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1.2 The Jüttner–Synge Equilibrium Distribution . . . . . . . 6
1.2.1 Thermodynamics of the Jüttner–Synge gas . . . 9
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Preface

Relativistic statistical mechanics has long ceased to be considered as a
simple matter where it is sufficient to change the expression of the energy
from the Newtonian to the relativistic one and to check the Lorentz
invariance of the final result. For about 30 years, this field has grown
exponentially and there now exist several thousand articles devoted to
it. The reasons for such an explosion are briefly presented in the intro-
duction. They not only come from the requirements of astrophysics (white
dwarfs, pulsars/neutron stars/magnetars, the early universe, etc.) and ele-
mentary particle physics (production of particles, heavy ion collisions and
the search for the quark–gluon plasma), but are also increasingly in demand
in condensed matter physics (a notable example is the development of the
petawatt laser). The presently evolving and exploding nature of this domain
explains why the subject cannot be dealt with in an exhaustive way.

This book is intended to be an introduction to some recent develop-
ments of relativistic statistical mechanics rather than a standard textbook.
Owing to the dynamical character of the field, particularly in the quantum
domain, only a few applications — or, more accurately, illustrations — of
the notions presented are given, mainly in view of the comprehension of
some astrophysical problems. The book may also serve as an introduction
to the current literature on the subject, and it had a relatively well-furnished
bibliography — albeit, unfortunately, nonexhaustive. It contains the basics
of nonquantal relativistic kinetic theory, referring very often to the well-
known book by S.R. de Groot, M.C.J. van Leeuwen and Ch. G. van Weert
(1980), and of classical statistical mechanics. However, most applications
are related to quantum systems (such as relativistic plasmas and nuclear
matter), and hence slightly more than half of the book is devoted to rela-
tivistic quantum statistical mechanics.

xvii
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xviii Introduction to Relativistic Statistical Mechanics: Classical and Quantum

Whereas many works rest on quantum thermal field theory — essentially
the study of the partition function with the field-theoretical method — the
subject is not treated along this line here and, for the sake of completeness,
is only briefly outlined: there exist excellent books in this domain, such as
the ones by M. Le Bellac (2000) or J. Kapusta (1989). Rather, a covariant
version of the Wigner function is the central object of the formalism under
consideration. This approach presents the advantage of being somewhat
closer to what is generally known by astrophysicists, and also permits one
to recover all expressions familiar to those working in the field of heavy ion
collisions. On several occasions the covariant Wigner function formalism
appears simpler than thermal field theory. This is illustrated in the case
of the Walecka model (1974) of nuclear matter and in that of relativistic
quantum plasmas. Whereas field-theoretical methods rely heavily on the
use of Feynman diagrams and are therefore, at least in spirit, pertur-
bative — even though well-chosen resummations can describe nonpertur-
bative effects satisfactorily — the close kinship of the covariant Wigner
formalism with standard tools of classical plasma physics allows the intro-
duction of methods of approximation well tested in that field. Finally, the
covariant Wigner operator can be expressed in terms of the central object
of field-theoretical methods, viz. the Green function. On the other hand,
the covariant Wigner formalism presents the disadvantage of being much
less studied than, for example, finite temperature Green functions, which
the present work will hopefully remedy in some measure.

The case of non-Abelian plasmas — such as the quark–gluon plasma —
is not considered in this book; not only is it a domain of its own which
would deserve an entire book but the subject is still in an uncertain state.
Furthermore, this would drive us far away from a simple introduction.

Finally, most calculations are only outlined, especially whenever long
and tedious, in favor of the basic concepts and by referring to original
works.

Acknowledgments: The author is indebted to Drs. J. Diaz Alonso,
M. Lemoine, L. Mornas and to Dr. H. Sivak for comments and for reading
some manuscripts and making comments, respectively.
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Notations and Conventions

We generally use a system of units where � = c = 1 and a flat space–
time metric ηµυ endowed with signature (+ − − −). Greek indices vary
from 0 to 3, while Latin ones run from 1 to 3. Boldface symbols generally
designate spatial three-vectors. x or p designates four-vectors: x = (x0,x),
p = (p0,p). The Minkowski pseudoscalar product of two four-vectors a and
b is designated by a · b; a · b = ηµνa

µbν = a0b0 − a · b. The symbol

∆µυ(a) ≡ ηµυ − aµaυ

a2

is the projector over the three-plane orthogonal to the four-vector aµ. As
usual, tensor indices placed between parentheses (resp. between brackets)
indicate a full symmetrization (resp. antisymmetrization). The Levi-Civita
pseudotensor is defined as


ε0123 = +1,

εµναβ =




+1 if (µ, ν, α, β) form an even permutation of (0, 1, 2, 3),

−1 if (µ, ν, α, β) form an odd permutation of (0, 1, 2, 3),

0 otherwise.

We use the same symbol for a mathematical notion and its Fourier
transform

A(k) =
1√
2π

∫
dx exp(−ik · x)A(x),

and the name of variables will allow correct identification.
The works which are quoted are according to whether they are in the

bibliography of relativistic statistical mechanics or not; for instance, J.D.
Walecka (1974) appears in the bibliography while G. Baym is quoted as a
note — L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics, etc.

xix
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Introduction

Relativistic statistical mechanics is nowadays a bona fide subject, in fields
from astrophysics to heavy ion collisions, not forgetting nuclear matter, etc.
After the first articles by F. Jüttner (1911) [see also W. Pauli (1921)], it
did not attract much attention until the beginning of the 1960s, the more
so since possible applications seemed to be quite speculative at that time.

In 1928, Jüttner generalized his 1911 ideal gas results to the case of
the ideal quantum gas, which was soon applied to the theory of white
dwarfs by S. Chandrasekhar (1934), with the now well-known consequence
of the existence of a limiting mass for this kind of star — the so-called
Chandrasekhar mass.

A lesser known work in the domain is the article by A.G. Walker (1934)
where, for the first time, general relativity was introduced and kinetic theory
applied to the expanding universe.

Slightly later, D. van Dantzig improved relativistic hydrodynamics and
studied the ideal gas case (1939); his results were described and extended
by J.L. Synge (1957). P.G. Bergmann (1951, 1962) provided various tools
for use in relativistic statistical mechanics (essentially, techniques involving
differential forms, well suited to such a case). At about the same time,
A.E. Scheidegger and C.D. McKay (1951) and A.O. Barut (1958) devised
techniques for performing “statistics of fields,” still in the noninteracting
case.

The interest raised by nuclear fusion, in the late 1950s, led to various
studies on relativistic plasmas: S. Titeica (1956), S.T. Beliaev and G.I.
Budker (1956), and Yu. L. Klimontovich (1960). While Titeica gave a
covariant version of the Vlasov equation, Beliaev and Budker included a
Landau-like collision term.

xxi
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However, Klimontovich achieved a decisive advance — using
M. Schönberg’s method of second quantization in phase space1 — and was
able to provide a BBGKY hierarchy for the covariant one-, two-, etc.–
particle distribution function of an electron plasma embedded in a neu-
tralizing uniform background. From this hierarchy, he was able to derive
the relativistic Landau collision term and hence the plasma Fokker–Planck
equation; he also obtained the Balescu–Guernsey–Leenhardt equation,
whose collision term involves the influence of the plasma modes.2

Although Klimontovich took a great step, the general situation —
discussed in detail by P. Havas (1964) — was still unclear since, apart from
plasmas, no other nonquantum physical system was known. Furthermore,
it was believed that only Hamiltonian equations of motion were needed
in relativistic statistical mechanics. As a matter of fact, a “no-interaction
theorem” was proven by D.G. Currie, T.F. Jordan and E.C.G. Sudarshan3

to the effect that a Hamiltonian formalism applies only to systems consti-
tuted by noninteracting particles. Therefore, the sole remaining possibility
was the simultaneous statistical treatment of particles and field(s) although
they were supposed to be interacting.

Such an approach was already known in the nonrelativistic case (see
e.g. E.G. Harrison, I. Prigogine) and could easily be extended to relativity
[see e.g. A. Mangeney (1965)] although the detailed calculations were not
trivial at all. The results were not manifestly covariant and hence the proof
that they actually satisfy the principle of relativity had to be given for
each particular case. Accordingly, the Brussels school (Prigogine and his
collaborators) imagined a formalism that provided the Lorentz transfor-
mation properties of their equations and also of the physical observables
[see e.g. R. Balescu and E. Pena (1967, 1968)]. However, their formalism,
although ingenious and corresponding to an implicit and quite admissible
philosophical position as to relativity (space and time must be kept sepa-
rated), was extremely involved and had the consequence that the Lorentz

1M. Schönberg, Application of second quantization methods to the classical statistical
mechanics, Nuovo Cimento, 9, 1139 (1952); A general theory of the second quantization
methods, ibid. 10, 697 (1953).
2S. Ichimaru, Basic Principles of Plasma Physics (Benjamin, Reading, Massachusetts,

1973).
3D.G. Currie, T.F. Jordan and E.C.G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963); see

also G. Marmo, N. Mukunda and E.C.G. Sudarshan, Phys. Rev. D20, 2120 (1984).
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transformation acquired a curious dynamical meaning while, according to
common wisdom, it is a merely kinematical transformation.4

Meanwhile, N.A. Chernikov (1956–1964), G.E. Tauber and J.W.
Weinberg (1961), and W. Israel (1963) studied the covariant Boltzmann
equation, whether in a flat space–time case or in a curved one. These studies
were taken up later by numerous authors and applied to the calculation of
transport coefficients (bulk and shear viscosity, heat conduction coefficient,
diffusion coefficient, etc.) via the use of approximation methods (Chapman–
Enskog, moments, etc.) adapted to the case of relativity.

As to quantum systems, impulsions to their active study were provided
by the so-called statistical model of multiple production of particles [L.
Landau (1953)] and by its extension by R. Hagedorn (1965) to the statis-
tical bootstrap model. In the mid-1970s, still in view of multiproduction
of particles, P.A. Carruthers and F. Zachariasen (1974–1983) first used a
covariant form of the Wigner function5; at about the same time, F. Cooper,
Sharp and Feigelbaum (1976) and others worked in the same direction.
This latter was then generalized to fermions, or given a gauge-invariant
form [E.A. Remler, V.V. Klimov (1982), J. Winter (1984), U. Heinz (1983,
1985), H.-Th. Elze, M. Gyulassy and D. Vasak (1986a,b). The covariant
Wigner function was used in the study of relativistic quantum plasmas,
embedded or not in strong magnetic fields, for the derivation of the main
properties of nuclear matter through the use of the J.D. Walecka’s model
(1974) or other phenomenological ones.

However, the QED plasma was studied from a mere theoretical point
of view by several authors, beginning with Fradkin (1959) (who extended
Matsubara’s results to the relativistic case), Akhiezer and Peletminski
(1960), Tsytovich (1961), etc., with the help of Green function methods.

The development of experimental data on the 3K blackbody universal
background radiation since 1965 led to more and more support for the
big bang cosmological model and motivated theoretical works on the state
of matter in the primeval universe, i.e. the universe before roughly 1 s.
This required studies of quantum field theory at finite temperature6 and/or

4The dynamical interpretation of I. Prigogine and his coworkers is perfectly admissible
but it does not correspond to the general trend of physicists looking for symmetries in
the laws of physics.
5E.P. Wigner, Phys. Rev. 40, 749 (1932).
6S. Weinberg (1974), etc.
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density that gradually became a domain in their own right. The main trend
of these works was the study of phase transitions of various orders in the
primeval universe and, in particular, people were looking for the restoration
of broken symmetries at high temperatures [D.A. Kirzhnitz and A.D. Linde
(1972)].

At about the same time, the asymptotic freedom7 property of quantum
chromodynamics, and of other gauge theories, indicated that at high density
and/or temperature — which is the case in the primitive universe [see e.g.
M.J. Perry and J.C. Collins (1975)] — hadron matter presumably undergoes
a phase transition to a phase of quasi-free quarks.

Order-of-magnitude calculations [and also lattice calculations; see e.g.
M. Creutz (1985)] then gave a critical temperature ranging from 100 MeV
to 200 MeV. This is an energy which can be obtained in nucleus–nucleus col-
lisions and therefore, in order to discover the quark–gluon phase of baryon
matter, many efforts were undertaken and are still in progress. Unfortu-
nately, there is presently no obvious signal for the manifestation of a pos-
sible quark phase. As a consequence, theoretical works in this field are
exploding, allowing thereby a thorough exploration of finite temperature
quantum field theory.

It was mentioned above that astrophysical objects — the interior of
compact stars, the pulsar’s magnetosphere, the primeval universe — resort
to the use of relativistic statistical mechanics, whether classical or quantum.
Therefore, we now review very briefly these objects and also the microscopic
applications such as the heavy ion collisions. This is of course not intended
to provide a fully developed theory but rather to specify the main applica-
tions a little bit further.

It should now be the place for an interesting tour of multiparticle pro-
duction and the statistical bootstrap model, since they played an important
role in the development of relativistic statistical mechanics.

In high energy collisions, one observes the emission of a great variety
of particles: the ones allowed by energy–momentum and internal quantum
number conservation. The higher the energy involved in the collision, the
larger the number of particles produced, so that the idea of a statis-
tical treatment gradually emerged. The first statistical model — which
was not relativistic — goes back to E. Fermi and L. Landau,8 and

7D.H. Politzer, Asymptotic freedom, an approach to strong interactions, Phys. Rep.
14, 130 (1974).
8E. Fermi, Prog. Theor. Phys. 5, 570 (1950); L. D. Landau, Izv. Akad. Nauk SSSR 78,

51 (1953).
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was eventually improved and made Lorentz-covariant during the 1950s
and ’60s.

The basic idea was to replace the transition probability involved in the
S matrix by a constant, possibly some average value, while keeping the
energy–momentum conservation relations

dnP

dp1dp2 . . . dpn
= W (a+ b→ x1 + x2 + · · ·+ xn)

× δ(4) (pa + pb − p1 − p2 · · · − pn)
i=n∏
i=1

2θ(p0
i )δ
(
p2

i −m2
i

)
,

where W — the transition probability per unit of volume and time — has
been approximated by a constant, avoiding thereby all dynamical compli-
cations. In the above expression, W is given by

W (a+ b→ x1 + x2 + · · ·+ xn) = |M(a+ b→ x1 + x2 + · · ·+ xn)|2,
(1)

where M is the transition amplitude of the reaction.
This model is “statistical” in the sense of a phase space dominance and

in general not with a thermodynamic meaning. One is generally interested
in the probability of producing N particles of a given species whatever the
X other ones, i.e. in



P (N) =
∑
X

P (N,X)

P (N,X) ≈
∫ i=n+X∏

i=1

d3pi

pi0
δ(4)

(
P −

i=n+X∑
i=1

pi

)

×〈W (a+ b→ x1 + x2 + · · ·+ xn)〉

(2)

(P = pa + pb), and since the details of the transition probability become
less and less relevant when one integrates over the large phase space implied
by a large number of particles produced in a high energy collision, W can
be replaced by a constant as, for instance, its average value. Finally, P (N)
appears to be essentially a microcanonical probability. It has been evaluated
via the use of the central limit theorem by F. Lurçat and P. Mazur (1964).

This was, however, not completely satisfactory and R. Hagedorn (1965)
reintroduced some dynamics with his “statistical bootstrap,” which was
originally9 built to explain the approximate constancy of the (average)

9See R. Hagedorn (1995) for the history of his interesting model.
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transverse momenta of the produced particles in high energy hadron–
hadron collisions. It was also based on the remark that the secondaries
produced in such a collision result from the decay of a number of fireballs,

a+ b→ fireballs→ n+X,

or resonances, from which the idea of the statistical bootstrap finally
emerged: fireballs are made of fireballs, themselves made of fireballs, etc. In
this model, one thus has to make a statistics of fireballs with a particular
mass spectrum ρ(m) and it is described by its partition function, roughly
given by

Z(V, T ) =
∑

all states i

exp
(
−Ei

T

)
=
∫ ∞

0

dEσ(E, V ) exp
(
−E
T

)
, (3)

where σ(E, V ) is the density of state of the system, connected to the mass
spectrum essentially by a relation of the form log[ρ(m)] ≈ log[σ(m,V0)] for
m large, and where V0 is the interaction volume. Finally, Hagedorn was led
to a mass spectrum of the asymptotic form

ρ(m) ≈ m−α exp
(
−m
T0

)
, (4)

where T0, now known as Hagedorn’s temperature, is a constant of the order
of 160MeV, which appeared as being a limiting temperature since the par-
tition function

Z(V, T ) ≈ V0

∫ ∞
0

dmρ(m)m−α exp
(
−m

{
1
T
− 1
T0

})
(5)

has a meaning only when T < T0. Such a spectrum — which is essen-
tially verified when plotting the various particles and their resonances as
a function of their masses — led to an explanation of the constancy of
the average transverse momenta of secondaries produced in high energy
hadron–hadron collisions. The model, however, suffered from some obvious
drawbacks: for instance, it implicitly involved only attractive interactions,
the ones necessary for forming fireballs, and no repulsion10 at all. Also,
it needed many improvements, such as the conservation of some internal
quantum numbers.11 A few years later, the statistical bootstrap was used
in a possible description of the quark–gluon plasma, the more so since the

10The use of the so-called “pressure ensemble” can be considered as a first attempt at
taking repulsion into account [R. Hagedorn (1995); R. Hagedorn and J. Rafelski.
11K. Redlich and L. Turko (1980); L. Turko (1981, 1994); H.T. Elze and W. Greiner
(1986).
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phenomenological MIT bag model12 of hadrons also provides an exponential
energy spectrum.

This led to an enormous literature, which cannot be invoked here [see
e.g. the references quoted in R. Hagedorn (1995)]. Numerous high energy
physicists became used to thinking in terms of dense matter and hence
of relativistic statistical physics; moreover, they found a natural domain
of applications and/or theoretical toy models in various fields of rela-
tivistic astrophysics. The statistical bootstrap also gave an impulsion to the
study of statistical mechanics of particles endowed with a mass spectrum
[R. Hakim (1974), C. Barrabes (1976, 1982a,b), L. Burakovsky and L.P.
Horwitz (1993, 1994)].

At the beginning of the 1970s, another line of thought, which aimed
at introducing more dynamical considerations in the statistical approach
to multiparticle production, arose with the works of P.A. Carruthers and
F. Zachariasen (1974, 1975, 1976, 1983).

12A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorne and V.F. Weisskopf, Phys. Rev. D9,
3471 (1974); R.C. Tolman, Phys. Rev. 55, 364 (1939); J. R. Oppenheimer and G. M.
Volkoff, Phys. Rev. 55, 374 (1939).
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Chapter 1

The One-Particle Relativistic
Distribution Function

The first works began, as could be expected, with those notions derived from
kinetic theory, such as the distribution function, the Maxwell–Boltzmann
distribution function, and the kinetic equations it is supposed to obey.
Accordingly, the same path is followed in this first chapter. The first use of
the covariant one-particle distribution function seems to have been made by
A.G. Walker (1934), D. van Dantzig (1939), S. Titeica (1956) and J.L. Synge
(1957). The approach presented here is due to Yu. L. Klimontovich (1960)
and R. Hakim (1967) [see also N.G. van Kampen (1969)].

In this chapter, we shall briefly show how the one-particle distribution
function can be defined in a simple way and on what phase space. The
equilibrium distribution function — the relativistic Maxwell–Boltzmann
distribution, hereafter called the Jüttner–Synge function — is then briefly
derived and its main properties given.

1.1. The One-Particle Relativistic Distribution Function

Rather than elaborating on the transformation laws of the distribution
function, on the phase space element, etc., it is much simpler to start
from the main physical observables — i.e. the four-current and the energy–
momentum tensor — to build the definition of the covariant distribution
function.

Let us first consider a classical, i.e. nonquantum, relativistic particle.
The numerical four-current it defines in space–time is provided by the so-
called Feynman four-current:

Jµ(x) =
∫
ds δ(4)[x− x(s)] d

ds
xµ(s), (1.1)

1
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where x is the space–time point and s is an arbitrary parameter — generally
taken to be the proper time — along the space–time trajectory over which
the integral is extended. It can immediately be verified that n(x, t), its
space–time density, is given by

n(x, t) =
∑

i

δ(3)[x− xi(t)], (1.2)

and that the usual three-current is still

j(x, t) =
∑

i

δ(3)[x− xi(t)]vi(t). (1.3)

Similarly, the energy–momentum tensor of the particle is given by

T µν(x) =
∫
ds δ(4)[x− x(s)]pµ(s)

d

ds
xυ

i (s). (1.4)

For a system of N particles, the four-current and the energy–momentum
tensor of the particles are then provided by

Jµ(x) =
i=N∑
i=1

∫
ds δ(4)[x− xi(s)]

d

ds
xµ

i (s), (1.5)

T µν(x) =
i=N∑
i=1

∫
ds δ(4)[x− xi(s)]p

µ
i (s)

d

ds
xυ

i (s), (1.6)

which can be rewritten as

Jµ(x) =
∫
d4u

∫
ds

i=N∑
i=1

δ(4)[p− pi(s)] δ(4)[x− xi(s)]u
µ
i (s)

=
∫
d4u

∫
ds

i=N∑
i=1

δ(4)[p− pi(s)] δ(4)[x− xi(s)]u
µ
i (s) (1.7)

=
∫
d4u

pµ

m

∫
ds

i=N∑
i=1

δ(4)[p− pi(s)] δ(4)[x− xi(s)]

≡
∫
d4p

pµ

m
R(x, p) (1.8)

for the four-current, where the properties of the δ function are used, and as

T µυ =
∫
d4p

pµpυ

m
R(x, p) (1.9)

for the energy–momentum tensor. uµ is the four-velocity of the particles,
generally a function of x and p. In these last two equations we have used
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the definition

R(x, p) ≡
∫
ds

i=N∑
i=1

δ(4)[p− pi(s)] δ(4)[x− xi(s)]. (1.10)

R(x, p) depends on the initial data chosen for the trajectories of the rela-
tivistic particles and thus is a random function in the context of a statistical
ensemble where these data are known only in a statistical manner.

The covariant distribution function f(x, p) is thus defined as

f(x, p) ≡ 〈R(x, p)〉, (1.11)

where the average value 〈· · · 〉 is taken over the initial data, whatever they
might be,13 so that, by construction, it allows the calculation of any kind
of average values of observable quantities whatsoever.

Therefore, it appears that the one-particle relativistic phase space, or
µ space, is formally the eight-dimensional space subtended by (x, p). As a
matter of fact, the momentum p is generally constrained by a mass shell
condition of the type p2 = m2 or by any other, such as

[p− eA(x)]2 = m2, (1.12)

when one is dealing with a charged system embedded in an electromagnetic
four-potential Aµ.

Let A...
...(x, p) be a tensor observable connected to the particles; its space–

time density is given by

Aµ...
... (x) =

∫
d4p

pµ

m
A...

...(x, p)f(x, p), (1.13)

where the global quantity of A...
...(x, p) in the system is given by

A...
... =

∫
Σ

∫
dΣµd

4p
pµ

m
A...

...(x, p)f(x, p), (1.14)

where Σ is an arbitrary spacelike three-surface, i.e. A...
... is the flux of the

four-current Aµ...
... (x) through Σ. In general, the average value of A depends

on Σ; the only case where it is independent of Σ is the one where

∂µA
µ...
... (x) = 0. (1.15)

13In the classical relativistic context of the so-called action-at-a-distance formalism of
interacting particles, the initial value problem is not yet solved and the initial data
necessary for determining completely the future of the system might consist of the initial
positions and velocities of the particles and some part of the trajectories in the past.



January 24, 2011 15:2 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch01 FA

4 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

As an example, the entropy of the system is given by

S =
∫

Σ

dΣµ S
µ(x), (1.16)

where Sµ(x) is the entropy four-current

Sµ(x) = −kB

∫
d4p

pµ

m
f(x, p) log f(x, p), (1.17)

while the entropy invariant density is simply u · S, where uµ is the average
four-vector that defines the rest frame of the gas.

From what has been discussed above, the normalization of the covariant
distribution function reads∫

Σ

∫
dΣµd

4p
pµ

m
f(x, p) ≡

∫
Σ

dΣµJ
µ(x) (1.18)

= N

when there are N particles in the system.14 In other words, the flux of
the four-current through an arbitrary spacelike three-surface defines the
normalization of the distribution function: there are as many intersections
of world lines with Σ as particles in the system. In the above equation dΣµ

is the differential form

dΣµ =
1
3!
εµναβ dx

ν × dxα × dxβ , (1.19)

the surface element on Σ. Note that, owing to the mass shell condition
p2 = m2, the integration element d4p in µ space actually reduces to a
three-dimensional one,15

d4p→ m
d3p

p0
, (1.20)

where the factor m has been added so that the integration element has
the dimension of a mass cube, as usual. Also of use is the variable v =
p/m, whose integration element is just d3v/v0. Finally, it appears that the
integration extends over a six-dimensional µ space,

Σ(x){p2 = m2}, (1.21)

as in the Newtonian case. Whether this last six-dimensional phase space or
the covariant eight-dimensional one is called “phase space” is only a matter
of definition.

14Instead of N , the normalization is often chosen to be 1, in order for f to be a proba-
bility.
15The use of d4p is generally more convenient; however, it can be a source of confusion
if one is not cautious enough [see e.g. B. Kursunoglu (1967)].
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For an infinite system, the normalization of f(x, p) occurs via the four-
current or the local n(x) density

neq(x) = [Jµ(x) · Jµ(x)]1/2, (1.22)

i.e. via its definition or, equivalently, as

neq(x) =
∫
d4puµ(x)

pµ

m
f(x, p), (1.23)

with uµ(x) ≡ Jµ(x)/neq(x) the average four-velocity of the system.

1.1.1. The phase space “volume element”

When one considers the six-dimensional phase space Σ × µ, its invariant
“volume element” is given by

dΩ(x, p) = dΣµ(x)× dΣµ(p), (1.24)

where

dΣµ(p) =
1
3!
εµναβ dp

ν × dpα × dpβ (1.25)

is the differential form “element of the three-surface.” The above element
of integration on phase space is, of course, written in an obvious system of
coordinates adapted to its structure as a product of two three-surfaces. Let
us briefly calculate dΣµ(p) restricted to the hyperboloid p2 = m2, and let
us choose the coordinate system of {pi}i=1,2,3 so that p0 =

√
p2 +m2. For

instance, the zeroth component of dΣ0 immediately yields

dΣ0 = dp1 × dp2 × dp3 = p0
d3p

p0
(1.26)

and, finally, one recovers

dΣµ = pµ
d3p

p0
. (1.27)

The volume element is sometimes taken to be truly d4p and the constraint
p2 = m2 occurs either explicitly,

d4p2θ(p0)δ(p2 −m2)f(p), (1.28)

or implicitly in the distribution function. In any case, care must always be
taken when dealing with either the integration element or the distribution
function: is the mass shell restriction included in the former or the latter?
Or is it explicit?
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1.2. The Jüttner–Synge Equilibrium Distribution

The relativistic Maxwell–Boltzmann distribution function, hereafter called
the Jüttner–Synge distribution, was first derived by F. Jüttner in 1911 and
studied in detail by J.L. Synge (1957). It can be derived in numerous pos-
sible ways: by noting that the Boltzmann factor exp(−βE) can be obtained
from thermodynamic considerations, independently of relativity theory, and
hence it is sufficient to replace E by its relativistic expression and to nor-
malize the result; by maximizing the entropy of the system while taking
account of the constraints provided by the average energy and the number
of particles within the system; by solving the covariant Boltzmann equation
[W. Israel (1963)]; by using a covariant formulation for the passage of a
microcanonical ensemble to a canonical one [R. Hakim (1973)], as first
shown by A.I. Khinchin (1956) in the nonrelativistic domain; etc.

First, the Jüttner–Synge distribution is briefly derived by maximizing
the free energy of the system,

F = U − TS, (1.29)

while the number (N) of particles is kept conserved; equivalently, the same
can be done for densities

βF = βρ− s ≡ βρ− uµS
µ,

(1.30)
β ≡ (kBT )−1,

or

δF = 0, δN = 0. (1.31)

Therefore, one has to maximize the free energy

δ(βF ) = δ

∫
d3p

p0
{β(p · u)2 − (p · u) log feq(p)}feq(p) = 0,

δneq = δ

∫
d3p

p0
(p · u)feq(p) = 0,

(1.32)

while N is conserved.
Introducing a Lagrange multiplier α for the constraint on N , one has

δ

∫
d3p

p0
{β(p · u)2 − kB(p · u) log feq(p) + α(p · u)}feq(p) = 0, (1.33)

(where kB is the Boltzmann constant) from which one is immediately led
to the following form for the equilibrium distribution function,

feq(p) = A exp(−βuµpµ) (1.34)
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(with p0 ≡
√

p2 +m2), where A is directly connected to the Lagrange
multiplier; it is determined by the normalization condition. One gets suc-
cessively

Jµ ≡ nequ
µ =

∫
p2 −m2 = 0

p0 > 0

m
d3p

p0

(
pµ

m

)
A exp(−βuµpµ)

= −A ∂

∂(βuµ)

∫
p2 −m2 = 0

p0 > 0

m
d3p

p0
exp(−βuµpµ), (1.35)

where the “generating function” [see J.L. Synge (1957)] AΦ(mβ), for the
moments of feq(p), is defined by

Φ(mβ) =
∫

p2 −m2 = 0

p0 > 0

m
d3p

p0
exp(−βuµpµ), (1.36)

and is explicitly given by

Φ(mβ) = 4πm3

∫
p2 −m2 = 0

p0 > 0

dχ sh2χ exp(−βmchχ), (1.37)

where use has been made of the relativistic polar coordinates


p1 = mshχ sin θ cosϕ,

p2 = mshχ sin θ cosϕ,

p3 = mshχ cos θ,

p0 = mchχ.

(1.38)

Finally, Φ(mβ) turns out to be

Φ(mβ) = 4πm
K1(mβ)

β
, (1.39)

where the Kelvin functions16 Kn(ξ) are defined by

Kn(ξ) =
(
ξ

2

)n Γ
(

1
2

)
Γ
(
n+ 1

2

) ∫ ∞
0

dχ exp(−ξchχ) sinh2n χ

=
(2ξ)nn!
(2n)!

∫ ∞
0

dχ exp(−ξchχ) sinh2n χ (1.40)

=
∫ ∞

0

dχ exp(−ξchχ) cosh(nχ).

16See Abramovitz and Stegun, Handbook of Mathematical Functions (Dover, New York,
1965).
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From the generating equation Φ(mβ), and the recurrence relations obeyed
by Kn and their derivatives (see App. A), one obtains

A =
neqβ

4πm2K2(mβ)
, (1.41)

which is connected to the chemical potential µ through

A =
neqβ

4πm2K2(mβ)
= exp(βµ); (1.42)

this property can be seen by calculating the various terms of the thermo-
dynamic relation17

s =
ρ− µneq

T
+ kBneq, (1.43)

where kB is the usual Boltzmann constant.
For the energy–momentum tensor, one obtains

T µυ = A
∂2

∂ξµ∂ξν
Φ(mβ)

=
[
neqm

K3(mβ)
K2(mβ)

+
neq

β

]
uµuυ − neq

β
ηµυ . (1.44)

An alternative form of T µν can be obtained with the recursion relations
obeyed by the Kelvin functions (see App. A) and reads

T µν =
{
mneq

K1(βm)
K2(βm)

+
4neq

β

}
uµuν − neq

β
ηµν . (1.45)

The Lagrange multiplier β is determined from the equation of state of the
relativistic gas. A comparison of the energy–momentum tensor, which has
the so-called perfect fluid form18

T µυ = (ρ+ P )uµuυ − Pηµυ (1.46)

(see Chap. 2) finally yields Pβ = neq, which is nothing but the perfect
gas equation of state and hence this terminates the identification of β with
1/kBT (kB is the usual Boltzmann constant). In this last equation ρ is the
(invariant) energy density of the system and P is its pressure.

17See the details in S.R. de Groot, W.A. van Leeuwen and Ch. G. van Weert (1980).
18This means that the energy–momentum tensor does not contain any dissipation term
which would introduce gradients of some macroscopic quantities, such as the average
four-velocity or the temperature.
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1.2.1. Thermodynamics of the Jüttner–Synge gas19

The covariant form of the first law of thermodynamics reads

βνT
µν = Sµ + αJµ, (1.47)

which can be rewritten, after multiplying by uµ, as

βdρ = ds+ αdneq (1.48)

or, through multiplying by an arbitrary volume V ,

dU = dS + αdN. (1.49)

The identification of T µν with its perfect fluid form, or a direct calculation,
provides

ρ = mneq
K1(βm)
K2(βm)

+
3neq

β
= neqm

K3(mβ)
K2(mβ)

(energy density), (1.50)

h = ρ+ P = neqm
K3(mβ)
K2(mβ)

+
neq

β
(density of enthalpy per particle).

(1.51)

Their first relativistic corrections are given by the asymptotic forms of the
Kelvin functions (see App. A), namely


ρ = neq

{
m+

3
2
kBT +

15
8

(kBT )2

m
+ · · ·

}
,

h = neq

{
m+

5
2
kBT +

15
8

(kBT )2

m
+ · · ·

}
.

(1.52)

As expected, these expressions contain the rest energy of a generic particle.
The limit βm� 1 of the Jüttner–Synge function can easily be shown to be
the ordinary Maxwell–Boltzmann distribution [J.L. Synge (1957)] with the
help of the asymptotic formula given in App. A.

Kn(ξ) =
(
π

2ξ

)1/2

exp(−ξ)
{

1 +
4n2 − 1

1!8ξ
+

(4n2 − 12)(4n2 − 32)
2!(8ξ)2

+ · · ·
}
.

(1.53)

19See J.L. Synge (1957), W. Israel (1976, 1981), or S.R. de Groot, W.A. van Leeuwen
and Ch.G. van Weert (1980).
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In such a case, of course, the rest mass contribution is eliminated ipso
facto. From these two quantities, ρ and h, one obtains the heat capacity at
constant volume and pressure through


CV = −β2k−1

B

∂

∂β

(
ρ

neq

)∣∣∣∣
V

,

CP = −β2k−1
B

∂

∂β

(
h

neq

)∣∣∣∣
P

,

(1.54)

which provides the adiabatic index γ ≡ CP /CV of the Jüttner–Synge gas
through

γ

γ − 1
= (βm)2 + 5βh− (βh)2. (1.55)

From the above expansions of ρ and h, the relativistic corrections to the
adiabatic index are obtained as

γ =
5
3
− 5

3
1
β

+ · · · . (1.56)

The adiabatic index plays an important role in problems of stability con-
cerning various types of stars.

1.2.2. Thermal velocity

In nonrelativistic physics, the average thermal velocity of a generic particle
of an ordinary Maxwellian gas is given by

vth =

√
3
kBT

m
, (1.57)

and, as a matter of fact, it is often used in the relativistic context. However,
J.L. Synge (1957) considers the most probable speed of a relativistic ideal
gas, which appears to be a solution to the equation

9v6 + [(βm)2 + 3]v4 − 8v2 + 4 = 0; (1.58)

when βm is close to zero, the equilibrium distribution possesses a sharp
maximum so that the most probable speed is close to the thermal velocity.
In this case, J.L. Synge gives

v2 ≈ 1− (βm)2

25
, (1.59)

which shows that the relativistic thermal velocity is quite different from
the Newtonian one. It might seem that it would be sufficient to take the
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Fig. 1.1 The relativistic thermal velocity compared to the classical one. (Calculation
by Dr. L. Mornas.)

relativistic average value of v2 to obtain a coherent definition for the thermal
velocity, i.e.

v2
th =

βm

K2(βm)

∫
dχ exp(−βm coshχ)

sinh4 χ

coshχ
. (1.60)

However, such a definition does not involve the usual energy content
included in the classical definition; this occurs because of the different rela-
tionship between energy and velocity.

In order to obtain a thermal velocity with the same energy content as in
the nonrelativistic case, the following equality is considered as a definition
of vth:

m√
1− v2

th

≡
def
〈E〉, (1.61)

or

v2
th =

〈E〉2 −m2

〈E〉2 (1.62)

(see Fig. 1.1).
The expression for 〈E〉 can be obtained from the energy–momentum

tensor, or from ρ via

〈E〉 = n−1
eq ρ, (1.63)
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and one obtains (see also J.L. Synge (1957))

〈E〉 = m

{
K1(mβ)
K2(mβ)

+
3
mβ

}
(1.64)

so that

v2
th = 1−

{
K1(mβ)
K2(mβ)

+
3
mβ

}−2

. (1.65)

For large values of mβ (low temperature case) one recovers the classical
value, while for small mβ (ultrarelativistic case) one obtains

v2 ≈ 1− 1
9
(βm)2, (1.66)

which is, as expected, of the same order of magnitude as J.L. Synge’s most
probable speed.

1.2.3. Moments of the Jüttner–Synge function

When one is dealing with dissipative phenomena, a hierarchy of moments
can be obtained from a relativistic kinetic equation (see Chap. 2) and their
explicit form generally depends on the first moments of the equilibrium dis-
tribution [see e.g. S.S. Moiseev (1960), for the case of rarefied gases]. The
various moments of the Jüttner–Synge distribution are obtained, as men-
tioned above, from the function Φ(mβ) and are particularly useful in some
approximation schemes employed in obtaining solutions to the relativistic
Boltzmann equation or to other kinetic equations. Accordingly, the first few
moments are explicitly given here.

They are given by

M0 =
∫
d3p

p0
feq(p) = 4πmA

K1(mβ)
β

, (1.67)

Mµ
1 =

∫
d3p

p0
pµfeq(p) = 4πm2A

K2(mβ)
β

uµ, (1.68)

Mµν
2 =

∫
d3p

p0
pµpνfeq(p)

=
4πm3

β
A

[
K3(mβ)uµuν − 1

mβ
K2(mβ)ηµν

]
, (1.69)
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Mµνα
3 =

∫
d3p

p0
pµpνpαfeq(p)

=
4πm4

β
A

[
K4(mβ)uµuνuα − K3(mβ)

mβ
u(µηνα)

]
, (1.70)

Mµνλβ
4 =

∫
d3p

p0
pµpνpαpβfeq(p)

=
4πm5

β
A

[
K5(mβ)uµuνuαuβ

− K4(mβ)
mβ

u(µuνηαβ) +
K3(mβ)
(mβ)2

η(µνηαβ)

]
, (1.71)

Mµνλβλ
5 =

∫
d3p

p0
pµpνpαpβpλfeq(p)

=
4πm6

β
A

[
K6(mβ)uµuνuαuβuλ

− K5(mβ)
mβ

u(µuνuαηβλ) +
K4(mβ)
(mβ)2

u(µηναηβγ)

]
. (1.72)

In these expressions use has been made of the conventional symmetrization
notations on the indices.

1.2.4. Orthogonal polynomials

When one is dealing with off-equilibrium processes, the distribution
function has to be approximated in some way. For instance, in the non-
relativistic case, the distribution function is often expanded — and next
truncated at some order — as

f = feq

∞∑
n=0

anHn, (1.73)

where feq is the usual Maxwell–Boltzmann distribution and Hn are the
orthogonal polynomials associated with the weight defined by this function,
i.e. Hermite’s polynomials.

It would therefore appear to be desirable to find the family of those
polynomials that are orthogonal with respect to the weight defined by the
Jüttner–Synge function. Remember that this function is defined on the
mass hyperboloid p2 = m2.
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The first polynomials to be used in the solution of the relativistic
Boltzmann equation were actually neither polynomials nor even orthogonal
[N.A. Chernikov (1963, 1964)]. D.C. Kelly (1968, 1969) and Ch. Marle
(1969) studied the first orthogonal polynomials from a mathematical point
of view and constructed them with the well-known Schmidt orthogonal-
ization procedure. However, these were not very easy to express explicitly
except, of course, the first few ones, which are given below. Their general
form was improved by J. Stewart (1971) and J.L. Anderson (1974), and
finally given more specific forms by J.C. Lucquiaud (1986) on the basis
of group-theoretical arguments. Finally, an improved version is presented
in the book by S.R. de Groot, W.A. van Leeuwen and Ch. G. van Weert
(1980). Here the first few orthogonal polynomials are defined and given
and, as a matter of fact, they are those which are actually used in practice.

A general distribution function20 f is expanded as

f(p) = feq(p)
∞∑

n=0

a(n)µ1µ2...µn
Hµ1µ2...µn

n (p), (1.74)

where Hn are mutually orthogonal:

1
neq

∫
d3p

p0
feq(p)Hµ1µ2...µn

n (p)Hµ1µ2...µ�

� (p) = 0, (1.75)

with n �= �.
Ch. Marle (1969) proved the following properties for Hn:

(i) These polynomials are symmetric in the indices {µ1, µ2, . . . , µn}; they
obey the following relations:

(ii) ηµ1µ2H
µ1µ2...µn
n (p) = 0 for p ≥ 2.

(iii) They form a complete system for those functions g(p) such that
g(p) exp

(− 1
2βu · p

)
is square-integrable.

He gave the first few polynomials as

H0 = 1, Hµ
1 (p) = pµ − K2(mβ)

K1(mβ)
uµ, (1.76)

Hµν
2 (p) = pµpν − Cµν

λ Hλ
1 (p)− Cµν , (1.77)

20We have omitted the x dependence of f and possibly of the local distribution feq.
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with

Cµν =
K3(mβ)
K1(mβ)

uµuν − K2(mβ)
mβK1(mβ)

ηµν , (1.78)

Cµν
λ = − (βm)2

K1(mβ)
[ηλα + Y (mβ)uλuα]

×
{(

K4(mβ)
mβ

− K2(mβ)K3(mβ)
mβK1(mβ)

)
uµuνuα

−
(
K3(mβ)
(mβ)2

− [K2(mβ)]2

(mβ)2K1(mβ)

)
ηµνuα

− K3(mβ)
(mβ)2

(ηµαuν + ηναuµ)
}
, (1.79)

where the function Y (mβ) is defined by

[1 + Y (mβ)]−1 = 1 +mβ

{
K2(mβ)
K1(mβ)

− K3(mβ)
K2(mβ)

}
. (1.80)

1.2.5. Zero mass particles

Let us start from the energy–momentum tensor of an ideal gas composed
of zero mass particles:

T µν =
{
mneq

K1(βm)
K2(βm)

+
4neq

β

}
uµuν − neq

β
ηµν , (1.81)

and let m tends to zero. Using the properties of Kelvin’s functions for small
arguments (see App. A), one obtains

lim
m→0

T µ
µ = 0, (1.82)

as one could have expected for photons for instance, and which indicates
the usual equation of state for massless particles, i.e.

P =
1
3
ρ, (1.83)

so that the sound velocity21 for such a gas is c/
√

3.
Similarly, when one starts from the expression of the four-current and

let βm tend to zero, the normalization coefficient of the Jüttner–Synge
function is found to be

A =
nβ3

8πm2
, (1.84)

21See Chap. 2.
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i.e. m tends to zero and n to infinity so that A remains finite; while the
integration element becomes

d3p

p0
→ d3p

|p| . (1.85)

Finally, all that is needed for the description of classical zero mass particles
in thermal equilibrium is available. As an example, Stefan’s law is derived
as follows. The energy density of such a gas is given by

ρ = uµuνT
µν =

∫
d3p

p
(p · u)2A exp(−βp · u)

(1.86)
β−4 = T 4,

where the proportionality to T 4 appears after the elementary change
p→ βp.

1.3. From the Microcanonical Distribution
to the Jüttner–Synge One22

Now the Jüttner–Synge function will be derived from the free micro-
canonical distribution. Why from the “free” one and not from interaction?
There are several reasons. The first one is that it is not derived in the
nonrelativistic case, except for weak interactions. Next, in the relativistic
case, the question of interaction is completely different from the nonrela-
tivistic and certainly much more complex. Finally, the noninteracting case
is sufficiently instructive as such.

The relativistic form of the microcanonical model for N free particles
endowed with a total energy–momentum Pµ is

f
(N)
micro(P

µ, {pµ
i })

= const δ

(
Pµ −

i=N∑
i=1

pµ
i

)∏
2miθ(p0

i )δ(p
λ
i piλ −m2

i ), (1.87)

where θ(p0) is the Heaviside step function and where the normalization
constant depends (i) on the number of particles, (ii) on the total energy–
momentum Pµ of the gas and (iii) on the spatial volume occupied. Note that
the relativistic microcanonical model has the same content as the classical
one: the particles lie on the total energy and momentum of the whole system

22It might be useful to read Chap. 5 first.
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of particles, which obeys P · P = M2. Also, note that f (N)
micro(P

µ, {pµ
i }) is

normalized through∫ i=N∏
i=1

d4pi
pµ

i

mi
f

(N)
micro(P

µ, {pµ
i }) ≡ Jµ1µ2...µN

= N

(
N

V

)2N
Pµ1Pµ2 · · ·PµN

MN
. (1.88)

However, instead of employing f (N)
micro(P

µ, {pµ
i }), we shall use a probability,

more adapted to the use of the central limit theorem;23 it is, therefore, a
true density of probability in energy–momentum space.

Let us, however, mention that the central limit theorem, in its simplest
form, is:

Central limit theorem. Let {Xi}i=1,2,...,Nbe random independent vari-
ables of densities {f(xi)}i=1,2,...,N . Then the law of

X =
X1 +X2 + · · ·+XN

N

is that of a Gaussian:

fΣ(x) =
1√
2π

exp
(
−1

2
x2

)
+O

(
1
N

)
.

This theorem is valid for conditions that are valid in most ordinary cases and
has a number of important applications. Among the assumptions necessary
for the central limit theorem, one finds:

• existence of the first two moments of the distribution function;
• existence of the characteristic function (i.e. Fourier existence) of the dis-

tribution function;

and for many other cases definite complex data f (N)
micro(P

µ, {pµ
i }) reads

f
(N)
micro(x|Pλ, {pλ

i }) = f
(N)
micro(P

µ, {pµ
i })×

i=N∏
i=1

P · pi

Mmi
. (1.89)

However, rather than employing f (N)
micro(P

µ, {pµ
i }), we shall use a probability,

more adapted to the use of the central limit theorem;24 it is thus a true
density of probability in energy–momentum space.

23A.I. Khinchin, Mathematical Foundation of Information Theory (Dover, New York,
1957).
24A.I. Khinchin, loc. cit.
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It follows that the one-particle distribution function is

f(x|p) =
∫ i=N∏

i=1

d4pi δ(pµ − pµ
i )f (N)

micro(x
µ|Pµ, {pµ

i }), (1.90)

where we have made clear in the notation that the local distribution is also
a conditional one. A simple calculation provides

f(x|p) =
ΩN−1(

√
[Pλ − pλ]2)

ΩN (M)
Pµpµ

Mm
, (1.91)

where

ΩN (M) =
∫
δ

(
Pλ −

i=N∑
i=1

pλ
i

)
i=B∏
i=1

2miθ(p0
i )δ(p

2
i −m2

i )
Pµpiµ

Mmi
d4pi. (1.92)

An expression similar to ΩN (M) has been evaluated by F. Lurçat and
P. Mazur (1964) employing the central limit theorem, which we shall use
now. Note also that their expression differs from ours by the absence of the
term

i=N∏
i=1

Pµpiµ

Mmi
. (1.93)

We now apply the central limit theorem to

Pµ =
pµ1 + pµ2 + · · ·+ pµN

N
; (1.94)

the probability density is

gN (β, P ) =
1

φN (β)
ΩN (P ) exp(−β · P ) (1.95)

and, as a result, tends toward a Gaussian distribution:

gN (β, P ) =
1

(2π)2
1

(DetBN )1/2
exp
[
−1

2
(P−AN )µB

µν
N (P−AN )ν

]
+O

(
1
N

)
,

(1.96)

where A is the average value of P and BN is its dispersion matrix. The
calculation of these first two moments is easy, since they are the first two
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derivatives of logφN (β). One finds that

Aµ
N = −∂ logφN (β)

∂β
βµ, (1.97)

Bµν
N (β) =

∂2 logφN (β)
∂β2

uµuν +
1
β

∂ log φN (β)
∂β

∆µν(u), (1.98)

where uµ is a unit four-vector to be derived elsewhere but which is also
parallel to βµ. In our case, it turns out that, the generating function is

φN (β) ≡
def

∫
d4P ΩN (P ) exp(−βµPµ)

=
(

1
Mm

)N (
∂2

∂α2
+

3
α

∂

∂α

)(∫ ∞
0

d4P
4πm2

α
K1(αP )

)N

, (1.99)

with α2 = αλαλ.
However, the important point for the derivation of the Jüttner–Synge

distribution is the form of ΩN (M) and, more particularly, the fact that

ΩN (M) ≈ exp(βM). (1.100)

Inserting now this form into the expression for f(x|p), we find that

f(x|p) = L(β,M) exp
(
−βM + [M2 +m2 − 2Pµpµ]1/2

) P · p
Mm

(1.101)

and, since N � 1, M � m, we have

f(x|p) = L(β,M)
P · p
Mm

exp
(
−βP

µpµ

M

)
. (1.102)

This last form is precisely the Jüttner–Synge function, except that L(β,M)
has to be determined: actually it could be determined by looking at the limit
N � 1 andM � m; in fact, it can be determined simply by a normalization
condition although it is actually furnished by the limiting form of ΩN (M).
Note that Pµ/M is precisely uµ.

Finally, the actual form of the Jüttner–Synge function has been estab-
lished but it could be derived more rigorously; this involves, however, quite
lengthy calculations.

1.4. Equilibrium Fluctuations

In this section the four-current equilibrium fluctuations are calculated:{
δJµν(x, x′) = 〈δJµ(x)δJν(x′)〉

≡ 〈(Jµ
micro(x) − 〈Jµ(x)〉)(Jν

micro(x
′)− 〈Jν(x′)〉)〉.

(1.103)
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They are required in the use of the fluctuation–dissipation theorem in order
to obtain, for instance, the modes of oscillation of a plasma.25 Other kinds of
fluctuations, like those of the energy–momentum tensor, can be calculated
in a similar manner.

The starting point is the (random) four-current Jµ(x) of free particles:
their trajectories are straight lines. The microscopic four-current then reads

Jµ
micro(x) =

∑
i

∫ +∞

−∞
dsi

pµ

m
δ(4)

[
x− xi −

(
pi

mi

)
si

]
(1.104)

between collisions, and its equilibrium average value is, of course, 〈Jµ(x)〉 =
nuµ. In this last equation xi and pi/mi are the initial four-positions and
four-velocities of the particles of the system. With the definition of rela-
tivistic average values

A...
... =

∫
Σ

∫
dΣµ d

4 p
pµ

m
A...

...(x, p)f(x, p), (1.105)

we get

δJµν(x, x′) =
∑

i

∫ +∞

−∞
ds′i dsi

∫
Σ

∫
dΣα d

4p
pα

m
feq(p)

×pµ
i p

ν
i δ

(4)

[
x− xi −

(
pi

mi

)
si

]
δ(4)

[
x′ − xi −

(
pi

mi

)
s′i

]
(1.106)

or

δJµν(x, x′) =
∑

i

∫ +∞

−∞
ds′i dsi

∫
Σ

∫
dΣα d

4p
pα

m
feq(p)

×pµ
i p

ν
i δ

(4)

[
x−x′−

(
pi

mi

)
(si − s′i)

]
δ(4)
[
x′ − xi −

(
pi

mi

)
s′i

]
,

(1.107)
and with extensive use of the properties of the δ function and of the conse-
quent relation

dΣα dx
α = d4x (1.108)

and from the fact that
dxα

i

dsi
=
pα

i

m
, (1.109)

we find that

δJµν(x− x′) =
∫
dτ

∫
p2 = m2

p0 > 0

d4p
pµpν

m2
feq(p)δ((x− x′)− uτ). (1.110)

25See e.g. A.G. Sitenko, Electromagnetic Fluctuations in Plasmas (Wiley, New York,
1959); for the relativistic calculation see R. Hakim (1974).
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The integrations are easily performed and we obtain

δJµν(X) =
mβneq

4πK2(mβ)
XµXν

(X ·X)5/2
exp

(
−mβ u ·X

(X ·X)1/2

)
, (1.111)

where we have set X ≡ x − x′, in agreement with the expression given by
A.G. Sitenko (1959) for the numerical density fluctuations. Obviously, this
expression makes sense only when the separation X is timelike. However,
it should be noted that, in general, for an arbitrary physical quantity, the
situation is not necessarily of this type: a given phenomenon in the past
can influence two events separated by a spacelike distance.

1.5. One-Particle Liouville Theorem

A kinetic equation is often needed in order to obtain the distribution
function f(x, p). The general scheme for a kinetic equation is constituted
by three elements. First, the Liouville equation gives the general flow of
the particles in phase space. It is then coupled to a second element, the
collision term, which renders possible deviations from this general flow.
Finally, collective effects, which affect both the flow in phase space and the
collision term, must be taken into account. Several examples will be given
in subsequent chapters.

Before studying the kinetic equations, we first indicate briefly how the
one-particle Liouville theorem occurs in µ space. Since the number of par-
ticles in the system is assumed to be conserved,26 the eight-current in µ

space is necessarily conserved and its “continuity equation” then reads

∂µ

[
dxµ

dτ
f(x, p)

]
+

∂

∂pµ

[
dpµ

dτ
f(x, p)

]
= 0, (1.112)

where τ is the proper time; or, equivalently, after it is noted that the
“velocity” in this µ space is given by

uµ ≡ dxµ

dτ
(4-velocity),

Fµ(x, p) =
dpµ

dτ
(4-force),

(1.113)

it reads [
uµ∂µ +

∂

∂pµ
(Fµ(x, p))

]
· f(x, p) = 0. (1.114)

26See e.g. Ch. Marle (1969) for the case of decaying or mutually transforming particles.
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This is not the Liouville equation , which is

d

dτ
f(x, p) ≡

{
uµ∂µ + Fµ(x, p)

∂

∂pµ

}
f(x, p) = 0. (1.115)

The Liouville equation is obeyed only by those four-forces that satisfy the
condition

∂

∂pµ
(Fµ(x, p)) = 0. (1.116)

For instance, this is the case of a system composed of charged particles sub-
mitted to an external electromagnetic field Fµν where Fµ = (e/m)pνF

µν :
indeed, one has

∂

∂pµ
(Fµ(x, p)) =

e

m
Fµν(x)ηµν = 0. (1.117)

Note that when this condition is not satisfied, the (one-particle) Liouville
theorem is no longer valid but should be considered as it is.

1.5.1. Relativistic Liouville equation from the Hamiltonian

equations of motion

When the dynamical equations can be cast into a Hamiltonian form,

dxµ

dτ
=
∂H(x, p)
∂pµ

,

dpµ

dτ
= −∂H(x, p)

∂xµ
,

(1.118)

the relativistic Liouville equation is recovered as usual and reads27

∂H(x, p)
∂pµ

∂µf(x, p)− ∂H(x, p)
∂xµ

∂f(x, p)
∂pµ

≡ {H, f} = 0, (1.119)

where {H, f} is the relativistic Poisson bracket. An example of such a
Hamiltonian system is that of the charged particle embedded in an electro-
magnetic four-potential Aµ(x), for which one has

H(x, p) =
[p− eA(x)]2

2m
. (1.120)

It should be emphasized that although the equations of motion can be
formally recovered, this Hamiltonian is purely “technical” and has not the

27G. Kalman, Phys. Rev. 123, 384 (1961); G. Schay Jr., Nuovo Cimento. Suppl. 26, 291
(1962).
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meaning of an energy; remember, for instance, that actually one also has
to impose the constraint

[p− eA(x)]2 = m2, (1.121)

and not too much importance should be attached to this pseudo-
Hamiltonian character. Here we have to insist that, in a covariant context,
there is no Hamiltonian with the meaning of an energy; for instance, in the
case of a free particle, a formal Hamiltonian is

H =
p2 −m2

2m
, (1.122)

which cannot in any way lead to an energy.
In the example considered, and when the four-potential is invariant

along timelike lines parallel to a four-vector uµ, one has

Aµ(x+ χu) = Aµ(x) (for all χ) (1.123)

so that it depends on x through the combination ∆µν(u)xµxν . A first
integral of the motion is

u · [p− eA(x)], (1.124)

which is the energy in the rest frame of the system, so that the equilibrium
distribution is

feq(p) = A exp[−βu · p]; (1.125)

in other words, the equilibrium distribution function of free charged par-
ticles embedded in an electromagnetic field is identical to the Jüttner–Synge
function except that the proper numerical density is changed as28

neq → neq exp[−βµeA
µ(x)], (1.126)

since

pµ = m
dxµ

dτ
+ eAµ(x); (1.127)

otherwise, the equilibrium distribution function would not obey the Liou-
ville equation . Then n, the invariant density, reduces to

neq exp[βeV (x)], (1.128)

in the local rest frame where uµ = (1, 0); this is the usual relation.

28See an equivalent derivation in S.R. de Groot, W.A. van Leeuwen and Ch. G. van
Weert (1980).
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1.5.2. Conditions for the Jüttner–Synge functions

to be an equilibrium

The necessary condition for a distribution function to represent an equi-
librium is, of course, that the equilibrium distribution be a solution to the
Liouville equation . Therefore, let us see what conditions the local Jüttner–
Synge function should obey; by ‘local’ it is meant that the macroscopic
variables of this function do depend on x. Also, we assume that there is no
external force present.

To this end, let us introduce this function into the Liouville equation,
and let us first write the Jüttner–Synge distribution as

feq(p) = A(x) exp(−βµ(x)pµ). (1.129)

It turns out that we should have the equation

p · ∂feq(p) = 0

= [p · ∂A · exp(−βµp
µ)−A exp(−βµp

µ)pµp · ∂βµ]. (1.130)

In other words, this implies that (i) ∂µA = 0 and (ii) that the coefficient of
pµpν is zero whatever the coefficient. Explicitly, one should have

∂µβν + ∂νβµ = 0, (1.131)

or, in arbitrary coordinates or in the case of gravitation (see Chap. 4),

∇µβν +∇νβµ = 0. (1.132)

Such an equation for βµ is said to be a Killing equation. It shows that the
local distribution function cannot be arbitrary. We see this in the case of
the relativistic rotating gas. Note that when the particles are massless the
Liouville equation is obeyed by a less stringent equation,

∂µβν + ∂νβµ = χ(x) · ηµν , (1.133)

or, in arbitrary coordinates,

∇µβν +∇νβµ = χ(x) · ηµν . (1.134)

In such a case the vector βµ is said to be conformal Killing.

1.6. The Relativistic Rotating Gas

As is well known, rigid rotation of a physical system is not possible in
a relativistic context since it would imply velocities higher than that of
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light. However, differential rotation is still possible with a vanishing rotation
velocity at the light cylinder, that is, the cylinder where the velocity is the
one of light. Therefore, a local thermal equilibrium for a relativistic gas in
rotation can be found, and it will now be investigated.

The projection of the kinetic momentum over the axis n — i.e. n ·L —
is an additive first integral of the motion and thus must be integrated in
the equilibrium distribution function. Let Lµν be the tensor

Lµν = pµxν − pνxµ, (1.135)

and let nµ be a unitary spacelike four-vector orthogonal to the average local
four-velocity uµ of the gas:

n · n = −1, n · u = 0, u · u = 1. (1.136)

The tensor

Lµν
spat = ∆µ

α(u)∆ν
β(u)Lαβ (1.137)

reduces to the usual kinetic momentum in the local frame uµ = (1,0). The
scalar

Θ = uµnνε
µναβLαβ (1.138)

reduces to n ·L in the local frame of the gas and is an additive constant of
the motion of a generic particle. Consequently, the equilibrium distribution
function, which is a linear function of the additive first integrals of the
motion, reads

feq(p) = Ã exp(−βµp
µ + λΘ), (1.139)

where λ is an appropriate Lagrange multiplier. Let now ω be the constant
and uniform angular velocity of the gas: the Lagrange multiplier λ can be
expressed in terms of ω and the equilibrium distribution can be rewritten as

feq(p) = Ã exp(−βµp
µ + βωΘ)

= Ã exp(−βµp
µ + βµωnνε

µναβ [xαpβ − xβpα])

= Ã exp(−βµ[pµ − ωnνε
µναβ(xαpβ − xβpα)]), (1.140)

where Ã is the normalization constant, to be calculated from the equi-
librium four-current. This distribution function must be normalizable and,
accordingly, the following constraint must be satisfied:{

βµ[pµ − ωnνε
µναβ(xαpβ − xβpα)] > 0,

for all p’s
(1.141)
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which, in the rest frame of the system, reduces to

ω2r2 < 1. (1.142)

This means that the velocity of a rotating piece of gas should not exceed
the light velocity. feq(p) must also obey the one-particle Liouville equation
and, introduced in the latter, it yields a constraint involving the numerical
invariant density, the four-velocity and the rotation velocity. Note that the
“rotating” Jüttner function can be rewritten as

feq(p) = Ã exp(−βµ[pµ − ωnνε
µναβ(xαpβ − xβpα)])

= Ã exp(−Bµp
µ), (1.143)

with

Bλ = βµ(ηµλ − 2ωnνεµναλx
α), (1.144)

so that, in order for feq to obey the relativistic Liouville equation , the
four-vector Bµ must be a Killing vector (or conformal Killing when the
particles are massless)

∇µBν +∇νBµ = 0, (1.145)

which imposes an r-dependent temperature [N.A. Chernikov (1964)]:

T (r) =
T (0)

(1− ω2r2)1/2
. (1.146)

It should be noted that in practice, i.e. in astrophysical situations, we do
not have to face objects with a rigid rotation, but rather the rotating gas
is in a differential rotation where not only is the temperature r-dependent
but also the rotation velocity itself. In such a case, we have to deal with a
local equilibrium and not with a global one as studied above.
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Chapter 2

Relativistic Kinetic Theory
and the BGK Equation

Once the relativistic distribution function is defined and the Liouville
equation derived, the next step is obtaining a kinetic equation that the
covariant distribution function is supposed to obey. From a theoretical point
of view, such an equation has been used in many instances: derivation of
covariant and dissipative hydrodynamics, technical developments in the cal-
culation of transport coefficients, mathematical theorems (existence and
uniqueness of the solutions) as to the Boltzmann–Einstein system, the
gravitational case (see Chap. 4), propagation of sound and related phe-
nomena (dispersion and absorption), description of transient effects in
nonequilibrium thermodynamics [W. Israel and J.M. Stewart (1976, 1979),
J. Stewart (1977), M. Kranys (1976, 1977), etc.], and so on.

The natural candidate for a relativistic kinetic theory was a relativistic
generalization of the usual Boltzmann equation. This was first performed
by A.G. Walker (1934) and A. Lichnérowicz and R. Marrot (1940) in a
nonmanifestly covariant form, while it was later studied in a fully rela-
tivistic way1 by many authors: G. Tauber and J.W. Weinberg (1961), W.
Israel (1963), N.A. Chernikov (1956ff), Ch. Marle (1969), H. Akama (1970),
K. Bitcheler (1965, 1967), etc. This equation has been found to have the
form [S.R. de Groot, W.A. van Leuwen and Ch. Van Weert (1980)][

pµ∂µ + Fµ(x, p)
∂

∂pµ

]
f(x, p) = C{f(x, p)}, (2.1)

where C{f(x, p)} is the Boltzmann collision term, which we give in
terms of the collision differential cross-section σ(Ω) of the particles within

1See the excellent review by W. Israel (1972).

27
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the system:

C{f(x, p)} =
1
2

∫
d3p′

p′0
dΩ [f(x, p′)f(x, p′′)

− f(x, p)f(x, p̄ = p′ + p′′)]
√

(p · p′)2 −m4σ(Ω) (2.2)

[S.R. de Groot, W.A. van Leuwen and Ch. Van Weert (1980)]; Fµ(x, p) is
an external force in which the system is possibly embedded. In terms of the
transition probability per unit of time, the relativistic Boltzmann equation
reads

p · ∂f(x, p) + Fµ(x, p)
∂

∂pµ
f(x, p)

=
1
2

∫
d3p′

p′0

d3p′′

p′′0

d3p̄

p̄0
W (p′, p′′ → p, p̄) δ(4)(p+ p′′ − p′ − p̄)

× [f(x, p′)f(x, p′′)− f(x, p)f(x, p̄)]. (2.3)

This equation has been studied mainly by the above-mentioned authors
and, in particular, by W. Israel (1963). The nonrelativistic approximation
methods have been extended by various authors to the special relativity
case and applied in several formal situations, such as the derivation of the
various relativistic forms of hydrodynamics (see below).

More generally, the collision term of any valid relativistic kinetic
equation should be such that the conservation laws (energy–momentum
and particle number) are obeyed; this leads, after successively multiplying
both sides of the kinetic equation by 1 and pµ and integrating over p, to


∂υJ

υ(x) = 0 =
∫
d4p C{f(x, p)} = 0,

∂υT
µυ(x) = 0 =

∫
d4p pµC{f(x, p)} = 0.

(2.4)

Furthermore, the collision term must be such that

C[feq(p)] = 0, (2.5)

since feq(p) has to obey the Liouville equation. A last important condition
that a fully valid collision term should satisfy is that there should exist an
H theorem, or

∂µS
µ(x) ≥ 0. (2.6)

Indeed, given two spacelike three-surfaces Σ1 and Σ2, the latter being in
the future of the former, the above inequality for the entropy four-current
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implies that

S(Σ1) ≤ S(Σ2), (2.7)

which expresses the growth of entropy in the course of time. This condition
is, however, not sufficient since feq(p) must also be a solution at infinity in
time. We shall see (Chap. 5) that the condition (2.7) is indeed not sufficient
for getting an equilibrium.

The relativistic Boltzmann equation obeys all the above conditions and
does constitute the archetype of all relativistic kinetic equations as it is in
the Newtonian case. Unfortunately, it seems to be only an interesting con-
ceptual tool, useful for the evaluation of those differences existing between
the relativistic and classical cases that do not apply to any real physical
situation.2 In particular, it requires point-particles collisions while in rel-
ativistic dense matter one deals with collisions of collective (extended)
modes. Therefore, in physical situations, it seems preferable to use a merely
phenomenological kinetic equation, which should contain the main features
of the physical system under study. This can be achieved with the relaxation
time approximation studied by J.L. Anderson and H.R. Witting (1974a,b).
Of course, such a phenomenological equation does not apply to all physical
cases, but it is sufficient in many interesting situations.

Finally, we shall no longer continue with the Boltzmann equation or,
more particularly, with its different approximation: there exist excellent
books on the subject, to which the reader is referred — an older one is that
of S.R. de Groot, W.A. van Leeuwen and Ch. G. van Weert (1980), while
a more recent one is that of C. Cercignani and G.M. Kremer (2000).

2.1. Relativistic Hydrodynamics

For reasons clearly put forward by relativistic kinetic theory [see W. Israel
(1963) and Ch. Marle (1969)],3 there exist several equivalent forms of rel-
ativistic hydrodynamics. The basic reason for this particular feature of
relativity lies in the fact that, while timelike four-vectors have generally
different directions in the Minkowski space–time, they are all parallel in the

2For instance, it has been used to explain the matter/antimatter asymmetry in the
primeval universe [see e.g. R. Omnès, Phys. Rev. Lett. 23, 38 (1969); ibid., Phys. Rep.
C3, 1 (1970)]. However, the situation prevailing at the time considered [E. Alvarez (1982)]
is one of high densities and/or temperatures, where collective effects are predominant
and not collisions.
3See also S.R. de Groot, W.A. van Leeuwen and Ch. G. van Weert (1980).
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Galilean one. The best-known forms of relativistic hydrodynamics are those
given by C. Eckart (1940) and by L. Landau and E. Lifschitz (1959). As
in the classical Newtonian case, relativistic hydrodynamics allow the prop-
agation of signals at velocities higher than that of light, and this problem
has been addressed by and investigated with different interesting methods
by several authors [W. Israel (1976, 1981, 1979), B. Carter (1989), etc.].

The starting-point of relativistic hydrodynamics is the perfect fluid form
of the energy–momentum tensor

T µν
perf = (ρ+ P )uµuν − Pηµν , (2.8)

where ρ is the invariant energy density and P the pressure of the fluid under
consideration, while uµ is its four-velocity. In addition to this general form,
the basic conservation relations have to be obeyed:{

∂µT
µν = 0,

∂µ(nuµ)= 0,
(2.9)

so that the fluid is described by four equations while it possesses five
unknown data: ρ, P , n, uµ. The description of the system must then be sup-
plemented by one more equation, generally the equation of state P = P (ρ)
or often in a parametric form such as

P = P (n), ρ = ρ(n). (2.10)

When the system contains other macroscopic quantities — such as the local
temperature — other equations must be provided in order that the system
may be complete [see e.g. A. Lichnérowicz (1967)]; for instance, when the
system possesses a field of local temperature, a relativistic temperature
equation should generally be provided for the full determination of the
system (see below).

When the fluid is dissipative, its energy–momentum tensor contains gra-
dients of one or several macroscopic quantities; the presence of gradients
of the four-velocity gives rise to viscosity, the gradient of particle density n
provides diffusion (when there exist several species of particles or external
fields), the gradient of temperature T leads to heat diffusion, etc.

Historically, there exist two approachs to relativistic hydrodynamics:
the one given by C. Eckart (1940) and that connected with the names of
L. Landau and E. Lifschitz (1959). From the point of view of relativistic
kinetic theory, the two are equivalent “up to higher order terms”: as shown,
essentially by W. Israel (1963), Ch. Marle (1969) and others, there exist an
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infinity of possible forms of relativistic hydrodynamics that differ by terms
of order O(τ2

0 ), τ0 being a small parameters (see below).
Landau’s and Eckart’s forms do admit the same basic perfect fluid

form but differ in their choice of the off-equilibrium part of the energy–
momentum tensor and of the four-current,

T µν
off ≡def

T µν − T µν
perf, (2.11)

Jµν
off ≡def

Jµν − Jµν
perf , (2.12)

and also in the choice of the hydrodynamic four-velocity uµ. A detailed
comparison of these two approaches is discussed in the book by S. R. de
Groot, W.A. van Leeuwen and Ch. G. van Weert (1980). Clear connec-
tions between the two formalisms can also be found in the article by J.L.
Anderson and H.R. Witting (1974) and also in C. Cercignani and G.M.
Kremer (2000).

2.1.1. Sound velocity

In the case of an adiabatic fluid, an infinitesimal variation of the energy–
momentum tensor reads

δT µν = (δρ+ δP )uµuν − δPηµν + (ρ+ P )u(µδuν), (2.13)

where δuµ is orthogonal to uµ. The equations of motion are then

∂µδT
µν = 0,

kµδT
µν = 0,

(2.14)

where we have given the same name for T µν and its Fourier transform. The
last equation explicitly reads

kµ[(δρ+ δP )uµuν − δPηµν + (ρ+ P )u(µδuν)] = 0, (2.15)

while the other equation of motion, ∂µJ
µ = 0, is

kµ(nδuµ + uµδn) = 0, (2.16)

and is of no use here. Let us multiply Eq. (2.15) by kµ and uµ, respectively;
after setting � ≡ uµkµ, we get{

kνkµ[(δρ+ δP )uνuµ − k2δP + (ρ+ P )u(µδuν)] = 0,

uνkµ[(δρ+ δP )uνuµ − δP� + (ρ+ P )u(µδuν)] = 0.
(2.17)
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We obtain {
[(δρ+ δP )�2 − δPk2 + 2(ρ+ P )�δ�] = 0,

[(δρ+ δP )� − δP� + (ρ+ P )δ�] = 0.
(2.18)

Multiplying the last equation by 2� and substracting both equations, we
get

ω2 − |k|2 ∂P
∂ρ

= 0, (2.19)

which is the equation obeyed by usual longitudinal propagation; thus, we
have

v2
sound =

(
∂P

∂ρ

)
(2.20)

after a comparison with the classical equation. Note that it is not ∂P/∂n
that occurs but ∂P/∂ρ, and while ρ = mn in the classical case, it is not so
in relativity.

In general, one should have

v2
sound =

∂P

∂ρ
≤ 1; (2.21)

indeed, the velocity of sound must be less than (or equal to) that of light.
This is an important point; indeed, the velocity of sound is to be calculated
from the equation of state and therefore it must a priori be rejected when
vsound > 1. An acceptable equation of state, from this point of view, is for
example the one provided by the equation for nuclear matter calculated by
S.A. Chin and J.D. Walecka (1974a,b).

2.1.2. The Eckart approach

Whereas the energy–momentum tensor has the perfect gas law form, no
problem occurs while one is choosing a four-velocity. However, this is not
so when gradients become important, since there exist new tensors in the
theory, and therefore new “velocities” cannot be imposed but defined. We
shall first look at the choice of C. Eckart (1940).

C. Eckart chose a natural timelike four-vector as the hydrodynamic
velocity, the one defined by the particle flow Jµ(x), or

uµ(x) =
Jµ(x)
n(x)

=
Jµ(x)√

Jα(x)Jα(x)
. (2.22)
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The heat flow four-vector qµ is introduced as a spacelike four-vector
orthogonal to the hydrodynamic local four-velocity,

qµ :

{
qµq

µ < 0,

qµu
µ = 0,

(2.23)

and its contribution to the energy–momentum tensor as

T µν
Q = qµuν + qνuµ; (2.24)

the viscous stress tensor is defined as

θµν = −χ∆µν(u)∂αu
α − η∆µα(u)∆νβ(u)(∂αuβ + ∂βuα), (2.25)

where χ is the bulk viscosity coefficient and η the shear viscosity. Finally,
the dissipative part of the energy–momentum tensor is such that

T µν
off = T µν

Q + θµν . (2.26)

Note that

uµT
µν
off = uνT

µν
off = 0. (2.27)

It remains for one to connect the heat flow four-vector qµ to the gradient
of temperature. C. Eckart (1940) uses the following:

qµ = −λ∆µν(u)
{

1
T
uα∂αuν − ∂ν

(
1
T

)}
, (2.28)

where λ is the heat conductivity coefficient.
A few words as to the off-equilibrium of the energy–momentum tensor

are in order. Firstly, the off-part of T µν is necessarily proportional to
∆αβ(u), since it lies in the three-plane orthogonal to u. Secondly, there
are two viscosity coefficients since T µν

off contains two independent tensors,
∂αu

α and ∂αuβ + ∂βuα, multiplied of course by ∆µα(u)∆βν(u).
As to the form of the flow of heat qµ, it contains one term that does not

exist in the classical theory. This is the term

−λ∆µν(u)
1
T
uα∂αuν , (2.29)

called sometimes “the inertia of heat” which is not proportional to the
gradient of the temperature; it has no equivalent to the Newtonian analog
and is only an isothermal flow of heat opposite to the acceleration of matter.
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Finally, the matching conditions in the case of C. Eckart read{
Jµ

off(x) = 0,

uµT
µν
off (x) = 0.

(2.30)

See also S. Weinberg (1971) for a discussion.

2.1.3. The Landau–Lifschitz approach

L. Landau and E. Lifschitz have a more sophisticated — but equivalent —
choice as to the local hydrodynamic velocity; they choose the flow of matter.
Therefore, while in Eckart’s local rest frame of the fluid there is no particle
flow, in the Landau–Lifschitz one there is no matter flow. The Landau–
Lifschitz hydrodynamical four-velocity is thus the timelike eigen-four-vector
of the energy–momentum tensor

T µνuLLν = ρuµ
LL, (2.31)

where the index LL indicates the Landau–Lifschitz choice and where ρ is
the energy density; this can also read

uµ
LL =

T µνuLLν

Tαβuα
LLu

β
LL

. (2.32)

This implies that the dissipative part of T µν is orthogonal to uµ
LL, as is the

case in Eckart’s form. The four-current has thus a different expression than
Eckart’s and is given by

Jµ
LL = nuµ

LL − qµ
LL, (2.33)

where qµ
LL is the Landau–Lifschitz heat flow four-vector. Note the relation

qµ =
ρ+ P

n
qµ
LL, (2.34)

given by J.L. Anderson and H.R. Witting (1974), shown together with

nE = nLL = n,

ρE = ρLL = ρ,

PE = PLL = P,

(2.35)

and the matching conditions for Landau and Lifschitz read{
uµJ

µ(x) = uµJ
µ
eq(x),

uµT
µν(x) = uµT

µν
eq (x).

(2.36)
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2.2. The Relaxation Time Approximation

The simplest of the various relativistic kinetic equations is the covariant
version of the Bathnagar–Gross–Krook (BGK) equation4 studied in detail
by J.L. Anderson and H.R. Witting (1974):[
pµ∂µ + Fµ(x, p)

∂

∂pµ

]
f(x, p) = C {f(x, p)} ≡ −p · uf(x, p)− feq(p)

τ0
,

(2.37)

where τ0 is a relaxation time to be evaluated with the help of other con-
siderations and which might possibly be a function of x and p. τ0 can be
roughly evaluated as

τ0 ≈ 1
nvthσ

, (2.38)

where n is the numerical density of particles, vth the thermal velocity and
σ the total collision cross-section; however, more sophisticated evaluations
can be obtained, like

1
τ0

=
1
2

∫
d3p

p0

d3p′

p′0

d3p′′

p′′0

d3p̄

p̄0
W (p′, p′′ → p, p̄)

× δ(4) (p+ p′′ − p′ − p̄) feq(p′)feq(p′′) (2.39)

[D. Gerbal (1972)]. Since the left hand side of the BGK equation represents
essentially the flow along the trajectories in µ space, it can formally be
rewritten as

d

dτ
f = −p · uf − feq

mτ0
, (2.40)

whose formal “solution” reads

f ≈ feq + [f(t = 0)− feq] exp
(
−τp · u
mτ0

)
, (2.41)

showing thereby that the nonequilibrium distribution f relaxes toward
the equilibrium one, feq, exponentially in “time.” It can be seen that the
quantity τp · u/m is essentially the usual time t in the local rest frame of
the fluid, and hence τ0 appears to be a true relaxation time. Note that in
the quantum case one has a similar equation with the difference that feq is
a quantum distribution of the Fermi–Dirac or Bose–Einstein type [see J.L.
Anderson and H.R. Witting (1974b)].

4D. Bathnagar, D. Gross and M. Krook, Phys. Rev. 94, 511 (1954).
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The conservation laws — four-current and energy–momentum tensor —
yield the equation {

Jµuµ = Jµ
equµ,

T µυuµ = T µυ
eq uµ,

(2.42)

obtained by integrating the BGK equation over p, after it has been multi-
plied by 1 or pµ. These conditions are the Landau–Lifschitz (1959) matching
conditions (see next section). They express the constancy of the particle and
energy–momentum densities in the rest frame of the equilibrium system. It
should be noted that the covariant BGK equation does depend on the so-
called matching.

2.3. The Relativistic Kinetic Theory Approach
to Hydrodynamics

Although the first derivations of relativistic hydrodynamices were made
with the Boltzmann equation [W. Israel (1963), N.A. Chernikov (1964)],
it is much simpler to use the BGK equation although the transport coeffi-
cients obtained have a different value. To this end, the Chapman–Enskog
method — among many others — is the simplest to use and the deduction
of J.L. Anderson and H.R. Witting (1974) is followed in this section.

The Chapman–Enskog method is expressed, in this case, by an
expansion in powers of the small parameter

ε ≡ τ

τmacro
, (2.43)

where τ is the relaxation time and τmacro a macroscopic hydrodynamical
time. Furthermore, assumptions of weak spatial gradients of the macro-
scopic quantities like {T, n, uµ} are made. Then one expands the solution
to the BGK equation into the small parameter ε (for convenience, we choose
τmacro = 1):

f(x, p) =
∑

�

τ �f�(x, p), (2.44)

with

f0(x, p) ≡ feq(p). (2.45)

At the lowest order, once feq is introduced into the conservation equations{
∂µT

µν
eq (x)≈ 0,

∂µJ
µ
eq(x)≈ 0,

(2.46)
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one arrives at the following relations between the macroscopic quantities:

ṅ+ nθ = 0,
ρ̇+ (ρ+ P )θ = 0,

(ρ+ P )∆µλ(u)u̇µ = ∆µλ(u)∂µP,

(2.47)

where use has been made of the notations

θ≡ ∂αu
α,[

ñ

ρ̃

]
≡ u · ∂

[
n

ρ

]
,

(2.48)

to be employed later.
Once the expansion for f is introduced into the BGK equation, it imme-

diately provides the solution at order 1 in τ :

f1(x, p) = −τ{p · ∂feq(β(x), n(x), uµ(x); p)} +O(τ2). (2.49)

From this solution, one can calculate the first order correction to the four-
current and to the energy–momentum tensor


Jµ

1 (x) =
∫
d3p

p0
pµf1(x, p),

T µν
1 (x) =

∫
d3p

p0
pµpνf1(x, p),

(2.50)

which must also satisfy the Landau–Lifschitz matching conditions{
uµJ

µ
1 (x) = 0,

uµT
µν
1 (x) = 0,

(2.51)

in order to obey both the conservation equations and the relativistic BGK
equation. These two first order quantities are obtained as

Jµ
1 (x) =

∫
d3p

p0

pµpσ

u · p {−∂σα+ ∂σ(βuγ)pγ}feq(p)

= −∂σα

∫
d3p

p0

pµpσ

u · p feq(p) + ∂σ(βuγ)
∫
d3p

p0

pµpσpγ

u · p feq(p), (2.52)

T µν
1 (x) = −∂σα

∫
d3p

p0

pµpνpσ

u · p feq(p) + ∂σ(βuγ)
∫
d3p

p0

pµpνpσpγ

u · p feq(p),

(2.53)

where we have set

α ≡ ln
{

neqβ

4πm2K2(mβ)

}
. (2.54)



January 24, 2011 15:2 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch02 FA

38 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

The three integrals appearing in these last expressions can be decomposed
on the various possible tensors that can be constructed from uµ and ηµν ,
and using the notations Iµν

2 , Iµνσ
3 , Iµνσγ

4 for them, one can write

Iµν
2 = T1u

µuν −T2η
µν , (2.55)

Iµνσ
3 = S1u

µuνuσ − S2(uµηνσ + uνησµ + uσηµν), (2.56)

Iµνσγ
4 = +Q1u

µuνuσuγ

−Q2(uµuνησγ+uµuσηνγ+uνuσηµγ+uνuγηµσ+uµuγηνσ+uσuγηµν)

+Q3(ηµνησγ + ηµσηνγ + ηµγηνσ), (2.57)

and the various coefficients T1,T2, . . . ,Q3 are obtained from the scalars
formed with the various integrals and the final result is5

T1 =
1
3
[4n− 4πm3 exp(βµ)(K1 −Ki1)],

T2 =
1
3
[n− 4πm3 exp(βµ)(K1 −Ki1)],

S1 = 2ρ−m2A0,

S2 =
1
3
(ρ−m2A0),

Q1 =
1
5
[16S1 − 48S2 − 12m2n+ 4πm5 exp(βµ)(K1 −Ki1)],

Q2 =
1
15

[6S1 − 18S2 − 7m2n+ 4πm5 exp(βµ)(K1 −Ki1)],

Q3 =
1
15

[S1 − 3S2 − 2m2n+ 4πm5 exp(βµ)(K1 −Ki1)],

(2.58)

where they are given by

n = 4π
m2

β
exp(βµ)K2(βm),

ρ = 4πm4 exp(βµ)
[
K3(βm)
βm

− K2(βm)
(βm)2

]
,

P = 4πm4 exp(βµ)
K2(βm)
(βm)2

,

(2.59)

5We follow the article by J.L. Anderson and H.R. Witting (1974a).
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S1 = 4πm5 exp(βµ)
K4(βm)
βm

,

(2.60)
S2 = 4πm5 exp(βµ)

K3(βm)
(βm)2

,

Q1 = 4πm6 exp(βµ)
K5(βm)
βm

,

(2.61)
Q2 = 4πm6 exp(βµ)

K4(βm)
(βm)2

,

Q3 = 4πm6 exp(βµ)
K3(βm)
(βm)3

. (2.62)

One then gets

Jµ
1 = τβ2

[
T2S2

P
− S2

]
∆µν(u)

[
u̇ν +

∂νβ

β

]
, (2.63)

T µν
1 = τuµuν

[
(Q2 −Q3)β̇ −mβ̇S2 − 5

3
Q3βθ

]

− τηµν

[
m−1(Q2 −Q3)β̇ − (βµ)̇S2 − 5

3
Q3βθ

]
+ 2τβQ3σ

µν

(2.64)

for the off-equilibrium parts of the four-current and of the energy–
momentum tensor. Let us specify that these tensors can hardly be obtained
without the use of (local) equilibrium.

In order to obtain the heat conductivity and the viscosity coefficients,
we have to go back to Eckart’s choice and, to this end, to use Eq. (2.28).
Accordingly, the various dissipative coefficients are

λ = τ
ρ+ P

n
β2m

(
T2S2

P
− S2

)
, (2.65)

η = τβQ3, (2.66)

ζ = −τ
θ

[
β2m(Q2 −Q3)u · ∂

(
1
βm

)
+ S2 u · ∂(βµ) +

8
3
Q3βθ

]
.

(2.67)

After simplifying by eliminating θ, etc., and using the exact values of
(Qi, Si), one obtains

λ =
τ

3
β2m64π exp(βµ)

[
h

(
K2

βm
+Ki1 −K1

)
− 3

K2

(βm)2

]
, (2.68)
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the coefficient of heat conductivity,

η =
τ

15
βm54π exp(βµ)

[
3

K3

(βm)2
− K2

βm
+K1 −Ki1

]
, (2.69)

the coefficient of shear viscosity, and

χ = −τm44π exp(βµ)
[

K2

(mβ)2
(βm)2h′(βm) + βmh(βm)

(βm)2h′(βm) + 1

− K3

βm

1
(βm)2h′(βm) + 1

− βm

9

(
3K3

(βm)2
− K2

βm
+K1 −Ki1

)]
,

(2.70)

the coefficient of bulk viscosity.
In this expression, h is the enthalpy per particle and per unit of mass

of the system, given by

h(βm) =
K3(βm)
K2(βm)

. (2.71)

This shows that, in relativity, there exist two kinds of viscosity. In the
Newtonian case the bulk viscosity does not appear in the usual relativistic
case. Furthermore, it is clear that, for instance, a τ(p) can elaborate more
precisely a specific case.

2.4. The Static Conductivity Tensor

In order to calculate the conductivity of the system, let us assume that it
is embedded in a small electric field, Fµν , and let us assume further that
the system is static and homogeneous. Then the relativistic BGK equation
just reads

eFµνpν
∂

∂pµ
f(p) = −p · uf(p)− feq(p)

τ0
, (2.72)

and the answer to the electric field is the four-current

Jµ
(1) =

∫
d3p

p0
pµf(1)(p), (2.73)

where f(1)(p) is only f(p) − feq(p). Finally, at the simplest order in the
Chapman–Enskog expansion, we have

f(1)(p) = −τ0 eF
µνpν

p · u
∂

∂pµ
feq(p) (2.74)
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so that the response four-current is

Jλ
(1) = −τ0eFµν

∫
d3p

p0
pλ pν

p · u
∂

∂pµ
feq(p). (2.75)

Finally, since the conductivity tensor is defined as (Jλ and Fµν being
“small”)

Jλ = σλµνFµν , (2.76)

it is given by

σλµν = −τ0e
∫
d3p

p0

pλpν

p · u
∂

∂pµ
feq(p). (2.77)

It is simple to count the number of independent components of this tensor.
A priori Fµν has six independent components — which reduce to three
when one is looking at the electric character of Fµν — and there remain four
indices for λ, which means 12 components. However, taking into account the
fact that the electric field is homogeneous, it possesses only one component
while the index λ is that of the current, or only one component. Finally, σ
has exactly one independent component, as should be the case. It should be
borne in mind that this result rests only on the particularly simple character
of the problem.

2.5. Approximation Methods for the Relativistic Boltzmann
Equation and Other Kinetic Equations

The relativistic Boltzmann equation was first studied by A.G. Walker
(1934) and A. Lichnérowicz and R. Marrot (1940) and in covariant form
by several other authors [G. Tauber and J.W. Weinberg (1961); N.A.
Chernikov (1956ff); W. Israel (1963)], and was rediscovered by many others.
It is found essentially by investigating the balance between those particles
entering a given phase space volume element and those which leave it,
exactly the same way as in the nonrelativistic case. A large number of
approximate methods have been devised for its solution which also apply to
other kinetic equations. A simple version of the Chapman–Enskog method
has been applied above to the BGK equation, and in this section other useful
methods are very briefly explained. Details and more serious analyses can
be found in the book by S.R. de Groot, W.A. van Leeuwen and Ch. G. van
Weert (1980) [see also C. Cercignani and G.M. Kremer (2000)]. Note that
these methods have numerous variations and can be interconnected.
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2.5.1. A simple Chapman–Enskog approximation

We begin with the simplest version of the Chapman–Enskog method; more
formal approximations are studied in the book by S.R. de Groot, W.A. van
Leeuwen and Ch. G. van Weert (1980), to which we refer for other methods
and more serious studies.

First, we set the relativistic Boltzmann equation into an equation
written in terms of the decomposition

p · u uν · ∂f + pµ∆µν(u)∂νf = C(f), (2.78)

which represents a splitting into a temporal term p (along u) and a spatial
one, represented by the projection of p over the spatial direction p∆. Next,
this equation is written in terms of the dimensionless quantities

XT
µ = τ0x · uµ u, Xµ

S = r0∆µ
ν(u)xν , (2.79)

as
1
τ0
p · ∂f

∂XT
+

1
r0
pµ∆µν(u)

∂f

∂XSν
=

1
τ
C̄(f), (2.80)

where τ−1 denotes the number of collisions per unit of time in the system
and C̄(f) indicates what is laid after the dimensionless system has been
made. The meaning of (τ0, r0) is the following: they are macroscopic
quantities such as hydrodynamic ones; they are to be compared with τ .
Therefore, there are a priori two dimensionless parameters in the problem
ττ−1

0 and τr−1
0 and combinations. In the Chapman–Enskog expansion we

use only the parameter τr−1
0 . However, there exist two others — those con-

nected with the external force field and an eventual collective field, which
we have taken to be zero here. These two supplementary parameters corre-
spond to, for example, the length on which these force fields vary.

Therefore, the basis of the method is an expansion in the parameter

ε =
τ

r0
, (2.81)

where r0 is a typical hydrodynamical scale, on which the system varies
appreciably, and where τ also designates the typical mean free path, i.e.
the average distance between two successive collisions. Such a parameter
is supposed to be small enough for keeping only the first order. Of course,
higher orders can be considered, but we shall not be concerned with them
here. Thus, we have

f(x, p) = f0(x, p)[1 + φ(x, p)] + 0(ε2), (2.82)

where the term f1 ≡ f0φ is of order 1 in ε, and f0 is generally the Jüttner–
Synge distribution. Note that f0 is not necessarily the Jüttner–Synge
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distribution; it could be a normal solution, which is a solution taking
account of x via the data of ρ, uµ and τ in smooth ways. The concept
of a normal solution was introduced by D. Hilbert (1912).6

Inserting this last expression of f(x, p) into the relativistic Boltzmann
equation and equating equal powers of the parameter ε, we get

p · ∂f0(x, p) =
1
2

∫
d3p′

p′0

d3p′′

p′′0

d3p̄

p̄0
W (p′, p′′ → p, p̄)δ(4)(p+ p′′ − p′ − p̄)

× f0(x, p′)f0(x, p′′)[φ(x, p′) + φ(x, p′′)− φ(x, p) − φ(x, p̄)],

(2.83)

where use has been made of the relationship

f0(x, p′)f0(x, p′′) = f0(x, p∗)f0(x, p). (2.84)

At this point several remarks have to be made.
The first one deals with the function f0 inserted in the Boltzmann

equation. It should be the Jüttner–Synge distribution; however, the various
parameters entering this function may not necessarily be uµ, n and ρ. The
main reason why this is so is that the four-vector uµ is arbitrary, unlike
the classical case where all four-vectors are parallel. We are thus obliged to
define these five quantities with either the C. Eckart (1940) or the L. Landau
and E. Lifschitz (1959) ones; these conditions are not the only possible
ones, of course. They are briefly studied in the section “Relativistic hydro-
dynamics.”

The next remark deals with the solution of Eq. (2.83). We could first
solve this equation by expanding foff(x, p) in orthogonal polynomials and
obtaining the coefficients. But this is not the only possibility. From another
point of view, one can find in S.R. de Groot (1973) a succint but comple-
mentarity solution for solving the Chapman–Enskog approximation. Also,
they can be found in J. Stewart (1974).

2.6. Transport Coefficients for a System Embedded
in a Magnetic Field

Consider a system composed of charged particles embedded in a static and
homogeneous magnetic field; the particles, i.e. the electrons, are immersed
in an opposite charge whose only role is to have neutrality. The equivalent

6D. Hilbert, Grundzüg einer allgemeinen Theorie der linearen Integralgleischungen
(Teubener, 1912).
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relativistic BGK equation then reads[
pµ∂µ + eFµνpν

∂

∂pµ

]
f(x, p) = −p · uf(x, p)− feq(p)

τ0
. (2.85)

Let us now introduce into this equation the hydrodynamical length (or
times) so as to write it in terms of dimensionless variables (note that, owing
to the linearity of the equation, it is not necessary to change f and feq).
To this end, we introduce the hydrodynamical length � (or time) and the
Larmor radius of the electron,

r0 =
eB

m
, (2.86)

and m−1, the Compton wavelength of the electron. With the change of
variables

x = �x̄, p = mp̄, Fµν = mr0F̄
µν , (2.87)

the kinetic equation reads

τ0

[
p̄µ∂µ + r0F̄

µν p̄ν
∂

∂p̄µ

]
f(x, p) = −p̄ · u[f(x, p)− feq(p)]. (2.88)

Note that we have set L = 1, since L does not play an explicit role at this
stage. Therefore, in order to have a Chapman–Enskog expansion, we have
to discuss the effect of different terms that appear in this last equation. Let
us expand f as

f = feq + f(1) + f(2) + · · · (2.89)

so that, from the kinetic equation, we have

f(1) =
τ0
p̄ · u

[
p̄ · ∂feq + τr0F̄

µν p̄ν
∂feq
∂p̄µ

+ τr0F̄
µν p̄ν

∂f(1)

∂p̄µ
+ 0(τ2

0 )
]
. (2.90)

Therefore, either τ0r0 is of the order of τ0r0 ≤ τ2
0 or it is not. In the first

case, one has the relatively simple situation [R. Domingez Tenreiro and
R. Hakim (1977b)]

f(1) =
τ0
p̄ · ufeq + τ0r0F̄

µν p̄ν
∂feq
∂p̄µ

, (2.91)

in which it is sufficient to use the equilibrium distribution. Note that this
distribution is either the Jüttner–Synge function (classical case) or a more
complex Wigner function (quantum case; Chap. 11); it appears that the
quantum case has the same kinetic equation when spin effects are neglected.
The other possibility is much more complex and has been performed in the
quantum case (Chap. 12).
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It remains for us to define the viscosity coefficients, and also the heat
coefficients. As to the viscosity, they have been introduced by S.I. Bra-
ginskii (1965) in the nonrelativistic domain. In the relativistic case, they
are given by

ψαβ = −η0Wαβ
0 − η1Wαβ

1 − η2Wαβ
2 − η3Wαβ

3 − η4Wαβ
4 − η̄W̄αβ ,

(2.92)

where the η’s are the viscosity coefficients and the tensors Wαβ are defined
by

Wαβ
0 =

3
2

[(
nαnβ +

1
3
∆αβ(u)

)(
nµnν +

1
3
∆µν(u)

)]
σµµ,

Wαβ
1 =

(
παµπβν − 1

2
παβnµnν

)
σµν ,

Wαβ
2 = − (παµnβnρ + πβρnαnµ

)
σµρ,

Wαβ
3 =

1
2
(
παµεβγρ + πβρεαγµ

)
nγσµρ,

Wαβ
4 = − (nαnµεβγρ + nβnρεαγµ

)
nγσµρ,

Wαβ =
(
παβ + 2nαnβ

)
θ,

(2.93)

where

εαγµ≡
def
εαγµλuλ. (2.94)

The n’s and παβ are defined through the electromagnetic field via

Fαβ = Hεµναβnαuβ,
∗Fµν = Hu[µnν],

uµu
µ = +1, nµu

µ = 0, nµn
µ = −1, πµν = ∆µν(u) + nµnν .

(2.95)

Similarly, the heat tensor is defined as

−τ0Jµ
(1) = qµ

⊥ + qµ
p ,

qα
⊥= παβqβ ,

qµ
p = −nαnβqβ ,

(2.96)

and it is all that is relevant. Actually, if we insist that the heat coefficients
be defined as

Qα
⊥ = λ⊥παν(β−1u̇ν − ∂νβ

−1), Qα
p = −λ⊥nαnν(β−1u̇ν − ∂νβ

−1),

(2.97)

it remains for us to interpret the two coefficients that subsist: they probably
are diffusion parts, which we do not study here.
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Let us now compute the dissipative part of Jµ and T µν, in the simplest
case,

f(1) = −τ0
[

1
p · up · ∂feq +

e

m
Fµνpν

∂feq
∂pµ

]
, (2.98)

where we have kept the nondimensional quantity. The first term in the
brackets is exactly the same as in the nonmagnetic case. Let us examine
the second term. The derivative with respect to pµ gives rise to a factor βµ.
This term is proportional to uµ, which, once contracted with Fµν , is exactly
zero. The consequence of this is the identity of the dissipative process of
heat with the nonmagnetic case. The same thing arises equally with the
T µν

(1) dissipation part of the energy–momentum tensor. It should be noted
that this is true only in the simple case we have considered.
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Chapter 3

Relativistic Plasmas

Relativistic plasmas are objects encountered in many astrophysical situa-
tions. For instance, they occur in the magnetosphere of pulsars where they
are strongly magnetized, or in quasar jets. In the case of white dwarfs, the
electron plasma is both relativistic and degenerate and could possibly be
magnetized. The first relativistic Vlasov equation — an equation used to
describe the collective behavior of plasma — was given by S. Titeica (1956)
and by numerous other authors; let us, however, mention V.N. Tsytovich
(1961) and A.G. Sitenko.1 In this chapter the electromagnetic excitations —
dispersion relations — are mainly studied after some general and simple
relations are provided as to various data about electromagnetism. Also, we
are concerned only with the classical plasmas here; the quantum ones are
dealt with in Chap. 15.

