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PREFACE 

No MAJOR work covering the general area of Chemical Physics would 
be complete without a substantial section on quantum mechanics. 
Quantum mechanics provides not only the physical principles and 
mathematical methods used in all theoretical work on the electronic 
structure and properties of matter; it provides even the concepts and 
vocabulary of nearly all branches of theoretical chemistry. I t is there-
fore of some importance to indicate the aims and scope of this section 
of the Encyclopedia, distinguishing clearly between quantum mechanics 
as a discipline and quantum mechanics applied to chemical problems. 

Quantum mechanics is here developed as a fundamental discipline. 
Although applications are frequently considered, they are introduced 
only to illustrate principles or give point to the development of the 
subject in various directions. More detailed applications of quantum 
mechanics—to atomic structure, molecular binding, molecular prop-
erties, solid state theory, and so on—are found in other sections of the 
Encyclopedia. 

The intention of the Editors has been made clear in the Introduction. 
Each volume is severely restricted in length, covering a well-defined 
area at a fundamental level and exhibiting a considerable degree of 
independence so as to be useful as a textbook in its own right. Another 
prerequisite is tha t the exposition shall not be so severe as to overtax 
the resources of good graduate students in physics or chemistry, though 
clearly topics of intrinsic mathematical difficulty will be heavy reading 
for students whose mathematical skills are rudimentary. 

With these limitations in mind it seemed necessary to plan for at 
least four short volumes on (non-relativistic) quantum mechanics. The 
first would confine itself to an exposition of the basic principles and 
formalism, illustrated mainly by reference to the simplest possible one-
particle systems. The second would develop the main techniques—such 
as perturbation theory, and group theory—in the context of basic 
applications, again as far as possible with reference to a single particle 
moving in some given field : it would give point to the theory by intro-
ducing the "independent particle model", in which each electron moves 
in an "effective field" provided by the others, and in this way would 
serve to indicate the applicability of quantum mechanics to atoms, 
molecules and crystals. The third would deal quite generally with 
many-electron systems, introducing specifically "many-body" topics 

Vl l 
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such as permutation symmetry, vector coupling, electron correlation, 
and would include general theory of electronic properties. The fourth 
would return to the basic principles and formalism, particularly those 
referring to time-dependent effects, and develop the more elementary 
parts of the theory of scattering and collisions. Each volume would thus 
be relatively compact and suitable for use either by itself or in con-
junction with the others, according to the particular interests or back-
ground of the reader. Further volumes would no doubt be added as the 
pressure of new developments and applications, for example in more 
advanced collision theory, made them necessary. 

The present volume is accordingly concerned with the principles and 
formalism of quantum mechanics. I t is not strictly an introduction to the 
subject, since all graduate students in physics and chemistry can 
nowadays confidently be expected to have some acquaintance with 
quantum mechanics at its most elementary level. Chapters 1 and 2 
merely review the origins of Schrodinger's equations and the nature of 
the solutions in certain simple and well-known cases. Matters which are 
extraneous to the subject (e.g. standard methods of separating and 
solving partial differential equations) are relegated to Appendices so 
as not to interrupt the development. The ideas associated with vector 
spaces, however, and more generally with Hubert space, are so much a 
part of the whole fabric of quantum mechanics that they have been 
developed in Chapter 3 as an essential part of the text. This chapter 
provides the mathematical language with which it is possible to formu-
late the main principles and their immediate consequences in Chapter 4. 
Special attention has been given to the more difficult topics, such as 
spin, which are frequently skipped, glossed over or presented in an 
abstruse and unpalatable form. This chapter leads naturally to the final 
generalizations (Chapter 5) in which various alternative ' "languages" 
or representations are discussed—each with its own advantages in 
particular applications—and the Dirac transformation theory is 
developed and explained. 

Any author of yet another book on quantum mechanics must expect 
criticism. A mathematical physicist may complain that the delta 
function has been introduced too casually, or that the Lagrangian 
formalism has not been given due prominence, or tha t continuing con-
troversies about the measurement process have been largely ignored. 
Many a chemist, on the other hand, may object to so many pages on 
vector spaces and mathematical techniques. But the book is addressed 
specifically to neither of these readers. In Volume 1 I have tried to 
present the main principles of the theory with special regard to the 
needs of chemical physicists, recognizing that present work in such 
diverse fields as electron spin resonance, molecular beam experiments, 
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and Compton scattering brings with it the need for much sophisticated 
analysis, and a familiarity with the Heisenberg representation, momen-
tum space, and all the trappings of the general theory. If this and 
succeeding volumes can bring the theory and its current applications 
in chemical physics within the reach of a good graduate student they 
will fulfil their main object. 

Finally, I wish to thank Professor K. Ohno (University of Hokkaido) 
for his help in the early planning of the first two volumes, which were 
started several years ago under joint authorship. Although distance and 
the pressure of other commitments prevented the full fruition of this 
collaboration, his contributions, and particularly his critical and con-
structive comments on most of the present volume in a semi-final form, 
are gratefully acknowledged. My thanks are also due to Mrs. S. P. Rogers 
for her careful and accurate production of the typescript, and to 
Pergamon Press for their co-operation at all times. 

R. McW. 



INTRODUCTION 

T H E International Encyclopedia of Physical Chemistry and Chemical 
Physics is a comprehensive and modern account of all aspects of the 
domain of science between chemistry and physics, and is written 
primarily for the graduate and research worker. The Editors-in-Chief, 
Professor D. D. ELEY, Professor J. E. MAYER and Professor F. C. 
ToMPKINS, have grouped the subject matter in some twenty groups 
(General Topics), each having its own editor. The complete work 
consists of about one hundred volumes, each volume being restricted 
to around two hundred pages and having a large measure of in-
dependence. Particular importance has been given to the exposition 
of the fundamental bases of each topic and to the development of the 
theoretical aspects; experimental details of an essentially practical 
nature are not emphasized although the theoretical background of 
techniques and procedures is fully developed. 

The Encyclopedia is written throughout in English and the recom-
mendations of the International Union of Pure and Applied Chemistry 
on notation and cognate matters in physical chemistry are adopted. 
Abbreviations for names of journals are in accordance with The World 
List of Scientific Periodicals. 



CHAPTER 1 

PHYSICAL BASIS OF QUANTUM THEORY 

1.1. Particles and waves 
There is little doubt that the most concise and elegant exposition of the 

principles of quantum mechanics consists of a set of basic propositions, 
from which the whole theory may be derived without further appeal to 
experiment. The experimental basis of the subject is in this way 
absorbed into a set of postulates which, although by no means self-
evident, lead to a network of conclusions which may be tested and 
verified. The postulates consequently provide a very succinct expression 
of the results of a wide range of observations. From these postulates, it 
is possible in principle, though often difficult in practice, to follow the 
ramifications of the theory into many branches of physics and 
chemistry. 

In spite of the many attractions of the axiomatic approach, to which 
we return in Chapter 4, it is useful first to recall some of the basic 
observations concerning wave and particle behaviour of light and 
electrons. These led to the generalizations on which the more formal 
theory is based. To this end, some familiarity with the wave-particle 
"dualism" will be assumed. We recall two of its main features: 

(A) There is evidence (e.g. from the photo-electric effect and the 
Compton effect) that radiation exhibits particle properties. It appears 
to be transmitted in localized "packets" with energy E and momentum 
p related to frequency v in the following way : 

E = Av, (1.1) 

Av 
P = - · (1.2) 

Here c is the velocity of light, h is Planck's constant ; 
c = 2-997925 x 10» m g-i, 
h = 6-6256 x 10-34 J s. 

A 'light particle" with energy given by (1.1) and momentum by (1.2) 
is called a photon. 

1 



9 QUANTUM MECHANICS 

(B) There is evidence (e.g. from electron-diffraction experiments) 
that material particles exhibit wave properties. The relative frequency 
with which particles are found in a given region of space (measured, 
for example, by the intensity of darkening of a photographic plate on 
which a beam of particles falls) is found to be correctly predicted as the 
squared amplitude of a wave-like disturbance, propagated according to 
lawTs formally similar to those of physical optics. For particles travelling 
in a beam, with a constant velocity, the associated wave is plane and 
has its normal in the direction of motion. I t was suggested by de 
Broglie, on the basis of relativistic considerations, tha t the wave length 
should be related to the particle momentum p = mv by 

λ = - (1.3) 
P 

which agrees exactly with (1.2) since λ = c/v, and this conjecture was 
subsequently verified experimentally. 

Wave mechanics, the particular formulation of quantum mechanics 
due to Schrödinger, arose in the attempt to reconcile the apparent 
coexistence of wave-like and particle-like properties in both material 
particles and photons. Here we indicate the argument, in a rudimentary 
form, by considering a harmonic wave travelling in the positive x 
direction : 

φ(χ, t) = A exp {±2nik(x-ut)}, (1.4) 

where φ measures the magnitude of the disturbance at point x and time 
t and u is the velocity of propagation. 

We remember the interpretation of k. If x increases by \jk, the values 
of φ and its derivatives are unchanged: the disturbance is therefore 
periodic in space, at any given time, with period λ = Ijk, λ is the 
wave length and k is the wave number. Also if t increases by ll(ku), φ and 
its derivatives are again unchanged: the disturbance is therefore 
periodic in time at any given point in space, with period T = l/(ku). 
T is the period of a complete oscillation, its reciprocal v = ku being the 
frequency of oscillation. The definitions are thus 

k = wave number, λ = \\k = wave length, 

v = ku = frequency, T = 1/v = period. 

Also, the two functions (1.4) (either choice of sign) clearly oscillate 
only between maximum and minimum values ±A ; A is the amplitude. 
A disturbance which is everywhere real can of course be regarded as the 
real part of either function, or as the sum of the two since 
eie = cos Θ + i sin 0. 
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Wave packets 
According to Fourier's theorem, any disturbance, travelling to the 

right with velocity u, can be represented by combining waves such 
as (1.4) with variable k values and suitably chosen amplitudes: 

+ 00 

ψ(χ, t) = A(k) exp {2nik(x-ut)}dk (1.5) 
— 00 

which is the limit of a sum of terms 
u4iexp {2niki(x-ut)} + A2 exp {2nik2(x — ut)} + . . . 

as the values of k\9 k2, . . . get closer together until they cover the 
whole range ( — oo, + oo),J the amplitude then becoming a continuous 
function of k. An arbitrary disturbance which is everywhere real can 
always be represented in this form by suitably choosing the amplitudes ; 
thus by taking just two terms with k\ = — k2 = k and A± = A2 we 
obtain a travelling wave with ψ oc cos 2nk(x — ut). Equivalently, we 
may simply take the real part of an expression of the form (1.5). 

We now try to obtain a localized disturbance—suitable for associating 
with a moving particle—by choosing the amplitude factor A(k) so that 
the wave trains admitted interfere constructively at one point but 
destructively at all others. A wave packet of this kind can in fact be 
constructed by using a very narrow range of wave numbers and may 
therefore be virtually homogeneous in frequency. If radiation (or 
matter) were propagated in wave packets, each packet could thus 
correspond to a sharply specified frequency and yet be essentially 
localized like a particle. To illustrate this possibility we consider a 
"Gaussian" wave packet in which 

A(k) = a exp {-a(k-k0)
2}. (1.6) 

When σ is large this will describe a superposition of wave trains with 
wave numbers differing inappreciably from ko, the amplitudes falling 
off rapidly according to the Gaussian law. In this case, 

00 

\l/(x,t) = j a exp {— a(k — ko)2 + 2nik(x — ut)}dk. (1.7) 
— oo 

From the well-known result 

exp{-px*-qz}dx = / - e x p | - (1.8) 
— 00 

J Actually \k\ is then the wave number: by including the negative values we simply 
admit both signs of k in (1.4). The notation (a, b) in general denotes an interval, i.e. the 
range of values taken by a variable. 
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(which is valid when p and q are complex, provided the real part of p 
is positive), it follows easily that 

φ(χ, t) = a / - exp I 1 exip{2niko{x-ut)} (1.9) 

At ί = 0, this describes an oscillation of wave length λο = 1/&ο> whose 
amplitude αΛ/π/σ exp( — π2#2/σ) is rapidly damped about the point 
x = 0 (Fig. 1.1a). 

In the case of a photon, u = c (the velocity of light) is constant in free 
space. The packet is then propagated without dispersion (i.e. 
change of shape) for \j/(x, t) at time t has exactly the same form as 
\j/(xf 0) except that x is replaced by x — ct, i.e. the pattern is shifted to 
the right through a distance ct (Fig. 1.1b). The frequency cito, from 

FIG. 1.1. Motion of a wave packet: (a) initial form (t = 0), 
(6) form at time t. 

which the waves in the packet deviate inappreciably, is presumably 
related to the photon energy by the Planck law (1.1), and the photon, 
identified with the wave packet, travels with velocity c. 
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In the case of a material particle, it might seem natural to relate the 
frequency of an associated wave train to the particle energy in the same 
way as for a photon, namely by the Planck law. But the fact that λ is 
known to depend on the particle momentum, according to de Broglie's 
relationship (1.3), then implies tha t the velocity of propagation, 
u = λν, is no longer a constant but depends on the dynamical situation. 
We tentatively accept this implication and combine (1.1) and (1.3) to 
obtain (since p = mv&ndE = \mv2+V) 

h TP TP 
u = ÀV:=ph=V{2ME-V)} {ΙΛ0) 

where E is the total energy of the particle, and V its potential energy 
in the field in which it moves. The velocity of propagation then depends 
on frequency (through E) and, when the potential is non-uniform, on 
the particle position (through V). In this case dispersion occurs as the 
wave packet is propagated, and it is necessary to distinguish two 
velocities: u is now referred to as the phase velocity, but no longer 
coincides with the velocity of the packet itself, i.e. the velocity of the 
point at which the component waves reinforce. The wave packet 
moves with the group velocity, vg, which may differ considerably from u. 

We now show that by accepting (1.10) we ensure that vg exactly 
coincides with the particle velocity v. We again consider the Gaussian 
packet (1.7) but now admit dispersion by assuming a non-linear 
relationship between k and v, as would follow from (1.10). Since the 
integrand in (1.7) is small unless k is close to ko we choose k as indepen-
dent variable and write 

v = VQ + a(k-ko) + lß(k-ko)* + . . . 
where (1-H) 

ßk*]0 

the subscript zero indicating that the derivatives are evaluated at 
k = &o. The main contribution to the integral (1.7) comes from k values 
around &o, and δ = k — ko is therefore small in this region. We put 
k = k0 + ô and expand the term 2nik(x — ut), remembering that ku = v, 
to obtain, with neglect of second-order terms, 

2nik{x — u(k)t} ~ 2niko(x — uot) + 2niô{x — at) 

where UQ is the phase velocity for wave number ko. The integration 
(1.7) may then be performed and the result is 

ψ(χ, t) ~ a - expl I exp{2niko(x-uot)}. (1.12) 

" [ s i >-[Ρ* 
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The complex factor indicates a wave train travelling with the mean 
phase velocity u$. But the wave profile, arising from the amplitude 
factor, is evidently centred on the point x = at and thus moves with a 
velocity a different from that of the constituent wave trains : 

(1.13) 

where the derivative is evaluated for the mean k value, k = ko (though 
we now drop the subscript), appropriate to the packet. The fact that 
the packet whose dispersion is determined by (1.10) does indeed move 
with the particle velocity, which appears in the de Broglie relationship 
(1.3), follows easily. For 

Thus the packet actually stays with the particle whose behaviour it is 
supposed to describe. 

There is, however, a difference between the behaviour of packets for 
photons and for material particles, in so far as the packet describing a 
material particle '"spreads" as it travels. This result follows when the 
higher terms in (1.11) are taken into account, and will be considered 
again later. We also defer at this point any consideration of the meaning 
or ' 'physical reality" of φ in the two cases ; it is here sufficient to accept 
ψ as a well-defined function which mathematically determines the 
behaviour of the particle. 

I t is apparent that there is a considerable similarity between the 
equations and concepts associated with photons and material particles. 
This close correspondence is indicated in Table 1.1, which summarizes 
the main features of the "duality" referred to at the beginning of this 
section. 

Statistical interpretation of the wave function 
Although the coexistence of wave and particle properties may now 

seem more acceptable, since the idea appears to resolve more difficulties 
than it creates, the question might still be asked: Are photons and 
electrons really waves or particles ? The answer must be that they are 
neither: they are "quantum particles" which behave like classical 
particles under some conditions and like waves under others, though in 
all cases this behaviour may be mathematically described in terms of a 
wave function ψ. "Classical" behaviour is familiar to us from the study 



PHYSICAL BASIS OF QUANTUM THEORY 7 

TABLE 1.1 

Wave train 
Frequency and 

energy 

Phase velocity 
de Broglie 

wave length 
Group velocity 

Photon 

exp{2ni(kx-vt)}, v - E/h 
v : frequency of radiation 

E : energy of photon 

u = c : velocity of light 

X = c/v = hjp 
vg = c: photon velocity (no 

dispersion) 

Particle of mass m 

exp{2ni(kx-vt)}, v = E/h 
v: frequency in wave function 

(no direct physical meaning) 
E = %mv2+V: "classical" 

energy of particle 
u = Ε/Λ/{2ΪΠ(Ε- V)} = E/mv 

(unobservable) 
X = u/v = h/mv 
vg = v : particle velocity 

(dispersion, leading to 
"spreading" of packet) 

of moving objects in the laboratory, but there is no compelling reason 
to expect that photons and electrons will behave in a similar way. 

The extraordinary behaviour of quantum particles may be demon-
strated by a simple diffraction experiment (Fig. 1.2) in which a beam 
of particles, each described by a plane wave or a packet of such waves 
(essentially homogeneous in wave length), is incident upon a screen 
containing slits L\ and L^. The form of the diffraction pattern produced 
on the plate P depends only on the wave length characterizing an 
incident particle, not on the intensity of the beam—measured by the 
amount of energy, or number of quantum particles, passing through 
unit cross-section per second. The remarkable fact is that the pattern 
persists even when the intensity is so low that there is never more than 
one particle between S and P at any given time. The value of |^|2 at a 
point on the plate, calculated as in elementary physical optics, then 
certainly refers to only one particle and measures the probability that it 
will land at the given point: in a long exposure the same ίίexperiment,' 
is repeated by a very large number of particles and the whole pattern 
will appear. But there is no possibility of the interference being between 
different photons or electrons, passing through the different slits; the 
wave function ψ refers to one particle and simply provides the correct 
mathematical prescription for calculating where it is likely to be found 
in a given experiment. 

The statistical interpretation of the wave function, due to Born, is a 
fundamental feature of quantum mechanics. It is possible in principle to 
calculate the wave function, from the equations of quantum mechanics, 
but from this function it is only possible to discuss the probability of 
finding a particle at any given point ; the exact causality characteristic 
of classical physics no longer applies. Comprehensive discussions of 
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hypothetical diffraction experiments are available elsewhere (e.g. 
Feynmann, 1965) and reveal that any successful attempt to obtain 
more definite information about the position of a particle in such an 
experiment (e.g. which slit it went through) would destroy the diffrac-
tion pattern. Such an experiment must, by definition, result in concen-
tration of ψ within a small region of high probability, and the conditions 
of the original experiment therefore no longer obtain. It is now generally 
accepted that it is meaningful to talk about the ' "position" of a quantum 
particle only when its position has been ascertained between prescribed 
limits by means of an experiment and, more generally, that in any such 
experiment the actual state of the system may be grossly disturbed by 
interaction with the observer. In classical physics it is assumed that the 

r 

L 

F I G . 1.2. Diffraction experiment. S is a source, L± and L^ are two slits. A 
diffraction pattern (intensity indicated schematically) is formed at a 

photographic plate P. 

interaction between system and observer may be made arbitrarily 
small: in quantum physics, where the processes considered involve 
particles as small as electrons and photons, this is not an assumption 
that can be consistently maintained. This point of view was first 
stressed by Heisenberg, and will be taken up in Chapter 4. Heisenberg 
and Schrödinger both succeeded in formulating equations to describe 
the behaviour of a quantum particle; Heisenberg's ' 'matrix mechanics" 
and Schrödinger's "wave mechanics", later shown to be equivalent, 
are now regarded as part of the general discipline of "quantum 
mechanics". 

The quantum theory of photons and the electromagnetic field turns 
out to be more involved and difficult than that of material particles, 
and lies outside the scope of this book. Fortunately, this development 
is not essential in many areas of quantum mechanics, particularly those 
concerned with the structure of matter and the behaviour of particles 
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such as electrons and nuclei.J The wave function for such a particle 
then satisfies the wave equation first given by Schrödinger, which is 
"derived" by a simple argument in the next section. In the limit where 
relativistic effects are negligible, and where there is no radiation field, 
this equation appears to provide a completely adequate basis for 
discussing the motion of a particle ; in this sense it is the quantum theory 
counterpart of Newton's equations—to which it must indeed be 
equivalent in the limit of large mass, where classical mechanics is known 
to be valid. It also turns out that interaction with an applied electro-
magnetic field, required for example in spectroscopic applications of 
the theory, may adequately be admitted in a semi-classical way and 
that the more important relativistic effects may be included by adding 
certain "spin" terms. The Schrödinger approach thus provides a 
satisfactory foundation for applications of quantum mechanics in many 
parts of physics and in almost the whole of chemistry. 

1.2. The Schrödinger equation for a particle 
We now look for the equation whose solutions are wave functions of 

the kind discussed in Section 1.1, treating first the case of a particle of 
mass m moving in a straight line. The solutions must then be plane 
waves, or packets of plane waves, satisfying a one-dimensional equation 
(in, say, the ^-coordinate). The equation we want cannot be the classical 
wave equation 

dx* u* dt* [ · ' 

because the phase velocity already introduced is given by 

3 E 

U = ÀV = — 

P 
and clearly involves dynamical variables (E and p) ; this would mean 
that the differential equation for φ would depend on the energy 
and/or momentum in the particular state considered—and a mixture of 
different wave trains (as in a packet) could not be a solution of any one 
of these equations. The equation we want should involve only the 
universal constants such as e, m or A, and none of the dynamical 
variables such as energy or momentum. 

Let us therefore work backwards, assuming (1.4) to represent a free 
electron travelling in the positive x direction with momentum p and 

Jin low-energy processes a nucleus may be regarded as a single heavy particle. 
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kinetic energy E, and adopting the upper sign in (1.4) for reasons 
which will become clear presently. Thus, 

/ V \ ( E \ 
φ(χ, t) = exp {2nik(x — ut)} = exp I i - x I exp I — i-r- £ I, (1-15) 

where we introduce the '"rationalized" Planck constant h = hj2n in 
order to avoid the repeated appearance of factors of 2π. From (1.15) we 
obtain 

δ2φ p2 δφ E 

i£ = -h+> and i~-%*+- (L16) 

But for a free electron, the classical relationship 

E = — p2 

2m r 

is known from experiment to be valid. This suggests that for a free 
electron the required differential equation is 

%Ί, δφ h2 δ2φ 
ih— = £. (1.17) 

dt 2m dx2 K } 

This is in fact the one-dimensional form of Schrödinger's equation for a 
free electron. 

The extension to the three-dimensional case is immediate. In this 
case the energy can be expressed as 

and a similar argument shows that the derivatives satisfy the.equation 

δφ _ h2 /δ2φ δ2φ δ2φ 
ll~t = ^^i\dx2+'dy2 + 'dz2 

or, with the usual notation, 

**-T-= - — V 2 ^ . (1.18) 
dt 2m ψ v ' 

This equation gives a satisfactory account of the behaviour of a free 
particle moving in three-dimensional space. 

Schrödinger's equation 

So far we have considered a free particle (no applied fields) whose 
energy is purely kinetic. We must now consider a particle moving in 
some external field (assumed here to depend only on position) corre-
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sponding to a classical potential energy V(x, y9 z). The complete 
energy expression is then 

E = ^(Px2+Py2+Pz2)+V(x,y9z). 

If we assume the frequency factor is still determined by the energy, 
according to (1.16), and the wave length by the momentum, it seems 
plausible that the correct generalization of (1.18) will be 

mi=-^W2*+v*- ( 1 1 9 > 
This is the (time-dependent) Schrödinger equation for a particle and 
determines how any given state, represented by the wave function φ, 
will develop in time. I t serves, for example, to determine how a wave 
packet of the form (l.ft) would be ' 'scattered" on meeting a region of 
variable potential—perhaps due to a point charge or some kind of 
' 'potential barrier". Although the equation is here formulated in terms 
of a Cartesian coordinate system, its transformation to any other 
system (e.g. polar or cylindrical coordinates) is a purely mathematical 
exercise ; V2^ is expressed in a general coordinate system in Appendix 1. 

I t is customary to write ( 1.19) in the form 

Ηψ = ih^ (1.20) 
ot 

where H φ is an abbreviation for the right-hand side of (1.19), obtained 
by applying the Hamiltonian operator^ 

% 2 

H = - — V 2 + F (1.21) 
2m 

to the wavefunction φ. The properties of operators are discussed in 
Chapter 3; but here we use H merely as a convenient shorthand, Ηι^ 
(where ψ is any function) being interpreted simply by putting ψ on 
the right of each term in (1.21). I t may be noted that (1.21) may be 
obtained from the classical energy expression § in a formal way by 
replacing each momentum component by a differential operator, 
Px -> Pz, etc., where 

h d h d H d „ ΛΛ* 
* - Π £ · Py = ïW Pi=:îTz (L22) 

JThroughout this book, a distinctive type (Gill Sans) will be used to indicate operators. 
§The expression for the energy in terms of momentum components (not velocities) and 

coordinates is called the Hamiltonian function (see, for example, Pauling and Wilson, 
1935); we write E = H(pXt py,pz, x> y, z). The equation preceding (1.19) is of this form, 
and the prescription (1.22) at once yields (1.19). 
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and noting that px
2 = p^p^ = — h2(d2/dx2), etc. This particular 

association of differential operators with dynamical variables is 
characteristic of Schrödinger's formulation of quantum mechanics. 

The time-independent equation 

In many cases we are concerned with an important special class of 
solutions of ( 1.19), in which φ has the form 

ψ(χ, y, z, t) = φ(χ, y, z)f(t) 

or, to use a 'Vector" notation in which r stands for the set of co-
ordinates x} y, z, 

ψ(τ,ί) = 0(r)/(O. (1.23) 

On substituting (1.23) into (1.19) and dividing by φ, we obtain 

But the two sides of this equation depend on quite different sets of 
variables, r = (x, y, z) and t, respectively. In order to satisfy the 
equation for all values of t, when x, y, z are given (fixing the right-hand 
side), it is clear that the left-hand side must be a constant; and the 
right-hand side must likewise be a constant—with the same value. If 
the constant is denoted by E this means 

dt~ %KJ 

and hence 

/(t) = e x p ( - i | * \ 

To identify E, which clearly has the dimensions of energy, we note that 
for a free particle the solution must reduce to (1.15); in this case, and 
it will be assumed in general, E is the energy of the system in the state 
with wave function (1.23). We also note that the ambiguity in sign 
which occurs in the travelling wave solution (1.4) of the classical wave 
equation has been removed by going over to (1.19) which contains only 
^ first derivative with respect to time. 

The remaining equation which must be satisfied if (1.19) is to admit 
a solution of the special form (1.23) follows on equating to E the 
right-h&Jid side of the equation following (1.23). Thus, with the notation 
(1.21), 

Ηφ = Εφ, (1.24) 
This is usually referred to as the ' 'time-independent Schrödinger 
equation" to distinguish it from (1.20). I t is clear that from any 
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solution φ(τ) of the time-independent Schrödinger equation, we can 
construct a particular solution of the time-dependent Schrödinger 
equation φ(τ, t), of the form 

ψ(τ, t) = φ(τ) expi-iEt/h). (1.25) 
These particular solutions, and the time-independent Schrödinger 
equation (1.24) which determine them, play a dominant role in the 
quantum theory of valency and molecular structure. They represent 
stationary states, whose physical meaning will be discussed in the next 
section. Solutions of the time-dependent Schrödinger equation (1.20) 
are required mainly in the treatment of scattering and similar processes ; 
but even in this case it is usual to start from the time-independent 
equation (1.24), obtaining special solutions of the form (1.25) which can 
then be used to build up a more general solution—just as plane waves 
may be used to build up a general wave packet. Equation (1.24) is 
therefore absolutely fundamental to all that follows. 

The preceding formulation of Schrödinger's two equations is based 
merely on a plausibility argument. That the equations are correct can 
be determined only by exhaustive applications ; but the evidence that 
(1.20) and (1.21) are satisfactory, in all situations where relativistic 
effects are negligible, is by now overwhelming. We note that effects due 
to an external magnetic field (which introduces velocity dependent 
terms into the potential energy) have not yet been considered, but that 
their inclusion (Vol. 2)% presents no difficulty in non-relativistic theory. 

1.3. Probability density and probability current 
At this point it is necessary to consider more fully the statistical 

meaning of \ψ\2 and to ask what mathematical restrictions must be 
imposed on the function ψ. In physics, the general solution of a partial 
differential equation is seldom required; arbitrary functions must 
usually be eliminated in order to obtain a particular solution which is 
physically acceptable and conforms to any given boundary conditions. 
In wave mechanics such restrictions arise mainly from the physical 
nature of probability functions. 

Probability density functions 
The Schrödinger equations (1.20) and (1.24) are "linear", in the 

sense that if ψ is any solution then so must be cij/, where c is an 
arbitrary constant. § The solution is thus arbitrary to within a constant 
factor, and in quantum theory we must take φ and c\// (c Φ 0) to 

^References are to other volumes in Topic 2. 
§ c is commonly used to denote a numerical constant when there is no risk of con-

figuration with the velocity of light. 



14 QUANTUM MECHANICS 

represent one and the same state. The statistical interpretation of \φ\2, 
however, allows us to introduce a convention which effectively removes 
this ambiguity. Given any solution, we multiply by a constant so chosen 
that |i^(r, £)|2cZr is the absolute (rather than a relative) probability of 
finding a particle in volume element dr at point r and at time t. Here 
we continue to use the "vector" notation in which r and dr, respectively, 
stand for the variables defining position (e.g. x, y, z) and for the volume 
element (e.g. dxdydz). The function \ψ\2 is then a probability density 
function. Since the probability of finding the particle somewhere in space 
is unity, we must require 

J k N r = 1 (1-26) 
where the integration is carried out over the whole of space. The 
function φ is in this case said to be normalized. An alternative solution 
c\j/ will then no longer be acceptable unless c happens to be a uni-
modular complex number of the form ei9 where Θ is an arbitrary 
constant: such a "phase factor" has no physical meaning and may 
generally be omitted. 

The significance of the "stationary states" with wave functions of the 
form (1.25) is now clear. Such a state is "stationary" in the sense that 

|*(r ,«) |2 = |0(r)|2 (1.27) 

where the right-hand side is time-independent. This means that the 
probability density function, which describes where the particle is 
likely to be found, persists indefinitely without change. The prob-
ability |<£(r)|2 is in principle physically observable, being the fractional 
number of times the particle would be found in dr, a t point r , if 
observations were made a very large number of times under identical 
conditions. $ The normalization condition for a stationary state reduces 
to 

J|0(r)|2cZr = 1 
as follows at once from (1.26) and (1.27). 

The fact that the wave function should be normalizable is a basic 
physical requirement, which is usually put in a slightly different way 
by saying that any physically acceptable solution of the wave equation, 
even before normalization, must satisfy the condition § 

j\\l/\2dr = finite. (1.28) 
Functions with this property are said to be of integrable square, or to be 

J in practice, of course, the form of a probability density function must be inferred 
less directly (e.g. from X-ray scattering experiments on a large assembly of particles). 

§We sometimes use the same symbol ψ for a function which we have not troubled to 
normalize (or whose normalization presents some difficulty) ; the sense will be clear from 
the context. 
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quadratically integrable. It is possible that φ may become infinite at a 
finite number of points (singularities) but it must do so in such a way 
that thé integral converges. We also note that since the probability of 
finding the particle somewhere in space must be unity at all times it is 
necessary that the normalization integral (1.28) be time-independent. 

Another obvious physical requirement is that the square of the wave 
function should be single valued, for it would be nonsense to admit two 
distinct values of the probability of finding the particle in a given place 
at a given time. This requirement is usually taken to imply that ψ 
itself is single-valued, though justification of the stronger condition is 
not immediate. 

Probability current. Definition and Implications 
To investigate other restrictions on the wave function it is necessary 

to consider how the value of |^|2 at a given point may change with time. 
This leads to the concept of probability current. The probability 
distribution may be compared with unit mass of a compressible fluid ; 
it may be spread over a large region with low density or it may be 
compressed into a small region at high density, conservation of total 
"mass" requiring that 

jpdr = 1 

where in the present instance p = |^|2. If the "mass" within a given 
region (i.e. the integral of p over the region) is changing, then "mass" 
must be flowing across the boundary and we can define a "mass current 
density" as the rate of flow across unit area normal to the direction of 
flow. In our case the "mass" is a probability (integral of p over some 
region), the (mass) density is the probability density p = \φ\2, and we 
shall define a probability current density exactly analogous to the mass 
current density. The meaning is clear: if there is a net probability 
current out of any closed region, the chances of finding the particle 
within that region must be diminishing. 

To simplify the argument we consider the one-dimensional situation:}: 
in Fig. 1.3, the elementary slab shown having as its surfaces planes on 
which ψ is constant, so that φ = φ(χ). If the slab has unit surface area 
the probability of finding the particle within the element is ψ*ψάχ 
and this must be changing at a rate Jx{x) — Jx(x + dx). Equating the 
time rate of change of ψ*ψάχ to the difference of currents, we have 

JThis might appear inconsistent with the quadratic integrability of \ψ\2 since ψ is 
constant in the y and z direction : the argument is, however, applied only over a region 
so small that the y, z dependence may be ignored. 
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dt ôtw ψι dx 
(1.29) 

which really amounts merely to a definition of the current in the x 
direction. To identify Jx in terms of the wave function we write the 
time derivative as 

and then use (1.19) and its complex conjugate which gives δψ*Ιθί. We 

Jx(x) Jx(x+dx) 

ψ(χ) ψ(χ-Μχ) 

F I G . 1.3 Definition of the probability current density. The rate of increase 
of probability of finding the particle in the shaded region (an elementary 

slab of unit-cross section) is Jx{x)— Jx{x + dx). 

assume here that V is real and velocity independent (magnetic effects 
excluded) and the expression on the right reduces to 

2im\_dx2 ψ Ψ dx*] 

which may be written as an x derivative to give 

dt (Ψ*Ψ) 2im dx L dx dx 

By comparison with (1.29) we obtain 

h 
Jx = 

2im 1Ψ dx Ψ dx j 
(1.30) 

as the probability current density in the x direction. 
In three dimensions, the derivation is entirely similar; the prob-

ability current has three components, each given by an expression of 
the form (1.30). If we use the subscripts 1, 2, 3 to denote the x, y, z 
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components of the position vector r, replacing (x, y, z) by (ri, τ^ ν$)9 

the results become 

and the equation giving the rate of change of probability density at 
any point is, by analogy with ( 1.29) 

dt ~ dra 

This equation is frequently written in vector notation. If J is the 
vector with components Ja, the right-hand sum is recognized as div J 
and (1.32) can be written in the familiar form of an "equation of 
continuity": 

^ + d iv J = 0. (1.33) 
ot 

Similarly, equations (1.31) may be collected into the form 

J = - ^ T - (ψ* grad ψ-ψ grad ψ*). (1-34) 

In practice, of course, the probability current is actually evaluated by 
using the component form (1.31). Again we recall that the equations 
have been derived assuming no external magnetic field. The modifica-
tions necessary when a magnetic field is applied are considered else-
where (Vol. 2). 

