× 108 m/s. Equations (3.22) and (3.24) yield

Ey(x, t) = |ψ̄| cos (k [x− (ω/k) t] +ϕ) = |ψ̄| cos (k [x− c t] +ϕ) . (3.25)

Note that Ey depends on x and t only via the combination x− c t. It follows that the wave
maxima and minima satisfy

x − c t = constant. (3.26)
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Thus, the wave maxima and minima propagate in the x-direction at the fixed velocity

dx

dt
= c. (3.27)

An expression, such as (3.24), which determines the wave angular frequency as a func-
tion of the wavenumber, is generally termed a dispersion relation. As we have already seen,
and as is apparent from Eq. (3.25), the maxima and minima of a plane wave propagate at
the characteristic velocity

vp =
ω

k
, (3.28)

which is known as the phase velocity. Hence, the dispersion relation (3.24) is effectively
saying that the phase velocity of a plane light wave propagating through a vacuum always
takes the fixed value c, irrespective of its wavelength or frequency.

Now, from standard electromagnetic theory, the energy density (i.e., the energy per unit
volume) of a light wave is

U =
E2

y

ǫ0

, (3.29)

where ǫ0 = 8.85 × 10−12 F/m is the permittivity of free space. Hence, it follows from
Eqs. (3.20) and (3.22) that

U ∝ |ψ|2. (3.30)

Furthermore, a light wave possesses linear momentum, as well as energy. This momentum
is directed along the wave’s direction of propagation, and is of density

G =
U

c
. (3.31)

3.6 Photoelectric Effect

The so-called photoelectric effect, by which a polished metal surface emits electrons when
illuminated by visible and ultra-violet light, was discovered by Heinrich Hertz in 1887.
The following facts regarding this effect can be established via careful observation. First,
a given surface only emits electrons when the frequency of the light with which it is il-
luminated exceeds a certain threshold value, which is a property of the metal. Second,
the current of photoelectrons, when it exists, is proportional to the intensity of the light
falling on the surface. Third, the energy of the photoelectrons is independent of the light
intensity, but varies linearly with the light frequency. These facts are inexplicable within
the framework of classical physics.

In 1905, Albert Einstein proposed a radical new theory of light in order to account for
the photoelectric effect. According to this theory, light of fixed frequency ν consists of a
collection of indivisible discrete packages, called quanta,1 whose energy is

E = hν. (3.32)

1Plural of quantum: Latin neuter of quantus: how much?
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Figure 3.4: Variation of the kinetic energy K of photoelectrons with the wave-frequency ν.

Here, h = 6.6261 × 10−34 J s is a new constant of nature, known as Planck’s constant.
Incidentally, h is called Planck’s constant, rather than Einstein’s constant, because Max
Planck first introduced the concept of the quantization of light, in 1900, whilst trying
to account for the electromagnetic spectrum of a black body (i.e., a perfect emitter and
absorber of electromagnetic radiation).

Suppose that the electrons at the surface of a metal lie in a potential well of depth W.
In other words, the electrons have to acquire an energyW in order to be emitted from the
surface. Here, W is generally called the work function of the surface, and is a property of
the metal. Suppose that an electron absorbs a single quantum of light. Its energy therefore
increases by hν. If hν is greater thanW then the electron is emitted from the surface with
residual kinetic energy

K = hν−W. (3.33)

Otherwise, the electron remains trapped in the potential well, and is not emitted. Here,
we are assuming that the probability of an electron simultaneously absorbing two or more
light quanta is negligibly small compared to the probability of it absorbing a single light
quantum (as is, indeed, the case for low intensity illumination). Incidentally, we can
calculate Planck’s constant, and the work function of the metal, by simply plotting the
kinetic energy of the emitted photoelectrons as a function of the wave frequency, as shown
in Fig. 3.4. This plot is a straight-line whose slope is h, and whose intercept with the ν
axis is W/h. Finally, the number of emitted electrons increases with the intensity of the
light because the more intense the light the larger the flux of light quanta onto the surface.
Thus, Einstein’s quantum theory is capable of accounting for all three of the previously
mentioned observational facts regarding the photoelectric effect.
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3.7 Quantum Theory of Light

According to Einstein’s quantum theory of light, a monochromatic light wave of angular
frequency ω, propagating through a vacuum, can be thought of as a stream of particles,
called photons, of energy

E = h̄ω, (3.34)

where h̄ = h/2π = 1.0546 × 10−34 J s. Since classical light waves propagate at the fixed
velocity c, it stands to reason that photons must also move at this velocity. Now, according
to Einstein’s special theory of relativity, only massless particles can move at the speed
of light in vacuum. Hence, photons must be massless. Special relativity also gives the
following relationship between the energy E and the momentum p of a massless particle,

p =
E

c
. (3.35)

Note that the above relation is consistent with Eq. (3.31), since if light is made up of a
stream of photons, for which E/p = c, then the momentum density of light must be the
energy density divided by c. It follows from the previous two equations that photons carry
momentum

p = h̄ k (3.36)

along their direction of motion, since ω/c = k for a light wave [see Eq. (3.24)].

3.8 Classical Interference of Light Waves

Let us now consider the classical interference of light waves. Figure 3.5 shows a standard
double-slit interference experiment in which monochromatic plane light waves are nor-
mally incident on two narrow parallel slits which are a distance d apart. The light from
the two slits is projected onto a screen a distance D behind them, where D≫ d.

Consider some point on the screen which is located a distance y from the centre-line,
as shown in the figure. Light from the first slit travels a distance x1 to get to this point,
whereas light from the second slit travels a slightly different distance x2. It is easily demon-
strated that

∆x = x2 − x1 ≃ d

D
y, (3.37)

provided d≪ D. It follows from Eq. (3.20), and the well-known fact that light waves are
superposible, that the wavefunction at the point in question can be written

ψ(y, t) ∝ ψ1(t) e i kx1 + ψ2(t) e i kx2 , (3.38)

where ψ1 and ψ2 are the wavefunctions at the first and second slits, respectively. However,

ψ1 = ψ2, (3.39)
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Figure 3.5: Classical double-slit interference of light.

since the two slits are assumed to be illuminated by in-phase light waves of equal am-
plitude. (Note that we are ignoring the difference in amplitude of the waves from the
two slits at the screen, due to the slight difference between x1 and x2, compared to the
difference in their phases. This is reasonable provided D ≫ λ.) Now, the intensity (i.e.,
the energy flux) of the light at some point on the projection screen is approximately equal
to the energy density of the light at this point times the velocity of light (provided that
y≪ D). Hence, it follows from Eq. (3.30) that the light intensity on the screen a distance
y from the center-line is

I(y) ∝ |ψ(y, t)|2. (3.40)

Using Eqs. (3.37)–(3.40), we obtain

I(y) ∝ cos2

(

k∆x

2

)

≃ cos2

(

kd

2D
y

)

. (3.41)

Figure 3.6 shows the characteristic interference pattern corresponding to the above ex-
pression. This pattern consists of equally spaced light and dark bands of characteristic
width

∆y =
Dλ

d
. (3.42)

3.9 Quantum Interference of Light

Let us now consider double-slit light interference from a quantum mechanical point of
view. According to quantum theory, light waves consist of a stream of massless photons
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Figure 3.6: Classical double-slit interference pattern.

moving at the speed of light. Hence, we expect the two slits in Fig. 3.5 to be spraying
photons in all directions at the same rate. Suppose, however, that we reduce the intensity
of the light source illuminating the slits until the source is so weak that only a single photon
is present between the slits and the projection screen at any given time. Let us also replace
the projection screen by a photographic film which records the position where it is struck
by each photon. So, if we wait a sufficiently long time that a great many photons have
passed through the slits and struck the photographic film, and then develop the film, do
we see an interference pattern which looks like that shown in Fig. 3.6? The answer to
this question, as determined by experiment, is that we see exactly the same interference
pattern.

Now, according to the above discussion, the interference pattern is built up one photon
at a time: i.e., the pattern is not due to the interaction of different photons. Moreover,
the point at which a given photon strikes the film is not influenced by the points at which
previous photons struck the film, given that there is only one photon in the apparatus
at any given time. Hence, the only way in which the classical interference pattern can
be reconstructed, after a great many photons have passed through the apparatus, is if
each photon has a greater probability of striking the film at points where the classical
interference pattern is bright, and a lesser probability of striking the film at points where
the interference pattern is dark.

Suppose, then, that we allowN photons to pass through our apparatus, and then count
the number of photons which strike the recording film between y and y + ∆y, where ∆y
is a relatively small division. Let us call this number n(y). Now, the number of photons
which strike a region of the film in a given time interval is equivalent to the intensity of
the light illuminating that region of the film multiplied by the area of the region, since
each photon carries a fixed amount of energy. Hence, in order to reconcile the classical
and quantum viewpoints, we need

Py(y) ≡ lim
N→∞

[

n(y)

N

]

∝ I(y)∆y, (3.43)

where I(y) is given in Eq. (3.41). Here, Py(y) is the probability that a given photon strikes
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the film between y and y + ∆y. This probability is simply a number between 0 and 1. A
probability of 0 means that there is no chance of a photon striking the film between y and
y + ∆y, whereas a probability of 1 means that every photon is certain to strike the film in
this interval. Note that Py ∝ ∆y. In other words, the probability of a photon striking a
region of the film of width ∆y is directly proportional to this width. Actually, this is only
true as long as ∆y is relatively small. It is convenient to define a quantity known as the
probability density, P(y), which is such that the probability of a photon striking a region
of the film of infinitesimal width dy is Py(y) = P(y)dy. Now, Eq. (3.43) yields Py(y) ∝
I(y)dy, which gives P(y) ∝ I(y). However, according to Eq. (3.40), I(y) ∝ |ψ(y, t)|2.
Thus, we obtain

P(y) ∝ |ψ(y, t)|2. (3.44)

In other words, the probability density of a photon striking a given point on the film
is proportional to the modulus squared of the wavefunction at that point. Another way
of saying this is that the probability of a measurement of the photon’s distance from the
centerline, at the location of the film, yielding a result between y and y+dy is proportional
to |ψ(y, t)|2dy.

Note that, in the quantum mechanical picture, we can only predict the probability that
a given photon strikes a given point on the film. If photons behaved classically then we
could, in principle, solve their equations of motion and predict exactly where each photon
was going to strike the film, given its initial position and velocity. This loss of determinancy
in quantum mechanics is a direct consequence of wave-particle duality. In other words, we
can only reconcile the wave-like and particle-like properties of light in a statistical sense.
It is impossible to reconcile them on the individual particle level.

In principle, each photon which passes through our apparatus is equally likely to pass
through one of the two slits. So, can we determine which slit a given photon passed
through? Well, suppose that our original interference experiment involves sending N≫ 1

photons through our apparatus. We know that we get an interference pattern in this
experiment. Suppose that we perform a modified interference experiment in which we
close off one slit, sendN/2 photons through the apparatus, and then open the slit and close
off the other slit, and sendN/2 photons through the apparatus. In this second experiment,
which is virtually identical to the first on the individual photon level, we know exactly
which slit each photon passed through. However, the wave theory of light (which we
expect to agree with the quantum theory in the limit N ≫ 1) tells us that our modified
interference experiment will not result in the formation of an interference pattern. After
all, according to wave theory, it is impossible to obtain a two-slit interference pattern from
a single slit. Hence, we conclude that any attempt to measure which slit each photon
in our two-slit interference experiment passes through results in the destruction of the
interference pattern. It follows that, in the quantum mechanical version of the two-slit
interference experiment, we must think of each photon as essentially passing through both

slits simultaneously.
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3.10 Classical Particles

In this course, we are going to concentrate, almost exclusively, on the behaviour of non-

relativistic particles of non-zero mass (e.g., electrons). In the absence of external forces,
such particles, of mass m, energy E, and momentum p, move classically in a straight-line
with velocity

v =
p

m
, (3.45)

and satisfy

E =
p2

2m
. (3.46)

3.11 Quantum Particles

Just as light waves sometimes exhibit particle-like properties, it turns out that massive
particles sometimes exhibit wave-like properties. For instance, it is possible to obtain a
double-slit interference pattern from a stream of mono-energetic electrons passing through
two closely spaced narrow slits. Now, the effective wavelength of the electrons can be
determined by measuring the width of the light and dark bands in the interference pattern
[see Eq. (3.42)]. It is found that

λ =
h

p
. (3.47)

The same relation is found for other types of particles. The above wavelength is called
the de Broglie wavelength, after Louis de Broglie who first suggested that particles should
have wave-like properties in 1923. Note that the de Broglie wavelength is generally pretty
small. For instance, that of an electron is

λe = 1.2× 10−9 [E(eV)]−1/2 m, (3.48)

where the electron energy is conveniently measured in units of electron-volts (eV). (An
electron accelerated from rest through a potential difference of 1000 V acquires an energy
of 1000 eV, and so on.) The de Broglie wavelength of a proton is

λp = 2.9× 10−11 [E(eV)]−1/2 m. (3.49)

Given the smallness of the de Broglie wavelengths of common particles, it is actually
quite difficult to do particle interference experiments. In general, in order to perform an
effective interference experiment, the spacing of the slits must not be too much greater
than the wavelength of the wave. Hence, particle interference experiments require either
very low energy particles (since λ ∝ E−1/2), or very closely spaced slits. Usually the “slits”
consist of crystals, which act a bit like diffraction gratings with a characteristic spacing of
order the inter-atomic spacing (which is generally about 10−9 m).

Equation (3.47) can be rearranged to give

p = h̄ k, (3.50)
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which is exactly the same as the relation between momentum and wavenumber that we
obtained earlier for photons [see Eq. (3.36)]. For the case of a particle moving the three
dimensions, the above relation generalizes to give

p = h̄k, (3.51)

where p is the particle’s vector momentum, and k its wavevector. It follows that the mo-
mentum of a quantum particle, and, hence, its velocity, is always parallel to its wavevector.

Since the relation (3.36) between momentum and wavenumber applies to both photons
and massive particles, it seems plausible that the closely related relation (3.34) between
energy and wave angular frequency should also apply to both photons and particles. If this
is the case, and we can write

E = h̄ω (3.52)

for particle waves, then Eqs. (3.46) and (3.50) yield the following dispersion relation for
such waves:

ω =
h̄ k2

2m
. (3.53)

Now, we saw earlier that a plane wave propagates at the so-called phase velocity,

vp =
ω

k
. (3.54)

However, according to the above dispersion relation, a particle plane wave propagates at

vp =
p

2m
. (3.55)

Note, from Eq. (3.45), that this is only half of the classical particle velocity. Does this imply
that the dispersion relation (3.53) is incorrect? Let us investigate further.

3.12 Wave Packets

The above discussion suggests that the wavefunction of a massive particle of momentum
p and energy E, moving in the positive x-direction, can be written

ψ(x, t) = ψ̄ e i (kx−ωt), (3.56)

where k = p/h̄ > 0 andω = E/h̄ > 0. Here,ω and k are linked via the dispersion relation
(3.53). Expression (3.56) represents a plane wave whose maxima and minima propagate
in the positive x-direction with the phase velocity vp = ω/k. As we have seen, this phase
velocity is only half of the classical velocity of a massive particle.

From before, the most reasonable physical interpretation of the wavefunction is that
|ψ(x, t)|2 is proportional to the probability density of finding the particle at position x at
time t. However, the modulus squared of the wavefunction (3.56) is |ψ̄|2, which depends
on neither x nor t. In other words, this wavefunction represents a particle which is equally
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likely to be found anywhere on the x-axis at all times. Hence, the fact that the maxima
and minima of the wavefunction propagate at a phase velocity which does not correspond
to the classical particle velocity does not have any real physical consequences.

So, how can we write the wavefunction of a particle which is localized in x: i.e., a
particle which is more likely to be found at some positions on the x-axis than at others? It
turns out that we can achieve this goal by forming a linear combination of plane waves of
different wavenumbers: i.e.,

ψ(x, t) =

∫∞

−∞

ψ̄(k) e i (kx−ωt)dk. (3.57)

Here, ψ̄(k) represents the complex amplitude of plane waves of wavenumber k in this
combination. In writing the above expression, we are relying on the assumption that
particle waves are superposable: i.e., it is possible to add two valid wave solutions to
form a third valid wave solution. The ultimate justification for this assumption is that
particle waves satisfy a differential wave equation which is linear in ψ. As we shall see, in
Sect. 3.15, this is indeed the case. Incidentally, a plane wave which varies as exp[i (k x −

ωt)] and has a negative k (but positive ω) propagates in the negative x-direction at the
phase velocityω/|k|. Hence, the superposition (3.57) includes both forward and backward
propagating waves.

Now, there is a useful mathematical theorem, known as Fourier’s theorem, which states
that if

f(x) =
1√
2π

∫∞

−∞

f̄(k) e i kxdk, (3.58)

then

f̄(k) =
1√
2π

∫∞

−∞

f(x) e−i kxdx. (3.59)

Here, f̄(k) is known as the Fourier transform of the function f(x). We can use Fourier’s
theorem to find the k-space function ψ̄(k) which generates any given x-space wavefunction
ψ(x) at a given time.

For instance, suppose that at t = 0 the wavefunction of our particle takes the form

ψ(x, 0) ∝ exp

[

i k0x−
(x − x0)

2

4 (∆x)2

]

. (3.60)

Thus, the initial probability density of the particle is written

|ψ(x, 0)|2 ∝ exp

[

−
(x− x0)

2

2 (∆x)2

]

. (3.61)

This particular probability distribution is called a Gaussian distribution, and is plotted in
Fig. 3.7. It can be seen that a measurement of the particle’s position is most likely to yield
the value x0, and very unlikely to yield a value which differs from x0 by more than 3∆x.
Thus, (3.60) is the wavefunction of a particle which is initially localized around x = x0 in
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Figure 3.7: A Gaussian probability distribution in x-space.

some region whose width is of order ∆x. This type of wavefunction is known as a wave

packet.
Now, according to Eq. (3.57),

ψ(x, 0) =

∫∞

−∞

ψ̄(k) e i kxdk. (3.62)

Hence, we can employ Fourier’s theorem to invert this expression to give

ψ̄(k) ∝
∫∞

−∞

ψ(x, 0) e−i kxdx. (3.63)

Making use of Eq. (3.60), we obtain

ψ̄(k) ∝ e−i (k−k0)x0

∫∞

−∞

exp

[

−i (k− k0) (x− x0) −
(x − x0)

2

4 (∆x)2

]

dx. (3.64)

Changing the variable of integration to y = (x− x0)/(2∆x), this reduces to

ψ̄(k) ∝ e−i kx0

∫∞

−∞

exp
[

−iβy− y2
]

dy, (3.65)

where β = 2 (k− k0)∆x. The above equation can be rearranged to give

ψ̄(k) ∝ e−i kx0−β2/4

∫∞

−∞

e−(y−y0)2

dy, (3.66)
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where y0 = −iβ/2. The integral now just reduces to a number, as can easily be seen by
making the change of variable z = y − y0. Hence, we obtain

ψ̄(k) ∝ exp

[

−i k x0 −
(k − k0)

2

4 (∆k)2

]

, (3.67)

where

∆k =
1

2∆x
. (3.68)

Now, if |ψ(x)|2 is proportional to the probability density of a measurement of the par-
ticle’s position yielding the value x then it stands to reason that |ψ̄(k)|2 is proportional to
the probability density of a measurement of the particle’s wavenumber yielding the value
k. (Recall that p = h̄ k, so a measurement of the particle’s wavenumber, k, is equivalent to
a measurement of the particle’s momentum, p). According to Eq. (3.67),

|ψ̄(k)|2 ∝ exp

[

−
(k − k0)

2

2 (∆k)2

]

. (3.69)

Note that this probability distribution is a Gaussian in k-space. See Eq. (3.61) and Fig. 3.7.
Hence, a measurement of k is most likely to yield the value k0, and very unlikely to yield
a value which differs from k0 by more than 3∆k. Incidentally, a Gaussian is the only

mathematical function in x-space which has the same form as its Fourier transform in
k-space.

We have just seen that a Gaussian probability distribution of characteristic width ∆x in
x-space [see Eq. (3.61)] transforms to a Gaussian probability distribution of characteristic
width ∆k in k-space [see Eq. (3.69)], where

∆x∆k =
1

2
. (3.70)

This illustrates an important property of wave packets. Namely, if we wish to construct a
packet which is very localized in x-space (i.e., if∆x is small) then we need to combine plane
waves with a very wide range of different k-values (i.e., ∆k will be large). Conversely, if
we only combine plane waves whose wavenumbers differ by a small amount (i.e., if ∆k
is small) then the resulting wave packet will be very extended in x-space (i.e., ∆x will be
large).

3.13 Evolution of Wave Packets

We have seen, in Eq. (3.60), how to write the wavefunction of a particle which is initially
localized in x-space. But, how does this wavefunction evolve in time? Well, according to
Eq. (3.57), we have

ψ(x, t) =

∫∞

−∞

ψ̄(k) e i φ(k)dk, (3.71)
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where

φ(k) = k x−ω(k) t. (3.72)

The function ψ̄(k) is obtained by Fourier transforming the wavefunction at t = 0. See
Eqs. (3.63) and (3.67). Now, according to Eq. (3.69), |ψ̄(k)| is strongly peaked around
k = k0. Thus, it is a reasonable approximation to Taylor expand φ(k) about k0. Keeping
terms up to second-order in k − k0, we obtain

ψ(x, t) ∝
∫∞

−∞

ψ̄(k) exp

[

i

{

φ0 +φ ′
0 (k− k0) +

1

2
φ ′′

0 (k− k0)
2

}]

, (3.73)

where

φ0 = φ(k0) = k0x −ω0 t, (3.74)

φ ′
0 =

dφ(k0)

dk
= x− vg t, (3.75)

φ ′′
0 =

d2φ(k0)

dk2
= −α t, (3.76)

with

ω0 = ω(k0), (3.77)

vg =
dω(k0)

dk
, (3.78)

α =
d2ω(k0)

dk2
. (3.79)

Substituting from Eq. (3.67), rearranging, and then changing the variable of integration
to y = (k− k0)/(2∆k), we get

ψ(x, t) ∝ e i (k0 x−ω0 t)

∫∞

−∞

e i β1 y−(1+i β2)y2

dy, (3.80)

where

β1 = 2∆k (x− x0 − vg t), (3.81)

β2 = 2α (∆k)2 t. (3.82)

Incidentally, ∆k = 1/(2∆x), where ∆x is the initial width of the wave packet. The above
expression can be rearranged to give

ψ(x, t) ∝ e i (k0 x−ω0 t)−(1+i β2)β2/4

∫∞

−∞

e−(1+i β2)(y−y0)2

dy, (3.83)
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where y0 = iβ/2 and β = β1/(1 + iβ2). Again changing the variable of integration to
z = (1+ iβ2)

1/2 (y− y0), we get

ψ(x, t) ∝ (1+ iβ2)
−1/2 e i (k0 x−ω0 t)−(1+i β2)β2/4

∫∞

−∞

e−z2

dz. (3.84)

The integral now just reduces to a number. Hence, we obtain

ψ(x, t) ∝
exp

[

i (k0x −ω0 t) − (x− x0 − vg t)
2 {1− i 2α (∆k)2t}/(4 σ2)

]

[1+ i 2α (∆k)2t]
1/2

, (3.85)

where

σ2(t) = (∆x)2 +
α2 t2

4 (∆x)2
. (3.86)

Note that the above wavefunction is identical to our original wavefunction (3.60) at t = 0.
This, justifies the approximation which we made earlier by Taylor expanding the phase
factor φ(k) about k = k0.

According to Eq. (3.85), the probability density of our particle as a function of time is
written

|ψ(x, t)|2 ∝ σ−1(t) exp

[

−
(x− x0 − vg t)

2

2 σ2(t)

]

. (3.87)

Hence, the probability distribution is a Gaussian, of characteristic width σ, which peaks at
x = x0 + vg t. Now, the most likely position of our particle coincides with the peak of the
distribution function. Thus, the particle’s most likely position is given by

x = x0 + vg t. (3.88)

It can be seen that the particle effectively moves at the uniform velocity

vg =
dω

dk
, (3.89)

which is known as the group velocity. In other words, a plane wave travels at the phase
velocity, vp = ω/k, whereas a wave packet travels at the group velocity, vg = dω/dt. Now,
it follows from the dispersion relation (3.53) for particle waves that

vg =
p

m
. (3.90)

However, it can be seen from Eq. (3.45) that this is identical to the classical particle veloc-
ity. Hence, the dispersion relation (3.53) turns out to be consistent with classical physics,
after all, as soon as we realize that individual particles must be identified with wave packets

rather than plane waves. In fact, a plane wave is usually interpreted as a continuous stream

of particles propagating in the same direction as the wave.
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According to Eq. (3.86), the width of our wave packet grows as time progresses. In-
deed, it follows from Eqs. (3.53) and (3.79) that the characteristic time for a wave packet
of original width ∆x to double in spatial extent is

t2 ∼
m (∆x)2

h̄
. (3.91)

For instance, if an electron is originally localized in a region of atomic scale (i.e., ∆x ∼

10−10 m) then the doubling time is only about 10−16 s. Evidently, particle wave packets (for
freely moving particles) spread very rapidly.

Note, from the previous analysis, that the rate of spreading of a wave packet is ulti-
mately governed by the second derivative of ω(k) with respect to k. See Eqs. (3.79) and
(3.86). This is why a functional relationship between ω and k is generally known as a
dispersion relation: i.e., because it governs how wave packets disperse as time progresses.
However, for the special case where ω is a linear function of k, the second derivative
of ω with respect to k is zero, and, hence, there is no dispersion of wave packets: i.e.,
wave packets propagate without changing shape. Now, the dispersion relation (3.24) for
light waves is linear in k. It follows that light pulses propagate through a vacuum with-
out spreading. Another property of linear dispersion relations is that the phase velocity,
vp = ω/k, and the group velocity, vg = dω/dk, are identical. Thus, both plane light waves
and light pulses propagate through a vacuum at the characteristic speed c = 3× 108 m/s.
Of course, the dispersion relation (3.53) for particle waves is not linear in k. Hence, par-
ticle plane waves and particle wave packets propagate at different velocities, and particle
wave packets also gradually disperse as time progresses.

3.14 Heisenberg’s Uncertainty Principle

According to the analysis contained in the previous two sections, a particle wave packet
which is initially localized in x-space with characteristic width ∆x is also localized in k-
space with characteristic width ∆k = 1/(2∆x). However, as time progresses, the width of
the wave packet in x-space increases, whilst that of the wave packet in k-space stays the
same. [After all, our previous analysis obtained ψ(x, t) from Eq. (3.71), but assumed that
ψ̄(k) was given by Eq. (3.67) at all times.] Hence, in general, we can say that

∆x∆k >
∼

1

2
. (3.92)

Furthermore, we can think of ∆x and ∆k as characterizing our uncertainty regarding the
values of the particle’s position and wavenumber, respectively.

Now, a measurement of a particle’s wavenumber, k, is equivalent to a measurement of
its momentum, p, since p = h̄ k. Hence, an uncertainty in k of order ∆k translates to an
uncertainty in p of order ∆p = h̄ ∆k. It follows from the above inequality that

∆x∆p >
∼

h̄

2
. (3.93)
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Figure 3.8: Heisenberg’s microscope.

This is the famous Heisenberg uncertainty principle, first proposed by Werner Heisenberg in
1927. According to this principle, it is impossible to simultaneously measure the position
and momentum of a particle (exactly). Indeed, a good knowledge of the particle’s position
implies a poor knowledge of its momentum, and vice versa. Note that the uncertainty
principle is a direct consequence of representing particles as waves.

It can be seen from Eqs. (3.53), (3.79), and (3.86) that at large t a particle wavefunc-
tion of original width ∆x (at t = 0) spreads out such that its spatial extent becomes

σ ∼
h̄ t

m∆x
. (3.94)

It is easily demonstrated that this spreading is a consequence of the uncertainty principle.
Since the initial uncertainty in the particle’s position is ∆x, it follows that the uncertainty
in its momentum is of order h̄/∆x. This translates to an uncertainty in velocity of ∆v =

h̄/(m∆x). Thus, if we imagine that parts of the wavefunction propagate at v0 +∆v/2, and
others at v0 −∆v/2, where v0 is the mean propagation velocity, then the wavefunction will
spread as time progresses. Indeed, at large t we expect the width of the wavefunction to
be

σ ∼ ∆v t ∼
h̄ t

m∆x
, (3.95)

which is identical to Eq. (3.94). Evidently, the spreading of a particle wavefunction must
be interpreted as an increase in our uncertainty regarding the particle’s position, rather
than an increase in the spatial extent of the particle itself.

Figure 3.8 illustrates a famous thought experiment known as Heisenberg’s microscope.
Suppose that we try to image an electron using a simple optical system in which the ob-
jective lens is of diameter D and focal-length f. (In practice, this would only be possible
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using extremely short wavelength light.) It is a well-known result in optics that such a
system has a minimum angular resolving power of λ/D, where λ is the wavelength of the
light illuminating the electron. If the electron is placed at the focus of the lens, which is
where the minimum resolving power is achieved, then this translates to a uncertainty in
the electron’s transverse position of

∆x ≃ f λ
D
. (3.96)

However,

tanα =
D/2

f
, (3.97)

where α is the half-angle subtended by the lens at the electron. Assuming that α is small,
we can write

α ≃ D

2 f
, (3.98)

so

∆x ≃ λ

2α
. (3.99)

It follows that we can reduce the uncertainty in the electron’s position by minimizing the
ratio λ/α: i.e., by using short wavelength radiation, and a wide-angle lens.

Let us now examine Heisenberg’s microscope from a quantum mechanical point of view.
According to quantum mechanics, the electron is imaged when it scatters an incoming
photon towards the objective lens. Let the wavevector of the incoming photon have the
(x, y) components (k, 0). See Fig. 3.8. If the scattered photon subtends an angle θ with
the center-line of the optical system, as shown in the figure, then its wavevector is written
(k sinθ, k cosθ). Here, we are ignoring any wavelength shift of the photon on scattering—
i.e., the magnitude of the k-vector is assumed to be the same before and after scattering.
Thus, the change in the x-component of the photon’s wavevector is ∆kx = k (sinθ−1). This
translates to a change in the photon’s x-component of momentum of ∆px = h̄ k (sinθ −

1). By momentum conservation, the electron’s x-momentum will change by an equal and
opposite amount. However, θ can range all the way from −α to +α, and the scattered
photon will still be collected by the imaging system. It follows that the uncertainty in the
electron’s momentum is

∆p ≃ 2 h̄ k sinα ≃ 4π h̄α

λ
. (3.100)

Note that in order to reduce the uncertainty in the momentum we need to maximize the
ratio λ/α. This is exactly the opposite of what we need to do to reduce the uncertainty in
the position. Multiplying the previous two equations, we obtain

∆x∆p ∼ h, (3.101)

which is essentially the uncertainty principle.
According to Heisenberg’s microscope, the uncertainty principle follows from two facts.

First, it is impossible to measure any property of a microscopic dynamical system without
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disturbing the system somewhat. Second, particle and light energy and momentum are
quantized. Hence, there is a limit to how small we can make the aforementioned dis-
turbance. Thus, there is an irreducible uncertainty in certain measurements which is a
consequence of the act of measurement itself.

3.15 Schrödinger’s Equation

We have seen that the wavefunction of a free particle of mass m satisfies

ψ(x, t) =

∫∞

−∞

ψ̄(k) e i (kx−ωt)dk, (3.102)

where ψ̄(k) is determined by ψ(x, 0), and

ω(k) =
h̄ k2

2m
. (3.103)

Now, it follows from Eq. (3.102) that

∂ψ

∂x
=

∫∞

−∞

(i k) ψ̄(k) e i (kx−ωt)dk, (3.104)

and
∂2ψ

∂x2
=

∫∞

−∞

(−k2) ψ̄(k) e i (kx−ωt)dk, (3.105)

whereas
∂ψ

∂t
=

∫∞

−∞

(−iω) ψ̄(k) e i (kx−ωt)dk. (3.106)

Thus,

i
∂ψ

∂t
+

h̄

2m

∂2ψ

∂x2
=

∫∞

−∞

(

ω−
h̄ k2

2m

)

ψ̄(k) e i (kx−ωt)dk = 0, (3.107)

where use has been made of the dispersion relation (3.103). Multiplying through by h̄, we
obtain

i h̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂x2
. (3.108)

This expression is known as Schrödinger’s equation, since it was first introduced by Erwin
Schrödinger in 1925. Schrödinger’s equation is a linear, second-order, partial differential
equation which governs the time evolution of a particle wavefunction, and is generally
easier to solve than the integral equation (3.102).

Of course, Eq. (3.108) is only applicable to freely moving particles. Fortunately, it is
fairly easy to guess the generalization of this equation for particles moving in some po-
tential V(x). It is plausible, from Eq. (3.104), that we can identify k with the differential
operator −i ∂/∂x. Hence, the differential operator on the right-hand side of Eq. (3.108) is
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equivalent to h̄2k2/(2m). But, p = h̄ k. Thus, the operator is also equivalent to p2/(2m),
which is just the energy of a freely moving particle. However, in the presence of a potential
V(x), the particle’s energy is written p2/(2m) + V. Thus, it seems reasonable to make the
substitution

−
h̄2

2m

∂2

∂x2
→ −

h̄2

2m

∂2

∂x2
+ V(x). (3.109)

This leads to the general form of Schrödinger’s equation:

i h̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂x2
+ V(x)ψ. (3.110)

3.16 Collapse of the Wave Function

Consider an extended wavefunctionψ(x, t). According to our usual interpretation, |ψ(x, t)|2

is proportional to the probability density of a measurement of the particle’s position yield-
ing the value x at time t. If the wavefunction is extended then there is a wide range of
likely values that this measurement could give. Suppose that we make such a measure-
ment, and obtain the value x0. We now know that the particle is located at x = x0. If we
make another measurement immediately after the first one then what value do we expect
to obtain? Well, common sense tells us that we must obtain the same value, x0, since the
particle cannot have shifted position appreciably in an infinitesimal time interval. Thus,
immediately after the first measurement, a measurement of the particle’s position is cer-
tain to give the value x0, and has no chance of giving any other value. This implies that
the wavefunction must have collapsed to some sort of “spike” function located at x = x0.
This is illustrated in Fig. 3.9. Of course, as soon as the wavefunction has collapsed, it
starts to expand again, as discussed in Sect. 3.13. Thus, the second measurement must be
made reasonably quickly after the first, in order to guarantee that the same result will be
obtained.

The above discussion illustrates an important point in quantum mechanics. Namely,
that the wavefunction of a particle changes discontinuously (in time) whenever a mea-
surement is made. We conclude that there are two types of time evolution of the wave-
function in quantum mechanics. First, there is a smooth evolution which is governed by
Schrödinger’s equation. This evolution takes place between measurements. Second, there
is a discontinuous evolution which takes place each time a measurement is made.

Exercises

1. A He-Ne laser emits radiation of wavelength λ = 633 nm. How many photons are emitted
per second by a laser with a power of 1 mW? What force does such laser exert on a body
which completely absorbs its radiation?

2. The ionization energy of a hydrogen atom in its ground state is Eion = 13.60 eV (1 eV is the
energy acquired by an electron accelerated through a potential difference of 1 V). Calculate
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Figure 3.9: Collapse of the wavefunction upon measurement of x.

the frequency, wavelength, and wavenumber of the electromagnetic radiation which will just
ionize the atom.

3. The maximum energy of photoelectrons from aluminium is 2.3 eV for radiation of wavelength
2000 Å, and 0.90 eV for radiation of wavelength 2580 Å. Use this data to calculate Planck’s
constant, and the work function of aluminium.

4. Show that the de Broglie wavelength of an electron accelerated from rest across a potential
difference V is given by

λ = 1.29 × 10−9V−1/2 m,

where V is measured in volts.

5. If the atoms in a regular crystal are separated by 3×10−10 m demonstrate that an accelerating
voltage of about 1.5 kV would be required to produce an electron diffraction pattern from the
crystal.

6. The relationship between wavelength and frequency for electromagnetic waves in a waveg-
uide is

λ =
c

√

ν2 − ν2
0

,

where c is the velocity of light in vacuum. What are the group and phase velocities of such
waves as functions of ν0 and λ?

7. Nuclei, typically of size 10−14 m, frequently emit electrons with energies of 1–10 MeV. Use
the uncertainty principle to show that electrons of energy 1 MeV could not be contained in
the nucleus before the decay.
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8. A particle of mass m has a wavefunction

ψ(x, t) = A exp[−a (mx2/h̄+ i t)],

where A and a are positive real constants. For what potential function V(x) does ψ satisfy
the Schrödinger equation?
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4 Fundamentals of Quantum Mechanics

4.1 Introduction

The previous chapter serves as a useful introduction to many of the basic concepts of
quantum mechanics. In this chapter, we shall examine these concepts in a more systematic
fashion. For the sake of simplicity, we shall concentrate on one-dimensional systems.

4.2 Schrödinger’s Equation

Consider a dynamical system consisting of a single non-relativistic particle of massmmov-
ing along the x-axis in some real potential V(x). In quantum mechanics, the instantaneous
state of the system is represented by a complex wavefunction ψ(x, t). This wavefunction
evolves in time according to Schrödinger’s equation:

i h̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂x2
+ V(x)ψ. (4.1)

The wavefunction is interpreted as follows: |ψ(x, t)|2 is the probability density of a mea-
surement of the particle’s displacement yielding the value x. Thus, the probability of a
measurement of the displacement giving a result between a and b (where a < b) is

Px∈a:b(t) =

∫b

a

|ψ(x, t)|2dx. (4.2)

Note that this quantity is real and positive definite.

4.3 Normalization of the Wavefunction

Now, a probability is a real number between 0 and 1. An outcome of a measurement which
has a probability 0 is an impossible outcome, whereas an outcome which has a probability
1 is a certain outcome. According to Eq. (4.2), the probability of a measurement of x
yielding a result between −∞ and +∞ is

Px∈−∞:∞(t) =

∫∞

−∞

|ψ(x, t)|2dx. (4.3)

However, a measurement of x must yield a value between −∞ and +∞, since the particle
has to be located somewhere. It follows that Px∈−∞:∞ = 1, or

∫∞

−∞

|ψ(x, t)|2dx = 1, (4.4)



40 QUANTUM MECHANICS

which is generally known as the normalization condition for the wavefunction.
For example, suppose that we wish to normalize the wavefunction of a Gaussian wave

packet, centered on x = x0, and of characteristic width σ (see Sect. 3.12): i.e.,

ψ(x) = ψ0 e−(x−x0)2/(4σ2). (4.5)

In order to determine the normalization constant ψ0, we simply substitute Eq. (4.5) into
Eq. (4.4), to obtain

|ψ0|
2

∫∞

−∞

e−(x−x0)2/(2σ2)dx = 1. (4.6)

Changing the variable of integration to y = (x− x0)/(
√
2 σ), we get

|ψ0|
2
√
2σ

∫∞

−∞

e−y2

dy = 1. (4.7)

However, ∫∞

−∞

e−y2

dy =
√
π, (4.8)

which implies that

|ψ0|
2 =

1

(2πσ2)1/2
. (4.9)

Hence, a general normalized Gaussian wavefunction takes the form

ψ(x) =
e i ϕ

(2πσ2)1/4
e−(x−x0)2/(4σ2), (4.10)

where ϕ is an arbitrary real phase-angle.
Now, it is important to demonstrate that if a wavefunction is initially normalized then

it stays normalized as it evolves in time according to Schrödinger’s equation. If this is not
the case then the probability interpretation of the wavefunction is untenable, since it does
not make sense for the probability that a measurement of x yields any possible outcome
(which is, manifestly, unity) to change in time. Hence, we require that

d

dt

∫∞

−∞

|ψ(x, t)|2dx = 0, (4.11)

for wavefunctions satisfying Schrödinger’s equation. The above equation gives

d

dt

∫∞

−∞

ψ∗ψdx =

∫∞

−∞

(

∂ψ∗

∂t
ψ+ ψ∗ ∂ψ

∂t

)

dx = 0. (4.12)

Now, multiplying Schrödinger’s equation by ψ∗/(i h̄), we obtain

ψ∗ ∂ψ

∂t
=

i h̄

2m
ψ∗ ∂

2ψ

∂x2
−

i

h̄
V |ψ|2. (4.13)



Fundamentals of Quantum Mechanics 41

The complex conjugate of this expression yields

ψ
∂ψ∗

∂t
= −

i h̄

2m
ψ
∂2ψ∗

∂x2
+

i

h̄
V |ψ|2 (4.14)

[since (AB)∗ = A∗ B∗, A∗ ∗ = A, and i∗ = −i]. Summing the previous two equations, we
get

∂ψ∗

∂t
ψ +ψ∗ ∂ψ

∂t
=

i h̄

2m

(

ψ∗ ∂
2ψ

∂x2
−ψ

∂2ψ∗

∂x2

)

=
i h̄

2m

∂

∂x

(

ψ∗ ∂ψ

∂x
− ψ

∂ψ∗

∂x

)

. (4.15)

Equations (4.12) and (4.15) can be combined to produce

d

dt

∫∞

−∞

|ψ|2dx =
i h̄

2m

[

ψ∗ ∂ψ

∂x
−ψ

∂ψ∗

∂x

]∞

−∞

= 0. (4.16)

The above equation is satisfied provided

|ψ| → 0 as |x| → ∞. (4.17)

However, this is a necessary condition for the integral on the left-hand side of Eq. (4.4) to
converge. Hence, we conclude that all wavefunctions which are square-integrable [i.e., are
such that the integral in Eq. (4.4) converges] have the property that if the normalization
condition (4.4) is satisfied at one instant in time then it is satisfied at all subsequent times.

It is also possible to demonstrate, via very similar analysis to the above, that

dPx∈a:b

dt
+ j(b, t) − j(a, t) = 0, (4.18)

where Px∈a:b is defined in Eq. (4.2), and

j(x, t) =
i h̄

2m

(

ψ
∂ψ∗

∂x
−ψ∗ ∂ψ

∂x

)

(4.19)

is known as the probability current. Note that j is real. Equation (4.18) is a probability

conservation equation. According to this equation, the probability of a measurement of
x lying in the interval a to b evolves in time due to the difference between the flux of
probability into the interval [i.e., j(a, t)], and that out of the interval [i.e., j(b, t)]. Here,
we are interpreting j(x, t) as the flux of probability in the +x-direction at position x and
time t.

Note, finally, that not all wavefunctions can be normalized according to the scheme set
out in Eq. (4.4). For instance, a plane wave wavefunction

ψ(x, t) = ψ0 e i (kx−ωt) (4.20)

is not square-integrable, and, thus, cannot be normalized. For such wavefunctions, the
best we can say is that

Px∈a:b(t) ∝
∫b

a

|ψ(x, t)|2dx. (4.21)

In the following, all wavefunctions are assumed to be square-integrable and normalized,
unless otherwise stated.
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4.4 Expectation Values and Variances

We have seen that |ψ(x, t)|2 is the probability density of a measurement of a particle’s
displacement yielding the value x at time t. Suppose that we made a large number of
independent measurements of the displacement on an equally large number of identical
quantum systems. In general, measurements made on different systems will yield different
results. However, from the definition of probability, the mean of all these results is simply

〈x〉 =

∫∞

−∞

x |ψ|2dx. (4.22)

Here, 〈x〉 is called the expectation value of x. Similarly the expectation value of any function
of x is

〈f(x)〉 =

∫∞

−∞

f(x) |ψ|2dx. (4.23)

In general, the results of the various different measurements of x will be scattered
around the expectation value 〈x〉. The degree of scatter is parameterized by the quantity

σ2
x =

∫∞

−∞

(x − 〈x〉)2
|ψ|2dx ≡ 〈x2〉 − 〈x〉2, (4.24)

which is known as the variance of x. The square-root of this quantity, σx, is called the
standard deviation of x. We generally expect the results of measurements of x to lie within
a few standard deviations of the expectation value.

For instance, consider the normalized Gaussian wave packet [see Eq. (4.10)]

ψ(x) =
e i ϕ

(2πσ2)1/4
e−(x−x0)2/(4σ2). (4.25)

The expectation value of x associated with this wavefunction is

〈x〉 =
1√
2πσ2

∫∞

−∞

x e−(x−x0)2/(2σ2)dx. (4.26)

Let y = (x− x0)/(
√
2 σ). It follows that

〈x〉 =
x0√
π

∫∞

−∞

e−y2

dy +

√
2σ√
π

∫∞

−∞

y e−y2

dy. (4.27)

However, the second integral on the right-hand side is zero, by symmetry. Hence, making
use of Eq. (4.8), we obtain

〈x〉 = x0. (4.28)

Evidently, the expectation value of x for a Gaussian wave packet is equal to the most likely
value of x (i.e., the value of x which maximizes |ψ|2).
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The variance of x associated with the Gaussian wave packet (4.25) is

σ2
x =

1√
2πσ2

∫∞

−∞

(x− x0)
2 e−(x−x0)2/(2σ2)dx. (4.29)

Let y = (x− x0)/(
√
2 σ). It follows that

σ2
x =

2 σ2

√
π

∫∞

−∞

y2 e−y2

dy. (4.30)

However, ∫∞

−∞

y2 e−y2

dy =

√
π

2
, (4.31)

giving
σ2

x = σ2. (4.32)

This result is consistent with our earlier interpretation of σ as a measure of the spatial
extent of the wave packet (see Sect. 3.12). It follows that we can rewrite the Gaussian
wave packet (4.25) in the convenient form

ψ(x) =
e i ϕ

(2πσ2
x)1/4

e−(x−〈x〉)2/(4σ2
x ). (4.33)

4.5 Ehrenfest’s Theorem

A simple way to calculate the expectation value of momentum is to evaluate the time
derivative of 〈x〉, and then multiply by the mass m: i.e.,

〈p〉 = m
d〈x〉
dt

= m
d

dt

∫∞

−∞

x |ψ|2dx = m

∫∞

−∞

x
∂|ψ|2

∂t
dx. (4.34)

However, it is easily demonstrated that

∂|ψ|2

∂t
+
∂j

∂x
= 0 (4.35)

[this is just the differential form of Eq. (4.18)], where j is the probability current defined
in Eq. (4.19). Thus,

〈p〉 = −m

∫∞

−∞

x
∂j

∂x
dx = m

∫∞

−∞

j dx, (4.36)

where we have integrated by parts. It follows from Eq. (4.19) that

〈p〉 = −
i h̄

2

∫∞

−∞

(

ψ∗ ∂ψ

∂x
−
∂ψ∗

∂x
ψ

)

dx = −i h̄

∫∞

−∞

ψ∗ ∂ψ

∂x
dx, (4.37)
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where we have again integrated by parts. Hence, the expectation value of the momentum
can be written

〈p〉 = m
d〈x〉
dt

= −i h̄

∫∞

−∞

ψ∗ ∂ψ

∂x
dx. (4.38)

It follows from the above that

d〈p〉
dt

= −i h̄

∫∞

−∞

(

∂ψ∗

∂t

∂ψ

∂x
+ψ∗ ∂

2ψ

∂t∂x

)

dx

=

∫∞

−∞

[(

i h̄
∂ψ

∂t

)∗
∂ψ

∂x
+
∂ψ∗

∂x

(

i h̄
∂ψ

∂t

)]

dx, (4.39)

where we have integrated by parts. Substituting from Schrödinger’s equation (4.1), and
simplifying, we obtain

d〈p〉
dt

=

∫∞

−∞

[

−
h̄2

2m

∂

∂x

(

∂ψ∗

∂x

∂ψ

∂x

)

+ V(x)
∂|ψ|2

∂x

]

dx =

∫∞

−∞

V(x)
∂|ψ|2

∂x
dx. (4.40)

Integration by parts yields

d〈p〉
dt

= −

∫∞

−∞

dV

dx
|ψ|2dx = −

〈

dV

dx

〉

. (4.41)

Hence, according to Eqs. (4.34) and (4.41),

m
d〈x〉
dt

= 〈p〉, (4.42)

d〈p〉
dt

= −

〈

dV

dx

〉

. (4.43)

Evidently, the expectation values of displacement and momentum obey time evolution
equations which are analogous to those of classical mechanics. This result is known as
Ehrenfest’s theorem.