3.1. Electromagnetic Quantities in Covariant Form

Let us first look at the conductivity tensor, which relates the electromag-
netic field Fµν and the four-current Jµ through

Jµ(k) = Λµαβ(k)Fαβ(k), (3.1)

where use has been made of Fourier transforms. Owing to the conserved
character of the four-current, kµJ

µ = 0, whatever the electromagnetic field,
the conductivity tensor must obey

kµΛµαβ(k) = 0. (3.2)

1A.G. Sitenko, Electromagnetic Fluctuations in Plasmas (Academic Press, New York,
1967).

47
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This tensor is antisymmetrical with respect to the indices (α, β) and thus
possesses a priori 24 − 6 = 18 independent components. When the only
macroscopic four-vector present in the system is the average four-velocity
uµ, it has the general form

Λµαβ(k) = [a(k)uµ + b(k)kµ](kαuβ − kβuα)

+ [c(k)u(α + d(k)k(α]ηβ)µ, (3.3)

where the various coefficients are connected through the relation

a(k)k · u+ b(k)k2 = c(k), (3.4)

which expresses the four-current conservation constraint.
The next important quantity is the polarization tensor, defined by

Jµ(k) = Πµ
ν(k)Aν(k), (3.5)

where Aν(k) is the total electromagnetic field:

Aν(k) = Aν

int(k) +Aν
ext(k),

Aν
int(k): internal field of the system,

Aν
ext(k): external (applied) field.

(3.6)

The following relation connects it to the conductivity tensor,

Πµν(k) = 2kαΛµαν(k), (3.7)

and obeys

kµΠµν(k) = kνΠµν(k) = 0, (3.8)

which insures the gauge invariance of the definition; indeed, when one is
performing a gauge transformation on Aµ(k),{

Aµ(k)→ Aµ(k)− ikµΛ(k),

k2Λ(k) = 0,
(3.9)

the relation Jµ(k) = Πµ
ν(k)Aν(k) remains invariant.

As a consequence of Maxwell’s equations,{
∂νF

µν(x) = 4πJµ(x),

∂∗νFµν(x) = 0,
(3.10)

the equations obeyed by the four-potential Aµ(k) are then written as2

[k2ηµν − kµkν ]Aν(k) = −4πJµ(k) = −4π[Jµ
ext(k) + Jµ

int(k)], (3.11)

2For similar considerations, see e.g. D.B. Melrose (1973).
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where Jµ
int(k) generates the internal field while Jµ

ext(k) is responsible for the
external one. Accordingly, one has

{[k2ηµν − kµkν ] + 4πΠµν(k)}Aν(k) = −4πJµ
ext(k). (3.12)

When one switches off the external field, the internal field can oscillate
according to

{[k2ηµν − kµkν ] + 4πΠµν(k)}Aν(k) = 0, (3.13)

which implies the relation

Det{[k2ηµν − kµkν ] + 4πΠµν(k)} = 0. (3.14)

However, such a relation provides the proper modes of oscillation of the
plasma only after a gauge condition has been chosen and when one is
working in the three-space allowed by the rank 3 character of the above
4× 4 matrix.

The gauge invariance of the final result can be checked by choosing a
gauge-fixing parameter λ (see Chap. 7), so that the above equation reads

Det{[k2ηµν − (1 − λ)kµkν ] + 4πΠµν(k)} = 0; (3.15)

the choice of λ corresponds to different possible gauges — for instance,
λ = 1 implies the use of the Feynman gauge. The gauge invariance of the
dispersion relation is then expressed by its independence from the gauge-
fixing parameter. Actually, in the nonquantum case, the question of the
gauge invariance is almost irrelevant, essentially because they can also be
derived directly from the fields.

Some deeper insight into the plasma modes can be obtained after the
polarization tensor Πµν(k) has been decomposed on the two orthogonal
projectors


Pµν(k) = ∆µν(u) +

(kµ − k · u uµ)(kν − k · u uν)
∆αβ(u)kαkβ

,

Qµν(k) =
(k2uµ − k · u kµ)(k2uν − k · u kν)

k2∆αβ(u)kαkβ
,

(3.16)

as

Πµν(k) = πT (k)Pµν(k) + πL(k)Qµν(k). (3.17)

Note the completeness relation of these projectors,

∆µν(k) = Pµν(k) +Qµν(k), (3.18)

whose meaning is that they span the three-space orthogonal to the four-
vector kµ.
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Let us now come back to the above dispersion condition. For a polar-
ization vector eµ(k), 



eµ
T = Pµνeν ,

eµ
L = Qµνeν ,

eµ
λ =

kµkν

k2
,

(3.19)

the dispersion relation is split into


[k2 − πT (k)]eµ
T (k) = 0,

[k2 − πL(k)]eµ
L(k) = 0,

λk2kµkνe
ν
λ(k) = 0

(3.20)

for the transverse (twice-degenerated) and longitudinal polarization four-
vectors. The third one corresponds to a gauge degree of freedom, which
is not physical. The transverse modes are related to the propagation of
photons in a dispersive medium, while the longitudinal one is the plasmon
mode.

3.2. The Static Conductivity Tensor

Let us consider a neutral plasma in thermal equilibrium and let us apply
a constant external field, Fµν

ext. We want to evaluate the effects of collisions
on the electrical conductivity or, more specifically, the conductivity tensor
has to be calculated. To this end, it is still assumed that the collisions of
the electrons with either the ions, the other electrons or possible plasmons
are described adequately by the relativistic BGK equation written as

p · ∂f(x, p) + epνF
µν
ext

∂

∂pµ
f(x, p) = −p · uf(x, p)− feq(p)

τ
. (3.21)

The linear response to the external field Fµν
ext is a four-current Jλ

1 (x),
given by

Jλ
1 (x) =

∫
d4p

pλ

m
f1(x, p), (3.22)

where f1(x, p) is given by

f1(x, p) ≈ − τ

p · u
(
p · ∂ + epνF

µν
ext

∂

∂pµ

)
feq(p)

= − τ

p · uepνF
µν
ext

∂

∂pµ
feq(p). (3.23)
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The four-current Jλ
1 is thus

Jλ
1 = −τeFµν

ext

∫
d4p

pλpν

p · u
∂

∂pµ
feq(p), (3.24)

so that the static conductivity tensor is given by

Λλ
νµ = τe

∫
d4pfeq(p)

∂

∂pµ

(
pλpν

p · u
)

(3.25)

and hence the static conductivity tensor is obtained.

3.3. Debye–Hückel Law

The general form of the relativistic Debye–Hückel law can be obtained from
the expression of the conductivity tensor (see below) or, more simply, by
looking at the four-potential experienced by an extra particle embedded at
rest in a plasma. Let us now look at this simple approach [R. Hakim (1967);
S.R. de Groot, W.A. van Leuwen and Ch. G. van Weert (1980)].

Let Aµ be the four-potential to which is subjected a test particle whose
charge is Q, at rest within the plasma, and let Jplasma(x) be the plasma
four-current. Aµ(x) obeys Maxwell’s equations written in the form

�Aµ(x) = 4π[Jµ
plasma(x) + Jµ

test(x)] (3.26)

with the Lorentz condition

∂µA
µ(x) = 0, (3.27)

and where

Jµ

test(x) = Q

∫ +∞

−∞
dτ uµδ(4)(x− uτ),

Jµ
plasma(x) = e

{∫
dp pµfelectrons(x, p)−

∫
dp pµfions(x, p)

}
.

(3.28)

In these last equations uµ is the average four-velocity both of the plasma
and of the test particle (remember that the latter is at rest with respect to
the plasma). In the last equation, one has

fions
electrons

(x, p) = α exp[−β · (p∓ eA)], (3.29)

which is the Jüttner–Synge equilibrium function in the presence of the
electromagnetic field brought by the perturbation constituted by the test
particle. The plasma proper charge density is then (see Chap. 1)

nplasma = en{exp(−eβ ·A)− exp(eβ ·A)} ≈ 2e2nβµA
µ(x) (3.30)
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with |βeu · A|2 � |βeu · A|, while the plasma four-current is nplasmau
µ. It

follows that the equation for Aµ reduces to

�Aµ(x) + 8πne2βu · Auµ = 4πJµ
test(x), (3.31)

whose Fourier transform is

{−k2ηµν + (8πne2β)uµuν}Aν(k) = 4πJµ
test(k). (3.32)

This algebraic equation can easily be solved as3

Aµ(k) = − 1
k2

4πJµ
test(k) +

8πne2β
k2

uνu
µ

8πne2β − k2
4πJν

test(k). (3.33)

The first term on the right hand side of this relation is obviously the con-
tribution of the test particle, while the second one represents the screening
of the test charge by the electron of the plasma. In the extreme relativistic
limit, β → 0, the field experienced by the test particle is not screened;
no screening is possible since the electrons and the ions suffer a violent
thermal agitation. In the opposite case, β → ∞ (or T tends to zero), the
above formula yields

Aµ(k)→ − 1
k2

∆µ
ν(u)Jν

test(k) = 0, (3.34)

since Jν
test(k) ∝ uµ. Finally, in a reference frame where uµ = (1,0), A0

obeys the equation

�A0(x) + 8πne2βA0(x) = 4πJ0
test, (3.35)

which in the static limit is the well-known equation

∆V (x)− 8πne2βV (x) = 4πntest, (3.36)

whose solution is the usual Debye–Hückel law.

3.4. Derivation of the Plasma Modes

In this section, the covariant Vlasov equation is given and the dispersion
equation obeyed by the collective modes of an electron plasma embedded in
a positively charged neutralizing background is briefly derived. The latter
equation is nothing but the Liouville equation for electrons subjected to

3The reference R. Hakim (1967) contains some misprints and the correct expression is
the one given here.
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the average electromagnetic field of the plasma coupled to the Maxwell’s
equations, or [

pµ∂µ + epυF
µυ(x)

∂

∂pµ

]
f(x, p) = 0, (3.37)

{
∂µF

µυ(x) = 4πJυ(x),

∂∗µFµυ(x) = 0,
(3.38)

where Jυ(x) is the four-current that generates the electromagnetic field
Fµυ(x):

Jυ(x) = e

∫
d4p

pυ

m
f(x, p). (3.39)

The dispersion relations obeyed by the normal modes of the plasma are
derived as usual by looking at the propagation of small electron perturba-
tions within the plasma while retaining first order effects only:{

f(x, p)= feq(p) + f(1)(x, p),

Fµυ(x)= Fµυ
(eq)(x) + Fµυ

(1) (x),
(3.40)

with Fµυ
(eq)(x) ≡ 0, since the plasma is neutral i.e. Jυ

(eq) ≡ 0 and

[f(1)(x, p)]2 � f(1)(x, p). (3.41)

The equation for the off-equilibrium quantities, indexed by 1, is thus

Jν
(1)(x) = e

∫
d4p

pυ

m
f(1)(x, p), (3.42)

∂µF
µν
(1)(x) = 4πJν

(1)(x), (3.43)

epυF
µν
(1)(x)

∂

∂pµ
feq(p) = −p · ∂f(1)(x, p). (3.44)

The last equation — the linearized Vlasov equation — after performing a
Fourier transform and using the definition of Jλ(k) yields

Jλ(k) =
∫
d4p pνf(1)(k, p) = −eFµν

(1)(k)
∫
d4p

pνp
λ

k · p− iε
∂

∂pµ
feq(p)

= −ie(kµAν
(1) − kνAµ

(1)

) ∫
d4p

pνp
λ

k · p− iε
∂

∂pµ
feq(p). (3.45)

Then, Maxwell’s equations written in the form

k2Aµ
(1)(k) = −4πJµ

(1)(k), (3.46)

together with the Lorentz gauge condition

kµA
µ
(1)(k) = 0, (3.47)
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yield the following homogeneous system for Aµ
(1)(k):{

ηµαk2 + 4πie2 (kµηνα − kνηµα)
∫
d4p

pν

k · p− iε
∂

∂pµ
feq(p)

}
Aα(k) = 0.

(3.48)

It possesses solutions only when its determinant vanishes, i.e. when

Det
{
ηβ

λ

(
1− kαIα

k2

)
+ ω2

P I
β
λ + ω2

Pk
β Iλ
k2

}
= 0, (3.49)

and, of course, the gauge condition ∂µA
µ = 0.

In this expression the various integrals I are defined by

Iν =

mβ

4πK2(mβ)

∫
d4ς

ςν
kαςα

exp(−mβµς
µ),

Iν
µ =

mβ

4πK2(mβ)

∫
d4ς

ςµς
ν

(kαςα)2
exp(−mβµς

µ),
(3.50)

while the plasma frequency is denoted, as usual, by

ω2
P =

4πne2

m
. (3.51)

In the local frame of reference of the plasma, i.e. the one where uµ = (1,0),
and choosing the third axis as the direction of propagation of the plasma
waves,

kµ = (k0, 0, 0, k3) ≡ (ω, 0, 0, k), (3.52)

the above determinant is split into the two equations{
1− 1

kαkα
ω2

P

K1(mβ)
K2(mβ)

}
+ ω2

P I
1
1 = 0 (for transverse modes)

[{
1− 1

kαkα
ω2

P

K1(mβ)
K2(mβ)

}
+ ω2

P I
0
0 +

ω2
Pω

kαkα
I0

]

×
[{

1− 1
kαkα

ω2
P

K1(mβ)
K2(mβ)

}
+ ω2

P I
3
3 +

ω2
Pk

kαkα
I3

]

= ω4
P

{
k

kαkα
I0 + I3

0

}
×
{
I3
0 +

ωI3
kαkα

}
(for longitudinal modes).

(3.53)
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This equation for the longitudinal modes can also be cast into the form
Ω2

P + k2

ω2 − k2
= 2I0

ω2
Pω

ω2 − k2
+ ω2

P

∂

∂ω
I0, (3.54)

where we have set

Ω2
P = ω2

P

K1(mβ)
K2(mβ)

, (3.55)

which will appear as an effective relativistic plasma frequency. For trans-
verse modes, we have also{

1− Ω2
P

ω2 − k2

}
+ ω2

P I
1
1 = 0. (3.56)

The various properties of the Kelvin functions indicate that Ω2
P is an

increasing function of the parameter mβ, which vanishes for mβ = 0 and
tends, as expected, toward the ordinary plasma frequency ω2

P for mβ →∞.
Finally, let us note that these dispersion relations do not agree with

those obtained by other authors. For instance, they do not agree with B.
Kursunoglu’s (1961) results since this author uses an incorrect equilibrium
distribution function because of a confusion in his notation. As to the results
of F. Santini and G. Szamosi (1965) or of K.-K. Tam (1968), they are dif-
ferent from ours because of an incorrect normalization of their distribution
function.

3.4.1. Evaluation of the various integrals

In this section the various integrals appearing in the above dispersion rela-
tions are briefly evaluated.4 First, notice that the relation

kνIµν = −Iµ (3.57)

reduces the calculation to that of Iµ only. This integral is a function of β,
k · k and k · u. It has the general form

Iµ = c1β
µ + c2k

µ, (3.58)

since βµ and kµ are the only four-vectors in the theory. Multiplying now
this expression of Iµ by βµ and by kµ successively, one gets a linear system
for c1 and c2, whose solution is

c1 =
k · βϕ− k · kψ

(k · k)(β · β)− (k · β)2
, (3.59)

c1 =
β · βϕ− k · βψ

(k · k)(β · β)− (k · β)2
, (3.60)

4For more details, see R. Hakim and A. Mangeney (1968).
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where the following notations have been used:

ϕ ≡ kµI

µ =
K1(mβ)
K2(mβ)

,

ψ ≡ βµI
µ.

(3.61)

It remains for one to calculate the invariant ψ, and one finds that

Imψ =
π

2k
β

K2(mβ)
exp

(
− mβ√

1− (ω/k)2

)

×
[

1
mβ

+
1√

1− (ω/k)2

]
(for ω cothχ ≤ k), (3.62)

Reψ = − mβ2ω

k2K2(mβ)
· d

d(mβ)

×
{

1
mβ

∫ +∞

0

dχ
exp(−mβchχ)

((ω/k)2 − 1) cosh2 χ+ 1

}
. (3.63)

Details can be found elsewhere (see Ref. 3).

3.4.2. Collective modes in extreme cases

In this subsection, two limiting cases are examined; the zero temperature
limit and the infinite temperature case.

(1) At absolute zero, the Jüttner–Synge equilibrium distribution becomes

feq(p) = nmδ(4)(p−mu) (3.64)

and the various integrals reduce to

Iν =

uν

k · u,

Iν
µ =

uµu
ν

(k · u)2
,

(3.65)

so that the dispersion relations for the transverse modes read

k · k = ω2
P (3.66)

or

ω2 = k2 + ω2
P , (3.67)
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which is the usual result, in the local reference frame and for waves prop-
agating along the third axis. For longitudinal oscillations, we obtain{

ω2
1 = ω2

P ,

ω2
2 = k2 + ω2

P .
(3.68)

While the first solution is the ordinary one, the second seems to be due
to gauge properties’ modes and it disappears at the Newtonian limit.

(2) Let us now investigate briefly the extreme relativistic case (infinite tem-
perature, or mβ → 0). In this extreme relativistic limit, the dispersion
relations reduce to k2 = 0 and the medium becomes “transparent” for
plasma waves. However, as we shall show in Chap. 5, such waves are
strongly damped by the emission of radiation.
The plasma modes have been studied elsewhere [R. Hakim and A. Man-
geney (1971)] and the main results will only be outlined here. There
are two most interesting cases. First, for transverse waves, it is the case
of supraluminous waves, i.e. waves having a phase velocity greater than
the speed of light in a vacuum. Second, for longitudinal waves, two
cases are of particular interest, supraluminous waves and suprathermal
waves. We shall limit ourselves to these two cases.

3.5. Brief Discussion of the Plasma Modes

Supraluminous transverse waves. From the above dispersion relation for
transverse waves and the evaluation of the integral I1

1 at order 2 in the
“parameter” k/ω, one finds that

ω4 − [k2 + Ω2
P − ω2

Pφ1(βm)]ω2 + k2ω2
P [φ2(βm)− φ1(βm)] = 0, (3.69)

where φ1 and φ2 are the following functions [R. Hakim and A. Mangeney
(1971)]:

φ�(x) =
x

K2(x)
1

2�+ 1

∫ ∞
0

dχ (tanhχ)2�+1 cosh2 χ exp(−x coshχ). (3.70)

The dispersion relation for transverse waves is now solved by iteration and
the resulting equation has always a (physical) positive and a (unphysical)
negative solution.5 For k2 very small, one finds that

ω2
0 ≈ Ω2

P − ω2
Pφ1(βm) ≈ ω2

P [φ0(βm)− φ1(βm)], (3.71)

5This is a consequence of the fact that φ1 − φ2 > 0, as can easily be checked.



January 24, 2011 15:2 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch03 FA

58 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

whereas, in the same case (small values of k2), the classical case is such that
ω2

0 ≈ ω2
P . Therefore, one of the relativistic effects consists in a shift of the

plasma frequency. This frequency shift can be evaluated via an asymptotic
expansion of φi, and one obtains

ω2
0(k

2 ∼ 0) ≈ ω2
P

[
1− 5

2βm

]
(3.72)

so that ∣∣∣∣∆ω2
0

ω2
0

∣∣∣∣ ≈ 5
2βm

, (3.73)

and a shift of 10% could be expected in plasmas whose temperatures are
of the order of a few hundred thousand degrees.

Supraluminous longitudinal waves. First, the dispersion relation is
rewritten as

Ω2
P + k2 =

{ ∞∑
�=0

(
k

ω

)2�

φ�(βm)

}
− ω2

P

(
1− k2

ω2

)

×
{ ∞∑

�=0

(
k

ω

)2�

(2�+ 1)φ�(βm)

}
, (3.74)

where the real part of the integral I0 has been expanded in powers of the
inverse phase velocity. At order 2 a straightforward calculation provides

ω2
0 =

(
K1(mβ)
K2(mβ)

− φ1(mβ)
)
ω2

P + 3k2φ1(mβ) − φ2(mβ)
K1(mβ)
K2(mβ) − φ1(mβ)

, (3.75)

and, as in the case of transverse waves, the plasma frequency is shifted from
its nonrelativistic value. Using the asymptotic expansions of the various
functions K’s and φ’s, this dispersion relations yields the usual nonrela-
tivistic relation:

ω2
0 = ω2

P + 3
kBT

m
k2. (3.76)

The first relativistic correction turns out to be

ω2
0 = ω2

P + 3
kBT

m
k2 − 5

2
ω2

P

kBT

mc2
− 33

2

(
kBT

mc2

)2

k2c2, (3.77)

where the factors c have been re-established and which is nothing but an
expansion in powers of the (usual) thermal velocity over c2. A deviation of
10% of the coefficient of k2 occurs at relatively moderate temperatures, of
the order of 108 K.
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Suprathermal longitudinal waves. While in the case of supraluminous phase
velocities there is no possible resonance between plasma waves and elec-
trons, such an effect is possible for suprathermal velocities, inferior to that
of light, i.e. when

vthermal <
ω

k
< 1. (3.78)

Accordingly, the “small parameter”

η2 =

1−ω2

k2

(βm)2 ,

ω < k,

(3.79)

is introduced and we restrict ourselves to those µ’s (or those β’s) such that
η2 � 1. It follows that if ω is to be considered as a given quantity, k should
satisfy the condition6

k2 <
ω2

1− α2
, α < 1. (3.80)

Note that the term coshχ, which occurs in the exponential of the various
integrals of the dispersion relations is at most of order (βm)−1 and hence the
velocity of a typical electron, namely tanhχ, is at most of order 1− (βm)2.
It follows that η2 < 1 represents vthermal < ω/k. At order 1 in the “small
parameter” η2, the dispersion relation for transverse waves turns out to be

ω2 − k2 =
Ω2

Pk
2

k2 + Ω2
P + ω2

P

[
1

βm − 2
K1(mβ
K2(mβ)

] . (3.81)

The right hand side of this equation may be shown to be always positive,
so that ω2/k2 > 0, which is not compatible with our assumption ω < k.
Therefore, as in the nonrelativistic case, there is no propagation7 of infra-
luminous transverse waves8 and we concentrate on the longitudinal case.

We first neglect the damping term, since its weakness is expected and is
evaluated at the end of the calculation. The dispersion equation then reads

Ω2
P + k2 = 2ωω2

P I0 + ω2
P (ω2 − k2)

∂

∂ω
I0. (3.82)

6When α > 1, we always have η2 < 1 since ω/k < 1.
7This result is also valid at order 2 in η2.
8See e.g. S. Ichimaru, Basic Principles of Plasma Physics (Benjamin, Reading, 1973).
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In order to obtain an explicit relation valid at order 1 in the expansion
parameter η2, we set

Re I0 =
A

ω
+
B

ω
η2 +O(η4), (3.83)

where A and B are functions of βm. The expansion of I0 and various
recursion relations between the Kelvin functions provide


A(βm) =

K1(mβ)
K2(mβ)

{
1− 2

(mβ)2

}
+

1
mβ

,

B(βm) = 3
K1(mβ)
K2(mβ)

−mβ.
(3.84)

Using the fact that

ω2 − k2 = −ω2η2(βm)2 +O(η4), (3.85)

the dispersion relation can be cast into the form

ω2 = [2ω2
PA(βm) − Ω2

P ] + η2[2ω2
PB(βm) + Ω2

P (βm)2 − ω2
P (βm)2A(βm)],

(3.86)

which itself leads to

ω2 = ω2
P

(
A(mβ) +

B(mβ)
(mβ)2

)
− 1
k2

(2ω2
PA(mβ) − Ω2

P )

×
(

Ω2
P − ω2

PA(mβ) +
2ω2

PB(mβ)
(mβ)2

)
. (3.87)

This last equation is obtained from the preceding one by replacing η2(ω, k)
with its value for ω = ω0, where ω0 is evaluated at order 0 in η2 · ω0 is
given by

ω2
0 = 2ω2

PA(βm) − Ω2
P ; (3.88)

it is a wave propagating at velocity c since, in this approximation, η2 = 0
and hence ω = k.

The dispersion curves are most easily plotted with the dimensionless
variables {

y = ω2ω−2
P ,

x = k2ω−2
P ,

(3.89)

and are depicted in Fig. 3.1. They must, of course, be suprathermal and
infraluminous, two properties expressed by{

y < x,

yx−1 > 1− (βm)2,
(3.90)
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Fig. 3.1 Typical dispersion curves for longitudinal suprathermal waves [after R. Hakim
and A. Mangeney, Phys. Fluids 14, 2751 (1971)].

and βm < 1. Three typical dispersion curves have been plotted with quali-
tatively different behavior according to the sign of x−1.

Different behaviors. These differences occur according to the sign of the
coefficient of x−1. The dispersion curves show that the phase and group
velocities for waves such as βm > β0m have opposite directions, while they
have the same direction in the opposite case. For β = β0, only stationary
waves are possible; β0 is a solution of

K1(mβ)
K2(mβ)

=
3mβ

8
(3.91)

and is found to be of order 1.
Let us now turn to the nonrelativistic approximation of the dis-

persion equation. As already indicated, this approximation is obtained
for βm→∞. However, the expansions in η2α2 used in the derivation of
the approximate dispersion relation are convergent only when η2α2 < 1.
Therefore, as βm increases, η2 must go to zero in such a way that this con-
dition is satisfied. It follows that the nonrelativistic approximation is valid
only in a small neighborhood of

k2 = ω2
P

[
1 +O

(
1

(βm)2

)]
. (3.92)

In this neighborhood, the dispersion equation is equivalent to the classical
dispersion relation and the first relativistic corrections are exactly the same
as those already obtained above.
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Let us now evaluate the damping decrement γ and let us still assume
that γ � ω0, so that

ω2 ≈ ω2
0 + 2iγω0. (3.93)

Inserting this relation into the dispersion equation and using

I0(ω + iγ) ≈ I0(ω) + iγ
∂

∂ω
I0

∣∣∣∣
ω=ω0

, (3.94)

we find that

γ =
π

4
βm

K2(βm)
ω2

0ω
2
P

k2

1
η2(βm)2

exp
(
−1
η

)
. (3.95)

This is the relativistic expression for the Landau damping, to which it
reduces at the Newtonian limit. This expression is valid for ω = k, since it
corresponds to the lowest approximation in η2, and when βm 
 1, i.e. at
the ultrarelativistic limit.

3.6. The Conductivity Tensor

From the expression of the small deviation from equilibrium

f(1)(k, p) =
1

k · p− iεepβF
αβ
(1) (k)

∂

∂pα
feq(p), (3.96)

a result of the linearized Vlasov equation, one obtains the expression for
the off-equilibrium four-current

Jµ(k) =
∫
d4p pµf(1)(k, p) = −eFαβ

(1) (k)
∫
d4p

pαp
µ

k · p− iε
∂

∂pβ
feq(p),

(3.97)
from which one immediately reads the expression for the conductivity
tensor:

Λµαβ(k) = −e
∫
d4p

pµpα

k · p− iε
∂

∂pβ
feq(p). (3.98)

In terms of our various integrals, it can be written as

Λµαβ(k) =
ω2

P

8πi
{
(ηµβIα − ηµαIβ) + (kβIαµ − kαIβµ)

}
. (3.99)

At zero temperature, this tensor has the explicit form

Λµαβ(k) =
ω2

P

8πi

{
(ηµβuα − ηµαuβ)

k · u +
uµ(kαuβ − kβuα)

(k · u)2

}
, (3.100)
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which reduces to its usual form9 in the frame of reference where uµ = (1,0).
At infinite temperature, one may show that Λµαβ(k) vanishes.

3.7. Plasma–Beam Instability

Let us now consider the problem of a relativistic plasma into which a
beam of neutralized relativistic electrons is injected. Such a problem can be
described by two distribution functions: a Jüttner–Synge distribution for
the plasma and another one, of a different type, for the beam. Denoting by
uµ

beam the four-velocity of the beam, the latter could be described by

fbeam(p) = nbeamδ
(4)(p−mubeam). (3.101)

This distribution is, however, much too singular and a dispersion in
momentum should be allowed. Therefore, we are led to choose another
Jüttner–Synge distribution for the beam, which is the simplest but not the
only possible choice:

fbeam(p) =
nbeamβ

∗

4πm2K2(mβ∗)
exp(−β∗ubeam · p). (3.102)

Furthermore, the beam is assumed to be cold, i.e. mβ∗ 
 1, and constitutes
a weak perturbation of the basic plasma: nbeam � n.

3.7.1. Perturbed dispersion relations for the plasma–beam

system

Let us limit the present discussion to longitudinal modes. Writing the dis-
persion relations for these plasma waves as

D(ω, k) = 0, (3.103)

the perturbation brought about by the beam yields

D(ω, k) + δD(ω, k) = 0, (3.104)

where δD(ω, k) is the modification introduced by the presence of the beam.
Solutions to the perturbed dispersion relations will now be sought, close to
those of the unperturbed system, as

ω = ω0 + δω. (3.105)

9See e.g. S. Gartenhaus, Elements of Plasma Physics (Holt, Rinehart and Winston,
New York, 1964).
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From the perturbed dispersion relation, we immediately obtain

δD(ω, k) + δω
∂D(ω, k)

∂ω

∣∣∣∣
ω=ω0

= 0, (3.106)

where terms of order (mβ∗)2 are implicitly neglected. Thus, we have

δω = − δD(ω, k)
∂D(ω,k)

∂ω

∣∣∣∣∣
ω=ω0

. (3.107)

The denominator occurring in this equation is easily calculated at order 0
in η2 and is found to be

∂D(ω, k)
∂ω

∣∣∣∣
ω=ω0

=
1

2ω0
, (3.108)

where ω0 is the solution to the longitudinal dispersion relation, given above.
Let us now concentrate on the calculation of δD(ω, k). From the longitu-
dinal dispersion relation

Ω2
P + k2

ω2 − k2
= 2I0

ω2
Pω

ω2 − k2
+ ω2

P

∂

∂ω
I0, (3.109)

we obtain

δD(ω, k) = δΩ2
P − 2ω2

Pω0δI0 − (ω2
0 − k2)ω2

P

∂

∂ω
δI0, (3.110)

with 

δΩ2

P =
nbeam

n
ω2

P

K1(mβ∗)
K2(mβ∗)

,

δIµ =
1

nm2

∫
d3p

p0

pµ

ωp0 − kp3
fbeam(p).

(3.111)

Despite the formal similarity between I0 and δI0, some care is needed when
one is evaluating δI0; indeed, I0 has been calculated in the rest frame of
the background plasma where δI0 must also be evaluated, and not in the
rest frame of the beam.

3.7.2. Stability of the beam–plasma system

Since we are mainly interested in the stability of the system, we deal with
only the imaginary part of δω, and we find that

Imδω = δγ =
π

4
nbeam

nplasma

β∗m
K2(β∗m)

ω2
Pω0

k2
|∆|−1/2

× (ωu0
beam − ku3

beam)
1

(βm)2η2
exp

(
−β∗m

[
∆
s

]1/2
)
. (3.112)
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where we have set {
∆ = ∆µν(ubeam)kµkν ,

s = k2.
(3.113)

This expression reduces to the usual nonrelativistic one and this can be
checked with the use of the following data:


βm
 1 (nonrelativistic background plasma),

u0
beam ≈ 1, ubeam ≈ v (nonrelativistic beam),

|∆|1/2 ≈ k (since ∆µν ≈ −δij).
(3.114)

Also, use is made of the asymptotic form of the Kelvin function K2 and of
the relation


exp

{
β∗m

[
1−

(
∆
s

)1/2
]}
≈ exp

(
−1

2
β∗m

[ω
k
− v
]2)

,

with ω2 � k2 or, equivalently, β2η2 ≈ 1.

(3.115)

Let us now compare δγ with the Landau damping decrement γL, obtained
above. We have

δγ

γL
=

nbeam

nplasma

β∗

β

K2(βm)
K2(β∗m)

k

|∆|1/2

ωu0
beam − ku3

beam

ω0

× exp

{
1
η
− β∗m

(
∆
s

)1/2
}
, (3.116)

which may be rewritten as

δγ

γL
=

nbeam

nplasma

β∗

β

K2(βm)
K2(β∗m)

k

|∆|1/2

ωu0
beam − ku3

beam

ω0

× exp
{

1
η

(
1− β∗

β
|u3

beam − u0
beam|

)}
, (3.117)

where the expression of ∆ which occurs in the exponential has been eval-
uated at order 0 in η2. Note that this equation is not valid when v → 1.
This equation is quite similar to the nonrelativistic one,10 and hence similar
conclusions can be drawn.

Let us examine the case of a highly relativistic beam, i.e. such that its
ordinary velocity w ≡ |w| is close to 1. We have

u3
beam = u0

beamw cos θ, (3.118)

10See A.G. Sitenko, loc. cit.
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where θ is the angle between the spatial direction of the wave and that
of the beam, i.e. between k and w. A necessary condition for an unstable
behavior is

ωu0
beam − ku3

beam < 0 (3.119)

or, equivalently,

cos θ >
ω

kw
. (3.120)

This last inequality implies that ω/k − w < 0; furthermore, it is necessary
that ∣∣∣∣ δγγL

∣∣∣∣ > 1. (3.121)

In fact, since we are interested in those ω/k’s and w’s which are close to 1,
the angle θ is itself close to 0. For a highly relativistic beam, we have

∆ ≈ −(ωu0
beam − ku3

beam)2 (3.122)

so that, for waves propagating normally to the beam, we get

δγ ≈ 1
(βm)2η2

exp
(
−β
∗

βη

ω

k
u0

beam

)
, (3.123)

while for waves propagating along the beam we obtain

δγ ≈ − 1
(βm)2η2

exp
(
−β
∗

βη

[ω
k
− w

]
u0

beam

)
. (3.124)

The first equation shows that waves propagating perpendicularly to the
beam are less and less damped as w → 1, while those propagating along
the beam are less and less unstable as the beam becomes more and more
relativistic. This conclusion agrees with earlier results obtained by K.M.
Watson, S.A. Bludman and M.N. Rosenbluth (1960).



February 12, 2011 11:38 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch04 FA

Chapter 4

Curved Space–Time and Cosmology

In the presence of gravitation, i.e. in the case of a curved space–time,
numerous authors have extended most of the foregoing results. The one-
particle phase space has a particular mathematical structure since the con-
figuration space is curved, while the energy–momentum space is cotangent
to the space–time manifold

µ = H4(x)× V 4, (4.1)

where H4(x) is the energy–momentum space, generally characterized by

H4(x) : gµν(x)pµpν = m2. (4.2)

This µ space is thus endowed with a fiber bundle structure, whose fiber
is nothing but the above x-dependent hyperboloid and whose invariance
group is the Lorentz group. While the definition of the one-particle density
is identical in the curved and flat cases, there exist some minor modifica-
tions as to the Liouville (or the kinetic) equation(s) and the Jüttner–Synge
equilibrium distribution function.

Note that in this chapter we deal with relativistic kinetic theory within
a given gravitational background. When the gravitational field is itself
random, the situation is far more involved, and a brief outline of the
problems met in such a case is given in Chap. 6.

One should also note that in general relativity one is mainly inter-
ested in local quantities, or four-currents of various physical quantities, and
hence only the latter actually make sense, such as the energy–momentum
tensor, the four-current of a given physical quantity (charge, number of
particles, etc.), the entropy four-current and other thermodynamic quan-
tities. Another point to be noted is that gravitation being a long range and
very weak force, its gradients are generally negligible on the distance of two

67
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short range colliding particles.1 It follows that the flat space–time collision
term is still valid in the case of general relativity. Of course, this remark
is valid as long as ordinary pointlike particles are considered and it should
be clear that when galaxies, for instance, are dealt with and considered as
“point particles,” the gradients of the gravitational field do play a role and
the situation is that of a gravitational plasma [see H.E. Kandrup (1980ff)].

4.1. Basic Modifications

The one-particle distribution function is now a little bit modified via the
invariant (under coordinate changes) element of integration on the energy–
momentum space H4(x),

d3p

p0
→
√
|g(x)| d

3p

p0
, (4.3)

where g(x) is the determinant of the metric tensor; of course, in a local
frame of reference one has |g(x)| = 1. The volume element invariant under
arbitrary changes of coordinates is written as

√|g(x)|d4 p and hence
√
|g(x)|d3p

∫
dp0 2θ(p0)δ[gµν(x)pµpν −m2]

=
√
|g(x)|d

3p

p0
=
√
|g(x)| d3p√

gij(x)pipj +m2
(4.4)

for a metric whose time and space coordinates are separated.
From the mass shell equation, the zeroth covariant component of pµ is

easily found to be

p0 = {m2g00(x) + [g0i(x)g0k(x) − g00(x)gik(x)]pipk}1/2. (4.5)

Consequently, the particles four-current and the energy–momentum tensors
read, respectively,

Jµ =
∫

gµν (x)pµpν=m2

√
|g(x)| d

3p

p0(p)
pµ, (4.6)

T µν(x) =
∫

gµν (x)pµpν=m2

√
|g(x)| d

3p

p0(p)
pµpν . (4.7)

1This remark would be invalid for possible collisions of collective states, or quasi-
particles, with a spatial extension of the order of the typical length variation of the
gravitational gradients.
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Let us now briefly derive the Liouville equation when an external gravita-
tional field is present and in the absence of other forces, since the latter can
be added without any particular difficulty, provided it does not vary too
much on the typical variation of gµν(x). The equations of motion for one
particle are the usual geodesic equation

dpµ

dτ
+ Γµ

αβp
αpβ = 0, (4.8)

which can be obtained from the formal Hamiltonian2

H(x, p) =
1

2m
gµν(x)pµpν , (4.9)

as 

d

dτ
xµ =

∂

∂pµ
H(x, p) =

pµ

m
,

d

dτ
pµ = − ∂

∂xµ
H(x, p) = − 1

2m
∂µgαβ(x)pαpβ .

(4.10)

Finally, from the continuity equation in phase space

∂µ

(
dxµ

dτ
f(x, p)

)
+

∂

∂pµ

(
dpµ

dτ
f(x, p)

)
= 0, (4.11)

the Liouville equation follows in a straightforward way as

p · ∂f(x, p)− 1
2
∂µgαβ(x)pαpβ ∂

∂pµ
f(x, p) = 0. (4.12)

Many other derivations of this equation have been obtained and it is a
simple matter to show that the equation can be rewritten as

p · ∂f(x, p) + Γµ
αβp

αpβ ∂

∂pµ
f(x, p) = 0. (4.13)

When the Liouville equation in curved space–time is coupled to the gravi-
tation field via the Einstein equations

Rµν(x) − 1
2
R(x)gµν = 4πGTµν(x)

= 4πG
∫

gµν(x)pµ pν = m2

p0 > 0

√
|g(x)|d

3p

p0
pµ pνf(p),

(4.14)

one obtains the gravitational equivalent of the usual Vlasov equation for
an electromagnetic plasma [Ph. Droz-Vincent and R. Hakim (1968)]. This

2This means only that the geodesic equation can be recovered as a Hamiltonian
equation, and not that H is the energy of the particle.



February 12, 2011 11:38 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch04 FA

70 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

system is often referred to as the Einstein–Liouville equations. In par-
ticular, it has been used to find the normal modes of a gravitational plasma
[E. Asseo, D. Gerbal, J. Heyvaerts and M. Signore (1978)].

4.2. Thermal Equilibrium in a Gravitational Field

Let us now consider the Jüttner–Synge equilibrium distribution in the
presence of gravitation. It constitutes always a local equilibrium and not
a global one as in the flat space–time case. This is a consequence of the
equivalence principle. The gravitational field enters the equilibrium distri-
bution feq = A exp[−β · p] through the scalar product

β · p = gµν(x)βµpν . (4.15)

Therefore, the distribution depends on g, through

feq(p) = A exp(−gµνβ
µpν). (4.16)

The equilibrium distribution must obey the equation of motion written in
the form of the Liouville equation; introducing feq in the latter, one gets

p · ∂A− 1
2
[∇µβν +∇νβµ]Apµpν = 0, (4.17)

which must be satisfied whatever p is. This implies that, in general, the
four-vector βµ has to satisfy the Killing conditions

[∇µβν +∇νβµ] = 0, (4.18)

and A = const. This latter condition yields, for instance, n = const and
T = const. These conditions can also be interpreted as conditions for rigid
motion.3 There is, however, another case — the one in which βµ is Killing
conformal:

1
2
[∇µβν +∇νβµ] = φ(x)gµν(x), (4.19)

where φ(x) is an arbitrary function, and p2 = 0.
A first conclusion is that the one-particle equilibrium does not always

exist; for massive particles, the four-vector βuµ has to be a Killing field
while for zero mass particles it is sufficient for it to be Killing conformal.

3See e.g. J.L. Synge, Relativity: The General Theory (North–Holland, Amsterdam,
1960).
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4.2.1. Thermal equilibrium in a static isotropic metric

N.A. Chernikov (1964) has given several examples of possible thermal dis-
tributions in an external gravitational field and we give only one of them.
The metric tensor for a static, spherically symmetric gravitational field has
the form

ds2 = exp[ν(r)]dt2 − exp[λ(r)]dr2 − r2(dθ2 + sin2 θdϕ2), (4.20)

written in standard K. Schwarzschild (1916) coordinates. The distribution
function

feq(p) = A exp(−β0p0) (4.21)

is a possible solution provided that the temperature satisfies the relation

T (r) = T (∞) · exp(1 − ν[r]). (4.22)

This can be seen by replacing βuµ with its expression in the Killing equation
(4.18).

For the Schwarzschild metric

exp[ν(r)] =
(

1− 2
GM

r

)
,

(4.23)
exp[λ(r)] =

1
(1− 2GM

r )
,

the temperature should vary as

T (r) = T (∞) · exp
(
GM

r

)
. (4.24)

For a rotating gas (see Chap. 1) subject to the same static spherical sym-
metric gravitational field, one finds that

feq(p) = A exp(−β0p0 + β0ωr2 sin2 θp3) (4.25)

and

T (r) = T (∞) · (exp[2ν(r) − 2]− ω2r2 sin2 θ)−1/2. (4.26)

4.3. Einstein–Vlasov Equation

We now study the archetype of a kinetic equation — that of the Vlasov
equation where correlations are zero. This system was first studied by
Ph. Droz-Vincent and R. Hakim (1968) and was developed by others
[E. Asséo, D. Gerbal, J. Heyvaerts and M. Signore (1978)]; later it was
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followed and developed by H.E. Kandrup (1980ff ) to many other cases. It
is constituted by the two equations


pµ∂µf + Γα

µνpµpν
∂f

∂pα
= 0,

Rµν − 1
2
Rgµν − λgµν = χTµν ,

(4.27)

where the energy–momentum tensor is given by

T ην =
1
m

√
|g|
∫
d3pf(x, p)pµpν , (4.28)

and is of course conservative: ∇µT
µν = 0.

In order to be specific, we linearize this system around background data
which we do not specify as yet; or some background{

f(x, p) = f0(x, p) + f1(x, p),

gµν(x) = g0µν(x) + hµν(x),
(4.29)

where all quadratic quantities such as hf1 are negligible and are neglected.
It remains for us to linearize the Einstein equations.

4.3.1. Linearization of Einstein’s equation

An arbitrary (although preserving the Riemannian property) metric distur-
bance h induces the first order variation [A. Lichnérowicz (1967)]

δΓγ
αβ =

1
2
{∇αh

γ
β +∇βh

γ
α −∇γhαβ}. (4.30)

It is important to note that the covariant differentiation is defined with
the help of the background Riemannian affinity (Christoffel symbols corre-
sponding to gµν) while indices are raised or lowered with the background
metric only. For instance, one has

hα
µ = gαβhµβ . (4.31)

The change in the Ricci tensor follows from Eq. (4.30) in a straightforward
way:

δRµν = −1
2
∆hµν +

1
2
(∇µIν +∇νIµ), (4.32)

where Iα is defined by

Iα = ∇λh
λ
α −

1
2
∇αh,

h ≡ hα
α, (4.33)
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and is, up to the sign, de Rham’s Laplacian operator extended to symmet-
rical tensors by A. Lichnnérowicz (1967). With our notations, it reads

∆hµν = ∇λ∇λhµν −Rµαh
α
ν −Rναh

α
µ + 2Rµνρσh

ρσ. (4.34)

From this definition, it follows that ∆ reduces to the usual D’Alembertian
operator when the background manifold is flat, i.e. when Rµναβ = 0.

Let us now return to the linearization of Einstein’s equation and let us
set

Sµν ≡ Rµν − 1
2
gµνR− λgµν (4.35)

so that Einstein’s equation reads

Rµν = χ

{
Tµν − 1

2
gµνT

}
+ λgµν . (4.36)

Since we have

δT = −hµνTµν + gµνδTµν , (4.37)

where we have used

δgαβ = −hαβ, δgαβ = hαβ , (4.38)

variation of Eq. (4.36) yields

δRµν = −1
2
hµνS +

1
2
gµνh

αβSαβ + λhµν +
(
jµν − 1

2
gµνj

)
, (4.39)

where we have set

j ≡ gαβjαβ . (4.40)

In Eq. (4.39), δRµν is as given by Eq. (4.32). Therefore, Eqs. (4.33) and
(4.39) provide a linear partial differential equation for hαβ , whose source
term is {

jµν − 1
2
gµνj

}
. (4.41)

Alternatively, we might as well consider that the actual source is just the
contribution of the disturbance in the contravariant components of the
energy–momentum tensor. Therefore, the “new” source term would involve

kµν = χδT µν, (4.42)

rather than j terms. Note that jµν and kµν are interrelated through

jµν = kµν + hµαS
α

ν + hναS
α

ν . (4.43)

Anyway, once source terms have been separated, we are left with second
order partial differential equations which have to be solved with various
techniques and, more particularly, with the help of Green function methods.
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4.3.2. The formal solution to the linearized Einstein

equation

Starting from Eqs. (4.39) and (4.32), we get

∆hµν = −2
{
−1

2
hµνS +

1
2
gµνhαβS

αβ + λhµν +
[
jµν − 1

2
gµνj

]}
(4.44)

or, equivalently,

Lhµν ≡ ∆hµν + 2λhµν − hµνS + gµνhαβS
αβ

+ 2[hµαS
α
ν + hναS

α
µ]− 2gµνg

αρSα
ρhσα

= − 2[kµν − 1
2
gµνk], (4.45)

where use has been made of Eq. (4.45). Note that Eq. (4.39) may be sim-
plified further by imposing the usual gauge Iµ = 0, or

∇µh
µ
ν −

1
2
∇νh = 0. (4.46)

This gauge condition can be cast into a form similar to the common gauge
Lorentz condition of electromagnetism.

The formal solution to Eq. (4.45) may be written as

hµν =
∫
η′Hµνα′β′k

α′β′ , (4.47)

where the “Green function” Hµνα′β′ is a bitensor distribution which has to
be specified further by giving conditions on its support (retarded, advanced
conditions, etc.). The primed indices Hµνα′β′ are related to the variables
x′α which occur implicitly: Hµνα′β′ = Hµνα′β′(x, x′). In fact, we have

Hµνα′β′ = Kµνα′β′ − 1
2
gµ′σ′Kµρ′α′β′gα′β′ , (4.48)

where Hµνα′β′ is a Green function of the operator L acting on hµν in
Eq. (4.45), i.e. we have

LKµνα′β′ = (τµα′τνβ′ + τµβ′τνα′ )δ(x, x′). (4.49)

In the case where the background is empty, Sµν = 0, Eq. (4.46) reduces
to a simple Klein–Gordon-like equation. Accordingly, the Green function
Kµνα′β′ reduces to the Lichnérowicz propagators (up to the sign).
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Let us now evaluate the source term kαβ which occur in Eq. (4.47). It
is a functional of the distribution given by

kαβ = χδ

∫ √
|g| d4ppαpβf(x, p). (4.50)

Accordingly, Eq. (4.50) reduces to

kαβ = χδ

∫ √
|g| d4ppαpβ

{
δf(x, p) + f(x, p)

δ
√|g|√|g|

}
. (4.51)

Let us now consider the second term on the right hand side of Eq. (4.50).
The well-known formula of Riemannian geometry

d{log g} ≡ gαβdgαβ (4.52)

provides immediately

δ
√
|g| = 1

2
h
√
|g|. (4.53)

Consequently, Eq. (4.51) becomes

kαβ(x) = χ

∫∫
η′
√
|g| d4p Hµνα′β′p

α′pβ′δf(x, p)

+
χ

2

∫∫
η′
√
|g| d4p Hµνα′β′p

α′pβ′h(x)f(x, p). (4.54)

It follows that hµv no longer appears to be an explicit solution to Eq. (4.43)
but rather to the integral equation

kµν(x) = χ

∫∫
η′
√
|g| d4p Hµνα′β′p

α′pβ′δf(x, p)

+
χ

2

∫∫
η′
√
|g| d4p Hµνα′β′p

α′pβ′h(x)f(x, p). (4.55)

Setting now

F = f +
1
2
hf, (4.56)

one may rewrite Eq. (4.55):

hµν = χ

∫∫
η′
√
|g| d4p′pα′pβ′Hµνα′β′F. (4.57)

In the next subsection, we shall see that we do not need the explicit solution
to Eq. (4.55) for hµν and that the change of function (4.57) is extremely
useful.
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4.3.3. The self-consistent kinetic equation

for the gravitating gas

Let us now turn to Eq. (4.43) taking into account the linearization pro-
cedure. Assuming that f is a solution to

pµ∂µf + Γ µ
α βp

αpβ ∂

∂pη
f = 0, (4.58)

i.e. that f is a background quantity, we can rewrite this equation as

pµ∂µF + Γ µ
α βp

αpβ ∂

∂pµ
F +X µ

α βp
αpβ ∂

∂pµ
f +

1
2
fpµ∂µh = 0. (4.59)

Using now Eq. (4.56), we find that

pµ∂µF + Γ µ
α βp

αpβ ∂

∂pµ
F +X µ

α βp
αpβ ∂

∂pµ
f +

1
2
pµ∂µh f = 0. (4.60)

With the help of Eqs. (4.30) and (4.57), the explicit expression for Xµ
αβ

may be obtained:

X µ
α β =

χ

2

∫∫
η′
√
|g| d4p{∇αH

µ
βρ′σ′ +∇βH

µ
αρ′σ′ −∇µHαβρ′σ′}pρ′pσ′F ′.

(4.61)
Finally, the kinetic equation looked for is

pµ∂µF + Γ µ
α βp

αpβ ∂

∂pµ
F

=
χ

2

∫∫
η′d4p′pρ′pσ′F ′

×
[
{∇αH

µ
βρ′σ′ +∇βH

µ
αρ′σ′ −∇µHαβρ′σ′}pα′pβ′ ∂

∂pµ
f

+ fpµ∂µ(gαβHαβρσ)
]
. (4.62)

This equation is an integrodifferential linear equation, as we expected from
the beginning. It may be called a linearized Vlasov equation for the gravi-
tational plasma.

4.4. An Illustration in Cosmology4

An illustration in relativistic cosmology has been done by E. Asseo, D.
Gerbal, J. Heyvaerts and M. Signore (1978) in the domain of dispersion of

4The reader who is not familiar with usual notion of cosmology should first go to the
next section and then come back to this section.
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gravitational radiation in a universe. They mutatis mutandis used the same
technique as that in conventional plasma physics. We use a flat Robertson–
Walker metric, k = 0,

ds2 = dt2 −R2(t)
dx2 + dy2 + dz2

1 + 1
4kr

2
, (4.63)

although the cases k = ±1 are also to be considered. In this equation, R(t)
is the so-called “radius of the universe”; it is better called the “scale factor.”
In the case we consider — the one where the wavelength of the wave that
propagates according to dispersion relations is much smaller than the radius
of the universe — this is a very good approximation, which we shall accept
here.

In this case the only nonvanishing Christoffel symbols which are not
zero are 


Γi

0j =
Ṙ(t)
R(t)

δj
i (i, j = 1, 2, 3),

Γ0
ij = Ṙ(t)R(t)δj

i ,

(4.64)

and the perturbations of the Christoffel symbols are

δΓ0
00 =

1
2
ḣ00, (4.65)

δΓ0
i0 =

1
2

(
∂ih00 − 2

Ṙ(t)
R(t)

h0i

)
, (4.66)

δΓ0
ij =

1
2
(∂ih0j + ∂jh0i − h̄ij − 2Ṙ(t)R(t)h00δij). (4.67)

These are the data that take account of the background Robertson–Walker
metric. The statistical data are then summed up in the linearized kinetic
equation

p · ∂Z + Γα
βσp

βpσ ∂Z

∂pα
+ δΓα

βσ

∂N

∂pα
pβpα = 0, (4.68)

while the linearized Einstein equations do read

(Lh)µν = −
(
Kµν − 1

2
gµνK

λ
λ

)
, (4.69a)

Kµν = 8πG
∫
d2p

p0
pµpν

(
Z +

1
2
hλ

λ

)
, (4.69b)

where the left hand side of the equation for the gravitational waves is

(Lh)µν = ∆hµν + (∇µIν +∇νIµ)− hµνR
λ
λ

− gµνhαβR
αβ + 2(hµαR

α
ν + hναR

α
µ ). (4.70)
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Rαβ is the usual Einstein tensor and ∆hαβ is the de Rham–Lichnérowicz
tensor for a symmetric tensor; furthermore, we take Iβ = 0 as the de Donder
gauge.

4.4.1. The two-time scale approximation

In such a case, one is confronted with another timescale,

tH =
R(t)
Ṙ(t)

=
(

3
8πGρ

)1/2

, (4.71)

the Hubble time that characterizes the evolution of the universe. It is clear
that the dispersion and the expansion effects occur simultaneously, and thus
no effects can be neglected. However, when ω−1 = tH , the universe is essen-
tially stationary and remains — at least during a number of periods — only
as acting as a very slow change to the dispersion characteristics.5

In order to present the two-time scale method, we shall use the following
equation which looks like our linearized system:

[∂2
0 + ω2(t)]ϕ(t) =

Ṙ(t)
R(t)

∂0ϕ(t). (4.72)

R(t) varies slowly on the same scale of time as ω(t). We obviously must
introduce two times in order to treat the problem; and, for instance,

[∂2
0 + ω2(tH)]ϕ(t) =

Ṙ(tH)
R(tH)

∂0ϕ(t) (4.73)

results from the above equation by making the time inside the two terms
ω2(t) and Ṙ(t)/R(t) a “constant.” Thus, we introduce two times in the
problem; a short time tc and a long one tH . The former applies to phe-
nomena occurring in times of the order ω−1

k , while the latter occurs in
times of the order of the expansion.

Let us now specify how the various times are intermingled. We have
d

dt
=
dτ

dt

∂

∂τ
+
dtH
dt

∂

∂tH
, (4.74)

where

dτ = ωk(t)dt, τ =
∫ t

0

dt′ ωk(t′). (4.75)

τ is the short time to be used in the following. The second term on the right
hand side of the above derivative definition involves the long-time scale: if

5It was introduced by H. Poincaré when he studied the slightly nonlinear oscillations;
see e.g. J. Cole, Perturbation Methods in Applied Mathematics (Ginn Blaisdell, Waltham,
Massachusetts, 1968).
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it is applied on a function ϕ, it is of a smaller contribution than the first
term, and this from an order of (ωkτH)−1. Thus, we consider the function
as depending on the two variables τ and tH . Substituting the last equation
into Eq. (4.73), we obtain the expansion of the operators

∂

∂t
= ωk(tH)

∂

∂τ
+ ε

∂

∂tH
, (4.76)

∂2

∂t2
= ω2

k(tH)
∂2

∂τ2
+ ε

[
2ωk(tH)

∂

∂tH

∂

∂τ
+
∂ωk(tH)
∂tH

]
+ ε2∂2/∂t2H , (4.76)

where we have set ε = dtH/dt in order to conserve the size of the magnitude
of the different terms.

Inserting this formal expansion into Eq. (4.73), we get[
∂2

∂τ2
+

2ε
ωk(tH)

∂2

∂tH∂τ
+

ε

ω2
k(tH)

(
∂ωk(tH)
∂tH

)
∂

∂τ
+

ε2

ω2
k(tH)

∂2

∂t2H
+ 1
]
ϕ

= ε
Ṙ(t)
R(t)

(tH)
1
ω2

k

[
ωk(tH)

∂

∂τ
+ ε

∂

∂tH

]
ϕ. (4.77)

We now decompose ϕ in the expansion

ϕ = ϕ(0) + εϕ(1) + ε2ϕ(2) + · · · , (4.78)

so that the last equation is now split into the following hierarchy:

∂2

∂τ2
ϕ(0) + ϕ(0) = 0, (4.79)

ε

(
∂2

∂τ2
ϕ(1) + ϕ(1)

)
+
[

2ε
ωk(tH)

∂2

∂tH∂τ
+

ε

ω2
k(tH)

(
∂ωk(tH)
∂tH

)
∂

∂τ

]
ϕ(0)

= ε
Ṙ(t)
R(t)

(tH)
1

ωk(tH)
∂

∂τ
ϕ(0) (4.80)

We thus have an infinite equation to be solved immediately as

ϕ(0) = φ(0)(tH) exp(iτ), (4.81)

where φ(0)(tH) is as yet undetermined. Setting this first solution into the
second equation of the hierarchy, we get

∂2ϕ(1)

∂τ2
+ ϕ(1) = eiτ

[
i

(
Ṙ(tH)
R(tH)

1
ωk
− ω̇k

ωk

)
φ(0)(tH)− 2i

ωk

∂φ(0)(tH)
∂tH

]
. (4.82)
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Let us try to solve this last equation as

ϕ(1)(τ) = A(τ)eiτ ; (4.83)

the immediate result is a linear growth of A(t). We can now take advantage
of the unknown part of φ(1), and let us set the bracket on the right hand
side of the preceding equation equal to zero. Finally, we find the equations
at order 1: 


d2ϕ(1)

dτ2
+ ϕ(1) = 0,

Ṙ

R
− ω̇k

ωk
= 2

φ̇(0)

ϕ(1)
.

(4.84)

It should be emphasized that this procedure, in order to prevent the linear
growth of ϕ(1)(τ), is the only possible one to allow the convergence of the
series on an order of an interval of τH (E. Asseo et al., whom we follow
closely).

4.4.2. Derivation of the dispersion relations

(a rough outline)

We are now in a position to derive the dispersion relation for the cosmo-
logical gravitational plasma and for that we cast our equation in the form
of Eq. (4.60).

First, we set the Liouville equation in the form

pµ∂µZ = P (t),

P (t) ≡ 1
2
(∂ρh

α
σ + ∂σh

α
ρ − ∂αhρσ)pρpα ∂N

∂pα
,

(4.85)

because of the term ∂Z/∂u, which is much smaller than the others. Then
the equation is Fourier-transformed in three dimensions and the result is

Z =
∫ ∞

0

dτ
P (t− τ)

p0
exp

(
−iq · p

p0
τ

)
. (4.86)

Solutions of the form[
Z

P

]
=
[
Z̃

P̃

]
exp

[
−i
∫ t

0

dτ ′ω(τ ′)
]

(4.87)

are looked for, with (Z̃, P̃ ) varying slowly as a function of time [(Z̃, P̃ ) are
the “Fourier transforms” of (Z,P )]. While keeping only the lowest order
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terms, one obtains

Z̃ = P̃ (t)
∫ ∞

0

dτ

p0
exp

[
iτ

(
ω − q · p

p0

)]

= i
P̃ (t)
qλpλ

. (4.88)

As it is substituted into Σµν and Kµν , it yields an equation of the form

Σµν = Oαβ
µν hαβ, (4.89)

whereas the equation (Lh)µν = Σµν reduces to a homogeneous equation for
h̃µν :

Dµν
αβ h̃µν = Eµν

αβ h̃µν . (4.90)

Then one can show that the operator Dαβ
µν has the form

Dαβ
µν =

[
−ω2 +

q2

R2
+ 2iω

∂

∂t
+ i

∂ω

∂t
+
∂2

∂t2

]
ηα

µη
β
ν −Oαβ

µν , (4.91)

while its zeroth order is[(
−ω2 +

q2

R2

)
ηα

µη
β
ν −Oαβ

µν

]
h̃αβ = 0. (4.92)

Therefore, the equation satisfied by h̃E
αβ [Eq. (4.90)] is[

∂2

∂t2
+ ω2

k(t)
]
ηα

µη
β
ν h̃

E
αβ(t) = Eαβ

ην h̃
E
αβ(t), (4.93)

which is appropriate to the two-time scale approximations. hE represents
the various polarizations of a gravitational wave.

It should be stressed that this is a very short summary whose aim is
only to give an idea of the way the two-time scale method will apply. We
used extensively the article of E. Asseo, D. Gerbal, J. Heyvaerts and M.
Signore (1978) and it remains for us to show how it applies to the waves in
a cosmological background: this is partially the fact of the article.

4.5. Cosmology and Relativistic Kinetic Theory

The first work on the subject was an article by A.G. Walker (1936) which
was of a purely theoretical nature since, at that time, cosmology was con-
sidered as a merely speculative subject, owing to the lack of observations
other than the “nebula recession.” Moreover, cosmology was still halfway
between science and metaphysics and thus did not yet have the consider-
ation it could deserve. Furthermore, general relativity was considered as
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very speculative in spite of the observation of the bending of light rays
grazing the Sun.

4.5.1. Cosmology: a very brief overview6

Modern cosmology is essentially based on three observational facts and
their theoretical interpretation in the light of the physical concepts of our
century: (i) the expansion of the universe, (ii) the background blackbody
radiation at 2.7K, and (iii) the abundance of light elements. All other data
are connected with at least one of these three basic facts.

From a theoretical point of view, the basic assumptions are: (i) the cos-
mological principle, (ii) the existence of a universal time, (iii) the existence
of local observers characterized by a timelike four-velocity field uµ, and (iv)
the validity of general relativity.

(i) The expansion of the universe. The first fact is the “recession of the
nebulae,” discovered by E. Hubble (1929) from an observational point of
view, and interpreted as expressing the expansion of the universe with the
help of the first evolutionary models by A. Friedmann (1922, 1924). This
expansion was implemented in Hubble’s law:

v = H0d, (4.94)

where ν is the velocity of recession of an observed galaxy, d its distance to
the observer and H0 the so-called Hubble constant.

A. Friedmanns models were based on the cosmological principle, whose
mathematical traduction is that space–time is essentially homogeneous and
isotropic at very large scales, and on Einstein’s equations,

Rµν(x) − 1
2
gµν(x)R(x) − λgµν(x) = 8πGTµν(x), (4.95)

where Rµν(x) is the Ricci tensor, R(x) the curvature scalar and T µν
mn(x)

the energy–momentum tensor of matter present in the universe; and G is
the constant of gravitation and l the cosmological constant. In standard
cosmology, T λ

mn is taken to have the perfect fluid form; this property
implies that there is no dissipation and hence that the entropy is conserved.
Also, matter is supposed to form a fluid whose “molecules” are essentially
galaxies. The cosmological principle implies that the space–time metric is

6For more details, see e.g. S. Weinberg, Gravitation and Cosmology (Wiley, New York,
1972).
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the Friedmann–Robertson–Walker metric; in isotropic coordinates, it reads

ds2 = dt2 −R2(t)
dx2(

1 + 1
4kr

2
)2 , (4.96)

where k (= 0,±1) is the spatial curvature index and R(t) is the scale
factor (sometimes improperly called the “radius of the universe”). From
the conservation equations obeyed by the energy–momentum tensor and
Einstein’s equations, it can be shown that R(t) satisfies the two equations7



(
Ṙ(t)
R(t)

)2

+
k

R2(t)
=

8π
3
Gρ,

¯̇R(t)
R(t)

− 1
2
λ = −4π

3
G(ρ+ 3P ).

(4.97)

It follows that, in order to obtain the solution to this system, one more
equation is needed, such as the equation of state of the matter present in
the universe at a given time t, i.e. P = P (ρ).

The scale factor R(t) expresses the dilatation of lengths with time and,
in first approximation, leads to Hubble’s law and provides the following
relation for Hubble’s constant, H0:

H0 =
Ṙ(t)
R(t)

∣∣∣∣∣
t=t0

(4.98)

where t0 is the present time. The expansion of the universe then implies
that Ṙ(t0) > 0. Furthermore, since all distances undergo a dilatation as
time flows, roughly as

l=
R(t)
R(t0)

l0, (4.99)

densities go as l−3 and hence vary as

n(t) = n(t0)
(
R(t0)
R(t)

)3

. (4.100)

This allows considering the universe to be denser in the past provided that
it had a continuous expansion — a property of the standard model.

7Details can be found in many books, such as: P.J.E. Peebles, Principles of
Physical Cosmology (Princeton University Press, 1993); S. Dodelson, Modern Cosmology
(Elsevier, Amsterdam, 2003).
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(ii) The background blackbody radiation. This was discovered in 1965
by A.A. Penzias and R.W. Wilson and its existence was assumed by G.
Gamow in 1948 to explain the abundance of the elements.8 In the universe
there exists an electromagnetic bath of highly isotropic thermal radiation
whose distribution function is

f(k) =
1

(2π)3
1

exp(β0k0)− 1
, (4.101)

where k0 is the frequency of a photon and β0 is the inverse temperature at
the present time. As is shown below, the temperature at time t is connected
with the present time temperature through

T (t) = T (t0)
R(t0)
R(t)

. (4.102)

This means that, going backward in time, the temperature of the cosmo-
logical blackbody radiation was higher: since the universe is expanding,{

R(t) < R(t0),
t < t0.

(4.103)

Accordingly, this provides a thermal history of the universe where, for each
temperature and density regime, specific physical phenomena do occur. One
can then speculate on the various states through which our universe passed
and whose consequences could now be observable or not. For instance, the
very tiny deviations of the blackbody radiation isotropy can be interpreted
in terms of the presently admitted theories.

Let us now show how the above relation between the background
radiation temperature and the cosmological scale factor can be obtained.
Starting from Friedmann’s equations, one obtains after a few algebraic
manipulations

d(ρR3) + Pd(R3) = 0, (4.105)

which can also be derived from the conservation of the perfect fluid form
of the energy–momentum tensor. On the other hand, the equation of state
of thermal radiation is given by{

ρ = σT 4,

P =
1
3
ρ

(4.106)

(where σ is the Stefan constant), which, after it has been inserted in
the preceding equation, provides the expected result. Note also that the

8S. Weinberg, The First Three Minutes: A Modern View of the Origin of the Universe
(Basic Books, 1977).
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above blackbody distribution function provides directly the same result
since one can equivalently use the equation of states to calculate the time
evolution of T .

(iii) The abundance of light elements. G. Gamow (1948) had the won-
derful idea that the abundance of all elements could result from a chemical
equilibrium of all possible nuclear reactions in a high temperature thermal
bath. However, this idea did not work satisfactorily and only the abundance
of the lightest elements — i.e. He4, He3, D and Li7 — was explained in that
way and, today, the heavy elements formation is attributed to nuclear pro-
cesses in stars, while their dispersion in the Galaxy is thought to result
from supernova explosions.

The process of light elements formation (and abundance) occurs during
the “first three minutes” [S. Weinberg (1993)]. At its very beginning, in
the standard model, the temperature was of the order of 3MeV and matter
was a mixture of neutrons, protons, electrons, neutrinos (and antineutrinos)
and photons. Among these particles, only the last three species were rela-
tivistic and they were essentially free so that relativistic kinetic theory is
of almost no use in this case. Finally, this kind of calculations sets more or
less stringent constraints on the various phenomena which could possibly
have existed before, say, 1 s.

4.5.2. Kinetic theory and cosmology

Let us consider the “cosmological fluid,” whether composed of galaxies, ele-
mentary particles or possibly primordial stars. It should obey the Einstein–
Liouville system, i.e.


p · ∂f(x, p) + Γµ
αβp

αpβ ∂

∂pµ
f(x, p) = 0,

Rµν(x) − 1
2
R(x)gµν = 4πGTµν(x)

= 4πG
∫

gµν(x)pµpν = m2

p0 > 0

√
|g(x)|d

3p

p0
pµpνf(p),

where collisions have been neglected.9 The Einstein–Liouville system has
been studied by several authors, such as J. Ehlers, P. Gehren and R.K. Sachs
(1968), who investigated its possible isotropic solutions, or G.F.R. Ellis,

9This is not always valid as is the case in some theories of matter/antimatter separation
[see e.g. E.W. Kolb and M.S. Turner, Grand unified theories and the origin of the baryon
asymmetry, Annu. Rev. Nucl. Sci. 33, 645 (1983)].
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R. Treciokas and D.R. Matravers (1983) for anisotropic but homogeneous
cosmological solutions. This system can explicitly be rewritten [R. Hakim
(1968)] as


p0 ∂

∂t
f(t, p0)− Ṙ(t)

R(t)

{[(
p0
)2 −m2

] ∂

∂p0
f(t, p0)

}
= 0

+ Friedmann’s equations,

(4.107)

where the distribution function does not depend on x because of the cosmo-
logical principle: our universe is supposed to be homogeneous. The formal
solution to the above cosmological Liouville equation is then easily found
to be

f(t, p0) = f0

(√
(p0)2 −m2

m
R(t)

)
, (4.108)

where f0 is an arbitrary function. Note that the argument of f0 is nothing
but the well-known constant of the motion of a generic particle10:

vR(t) ≡
√

(p0)2 −m2

m
R(t). (4.109)

This means that the equilibrium Jüttner–Synge distribution cannot be a
possible solution for massive particles since p0 is not a constant of the
motion. This is of course a consequence of the fact that, in cosmology, uµ is
not a Killing four-vector but only a Killing conformal one. As a consequence
of this last property, for zero rest mass particles — e.g. photons — p0R(t)
is a first integral and the Jüttner–Synge function

f(t, p0) = A exp[−βp0R(t)] (4.110)

is still a solution to the Einstein–Liouville system; actually, it is a pseu-
doequilibrium distribution function whose temperature varies exactly as
indicated above.

The fact that massive particles cannot be in thermal equilibrium —
except for brief periods of time — has led L. Bel (1969) to suggest another
equilibrium function, of the form

f(t,p) ≈ exp[−β|p|R(t)]. (4.111)

However, the above first integral is not an additive one and hence is
not suitable for statistical thermodynamics as it is presently understood:

10See e.g. L. Landau and E. Lifschitz, Classical Field Theory (Addison-Wesley, Reading,
1962).
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a thermodynamic system, when it is separated into smaller macroscopic
pieces, should be separated from the point of view of the additive integrals.

Finally, note that in the observed universe the pressure is practically
negligible, and Friedmann’s equations are quite easy to solve and they yield

R(t)
R(t0)

=
(
t

t0

)2/3

, (4.112)

where for simplicity λ = 0 has been chosen; but this is not an essential
restriction.

4.5.3. Kinetic theory of the observed universe

Besides pure theory, most works about kinetic theory in the presence of
gravitation (including gravitational interactions) deal with stellar clusters,
galaxies or galaxy clusters, and are generally not relativistic. One of the
first tasks of observational cosmology was the verification of Hubble’s law,
in particular with farther and farther galaxies; and the magnitude/redshift
diagram, which expresses this law, was essentially in accordance with
Hubble’s results. However, the quasars, discovered in the early 1960s, were
objects with high redshifts and, accordingly, were immediately inserted into
the magnitude/redshift diagram. Unfortunately, instead of being more or
less aligned on the theoretical curve, they form a non-clearly-interpretable
cloud.

An interesting idea by L. Bel (1969) to explain this fact was the
assumption that quasars have a great dispersion in their velocities (with
respect to the cosmological flow) and could thus be described by a distri-
bution function. Their redshift is given by

1 + z ≡ λ0

λ
=
R(t0)
R(t)

√
v2 + 1− v cos θ√
v2
0 + 1− v0 cos θ

, (4.113)

where λ is the proper wavelength of the light emitted and λ0 the observed
wavelength; ν is the quasar velocity and ν0 the observer’s velocity; θ is the
angle between the quasar’s velocity and the direction of the emitted radi-
ation, and θ0 is the angle between the observer’s velocity and the direction
of the observed radiation. This has been systematically confronted with
the observational data [E. Alvarez and L. Bel (1973); E. Alvarez and J.M.
Gracia-Bondia (1974, 1975)] but without any completely conclusive issue
whatsoever. Today, astrophysicists rather think that the redshift dispersion
of quasars probably occurs because of evolution effects.
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4.5.4. Statistical mechanics in the primeval universe

In the primeval universe — roughly before 1 s in the standard model — the
temperature is so high,

kBT � mc2, (4.114)

that most particles are ultrarelativistic and hence behave as massless
objects. Accordingly, there exists a thermal equilibrium for these “massless”
particles since the local cosmological velocity uµ is a Killing conformal
field,

∇µβν +∇νβµ = 2gµνφ, (4.115)

where gµν is the Robertson–Walker metric and φ is

∇µβν +∇νβµ = 4gµν
Ṙ

R

1
T (R)

, (4.115)

with T (R) = T0R0/R.
First, we recall (see Chap. 7) the main properties of the blackbody radi-

ation. It is represented by a one-particle distribution function of the type

feq(p) =
1

exp(βp · u)− 1
(4.116)

and is such that

n =
∫
d3p

p0
pµuµfeq(p), (4.117)

ρ =
∫
d3p

p0
pµpνuµuνfeq(p), (4.118)

P =
1
3
ρ. (4.119)

Explicitly, these data read

n = 2
ς(3)
π2

T 3, (4.120)

ρ =
π2

15
T 4, (4.121)

P =
π2

45
T 4, (4.122)

where ς(3) is the Riemann function ς(x): ς(3) = 1.202.
When the blackbody radiation contains other particles than photons,

there are two possibilities. In the first case, they are ultrarelativistic. In
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such a case, they are essentially free and are such that kBT � mc2. Then
the various data concerning the blackbody radiation are essentially true
except that the degeneracy level has an effective value:

d∗ =
∑

bosons

di +
7
8

∑
fermions

di. (4.123)

In this last expression, d’s are degeneracies of the particle i while d∗ is the
total degeneracy. For instance, d = 2 for a photon, d = 4 for e± and d = 12
for the system qq̄. Finally, we have

ρ = d∗
π2

30
T 4 (4.124)

and similar formulae for n or P , etc.
Let us at this point look more precisely at Fig. 4.1, where the various

particles are shown with their effective degeneracy. We see that they are

Fig. 4.1 [after R.V. Wagoner11(1979)]

11In The Early Universe, eds. R. Balian, J. Audouze and D. Schramm (North–Holland,
Amsterdam, 1979).
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placed on plateaus of the curve; and each plateau is separated from the
other by a rounded part which represents a non-ultrarelativistic particle
and even a nonequilibrium state of the system. However, it is generally
omitted, the more so since the fact is that the “roundup” is quite small and
therefore is not considered.

4.5.5. Particle survival

In the cosmic blackbody radiation, particles are in equilibrium,

m+ m̄ � nγ,

at least as long as the temperature does not fall off too much. When the
particles are in equilibrium, their distribution function is roughly

Neq ∝ (mβ)3/2 exp(−mβ), (4.125)

at least close enough to the end of the equilibrium since their kinetic energy
is in the neighborhood of zero.

If it goes down so that it is in an off-equilibrium state, a few particles
would not find any partner to annihilate and thus they would survive to
the blackbody. This is of particular importance when one looks, at particles
produced in a symmetric manner and it would be important to evaluate the
particles which survive, i.e. which do not collide with an antiparticle.

Suppose that the number of particles and of antiparticles are produced
equally in the thermal blackbody radiation. Suppose further that they anni-
hilate with a given cross-section σ(m,T ); then what is the density of the
particles n(m) actual at the present moment? What is the mass density
ρ(m) at the same density? This is called the problem of “particle survival-
Particle survival,”12 and we follow the course of J.D. Barrow (1983). The
problem will be handled with a relativistic Boltzmann-equation-like; more
exactly, one for the particle and the other for the antiparticle. If f(x, p) and
f̄(x, p) denote the distribution of these cases, they obey the equations


p · ∂f + Γµ

αβ

∂

∂pµ
f = C(f, f̄),

p · ∂f̄ + Γµ
αβ

∂

∂pµ
f̄ = C(f̄ , f),

(4.126)

12See e.g. J.D. Barrow, Cosmology and Elementary Particles (Gordon and Breach, 1983).
The first articles on the subject are: H.Y. Chiu, Phys. Rev. Lett. 17, 712 (1965); Y.B.
Zakharov, Adv. Astron. Astrophys. 3, 242 (1965); G. Steigman, Annu. Rev. Astron.
Astrophys 29, 313 (1979).
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where C(f, f̄) is the collision term which contains (i) the particle–particle
collisions, (ii) the antiparticle–antiparticle collisions, (iii) the particle–
antiparticle collisions and (iv) the production rate of particles.

Before looking at the collision term, let us simplify the streaming term —
the left hand side of these equations — by noting that the standard cos-
mology is homogeneous and hence one has ∇xf = ∇xf̄ = 0. Also, the
explicit calculation of the Christoffel symbols occuring in the streaming
term yields

p0 ∂f

∂t
− (p02 −m2)

Ṙ

R

∂f

∂p0
= C(f, f̄) (4.127)

and another analogous equation for f̄ , where C(f, f̄) is the collision term.
We now integrate the two equations for f and f̄ . It turns out that


1√−g∂µ(

√−g nuµ) =
∫
d4p C(f, f̄),

1√−g∂µ(
√−g n̄uµ) =

∫
d4p C(f̄ , f),

(4.128)

or, because of the symmetry properties of the background and from the
fact that we are in a frame of reference where u = 0,

∂n

∂t
+ 3

Ṙ

R
n = −gsnn̄ 〈Wδ〉+ P (t) (4.129)

and the other equation for n̄.
In this equation, we made the simplification that

W (p′, p′′ → p, p̄)δ(p+ p′′ − p′ − p)
≈ 〈W (p′, p′′ → p, p̄)δ(p+ p′′ − p′ − p)〉;

this is the basis of the statistical assumption made in elementary particle
production. This hypothesis is valid insofar as the brackets, 〈· · · 〉 vary
slowly. Then the various terms of C(f, f̄) all vanish and the only surviving
one is gs〈· · · 〉, where gs is the degeneracy of the particles. There also sub-
sists the production rate of the particles P (t); finally, we get

∂n

∂t
+ 3

Ṙ

R
n = −gsnn̄ 〈Wδ〉+ P (t) (4.130)

and a similar equation for n̄. Taking account of the fact that P (t) ≡ P̄ (t),
by substracting the second equation from the former, we obtain

∂(n− n̄)
∂t

= −3
Ṙ

R
(n− n̄) (4.131)
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or

(n− n̄)R3 = const; (4.132)

in other words, the number of particles is a first integral of the system. We
use now the detailed balance principle, which indicates that Ṙ/R = 0, in
equilibrium, and N̄ = 0. It follows that

Peq = 〈Wδ〉n̄eqneq = 〈Wδ〉n2
eq, (4.133)

which is introduced in the equation of the particle number

N = nR3, (4.134)

i.e. Eq. (4.130), to obtain

dN

dt
= 〈Wδ〉(neq + n)(Neq −N)

= 〈Wδ〉neq(N2
eq −N2), (4.135)

which shows that N ≈ Neq and therefore

N ≈ Neq ∝ (mβ)3/2 exp(−mβ). (4.136)

However, when the temperature falls off, N is no longer a solution to
Eq. (4.136) and it occurs with a deviation from equilibrium:

∆ =
N −Neq

Neq
. (4.137)

Thus, for temperatures lower than that where there is no longer any pro-
duction of the massive particles, we have

dN

dt
= −〈Wδ〉n2V = −〈Wδ〉N2V −1. (4.138)

This occurs when the expansion rate equals the interaction rate; we call
T ∗ the characteristic temperature for one type of particles. This last
equation should be considered with the boundary condition that N(T ∗)
deviates from Neq(T ∗) by ∆(T ∗). This equation, which gives rise to a large
deviation ∆, ( m

T ∗
)1/2

exp
( m
T ∗
)

= const × gim〈Wδ〉g−1/2, (4.139)

is solved numerously, and the result is shown in Fig. 4.2.



February 12, 2011 11:38 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch04 FA

Curved Space–Time and Cosmology 93

Fig. 4.2 Number of particles that survive from the cosmological radiation [after G.

Steigman (1979)]. Leptons are Z0
L and Z±

L , while hadrons are designated by ZH . Z is
proportional to the mass of the particles.

It shows the equilibrium and off-equilibrium parts (one for each kind
of particles). The equilibrium part for photons, or zero rest mass particles,
is the Z = 0 part, while the other part is composed of two parts: (i) an
equilibrium part and (ii) the off-equilibrium one “flowing” out of the equi-
librium.
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Chapter 5

Relativistic Statistical Mechanics

From a theoretical point of view, relativistic statistical mechanics has
long been a puzzling question and has finally been erected after rela-
tivistic kinetic theory has been clarified, after some tools proposed by P.G.
Bergmann (1951) have been presented and after Yu. L. Klimontovich’s
articles (1960) on relativistic plasmas have appeared. Also, P. Havas (1965)
thoroughly discussed the dynamical problems raised by relativity.

5.1. The Dynamical Problem

From a dynamical point of view, there are also deep differences between rel-
ativistic and Newtonian mechanics, and let us briefly discuss this important
point. First, the known equations of motion are not of the standard Hamil-
tonian form and it seems that some people think that this rules out the
possibility of constructing a relativistic statistical mechanics. Of course,
in many cases, equations of motion, whether relativistic or not, can be
cast into a Hamiltonian form; however, such a possibility is merely formal,
since the Hamiltonian has not the meaning of an energy and hence rules
out the possibility of defining, for example, thermal equilibrium. However,
this absence of a physical Hamiltonian does not mean that a statistical
mechanics is impossible to build. Statistical mechanics, as it is presently
understood after J.W. Gibbs, is constructed from (i) equations of motion
and (ii) random initial data whose probability distribution is supposed to
be known or, at least, replaced by another assumption, such as thermal
equilibrium.

94
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Moreover, it has been shown that relativity and the use of Hamiltonian
equations of motion lead to the no-interaction theorem1 of D.G. Currie,
T.F. Jordan and E.C.G. Sudarshan (1963), i.e. the only Hamiltonian with
an energy interaction and covariant has no manifestly covariant content.
This prompted a number of authors to build a statistics of both fields
(essentially the electromagnetic field) and particles, following work already
performed in the Newtonian case.2 While this can be done in a manifestly
covariant way — as outlined below — most authors preferred to decompose
the field into elementary harmonic oscillators, breaking thereby the Lorentz
invariance of the theory, but with the advantage of an easier interpre-
tation of various elementary processes [see e.g. A. Mangeney (1965)]. The
Hamiltonian used in such an approach essentially reads

H =
i=N∑
i=1

√
(pi − eA(xi, t))2 +m2 +

1
8π

∫
d3x (E2 + B2), (5.1)

while the electric and magnetic fields E and B are expanded into field oscil-
lators. With such a Hamiltonian, a Liouville-like equation can be written
and the usual methods of perturbation theory applied. This has been exten-
sively studied by R. Balescu and his collaborators, and by I. Prigogine and
his coworkers.

An interesting attempt to avoid the difficulties occurring because of the
absence of a Hamiltonian was made by L.P. Horwitz, S. Shashoua and W.C.
Schieve (1989).

The only known classical physical system3 consists of charged particles
interacting via electromagnetism; its basic equations of motion are



dpµ
(i)

dτ
=

e

m
Fµν(x(i))p(i)ν ,

�Aµ(x) − ∂µ∂νA
ν(x) =

4πe
m

i=N∑
i=1

pµ
(i)(τ(i))δ

(4)[x− x(i)(τ(i))].

(5.2a)

Solving the second of these equations for the electromagnetic four-potential
Aµ(x), with the Lorentz gauge condition

∂νA
ν(x) = 0, (5.2b)

1D.G. Currie, T.F. Jordan and E.C.G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963); see
also G. Marmo, N. Mukunda and E.C.G. Sudarshan, Phys. Rev. D20, 2120 (1984).
2See e.g. E.G. Harris and A. Simon, Phys. Fluids 3, 255 (1960).
3In the past, interactions of particles via a scalar field were considered as a possible

description of nuclear matter [G. Marx, Nucl. Phys. 1, 660 (1956)]; for its statistical
description, see R. Hakim (1967b).
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and by using retarded solutions, one obtains equations of motion which can
also be derived from the so-called Fokker action principle,4

δI = δ




i=N∑
i=1

∫
pµ

i piµ dτ +
1
2

∑
i,j

e2
∫∫

pµ
i pjµD(xi − xj)dτi dτj


 = 0,

(5.3)
where D is the retarded elementary solution to the wave equation


�D(x) = δ(4)(x),

D(x) = θ(x0)δ(x2).
(5.4)

This variational principle exhibits the nonlocal nature of the equations of
motion. The two viewpoints — field-plus-particles or particles only — are
then equivalent as far as the motions of the particles are concerned. The
equations of motion can thus be rewritten in terms of the particle variables
only: 



d

dτi
pµ

i (τi) =
e

m
Fµυ [x(τi)]piυ(τi),

Fµυ(x) = ∂µAυ(x)− ∂υAµ(x),

i = 1, 2, . . . , N,

(5.5)

with

Aµ[xi(τi)] =
4πe
m

i=N∑
i=1

∫
d4x′ dτi p

µ
i (τi) D[x′] δ(4)[x′ − xi(τi)]. (5.6)

This is equivalent to solving the field equations in terms of the particle
data. There was another attempt, also based on action-at-a-distance or on
direct interactions [Ph. Droz-Vincent (1996)].

5.2. Statement of the Main Statistical Problems

Basic problems in relativistic statistical mechanics are of several sorts.
Firstly, as was outlined above, they are of dynamical order: What are the
initial data corresponding to the equations of motion under consideration?

4A.D. Fokker, Z. Phys. 58, 386 (1929). See also: A.O. Barut, Electrodynamics and
Classical Theory of Fields and Particles, p. 122ff (MacMillan, New York, 1964);
J. Rzewuski, Field Theory, Part I (PWN, Warsaw, 1964).
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Secondly, problems of statistical order have to be considered: What may be
called a “relativistic Gibbs ensemble”? How does one treat in a covariant
way the random character of the possibly existing fields? Finally, they are
also relevant to the possibility of actually measuring the initial data, at
least via some gedanken experiment. In this section, those problems are
addressed and their incidence is discussed.

5.2.1. The initial value problem: observations and measures

The equations of Newtonian mechanics are second order differential equa-
tions and the initial conditions, which are necessary for obtaining solutions,
are most generally considered to be the initial positions and velocities
(or momenta) of the particles that constitute the system in question. In
the (nonquantum) relativistic context, the two possible points of view,
i.e. field or action-at-a-distance, the statuses of the initial data are not
analogous.

Let us begin with the action-at-a-distance point of view. The equations
of motion are integrodifferential equations and so far the status of their
initial conditions is still unclear. In order to be similar to the Newtonian
ones, they should be such that, given a spacelike three-surface Σ considered
as the “initial time,” only the initial positions and momenta of the particles
on Σ are necessary for specifying the motion of the system in the future
of this three-surface. However, in the action-at-a-distance formalism, the
precise nature of the initial data corresponding to the equation of motion
is totally unknown. Moreover, in the case of only two particles, it has been
shown that not only the usual (positions and momenta) initial data have
to be known on Σ, but also the motion can be specified only if their past
is partly known (i.e. a finite part of the past trajectories).

As to the field point of view, it is generally implicitly assumed that
the initial data on Σ that allow knowledge of the future of the system are
(i) the initial positions and momenta of the particles and (ii) the usual
initial data of the (electromagnetic) field, which are the field on Σ and
its normal derivative. This rests on the loose idea that, separately, the
particles obey second order differential equations while the fields satisfy
second order partial differential equations. Although natural, not only is
such an assumption not proven but also it could well be incorrect if what
has been shown in the case of the two-particle problem in the action-at-a-
distance formalism is confirmed.
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To be specific, let us consider the case of particles interacting through
a scalar field, the equations of motion being

dpµ
(i)

dτ(i)
= g∆µν(p(i))∂νϕ(x(i)), i = 1, 2, . . . , N, (5.7)

for the particles and

�ϕ(x) +M2ϕ(x) = g

i=N∑
i=1

∫ +∞

−∞
dτ δ(4)[x− x(i)(τ)] (5.8)

for the scalar field.5 The equations for the particles are obviously second
order differential equations, and if the scalar field were given, the initial
data would be of the form {x(i)0, p(i)0}i=1,2,...,N . As to the field, if the
motion of the particles were known, this second order partial differential
equation would be solved as

ϕ(x) = g
i=N∑
i=1

∫ +∞

0

dτ

∫
d(4)x′∆(x− x′)δ(4)[x− x(i)(τ)

]

+
∫

Σ

dΣν

[
∆(x− x′)∂νϕ(0)(x′)− ∂ν∆(x− x′)ϕ(0)(x′)

]
, (5.9)

where the first term comes from the right hand side of the field equation
and the second one makes the initial data of the field apparent. In this last
equation, ∆(x) is an elementary solution of ϕ.

It should also be noted that the elimination of the self-field in favor of a
set of supplementary variables (e.g. accelerations) for the particles renders
the situation even worse and conditions of a new kind have to be imposed.
F. Rohlich (1965), probably by analogy with quantum field theory, chooses
to impose the condition that the particles of the system (in the absence of
external fields) are free (see below).

Let us now make a brief parenthesis on the possible measurability of the
particles’ initial data. In the Newtonian context, the initial positions and
momenta of the particles of the system can, in principle, be measured with
an arbitrary accuracy and, furthermore, instantaneously. Within the rela-
tivity framework, an observer using electromagnetic signals can only “see”

5If one insists on a physical interpretation, the particles are classical nucleons interacting
through (classical) scalar mesons.
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Fig. 5.1 Measure of the space–time position of a particle: an observer emits a radar
signal at a given time t0 and absorbs the signal reflected by the particle at time t1,
measuring thereby its space–time position.

what is on his past light cone6 and the initial data accessible to his mea-
sures lie entirely on this three-surface, and not on a spacelike three-surface.
Furthermore, the position measurements can never be instantaneous and
always need an interval of time: the one between the emission of a radar
signal and its reception (see Fig. 5.1). As to the measure of the field data, the
situation is far more involved from an “operational” point of view. However
(besides the particles’ initial data), if with some experimental device the
electromagnetic field and its normal derivative on the past light cone are
measured (or known), then one faces a new problem of a mathematical
nature: the Cauchy problem for the electromagnetic field is not well set
on its characteristic surfaces, i.e. on the light cone. Loosely speaking, this
can be physically understood as follows: since this field propagates with
the speed of light, the field’s initial data give rise to a loss of information
reaching the point of “observation” owing to the fact that some of field data
do propagate perpendicularly to the light cone.

The usual Cauchy problem — finding the solutions to the dynamical
equations with given initial conditions — is such that initial data are

6The situation can, of course, be more involved when the background medium is dis-
persive. In such a case, the initial positions lie on a timelike conoid. If the observer uses
signals propagating with velocities smaller than the velocity of light, then the “initial
data” are dispersed in his entire past light cone.
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provided on a spacelike three-surface, and this does not correspond to
what is measured, at least in principle. In fact, this is probably a reminder
of the Newtonian case, where initial data are known at a given specific
time; the spacelike three-surface is the analog of the Newtonian spacelike
three-plane t = const. If one insists on a physical interpretation, one might
elaborate on the fact that they correspond to a “preparation” of the system
during part of the past of the “initial” three-surface.

5.2.2. Phase space and the Gibbs ensemble

In the Newtonian context, a system of N particles is described by a tra-
jectory in a 6N -dimensional phase space,

Γ(6N) ≡ µ(6) × µ(6) · · · × µ(6), (5.10)

where µ(6) is the one-particle classical phase space: µ(6) ≡ {x}(3)×{p}(3). In
special relativity, the natural generalization of the Newtonian phase space
that contains no arbitrary object, such as spacelike three-surfaces, is the
8N -dimensional Γ space:

Γ ≡ µ× µ · · · × µ. (5.11)

However, in such a space, a point representing the state of the system does
not lie on a one-dimensional trajectory, as in the classical case, but rather
on an N -dimensional manifold [R. Hakim (1967a)]. This can easily be seen
from the fact that such a point,

{xA}A=1,2,...,8N = {[x(1)(τ1), p(1)(τ1)], [x(2)(τ2), p(2)(τ2)], . . . ,

× [x(N)(τN ), p(N)(τN )]}, (5.12)

does depend on the N proper times of the particles within the system.
It follows that the statistical description of a relativistic system of point
particles deeply differs from the usual one although the former gives rise to
the latter in appropriate conditions.

While there is at present strong agreement on such a relativistic phase
space [see e.g. Ph. Droz-Vincent (1996); L.P. Horwitz, S. Shashoua and
W.C. Schieve (1989)], this is not always the case and some authors prefer
working in the conventional six-dimensional phase space, at the expense
of manifest Lorentz covariance and with subsequent complications [see e.g.
R. Balescu, T. Kotera and E. Pina (1967)].

In Hamiltonian mechanics, phase space is the fiber bundle cotangent
to the configuration space, i.e. the space whose coordinates are
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{qi, pi}i=1,2,...,N ; and, at the same time, it is also the space constituted
by the possible initial conditions. In the relativistic domain, where the
dynamics is definitely not Hamiltonian, phase space does not enjoy
the properties of the Newtonian phase space; in particular, it cannot be
the space of the (unknown!) initial conditions. We are thus left with the
8N -dimensional state space (defined above), which allows a description sub
specie eternitatis of the system; a space that, for brevity, we shall call “phase
space.”

Newtonian statistical mechanics was a statistics of points, whereas rel-
ativistic kinetic theory appeared as a statistics of curves (of space–time
trajectories), as was remarked by J.L. Synge (1957); relativistic statistical
mechanics is now a statistics of N -dimensional manifolds.

It remains for us to define what can be called a relativistic “Gibbs
ensemble.” In Newtonian physics, it is defined by the data of an ensemble
of analogous (i.e. obeying the same dynamical laws) and noninteracting
systems, which differ by their initial conditions, the latter being charac-
terized by a probability measure. In the relativistic case, the initial condi-
tions {ω} are unknown but one can still assume that they are random and
still characterized by a probability measure dµ(ω), so that an observable
K(X({ω})) possesses the probability density

ρ(K) =
∫
dµ(ω) δ[K −K(X({ω}))], (5.13)

where X is a phase space point. Finally, since in the last analysis every
physical quantity does implicitly depend on the initial data {ω}, it will
be convenient to assume the existence of an averaging operation 〈K〉
for all physical observables and obeying natural mathematical conditions
such as

〈αA+ βB〉 = α〈A〉+ β〈B〉, ∂〈A〉 = 〈∂A〉,
〈∫

A

〉
=
∫
〈A〉.

In particular, this will be applied for functions like

R(x, p) ≡
∫
ds

i=N∑
i=1

δ(4)[p− pi(s)] δ(4)[x− xi(s)], (5.14)

used in Chap. 1, or in this chapter to more complex objects.
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5.3. Many-Particle Distribution Functions

On the relativistic 8k-dimensional reduced phase space, the k-particle
random densities are first defined as

Rk

[
xµ1 , pµ1 ;xµ2 , pµ2 ; . . . ;xµ

k
, pµ

k

]
=
∫
· · ·

∫
dτ1 dτ2 . . . dτk

×




∑
i1,i2,...,ik

all differents

j=k∏
j=1

δ(4)[xj − xij (τj)]δ
(4)[pj − pij (τj)]



. (5.15)

From this definition the usual (multitime) k-particle distribution function

fk

[
xµ1 , pµ1 ;xµ2 , pµ2 ; . . . ;xµ

k
, pµ

k

]
is defined as

fk

[
xµ1 , pµ1 ;xµ2 , pµ2 ; . . . ;xµ

k
, pµ

k

]
=
〈
Rk

[
xµ1 , pµ1 ;xµ2 , pµ2 ; . . . ;xµ

k
, pµ

k

]〉
. (5.16)

The brackets represent an average value over the initial conditions whatever
they might be: it is sufficient to assume its existence with its usual prop-
erties, like linearity. To be more specific, we first note that the one-particle
distribution function is of the above type. Explicitly, the two-particle
distribution reads

f2 [x1, p1; x2, p2] =
〈∫ ∫

dτ1 dτ2
∑
i�=j

δ(4) [x1 − xi(τ1)] δ(4) [p1 − pi(τ2)]
〉

(5.17)
and is normalized as

N(N−1) =
∫

Σ

∫
Σ′

∫∫
dΣµ dΣυ d

4p1 d
4p2 p

µ
1 p

υ
2f2 [x1, p1; x2, p2] , (5.18)

where
∑

and
∑′ are two arbitrary spacelike three-surfaces. The normal-

ization of the fk’s are quite similar except that they are normalized to
k!Ck

N .
However, unlike the Newtonian case, other kinds of distribution func-

tions must also be introduced in order to get a complete system of equations.
Some of them are exhibited in the next subsection.
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5.3.1. Statistics of the particles’ manifolds∗

In this subsection the geometrical definitions necessary for performing
a statistics of the N -manifolds representing a Gibbs ensemble in the above
relativistic phase space are outlined. As a matter of fact, they can be avoided
when one uses coordinates adapted to the very nature of the problem. These
notions are inspired by P.G. Bergmann’s “generalized statistical mechanics”
(1951).

In order to make such a statistics, it is necessary to dispose of an
8N -current JA1A2...AN (xA), where the indices A run from 1 to 8N and
are normalized through∫

Ω

JA1A2...AN (xA)dΣA1A2...AN = NN , (5.19)

where xA are the coordinates of a point in the relativistic phase space. Ω is
a 7N -dimensional manifold that crosses all the N -dimensional manifolds of
the relativistic Gibbs ensemble. To visualize this situation, one can think
to a spacelike three-surface crossed by the world lines of the independent
particles of a system obeying a given force law. In this equation, dΣA1A2...AN

is the differential form “element of surface” of the 7N -dimensional manifold
Ω, embedded in an 8N -dimensional space.

The differential form JA1A2...AN (xA)dΣA1A2...AN is a closed form:

d
(
JA1A2...AN (xA)dΣA1A2...AN

)
= 0. (5.20)

This property implies that

∇Ai Ĵ
A1A2...AN (xA) = 0, i = 1, 2, . . . , N, (5.21)

where ĴA1A2...AN (xA) is the antisymmetrical part of JA1A2...AN (xA). The
proof is quite similar to the one used for the usual relativistic continuity
equation [see R. Hakim (1967a)].