After this digression the nature of the remaining conditions to be 
imposed on ψ becomes clear. These conditions relate to continuity. 
If ψ were discontinuous across some surface (i.e. if a finite change 
occurred in an infinitesimally small region), the derivatives and hence 
the current would become infinite. This possibility must be ruled out 
because if a region were chosen with boundaries arbitrarily close to 
such a surface the probability of finding the particle within that region 
would increase at an infinite rate. 

If the gradient were discontinuous across some surface, the second 
derivative would become infinite. The Schrödinger equation (1.20) or 
(1.24) could not then be satisfied unless the potential were infinite on 
the surface. We thus require that the gradient of a wave function be 
continuous everywhere except where the potential becomes infinite. 
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The mathematical restrictions suggested by such considerations are 
collected below and are adopted in all that follows : 

(i) φ must be of integrable square ; | 
(ii) the integral of | φ | 2 over all space must be time-independent ; 

(iii) φ must be single-valued ; 
(iv) φ must be continuous ; 
(v) the gradient of φ must be continuous except where the 

potential becomes infinite. 

Functions satisfying such requirements comprise a "class". For brevity, 
functions which are quadratically integrable, etc., are often referred 
to as functions "of class Q" or "of class Z 2 " a terminology which we 
shall often find useful. 

We are now in a position to consider and solve a number of simple 
problems which will give considerable insight into the behaviour of 
quantum mechanical systems. 

1.4. The classical l imit for motion of a wave packet 
Before leaving this brief discussion of the origins of quantum 

mechanics we should convince ourselves tha t classical dynamics is 
included as a suitable limiting case, since there is no doubt that particles 
visible to us in the laboratory move according to the Newtonian law : 

Rate of change of linear momentum = Applied force. 

The distinctive feature of the classical situation is that the particle 
position and the applied force may be measured with high accuracy; 
in other words, classical dynamics should apply in the limit where a 
wave packet is so compact that there is negligible probability of finding 
the particle at an appreciable distance from the centroid of the packet. 

We therefore ask whether a Newtonian law applies to the average 
values of force and momentum associated with a particle described 
by a wave packet. Let us consider motion along the #-axis. The average 
x-coordinate of the particle, described by probability density p = φ*φ, is 

x = $χφ*φατ, (1.35) 

i.e. the x-component of the centroid of the density. The x-component 
of the force acting, corresponding to the classical potential energy 
function V = V(r)9 is Fx = —(dV[dx) and when this is averaged over 
the wave packet we have 

JThere is an apparent exception in the case of a particle free to travel throughout 
infinite space (e.g. represented by a plane wave); the interpretation of quadratic 
integrability in this case is dealt with later. 
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Fx= -$(dVldx)il/*il/dr. (1.36) 

Newtonian dynamics will thus apply in the limiting case of strongly 
localized wave packets if we can show that, when the wave function 
develops in time according to (1.19), the particle moves in such a way 
that 

dJw - **■ <L37> 

The proof that this equation holds was first given by Ehrenfest. 
Here we sketch the argument, which should be completed by the 

reader. Since x is merely an integration variable in ( 1.35) we obtain 

Jt(mx) = j * - (ψ*φ)άτ - - j j * ^ - ^ W^jdxdydz, 

where the δ(^*^)/δί has been taken from the deiivation of the current 
density (p. 16). On integrating by parts and assuming that φ and its 
derivatives vanish at infinity we obtain 

-7 (mx) = ih ψ*—- dxdydz. 
at J ox 

The rate of change of this quantity is 

&«-J[S2+*-5(S)]*** 
For functions satisfying the required conditions (p. 18) the order of 
differentiations in the second term may be reversed. We then substitute 
for dty/dt and οψ*Ιθί from (1.19) and its complex conjugate, which 
completely determine the time-development of the packet : there is a 
cancellation of the terms involving V2 and further integration by parts 
yields the final result 

d2(mx) 
dt* 

= - ψ*ψ I — J dxdydz. 

Comparison with (1.36) then establishes the equation of motion (1.37). 
Similar results hold, of course, for the y- and ^-components. 

These results are truly remarkable. They show that the three-
dimensional motion of a quantum particle, described by a wave packet 
such as that shown in Fig. 1.1 and travelling in an arbitrary potential 
field, will coincide with that predicted by Newtonian dynamics provided 
the packet is sufficiently localized—in spite of the complete dis-
similarity of the methods of calculation. We know that such packets 
tend to "spread" (p. 6) and that the precision with which the classical 
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picture applies will therefore diminish as we continue to make ob-
servations ; but we shall find later that for sufficiently massive particles 
the rate of spreading is so exceedingly small that deviations from 
Newtonian behaviour would not be detected during the time of an 
experiment. For many purposes, nuclei may be treated as classical 
particles; but for electrons this is seldom possible and we have no 
alternative but to start from Schrödinger's equations. The implications 
of wave-packet localization are discussed in later sections. Here we note 
only that the vertical coincidence of the laws of motion for classical and 
quantum particles, in the limit of large mass, is an empression of the 
famous correspondence principle advanced by Bohr two years before 
Schrödinger's successful formulation of the quantum equations of 
motion embodied in (1.19). 
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SOME SIMPLE SOLUTIONS OF 
SCHRÖDINGER'S EQUATION 

2.1. The particle in a container 
The aim of this chapter is to present and discuss some simple solutions 

of the time-independent Schrödinger equation (1.24), using a minimum 
of mathematics. In this first example we consider the nature of the 
solutions for a particle confined to a certain region of space, in which the 
classical potential energy function has the one-dimensional form shown 
in Fig. 2.1, and then work out the solution for a special kind of three-
dimensional "container" or "box" in which the potential V rises to 
infinity at the boundaries. 

Energy 

V«V(x) 

(a) 

• ► x 

V*constant 

(b) 

v=o 
FIG. 2.1. Energy diagram for one-dimensional motion of a particle, 
(a) showing classical limits of motion corresponding to energy E, (b) show-
ing simplified "potential box" with same limits (note that the zero of 
potential energy is arbitrary and has been taken as V = 0 inside the box). 

First we recall the classical description of the (one-dimensional) 
motion of a particle whose potential energy varies as in Fig. 2.1a. The 
total energy E is the sum of kinetic and potential terms, T and V, 

E = T+V, 
21 
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where T, from its nature, is essentially & positive quantity. If a horizontal 
line is drawn at a height representing the total energy E (Fig. 2.1a), 
the breakdown into these two parts is pictorially obvious and it is clear 
that the particle is bound within the region between the vertical lines— 
within which T is positive. The balance between potential and kinetic 
energy oscillates during the motion, with T —> 0 as the particle 
approaches the boundaries of the "container". If the particle is given 
more energy, the effective size of the container increases, and if E is so 
high as not to intersect V then the particle is no longer bound but 
becomes free and may travel infinitely far in either direction. To 
approximate the situation described in Fig. 2.1a it is frequently useful 
to use the "potential box" (Fig. 2.1b) to define the region in which the 
particle is confined. 

We now look for the main features of a stationary state of a particle 
in the box of Fig. 2.1b, according to quantum mechanics. The 
Schrödinger equation for such a state is (1.24) and takes different forms 
inside and outside the box : 

h2 d2o 
Inside the box: — τ—-r—- = Εφ. 2ra dx2 Ύ 

h2 d2é 
Outside the box: — -—-—; = —(VQ — E)O. 2m dx2 

The solution of the first equation is sinusoidalJ: in general, with 
arbitrary constants A and B, 

Inside: φ = A sin Jcx + B cos kx k = y/{2mEjh2). 

Outside: φ = Ce*'* + De~*'* k' = ^/{2m(V0-E)lh2}. 

To get a physically satisfactory solution the constants must be so 
chosen in the three regions (one inside and two outside), that its 
constituent parts join smoothly and satisfy the other necessary 
conditions (p. 18). The exponential terms which increase on going out 
from the box must therefore be discarded (i.e. be given zero coefficients) 
and a properly matched solution might take the form Fig. 2.2. In fact, 
this matching can be achieved only for certain special values of E, 
which determine both the wave length inside the box and the rapidity 
with which the exponential "tails" fall off. This means that stationary 
states of the system can exist only for certain values of the energy. The 
existence of "quantized" energy levels is, of course, an important 
distinctive feature of the quantum mechanical description. A second 
important non-classical feature is the possibility of "penetration" of 

Jin some cases the complex exponential form φ = A'eikx + B'e~ikx is more convenient. 
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the particle into regions where it would not be expected, namely beyond 
the boundaries of the box where the exponential tails of the wave 
function may persist for some distance. 

The solution of this simple box problem, surprisingly perhaps, cannot 
be completed without recourse to numerical or graphical methods to 
evaluate the constants A, B, etc., but the form of the wave function 
suggests how the boundary conditions may be simplified so as to make 
solution easier. Thus as Fo is taken larger and larger the exponential 
decrease of φ outside the box wrill become more and more rapid {k' 
large): in the limit when Fo —>· oo we speak of an "infinitely deep" 
potential box and may take φ = 0 at the boundaries of the box. 

(x-o) (x-L) 

FIG. 2.2. Typical eigenfunction for a one-dimensional box. The vertical 
lines indicate the box boundaries, at which the external and internal 

solutions must join smoothly. 

Let us turn at once to the three-dimensional case of a box in the form 
of a cube, outside which the potential energy function F rises to an 
indefinitely large value. Such a box provides a useful "model" for 
various types of real system (e.g. a gas molecule in a container, or an 
electron in a metal). If the length of each edge is L, and the zero of 
potential energy (which is always arbitrary) is chosen so that F = 0 
inside the cube, the Schrödinger equation (1.24) becomes 

I t is useful to look first for a particular type of solution (cf. p. 12) of the 
form 

φ(χ, y, z) = X(x) Y(y) Z(z). (2.2) 

This technique is known as ' 'separation of the variables" and is discussed 
in Appendix 2. 
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On substituting (2.2) into (2.1), and dividing both sides by 0, we 
obtain 

Ä* /I d2X 1 d*Y \d*Z\ 
~^\χΊ^ + ΎΊ^+ζΊ)^) ~~ ' v2,3) 

The first, second and third terms in the left-hand side depend solely on 
x, y and z respectively. In order that the sum of these three terms may 
be equal to a constant E for any values of x, y and z, each of these terms 
must be a constant—for otherwise each would vary independently of 
the others. We call these constants a, b and c, respectively, and have 

1 d*X 1 d*Y t 1 d*Z 
= a> ττ-ΊΤο = &> ^TT = c> ( 2 · 4 ) X cfaa ' Y dy* ' Z cfe« 

\vhere the constants must satisfy 

ί ? = -(Ä2/2m)(a + 6 + c). (2.5) 

The solutions of the above equations were considered at the beginning 
of this section: thus, for the first equation in (2.4), 

X(x) = A sin (xV - a) + B cos (xV -a) (a < 0), 

X(x) = C exp (zVa) + D exp ( - a V a ) (a > 0), (2.6) 

where A,B,C and D a r e arbitrary constants. 
To fix the constants in (2.6), we use the boundary condition φ = 0 

corresponding to an effectively infinite rise in potential energy—which 
implies simply that the particle cannot penetrate the walls. A corner 
of the cube is taken as the origin of the coordinate system and the 
boundary conditions on X(x) become X = 0 at x = 0 and x — L. 
When a > 0 these conditions require, respectively, 

C + D = 0, 

C exp {LVa) + D exp ( - L\/a) = 0 

and are satisfied only when C = D = 0. This means that X(x) is 
identically zero and the solution is of no physical interest. 

When a < 0, the boundary condition at x = 0 tells us tha t D = 0, 
while the condition at a; = L becomes 

Lyf^a = ηχπ, nx = 1, 2, 3 (2.7) 

Consequently, there exist non-vanishing solutions X(x) only for values 
of a given by (2.7), and these are 

X(x) = C sin (nxnx/L). (2.8) 
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The solutions for the y- and ^-components are of exactly the same type 
and it follows from (2.2) that 

<t>nxnynz = N sin (nxnx/L) sin (nyny\L) sin (nznz/L), (a) 

# 2 π 2 

^ , η , = 2 ^ 2 ( ^ 2 + % 2 + n*2)> (b) (2·9) 

where JV is a normalization constant and is easily found to be (2/L)3/2. 
The energy values for which non-vanishing solutions exist are called 

energy eigenvalues and the corresponding wave functions are energy 
eigenfunctions. The eigenvalues in this example do not assume con-
tinuously variable values and are said to be discrete ; they each depend 
upon three quantum numbers, nx, ny, nz, which are used to label the 
corresponding states. 

The state with the lowest possible energy is usually referred to as the 
ground state, nx = % = nz = 1. The energy and the wave function are 
then 

^111 = 2 ^ ' *iii(*.**> = ^ J S m T S i n T S i n T 

respectively. We note that φ\\\ does not become zero except at the 
walls; in other words there is no node inside the box. There is in fact a 
general theorem to the effect that the lowest energy eigenfunction of 
an equation such as (2.1) has no nodes. 

The next lowest energy is obtained when one of n% ny and nz is 2, 
the others each being 1. The energy is then 

6Α2π2 
Ezl1 = 2̂ ZS 

and there are three eigenfunctions with this same energy value : 
/2 \3/2 

02i i (s , Vy z) = ( T J sin (2nx/L) sin (ny/L) sin (nz/L), 

2\3/2 

L)
 8i Φΐ2ΐ(%, y> z) = ( -r I sin (nxjL) sin (2ny/L) sin (nz/L), 

/ 2 \ 3 / 2 

Φιΐ2(%> y y z) = I 7 ) sin (πχ/L) sin (ny/L) sin (2nz/L), 

When, as in this case, two or more different eigenfunctions have the 
same eigenvalue the states and the energy level are said to be degenerate 
and the number of corresponding eigenfunctions is the degree of 
degeneracy. In this example, the first level above the ground state—the 
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first "excited" state—has a three-fold degeneracy. We also note that 
each of Φ211, Φ121 and φιιι has one nodal surface in the box, at 
x = Lj2 y = L\2 and z = L\2 respectively. This is a general feature 
of wave functions ; the higher-energy eigenfunctions contain a higher 
number of nodes. 

A detailed discussion of the forms of the wave functions for higher 
quantum numbers, and of the correspondence between classical and 
quantum descriptions, is available elsewhere (e.g. Pauling and Wilson, 
1935). Here we remark only that the characteristic quantization of the 
energy levels becomes less and less important in situations where 
classical mechanics would be expected to apply. Thus for a gas molecule 
in a 1-centimetre cube, with energy ~ (3/2)&T, the quantum numbers 
are generally extremely large numbers; discrete "jumps" on adding 
energy are then not noticeable, adjacent levels being separated by a 
very small fraction (usually < 10~10) of the energy itself. The system 
appears to behave classically, as if continuous variation of the energy 
were permitted. For an electron, on the other hand, confined in a box 
comparable with the experimentally inferred size of the hydrogen atom, 
the energy difference between two adjacent levels may be of the same 
order as the energy itself, and it is obvious that classical mechanics is 
entirely inapplicable. Again (Section 1.4) classical mechanics appears as 
an appropriate limiting case. 

Finally, it must be emphasized that the boundary conditions played 
an essential role in determining the eigenvalues and eigenfunctions. An 
alternative choice, which will in fact be given a physical interpretation 
in a later section, imposes a periodicity on the wave function by 
requiring, for example, 

X(x = 0) = X(x = L) 

\dxJx=o \dxJx=L 

and instead of (2.7) and (2.8), we then obtain 

LV — a = 2ηχπ9 nx = 0, + 1 , ± 2 , . . . 

X(x) = C sin (2nnxIL)x + D cos (2nnx/L)x. (2.11) 

The energy expression is obtained as before. The ground state in this 
case corresponds to nx = ny = nz = 0, so that Eo 00 = 0 and 
0000 = constant = i - 3 / 2 . All the excited states are degenerate, the 
energy depending only on the squares of nx,ny, nz which now take both 
positive and negative values. 
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2.2. The harmonic oscillator 

For simplicity, we consider the one-dimensional harmonic oscillator. 
This corresponds to the classical situation in which a particle is attracted 
towards the origin by a force proportional to its displacement from the 
origin. If we denote the proportionality constant by k(k > 0), the force 
and potential energy are, respectively, 

F(x) = -kx, V(x) = \kx2 

and the Schrödinger equation for the particle becomes 

"+--£ι£+***+= Ε+· < 2 · 1 2 ) 

To reduce this equation to a neater form, we introduce 

2m _ mk 

and obtain instead of (2.12) 

^ + (λ-α2χ2)φ = o. (2.13) 

This equation should hold for all values of x, and it is useful to consider 
first how the solution must behave when \x\ is very large. The term 
λφ in (2.13) can then be neglected in comparison with — <χ2χ2φ and the 
equation reduces to 

dx^ = *Χφ' 

Now it is clear that a trial function 

X(x) = exp(±Jao: 2 ) 

would almost satisfy this equation; for, differentiating twice, we obtain 

d2X 
dx2 = ±oc exp (±^(XX2) + OL2X2 exp ( ± | a x 2 ) 

and if we are considering the case where \x\ is very large, then the first 
term on the right-hand side may be neglected by comparison with the 
second. We therefore conclude that the solution φ(χ) of (2.13) resembles 
X(x) when \x\ is large, and notice also that the negative sign in the 
exponent is required if j | φ | 2 dx is to be finite. 
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When \x\ is not so large, φ(χ) will be different from X(x), but the 
difference may be expressed in terms of an unknown function which we 
shall call u(x) : 

φ(χ) = u(x) exp ( — \ax2). 

On putting this expression into (2.13), it appears that u(x) must satisfy 

d2u du / Λ 

- — ι - 2 α . τ — + ( / - α ) ^ = 0. 
αχά ax 

This is closely related to a well-known second-order differential 
equation: to obtain the standard form we. change the independent 
variable from x to ξ = xVcc and obtain, putting u(x) = ν(ξ), 

§-2Φ(;-Ή-
This equation may be solved by the standard method, discussed in 
Appendix 3, of writing η(ξ) as a power series in ξ and determining the 
constant coefficients. 

The results may be summarized as follows. In general the power series 
defining η(ζ) is infinite and its value for ξ large rises even more rapidly 
than exp (ax2/2); the solution cannot then be normalized and must be 
rejected. On the other hand, for the particular λ values given by 

χ = (2η+1)α, n = 0, 1,2, . . . (2.15) 

the series for u^) will terminate, becoming a finite polynomial of degree 
n. The corresponding function φ will be normalizable and therefore an 
allowed wave function. The finite polynomial of nth degree which 
satisfies (2.14) with λ given by (2.15) is the Hermite polynomial, Ηη(ξ) 
(Appendix 3). The permissible stationary state energies of the harmonic 
oscillator may thus be written (remembering the definitions of λ, α) 

En = (n + \)hy/(klm). (2.16) 

Since the vibration frequency according to classical mechanics is given 
by 

l Ik 
v = - - (2.17) 2nyJ m 

it is customary to write (2.16) in the form 
En = (n + i)hv. (2.18) 

The corresponding wave functions, after normalization, are found to be 

Φη{χ) = ^ ^ (^J Hn(xV^) exp ( - Jos*). (2.19) 
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The energies and wave functions for the ground state and first two 
excited states are given below : 

E0 = JAv φο = ( α / τ θ ^ β χ ρ ( - t e 2 ) , 

Ei = |Av φι = ^ ( a / n ^ W a e x p ( - |α.ε2), 

# 2 = |Αν 02 = iV 2 ( a /* ) 1 / 4 (2oB 2 - 1) exp (-Joa?*), 

respectively. The shapes of these eigenfunctions are shown in Fig. 2.3 
which illustrates the general fact that φη contains n nodes, the energy 

x=0 

FIG. 2.3. The first three eigenfunctions of the linear harmonic oscillator, 
^ο, φΐί Φ2 correspond to quantum number w = 0, 1, 2. 

again increasing with n. In Fig. 2.4, φ2 is plotted against x, arid the 
probability distributions in these states are seen to be markedly 
different from those expected classically. According to classical 
mechanics the particle is most likely to be found at the extremities of 
its motion, and for given energy these boundaries are quite sharp : in 
quantum mechanics there is clearly some possibility of penetration into 
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the classically forbidden regions. As n increases, however, the quantum 
mechanical picture rapidly begins to approach that obtained from 
classical mechanics (see, for example, Pauling and Wilson (1935) p. 76). 

x=0 

FIG. 2.4. The first three probability functions of the linear harmonic 
oscillator. The curves show | φη\

2 for n = 0, 1, 2. 

2.3. The hydrogen atom. Atomic units 
The hydrogen atom will be treated fully elsewhere (Vol. 2), but it is 

useful to give here a simple treatment of the ground state. The proton, 
nearly 2000 times heavier than an electron, is considered to be at rest, 
merely defining the potential field in which the electron moves. The 
justification for this assumption is considered in Vol. 2, Section 2.1. We 
take the proton as the origin of coordinates and consider the one-particle 
Schrödinger equation for the electron. The classical potential energy 
expression is V = — e2/fCor, where r is the distance between the electron 
and the proton and KQ = 4πεο (εο = permittivity of free space). J Thus 

#2 e2 

Ηφ = - — ν2φ φ = Εφ. 
2m Kor 

(2.20) 

In view of the exponential behaviour of wave functions in a region of 
constant (or slowly varying) potential it would be reasonable to expect, 

Jin this book we use SI units: Ko is replaced by unity in mixed Gaussian units. 
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for large r, solutions containing an exponential factor ; in the simplest 
case we might even consider a ' 'trial' ' function of the form 

4>(r) = Aexv(-br), (2.21) 

where A and b are constants, and t ry to choose 6 so as to satisfy the 
equation (2.20). This procedure may or may not be successful, but may 
easily be tested. By direct differentiation, we obtain (retaining for the 
moment Cartesian coordinates, with r = (x2 + y2 + z2)1/2) 

g-"(-^+»3«*<-« 
and thus, adding the similar terms d2$\dy2 and δ2φΙδζ2, 

ν2φ = Ab(b--\exp(-br). 

Putting this into (2.20), we require 

\^b(b-^ + — + E\Aexp(-br) = 0. 
[2m \ rj Kor J 

To make the expression in square brackets vanish, we must equate to 
zero separately the constant terms, giving 

(h2l2m)b2 + E = 0, 

and the terms in 1/r, which give 

(h2lm)b-e2jK0 = 0. 

Thus, when the constant is chosen as 

b = me2lh2K0 (2.22) 

the wave function (2.21) satisfies the Schrödinger equation and the 
energy eigenvalue E is given by 

E = -(h2l2m)b2 = -(me*l2h2K0
2). (2.23) 

The remaining constant A is easily determined as 

A = 6 3 / 2 / ^ (2.24) 

by use of the normalization condition. 
The wave function (Fig. 2.5a) has no node and is therefore expected 

to represent the ground state. Further confirmation is obtained by 
inseiting numerical values of m, e, KO andiï in (2.23) : the result is 

E = - 2-1796 x lO~ 1 8 J = -13-605eV 

and agrees fairly closely with the observed ionization potential of 
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13-595 eVj—which is simply the energy required to remove the 
electron to infinity (the conventional zero of energy) from the hydrogen 
atom in its ground state. 

0-6 

0-4 

0 2 

0 ! 2 3 4 

0 6 

0 4 

0 2 

0 1 2 3 4 

F I G . 2.5. Ground state of the hydrogen a tom: (a) wave function φ as a 
function of radial distance r, (b) radial probability density P . Atomic units 

are used throughout. 

A measure of the extension of the electron probability density in the 
ground state is given by 1/6, since when r takes this value φ has fallen 
to 1/2-303 times its value at the nucleus. In fact 

6-1 = K0Ä2/me2 = 0-529172 x ÎO"10 m. 

This is the "Bohr radius" and is usually denoted by ao, its value being 
the radius of the first orbit in Bohr's semi-classical theory. To obtain 
the quantum mechanical interpretation of ao, we remember that \φ\2 

is a probability per unit volume, and the probability of finding the 
electron at a given distance, from the nucleus, say between limits r and 
r + dr, may thus be written P(r)dr = énr2drx \φ\2 since |φ | 2 has the 
same value over the spherical shell of volume 4nr2dr. The "radial 
probability density" P (Fig. 2.5b) therefore vanishes at the origin and 
has its maximum at a distance determined by setting dPjdr = 0 : this 
condition at once yields r = «o> showing that the Bohr radius actually 
indicates the most probable distance of the electron from the nucleus 

JThe origin of the small difference of 0-01 eV will be discussed later: it arises mainly 
from the assumption of a fixed nucleus. 
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in the ground state. The wave function φ for an electron in an atom is 
usually referred to as an "atomic orbital"; it is commonly represented 
pictorially (Fig. 2.6) by means of a "contour map" showing surfaces on 
which φ is constant, or by indicating a surface (in this case a sphere) 
within which φ is largest and outside which the probability of finding 
the electron is small. The hydrogen-like atomic orbitale are fully 
discussed in Vol. 2. 

Atomic units 
In discussing atoms and molecules, it is often convenient to use 

"atomic units". In this system, the electronic mass m9 the absolute 
value of the electron charge e, and the rationalized Planck constant 

(a) 

FIG. 2.6. Representations of hydrogen atomic orbitale:| (a) contour map 
showing values of φ on spheres centred on the nucleus, (b) schematic 
indication of bounding contour (sphere) within which there is a high 

probability (e.g. 90%) of finding the electron. 

fo( = Α/2π), are used as units of mass, charge and action, respectively. 
The units of energy, length, time, velocity are then completely deter-
mined and all equations take a simpler form, the variables thenrbeing 
numerical measures in atomic units of the quantities they represent. 
Thus, the energy and electronic wave function of the hydrogen atom 
in its ground state become 

E = -^Har t ree , φ(τ) = π - 1 / 2 exp ( - r ) 

—the "Hartree" being fairly widely used as the name of the energy 
unit, though not regarded as a primary unit. Great care should be taken 
in using atomic units. For example, r in e~r must be a pure number, for 
dimensional consistency, and the actual radial distance is thus rao. 
Also |<£(r)|2 is a density and φ(τ) therefore implicitly contains a factor 
ao~3/2, although we have put ao = 1. A detailed discussion of units and 
dimensions is not required at present and is deferred until Vol. 2. 
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The energy is also frequently expressed in various ' 'practical" units, 
such as electron volts, kcal m o l - 1 ^ wave numbers (cm"-1),!! etc. The 
relations among these units are indicated in Table 2.1. 

T A B L E 2.1 
Conversion table for energy units 

1 H a r t r e e 
1 J 
1 eV 
1 kcal ( m o l - i ) t 
1 c m - 3 

1 MHz 

1 H a r t r e e 
1 J 
1 cV 
1 kcal ( m o l - i ) î 
1 c m - 1 

1 MHz 

H a r t r e e 

1 
2-29364x1017 
3-67501 x 10-2 
1-59347x10-3 
4-55635 x lO" 6 

1-51981x10-1° 

kcal ( m o l - i ) t 

6-27506 x 102 

1-43917 x 1020 
230609 

1 
2-85914 x 10-3 
9 -53690x10-8 

J 

4 -35944x10-18 
1 

1-60210 x 10-19 
6-94664 x 10-21 
1-98631x10-23 
6-62552 x 10-28 

cm - ! 

2-19474x 105 
5-03394 x 1022 
8-06569 x 10 3 

3-49725x102 
1 

3-33559 x 10~5 

eV 

27-2108 
6-24118x1018 

1 
4 - 3 3 5 9 6 x 1 0 - 2 
1-23982x10-4 
4-13552 x l 0 ~ 9 

M H z 

6-57969 x 109 

1-50930 x 1027 
2-41804 x 108 
1-04845 x 107 

2-99794 x 104 

1 

Notes. The table indicates equivalences, not equalities. Thus 1 eV is "equivalent" to 
23-0609 kcal(mol - 1) in so far as the latter is the energy of L systems (L = Avogadro 
number = 6-02252 x 1023) expressed in thermal units. Similarly, wave numbers and 
frequencies are related to corresponding energies by E = hv. 

JThe thermochemical calorie is defined as 1 cal = 4-184 J . 

2.4. The free particle 
Although the particle moving in free space was considered in some 

detail in Chapter 1, one or two further points need attention. We 
choose the potential energy zero so that V = 0 everywhere and the 
Schrödinger equation becomes 

Ηφ=-^+^+^) = Εφ· ( 2 · 2 5 ) 

§The energy in thermal units of L systems (L being the Avogadro number) instead of 
one : this is the unit used in thermochemistry. 

||An energy E may be associated with a frequency v by the Planck relation E = hv, 
and hence with a wave number ( 1IX) by E = hc( 1JX). Such units are employed in spectro-
scopy. 
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This has plane-wave solutions and by choosing the direction of 
propagation as the z-axis the dependence on y and z vanishes, permitting 
reduction to the one-dimensional equation 

j4 = -&2Φ (fc2 = ZmElh*) 

which has solutions (taking k positive) of the formj 

φ = A exp (ikx)+Bexp (-ikx), E = (Ä2/2m)fc2. (2.26) 

More generally, the equation may be separated (pp. 23-4 and Appendix 
2) and the general solution is a product of three factors X, Y, Z, of 
similar form but referring to variables x, y, z, respectively. 

In contrast with the other examples considered so far, the eigenvalues 
may here lie anywhere in the continuum of positive E values, for no 
restrictions have been placed on k; all positive energies are allowed. 
A second important difference is apparent when we try to normalize φ, 
for the integral of \φ\2 over all space is no longer finite for any non-zero 
values of A and B. 

The reason for the normalization difficulty is in this case purely 
mathematical, for a particle known to be in any finite region of space 
at any given time may be described by a wave packet, formed by com-
bining solutions of the type just found but with slightly different k 
values, and the packet is essentially localized and therefore normalizable 
although the basic wave trains are not. There are two main methods of 
circumventing this difficulty : 

(i) We relax the requirement that |φ|2 be integrable, bearing in 
mind the fact that a normalized wave packet may always be 
built up from functions of almost identical wave numbers 
(so that it is necessary to consider the solution for only one 
value of k). In this case any mathematically convenient 
normalization may be used, and it is useful (for reasons which 
will appear presently) to choose the solutions 

φ*(χ) = (2πΑ)-ι/2 exp (ikx), Ek = (*2/2m)Jfc2 (2.27) 
where the wavet number k is allowed to take both positive and 
negative values in order to admit both possibilities in (2.26). 
The general three-dimensional solutions are correspondingly 

φί(τ) = (2πΑ)-3/2 exp (tk · r), 
Ek = (Ä2/2m) (kx* + ky* + fc2

2), (2.28) 

JHere it is most convenient to use exp ( ± ikx) instead of the equivalent real solutions 
sin lex, cos hx. 
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where k is a wave vector with components kx, ky, kz which take 
positive or negative values, and k · r = xkx + yky + zkz. 

(ii) We imagine the particle to be confined within an arbitrarily 
large box, and normalize the wave function within the box. 
As the box is allowed to become indefinitely large the energy 
levels become quasi-continuous (cf. p. 26): for then E = 
ffi2j2m)k2 where k = nnjL and w is a positive integer, and 
for L indefinitely large, k may be chosen as near as desired 
to any given positive number. There is a difference, however, 
in that the boundary conditions used previously rule out 
complex solutions of the form (2.27), only the sin (kx) com-
bination being allowed in (2.26). 

In order to obtain free-particle eigenfunctions with the box 
normalization we employ periodic boundary conditions of the 
form (2.10) and easily verify that solutions of the form 
φ(χ) = C exp (ikx) are then admitted, with k = 2nnjL and n 
taking all integral values (0, + 1 , ± 2 , . . .). Both terms in the 
general solution (2.26) arethen covered. The solutions with 
" box normalization" are then 

<j>k{x) = _ L exp(ifcr), Ek = (H2\2m)k2 (2.29) 
V L 

in the one-dimensional case, and 

4>*(r) = - ^ e x p i i k · r ) , Ek = (h2l2m)k2 (2.30) 

in three dimensions. The allowed wave numbers are of the form 
Jcx,ky,kz = (2n/L)x(0, ± 1 , ± 2 , . . . ) (2.31) 

and therefore become quasi-continuous for a very large box. 

The second of the two methods of normalization is widely used in 
solid state theory and has a simple physical interpretation : the box may 
be regarded as a ' 'fundamental volume" and the boundary conditions 
simply ensure that what happens in this volume is repeated indefinitely 
in all the similar volume elements foimed by translation of the box 
along the three directions in space. The normalization implies that at 
the moment of observation the particle is supposed to be within the 
chosen fundamental volume: the corresponding \φ\2 is therefore a 
conditional probability, presupposing that a particle is present in the 
region under observation. The fact that the particle is "free", and is not 
reflected back at the boundaries of the hypothetical box, should be 
indicated by the existence of a non-zero probability current as defined 
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in (1.30). For a particle with wave function Ceik'r the x component of 
the current density is 
J* = 7^r \0\^[e-^^ikxé^-é^(-ikx)e-^xA = \C\* - kx (2.32) 

2im 

and is uniform throughout the box. If we imagine a large number of 
completely independent particles, each behaving as it would with wave 
function </>#(#), \C\2 is the expected number of particles per unit volume, 
and Jx is the expected number per second crossing unit surface normal 
to the #-axis : classically this would be Jx = (number/unit volume) x 
(x-component of velocity) and comparison with (2.32) shows that 
fikxjm corresponds to the x-component of the particle velocity. In other 
words, kx, ky, kz represent the three momentum components of the 
particle in units of h. This interpretation will be confirmed more directly 
in a later section. 

2.5. One-dimensional step potential with a finite potential 
height 

Finally, we consider a free particle meeting a potential barrier of 
finite height. Let us choose the position of the barrier as the origin and 
the potential as 

V(x) = 0 (x < 0); V(x) = V0 > 0 (x > 0). 
This potential is illustrated in Fig. 2.7 and the wave functions are 
determined by 

Ä2 d2o 

F I G . 2 . 7 . One-dimensional potential barrier, showing typical wave function 
for a particle incident from the left with energy less than VQ. Reflection 

produces a standing wave. 
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We distinguish three cases, first E < 0, second Vo > E > 0, third 
E > Vo and discuss each in turn using the appropriate general 
solutions (p. 24) : 

(i) E < 0. 

The solution is exponential in both regions. Ifc soon appears, 
however, that the boundary conditions cannot be satisfied by any 
non-zero values of the constants. No acceptable wave function therefore 
exists, and, as in classical mechanics, there is no corresponding state of 
motion with E < 0. 

(ii) 0 < E < V0. 

I t is clear that φ must be of complex exponential form in the left-
hand region of Fig. 2.7, but must be a decaying exponential in the 
barrier region : let us take 

φ(χ) = eikx + Ae~ikx, k = ^J(2mE\W) (X < 0), 

φ(χ) = Be~kx, V = ^/{2<m(V-E)lh2} (x > 0). (2.33) 

Normalization has been disregarded in view of the discussion in 
Section 2.4. The boundary conditions at x = 0 are easily found to be 

1+^4 = B, 

ilc — Aik = —Bk\ 

from which we obtain 

k' + ik ^ -2ik 

To interpret the solution we compute the probability current density in 
each region. For x < 0 we obtain 

h f 
Jx = Ue-ikx + A*eikx)(ikeikx-Aikeikx) 

2im [ 

- (eikx + A e~ikx) ( - ike~ikx + A*ikeikx) I 

which reduces to 

hk 
Jx= _ ( 1 - μ | 2 ) . (2.35) 

From (2.34), however, it follows tha t A is a unimodular complex 
number; Jx therefore vanishes. In the absence of the barrier 
(A = B =0 ) , there would be a probability current hk/m along the 
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(2.35a) 

(2.35b) 

(2.36) 

JNote that the present normalization corresponds to C = 1 in (2.32). 