Suppose that the potential V(x) is slowly varying. In this case, we can expand dV/dx as
a Taylor series about 〈x〉. Keeping terms up to second order, we obtain

dV(x)

dx
=
dV(〈x〉)
d〈x〉 +

dV2(〈x〉)
d〈x〉2 (x − 〈x〉) +

1

2

dV3(〈x〉)
d〈x〉3 (x − 〈x〉)2. (4.44)

Substitution of the above expansion into Eq. (4.43) yields

d〈p〉
dt

= −
dV(〈x〉)
d〈x〉 −

σ2
x

2

dV3(〈x〉)
d〈x〉3 , (4.45)

since 〈1〉 = 1, and 〈x − 〈x〉〉 = 0, and 〈(x − 〈x〉)2〉 = σ2
x . The final term on the right-

hand side of the above equation can be neglected when the spatial extent of the particle
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wavefunction, σx, is much smaller than the variation length-scale of the potential. In this
case, Eqs. (4.42) and (4.43) reduce to

m
d〈x〉
dt

= 〈p〉, (4.46)

d〈p〉
dt

= −
dV(〈x〉)
d〈x〉 . (4.47)

These equations are exactly equivalent to the equations of classical mechanics, with 〈x〉
playing the role of the particle displacement. Of course, if the spatial extent of the wave-
function is negligible then a measurement of x is almost certain to yield a result which lies
very close to 〈x〉. Hence, we conclude that quantum mechanics corresponds to classical
mechanics in the limit that the spatial extent of the wavefunction (which is typically of
order the de Boglie wavelength) is negligible. This is an important result, since we know
that classical mechanics gives the correct answer in this limit.

4.6 Operators

An operator, O (say), is a mathematical entity which transforms one function into another:
i.e.,

O(f(x)) → g(x). (4.48)

For instance, x is an operator, since x f(x) is a different function to f(x), and is fully speci-
fied once f(x) is given. Furthermore, d/dx is also an operator, since df(x)/dx is a different
function to f(x), and is fully specified once f(x) is given. Now,

x
df

dx
6= d

dx
(x f) . (4.49)

This can also be written

x
d

dx
6= d

dx
x, (4.50)

where the operators are assumed to act on everything to their right, and a final f(x) is un-
derstood [where f(x) is a general function]. The above expression illustrates an important
point: i.e., in general, operators do not commute. Of course, some operators do commute:
e.g.,

x x2 = x2x. (4.51)

Finally, an operator, O, is termed linear if

O(c f(x)) = cO(f(x)), (4.52)

where f is a general function, and c a general complex number. All of the operators
employed in quantum mechanics are linear.
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Now, from Eqs. (4.22) and (4.38),

〈x〉 =

∫∞

−∞

ψ∗ xψdx, (4.53)

〈p〉 =

∫∞

−∞

ψ∗
(

−i h̄
∂

∂x

)

ψdx. (4.54)

These expressions suggest a number of things. First, classical dynamical variables, such as
x and p, are represented in quantum mechanics by linear operators which act on the wave-
function. Second, displacement is represented by the algebraic operator x, and momentum
by the differential operator −i h̄ ∂/∂x: i.e.,

p ≡ −i h̄
∂

∂x
. (4.55)

Finally, the expectation value of some dynamical variable represented by the operatorO(x)

is simply

〈O〉 =

∫∞

−∞

ψ∗(x, t)O(x)ψ(x, t)dx. (4.56)

Clearly, if an operator is to represent a dynamical variable which has physical signifi-
cance then its expectation value must be real. In other words, if the operator O represents
a physical variable then we require that 〈O〉 = 〈O〉∗, or

∫∞

−∞

ψ∗ (Oψ)dx =

∫∞

−∞

(Oψ)∗ψdx, (4.57)

where O∗ is the complex conjugate of O. An operator which satisfies the above constraint
is called an Hermitian operator. It is easily demonstrated that x and p are both Hermitian.
The Hermitian conjugate, O†, of a general operator, O, is defined as follows:

∫∞

−∞

ψ∗ (Oψ)dx =

∫∞

−∞

(O†ψ)∗ψdx. (4.58)

The Hermitian conjugate of an Hermitian operator is the same as the operator itself: i.e.,
p† = p. For a non-Hermitian operator, O (say), it is easily demonstrated that (O†)† = O,
and that the operator O + O† is Hermitian. Finally, if A and B are two operators, then
(AB)† = B†A†.

Suppose that we wish to find the operator which corresponds to the classical dynamical
variable xp. In classical mechanics, there is no difference between xp and p x. However,
in quantum mechanics, we have already seen that xp 6= p x. So, should be choose xp or
p x? Actually, neither of these combinations is Hermitian. However, (1/2) [xp + (xp)†] is
Hermitian. Moreover, (1/2) [xp + (xp)†] = (1/2) (xp + p† x†) = (1/2) (xp + p x), which
neatly resolves our problem of which order to put x and p.
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It is a reasonable guess that the operator corresponding to energy (which is called the
Hamiltonian, and conventionally denoted H) takes the form

H ≡ p2

2m
+ V(x). (4.59)

Note that H is Hermitian. Now, it follows from Eq. (4.55) that

H ≡ −
h̄2

2m

∂2

∂x2
+ V(x). (4.60)

However, according to Schrödinger’s equation, (4.1), we have

−
h̄2

2m

∂2

∂x2
+ V(x) = i h̄

∂

∂t
, (4.61)

so

H ≡ i h̄
∂

∂t
. (4.62)

Thus, the time-dependent Schrödinger equation can be written

i h̄
∂ψ

∂t
= Hψ. (4.63)

Finally, if O(x, p, E) is a classical dynamical variable which is a function of displace-
ment, momentum, and energy, then a reasonable guess for the corresponding opera-
tor in quantum mechanics is (1/2) [O(x, p,H) + O†(x, p,H)], where p = −i h̄ ∂/∂x, and
H = i h̄ ∂/∂t.

4.7 Momentum Representation

Fourier’s theorerm (see Sect. 3.12), applied to one-dimensional wavefunctions, yields

ψ(x, t) =
1√
2π

∫∞

−∞

ψ̄(k, t) e+ikxdk, (4.64)

ψ̄(k, t) =
1√
2π

∫∞

−∞

ψ(x, t) e−ikxdx, (4.65)

where k represents wavenumber. However, p = h̄ k. Hence, we can also write

ψ(x, t) =
1√
2π h̄

∫∞

−∞

φ(p, t) e+i px/h̄dp, (4.66)

φ(p, t) =
1√
2π h̄

∫∞

−∞

ψ(x, t) e−i px/h̄dx, (4.67)

where φ(p, t) = ψ̄(k, t)/
√
h̄ is the momentum-space equivalent to the real-space wave-

function ψ(x, t).
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At this stage, it is convenient to introduce a useful function called the Dirac delta-

function. This function, denoted δ(x), was first devised by Paul Dirac, and has the following
rather unusual properties: δ(x) is zero for x 6= 0, and is infinite at x = 0. However, the
singularity at x = 0 is such that ∫∞

−∞

δ(x)dx = 1. (4.68)

The delta-function is an example of what is known as a generalized function: i.e., its value
is not well-defined at all x, but its integral is well-defined. Consider the integral

∫∞

−∞

f(x) δ(x)dx. (4.69)

Since δ(x) is only non-zero infinitesimally close to x = 0, we can safely replace f(x) by f(0)
in the above integral (assuming f(x) is well behaved at x = 0), to give

∫∞

−∞

f(x) δ(x)dx = f(0)

∫∞

−∞

δ(x)dx = f(0), (4.70)

where use has been made of Eq. (4.68). A simple generalization of this result yields
∫∞

−∞

f(x) δ(x− x0)dx = f(x0), (4.71)

which can also be thought of as an alternative definition of a delta-function.
Suppose that ψ(x) = δ(x− x0). It follows from Eqs. (4.67) and (4.71) that

φ(p) =
e−i px0/h̄

√
2π h̄

. (4.72)

Hence, Eq. (4.66) yields the important result

δ(x− x0) =
1

2π h̄

∫∞

−∞

e+i p(x−x0)/h̄dp. (4.73)

Similarly,

δ(p− p0) =
1

2π h̄

∫∞

−∞

e+i (p−p0)x/h̄dx. (4.74)

It turns out that we can just as well formulate quantum mechanics using momentum-
space wavefunctions, φ(p, t), as real-space wavefunctions, ψ(x, t). The former scheme is
known as the momentum representation of quantum mechanics. In the momentum rep-
resentation, wavefunctions are the Fourier transforms of the equivalent real-space wave-
functions, and dynamical variables are represented by different operators. Furthermore,
by analogy with Eq. (4.56), the expectation value of some operator O(p) takes the form

〈O〉 =

∫∞

−∞

φ∗(p, t)O(p)φ(p, t)dp. (4.75)
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Consider momentum. We can write

〈p〉 =

∫∞

−∞

ψ∗(x, t)

(

−i h̄
∂

∂x

)

ψ(x, t)dx

=
1

2π h̄

∫∞

−∞

∫∞

−∞

∫∞

−∞

φ∗(p ′, t)φ(p, t)p e+i(p−p′)x/h̄dxdpdp ′, (4.76)

where use has been made of Eq. (4.66). However, it follows from Eq. (4.74) that

〈p〉 =

∫∞

−∞

∫∞

−∞

φ∗(p ′, t)φ(p, t)p δ(p− p ′)dpdp ′. (4.77)

Hence, using Eq. (4.71), we obtain

〈p〉 =

∫∞

−∞

φ∗(p, t)pφ(p, t)dp=

∫∞

−∞

p |φ|2dp. (4.78)

Evidently, momentum is represented by the operator p in the momentum representation.
The above expression also strongly suggests [by comparison with Eq. (4.22)] that |φ(p, t)|2

can be interpreted as the probability density of a measurement of momentum yielding the
value p at time t. It follows that φ(p, t) must satisfy an analogous normalization condition
to Eq. (4.4): i.e., ∫∞

−∞

|φ(p, t)|2dp = 1. (4.79)

Consider displacement. We can write

〈x〉 =

∫∞

−∞

ψ∗(x, t) xψ(x, t)dx (4.80)

=
1

2π h̄

∫∞

−∞

∫∞

−∞

∫∞

−∞

φ∗(p ′, t)φ(p, t)

(

−i h̄
∂

∂p

)

e+i (p−p′)x/h̄dxdpdp ′.

Integration by parts yields

〈x〉 =
1

2π h̄

∫∞

−∞

∫∞

−∞

∫∞

−∞

φ∗(p ′, t) e+i (p−p′)x/h̄

(

i h̄
∂

∂p

)

φ(p, t)dxdpdp ′. (4.81)

Hence, making use of Eqs. (4.74) and (4.71), we obtain

〈x〉 =
1

2π h̄

∫∞

−∞

φ∗(p)

(

i h̄
∂

∂p

)

φ(p)dp. (4.82)

Evidently, displacement is represented by the operator

x ≡ i h̄
∂

∂p
(4.83)
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in the momentum representation.
Finally, let us consider the normalization of the momentum-space wavefunctionφ(p, t).

We have
∫∞

−∞

ψ∗(x, t)ψ(x, t)dx =
1

2π h̄

∫∞

−∞

∫∞

−∞

∫∞

−∞

φ∗(p ′, t)φ(p, t) e+i(p−p′)x/h̄dxdpdp ′.

(4.84)
Thus, it follows from Eqs. (4.71) and (4.74) that

∫∞

−∞

|ψ(x, t)|2dx =

∫∞

−∞

|φ(p, t)|2dp. (4.85)

Hence, ifψ(x, t) is properly normalized [see Eq. (4.4)] thenφ(p, t), as defined in Eq. (4.67),
is also properly normalized [see Eq. (4.79)].

The existence of the momentum representation illustrates an important point: i.e.,
that there are many different, but entirely equivalent, ways of mathematically formulating
quantum mechanics. For instance, it is also possible to represent wavefunctions as row
and column vectors, and dynamical variables as matrices which act upon these vectors.

4.8 Heisenberg’s Uncertainty Principle

Consider a real-space Hermitian operator O(x). A straightforward generalization of Eq.
(4.57) yields ∫∞

−∞

ψ∗
1 (Oψ2)dx =

∫∞

−∞

(Oψ1)
∗ψ2dx, (4.86)

where ψ1(x) and ψ2(x) are general functions.
Let f = (A − 〈A〉)ψ, where A(x) is an Hermitian operator, and ψ(x) a general wave-

function. We have
∫∞

−∞

|f|2dx =

∫∞

−∞

f∗ f dx =

∫∞

−∞

[(A− 〈A〉)ψ] ∗ [(A− 〈A〉)ψ]dx. (4.87)

Making use of Eq. (4.86), we obtain
∫∞

−∞

|f|2dx =

∫∞

−∞

ψ∗ (A− 〈A〉)2ψdx = σ2
A, (4.88)

where σ2
A is the variance of A [see Eq. (4.24)]. Similarly, if g = (B − 〈B〉)ψ, where B is a

second Hermitian operator, then
∫∞

−∞

|g|2dx = σ2
B, (4.89)

Now, there is a standard result in mathematics, known as the Schwartz inequality, which
states that

∣

∣

∣

∣

∣

∫b

a

f∗(x) g(x)dx

∣

∣

∣

∣

∣

2

≤
∫b

a

|f(x)|2dx

∫b

a

|g(x)|2dx, (4.90)



Fundamentals of Quantum Mechanics 51

where f and g are two general functions. Furthermore, if z is a complex number then

|z|2 = [Re(z)]2 + [Im(z)]2 ≥ [Im(z)]2 =

[

1

2 i
(z− z∗)

]2

. (4.91)

Hence, if z =
∫∞

−∞
f∗ gdx then Eqs. (4.88)–(4.91) yield

σ2
Aσ

2
B ≥

[

1

2 i
(z− z∗)

]2

. (4.92)

However,

z =

∫∞

−∞

[(A− 〈A〉)ψ] ∗ [(B− 〈B〉)ψ]dx =

∫∞

−∞

ψ∗ (A− 〈A〉) (B− 〈B〉)ψdx, (4.93)

where use has been made of Eq. (4.86). The above equation reduces to

z =

∫∞

−∞

ψ∗ABψdx− 〈A〉 〈B〉. (4.94)

Furthermore, it is easily demonstrated that

z∗ =

∫∞

−∞

ψ∗ BAψdx− 〈A〉 〈B〉. (4.95)

Hence, Eq. (4.92) gives

σ2
Aσ

2
B ≥

(

1

2 i
〈[A,B]〉

)2

, (4.96)

where
[A,B] ≡ AB− BA. (4.97)

Equation (4.96) is the general form of Heisenberg’s uncertainty principle in quantum
mechanics. It states that if two dynamical variables are represented by the two Hermitian
operators A and B, and these operators do not commute (i.e., AB 6= BA), then it is im-

possible to simultaneously (exactly) measure the two variables. Instead, the product of the
variances in the measurements is always greater than some critical value, which depends
on the extent to which the two operators do not commute.

For instance, displacement and momentum are represented (in real-space) by the op-
erators x and p ≡ −i h̄ ∂/∂x, respectively. Now, it is easily demonstrated that

[x, p] = i h̄. (4.98)

Thus,

σxσp ≥ h̄

2
, (4.99)
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which can be recognized as the standard displacement-momentum uncertainty principle
(see Sect. 3.14). It turns out that the minimum uncertainty (i.e., σxσp = h̄/2) is only
achieved by Gaussian wave packets (see Sect. 3.12): i.e.,

ψ(x) =
e+i p0 x/h̄

(2πσ2
x)1/4

e−(x−x0)2/4σ2
x , (4.100)

φ(p) =
e−i px0/h̄

(2πσ2
p)1/4

e−(p−p0)2/4σ2
p , (4.101)

where φ(p) is the momentum-space equivalent of ψ(x).
Energy and time are represented by the operators H ≡ i h̄ ∂/∂t and t, respectively.

These operators do not commute, indicating that energy and time cannot be measured
simultaneously. In fact,

[H, t] = i h̄, (4.102)

so

σEσt ≥
h̄

2
. (4.103)

This can be written, somewhat less exactly, as

∆E∆t >
∼ h̄, (4.104)

where ∆E and ∆t are the uncertainties in energy and time, respectively. The above expres-
sion is generally known as the energy-time uncertainty principle.

For instance, suppose that a particle passes some fixed point on the x-axis. Since the
particle is, in reality, an extended wave packet, it takes a certain amount of time ∆t for
the particle to pass. Thus, there is an uncertainty, ∆t, in the arrival time of the particle.
Moreover, since E = h̄ω, the only wavefunctions which have unique energies are those
with unique frequencies: i.e., plane waves. Since a wave packet of finite extent is made up
of a combination of plane waves of different wavenumbers, and, hence, different frequen-
cies, there will be an uncertainty ∆E in the particle’s energy which is proportional to the
range of frequencies of the plane waves making up the wave packet. The more compact
the wave packet (and, hence, the smaller ∆t), the larger the range of frequencies of the
constituent plane waves (and, hence, the large ∆E), and vice versa. To be more exact, if
ψ(t) is the wavefunction measured at the fixed point as a function of time, then we can
write

ψ(t) =
1√
2π h̄

∫∞

−∞

χ(E) e−i Et/h̄dE. (4.105)

In other words, we can express ψ(t) as a linear combination of plane waves of definite
energy E. Here, χ(E) is the complex amplitude of plane waves of energy E in this combi-
nation. By Fourier’s theorem, we also have

χ(E) =
1√
2π h̄

∫∞

−∞

ψ(t) e+i Et/h̄dt. (4.106)
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For instance, if ψ(t) is a Gaussian then it is easily shown that χ(E) is also a Gaussian: i.e.,

ψ(t) =
e−i E0 t/h̄

(2πσ2
t )1/4

e−(t−t0)2/4σ2
t , (4.107)

χ(E) =
e+i Et0/h̄

(2πσ2
E)1/4

e−(E−E0)2/4σ2
E , (4.108)

where σEσt = h̄/2. As before, Gaussian wave packets satisfy the minimum uncertainty
principle σEσt = h̄/2. Conversely, non-Gaussian wave packets are characterized by σEσt >

h̄/2.

4.9 Eigenstates and Eigenvalues

Consider a general real-space operator A(x). When this operator acts on a general wave-
function ψ(x) the result is usually a wavefunction with a completely different shape. How-
ever, there are certain special wavefunctions which are such that when A acts on them
the result is just a multiple of the original wavefunction. These special wavefunctions are
called eigenstates, and the multiples are called eigenvalues. Thus, if

Aψa(x) = aψa(x), (4.109)

where a is a complex number, then ψa is called an eigenstate of A corresponding to the
eigenvalue a.

Suppose that A is an Hermitian operator corresponding to some physical dynamical
variable. Consider a particle whose wavefunction is ψa. The expectation of value A in this
state is simply [see Eq. (4.56)]

〈A〉 =

∫∞

−∞

ψ∗
aAψadx = a

∫∞

−∞

ψ∗
aψadx = a, (4.110)

where use has been made of Eq. (4.109) and the normalization condition (4.4). Moreover,

〈A2〉 =

∫∞

−∞

ψ∗
aA

2ψadx = a

∫∞

−∞

ψ∗
aAψadx = a2

∫∞

−∞

ψ∗
aψadx = a2, (4.111)

so the variance of A is [cf., Eq. (4.24)]

σ2
A = 〈A2〉 − 〈A〉2 = a2 − a2 = 0. (4.112)

The fact that the variance is zero implies that every measurement of A is bound to yield
the same result: namely, a. Thus, the eigenstate ψa is a state which is associated with a
unique value of the dynamical variable corresponding to A. This unique value is simply
the associated eigenvalue.
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It is easily demonstrated that the eigenvalues of an Hermitian operator are all real.
Recall [from Eq. (4.86)] that an Hermitian operator satisfies

∫∞

−∞

ψ∗
1 (Aψ2)dx =

∫∞

−∞

(Aψ1)
∗ψ2dx. (4.113)

Hence, if ψ1 = ψ2 = ψa then

∫∞

−∞

ψ∗
a (Aψa)dx =

∫∞

−∞

(Aψa)
∗ψadx, (4.114)

which reduces to [see Eq. (4.109)]
a = a∗, (4.115)

assuming that ψa is properly normalized.
Two wavefunctions, ψ1(x) and ψ2(x), are said to be orthogonal if

∫∞

−∞

ψ∗
1ψ2dx = 0. (4.116)

Consider two eigenstates of A, ψa and ψa′, which correspond to the two different eigen-
values a and a ′, respectively. Thus,

Aψa = aψa, (4.117)

Aψa′ = a ′ψa′. (4.118)

Multiplying the complex conjugate of the first equation by ψa′, and the second equation
by ψ∗

a, and then integrating over all x, we obtain

∫∞

−∞

(Aψa)
∗ψa′ dx = a

∫∞

−∞

ψ∗
aψa′ dx, (4.119)

∫∞

−∞

ψ∗
a (Aψa′)dx = a ′

∫∞

−∞

ψ∗
aψa′ dx. (4.120)

However, from Eq. (4.113), the left-hand sides of the above two equations are equal.
Hence, we can write

(a− a ′)

∫∞

−∞

ψ∗
aψa′ dx = 0. (4.121)

By assumption, a 6= a ′, yielding

∫∞

−∞

ψ∗
aψa′ dx = 0. (4.122)

In other words, eigenstates of an Hermitian operator corresponding to different eigenvalues
are automatically orthogonal.
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Consider two eigenstates ofA, ψa and ψ ′
a, which correspond to the same eigenvalue, a.

Such eigenstates are termed degenerate. The above proof of the orthogonality of different
eigenstates fails for degenerate eigenstates. Note, however, that any linear combination
of ψa and ψ ′

a is also an eigenstate of A corresponding to the eigenvalue a. Thus, even
if ψa and ψ ′

a are not orthogonal, we can always choose two linear combinations of these
eigenstates which are orthogonal. For instance, if ψa and ψ ′

a are properly normalized, and
∫∞

−∞

ψ∗
aψ

′
adx = c, (4.123)

then it is easily demonstrated that

ψ ′′
a =

|c|
√

1− |c|2

(

ψa − c−1ψ ′
a

)

(4.124)

is a properly normalized eigenstate of A, corresponding to the eigenvalue a, which is
orthogonal to ψa. It is straightforward to generalize the above argument to three or more
degenerate eigenstates. Hence, we conclude that the eigenstates of an Hermitian operator
are, or can be chosen to be, mutually orthogonal.

It is also possible to demonstrate that the eigenstates of an Hermitian operator form a
complete set: i.e., that any general wavefunction can be written as a linear combination of
these eigenstates. However, the proof is quite difficult, and we shall not attempt it here.

In summary, given an Hermitian operator A, any general wavefunction, ψ(x), can be
written

ψ =
∑

i

ciψi, (4.125)

where the ci are complex weights, and the ψi are the properly normalized (and mutually
orthogonal) eigenstates of A: i.e.,

Aψi = aiψi, (4.126)

where ai is the eigenvalue corresponding to the eigenstate ψi, and
∫∞

−∞

ψ∗
i ψjdx = δij. (4.127)

Here, δij is called the Kronecker delta-function, and takes the value unity when its two
indices are equal, and zero otherwise.

It follows from Eqs. (4.125) and (4.127) that

ci =

∫∞

−∞

ψ∗
i ψdx. (4.128)

Thus, the expansion coefficients in Eq. (4.125) are easily determined, given the wavefunc-
tion ψ and the eigenstates ψi. Moreover, if ψ is a properly normalized wavefunction then
Eqs. (4.125) and (4.127) yield ∑

i

|ci|
2 = 1. (4.129)
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4.10 Measurement

Suppose that A is an Hermitian operator corresponding to some dynamical variable. By
analogy with the discussion in Sect. 3.16, we expect that if a measurement of A yields the
result a then the act of measurement will cause the wavefunction to collapse to a state in
which a measurement of A is bound to give the result a. What sort of wavefunction, ψ, is
such that a measurement of A is bound to yield a certain result, a? Well, expressing ψ as
a linear combination of the eigenstates of A, we have

ψ =
∑

i

ciψi, (4.130)

where ψi is an eigenstate of A corresponding to the eigenvalue ai. If a measurement of A
is bound to yield the result a then

〈A〉 = a, (4.131)

and
σ2

A = 〈A2〉 − 〈A〉 = 0. (4.132)

Now it is easily seen that

〈A〉 =
∑

i

|ci|
2ai, (4.133)

〈A2〉 =
∑

i

|ci|
2a2

i . (4.134)

Thus, Eq. (4.132) gives

∑

i

a2
i |ci|

2 −





∑

i

ai |ci|
2





2

= 0. (4.135)

Furthermore, the normalization condition yields

∑

i

|ci|
2 = 1. (4.136)

For instance, suppose that there are only two eigenstates. The above two equations
then reduce to |c1|

2 = x, and |c2|
2 = 1− x, where 0 ≤ x ≤ 1, and

(a1 − a2)
2x (1− x) = 0. (4.137)

The only solutions are x = 0 and x = 1. This result can easily be generalized to the
case where there are more than two eigenstates. It follows that a state associated with a
definite value of A is one in which one of the |ci|

2 is unity, and all of the others are zero.
In other words, the only states associated with definite values of A are the eigenstates

of A. It immediately follows that the result of a measurement of A must be one of the

eigenvalues of A. Moreover, if a general wavefunction is expanded as a linear combination
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of the eigenstates of A, like in Eq. (4.130), then it is clear from Eq. (4.133), and the
general definition of a mean, that the probability of a measurement of A yielding the
eigenvalue ai is simply |ci|

2, where ci is the coefficient in front of the ith eigenstate in the
expansion. Note, from Eq. (4.136), that these probabilities are properly normalized: i.e.,
the probability of a measurement of A resulting in any possible answer is unity. Finally, if
a measurement of A results in the eigenvalue ai then immediately after the measurement
the system will be left in the eigenstate corresponding to ai.

Consider two physical dynamical variables represented by the two Hermitian operators
A and B. Under what circumstances is it possible to simultaneously measure these two
variables (exactly)? Well, the possible results of measurements of A and B are the eigen-
values of A and B, respectively. Thus, to simultaneously measure A and B (exactly) there
must exist states which are simultaneous eigenstates of A and B. In fact, in order for A and
B to be simultaneously measurable under all circumstances, we need all of the eigenstates
of A to also be eigenstates of B, and vice versa, so that all states associated with unique
values of A are also associated with unique values of B, and vice versa.

Now, we have already seen, in Sect. 4.8, that if A and B do not commute (i.e., if
AB 6= BA) then they cannot be simultaneously measured. This suggests that the condition
for simultaneous measurement is that A and B should commute. Suppose that this is
the case, and that the ψi and ai are the normalized eigenstates and eigenvalues of A,
respectively. It follows that

(AB− BA)ψi = (AB− Bai)ψi = (A− ai)Bψi = 0, (4.138)

or

A (Bψi) = ai (Bψi). (4.139)

Thus, Bψi is an eigenstate ofA corresponding to the eigenvalue ai (though not necessarily
a normalized one). In other words, Bψi ∝ ψi, or

Bψi = biψi, (4.140)

where bi is a constant of proportionality. Hence, ψi is an eigenstate of B, and, thus, a
simultaneous eigenstate of A and B. We conclude that if A and B commute then they
possess simultaneous eigenstates, and are thus simultaneously measurable (exactly).

4.11 Continuous Eigenvalues

In the previous two sections, it was tacitly assumed that we were dealing with operators
possessing discrete eigenvalues and square-integrable eigenstates. Unfortunately, some
operators—most notably, x and p—possess eigenvalues which lie in a continuous range and
non-square-integrable eigenstates (in fact, these two properties go hand in hand). Let us,
therefore, investigate the eigenstates and eigenvalues of the displacement and momentum
operators.
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Let ψx(x, x
′) be the eigenstate of x corresponding to the eigenvalue x ′. It follows that

xψx(x, x
′) = x ′ψx(x, x

′) (4.141)

for all x. Consider the Dirac delta-function δ(x− x ′). We can write

x δ(x− x ′) = x ′ δ(x− x ′), (4.142)

since δ(x − x ′) is only non-zero infinitesimally close to x = x ′. Evidently, ψx(x, x
′) is

proportional to δ(x− x ′). Let us make the constant of proportionality unity, so that

ψx(x, x
′) = δ(x − x ′). (4.143)

Now, it is easily demonstrated that

∫∞

−∞

δ(x− x ′) δ(x− x ′′)dx = δ(x ′ − x ′′). (4.144)

Hence, ψx(x, x
′) satisfies the orthonormality condition

∫∞

−∞

ψ∗
x(x, x

′)ψx(x, x
′′)dx = δ(x ′ − x ′′). (4.145)

This condition is analogous to the orthonormality condition (4.127) satisfied by square-
integrable eigenstates. Now, by definition, δ(x − x ′) satisfies

∫∞

−∞

f(x) δ(x− x ′)dx = f(x ′), (4.146)

where f(x) is a general function. We can thus write

ψ(x) =

∫∞

−∞

c(x ′)ψx(x, x
′)dx ′, (4.147)

where c(x ′) = ψ(x ′), or

c(x ′) =

∫∞

−∞

ψ∗
x(x, x

′)ψ(x)dx. (4.148)

In other words, we can expand a general wavefunction ψ(x) as a linear combination of the
eigenstates, ψx(x, x

′), of the displacement operator. Equations (4.147) and (4.148) are
analogous to Eqs. (4.125) and (4.128), respectively, for square-integrable eigenstates. Fi-
nally, by analogy with the results in Sect. 4.9, the probability density of a measurement of
x yielding the value x ′ is |c(x ′)|2, which is equivalent to the standard result |ψ(x ′)|2. More-
over, these probabilities are properly normalized provided ψ(x) is properly normalized [cf.,
Eq. (4.129)]: i.e., ∫∞

−∞

|c(x ′)|2dx ′ =

∫∞

−∞

|ψ(x ′)|2dx ′ = 1. (4.149)
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Finally, if a measurement of x yields the value x ′ then the system is left in the corre-
sponding displacement eigenstate, ψx(x, x

′), immediately after the measurement: i.e., the
wavefunction collapses to a “spike-function”, δ(x− x ′), as discussed in Sect. 3.16.

Now, an eigenstate of the momentum operator p ≡ −i h̄ ∂/∂x corresponding to the
eigenvalue p ′ satisfies

− i h̄
∂ψp(x, p

′)

∂x
= p ′ψp(x, p

′). (4.150)

It is evident that

ψp(x, p ′) ∝ e+i p′ x/h̄. (4.151)

Now, we require ψp(x, p
′) to satisfy an analogous orthonormality condition to Eq. (4.145):

i.e.,
∫∞

−∞

ψ∗
p(x, p ′)ψp(x, p

′′)dx = δ(p ′ − p ′′). (4.152)

Thus, it follows from Eq. (4.74) that the constant of proportionality in Eq. (4.151) should
be (2π h̄)−1/2: i.e.,

ψp(x, p ′) =
e+i p′ x/h̄

(2π h̄)1/2
. (4.153)

Furthermore, according to Eqs. (4.66) and (4.67),

ψ(x) =

∫∞

−∞

c(p ′)ψp(x, p
′)dp ′, (4.154)

where c(p ′) = φ(p ′) [see Eq. (4.67)], or

c(p ′) =

∫∞

−∞

ψ∗
p(x, p

′)ψ(x)dx. (4.155)

In other words, we can expand a general wavefunction ψ(x) as a linear combination of
the eigenstates, ψp(x, p

′), of the momentum operator. Equations (4.154) and (4.155) are
again analogous to Eqs. (4.125) and (4.128), respectively, for square-integrable eigen-
states. Likewise, the probability density of a measurement of p yielding the result p ′ is
|c(p ′)|2, which is equivalent to the standard result |φ(p ′)|2. The probabilities are also
properly normalized provided ψ(x) is properly normalized [cf., Eq. (4.85)]: i.e.,

∫∞

−∞

|c(p ′)|2dp ′ =

∫∞

−∞

|φ(p ′)|2dp ′ =

∫∞

−∞

|ψ(x ′)|2dx ′ = 1. (4.156)

Finally, if a mesurement of p yields the value p ′ then the system is left in the corresponding
momentum eigenstate, ψp(x, p

′), immediately after the measurement.



60 QUANTUM MECHANICS

4.12 Stationary States

An eigenstate of the energy operator H ≡ i h̄ ∂/∂t corresponding to the eigenvalue Ei

satisfies

i h̄
∂ψE(x, t, Ei)

∂t
= EiψE(x, t, Ei). (4.157)

It is evident that this equation can be solved by writing

ψE(x, t, Ei) = ψi(x) e−i Ei t/h̄, (4.158)

whereψi(x) is a properly normalized stationary (i.e., non-time-varying) wavefunction. The
wavefunction ψE(x, t, Ei) corresponds to a so-called stationary state, since the probability
density |ψE|2 is non-time-varying. Note that a stationary state is associated with a unique

value for the energy. Substitution of the above expression into Schrödinger’s equation
(4.1) yields the equation satisfied by the stationary wavefunction:

h̄2

2m

d2ψi

dx2
= [V(x) − Ei]ψi. (4.159)

This is known as the time-independent Schrödinger equation. More generally, this equation
takes the form

Hψi = Eiψi, (4.160)

where H is assumed not to be an explicit function of t. Of course, the ψi satisfy the usual
orthonormality condition: ∫∞

−∞

ψ∗
i ψjdx = δij. (4.161)

Moreover, we can express a general wavefunction as a linear combination of energy eigen-
states:

ψ(x, t) =
∑

i

ciψi(x) e−i Ei t/h̄, (4.162)

where

ci =

∫∞

−∞

ψ∗
i(x)ψ(x, 0)dx. (4.163)

Here, |ci|
2 is the probability that a measurement of the energy will yield the eigenvalue

Ei. Furthermore, immediately after such a measurement, the system is left in the corre-
sponding energy eigenstate. The generalization of the above results to the case where H
has continuous eigenvalues is straightforward.

If a dynamical variable is represented by some Hermitian operator A which commutes
with H (so that it has simultaneous eigenstates with H), and contains no specific time
dependence, then it is evident from Eqs. (4.161) and (4.162) that the expectation value
and variance of A are time independent. In this sense, the dynamical variable in question
is a constant of the motion.
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Exercises

1. Monochromatic light with a wavelength of 6000 Å passes through a fast shutter that opens
for 10−9 sec. What is the subsequent spread in wavelengths of the no longer monochromatic
light?

2. Calculate 〈x〉, 〈x2〉, and σx, as well as 〈p〉, 〈p2〉, and σp, for the normalized wavefunction

ψ(x) =

√

2a3

π

1

x2 + a2
.

Use these to find σxσp. Note that
∫∞

−∞ dx/(x
2 + a2) = π/a.

3. Classically, if a particle is not observed then the probability of finding it in a one-dimensional
box of length L, which extends from x = 0 to x = L, is a constant 1/L per unit length. Show
that the classical expectation value of x is L/2, the expectation value of x2 is L2/3, and the
standard deviation of x is L/

√
12.

4. Demonstrate that if a particle in a one-dimensional stationary state is bound then the expec-
tation value of its momentum must be zero.

5. Suppose that V(x) is complex. Obtain an expression for ∂P(x, t)/∂t and d/dt
∫
P(x, t)dx

from Schrödinger’s equation. What does this tell us about a complex V(x)?

6. ψ1(x) and ψ2(x) are normalized eigenfunctions corresponding to the same eigenvalue. If

∫∞

−∞
ψ∗

1ψ2dx = c,

where c is real, find normalized linear combinations of ψ1 and ψ2 which are orthogonal to
(a) ψ1, (b) ψ1 +ψ2.

7. Demonstrate that p = −i h̄ ∂/∂x is an Hermitian operator. Find the Hermitian conjugate of
a = x + ip.

8. An operator A, corresponding to a physical quantity α, has two normalized eigenfunctions
ψ1(x) and ψ2(x), with eigenvalues a1 and a2. An operator B, corresponding to another
physical quantity β, has normalized eigenfunctions φ1(x) and φ2(x), with eigenvalues b1

and b2. The eigenfunctions are related via

ψ1 = (2φ1 + 3φ2)
/√

13,

ψ2 = (3φ1 − 2φ2)
/√

13.

α is measured and the value a1 is obtained. If β is then measured and then α again, show
that the probability of obtaining a1 a second time is 97/169.

9. Demonstrate that an operator which commutes with the Hamiltonian, and contains no ex-
plicit time dependence, has an expectation value which is constant in time.
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10. For a certain system, the operator corresponding to the physical quantityA does not commute
with the Hamiltonian. It has eigenvalues a1 and a2, corresponding to properly normalized
eigenfunctions

φ1 = (u1 + u2)
/√

2,

φ2 = (u1 − u2)
/√

2,

where u1 and u2 are properly normalized eigenfunctions of the Hamiltonian with eigenvalues
E1 and E2. If the system is in the state ψ = φ1 at time t = 0, show that the expectation value
of A at time t is

〈A〉 =

(

a1 + a2

2

)

+

(

a1 − a2

2

)

cos

(

[E1 − E2] t

h̄

)

.
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5 One-Dimensional Potentials

5.1 Introduction

In this chapter, we shall investigate the interaction of a non-relativistic particle of mass m
and energy E with various one-dimensional potentials, V(x). Since we are searching for
stationary solutions with unique energies, we can write the wavefunction in the form (see
Sect. 4.12)

ψ(x, t) = ψ(x) e−i Et/h̄, (5.1)

where ψ(x) satisfies the time-independent Schrödinger equation:

d2ψ

dx2
=
2m

h̄2
[V(x) − E]ψ. (5.2)

In general, the solution, ψ(x), to the above equation must be finite, otherwise the probabil-
ity density |ψ|2 would become infinite (which is unphysical). Likewise, the solution must
be continuous, otherwise the probability current (4.19) would become infinite (which is
also unphysical).

5.2 Infinite Potential Well

Consider a particle of mass m and energy E moving in the following simple potential:

V(x) =

{
0 for 0 ≤ x ≤ a
∞ otherwise

. (5.3)

It follows from Eq. (5.2) that if d2ψ/dx2 (and, hence, ψ) is to remain finite then ψ must
go to zero in regions where the potential is infinite. Hence, ψ = 0 in the regions x ≤ 0

and x ≥ a. Evidently, the problem is equivalent to that of a particle trapped in a one-
dimensional box of length a. The boundary conditions on ψ in the region 0 < x < a

are
ψ(0) = ψ(a) = 0. (5.4)

Furthermore, it follows from Eq. (5.2) that ψ satisfies

d2ψ

dx2
= −k2ψ (5.5)

in this region, where

k2 =
2mE

h̄2
. (5.6)

Here, we are assuming that E > 0. It is easily demonstrated that there are no solutions
with E < 0 which are capable of satisfying the boundary conditions (5.4).
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The solution to Eq. (5.5), subject to the boundary conditions (5.4), is

ψn(x) = An sin(knx), (5.7)

where the An are arbitrary (real) constants, and

kn =
nπ

a
, (5.8)

for n = 1, 2, 3, · · ·. Now, it can be seen from Eqs. (5.6) and (5.8) that the energy E is only
allowed to take certain discrete values: i.e.,

En =
n2π2 h̄2

2ma2
. (5.9)

In other words, the eigenvalues of the energy operator are discrete. This is a general
feature of bounded solutions: i.e., solutions in which |ψ| → 0 as |x| → ∞. According to
the discussion in Sect. 4.12, we expect the stationary eigenfunctions ψn(x) to satisfy the
orthonormality constraint ∫a

0

ψn(x)ψm(x)dx = δnm. (5.10)

It is easily demonstrated that this is the case, provided An =
√

2/a. Hence,

ψn(x) =

√

2

a
sin

(

nπ
x

a

)

(5.11)

for n = 1, 2, 3, · · ·.
Finally, again from Sect. 4.12, the general time-dependent solution can be written as a

linear superposition of stationary solutions:

ψ(x, t) =
∑

n=0,∞

cnψn(x) e−i En t/h̄, (5.12)

where

cn =

∫a

0

ψn(x)ψ(x, 0)dx. (5.13)

5.3 Square Potential Barrier

Consider a particle of mass m and energy E > 0 interacting with the simple square poten-
tial barrier

V(x) =

{
V0 for 0 ≤ x ≤ a
0 otherwise

, (5.14)

where V0 > 0. In the regions to the left and to the right of the barrier, ψ(x) satisfies

d2ψ

dx2
= −k2ψ, (5.15)
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where k is given by Eq. (5.6).
Let us adopt the following solution of the above equation to the left of the barrier (i.e.,

x < 0):
ψ(x) = e i kx + R e−i kx. (5.16)

This solution consists of a plane wave of unit amplitude traveling to the right [since the
time-dependent wavefunction is multiplied by exp(−iωt), where ω = E/h̄ > 0], and
a plane wave of complex amplitude R traveling to the left. We interpret the first plane
wave as an incoming particle (or, rather, a stream of incoming particles), and the second
as a particle (or stream of particles) reflected by the potential barrier. Hence, |R|2 is the
probability of reflection. This can be seen by calculating the probability current (4.19) in
the region x < 0, which takes the form

jl = v (1− |R|2), (5.17)

where v = p/m = h̄ k/m is the classical particle velocity.
Let us adopt the following solution to Eq. (5.15) to the right of the barrier (i.e. x > a):

ψ(x) = T e i kx. (5.18)

This solution consists of a plane wave of complex amplitude T traveling to the right. We
interpret this as a particle (or stream of particles) transmitted through the barrier. Hence,
|T |2 is the probability of transmission. The probability current in the region x > a takes
the form

jr = v |T |2. (5.19)

Now, according to Eq. (4.35), in a stationary state (i.e., ∂|ψ|2/∂t = 0), the probability
current is a spatial constant (i.e., ∂j/∂x = 0). Hence, we must have jl = jr, or

|R|2 + |T |2 = 1. (5.20)

In other words, the probabilities of reflection and transmission sum to unity, as must be
the case, since reflection and transmission are the only possible outcomes for a particle
incident on the barrier.

Inside the barrier (i.e., 0 ≤ x ≤ a), ψ(x) satisfies

d2ψ

dx2
= −q2ψ, (5.21)

where

q2 =
2m (E− V0)

h̄2
. (5.22)

Let us, first of all, consider the case where E > V0. In this case, the general solution to
Eq. (5.21) inside the barrier takes the form

ψ(x) = A e i qx + B e−i qx, (5.23)
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where q =
√

2m (E− V0)/h̄
2.

Now, the boundary conditions at the edges of the barrier (i.e., at x = 0 and x = a)
are that ψ and dψ/dx are both continuous. These boundary conditions ensure that the
probability current (4.19) remains finite and continuous across the edges of the boundary,
as must be the case if it is to be a spatial constant.

Continuity of ψ and dψ/dx at the left edge of the barrier (i.e., x = 0) yields

1+ R = A+ B, (5.24)

k (1− R) = q (A− B). (5.25)

Likewise, continuity of ψ and dψ/dx at the right edge of the barrier (i.e., x = a) gives

A e i qa + B e−i qa = T e i ka, (5.26)

q
(

A e i qa − B e−i qa
)

= k T e i ka. (5.27)

After considerable algebra, the above four equations yield

|R|2 =
(k2 − q2)2 sin2(qa)

4 k2q2 + (k2 − q2)2 sin2(qa)
, (5.28)

and

|T |2 =
4 k2q2

4 k2q2 + (k2 − q2)2 sin2(qa)
. (5.29)

Note that the above two expression satisfy the constraint (5.20).
It is instructive to compare the quantum mechanical probabilities of reflection and

transmission—(5.28) and (5.29), respectively—with those derived from classical physics.
Now, according to classical physics, if a particle of energy E is incident on a potential
barrier of height V0 < E then the particle slows down as it passes through the barrier, but
is otherwise unaffected. In other words, the classical probability of reflection is zero, and
the classical probability of transmission is unity.

The reflection and transmission probabilities obtained from Eqs. (5.28) and (5.29),
respectively, are plotted in Figs. 5.1 and 5.2. It can be seen, from Fig. 5.1, that the classical
result, |R|2 = 0 and |T |2 = 1, is obtained in the limit where the height of the barrier is
relatively small (i.e., V0 ≪ E). However, when V0 is of order E, there is a substantial
probability that the incident particle will be reflected by the barrier. According to classical
physics, reflection is impossible when V0 < E.

It can also be seen, from Fig. 5.2, that at certain barrier widths the probability of
reflection goes to zero. It turns out that this is true irrespective of the energy of the incident
particle. It is evident, from Eq. (5.28), that these special barrier widths correspond to

qa = nπ, (5.30)

where n = 1, 2, 3, · · ·. In other words, the special barriers widths are integer multiples of
half the de Broglie wavelength of the particle inside the barrier. There is no reflection at
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Figure 5.1: Transmission (solid-curve) and reflection (dashed-curve) probabilities for a square

potential barrier of width a = 1.25 λ, where λ is the free-space de Broglie wavelength, as a

function of the ratio of the height of the barrier, V0, to the energy, E, of the incident particle.

Figure 5.2: Transmission (solid-curve) and reflection (dashed-curve) probabilities for a par-

ticle of energy E incident on a square potential barrier of height V0 = 0.75 E, as a function of

the ratio of the width of the barrier, a, to the free-space de Broglie wavelength, λ.
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the special barrier widths because, at these widths, the backward traveling wave reflected
from the left edge of the barrier interferes destructively with the similar wave reflected
from the right edge of the barrier to give zero net reflected wave.

Let us, now, consider the case E < V0. In this case, the general solution to Eq. (5.21)
inside the barrier takes the form

ψ(x) = A eqx + B e−qx, (5.31)

where q =
√

2m (V0 − E)/h̄2. Continuity of ψ and dψ/dx at the left edge of the barrier
(i.e., x = 0) yields

1+ R = A+ B, (5.32)

i k (1− R) = q (A− B). (5.33)

Likewise, continuity of ψ and dψ/dx at the right edge of the barrier (i.e., x = a) gives

A eqa + B e−qa = T e i ka, (5.34)

q (A eqa − B e−qa) = i k T e i ka. (5.35)

After considerable algebra, the above four equations yield

|R|2 =
(k2 + q2)2 sinh2

(qa)

4 k2q2 + (k2 + q2)2 sinh2
(qa)

, (5.36)

and

|T |2 =
4 k2q2

4 k2q2 + (k2 + q2)2 sinh2
(qa)

. (5.37)

These expressions can also be obtained from Eqs. (5.28) and (5.29) by making the substi-
tution q → −iq. Note that Eqs. (5.36) and (5.37) satisfy the constraint (5.20).

It is again instructive to compare the quantum mechanical probabilities of reflection
and transmission—(5.36) and (5.37), respectively—with those derived from classical physics.
Now, according to classical physics, if a particle of energy E is incident on a potential bar-
rier of height V0 > E then the particle is reflected. In other words, the classical probability
of reflection is unity, and the classical probability of transmission is zero.

The reflection and transmission probabilities obtained from Eqs. (5.36) and (5.37),
respectively, are plotted in Figs. 5.3 and 5.4. It can be seen, from Fig. 5.3, that the classical
result, |R|2 = 1 and |T |2 = 0, is obtained for relatively thin barriers (i.e., qa ∼ 1) in the
limit where the height of the barrier is relatively large (i.e., V0 ≫ E). However, when V0

is of order E, there is a substantial probability that the incident particle will be transmitted

by the barrier. According to classical physics, transmission is impossible when V0 > E.
It can also be seen, from Fig. 5.4, that the transmission probability decays exponen-

tially as the width of the barrier increases. Nevertheless, even for very wide barriers (i.e.,
qa ≫ 1), there is a small but finite probability that a particle incident on the barrier will
be transmitted. This phenomenon, which is inexplicable within the context of classical
physics, is called tunneling.