These conditions constitute a relativistic form of the particle conser-
vation in phase space. Note that, instead of there being only one equation
in the Newtonian case — which gives rise to the usual Liouville equation,
together with the equations of motion — there exist now N such equations.

The above N -particle distribution function is recovered by setting

JA1A2...AN (xA) ≡ fN (xA)ξA1A2...AN (xA), (5.22)

∗In a first reading this subsection can be omitted.
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where ξA1A2...AN (xA) is similar to a “four-velocity” and in coordinates
adapted to the structure of the manifold Ω as the form

ξA1A2...AN (xA) = ξA1 ⊗ ξA2 ⊗ · · · ⊗ ξAN , (5.23)

where ξA
i is the Ath component of the 8N -vector

ξi = 0⊕ 0⊕ · · · ⊕ ηi ⊕ 0 · · · ⊕ 0 (5.24)

with

ηA
i ≡ {piµ, F

µ
i } (5.25)

in the usual coordinate system.
With these definitions, one can also write

JA1A2···AN (xA) = fN (xA)ξA1
1 ⊗ ξA2

2 ⊗ · · · ⊗ ξAN

N (5.26)

and the above conservation equations reduce to

∇Ai{fN(xA)ξAi

i } = 0, i = 1, 2, . . . , N,

or, in the usual coordinates {xµ
i , piµ}i=1,2,...,N , read

∇Ai{fN(xA)ηAi

i } = 0, i = 1, 2, . . . , N. (5.27)

When the dynamics is such that

∇Ai{ηAi

i } = 0, Ai = 1, 2, . . . , 8; i = 1, 2, . . . , N, (5.28)

one obtains the N Liouville equations

ηAi

i ∇Ai{fN(xA)} = 0, i = 1, 2, . . . , N. (5.29)

When this is true, a Liouville theorem is valid although fN does not satisfy
an N -particle Liouville equation, and one has

dfN (xA) =
i=N∑
i=1

fN (xA)ηAi

i dτi = 0. (5.30)

This is the case for electromagnetic interactions, for instance.
All that has been said about fN can be repeated mutatis mutandis for

all other densities, which can be met in what follows. We shall not pursue
this geometrical approach, which can be useful only in highly particular
cases.
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5.4. The Relativistic BBGKY7 Hierarchy

In order to obtain a BBGKY hierarchy for the various densities, a gener-
ating equation for the random distribution R1 is first derived as [Yu. L.
Klimontovich (1960); R. Hakim (1967b)]

pµ∂µR1(x, p) + 4πe2∇µ

{
pυ

∫
dτ dτ ′ d4x′ d4p′[p′µ∂υ − p′υ∂µ]D(x − x′)

×
∑
i,j

δ(4)[x− xi(τ)]δ(4)[p− pi(τ)]δ(4)[x′ − xj(τ ′)]δ(4)[p′ − pj(τ ′)]
}

= 0,

(5.31)

where the elementary properties of the δ distributions have been used
together with the replacement of the various expressions of Fµν , Aµ by their
explicit forms. The expression between the brackets represents nothing but
the electromagnetic field Fµν and its source Jµ. The double sum in this last
equation can be split as ∑

i,j

=
∑
i�=j

+
∑
i=j

. (5.32)

The first term on the right hand side (i �= j) is simply what has been
defined as R2 after it has been integrated over τ and τ ′, while the first one
deserves a brief explanation. It is explicitly written as

W2(x, p;x′, p′) ≡
∫
dτ dτ ′

∑
i

δ(4)[x− xi(τ)]δ(4)[p− pi(τ)]

× δ(4)[x′ − xi(τ ′)]δ(4)[p′ − pi(τ ′)] (5.33)

and it represents essentially the probability density for a given particle to
be in the state (x, p) and next to undergo a transition to the state (x′, p′).
While W2 must vanish out of the null cone (x−x′)2 = 0 (x or x′ being in the
future of x′ or x, respectively, causality is implied by the timelike character
of the trajectory of the particle), this is a priori not the case for R2, which
refers to different particles. From a dynamical viewpoint, W2 expresses the
back-reaction of the particle on itself; accordingly, since one deals with the
electromagnetic interaction, it is an infinite term, which is often discarded
a priori. However, besides an infinite term, it also gives rise to a finite —
albeit small — contribution (see the next subsection). Finally, setting

P2 = 〈W2〉, (5.34)

7Bogoliubov, Born, Green, Kirkwood and Yvon.
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and taking the average value of the generating equation of the hierarchy, it
turns out that the first equation of the hierarchy reads

pµ∂µf1(x, p) + 4πe2∇µ

{
pυ

∫
d4x′ d4p′[p′µ∂υ − p′υ∂µ]D(x − x′)

× [f2(x, p;x′p′) + P2(x, p;x′p′)]
}

= 0. (5.35)

The next equation of the relativistic BBGKY hierarchy is obtained by mul-
tiplying the generating equation by R1 and averaging; after a little algebra,
one gets

pµ∂µf2(x, p;x′p′)

+ 4πe2∇µ

{
pυ

∫
d4x′ d4p′[p′′µ∂υ − p′′υ∂µ]D(x− x′′)

× [f3(x, p;x′, p′;x′′p′′) + F 2
3 [(x, p)→ (x′, p′); (x′′, p′′)]

+F 2
3 [(x′′, p′′)→ (x′, p′); (x, p)]]

}
= 0. (5.36)

A few comments are now in order. While in the Newtonian case the first
equation of the hierarchy is an equation that needs the knowledge of f2 in
order to evaluate f1, in the relativistic case one also needs the knowledge of
one more function — say, P2. A glance at the next equation of the hierarchy
shows that the knowledge of one more distribution — say, F 2

3 [(x, p) →
(x′, p′); (x′′, p′′)] — is needed too. This distribution is the distribution of one
particle undergoing the transition (x, p) → (x′, p′), while another particle
is present in the state (x′′, p′′). It is not useful to give the third equation
of the hierarchy, since in actual practice only the first two are needed.
This second equation is also supplemented by a symmetric equation on the
primed variables, unlike the nonrelativistic case.8 However, one also needs,
at least in principle, an equation for P2. It can easily be obtained from the
generating equation of the relativistic hierarchy, or from an equation for
W2, as

pµ∂µP2(x, p;x′p′) + 4πe2∇µ

{
pυ

∫
d4x′′ d4p′′[p′′µ∂υ − p′′υ∂µ]D(x− x′′)

× [P3(x, p;x′, p′;x′′p′′) + F 2
3 [(x, p)→ (x′, p′);x′′, p′′)]]

}
= 0, (5.37)

8Note, however, that in the classical “multitime” hierarchy, one gets similar distribu-
tions.
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Fig. 5.2 Diagrammatic representation of the first equation of the relativistic BBGKY

hierarchy: f1 is expressed in terms of f2 and P2; the dotted line represents the nonlocal
electromagnetic interaction, including a self-interaction on the term P2. This distribution
does not appear in the Newtonian theory.

Fig. 5.3 Representation of one of the second equations of the BBGKY relativistic
hierarchy — it can be obtained from the preceding one by adding a line to Fig. 5.2.
Once more, this shows the appearance of new kinds of distribution functions, which are
not encountered in the Newtonian framework.

where P3 is the distribution function for a given particle to undergo the
transitions

(x, p)→ (x′, p′)→ (x′′, p′′). (5.38)

The generating equation of the relativistic hierarchy can be represented by
Fig. 5.2, from which all the equations of the hierarchy can be represented
and given an explicit form. In this diagram f1 is represented by one vertex
and two external lines, f2 by two vertices and four external lines, and P2

by two vertices, one internal line and two external lines.
In order to obtain the second equation of the hierarchy, it is sufficient

to add to both diagrams a new vertex with two external lines.
From the above considerations, one can find a few rules allowing the

diagrammatic expression of any equation of the hierarchy; this is, however,
useless since only the first few equations are actually used.

5.4.1. Cluster decomposition of the relativistic

distribution functions

The various multiparticle distribution functions should generally be decom-
posed into cluster decompositions in order to close the hierarchy with
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some ansatz like the assumed vanishing of a particular correlation function.
The representations of the distribution functions by appropriate diagrams
show the way the new functions occurring in the relativistic BBGKY hier-
archy should be decomposed. First, it should be noted that f2 can be
decomposed as

f2 = f1 × f1 + g2, (5.39)

where g2 is the two-body correlation function or diagrammatically (see
Fig. 5.4). Similarly, f3 is cluster-decomposed as

f3 = f1 × f1 × f1
+ g2 × f1 + g2 × f1 + g2 × f1
+ g3, (5.40)

which decomposition is represented by the following diagram:
Obviously, distribution functions like P2 or P3 cannot be decomposed;

this is, however, not the case for mixed distributions like F 2
3 [(x, p) →

(x′, p′); (x′′, p′′)]. A glance at its representative diagram shows that it must
be decomposed in a way similar to f2, i.e. as

F 2
3 = P1 × f1 + g(3)2, (5.41)

diagrammatically represented in Fig. 5.6, where g(3)2 is a three-point two-
body correlation.

Fig. 5.4 Cluster decomposition of f2. This does not present any new particularity with
respect to the usual case; however, it constitutes a model for the cluster decomposition
of more involved distribution functions, suggesting that the connected parts of the rep-
resentative diagram of a distribution function have to be factored.

Fig. 5.5 Illustration of the cluster decomposition — the case of f3.
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Fig. 5.6 Cluster decomposition of F 2
3 . The diagram representing this distribution

function is composed of two disconnected lines and hence its cluster decomposition con-
tains the product of the two distribution functions represented by these lines.

More generally, the rule for a cluster decomposition of a given distri-
bution function — when needed — is to decompose disconnected parts of
the representative diagram exactly as for fk.

5.5. Self-interaction and Radiation

In a previous section, it was mentioned that the interaction term involving
P2 is connected with a self-interaction of the particle. This has to be elab-
orated a little bit further. When we go back to the original δ terms from
which it results, we can realize that this self-interaction is a consequence
of the action of the retarded electromagnetic field Fµυ

ret emitted by a given
particle and acting on the same one. When this retarded field is split as9

Fµυ
ret =

1
2
[Fµυ

ret + Fµυ
adv] +

1
2
[Fµυ

ret − Fµυ
adv], (5.42)

it can be shown that the self-interaction of a particle contains two parts:
the first one is infinite and of the general form

∞× dxµ(τ)
dτ

, (5.43)

while the second one is finite and takes account of the back-reaction of the
radiation emitted on the particle. The infinite term can be absorbed in a
formal mass renormalization. Finally, the equations of motion obeyed by
a system of electrons, embedded within a uniformly charged neutralizing
background, read

dpµ
i (τi)
dτi

= eF
(i)µυ
ret (xi)piυ(τi) +

2
3
e2[γ̇µ

i (τi) + γ(τi) · γ(τi)u
µ
i (τi)],

(5.44)

9A.O. Barut, Electrodynamics and Classical Theory of Fields and Particles (MacMillan,
New York, 1965); F. Rohrlich, Classical Charged Particles (Addison-Wesley, Reading,
Massachusetts, 1965).
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∂µF
(i)µυ∗
ret = 0,

∂µF
(i)µυ

ret (xi) =
e

m

∫ ∑
j �=i

δ(4)[xi − xj(τj)]δ(4)[pi − pj(τj)]pυ
j (τj),

i = 1, 2, . . . , N, j = 1, 2, . . . �= i, . . . , N. (5.45)

These equations must be supplemented by the asymptotic condition

lim
τ→∞ γ

µ(τ) = 0, (5.46)

which expresses the fact that the electrons are free at infinity. This
condition10 allows the elimination of the so-called “runaway solutions”
[see F. Rohrlich (1965)].

These equations are discussed in detail in the books by A.O. Barut
(1965) and F. Rohrlich (1965). The presence of the proper time derivative
of the four-acceleration in the equations of motion requires a modification
of the above statistical treatment of the system. In particular, phase space
needs to be enlarged so as to take account of the acceleration variables as

Γnew = Γ× {γ}(4N), (5.47)

which necessitates the introduction of new distribution functions on this
new phase space. Accordingly, we introduce a random distribution R1, (as
in a preceding section),

R1[x, p, γ] =
∫
dτ

∑
i

δ(4)[x− xi(τ)] δ(4)[p− pi(τ)] δ(4)[γ − γi(τ)], (5.48)

and also its average value over the initial conditions f1 = 〈R1〉. Note that
this new f1 is normalized through∫

Σ

dΣµ

∫
d(4)p

∫
d(4)γ δ(p · γ)

pµ

m
f1(x, p, γ) = N, (5.49)

since the integration must obey the constraint p · γ = 0.
The continuity equation in the new one-particle phase space,

∂µ(pµR1) +∇µ(γµR1) +
∂

∂γµ
(γ̄µR1) = 0, (5.50)

10According to A. Lichnérowicz (private communication), the runaway solutions can be
eliminated on the ground of some analyticity assumptions, at least for the one-particle
problem.
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gives rise to a new generating equation for the relativistic BBGKY hierarchy
with radiation effects; or, explicitly, one obtains

pµ∂µR1(x, p) + γµ∇µR1 +
∂

∂γµ

([
γµ

mτ0
− γ · γ p

µ

m

]
R1

)

+
4πe2

mτ0

∂

∂γµ

{
pυ

∫
d4x′ d4p′ d(4)γ′[p′µ∂υ − p′υ∂µ]

×D(x− x′)R2(x, p;x′p′)

}
= 0,

∇µ ≡ ∂

∂pµ
,

τ0 =
2
3
e2

mc3
. (5.51)

The term P2 has disappeared from this generating equation: the self-
interaction has been eliminated in favor of a mass renormalization and of the
finite γ terms. This equation, like the nonrelativistic one, is an equation for
f1 as a function of f2. However, in the higher order equations “mixed” dis-
tributions still appear. This equation looks quite different from the former
generating equation and it should be cast into a more useful form.

5.5.1. An alternative treatment of radiation reaction

As a matter of fact, there exists an alternative phase space and hence alter-
native distribution functions, more suitable for a perturbation in powers of
the small parameter τ0. This quantity is actually much smaller than any
physically meaningful times in the system. This stems from the remark that
the equations of motion of the particles can be cast into the form

dpµ
i (τi)
dτi

=
e

m
F

(i)µυ
ret (xi)piυ(τi) +mτ0∆µυ

(pi

m

)
γ̇iυ, (5.52)

which shows clearly that the acceleration γ can be expressed in terms of
p and γ̇. This means that another phase space can be used, namely

Γnew′ = Γ× {γ̇}(4N), (5.53)

with, of course, distribution functions depending on the variables (x, p, γ̇).
Similarly, from the continuity equation in this new phase space,

∂µ(pµR1) +∇µ[γ̇µ(x, p, γ)R1] +
∂

∂γ̇µ
(γ̈µR1) = 0, (5.54)
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after some algebra, one obtains a generating equation of the form

pµ∂µR1(x, p, γ̇) + 4πe2∇µ

{
pυ

∫
d4x′ d4p′ d4γ̇′[p′µ∂υ − p′υ∂µ]

×D(x− x′)R2(x, p, γ̇;x′, p′, γ̇′)
}

= −τ0∇µ

{
∆µυ(p)

∫
d4γ̇γ̇υR1(x, p, γ̇)

}
. (5.55)

The right hand side of this equation is nothing but the ordinary generating
equation, without self-interacting terms, while its left hand side represents
the effects of the back-reaction of the radiation on the electrons.

In view of obtaining the first corrections due to radiation, it is sufficient
to evaluate the right hand side at order 1 in τ0. At this order, the equations
of motion for the particles read

dpµ
i

dτi
=

e

m
Fµυ(i)piυ +mτ0∆µυ(p)γ̇[0]

iυ , (5.56)

where γ̇ is evaluated at order 0 in τ0, i.e.

γ̇
[0]
iν =

d

dτi
γ

[0]
iν =

d

dτi

{ e

m2
F (i)µ

ν piµ

}[0]

=
e

m2
{F (i)

ναF
αβ(i)piβ + pρ

i p
α
i ∂iρF

(i)
να}. (5.57)

Finally, inserting this expression into the equation for R1 and integrating
over the variable γ̇, the generating equation for a relativistic BBGKY
hierarchy at order 1 in τ0 reads

pµ∂µR1(x, p) + 4πe2∇µ

{
pυ

∫
d4x′ d4p′[p′µ∂υ − p′υ∂µ]

×D(x− x′)R2(x, p;x′, p′)
}

= radiation term

= −τ0∇µ

{
∆µυ(p)

∫
d4γ̇γ̇[0]

υ (x, p)R1(x, p)
}
. (5.58)

More explicitly, the radiation term reads

Radiation term = −τ0∇µ

{
∆µν(p)

[(
4πe2

m
pρ pα

∫
d4x′ d4p′

× [p′α∂ν − p′ν∂α]∂ρD(x − x′)R2(x, p;x′, p′)
)
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+
[(

4πe2

m

)2

pα

∫ ∫
d4x′ d4p′ d4x′′ d4p′′

× (p′ν∂β − p′β∂ν)D(x− x′)(p′′α∂ν − p′′ν∂α)D(x − x′)

× [R3(x, p;x′, p′;x′′, p′′) +W 2
3 (x′, p′;x′′, p′′; {x, p})]

]]}
.

(5.59)

The radiation term can easily be taken for a Vlasov approximation.
However, there exist two parameters with which one can sum. The first
one is the usual plasma parameter; the second one is proportional to τ0.
The term in e2τ0 is the one which remains in the lowest approximation and
the first equation in order of radiation is studied briefly later on.

5.5.2. Remarks on irreversibility

In the case where radiation reaction is directly taken into account, one
expects an irreversible behavior of the system since radiation is emitted and
never absorbed. Therefore, one might expect some kind of an H theorem,

∂µS
µ(x) > 0, (5.60)

even though the approximation made (e.g. the Vlasov approximation) does
not usually provide any kind of irreversible behavior of the system. This is
indeed what is actually found (see below).

However, a few words of caution are in order. Irreversibility is a complex
phenomenon, connected with time and length scales, to what is observed,
to the strength of interactions, to the instabilities of trajectories in phase
space, etc. The irreversibility reached with the emission of radiation has
little to do with the latter problems. Rather, it is connected to the absence of
a Liouville theorem: radiation emission gives rise to an exponential growth
of the phase space element, corresponding partly to the so-called runaway
solutions11 of the Abraham–Lorentz–Dirac equations.

Moreover, in spite of the fact that the particle entropy is growing
in the course of time — this is an immediate consequence of the above
inequality — the system never achieves an equilibrium state, as it should
if there would exist a true H theorem.

Let us now show briefly how the peculiar nature of the equations of
motion leads to an exploding phase space element. We shall show this in

11See F. Rohrlich, loc. cit.
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the case of noninteracting particles; they obey the equation

∂µ(pµf) +∇µ(γµf) +
∂

∂γµ
(γ̇µf) = 0, (5.61)

or, equivalently, after the explicit calculation of its last term,

df

dτ
+

6m
e2
f = 0, (5.62)

which indicates that

f(τ) ≈ exp
[
−
(

6m
e2

)
τ

]
f(0). (5.63)

On the other hand, the conservation of the particle number reads

f(τ)δµ(τ) = f(0)δµ(0), (5.64)

so that one also has

δµ(τ) ≈ exp
[(

6m
e2

)
τ

]
δµ(0). (5.65)

5.5.3. Remarks on thermal equilibrium

From the basic principles of statistical thermodynamics, the grand-
canonical ensemble could be defined as

fGC =
1
Z

exp[−β(u·P − µN)], (5.66)

where 

Pλ =

∫
dΣνT

λν ,

N =
∫
dΣνJ

ν ,
(5.67)

and where Z is the partition function.
This means that if the interactions between two macroscopic parts of

the system are switched off, then the two subsequent subsystems are still
in thermal equilibrium with the implicitly existing heat bath. Let us now
look at the above equations a bit closer and let us point out the differences
from the nonrelativistic case. In the nonrelativistic case, the energy E = P 0

depends on the microscopic variable {xi, pi}i=1,2,...,N only. In the relativistic
case, P 0 not only depends on these latter quantities but also on the initial
data themselves, at least implicitly. Moreover, the nonlocal character of
the interactions is quite peculiar to relativity. One might try to remedy
this situation by treating both the particles’ degrees of freedom and the
fields responsible for the interaction between them; however, such an idea
does not yield the desired result. Furthermore, the only data of fGC do not
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seem to provide a full description of thermal equilibrium; indeed, as we have
seen earlier when writing the relativistic BBGKY hierarchy, a complete
description of the system involves not only fN but also an infinity of other
types of distribution functions, such as P2, P3, . . . ;W 2

3 , . . . ,W
p
n , . . . .

In order to be more specific and get some insight into the problem of
equilibrium, let us consider the case of a noninteracting gas. In this case,
with the expression for T µν and Jν given in Chap. 1, fGC can be written as

fGC =
1
Z

exp

(
− βuµ

i=N∑
i=1

∫
Σ

dΣν

∫
d4p

∫
ds δ(4)[x− xi(s)]

× δ(4)[p− pi(s)]p
µ
i

d

ds
xυ

i (s)

)

× exp

(
βµ

i=N∑
i=1

∫
Σ

dΣν

∫
d4p

∫
ds δ(4)[x− xi(s)]

× δ(4)[p− pi(s)]
d

ds
xυ

i (s)

)
, (5.68)

which, after use of the ordinary properties of the δ functions and of the fact
that12

dΣν dx
ν = d4x, (5.69)

can be cast into the form

fGC =
1
Z

i=N∏
i=1

exp(−β[u · pi − µ]); (5.70)

this is merely a product of N Jüttner–Synge distribution, as it should be.
This result is satisfactory in this sense that, despite the differences existing
between the relativistic and the Newtonian cases, the same sensible physical
consequence is provided. Unfortunately, the situation is so intricate with
nonlocal interactions that it is quite difficult to elaborate on this definition
of fGC.

Let us now take a glance at a possible simultaneous treatment of a
system composed of charged particles and of the present electromagnetic
fields.

The “canonical distribution,” for the particles and the classical
electromagnetic field, then reads

fcanonical =
1
Z

exp(−βu ·P + βµN) exp
(
−βuµ

∫
Σ

dΣν [T µν
em + ηµνJ ·A]

)
,

(5.71)

12This can be justified by using adapted coordinates.
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where the term J ·A represents the interaction between the electromagnetic
field and the particles, whereas

T µν
em =

1
4π

{
FµαF ν

α −
1
4
FαβF

αβ

}
(5.72)

is the electromagnetic energy–momentum tensor.
To look at this expression in another way, let us consider the canonical

case in the Vlasov approximation. In such a case one has

〈Aµ〉 = 0, (5.73)

since the plasma is neutral and also

〈AµAν〉 ≈ 〈Aµ〉〈Aν〉. (5.74)

Finally, the canonical distribution in the case of the Vlasov approximation
reduces to a product of Jüttner–Synge distribution, as it should.

The expression for fcanonical is quadratic in the four-potential Aµ. This
is quite satisfactory for an equilibrium state of the electromagnetic field
[see e.g. T.W. Marshall (1963, 1965)], since in this case the canonical dis-
tribution of the field is a Gaussian.

However, even though the field part of fcanonical can easily be func-
tionally integrated, the remaining expression is quite involved and nothing
can be done with it; in particular, Z cannot be evaluated. On the other
hand, particles and fields are fully dealt with in the relativistic quantum
case and it is useless to spend so much effort on the classical relativistic
distribution. It might happen, however, that some particular equilibrium
quantities — such as some correlation functions — are needed in a given
problem. In this case, the simplest way to solve the problem is to start from
the lowest equations of the BBGKY hierarchy and to cut it at some order
and use approximations.

5.6. Radiation Quantities

The analysis of the electromagnetic field within a system of relativistic
charged particles has been made by A.O. Barut (1964) and by F. Rohrlich
(1965).13 They found that the radiation field, i.e. the far field part of Fµν ,
is given by

Fµν
rad∞(x) = e

{
(Xµγν −Xνγµ)R− (Xµuν −Xνuµ)Q

R3

}
, (5.75)

13See also the references quoted in these books.
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where we have set {
Xµ ≡ xµ − zµ, R2 = RµRµ,

Q ≡ Xµγµ.
(5.76)

In these relations, zµ is the position of the emitting particle. Fµν
rad(x) is a

quantity which enjoys all the expected properties of radiation, i.e.{
∂µF

µν
rad(x) = 0,

∂∗µF
µν
rad(x) = 0,

{
Fµν

rad(x)Frad µν(x) = 0,

∗Fµν
rad(x)Frad µν(x) = 0;

(5.77)

in other words, Fµν
rad(x) is a free field whose magnetic field is orthogonal to

the electric field and their energy densities are equal.
On the other hand, the radiation field (which obeys the above equa-

tions), whether far or not, is given by [A.O. Barut (1964)]

Fµν
rad(x) = −2

3
e

m
{pµγ̇ν − pν γ̇µ}, (5.78)

and thus its average value or correlation, etc., can be calculated without
difficulty; for example, one has

〈Fµν
rad(x)〉 = −2

3
e

m

∫
d4p d4γ̇{pµγ̇ν − pν γ̇µ}δ[p · γ(γ̇)]f(x, p, γ̇). (5.79)

However, quantities like Fµν
rad∞(x) are much more difficult to evaluate.

Indeed, they require the knowledge of, for example, the absorption of radi-
ation during its course, but also the data of the hyperboloid-like surface
where the photons do propagate.

Another quantity of physical interest is the energy and momentum
radiated per unit of proper time, i.e.

dPµ

dτ
=

2
3
e2

m
γλγλp

µ. (5.80)

From the above expression of the radiation field, one can calculate
important quantities such as the (local) average at point x:

〈Fµν
rad(x)〉 = −2

3
e

m

1
n

∫
d4p d4γ̇

p ·u
m
{pµγ̇ν − pν γ̇µ}f(x, p, γ). (5.81)

The spectrum of the radiation field, when defined as usual from the Fourier
transform of the intensity, has neither an invariant meaning nor a covariant
one. The quantity which does possess such a property is the correlation
tensor of the radiation field

〈Fµν
rad(x)Fαβ

rad(x′)〉 − 〈Fµν
rad(x)〉〈Fαβ

rad(x′)〉 (5.82)
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and, as remarked by T.W. Marshall (1963, 1965), what is of interest as to
the energy–momentum spectrum of radiation is rather the contraction

Γµν(x, x+ y) = 〈Frad µα(x)Fα
rad ν(x+ y)〉 − 1

4
ηµν〈Fαβ

rad(x)〉〈Frad αβ(x+ y)〉,
(5.83)

from which the spectrum can be obtained.

5.7. A Few Relativistic Kinetic Equations

The first relativistic kinetic equation is, of course, the Vlasov one [S. Titeica
(1956)], and it is obtained from the relativistic hierarchy from the lowest
equation in which the two-body correlation function has been considered
to be negligible. It leads to a large number of applications to relativistic
plasmas (see the bibliography) and, as shown above, to the relativistic
normal modes of plasma. Here, we briefly outline the derivation by Yu. L.
Klimontovich (1961) of the relativistic version of the Landau equation, later
extended by W. Thomson (1968) to a covariant Lenard–Balescu equation.
This section is then concluded with simple relativistic equations of the
Vlasov kind that include the effect of radiation.

5.7.1. Derivation of the covariant Landau equation14

This equation is based on several assumptions, such as the absence of three-
body correlations, g3 ∼ 0, or

f3(1, 2, 3) ≈ f3(1)f3(2)f3(3) + f1(1)f2(2, 3) + f1(2)f2(1, 3) + f1(3)f2(1, 2),

(5.84)

where we have used the notation 1 ≡ (x1, p1), etc. Also, this equation is
valid at order 4 in a small parameter proportional to e while the electron
gas is sufficiently diluted to allow small energy–momenta transfers only
during collisions; the system is spatially homogeneous. Finally, there exist
two timescales, the correlation time being the smallest one. Of course, as
in the classical case, these approximations can be justified rigorously and
it can be shown that they are not completely independent.

14See Yu. L. Klimontovich (1960) and R. Hakim (1967).
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As usual,15 one starts from the first two equations of the relativistic
BBGKY hierarchy, dropping the radiation terms and the infinite self-mass
term. Using the cluster expansion of f2 and f3, these equations may be
rewritten in a symbolic way as

p · ∂f1 + e2
∫
G[f1 ⊗ f1 + g2] = 0, (5.85)

p · ∂g2 + e2
∫
G[W 2

3 + f1 ⊗ g2 + f1 ⊗ g2 + g3] = 0, (5.86)

where G is an operator, which can easily be obtained from the exact equa-
tions. Note that there exists a second equation, in the primed variables.

Let us now use the assumptions indicated at the beginning of this
section. First, g3 ∼ 0. Second, since we look for a kinetic equation at order
e4, g2 must be calculated at order e2, i.e. at its lowest order. It follows that
the second equation of the hierarchy reduces to

p ·∂g2 + e2
∫
GW

2[0]
3 = 0, (5.87)

where W 2[0]
3 is nothing but W 2

3 evaluated at order 0 in e2. At this order
W 2

3 is given by

W
2[0]
3 [x′′, p′′;x′, p′; {x, p}]

≈ f1(x, p)f1(x′, p′)
∫
dτ ′′δ(4)

[
x′′ − x′ − p′′ (τ

′′ − τ ′)
m

]
(5.88)

This means that the electrons move practically along straight world lines
or, equivalently, that the field acting on particle 1 is the field produced by
particle 2 moving along a straight world line.

The equation for g2 is now solved by taking account of the so-called
“adiabatic” hypothesis made above, namely that the time in f1 is “frozen”
as compared to the one in g2.

The next assumption is used in solving the inhomogeneous equa-
tions (5.87) and (5.88); it amounts to neglecting the arbitrary solution
to this equation. Furthermore, the densities f1 which occur in the same
equations are to be “frozen” (adiabatic hypothesis)16 in the calculation
of g2.

15D.C. Montgomery and D.A. Tidman, Plasma Kinetic Theory (McGraw–Hill, New
York, 1964).
16D.C. Montgomery and D.A. Tidman, loc. cit.
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Equation (5.87) may be solved either with the use of Fourier transfor-
mation or, more simply, by using the “causal” Green function

K(x−x′;u−u′) =
∫
dτ dτ ′θ(τ−τ ′)δ[x−x′−u·(τ−τ ′)]δ(u−u′) (5.89)

and letting the “initial” proper time tends to minus infinity: this is legit-
imate because of the existence of two timescales; “initial” correlations are
destroyed. The expression obtained for g2, after tedious calculations, is the
one given by Klimontovich.

Finally, the covariant Landau equation, written in a symbolic way, reads

p ·∂f1 = e4∇β

∫
εαβ(p′, p){f1 ⊗∇αf1 − f1 ⊗∇αf1}, (5.90)

where the tensor εαβ(p′, p) is given by

εαβ =
e2n

32π4

∫
d4k kαkβ(Aµ(k) · kµ)2 (5.91)

[Yu. L. Klimontovich (1960b)], where Aµ(k) is the four-potential of the
charged electron in the independent motion approximation. This equation
is the one previously derived by S.T. Belyaev and G.I. Budker (1956).
Integration over k can also be performed and one gets

εαβ = 2πe4nL · (uµu′µ)2[(uµu′µ)2 − 1]3/2{[(uµu′µ)2 − 1]ηαβ

− (uαuβ + u′αu
′
β)− uµu

′µ(uαuβ + u′αu
′
β)}, (5.92)

where L is the Coulomb logarithm,

L =
∫
dk

k
, (5.93)

which is infinite and has to be treated by plasma techniques. Of course,
from such an equation a covariant Fokker–Planck equation can easily be
derived.

Let us finally note that the above calculation provides an evaluation of
the correlation function g2 as a functional of f1 at order e2 so that, when
f1 is specialized to be the equilibrium Jüttner–Synge distribution, one gets
the equilibrium correlation function needed in the derivation of a relativistic
Guernsey kinetic equation.
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5.7.2. The relativistic Vlasov equation with radiation

effects17

The first equation of the renormalized hierarchy is now used with the sim-
plest assumption — the neglect of correlations. In this approximation, it
is not necessary to enter into the full machinery of the BBGKY hierarchy,
since only the average (collective) electromagnetic field is dealt with. It
then reads

pµ∂µf(x, p) + 4πe2∇µf(x, p)

= − τ0∇µ{∆µυ(p)
∫
d4γ̇ γ̇[0]

υ (x, p)f1(x, p, γ̇)}, (5.94)

or, after replacing γ̇[0]
υ by its expression,

γ̇[0]
υ =

e

m3
{eFναF

αβpβ + pρpα∂ρFνα}, (5.95)

one obtains

pµ∂µf(x, p) + 4πe2pνF
µν∇µf(x, p)

= − eτ0
m3
∇µ{∆µυ(p){eFναF

αβpβ + pρpα∂ρFνα}}

= − eτ0
m3

f(x, p)
{

∆µυ(p){eFναF
α
µ + pα∂µFνα + pρ∂ρFνµ}

− 5pν

m2
eFναF

αβpβ

}
. (5.96)

As mentioned above, one can easily prove [R. Hakim and A. Mangeney
(1968)] that this equation does possess an irreversible behavior in the sense
that the entropy of the system is always growing:

∂µS
µ(x) > 0. (5.97)

This is due to the irreversible emission of radiation. It can be understood in
another way, by going back to the equations of motion, which indicate that
the phase space element is not conserved during the motion but instead
“explodes,” as has been shown above.

In order to evaluate the importance of the right hand side of this
equation, i.e. of the radiation terms, let us make a brief order-of-magnitude
analysis. To this end, dimensionless quantities are first defined with the

17See R. Hakim and A. Mangeney (1968, 1971).
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substitutions 


τ = τ̃ τ̂ ,

x = l0x̂,

p = l0τ̃
−1p̂ ≡ εp̂,

f(x, p) = ε−4l−4
0 f̂(x̂, p̂),

(5.98)

where l0 and τ̃ are some characteristic length and time of the electron
plasma, respectively. Note that these substitutions preserve the light cone
and hence causality. Finally, the above kinetic equation for the reduced
quantities contains (i) an interactive collective term on its left hand side
that is of the order of

≈ 4πe2

m
τ̃ l−1

0 , (5.99)

and (ii) the radiation term on the right hand side, which is of the order of
τ0τ̃
−1. They are of the same order of magnitude when l0 ≈ τ̃ . Choosing

now the Debye length for l0,

l0 ≈ e−1n−1/2m−1/2, (5.100)

and the plasma frequency ωP for τ̃−1,

ωP ≈ en1/2m−1/2, (5.101)

one finds that the radiation term is of the same order of magnitude as the
collective interaction term when

kBT ≈ mc2, (5.102)

i.e. when the plasma is relativistic.
From the above kinetic equation, one can derive dispersion relations for

the collective mode of the plasma and, by using the same techniques as in
the usual relativistic equation, one gets [R. Hakim and A. Mangeney (1968,
1971)] (

1− ω2
P

k · kG
)

+ ω2
P [I1

1 + iτ0J
1
1 ] = 0 (transverse modes),

{(
1− ω2

P

k · kG
)

+ ω2
P [I0

0 − iτ0J0
0 ] +

ω2
Pω

k · k [I0 + iτ0J0]
}

×
{(

1− ω2
P

k · kG
)

+ ω2
P [I3

3 − iτ0J3
3 ] +

ω2
Pk

3

k · k I3
}
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= ω4
P

{
k3

k ·k [I0 + iτ0J0] + [I3
3 + iτ0J

3
3 ]
}

×
{

[I3
3 − iτ0J3

3 ] +
ωI3
k · k

}
(longitudinal modes),

which have been studied in detail elsewhere [R. Hakim and A. Mangeney
(1971)]. In these equations, use was made of the notations

G = kνI
ν + iτ0k ·u, (5.103)

Iµ =
1
n

∫
d4p

pµ

k · pfeq(p), (5.104)

Iν
µ = − 1

n

∫
d4p

pµp
ν

(k · p)2 feq(p), (5.105)

Jν
µ =

1
n

∫
d4p

pµp
ν

k · p feq(p). (5.106)

Note that the τ0 factor in G is generally negligible since it would imply
plasma frequencies of the order of 1023 cycles/s. Also, the propagation of the
plasma waves was chosen to be along the third axis while these dispersion
relations were given in the rest frame of the plasma u = (1, 0).

Finally, the radiation terms lead, as expected, to a damping of the
plasma waves.

To conclude this subsection, let us briefly outline the extension of the
above kinetic equation to the case of the relativistic Landau equation
with radiation effects. It is then sufficient to evaluate the correlation
function g2(k, p, p′) at order 1 in τ0, while the order 0 was given by
[Yu. L. Klimontovich (1960b)]

g
(0)
2 (k; p, p′) ≈ 8π2e2

m2

k[µpν]

(k · p)(k · k)δ(k · p
′)f1(k, p′)p[µ∇ν]f1(k, p) (5.107)

and a similar expression with p and p’ exchanged. The first order in τ0 turns
out to be

g
(1)
2 (k; p, p′) ≈ − iτ0 8π2e2

m2

1
k ·u∇µ

×
(
∆µν(p)pρpα

p′[αkν]kρ

k · k δ(k · p′)f1(k, p)f1(k, p′)
)
. (5.108)

With these elements, the relativistic Landau equation including radiation
effects can easily be obtained and questions such as that of a Fokker–Planck
equation for a plasma with emission of radiation can be addressed [Yu. L.
Klimontovich (1960b)].
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5.7.3. Radiation effects for a relativistic plasma

in a magnetic field18

A kinetic equation for such a system can be obtained once the substitution

Fµν → Fµν + Fµν
ext (5.109)

is performed in the equations of motion. Accordingly, one has

pµ∂µf(x, p) + 4πe2pνF
µν∇µf(x, p)

= − eτ0
m3
∇µ[f(x, p)∆µυ(p){eFναF

αβpβ + pα pρ∂ρFνα}], (5.110)

where the external field Fµν
ext has been assumed to be homogeneous and

stationary. In order to evaluate the various terms of this equation through
an order-of-magnitude analysis, one must note that, in the presence of an
external magnetic field, one more dimensioned quantity now occurs, namely
the Larmor frequency

ωL =
eB

m
, (5.111)

where B is the strength of the external magnetic field. Therefore, a large
number of scales of length and of time are available, giving rise to numerous
possible regimes (for practical purposes, there are almost an infinite number
of different regimes!). Typical lengths are

n−1/3: average interparticle distance

e−1n−1/2(kBT )1/2: Debye length

cω−1
P : wavelength of a plasma oscillation

νTω
−1
L : νT , thermal velocity

etc.

Typical times are

ω−1
P ω−1

L , n−1/3/vT .

The various regimes are governed by the interplay of the various available
energies: mc2, kBT, e

2/l0 and B2l30, where l0 is one of the above lengths.
Note that the above considerations can be used as the basis of a rela-

tivistic magnetohydrodynamics of a radiating system.

18See F. Grassi, R. Hakim and H. Sivak (1986).
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Finally, let us note that V.I. Berezhiani, R.D. Hazeltine and S.M.
Mahajan (2004), still starting from the Abraham–Lorentz–Dirac equations,
obtained the fluid equations of a relativistic magnetized plasma with radi-
ation reaction. They wrote the equations obeyed by the first few moments
and used a closure ansatz through a Jüttner–Synge local equilibrium dis-
tribution.

5.8. Statistics of Fields and Particles

As was mentioned at the beginning of this chapter, instead of treating
particle variables only, one might also deal with both fields and particle
data. This allows the use of a Hamiltonian theory, although at the expense
of manifest Lorentz invariance. In this section, we do not deal with this
Hamiltonian character and preserve the invariance properties of the theory
and only outline this possibility, the more so since only quantum statistics
fully account for both fields and particles, the latter being degrees of exci-
tation of the former. Furthermore, only the case of charged particles inter-
acting via an electromagnetic field is considered below since this is the only
case known in classical physics.

The starting point is, of course, the equation of motions for the particles

dpµ
i

dτ
=

e

m
Fµν(xi)piν , i = 1, 2, . . . , N, (5.112)

and for the electromagnetic field

∂νF

µν(x) = e

∫
d4p

pµ

m
R1(x, p),

∂ν
∗Fµν(x) = 0.

(5.113)

The equations of motion then give rise to the generating equation of the
BBGKY hierarchy, which still reads

p · ∂R(x, p) +
e

m
Fµν(x)pν

∂R(x, p)
∂pµ

= 0. (5.114)

Finally, the first equations of the hierarchy are written as


p · ∂f1(x, p) +
e

m
pν

∂

∂pµ
〈R(x, p)Fµν(x)〉 = 0,



∂ν〈Fµν(x)〉

∫
d4p

pµ

m
f1(x, p),

∂ν〈∗Fµν(x)〉,= 0,

(5.115)
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while the second group is obtained from the generating (random) equations
by multiplying by either R(x′, p′) or Fµν(x′) and reads


p ·∂〈R(x, p)R(x′, p′)〉+ e

m
pν

∂

∂pµ
〈R(x, p)R(x′, p′)Fµν(x)〉 = 0,



∂ν〈R(x′, p′)Fµν(x)〉=

∫
d4p

pµ

m
〈R(x, p)R(x′, p′)〉,

∂ν〈R(x′, p′)∗Fµν(x)〉= 0,

(5.116)




p · ∂〈R(x, p)Fαβ(x′)〉+ e

m
pν

∂

∂pµ
〈R(x, p)Fµν(x)Fαβ(x′)〉 = 0,




∂ν〈Fµν(x)Fαβ(x′)〉=
∫
d4p

pµ

m
〈R1(x, p)Fαβ(x′)〉,

∂ν〈∗Fµν(x) Fαβ(x′)〉= 0.

(5.117)

One also obtains nonwritten equations after multiplication by ∗Fαβ(x′)
and averaging. These equations can, of course, be given alternative forms
by introducing f1, f2, . . . or correlation functions. As usual, this hier-
archy can be truncated with various assumptions, the simplest being the
Vlasov one

〈R1(x, p)Fµν(x)〉 ≈ f1(x, p)〈Fµν(x)〉,
which yields the relativistic Vlasov equation with a few subtleties, which
we now discuss a little further.

First, a closer inspection of the generating equation of this BBGK hier-
archy indicates that the self-field of the particles is included in 〈Fµν(x)〉: the
random four-current occurring on the right hand side of Maxwell’s equa-
tions does contain the contribution of each particle of the system. This
means that when using the above Vlasov ansatz (i) one gives up the radi-
ation reaction terms and (ii) the mass appearing in the subsequent Vlasov
equation should be the finite physical mass, an implicit mass renormal-
ization being performed. Next, it should be clear, from these considerations,
that the mass occurring in the generating equations is the bare mass, which
must always be renormalized, at least implicitly.

Finally, it must be noted that the radiation reaction contributions in
the various equations of this hierarchy are not at all easy to separate
from interaction terms, for instance. To some extent this has been done
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by I. Prigogine and F. Henin (1962, 1963), starting from equivalent equa-
tions; this is, however, not quite simple.

As a first conclusion, one can assert that the field-plus-particle view-
point, in the nonquantum domain, is much more involved than the action-
at-a-distance one, for instance.
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Chapter 6

Relativistic Stochastic Processes
and Related Questions

Besides their intrinsic interest, relativistic stochastic processes may be
involved in a series of semiphenomenological theories. For instance, they
permit the establishment of relativistic irreversible processes and hence rel-
ativistic Onsager relations. They also permit one to give a probabilistic
interpretation of various Fokker–Planck equations considered when one is
dealing with relativistic plasmas.

The problem of the relativistic Brownian motion has attracted much
attention not only because of its own interest, but also owing to the resem-
blance of ordinary quantum mechanics to such a stochastic process. Such
a formal similarity was noted long ago and was the object of many inves-
tigations.1 Along this line of thought, it was thus quite natural to look for
a relativistic generalization of the ordinary Brownian motion. There exist
at least two main lines for achieving such a program: one is more mathe-
matical in essence, while the other is more physical. In the first case, it is
the stochastic process aspect which is generalized to relativity, while in the
second one, the physical problem of a heavy particle embedded in a thermal
substratum of light particles is dealt with in the relativistic context. The first
approach is interesting in itself but it often contains (physically) arbitrary
assumptions of a mathematical nature and leads to several indiscriminate
possibilities. The physical approach seems to be more natural and rests only
on the validity of the approximations performed to obtain the theory.

1See, for instance, E. Nelson, Phys. Rev. 150, 1079 (1966); Dynamical Theories of the
Brownian Motion (Princeton University Press, 1967). U. Ben-Yaacov (1981) has made an
interesting attempt at the relativistic Brownian motion; J. Dunkel and P. Haenggi, Phys.
Rep. 471, 1 (2009) gives an important review of what was done recently on relativistic
Brownian motion.

128
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The main problem when one is dealing with stochastic processes, or
Brownian motion in relativity, is that space and time have to be con-
sidered on the same footing: time cannot play a particular role, unless
one encounters many difficulties in proving the Lorentz invariance of the
theory. Moreover, such a separation between space and time is definitely
outside of the essence of relativity. Finally, let us also add that a theory
in which space and time would a priori be separated would be extremely
difficult to extend to general relativity. One could think of an indexation of
stochastic processesAΣ by spacelike three-surfaces, which would themselves
be partially ordered by causality:

Σ1 ≺ Σ2 ⇔ Σ2 is in the future of Σ1. (6.1)

Although this is not impossible, it appears more efficient to proceed in
another way, as can be seen below.

Also, the theory of stochastic quantization gives rise to such problems.

6.1. Stochastic Processes in Minkowski Space–Time

Let A(x) be a physical quantity defined as a tensor (or spinor) field on
Minkowski space–time. It is a random field whenever it depends on a mea-
surable (and measured) sample set Ω. Whether one deals with relativity or
not, the random process A(x) can be apprehended and used in any physical
problem when its moments are given,2 i.e.

〈A(x)〉, 〈A(x1)⊗ A(x2)〉, . . . , 〈A(x1)⊗A(x2)⊗ · · · ⊗A(xn)〉, . . . . (6.2)

While this represents a stochastic process on space–time, it does not present
any supplementary difficulties and can be treated with the help of turbu-
lence methods,3 for instance.

For example, when one is dealing with plasmas and radiation, another
possible treatment consists in dealing with the electromagnetic field by such
methods, as has briefly been outlined in Chap. 5.

2See e.g. R.L. Stratonovich, Topics in the Theory of Random Noise (Gordon and
Breach, New York, 1963).
3G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University

Press, 1982).
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6.1.1. Basic definitions

In Minkowski space–time, a stochastic process Xµ(ω) will be characterized,
in a statistical sense, by the data of the currents

Jµ1(x1), Jµ1µ2(x1, x2), . . . , Jµ1µ2...µn(x1, x2, . . . , xn), . . . , (6.3)

normalized through∫
dΣµ1µ2...µnJ

µ1µ2...µn(x1, x2, . . . , xn)

=
∫

Σ1×Σ2×···×Σn

dΣµ1dΣµ2 . . . dΣµnJ
µ1µ2...µn(x1, x2, . . . , xn) = 1,

(6.4)

where Σ1,Σ2, . . . ,Σn are arbitrary spacelike three-surfaces. The probability
that Xµ is in the domain ∆1 of Σ1,∆2 of Σ2, etc. is defined as

Prob {∆1 ⊂ Σ1,∆2 ⊂ Σ2, . . . ,∆n ⊂ Σn}
=
∫

∆1⊂Σ1×∆2⊂Σ2×···×∆n⊂Σn

dΣµ1dΣµ2 . . . dΣµnJ
µ1µ2...µn(x1, x2, . . . , xn).

(6.5)

A more intrinsic definition could be given [R. Hakim (1968)] but is useless
for a practical purpose. The above definition reduces to the usual one when
one specializes the spacelike three-surfaces to three-planes t = const; with
coordinates adapted to these latter surfaces, one has

Jµ1µ2...µn(x1, x2, . . . , xn)dΣµ1dΣµ2 . . . dΣµn

= J00...0(x1, x2, . . . , xn)d3x1 d
3x2 . . . d

3xn, (6.6)

which shows that the zeroth components of the various currents play the
role of the usual probability densities.

These currents must be consistent in the following sense:∫
Σ1×Σ2×···×Σ�

dΣµ1dΣµ2 . . . dΣµ�
Jµ1µ2...µn(x1, x2, . . . , xn)

= Jµ�+1µ2...µn(x�+1, x�+2, . . . , xn), (6.7)

for all n and � with � ≤ n. Furthermore, they must not depend on the arbi-
trary surfaces Σ1, Σ2, etc.; these latter conditions imply the conservation
relations {

∂µ�
Jµ1µ2...µn(x1, x2, . . . , xn) = 0,

for all � ≤ n = 1, 2, . . . .
(6.8)
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6.1.2. Conditional currents

In view of the definition of Markovian processes in Minkowski space–time,
let us now define the current of transition probability as being

Jµ(x0 → x1) ≡
def

Jν(x0)Jµν(x0, x1)
Jλ(x0)Jλ(x0)

, (6.9)

where the event x1 is in the future of the event x0. Jµ(x0 → x1) is thus
directly connected with the probability density that X , being in x0, will be
in x1, and this can easily be seen by specializing three-surfaces to three-
planes and looking at the zeroth components of the various currents. The
conditional current Jµ(x0 → x1) is normalized by∫

Σ

dΣµ(x1)Jµ(x0 → x1) = 1, (6.10)

and this also implies the conservation relation

∂µ(x1)J
µ(x0 → x1) = 0. (6.11)

Conversely, given the currents Jµ(x1) and Jµ(x0 → x1), one has

Jµν(x0, x1) = Jµ(x0)Jν(x0 → x1), (6.12)

which may be found either from the probabilistic interpretation of the
various currents or from the definition of Jµ(x0 → x1) considered in a
local coordinate system where Jµ(x1) reduces to its zeroth component.

The transition current Jµ(x0 → x1) must also satisfy some causality
requirements, specific to relativity. For instance, velocities higher than the
speed of light should be forbidden and, accordingly, one should have{

Jµ(x0 → x1) ≡ 0,

for (x1 − x0)
2 ≤ 0;

(6.13)

the transition four-current should thus vanish outside the null cone.

6.1.3. Markovian processes in space–time

We pursue our physicist approach of stochastic processes in Minkowski
space by looking at what could be a Markovian process. Such a process is
defined as usual except that we have to deal with currents rather than den-
sities. A Markovian process is thus completely characterized when the first
two currents, or the first and the transition currents, are given while
all other currents are expressed in terms of these currents. For instance,
Jµνλ(x1, x2, x3) is of the form

Jµνλ(x1, x2, x3) = Jµ(x1)Jν(x1 → x2)Jλ(x2 → x3), (6.14)
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where x3 is in the future of x2, itself in the future of x1. Integrating this
equation over x2 and taking the consistency relation between currents, one
obtains

Jµ(x1 → x3) =
∫

Σ

dΣν(2)J
ν(x1 → x2)Jµ(x2 → x3), (6.15)

which is nothing but the relativistic Chapman–Kolmogorov equation. The
independence of this relation from the three-surface Σ implies the conser-
vation equation

∂ν(2) (Jν(x1 → x2)Jµ(x2 → x3)) = 0, (6.16)

which reduces to

Jν(x1 → x2)∂ν(2)J
µ(x2 → x3) = 0, (6.17)

after one uses the conservation relation obeyed by Jν . This relativistic
Chapman–Enskog equation has already been given by J. Lopuszanski
(1953), though without proof. He has also shown that the Fokker–Planck
equation obtained from it reduces to this last conservation equation. This
absence of a second order Fokker–Planck equation shows that a theory of
relativistic Brownian motion cannot be erected on the assumption that such
a relativistic Markovian process may represent it.

Let us examine the consequence of the strict Lorentz–Poincaré
invariance on Markovian processes. For the first order four-current Jµ(x),
one has

Jµ(x) = Jµ(0) = 0, (6.18)

since there is no four-vector in the theory. The second order current,
Jµν(x1, x2), depends on the difference x1 − x2 and so does the transition
four-current

Jν(x1 → x2) = Jν(x2 − x1). (6.19)

From the continuity equation and the fact that the Lorentz–Poincaré
invariance requires that it should possess the form{

Jν(x2 − x1) = (xν
2 − xν

1)f(τ),

τ2 = x · x,
(6.20)

it follows that the function f(τ) obeys

τ
d

dτ
f(τ) + 4f(τ) = 0, (6.21)
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whose solution is

f(τ) =
const
τ4

. (6.22)

Consequently, the transition four-current does not satisfy either the conti-
nuity equation (it is too singular on the light cone) or the causality require-
ments and hence there does not exist any relativistic causal Markovian
process obeying strictly the full Lorentz–Poincaré covariance.

Therefore, it seems a priori difficult to generalize the interesting results
of E. Nelson (1967) in a relativistic framework unless the causality require-
ments are relaxed. This is certainly possible, since quantum mechanics is
neither local nor causal (think that in its path integral formulation, sums
over all kinds of trajectories, including spacelike ones, are performed).

Let us now examine a few consequences of the existence of a macroscopic
four-vector, namely uµ, and of Lorentz–Poincaré covariance. Then we have

Jµ(x) = Jµ(0) = nuµ, (6.23)

which needs a brief comment. Since n is a constant — because of space–
time homogeneity — this four-current cannot be normalize to unity; and
this corresponds to a uniform spatial probability density. The transition
four-current has the form

Jν(x1 → x2) = Jν(x2 − x1)

≡ Jν(x) = xνf1 + uνf2, (6.24)

where f1 and f2 are functions of the available invariants, namely u · x,
∆(u) ·x ·x and x ·x. The “Fokker–Planck” equation written under the form

Jν(x)∂νJ
µ(y) = 0 (6.25)

yields

[xνf1(x) + uνf2(x)] ∂ν [yµf1(y) + uµf2(y)] = 0, (6.26)

while the continuity equation gives rise to

∂ν [xνf1(x) + uνf2(x)] = 0. (6.27)

6.2. Stochastic Processes in µ Space

Elsewhere, a “geometrical” approach was given for stochastic processes
in µ space [R. Hakim (1968)]; however, in this chapter we shall restrict
ourselves to a more intuitive way to deal with such problems, by using a
proper-time-dependent formalism which is equivalent to the “geometrical”
one, insofar as equivalent statistical assumptions are used.
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6.2.1. An overview

Let us consider a random point in µ space, xA ≡ {xµ, pν}. It may be
considered as being proper-time-dependent xA(τ) and thus as a “true”
stochastic process in µ space. However, the proper time characterization
of the trajectory is only one among an infinity of other possible ones. Nev-
ertheless, it is useful owing to the physical meaning of τ and also because
in the end it does not appear in the results. Therefore, we first extend
the methods used in the study of stochastic processes in Minkowski space–
time.

First, the probability that the state of a random process is in a domain
A of µ space is defined by

Prob{(x, p) ⊂ A} =
∫

A⊂Σ×P 4
dΣλ d

4p Pλ
1 (xµ, pµ) (6.28)

and is normalized as ∫
Σ

dΣλ d
4p Pλ

1 (xµ, pµ) = 1, (6.29)

implying the following continuity equation in order to insure its indepen-
dence from the arbitrary spacelike three-surface

∑
:

∂λP
λ
1 (xµ, pµ) = 0. (6.30)

Note that all this has also the form

Prob{(x, p) ⊂ A} =
∫

A⊂Σ×P 4
dΣBP

B(X), (6.31)

where X = (x, p) and when {p} is on a mass shell different from that of
p2 −m2 = 0, as is the case in Chap. 13. Therefore, the equation obeyed by
P is now

∂BP
B = 0, (6.32)

or, rather, in adapted coordinates,

∂µ(uµf) +
∂[Fµ(x, p)f ]

∂pµ
= 0. (6.33)

More generally, the probability that the state of a random process is in a
domain A1 of µ space, and A2, . . . , An, is defined by

Prob{(x1, p1) ⊂ A1; (x2, p2) ⊂ A2; . . . ; (xn, pn) ⊂ An}

=
∫

A1×A2×···×An⊂Σ×n

�=n∏
�=1

dΣλ�
d4p� P

λ1λ2...λn
n (xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n),

(6.34)
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which is normalized through∫
Σ×n×P×4n

�=n∏
�=1

dΣλ�
d4p� P

λ1λ2...λn
n (xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n) = 1, (6.35)

which implies the continuity equations

∂λ�
Pλ1λ2...λn

n (xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n) = 0, � = 1, 2, . . . , n, (6.36)

which still express the conservation of probabilities.
The probability currents Pλ1λ2...λn

n (xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n), besides being

positive, must satisfy the consistency relations∫ �=n∏
�=k+1

(
dΣµ�

d4p�

)
Pλ1λ2...λn

n (xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n)

= Pλ1λ2...λk

k (xµ
1 , p

µ
1 ; . . . ;xµ

k , p
µ
k). (6.37)

Finally, the stochastic process in µ space is defined, in a statistical sense,
when the probability currents Pλ1λ2...λn

n (xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n) are all known.

An important remark is now in order concerning these probability cur-
rents. If one thinks of the stochastic process at hand as representing some
statistical system of massive point particles, then necessarily [see Chap. 5]
the various indices λi’s refer to pλ

i ’s, and one should have, for instance,

Pλ1λ2...λn
n (xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n) ≡ pλ1

1 pλ2
2 . . . pλn

n fn(xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n),

(6.38)

where fn(xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n) is a scalar function. However, it should be

borne in mind that the above equality is nothing but an assumption,
although natural. Note also that the element of integration in the four-
momentum-space, which we denoted generically by d4p, is generally — with
the same argument — equal to d3p/p0. However, this is also an assumption,
since particles could well be “dressed” by the medium so as to satisfy
another relation than p2 = m2, such as p2 =

∏
(p) (see Chap. 13).

6.2.2. Markovian processes

Let us now restrict ourselves to the important case of Markovian pro-
cesses and, to this end, let us define the conditional probability density
that the process is in state {xµ

0 , p
µ
0} knowing that it was “before” in states

{xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n}. By “before,” is meant “according to the partial order

of Minkowski space–time.” The above sequence of states of the process is
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indeed partially ordered by the partial order of the xµ
i ’s:

xµ
1 ≺ xµ

2 ≺ · · · ≺ xµ
n, (6.39)

where the partial order ≺ is defined as xµ
1 ≺ xµ

2 if and only if x2 is in the
future of x1, or {

(x2 − x1) · (x2 − x1) ≥ 0,

(x0
2 − x0

1) > 0.
(6.40)

The conditional density that a particle is in points (xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n) and

undergoes a transition to point (xµ
0 , p

µ
0 ) is

Pα (xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n |xµ

0 , p
µ
0 )

=
Pαλ1λ2...λn

n+1
(xµ

0 , p
µ
0 ;xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n)Pnλ1λ2...λn (xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n)

Pλ1λ2...λn
n (xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n)P

nλ1λ2...λn
(xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n)

,

(6.41)

obviously normalized by∫
Σ×P 4

dΣα d4p Pα (xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n |xµ, pµ ) = 1, (6.42)

and hence verifies the conservation relation

∂αP
α (xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n |xµ, pµ ) = 0. (6.43)

A relativistic Markov process is now defined as a stochastic process whose
conditional probability Pα depends on the last state in which the process
was and not on the preceding ones, i.e. as{

Pα(xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n |xµ, pµ) = Pα(xµ

n, p
µ
n |xµ, pµ)

xµ
1 ≺ xµ

2 ≺ . . . ≺ xµ
n ≺ xµ.

(6.44)

The Markov property then leads to the following forms for the Pn’s:

Pλ1λ2...λn
n (xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n) = Pλn

1 (xµ
n, p

µ
n)Pλn−1(xµ

n, p
µ
n

∣∣xµ
n−1, p

µ
n−1)

×Pλn−2(xµ
n−1, p

µ
n−1

∣∣xµ
n−2, p

µ
n−2) . . . P

λ1(xµ
2 , p

µ
2 |xµ

1 , p
µ
1 ) . (6.45)

Therefore, as usual, the relativistic Markovian process is completely deter-
mined by the data of both P1 and P . From now on, the notation

Pλ(xµ
0 , p

µ
0 |xµ, pµ) ≡ Pλ ({xµ

0 , p
µ
0} → {xµ, pµ}) (6.46)
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will be used, according to a current notation in physics. From the above
definitions, the Chapman–Kolmogorov equation can be written as

Pλ ({xµ
0 , p

µ
0} → {xµ, pµ}) =

∫
Σ×P 4

dΣ2ν d
4p2 P

ν ({xµ
0 , p

µ
0} → {xµ

2 , p
µ
2})

×Pλ ({xµ
2 , p

µ
2} → {xµ, pµ}), (6.47)

when p2 = m2. If this condition is not verified, then one has a different
normalization (see Chap. 13).

Note that if causality has to be satisfied, one must also have

Pλ ({xµ
0 , p

µ
0} → {xµ, pµ}) =

{�= 0 for xµ
0 ≺ xµ

1 ,

0 otherwise.
(6.48)

When the assumption mentioned above is valid, one can write{
Pλ

1 (xµ, pµ) = pµf1 (xµ, pµ) ,

Pλ ({xµ
0 , p

µ
0} → {xµ, pµ}) = pµf ({xµ

0 , p
µ
0} → {xµ, pµ})

(6.49)

and the above Chapman–Kolmogorov equation can be rewritten as

f ({xµ
0 , p

µ
0} → {xµ, pµ}) =

∫
Σ×P 4

dΣ2ν d
4p2 p

νf ({xµ
0 , p

µ
0} → {xµ

2 , p
µ
2})

× f ({xµ
2 , p

µ
2} → {xµ, pµ}) . (6.50)

When p2 = m2 and for Σ being a spacelike three-plane t = const, this
equation is identical to the ordinary Chapman–Kolmogorov equation, and
the Fokker–Planck equation

pµ∂µf(x, p)− ∂

∂pµ
(Bµ(p)f(x, p)) +

1
2

∂2

∂pµ∂pν
(Dµυ(p)f(x, p)) = 0 (6.51)

can be derived in the usual way.4 In this last equation a stationary and
homogeneous process has been assumed so that we have been able to set

f(x, p) ≡ f(0, p0;x2 − x1, p1). (6.52)

6.2.3. An alternative approach

An alternative approach to the description of stochastic processes in µ space
can be found if we think of a random mechanical system of point particles.
Let us designate by XA the coordinates in µ space:

XA ≡ {xµ, pµ} . (6.53)

4See R.L. Stratonovitch, loc. cit.
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The stochastic process XA(τ) is assumed, as usual, to be completely deter-
mined by the data of the distribution functions

Wn(X1, τ1; . . . ;Xn, τn), n = 1, 2, . . . , (6.54)

normalized in µ space through∫ �=n∏
�=1

dµ� Wn(X1, τ1; . . . ;Xn, τn) = 1 for all (τ1, τ2, . . . , τn) (6.55)

and satisfying the consistency relations∫ �=n∏
�=k+1

dµ� Wn(X1, τ1; . . . ;Xn, τn) = Wk(X1, τ1; . . . ;Xk, τk), k < n.

(6.56)
Note that dµ is the volume element in the eight-dimensional µ space.

The constancy of the total weight of these distributions implies the existence
of continuity equations of the general form

d

dτ�
Wn ≡ ∂

∂τ�
Wn +

∑
�

p� · ∂Wn +
∑

�

∂

∂p�µ
(Cµ

� Wn) = 0, (6.57)

where Cµ
� can be an operator acting on Wn. In fact, it cannot be given a

more specific form unless some statistical assumptions are provided. Such
a situation occurs not only in the relativistic context but also in the New-
tonian one.5 An example is given below.

Note that notions connected with the proper time τ , such as station-
arity, have no direct physical meaning; however, from the Wn’s one can
derive physical densities as in the case of relativistic statistical mechanics
[R. Hakim (1967b)] through

fn(xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n) =

∫ ∞
0

dτ1 . . .

∫ ∞
0

dτnWn(X1, τ1; . . . ;Xn, τn) (6.58)

and normalized as∫ �=n∏
�=1

(
dΣµ�

d3p�

p�0
Cµ�

n

)
fn(xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n) = 1, (6.59)

while the consistency relations between the Wn’s is accompanied by similar
conditions on the Pn’s:∫ �=n∏

�=k+1

(
dΣµ�

d3p�

p�0
Cµ�

n

)
fn(xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n) = fk(xµ

1 , p
µ
1 ; . . . ;xµ

k , p
µ
k).

(6.60)

5See e.g. R.L. Stratonovich, loc. cit.
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The fn(xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n)’s obey the continuity equation{∑

�

p�.∂� +
∂

∂pµ�

�

Cµ�

�

}
fn(xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n) = 0, (6.61)

which expresses the conservation of probabilities.

6.2.4. Markovian processes

Let us now restrict ourselves to the important case of Markovian pro-
cesses and, to this end, let us define the conditional probability density
that the process is in state {xµ

0 , p
µ
0} knowing that it was “before” in states

{xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n}.

This conditional density is defined by

P (xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n |xµ

0 , p
µ
0 ) =

Pn+1(x
µ
0 , p

µ
0 ;xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n)

Pn(xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n)

(6.62)

and verifies the conservation relation[
p · ∂ +

∂

∂pµ
Cµ

]
P (xµ

1 , p
µ
1 ; . . . ;xµ

n, p
µ
n |xµ, pµ) = 0. (6.63)

A relativistic Markov process is now defined as a stochastic process whose
conditional probability P depends on the last state of the process and not
on the preceding ones, i.e. as{

P (xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n |xµ, pµ) = P (xµ

n, p
µ
n |xµ, pµ) ,

xµ
1 ≺ xµ

2 ≺ . . . ≺ xµ
n ≺ xµ.

(6.64)

The Markov property then leads to the distributions

Pn(xµ
1 , p

µ
1 ; . . . ;xµ

n, p
µ
n) = P1(xµ

n, p
µ
n)P (xµ

n, p
µ
n

∣∣xµ
n−1, p

µ
n−1)

×P (xµ
n−1, p

µ
n−1

∣∣xµ
n−2, p

µ
n−2) . . . P (xµ

2 , p
µ
2 |xµ

1 , p
µ
1 ) . (6.65)

Therefore, as usual, the relativistic Markovian process is completely deter-
mined by the data of both P1 and P2.

The relativistic Chapman–Kolmogorov equation then reads

P (xµ
0 , p

µ
0 |xµ

1 , p
µ
1 ) =

∫
Σ

dΣµ
d3p

p0
Cµ (P (xµ

0 , p
µ
0 |xµ, pµ) P (xµ, pµ |xµ

1 , p
µ
1 ) ),

(6.66)
from which the relativistic Fokker–Planck equation can be derived:

p · ∂P2 +
∂

∂pµ

{
−BµP2 +

1
2
∂

∂pν
DµνP2

}
= 0. (6.67)
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6.2.5. A simple illustration

Let us consider the problem of a particle embedded in a random force field.
It can be dealt with in two equivalent possible ways. Either we study the
random differential system 


m
dxµ(τ)
dτ

= pµ,

dpµ(τ)
dτ

= Fµ,

(6.68)

or we directly write, as in Chap. 1, the equivalent random Liouville equation
satisfied by

R(x, p; τ) ≡ δ(4) [x− x(τ)] δ(4) [p− p(τ)] , (6.69)

namely

∂

∂τ
R+ p · ∂R+ F · ∂

∂p
R = 0, (6.70)

and next solve it. The former method is inspired by R.L. Stratonovich,6

while the latter is from R. Kubo.7 The random force F is assumed to be
completely specified in a statistical sense when all the moments (assumed
to exist), 〈F ⊗ F ⊗ · · · ⊗ F 〉, are known.

Let us now set 

L0 = −p · ∂,
L1 = F · ∂

∂p
.

(6.71)

With these notations, the above random Liouville equation can be
written as

∂

∂τ
R = − (L0 + L1)R, (6.72)

and, in the interaction representation, reads

∂

∂τ
� = −L�, (6.73)

with {� = exp (−L0τ )R,
L = exp (−L0τ)L1 exp (+L0τ ) .

(6.74)

6R.L. Stratonovich, loc. cit.
7R. Kubo, J. Math. Phys. 4, 174 (1963).
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The random Liouville equation in interaction representation can be for-
mally integrated and yields

� = P exp
(∫ τ

0

dsL(s)
)
�(0)

= P exp
(∫ τ

0

dsL(s)
)
�(0),

(6.75)

where exp(. . .) designates symbolically the series

P exp
(∫ τ

0

ds L(s)
)

=
∞∑

n=0

∫ τ

0

dτ1

∫ τ1

0

dτ2 . . .

∫ τn−1

0

dτn

×P [L(τ1)L(τ2) · · ·L(τn)] , (6.76)

with τ1 ≤ τ2 ≤ · · · ≤ τn, and where P designates the chronological operator
that orders the τi’s.

One generally wants to obtain an equation for W1 or W2, and hence for
f1 or f2. For W1 one finds that

∂

∂τ
〈�〉 = ∂

∂τ

〈
exp

[∫ τ

0

dsL(s)
]〉
×
〈

exp
[∫ τ

0

dsL(s)
]〉−1

〈�〉 , (6.77)

so that W1 obeys the equation
∂

∂τ
W1 = L0W1 +

{
exp (L0τ)× ∂

∂τ

〈
exp

[∫ τ

0

dsL(s)
]〉}

×
〈

exp
[∫ τ

0

dsL(s)
]〉−1

× exp (−L0τ )W1. (6.78)

The right hand side of this last equation can be explicitly written with the
use of the above definitions, equations and the moments of the four-force
Fµ.

If one considers that Fµ is a term of order 1 in a supposedly small cou-
pling constant, then the various exponentials of operators involved in this
last equation provide an expansion into power series in this coupling con-
stant. This is useful in connection with the derivation of kinetic equations,
for instance, and in other problems.

To the first order in this coupling constant, this equation reads
∂

∂τ
W1 + p · ∂W1 +

Fµ

m

∂

∂pµ
W1

=
∫ τ

0

dsK {exp (−[τ − s]p · ∂)× L1(s)× exp ([τ − s]p · ∂)}W1,

(6.79)

where K{. . .} is the correlation function of the operator inside the brackets.
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6.3. Relativistic Brownian Motion

Many articles on the relativistic Brownian motion have been published;
unfortunately, none of them is fully satisfactory, either because they are
formal or mathematical generalizations, lacking any physical basis, or
because they contain some hidden drawback, or — more simply — because
they are not covariant under the Lorentz group.

The difficulties are of several kinds. First, even though relativistic
stochastic processes can be defined and studied in the covariant µ space, it
is not clear whether the random process [Xµ(τ), Pµ(τ)] is still Markovian.
Furthermore, one also has to take account of the nonindependence of the
components of Pµ(τ) owing to the mass shell constraint, while the time
coordinate X0(τ) becomes a random function of the proper time. Secondly,
when one tries to write down a covariant Langevin equation, one encounters
similar difficulties. Such an equation should have the general form

d

dτ
Pµ(τ) +Kµ(P ) = Fµ(τ), (6.80)

where K is the friction four-force and F is the random Gaussian force
supposed to take account of the other part of the shocks of the particles
within the medium on the massive Brownian particle. However, two kinds
of difficulties do occur when one is considering such an equation. The first
one deals with the specific form of the friction four-force; since the theory
contains two four-vectors only — namely Pµ and uµ, the average four-
velocity of the medium — it has necessarily the general form

Kµ(P ) = A(P )Pµ +B(P )uµ, (6.81)

where the dependence of A and B on P must occur through the only
possible invariant, P · u. Finally, the assumed8 linearity of the relativistic
Langevin equation implies the general form

Kµ(P ) = APµ +BP · u uµ (6.82)

where A and B are now true constants, to be determined by physical con-
siderations. On the other hand, the above form of the friction force must
reduce to the ordinary one, or

Ki → βpi (i = 1, 2, 3), (6.83)

8This linearity is absolutely necessary; otherwise the usual manipulations on the
Langevin equation would hardly be possible.
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where β is the usual friction coefficient. This implies immediately that Kµ

has the form

Kµ(P ) = βPµ + 2βP · u uµ. (6.84)

In order to obtain this last relation, use has been made of the nonrelativistic
limit of the zeroth component9 of K:

K0 → 2βp0. (6.85)

However, one has to face another problem. In order for the mass shell
condition on P , i.e. P 2 = m2, to be satisfied, the total force F+K, acting on
the Brownian particle, must be orthogonal to P (in the sense of Minkowski
geometry), Kµ(P )Pµ − FµPµ = 0, or

βm2 + 2β(P · u)2 = F · P. (6.86)

Accordingly, the four components of F are not independent. Also, if F is
Gaussian this property is probably not satisfied by F 0. Finally, the rela-
tivistic Langevin equation cannot be dealt with as simply as in the New-
tonian case.

Hence, it appears simpler to go back to the physical problem, namely
that of a heavy particle subject to the collisions of the light particles that
constitute the background medium, supposed to be in thermal equilibrium.
The random motion of the Brownian particle is described by its distribution
function f(x, p). It obeys a Boltzmann-like kinetic equation (Chap. 2) whose
collision term has the form

C(f) =
1
2

∫
d3p′

p′0

d3p′′

p′′0

d3p̄

p̄0
W (p′, p′′ → p, p̄)

× δ(4) (p+ p′′ − p′ − p̄) [f0(x, p′)f(x, p′′)− f0(x, p)f(x, p̄)] ,

(6.87)

where f0(x, p) is the thermal (i.e. Jüttner–Synge) distribution function
representing the particles of the background medium. The fact that the
Brownian particle is much more massive than the background particles is
expressed by the fact that energy–momentum transfers are small compared
to the energy–moment of the background particles; or

|p− p′|  |p| . (6.88)

Expanding the above collision integral into powers of the energy–
momentum transfer and keeping as usual the first two terms, one arrives

9See P. Mazur, Physica, 25, 149 (1959).
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at the covariant Fokker–Planck equation for f(x, p):

pµ∂µf(x, p)− ∂

∂pµ
(Bµ(p)f(x, p)) +

1
2

∂2

∂pµ∂pν
(Dµυ(p)f(x, p)) = 0.

(6.89)

The Fokker–Planck coefficients Bµ(p) and Dµυ(p) can be evaluated
from the collision integral. Taking account of the tensors available in the
theory, the general form of the Fokker–Planck coefficients is given by


Bµ(p) = B1(p)pµ +B2(p)uµ,

Dµυ(p) = D1(p)ηµυ +D2(p)pµpυ

+D3(p)uµuυ +D4(p)p(µuν).

(6.90)

Also, they must be such that an H theorem is valid; in this case, it reads

∂µS
µ(x) > 0, Sµ(x) = −kB

∫
d4p f(x, p) log [f(x, p)] (6.91)

(kB : Boltzmann’s constant).
However, they must obey some general relations owing to the fact that
asymptotically — i.e. at infinity in a timelike direction — the Jüttner–
Synge equilibrium distribution must be a unique solution. The fact that
the Jüttner–Synge is an asymptotic solution renders the solution to these
equations easier to obtain. Asymptotically, one has{

Bµ − 1
2
∂

∂pµ
(Dµν

1 +Dµν
2 +Dµν

3 +Dµν
4 )

}
f0 = 0, (6.92)

which does not present an interesting equation.
Finally, let us mention the so-called stochastic quantization of G. Parisi

and Y.S. Wu,10 but it has only a formal resemblance to the usual Fokker–
Planck equation.

6.4. Random Gravitational Fields: An Open Problem

For a variety of physical reasons, a gravitational field gµν(x) on a space–
time manifold can often be considered as being random. For instance, the
energy–momentum tensor occurring on the right hand side of Einstein’s
equations,

Rµν(x)− 1
2
gµν(x)R(x) = 8πGTµν(x), (6.93)

10G. Parisi and Y.S. Wu, Sci. Sinica 24, 483 (1981); among numerous other articles on
the subject, see also H. Nakazato and Y. Yamanaka, Phys. Rev. 34, 492 (1986).
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can be random because the particles and/or the field’s variables inside
Tµν(x) are themselves random. Another case, which can also occur when
Tµν(x) ≡ 0, is that of a gravitational field whose Cauchy data are random.

Like any other classical field, the gravitational field should resort to the
common methods in use in turbulence theory.11 In particular, it should be
fully characterized by the data of the quantities

〈gµν(x)〉 , 〈gµν(x)gµ′ν′(x′)〉 , 〈gµν(x)gµ′ν′(x′)gµ′′ν′′(x′′)〉 , . . . , (6.94)

where the average values 〈. . .〉 are to be taken on the initial gravitational
field’s data. Unfortunately, no explicit expression of gµν(x) as functions
of these initial data can be explicitly calculated owing to the nonlinear
character of Einstein’s equations.

The random character of the metric tensor gives rise to a large variety
of complications and unsolved problems. Only a few are briefly reviewed
below:

(1) We first mention some new mathematical objects, the multitensors,
which were more or less studied by several authors when dealing with
propagators in general relativity.12 The simplest example is, of course,
〈gµν(x)gµ′ν′(x′)〉, although there also exist biscalars like S(x, x′). A partic-
ularly interesting process is the Gaussian one in which the various moments
of the metric tensor are such that

〈ḡµ1ν1(x1)ḡµ2ν2(x2) · · · ḡµnνn(xn)〉
=

∑
permutations
of {1,2,...,n}

〈ḡµ1ν1(x1)ḡµ2ν2(x2)〉〈ḡµ3ν3(x3)ḡµ4ν4(x4)〉

× · · · × 〈ḡµn−1νn−1(xn−1)ḡµnνn(xn)〉, (6.95)

where we have set

ḡµν(x) = gµν(x) − 〈gµν(x)〉 . (6.96)

The Gaussian process is thus characterized by its average values and fluctu-
ations. In the case where the stochastic process can be considered as being

11See e.g. G.K. Batchelor, loc. cit.
12A. Lichnérowicz, Propagateurs et commutateurs en relativité générale [Publications
mathématiques de l’Institut des Hautes Etudes Scientifiques (Bures/Yvette, France),
No. 10 (1961)]. They were introduced by G. de Rham [Variétés différentiables (Hermann,
Paris, (1955)] and used by physicists trying to quantize gravitation. A more recent work
is the one by N.G. Phillips and B.L. Hu, Noise kernel and stress–energy bitensor of
quantum fields in hot flat space and Gaussian approximation in the optical Schwarzschild
metric [arXiv: gr-qc/0209056 v1 (2002)].
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Gaussian (or approximated by a Gaussian) and if the field correlations are
“small,” whatever this word means.

(2) The various physical quantities are generally tensors — say,
A

ν1ν2...νq
µ1µ2...µp — and in many instances it is necessary to raise or lower

some indices. However, doing so renders the new tensor random, as e.g.
A

ν2...νq
ν1µ1µ2...µp , even though the original tensor A

ν1ν2...νq
µ1µ2...µp itself was not

random.
A natural, albeit nonunique, idea to circumvent this problem consists in

the systematic use of the average metric tensor 〈gµν(x)〉. Let us look a bit
closer at this problem and, to this end, let us split gµν(x) into an average
and a fluctuating part hµν(x),{

gµν(x) = 〈gµν(x)〉+ hµν(x),

gµν(x) = 〈gµν(x)〉+ h
µν

(x),
(6.97)

where, as usual, ‖gµν(x)‖ and ‖gµν(x)‖ are mutually inverse matrices:

gµλ(x)gλν(x) = δν
µ. (6.98)

This property of gµν(x) and gµν(x) yields13

gµλ(x)gλν(x)〈 gν
λ(x)〉 = 〈gµλ(x)〉 〈gλν(x)

〉
+ hµλ(x)hλν (x)

+ hµλ(x)
〈
gλν(x)

〉
+ h

µλ(x) 〈gλν(x)〉 (6.99)

= δν
µ,

which after averaging leads to〈
gµλ(x)gλν(x)

〉
= 〈gµλ(x)〉 〈gλν(x)

〉
+
〈
hµλ(x)hλν (x)

〉
= δν

µ;
(6.100)

this shows that, in general, one has not

〈gµλ(x)〉 〈gλν(x)
〉

= δν
µ. (6.101)

One could, however, try to impose this last condition; and this would
provide the following constraint on the metric fluctuations:〈

hµλ(x)h
λν

(x)
〉

= 0. (6.102)

Of course, when the fluctuating part of the metric tensor is “small”14 — and
this “smallness” should be specified more precisely — this last condition

13The fluctuating part h of the metric tensor has been under(over)lined in order to

emphasize that, for instance, one has hµν ≡ 〈gµα〉〈gνβ〉hαβ �= hµν .
14This requires a particular discussion on the same type as the one given for Einstein’s
linearized equations [see e.g. S. Weinberg, Gravitation and Cosmology (Wiley, New York,
1972)].
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can be satisfied and the raising or lowering of indices with the average values
of the metric tensor is thus acceptable.

Accordingly, the usual manipulations of tensorial quantities must
involve the fluctuations of the metric tensor and require much care. On the
other hand, one could also decide a priori that the “real” metric tensor is
just 〈gµν(x)〉 ≡ Gµν(x) and thus raise indices with Gµν(x); this would be
a quite natural possibility and certainly the simplest. Note the relationship
between Gµν(x) and 〈gµν(x)〉:〈

gαβ(x)
〉

= Gαβ(x) −Gαµ(x)
〈
hµλ(x)h

λβ
(x)

〉
. (6.103)

(3) Suppose now that we take the average value of Einstein’s equa-
tions. As a result of the above considerations on the average values of the
metric tensor, its average does not obey Einstein’s equations. Indeed, the
Christoffel symbols, which are implicitly present in the curvature tensor,
contain both gµν(x) and gµν(x). One can then rewrite Einstein’s equations
in terms of the average metric tensor Gµν and another term, which, loosely
speaking, can be called “the energy–momentum tensor of the fluctuations.”
It should obviously be a rather involved expression, even though we only
are concerned with a Gaussian gravitational field.

(4) It should also be noted that a random metric might imply random
changes of the topology of the manifold under consideration. To be more
specific, let us consider a Friedmann–Lemaitre universe endowed with the
Robertson–Walker metric

ds2 = dt2 −R2(t)
dx2(

1 + 1
4kr

2
)2 . (6.104)

Suppose now that the curvature index is random and possesses some prob-
ability distribution

P (k)



p > 0, for k = +1;
q > 0, for k = 0; with p+ q + r = 1;
r > 0, for k = −1.

(6.105)

Then the metric tensor is itself random, both because of the explicit
presence of k in the Robertson–Walker metric and in its implicit depen-
dence on the scale factor R(t) via Friedmann’s equations. Suppose now that
the space–time manifold is in the state k = 1; then its spatial topology is
closed. However, there is a priori a nonvanishing probability that the metric
is in the state k = 0, where the spatial sections of the space–time manifold
can be either open or closed. It might thus be possible that the “system”
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undergoes a transition in its spatial topology. The same conclusions can
be drawn if, for instance, the cosmological constant is itself random.15 It
should also be noted that it seems difficult from a physical point of view to
imagine how one can pass from a closed topology to an open one only via
local fluctuations of the metric and, perhaps, the topology of the manifold
under consideration (or of submanifolds) would just impose some restric-
tions on the stochastic nature of the metric.

6.4.1. A simple example

Let us now consider the example of a free particle embedded in a random
gravitational field; it obeys the following (random) equation of motion
(geodesic equation):

dpµ

dτ
+ Γµ

αβ(x)pαpβ = 0, (6.106)

which, in terms of the average metric tensor Gµν and the metric fluctua-
tions, can be rewritten equivalently as

dpµ

dτ
+ Γαβ

µ (x)pαpβ = Fµ
fluct, (6.107)

where Γαβ
µ (x) denotes the Christoffel symbols constructed from the average

metric tensor Gµν , and Fµ
fluct is the apparent force occurring because of the

metric fluctuations; its explicit expression is obtained by replacing gµν and
gµν with their expressions in terms of Gµν and hµν , and is given by

−Fµ
fluct =

1
2
pαp

νGαρ

[{
∂µhνρ + ∂νhµ

ρ − ∂ρh
µν
}

+
1
2
hαρ

{
∂µGν

ρ + ∂νGµ
ρ − ∂ρG

µν
}]

(6.108)

+
1
2
pαp

νhαρ
{
∂µhνρ + ∂νh

µ
ρ − ∂ρh

µν
}
,

and for a Gaussian random gravitational field (with 〈h〉 = 0), one gets

〈Fµ
fluct(x)〉 = −1

2
pαp

ν
〈
hαρ

{
∂µhνρ + ∂νh

µ
ρ − ∂ρh

µ
ν

}〉
, (6.109)

which is the simplest form one is able to obtain, the more so since we used
h g.

15If the cosmological constant λ is interpreted as an energy density of the vacuum, then
it does actually fluctuate.
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6.4.2. The case of thermal equilibrium

To be more specific, this can be enlarged to an assembly of identical particles
whose initial data are supposed to be in thermal equilibrium and their
distribution is the Jüttner–Synge function

f(x, p) =
βneq

4πm2K2(mβ)
exp

[−βgαβ(x)uαpβ
]
, (6.110)

which obeys the Liouville equation

p · ∂f(x, p) + Γµ
αβ(x)pαpβ ∂

∂pµ
f(x, p) = 0, (6.111)

or

p · ∂f(x, p) +
{
Γαβ

µ (x)pαpβ − Fµ
fluct

} ∂

∂pµ
f(x, p) = 0. (6.112)

The four-current is

Jµ(x) =
√
|g|
∫
d3p

p0

pµ

m
f(x, p), (6.113)

and by taking into account the character of the decomposition of the metric
tensor as

gµν = Gµν + hµν (6.114)

and from the fact that h is “small,” one has

Jµ(x) =
(√
|G|

)∫ d3p

p0(G, h)|h=0

pµ

m
f(x, p) (6.115)

plus a term of order h, which is exactly the same as the original term
once the average has been used taking account of the Gaussian character
of h. The energy–momentum tensors have thus the same form as in the
nonrandom case except that gµν = Gµν + hµν , and their averages are just
their expressions in the average gravitational field Gµν .

However, two problems have to be dealt with. The first one deals with
equilibrium itself. The implicit reasoning that leads to the Jüttner–Synge
function rests on the equivalence principle: thermal equilibrium is assumed
to hold in a locally Lorentzian frame of reference, and hence whatever the
metric fluctuations. This means that the mean free path of the particles
should be much smaller than the spatial scale on which the metric fluctu-
ations extend, and, of course, the same is true for the collision time and
the timescale of the fluctuations. This requires a particular analysis of the
physical case at hand.
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The second problem is concerned with the Jüttner–Synge distribution
itself. In spite of the fact that the main two observables 〈Jµ〉 and 〈Tµν〉
can be computed from the Jüttner–Synge function in the presence of the
average metric tensor Gµν , this function is not a solution to the Liouville
equation since the Killing equation (see Chap. 4) with respect to the metric
Gµν is not satisfied. Only the (random) Killing conditions

∇µ (βuν ) +∇ν (βuµ) = 0 (6.126)

are obeyed, but the average

∇µ (βuν ) +∇ν (βuµ) �= 0, (6.127)

where the double-barred covariant derivatives are defined with respect to
the average metric tensor

∇µAν ≡ ∂µAν + Γµν
α Aα (6.128)

and βuµ does not, in general, represent a Killing four-vector.
Also these average observables cannot be found from 〈feq〉, which is

given by

〈feq〉 = feq(Gµν)× exp
[−β〈hµν(x)hαβ(x)〉uµuαpνpβ

]
, (6.129)

in the case where the random metric tensor is Gaussian. Note that when the
fluctuations are “small” with respect to the average metric Gµν , the equi-
librium distribution function is just the Jüttner–Synge function in which
the replacement gµν(x)→ Gµν(x) is made.

6.4.3. Matter-induced fluctuations

The expression for the four-current equilibrium fluctuations calculated in
Chap. 1,

δJµν(X) =
mβneq

4πK2(mβ)
XµXν

(X · X)5/2
exp

(
−mβ u · X

(X · X)1/2

)
, (6.130)

is still valid with the condition of making the change
ηµν → gµν = Gµν + hµν ,

|hµν |  |Gµν | .
(6.131)

The observables’ fluctuations are thus 〈δJµν(x, x′)〉, where the average is
taken over the random gravitational field

δJµν(X) =
mβneq

4πK2(mβ)
XµXν

((Gση + hση)XσXη)5/2

× exp

(
−mβ (Gµν + hµν)uµXν

((Gλρ + hλρ)XρXλ)1/2

)
. (6.133)
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Still separating the metric tensor into its average value and its fluctuating
part and retaining only the lowest order terms, one finds that

〈δJµν〉 = 〈δJµν〉|h=0 + hλρB
λρµν + · · · , (6.134)

where B ... can easily be obtained. Note that in these expressions Xµ is an
involved expression of x and x′, and not of the difference between the coor-
dinates. Furthermore, the expression for δJµν(X) is valid only for values of
x′ not very different from x.

Accordingly, and as expected, the metric fluctuations do induce matter
fluctuations: numerical four-current and energy–momentum tensor.

6.4.4. Random Einstein equations

In this subsection, the treatment of random Einstein equations is only out-
lined, owing to the complexity of the results. Such a treatment is indeed
needed, in order to obtain an infinite set of equations for the moments
of the gravitational field. Of course, this set is much simplified when the
stochastic process is Gaussian, since only Gµν and hµν are to be calculated;
the equations are nevertheless not quite simple.

It should first be noted that the Riemann curvature tensor Rµναβ is
constructed from the derivatives of the Christoffel symbols and from the
metric tensor, and thus contains generic terms of the general form

∂Γ = g∂ {gg∂g}
= ggg∂(2)g + gg∂g∂g, (6.135)

and from the decomposition

g = G+ h; (6.136)

hence it has the generic form

R = R+ · · ·+ hhh∂(2)h+ hh∂h∂h, (6.137)

where the last term represents in a symbolic way the contribution of the
gravitational fluctuation to the curvature tensor. There is, however, one
particular case where these equations do simplify considerably; this occurs
whenever the random part of the gravitational field can be considered as
“small” with respect to its average part, with of course all the usual reser-
vations about the invariance of such “smallness” in coordinates’ changes.
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Chapter 7

The Density Operator

In this chapter, the basis of relativistic quantum statistical mechanics is
presented: its basic tool — the density operator1 — is briefly reviewed and,
as in the nonrelativistic case, it is given by

ρstat =
∑

n

|n〉�n〈n|,
∑

n

�n = 1, �n ≥ 0, (7.1)

where the �n’s are the statistical weights of the nth state, the {|n〉}’s being
supposed to form a complete set. From the density operator ρ, one calculates
various quantities — such as Green’s functions, introduced into statistical
mechanics in 1959 by E.S. Fradkin, or Wigner functions on a “semiclassical”
phase space [E.P. Wigner (1932)] — from which the physics of the system
under study can be extracted. Average values are then obtained as

〈A〉 = Tr[ρstatA] =
∑

n

�n〈n|A|n〉, (7.2)

where A is a given observable. These relations are still valid in special
relativity, although some care is needed in their manipulation.

The density operator ρstat obeys a “Liouville equation” derived from
the Tomonaga–Schwinger equation2; it reads [A.V. Prosorkevich and
S.A. Smolyanskii (1976)]

i
δ

δΣ
ρstat = [H, ρstat], (7.3)

where
∑

is a spacelike three-surface. This approach, and some applications,
have been developed by the same authors in other articles (1976, 1978).

1In the subsequent chapters, the energy density is called ρ, as usual. Therefore, in order
to avoid some confusion with the density operator traditionally denoted by ρ, this latter
is called ρstat.
2S. Tomonaga, Prog. Theor. Phys. 1, 27 (1946).

152
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However, it is not very easy to handle and a simpler one is dealt with in
the subsequent sections.

7.1. The Density Operator for Thermal Equilibrium

In thermal equilibrium the density operator ρstat possesses the general
form3

ρeq = const× exp

(∑
i

αiAi

)
, (7.4)

where Ai are additive first integrals of the system and where αi are cor-
responding Lagrange multipliers. Whether in Newtonian physics or in rel-
ativity, there exist only seven time-independent such additive integrals:
energy, impulsion and kinetic momentum. To these constants of the motion
other additive observables must be added, such as the particle number
(i.e. the difference between the particle and antiparticle numbers), the
baryon number and the charge. As is usual in relativity, energy and
impulsion are treated on the same footing, while rotational symmetry will
not be dealt with. Therefore, the basic equilibrium density operator ρeq has
the form

ρeq =
1
Z

exp(−βµP
µ + βµN), (7.5)

where Pµ is the total four-energy–momentum of the system; N is the
particle number operator (or the charge operator, or the baryon number
operator, etc.), present when the number of particles is not constant and
〈N〉 = const; βµ = βuµ, with4 β = T−1; and µ is the chemical potential,
while Z is the partition function. It is obtained from the normalization of
the statistical operator as

Tr(ρstat) = 1 (7.6)

or

Z ≡ Tr[exp(−βµP
µ + βµN)]. (7.7)

Pµ is obtained from the energy–momentum tensor T µν of the system as

Pµ =
∫

Σ

dΣµ T
µν , (7.8)

3See e.g. K. Huang, Statistical Mechanics (Wiley, New York, (1963). Note that possibly
there are other additive operators to be taken into account, like the charge of the system,
or its total particle number.
4In what follows, a system of units where the Boltzmann constant kB is taken to be

unity; accordingly, temperatures are measured in energy units.
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where
∑

is an arbitrary spacelike three-surface, which can always be chosen
as being the spacelike three-plane t = const, since T µν is conservative. This
energy–momentum tensor contains the contributions of all the fields and
their interactions — both quantum and possibly external — within the
system. Note also that when the system involves several particle species i
with conserved “charges,” one has to perform the following substitution in
the equilibrium density operator:

µN →
∑

i

µiNi. (7.9)

Therefore, the grand canonical density operator is used in the context of
quantum field theory where particles are created and/or destroyed.

For later use, this chapter is mainly devoted to the free field case, either
fermionic or bosonic — a case first considered by A.E. Scheidegger5 and
C.D. McKay (1951) and by A.O. Barut (1958), although the first study
of the relativistic and Fermi–Dirac distributions was made by F. Jüttner
(1928). The main thermodynamic properties are, however, briefly recalled
below.

7.1.1. Thermodynamic properties

In this subsection, the main thermodynamic relations occurring in the grand
canonical approach are given without proof and readers are referred to their
preferred textbooks.6 They are consequences of the exponential form of the
statistical operator ρstat and of the occurrence of the physical observables
therein in a linear way. They are provided in Table 7.1.

Let us now turn to the entropy; we have, successively,

S ≡ −〈log ρstat〉 = −〈−βµP
µ + βµN − logZ〉, (7.10)

or, more explicitly,

TS = −µN + U +
logZ
β

, (7.11)

from which we identify the free energy (Table 7.1) as

F = − lnZ
β
. (7.12)

5See also A.E. Scheidegger and R.V. Krotkov (1951); A.O. Barut (1958).
6See e.g. K. Huang, op.cit.; A. Isihara, Statistical Physics [Academic Press; New York

(1971)]; etc.
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Table 7.1

Particle number (charge, etc.) N =
1

β

∂ lnZ

∂µ

˛
˛
˛
˛
β

Internal energy U = − ∂ lnZ

∂β

˛
˛
˛
˛
N,V

+
µ

β

∂ log Z

∂µ

˛
˛
˛
˛
β

Pressure P =
1

β

∂ lnZ

∂V

˛
˛
˛
˛
N,β

Chemical potential µ = − 1

β

∂ lnZ

∂N

˛
˛
˛
˛
β,N,V

Particle number N =
1

β

∂ log Z

∂µ

˛
˛
˛
˛
β

Gibbs free energy F = − ln Z

β

Helmholtz free energy G = F + µN

Entropy S = ln Z + βU − βµN

Heat capacities at constant volume, pressure CV =
∂U

∂T

˛
˛
˛
˛
T,V

, CP =
∂U

∂T

˛
˛
˛
˛
T,P

The functional derivative of the entropy with respect to the “volume”7 of
the system yields the entropy four-current Sν(x),

δ

δΣν(x)
S = Sν(x), (7.13)

and since
δ

δΣν(x)
Pµ = T µν(x),

δ

δΣν(x)
N = Jν(x) = nequ

ν, (7.14)

we finally obtain

Sν(x) = β[uµT
µν(x)− µneq(x)uν ]− δ

δΣν(x)
lnZ. (7.15)

The last term of this expression is the Helmholtz free energy four-current.
Multiplying both sides of this last equation by uν , we obtain

s(x) = β[ρ(x) − µneq(x)] + f(x) (7.16)

7The reader should be reminded that, in relativity, only local quantities have a real
meaning and that the notion of a finite volume can hardly acquire a specific invariant
definition. It is therefore preferable to use local quantities which are obtained by intro-
ducing into the various data some weight factors imitating the existence of a finite
volume, and hence the functional derivative is actually taken with respect to Σ and this
arbitrary function.
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[f(x) is the free energy density], which, upon multiplication by an arbitrary
volume V , gives the usual thermodynamic expression:

U − TS − µN = F. (7.17)

In terms of densities, the equation of state is obtained as

P = − 1

βn
2
eq

∂

∂neq
logZ(β, neq),

ρ= −neq
∂

∂β
logZ(β, neq),

(7.18)

as a function of the invariant particle density neq; P is the pressure and ρ
the energy density.

It is thus necessary to evaluate the partition function in order to obtain
all physical relevant quantities, and this is done below for the case of the
simple ideal gas.