^-direction ; J and the fact that insertion of the barrier reduces this current 
to zero means that a particle with E < Vo is sure to be reflected. The 
solution may in fact be written in real form and describes a standing 
wave on the left of the barrier. There is clearly a non-zero probability 
that the particle will penetrate some distance into the barrier; but it is 
easily verified that, for Vo —>oo, φ(χ) —> sin to (x < 0), ->0(# > 0). 
Thus for sufficiently large Vo the barrier forms a strictly impenetrable 
wall and the boundary condition imposed in Section 2.1 is rigorously 
justified. 
(iii) E > F0. 

The solution must be of complex exponential form in both regions, a 
single term eikx being appropriate for x > 0 since the term e~ikx 

would describe a particle incident from the right of the barrier, a 
situation not considered. The values of k (for the region x < 0) and 
k' (for x > 0) are evidently 

and we find easily the current density expressions 

where 

The statistical interpretation is clearest if we imagine a large number 
of independent particles, each described by the wave function φ. In 
this case the number per unit volume is proportional to \φ\2 and the 
number flowing across unit area perpendicular to the x-axis is pro-
portional to Jx. We then have 

Number crossing unit area/sec 
(i) in absence of the barrier oc hk/m, 

(ii) to left of the barrier oc M/m x ( 1 — \A\2), 
(iii) in the region beyond the barrier oc fik/m x (&'/&)|J5|2. 

It follows that \A\2 represents the fractional number of particles turned 
back from the barrier (thereby reducing the net current) and is therefore 
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a reflection coefficient, while (k'jk)\B\2 is the fractional number penetrat-
ing the barrier, or in other words a transmission coefficient. The sum of 
the two coefficients is of course unity, any incident particle being either 
transmitted or reflected. 

I t should be noted that the above results have been obtained using 
the stationary state eigenvalue equation, which may appear to be some-
what artificial. We remark that exactly the same results may be 
obtained by constructing an incident wave packet, using wave numbers 
in the immediate vicinity of k, and following the time development of the 
packet as it meets the barrier. The wave packet is simply a superposition 
of the stationary state solutions, of which we have obtained a typical 
one. The wave packet treatment of scattering processes is fully discussed 
in another volume of this series. 
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CHAPTER 3 

MATHEMATICAL DIGRESSION 

3.1. Preliminaries. Operators and eigenvalue equations 
In Chapter 2 we set up and solved Schrödinger's equation for certain 

simple one-particle systems. Most of the systems of interest in physics 
and chemistry, however, are vastly more complex, and many mathe-
matical generalizations are necessary before progress can be made; 
some of these generalizations relate to concepts and principles, with 
which this volume is mainly concerned; others relate to the develop-
ment of methods for obtaining approximate solutions and are studied 
more fully in Vol. 2. In this Chapter we review the mathematical tech-
niques which are basic to the general formulation of quantum mechanics. 

We start from the differential equations encountered in Chapter 2. 
These are all eigenvalue equations ; each one contains some numerical 
parameter, λ say, such that solutions of a given class (p. 18) arise only 
when λ takes specific values—the eigenvalues. The set of eigenvalues— 
the spectrum—may be discrete (as in the examples of Sections 2.1-2.3) 
or continuous (as in Sections 2.4-2.5) ; but in all cases we meet equations 
of the general form 

dH dé 
a{x)d^+b(x)'£+c(x){l/ = Α/(Λ#' (3,1) 

where a, 6, c, / are real functions of #, while ψ(χ) may be the wave 
function itself in a one-dimensional problem, or one of the factors when 
the wave function is written as a product in separating the variables. 

The left-hand side of (3.1) may be regarded as a prescription for 
obtaining from ψ a new function; in words it means "multiply ψ by 
the function c(x), to this add the result of differentiating ψ with respect 
to x and then multiplying by b(x), and finally add the result of differen-
tiating ψ twice and multiplying by a(x)". Each term is the result of a 
certain operation on ψ, and it is customary to speak of b(x)(d/dx), for 
example, as the operator involved in obtaining from the operand ψ the 
new function b(x)dil//dx. I t is then possible to recognize properties of 
the operators which do not depend on the particular form of the 
function on which they operate. For example, 

41 
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for any pair ψι, and φ2, of continuous functions of x. If we abbreviate 
the differential operator to the single symbol D this result, and a similar 
one obtained by operating on a multiple of φ, may be written 

0(φλ + φ2) = Όφ1 + Οφ2, 

Ο(οφ) = οϋφ (3.2) 

for any complex number c. These are not trivial properties (they are 
not possessed, for example, by the operator, S say, which squares the 
operand) ; they serve to define linear operators. Nearly all the operators 
we encounter in quantum mechanics are linear. 

It is also convenient to define the sum and the product of operators, 
in such a way that, for example, the left-hand side of (3.1) may be 
denoted by D where 

and the implication is that when D operates on any function φ it 
produces the function on the left in equation (3.1). The sum of two 
operators A and B is thus defined so that 

(Α + Β)ψ = Αφ + Βφ. (3.3) 
In other words, (A + B) operating on any φ means ''operate with A and 
B separately and add the results". Similarly, the product (AB) is defined 
by 

(AB)tfr = A(Bi/0 (3.4) 

and (AB) operating on any φ means "operate first with B (nearest to φ) 
and then operate on the result with A". If A and B stand for the opera-
tions of multiplying φ by a(x) and b(x) respectively, it is clear that 
AB = BA (the order of multiplication makes no difference); the operators 
are then said to commute. But when differential operators are admitted 
it is easily verified that the order is important and in general 
AB Φ BA. It is also clear that the notion of equality of two operators 
needs definition ; for generality we must define 

A = B if and only if Αφ = &φ (all φ), (3.5) 
where "all φ" means for all functions of the class considered in defining 
the operators. % The most trivial operation is multiplication by a 

% Norm ally it will be assumed that the functions of importance in quantum mechanics 
belong to class Q (p. 18). It is important to note that the operators ara fully denned 
only with reference to some specified class (e.g. functions for which the derivatives 
exist), although points of mathematical rigour will usually be ignored. 
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constant, c. The above definitions simply ensure that any collection of 
sums, products, and multiples of operators may be manipulated exactly 
as in elementary algebra provided the order of the operators is always 
retained. In this connection we note that the usual shorthand for powers 
is also taken over. For example, 

(aA + 6B)2 = (aA + 6B)(aA + 6B) = α2Α2 + αδ(ΑΒ + ΒΑ) + &2Β2 

where the middle term reduces to 2a6AB only if the operators A and B 
commute. 

Eigenvalue equations. Self-adjoint form 
We shall study some general properties of eigenvalue equations, 

writing (3.1) in the form 

ϋψ = λ/ψ (3.6) 
where the differential operator D now denotes (a, 6, c, still functions of 
X) 

d2 d 
D = ad*-* + bd-X

+C- ( 3 · 7 ) 

The general theory of linear second order equations is usually developed, 
however, not for (3.6) but for the "Sturm-Liouville equation" 

Ιφ = λίνψ, (3.8) 
where L is a "self-adjoint" operator with the rather specific form 

d ( d\ d* dp d 
ι = ^{ρτ,π = ρι^'"ΤχΤ^ ( 3 · 9 ) 

in which p(x), q(x) are real functions οϊχ, while the w(x) is everywhere 
real and positive. Much is known about Sturm-Liouville equations 
(Courant and Hilbert, 1953; Kemble, 1937) and we therefore note first 
that the general equation (3.6) may always be reduced to the form (3.8) 
in which L is self-adjoint. To do this we multiply (3.7) by a function u(x) 
and try to choose u(x) so that 

d2 d 
uD = au rr-n + bu — +cu = L 

dxà dx 

uf = w. (3.10) 
On comparing uD with (3.9) we must choose u so that 

d 
bu *= — (au). (3.11) 

ax 
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But this is a simple first-order equation for the unknown function u(x) 
and can always be integrated to give the desired result. Any eigenvalue 
equation defined by (3.6) and (3.7) may thus be written in Sturm-
Liouville form, and the results of Sturm-Liouville theory are of rather 
general applicability. We continue to assume that the function w, 
whose significance becomes apparent presently, is everywhere positive ; 
this assumption covers all the most important equations. 

EXAMPLE. Hermite's equation. This equation, namely 
d2y dy 

1 2 - 2 x £ + 2ßy=0, 

which arose in the form (2.14) from the harmonic oscillator problem, is not in 
Sturm-Liouville form. On multiplying through by w, we can make the differential 
operator self-adjoint provided we choose u so that — 2xu = (du/dx). A solution 
is u = e~x* and the equation can therefore be written in the standard form (3.8) 
with 

L = e-*2 — -2xe-** —, w = e~x\ λ = -2β. 
dxà dx 

The weight factor w, introduced in this way, is particularly significant, as will be 
seen presently. 

We now show tha t the property of self-adjointness, together with 
certain rather general boundary conditions, implies that L has a very 
simple symmetry property. If we are concerned with solutions defined 
in the interval (a, b) and u, v are any two functions of the given class, 
the symmetry property which results is : 

(3.12) 

To show this, we write L in the first form of (3.9) and integrate by parts : 

Now the boundary conditions appropriate in quantum mechanics are 
invariably 

(3.13) 

Both quantities vanish when the boundaries are at infinity, owing to the 
condition of quadratic integrability; and the equality is also satisfied 



M A T H E M A T I C A L D I G R E S S I O N 45 

by the periodic boundary conditions of Section 2.4. On adopting this 
condition the first term in the expression for the transformed integral 
vanishes ; and on performing another integration by parts we obtain the 
desired result. 

To anticipate the appearance of complex functions and operators we 
state a slightly more general symmetry property which includes (3.12) 
as a special case. We normally assume quadratically integrable func-
tions (class Q) and when 

$u*(Lv)dx = j(Lu)*vdx (3.14) 
a a 

for any two functions of the class, the operator L (self-adjoint in a 
wider sense) is usually said to be Hermitian. We return to Hermitian 
operators in Section 3.7. 

Properties of eigenfunctions 
The property of self-adjointness of an operator (or more generally of 

Hermitian symmetry) is reflected in certain very general properties of 
its eigenfunctions. We suppose that φι and φ) are any two solutions 
of (3.8) and assume that L has Hermitian symmetry. Then by definition 

L·φi = λιΐϋφί, 

L·φj = Χ$νοφ$. 

We multiply the first equation by φ^, and the complex conjugate of 
the second by φι, and then integrate each over the range (a, 6) to 
obtain (remembering w is assumed real) 

b b 

^φ^Ιφιάχ = λι Ινιφ^φιάχ, 
a a 
b b 
$(1φ^*φ{αχ = Xj* $1ϋφ}*φι<1χ. 
a a 

But by (3.14) the left-hand sides are equal and hence, by subtraction, 
b 

(Χ%-Χ3*)$φ}*φιν)άχ = 0. (3.15) 
a 

Now if we choose φ% = φ$ the integrand becomes |<£i|2i0 and must be 
everywhere positive : the conclusion is that λ% = Ai*. In other words the 
eigenvalues of a Hermitian operator are real. 

We pass to the case i Φ j and observe that if λ\ Φ Àj then 
b 

$φι*φ}ιναχ = 0 (Xi Φ Xj). (3.16) 
a 
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Functions with the property (3.16) are said to be "orthogonal with 
weight factor w in the interval (a, &)". Thus eigenfunctions of (3.8) with 
different eigenvalues are mutually orthogonal in the sense (3.16). 

In most of the examples discussed so far the weight factor w has been 
unity and the eigenfunctions have been simply "orthogonal" without 
qualification. In the one-dimensional box, for example (Section 2.1), 
the eigenfunctions have the well-known property 

L 
Js in (nnxjL) sin (n'nxfL)dx = 0 {η' φ η) 
o 

conforming to (3.16) with w = 1. The harmonic oscillator (Section 2.2) 
provides the following more interesting example. 

EXAMPLE. H ermite'S equation. The solutions of class Q in the interval ( — oo, 
+ oo), denoted by Hn(x), arise when β = n, an integer. Since the weight factor 
occurring when the equation is written in Sturm-Liouville form (p. 44) is 
w = e~x% the orthogonality property of different eigenfunctions is 

+ 00 

J* Hn(x)Hn>(x)e-z%dx = 0 (ri φ ri). 
— 00 

We note also that the functions φη(χ) = Hn(x)e~x2f2 are orthogonal in the simple 
sense 

+ 00 

J Φη(χ)Φη'{χ)άχ = 0 (ri φ ri) 
— oo 

and notice that (apart from a change of variable x -► x\/oc) these are solutions 
of the original quantum mechanical problem (2.12). The argument leading 
to (3.16) could in fact have been applied directly to (2.12), which is already 
in Sturm-Liouville form with w = 1. Here we proceeded via Hermite's equation 
partly because this had already occurred in reducing (2.12) to a known standard 
form, and partly to illustrate orthogonality in the wider sense with w Φ 1. 

Finally, we note from (3.15) tha t two different functions φι, φ$ do not 
necessarily satisfy (3.16) if λ% and Xj happen to be equal. In this case of 
degeneracy it is also true from the linearity of the operator L tha t any 
linear combination φ = αφι + 6φ^ will also satisfy (3.8) with λ = Xi = kj 
(as may be verified by substitution). This means there is no need to 
discuss non-orthogonal solutions: for from φχ and φ$ we can always 
construct two mixtures, φ\ and φ'ρ which are still solutions and at the 
same time are orthogonal. The simplest way of doing this is indicated in 
the following example. 

EXAMPLE. Orthogonalization. Suppose φχ and φζ are two degenerate eigen-
functions, each satisfying L^ = λιυφ. Now replace the second function by 
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φι! = Φζ + οφχ and choose c so that φχ and φ% are orthogonal in the sense 

b 
J φι*(φ2 + βφι)ΐϊ(1χ = 0. 
a 

This requires only that 
ô lb 

c = — J φι*φ2Μ(Ιχ η φχ*φχΐυαχ 
a la 

and, since (by assumption w > 0) the denominator is non-zero, a solution 
certainly exists. Given a third degenerate solution say, φζ, we could replace 
it by φζ', orthogonal to both φχ and φ% (already orthogonal), by choosing 
φζ' = ^3 + c i ^ i + C2^2' and eliminating both coefficients from the two ortho-
gonality conditions. In fact the procedure could be continued for any number of 
degenerate functions, to yield a new degenerate set of orthogonal functions. This 
method of orthogonalizing is the Schmidt process, which can be applied to any 
set of functions, degenerate or non-degenerate. 

The conclusion from the last Example is that a set of eigenfunctions 
of a Sturm-Liouville type equation may without loss of generality be 
assumed orthogonal, irrespective of any degeneracies which may occur. 
If orthogonalization is necessary it may be achieved in an infinite variety 
of ways ; the Schmidt process indicated in the above Example is simply 
one systematic construction. It is customary also to normalize each 
member of the set so that Ιφη*φηνυαχ = 1, and the set is then said to be 
orthonormal. The properties of normality and orthogonality are usually 
combined in the statement 

b 

$φί*Φΐΐυ<Ιχ = Sij, (3.17) 
a 

where <5# = 1 (i = j), = 0 (i Φ j) is called the "Rronecker delta" and 
is an extremely useful symbol. 

3.2. Eigenfunction expansions 
We recall that an arbitrary function /(Θ) can be expressed in the 

interval — π ^ θ ^ + π ΐ η terms of the functions 

sin ηθ, cos ηθ, (n = 0, 1, 2, . . .) 
according to Fourier's theorem. If, for simplicity, we confine attention 
to functions defined in the region 0 ^ θ ^ π and satisfying the 
boundary conditions /(0) = f(n) = 0 the cosine terms may be omitted 
and we get a very simple example of an eigenfunction expansion 

f(0) = Σοηφη(θ). 

The expansion functions 

Φη(β) = - ^ s i n n ö 
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are immediately recognized as eigenfunctions of the box problem of 
Section 2.1 in which nxjL is replaced by the variable Θ. I t is easily 
verified that the (normalized) functions φη(θ) form an orthogonal set, 
as required by Sturm-Liouville theory. In quantum mechanics, the 
standard method of obtaining approximate eigenfunctions of some 
complicated eigenvalue equation is to introduce a suitable orthonormal 
set {φη} and to build up a best approximation by combining a finite 
number of terms with properly chosen coefficients. I t is useful, even at 
this point, to examine the nature of the approximation involved. 

f„(x) 

"Nw 

x=a x=b 

FIG. 3.1. Curve fitting. The function f(x) is approximated in the interval 
(a, b) by fn(x). 

Suppose we consider the expansion of f(x), in the interval (a, b), in 
terms of a given set of functions {φι(χ)} (i = 1 ,2, . . . ) . First we use only 
the first n terms, writing 

f(x) *fn(x) = £αΦ&) (3.18) 
ί=ι 

as an w-term approximation tof(x). The problem then is to choose the 
coefficients to get a best possible representation of this form, and this 
may be done in a convenient way by making the mean square deviation 
(Fig. 3.1) 

Mn = J | / (^)-£ c ^^) | 2 ^ (3·19) 
a i = l 

as small as possible. This is a simple "curve-fitting" problem. I t also 
introduces a new and important idea, that of completeness. If an 
arbitrary function f(x) can be approached arbitrarily closely in the 
sense Mn - > 0 as n —> oo, the set {φι{χ)} is said to be complete. Because 
the definition involves integration it does not imply that the right- and 
left-hand sides of (3.18) should become equal at every point, in the limit, 
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but rather that if any deviations occur they do so only at a finite 
number of points and in such a way as to give zero contribution to the 
integral. The function is said to be approximated "in the (quadratic) 
mean" and it should be noticed that the approximation is different in 
character from, say, a Taylor expansion, where the arbitrary function is 
approached arbitrarily closely at all points in the neighbourhood of a 
given point. We return later to the question of completeness. 

The importance attached to deviations in different regions could be 
adjusted by introducing an arbitrary weight factor, replacing (3.19) by 

Mn = f\f(*)-t <H4>i{x)\*u>(z)dx (3.20) 
a i-1 

and we study the minimization of this more general measure of the 
deviation. The best coefficients occur when{ dM/dct = 0, dM/dCi* = 0 
(i = 1, 2, . . ., n) and taking the second condition gives 

) ( m - Σ ^ΦΜ)) <i>i*(xMx)dx = o. 
a \ = 1 / 

Thus for each function φ% we require 
b n b 
$(j)i(x)f(x)w(x)dx = Ση$φι*(χ)φάχ)ίν(χ)αχ. (3.21) 
a j = l a 

An important practical consideration now arises. If a function φη+ι(χ) 
is added to the expansion, it would be most inconvenient to have to 
redetermine the coefficients of the first n functions : and there is then 
good reason to impose a "condition of finality", trying to choose the 
function system in such a way that the best values of the first n 
coefficients in an (n+1) term approximant agree exactly with those of 
the n-term approximant. If we write down the counterpart of the last 
equation it will contain just one new term on the right-hand side. 

JNote that if F is a function of a complex number c it is permissible to treat c and c* 
as independent variables. Thus, the real part x and the imaginary part y can vary 
independently, and an extremum of F is therefore given by the conditions 

dx ~~~fc'dx'+ de* dx de + de* " °' 

a ^ _ a £ j t e dF^dc*__d£ dF 
dy de dy de* dy de de* 

These conditions are clearly equivalent to (dF/dc) — (dF/dc*) = 0. Thus it is formally 
possible to regard c% and c$* as independent variables, even though knowledge of one 
completely determines the other, 
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Subtraction of the two equations then shows that the condition of 
finality is equivalent to the requirement 

b 

$φη+ι(ζ)Φ(%)Μχ)άχ — 0 (i = 1, 2, . . ., n). 
a 

In other words, φη+ι(χ) must be orthogonal to φι(χ), . . ., φη{%) with 
weight factor w(x). I t follows by induction that every pair of functions 
in the set must satisfy a similar orthogonality condition and, if (as may 
always be done) we normalize each function, the set will be orthonormal : 

j φί*(χ)Φί(χ)ιν(χ)αχ = ôij. (3.22) 

The sets of eigenfunctions of differential equations, introduced in 
earlier sections, therefore seem to be excellently suited for approxima-
tion in the mean to arbitrary functions of the same class. 

For orthonormal sets the expansion coefficients follow easily, for in 
(3.21) only one term remains on the right-hand side—that which con-
tains ct. The result is then 

Ci = J^i*(x)f(x)w(x)dx. (3.23) 

This determination of coefficients is final and unchanged as the 
approximation is improved by taking more and more terms. 

We can now express the idea of completeness in a more precise form 
by calculating the quantity Mn and examining its behaviour as n -> oo. 

b 

Mn = Jl\f\2-f*fn-fn*f+\fn\2]wdx 

a 
b b b b 
r n r n /· n r 

= I/I 2wdx — Y^Cj $*φιν)άχ — £ c i * φί*/ίναχ 4- £c$*ty φ^φιΐνάχ 
J j=i J ί=ι J i,j J 

! 
|/|2»Λ»-2ΣΝ8+ΣΝ2 

and since Mn is by definition essentially positive, this requires 

J|/|*«;ck-IMa>0. (3.24) 
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This is "BessePs inequality". Clearly, completeness requires that the 
quantity on the left tends to zero as n —► oo : at any stage in the process 
it gives a convenient numerical measure of the failure of a finite 
approximation. In quantum mechanics we are usually concerned with 
functions of integrable square, normalized so that the first term in (3.24) 
has the value unity, and in this case completeness of the set requires 
that in the expansion of any normalized function of the given class 

ΣΝ 2 - ι 
(from below), as n —► oo. Important theorems concerning complete sets 
have been established in recent years, but for present purposes the 
completeness criterion implicit in BessePs inequality will be adequate. 

3.3. Generalization to many variables 
Although the preceding discussion of eigenvalue equations and 

eigenfunction expansions arose from a study of differential equations of 
Sturm-Liouville type most of the arguments were, at least superficially, 
independent of the mathematical nature of the operator L and the 
function φ. In quantum mechanics we deal with functions of many 
variables and note the following generalizations : 

(i) Orthonormality of eigenfunctions 
In introducing this idea we assumed only one independent variable x. 

We might, however, have worked equally well with Schrödinger's 
equation in unseparated form, namely H φ = Εφ where (for one particle) 
H and φ involve three variables. Or we might have considered the most 
general case in whichj Ψ = Ψ(χ) is a many-particle wave function, 
involving many variables which we symbolize collective by a bold 
letter x. Provided H has the hermitian symmetry property analogous 
to (3.14), namely, 

$U*HVdx = $(HU)*Vdx (3.25) 
then the orthogonality of different solutions of the general equation 

ΗΨ = ΕΨ (3.26) 
follows exactly as in the one-variable case (pp. 45-46). We note that 
the weight factor in (3.26) is unity (cf. (3.8)) and that the eigenfunctions 
may thus be assumed orthonormal in the simple sense 

/Ψί*Ψ^χ = % (3.27) 

Jit is convenient in later chapters to use capital letters to denote general many-
particle wave functions, reserving small letters for statements that are valid only for 
single-particle functions. 
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where Jdx now implies integration over the whole many-dimensional 
space. We shall find later tha t (provided Ψ vanishes a t infinity or 
satisfies periodic boundary conditions analogous to those included in 
(3.13)) H is indeed self-adjoint in the generalized sense (3.25). 

I t is natural to enquire whether the generalization from one to 
several variables extends also to the eigenfunction expansion, and it is 
at once clear tha t the original arguments (pp. 48-51 ) remain valid : if 

Ψ(χ) = £ c ^ - ( x ) (3.28) 
i 

is an expansion of a function of some given class in terms of orthonormal 
functions Φ$ of the same class, then the optimum choice of coefficients is 
given by 

ct = |Φ{*(χ)Ψ(χ)<Ζχ (3.29) 

exactly as in (3.23). Again we may discuss completeness in terms of 
the quantity undefined as in (3.20) with w = 1, arriving at the criterion 
Mn ->0 for n —> oo. This, of course, does not guarantee that complete 
sets exist in general; but many instances are known in which existence 
can be proved (e.g. wave functions of the three-dimensional box 
problem, discussed in Section 2.1) and this encourages the belief that— 
even for functions of several variables—eigenfunctions of an operator 
such as H normally provide complete sets. In quantum mechanics, we 
therefore simply accept completeness, in the general case of functions 
of many variables, as a postulate. 

(ii) Adjoint operators and Hermitian symmetry 

The concept of self-adjoint or Hermitian operators also needs 
extension. Let H be any operator, defined with respect to some com-
plete set of functions {Φ$} on which it operates, and let us associate with 
H the adjoint operator H* by the definition 

/Φ*Η+Φ(ίχ = (/Φ*ΗΦ(2χ)* (all Φ) (3.30) 

where "all Φ" means for arbitrary functions of the class defined by 
{Φί}. I t then follows easilyf that an equivalent definition is 

J ^ * H % c Z x = / (ΗΦί ) *Φ^χ . (3.31) 

An operator is naturally called seZ/-adjoint if H* = H and the definition, 
in the form (3.31), therefore yields 

/ ( Η Φ ί ) * Φ ^ χ = / Φ ^ Η Φ ^ χ . (3.32) 

Evidently this symmetrical form of (3.31), appropriate when Hf = H, 

%Use Φ first as Φί + ΐΦ., and second as Φ{ — i<&j and then subtract the resultant 
equations, observing that for any two functions |Φ;*Φί<Ζχ = [|Φ«*Φjdii}*. 
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provides a powerful generalization of (3.14) which was formulated for 
functions of one variable with a particular type of differential operator. 

The physical implication of Hermitian symmetry follows at once on 
taking for Φ in (3.30) any normalized eigenf unction Ψ$ of H with 
eigenvalue Et: for then / Ψ ^ Η Ψ ^ χ = ^ < / Ψ < * Ψ < ί χ = E{ and (3.30) 
states that Ei* = E{. The eigenvalues of a Hermitian operator are 
essentially real. The association of Hermitian operators with dynamical 
quantities (e.g. the Hamiltonian operator with the energy) therefore 
seems specially appropriate, in so far as the measured values of 
observables are essentially real quantities. 

Most of the operators we encounter in quantum mechanics are 
Hermitian, but some are not. I t is therefore useful to note that any 
operator can be written in the form C = A-fiB where A and B are 
Hermitian, and that the adjoint is then obtained simply by reversing 
the sign of i : 

C = A + iB, C = A-iB. (3.33) 

We meet such operators in the theory of angular momentum. 

(iii) Complete sets as product functions 

Finally, we note that when eigenfunctions appear in separated form 
the factors refer to independent complete sets, one for each variable. 
Thus in the three-dimensional box problem (Section 2.1) the eigen-
functions were of the form 

Φΐτηη&,ν,ζ) = Xi(x)Ym(y)Zn(z) 

where {Xi{x), I — 1, 2, . . .} is complete for functions of x in the range 
(0, L) etc. In this way, a complete set in three variables is evidently 
expressed in terms of three complete sets each in a single variable. This 
observation may be stated as follows : 

If {ui(x)} and {vj(y)} are complete sets for functions of x 
in the interval (a, b), and of y in the interval (c, d), respec-
tively, then the set of all possible products {ui(x)Vj(y)} is 
complete for functions f(x, y) of both variables, defined 
in the same intervals. 

(3.34) 

This simply means that an arbitrary function f(x, y) may be expanded 
in the form 

/(#, y) = Σ°νη*(χ)νι(χ) (3·35) 
u 

and that as we take more and more product functions we shall get 
convergence in the mean over the whole region bounded by x = a, 



54 Q U A N T U M MEC HA N IC S 

x — b and y = c, y = d. As usual, it is difficult to give general and 
mathematically rigorous proofs of such assertions. The result (3.35) 
becomes highly plausible, however, if we first expand f(x, y) using the 
assumed completeness of {ui(x)} in the form 

/(&, y) = Σ W(z) 
i 

for any fixed value ofy; and then note that the coefficients must depend 
on y only and may consequently be expanded in the form 

1 
On inserting this expression for the coefficients we then obtain (3.35). 
This device is used freely in quantum mechanics for building complete 
sets in many variables from complete sets in fewer variables. In such 
applications the intervals involved are frequently infinite and the 
validity of the procedure is normally established by usage rather than 
by rigorous analysis. 

3.4. Linear vector spaces. Basic ideas! 
Suppose we have some class of functions, for example the set of all 

single-valued continuous quadratically integrable functions of a variable 
x defined in an interval (a, b). If ψι and ψζ are any two members of this 
class, their sum possesses the same basic properties and is therefore 
another member of the same class. So is any multiple c\//, c being an 
arbitrary number, and hence C\\j/\ +c^ 2 is also a member of the class. 
Also§ c\j/ = ψ only for c = 1 and c\j/ = 0 only for c = 0. These 
properties are essentially those which define a vector space : in ordinary 
three-dimensional space, for example, addition of two vectors or 
multiplication by a number always yields another vector. When the 
elements of some given set can be combined and multiplied by numbers 
in this way they are said to comprise a linear vector space or, when the 
elements are functions, a, function space. 

We assume a familiarity with the elementary properties of vectors in 
three dimensions and recall one or two of the main concepts. An 
arbitrary vector r can be expressed in terms of any three non-coplanar 
vectors ei, e2, Q3 which define a basis : 

r = r i e i + r 2 e 2 + r3e3 (3.36) 

JFor a fuller account of vectors, matrices and related matters see, for example, the 
books by Hall (1965) and Halmos (1942). Here we simply review the basic ideas and 
terminology. 

§Note that equality of two functions means equality for all values taken by the 
argument. 
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In other words any four vectors vi, v2, V3, V4 (in this case r, βχ, e2, β3) 
must be connected by a linear relationship of the form 

C1V1 + C2V2 + C3V3 + C4V4 = 0, (3.37) 

where ci, . . ., C4 are numerical coefficients. Any four vectors connected 
in this way (excluding the trivial case in which all coefficients are zero) 
are said to be linearly dependent) whereas any four vectors for which 
(3.37) cannot be satisfied, for any non-trivial choice of coefficients, are 
linearly independent. In three-dimensional space the maximum number 
of linearly independent vectors we can find is three, any fourth must then 
be linearly dependent on the first three, and may consequently be 
expressed in terms of them and in the form (3.36). The coefficients of 
ei , 62, β3 in (3.36) are called the components of the vector r with respect 
to the basis {ei, e2, 63}. The totality of all vectors of the form (3.36) 
constitutes a ^-dimensional vector space and the basis vectors are said 
to span the space. Three vectors are not necessarily linearly independent : 
if ei , e2, and β3 happened to lie in the same plane a relationship would 
exist among them and we could then write e3, say, in terms of ei and 
β2· In general, βχ and e2 define a too-dimensional swôspace: similarly, 
any vector ei spans a one-dimensional subspace—that comprising all 
vectors pointing along the line defined by ei. 

Similar ideas apply in a function space. Let us consider, for example, 
a set of three degenerate eigenfunctions, φι, φϊ, φ$, of some operator 
H, with a common eigenvalue E. Clearly 

Φ = Ci</>i + C202 + C3</>3 (3.38) 

is also an eigenfunction of H with eigenvalue E. By speaking of a three-
fold degeneracy we mean tha t the maximum number of linearly 
independent eigenfunctions we can find is three and that any fourth 
must be expressible (in the above manner) in terms of the three already 
found. In other words no further new eigenfunctions can be found tha t 
do not reduce to linear combinations of φι, φ2, φ%. The functions 
φι> 02) 03 are basis functions, the coefficients c\, C2, C3 are "com-
ponents" of ψ with respect to the basis φχ, φ%, φ$, and the totality of 
all functions of the form (3.38) constitutes a three-dimensional function 
space. There is clearly no restriction to spaces of three dimensions : a 
set of six degenerate eigenfunctions would span a six-dimensional 
function space provided any seventh eigenfunction with the same 
eigenvalue were found to be expressible as a linear combination of the 
six. In fact the existence of complete sets of functions (p. 48) suggests 
that the number of dimensions need not even remain finite. The 
00-dimensional linear space spanned by a complete set of quadratically 
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integrable functions^ is called a Hubert space : the space spanned by the 
functions of a more restricted class (e.g. all eigenfunctions of an operator 
L with a given eigenvalue E) is then a swospace of Hubert space. We 
shall find it very useful to develop further these geometrical analogies. 

The scalar product 

In ordinary three-dimensional space, the concepts of length and 
angle allow us to define the scalar product of two vectors 

v . v
r = |v| |v'| cos Θ = v' · v, (3.39) 

where | v|, | v'| are the lengths of v and v' and Θ is the angle between them. 
I t is then convenient to introduce a basis ei, e2, e3 in which the 
vectors are mutually orthogonal and of unit length. Using the 
Kronecker delta, as in (3.17), 

e* · ej = ôij. (3.40) 

The scalar product v · v' is then easily expressed in terms of the 
components of the two vectors 

v · v' = (viei + v2e2 + vzez) · (vi 'ei + ?;2'e2 + V3'e3) 
= vivi+v^v^ + v^v^ 

where we have "multiplied out", noting that this is permitted because 
the geometrical definition shows that the product satisfies the usual 
associative and distributive laws. In the case v' = v we obtain the 
squared length of v : 

|v|2 = v · v = vi2 + v2
2 + vs2. 

I t also follows that , with an orthonormal basis, any component of a 
vector may be expressed as a scalar product; by forming the scalar 
product of v with e$ and using (3.40) we obtain 

v* = et · v (3.41) 

and note that v ê* is the projection of the vector v in the direction of e$. 
Again, similar ideas may be introduced in function space. In develop-

ing the theory in its general quantum mechanical context, the functions 
considered are usually orthonormal with unit weight factor (see p. 46) : 
for real functions, which we consider first, the orthonormality property 
(3.17) suggests that we define a scalar product by 

b 

φί · φ) = $φι(χ)φί(χ)άχ = ôij, (3.42) 
a 

where φΐ' φι = 1 corresponds to "unit length" of a normalized func-

JMoreprecise definitions maybe found in the books by Stone (1932) or von Neumann 
(1955). 
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tion, and φι · φ^ = 0 (i Φ j) to "perpendicularity" of two different 
orthogonal functions. From the definition of the scalar product as an 
integral, it follows easily tha t two n-tevm linear combinations, 

n n 

Φ = Ec<#* a n d Φ' = Σ°ι'Φί> 
have a scalar product 

ψ · ψ' = ciCi/ + c2c2
/4-. . . + ^ 0 , / . (3.43) 

The square of the "length" of a function is the norm \\φ\\2 defined as 
the sum of the squares of its components, referred to an orthonormal 
basis; and there is an exact parallel with the scalar product used in 
elementary vector algebra. Whether or not we can pass to the case 
n -> oo is essentially a question of whether or not such sums converge ; 
the assumption that a set is complete, for quadratically integrable 
functions, ensures tha t they do. 

A slight generalization is necessary when complex functions are 
admitted. In this case the important quantities are integrajs such as 
(3.17) which contain the complex conjugate of one of the two functions 
involved. The norm of φ{χ), again assuming unit weight factor in the 
integrand, is then 

11*| I > = )φ*(ζ)φ(ζ)άχ 
a 

and is an essentially positive quantity only because one function is 
"starred". In view of these facts we define the Hermitian scalar product 
of functions φ(χ), φ'{χ) by 

b 
ψ*ψ' = $ψ*(χ)ψ'(χ)αχ = <ψ\ψ'>, (3.44) 

a 

where the symbolic notation on the leftj stresses the formal analogy 
with elementary vector algebra, while tha t on the right is due to Dirac. 
The orthonormality property of basis functions is then 

<Φί\Φί> = Îfc*(s)M*)efe = % (3.45) 
a 

and the main properties of the scalar product defined by (3.44) are, 
using a to denote an arbitrary complex number, 

<Ψ'\Φ> = <Ψ\Φ'>*. 
<ψ\ψ'+Ψ"> = <Ψ\Φ'> + <Ψ\Ψ">, (3.46) 

<*|α*'> = «<ψ\ψ'>, 
<Ψ\Ψ> ^ 0 

JThe dot may be omitted, the star between the function symbols (i.e. attached to the 
left-hand function) serving to indicate the scalar product. This notation (with a bar 
instead of the star) goes back to Condon and Shortley (1935). Other notations, such as 
(ψ* ^ , ) » a r e a ^ s o c o n i r n o n l y u s e ^ · ^ θ θ a^so Morse and Feshbach (1953) Section 1.6. 
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The first equation expresses the "Hermitian symmetry" of the scalar 
product; interchanging the two functions is accompanied by complex 
conjugation, the order being immaterial only for real functions. The last 
expresses the fact that ' 'length" is defined as a real positive quantity. 
The other equations show that scalar products of linear combinations 
can be expanded in the usual way (p. 56), though it should be noted 
that <αψ|ι/0 = α*<ψ|ι/0. The properties embodied in (3.46) are 
characteristic of any Hubert space, and are said to define its "metric". 