One-Dimensional Potentials 69

Figure 5.3: Transmission (solid-curve) and reflection (dashed-curve) probabilities for a square

potential barrier of width a = 0.5 λ, where λ is the free-space de Broglie wavelength, as a

function of the ratio of the energy, E, of the incoming particle to the height, V0, of the barrier.

Figure 5.4: Transmission (solid-curve) and reflection (dashed-curve) probabilities for a parti-

cle of energy E incident on a square potential barrier of height V0 = (4/3)E, as a function of

the ratio of the width of the barrier, a, to the free-space de Broglie wavelength, λ.
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5.4 WKB Approximation

Consider a particle of mass m and energy E > 0 moving through some slowly varying

potential V(x). The particle’s wavefunction satisfies

d2ψ(x)

dx2
= −k2(x)ψ(x), (5.38)

where

k2(x) =
2m [E− V(x)]

h̄2
. (5.39)

Let us try a solution to Eq. (5.38) of the form

ψ(x) = ψ0 exp

(∫x

0

i k(x ′)dx ′
)

, (5.40)

where ψ0 is a complex constant. Note that this solution represents a particle propagating
in the positive x-direction [since the full wavefunction is multiplied by exp(−iωt), where
ω = E/h̄ > 0] with the continuously varying wavenumber k(x). It follows that

dψ(x)

dx
= i k(x)ψ(x), (5.41)

and
d2ψ(x)

dx2
= i k ′(x)ψ(x) − k2(x)ψ(x), (5.42)

where k ′ ≡ dk/dx. A comparison of Eqs. (5.38) and (5.42) reveals that Eq. (5.40) repre-
sents an approximate solution to Eq. (5.38) provided that the first term on its right-hand
side is negligible compared to the second. This yields the validity criterion |k ′| ≪ k2, or

k

|k ′|
≫ k−1. (5.43)

In other words, the variation length-scale of k(x), which is approximately the same as
the variation length-scale of V(x), must be much greater than the particle’s de Broglie
wavelength (which is of order k−1). Let us suppose that this is the case. Incidentally, the
approximation involved in dropping the first term on the right-hand side of Eq. (5.42)
is generally known as the WKB approximation. 1 Similarly, Eq. (5.40) is termed a WKB
solution.

According to the WKB solution (5.40), the probability density remains constant: i.e.,

|ψ(x)|2 = |ψ0|
2, (5.44)

as long as the particle moves through a region in which E > V(x), and k(x) is consequently
real (i.e., an allowed region according to classical physics). Suppose, however, that the

1After G. Wentzel, H.A. Kramers, and L. Brillouin.
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particle encounters a potential barrier (i.e., a region from which the particle is excluded
according to classical physics). By definition, E < V(x) inside such a barrier, and k(x) is
consequently imaginary. Let the barrier extend from x = x1 to x2, where 0 < x1 < x2. The
WKB solution inside the barrier is written

ψ(x) = ψ1 exp

(

−

∫x

x1

|k(x ′)|dx ′
)

, (5.45)

where

ψ1 = ψ0 exp

(∫x1

0

i k(x ′)dx ′
)

. (5.46)

Here, we have neglected the unphysical exponentially growing solution.
According to the WKB solution (5.45), the probability density decays exponentially in-

side the barrier: i.e.,

|ψ(x)|2 = |ψ1|
2 exp

(

−2

∫x

x1

|k(x ′)|dx ′
)

, (5.47)

where |ψ1|
2 is the probability density at the left-hand side of the barrier (i.e., x = x1). It

follows that the probability density at the right-hand side of the barrier (i.e., x = x2) is

|ψ2|
2 = |ψ1|

2 exp

(

−2

∫x2

x1

|k(x ′)|dx ′
)

. (5.48)

Note that |ψ2|
2 < |ψ1|

2. Of course, in the region to the right of the barrier (i.e., x > x2),
the probability density takes the constant value |ψ2|

2.
We can interpret the ratio of the probability densities to the right and to the left of the

potential barrier as the probability, |T |2, that a particle incident from the left will tunnel
through the barrier and emerge on the other side: i.e.,

|T |2 =
|ψ2|

2

|ψ1|2
= exp

(

−2

∫x2

x1

|k(x ′)|dx ′
)

(5.49)

(see Sect. 5.3). It is easily demonstrated that the probability of a particle incident from the
right tunneling through the barrier is the same.

Note that the criterion (5.43) for the validity of the WKB approximation implies that the
above transmission probability is very small. Hence, the WKB approximation only applies
to situations in which there is very little chance of a particle tunneling through the potential
barrier in question. Unfortunately, the validity criterion (5.43) breaks down completely at
the edges of the barrier (i.e., at x = x1 and x2), since k(x) = 0 at these points. However,
it can be demonstrated that the contribution of those regions, around x = x1 and x2, in
which the WKB approximation breaks down to the integral in Eq. (5.49) is fairly negligible.
Hence, the above expression for the tunneling probability is a reasonable approximation
provided that the incident particle’s de Broglie wavelength is much smaller than the spatial
extent of the potential barrier.
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Figure 5.5: The potential barrier for an electron in a metal surface subject to an external

electric field.

5.5 Cold Emission

Suppose that an unheated metal surface is subject to a large uniform external electric field
of strength E , which is directed such that it accelerates electrons away from the surface.
We have already seen (in Sect. 3.6) that electrons just below the surface of a metal can be
regarded as being in a potential well of depth W, where W is called the work function of
the surface. Adopting a simple one-dimensional treatment of the problem, let the metal
lie at x < 0, and the surface at x = 0. Now, the applied electric field is shielded from the
interior of the metal. Hence, the energy, E, say, of an electron just below the surface is
unaffected by the field. In the absence of the electric field, the potential barrier just above
is the surface is simply V(x)−E = W. The electric field modifies this to V(x)−E = W−e E x.
The potential barrier is sketched in Fig. 5.5.

It can be seen, from Fig. 5.5, that an electron just below the surface of the metal is
confined by a triangular potential barrier which extends from x = x1 to x2, where x1 = 0

and x2 = W/e E . Making use of the WKB approximation (see the previous subsection),
the probability of such an electron tunneling through the barrier, and consequently being
emitted from the surface, is

|T |2 = exp

(

−
2
√
2m

h̄

∫x2

x1

√

V(x) − Edx

)

, (5.50)

or

|T |2 = exp

(

−
2
√
2m

h̄

∫W/eE

0

√
W − e E xdx

)

. (5.51)
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This reduces to

|T |2 = exp

(

−2
√
2
m1/2W 3/2

h̄ e E

∫1

0

√

1− ydy

)

, (5.52)

or

|T |2 = exp

(

−
4
√
2

3

m1/2W 3/2

h̄ e E

)

. (5.53)

The above result is known as the Fowler-Nordheim formula. Note that the probability of
emission increases exponentially as the electric field-strength above the surface of the metal
increases.

The cold emission of electrons from a metal surface is the basis of an important device
known as a scanning tunneling microscope, or an STM. An STM consists of a very sharp con-
ducting probe which is scanned over the surface of a metal (or any other solid conducting
medium). A large voltage difference is applied between the probe and the surface. Now,
the surface electric field-strength immediately below the probe tip is proportional to the
applied potential difference, and inversely proportional to the spacing between the tip and
the surface. Electrons tunneling between the surface and the probe tip give rise to a weak
electric current. The magnitude of this current is proportional to the tunneling probability
(5.53). It follows that the current is an extremely sensitive function of the surface electric
field-strength, and, hence, of the spacing between the tip and the surface (assuming that
the potential difference is held constant). An STM can thus be used to construct a very
accurate contour map of the surface under investigation. In fact, STMs are capable of
achieving sufficient resolution to image individual atoms

5.6 Alpha Decay

Many types of heavy atomic nucleus spontaneously decay to produce daughter nucleii via
the emission of α-particles (i.e., helium nucleii) of some characteristic energy. This process
is know as α-decay. Let us investigate the α-decay of a particular type of atomic nucleus of
radius R, charge-number Z, and mass-number A. Such a nucleus thus decays to produce a
daughter nucleus of charge-number Z1 = Z − 2 and mass-number A1 = A − 4, and an α-
particle of charge-number Z2 = 2 and mass-number A2 = 4. Let the characteristic energy
of the α-particle be E. Incidentally, nuclear radii are found to satisfy the empirical formula

R = 1.5× 10−15A1/3 m = 2.0× 10−15Z
1/3
1 m (5.54)

for Z≫ 1.
In 1928, George Gamov proposed a very successful theory of α-decay, according to

which the α-particle moves freely inside the nucleus, and is emitted after tunneling through
the potential barrier between itself and the daughter nucleus. In other words, the α-
particle, whose energy is E, is trapped in a potential well of radius R by the potential
barrier

V(r) =
Z1Z2 e

2

4π ǫ0 r
(5.55)
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for r > R.
Making use of the WKB approximation (and neglecting the fact that r is a radial, rather

than a Cartesian, coordinate), the probability of the α-particle tunneling through the bar-
rier is

|T |2 = exp

(

−
2
√
2m

h̄

∫ r2

r1

√

V(r) − Edr

)

, (5.56)

where r1 = R and r2 = Z1Z2 e
2/(4π ǫ0E). Here, m = 4mp is the α-particle mass. The

above expression reduces to

|T |2 = exp



−2
√
2β

∫Ec/E

1

[

1

y
−
E

Ec

]1/2

dy



 , (5.57)

where

β =

(

Z1Z2 e
2mR

4πǫ0 h̄
2

)1/2

= 0.74 Z
2/3
1 (5.58)

is a dimensionless constant, and

Ec =
Z1Z2 e

2

4π ǫ0R
= 1.44 Z

2/3
1 MeV (5.59)

is the characteristic energy the α-particle would need in order to escape from the nucleus
without tunneling. Of course, E≪ Ec. It is easily demonstrated that

∫1/ǫ

1

[

1

y
− ǫ

]1/2

dy ≃ π

2
√
ǫ

− 2 (5.60)

when ǫ≪ 1. Hence.

|T |2 ≃ exp



−2
√
2β





π

2

√

Ec

E
− 2







 . (5.61)

Now, the α-particle moves inside the nucleus with the characteristic velocity v =
√

2 E/m. It follows that the particle bounces backward and forward within the nucleus

at the frequency ν ≃ v/R, giving

ν ≃ 2× 1028 yr−1 (5.62)

for a 1 MeV α-particle trapped inside a typical heavy nucleus of radius 10−14 m. Thus, the
α-particle effectively attempts to tunnel through the potential barrier ν times a second. If
each of these attempts has a probability |T |2 of succeeding, then the probability of decay
per unit time is ν |T |2. Hence, if there are N(t) ≫ 1 undecayed nuclii at time t then there
are only N+ dN at time t+ dt, where

dN = −Nν |T |2dt. (5.63)
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This expression can be integrated to give

N(t) = N(0) exp(−ν |T |2 t). (5.64)

Now, the half-life, τ, is defined as the time which must elapse in order for half of the nuclii
originally present to decay. It follows from the above formula that

τ =
ln 2

ν |T |2
. (5.65)

Note that the half-life is independent of N(0).
Finally, making use of the above results, we obtain

log10[τ(yr)] = −C1 − C2Z
2/3
1 + C3

Z1
√

E(MeV)
, (5.66)

where

C1 = 28.5, (5.67)

C2 = 1.83, (5.68)

C3 = 1.73. (5.69)

The half-life, τ, the daughter charge-number, Z1 = Z − 2, and the α-particle energy, E,
for atomic nucleii which undergo α-decay are indeed found to satisfy a relationship of the
form (5.66). The best fit to the data (see Fig. 5.6) is obtained using

C1 = 28.9, (5.70)

C2 = 1.60, (5.71)

C3 = 1.61. (5.72)

Note that these values are remarkably similar to those calculated above.

5.7 Square Potential Well

Consider a particle of mass m and energy E interacting with the simple square potential
well

V(x) =

{
−V0 for −a/2 ≤ x ≤ a/2
0 otherwise

, (5.73)

where V0 > 0.
Now, if E > 0 then the particle is unbounded. Thus, when the particle encounters

the well it is either reflected or transmitted. As is easily demonstrated, the reflection and
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Figure 5.6: The experimentally determined half-life, τex, of various atomic nucleii which

decay via α emission versus the best-fit theoretical half-life log10(τth) = −28.9 − 1.60 Z
2/3
1 +

1.61 Z1/
√
E. Both half-lives are measured in years. Here, Z1 = Z − 2, where Z is the charge

number of the nucleus, and E the characteristic energy of the emitted α-particle in MeV. In

order of increasing half-life, the points correspond to the following nucleii: Rn 215, Po 214,

Po 216, Po 197, Fm 250, Ac 225, U 230, U 232, U 234, Gd 150, U 236, U 238, Pt 190, Gd

152, Nd 144. Data obtained from IAEA Nuclear Data Centre.
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transmission probabilities are given by Eqs. (5.28) and (5.29), respectively, where

k2 =
2mE

h̄2
, (5.74)

q2 =
2m (E+ V0)

h̄2
. (5.75)

Suppose, however, that E < 0. In this case, the particle is bounded (i.e., |ψ|2 → 0 as
|x| → ∞). Is is possible to find bounded solutions of Schrödinger’s equation in the finite
square potential well (5.73)?

Now, it is easily seen that independent solutions of Schrödinger’s equation (5.2) in the
symmetric [i.e., V(−x) = V(x)] potential (5.73) must be either totally symmetric [i.e.,
ψ(−x) = ψ(x)], or totally anti-symmetric [i.e., ψ(−x) = −ψ(x)]. Moreover, the solutions
must satisfy the boundary condition

ψ → 0 as |x| → ∞. (5.76)

Let us, first of all, search for a totally symmetric solution. In the region to the left of the
well (i.e. x < −a/2), the solution of Schrödinger’s equation which satisfies the boundary
condition ψ → 0 and x → −∞ is

ψ(x) = A ekx, (5.77)

where

k2 =
2m |E|

h̄2
. (5.78)

By symmetry, the solution in the region to the right of the well (i.e., x > a/2) is

ψ(x) = A e−kx. (5.79)

The solution inside the well (i.e., |x| ≤ a/2) which satisfies the symmetry constraint
ψ(−x) = ψ(x) is

ψ(x) = B cos(qx), (5.80)

where

q2 =
2m (V0 + E)

h̄2
. (5.81)

Here, we have assumed that E > −V0. The constraint that ψ(x) and its first derivative be
continuous at the edges of the well (i.e., at x = ±a/2) yields

k = q tan(qa/2). (5.82)

Let y = qa/2. It follows that
E = E0y

2 − V0, (5.83)

where

E0 =
2 h̄2

ma2
. (5.84)
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Figure 5.7: The curves tany (solid) and
√

λ− y2/y (dashed), calculated for λ = 1.5 π2. The

latter curve takes the value 0 when y >
√
λ.

Moreover, Eq. (5.82) becomes
√

λ− y2

y
= tany, (5.85)

with

λ =
V0

E0

. (5.86)

Here, y must lie in the range 0 < y <
√
λ: i.e., E must lie in the range −V0 < E < 0.

Now, the solutions to Eq. (5.85) correspond to the intersection of the curve
√

λ− y2/y

with the curve tany. Figure 5.7 shows these two curves plotted for a particular value of
λ. In this case, the curves intersect twice, indicating the existence of two totally symmetric
bound states in the well. Moreover, it is evident, from the figure, that as λ increases (i.e.,
as the well becomes deeper) there are more and more bound states. However, it is also
evident that there is always at least one totally symmetric bound state, no matter how
small λ becomes (i.e., no matter how shallow the well becomes). In the limit λ ≫ 1 (i.e.,
the limit in which the well becomes very deep), the solutions to Eq. (5.85) asymptote to
the roots of tany = ∞. This gives y = (2 j− 1)π/2, where j is a positive integer, or

q =
(2 j− 1)π

a
. (5.87)

These solutions are equivalent to the odd-n infinite square well solutions specified by
Eq. (5.8).
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Figure 5.8: The curves tany (solid) and −y/
√

λ− y2 (dashed), calculated for λ = 1.5 π2.

For the case of a totally anti-symmetric bound state, similar analysis to the above yields

−
y

√

λ− y2
= tany. (5.88)

The solutions of this equation correspond to the intersection of the curve tany with the

curve −y/
√

λ− y2. Figure 5.8 shows these two curves plotted for the same value of λ as
that used in Fig. 5.7. In this case, the curves intersect once, indicating the existence of a
single totally anti-symmetric bound state in the well. It is, again, evident, from the figure,
that as λ increases (i.e., as the well becomes deeper) there are more and more bound states.
However, it is also evident that when λ becomes sufficiently small [i.e., λ < (π/2)2] then
there is no totally anti-symmetric bound state. In other words, a very shallow potential
well always possesses a totally symmetric bound state, but does not generally possess a
totally anti-symmetric bound state. In the limit λ ≫ 1 (i.e., the limit in which the well
becomes very deep), the solutions to Eq. (5.88) asymptote to the roots of tany = 0. This
gives y = j π, where j is a positive integer, or

q =
2 j π

a
. (5.89)

These solutions are equivalent to the even-n infinite square well solutions specified by
Eq. (5.8).
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5.8 Simple Harmonic Oscillator

The classical Hamiltonian of a simple harmonic oscillator is

H =
p2

2m
+
1

2
K x2, (5.90)

where K > 0 is the so-called force constant of the oscillator. Assuming that the quan-
tum mechanical Hamiltonian has the same form as the classical Hamiltonian, the time-
independent Schrödinger equation for a particle of mass m and energy E moving in a
simple harmonic potential becomes

d2ψ

dx2
=
2m

h̄2

(

1

2
K x2 − E

)

ψ. (5.91)

Let ω =
√

K/m, where ω is the oscillator’s classical angular frequency of oscillation.
Furthermore, let

y =

√

mω

h̄
x, (5.92)

and

ǫ =
2 E

h̄ω
. (5.93)

Equation (5.91) reduces to
d2ψ

dy2
− (y2 − ǫ)ψ = 0. (5.94)

We need to find solutions to the above equation which are bounded at infinity: i.e., solu-
tions which satisfy the boundary condition ψ → 0 as |y| → ∞.

Consider the behavior of the solution to Eq. (5.94) in the limit |y| ≫ 1. As is easily
seen, in this limit the equation simplifies somewhat to give

d2ψ

dy2
− y2ψ ≃ 0. (5.95)

The approximate solutions to the above equation are

ψ(y) ≃ A(y) e±y2/2, (5.96)

where A(y) is a relatively slowly varying function of y. Clearly, if ψ(y) is to remain
bounded as |y| → ∞ then we must chose the exponentially decaying solution. This sug-
gests that we should write

ψ(y) = h(y) e−y2/2, (5.97)

where we would expect h(y) to be an algebraic, rather than an exponential, function of y.
Substituting Eq. (5.97) into Eq. (5.94), we obtain

d2h

dy2
− 2 y

dh

dy
+ (ǫ− 1)h = 0. (5.98)
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Let us attempt a power-law solution of the form

h(y) =

∞∑

i=0

ciy
i. (5.99)

Inserting this test solution into Eq. (5.98), and equating the coefficients of yi, we obtain
the recursion relation

ci+2 =
(2 i− ǫ+ 1)

(i+ 1) (i+ 2)
ci. (5.100)

Consider the behavior of h(y) in the limit |y| → ∞. The above recursion relation simplifies
to

ci+2 ≃
2

i
ci. (5.101)

Hence, at large |y|, when the higher powers of y dominate, we have

h(y) ∼ C
∑

j

y2j

j!
∼ C ey2

. (5.102)

It follows that ψ(y) = h(y) exp(−y2/2) varies as exp(y2/2) as |y| → ∞. This behavior is
unacceptable, since it does not satisfy the boundary condition ψ → 0 as |y| → ∞. The only
way in which we can prevent ψ from blowing up as |y| → ∞ is to demand that the power
series (5.99) terminate at some finite value of i. This implies, from the recursion relation
(5.100), that

ǫ = 2n+ 1, (5.103)

where n is a non-negative integer. Note that the number of terms in the power series
(5.99) is n+ 1. Finally, using Eq. (5.93), we obtain

E = (n+ 1/2) h̄ω, (5.104)

for n = 0, 1, 2, · · ·.
Hence, we conclude that a particle moving in a harmonic potential has quantized en-

ergy levels which are equally spaced. The spacing between successive energy levels is h̄ω,
whereω is the classical oscillation frequency. Furthermore, the lowest energy state (n = 0)
possesses the finite energy (1/2) h̄ω. This is sometimes called zero-point energy. It is eas-
ily demonstrated that the (normalized) wavefunction of the lowest energy state takes the
form

ψ0(x) =
e−x2/2d2

π1/4
√
d
, (5.105)

where d =
√

h̄/mω.

Letψn(x) be an energy eigenstate of the harmonic oscillator corresponding to the eigen-
value

En = (n+ 1/2) h̄ω. (5.106)
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Assuming that the ψn are properly normalized (and real), we have
∫∞

−∞

ψnψmdx = δnm. (5.107)

Now, Eq. (5.94) can be written
(

−
d2

dy2
+ y2

)

ψn = (2n+ 1)ψn, (5.108)

where x = dy, and d =
√

h̄/mω. It is helpful to define the operators

a± =
1√
2

(

∓ d

dy
+ y

)

. (5.109)

As is easily demonstrated, these operators satisfy the commutation relation

[a+, a−] = −1. (5.110)

Using these operators, Eq. (5.108) can also be written in the forms

a+a−ψn = nψn, (5.111)

or
a−a+ψn = (n+ 1)ψn. (5.112)

The above two equations imply that

a+ψn =
√
n+ 1ψn+1, (5.113)

a−ψn =
√
nψn−1. (5.114)

We conclude that a+ and a− are raising and lowering operators, respectively, for the har-
monic oscillator: i.e., operating on the wavefunction with a+ causes the quantum number
n to increase by unity, and vice versa. The Hamiltonian for the harmonic oscillator can be
written in the form

H = h̄ω

(

a+a− +
1

2

)

, (5.115)

from which the result
Hψn = (n+ 1/2) h̄ωψn = Enψn (5.116)

is readily deduced. Finally, Eqs. (5.107), (5.113), and (5.114) yield the useful expression
∫∞

−∞

ψmxψndx =
d√
2

∫∞

−∞

ψm (a+ + a−)ψndx (5.117)

=

√

h̄

2mω

(√
mδm,n+1 +

√
nδm,n−1

)

.
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Exercises

1. Show that the wavefunction of a particle of mass m in an infinite one-dimensional square-
well of width a returns to its original form after a quantum revival time T = 4ma2/π h̄.

2. A particle of mass m moves freely in one dimension between impenetrable walls located at
x = 0 and a. Its initial wavefunction is

ψ(x, 0) =
√

2/a sin(3πx/a).

What is the subsequent time evolution of the wavefunction? Suppose that the initial wave-
function is

ψ(x, 0) =
√

1/a sin(πx/a) [1 + 2 cos(πx/a)].

What now is the subsequent time evolution? Calculate the probability of finding the particle
between 0 and a/2 as a function of time in each case.

3. A particle of mass m is in the ground-state of an infinite one-dimensional square-well of
width a. Suddenly the well expands to twice its original size, as the right wall moves from a

to 2a, leaving the wavefunction momentarily undisturbed. The energy of the particle is now
measured. What is the most probable result? What is the probability of obtaining this result?
What is the next most probable result, and what is its probability of occurrence? What is the
expectation value of the energy?

4. A stream of particles of mass m and energy E > 0 encounter a potential step of height
W(< E): i.e., V(x) = 0 for x < 0 and V(x) = W for x > 0 with the particles incident from
−∞. Show that the fraction reflected is

R =

(

k− q

k+ q

)2

,

where k2 = (2m/h̄2)E and q2 = (2m/h̄2) (E −W).

5. A stream of particles of mass m and energy E > 0 encounter the delta-function potential
V(x) = −αδ(x), where α > 0. Show that the fraction reflected is

R = β2/(1+ β2),

where β = mα/h̄2k, and k2 = (2m/h̄2)E. Does such a potential have a bound state? If so,
what is its energy?

6. Two potential wells of width a are separated by a distance L≫ a. A particle of mass m and
energy E is in one of the wells. Estimate the time required for the particle to tunnel to the
other well.

7. Consider the half-infinite potential well

V(x) =






∞ x ≤ 0
−V0 0 < x < L

0 x ≥ L
,
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where V0 > 0. Demonstrate that the bound-states of a particle of mass m and energy −V0 <

E < 0 satisfy

tan

(

√

2m (V0 + E) L/h̄

)

= −
√

(V0 + E)/(−E).

8. Find the properly normalized first two excited energy eigenstates of the harmonic oscillator,
as well as the expectation value of the potential energy in the nth energy eigenstate. Hint:
Consider the raising and lowering operators a± defined in Eq. (5.109).
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6 Multi-Particle Systems

6.1 Introduction

In this chapter, we shall extend the single particle, one-dimensional formulation of non-
relativistic quantum mechanics introduced in the previous sections in order to investigate
one-dimensional chapters containing multiple particles.

6.2 Fundamental Concepts

We have already seen that the instantaneous state of a system consisting of a single non-
relativistic particle, whose position coordinate is x, is fully specified by a complex wave-
function ψ(x, t). This wavefunction is interpreted as follows. The probability of finding
the particle between x and x + dx at time t is given by |ψ(x, t)|2dx. This interpretation
only makes sense if the wavefunction is normalized such that

∫∞

−∞

|ψ(x, t)|2dx = 1 (6.1)

at all times. The physical significance of this normalization requirement is that the prob-
ability of the particle being found anywhere on the x-axis must always be unity (which
corresponds to certainty).

Consider a system containing N non-relativistic particles, labeled i = 1,N, moving in
one dimension. Let xi and mi be the position coordinate and mass, respectively, of the
ith particle. By analogy with the single-particle case, the instantaneous state of a multi-
particle system is specified by a complex wavefunction ψ(x1, x2, . . . , xN, t). The probability
of finding the first particle between x1 and x1 + dx1, the second particle between x2 and
x2 + dx2, etc., at time t is given by |ψ(x1, x2, . . . , xN, t)|

2dx1dx2 . . . dxN. It follows that the
wavefunction must satisfy the normalization condition

∫

|ψ(x1, x2, . . . , xN, t)|
2dx1dx2 . . . dxN = 1 (6.2)

at all times, where the integration is taken over all x1x2 . . . xN space.
In a single-particle system, position is represented by the algebraic operator x, whereas

momentum is represented by the differential operator −i h̄ ∂/∂x (see Sect. 4.6). By anal-
ogy, in a multi-particle system, the position of the ith particle is represented by the alge-
braic operator xi, whereas the corresponding momentum is represented by the differential
operator

pi = −i h̄
∂

∂xi

. (6.3)
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Since the xi are independent variables (i.e., ∂xi/∂xj = δij), we conclude that the various
position and momentum operators satisfy the following commutation relations:

[xi, xj] = 0, (6.4)

[pi, pj] = 0, (6.5)

[xi, pj] = i h̄ δij. (6.6)

Now, we know, from Sect. 4.10, that two dynamical variables can only be (exactly) mea-
sured simultaneously if the operators which represent them in quantum mechanics com-

mute with one another. Thus, it is clear, from the above commutation relations, that the
only restriction on measurement in a one-dimensional multi-particle system is that it is
impossible to simultaneously measure the position and momentum of the same particle.
Note, in particular, that a knowledge of the position or momentum of a given particle does
not in any way preclude a similar knowledge for a different particle. The commutation
relations (6.4)–(6.6) illustrate an important point in quantum mechanics: namely, that
operators corresponding to different degrees of freedom of a dynamical system tend to com-

mute with one another. In this case, the different degrees of freedom correspond to the
different motions of the various particles making up the system.

Finally, if H(x1, x2, . . . , xN, t) is the Hamiltonian of the system then the multi-particle
wavefunction ψ(x1, x2, . . . , xN, t) satisfies the usual time-dependent Schrödinger equation
[see Eq. (4.63)]

i h̄
∂ψ

∂t
= Hψ. (6.7)

Likewise, a multi-particle state of definite energy E (i.e., an eigenstate of the Hamiltonian
with eigenvalue E) is written (see Sect. 4.12)

ψ(x1, x2, . . . , xN, t) = ψE(x1, x2, . . . , xN) e−i Et/h̄, (6.8)

where the stationary wavefunctionψE satisfies the time-independent Schrödinger equation
[see Eq. (4.160)]

HψE = EψE. (6.9)

Here, H is assumed not to be an explicit function of t.

6.3 Non-Interacting Particles

In general, we expect the Hamiltonian of a multi-particle system to take the form

H(x1, x2, . . . , xN, t) =
∑

i=1,N

p2
i

2mi

+ V(x1, x2, . . . , xN, t). (6.10)

Here, the first term on the right-hand side represents the total kinetic energy of the system,
whereas the potential V specifies the nature of the interaction between the various particles
making up the system, as well as the interaction of the particles with any external forces.
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Suppose that the particles do not interact with one another. This implies that each
particle moves in a common potential: i.e.,

V(x1, x2, . . . , xN, t) =
∑

i=1,N

V(xi, t). (6.11)

Hence, we can write

H(x1, x2, . . . , xN, t) =
∑

i=1,N

Hi(xi, t), (6.12)

where

Hi =
p2

i

2mi

+ V(xi, t). (6.13)

In other words, for the case of non-interacting particles, the multi-particle Hamiltonian of
the system can be written as the sum ofN independent single-particle Hamiltonians. Here,
Hi represents the energy of the ith particle, and is completely unaffected by the energies
of the other particles. Furthermore, given that the various particles which make up the
system are non-interacting, we expect their instantaneous positions to be completely un-

correlated with one another. This immediately implies that the multi-particle wavefunction
ψ(x1, x2, . . . xN, t) can be written as the product of N independent single-particle wave-
functions: i.e.,

ψ(x1, x2, . . . , xN, t) = ψ1(x1, t)ψ2(x2, t) . . .ψN(xN, t). (6.14)

Here, |ψi(xi, t)|
2dxi is the probability of finding the ith particle between xi and xi + dxi at

time t. This probability is completely unaffected by the positions of the other particles. It
is evident that ψi(xi, t) must satisfy the normalization constraint

∫∞

−∞

|ψi(xi, t)|
2dxi = 1. (6.15)

If this is the case then the normalization constraint (6.2) for the multi-particle wavefunc-
tion is automatically satisfied. Equation (6.14) illustrates an important point in quantum
mechanics: namely, that we can generally write the total wavefunction of a many degree
of freedom system as a product of different wavefunctions corresponding to each degree
of freedom.

According to Eqs. (6.12) and (6.14), the time-dependent Schrödinger equation (6.7)
for a system of N non-interacting particles factorizes into N independent equations of the
form

i h̄
∂ψi

∂t
= Hiψi. (6.16)

Assuming that V(x, t) ≡ V(x), the time-independent Schrödinger equation (6.9) also fac-
torizes to give

HiψEi
= EiψEi

, (6.17)
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where ψi(xi, t) = ψEi
(xi) exp(−iEi t/h̄), and Ei is the energy of the ith particle. Hence, a

multi-particle state of definite energy E has a wavefunction of the form

ψ(x1, x2, . . . , xn, t) = ψE(x1, x2, . . . , xN) e−i Et/h̄, (6.18)

where
ψE(x1, x2, . . . , xN) = ψE1

(x1)ψE2
(x2) . . .ψEN

(xN), (6.19)

and
E =

∑

i=1,N

Ei. (6.20)

Clearly, for the case of non-interacting particles, the energy of the whole system is simply
the sum of the energies of the component particles.

6.4 Two-Particle Systems

Consider a system consisting of two particles, massm1 andm2, interacting via the potential
V(x1 − x2) which only depends on the relative positions of the particles. According to
Eqs. (6.3) and (6.10), the Hamiltonian of the system is written

H(x1, x2) = −
h̄2

2m1

∂2

∂x2
1

−
h̄2

2m2

∂2

∂x2
2

+ V(x1 − x2). (6.21)

Let
x ′ = x1 − x2 (6.22)

be the particles’ relative position, and

X =
m1x1 +m2x2

m1 +m2

(6.23)

the position of the center of mass. It is easily demonstrated that

∂

∂x1

=
m1

m1 +m2

∂

∂X
+
∂

∂x ′
, (6.24)

∂

∂x2

=
m2

m1 +m2

∂

∂X
−
∂

∂x ′
. (6.25)

Hence, when expressed in terms of the new variables, x ′ and X, the Hamiltonian becomes

H(x ′, X) = −
h̄2

2M

∂2

∂X2
−
h̄2

2 µ

∂2

∂x ′2
+ V(x ′), (6.26)

where
M = m1 +m2 (6.27)
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is the total mass of the system, and

µ =
m1m2

m1 +m2

(6.28)

the so-called reduced mass. Note that the total momentum of the system can be written

P = −i h̄

(

∂

∂x1

+
∂

∂x2

)

= −i h̄
∂

∂X
. (6.29)

The fact that the Hamiltonian (6.26) is separable when expressed in terms of the new
coordinates [i.e., H(x ′, X) = Hx′(x ′) +HX(X)] suggests, by analogy with the analysis in the
previous section, that the wavefunction can be factorized: i.e.,

ψ(x1, x2, t) = ψx′(x ′, t)ψX(X, t). (6.30)

Hence, the time-dependent Schrödinger equation (6.7) also factorizes to give

i h̄
∂ψx′

∂t
= −

h̄2

2 µ

∂2ψx′

∂x ′2
+ V(x ′)ψx′, (6.31)

and

i h̄
∂ψX

∂t
= −

h̄2

2M

∂2ψX

∂X2
. (6.32)

The above equation can be solved to give

ψX(X, t) = ψ0 e i (P′ X/h̄−E′ t/h̄), (6.33)

where ψ0, P
′, and E ′ = P ′2/2M are constants. It is clear, from Eqs. (6.29), (6.30), and

(6.33), that the total momentum of the system takes the constant value P ′: i.e., momentum
is conserved.

Suppose that we work in the centre of mass frame of the system, which is characterized
by P ′ = 0. It follows that ψX = ψ0. In this case, we can write the wavefunction of the
system in the form ψ(x1, x2, t) = ψx′(x ′, t)ψ0 ≡ ψ(x1 − x2, t), where

i h̄
∂ψ

∂t
= −

h̄2

2 µ

∂2ψ

∂x2
+ V(x)ψ. (6.34)

In other words, in the center of mass frame, two particles of mass m1 and m2, moving
in the potential V(x1 − x2), are equivalent to a single particle of mass µ, moving in the
potential V(x), where x = x1 − x2. This is a familiar result from classical dynamics.

6.5 Identical Particles

Consider a system consisting of two identical particles of mass m. As before, the instanta-
neous state of the system is specified by the complex wavefunction ψ(x1, x2, t). However,
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the only thing which this wavefunction tells us is that the probability of finding the first
particle between x1 and x1 + dx1, and the second between x2 and x2 + dx2, at time t is
|ψ(x1, x2, t)|

2dx1dx2. However, since the particles are identical, this must be the same as
the probability of finding the first particle between x2 and x2+dx2, and the second between
x1 and x1 + dx1, at time t (since, in both cases, the physical outcome of the measurement
is exactly the same). Hence, we conclude that

|ψ(x1, x2, t)|
2 = |ψ(x2, x1, t)|

2, (6.35)

or
ψ(x1, x2, t) = e i ϕψ(x2, x1, t), (6.36)

where ϕ is a real constant. However, if we swap the labels on particles 1 and 2 (which are,
after all, arbitrary for identical particles), and repeat the argument, we also conclude that

ψ(x2, x1, t) = e i ϕψ(x1, x2, t). (6.37)

Hence,
e2i ϕ = 1. (6.38)

The only solutions to the above equation are ϕ = 0 and ϕ = π. Thus, we infer that for a
system consisting of two identical particles, the wavefunction must be either symmetric or
anti-symmetric under interchange of particle labels: i.e., either

ψ(x2, x1, t) = ψ(x1, x2, t), (6.39)

or
ψ(x2, x1, t) = −ψ(x1, x2, t). (6.40)

The above argument can easily be extended to systems containing more than two identical
particles.

It turns out that whether the wavefunction of a system containing many identical par-
ticles is symmetric or anti-symmetric under interchange of the labels on any two parti-
cles is determined by the nature of the particles themselves. Particles with wavefunctions
which are symmetric under label interchange are said to obey Bose-Einstein statistics, and
are called bosons—for instance, photons are bosons. Particles with wavefunctions which
are anti-symmetric under label interchange are said to obey Fermi-Dirac statistics, and are
called fermions—for instance, electrons, protons, and neutrons are fermions.

Consider a system containing two identical and non-interacting bosons. Let ψ(x, E) be
a properly normalized, single-particle, stationary wavefunction corresponding to a state of
definite energy E. The stationary wavefunction of the whole system is written

ψEboson(x1, x2) =
1√
2

[ψ(x1, Ea)ψ(x2, Eb) +ψ(x2, Ea)ψ(x1, Eb)] , (6.41)

when the energies of the two particles are Ea and Eb. This expression automatically sat-
isfies the symmetry requirement on the wavefunction. Incidentally, since the particles are
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identical, we cannot be sure which particle has energy Ea, and which has energy Eb—only
that one particle has energy Ea, and the other Eb.

For a system consisting of two identical and non-interacting fermions, the stationary
wavefunction of the whole system takes the form

ψEfermion(x1, x2) =
1√
2

[ψ(x1, Ea)ψ(x2, Eb) − ψ(x2, Ea)ψ(x1, Eb)] , (6.42)

Again, this expression automatically satisfies the symmetry requirement on the wavefunc-
tion. Note that if Ea = Eb then the total wavefunction becomes zero everywhere. Now,
in quantum mechanics, a null wavefunction corresponds to the absence of a state. We
thus conclude that it is impossible for the two fermions in our system to occupy the same
single-particle stationary state.

Finally, if the two particles are somehow distinguishable then the stationary wavefunc-
tion of the system is simply

ψEdist(x1, x2) = ψ(x1, Ea)ψ(x2, Eb). (6.43)

Let us evaluate the variance of the distance, x1 − x2, between the two particles, using
the above three wavefunctions. It is easily demonstrated that if the particles are distin-
guishable then

〈(x1 − x2)
2〉dist = 〈x2〉a + 〈x2〉b − 2 〈x〉a 〈x〉b, (6.44)

where

〈xn〉a,b =

∫∞

−∞

ψ∗(x, Ea,b) x
nψ(x, Ea,b)dx. (6.45)

For the case of two identical bosons, we find

〈(x1 − x2)
2〉boson = 〈(x1 − x2)

2〉dist − 2 |〈x〉ab|
2, (6.46)

where

〈x〉ab =

∫∞

−∞

ψ∗(x, Ea) xψ(x, Eb)dx. (6.47)

Here, we have assumed that Ea 6= Eb, so that
∫∞

−∞

ψ∗(x, Ea)ψ(x, Eb)dx = 0. (6.48)

Finally, for the case of two identical fermions, we obtain

〈(x1 − x2)
2〉fermion = 〈(x1 − x2)

2〉dist + 2 |〈x〉ab|
2, (6.49)

Equation (6.46) shows that the symmetry requirement on the total wavefunction of two
identical bosons forces the particles to be, on average, closer together than two similar
distinguishable particles. Conversely, Eq. (6.49) shows that the symmetry requirement
on the total wavefunction of two identical fermions forces the particles to be, on average,
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further apart than two similar distinguishable particles. However, the strength of this effect
depends on square of the magnitude of 〈x〉ab, which measures the overlap between the
wavefunctions ψ(x, Ea) and ψ(x, Eb). It is evident, then, that if these two wavefunctions
do not overlap to any great extent then identical bosons or fermions will act very much
like distinguishable particles.

For a system containing N identical and non-interacting fermions, the anti-symmetric
stationary wavefunction of the system is written

ψE(x1, x2, . . . xN) =
1√
N!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ(x1, E1) ψ(x2, E1) . . . ψ(xN, E1)

ψ(x1, E2) ψ(x2, E2) . . . ψ(xN, E2)

...
...

...
...

ψ(x1, EN) ψ(x2, EN) . . . ψ(xN, EN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (6.50)

This expression is known as the Slater determinant, and automatically satisfies the symme-
try requirements on the wavefunction. Here, the energies of the particles are E1, E2, . . . , EN.
Note, again, that if any two particles in the system have the same energy (i.e., if Ei = Ej

for some i 6= j) then the total wavefunction is null. We conclude that it is impossible for
any two identical fermions in a multi-particle system to occupy the same single-particle
stationary state. This important result is known as the Pauli exclusion principle.

Exercises (N.B. Neglect spin in the following questions.)

1. Consider a system consisting of two non-interacting particles, and three one-particle states,
ψa(x), ψb(x), and ψc(x). How many different two-particle states can be constructed if
the particles are (a) distinguishable, (b) indistinguishable bosons, or (c) indistinguishable
fermions?

2. Consider two non-interacting particles, each of mass m, in a one-dimensional harmonic os-
cillator potential of classical oscillation frequency ω. If one particle is in the ground-state,
and the other in the first excited state, calculate 〈(x1 − x2)

2〉 assuming that the particles are
(a) distinguishable, (b) indistinguishable bosons, or (c) indistinguishable fermions.

3. Two non-interacting particles, with the same mass m, are in a one-dimensional box of length
a. What are the four lowest energies of the system? What are the degeneracies of these
energies if the two particles are (a) distinguishable, (b) indistinguishable bosons, or (c) in-
distingishable fermions?

4. Two particles in a one-dimensional box of length a occupy the n = 4 and n ′ = 3 states. Write
the properly normalized wavefunctions if the particles are (a) distinguishable, (b) indistin-
guishable bosons, or (c) indistinguishable fermions.
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7 Three-Dimensional Quantum Mechanics

7.1 Introduction

In this chapter, we shall extend our previous one-dimensional formulation of non-relativistic
quantum mechanics to produce a fully three-dimensional theory.

7.2 Fundamental Concepts

We have seen that in one dimension the instantaneous state of a single non-relativistic
particle is fully specified by a complex wavefunction, ψ(x, t). The probability of finding
the particle at time t between x and x + dx is P(x, t)dx, where

P(x, t) = |ψ(x, t)|2. (7.1)

Moreover, the wavefunction is normalized such that
∫∞

−∞

|ψ(x, t)|2dx = 1 (7.2)

at all times.
In three dimensions, the instantaneous state of a single particle is also fully specified

by a complex wavefunction, ψ(x, y, z, t). By analogy with the one-dimensional case, the
probability of finding the particle at time t between x and x + dx, between y and y + dx,
and between z and z+ dz, is P(x, y, z, t)dxdydz, where

P(x, y, z, t) = |ψ(x, y, z, t)|2. (7.3)

As usual, this interpretation of the wavefunction only makes sense if the wavefunction is
normalized such that

∫∞

−∞

∫∞

−∞

∫∞

−∞

|ψ(x, y, z, t)|2dxdydz = 1. (7.4)

This normalization constraint ensures that the probability of finding the particle anywhere
is space is always unity.

In one dimension, we can write the probability conservation equation (see Sect. 4.5)

∂|ψ|2

∂t
+
∂j

∂x
= 0, (7.5)

where

j =
i h̄

2m

(

ψ
∂ψ∗

∂x
−ψ∗ ∂ψ

∂x

)

(7.6)
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is the flux of probability along the x-axis. Integrating Eq. (7.5) over all space, and making
use of the fact that ψ → 0 as |x| → ∞ if ψ is to be square-integrable, we obtain

d

dt

∫∞

−∞

|ψ(x, t)|2dx = 0. (7.7)

In other words, if the wavefunction is initially normalized then it stays normalized as time
progresses. This is a necessary criterion for the viability of our basic interpretation of |ψ|2

as a probability density.
In three dimensions, by analogy with the one dimensional case, the probability conser-

vation equation becomes
∂|ψ|2

∂t
+
∂jx

∂x
+
∂jy

∂y
+
∂jz

∂z
= 0. (7.8)

Here,

jx =
i h̄

2m

(

ψ
∂ψ∗

∂x
−ψ∗ ∂ψ

∂x

)

(7.9)

is the flux of probability along the x-axis, and

jy =
i h̄

2m

(

ψ
∂ψ∗

∂y
− ψ∗ ∂ψ

∂y

)

(7.10)

the flux of probability along the y-axis, etc. Integrating Eq. (7.8) over all space, and making
use of the fact that ψ → 0 as |r| → ∞ if ψ is to be square-integrable, we obtain

d

dt

∫∞

−∞

∫∞

−∞

∫∞

−∞

|ψ(x, y, z, t)|2dxdydz = 0. (7.11)

Thus, the normalization of the wavefunction is again preserved as time progresses, as must
be the case if |ψ|2 is to be interpreted as a probability density.

In one dimension, position is represented by the algebraic operator x, whereas momen-
tum is represented by the differential operator −i h̄ ∂/∂x (see Sect. 4.6). By analogy, in
three dimensions, the Cartesian coordinates x, y, and z are represented by the algebraic
operators x, y, and z, respectively, whereas the three Cartesian components of momentum,
px, py, and pz, have the following representations:

px ≡ −i h̄
∂

∂x
, (7.12)

py ≡ −i h̄
∂

∂y
, (7.13)

pz ≡ −i h̄
∂

∂z
. (7.14)

Let x1 = x, x2 = y, x3 = z, and p1 = px, etc. Since the xi are independent variables (i.e.,
∂xi/∂xj = δij), we conclude that the various position and momentum operators satisfy the
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following commutation relations:

[xi, xj] = 0, (7.15)

[pi, pj] = 0, (7.16)

[xi, pj] = i h̄ δij. (7.17)

Now, we know, from Sect. 4.10, that two dynamical variables can only be (exactly) mea-
sured simultaneously if the operators which represent them in quantum mechanics com-

mute with one another. Thus, it is clear, from the above commutation relations, that the
only restriction on measurement in a system consisting of a single particle moving in three
dimensions is that it is impossible to simultaneously measure a given position coordinate
and the corresponding component of momentum. Note, however, that it is perfectly pos-
sible to simultaneously measure two different positions coordinates, or two different com-
ponents of the momentum. The commutation relations (7.15)–(7.17) again illustrate the
point that quantum mechanical operators corresponding to different degrees of freedom
of a dynamical system (in this case, motion in different directions) tend to commute with
one another (see Sect. 6.2).

In one dimension, the time evolution of the wavefunction is given by [see Eq. (4.63)]

i h̄
∂ψ

∂t
= Hψ, (7.18)

where H is the Hamiltonian. The same equation governs the time evolution of the wave-
function in three dimensions.

Now, in one dimension, the Hamiltonian of a non-relativistic particle of mass m takes
the form

H =
p2

x

2m
+ V(x, t), (7.19)

where V(x) is the potential energy. In three dimensions, this expression generalizes to

H =
p2

x + p2
y + p2

z

2m
+ V(x, y, z, t). (7.20)

Hence, making use of Eqs. (7.12)–(7.14) and (7.18), the three-dimensional version of the
time-dependent Schröndiger equation becomes [see Eq. (4.1)]

i h̄
∂ψ

∂t
= −

h̄2

2m
∇2ψ+ V ψ. (7.21)

Here, the differential operator

∇2 ≡ ∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
(7.22)

is known as the Laplacian. Incidentally, the probability conservation equation (7.8) is
easily derivable from Eq. (7.21). An eigenstate of the Hamiltonian corresponding to the
eigenvalue E satisfies

Hψ = Eψ. (7.23)
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It follows from Eq. (7.18) that (see Sect. 4.12)

ψ(x, y, z, t) = ψ(x, y, z) e−i Et/h̄, (7.24)

where the stationary wavefunction ψ(x, y, z) satisfies the three-dimensional version of the
time-independent Schröndiger equation [see Eq. (4.159)]:

∇2ψ =
2m

h̄2
(V − E)ψ, (7.25)

where V is assumed not to depend explicitly on t.

7.3 Particle in a Box

Consider a particle of mass m trapped inside a cubic box of dimension a (see Sect. 5.2).
The particle’s stationary wavefunction, ψ(x, y, z), satisfies

(

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)

ψ = −
2m

h̄2
Eψ, (7.26)

where E is the particle energy. The wavefunction satisfies the boundary condition that it
must be zero at the edges of the box.