7.1.2. The partition function of the relativistic ideal gas

There is no difference between the relativistic and the Newtonian calcula-
tions of the partition function: the general structure of the two expressions
is similar except that the expression of the energy differs. Accordingly,
the calculation is quite general and does apply for slightly more general
systems than those composed of free particles, for instance to charged
systems embedded in magnetic fields. Thus, the usual calculations are
briefly repeated here. One begins with the definition of the partition
function and let {�} be the set of all quantum numbers that characterize
an energy states E{�} of a generic particle in the system, and considers a
representation where the particle number N (or charge, baryon number,
etc.) is diagonal and has the eigenvalues {n}; one has

Z = Tr{exp(−β[H − µN ])}

= Tr

{
exp

(
−β
[∑

�

(n{�}E{�} − µn{�})
])}

=
∑

n

∏
�

exp(−β[n{�}E{�} − µn{�}]), (7.19)

where n{�} is the number of particles in the state {�}, with of course

n =
∑

�

n{�} (7.20)
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and also

E =
∑

�

E(�))n(�) (7.21)

More explicitly, Z can be rewritten as

Z =
∑

n

∏
n{�}

exp{−β[n{�}(E{�} − µ)]}

=
∑

n

∏
n{�}

(exp{−β[(E{�} − µ)]})n{�} (7.22)

which is easily calculated for bosons [n{�} = 0, 1, 2, . . .] or fermions [n{�} =
0, 1] as

logZ =




+
∑

�

log{1 + exp[−β(E{�} − µ)]} (fermions),

−
∑

�

log{1− exp[−β(E{�} − µ)]} (bosons).
(7.23)

It should be emphasized, once more, that these last expressions are valid
whatever the noninteracting system at hand and, in particular, for (free)
quasiparticles of whatever spectrum. They are also valid whether the system
is Newtonian or relativistic.

For free particles in the absence of external fields, one has

{�} ≡ k,
1
V

∑
k

→
∫

d3k

(2π)3
, (7.24)

so that

[logZ]µ =




+
1

(2π)3

∫
d3k

k0
kµ log(1 + exp{−β[E(k)− µ]}) (fermions),

− 1
(2π)3

∫
d3k

k0
kµ log(1− exp{−β[E(k)− µ]}) (bosons).

(7.25)

for the four-current8 of the “quantity logZ.” In other words, in the rela-
tivistic case, one calculates densities rather than global quantities and the
various thermodynamic relations are intended to hold between densities or
four-currents.

A last remark: the fermions ‘logZ’ contains also a term where +µ occurs
in the expression; this is due to the contribution of the antiparticles. If we

8In this expression, the division by k0 makes the integration element invariant, while
the multiplication by kµ shows the four-vector character of log Z, which thus appears as
a density.
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look at a complex scalar field, we should recover a similar term except for
the ± signs.

7.1.3. The average occupation number

Let us now evaluate the average occupation number. It is given by

〈a+
� a�〉 =

1
Z

Tr{a+
� a� exp[−β(H − µN)]}, (7.26)

and since

H =
∑

a+
� a�E� (7.27)

it turns out that

〈a+
� a�〉 = − 1

β

δ

δE�
logZ. (7.28)

We are now in a position to calculate the average occupation number. Let
us consider the expression of (δ/δE�) logZ, with E� = E(k), in order to be
more specific. It reads

− 1
β

δ logZ
δE(k)

= +
1

(2π)3
δ

δE(k)

∫
d3k′

k′0
k′0 log(1− exp{−β[E(k′)− µ]})

= − 1
(2π)3

∫
d3k′

k′0
k′0

δE(k′)
δE(k)

exp{−β[E(k′)]}
1− exp{−β[E(k′)− µ]}

(7.29)

but, since (see App. C)

δE(k′)
δE(k)

= δ(3)(k − k′), (7.30)

we have

− 1
β

δ logZ
δE(k)

=
1

exp{β[E(k)− µ]} − 1
, (7.31)

so that the average occupation number is

〈a+(k)a(k)〉 =
1

exp{β[E(k)− µ]} − 1
. (7.32)

Similarly, the average occupation number of the state � reads

n{�} = − 1
β

δ

δE{�}
logZ =

1
exp[β(E{�} − µ)]− 1

. (7.33)



February 10, 2011 15:52 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch07 FA

The Density Operator 159

The case of fermions is quite similar and we obtain

n(�) =
1

exp[β(E{�} − µ)] + 1
. (7.34)

7.2. Relativistic Bosons in Thermal Equilibrium

We first look for the properties of the ideal gas of free bosons obeying the
Lagrangian

L =
1
2
(∂ϕ · ∂ϕ−m2ϕ2) (7.35)

(where ϕ is real) and hence the equation of motion

�ϕ+m2ϕ = 0. (7.36)

Such a system admits the first integral

Pµ =
∫

Σ

dΣν T
µν

=
∫

Σ

dΣν

[
∂µϕ · ∂νϕ− ηµν

(
1
2
∂ϕ · ∂ϕ−m2ϕ2

)]
(7.37)

as an additive constant of the motion and the conservation relation

∂µT
µν = 0. (7.38)

As usual, the field ϕ is decomposed into creation and annihilation operators:

ϕ(x) =
1

(2π)3/2

∫
d3k√
2k0

{ak exp(+ik · x) + a+
k exp(−ik · x)}. (7.39)

Choosing9 the arbitrary spacelike three-surface, involved in the definition
of Pµ, as being a three-plane t = const, and in the local frame of reference
in which βµ = (β,0), the Hamiltonian P 0 ≡ H reads

H =
1
2

∑
{k}

ω{k}
[
a+
{k}a{k} + a{k}a

+
{k}
]

=
∑
{k}

ω{k}

[
a+
{k}a{k} +

1
2

]
,

(7.40)

where {k} indicates the set of those quantum numbers (i.e. the three-
momentum) that determine the state of the system whose energy is k0 =
ω{k} with w{k} = (k2 + m2)1/2. This Hamiltonian corresponds to a boson

9This can always be done without loss of generality, owing to the fact that the energy–
momentum tensor is conserved.
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field and the “vacuum” factor 1/2 can be absorbed into Z, so that it will
be omitted. Also, the operator “number of particles” is given by

N =
∑
{k}

a+
{k}a{k}, (7.41)

which is not conserved in the case of a real scalar field, since no conserved
four-current is available. Finally, the equilibrium density operator is of the
general form

ρeq =
1
Z

exp

(
−β
∑
{k}

ω{k}a
+
{k}a{k}

)
, (7.42)

which is formally identical to the usual one.10 This has the consequence
that the same calculations do apply in this case and that the statistical
distribution of the states {n} is still given by the ordinary Bose–Einstein
factor,

Prob[{k}] =
1

exp(βω{k})− 1
, (7.43)

while the partition function reads11

logZ = −
∑
{k}

log{1− exp[−βω(k)]}

= − d

(2π)3

∫
d3k

ω(k)
k0 log{1− exp[−βω(k)]}, (7.44)

where d is the degeneracy of the system.
For a free particle12 {n} ≡ {k} and

ω{n} ≡
√

k2 +m2 (7.45)

so that, for such a free particle, the relativistic Bose–Einstein distribution
reads

feq(k) =
d

(2π)3
1

exp(βu · k)− 1
, (7.46)

10See e.g. K. Huang, op. cit.
11We have omitted the [(β, µ)-independent] zero-point energy since in this analysis it
plays no role in the thermodynamic properties of the system.
12An example where the Bose–Einstein distribution is found with another set of quantum
numbers {n} can be found with the case of charged bosons embedded in an external
magnetic field [Ph. Adam and R. Hakim (1982)].
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where the four-momenta kµ are connected through the mass shell relation
k2 = m2. It is “normalized” via

neq ≡ uαJ
α =

d

(2π)3

∫
d3k

k0
uαk

α 1
exp(βu · k)− 1

, (7.47)

where Jα is the particle four-current, a nonconserved quantity in this case.
In this relation, d is a degeneracy factor depending on the internal quantum
numbers (spin, etc.) and as usual, k0 is the relativistic energy. From the
expression of the energy–momentum tensor

Tαβ =
d

(2π)3

∫
d3k

k0
kαkβ 1

exp(βu · k)− 1
, (7.48)

which has necessarily the perfect fluid form since uµ and ηµν are the only
available tensors, one obtains the energy density as

ρ ≡ ρ(βm) = Tαβuαuβ =
d

(2π)3

∫
d3k

k0
(k · u)2

1
exp(u · kβ)− 1

(7.49)

and the pressure

P ≡ P (βm) = −1
3
∆αβ(u)Tαβ

= − d

3(2π)3

∫
d3k

k0
∆αβ(u)kαkβ 1

exp(βu · k)− 1

=
d

3(2π)3

∫
d3k

k0

k2

exp(βu · k)− 1
. (7.50)

These last two expressions then provide the equation of state of the ideal
Bose gas in a parametric form: ρ = ρ(βm), P = P (βm). Note that, for the
photon field, the degeneracy is d = 2, and the equation of state is

P =
1
3
ρ, (7.51)

resulting from the elimination of the temperature in P and ρ.

7.2.1. The complex scalar field

The complex boson free field, whose Lagrangian and equations of motion are
L =

1
2
(∂ϕ∗ · ∂ϕ−m2ϕ∗ϕ),

�ϕ+m2ϕ = 0,
(7.52)

possesses one more additive first integral, its total charge

Q =
∫

Σ

dΣν J
ν(x) =

∫
Σ

dΣν ϕ
∗(x)

i

2
↔
∂

νϕ(x), (7.53)
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since the four-current is conserved,

∂µj
µ(x) ≡ ∂µ

(
i

2
ϕ∗(x)

↔
∂

µϕ(x)
)

= 0, (7.54)

as is easily shown from the Klein–Gordon equation obeyed by ϕ and ϕ∗. It
follows that, in thermal equilibrium, the density operator reads

ρstat =
1
Z

exp(−βu · P + βµQ), (7.55)

where µ is the chemical potential, and Q and P can be written in terms of
the creation/annihilation operators


ϕ(x) =
1

(2π)3/2

∫
d3k√
2ω(k)

[a(k) exp(+ik · x) + b+(k) exp(−ik · x)],

ϕ∗(x) =
1

(2π)3/2

∫
d3k√
2ω(k)

[a+
(k) exp(−ik · x) + b(k) exp(+ik · x)],

(7.56)
as

ρstat =
1
Z

exp

(
−β
∑
k

[{√
k2 +m2 − µ

}
a+
(k)a(k)

+
{√

k2 +m2 + µ
}
b(k)b

+
(k)

])
,

so that the average occupation number is now

feq(k) =
d

(2π)3
sgn(u · k)

exp[β(u · k − µ)]− 1
. (7.57)

Of course, one has

Z(β, µ) = Tr

{
exp
(
−β
∑
k

[{√
k2 +m2 − µ

}
a+
k ak

+
{√

k2 +m2 + µ
}
bkb

+
k

])}
, (7.58)

and, more precisely,

[logZ]µ = − 1
(2π)3

∫
d3k

k0
kµ[log(1− exp{−β[ω(k)− µ]})

+ log(1− exp{−β[ω(k) + µ]})], (7.59)
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as written in a manifestly covariant form and where ω(k) ≡ |u · k|. The
various physical quantities are then given either through the use of the par-
tition function or from the expression of feq(k). Accordingly, one finds that

neq ≡ uαJ
α =

d

(2π)3

∫
d3k

k0
uαk

α

×
(

1
exp{β[ω(k)− µ]} − 1

− 1
exp{β[ω(k) + µ]} − 1

)
, (7.60)

which connects the invariant number density neq to the chemical potential
µ and the temperature β−1; this relation thus normalizes the Bose–Einstein
distribution. The pressure is obtained from the energy–momentum tensor

Tαβ =
d

(2π)3

∫
d3k

k0
kαkβ

×
(

1
exp{β[ω(k)− µ]} − 1

+
1

exp{β[ω(k) + µ]} − 1

)
(7.61)

as

P = −1
3
∆αβ(u)Tαβ = − d

3(2π)3

∫
d3k

k0
∆αβ(u)kαkβ

×
(

1
exp{β[ω(k)− µ]} − 1

+
1

exp{β[ω(k) + µ]} − 1

)

=
d

3(2π)3

∫
d3k

k0
k2

(
1

exp{β[ω(k)− µ]} − 1
+

1
exp{β[ω(k) + µ]} − 1

)
(7.62)

and the energy density is

ρ =
d

(2π)3

∫
d3k

k0
uαuβk

αkβ

×
(

1
exp{β[ω(k)− µ]} − 1

+
1

exp{β[ω(k) + µ]} − 1

)

=
d

(2π)3

∫
d3kk0

(
1

exp{β[ω(k)− µ]} − 1
+

1
exp{β[ω(k) + µ]} − 1

)
.

(7.63)

Note the minus sign in the expression of neq: it corresponds to the con-
tribution of the antiparticles. On the other hand, particles and antipar-
ticles contribute in a similar way to the pressure and the energy density of
the system; this explains the plus sign in front of the antiparticles’ Bose–
Einstein factor.
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The various thermodynamic quantities — in particular, the three adi-
abatic indices — have been expressed by P.T. Landsberg and J. Dunning-
Davies (1964) in terms of a number of integrals to be calculated numerically.

7.2.2. Charge fluctuations

The charge fluctuations of the free Bose gas is defined as

δQ2 = 〈Q2〉 − 〈Q〉2, (7.64)

which can easily be calculated from the partition function since

〈Q〉= eβ−1 ∂

∂µ
logZ,

〈Q2〉= e2β−2 ∂
2

∂µ2
logZ,

(7.65)

or

〈δQ2〉 = e2β−2

{
∂2

∂µ2
logZ −

(
∂

∂µ
logZ

)2
}
, (7.66)

and one finds that

δQ2 = e2β−4

[
β
∂F

∂µ
−
(
∂F

∂µ

)2 1
β2

]
; (7.67)

this is of course the same element as in Newtonian theory.

7.2.3. A few remarks on the calculation of various integrals

Let us add a few words about the numerical calculation of various integrals
that involve the Bose–Einstein factor. They are of the general form

I(β, µ) =
∫ ∞

0

dξ
f(ξ)

exp[β(ξ − {µ+m})]− 1
,

with ξ ≡ E −m.
(7.68)

When f(ξ) is sufficiently regular (or even not too irregular!), such integrals
can be calculated via a Gauss–Laguerre method, i.e. as

I(β, µ) =
∫ ∞

0

dξ
f(ξ)

exp[(ξ − {µ+m})]− 1

=
∫
dξ exp(−ξ) f(ξ) exp(+ξ)

exp[(ξ − {µ+m})]− 1

≈
�=n∑
�=1

A�
f(ξ�) exp(+ξ�)

exp[(ξ� − {µ+m})]− 1
, (7.69)
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where ξ� are the zeros of the Laguerre polynomial of order n and the con-
stants A� are also connected with these polynomials and are found as well
in all computing programs.

Another simple remark, which is often useful, is that the Bose–Einstein
factor can be rewritten as

1
exp(x)− 1

= coth
(x

2

)
, (7.70)

and that most computers have enormous precision in the calculation of a
number of functions, such as coth(x).

Finally, when the simple methods do not work, one is compelled to use
more sophisticated ones [see e.g. H.E. Haber and H.A. Weldon (1982a, b)].

7.2.4. Bose–Einstein condensation

In this subsection, the usual13 path to Bose–Einstein condensation is
followed and it is first noted that the replacement

1
V

∑
k

→ d

(2π)3

∫
d3k

(2π)3
, (7.71)

used to calculate the partition function (and hence the Bose–Einstein dis-
tribution), is valid only when the lowest energy state, k = 0 and E(k) = m,
is not macroscopically occupied. When this is not the case, only the other
energy levels can be treated as in the above subsections (their distribution

Fig. 7.1 The chemical potential as a function of the temperature. For the antipar-
ticles — they have not been considered here — one has to change µ into −µ. One always
has m2 ≤ µ2.

13See e.g. K. Huang (1963).
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function is, accordingly, the Bose–Einstein function) and the fundamental
level corresponding to k = 0 must be dealt with separately. Then the
noncondensed particles have density

nnormal =
d

(2π)3

∫
d3k

k0
uαk

α 1
exp{β[ω(k)− µ]} − 1

, (7.72)

where the temperature has been considered to be low enough for the con-
tribution of the antiparticles to be neglected. The density of the condensed
particles, i.e. those that lie on the lowest energy level, is then given by

ncond = neq − nnormal, (7.73)

and, as usual, the onset of the Bose–Einstein condensation phenomenon
occurs when the integrand in the expression of nnormal diverges. This can
be seen by noting that, at fixed neq, when the temperature decreases the
chemical potential increases, and finally reaches its maximum value m, at
a critical temperature given by

nnormal =
d

(2π)3

∫
d3k

k0
uαk

α

×
(

1
exp{βcrit[ω(k)−m]} − 1

− 1
exp{βcrit[ω(k) +m]} − 1

)
.

(7.74)

This relation provides the critical temperature Tcrit for the occurrence of
condensation. In the ultrarelativistic limit, when βm → 0, it is given by
[H.E. Haber and H.A. Weldon (1981)]

Tcrit =
(

3|neq|
dm

)1/2

, (7.75)

in contrast with the earlier result,

Tcrit =
(

neq

8πdζ(3)

)1/3

(7.76)

[P.T. Landsberg and J. Dunning-Davies (1965)], where ζ(s) is the Riemann
function, because of the neglect of antiparticles in their calculation. The
above expression for Tcrit is to be compared with the nonrelativistic
value

Tcrit =
1

2πm

(
neq

dζ(3/2)

)2/3

. (7.77)
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Below the critical temperature, the partition function can be written as

logZ = − d

(2π)3
[1− exp(−βm)]

− d

(2π)3

∫
d3k

ω(k)
k0 log(1− exp{−β[ω(k)]}), (7.78)

where the first term corresponds to the condensed particles for which k = 0.
It can also be written as

logZ = − d

(2π)3

∫
d3k

ω(k)
k0[(1− exp{−β[ω(k)−m]})δ(3)(∆αβ(u)kαkβ)

+ log(1− exp{−β[ω(k)]})], (7.79)

which, upon functional differentiation with respect to ω(k), yields

feq(k) =
d

(2π)3

{
δ(3)(∆αβ(u)kαkβ)

exp[β(m − µ)]
+

sgn(u · k)
exp[β(u · k − µ)]− 1

}
, (7.80)

where the contribution of the antiparticles and of the vacuum have been
re-established. In an interacting system both terms may contribute signif-
icantly to the final results [see e.g. H.E. Haber and H.A. Weldon (1982)].
This is the full distribution function of the bosons below the critical tem-
perature. We come back to a deeper view of Bose–Einstein condensation in
the next subsection.

7.2.5. Interactions

As an indication of the treatment of interactions we shall briefly consider
the example of a self-interacting complex scalar field, whose Lagrangian is

L =
1
2
(∂ϕ∗∂ϕ−m2ϕ2)− λ

4!
(ϕ∗ϕ)4. (7.81)

This system presents the following advantage over the similar one with only
a real scalar field [F. Grassi, R. Hakim and H. Sivak (1991)]: it is still rela-
tively simple and, furthermore, it possesses a U(1) symmetry; moreover,
it sheds some light on the Bose–Eintein condensation of relativistic
gases.

Its free energy is thus

F = −P + µjνu
ν =

1
3
Tαβ∆αβ(u) + nµ, (7.82)



February 10, 2011 15:52 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch07 FA

168 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

where n is the invariant charge density. Using the above Lagrangian, one
obtains

F =
1
3

〈
1
2
[∂αϕ∗∂βϕ+ ∂βϕ∗∂αϕ]

− ηαβ

{
1
2
(∂ϕ∗∂ϕ−m2ϕ∗ϕ)− λ

4!
(ϕ∗ϕ)4

}〉

×∆αβ(u) + µ
i

8
〈ϕ∗ ↔∂ νϕ〉uν , (7.83)

where the brackets designate an average value calculated with the grand-
canonical density operator, and it is clear that, without any approximation
scheme, one cannot go very far (q is the absolute value of the charge of a
typical particle of the field).

Let us separate the fluctuating part φ of the field from its average value
σ as

ϕ = φ+ σ (7.84)

and, rather than performing a perturbative expansion, the system will be
dealt with by using a Gaussian approximation14 for the interaction term15:{

〈|ϕ∗ϕ|2〉 ≈ 2〈φ∗φ〉2,
〈φ2�+1〉 = 〈φ∗(2�+1)〉 = 0.

(7.85)

Thence the above free energy can be rewritten as

F =
1
3

〈
1
2
[∂αφ∗∂βφ+ ∂αφ∂βφ∗]− ηαβ

{
1
2
∂φ∗∂φ− 1

2
m2(φ∗φ+ σ∗σ)

− λ

4!
[2φ∗φ〈φ∗φ〉 + (σ∗σ)2] + µ

i

8
〈φ∗ ↔∂ νφ〉uν

}〉
∆αβ(u). (7.86)

Let us now examine a little further this last (approximate) expression for F.
The coefficient of ηαβ constitutes an effective Lagrangian:

Leff =
1
2
∂φ∗∂φ− 1

2
m2(φ∗φ+ σ∗σ)− λ

4!
[2φ∗φ〈φ∗φ〉 + (σ∗σ)2]

+µ
i

8
〈φ∗ ↔∂ νφ〉uν . (7.87)

14The Gaussian approximation was introduced into quantum field theory by L.I. Schiff
[Phys. Rev. 130, 458 (1963)] and used subsequently by numerous authors [see F. Grassi
et al. (1991), for a bibliography].
15R. Hakim, N. Verdon and H. Sivak, unpublished (1992).
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The constant terms quadratic and quartic in σ can be omitted from this
Lagrangian, and the corresponding effective Hamiltonian finally reads

Heff =
1

(2π)3

∫
d3k{a+(k)a(k)[ωeff(k) − µ] + b+(k)b(k)[ωeff(k) + µ]},

(7.88)

where a vacuum term — irrelevant for what follows — has been omitted
and where

ωeff(k) =
√
M2 + k2, (7.89)

with

M2 = m2 +
λ

12
〈φ∗φ〉. (7.90)

Such an effective Hamiltonian represents the Hamiltonian of free quasipar-
ticles endowed with the effective mass M . This last equation constitutes,
in fact, an implicit equation for M since the term 〈φ∗φ〉 is to be calculated
with the Bose–Einstein (M -dependent) function of these free quasiparticles,
and one finds that

M2 = m2 +
λ

12
1

(2π)3

∫
d3k√

M2 + k2

×
{

1
exp[β(

√
M2 + k2 − µ)]− 1

+
1

exp[β(
√
M2 + k2 + µ)]− 1

}
,

(7.91)

which has to be solved together with the equation for µ, i.e. the normal-
ization of feq(k). Also, the omitted vacuum term must be reinstated and
the resulting equation then contains an infinite term and should be renor-
malized [see F. Grassi, R. Hakim and H. Sivak (1991) for details].

Let us now briefly examine the thermodynamics of the system. Since
the quasiparticles are free, its thermodynamic properties are those of free
bosons endowed with the effective mass M . There are, however, some differ-
ences to take into account. Apart from the renormalization of the equation
for M , the energy–momentum tensor must also be renormalized since it
contains an infinite vacuum term. Such a term cannot be omitted with the
usual normal product, as it is (T , n)-dependent. As important is the fact
that the whole thermodynamics of the system is entirely governed by the
equation for M . A last feature is that these properties a priori depend on
the average value σ of the field ϕ.
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It remains for us to determine σ and this can be done by noting that the
free energy has to be a stable minimum, and this provides the conditions


dF

dσ
= 0,

d2F

dσ2
> 0.

(7.92)

The minimum condition yields
1
2
(µ2 −M2)σ = 0, (7.93)

while the stability condition is obviously obeyed.
When there is no Bose–Einstein condensation, i.e. when µ2 < M2, the

only possible solution is σ = 0. However, when a Bose–Einstein conden-
sation occurs in the system, i.e. when µ2 = M2, a coherent state σ �= 0
can develop. Note that this remark is valid for the free case as well. The
fact that a condensate develops for m2 = M2 gives rise to a spontaneously
broken symmetry16 in the plane of the complex field φ; σ introduces a par-
ticular direction in the plane {Reφ, Imφ} and thus breaks the U(1) sym-
metry existing in the absence of Bose–Einstein condensate.

It remains for us, however, to determine the precise value of the con-
densate σ. This can be done by looking at the charge within the condensate.
Since the charge density is given by

n = β−1 ∂

∂µ
logZ, (7.94)

it turns out that one has

n = β−1

{
2mσ2 +

d

(2π)3

∫
d3k

k0
uαk

α

×
[

1
exp{β[ω(k)−m]} − 1

− 1
exp{β[ω(k) +m]} − 1

]}
, (7.95)

which provides σ as a function of the total charge density and of the
density of noncondensed particles (and antiparticles). Note that we have
used µ = m (for the free case, otherwise one would have µ = M in the
above interacting case17) but the case µ = −m (resp. M) is quite similar.

16A. Casher and M. Revzden, Am. J. Phys. 35, 1154 (1967); J.M. Robinson and
S.L. Trubatch, Am. J. Phys. 39, 886 (1971); ibid. 39, 893 (1971); ibid. 39, 1190 (1971);
Y. Kano, J. Phys. Soc. Jpn. 36, 649 (1974); ibid. 37, 310 (1974). See also J. Kapusta
(1981).
17In this last case, σ satisfies an implicit equation since the effective mass depends on σ
itself.
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7.3. Free Fermions in Thermal Equilibrium

In all applications dealing with relativistic dense matter, the Fermi–Dirac
function plays a very important role with various different forms and has
thus been studied by many authors. Its first relativistic study was made
by F. Jüttner (1928), while the first significant application was performed
by S. Chandrasekhar (1939), who realized that electrons in white dwarfs
were relativistic (1930), a fact that gave rise to the discovery of a limiting
mass for this kind of astrophysical objects, white dwarfs — the so-called
Chandrasekhar mass. Consequently, numerous studies were performed as
to the various integrals which come into play in the calculations involving
the relativistic Fermi–Dirac function, in particular treating of numerical
approximations in several physical regimes. Owing to the better perfor-
mances of modern computers and algorithms, many are now outdated, but
nevertheless they can be useful on some occasions. We mention the articles18

by A.W. Guess (1966), R.F. Tooper (1969), P.P. Eggleton, J. Faulkner and
B.P. Flanner (1973), S.A. Bludman and K.A. van Ripper (1977), A. Wandel
and A. Yahill (1979), S.I. Blinnikov (1987), and B. Pichon (1989). On the
following, only elementary approximations are given (i) for temperature cor-
rections to the completely degenerate case and (ii) for the ultrarelativistic
nondegenerate regime.

In this section, only the noninteracting relativistic Fermi gas is studied.
For electrons, as they occur in white dwarfs, Coulombian corrections are of
the order of e2n1/3, to be compared to their Fermi energy εF ; it appears
that, in white dwarfs, the Coulombian corrections constitute only a few
percent or the Fermi energy.

For fermions there exist the following differences: (i) both particles and
antiparticles are dealt with at the same time and (ii) the “charge” of the
system is conserved, not the particle number. The fermions are chosen to
be Dirac’s free fields obeying{{iγ · ∂ −m}ψ(x) = 0,

ψ̄(x){iγ · ←∂ +m} = 0,
(7.96)

so that the equilibrium density operator can be written as

ρeq =
1
Z

exp(−β[u · P − µQ]), (7.97)

18Note that these articles often differ in their definition of energy whether they substract
the rest mass energy or not.
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with 


Pµ =
∫

Σ

dΣν T
µν(x),

T µν(x) =
i

2
ψ̄(x)

↔
∂

µγνψ(x),
(7.98)




Q =
∫

Σ

dΣν J
ν(x),

Jν(x) = eψ̄(x)γνψ(x).
(7.99)

The decomposition of the fields {ψ(x), ψ̄(x)} into creation/annihilation
operators, as



ψ(x) =
∑

s

∫
d3p{a(p, s)u(p, s) exp(−ip · x)

+ d+(p, s)v(p, s) exp(+ip · x)},

ψ̄(x) =
∑

s

∫
d3p{a+(p, s)ū(p, s) exp(+ip · x)

+ d(p, s)v̄(p, s) exp(−ip · x)},

(7.100)

with {{a(p, s), a+(p′, s′)} = δss′δ
(3)(p− p′),

{d(p, s), d+(p′, s′)} = δss′δ
(3)(p− p′)

(7.101)

and the normalization for the spinors u(p, s) and v(p, s)


∑
s

u(p, s)ū(p, s) =
|p|+m

2Ep
,

∑
s

v(p, s)v̄(p, s) =
|p| −m

2Ep

(7.102)

provides

ρeq =
1
Z

exp

(
−β
∑
p

[Ep − µ]a+
p ap + [Ep + µ]d+

p dp

)
, (7.103)

which immediately leads to the particle and antiparticle occupation
numbers, in the same way as is the case for bosons:

npart(p) ≡ 〈a+
p ap〉 =

1
exp(β[u · p− µ]) + 1

, (7.104)

nantipart(p) ≡ 〈d+
p dp〉 =

1
exp(β[u · p+ µ]) + 1

, (7.105)
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with

u · p ≡ Ep =
√

p2 +m2. (7.106)

Then one finds the expressions

Jα =
ed

(2π)3

∫
d3p

p0
pα

×
(

1
exp[β(u · p− µ)] + 1

− 1
exp[β(u · p+ µ)] + 1

)
, (7.107)

P = − d

3(2π)3

∫
d3p

p0
∆αβ(p)pαpβ

×
(

1
exp[β(u · p− µ)] + 1

+
1

exp[β(u · p+ µ)] + 1

)
, (7.108)

ρ =
d

(2π)3

∫
d3p

p0
(u · p)2

×
(

1
exp[β(u · p− µ)] + 1

+
1

exp[β(u · p+ µ)] + 1

)
. (7.109)

In terms of neq, P and ρ, these integrals can be rewritten as

neq =
d

2π2

∫
dE E

√
E2 −m2

×
(

1
exp[β(E − µ)] + 1

− 1
exp[β(E + µ)] + 1

)
, (7.110)

P =
d

6π2

∫
dE(E2 −m2)3/2

×
(

1
exp[β(E − µ)] + 1

+
1

exp[β(E + µ)] + 1

)
, (7.111)

ρ =
d

2π2

∫
dE E2

√
E2 −m2

×
(

1
exp[β(E − µ)] + 1

+
1

exp[β(E + µ)] + 1

)
. (7.112)

Note that the density of states can be obtained by a simple change of
variables, |p| → E, since the integration element transforms as

d

(2π)3
d3p

p0
→ d

2π2

√
E2 −m2dE (7.113)
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and is thus given by

g(E) =
d

2π2

√
E2 −m2. (7.114)

7.4. Thermodynamic Properties of the Relativistic
Ideal Fermi–Dirac Gas

The various possible regimes that govern the thermodynamic properties of
the Fermi gas are essentially linked to the values of the following parameters:

• εF , the Fermi energy (or possibly the thermodynamic potential19 µ),
• T , the thermal energy,
• e2n1/3, the Coulomb energy (when the system is an electromagnetic

plasma),

and they have to be compared to the rest mass energy m. For the system
to be relativistic, it is necessary that at least one of these parameters is
larger than or equal to m. However, the significance of the word “rela-
tivistic” varies according to which parameter is at stake. For instance, when
εF ≥ m this means that the system is extremely dense; when T ≥ m, the
relativistic character of the system comes from its thermal agitation; finally,
when e2n1/3 ≈ m, the interaction energy is so high that pair creations are
important and one has to be careful with their treatment.

As to the interplay of the basic parameters, it is clear that when εF 	 T ,
the system can be considered as being cold while it can be dealt with as a
noninteracting system whenever

εF 	 e2n1/3 and/or T 	 e2n1/3.

Nevertheless, the ratio

Γ =
e2n1/3

T

plays an important role in the onset of a possible crystallization (or melting)
of the system; for Γ 	 1, there is crystallization of the plasma,20 so as to
minimize the Coulomb energy.

19At T = 0, the chemical potential is called the “Fermi energy” (εF ), as in the nonrela-
tivistic case.
20It should be noted that the electron plasma is generally embedded in a neutralizing
positive background constituted by ions of charges Ze (Z should then be added to the
above formulae). Note also that the parameter Γ and its signification are the same
whether the system is relativistic or not.
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7.4.1. Remarks on the numerical calculations

of various physical quantities

In the theory of white dwarfs and in many other applications, various data
are needed in a numerical manner. Many calculations have been made,
beginning with tables of the Fermi integrals or with more or less sophis-
ticated Fortran codes. For instance, A.W. Guess (1966) expressed most
quantities of interest in terms of the integrals

Qn(µ,mβ) =
1
2

∫ +∞

−∞

cosh(nθ)dθ
exp(mβ cosh θ − β[m− µ]) + 1

, (7.115)

as




neq =
6A
m

[Q3(µ, βm)−Q1(µ, βm)],

ρ= 3A[Q4(µ, βm)−Q3(µ, βm) +Q1(µ, βm)−Q0(µ, βm)],

P = A[Q4(µ, βm)− 4Q2(µ, βm) + 3Q0(µ, βm)],

S=
A

m
[4βm{Q4(µ, βm)−Q2(µ, βm)} − 6q{Q3(µ, βm)−Q1(µ, βm)}],

A=
d

48π2
, q = βm− exp(βµ).

(7.116)
Then he proceeded to a Mellin transform of the Qn’s, particularly suitable
for their detailed study, obtaining thereby recursion relations and approx-
imations for various regimes. A similar method was used by R.F. Tooper
(1969), who improved Guess’ results. Finally, a large number of articles
dealing with particular regimes and improving the preceding results
appeared [G. Beaudet and M. Tassoul (1971); P.P. Eggleton, J. Faulkner
and B.P. Flannery (1973); S.R. Hore and N.E. Frankel (1975); S.A.
Bludman and K.A. van Riper (1977); B. Paczinski (1983); F.J. Fernandez
Velicia (1984); A.T. Service (1986); S.I. Blinnikov (1987)]. They have been
reviewed, compared and improved by B. Pichon (1989), to whom we refer.

7.4.2. The degenerate Fermi gas

The completely degenerate case, T = 0K, can be obtained by taking the
limit β → ∞ in the preceding expressions. For an ideal gas composed of
relativistic fermions of mass m, the various energy levels are uniformly
occupied untill the Fermi level εF is reached; the Fermi level is connected
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Fig. 7.2 The completely degenerate relativistic Fermi–Dirac distribution exhibits both
the Fermi sea and the Dirac ocean.

with the Fermi momentum through the definition

pF ≡
√
ε2F −m2. (7.117)

The Fermi–Dirac distribution then appears as it is depicted in Fig. 7.2 and
reads

fFD(p) =
d

(2π)3
δ(p2 −m2)

×{θ(u · p)θ(εf − u · p) + θ(−u · p)θ(u · p−m)}, (7.118)

where the first term represents the Fermi sea and the second refers to Dirac’s
ocean. In what follows, this “vacuum” term will be discarded although it
plays an important role in renormalization problems (see Chap. 9).

The particle density is then, as in the nonrelativistic case,

neq =
d

6π2
p3

F (7.119)

or

pF =
(

6π2

d

)2/3

n2/3, (7.120)

whereas the energy density and the pressure assume a different form owing
to the different form of relativistic energy; they read

ρ =
d

(2π)3

∫
d3p

p0
(u · p)2θ(εf − u · p)

=
d

2π2

∫ pF

0

d|p|p2
√

p2 +m2, (7.121)
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P =
d

3(2π)3

∫
d3p

p2√
p2 +m2

θ(εF − u · p)

=
d

6π2

∫ pF

0

d|p| p4√
p2 +m2

. (7.122)

These integrals can be calculated explicitly and the equation of state can
be written in parametric form:


ρ =
dm4

16π2

{
x(1 + 2x2)

√
1 + x2 − ln

[
x+
√

1 + x2
]}
,

P =
dm4

16π2

{
x(1 + x2)

(
2
3
x2 − 1

)√
1 + x2 + ln

[
x+
√

1 + x2
]}

,

x =
pF

m
.

(7.123)

7.4.3. Thermal corrections: Sommerfeld expansion

In many physical problems the temperature is so low that only correc-
tions to the zero temperature Fermi–Dirac distribution are necessary. For
instance, in white dwarfs, the temperature of the electrons is of the order
of 106 K, while the Fermi energy is of the order of a few MeV; this means
that (i) one should deal with relativistic electrons (their Fermi energy is
larger than their rest mass) and that (ii) kBT � εf . A. Sommerfeld (1928)
gave an asymptotic expansion for these thermal corrections which is quite
useful.21

When one is using the Fermi–Dirac function in practical problems, inte-
grals of the form

I =
∫ ∞

m

dEfFD(E)q(E) (7.124)

do appear, where q(E) is a given function22 supposed to have all desired
regularity properties. We also assume that the function q(E) possesses a
known integral:

Q(E) =
∫ E

dE q(E). (7.125)

21See also S. Chandrasekhar, An Introduction to the Study of Stellar Structure
[University of Chicago Press, (1939); reprinted by Dover (1967)].
22It includes the density of states g(E).
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In the Sommerfeld expansion, one takes advantage of the fact that the
Fermi–Dirac function is almost steplike. Integrating the integral I by parts,
one finds that

I = fFD(E)Q(E)|∞m −
∫ ∞

m

dE
∂

∂E
fFD(E) ·Q(E), (7.126)

where the first term vanishes: for E = m, Q(m) = 0, by construction; and
for E →∞, fFD(E)→ 0. One finally has

I = −
∫ ∞

m

dE
∂

∂E
fFD(E) ·Q(E). (7.127)

Since fFD(E) is almost a step function, its derivative is sharply peaked and
hence is almost a δ function. When one expands the function Q(E) into a
series about E = µ, the chemical potential, as

Q(E) =
∞∑

n=0

1
n!

dnQ

dEn

∣∣∣∣
E=µ

(E − µ)n, (7.128)

one gets

I = −
∞∑

n=0

1
n!

dnQ

dEn

∣∣∣∣
E=µ

∫ ∞
m

dE
∂

∂E
fFD(E)(E − µ)n (7.129)

or

I =
∞∑

n=0

d

(2π)3
In
β−n

n!
dnQ

dEn

∣∣∣∣
E=µ

, (7.130)

with

In =
∫ ∞

m

dx
2xn

cosh
(

1
2x
) − ∫ ∞

−∞
dx

2xn

cosh
(

1
2x
) . (7.131)

In the Sommerfeld expansion, the lower boundm is replaced by−∞ because
of the peaked shape of the derivative of the Fermi–Dirac function; this
amounts to neglecting exponentially small terms. In can be evaluated more
precisely as {

I2n = (−1)n(2− 22n)π2nB2n,

I2n+1 = 0,
(7.132)

where B2n are the Bernoulli numbers of order 2n. Finally, I turns out to be

I =
∞∑

n=0

d

(2π)3
(−1)n(2− 22n)π2nB2n

β−2n

n!
d2nQ

dE2n

∣∣∣∣
E=µ

. (7.133)
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The first few Bernoulli numbers are

B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, B6 =

1
42
,

B8 = − 1
30
, B10 =

5
66
.

The integral I thus appears to be a formal expansion in powers of (kBT )n ≡
β−n; but, as in the nonrelativistic case, this is a bit fallacious since the
chemical potential does depend on T itself. It is therefore necessary to
evaluate first the T dependence of µ.

7.4.4. Corrections for various thermodynamic quantities

Let us now evaluate some thermal corrections for the main thermodynamic
quantities by using the Sommerfeld expansion method.

Chemical potential. The chemical potential is obtained via the normal-
ization of the Fermi–Dirac function

neq =
d

2π2

∫
dEE

√
E2 −m2

1
exp[β(E − µ)] + 1

=
d

2π2

∫ εF

0

dEE
√
E2 −m2

+

[
(µ− εF )εF pF +

π2T 2

6
d

dE

(
E
√
E2 −m2

)∣∣∣∣
E=µ

]
+O(T 4).

(7.134)

The first term is the zeroth order expression on neq and hence the term
between the brackets is essentially vanishing, so that finally one obtains

µ = εF

{
1− π2

6
T 2

εF

1
εF pF

d

dE

(
E
√
E2 −m2

)∣∣∣∣
E=εF

}
+O(T 4)

= εF

{
1− π2

6
T 2

ε2F

(
1 +

ε2F
p2

F

)}
+O(T 4). (7.135)

Energy density. One has

q(E) =
d

2π2
E2
√
E2 −m2 (7.136)

and therefore the energy density turns out to be

ρ(T ) = ρ(T = 0) + 2π2B2T
2ε2F pF + · · · = π2

3
T 2εF pF +O(T 4). (7.137)
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Pressure. In this case the function q(E) is given by

q(E) =
d

6π2
(E2 −m2)3/2, (7.138)

so that one obtains

P (T ) = P (T = 0) +
1

36π2
T 2 d

dE
(E2 −m2)3/2

∣∣∣∣
E=εF

+O(T 4). (7.139)

The quantities which appear in the above formulae, i.e. ρ(t = 0) and
P (T = 0), were calculated previously.

Other quantities can also be obtained, such as the (volume or pressure)
heat capacity.

The heat capacity (per unit volume and particle) at constant volume of
the degenerate electron gas plays an important role in many astrophysical
situations, such as the cooling of white dwarfs. It is given by

CV =
∂ρ(neq, T )

∂T

∣∣∣∣
neq

=
2dπ2

3
TεFpF , (7.140)

which is obtained from the above approximate expression for the energy
density. As in the nonrelativistic case, CV tends to zero when T → 0, and
hence the third law of thermodynamics is still obeyed.

This free electron gas model has been corrected by taking into account
both the electron exchange and its interaction energies to order O(e4 log e2)
[T. Hamada and Y. Nakamura (1966)]. In Chap. 14, a more general
expression is given for CV .

7.4.5. High temperature expansion (nondegenerate)

The high temperature corrections may be obtained from the remark that
they correspond to small β’s, namely when βm � 1. Consequently, it is
sufficient to use the following expansion of the Fermi–Dirac factor whenever
it occurs in the various integrals:

1
exp[β(Ep − µ)] + 1

=
exp[−β(

√
p2 +m2 − µ)]

1 + exp[−β(
√
p2 +m2 − µ)]

=
∞∑

�=1

(−1)�+1 exp[−β�(
√
p2 +m2 − µ)]. (7.141)
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For instance, the fermions’ density is

npart =
d

(2π)3

∫
d3p

p0
p0 1

exp[β(u · p− µ)] + 1

=
∞∑

r=1

(−1)r+1 d

(2π)3

∫
d3p exp

[
−βr

(√
p2 +m2 − µ

)]

=
dm2

2π2β

∞∑
r=1

(−1)r+1r exp(βrµ)K2(βmr), (7.142)

where K2 is still a Kelvin function of order 2. For large r’s, the Kelvin
function K2 (see App. A) is such that

K2(βmr) ≈
(

π

2βmr

)1/2

exp(−βmr), (7.143)

so that the above series converges since µ2 < m2.

7.5. White Dwarfs: The Degenerate Electron Gas

White dwarf stars have a long and interesting story, beginning about
150 years ago, when F.W. Bessel discovered that Sirius seemed to orbit
around a fixed point in the sky. He then assumed that in this fixed point
was a star, invisible at this time: Sirius B. Owing to its weak luminosity,
this star was detected only in 1862 by A.-G. Clark. The period of this binary
system was of the order of 50 years and this allowed, in 1910, determination
of the mass of the two components A and B as{

MA ≈ 2.3MSun, MB ≈ 1.0MSun

MSun ≈ 1.98× 1033 g,

while the luminosities were{
LA ≈ 40LSun, LB ≈ 3× 10−3LSun,

LSun ≈ 3.9× 1033 erg/s,

which did not present anything special except the disproportion between
the luminosity ratio (: 104) and the mass ratio (: 2). In 1915, J.C. Adams
measured the surface temperature of Sirius B (: 8000 K), which is much
more important than that of the Sun (: 5800 K) and moreover much more
important than what might be expected (: 1300 K) from the star luminosity
and Stefan’s law.
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The problems and questions then began at this stage. The radius RB

of Sirius B can indeed be estimated from the luminosity of the star and
Stefan’s law,

LB = 4πσT 4

(the energy emitted by the white dwarf being ∝ R2LB), where σ is the
Stefan–Boltzmann constant,

σ =
π2k4

B

15(hc)3
= 5.7× 10−5erg× (cm2 × s×K4)−1,

and one finds that {
RB ≈ 0.26RSun,

RSun ≈ 6.96× 1010 cm.

These figures led A. Eddington (1922) to say that Sirius B possesses an
“absurd” density, of the order of 105 g/cm3. Later, other measures led to
higher surface temperatures (e.g. 32000K) and hence to still smaller radii
and, consequently, to still more “absurd” densities. The smallness of the
radii of white dwarfs was confirmed in 1925 by J.C. Adams, who used the
recently confirmed general relativity. This theory predicts a redshift of light
rays of the order

∆λ
λ
≈ G M

Rc2
, (7.144)

which was indeed measured and confirmed the smallness of Sirius B’s
radius.23

Sirius B thus appeared as a compact (i.e. massive, small and dense)
object and the question raised by this fact was: What kind of physical
phenomenon would be able to provide a sufficient pressure (P ≈ 105 dyn)
to balance the gravity of the star (1.0MSun) so as to maintain the star in
hydrostatic equilibrium.24

After the discovery in 1925 of the exclusion principle (W. Pauli) and of
the subsequent Fermi–Dirac statistics (1926), R. Fowler realized that the
pressure necessary for maintaining the white dwarf hydrostatic equilibrium
was simply the pressure occurring between electrons obeying the exclusion
principle.

23Similar measures have been performed for numerous other white dwarfs; see e.g. J.L.
Greenstein, J.B. Okes and H.L. Shipman, Astrophys. J. 169, 563 (1971).
24In the Sun, the pressure is only 1014 dyn for a mass density of the order of that of
water.
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A few years later, E.C. Stoner (1929) and W. Anderson (1930) remarked
that, for sufficiently high densities (≥ 106 g/cm3), the electrons were rela-
tivistic and hence the expression of their energy had to be changed in
the Fermi–Dirac statistics [F. Jüttner (1928)]. This was done in 1934 by
S. Chandrasekhar, who integrated numerically the equations of hydrostatic
equilibrium with the first relativistic equation of state (Fermi–Dirac). He
showed that beyond a certain limiting mass — the Chandrasekhar mass25 —
it was impossible to find any white dwarf in hydrostatic equilibrium.

After these beginnings of white dwarfs’ history, these stars became a
field of intensive theoretical and observational studies. In particular, their
internal relativistic electron plasma was the object of important researches.

The original models of white dwarfs start from the usual hydrostatic
equations for Newtonian equilibrium:


d

dr
M(r) = 4πr2ρ(r),

d

dr
P (r) = −GM(r)

r2
ρ(r),

(7.145)

where M(r) is the mass contained in a sphere of radius r, centered at the
origin of the star, supposed to possess the spherical symmetry; P (r) is the
pressure at distance r from the center; and G is the gravitational constant.
To this system, one must also add the boundary conditions


M(0) = 0, P (R) = 0, ρ(0) = ρc,

M =
∫ R

0

4πr2dr ρ(r).
(7.146)

The last condition defines the mass of the star, while the first one,
i.e. P (R) = 0, specifies its radius; ρc, the central density, is a free parameter
that specifies the star. It remains for one also to specify the equation of state
obeyed by matter in the star.

And they show that the star is in hydrostatic equilibrium only below
a critical mass, the Chandrasekhar limit, which corresponds to a critical
number of nucleons Ncr, given by

Ncr ≈ 5.5× 1057

(
Z

A

)2

,

where the numerical factor comes from the various constants occurring in
E(R) (τ is the number of electron and A is the number of nucleons of a

25In the simplest case, this mass is of the order of 1.44 MSun.
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typical star). It is obtained by taking the limit R → 0 of E(Re) and gives
rise to a total mass of the star of 1.44 MSun, for a He4 composition. For
other chemical compositions the Chandrasekhar limit is of course lower.
Another fact that tends to diminish this critical mass is the β capture of
electrons in the star

e+ P → N + ν,

which is easy to understand: since this process reduces the number of elec-
trons participating in the Fermi pressure, the star can sustain less mass.
In Fig. 7.3, a plot of the radius versus the mass of a typical white dwarf
has been given, with and without the effect of the neutronization process
after T. Hamada and E. Salpeter (1961). Of course, this process tends to
be important at high densities.

The above model is actually extremely simple and we have to mention
several possible corrections to be made; in particular, the effects of tem-
perature and of electrostatic interactions have to be examined. Also, two
important physical effects in connection with the cooling of the star and the
screening of ions are to be considered: they deal with the evaluation of the

Fig. 7.3 The typical radius–mass curve of white dwarfs (a) without β capture (dashed
line: Chandrasekhar curve) and (b) with neutronization for several compositions of the
star (He, Mg, C, Fe) [after T. Hamada and E. Salpeter (1961)].
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specific heat (at constant volume) of matter and the so-called pycnonuclear
reactions.

7.5.1. Cooling of white dwarfs

The state of matter within the star depends on the various scales of energies
within the system:


Fermi energy:εF

Thermal energy: T

Electrostatic interaction energy: e2/〈r〉 ≈ e2n1/3

and its cooling properties do depend strongly on the state of matter within
the star. The luminosity — an important observable property — depends
on the cooling of white dwarfs.

One of the most important physical aspects of white dwarfs is their
luminosity, essentially because of the fact that — up to some physical
assumptions — it leads to the age of the stars; and the question of their
energy source26 has been resolved by Mestel (1962). He showed that a sat-
isfactory interpretation could be obtained by the assumption that the heat
gathered in the core of the star could be filtered slowly through the nonde-
generate envelope.

Let us briefly examine this point. The luminosity of the star is given by

L = 4π
∫ R

0

dr r2ρ(r)
[
εnucl − T ∂S

∂t

]
, (7.147)

where εnucl is the rate of energy produced by nuclear reactions (by second
and by mass unit) and S is the entropy of the stellar material by unit of
mass. Let us take a glance at the integrand of the latter integral; the last
term can be put in the form

T
∂S

∂t
= T

[
∂S

∂T

∣∣∣∣
ρ

∂T

∂t
+
∂S

∂ρ

∂ρ

∂t

]
 CV

∂T

∂t
, (7.148)

where CV is the specific heat at constant volume of the stellar material,
and the last term has been neglected since the freezing of the star induces
generally very small gravitational contraction.

26See, e.g. H.M. van Horn, Cooling of White Dwarfs, IAU Symposium No. 42, ed.
W.J. Luyten (Reidel, Dordrecht, 1971).
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The term εnucl will be neglected for other reasons (secular instability,
etc.).

From the degeneracy of the electrons in the core of the white dwarf, one
finds that their thermal conductivity is rather high. This can be realized
by noting that the thermal conductivity λ can be estimated by

λ ≈ const× �× nel × T

εF
× pF

m
, (7.149)

with

� ≈ 1
nions

σ, (7.150)

where � is the average free path for collision ions–electrons and where σ,
the effective cross-section of collision electrons–ions, can roughly be illus-
trated as

σ ≈
(
Ze2

εF

)2

. (7.151)

It follows that the average free path of the electrons effectively diffused is
larger than that of nondegenerated electrons — the electrons whose energies
are in the neighborhood of the Fermi energy; the diffusion of the others is
inhibited by the Pauli principle. Consequently, the thermal conductivity is
higher for the electrons close to the Fermi energy. Therefore, the core of
the star can be considered as isothermal, at least roughly.

Finally, the relation which gives rise to the luminosity reduces to

L ≈ −CVM
dTC

dt
, (7.152)

where TC is the temperature of the isothermal core.
Of course, the main problem is now to evaluate CV , and one can roughly

neglect the electron contribution since it contributes as TC/εF . For low
density and hot white dwarfs, such an approximation would not be com-
pletely correct; the thermal capacity of the electrons has then a substantial
contribution.

In fact, we should have

τ ≈ CV
M

L
TC , (7.153)

which, once included in radiative equilibrium, contains both observational
data (L,M) and CV , whose result does depend on the precise state of
matter within the star.
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7.5.2. Pycnonuclear reactions

In the presence of electrons and for high-enough densities, the heavy pos-
itively charged ions are screened and hence thermonuclear reactions will
occur provided that the Coulomb barrier is lowered enough. Thus, beyond
a critical temperature, which depends on the nature of the nucleus under
study, some thermonuclear reactions can occur. In fact, inside white dwarfs,
when the density is high enough, the electric field is screened, in particular
by the electrons. It follows that, even at zero temperature, nuclear reactions
can occur; such reactions are called pycnonuclear reactions.

Here are a few densities for the onset of some nuclear reactions to occur
between elements:

H He4 C12

5 · 104 g/cm3 8 · 108 g/cm3 6 · 109 g/m3

The first figure shows that an average white dwarf cannot contain hydrogen
in its interior since it has already been burnt out. Let us also note that all
these critical densities are lower than the one calculated for the β capture:
pycnonuclear reactions are produced before neutronization.

7.6. Functional Representation of the Partition Function

Although we do not use functional methods27 in the following chapters,
it is impossible to ignore the functional representation of the partition
function for thermal equilibrium, especially owing to its general use and
its necessity when one is dealing with gauge theories. Accordingly, a few
simple elements28 are now given still in the relativistic case and, in this sub-
section, only the case of a photon gas is dealt with. Furthermore, we shall
not enter into the various subtleties and shall remain at a purely formal

27Apart from the references below, see I.M. Gelfand and A.M. Yaglom, J. Math. Phys.
1, 48 (1960).
28See the excellent book by R.P. Feynman, Statistical Mechanics: A Set of Lec-
tures (Benjamin, New York, 1972). See also R.P. Feynman and A.R. Hibbs, Quantum
Mechanics and Path Integrals (McGraw-Hill, New York, 1965); J. Kapusta, Finite Tem-
perature Field Theory (Cambridge University Press, 1989); M. LeBellac, Thermal Field
Theory (Cambridge University Press, 2000); Ch. G. van Weert, Statistical Field Theory:
An Introduction to Real- and Imaginary-Time Thermal Field Theory (lecture notes,
Amsterdam, 2001); E. Alvarez, Relativistic Many-Body Physics (1984).
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level. For more details see J. Kapusta (1989) and M. Le Bellac (2000). In a
first reading this subsection can therefore be omitted and it is useful only
when one is dealing with gauge invariance, where a number of techniques
should be admitted.

7.6.1. The partition function for gauge particles (photons)

When one is dealing with the electromagnetic field, one has to face the
problem of gauge invariance of the physical results obtained from calcu-
lations and approximations. The electromagnetic field Fµν , expressed in
terms of the electromagnetic four-potential Aµ as

Fµν(x) = ∂µAν(x) − ∂νAµ(x), (7.154)

is obviously invariant under the gauge transformations

Aµ(x)→ Aµ(x)− ∂µΛ(x). (7.155)

Such an invariance must be obeyed by all physical quantities, including the
density operator. On the other hand, the photon possesses two degrees of
freedom — its two degrees of polarization — and hence can be described
by the electromagnetic four-potential Aµ(x) only if there are imposed two
conditions that suppress two of its four degrees of freedom. A well-known
example is the Coulomb — or radiation — gauge conditions, which written
in a manifestly covariant way read{

uµA
µ(x) = 0,

∆µ
ν (u)∂µA

ν(x) = 0,
(7.156)

where uµ, in the case where matter is present, is the average four-velocity
of the system under consideration. Such gauge conditions that leave only
two transverse degrees of freedom for the electromagnetic field are generally
called physical gauges. The Coulomb gauge breaks the Lorentz invariance
since it a priori involves a timelike four-vector, uµ. There exist, however,
covariant gauges like

∂µA
µ(x) = χ(x) or Aµ(x)Aµ(x) = const, etc. (7.157)

The first one, the Lorentz gauge, is among the most popular ones, while
it would be quite awkward to use the second one, which is nonlinear and
implies the manipulation of ghosts.29

29C. Nash, Relativistic Quantum Fields (Academic, New York, 1978).
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A connected problem is the question of solving the equation obeyed
by Aµ,

�Aµ(x) − ∂µ(∂νA
ν(x)) = Jµ(x), (7.158)

which results from Maxwell’s equations. In Fourier space, it can indeed be
rewritten as

∆µ
ν (k)Aν(k) = −Jµ(k), (7.159)

and it cannot be solved forAµ since ∆µν(k) is a projector, except of course if
one imposes some gauge condition and this amounts to solving the equation
in the three-space orthogonal to kµ. With the Lorentz gauge χ(x) ≡ 0, the
equations obeyed by Aµ read

�Aµ(x) = Jµ(x) (7.160)

and can be solved in a straightforward way. Note that the Lorentz gauge
imposes the condition �Λ = 0 on the gauge functions and, furthermore, still
lets the electromagnetic field be endowed with three degrees of freedom, and
we have to resort to other arguments to completely fix the gauge.

7.6.2. The photons’ partition function

From conventional methods explained at the beginning of this chapter, the
partition function of the blackbody radiation is easily found to be

logZ = 2
∫

d3k

(2π)3

{
−1

2
βω(k)− log(1− exp[−βω(k)])

}
, (7.161)

and a wrong result would be obtained. This is due to the fact that the
functional integral used in the calculation, even though gauge-invariant,
also involves an integration over the nonphysical degrees of freedom of the
field Aµ:

Z =
∫
D{Aµ} exp

[
−
∫ β

0

d4xLE(A, ∂A)
]
. (7.162)

A possible way out of this difficulty is to introduce in this ill-defined integral
a constant factor, which does not break its invariance properties and allows
the reduction of the unwanted degrees of freedom of Aµ. This can be done
by inserting the factor

1 =
∫
DΛδ[G(A(Λ))] det

[
δA(Λ)

δΛ

]
, (7.163)
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where Aµ
(Λ) ≡ Aµ − ∂µΛ is the transform of Aµ under a gauge transfor-

mation, and where G(A(Λ)) = 0 is the chosen gauge condition. Note that
this relation is the functional analog of the usual expression

1 =
∫
dxδ[G(x)]

∣∣∣∣∂G(x)
∂x

∣∣∣∣ =
∫
dG(x)δ(G(x)). (7.164)

The partition function then becomes

Z =
∫
DADΛ det

[
δA(Λ)

δΛ

]
δ[G(A(Λ))] exp

{
−
[ ∫ β

0

d4xLE(A, ∂A)
]}
(7.165)

and is still gauge-invariant. It must also be noted that the insertion of the
constant factor

1 =
∫
DΛδ[G(A(Λ))− γ(x)] det

[
δA(Λ)

δΛ

]
, (7.166)

where γ(x) is an arbitrary function independent of Λ, is quite equivalent to
the one above. Accordingly, one also has

1 =
∫
D γ exp

{
− 1

2ξ

∫
d4x[G(A(Λ))]2

}

×
∫
DΛδ[G(A(Λ))− γ(x)] det

[
δA(Λ)

δΛ

]

=
∫
DΛ exp

{
− 1

2ξ

∫
d4x[G(A(Λ))]2

}
det
[
δA(Λ)

δΛ

]
, (7.167)

so that the partition function now reads

Z =
∫
DADΛ det

[
δA(Λ)

δΛ

]

× exp

{
−
[∫ β

0

d4xLE(A, ∂A)

]
+

1
2ξ

∫
d4x[G(A(Λ))]2

}
, (7.168)

in which the change of “variables”

A→ A′ = A− ∂Λ (7.169)

is performed so that, after using the gauge invariance of the electromagnetic
Lagrangian LE and relabeling A′ as A, and integrating over the gauge
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function Λ, one obtains

Z =
∫
DAdet

[
δA

δΛ

]
exp

{
−
[∫ β

0

d4xLE(A, ∂A)

]
+

1
2ξ

∫
d4x[G(A)]2

}
,

(7.170)

which can be rewritten as a functional of the effective Lagrangian

Leff = Lem(A, ∂A) +
1
2ξ

[G(A)]2. (7.171)

The parameter ξ is called the gauge-fixing parameter. As to the functional
determinant occurring in the expression of Z, one can show that it can be
cast into the form

det
[
δA

δΛ

]
=
∫
DηDη̄ exp[η̄(x)Mη(x)], (7.172)

where M is an operator depending on the particular chosen gauge. For
instance, in the Lorentz gauge, it has the form

M = ∂µ∂µ. (7.173)

The fields {η, η̄}, the so-called Fadeev–Popov ghosts, have quite special
properties30; in particular, they lead to a term that has the wrong sign in
the effective Lagrangian:

Leff = Lem(A, ∂A) +
1
2ξ

[G(A)]2 + ∂η̄ · ∂η. (7.174)

7.6.3. Illustration in the case of the Lorentz gauge

In order to get further insights into what has been effected above, the case
of Lorentz gauges is now considered:

G(A) ≡ ∂µA
µ(x) = γ(x). (7.175)

In this case, the operator M reduces to ∂2 and the effective Lagrangian is
given by

Leff = +
1
4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

− 1
ξ
(δαβ∂αAβ)2 + η̄δαβ∂β∂αη (7.176)

30Here, they are zero-spin-field but nevertheless they anticommute, thus not obeying
the spin–statistics theorem. For details, see one the following books: C. Itzykson and
J.B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980); C. Nash, loc. cit.
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(where repeated indices denote a summation and these equations still refer
to the four-dimensional Euclidean space), so that the equations of motion
for the field A read

∂α∂αA
µ(x)− 1

ξ
∂µ∂αAα = 0, (7.177)

which in Minkowski space read

�Aµ(x) − 1
ξ
∂µ∂αA

α = 0. (7.178)

Several remarks are now in order. First, one sees that, in the case con-
sidered so far, the ghost field decouples from the photon field; this is not
a general feature but it appears in this particular gauge. Next, the gauge
invariance of subsequent averaged physical observables will result from their
independence from the gauge-fixing parameter. Also, the operator

ηµν − 1
ξ
∂µ∂ν (7.179)

is no longer a projector, as can be seen in Fourier space, and hence can be
inverted.

From the preceding considerations on gauge problems, the method to
be used consists in (i) choosing a gauge convenient for the calculations and
(ii) checking the ξ independence of the results.

Let us now calculate the partition function of the blackbody radiation.
The partition function reads

Z =
∫
DAD η̄Dη exp

{
−
∫ β

0

d4x

[(
1
2
∂µAν∂

µAν − ∂µAν∂
νAµ

)

+
1
2ξ

(∂αAα)2 + ∂αη̄ · ∂αη

]}
(7.180)

or, in Fourier space,

Z =
∫
DADη̄Dη exp

[
− 1

2

∑
n

∑
k

(ω2
n + k2)A2(ωn,k)

+
(

1− 1
2ξ

)
(k ·A)2 − 2η̄(ω2

n + k2)η

]
. (7.181)

The first term of this expression corresponds to the partition function of
free photons with an incorrect factor 4, which occurs because of the four
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degrees of freedom of Aµ. The ghost term, with the “wrong” sign, is also
a free particle term and it contributes to the total partition function with
a factor of −2, eliminating thereby the two spurious degrees of freedom
of Aµ. The last term — the gauge-fixing term — can be chosen so as to
vanish, since Z is gauge-invariant. Finally, one recovers the correct black
body partition function.
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Chapter 8

The Covariant Wigner Function

The Wigner function (1932) is the quantum analog of the usual distribution
function on phase space with the difference that it is not always positive,
particularly in domains of the size of h3. Furthermore, because of the fact
that it does not constitute a true probability density but rather a theo-
retical way for the computation of statistical data on quantum systems,
it is not unique and many other definitions are possible.1 In the rela-
tivistic context, the first uses of such a tool seem to be the ones by D.
Biskamp (1967) and by R. Balescu (1968, 1969). However, not only are
these relativistic Wigner functions not manifestly covariant but they also
contain an unnecessary normal product in their definition: this normal
product eliminates ipso facto all vacuum terms and hence some finite per-
tinent effects, after renormalization. Covariant, albeit not general, rela-
tivistic Wigner functions were introduced later by P.A. Carruthers and
F. Zachariasen (1974, 1976, 1983), R. Hakim and R. Dominguez-Tenreiro
(1976), and R. Hakim and J. Heyvaerts (1976). A covariant definition for
spin 1/2 particles was provided by Ch. G. Van Weert and W.P.H. de
Boer (1975). Finally, the full covariant definition occurred at about the
same time [R. Hakim (1976, 1978)]. This was then given a gauge-invariant
form [E.A. Remler (1977); V.V. Klimov (1982); J. Winter (1984); U. Heinz
(1983, 1985); H.-Th. Elze, M. Gyulassy and D. Vasak (1986)]. An inter-
esting attempt (see below) of a relativistic albeit nonmanifestly covariant,
gauge-covariant Wigner function has also been made by I. Bialynicki-Birula,
P. Gornicki and J. Rafelski (1991), with the aim of calculating the pair

1See L. Cohen, J. Math. Phys. 7, 781 (1967), for the nonrelativistic possible Wigner-like
functions.

194
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production rate in a homogeneous electric field. Let us also add that
the covariant Wigner function technique has been generalized to curved
spaces [E. Calzetta and B.L. Hu (1987, 1989); E. Calzetta, S. Habib and
B.L. Hu (1988)] and applied, for example, to cosmology [E. Calzetta and
B.L. Hu (1989)].

8.1. The Covariant Wigner Function for Spin 1/2 Particles

As in the nonquantum case, the starting point of the construction of a
covariant Wigner function is the data of the basic observables of spin 1/2
particles, namely the four-current

Jµ(x) = ψ̄(x)γµψ(x) (8.1)

and the energy–momentum tensor

T µν =
i

2
ψ̄(x)γµ

↔
∂νψ(x), (8.2)

where ψ is the fermion field and the γ’s are the usual Dirac matrices. More
generally, the four-current of an observable A... is given by

Jµ...
A (x) = ψ̄(x)γµA...ψ(x) (8.3)

and their quantum-statistical average is given by

〈Jµ...
A (x)〉 = Tr {ρJµ...

A (x)}, etc., (8.4)

where ρ is the density operator discussed in Chap. 7.
Let us now introduce the covariant Wigner function operator as

Fop(x, p) =
1

(2π)4

∫
d4R exp(−ip ·R)ψ̄

(
x+

1
2
R

)
⊗ ψ
(
x− 1

2
R

)
,

(8.5)

and the covariant Wigner function as its quantum-statistical average
value:

F (x, p) = 〈Fop(x, p)〉 = Tr {ρFop(x, p)}
=

1
(2π)4

∫
d4R exp (−ip · R)

〈
ψ̄

(
x+

1
2
R

)
⊗ ψ
(
x− 1

2
R

)〉
.

(8.6)
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Note that F (x, p) is a matrix in the spinorial (and possibly internal) indices;
explicitly, one has

Fop αβ(x, p) =
1

(2π)4

∫
d4R exp (−ip ·R) ψ̄β

(
x+

1
2
R

)
ψα

(
x− 1

2
R

)
.

(8.7)
Notice the opposite position of the indices for the ψ’s and for F .

With this definition, the above average values of observables are given by

〈Jµ(x)〉 = Sp
∫
d4p γµF (x, p), (8.8)

〈T µν(x)〉 = Sp
∫
d4p γµpνF (x, p), (8.9)

where Sp indicates a trace over spinorial (and possibly internal) indices. As
to the four-current of a given general observable A, it has also the form

〈Jµ...
A (x)〉 = Sp

∫
d4p γµA...(x, p)F (x, p), (8.10)

although in each particular case one has to find out the specific form of the
function A...(x, p). In actual practice, only 〈Jµ(x)〉 and 〈T µν〉 have to be
calculated, and possibly their fluctuations.

Conversely, one has the useful inverse formula

ψ̄(x) ⊗ ψ(y) =
∫
d4p exp [ip · (x− y)]Fop

(
1
2
(x+ y); p

)
, (8.11)

which is repeatedly used in the various calculations involving the covariant
Wigner function.

The one-particle covariant Wigner function F (x, p) can be expanded on
the basis of the 16 Dirac matrices

{γA}A=1,2,...,16 =
(
I, γµ, σµν ≡ i

2
[γµ, γν ] , γ5, γ5γ

µ

)
(8.12)

as

F (x, p) =
1
4

∑
A

fA(x, p)γA

≡ 1
4

[f(x, p)I + fµ(x, p)γµ + ifµν(x, p)σµν

× f5(x, p)γ5 + f5µ(x, p)γ5γµ
]
, (8.13)

with

fA(x, p) =
1
4
Tr [F (x, p)γA] . (8.14)
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Besides the one-particle Wigner function, other quantum distributions are
needed, such as the two-body covariant Wigner function

F2(x, p;x′, p′) =
∫

d4R

(2π)4
d4R′

(2π)4
exp (−ip ·R) exp (−ip′ ·R′)

×
〈
ψ̄

(
x′ +

1
2
R′
)
⊗ ψ̄
(
x+

1
2
R

)

⊗ψ
(
x− 1

2
R

)
⊗ ψ
(
x′ − 1

2
R′
)〉

, (8.15)

whose cluster decomposition can be written as

F2(x, p;x′, p′) = F1(x, p)× F1(x′, p′) + g2(x, p;x′, p′), (8.16)

where the correlation function g2(x, p;x′, p′) contains both the correlations
occurring because of ordinary interactions and the exchange correlation.
For instance, in the Hartree–Fock approximation, one should retain in
g2(x, p;x′, p′) only its exchange part. We come back below to this question.
Finally, notice the useful inverse expression

ψ̄(x)ψ̄(y)ψ(z)ψ(u) =
∫
d4ξd4ξ′ exp [iξ · (y − z) + iξ′ · (x− u)]

×F2op

(
1
2
(y + z), ξ;

1
2
(x+ u), ξ′

)
. (8.17)

Of course, three-body, . . . , N -body Wigner functions can be defined, but
so far we have not used them.

8.1.1. Basic equations

Let us now examine the equations obeyed by the Wigner function F (x, p)
and, in order to be specific, let us consider noninteracting particles.2 Then
the fermion field ψ satisfies the Dirac equations{

[iγ · ∂ −m]ψ(x) = 0,

ψ̄(x) [iγ · ∂ +m] = 0,
(8.18)

which, once considered respectively at points x − R/2 and x + R/2, after
multiplying the first one by ψ̄

(
x+ 1

2R
)
exp(−ip ·R) from the left and the

2See also the analysis of this case in S.R. de Groot, W.A. van Leeuwen and Ch. G. van
Weert (1980).
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second one by ψ
(
x− 1

2R
)
exp(−ip ·R) from the right, and integrating over

R, lead to 

{iγ · ∂ + 2 [γ · p−m]}F (x, p) = 0,

F (x, p)
{
iγ ·

←
∂ − 2 [γ · p−m]

}
= 0,

(8.19)

where the operator {. . .} in the second equation acts on the left. There are
two equations for F , since they represent together both the mass shell on
which the particles lie and the statistical state of the system. Note that,
in the nonquantum case, there are two equations as well: the Liouville
equation and the mass shell equation.

One can get some further insights from the expansion of F (x, p) on the
matrices γA of the Diracs algebra and taking the trace of these equations.
One obtains the following 32 equations after they have been added and
substracted:

mf = pµf
µ, (8.20)

∂νf
µν + pµf −mfµ = 0, (8.21)

1
2∂

[µfν] − 2mfµν − pλf5ρε
ρλµν = 0, (8.22)

∂µf
µ
5 + 2mf5 = 0, (8.23)

∂µf5 − 2pλε
λρνµfρν − 2mf5µ = 0, (8.24)

∂µf
µ = 0, (8.25)

∂µf + 4pλf
λµ = 0, (8.26)

1
2∂λf5ρε

ρλµν + p[µfν] = 0, (8.27)

pµf
µ
5 = 0, (8.28)

∂λfρνε
λρνµ + 2pµf5 = 0. (8.29)

Let us now investigate some of these equations and let us begin with the
first one. When the system possesses uµ as its only macroscopic four-vector,
fµ has the general form

fµ = apµ + buµ, (8.30)

where a and b are functions of p. Furthermore, when the system is homoge-
neous and the particles are such that p2 = m2, fµ ∝ pµ. As a consequence,
the second equation shows that ∂νf

µν ∝ pν . The seventh equation, after
it has been contracted with pµ, yields p · ∂f = 0, which is nothing but the
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one-particle Liouville equation , suggesting thereby that f is more or less
a quantum analog of the relativistic distribution function. Also, the inte-
gration over p of ∂µf

µ = 0 provides the four-current conservation equation
∂µJ

µ = 0.
The second of these equations is interesting: if we go back to the field

form (via an inverse Fourier transform), it reads

〈ψ̄γµψ〉 =
〈

i

2m
ψ̄
↔
∂µψ

〉
+

i

2m
∂ν

〈[
ψ̄σµνψ

]〉
, (8.31)

which is nothing but the Gordon decomposition of the four-current into a
convective part (the first one on the right hand side) and a spin part (the
second one). It follows that, when the spin effects can be neglected, one has

〈ψ̄γµψ〉 ≈
〈
i

m
ψ̄
↔
∂µψ

〉
, (8.32)

which, in terms of the Wigner function, is expressed as

fµ(x, p) ≈ pµf(x, p). (8.33)

This shows that, when the negligence of spin is permitted, Eq. (8.33) can
be chosen. Let us now look at the stationary and homogeneous solutions to
the basic equations satisfied by F (p), which then read{

[γ · p−m]F (p) = 0,

F (p) [γ · p−m] = 0,
(8.34)

and multiplying, for example, the first equation by [γ · p+m], one gets[
p2 −m2

]
F (p) = 0, (8.35)

which shows that

F (p) ∝ δ (p2 −m2
)
, (8.36)

and hence that all its components, fA’s, are on the particle mass shell. Also,
the general solution to these equations has the form

F (p) = [γ · p+m]A(p) [γ · p+m] , (8.37)

where A(p) is an arbitrary 4 × 4 matrix. Furthermore, the above analysis
indicates that when uµ is the only macroscopic four-vector present in the
system, fµ ∝ pµ and F (x, p) has the general form

F (p) =
γ · p+m

m
f(p). (8.38)

Below, another stationary solution of interest is given in connection with
polarized media.
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When uµ is the only possible four-vector in the theory, F (p) has the
form

F (p) =
1
4

{
f(p)I +

p · γ
m

f(p)− i

2m
ερλµνp

λσµνfρ
5 (p) + f5µ(p)γ5γ

µ

}
,

(8.39)

which results from simple manipulations of the equations for F (p). Indeed,
f5(p) = 0 since there is no available pseudoscalar. Therefore, the most
general stationary Wigner function of a stationary system depends on only
two unknown functions, namely f(p) and f5µ(p), to be determined from
the explicit data of the density operator.

Finally, note also the Fourier transform of the Wigner equation


[
γ ·
(
p− 1

2
k

)
−m
]
Fop = 0,

Fop

[
γ ·
(
p+

1
2
k

)
−m
]

= 0,
(8.40)

which will be of much use in the sequel.

8.1.2. The equilibrium Wigner function for free fermions

Because of the general form obtained above for stationary solutions, only

feq(p) =
1

(2π)4

∫
d4R exp (−ip · R)

〈
ψ̄

(
x+

1
2
R

)
ψ

(
x− 1

2
R

)〉
eq

(8.41)

has to be calculated [R. Hakim and J. Heyvaerts (1978)]. The field ψ is
expanded into plane waves,

ψ(x) =
∫

d3p√
2p0

[
a(p)u(p) exp (+ip · x) + b+(p)v̄(p) exp (−ip · x)],

(8.42)

where ū ·u = 2m = v̄ · v are the free spinors, and with the usual commu-
tation relations and the relations


〈a+(p)a(p′)〉eq =

δ(3) (p− p′)
exp [β (p · u− µ)] + 1

,

〈b+(p)b(p′)〉eq =
δ(3) (p− p′)

exp [β (p · u+ µ)] + 1

(8.43)
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are used; the final result is

feq(p) = d
δ
[
p2 −m2

]
(2π)3

(
1

exp [β (p · u− µ)] + 1
(8.44)

+
1

exp [β (p · u+ µ)] + 1
− θ(−p · u)

)
,

where d is a degeneracy factor that takes account of spin (then d = 2) and
other possible internal degrees of freedom. The first term is the contribution
of the particles, the second is the antiparticle term, and the third is a
vacuum term. This last one is absent when the definition of the Wigner
function contains a normal product; however, after a renormalization —
as we shall see in a later chapter — it leads to finite effects. Finally, the
equilibrium Wigner function Feq(p) can be written in a compact form:

Feq(p) = d [γ · p+m]
δ(p2 −m2)

(2π)3
sgn(p · u)

exp[β(p · u− µ)] + 1
, (8.45)

where the function sgn(p · u) is the usual sign function.

8.1.3. Polarized media

Let us consider another case of particular interest, the one in which there
exists a macroscopic pseudovector nµ, i.e. so that

nµnµ = −1,

nµuµ = 0.
(8.46)

We now want to find out the general form for F (x, p), still for a stationary
solution, from the general structure of the system of equations it satisfies.

From the system obeyed, one immediately finds that the following rela-
tions hold:

fµ(p) =
pµ

m
f(p),

fµν(p) =
1

2m
εµναβpαf5β(p),

fµ
5 (p) =

1
m
εµνρλpνfρλ(p),

f5(p) = 0.

(8.47)

Since there exists a unique pseudovector in the theory — say, Sµ(p) — one
can always write

fµ
5 (p) = Sµ(p)f(p), (8.48)
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with pµS
µ(p) = 0 as a consequence of pµf

µ
5 (p) = 0. It follows that the

general solution to our system of 32 equations is of the form

F (p) =
γ · p+m

2m
1 + γ5γµS

µ(p)
2

f(p). (8.49)

Note that, while the first factor of this expression is the projection over
the positive energy states, the second factor cannot be interpreted as a
projection over the spin states since a priori

Sµ(p)Sµ(p) �= −1. (8.50)

Note also that these two matrix operators commute due to the orthogonality
of pµ and Sµ(p).

At this point, the (pseudo-)four-vector Sµ(p) is completely arbitrary, for
two reasons. First, it depends on the polarization of the system whatever
its definition. Next, this arbitrariness reflects that of the Dirac spinors of
the free particle. Accordingly, a physical choice must be made as to Sµ(p),
which is rewritten as {

Sµ(p) ≡ S(p)Nµ(p),

Nµ(p)Nµ(p) = −1.
(8.51)

S(p) can easily be shown to be directly connected with the polarization of
the medium through the density operator, whose spin part reads

ρspin = ξ(p)
1 + γ5γµN

µ(p)
2

+ [1− ξ(p)] 1− γ5γµN
µ(p)

2

=
1 + [2ξ(p)− 1] γ5γµN

µ(p)
2

, (8.52)

where ξ(p) is the percentage of spin-up particles with four-momentum p.
As a result, one has

S(p) = 2ξ(p)− 1. (8.53)

Given a unit and constant spacelike pseudo-four-vector nµ, orthogonal to
the average four-velocity uµ, one of the simplest choices for Nµ(p) is

Nµ(p) =
u[µnν]pν[

(u · p)2 − (n · p)2
]1/2

, (8.54)

whose physical meaning is that it represents a global spin quantization axis.
This choice is, in fact, a consequence of a simple analysis of the way a

system of charged particles is usually polarized. Suppose, indeed, that the
system under consideration is placed in a magnetic field (see Chap. 12):
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the various spins align along its direction, thus leading to a — more or
less, according to the temperature — polarized system. If the magnetic
field is now switched off, the system becomes metastable and depolarizes
more or less rapidly.3 The study of electrons embedded in a magnetic field
(Chap. 12) precisely provides this Nµ(p): if we now look at the Wigner
fµ
5 (p) in the presence of a magnetic field, we can see (Chap. 12) that it is

proportional to Nµ(p) where nµ is the space direction of the magnetic field.
The choice (8.54) is, accordingly, quite natural.

At this point, it should be noted that although spin does not commute
with the Dirac Hamiltonian, our choice is quite sensible since we do not
deal with a true equilibrium but a metastable one.

In order to get some insight into S(p), let us evaluate the various macro-
scopic quantities Sµνλ (spin density tensor) and Mµ (polarization four-
vector). We have

Mµ =
∫
d4pfµ

5 (p)
(8.55)

=
∫
d4p

S(p)u[µnν]pν[
(u · p)2 − (n · p)2

]1/2
feq(p),

so that with the choice suggested by the magnetic field case,{
S(p) = P [(u · p)2 − (n · p)2],
P = const,

(8.56)

Mµ is easily evaluated as

Mµ = −Pnµneqm, (8.57)

so that 

P =

1
mneq

nµM
µ,

Mµuµ = 0,
(8.58)

which shows that Mµ is always parallel to the spin quantization axis while
P is the polarization of the medium. The choice (8.54) has been used after
previous results of the magnetic field case (see Chap. 12).

From Mµ, one gets4

Sµνλ = −1
2
εµνλαMα, (8.59)

3For He3, the relaxation time is of the order of a couple of days.
4For a study of polarization and connected questions, see e.g. R. Hagedorn, Relativistic

Kinematics (Benjamin, New York, 1963).



January 24, 2011 16:57 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch08 FA

204 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

so that, locally, the spin tensor reads

Mµν ≡ Sµνλuλ = −1
2
εµνλαuλMα. (8.60)

In the rest frame of the system, where uµ = (1,0), and taking nµ along
the third axis, the only nonvanishing component of Mµν is M12. Finally,
our different choices appear to describe correctly a polarized medium in
(metastable) thermodynamic equilibrium. Other choices are of course pos-
sible but they deal with systems prepared in particular ways: particles
endowed with four-momentum p contain a prescribed p-dependent per-
centage of spin-up particles, etc.

8.2. Equilibrium Fluctuations of Fermions

Let us consider the thermodynamic potential Ω:

Ω = − 1
β

ln{Tr exp(−β[H0 +Hint − µB])}, (8.61)

where B is the baryonic number (or charge) operator, µ the chemical
potential, H0 the free Hamiltonian and Hint the interaction Hamiltonian,

Hint =
∫
dxJop(x) · A(x), (8.62)

in the case of a relativistic quantum plasma (Jop is the four-current
operator, which is proportional to e; A is the electromagnetic four-
potential). One can show that5

Ω = Ωfree − 2
(2π)3

∫ e

0

de

∫
d4k

k2
〈Jop · Jop〉(k), (8.63)

an expression that exhibits the role of the four-current fluctuations in the
calculation of the thermodynamics of an electromagnetic plasma. In order
to calculate one-particle fluctuations like those of the four-current, of the
energy–momentum tensor, etc., the quantity needed is the fluctuations of
the Wigner function itself,

Fαβµν(x, x′; p, p′) ≡ 〈[Fop αβ(x, p)− Fαβ(x, p)]

× [Fop µν(x′, p′)− Fµν(x′, p′)]〉, (8.64)

which we calculate for free particles in this section. We introduce the
notations

Ãop ≡ Aop − 〈Aop〉, (8.65)

5A. Fetter J. Walecka, Quantum Theory of Many Particle System (McGraw-Hill, New
York, 1971).
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so that the various fluctuations of interest read


〈J̃µ
op(x)J̃ν

op(x′)〉 = e2Sp
∫∫

d4 pd4 p′γµγν′F (x, x′; p, p′),

〈T̃ µν
op (x)T̃αβ

op (x′)〉 = Sp
∫∫

d4 pd4 p′γµpνγα′p′βF (x, x′; p, p′),

〈T̃ µν
op (x)J̃α

op(x′)〉 = eSp
∫∫

d4 pd4 p′γµpνγα′F (x, x′; p, p′).

(8.66)

Since we are merely interested in a normal equilibrium state, one can assume
that the system is invariant under space–time translation and hence F (x, x′;
p, p′) has the property

Feq(x, x′; p, p′) = Feq(0, x′ − x; p, p′), (8.67)

where the spectrum of the fluctuating quantities can be obtained via the
Fourier transform of Feq(0, x; p, p′):

Feq(k; p, p′) =
∫
d4x exp(ik · x)Feq(0, x; p, p′). (8.68)

Let us now calculate the fluctuations of the Wigner function of the ideal
Fermi gas in thermal equilibrium. We can write

Feq(k; p, p′)

=
∫
d4x exp(ik · x)〈F̃ (0, p)F̃ (x, p′)〉

(8.69)
=

1
(2π)8

∫
d4Rd4R′ d4x exp(ik · x− ip ·R − ip′ ·R′)

×
〈
ψ̄

(
1
2
R

)
⊗ ψ
(
−1

2
R

)
⊗ ψ̄
(
x+

1
2
R′
)
⊗ ψ
(
x− 1

2
R′
)〉

.

Using Wick’s theorem6 written in the form〈
ψ̄(1)ψ(2)ψ̄(3)ψ(4)

〉
=
〈
ψ̄(1)ψ(2)

〉 〈
ψ̄(3)ψ(4)

〉
+
〈
ψ̄(1)ψ(4)

〉 〈ψ̄(2)ψ(3)〉
(8.70)

and denoting by +F (x, p) the quantity

+F (x, p) =
1

(2π)4

∫
d4R exp (−ip · R)ψ

(
x− 1

2
R

)
⊗ ψ̄
(
x+

1
2
R

)

= −F (x, p)− i

(2π)4
S̄(p), (8.71)

6G.C. Wick, Phys. Rev. 80, 268 (1950).
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where S̄(p) is the Fourier transform of the Dirac field anticommutator7

S(R) = i

{
ψ

(
x+

1
2
R

)
, ψ̄

(
x− 1

2
R

)}
, (8.72)

one finds that

Feq(k; p, p′) = (2π)4δ
′(4)(p− p′)Feq

(
p+

1
2
k

)
+Feq

(
p− 1

2
k

)
(8.73)

or, equivalently,

Feq(k; p, p′) = (2π)4δ
′(4)(p− p′)Feq

(
p+

1
2
k

)
(8.74)

×
[
Feq

(
p− 1

2
k

)
+

i

(2π)4
S̄

(
p− 1

2
k

)]
.

From the form8 of S̄(p),

S̄(p) = 2πi [γ · p+m] ε
(
p0
)
δ
(
p2 −m2

)
, (8.75)

and that of Feq(p),

Feq(p) =
1

(2π)3
ε
(
p0
)
δ
(
p2 −m2

)
[γ · p+m]

1
exp (β[p · u− µ]) + 1

,

(8.76)

the final result is

Feq(k; p, p′) = − 1
(2π)2

δ(4)(p− p′)
exp (βω)− 1

×
[
γ ·
(
p+

1
2
k

)
+m

]
⊗
[
γ ·
(
p− 1

2
k

)
+m

]

× ε
(
p2
0 −

1
4
ω2

)
δ

[(
p+

1
2
k

)2

−m2

]
δ

[(
p− 1

2
k

)2

−m2

]

×
[

1
exp
{
β
[(
p+ 1

2k
)− µ]} − 1

exp
{
β
[(
p− 1

2k
)− µ]}

]
,

(8.77)

where ε(p0) is the sign function of p0.

7There should not be confusion between this anticommutator and the polarization.
8N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields

(Interscience, New York, 1959).
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The explicit calculation of 〈J̃µ
op(x)J̃ν

op(x′)〉 and of 〈T̃ µν
op (x)T̃αβ

op (x′)〉 have
been made by H.D. Sivak (1985), who used them in the calculation of the
dispersion relation of a quantum relativistic plasma. After some elementary
calculations, one finds that

〈JµJν〉eq(k) =
e2

(2π)2
1

exp(βω)− 1

×
∑

n,�=±1

n

∫
d3p√

m2 + p2
√
m2 + (p+ nk)2

(δ�1 − neq)

(8.78)
× δ
[√

m2 + p2 + 
√
m2 + (p+ nk)2 + nω

]

×
[
1
2
k2ηµν + 2pµpν + np(µkν)

]
,

where

neq =
∑
±

1
exp[β(E ∓ µ)] + 1

. (8.79)

This formula calls for several remarks. Firstly, the term δ�1 − neq.
The δ term is the vacuum fluctuation: it is present even though the
material term, i.e. neq, is zero. When matter is present, this term
is attenuated because of the Pauli principle. The term that contains
δ
(√

m2 + p2 + 
√
m2 + (p+ nk)2 + nω

)
is an energy conservation term

and comes from two different processes: fluctuations are nonzero whenever

ω = ±
[√

m2 + p2 +
√
m2 + (p+ nk)2

]
,  = 1, (8.80)

corresponding to either pair creation or annihilation by an electromagnetic
wave of frequency ω, or

ω = ±
[√

m2 + p2 −
√
m2 + (p+ nk)2

]
,  = −1, (8.81)

which expresses the existence of transitions to different forms of energy
states of the electrons or of the positrons.

8.3. A Simple Example

As a simple example, we treat the case of a spin 1/2 field with a quartic
self-interaction,

L = ψ̄(x)
i

2
γ ·
↔
∂ψ(x)−mψ̄(x)ψ(x) − g ∣∣ψ̄(x)ψ(x)

∣∣2 , (8.82)
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which is of course nonrenormalizable, but this is immaterial since our only
goal is to provide an illustration of the Wigner function technique. The
basic equations for the covariant Wigner operator are easily written as

{iγ · ∂ + 2 [γ · p−m]}Fop(x, p)

= −2g
∫

d4R

(2π)4
d4ξ d4ξ′ exp [−i(p− ξ′) · R]F2op

(
x, ξ;x− 1

2
R, ξ′
)
,

(8.83a)
Fop(x, p)

{
iγ ·

←
∂ − 2 [γ · p−m]

}

= +2g
∫

d4R

(2π)4
d4ξ d4ξ′ exp [−i(p− ξ′) ·R]F2op

(
x+

1
2
R, ξ;x, ξ′

)
,

(8.83b)
which connect the one-particle Wigner operator to the two-particle one.
Such a situation — quite analogous to that of the Newtonian BBGKY
hierarchy — is quite exceptional, as the various examples given below show.
One can also find an equation for F3, which involves higher order Wigner
functions, etc. The hierarchy can be cut with a supplementary assumption
such as the Hartree–Vlasov ansatz

F2(x, p;x′, p′) ≈ F1(x, p)F1(x′, p′) (8.84)
or any other. F3 is connected to F4 and so on.

8.4. The BBGKY Relativistic Quantum Hierarchy

In order to illustrate the above techniques in a more concrete way, it will be
applied here to the so-called “scalar plasma,” first studied by G. Kalman
(1967, 1974). This toy model can also be considered as a particular case of
the phenomenological model for nuclear matter proposed by J.D. Walecka
(see Chap. 9). In addition, it has been considered by T.D. Lee and others9

in dealing with the question of “abnormal nuclear matter,” and by J.
Rafelski10 in the so-called “SLAC bag” model.11

9T.D. Lee and G.C. Wick, Phys. Rev. D9, 229 (1974); T.D. Lee and M. Margulies, Phys.
Rev. D11, 1591 (1975); T.D. Lee, Rev. Mod. Phys. 47, 267 (1975); G.C. Källmann, Phys.
Letts. B55, 178 (1975); E.M. Nyman and M. Rho, Nucl. Phys. A268, 408 (1976); S.A.
Moszowski and C.G. Källmann, Nucl. Phys. A287, 495 (1977); M. Wakamatsu and A.
Hayashi, Prog. Theor. Phys. 63, 1688 (1980).
10J. Rafelski, Phys. Rev. D9, 2358 (1974).
11A. Bardeen, M. Chanowitz, R. Giles, M. Weinstein and V.F. Weisskopf, Phys. Rev.
D9, 3471 (1974).
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The scalar plasma consists of a baryon field ψ(x) coupled to a scalar
field φ(x) and is described by the Lagrangian

L =
1
2
iψ̄γµi

↔
∂µψ − ψ̄(m− gϕ)ψ +

1
2
(
∂µϕ · ∂µϕ− µ2ϕ2

)
, (8.85)

where m is the mass of the scalar particles and g their coupling constant
with the baryon field.

As in the nonquantum case, the BBGKY hierarchy is of growing com-
plexity, involving more and more new Wigner functions and/or combination
with fields. However, in practice, one employs the first few equations of the
hierarchy and its use appears less involved.

Using the equations of motion



iγ · ∂ψ(x)− [m− gϕ(x)]ψ(x) = 0,

i∂ψ̄(x) · γ + ψ̄(x) [m− gϕ(x)] = 0,(
� + µ2

)
ϕ(x) = gψ̄(x)ψ(x),

(8.86)

and the definition of the one-particle Wigner operator, one is led to the
system


{iγ · ∂ + 2 [γ · p−m]}Fop(x, p)

= −2g
∫

d4R

(2π)4
d4ξ exp [−i(p− ξ) · R]Fop(x, ξ)ϕ

(
x− 1

2
R

)
,

Fop(x, p)
{
iγ ·

←
∂ − 2 [γ · p−m]

}

= +2g
∫

d4R

(2π)4
d4ξ exp [−i(p− ξ) · R]ϕ

(
x+

1
2
R

)
Fop(x, ξ),

(
� + µ2

)
ϕ(x) = gSp

∫
d4pFop(x, p),

(8.87)

hereafter referred to as the generating equations of the relativistic quantum
BBGKY hierarchy, which is formally rewritten as



LFop = g

∫
Fopϕ,

L◦Fop = g

∫
ϕFop,

KGϕ= gSp
∫
Fop,

(8.88)
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in order to facilitate the subsequent developments. After taking the average
value of this system, one finds that



LF = g

∫
〈Fopϕ〉,

FL◦= g

∫
〈ϕFop〉,

KG〈ϕ〉= gSp
∫
F,

(8.89)

which is now briefly discussed. First, it connects F to 〈Fopϕ〉 and to 〈ϕFop〉,
showing that the one-particle Wigner function needs the knowledge of
another function. Next, the first two equations of the system must be con-
sistent with each other and thus must be such that the following equality
is always satisfied:

L−1

∫
〈Fopϕ〉 =

∫
〈ϕFop〉L◦−1. (8.90)

In order to calculate 〈Fopϕ〉, the first equation of the generating system is
multiplied by ϕ from the right and then averaged; this yields

L〈Fopϕ〉 = g

∫
〈Fopϕϕ〉 (8.91)

and the knowledge of 〈Fopϕ〉 demands the data of 〈Fopϕϕ〉, etc. Similarly,
from the third equation of the generating equation of the hierarchy, with
an analogous manipulation, one obtains

KG〈Fopϕ〉 = gSp
∫
〈FopFop〉, (8.92)

from which one gets

〈Fopϕ〉 = gKG−1Sp
∫
〈FopFop〉 (8.93)

and hence

LF = g2KG−1Sp
∫
〈FopFop〉. (8.94)

Note that 〈FopFop〉, which is not the two-particle Wigner function of the
baryons, is not related to the latter through 〈FopFop〉 �= 〈F2〉, as remarked
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in the case of the calculation of fluctuations. The equations for 〈FopFop〉
involve new functions, such as 〈FopFopϕ〉.

Finally, as in the classical case, the quantum BBGKY hierarchy cannot
be solved unless some approximation scheme stops its growing complexity.
The simplest way out is the Hartree approximation, which is the analog of
the classical Vlasov ansatz

〈Fopϕ〉 ≈ F 〈ϕ〉, (8.95)

which breaks the hierarchy at its very beginning. The next approximation,
by far more involved, consists of retaining two-operator averages and
neglecting three-body correlations whatsoever.

A detailed example of the use of this hierarchy is given in the next
chapter, including renormalization.

8.5. Perturbation Expansion of the Wigner Function

An alternative BBGKY hierarchy can be found from the Yang–Feldman12

form of the equations of motion for the fields, i.e. from




ψ(x) = ψ0(x) + g

∫
d4x′Sret(x− x′)ϕ(x′)ψ(x′),

ψ̄(x) = ψ̄0(x) + g

∫
d4x′ψ̄(x′)S̄ret(x− x′)ϕ(x′),

ϕ(x) = ϕ0(x) + g

∫
d4x′∆ret(x− x′)ψ̄(x′)ψ(x′),

(8.96)

which result from a formal integration of the equations of motion of the
fields. In this system, Sret(x) is the elementary solution to the free Dirac
equation (the retarded propagator) and ∆ret(x) the elementary solution to
the free Klein–Gordon equation (the retarded propagator); the index zero
indicates a free solution to the field equations at t = −∞. Notice that these
free field solutions obey the free field commutation relations

[
ψ0(x), ψ0(x′)

]
+

= S(x− x′),
[ϕ0(x), ϕ0(x′)]− = ∆(x − x′), etc.

(8.97)

12C.N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950).
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Using once more the definition of Fop, the Yang–Feldman equations provide
the generating system

Fop(x, p) = F0op(x, p) + g

∫
d4R

(2π)3
d4x′ d4ξ

× exp
[
−iR ·

(
p− 1

2
ξ

)
+ iξ · (x− x′)

]
Sret

(
x− 1

2
R− x′

)

×F
(

1
2

[
x′ + x+

1
2
R

]
; ξ
)
ϕ(x′) + g

∫
d4R

(2π)3
d4x′ d4ξ ϕ(x′)

×F
(

1
2

[
x′ + x− 1

2
R

]
; ξ
)
S̄ret

(
x+

1
2
R − x′

)

− g2

∫
d4R

(2π)3
d4x′ d4x′′ d4ξ exp [−iR · p+ iξ · (x′ − x′′)]

×ϕ(x′)S̄ret

(
x+

1
2
R− x′

)
F

(
1
2

[x′ + x′′] , ξ
)

×Sret

(
x− 1

2
R− x′′

)
ϕ(x′′), (8.98)

which can be symbolically rewritten as

Fop(x, p) = F0op(x, p) + g2

∫
(S̄retFopϕ+ ϕFopSret)

− g2

∫
ϕS̄retFopSretϕ. (8.99)

If one introduces

ϕ(x) = ϕ0(x) + g

∫
d4x′∆ret(x − x′)ψ̄(x)ψ(x)

= ϕ0(x) + g

∫
d4pd4x′∆ret(x− x′)F (x, p) (8.100)

into the above generating equation, one is left with a generating equation
that contains only the F ’s and ϕ0 and whose general structure is of the
form

Fop(x, p) = F0op(x, p) +
∫
FopFop +

∫
FopFopFop

+ terms involving {ϕ0, F0} , (8.101)
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which is particularly suitable for a perturbation expansion and its graph
representation: it allows the perturbative expansion of F (x, p) and ϕ(x):


ϕ(x) =

∞∑
n=0

gnϕ(n)(x),

F (x, p)=
∞∑

n=0

gnF(n)(x, p),
(8.102)

The natural — but not unique — choice for the initial distribution 〈Fop〉
and field 〈ϕ0〉 is

F0(x, p) = Feq(p), 〈ϕ0(x)〉 ≡ 0; (8.103)

it corresponds to a free equilibrium of the fermions at t = ±∞ without
any coherent state of the bosons. Note also that similar considerations for
the boson field show that the initial value of the product 〈ϕ0(x′′)ϕ0(x′)〉
is also required. If one requires that the system be in equilibrium in the
past infinity, then this last average value is directly connected to the Bose–
Einstein function of the (free) bosons

〈ϕ0(x′)ϕ0(x′′)〉 =
∫
d4ξ exp [iξ · (x′ − x′′)]feq(ξ). (8.104)

For instance, at order g2, this works exactly as indicated on the equations

F(2) = g2

∫
(S̄retF(0)ϕ(0) + ϕ(0)F(0)Sret)− g2

∫
ϕ(0)S̄retF(0)Sretϕ(0),

ϕ(1) = g

∫
∆retF(0),

(8.105)
and the same continues indefinitely.