Many of the metrical properties of ordinary three-dimensional space 
are shared by Hubert space and many important theorems therefore 
express "common-sense" ideas. Thus, from the "metric axioms" (3.46), 
it may be shown that for any two functions ψ and ψ' 

\<ψ\ψ'>\2 ύ <Ψ\ΨΧΨ'\Φ'>. (3.47) 

This is the famous "Schwarz inequality". I t merely states tha t the scalar 
product of two vectors cannot exceed the product of their lengths, the 
equality being achieved when one is a multiple of the other. I t follows 
from this result tha t the scalar product of any two quadratically 
integrable functions must always exist, i.e. the integral which defines 
it must converge. 

Finally, we note that the properties of complete orthonormal sets 
are easily given a geometrical interpretation. Thus the formula (3.23) 
for the expansion coefficient c% may be written 

ct = <φι\φ} (3.48) 

which is merely the expression (3.6) for a vector component as a scalar 
product. The completeness property itself (3.24 et seq.) also takes a 
transparent form. If ψη(%) is an w-term approximant to the function 
ψ(χ), the norm becomes, cf. (3.43), 

\\Φη\\2= <Φη\Φη>= M 2 + |c2 |2 + . . . \cn\*. 

The fact that this cannot be greater than <ψ|^>, so that convergence is 
from below, simply means that the vector φη (in which components c\ 
with i > n have been given zero values) is "shorter" than ψ—a result 
which is geometrically obvious in the example of Fig. 3.2. In general ψη 

is a projection of ψ on the ^-dimensional subspace spanned by functions 
{Φι, Φ2> · · · Φη} and the inequality (3.24) states tha t the projection of 
a vector on any subspace can never be longer than the vector itself. 

All the preceding ideas may be extended without formal change from 
functions of one variable to functions of several variables, whenever 
suitable complete sets are available. The scalar product of two functions, 
Φ< and Φ/, will then usually be written 

<Φί|Φ^> = /Φ«*(χ)Φ,(χ)(Ζχ (3.49) 
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where the bold letter x stands for all the variables concerned and jdx 
implies integration over the appropriate interval for each variable 
(e.g. over all space for the coordinates of an electron). In stating the 
axioms of quantum mechanics (Chapter 4) such sets are assumed to 

FIG. 3.2. Projection onto a subspace. The projection ψζ, onto the two-
dimensional subspace defined by ei and e2, is obtained by removing the β3 
component of ψ. In general, ψ2 is shorter than ψ (Bessel's inequality). 

exist, and the representation of states by vectors in a Hubert space 
plays a central role. The formulation also leans heavily on the theory 
of matrix representations to which we now turn. 

3.5. Matrix representation of operators 
Two vectors, v and v', may differ in both magnitude and direction : 

v' may be produced from any given v by rotation and change of 
length J and it is convenient to write 

v' = Rv (3.50) 

where the operator R indicates the operation performed on v. The 
vectors may be in ordinary space or may be elements of a function 
space; we often use the same terminology and note that , in either case, 
sums and products of operators may be defined as in (3.3) and (3.4). 
Thus, if rotation B followed by rotation A produces from v the same 
vector v7 as a single rotation C (for any given v) we write AB = C. The 
product of two rotations is thus simply the single rotation which has 
exactly the same effect on any vector as the two rotations performed 

Jin what follows we usually refer to such generalized rotations simply as rotations. All 
the operators we shall meet in quantum mechanics are linear (p. 42) and may be 
represented as rotations in a suitable vector space. 
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sequentially. Again, the order of the factors is important and it is not 
necessary that BA = AB. The sum of two rotations, A and B, is defined 
as the operation of applying A and B separately and forming the vector 
sum of the results; (A+B)v = Av + Bv. If the result is identical with 
Cv, for any choice of v, we write (A + B) = C. Here we shall be con-
cerned mainly with the product and with the need to characterize an 
operator numerically, so that its effect on any given vector may be 
worked out by simple arithmetic. 

Let us consider first the three-dimensional case, expressing the 
vectors v and v' in terms of three orthogonal unit vectois, ei, e2, e3. 
Noting that rotation is a linear operator, so that rotation of the sum of 
two vectors gives the same result as summing the two rotated vectors, 
we may write (3.50) in the form 

^i / e i + v2
/e2 + V3/e3 = ^(^161 + ^2^2 + ^363) 

= v1(Re1) + v2{Re2) + vs(Rez). 

If we now take the scalar product with ei we obtain, since e$ · e; = ôy*, 

vi = (ei · Rei)vi + (ei · Re2)v2 + (ei · Re3)i?3 

with similar expressions for v2 and v$. The components of the rotated 
vector v' = Rv are therefore expressible in teims of those of the original 
vector v; the coefficients involved are scalar products involving only 
the rotation operator and the unit vectors of the basis and therefore 
have the same values for any choice of v. The operator R is therefore 
completely characterized by its effect on the vectors of a basis—more 
specifically with the orientations (as determined by scalar products) of 
the rotated unit vectors relative to the original basis. If we put 

Bi} = e< · Re,· (3.51) 

the components of v' are related to those of v by 

Vi = ^11^1 + ^12^2 + ^13^3, 

V2 = #21^1 + ^22^2+^23^3, 

Vs = ^31^1 + ^32^2 + ^33^3-

We recall tha t such systems of equations may be written in a shorthand 
notation in two ways. In the subscript form we write 

3 

Vi' = J^EijVj (i = 1, 2, 3) (3.52a) 
1-1 

(each value of i giving one of the foregoing equations), while in matrix 
form we group the coefficients By into a square array and the com-
ponents into columns, and write 
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vi'~ 

V2 

v*' 
= 

i?ll Ä12 i?l3 

R2I ^22 ^23 

^31 ^32 Ä33 

~Vi 

V2 

vz 

or more briefly, 

v ' = Rv 

(3.52b) 

(3.52c) 

where bold letters denote the arrays, or matrices, which are manipulated 
according to the rules of matrix algebra.% 

Equation (3.52c) is formally similar to (3.50) and is a matrix 
representation of tha t equation, the matrix R being associated with the 
operator R. The actual elements in the array R clearly depend on the 
choi e of a particular basis of unit vectors ei, e2, β3, and this choice 
must therefore be indicated in defining any particular representation. 
We note also that the same array R appears in another context. If the 
rotation R is applied to the vectors of the basis it yields a rotated set 
of basis vectors e±\ e2 ' , e$' and the components of e i ' ( = Rei), relative 
to ei, β2, β3, are ei · Rei, e2 · Rei, β3 · Rei: thus, from (3.51), 

e i ' = e i i ? n + e2i?2i + e3i23i = Σ β * ^ * ι 
k 

where the coefficients have been written on the right of the basis vectors 
simply to conform to the iCchain rule" for matrix products (see foot-
note), matching indices coming next to each other. Similarly 

e 2 ' = e].j?i2 + e2i?22 + 63^32, 

63 ' = e i i ? i 3 + e 2 Ä 2 3 + e3-ß33 

and the whole set of equations determining rotation of the basis may 
then be collected into the subscript form 

e,' = Re* = £ e * Ä w (i = 1,2,3) (3.53a) 

JSome familiarity with matrix notation is assumed. Here we need only note that 
an mxn (k'm by n") matrix R is an array of ?n rows and n columns, Rij being the 
"element" in the ith. row andyth column; that equality of two matrices means equality 
of all corresponding pairs of elements ; and tha t in a product G = A B the element Cij is 
obtained by taking the elements on the ith row of A, multiplying by corresponding 
elements in the jth column of B and summing the products so formed ; i.e. tha t 

Cij = J^AikBkj' 
k 

The product is only defined if the number of columns in A matches the number of rows in 
B and the matrices are then "conformable" : if A is p x q and B is q x r, the product is a 
pxr array. If there is only one row or column only one subscript is required and it must 
then be remembered tha t components (e.g. v\, vz> v$) are conventionally collected into 
columns (i.e. matrices of several "rows", one column). In equation (3.52b) a 3 x 1 matrix 
is obtained as the product of a 3 x 3 times a 3 x 1. 
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or the matrix form 

(ei ' e2 ' e3') = R(ei e2 e3) = (e1 e2 e3) 

which may be written more briefly 

e ' - Re = eR. 

R11R12 J?i3 

■^21 ^ 2 2 ^ 2 3 
i?31 Ä32 i?33 

(3.53b) 

(3.53c) 

Equations (3.53a, b, c), which refer to rotation of basis vectors, should 
be compared with (3.52a, b, c) which refer to components of an arbitrary 
rotated vector. In all such equations the position of the subscripts must 
be carefully observed ; this requirement is taken care of automatically 
in the matrix forms, provided components of a vector are always 
written as columns and sets of basis vectors as rows. I t should be noted 
that any vector may then be written as a row-column product of basis 
vectors and components : 

v = Y^vi e< = ev. (3.54) 
i 

If the above conventions are ignored or used improperly, considerable 
confusion may arise. 

EXAMPLE. Rotations in three dimensions. Let us take β3 as a rotation axis : if the 
basis is rotated through Θ we then obtain 

ei ' = cos 0ei + sin #e2, £%' = — s i n # e i + cosi 

which corresponds to (3.53) with the association 
' cos Θ — sin Θ 0" 

e3 e3 

R -* R = sin Θ 
0 

cos Θ 0 
0 1 

i.e. with the rotation R we associate the matrix R, which describes the rotation 
in terms of the basis e. For a general rotation we should obtain e / = Ẑ ei 4- πι% β2 + 
ηι^ζ where U, mt·, n$ are the direction cosines of e / relative to ei, β2, β3. The matrix 
describing the rotation is then 

I li I2 I3 
R = mi ni2 WI3 

\jn>i Π2 nz J 

each column containing the components of a rotated basis vector. 

The central result of representation theory may now be stated as 
follows. If two operators, A and B, applied sequentially are equivalent 
to a third operator, 

C = AB, (3.55) 
then the matrices A, B, C which represent the operators according to 
the definition (3.53), are related in an exactly similar way, 

C = AB (3.56) 
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where A and B are combined by matrix multiplication. In mathematical 
language there is an isomorphism (identity of structure) between the 
set of operators, with sequential performance as the law of combination, 
and the set of matrices, with matrix multiplication as the law of 
combination. The proof of the equivalence is straightforward and may 
be found in any textbook on vectors and matrices. 

E X A M P L E . Composition of rotations. Suppose A a n d B are ro ta t ions t h rough ΘΑ 
a n d ΘΒ, respect ively, a b o u t t h e e3 axis . Mult ipl icat ion of t h e mat r ices yields, 
wi th t h e abbrev ia t ion SA = sin ΘΑ, CA = cos ΘΑ, e tc . , 

AB 
' CACB — SASB —ÇASB — SACB 0" 

SACB + CASB —SASB + CACB 0 

0 0 1 

' cos (ΘΑ + ΘΒ) - sin (ΘΑ + ΘΒ) 0' 
sin (ΘΑ + ΘΒ) cos (ΘΑ + ΘΒ) 0 

0 0 1 

B u t th i s is ev ident ly t h e m a t r i x (C) associated w i t h t h e ro ta t ion C = AB 
th rough t h e angle (ΘΑ + ΘΒ)- I n o ther words , when t h e operat ions are combined 
by sequent ia l performance the i r represen ta t ive mat r ices m u s t be combined b y 
m a t r i x mul t ip l ica t ion . The presen t example is t r iv ia l b u t t h e resul t is general . 

All the foregoing considerations may be applied without formal 
change to the case of operators in a Hubert space, provided the scalar 
product is interpreted as the Hermitian scalar product (3.49), the 
"rotations" may then be, for example, the differential operators which 
produce a new function Ψ' from a given function1!*; the basis is an 
orthonormal set of functions Φι, Φ2, Φ3, . . . (in general an infinite set) ; 
and the matrices of the representation are infinite matrices. In place 
of the matrix element definition in (3.51) we then have, in full 

Βϋ = <Oi|R|0;> = /Φ|*(χ)ΙΙΦ,(χ)ίχ (3.57) 

where we have written the scalar product <Φ$|Γ\Φ^> with the more 
symmetrical notation usually adopted. The notation employed, in the 
quantum mechanical applications, is summarized in Table 3.1. 

T A B L E 3.1 

Summary of matrix notation 

Set of basis functions : 
Expansion of a function : 
Rotation of basis : 

Rotation of arbitrary 
function : 

Expansion coefficients 
ί η ψ : 

Matrix elements of 
operator R : 

Φ 
Ψ 
Φ' 

Ψ' 
c ' 

Ci 

Rij 

= (Φ1Φ2 . . . Φ< . . 
= ΣίΦίϋί = Φο 

= RO = OR 

= ΚΨ 
= Re 

Ί 
= <Φί Ψ > 1 

1 = <Φι R Φ,> J 

.) (row matrix) 
(row-column product) 
(R a square matrix 

representing R) 
(operator form) 
(matrix form) 

(valid only for 
orthonormal basis) 
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With the above conventions the matrices A, B, C, . . . associated 

with a set of operators in Hubert space have exactly the same multi-
plicative properties as the operators themselves; the statements 
AB = C and AB = C are exactly equivalent in the sense that each 
implies, and is implied by, the other. A representation of operators by 
matrices in this way is said to be faithful or one-to-one because it implies 
that different operators must have different matrices associated with 
them. In the quantum mechanical context it is normally assumed that 
there is a one-to-one correspondence between operators and the 
matrices (or other entities) which "represent" them. In mathematics, 
however (particularly in group theory, which we use in Vol. 2), the term 
"representation" is used in a wider sense: the matrices A, B, C, . . . 
associated with operators A, B, C, . . . may have the same multiplicative 
properties (in the sense that AB = C requires A B = C) without the 
proviso that A, B, G, . . . shall all be distinct (e.g. the same matrix may 
be associated always with a pair of operators, in which case the 
representation is termed "two-to-one"). In this case AB = C implies 
AB = C but the reverse is no longer true. 

3.6. Change of r ep re sen t a t i on 
The particular matrix associated with any given operator depends on 

choice of the basis defining the representation. In Chapter 5 we shall 
need to know the relationship between the matrices arising from two 
different choices of basis. 

Suppose we have two complete, linearly independent sets 
Φ = (Φ1Φ2 . . . Φί . . .) and Φ = (Φ1Φ2 . . . Φι . . ), which we assume 
are orthonormal and provide alternative bases for a representation. 
Each function Φ$ may then be expressed in terms of the original Φ'β 
(completeness property) and we write the relationship between the two 
bases as 

Φ* = Σ Φ Α , (i = 1, 2, . . .), (3.58a) 

where the coefficients Τμ may be collected into a transformation matrix 
T. In matrix notation the relationship becomes 

Φ = Φ T. (3.58b) 

The sets of expansion coefficients defining an arbitrary function with 
respect to the two alternative bases are then easily related; denoting 
the sets by c and c (column matrices) the alternative expressions for 
Ψ are, using (3.58b), 

ψ = Φο = Φδ = ΦΤδ 
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and equality of corresponding components then requires that the 
columns c and Tc are element-by-element identical : 

c = Tc . (3.59) 

Now T is a non-singular J matrix and thus possesses an inverse, denoted 
by T _ 1 with the property 

χ χ - ι = χ-ιχ = ! (3 6 0 ) 

where 1 is the unit matrix, consisting of l 's on the diagonal and O's 
elsewhere, which leaves any other matrix unchanged in multiplication 
(i.e. IM = M l = M). On multiplying both sides of (3.59) by T 1 we 
obtain the inverse relationship 

c = T - i c . I (3.61) 

Thus the expansion coefficients which represent the same function Ψ 
relative to two different bases follow a different transformation law 
(3.61) from the basis vectors themselves (3.58b). The fact that Ψ is 
invariant against change of description is nicely reflected in the identity 
of the alternative expressions: Φδ = φ Τ Τ - 1 ο = Oc. Basis vectors 
and components transform "contragrediently". 

We now consider the relationship between matrices A and Ä which 
describe the same operator A relative to different bases, Φ and Φ. The 
matrix A is defined by 

ΑΦί = Σφ3Αϋ 
j 

or 
ΑΦ = ΦΑ (3.62a) 

whereas the corresponding matrix describing A in the new basis appears 
in 

ΑΦ = ΦΑ. (3.62b) 

But since the bases are related by (3.58b), and hence by Φ = Φ Τ - 1 , 
substitution in (3.62a) yields 

Α Φ Τ - ι = Φ Τ - ΐ Α 
or, on multiplying by T, 

ΑΦ = Φ ( Τ - ΐ Α Τ ) . 

By comparison with (3.62) it is then clear that the matrix Ä represent-
ing A in the Φ basis is 

Ä = T - ! A T . (3.63) 

JThe determinant of the matrix is non-zero. This is equivalent to saying that the 
bases φ and φ are each linearly independent. 
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Ä is said to be related to A by a similarity transformation. The reason 
for the term is clear, for if the operator relation AB = C is equivalent 
to 

AB = C 

then multiplication from left and right by T _ 1 and T, respectively, 
and insertion of the unit matrix 1 = T T _ 1 between A and B on the 
left, yields 

ÄB = C. 

Any relationship among the matrices of one representation therefore 
implies an exactly similar relationship among those of any other. 

Finally, a simplification occurs in the special case where only ortho-
normal bases are considered. The matrices relating such bases have a 
special property which follows on considering the transformation of the 
array of all basis vector scalar products; this array, which explicitly 
defines the "metric" of the space, occurs in the general scalar product 
expression^ 

<ψ|ψ'> = Σ<*ν<Φι|Φ*>. (3.64a) 

This may be written in matrix form by introducing the Hermitian 
transpose§ M f of a matrix M, obtained by interchanging rows and 
columns and taking the complex conjugate of every element: thus 
Mftj = Mji* and in particular c1" is a row matrix with elements c$*. 
With this notation (3.64a) becomes 

<Ψ|Ψ'> = c+Mc', (3.64b) 

where M denotes the square matrix of scalar products (the ' 'metric' ' or 
"overlap" matrix) with My = <Φί|Φ;>. 

To find how M and M for two different bases are related, it is con-
venient to use the symbolic form <Φ$|Φ;> = Φ$*Φ; and to represent 
each matrix as a column-row product : thus 

'Φι*Φι Φι*Φ2 . 
Φ2*Φχ Φ2*Φ2 . 

'Φι* 
φ 2 * 

(ΦιΦ2 . . .) 

or more briefly M = Φ+Φ. For the second basis Φ, the overlap matrix is 

JThis follows from the axioms (3.46) applied to arbitrary linear combinations of the 
basis functions. The symbolic form is more transparent : 

Ψ*Ψ' = (ciOi + c 2 0 2 + . . .)*(ci ,Oi + c2
,<I>2 + . . .) = Σ c,*c/0,*<fy. 

§Also called Hermitian conjugate, adjoint, or associate matrix. 
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then given by 

M = Φ*Φ = (ΦΤ)*(ΦΤ) = Ή(φ*φ)Τ = TfMT. (3.65) 
Here we have used the fact that in taking the Hermitian transpose of a 
matrix product the matrices must be written in reverse order, as well 
as having the daggers added: (AB)* = BtAt. If now we require both 
bases to be orthonormal, so that M and M are both unit matrices, 
(3.65) becomes Τ*Τ = 1. When T is a non-singular square matrix of 
finite dimension;]: this is equivalent to the statement Tf = T""1. It 
follows that the inverse matrix, encountered in (3.63), may be formed 
simply by Hermitian transposition, and that the transformation matrix 
connecting two unitary bases must satisfy 

T t T = T T t = j ^ e e j 

A matrix with this property is said to be unitary, and the corresponding 
form of (3.63), namely 

Ä = T A T (3.67) 
defines a unitary transformation. The rotation operator T with which T 
is associated has a property analogous to (3.66). ΤΠ" = 1, and is also 
said to be unitary. 

We summarize below the equations connecting different bases : 
Φ representation Φ representation (Φ = ΦΤ) 

Ψ-> c c = T-!c 
A -* A Ä = T-iAT (3.68) 

If the bases are orthonormal, Φ = Φυ , these correspondences become 
ψ-> c c = Ufc 
A-> A Ä = UfAU (3.69) 

Such transformations are used extensively in Chapter 5. 

3.7. Hermitian operators and eigenvalue equations in vector 
space 

Since the eigenvalue equation plays such an important role in 
quantum mechanics it is useful to make a special study of the form 
which it takes on setting up a matrix representation. We introduce any 
orthonoimal basis {Φ} and at once transcribe the operator equation 

ΗΨ = ΕΨ (3.70) 
into the matrix form J 

He = Ec. (3.71a) 

Jit has been tacitly assumed so far that there is no difficulty in passing to the limit 
where all matrices are infinite. We continue to ignore questions of mathematical rigor. 
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Here H is an infinite matrix with elements H'y = <Φ^|Η|φ;·> and c is 
an infinite column of expansion coefficients, expressing the function Ψ 
in the form 

l 

The matrix H has a special form because it represents a Hermitian 
operator. In general, the matrix elements of an operator A and its 
adjoint Af are related (according to (3.31)) by 

<0<|At|0J> = <ΑΦ,|Φ,> = <Φ,|Α|Φ|>* 

The matrix representing Af is thus obtained from that representing A 
by interchanging rows and colums and taking the complex conjugate 
of every element; but this yields the Hermitian transpose, already 
indicated by adding a dagger to the matrix, and the notation is thus 
consistent—if A is represented by A, the adjoint operator A1" is 
represented by the Hermitian transpose A1". If an operator is Hermitian 
(and thus self-adjoint) its matrix will also have the Hermitian symmetry 
property A1" = A. The matrix in (3.71a) is thus Hermitian symmetric, 
Hji = Ha*, or simply a Hermitian matrix. 

To avoid a direct discussion of infinite matrices we assume the basis 
is truncated after n functions, where n is large but finite. Later (Vol. 2) 
we shall find that results obtained using a truncated expansion (the 
normal practice in most approximation methods) converge upon the 
exact results for n —>oo. In the finite case (3.71a) takes the explicit 
form 

# 1 1 # 1 2 · 
# 2 1 # 2 2 · 

# l n 
# 2 f l 

Hni # n 2 · · Hn 

\C1 

02 

Lcn_ 

= E 
Cl 

C2 

_ c w_ 

(3.71b) 

The corresponding simultaneous equations (namely, # n C i + # i 2 C 2 + 
. . . +HinCn = Eci, etc.) are the secular equations. For an arbitrary 
value of E they cannot all be satisfied because, on dividing throughout 
by, say, c\, we have n equations to determine only (w—1) unknown 
ratios (C2/C1), (C3/C1), . . . (cw/ci): the ratios could be determined from 
any (w—1) of the equations and the nth. would not necessarily be 
satisfied. In reality, however, E is the nth unknown: by suitably 
choosing the value of E we can assume that the nth equation is satisfied 
by the ratios determined from the other (n— 1) equations. In this case 
the equations are said to be compatible. I t is shown in textbooks on 
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algebra (e.g. Archbold (1961) ; see also Margenau and Murphy, 1943) tha t 
the condition for compatibility is 

I (Hn — E) Hi2 . . . Hin I 

A(E) = I H21 (R™-E) * * · #2" L o (3.72a) 
Hn\ Hnz . . . (Hnn — E) I 

or, in abbreviated form, 

A(E) = det \Hi}-ESi}\ = 0. (3.72b) 
The secular determinant A(E) expands to give an nth. degree polynomial 
in E\ this has n roots, which are the n eigenvalues of the matrix H, and 
if any of these is substituted back into (3.71b) we can solve (n— 1) 
equations for the ratios of the coefficients, and then fix their absolute 
values by normalization. Thus for each eigenvalue EK we can obtain an 
eigenvector % CR- AS the set {Φ^} approaches completeness (n —> oo) the 
roots EK and columns of expansion coefficients c# should yield exact 
energies and wave functions of the Schrödinger equation (3.70). On the 
other hand, by introducing a basis, the original operator equation has 
been replaced by a matrix eigenvalue equation, which for many purposes 
is advantageous. 

We now state some of the more important properties of matrix 
eigenvalue equations. 

(i) Eigenvectors belonging to different eigenvalues are orthogonal 
in the sense 

CJCL = 0 (EK Φ EL). 

In case of degeneracy (EK = EL) it is possible to form new 
combinations of c# and CL which are orthogonal. I t is also 
possible to normalize any eigenvector and we may therefore 
assume without loss of generality 

CK*CL = SKL. (3.73) 

The proof extends easily to multiple degeneracies (cf. p. 47). 
(ii) Since any eigenvector satisfies (3.71a) it follows, multiplying 

from the left by ĉ 1" and using the orthonormality property, 
that 

c ^ H c * = EK, CK^HCL = 0. (37.4) 

These results express the properties (verified by using 
Ψ* = £<ta<i>i,etc.) 

JFor brevity it is usual to refer to the column of expansion coefficients, which deter-
mine Ψκ, as an eigenvector of the matrix H. 



70 Q U A N T U M MECHA N IC S 

<Ψχ|Η|Ψ*> = Εκ, <Ψ*|Η|ψ£> = 0 (3.75) 

where, in the limit n -> oo, ER coincides with an eigenvalue of 
the operator equation (3.70). Thus, on using the eigenfunctions 
as a basis, H is represented by a diagonal matrix of eigenvalues. 

(iii) The results in (i) and (ii) may be neatly expressed in terms 
of a square matrix, whose columns are the eigenvectors 
Ci, c2, . . . CK, . . . . On putting 

C = ( d | c 2 | . . .) (3.76) 
and using 

E = diag (El9 E2y . . .) 

to denote the diagonal matrix of eigenvalues, we obtain % 

E = tfHC, CfC = 1. (3.77) 

Thus C is a unitary matrix (p. 67) and according to (3.77) defines a 
transformation from the basis {Φι} to a new basis—that provided by 
the eigenfunctions {Ψκ}—in which H is replaced by a matrix of diagonal 
form. Solution of an eigenvalue problem therefore amounts to reducing 
a matrix to diagonal form by a suitable unitary transformation. 

The eigenvalues and vectors appearing above only coincide with the 
exact solutions of the operator equation (3.70) in the limit n —> oo ; but 
all the results listed above are valid for the matrix eigenvalue equations 
(3.71b) with n finite. The function sets {Φ*} and {Ψκ} may be regarded 
simply as alternative bases in the same ^-dimensional vector space. 

Finally, we note that extension to wow-orthogonal bases is sometimes 
necessary. The eigenvalue equation (3.71a) is then replaced by 

He = EMc (3.78) 

while the consistency condition (3.72b) becomes 

A(E) = det \Hij-EMijl = 0. (3.79) 

The results (i)—(iii) are modified accordingly. Orthogonality is now with 
respect to a metric M, as in (3.64b), and instead of (3.73) we have 

C ^ M C L = ÔRL 

and equations (3.77) are replaced by 

E = C U C , tfMC = 1. (3.80) 

JNote that partitioned matrices such as (3.76) may be multiplied as if the individual 
blocks—provided they are properly conformable (see p. 61)—were single numbers. 
Thus CtC resembles a column-row product in which the resultant elements are Cxtci,. 
Similarly E = CtHC has elements CxtHcj^. 
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The other results are unaffected. This brief discussion of eigenvalue 
equations is sufficient for most of what follows. The eigenvectors of an 
operator have, however, a very profound significance. In particular they 
allow us to introduce the "normal form" of an operator: for com-
pleteness this development is indicated in Appendix 4. 

3.8. Composition of vector spaces. Product space 
In Section 3.3 we remarked that from two complete orthonormal 

sets of functions {ut(x)} and {vj(y)} it was possible to construct a third 
set, complete for functions of both variables, x and y. Using the language 
of vector space theory, the totality of all product functions 

ν>α(χ> y) = Mx)vf(y) (3·81) 
is said to span a product space. Such spaces may be defined formally 
for any two sets of vectors: if {u$} is m-dimensional, and {vy} is n-
dimensional, then there will be mn products 

UlVi, UxVg, . . . U2Vi, U2V2, . . . UmVw 

which together define an mn-dimensional vector space. 
The most general operator R in product space will send any particular 

product into a new linear combination of products (cf. (3.53a)) 

R(u*vi) = Σ^βν,κι (3.82) 

where Ry, M is an element of an mn x mn matrix R, each row and 
column labelled by a double index. The matrix elements can be written 
as scalar products (cf. (3.57)) 

Ätf.JM = <UiV;|R|u^VZ> (3.83) 

and the results of previous sections may be taken over with no essential 
change. 

In the quantum mechanical context, {u$} and {v̂ } are frequently 
complete function sets, {t/^(xi)} and {^(x2)} each involving the variables 
(symbolized by x$ ) of a different particle, and the completeness of the 
products means simply that an exact two-particle wave function can 
be expanded in the form 

Ψ(χι, xa) = £<wMxi)Mx2). (3.84) 

We shall have occasion to use the product space concept in later 
chapters (more particularly in Vol. 3 where we deal with the construc-
tion of many-electron wave functions) but no further mathematical 
developments are necessary at this point, and we are now ready to set 
up the general formalism of quantum mechanics. 
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CHAPTER 4 

GENERAL FORMULATION OF QUANTUM 
MECHANICS 

4.1. The postulates 
The whole theoretical framework of quantum mechanics may be 

built upon a small number of postulates, which absorb the ideas 
introduced in Chapters 1 and 2 and provide a better basis for further 
generalization. There is no unique set of postulates, and any set may be 
stated in any number of different "languages" : we shall t ry to make the 
simplest possible statement that will meet our needs, freely using the 
Schrödinger language which is by now familiar and disregarding 
questions of mathematical rigour. We use the term ''language", 
following Tolman (1938), to indicate a particular explicit realization of 
the quantum mechanical operators (e.g. as differential operators 
working on wave functions). In the general formulation the operators 
are indicated by symbols, exhibiting certain laws of combination and 
certain relationships such as "commutation rules", but their mathe-
matical nature needs no further specification ; in this sense the content 
of the operator statements does not depend on any particular, more 
concrete, realization that might be chosen. The more commonly used 
word "representation" has more specialized connections and will here 
be used less liberally. 

Each postulate will take the form of a very general mathematical 
statement, whose content will then be explained in Schrödinger 
language. From the postulates certain consequences—or corollaries— 
follow; but. the postulates and the corollaries will be discussed as they 
arise and illustrated in terms of familiar examples. The possibility .of 
translation into other languages (transformation theory) will be taken 
up in a following chapter, along with the more detailed statistical 
interpretation of quantum mechanics. Many of the classic textbooks 
on the subject may usefully be consulted for further discussion of basic 
principles; we mention only those by Kemble (1937), Dirac (1947), von 
Neumann (1955), Schiff (1949) and the more recent, meticulous and 
comprehensive work by Messiah (1961). 

73 
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4.2. The state vector and its t ime development 
The first postulate formalizes the concept of state and provides the 

basic "equation of motion" : 

POSTULATE 1. The state of a system is completely determined i 
by a "state vector" Ψ which develops in time according to 

ΗΨ = ih(d^ldt) (4.1)j 

where H is the Hamiltonian operator associated with the classical 
Hamiltonian function H. This equation applies except at the 
instant of observation, intervention of an observer being assumed j 
to produce discontinuous and unpredictable changes. 

The terms "vector" and "operator" are here used in the widest 
sense. The vector is an element of a Hubert space and the operator is a 
prescription leading from one element to another—notions dealt with 
in Chapter 3 in sufficient detail for present purposes. In the Schrödinger 
language, Ψ is a function of time and of the variables (x) describing the 
positions of the particles comprising the system and the postulate is 
simply a general statement of Schrödinger's equation, written in (1.19) 
for a one-particle system. We continue to use capital letters for state 
vectors (or wave functions) appearing in general statements, applying 
to one or mam/-particle systems. Lower-case letters will apply specifically 
to owe-particle wave functions. 

The classical Hamiltonian H is in general the function that expresses 
the energy of the system in terms of position and momentum variables, 
and the operator H is obtained using the prescription referred to in 
(1.22). The form of H, in Schrödinger language, has been given already 
for a one-particle system in ( 1.21 ). 

Two corollaries follow at once. The first may be stated in the form 

COROLLARY 1. If Ψ satisfies the basic equation (4.1), then so 
does οΨ where c is any (constant) complex number. 

and is simply a consequence of the fact that H, along with the other 
operators of quantum mechanics, has the property of linearity (stated 
in (3.2)). The vector describing the state of a system is therefore 
arbitrary to within a multiplicative factor (in general any complex 
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number) ; the magnitude of this factor (but not its phase) may con-
ventionally be fixed so that the state vector is a unit vector. In the 
Schrödinger formulation, any two wave functions Ψι and Ψ2, have a 
Hermitian scalar product defined, as in (4.44), as 

< Ψ ι | Ψ 2 > = / ψ 1 * ( χ ; 0 Ψ 2 ( χ ; 0 Λ χ 

and the "unit vector" condition corresponds to normalization of the 
wave function (for all values of the time t) : 

<ψ|ψ> = /ψ*(χ; ί )ψ(χ; ί ) ί Ζχ = 1. 

The meaning of this normalization (anticipated in Section 1.3) is 
discussed after stating Postulate 2. 

The second corollary refers to a certain type of system—the analogue 
of a "conservative system' ' in classical dynamics : 

COROLLARY 2. 
special solutions 

When H does not depend on 
representing stationary states 

ψ = φβ-ίΕί/ή 

in which the time appears only in the "phase 

time, (4. 

factor" 

1) has 

(4.2) 
e-iEW, 

provided the "amplitude factor" Φ satisfies the time-independent 
equation 

ΗΦ = ΕΦ. (4.3) 

This corollary was established and discussed in the Schrödinger 
formulation in Chapter 1, where Ψ was a function of t and the variables 
x, and H was a differential operator; the general proof is formally the 
same. At present E is merely a "separation constant" with the dimen-
sions of energy : its meaning follows from the next postulate. 

4.3. The expectation value postulate 

In Section 1.2 it was observed that the wave function for a stationary 
state, with a definite quantized value of the energy E, satisfied an 
eigenvalue equation of the form (4.3) with the energy as eigenvalue. 
In such a state the energy is an observable with a strictly reproducible 
value. But what can be said of other observables (e.g. dynamical 
variables such as momentum components) whose measured values may 
exhibit a "scatter" or "uncertainty" ? 

The next postulate provides an answer to this question by giving a 
rule for predicting the arithmetic mean value of any observable A, for 
a system in a given state Ψ, which would be obtained from a large 
number of observations conducted under identical conditions. As this 
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average value is used in a predictive sense, it is usually referred to as 
the "expectation value" of A in state Ψ. In general the observed values 
will exhibit a scatter about the average, the existence of this "un-
certainty " being a central feature of quantum theory : on the other hand, 
the existence of states in which one or more observables (e.g. the energy) 
have definite values (the uncertainty vanishing) clearly must not be 
precluded. This possibility is discussed presently. 