Let us search for a separable solution to the above equation of the form

ψ(x, y, z) = X(x) Y(y)Z(z). (7.27)

The factors of the wavefunction satisfy the boundary conditions X(0) = X(a) = 0, Y(0) =

Y(a) = 0, and Z(0) = Z(a) = 0. Substituting (7.27) into Eq. (7.26), and rearranging, we
obtain

X ′′

X
+
Y ′′

Y
+
Z ′′

Z
= −

2m

h̄2
E, (7.28)

where ′ denotes a derivative with respect to argument. It is evident that the only way in
which the above equation can be satisfied at all points within the box is if

X ′′

X
= −k2

x , (7.29)

Y ′′

Y
= −k2

y, (7.30)

Z ′′

Z
= −k2

z , (7.31)

where k2
x , k2

y, and k2
z are spatial constants. Note that the right-hand sides of the above

equations must contain negative, rather than positive, spatial constants, because it would
not otherwise be possible to satisfy the boundary conditions. The solutions to the above



Three-Dimensional Quantum Mechanics 97

equations which are properly normalized, and satisfy the boundary conditions, are [see
Eq. (5.11)]

X(x) =

√

2

a
sin(kxx), (7.32)

Y(y) =

√

2

a
sin(kyy), (7.33)

Z(z) =

√

2

a
sin(kz z), (7.34)

where

kx =
lxπ

a
, (7.35)

ky =
lyπ

a
, (7.36)

kz =
lzπ

a
. (7.37)

Here, lx, ly, and lz are positive integers. Thus, from Eqs. (7.28)–(7.31), the energy is
written [see Eq. (5.9)]

E =
l2π2 h̄2

2ma2
. (7.38)

where

l2 = l2
x + l2

y + l2
z . (7.39)

7.4 Degenerate Electron Gases

Consider N electrons trapped in a cubic box of dimension a. Let us treat the electrons as
essentially non-interacting particles. According to Sect. 6.3, the total energy of a system
consisting of many non-interacting particles is simply the sum of the single-particle ener-
gies of the individual particles. Furthermore, electrons are subject to the Pauli exclusion

principle (see Sect. 6.5), since they are indistinguishable fermions. The exclusion princi-
ple states that no two electrons in our system can occupy the same single-particle energy
level. Now, from the previous section, the single-particle energy levels for a particle in a
box are characterized by the three quantum numbers lx, ly, and lz. Thus, we conclude that
no two electrons in our system can have the same set of values of lx, ly, and lz. It turns
out that this is not quite true, because electrons possess an intrinsic angular momentum
called spin (see Cha. 10). The spin states of an electron are governed by an additional
quantum number, which can take one of two different values. Hence, when spin is taken
into account, we conclude that a maximum of two electrons (with different spin quantum
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numbers) can occupy a single-particle energy level corresponding to a particular set of val-
ues of lx, ly, and lz. Note, from Eqs. (7.38) and (7.39), that the associated particle energy
is proportional to l2 = l2

x + l2
y + l2

z .
Suppose that our electrons are cold: i.e., they have comparatively little thermal energy.

In this case, we would expect them to fill the lowest single-particle energy levels available
to them. We can imagine the single-particle energy levels as existing in a sort of three-
dimensional quantum number space whose Cartesian coordinates are lx, ly, and lz. Thus,
the energy levels are uniformly distributed in this space on a cubic lattice. Moreover, the
distance between nearest neighbour energy levels is unity. This implies that the number
of energy levels per unit volume is also unity. Finally, the energy of a given energy level is
proportional to its distance, l2 = l2

x + l2
y + l2

z , from the origin.
Since we expect cold electrons to occupy the lowest energy levels available to them,

but only two electrons can occupy a given energy level, it follows that if the number of
electrons, N, is very large then the filled energy levels will be approximately distributed
in a sphere centered on the origin of quantum number space. The number of energy levels
contained in a sphere of radius l is approximately equal to the volume of the sphere—
since the number of energy levels per unit volume is unity. It turns out that this is not
quite correct, because we have forgotten that the quantum numbers lx, ly, and lz can only
take positive values. Hence, the filled energy levels actually only occupy one octant of a
sphere. The radius lF of the octant of filled energy levels in quantum number space can be
calculated by equating the number of energy levels it contains to the number of electrons,
N. Thus, we can write

N = 2× 1

8
× 4 π

3
l3
F . (7.40)

Here, the factor 2 is to take into account the two spin states of an electron, and the factor
1/8 is to take account of the fact that lx, ly, and lz can only take positive values. Thus,

lF =

(

3N

π

)1/3

. (7.41)

According to Eq. (7.38), the energy of the most energetic electrons—which is known as
the Fermi energy—is given by

EF =
l2
F π

2 h̄2

2mea2
=
π2 h̄2

2ma2

(

3N

π

)2/3

, (7.42)

where me is the electron mass. This can also be written as

EF =
π2 h̄2

2me

(

3n

π

)2/3

, (7.43)

where n = N/a3 is the number of electrons per unit volume (in real space). Note that the
Fermi energy only depends on the number density of the confined electrons.
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The mean energy of the electrons is given by

Ē = EF

∫ lF

0

l2 4π l2dl

/

4

3
π l5

F =
3

5
EF, (7.44)

since E ∝ l2, and the energy levels are uniformly distributed in quantum number space
inside an octant of radius lF. Now, according to classical physics, the mean thermal energy
of the electrons is (3/2) kBT , where T is the electron temperature, and kB the Boltzmann
constant. Thus, if kB T ≪ EF then our original assumption that the electrons are cold
is valid. Note that, in this case, the electron energy is much larger than that predicted
by classical physics—electrons in this state are termed degenerate. On the other hand, if
kBT ≫ EF then the electrons are hot, and are essentially governed by classical physics—
electrons in this state are termed non-degenerate.

The total energy of a degenerate electron gas is

Etotal = N Ē =
3

5
NEF. (7.45)

Hence, the gas pressure takes the form

P = −
∂Etotal

∂V
=
2

5
nEF, (7.46)

since EF ∝ a−2 = V−2/3 [see Eq. (7.42)]. Now, the pressure predicted by classical physics
is P = nkBT . Thus, a degenerate electron gas has a much higher pressure than that which
would be predicted by classical physics. This is an entirely quantum mechanical effect, and
is due to the fact that identical fermions cannot get significantly closer together than a de
Broglie wavelength without violating the Pauli exclusion principle. Note that, according to
Eq. (7.43), the mean spacing between degenerate electrons is

d ∼ n−1/3 ∼
h√
meE

∼
h

p
∼ λ, (7.47)

where λ is the de Broglie wavelength. Thus, an electron gas is non-degenerate when the
mean spacing between the electrons is much greater than the de Broglie wavelength, and
becomes degenerate as the mean spacing approaches the de Broglie wavelength.

In turns out that the conduction (i.e., free) electrons inside metals are highly degener-
ate (since the number of electrons per unit volume is very large, and EF ∝ n2/3). Indeed,
most metals are hard to compress as a direct consequence of the high degeneracy pres-
sure of their conduction electrons. To be more exact, resistance to compression is usually
measured in terms of a quantity known as the bulk modulus, which is defined

B = −V
∂P

∂V
(7.48)

Now, for a fixed number of electrons, P ∝ V−5/3 [see Eqs. (7.42) and (7.46)]. Hence,

B =
5

3
P =

π3 h̄2

9m

(

3n

π

)5/3

. (7.49)
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For example, the number density of free electrons in magnesium is n ∼ 8.6×1028 m−3. This
leads to the following estimate for the bulk modulus: B ∼ 6.4×1010 N m−2. The actual bulk
modulus is B = 4.5× 1010 N m−2.

7.5 White-Dwarf Stars

A main-sequence hydrogen-burning star, such as the Sun, is maintained in equilibrium via
the balance of the gravitational attraction tending to make it collapse, and the thermal
pressure tending to make it expand. Of course, the thermal energy of the star is generated
by nuclear reactions occurring deep inside its core. Eventually, however, the star will run
out of burnable fuel, and, therefore, start to collapse, as it radiates away its remaining
thermal energy. What is the ultimate fate of such a star?

A burnt-out star is basically a gas of electrons and ions. As the star collapses, its density
increases, and so the mean separation between its constituent particles decreases. Even-
tually, the mean separation becomes of order the de Broglie wavelength of the electrons,
and the electron gas becomes degenerate. Note, that the de Broglie wavelength of the ions
is much smaller than that of the electrons, so the ion gas remains non-degenerate. Now,
even at zero temperature, a degenerate electron gas exerts a substantial pressure, because
the Pauli exclusion principle prevents the mean electron separation from becoming signif-
icantly smaller than the typical de Broglie wavelength (see previous section). Thus, it is
possible for a burnt-out star to maintain itself against complete collapse under gravity via
the degeneracy pressure of its constituent electrons. Such stars are termed white-dwarfs.
Let us investigate the physics of white-dwarfs in more detail.

The total energy of a white-dwarf star can be written

E = K+U, (7.50)

where K is the kinetic energy of the degenerate electrons (the kinetic energy of the ion
is negligible), and U is the gravitational potential energy. Let us assume, for the sake of
simplicity, that the density of the star is uniform. In this case, the gravitational potential
energy takes the form

U = −
3

5

GM2

R
, (7.51)

where G is the gravitational constant, M is the stellar mass, and R is the stellar radius.
From the previous subsection, the kinetic energy of a degenerate electron gas is simply

K = N Ē =
3

5
NEF =

3

5
N
π2 h̄2

2me

(

3N

πV

)2/3

, (7.52)

where N is the number of electrons, V the volume of the star, and me the electron mass.
The interior of a white-dwarf star is composed of atoms like C12 and O16 which contain

equal numbers of protons, neutrons, and electrons. Thus,

M = 2Nmp, (7.53)
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where mp is the proton mass.

Equations (7.50)–(7.53) can be combined to give

E =
A

R2
−
B

R
, (7.54)

where

A =
3

20

(

9π

8

)2/3
h̄2

me

(

M

mp

)5/3

, (7.55)

B =
3

5
GM2. (7.56)

The equilibrium radius of the star, R∗, is that which minimizes the total energy E . In fact,
it is easily demonstrated that

R∗ =
2A

B
, (7.57)

which yields

R∗ =
(9π)2/3

8

h̄2

Gmem
5/3
p M1/3

. (7.58)

The above formula can also be written

R∗
R⊙

= 0.010

(

M⊙
M

)1/3

, (7.59)

where R⊙ = 7 × 105 km is the solar radius, and M⊙ = 2 × 1030 kg the solar mass. It
follows that the radius of a typical solar mass white-dwarf is about 7000 km: i.e., about
the same as the radius of the Earth. The first white-dwarf to be discovered (in 1862) was
the companion of Sirius. Nowadays, thousands of white-dwarfs have been observed, all
with properties similar to those described above.

Note from Eqs. (7.52), (7.53), and (7.59) that Ē ∝ M4/3. In other words, the mean
energy of the electrons inside a white dwarf increases as the stellar mass increases. Hence,
for a sufficiently massive white dwarf, the electrons can become relativistic. It turns out
that the degeneracy pressure for relativistic electrons only scales as R−1, rather that R−2,
and thus is unable to balance the gravitational pressure [which also scales as R−1—see
Eq. (7.54)]. It follows that electron degeneracy pressure is only able to halt the collapse
of a burnt-out star provided that the stellar mass does not exceed some critical value,
known as the Chandrasekhar limit, which turns out to be about 1.4 times the mass of the
Sun. Stars whose mass exceeds the Chandrasekhar limit inevitably collapse to produce
extremely compact objects, such as neutron stars (which are held up by the degeneracy
pressure of their constituent neutrons), or black holes.
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Exercises

1. Consider a particle of mass m moving in a three-dimensional isotropic harmonic oscillator
potential of force constant k. Solve the problem via the separation of variables, and obtain
an expression for the allowed values of the total energy of the system (in a stationary state).

2. Repeat the calculation of the Fermi energy of a gas of fermions by assuming that the fermions
are massless, so that the energy-momentum relation is E = p c.

3. Calculate the density of states of an electron gas in a cubic box of volume L3, bearing in
mind that there are two electrons per energy state. In other words, calculate the number of
electron states in the interval E to E+ dE. This number can be written dN = ρ(E)dE, where
ρ is the density of states.

4. Repeat the above calculation for a two-dimensional electron gas in a square box of area L2.

5. Given that the number density of free electrons in copper is 8.5 × 1028 m−3, calculate the
Fermi energy in electron volts, and the velocity of an electron whose kinetic energy is equal
to the Fermi energy.

6. Obtain an expression for the Fermi energy (in eV) of an electron in a white dwarf star as a
function of the stellar mass (in solar masses). At what mass does the Fermi energy equal the
rest mass energy?
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8 Orbital Angular Momentum

8.1 Introduction

As is well-known, angular momentum plays a vitally important role in the classical descrip-
tion of three-dimensional motion. Let us now investigate the role of angular momentum
in the quantum mechanical description of such motion.

8.2 Angular Momentum Operators

In classical mechanics, the vector angular momentum, L, of a particle of position vector r
and linear momentum p is defined as

L = r × p. (8.1)

It follows that

Lx = ypz − z py, (8.2)

Ly = z px − xpz, (8.3)

Lz = xpy − ypx. (8.4)

Let us, first of all, consider whether it is possible to use the above expressions as the defini-
tions of the operators corresponding to the components of angular momentum in quantum
mechanics, assuming that the xi and pi (where x1 ≡ x, p1 ≡ px, x2 ≡ y, etc.) correspond
to the appropriate quantum mechanical position and momentum operators. The first point
to note is that expressions (8.2)–(8.4) are unambiguous with respect to the order of the
terms in multiplicative factors, since the various position and momentum operators ap-
pearing in them all commute with one another [see Eqs. (7.17)]. Moreover, given that the
xi and the pi are Hermitian operators, it is easily seen that the Li are also Hermitian. This
is important, since only Hermitian operators can represent physical variables in quantum
mechanics (see Sect. 4.6). We, thus, conclude that Eqs. (8.2)–(8.4) are plausible defini-
tions for the quantum mechanical operators which represent the components of angular
momentum.

Let us now derive the commutation relations for the Li. For instance,

[Lx, Ly] = [ypz − z py, z px − xpz] = ypx [pz, z] + xpy [z, pz]

= i h̄ (xpy − ypx) = i h̄ Lz, (8.5)

where use has been made of the definitions of the Li [see Eqs. (8.2)–(8.4)], and com-
mutation relations (7.15)–(7.17) for the xi and pi. There are two similar commutation
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relations: one for Ly and Lz, and one for Lz and Lx. Collecting all of these commutation
relations together, we obtain

[Lx, Ly] = i h̄ Lz, (8.6)

[Ly, Lz] = i h̄ Lx, (8.7)

[Lz, Lx] = i h̄ Ly. (8.8)

By analogy with classical mechanics, the operator L2, which represents the magnitude

squared of the angular momentum vector, is defined

L2 = L2
x + L2

y + L2
z . (8.9)

Now, it is easily demonstrated that if A and B are two general operators then

[A2, B] = A [A,B] + [A,B]A. (8.10)

Hence,

[L2, Lx] = [L2
y, Lx] + [L2

z , Lx]

= Ly [Ly, Lx] + [Ly, Lx] Ly + Lz [Lz, Lx] + [Lz, Lx] Lz

= i h̄ (−LyLz − LzLy + LzLy + LyLz) = 0, (8.11)

where use has been made of Eqs. (8.6)–(8.8). In other words, L2 commutes with Lx.
Likewise, it is easily demonstrated that L2 also commutes with Ly, and with Lz. Thus,

[L2, Lx] = [L2, Ly] = [L2, Lz] = 0. (8.12)

Recall, from Sect. 4.10, that in order for two physical quantities to be (exactly) mea-
sured simultaneously, the operators which represent them in quantum mechanics must
commute with one another. Hence, the commutation relations (8.6)–(8.8) and (8.12)
imply that we can only simultaneously measure the magnitude squared of the angular mo-
mentum vector, L2, together with, at most, one of its Cartesian components. By convention,
we shall always choose to measure the z-component, Lz.

Finally, it is helpful to define the operators

L± = Lx ± i Ly. (8.13)

Note that L+ and L− are not Hermitian operators, but are the Hermitian conjugates of one
another (see Sect. 4.6): i.e.,

(L±)† = L∓, (8.14)

Moreover, it is easily seen that

L+L− = (Lx + i Ly) (Lx − i Ly) = L2
x + L2

y − i [Lx, Ly] = L2
x + L2

y + h̄ Lz

= L2 − L2
z + h̄ Lz. (8.15)
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Likewise,
L−L+ = L2 − L2

z − h̄ Lz, (8.16)

giving
[L+, L−] = 2 h̄ Lz. (8.17)

We also have

[L+, Lz] = [Lx, Lz] + i [Ly, Lz] = −i h̄ Ly − h̄ Lx = −h̄ L+, (8.18)

and, similarly,
[L−, Lz] = h̄ L−. (8.19)

8.3 Representation of Angular Momentum

Now, we saw earlier, in Sect. 7.2, that the operators, pi, which represent the Cartesian
components of linear momentum in quantum mechanics, can be represented as the spa-
tial differential operators −i h̄ ∂/∂xi. Let us now investigate whether angular momentum
operators can similarly be represented as spatial differential operators.

It is most convenient to perform our investigation using conventional spherical polar

coordinates: i.e., r, θ, and φ. These are defined with respect to our usual Cartesian coordi-
nates as follows:

x = r sinθ cosφ, (8.20)

y = r sinθ sinφ, (8.21)

z = r cos θ. (8.22)

It follows, after some tedious analysis, that

∂

∂x
= sinθ cosφ

∂

∂r
+

cosθ cosφ

r

∂

∂θ
−

sinφ

r sinθ

∂

∂φ
, (8.23)

∂

∂y
= sinθ sinφ

∂

∂r
+

cosθ sinφ

r

∂

∂θ
+

cosφ

r sinθ

∂

∂φ
, (8.24)

∂

∂z
= cos θ

∂

∂r
−

sinθ

r

∂

∂θ
. (8.25)

Making use of the definitions (8.2)–(8.4), (8.9), and (8.13), the fundamental represen-
tation (7.12)–(7.14) of the pi operators as spatial differential operators, the Eqs. (8.20)–
(8.25), and a great deal of tedious algebra, we finally obtain

Lx = −i h̄

(

− sinφ
∂

∂θ
− cosφ cot θ

∂

∂φ

)

, (8.26)

Ly = −i h̄

(

cosφ
∂

∂θ
− sinφ cot θ

∂

∂φ

)

, (8.27)

Lz = −i h̄
∂

∂φ
, (8.28)
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as well as

L2 = −h̄2

[

1

sinθ

∂

∂θ

(

sinθ
∂

∂θ

)

+
1

sin2θ

∂2

∂φ2

]

, (8.29)

and

L± = h̄ e±i φ

(

± ∂

∂θ
+ i cot θ

∂

∂φ

)

. (8.30)

We, thus, conclude that all of our angular momentum operators can be represented as dif-
ferential operators involving the angular spherical coordinates, θ and φ, but not involving
the radial coordinate, r.

8.4 Eigenstates of Angular Momentum

Let us find the simultaneous eigenstates of the angular momentum operators Lz and L2.
Since both of these operators can be represented as purely angular differential operators,
it stands to reason that their eigenstates only depend on the angular coordinates θ and φ.
Thus, we can write

LzYl,m(θ, φ) = m h̄Yl,m(θ, φ), (8.31)

L2Yl,m(θ, φ) = l (l+ 1) h̄2Yl,m(θ, φ). (8.32)

Here, the Yl,m(θ, φ) are the eigenstates in question, whereas the dimensionless quantities
m and l parameterize the eigenvalues of Lz and L2, which are m h̄ and l (l + 1) h̄2, re-
spectively. Of course, we expect the Yl,m to be both mutually orthogonal and properly
normalized (see Sect. 4.9), so that

∮

Y ∗
l′,m′(θ, φ) Yl,m(θ, φ)dΩ = δll′ δmm′, (8.33)

where dΩ = sinθdθdφ is an element of solid angle, and the integral is over all solid
angle.

Now,

Lz (L+Yl,m) = (L+Lz + [Lz, L+]) Yl,m = (L+Lz + h̄ L+) Yl,m

= (m+ 1) h̄ (L+Yl,m), (8.34)

where use has been made of Eq. (8.18). We, thus, conclude that when the operator L+

operates on an eigenstate of Lz corresponding to the eigenvalue m h̄ it converts it to an
eigenstate corresponding to the eigenvalue (m + 1) h̄. Hence, L+ is known as the raising

operator (for Lz). It is also easily demonstrated that

Lz (L−Yl,m) = (m− 1) h̄ (L−Yl,m). (8.35)
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In other words, when L− operates on an eigenstate of Lz corresponding to the eigenvalue
m h̄ it converts it to an eigenstate corresponding to the eigenvalue (m − 1) h̄. Hence, L−

is known as the lowering operator (for Lz).
Writing

L+Yl,m = c+
l,mYl,m+1, (8.36)

L−Yl,m = c−
l,mYl,m−1, (8.37)

we obtain
L−L+Yl,m = c+

l,mc
−
l,m+1Yl,m = [l (l+ 1) −m (m+ 1)] h̄2Yl,m, (8.38)

where use has been made of Eq. (8.16). Likewise,

L+L−Yl,m = c+
l,m−1c

−
l,mYl,m = [l (l+ 1) −m (m− 1)] h̄2Yl,m, (8.39)

where use has been made of Eq. (8.15). It follows that

c+
l,mc

−
l,m+1 = [l (l+ 1) −m (m+ 1)] h̄2, (8.40)

c+
l,m−1c

−
l,m = [l (l+ 1) −m (m− 1)] h̄2. (8.41)

These equations are satisfied when

c±l,m = [l (l+ l) −m (m± 1)]1/2 h̄. (8.42)

Hence, we can write

L+Yl,m = [l (l+ 1) −m (m+ 1)]1/2 h̄ Yl,m+1, (8.43)

L−Yl,m = [l (l+ 1) −m (m− 1)]1/2 h̄ Yl,m−1. (8.44)

8.5 Eigenvalues of Lz

It seems reasonable to attempt to write the eigenstate Yl,m(θ, φ) in the separable form

Yl,m(θ, φ) = Θl,m(θ)Φm(φ). (8.45)

We can satisfy the orthonormality constraint (8.33) provided that
∫π

−π

Θ ∗
l′,m′(θ)Θl,m(θ) sinθdθ = δll′ , (8.46)

∫2π

0

Φ ∗
m′(φ)Φm(φ)dφ = δmm′. (8.47)

Note, from Eq. (8.28), that the differential operator which represents Lz only depends
on the azimuthal angle φ, and is independent of the polar angle θ. It therefore follows
from Eqs. (8.28), (8.31), and (8.45) that

− i h̄
dΦm

dφ
= m h̄Φm. (8.48)
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The solution to this equation is
Φm(φ) ∼ e i mφ. (8.49)

Here, the symbol ∼ just means that we are neglecting multiplicative constants.
Now, our basic interpretation of a wavefunction as a quantity whose modulus squared

represents the probability density of finding a particle at a particular point in space sug-
gests that a physical wavefunction must be single-valued in space. Otherwise, the proba-
bility density at a given point would not, in general, have a unique value, which does not
make physical sense. Hence, we demand that the wavefunction (8.49) be single-valued:
i.e., Φm(φ + 2 π) = Φm(φ) for all φ. This immediately implies that the quantity m is
quantized. In fact, m can only take integer values. Thus, we conclude that the eigenval-
ues of Lz are also quantized, and take the values m h̄, where m is an integer. [A more
rigorous argument is that Φm(φ) must be continuous in order to ensure that Lz is an Her-
mitian operator, since the proof of hermiticity involves an integration by parts in φ that
has canceling contributions from φ = 0 and φ = 2π.]

Finally, we can easily normalize the eigenstate (8.49) by making use of the orthonor-
mality constraint (8.47). We obtain

Φm(φ) =
e i mφ

√
2π
. (8.50)

This is the properly normalized eigenstate of Lz corresponding to the eigenvalue m h̄.

8.6 Eigenvalues of L2

Consider the angular wavefunction ψ(θ, φ) = L+Yl,m(θ, φ). We know that
∮

ψ∗(θ, φ)ψ(θ, φ)dΩ ≥ 0, (8.51)

since ψ∗ψ ≡ |ψ|2 is a positive-definite real quantity. Hence, making use of Eqs. (4.58) and
(8.14), we find that

∮

(L+Yl,m)∗ (L+Yl,m)dΩ =

∮

Y ∗
l,m (L+)† (L+Yl,m)dΩ

=

∮

Y ∗
l,mL−L+Yl,mdΩ ≥ 0. (8.52)

It follows from Eqs. (8.16), and (8.31)–(8.33) that
∮

Y ∗
l,m (L2 − L2

z − h̄ Lz) Yl,mdΩ =

∮

Y ∗
l,m h̄

2 [l (l+ 1) −m (m+ 1)]Yl,mdΩ

= h̄2 [l (l+ 1) −m (m+ 1)]

∮

Y ∗
l,mYl,mdΩ

= h̄2 [l (l+ 1) −m (m+ 1)] ≥ 0. (8.53)
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We, thus, obtain the constraint

l (l+ 1) ≥ m (m+ 1). (8.54)

Likewise, the inequality

∮

(L−Yl,m)∗ (L−Yl,m)dΩ =

∮

Y ∗
l,mL+L−Yl,mdΩ ≥ 0 (8.55)

leads to a second constraint:

l (l+ 1) ≥ m (m− 1). (8.56)

Without loss of generality, we can assume that l ≥ 0. This is reasonable, from a physical
standpoint, since l (l+1) h̄2 is supposed to represent the magnitude squared of something,
and should, therefore, only take non-negative values. If l is non-negative then the con-
straints (8.54) and (8.56) are equivalent to the following constraint:

− l ≤ m ≤ l. (8.57)

We, thus, conclude that the quantum number m can only take a restricted range of integer
values.

Well, if m can only take a restricted range of integer values then there must exist a
lowest possible value it can take. Let us call this special value m−, and let Yl,m− be the
corresponding eigenstate. Suppose we act on this eigenstate with the lowering operator
L−. According to Eq. (8.35), this will have the effect of converting the eigenstate into that
of a state with a lower value of m. However, no such state exists. A non-existent state is
represented in quantum mechanics by the null wavefunction, ψ = 0. Thus, we must have

L−Yl,m− = 0. (8.58)

Now, from Eq. (8.15),

L2 = L+L− + L2
z − h̄ Lz (8.59)

Hence,

L2Yl,m− = (L+L− + L2
z − h̄ Lz) Yl,m− , (8.60)

or

l (l+ 1) Yl,m− = m− (m− − 1) Yl,m− , (8.61)

where use has been made of (8.31), (8.32), and (8.58). It follows that

l (l + 1) = m− (m− − 1). (8.62)

Assuming that m− is negative, the solution to the above equation is

m− = −l. (8.63)
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We can similarly show that the largest possible value of m is

m+ = +l. (8.64)

The above two results imply that l is an integer, since m− and m+ are both constrained to
be integers.

We can now formulate the rules which determine the allowed values of the quan-
tum numbers l and m. The quantum number l takes the non-negative integer values
0, 1, 2, 3, · · ·. Once l is given, the quantum number m can take any integer value in the
range

− l, −l + 1, · · · 0, · · · , l − 1, l. (8.65)

Thus, if l = 0 then m can only take the value 0, if l = 1 then m can take the values
−1, 0,+1, if l = 2 then m can take the values −2,−1, 0,+1,+2, and so on.

8.7 Spherical Harmonics

The simultaneous eigenstates, Yl,m(θ, φ), of L2 and Lz are known as the spherical harmon-

ics. Let us investigate their functional form.
Now, we know that

L+Yl,l(θ, φ) = 0, (8.66)

since there is no state for which m has a larger value than +l. Writing

Yl,l(θ, φ) = Θl,l(θ) e i lφ (8.67)

[see Eqs. (8.45) and (8.49)], and making use of Eq. (8.30), we obtain

h̄ e i φ

(

∂

∂θ
+ i cot θ

∂

∂φ

)

Θl,l(θ) e ilφ = 0. (8.68)

This equation yields
dΘl,l

dθ
− l cot θΘl,l = 0. (8.69)

which can easily be solved to give

Θl,l ∼ (sinθ)l. (8.70)

Hence, we conclude that

Yl,l(θ, φ) ∼ (sinθ)l e i lφ. (8.71)

Likewise, it is easy to demonstrate that

Yl,−l(θ, φ) ∼ (sinθ)l e−i lφ. (8.72)
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Once we know Yl,l, we can obtain Yl,l−1 by operating on Yl,l with the lowering operator
L−. Thus,

Yl,l−1 ∼ L−Yl,l ∼ e−i φ

(

−
∂

∂θ
+ i cot θ

∂

∂φ

)

(sinθ)l e i lφ, (8.73)

where use has been made of Eq. (8.30). The above equation yields

Yl,l−1 ∼ e i (l−1)φ

(

d

dθ
+ l cot θ

)

(sinθ)l. (8.74)

Now,
(

d

dθ
+ l cot θ

)

f(θ) ≡ 1

(sinθ)l

d

dθ

[

(sinθ)l f(θ)
]

, (8.75)

where f(θ) is a general function. Hence, we can write

Yl,l−1(θ, φ) ∼
e i (l−1)φ

(sinθ)l−1

(

1

sinθ

d

dθ

)

(sinθ)2l. (8.76)

Likewise, we can show that

Yl,−l+1(θ, φ) ∼ L+Yl,−l ∼
e−i (l−1)φ

(sinθ)l−1

(

1

sinθ

d

dθ

)

(sinθ)2l. (8.77)

We can now obtain Yl,l−2 by operating on Yl,l−1 with the lowering operator. We get

Yl,l−2 ∼ L−Yl,l−1 ∼ e−i φ

(

−
∂

∂θ
+ i cot θ

∂

∂φ

)

e i (l−1)φ

(sinθ)l−1

(

1

sinθ

d

dθ

)

(sinθ)2l, (8.78)

which reduces to

Yl,l−2 ∼ e−i (l−2)φ

[

d

dθ
+ (l − 1) cot θ

]

1

(sinθ)l−1

(

1

sinθ

d

dθ

)

(sinθ)2l. (8.79)

Finally, making use of Eq. (8.75), we obtain

Yl,l−2(θ, φ) ∼
e i (l−2)φ

(sinθ)l−2

(

1

sinθ

d

dθ

)2

(sinθ)2l. (8.80)

Likewise, we can show that

Yl,−l+2(θ, φ) ∼ L+Yl,−l+1 ∼
e−i (l−2)φ

(sinθ)l−2

(

1

sinθ

d

dθ

)2

(sinθ)2l. (8.81)

A comparison of Eqs. (8.71), (8.76), and (8.80) reveals the general functional form of
the spherical harmonics:

Yl,m(θ, φ) ∼
e i mφ

(sinθ)m

(

1

sinθ

d

dθ

)l−m

(sinθ)2l. (8.82)
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Figure 8.1: The |Yl,m(θ, φ)|2 plotted as a functions of θ. The solid, short-dashed, and long-

dashed curves correspond to l,m = 0, 0, and 1, 0, and 1,±1, respectively.

Here, m is assumed to be non-negative. Making the substitution u = cos θ, we can also
write

Yl,m(u,φ) ∼ e i mφ (1− u2)−m/2

(

d

du

)l−m

(1− u2)l. (8.83)

Finally, it is clear from Eqs. (8.72), (8.77), and (8.81) that

Yl,−m ∼ Y ∗
l,m. (8.84)

We now need to normalize our spherical harmonic functions so as to ensure that
∮

|Yl,m(θ, φ)|2dΩ = 1. (8.85)

After a great deal of tedious analysis, the normalized spherical harmonic functions are
found to take the form

Yl,m(θ, φ) = (−1)m

[

2 l+ 1

4π

(l −m)!

(l +m)!

]1/2

Pl,m(cosθ) e i mφ (8.86)

for m ≥ 0, where the Pl,m are known as associated Legendre polynomials, and are written

Pl,m(u) = (−1)l+m (l+m)!

(l−m)!

(1− u2)−m/2

2l l!

(

d

du

)l−m

(1− u2)l (8.87)

for m ≥ 0. Alternatively,

Pl,m(u) = (−1)l (1− u2)m/2

2l l!

(

d

du

)l+m

(1− u2)l, (8.88)
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Figure 8.2: The |Yl,m(θ, φ)|2 plotted as a functions of θ. The solid, short-dashed, and long-

dashed curves correspond to l,m = 2, 0, and 2,±1, and 2,±2, respectively.

for m ≥ 0. The spherical harmonics characterized by m < 0 can be calculated from those
characterized by m > 0 via the identity

Yl,−m = (−1)mY ∗
l,m. (8.89)

The spherical harmonics are orthonormal: i.e.,
∮

Y ∗
l′,m′ Yl,mdΩ = δll′ δmm′, (8.90)

and also form a complete set. In other words, any function of θ and φ can be represented
as a superposition of spherical harmonics. Finally, and most importantly, the spherical
harmonics are the simultaneous eigenstates of Lz and L2 corresponding to the eigenvalues
m h̄ and l (l+ 1) h̄2, respectively.

All of the l = 0, l = 1, and l = 2 spherical harmonics are listed below:

Y0,0 =
1√
4π
, (8.91)

Y1,0 =

√

3

4π
cos θ, (8.92)

Y1,±1 = ∓
√

3

8π
sinθ e±i φ, (8.93)

Y2,0 =

√

5

16π
(3 cos2θ − 1), (8.94)
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Y2,±1 = ∓
√

15

8π
sinθ cosθ e±i φ, (8.95)

Y2,±2 =

√

15

32π
sin2θ e±2i φ. (8.96)

The θ variation of these functions is illustrated in Figs. 8.1 and 8.2.

Exercises

1. A system is in the state ψ = Yl,m(θ,φ). Calculate 〈Lx〉 and 〈L2
x〉.

2. Find the eigenvalues and eigenfunctions (in terms of the angles θ and φ) of Lx.

3. Consider a beam of particles with l = 1. A measurement of Lx yields the result h̄. What
values will be obtained by a subsequent measurement of Lz, and with what probabilities?
Repeat the calculation for the cases in which the measurement of Lx yields the results 0 and
−h̄.

4. The Hamiltonian for an axially symmetric rotator is given by

H =
L2

x + L2
y

2 I1
+
L2

z

2 I2
.

What are the eigenvalues of H?
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9 Central Potentials

9.1 Introduction

In this chapter, we shall investigate the interaction of a non-relativistic particle of mass m

and energy E with various so-called central potentials, V(r), where r =
√

x2 + y2 + z2 is
the radial distance from the origin. It is, of course, most convenient to work in spherical
polar coordinates—r, θ, φ—during such an investigation (see Sect. 8.3). Thus, we shall
be searching for stationary wavefunctions, ψ(r, θ, φ), which satisfy the time-independent
Schrödinger equation (see Sect. 4.12)

Hψ = Eψ, (9.1)

where the Hamiltonian takes the standard non-relativistic form

H =
p2

2m
+ V(r). (9.2)

9.2 Derivation of Radial Equation

Now, we have seen that the Cartesian components of the momentum, p, can be represented
as (see Sect. 7.2)

pi = −i h̄
∂

∂xi

(9.3)

for i = 1, 2, 3, where x1 ≡ x, x2 ≡ y, x3 ≡ z, and r ≡ (x1, x2, x3). Likewise, it is easily
demonstrated, from the above expressions, and the basic definitions of the spherical polar
coordinates [see Eqs. (8.20)–(8.25)], that the radial component of the momentum can be
represented as

pr ≡
p · r

r
= −i h̄

∂

∂r
. (9.4)

Recall that the angular momentum vector, L, is defined [see Eq. (8.1)]

L = r × p. (9.5)

This expression can also be written in the following form:

Li = ǫijkxjpk. (9.6)

Here, the ǫijk (where i, j, k all run from 1 to 3) are elements of the so-called totally anti-

symmetric tensor. The values of the various elements of this tensor are determined via a
simple rule:

ǫijk =






0 if i, j, k not all different

1 if i, j, k are cyclic permutation of 1, 2, 3

−1 if i, j, k are anti-cyclic permutation of 1, 2, 3

. (9.7)
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Thus, ǫ123 = ǫ231 = 1, ǫ321 = ǫ132 = −1, and ǫ112 = ǫ131 = 0, etc. Equation (9.6) also
makes use of the Einstein summation convention, according to which repeated indices are
summed (from 1 to 3). For instance, aibi ≡ a1b1 + a2b2 + a3b3. Making use of this
convention, as well as Eq. (9.7), it is easily seen that Eqs. (9.5) and (9.6) are indeed
equivalent.

Let us calculate the value of L2 using Eq. (9.6). According to our new notation, L2 is
the same as LiLi. Thus, we obtain

L2 = ǫijkxjpkǫilmxlpm = ǫijkǫilmxjpkxlpm. (9.8)

Note that we are able to shift the position of ǫilm because its elements are just numbers,
and, therefore, commute with all of the xi and the pi. Now, it is easily demonstrated that

ǫijkǫilm ≡ δjl δkm − δjmδkl. (9.9)

Here δij is the usual Kronecker delta, whose elements are determined according to the rule

δij =

{
1 if i and j the same

0 if i and j different
. (9.10)

It follows from Eqs. (9.8) and (9.9) that

L2 = xipjxipj − xipjxjpi. (9.11)

Here, we have made use of the fairly self-evident result that δijaibj ≡ aibi. We have also
been careful to preserve the order of the various terms on the right-hand side of the above
expression, since the xi and the pi do not necessarily commute with one another.

We now need to rearrange the order of the terms on the right-hand side of Eq. (9.11).
We can achieve this by making use of the fundamental commutation relation for the xi and
the pi [see Eq. (7.17)]:

[xi, pj] = i h̄ δij. (9.12)

Thus,

L2 = xi (xipj − [xi, pj])pj − xipj (pixj + [xj, pi])

= xi xipjpj − i h̄ δijxipj − xipjpixj − i h̄ δijxipj

= xi xipjpj − xipipj xj − 2 i h̄ xipi. (9.13)

Here, we have made use of the fact that pjpi = pipj, since the pi commute with one
another [see Eq. (7.16)]. Next,

L2 = xi xipjpj − xipi (xjpj − [xj, pj]) − 2 i h̄ xipi. (9.14)

Now, according to (9.12),

[xj, pj] ≡ [x1, p1] + [x2, p2] + [x3, p3] = 3 i h̄. (9.15)
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Hence, we obtain
L2 = xi xipjpj − xipi xjpj + i h̄ xipi. (9.16)

When expressed in more conventional vector notation, the above expression becomes

L2 = r2p2 − (r · p)2 + i h̄ r · p. (9.17)

Note that if we had attempted to derive the above expression directly from Eq. (9.5),
using standard vector identities, then we would have missed the final term on the right-
hand side. This term originates from the lack of commutation between the xi and pi

operators in quantum mechanics. Of course, standard vector analysis assumes that all
terms commute with one another.

Equation (9.17) can be rearranged to give

p2 = r−2
[

(r · p)2 − i h̄ r · p + L2
]

. (9.18)

Now,

r · p = r pr = −i h̄ r
∂

∂r
, (9.19)

where use has been made of Eq. (9.4). Hence, we obtain

p2 = −h̄2

[

1

r

∂

∂r

(

r
∂

∂r

)

+
1

r

∂

∂r
−

L2

h̄2 r2

]

. (9.20)

Finally, the above equation can be combined with Eq. (9.2) to give the following expression
for the Hamiltonian:

H = −
h̄2

2m

(

∂2

∂r2
+
2

r

∂

∂r
−

L2

h̄2 r2

)

+ V(r). (9.21)

Let us now consider whether the above Hamiltonian commutes with the angular mo-
mentum operators Lz and L2. Recall, from Sect. 8.3, that Lz and L2 are represented as
differential operators which depend solely on the angular spherical polar coordinates, θ
and φ, and do not contain the radial polar coordinate, r. Thus, any function of r, or any
differential operator involving r (but not θ and φ), will automatically commute with L2

and Lz. Moreover, L2 commutes both with itself, and with Lz (see Sect. 8.2). It is, therefore,
clear that the above Hamiltonian commutes with both Lz and L2.

Now, according to Sect. 4.10, if two operators commute with one another then they
possess simultaneous eigenstates. We thus conclude that for a particle moving in a central

potential the eigenstates of the Hamiltonian are simultaneous eigenstates of Lz and L2. Now,
we have already found the simultaneous eigenstates of Lz and L2—they are the spheri-
cal harmonics, Yl,m(θ, φ), discussed in Sect. 8.7. It follows that the spherical harmonics
are also eigenstates of the Hamiltonian. This observation leads us to try the following
separable form for the stationary wavefunction:

ψ(r, θ, φ) = R(r) Yl,m(θ, φ). (9.22)
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It immediately follows, from (8.31) and (8.32), and the fact that Lz and L2 both obviously
commute with R(r), that

Lzψ = m h̄ψ, (9.23)

L2ψ = l (l+ 1) h̄2ψ. (9.24)

Recall that the quantum numbers m and l are restricted to take certain integer values, as
explained in Sect. 8.6.

Finally, making use of Eqs. (9.1), (9.21), and (9.24), we obtain the following differen-
tial equation which determines the radial variation of the stationary wavefunction:

−
h̄2

2m

(

d2

dr2
+
2

r

d

dr
−
l (l+ 1)

r2

)

Rn,l + V Rn,l = ERn,l. (9.25)

Here, we have labeled the function R(r) by two quantum numbers, n and l. The second
quantum number, l, is, of course, related to the eigenvalue of L2. [Note that the azimuthal
quantum number,m, does not appear in the above equation, and, therefore, does not influ-
ence either the function R(r) or the energy, E.] As we shall see, the first quantum number,
n, is determined by the constraint that the radial wavefunction be square-integrable.

9.3 Infinite Spherical Potential Well

Consider a particle of mass m and energy E > 0 moving in the following simple central
potential:

V(r) =

{
0 for 0 ≤ r ≤ a
∞ otherwise

. (9.26)

Clearly, the wavefunction ψ is only non-zero in the region 0 ≤ r ≤ a. Within this re-
gion, it is subject to the physical boundary conditions that it be well behaved (i.e., square-
integrable) at r = 0, and that it be zero at r = a (see Sect. 5.2). Writing the wavefunction
in the standard form

ψ(r, θ, φ) = Rn,l(r) Yl,m(θ, φ), (9.27)

we deduce (see previous section) that the radial function Rn,l(r) satisfies

d2Rn,l

dr2
+
2

r

dRn,l

dr
+

(

k2 −
l (l+ 1)

r2

)

Rn,l = 0 (9.28)

in the region 0 ≤ r ≤ a, where

k2 =
2mE

h̄2
. (9.29)

Defining the scaled radial variable z = k r, the above differential equation can be trans-
formed into the standard form

d2Rn,l

dz2
+
2

z

dRn,l

dz
+

[

1−
l (l+ 1)

z2

]

Rn,l = 0. (9.30)
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Figure 9.1: The first few spherical Bessel functions. The solid, short-dashed, long-dashed, and

dot-dashed curves show j0(z), j1(z), y0(z), and y1(z), respectively.

The two independent solutions to this well-known second-order differential equation are
called spherical Bessel functions,1 and can be written

jl(z) = zl

(

−
1

z

d

dz

)l(

sin z

z

)

, (9.31)

yl(z) = −zl

(

−
1

z

d

dz

)l(
cos z

z

)

. (9.32)

Thus, the first few spherical Bessel functions take the form

j0(z) =
sin z

z
, (9.33)

j1(z) =
sin z

z2
−

cos z

z
, (9.34)

y0(z) = −
cos z

z
, (9.35)

y1(z) = −
cos z

z2
−

sin z

z
. (9.36)

These functions are also plotted in Fig. 9.1. It can be seen that the spherical Bessel func-
tions are oscillatory in nature, passing through zero many times. However, the yl(z) func-
tions are badly behaved (i.e., they are not square-integrable) at z = 0, whereas the jl(z)

1M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York NY, 1965),
Sect. 10.1.
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n = 1 n = 2 n = 3 n = 4

l = 0 3.142 6.283 9.425 12.566

l = 1 4.493 7.725 10.904 14.066

l = 2 5.763 9.095 12.323 15.515

l = 3 6.988 10.417 13.698 16.924

l = 4 8.183 11.705 15.040 18.301

Table 9.1: The first few zeros of the spherical Bessel function jl(z).

functions are well behaved everywhere. It follows from our boundary condition at r = 0

that the yl(z) are unphysical, and that the radial wavefunction Rn,l(r) is thus proportional
to jl(k r) only. In order to satisfy the boundary condition at r = a [i.e., Rn,l(a) = 0], the
value of k must be chosen such that z = ka corresponds to one of the zeros of jl(z). Let us
denote the nth zero of jl(z) as zn,l. It follows that

ka = zn,l, (9.37)

for n = 1, 2, 3, . . .. Hence, from (9.29), the allowed energy levels are

En,l = z2
n,l

h̄2

2ma2
. (9.38)

The first few values of zn,l are listed in Table 9.1. It can be seen that zn,l is an increasing
function of both n and l.

We are now in a position to interpret the three quantum numbers—n, l, andm—which
determine the form of the wavefunction specified in Eq. (9.27). As is clear from Sect. 8,
the azimuthal quantum number m determines the number of nodes in the wavefunction
as the azimuthal angle φ varies between 0 and 2π. Thus, m = 0 corresponds to no nodes,
m = 1 to a single node, m = 2 to two nodes, etc. Likewise, the polar quantum number l
determines the number of nodes in the wavefunction as the polar angle θ varies between
0 and π. Again, l = 0 corresponds to no nodes, l = 1 to a single node, etc. Finally, the
radial quantum number n determines the number of nodes in the wavefunction as the
radial variable r varies between 0 and a (not counting any nodes at r = 0 or r = a). Thus,
n = 1 corresponds to no nodes, n = 2 to a single node, n = 3 to two nodes, etc. Note that,
for the case of an infinite potential well, the only restrictions on the values that the various
quantum numbers can take are that n must be a positive integer, l must be a non-negative
integer, and m must be an integer lying between −l and l. Note, further, that the allowed
energy levels (9.38) only depend on the values of the quantum numbers n and l. Finally,
it is easily demonstrated that the spherical Bessel functions are mutually orthogonal: i.e.,

∫a

0

jl(zn,l r/a) jl(zn′,l r/a) r2dr = 0 (9.39)

when n 6= n ′. Given that the Yl,m(θ, φ) are mutually orthogonal (see Sect. 8), this ensures
that wavefunctions (9.27) corresponding to distinct sets of values of the quantum numbers
n, l, and m are mutually orthogonal.
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9.4 Hydrogen Atom

A hydrogen atom consists of an electron, of charge −e and mass me, and a proton, of
charge +e and mass mp, moving in the Coulomb potential

V(r) = −
e2

4π ǫ0 |r|
, (9.40)

where r is the position vector of the electron with respect to the proton. Now, according
to the analysis in Sect. 6.4, this two-body problem can be converted into an equivalent
one-body problem. In the latter problem, a particle of mass

µ =
memp

me +mp

(9.41)

moves in the central potential

V(r) = −
e2

4π ǫ0 r
. (9.42)

Note, however, that sinceme/mp ≃ 1/1836 the difference betweenme and µ is very small.
Hence, in the following, we shall write neglect this difference entirely.