8.6. The Wigner Function for Bosons

The covariant Wigner function for bosons is defined exactly the same as it
was for fermions with only one small difference; namely, we have to sub-
stract out the contribution of the average field. We thus have the following
definition for the one-boson Wigner function:

f(x, p) =
1

(2π)4

∫
d4R exp (−ip · R)

[
φ∗
(
x+

1
2
R

)
−
〈
φ∗
(
x+

1
2
R

)〉]

×
[
φ

(
x− 1

2
R

)
−
〈
φ

(
x− 1

2
R

)〉]
, (8.106)
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where, for simplicity, we have considered a scalar field whose possible
internal indices are implicit and hence products of the field are implicitly
tensor products in the internal space.

For such a field, the main observables are the four-current

Jµ
op(x) =

i

2
φ∗(x)

↔
∂

µ

φ(x) (8.107)

and the energy–momentum tensor

T µν
op (x) =

i

2
∂(µφ∗(x)∂ν)φ(x) − Lηµν , (8.108)

where L is the Lagrangian and whose average values, written in terms of
the bosons’ Wigner function, read

Jµ(x) =
∫
d4p pµf(x, p), (8.109)

T µν =
∫
d4p pµpνf(x, p). (8.110)

If the equation of motion of the field φ(x) is written in the form(
� + µ2

)
φ(x) = S(x), (8.111)

where S(x) contains the effects of possible other fields and/or φ(x) itself,
then the Wigner function can be shown to obey the equations [P. Carruthers
and F. Zachariasen (1976, 1983)]

p · ∂fop(x, p) =
1
2

∫
d4R

(2π)4
exp (−ip ·R)

({
φ∗
(
x+

1
2
R

)
S

(
x− 1

2
R

)}

−
{
S∗
(
x+

1
2
R

)
φ

(
x− 1

2
R

)})
, (8.112)

(
p2 − µ2 +

1
4
�
)
fop(x, p)

=
1
2

∫
d4R

(2π)4
exp (−ip · R)×

[{
φ∗
(
x+

1
2
R

)
S

(
x− 1

2
R

)}

+
{
S∗
(
x+

1
2
R

)
φ

(
x− 1

2
R

)}]
, (8.113)

which result immediately from the definition of the Wigner function and
from the equations of motion. For a free field, where S(x) ≡ 0, this system
reduces to {

p · ∂f(x, p) = 0,(
p2 − µ2

)
f(x, p) = 0,

(8.114)
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which shows — as in the spin 1/2 case — that the first equation is connected
with the flow in phase space while the second one concerns the mass shell
of the particles.

The equilibrium Wigner distribution for scalar bosons is given by

feq(p) =
δ
(
p2 −m2

)
(2π)3

{
1

exp(βu · p)− 1
− 1

2
θ (−u · p)

}
, (8.115)

while for a complex scalar field it is given by

feq(p) =
δ
(
p2 −m2

)
(2π)3

(
θ (p · u)

exp [β (u · p− µ)]− 1

+
θ (p · u)

exp [β (u · p+ µ)]− 1
− θ (−p · u)

)
(8.116)

=
δ
(
p2 −m2

)
(2π)3

sgn (p · u)
exp [β (u · p− µ)]− 1

,

where these equilibrium distributions can easily be obtained from the def-
inition of the bosons’ Wigner function definition, from the decomposition
of the free fields into plane waves

φ(x) =
1

(2π)3/2

∫
d3k√
2ωk

{
a(k) exp[−ik · x] + a+(k) exp[+ik · x]} ,

(real scalar field) (8.117)

φ(x) =
1

(2π)3/2

∫
d3k√
2ωk

{
a(k) exp(+ik · x) + b+(k) exp(−ik · x)

}
,

(complex scalar field)

(8.118)

from the usual equilibrium value〈
a+
(k)a(k)

〉
=

1
exp [βω(k) − 1]

(real scalar field), (8.119)

〈
a+
(k)a(k)

〉
=

1
exp{β [ω(k)− µ]− 1} (complex scalar field) (8.120)

and from the comutation relations[
a+
(k), a(k′)

]
= δ(3) (k− k′) , etc. (8.121)
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8.6.1. The example of the λϕ4 theory

The case of bosons is best illustrated on the particularly simple13 model of
the λϕ4 theory, whose Lagrangian is

L =
1
2
∂ϕ · ∂ϕ− µ2ϕ2 − λ

4!
ϕ4, (8.122)

so that, in this case, one has

S(x) = − λ
3!
ϕ3(x), (8.123)

and thus the above equation turns out to be

p · ∂fop(x, p) = − λ

2.3!

∫
d4R

(2π)4
exp (−ip ·R)

({
ϕ

(
x+

1
2
R

)

×ϕ3

(
x− 1

2
R

)}
−
{
ϕ3

(
x+

1
2
R

)
φ

(
x− 1

2
R

)})
,

(8.124)

so that

p · ∂fop(x, p) = − λ

2.3!

∫
d4R

(2π)4
exp [−i(p− ξ) · R]

×
{
f2op

(
x, ξ;x − 1

2
R, ξ′
)
− f2op

(
x, ξ;x+

1
2
R, ξ′
)}

,

(8.125)

where the two-particle Wigner function operator is defined as

f2op(x, p, x′, p′) =
∫

d4R

(2π)4
d4R′

(2π)4
exp (−ip ·R− ip′.R′)ϕ

(
x+

1
2
R

)

×ϕ
(
x′ +

1
2
R′
)
ϕ

(
x′ − 1

2
R′
)
ϕ

(
x− 1

2
R

)
, (8.126)

while the second equation, obeyed by fop, reads(
p2 − µ2 +

1
4
�
)
fop(x, p)

=
λ

2.3!

∫
d4R

(2π)4
exp [−i(p− ξ) · R]×

{
f2op

(
x, ξ;x− 1

2
R, ξ′
)

+ f2op

(
x, ξ;x +

1
2
R, ξ′
)}

. (8.127)

Thus, taking both sides’ average, we obtain an equation that connects f1
and f2. Then, multiplying for instance by f1op and averaging, we obtain an

13For simplicity, we use 〈ϕ〉 = 0.
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equation connecting f1, f2, f3 and others. And so on: we therefore realize
that a complete hierarchy is obtained.

Of course, it cannot be solved except when it is closed by some
assumption, such as the Hartree–Vlasov one:

f2(x, p;x′, p′) ≈ f1(x, p)f1(x′, p′). (8.128)

For instance, in the case of equilibrium the last equation of the first order
equations of the hierarchy reads

[p2 − µ2]f1(p) =
λ

3!

∫
d4R

(2π)4
d4ξ′ exp [−i(p− ξ) · R] f1(ξ)f1(ξ′) (8.129)

or

M2 − µ2 =
λ

3!
1

(2π)3

∫
d3ξ√
p2 +M2

{
1

exp (βµpµ)− 1
+

1
2

}
, (8.130)

where M is the effective mass of the bosons (see Chap. 13). Note that the
term 1/2 is infinite and thus should be renormalized.

8.6.2. Four-current fluctuations of the complex scalar field

We now evaluate the fluctuations of the four-current operator in the case
of the complex scalar field ϕ, assuming for simplicity the case 〈ϕ〉 = 0. The
four-current operator is given by

Jµ
op(x) =

∫
d4p pµfop(x, p), (8.131)

so that the four-current fluctuation tensor Jµν(x, x′) is given by

Jµν(x, x′) ≡ 〈Jµν
op (x, x′)〉 =

∫
d4p d4p′pµp′ν〈fop(x, p)fop(x′, p′)〉, (8.132)

and thus it is sufficient to calculate 〈fop(x, p)fop(x′, p′)〉 in order to get
the result with the bonus of the possibility of calculating all one-particle
operator fluctuations, such as the energy–momentum fluctuations. However,
this path is not followed here and the calculation of the four-current fluc-
tuations is directly performed by replacing the plane wave expansion of the
complex field in the definition of Jµν(x, x′). A straightforward calculation
then provides (see details in Chap. 13)

Jµν(x− x′, 0) = (2π)4
∫ ∫

d4k d4p exp [ik · (x− x′)]pµpν

× ∆(p+ 1
2k)∆(p− 1

2k)
exp(βω)− 1

{
n

(
p− 1

2
k

)
− n
(
p+

1
2
k

)}
,

(8.133)



January 24, 2011 16:57 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch08 FA

218 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

where n(p± 1
2k) is the usual Bose–Einstein factor and ∆(p) the commutator

of the scalar field.

8.7. Gauge Properties of the Wigner Function

For the sake of simplicity, the gauge properties of the covariant Wigner
functions are studied in the case of a QED plasma only. Under a gauge
transformation of the electromagnetic four-vector Aµ,

Aµ(x)→ Aµ(x) + ∂µΛ(x), (8.134)

where Λ(x) is an arbitrary function, a Dirac spinor is changed as{
ψ(x)→ ψ(x) exp [+ieΛ(x)] ,

ψ̄(x)→ ψ̄(x) exp [−ieΛ(x)] ,
(8.135)

so that the Wigner function is changed as

F (x, p) →
∫

d4R

(2π)4
exp (−ip · R) exp

{
ie

[
Λ
(
x+

1
2
R

)
− Λ
(
x− 1

2
R

)]}

×
〈
ψ̄

(
x+

1
2
R

)
⊗ ψ
(
x− 1

2
R

)〉
, (8.136)

which can be rewritten as

F (x, p) →
∫

d4R

(2π)4
d4ξ exp [−i(p− ξ) ·R]

× exp
{
ie

[
Λ
(
x+

1
2
R

)
− Λ
(
x− 1

2
R

)]}
F (x, ξ). (8.137)

8.7.1. Gauge-invariant Wigner functions

In order to eliminate the problem of proving the gauge invariance of
the results in each case, a gauge-invariant relativistic Wigner function
has been defined by several authors [E.A. Remler (1977); V.V. Klimov
(1982); J. Winter (1984); U. Heinz (1985); H.-T. Elze, M. Gyulassy and
D. Vasak (1986a,b); see also A.V. Selikhov (1988); H.T. Elze and U. Heinz
(1989)]. Such a formalism is very elegant and will probably have interesting
developments; however, at the present moment, it leads to very involved
equations for which approximation schemes are not easy to work out. Fur-
thermore, if a gauge-covariant formalism has been erected for gauge bosons
(photons, gluons, etc.), ghosts are not yet fully taken into account. For
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details, references and discussions, see the review article by H. Th. Elze
and U. Heinz (1989).

In this subsection, a one-particle gauge-invariant Wigner function is
defined in the case of QED only.14 There are three reasons for this. Firstly,
QED plasmas are relatively well studied and constitute a “laboratory” for
gauge theories. Secondly, no problems of ghosts are to be dealt with, when
using linear gauges15 in QED. Finally, by treating the case of a QED plasma
rather than the general case of a quark–gluon plasma, the use of an unnec-
essarily complex algebra is avoided without losing the basic ideas.

Let us start from the definition of the one-particle Wigner operator

Fop(x, p) =
1

(2π)4

∫
d4R exp (−ip · R) ψ̄(x)

[
i

2

↔
∂ − eA(x)

]
ψ(x) (8.138)

it can be rewritten as

Fop(x, p) =
1

(2π)4

∫
d4R exp (−ip · R) exp

(
+i

1
2
D ·R

)
ψ̄ (x)

⊗ exp
(
−i1

2
D · R

)
ψ (x) , (8.139)

where D is the ordinary differential operator Dµ = −i∂µ, which is the
generator of space–time translations. Those authors first rewrite the above
Wigner operator as

Fop(x, p) =
1

(2π)4

∫
d4R exp (−ip ·R) ψ̄(x) exp

(
+i

1
2
D+ · R

)

⊗ exp
(
−i1

2
D ·R

)
ψ (x) , (8.140)

where D+ is nothing but the same operator as D acting on the left. One
might think that D should be replaced by the kinetic (gauge-invariant)
four-momentum {

Dµ→ ∂µ + ieAµ,

D+
µ → ∂µ − ieAµ,

(8.141)

defining a “gauge-invariant” translation operator, suggesting thereby a
way to reach gauge invariance; however, some care is needed when one
is applying this operator to the spinors ψ and ψ̄, and it must be carefully
defined.

14In another subsection, the gauge-invariant Wigner function studied by E.A. Remler
(1977) is briefly examined.
15See e.g. C. Nash, Relativistic Quantum Fields (Academic, New York, 1978).
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Let us now examine this line of thought with some details and, to this
end, we shall closely follow the articles devoted by D. Vasak, M. Gyulassy
and H. Th. Elze (1986) and by P. Zhuang and U. Heinz (1996) to the
Abelian plasmas. They constitute extensions and simplifications of earlier,
more developed works.16

These authors first remarked that if one introduces a factor f(A;x,R)
such that

f(A;x,R = 0) = 0,

f(A− ∂Λ;x,R) = f(A;x,R) + Λ
(
x+

1
2
R

)
− Λ
(
x− 1

2
R

)
,

(8.142)

then the insertion of the term

U

(
A;x+

1
2
R, x− 1

2
R

)
≡ exp [ief(A;x,R)] (8.143)

in the definition of the Wigner operator allows the removal of the gauge
dependence, and finally they realized that the ansatz

f(A;x,R) ≡ −Rµ

∫ 1

0

dsAµ

(
x+R

{
s− 1

2

})

= −
∫ x+1/2R

x−1/2R

dzµAµ(z), (8.144)

where the integral is a path integral along a straight line, from point
(x−R/2) to (x+R/2), obeys the above conditions, and does lead to a
gauge-invariant definition of the Wigner operator. The above expression
of U

(
A;x+ 1

2R, x− 1
2R
)

should be specified more precisely. Indeed, when
Aµ(x) is an operator, U must be supplemented by a path ordering of the
exponential,

U

(
A;x+

1
2
R, x− 1

2
R

)
= P exp

[
−Rµ

∫ 1

0

dsAµ

(
x+R

{
s− 1

2

})]
,

(8.145)

where P is the chronological order of exp(· · · ). A few words are now in order
about the choice used for the path. Indeed, there exist an infinity of other
possible paths that would lead to other gauge-invariant Wigner operators.

16H.-T. Elze, M. Gyulassy and D. Vasak (1986a,b).
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In fact, this linear path has been chosen not only for reasons of simplicity
but also for the following physical reason. Indeed, in doing so, the quantity

π̂µ = p̂µ − eAµ(x) =
i

2
(
D −D+

)
(8.146)

acquires the signification of the kinetic momentum of a generic particle
while p̂ is the canonically conjugate momentum to x̂ [see D. Vasak,
M. Gyulassy and H. Th. Elze (1986a)]. The latter authors also remarked
that the two definitions, i.e. the intuitive one and the more sophisticated
one with a path integral, are equivalent.

Another point of importance is that the main observables, i.e. the four-
current and the energy–momentum tensor, are still provided by the same
relations as in the non-gauge-invariant Wigner function


jµ(x)= Sp

∫
d4p γµF (x, p),

T µν(x)= Sp
∫
d4p pµγνF (x, p).

(8.147)

Finally, starting from the Dirac equations derived from the Lagrangian

L = ψ̄(x)
{
i

2

↔
∂

}
ψ(x) − 1

4
FµνFµν (8.148)

and using the same techniques as at the beginning of this chapter, P. Zhuang
and U. Heinz (1996) arrived at the dynamical equations obeyed by the
gauge-invariant Wigner function [see also D. Vasak, M. Gyulassy and H.
Th. Elze (1986a)], which they wrote as{{γµ [iDµ(x, p) + 2Πµ(x, p)]− 2m}Fop(x, p) = 0,

Fop(x, p) {γµ [iDµ(x, p)− 2Πµ(x, p)] + 2m} = 0,
(8.149)

with the definitions

Dµ(x, p) ≡ ∂µ − e

∫ +1/2

−1/2

dsFµν

(
x− s∇(p)

)∇ν
p,

Πµ(x, p) ≡ pµ − e
∫ +1/2

−1/2

sds Fµν

(
x− s∇(p)

)∇ν
p ,

(8.150)

where∇(p) ≡ ∂/∂p;Dµ and Πµ play the role of gauge-invariant operators in
place of ∂µ and pµ. The above dynamical equations satisfied by the gauge-
invariant Wigner operator can also be decomposed on the Dirac algebra in
order to get further insights [P. Zhuang, and U. Heinz (1996)].
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For a constant and homogeneous magnetic field, the above equations
read 


[
iγ ·
(
∂ − eFµν∇ν

(p)

)
+ 2 (γ · p−m)

]
Fop(x, p) = 0,

Fop(x, p)
[
iγ ·
(←
∂ − eFµν

←
∇(p)

ν
)
− 2 (γ · p−m)

]
= 0,

(8.151)

which are exactly the equations obtained with the “näıve” non-gauge-
invariant Wigner function. This is an illustration of a result by A.V.
Selikhov (1988), according to whom there always exists a gauge where
the two functions do coincide; in this case, it is the Landau gauge (see
Chap. 15).

8.7.2. A few remarks

(1) The above gauge-invariant formalism for the Wigner functions of the
electrons and photons is very elegant and has been used for the study
of the classical limit by expanding both the equations and the Wigner
function in powers of h, and this allowed the obtaining of deeper
insights into their interpretation [D. Vasak, M. Gyulassy and H. Th.
Elze (1986a); P. Zhuang and U. Heinz (1996); etc.].

(2) In order to solve the problem of pair emission in an external homo-
geneous electric field, I. Bialyncki-Birula, P. Gornicki and J. Rafelski
(1991) used a gauge-invariant (but not manifestly Lorentz-invariant)
Wigner function and the transport equation it satisfies in the Hartree–
Vlasov approximation. This line was followed by several authors.17 The
equal time gauge-invariant Wigner functions used in this approach have
been connected to the manifestly Lorentz-invariant ones by P. Zhuang
and U. Heinz (1996). They showed that the equal time Wigner function
can be obtained from the fully invariant one by an integration over the
variable p0,

f(x, t;p) =
∫
dp0f(x, p), (8.152)

and they found that the I. Bialyncki-Birula et al. equal time approach
was only one of several possibilities. Also, P. Zhuang and U. Heinz

17C. Best, P. Gornicki and W. Greiner, Ann. Phys. 225, 169 (1993); J.M. Eisenberg and
G. Kalbermann, Phys. Rev. D37, 1197 (1988); C. Best and J.M. Eisenberg, D47, 4639

(1993); G.R. Shin and J. Rafelski, Phys. Rev. A48, 1869 (1993); I. Bialynicki-Birula,
E.D. Davis and J. Rafelski (1993); O.T. Serimaa, J. Javainen and S. Varro, Phys. Rev.
A33, 2913 (1986); J. Javainen, S. Varro and O.T. Serimaa, Phys. Rev. A35, 2791 (1987);
S. Varro and J. Javainen (2003).
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(1996) realized that, in this approach, the off-shell effects contained
in the full covariant Wigner function are eliminated by the approxi-
mations. In addition, they discussed the advantages and disadvantages
of both approaches for the problem under consideration, i.e. pair cre-
ation in an electric field. In particular, they recalled that the complete
covariant Wigner function poses some difficulties when one is solving
the initial value problem present in this question [I. Bialyncki-Birula,
P. Gornicki and J. Rafelski (1991)]. This problem could, however, be
solved with some approximation methods: a very simple example of
solution is indeed provided in Chap. 12.

8.7.3. Gauge-invariant Wigner functions for the photon

field

The case of the electromagnetic field is much simpler than that of the
electrons; indeed, a definition of the Wigner function for Aµ(x) similar to
that of the scalar field, i.e.

gµν
op (x, k) =

∫
d4R

(2π)4
exp (−ik ·R)

{
Aµ

(
x+

1
2
R

)
Aν

(
x− 1

2
R

)

−
〈
Aµ

(
x+

1
2
R

)〉〈
Aν

(
x− 1

2
R

)〉}
, (8.153)

which is obviously gauge-invariant. From the (gauge-invariant) equation of
motion satisfied by the electromagnetic field

�Aµ(x)− ∂µ (∂ ·A(x)) = 4πJµ(x) = 4πeSp
∫
d4p γµF (x, p), (8.154)

it is not very difficult to show that gµν
op (x, k) obeys the equations



k · ∂gµν
op (x, k)

=
∫

d4R

(2π)3
exp (−ip ·R)

[
Aµ

(
x+

1
2
R

)
Jν

(
x− 1

2
R

)

− Jν

(
x+

1
2
R

)
Aµ

(
x− 1

2
R

)]
,(

k2 − 1
4
�
)
gµν
op (x, k)

=
∫

d4R

(2π)3
exp (−ip ·R)

[
Aµ

(
x+

1
2
R

)
Jν

(
x− 1

2
R

)

−Jν

(
x+

1
2
R

)
Aµ

(
x− 1

2
R

)]
.

(8.155)



January 24, 2011 16:57 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch08 FA

224 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

It is, however, clear that in order to solve these equations, one has to choose
a gauge since they are equivalent to the equations of motion, and the sim-
plest covariant gauge is the Lorentz one, ∂ · A(x) = 0. With such a choice
gµν
op (x, k) must satisfy

kµg
µν
op (x, k) = 0, kνg

µν
op (x, k) = 0. (8.156)

Indeed, Eq. (8.159) is not gauge invariant.
On the other hand, a glance at the right hand side of the equations

obeyed by the Wigner operator shows that, when one is writing the BBGKY
hierarchy, products of various Wigner operators and complicated expres-
sions involving products of the electromagnetic field Fµν occur, suggesting
thereby to define a gauge-covariant operator as

Gµναβ
op (x, k) =

∫
d4R

(2π)4

{
Fµν

(
x+

1
2
R

)
Fαβ

(
x− 1

2
R

)

−
〈
Fµν

(
x+

1
2
R

)〉〈
Fαβ

(
x− 1

2
R

)〉}
, (8.157)

and since Fµν and Aµ are connected through

Fµν(x) = ∂µAν(x) − ∂νAµ(x), (8.158)

the above Wigner functions are interconnected through

Gαβµν
op (x, k)

= −
(
kν +

i

2
∂ν

)(
kα − i

2
∂α

)
gµβ
op +

(
kν +

i

2
∂ν

)(
kβ − i

2
∂β

)
gµα
op

−
(
kα +

i

2
∂α

)(
kµ − i

2
∂µ

)
gνβ
op +

(
kµ +

i

2
∂µ

)(
kβ − i

2
∂β

)
gνα
op

(8.159)

and it obeys the equations


(
kµ +

i

2
∂µ

)
Gµναβ

op (x, k)

= iSp
∫ ∫

d4p
d4R

(2π)4
exp (−ip ·R)Fαβ

(
x+

1
2
R

)
γνFop

(
x− 1

2
R

)
,(

kλ +
i

2
∂λ

)
Gµναβ

op (x, k) +
(
kµ +

i

2
∂µ

)
Gνλαβ

op (x, k)

+
(
kν +

i

2
∂ν

)
Gλµαβ

op (x, k) = 0,

(8.160)
which are nothing but the Wigner form of the Maxwell equations.
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From the expression of Gαβµν(x, k), one can obtain the energy–
momentum tensor as

T µν(x) =
〈
Fµα(x)F ν

α (x) +
1
4
ηµνFαβ(x)Fαβ(x)

〉

=
∫
d4k

{
Gµα ν

α (x, k) +
1
4
ηµνGαβ

αβ(x, k)
}
, (8.161)

which is to be compared with the nonquantum results by T.W. Marshall
(1963, 1965) together with the covariant Wigner function for Fµν .

8.7.4. Another gauge-invariant Wigner function

The above analysis of the transformation properties of the Wigner function
indicates that the factors Λ which appear in the exponential of the trans-
formed F could be compensated for with A terms. This is possible and has
been achieved by E.A. Remler (1977) with the following new definition for
the Wigner function:

F (x, p)→ FG(x, p) =
∫

d4R

(2π)4
exp [−i(p−A) · R]

×
〈
ψ̄

(
x+

1
2
R

)
⊗ ψ
(
x− 1

2
R

)〉
, (8.162)

where A is given by

Aµ(x,R) ≡ (R · ∂(x)

)−1
{
Aµ

(
x+

1
2
R

)
−Aµ

(
x− 1

2
R

)}
. (8.163)

This operator can be formally defined through its Fourier transform as
being

Aµ(x,R) =
∫
d4k exp(ik · x)

{
Aµ(k)
ik · R [exp(ik ·R)− exp(−ik · R)]

}
;

(8.164)

and when one expands the exponentials within the brackets, one obtains

Aµ(x) =
∫
d4k exp(ik · x)

{
Aµ(k)
ik ·R

( ∞∑
n=0

[
1− (−1)n

n!

(
1
2
ik ·Rn

)])}

= Aµ(x) +
1
24

(R · ∂)2Aµ(x) +
1

16× 5!
(R · ∂)4Aµ(x) + · · · .

(8.165)

It is clear that, in this definition of FG, the exponential should be ordered
since Aµ is a priori not a c number. However, in view of another version
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of the Hartree–Vlasov equation, Aµ will be considered as a mean field and
hence as a c number.

With this definition of the new Wigner function, the exact form of the
four-current is the same as to the older one and the energy–momentum
tensor is

T µν =
∫
d4p

{(
pµpν − 1

4
ηµν

)
(p2 −m2) +

(
∂µ∂ν − 1

4
ηµν�

)}
fG(x, p).

(8.166)

Let us now turn to an equation obeyed by the Wigner function and let us
consider the simpler case of scalar particles — hence, the Wigner function
reduces to a scalar function fG — embedded in a mean electromagnetic
field, 


�〈Aµ(x)〉 = 4πeSp

∫
d4p pµfG(x, p)

∂µ〈Aµ(x)〉 = 0,
(8.167)

so as to avoid problems of ordering the exponential of field operators. After
some lengthy but straightforward algebra, E.A. Remler (1977) arrive at the
equation for fG (

ΓµΓµ +m2
)
fG(x, p) = 0, (8.168)

with the operator Γµ given by

Γµ ≡ 1
2
∂µ − ipµ + ieFµ

(
x,−i∇(p)

)
, (8.169)

where Fµ has been defined as

Fµ =
{

1
2
∂

∂xµ
+

∂

∂yµ

}
Aµ(x, y) · y −Aµ

(
x+

1
2
y

)
. (8.170)

The resulting Hartree–Vlasov equation is highly nonlinear, quite intricate,
and very difficult to use. The same is true of the case of spin 1/2 particles.

Unfortunately, this line of research has not yet been fully developed.

8.7.5. Gauge invariance and approximations

The main problem, however, is raised by the question of the gauge transfor-
mation properties of the approximations performed during an actual calcu-
lation. It is clear that one cannot make assumptions of an almost arbitrary
nature even though they are apparently “physical.” Some do preserve the
transformation properties of the equations which are approximated but this
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is not the case for others. To be specific, the case of the Hartree–Vlasov
approximation,

〈F (x, p)Aµ(x)〉 ≈ F (x, p)〈Aµ(x)〉, (8.171)

for the non-gauge-invariant Wigner function is first dealt with. For a QED
plasma (see Chap. 15) the equations obeyed by the Wigner function read

{iγ · ∂ + 2 (γ · p−m)}F (x, p)

= 2e
∫

d4x′

(2π)4
d4p′ exp [−ip′ · (x − x′)] γµ

〈
Fop(x, p− 1

2
p′)Aµ(x′)

〉
(8.172)

F (x, p)
{
iγ ·

←
∂ − 2(γ · p−m)

}
= −2e

∫
d4x′

(2π)4
d4p′ exp [−ip′ · (x− x′)]

〈
Aµ(x′)Fop(x, p+

1
2
p′)
〉
γµ,

(8.173)

� 〈Aµ(x)〉 − ∂µ [∂ν 〈Aν(x)〉] = 4πeSp
∫
d4p γµF (x, p). (8.174)

Under a gauge transformation the third equation remains unchanged while
the first two have the same transformation properties whether they are
exact or are approximated with the above ansatz. The same is true of other
approximations for various correlations, for instance

〈F (x, p)A(x′)A(x′′)〉 ≈ 〈F (x, p)〉 〈A(x′)A(x′′)〉
+ 〈F (x, p)A(x′)〉 〈A(x′′)〉+ 〈F (x, p)A(x′′)〉 〈A(x′)〉 . (8.175)

This is one of the disadvantages of the nonmanifestly gauge-invariant
Wigner function: in each case one has to check the gauge invariance of
what is effectively performed.

Of course, the full covariant Wigner function has not this inconvenience.
For instance, the Hartree–Vlasov approximation (absence of correlations
between the electromagnetic field and the electrons) reads

〈Fop(x, p)Fµν(x′)〉 ≈ 〈Fop(x, p)〉 〈Fµν(x′)〉 , (8.176)

which is certainly a gauge-invariant approximation; it behaves in the
same way on both sides of the approximation. Suppose, for instance, that
〈Fop(x, p)Fµν(x′)〉 has to be approximated by something like

〈Fop(x, p)Fµν(x′)〉 ≈ 〈Fop(x, p)〉1/2 〈Fop(x, p)〉1/2 〈Fµν(x′)〉 ;
it is clear that the two sides of the approximation would not behave in the
same way and the gauge symmetry would be destroyed.
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Chapter 9

Fermions Interacting via a Scalar
Field: A Simple Example

The case of fermions interacting through a scalar field occurs many times:
in the model of J.D. Walecka (1974), in the abnormal nuclear matter of
T.D. Lee (1978), in one form of the phenomenological model for quark
interactions of J. Rafelski (1974), etc. However, we study this model not so
much for the applications it could have, but for the ease it can have in oper-
ating the covariant Wigner function, and particularly the renormalization.
An interesting article devoted to the Walecka model has been written at
T = 0◦ K by S.A. Chin (1977).

In this chapter, we study the properties of the system characterized by
the Lagrangian

L = ψ̄(iγ · ∂ −m)ψ + gψ̄ψφ+
1
8π

[(∂φ)2 − µ2
Rφ

2]− Lc, (9.1)

where (ψ̄, ψ) refers to the fermion field, φ is a scalar field mediating the
interaction and Lc is the Lagrangian’s counterterms:

4πLc =
α

1!
φ+

δµ2

2!
φ2 +

γ

3!
φ3 +

λ

4!
φ4. (9.2)

However, we shall forget this term for some time and consider it in the
second part of this chapter. Here we consider this model as a simple tool
to show the use of the Wigner function. However, it may be looked at as
a part of the D.A. Walecka (1974) model for nuclear matter, the abnormal
nuclear matter model of T.D. Lee (1975), etc. Also, the Higgs mechanism
enters partly in the context of this model.

Such a system gives one the simplest quantum-field-theoretical models
for the description of relativistic dense matter or, more precisely, it repre-
sents a good “laboratory” for its study. Therefore, we shall be concerned, in

228
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this chapter, with the thermodynamic properties of the system, its renor-
malization and the scalar field spectrum.

It has sometimes been called the “scalar plasma” [G. Kalman (1974)],
both for brevity and owing to the fact that plasma methods were used to
deal with it.

We now come back to the case of the scalar plasma at finite density and
temperature [J. Diaz Alonso and R. Hakim (1978, 1984, 1988)], and the
Hartree–Vlasov approximation will mainly be dealt with. In this approxi-
mation 〈ϕ〉 is only the collective field whose source is the fermion field and
correlations of whatever nature are neglected:



〈Fopϕ〉 ≈ F 〈ϕ〉,
〈Fop ⊗ Fop〉 ≈ 〈Fop〉 ⊗ 〈Fop〉,
〈ϕϕ〉 ≈ 〈ϕ〉〈ϕ〉,
etc.

(9.3)

The basic equations of the hierarchy then reduce to the set


{iγ · ∂ + 2[γ · p−m]}F (x, p) = −2gS

∫
d4R

(2π)4
d4ξ

× exp[−i(p− ξ) · R]F (x, ξ)
〈
ϕ

(
x− 1

2
R

)〉
,

F (x, p){iγ ·
←
∂ − 2[γ · p−m]} = +2gS

∫
d4R

(2π)4
d4ξ

× exp[−i(p− ξ) · R]F (x, ξ)
〈
ϕ

(
x+

1
2
R

)〉
,

(� +m2
S)〈ϕ(x)〉 = gSSp

∫
d4pF (x, p).

(9.4)

9.1. Thermal Equilibrium

In equilibrium, the system is stationary and homogeneous, and therefore
one has {

F (x, p)= Feq(p),

〈ϕ(x)〉= const ≡ ϕeq,
(9.5)

and the above equations reduce to


[γ · p−m]Feq(p) = −gSFeq(p)ϕeq,

Feq(p)[γ · p−m] = −gSFeq(p)ϕeq,

m2
Sϕeq = gSSp

∫
d4pFeq(p).

(9.6)
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The first two equations are rewritten as


[γ · p−M ]Feq(p) = 0,

Feq(p)[γ · p−M ] = 0,

M = m− gSϕeq.

(9.7)

This means that the fermions of the system are endowed with the effective
massM and in equilibrium, as shown in a preceding chapter, Feq is identical
with the equilibrium Wigner function for particles with such an effective
mass. Then Feq is replaced in the third equation (Klein–Gordon), and
one gets

M = m− Γ
M3

m2

∑
±

∫ ∞
0

ξ2dξ√
ξ2 + 1

1
exp

(
βM

[√
ξ2 + 1∓ µ])+ 1

, (9.8)

where the vacuum term has been dropped until a later subsection, where it
will be discussed. G. Kalman (1974) first obtained this equation at T = 0K,
to which it reduces at this temperature. Like Kalman, we have set

Γ =
4
π
g2

S

(
m

mS

)2

, (9.9)

which characterizes the strength of the interaction. This self-consistent
transcendental equation for M is strongly reminiscent of the usual gap
equation of superconductivity; hence, in the sequel, it is referred to as the
gap equation. This equation controls all the thermal equilibrium properties
of the system, since M occurs in the equilibrium Wigner function and hence
in the thermodynamic quantities (Fig. 9.1) [J. Diaz-Alonso and R. Hakim
(1978)].

The basic data — pressure, energy density, baryon number density —
are obtained through the standard formulae given at the beginning of
Chaps. 7 and 8, with the replacement m → M(µ, β), and by adding to
the energy–momentum tensor the contribution of the scalar field, namely
(Fig. 9.2)

T µν
ϕ = −Lηµν

=
(

1
2
m2

S〈ϕ〉2eq
)
ηµν

=
m2

S

8πg2
S

(M −m)2 ηµν (9.10)
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Fig. 9.1 The effective fermion mass is displayed as a function of the chemical potential

(in units of the fermion mass m). Note that below a critical temperature, the effective
mass presents a discontinuity expressing a first order phase transition. The vertical line
corresponds to a Maxwell construction.

Fig. 9.2 The energy per fermion is plotted against the parameter kF for several values
of the temperature. In the left hand side diagram Γ has been chosen to be 10, while its
value is 100 in the right hand side one. Note that there is a critical temperature below
which there exists a collective bound state of the fermions: it occurs whenever the energy
per fermion is smaller than 1 (in units of m).
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(remember that, in equilibrium, ∂µ〈ϕ〉eq = 0), and the four-current

Jµ = Sp
∫
d4p γµFeq(p)

=
∫
d4p fµ

eq(p). (9.11)

Figure 9.3 shows the behavior of the pressure as a function of the
chemical potential for several temperatures. The coupling constant Γ has
been chosen to be equal to 4. The double point is characteristic of a
first order phase transition and the Maxwell construction amounts to sup-
pressing the “loop” of the curve, represented by a dotted line. As usual, the
observables (n, ρ, P ) are obtained without difficulty from Jµ and T µν .

Fig. 9.3 Typical behavior of a first order phase transition shown for the
pressure/chemical potential, at several temperatures. The cut points correspond to the
Maxwell construction for every temperature, giving the transition pressures. The dashed–
dotted line connects the branch to a point between T and the critical temperature TC .
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9.2. Collective Modes

The collective oscillation modes of the relativistic scalar plasma [J. Diaz-
Alonso and R. Hakim (1988)] are obtained in the random phase approx-
imation, i.e. from the linearized Hartree–Vlasov system obtained by
replacing the perturbed functions:

{
F (x, p)≈ Feq(p) + F1(x, p),

〈ϕ(x)〉 ≈ 〈ϕ〉eq + ϕ1,
(9.12)

where the higher order terms are neglected. With this linearization, the
above Hartree–Vlasov system, once Fourier-transformed, can be written as




[
γ ·
(
p− 1

2
k

)
−M

]
F1(k, p) = −gSFeq

(
p+

1
2
k

)
ϕ1(k),

F1(k, p)
[
γ ·
(
p+

1
2
k

)
−M

]
= −gSFeq

(
p− 1

2
k

)
ϕ1(k),

(k2 −m2
S)ϕ1(k) = −4πgSSp

∫
d4pF1(k, p),

(9.13)

whose solution is

F1(k, p) = −gS

[
γ ·
(
p− 1

2
k

)
−M

]−1

Feq

(
p+

1
2
k

)

−Feq

(
p− 1

2
k

)[
γ ·
(
p+

1
2
k

)
−M

]−1

(9.14)

or, more explicitly,

F1(k, p) = −gS

{
γ · (p− 1

2k
)

+M(
p− 1

2k
)2 −M2 + iε

Feq

(
p+

1
2
k

)

+ gS Feq

(
p− 1

2
k

)
γ · (p+ 1

2k
)

+M(
p+ 1

2k
)2 −M2 − iε

}
ϕ1(k), (9.15)

where the iε terms reflect the boundary conditions (compare with the Yang–
Feldman form of the equation of motion for F ; see Chap. 8). Note also that
the first term of the solution (resp. the second) is a solution to the first
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equation of the linearized system while the remaining term is a homoge-
neous solution to the other. Inserting now this solution into the equation
for ϕ1, one obtains an equation of the form

[(k2 −m2
S) + Π(k)]ϕ1(k) = 0, (9.16)

with

Π(k) = −2πg2
S Sp

∫
d4p

{
γ · (p− 1

2k
)

+M

k · p− iε Feq

(
p+

1
2
k

)

− Feq

(
p− 1

2
k

)
γ · (p+ 1

2k
)

+M

k · p− iε

}
, (9.17)

where use has been made of the fact that Feq(p ± 1
2k) are on the mass

shells: (
p± 1

2
k

)2

= M2 = ±2k · p. (9.18)

The dispersion equation obeyed by the collective modes is thus

[(k2 −m2
S) + Π(k)] = 0, (9.19)

and once the traces have been performed one obtains an explicit form for
the polarization tensor Π(k),

Π(k) =
2πg2

S

M

∫
d4p

p2 − 1
4k

2 +M2

k · p− iε
[
feq

(
p+

1
2
k

)
− feq

(
p− 1

2
k

)]
,

(9.20)

where divergent vacuum contributions are included. The modes are dis-
cussed in a later section after the theory has been renormalized.

9.3. Two-Body Correlations

(1) First, an alternative treatment of the collective modes of the scalar
plasma is briefly outlined; it is based on a particular treatment of corre-
lation, showing thereby how fluctuations are connected with such modes:
see the fluctuation–dissipation theorem.1

1A.G. Sitenko, Electromagnetic Fluctuation in Plasmas (Academic, New York, 1967).
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Let us rewrite the first two equations of the BBGKY hiererarchy in
symbolic form: 



LF =
∫
〈Fopϕ〉,

KG〈ϕ〉=
∫
〈Fop〉,

L〈FopFop〉=
∫
〈FopFopϕ〉,

L〈Fopϕ〉=
∫
〈Fopϕϕ〉,

KG〈ϕϕ〉=
∫
〈Fopϕ〉,

KG〈Fopϕ〉=
∫
〈FopFop〉,

· · · · · · · · ·

(9.21)

Neglecting three-body correlations, while retaining only two-body ones, the
latter are contained in the ansatz

〈Fopϕϕ〉 ≈ F 〈ϕϕ〉+
∑
〈Fopϕ〉〈ϕ〉 − 2F 〈ϕ〉〈ϕ〉, (9.22)

where the sum is over a permutation of the variable occurring in the scalar
field operator. In fact, 〈ϕϕ〉 can be known, in equilibrium, in an approx-
imate way once the excitation spectrum ω = ω(k) is given through a Bose–
Einstein factor, so that the hierarchy is finally closed.

Let us now briefly and symbolically rederive the excitation spectrum
of the scalar plasma. From the fourth equation of the above system, the
use of the other equations and the ansatz on the vanishing of three-body
correlations, we get

〈Fopϕ〉 = L−1

∫
F 〈ϕϕ〉, (9.23)

which, once inserted in the fifth one, can be written as a homogeneous
equation for 〈ϕϕ〉,

KG〈ϕϕ〉 =
∫
L−1

∫
F 〈ϕϕ〉, (9.24)

showing that the polarization operator is essentially

Π =
∫
L−1

∫
F . (9.25)
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A detailed calculation indeed indicates that we actually find anew, in ther-
modynamic equilibrium, the same Π as in our preceding Hartree–Vlasov
calculation (see below).

(2) Let us first briefly implement this derivation of Π for the quasibosons
of the scalar plasma model via the use of the second order equations of the
BBGKY. With the notations{

Cϕϕ(x)≡ 〈ϕ(x + x′)ϕ(x′)〉eq − 〈ϕ〉2eq,
CFϕ(x, p)≡ 〈Fop(x′, p)ϕ(x− x′)〉 − Feq(p)〈ϕ〉eq,

(9.26)

the first equations read2




(γ · p−M)Feq(p) = −gS

∫
d4k CFϕ

(
k, p+

1
2
k

)
,

Feq(p)(γ · p−M) = −gS

∫
d4k CFϕ

(
k, p− 1

2
k

)
,

(9.27)

while the next order is written as


{
γ ·
(
p− 1

2
k

)
−M

}
CFϕ(k, p) = −gSCϕϕ(k)Feq

(
p+

1
2
k

)
,

CFϕ(k, p)
{
γ ·
(
p+

1
2
k

)
−M

}
= −gSCϕϕ(k)Feq

(
p− 1

2
k

)
,

(9.28)

where several assumptions discussed below have been made, like

CFϕ(k, p) ≈ CϕF (k, p), (9.29)

or the space–time homogeneity of the system in equilibrium. Also, the above
ansatz,

〈Fopϕϕ〉 ≈ FeqCϕϕ +
∑

CFϕ〈ϕ〉eq − 2Feq〈ϕ〉eq〈ϕ〉eq, (9.30)

has been used. Similarly, from the Klein–Gordon equation obeyed by the
scalar field ϕ, one gets


m2

S〈ϕ〉eq = gSSp
∫
d4pFeq(p) (gap equation),

(k2 −m2
S)Cϕϕ(k) = −gSSp

∫
d4pCFϕ(k, p).

(9.31)

When Feq(p) is on the mass shell p2 = m2 — this is the case when Feq(p)
is approximated by its Hartree–Vlasov form — the system can be solved in

2Remember that a(k) is the Fourier transform of a(x).
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the same manner as above and one gets

CFϕ(k, p) = −gSCϕϕ(k)

[
γ · (p− 1

2k
)

+M(
p− 1

2k
)2 −M2

Feq

(
p+

1
2
k

)

+ Feq

(
p− 1

2
k

)
γ · (p+ 1

2k
)

+M(
p+ 1

2k
)2 −M2

]
. (9.32)

Once introduced into the “second order” Klein–Gordon equation, one gets
exactly the same excitation spectrum as above. Note that Cϕϕ(k) is essen-
tially the quasibosons’ Wigner function.

9.3.1. A brief discussion

A few remarks are now in order and, in particular, some assumptions made
have to be explained.

(1) Let us first come back to the assumption CFϕ(k, p) ≈ CϕF (k, p).
It can be considered either as an assumption or as the result of a sym-
metrization of the basic Lagrangian. As a matter of fact, the quantization
of the field should be done after it is symmetrized: instead of CFϕ and CϕF ,
one must quantize

1
2
(CϕF + CϕF ).

It follows that whether or not the equality is satisfied is immaterial since the
resulting equations are those given above. Another implicit assumption is

ImCϕϕ(k) = ImCϕϕ(−k).

Indeed, in the second equation for CFϕ, it is actually Cϕϕ(−k) that occurs
on its right hand side. However, the compatibility of two these equations
(i.e. when one changes k into −k in one of these equations, one should
recover the other) joined to the (implicit) symmetrization actually leads
to Cϕϕ(−k). This relation may be interpreted as expressing the symmetry
beween the particles and their antiparticles: Cϕϕ(±k) is directly related to
the Wigner function of the particles (antiparticles).

(2) It may be somewhat strange that our two derivations of the exci-
tation spectrum of scalar quasiparticles yield exactly the same results: in
the first derivation, correlations were neglected, while two-body correlations
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were retained in the second one; moreover, the first derivation dealt
with an (slightly) off-equilibrium state whereas this was not so in the
second case.

In fact, there is no paradox at all. We have already mentioned that
a small perturbation of the Hartree–Vlasov equilibrium state can also be
considered as a quasiparticle and hence is linked to a small two-body cor-
relation. Next, it should be recalled that, in our second derivation, Feq(p)
was approximated by the Hartree–Vlasov equilibrium Wigner function: cor-
relations of spin 1/2 particles were still neglected. On the other hand, when
this approximation is not performed, one goes beyond the random phase
approximation. For instance, Feq(p) can be expanded as successive “powers”
of two-body correlations (the zeroth order term being the Hartree–Vlasov
one) of φ; then terms involving for example 〈φφ〉〈φφ〉 occur and one obtains
the nonlinear effects of the usual Hartree–Vlasov approximation, i.e. the
interactions of quasiparticles.

9.3.2. Exchange correlations

It is well known that the higher the density the better the Hartree
approximation. However, at moderate densities exchange effects cannot
be neglected and contain a great deal of physically interesting features.
Accordingly, the modifications introduced by the Hartree–Fock approx-
imation have to be considered. We still use the example of the “scalar
plasma.”

To gain some feeling for what should be a Hartree–Fock ansatz, the
Klein–Gordon equation for the scalar field ϕ is formally solved as

ϕ = −gS

∫
d4x′∆(x− x′)ψ(x′)ψ(x′), (9.33)

where ∆(x) is an elementary solution to the free Klein–Gordon equation

�∆(x) + µ2∆(x) = 4πδ(4)(x). (9.34)

Although we choose the retarded solution,3 this is of no importance for
what we are seeking: a Hartree–Fock ansatz. Next, this formal solution
is inserted into the right hand side of the first equation of the BBGKY

3See e.g. S. Schweber, An Introduction to Relativistic Quantum Theory of Fields
(Harper and Row, New York, 1961).
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hierarchy and provides

{iγ · ∂ + 2[γ · p−m]}F (x, p)

= −32g2
S

∫
d4x′ d4x′′ d4p′ exp[−2ip′ · (x − x′)]∆(x − x′)

×〈Fop(x, p− p′)Fop(x′′, p′′)〉 (9.35)

and, of course, another similar equation. The last term of this equation
involves a term of the form〈

ψ

(
x+

1
2
R

)
⊗ ψ

(
x− 1

2
R

)
⊗ ψ

(
x′′ +

1
2
R′′
)
⊗ ψ

(
x′′ − 1

2
R′′
)〉

,

whose Hartree approximation simply corresponds to〈
ψ

(
x+

1
2
R

)
⊗ ψ

(
x− 1

2
R

)
⊗ ψ

(
x′′ +

1
2
R′′
)
⊗ ψ

(
x′′ − 1

2
R′′
)〉

≈
〈
ψ

(
x+

1
2
R

)
⊗ ψ

(
x− 1

2
R

)〉〈
ψ

(
x′′ +

1
2
R′′
)
⊗ψ

(
x′′ − 1

2
R′′
)〉

,

(9.36)

which is equivalent to 〈Fopϕ〉 ≈ F 〈ϕ〉. The Hartree–Fock term is now
obtained by taking the average value of all possible pairs (with the correct
signs) among the four fermion operators occurring above. Note that, in
general, one has not

〈ψ ⊗ ψ〉 = 0 = 〈ψ ⊗ ψ〉, (9.37)

but this property is true in equilibrium, provided that the total Fermion
number (baryonic or charge number) is conserved. Finally, the Hartree–
Fock term arises from the pairing

(αβ) component = −
∑

λ

〈
ψβ

(
x+

1
2
R

)
ψλ

(
x′′ − 1

2
R′′
)〉

×
〈
ψλ

(
x′′ − 1

2
R′′
)
ψα

(
x− 1

2
R

)〉
. (9.38)

As a consequence, the Hartree–Fock term to be added to the Hartree term
has the form

32g2
S

∫
d4X d4ξ d4ξ′K(X, ξ, ξ′;x, p)F (X, ξ)F (X, ξ′), (9.39)
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where the kernel K is given by

K(X, ξ, ξ′;x, p) =
∫
d4x′d4x′′d4p d4p

d4R′d4R′′

(2π)8
∆(x′−x′′) exp[−i(p− p′)·R′]

× exp(−ip′′ ·R′′) exp[−2ip′ · (x− x′)]
× exp

{
iξ ·
[
x− x′′ + 1

2
(R′ +R′′)

]}

× exp
{
iξ′ ·

[
x′′ − x+

1
2
(R′ +R′′)

]}

× δ(4)
{
X −

[
x′′ + x+

1
2
(R′ −R′′)

]}
. (9.40)

In thermal equilibrium this term can be somewhat simplified, owing to the
fact that (i) the Hartree term can be included in the left hand side of the
equation for Feq via the effective mass term, and that (ii) the space–time
invariance of the system can be used. Finally, the equilibrium Hartree–Fock
term can be written as

32g2
S

∫
d4kd4k′K(k, k′; p)Feq(k′)Feq(k), (9.41)

with

K(k, k′; p) = 8g2
Sπδ

(4)(p− k)∆(k′ − k), (9.42)

so that the first equations of the hierarchy read{
[γ · p−Mop(p)]Feq(p) = 0,

Feq(p)[γ · p−Mop(p)] = 0,
(9.43)

where Mop is a mass operator (acting on the right in the first equation and
on the left in the second) which is a functional of Feq itself.

9.4. Renormalization — An Illustration of the Procedure

So far, in our scalar plasma model, the vacuum Wigner function has been
neglected. It represents essentially a modified Dirac ocean: the modification
comes from the change m → M . The fermions’ vacuum is thus modified
by the temperature and matter density. As has long been advocated by
T.D. Lee,4 the vacuum appears to be a physical medium per se. However,

4See, for instance, T.D. Lee, Particle Physics and Introduction to Field Theory
(Harwood, 1988).
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and as expected, the vacuum Wigner function gives rise to infinities
(i) in the gap equation, (ii) in the energy–momentum tensor and (iii) in the
excitation spectrum. So these quantities have to be renormalized. As usual,
after counterterms are introduced into the Lagrangian, first the physical
quantities are regularized and next the infinities are removed while arbi-
trary constants that occur in these processes are determined through the
values of the physical constants of the problem. As indicated above, the
vacuum Wigner function is given by

Fvac(p) = −γ · p+m

(2π)3
δ(p2 −m2)θ(−p · u). (9.44)

Therefore, the following counterterms are introduced into the Lagrangian
and one has

L → L+ Lc, (9.45)

with

Lc =
α

1!
ϕ+

δµ2

2!
ϕ2 +

γ

3!
ϕ3 +

λ

4!
ϕ4 − Z

2
(∂ϕ)2. (9.46)

9.4.1. Regularization of the gap equation

With the latter counterterms the gap equation is easily found to have the
form

(m2
R + δm2

S)(m−M) + αgS +
γ

2gS
(m−M)2 +

λ

6g2
S

(m−M)3

= 4πg2
SSp

∫
d4p{Fmat(p) + Fvac(p)}, (9.47)

where mR is the renormalized (finite) mass of the scalar field and Fmat(p)
is nothing but the “matter part” (i.e. the Fermi–Dirac terms). The vacuum
term is explicitly given by

−16πg2
S

(2π)3
M

∫
d4p θ(−p0)δ(p2 −M2) = − 8πg2

S

(2π)3
M

∫
d3p√

p2 +M2
, (9.48)

which is obviously infinite and is now regularized via the dimensional reg-
ularization procedure,5 a method possessing the advantages of manifest
covariance, elegance and, very often, simplicity. The final result, proven

5C. Itzykson and J.B. Zuber, Quantum Field Theory (MacGraw-Hill, New York, 1981).
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hereafter, is

− 8πg2
S

(2π)3
M

∫
d3p√

p2 +M2
=

2m3

πε
g2

S

(
M

m

)3 [
1− ε ln

(
M

m

)
Λ
]

+O(ε2),

(9.49)

where the integral is calculated in 4 − ε dimensions. It exhibits clearly a
pole term in 1/ε, while the term Λ is to be determined below.

In order to write down the vacuum Wigner function in 4−ε dimensions,
the following expressions are used6:

Tr(γµγν) = φ(4 − ε)ηµν (9.50)

and7

∫
dnk

(k2 + b2)p
= πn/2 Γ

(
p− 1

2n
)

Γ(p)
1

(b2)p−n/2
, (9.51)

where p and n are integers and φ(4 − ε) is an arbitrary function with a
continuous derivative such that φ(0) = 4. The vacuum Wigner function
written in 4− ε dimensions reads

Fvac(p) = − γ · p+m

(2π)3φ(4 − ε)χ(4− ε)δ(p2 −m2)θ(−p · u), (9.52)

where χ(4 − ε) is another arbitrary function of the same kind as φ(4 − ε).
As a matter of fact, the function φ(4− ε) does not play any role, since it is
eliminated while one is taking the trace of Fvac. Furthermore, as will appear
below, χ(4− ε) can always be taken to have the form

χ(4− ε) = (const)ε. (9.53)

Accordingly, the vacuum part of the integral appearing in the gap equation
can be rewritten in 4− ε dimensions as

I ≡ 1
2

∫
d3−εp√
p2 +m2

=
1
2
π1−ε/2Γ

(
1
2
ε− 1

)
M2−ε

=
1
2
πM2 exp

(
−1

2
ε lnπ

)
exp(−ε lnM)Γ

(
1
2
ε− 1

)
.

(9.54)

6C. Itzykson and J.B. Zuber, op. cit.
7C. Nash, Relativistic Quantum Fields (Academic, New York, 1978).



February 12, 2011 11:38 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch09 FA

Fermions Interacting via a Scalar Field: A Simple Example 243

Using the well-known functional relation Γ(x + 1) = xΓ(x) for defining
Γ
(

1
2ε− 1

)
and expanding the various terms of this last equation in powers

of ε, one gets

I = −πM
2

ε
+

1
2
πM2(ln(πM2)− ln{exp[1 + Γ′(1)]}) +O(ε). (9.55)

It remains for one to expand the quantity χ(4− ε)I, and one obtains

χ(4− ε)I = −πM
2

ε
+ πM2 ln

(
M

m
Λ
)

+O(ε), (9.56)

with8

Λ
m
≡ √π exp

{
−
[
1
2

+
1
2
Γ′(1)− χ′(4)

]}
. (9.57)

Introducing now these results into the gap equation, one obtains

(m2
R + δm2

S)(m−M) + αgS +
γ

2gS
(m−M)2 +

λ

6g2
S

(m−M)3

= 4πg2
S

[{∫
d4p feq(p)

}
+
M3

2π2

1
ε
− M3

2π2
ln
(
M

m
Λ
)]

+O(ε). (9.58)

The pole term is now absorbed into the counterterms, leading to a redefi-
nition of the various constants that appear on the left hand side. This is of
course possible since the pole term is in M3, the same power with which it
appears on the left hand side. Then one is led to the following redefinition
of the various constants: 



δµ2 = −6m2g2
S

πε
+BF ,

α=
2m3gS

πε
+Af ,

γ=
12mg3

S

πε
+ CF ,

λ= −12g4
S

πε
+DF ,

(9.59)

8χ being arbitrary, so is χ′ and hence Λ is an arbitrary constant; moreover, since
only the first derivative of χ is involved in this calculation, it can always be chosen as
χ(4 − ε) = (const)ε.
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where the constants (AF , BF , CF andDF ) are finite constants to be related
to the renormalized experimental values of (αR, m2

SR, γR, λR). We come
back to this question in a later section.

9.4.2. Regularization of the energy–momentum tensor

The vacuum Wigner function gives rise to other infinities which occur in
the energy–momentum tensor of the fermions

T µν
fermions = Sp

∫
d4p pµpν [Fmat(p) + Fvac(p)] (9.60)

and it is a priori not obvious that the infinities due to the vacuum term
can also be absorbed in the same counterterms as above.

Let us show these properties. The total energy–momentum tensor is

T µν = T µν
matter + T µν

vac + T µν
scal, (9.61)

where T µν
matter is the finite temperature and density–dependent part of

the energy–momentum tensor of the fermions and T µν
scal is the energy–

momentum tensor of the scalar particles,

T µν
scal =

ηµν

4π

{
α(m−M) +

1
2
(m2

S + δµ2)(m−M)2

+
γ

3!
(m−M)3 +

λ

4!
(m−M)4

}
; (9.62)

it includes the various counterterms. Only T µν
vac is infinite and, owing to

Lorentz invariance, it is necessarily proportional to ηµν ,

T µν
vac = Xηµν , (9.63)

and X is given by

X =
1

4− ε Tr
∫
d4−εp p · γ Fvac(p), (9.64)

where use has been made of 9

ηµνη
µν = 4− ε = ϕ(ε). (9.65)

Using the above results, one is led to

X = − 4M2

(2π)3(4− ε)Iχ(4− ε), (9.66)

9See e.g. C. Itzykson and J.B. Zuber, op. cit.
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where I is the same integral as the one occurring in the regularization of
the gap equation. Therefore, one has

X = − M2

(2π)3

{
−πM

2

ε
+ πM2 ln

(
M

m
Λ
)
− πM2

4

}
, (9.67)

where the constant pole term m4/8π2ε has been eliminated on the ground
that the energy–momentum tensor is defined up to a constant; in a vacuum
T µv = 0.

Finally, the regularized energy–momentum tensor can be written as

T µν
finite = T µν

matter +
ηµν

4π

{
AF

gS
(m−M) +

BF

2g2
S

(m−M)2 +
m2

S

2g2
S

(m−M)2

× CF

3!g3
S

(m−M)3 +
DF

4!g4
S

(m−M)4 − M4

2π
ln
(
M

m
Λ exp

(
−1

4

))}
.

(9.68)

Note that the constant Λ is redundant and could have been absorbed into
the various counterterms.

9.4.3. Determination of the constants (AF , BF , CF , DF )

It remains for one to connect the constants (AF , BF , CF , DF and Λ) to the
renormalized (i.e. physical) data (αR,m

2
SR, γR, λR). First, Λ is determined

in such a way that, in a normal vacuum where 〈ϕ〉 = 0, and thus when
m = M , the renormalized energy–momentum tensor T µν

R ≡ 0. This is
achieved by choosing Λ = exp(1/4).

Next, by definition, the “experimental” constants (αR,m
2
SR, γR, λR) are

respectively the coefficients of (ϕ/1!, ϕ2/2!, ϕ3/3!, ϕ4/4!), in a renormalized
Lagrangian. Note also that the coefficient of ηµν is nothing but an effective
Lagrangian that accounts for the quantum fluctuations in the Hartree–
Vlasov approximation.10 In this effective Lagrangian the coefficients of 〈ϕ〉,
〈ϕ2〉, 〈ϕ3〉 and 〈ϕ4〉, are not AF , BF , CF and DF , since the term M lnM
also contains such terms when expanded in a power series of 〈ϕ〉. The Taylor
formula up to fourth order in 〈ϕ〉 for the function

η(〈ϕ〉) = −M
4

8π2
ln
(
M

m

)
(9.69)

10It is rather an effective potential, since there is no kinetic energy term in this coefficient,
owing to the space–time translational invariance of the equilibrium state.
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is

η(〈ϕ〉) = 〈ϕ〉gSm
3

8π2
− 〈ϕ〉2 7g2

Sm
2

16π2
+ 〈ϕ〉3 13g3

Sm

24π2
− 〈ϕ〉4 25g4

S

96π2

+
〈ϕ〉5

π2m[1− (gS/m)θ(〈ϕ〉)]
1
5!
, (9.70)

where θ is an unknown constant such that 0 < θ < 1 where θ comes from the
Taylor–McLaurin formula. Identifying now the various renormalized con-
stants with the corresponding coefficients of 〈ϕ〉, . . . , 〈ϕ〉4/4!, one obtains

αR

1!
=
AF

1!
+
gSm

3

2π
,

0 =
BF

2!
+

7g2
Sm

2

4π
,

γR

3!
=
CF

3!
+

13g3
Sm

6π
,

λR

4!
=
DF

4!
− 25g4

S

24π
.

(9.71)

The various unknown constants are thus completely determined in the
function of the renormalized coupling constants and the mass. The above
expressions are identical to the ones first obtained by S.A. Chin (1977) in
an interesting article, with the use of conventional diagramatic techniques.

9.5. Qualitative Discussion of the Effects
of Renormalization

In this section we discuss the qualitative behavior of the role of the vacuum
on thermodynamics, whether in a normal or abnormal state. To this end
we consider the energy density T 00

R of the system; it reads

T 00
R = T 00

mat +
{
µ2

R

2!
〈φ〉2 +

γR

3!
〈φ〉3 +

λR

4!
〈φ〉4 +

3g5〈φ〉5
π2m[1− (g/m)〈φ〉θ5!]

}
,

(9.72)

where θ is, as above, a parameter such that 0 < θ < 1. This expression is
obtained by using Eqs. (9.69)—(9.72) and (9.68). The effect of renor-
malization is twofold: (i) it leads to the observable values of the various
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constants µ2
R, γR and λR, and (ii) it adds to the total energy density T 00

R a
vacuum contribution, i.e. the last term on the right hand side of Eq. (9.68).
It is not difficult to realize that this contribution is always positive, since
m− g〈φ〉 > 0 and 0 < θ < 1.

First, we note that the minimum (or minima) of the energy density T 00
R

with respect to 〈φ〉, i.e.
∂

∂〈φ〉T
00
R (〈φ〉) = 0, (9.73)

leads to the renormalized gap equation, as it should.
The qualitative features of T 00

R (〈φ〉) are shown on Figs. 9.4 and 9.5.
When the various constants µ2

R, γR and λR are such that matter is in a
normal state — only one minimum in T 00

R (〈φ〉) — the vacuum energy term
does not change the general shape of the energy curve: it only displaces the
position of the minimum and also the numerical value of the corresponding
energy density, which is increased since we add a positive quantity.

The situation is, however, not so simple in the case of abnormal matter.
In such a case, depending on the values of the constants µ2

R, γR and λR

Fig. 9.4 The energy density is plotted as a function of 〈φ〉. The various continuous
curves correspond to various Fermi energies. On the dashed line lie the minima of the
continuous lines. At T = 0K the equation providing these minima is the gap equation.
At T �= 0K the free energy should be plotted.
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Fig. 9.5 The effect of quantum fluctuation on the energy density T 00(〈φ〉) at T = 0K

and for a given value of pf is represented. The quantum term in T 00(〈φ〉) has two
effects: (i) it increases the energy density (the larger 〈φ〉 and the larger the increase) and
(ii) it shifts the minima in the direction of decreasing 〈φ〉. Various cases are shown in
diagrams (a)–(c). (a) Normal matter remains normal. (b) The degenerate ground state
becomes nondegenerate and the first minimum is the lowest: matter becomes normal.
(c) In the semiclassical case (continuous curve), matter is in an abnormal state; the effect
of quantum fluctuations may a priori be represented by one of the dashed lines labeled
1, 2 or 3: (1) matter remains abnormal, (2) the ground state becomes degenerate, and
(3) matter becomes normal. The existence of these various cases depends on the possible
value of m/g.

[a detailed discussion on the various cases has been given by T.D. Lee and
M. Margulies (1975)], there are two minima (separated by a maximum)
corresponding to two possibilities: either the lowest minimum is obtained
for the smallest values of 〈φ〉 (in such a case it corresponds to a stable
normal state while the other minimum is metastable and the maximum
is unstable) or it is obtained at a larger value, 〈φ〉 [in this case, the first
minimum is metastable — see Fig. 9.5(c) — while the second is stable and
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represents abnormal matter]. Moreover, whether these two cases [shown
on Fig. 9.5(c)] exist or not does depend on the possible limiting values of
〈φ〉, i.e. of m/g. What is now the effect of quantum fluctuations on this
situation? In fact, it is easy to realize that the term brought by the vacuum
fluctuations is not only positive but also monotically increasing with 〈φ〉.
This means that the value of the energy density corresponding to the first
minimum to the right of 〈φ〉 = 0 is less increased than for the second one,
corresponding to a larger value of 〈φ〉. It follows that several cases have to
be considered. For the sake of the discussion we label ρ1 and ρ2 the minima
corresponding to 〈φ〉1 and 〈φ〉2, respectively, and take 0 < 〈φ〉1 ≤ 〈φ〉2; let
us also call V1 and V2 the corresponding vacuum contribution (ρ1 refers to
the quasiclassical case). Therefore, we examine the following different cases:

(i) ρ1 < ρ2 (metastable abnormal state — ρ2; stable normal state — ρ1).
In this case ρ1 + V1 < ρ2 + V2 and hence the quantum fluctuations
enhance the stability of the normal state; also, they can possibly sup-
press the second (metastable) minimum, depending on its depth rel-
ative to the maximum (the energy density of the maximum is less
increased than that of the metastable minimum).

(ii) ρ1 = ρ2 (and 〈φ〉1 < 〈φ〉2). In this case, the quasiclassical degenerate
normal state is split into a normal state (state 1) and, possibly, a
metastable state 2 (or no state 2 at all).

(iii) ρ1 > ρ2 (normal metastable state and abnormal stable state). This
is the most complicated case, since there are several possibilities:
(a) 〈φ〉2 > m/g, (b) ρ1 +V1 = ρ2 +V2, (c) ρ1 +V1 < ρ2 +V2; of course,
these various cases depend on the values of the constants at hand.

Finally, it should be mentioned that all these cases have to be considered
according to the value of m/g, since for example when 〈φ〉2 > m/g there is
no physical second minimum.

9.6. Thermodynamics of the System

Before looking at the gap equation and its properties, we first indicate how
it can be obtained from the free energy of the system.
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9.6.1. The gap equation as a minimum of the free energy

We start from the usual thermodynamical relations

a = ρ− Ts,
µ =

ρ− Ts+ P

neq
,

(9.74)

where a is the free energy density, s the entropy density, neq the fermion
density, and εf the chemical potential. Note that εf is the Fermi energy
and µ reduces to the latter only at T = 0K. Explicitly, one has

ρ =
M4

π2

∫ ∞
0

ε2
√
ε2 + 1(n+ + n−)dε

+
µ2

R

8π
〈φ〉2 +

γR

24π
〈φ〉3 +

λR

96π
〈φ〉4 − M4

8π2
ln
(
M

m

)

− gm
3

8π2
〈φ〉+ 7m2g2

16π2
〈φ〉2 − 13mg2

24π2
〈φ〉3 +

25g4

96π2
, (9.75)

P =
M4

3π2

∫ ∞
0

ε4
1√
ε2 + 1

(n+ + n−)dε

− µ
2
R

8π
〈φ〉2 − γR

24π
〈φ〉3 − λR

96π
〈φ〉4 +

M4

8π2
ln
(
M

m

)

+
gm3

8π2
〈φ〉 − 7m2g2

16π2
〈φ〉2 +

13mg2

24π2
〈φ〉3 − 25g4

96π2
, (9.76)

neq =
M4

π2

∫ ∞
0

ε2(n+ − n−)dε. (9.77)

In Eqs. (9.75)–(9.77), n± are the usual Fermi–Dirac factors:

n± =
1

exp[β(E ∓ µ)] + 1
. (9.78)

From Eqs. (9.74)–(9.76) one gets

a = neqµ− P (9.79)

and, in thermal equilibrium, one has

∂a

∂〈φ〉
∣∣∣∣
T,neq

= 0 =
∂a

∂M

∣∣∣∣
T,neq

. (9.80)
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On the other hand, it is not difficult to check that

∂Pmat

∂M
= −M

3

π2

∫ ∞
0

dε√
ε2 + 1

ε2(n+ + n−) +
M3

π2

∂εf

∂M

∫ ∞
0

dε ε2(n+ − n−)

= −M
3

π2

∫ ∞
0

dε√
ε2 + 1

ε2(n+ + n−) + neq
∂εf

∂M
, (9.81)

which has been obtained with various integrations by parts and also by
using the properties of the Fermi–Dirac factors neq. In Eq. (9.81) Pmat

is the pressure of the fermions, i.e. the first term of Eq. (9.81). Finally,
Eq. (9.79) yields

0 =
∂a

∂M

∣∣∣∣
T,neq

= neq
∂εf

∂〈φ〉 −
∂P

∂〈φ〉

= neq
∂εf

∂〈φ〉 − g
M3

π2

∫ ∞
0

dε
ε2√
ε2 + 1

(n+ + n−)

+
1
4π

[
µ2

R〈φ〉 +
γR

2
〈φ〉2 +

λR

6
〈φ〉3 +

2gM3

π
ln
(
M

m

)

+
gM3

2π
− gm3

2π
+

7m2g2

2π
〈φ〉 − 13mg3

2π
〈φ〉2 +

25g4

6π
〈φ〉3

]
,

(9.82)

which is nothing but the renormalized gap equation.

9.6.2. Thermodynamics

With this full renormalization of the theory in Hartree–Vlasov approxi-
mation, one can finally write the basic equations that determine the ther-
modynamic state, i.e. the renormalized gap equation

gS

(
αR − gSm

3

2π

)
+
(
m2

S

2!
+

7g2
Sm

2

2π

)
(m−M)

+
(
γR − 13g3

Sm

π

)
(m−M)2

2gS
+
(
λR − 25g4

S

π

)
(m−M)3

6g2
S

= 4πg2
S Sp

∫
d4pFmat(p)− 2m3g2

S

π

(
M

m

)3

ln
(
M

m
e1/4

)
(9.83)
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and the renormalized energy–momentum tensor

T µν
R = T µν

mat +
1
4π
ηµν

{(
αR − gSm

3

2π

)
〈ϕ〉 +

(
m2

S

2!
+

7g2
Sm

2

2π

)
〈ϕ〉2

+
(
γR − 13g3

Sm

π

)
〈ϕ〉3 +

(
λR − 25g4

S

π

)
〈ϕ〉4

− (m− gS〈ϕ〉)4
2π

}
ln
(

1− gS〈ϕ〉
m

)
. (9.84)

Note that, owing to the values obtained earlier for AF and its relation to
αR, one has αR = 0.

Since the thermodynamic state of the system depends on the effective
mass of the fermions, it is necessary to study briefly the gap equation it
satisfies.

As an example of the role of the vacuum fluctuations in the thermo-
dynamics of the system, several figures are drawn below which allow a
comparison of the renormalized and semiclassical data.

Although these figures refer to the zero temperature case, results at finite
temperatures were also obtained elsewhere [J. Diaz Alonso and R. Hakim
(1984)]. The conclusions are quite similar: the effective mass is higher in the
renormalized case (Fig. 9.6) than in the semiclassical one and the pressure

Fig. 9.6 Plot of the effective mass (in units of the baryon mass) at 0K as a function of
the Fermi energy of the system for several values of the coupling constant. The dotted line
represents the semiclassical case (Hartree–Vlasov), while the continuous line corresponds
to the renormalized case [after J. Diaz Alonso (1985); J. Diaz Alonso and R. Hakim
(1984)].
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Fig. 9.7 The energy per baryon as a function of the Fermi momentum, at 0K (same
notations as in the preceding figure [after J. Diaz Alonso (1985); J. Diaz Alonso and
R. Hakim (1984)].

(Fig. 9.8) is generally higher so that the first order phase transition is
somewhat softened, depending on the value adopted for the coupling con-
stant Γ. Accordingly, the phase diagram is also slightly modified (Fig. 9.9).
The energy per fermion is also depicted in Fig. 9.7.

9.7. Renormalization of the Excitation Spectrum

When the vacuum terms are no longer omitted, the dispersion equation
(or the Fourier transform of the Klein–Gordon equation) — to which the
contribution of the counterterms has been added — can be written as

− k2(1 + Z)ϕ1 +
[
m2

S + δµ2 + γ〈ϕeq〉+ λ

2
〈ϕeq〉2

]
ϕ1

= [Πmat(k) + Πvac(k2)], (9.85)

where Πmat(k) has been calculated above and Πvac(k2) has a similar form
with the difference that feq(p) has to be replaced by fvac(p). Explicitly,
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Fig. 9.8 The pressure as a function of the Fermi momentum, at 0K (same notations
as in the preceding figure [after J. Diaz Alonso (1985); J. Diaz Alonso and R. Hakim
(1984)].

one has

Πvac(k2) = −2g2
S

2π2
(4M2 − k2)k2

∫
d4ξ

θ(−ξ0)δ(ξ2 −M2)
(ξ · k)2 − 1

4k
2

+
2g2

S

π2

∫
d4ξ θ(−ξ0) δ(ξ2 −M2). (9.86)

The two integrals occurring in Πvac(k2) are clearly divergent and must be
regularized as integrals in the gap equation and the energy–momentum
tensor. These integrals are respectively called I0 and I1, so that

Πvac(k2) = −2g2
S

2π2
(4M2 − k2)k2I0 +

2g2
S

π2
I1. (9.87)

I1 has already been calculated in 4 − ε dimensions in the regular-
ization of the gap equation, while I0 is given by [J. Diaz Alonso and
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Fig. 9.9 The phase diagram — Γ−1 as a function of the Fermi momentum — at 0K

(same notations as in the preceding figure [after G. Kalman (1974); J. Diaz Alonso
(1985); J. Diaz Alonso and R. Hakim (1984)].

R. Hakim (1988)]

I0 =
1
k2

2π
ε
− π

k2

{
2 ln

(
ΛM
m

)
+ 1 +

1
2

∫ 1

0

dα√
1− α ln

(
1− αk2

4M2

)}
.

(9.88)

Finally, the vacuum polarization “tensor” reads

Πvac(k2) = −6M2g2
S

πε
+
k2g2

S

πε
+ Πf

vac(k
2), (9.89)

where the finite part, Πf
vac(k2), is given by

Πf
vac(k

2) =
2g2

SM
2

π

{
3 ln

(
ΛM
m

)
+ 1 +

1
2

∫ 1

0

dα√
1− α ln

(
1− αk2

4M2

)}

− g2
Sk

2

π

{
2 ln

(
ΛM
m

)
+ 1 +

1
2

∫ 1

0

dα√
1− α ln

(
1− αk2

4M2

)}
.

(9.90)
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The pole terms are now canceled by choosing the various counterterms δµ2,
λ and Z as 



δµ2 = −6m2g2
S

πε
+BF ,

γ=
12mg3

S

πε
+ CF ,

λ= −12g4
S

πε
+DF ,

Z= −g
2
S

πε
+ ZF ,

(9.91)

where the constants indexed by F are as yet arbitrary unknown constants
to be determined as above.

It should be noted that the poles occurring in these last expressions
are exactly the same as those obtained previously in the renormalization
of the gap equation. However, the infinite constants are a priori different
from the ones already obtained. It should indeed be borne in mind that
while the Hartree approximation is also used — and this explains the same
poles as before — the calculation of the excitation modes implies a slightly
off-equilibrium state: as a matter of fact, this off-equilibrium situation is
connected with a higher order equilibrium approximation. It follows that
the above finite constants are not necessarily the same as those obtained in
the renormalization of the gap equation.

In order to determine these constants, we first demand that, in a normal
vacuum (i.e. at T = 0 and pf = 0), 〈ϕ〉vac = 0, the dispersion equation
reduces to

k2 −m2
S = O((k2 −m2

S)2), (9.92)

when k2 ≈ m2
S ; i.e. the dispersion curve possesses the usual meson branch

at least at low three-momenta. This condition leads, as usual, to the two
equations




Π̃(k)
∣∣
k2 = m2

S〈ϕ〉eq = 0

= 0,

d

dk2
Π̃(k)

∣∣∣∣k2 = m2
S〈ϕ〉eq = 0

= 0,
(9.93)
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where Π̃(k) is the vacuum polarization tensor plus the finite part of the
counterterm contributions:

Π̃(k) =
{
−k2ZF +BF + CF 〈ϕ〉eq +

1
2
DF 〈ϕ〉2eq −Πf

vac(k
2)
}
. (9.94)

The second condition provides ZF as a function of g2
S , m2

S and m, while
the first one allows the determination of BF as a linear function of ZF . CF

and DF are now determined from the definitions of γR and λR,


d

d〈ϕ〉eq Π̃(k)
∣∣∣∣k2 = m2

S〈ϕ〉eq = 0,

= γR,

d

d〈ϕ〉2eq
Π̃(k)

∣∣∣∣k2 = m2
S〈ϕ〉eq = 0

= λR,

(9.95)

and immediately lead to an explicit form of CF and DF as functions of g2
S ,

m2
S , and of the “experimental” values of γR and λR.
Finally, the arbitrary constant Λ is given the same value as above and

is thus chosen in such a way that the vacuum energy density is zero.

9.7.1. Comparison with the semiclassical case

We now compare briefly the renormalized and the second order cases.
First, we compare the dispersion curves ω = ω(k) in the case of γR =

λR = 0, still in the case Γ = 100 and a temperature of 0 K. Furthermore,
several values of pF have been taken: pF = 0.41, 0.50, 0.60, in units of the
fermion mass m. Also, we take the value m/µ = 3.

In both cases there exist four branches: (i) the usual meson branch
whose asymptote is the straight line k0 = |k|, (ii) a zero sound branch and
(iii) two other meson branches at high frequencies and large wave numbers
related to the above vacuum polarization term.

Let us comment a little bit on these curves in the two approximations
under consideration. In both cases the meson branch is quite similar to
the usual one. In fact, when the fermion density (or the Fermi momentum
pF ) tends to zero, this curve tends to the usual one, k02− k2 = µ2

R. As to
the zero sound branch in the Hartree approximation, it exists only in the
unphysical region of the renormalized phase diagram while, in the pertur-
bative case, it still occurs in the physical region and furthermore it appears
to be larger and larger as the density is increased. Besides this property,
the Hartree curve is much smaller than the perturbative one.
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The second boson-like branch, at high frequency, stems from the vacuum
contribution. It also occurs in the perturbative context at order 2 in the
coupling constant. In a vacuum the dispersion relation has the form

(k2 − µ2
R)A(k2) = 0, (9.96)

where A(k2) is a known function; it follows that the new branch obeys the
dispersion relation A(k2) = 0. Such a branch does occur in QED, but it is
usually considered as being unphysical, since it exists at ultrahigh energies
[∼2m exp(137)]. However, it also exists in the π−N system at much lower
density (∼4GeV). Morever, even in QED, it has been shown that, in the
presence of a magnetic field ∼1.9 ·1016 G, it does correspond to the possible
existence of a massive longitudinal photon and has a finite lifetime. In our
case also, a preliminary study of the stability of this branch indicates that
it is probably stable (i.e. it has a finite lifetime).

Consequently, it is no surprise if such a branch is also present in the
case of the system nucleon-scalar particle itself. In the case of a 4GeV high
energy “pion,” this should lead to immediate experimental consequences;
in the scalar case, the situation is less clear because of the fact that an
actual physical system should first be associated with the case of the “scalar
plasma.”

9.8. A Short Digression on Bosons

Before closing this chapter, it should be worth having a few words on the
case of bosons. In other words, let us consider (Fig. 9.10) the case of a
Lagrangian,

L =
1
2
(∂φ)2 − µ2

0

2
φ2 − λ0

4!
φ4, (9.97)

where φ is a real field, in order to simplify the discussion.
In such a case, and since the chemical potential is zero,

F = −P, (9.98)

where the free energy F is only the opposite of the total pressure P , and
the pressure is obtained from the energy–momentum tensor

Tµν = 〈∂µφ · ∂νφ− ηµνL〉 (9.99)

via its spatial components,

P = −1
3
∆µν(u)T µν , (9.100)
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Fig. 9.10 The Hartree approximation for the dispersion curves as compared to the g2

order; right — second order (renormalized) curve; left — renormalized Hartree–Vlasov
case. The curves indexed (iii) represent a renormalized contribution.
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∆µν(u) being the usual projector over the spatial components of the energy–
momentum tensor. The result is that

F = +
1
3
∆µν(u) 〈∂µφ∂νφ〉+ 1

2
µ2

0

〈
φ2
〉

+
λ

4!
〈
φ4
〉− 1

2

〈
(∂φ)2

〉
. (9.101)

Let us now be more specific by assuming that 〈φ〉 = 0, and let us also
assume that a Gaussian approximation,{

〈φ(2n+1)〉≈ 0,

〈φ2n〉≈ (2n− 1)!!〈φ2〉n, (9.102)

does hold. This corresponds to the Hartree–Vlasov approximation of
fermions.

We also set

K = 〈φ2〉 (9.103)

and since

φ(x) =
1

(2π)3/2

∫
d3k√
2ω(k)

{ake−ik·x + a+
k e

ik·x} (9.104)

results from the freelike equations obeyed by φ, K has the value

K =
1

(2π)3

∫
d3k

ω(k)

{
1

eβω(k) − 1
+

1
2

}
. (9.105)

With this approximation, the free energy has the form

F =
1

(2π)3

∫
d3k

ω(k)

{
1

eβω(k) − 1
+

1
2

}
×
{

1
2

[
M2 − µ2

0 −
λ0

4
K − 1

3
k2

]}
,

(9.106)

the minimization of which, with respect to M , yields

M2 = µ2
0 +

λ0

2
K, (9.107)

which is infinite due to the term 1/2 inside K.
A few comments are now in order. First, this last equation, the so-called

gap equation, is an implicit equation for the parameter M , and second, it
should be renormalized in much the same way as above, since it contains
the bare parameters µ2

0 and λ0 and also the already-known infinite integral

1
2(2π)3

∫
d3k√

k2 +M2
, (9.108)
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which we have encountered in the case of fermions. As to the gap equation
itself, it can also be obtained from the equation

�〈φ(x)φ(0)〉 + µ2
0〈φ(x)φ(0)〉 + λ0

2
〈φ(x)φ(0)〉K = 0, (9.109)

which results from the equation of motion for φ, its multiplication by
another φ, and also taking the approximation into consideration.

These considerations are fully considered in an article by F. Grassi
et al. (1991).
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Chapter 10

Covariant Kinetic Equations
in the Quantum Domain

In the last few years, many attempts have been made to calculate the
transport coefficients of relativistic dense matter, whether for nuclear (sym-
metric or pure neutrons) or quark matter. Two main motivations are behind
these attempts. Firstly, experiments involving heavy ion collisions demand
a better understanding of an assumed hydrodynamical stage1 of the initial
fireball and an eventual return to a state of local equilibrium. Secondly, the
description of dense objects that occur in relativistic astrophysics (white
dwarfs, neutron stars, strange stars, etc.) necessitates the knowledge of
transport properties in many important problems, such as their cooling, or
the energy and momentum transfer from inner to outer parts of the star.

Although the various transport coefficients can be evaluated via the
use of Kubos relations,2 or connected models, the transport coefficients are
generally calculated on the basis of kinetic theory, i.e. through the use of
a Boltzmann equation, or of its quantum version, or of any other kinetic
equation. Such an equation involves the dynamics of dense matter under
consideration through a cross-section. Unfortunately, the various cross-
sections are generally not completely reliable, because they are calculated
in a domain where little is known (deconfining transition for hadron/quark
matter) or where the perturbative expansion does not converge (nuclear
matter); also, the equation of state, from an experimental point of view, is
not at all satisfactory.

Below, a systematic study of a generalization of the relaxation time
approximation is performed, but let us briefly mention a few kinetic equa-
tions found in the literature. One of the most studied and used, particularly

1D. Bjorken, Phys. Rev. D27, 140 (1983).
2R. Kubo, Lectures in Theoretical Physics, Vol. 1 (Wiley, Interscience, New York, 1959).
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in heavy ion collision, is the relativistic version of the Boltzmann equation,
modified by Uhlenbeck and Uehling3 in such a way that the relativistic
Fermi–Dirac or Bose–Einstein distributions are stationary solutions of the
collision term, which is not the case for the usual relativistic Boltzmann
equation. This relativistic version, merely phenomenological, is often called
the BUU equation. It reads

p · ∂f(x, p) =
1
2

∫
d3p′

p′0

d3p′′

p′′0

d3p̄

p̄0
W (p′, p′′ → p, p̄)δ(4)(p+ p′′ − p′ − p̄)

×{f(x, p′)f(x, p′′)[1∓ f(x, p)][1 ∓ f(x, p̄)]

− f(x, p)f(x, p̄)[1∓ f(x, p′)]× [1∓ f(x, p′′)]}, (10.1)

where the plus sign refers to bosons and the minus one to fermions, and
W (p′, p′′ → p, p̄) is (up to the δ term) the transition probability per unit
of time for two colliding particles, which is assumed to obey the detailed
balance property:

W (p′, p′′ → p, p̄) = W (p, p̄→ p′, p′′). (10.2)

Note that this equation is not an equation for F (x, p) but only for
f(x, p); it follows that spin effects are generally neglected in this merely
phenomenological approach.

For the reasons mentioned above, a more phenomenological approach is
preferred, based on the use of a relaxation time model of the collision term,
where all the dynamics is supposed to be contained in a single parameter,
via the relaxation time which should be estimated with another model.
Possibly, the relaxation time can be replaced by a momentum-dependent
“relaxation time function,” τ(p). Next, the transport coefficients are calcu-
lated via the usual approximation methods, such as the Chapman–Enskog
and 14-moment ones.

Such an approach is, of course, more modest than a general one but,
besides its pedagogical value — by avoiding the complexity of involved
equations — it presents the advantage of giving the general structure of
the transport coefficients as functions of the temperature T , the particle
density n, etc., and the relaxation time τ . Furthermore, when this last
quantity is roughly evaluated as

τ =
1

σnvth
, (10.3)

3E.A. Uehling, G.E. Uhlenbeck, Phys. Rev., 43, 552 (1933); E.A. Uehling, ibid., 46,
197 (1934).
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where n is the particle — or possibly quasiparticle — density, σ is the total
cross-section of the process under study and vth is the average relative
thermal velocity of the two colliding particles, reasonable orders of mag-
nitude can be expected. Following this line, many authors have used a
relativistic relaxation time model of the general form

p · ∂f(x, p) = −f(x, p)− feq(x, p)
τ(p)

, (10.4)

where f(x, p) is a semiclassical distribution function for the particles (or
the quasiparticles), f(x, p) a local equilibrium distribution and τ(p) a given
“relaxation time function” given a priori. For instance, Ch. Marle (1969)
used τ(p) = const, while the choice

τ(p) =
τ

u · p (10.5)

is the one used by J.L. Anderson and H.R. Witting (1974) for reasons
given previously (see Chap. 2). This last choice for τ(p) leads, as already
indicated, to the Landau–Lifschitz form of relativistic hydrodynamics, a
form that leads to more sensible results at low densities, as discussed by
P. Danielewicz and M. Gyulassy (1985).

For the various reasons given in a subsequent section, J.L. Anderson’s
and H.R. Witting’s approach is generalized in this chapter.4

10.1. General Form of the Kinetic Equation

In the context of the Wigner function approach used throughout this
book, relativistic quantum kinetic equations — whether for fermions or
for bosons — are obtained by replacing the interaction term of the equa-
tions obeyed by the one-particle Wigner function with a suitable collision
term; for fermions, one can write{{iγ · ∂ + 2[γ · p−m]}F (x, p) = C1[F (x, p)],

F (x, p){iγ · ∂ − 2[γ · p−m]} = C2[F (x, p)],
(10.6)

where C1[F ] and C2[F ] represent the collision term. However, they are not
independent and must satisfy the consistency relation (see Chap. 8)

{iγ ·∂+2[γ · p−m]}−1C1[F (x, p)] = C2[F (x, p)]{iγ · ∂−2[γ · p−m]}−1,

(10.7)

4R. Hakim, L. Mornas, P. Peter and H. Sivak (1992).
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which is given a simpler form in the sequel. Furthermore, they must be
connected to the mass shell relation, as shown in a subsequent section.
Next, they must be such that the equilibrium Wigner function is a solution
of the collision terms

C1[Feq(p)] = C2[Feq(p)] = 0. (10.8)

As to a possible H theorem, the question is quite delicate and a possible
way out is indicated below.

Let us briefly outline the boson form of the relativistic kinetic equation
(see Chap. 13) and let us write

[k2 −Π(k)]φ(k) = 0 (10.9)

as the dynamics of the boson field φ. In terms of the Wigner operator
f(k, p), the kinetic equations (without an ad hoc collision term) read{

p ·k − 1
2

[
Π
(
p+

1
2
k

)
−Π

(
p− 1

2
k

)]}
f(p, k) = C1{f(k, p)}, (10.10)

{
p2 +

1
4
k2 − 1

2

[
Π
(
p+

1
2
k

)
+ Π

(
p− 1

2
k

)]}
f(k, p) = C2{f(k, p)}.

(10.11)

We write them in a Fourier transform and the relativistic kinetic equation
contains obviously a collision term in the first equation while the second
equation, which represents the mass shell, has no collision. In the case where
Π is equal to m2, exactly the Anderson–Whitting term is recovered.

10.2. An Introductory Example

Before studying the form of a general relaxation time kinetic equation, let
us begin with a very simple example: a version of the BGK equation for
spin 1/2 particles. This equation is written as the system


{iγ · ∂ + 2[γ · p−m]}F (x, p) = −iγ ·uF (x, p)− Feq(p)

τ
,

F (x, p){iγ · ∂ − 2[γ · p−m]} = −F (x, p)− Feq(p)
τ

iγ ·u,
(10.11)

where the brackets in the second equation act leftward. Feq(p) is the equi-
librium Wigner function of a relativistic ideal Fermi gas. This system pos-
sesses all the characteristics of the BGK equation. It is linear and the
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equilibrium solution is a stationary solution. Four-current and energy–
momentum conservations are satisfied provided that the Landau–Lifschitz
matching conditions are verified. The two “collision terms” are of course
mutually compatible. Finally, when one neglects the spin, i.e. when one
neglects the spin part of Feq(p), one recovers the formal5 BGK equation

p · ∂f(x, p) = −p ·uf(x, p)− feq(p)
τ

, (10.12)

given by J.L. Anderson and H.R. Witting (1976). Besides its simplicity, this
kinetic equation possesses the interest of indicating a number of problems
to be found in other relativistic and quantum kinetic equations.

Let us first try to solve this system by a naive Chapman–Enskog
expansion in the parameter τ and let us limit ourselves to order 1:

F (x, p) = Feq(x, p) + τF1(x, p) + τ2F2(x, p) + · · · , (10.13)

where Feq(x, p) is a local equilibrium Wigner distribution. Solving the first
equation, one obtains

F1(x, p) = −γ ·uγλγ · p+m

4m
∂λfeq(x, p), (10.14)

while the solution to the second one is

F1(x, p) = −γ · p+m

4m
γλγ ·u ∂λfeq(x, p), (10.15)

which is different from, and in contradiction with, the first one; in the same
time, the two equations are consistent.

In order to see exactly the reason why this naive Chapman–Enskog
expansion provides wrong results, let us rewrite the above system as

γ · ∂F (x, p)= −{γ ·u

τ − 2i(γ · p−m)
}

[F (x, p)− Feq(x, p)]

∂F (x, p)γ= −[F (x, p)− Feq(x, p)]
{

γ ·u
τ + 2i(γ · p−m)

}
,

(10.16)

which leads to

F (x, p)− Feq(x, p) = − γ · (u
τ − 2ip

)− 2im(
u
τ − 2ip

)2 + 4m2
γ · ∂F (x, p)

F (x, p)− Feq(x, p) = − ∂F (x, p) · γ γ ·
(

u
τ + 2ip

)
+ 2im(

u
τ + 2ip

)2 + 4m2
. (10.17)

5Note that this equation is fully quantal despite its “classical” appearance: feq is indeed
a quantum distribution.
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After some rearrangements and setting pµ =mξµ, this system can be
rewritten as



F (x, p)− Feq(x, p) = −
γ ·
( u

mτ
− 2iξ

)
− 2i( u

mτ
− 2ip

)2

+ 4

γ · ∂F (x, p)
m

,

F (x, p)− Feq(x, p) = −∂F (x, p) · γ
m

γ ·
( u

mτ
+ 2iξ

)
+ 2i( u

mτ
+ 2iξ

)2

+ 4
,

(10.18)

which shows clearly that there are two expansion parameters in the system.
The first one is the normal parameter occurring in the Chapman–Enskog
expansion, i.e. ε ≡ τ/L; and the second one is η ≡ 1/mL, which is the ratio
of the Compton wavelength of the particles (remember that h = c = 1) to
a typical hydrodynamical length, L. Accordingly, we expand the solution
of the BGK system in powers of ε and keeping the first order only;
we get

F1(x, p) = −1
2
γ · ξ + 1
ηξ ·u

γ · ∂Feq(x, p)
m

, (10.19)

or, equivalently,

F1(x, p) = − τ

p ·up ·∂Feq(x, p), (10.20)

and the same expression is obtained from the second BGK equation,
achieving thereby a consistent approximate solution. The source of the pre-
vious problem was, of course, the incoherent mixing of the two expansion
parameters.

It might be argued that the particle Compton wavelength is always
extremely small compared to the other lengths present in a physical system.
This is generally exact except when one deals with quasiparticles whose
mass may approach zero. In Chaps. 11, 13 and 14, we shall study such
a case.

Another remark is that this solution for the relativistic BGK equation
leads exactly to the Anderson–Witting results. Let us now briefly show this.
What is needed is to get the transport coefficients in T µν and Jµ, which
can be obtained from F(1). These last equations can be rewritten as

Jµ =
∫
d4pfµ, T µν =

∫
d4p pµfν , (10.21)
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indicating that only the function fµ
(1)(x, p) is of interest in view of our goal.

It is given by

fµ
(1)(x, p) ≡ Tr(γµF(1))

= − τ

p ·u
pµ

m
p ·∂feq

=
pν

m
f(1), (10.22)

where the last equation is derived from the former with the use of the
Anderson–Whitting first order form.

In other words, it has exactly the same form as (and is identical with)
the Anderson–Witting results (1974b). This, of course, does not mean that
the physical content of the kinetic equation for F is identical with that
of Anderson and Witting; for instance, higher approximations do differ;
or while it is appropriate for polarized media, this is not the case for the
Anderson–Witting equation. However, it has been found, for unpolarized
media, that most collision terms do possess the property that the first order
Chapman–Enskog solution coincides with the Anderson–Witting solution.

Let us now take a glance at polarized media, i.e. those whose equilibrium
Wigner function is given: fµ

5(1).
It is not difficult to see that Eq. (10.20) is still valid and, more important,

so is the case for Eq. (10.22). It follows that the transport equations so
obtained are identical with those given by Anderson and Witting. However,
from Eq. (10.20), one can obtain the relaxation of the average polarization
four-vector fµ

5(1)(x, p),

fµ
5(1)(x, p) ≡

1
4
Tr[γ5γ

µF(1)(x, p)], (10.23)

as

Mµ
(1)(x, p) =

∫
d4pfµ

(1)5(x, p)

= −τ
∫
d4p

p ·∂
p ·uf5eq(x, p), (10.24)

and the corresponding transport coefficients

Mµ
(1)(x) = uµ

{
−τλP n ·X +

τ

3
i4−1(πλν∂λnνP + n · ∂P)

}

+nµ

{
τ

(
i21 − 1

3
i4−1

)
Ṗ
}

+ πµα
{τ

3
Pi4−1ṅ ·∂uα + τPi21ṅα

}
, (10.25)
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where λ is the thermal conductivity, Xα is

Xα ≡ ∆αλ(u)[∂λβ + βuλ], (10.26)

and inm and Imn are integrals given by

inm =

∫ ∞
0

sinhn x coshm x
1

eγ cosh x+α + 1
,

Inm =
∫ ∞

0

sinhn x coshm x
eγ cosh x−α

eγ cosh x+α + 1
.

(10.27)

It is finally clear that the system (10.11) does not allow — at least at
first order in the Chapman–Enskog expansion — a coupling between polar-
ization and four-current.

10.3. A General Relaxation Time Approximation

Although quite natural and valid more or less for dilute unpolarized
systems, the Anderson–Witting equation possesses some obvious limita-
tions, which we first briefly review. First, the concept of a distribution
function does possess a well-known domain of validity and, instead, one
should use a covariant Wigner function. Next, nucleons or quarks are
fermions obeying some Dirac equations and spin is taken via a 4×4 covariant
Wigner matrix, or a larger one when internal degrees of freedom are taken
into account, while it is not so in the Anderson–Witting equation. On the
other hand, while this latter equation must be supplemented by a mass
shell constraint on pµ, it is not so in the Wigner function approach. Finally,
polarized matter can be dealt with more completely using our Wigner
function approach. Moreover, when used in its original form, the Anderson–
Witting equation does not allow the existence of spin waves (or internal
quantum numbers waves).