The postulate itself is remarkably simple : 

POSTULATE 2. With every physical observable A may be 
associated a Hermitian operator A such that J 

(A) = <Ψ|Α|Ψ> (4.4) 

where {A > denotes the expectation value of A at time t in the 
state described by the normalized state vector Ψ. 

We note that Hermitian symmetry of an operator (p. 45) means 
<Ψι|Α|ψ2> = <ΑΨι|ψ2>, where the first form is the scalar product of 
Ψι with ΑΨ2, the second being that of ΑΨχ with Ψ2. The basic property 
<ψ|ψ'> = <Ψ'|Ψ>* then allows us to infer that all expectation values 
of physical observables are real (cf. p. 52). 

In the Schrödinger language, (4.4) becomes 

{A} = <Ψ|Α|Ψ> = /Ψ*(χ;*)ΑΨ(χ; ί ) ίχ (4.5) 

the integral being the Hermitian scalar product of Ψ with ΑΨ. For a 
one-particle system, the operator A may be set up by taking the 
classical expression for A in terms of Cartesian position and momentum 
variables (x, y, z, px, py, pz) and then replacing each momentum 
component by a differential operator in accordance with the scheme 
suggested in Section 1.2, namely 

h d fi d fi d /A „^ 
P*^x = ÏTx< P y ^ = iTy> P*^ = iTy- ( 4 · 6 ) 

I t is easily verified that these operators are Hermitian. The position 
variables (x, y, z) are left unchanged in making the association (4.6) 
and act merely as multiplying factors in the resultant operator. The 
generalization to a many-particle system is straightforward, each 
variable then carrying a subscript to distinguish the particles 1, 2 , . . . N. 

JRecall that the second vertical stroke in (4.4) is inserted only to formally separate the 
three factors involved <vector|operator|vector). Thus <J.> may be written equally well 
as (A > = <ψ| ΑΨ>, a scalar product of the vectors ψ and ΑΨ. 
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I t must be noted that ambiguities may arise because, for example, 
xpx and pxx are not distinguished in classical mechanics, whereas the 
associated operators (h/i)x(dldx) and (ti/i)(dldx)x are quite different in 
their effects. These ambiguities may usually be eliminated by noting 
the requirement of Hermitian symmetry and using a symmetrized com-
bination of the alternative expressions. 

Before considering particular examples to illustrate the implications 
of Postulate 2, we establish two further corollaries. The first concerns 
the interpretation of the separation parameter E in (4.2) and (4.3). 
According to Postulate 2, the energy at any instant has an expectation 
value (since H is used to denote the operator associated with E) 

<#> = <Ψ|Η|Ψ>. 

On multiplying each side of (4.3) by the phase factor in (4.2), and 
taking a sealer product with Ψ (from the left), the expectation value 
may evidently be written 

<#> = <Ψ|Η|Ψ> = # < Ψ | Ψ > = E. 

The implication is thus : 

COROLLARY 3. The parameter E appearing in the stationary 
state equations (4.2) and (4.3) is the expectation value of the 
energy of the system. 

We shall verify later that in a stationary state the energy is definite or 
sharp in the sense that any number of measurements, on a system in 
that given state, would yield the same result, i.e. no deviations would 
be found. 

The second result specifically refers to the Schrödinger wave function 
but is of such fundamental importance that we include it among the 
corollaries. We consider, first for one particle only, the expectation 
value of any function of position,/(x, y, z). This is, in a state with wave 
function ψ, 

</> = JV*(*> V> z>t)f(x> V> ζ)φ(χ, V> z\t)dxdydz 

or, since/(#, y, z) is merely a multiplying factor in the integrand, 

</> = //(*> 2Λ z)|<A(*> y, z\t)\Hxdydz. (4.7) 

The form of this expression justifies the interpretation 

\ψ(χ, y, z;t)\2dxdydz = 
probability of particle 
being found in volume 

Lelement dxdydz at time t\ 
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—for the classical average value of any function of the position would 
be obtained by weighting f(x, y, z) with the relative frequency of 
occurrence (i.e. probability) of the values x9 y, z and "summing" (i.e. in 
this case integrating) over all possible points x, y, z, exactly as in (4.7). 
This is the statistical interpretation of the wave function first proposed 
by Born and already introduced briefly in Chapter 1. 

The generalization to a many-particle system is straightforward : for 
brevity we let x$ stand for the variables of particle i, and state the 
result in the form 

COROLLARY 4. For a many-particle system, the Schrödinger 
wave function has the significance 

"probability of particle 1 
| Ψ ( Χ Ι , Χ 2 , . . . , Χ Ϊ Υ ; 0 | 2 ^ Χ Ι ^ Χ 2 · · · ^ Χ Λ Γ = 1 incZxi,particle 2 

simultaneously in 
dx2, etc., at time t 

(4.8) 
where x* denotes collectively all the (Schrödinger) variables 
characterizing particle i. 

The expectation value of any function of the particle coordinates is 
given by an expression exactly analogous to (4.7). 

To illustrate the physical content of Postulate 2 we now consider two 
simple but instructive examples of expectation value calculations. 

EXAMPLE. Linear momentum. We use the Schrödinger wave functions obtained 
in Sections 2.1, 2.4 and calculate the expectation value of a linear momentum 
component px. 

First we consider the free particle (Section 2.4) with wave function normalized 
within a cube of volume L 3 ; with the usual abbreviation:]: r = (x, y, z) 

Wk(r;t) = 4k(r)exp (-iEt/h) 

<j>k{r) = L-*/2ex-pi(kxx + kyy + Jczz). 

I t is clear that the time-dependent phase factor may be ignored, cancelling with 
its complex conjugate in the integrand of (4.5) and that y- and z-dependent 
factors disappear in a similar way. The result is 

<Vx> = L~2 J e x P (-ikzx) - T - e x P (ikxx)dxdydz 

= L~l J exp ( — ikxx) — ikx exp (ikxx)dx 

= tàx. 

JNote that x has been used to indicate all variables, while r indicates only spatial 
variables. Spin is introduced in Section 4.9. 
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This is consistent with our interpretation of the current flow expression (p. 37) 
which suggested that kx measured the ^-component of linear momentum, in units 
of h. The present result shows that hkx is the average value which would be 
obtained in a large number of observations. The possibility of the momentum 
being definite (no deviations) is discussed presently. 

Next let us consider the particle confined within a cube of side L, with wave 
function y/{r-,t) = <f>(r)e~iEt/fi where ^(r) is given by (2.9a). Again the time factor 
may be discarded, and the average momentum is 

\Px> = (2/-L)3'2 I sin2 — sin2 —~ | sin ——--r ■— sin ~-±-dxdydz 
J \ L L I L ι ox L 

which easily yields 
<Px> = 0. 

In other words, although the energy expression (2.9b) is still consistent with a 
momentum component of magnitude hkx(kx = nnx/L), the average momentum 
vanishes, indicating equal likelihood of positive and negative momenta. The new 
boundary conditions correspond to a finite box with perfectly reflecting walls, 
between wThich the particle moves back and forth. 

EXAMPLE. Angular momentum. In classical mechanics the x component of the 
angular momentum of a particle, about a given origin is defined by 

Lx = VPz-zpy. 

The corresponding Schrödinger operator is t 

ΊγΤζ~ζΊϊ)' 

In the theory of angular momentum it is particularly convenient to use dimension-
less quantities, and we therefore associate with Lx the operator 

1/ e e\ 

We must then remember that hLx corresponds to the actual angular momentum, 
and that the expectation value of Lx will give the angular momentum in unite 
of h, this being the corresponding atomic unit (p. 33). 

Let us consider first any spherically symmetrical wave function, such as that 
describing the ground state of the electron in the hydrogen atom. The time factor 
may again be discarded, and we obtain 

Now in terms of the polar coordinates,§ r, θ, φ, 

d _ dr d d6 Θ Βφ Θ 
"Sr^lkar ΊϋζΎθ ΊζΎφ 

JThere is clearly no ambiguity (cf. p. 77) since the operators commute, (9/3«)(t/^) = 
ν(ϊΙϊζ)ψ. 

§Use of φ for both an angle and the wave function is regretable, but the meaning is 
always clear from the context. 
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and for a spherically symmetrical function the last two terms vanish while the 
first becomes (zjr) d/dr. Similarly d/dy is equivalent to (y/r) d/dr. The integrand 
therefore vanishes identically and < ( ^ | L J ^ > = 0. 

I t is not difficult to show that the expectation value of any angular momentum 
component vanishes for all real wave functions as a result of the Hermitian 
character of the operator. On the other hand, it may easily be verified that 

{x + iy)f(r) 

describes a state with one unit of angular momentum about the z-axis. Wave 
functions of this kind appear among the general solutions of (2.20) and are 
discussed in Part I I . 

4.4. Significance of the eigenvalue equation 
We now turn to the most important corollary following from the 

expectation value postulate. This concerns the possibility of finding a 
state Ψ in which some quantity, A say, may have a perfectly definite 
or sharp value (p. 77) characteristic of that state and measurement. I t 
may be stated in the following form : 

COROLLARY 5. A physical observable A has a definite value in 
state Ψ if and only if Ψ is an eigenfunction of the operator A 
associated with A, this definite value being the corresponding 
eigenvalue. In symbols, this condition becomes 

ΑΨ = ^ Ψ . (4.9) 

If Ψ η is a solution, for which A takes the value An, the state 
represented by Ψ η is one in which measurement of A is certain 
to yield the definite value An. 

From this corollary it is evident that the separation parameter E in 
(4.3), which may be written ΗΨ = ΕΨ on attaching the phase factor 
exp ( — iEt\K), is not only an expectation value of the energy of a system 
in a stationary state ; it is the precise value that will always be observed 
when the wave function has the form (4.2). I t is also clear that in a 
stationary state the phase factor may be dropped: Ψ in (4.9) may then 
be replaced by the amplitude factor Φ, provided the operator A is time-
independent. In this case (4.9) becomes 

ΑΦ = ΑΦ. (4.10) 

The time-independent Schrödinger equation (4.3) arises in the special 
case A = H. 

The proof of (4.9) requires a criterion for the variable A to possess a 
definite value. If A has an average value Ä = <^4>, calculated as In 



FORMULATION OF QUANTUM MECHANICS 81 

Postulate 2, and a particular observation yields the value A, then the 
deviation is A — Ä, and the mean square deviation is the average value 
of ( A — Ä)2. But the mean value of this variable, for a system in state Ψ, 
is obtained from its associated operator as in (4.4). The mean square 
deviation is thus J 

AA* = < ψ | ( Α - ^ ) 2 | ψ > . (4.11) 

The variable A may then be said to possess a definite value in state Ψ 
if AA vanishes, i.e. if there is no deviation from the mean, however many 
observations are made. The condition for a definite value is thus 

<ψ| (Α-^ί )2 |ψ> = < ( Α - ^ ) ψ | ( Α - ^ ί ) Ψ > = 0 

where the second form follows because (by Postulate 2) (A — A) is a 
Hermitian operator, and may therefore be applied indifferently to either 
the right-hand Ψ or the left-hand Ψ. The condition thus implies tha t the 
length of the vector (Α — Α)ψ must vanish, and this in turn requires 
(disregarding the trivial case ψ = 0) that 

( Α - ^ ) Ψ = 0. 

This is equivalent to the eigenvalue equation (4.9) which is satisfied 
when A = Ä = (A} is any one of the eigenvalues of A, Ani say. Such a 
value is reproducible without deviation in the corresponding state Ψη. 

EXAMPLE. Linear and angular momentum. We return to the Examples on p. 79 
and first enquire whether the momentum px is definite in the stationary state with 
amplitude factor 

Φί{τ) = L-3/2expi(kxx + kyy + kzz). 

This being a stationary state we may use the condition in the form (4.10). 
Operation with px = (h/i) d/dx yields at once 

Px<t>k(r) = *k%M*) 

and it follows that ftkx is not only the mean value of px but is a definite value from 
which no deviations will be found in any observation on a system in state φ%. 
On the other hand, px working on the real wave function (2.9a) fails to produce a 
multiple of φ and it is concluded that deviations from the average value will 
occur, i.e. that px is in this case indefinite. 

A similar test applied to the angular momentum in the second Example shows 
that Lx = Ly = Lz = 0 in a state with a spherically symmetrical wave function. 
I t maybe verified by operating with L2 that there is definitely one unit of angular 
momentum about the z-axis in any state with a wave function of the form 
(x + iy)f(r), while the other components are indefinite with zero average values. 

{Note that A is not a variable and therefore has no operator associated with it. It is 
merely a numerical constant found by averaging measured values, 
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4.5. The uncertainty principle 
A further important consequence of Postulate 2 concerns the relation-

ship between the probable errors (measured by the root mean square 
deviations) with which two variables, A and B say, may be measured. 
In its elementary form Heisenberg's uncertainty principle refers to the 
probable errors in measurements of the position of a free particle (x, 
say) and its corresponding momentum component (px) and asserts that 

AxApx Ä h (4.12) 
—so that increasing precision in the specification of momentum of the 
particle implies increasing uncertainty in knowledge of its position in 
space. The wave packet studied in Section 1.1 illustrates this principle: 
Ax refers to the width of the packet (Fig. 1.1) and is proportional to 
y/σ while Apx refers to the spread of momentum values around the mean 
and is of the order KAJc or, by (1.6), Äy^l/a)—so the product is of 
ordere. 

The uncertainty principle may be stated most generally in the 
following form : 

COROLLABY 6. The root mean square deviations, AA and AB, 
obtained by repeated measurement of observables A and B for a 
system in state Ψ, are related by 

ΑΑΑΒ^ ΚΨ|£|Ψ> (4.13) 
where 

iC = AB-BA = [A, B] (4.14) 
is the "commutator":]: of the operators associated with A and B. 

The proof rests upon the fact that all non-zero vectors in Hubert space 
are of positive length (see (3.46) et seq.). In particular, if X = A + AB 
(where λ is any complex number), 

<χψ|χψ> = <ψ|Α2|ψ>+μ|2<ψ|Β2|ψ> 

+ λ<Ψ|ΑΒ|ψ> + ,1*<ψ|ΒΑ|ψ> ^ o. 
If we now let λ = a + ib, with a and 6 real, and introduce 

AB-BA = iC, ,AB + BA = D 
it follows easily that 

<ψ|Α2|ψ> + (α2 + 62χψ|Β2|ψ> + α < ψ | ο | ψ > ~ 6 < ψ | θ | ψ > > 0. 

JThis definition of the commutator [A, B] is the on3 usually employed; some authors 
occasionally use this to mean i(AB— BA). 
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Let us take a = 0 and "complete the square" for the terms in b, to 
obtain 

( Ύ Ι Λ » | Ύ > Ι Γ Ε <Ψ|0|Ψ> IVrlB'lT) <Ψ|€|Ψ>2 > ο 
Now this inequality is valid for any value of b, which we may there-
fore choose so that the second term vanishes.^ The result is 

<ψ|Α2|ψ> <ψ|Β2|ψ> ^ κ ψ | ε | ψ > 2 . 

To introduce the deviations we denote the expectation values by Ä and 
B and note that, as in (4.11), 

Δ^ 2 = <Ψ|(Α-^)2|ψ> AB* = <Ψ|(Β-£)2|Ψ>. 

It is also clear that (A-^ί) and (B —5) have the same commutator, 
namely iC, as A and B themselves. On inserting the former operators 
in the left-hand side of the inequality, instead of A and B, and using 
the definitions of AA and AB, it follows at once that 

Δ 4 2 χ Δ £ 2 > ΚΨ|£|Ψ>2 

which establishes the desired result (4.13). 
EXAMPLE. Uncertainties in x and px. In Schrödinger language x is simply a 

multiplier, while px is the differential operator (ft/i) d/dx. The commutator thus 
has the effect, on any operand Ψ 

The second term is then differentiated as a product and we obtain, discarding the 
arbitrary operand, 

iC = xpx - ρχχ = ih\ 

where I is the unit operator which leaves any Ψ unchanged. In this case, then, 
(4.13) reduces to 

AxApx ^ JÄ 

which fixes a precise lower bound in (4.12). 

Finally, (4.13) shows that if the operators A and B commute, the lower 
bound on A A AB for the quantities with which they are associated is 
zero; and thus AA, or AB, or both may vanish. This latter possibility 
would suggest the existence of states in which two variables could 
simultaneously be assigned perfectly definite values. This is reminiscent 
of the classical situation in which, besides the energy, there may be 
additional "constants of the motion". In the motion of a planet, for 
example, the energy and angular momentum components (and hence 

JNote that C is Hermitian so that <ψ|0|ψ> is real and is thus compatible with the 
assumption that 6 is a real number. 
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the plane of the orbit) all have definite and unchanging values for any 
given state of motion. We consider this situation in more detail in a 
later section. 

4.6. Time-development and the energy- t ime unce r t a in ty 
principle 

From Postulates 1 and 2 it is possible to derive a general expression 
for the rate of change of the expectation value of any quantity A, with 
operator A. Thus, from (4.4), 

j <A) = <(οΨ/οθ|Α|Ψ> + <Ψ|Α|(ΟΨ/50> + <Ψ|(5Α/5ί)|ψ> 

= <ΑΨ|(δΨ/^)>* + <νΐ/|Α|(3Ψ/Λ)> + <Ψ|(3Α/^)|Ψ>. 

But from (4.1) this becomes 

i t < A } = Γ^<Α ψΙΗ Ψ>1^+4 <ψ!ΑΗΨ>+<ψΚοΑ/5ο|ψ> 
and since, using the Hermitian symmetry of the operator, <ΑΨ|ΗΨ> = 
<Ψ|ΑΗΨ> we obtain finally 

COROLLARY 7. The time rate of change of any expectation value 
is given by 

iKjt<A> = <Ψ|(ΑΗ-ΗΑ)|ψ> + <Ψ|(3Α/3*)|Ψ> (4.15) 

where the system is described by the state vector Ψ, whose time 
development is determined by Postulate 1. 

This result gives a special significance to the commutator of an arbitrary 
operator and the Hamiltonian : if the operator does not depend explicitly 
on the time, and if it commutes with the Hamiltonian, then its expecta-
tion value will also be independent of the time. In other words, a 
quantity whose associated operator has these properties will be a 
constant of the motion. The simplest example of such an operator is the 
Hamiltonian of a conservative dynamical system (dH/dt = 0): the 
energy E = <#> is then obviously a constant of the motion and we 
obtain the quantum analogue of-the classical principle of energy 
conservation. I t should be noted particularly that this result is valid 
even when the system is not in a stationary state and is therefore not 
entirely trivial ; it applies, for example, to the motion of a wave packet 
in which the energy is not precise (corresponding to a range of k values 
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in the example on p. 35)—the expectation energy remains constant so 
long as the system is not disturbed by, for example, time-dependent 
fields. 

Now that we know how an expectation value develops in time, it is 
possible to consider an uncertainty principle connecting energy and 
time, usually stated in the form * 

AEAt ~ Λ. (4.16) 

This result is often applied, somewhat naively, in discussing phenomena 
ranging from the observation of free particles to the lifetimes of 
stationary states of complicated systems. I ts status is, however, quite 
different from that of (4.13) ; the meaning of At, for example, needs very 
careful definition because t is not a dynamical observable but rather a 
numerical parameter describing the evolution of the system. To obtain 
an uncertainty relation involving E we may start from (4.13), assuming 
A is not explicitly dependent on time and taking B = H : the result is 

AEAA ^ £<ψ|(1/ ί((ΑΗ-ΗΑ)|ψ>. 
But from the corollary just established the right-hand side of this 
equation measures the time rate of change of <^4>. Substitution of 
(4.15) yields 

AEAt ^ ψ (4.17) 
where we have defined At as the quantity (which certainly has dimen-
sions of time) 

At = imry ( 4 · 1 8 ) 

The uncertainty relation (4.17) is now quite precise and is formally 
similar to that for position and momentum (p. 83); it remains only to 
clarify the meaning of At as defined in (4.18). Since At times the rate 
of change of <̂ 4 > indicates the amount by which the expectation value 
of a typical dynamical quantity would change during time At, we may 
express the above results verbally in the form : 

COROLLARY 8. There is an energy-time uncertainty relation 
AEAt ^ \H 

where AE is the (root-mean-square) uncertainty in the energy of 
the system and At is the time needed for the average value of a 
dynamical variable A to change by an amount comparable to its 
uncertainty AA and is defined precisely by (4.18). 

An example clarifies the meaning of At. If a system initially in a 
stationary state is put in interaction with its surroundings (i.e. the 
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Hamiltonian is modified) it will not remain in that stationary state and 
there will be a corresponding uncertainty AE # 0 : the state will evolve 
in time and the change of expectation value of any quantity A 
will become detectable (i.e. comparable in magnitude with the intrinsic 
uncertainty AA) after a time of order not less than \KjAE. Thus the 
"lifetime" of state of precise energy (AE = 0) is infinite; but strong 
interaction (large AE) will be related to short lifetime. 

4.7. The completeness of eigenfunction sets 
In the Schrödinger representation, the state of a particle is described 

by the wave function ij/(T',t) and we have already met situations in 
which this function is written as a linear combination of the particular 
wave functions, eigenfunctions, characterizing the stationary states of 
the system. Thus, a particle in a box with periodic boundary conditions 
(p. 36) might be described by the wave packet 

ifr(r;t) = £ c * l M r ; * ) (4.19) 
k 

where the \\/ic{T\t) are plane wave solutions corresponding to states of 
definite momentum p = hk. Since ψ^τ-,ί) = φκ(τ) exp ( — iEtf/h), the 
expansion may be written alternatively 

ψ(τ;ΐ) = Σ<5*(Μ*(Γ) (4.20) 
k 

where the coefficients are time-dependent and the φ^ are the eigen-
functions of H ; satisfying Ηφ^ = Ε^φ^. Equation (4.20) is an example 
of an eigenfunction expansion; the basic theory underlying such 
expansions has been covered in Sections 3.2 and 3.3. 

In some cases the summation index in an expansion such as (4.20) 
may assume continuous values (as, for example, with a free particle, in 
which all values of the momentum are allowed) and the sum must then 
be replaced by an integral. For ease of exposition and notation, however, 
we shall normally assume tha t the eigenvalues form a discrete set. The 
assumption we now wish to make is that any state of a system may be 
expressed as a linear combination of its eigenstates. We express this 
idea as a postulate : 

POSTULATE 3. The solutions of the eigenvalue problem 

ΗΦ = ΕΦ 

for a system with Hamiltonian operator H, constitute a complete 
set, closed under the action of all the operators of the system. 
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The completeness of the set means simply that any state vector may 
be expanded in the form 

Ψ = Σ>*Φ*, (4.21) 
k 

where the ajc are numerical coefficients (which in general may depend 
on the time). The property of "closure" means that if A is any dynamical 
operator of the system then ΑΨ can be expanded in terms of the same 
set: 

ΑΨ = Σ&*Φ*. (4.22) 
k 

When the Φ# are regarded as basis vectors of a Hubert space, such 
expansions have the geometrical interpretation discussed in Section 3.5. 

In Schrödinger language, Ψ and the O's are functions of class Q 
(p. 18) and H is a differential operator; examples of sets we have already 
met are the eigenfunctions of the one-dimensional box (Section 2.1) 
which are complete for all functions φ(χ) defined in the interval (0, L) ; 
those of the three-dimensional box (Section 2.1), complete for functions 
φ(χ, y, z) defined within a cube of side L; those of the one-dimensional 
harmonic oscillator (Section 2.2) complete for all functions φ(χ) defined 
in the interval ( — oo, 4- oo). Other sets exist which are complete for all 
functions (of class Q) defined in the whole of three-dimensional space. 
Such sets are all infinite and the number of significant terms in an 
expansion of the form (4.21) will of course depend on the nature of φ ; 
if φ is quite close to one of the eigenfunctions, φ^, a good representation 
may be obtained with few terms. The postulate refers, in general, to a 
many-particle system. 

Unfortunately, the eigenfunctions of interest very often cannot be 
expressed in closed form. I t is for such reasons that we are compelled 
to assume completeness as a postulate. 

I t should be noted that Postulate 3 refers to state vectors and 
eigenstates "of a given system'' ; complete sets are frequently used in a 
wider context, without reference to a particular eigenvalue problem, 
but naturally for an expansion to be valid all the Φ# must at least be 
functions of the same class. As an example of this wider usage we note 
that the hydrogen atom eigenfunctions maybe expressed with arbitrarily 
high accuracy in terms of those of a three-dimensional harmonic 
oscillator by taking a sufficient number of terms; Ψ and the Φ# then 
refer to different physical systems, but the expansion is still valid 
because the Φ& are complete for all functions of position in three-
dimensional space. On the other hand, the eigenfunctions of a finite 
box could not be used for this purpose since they are complete only for 
the region within the box. 
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Returning to the Postulates, we note first an immediate consequence 
of the Hermitian symmetry of H : 

COROLLARY 9. The solutions Φ# of the eigenvalue equation 

ΗΦ = ΕΦ 

may be chosen so as to form an orthonormal set : 

<Φ*|Φ,·> = Sij. 

This is essentially a mathematical property of Hermitian operators, the 
proof following closely that given in Section 3.1 (for differential operators 
and their eigenfunctions) and referred to again in Sections 3.3 and 3.7. 
We remember that orthogonality is ' "automatic" for eigenfunctions 
with different eigenvalues, and may be assumed without loss of 
generality (i.e. orthogonal solutions can be found) when degeneracy 
occurs. The possibility of normalizing the solutions follows from 
Corollary 1. When degeneracy does occur, it indicates that measure-
ment of E is not sufficient to characterize a state completely ; Φ$ and Φ;· 
may have a common energy E% = Ej but differ in the values taken by 
some other observable A. To investigate this possibility we first use 
Postulate 3 to verify the conjecture at the end of Section 4.5. The basic 
result needed may be expressed in the form 

COROLLARY 10. Two operators A and B possess a complete set 
of common eigenvectors if and only if they commute : 

[A, B] = AB-BA = 0. 

The eigenvectors then describe states in which variables A and 
B have simultaneously definite values. 

The necessity of this condition is easily demonstrated: for if Ψ# is a 
common eigenvector} of A and B, with eigenvalues A and B, then 

ΑΒΨ* = A(B*¥k) = Bkmk = ΑΒΨχ, 

ΒΑΨ* = Β(ΑΨκ) = ^ΙΒΨ* = AB*¥k, 
and hence 

( Α Β - Β Α ) Ψ Α ; = 0. 

{And hence some vector in the Hubert space of the system considered, which is 
assumed closed under A and B. 
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If this is true for every member of a complete set we may multiply by 
Cjc and sum over all Jc to obtain 

(ΑΒ-ΒΑ)Ψ = 0 

where Ψ is the arbitrary function 

k 

But this is true for arbitrary Ψ only if (AB — BA) is the zero operator and 
the condition is thus established. 

The sufficiency of the condition, allowing us to assert that if A and B 
commute then a complete set can be found, such that all its members 
are simultaneously eigenfunctions, is less easily proved.J The proof will 
only be sketched. First, it can be shown that a basis {Φ*;} may be 
chosen, without any loss of generality, so that its members satisfy § 

Α Φ * = Ak<ï>k, (4.23) 

i.e. that using any complete set for the system, its members may be 
formed into new linear combinations that are eigenvectors of A. This 
result depends only on the property of closure, together with the 
Hermitian symmetry of the operator; for a finite vector space the 
proof is essentially contained in Section 3.7, but more generally we 
accept the statement as a purely mathematical result (see, for example, 
Courant and Hubert (1953)). The proof of sufficiency then runs as 
follows. If B commutes with A, and the Φ& are eigenfunctions of A, 
then (using Hermitian symmetry) 

<Φ,|(ΑΒ-ΒΑ)|Φ,> = (4,-^)<Φ,|Β|Φ,> = 0 

and hence <Φ$|Β|Φ;> = 0 provided At Φ Aj. But, by the closure 
property, ΒΦ^ can be expanded in the form 

ΒΦ; = Σ 6 ^ φ * > (4·24) 
k 

where the coefficients follow on taking a scalar product with Φ# : 

bkj = <Φ*|Β|Φ;> (4.25) 

JA careful discussion by Kemble (loc. cit., pp. 181-5) indicates the need for further 
assumptions before the usual "proofs" can be justified; these amount essentially to the 
closure property adopted in Postulate 3. 

§Note that Φ# is here not necessarily an eigenvector of the Hamiltonian operator. 
Nor is any assumption made about time dependence; time-dependent vectors are 
expressible in a time-independent basis, the expansion coefficients being time-dependent. 
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This coefficient is non-zero only for k = j , as noted above, provided the 
eigenvalues of A are non-degenerate and therefore in this case (on 
using (4.25) in (4.24) with k = j) 

ΒΦ;· = bjfà = BjOj (4.26) 

showing that the eigenfunctions of A are simultaneously eigenfunctions 
of B. If an ra-fold degenerate eigenvalue occurs we write a general 
eigenvector, with that eigenvalue, as a linear combination of the 
m independent solutions; it can then be shown (cf. the Example on 
p. 47) that the coefficients can be chosen so as to define m eigenvectors 
of A that are, simultaneously, eigenvectors of B. 

We may now return to the use of commuting operators as a means of 
classifying stationary states of a system in terms of constants of the 
motion—one of their most important applications. In this case one of 
the commuting operators is the Hamiltonian itself. If another operator 
A commutes with H, then we can find states in which A has a definite 
value along with the energy. If we can find a third operator B, which also 
commutes with H and with A, it follows that we can find a complete set 
of states in which the three quantities, E, A, B, have simultaneously 
definite values—and so on. The simultaneous eigenvalues may thus be 
used to give an increasingly precise classification of the state of the 
system ; and the largest set of mutually commuting operators that we 
can find will give the most complete characterization possible. I t follows 
from Corollary 7 tha t the simultaneous eigenvalues are all constants of 
the motion in the sense that they are perfectly definite and unchanging. 
No more complete specification of the state can be obtained; it is a 
' 'state of maximal knowledge". 

States of maximal knowledge are of fundamental importance in the 
theory of measurement, representing the ultimate limits of precise 
observation permitted by the uncertainty principle. Any at tempt to 
measure another variable (with a ^on-commuting operator) must then 
introduce uncertainty into at least one of those already measured. J 
A "sharper" specification of the state is therefore unattainable. 
Observables whose operators all commute with each other, and which 
are therefore simultaneously knowable, are said to be compatible. The 
simplest illustration of these important concepts is afforded by a 
system consisting of a single free particle (Section 2.4) : 

JAny effective measurement of the new variable must leave it with a, finite (or zero) un-
certainty; the uncertainty introduced into one of the measured variables must therefore 
be non-zero, according to Corollary 6, if the corresponding commutator is non-zero. 
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EXAMPLE. Commuting operators for a free particle. I t is clear by inspection that 
the operators (using, as usual, the Schrödinger language) 

h* £2 _h d _h d _ h d 

~2m"dx*' Ρχ~~ΎΊχ' ?y "Tdy9 ?z ~ ΊΊζ 

all commute with each other; P^P^ = Pj/Pz» for example, because the order of 
successive differentiations is immaterial for any well-behaved function. We have 
also verified directly (p. 81) that the wave function 

φη{τ) - Z,~3/2exp ( ik · r) 

is an eigenfunction of all four operators, with eigenvalues 

E = ft2k2/2m, px = ftkx, py = ftky, pz — hkz 

respectively. This is a state of maximal knowledge for a free particle, the energy 
and momentum components all being constants of the motion. 

Finally, having introduced the idea of states of maximal knowledge, 
we may formulate one more important corollary : 

COROLLARY 11. If the state vector Ψ of a system is expressed in 
terms of the eigenvectors Ψ# describing states of maximal know-
ledge, 

Ψ = 

then the probability that , in 
maximal knowledge, the system 

Wk = \cjc\2 

The scalar products <Ψ*;|Ψ> 
meaning. 

Σ**Ψ*, 

an experiment designed 
will be found in state Ψ& 

= | < Ψ * | Ψ > | 2 · 

in this way acquire a 

(4.27) 

to yield 
is 

(4.28) 

physical 

This interpretation follows on examining the expectation values, in 
state Ψ, of all the compatible variables E, A, B, C, . . . whose eigen-
values characterize the states. Repeated measurements, always starting 
with the system in state Ψ, would yield an average value of A given by 

04> = <Ψ|Α|Ψ> = Σ<**οι<Ψ*|Α|ψ,>. 
k,l 

But since Ψ#, Ψ* are not only orthogonal but are also simultaneous 
eigenfunctions of H, A, B, C, . . ., we obtain 

<^> = Σβ**^4«<ψ*Ιψί> = ΣΜ2^4* 
k,l k 
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and similarly for B, C, . . . . Thus, with wk = |c^|2 

<,4> = %W*A*> <B> = Σ™*Β*> · · · (4.29) 

These average values indicate that the relative frequency with which 
the system is found in state Ψ#, with eigenvalues E^, Ajc, Bk, . . . is wjc, 
and the corollary is established. 

A more complete discussion of this result and its implications would 
require a detailed discussion of the nature of physical measurements, 
and lies outside the scope of this book. We note, however, that when a 
system in state Ψ is subjected to observations, leading to definite 
knowledge of a maximal set of observables, it makes a c "transition" 
from state Ψ to some state Ψ# corresponding to maximal information 
about the state in which the system is left. In this idealized process the 
system is "forced" into one of the states of maximal knowledge, as a 
result of interaction with the measuring apparatus; during the process, 
whose end result is Ψ —>Ψ#, the state does not evolve according to 
the normal causal law—which refers to the system itself, unconnected 
with measuring apparatus. Thus, wjc in Corollary 11 indicates the 
probability that measurement of the maximal set of compatible 
variables (as chosen in defining the expansion) will leave the system in 
the particular state Ψ*;, without reference to how the change is effected. 
I t should be noted that this interpretation of the coefficients in 
Corollary 11 is dependent upon the Ψ& being eigenfunctions of the 
system to which Ψ refers. I t is, for example, entirely possible for the 
eigenfunctions of the electron in a hydrogen atom to be expanded in a 
complete set of harmonic oscillator functions; but wjc would clearly 
not represent the probability of finding the electron in a harmonic 
oscillator state. The squared coefficients in a general expansion, with 
only mathematical significance, are frequently referred to as "prob-
abilities" ; it is safer to use the term "weights" unless the eigenfunctions 
Ψ# actually refer to the system in question. 

4.8. Properties of the operators 
The operators associated with physical quantities have so far been 

specified only in the Schrödinger language, by means of the rule (4.6). 
The postulates and their consequences, on the other hand, have been 
formulated in a much more general manner, not depending on this 
somewhat mysterious rule. To complete the general formulation of 
quantum mechanics we therefore need to define the operators themselves 
in a language-independent manner. The natural way of doing this is by 
specifying the rules by which they combine with each other. The 
fundamental significance of the commutator of two operators has already 
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been established, and it is therefore not surprising that the operator 
algebra of quantum mechanics is completely defined by a set of 
commutation rules. These rules may now be stated in the form of another 
postulate : 

POSTULATE 4. The operators associated with the position and 
momentum variables of a particle commute, with the following 
exceptions 

[x, Px] = [/, Pi,] = [z, Pz] = »I (4.30) 
while those for two different particles always commute. 

Such properties have already been noted (e.g. in the Example on 
p. 83) in the case of position and momentum operators in Schrödinger 
language, set up using the prescription (4.6) et seq. The statement 
now made is more general in the sense that x, px, etc., are simply 
Hermitian operators, and the operand Ψ is simply a vector in a Hubert 
space—not necessarily a function Ψ(χ). Such operators may be specified 
in an infinite variety of ways, by noting their effect on any complete 
set Φι, <I>2, . . . defining the space in which they operate; but the 
algebraic relationships among them are independent of the language or 
representation chosen. 