Writing the wavefunction in the usual form,

ψ(r, θ, φ) = Rn,l(r) Yl,m(θ, φ), (9.43)

it follows from Sect. 9.2 that the radial function Rn,l(r) satisfies

−
h̄2

2me

(

d2

dr2
+
2

r

d

dr
−
l (l+ 1)

r2

)

Rn,l −

(

e2

4π ǫ0 r
+ E

)

Rn,l = 0. (9.44)

Let r = a z, with

a =

√

√

√

√

h̄2

2me (−E)
=

√

E0

E
a0, (9.45)

where E0 and a0 are defined in Eqs. (9.57) and (9.58), respectively. Here, it is assumed
that E < 0, since we are only interested in bound-states of the hydrogen atom. The above
differential equation transforms to

(

d2

dz2
+
2

z

d

dz
−
l (l+ 1)

z2
+
ζ

z
− 1

)

Rn,l = 0, (9.46)

where

ζ =
2mea e

2

4π ǫ0 h̄
2

= 2

√

E0

E
. (9.47)

Suppose that Rn,l(r) = Z(r/a) exp(−r/a)/(r/a). It follows that
(

d2

dz2
− 2

d

dz
−
l (l+ 1)

z2
+
ζ

z

)

Z = 0. (9.48)
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We now need to solve the above differential equation in the domain z = 0 to z = ∞,
subject to the constraint that Rn,l(r) be square-integrable.

Let us look for a power-law solution of the form

Z(z) =
∑

k

ck z
k. (9.49)

Substituting this solution into Eq. (9.48), we obtain
∑

k

ck

{
k (k− 1) zk−2 − 2 k zk−1 − l (l+ 1) zk−2 + ζ zk−1

}
= 0. (9.50)

Equating the coefficients of zk−2 gives the recursion relation

ck [k (k− 1) − l (l+ 1)] = ck−1 [2 (k− 1) − ζ] . (9.51)

Now, the power series (9.49) must terminate at small k, at some positive value of k,
otherwise Z(z) behaves unphysically as z → 0 [i.e., it yields an Rn,l(r) that is not square-
integrable as r→ 0]. From the above recursion relation, this is only possible if [kmin (kmin−

1) − l (l + 1)] = 0, where the first term in the series is ckmin
zkmin . There are two possi-

bilities: kmin = −l or kmin = l + 1. However, the former possibility predicts unphysical
behaviour of Z(z) at z = 0. Thus, we conclude that kmin = l + 1. Note that, since
Rn,l(r) ≃ Z(r/a)/(r/a) ≃ (r/a)l at small r, there is a finite probability of finding the elec-
tron at the nucleus for an l = 0 state, whereas there is zero probability of finding the
electron at the nucleus for an l > 0 state [i.e., |ψ|2 = 0 at r = 0, except when l = 0].

For large values of z, the ratio of successive coefficients in the power series (9.49) is

ck

ck−1

=
2

k
, (9.52)

according to Eq. (9.51). This is the same as the ratio of successive coefficients in the power
series

∑

k

(2 z)k

k!
, (9.53)

which converges to exp(2 z). We conclude that Z(z) → exp(2 z) as z → ∞. It thus fol-
lows that Rn,l(r) ∼ Z(r/a) exp(−r/a)/(r/a) → exp(r/a)/(r/a) as r → ∞. This does not
correspond to physically acceptable behaviour of the wavefunction, since

∫
|ψ|2dV must

be finite. The only way in which we can avoid this unphysical behaviour is if the power
series (9.49) terminates at some maximum value of k. According to the recursion relation
(9.51), this is only possible if

ζ

2
= n, (9.54)

where n is an integer, and the last term in the series is cnz
n. Since the first term in the

series is cl+1 z
l+1, it follows that n must be greater than l, otherwise there are no terms in

the series at all. Finally, it is clear from Eqs. (9.45), (9.47), and (9.54) that

E =
E0

n2
(9.55)
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and

a = na0, (9.56)

where

E0 = −
mee

4

2 (4π ǫ0)2 h̄2
= −

e2

8π ǫ0a0

= −13.6 eV, (9.57)

and

a0 =
4π ǫ0 h̄

2

me e2
= 5.3× 10−11 m. (9.58)

Here, E0 is the energy of so-called ground-state (or lowest energy state) of the hydrogen
atom, and the length a0 is known as the Bohr radius. Note that |E0| ∼ α2mec

2, where
α = e2/(4π ǫ0 h̄ c) ≃ 1/137 is the dimensionless fine-structure constant. The fact that
|E0| ≪me c

2 is the ultimate justification for our non-relativistic treatment of the hydrogen
atom.

We conclude that the wavefunction of a hydrogen atom takes the form

ψn,l,m(r, θ, φ) = Rn,l(r) Yl,m(θ, φ). (9.59)

Here, the Yl,m(θ, φ) are the spherical harmonics (see Sect 8.7), and Rn,l(z = r/a) is the
solution of

(

1

z2

d

dz
z2 d

dz
−
l (l+ 1)

z2
+
2n

z
− 1

)

Rn,l = 0 (9.60)

which varies as zl at small z. Furthermore, the quantum numbers n, l, and m can only
take values which satisfy the inequality

|m| ≤ l < n, (9.61)

where n is a positive integer, l a non-negative integer, and m an integer.
Now, we expect the stationary states of the hydrogen atom to be orthonormal: i.e.,

∫

ψ∗
n′,l′,m′ ψn,l,mdV = δnn′ δll′ δmm′, (9.62)

where dV is a volume element, and the integral is over all space. Of course, dV = r2dr dΩ,
where dΩ is an element of solid angle. Moreover, we already know that the spherical
harmonics are orthonormal [see Eq. (8.90)]: i.e.,

∮

Y ∗
l′,m′ Yl,mdΩ = δll′ δmm′. (9.63)

It, thus, follows that the radial wavefunction satisfies the orthonormality constraint

∫∞

0

R∗
n′,lRn,l r

2dr = δnn′. (9.64)
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Figure 9.2: The a0 r
2 |Rn,l(r)|

2 plotted as a functions of r/a0. The solid, short-dashed, and

long-dashed curves correspond to n, l = 1, 0, and 2, 0, and 2, 1, respectively.

The first few radial wavefunctions for the hydrogen atom are listed below:

R1,0(r) =
2

a
3/2
0

exp
(

−
r

a0

)

, (9.65)

R2,0(r) =
2

(2 a0)3/2

(

1−
r

2 a0

)

exp
(

−
r

2 a0

)

, (9.66)

R2,1(r) =
1√

3 (2 a0)3/2

r

a0

exp
(

−
r

2 a0

)

, (9.67)

R3,0(r) =
2

(3 a0)3/2

(

1−
2 r

3 a0

+
2 r2

27 a2
0

)

exp
(

−
r

3 a0

)

, (9.68)

R3,1(r) =
4
√
2

9 (3 a0)3/2

r

a0

(

1−
r

6 a0

)

exp
(

−
r

3 a0

)

, (9.69)

R3,2(r) =
2
√
2

27
√
5 (3 a0)3/2

(

r

a0

)2

exp
(

−
r

3 a0

)

. (9.70)

These functions are illustrated in Figs. 9.2 and 9.3.

Given the (properly normalized) hydrogen wavefunction (9.59), plus our interpretation
of |ψ|2 as a probability density, we can calculate

〈rk〉 =

∫∞

0

r2+k |Rn,l(r)|
2dr, (9.71)
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Figure 9.3: The a0 r
2 |Rn,l(r)|

2 plotted as a functions of r/a0. The solid, short-dashed, and

long-dashed curves correspond to n, l = 3, 0, and 3, 1, and 3, 2, respectively.

where the angle-brackets denote an expectation value. For instance, it can be demon-
strated (after much tedious algebra) that

〈r2〉 =
a2

0 n
2

2
[5n2 + 1− 3 l (l+ 1)], (9.72)

〈r〉 =
a0

2
[3n2 − l (l + 1)], (9.73)

〈

1

r

〉

=
1

n2a0

, (9.74)

〈

1

r2

〉

=
1

(l+ 1/2)n3a2
0

, (9.75)

〈

1

r3

〉

=
1

l (l + 1/2) (l+ 1)n3a3
0

. (9.76)

According to Eq. (9.55), the energy levels of the bound-states of a hydrogen atom only
depend on the radial quantum number n. It turns out that this is a special property of
a 1/r potential. For a general central potential, V(r), the quantized energy levels of a
bound-state depend on both n and l (see Sect. 9.3).

The fact that the energy levels of a hydrogen atom only depend on n, and not on l and
m, implies that the energy spectrum of a hydrogen atom is highly degenerate: i.e., there are
many different states which possess the same energy. According to the inequality (9.61)
(and the fact that n, l, andm are integers), for a given value of l, there are 2 l+1 different
allowed values of m (i.e., −l,−l + 1, · · · , l − 1, l). Likewise, for a given value of n, there
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are n different allowed values of l (i.e., 0, 1, · · · , n−1). Now, all states possessing the same
value of n have the same energy (i.e., they are degenerate). Hence, the total number of
degenerate states corresponding to a given value of n is

1+ 3+ 5+ · · · + 2 (n− 1) + 1 = n2. (9.77)

Thus, the ground-state (n = 1) is not degenerate, the first excited state (n = 2) is four-fold
degenerate, the second excited state (n = 3) is nine-fold degenerate, etc. [Actually, when
we take into account the two spin states of an electron (see Sect. 10), the degeneracy of
the nth energy level becomes 2n2.]

9.5 Rydberg Formula

An electron in a given stationary state of a hydrogen atom, characterized by the quantum
numbers n, l, and m, should, in principle, remain in that state indefinitely. In practice, if
the state is slightly perturbed—e.g., by interacting with a photon—then the electron can
make a transition to another stationary state with different quantum numbers.

Suppose that an electron in a hydrogen atom makes a transition from an initial state
whose radial quantum number is ni to a final state whose radial quantum number is nf.
According to Eq. (9.55), the energy of the electron will change by

∆E = E0

(

1

n2
f

−
1

n2
i

)

. (9.78)

If ∆E is negative then we would expect the electron to emit a photon of frequency ν =

−∆E/h [see Eq. (3.32)]. Likewise, if ∆E is positive then the electron must absorb a photon
of energy ν = ∆E/h. Given that λ−1 = ν/c, the possible wavelengths of the photons
emitted by a hydrogen atom as its electron makes transitions between different energy
levels are

1

λ
= R

(

1

n2
f

−
1

n2
i

)

, (9.79)

where

R =
−E0

h c
=

me e
4

(4π)3ǫ2
0 h̄

3c
= 1.097× 107 m−1. (9.80)

Here, it is assumed that nf < ni. Note that the emission spectrum of hydrogen is quan-

tized: i.e., a hydrogen atom can only emit photons with certain fixed set of wavelengths.
Likewise, a hydrogen atom can only absorb photons which have the same fixed set of
wavelengths. This set of wavelengths constitutes the characteristic emission/absorption
spectrum of the hydrogen atom, and can be observed as “spectral lines” using a spectro-
scope.

Equation (9.79) is known as the Rydberg formula. Likewise, R is called the Rydberg con-

stant. The Rydberg formula was actually discovered empirically in the nineteenth century
by spectroscopists, and was first explained theoretically by Bohr in 1913 using a primitive
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version of quantum mechanics. Transitions to the ground-state (nf = 1) give rise to spec-
tral lines in the ultraviolet band—this set of lines is called the Lyman series. Transitions
to the first excited state (nf = 2) give rise to spectral lines in the visible band—this set of
lines is called the Balmer series. Transitions to the second excited state (nf = 3) give rise
to spectral lines in the infrared band—this set of lines is called the Paschen series, and so
on.

Exercises

1. A particle of mass m is placed in a finite spherical well:

V(r) =

{
−V0 for r ≤ a
0 for r > a

,

with V0 > 0 and a > 0. Find the ground-state by solving the radial equation with l = 0.
Show that there is no ground-state if V0a

2 < π2 h̄2/8m.

2. Consider a particle of mass m in the three-dimensional harmonic oscillator potential V(r) =

(1/2)mω2 r2. Solve the problem by separation of variables in spherical polar coordinates,
and, hence, determine the energy eigenvalues of the system.

3. The normalized wavefunction for the ground-state of a hydrogen-like atom (neutral hydro-
gen, He+, Li++, etc.) with nuclear charge Ze has the form

ψ = A exp(−βr),

where A and β are constants, and r is the distance between the nucleus and the electron.
Show the following:

(a) A2 = β3/π.

(b) β = Z/a0, where a0 = (h̄2/me) (4πǫ0/e
2).

(c) The energy is E = −Z2E0 where E0 = (me/2 h̄
2) (e2/4πǫ0)

2.

(d) The expectation values of the potential and kinetic energies are 2E and −E, respectively.

(e) The expectation value of r is (3/2) (a0/Z).

(f) The most probable value of r is a0/Z.

4. An atom of tritium is in its ground-state. Suddenly the nucleus decays into a helium nucleus,
via the emission of a fast electron which leaves the atom without perturbing the extranuclear
electron, Find the probability that the resulting He+ ion will be left in an n = 1, l = 0 state.
Find the probability that it will be left in a n = 2, l = 0 state. What is the probability that the
ion will be left in an l > 0 state?

5. Calculate the wavelengths of the photons emitted from the n = 2, l = 1 to n = 1, l = 0

transition in hydrogen, deuterium, and positronium.

6. To conserve linear momentum, an atom emitting a photon must recoil, which means that not
all of the energy made available in the downward jump goes to the photon. Find a hydrogen
atom’s recoil energy when it emits a photon in an n = 2 to n = 1 transition. What fraction of
the transition energy is the recoil energy?
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10 Spin Angular Momentum

10.1 Introduction

Broadly speaking, a classical extended object (e.g., the Earth) can possess two types of
angular momentum. The first type is due to the rotation of the object’s center of mass
about some fixed external point (e.g., the Sun)—this is generally known as orbital angu-

lar momentum. The second type is due to the object’s internal motion—this is generally
known as spin angular momentum (since, for a rigid object, the internal motion consists of
spinning about an axis passing through the center of mass). By analogy, quantum parti-
cles can possess both orbital angular momentum due to their motion through space (see
Cha. 8), and spin angular momentum due to their internal motion. Actually, the analogy
with classical extended objects is not entirely accurate, since electrons, for instance, are
structureless point particles. In fact, in quantum mechanics, it is best to think of spin an-
gular momentum as a kind of intrinsic angular momentum possessed by particles. It turns
out that each type of elementary particle has a characteristic spin angular momentum, just
as each type has a characteristic charge and mass.

10.2 Spin Operators

Since spin is a type of angular momentum, it is reasonable to suppose that it possesses sim-
ilar properties to orbital angular momentum. Thus, by analogy with Sect. 8.2, we would
expect to be able to define three operators—Sx, Sy, and Sz—which represent the three
Cartesian components of spin angular momentum. Moreover, it is plausible that these
operators possess analogous commutation relations to the three corresponding orbital an-
gular momentum operators, Lx, Ly, and Lz [see Eqs. (8.6)–(8.8)]. In other words,

[Sx, Sy] = i h̄ Sz, (10.1)

[Sy, Sz] = i h̄ Sx, (10.2)

[Sz, Sx] = i h̄ Sy. (10.3)

We can represent the magnitude squared of the spin angular momentum vector by the
operator

S2 = S 2
x + S 2

y + S 2
z . (10.4)

By analogy with the analysis in Sect. 8.2, it is easily demonstrated that

[S2, Sx] = [S2, Sy] = [S2, Sz] = 0. (10.5)

We thus conclude (see Sect. 4.10) that we can simultaneously measure the magnitude
squared of the spin angular momentum vector, together with, at most, one Cartesian com-
ponent. By convention, we shall always choose to measure the z-component, Sz.
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By analogy with Eq. (8.13), we can define raising and lowering operators for spin
angular momentum:

S± = Sx ± i Sy. (10.6)

If Sx, Sy, and Sz are Hermitian operators, as must be the case if they are to represent
physical quantities, then S± are the Hermitian conjugates of one another: i.e.,

(S±)† = S∓. (10.7)

Finally, by analogy with Sect. 8.2, it is easily demonstrated that

S+S− = S2 − S 2
z + h̄ Sz, (10.8)

S−S+ = S2 − S 2
z − h̄ Sz, (10.9)

[S+, Sz] = −h̄ S+, (10.10)

[S−, Sz] = +h̄ S−. (10.11)

10.3 Spin Space

We now have to discuss the wavefunctions upon which the previously introduced spin op-
erators act. Unlike regular wavefunctions, spin wavefunctions do not exist in real space.
Likewise, the spin angular momentum operators cannot be represented as differential op-
erators in real space. Instead, we need to think of spin wavefunctions as existing in an
abstract (complex) vector space. The different members of this space correspond to the
different internal configurations of the particle under investigation. Note that only the
directions of our vectors have any physical significance (just as only the shape of a regular
wavefunction has any physical significance). Thus, if the vector χ corresponds to a partic-
ular internal state then c χ corresponds to the same state, where c is a complex number.
Now, we expect the internal states of our particle to be superposable, since the superpos-
ability of states is one of the fundamental assumptions of quantum mechanics. It follows
that the vectors making up our vector space must also be superposable. Thus, if χ1 and χ2

are two vectors corresponding to two different internal states then c1χ1 + c2χ2 is another
vector corresponding to the state obtained by superposing c1 times state 1 with c2 times
state 2 (where c1 and c2 are complex numbers). Finally, the dimensionality of our vector
space is simply the number of linearly independent vectors required to span it (i.e., the
number of linearly independent internal states of the particle under investigation).

We now need to define the length of our vectors. We can do this by introducing a
second, or dual, vector space whose elements are in one to one correspondence with the
elements of our first space. Let the element of the second space which corresponds to the
element χ of the first space be called χ†. Moreover, the element of the second space which
corresponds to c χ is c∗ χ†. We shall assume that it is possible to combine χ and χ† in a
multiplicative fashion to generate a real positive-definite number which we interpret as
the length, or norm, of χ. Let us denote this number χ† χ. Thus, we have

χ† χ ≥ 0 (10.12)



Spin Angular Momentum 131

for all χ. We shall also assume that it is possible to combine unlike states in an analogous
multiplicative fashion to produce complex numbers. The product of two unlike states
χ and χ ′ is denoted χ† χ ′. Two states χ and χ ′ are said to be mutually orthogonal, or
independent, if χ† χ ′ = 0.

Now, when a general spin operator, A, operates on a general spin-state, χ, it coverts
it into a different spin-state which we shall denote Aχ. The dual of this state is (Aχ)† ≡
χ†A†, where A† is the Hermitian conjugate of A (this is the definition of an Hermitian
conjugate in spin space). An eigenstate of A corresponding to the eigenvalue a satisfies

Aχa = aχa. (10.13)

As before, if A corresponds to a physical variable then a measurement of A will result in
one of its eigenvalues (see Sect. 4.10). In order to ensure that these eigenvalues are all
real, A must be Hermitian: i.e., A† = A (see Sect. 4.9). We expect the χa to be mutually
orthogonal. We can also normalize them such that they all have unit length. In other
words,

χ†aχa′ = δaa′. (10.14)

Finally, a general spin state can be written as a superposition of the normalized eigenstates
of A: i.e.,

χ =
∑

a

caχa. (10.15)

A measurement of χ will then yield the result a with probability |ca|2.

10.4 Eigenstates of Sz and S2

Since the operators Sz and S2 commute, they must possess simultaneous eigenstates (see
Sect. 4.10). Let these eigenstates take the form [see Eqs. (8.31) and (8.32)]:

Szχs,ms = ms h̄ χs,ms , (10.16)

S2χs,ms = s (s+ 1) h̄2χs,ms . (10.17)

Now, it is easily demonstrated, from the commutation relations (10.10) and (10.11),
that

Sz (S+χs,ms) = (ms + 1) h̄ (S+χs,ms), (10.18)

and

Sz (S−χs,ms) = (ms − 1) h̄ (S−χs,ms). (10.19)

Thus, S+ and S− are indeed the raising and lowering operators, respectively, for spin angu-
lar momentum (see Sect. 8.4). The eigenstates of Sz and S2 are assumed to be orthonor-
mal: i.e.,

χ†s,ms
χs′,m′

s
= δss′ δmsm′

s
. (10.20)
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Consider the wavefunction χ = S+χs,ms . Since we know, from Eq. (10.12), that χ† χ ≥
0, it follows that

(S+χs,ms)
† (S+χs,ms) = χ†s,ms

S†+S+χs,ms = χ†s,ms
S−S+χs,ms ≥ 0, (10.21)

where use has been made of Eq. (10.7). Equations (10.9), (10.16), (10.17), and (10.20)
yield

s (s+ 1) ≥ ms (ms + 1). (10.22)

Likewise, if χ = S−χs,ms then we obtain

s (s+ 1) ≥ ms (ms − 1). (10.23)

Assuming that s ≥ 0, the above two inequalities imply that

− s ≤ ms ≤ s. (10.24)

Hence, at fixed s, there is both a maximum and a minimum possible value that ms can
take.

Let msmin be the minimum possible value of ms. It follows that (see Sect. 8.6)

S−χs,ms min
= 0. (10.25)

Now, from Eq. (10.8),
S2 = S+S− + S 2

z − h̄ Sz. (10.26)

Hence,
S2χs,ms min

= (S+S− + S 2
z − h̄ Sz)χs,ms min

, (10.27)

giving
s (s+ 1) = msmin (msmin − 1). (10.28)

Assuming that msmin < 0, this equation yields

msmin = −s. (10.29)

Likewise, it is easily demonstrated that

msmax = +s. (10.30)

Moreover,
S−χs,−s = S+χs,s = 0. (10.31)

Now, the raising operator S+, acting upon χs,−s, converts it into some multiple of
χs,−s+1. Employing the raising operator a second time, we obtain a multiple of χs,−s+2.
However, this process cannot continue indefinitely, since there is a maximum possible
value of ms. Indeed, after acting upon χs,−s a sufficient number of times with the rais-
ing operator S+, we must obtain a multiple of χs,s, so that employing the raising operator
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one more time leads to the null state [see Eq. (10.31)]. If this is not the case then we
will inevitably obtain eigenstates of Sz corresponding to ms > s, which we have already
demonstrated is impossible.

It follows, from the above argument, that

msmax −msmin = 2 s = k, (10.32)

where k is a positive integer. Hence, the quantum number s can either take positive integer

or positive half-integer values. Up to now, our analysis has been very similar to that which
we used earlier to investigate orbital angular momentum (see Sect. 8). Recall, that for or-
bital angular momentum the quantum number m, which is analogous to ms, is restricted
to take integer values (see Cha. 8.5). This implies that the quantum number l, which is
analogous to s, is also restricted to take integer values. However, the origin of these re-
strictions is the representation of the orbital angular momentum operators as differential
operators in real space (see Sect. 8.3). There is no equivalent representation of the corre-
sponding spin angular momentum operators. Hence, we conclude that there is no reason
why the quantum number s cannot take half-integer, as well as integer, values.

In 1940, Wolfgang Pauli proved the so-called spin-statistics theorem using relativistic
quantum mechanics. According to this theorem, all fermions possess half-integer spin (i.e.,
a half-integer value of s), whereas all bosons possess integer spin (i.e., an integer value of
s). In fact, all presently known fermions, including electrons and protons, possess spin one-

half. In other words, electrons and protons are characterized by s = 1/2 and ms = ±1/2.

10.5 Pauli Representation

Let us denote the two independent spin eigenstates of an electron as

χ± ≡ χ1/2,±1/2. (10.33)

It thus follows, from Eqs. (10.16) and (10.17), that

Szχ± = ±1
2
h̄ χ±, (10.34)

S2χ± =
3

4
h̄2χ±. (10.35)

Note that χ+ corresponds to an electron whose spin angular momentum vector has a pos-
itive component along the z-axis. Loosely speaking, we could say that the spin vector
points in the +z-direction (or its spin is “up”). Likewise, χ− corresponds to an electron
whose spin points in the −z-direction (or whose spin is “down”). These two eigenstates
satisfy the orthonormality requirements

χ†+χ+ = χ†−χ− = 1, (10.36)
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and
χ†+χ− = 0. (10.37)

A general spin state can be represented as a linear combination of χ+ and χ−: i.e.,

χ = c+χ+ + c−χ−. (10.38)

It is thus evident that electron spin space is two-dimensional.
Up to now, we have discussed spin space in rather abstract terms. In the following,

we shall describe a particular representation of electron spin space due to Pauli. This so-
called Pauli representation allows us to visualize spin space, and also facilitates calculations
involving spin.

Let us attempt to represent a general spin state as a complex column vector in some
two-dimensional space: i.e.,

χ ≡
(

c+

c−

)

. (10.39)

The corresponding dual vector is represented as a row vector: i.e.,

χ† ≡ (c∗+, c
∗
−). (10.40)

Furthermore, the product χ† χ is obtained according to the ordinary rules of matrix multi-
plication: i.e.,

χ† χ = (c∗+, c
∗
−)

(

c+

c−

)

= c∗+ c+ + c∗−c− = |c+|2 + |c−|2 ≥ 0. (10.41)

Likewise, the product χ† χ ′ of two different spin states is also obtained from the rules of
matrix multiplication: i.e.,

χ† χ ′ = (c∗+, c
∗
−)

(

c ′+
c ′−

)

= c∗+c
′
+ + c∗− c

′
−. (10.42)

Note that this particular representation of spin space is in complete accordance with the
discussion in Sect. 10.3. For obvious reasons, a vector used to represent a spin state is
generally known as spinor.

A general spin operator A is represented as a 2× 2 matrix which operates on a spinor:
i.e.,

Aχ ≡
(

A11, A12

A21, A22

)(

c+

c−

)

. (10.43)

As is easily demonstrated, the Hermitian conjugate of A is represented by the transposed
complex conjugate of the matrix used to represent A: i.e.,

A† ≡
(

A∗
11, A

∗
21

A∗
12, A

∗
22

)

. (10.44)
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Let us represent the spin eigenstates χ+ and χ− as

χ+ ≡
(

1

0

)

, (10.45)

and

χ− ≡
(

0

1

)

, (10.46)

respectively. Note that these forms automatically satisfy the orthonormality constraints
(10.36) and (10.37). It is convenient to write the spin operators Si (where i = 1, 2, 3

corresponds to x, y, z) as

Si =
h̄

2
σi. (10.47)

Here, the σi are dimensionless 2 × 2 matrices. According to Eqs. (10.1)–(10.3), the σi

satisfy the commutation relations

[σx, σy] = 2 iσz, (10.48)

[σy, σz] = 2 iσx, (10.49)

[σz, σx] = 2 iσy. (10.50)

Furthermore, Eq. (10.34) yields
σzχ± = ±χ±. (10.51)

It is easily demonstrated, from the above expressions, that the σi are represented by the
following matrices:

σx ≡
(

0, 1

1, 0

)

, (10.52)

σy ≡
(

0, −i
i, 0

)

, (10.53)

σz ≡
(

1, 0

0, −1

)

. (10.54)

Incidentally, these matrices are generally known as the Pauli matrices.
Finally, a general spinor takes the form

χ = c+χ+ + c−χ− =

(

c+

c−

)

. (10.55)

If the spinor is properly normalized then

χ† χ = |c+|2 + |c−|2 = 1. (10.56)

In this case, we can interpret |c+|2 as the probability that an observation of Sz will yield
the result +h̄/2, and |c−|2 as the probability that an observation of Sz will yield the result
−h̄/2.
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10.6 Spin Precession

According to classical physics, a small current loop possesses a magnetic moment of mag-
nitude µ = IA, where I is the current circulating around the loop, and A the area of the
loop. The direction of the magnetic moment is conventionally taken to be normal to the
plane of the loop, in the sense given by a standard right-hand circulation rule. Consider a
small current loop consisting of an electron in uniform circular motion. It is easily demon-
strated that the electron’s orbital angular momentum L is related to the magnetic moment
µ of the loop via

µ = −
e

2me

L, (10.57)

where e is the magnitude of the electron charge, and me the electron mass.
The above expression suggests that there may be a similar relationship between mag-

netic moment and spin angular momentum. We can write

µ = −
g e

2me

S, (10.58)

where g is called the gyromagnetic ratio. Classically, we would expect g = 1. In fact,

g = 2

(

1+
α

2π
+ · · ·

)

= 2.0023192, (10.59)

where α = e2/(2 ǫ0h c) ≃ 1/137 is the so-called fine-structure constant. The fact that the
gyromagnetic ratio is (almost) twice that expected from classical physics is only explicable
using relativistic quantum mechanics. Furthermore, the small corrections to the relativistic
result g = 2 come from quantum field theory.

The energy of a classical magnetic moment µ in a uniform magnetic field B is

H = −µ · B. (10.60)

Assuming that the above expression also holds good in quantum mechanics, the Hamilto-
nian of an electron in a z-directed magnetic field of magnitude B takes the form

H = ΩSz, (10.61)

where

Ω =
g eB

2me

. (10.62)

Here, for the sake of simplicity, we are neglecting the electron’s translational degrees of
freedom.

Schrödinger’s equation can be written [see Eq. (4.63)]

i h̄
∂χ

∂t
= Hχ, (10.63)
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where the spin state of the electron is characterized by the spinor χ. Adopting the Pauli
representation, we obtain

χ =

(

c+(t)

c−(t)

)

, (10.64)

where |c+|2 + |c−|2 = 1. Here, |c+|2 is the probability of observing the spin-up state, and
|c−|2 the probability of observing the spin-down state. It follows from Eqs. (10.47), (10.54),
(10.61), (10.63), and (10.64) that

i h̄

(

ċ+

ċ−

)

=
Ω h̄

2

(

1, 0

0, −1

)(

c+

c−

)

, (10.65)

where ˙≡ d/dt. Hence,

ċ± = ∓i
Ω

2
c±. (10.66)

Let

c+(0) = cos(α/2), (10.67)

c−(0) = sin(α/2). (10.68)

The significance of the angle α will become apparent presently. Solving Eq. (10.66), sub-
ject to the initial conditions (10.67) and (10.68), we obtain

c+(t) = cos(α/2) exp(−iΩt/2), (10.69)

c−(t) = sin(α/2) exp(+iΩt/2). (10.70)

We can most easily visualize the effect of the time dependence in the above expressions
for c± by calculating the expectation values of the three Cartesian components of the
electron’s spin angular momentum. By analogy with Eq. (4.56), the expectation value of a
general spin operator A is simply

〈A〉 = χ†Aχ. (10.71)

Hence, the expectation value of Sz is

〈Sz〉 =
h̄

2
(c∗+, c

∗
−)

(

1, 0

0, −1

)(

c+

c−

)

, (10.72)

which reduces to

〈Sz〉 =
h̄

2
cosα (10.73)

with the help of Eqs. (10.69) and (10.70). Likewise, the expectation value of Sx is

〈Sx〉 =
h̄

2
(c∗+, c

∗
−)

(

0, 1

1, 0

)(

c+

c−

)

, (10.74)
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which reduces to

〈Sx〉 =
h̄

2
sinα cos(Ωt). (10.75)

Finally, the expectation value of Sy is

〈Sy〉 =
h̄

2
sinα sin(Ωt). (10.76)

According to Eqs. (10.73), (10.75), and (10.76), the expectation value of the spin angular
momentum vector subtends a constant angle α with the z-axis, and precesses about this
axis at the frequency

Ω ≃ eB

me

. (10.77)

This behaviour is actually equivalent to that predicted by classical physics. Note, however,
that a measurement of Sx, Sy, or Sz will always yield either +h̄/2 or −h̄/2. It is the relative

probabilities of obtaining these two results which varies as the expectation value of a given
component of the spin varies.

Exercises

1. Find the Pauli representations of Sx, Sy, and Sz for a spin-1 particle.

2. Find the Pauli representations of the normalized eigenstates of Sx and Sy for a spin-1/2
particle.

3. Suppose that a spin-1/2 particle has a spin vector which lies in the x-z plane, making an
angle θ with the z-axis. Demonstrate that a measurement of Sz yields h̄/2 with probability
cos2(θ/2), and −h̄/2 with probability sin2(θ/2).

4. An electron is in the spin-state

χ = A

(

1− 2 i
2

)

in the Pauli representation. Determine the constant A by normalizing χ. If a measurement of
Sz is made, what values will be obtained, and with what probabilities? What is the expecta-
tion value of Sz? Repeat the above calculations for Sx and Sy.

5. Consider a spin-1/2 system represented by the normalized spinor

χ =

(

cosα
sinα exp( iβ)

)

in the Pauli representation, where α and β are real. What is the probability that a measure-
ment of Sy yields −h̄/2?

6. An electron is at rest in an oscillating magnetic field

B = B0 cos(ωt) ez,

where B0 and ω are real positive constants.
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(a) Find the Hamiltonian of the system.

(b) If the electron starts in the spin-up state with respect to the x-axis, determine the spinor
χ(t) which represents the state of the system in the Pauli representation at all subse-
quent times.

(c) Find the probability that a measurement of Sx yields the result −h̄/2 as a function of
time.

(d) What is the minimum value of B0 required to force a complete flip in Sx?
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11 Addition of Angular Momentum

11.1 Introduction

Consider an electron in a hydrogen atom. As we have already seen, the electron’s motion
through space is parameterized by the three quantum numbers n, l, andm (see Sect. 9.4).
To these we must now add the two quantum numbers s and ms which parameterize the
electron’s internal motion (see the previous chapter). Now, the quantum numbers l andm
specify the electron’s orbital angular momentum vector, L, (as much as it can be specified)
whereas the quantum numbers s and ms specify its spin angular momentum vector, S.
But, if the electron possesses both orbital and spin angular momentum then what is its
total angular momentum?

11.2 General Principles

The three basic orbital angular momentum operators, Lx, Ly, and Lz, obey the commuta-
tion relations (8.6)–(8.8), which can be written in the convenient vector form:

L × L = i h̄L. (11.1)

Likewise, the three basic spin angular momentum operators, Sx, Sy, and Sz, obey the
commutation relations (10.1)–(10.3), which can also be written in vector form: i.e.,

S × S = i h̄S. (11.2)

Now, since the orbital angular momentum operators are associated with the electron’s
motion through space, whilst the spin angular momentum operators are associated with
its internal motion, and these two types of motion are completely unrelated (i.e., they
correspond to different degrees of freedom—see Sect. 6.2), it is reasonable to suppose
that the two sets of operators commute with one another: i.e.,

[Li, Sj] = 0, (11.3)

where i, j = 1, 2, 3 corresponds to x, y, z.
Let us now consider the electron’s total angular momentum vector

J = L + S. (11.4)

We have

J × J = (L + S) × (L + S)

= L × L + S × S + L × S + S × L = L × L + S × S

= i h̄L + i h̄S

= i h̄ J. (11.5)
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In other words,
J × J = i h̄ J. (11.6)

It is thus evident that the three basic total angular momentum operators, Jx, Jy, and Jz,
obey analogous commutation relations to the corresponding orbital and spin angular mo-
mentum operators. It therefore follows that the total angular momentum has similar
properties to the orbital and spin angular momenta. For instance, it is only possible to
simultaneously measure the magnitude squared of the total angular momentum vector,

J2 = J2
x + J2

y + J2
z , (11.7)

together with a single Cartesian component. By convention, we shall always choose to
measure Jz. A simultaneous eigenstate of Jz and J2 satisfies

Jzψj,mj
= mj h̄ ψj,mj

, (11.8)

J2ψj,mj
= j (j+ 1) h̄2ψj,mj

, (11.9)

where the quantum number j can take positive integer, or half-integer, values, and the
quantum number mj is restricted to the following range of values:

− j,−j+ 1, · · · , j− 1, j. (11.10)

Now
J2 = (L + S) · (L + S) = L2 + S2 + 2 L · S, (11.11)

which can also be written as

J2 = L2 + S2 + 2 LzSz + L+S− + L−S+. (11.12)

We know that the operator L2 commutes with itself, with all of the Cartesian components
of L (and, hence, with the raising and lowering operators L±), and with all of the spin
angular momentum operators (see Sect. 8.2). It is therefore clear that

[J2, L2] = 0. (11.13)

A similar argument allows us to also conclude that

[J2, S2] = 0. (11.14)

Now, the operator Lz commutes with itself, with L2, with all of the spin angular momentum
operators, but not with the raising and lowering operators L± (see Sect. 8.2). It follows
that

[J2, Lz] 6= 0. (11.15)

Likewise, we can also show that
[J2, Sz] 6= 0. (11.16)
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Finally, we have

Jz = Lz + Sz, (11.17)

where [Jz, Lz] = [Jz, Sz] = 0.

Recalling that only commuting operators correspond to physical quantities which can be
simultaneously measured (see Sect. 4.10), it follows, from the above discussion, that there
are two alternative sets of physical variables associated with angular momentum which we
can measure simultaneously. The first set correspond to the operators L2, S2, Lz, Sz, and
Jz. The second set correspond to the operators L2, S2, J2, and Jz. In other words, we can
always measure the magnitude squared of the orbital and spin angular momentum vectors,
together with the z-component of the total angular momentum vector. In addition, we can
either choose to measure the z-components of the orbital and spin angular momentum
vectors, or the magnitude squared of the total angular momentum vector.

Let ψ
(1)
l,s;m,ms

represent a simultaneous eigenstate of L2, S2, Lz, and Sz corresponding to
the following eigenvalues:

L2ψ
(1)
l,s;m,ms

= l (l + 1) h̄2ψ
(1)
l,s;m,ms

, (11.18)

S2ψ
(1)
l,s;m,ms

= s (s+ 1) h̄2ψ
(1)
l,s;m,ms

, (11.19)

Lzψ
(1)
l,s;m,ms

= m h̄ψ
(1)
l,s;m,ms

, (11.20)

Szψ
(1)
l,s;m,ms

= ms h̄ ψ
(1)
l,s;m,ms

. (11.21)

It is easily seen that

Jzψ
(1)
l,s;m,ms

= (Lz + Sz)ψ
(1)
l,s;m,ms

= (m+ms) h̄ψ
(1)
l,s;m,ms

= mj h̄ ψ
(1)
l,s;m,ms

. (11.22)

Hence,

mj = m+ms. (11.23)

In other words, the quantum numbers controlling the z-components of the various angular
momentum vectors can simply be added algebraically.

Finally, let ψ
(2)
l,s;j,mj

represent a simultaneous eigenstate of L2, S2, J2, and Jz correspond-
ing to the following eigenvalues:

L2ψ
(2)
l,s;j,mj

= l (l + 1) h̄2ψ
(2)
l,s;j,mj

, (11.24)

S2ψ
(2)
l,s;j,mj

= s (s+ 1) h̄2ψ
(2)
l,s;j,mj

, (11.25)

J2ψ
(2)
l,s;j,mj

= j (j+ 1) h̄2ψ
(2)
l,s;j,mj

, (11.26)

Jzψ
(2)
l,s;j,mj

= mj h̄ ψ
(2)
l,s;j,mj

. (11.27)
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11.3 Angular Momentum in the Hydrogen Atom

In a hydrogen atom, the wavefunction of an electron in a simultaneous eigenstate of L2

and Lz has an angular dependence specified by the spherical harmonic Yl,m(θ, φ) (see
Sect. 8.7). If the electron is also in an eigenstate of S2 and Sz then the quantum numbers
s and ms take the values 1/2 and ±1/2, respectively, and the internal state of the electron
is specified by the spinors χ± (see Sect. 10.5). Hence, the simultaneous eigenstates of L2,
S2, Lz, and Sz can be written in the separable form

ψ
(1)

l,1/2;m,±1/2 = Yl,mχ±. (11.28)

Here, it is understood that orbital angular momentum operators act on the spherical har-
monic functions, Yl,m, whereas spin angular momentum operators act on the spinors, χ±.

Since the eigenstates ψ
(1)

l,1/2;m,±1/2 are (presumably) orthonormal, and form a complete

set, we can express the eigenstates ψ
(2)

l,1/2;j,mj
as linear combinations of them. For instance,

ψ
(2)

l,1/2;j,m+1/2 = αψ
(1)

l,1/2;m,1/2 + βψ
(1)

l,1/2;m+1,−1/2, (11.29)

where α and β are, as yet, unknown coefficients. Note that the number of ψ(1) states
which can appear on the right-hand side of the above expression is limited to two by the
constraint that mj = m + ms [see Eq. (11.23)], and the fact that ms can only take the
values ±1/2. Assuming that the ψ(2) eigenstates are properly normalized, we have

α2 + β2 = 1. (11.30)

Now, it follows from Eq. (11.26) that

J2ψ
(2)

l,1/2;j,m+1/2 = j (j+ 1) h̄2ψ
(2)

l,1/2;j,m+1/2, (11.31)

where [see Eq. (11.12)]

J2 = L2 + S2 + 2 LzSz + L+S− + L−S+. (11.32)

Moreover, according to Eqs. (11.28) and (11.29), we can write

ψ
(2)

l,1/2;j,m+1/2 = αYl,mχ+ + βYl,m+1χ−. (11.33)

Recall, from Eqs. (8.43) and (8.44), that

L+Yl,m = [l (l+ 1) −m (m+ 1)]1/2 h̄ Yl,m+1, (11.34)

L−Yl,m = [l (l+ 1) −m (m− 1)]1/2 h̄ Yl,m−1. (11.35)

By analogy, when the spin raising and lowering operators, S±, act on a general spinor,
χs,ms , we obtain

S+χs,ms = [s (s+ 1) −ms (ms + 1)]1/2 h̄ χs,ms+1, (11.36)

S−χs,ms = [s (s+ 1) −ms (ms − 1)]1/2 h̄ χs,ms−1. (11.37)



Addition of Angular Momentum 145

For the special case of spin one-half spinors (i.e., s = 1/2,ms = ±1/2), the above expres-
sions reduce to

S+χ+ = S−χ− = 0, (11.38)

and

S± χ∓ = h̄ χ±. (11.39)

It follows from Eqs. (11.32) and (11.34)–(11.39) that

J2Yl,mχ+ = [l (l+ 1) + 3/4+m] h̄2Yl,mχ+

+[l (l+ 1) −m (m+ 1)]1/2 h̄2Yl,m+1χ−, (11.40)

and

J2Yl,m+1χ− = [l (l+ 1) + 3/4−m − 1] h̄2Yl,m+1χ−

+[l (l+ 1) −m (m+ 1)]1/2 h̄2Yl,mχ+. (11.41)

Hence, Eqs. (11.31) and (11.33) yield

(x−m)α− [l (l+ 1) −m (m+ 1)]1/2β = 0, (11.42)

−[l (l+ 1) −m (m+ 1)]1/2α+ (x+m+ 1)β = 0, (11.43)

where

x = j (j+ 1) − l (l+ 1) − 3/4. (11.44)

Equations (11.42) and (11.43) can be solved to give

x (x + 1) = l (l+ 1), (11.45)

and
α

β
=

[(l−m) (l+m+ 1)]1/2

x−m
. (11.46)

It follows that x = l or x = −l − 1, which corresponds to j = l + 1/2 or j = l − 1/2,
respectively. Once x is specified, Eqs. (11.30) and (11.46) can be solved for α and β. We
obtain

ψ
(2)

l+1/2,m+1/2 =

(

l +m + 1

2 l+ 1

)1/2

ψ
(1)

m,1/2 +

(

l−m

2 l+ 1

)1/2

ψ
(1)

m+1,−1/2, (11.47)

and

ψ
(2)

l−1/2,m+1/2 =

(

l −m

2 l+ 1

)1/2

ψ
(1)

m,1/2 −

(

l +m+ 1

2 l+ 1

)1/2

ψ
(1)

m+1,−1/2. (11.48)
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m, 1/2 m + 1,−1/2 m,ms

l + 1/2,m+ 1/2
√

(l+m+1)/(2l+1)
√

(l−m)/(2l+1)

l − 1/2,m+ 1/2
√

(l−m)/(2l+1) −
√

(l+m+1)/(2l+1)

j,mj

Table 11.1: Clebsch-Gordon coefficients for adding spin one-half to spin l.

Here, we have neglected the common subscripts l, 1/2 for the sake of clarity: i.e.,ψ
(2)

l+1/2,m+1/2 ≡
ψ

(2)

l,1/2;l+1/2,m+1/2, etc. The above equations can easily be inverted to give theψ(1) eigenstates

in terms of the ψ(2) eigenstates:

ψ
(1)

m,1/2 =

(

l +m + 1

2 l+ 1

)1/2

ψ
(2)

l+1/2,m+1/2 +

(

l −m

2 l+ 1

)1/2

ψ
(2)

l−1/2,m+1/2, (11.49)

ψ
(1)

m+1,−1/2 =

(

l−m

2 l+ 1

)1/2

ψ
(2)

l+1/2,m+1/2 −

(

l +m + 1

2 l+ 1

)1/2

ψ
(2)

l−1/2,m+1/2. (11.50)

The information contained in Eqs. (11.47)–(11.50) is neatly summarized in Table 11.1. For
instance, Eq. (11.47) is obtained by reading the first row of this table, whereas Eq. (11.50)
is obtained by reading the second column. The coefficients in this type of table are gener-
ally known as Clebsch-Gordon coefficients.

As an example, let us consider the l = 1 states of a hydrogen atom. The eigenstates
of L2, S2, Lz, and Sz, are denoted ψ(1)

m,ms
. Since m can take the values −1, 0, 1, whereas

ms can take the values ±1/2, there are clearly six such states: i.e., ψ
(1)

1,±1/2, ψ
(1)

0,±1/2, and

ψ
(1)

−1,±1/2. The eigenstates of L2, S2, J2, and Jz, are denoted ψ
(2)
j,mj

. Since l = 1 and s = 1/2

can be combined together to form either j = 3/2 or j = 1/2 (see earlier), there are also

six such states: i.e., ψ
(2)

3/2,±3/2, ψ
(2)

3/2,±1/2, and ψ
(2)

1/2,±1/2. According to Table 11.1, the various
different eigenstates are interrelated as follows:

ψ
(2)

3/2,±3/2 = ψ
(1)

±1,±1/2, (11.51)

ψ
(2)

3/2,1/2 =

√

2

3
ψ

(1)

0,1/2 +

√

1

3
ψ

(1)

1,−1/2, (11.52)

ψ
(2)

1/2,1/2 =

√

1

3
ψ

(1)

0,1/2 −

√

2

3
ψ

(1)

1,−1/2, (11.53)

ψ
(2)

1/2,−1/2 =

√

2

3
ψ

(1)

−1,1/2 −

√

1

3
ψ

(1)

0,−1/2, (11.54)

ψ
(2)

3/2,−1/2 =

√

1

3
ψ

(1)

−1,1/2 +

√

2

3
ψ

(1)

0,−1/2, (11.55)

and

ψ
(1)

±1,±1/2 = ψ
(2)

3/2,±3/2, (11.56)
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−1,−1/2 −1, 1/2 0,−1/2 0, 1/2 1,−1/2 1, 1/2 m,ms

3/2,−3/2 1

3/2,−1/2
√

1/3
√

2/3

1/2,−1/2
√

2/3 −
√

1/3

3/2, 1/2
√

2/3
√

1/3

1/2, 1/2
√

1/3 −
√

2/3

3/2, 3/2 1

j,mj

Table 11.2: Clebsch-Gordon coefficients for adding spin one-half to spin one. Only non-zero

coefficients are shown.

ψ
(1)

1,−1/2 =

√

1

3
ψ

(2)

3/2,1/2 −

√

2

3
ψ

(2)

1/2,1/2, (11.57)

ψ
(1)

0,1/2 =

√

2

3
ψ

(2)

3/2,1/2 +

√

1

3
ψ

(2)

1/2,1/2, (11.58)

ψ
(1)

0,−1/2 =

√

2

3
ψ

(2)

3/2,−1/2 −

√

1

3
ψ

(2)

1/2,−1/2, (11.59)

ψ
(1)

−1,1/2 =

√

1

3
ψ

(2)

3/2,−1/2 +

√

2

3
ψ

(2)

1/2,−1/2, (11.60)

Thus, if we know that an electron in a hydrogen atom is in an l = 1 state characterized by

m = 0 and ms = 1/2 [i.e., the state represented by ψ
(1)

0,1/2] then, according to Eq. (11.58),
a measurement of the total angular momentum will yield j = 3/2, mj = 1/2 with prob-
ability 2/3, and j = 1/2, mj = 1/2 with probability 1/3. Suppose that we make such a
measurement, and obtain the result j = 3/2, mj = 1/2. As a result of the measurement,

the electron is thrown into the corresponding eigenstate, ψ
(2)

3/2,1/2. It thus follows from
Eq. (11.52) that a subsequent measurement of Lz and Sz will yield m = 0, ms = 1/2 with
probability 2/3, and m = 1, ms = −1/2 with probability 1/3.