Unfortunately, neither the obtaining of a relaxation time term for a rel-
ativistic kinetic equation obeyed by the Wigner function nor its Chapman–
Enskog expansion is a trivial problem. As to the collision term, it is indeed
difficult to infer its general form due to the matrix character of the Wigner
function. As to the Chapman–Enskog expansion, quantum theory and rela-
tivity do introduce, as indicated by the previous example, a supplementary
length and, accordingly, one more expansion parameter,

ε ≡ τ

L
, η ≡ 1

mL
, (10.28)
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or the following one:

η̄ ≡ 1
mτ

=
Compton wavelength

relaxation time
. (10.29)

In ordinary cases, however, η is generally much smaller than ε, or η̄ � 1,
and its contribution is perfectly negligible. Nevertheless, when one thinks of
systems of quasifermions, their effective mass depends on T , εf , etc. and can
in principle be arbitrarily small, leading thereby to arbitrarily large values of
η̄. A well-known example is the J.D. Walecka model (1974) or G. Kalman’s
scalar plasma (1976), where the effective mass of the quasifermions is
given by

M = m− g〈ϕ〉 (10.30)

(see Chaps. 9 and 13) and tends to zero at high densities and/or tempera-
tures.6

10.3.1. Properties of the kinetic system

The basic system of the relativistic quantum kinetic equations reads{{iγ · ∂ + 2[γ · p−m]}F (x, p) = C[F (x, p)],

F (x, p){iγ · ∂ − 2[γ · p−m]} = C̄[F (x, p)],

where C̄ is chosen in such a way that this system is consistent, i.e. so that

C̄[F ] = −γ0C†[F ]γ0. (10.31)

This property results from the following one

γ0F †γ0 = F, (10.32)

and from the requirement of consistency.7

In what follows, the collision terms are decomposed on the basis of the
γ matrices as


C =

1
4
{cI + cµγ

µ + cµνσ
µν + c5µγ5γ

µ + c5γ5},

C̄ =
1
4
{c̃I + c̃µγ

µ + c̃µνσ
µν + c̃5µγ5γ

µ + c̃5γ5}.
(10.33)

6For instance, this property would not be true for nucleons interacting via a pseu-
doscalar meson field [see e.g. J. Diaz Alonso (1985)]; in such a case, one has indeed
M2 = m2 + g2〈φ〉2 > m2. It is, however, unstable.
7Note that this condition should be valid whatever the second member, be it a collision

term or an interaction. Only the subsequent results specialized to a linear collision term
are not general.
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In our relaxation time approximation, F appears linearly in C[F ] and, since
C[Feq] = 0, C[F ] must depend on F through the combination

δF (x, p) ≡ F (x, p)− Feq(x, p). (10.34)

The general BGK system does not look like a relativistic kinetic equation
and this is due to the fact that it includes both transport properties
and mass shell constraints. They can be disentangled in several ways and
after decomposing the system on the basis of the Dirac algebra, after
some algebra (after adding and subtracting these equations) one gets the
“transport” system

p ·∂f =
1
2i
pµ(cµ + c̃µ),

p ·∂fν − pµ∂fν +m∂νf =
1
i
pµ(cµν − c̃µν) +

m

2i
(cν + c̃ν), (10.35a)

p ·∂fµν + ∂[µfν]λpλ =
1
4i
εµναβpα(c5β + c̃5β),

p ·∂f5 =
1
2
pµ(c5µ − c̃5µ)− m

2
(c5 + c̃5),

(10.35b)
p ·∂fλ

5 − pµ∂
λfµ

5 =
1
2
εµναλpα(cµν + c̃µν),

and the “mass shell” system

(p2 −m2)f =
1
4
pµ(cµ − c̃µ) +

m

4
(c− c̃) + ∂µpνfµν , (10.36)

(p2 −m2)fν =
1
2
pµ(cµν − c̃µν) +

m

4
(cν − c̃ν) +

pν

4
(c− c̃)

+m∂µfµν − 1
2
ερλµνp

µ∂λfρ
5 , (10.37)

(p2 −m2)fµν = − 1
8
ερλµν(cρ5 − c̃ρ5)pλ +

m

4i
(cµν − c̃µν)

+
1
8i
p[µ(cν] + c̃ν]) +

1
4
ερλµνp

λ∂ρf5

− 1
4
p[µ∂ν]f − m

4
∂[µfν], (10.38)

(p2 −m2)fλ
5 = − 1

4i
εµναλpα(cµν − c̃µν) +

m

4
(cλ5 − c̃λ5 )

− 1
4
pλ(c5 + c̃5) +

1
2
εµναλpα∂µfν − m

2
∂λf5, (10.39)
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(p2 −m2)f5 = − 1
4i
pµ(c5µ + ˜c5µ) +

m

4i
(c5 − c̃5)

+
m

2
∂µf

µ
5 −

1
2
ελρνµp

µ∂λfρυ. (10.40)

These last equations — the “mass shell” system — need some discussion.
In the absence of any external field or condensate whatsoever, in the kinetic
regime we are considering, collisions are pointlike and hence colliding par-
ticles lie on the mass shell p2 = m2. This property can be seen in another
way: when the solution to the transport equations is expanded into a con-
vergent approximation whose zeroth order is such that p2 = m2, as is the
case for an equilibrium Wigner function, then owing to the linearity of the
collision term, each order is itself on the mass shell and, consequently, this
is the case for the complete solution.

10.3.2. The collision term

The collision term, which must be linear in (F − Feq), might be chosen to
have the form

C(F ) = M · (F − Feq) ·N, (10.41)

where M and N are 4 × 4 complex matrices. A priori they depend on
2×16 complex parameters, while the most general relaxation term assumes
the form

[C(F )]ab = χabcd(F − Feq)cd, (10.42)

where the indices {a, b, c, d} are spinor indices running from 1 to 4 and,
accordingly, it depends on 44 parameters, and of course much less when
symmetries are taken into account. However, despite this lack of generality,
such a collision term possesses a sufficient degree of complexity to accom-
modate most useful physical cases. It will be briefly studied in what follows,
and for the moment let us make a few comments on the general collision
term C[F ].

A first remark is that C[F ] is necessarily built up from the most general
scalars that can be constructed from what is available, i.e. from{

δf, δfµ, δfµν , δf
µ
5 , δf5,

pµ, uµ, nµ, εµναβ ,
(10.43)
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where nµ is the unit (spacelike) four-vector in the direction of a possible
polarization of the system. They obey exactly the same relations similar to
the equilibrium relations:

fµ =
pµ

m
f,

(10.44a)
f5 = 0,

fµν = εµναβpαf5β ,
(10.44b)

fµ
5 =

1
m
εµναβpνfµν .

Note that we have suppressed the indices 1 and ε of the f ’s; they will
be re-established whenever necessary. It follows that, for instance, a scalar
such as uµf

µ is proportional to f and hence should not be considered as
essentially different from f . Finally, with all these constraints in mind, we
can write

p · ∂feq =
m

2i
(c+ c̃) = af(1)ε + bλf

λ
5(1)ε, (10.45)

p ·∂fµ
5eq

= − im
2

∆µν(p)(c5ν + c̃5ν)

= cµ5f(1)ε + dµνf5ν(1)ε. (10.46)

Moreover, because of the relation pµf
µ
5eq = 0 = pµf

µ
5(1)ε, the tensors

aµ, bµ, cµ, dµλ should be chosen as being orthogonal to pµ, so that these
last equations contain 1 + 3 + 3 + 3 × 3 = 16 independent parameters.
The various components of a, bµ, cµ5 and dµλ are functions of the various
components of pµ and of constant relaxation times.

Let us now discuss the above system:

(1) The fact that fµ ∝ pµf has the interesting consequence that the
energy–momentum tensor is now symmetric. As a result, the local
polarization tensor is conserved at order ε:

∂λS
µνλ = −1

2
εµνλρ

∫
d4pf5ρ = O(ε). (10.47)

Unlike the results of the preceding subsection, where the first order
solution — in the parameter ε — implied a complete decoupling
between f and fλ

5 , here there exists a possible coupling via the func-
tions bµ and cµ. As a consequence, spin diffusion and other transport
phenomena connected with polarization do appear at this order and
not at order η.
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(2) When the medium is not polarized, nµ ≡ 0 and the system (10.45),
(10.46) decouples still at order ε.

(3) Equations (10.45) and (10.46) for fµ and fµν do not contain any new
information, but these functions can be obtained from the relations
(10.44) once the system (10.45), (10.46) has been solved.

(4) One could be tempted to take as the most general form of the relaxation
quantum relaxation time approximation Eqs. (10.45) and (10.46), with
the left hand side now containing the fA’s instead of the fA

eq’s and on
the right hand side fA − fA

eq instead of fA
(1)ε. In fact, this would be

equivalent to an equation (or, rather, a system) in which F(1)η ≡ 0;
indeed, this would imply that F(1)η ≡ 0 obeys both

(γ · p−m)F(1)ε = 0

andC(F(1)η) = 0, and it is not difficult to realize that their only solution
is precisely F(1)η ≡ 0. This choice would also mean that the nontrivial
part of the solution would be at least O(η2).

(5) The system (10.45), (10.46) is linear in the unknown functions f(1)ε
and fλ

5(1)ε and hence can be solved without any particular difficulty
and, consequently, allows the calculation of the transport coefficient at
O(ε) and O(η). On the other hand, the explicit calculation of F(1)η —
although straightforward since all our equations are linear — is much
more involved.

10.3.3. General form of F(1)

First, the BGK system is expanded into a series of ε and η, on the basis of{
∂= ∂(0) + ε∂(1)ε + η∂(1)η + · · · ,
F = Feq + εF(1)ε + ηF(1)η + · · · .

(10.49)

After some algebra, one finds the first order correction in ε as

F(1)ε = −p ·∂Feq

mA(p)
, (10.50)

where A(p) is a known function when the matrices M and N are given.
Note that despite its apparent generality, it is essentially similar to the
form given in the example discussed at the end of the last subsection, with
τ = τ(p). Also, it is valid whether the system is polarized or not. However,
if we require that, at order ε, the Landau–Lifschitz conditions be true, then
there exist simplified relations among the M and N relations.
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The calculation of F(1)η is much more involved and finally leads to a
quite complex expression which is given elsewhere [R. Hakim, L. Mornas,
P. Peter and H. Sivak (1992)]. We only give the result as

F(1)η = I ·
[
− i

4
(β − β∗)∆αβ(p)uαrβ + i(δ − δ∗)p · r

4m

− 1
4m

(β + β∗)ελραβpλuρtαβ

]
+ γµ

[
− i

4m
(β − β∗)∆αβ(p)uαrβp

µ

+ i(δ − δ∗)p · r
4m

pµ

m
− i(α− α∗)p · r

4m
∆µν(p)uν

+ (α+ α∗)
pλtλρ

4m
ερανµuαpν +

1
4
(β + β∗)∆α

λ(p)∆β
ν(p)uαtβρε

ρλνµ

− ερλνµ pν

m
tλρ

]
+ σµν

[
i

4m
r[µpν] − i

4m
(α+ α∗)

p · r
2m

u[µpν]

− i

8
(β + β∗)∆α

µ(p)∆β
ν(p)uαrβ] +

(α− α∗)
8m

pλtρλ∆αβ(p)uαεβρµν

− 1
8m

(β − β∗)ελαβ[µp
λuαtβν] +

(β − β∗)
8m

∆αβ(p)uαt
ρ
βp

λελρµν

− δ − δ∗
8m

εαβµν
pαpλ

m
tλβ

]
+ γµ

5

[
1
4
(β + β∗)zµ +

i

4m
(α − α∗)p

µpλ

m
uρtλρ

− i

4
(β − β∗)∆αβ(p)uαtβµ +

i

4m
(δ − δ∗)pλtλµ

− i

4
(β − β∗)∆µα(p)∆νβ(p)u[αtβ]ν

]
+ γ5

[
i

4m
(α + α∗)pλtλρu

ρ

]
,

(10.51)

where we have set

rµ =
1

4m
∂µfeq, (10.52)

tµν =
1

4m
∂µ(Sνfeq), (10.53)

zα = ελµνα
pλ

m
uµrν , (10.54)

α =
µ3 +mµ4

µ1 +mµ2 + p ·u
m µ3

, (10.55)

β =
µ3 −mµ4

µ1 +mµ2 + p ·u
m µ3

, (10.56)

δ = αβ∆µν(p)uµuν . (10.57)
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The above solution for F(1)η finally depends on four real parameters only,
namely the real and imaginary parts of α and β. In the case of an unpo-
larized system, the above expression for F(1)η has a slightly simpler form,
obtained by setting Sµ(p) ≡ 0, tαβ(p) ≡ 0.

We must add that a number of subtleties have been avoided and that the
actual calculations are somewhat more complex [see R. Hakim, L. Mornas,
P. Peter and H. Sivak (1992)]. We have only outlined an involved calculation
and the interested reader should refer to the given article for more details,
where he can see, for instance, the expression of the transport coefficients.
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Chapter 11

Application to Nuclear Matter

An interesting phenomenological model1 for nuclear matter has been pro-
posed by J.D. Walecka (1974) and S.A. Chin and J.D. Walecka (1974, 1979),
which we use hereafter in order to illustrate the covariant Wigner function
techniques. This model is based on the remark that the nucleon–nucleon
potential is repulsive at short distances and attractive at longer ones (see
Fig. 11.1). In order to mimic such a behavior, Walecka proposed using a
short range vector field Aµ(x), repulsive in the static limit, and a long
range scalar field ϕ(x), attractive in the same limit; these fields are some-
times identified with the ω and σ meson fields, respectively. The parameters
of the model are then fitted with the nuclear saturation density and binding
energy per nucleon.

In spite of some known inadequacies,2 such a model is certainly worth
studying, because it is the archetype of numerous other models for nuclear
matter, and as such has become a reference on the basis of which many
improvements have been made by taking into account other mesons, chiral
symmetry, the low energy nucleon–nucleon scattering data and nonlinear
couplings.

1See the general review by B.D. Serot and J.D. Walecka (1986).
2One of the problems of the model is the too-high value obtained for the nuclear

compressibility.
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Fig. 11.1 General shape of the nuclear potential.

The Lagrangian considered is given by

L =
1
2
ψ̄[γµ(i∂µ − gV Aµ)− (m− gSϕ]ψ

− 1
2
ψ̄[γµ(i

←
∂µ + gVAµ) + (m− gSϕ]ψ

+
1
2
(∂µϕ · ∂µϕ−m2

Sϕ
2)− 1

4
FµνF

µν +
1
2
m2

V AµA
µ, (11.1)

with

Fµν ≡ ∂µAν − ∂νAµ, (11.2)

from which one obtains the equations of motion for the nucleons


[γµ(i∂µ − gVA
µ)− (m− gSϕ)]ψ = 0,

ψ̄[γµ(i
←
∂µ + gVA

µ) + (m− gSϕ)] = 0,
(11.3)

and for the mesons 


(� +m2
S)ϕ = gSψ̄ψ,

(� +m2
V )Aµ = gV ψ̄γ

µψ,

∂µA
µ = 0.

(11.4)

Note that the last equation is a constraint which imposes the fields Aµ to
have only three degrees of freedom.
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The generating equation of the BBGKY hierarchy then reads




{iγ · ∂ + 2[γ · p−m]}F (x, p)

= − 2gS

∫
d4R

(2π)4
d4ξ exp[−i(p− ξ) ·R]

〈
F (x, ξ)ϕ

(
x− 1

2
R

)〉

+ 2gV

∫
d4R

(2π)4
d4ξ exp[−i(p− ξ) ·R]

〈
F (x, ξ)γµA

µ

(
x− 1

2
R

)〉
,

F (x, p){iγ · 	∂ − 2[γ · p−m]}

= + 2gS

∫
d4R

(2π)4
d4ξ exp[−i(p− ξ) ·R]

〈
F (x, ξ)ϕ

(
x+

1
2
R

)〉

− 2gV

∫
d4R

(2π)4
d4ξ exp[−i(p− ξ) ·R]

〈
γµA

µ

(
x+

1
2
R

)
F (x, ξ)

〉
,

(� +m2
S)〈ϕ(x)〉 = gSSp

∫
d4pF (x, p),

(� +m2
V )〈Aµ(x)〉 = gV Sp

∫
d4p γµF (x, p),

(11.5)
which leads to the Hartree–Vlasov system by neglecting two-body correla-
tions, including exchange ones:

〈Fopϕ〉 ≈ F 〈ϕ〉, 〈FopA
µ〉 ≈ F 〈Aµ〉, 〈Fop ⊗ Fop〉 ≈ F ⊗ F. (11.6)

11.1. Thermodynamic Properties at Finite Temperature

In equilibrium the system is assumed to be homogeneous and stationary.
Hence, the various derivative terms disappear and one is left with




[γ · (p− gVAeq)−M ]Feq(p) = 0,

Feq(p)[γ · (p− gVAeq)−M ] = 0,

m2
Sϕeq = gSSp

∫
d4pFeq(p),

m2
VA

µ
eq = gV Sp

∫
d4p γµFeq(p) = gV nequ

µ,

(11.7)
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where the index eq refers to the equilibrium values; it can also be written as


[γ ·
(
p− g2

V neq

m2
V

)
−M ]Feq(p) = 0,

Feq(p)
[
γ ·
(
p− g2

V neq

m2
V

)
−M

]
= 0,

m2
Sϕeq = gSSp

∫
d4pFeq(p),

(11.8)

where the effective mass M is given by{
M ≡ m− gSϕeq,

ϕeq ≡ 〈ϕ〉.
(11.9)

This system is formally the same as the one obtained in the case of the
relativistic scalar plasma with the following small differences:

(i) p is to be replaced by

p→
(
p− g2

V

m2
V

neqAeq

)
; (11.10)

(ii) the mass shell condition is now(
p− g2

V

m2
V

neq

)2

= M2; (11.11)

(iii) the equilibrium distribution becomes

Feq(p) =
γ · (p− g2

V neq/m
2
V ) +M

4M
feq(p), (11.12)

where

feq(p) =
d

(2π)3
δ[p∗2 −M2]

{
θ(p∗ · u)

exp(βp∗ · u− µ∗) + 1

+
θ(−p∗ · u)

exp(−βp∗ · u− µ∗) + 1
− θ(−p∗ · u)

}
, (11.13)

with 

p∗λ = pλ − g2

V neq

m2
V

uλ,

µ∗= µ− g2
V

m2
V

neq,

(11.14)

and d is the spin–isospin degeneracy factor [in symmetric nuclear matter
d = 4 (two spin states and two isospin states) and in pure neutron matter
d = 2 (two spin states only).

The ϕ field equation of the equilibrium Hartree–Vlasov system is for-
mally the same as the gap equation studied in Chap. 9 with the proviso
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that feq possesses now the form given above. Note also that besides the gap
equation, another transcendental equation must be solved (except at 0K,
where it is trivial) — the one that connects the chemical potential µ and
the equilibrium density neq,

g2
V neq

m2
V

=
∫
d3pfeq(p;µ, neq) (11.15)

where the dependence of feq on µ and neq has been made apparent in the
notations. Note that the degeneracy factor d allows the distinction between
symmetric nuclear matter and pure neutron matter (d = 2; two spin states).

In this chapter, the vacuum term of feq will be dropped: it is the only
term that gives rise to infinities — the field Aµ does not give rise to diver-
gences in this approximation of thermal equilibrium — and the renormal-
ization procedure is exactly identical to the one performed for the scalar
plasma. Moreover, a renormalization process in a merely phenomenological
model does not make much sense, except for esthetical reasons.

Fig. 11.2 The energy per nucleon (in MeV) as a function of the Fermi momentum (in
fm−1), in the Walecka model for pure neutron matter and symmetric nuclear matter. The
binding energy is adjusted to the experimental value −15.75MeV at Fermi momentum
1.42 fm−1 [after B.D. Serot and J.D. Walecka (1986)].
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As in the case of the scalar plasma, one can obtain the other thermody-
namic quantities through the calculation of the energy–momentum tensor:

T µν = T µν
mat + T µν

ϕ + T µν
A = T µν

mat +m2
V

(
g2

V neq

m2
V

)2

uµuν

+

{
m2

S

8πg2
S

(M −m)2 +m2
V

(
g2

V neq

m2
V

)2
}
ηµν . (11.16)

There remains for one to determine the as yet arbitrary constants
{m2

S, g
2
S ;m2

V , g
2
V }. Let us first note that in this mean field approximation

these last quantities always appear through the combination

C2
V ≡ g2

V

(
m2

m2
V

)
, C2

S ≡ g2
S

(
m2

m2
S

)
, (11.17)

for which B.D. Serot and J.W. Walecka gave the values

C2
V = 195.9, C2

S = 267.1.

This can be achieved by identifying the binding energy per nucleon
(Fig. 11.2) in nuclear matter calculated in the model and the exper-
imentally known value (−15.75 MeV), fitted at the saturation density
(2.24× 1014 g/cm3 or pf = 1.42 fm−1) of nuclear matter.

11.1.1. Thermodynamics in some important cases

Note that one can expect a first order phase transition, of the gas–
liquid type, because of the role played by the (attractive) scalar field,
and indeed this is what appears after the calculations are performed.
Qualitatively, the thermodynamic properties obtained in this model are
similar to those of the relativistic scalar plasma studied in Chap. 9.

Therefore, only some important limiting cases are briefly given below:
(i) the degenerate case at low temperatures, (ii) the high temperature and
nondegenerate case, and (iii) the low temperature and nondegenerate case.
Use is made of the notations


ϑ ≡ µ∗

M
,

x ≡
√
ϑ2 − 1.

(11.18)

In what follows we shall set

γ∗ = m∗β, α∗ =
γ∗µ∗

m∗
, µ∗ = µ− g2

V uλ〈Aλ〉. (11.19)
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Degenerate matter and low temperature (γ∗ � 1 and α∗ � γ∗). A Som-
merfeld expansion (see Chap. 7) of the integrals for the various thermody-
namic quantities yields

nnucleon ≈ d
4πM3

3(2π)3

{
ϑ3 +

π2

6γ∗2
6x2 − 3

ϑ

}
, (11.20)

ρ ≈ d
4πM4

(2π)3

{
xϑ

8
(2x2 − 1)− 1

8
ln(x+ ϑ)

+
m2

S

2g2
S

(m−M)2 +
g2

V

2m2
V

n2
nucleon

}
, (11.21)

P ≈ d
4πM4

3(2π)3

{
xϑ

8
(2x2 − 5) +

3
8

ln(x+ ϑ) +
π2

2γ∗2
xϑ

− g2
S

2m2
S

(m−M)2 +
g2

V

2m2
V

n2
nucleon

}
, (11.22)

S ≈ d
4πM3

3(2π)3

{
π2

γ∗
xϑ+

7π4

120γ∗3
8x5 − 23x3 + 18x

ϑ7

}
, (11.23)

while the gap equation reads

M ≈ m− g2
S

m2
S

d
4πM4

(2π)3

{
1
2
xϑ− 1

2
ln(x+ ϑ) +

π2

6γ∗2
x

ϑ

}
. (11.24)

High temperature and nondegenerate matter. In this case, the various Fermi–
Dirac factors occurring in the thermodynamic expressions can be expanded
into geometric series,

1
exp(−γ∗[cosh(x)− µ∗/m∗]) + 1

=
∞∑

k=0

(−1)k exp(−kγ∗[cosh(x)− µ∗/m∗]), (11.25)

1
{exp(−γ∗[cosh(x) − µ∗/m∗]) + 1}2

=
∞∑

k=0

(−1)k(k + 1) exp(−kγ∗[cosh(x)− µ∗/m∗]), (11.26)

of the exponentials, leading thereby to rapidly converging series of Kelvin
functions (see App. A). Replacing each Kelvin function by its high
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temperature approximation (small arguments of Kn), one gets

nnucleon ≈ d
M2

6
µ∗

γ∗2
, (11.27)

ρ ≈
{
d
7M4π2

120
+ d2 g

2
S

m2
S

M6

288
+ d2µ∗2

g2
V

m2
V

M4

72

}
1
γ∗4

, (11.28)

P ≈
{
d
7M4π2

360
− d2 g

2
S

m2
S

M6

288
+ d2µ∗2

g2
V

m2
V

M4

72

}
1
γ∗4

, (11.29)

S ≈ d
7π2

90

(
M

γ∗

)3

, (11.30)

and the gap equation is written as

M ≈ m+ d
g2

S

m2
S

M3

12γ∗2
. (11.31)

Low temperature and nondegenerate matter. In this case, one has γ∗ � 1
(low temperatures) and α∗ � γ∗, with

α∗ ≡ γ∗µ∗

M
= β

(
µ− g2

V

m2
V

nnucleon

)
. (11.32)

The various integrals are still expanded into a geometric series, giving rise to
a series of Kelvin functions which are replaced by their asymptotic expres-
sions (large values of the argument of Kn), and one finds that

nnucleon ≈ d
M2

2π2

(π
2

)1/2 1
γ∗3/2

exp
(
γ∗
[
µ∗

M
− 1
])

, (11.33)

ρ ≈ d
M4

2π2

(π
2

)1/2 1
γ∗3/2

exp
(
γ∗
[
µ∗

M
− 1
])

+ d2 g
2
S

m2
S

M6

16π3

1
γ∗3

exp
(

2γ∗
[
µ∗

M
− 1
])

+ d2 g
2
V

m2
V

M6

8π3

1
γ∗3

exp
(

2γ∗
[
µ∗

M
− 1
])

, (11.34)

P ≈ d
M4

2π2

(π
2

)1/2 1
γ∗3/2

exp
(
γ∗
[
µ∗

M
− 1
])

− d2 g
2
S

m2
S

M6

16π3

1
γ∗3

exp
(

2γ∗
[
µ∗

M
− 1
])

+ d2 g
2
V

m2
V

M6

8π3

1
γ∗3

exp
(

2γ∗
[
µ∗

M
− 1
])

, (11.35)
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S ≈ ρ ≈ dM
3

2π2

(π
2

)1/2
{

1− µ∗

M

γ∗1/2
+

1
γ∗3/2

}
exp

(
γ∗
[
µ∗

M
− 1
])

, (11.36)

and the gap equation has the approximation

M ≈ m+ d
g2

S

m2
S

M3

2π2

(π
2

)1/2 1
γ∗3/2

exp
(
γ∗
[
µ∗

M
− 1
])

. (11.37)

11.2. Remarks on the Oscillation Spectra of Mesons

We give a few words on the spectra of the oscillations of ϕ and Aλ.
Therefore, we shall use the equations of the system only in a symbolic
way. It is thus written as

LFop = gV Sp
∫
γ · FopA− gSSp

∫
Fopϕ,

FopL̄ = −gV Sp
∫
A · γFop + gSSp

∫
ϕFop,

(11.38)

KGϕ = gSSp
∫
Fop,

KGA = gV Sp
∫
γFop.

(11.39)

Now the same approximation as that in Chap. 9 is made; it is

〈ϕ〉 ≈ ϕeq + ϕ(1),

〈A〉 ≈ Aeq +A(1),

〈Fop〉 ≈ Feq + F(1),

(11.40)

which are introduced into the first two equations of the hierarchy,

L∗F(1) = gV Sp
∫
γFeqA(1) − gSSp

∫
Feqϕ(1), (11.41)

and another one that is similar, where we have introduced terms like ϕeq,
in the star of L∗. We now “solve” these last equations as

F(1) = L∗−1

{
gV Sp

∫
γFeqA(1) − gSSp

∫
Feqϕ(1)

}
(11.42)

and introduce this into the Klein–Gordon equations


KGϕ(1) = L∗−1

{
gV Sp

∫
γFeqA(1) − gSSp

∫
Feqϕ(1)

}
,

KGA(1) = L∗−1

{
gV Sp

∫
γ ⊗ γFeqA(1) − gSSp

∫
γFeqϕ(1)

}
;

(11.43)
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these equations can be rewritten in the form{
KGϕ(1) = ΠϕAA(1) + Πϕϕ(1),

KGA(1) = ΠAA(1) + ΠAϕϕ(1).
(11.44)

Once Fourier-transformed they lead immediately to the excitation spectra
of the (ϕ,Aλ).

When the coefficients ΠϕA and ΠAϕ are negligible, one recovers the
excitation spectrum of the scalar particle and that of the vector particle.
Note that in the latter case the excitation spectrum is quite similar to the
one obtained in QED (Chap. 15), with necessarily a Lorentz “gauge” and
with the change

1
p2 ± iε →

1
p2 −m2 ± iε . (11.45)

Note that in general the two spectra are coupled and that an interesting
discussion can be found in the article of S.A. Chin (1977).

11.3. Transport Coefficients of Nuclear Matter

The various transport coefficients of nuclear matter have usually been cal-
culated via the Boltzmann–Uhlenbeck–Uehling equation or Kubo’s formula.
However, as was repeatedly emphasized, it is at least as reasonable to
perform such a calculation in the relaxation time approximation studied
in Chap. 10. This has been done by L. Mornas (1992) and by R. Hakim
and L. Mornas (1993), and this approach is followed below, still in the case
of the Walecka model.

We shall use the collision term studied in the example given at the
beginning of Chap. 10, i.e.


C[F ] = −iγ · uF − Feq

τ
,

C̄[F ] = −iF − Feq

τ
γ · u,

(11.46)

so that our relaxation time kinetic equation reads (we have not included the
equations for the average scalar and vector fields, which remain identical
to the ones given above)

{iγ · ∂ + 2[γ · p−m]}F (x, p)

+ 2gS

∫
d4R

(2π)4
d4ξ exp[−i(p− ξ) ·R]F (x, ξ)

〈
ϕ

(
x− 1

2
R

)〉
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− 2gV

∫
d4R

(2π)4
d4ξ exp[−i(p− ξ) · R]F (x, ξ)γµ

〈
Aµ

(
x− 1

2
R

)〉

= C[F (x, p)], (11.47a)

F (x, p){iγ ·
←
∂ − 2[γ · p−m]}

− 2gS

∫
d4R

(2π)4
d4ξ exp[−i(p− ξ) ·R]F (x, ξ)

〈
ϕ

(
x+

1
2
R

)〉

+ 2gV

∫
d4R

(2π)4
d4ξ exp[−i(p− ξ) · R]

〈
γµA

µ

(
x+

1
2
R

)〉
F (x, ξ)

= C̄[F (x, p)]. (11.47b)

In these equations, the only correlations retained are those due to collisions
between particles; this system thus describes nucleons interacting via mean
fields and pointlike collisions.

Before solving this system, a remark is in order. Since a nonpolarized
medium is to be considered, the 16 components of the Wigner function
F are not all needed in the calculation of the transport coefficients: only f
and fµ are required to calculate the off-equilibrium part of the four-current
and of the energy–momentum tensor. Accordingly, it would be desirable to
obtain a kinetic equation which would involve these two functions only.

To this end, one must realize that the Chapman–Enskog approxi-
mation — or almost any others — does imply a weak gradient assumption
for the average fields 〈ϕ〉 and 〈Aµ〉. Practically, this means that these quan-
tities are expanded into a Taylor series which we limit to its first order:



〈
ϕ

(
x± 1

2
R

)〉
≈ 〈ϕ(x)〉 ± 1

2R · ∂ 〈ϕ(x)〉,
〈
Aµ

(
x± 1

2
R

)〉
≈ 〈Aµ(x)〉 ± 1

2R · ∂ 〈Aµ(x)〉.
(11.48)

Once introduced into our kinetic system for F and after performing lengthy
but straightforward algebraic manipulations, it is possible to eliminate the
components fµ

5 and fµν and arrive at the system


p̃ · ∂f − ∂m̃fµ − 1
2
∂λ(p̃2 − m̃2)

∂

∂pλ
f = −p̃ · uf − feq

τ
,

p̃ · ∂fβ − ∂βm̃f − 1
2
∂λ(p̃2 − m̃2)

∂

∂pλ
fβ + ∂[β p̃α]fα

= −p̃ · uf
β − fβ

eq

τ
,

(11.49)
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which is somewhat simpler than the original system. Note also that the
same kind of approximation — first order Chapman–Enskog — for the
effective mass shell provides

(p̃2 − m̃2)

[
f

fµ

]
= 0. (11.50)

As a matter of fact, a consistent Chapman–Enskog expansion would have
led to the same final result, although in a much more involved way. In this
last system we have set3 {

m̃≡ m− gS〈ϕ(x)〉,
p̃µ≡ pµ − gV 〈Aµ(x)〉. (11.51)

11.3.1. Chapman–Enskog expansion

As in Chap. 10, the various physical quantities F , 〈ϕ〉 and 〈Aµ〉 are
expanded in the parameter τ as


F = Feq + τF1 + · · · ,
〈ϕ〉= 〈ϕ〉eq + 〈ϕ〉1 + · · · ,
〈Aµ〉= 〈Aµ〉eq + 〈Aµ〉1 + · · · ,

(11.52)

and, instead of F ’s, it is more appropriate to use the expansion{
f = feq + τf1 + · · · ,
fλ = fλ

eq + τfλ
1 + · · · . (11.53)

These expansions, introduced into the system for f and fµ, then yield

f1 = − 1

p∗ · u
(
p∗ · ∂ − 1

2
∂λ[p∗2 −m∗2] ∂

∂pλ

)
feq,

fµ
1 =

p∗µ

m∗
feq,

(11.54)

with the notations {
m∗ ≡ m− gS〈ϕ〉eq,
p∗µ ≡ pµ − gV 〈Aµ〉eq.

(11.55)

3Note that M = 〈m̃〉eq and that p∗ = p − 〈A(x)〉eq.
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The off-equilibrium quantities Jµ
1 and T µ

1 are then calculated and their final
expression reads

Jµ
1 = τ

4πdm∗4

3(2π)3

{
I∗4,1I

∗
4,−1

I∗4,0

− I∗4,0

}
∆µλ(u)(∂λβ + βu̇λ) (11.56)

for the baryon four-current, and

T µν
1 = τ

4πdm∗4

(2π)3

{
2
15
I∗6,−1γ

∗σµν + θ∗∆µν(u)

×γ
∗

9

(
I∗24,0I

∗
2,3 + I∗24,1I

∗
2,1 − 2I∗2,2I

∗
4,0I

∗
4,1

I∗22,2 − I∗2,1I
∗
2,3

+ I∗6,−1

)}

+ τ
4πdm∗4

3(2π)3
g2

V nB

m2
V

[uµ∆νλ(u) + uν∆µλ(u)]

×
{
I∗4,1I

∗
4,−1

I∗24,0

− I∗24,0

}
(∂λβ + βu̇λ) + τγ∗

4πdm∗3

3(2π)3
(m−m∗)

×
(
I∗24,0I

∗
2,3 + I∗24,1I

∗
2,1 − 2I∗2,2I

∗
4,0I

∗
4,1

I∗22,2 − I∗2,1I
∗
2,3

+ I∗6,−1

)
θ∗ηµν (11.57)

for the energy–momentum tensor. Let us specify the notations used in the
expressions of Jµ

1 and T µ
1 . The quantities Im,n are the integrals

I∗±n,m =
∫
dy sinhn y coshm y

exp(γ∗ cosh y ± α∗)
[exp(γ∗ cosh y ± α∗) + 1]2

, (11.58)

with 


γ∗ ≡ m∗β,

α∗ ≡ γ∗µ∗

m∗
= β

(
µ− g2

V

nB

m2
V

)
,

µ∗ ≡ µ− g2
V uλ〈Aλ〉eq.

(11.59)

In the expression of T µν
1 , σµν is the (traceless) shear tensor (see Chap. 2),

not to be mistaken for a Dirac matrix, whose main properties are

σµν ≡

[
∆µα(u)∆νβ(u)− 1

3
∆µν(u)∆αβ(u)

]
∂αuβ,

uµσ
µν = 0,

∆µα(u)σµν = 0.

(11.60)
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In the determination of Jµ
1 and T µν

1 , implicit use was made of the conser-
vation relations which lead in fine to the equations:




α̇∗ =
γ∗

3
I∗4,0I

∗
2,3 − I∗2,2I

∗
4,1

(I∗2,2)2 − I∗2,1I
∗
2,3

θ∗,

γ̇∗ =
γ∗

3
I∗4,0I

∗
2,2 − I∗2,1I

∗
4,1

(I∗2,2)2 − I∗2,1I
∗
2,3

θ∗,

θ∗ ≡ θ

(
1 +

3ṁ∗

mθ

)
.

(11.61)

These equations are identical to those obtained by J.L. Anderson and H.R.
Witting (1974) for particles moving “freely” (i.e. influenced only by the
mean fields) between collisions, the only difference being that nonstarred
quantities are replaced by starred ones. Note also that θ∗ is a kind of
effective divergence of the four-velocity which appears (see below) in the
entropy production.

11.3.2. Transport coefficients: Eckart versus

Landau–Lifschitz representations

Once the off-equilibrium quantities have been calculated, they must be cast
into a form appropriate to the identification of transport coefficents, i.e. in
Eckart’s form (see Chap. 2). They have the general structure

{
Jµ

off = κ∆µν(u)(∂νβ + βu̇ν),

T µν
off = 2η σµν + 1

2 ς θ∆
µν(u) +Aµν ,

(11.62)

where Aµν can easily be obtained from the explicit expression of T µν
1 as

Aµν = τ
4πdm∗4

3(2π)3
g2

V nB

m2
V

[uµ∆νλ(u) + uν∆µλ(u)]

×
{
I∗4,1I

∗
4,−1

I∗24,0

− I∗24,0

}
(∂λβ + βu̇λ). (11.63)

While the equation for Jµ
off obeys the first Landau–Lifschitz condition, this

is not the case for T µν
off , which is not orthogonal to uµ. This is due to

the fact that the energy–momentum tensor includes the contribution of
the collective fields 〈ϕ〉 and 〈Aµ〉; although its matter (baryonic) part does
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satisfy these matching conditions, this is of little use since it is the total
off-equilibrium part of the energy–momentum tensor which enters into the
dissipation processes.

In order to cast the off-equilibrium quantities into Eckart’s form, the
pressure, the energy density and the local hydrodynamical four-velocity
have to be redefined. This is achieved with the following changes, all of
order 0(τ): 


ρ→ ρ+ 1

3 ςθ
∗(m−m∗),

P → P − 1
3 ςθ
∗(m−m∗),

uµ→ Uµ = uµ + ξµ,

(11.64)

with

ξµ =
κ

nB
∆µν(u)(∂νβ + βu̇ν). (11.65)

Finally, one gets for the shear viscosity (Fig. 11.3)

η = τ
4πdm∗4

15(2π)3
I∗6,−1γ

∗, (11.66)

Fig. 11.3 The shear viscosity as a function of the temperature parameter γ = mβ for
pure neutron matter. Continuous lines represent the above expression, while dashed ones
refer to J.L. Anderson and H.R. Witting’s result.
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Fig. 11.4 The bulk viscosity as a function of the temperature parameter γ for pure
neutron matter. Continuous lines represent the above expression, while dashed ones
refer to J.L. Anderson and H.R. Witting’s result.

for the bulk viscosity (Fig. 11.4)

ς = τ
4πdm∗4

3(2π)3
I∗6,−1γ

∗
{
I∗4,0I

∗
2,3 + I∗4,1I

∗
2,1 − 2I∗2,2I

∗
4,0I

∗
4,1

I∗22,2 − I∗2,1I
∗
2,3

+ I∗6,−1

}
(11.67)

and for the thermal conductivity (Fig. 11.5)

λ = τ
4πdm∗3

3(2π)3
γ∗2

I∗4,1

I∗4,0

{
I∗4,1I

∗
4,−1

I∗4,0

− I∗4,0

}
. (11.68)

These expressions are formally identical to those obtained by J.L.
Anderson and H.R. Witting (1974), and they differ only by the occurrence
of starred quantities. Although this was not a priori obvious, it seems quite
natural. However, in spite of their analogy — which gives rise to similar
behaviors for the shear viscosity and the thermal conductivity — this is not
the case for the bulk viscosity.

In order to assess the importance of collective effects with their absence
in transport coefficients, several curves representing the bulk viscosity of
pure neutron matter have been plotted in Fig. 11.6, with and without the
effects of the scalar and/or vector fields.

The figures show that, at high temperatures, the attractive scalar field
is responsible for the behavior of the bulk viscosity, at least for the greatest
part. As to the other transport coefficients, it is the repulsive vector field
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Fig. 11.5 The thermal conductivity as a function of the temperature parameter γ for
pure neutron matter. Continuous lines represent the above expression, while dashed ones
refer to J.L. Anderson and H.R. Witting’s result.

which plays the main role in the modification of the transport coeffi-
cients. Details and analytical forms for extreme cases are given elsewhere
[R. Hakim and L. Mornas (1993)].

11.3.3. Entropy production

It remains for one to justify the passage to the starred quantities in the
above calculations. This can be shown by looking at the entropy production
in these dissipative processes; further arguments justifying the formal
analogy with the Anderson–Witting approach — through the use of effective
quantities — can be put forward when studying the entropy production.

This can be done in several ways; here we begin with a microscopic
point of view by noting that f(x, p) plays the role of a distribution function
on the mass shell p∗2 = m∗2. Therefore, the entropy four-flux is defined as
usual4 for fermions as

Sµ(x) = −kB

∑
±

∫
d4p∗

p∗µ

m∗
{f±(x, p) ln f±(x, p)

(11.69)
+ [1− f±(x, p)] ln[1− f±(x, p)]},

4See e.g. S.R. de Groot, W. A. van Leeuwen and Ch. G. van Weert, Relativistic Kinetic
Theory (North-Holland, Amsterdam, 1980).
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Fig. 11.6 The effect of the various collective fields is indicated in the case of bulk
viscosity for pure neutron matter, for two different values of the chemical potential. W
designates the result with the Walecka model, S with the scalar field only, V with the
vector field only and 0 without any collective effects.

where the plus sign refers to nucleons and the minus one to antinucleons.
Note that this definition of the entropy four-flux could be wrong but it is
correct in our case, due to the fact that we deal with free quasi-particles
and, in such a case, f is actually a distribution function.

(1) Here the entropy production of the off-equilibrium system is calcu-
lated on the basis of the covariant formulation of the Gibbs relation

Sµ = PEckβ
µ − αJµ

Eck + βuλT
µλ
Eck, (11.70)



February 14, 2011 16:7 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch11 FA

Application to Nuclear Matter 295

where β ≡ T−1 and α ≡ µT−1, and Sµ is the entropy flux four-vector; the
total entropy of the system is thus

S =
∫

Σ

dΣµS
µ (11.71)

at “time” Σ.
At order 0 (i.e. in local equilibrium), this last equation can be

rewritten as

Sµ
eq =

[
(ρ+ P )nucleons

γ∗

m∗
− α∗nB

]
uµ (11.72)

and can be shown to obey ∂µS
µ
eq = 0, with the help of Eqs. (11.61a) and

(11.61.b), as it should.
At order 1 in τ , it is difficult to show that Eq. (11.61) leads to

Sµ = Pnucleons
γ∗

m∗
uµ − α∗Jµ +

γ∗

m∗
uλT

µλ
nucleons, (11.73)

where the index “nucleons” refers to quantities calculated with the Wigner
function of the nucleons only and not, for example, to quantities connected
with the collective fields 〈φ〉 and 〈Aλ〉.

From Eq. (11.72) the entropy production rate σ is given by

σ ≡ ∂µS
µ
(1) = −∂µα

∗ · Jµ
(1) + ∂µ(βuλ)T λµ

(1) (11.74)

= −∂µα
∗ · Jµ

(1) + T µλ
(1)nucleons

∂µ(γ∗uλ)
m∗ (11.75)

− γ∗

m∗
(m2

Sφ̇eq · φ(1) + gV F
µλuλJµ(1)).

This expression is finally cast into sums of squares,

σ = K
{−[∆µλ(u)∂λα

∗ + βgV F
µλuλ]2

}
+ η

γ∗

m∗
(σµλ)2 +

1
3
ζ
γ∗

m∗
(θ∗)2,

(11.76)

where use has been made of the energy–momentum conservation relation
written in the form

∂µT
µν
fields = gS∂

νφ

∫
d4p f + gV F

λνJλ. (11.77)

In Eq. (11.75) the first square, [· · · ]2, is negative, owing to the space char-
acter of the tensor involved therein, and the other terms are positive. The
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entropy production rate is positive, as demanded by the second principle
of thermodynamics. Furthermore, it can be written in the general form

σ =
∑

i

λiχ
i2, (11.78)

where λi are the transport coefficients (11.66) and (11.67) and χi are the
associated thermodynamic forces. The latter appear to be modified by the
presence of the scalar and vectorial fields: for instance, θ is replaced by
θ∗ [see Eq. (11.61c)], which involves φ̇eq and φeq. It should be noted that
had we not modified the pressure term in the energy–momentum tensor
(equivalently, had we not decomposed T µν

(1) as was done), then we would
not have obtained a decomposition of the entropy production rate of the
general form (11.77) and, consequently, our transport coeffficients would
have been ill-defined.

(2) We now calculate the entropy production from a microscopic point
of view, and let us show that it leads exactly to the same developments.

Note that since f plays the role of a distribution function on the mass
shell p∗2 = m∗2, the entropy can be defined as usual. Then calculation of
the entropy production rate yields

Sµ = −m∗3
∑
±

∫
d3ω

ω0
ωµ{f±(x, p) ln f±(x, p)

+ [1− f±(x, p)] ln[1− f±(x, p)]}, (11.79)

where ωµ = pµ∗/m∗; the entropy production rate σ is given by

σ ≡ ∂Sµ = 3∂µ ln(m∗)Sµ −m∗3Sµ

= −m∗3
∑
±

∫
d3ω

ω0
ωµ

{
ln
[

f±
1− f±

]}
, (11.80)

using the expansion of f and f̄ in powers of τ ,

ln
[

f

1− f
]
∼ ln

[
feq

1− feq

]
+

f(1)

feq(1− feq) , (11.81)

and a similar expression for f̄ . In the calculation of σ, we must also use

∂µfeq = [∂µα
∗ − ∂µ(γ∗uλ) · ωλ]feq(1 − feq),

∂µf̄eq = −[∂µα
∗ + ∂µ(γ∗uλ) · ωλ]f̄eq(1− f̄eq),

(11.82)
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so that we finally obtain

σ = 3∂µ ln(m∗)
[
Sµ + α∗Jµ − 4

3
γ∗

m∗
uλT

λµ
nucleons

]

− γ∗

m∗
uλ

[
1
2
m2

S∂λφ
2 + gV FµλJ

µ

]
− ∂µα

∗ · Jµ
(1)

+ ∂µ(γ∗uλ)

(
T λµ

(1)nucleons

m∗

)
. (11.83)

At order 0, as it should be, while the first order entropy four-flux reduces to

Sµ
(1) = −α∗Jµ

(1) +
(

γ∗

m∗uλ

)
T µλ

(1)nucleons (11.84)

and the total entropy production rate

σ = ∂µ(Sµ
eq + Sµ

(1)), (11.85)

finally gives rise to Eq. (11.75),

∂µS
µ = κq2 + ησµνσµν + ςθ∗2, (11.86)

which does coincide with the expression obtained through the use of the
thermodynamic relation (11.69):

Sµ = Pβµ + βuλT
λµ − αJµ

= −1
3
βµ∆λν(u)T λν + βuλT

λµ − αJµ. (11.87)

11.3.4. A brief comparison: BGK versus BUU

It was pointed out several times that, due to the present state of the the-
oretical and experimental arts, it was often useless to deal with involved
kinetic equations, the relaxation time approximation providing sufficient
results in a first study. A comparison has been done by L. Mornas (1994)
for the transport coefficients of symmetric nuclear matter at four times
the nuclear saturation density and for T ≤ 200MeV. This is depicted
in Fig. 11.7, and below one can see the curves representing the various
transport coefficients calculated with the relaxation time model (dot–
dashed lines), with P. Danielewicz (1984) (where in-medium effects are not
taken into account) and from the Boltzmann–Uhlenbeck–Uehling (BUU)
equation with in-medium effects.

To perform this comparison, the relaxation time inserted in the BGK
equation has been taken to be the average value of the one calculated with
the BUU equation

τ−1 =
∫
d3p τ−1(p)feq(p)∫

d3p feq(p)
=

1
neq

∫
d4p τ−1(p)p · u feq(p), (11.88)
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Fig. 11.7 A comparison between the results obtained for transport coefficients with
and without in-medium effects and from the use of either the BGK or BUU transport
equations [after L. Mornas (1994)].

with

τ−1(p) =
1
p0

∫
d4p2 d

4p3 d
4p4W (p, p2 → p3, p4)× {feq(p3)feq(p4)

× [1− feq(p2)] + [1− feq(p3)] [1− feq(p4)] feq(p2)} [feq(p)] .

(11.89)

This provides

τ−1 =
1
neq

∫
d4p1 d

4p2 d
4p3 d

4p4W (p1, p2 → p3, p4)

× {feq(p3)feq(p4) [1− feq(p2)]} [feq(p)], (11.90)

which is depicted in Fig. 11.8 and compared with previous results by K.H.
Müller, and J. Randrup.5

5J. Randrup, Nucl. Phys. A314, 429 (1979); K.H. Müller, Phys. Lett. B93, 247 (1980).
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Fig. 11.8 Collision time (for three values of the baryon density; n0 is the nuclear sat-
uration density) according to the above relation, and comparison with the estimates by
J. Randrup (1979) and K.H. Müller (1980), respectively indicated by crosses and dots
[after L. Mornas (1994)].

It can be checked that the calculated τ possesses the expected properties
of a relaxation time: it tends to a constant as T → ∞ and is proportional
to n−1

eq ; at low temperatures it behaves as T−2.

11.4. Discussion

Let us now summarize and discuss the various assumptions behind our
calculations.

(1) A specific model was chosen as to the description of relativistic nuclear
matter and the Walecka model was the dynamical basis for our calculations.
This particular model was chosen essentially because it is “canonical” in the
sense that it is used as a reference for almost all other relativistic models. Of
course, it contains its own problems, such as the much too large value of the
compressibility coefficient6 of nuclear matter, but this can be remedied by

6B.D. Serot and J.D. Walecka (1986).
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adding suitable terms (or fields) to the basic Lagrangian: for instance, the
addition of self-coupling of the scalar field constitutes one such possibility.7

Therefore, our choice is not unreasonable even though it is not the only
possible one: our calculations can always be improved.

(2) Since our aim was an evaluation of some collective effects, the simplest
collision term was chosen: a relaxation time approximation, one that reduces
to the Anderson–Witting one in the absence of collective effects. This choice
was motivated both by the necessity of comparing similar results (with and
without collective effects) and by the physical content of this collision term.

(3) The dynamics of the system (within the relaxation time approxi-
mation) was entireley involved in the relaxation time, itself to be evaluated
with a more detailed analysis. However, the relaxation time could well be
dependent on the collective fields φ and V µ. In order to discuss this point,
let us limit ourselves to the case of the scalar field. In the collision term, τ(φ)
appears only as τ−1, so that in a first order Chapman–Enskog expansion
one has

f(1)

τ(φ)
=

f(1)

τ(φeq) + φ(1)τ ′(φeq) + · · ·

=
f(1)

τ(φeq)
+ 0(τ2).

(11.89)

f − feq is a first order quantity and any (new) first order term like φ(1)

gives rise to a second order term. Therefore, our results are formally not
affected by the possible φ dependence of the relaxation time. It is clear,
however, that the numerical value of τ has changed and that the comparison
of our results and those obtained by Anderson and Witting makes sense
only for those τ ’s such that τ(φeq) = τ . In order to get a more precise
idea of the influence of φ on τ , we obviously need a specific calculation.
Nevertheless, an estimation of τ as τ ≈ 1/nσtot can give some clues in the
absence of φ: in σtot, the mass of the nucleon m has to be replaced by
its effective mass, m∗ = m − gSφeq. A simple calculation shows that the
one-boson-exchange nucleon–nucleon total cross-section is proportional to
m−2. This leads to τ ∝ m2 and hence τ ∝ (m− gSφeq)2. It follows that φ
makes τ smaller: τ(φeq) ≤ τ(0). It should also be noted that in a one-boson-
exchange calculation (or in higher order processes), it is sufficient to use

7R.M. Waldhauser, J.A. Maruhn, H. Stocker and W. Greiner, Phys. Rev. C38, 1003
(1988); C.M. Ko and Q. Li, ibid. C37, 2270 (1988).
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the customary vacuum boson propagator: in the domain of temperatures
and densities considered, both T and µ are much smaller than mS .

(4) A few words have now to be said about the Chapman–Enskog expansion
of the solution to the transport equation. This expansion was a series in
powers of the small parameter ε ≡ τ/L, where L is a (macroscopic) hydro-
dynamic scale. As a matter of fact, there exist several other scales, namely
the ones defined by the various wavelengths occuring in the system, i.e.

λN =
1
m
, λS =

1
mS

, λV =
1
mV

. (11.90)

Therefore, a complete Chapman–Enskog expansion should be an expansion
in powers of several dimensionless parameters, besides ε, such as η ≡ 1/mL,
χ ≡ 1/mSL and ξ ≡ 1/mV . In fact, instead of η we would rather use
the parameter η∗ ≡ 1/m∗L. As discussed elsewhere [J. Diaz Alonso and
R. Hakim (1984)], while the parameter η∗ is negligible, it is generally not
so at high densities and/or temperatures for the parameter η∗ and, con-
sequently, a multiparameter expansion should be dealt with. On the other
hand, the remaining parameters χ and ξ are also negligible in the approxi-
mation under study; however, when collective effects involve the consider-
ation of quasibosons (Chap. 13), their effective mass might lead to effective
parameters whose values are not negligible (compared to unity).

(5) The problem of renormalization has now to be discussed. In our cal-
culation no infinity occurred: this was due to the fact that, systematically,
the vacuum contribution to the Wigner function, i.e. terms involving

Feq(p) = − d

(2π)3
θ(−p∗0)δ (p∗2 −m∗2) , (11.91)

was discarded. Does this procedure make sense? The answer to this question
is twofold and it depends on the fact that the system is dominated either
by collisions or by collective effects. When collective effects dominate, the
thermal equilibrium state of the medium is controlled by a renormalized gap
equation arising from the regularization of the vacuum term occurring in the
gap equation [S.A. Chin (1977); J. Diaz Alonso and R. Hakim (1984)]. On
the other hand, if the system is dominated by collisions (as, for instance,
is the case for a dilute “gas”), the renormalization processes reduce to
the usual renormalization procedure, leading to a finite cross-section and
hence to a finite relaxation time. However, it should be borne in mind
that we are dealing with a merely phenomenological theory and also that
the length scale at hand (kinetic scale) is much larger than most scales
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where quantum fluctuations do show up, i.e. of the order of the Compton
wavelengths. Accordingly, it is not necessary to take quantum fluctuations
(via the vacuum Wigner function) into account. However, in order to be
consistent with what is usually done in the case of thermodynamical equi-
librium (in the Hartree approximation), one can use the renormalized gap
equation studied elsewhere (see Chap. 10) instead of the nonrenormalized
equation and various counterterms.

(6) The limiting cases (low densities and/or temperatures; high densities
and/or temperatures) can easily be understood in this model; m∗ is close
to the nucleon mass m, while for the effective chemical potential µ∗ one has
µ∗ = µ + O(nB). Accordingly, our result should be close to those already
obtained by Anderson and Witting (1974): these properties can be checked
through the figures where the various transport coefficients are computed
as functions of the energy density expressed in units of the nuclear satu-
ration density, for several temperatures. In the other limiting cases, the
effective mass of the nucleon is almost vanishing [B.D. Serot and J.D.
Walecka (1986); S.A. Chin (1977); G. Kalman (1974); J. Diaz Alonso and
R. Hakim (1984)] and hence the general behavior of the transport coef-
ficients can be obtained from the extreme relativistic limit of Anderson
and Witting’s results. Finally, our results mainly differ in the intermediate
regime, as witnessed through the figures above. Note, however, the change
in the slope of the curves λ and ξ when γ → 0.

11.5. Dense Nuclear Matter: Neutron Stars

Relativistically dense matter occurs in quite different situations. A first
instance is met on earth in large particle accelerators, where droplets of
compressed and heated nuclear matter are formed during very short times
in heavy ion collisions. Secondly, it is present in neutron stars. Thirdly,
the physics of the primeval universe involves relativistically dense matter
owing to both its densities and temperatures. All three situations represent
different physical conditions which are intensively studied. The main chal-
lenge is to reconcile all the regimes within one theory. Here, we shall focus
on the second situation.

Neutron stars were imagined by L. Landau, just after the discovery
of the neutron by J. Chadwick in 1932, on the basis of what was known
after S. Chandrasekhar (1932) about white dwarf stars. The principle was
identical in the two cases: the Fermi pressure, due to the Pauli principle,
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balanced the gravity due to the mass of the star. Shortly after (1934),
W. Baade and F. Zwicky, while observing the star then known as the
Baade object, in the center of the Crab nebula,8 published a short note
concluding with these words: “With all reserve we advance the view that
supernovae represent the transitions from ordinary stars into neutron stars,
which in their final stages consist of extremely closely packed neutrons.” In
1939, R. Oppenheimer and G. Volkov9 proved that Landau’s assumption
of the existence of neutron stars was consistent with general relativity.
With the assumption that neutrons form a relativistic ideal Fermi gas,
they were able to show that neutron stars were objects with a radius of
about 15 km and endowed with a mass of 0.7 solar mass, which repre-
sented a central density of 3.6 · 1015 g/cm3, slightly more than 10 times
the nuclear saturation density. In 1967, J. Bell and A. Hewish discovered
the first pulsars, which were soon identified by T. Gold10 (1969) with
neutron stars.

Neutron stars are very interesting objects to study, essentially because
they involve many domains on the frontiers of physics. In particular,
relativistic statistical mechanics is involved in several aspects connected
with the bulk data (mass and radius) of the star: its stability and its
rotational accidents (“glitches”), which might be connected with a super-
fluid interior; its radiation, due to its magnetosphere; its strong magnetic
field, which gives rise to interesting effects (see Chap. 12); new states of
matter (such as “magnetic solids”; LOFER states; quark matter; meson
condensation; superfluidity and/or superconductivity, colored or not); etc.
In this section, a brief outline of some of the problems encountered will be
presented.

11.5.1. The static equilibrium of a neutron star

The static equilibrium of a neutron star is determined by the
general relativity equations of static equilibrium,11 otherwise called the

8W. Baade and F. Zwicky, Phys. Rev. 45, 138 (1934); see also ibid. 46, 76 (1934).
The Crab nebula was the residue of the explosion of a supernova, in 1054, observed
by the Chinese, Korean and Japanese astronomers. Today, the “Baade object” is known
as the Crab pulsar.
9R. Oppenheimer and G. Volkov, Phys. Rev. 55, 374 (1939).

10T. Gold, Nature 221, 25 (1969).
11See e.g. S. Weinberg, Gravitation and Cosmology (Wiley, New York, (1972), or
R. Hakim, Introduction to Relativistic Gravitation Cambridge University Press, 1995).
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Tolman–Oppenheimer–Volkov equations, which read

dP (r)
dr

= −GM(r)ρ(r)
r2

(
1 +

P (r)
ρ(r)

)(
1 +

4πr3P (r)
m(r)

)(
1− 2G

M(r)
r

)−1

M(r)=
∫ r

0

4πr′2dr′ρ(r′),

(11.92)

where P (r) is the pressure at distance r from the center of the star; ρ(r) the
energy density, M(r) the mass contained in a sphere of radius r, and G the
gravitational constant. Note that the total mass of the star is M(R), where
R is its radius. Note that this system supposes that the energy–momentum
tensor of matter is of the perfect fluid form.

This system, often called the Tolman12–Oppenheimer–Volkov (TOV)
system, is based on Einstein’s equations

Rµν − 1
2
gµνR = 8πGTµν , (11.93)

and various assumptions, such as the spherical symmetry of the star, or
its stationarity. As to the energy–momentum tensor Tµν , it is supposed to
have the perfect fluid form.

In order to integrate this system, the first problem met is that of the
knowledge of a reliable equation of state, P = P (ρ). The second problem —
a merely technical one — is the question of the initial conditions and when
to stop the (numerical) integration of the TOV system.

The second problem is not difficult to solve: M(0) = 0 and the inte-
gration must be stopped when the pressure vanishes or so. This last con-
dition defines the radius of the star: P (R) = 0. Finally, the only remaining
parameter is the central energy density, ρC . Outside the star, the metric is
the Schwarzschild (1916) metric, which matches smoothly the interior one.

As to the equation of state, which appears to be an essential ingredient
in all possible models of neutron stars, it depends on the composition and
the state of matter at different depths inside the star, and just as important,
on the assumptions used to describe matter.

11.5.2. The composition of matter in a neutron star

In the initial R. Oppenheimer and G. Volkov model (1939), a neutron star
was composed of an ideal Fermi gas of neutrons. However, one knows that

12R.C. Tolman, Relativity, Thermodynamics and Cosmology (Oxford University Press,
1934).
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the neutron can desintegrate via the β-desintegration,

N → P + e− + ν̄e

(into proton, electron and antineutrino), so that a pure neutron matter
state is simply not possible and the neutron matter always contains a small
admixture of protons and electrons, the antineutrinos instantly escaping the
star due to their very weak interactions with matter. Conversely, protons
and electrons tend to recombine into neutrons:

P + e− → N + νe.

The balance of these reactions results in a chemical equilibrium. Inside the
star, the high density displaces the equilibrium in such a way that only a
few percent of electrons (and protons) subsist13:

µe + µP = µN , (11.94)

since µν = µν̄ = 0, owing to the fact that the neutrinos do not stay within
the star.

As to the nuclei composition of the star, it should be noted that since the
neutron–neutron force is weaker than the neutron–proton one, the excess of
neutrons is more and more loosely bound to their parent nucleus. Finally,
beyond a density of the order of 4×1011 g/cm3 — the so-called drip point —
all nucleons are essentially “free” inside the neutron star.

The calculation of the chemical composition of a neutron star was ini-
tiated by B.K. Harrison and J.A. Wheeler (1958). They had a detailed
calculation by G. Baym, H.A. Bethe and C.J. Pethick (1971) which rests
on a semiempirical mass formula E(A,Z) for the energy of a nucleus with A
nucleons and Z protons, and this is valid as long as the nuclei preserve their
identity. Such a formula — of the Bethe–Weizäcker type — takes account
of various contributions to the energy of a nucleus calculated with some
models reliable at low energies, and then extrapolated at high densities
where it is supposed to be still valid. An example of such a mass formula is

E(A,Z) = 15.68A− 18.56A2/3 − 0.717

Z2

A1/3
− 28.1

(A− 2Z)2

A
+ EP ,

EP =
1
2
(−1)Z [1 + (−1)A]× 12

A1/2
,

(11.95)

13Details can be found in the book by S.L. Shapiro and S.A. Teukolsky, Black Holes,
White Dwarfs and Neutron Stars (Wiley, New York, 1983).
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where one can recognize the energy per nucleon, the surface energy and
the electrostatic energy, and where EP is a pairing energy. From the
empirical relation that connects the radius of a nucleus and its number of
nucleons,

R = R0A
1/3 (R0 = 1.25 fm), (11.96)

one can infer that the centers of the nuclei all have the same density, the
so-called saturation density.

ρsat =
A

4πR3
0/3

. (11.97)

Fig. 11.9 The equation of state of pure neutron matter in the Walecka model. In
our system of units the pressure and the energy density are measured in GeV/cm3.
Temperatures are measured in MeV and indicated along the various isotherms. The gray
area corresponds to a region where there exists a first order phase transition (it occurs
because of the scalar field). The horizontal lines are coexistence lines resulting from a
Maxwell construction. The curve p = ρ is the causal limit to which the Walecka equation
of state is asymptotic. This characteristic “stiffness” of this equation of state is due to
the (repulsive) vector field occurring in the model [after B.D. Serot and J.D. Walecka
(1986)].



February 14, 2011 16:7 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch11 FA

Application to Nuclear Matter 307

The total energy density of cold matter (T = 0 K) is thus

ρ = nnucleiE(A, Z) + ρelectrons + ρneutrons. (11.98)

The chemical composition of matter is obtained by minimizing ρ with
respect to the parameters A and Z, treated as being continuous:

∂

∂A
ρ = 0,

∂

∂Z
ρ = 0. (11.99)

One then finds hypothetical nuclei — such as 982
32 Ge, 1350

50 Sn, 1800
50 Sn and

1500
40 Zr — that contain more and more neutrons as the density is increased.

From the expression for ρ, one obtains the equation of state (for den-
sities below the drip point) — necessary for completing the TOV system —
through

P = −n2 ∂(nρ)
∂n

. (11.100)

11.5.3. Beyond the drip point

Beyond the neutron drip point, the equation of state of neutron matter
(Fig. 9.9) is lesser and lesser known. It can be considered as reliable until
the nuclear saturation density, and also at slightly higher densities. The
equation of state obtained from models such as that of Walecka described
above needs to be matched smoothly to the low density results around the
saturation density, where the domains of validity of the approaches overlap.
At higher densities, one then extrapolates the equation of state at hand,
whether it be the Walecka one or any other extension. As an example, the
solution of the TOV system is given in the case of the Walecka equation of
state in Fig. 11.10.

Presently, there exist dozens of plausible equations of state for rela-
tivistic nuclear matter, most of which agree with low energy data, and the
possibility of observational discrimination between them is problematic.
Note, however, the possibility of eliminating a few equations of state by
looking at the measured masses of pulsars belonging to binary systems: if
the maximum mass for a neutron star, predicted by the use of a given
equation of state, is lower than the measured mass, then it has to be
rejected. One of the very few equations to be eliminated is the equation
of state of the ideal neutron gas used by R. Oppenheimer and G. Volkoff
(1939): it predicted a maximum mass of 0.7 solar mass, whereas one
observes neutron stars with 1.4 solar mass, for instance.
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Fig. 11.10 The mass of a neutron star as a function of its central density. The con-
tinuous line corresponds to the Walecka model, while the dashed one takes account of
the influence of the ρ meson. Compared with observed masses of neutron stars — often
of the order of 1.4 solar mass — such an equation of state provides a too-important
maximum [after B.D. Serot and J.D. Walecka (1986)].

The state of matter below the drip point is quite problematic. Indeed, it
ranges from a neutron superfluid liquid to superfluid and superconducting
protons, quark matter, without forgetting pion condensation, color super-
conducting fluids, etc.
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Chapter 12

Strong Magnetic Fields

V. Canuto and H.Y. Chiu (1968ff ) have studied in great detail the electron
gas embedded in a strong magnetic field,1 while the QED plasma modes
(still in a strong magnetic field) have been studied by many authors
[V. Canuto (1969, 1970); P. Bakshi, R. Cover and G. Kalman (1976);
D.B. Melrose and R.J. Stoneham (1976, 1977); D.B. Melrose (1983, 1997);
H. Sivak (1985); A.E. Shabad and H. Perez-Rojas (1976ff ), etc.], and the
equation of state and the equilibrium properties of such a plasma have
been investigated by D.H. Constantinescu (1972ff ), P. Rehak (1975), G.A.
Schulman (1972ff ), S. Visvanathan (1962), etc. The results obtained via
the use of the covariant Wigner function techniques by several authors
[R. Dominguez-Tenreiro (1977); R. Hakim and H. Sivak (1982)] are pre-
sented here. An interesting domain where the strong magnetic fields are
involved deals with magnetized solids, a field initiated by M.A. Rud-
erman (1971, 1972) [see Dong Lai (2001)], and it was also studied by
V.V. Kadomtsev and V.S. Kudriatsev (1971), M.L. Glasser and J.I. Kaplan
(1975), and others. These magnetic solids play an important role in the
study of phenomena connected with the external crust of a neutron star.
However, they are not considered here.

By “strong magnetic field” is meant a magnetic field whose intensity is
of the order of the critical value defined by the approximate equality of the
Larmor radius and the Compton wavelength of a particle (4.414× 1013 G).

Since 1968, when the systematic study of the electron gas embedded in
strong magnetic fields was undertaken by V. Canuto and H.Y. Chiu, the
magnetic field of neutron stars has been evaluated to be slightly subcritical
(≈ 1012 G), and more recently new types of magnetic stars, magnetars, have

1See the excellent review by V. Canuto and J. Ventura (1977).
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been discovered with much more intense fields, of the order of 1015–1016 G.
On the other hand, J.P. Ostriker and F.D.A. Hartwick2 speculated that
even within some white dwarfs, magnetic fields as intense as 1011–1013 G
could be found. Such magnetic white dwarfs were studied by D. Adams
(1985) and D. Adams and H. Sivak (1985).

Let us briefly mention how such intense magnetic fields are evaluated in
neutron stars.3 Assuming that pulsars are neutron stars — and there exists
a general consensus as to this assumption — and that the magnetic field is
a dipole field, the energy radiated per unit of time during the rotation is

Ė = −1
6
B2R6ω4 sin2 θ, (12.1)

where ω is the rotation velocity, B the magnetic field, R the radius of
the star, and θ the angle between the dipole and the rotation axis. The
radiation emitted by the rotating dipole is at the expense of the rotation
kinetic energy of the star,

E =
1
2
Iω2, (12.2)

and accordingly

Ė = Iωω̇. (12.3)

Assuming that the Crab pulsar is a uniform sphere of 1.4 solar mass and
of radius 12 km, one gets

E = 2.5× 1049 erg, Ė = 6.4× 1038 erg/s. (12.4)

The measure of the slowing down, or of ω̇, for the same pulsar provides

Ė ≈ 5× 1038 erg/s, (12.5)

which is very close to the above evaluation. Finally, with θ = π/2, the
magnetic dipole model yields

B ≈ 5.2× 1012 G.

Most pulsars, indeed, provide similar orders of magnitude. To explain the
additional three orders of magnitude recently discovered in magnetars, one
invokes the threading of magnetic field lines during a turbulent convection
phase in the progenitor supernova, thus bringing into action a transient but

2J.P. Ostriker and F.D.A. Hartwick, Astrophys. J. 161, 541 (1968).
3See details in S.L. Shapiro and S.A. Teukolski, Black Holes, White Dwarfs and Neutron

Stars (J. Wiley and Sons, New York, 1983).
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powerful dynamo. The recently discovered magnetars give rise to the figure
given above, B ≈ 2× 1015 G.

In this chapter, the problem of a QED plasma embedded in a strong
magnetic field is addressed and, to this end, the thermal equilibrium prop-
erties of a magnetic electron gas are first dealt with. Note that when one is
speaking of an “electron gas,” it is always assumed that it exists within a
positive neutralizing background of ions, whether in the form of a fluid or
possibly as a lattice.

The calculations with magnetic fields are particularly long and involved
and require much notation. Therefore, only the main results are presented
here and only a brief outline of the calculations is given.

The free electron field, embedded in a magnetic field Aµ(x), obeys the
Dirac equations {{iγ · (∂ − ieA)−m}ψ(x) = 0,

ψ̄(x){iγ · (
←
∂ + ieA) +m} = 0,

(12.6)

which has first to be solved. H.Y. Chiu and V. Canuto (1968) used the
solution obtained by M.H. Johnson an B.A. Lippmann4; it is, however,
simpler to use the covariant solutions derived later5 [R. Hakim and H. Sivak
(1982)].

The energy levels of an electron within the magnetic field, the so-called
Landau levels, are given by

En,σ,p||,χ = χ

√
m2 + p2

|| +
B

Bcrit
(2n+ σ + 1), (12.7)

Bcrit being the critical field where the Larmor radius of an electron is equal
to its Compton wavelength,

Bcrit =
m2c3

eh
= 4.414× 1013 G, (12.8)

where

χ = ±1; σ = ±1; n = 0, 1, 2 . . . ; p|| ∈ �. (12.9)

χ characterizes the positive/negative energies of an electron, σ its spin state,
and n is the main quantum number describing, so to speak, the size of the
orbit of an electron; finally, p|| is the momentum parallel to the direction
of the magnetic field.

4M.H. Johnson and B.A. Lippmann, Phys. Rev. 76, 828 (1949); see also H. Robl, Acta
Phys. Austriaca 6, 105 (1952).
5H. Sivak, unpublished (1979) and thesis (1985).
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The spinors associated with these eigenvalues are6

ψ1nχ = c1nχ

∣∣∣∣∣∣∣∣∣∣

(χE1n +m)ϕn

0

p||ϕn

[2(n+ 1)eh]1/2ϕn+1

∣∣∣∣∣∣∣∣∣∣
exp(−iχE1nx · u), (12.10)

(spin up)

ψ−1nχ = c−2nχ

∣∣∣∣∣∣∣∣∣∣

0

(m+ χE−2n)ϕn

(2neh)1/2ϕn−1

−p||ϕn

∣∣∣∣∣∣∣∣∣∣
exp(−iχE−1nx · u), (12.11)

(spin down)

with

ϕn = NnHn

{
(eh)1/2[x(r) − a]

}
× exp

[
−(2eh)(x(r) − a)2 + ip|| · x(n) + (2eh)1/2ix(s) · (x(r) − a)

]
,

(12.12)

where Hn is a Hermite polynomial of order n and x(r), x(n), x(s) are defined
by

x(r) ≡ −x · r, x(s) ≡ −x · s, x(n) ≡ −x · n, (12.13)

and Nn is the normalization coefficient. The definitions of the quadri-
vectors s, r and n are given in the next section; however, they reduce to x,
y and z, respectively.

12.1. Relations Obeyed by the Magnetic Field

The electromagnetic field Fµν possesses a magnetic character that is
expressed by the relations{

FµνFµν > 0,

εµναβF
µνFαβ ≡∗FµνFµν = 0.

(12.14)

The second relation tells us that the electric and magnetic fields in an
arbitrary inertial frame are orthogonal to each other, while the first one

6M.H. Johnson and B.A. Lippmann, loc. cit.
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means the existence of an inertial frame where the electromagnetic field is
purely magnetic. Then it can be shown7 that there exists a timelike four-
vector uµ and a spacelike four-vector hµ endowed with the properties


uµu

µ = 1,

hµh
µ = −h2,

uµh
µ = 0,

(12.15)

such that {
Fµν = εµναβhαuβ,
∗Fµν = −2h[µuν].

(12.16)

Thus, there exists a frame of reference where the electromagnetic field is of
the form

Fµν =




0 0 0 0

0 0 −h 0

0 +h 0 0

0 0 0 0


 = Fµν . (12.17)

The unit spacelike four-vector antiparallel to hµ is denoted by nµ:

nµ = −h
µ

h
.

Note that the four-vectors (uµ, hµ) are not unique and that from one pair
one can find another related through{

u′µ = uµ coshχ+ nµ sinhχ,

n′µ = uµ sinhχ+ nµ coshχ,
(12.18)

which can be interpreted as a kind of “Lorentz transformation” in a two-
dimensional Minkowski space, and the use of such “vectors” should be
accompanied by the requirement for an invariance under these transfor-
mations.

We now introduce the following projectors which are repeatedly used in
what follows8: {

Πµν = ηµν − uµuν + nµnν ,

Ωµν = uµuν − nµnν .
(12.19)

7A. Lichnérowicz, Relativistic Magnetohydrodynamics (Benjamin, New York, 1971).
8This projector should not be confused with the polarization operator used repeatedly

in this book with the same notation. For the polarization operator, one generally indicates
the variables on which it depends.
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The projector Πµν is a projection over the two-plane orthogonal to the
one spanned by uµ and nµ. It possesses uµ as timelike and nµ as spacelike
eigenvectors; it has two other spacelike eigenvectors — say, rµ and sµ —
which can always be chosen as being mutually orthogonal and of length −1:


Πµνuν = Πµνnν = 0,

Πµνrν = rν ,

Πµνsν = sν .

(12.20)

The four-vectors (rν , sν) are no more unique than (uν , nν) and the whole
family of possible such eigenvectors are given by{

s′µ = sµ cosφ+ rµ sinφ,

r′µ = −sµ sinφ+ rµ cosφ.
(12.21)

With these notations, one easily finds the useful relations

Πµ
νF

να = Fµα,

Πµν = −(rµrν + sµsν) = − 1
h2
FµαFµ

ν ,

rµ =
1
h
Fµ

ν s
ν = −εµναβnαuβsν ,

Fµν = −h(rµsν − rνsµ).

(12.22)

The projector Ωµν is a projection over the two-plane spanned by uµ and
nµ. Finally, the four-potential associated with the magnetic field Fµν reads

Aµ(x) = −1
2
Fµ

νx
ν (12.23)

in the Lorentz gauge. Note also the useful relations


Πµν =
1
h2
FµαF ν

α,

Ωµν =
1

4h2
∗Fµα∗F ν

α.

(12.24)

12.2. The Partition Function

Let us now study the various thermodynamical functions of the electron
gas in a strong magnetic field. The additive first integrals of the movement
are essentially:9 Q̂, the charge of the system; uµP̂

µ, the energy; and nµP̂
µ,

9There also exists the rotation around the magnetic field; however, we do not consider
it. Neither do we deal with the collective movements along the magnetic field.
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the moment along the magnetic field. The partition function of the system
then reads

ρstat =
1
Z

exp[−β(uµP̂
µ − µQ̂)], (12.25)

where H ≡ P̂ 0 and the parallel component of P̂ has been “forgotten”: there
are no parallel collective fields. From this equation the following formulae
are obtained: 



neq =
1
β

∂ lnZ
∂µ

,

ρ= uµuνT
µν,

P⊥= −1
2
ΩµνT

µν ,

P||= nµnνT
µν ,

(12.26)

from which several derivations of these quantities can easily be obtained.
The partition function is thus

Z = {exp[−β(H − µQ̂)]}, (12.27)

where we have retained only the main additive first integrals, H and Q̂,
leaving the remaining one. Let us now calculate this partition function.
First, the Hamiltonian has the form

H =
∑

n,σ,p||

√
m2 + p2

|| +
B

Bcrit
(2n+ σ + 1)[a+

n,σ,p||an,σ,p|| + d+
n,σ,p||dn,σ,p|| ],

Q̂ =
∑

n,σ,p||

[a+
n,σ,p||an,σ,p|| − d+

n,σ,p||dn,σ,p|| ], (12.28)

where the creation (destruction) operators of the electrons read
{a+

n,σ,p|| , an,σ,p||} ≡ {a+
n,σ,p||an,σ,p|| + an,σ,p||a

+
n,σ,p||} = I and similarly for

the positrons (d’s and d+’s), and obey the commutation relations

{a+
n,σ,p|| , an′,σ′,p′||

} ≡ {a+
n,σ,p||an′,σ′,p′||

+ an′,σ′,p′||
a+

n,σ,p||}
= δnn′δσσ′δp||p′|| , (12.29)

and zero when one of the quantum numbers is different. They are related as

ψ =
∑

�

[a�u�e
−iE�t + d+

� v̄�e
+iE�t],

ψ̄ =
∑

�

[a+
� ū�e

+iE�t + d�v�e
−iE�t].

(12.30)
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Next, since this is a system without interaction, it can be treated as in
Chap. 7, or as

Z =
∑

q

∏
n�

exp(−β[n�E� − µ])

=
∑

q

∏
n�

{exp(−β[E� − µ])}n�

, (12.31)

where n�(n� = 0, 1) is the eigenvalue of a�, where q is the total charge and
� = {χ;σ;n; p||}. Finally, the partition function appears to be

logZ =
∑

�

{1 + exp[−β(E� − µ)]}

=
∑

p||,n,σ

{
1 + exp

[
−β

(√
m2 + p2

|| +
B

Bcrit
(2n+ σ + 1)− µ

)]}
,

(12.32)

where we have restricted this formula to electrons.
Now let us look at the sum

∑
which occurs in this last expression, and

let us use the developments of V. Canuto and H.Y. Chiu (1970) to calculate
the degeneracy level. We then consider the sum

1
2π

∑
p⊥1

∑
p⊥2

→
∫ +∞

−∞

∫ +∞

−∞
dp⊥1 dp⊥2, (12.33)

which, in cylindrical coordinates, reads∫ +∞

−∞

∫ +∞

−∞
dp⊥1dp⊥2 =

∫ ∞
0

p⊥dp⊥
∫ 2π

0

dφ = π

∫ ∞
0

dp2
⊥. (12.34)

Classical quantization yields

p2
⊥ → 2nm2 B

B0
(12.35)

and from the quantization of energy it is actually a harmonic oscillator. To
obtain this degeneracy, it is sufficient to evaluate the equation

dp⊥1dp⊥2

2π
, (12.36)

between two successive levels of the energy, the way one quantum of action
of continuous level coalesces into

dn =
1
2π

∫ n+1

n

dp⊥1 dp⊥2, (12.37)



February 12, 2011 11:38 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch12 FA

Strong Magnetic Fields 317

and one gets

dn =
m2

2π
B

B0
. (12.38)

Therefore, one has

∑
f

→ 1
(2π)2

m2 B

B0

∑
n

∑
s

∫ +∞

−∞
(12.39)

for the summation over the states of the system.
Finally, logZ is written as

logZ =
e

(2π)2
B

|e|
r=2∑
r=1

∞∑
n=0

∫ +∞

−∞
dξ {ln(1 + exp−β[Er,n(ξ)− µ])

+ ln(1 + exp−β[Er,n(ξ) + µ])}, (12.40)

where the first bracket in the integral corresponds to the electrons, while
the other one is that of positrons, which we have restituted.

12.2.1. Magnetization of an electron gas

As an example where the above calculations of the partition function
work, we now calculate the magnetization. From the magnetic moment
operator M̂ ,

M̂ = −∂H
∂B

, (12.41)

we are going to take the average value

M = 〈M̂〉 = Tr(ρstatM̂); (12.42)

however, before this is done a few explanatory words are in order. In the
magnetic moment operator, it is the derivative with respect to B which
plays a role and not with respect to h; B is the magnetic induction, while
h is the magnetic field. They are interrelated via the formula

B = H +M(B) (12.43)

and, unlike what was done previously where there was no distinction
between H and B, now we have to be a little bit more serious. In par-
ticular, the Larmor radius should contain B and not H :

r0 =
eB

m
. (12.44)
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It is, indeed, shown that an orbiting electron is sensitive to the mag-
netic induction and not to the ambient magnetic field. In particular, the
eigenenergy of H is

En,s,p|| =
√
m2 + p2

|| +
B

Bcrit
(2n+ s+ 1). (12.45)

Let us now calculate the average value M . We have

〈M̂〉 = −Tr
(
ρstat

∂H

∂B

)

= β
∂

∂B
lnZ(T,B) (12.46)

(H is the Hamiltonian) or, in terms of the partition function,

M =
1
β

∂

∂B

∑
α

dn ln[1 + exp(−βEα + βµ)]. (12.47)

With the substitution∑
α

→
∑
p,n,s

dn, dn =
1
2π
m2 B

B0
, (12.48)

introduced into Eq. (12.46), a form of the magnetization is written as

M =
e

π2
m2

(
− B

Bcrit

∞∑
n=0

n

∫ ∞
0

dξ

εn

1
1 + eβmεn

+
1
2

1
βm

∫ ∞
0

dξ ln{1 + exp[−βmε0(ξ) + βµ]}

+
1
βm

∞∑
n=1

∫ ∞
0

dξ ln{1 + exp[−εn(ξ)mβ + βµ]}
)
. (12.49)

There exists, however, a simpler form for the magnetization obtained after
an integration by parts,∫ ∞

0

dξ ln{1 + exp[−βmεn(ξ) + βµ]} ≡ βm
∫ ∞

0

dξ
ξ2

εn(ξ)
1

1 + eβmεn(ξ)−βµ
,

(12.50)

which reads

M =
e

π2
m2

[
− B

Bcrit

∞∑
n=0

n

∫ ∞
0

dξ

εn(ξ)
1

1 + eβmεn(ξ)

+
1
2

∫ ∞
0

dξ

ε0(ξ)
ξ2

1
1 + exp[βmε0(ξ)− βµ]

+
∞∑

n=1

∫ ∞
0

dξ

εn(ξ)
ξ2

1
1 + eεn(ξ)mβ−βµ

]
. (12.51)
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12.3. Relativistic Quantum Liouville Equation

In this chapter, a slight modification of the covariant Wigner function is
used and it reads

Fnew(x, p) =
1

(2π)4

∫
d4R exp(−iπ · R)

〈
ψ̄

(
x+

1
2
R

)
⊗ ψ

(
x− 1

2
R

)〉
,

(12.52)

where we have set

πµ = pµ + eAµ(x). (12.53)

With this definition, the ideal electron gas thermodynamic quantities
are gauge-invariant since the energy–momentum tensor is itself gauge-
invariant,

∗T µν = Sp
∫
d4p pµγνFnew(x, p), (12.54)

as mentioned in Chap. 8. In what follows, the index “new” is suppressed.
From this definition for F (x, p) and Dirac’s equation, one easily finds

[R. Dominguez Tenreiro and R. Hakim (1982)] the relativistic quantum
Liouville equations as


{iγ · ∂ + 2(γ · p−m) + ieFα

µγ
µ∇α}F (x, p) = 0,

F (x, p){iγ ·
←
∂ − 2(γ · p−m) + ieFα

µγ
µ · ∇α} = 0.

(12.55)

Note that the Lorentz gauge condition, which is linear in xµ, gives rise in
these equations to the terms

ieFα
µγ

µ ∂F

∂pα
. (12.56)

This equation is now investigated a bit further by looking at its form for
x-independent solutions F (x, p) = F (p). To this end, F is decomposed on
the basis of the algebra of the 16 Dirac matrices as

F (x, p) =
1

4


f(x, p)I + fµ(x, p)γµ +

1

2
f(x, p)σµν + f5(x, p)γ5 + fµ

5 (x, p)γµγ5

ff
,

(12.57)

with

fA(x, p) =
1
4
Sp[γAF (x, p)], A = 1, 2, . . . , 16, (12.58)
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and one finds the system


2ipµf
µ − 2imf − eFµα ∂

∂pα
fµ = 0,

2ipµf
µ − 2imf + eFµα ∂

∂pα
fµ = 0,

(12.59)




2ipµf
µ
5 + 2imf5 − eFα

µ
∂

∂pα
fµ
5 = 0,

2ipµf
µ
5 − 2imf5 + eFα

µ
∂

∂pα
fµ
5 = 0,

(12.60)




2ipµf − 2imfµ − 2ipαfµα − eFα
µ
∂

∂pα
f + eFαβ ∂

∂pα
fµβ = 0,

2ipµf − 2imfµ + 2ipαfµα + eFα
µ
∂

∂pα
f + eFαβ ∂

∂pα
fµβ = 0,

(12.61)




−2ip[µfν] + 2imfµν + 2εαλµνp
αfλ

5 + eFα
µ
∂

∂pα
fν]

+ ieελβµνF
αβ ∂

∂pα
fλ
5 = 0,

−2ip[µfν] + 2imfµν − 2εαλµνp
αfλ

5 − eFα
µ
∂

∂pα
fν]

− ieελβµνF
αβ ∂

∂pα
fλ
5 = 0,

(12.62)




−εβσλµp
βfσλ − 2ipµf5 − 2imf5µ

− i

2
eεβσλµF

αβ ∂

∂pα
fσλ + eFα

µ
∂

∂pα
f5 = 0,

+εβσλµp
βfσλ − 2ipµf5 + 2imf5µ

− i

2
eεβσλµF

αβ ∂

∂pα
fσλ − eFα

µ
∂

∂pα
f5 = 0.

(12.63)

This system has a more useful form by adding and subtracting the equations
of each couple, and it reads


pµf

µ −mf = 0,

eFα
µ
∂

∂pα
fµ = 0,

(12.64)
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pµf

µ
5 = 0,

eFα
µ
∂

∂pα
fµ
5 − 2imf5 = 0,

(12.65)




2ipµf − 2imfµ − eFαβ ∂

∂pα
fβµ = 0,

−2ipβfβµ + eFα
µ
∂

∂pα
f = 0,

(12.66)




2p[µfν] − eεβλµνF
αβ ∂

∂pα
fλ
5 = 0,

2εβλµνp
βfλ

5 + 2imfµν + eFα
[µ

∂

∂pα
fν] = 0,

(12.67)




4pµf5 + eεσλβµF
αβ ∂

∂pα
fσλ = 0,

εβσλµp
βfσλ + 2imf5µ − eFα

µ
∂

∂pα
f5 = 0.

(12.68)

12.3.1. Solution of the inhomogeneous equation

The solution to the inhomogeneous Liouville equation


{
iγ · ∂ + 2(γ · p−m) + ieFα

µγ
µ ∂

∂pα

}
F (x, p) = S1,

F (x, p)

{
iγ ·

←
∂ − 2(γ · p−m) + ieFα

µγ
µ

←
∂

∂pα

}
= S2

(12.69)

is of importance when one is dealing with some kinetic equation or the
linearized Vlasov equation, for instance. The source terms S1 and S2 cannot
a priori be chosen arbitrarily and they must be consistent with each other,
as explained in Chaps. 8 and 10. A simple example is provided elsewhere
[R. Dominguez-Tenreiro and R. Hakim (1977)]. Given S1 and S2, it is not
difficult to find whether they are consistent or not (see Chap. 10).

It can be shown that the general solution F (x, p) depends on the two
functions f(x, p) and f5(x, p) only. This can be done by expanding the above
system on the basis of the Dirac algebra and after simple calculations [for
details see R. Hakim and H. Sivak (1982)]; it is therefore sufficient to solve
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the inhomogeneous equations

p · ∂f(x, p) + eFµνpν

∂

∂pµ
f(x, p) = Y,

p · ∂f5(x, p) + eFµνpν
∂

∂pµ
f5(x, p) = Y5,

(12.70)

which can both be written in the generic form
d

dτ
f = Y, (12.71)

since these equations are the usual Liouville equations; τ is the proper time.
The solution is thus of the form

f(x, p) = f0(x, p) +
∫ τ

ds Y [x(s), p(s)] (12.72)

where the integration lies on the classical trajectories.10 Such an integration
has already been done in the relativistic nonquantum case by B. Kursunoglu
(1966) and by O. Buneman (1968) in an investigation of the collective modes
of a relativistic classical magnetized plasma. Using covariant cylindrical
coordinates {

p · r = −p⊥ cos θ,

p · s = −p|| sin θ,

{
p · u = pu,

p · n = −p||,
(12.73)

{
k · r = −k⊥ cosϕ,

k · s = −k|| sinϕ,

{
k · u = ω,

k · n = −k||,
(12.74)

where the four-vectors rµ and sµ have been discussed at the beginning of
this chapter, and Fourier–transforming the Liouville equation, one is led to
the equation {

∂

∂θ
+ iλ2(ωpu − p||k||)− i(λ2p⊥k⊥ cosϕ) cos θ

− λ2p⊥k⊥ sinϕ sin θ
}
f = λ2Y (12.75)

(λ2 ≡ −1/eh), whose solution is of the form [B. Kursunoglu (1966)]

f = λ2 exp[−Λ(θ)]
∫ θ

−ε.∞
dθ′ exp(Λ(θ′))Y (θ′), (12.76)

10The word “classical” does not imply in any way a possible classical limit; the above
equations are fully quantal and “classical” merely refers to a mathematical problem
where it happens that the equation under study looks like a classical equation.
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where11

Λ(θ) ≡ iλ2(ωpu − p||k||)θ − iλ2p⊥k⊥ sin(θ − ϕ). (12.77)

Details of the calculation can be found in B. Kursunoglu (1966) and
O. Buneman (1968).

It remains for one to give the explicit expression of F (x, p) in terms of
f(x, p) and f5(x, p); this has been done elsewhere [R. Hakim and H. Sivak
(1982)], and such an expression is quite long and so will not be given here.

This achieves the solution to the inhomogeneous Liouville quantum
system.

12.3.2. The initial value problem

Given the covariant Wigner function FΣ(x, p) on a specific spacelike surface
Σ, what is the solution in the future of Σ? In other words, we look for a
kernel Kµ(x, p; x′, p′) such that

F (x, p) =
∫

Σ

dΣ′µ d
4p′Kµ(x, p;x′p′)FΣ(x′, p′) (12.78)

reduces to FΣ(x, p) whenever x lies on Σ.
When it is observed that the Cauchy problem for the Dirac spinors is

solved, this can easily be extended to the Wigner function. One has in fact

ψ(x) =
∫

Σ

dΣ′µS(x− x′)γµψΣ(x′), (12.79)

where S(x− x′) is given by12

S(x− x′) =
∑

r

ψ̄r(x) ⊗ ψr(x′). (12.80)

Next, using the definition of FΣ,

FΣ(x, p) =
1

(2π)4

∫
d4R exp(−iπ ·R)

〈
ψ̄Σ

(
x+

1
2
R

)
⊗ ψΣ

(
x− 1

2
R

)〉
,

(12.81)

11ε is the sign of p · u; this means that particles turn from the infinite past to θ while
antiparticles turn to the infinite future to θ in the opposite direction.
12It is not difficult to check that this S(x − x′) actually solves the Cauchy problem for
the Dirac equations.



February 12, 2011 11:38 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch12 FA

324 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

one is led directly to the kernel

Kµ
αβα′β′(x, p;x

′, p′) =
∫
d4z d4R

∫
Σ

dΣ′′ν exp[−iπ · R+ ip′ · (x′ − x′′)]

× δ(4)
(
z − x′ + x′′

2

)
γµ
(β′ρ)S̄(ρβ)

(
x′ − x− 1

2
R

)

×
(
x′ − x− 1

2
R

)
S(αλ)

(
x− x′′ − 1

2
R

)
γν
(λα′),

(12.82)

which solves the Cauchy problem of the relativistic quantum Liouville
equation. Note that the indices between parentheses refer to spinor indices.

12.4. The Equilibrium Wigner Function for Noninteracting
Electrons

Let us begin with the density operator of such a system. It possesses three
additive first integrals, the total charge Q, the energy u ·P , the momentum
parallel to the magnetic field P|| and the projection of the total angular
momentum on the magnetic field axis FµνJµν , with

Jµν = Lµν + Sµν . (12.83)

Finally, the grand-canonical density operator is written as

ρ =
1
Z

exp(−βu · P + βµQ− βAFµνJ
µν), (12.84)

where µ is the chemical potential and A is given by

A =
ω

B
, (12.85)

where B is the magnetic field induction and ω the angular velocity of the
system around the magnetic field. An alternative way to write the density
operator is

ρ =
1
Z

exp(−βµΩµνPν + βµQ− βAFµνJ
µν), (12.86)

where βµ is an arbitrary four-vector of length β. When βµ is chosen to
be a timelike eigenvector of Ωµν , the invariant βµΩµνPν reads βP 0 in its
rest frame and there is no collective motion parallel to the magnetic field.
It should be noted that ΩµνPν actually represents two, and not four, con-
stants of the motion since Ωµν is a rank 2 matrix (remember that it is a
projection on the two-plane spanned by the four-vectors nµ and uµ). In
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what follows, the collective motions of the magnetized electron gas will not
be considered — neither those parallel to the magnetic field nor the possible
rotations around it; and use will be made of

ρ =
1
Z

exp(−βu · P + βµQ). (12.87)

For future use, let us calculate the partition function Z of such a system or
any system of free fermions. As mentioned in Chap. 7, it always possesses
the general form

Z =
∑
r,±

ln{1 + exp(−β[Er ∓ µ])}, (12.88)

where r is the set of those quantum numbers that characterize the state of
the system and ± refers to the electrons and the positrons respectively,
whose energy is Er . The sum over the quantum numbers nonexplicitly
contained in the energy eigenvalue provides the degeneracy level, i.e.

dn =
1
2π
|e|B
m2

. (12.89)

In the magnetized electron gas case, one has


r≡ {a, s, n, p||}, a ∈ �; s = ±1;n = 0, 1, 2, . . . ; p|| ∈ �,

∑
r
→

∞∑
n=0

∑
s=±1

1
2π

∫
dp||

1
2πλ2

∫
da,

Er =
√
m2 + p2

|| +
B

Bcrit
(2n+ s+ 1),

(12.90)

and one then gets

lnZ =
∞∑

n=0,±

1
(2π)2

m2

Bcrit

∫ +∞

−∞
dp|| ln(1 + exp{−β[En(p||)∓ µ]}).

(12.91)

In this last equation a vacuum term has been dropped. Note that a careless
application of the usual formulae of statistical thermodynamics would give
incorrect results, as is the case of the pressure which is not proportional to
the derivative of Z with respect to the volume (see below).

12.4.1. Thermodynamic quantities

The first quantity of interest is the average charge of the electron system

〈Q〉 = 1
β

∂

∂µ
lnZ, (12.92)



February 12, 2011 11:38 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch12 FA

326 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

or

〈Q〉 =
∫

Σ

dΣµ〈Jµ〉, (12.93)

with

〈Jµ〉 =
∫
d4p fµ(p), (12.94)

and from the only timelike available four-vector uµ, one necessarily has

〈Jµ〉 =
∫
d4p fµ(p) = nequ

µ. (12.95)

The next important quantity, which involves the energy density and the
pressures within the system, is the average energy–momentum tensor. Its
most general form is

T µν = ρuµuν − P⊥Πµν + P||nµnν , (12.96)

so that the energy density and the perpendicular and the parallel pressures
are given by 


ρ= uµuνT

µν,

P⊥= −1
2
ΠµνT

µν,

P||= (uµuν − Ωµν)T µν = nµnνT
µν .

(12.97)

The anisotropy of the electrons’ energy–momentum tensor is the main
feature of such a system. However, in the thermodynamics of the system, it
is the whole energy–momentum tensor which must be taken into account,
including the magnetic field one:


T µν

tot = ρuµuν − P⊥Πµν + P||nµnν + T µν
magn,

T µν
magn =

1
4π

(
FµαF ν

α − 1
4
ηµνFαβF

αβ

)
,

(12.98)

and not that of electrons only.

12.5. The Wigner Function of the Ideal Magnetized
Electron Gas

From the available tensors in the theory and the form of the quantum
Liouville equation, it can be shown that the equilibrium Wigner function



February 12, 2011 11:38 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch12 FA

Strong Magnetic Fields 327

can be expressed in terms of feq(p) only.13 A direct calculation confirms
this property. The direct calculation can be achieved in several ways. For
instance, the average value of 〈ψ̄(x + 1

2 ) · ψ(x− 1
2 )〉 can be computed as〈

ψ̄

(
x+

1
2

)
· ψ
(
x− 1

2

)〉
=
∑
r,±

�r,±ψr,±

(
x+

1
2

)
ψr,±

(
x− 1

2

)
(12.98)

in order to get feq(p), with

�r,± ≡ 1
exp(βEr ∓ βµ) + 1

. (12.99)

�r,± is the statistical weight of the state (±, r) and the sum over these
states is intended to mean the average value. As to

∑
r

→
∞∑

n=0

∑
s=±1

1
2π

∫
dp||dn

∫
da, (12.100)

it represents a sum over all quantum numbers representing a Landau level
[see Eq. (12.7)]. After a straightforward calculation, one obtains for feq(p)

feq(p) =
2m

(2π)3
exp(w)×

{
1
E0

δ(p · u− E0)
exp(β[E0 − µ]) + 1

+
∞∑

n=1

(−1)n

En

δ(p · u− En)
exp(β[En − µ]) + 1

[Ln(−2w)− Ln−1(−2w)]

}
,

(12.101)

where w is the variable

w ≡ d−1
n Πµνpµpν , (12.102)

which is roughly the (squared) length of the four-momentum perpendicular
to the magnetic field. Ln are the Laguerre polynomials.