Before considering other quantum mechanical languages (Chapter 5) 
we note that the form of Postulate 4 is largely prescribed (see Temple, 
1934, pp. 44-46) by the more general principle that space is isotropic 
(i.e. the x, y, z directions are arbitrary); and, secondly, that the 
association of operators with various functions of the basic variables 
(position and momentum) must be compatible with Postulate 3. Thus, 
for example, the expectation value of A + B is 

by definition of the expectation value as an arithmetic mean.J 
Consequently remembering the operators are assumed linear, 

<(A+B)> = <Ψ|Α|Ψ> + <Ψ|Β|Ψ> = <Ψ|(Α + Β)|Ψ> ^ΙΙΨ) 
and the operator to be associated with A+B must therefore be A +,B. 

JThe meaning should be considered carefully. Each variable is measured a large 
number of times (N, say), independently and always starting with the system in 
state ψ : a pair of measurements, Ai and Βχ give one estimate of the sum A + B and the 
arithmetic mean AT-1 T,i(Ai + Bi) is the sum of the arithmetic means of A and B 
separately. The question of whether the measurements are compatible or incompatible 
does not arise. 
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Similar arguments (Temple, he. cit., pp. 36-38) lead to the following 
requirements : 

COROLLARY 12. The operators associated with multiples, sums 
and products of observables are as follows : 

cA ->cA 

A+B ->A + B 

J5-> i (AB + BA) 

where the —> means the operator on the right is associated with 
the observable on the left. 

Since any dynamical quantity can be expressed in terms of sums and 
products of the basic variables x, y, z, pXi py, pz, the associated operator 
may be set up using Corollary 12: the properties of such operators are 
then determined by the basic rules of Postulate 4. Thus, for example, 
the operators associated with xpy and ypx are xp^ and yp^ (since in this 
case the operators commute) ; that associated with — ypx is — yp# ; and 
hence the operator associated with the angular momentum Lz = 
xpy-ypx is Lz = xpy— ypu;. Generally, any function ofx,y9... pz gives 
rise to an operator which is a similar function (suitably symmetrized 
in the rare cases where it may be necessary) of the operators x, 
y, . . ., pz. Corollary 12 merely justifies formally the rules previously 
adopted. 

In conclusion, it must be added that a discussion of the more 
mathematical properties of the operators, in particular questions of 
"boundedness" and the nature of the eigenvalue spectrum, require 
sophisticated analysis. Such analysis is clearly outside the scope of this 
book but may be found elsewhere (e.g. Courant and Hilbert, 1953; 
von Neumann, 1955; Kato, 1951). 

4.9. Electron spin 
So far, although the postulates have been framed in a general way, it 

has been assumed that all the operators encounteied in the theory may 
be derived from classically defined dynamical quantities (i.e. functions 
of particle coordinates and momenta) ; and we know how to set up these 
operators using the Schrödinger language. Experiment shows, however, 
that there are some quantities that have no precise classical analogues ; 
to complete the postulates we must introduce these quantities and the 
properties that characterize their associated operators. 



FORMULATION OF QUANTUM MECHANICS 95 

We shall not give a detailed historical account of the development of 
the "spin" concept; it is sufficient to start from the experimentally 
established premise that a particle may exhibit properties that would 
correspond, in classical terms, to an intrinsic angular momentum and a 
related magnetic moment. For example, the state of a single electron 
moving in an arbitrary potential field is always (at least) doubly 
degenerate, application of a magnetic field resolving even an apparently 
non-degenerate energy level into two branches, with a minute separation 
proportional to the applied field strength; these branches evidently 
correspond to some observable tha t can take only two values. If the 
magnetic moment were represented by a vector μ, the classical inter-
action energy with an applied magnetic field B would be — B · μ or, if 
the field were adopted as the z-axis, —Βμζ where μζ is the component 
of the dipole vector along the field direction; and if μ were taken 
proportional to a "spin angular momentum" the classically expected 
interaction energy would be proportional to —BSZ. The experiments 
imply that , for an electron, the z-component of spin Sz can take only 
two values; this situation is described by saying that the spin vector 
sets parallel or antiparallel to an applied field. 

Let us now introduce the spin formally and quantitatively by means 
of the following Postulate : 

POSTULATE 5. An electron possesses an intrinsic angular 
momentum % represented by a "spin" vector S with components 
Sx, Sy, Sz, each being a "two-valued" observable, with possible 
values ± | . The related magnetic moment is μ = —gßS where 
— ß is the classically expected moment for one atomic unit of 
angular momentum, and g = 2-0023 is an observed "free-electron 
g value". The associated spin operators commute with all the 
operators representing "classical" quantities, but not with each 
other. 

The classically expected magnetic moment, for an electron with 1 
atomic unit of orbital angular momentum is —etifim and the "Bohr 
magneton" is defined by§ 

ß = eh 12m (4.31) 

JAs on p. 79 we measure angular momenta in units of h, i.e. in atomic units. Thus 
hSx is the angular momentum component corresponding to a dimensionless Sx. 

§Here we use SI units, postponing a full discussion to Vol. 2, where electric and 
magnetic effects are considered in more detail. In the mixed Gaussian system, ß contains 
an additional factor c in the denominator. 
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The minus sign in μ = — gßS arises from the negative charge of the 
electron. The fact that g ~ 2 for spin angular momentum is classically 
unexpected, but emerges naturally from the Dirac equation (Chap. 6, 
Vol. 2) which takes account of the requirements of relativity theory; 
the precise value 2*0023 is predicted when further refinements are 
admitted. In non-relativistic quantum mechanics, electron spin is 
admitted essentially by Postulate 5, which forms the basis of the Pauli 
theory of spin. 

In order to assimilate spin into the theory we note first that measure-
ment of any spin component, that along the z-axis say, yields one of 
two possible eigenvalues + \h or — \h ; we denote these corresponding 
eigenstates by a and β and write 

Sza = Ja, Szß= -\ß. (4.32) 

I t is then possible to describe simultaneous eigenstates, in which the 
^-component of spin is definite along with various other ''classical'' 
quantities (e.g. energy, momentum), as products of an orbital factor φ 
and a spin factor, a or β\ spin operators work only on the latter, all 
other operators only on the orbital factor φ. Thus, if an electron in a 
beam has linear momenta corresponding to wave numbers kx, ky, Jcz 

(p. 36), so that 

Ρχφ = (kxh)<l>9 ρυφ = (^ρϋ)φ9 ρζφ = ψζΚ)φ 

then the state is more completely characterized as φα or φβ. The spin 
component along the (arbitrarily chosen) z-axis being ± \h in the two 
cases. Thus, for example, 

S2(0a) = 0(Szoe) = φ(\ο) = \{φα) 

showing that the product is also a spin eigenfunction. Also, φα clearly 
remains an eigenfunction of the other operators p^, py, pz, which work 
only on the φ-factor. As a result of this separability of space and spin 
descriptions, we may now turn attention directly to the spin operators 
S#, Sy and Sz and their eigenstates. The small magnetic interactions 
between spin and orbital motion will be discussed elsewhere (Vol. 2). 

Commutation relations 
The wow-commutation of different spin operators is an expression of 

the experimental fact that two or more components cannot take 
simultaneously definite values (Corollary 10). If we start from a state 
with spin factor a and then measure Sx we may find 8X = ± | ; on 
repeating the measurement of Sz, however, we no longer find exclusively 
Sz = + \—either value is equally likely, giving a zero average value, 
and we have thus lost all knowledge of Sz. This is an example of the 
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incompatibility of observables with non-commuting operators. We now 
enquire whether there are any precise commutation rules for the spin 
operators, parallel to those in Postulate 4. 

We select one direction in space, calling this the z-axis, and try to 
describe any spin state as a linear combination of the eigenstates a and 
ß satisfying (4.32). In accordance with the general principles, we regard 
a and ß as orthogonal unit vectors defining a two-dimensional spin 
space, in which 

<α|α> = <β\β} = 1, <α|/?> = </?|α>* = 0. (4.33) 
A general state, for example one with spin component + | along a 
direction perpendicular to the z-axis, might then be represented by 
η = acc + bß, where the unit vector condition requires |a | 2+|6 |2 = l.J 
Similarly, we try to characterize all three spin operators S ,̂ Ŝ , Sz in 
terms of their effects on the basis vectors a and ß. 

The starting-point in the argument is simply that (except in general 
relativity theory) all directions in space are considered equivalent; if 
Sz' is the operator corresponding to measurement of spin component 
along any new, rotated z-axis, then S/ must have properties exactly 
like Sz—in particular, its eigenvalues must be ± J. In general (Section 
3.6) the components of a vector relative to a rotated coordinate frame 
are connected with those for a ' 'fixed" frame by equations such as 
Sz' = 18X + mSy + nSz where i, m, n are direction cosines of the rotated 
z-axis relative to the fixed axes§ and therefore (Corollary 12) the 
operator associated with measurement of spin component along a new 
z-axis will be 

S/ = lSx + mSy + nSz. (4.34) 
In particular, Sx, Ŝ  and Sz must have similar properties. Now Sz

2 is 
seen to multiply a and β—and hence any linear combination—by J, 
and therefore the square of each spin operator is J times the unit 
operator (I say): 

S*2 = Sî/2 = S,2 = j | . (4.35) 
An immediate result is that in any spin state η the square of the total 
spin has the eigenvalue f : in other words 

S2^ = (S*2 + V + S*a)iJ = fij. (4.36) 

{Experiment shows, in this case, that \a\ = |6| in order to yield a zero expectation 
value of Sz: for <#«> = </7|S2|^> = -J-(|«|2 —16|2) and the vanishing of this quantity 
implies equal probabilities of the two possible components along the z-axis. Thus 
η = (α + /?)/>/2 is one example of a spin state in which the z-component is indefinite but 
the component in a perpendicular direction may be definite. 

§The rotation of axes is here described by the matrix T( = R) in the Example on 
p. 62. The components of a fixed vector change according to (3.61) where, since T is a 
real orthogonal matrix, T" 1 = Tt = *f (the transpose). 
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We usually write the eigenvalue of S2 in the form S(S+ 1), which will 
turn out to be characteristic of angular momenta in general, and when 
S = \ we refer to a "spin \ particle". Thus electrons are particles of 
spin |—but this means that the observed magnitude of the spin 
(square root of the observable value of S2) is V{i(* + !)}> a result first 
inferred experimentally in the early days of quantum theory. 

The next step is to consider S / 2 = £1 where S / is given by the general 
expression (4.34). Clearly 

S/2 = (/2s^2 + m2Sy2 + n2sz2) + ; . m ( s ^ + S ^ ) + ^ ( S y S z + S,S^ 

+ nl(SzSx + SrSz). 

From (4.35), and the fact that Z2 + m2 + ?i2 = 1, the first parentheses 
yields | l ; and since the whole expression must be equivalent to £1, for 
all values of/, m, n, it follows that the spin operators must anticommute 

(SxSy+SySx) = (SySZ+SZSy) = ( S ^ + S ^ ) = 0 (4.37) 

where 0 denotes the zero operator. 
To find the commutators we use simple algebraic arguments. First, 

the condition (SXSZ+SZSX)QI = 0 yields, using (4.32), 

S2(S.ca) = -è(s*°0 

and hence (S^a) with eigenvalue — £, must be a multiple of ß. Similarly, 
(Sxß) is a multiple of a, and we therefore write 

Sxa = kß, Sxß = VOL. 

Since Sx has real eigenvalues it is a Hermitian operator and hence 

<a|S*/?> = <Sea|0> 

and this shows k' = k*. Also S#2a = kSxß = kk'a shows that kk' = \. 
Hence 

k = \ë\ k' = \e-te. 

We take 0 = 0 and write 

S*a = Jj8, Sxß = £a (4.38) 

the choice being open because each basis vector is arbitrary to within 
a phase factor (Corollary 1 ). 

A similar argument, based on the second anti-commutator in (4.37), 
yields 

Ŝ a = kß Syß = k'oi 
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where k and k' are again conjugate complex numbers of modulus £. But 
use of the first anticommutation condition then showfc 

(SsSy+SyS*)« = SX{kß) + SyQß) = \kOL + \V 0L = 0 

and hence k = —k' = — &*. Therefore k is pure imaginary and must 
be ±\i\ we take 

V = \iß, Syß = \ioL (4.39) 
choosing the upper sign for reasons that will be clear presently. 

Finally we verify that 

(SsSy-SyS^a = Sx{\i ß) - Sy(lß) = i < ( i a ) - i ( - | i a ) = \i<x. = iS2a, 
(SxSy-SySx)ß = Ssi-itoO-Syii«) = - Ji(i/i) - \{\iß) = -\iß = iSzß. 

In other words, (Ŝ Sy —Ŝ Ŝ ) and iSz have exactly the same effect on 
each basis vector and hence on any vector in spin space; the two 
operators are equal. Cyclic permutation of subscripts, corresponding to 
use of the other anticommutators in (4.37), gives the full set of com-
mutation relations : 

COROLLARY 13. The spin 
commutation relations 

Ŝ Sy 

SySZ 

5z$x 

operators for an electron 

— 5y$x 

— SZSy 

— oxoz 

which are a necessary consequence 
rotations of the coordinate axes. 

= iSz, 

^ ΐ5χ> 

= iSy, 

satisfy the 

(4.40) 

of the isotropy of space under 

Had we made the opposite choice of signs in (4.39), we should have 
obtained the same relations with — Sz in place of Sz ; reversal of the 
^-component corresponds merely to the change from a right-handed 
to a left-handed coordinate system. 

The commutation relations for spin are evidently quite different from 
those for the position and momentum variables. It may be shown, 
however, that they are formally identical with those for the operators 
associated with orbital angular momentum; they characterize the 
properties of angular momentum in general, a subject fully dealt with 
in Vol. 2 (Chapters 2 and 5). 
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Inclusion of spin in the wave function 
Let us now consider how the description of spin can be absorbed into 

the wave function describing the spatial motion of a particle. We first 
use the Hamiltonian operator (1.21), which contains no spin terms. This 
will possess eigenvalues and eigenfunctions {Eu φι) such that 

Υ\φι = Εΐφι. 

In a state of maximal knowledge we require the state vector to be an 
eigenvector of a full set of commuting operators. Only one of the spin 
operators, arbitrarily taken as that for the z-axis, can be included in this 
set; and Sz must commute with H because Sz only works on linear 
combinations of a and β while H only works on linear combinations of 
{<M—and hence the order in which they operate is irrelevant. 

The simultaneous eigenvectors of H and Ŝ  are self-evident ; if we take 
ψι = φι<χ we obtain (cf. p. 96) 

Ηψί = Εφ, 

$ζψί = \Φυ 

so ψι is a simultaneous eigenvector of the commuting operators for 
energy and spin z-component. Similarly ïpi = φχβ is a simultaneous 
eigenvector but with opposite spin. 

The set of all products {φιη^}, where ηι = α and η% = β is said to 
span a "product space" (Section 3.8) the complete sets involved being 
oo-dimensional and two-dimensional respectively. Any state involving 
the space and spin description of a single spin \ particle may thus be 
expanded in the form 

Φ = Σ°νΦΜ = Σ^ΦίΧ + Σ^Φίβ = ΦχΧ+Φββ' 
ij i % 

the two sums corresponding to j = 1 , 2 respectively (a and β terms). Thus 

ψ = φΛ*+φββ. (4.41) 

This most general "two-component" wave function has characteristic 
transformation properties under rotation of the axes of spin quantization 
and is called a "spinor". Usually it is possible to work in teims of 
states of definite spin and then only one component is non-zero ; the 
term spin-orbital is then usually applied to the single products φα or 
φβ. Clearly Postulate 3 must now be interpreted to mean that, for a 
one-electron system, the state vector φ may always be expanded in 
terms of a complete set of spin-orbitals ; there is a similar interpretation 
for a many-electron system, the expansion of many-electron wave 
functions being fully considered elsewhere (Vol. 4). 
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It remains only to show that, by a simple notational device, the 

description of both spin and orbital motion may be treated in exactly 
the same way. At present, an orbital state φ has a concrete realization, 
in the Schrödinger language, as an element of function space φ(τ), in 
which both the variable r and the corresponding value of |0(r)|2 have 
a direct physical meaning ; on the other hand, a and β are vectors in a 
two-dimensional space and there has been no need, so far, to introduce 
a "spin variable". The consequences of this difference are a little awk-
ward. For example, in the state (4.41) the normalization integral 
means 

<Φ\Φ> = <(Φ*« + φββ)\φα* + φββ}. 
On expanding, and using the Schrödinger language, a typical term is 

<φΛ*\φββ> = [ΪΦΛ*(τ)φ,(τ)ατΚ*\β>. 

Since the spin states are described by orthonormal vectors, the result is 

<Φ\Φ> = $φα*(τ)φα(τ)ατ + $φβ*(τ)φβ(τ)άτ. (4.42) 
In other words, in a scalar product we must integrate over continuous 
variables and sum over different components. 

There are various ways of avoiding this inconvenience. Here we shall 
formally introduce "spin functions" oc(s), ß(s) and write the scalar 
products (4.33) as 

<α|α> = $a*(s)ot(s)ds = 1, <a|j8> = $oi*(s)ß(s)ds = 0, etc. (4.43) 

We now adopt a very useful convention, using x to stand for both 
space and spin variables and reserving r for space and s for spin 
variables separately. The wave function, including spin, will then be 

φ(χ) = ψ(τ,8) = φα(τ)*(8) + φβ(τ)β(8) (4.44) 
and all scalar products can then be indicated formally as integrals, 
without any summations over components : 

<Ψ\Φ> = J>*(x)</'(x)dx. (4.45) 
The conventions ensure, of course, that on inserting (4.44) and perform-
ing spin integrations we shall retrieve the component form (4.42) ; but 
we may not wish to do this (e.g. in a complicated many-electron 
problem) until the end of a calculation. 

Finally, we must confirm that the statistical interpretation of the 
wave function according to (4.8) continues to make sense when spin is 
included among the variables. First of all we note that the expectation 
value of any function / (r) (of spatial variables) in the state φ given in 
(4.41 ), becomes, on using the orthonormality of a and /?, 

<*\f(r)\*> = / / (Γ)[ |Ψ.(Γ) |« + | ^ (Γ) |8 ] ( ΪΓ . (4.46) 
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This implies, as in (4.7) et seq., that the probability of finding the elec-
tron in spatial volume element dr is 

[\φ.{τ)\* + \φ,(τ)\*ντ. 

But in any state aoc + bß the relative probabilities of the two spin 
situations are in the ratio |a | 2 : |6 | 2 . The two terms in the expression 
thus give the relative probabilities of the particle in dr having spin 
" u p " or spin "down"; while their sum gives the probability of the 
particle being there with either spin. 

I t is possible to interpret the spin functions oc(s) and ß(s), and the 
variables, in such a way that (4.44) leads to exactly the same conclusions. 

j3(s) a(s) 

s=- s=+i 

F I G . 4.1. Schematic representation of spin functions. a(s), ß(s) may be 
regarded formally as functions of a spin variable s( = £ 2 ) , having the form 
of infinitely sharp "spikes" in the vicinity of s = + i and s = — -J-

respectively. 

To do this we might take s to be the value of the ^-component of spin and 
suppose |a(s)|2cfo indicates the probability of finding spin component 
in the range (s, s + ds) just as |<£(r)|2 is that of finding position variables 
in the range (r, r + dr). I t is then evident that (x(s) must vanish except 
when s ~ \, subject to the normalization condition J|a(s)|2eiis = 1. 
Such a function may be envisaged as the limit of a sharp "spike" in the 
vicinity of s = \, while ß(s) would be a similar "spike" vanishing 
except for s ~ — J (Fig. 4.1); there are mathematical difficulties in 
giving a literal interpretation to such "delta functions" (which are used 
again in Chapter 5) but from a formal point of view they are often, very 
convenient. Here, for example, the statement (4.8) implies that (since 
ot*(s)ß(s) cannot be non-zero) 

\ψ(χ)\*άχ = {|^(r)|2|a(s)|
2 + |^(r)|2|^)|2}drd5 = 

Probability of" 
particle in dr, 
with spin in 
the range 

L($, s + ds) 
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The probability of finding the particle in dr, whatever the value of s, is 
obtained by integration (''summation'* for all possible s values) and is 
thus 

{\ΦΑτ)\*+\φ9(τ)\*}άτ 

exactly as above. But the first term, going with the |£($)|2 factor comes 
entirely from the region s Ä -f î-, while the second term comes from the 
region s ~ — £. In other words, when the spin z component is used 
formally as a continuous variable the interpretation of the wave 
function according to (4.8) remains acceptable, provided the spin 
functions are defined so as to satisfy (4.43) and interpreted so that 
a(s) = 0 (s Φ £), ß(s) = 0 (s Φ — I) . Although we have considered 
explicitly only a one-particle system the argument applies equally in 
the general case. Thus, for example, if a two-electron system is described 
by a wave function Ψ(χι , Χ2), built up from a complete set of spin-
orbitals, then 

[ / | ψ ( χ ι , χ 2 ) | 2 ώ ι ώ 2 ] * ι ί Γ 2 = 
"Probability of particle 1 in dv 
particle 2 in dr^, without 
reference to spin 

In other words, the probability density function for finding any spatial 
configuration of particles, irrespective of their particular spins, is 
obtained from | ψ | 2 simply by a spin "integration". The need to pick 
out and sum over discrete spin components is thus eliminated and all 
variables can be handled in a formally similar way. 

R E F E R E N C E S 

COUBANT, R. and HILBEBT, D. (1953) Methods of Mathematical Physics, Vol. I, 
Interscience, New York. 

DIBAC, P . A. M. (1947) The Principles of Quantum Mechanics, 3rd ed., Clarendon 
Press, Oxford. 

KATO, T. (1951) Trans, Am. Math. Soc. 70, 195. 
KEMBLE, E. C. (1937) The Fundamental Principles of Quantum Mechanics, 

McGraw Hill, New York (reprinted 1958 by Dover, New York). 
MESSIAH, A. (1961) Quantum Mechanics, Vols. I and I I , North Holland, 

Amsterdam. 
SCHIFF, L. (1968) Quantum Mechanics, McGraw Hill, New York. 
TEMPLE, G. (1934) Quantum Theory, Methuen, London. 
TOLMAN, R. L. (1938) The Principles of Statistical Mechanics, University Press, 

Oxford. 
VAN NEUMANN, J . (1955) Mathematical Foundations of Quantum Mechanics, 

Princeton University Press, Princeton (translated from the German edition 
by R.T.Beyer) . 



CHAPTER 5 

GENERAL THEORY 
OF REPRESENTATIONS 

5.1. Dirac notation. Discrete case 
In Chapter 4 the postulates were formulated generally enough to 

provide a basis for the whole of non-relativistic quantum mechanics, 
but so far we are familiar with only one mathematical realization of the 
vectors and operators that occur throughout the theory. In Schrödinger 
language the vectors are elements of a Hilbert space comprising all 
(well-behaved) functions of particle coordinates, and the operators are 
partial differential operators working on these functions. Other 
possibilities clearly exist, however. The commutation relations (4.30) 
are equally well satisfied by the association 

h d 
Pz->Px, Χ - * - Τ - Γ — , etc., (5.1) 

* dpx 

and this suggests a description in terms of functions of the momentum 
components, the operators associated with momentum becoming the 
multipliers, those associated with spatial coordinates becoming differen-
tial operators working on the momentum variables. We shall find 
presently that the Schrödinger and momentum languages are indeed 
equivalent and equally acceptable. First, however, we shall examine 
in a general way the possibility of passing from one type of description 
to another; this transformation theory is most easily formulated by 
starting from the matrix representation of the operator equations and 
using the Dirac notation (used so far only to indicate scalar products), 
which must now be explained in its full generality. 

Let us introduce a discrete basis {Φ^} such that 

Ψ = Σ * φ < · (5.2) 
i 

The key equations referring to (i) the action of an operator on a vector, 
and (ii) the product of two operators, may then be transcribed into a 
matrix form fully discussed in Section 3.5. The basic equations become 

104 
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Ψ' = ΑΨ, c' = Ac, a' = Υ,ΑΜ, (5.3a) 
1 

C = AB, C = AB, Cy = ΣΑΜΒΜ> (5-3b) 
k 

where the three statements on each line are entirely equivalent. In the 
matrix form (second statement) c and c' are sets of expansion coefficients 
representing Ψ and Ψ' (collected into column matrices), while A, B and 
C are square matrices representing the operators A, B and C. The matrix 
equations may be written in subscript form (third statement) where 
Ay, for example, is the element in the ith row and jth column of 
matrix A. We shall ignore all points of mathematical rigour, assuming 
that the basis is complete and that infinite matrices can be handled 
without regard to questions of convergence, etc. 

The individual matrix elements c\, Ay, etc., are expressible as scalar 
products, and provided the basis is orthonormal (a condition which 
must be imposed in nearly all that follows) we obtain as in Section 3.5, 
equations (3.48) and (3.47), 

Ci = <Φ*|Ψ>, Ay = <Φ<|Α|Φ,>, (5.4) 
where Ay is essentially the scalar product <Φ*|ΑΦ >̂ and the second 
vertical stroke is inserted (cf. p. 63) merely for notational convenience. 
So far, the pointed-bracket notation has been used only to indicate the 
Hermitian scalar product. In Dirac's use of the notation, however, 
which we now adopt more fully, each part of the scalar products 
yielding c% and Ay is regarded as a distinct entity : in general 

| Ψ) is a vector in Hubert space, indicated previously by Ψ ; 

|Φί> is a basis vector in Hubert space, indicated previously by Φχ ; 
<Φί| is called the "dual vector" associated with |φ<>, indicated by 

Φί* in the symbolic notation used in (3.44); 
Α|ψ> is the vector arising when operator A is applied to |ψ>, 

indicated previously by ΑΨ ; 
<Φί|φ/> is the scalar product of Φχ and Φ̂ -, written alternatively as 

Φί*Φ; when the Hermitian scalar product was first introduced 
in (3.44). 

The symbols |> and <| are referred to as "ket" and "bra", respectively, 
and a specific ket or bra is indicated by writing its name inside, e.g. 
|Φί> or simply |i>. When ket and bra come together in the order <|>, 
to form a bra(c)ket, the scalar product is implied. Thus Ay = <Φί|Α|φ;> 
conveniently indicates the sequence of operations by which the matrix 
element may be obtained : reading from right to left, we take the ket 
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|Φ;>, oj)erate with A to get a new ket, and complete the bra(c)ket with 
<Φί|. This is a particularly useful notation when the vectors require 
several labels (e.g. quantum numbers specifying the various eigenstates). 

With Dirac notation the operator and component forms of (5.3a) and 
(5.3b) become, using (5.4), 

|ψ'> = Α|ψ>, <Φ*|Ψ'> = Σ<Φί|Α|Φ;><Φ^|ψ> (5.5a) 
ί 

c = AB, <Φ*|<:|Φ;·> = Σ < Φ < | Α | Φ * > < Φ * | Β | Φ , > . (5.5b) 
k 

The forms on the right clearly follow from those on the left simply by 
inserting basis vector bra's and ket's on both sides of an equation, to 
complete the brackets defining components and matrix elements; in 
labelling the bra's and ket's those which come together in the order 
ket-bra (e.g. the |Φ*;><ΦΑ;| in (5.5b) must bear the same label and a 
corresponding summation is implied (e.g. Σ& in (5.5b)). In this way the 
"chain-rule" for the subscripts in matrix multiplication is automatic; 
for example, abbreviating |φ$> to |i>, etc., 

[ABC]„ = ΣΣ·4«^*0« = I<»lAli>0'|B|*><*|c|i>. 
j k j,k 

I t should also be noted that even a ket-bra product such as |ΦΑΓ><ΦΑ:| 
has an interpretation of its own; it is the Dirac notation for the "dyad" 
Φ*;Φλ;* introduced in Appendix 4 and interpreted as a projection 
operator. Thus, 

Ψ' = (Φ*Φ**)Ψ = Φ*(Φ**Ψ) = Φ*<Φ*|Ψ>, 
shows that the operator turns Ψ into a multiple of Φ^, and this becomes 
in Dirac notation 

|ψ'> = |Φ*><Φ*|Ψ>, 
the meaning being the same whichever way the three symbols are 
paired. The "resolution of the identity" (Appendix 4, p. 148) in terms of 
projection operators shows that 

Σ|Φ*><Φ*Ι = ' (5·6) 
k 

and gives another interpretation of the right-hand side of (5.5b); the 
unit operator may be inserted between two operators without changing 
the expression and hence 

<Φ*|<: |Φ,> = <Φί|ΑΒ|Φ/> = Σ < Φ < | Α | Φ * > < Φ * | Β | Φ , > . 
k 

I t is evident that the Dirac notation provides an almost "fool-proof" 
method of writing operator equations in the matrix language appro-
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priate to any chosen basis. We now consider an example, partly to 
illustrate the use of the notation and partly to show how the basic 
equations of quantum mechanics (Chapter 4) may be transcribed into 
matrix language and used in obtaining a direct algebraic solution of 
certain simple problems, quite independently of Schrödinger's 
equations. 

5.2. An example. The harmonic oscillator 
Let us consider the oscillator with Hamiltonian operator (Section 2.2) 

H = J L + !mo)2x2, 
2m 

where ω/2π would be the classically expected natural frequency of 
oscillation. If we introduce a discrete basis, provided by the eigen-
vectors of H, operator equations are replaced by formally identical 
matrix equations—yielding the "matrix mechanics" approach of 
Heisenberg, Born and Jordan. 

The eigenvalue equation ΗΨ = ΕΨ becomes, in Dirac notation, 

H|> = E\y 

with energy eigenvectors \Eo}, \Ei}> · · · which satisfy H|2fy> = Ej\Ej}. 
The matrix H associated with H has elements <2?i|H|ify> = Ej(Ei\Ej} — 
Eiôij (since the eigenvectors may be assumed orthonormal (p. 88)) and 
is therefore diagonal. 

It is convenient to express H in terms of the new operators 

A = p —imcox A t = p + imcox 

noting that A* is the Hermitian adjoint of A, by (3.33). For then 

A*A = p2 + iraco(xp — px) + m2a)2x2 

and from the commutation relation (4.30), xp — px = ift\, this gives 

H = JL(A tA+ÄmW l ) . 
2m 

The properties of the Hamiltonian are characterized by the com-
mutation rules for the three operators H, x, p; these may be derived 
purely algebraically, starting from that for x and p. In this way we 
find, using the linear combinations defining A and Af, 

HA-AH = ΑωΑ, ΗΑ^ΑΉ =ΠωΑ*. 

Let us now write the first commutator equation in matrix form, using 
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Dirac notation for the elements. Since H is diagonal, with 
(Ei\H\Ej} = Eiöij, the ij element of the first equation is 

Ε^Ε^Ε^ - < ^ | A | ^ > Ej = Α ω < ^ | Α | ^ > 

and therefore 

(Ei-Ej-KœKEi^Eïï = 0. 

This shows that either (i) Et = Ej+Kœ, or (ii) <#?·|Α|^> = 0. The 
matrix associated with A thus has non-zero elements only between 
states whose energies differ by an amount Κω. We label these states in 
ascending numerical order so that 

Ελ = Εο+Κω, Ε2 = E0 + 2hœ, . . . En = Eo + nhco, . . . 

That there is a least eigenvalue EQ follows from the form of the 
Hamiltonian, which gives 

Et = ^ H ^ ) = (l/2m)[<JË7i|At|^X^|A|i?i> + M 

and is therefore essentially positive unless \E%>vanishes.% 

To determine the value of EQ we put i — 0 and find, since Ej > Eo 
and hence (Ei — Ej — hœ) Φ 0, that all matrix elements <ϋ7ο|Α|ϋ?./> must 
vanish. The above expression for Ef then gives 

Eo = (l/2m)Ämco 

and the complete sequence of eigenvalues thus becomes 

En = (n + ±)hv (n = 0 , 1 , 2 , . . . ) 

where v = ω/2π is the classically expected frequency of oscillation· 
This result is in complete agreement with that obtained by using 
Schrödinger's representation (Section 2.2) and solving Hermite's 
differential equation, but has been obtained by purely algebraic 
arguments, directly from the general postulates of Chapter 4. 

The solution is completed by obtaining the matrices associated with 
x and p. Those associated with A and A1" contain only one element in 
each row and we find |<ί7η|Α*|£^_ι>|2 = 2nmhv; apart from a uni-
modular phase factor (which is arbitrary and may be dropped). This 
makes (Εη\Α*\Εη-ι} = \/(2mhv)<s/n and it is then inferred tha t the 
matrices associated with x and p are 

$At is the adjoint of A and hence (see p. 68) < Ψ ^ Α Ψ > = <ΑΨ|ΑΨ> > 0 (Ψ φ 0). 
The first term in square brackets is <2£<|AtA|i£i> (only one term non-zero in the matrix 
product). 
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2nyJ\2mv) 

0 y/l 0 0 
- V 1 o v 2 ° 

o - V 2 ° V3 

o o - V 3 ° 

Ifmhv 

It is easily confirmed that these matrices satisfy the commutation rule 
xp —px = ihl where I is the unit matrix. 

5.3. Dirac notation. Continuous case 
When matrices are associated with operators, in the way just 

described, we obtain a representation in the usual sense of vector space 
theory; but the term is very frequently used in quantum mechanics in a 
broader sense, including the case where the basis vectors are not discrete 
but are labelled by continuous variables. The equations of the last 
section must then be rewritten and it becomes more natural to use the 
language of the theory of integral equations. We shall not develop the 
theory of 'Continuous representations" in much detail; it is sufficient 
for present purposes to indicate in a formal way the necessary transcrip-
tion of the matrix equations, and to obtain the general rules for passing 
between one quantum mechanical language and another. 

In the harmonic oscillator example we took a set of energy eigen-
vectors as a discrete basis. Suppose, however, we had taken the set of 
momentum eigenvectors for a free particle (still, for simplicity, in one 
dimension). We know from Section 2.4 that momentum eigenstates 
exist for all p values in the interval ( — oo, + oo ) ; but that we can make 
the spectrum of eigenvalues of p discrete by the artifice of putting the 
system in a large box with periodic boundary conditions (p. 36), thus 
bringing the states into one-to-one correspondence with the integers 
( — oo < n < +00). In this case we can examine how the discrete 
representation passes over into a continuous one as the box is made 
infinitely large. Starting from the eigenvectors \pny we write the eigen-
value equation H|> = 2J|>, whose solutions may be denoted by 
|> = |2?i>, |i?2>> · · · (labelled by the energy eigenvalues), in the form 

Σ<ΗΗΙ»><»Ι> = Ε<&\> 
1 

(5.7) 
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where (pt\} is the component of |> along the basis vector \p{). If |> is a 
normalized vector this means 

Σ Μ 2 = Σ Φ « > < Ρ « Ι > = 1 (5·8) 
i i 

where \ct\2 is the probability in state | > that measurement of momentum 
will yield the value pt. 

To pass to the limit we simply note that the summand in (5.8) becomes 
a continuous function of p. The term for p = pn may be written 
f(Pn)*f(Pn)A where f(pn)*f(Pn) is a density function (the contribution 
per unit increase in momentum) evaluated at p = pn, and Δ( = ft/L) 
is the momentum increase in going from pn to pn+ v If we momentarily 
introduce the notation/(#>) = (p\), f*(p) = (\p) and pass to the limit 
L —> oo (infinitely large box), so that Δ becomes the differential dp, 
the sum (5.8) goes over into an integral : 

Z<lft><ftl> = l(\Pi)MPi\)-»H\P)äp(P\)· 
i i 

In the case of the momentum variables this limiting procedure may be 
rigorously justified by Fourier transform theory; more generally, 
however, we assume tha t sums may be freely translated into integrals 
unless we find evidence to the contrary. We also revert to the pointed 
bracket notation, using <#>|> instead of (p\), and note that this amounts 
to a redefinition of <p|> when p is a continuous variable : |<p|>|2 is now 
a probability per unit momentum range of measurement yielding a 
value p. 