The information contained in Eqs. (11.51)–(11.59) is neatly summed up in Table 11.2.
Note that each row and column of this table has unit norm, and also that the different
rows and different columns are mutually orthogonal. Of course, this is because the ψ(1)

and ψ(2) eigenstates are orthonormal.

11.4 Two Spin One-Half Particles

Consider a system consisting of two spin one-half particles. Suppose that the system does
not possess any orbital angular momentum. Let S1 and S2 be the spin angular momentum
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operators of the first and second particles, respectively, and let

S = S1 + S2 (11.61)

be the total spin angular momentum operator. By analogy with the previous analysis, we
conclude that it is possible to simultaneously measure either S 2

1 , S 2
2 , S2, and Sz, or S 2

1 , S 2
2 ,

S1z, S2z, and Sz. Let the quantum numbers associated with measurements of S 2
1 , S1z, S

2
2 ,

S2z, S
2, and Sz be s1, ms1

, s2, ms2
, s, and ms, respectively. In other words, if the spinor

χ
(1)
s1,s2 ;ms1

,ms2
is a simultaneous eigenstate of S 2

1 , S 2
2 , S1z, and S2z, then

S 2
1 χ

(1)
s1,s2 ;ms1

,ms2
= s1 (s1 + 1) h̄2χ(1)

s1,s2;ms1
,ms2

, (11.62)

S 2
2 χ

(1)
s1,s2 ;ms1

,ms2
= s2 (s2 + 1) h̄2χ(1)

s1,s2;ms1
,ms2

, (11.63)

S1zχ
(1)
s1,s2 ;ms1

,ms2
= ms1

h̄ χ(1)
s1,s2 ;ms1

,ms2
, (11.64)

S2zχ
(1)
s1,s2 ;ms1

,ms2
= ms2

h̄ χ(1)
s1,s2 ;ms1

,ms2
, (11.65)

Szχ
(1)
s1,s2 ;ms1

,ms2
= ms h̄ χ

(1)
s1,s2;ms1

,ms2
. (11.66)

Likewise, if the spinor χ
(2)
s1,s2 ;s,ms is a simultaneous eigenstate of S 2

1 , S 2
2 , S2, and Sz, then

S 2
1 χ

(2)
s1,s2 ;s,ms

= s1 (s1 + 1) h̄2χ(2)
s1,s2;s,ms

, (11.67)

S 2
2 χ

(2)
s1,s2 ;s,ms

= s2 (s2 + 1) h̄2χ(2)
s1,s2;s,ms

, (11.68)

S2χ(2)
s1,s2 ;s,ms

= s (s+ 1) h̄2χ(2)
s1,s2;s,ms

, (11.69)

Szχ
(2)
s1,s2 ;s,ms

= ms h̄ χ
(2)
s1,s2;s,ms

. (11.70)

Of course, since both particles have spin one-half, s1 = s2 = 1/2, and s1z, s2z = ±1/2.
Furthermore, by analogy with previous analysis,

ms = ms1
+ms2

. (11.71)

Now, we saw, in the previous section, that when spin l is added to spin one-half then
the possible values of the total angular momentum quantum number are j = l ± 1/2. By
analogy, when spin one-half is added to spin one-half then the possible values of the total
spin quantum number are s = 1/2± 1/2. In other words, when two spin one-half particles
are combined, we either obtain a state with overall spin s = 1, or a state with overall spin
s = 0. To be more exact, there are three possible s = 1 states (corresponding to ms = −1,
0, 1), and one possible s = 0 state (corresponding to ms = 0). The three s = 1 states are
generally known as the triplet states, whereas the s = 0 state is known as the singlet state.

The Clebsch-Gordon coefficients for adding spin one-half to spin one-half can easily be
inferred from Table 11.1 (with l = 1/2), and are listed in Table 11.3. It follows from this
table that the three triplet states are:

χ
(2)
1,−1 = χ

(1)

−1/2,−1.2, (11.72)
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−1/2,−1/2 −1/2, 1/2 1/2,−1/2 1/2, 1/2 ms1
,ms2

1,−1 1

1, 0 1/
√

2 1/
√

2

0, 0 1/
√

2 −1/
√

2

1, 1 1

s,ms

Table 11.3: Clebsch-Gordon coefficients for adding spin one-half to spin one-half. Only non-

zero coefficients are shown.

χ
(2)
1,0 =

1√
2

(

χ
(1)

−1/2,1/2 + χ
(1)

1/2,−1/2

)

, (11.73)

χ
(2)
1,1 = χ

(1)

1/2,1/2, (11.74)

where χ(2)
s,ms

is shorthand for χ
(2)
s1,s2 ;s,ms , etc. Likewise, the singlet state is written:

χ
(2)
0,0 =

1√
2

(

χ
(1)

−1/2,1/2 − χ
(1)

1/2,−1/2

)

. (11.75)

Exercises

1. An electron in a hydrogen atom occupies the combined spin and position state

R2,1

(

√

1/3 Y1,0χ+ +
√

2/3 Y1,1χ−

)

.

(a) What values would a measurement of L2 yield, and with what probabilities?

(b) Same for Lz.

(c) Same for S2.

(d) Same for Sz.

(e) Same for J2.

(f) Same for Jz.

(g) What is the probability density for finding the electron at r, θ, φ?

(h) What is the probability density for finding the electron in the spin up state (with respect
to the z-axis) at radius r?

2. In a low energy neutron-proton system (with zero orbital angular momentum) the potential
energy is given by

V(r) = V1(r) + V2(r)

(

3
(σ1 · r) (σ2 · r)

r2
− σ1 · σ2

)

+ V3(r)σ1 · σ2,

where σ1 denotes the vector of the Pauli matrices of the neutron, and σ2 denotes the vector
of the Pauli matrices of the proton. Calculate the potential energy for the neutron-proton
system:
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(a) In the spin singlet state.

(b) In the spin triplet state.

3. Consider two electrons in a spin singlet state.

(a) If a measurement of the spin of one of the electrons shows that it is in the state with
Sz = h̄/2, what is the probability that a measurement of the z-component of the spin of
the other electron yields Sz = h̄/2?

(b) If a measurement of the spin of one of the electrons shows that it is in the state with
Sy = h̄/2, what is the probability that a measurement of the x-component of the spin
of the other electron yields Sx = −h̄/2?

Finally, if electron 1 is in a spin state described by cosα1χ+ + sinα1 e i β1 χ−, and electron
2 is in a spin state described by cosα2χ+ + sinα2 e i β2 χ−, what is the probability that the
two-electron spin state is a triplet state?
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12 Time-Independent Perturbation Theory

12.1 Introduction

Consider the following very commonly occurring problem. The Hamiltonian of a quantum
mechanical system is written

H = H0 +H1. (12.1)

Here, H0 is a simple Hamiltonian whose eigenvalues and eigenstates are known exactly.
H1 introduces some interesting additional physics into the problem, but is sufficiently com-
plicated that when we add it to H0 we can no longer find the exact energy eigenvalues and
eigenstates. However, H1 can, in some sense (which we shall specify more precisely later
on), be regarded as being small compared to H0. Can we find approximate eigenvalues
and eigenstates of the modified Hamiltonian, H0 +H1, by performing some sort of pertur-
bation expansion about the eigenvalues and eigenstates of the original Hamiltonian, H0?
Let us investigate.

Incidentally, in this chapter, we shall only discuss so-called time-independent perturba-

tion theory, in which the modification to the Hamiltonian, H1, has no explicit dependence
on time. It is also assumed that the unperturbed Hamiltonian, H0, is time-independent.

12.2 Improved Notation

Before commencing our investigation, it is helpful to introduce some improved notation.
Let the ψi be a complete set of eigenstates of the Hamiltonian, H, corresponding to the
eigenvalues Ei: i.e.,

Hψi = Eiψi. (12.2)

Now, we expect the ψi to be orthonormal (see Sect. 4.9). In one dimension, this implies
that ∫∞

−∞

ψ∗
i ψjdx = δij. (12.3)

In three dimensions (see Cha. 7), the above expression generalizes to
∫∞

−∞

∫∞

−∞

∫∞

−∞

ψ∗
i ψjdxdydz = δij. (12.4)

Finally, if the ψi are spinors (see Cha. 10) then we have

ψ
†
iψj = δij. (12.5)

The generalization to the case where ψ is a product of a regular wavefunction and a spinor
is fairly obvious. We can represent all of the above possibilities by writing

〈ψi|ψj〉 ≡ 〈i|j〉 = δij. (12.6)
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Here, the term in angle brackets represents the integrals in Eqs. (12.3) and (12.4) in one-
and three-dimensional regular space, respectively, and the spinor product (12.5) in spin-
space. The advantage of our new notation is its great generality: i.e., it can deal with
one-dimensional wavefunctions, three-dimensional wavefunctions, spinors, etc.

Expanding a general wavefunction, ψa, in terms of the energy eigenstates, ψi, we
obtain

ψa =
∑

i

ciψi. (12.7)

In one dimension, the expansion coefficients take the form (see Sect. 4.9)

ci =

∫∞

−∞

ψ∗
i ψadx, (12.8)

whereas in three dimensions we get

ci =

∫∞

−∞

∫∞

−∞

∫∞

−∞

ψ∗
i ψadxdydz. (12.9)

Finally, if ψ is a spinor then we have

ci = ψ
†
iψa. (12.10)

We can represent all of the above possibilities by writing

ci = 〈ψi|ψa〉 ≡ 〈i|a〉. (12.11)

The expansion (12.7) thus becomes

ψa =
∑

i

〈ψi|ψa〉ψi ≡
∑

i

〈i|a〉ψi. (12.12)

Incidentally, it follows that
〈i|a〉∗ = 〈a|i〉. (12.13)

Finally, if A is a general operator, and the wavefunction ψa is expanded in the manner
shown in Eq. (12.7), then the expectation value of A is written (see Sect. 4.9)

〈A〉 =
∑

i,j

c∗i cjAij. (12.14)

Here, the Aij are unsurprisingly known as the matrix elements of A. In one dimension, the
matrix elements take the form

Aij =

∫∞

−∞

ψ∗
i Aψjdx, (12.15)

whereas in three dimensions we get

Aij =

∫∞

−∞

∫∞

−∞

∫∞

−∞

ψ∗
i Aψjdxdydz. (12.16)
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Finally, if ψ is a spinor then we have

Aij = ψ
†
iAψj. (12.17)

We can represent all of the above possibilities by writing

Aij = 〈ψi|A|ψj〉 ≡ 〈i|A|j〉. (12.18)

The expansion (12.14) thus becomes

〈A〉 ≡ 〈a|A|a〉 =
∑

i,j

〈a|i〉〈i|A|j〉〈j|a〉. (12.19)

Incidentally, it follows that [see Eq. (4.58)]

〈i|A|j〉∗ = 〈j|A†|i〉. (12.20)

Finally, it is clear from Eq. (12.19) that

∑

i

|i〉〈i| ≡ 1, (12.21)

where the ψi are a complete set of eigenstates, and 1 is the identity operator.

12.3 Two-State System

Consider the simplest possible non-trivial quantum mechanical system. In such a system,
there are only two independent eigenstates of the unperturbed Hamiltonian: i.e.,

H0ψ1 = E1ψ1, (12.22)

H0ψ2 = E2ψ2. (12.23)

It is assumed that these states, and their associated eigenvalues, are known. We also expect
the states to be orthonormal, and to form a complete set.

Let us now try to solve the modified energy eigenvalue problem

(H0 +H1)ψE = EψE. (12.24)

We can, in fact, solve this problem exactly. Since the eigenstates of H0 form a complete
set, we can write [see Eq. (12.12)]

ψE = 〈1|E〉ψ1 + 〈2|E〉ψ2. (12.25)

It follows from (12.24) that
〈i|H0 +H1|E〉 = E 〈i|E〉, (12.26)



154 QUANTUM MECHANICS

where i = 1 or 2. Equations (12.22), (12.23), (12.25), (12.26), and the orthonormality
condition

〈i|j〉 = δij, (12.27)

yield two coupled equations which can be written in matrix form:
(

E1 − E+ e11 e12

e∗12 E2 − E + e22

)( 〈1|E〉
〈2|E〉

)

=

(

0

0

)

, (12.28)

where

e11 = 〈1|H1|1〉, (12.29)

e22 = 〈2|H1|2〉, (12.30)

e12 = 〈1|H1|2〉 = 〈2|H1|1〉∗. (12.31)

Here, use has been made of the fact that H1 is an Hermitian operator.
Consider the special (but not uncommon) case of a perturbing Hamiltonian whose

diagonal matrix elements are zero, so that

e11 = e22 = 0. (12.32)

The solution of Eq. (12.28) (obtained by setting the determinant of the matrix to zero) is

E =
(E1 + E2) ±

√

(E1 − E2)2 + 4 |e12|2

2
. (12.33)

Let us expand in the supposedly small parameter

ǫ =
|e12|

|E1 − E2|
. (12.34)

We obtain

E ≃ 1

2
(E1 + E2) ±

1

2
(E1 − E2)(1+ 2 ǫ2 + · · ·). (12.35)

The above expression yields the modification of the energy eigenvalues due to the perturb-
ing Hamiltonian:

E ′
1 = E1 +

|e12|
2

E1 − E2

+ · · · , (12.36)

E ′
2 = E2 −

|e12|
2

E1 − E2

+ · · · . (12.37)

Note that H1 causes the upper eigenvalue to rise, and the lower to fall. It is easily demon-
strated that the modified eigenstates take the form

ψ ′
1 = ψ1 +

e∗12

E1 − E2

ψ2 + · · · , (12.38)

ψ ′
2 = ψ2 −

e12

E1 − E2

ψ1 + · · · . (12.39)
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Thus, the modified energy eigenstates consist of one of the unperturbed eigenstates, plus
a slight admixture of the other. Now our expansion procedure is only valid when ǫ ≪ 1.
This suggests that the condition for the validity of the perturbation method as a whole is

|e12| ≪ |E1 − E2|. (12.40)

In other words, when we say that H1 needs to be small compared to H0, what we are really
saying is that the above inequality must be satisfied.

12.4 Non-Degenerate Perturbation Theory

Let us now generalize our perturbation analysis to deal with systems possessing more
than two energy eigenstates. Consider a system in which the energy eigenstates of the
unperturbed Hamiltonian, H0, are denoted

H0ψn = Enψn, (12.41)

where n runs from 1 to N. The eigenstates are assumed to be orthonormal, so that

〈m|n〉 = δnm, (12.42)

and to form a complete set. Let us now try to solve the energy eigenvalue problem for the
perturbed Hamiltonian:

(H0 +H1)ψE = EψE. (12.43)

If follows that

〈m|H0 +H1|E〉 = E 〈m|E〉, (12.44)

wherem can take any value from 1 toN. Now, we can express ψE as a linear superposition
of the unperturbed energy eigenstates:

ψE =
∑

k

〈k|E〉ψk, (12.45)

where k runs from 1 to N. We can combine the above equations to give

(Em − E + emm) 〈m|E〉 +
∑

k6=m

emk 〈k|E〉 = 0, (12.46)

where

emk = 〈m|H1|k〉. (12.47)

Let us now develop our perturbation expansion. We assume that

emk

Em − Ek

∼ O(ǫ) (12.48)
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for all m 6= k, where ǫ≪ 1 is our expansion parameter. We also assume that

emm

Em

∼ O(ǫ) (12.49)

for all m. Let us search for a modified version of the nth unperturbed energy eigenstate
for which

E = En + O(ǫ), (12.50)

and

〈n|E〉 = 1, (12.51)

〈m|E〉 = O(ǫ) (12.52)

for m 6= n. Suppose that we write out Eq. (12.46) for m 6= n, neglecting terms which are
O(ǫ2) according to our expansion scheme. We find that

(Em − En) 〈m|E〉 + emn ≃ 0, (12.53)

giving

〈m|E〉 ≃ −
emn

Em − En

. (12.54)

Substituting the above expression into Eq. (12.46), evaluated for m = n, and neglecting
O(ǫ3) terms, we obtain

(En − E + enn) −
∑

k6=n

|enk|
2

Ek − En

≃ 0. (12.55)

Thus, the modified nth energy eigenstate possesses an eigenvalue

E ′
n = En + enn +

∑

k6=n

|enk|
2

En − Ek

+ O(ǫ3), (12.56)

and a wavefunction
ψ ′

n = ψn +
∑

k6=n

ekn

En − Ek

ψk + O(ǫ2). (12.57)

Incidentally, it is easily demonstrated that the modified eigenstates remain orthonormal to
O(ǫ2).

12.5 Quadratic Stark Effect

Suppose that a hydrogen atom is subject to a uniform external electric field, of magnitude
|E|, directed along the z-axis. The Hamiltonian of the system can be split into two parts.
Namely, the unperturbed Hamiltonian,

H0 =
p2

2me

−
e2

4πǫ0 r
, (12.58)



Time-Independent Perturbation Theory 157

and the perturbing Hamiltonian
H1 = e |E| z. (12.59)

Note that the electron spin is irrelevant to this problem (since the spin operators all
commute with H1), so we can ignore the spin degrees of freedom of the system. Hence,
the energy eigenstates of the unperturbed Hamiltonian are characterized by three quantum
numbers—the radial quantum number n, and the two angular quantum numbers l and m
(see Cha. 9). Let us denote these states as the ψnlm, and let their corresponding energy
eigenvalues be the Enlm. According to the analysis in the previous section, the change in
energy of the eigenstate characterized by the quantum numbers n, l,m in the presence of
a small electric field is given by

∆Enlm = e |E| 〈n, l,m|z|n, l,m〉

+e2 |E|2
∑

n′,l′,m′ 6=n,l,m

|〈n, l,m|z|n ′, l ′,m ′〉|2
Enlm − En′l′m′

. (12.60)

This energy-shift is known as the Stark effect.
The sum on the right-hand side of the above equation seems very complicated. How-

ever, it turns out that most of the terms in this sum are zero. This follows because the
matrix elements 〈n, l,m|z|n ′, l ′,m ′〉 are zero for virtually all choices of the two sets of
quantum number, n, l,m and n ′, l ′,m ′. Let us try to find a set of rules which determine
when these matrix elements are non-zero. These rules are usually referred to as the selec-

tion rules for the problem in hand.
Now, since [see Eq. (8.4)]

Lz = xpy − ypx, (12.61)

it follows that [see Eqs. (7.15)–(7.17)]

[Lz, z] = 0. (12.62)

Thus,

〈n, l,m|[Lz, z]|n
′, l ′,m ′〉 = 〈n, l,m|Lzz− z Lz|n

′, l ′,m ′〉
= h̄ (m−m ′) 〈n, l,m|z|n ′, l ′,m ′〉 = 0, (12.63)

since ψnlm is, by definition, an eigenstate of Lz corresponding to the eigenvalue m h̄.
Hence, it is clear, from the above equation, that one of the selection rules is that the matrix
element 〈n, l,m|z|n ′, l ′,m ′〉 is zero unless

m ′ = m. (12.64)

Let us now determine the selection rule for l. We have

[L2, z] = [L2
x, z] + [L2

y, z]
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= Lx [Lx, z] + [Lx, z] Lx + Ly [Ly, z] + [Ly, z] Ly

= i h̄ (−Lxy− yLx + Lyx+ x Ly)

= 2 i h̄ (Lyx− Lxy+ i h̄ z)

= 2 i h̄ (Lyx− yLx) = 2 i h̄ (x Ly − Lxy), (12.65)

where use has been made of Eqs. (7.15)–(7.17), (8.2)–(8.4), and (8.10). Thus,

[L2, [L2, z]] = 2 i h̄
(

L2, Lyx − Lxy+ i h̄ z
)

= 2 i h̄
(

Ly [L2, x] − Lx [L2, y] + i h̄ [L2, z]
)

= −4 h̄2Ly (yLz − Ly z) + 4 h̄2Lx (Lx z− x Lz)

−2 h̄2 (L2 z− z L2), (12.66)

which reduces to

[L2, [L2, z]] = −h̄2
{
4 (Lxx+ Lyy+ Lz z) Lz − 4 (L2

x + L2
y + L2

z ) z

+2 (L2 z− z L2)
}

= −h̄2
{
4 (Lxx+ Lyy+ Lz z) Lz − 2 (L2 z+ z L2)

}
. (12.67)

However, it is clear from Eqs. (8.2)–(8.4) that

Lxx+ Lyy+ Lz z = 0. (12.68)

Hence, we obtain
[L2, [L2, z]] = 2 h̄2 (L2 z+ z L2). (12.69)

Finally, the above expression expands to give

L4 z− 2 L2 z L2 + z L4 − 2 h̄2 (L2 z+ z L2) = 0. (12.70)

Equation (12.70) implies that

〈n, l,m|L4z− 2 L2 z L2 + z L4 − 2 h̄2 (L2 z+ z L2)|n ′, l ′,m〉 = 0. (12.71)

Since, by definition, ψnlm is an eigenstate of L2 corresponding to the eigenvalue l (l+1) h̄2,
this expression yields

{
l2 (l+ 1)2 − 2 l (l+ 1) l ′ (l ′ + 1) + l ′2 (l ′ + 1)2

−2 l (l+ 1) − 2 l ′ (l ′ + 1)} 〈n, l,m|z|n ′, l ′,m〉 = 0, (12.72)

which reduces to

(l+ l ′ + 2) (l+ l ′) (l− l ′ + 1) (l− l ′ − 1) 〈n, l,m|z|n ′, l ′,m〉 = 0. (12.73)
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According to the above formula, the matrix element 〈n, l,m|z|n ′, l ′,m〉 vanishes unless
l = l ′ = 0 or l ′ = l ± 1. [Of course, the factor l + l ′ + 2, in the above equation, can
never be zero, since l and l ′ can never be negative.] Recall, however, from Cha. 9, that
an l = 0 wavefunction is spherically symmetric. It, therefore, follows, from symmetry, that
the matrix element 〈n, l,m|z|n ′, l ′,m〉 is zero when l = l ′ = 0. In conclusion, the selection
rule for l is that the matrix element 〈n, l,m|z|n ′, l ′,m〉 is zero unless

l ′ = l± 1. (12.74)

Application of the selection rules (12.64) and (12.74) to Eq. (12.60) yields

∆Enlm = e2 |E|2
∑

n′,l′=l±1

|〈n, l,m|z|n ′, l ′,m〉|2
Enlm − En′l′m

. (12.75)

Note that, according to the selection rules, all of the terms in Eq. (12.60) which vary
linearly with the electric field-strength vanish. Only those terms which vary quadratically
with the field-strength survive. Hence, this type of energy-shift of an atomic state in the
presence of a small electric field is known as the quadratic Stark effect. Now, the electric

polarizability of an atom is defined in terms of the energy-shift of the atomic state as
follows:

∆E = −
1

2
α |E|2. (12.76)

Hence, we can write

αnlm = 2 e2
∑

n′,l′=l±1

|〈n, l,m|z|n ′, l ′,m〉|2
En′l′m − Enlm

. (12.77)

Unfortunately, there is one fairly obvious problem with Eq. (12.75). Namely, it predicts
an infinite energy-shift if there exists some non-zero matrix element 〈n, l,m|z|n ′, l ′,m〉
which couples two degenerate unperturbed energy eigenstates: i.e., if 〈n, l,m|z|n ′, l ′,m〉 6=
0 and Enlm = En′l′m. Clearly, our perturbation method breaks down completely in this
situation. Hence, we conclude that Eqs. (12.75) and (12.77) are only applicable to cases
where the coupled eigenstates are non-degenerate. For this reason, the type of pertur-
bation theory employed here is known as non-degenerate perturbation theory. Now, the
unperturbed eigenstates of a hydrogen atom have energies which only depend on the ra-
dial quantum number n (see Cha. 9). It follows that we can only apply the above results
to the n = 1 eigenstate (since for n > 1 there will be coupling to degenerate eigenstates
with the same value of n but different values of l).

Thus, according to non-degenerate perturbation theory, the polarizability of the ground-
state (i.e., n = 1) of a hydrogen atom is given by

α = 2 e2
∑

n>1

|〈1, 0, 0|z|n, 1, 0〉|2
En00 − E100

. (12.78)
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Here, we have made use of the fact that En10 = En00. The sum in the above expression can
be evaluated approximately by noting that (see Sect. 9.4)

En00 = −
e2

8π ǫ0a0n2
, (12.79)

where

a0 =
4πǫ0 h̄

2

me e2
(12.80)

is the Bohr radius. Hence, we can write

En00 − E100 ≥ E200 − E100 =
3

4

e2

8π ǫ0a0

, (12.81)

which implies that

α <
16

3
4πǫ0a0

∑

n>1

|〈1, 0, 0|z|n, 1, 0〉|2. (12.82)

However, [see Eq. (12.21)]
∑

n>1

|〈1, 0, 0|z|n, 1, 0〉|2 =
∑

n>1

〈1, 0, 0|z|n, 1, 0〉 〈n, 1, 0|z|1, 0, 0〉

=
∑

n′,l′,m′

〈1, 0, 0|z|n ′, l ′,m ′〉 〈n ′, l ′,m ′|z|1, 0, 0〉

= 〈1, 0, 0|z2|1, 0, 0〉 =
1

3
〈1, 0, 0|r2|1, 0, 0〉, (12.83)

where we have made use of the selection rules, the fact that the ψn′,l′,m′ form a complete
set, and the fact the the ground-state of hydrogen is spherically symmetric. Finally, it
follows from Eq. (9.72) that

〈1, 0, 0|r2|1, 0, 0〉 = 3 a2
0 . (12.84)

Hence, we conclude that

α <
16

3
4πǫ0a

3
0 ≃ 5.3 4πǫ0a

3
0 . (12.85)

The exact result (which can be obtained by solving Schrödinger’s equation in parabolic
coordinates) is

α =
9

2
4πǫ0a

3
0 = 4.5 4πǫ0a

3
0 . (12.86)

12.6 Degenerate Perturbation Theory

Let us, rather naively, investigate the Stark effect in an excited (i.e., n > 1) state of the
hydrogen atom using standard non-degenerate perturbation theory. We can write

H0ψnlm = Enψnlm, (12.87)
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since the energy eigenstates of the unperturbed Hamiltonian only depend on the quan-
tum number n. Making use of the selection rules (12.64) and (12.74), non-degenerate
perturbation theory yields the following expressions for the perturbed energy levels and
eigenstates [see Eqs. (12.56) and (12.57)]:

E ′
nl = En + enlnl +

∑

n′,l′=l±1

|en′l′nl|
2

En − En′

, (12.88)

and

ψ ′
nlm = ψnlm +

∑

n′,l′=l±1

en′l′nl

En − En′

ψn′l′m, (12.89)

where
en′l′nl = 〈n ′, l ′,m|H1|n, l,m〉. (12.90)

Unfortunately, if n > 1 then the summations in the above expressions are not well-defined,
because there exist non-zero matrix elements, enl′nl, which couple degenerate eigenstates:
i.e., there exist non-zero matrix elements which couple states with the same value of n,
but different values of l. These particular matrix elements give rise to singular factors
1/(En − En) in the summations. This does not occur if n = 1 because, in this case, the
selection rule l ′ = l ± 1, and the fact that l = 0 (since 0 ≤ l < n), only allow l ′ to take
the single value 1. Of course, there is no n = 1 state with l ′ = 1. Hence, there is only one
coupled state corresponding to the eigenvalue E1. Unfortunately, if n > 1 then there are
multiple coupled states corresponding to the eigenvalue En.

Note that our problem would disappear if the matrix elements of the perturbed Hamil-
tonian corresponding to the same value of n, but different values of l, were all zero: i.e.,
if

〈n, l ′,m|H1|n, l,m〉 = λnl δll′ . (12.91)

In this case, all of the singular terms in Eqs. (12.88) and (12.89) would reduce to zero.
Unfortunately, the above equation is not satisfied. Fortunately, we can always redefine
the unperturbed eigenstates corresponding to the eigenvalue En in such a manner that
Eq. (12.91) is satisfied. Suppose that there are Nn coupled eigenstates belonging to the
eigenvalue En. Let us define Nn new states which are linear combinations of our Nn

original degenerate eigenstates:

ψ
(1)
nlm =

∑

k=1,Nn

〈n, k,m|n, l(1),m〉ψnkm. (12.92)

Note that these new states are also degenerate energy eigenstates of the unperturbed

Hamiltonian, H0, corresponding to the eigenvalue En. The ψ
(1)
nlm are chosen in such a

manner that they are also eigenstates of the perturbing Hamiltonian, H1: i.e., they are
simultaneous eigenstates of H0 and H1. Thus,

H1ψ
(1)
nlm = λnlψ

(1)
nlm. (12.93)
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The ψ
(1)
nlm are also chosen so as to be orthonormal: i.e.,

〈n, l ′(1),m|n, l(1),m〉 = δll′ . (12.94)

It follows that
〈n, l ′(1),m|H1|n, l

(1),m〉 = λnlδll′ . (12.95)

Thus, if we use the new eigenstates, instead of the old ones, then we can employ Eqs. (12.88)
and (12.89) directly, since all of the singular terms vanish. The only remaining difficulty
is to determine the new eigenstates in terms of the original ones.

Now [see Eq. (12.21)] ∑

l=1,Nn

|n, l,m〉〈n, l,m| ≡ 1, (12.96)

where 1 denotes the identity operator in the sub-space of all coupled unperturbed eigen-
states corresponding to the eigenvalue En. Using this completeness relation, the eigenvalue
equation (12.93) can be transformed into a straightforward matrix equation:

∑

l′′=1,Nn

〈n, l ′,m|H1|n, l
′′,m〉 〈n, l ′′,m|n, l(1),m〉 = λnl 〈n, l ′,m|n, l(1),m〉. (12.97)

This can be written more transparently as

U x = λ x, (12.98)

where the elements of the Nn ×Nn Hermitian matrix U are

Ujk = 〈n, j,m|H1|n, k,m〉. (12.99)

Provided that the determinant of U is non-zero, Eq. (12.98) can always be solved to give
Nn eigenvalues λnl (for l = 1 to Nn), with Nn corresponding eigenvectors xnl. The nor-
malized eigenvectors specify the weights of the new eigenstates in terms of the original
eigenstates: i.e.,

(xnl)k = 〈n, k,m|n, l(1),m〉, (12.100)

for k = 1 to Nn. In our new scheme, Eqs. (12.88) and (12.89) yield

E ′
nl = En + λnl +

∑

n′ 6=n,l′=l±1

|en′l′nl|
2

En − En′

, (12.101)

and
ψ

(1)′

nlm = ψ
(1)
nlm +

∑

n′ 6=n,l′=l±1

en′l′nl

En − En′

ψn′l′m. (12.102)

There are no singular terms in these expressions, since the summations are over n ′ 6= n:
i.e., they specifically exclude the problematic, degenerate, unperturbed energy eigenstates
corresponding to the eigenvalue En. Note that the first-order energy shifts are equivalent
to the eigenvalues of the matrix equation (12.98).
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12.7 Linear Stark Effect

Returning to the Stark effect, let us examine the effect of an external electric field on the
energy levels of the n = 2 states of a hydrogen atom. There are four such states: an l = 0

state, usually referred to as 2S, and three l = 1 states (with m = −1, 0, 1), usually referred
to as 2P. All of these states possess the same unperturbed energy, E200 = −e2/(32π ǫ0a0).
As before, the perturbing Hamiltonian is

H1 = e |E| z. (12.103)

According to the previously determined selection rules (i.e., m ′ = m, and l ′ = l ± 1), this
Hamiltonian couples ψ200 and ψ210. Hence, non-degenerate perturbation theory breaks
down when applied to these two states. On the other hand, non-degenerate perturbation
theory works fine for the ψ211 and ψ21−1 states, since these are not coupled to any other
n = 2 states by the perturbing Hamiltonian.

In order to apply perturbation theory to the ψ200 and ψ210 states, we have to solve the
matrix eigenvalue equation

U x = λ x, (12.104)

where U is the matrix of the matrix elements of H1 between these states. Thus,

U = e |E|

(

0 〈2, 0, 0|z|2, 1, 0〉
〈2, 1, 0|z|2, 0, 0〉 0

)

, (12.105)

where the rows and columns correspond to ψ200 and ψ210, respectively. Here, we have
again made use of the selection rules, which tell us that the matrix element of z between
two hydrogen atom states is zero unless the states possess l quantum numbers which differ
by unity. It is easily demonstrated, from the exact forms of the 2S and 2P wavefunctions,
that

〈2, 0, 0|z|2, 1, 0〉 = 〈2, 1, 0|z|2, 0, 0〉 = 3 a0. (12.106)

It can be seen, by inspection, that the eigenvalues of U are λ1 = 3 e a0 |E| and λ2 =

−3 e a0 |E|. The corresponding normalized eigenvectors are

x1 =





1/
√
2

1/
√
2



 , (12.107)

x2 =





1/
√
2

−1/
√
2



 . (12.108)

It follows that the simultaneous eigenstates of H0 and H1 take the form

ψ1 =
ψ200 + ψ210√

2
, (12.109)

ψ2 =
ψ200 − ψ210√

2
. (12.110)
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In the absence of an external electric field, both of these states possess the same energy,
E200. The first-order energy shifts induced by an external electric field are given by

∆E1 = +3 e a0 |E|, (12.111)

∆E2 = −3 e a0 |E|. (12.112)

Thus, in the presence of an electric field, the energies of states 1 and 2 are shifted upwards
and downwards, respectively, by an amount 3 e a0 |E|. These states are orthogonal linear
combinations of the original ψ200 and ψ210 states. Note that the energy shifts are linear

in the electric field-strength, so this effect—which is known as the linear Stark effect—is
much larger than the quadratic effect described in Sect. 12.5. Note, also, that the energies
of the ψ211 and ψ21−1 states are not affected by the electric field to first-order. Of course,
to second-order the energies of these states are shifted by an amount which depends on
the square of the electric field-strength (see Sect. 12.5).

12.8 Fine Structure of Hydrogen

According to special relativity, the kinetic energy (i.e., the difference between the total
energy and the rest mass energy) of a particle of rest mass m and momentum p is

T =
√

p2 c2 +m2 c4 −mc2. (12.113)

In the non-relativistic limit p ≪ mc, we can expand the square-root in the above expres-
sion to give

T =
p2

2m

[

1−
1

4

(

p

mc

)2

+ O
(

p

mc

)4
]

. (12.114)

Hence,

T ≃ p2

2m
−

p4

8m3c2
. (12.115)

Of course, we recognize the first term on the right-hand side of this equation as the stan-
dard non-relativistic expression for the kinetic energy. The second term is the lowest-order
relativistic correction to this energy. Let us consider the effect of this type of correction
on the energy levels of a hydrogen atom. So, the unperturbed Hamiltonian is given by
Eq. (12.58), and the perturbing Hamiltonian takes the form

H1 = −
p4

8m3
e c

2
. (12.116)

Now, according to standard first-order perturbation theory (see Sect. 12.4), the lowest-
order relativistic correction to the energy of a hydrogen atom state characterized by the
standard quantum numbers n, l, and m is given by

∆Enlm = 〈n, l,m|H1|n, l,m〉 = −
1

8m3
e c

2
〈n, l,m|p4|n, l,m〉

= −
1

8m3
e c

2
〈n, l,m|p2p2|n, l,m〉. (12.117)
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However, Schrödinger’s equation for a unperturbed hydrogen atom can be written

p2ψn,l,m = 2me (En − V)ψn,l,m, (12.118)

where V = −e2/(4πǫ0 r). Since p2 is an Hermitian operator, it follows that

∆Enlm = −
1

2me c2
〈n, l,m|(En − V)2|n, l,m〉

= −
1

2me c2

(

E2
n − 2 En 〈n, l,m|V |n, l,m〉 + 〈n, l,m|V2|n, l,m〉

)

= −
1

2me c2



E2
n + 2 En

(

e2

4πǫ0

)〈

1

r

〉

+

(

e2

4πǫ0

)2〈

1

r2

〉



 . (12.119)

It follows from Eqs. (9.74) and (9.75) that

∆Enlm = −
1

2mec2



E2
n + 2 En

(

e2

4πǫ0

)

1

n2a0

+

(

e2

4πǫ0

)2
1

(l+ 1/2)n3a2
0



 .

(12.120)

Finally, making use of Eqs. (9.55), (9.57), and (9.58), the above expression reduces to

∆Enlm = En

α2

n2

(

n

l+ 1/2
−
3

4

)

, (12.121)

where

α =
e2

4πǫ0 h̄ c
≃ 1

137
(12.122)

is the dimensionless fine structure constant.
Note that the above derivation implicitly assumes that p4 is an Hermitian operator. It

turns out that this is not the case for l = 0 states. However, somewhat fortuitously, our
calculation still gives the correct answer when l = 0. Note, also, that we are able to use
non-degenerate perturbation theory in the above calculation, using the ψnlm eigenstates,
because the perturbing Hamiltonian commutes with both L2 and Lz. It follows that there is
no coupling between states with different l and m quantum numbers. Hence, all coupled
states have different n quantum numbers, and therefore have different energies.

Now, an electron in a hydrogen atom experiences an electric field

E =
e r

4πǫ0 r3
(12.123)

due to the charge on the nucleus. However, according to electromagnetic theory, a non-
relativistic particle moving in a electric field E with velocity v also experiences an effective
magnetic field

B = −
v × E

c2
. (12.124)
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Recall, that an electron possesses a magnetic moment [see Eqs. (10.58) and (10.59)]

µ = −
e

me

S (12.125)

due to its spin angular momentum, S. We, therefore, expect an additional contribution to
the Hamiltonian of a hydrogen atom of the form [see Eq. (10.60)]

H1 = −µ · B

= −
e2

4πǫ0me c2 r3
v × r · S

=
e2

4πǫ0m2
e c

2 r3
L · S, (12.126)

where L = me r × v is the electron’s orbital angular momentum. This effect is known as
spin-orbit coupling. It turns out that the above expression is too large, by a factor 2, due
to an obscure relativistic effect known as Thomas precession. Hence, the true spin-orbit
correction to the Hamiltonian is

H1 =
e2

8π ǫ0m2
e c

2 r3
L · S. (12.127)

Let us now apply perturbation theory to the hydrogen atom, using the above expression as
the perturbing Hamiltonian.

Now
J = L + S (12.128)

is the total angular momentum of the system. Hence,

J2 = L2 + S2 + 2 L · S, (12.129)

giving

L · S =
1

2
(J2 − L2 − S2). (12.130)

Recall, from Sect. 11.2, that whilst J2 commutes with both L2 and S2, it does not commute
with either Lz or Sz. It follows that the perturbing Hamiltonian (12.127) also commutes
with both L2 and S2, but does not commute with either Lz or Sz. Hence, the simulta-
neous eigenstates of the unperturbed Hamiltonian (12.58) and the perturbing Hamilto-
nian (12.127) are the same as the simultaneous eigenstates of L2, S2, and J2 discussed
in Sect. 11.3. It is important to know this since, according to Sect. 12.6, we can only
safely apply perturbation theory to the simultaneous eigenstates of the unperturbed and
perturbing Hamiltonians.

Adopting the notation introduced in Sect. 11.3, let ψ
(2)
l,s;j,mj

be a simultaneous eigenstate

of L2, S2, J2, and Jz corresponding to the eigenvalues

L2ψ
(2)
l,s;j,mj

= l (l + 1) h̄2ψ
(2)
l,s;j,mj

, (12.131)
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S2ψ
(2)
l,s;j,mj

= s (s+ 1) h̄2ψ
(2)
l,s;j,mj

, (12.132)

J2ψ
(2)
l,s;j,mj

= j (j+ 1) h̄2ψ
(2)
l,s;j,mj

, (12.133)

Jzψ
(2)
l,s;j,mj

= mj h̄ ψ
(2)
l,s;j,mj

. (12.134)

According to standard first-order perturbation theory, the energy-shift induced in such a
state by spin-orbit coupling is given by

∆El,1/2;j,mj
= 〈l, 1/2; j,mj|H1|l, 1/2; j,mj〉

=
e2

16π ǫ0m2
e c

2

〈

1, 1/2; j,mj

∣

∣

∣

∣

∣

J2 − L2 − S2

r3

∣

∣

∣

∣

∣

l, 1/2; j,mj

〉

=
e2 h̄2

16π ǫ0m2
e c

2
[j (j+ 1) − l (l+ 1) − 3/4]

〈

1

r3

〉

. (12.135)

Here, we have made use of the fact that s = 1/2 for an electron. It follows from Eq. (9.76)
that

∆El,1/2;j,mj
=

e2 h̄2

16π ǫ0m2
e c

2a3
0

[

j (j+ 1) − l (l+ 1) − 3/4

l (l+ 1/2) (l+ 1)n3

]

, (12.136)

where n is the radial quantum number. Finally, making use of Eqs. (9.55), (9.57), and
(9.58), the above expression reduces to

∆El,1/2;j,mj
= En

α2

n2

[

n {3/4+ l (l+ 1) − j (j+ 1)}

2 l (l+ 1/2) (l+ 1)

]

, (12.137)

where α is the fine structure constant. A comparison of this expression with Eq. (12.121)
reveals that the energy-shift due to spin-orbit coupling is of the same order of magnitude
as that due to the lowest-order relativistic correction to the Hamiltonian. We can add these
two corrections together (making use of the fact that j = l±1/2 for a hydrogen atom—see
Sect. 11.3) to obtain a net energy-shift of

∆El,1/2;j,mj
= En

α2

n2

(

n

j+ 1/2
−
3

4

)

. (12.138)

This modification of the energy levels of a hydrogen atom due to a combination of relativity
and spin-orbit coupling is known as fine structure.

Now, it is conventional to refer to the energy eigenstates of a hydrogen atom which are
also simultaneous eigenstates of J2 as nLj states, where n is the radial quantum number,
L = (S, P,D, F, · · ·) as l = (0, 1, 2, 3, · · ·), and j is the total angular momentum quantum
number. Let us examine the effect of the fine structure energy-shift (12.138) on these
eigenstates for n = 1, 2 and 3.

For n = 1, in the absence of fine structure, there are two degenerate 1S1/2 states.
According to Eq. (12.138), the fine structure induced energy-shifts of these two states are
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Figure 12.1: Effect of the fine structure energy-shift on the n = 1, 2 and 3 states of a hydrogen

atom. Not to scale.

the same. Hence, fine structure does not break the degeneracy of the two 1S1/2 states of
hydrogen.

For n = 2, in the absence of fine structure, there are two 2S1/2 states, two 2P1/2 states,
and four 2P3/2 states, all of which are degenerate. According to Eq. (12.138), the fine
structure induced energy-shifts of the 2S1/2 and 2P1/2 states are the same as one another,
but are different from the induced energy-shift of the 2P3/2 states. Hence, fine structure
does not break the degeneracy of the 2S1/2 and 2P1/2 states of hydrogen, but does break
the degeneracy of these states relative to the 2P3/2 states.

For n = 3, in the absence of fine structure, there are two 3S1/2 states, two 3P1/2 states,
four 3P3/2 states, four 3D3/2 states, and six 3D5/2 states, all of which are degenerate.
According to Eq. (12.138), fine structure breaks these states into three groups: the 3S1/2

and 3P1/2 states, the 3P3/2 and 3D3/2 states, and the 3D5/2 states.

The effect of the fine structure energy-shift on the n = 1, 2, and 3 energy states of a
hydrogen atom is illustrated in Fig. 12.1.

Note, finally, that although expression (12.137) does not have a well-defined value
for l = 0, when added to expression (12.121) it, somewhat fortuitously, gives rise to an
expression (12.138) which is both well-defined and correct when l = 0.



Time-Independent Perturbation Theory 169

12.9 Zeeman Effect

Consider a hydrogen atom placed in a uniform z-directed external magnetic field of strength
B. The modification to the Hamiltonian of the system is

H1 = −µ · B, (12.139)

where
µ = −

e

2me

(L + 2 S) (12.140)

is the total electron magnetic moment, including both orbital and spin contributions [see
Eqs. (10.57)–(10.59)]. Thus,

H1 =
eB

2me

(Lz + 2 Sz). (12.141)

Suppose that the applied magnetic field is much weaker than the atom’s internal mag-
netic field (12.124). Since the magnitude of the internal field is about 25 tesla, this is a
fairly reasonable assumption. In this situation, we can treat H1 as a small perturbation
acting on the simultaneous eigenstates of the unperturbed Hamiltonian and the fine struc-
ture Hamiltonian. Of course, these states are the simultaneous eigenstates of L2, S2, J2,
and Jz (see previous section). Hence, from standard perturbation theory, the first-order
energy-shift induced by a weak external magnetic field is

∆El,1/2;j,mj
= 〈l, 1/2; j,mj|H1|l, 1/2; j,mj〉

=
eB

2me

(mj h̄+ 〈l, 1/2; j,mj|Sz|l, 1/2; j,mj〉) , (12.142)

since Jz = Lz + Sz. Now, according to Eqs. (11.47) and (11.48),

ψ
(2)
j,mj

=

(

j+mj

2 l+ 1

)1/2

ψ
(1)

mj−1/2,1/2 +

(

j−mj

2 l+ 1

)1/2

ψ
(1)

mj+1/2,−1/2 (12.143)

when j = l + 1/2, and

ψ
(2)
j,mj

=

(

j+ 1−mj

2 l+ 1

)1/2

ψ
(1)

mj−1/2,1/2 −

(

j+ 1+mj

2 l+ 1

)1/2

ψ
(1)

mj+1/2,−1/2 (12.144)

when j = l − 1/2. Here, the ψ(1)
m,ms

are the simultaneous eigenstates of L2, S2, Lz, and Sz,

whereas the ψ
(2)
j,mj

are the simultaneous eigenstates of L2, S2, J2, and Jz. In particular,

Szψ
(1)

m,±1/2 = ± h̄
2
ψ

(1)

m,±1/2. (12.145)

It follows from Eqs. (12.143)–(12.145), and the orthormality of the ψ(1), that

〈l, 1/2; j,mj|Sz|l, 1/2; j,mj〉 = ± mj h̄

2 l + 1
(12.146)
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when j = l ± 1/2. Thus, the induced energy-shift when a hydrogen atom is placed in an
external magnetic field—which is known as the Zeeman effect—becomes

∆El,1/2;j,mj
= µBBmj

[

1± 1

2 l+ 1

]

(12.147)

where the ± signs correspond to j = l± 1/2. Here,

µB =
e h̄

2me

= 5.788× 10−5 eV/T (12.148)

is known as the Bohr magnetron. Of course, the quantum numbermj takes values differing
by unity in the range −j to j. It, thus, follows from Eq. (12.147) that the Zeeman effect
splits degenerate states characterized by j = l + 1/2 into 2 j + 1 equally spaced states of
interstate spacing

∆Ej=l+1/2 = µBB
2 l+ 2

2 l+ 1
. (12.149)

Likewise, the Zeeman effect splits degenerate states characterized by j = l−1/2 into 2 j+1
equally spaced states of interstate spacing

∆Ej=l−1/2 = µBB
2 l

2 l+ 1
. (12.150)

In conclusion, in the presence of a weak external magnetic field, the two degenerate
1S1/2 states of the hydrogen atom are split by 2 µBB. Likewise, the four degenerate 2S1/2

and 2P1/2 states are split by (2/3)µBB, whereas the four degenerate 2P3/2 states are split

by (4/3)µBB. This is illustrated in Fig. 12.2. Note, finally, that since the ψ
(2)
l,mj

are not
simultaneous eigenstates of the unperturbed and perturbing Hamiltonians, Eqs. (12.149)
and (12.150) can only be regarded as the expectation values of the magnetic-field induced
energy-shifts. However, as long as the external magnetic field is much weaker than the in-
ternal magnetic field, these expectation values are almost identical to the actual measured
values of the energy-shifts.