The other components of the equilibrium Wigner function can be cal-
culated likewise and one finds that

fµ
eq(p) =

{
pµ

m
− λ2

mw
(p2 −m2)Πµνpν

}
feq(p), (12.103)

13This has been shown in R. Hakim and H. Sivak (1982); however, it was argued by A.E.
Shabad (private communication) that a pseudoscalar was “missed” in our reasoning.
When one takes account of the PC invariance of the system, this pseudoscalar vanishes
identically, and the original reasoning becomes correct.
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fµν
eq (p) = Fµν i

h

2m
(2π)3

exp(w)×
{

1
E0

δ(p · u− E0)
exp(β[E0 − µ]) + 1

+
∞∑

n=1

(−1)n

En

δ(p · u− En)
exp(β[En − µ]) + 1

[Ln(−2w) + Ln−1(−2w)]

}
,

(12.104)

fµ
5eq(p) = −∗Fµ

ν p
ν 1
h(2π)3

exp(w) ×
{

1
E0

δ(p · u− E0)
exp(β[E0 − µ]) + 1

+
∞∑

n=1

(−1)n

En

δ(p · u− En)
exp(β[En − µ]) + 1

[Ln(−2w) + Ln−1(−2w)]

}
,

(12.105)

f5eq(p) ≡ 0. (12.106)

12.5.1. The nonmagnetic field limit

Finally, it can be shown that the above “magnetized” Wigner function
reduces to the “nonmagnetic” one of Chap. 8, in the limit Fµν → 0. Let us
do that. The essential trick consists in making the replacement∑

n

→
∫
dn, (12.107)

so that it follows that feq(p) takes the form

feq(p) =
2m

(2π)3
exp(−w)

{∫ ∞
0

dn
δ(p0 − En)Ln(2w)
exp(β[En − µ] + 1)

−
∫ ∞

0

dn
δ(p0 − En)Ln−1(2w)
exp(β[En − µ]) + 1

}
. (12.108)

Using the property

δ(p0 − En) =
λ2

E�
δ(n− �)

� ≡ b2λ2

2
, b = [p2

0 − p2
|| −m2]1/2, λ2 =

1
|eB| , (12.109)

feq can be rewritten as

feq(p) =
2mλ2

(2π)3
exp(−w)L−1

� (2w)
exp(β[E� − µ]) + 1

, (12.110)
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where Lq
k is an associated Laguerre polynomial [I.S. Gradshtein and

I.W. Ryzhik (1965)]. On the other hand, one also has

exp(−w)L−1
� (2w) = −2�+ 1

2

(
2
π

)1/2 ( 1
�!

)
2w1/2F ,

F =
∫ ∞

0

dx exp(−x2) sin(2w1/2x)H�(x)H�−1(x). (12.111)

From the asymptotic value of the Hermite polynomial H� and from the fact
that when B → 0, then λ→∞ and hence �→∞, one gets

F � −π(�− 1)!!2�−7/2(�− 1)1/2

(
1
λ

)
δ(p⊥ − b). (12.112)

Going back to feq(p), one obtains

exp(−w)L−1
� (2w) �

(π
2

)1/2 (�− 1)!!(�− 3)!!
�!

(�− 1)1/2p2
⊥δ(p

2 −m2),

(12.113)

which, for large �, reduces to

exp(−w)L−1
� (2w) �

(
2
λ2

)
δ(p2 −m2), (12.114)

where use has been made of

�!! � Γ
(
�

2
+ 1

)
2(�+1)/2

√
π

. (12.115)

Finally, one gets the expression of feq:

lim feq(p) =
4m

(2π)3
θ(p0)

δ(p2 −m2)
exp[β(Ep − µ)] + 1

. (12.116)

The limits of the other fA’s are obtained in the same way.

12.5.2. Equations of state

Our first task is now to normalize the Wigner function, i.e. find the con-
nection between the chemical potential µ and the charge density neq.

From the four-current

Jµ =
∫
d4p fµ

eq(p) (12.117)

one obtains successively

neq =
1
m

∫
d4p p · u feq(p)

=
1

(2π)3

∫
dp0dp||d(−wdn)dθ p0feq(p), (12.118)
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which finally leads to

neq =
1

(2πλ)2

∫
dp||

{
1

exp(β[E0 − µ]) + 1
+ 2

∞∑
n=1

1
exp(β[En − µ]) + 1

}
,

(12.119)

which is the result obtained by V. Canuto and H.Y. Chiu (1968). Note that
the factor 2 which occurs in front of the sum is due to the spin degeneracy,
which does not occur for the n = 0 level: the energy of the level (n+ 1)− 1
(spin down) is the same as for (n − 1) + 1 (spin up). In the derivation of
this “normalization” condition, use was made of14∫ ∞

0

dt exp
(
−1

2
t

)
tLn(t) = (2n+ 1)(−1)n. (12.120)

12.5.3. Is the pressure isotropic?

If one starts from the thermodynamic potential, the pressure is given by

P = n2
eq

∂

∂neq
lnZ (12.121)

and thus it appears to be isotropic, unlike the results obtained by V. Canuto
and H.Y. Chiu (1968) from calculations based on the density operator or
those obtained from the Wigner function. Several authors think that this
last expression for P is the correct one, the validity of thermodynamics
being absolute. They argued — we quote Dong Lai (2001), who explained
the point of view of R.D. Blandford and L. Hernquist (1982) — that “When
we compress the electron gas perpendicular to B we must also do work
against the Lorentz force density (∇×M)×B involving the magnetization
current. Thus there is a magnetic contribution to the perpendicular pressure
of magnitude M ·B. The composite pressure tensor is therefore isotropic,
in agreement with the thermodynamic result P = Ω/V ”.

On the other hand, the calculations leading to an anisotropic energy–
momentum tensor are correct and they start from a universally admitted
microscopic viewpoint and lead to an anisotropic stress tensor, exactly as
do radiative corrections, so that the pressure appears to be anisotropic.
Note also that these anisotropies constitute a typical quantum effect.

14I.S. Gradshteyn, I.W. Ryzhyk, Tables of Integrals, Series and Products (Academic,
New York, 1965).
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Fig. 12.1 Thermodynamical quantities. The dashed lines represent the nonmagnetic
case, while the continuous ones exhibit the typical oscillatory behavior which one finds
in the de Haas–van Alphen effect, for instance. The various data are plotted against the
electron density neq/n0, where n0 = m3/π2 = 1.76×1030 particles/cm3 [after V. Canuto
and J. Ventura (1977)].

The calculation of the pressure due to the vacuum terms shows that the
system is anisotropic: there exist a parallel and a perpendicular pressure.
Finally, the various thermodynamic properties are shown in Fig. 12.1. We
note the oscillations of the various variables corresponding to a jump of one
Landau level to a consecutive one.

12.5.4. The completely degenerate case15

In the complete degenerate case, at T = 0 K, the Landau levels are
uniformly occupied untill the Fermi level, i.e. the last occupied one. This

15H.Y. Chiu and V. Canuto (1968); see also V. Canuto and J. Ventura (1977).
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occurs for a Landau level indexed by a quantum number n∗ which depends
on the electronic density, which is

neq =
Bm3

π2Bcrit

{
1
2

√
ε2f − 1 +

n=n∗∑
n=1

(
ε2f − 1− 2n

B

Bcrit

)1/2
}
, (12.122)

with, of course,

n < (ε2f − 1)
Bcrit

2B
. (12.123)

The energy density ρ is given by

ρ =
m4

π2

B

Bcrit




1
4
(ε2f − 1)2 − 1

4
ln
[
εf +

√
ε2f − 1

]

+
n=n∗∑
n=1

1
2
εf

(
ε2f − 1− 2n

B

Bcrit

)1/2

+
n=n∗∑
n=1

1
2

(
1 + 2n

B

Bcrit

)

× ln


εf +

(
ε2f − 1− 2n B

Bcrit

)1/2

1 + 2n B
Bcrit




,

(12.124)

while the pressures are


P⊥ =
(

B

Bcrit

)2 n=n∗∑
n=1

n ln



εf +

(
ε2f − 1− 2n

B

Bcrit

)1/2

1 + 2n
B

Bcrit


,

P|| =
m4

π2

B

Bcrit




1
4
(ε2f − 1)2 − 1

4
ln
[
εf +

√
ε2f − 1

]

+
n=n∗∑
n=1

1
2
εf

(
ε2f − 1− 2n

B

Bcrit

)1/2

−
n=n∗∑
n=1

1
2

(
1 + 2n

B

Bcrit

)

× ln


εf +

(
ε2f − 1− 2n B

Bcrit

)1/2

1 + 2n B
Bcrit




.

(12.125)

Note that the above condition on n implies that n∗ is given by

n∗ +
s+ 1

2
=
(
E

m

)2
Bcrit

2B
. (12.126)
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This equation comes from the expression of E and from minimizing the
energy with respect to p||. This explains the oscillations in the various
thermodynamical quantities. Suppose that the electron has the highest level
and we add some more energy. Then the electron energy begins not at the
level n but rather at p|| �= 0; and this occurs untill the level n + 1 is
reached, at which p|| comes again, with the value p|| = 0. Thus, there exists
an oscillation between p|| and the increase of the quantum n.

This means that the stronger the magnetic field is, the lower n∗ will
be; also, the higher the density is, the higher n∗ will be. Therefore, the
typical oscillatory behavior of the thermodynamical data is expected for
low values of n∗ and, accordingly, at low density and/or high magnetic
fields. As remarked by V. Canuto and J. Ventura (1977), in a typical white
dwarf (where neq ≈ 1030 particles/cm3 and B ≈ 108G) one finds that
n∗ ≈ 106, while for a typical neutron star one still finds that n∗ ≈ 106.
However, the quantizing effects of the strong magnetic field can show up in
the much less dense plasma surrounding a pulsar.

Finally, let us note that in an interesting article C.O. Dib and O.
Espinosa (2001), expressing various thermodynamical quantities in terms
of Hurwitz functions (see their article), gave their temperature dependence
starting from the fully degenerate case.16 For instance, they gave for the
grand potential at finite temperature

Ω(T, µ) =
∫ ∞
−(µ−1)/T

dxΩ0(µ+ Tx)
exp(x)

[exp(x) + 1]2
, (12.127)

where Ω0 corresponds to the zero temperature case.

12.5.5. Magnetization

Here we follow the approach of V. Canuto and J. Ventura (1977) and start
with the usual thermodynamic definition of the magnetization17:

M =
1
β

∂

∂B
lnZ. (12.128)

The partition function Z of the system has already been calculated as

lnZ =
∑

r

ln{1 + exp(−β[Er − µ])}, (12.129)

where r still represents the ensemble of all quantum numbers that define the
state of an electron, and where the sum also involves an integral. Remember

16This result, although apparently correct, seems a bit strange, the more so since it is
known that the zero temperature case often contains pathologies.
17See e.g. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics
(Wiley, New York, 1985).
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Fig. 12.2 The magnetization as a function of the magnetic field (in units of hcrit) for
the Fermi energy εf = 4. The other curves correspond to εf = 8, 16 [after C.O. Dib and
O. Espinosa (2001)].

that the degeneracy of the Landau levels does depend on the magnetic field
itself and hence is taken into account18 in the derivation of M . Deriving
lnZ with respect to β, one finds that

M =
1
π2

e

D̄2
Compton

(
− mB

Bcrit

∞∑
n=0

n

∫ ∞
0

dx

εn(x)
1

exp{mβ[εn(x) − µ]}+ 1

+
1
2β

∫ ∞
0

dx ln{1 + exp(−mβ[ε0 − µ])}

+
1
β

∞∑
n=1

∫ ∞
0

dx ln{1 + exp(−mβ[εn − µ])}
)
, (12.130)

with the notations

x ≡ p

m
, εn(x) ≡ En(x)

m
. (12.131)

An integration by parts of the last two terms and a comparison with pre-
vious results led these authors to the following final expression for the
magnetization of the system:

M =
P|| − P⊥

B
. (12.132)

18V. Canuto and J. Ventura (1977) gave several examples of incorrect calculations per-
formed when one does not take this B dependence into account.
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Thus the magnetization of the system appears to be proportional to the
degree of anisotropy of the electron pressure. It is interesting to note that
this relation is also valid for the magnetized vacuum [H. Sivak (1986)].

12.5.6. Landau orbital ferromagnetism: LOFER states

An interesting way to generate magnetic fields has been suggested by V.
Canuto, H.Y. Chiu and C. Chiuderi (1969), which they called Landau orbital
ferromagnetism, since the Landau levels play an essential role in their mech-
anism. They noticed that, in the above considerations, one has to make the
usual distinction between the external magnetic field H and the magnetic
induction B, to which the particle are sensitive through their equations of
motion, B and H being connected by the relation

B = H + 4πM(B), (12.133)

where M(B) is the magnetization of the medium. The question they raised
is then: Is it possible that when the external field H is switched off, the
above equation has a nonvanishing solution for B? The answer can be given
numerically only, owing to the involved character of M(B), and the result is
shown in Fig. 12.3, at T = 0 K. There exist several possible solutions. The
T �= 0 K case can be expected to smoothen the oscillatory curves, which
presents more and more oscillations with less and less intersections with
the straight line in the figure.

Unfortunately, this interesting mechanism is eliminated by Coulomb
interactions, as shown by J. Schmidt-Burgk (1973). However, it could still
be valid in other circumstances (magnetars) and should be studied in the
case of colored fields.

Fig. 12.3 Graphical representation of the possible solutions to the equation M(B) = B.
The oscillatory line is M(B) [after V. Canuto and J. Ventura (1977)].
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12.6. The Magnetized Vacuum

In the presence of a strong magnetic field, the vacuum becomes mag-
netized and hence acquires anisotropy.19 As a consequence, the vacuum
Wigner function of this magnetized vacuum also reflects this anisotropy,
and the magnetized Dirac ocean is different from that of ordinary electrons.
The vacuum Wigner function plays an important role in the process of
renormalization.

12.6.1. The general structure of the vacuum

Wigner function

One could calculate the vacuum Wigner function directly; it is, however,
more instructive to determine a priori its general structure from the
quantum Liouville equation it obeys and the available tensor in the magne-
tized vacuum, namely pµ, ηµν and Fµν . From the fact that a pseudoscalar
cannot be built up from these tensors, we deduce that f5

vac ≡ 0. Also, since
∗Fµνpν is the only pseudovector at our disposal, we have

fµ
5vac(p) = a(p)∗Fµνpν . (12.134)

Similarly, fµ
vac assumes the general form

fµ
vac = b(p)pµ + c(p)Fµνpν . (12.135)

Note that b(p) and c(p) are actually functions of p since p2 �= m2. We now
have to specify fµν

vac. To this end, the equation

−2ipβfβµ + eFα
µ
∂

∂pα
f = 0 (12.136)

can be rewritten as

pβ

[
if βµ(p)− eFβµ

∂

∂p2
fvac(p)

]
= 0. (12.137)

It follows that this last equation has the form

pµAµν(p) = 0

19A. Minguzzi, Nuovo Cimento 4, 476 (1956); ibid. 6, 501 (1957); J.J. Klein and B.P.
Nigam, Phys. Rev. B135, 1279 (1964); H. Constantinescu, Nucl. Phys. B36, 121 (1972);
D.B. Melrose and R.J. Stoneham, Nuovo Cimento A32, 435 (1976; ibid., J. Phys. A10,
1211 (1977); A.E. Shabad, Lett. Nuovo Cimento 3, 457 (1972); ibid., Ann. Phys. (N.Y.)
90, 166 (1975); I.A. Batalin and A.E. Shabad, Sov. Phys. JETP 33, 483 (1971); Y.T.
Wu, Phys. Rev. D10, 2699 (1974).
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and hence

Aµν(p) = d(p)∆µν(p) (12.138)

or, equivalently,

fβµ(p) = eFβµ
∂

∂p2
fvac(p) = d(p)∆µν(p) (12.139)

where the right-hand side is symmetric ans the left-hand one is antisym-
metric. The can occur only when d(p) = 0. Finally we have

fβµ(p) = eFβµ
∂

∂p2
fvac(p) (12.140)

Finally, with use of the second equation (12.68)

fµ
5 (p) = − e

2m
∗Fµνpv

∂

∂p2
fvac(p). (12.141)

From Eqs. (66a) and (12.141) the equation for fµ(p) is obtained:

fµ(p) =
pµ

m
f(p) +

e

2im
Fα

βF
βµ ∂

∂pα

[
−ie ∂

∂p2
f(p)

]
(12.142)

(e is the electron charge). The right hand side of this last equation can be
rewritten as

+
(
e2

m

)
H2Πµαpα

∂2

∂(p2)2
f(p) (12.143)

Also, the second derivative in this last equation can be evaluated with the
help of Eq. (64a) as

∂2

∂(p2)2
f(p) =

(
1

e2H2Παβpαpβ

)
(p2 −m2)f(p), (12.144)

so that, finally, the general form of the vacuum Wigner function is found
to be

Fvac(p) =
1
4

{
I + γµ

[
ηµ

ν −
(
dn

|w|
)

(p2 −m2)Πµ
ν

]
pν

m

+
1
2
σµνF

µν i

H

∂

∂w
− γ5γµ 1

2Hm
∗Fµνp

ν ∂

∂w

}
fvac(p).
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12.6.2. The wigner function of the magnetized vacuum

Since a vacuum is invariant under space–time translations, the general form
of its Wigner function Fvac(p) is the one already obtained above and its
determination reduces to that of fvac(p). Expanding the fields ψ(x) and
ψ̄(x) as 


ψ(x) =

∑
n,σ

ψσ,n+aσ,n + ψσ,n−d+
σ,n,

ψ̄(x) =
∑
n,σ

ψ̄σ,n+a
+
σ,n + ψ̄σ,n−dσ,n,

(12.145)

using the vacuum density operator

ρvac = |vac〉〈vac|
and the definition of f(p), it appears that the only surviving term is the
one that involves products of the form dn,σd

+
n,σ, so that〈

vac
∣∣∣∣ψ̄
(
x+

1
2
R

)
ψ

(
x− 1

2
R

)∣∣∣∣ vac
〉

=
∑

r

ψ̄r

(
x+

1
2
R

)
ψr

(
x− 1

2
R

)
,

(12.146)
where ψr ≡ ψn,σ− and r = {n, p||, (−a), σ} is the set of the quantum
numbers necessary for specifying the state of the electron. One then obtains
[H. Sivak (1986)]20

fvac(p) = −
[

4m
(2π)3

exp(w)θ(−p · u)

×
{ ∞∑

n=0

(−1)n

En
δ(Ωαβpαpβ −m2 − 2n|e|B)L−1

n (−2w)

}]
,

(12.147)

which indicates that the negative energy states are uniformly occupied —
an expected result.

Finally, the Wigner function of the magnetized vacuum reads

Fvac(p) =
1

4m

{
m+ γµ

[
pµ −Πµνpν

p2 −m2

Παβpαpβ

]
+
im

2H
σµνF

µν ∂

∂w

− 1
2H

γ5γµ∗Fµνp
ν ∂

∂w

}
fvac(p), (12.148)

which, of course, leads to divergent expressions for the average four-current
or the energy–momentum tensor.

20Another equivalent expression has been given in R. Hakim and H. Sivak (1982).
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12.6.3. Renormalization of the vacuum Wigner function

A renormalized expression for Fvac(p) — say, FR
vac(p) — that leads to finite

physical results can be obtained by subtracting from Fvac(p) the first two
terms of the McLaurin series as

FR
vac(p,H) = Fvac(p,H)− Fvac(p, 0)− ∂Fvac(p, h)

∂h2

∣∣∣∣
h=0

H2. (12.149)

This is based on the fact that our basic reference is the unmagnetized
vacuum and the need for a finite electron charge21; this leads to redefining
both the magnetic field and the electron charge as



H ≡ H0

{
1 + 8π

∂

∂H2
0

ρ

∣∣∣∣
H0=0

}
,

e≡ e0
{

1 + 8π
∂

∂H2
0

ρ

∣∣∣∣
H0=0

}−1

,

(12.150)

where ρ is the vacuum energy density.
After some calculations [see H. Sivak (1986)], one finds that

fR
vac(p) = − 8m

(2π)4
θ(−p · u)Re

∫ ∞
0

ds exp(i[Ωµνpµpν −m2 + iε]s)

×
{
exp(iw tan s|e|H)− exp(iws|e|H)

[
1 + i

w

3
(s|e|H)3

]}
.

(12.151)

With this renormalized Wigner function one can calculate various radiative
corrections and, in particular, as to the energy–momentum tensor of the
magnetized vacuum

T µν
vac = Tr

∫
d4p pµγνFR

vac(p), (12.152)

which leads to

T µν
vac = ρΩµν − P⊥Πµν , (12.153)

with


ρ=
e2H2

8π2

∫
ds

s2
exp

(
− sm

2

|e|H
)
·
(

coth s− 1
s
− s

3

)
,

P⊥= −e
2H2

8π2

∫
ds

s
exp

(
− sm

2

|e|H
)
·
(

coth2 s− 1
s2
− 2

3

)
,

(12.154)

21E. Lifschitz and L. Pitayevski, Relativistic Quantum Theory (Mir, Moscow, 1973).



February 12, 2011 11:38 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch12 FA

340 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

where P⊥ is the orthogonal pressure of the magnetized vacuum. Finally, the
total energy–momentum tensor is obtained by adding to T µν

vac the energy–
momentum tensor of the magnetic field itself,

T µν
H =

H2

8π
(Ωµν −Πµν), (12.155)

where T µν
H is the well-known Euler–Heisenberg expression for the energy

density of the magnetized vacuum, while P⊥ represents the radiative cor-
rections to the pressure orthogonal to the magnetic field.

12.7. Fluctuations

The importance of the equilibrium fluctuations has already been empha-
sized; in particular, it provides — via the use of the inverse of the
fluctuation–dissipation theorem — a way to derive the plasma modes. Fur-
thermore, the knowledge of the spectrum of the four-current fluctuations
provides a direct calculation to the noninteracting Fermi gas.

From Ω, the usual thermodynamic potential

Ω = −β−1 ln[Tr exp(−β[H0 +Hint] + βµQ)], (12.156)

we have
∂Ω
∂e

=
1
e

Tr{exp[−β(H0 +Hint − µQ)]Hint}
Tr{exp[−β(H0 +Hint − µQ)]} (12.157)

or
∂

∂e
Ω =

1
e
〈Hint〉. (12.158)

H0 and Hint are the free and the interaction22 Hamiltonians, respectively.
Using now Maxwell’s equations in the form

−k2Aµ(k) = 4πJµ(k), (12.159)

it follows that

Ω = Ω0 − 2
(2π)3

∫ e

0

de′

e′

∫
d4k

〈
Jλ

opJλop

k2

〉
k

, (12.160)

where Ω0 is the noninteracting case. Similarly, the knowledge of the polar-
ization tensor (see next section) gives rise to corrections23 to the thermal

22That is to say, Hint = eJop · A; Hint is a Hamiltonian and not a magnetic field.
23See e.g. E.S. Fradkin, Nucl. Phys. 12, 455 (1955); H. Perez-Rojas and A.E. Shabad,
Ann. Phys. (N.Y.) 121, 432 (1979).
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properties of the noninteracting electron gas through

Ω = Ω0 − V

(2π)3β

∑
ω,i

∫
d4k

∫ e

0

de′

e′
χi(ω,k)

k2 − χi(ω,k)
, (12.161)

where χi(ω,k) (i = 1, 2, 3) are the three nonzero eigenvalues of the polar-
ization tensor24 (see next section).

Besides the four-current fluctuations, others are worth studying
(energy–momentum tensor, etc.) and they can all be obtained from the
following “fluctuation” of the covariant Wigner function:

F(x, p;x′, p′) = 〈Fop(x, p)Fop(x′, p′)〉 − F (x, p)F (x′, p′). (12.162)

For instance, the four-current fluctuations

δJµν(x, x′) ≡ 〈Jµ(x)Jν (x′)〉 − 〈Jµ(x)〉〈Jν(x′)〉 (12.163)

can be obtained from F as

δJµν(x, x′) = Sp
∫
d4p d4p′γµ ⊗ γνF(x, p;x′, p′). (12.164)

F has been calculated elsewhere [R. Hakim and H. Sivak (1982)] and the
result is a bit too long to be reproduced here.

12.7.1. Fluctuations of the four-current

From the definition of the four-current operator and the development of the
electron–positron field


ψ(x) =

∑
r
arψ

(+)
r (x) + d+

r ψ̄
(−)
r (x),

ψ(x) =
∑
r
a+

r ψ̄
(+)
r (x) + drψ

(−)
r (x),

(12.165)

in which the ψ’s are the covariant Johnson–Lippman spinors, one makes
the explicit calculation of four-current operator fluctuations using Wick’s
theorem,

〈a1a2a3a4〉 = 〈a1a2〉〈a3a4〉 − 〈a1a3〉〈a2a4〉+ 〈a1a4〉〈a2a3〉, (12.166)

where the a’s are either a, d or a+, d+. Setting

δJµν(x) ≡ δJµν(0, x2 − x1), (12.167)

24Because of the transverse character of the polarization, zero is an eigenvalue and kµ

the corresponding eigenvector.
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Fig. 12.4 Data for the magnetized vacuum plotted against the decimal logarithm of the
magnetic field (in units of the critical field): (a) the energy density, (b) the orthogonal
pressure, (c) the parallel pressure and (d) the magnetization. The continuous curves
represent the various data for matter plus radiative corrections and the dashed ones
represent only the matter contribution [after H. Sivak (1986)].

since one calculates the fluctuations in thermal equilibrium, and using the
average occupation numbers of positive and negative energy electrons in
the quantum state r,


n+

r ≡ 〈a+
r ar〉 =

1
exp(β[Er − µ]) + 1

, Er > 0,

n−r ≡ 〈d+
r dr〉 = 1

exp(−β[Er − µ]) + 1
, Er < 0,

(12.168)



February 12, 2011 11:38 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch12 FA

Strong Magnetic Fields 343

one obtains

δJµν(x) =

〈∑
r1,r2

{n+
r1

(1− n+
r2

)ψ̄(+)
r1

(x1)γµψ(+)
r2

(x1)× ψ̄(+)
r2

(x2)γνψ(+)
r1

(x2)

+ (1− n−r1
)n−r2

ψ̄(−)
r1

(x1)γµψ(−)
r2

(x1)× ψ̄(−)
r2

(x2)γνψ(−)
r1

(x2)

+n+
r1
n−r2

ψ̄(+)
r1

(x1)γµψ(−)
r2

(x1)× ψ̄(−)
r2

(x2)γνψ̄(+)
r1

(x2)

+ (1− n−r1
)(1 − n+

r2
)ψ̄(−)

r1
(x1)γµψ(+)

r2
(x1)ψ̄(+)

r2
(x2)γνψ(−)

r1
(x2)}

〉
.

(12.169)

The first term on the right hand side of this last equation represents the
contributions of the electrons only, while the second term is that of the
positrons. The last two terms are connected with the possibility of pair
creations or annihilations by electromagnetic waves propagating through
the plasma.25 After some long calculations [see some details in R. Hakim
and H. Sivak (1982)], one finds that

δJµν(k) =
exp

(− 1
2d

2
nk

2
⊥
)

4πd2
n[exp(βω)− 1]

∑
n,n′

∑
�,j=±1

j�(−1)n+n′

×
∫

dp||
EnE′n′

(jµν
S + jµν

A )× δ(En + �E′n′ + jω), (12.170)

where jµν
S,A designates a symmetrical (S) or antisymmetrical (A) tensor

given by

jµν
S = (δ�1 − [n+

n + n−n ])

×[−�EnE′n′ + p||(p|| − k||)] · [Ln′−n
n Ln−n′

n′ + Ln′−n
n−1 Ln−n′

n′−1 ]Ωµν
+

+

»
m2(Ln′−n

n Ln−n′
n′ + Ln′−n

n−1 Ln−n′
n′−1 ) +

4n

d2
n

Ln′−n
n Ln−n′

n′−1

–
Ωµν

− j[En(p|| − k||) − �E′n′p||] · [Ln′−n
n Ln−n′

n′ + Ln′−n
n−1 Ln−n′

n′−1 ]u(µnν)

− [�EnE′n′ + m2+p||(p||−k||)] · [Ln′−n−1
n Ln−n′+1

n′−1 +Ln′−n+1
n−1 Ln−n′−1

n′ ]Πµν

25These two cases correspond either to a damping of these waves or to Cerenkov emission
[see V.N. Tsytovich (1961)].
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− 2kαkσL
n′−n+1
n−1 Ln−n′−1

n′ (2ΠµσΠνα −ΠασΠµν)

− j[En(Ln′−n+1
n−1 Ln−n′

n′−1 + Ln′−n
n Ln−n′+1

n′−1 )

− �E′n′(Ln′−n
n−1 L

n−n′+1
n′−1 − Ln′−n+1

n−1 Ln−n′
n′ )]u(µΠν)σkσ

+ [p||(−Ln′−n+1
n−1 Ln−n′

n′−1 + Ln′−n
n Ln−n′+1

n′−1 )

+ (p|| − k||)(Ln′−n
n−1 L

n−n′+1
n′−1 − Ln′−n+1

n−1 Ln−n′
n′ )]n(µΠν)σkσ,

(12.171)

jµν
A =

i

h
(n−n − n+

n )

×{−j(Ln′−n−1
n Ln−n′+1

n′−1 − Ln′−n+1
n−1 Ln−n′−1

n′ )

× [�EnE
′
n′ +m2 + p||(p|| − k||)]Fµν

+ [En(Ln′−n+1
n−1 Ln−n′

n′−1 + Ln′−n
n Ln−n′+1

n′−1 )

− �E′n′(Ln′−n
n−1 L

n−n′+1
n′−1 + Ln′−n+1

n−1 Ln−n′
n′ )]u[µF ν]σkσ

− j[p||(Ln′−n+1
n−1 Ln−n′

n′−1 + Ln′−n
n Ln−n′+1

n′−1 )

+ [(p|| − k||)(Ln′−n
n−1 L

n−n′+1
n′−1 + Ln′−n+1

n−1 Ln−n′
n′ )]n[µF ν]σkσ,

(12.172)

where use has been made of the notations26


En≡
√
m2 + p2

|| + 2n/d2
n,

E′n′ ≡
√
m2 + (p|| − k||)2 + 2n′/d2

n,

Lb
a≡ Lb

a

(
1
2d

2
nk

2
⊥
)
(associated Laguerre polynomials),

Ωµν
+ ≡ uµuν + nµnν .

(12.173)

The above results for δJµν(k) require a few comments. First, the various
values of � and j(±) (a separation between j and (±)) and the δ-term
indicate that the fluctuations of the electron (or positron) four-current are
nonvanishing only when

ω = ±(En − E′n′), (12.174)

26We adopt the convention La
n = 0 whenever n < 0.
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and these fluctuations correspond to transitions between Landau levels for
either electrons or positrons. On the other hand, the fluctuations between
positrons and electrons are possible only when

ω = ±(En + E′n′) (12.175)

and correspond to either pair creation or anihilation by (or into) an elec-
tromagnetic wave of frequency ω.

Another remark deals with the charge conservation, a property
implying that

kµδJ
µν(k) = 0. (12.176)

Although not obvious on the explicit form of δJµν(k), this can be proven
by using various properties of the associated Laguerre polynomials (see
App. A).

Finally, in order to complete the calculation of δJµν(k), the integration
on p|| can be performed and this can be achieved with the use of the well-
known formula

δ(g(x)) =
∑

�

δ(x − x�)
|g′(x�)| (12.177)

where x� is a simple zero of g(x), which is the case here.
The two figures below represent the spectra of longitudinal (Fig. 12.5)

and transverse (Fig. 12.6) fluctuations of the density, at T = 0K, and for
the critical value of the magnetic field. We have chosen εf = 1.6 m. A
common feature is the existence of transparency regions where 〈δn2〉k = 0.

Let us begin with the longitudinal fluctuation spectrum, i.e. those fluc-
tuations with k⊥ = 0. Two curves are presented (Fig. 12.5), each for one
specific value of k||, namely k|| = 1 or 4. The first branch on the left of the
figure is related to the fluctuations’ density of matter only (i.e. without any
vacuum contribution), while the other branches contain the vacuum fluctu-
ations occurring because of possible transitions from the vacuum to positive
energy Landau levels (such as pair creation electromagnetic waves, a phe-
nomenon that gives rise to a damping of electromagnetic waves) not already
occupied (the presence of matter inhibits such fluctuations, owing to the
exclusion principle), and vice versa. The purely material part, i.e. the first
branch, appears at a given frequency and disappears at another: this effect
comes from energy conservation, as can be seen from a closer inspection of
δJ00(k), where δ factors occur. As a matter of fact, the main effect of a lon-
gitudinal wave on the electrons of the Fermi sea is to accelerate them along
the magnetic field without ever exciting transitions n→ n′. Unlike the first
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Fig. 12.5 Spectrum of the longitudinal density fluctuations versus −ω, for two values
of k|| (continuous line — k|| = 1; dashed line — k|| = 4). This curve represents the case
of the critical field and is plotted for a value of the Fermi energy εf = 1.6 m(T = 0K).

branch, the others — related to the vacuum fluctuations — exhibit reso-
nances, corresponding to pair creations or annihilations on those Landau
levels such that |ω| = 2E and k|| = 2p||.

Between the “matter part” and the “vacuum part” of the figure lies a
transparency region, in the sense that the imaginary part of the polarization
tensor27 (see next section) vanishes. Physically, this is due to the fact that
the frequency of the electromagnetic wave is not sufficient to excite vacuum
fluctuations. Let us also add that this brief discussion is valid for all values
of k|| as well.

As to the case of transverse fluctuations of density (k|| = 0), it also
presents some branches which are related to matter and others to the
vacuum (see Fig. 12.6). A plot of 〈δn2〉1/2

k has been made on the figure

27See e.g. F. Bakshi, R.A. Cover and G. Kalman (1976, 1980); H. Perez-Rojas and A.E.
Shabad (1979); H. Sivak (1985); D.B. Melrose and R.J. Stoneham (1977).
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Fig. 12.6 Spectrum of the transverse density fluctuations versus −ω, for k⊥ = 0. This
curve represents the case of the critical field and is plotted for a value of the Fermi energy
εf = 1.6m (T = 0K).

(still versus −ω) for k⊥ = 0.35, and it presents similar features.28 First,
the branches on the left of the figure begin at specific frequencies for the
same reasons as before (energy conservation) and all present resonances
corresponding to

1
2
|ω| =

√
m2 +

2nB
Bcrit

±
√
m2 +

2n′B
Bcrit

. (12.178)

Between two successive branches, there exists a gap still corresponding to
a transparency region; it occurs when ω is not yet sufficient to excite a
Landau level n to another one n′. These left hand side branches still refer
to matter only. The last such branch is represented by a vertical line on the
figure, and on its right are the vacuum contributions except for the vertical
lines, which are also due to matter.

28For other values of k⊥, the curves present the same characteristics.
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12.8. Polarization Tensors of the Magnetized Electron Gas
and of the Magnetized Vacuum

The polarization tensor of a neutralized magnetized electron gas has
the form

Πµν(k) = Πµν
mat(k) + Πµν

vac(k), (12.179)

and its matter part Πµν
mat(k) is studied independently of its vacuum part

Πµν
vac(k). The latter is infinite and must be renormalized. From the four-

current fluctuations tensor, one has (see Chap. 15)

Πµν(k) = − 1
2π

∫
dω′

exp(βω′)− 1
ω′ − ω − iε 〈J

µJν〉eq(ω′,k), (12.180)

in which the above expression for 〈JµJν〉eq has to be substituted. The result
is an expression of the above general form where Πµν

mat refers to the (finite)
matter part of the polarization tensor while Πµν

vac is its infinite vacuum
contribution, to be renormalized. The results obtained by H. Sivak (1985),
which are quite reliable, are presented below without any discussion and
the reader should refer to the original articles for more details.

In Chap. 15, it will be shown how the inverse of the fluctuation–
dissipation theorem can be used to obtain the dispersion properties of the
plasma, with no magnetic field.

The matter part of the polarization tensor is then given by

Πµν
mat = e2

exp(−x2)
2(2π)2dn

×
∑
n,n′

(−1)n+n′
∑
�,a

∫
dp||

EnEn′,a

Jµν(k)
En + �En′,a + a(ω + iε)

,

(12.181)

with the notations29


x2≡ −1
2
dnΠµνkµkν ,

En≡
√
m2 + p2

|| +
2n
dn
,

En′,a≡
√
m2 + (p|| + ak||)2 + 2n′

dn
.

(12.182)

29Here Πµν is the projection operator on the two-plane orthogonal to the four-vectors
uµ and nν .
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It can be decomposed into a Hermitian part, responsible for the propa-
gation of the waves, and an anti-Hermitian one, responsible for the damping
of waves. In any case, it is too long to be written explicitly here and
the interested reader should go back to the original article of H.D. Sivak
(1985).

12.8.1. The vacuum polarization tensor

The vacuum polarization tensor can be decomposed into its Hermitian and
anti-Hermitian parts:




Πµν
A,vac = − i

2
lim
µ→0

β→∞
[exp(βω)− 1]Jνµ(k),

Πµν
H,vac = − 1

2π

∫
dω′

ω′ − ω lim
µ→0

β→∞
[exp(βω′)− 1]Jνµ(ω′,k).

(12.183)

The anti-Hermitian part is finite, while the Hermitian one is divergent
and must be renormalized. The renormalized polarization tensor Π̄µν

H,vac

is obtained by

Π̄µν
H,vac(F

αβ , k) = Πµν
H,vac(F

αβ , k)−Πµν
H,vac(0, k) + Π̄µν

H,vac(0, k). (12.184)

Let us remember that Π̄µν
H,vac(0, k) can be obtained by subtracting from

Πµν
H,vac(0, k) the first two terms of the McLaurin series

Π̄µν
H,vac(0, k) = Πµν

H,vac(0, k)−Πµν
H,vac(0, 0)− 1

2
∂2

∂kσ∂kλ
Πµν

H,vac(0, k)
∣∣∣∣
k=0

kσkλ

(12.185)

and after some calculations [see H. Sivak (1985)] one finds that

Π̄µν
H,vac(F

αβ , k) =
�=3∑
�=1

Π̄�(k)
bµ� b

ν
�

b2�
, (12.186)

where Π̄�(k) are the three nonvanishing eigenvalues of Π̄µν
H,vac(F

αβ , k):

Π̄�(k) =
e2

(2π)2

∫ ∞
0

dy

∫ 1

0

dξ

{
C� exp(χ)

λ2 sinh(y/d2
n)
− 2k2ξ(1− ξ)

y
exp(−ym2)

}
,

(12.187)
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with


C1 = k2(1− ξ)sinh(2yξ/d2
n)

sinh(y/d2
n)

,

C2 =
Ωµνkµkν

k2
C1 + 2Πµνkµkν

sinh(yξ/d2
n) sinh(y[1− ξ]/d2

n)
sinh2(y/d2

n)
,

C3 =
Ωµνkµkν

k2
C1 + 2Ωµνkµkνξ(1− ξ) cosh(y/d2

n),

(12.188)



χ= −Πµνkµkνd

2
ns

sinh(yξ/d2
n) sinh(y[1− ξ]/d2

n)
sinh(y/d2

n)
,

s= sgn(Ωµνkµkνξ[1− ξ]−m2).

(12.189)

The three symmetric tensors bµ� b
ν
� are constructed from




bµ1 =
{

Πµνkν − Παβkαkβ

k2
kµ

}
= −

{
Ωµνkν − Ωαβkαkβ

k2
kµ

}
,

bµ2 = Fµνkν ,

bµ3 = ∗Fµνkν .

(12.190)

These results coincide with those obtained by I.A. Batalin and A.E. Shabad
(1971) and A.E. Shabad (1972, 1975).

12.9. Remarks on the Transport Coefficients
of the Magnetized Electron Gas

The transport coefficients are evaluated from a kinetic equation, as has
been done several times in this book. Here we only want to show how
modifications occur because of the magnetic field.

Let us begin with the kinetic equation. In an arbitrary gauge, the BGK
equations read

{iγ · ∂ + 2[γ · p−m]}F (x, p)

+ 2e
∫

d4R

(2π)4
d4ξ exp[−i(p− ξ) · R]F (x, ξ)γ ·Aext

(
x− 1

2
R

)

= −iγ · uF (x, p)− Feq(p)
τ

(12.191)
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F (x, p){iγ · ∂ − 2[γ · p−m]}

− 2e
∫

d4R

(2π)4
d4ξ exp[−i(p− ξ) · R)]F (x, ξ)γ ·Aext

(
x− 1

2
R

)

= −F (x, p)− Feq(p)
τ

iγ · u, (12.192)

which reduces to

{iγ · ∂ + 2[γ · p−m]}F (x, p) + eFµνpν
∂

∂pµ
F (x, p)

= −iγ · uF (x, p)− Feq(p)
τ

(12.193)

in the Lorentz gauge and the other equation.
In the absence of any magnetic field, it was recognized that there exists

another expansion parameter — besides the ratio of the relaxation time and
a macroscopic hydrodynamical time — connected in the quantum domain
to the existence of the Compton wavelength. When a magnetic field is
present, a new scale of length does exist, the electron Larmor radius,

rL =
eBvth
m

, (12.194)

where the thermal velocity vth should be replaced by 1, the velocity of light,
in a truly relativistic regime.

In order to get an idea of the various possible regimes, the above
equation is first rewritten in terms of the dimensionless quantities30

x = �1x̄, R = �1R̄, A =
(
eB

�2

)
Ā, p =

p̄

�3
, (12.195)

where {. . . } is one of the possible available lengths; and one obtains{
i�−1

1 γ · ∂̃ + 2
[
�−1
3 γ · p̄− 1

λCompton

]}
F (x, p)

+ 2�−1
2

∫
d4R̄

(2π)4
d4ξ̄ exp[−i(p̄− ξ̄) · R̄]F (s̄, ξ̄)γ · Āext

(
�1x̄− 1

2
R̄�1

)

= −iγ · uF (x̄�1, p̄�3)− Feq(p̄�3)
τ

(12.196)

30Note that since the BGK equation is linear in F , it is not necessary to replace this
quantity by a dimensionless one.
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(and the other dimensionless companion equation), which allows a com-
parison of the orders of magnitude of the different terms and hence does
indicate the possible regimes, after a choice for the various lengths has been
made. Since there are a priori three possible length scales, this gives rise
to nine choices and a few dozen possible regimes. Only one case has been
treated [R. Dominguez Tenreiro and R. Hakim (1977b)], i.e. the one in
which

τ � �−1
1 ≈ eB, (12.197)

so that the left hand sides of the equations are of order O(τ). This is a
relatively simple situation.

The results for the various transport coefficients are essentially an oscil-
latory behavior around the values obtained (see Chaps. 2 and 10) in the
absence of a magnetic field [R. Dominguez Tenreiro (1978)]. In this regime,
however, not all transport coefficients are nonvanishing.

The next problem deals with the definition of the transport coefficients
in the presence of a magnetic field. This has been done by J.L. Anderson
(1976), in an unpublished work, on the basis of group-theoretical arguments.
It is, however, possible to extend nonrelativistic results by S.I. Braginskii31

to the relativistic case [R. Dominguez Tenreiro and R. Hakim (1977b)],
although there is no unique way to reach this aim.32 These different pos-
sibilities are largely a matter of adaptation to experimental situations,
or to the symmetries of the problem under consideration. Nevertheless,
it should be noted that the physically meaningful quantity is the viscous
stress tensor and not necessarily its decomposition. We have already given
the covariant generalization of Braginskii’s results, so we shall not repeat
them (see Chap. 2).

When one calculates the off-equilibrium part of the energy–momentum
tensor, one can encounter the nonsymmetric tensor

Π(αµnβ)nρ[∂ρuµ − ∂µuρ], (12.198)

which is a vorticity tensor expressing the rotation of the charged particles
around the magnetic field axis. This term also exists in the nonrelativistic

31S.I. Braginskii, Review of Plasma Physics, Vol. 1 (1965).
32See e.g. A.N. Kaufman, Phys. Fluids 3, 610 (1960); J.A.R. Coope and R.F. Snider,
J. Chem. Phys. 56, 2056 (1970); S.R. de Groot and P. Mazur, Non-equilibrium Ther-
modynamics (North-Holland, Amsterdam, 1962); P.C. Clemmow and J.P. Dougherty,
Electrodynamics of Particles and Plasmas (Addison-Wesley, Reading, 1969).
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and nonquantum case.33 As to the various viscosity coefficients, they corre-
spond to a transverse coefficient, a parallel one, a crossed parallel/transverse
one, etc.

Let us show briefly the off-equilibrium part of the four-current and the
heat flow; the latter can be decomposed as

Qµ = Qµ
⊥ +Qµ

||, (12.199)

with 

Qµ
⊥ = ΠµνQν = +λ⊥Πµν(β−1u̇ν − ∂νβ

−1),

Qµ
|| = nµnνQν = −λ||nµnν(β−1u̇ν − ∂νβ

−1),
(12.200)

in agreement with Eckart’s definition. However, the calculation of Jµ
off also

contains terms proportional to ∂µneq. The latter can be eliminated with
the help of the zeroth order conservation equations but terms involving gra-
dients of the magnetic field do remain. Conversely, if these terms are not
eliminated but only the gradients of the magnetic fields, then we should
resort to a Robinson–Bernstein34 version of the entropy considerations,
namely that the entropy obeys a minimum–maximum principle, i.e. it is
not a minimum but a saddle point. Therefore, this question should be con-
sidered as open.

12.10. Astrophysical Aspects

In several astrophysical quantities, the issues of the occurrence and the
properties of strong magnetic fields have been questioned. We mention the
influence of strong magnetic fields on the β decay of some models of disin-
tegration, the neutronization reactions, the mass–radius relation of a star
(magnetic white dwarfs or neutron stars), the stability of the star, the pos-
sibility of an a priori strong magnetic field in the primeval universe, etc.

Let us briefly review some of these modifications brought about by the
strong magnetic fields, and let us first examine the neutron disintegration
of the neutron

N → P + e− + ν̄e,

which is the simplest one. The essentials of this disintegration lie in the
modification of its phase space; in neutron stars, the intensity of the mag-
netic field is of the order of the critical one, so that the proton is not affected.

33See S.R. de Groot and P. Mazur, loc. cit.
34B.B. Robinson and I.B. Bernstein, Ann. Phys. (N.Y.) 18, 110 (1962).
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In terms of the disintegration lifetime, it reads

1
τ

=
2π2G2

V

EN

∫
d2p

EP

d3q

Eν
{fµ(qN − p− q)− fµ

5 (qN − p− q)}

×{(1 + λ2)qN · qpµ + (1− λ2) p · qNµ − (1− λ2)mPmNqµ},
(12.201)

where qN is the neutron four-momentum, p the proton four-momentum,
q the neutrino, GV the weak coupling constant and λ the axial vector
coupling constant. As expected, the magnetic field occurs only in fµ and
fµ
5 , i.e. in F (q).

As to the neutronization, occurring for example in neutron stars,

P + e− � N + νe,

it is governed by the equality of chemical potentials

µP + µe = µN + µν , (12.202)

where µν vanishes almost completely since the neutrinos escape the star.
From these equalities between the µ’s, from their expressions as functions
of B, neq, etc., one obtains relations for the nucleons, etc. (see e.g. G.A.
Schulman (1974ff)).

As to white dwarfs, for instance, J.P. Ostriker and F.D.A. Hartwick35

made detailed calculations on magnetic white dwarfs, showing that inside
the magnetic field it could be as high as 1011–1013 G. We look briefly at the
impact of magnetic fields on white dwarfs. We limit our considerations to
the ones presented in the book by S.L. Shapiro and S.A. Teukolski (1983).36

Starting with the virial theorem

W + 3Π + M = 0, (12.203)

where W is the gravitational energy, Π the work done by the pressure and
M the magnetic energy; we write explicitly the various data as

W =
1
2

∫
d3xρ(x)φ(x),M =

1
8π

∫
d3xB2,Π =

∫
d3xP, (12.204)

or

W = −aGM
2

R
,Π = bM

〈
P

ρ

〉
,M = c

〈
B2

8π

〉
4
3
πR3 (12.205)

35J.P. Ostriker and F.D.A. Hartwick, Astrophys. J. 153, 105 (1968).
36S.I. Shapiro and S.A. Teukolski, Black Holes, White Dwarfs and Neutron Stars
(J. Wiley and Sons, New York, 1983).
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(the constants a, b and c are of order unity), so that the virial theorem can
be written as

−aGM
2

R
+ bM

〈
P

ρ

〉
+ c

ψ2

R
= 0, (12.206)

where the last term is the magnetic flux

ψ =
B

R2
(12.207)

and use has been made of an ultrarelativistic and nonmagnetic limit for the
equation of state of electrons. The nonmagnetic field limit is taken since
the various calculations indicate that only the “weight” of the magnetic
field makes sense. Therefore, the effect of the magnetic field is — crudely
speaking — to decrease the effect of gravity:

G′ → G− c

a

φ2

M2
= G

(
1− M
|W |

)
. (12.208)

This means that, for a given mass of the star, its radius can be substantially
larger. This has also been found by D. Adam,37 in a model less rigorous than
that of Ostriker and Hartwick, but more rigorous than the crude model. In
fact, he also took account of the modifications of the equations of state of
the electrons brought about by the magnetic field. In addition, he calculated
the various pycnonuclear reactions.

37D. Adam, Astron. Astrophys. 160, 95 (1986).
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Chapter 13

Statistical Mechanics of Relativistic
Quasiparticles∗

The concept of the quasiparticle appears in a large number of nonrelativistic
physical situations, where it brings substantial technical simplifications and
also far-reaching clarifications of the problems under consideration. Quasi-
particles are widely used in the framework of solid state physics1 and,
consequently, have been studied in detail. Another case where quasipar-
ticles occur, namely plasmons, has been systematically considered in plasma
physics.2

However, in a relativistic context, in spite of numerous studies on
QED plasmas3,4 and of an exponentially growing interest in the quark–
gluon plasma expected to be observed in heavy ion collisions,5 no sys-
tematic considerations of relativistic quasiparticles have been undertaken.
It should also be mentioned that such theoretical objects are of much
interest in the context of nuclear matter whether relativistic [B.D. Serot
and J.D. Walecka (1986)] or not and in the study of Bose condensates6

occurring in dense matter. Very simple relativistic quasiparticles (i.e. “free”
quasiparticles endowed with an effective mass) are also considered in a

∗This chapter was partially done with our late friend Horacio D. Sivak (1946–2000)
and has been partially published in Class. Quantum Grav.: 10 (Suppl.), 223 (1993).
1See e.g. C. Kittel, Quantum Theory of Solids (J. Wiley, New York, 1963).
2T. Kihara, O. Aono and T. Dodo, Nucl. Fusion 2, 66 (1962); A. I. Alekseev and Yu.

P. Nikitin, Sov. Phys. JETP 23, 608 (1966); E. G. Harris, Adv. Plasma Phys. 3, 157
(1969).
3See e.g. N.P. Landsman and Ch. G. van Weert, Phys. Rep. 145, 141 (1987).
4One should also include the “phenomenological QED” of J.M. Watson, Phys. Rev. 74,

950 (1948); ibid. 74, 1485 (1948); ibid. 75, 1249 (1949).
5See e.g. L.P. Csernai, Introduction to Relativistic Heavy Ion Collisions (Wiley, Chich-

ester, 1994) or Hot Hadronic Matter: Theory and Experiment, eds. J. Letessier and
J. Rafelski (Plenum, New York, 1994).
6A.B. Migdal, Rev. Mod. Phys. 50, 107 (1978).
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toy model constituted by the λϕ4 theory in Gaussian (or other nonper-
turbative) approximations7,8 or in the case of the so-called relativistic
“scalar plasma.”9 Apart from the early attempts by J.M. Jauch and K.
Watson10 (1948, 1949), the most advanced study of relativistic quasipar-
ticles seems to be the one by A.B. Migdal (1978) in connection with con-
siderations of boson condensates and, in what follows, his results are found
anew in a more general context and also are extended and specified more
precisely.

The reasons why there do not exist systematic studies are multiple:
(i) many people seem to consider that a relativistic extension of the concept
of the quasiparticle is trivial (it will be realized, below, that this is certainly
not the case); (ii) the need for relativistic quasiparticles was not really
urgent, because of the relatively recent emergence of statistical consider-
ations for relativistic quantum dense matter. Apart from the interest of
their own, relativistic quasiparticles can be a source of new progress when
we are dealing with dense matter and, in particular, with the QCD plasma;
nevertheless, it should be clear that only new physical inputs (ideas, approx-
imations, etc.) can bring new developments and, in this respect, quasipar-
ticles can only represent a technical instrument that may express such an
input.

It is, of course, not possible to deal with all cases and hence we limit our-
selves to a sufficiently general one so as to accommodate many situations:
it is assumed that the polarization tensor (for bosons) or the mass operator
(for fermions) is given as a function not only of the four-momentum but also
of macroscopic quantities such as the average four-velocity of the system, its
temperature, its density, etc. Accordingly, and at least as a first step, only
free quasiparticles are dealt with. Whether the system under consideration
is correctly described by an assembly of (free or interacting) quasiparticles
or not is another question depending on the specific problem at hand. So is
the case regarding the approximation method that leads to the polarization
tensor (or the mass operator) at hand.

7Among numerous articles on the subject, we quote only the following: G. Baym and
G. Grinstein, Phys. Rev. D15, 2897 (1977); T. Barnes and G.I. Ghandour, Phys. Rev.
D22, 924 (1980); W.A. Bardeen and M. Moshe, Phys. Rev. D28, 1372 (1983); P.M.
Stevenson, Phys. Rev. D33, 2305 (1985); M. Ciancitto, Nucl. Phys. B254, 653 (1985);
etc. See Ref. 9 for more references.
8F. Grassi, R. Hakim and H. Sivak, Int. J. Mod. Phys. A6, 4579 (1991).
9G. Kalman, Phys. Rev. D9, 1656 (1974).

10J.M. Jauch and K. Watson, Phys. Rev. 74, 950 (1948); ibid. 74, 1485 (1949).
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Therefore, our first assumption is concerned with the general form of
the equations of motion obeyed by the quasiparticle fields. For quasibosons,
it reads

�ϕ(x) +
∫
d4x Π(x, x′; macroscopic quantities)ϕ(x′) = 0, (13.1)

while for quasifermions one has

iγ · ∂Ψ(x)−
∫
d4x′ Σ(x, x′; macroscopic quantities)Ψ(x′) = 0. (13.2)

In the following, we deal rather with the space–time translational invariant
case, where

Π(x, x′) = Π(x − x′, 0) ≡ Π(x− x′) (13.3)

for bosons, and

Σ(x, x′) = Σ(x − x′, 0) ≡ Σ(x− x′) (13.4)

for fermions. Therefore, we treat mainly the case of Eqs. (1.1) and (1.2),
which are rewritten in Fourier space as{

[k2 −Π(k)]ϕ(k) = 0 (quasibosons),

[γ · p− Σ(p)]Ψ(p) = 0 (quasifermions),
(13.5)

and these equations also signify that the quasibosons obey the dispersion
equation

D(k) ≡ [k2 −Π(k)] = 0 (13.6)

while the quasifermions obey

Det[γ · p− Σ(p)] = 0. (13.7)

From this “dynamical” starting point, the usual quantum field theory path
is followed. First, the equations for the “classical” field Φ or Ψ are cast into
a Lagrangian form; this allows the derivation of the usual conservation laws,
whenever valid (this is discussed later on), and hence explicit expressions
for the four-current, energy–momentum tensor, angular momentum, etc.
These expressions are needed not only for the macroscopic description of
the system at hand but also for the quantization of the “classical” quasipar-
ticle field. Indeed, explicit normalization of those quasiparticle plane waves,
in which the field is expanded, is a necessity since a covariant expression
for the scalar product of two free wave packets is needed to that end. Fur-
thermore, from the energy–momentum tensor the quasiparticle Hamiltonian
is obtained. Once quantization is achieved, statistical mechanics (for both
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equilibrium and nonequilibrium situations) is almost a matter of routine.
Next, applications can follow. The above dispersion equations lead to non-
local equations for the quasiparticle fields.

Finally, a strong emphasis should be put on the comparison with the
nonrelativistic case since, essentially, two new classes of problems show up.
First, one knows that negative energy states lead to the concept of antipar-
ticles: for quasiparticles, the question is much more delicate and subtle and
“antiquasiparticles” depend strongly on the medium of which they are sup-
posed to be excitations. It appears that this question is entangled with
the problem of the thermodynamic stability of the system under consid-
eration. This is briefly discussed in Sec. 13.3. A second class of problems
is connected with causality. In general, nonlocal field theories are plagued
with troubles arising from a “lack of causality.” This can be understood
in an intuitive way: the function Π(x) [or

∑
(x)], besides its order of mag-

nitude (Π), introduces implicitly a new dimensioned scale, connected with
its spatial/temporal extension, i.e. the “width” of these functions. This
means that the approximations contained in the calculation of Π gen-
erally involve a change of scales for time and space that does not preserve
the light cone: this either becomes sharper or gets flattened so that, for
example, a timelike four-vector becomes spacelike, implying a certain lack
of causality. A well-known example of such a lack of causality is provided
by the propagation of heat, whether in a nonrelativistic or a relativistic
context.

13.1. Classical Fields

In this section, we limit ourselves to the case of complex scalar fields, the
extension to other possibilities being either straightforward or explicitly
dealt with. These fields obey the equation

�ϕ(x) +
∫
d4y Π(y)ϕ(x − y) = 0. (13.8)

A possible Lagrangian for this equation is

L = ∂µϕ(x)∂µϕ(x) −
∫
d4y Π(y)ϕ∗

(
x+

1
2
y

)
ϕ

(
x− 1

2
y

)
, (13.9)

as can be checked by minimizing the action integral, while the variation
with respect to Φ

δ

δΦ(x)

∫
d4x′ L [{Φ∗}, {Φ}] = 0
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yields

�Φ∗(x) +
∫
d4x Π(y)Φ∗(x+ y) = 0 (13.10)

with Π∗(y) = Π(−y) in order that both equations may be consistent; the
Lagrangian is thus Hermitian. On the other hand, this condition joined to
Onsager relations implies that, in Fourier space,

Π(k) = Π∗(k) = Π(−k). (13.11)

This condition comes from our results in the case of long-lived quasipar-
ticles. Such a case can be found in many physical situations or problems:
plasmons in QED plasmas, quasinucleons of the Walecka model, qua-
sibosons of the λϕ4 theory in Gaussian approximation, quasiparticles
involved in some regimes of hard thermal loops, etc. Note also that dis-
sipative contributions to these long-lived quasiparticles arise from mode–
mode interactions11 or from a more or less phenomenological collision term
like the Boltzmann or the relativistic BGK one.

The equations of motion are obtained by using the well-known relation

δ

δΦ(x)
Φ(x′) = δ(4)(x− x′). (13.12)

However, such a derivation of the equations of motion (13.1) and (13.2) from
the Lagrangian (13.3) possesses the inconvenience of hiding some conditions
to be satisfied by Φ and Φ∗ and, furthermore, it needs a separate deduction
of the various currents associated with symmetries, whether space–time or
possible internal ones.

13.1.1. Internal symmetries and conserved currents

From the Lagrangian, one can obtain (such as from a minimal coupling
assumption) the Lagrangian of the system in the presence of an “elec-
tromagnetic” field Aµ(x) — say, L

[{Φ∗}, {Φ}, {Aλ}]. In such a case, the
charge current Jµ(x) is nothing but the functional derivative of the action
integral with respect to the electromagnetic field and considered for Aµ ≡ 0.

11See e.g. R.Z. Sagdeev and A.A. Galeev, Nonlinear Plasma Theory (Benjamin,
New York, 1969).
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Such a gauge-invariant Lagrangian is given by

L
[{Φ∗}, {Φ}, {Aλ}] = D∗µΦ∗(x) ·DµΦ(x) +

∫
d4y Π(y)

×Φ∗
(
x+

1
2
y

)
exp(−ieyµ)

∫ 1

0

ds Aµ

[
x+ y

(
s− 1

2

)]
Φ
[
x− 1

2
y

]
,

(13.13)

with

Dµ ≡ ∂µ + ieAµ(x), (13.14)

and where the integral over the parameter s is nothing but an integral along
the straight line joining the space–time points x− y/2 and x+ y/2. Notice
that, for quantum fields, the exponential occurring in this last equation
must involve an ordering with respect to the parameter s. The above
Lagrangian represents the dynamics of fields Φ and Φ∗ minimally coupled
to the electromagnetic field Aµ and is inspired by J. Schwinger’s.12 Similar
problems (of gauge invariance) connected with covariant Wigner functions
can be found elsewhere [E.A. Remler (1977); J. Winter (1984); H. Th. Elze,
M. Gyulassi and D. Vasak (1986, 1987); U. Heinz (1985); H. Th. Elze and
U. Heinz (1989); etc.]. The basic idea is that quantities like Φ(x − y) can
be rewritten as exp (y · ∂). Φ(x) and, accordingly, the gauge-invariant form
are obtained by replacing ∂ with ∂ + ieA. The fact that the path integral
occurring in this last equation is taken along a straight line was first proven
by D.G. Boulware13 on the basis of both Lorentz and space–time trans-
lation invariance. Another argument has been given in another context by
R. Marnelius (1973).14

Let us form the functional derivative δS/δAµ, where S is the action
integral S =

∫
Ld4x. We get

δS

δAµ(x)

∣∣∣∣
Aλ≡0

= Jµ(x) = iΦ∗
↔
∂µΦ−

∫
d4x′ d4y′Π(y)Φ∗

(
x+

1
2
y

)

× δ

δAµ(x)
exp

{
−iyλ

∫ 1

0

ds Aλ

[
x′ + y

(
s− 1

2

)]}
Aλ≡0

Φ
(
x′ − 1

2
y

)

12J. Schwinger, Phys. Rev. 125, 397 (1962); ibid. 128, 2425 (1962).
13D.G. Boulware, Phys. Rev. 151, 1024 (1966).
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= iΦ∗
↔
∂µΦ + i

∫
d4x′ d4y′Π(y)yνΦ∗

(
x+

1
2
y

)

×
∫ 1

0

ds
δAν

[
x′ + y

(
s′ − 1

2

)]
δAµ(x)

exp
{
− iyλ

×
∫ 1

0

dsAλ

[
x′ + y

(
s− 1

2

)]}
Aλ≡0

Φ
(
x′ − 1

2
y

)
. (13.15)

Using now

δAλ(x′)
δAµ(x)

= δλµδ
(4)(x− x′), (13.16)

the above equation for the four-current reduces to

Jµ(x) = iΦ∗
↔
∂µΦ + i

∫
d4y

∫ +1/2

−1/2

dsΠ(y)yµΦ∗
[
x+ y

(
s+

1
2

)]

×Φ
[
x+ y

(
s− 1

2

)]
(13.17)

and is similar to the expression given by R. Marnelius14 after a Fourier
transformation and an integration over the parameter s.

Such a derivation is valid for any gauge field whatsoever and allows
one, accordingly, to obtain any macroscopic four-current, such as an isospin
four-current. For instance, in the gauge-invariant Lagrangian used in the
derivation of Jµ the exponential has to be changed as follows:

exp
{
−ieyλ

∫ 1

0

dsAλ

[
x+ y

(
s− 1

2

)]}
→ P exp

{
−igyλ

∫ 1

0

ds

× T ·A
[
x+ y

(
s− 1

2

)]}
, (13.18)

where the matrices T are the infinitesimal generators of the group under
consideration g is the coupling constant of the gauge field and P is a chrono-
logical ordering of the integration path. Then the functional derivative
with respect to the gauge field Aλ, specialized to Aλ ≡ 0, provides the
corresponding four-currents. One can easily check that Jµ is conservative:
∂µJ

µ = 0.

14R. Marnelius, Phys. Rev. D8, 2472 (1973).
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13.1.2. Space–time symmetries

The conservation laws for space–time symmetries obviously depend on
the transformation properties of the polarization tensor Π(x) under the
Poincaré group. Clearly, for equations of motion as given above, one expects
the conservation of the energy–momentum tensor: Π depends on the dif-
ference x−x′ and is thus invariant under space–time translations. However,
this is not so for the general equations of motion. Also, it is clear that Π is
not necessarily invariant under spatial translations; therefore, even though
the energy–momentum tensor of the quasiparticles is conserved, this is not
necessarily the case for the general angular momentum tensor.

Let us look for the conserved — or nonconserved — energy–momentum
and angular tensors of quasiparticles by means of Noether’s theorem. To
this end, let us consider an infinitesimal x-dependent coordinate change,15

x→ x+ ε(x), (13.19)

in the expression of the action integral S = ∫ d4xL. Owing to the fact that
the Jacobian of this transformation is 1 + ∂ε(x), up to first order, and
that — still to this order — the derivatives become

∂µ → ∂µ − ∂µε
λ(x) · ∂λ, (13.20)

we find that

δS = 0 =
∫
d4x {L∂ · ε(x) + ∂µδΦ∗∂µΦ + ∂µΦ∗∂µδΦ

− ∂µελ(x)∂(λΦ∗∂µ)Φ + δLΠ

}
, (13.21)

with

LΠ = −
∫
d4yΠ(y)Φ∗

(
x+

1
2
y

)
Φ
(
x− 1

2
y

)
(13.22)

and δΦ = ε(x)∂Φ. After an integration by parts, the equation for δS yields

0 =
∫
d4x

(−ε∂L+ ελ∂µ[∂(λΦ∗∂µ)Φ] + δLΠ − δΦ∗∂2Φ− ∂2Φ∗δΦ
)

=
∫
d4x

{
− ε∂L+ ελ∂µ[∂(λΦ∗∂µ)Φ] + δLΠ

+
∫
d4yΠ(y) [δΦ∗Φ(x− y) + Φ∗(x+ y)δΦ]

}
, (13.23)

15See the excellent article by E.L. Hill, Rev. Mod. Phys. 23, 253 (1951).
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where use has been made of the equations of motion. This last equation
can be rewritten as

0 =
∫
d4x

(
−ε∂L+ ελ∂µ[∂(λΦ∗∂µ)Φ] +

∫
d4y

∫ 1/2

0

dsΠ(y)

× ∂

∂s

{
Φ∗

[
x+ y

(
s+

1
2

)]
δΦ

[
x+ y

(
s− 1

2

)]

+ δΦ∗
[
x− y

(
s− 1

2

)]
Φ
[
x− y

(
s+

1
2

)]})

=
∫
d4x

(
− ε∂L+ ελ∂µ[∂(λΦ∗∂µ)Φ] + ελ

∫
d4y

∫ 1/2

0

dsΠ(y)

× y · ∂
{

Φ∗
[
x+ y

(
s+

1
2

)]
∂λΦ

[
x+ y

(
s− 1

2

)]

− ∂λΦ∗
[
x− y

(
s− 1

2

)]
Φ
[
x− y

(
s+

1
2

)]})
(13.24)

or

0 =
∫
d4x ελ(x)∂µTµλ(x), (13.25)

where T µν is the energy–momentum tensor we were looking for; explicitly,
it is given by

T µν = ∂(µΦ∗∂ν)Φ− ηµνL+
∫ 1/2

0

ds

∫
d4y Π(y)yµ

×
{

Φ∗
[
x+ y

(
s+

1
2

)]
∂νΦ

[
x+ y

(
s− 1

2

)]

− ∂νΦ∗
[
x− y

(
s− 1

2

)]
Φ
[
x− y

(
s+

1
2

)]}
. (13.26)

Note also that, as already remarked for the four-current Jµ, this T µν is
similar to the form given by R. Marnelius. From the vanishing of δS for
arbitrary ελ(x), it is deduced that the energy–momentum flow is conser-
vative: ∂µT

µν = 0. This can also be checked directly by using the equa-
tions of motion, and the specific form of T µν , as expected for a system
invariant under space–time translations. However, it should be borne in
mind that this conservation property holds as far as the first index is con-
cerned: ∂µT

µν = 0, and generally ∂νT
µν �= 0. On the other hand, the
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energy–momentum tensor is even not symmetric, as is often the case for
the canonical one.16

These last points have to be discussed a little bit further on. Usually,
a symmetric and conserved energy–momentum tensor can be obtained by
the Belinfante–Rosenfeld method17: in the Lagrangian all Lorentz indices
are replaced by generally covariant ones, while the Lorentz metric ηµν is
replaced by a general one, gµν ; then T µν

BR is obtained via the following
functional derivation of the action integral then specialized to gµν = ηµν :

T µν
BR =

δ

δgµν(x)
S ({Φ∗} , {Φ} , {gαβ}) |gµν=ηµν

. (13.27)

This expression is the exact analog of the derivative functional with respect
to the electromagnetic field given above for the four-current: gravitation
[i.e. gµν(x)] is minimally coupled to matter via the source T µν

BR, itself a
conservative and symmetric tensor by construction. Unfortunately, while
for fields obeying local equations of motion this last construction method
can be worked out more or less easily, in our nonlocal case the situation
is technically rather involved and delicate problems of bitensors, transport,
etc. show up.18 Furthermore, at the moment, there does not seem to exist
a gravitational analog of the so-called “link operator,”19

U(x, y) = exp
[
ie

∫ y

x

Aµ(z)dzµ

]
(13.28)

(used in the calculation of the four-current), in order to get a covariant
[under the gauge group U(1), in that case] space–time translation operator
acting on Φ.

In fact, the nonsymmetric character of T µν is by no means surprising
since the polarization tensor Π(x) a priori contains macroscopic tensors
that might break the Lorentz (and also the rotational) invariance of the
basic system; as a consequence, the angular momentum tensor is in general
no longer conserved and hence the usual symmetrization procedure of the
energy–momentum tensor no longer applies. Therefore, even though the

16D.G. Boulware, Phys. Rev. 151, 1024 (1966); C. Itzykson and J.B. Zuber, Quantum
Field Theory (Mc Graw-Hill, New York, 1980); Ch. W. Misner, K.S. Thorne and J.A.
Wheeler, Gravitation (Freeman, San Francisco, 1973).
17See preceding footnote.
18See e.g. S. Dowker, J. Phys. A7, 1256 (1974).
19See e.g. [17]. H.-Th. Elze, M. Gyulassi and D. Vasak, Nucl. Phys. B276, 706 (1986);
D. Vasak, M. Gyulassi and H.-Th. Elze, Ann. Phys. (N.Y.) 173, 462 (1987); U. Heinz,
Ann. Phys. (N.Y.) 161, 48 (1985); H.-Th. Elze and U. Heinz, Phys. Rep. 183, 81 (1989).



February 10, 2011 16:39 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch13 FA

366 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

technical problems mentioned above were solved, the intrinsic lack of sym-
metry of the energy–momentum tensor would be inconsistent with the sym-
metric form obtained via the Belinfante–Rosenfeld method. These technical
problems also appear, in our case, as reflecting the possible breaking of rota-
tional symmetry.

In order to get further insights, let us now consider the invariance of the
system under the infinitesimal rotations{

ελ(x) = ωλσ(x)xσ ,

ωλσ(x) = −ωσλ(x).
(13.29)

In this particular case of arbitrary infinitesimal variations, the basic relation
δS = 0 yields

0 =
∫
d4x ωλσ(x) {∂µ [xσTλµ(x)]− ηµ

σTλµ(x)}

=
∫
d4x ωλσ(x){∂µ

[
x[σTλ]µ(x)

]− ηµ
[σTλ]µ(x)}, (13.30)

showing that the usual definition of the bosonic angular momentum tensor

Jµνλ(x) = T µνxλ − T µλxν (13.31)

is still valid; nevertheless, Jµνλ(x) is generally not conservative and its
divergence is

∂µJ
µνλ(x) = T [νλ](x), (13.32)

where T [νλ](x) is the antisymmetric part of the energy–momentum tensor.
A more transparent form of the energy–momentum tensor for discussing

symmetries can be obtained and it reads

T µν(x) = ∂(µφ∗(x)∂ν)φ(x) − ηµν
{
(∂φ(x))2 + φ∗(x)�φ(x)

+ �φ∗(x)φ(x)
}

+
∫ +1/2

−1/2

ds

∫
d4y yµ ∂

∂yν
Π(y)

×φ∗
[
x+ y

(
s+

1
2

)]
φ

[
x+ y

(
s− 1

2

)]
, (13.33)

from which it follows that whenever Π(y) is a function of y2 ≡ yλyλ only,
T µν(x) is symmetric and Jµνλ(x) is conservative.

These apparently strange results occur, as already mentioned above,
because of the noninvariance of Π(y) under the Lorentz group, although
the basic dynamics (i.e. before one uses approximations involving quasi-
particles) used to describe the system are invariant. This does not mean
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that the consideration of quasiparticles does not make sense in relativity or
even that they should be restricted to fully Poincaré-invariant cases, but
only that, being part of an approximation scheme, they bring a number
of apparent pathologies when they are considered independently of their
physical context: not only are they mutually interacting but they are also
interacting with the ground state (i.e. the “vacuum”); in turn, the latter
acts upon them more or less as an external force field and the subsequent
exchange of energy, momentum and angular momentum has also to be taken
into account.

Another important case is found whenever Π(y) depends on two vari-
ables, namely y2 and y · u, where uµ is a timelike unit four-vector, as the
average four-velocity of the system. Then, there exists a reference frame —
precisely the one in which uµ reduces to (1, 0) — where the system is
isotropic and hence where the spatial part,

Jµαβ
spat ≡ Jµαβ∆α

ρ (u)∆β
σ(u), (13.34)

of Jµαβ(x) is conservative: ∂µJ
µαβ
spat = 0.

13.1.3. A general remark

The above results were obtained with the help of functional methods
which greatly simplified their derivation. However, the same results can
also be obtained with more “pedestrian” means. Starting again from the
Lagrangian

L = ∂µϕ
∗(x)∂µϕ(x) −

∫
d4yΠ(y)ϕ∗

(
x+

1
2
y

)
ϕ

(
x− 1

2
y

)
(13.35)

and expanding the fields ϕ and ϕ∗ into Taylor’s series, one gets

L = ∂µϕ(x)∂µϕ(x) −
∑
�,n

(−)n

(
1
2

)�+n

×
∫
d4yΠ(y)yµ(�)+ν(n)∂µ(�)ϕ

∗(x)∂ν(n)ϕ(x), (13.36)

where use has been made of A.O. Barut’s notations:20{
yµ(n) ≡ yµ1

1 yµ2
2 ...yµn

n ,

yµ(n)∂µ(n) ≡ yµ1
1 ∂µ1 y

µ2
2 ∂µ2 ...y

µn
n ∂µn .

(13.37)

20A.O. Barut and G. Mullen, Ann. Phys. (N.Y.) 20, 184 (1962); ibid. 20, 205 (1962);
A.O. Barut, ibid. 5, 95 (1958).
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It follows that we have to deal with a Lagrangian with derivatives of arbi-
trary orders. It can be treated as usual and, at the end of the calculation,
the complete series can be summed and it provides the above equations
of motion. The same is true of the symmetries of the system. The four-
current and the energy–momentum tensors are obtained as double series
which must first be rearranged before being summed.

As an example, we evaluate the energy–momentum tensor of quasi-
photons whose action reads (see Chap. 15)

S =
∫
d4x

{
−1

4
FαβFβα − λ

2
(∂A)2

}

+
1
2

∫
d4y Aµ

(
x+

1
2
y

)
Πµν(y)Aν

(
x− 1

2
y

)
, (13.38)

where Πµν is the polarization tensor of the medium and λ is a gauge-
fixing parameter. The first term is the usual action for the electromagnetic
field which gives rise to the ordinary energy–momentum tensor and we
concentrate on the second part only, which we call SΠ.

The infinitesimal space–time traslations{
δAµ(x) = εα(x)∂αA

µ(x),

δ∂νAµ(x) = ∂ν (εα(x)∂αA
µ(x))

(13.39)

provide

δSΠ =
1
2

∫
d4y

{
εα

(
x+

1
2
y

)
∂αAµ

(
x+

1
2
y

)
Πµν (y)Aν

(
x− 1

2
y

)

+Aµ

(
x+

1
2
y

)
Πµν(y) εα

(
x− 1

2
y

)
∂αAν

(
x− 1

2
y

)}
, (13.40)

which, after addition and subtraction of a derivative of the term involving
the polarization tensor, yields

δSΠ =
∫
d4x

{
εα(x)∂αLΠ +

{
1
2
εα(x)

∫
d4y ∂αAµ(x)Πµν(y)Aν(x− y)

+Aµ(x+ y)Πµν(y)∂αAν(x) − ∂αAµ

(
x+

1
2
y

)
Πµν(y)Aν

(
x− 1

2
y

)

−Aµ

(
x+

1
2
y

)
Πµν(y)∂αAν

(
x− 1

2
y

)}}
. (13.41)

The last two terms of this equality represent the term −∂αLΠ, and they
are now expanded in a Taylor series,

Aµ

(
x± 1

2
y

)
=

+∞∑
n=0

(±y)λ(n)

2nn!
∂λ(n)Aµ(x), (13.42)
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where use has been made of A.O. Barut’s notations. Accordingly, one
rewrittes

∂αLΠ =
1
2

∫
d4y

+∞∑
n=1

k=n−1∑
k=0

(y
2

)λ(n) (−1)k

n!
∂λ(�)

×
[
∂λ(n−k−1)∂αAµ(x)Πµν(y)∂λ(k)Aν

(
x− 1

2
y

)]

+ ∂αAµ(x)Πµν(y)Aν

(
x− 1

2
y

)

+
+∞∑
�=1

(y
2

)λ(�) (−1)�


!
∂αAµ(x)Πµν(y)∂λ(�)Aν

(
x− 1

2
y

)

+
+∞∑
�=1

n−1∑
k=0

(
−y

2

)λ(n) (−1)k

n!
∂λ(�)

×
[
∂λ(k)∂αAµ

(
x+

1
2
y

)
Πµν(y)∂λ(n−k−1)Aν (x)

]

+Aµ

(
x+

1
2
y

)
Πµν(y)∂αAν

(
x− 1

2
y

)

+
+∞∑
�=1

(−y
2

)λ(�) (−1)�


!
∂λ(�)Aµ

(
x+

1
2
y

)
Πµν(y)∂αAν (x) .

(13.43)

Using the following expression for the function B(m+ 1, 
+ 1),

B(m+ 1, 
+ 1) =
m!
!

(m+ 
+ 1)!
=
∫ 1

0

ds sm(1 − s)� (13.44)

and changing the indices as {
m = n− k − 1,

l = k
(13.45)

in the expressions of T µν , where m = 0, 1, 2, . . . and l = 0, 1, 2, . . ., one
finally sees that

T µν
γ = −1

2
∂νAαF

µα − 1
2
Fµα∂νAα − λ

2
∂νAµ (∂ ·A)− λ

2
(∂ ·A) ∂νAµ

+
1
2

∫
d4y yµ

∫ 1/2

0

ds

{
∂νAα

(
x− y

[
s− 1

2

])
Παβ(y)
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×Aβ

(
x− y

[
s+

1
2

])
−Aα

(
x+ y

[
s+

1
2

])
Παβ(y)

× ∂νAβ

(
x+ y

[
s− 1

2

])}
− ηµνLγ , (13.46)

where Lγ is the Lagrangian of the quasiparticles (quasiphotons),

Lγ = −1
4
FµνFµν − λ

2
(∂ ·A)2

+
1
2

∫
d4y Aµ

(
x+

1
2
y

)
Πµν(y)Aν

(
x− 1

2
y

)
, (13.47)

and the Hermitian character of the polarization tensor implies that

Πµν+(y) = Πµν(−y), (13.48)

after analysis of the various terms of these expressions.

13.2. Quantum Quasiparticles

In the preceding section, the “classical” quasiparticle fields have been
studied and their conservation laws derived; the latter are to be used in
what follows. Before one quantizes these fields, it must be recalled that, in
actual practice, one starts with a given physical system obeying an involved
quantum field theory at finite density and/or temperature; thence approxi-
mations of various types (perturbation, one-loop, random phase, etc.) must
be performed and they finally lead to equations of motion for the excita-
tions propagating within the system. It is the quantization of these excita-
tions, of these approximate “free” fields, which we want to consider in this
section. The important point, here, is that our starting point is an approx-
imation and hence it should not be surprising if pathologies appear. For
instance, since our equations are nonlocal in essence, problems of causality
might be expected. However, it should also be emphasized that, within
the framework of a specific approximation, only particular scales (of time,
length, energy, etc.) are to be dealt with and, most generally, pathologies
appear at smaller scales: when one is dealing with scales of ∼10−10 cm,
a possible lack of causality occurring on the scale of 10−14 cm should not
really be considered as a problem.

In this section, the quantization of the “classical” quasiparticle fields is
first performed in a formal manner and next discussed in connection with
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specific problems such as the existence and interpretation of antiquasipar-
ticles. Such a quantization is not very complicated, the more so since only
free quasiparticle fields are dealt with here.

A last remark is, however, in order. The quantization performed below
parallels the standard quantum field quantization. It has, however, been
argued that quasiparticles behave as if they would obey parastatistics.21 In
such a case, there exist peculiarities of the quantization procedure which
should be taken into account.

13.2.1. Formal quantization

First, we assume that the Φ vacuum is normal, in the sense that
〈vac

∣∣Φ∣∣vac〉 = 0, so that the field Φ can be expanded into normalized plane
waves. Whenever 〈vac

∣∣Φ∣∣vac〉 �= 0, the vacuum average value of Φ has just
to be subtracted out.

The vector space of the solutions of the (linear) quasiparticle field can
be attributed to the Hermitian product

〈Φ1|Φ2〉 =
∫

Σ

dΣµ

{
Φ∗1(x)

↔
∂µΦ2(x)

+
∫ +1/2

−1/2

∫
ds d4y Π(y)yµΦ∗1

[
x+ y

(
s+

1
2

)]

× Φ2

[
x+ y

(
s− 1

2

)]}
, (13.49)

where Σ is an arbitrary spacelike three-surface and Φi(x) (i = 1, 2) are
two solutions to the equations of motion. It is not difficult to see, that
the integrant of this last expression is divergent-free and hence that this
Hermitian product does not actually depend on Σ (use the equations of
motion). It reduces to the usual one (the first term on the right hand side)
when Π(y) = −µ2δ(4)(y) (Klein–Gordon equation) and is suggested by the
form of the four-current and, as in the latter case, is not definite positive
since “charge” can have either sign. It allows the normalization of plane
wave solutions to the equations of motion

Φk(x) = Nk exp(−ik · x) (13.50)

through the usual condition

〈Φk|Φk′〉 = δ(3)(k− k′), (13.51)

21See e.g. O.W. Greenberg and A. Messiah, Phys. Rev. 138, 1155 (1965).
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and one finally obtains

φk(x) =
1

(2π)1/2
(
2ωk − ∂Π(k)

∂ωk

)1/2
exp(−ikx), (13.52)

where ωk ≡ k0 is a solution to the dispersion equation given at the
beginning of the first section. Such a normalization obviously implies that
the quantity 2ωk − (∂/∂ωk)Π(k) is positive: this is, however, the case
for particles [see the discussion below and A.D. Migdal (1978)] and, pre-
sumably, when the medium is thermodynamically stable. This property
is discussed later in a subsection. Note that the above normalization was
already obtained in another way by Migdal.

In order to be specific, let us consider the case of a real scalar field,
the extension to other fields (complex, with internal degrees of freedom,
fermion, etc.) being straightforward. It is expanded into normalized plane
waves as

φ(x) =
∑

�

1
(2π)3/2

∫
d3k∣∣∂D

∂ω

∣∣1/2

ω=ω�(k)

×{a�(k) exp[−ik · x] + a+
� (k) exp[+ik · x]} (13.53)

where D(k) ≡ k2 − Π(k) and where the sum over l refers to a sum over
all possible modes, solutions to D(k) = 0. Of course, when Π(k) = −µ2,
one recovers the usual free field expansion; a�(k) and a+

� (k) are the anni-
hilation and creation operators, respectively, of the quasiparticles under
consideration and obey the conventional commutation relations[

a�(k), a+
� (k′)

]
= δ��′δ

(3)(k− k′). (13.54)

Covariant annihilation/creation operators Ak and A+
k are connected to the

above {a(k), a+(k)} through

a�(k) =
[
∂D

∂ω

]1/2

Ak (13.55)

and obey the commutation relation[
Ak, A

+
k′
]

=
[
∂D

∂ω

]
δ(3)(k− k′). (13.56)

Furthermore, φ(x) can be rewritten in a manifestly covariant form as

φ(x) =
1

(2π)3/2

∫
d4k δ(D)

{
Ak exp[−ik · x] +A+

k exp[+ik · x]} .
(13.57)
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After a little algebra and using the basic commutation relations for the
creation/annihilation operators, one gets the commutation relations obeyed
by Φ(x), i.e.

[φ(x), φ(y)] = − 2i
(2π)3

∫
d4k δ [D(k)] sin [k · (x− y)] θ(k0), (13.58)

or in the form

[φ(x), φ(y)] = − 1
(2π)3

∫
d4k ε(k0)δ [D(k)] exp [ik · (x − y)] . (13.59)

In this last equation, and in the transition from the noncovariant to the
covariant forms, use has been made of the well-known formula

δ [D(k)] =
∑

�

δ [ω − ω�(k)]

(∣∣∣∣∂D∂ω
∣∣∣∣
1/2

ω=ω�(k)

)−1

, (13.60)

where ω�(k) is a simple root of the dispersion equation D(k) = 0.
In a vacuum, the field Φ(x) has fluctuations given by

〈vac|φ(x)φ(y) |vac〉 = − 2i
(2π)3

∫
d4k δ [D(k)] exp [ik · (x− y)] (13.61)

so that, at point x = y, they are

〈vac|φ2(x) |vac〉 = − 2i
(2π)3

∑
�

∫
d3k∣∣∂D

∂ω

∣∣1/2

ω=ω�(k)

. (13.62)

This last quantity is certainly infinite: the propagating modes are likely to
behave as ω ≈ k for large k’s (this is the case in known relativistic systems
such as QED or QCD plasmas), so that this last integral would diverge.
Neveretheless, there exists a counterexample with the longitudinal modes
of a QED plasma. Although this question is interesting in itself, it should
be borne in mind that, for (ω,k) → ∞, the notion of the quasiparticle
can be questioned. On the other hand, tachyonic modes could lead to finite
fluctuations of the quasiparticle vacuum and also to finite renormalizations,
although they are expected to possess very short lifetimes.

From the expansion of the field Φ(x) in plane waves and the expression
of the energy–momentum tensor, one immediately obtains the Hamiltonian
of the quasiparticles as

H =
∫

t=const

d3x T 00

=
∑

�

∫
t=const

d3k

(2π)3
ω�(k)

[
a+

� (k)a�(k) +
1
2

]
, (13.63)
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as it should be in the usual cases (see below, however). Of course, from
this Hamiltonian and Schwinger’s action principle, one could recover the
assumed commutation relations of the creation/destruction operators given
above.

Unfortunately, actual physical situations are not so simple and they lead
to difficult problems, which we now discuss.

13.3. Problems with the Quantization of Quasiparticles

13.3.1. A first example

In order to be specific and yet remain at a level where calculations do not
hide the problems, the following equation of motion is first chosen:(

� +m2
1

) (
� +m2

2

)
Φ(x) = 0, (13.64)

where Φ(x) is still a real scalar field. Equations of that form, or more general
ones, have been discussed a few decades ago in connection with the hope
of resolving the question of the divergences of quantum electrodynamics.22

This particular equation of motion corresponds to a “polarization
tensor” Π(k) given by

Π(k) =
k4 +m2

1m
2
2

m2
1 +m2

2

(13.65)

and to the dispersion equation

D(k) = (k2 −m2
1)(k

2 −m2
2) = 0, (13.66)

so that the quantity

2ωk − ∂Π
∂ωk

∣∣∣∣
ω�=ωk

= 2ω
[
m2

1 +m2
2 − 2k2

m2
1 +m2

2

]
(13.67)

is positive for one root of the dispersion equation and negative for the
other. It follows immediately that the plane wave normalization is no longer
possible and must be replaced by

〈Φk|Φk′〉 = ±δ(3)(k − k′); (13.68)

22See e.g. B.T. Darling, Phys. Rev. 92, 1547 (1953); P.T. Mathews, Proc. Cambridge
Philos. Soc. 45, 441 (1949); W. Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949); W.
Pauli, Rev. Mod. Phys. 15, 175 (1943); R.J.N. Phillips, Nuovo Cimento 1, 823 (1955);
L.K. Pandit, Suppl. Nuovo Cimento 11, 157 (1959); K.L. Nagy, Suppl. Nuovo Cimento
17, 92 (1960); T.W.B. Kibble and J.C. Polkinghorne, Nuovo Cimento 8, 74 (1958); H.M.
Fried and J. Plebanski, Nuovo Cimento 18, 884 (1960); A.O. Barut and G.H. Mullen,
Ann. Phys. (N.Y.) 20, 184 (1962); ibid. 20, 203 (1962); A. Pais and G.E. Uhlenbeck,
Phys. Rev. 79, 145 (1950); E.C.G. Sudarshan, Phys. Rev. 123, 2183 (1961).
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in other words, the Hilbert space of the solutions to the equations of motion
is now endowed with an indefinite metric. In this last normalization relation,
±s refers to the sign of

2ωk − ∂Π
∂ωk

∣∣∣∣
ω�=ωk

≡ ∂

∂ω

[
ω2 −Π(k)

]∣∣∣∣
ω=ω�(k)

=
∂D(k)
∂ω

∣∣∣∣
ω=ω�(k)

. (13.69)

With such an indefinite metric, the Hamiltonian operator now reads

H =
∑

�

∫
d3k

(2π)3
sgn

(
∂D(k)
∂ω

∣∣∣∣
ω=ω�(k)

)
ω�(k)a+

� (k)a�(k), (13.70)

where the creation/destruction operators now obey the commutation rela-
tions

[
a�(k), a+

� (k)
]

= sgn

(
∂D(k)
∂ω

∣∣∣∣
ω=ω�(k)

)
δ��′δ

(3)(k− k′) (13.71)

and where sgn is the sign function. In fact, rather than using a plane wave
expansion of Φ(x) in the above form, it is preferable to write it as23

Φ(x) =
∫

d3k

(2π)3/2
×

a�(k) exp(−ik · x)∣∣∂D

∂ω

∣∣1/2

ω=ω1(k)

+
b+� (k) exp(+ik · x)∣∣∂D

∂ω

∣∣1/2

ω=ω2(k)


 , (13.72)

so that the commutation relations now reads

[a(k), a+(k′)] = δ(3)(k− k′),

[b(k), b+(k′)] = −δ(3)(k− k′),
(13.73)

where the a’s correspond to the plus sign of ε and the b’s to the minus sign.
The Hamiltonian then reads

H =
∫

d3k

(2π)3

{√
k2 +m2

1 a
+(k)a(k) −

√
k2 +m2

2 b
+(k)b(k)

}
, (13.74)

assuming that k2 = m2
1 is the positive energy mode or, equivalently, that

m2
1 < m2

2. This expression shows clearly that the Hamiltonian operator is
not positive definite, with the disastrous consequence that there no longer
exists a vacuum state defined as being a minimum energy state.

Many solutions to these drawbacks have been proposed and discussed in
the literature: transformation of the real field Φ into a purely imaginary one;
introduction of supplementary conditions; projection onto positive energy

23In order to simplify the notation, we assumed only one positive energy and only one
negative energy mode, which is the case of our example. Of course, the various other
commutation relations are vanishing as [a, b] = 0, etc.
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states regarded as sole physical states; etc. Unfortunately, none of them can
be considered as being really satisfactory.

Moreover, one has to distinguish between theories supposed to be fun-
damental and phenomenological ones, describing partly a given physical
system in a definite class of states. While in the first case, known properties,
such as causality or Lorentz invariance, have to be imperatively obeyed, in
the second one, these basic properties might be relaxed at given scales.
In order to gain some further insights, several other examples will now be
discussed.

13.3.2. Another example: the QED plasma

A more physical situation can be found in the case of a QED plasma, and
even in the case of a nonquantum and/or a nonrelativistic one. For such
systems (ions plus electrons plus modes or radiation) the existence of what
is known as “negative energy modes” has been recognized for a long time24:
these modes are precisely those which correspond to

2ωk − ∂Π(k)
∂ω

< 0. (13.75)

Usually they are interpreted via the sign of the imaginary part of the fre-
quency of an eigenmode of the plasma

γ = − ImΠ(ω, k)

2ωk − ∂ReΠ(k)
∂ω

∣∣∣∣∣
ω=ω�(k)

, (13.76)

where |γ| 
 ω and ω�(k) is a solution to the dispersion equation. In this
expression for γ, Π is to be understood as being either the transverse or
the longitudinal part of the polarization tensor. It can also be shown to
represent essentially the ratio of the energy dissipated by the propagating
wave and of its total energy25; and it can be rewritten as

γ = − ReE∗ · J
E2

4π
∂

∂ω (ωεL)

∣∣∣∣∣
ω=ωL(k)

, (13.77)

where E is the electric field, J the three-current and εL the longitudinal
dielectric function. For transverse waves there also exists a quite similar
expression. The negative energy modes then appear when the signs of these

24T. Kihara, O. Aono and T. Dodo, Nucl. Fus. 2, 66 (1962); A.I. Alexseev and Yu. P.
Nikitin, Sov. Phys. JETP 23, 608 (1966); E.G. Harris, Adv. Plas. Phys. 3, 157 (1969).
25G. Bekefi, Radiation Processes in Plasmas (Wiley, New York, 1966).
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two energy differ: when the total energy is positive and the dissipated energy
is negative, the particles of the plasma provide energy to the wave so that
the latter is amplified; the opposite case leads to a similar conclusion.2

Detailed features of these modes, in connection with mode–mode interac-
tions, have been discussed by V.N. Tsytovich.26

A first conclusion of this short analysis is that when one considers modes,
whether quantized as quasiparticles or not, it is essential to take the energy
(and possibly quantum numbers) exchanges with the basic system or, in
other words, with a prescribed vacuum supposed to provide a satisfactory
description of it. This shows that when one quantizes the eigenmodes of a
system, not only negative energies may appear but also they are as physical
as positive ones. Unlike the case of a system obeying a fourth order equation
(or a higher order one) like in the example briefly studied in the preceding
section, where there is no obvious way to treat the negative energy states
(which lead to a basic instability of the system since, in such a case, there
is no vacuum in the theory), the case of a plasma (whether classical or
not, whether relativistic or not) is quite different: in a real physical system,
there always exists a ground state; this ground state is, of course, the lowest
possible energy (or free energy) state and the negative energy of the modes
is physically bound from below.

To these remarks, it should be added that for a nonquantum and non-
relativistic plasma, a necessary and sufficient condition for the existence
of negative energy modes, has been given by several authors.27 It is based
on the analysis of the second variation of the free energy of “equilibrium”
(i.e. steady states) distributions, whose sign determines its linear stability.
Unfortunately, such an analysis has not yet been performed in the rela-
tivistic quantum case.

Finally, one should conclude that these strange modes have to be dealt
with and must not be eliminated a priori. Furthermore, a full discussion
on the stability of the original system (considered in the approximation at
hand) is certainly required.

13.3.3. Migdal’s approach

In a general review of pion condensation, A.D. Migdal (1978) gave a few
basic tools for the quantization of quasiparticle fields. With our notations,

26V.N. Tsytovich, Non-linear Effects in Plasma (Plenum, New York, 1970).
27H. Weitzner and D. Pfirsch, Phys. Rev. A43, 4532 (1991); P. J. Morrison and
D. Pfirsch, Phys. Rev. A40, 3898 (1989); Phys. Fluids B2, 1105 (1990).
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for a complex scalar field Φ(x), he wrote (we limit ourselves to the case of
only one mode, for brevity)

Φ(x) =
∫

d3k

(2π)3/2
×

a(k) exp(−ik+ · x)∣∣∂D

∂ω

∣∣1/2

ω=ω+(k)

+
b+(k) exp(+ik− · x)∣∣∂D

∂ω

∣∣1/2

ω=ω−(k)


 ,

(13.78)

where the + and − signs refer to the positive and the negative energy mode,
respectively. Accordingly, the corresponding Hamiltonian reads

H =
∫

d3k

(2π)3
k0 sgn

(
∂D(k)
∂ω

∣∣∣∣
ω=ω(k)

)[
a+(k)a(k) − b+(k)b(k)

]
, (13.79)

where, for this discussion, an irrelevant vacuum term has been dropped and
ε(x) is still the sign function. Furthermore, the factor k0sgn(. . .) should
be understood as being taken for k0 = w+(k) when acting on the term
a+(k)a(k), and as being taken for k0 = −ω−(k) when acting on b+(k)b(k).

For a normal stable vacuum, whose quantum numbers are essentially
zero, one has D(k) = D(−k) and hence ∂D/∂k0, as a function of k0, is
odd. Consequently, the quantity k0sgn(∂D/∂k0) is always positive and the
Hamiltonian H is definite positive. This is the case when, for instance,
one deals with symmetric nuclear matter: the vacuum does not carry any
nonvanishing quantum number (for instance, the equilibrium state of the
system has a vanishing isotopic spin) and the quasiparticle spectrum is
symmetric with respect to the change k→ −k [see A.D. Migdal (1978) for
some examples]. Unlike symmetric nuclear matter, neutron matter gives
rise to a “vacuum” state carrying isospin and the relation D(k) = D(−k)
is no longer valid. It follows that the change of sign of k0 and of ∂D/∂k0

generally do not occur at the same time. In this last case, the Hamiltonian
is nondefinite positive: there is no vacuum and the system as quantized, as
above, is unstable. Several examples of such spectra are provided by A. D.
Migdal (1978).

This brief discussion shows that Migdal’s approach is not always ade-
quate. Moreover, it is easy to see that when ∂D/∂k0 changes its sign for
k0 �= 0, the plane wave expansion of the “quasifield” does not provide a
complete basis in the Hilbert space of the solutions to the equations of
motion since Migdal suppresses two terms in the plane wave expansion of
the field.

Although this important problem of negative energy modes cannot be
considered as being solved, an alternative, but not unique, interpretation
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is briefly outlined and discussed in the next section. Note also that a quan-
tization of quasiparticle fields according to parastatistics would perhaps
provide an interesting way out.