All the equations relating to discrete representations may be tran-
scribed similarly. For example, equation (5.7) takes the form 

Ki>lHb'><2>'| W = E<P\>. (5.9) 
Thus the components of the vector |> are replaced by a continuous 
function of p, where p plays the part of a basis vector index, and the 
matrix elements of H are replaced by a function of two continuous 
variables p, p'. The function <i)|H|ß'> is sometimes regarded as the 
element of a "continuous matr ix" since p and p' play the part of row 
and column indices: this analogy is useful, but more properly <2>|H|j/> 
is an integral kernel and (5.9) is an integral equation. In general a 
kernel H(x;x') describes an operator H according to the convention 

f\x) = Hf(x) = !H(z;z')f(x')dx', (5.10) 

i.e. f'(x) is obtained from f(x) by changing the variable from x to x\ 
multiplying by the kernel, and integrating over x/ to obtain a new 
function of #, namely f'{x). In the present instance, the state vector |> 
is described by means of a function of momentum ; <p| > is referred to as 
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the wave function in "momentum space'1 or in the 'momentum 
representation'' ; and (5.9) is the eigenvalue equation in the "momentum 
representation". 

The extension to several variables is formally straightforward ; in 
three dimensions we may choose the three compatible variables, px, py, 
pz and associate with a state vector |> its momentum function 
(ΡχΡνΡζ\}', if there are many particles we should use the set of all 
momentum components writing the momentum function, for brevity, 
a s <PiP2 · · · Piv|> or even <p|>. When a vector symbol is used to 
denote a set of variables the corresponding jdp means, of course, 
integration over all variables. I t should be noted that the variables 
chosen must always form a compatible set (i.e. their operators must 
commute) since \ρχρνΡζ}, for example, refers to a physically observable 
eigenstate of all three operators. 

Since we already have considerable knowledge of one particular 
continuous representation, tha t employed in Schrödinger's theory, it is 
useful to consider at this point the relationship between the original 
formulation—using differential operators—and that of the present 
section, which appears to lead to integral equations. Again we consider 
first a one-dimensional system, a particle moving along the x-axis. An 
energy eigenvector | > is then characterized by the continuous function 
<#|> such that |<#|>|2 is the probability per unit range of finding the 
particle at x. In fact, <#|> is simply the Schrödinger wave function for 
state |>. In the Schrödinger or "coordinate" representation the eigen-
value equation would evidently appear as an integral equation 
analogous to (4.7), namely 

$(χ\Η\χ'")(χ'\)αχ' = E(x\}. (5.11a) 

Why does this equation look so different from the familiar Schrödinger 
equation? Previously we have written, using Dirac notation for the 
Schrödinger wave function φ(χ), 

H<x|> = _ 2 ^ " έ ^ + V(x)<x\y = E<x\y- (5-llb) 

The right-hand sides of (5.11a) and (5.11b) are identical but the left-
hand sides appear to be quite different in form. 

To understand this difference, we note that the form (5.11a) merely 
expresses the correspondency with a matrix formulation, and that the 
integration appears solely for this purpose. Since | |χ'>(ϊ#'<#Ί is the 
limiting form, as we pass to a continuous representation, of the unit 
operator (cf. (5.6)) it is in fact superfluous and the left-hand side of 
(5.11a) really means <#|H|>, i.e. the function of x describing the 
components of H|> in the ^-representation, written in (5.11b) as 



112 QUANTUM MECHANICS 

H<#|>. The effect of the operators in H is well known, it is only by 
disguising them as integral operators that we make them look strange. 
Evidently to operate with the potential energy term in H we must 
strike out the integration over x' in (5.11a), giving x' the value x, and 
then simply multiply by the function V(x) ; we must take 

$(x\\/\x'ydx'(x'\y = V(x)(x\>. (5.12) 

Similarly, to operate with the kinetic energy term T we must strike out 
the integration and then perform differentiations on <#|> : we must take 

K*|T|*'>cfc'<*'|> = - _ _ < φ . (5.13) 

In order to write the desired results in terms of integral kernels we 
introduce the Dirac delta function (already referred to in Section 4.9). 

The delta function δ(χ — χ') is defined formally by the property 

$ô(x-x')f(x')dx' = f(x), (5.14) 

where, as usual, integration is understood to be over the full range 
( — oo, + oo ) : regarded as an integral kernel (cf. (5.10)) it must represent 
the unit operator that leaves any function/(#) unchanged. This function, 
regarded by pure mathematicians as a monstrosity, must vanish when 
x/ differs significantly from x, so as to eliminate contributions with 
fix') taking values other than/ (#) . But it must be normalized so that 

jô{x-x')f(x')dx' c~f(x)$ô(x-x')dx' = / ( * ) , 

where f(x') is assumed to vary slowly, compared with δ(χ — χ'), in the 
region where the latter is non-zero. The delta function may thus be 
regarded as the limiting form of a function with a very sharp peak a t 
x' = x (cf. Fig. 4.1), the width becoming indefinitely small while the 
area under the curve keeps the value unity. Various realizations of 
δ(χ — χ') exist, and are satisfactory for many purposes, but in most 
cases the function is introduced simply for notational convenience. 
The use of the delta function can always be avoided, but only at the 
cost of delicate and sophisticated mathematical analysis; in applied 
mathematics its use may be regarded as a convenient shorthand for 
exhibiting in a transparent way the connections among matrix 
equations, integral equations and differential equations. For a detailed 
discussion of the <5-function the reader is referred elsewhere (e.g. 
Messiah, 1961, vol. 1, appendix A). Here we mention just one con-
venient representation of the function : 

+ 00 

δ{χ — χ') = — exp [ik(x — x')]dk. (5.15) 
- o o 
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The justification for the use of this form has been widely discussed (see, 
for example, Dirac, 1947, p. 95, or Messiah loc. cit.) and is implicit in the 
theory of Fourier transforms. 

In terms of δ(χ — χ') the integral kernels <#|V|#'> and <#|Τ|#'> are 
easily defined ; if we take 

<s|V|s'> = V{x)6(x-x% <ζ|Τ|ζ'> = _ | ~ ^ $ ( 3 - » ' ) (5.16) 

it is clear that (5.12) and (5.13) are satisfied. For example, 

$(x\V\x'ydx'<x'[> = $V(x)ô(x-x')dxXx'\> = V{x)(x[> 

from the <5-funetion property. It is also clear that the kernels associated 
with the basic position and momentum operators are 

(5.17) 

and it is easily verified, by considering 

that <#|Τ|#'> takes the form inferred above. 
To extend these results to many dimensions, we note that a three-

dimensional delta function may be defined in a formally similar way 

where r comprises all three spatial coordinates, and that if there are 
many particles then 

(5.18) 

(5.19a) 

(5.19b) 

Each factor in Y\jà(Vj — v/) represents a unit operator for any function 
of rj, and the presence of the factors with j Φ i simply means that the 
operators x$ and px(i) work only on the variables of particle i, in 
which case their forms are determined by (5.17). There is an integral 
representation of the three-dimensional <5(r — r') exactly analogous to 
(5.15), namely 

(5.20) 

where k and r are vectors and the integration is over all space; this 
clearly amounts simply to a product of three factors of the type (5.15). 
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5.4. Transformation theory. The m o m e n t u m representation 
The different languages available for describing a quantum mechanical 

system correspond merely to different choices of basis in the Hubert 
space of eigenfunctions. In the harmonic oscillator example (p. 107) we 
were able to work directly in the representation provided by energy 
eigenvectors {|^>}> the corresponding operator H being represented 
by a diagonal matrix with element 

{Ei\H\Ej} = EiSij 

while the other operators x and p, not commuting with H, had non-
diagonal matrices. 

In the Schrödinger representation we choose the "continuous basis" 
with eigenvectors \x}: with a corresponding operator x we again 
associate a diagonal "matr ix" with elements depending on the con-
tinuous variables x: xf 

<#|x|a/> = xb{x — x'). 

Operators not commuting with x will have non-diagonal matrices.% 
On the other hand, we might equally well set up a "momentum 

representation" by choosing momentum eigenvectors \p} as a basis. 
The momentum operator will then have associated with it a diagonal 
"matr ix" with elements 

<p|pb'> = ρδ(ρ-ρ') 

and again other (non-commuting) operators will be represented by 
non-diagonal "matrices". Transformation theory is concerned with the 
relationship between representations arising from alternative choices 
of basis. 

We start from the equations describing a basis change (or "rotation") 
in the case of finite vector spaces (see Section 3.6). If rotation is describ-
ed by an operator U the bases are related by 5>ί = ΙΙΦ^ and, provided 
the rotation is restricted so as to preserve orthonormality of the basis, 
this operator is of special form ; it is unitary in the sense tha t its adjoint 
Uf is at the same time its inverse. This follows from the condition that 
the scalar product of any two vectors shall be left unchanged when they 
suffer the same rotation. Thus the condition 

{There is a difficulty here in that, according to (5.17), the operator associated with p 
is also apparently "diagonal". A more careful examination of the limiting process in 
passing from a discrete to continuous spectrum shows tha t p in fact connects different 
states whoso eigenvalues, in the limit, become infinitely close (cf. the quasi-diagonal 
form of the p matrix in the harmonic oscillator example, p . 109). 
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<Φί|Φ;> = <υΦί|υΦ;> = <Φ,|υ*υΦ,> = <Φ*|Φ,> (alU,j) 

shows that 
l^U = I. 

The use of the term "unitary" is consistent with the fact (p. 67) that the 
matrix U representing such a rotation must itself be a unitary matrix ; 
and it follows readily that U1" is represented by Ut. 

Let us now rewrite the transformation equations of Section 3.6, 
relating vector components and matrices relative to two different bases, 
in Dirac notation. Basis vectors, components of an arbitrary vector Ψ, 
and matrices transform according to 

(i) Basis vectors 

Φ« ->3>i = υΦ| = Σφ3υϋ· 
S 

(ii) Components of arbitrary vector Ψ : 

Ci -+Ci = J^UUjCj. 
5 

(iii) Matrix elements of operator A : 

k,l 

The first relation becomes, in Dirac notation, 

(i)a |Φι> ->|Φι> = υ|Φί> = ΣΙφ>Χφ;ΙυΙφ*> = ΣΙφ/Χφ>Ιφ*> 

where the last form shows how the actual matrix elements of U may be 
eliminated by introducing the scalar products of vectors from the 
different bases. The same device may be used to eliminate matrix 
elements of U1". Let us now use an open ket to denote the arbitrary 
vector Ψ. The second relation then (ii) becomes 

(ii)a <Φ*|> — <Φ<|> = Σ<·«|υΊφ*><φ*Ι> = Σ<φ*Ιφ*Χφ*Ι> 

because <Φ«|Φ >̂ = <υΦί|Φ;> = <Φ<|υ*|Φ,>. 
Finally, the third relation takes the form 
(iii)a . <Φί|Α|Φ,> ^<Φ,|Α|Φ^> = Σ<Φ,|υηφ*><Φ*|Α|Φ,><Φ,|υ|Φ,> 

k,l 

= Σ<φ*Ιφ*Χφ*ΙΑΙφ*Χφ*Ι^> 
k,l 

where again the matrix elements of U are involved only implicitly in 
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the final form. The beauty of the Dirac notation is that the final forms 
in (i)a-(iii)a could all have been written down without any effort by 
inserting unit operators of the form £*;|ΦΑ;><ΦΑ;| ; in (iii)a, for instance, 
the final result follows on inserting unit operators on either side of the 
A in the required matrix element <Φ$|Α|φ^>. The notation itself does the 
derivation. 

The generalization to the continuous spectrum is formally straight-
forward. If the kets |Φ >̂ are replaced by |#>, the latter kets being 
labelled by a continuous index x (e.g. a position coordinate), and the 
|Φί> are replaced by kets \p}, again labelled by a continuous index p 
(e.g. a momentum component), then the transformation equations 
(ii)a and (iii)a become 

Wave function 
<x|> -*<;p|> = f(p\x>dx<z\>. (5.21) 

Operator 

(x\k\x'y -+<p\A\p'> = $(p\x}dx(x\A\x'>dxXx'\p'}. (5.22) 
These are the basic laws of transformation theory. Their meaning 
should be considered carefully; for example, <#|> is the Schrödinger 
wave function for state |>, while (p\} is a corresponding "momentum 
space" wave function; also <#|p> is the Schrödinger wave function for 
a state \p} of definite momentum, and this is the function which provides 
the bridge between the two languages. If the kets of each representation 
depend on several variables nothing is changed except that the integra-
tions over single variables become integrations over several variables. 
To learn how to use the transformation theory we study a typical 
example. 

5.5. The Schrödinger equation in momentum space 
In three dimensions the Hamiltonian contains kinetic and potential 

energy operators whose Schrödinger operators (in Dirac form corre-
sponding to (5.16)) are 

#2 / Λ2 fi2 £ 2 \ 

<rW>--^(1&+w*+1&)'i*-* (5·23) 

<r|V|r'> = F(r)(5(r-r') (5.24) 

where, as usual, r stands for the triplet of position variables, and where 
<5(r — r') is the three-dimensional delta function of (5.18). The states of 
definite momentum, for one electron, have been found in Section 2.4 
(see also the Example on p. 81) and are, using the normalization of 
(2.28), 

<r|p> = (2πΑ)-3/2 exp (ip · r/Ä). (5.25) 
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From the definition of the momentum representation <p|T|p'> should 
be a diagonal matrix since it is a function of p ; but to check that the 
transformation equations work we may derive it from the Schrödinger 
form. Thus (remembering that, from (3.46), <p|r> = <r|p>*), 

> 

2m (2; 

»a 

<P|T|P> - J ^ f c f - ^ + g + l^r-O^rlp· 
I f (i λ / d 2 d2 02 \ — jexp^-p- r^— 2 + - + —j 

x exp -^(zpx' + ypy+zpz')\dxdydz 

x exp - - p ' · r dr 

which may be written 

<ρΐτΐρ'>=2^2(2^Η^(ρ-ρ')·Γ]ίίΓ· 
The integral that remains, however, is simply a three-dimensional delta 
function <5(p — p') in the integral representation given in (5.20), as 
follows readily on changing the integration variable from k to r/h.% 
Hence, as was anticipated 

< H T b ' > = f ^ i ( P - P ' ) (5.26) 

—the kinetic energy operator is thus equivalent to multiplication by 
(p2/2m). The special value of the normalization adopted in (2.28) is 
now clear ; it is often referred to as ''delta-function normalization". 

{It is interesting to note that this integral may be written (from (5.25)) in the 
form 

J <p|r>dr<r|p'> = <p|l|p'> 

where I is a unit operator, defined in (5.6). Clearly 

J<PII IP '>/ (PW-/(P>. 

are required of the delta function. 
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I t is the potential energy, in momentum language, that leads to the 
non-trivial operator: it becomes the integral operator whose kernel is 
(cf. (5.22)) 

<p|V|p'> = Kp|r>rfrF(r)<5(r-r ' )<ir '<r ' |p '> 

-(wî t̂̂ -'H*- (527) 

The potential energy kernel, in momentum space, is thus a Fourier 
transform of the potential energy function in ordinary space. 

Finally we write the Schrödinger equation in momentum language ; 
on denoting <p|> by χ(ρ) it reads 

(Ρ 2 -Ρο 2 )χ(Ρ) = -2mJ-<p |V |p '>x(pW (p02 = 2mE). (5.28) 

Such equations can sometimes be solved using methods from the theory 
of integral equations but to review such developments would take us 
too far afield. 

The transformation we have employed is easily generalized to many 
particles by interpreting r and p as the sets Γι, r 2 , . . . r # and p i , 
p 2 , . . . PN, respectively, and using <rx, r 2 , . . . ifr|pi, p 2 , . . . PN> = 
<Γι|ρι> . . . <rjv|piv>· However, there appear to be few special advan-
tages of working in momentum space, and when momentum wave 
functions are required (as for example in the interpretation of Compton 
profiles in scattering experiments) it is more usual to obtain them 
indirectly by using (5.21), or its many-variable counterpart, to trans-
form a given Schrödinger wave function. This is the procedure first 
employed by Pauling and Podolsky (1929), for hydrogen-like wave 
functions, used for molecular functions by Coulson and Duncanson 
(1941) and recently by Henneker and Cade (1968), Epstein (1970). 

5.6. Time-evolution. The Heisenberg representation 
Up to this point, we have always considered that the operators 

associated with physical quantities that do not involve time explicitly 
are themselves time-independent, and that only the state vector 
depends on time. This interpretation is implicit in the time-dependent 
Schrödinger equation 

-?1ΐψ> = Ηΐψ> ( 5 · 2 9 ) 

and is therefore characteristic of Schrödinger's formulation of quantum 
mechanics, even though we may use kets or vectors so as not to be 
committed to any particular language. When we consider the time-
evolution of a system more generally, however, it turns out tha t other 
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interpretations are open to us; one of these yields the "Heisenberg 
representation". 

First we consider in general the time-development arising from 
(5.29). If the state at time t = 10 is denoted by |Ψ(*ο)> we shall write 

|Ψ(*)> = υ(Μο)|Ψ(*ο)> (5.30) 

and call \J(t, t0) the "evolution operator". Since |ψ(ί + <5£)> is obtained 
from |Ψ(£)> by means of a linear operator (H) we infer U is also linear; 
from the normalization condition < υ ψ | ΐ ) Ψ > = 1 it may also be 
concluded (p. 114) that U is a unitary operator. In the Schrödinger 
picture, the states of a system are thus described by unit vectors which 
change as time passes. In particular, when H does not contain the time, 
there are certain stationary eigenstates of energy, |Φ£(£)> say, which 
depend on time only through the usual phase factor : 

|Φ*(*)> = exp {-iE(t-to)lh}\<t>E(t0)>. (5.31) 

These particular state vectors therefore simply rotate J with an angular 
frequency v = E/h. It also follows that, for the energy eigenstates, the 
evolution operator may be written alternatively as 

U(t, t0) = exp {-iH(t-t0)lh} (5.32) 

because, for any power of E, En —> HM and hence, when working on an 
energy eigenstate, the exponentials in the last two equations are term-
by-term equivalent. 

The evolution operator (5.32) for the energy eigenstates of a time-
independent F Diiltonian evidently satisfies the differential equation 

ih-U(t,t0) = HU(Mo) (5.33) 
01 

and is completely determined by the initial condition 

U(*o,<o) = I. (5.34) 

It must now be asked whether these equations still determine the 
evolution operator when H contains the time and the state |ψ> is 
arbitrary. That this is indeed the case follows at once on differentiating 
(5.30) and tentatively substituting (5.33); the result is simply (5.29), 
which is valid quite generally. The solution of (5.33), subject to initial 
condition (5.34), is thus the correct evolution operator; it is unique 
(first-order equation with one boundary condition) and corresponds to 
correct time development of | Ψ> at each instant. 

JThe projection of |Φ#(ί) > on a fixed vector |0/j($o) > oscillates between ±|Φ^(ίο) >; 
the term "rotation" is used in a formal sense (cf. the vector diagrams used in discussing 
mechanical and electrical oscillations). 



120 QUANTUM MECHANICS 

Equation (5.33) can be integrated formally, to give 
t 

U(Mo) = l-^ÎHU(*',*0)<fc' (5.35) 
to 

which is an integral equation whose explicit solution can be obtained 
by iteration (see, for example, Messiah (1961) Vol. II, Ch. 17). However, 
it is the existence of the time evolution operator U (and hence also its 
inverse U1") which concerns us here, rather than the methods for its 
determination. The actual use of the evolution operator is of great 
importance in the discussion of phenomena such as scattering. 

We now return to (5.30) and note that in the Schrödinger picture all 
state vectors are evolving in time in a well-defined way. The essence of 
the so-called Heisenberg representation is the introduction of a unitary 
transformation which has the effect of reducing all vectors to rest ; the 
states are then described by the time-independent kets |ψ(£ο)> and the 
time-development of the system is thrown entirely into the operators 
representing the dynamical variables. This is of considerable advantage 
if one wishes to emphasize the connection between classical and 
quantum dynamics via the correspondence principle, which asserts 
that one description must merge into the other for h —>Q. Noting that 
U1" exists (being the inverse operator leading from Ψ(ί) to Ψ(£ο))> 

Uty, t0) = U(i0, t). (5.36) 

The Heisenberg and Schrödinger schemes (distinguished by subscripts 
H and S) are related by the standard transformation equations (p. 115). 
Hence 

|Ψ5> = υ|ψ#>, |Ψ*> = U ^ > . (5.37) 

Operators in the new representation must be transformed in a corre-
sponding way; on expressing any expectation value in terms of 
Heisenberg kets we obtain (Ψ^Α^Ψ^) = < Ψ π | υ ^ υ | ψ Η > and hence 

AH = U ^ U . (5.38) 

The Heisenberg operator is therefore time-dependent even when A# is 
not. 

To obtain the time-development of operators in the Heisenberg 
representation we differentiate (5.38) and obtain 
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But (5.33) givesj 

; * _ H U , - e * ? - U W 
dt dt 

and substitution then yields 

ih **S = Ut[AÄ) H]U + ÄU* fê?) U. (5.39) 

Now H is defined in the Schrödinger picture : if we introduce a Heisen-
berg Hamiltonian 

HH = l^HU (5.40) 

and note also that 

L J tdAsu = £A? 

dt dt 

(where the partial differentiation implies that we take account only of 
the explicit time-dependence in the observable as defined by As—not 
in the transformation operator U) it readily follows that 

ûdAH hdAH 

- T - J - = [AH, Η # ] - τ — - (5.41 
ι dt i et 

where all operators are now in the Heisenberg representation. This is 
the Heisenberg equation of motion. 

If there is no explicit time dependence in As, (5.41) reduces to 

_ * Î J » = [AH, H„] (5.42) 
^ at 

and if AH and H# commute the operator AH becomes a constant of the 
motion (i.e. a time-independent operator). Since the states are described 
by time-independent kets it follows that a corresponding dynamical 
variable will also have a constant expectation value. 

The Schrödinger and Heisenberg formulations are of course completely 
equivalent. The Schrödinger formulation is used almost exclusively in 
stationary state problems, and therefore in a large part of quantum 
chemistry. But the Heisenberg equations are often more convenient 
in the discussion of time-dependent phenomena and are therefore 
widely used in, for example, collision theory. Such developments are 
taken up in later Volumes. 

JNote that (AB)t = B̂ At and that in taking the adjoint the sign of i must be 
reversed (p. 53). 
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5.7. Representation of incompletely specified states 
So far, we have been concerned exclusively with a system charac-

terized by some given state vector Ψ, for example an eigenstate of the 
Hamiltonian operator H and of any other commuting operators whose 
simultaneous eigenvalues define a state of maximal knowledge of the 
system. Such a state vector is in general time-dependent, the depen-
dence being particularly simple for a stationary state, and even in the 
general case the time evolution of the state vector is determined in 
principle by (4.1) and hence in terms of the evolution operator of 
Section 5.6. But sometimes it is necessary to deal with systems whose 
condition is not specified with the precision necessary for setting up a 
state vector. It is important to note that a state of the type referred to 
in framing Corollary 11 (p. 91) namely 

ψ = Σ<*ψ* (5·43) 
where the Ψκ are states of maximal knowledge and hence, for a 
conservative system, eigenstates, is not ''incompletely specified" in the 
sense with which the phrase will now be used. The specification of 
eigenstates and expansion coefficients uniquely defines the state vector 
Ψ and its subsequent development: an incompletely specified state, on 
the other hand, has no unique state vector and to describe it we shall have 
to introduce the idea of an ensemble as used in statistical mechanics. 

First we recall that if A is one of a maximal set of compatible 
observables (p. 90 et seq.) with operator A, then the expectation value 
in state (5.43) is 

{A} = <Ψ|Α|Ψ> = Σ^*(*<Ψζ,|Α|ψΑ> (5.44) 

Although in Corollary 11 we have identified |c#|2 as a probability of 
finding the system in a particular state Ψχ of maximal knowledge (i.e. 
an eigenstate of the maximal set of commuting operators to which A 
belongs) we are referring to a system whose state vector Ψ is evolving 
in such a way that the coefficients are fully determined. An incompletely 
specified system, on the other hand, may be defined through an 
expectation value expression of the form (5.44) but with a more general 
weight factor which is not merely a product CK*CL-

Let us take, for example, a system A (with states ΨιΑ, Χ¥2Α> · · ·) in 
weak interaction with its environment B which, in the terminology of 
statistical thermodynamics, provides a "heat bath" (with states ΨχΒ, 
Ψ2β, · . .)· The wave function of A + B can then be written 

Ψ = Σ^^κΑ^Β 

K.J 
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If our interest is in the system Ay we obtain for the expectation value 
of any quantity Q associated with system A, 

<Q> = <Ψ|<2|Ψ> = Σ cLM*cKj^L
A\Q^K

A}^M
B^jBy 

L,M,K,J 

which may be written 
<Q> = Σ Ρκ^Ψ^\0\ΨκΑ> (5.45) 

L,K 

This has the general form (5.44) but the condition of the system is 
characterized simply by the numerical coefficients PKL = YJCKJCLJ* 

(using the orthonormality of the state vectors) and indeed system A 
has no wave function of its own. A concrete example of this kind is 
provided when A is an atom in its "valence state", resulting from 
"dissociation" of the molecule A— B by a hypothetical reduction of 
the interaction between its constituent atoms, without change of wave 
function: it is sometimes said that the valence state is a "mixture of 
spectroscopic states" but this does not mean the state is expressible 
in the form (5.43)—there is no "coherence" between the spectroscopic 
states and the mixing implies only that expectation values appear as a 
suitable weighted mixture (5.45) of matrix elements associated with the 
spectroscopic states. 

Ensembles 
To allow in a general way for incomplete specification of states it is 

customary to set up a representative ensemble. The ensemble consists 
of a very large number (N) of hypothetical "copies" of the system of 
interest, system n being supposed to have a wave function 

ψ(») = Σ<&(Λ>Ψχ (5.46) 
n 

and the ensemble average of an observable Q is then defined as the mean 
of the expectation values for the individual copies : 

<#> = #-ΐΣ<ψ(*>|0|ψ(*)> 
n 

n L,K 

which may be rewritten in the form 

<Q> = Σ PKL<VL\Q\VK> (5·47) 
K,L 

In other words the expectation value for an incompletely specified 
system (5.45) may be re-interpreted as the ensemble average expectation 
value for a large collection of copies in a variety of completely specified 
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states. The coefficients PKL, defined by averaging over the representative 
ensemble, are 

PKL = N-^CRWCLW* (5.48) 
n 

and may be collected into a matrix p called the density matrix. 
Since <XFL|Q|XI /X) is the i i i -e lement of the matrix associated with 

the operator Q in the representation provided by the basis {Ψκ}, the 
result (5.47) may be written 

<Q> = Σ PKLQLK = t r pQ = tr Qp (5.49) 
K,L 

giving an elegant expression for the expectation value of any observable 
Q in a system specified (incompletely) only by a density matrix p with 
given elements PKL-

A system in an incompletely specified state is thus described by a 
density matrix, not by a wave function, and the lack of precision in the 
specification is determined by the ' "spread" of states ΨΜ admitted 
among the members of the ensemble—which is reflected in the specifica-
tion of the elements PKL- The important fact is tha t the expectation 
value of any quantity is now determined by two types of averaging— 
the first giving the usual quantum mechanical expectation value for a 
system in a given state, the second allowing for uncertainty in the 
specification of the state itself. If there is no uncertainty in the state, 
every ψ(η> is the same and (5.48) reduces to PKL = CRCL*, exactly as for 
a single system; the system and its representative ensemble are then 
said to be in a, pure state ; otherwise the state is said to be mixed. 

A complete mathematical justification of the choice of ensemble to 
represent a given physical situation is a matter of considerable difficulty, 
discussed in textbooks of statistical mechanics (e.g. Tolman, 1938; ter 
Haar, 1954, Appendix 1), and will not be considered here. We note, 
however, tha t if the {Ψ#} are energy eigenstates the choice 

PKK = c exp {-βΕκ}> PKL = 0 (K Φ L) (5.50) 

will give a plausible representation of the state of a system in thermal 
equilibrium with a heat bath. In this case the expectation value of any 
observable Q is given by (5.47) as 

<Q> = ΣΡΚΚ<ΨΚ\0\9Κ> = σβ-»Α«<Ψχ |0|ΨΑ> (5.51) 
K 

which indicates a Boltzman distribution of probabilities of finding the 
system in its possible energy eigenstates. This choice of density matrix 
elements would follow for an ensemble in which the Ψ<η) were taken 
to be the energy eigenstates themselves, with random phase factors; 
for the non-zero coefficients in (5.46) would then all be unimodular 
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complex numbers and ρκκ would give the fractional number of copies 
in state Ψκ while PLK would vanish in the summation over random 
phase factors. Ensembles defined in this way are described as 
''canonical' ' and play a fundamental rôle in equilibrium statistical 
mechanics. 

The density matrix in Schrödinger language 
We now develop the idea of the density matrix independently from 

the standpoint of a particular quantum mechanical language. I t is 
convenient to start from the Schrödinger language and to define 

p(x;x ' ) = Ψ(χ)Ψ*(χ') (5.52) 

as the Schrödinger density matrix for a pure state in which the system 
is definitely in state Ψ (which may or may not be a stationary state, 
though the time variable will not be shown explicitly). The name 
6'matrix" is used in this context because the variables x and x ' 
(indicating, as usual, all variables collectively) correspond formally to 
the row and column indices in the matrix PKL exactly as in Section 5.3. 
We shall find presently that p(x;x ' ) and PKL are in fact simply alterna-
tive representations of a density operator p. 

The expectation value of an operator Q in the pure state Ψ, may then 
be written 

<£> = /ψ*(χ)ΟΨ(χ)ώχ 

= /[<2Ψ(Χ)Ψ*(Χ')]Χ<-Χ<*Χ 

where the variables in Ψ* have been primed in order to "protect" Ψ* 
from the operator, which by convention operates on the unprimed 
variables x (and hence upon Ψ only), and x ' is identified with x after 
operating with Q. The expectation value thus becomes 

<Q> = J"[Q/>(x;xU'-xdx (5-53) 
This operation corresponds formally to "summing over the diagonal 
elements" in matrix theory, and is therefore formally similar to taking 
the trace of Qp in the matrix equation (5.49). 

Now consider the more general quantity 

p(x;x ' ) = Σ Ρ ^ Ψ Α ( Χ ) Ψ ^ ( Χ Ο (5.54) 
K,L 

where PKL are arbitrary numerical coefficients and Ψ#, Ψχ, belong to 
any complete orthonormal set for the system considered. This more 
general density matrix coincides with the pure state form (5.52) only 
in very special cases, when the PKL are products of expansion coefficients 
(CKCL*) arising from a wavefunction of the form (5.43); otherwise, as 
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we now show, it describes the mixed state in which PKL can be regarded 
as the ensemble average defined in (5.48). 

To demonstrate this equivalence we show first that (5.53), with 
p(x ; x') defined generally in (5.54), leads to exactly the same expectation 
value formula as we obtained from the ensemble approach. Thus 

KfL KfL 

which coincides with (5.47). Secondly, we show, using the ortho-
normality of the expansion functions, that PKL is simply the KL matrix 
element of a density operator which is represented in Schrödinger 
language by an integral operator with kernel p(x;x'). Thus, by 
definition, the PQ element of p is 

<Ψρ|ρ|ψ(2> = /Ψρ^ΧΪρίΧΐΧθΨςίΧθίχ 'Λχ 

and on inserting (5.54) and completing the integrations we obtain 

<ΨΡ |ρ|Ψς> = pPQ (5.55) 

I t is now evident that (5.53) and (5.47) are entirely equivalent state-
ments, the first in a continuous representation, using the language of 
integral operators, the second in a discrete representation, in which 
each operator is represented by a matrix: the trace formula (5.49) 
becomes generally valid if the "trace" in a continuous representation 
is interpreted as an integration over "diagonal elements" according to 
(5.53). I t is also clear tha t the results may easily be transposed into the 
language provided by any other orthonormal basis {Ψ#'}: for if 
Ψκ' = Y^L^LULK, wrhere the ULK form a unitary matrix, then 

p->p' = UtpU, 0 - > Q ' = U f QU (5.56) 

exactly as in (3.69), and consequentlyj 

<Q> = tr Qp = t r Q'p' 

giving invariance against change of quantum mechanical language. 
The fact that PKL and p(x;x ' ) are simply alternative representations of 
the same density operator p is particularly clear when Dirac notation 
is employed. Thus (5.54) could be written, with the abbreviation 
|ψ*> = I * >, 

p(x;x') = Σ <*\K)PKL<L\X'> 
KtL 

or, since by (5.55) pKL = <K\p\L}, 

JThus, tr Q'p' = tr U t Q U U f y U = tr UtQ^U = tr Qp (invariance of the trace 
under a cyclic permutation). 
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p(x;x ' ) = Σ <x\KXK\p\LXL\x'y = <x|p|x'> (5.57) 

in which ΨΑ(χ) = <x|if> and Ψ Ι * ( Χ ' > = <£|x'> play the part of 
transformation functions connecting discrete and continuous represen-
tations, and <x|p|x'> indicates an alternative notation for the integral 
kernel p(x ; x') . The density operator may thus be written formally as 

p = Σ \K><K\p\LXL\ = Σ PKL\KXL\ (5.58) 
J\.,L K. ,L 

i.e. as a sum of ket-bra operators. Such an operator is characterized by 
its effect on any ket | >. I t produces a new ket | >' according to 

|>' = |Z><i |> (5.59) 

which is simply \K} multiplied by a number, the scalar product <£|>. 
A ket-bra product is thus a generalized projection operator of "dyad" 
(Appendix 4). In a continuous representation it is described by the 
integral kernel 

<χμο<£|Χ'> 
whose effect on the ket represented by <x| > is to produce 

<x|y = J<x|i:><i|x'><x'|>dx' = <x|iO<£|> (5.60) 
or in wave function language 

Ψ'(χ) = /Ψ Α (χ )Ψ^(χΟΨ(χ , )ώχ / = Ψ Χ ( Χ ) < £ | > . 

The last two equations simply express the symbolic result (5.59) in 
Schrödinger language. 

Properties of the density matrix 
The matrix p is, from its definition (5.48), clearly Hermitian; PLK = 

PÄL*. A new basis may therefore always be chosen so that the density 
matrix becomes diagonal and for the moment we assume, without loss 
of generality, tha t p has this form. The first obvious conclusions are 
that 

Ττρ = Σρκκ=1 (a) (5.59) 
K 

0 < PKK < 1 (b) 

which follow immediately from the fact that ρκκ is the fractional 
number of ensemble members in state Ψ#. Since the trace is invariant 
under the unitary transformation (5.56), the normalization (5.59a) is 
independent of the particular representation used. We may then infer 
that Tr p2 ^ 1 and that consequently, even when p is non-diagonal, 
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Σ PKLPLK = Σ \PKL\2 ^ 1 (5.60) 
K,L K,L 

showing that none of the individual elements, in any representation, 
can exceed unity. 

Next we ask what property characterizes the density matrix 
representing a system in a pure state with wave function Ψ. In this 
case every copy in the ensemble has the same wave function 

ψ(η) = ψ = Y^CK^K (5.61) 
K 

and (5.48) gives PKL = CKCL*· The normalization condition Y^CifiL^ = 1 
then implies a density matrix condition : 

YsPKLPLM = ΣνκΟΐ*0&Μ* = CKCM* = pKM> 
L L 

In other words the density matrix must be idempotent, 

p 2 = p (5.62) 

This is also a sufficient condition to characterize a pure state : for in a 
diagonal representation (5.62) implies that 

PKK = 0 or 1 (all K). 