12.10 Hyperfine Structure

The proton in a hydrogen atom is a spin one-half charged particle, and therefore possesses
a magnetic moment. By analogy with Eq. (10.58), we can write

µp =
gpe

2mp

Sp, (12.151)

where µp is the proton magnetic moment, Sp is the proton spin, and the proton gyro-
magnetic ratio gp is found experimentally to take that value 5.59. Note that the magnetic
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Figure 12.2: The Zeeman effect for the n = 1 and 2 states of a hydrogen atom. Here, ǫ = µBB.
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moment of a proton is much smaller (by a factor of order me/mp) than that of an elec-
tron. According to classical electromagnetism, the proton’s magnetic moment generates a
magnetic field of the form

B =
µ0

4π r3

[

3 (µp · er) er − µp

]

+
2 µ0

3
µpδ

3(r), (12.152)

where er = r/r. We can understand the origin of the delta-function term in the above
expression by thinking of the proton as a tiny current loop centred on the origin. All
magnetic field-lines generated by the loop must pass through the loop. Hence, if the size
of the loop goes to zero then the field will be infinite at the origin, and this contribution is
what is reflected by the delta-function term. Now, the Hamiltonian of the electron in the
magnetic field generated by the proton is simply

H1 = −µe · B, (12.153)

where
µe = −

e

me

Se. (12.154)

Here, µe is the electron magnetic moment [see Eqs. (10.58) and (10.59)], and Se the
electron spin. Thus, the perturbing Hamiltonian is written

H1 =
µ0gpe

2

8πmpme

3 (Sp · er) (Se · er) − Sp · Se

r3
+
µ0gpe

2

3mpme

Sp · Seδ
3(r). (12.155)
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Note that, since we have neglected coupling between the proton spin and the magnetic
field generated by the electron’s orbital motion, the above expression is only valid for
l = 0 states.

According to standard first-order perturbation theory, the energy-shift induced by spin-
spin coupling between the proton and the electron is the expectation value of the perturb-
ing Hamiltonian. Hence,

∆E =
µ0gpe

2

8πmpme

〈

3 (Sp · er) (Se · er) − Sp · Se

r3

〉

+
µ0gpe

2

3mpme

〈Sp · Se〉 |ψ(0)|2. (12.156)

For the ground-state of hydrogen, which is spherically symmetric, the first term in the
above expression vanishes by symmetry. Moreover, it is easily demonstrated that |ψ000(0)|

2 =

1/(πa3
0). Thus, we obtain

∆E =
µ0gpe

2

3πmpmea
3
0

〈Sp · Se〉. (12.157)

Let
S = Se + Sp (12.158)

be the total spin. We can show that

Sp · Se =
1

2
(S2 − S 2

e − S 2
p). (12.159)

Thus, the simultaneous eigenstates of the perturbing Hamiltonian and the main Hamilto-
nian are the simultaneous eigenstates of S 2

e , S 2
p, and S2. However, both the proton and

the electron are spin one-half particles. According to Sect. 11.4, when two spin one-half
particles are combined (in the absence of orbital angular momentum) the net state has
either spin 1 or spin 0. In fact, there are three spin 1 states, known as triplet states, and a
single spin 0 state, known as the singlet state. For all states, the eigenvalues of S 2

e and S 2
p

are (3/4) h̄2. The eigenvalue of S2 is 0 for the singlet state, and 2 h̄2 for the triplet states.
Hence,

〈Sp · Se〉 = −
3

4
h̄2 (12.160)

for the singlet state, and

〈Sp · Se〉 =
1

4
h̄2 (12.161)

for the triplet states.
It follows, from the above analysis, that spin-spin coupling breaks the degeneracy of the

two 1S1/2 states in hydrogen, lifting the energy of the triplet configuration, and lowering
that of the singlet. This splitting is known as hyperfine structure. The net energy difference
between the singlet and the triplet states is

∆E =
8

3
gp

me

mp

α2E0 = 5.88× 10−6 eV, (12.162)
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where E0 = 13.6 eV is the (magnitude of the) ground-state energy. Note that the hyperfine
energy-shift is much smaller, by a factor me/mp, than a typical fine structure energy-shift.
If we convert the above energy into a wavelength then we obtain

λ = 21.1 cm. (12.163)

This is the wavelength of the radiation emitted by a hydrogen atom which is collisionally
excited from the singlet to the triplet state, and then decays back to the lower energy
singlet state. The 21 cm line is famous in radio astronomy because it was used to map out
the spiral structure of our galaxy in the 1950’s.
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13 Time-Dependent Perturbation Theory

13.1 Introduction

Consider a system whose Hamiltonian can be written

H(t) = H0 +H1(t). (13.1)

Here, H0 is again a simple time-independent Hamiltonian whose eigenvalues and eigen-
states are known exactly. However, H1 now represents a small time-dependent external
perturbation. Let the eigenstates of H0 take the form

H0ψm = Emψm. (13.2)

We know (see Sect. 4.12) that if the system is in one of these eigenstates then, in the
absence of an external perturbation, it remains in this state for ever. However, the presence
of a small time-dependent perturbation can, in principle, give rise to a finite probability
that if the system is initially in some eigenstate ψn of the unperturbed Hamiltonian then
it is found in some other eigenstate at a subsequent time (since ψn is no longer an exact
eigenstate of the total Hamiltonian). In other words, a time-dependent perturbation can
cause the system to make transitions between its unperturbed energy eigenstates. Let us
investigate this effect.

13.2 Preliminary Analysis

Suppose that at t = 0 the state of the system is represented by

ψ(0) =
∑

m

cmψm, (13.3)

where the cm are complex numbers. Thus, the initial state is some linear superposition of
the unperturbed energy eigenstates. In the absence of the time-dependent perturbation,
the time evolution of the system is simply (see Sect. 4.12)

ψ(t) =
∑

m

cm exp (−iEm t/h̄)ψm. (13.4)

Now, the probability of finding the system in state n at time t is

Pn(t) = |〈ψn|ψ〉|2 = |cn exp (−iEn t/h̄)|
2

= |cn|2 = Pn(0), (13.5)

since the unperturbed eigenstates are assummed to be orthonormal: i.e.,

〈n|m〉 = δnm. (13.6)
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Clearly, with H1 = 0, the probability of finding the system in state ψn at time t is exactly
the same as the probability of finding the system in this state at the initial time, t = 0.
However, with H1 6= 0, we expect Pn—and, hence, cn—to vary with time. Thus, we can
write

ψ(t) =
∑

m

cm(t) exp (−iEm t/h̄)ψm, (13.7)

where Pn(t) = |cn(t)|2. Here, we have carefully separated the fast phase oscillation of the
eigenstates, which depends on the unperturbed Hamiltonian, from the slow variation of
the amplitudes cn(t), which depends entirely on the perturbation (i.e., cn is constant in
time if H1 = 0). Note that in Eq. (13.7) the eigenstates ψm are time-independent (they are
actually the eigenstates of H0 evaluated at the initial time, t = 0).

The time-dependent Schrödinger equation [see Eq. (4.63)] yields

i h̄
∂ψ(t)

∂t
= H(t)ψ(t) = [H0 +H1(t)]ψ(t). (13.8)

Now, it follows from Eq. (13.7) that

(H0 +H1)ψ =
∑

m

cm exp (−iEm t/h̄) (Em +H1)ψm. (13.9)

We also have

i h̄
∂ψ

∂t
=

∑

m

(

i h̄
dcm

dt
+ cmEm

)

exp (−iEm t/h̄)ψm, (13.10)

since the ψm are time-independent. According to Eq. (13.8), we can equate the right-hand
sides of the previous two equations to obtain

∑

m

i h̄
dcm

dt
exp (−iEm t/h̄)ψm =

∑

m

cmexp (−iEm t/h̄)H1ψm. (13.11)

Projecting out the component of the above equation which is proportional to ψn, using
Eq. (13.6), we obtain

i h̄
dcn(t)

dt
=

∑

m

Hnm(t) exp ( iωnm t) cm(t), (13.12)

where
Hnm(t) = 〈n|H1(t)|m〉, (13.13)

and

ωnm =
En − Em

h̄
. (13.14)

Suppose that there are N linearly independent eigenstates of the unperturbed Hamilto-
nian. According to Eqs. (13.12), the time-dependence of the set ofN coefficients cn, which
specify the probabilities of finding the system in these eigenstates at time t, is determined
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by N coupled first-order differential equations. Note that Eqs. (13.12) are exact—we have
made no approximations at this stage. Unfortunately, we cannot generally find exact so-
lutions to these equations. Instead, we have to obtain approximate solutions via suitable
expansions in small quantities. However, for the particuilarly simple case of a two-state
system (i.e., N = 2), it is actually possible to solve Eqs. (13.12) without approximation.
This solution is of great practical importance.

13.3 Two-State System

Consider a system in which the time-independent Hamiltonian possesses two eigenstates,
denoted

H0ψ1 = E1ψ1, (13.15)

H0ψ2 = E2ψ2. (13.16)

Suppose, for the sake of simplicity, that the diagonal elements of the interaction Hamilto-
nian, H1, are zero: i.e.,

〈1|H1|1〉 = 〈2|H1|2〉 = 0. (13.17)

The off-diagonal elements are assumed to oscillate sinusoidally at some frequency ω: i.e.,

〈1|H1|2〉 = 〈2|H1|1〉∗ = γ h̄ exp(iωt), (13.18)

where γ and ω are real. Note that it is only the off-diagonal matrix elements which give
rise to the effect which we are interested in—namely, transitions between states 1 and 2.

For a two-state system, Eq. (13.12) reduces to

i
dc1

dt
= γ exp [+i (ω−ω21) t] c2, (13.19)

i
dc2

dt
= γ exp [−i (ω−ω21) t] c1, (13.20)

whereω21 = (E2−E1)/h̄. The above two equations can be combined to give a second-order
differential equation for the time-variation of the amplitude c2: i.e.,

d2c2

dt2
+ i (ω−ω21)

dc2

dt
+ γ2c2 = 0. (13.21)

Once we have solved for c2, we can use Eq. (13.20) to obtain the amplitude c1. Let us
search for a solution in which the system is certain to be in state 1 (and, thus, has no
chance of being in state 2) at time t = 0. Thus, our initial conditions are c1(0) = 1 and
c2(0) = 0. It is easily demonstrated that the appropriate solutions to (13.21) and (13.20)
are

c2(t) =

(

−iγ

Ω

)

exp

[

−i (ω−ω21) t

2

]

sin(Ωt), (13.22)



178 QUANTUM MECHANICS

c1(t) = exp

[

i (ω−ω21) t

2

]

cos(Ωt)

−

[

i (ω−ω21)

2Ω

]

exp

[

i (ω−ω21) t

2

]

sin(Ωt), (13.23)

where
Ω =

√

γ2 + (ω−ω21)2/4. (13.24)

Now, the probability of finding the system in state 1 at time t is simply P1(t) = |c1(t)|
2.

Likewise, the probability of finding the system in state 2 at time t is P2(t) = |c2(t)|
2. It

follows that

P1(t) = 1− P2(t), (13.25)

P2(t) =

[

γ2

γ2 + (ω−ω21)2/4

]

sin2(Ωt). (13.26)

This result is known as Rabi’s formula.
Equation (13.26) exhibits all the features of a classic resonance. At resonance, when

the oscillation frequency of the perturbation, ω, matches the frequency ω21, we find that

P1(t) = cos2(γ t), (13.27)

P2(t) = sin2(γ t). (13.28)

According to the above result, the system starts off in state 1 at t = 0. After a time interval
π/(2 γ) it is certain to be in state 2. After a further time interval π/(2 γ) it is certain to be
in state 1 again, and so on. Thus, the system periodically flip-flops between states 1 and
2 under the influence of the time-dependent perturbation. This implies that the system
alternatively absorbs and emits energy from the source of the perturbation.

The absorption-emission cycle also takes place away from the resonance, when ω 6=
ω21. However, the amplitude of the oscillation in the coefficient c2 is reduced. This means
that the maximum value of P2(t) is no longer unity, nor is the minimum of P1(t) zero.
In fact, if we plot the maximum value of P2(t) as a function of the applied frequency, ω,
we obtain a resonance curve whose maximum (unity) lies at the resonance, and whose
full-width half-maximum (in frequency) is 4 γ. Thus, if the applied frequency differs from
the resonant frequency by substantially more than 2 γ then the probability of the system
jumping from state 1 to state 2 is always very small. In other words, the time-dependent
perturbation is only effective at causing transitions between states 1 and 2 if its frequency
of oscillation lies in the approximate range ω21± 2 γ. Clearly, the weaker the perturbation
(i.e., the smaller γ becomes), the narrower the resonance.

13.4 Spin Magnetic Resonance

Consider a system consisting of a spin one-half particle with no orbital angular momentum
(e.g., a bound electron) placed in a uniform z-directed magnetic field, and then subject to
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a small time-dependent magnetic field rotating in the x-y plane at the angular frequency
ω. Thus,

B = B0 ez + B1 [cos(ωt) ex + sin(ωt) ey] , (13.29)

where B0 and B1 are constants, with B1 ≪ B0. The rotating magnetic field usually repre-
sents the magnetic component of an electromagnetic wave propagating along the z-axis. In
this system, the electric component of the wave has no effect. The Hamiltonian is written

H = −µ · B = H0 +H1, (13.30)

where

H0 = −
g eB0

2m
Sz, (13.31)

and

H1 = −
g eB1

2m
[cos(ωt) Sx + sin(ωt) Sy] . (13.32)

Here, g and m are the gyromagnetic ratio [see Eq. (12.151)] and mass of the particle in
question, respectively.

The eigenstates of the unperturbed Hamiltonian are the “spin up” and “spin down”
states, denoted χ+ and χ−, respectively. Of course, these states are the eigenstates of Sz

corresponding to the eigenvalues +h̄/2 and −h̄/2 respectively (see Sect. 10). Thus, we
have

H0χ± = ∓g e h̄B0

4m
χ±. (13.33)

The time-dependent Hamiltonian can be written

H1 = −
g eB1

4m
[exp( iωt) S− + exp(−iωt) S+] , (13.34)

where S+ and S− are the conventional raising and lowering operators for spin angular
momentum (see Sect. 10). It follows that

〈+|H1|+〉 = 〈−|H1|−〉 = 0, (13.35)

and

〈−|H1|+〉 = 〈+|H1|−〉∗ = −
g eB1

4m
exp( iωt). (13.36)

It can be seen that this system is exactly the same as the two-state system discussed in
the previous subsection, provided that the make the following indentifications:

ψ1 → χ+, (13.37)

ψ2 → χ−, (13.38)

ω21 →
g eB0

2m
, (13.39)

γ → −
g eB1

4m
. (13.40)
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The resonant frequency,ω21, is simply the spin precession frequency in a uniform magnetic
field of strength B0 (see Sect. 10.6). In the absence of the perturbation, the expectation
values of Sx and Sy oscillate because of the spin precession, but the expectation value of
Sz remains invariant. If we now apply a magnetic perturbation rotating at the resonant
frequency then, according to the analysis of the previous subsection, the system undergoes
a succession of spin flips, χ+ ↔ χ−, in addition to the spin precession. We also know that if
the oscillation frequency of the applied field is very different from the resonant frequency
then there is virtually zero probability of the field triggering a spin flip. The width of
the resonance (in frequency) is determined by the strength of the oscillating magnetic
perturbation. Experimentalists are able to measure the gyromagnetic ratios of spin one-
half particles to a high degree of accuracy by placing the particles in a uniform magnetic
field of known strength, and then subjecting them to an oscillating magnetic field whose
frequency is gradually scanned. By determining the resonant frequency (i.e., the frequency
at which the particles absorb energy from the oscillating field), it is possible to determine
the gyromagnetic ratio (assuming that the mass is known).

13.5 Perturbation Expansion

Let us recall the analysis of Sect. 13.2. The ψn are the stationary orthonormal eigenstates
of the time-independent unperturbed Hamiltonian, H0. Thus, H0ψn = Enψn, where the
En are the unperturbed energy levels, and 〈n|m〉 = δnm. Now, in the presence of a small
time-dependent perturbation to the Hamiltonian, H1(t), the wavefunction of the system
takes the form

ψ(t) =
∑

n

cn(t) exp(−iωn t)ψn, (13.41)

where ωn = En/h̄. The amplitudes cn(t) satisfy

i h̄
dcn

dt
=

∑

m

Hnm exp( iωnmt) cm, (13.42)

where Hnm(t) = 〈n|H1(t)|m〉 and ωnm = (En − Em)/h̄. Finally, the probability of finding
the system in the nth eigenstate at time t is simply

Pn(t) = |cn(t)|2 (13.43)

(assuing that, initially,
∑

n |cn|2 = 1).
Suppose that at t = 0 the system is in some initial energy eigenstate labeled i. Equa-

tion (13.42) is, thus, subject to the initial condition

cn(0) = δni. (13.44)

Let us attempt a perturbative solution of Eq. (13.42) using the ratio of H1 to H0 (or Hnm to
h̄ωnm, to be more exact) as our expansion parameter. Now, according to (13.42), the cn



Time-Dependent Perturbation Theory 181

are constant in time in the absence of the perturbation. Hence, the zeroth-order solution
is simply

c(0)
n (t) = δni. (13.45)

The first-order solution is obtained, via iteration, by substituting the zeroth-order solution
into the right-hand side of Eq. (13.42). Thus, we obtain

i h̄
dc(1)

n

dt
=

∑

m

Hnm exp( iωnmt) c
(0)
m = Hni exp( iωni t), (13.46)

subject to the boundary condition c(1)
n (0) = 0. The solution to the above equation is

c(1)
n = −

i

h̄

∫ t

0

Hni(t
′) exp( iωni t

′)dt ′. (13.47)

It follows that, up to first-order in our perturbation expansion,

cn(t) = δni −
i

h̄

∫ t

0

Hni(t
′) exp( iωni t

′)dt ′. (13.48)

Hence, the probability of finding the system in some final energy eigenstate labeled f at
time t, given that it is definitely in a different initial energy eigenstate labeled i at time
t = 0, is

Pi→f(t) = |cf(t)|
2 =

∣

∣

∣

∣

∣

−
i

h̄

∫ t

0

Hfi(t
′) exp( iωfi t

′)dt ′
∣

∣

∣

∣

∣

2

. (13.49)

Note, finally, that our perturbative solution is clearly only valid provided

Pi→f(t) ≪ 1. (13.50)

13.6 Harmonic Perturbations

Consider a (Hermitian) perturbation which oscillates sinusoidally in time. This is usually
termed a harmonic perturbation. Such a perturbation takes the form

H1(t) = V exp( iωt) + V† exp(−iωt), (13.51)

where V is, in general, a function of position, momentum, and spin operators.
It follows from Eqs. (13.48) and (13.51) that, to first-order,

cf(t) = −
i

h̄

∫ t

0

[

Vfi exp( iωt ′) + V
†
fi exp(−iωt ′)

]

exp( iωfi t
′)dt ′, (13.52)

where

Vfi = 〈f|V |i〉, (13.53)

V
†
fi = 〈f|V†|i〉 = 〈i|V |f〉∗. (13.54)
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Figure 13.1: The functions sinc(x) (dashed curve) and sinc2(x) (solid curve). The vertical

dotted lines denote the region |x| ≤ π.

Integration with respect to t ′ yields

cf(t) = −
i t

h̄
(Vfi exp [ i (ω+ωfi) t/2] sinc [(ω+ωfi) t/2]

+V
†
fi exp [−i (ω−ωfi) t/2] sinc [(ω−ωfi) t/2]

)

, (13.55)

where

sincx ≡ sin x

x
. (13.56)

Now, the function sinc(x) takes its largest values when |x| <
∼ π, and is fairly negligible

when |x| ≫ π (see Fig. 13.1). Thus, the first and second terms on the right-hand side of
Eq. (13.55) are only non-negligible when

|ω+ωfi| <
∼

2π

t
, (13.57)

and

|ω−ωfi| <
∼

2π

t
, (13.58)

respectively. Clearly, as t increases, the ranges in ω over which these two terms are non-
negligible gradually shrink in size. Eventually, when t ≫ 2π/|ωfi|, these two ranges be-
come strongly non-overlapping. Hence, in this limit, Pi→f = |cf|

2 yields

Pi→f(t) =
t2

h̄2

{
|Vfi|

2 sinc2 [(ω+ωfi) t/2] + |V
†
fi|

2 sinc2 [(ω−ωfi) t/2]
}
. (13.59)
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Now, the function sinc2(x) is very strongly peaked at x = 0, and is completely negligible
for |x| >

∼ π (see Fig. 13.1). It follows that the above expression exhibits a resonant response

to the applied perturbation at the frequencies ω = ±ωfi. Moreover, the widths of these
resonances decease linearly as time increases. At each of the resonances (i.e., at ω =

±ωfi), the transition probability Pi→f(t) varies as t2 [since sinh(0) = 1]. This behaviour
is entirely consistent with our earlier result (13.28), for the two-state system, in the limit
γ t≪ 1 (recall that our perturbative solution is only valid as long as Pi→f ≪ 1).

The resonance at ω = −ωfi corresponds to

Ef − Ei = −h̄ω. (13.60)

This implies that the system loses energy h̄ω to the perturbing field, whilst making a
transition to a final state whose energy is less than the initial state by h̄ω. This process is
known as stimulated emission. The resonance at ω = ωfi corresponds to

Ef − Ei = h̄ω. (13.61)

This implies that the system gains energy h̄ω from the perturbing field, whilst making a
transition to a final state whose energy is greater than that of the initial state by h̄ω. This
process is known as absorption.

Stimulated emission and absorption are mutually exclusive processes, since the first
requires ωfi < 0, whereas the second requires ωfi > 0. Hence, we can write the transition
probabilities for both processes separately. Thus, from (13.59), the transition probability
for stimulated emission is

Pstm
i→f(t) =

t2

h̄2
|V

†
if|

2 sinc2 [(ω−ωif) t/2] , (13.62)

where we have made use of the facts that ωif = −ωfi > 0, and |Vfi|
2 = |V

†
if|

2. Likewise, the
transition probability for absorption is

Pabs
i→f(t) =

t2

h̄2
|V

†
fi|

2 sinc2 [(ω−ωfi) t/2] . (13.63)

13.7 Electromagnetic Radiation

Let us use the above results to investigate the interaction of an atomic electron with clas-
sical (i.e., non-quantized) electromagnetic radiation.

The unperturbed Hamiltonian of the system is

H0 =
p2

2me

+ V0(r). (13.64)

Now, the standard classical prescription for obtaining the Hamiltonian of a particle of
charge q in the presence of an electromagnetic field is

p → p + qA, (13.65)

H → H − qφ, (13.66)
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where A(r) is the vector potential, and φ(r) the scalar potential. Note that

E = −∇φ−
∂A

∂t
, (13.67)

B = ∇× A. (13.68)

This prescription also works in quantum mechanics. Thus, the Hamiltonian of an atomic
electron placed in an electromagnetic field is

H =
(p − eA)

2

2me

+ eφ+ V0(r), (13.69)

where A and φ are functions of the position operators. The above equation can be written

H =

(

p2 − eA·p − ep·A + e2A2
)

2me

+ eφ+ V0(r). (13.70)

Now,
p·A = A·p, (13.71)

provided that we adopt the gauge ∇·A = 0. Hence,

H =
p2

2me

−
eA·p
me

+
e2A2

2me

+ eφ+ V0(r). (13.72)

Suppose that the perturbation corresponds to a linearly polarized, monochromatic,
plane-wave. In this case,

φ = 0, (13.73)

A = A0 ǫ cos(k·r −ωt) , (13.74)

where k is the wavevector (note that ω = k c), and ǫ a unit vector which specifies the
direction of polarization (i.e., the direction of E). Note that ǫ ·k = 0. The Hamiltonian
becomes

H = H0 +H1(t), (13.75)

with

H0 =
p2

2me

+ V0(r), (13.76)

and

H1 ≃ −
eA·p
me

, (13.77)

where the A2 term, which is second order in A0, has been neglected.
The perturbing Hamiltonian can be written

H1 = −
eA0 ǫ·p
2me

[exp( i k·r − iωt) + exp(−i k·r + iωt)] . (13.78)
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This has the same form as Eq. (13.51), provided that

V† = −
eA0 ǫ·p
2me

exp( i k·r ). (13.79)

It follows from Eqs. (13.53), (13.63), and (13.79) that the transition probability for
radiation induced absorption is

Pabs
i→f(t) =

t2

h̄2

e2 |A0|
2

4m2
e

|〈f|ǫ·p exp( i k·r)|i〉|2 sinc2[(ω−ωfi) t/2]. (13.80)

Now, the mean energy density of an electromagnetic wave is

u =
1

2

(

ǫ0 |E0|
2

2
+

|B0|
2

2 µ0

)

=
1

2
ǫ0 |E0|

2, (13.81)

where E0 = A0ω and B0 = E0/c are the peak electric and magnetic field-strengths, respec-
tively. It thus follows that

Pabs
i→f(t) =

t2e2

2 ǫ0 h̄
2m2

e ω
2

|〈f|ǫ·p exp( i k·r)|i〉|2 u sinc2[(ω−ωfi) t/2]. (13.82)

Thus, not surprisingly, the transition probability for radiation induced absorption (or stim-
ulated emission) is directly proportional to the energy density of the incident radiation.

Suppose that the incident radiation is not monochromatic, but instead extends over a
range of frequencies. We can write

u =

∫∞

−∞

ρ(ω)dω, (13.83)

where ρ(ω)dω is the energy density of radiation whose frequencies lie between ω and
ω+ dω. Equation (13.82) generalizes to

Pabs
i→f(t) =

∫∞

−∞

t2 e2

2 ǫ0 h̄
2m2

e ω
2

|〈f|ǫ·p exp( i k·r)|i〉|2 ρ(ω) sinc2[(ω−ωfi) t/2]dω. (13.84)

Note, however, that the above expression is only valid provided the radiation in question
is incoherent: i.e., there are no phase correlations between waves of different frequen-
cies. This follows because it is permissible to add the intensities of incoherent radiation,
whereas we must always add the amplitudes of coherent radiation. Given that the function
sinc2[(ω−ωfi) t/2] is very strongly peaked (see Fig. 13.1) about ω = ωfi (assuming that
t≫ 2π/ωfi), and ∫∞

−∞

sinc2(x)dx = π, (13.85)

the above equation reduces to

Pabs
i→f(t) =

π e2ρ(ωfi)

ǫ0 h̄
2m2

e ω
2
fi

|〈f|ǫ·p exp( i k·r)|i〉|2 t. (13.86)
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Note that in integrating over the frequencies of the incoherent radiation we have trans-
formed a transition probability which is basically proportional to t2 [see Eq. (13.82)] to
one which is proportional to t. As has already been explained, the above expression is only
valid when Pabs

i→f ≪ 1. However, the result that

wabs
i→f ≡

dPabs
i→f

dt
=

π e2ρ(ωfi)

ǫ0 h̄
2m2

e ω
2
fi

|〈f|ǫ·p exp( i k·r)|i〉|2 (13.87)

is constant in time is universally valid. Here, wabs
i→f is the transition probability per unit time

interval, otherwise known as the transition rate. Given that the transition rate is constant,
we can write (see Cha. 2)

Pabs
i→f(t+ dt) − Pabs

i→f(t) =
[

1− Pabs
i→f(t)

]

wabs
i→fdt : (13.88)

i.e., the probability that the system makes a transition from state i to state f between times
t and t + dt is equivalent to the probability that the system does not make a transition
between times 0 and t and then makes a transition in a time interval dt—the probabilities
of these two events are 1− Pabs

i→f(t) and wabs
i→fdt, respectively. It follows that

dPabs
i→f

dt
+wabs

i→fP
abs
i→f = wabs

i→f, (13.89)

with the initial condition Pabs
i→f(0) = 0. The above equation can be solved to give

Pabs
i→f(t) = 1− exp

(

−wabs
i→f t

)

. (13.90)

This result is consistent with Eq. (13.86) providedwabs
i→f t≪ 1: i.e., provided that Pabs

i→f ≪ 1.
Using similar arguments to the above, the transition probability for stimulated emission

can be shown to take the form

Pstm
i→f(t) = 1− exp

(

−wstm
i→f t

)

, (13.91)

where the corresponding transition rate is written

wstm
i→f =

π e2ρ(ωif)

ǫ0 h̄
2m2

e ω
2
if

|〈i|ǫ·p exp( i k·r)|f〉|2 . (13.92)

13.8 Electric Dipole Approximation

In general, the wavelength of the type of electromagnetic radiation which induces, or is
emitted during, transitions between different atomic energy levels is much larger than the
typical size of an atom. Thus,

exp( i k·r) = 1+ i k·r + · · · , (13.93)
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can be approximated by its first term, unity. This approach is known as the electric dipole

approximation. It follows that

〈f|ǫ·p exp( i k·r)|i〉 ≃ ǫ·〈f|p|i〉. (13.94)

Now, it is readily demonstrated that

[r, H0] =
i h̄p

me

, (13.95)

so
〈f|p|i〉 = −i

me

h̄
〈f|[r, H0]|i〉 = imeωfi 〈f|r|i〉. (13.96)

Thus, our previous expressions for the transition rates for radiation induced absorption
and stimulated emission reduce to

wabs
i→f =

π

ǫ0 h̄
2

|ǫ·dif|
2ρ(ωfi), (13.97)

wstm
i→f =

π

ǫ0 h̄
2

|ǫ·dif|
2ρ(ωif), (13.98)

respectively. Here,
dif = 〈f|e r|i〉 (13.99)

is the effective electric dipole moment of the atom when making a transition from state i
to state f.

Equations (13.97) and (13.98) give the transition rates for absorption and stimulated
emission, respectively, induced by a linearly polarized plane-wave. Actually, we are more
interested in the transition rates induced by unpolarized isotropic radiation. To obtain these
we must average Eqs. (13.97) and (13.98) over all possible polarizations and propagation
directions of the wave. To facilitate this process, we can define a set of Cartesian coordi-
nates such that the wavevector k, which specifies the direction of wave propagation, points
along the z-axis, and the vector dif, which specifies the direction of the atomic dipole mo-
ment, lies in the x-z plane. It follows that the vector ǫ, which specifies the direction of
wave polarization, must lie in the x-y plane, since it has to be orthogonal to k. Thus, we
can write

k = (0, 0, k), (13.100)

dif = (dif sinθ, 0, dif cosθ), (13.101)

ǫ = (cosφ, sinφ, 0), (13.102)

which implies that
|ǫ·dif|

2 = d2
if sin2θ cos2φ. (13.103)

We must now average the above quantity over all possible values of θ and φ. Thus,

〈

|ǫ·dif|
2
〉

av
= d2

if

∫ ∫
sin2θ cos2φdΩ

4π
, (13.104)
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where dΩ = sinθdθdφ, and the integral is taken over all solid angle. It is easily demon-
strated that

〈

|ǫ·dif|
2
〉

av
=
d2

if

3
. (13.105)

Here, d2
if stands for

d2
if = |〈f|e x|i〉|2 + |〈f|e y|i〉|2 + |〈f|e z|i〉|2. (13.106)

Hence, the transition rates for absorption and stimulated emission induced by unpolarized
isotropic radiation are

wabs
i→f =

π

3 ǫ0 h̄
2
d2

ifρ(ωfi), (13.107)

wstm
i→f =

π

3 ǫ0 h̄
2
d2

ifρ(ωif), (13.108)

respectively.

13.9 Spontaneous Emission

So far, we have calculated the rates of radiation induced transitions between two atomic
states. This process is known as absorption when the energy of the final state exceeds that
of the initial state, and stimulated emission when the energy of the final state is less than
that of the initial state. Now, in the absence of any external radiation, we would not expect
an atom in a given state to spontaneously jump into an state with a higher energy. On the
other hand, it should be possible for such an atom to spontaneously jump into an state
with a lower energy via the emission of a photon whose energy is equal to the difference
between the energies of the initial and final states. This process is known as spontaneous

emission.
It is possible to derive the rate of spontaneous emission between two atomic states

from a knowledge of the corresponding absorption and stimulated emission rates using
a famous thermodynamic argument due to Einstein. Consider a very large ensemble of
similar atoms placed inside a closed cavity whose walls (which are assumed to be perfect
emitters and absorbers of radiation) are held at the constant temperature T . Let the system
have attained thermal equilibrium. According to statistical thermodynamics, the cavity is
filled with so-called “black-body” electromagnetic radiation whose energy spectrum is

ρ(ω) =
h̄

π2c3

ω3

exp(h̄ω/kBT) − 1
, (13.109)

where kB is the Boltzmann constant. This well-known result was first obtained by Max
Planck in 1900.

Consider two atomic states, labeled i and f, with Ei > Ef. One of the tenants of statisti-
cal thermodynamics is that in thermal equilibrium we have so-called detailed balance. This
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means that, irrespective of any other atomic states, the rate at which atoms in the ensem-
ble leave state i due to transitions to state f is exactly balanced by the rate at which atoms
enter state i due to transitions from state f. The former rate (i.e., number of transitions
per unit time in the ensemble) is written

Wi→f = Ni (w
spn
i→f +wstm

i→f), (13.110)

where wspn
i→f is the rate of spontaneous emission (for a single atom) between states i and

f, and Ni is the number of atoms in the ensemble in state i. Likewise, the latter rate takes
the form

Wf→i = Nfw
abs
f→i, (13.111)

whereNf is the number of atoms in the ensemble in state f. The above expressions describe
how atoms in the ensemble make transitions from state i to state f due to a combination of
spontaneous and stimulated emission, and make the opposite transition as a consequence
of absorption. In thermal equilibrium, we have Wi→f = Wf→i, which gives

w
spn
i→f =

Nf

Ni

wabs
f→i −wstm

i→f. (13.112)

According to Eqs. (13.107) and (13.108), we can also write

w
spn
i→f =

(

Nf

Ni

− 1

)

π

3 ǫ0 h̄
2
d2

ifρ(ωif). (13.113)

Now, another famous result in statistical thermodynamics is that in thermal equilibrium
the number of atoms in an ensemble occupying a state of energy E is proportional to
exp(−E/kBT). This implies that

Nf

Ni

=
exp(−Ef/kBT)

exp(−Ei/kBT)
= exp( h̄ωif/kBT). (13.114)

Thus, it follows from Eq. (13.109), (13.113), and (13.114) that the rate of spontaneous
emission between states i and f takes the form

w
spn
i→f =

ω3
ifd

2
if

3π ǫ0 h̄ c3
. (13.115)

Note, that, although the above result has been derived for an atom in a radiation-filled
cavity, it remains correct even in the absence of radiation. Finally, the corresponding
absorption and stimulated emission rates for an atom in a radiation-filled cavity are

wabs
i→f =

ω3
fid

2
if

3π ǫ0 h̄ c3

1

exp(h̄ωfi/kBT) − 1
, (13.116)

wstm
i→f =

ω3
ifd

2
if

3π ǫ0 h̄ c3

1

exp(h̄ωif/kBT) − 1
, (13.117)
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respectively.

Let us estimate the typical value of the spontaneous emission rate for a hydrogen atom.
We expect the dipole moment dif to be of order e a0, where a0 is the Bohr radius [see
Eq. (9.58)]. We also expectωif to be of order |E0|/h̄, where E0 is the energy of the ground-
state [see Eq. (9.57)]. It thus follows from Eq. (13.115) that

w
spn
i→f ∼ α3ωif, (13.118)

where α = e2/(4π ǫ0 h̄ c) ≃ 1/137 is the fine-structure constant. This is an important
result, since our perturbation expansion is based on the assumption that the transition
rate between different energy eigenstates is much slower than the frequency of phase
oscillation of these states: i.e., that wspn

i→f ≪ ωif (see Sect. 13.2). This is indeed the case.

13.10 Radiation from a Harmonic Oscillator

Consider an electron in a one-dimensional harmonic oscillator potential aligned along the
x-axis. According to Sect. 5.8, the unperturbed energy eigenvalues of the system are

En = (n+ 1/2) h̄ω0, (13.119)

where ω0 is the frequency of the corresponding classical oscillator. Here, the quantum
number n takes the values 0, 1, 2, · · ·. Let the ψn(x) be the (real) properly normalized
unperturbed eigenstates of the system.

Suppose that the electron is initially in an excited state: i.e., n > 0. In principle, the
electron can decay to a lower energy state via the spontaneous emission of a photon of
the appropriate frequency. Let us investigate this effect. Now, according to Eq. (13.115),
the system can only make a spontaneous transition from an energy state corresponding to
the quantum number n to one corresponding to the quantum number n ′ if the associated
electric dipole moment

(dx)n,n′ = 〈n|e x|n ′〉 = e

∫∞

−∞

ψn(x) xψn′(x)dx (13.120)

is non-zero [since dif ≡ (dx)
2
n,n′ for the case in hand]. However, according to Eq. (5.117),

∫∞

−∞

ψnxψn′ dx =

√

h̄

2meω0

(√
nδn,n′+1 +

√
n ′ δn,n′−1

)

. (13.121)

Since we are dealing with emission, we must have n > n ′. Hence, we obtain

(dx)n,n′ = e

√

h̄ n

2meω0

δn,n′+1. (13.122)
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It is clear that (in the electric dipole approximation) we can only have spontaneous emis-
sion between states whose quantum numbers differ by unity. Thus, the frequency of the
photon emitted when the nth excited state decays is

ωn,n−1 =
En − En−1

h̄
= ω0. (13.123)

Hence, we conclude that, no matter which state decays, the emitted photon always has the
same frequency as the classical oscillator.

According to Eq. (13.115), the decay rate of the nth excited state is given by

wn =
ω3

n,n−1 (dx)
2
n,n−1

3π ǫ0 h̄ c3
. (13.124)

It follows that

wn =
ne2ω2

0

6π ǫ0me c3
. (13.125)

The mean radiated power is simply

Pn = h̄ω0wn =
e2ω2

0

6π ǫ0mec3
[En − (1/2) h̄ω0]. (13.126)

Classically, an electron in a one-dimensional oscillator potential radiates at the oscillation
frequency ω0 with the mean power

P =
e2ω2

0

6π ǫ0me c3
E, (13.127)

where E is the oscillator energy. It can be seen that a quantum oscillator radiates in an
almost exactly analogous manner to the equivalent classical oscillator. The only difference
is the factor (1/2) h̄ω0 in Eq. (13.126)—this is needed to ensure that the ground-state of
the quantum oscillator does not radiate.

13.11 Selection Rules

Let us now consider spontaneous transitions between the different energy levels of a hydro-
gen atom. Since the perturbing Hamiltonian (13.77) does not contain any spin operators,
we can neglect electron spin in our analysis. Thus, according to Sect. 9.4, the various
energy eigenstates of the hydrogen atom are labeled by the familiar quantum numbers n,
l, and m.

According to Eqs. (13.106) and (13.115), a hydrogen atom can only make a spon-
taneous transition from an energy state corresponding to the quantum numbers n, l, m
to one corresponding to the quantum numbers n ′, l ′, m ′ if the modulus squared of the
associated electric dipole moment

d2 = |〈n, l,m|e x|n ′, l ′,m ′〉|2 + |〈n, l,m|e y|n ′, l ′,m ′〉|2 + |〈n, l,m|e z|n ′, l ′,m ′〉|2 (13.128)
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is non-zero. Now, we have already seen, in Sect. 12.5, that the matrix element 〈n, l,m|z|n ′, l ′,m ′〉
is only non-zero provided that m ′ = m and l ′ = l ± 1. It turns out that the proof that
this matrix element is zero unless l ′ = l± 1 can, via a trivial modification, also be used to
demonstrate that 〈n, l,m|x|n ′, l ′,m ′〉 and 〈n, l,m|y|n ′, l ′,m ′〉 are also zero unless l ′ = l±1.
Consider

x± = x + iy. (13.129)

It is easily demonstrated that
[Lz, x±] = ± h̄ x±. (13.130)

Hence,

〈n, l,m|[Lz, x+] − h̄ x+|n ′, l ′,m ′〉 = h̄ (m−m ′ − 1) 〈n, l,m|x+|n ′, l ′,m ′〉 = 0, (13.131)

and

〈n, l,m|[Lz, x−] + h̄ x−|n ′, l ′,m ′〉 = h̄ (m−m ′ + 1) 〈n, l,m|x−|n ′, l ′,m ′〉 = 0. (13.132)

Clearly, 〈n, l,m|x+|n ′, l ′,m ′〉 is zero unless m ′ = m − 1, and 〈n, l,m|x−|n ′, l ′,m ′〉 is zero
unless m ′ = m + 1. Now, 〈n, l,m|x|n ′, l ′,m ′〉 and 〈n, l,m|y|n ′, l ′,m ′〉 are obviously both
zero if 〈n, l,m|x+|n ′, l ′,m ′〉 and 〈n, l,m|x−|n ′, l ′,m ′〉 are both zero. Hence, we conclude
that 〈n, l,m|x|n ′, l ′,m ′〉 and 〈n, l,m|y|n ′, l ′,m ′〉 are only non-zero if m ′ = m± 1.

The above arguments demonstrate that spontaneous transitions between different en-
ergy levels of a hydrogen atom are only possible provided

l ′ = l± 1, (13.133)

m ′ = m, m± 1. (13.134)

These are termed the selection rules for electric dipole transitions (i.e., transitions calculated
using the electric dipole approximation). Note, finally, that since the perturbing Hamil-
tonian does not contain any spin operators, the spin quantum number ms cannot change
during a transition. Hence, we have the additional selection rule that m ′

s = ms.

13.12 2P → 1S Transitions in Hydrogen

Let us calculate the rate of spontaneous emission between the first excited state (i.e.,
n = 2) and the ground-state (i.e., n ′ = 1) of a hydrogen atom. Now the ground-state
is characterized by l ′ = m ′ = 0. Hence, in order to satisfy the selection rules (13.133) and
(13.134), the excited state must have the quantum numbers l = 1 and m = 0, ±1. Thus,
we are dealing with a spontaneous transition from a 2P to a 1S state. Note, incidentally,
that a spontaneous transition from a 2S to a 1S state is forbidden by our selection rules.

According to Sect. 9.4, the wavefunction of a hydrogen atom takes the form

ψn,l,m(r, θ, φ) = Rn,l(r) Yl,m(θ, φ), (13.135)
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where the radial functions Rn,l are given in Sect. 9.4, and the spherical harmonics Yl,m are
given in Sect. 8.7. Some straight-forward, but tedious, integration reveals that

〈1, 0, 0|x|2, 1,±1〉 = ±2
7

35
a0, (13.136)

〈1, 0, 0|y|2, 1,±1〉 = i
27

35
a0, (13.137)

〈1, 0, 0|z|2, 1, 0〉 =
√
2
27

35
a0, (13.138)

where a0 is the Bohr radius specified in Eq. (9.58). All of the other possible 2P → 1S

matrix elements are zero because of the selection rules. If follows from Eq. (13.128) that
the modulus squared of the dipole moment for the 2P → 1S transition takes the same
value

d2 =
215

310
(e a0)

2 (13.139)

for m = 0, 1, or −1. Clearly, the transition rate is independent of the quantum number m.
It turns out that this is a general result.

Now, the energy of the eigenstate of the hydrogen atom characterized by the quantum
numbers n, l, m is E = E0/n

2, where the ground-state energy E0 is specified in Eq. (9.57).
Hence, the energy of the photon emitted during a 2P → 1S transition is

h̄ω = E0/4− E0 = −
3

4
E0 = 10.2 eV. (13.140)

This corresponds to a wavelength of 1.215× 10−7 m.
Finally, according to Eq. (13.115), the 2P → 1S transition rate is written

w2P→1S =
ω3d2

3π ǫ0 h̄ c3
, (13.141)

which reduces to

w2P→1S =

(

2

3

)8

α5 me c
2

h̄
= 6.27× 108 s−1 (13.142)

with the aid of Eqs. (13.139) and (13.140). Here, α = 1/137 is the fine-structure constant.
Hence, the mean life-time of a hydrogen 2P state is

τ2P = (w2P→1S)
−1 = 1.6 ns. (13.143)

Incidentally, since the 2P state only has a finite life-time, it follows from the energy-time
uncertainty relation that the energy of this state is uncertain by an amount

∆E2P ∼
h̄

τ2P

∼ 4× 10−7 eV. (13.144)

This uncertainty gives rise to a finite width of the spectral line associated with the 2P → 1S

transition. This natural line-width is of order

∆λ

λ
∼
∆E2P

h̄ω
∼ 4× 10−8. (13.145)
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13.13 Intensity Rules

Now, we know, from Sect. 12.8, that when we take electron spin and spin-orbit coupling
into account the degeneracy of the six 2P states of the hydrogen atom is broken. In fact,
these states are divided into two groups with slightly different energies. There are four
states characterized by the overall angular momentum quantum number j = 3/2—these
are called the 2P3/2 states. The remaining two states are characterized by j = 1/2, and are
thus called the 2P1/2 states. The energy of the 2P3/2 states is slightly higher than that of
the 2P1/2 states. In fact, the energy difference is

∆E = −
α2

16
E0 = 4.53× 10−5 eV. (13.146)

Thus, the wavelength of the spectral line associated with the 2P → 1S transition in hydro-
gen is split by a relative amount

∆λ

λ
=
∆E

h̄ω
= 4.4× 10−6. (13.147)

Note that this splitting is much greater than the natural line-width estimated in Eq. (13.145),
so there really are two spectral lines. How does all of this affect the rate of the 2P → 1S

transition?
Well, we have seen that the transition rate is independent of spin, and hence of the

spin quantum number ms, and is also independent of the quantum number m. It follows
that the transition rate is independent of the z-component of total angular momentum
quantum number mj = m + ms. However, if this is the case, then the transition rate is
plainly also independent of the total angular momentum quantum number j. Hence, we
expect the 2P3/2 → 1S and 2P1/2 → 1S transition rates to be the same. However, there are
four 2P3/2 states and only two 2P1/2 states. If these states are equally populated—which we
would certainly expect to be the case in thermal equilibrium, since they have almost the
same energies—and since they decay to the 1S state at the same rate, it stands to reason
that the spectral line associated with the 2P3/2 → 1S transition is twice as bright as that
associated with the 2P1/2 → 1S transition.

13.14 Forbidden Transitions

Atomic transitions which are forbidden by the electric dipole selection rules (13.133) and
(13.134) are unsurprisingly known as forbidden transitions. It is clear from the analysis
in Sect. 13.8 that a forbidden transition is one for which the matrix element 〈f|ǫ ·p|i〉 is
zero. However, this matrix element is only an approximation to the true matrix element
for radiative transitions, which takes the form 〈f|ǫ ·p exp( i k·r)|i〉. Expanding exp( i k·r),
and keeping the first two terms, the matrix element for a forbidden transition becomes

〈f|ǫ·p exp( i k·r)|i〉 ≃ i 〈f|(ǫ·p) (k·r)|i〉. (13.148)
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Hence, if the residual matrix element on the right-hand side of the above expression is
non-zero then a “forbidden” transition can take place, allbeit at a much reduced rate. In
fact, in Sect. 13.9, we calculated that the typical rate of an electric dipole transition is

wi→f ∼ α3ωif. (13.149)

Since the transition rate is proportional to the square of the radiative matrix element, it
is clear that the transition rate for a forbidden transition enabled by the residual matrix
element (13.148) is smaller than that of an electric dipole transition by a factor (k r)2.
Estimating r as the Bohr radius, and k as the wavenumber of a typical spectral line of
hydrogen, it is easily demonstrated that

wi→f ∼ α5ωif (13.150)

for such a transition. Of course, there are some transitions (in particular, the 2S → 1S

transition) for which the true radiative matrix element 〈f|ǫ ·p exp( i k ·r)|i〉 is zero. Such
transitions are absolutely forbidden.