But since ρκκ = \CK\2, and the wave function (5.61) is normalized, there 
can be only one non-zero coefficient; if this corresponds to ρκκ = 1 then 
the corresponding basis function Ψχ, whose phase is arbitrary, re-
presents the pure state of the system. This important result also follows 
immediately from the definition in Schrödinger language; the pure 
state density matrix (5.52) is idempotent in the sense 

Jp (x ;x , , )p (x , , ; x , ) ^x / / = /Ψ(Χ)Ψ*(Χ,/)Ψ(Χ//)Ψ*(Χ/)^Χ,/ 

= Ψ(χ)Ψ*(χΟ = p(x;xO (5.63) 

and the density operator which it describes is therefore a projection 
operator. There is one such projection operator for each state of a 
complete set {Ψχ}; and if Ψ# is an eigenfunction with eigenvalue 1, 
then Ψχ, (all L Φ K) are eigenfunctions with eigenvalue 0. The idem-
potency condition on the matrix (5.62), or on the kernel (5.63), is thus 
basically a requirement that the density operator shall be a projection 
operator onto a single pure state. 

Finally, to complete the generalization of quantum mechanics to 
incompletely specified states, we require the analogues of Schrödinger's 
equations: both the stationary and time dependent equations follow 
if we consider the time development of the density matrix defined by 
(5.46) and (5.48). 
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The most general state Ψ<η>, of the nth copy in the ensemble, is 
given by (5.46) in terms of the complete set Ψ#. The time development 
of the coefficients follows on substituting the expansion in (4.1), 
multiplying by Ψ#* and integrating over all variables (x), the result 
being, 

d^=-iYHKLcLinl (5.64) 

We then obtain, using the shorthand notation c<w> = — (i/#)HcM and 
noting that cÄ(w>cL<*>* = [ C W C ^ ^ L , 

d i 
Z,[c(n)c(n)1] = - - { H c W c ^ - c W i H c W ) 1 } . 
dt h 

On writing (Hc(w>)f = c<w>tHt = c(w)fH and averaging over the 
ensemble this yields (since the average of CK^CL^* is QKL) 

IT- -UH"-M-
 ( 5 · 6 5 ) 

This result is valid in any language and completely determines the time 
development of the density matrix describing any system, completely 
or incompletely specified; it is thus the generalization of the time-
dependent Schrödinger equation. 

Stationary states are now defined as those for which dp/dt = 0 and, 
consequently, all time-independent operators have constant expectation 
values : such states are thus determined by the commutation condition 

H p - p H = 0. (5.66) 

This equation shows that , in general, stationary states may exist even 
when the system of interest is in an incompletely specified condition ; 
it is satisfied, for instance, for a system described by the canonical 
ensemble with density matrix (5.50) as may be seen by regarding the 
Ψκ as energy eigenstates, in which case H and p become simultaneously 
diagonal. Such states, in which an energy uncertainty remains, are 
appropriate in conditions of thermal equilibrium. Pure states of the 
ensemble, corresponding to a system definitely known to be in an 
eigenstate Ψχ with energy ER are distinguished by density matrices 
satisfying the further condition (5.62). Since idempotency requires that 
p in its diagonal form has only one non-zero element, ρκκ say, (5.66) 
becomes 

^(HLMPMN- PLMHMN) = ÖNKHLKPKM-SLKPLKHKN = 0. 
M 

Thus HLK = HKL = 0 (L Φ K) and this diagonality condition requires 
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that each Ψχ is an eigenfunction of H. We thus retrieve the time-
independent Schrödinger equation 

ΗΨ = ΕΨ (5.67) 

as a condition for a stationary state of apure ensemble. 
Apart from its obvious importance in statistical mechanics (e.g. ter 

Haar, 1954; Mayer 1968) density matrix theory has important impli-
cations in many-particle quantum mechanics (Vol. 3). For further 
developments in this field the reader is referred to the literature and 
particularly to the review articles (see, for example, ter Haar, 1961; 
Fano, 1957;Löwdin, 1955; McWeeny, 1960). 
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A P P E N D I X 1 

THE SCHRÖDINGER EQUATION IN 
GENERALIZED COORDINATES 

F O R many purposes it is expedient to replace the Cartesian coordinates 
and their associated momenta by "generalized coordinates" better 
suited to the form of the system ; in a system with spherical symmetry, 
for example, it would be natural to introduce spherical polar coordinates. 

The basic property of the generalized coordinates is that the kinetic 
energy may be expressed as a quadratic form in their time derivatives : 

T = \ΣΜΜκ (Al.l) 

where the coefficients Mac are time-independent functions of position, 
depending on choice of coordinate system. The corresponding generaliz-
ed momenta, pi, p2, . . ., pn are then defined by 

dT 
Pi = ΤΓ. (A1.2) Hi 

Thus in the Cartesian case 
3 

T = | m ^ 4i2 (îi = x, y, z; Mik = môijc) 

and it follows at once tha t pi = m#i. 
In Chapter 1, quantum mechanical operators were associated with 

the momenta and the kinetic energy, expressed in Cartesian coordinates, 
according to 

h d 
Pi-+Pi= r—, (A1.3) 

% OQi 

H(qi . . .qnpi . . · Pn) - > H ( g i . . . qn Pi . . . pn). (A1.4) 

We now wish to make this association in such a way that it can be 
carried over at once from one coordinate system to another. This is 
accomplished most elegantly and generally by tensor methods ; here we 
simply explain the principles involved. T is an invariant, having the 
same value for a given dynamical situation, irrespective of the co-
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ordinate system used. The q_u however, transform in a characteristic 
way when the coordinates are changed, for q% — qi{q\,q<i,.. .qn) implies 

^ = Σ ( | ) % (Α1.5) 

and the infinitesimals (and consequently the ?*) are then said to be 
"contravariant components of a tensor of rank 1". In order that T 
shall be invariant, the coefficients Μ%κ in (Al.l) must transform in a 
"reciprocal" fashion; they are "covariant components of a tensor of 
rank 2". Similarly, the momentum components defined by (Al.2) 
transform like covariant components of rank 1 ; and so do the associated 
operators defined in (Al.3). The association (Al.3) is therefore indepen-
dent of the coordinate system employed ; the operators and the momenta 
with which they are associated follow the same transformation law and, 
if (Al.3) is valid in a Cartesian system, it will be valid always. 

The operator associated with T, however, is more difficult since (Al.l) 
as it stands does not contain the p's. If we use a Cartesian system, we 
can, of course, obtain T = ( l / 2 m ) £ ^ 2 ; but if pi is then interpreted 
according to (Al.3) the resultant operator will be valid only for Cartesian 
systems and will not remain invariant on changing to a more general 
system. What we need is a general expression for T in terms of the p's 
which, on making the substitution (Al.3), will give an invariant 
differential operator T. This must reduce to the usual sum of second 
derivatives in the Cartesian case, but must remain valid on introducing 
any other coordinates qi = qt(qu q%, . . . qn)-

The required expression for T is found to be 

T = 4 - 4 Σ Pi{VÔM**)pk, (A1.6) 

where, using M for the matrix of coefficients Mi#, 

G = d e t M , if** = (M-i)<Jfc. (A1.7) 

Consequently, Mijc is the cofactor of Mac in G, divided by the deter-
minant itself. On using the invariant form (Al.6), a corresponding 
operator T may be set up by the standard association (Al.3). The 
Schrödinger equation then becomes 

«a 
ΗΨ = -

Ä2 1 d ( δΨ\ 
γ^_ (^ΟΜΜ^ +ΤΨ = ΕΨ (Al.8) 

which is completely general. 
If we consider the special case of a one-particle system, we may infer 

from (Al.8) the most general form of the operator V2 in an arbitrary 
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coordinate system. More directly, however, we start from the expression 
for the square of the distance between two points in the general form 
(cf.Al.l) 

ds2 = Yniikdqidqjc' (A1.9) 
<.* 

This is the basic invariant, whose form in any given coordinate system 
is obtained by purely geometrical considerations. The invariant 
expression for V2 takes the special form ^(d/dxt) (d/dxi) in a Cartesian 
system, but the operators (like the pt) transform covariantly under 
change of coordinates and the general form becomes (cf. Al .6) 

V2 = 4 " Στ-ίν^ΐΛ«*-^-Υ (A1.10) 

where, using m for the matrix of coefficients in the invariant (Al.9), 

g = de tm, mik = (m-ty* (Al.ll) 
as in (Al.8). The essential difference between the forms occurring in 
(Al.8) and (Al.10) is that the latter depends only on geometry of the 
system while the former includes particle masses. 

Finally, it must be noted that in integrations over all space the 
volume element, whose form is immediate in a Cartesian system, must 
also be written in such a way as to ensure invariance of the integrand. 
The appropriate element for volume integration turns out to be 

dq = Vgdqidqz . . .dqn (Al.12) 

where g is the determinant introduced in (Al. 11 ). 
There is one very important three-dimensional case of the above 

results ; this occurs when the volume element, bounded by neighbouring 
coordinate surfaces on which qi, q% and #3, respectively, are constant, 
is rectangular (Fig. Al.l). If we suppose the surfaces corresponding to 

point (q,.q2.q3) 
FIG. A l . l . Volume element in orthogonal curvilinear coordinates. The 
element is rectangular, opposite faces corresponding to change dqi in one 

of the variables (other variables held constant). See also Fig. A2.1. 
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values q% and qx + dqi (other q'& constant) are separated by a distance 
hidqi, then the basic form (A 1.9) becomes 

ds2 = h1
2dq1

2 + h2
2dq2

2 + h3
2dq3

2 (Al.13) 

and all results are expressible in terms of the three scale factors hi, h2, 
A3. The matrix m has diagonal elements (all positive) mu = hi2; the 
determinant g is g = hi2h2

2h%2 and the coefficients mu easily follow 
as mu = l/hi2. The volume element and the Laplacian (Al.lO) then 
take the forms 

dq = h\h2h3dqidq2dq3, (Al.14) 

hih2hs γ dq% \ h%2 dq% 

The special form (A1.15) is more widely useful than (Al.lO) or (Al.8), 
which are required in relatively few applications (see, for example, 
Wilson, Decius and Cross, 1955, Ch. 4). A derivation of (Al.lO) may be 
found in the book by Margenau and Murphy (1943), Section 5.17. 
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APPENDIX 2 

SEPARATION OF 
PARTIAL DIFFERENTIAL EQUATIONS 

THE Schrödinger equation is a partial differential equation, and when 
solutions can be obtained in closed form it is normally a result of 
separating the variables. Separability depends on the use of a suitable 
coordinate system; the only choices for which separation of the 
Schrödinger equation has proved possible are the eleven possible 
orthogonal coordinate systems (Eisenhart, 1934) in which V2 takes the 
form (A1.15). Here we give one example to illustrate the separation 
technique, before stating the general criteria for separability. 

EXAMPLE. Cylindrical coordinates. Let us consider the Schrödinger equation for 
an electron moving in a potential field, of axial symmetry, constant in the z 
direction in the region between infinite walls at z = 0, d. F is thus a function of 
distance from the axis (p, say) : 

V(r) = F(p) (0 < z < d), = o o (otherwise). 

I t seems natural to adopt p, Θ and z as coordinates ; and in this case the volume 
element (Fig. A2.1) has sides of length 

dp, pdO, dz. 

The scale factors are thus Λ,1 = & 3 = 1 , A2 = /?· On inserting these values in 
(A 1.15) the Schrödinger equation with the assumed potential energy function 
takes the form 

h* 1 [ d / Βφ\ a / l 8φ\ d [ Οφ\"\ 

-ζΐϊΐτϊγτρ) +~Θ \jTë) +Έ\ΡΤΖ)\ +F^t = E*' 
In a solution of separated form, φ will contain a factor depending only on one 
of the three variables, satisfying an ordinary differential equation in this variable 
alone. As we noted in section 2.1 such an equation will arise if, possibly after 
multiplication by some suitable factor, some terms of the partial differential 
equation become independent of all coordinates but one—this one coordinate 
not appearing elsewhere. 

Let us try to find a solution of the form 

Φ(ρ, Θ, z) = u(p9 θ)ν(ζ). 
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On inserting this form we obtain 

h* [v d I du\ v d2u dVI 
- 2 ^ [pTF\PTp) + ? 0p + tt&5j +FW+ = Εφ 

and it is clear that separation is achieved on dividing by φ( =uv); for then 

~2^ \ρ^Τρ\ΡΤρ) +^ιΊθη +F(p)+ [~2^dPj = E' 

The term in square brackets depends only on z, which does not appear elsewhere, 
and (by the argument of p. 24) may be equated to a constant (EZi say). The 
other terms on the left may likewise be equated to a constant Ep$, such that 
E = EPQ + EZ. This procedure gives 

(d2t>/dz2) = -(2m/h*)Ezv 

FIG. A2.1. Cylindrical coordinates. The volume element is rectangular, 
with sides of length dp, pdO, dz. 

to determine the v factor in the wave function. The general solution 

v(z) = A exp (iz^/(2mEz)/h)+B exp (-iz^/2mEz)/h) 

satisfies the boundary conditions φ = 0 for z = 0, d when B = —A and 
sin (d\/(2mEz)/h) = 0. The appropriate v-factor is thus 

v{z) = sin (nnzjd), 

where n is an integral quantum number, restricting the separation constant to 
the values 

Ez = nH2h2l2md2. 

There remains an equation in two variables for the remaining factor u(p, Θ). 
I t is left as an exercise for the reader to show that the w-equation may be 
separated by a second application of the method. 
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The above Example suggests that separation of the Schrödinger 

equation will be possible only when the scale factors depend upon the 
coordinates in a simple way; the most general dependence admissible 
is in fact 

h2hs/h1 = fi(qi)F1(q2, gs), etc., (A2.1) 
where the other two relations follow by cyclic permutation of subscripts 
1, 2, 3: If we insert (A2.1) and (A1.15) in the Schrödinger equation 
(1.24), and postulate a completely separated form 

the equation becomes, on dividing throughout by φ, 

(A2.2) 

The condition for separability may be stated as follows : Equation (A2.3) 
can be separated if we can find a multiplying factor which will make at 
least one term depend on one coordinate only, this coordinate not appearing 
elsewhere. Suppose, for example, we can find such a function gi(q2, qz) 
which on multiplication reduces (A2.3) to the form 

(A2.3) 

Then the term 
(A2.4) 

depends only on the coordinate q±, which appears nowhere else in the 
equation. Consequently this term must be a constant, a separation 
constant, and the resultant q± equation may be solved as an ordinary 
differential equation. We have already observed that such an equation 
may possess satisfactory solutions (e.g. quadratically integrable, or 
satisfying given boundary conditions) only for certain special values of 
the constant. When such a value is inserted back in (A2.4) there 
remains an equation in two variables (q2, q$) and we may attempt to 
separate this equation in its turn in a precisely similar way. 
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Other examples of the separation technique occur elsewhere (e.g. Chap. 
2 of Vol. 2). Here we only stress that the possibility of separation 
depends on the nature of the potential function and the forms of any 
boundaries there may be. If each equipotential surface or boundary is 
specified by constancy of a certain coordinate, for example q\ (with 
values of qo, qz defining all points on the surface q\ — constant), then 
this particular choice of coordinates will facilitate separation. Thus, in 
the example opening this Appendix, the equipotentials were cylindrical, 
V depending only on the axial distance (p) within a region bounded by 
j)lanes at z = 0, d\ thus p (= qi) and z (= q%) were dictated by the 
geometry of the system, the third coordinate (q% = 0) then giving the 
required rectangular volume element. 
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APPENDIX 3 

SERIES SOLUTION OF SECOND-ORDER 
DIFFERENTIAL EQUATIONS 

THE differential equations encountered in Chapters 2 and 3, and in 
many other applications of quantum mechanics, are of the form 

and, since closed-form solutions are rarely obtainable, we proceed at 
once to solution in series. We suppose that y = α<> at some convenient 
point x = xo and make a Taylor expansion about this point : 

y = f(xo + h) = f(x0) + hf'(x0) + (A2/2 !)/"(*<>) + - - - (A3.2) 

= a0 + ai(x-xo) + a2(x-xo)2 + - · · 
The validity of such an expansion depends on y being single valued, 
with all its derivatives existing, at x = xo : the function y = f(x) is 
then said to be analytic at x = XQ. Since higher derivatives can be 
obtained by further differentiation of (A3.1), the implication is that 
P(x) and Q(x) must also be analytic at x = x$. We therefore distinguish 
two kinds of point : 

If P(x) and Q(x) are analytic at the point x = xo, 
this point is an ordinary point of the differential 
equation (A3.1) ; otherwise it is a singular point. The (A3.3) 
second and higher derivatives are determinate at an 
ordinary point but not at a singular point. 

A series solution of the form (A3.2) can always be obtained about an 
ordinary point. We give one illustration : 

EXAMPLE 1. Consider (d2y/dx2) + xy = 0 (which has no solution in terms of 
elementary functions). Clearly x = 0 is an ordinary point, and d2y/dx2 is 
determinate ( = 0), so an expansion (A3.2) is valid. 

Thus we obtain 
(d3y/dx3) = —x(dy/dx) — y, 

(d*y/dx4) = - x(d2y/dx2) - 2(dy/dx), 
etc. 
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If we suppose y = y0 and (dy/dx) = y$ at x = XQ we then have {d2y/dx2)o = 0, 
(d3y/dx3)o — —i/o» {d4y/dx4)o = —2yo\ etc., and obtain the Taylor series 

^ = ^^(l)o+^2(S)0+··· 
in the explicit form 

/ x3 4#6 \ / 2x* 10z? \ 

This is in fact a general solution since yo and i/o' may be regarded as arbitrary 
constants (the full number for a second-order equation). 

Instead of using the Taylor expansion directly, as in the above 
Example, it is often easier simply to insert the form (A3.2) into (A3.1) 
and then determine the coefficients ao, a\, Ü2, . . . by equating to zero 
the coefficient of each power of x. In this way it is sometimes possible 
to obtain a general relationship between successive coefficients from 
which the infinite series is easily generated. The last example may be 
treated in this way : 

EXAMPLE 2. On substituting y — ao + aix + a2X2 +. . . into the differential 
equation (d2y/dx2)-\-xy = 0 we obtain 2αα + #(αο + 3.2α3)+#2(αι + 4.3α4) + 
#3(α2 4-5.4«5) + . . . = 0. Equating to zero the coefficient of each power of x we 
see that ao and a\ are undetermined but that «2 = 0 and subsequent coefficients 
are related in the following way : 

αΛ_3 + η (η-1)α η = 0. 
Hence we obtain 

as — — ao/3.2, ae = —03/6· 5 = 4ο·ο/6!, etc., 

and 

a4 = — 01/4.3, αη = -«4/7.6 = 10ai/7!, etc. 

There are thus two distinct sets of coefficients and we obtain at once the two 
infinite series derived in Example 1. 

The method illustrated in Example 2 is essentially the standard 
technique by which we may obtain solutions of thé equations which 
define all the "special functions" of mathematical physics. The equation 
which relates the coefficients in the series solutions is called a recurrence 
relation. Modifications of this approach are frequently necessary, mainly 
for two reasons: (i) the recurrence relation may connect several co-
efficients and be too unwieldy to use, or (ii) it may be desirable to expand 
about a point which is not an ordinary point. We now examine briefly 
some of the equations and eigenfunction sets of special importance in 
quantum mechanics, illustrating further points as they arise. 
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(i) Hermite's equation 
The harmonic oscillator equation (p. 27) is of the form (putting a = 1) 

TO 

^ [ + (A-s«)y = 0 (A3.4) 

and provides an example in which the simple series solution leads to a 
recurrence relation connecting three consecutive coefficients. In such 
cases it is often possible to obtain a simpler equation by the substitution 

y(x) = f(x)u(x) (A3.5) 

where f(x) is to be chosen so as to yield a simpler equation for u(x). Two 
common choices are (a) to put f(x) = xv (v to be determined), and 
(b) to take îorf(x) the asymptotic solution in cases where the equation 
is soluble for x -> oo. The second substitution was used in Section 2.2 
and yielded 

Hermite's equation : 

d2u Λ du Λ 
_ - 2 , - + 2«« = 0 (Α3.6) 

where we have introduced 2α = (λ— 1). 
The series solution of Hermite's equation is straightforward. The 

pointa: = 0 is ordinary, so we look for a solution 

u = Σ amPom 

and obtain on substitution 

Σ amm(m- l)tf»-2 - 2 £ am<mx™ + 2a £ amz™ = 0. (A3.7) 

Terms in a;p are obtained from the first sum when m = p + 2, and from 
the second and third sums when m = p: together they give a con-
tribution 

[a>p+2(p + 2) (p + 1) - 2app - 2aa p ]^ 

and on equating to zero the coefficient of each power of x we obtain the 
iwo-term recurrence relation 

2(p - a ) 
α * · » ° ( 1 > + ΐ ) ( ρ - ΐ ) α » ( * > 0 > · (Α3·8) 

Reference to (A3.7) shows, however, that there are terms (from the first 
sum only) in x~2 and a?"1, which vanish because of the factor m(m — 1) 
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without fixing «o and a\. We therefore obtain two distinct series 
solutions, their sum being the general solution (two arbitrary constants) 

Γ 2<xx2 22 α (α -2 )χ4 23 α (α -2 ) (α -4 )χ6 Ί 
U = αγ-^Γ+—Τ! —6! + · · -J 

Γ 2 ( α - 1 ) ζ 3 2 2 ( α - 1)(α-3)ζ5 1 , Α ο ΛΧ 
+αι \x-1-w-+-—δΐ——-Ί ( Α 3 · 9 ) 

In Section 2.2 it was stated that the solutions became infinite for 
x -> + oo more rapidly than the asymptotic solution f(x) = e~^2 

except for certain special choices of the parameter (λ = 1 + 2α) : the 
acceptable solutions (y = fu) of (A3.4) are now seen to occur when one 
or other of the above series terminates, so that u(x) becomes a finite 
polynomial. If a is an even positive integer, n say, the first series 
terminates and becomes a polynomial of degree n ; similarly, the second 
series gives a polynomial of odd degree when a is an odd positive 
integer. These special solutions are the H ermite polynomials. 

I t is customary to "normalize" the polynomials so that the term of 
highest degree is (2x)n. We may then use (A3.6) the other way round, 
(putting a = n and replacing 2> by q - 2 ) , 

- g ( g - l ) ^ 
aq-2~ 2(n-q + 2)aq' 

to obtain a descending series, valid for n either even or odd. This is the 
standard solution 

H»(x) = (2x)n-n(n-l)(2x)n-2 + n(n-1){n-2){n-3) ( 2 s )» -4 - . . . 
Δ ! 

(A3.10) 

The corresponding particular solution of the original equation (A3.4) 
occurs when λ = 2n + 1 and is 

yn(x) = Hn(x)e-*x2 (A3.ll) 

and yn(%) —* 0 for x -> ± oo. This is the H ermite function of order n. 

(ii) Legendre's equation 

In the central field problem, introduced in Section 2.3 and dealt 
with more fully in Vol. 2, Chapter 2, we meet an equation 

{ι-χ2)^-2χά£+λ» = 0- <Α 3·1 2> 
This is Legendre's equation. Since it originates from a change of variables, 
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with x = cos 0, we are interested mainly in solutions defined in the 
interval (— 1, 4-1) : singularities thus occur at the end points, for if the 
equation were written in the form (A3.1) the functions P(x) and Q(x) 
would not be analytic at x = ± 1 . Nevertheless, it is safe to develop 
the solution about x = 0 which is an ordinary point. 

The procedure followed in dealing with Hermite's equation here yields 
a recurrence relation 

ρ(ρ+1)-λ 

^•-(fTifiFTä)1**· ( Α 3 · 1 3 ) 

As in (A3.9), αο and a\ are indeterminate and, putting — λ = I, a 
solution is obtained in the form 

Γ X (2.3 + 1) , "1 
= a oL 2!*τ + ~~^ 'J 

pc + (1.2 + J 
|_ 3! 
... . ,_._ ,-λ)χ3 i(3.4 + X) . "I 

+ »i\ o, + 5 | *5 + · · | · (Α3.14) 

The two series represent distinct solutions (odd and even), their sum 
being the general solution. The recurrence relation shows that if 
X = 1(1+1) where I is any positive integer then all coefficients beyond 
ai will vanish and one of the series terminates: the series that ter-
minates, when conventionally normalized, is the Legendre polynomial 
Pi{x). 

A descending series, valid for I odd or even, is obtained as for the 
Hermite polynomials^ The usual normalization is then obtained on 
taking ax = (21)\βι(1ψ which ensures that Pf(l) = 1 (all Ϊ). The 
standard polynomial, determined in this way, is thus 

ri(X) - 2 W L 2(2-1)* + 2.4(2»-1) (21-8) ' " "J" 
(A3.15) 

This is also valid as the "first solution" of Legendre's equation even 
when \x\ > 1, but further developments are not required in this book. 

(iii) Legendre's associated equation 
The more general equation (Chap. 2 of Vol. 2), of which (A3.12) is a 

special case, has the form 

^-χ2^-2χτΑΐ{ΐ+ΐ)-^\ν=° (A3i6) 

where the parameter X has been given its value 1(1+ 1) with I a positive 



144 QUANTUM MECHANICS 

integer. This is the associated Legendre equation and our main concern 
is with solutions in which m is also integral. The equation can be solved 
directly by the series method, but it is easier to find a relationship with 
the Legendre equation itself—which corresponds to m = 0. Con-
sideration of the solution near the singularities at x = ±1 suggests the 
substitution 

y = (l-x2)rn/2U (A3.17) 
and this leads to an equation for u : 

d^u du 
(l-x2) —-2(m+l)x— + (l-m)(l + m+l)u = 0. (A3.18) 

dxa ax 

This resembles the equation satisfied by Pi(x), namely 

If we differentiate this latter equation m times and collect the terms 
we obtain, in fact 

d2 /dmPi\ /d™Pi\ idmPi\ 
dx2 V dxm J V dxm I \ dxm 

and therefore u = dmPx\dxm is a solution of (A3.18). From (A3.17) it 
follows that the associated Legendre equation has a solution 

dmPj(x) 
P?>(X) = (l-x2)m/2 K\ ( A 3 > 1 9 ) 

axm 

The result is, of course, for I and m positive integers, a polynomial of 
degree I which may be obtained from (A3.15) if desired. 

(iv) Laguerre's equation 
The differential equation for the radial factor in the hydrogen atom 

wave functions (Chap. 2 of Vol. 2) is obtained by finding first the 
asymptotic solution for r —> oo and then making a substitution of the 
form (A3.5). The reduced equation takes its simplest form for spherically 
symmetrical functions, namely, 

This is Laguerre's equation and the solutions of interest in quantum 
mechanics are La(x) where a is a positive integer : they are the Laguerre 
polynomials. 

If the equation (A3.20) were written in the standard form (A3.1) the 
function P(x) would be singular at x = 0 and the series method of 
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solution as used so far would break down, (d2y/dx2) being indeterminate 
at this point. It is possible to obtain a solution, however, by a simple 
extension of the method. In general, if an equation can be written in 
theform(cf.A3.1) 

(A3.21) 

it is said to possess a regular singularity at x — a, which is called a 
regular point. It can then be shown that there exists a solution in the 
form 

(A3.22) 

where the value of I is determinate on substituting this series and 
equating coefficients of all powers to zero in the usual way : the equation 
determining I is called the indicial equation. 

The Laguerre equation is seen to have a regular singularity at 
x = 0 : accordingly we look for a solution 

(A3.23) 
and readily obtain, on equating to zero the coefficient of the lowest 
power of x, the indicial equation I2 = 0. The simple series, starting with 
the constant term, is therefore valid in this case in spite of the 
singularity. The recurrence relation connecting the coefficients is 

(A3.24) 

and this leads at once to the series solution. The series terminates when 
a = n, a positive integer, and the Laguerre polynomial is defined so 
that the coefficient of xnis ( — l)n. The result, as a descending series, is 

(A3.25) 

which is the polynomial solution of (A3.20) for the case a = n. Angle-
independent solutions of (2.20) take the form e~rlnLn(2rjn). 

(v) Laguerre's associated equation 
In determining the general hydrogen-atom wave functions, there 

appears a generalization of (A3.20), namely 

which is known as the associated Laguerre equation. This equation is 

(A3.26) 
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related to (A3.20), when a( = n) and ß{= m) are positive integers with 
m < n, as may be verified by differentiating the latter m times: it is 
then apparent that the (n — ra)th degree polynomial 

dm 

f^m(x) = -^Ln(x) (A3.27) 

is a solution of (iV3.26) with a = n) ß = m. Ln
m(x) is the associated 

Laguerre polynomial. 
A more detailed discussion of the functions of Her mite, Legendre and 

Laguerre may be found in the book by Sneddon (1956). 
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APPENDIX 4 

PROJECTION OPERATORS AND NORMAL FORMS 

I N ELEMENTARY vector algebra it is sometimes convenient (e.g. Morse 
and Feshbach, 1953) to introduce "dyads" which provide a symbolic 
representation of certain operators. Thus e ^ , in which no scalar pro-
duct is implied, denotes the operator which when applied to a vector r 
has the effect 

(e4ej)r = e<(ej · r), 
i.e. the right-hand factor of the dyad is combined with the operand to 
form a scalar product : the result is thus a scalar multiple of the first 
vector in the dyad. The dyads ê e* are particularly important because 
they describe projection operators. Thus, assuming as usual an ortho-
normal basis, we obtain from an arbitrary vector r = uei + r 2*2 + **3e3 

(e.iei)r = e i [ (ne i · ei) + ( r 2e1 · e2) + ( r 3 e! · e3)] = r ^ i . (A4.1) 

The operator (eiei) annihilates all components of r except tha t in the 
direction ei , which it leaves unchanged: thus it produces the projection 
of r along the ei axis. 

In a Hermitian vector space similar considerations apply, except that 
eiej is replaced by e^e^J or in a function space by Φ*Φ^*. Here we use 
the symbolic notation of an earlier section (p. 57). Thus if 

Ψ = CiOi + C2<I>2 + . . . + (5*Φ*+. . . 

is an arbitrary element of the space, and we assume orthonormality of 
the set {Φί}, the operator Φ$Φ$* is interpreted as in (A4.1) : 

(ΦίΦί*)Ψ = Φί[θι(Φί*Φΐ) + 02(Φί*Φ2) + . - - <*(Φ|*Φ*) + . . .] = β,φ< 
(Α4.2) 

—since every scalar product Φ**Φ*; = <Φί|Φ*> vanishes except tha t 
with Jc = i. Consequently (Φ*Φ$*), interpreted in this way, picks out 
the i th component of an arbitrary vector Ψ. 

Now let us consider a general operator R formed as a linear combina-
tion of dyads Φ$Φ^* with numerical coefficients : 

R = £J f« (©*©i*) . (Α4.3) 
k,l 

JNote that the star must be on the right, otherwise a scalar product would be implied. 

X47 
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With R we may associate a matrix in the usual way, its elements being 
determined by 

Btj = <Φι|Λ|Φ>> 

= Φ < * Σ ^ Γ « ( Φ * Φ Ϊ * ) Φ / 

= ΣΜ*ι(Φΐ*Φ*)(Φι*Φι) 

kfl 

= My. 
Thus any operator R may be expressed in ' 'dyadic form", the coefficients 
in (A4.3) being its matrix elements in the usual sense : 

R = ΣΛ,,Φ,Φ,*. (A4.4) 

I t should be noted that such considerations apply with an orthonormal 
basis but need modification otherwise. 

Suppose now we take an operator such as H in (3.70) and choose its 
eigenfunctions as the basis vectors of the representation space. Then, 
from ( 3.7 5 ), it follows that the dyadic form of H is 

H = ΣΕΚ(ΨΚΨΚ*) = ΣΕκΡκ (Α4.5) 
κ k 

where we have used ?κ to denote the projection operator onto the Kth. 
basis function. This representation of an operator, in terms of its 
eigenvalues and the projection operators onto its eigenvectors, is 
referred to as a "normal form"; this form plays an important part in 
the rigorous formulation of quantum mechanics, particularly in the 
extension to operators with a continuous spectrum (von Neumann, 1955). 

The basic properties of projection operators are 

(a) Ρκ
2 = ?κ 

(b) PK?L = ?I?K = 0 (K Φ L), (A4.6) 

(c) Σρ* = 1 
K 

where (a) is described as Ciidempotency". In (b) and (c), 0 and 1 are 
interpreted as zero and unit operators (i.e. annihilating a function or 
leaving it unchanged). Thus (b) means that successive projection of a 
vector onto two orthogonal axes leaves nothing. On the other hand, 
(c) means that projection onto all axes, followed by recombination, 
restores the original vector—a result referred to as ' 'resolution of the 
identity". 

An immediate application of the projection operators is to the 
definition of a, function of an operator : thus 
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H2 = (Σ#κΡχ)(Σ^Λ0= ΣΕ*2ρκ> 
K L K 

which clearly extends to all powers of H, suggests the definition 

/(H) = YJ(EK)?K. (A4.7) 
K 

/(H) is thus the operator whose eigenvalues are the same function of 
the eigenvalues of H. 

I t is not difficult to translate the above considerations into matrix 
form, using an arbitrary orthonormal basis. With the eigenvectors 
Ψι> Ψ2> · · · ^κ, . . . we then associate columns Ci, C2, . . . c#, . . . while 
with the projection operator Ρχ we associate the square matrix (column-
row product) 

P * = e r f (A4.8) 

whose ij-element is Pxtj = εκΦκι*- The effect of P# on a column c, 
representing an arbitrary vector, is to yield a multiple of c#. The 
matrix H, associated with H, is then expressed in a normal form 
resembling (A4.5) : 

H = YEKCKCK* = ΣΕ*ρκ- (Α4·9) 
κ κ 

As usual, there is a complete parallel between the operator and the 
matrix forms, extending for example to the properties (A4.6) provided 
that 0 and 1 are interpreted as zero and unit matrices. 

Projection onto a many-dimensional subspace may be defined 
analogously in terms of a sum : thus Ρ = Ρι + Ρ2 + . · .Ρχ , annihilates all 
components of an arbitrary vector except those referring to the first L 
basis functions ψχ, Ψ2, . . . Ψι,. If we use T to denote the matrix whose 
L columns are Ci, C2, . . . CL, it is clear that 

P = c i c i t + c 2 c 2
t + . . . CLCL1" = T T . (A4.10) 

This matrix also possesses the idempotency property P 2 = P (cf. 
A4.6a). The remaining functions {*Fj(e/ > L)} also define a subspace, 
the orthogonal complement of that defined by the projection operator 
P. I t has a complementary projection operator (1 — P) and an arbitrary 
function may then be resolved into parts lying inside and outside a 
given subspace : 

Ψ = ρψ + ( ΐ _ ρ ) ψ = ψ ' + ψ " . (A4.ll) 

Clearly P and 1 —P are orthogonal operators in the sense P(l —P) = 
P — p2 = 0 (cf. (A4.6b)), whilst their sum provides a resolution of the 
identity (cf. (A4.6c)). 

The use of projection operators gives a convenient method of discuss-
ing the effects of truncation in complete set expansions. Again it must 
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be stressed that the complete equivalence of operator and matrix 
equations applies only in the limit of completeness (n —> oo ) and is 
subject to convergence considerations. In any finite formulation the 
matrix procedures may be used freely : but any conclusions then refer 
not to the original operator R (infinite summations in (A4.4)) but to 
its projection R on the given subspace (defined by truncating the 
summations in (A4.11)). This simply means, for example, that the 
eigenvalues and eigenvectors arising from a, finite matrix representation 
of the operator equation ΗΨ = ΕΨ are not solutions of the actual 
Schrödinger equation but rather of its "projection within a subspace". 
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