Finally, it is fairly obvious that excited states which decay via forbidden transitions
have much longer life-times than those which decay via electric dipole transitions. Since
the natural width of a spectral line is inversely proportional to the life-time of the associ-
ated decaying state, it follows that spectral lines associated with forbidden transitions are
generally much sharper than those associated with electric dipole transitions.
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14 Variational Methods

14.1 Introduction

We have seen, in Sect. 9.4, that we can solve Schrödinger’s equation exactly to find the
stationary eigenstates of a hydrogen atom. Unfortunately, it is not possible to find exact
solutions of Schrödinger’s equation for atoms more complicated than hydrogen, or for
molecules. In such systems, the best that we can do is to find approximate solutions. Most
of the methods which have been developed for finding such solutions employ the so-called
variational principle discussed below.

14.2 Variational Principle

Suppose that we wish to solve the time-independent Schrödinger equation

Hψ = Eψ, (14.1)

where H is a known (presumably complicated) time-independent Hamiltonian. Let ψ be
a normalized trial solution to the above equation. The variational principle states, quite
simply, that the ground-state energy, E0, is always less than or equal to the expectation
value of H calculated with the trial wavefunction: i.e.,

E0 ≤ 〈ψ|H|ψ〉. (14.2)

Thus, by varying ψ until the expectation value of H is minimized, we can obtain an ap-
proximation to the wavefunction and energy of the ground-state.

Let us prove the variational principle. Suppose that the ψn and the En are the true
eigenstates and eigenvalues of H: i.e.,

Hψn = Enψn. (14.3)

Furthermore, let

E0 < E1 < E2 < · · · , (14.4)

so that ψ0 is the ground-state, ψ1 the first excited state, etc. The ψn are assumed to be
orthonormal: i.e.,

〈ψn|ψm〉 = δnm. (14.5)

If our trial wavefunction ψ is properly normalized then we can write

ψ =
∑

n

cnψn, (14.6)
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where ∑

n

|cn|2 = 1. (14.7)

Now, the expectation value of H, calculated with ψ, takes the form

〈ψ|H|ψ〉 =

〈

∑

n

cnψn

∣

∣

∣

∣

∣

H

∣

∣

∣

∣

∣

∑

m

cmψm

〉

=
∑

n,m

c ∗
ncm 〈ψn|H|ψm〉

=
∑

n

c ∗
ncmEm 〈ψn|ψm〉 =

∑

n

En |cn|2, (14.8)

where use has been made of Eqs. (14.3) and (14.5). So, we can write

〈ψ|H|ψ〉 = |c0|
2E0 +

∑

n>0

|cn|2En. (14.9)

However, Eq. (14.7) can be rearranged to give

|c0|
2 = 1−

∑

n>0

|cn|2. (14.10)

Combining the previous two equations, we obtain

〈ψ|H|ψ〉 = E0 +
∑

n>0

|cn|2 (En − E0). (14.11)

Now, the second term on the right-hand side of the above expression is positive definite,
since En − E0 > 0 for all n > 0 [see (14.4)]. Hence, we obtain the desired result

〈ψ|H|ψ〉 ≥ E0. (14.12)

Suppose that we have found a good approximation, ψ̃0, to the ground-state wavefunc-
tion. If ψ is a normalized trial wavefunction which is orthogonal to ψ̃0 (i.e., 〈ψ|ψ̃0〉 = 0)
then, by repeating the above analysis, we can easily demonstrate that

〈ψ|H|ψ〉 ≥ E1. (14.13)

Thus, by varying ψ until the expectation value of H is minimized, we can obtain an approx-
imation to the wavefunction and energy of the first excited state. Obviously, we can con-
tinue this process until we have approximations to all of the stationary eigenstates. Note,
however, that the errors are clearly cumulative in this method, so that any approximations
to highly excited states are unlikely to be very accurate. For this reason, the variational
method is generally only used to calculate the ground-state and first few excited states of
complicated quantum systems.
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14.3 Helium Atom

A helium atom consists of a nucleus of charge +2 e surrounded by two electrons. Let us
attempt to calculate its ground-state energy.

Let the nucleus lie at the origin of our coordinate system, and let the position vectors
of the two electrons be r1 and r2, respectively. The Hamiltonian of the system thus takes
the form

H = −
h̄2

2me

(

∇2
1 + ∇2

2

)

−
e2

4π ǫ0

(

2

r1
+
2

r2
−

1

|r2 − r1|

)

, (14.14)

where we have neglected any reduced mass effects. The terms in the above expression
represent the kinetic energy of the first electron, the kinetic energy of the second electron,
the electrostatic attraction between the nucleus and the first electron, the electrostatic
attraction between the nucleus and the second electron, and the electrostatic repulsion be-
tween the two electrons, respectively. It is the final term which causes all of the difficulties.
Indeed, if this term is neglected then we can write

H = H1 +H2, (14.15)

where

H1,2 = −
h̄2

2me

∇2
1,2 −

2 e2

4π ǫ0 r1,2

. (14.16)

In other words, the Hamiltonian just becomes the sum of separate Hamiltonians for each
electron. In this case, we would expect the wavefunction to be separable: i.e.,

ψ(r1, r2) = ψ1(r1)ψ2(r2). (14.17)

Hence, Schrödinger’s equation
Hψ = Eψ (14.18)

reduces to
H1,2ψ1,2 = E1,2ψ1,2, (14.19)

where
E = E1 + E2. (14.20)

Of course, Eq. (14.19) is the Schrödinger equation of a hydrogen atom whose nuclear
charge is +2 e, instead of +e. It follows, from Sect. 9.4 (making the substitution e2 → 2 e2),
that if both electrons are in their lowest energy states then

ψ1(r1) = ψ0(r1), (14.21)

ψ2(r2) = ψ0(r2), (14.22)

where

ψ0(r) =
4√

2 πa
3/2
0

exp

(

−
2 r

a0

)

. (14.23)
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Here, a0 is the Bohr radius [see Eq. (9.58)]. Note that ψ0 is properly normalized. Further-
more,

E1 = E2 = 4 E0, (14.24)

where E0 = −13.6 eV is the hydrogen ground-state energy [see Eq. (9.57)]. Thus, our
crude estimate for the ground-state energy of helium becomes

E = 4 E0 + 4 E0 = 8 E0 = −108.8 eV. (14.25)

Unfortunately, this estimate is significantly different from the experimentally determined
value, which is −78.98 eV. This fact demonstrates that the neglected electron-electron
repulsion term makes a large contribution to the helium ground-state energy. Fortunately,
however, we can use the variational principle to estimate this contribution.

Let us employ the separable wavefunction discussed above as our trial solution. Thus,

ψ(r1, r2) = ψ0(r1)ψ0(r2) =
8

πa3
0

exp

(

−
2 [r1 + r2]

a0

)

. (14.26)

The expectation value of the Hamiltonian (14.14) thus becomes

〈H〉 = 8 E0 + 〈Vee〉, (14.27)

where

〈Vee〉 =

〈

ψ

∣

∣

∣

∣

∣

e2

4π ǫ0 |r2 − r1|

∣

∣

∣

∣

∣

ψ

〉

=
e2

4π ǫ0

∫
|ψ(r1, r2)|

2

|r2 − r1|
d3r1d

3r2. (14.28)

The variation principle only guarantees that (14.27) yields an upper bound on the ground-
state energy. In reality, we hope that it will give a reasonably accurate estimate of this
energy.

It follows from Eqs. (9.57), (14.26) and (14.28) that

〈Vee〉 = −
4 E0

π2

∫
e−2 (̂r1+r̂2)

|̂r1 − r̂2|
d3r̂1d

3r̂2, (14.29)

where r̂1,2 = 2 r1,2/a0. Neglecting the hats, for the sake of clarity, the above expression can
also be written

〈Vee〉 = −
4 E0

π2

∫
e−2(r1+r2)

√

r2
1 + r2

2 − 2 r1 r2 cos θ
d3r1d

3r2, (14.30)

where θ is the angle subtended between vectors r1 and r2. If we perform the integral in r1

space before that in r2 space then

〈Vee〉 = −
4 E0

π2

∫

e−2r2 I(r2)d
3r2, (14.31)
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where

I(r2) =

∫
e−2r1

√

r2
1 + r2

2 − 2 r1 r2 cosθ
d3r1. (14.32)

Our first task is to evaluate the function I(r2). Let (r1, θ1, φ1) be a set of spherical polar
coordinates in r1 space whose axis of symmetry runs in the direction of r2. It follows that
θ = θ1. Hence,

I(r2) =

∫∞

0

∫π

0

∫2π

0

e−2r1

√

r2
1 + r2

2 − 2 r1 r2 cosθ1

r2
1 dr1 sinθ1dθ1dφ1, (14.33)

which trivially reduces to

I(r2) = 2π

∫∞

0

∫π

0

e−2r1

√

r2
1 + r2

2 − 2 r1 r2 cosθ1

r2
1 dr1 sinθ1dθ1. (14.34)

Making the substitution µ = cos θ1, we can see that

∫π

0

1
√

r2
1 + r2

2 − 2 r1 r2 cos θ1

sinθ1dθ1 =

∫1

−1

dµ
√

r2
1 + r2

2 − 2 r1 r2µ
. (14.35)

Now,

∫1

−1

dµ
√

r2
1 + r2

2 − 2 r1 r2µ
=





√

r2
1 + r2

2 − 2 r1 r2µ

r1 r2





−1

+1

=
(r1 + r2) − |r1 − r2|

r1 r2

=

{
2/r1 for r1 > r2
2/r2 for r1 < r2

, (14.36)

giving

I(r2) = 4π

(

1

r2

∫ r2

0

e−2r1 r2
1 dr1 +

∫∞

r2

e−2r1 r1dr1

)

. (14.37)

But,

∫

e−βxxdx = −
e−βx

β2
(1+ βx), (14.38)

∫

e−βxx2dx = −
e−βx

β3
(2+ 2β x+ β2x2), (14.39)

yielding

I(r2) =
π

r2

[

1− e−2r2 (1+ r2)
]

. (14.40)
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Since the function I(r2) only depends on the magnitude of r2, the integral (14.31)
reduces to

〈Vee〉 = −
16 E0

π

∫∞

0

e−2r2 I(r2) r
2
2 dr2, (14.41)

which yields

〈Vee〉 = −16 E0

∫∞

0

e−2r2

[

1− e−2r2 (1+ r2)
]

r2dr2 = −
5

2
E0. (14.42)

Hence, from (14.27), our estimate for the ground-state energy of helium is

〈H〉 = 8 E0 −
5

2
E0 =

11

2
E0 = −74.8 eV. (14.43)

This is remarkably close to the correct result.
We can actually refine our estimate further. The trial wavefunction (14.26) essentially

treats the two electrons as non-interacting particles. In reality, we would expect one elec-
tron to partially shield the nuclear charge from the other, and vice versa. Hence, a better
trial wavefunction might be

ψ(r1, r2) =
Z3

πa3
0

exp

(

−
Z [r1 + r2]

a0

)

, (14.44)

where Z < 2 is effective nuclear charge number seen by each electron. Let us recalculate
the ground-state energy of helium as a function of Z, using the above trial wavefunction,
and then minimize the result with respect to Z. According to the variational principle, this
should give us an even better estimate for the ground-state energy.

We can rewrite the expression (14.14) for the Hamiltonian of the helium atom in the
form

H = H1(Z) +H2(Z) + Vee +U(Z), (14.45)

where

H1,2(Z) = −
h̄2

2me

∇2
1,2 −

Ze2

4π ǫ0 r1,2

(14.46)

is the Hamiltonian of a hydrogen atom with nuclear charge +Ze,

Vee =
e2

4π ǫ0

1

|r2 − r1|
(14.47)

is the electron-electron repulsion term, and

U(Z) =
e2

4π ǫ0

(

[Z− 2]

r1
+

[Z− 2]

r2

)

. (14.48)

It follows that
〈H〉(Z) = 2 E0(Z) + 〈Vee〉(Z) + 〈U〉(Z), (14.49)
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where E0(Z) = Z2E0 is the ground-state energy of a hydrogen atom with nuclear charge
+Ze, 〈Vee〉(Z) = −(5Z/4)E0 is the value of the electron-electron repulsion term when
recalculated with the wavefunction (14.44) [actually, all we need to do is to make the
substitution a0 → (2/Z)a0], and

〈U〉(Z) = 2 (Z− 2)

(

e2

4π ǫ0

)〈

1

r

〉

. (14.50)

Here, 〈1/r〉 is the expectation value of 1/r calculated for a hydrogen atom with nuclear
charge +Ze. It follows from Eq. (9.74) [with n = 1, and making the substitution a0 →
a0/Z] that

〈

1

r

〉

=
Z

a0

. (14.51)

Hence,
〈U〉(Z) = −4Z (Z− 2)E0, (14.52)

since E0 = −e2/(8π ǫ0a0). Collecting the various terms, our new expression for the expec-
tation value of the Hamiltonian becomes

〈H〉(Z) =

[

2Z2 −
5

4
Z− 4Z (Z− 2)

]

E0 =

[

−2Z2 +
27

4
Z

]

E0. (14.53)

The value of Z which minimizes this expression is the root of

d〈H〉
dZ

=

[

−4Z+
27

4

]

E0 = 0. (14.54)

It follows that

Z =
27

16
= 1.69. (14.55)

The fact that Z < 2 confirms our earlier conjecture that the electrons partially shield the
nuclear charge from one another. Our new estimate for the ground-state energy of helium
is

〈H〉(1.69) =
1

2

(

3

2

)6

E0 = −77.5 eV. (14.56)

This is clearly an improvement on our previous estimate (14.43) [recall that the correct
result is −78.98 eV].

Obviously, we could get even closer to the correct value of the helium ground-state
energy by using a more complicated trial wavefunction with more adjustable parameters.

Note, finally, that since the two electrons in a helium atom are indistinguishable fermions,
the overall wavefunction must be anti-symmetric with respect to exchange of particles (see
Sect. 6). Now, the overall wavefunction is the product of the spatial wavefunction and the
spinor representing the spin-state. Our spatial wavefunction (14.44) is obviously symmetric

with respect to exchange of particles. This means that the spinor must be anti-symmetric.
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r2

proton

electron
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z-axis

z = 0

z = R

r1

Figure 14.1: The hydrogen molecule ion.

It is clear, from Sect. 11.4, that if the spin-state of an l = 0 system consisting of two spin
one-half particles (i.e., two electrons) is anti-symmetric with respect to interchange of par-
ticles then the system is in the so-called singlet state with overall spin zero. Hence, the
ground-state of helium has overall electron spin zero.

14.4 Hydrogen Molecule Ion

The hydrogen molecule ion consists of an electron orbiting about two protons, and is the
simplest imaginable molecule. Let us investigate whether or not this molecule possesses a
bound state: i.e., whether or not it possesses a ground-state whose energy is less than that
of a hydrogen atom and a free proton. According to the variation principle, we can deduce
that the H+

2 ion has a bound state if we can find any trial wavefunction for which the total
Hamiltonian of the system has an expectation value less than that of a hydrogen atom and
a free proton.

Suppose that the two protons are separated by a distance R. In fact, let them lie on the
z-axis, with the first at the origin, and the second at z = R (see Fig. 14.1). In the following,
we shall treat the protons as essentially stationary. This is reasonable, since the electron
moves far more rapidly than the protons.

Let us try

ψ(r)± = A [ψ0(r1) ±ψ0(r2)] (14.57)



Variational Methods 205

as our trial wavefunction, where

ψ0(r) =
1

√
πa

3/2
0

e−r/a0 (14.58)

is a normalized hydrogen ground-state wavefunction centered on the origin, and r1,2 are
the position vectors of the electron with respect to each of the protons (see Fig. 14.1).
Obviously, this is a very simplistic wavefunction, since it is just a linear combination of
hydrogen ground-state wavefunctions centered on each proton. Note, however, that the
wavefunction respects the obvious symmetries in the problem.

Our first task is to normalize our trial wavefunction. We require that
∫

|ψ±|2d3r = 1. (14.59)

Hence, from (14.57), A = I−1/2, where

I =

∫
[

|ψ0(r1)|
2 + |ψ0(r2)|

2 ± 2ψ0(r1)ψ(r2)
]

d3r. (14.60)

It follows that
I = 2 (1± J), (14.61)

with

J =

∫

ψ0(r1)ψ0(r2)d
3r. (14.62)

Let us employ the standard spherical polar coordinates (r, θ, φ). Now, it is easily seen
that r1 = r and r2 = (r2 + R2 − 2 r R cosθ)1/2. Hence,

J = 2

∫∞

0

∫π

0

exp
[

−x − (x2 + X2 − 2 xX cos θ)1/2
]

x2dx sinθdθ, (14.63)

where X = R/a0. Here, we have already performed the trivial φ integral. Let y = (x2 +

X2 − 2 xX cos θ)1/2. It follows that d(y2) = 2 ydy = 2 xX sinθdθ, giving

∫π

0

e (x2+X2−2xX cos θ)1/2

sinθdθ =
1

xX

∫x+X

|x−X|

e−yydy (14.64)

= −
1

xX

[

e−(x+X) (1+ x + X) − e−|x−X| (1+ |x− X|)
]

.

Thus,

J = −
2

X
e−X

∫X

0

[

e−2x (1+ X + x) − (1+ X − x)
]

xdx

−
2

X

∫∞

X

e−2x
[

e−X (1+ X+ x) − eX (1− X + x)
]

xdx, (14.65)
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which evaluates to

J = e−X

(

1+ X+
X3

3

)

. (14.66)

Now, the Hamiltonian of the electron is written

H = −
h̄2

2me

∇2 −
e2

4π ǫ0

(

1

r1
+
1

r2

)

. (14.67)

Note, however, that

(

−
h̄2

2me

∇2 −
e2

4π ǫ0 r1,2

)

ψ0(r1,2) = E0ψ0(r1,2), (14.68)

since ψ0(r1,2) are hydrogen ground-state wavefunctions. It follows that

Hψ± = A

[

−
h̄2

2me

∇2 −
e2

4π ǫ0

(

1

r1
+
1

r2

)]

[ψ0(r1) ±ψ0(r2)]

= E0ψ −A

(

e2

4π ǫ0

)[

ψ0(r1)

r2
± ψ0(r2)

r1

]

. (14.69)

Hence,

〈H〉 = E0 + 4A2 (D± E)E0, (14.70)

where

D =

〈

ψ0(r1)

∣

∣

∣

∣

a0

r2

∣

∣

∣

∣

ψ0(r1)

〉

, (14.71)

E =

〈

ψ0(r1)

∣

∣

∣

∣

a0

r1

∣

∣

∣

∣

ψ0(r2)

〉

. (14.72)

Now,

D = 2

∫∞

0

∫π

0

e−2x

(x2 + X2 − 2 xX cosθ)1/2
x2dx sinθdθ, (14.73)

which reduces to

D =
4

X

∫X

0

e−2xx2dx+ 4

∫∞

X

e−2xxdx, (14.74)

giving

D =
1

X

(

1− [1+ X] e−2X
)

. (14.75)

Furthermore,

E = 2

∫∞

0

∫π

0

exp
[

−x − (x2 + X2 − 2 xX cos θ)1/2
]

xdx sinθdθ, (14.76)
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which reduces to

E = −
2

X
e−X

∫X

0

[

e−2x (1+ X+ x) − (1+ X− x)
]

dx

−
2

X

∫∞

X

e−2x
[

e−X (1+ X+ x) − eX (1− X+ x)
]

dx, (14.77)

yielding
E = (1+ X) e−X. (14.78)

Our expression for the expectation value of the electron Hamiltonian is

〈H〉 =

[

1+ 2
(D± E)
(1± J)

]

E0, (14.79)

where J, D, and E are specified as functions of X = R/a0 in Eqs. (14.66), (14.75), and
(14.78), respectively. In order to obtain the total energy of the molecule, we must add to
this the potential energy of the two protons. Thus,

Etotal = 〈H〉 +
e2

4π ǫ0R
= 〈H〉 −

2

X
E0, (14.80)

since E0 = −e2/(8π ǫ0a0). Hence, we can write

Etotal = −F±(R/a0)E0, (14.81)

where E0 is the hydrogen ground-state energy, and

F±(X) = −1+
2

X

[

(1+ X) e−2X ± (1− 2X2/3) e−X

1± (1+ X+ X2/3) e−X

]

. (14.82)

The functions F+(X) and F−(X) are both plotted in Fig. 14.2. Recall that in order for the
H+

2 ion to be in a bound state it must have a lower energy than a hydrogen atom and a
free proton: i.e., Etotal < E0. It follows from Eq. (14.81) that a bound state corresponds to
F± < −1. Clearly, the even trial wavefunction ψ+ possesses a bound state, whereas the odd

trial wavefunction ψ− does not [see Eq. (14.57)]. This is hardly surprising, since the even
wavefunction maximizes the electron probability density between the two protons, thereby
reducing their mutual electrostatic repulsion. On the other hand, the odd wavefunction
does exactly the opposite. The binding energy of the H+

2 ion is defined as the difference
between its energy and that of a hydrogen atom and a free proton: i.e.,

Ebind = Etotal − E0 = −(F+ + 1)E0. (14.83)

According to the variational principle, the binding energy is less than or equal to the
minimum binding energy which can be inferred from Fig. 14.2. This minimum occurs
when X ≃ 2.5 and F+ ≃ −1.13. Thus, our estimates for the separation between the
two protons, and the binding energy, for the H+

2 ion are R = 2.5 a0 = 1.33 × 10−10 m
and Ebind = 0.13 E0 = −1.77 eV, respectively. The experimentally determined values are
R = 1.06 × 10−10 m, and Ebind = −2.8 eV, respectively. Clearly, our estimates are not
particularly accurate. However, our calculation does establish, beyond any doubt, the
existence of a bound state of the H+

2 ion, which is all that we set out to achieve.
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Figure 14.2: The functions F+(X) (solid curve) and F−(X) (dashed curve).
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15 Scattering Theory

15.1 Introduction

Historically, data regarding quantum phenomena has been obtained from two main sources.
Firstly, from the study of spectroscopic lines, and, secondly, from scattering experiments.
We have already developed theories which account for some aspects of the spectrum of hy-
drogen, and hydrogen-like, atoms. Let us now examine the quantum theory of scattering.

15.2 Fundamentals

Consider time-independent, energy conserving scattering in which the Hamiltonian of the
system is written

H = H0 + V(r), (15.1)

where

H0 =
p2

2m
≡ −

h̄2

2m
∇2 (15.2)

is the Hamiltonian of a free particle of mass m, and V(r) the scattering potential. This
potential is assumed to only be non-zero in a fairly localized region close to the origin. Let

ψ0(r) =
√
n e i k·r (15.3)

represent an incident beam of particles, of number density n, and velocity v = h̄k/m. Of
course,

H0ψ0 = Eψ0, (15.4)

where E = h̄2k2/2m is the particle energy. Schrödinger’s equation for the scattering
problem is

(H0 + V)ψ = Eψ, (15.5)

subject to the boundary condition ψ → ψ0 as V → 0.
The above equation can be rearranged to give

(∇2 + k2)ψ =
2m

h̄2
V ψ. (15.6)

Now,
(∇2 + k2)u(r) = ρ(r) (15.7)

is known as the Helmholtz equation. The solution to this equation is well-known: 1

u(r) = u0(r) −

∫
e i k |r−r ′|

4π |r − r ′|
ρ(r ′)d3r ′. (15.8)

1See Griffiths, Sect. 11.4.
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Here, u0(r) is any solution of (∇2 + k2)u0 = 0. Hence, Eq. (15.6) can be inverted, subject
to the boundary condition ψ → ψ0 as V → 0, to give

ψ(r) = ψ0(r) −
2m

h̄2

∫
e i k |r−r ′|

4π |r − r ′|
V(r ′)ψ(r ′)d3r ′. (15.9)

Let us calculate the value of the wavefunction ψ(r) well outside the scattering region.
Now, if r≫ r ′ then

|r − r ′| ≃ r− r̂ · r ′ (15.10)

to first-order in r ′/r, where r̂/r is a unit vector which points from the scattering region to
the observation point. It is helpful to define k ′ = k r̂. This is the wavevector for particles
with the same energy as the incoming particles (i.e., k ′ = k) which propagate from the
scattering region to the observation point. Equation (15.9) reduces to

ψ(r) ≃
√
n

[

e i k·r +
e i kr

r
f(k, k ′)

]

, (15.11)

where

f(k, k ′) = −
m

2π
√
n h̄2

∫

e−i k ′·r ′ V(r ′)ψ(r ′)d3r ′. (15.12)

The first term on the right-hand side of Eq. (15.11) represents the incident particle beam,
whereas the second term represents an outgoing spherical wave of scattered particles.

The differential scattering cross-section dσ/dΩ is defined as the number of particles per
unit time scattered into an element of solid angle dΩ, divided by the incident particle flux.
From Sect. 7.2, the probability flux (i.e., the particle flux) associated with a wavefunction
ψ is

j =
h̄

m
Im(ψ∗∇ψ). (15.13)

Thus, the particle flux associated with the incident wavefunction ψ0 is

j = n v, (15.14)

where v = h̄k/m is the velocity of the incident particles. Likewise, the particle flux
associated with the scattered wavefunction ψ −ψ0 is

j ′ = n
|f(k, k ′)|2

r2
v ′, (15.15)

where v ′ = h̄k ′/m is the velocity of the scattered particles. Now,

dσ

dΩ
dΩ =

r2dΩ |j ′|

|j|
, (15.16)

which yields
dσ

dΩ
= |f(k, k ′)|2. (15.17)
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Thus, |f(k, k ′)|2 gives the differential cross-section for particles with incident velocity v =

h̄k/m to be scattered such that their final velocities are directed into a range of solid
angles dΩ about v ′ = h̄k ′/m. Note that the scattering conserves energy, so that |v ′| = |v|

and |k ′| = |k|.

15.3 Born Approximation

Equation (15.17) is not particularly useful, as it stands, because the quantity f(k, k ′) de-
pends on the, as yet, unknown wavefunction ψ(r) [see Eq. (15.12)]. Suppose, however,
that the scattering is not particularly strong. In this case, it is reasonable to suppose that
the total wavefunction, ψ(r), does not differ substantially from the incident wavefunc-
tion, ψ0(r). Thus, we can obtain an expression for f(k, k ′) by making the substitution
ψ(r) → ψ0(r) =

√
n exp( i k · r) in Eq. (15.12). This procedure is called the Born approxi-

mation.
The Born approximation yields

f(k, k ′) ≃ m

2π h̄2

∫

e i (k−k ′)·r ′ V(r ′)d3r ′. (15.18)

Thus, f(k, k ′) is proportional to the Fourier transform of the scattering potential V(r) with
respect to the wavevector q = k − k ′.

For a spherically symmetric potential,

f(k ′, k) ≃ −
m

2π h̄2

∫∫∫

exp( iq r ′ cosθ ′)V(r ′) r ′2dr ′ sinθ ′ dθ ′ dφ ′, (15.19)

giving

f(k ′, k) ≃ −
2m

h̄2q

∫∞

0

r ′ V(r ′) sin(q r ′)dr ′. (15.20)

Note that f(k ′, k) is just a function of q for a spherically symmetric potential. It is easily
demonstrated that

q ≡ |k − k ′| = 2 k sin(θ/2), (15.21)

where θ is the angle subtended between the vectors k and k ′. In other words, θ is the
scattering angle. Recall that the vectors k and k ′ have the same length, via energy conser-
vation.

Consider scattering by a Yukawa potential

V(r) =
V0 exp(−µ r)

µ r
, (15.22)

where V0 is a constant, and 1/µ measures the “range” of the potential. It follows from
Eq. (15.20) that

f(θ) = −
2mV0

h̄2µ

1

q2 + µ2
, (15.23)
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since ∫∞

0

exp(−µ r ′) sin(q r ′)dr ′ =
q

q2 + µ2
. (15.24)

Thus, in the Born approximation, the differential cross-section for scattering by a Yukawa
potential is

dσ

dΩ
≃
(

2mV0

h̄2µ

)2
1

[2 k2 (1− cosθ) + µ2]2
, (15.25)

given that
q2 = 4 k2 sin2(θ/2) = 2 k2 (1− cosθ). (15.26)

The Yukawa potential reduces to the familiar Coulomb potential as µ → 0, provided
that V0/µ → ZZ ′ e2/4π ǫ0. In this limit, the Born differential cross-section becomes

dσ

dΩ
≃
(

2mZZ ′ e2

4π ǫ0 h̄
2

)2
1

16 k4 sin4(θ/2)
. (15.27)

Recall that h̄ k is equivalent to |p|, so the above equation can be rewritten

dσ

dΩ
≃
(

ZZ ′ e2

16π ǫ0E

)2
1

sin4(θ/2)
, (15.28)

where E = p2/2m is the kinetic energy of the incident particles. Of course, Eq. (15.28) is
the famous Rutherford scattering cross-section formula.

The Born approximation is valid provided that ψ(r) is not too different from ψ0(r) in
the scattering region. It follows, from Eq. (15.9), that the condition for ψ(r) ≃ ψ0(r) in
the vicinity of r = 0 is

∣

∣

∣

∣

∣

m

2π h̄2

∫
exp( i k r ′)

r ′
V(r ′)d3r ′

∣

∣

∣

∣

∣

≪ 1. (15.29)

Consider the special case of the Yukawa potential. At low energies, (i.e., k ≪ µ) we can
replace exp( i k r ′) by unity, giving

2m

h̄2

|V0|

µ2
≪ 1 (15.30)

as the condition for the validity of the Born approximation. The condition for the Yukawa
potential to develop a bound state is

2m

h̄2

|V0|

µ2
≥ 2.7, (15.31)

where V0 is negative. Thus, if the potential is strong enough to form a bound state then
the Born approximation is likely to break down. In the high-k limit, Eq. (15.29) yields

2m

h̄2

|V0|

µk
≪ 1. (15.32)

This inequality becomes progressively easier to satisfy as k increases, implying that the
Born approximation is more accurate at high incident particle energies.
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15.4 Partial Waves

We can assume, without loss of generality, that the incident wavefunction is characterized
by a wavevector k which is aligned parallel to the z-axis. The scattered wavefunction is
characterized by a wavevector k ′ which has the same magnitude as k, but, in general,
points in a different direction. The direction of k ′ is specified by the polar angle θ (i.e.,
the angle subtended between the two wavevectors), and an azimuthal angle φ about the
z-axis. Equations (15.20) and (15.21) strongly suggest that for a spherically symmetric
scattering potential [i.e., V(r) = V(r)] the scattering amplitude is a function of θ only: i.e.,

f(θ, φ) = f(θ). (15.33)

It follows that neither the incident wavefunction,

ψ0(r) =
√
n exp( i k z) =

√
n exp( i k r cosθ), (15.34)

nor the large-r form of the total wavefunction,

ψ(r) =
√
n

[

exp( i k r cosθ) +
exp( i k r) f(θ)

r

]

, (15.35)

depend on the azimuthal angle φ.
Outside the range of the scattering potential, both ψ0(r) and ψ(r) satisfy the free space

Schrödinger equation
(∇2 + k2)ψ = 0. (15.36)

What is the most general solution to this equation in spherical polar coordinates which
does not depend on the azimuthal angle φ? Separation of variables yields

ψ(r, θ) =
∑

l

Rl(r) Pl(cos θ), (15.37)

since the Legendre functions Pl(cosθ) form a complete set in θ-space. The Legendre func-
tions are related to the spherical harmonics, introduced in Cha. 8, via

Pl(cosθ) =

√

4π

2 l+ 1
Yl,0(θ,ϕ). (15.38)

Equations (15.36) and (15.37) can be combined to give

r2
d2Rl

dr2
+ 2 r

dRl

dr
+ [k2 r2 − l (l + 1)]Rl = 0. (15.39)

The two independent solutions to this equation are the spherical Bessel functions, jl(k r)
and yl(k r), introduced in Sect. 9.3. Recall that

jl(z) = zl

(

−
1

z

d

dz

)l(

sin z

z

)

, (15.40)

yl(z) = −zl

(

−
1

z

d

dz

)l(
cos z

z

)

. (15.41)
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Note that the jl(z) are well-behaved in the limit z → 0 , whereas the yl(z) become singular.
The asymptotic behaviour of these functions in the limit z → ∞ is

jl(z) →
sin(z− l π/2)

z
, (15.42)

yl(z) → −
cos(z− l π/2)

z
. (15.43)

We can write
exp( i k r cosθ) =

∑

l

al jl(k r) Pl(cosθ), (15.44)

where the al are constants. Note there are no yl(k r) functions in this expression, because
they are not well-behaved as r → 0. The Legendre functions are orthonormal,

∫1

−1

Pn(µ) Pm(µ)dµ =
δnm

n+ 1/2
, (15.45)

so we can invert the above expansion to give

al jl(k r) = (l + 1/2)

∫1

−1

exp( i k r µ) Pl(µ)dµ. (15.46)

It is well-known that

jl(y) =
(−i)l

2

∫1

−1

exp( iyµ) Pl(µ)dµ, (15.47)

where l = 0, 1, 2, · · · [see M. Abramowitz and I.A. Stegun, Handbook of mathematical func-

tions, (Dover, New York NY, 1965), Eq. 10.1.14]. Thus,

al = i l (2 l+ 1), (15.48)

giving

ψ0(r) =
√
n exp( i k r cosθ) =

√
n

∑

l

i l (2 l+ 1) jl(k r) Pl(cosθ). (15.49)

The above expression tells us how to decompose the incident plane-wave into a series of
spherical waves. These waves are usually termed “partial waves”.

The most general expression for the total wavefunction outside the scattering region is

ψ(r) =
√
n

∑

l

[Al jl(k r) + Blyl(k r)]Pl(cosθ), (15.50)

where the Al and Bl are constants. Note that the yl(k r) functions are allowed to appear
in this expansion, because its region of validity does not include the origin. In the large-r
limit, the total wavefunction reduces to

ψ(r) ≃
√
n

∑

l

[

Al

sin(k r− l π/2)

k r
− Bl

cos(k r− l π/2)

k r

]

Pl(cosθ), (15.51)
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where use has been made of Eqs. (15.42) and (15.43). The above expression can also be
written

ψ(r) ≃
√
n

∑

l

Cl

sin(k r− l π/2+ δl)

k r
Pl(cos θ), (15.52)

where the sine and cosine functions have been combined to give a sine function which is
phase-shifted by δl. Note that Al = Cl cos δl and Bl = −Cl sin δl.

Equation (15.52) yields

ψ(r) ≃
√
n

∑

l

Cl

[

e i (kr−lπ/2+δl) − e−i (kr−lπ/2+δl)

2 i k r

]

Pl(cosθ), (15.53)

which contains both incoming and outgoing spherical waves. What is the source of the
incoming waves? Obviously, they must be part of the large-r asymptotic expansion of the
incident wavefunction. In fact, it is easily seen from Eqs. (15.42) and (15.49) that

ψ0(r) ≃
√
n

∑

l

i l (2l+ 1)

[

e i (kr−lπ/2) − e−i (kr−lπ/2)

2 i k r

]

Pl(cosθ) (15.54)

in the large-r limit. Now, Eqs. (15.34) and (15.35) give

ψ(r) −ψ0(r)√
n

=
exp( i k r)

r
f(θ). (15.55)

Note that the right-hand side consists of an outgoing spherical wave only. This implies
that the coefficients of the incoming spherical waves in the large-r expansions of ψ(r) and
ψ0(r) must be the same. It follows from Eqs. (15.53) and (15.54) that

Cl = (2 l+ 1) exp[ i (δl + l π/2)]. (15.56)

Thus, Eqs. (15.53)–(15.55) yield

f(θ) =

∞∑

l=0

(2 l+ 1)
exp( i δl)

k
sin δlPl(cosθ). (15.57)

Clearly, determining the scattering amplitude f(θ) via a decomposition into partial waves
(i.e., spherical waves) is equivalent to determining the phase-shifts δl.

Now, the differential scattering cross-section dσ/dΩ is simply the modulus squared of
the scattering amplitude f(θ) [see Eq. (15.17)]. The total cross-section is thus given by

σtotal =

∫

|f(θ)|2dΩ

=
1

k2

∮

dφ

∫1

−1

dµ
∑

l

∑

l′

(2 l+ 1) (2 l ′ + 1) exp[ i (δl − δl′)]

× sin δl sin δl′ Pl(µ) Pl′(µ), (15.58)
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where µ = cosθ. It follows that

σtotal =
4π

k2

∑

l

(2 l+ 1) sin2 δl, (15.59)

where use has been made of Eq. (15.45).

15.5 Determination of Phase-Shifts

Let us now consider how the phase-shifts δl in Eq. (15.57) can be evaluated. Consider
a spherically symmetric potential V(r) which vanishes for r > a, where a is termed the
range of the potential. In the region r > a, the wavefunction ψ(r) satisfies the free-space
Schrödinger equation (15.36). The most general solution which is consistent with no
incoming spherical-waves is

ψ(r) =
√
n

∞∑

l=0

il (2 l+ 1)Rl(r) Pl(cosθ), (15.60)

where
Rl(r) = exp( i δl) [cos δl jl(k r) − sin δlyl(k r)] . (15.61)

Note that yl(k r) functions are allowed to appear in the above expression, because its
region of validity does not include the origin (where V 6= 0). The logarithmic derivative of
the lth radial wavefunction, Rl(r), just outside the range of the potential is given by

βl+ = ka

[

cos δl j
′
l(ka) − sin δly

′
l(ka)

cos δl jl(ka) − sin δlyl(ka)

]

, (15.62)

where j ′l(x) denotes djl(x)/dx, etc. The above equation can be inverted to give

tan δl =
ka j ′l(ka) − βl+ jl(ka)

kay ′
l(ka) − βl+yl(ka)

. (15.63)

Thus, the problem of determining the phase-shift δl is equivalent to that of obtaining βl+.
The most general solution to Schrödinger’s equation inside the range of the potential

(r < a) which does not depend on the azimuthal angle φ is

ψ(r) =
√
n

∞∑

l=0

i l (2 l+ 1)Rl(r) Pl(cosθ), (15.64)

where

Rl(r) =
ul(r)

r
, (15.65)

and
d2ul

dr2
+

[

k2 −
l (l+ 1)

r2
−
2m

h̄2
V

]

ul = 0. (15.66)
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The boundary condition
ul(0) = 0 (15.67)

ensures that the radial wavefunction is well-behaved at the origin. We can launch a well-
behaved solution of the above equation from r = 0, integrate out to r = a, and form the
logarithmic derivative

βl− =
1

(ul/r)

d(ul/r)

dr

∣

∣

∣

∣

∣

r=a

. (15.68)

Since ψ(r) and its first derivatives are necessarily continuous for physically acceptible
wavefunctions, it follows that

βl+ = βl−. (15.69)

The phase-shift δl is then obtainable from Eq. (15.63).

15.6 Hard Sphere Scattering

Let us test out this scheme using a particularly simple example. Consider scattering by a
hard sphere, for which the potential is infinite for r < a, and zero for r > a. It follows that
ψ(r) is zero in the region r < a, which implies that ul = 0 for all l. Thus,

βl− = βl+ = ∞, (15.70)

for all l. Equation (15.63) thus gives

tan δl =
jl(ka)

yl(ka)
. (15.71)

Consider the l = 0 partial wave, which is usually referred to as the S-wave. Equa-
tion (15.71) yields

tan δ0 =
sin(ka)/ka

− cos(ka)/ka
= − tan(ka), (15.72)

where use has been made of Eqs. (15.40) and (15.41). It follows that

δ0 = −ka. (15.73)

The S-wave radial wave function is [see Eq. (15.61)]

R0(r) = exp(−i ka)
[cos(ka) sin(k r) − sin(ka) cos(k r)]

k r

= exp(−i ka)
sin[k (r− a)]

k r
. (15.74)

The corresponding radial wavefunction for the incident wave takes the form [see Eq. (15.49)]

R̃0(r) =
sin(k r)

k r
. (15.75)



218 QUANTUM MECHANICS

Thus, the actual l = 0 radial wavefunction is similar to the incident l = 0 wavefunction,
except that it is phase-shifted by ka.

Let us examine the low and high energy asymptotic limits of tan δl. Low energy implies
that ka≪ 1. In this regime, the spherical Bessel functions reduce to:

jl(k r) ≃ (k r)l

(2 l+ 1)!!
, (15.76)

yl(k r) ≃ −
(2 l− 1)!!

(k r)l+1
, (15.77)

where n!! = n (n− 2) (n− 4) · · ·1. It follows that

tan δl =
−(ka)2l+1

(2 l+ 1) [(2 l− 1)!!]2
. (15.78)

It is clear that we can neglect δl, with l > 0, with respect to δ0. In other words, at
low energy only S-wave scattering (i.e., spherically symmetric scattering) is important. It
follows from Eqs. (15.17), (15.57), and (15.73) that

dσ

dΩ
=

sin2ka

k2
≃ a2 (15.79)

for ka≪ 1. Note that the total cross-section

σtotal =

∫
dσ

dΩ
dΩ = 4πa2 (15.80)

is four times the geometric cross-section πa2 (i.e., the cross-section for classical particles
bouncing off a hard sphere of radius a). However, low energy scattering implies relatively
long wavelengths, so we would not expect to obtain the classical result in this limit.

Consider the high energy limit ka≫ 1. At high energies, all partial waves up to lmax =

ka contribute significantly to the scattering cross-section. It follows from Eq. (15.59) that

σtotal ≃
4π

k2

lmax∑

l=0

(2 l+ 1) sin2δl. (15.81)

With so many l values contributing, it is legitimate to replace sin2 δl by its average value
1/2. Thus,

σtotal ≃
ka∑

l=0

2π

k2
(2 l+ 1) ≃ 2πa2. (15.82)

This is twice the classical result, which is somewhat surprizing, since we might expect
to obtain the classical result in the short wavelength limit. For hard sphere scattering,
incident waves with impact parameters less than amust be deflected. However, in order to
produce a “shadow” behind the sphere, there must also be some scattering in the forward
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direction in order to produce destructive interference with the incident plane-wave. In
fact, the interference is not completely destructive, and the shadow has a bright spot (the
so-called “Poisson spot”) in the forward direction. The effective cross-section associated
with this bright spot is πa2 which, when combined with the cross-section for classical
reflection, πa2, gives the actual cross-section of 2πa2.

15.7 Low Energy Scattering

In general, at low energies (i.e., when 1/k is much larger than the range of the potential)
partial waves with l > 0 make a negligible contribution to the scattering cross-section.
It follows that, at these energies, with a finite range potential, only S-wave scattering is
important.

As a specific example, let us consider scattering by a finite potential well, characterized
by V = V0 for r < a, and V = 0 for r ≥ a. Here, V0 is a constant. The potential is
repulsive for V0 > 0, and attractive for V0 < 0. The outside wavefunction is given by [see
Eq. (15.61)]

R0(r) = exp( i δ0) [cos δ0 j0(k r) − sin δ0y0(k r)]

=
exp( i δ0) sin(k r+ δ0)

k r
, (15.83)

where use has been made of Eqs. (15.40) and (15.41). The inside wavefunction follows
from Eq. (15.66). We obtain

R0(r) = B
sin(k ′ r)

r
, (15.84)

where use has been made of the boundary condition (15.67). Here, B is a constant, and

E− V0 =
h̄2k ′2

2m
. (15.85)

Note that Eq. (15.84) only applies when E > V0. For E < V0, we have

R0(r) = B
sinh(κ r)

r
, (15.86)

where

V0 − E =
h̄2κ2

2m
. (15.87)

Matching R0(r), and its radial derivative, at r = a yields

tan(ka+ δ0) =
k

k ′ tan(k ′ a) (15.88)

for E > V0, and

tan(ka+ δ0) =
k

κ
tanh(κa) (15.89)
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for E < V0.
Consider an attractive potential, for which E > V0. Suppose that |V0| ≫ E (i.e., the

depth of the potential well is much larger than the energy of the incident particles), so
that k ′ ≫ k. We can see from Eq. (15.88) that, unless tan(k ′ a) becomes extremely large,
the right-hand side is much less that unity, so replacing the tangent of a small quantity
with the quantity itself, we obtain

ka+ δ0 ≃ k

k ′ tan(k ′ a). (15.90)

This yields

δ0 ≃ ka
[

tan(k ′ a)

k ′ a
− 1

]

. (15.91)

According to Eq. (15.81), the scattering cross-section is given by

σtotal ≃
4π

k2
sin2 δ0 = 4πa2

[

tan(k ′a)

k ′ a
− 1

]2

. (15.92)

Now

k ′ a =

√

k2a2 +
2m |V0|a2

h̄2
, (15.93)

so for sufficiently small values of ka,

k ′ a ≃
√

2m |V0|a2

h̄2
. (15.94)

It follows that the total (S-wave) scattering cross-section is independent of the energy of
the incident particles (provided that this energy is sufficiently small).

Note that there are values of k ′ a (e.g., k ′ a ≃ 4.49) at which δ0 → π, and the scattering
cross-section (15.92) vanishes, despite the very strong attraction of the potential. In reality,
the cross-section is not exactly zero, because of contributions from l > 0 partial waves. But,
at low incident energies, these contributions are small. It follows that there are certain
values of V0 and k which give rise to almost perfect transmission of the incident wave.
This is called the Ramsauer-Townsend effect, and has been observed experimentally.

15.8 Resonances

There is a significant exception to the independence of the cross-section on energy men-

tioned above. Suppose that the quantity
√

2m |V0|a2/h̄2 is slightly less than π/2. As the
incident energy increases, k ′ a, which is given by Eq. (15.93), can reach the value π/2. In
this case, tan(k ′ a) becomes infinite, so we can no longer assume that the right-hand side
of Eq. (15.88) is small. In fact, it follows from Eq. (15.88) that at the value of the incident
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energy when k ′ a = π/2 then we also have ka + δ0 = π/2, or δ0 ≃ π/2 (since we are
assuming that ka≪ 1). This implies that

σtotal =
4π

k2
sin2δ0 = 4πa2

(

1

k2a2

)

. (15.95)

Note that the cross-section now depends on the energy. Furthermore, the magnitude of the
cross-section is much larger than that given in Eq. (15.92) for k ′ a 6= π/2 (since ka≪ 1).

The origin of this rather strange behaviour is quite simple. The condition

√

2m |V0|a2

h̄2
=
π

2
(15.96)

is equivalent to the condition that a spherical well of depth V0 possesses a bound state at
zero energy. Thus, for a potential well which satisfies the above equation, the energy of the
scattering system is essentially the same as the energy of the bound state. In this situation,
an incident particle would like to form a bound state in the potential well. However, the
bound state is not stable, since the system has a small positive energy. Nevertheless, this
sort of resonance scattering is best understood as the capture of an incident particle to form
a metastable bound state, and the subsequent decay of the bound state and release of the
particle. The cross-section for resonance scattering is generally much larger than that for
non-resonance scattering.

We have seen that there is a resonant effect when the phase-shift of the S-wave takes
the value π/2. There is nothing special about the l = 0 partial wave, so it is reasonable
to assume that there is a similar resonance when the phase-shift of the lth partial wave is
π/2. Suppose that δl attains the value π/2 at the incident energy E0, so that

δl(E0) =
π

2
. (15.97)

Let us expand cot δl in the vicinity of the resonant energy:

cot δl(E) = cot δl(E0) +

(

d cot δl

dE

)

E=E0

(E− E0) + · · ·

= −

(

1

sin2 δl

dδl

dE

)

E=E0

(E− E0) + · · · . (15.98)

Defining
(

dδl(E)

dE

)

E=E0

=
2

Γ
, (15.99)

we obtain

cot δl(E) = −
2

Γ
(E− E0) + · · · . (15.100)
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Recall, from Eq. (15.59), that the contribution of the lth partial wave to the scattering
cross-section is

σl =
4π

k2
(2 l+ 1) sin2δl =

4π

k2
(2 l+ 1)

1

1+ cot2 δl

. (15.101)

Thus,

σl ≃
4π

k2
(2 l+ 1)

Γ2/4

(E− E0)2 + Γ2/4
. (15.102)

This is the famous Breit-Wigner formula. The variation of the partial cross-section σl with
the incident energy has the form of a classical resonance curve. The quantity Γ is the width
of the resonance (in energy). We can interpret the Breit-Wigner formula as describing the
absorption of an incident particle to form a metastable state, of energy E0, and lifetime
τ = h̄/Γ .
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