13.4. The Covariant Wigner Function

In this section and in the following, a stable “vacuum” or equilibrium state
is assumed and hence no negative energy modes can be excited within
the medium. When these conditions are realized, it is not very difficult to
obtain the basic statistical properties of those quasiparticles propagating in
the system, whether in thermal equilibrium or not. In this section we still
limit ourselves to the case of a complex scalar field without any internal
symmetry, the extension to this case (or to other Bose fields) being straight-
forward.

When quasiparticles do interact, or when a number of problems such as
the calculation of the fluctuations of various physical quantities are dealt
with, the use of the covariant Wigner function presents a certain interest.
As before, it is defined as the average value of the Wigner operator

fop(x, p) =
1

(2π)4

∫
d4R exp (−ip ·R) φ̃∗

(
x+

1
2
R

)
φ̃

(
x− 1

2
R

)
,

(13.80)

where, as mentioned in Chaps. 8 and 9, the average value of the field has
been subtracted:

φ̃(x) ≡ φ(x) − 〈φ(x)〉. (13.81)

Such a definition should generally be preferred, in contrast with those given
by other authors, since quasiparticles are associated with the field fluctua-
tions above a “vacuum.”

Using now the equations of motion obeyed by the fields φ∗(x) and φ(x),
a straightforward calculation similar to those already used28 in preceding
chapters leads to the transport equation

p · ∂f(x, p)− 1
2

∫
d4p d4yΠ(y) exp(ip · y)

×
[
f

(
x+

1
2
y, p

)
− f

(
x− 1

2
y, p

)]
= 0, (13.82)

28See also P. Carruthers and F. Zachariasen (1976); F. Cooper and D. Sharp (1975);
F. Cooper and M. Feigenbaum (1976); P. Carruthers and F. Zachariasen (1983).
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valid for free quasiparticles only. This equation is the analog of the rela-
tivistic Liouville equation for a classical relativistic system of free particles.
In fact, there exists another equation obeyed by f(x, p) which plays the
role of a mass shell: this property is more obvious in Fourier space and
hence it will be shown below. This “Liouville equation” is a basic equation
when one is dealing with transport properties of the system; in such a case
it must be supplemented by a collision term C(f) which might be of the
Uhlenbeck–Uehling form or another phenomenological nature. As a matter
of fact, as has been emphasized several times, the most reasonable one is
probably a relaxation time approximation where

C(f) = −uµ

(
pµ − ∂

∂pµ
Π(p)

)
f − feq
τ

. (13.83)

In this collision term, τ is the relaxation time and the factor

pµ − ∂

∂pµ
Π(p) (13.84)

has been chosen so that the Landau matching conditions

uµJ
µ
off = 0, uµT

µν
off = 0 (13.85)

are satisfied. This can be checked by integrating the two sides of the con-
sequent kinetic equation for the “small” off-equilibrium part of the Wigner
function.

In terms of the above Wigner function, the four-current operator Jµ
op(x)

can be written as

Jµ
op(x) =

∫
d4p d4y pµfop(x, p) +

1
2

∫
d4y

∫ +1/2

−1/2

ds

×
∫
d4ξΠ(y) exp(iξ · y)fop(x+ ys, ξ), (13.86)

while the energy–momentum tensor operator T µν
op (x) reads

T µν
op (x) =

∫
d4p

({
2pµpν − ηµν

[
p2 − 1

4
∂2 − Π(p)

]}
fop(x, p)

− i

∫ 1/2

0

ds

∫
d4y exp(ip · y)Π(y)yµ

×
[(
pν +

i

2
∂ν

)
f(x+ ys, p) +

(
pν − i

2
∂ν

)
f(x− ys, p)

])
,

(13.87)
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an unpleasant expression29 quite different from what was assumed in dif-
ferent relativistic versions30 of the Landau theory of normal Fermi liquids.

Let us now go over to the Fourier space expressions, since much can
be learned from them. We still denote by the same symbol a function and
its Fourier transform, the variables k and x being sufficient to make the
distinction. First, the Fourier transform of f(x, p) reads

f(k, p) =
1

(2π)4

〈
φ̃∗

(
p− 1

2
k

)
φ̃

(
p+

1
2
k

)〉
, (13.88)

so that the equation of motion for φ(k),[
k2 −Π(k)

]
φ(k) = 0, (13.89)

yields [(
p± 1

2
k

)2

−Π
(
p± 1

2
k

)]
f(k, p) = 0, (13.90)

which finally gives rise to the equations for f(k, p)


{
p · k − 1

2

[
Π
(
p+

1
2
k

)
−Π

(
p− 1

2
k

)]}
f(k, p) = 0,{(

p2 +
1
4
k2

)
− 1

2

[
Π
(
p+

1
2
k

)
+ Π

(
p− 1

2
k

)]}
f(k, p) = 0,

(13.91)

obtained by subtracting or adding the preceding equations. The first of
these last equations is nothing but the Fourier transform of the above “Liou-
ville equation.” In the long wavelength and low frequency limit k ≈ 0, it
reads

k · vf(k, p) = 0 (13.92)

where vµ can be considered as the four-velocity of the (free) quasiparticles.
The second equation is directly connected with the “mass shell” of the
quasiparticles and this can be seen in the case of a stationary and homo-
geneous state — like an equilibrium state — since, in such a case, one
has

f(k, p) = δ(4)(k)f(0, p) ≡ δ(4)(k)f(p), (13.93)

29An irrelevant divergence-free term has been omitted in the expression of the energy–
momentum tensor.
30G. Baym and S.A. Chin (1976); T. Matsui (1981); Ch. G. van Weert and M.C.J.
Leermakers (1984); M.C.J. Leermakers and Ch. G. van Weert (1984); Ch. G. van Weert
and M.C.J. Leermakers (1985a,b,c); M.C.J. Leermakers Ch. G. van Weert (1986); M.C.J.
Leermakers, Ch. G. van Weert and A.M.J. Schakel (1986).
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so that the second equation reduces to

[p2 −Π(p)]f(p) = 0, (13.94)

whose solution has the general form

f(p) = δ
[
p2 −Π(p)

]
χ(p), (13.95)

where χ(p) is an arbitrary function.
In Fourier space, the Lagrangian reads

L(k) =
∫
d4p

[
p2 − 1

4
k2 −Π(k)

]
f(k, p), (13.96)

so that the total action I is

I = L (k = 0) . (13.97)

The average four-current Jµ(k) (see App. E for useful formulae) is easily
found to be

〈Jµ(k)〉 = 2
∫
d4p pµf(k, p)−

∫ +1/2

−1/2

ds

∫
d4p pµf(k, p)

∂

∂pµ
Π(k + ps),

(13.98)
while the energy–momentum tensor is given by

〈T µν(k)〉 = 2
∫
d4p

[
pµpν − 1

4
kµkν

]
f(k, p)− aµν(k)− ηµνL(k), (13.99)

with

aµν(k) =
∫ 1/2

0

ds

∫
d4p pµf(k, p)

{
pν ∂

∂pµ
[Π(p+ ks) + Π(p− ks)]

− 1
2
kν ∂

∂pµ
[Π(p+ ks) + Π(p− ks)]

}
. (13.100)

It is obviously not symmetric as expected; however, when one deals with
an isotropic equilibrium system, it is symmetric, as can easily be shown.
Note the general form below for 〈T µν(k)〉 in thermal equilibrium.

13.5. Equilibrium Properties

From the knowledge of the quasiparticle Hamiltonian and of the “charge”
(i.e. the conserved property whose four-current is given above)

Q =
∫
d3x J0(x), (13.101)
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the equilibrium density operator is given, as usual, by

ρ =
1
Z

exp (−β [H − µQ]) , (13.102)

with

Z = Tr {exp (−β [H − µQ])} . (13.103)

In manifestly covariant form ρ can be rewritten as

ρ =
1
Z

exp
(
−βν

∫
Σ

dΣλ

[
T νλ − µJλ

])
, (13.104)

where µ is the chemical potential associated with the conserved charge Q
and βν is the average velocity four-vector of the system times the inverse
temperature β (in the rest frame of the system); this last equation reduces
to the preceding one.

Since either expression for the density operator has the same structure
as usual,31 this leads to quite similar expressions for the physical quantities
such as the average charge density, energy–momentum tensor (or energy
density ρ and pressure P ), entropy four-current, or average occupation
number.

In manifestly covariant form these latter quantities respectively read

n(k) =
1

exp (βµkµ − βµ)− 1
(13.105)

for the average occupation number,

Jµ =
1

(2π)3

∫
d4k sgn(k0)n(k)δ [D(k)]

∂D(k)
∂kµ

(13.106)

for the “charge” four-current, and

Sµ = −kB
1

(2π)3

∫
d4k sgn(k0)n(k)δ [D(k)]

∂D(k)
∂kµ

× {n(k) log[n(k)]− [n(k) + 1] log[n(k) + 1} (13.107)

for the entropy four-current. When the system does not involve any other
four-vector than uµ, 〈T µν〉 has the general form

〈T µν〉 = (ρ+ P )uµuν − Pηµν , (13.108)

31See e.g. K. Huang, Statistical Mechanics (Wiley, New York, 1963).
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with

ρ =
1

(2π)3

∫
d4k ε(k0)δ (D(k)) kν

∂D(k)
∂kµ

uµuνn(k) (energy density),

(13.109)

P =
1

3 (2π)3

∫
d4k ε(k0)δ (D(k)) kν

∂D(k)
∂kµ

∆µν(u)n(k) (pressure).

(13.110)

In more usual notations, i.e. in a Lorentz frame where uµ = (1,0), one has

neq ≡ 〈Q〉
V

= J0 =
∑
�,±

1

(2π)3

∫
d3k

±1
exp [β (ω�(k)∓ µ)]− 1

ρ =
∑
�,±

1

(2π)3

∫
d3k

ω�(k)
exp [β (ω�(k)∓ µ)]− 1

P =
1
3

∑
�,±

1
(2π)3

∫
d3k

∂D(k)
∂k

∣∣∣
ω=ω�(k)

k
∂D(k)
∂k

∣∣∣∣
ω=ω�(k)

× ω�(k)
exp [β (ω�(k)∓ µ)]− 1

. (13.111)

The only differences from the usual case32 are (i) the summation over the
various modes, denoted by |, and over the “anti”-quasiparticles (summation
over ±), and (ii) the expression for the pressure, which, in the case where
k2 = m2, reduces to the known expression.

These equations indicate that the role of the four-velocity of the quasi-
particles is played by the quantity

vµ(k) =
1
2
∂D(k)
∂kµ

, (13.112)

while their four-momentum is kµ. It follows from this equation that the
three-velocity w of a quasiparticle excited in the 
th mode is given by

w =
∂D(k)
∂k

×
(
∂D(k)
∂ω

)−1
∣∣∣∣∣
ω=ω�(k)

(13.113)

so that the pressure P retains its customary form:

P =
1
3
〈w · k〉. (13.114)

32See e.g. J. Ehlers (1971).
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This is in contrast with an earlier incorrect result33 but in accordance with
Ch. G. Van Weert and M.C.J. Leemakers (1984) when one realizes that
their spectral function A(k) is related to our D(k) through A(k) = θ[D(k)],
where θ is the Heaviside step function. Note also that the above definition
of w is identical to the definition w = v/v0.

Other derived thermodynamic quantities can be obtained via the cus-
tomary relations. For instance, the heat capacity of the quasiparticles is
given by

CV =
∂ρ

∂T
; (13.115)

it should be remembered that an expression like this contains the temper-
ature not only through the average occupation number parameter β but
it also occurs implicitly in the mode ω�(k). One has to bear in mind too
that this is only the contribution of the quasiparticles and that the medium
must be taken into account. This is briefly developed below.

13.6. A Simple Example: The λφ4 Model

The previous concepts are now illustrated in the case of a real scalar field
obeying equations of motion derived from the Lagrangian

L =
1
2

(∂φ)2 − 1
2!
µ2

0φ
2 − 1

4!
λ0φ

4. (13.116)

This simple model is, of course, not intended to represent an actual physical
situation whatsoever, even though scalar fields play an important role in
particle physics via the Higgs mechanism and, consequently, in the pri-
mordial universe.34

From the equation of motion(
� + µ2

0

)
φ+

1
3!
λ0φ

3 = 0 (13.117)

and the definition of the Wigner operator, after an average one obtains the
two equations

2ip · ∂f(x, p)− λ0

3!

∫
d4R

(2π)4
exp(−ip · R)

〈
φ

(
x+

1
2
R

)
φ3

(
x− 1

2
R

)

− φ
(
x+

1
2
R

)
φ3

(
x− 1

2
R

)〉
= 0, (13.118)

33R. Hakim (1978).
34See e.g. G.W. Gibbons, S.W. Hawking and S.T.C. Siklos, The Very Early Universe
(Cambridge University Press, 1983).
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2
[
p2 −�− µ2

0

]
f(x, p)− λ0

3!

∫
d4R

(2π)4
exp(−ip ·R)

〈
φ

(
x+

1
2
R

)

×φ3

(
x− 1

2
R

)
+ φ

(
x+

1
2
R

)
φ3

(
x− 1

2
R

)〉
= 0, (13.119)

where, for simplicity, we have assumed — but this is not an essential
restriction — that 〈φ〉 = 0. The integral terms of these equations could be
expressed in terms of the two-particle covariant Wigner function; however,
this is not necessary, since they will be expressed here in terms of f(x, p)
with the help of the Gauss (Hartree–Vlasov pairing) approximation. This
latter is expressed by

〈φ (1)φ (2)φ (3)φ (4)〉 ≈
∑

all pairs

〈φ (i)φ (j)〉〈φ (k)φ (l)〉, (13.120)

where the labels 1, 2, . . ., i, . . . indicate space–time points. Inserted into the
above equation, the Gaussian approximation leads to


ip · ∂f(x, p)− λ0

4

∫
d4R

(2π)4
d4p′ d4p′′ exp (−ip ·R) f(x, p′)

×
[
f

(
x+

1
2
R, p′′

)
− f

(
x− 1

2
R, p′′

)]
= 0,[

p2 − 1
4
�− µ2

0

]
f(x, p)− λ0

4

∫
d4R

(2π)4
d4p′ d4p′′ exp(−ip ·R)f(x, p′)

×
[
f

(
x+

1
2
R, p′′

)
+ f

(
x− 1

2
R, p′′

)]
= 0,

(13.121)
the solution of which must be mutually consistent. The first equation
expresses the statistical evolution of the system of quasiparticles, while
the second one is connected to their “mass shell.”

Of course, other kinds of approximations would lead to other kinetic
equations. In particular, this is the case when, instead of terms like ≈ φ3φ,
one introduces a two-body Wigner function f2(x, p; x′, p′); then new func-
tional expressions of f2[{f}] yield new kinetic equations and it should
be emphasized that the choice of this functional greatly depends on the
physical problem under study and also on the available scales of energy,
length, time, etc. Here, use was made of the simplest possible choice, where
only collective effects are taken into account so that the kinetic equations
obtained are strongly reminiscent of the ordinary Vlasov equation of the
usual plasma physics.
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Let us now briefly provide some elements on thermodynamic equilibrium
for this system and in this approximation. Since f(x, p) = feq(p), the first
of the above equations is trivially satisfied while the second one reduces to{[

p2 − µ2
0

]− λ0

2

∫
d4p′′feq(p′′)

}
feq(p) = 0, (13.122)

which can be rewritten as [
p2 −M2

]
feq(p) = 0, (13.123)

where the constant effective mass M satisfies the transcendental equation

M2 = µ2
0 +

λ0

2

∫
d4p feq(p). (13.124)

These equations indicate that, in Gaussian approximation, the system
can be considered as being composed of free quasiparticles endowed with
the effective mass M . This means that feq(p) is the usual Bose–Einstein
function — plus the vacuum term — and hence this last equation is a self-
consistent equation for M that controls the whole thermodynamics of the
system. This equation reads

M2 = µ2
0 +

λ0

2

∫
d3p√

p2 +M2


 1

exp
(
β
√

p2 +M2
)
− 1

+
1
2


, (13.125)

which has yet to be renormalized. This result is by no means new and can
be found many times in the literature, where it was derived with several
techniques.35

There exist many possible cases of thermodynamic states for this
system, which are analyzed in detail elsewhere. The above figure, for the
effective mass plotted against the temperature, indicates a phase transition
and the existence of a critical temperature above which M = 0. As men-
tioned earlier, the thermodynamic properties of the system are controlled
by the effective mass and they can be obtained through the free energy of
the system F = −P , which reads in the case of Fig. 13.1,

F =
M4

128π2

(
2 ln

[
M2

Λ

]
− 1

)
+
M2

2

[
〈φ〉2 − m1

8π2

]
, (13.126)

where m1 and Λ are arbitrary constants which can be related to the renor-
malized quantities λR and µ2

R. The figure below shows the effective potential

35For a more complete list of references, see F. Grassi, R. Hakim and H. Sivak (1991).
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Fig. 13.1 A typical behavior of the renormalized effective mass as a function of temper-
ature for 〈φ〉 = 0, in the case of the so-called “precarious” solution [after F. Grassi, R.
Hakim and H. Sivak (1991)]. Continuous line — stable solution; dotted line — unstable;
dashed line — metastable.

(free energy) corresponding to the effective mass of the preceding figures as
a function of 〈φ〉 (see Fig. 13.2).

Let us briefly mention the off-equilibrium properties of this system and,
in particular, its transport properties. They can be calculated from the rel-
ativistic version of the Bathnagar–Gross–Krook equation, which, in Fourier
space, can be written in the particularly simple form

ip · kf(k, p) = −p · uf(k, p)− feq(p)
τ

(13.127)

and hence is identical to J.L. Anderson and H.R. Witting’s form (1974).
Accordingly, the general form of the various transport coefficients of this
system is identical to those given by these authors, although their depen-
dence on the thermodynamic properties (such as from the temperature) is
not the same owing to the presence of the effective mass. Note also that
some care is needed because of the absence of a conserved current in this
particular system.

13.7. Remarks on the Thermodynamics of Quasiparticles

The expressions obeyed earlier for P , ρ and Q do not generally obey the laws
of thermodynamics unless strong conditions are imposed on the polarization
Π. This can conveniently be seen in the rest frame where the ordinary forms
of thermodynamics apply, at least for ordinary systems. One might indeed
think that an assembly of free quasiparticles obeys the law of thermody-
namics. However, things are not that simple. For instance, while in the λφ4
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Fig. 13.2 The free energy as a function of the average scalar field at a given temperature.
The various branches correspond to those indicated on the effective mass curve [after F.
Grassi, R. Hakim and H. Sivak (1991)].

theory at finite temperature [F. Grassi, R. Hakim and H. Sivak (1991)] the
laws of thermodynamics are not satisfied by the quasiparticles alone, they
are valid for the quasiparticles of the Walecka model of relativistic nuclear
matter [B.D. Serot and J.D. Walecka (1986)]. Also, in the λφ4 theory at
finite temperature, when the interactions between the quasiparticles are
taken into account, one finds that the thermodynamics is recovered.

The reasons why thermodynamics are obeyed in these two examples lie
in the following remarks. In both cases the macroscopic parameters involved
in the excitation spectrum of the quasiparticles are determined in a vari-
ational manner: in the Walecka model by minimizing the grand potential
Ω, and in the λφ4 theory by minimizing the free energy F . In either model
there exists an effective mass M obeying a self-consistent equation whose
general form is 


∂Ω
∂M

= 0 (Walecka model),

∂F
∂M

= 0 (λφ4 theory).
(13.128)

As a result, since the various thermodynamic quantities are essentially
derivatives of either Ω or F , their dependence on M can be ignored.36

36B.D. Serot and J.D. Walecka (1986); F. Grassi, R. Hakim and H. Sivak (1991); M.I.
Gorenstein and S.N. Yang, J. Phys. G21, 1053 (1995); Phys. Rev. D52, 5206 (1995).
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These variational properties were noticed by M.I. Gorenstein and Shin
Nan Yang (1995), and they suggested another solution to this problem: only
the whole system, composed of the quasiparticles and the background (i.e.
the vacuum), must obey the laws of thermodynamics and not the system
reduced to the free quasiparticles. As a matter of fact, they assumed that

T µν
system = T µν

quasiparticles + T µν
vacuum. (13.129)

Accordingly, they assumed that the pressure and the energy density should
be modified as 


ρsystem = ρquasiparticles +B,

Psystem = Pquasiparticles −B,
B : contribution of the vacuum.

(13.130)

However, their approach rests on the implicit assumption that the vacuum
contribution is as usual, i.e. such that ρ + P = 0. In general, a material
medium, like the quasiparticle vacuum, possesses an energy–momentum
tensor of the form

T µν
vacuum = (A+B) uµuν −Bηµν (13.131)

(or even a more involved form), so that, on the line of M.I. Gorenstein and
Shin Nan Yang (1995), one should perform the changes

{
ρsystem = ρquasiparticles +A,

Psystem = Pquasiparticles −B,
(13.132)

in order to recover the thermodynamics, and this is precisely what was
noticed above.

In order to be more specific, their approach is rephrased with our nota-
tions and in accordance with the preceding remarks. Let us call Lsystem the
Lagrangian of the system under consideration, averaged with the density
operator of the quasiparticles; this means that, in Lsystem, the fields are con-
sidered as being assimilated into the quasiparticle fields and then averaged.
Assume also that this is a correct approximation in some range of the macro-
scopic parameters. In addition, let us denote by Lquasiparticle the Lagrangian
of the quasiparticles, not to be confused with Lsystem. Also, let T µν

system

and T µν
quasiparticle be the corresponding energy–momentum tensors. They

are respectively given by{
T µν

system = tµν − ηµνLsystem,

T µν
quasiparticle = tµν + aµν − ηµνLquasiparticle,

(13.133)



February 10, 2011 16:39 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch13 FA

Statistical Mechanics of Relativistic Quasiparticles 391

where tµν is the kinetic part of the energy–momentum tensor, essentially
that part involving first order derivatives; where aµν is defined above. Note
that tµν for the system and for the quasiparticles are identical since the
true Lagrangian and energy–momentum tensor are approximated by quasi-
particle fields. Thence one can write

T µν
system = T µν

quasiparticle − [aµν + ηµν (Lsystem − Lquasiparticle)] (13.134)

where tµν has been eliminated. The term aµν contains in general a term
proportional to uµuν and also to ηµν .

Following M.I. Gorenstein and S.N. Yang (1995), the term in the
brackets [· · ·], on the right hand side of the above equation, was inter-
preted as the medium (or the vacuum) contribution to be added to the
quasiparticles’ macroscopic data; and this seems quite natural. However, a
glance at this term indicates that such an interpretation is hardly tenable.
All that can be said is that, indeed, this term contains a contribution of
the medium and of the interactions with the quasiparticles, but only in a
general and loose sense.

This can best be realized by looking at specific examples. In the J.D.
Walecka model of relativistic nuclear matter, one finds that

T µν
system = T µν

quasiparticle (13.135)

and the brackets vanish identically. In such a case the system is approxi-
mated by an assembly of free quasiparticles and obeys the law of thermo-
dynamics. A second example is provided by the λφ4 theory in Gaussian
approximation; in this model, one finds that

[aµν + ηµν (Lsystem − Lquasiparticle)] =
λ

8
〈φ2〉2ηµν , (13.136)

which shows that (i) the bracket term is certainly connected with the inter-
actions and that (ii) it cannot be identified with the contribution of the
medium. Furthermore, one can verify that the laws of thermodynamics are
still obeyed by the quantities derived from T µν

system and not from T µν
quasiparticle.

Finally, one must conclude that each case requires a delicate discussion.

13.8. Equilibrium Fluctuations

In many physical situations the equilibrium fluctuations of some observables
are required. For instance, this is the case for a QED plasma where the fluc-
tuations of the four-current 〈J̃µ(x)J̃ν(y)〉 induce the electromagnetic modes
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propagating in the system via the inverse of the fluctuation–dissipation
theorem (see Chap. 15). Another example of interest is the one provided
by the pion correlations that occur in heavy ion collisions37: although these
correlations are well represented by those given by a free pion gas, there
exist some discrepancies which might be interpreted as being due to the
fact that one should rather consider a gas madeup of quasipions.

Here the equilibrium expression for the correlations of the Wigner
function operator, namely

〈f̃(y, p)f̃(x, p′)〉 = 〈f̃(0, p)f̃(x− y, p′)〉 ≡ F(x− y; p, p′), (13.137)

or, more precisely, the Fourier transform of F , is evaluated below — say,
F(k; p, p′). From this quantity one can easily calculate the fluctuations of
all one-quasiparticle observables. For instance, the equilibrium four-current
fluctuation tensor is given by

δJµν(k) ≡
∫
d4(x− y) exp [ik · (x− y)]

〈
J̃µ(x)J̃ν(y)

〉
. (13.138)

First, we define the “adjoint” Wigner function operator

∗fop ≡ 1

(2π)4

∫
d4R exp (−ip ·R) φ̃

(
x− 1

2
R

)
φ̃∗

(
x+

1
2
R

)
. (13.139)

With this definition and Wick’s theorem, which is valid since only free
quasiparticles are considered, we obtain successively

F(k; p, p′) ≡
∫
d4x exp(ik · x)

〈
f̃(0, p)f̃(x, p′)

〉

=
1

(2π)8

∫
d4xd4Rd4R′ exp [ik · x− p ·R− p′R′]

×
{〈

φ̃∗
(

1
2
R

)
φ̃

(
−1

2
R

)
φ̃∗

(
x+

1
2
R′
)
φ̃

(
x− 1

2
R′
)〉

−
〈
φ̃∗

(
1
2
R

)
φ̃

(
−1

2
R

)〉〈
φ̃∗

(
x+

1
2
R′
)
φ̃

(
x− 1

2
R′
)〉}

=
∫
d4xd4Rd4R′ exp [i(k · x− p ·R− p′R′]

×
〈
φ̃∗

(
1
2
R

)
φ̃

(
x− 1

2
R′
)〉〈

φ̃

(
−1

2
R′
)
φ̃∗

(
x+

1
2
R′
)〉

,

(13.140)

37J. Rafelski and J. Letessier (eds.), Hot Hadronic Matter (Plenum, New York, 1995).
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and finally we get

F(k; p, p′) = (2π)4 δ(4)(p− p′)f
(
p+

1
2
k

)∗
f

(
p− 1

2
k

)
. (13.141)

On the other hand, the Fourier transform of the commutator of the fields
φ and φ∗ and the fact that [φ(x), φ(y)] = [φ∗(x), φ∗(y)] = 0 yield

∗f(k, p)− f(k, p) = ∆(p), (13.142)

so that the Wigner function for the fluctuations reads

F(k; p, p′) = (2π)4 δ(4)(p− p′)
[
f

(
p+

1
2
k

)
f

(
p− 1

2
k

)

+ f

(
p+

1
2
k

)
∆
(
p− 1

2
k

)]
. (13.143)

While the first term of this expression represents the fluctuations of matter
(under the form of quasiparticles), the last one contains a “vacuum” con-
tribution or, more precisely, it is a term arising from the equilibrium state
of the system.

This expression can be rewritten in another form, by using the identity

1
x− 1

y

y − 1
=
{

1
y − 1

− 1
x− 1

}
1

x/y − 1
(13.144)

and the equality

f(p) = n(p)∆(p), (13.145)

where n(p) is the Bose–Einstein factor. One finds that

n

(
p+

1
2
k

)[
n

(
p− 1

2
k

)
+ 1

]
=
n
(
p− 1

2k
)− n (p+ 1

2k
)

exp(βω)− 1
(13.147)

and thus

F(k; p, p′) = (2π)4 δ(4)(p− p′)∆
(
p+ 1

2k
)
∆
(
p− 1

2k
)

exp(βω)− 1

×
{
n

(
p− 1

2
k

)
− n

(
p+

1
2
k

)}
; (13.148)

in these last expressions one recognizes the Bose–Einstein factor of the exci-
tations of frequency ω. Note that the commutor has already been calculated
in a preceding section as

[φ(x), φ(y)] = − 1
(2π)3

∫
d4k sgn(k0)δ[D(k)] exp[ik · (x− y)], (13.149)
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and hence

∆(p) = −sgn(k0)δ [D(p)] . (13.150)

13.9. Remarks on the Negative Energy Modes

Let us now briefly examine how the negative energy modes behave in
thermal equilibrium. When they are taken into account in the equilibrium
density operator, they give a contribution of the form

ρ ≈ exp

[
−β

∑
p

b+p bp(−ωp + µ)

]
, (13.151)

which is quite similar to the usual case and hence gives rise to the average
occupation number for these modes

〈
b+p bp

〉
=

1
exp [−β(ωp − µ)]− 1

= − exp [β(ωp − µ)]
exp [β(ωp − µ)]− 1

, (13.152)

obtained by applying without any precaution the usual procedures of
quantum statistical mechanics. In other words, these modes give a wrong
sign for the Bose–Einstein factor; however, the average occupation number
is still positive, owing to the vacuum term +1.

Let us look at the consequences of this “wrong sign,” and let us begin
with the average energy of these modes. Surprisingly enough, the wrong
sign of the Bose–Einstein factor compensates for the negative sign of the
energy. On the other hand, the sign of the four-current is the same as that of
the normal modes. These two properties, joined to the fact that −µ and not
+µ appears in the Bose–Einstein factor, do not justify A.D. Migdal’s claim
(1978) that the negative energy modes are the antiparticles of the normal
modes. Moreover, the vacuum term — which gives a negative energy —
cannot be forgotten.

However, when we go back to the usual technicalities involved in the
implicit derivation of 〈b+p bp〉, it is easy to see that we have actually summed
a divergent geometrical series, and hence that the above expression is not
valid as such. Nevertheless, this suggests that a kind of renormalization has
to be performed although its physical basis is yet unclear in the absence of
a specific problem. In any case, the vacuum should play an important role.

We now give a merely qualitative example that shows how the negative
energy modes could be generated and what could be the role of the vacuum.
Let us assume that the system under consideration possesses a free energy
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2

«energies»

1

free energy

Fig. 13.3 A possible model for the generation of negative energy modes (see text).

of the shape shown in Fig. 13.3, i.e. it consists of a metastable state, 1,
and a stable state, 2. This also means that the system is capable of exci-
tations above the relative minima 1 and 2. Suppose now that the system
is condensed on the state 1, usually termed the “false vacuum.” Then the
system decays gradually to the “true vacuum,” 2. When undergoing this
phase transition, the system releases energy: modes are excited above the
state 2. These modes are amplified at the expense of the “false vacuum,”
1, and possibly — but this is not essential here — also at the expense of
the “true vacuum,” 2. They are thus unstable and have the “wrong” sign
for the energy.

This situation is, of course, suggested by the usual interpretation of the
negative energy modes of an ordinary plasma. Such a situation is hidden
when one is simply given the dispersion equation for the quasiparticles: the
system at hand must imperatively be specified in a precise way. Let us also
emphasize that this example does not eliminate other possible explanations
for the “wrong” modes; it is based only on what can be learnt from the usual
plasma physics.

13.10. Interacting Quasibosons

There are many examples in the current literature of quasiparticles whose
associated polarization operator is not a mere function Π(p) but an integral
operator. For instance, in Chap. 9, when investigating the Hartree–Fock
approximation, a more general “mass operator” was met which did not
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enter into the scheme studied above. A closer inspection of the transport
equations obeyed by the quasiparticles considered so far shows that they
are not subjected to any force whatsoever; this is in fact quite natural,
since our kinetic equation contains only the kinematics of noninteracting
quasiparticles. Also, when one tries to obtain the relativistic analog of the
Landau theory of the normal Fermi liquid38,39 from the above results,40 it
appears that this absence of a force term is a serious drawback. Therefore,
the study of quasiparticles obeying more general equations of motion is
absolutely necessary. Another reason can be found in the following consid-
erations.

In this section the various modifications of the preceding results are
briefly given, without any comment except whenever necessary, since the
basic arguments and calculations are essentially similar.

The equations of motion are now written as

�Φ(x) +
∫
d4yΠ(x, y)Φ(y) = 0, (13.153)

which can be derived from the Lagrangian

L[{Φ}, {Φ∗}] = ∂Φ∗(x) · ∂Φ(x)−
∫
d4yΠ

(
x+

1
2
, x− 1

2
y

)

×Φ∗
(
x+

1
2
y

)
Φ
(
x− 1

2
y

)
(13.154)

or from the action

S[{Φ}, {Φ∗}] =
∫
d4y ∂Φ∗(y) · ∂Φ(y)−

∫
d4x d4y Π(x, y)Φ∗(y)Φ(x),

(13.155)
where the fact that the action must be real implies that

Π(x, y) = Π∗(y, x), (13.156)
which is nothing but a statement of the Hermiticity of the operator Π. After
some elementary calculations the covariant Wigner function f(x, p) can be
shown to obey the equations[

p+
1
2
k

]2

f(k, p) =
1

(2π)4

∫
d4k′Π

(
p+

1
2
k;−p+

1
2
k − k′

)

× f
(
k′; p− 1

2
[k − k′]

)
, (13.157)

38L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Addison-Wesley,
Reading, 1989).
39G. Baym and S.A. Chin, Nuclear Physics (1976).
40. . .Either from equations for quasifermions (see Chap. 14) or from the ones above,
which amounts to neglecting the spin, a nonessential point as to the present discussion.
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[
p− 1

2
k

]2

f(k, p) =
1

(2π)4

∫
d4k′Π

(
p− 1

2
k;−p− 1

2
k + k′

)

× f
(
k′; p− 1

2
k +

1
2
k′
)
, (13.158)

where use has been made of the property

Π
(
p+

1
2
k;−p+

1
2
k

)
= Π+

(
p− 1

2
k;−p− 1

2
k

)
. (13.159)

From the action integral, one obtains the (conserved) four-current

Jµ(x) = Φ∗(x)
↔
∂µΦ(x) + i

∫ +1/2

−1/2

ds

∫
d4y yµ

×Π
[
x+ y

(
s+

1
2

)
; x+ y

(
s− 1

2

)]

×Φ∗
[
x+ y

(
s+

1
2

)]
Φ
[
x+ y

(
s− 1

2

)]
(13.160)

and the (nonconserved) energy–momentum tensor

T µν = ∂(µΦ∗(x) · ∂ν)Φ(x) + i

∫ +1/2

−1/2

ds

∫
d4y yµ

×
{

Π
[
x+ y

(
s+

1
2

)
;x+ y

(
s− 1

2

)]

× Φ∗
[
x+ y

(
s+

1
2

)]
∂νΦ

[
x+ y

(
s− 1

2

)]

− Π
[
x− y

(
s− 1

2

)
;x− y

(
s+

1
2

)]

× ∂νΦ∗
[
x− y

(
s− 1

2

)]
Φ
[
x− y

(
s+

1
2

)]}

− ηµνL. (13.161)
The divergence of T µν is now nonvanishing and is given by

∂µT
µν(x) = −

∫
d4y ∂νΠ

[
x+

1
2
y;x− 1

2
y

]
Φ∗

(
x+

1
2
y

)
Φ
(
x− 1

2
y

)
.

(13.162)
The fact that the energy–momentum tensor is not conserved can be under-
stood if one remembers that the polarization operator is not invariant
under space–time translations. As a matter of fact, this lack of conser-
vation amounts to considering quasiparticles in a force field representing an
interaction or/and an external field (see below).
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13.10.1. The long wavelength and low frequency limit

This can be seen as follows. Introducing now the notation

Π(k, p) = Π̃
(
k − p, k + p

2

)
, (13.163)

the function f(k, p) can easily be shown to obey the equations(
p± 1

2
k

)2

f(k, p) =
∫

d4k′

(2π)4
Π̃
[
k − k′; p± 1

2
k′
]
f

(
k′, p∓ 1

2
(k − k′

)
,

(13.164)

and by looking at the weak gradient approximation of the latter equations
or, equivalently, in the long wavelength and low frequency approximation.
In this approximation the difference between these equations reduces to

v(x, p) · ∂f(x, p) + F (x, p) · ∂
∂p
f(x, p) = 0, (13.165)

where vµ(x, p) and Fµ(x, p) are given by the Hamiltonian-like equations{
vµ(x, p) = ∇µH(x, p),

Fµ(x, p) = −∂µH(x, p),
(13.166)

with

H(x, p) =
1
2

[
p2 − Π̃(x, p)

]
,

where Π̃(x, p) is the covariant Wigner transform of Π̃(x, x′):

Π̃ (x, p) =
1

(2π)4

∫
d4R exp(−ip ·R) Π̃

(
x+

1
2
R;x− 1

2
R

)
. (13.167)

These properties are proven below. The transport equation then appears
as the ordinary relativistic Liouville equation and Fµ as an external force
field which is not present when Π is invariant under space–time translations,
while vµ is the quasiparticle four-velocity.

Let us now briefly indicate how the above “Liouville equation” can be
obtained. The expansions

Π̃
(
x± 1

2
R; y

)
≈ Π̃ (x; y)± 1

2R · ∂xΠ̃ (x; y) ,

f

(
x± 1

2
y; p′

)
≈ f (x; p′)± 1

2y · ∂xΠ̃ (x; y) ,
(13.168)
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introduced in the Fourier transform of the equations of motion for f(x, p),
i.e. in (

p± 1
2
∂

)2

f(x, p) =
∫

d4R

(2π)4
d4y d4p′ eip.ye−i(p−p′).R

× Π̃
[
x∓ 1

2
R; y

]
f

(
x∓ 1

2
y, p′

)
, (13.169)

lead to

p · ∂f(x, p)− 1

2
∇µΠ̃(x, p)∂µf(x, p) +

1
2
∂µΠ̃(x, p) · ∂

∂p
f(x, p) = 0,

p2f(x, p)− Π̃(x, p)f(x, p) = 0.
(13.170)

The last equation represents the “mass shell” where the quasiparticles live,
while the first one is nothing but the above “Liouville equation.”

It should be noted that the calculation of transport coefficients via the
use of for example the Chapman–Enskog method contains an assumption
of weak gradients; it follows that such a calculation can be based on a
transport equation of the form

v(x, p) · ∂f(x, p) + F (x, p) · ∂
∂p
f(x, p) = −uλv

λ(x, p)
f(x, p)− feq(p)

τ
(13.171)

or with any other collision term on the right hand side. This has been done
in order to evaluate the transport coefficient of nuclear matter within the
Walecka model at finite temperature (see Chap. 11).
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Chapter 14

The Relativistic Fermi Liquid

Landau’s theory of the Fermi liquid1 possesses a large domain of applica-
tions, ranging from quantum plasmas to solid state physics, without for-
getting nuclear matter. A relativistic generalization has been proposed by
G. Baym and S.A. Chin (1976) with a close parallel to the usual New-
tonian theory. Several other authors, like T. Matsui (1981), have used the
conventional Landau’s theory by replacing essentially the nonrelativistic
expression of the energy by the relativistic one, although covariant forms
are sometimes conserved. The only tentative work which is manifestly
covariant is the one by Ch. G. van Weert and M.C.J. Leermakers (1984);
they applied their theory to the QED plasma (1985). In this chapter, rela-
tivistic concepts, equivalent to the phenomenological ones commonly used,
are considered ab initio and developed step by step as far as necessary for
a phenomenological theory.

14.1. Independent Quasifermions

In this section, one starts again from the equations of motion of
quasifermions, written in the form


iγ · ∂Ψ(x)−

∫
d4x′ Σ(x− x′)Ψ(x′) = 0,

iΨ̄(x)γ · ∂ −
∫
d4x′ Ψ̄(x′)Σ̄(x − x′) = 0,

(14.1)

where the mass operator
∑

is assumed to be invariant under space–time
translations — an important property when one is dealing with equilibrium,

1See e.g. G. Baym and C. Pethick, Landau Fermi Liquid Theory: Concepts and Appli-
cations (Wiley, New York, 1991).

400
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for instance. Σ̄ is defined as

Σ̄(x − x′) ≡ γ0Σ+(x′ − x)γ0, (14.2)

where the cross indicates the Hermitian conjugation. These equations of
motion provide the following system for the covariant Wigner function:



[
γ ·
(
p− 1

2
k

)
− Σ

(
p− 1

2
k

)]
F (k, p) = 0,

F (k, p)
[
γ ·
(
p+

1
2
k

)
− Σ

(
p+

1
2
k

)]
= 0.

(14.3)

In the preceding chapters, several examples have been considered for the
“mass operator” Σ. For the scalar plasma in the Hartree approximation,
one had a very simple case with Σ = M . For the Walecka model of nuclear
matter (see Chap. 13), in the same approximation, the following relation
was obtained:

Σ(k) =
[
γ ·
(
k − g2

V neq

m2
V

)
−M

]
, (14.4)

where M is the effective mass. However, a much more involved expression
was obtained for the scalar plasma in the Hartree–Fock approximation (see
Chap. 9). A priori the mass operator Σ(k) can be expanded on the algebra
of the 16 Dirac matrices

Σ(p) =
1
4

A=16∑
A=1

ΣA(p)γA; (14.5)

however, the most common case usually encountered is the one where only
its components on I and γµ are present, as is the case for the examples
given above:

Σ(p) = Σs(p)I + Σµ(p)γµ. (14.6)

This corresponds to an unpolarized medium, owing to the absence of the
other terms (see Chap. 8). In this chapter, we shall limit ourselves to
this case, the extension to other possibilities being generally straight-
forward albeit it contains sometimes-involved calculations. In an unpo-
larized medium where the only macroscopic four-vector uµ exists, Σ(p) has
the general form

Σ(p) = Σs(p)I + [Σp(p)pµ + Σu(p)uµ]γµ, (14.7)
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to which we shall restrict ourselves. Note also that the Hermitian character
of Σ(p) implies the fact that Σs(p), Σu(p) and Σp(p) are all real.

From the Fourier transform of the equations of motion and this latter
form for Σ(k), one obtains the mass shell on which the quasiparticles live
as

Det[γ · p− Σ(p)] = 0, (14.8)

or

[1− u · pΣp(p)− Σu(p)]2 = [1− Σp(p)]2 p2 + [Σs(p)]2. (14.9)

Note that the quantity

α(p) ≡ [1− u · pΣp(p)− Σu(p)]2 − [1− Σp(p)]2 p2 − (ΣS(p))2 (14.10)

is directly connected with the eigenvalues of the matrix D(p)

D(p) ≡ γ · p− Σ(p) (14.11)

or {
D(p)uσ(p) = α(p)uσ(p),

D(−p)vσ(p) = −α(−p)vσ(p).
(14.12)

14.1.1. Quantization and observables

As was done for the quasibosons in the preceding chapter, the field ψ can
be quantized mutatis mutandis as

ψ(x) =
∑

�

∑
σ=1,2

∫
d3p

(2π)3/2

{(
∂D̄(p)
∂p0

)−1/2 ∣∣∣∣
k0=Ep

u�σ(p) a�σ(p) exp(−ip · x)

+
(
∂D̄(−p)
∂p0

)−1/2 ∣∣∣∣
k0=Ep

v̄�σ(p) d+
�σ(p) exp(+ip · x)

}
, (14.13)

where � indicates the excited mode, σ is the spin index and D̄ are the
eigenvalue of D. The a’s and the d’s are the creation/annihilation operators
of the particles and antiparticles, respectively; and they obey the canonical
anticommutation relations


{a�σ(p), a+

�′σ′ (p
′)} = δ��′δσσ′δ

(3)(p− p′),

{d�σ(p), d+
�′σ′(p

′)} = δ��′δσσ′δ
(3)(p− p′),

{a�σ(p), d�′σ′(p′)} = 0, etc.,

(14.14)
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which specify the normalization of the spinors u and v as

ū�σ(p)

∂

∂p0
D(p)u�σ(p) = δσσ′sgn

(
R+[p]

∂D(p)
∂p0

) ∣∣∣∣∂D(p)
∂p0

∣∣∣∣,
v̄�σ(p)

∂

∂p0
D(−p)v�σ′ (p) = −δσσ′sgn

(
R−[p]

∂D(−p)
∂p0

) ∣∣∣∣∂D(p)
∂p0

∣∣∣∣,
(14.15)

for one mode. Remember that D(p) is the 4× 4 matrix

D(p) = γ · p− Σ(p), (14.16)

while R+[k] is given by{
R+(p) = ω[1− Σp(p)]− Σu(p) + Σs(p),

R−(p) = −R+(−p).
(14.17)

The spinors u and v can be calculated without any difficulty and one finds
that

uσ(p) =
√
|R+(p)|




χσ

1− Σ(p)
R+(p)

p · σ χσ


,

vσ(p) =
√
|R−(p)|




χσ

1− Σ(−p)
R−(p)

p · σ χσ


,

(14.18)

where

χ1 =
[
1
0

]
, χ2 =

[
0
1

]
(14.19)

represent spinors for spin up and spin down, respectively.
In order to obtain the anticommutation relations at equal time, one

imposes the following normalization (on the mass shell):

ū�σα(p)

∂Dαβ(p)
∂p0

u�σ′β(p) = δσσ′ε(p)
∣∣∣∣∂D̄(p)
∂p0

∣∣∣∣ ,
v̄�σα(p)

∂Dαβ(−p)
∂p0

u�σ′β(p) = δσσ′ε(−p)
∣∣∣∣∂D̄(−p)

∂p0

∣∣∣∣ .
(14.20)

Note that D̄(p) is the eigenvalue of Dαβ(p). Note also that these normal-
izations of u and v can be checked on Eq. (14.15).
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The charge (or baryonic, etc.) four-current and the energy–momentum
tensor are easily found to be

Jµ
op(x) = ψ̄(x)γµψ(x)

− i
∫
d4y yµ

∫ +1/2

−1/2

dsψ̄

(
x+ y

[
s+

1
2

])
Σ(y)ψ

(
x+ y

[
s− 1

2

])
,

(14.21)

T µν
op (k) =

∫
d4p pµγνFop(k, p)−

∫ 1/2

0

ds

{(
pµ − 1

2
kµ

)
∇νΣ(p+ ks)

+
(
pµ +

1
2
kµ

)
∇νΣ(p− ks)

}
Fop(k, p)

− ηµν{γ · p− Σ(p)}Fop(k, p), (14.22)

where the Fourier transform of the energy–momentum tensor has been given
for future use and where

∇λ ≡ ∂

∂pλ
. (14.23)

The Hamiltonian of the quasiparticles is the zeroth component of the
energy–momentum tensor taken for k = 0 (this amounts to integrating
T µν(x) over a three-plane t = const). After using the plane wave expansion
of the quasiparticles’ field, one obtains

H ≡ T 00(k = 0)

=
∑
�,σ

∫
d4p p0{ε(p)a+

�,σ(p)a�,σ(p)− ε(−p)d�,σ(p)d+
�,σ(p)}. (14.24)

As for quasibosons, this Hamiltonian can be negative, a pathology indi-
cating a possible instability of the system, a phase transition, etc.

Similarly, the expression for the Wigner function operator reads, for
k = 0,

Fβα(0, p) = 2π
∑

�,σ,σ′

{
δ[p0 − ω�+(p)]

∣∣∣∣∂D̄(−p)
∂p0

∣∣∣∣
−1

× ūα�σ(p)uβ�σ′(p)b+�σ(p)b�σ′(p) + δ[p0 + ω�−(p)]
∣∣∣∣∂D̄(−p)

∂p0

∣∣∣∣
−1

× v̄αlσ(−p)vβ�σ′(−p)d�σ(−p)d+
�σ′(−p)

}
, (14.25)

which is to be used below.
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14.1.2. Statistical expressions

Let us now turn to the main statistical relations used in what follows.
After taking the trace of sums and the difference of the resulting equations
of motion (with the γ’s), they read



{
kλ −

[
Σλ

(
p+

1
2
k

)
− Σλ

(
p− 1

2
k

)]}
f(k, p)

=
[
ΣS

(
p+

1
2
k

)
− ΣS

(
p− 1

2
k

)]
fλ(k, p),

{
2pλ −

[
Σλ

(
p+

1
2
k

)
+ Σλ

(
p− 1

2
k

)]}
f(k, p)

=
[
ΣS

(
p+

1
2
k

)
+ ΣS

(
p− 1

2
k

)]
fλ(k, p).

(14.28)

Note that we have set

Σλ(p) ≡ pλΣp(p) + uλΣu(p) (14.29)

in order to make the correspondence with further notations. The consistency
with results of Chaps. 9 and 11 can easily be verified.

The four-current and the energy–momentum tensor are expressed as{
Jµ(x) = 〈Jµ

op(x)〉,
T µν(x) = 〈T µν

op (x)〉,
(14.30)

and their general form is the same as the one above for the corre-
sponding operators. Jµ(x) and T µν(x) assume an interesting form when the
system is invariant under space–time translations. In such a case, they are
given by

Jν = Sp
∫
d4p∇νD(p)F (p), (14.31)

T µν = Sp
∫
d4p pµ∇νD(p)F (p), (14.32)

which shows — as was the case for quasibosons — that in this case the role
of the four-velocity of a quasifermion is provided by

vµ(p) ≡ ∇νD(p) = γν −∇νΣ(p) (14.33)

This remark will be exploited in a later section. Note that when

Σ(p) = m = const, (14.34)

one recovers the usual Dirac result. Also, it should be realized that this
quasiparticle four-velocity is now a 4 × 4 matrix. Note that d4p is a



January 24, 2011 19:41 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch14 FA

406 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

shorthand for

d4p = 2θ(p0)δ[p2 − D̄2(p)]. (14.35)

14.1.3. Thermal equilibrium

We notice first that the algebric structure of the quasiparticle Hamiltonian
is similar to that of the free particle case. Next, it should be remarked that
the structure chosen for Σ(p) possesses the same general form as that of
the Walecka model in thermal equilibrium. Accordingly, one has

Feq(p) =
γ · [p− ΣV (p)] + ΣS(p)

4ΣS(p)
feq(p), (14.36)

with

feq(p) =
d

(2π)3
δ[p∗2 − Σs(p)2]

{
θ(p∗ · u)

exp(βp∗ · u− µ∗) + 1

+
θ(−p∗ · u)

exp(−βp∗ · u− µ∗) + 1
− θ(−p∗ · u)

}
, (14.37)

where use has been made of the notations

{
p∗µ = pµ[1− Σp(p)]− Σu(p)uµ,

µ∗ = µ− ΣS(p),
(14.38)

and where the last term, θ(−p∗ ·u) is a “vacuum” (ground state) term. The
main observables are finally obtained as




neq = d
∑

�,±

∫
d3p

(2π)3
±1

exp{β[ω�(p)∓ µ]}+ 1
,

ρ = d
∑

�,±

∫
d3p

(2π)3
ω�(p)

exp{β[ω�(p)∓ µ]}+ 1
,

P =
d

3
∑

�,±

∫
d3p

(2π)3
p · ∇ω�(p)

exp{β[ω�(p)∓ µ]}+ 1
,

(14.39)

where the vacuum term has been omitted. It will be briefly discussed
later on.
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14.2. Interacting Quasifermions

We begin by extending briefly the results of the last section to interacting
quasifermions, which are supposed to obey quasifield equations of the forms


iγ · ∂ψ(x)−

∫
d4x′ Σ(x, x′)ψ(x′) = 0,

ψ̄(x)iγ ·
←
∂ +

∫
d4x′ ψ̄(x′)Σ(x′, x) = 0,

(14.40)

which derive from the Lagrangian

L =
i

2
ψ̄(x)γ · ∂ψ(x)−

∫
d4y ψ̄

(
x+

1
2
y

)
Σ
(
x+

1
2
y, x− 1

2
y

)
ψ

(
x− 1

2
y

)
.

(14.41)

These equations, together with the definition of the Wigner function,
provide the following system for F (x, p):


[iγ · ∂ + 2γ · p]F (x, p)

− 2
∫

d4R

(2π)4
d4y d4p′ exp

(
−ip ·R+ ip′ ·

[
x+

1
2
R− y

])

×Σ
(
x− 1

2
R, y

)
F

(
x+ y + 1

2R

2
, p′
)

= 0,

F (x, p)[iγ · ∂ − 2γ · p]

+ 2
∫

d4R

(2π)4
d4y d4p′ exp

(
−ip ·R+ ip′ ·

[
y +

1
2
R− x

])

×F
(
x+ y − 1

2R

2
, p′
)

Σ
(
y, x+

1
2
R

)
= 0.

(14.42)

These equations can be rewritten in Fourier space a quite useful form:


γ ·
(
p+

1
2
k

)
F (k, p)

−
∫

d4k′

(2π)4
Σ
(
p+

1
2
k,−p+

1
2
k − k′

)
F

(
k′, p− 1

2
(k − k′)

)
= 0,

F (k, p)γ ·
(
p− 1

2
k

)

−
∫

d4k′

(2π)4
F

(
k′, p+

1
2
(k − k′)

)
Σ̄
(
p− 1

2
k,−p− 1

2
k + k′

)
= 0.

(14.43)
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From the above Lagrangian, the four-current is obtained as

Jµ(x) = ψ̄(x)γµψ(x) + i

∫
d4y

∫ +1/2

−1/2

ds yµψ̄

(
x+ y

[
s+

1
2

])

×Σ
(
x+ y

[
s+

1
2

]
;x+ y

[
s− 1

2

])
ψ

(
x+ y

[
s− 1

2

])
,

(14.44)

which, in terms of the covariant Wigner function, can be written as

Jµ(x) = Sp
∫
d4p

{
γµF (x, p) + i

∫
d4y yµ

×
∫ +1/2

−1/2

ds exp(ip · y)Σ̃(x+ ys; y)F (x+ ys, p)
}
, (14.45)

where use of the convenient definition

Σ(x; y) ≡ Σ̃
(
x+ y

2
;x− y

)
(14.46)

has been made. Note the useful relation

Σ(k; k′) = Σ̃
(
k + k′;

1
2
(k − k′)

)
, (14.47)

and also

Σ(k; k′) = δ(4)(k + k′)Σ(k′) (14.49)

for a system invariant under space–time translations.
Similarly, the energy–momentum tensor reads

T µν =
i

2
ψ̄(x)γµ∂νψ(x)−

∫
d4y yµ

∫ 1/2

0

ds

[
∂νψ̄

(
x− y

[
s− 1

2

])

×Σ
(
x− y

[
s− 1

2

]
;x+ y

[
s+

1
2

])
× ψ

(
x− y

[
s+

1
2

])

− ψ̄
(
x+ y

[
s+

1
2

])
Σ
(
x+ y

[
s+

1
2

]
;x+ y

[
s− 1

2

])

× ∂νψ

(
x− y

[
s+

1
2

])]
−ηµν

{
i

2
ψ̄(x)γ · ∂ψ(x)−

∫
d4y ψ̄

(
x+

1
2
y

)

×Σ
(
x+

1
2
y, x− 1

2
y

)
ψ

(
x− 1

2
y

)}
. (14.50)
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This energy–momentum tensor is not conserved as expected since the
system is not invariant under space–time translations, and one has

∂µT
µν(x) =

∫
d4x′ ψ̄

(
x+

1
2
x′
)
∂νΣ

(
x+

1
2
x′;x− 1

2
x′
)
ψ

(
x− 1

2
x′
)
.

(14.51)

This equation shows that, after averaging, and in equilibrium where

Σ
(
x+

1
2
x′;x− 1

2
x′
)

= Σ
([
x+

1
2
x′
]
−
[
x− 1

2
x′
]
; 0
)

= Σ(x′; 0),

(14.52)
the right hand side vanishes and ∂µT

µν(x) = 0, as it should be. In terms
of the Wigner function, it reads

T νµ(x) = Sp
{∫

d4p (pµγν − ηµν [γ · p− Σ̃(x, p)])F (x, p)

+
∫
d4y d4p

∫ 1/2

0

ds yµ exp(ip · y)

× Σ̃(x+ ys; y)
(
pν +

i

2
∂ν

)
F (x+ ys, p)

+ Σ̃(x− ys; y)
(
pν − i

2
∂ν

)
F (x− ys, p)

}
. (14.53)

14.2.1. The long wavelength and low frequency limit

The approximation of the long wavelength and low-frequency limit is
obtained by retaining the lowest order terms in the expression




γ ·
(
p+

1
2
k

)
F (k, p)−

∫
d4k′

(2π)3

[
1− (k − k′) · ∇

2
· · ·
]

×Σ
(
p+ k − 1

2
k′,−p− 1

2
k′
)
F (k′, p) = 0,

F (k′, p)γ ·
(
p− 1

2
k

)
−
∫

d4k′

(2π)3
F (k′, p)

×Σ
(
p− 1

2
k′,−p+ k − 1

2
k′
)[

1 +
(
k − k′

2

)
· ∇· · ·

]
= 0.

(14.54)
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Taking the trace and making the difference of these two equations, one
obtains

kµf
µ −

∫
d4k′

(2π)3
[(k − k′) · ∇]

{[
Σs

(
p+ k − 1

2
k′,−p− 1

2
k′
)
f(k′, p)

]

+
[
Σu

(
p+ k − 1

2
k′,−p− 1

2
k′
)
uµf

µ(k′, p)
]

+
[
Σp

(
p+ k − 1

2
k′,−p− 1

2
k′
)
pµf

µ(k′, p)
]}

= 0. (14.55)

When spin does not play an important role, fµ ≈ pµf/ΣS(p) and the above
equation reduces to

k · p f −
∫

d4k′

(2π)3
[(k − k′) · ∇]

{[
Σs

(
p+ k − 1

2
k′,−p− 1

2
k′
)
f(k′, p)

]

+
[
Σu

(
p+ k − 1

2
k′,−p− 1

2
k′
)
u · p f(k′, p)

]

+
[
Σp

(
p+ k − 1

2
k′,−p− 1

2
k′
)
u · p f(k′, p)

]}
= 0, (14.56)

which is a closed equation for f , similar to a relativistic Liouville equation,
once we go back to configuration space; it can be rewritten as

k · p f −
∫

d4k′

(2π)3
[(k − k′) · ∇][K(k′, p)f(k′, p)] = 0, (14.57)

where K(k′, p) is given by

K(k′, p) ≡ ΣS

(
p+ k − 1

2
k′,−p− 1

2
k′
)

+ Σ
(
p+ k − 1

2
k′,−p− 1

2
k′
)
.

(14.58)

14.3. Kinetic Equation for Quasiparticles

Let us now treat the kinetic equation for the quasiparticles; however, in
order not to mix up all the indices — spin, internal numbers, etc. — we shall
treat the problem of an unimportant spin. Therefore, only the “boson” part
of Σ has to be considered and Σ̃(k, p), Π̃(k, p). Let us also recall that the
tilde over Σ̃(k, p) or Π̃(k, p) denotes a Wigner transformation. In addition,
we should recall that we have

H(x, p) =
1
2
[p2 − Π̃(x, p)] (14.59){

vµ(x, p) = ∇µH(x, p),

Fµ(x, p) = −∂µH(x, p)
(14.60)



January 24, 2011 19:41 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch14 FA

The Relativistic Fermi Liquid 411

[see Eqs. (13.167) and the following]. Now, an important point is to be
emphasized. While in the usual Landau theory of Fermi liquids what plays
the role of a Hamiltonian is simply the energy of a quasiparticle, here in the
relativistic context, no Hamiltonian at all with the meaning of an energy
(or an energy density) exists. If we take the above Hamiltonian in the case
of free particles, we have only

H(x, p) =
1
2
(p2 −m2), (14.61)

which is formally a Hamiltonian but has no particular meaning. Of course,
in the case of a nonmanifestly covariant theory, one can find a Hamiltonian.

Finally, the relativistic kinetic equation for the quasiparticle reads

vν(x, p)∂νf(x, p) + Fµ(x, p)∇µf(x, p) = C[p, f(p)], (14.62)

where we have added a collision term which might be a BGK one,

C[p, f(p)] = −uλv
λ(x, p)

f(x, p)− feq(x, p)
τ

, (14.63)

or any other. At this stage, the collision term is left unspecified and satisfies
only the standard conservation relations and H theorem conditions:



∫
d4p C[p, f(x, p)] = 0,∫
d4p pβC[p, f(x, p)] = 0,

−kB

∫
d4p vα(x, p) log

[
f(x, p)

1− f(x, p)

]
C[p, f(x, p)] ≥ 0.

(14.64)

While an integration of the above Liouville equation (or, equivalently, over
the relativistic kinetic equation) over the four-momenta immediately pro-
vides the four-current conservation, the energy–momentum tensor conser-
vation law is not obtained, as expected from the results of the last chapter.
This means that in the whole system — which is conservative — energy and
momentum are not conserved. Such a pathology occurs mainly because of
the implicit use of two different definitions of the energy–momentum tensor:
that of the quasiparticles and that used for the system.

Let us now study a bit further the energy–momentum tensor that arises
from the Liouville equation; we first multiply it by pµ and then integrate
over d4p. We get

∂νT
µν
quasi(x)−

∫
d4p ∂νH(x, p)f(x, p) = 0. (14.65)
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This means that the “dressing” of the quasiparticles (implied by the second
term) does contain some energy and momentum. Actually, a solution to
this problem has been obtained by C.G. van Weert and M.C.J. Leermakers
(1984) in the context of the Landau Fermi liquid theory.

14.4. Remarks on the Relativistic Landau Theory

The Landau theory2 of the Fermi liquid was originally a phenomenological
theory designed to describe a weakly excited fermion system in a normal
state, where the word “normal” means that no phase transition occurs
whatsoever and that the basic ground state is not symmetry-breaking, for
instance. Loosely speaking, Landau’s idea is essentially that of a conti-
nuity and a one-to-one correspondence between the nonexcited states of
the system and the low-lying excited ones. This means that starting from
the noninteracting Fermi system, the distribution function preserves its
general shape when the interaction is adiabatically switched on.

Although we do not give a complete Landau theory, we present a number
of remarks on the relativistic case:

(1) The first idea is to choose the noninteracting-looking Fermi distribution;
this is simply the usual thing to do, i.e. as the Fermi–Dirac function

neq(p) =
1

exp[β(pµuµ − µ)] + 1
(14.66)

where p ·u is the quasiparticle energy ε(p), which is a complicated function
of p, and this function is by no means trivial. The density tensor of the
quasiparticles is

T µν =
∫
d4p pµvν(p)neq(p), (14.67)

where vµ(p) is the velocity of the quasiparticle. The next step is to expand
(functionally) the energy density of the system until the second order of a
possible variation δn of neq:

δE ≡ δ(T µνuµuν)

=
∫
d4p pµuµv

ν(p)uνδn(p) +
∫
d4p dp′4f(p, p′)δn(p)δn(p′)

+ · · ·
∫
dp pµuµa

ν(p)uνδn(p) =
∫
d3p pµuµδn(p). (14.68)

2It is useful to consult the article of G. Baym and C. Pethick, loc. cit.



January 24, 2011 19:41 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch14 FA

The Relativistic Fermi Liquid 413

We shall thus try a more natural way in which the manifest covariance will
be part of the theory.

Therefore, let us use the distribution function developed above. This
means that it still assumes its equilibrium form,

Feq(p) =
γ · [p− Σ0(p)] + ΣS(p)

4ΣS(p)
feq(p), (14.69)

with

feq(p) =
d

(2π)3
δ[p∗2 − Σs(p)2]

×
{

1
exp(βp∗ · u− µ) + 1

+
1

exp(βp∗ · u+ µ) + 1

}
(14.70)

and

Σ0(p) ≡ p ·Σp + u ·Σu, (14.71)

where the vacuum term should be omitted, since we deal with a phenomeno-
logical theory, and where positrons also have to be omitted. Although in
a complete theory positrons must be dealt with, here we assume that the
temperature is relatively low and hence there are only a few antiparticles
present. Note, however, that the second Fermi factor refers to the quasiholes
and not to the particles themselves: indeed, they cannot be separated from
the excitations of the system. As in the nonrelativistic case, this expression
for Feq(p) is by no means trivial since it depends on itself through the p0(p)
which occurs in the explicit expression.

(2) In the usual Landau theory, the distribution function Feq(p) is derived
from the basic principles; note that, although simple, it is not trivial from
the point of view of physics. This derivation consists in minimizing the
entropy (density) while taking account of the total energy (density) and
the total number (density) within the system. However, the entropy of a
Wigner function is by no means clear. We could define it as

Sµ = −
∫
d4p vµ(p){feq(p) log feq(p) + [1− feq(p)] log[1− feq(p)]},

(14.72)
which is the common entropy of feq(p) for Fermi particles, and minimize
the result. This would lead to the usual part of Feq(p), i.e. the expression
for feq(p), and also we could add a nonessential term in order to take the
coefficient

γ · [p− Σ0(p)] + ΣS(p)
4ΣS(p)

(14.73)
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into account. Therefore, we shall follow the usual way and thus admit that
the basic function is that given by Eq. (14.69). However, the fact that the
entropy is the one drawn above comes from the fact that we deal with free
quasiparticles: the derivation of the entropy is the same as for free particles;
it comes from S = −Tr(ρ log ρ). The other part of Feq(p) comes from the
equation of motion (see Chap. 7).

In the above expressions, there is still something that should be
explained. If we look at the symbols of the equilibrium quantities [namely
Eqs. (14.39)], they are all of the form

〈g(p)〉 =
∫
d3p

g(p)
exp{β[ω(p)− µ]}+ 1

, (14.75)

and if we want to vary the quantity 〈g(p)〉, we must vary also ω(p) =
p0. This is quite awkward from a covariant point of view and it would
certainly be more valuable to keep the function feq(p) fixed and thus use
the equivalent form

〈g(p)〉 =
∫
d4p δ[p∗2 − ΣS(p)]

g(p)
exp(β[p · u− µ]) + 1

, (14.76)

so that the variation depends not on that of feq(p) but on that of ω(p) only.
The starting point is now the equilibrium expression for the energy–

momentum tensor,

T µν = Sp
∫
d4p pµ∇νD(p) Feq(p)

= Sp
∫
d4p pµ∇νS−1

Σ (p) Feq(p), (14.77)

where S−1
Σ (p) is the propagator of the free quasiparticle:

S−1
Σ (p) = γ · p− Σ(p). (14.78)

(3) Usually, the first step of the Landau theory consists of adding a particle
to the medium and investigating the subsequent variation of the energy (or
energy density) of the system, after the added particle has been “dressed”
by the interaction with the quasifermions in the medium. Such an additional
particle thus modifies the energy — and the energy density — of the system.

Following first G. Baym and S.A. Chin (1976) or T. Matsui (1981), we
consider the variation of the energy density,3 with no modification of the
general form of the equilibrium distribution.

3This is the same thing as considering the variation of the energy: we look at the density
times a volume of value 1.
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Therefore, we have

ρ = T µνuµuν (14.79)

and hence

δE ≡ δρ = δ(T µνuµuν). (14.80)

Thus, we have two possible variations: (i) the usual one, as dealt with by
G. Baym and S.A. Chin (1976) — δT µν · uµuν ; and (ii) the variation of
the timelike uµ, which is typically relativistic — in the Newtonian theory
all timelike four-vectors are parallel and there is not any possibility of
varying uµ.

Let us begin with the second point. Since T µν is dependent on uµ and
on ηµν , it has the general form

T µν = Auµuν +Bηµν , (14.81)

and since uµδuµ = 0, the variation is zero. Note that this is only for an
equilibrium energy–momentum tensor.

Let us now briefly look at the first variation; it reads4

δT µνuµuν = Sp
∫
d4p pµuµ v

ν(p)|n=neq
uν δF (p)

+
1
2
Sp
∫
d4p d4p′ f(p, p′)|n=neq

δF (p)δF (p′) +O{(δF )3},
(14.82)

where5 vν(p) is as given by Eq. (14.33); note that

vν(p) ≡ γν −∇νΣ(p), (14.83)

and that v̄µ(p) �= vµ(p).
In addition, note that if the system involves three- or four-body inter-

actions, as is the case for quark matter, the above form should be supple-
mented by the terms

1
3!

Sp
∫
d4p d4p′ d4p′′ f(p, p′, p′′)|n=neq

δfeq(p)δfeq(p′)δfeq(p′′) (14.84)

4f(p, p′) has the meaning, in this section, of the usual “interacting” factor of the Landau
theory: it should not be mistaken for other f(p, p′)’s which occur in other chapters.
5It should be noted that assuming a tensor fµν(p, p′) gives rise to a scalar f(p, p′) owing

to the product by uµuν .
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for three-body interactions, and

1
4!

Sp
∫
d4p d4p′ d4p′′ d4p′′′ f(p, p′, p′′, p′′′)|n=neq

× δfeq(p)δfeq(p′)δfeq(p′′)δfeq(p′′′) (14.85)

in the case of four-body forces. These terms should be added in the theory
unless there exist arguments as to their possible small size.

It should be noted that two relations hold:

uµuν
δT µν

δF (p)
= pµuµv

ν(p) · uν = pµuµ[γν −∇νΣ(p)]uν , (14.86)

uµuν
δT µν

δF (p)δF (p′)
= f(p, p′). (14.87)

Let us rewrite the basic variation of the Landau assumptions, but with the
spin indices

δT µν · uµuν = Sp
∫
d4p pµuµν

ν(p)uν δFαβ(p)

+
1
2
Sp
∫
d4p d4p′fαβχγ(p, p′)δFαβ(p)δFχγ(p′), (14.88)

where the spin indices obey the usual tensorial rules. We shall now analyze
a little bit this expression. The first term indicates that it is only δfeq(p)
that occurs in the equation. The second one necessitates a more detailed
analysis. fαβχγ(p, p′) depends on p and p′ only. It is thus twice a four-vector:
f̄µν(p, p′). The second term has the form

δFαβ(p)δFχγ(p′) = δ([ ]|αβfeq(p))δ([ ]|χγfeq(p′)), (14.89)

where the expressions between brackets are

γµ
αβ · [pµ − Σ0µ(p)] + IαβΣS(p)

ΣS(p)
. (14.90)

This term has the value

f̄µν(p, p′){[ ]αβ[ ]βγ}δfeq(p)δfeq(p′) (14.91)

or

fαβχγ(p, p′) δFαβ(p) δFχγ(p′)

= [pµ − Σµ
0 (p)][p′ν − Σν

0(p′)]f̄µν(p, p′)δfeq(p)δfeq(p′). (14.92)

It should be borne in mind that in the Landau assumptions [Eqs. (14.69),
(14.84), (14.86) and (14.87)], use was made of the fact that the energy
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density is a functional series, each term of it being taken at feq(p) = const;
this is the reason why there was no differentiation of the term [ ]αβ .

Finally, the basic Landau assumption reads

δT µνuµuν = Sp
∫
d4p pµuµv

ν(p)uν δfeq(p)

+
1
2
Sp
∫
d4p d4p′f̄µν(p, p′){[pµ − Σµ

0 (p)][pν − Σν
0(p)]}

× δfeq(p)δfeq(p′) (14.93)

and hence we can safely set

f(p, p′) ≡ f̄µν(p, p′) [pµ − Σµ
0 (p)][pν − Σν

0(p)], (14.94)

where we have given the same name for the initial f(p, p′) and the final one.

(4) Finally, we have the two equations at the basis of the theory


δ(T µνuµuν)
δfeq(p)

= pµu
µvν(p)uν ,

δ2(T µνuµuν)
δfeq(p)δfeq(p′)

= f(p, p′).
(14.95)

The first equation is shown to be an exact generalization of the nonrel-
ativistic one: in the rest frame it reduces to p0v0, and thus to p0 in the
Galilean limit. The second equation, once integrated (functionally) over
δfeq(p), yields

pµu
µvν(p)uν = pµu

µvν(p)uν |0 +
∫
d4p′f(p, p′)δfeq(p′), (14.96)

where the reference to the implicit dependence on feq has been omitted and
the index 0 in the first term on the right hand side refers to a noninteracting
quasiparticle at T = 0 K. Explicitly, one has

[p0v0(p)]0 =
√

[p− Σ0(εF )]2 +m2
eff [v0(p)]0, (14.97)

where m2
eff is the effective mass of the quasiparticle and Σ0(εF ) comes from

the mass shell of the quasiparticle. It is defined, as usual, through

meff ≡ |pF |

|vF | =
|pF |
vF

,

v ≡ ∇p0(p) =
dp0(p)
dp

,

(14.98)
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where the index F refers to the value at the Fermi surface. In the Landau
theory of the Fermi liquid, the system is indeed weakly excited above its
Fermi surface, where the quasiparticles have a sufficiently long lifetime.
Near the Fermi surface, one can always expand p0(p) into a Taylor series
and write

p0(p) ≈ εF + (|p| − pF )vF , (14.99)

as in the nonrelativistic case.
Furthermore, we shall also neglect spin effects in the following way.

A glance at the equation for the effective four-velocity

v̄µ(p) = γν −∇νΣ(p) (14.100)

indicates that, in the case considered, the only 4 × 4 matrix dependence
occurs only through the usual term introduced by the four-current. This
latter implicitly contains two terms: a spin term — the Gordon term —
which we neglect, and a convective one which has the form i

2

↔
∂ . All this

leads to the substitution

γν → pν − 1
2∇νΠ(p)
meff

(14.101)

and hence to a quasifermion four-velocity that reads

vµ(p) =
pν − 1

2∇νΠ(p)
meff

. (14.102)

(5) In this approach to Landau–Fermi relativistic liquids, the knowledge
of the effective mass is immediate since the dispersion equations of the
quasiparticles are already known as

p2 = Π(p), (14.103)

and since they “live” in the vicinity of the Fermi surface, one has

p2 = Π(pF ) ≡ m2
eff (14.104)

or, if one has

[p− V (p)]2 = Π̃(p), (14.105)

then one also gets

Π(pF ) ≡ m2
eff . (14.106)
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Note that the term with the index 0 does not depend on feq(p) taking
account of the fact that it is related to free quasiparticles. This equation
being valid for arbitrary δfeq, performing the δ operation and taking into
account the symmetry of f(p, p′), one has

pµuµ = pλu
λ v

µ(p)uµ|0
vν(p)uν

+
1
v · u

∫
d4p′f(p, p′)δfeq(p′). (14.107)

Note the difference from the nonrelativistic equation

ε = ε0 +
∫
d4p′f(p, p′)δfeq(p′). (14.108)

(6) A final remark is that spin cannot be dealt with here separately: it is
not a constant of the motion; only the total kinetic momentum is a first
integral, or rather its projection over an axis. Hence, we shall first look at
the case where spin is not explicitly taken into account. Later we shall deal
with the case of a magnetic field interacting with spin; in such a case, the
additional Hamiltonian,

H1 = µNF
µνJµν = µNF

µν ·
[
Lµν +

1
2
σµν

]
, (14.109)

also commutes with the ordinary Hamiltonian (µN is the magnetic moment
of the quasiparticle) and we have to consider spin. In this case, since
µNF

µνJµν is a first integral of the motion, we have to make the substi-
tution

feq(p)→ feqB(p) =
1

exp(βH · u+ βµNFµνJµν) + 1
, (14.110)

where FµνJµν commutes with H · u, the latter quantity being the Hamil-
tonian of the system with a magnetic field (see Chap. 12). However, the
Wigner function with a magnetic field is certainly not of the above form
and is extremely complicated. Nevertheless, when the magnetic field is weak
enough not to perturb the equilibrium distribution — i.e. when the above
feqB is still valid — spin effects can be studied.

(7) Let us now present the way the distribution function is varied under
Landau’s assumption. This variation consists of two types: that of feq and
the other. Let us first consider the first variation. This distribution function
can vary (i) from δT , (ii) from δµ, and finally from δuµ. Let us look at these
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variations. They are given by

δfeq(p) = δ
1

exp[βp · u− βµ] + 1

= − p · u− µ+ ∂µ
∂T + ∂(p·u)

∂T

(exp[βp · u− βµ] + 1)2
δT −

∂(p·u)
∂µ − T

(exp[βp · u− βµ] + 1)2
δµ

− βpµ

(exp[βp · u− βµ] + 1)2
δuµ. (14.110)

The other parts of F (p), i.e.
γ · [p− Σ(p)] + ΣS(p)

ΣS(p)
, (14.111)

are subject to

δ

{
γ · [p− Σ(p)] + ΣS(p)

ΣS(p)

}
= − δ

{
γ · uΣu(p) + γ · pΣS(p)

ΣS

}

= − γ · u
{
∂

∂T

(
Σu

ΣS

)
δT +

∂

∂µ

(
Σu

ΣS

)}

− γ · p
{
∂

∂T

(
Σp

ΣS

)
δT +

∂

∂µ

(
Σp

ΣS

)}
,

(14.112)

where the variation of uµ is zero because of uµδuµ = 0.

(8) Let us now go beyond the equilibrium and start with the idea of C.G.
van Weert and M.C.J. Leermakers (1984) to get a conservative energy–
momentum tensor. They used the following remark: if there exists a prim-
itive P of the functional equation

δP (x) =
∫
d4p H(x, p)δf(x, p), (14.113)

then the tensor

T µν = T µν
quasi − ηµν

[
P −

∫
d4p H(x, p)f(x, p)

]
is conservative and thus represents the energy–momentum tensor of the
system. Before discussing this expression, let us show explicitly how it
occurs. A variation of the position x→ x+ δx yields

δP (x) = ∂µP (x)δxµ (14.114)

and hence it gives

∂µP (x) =
∫
dp H(x, p)∂µf(x, p). (14.115)
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From this relation, it follows that the conservation equation now takes on
the announced form. It remains for one to identify the specific value of the
functional P . Those authors found that P can be identified with the usual
pressure. To see this, let us evaluate the above energy–momentum tensor
in thermal equilibrium; we then obtain

Peq =
∫
dp H(p)feq(p), (14.116)

so that from Landau’s hypothesis — i.e. the off-equilibrium one has the
same form as the equilibrium one — it follows that

P (x) =
∫
dp H(x, p)f(x, p). (14.117)
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Chapter 15

The QED Plasma

The quantum-electrodynamical plasma is a theoretical object of par-
ticular importance in astrophysics and, as already mentioned, in white
dwarfs, where it is degenerate, and in the magnetosphere of pulsars,
where it is strongly magnetized. Below, some physical properties where
it occurs for white dwarfs are briefly mentioned. The QED plasma has
been studied by numerous authors, in the pioneering works of E.S. Fradkin
(1959a,b, 1960, 1965) — extended by I.A. Akhiezer and S.V. Peletminskii
(1960), A.I. Akhiezer, I.A. Akhiezer and A.G. Sitenko (1962) — and of
V.N. Tsytovich (1961), B. Bezzerides and D.F. DuBois (1972). Finally, in
an article by H.A. Weldon (1982), an analysis of this kind of plasmas has
been made from the viewpoint of a non-Abelian system.

15.1. Basic Equations

The electron field obeys the Dirac equations{
[iγ · (∂ + ieA)−m]ψ(x) = 0,

ψ̄(x)[iγ · (
←
∂ − ieA) +m] = 0,

(15.1)

and the electromagnetic field Maxwell equations, which are written for the
four-potentials as

{ηµν�− ∂µ∂ν}Aν(x) = 4πeψ̄(x)γµψ(x), (15.2)

to which the Lorentz condition

∂νA
ν(x) = 0 (15.3)

should be added. Note that the gauge could be fixed by adding to the
Lagrangian a term proportional to (∂νA

ν(x))2 or any other nonlinear

422
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term: the modes and other physical results must not depend on the
proportionality coefficient, exhibiting thereby their gauge invariance.1

These equations are expressed in terms of the Wigner function operator:


{iγ · ∂ + 2[γ · p−m]}Fop(x, p)

= 2e
∫

d4x′

(2π)4
d4p′ exp[−ip′ · (x − x′)]γµFop

(
x, p− 1

2
p′
)
Aµ(x′)

Fop(x, p){iγ ·
←
∂ − 2[γ · p−m]}

= −2e
∫

d4x′

(2π)4
d4p′ exp[−ip′ · (x− x′)]Aµ(x′)Fop

(
x, p+

1
2
p′
)
γµ

�Aµ(x) − (1− λ)∂µ∂νA
ν(x) = 4πeSp

∫
d4p γµFop(x, p),

(15.4)

where λ is the gauge-fixing parameter. From this generating equation
and the Hartree–Vlasov ansatz, one gets the relativistic quantum Vlasov
equation

{iγ · ∂ + 2[γ · p−m]}F (x, p)

= 2e
∫

d4x′

(2π)4
d4p′ exp[−ip′ · (x− x′)]γµF

(
x, p− 1

2
p′
)
〈Aµ(x′)〉,

F (x, p){iγ ·
←
∂ − 2[γ · p−m]}

= −2e
∫

d4x′

(2π)4
d4p′ exp[−ip′ · (x − x′)]〈Aµ(x′)〉F

(
x, p+

1
2
p′
)
γµ,

�〈Aµ(x)〉 = 4πeSp
∫
d4p γµF (x, p), (15.5)

where we have chosen λ = 0.

15.2. Plasma Collective Modes

We could follow exactly the same path as for the “scalar plasma” or for the
classical electrodynamic plasma: the Hartree–Vlasov equation is first lin-
earized around the equilibrium state and next solved in a Fourier transform
so as to find a homogeneous equation for the electromagnetic field and

1This is done, as an example, at the end of this chapter.
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finally the dispersion relations obeyed by the plasma modes [R. Hakim and
J. Heyvaerts (1978)].

The Vlasov–Hartree ansatz for solving the equation is

〈F (x, p) ⊗A(x′)〉 ∼ F (x, p)⊗ 〈A(x′)〉 (15.6)

and, in order to obtain the dispersion relation for electromagnetic waves
propagating through the plasma, it is linearized about an equilibrium
state, 


〈Aµ(x)〉eq ≡ 0,

Feq(p) =
γ · p+m

4m
feq(p),

(15.7)

where feq(p) is given, as usual, by

feq(p) =
2m

(2π)3
∑
±

θ(±p0)δ(p2 −m2)
exp[±β(u · p− µ)] + 1

. (15.8)

Notice that the linearization procedure{
F (x, p) ∼ Feq(p) + F (1)(p),

〈Aµ(x)〉 ∼ Aµ(1)(x)
(15.9)

is essentially equivalent to the random phase approximation, as has been
noted long ago [(see e.g. B. Jancovici (1962)]. Once they have been lin-
earized and Fourier-transformed, the resulting equations read


[
γ ·
(
p− 1

2
k

)
−m

]
F (1)(k, p) = eA(1)(k) · γFeq

(
p+

1
2
k

)
,

F (1)(k, p)
[
γ ·
(
p+

1
2
k

)
−m

]
= eA(1)(k)Feq

(
p− 1

2
k

)
· γ.

(15.10)

Particular solutions to these equations are easily found to be

F (1)

a (k, p) = eA(1)
µ (k)

4m

(
[γ·(p− 1

2 k)+m]γµ[γ·(p+ 1
2 k)+m]

(p− 1
2 k)2−m2

)
feq

(
p+

1
2
k

)
,

F (1)
a (k, p) =

eA(1)
µ (k)

4m

(
[γ·(p− 1

2 k)+m]γµ[γ·(p+ 1
2 k)+m]

(p+ 1
2 k)2−m2

)
feq

(
p− 1

2
k

)
,

(15.11)
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where the necessary iε terms have been provisionally omitted. The most
general solutions to these equations are respectively of the general forms


F (1) = F (1)

a +
[
γ ·
(
p− 1

2
k

)
+m

]
G1

(
p− 1

2
k

)
,

F (2) = F
(1)
b +G2

(
p+

1
2
k

)[
γ ·
(
p+

1
2
k

)
+m

]
,

(15.12)

where the last terms on the right hand sides represent the arbitrary solutions
to the inhomogeneous equations (15.11). In the last equations G1 and G2

are arbitrary 4× 4 matrices of p and are respectively on the mass shell


(
p− 1

2
k

)2

= m2 for i = 1,

(
p+

1
2
k

)2

= m2 for i = 2.

(15.13)

The reason why G1(p − k/2), for instance, contains a δ[(p − k/2)2 − m2]
factor can be seen by applying the operator [γ ·(p−k/2)−m] to Eq. (15.11)
from the left. The first term vanishes since F (1)

a is a solution, while the
second vanishes only if G1(p − k/2) also contains a δ[(p − k/2)2 − m2]
factor.

From the necessary identity of these equations, one concludes that

F (1) = F (1)
a + F

(2)
b

= − e

8m

[[
γ · (p− 1

2k
)

+m
]
γ · A(1)(k)

[
γ · (p+ 1

2k
)

+m
]

k · p

]

×
[
feq

(
p+

1
2
k

)
− feq

(
p− 1

2
k

)]
, (15.14)

where use was made of the fact that(
p± 1

2
k

)2

−m2 = ±2k · p when
(
p± 1

2
k

)2

= m2, (15.15)

valid only when both of the Equations (15.15) hold.
Using

4πJλ
(1)(k) = Πλµ(k)A(1)

µ (k) (15.16)

finally, one then finds that

Πµν(k) = −ω2
PK

µν(k)− Ω2
P η

µν − k2∆µν(k)
ω2

P

4n
I (15.17)
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for the polarization tensor, where one has set

Kµν(k) =
1
n

∫
d4p pµpν

(
f
(
p+ 1

2k
)− f (p− 1

2k
)

k · p+ iε

)
, (15.18)

I =
∫
d4p

(
f
(
p+ 1

2k
)− f (p− 1

2k
)

k · p+ iε

)
, (15.19)

Ω2
P =

4πe2

m

∫
d4p feq(p). (15.20)

In these equations the iε of the resonant denominator (1/k ·p)−1 have been
re-established — they correspond to the usual Landau prescription; as a
result these equations acquire an imaginary part that is vanishing as long
as the waves are superluminous.

From the general equation for collective modes

Det
[
k2ηµν −Πµν(k)

]
= 0, (15.21)

and the Lorentz gauge condition

k ·A(1)(k) = 0, (15.22)

the transverse modes are found to be

− Ω2
P

ω2 − k2
+

ω2
P

ω2 − k2
K11(k)− ω2

P

4n
I = 0, (15.23)

while the longitudinal modes are

1− Ω2
P

ω2 − k2
− ω2

P

ω2 − k2
K00(k) +

ω

|k|
ω2

P

ω2 − k2
K30(k)− ω2

P

4n
I = 0.

(15.24)

Several remarks are now in order. First, these last equations for the
longitudinal and transverse modes reduce to the classical relativistic equa-
tions [R. Hakim and A. Mangeney (1968, 1971)] when � → 0. To see this,
(i) neglect spin, i.e. I, (ii) suppress the contributions of the positrons and
(iii) suppress the +1 of the Fermi factor in Eq. (15.14); finally, take the
long wavelength limit.

A second remark deals with the absence of vacuum contributions:
indeed, in the absence of matter feq(p) goes to zero. This is due to the
fact that we have implicitly used a normal ordering of our field operators,
thereby killing all vacuum contributions. Actually, if we do not omit the
vacuum contribution to feq(p), we have to replace feq(p) by its expression
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Fig. 15.1 Two typical curves of the collective oscillation of a plasma; It means “longi-
tudinal” and T “transverse.”

plus the vacuum Wigner funtion

fvac(p) = − 2m
(2π)3

θ(−p0)δ(p2 −m2). (15.25)

Inserting this expression into Eq. (15.17), for instance, gives rise to the usual
polarization tensor at order e2. Notice that Fvac(p) is given by an expression
quite similar to that of Feq(p); the calculation of fvac(p) is performed with
ρvac ≡ |vac〉〈vac|. The last equation expresses the fact that the Dirac ocean
of negative energy electrons is uniformly filled.

These relations have been derived with a great variety of methods by
several authors [V. Tsytovich (1961), D. Biskamp (1961), B. Bezzerides and
D.F. Dubois (1972), R. Hakim and J. Heyvaerts (1978), H. Sivak (1984),
B. Jancovici (1962) (at T = 0 K)] and we refer to V.N. Tsytovich (1960)
for a discussion.

It is, however, quite instructive to look for these modes via the use of
plasma fluctuations2 [H. Sivak (1984)].

2See the general study of plasma fluctuations in A.G. Sitenko, Electromagnetic Fluc-
tuations in Plasmas (Academic, New York, 1967).
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15.3. The Fluctuation–Dissipation Theorem and Its Inverse

As an example of the role played by fluctuations, let us consider the ther-
modynamic potential Ω,

Ω = − 1
β

ln{Tr exp(−β[H0 +Hint − µB])}, (15.26)

where B is the baryonic number (or charge) operator, µ the chemical
potential, H0 the free Hamiltonian and Hint the interaction Hamiltonian,

Hint =
∫
d3x Jop(x) ·A(x), (15.27)

in the case of a relativistic quantum plasma (Jop is the four-current operator
which is proportional to e; A is the electromagnetic four-potential). One can
show that3

Ω = Ωfree − 2
(2π)3

∫ e

0

de

∫
d4k

k2
〈Jop · Jop〉(k), (15.28)

an expression that exhibits the role of the four-current fluctuations in the
calculation of the thermodynamics of an electromagnetic plasma (see also
Chap. 12).

A formal connection can exist between the linear response to a given
excitation of a system and a related quantity, and this connection is
known as the fluctuation–dissipation theorem.4 For instance, if a plasma
is excited by an external electromagnetic field Aext(x), the perturbation
being linear as ∫

d3x Oop · Aext(x), (15.29)

where Oop is the operator representing some physical quantity, then the
spectrum of Oop in thermal equilibrium is provided by

〈Oµ
opO

ν
op〉(k) = − i

exp(βω) − 1
[α∗µν(k)− αµν(k)], (15.30)

where αµν(k) characterizes the linear response of Oop to the external dis-
turbance Aext(x):

〈Oop〉(k) = αµν(k)Aνext(k). (15.31)

3A. Fetter and J. Walecka, Quantum Theory of Many Particle System (McGraw-Hill,
New York, 1971).
4See e.g. L.E. Reichl, A Modern Course in Statistical Physics (Arnold, London, 1980).
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Therefore, the spectrum of the fluctuations of Oop is determined when the
anti-Hermitian part of the response function is known. Conversely, causality
implies the Kramers–Kronig relations, which relate the Hermitian and anti-
Hermitian parts of αµν(k). Accordingly, the full response function αµν(k)
can be obtained from the knowledge of the spectrum of the fluctuations of
Oop.

Let us now be more specific. First, we split the response function αµν(k)
into its symmetric and antisymmetric parts,

αµν(k) = αµν
S (k) + αµν

A (k), (15.32)

so that the fluctuation–dissipation theorem can be rewritten as

〈Oµ
opO

ν
op〉(k) = − 2

exp(βω)− 1
[iReαµν

A (k) + Imαµν
S (k)] . (15.33)

Next, with the use of the Kramers–Kronig relations5


Reαµν(ω,k) = αµν(ω →∞,k)− 1
π

∫
dω′

Imαµν(ω′,k)
ω′ − ω ,

Imαµν(ω,k) =
1
π

∫
dω′

αµν(ω →∞,k)− Reαµν(ω′,k)
ω′ − ω ,

(15.34)

the above expression can be inverted as

αµν(k) = αµν(ω →∞,k)− 1
2π

∫
dω′

exp(βω′)− 1
ω′ − ω − iε 〈O

µ
opO

ν
op〉eq(ω,k),

(15.35)

allowing thereby the full determination of the response function from the
equilibrium fluctuation spectrum. The quantity αµν(ω →∞,k), which does
not appear in the nonrelativistic case, must be determined by other physical
considerations and has been discussed and found by H. Sivak (1984), whom
we have followed here.

Finally, note that this derivation of the inversion of the fluctuation–
dissipation formula is quite standard and that relativity does not enter
into it.

15.4. Four-Current Fluctuations and the Polarization
Tensor

Let us now use Kubo’s formula and its inverse to study some fluctuations
in the QED plasma.

5See e.g. L. Landau, E. Lifschitz, Statistical Physics (Pergamon, Oxford, 1980).
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(1) We first study the fluctuations of the four-current Jµ and their con-
nections with energy–momentum fluctuations T µν . Using the fluctuation of
the Wigner function F (k; p, p′) and after a straightforward calculation, we
obtain [H. Sivak (1984)]

〈J̃µJ̃ν〉eq(k) =
e2

(2π)2
1

exp(βω)− 1

×
∑
�,�′

��′
∫

d3p

EE�′
(δ�1 −NE)δ(E + �E�′ + �′ω)

×
[
1
2
k2ηµν + 2pµpν + �′p(µkν)

]
, (15.37)

〈T̃ µν T̃αβ〉eq(k) =
1

(2π)2
1

exp(βω)− 1

×
∑
�,�′

��′
∫

d3p

EE�′
(δ�1 −NE)δ(E + �E�′ + �′ω)

×
(
pν +

�′

2
kν

)(
pβ +

�′

2
kβ

)

×
[
1
2
k2ηµα + 2pµpα + �′p(µkα)

]
, (15.38)

〈T̃ µν J̃α〉eq(k) = − e

(2π)2
1

exp(βω)− 1

×
∑
�,�′

��′
∫

d3p

EE�′
QEδ(E + �E�′ + �′ω)

×
(
pν +

�′

2
kν

)[
1
2
k2ηµα + 2pµpα + �′p(µkα)

]
, (15.39)

where the following notations have been used:

{
E = p0 =

√
p2 +m2,

E�′ =
√

(p + �′k)2 +m2,
(15.40)

[
NE

QE

]
=

1
exp(β[E − µ]) + 1

± 1
exp(β[E + µ]) + 1

. (15.41)



February 12, 2011 11:39 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ch15 FA

The QED Plasma 431

Fig. 15.2 Spectrum of density fluctuations (parameters are indicated), after H. Sivak,
Ann. Phys. (N.Y.) 159, 351 (1984).

Let us note that these three spectra are all orthogonal to kµ owing to
the four-current and energy–momentum conservation, as can directly be
checked on Figs. 15.2–15.4. An explicit expression for them at zero tem-
perature can be found in the article by H. Sivak (1984). The figures below
refer to this case where the fluctuations are plotted versus ω for only one
value of k [other values give rise to similar curves and can be found in H.
Sivak (1984)].

These three figures present common characteristics; there exist two
branches for each curve, except for the energy density/charge density
spectrum, which has no right branch. The left branch is connected with the
process of electron–Fermi-hole pair production and the right one with
electron–positron pair production. This can be seen from the δ terms which
occur in the formulae for the various spectra, which express the energy con-
servation when the pairs of whatever kind are excited by a plasma wave
of frequency ω. The gap between the two branches corresponds to a fre-
quency region where a plasma wave cannot excite pairs of whatever type —
a transparency region.

(2) Conversely, let us study the electromagnetic fluctuations from the polar-
ization tensor Πµν(k). We first relate Πµν(k) and αµν(k). From the defi-
nition of Πµν(k) and αµν(k), and from Maxwell’s equations together with
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Fig. 15.3 Spectrum of energy density fluctuations (parameters are indicated), after
H. Sivak, Ann. Phys. (N.Y.) 159, 351 (1984).

the Lorentz condition {−k2Ãµ
int(k) = 4πJµ(k),

k · Ãµ
int(k) = 0,

(15.41)

we get

Jλ(k) = k2{k2ηαβ + 4πΠαβ(k)}−1
λµΠµν(k)Aνext(k) (15.42)

and hence

αν
λ(k) = k2{k2ηαβ + 4πΠαβ(k)}−1

λµΠµν(k). (15.43)

Finally, the four-current fluctuations are given by

〈J̃µJ̃ν〉(k) = − ik2 1
exp(βω)− 1

[{k2ηαβ + 4πΠαβ(k)}∗−1
µλ Π∗λν (k)

−{k2ηαβ + 4πΠαβ(k)}−1
νλ Πλ

µ(k)]. (15.44)
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Fig. 15.4 Spectrum of energy density/charge density fluctuations (parameters are indi-
cated), after H. Sivak, Ann. Phys. (N.Y.) 159, 351 (1984).

From Maxwell’s equations, the fluctuations of the electromagnetic field are
easily obtained as

〈ÃµÃν〉(k) = − i (4π)2

k2

1
exp(βω)− 1

[{k2ηαβ + 4πΠαβ(k)}∗−1
µλ Π∗λν (k)

−{k2ηαβ + 4πΠαβ(k)}−1
νλ Πλ

µ(k)]. (15.45)

In matrix form, it looks a bit simpler:

〈Ã⊗ Ã〉(k) = −i (4π)2

k2

1
exp(βω)− 1

Π∗(k)−Π(k)
k2I + 4πΠ(k)

. (15.46)

15.5. The Polarization Tensor at Order e2

We now compute the polarization tensor (i.e. the linear response to an
external electromagnetic field) from the ideal gas four-current fluctuations
with the use of the fluctuation–dissipation theorem, and we get

Πµν(k) = − 1
2π

∫
dω′

exp(βω′)− 1
ω′ − ω − iε 〈J

µJν〉eq(ω′,k). (15.47)
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In order to make an evaluation at order e2, it is sufficient to replace the
equilibrium fluctuation spectrum of the four-current by its ideal electron
gas expression, which has been calculated above. We then find that

Πµν(k) = Πµν
vac(k)−

e2

(2π)3
∑

�,�′=±1�

∫
d3p

EE�′

×
[

1
exp(β[E − µ]) + 1

− 1
exp(β[E + µ]) + 1

]

×
1
2η

µνk2
�′ + 2pµpν + �′p(µk

ν)
�′

E + �E�′ + �′(ω + iε)
, (15.48)

where Πµν
vac(k) is the vacuum polarization tensor, calculated from the

fluctuation–dissipation theorem, and in which the limit{
n→ 0,
β →∞ (15.49)

is taken. Also, the following notation has been used:

kµ
�′ ≡ {−�′(E + �E�′), k}. (15.50)

The vacuum polarization tensor is obviously infinite and must be renor-
malized; this has been done many times and the result is6

Π̄µν
vac(k) =

e2k2

3(2π)2
∆µν(k)

{
5
3

+
4m2

k2
−
(

1 +
2m2

k2

)√
1− 4m2

k2

×
[
2 arth

(
1− 4m2

k2

)−1/2

− iπε(ω)θ(k2 − 4m2)

]
.

(15.51)

As to the matter part of the polarization tensor, it can be written in the
form

Πµν
mat(k) = P1(k)∆µν(k) + P2(k)∆[µλ(u)∆ν]σ(u)kλkσ, (15.52)

where P1(k) and P2(k) are given by

P1(k) = −k

2

k2
Πµν

mat(k)uµuν ,

P2(k) =
1
k2

{
1

2k2
Πµνmat(k)∆[µλ(u)∆ν]σ(u)kλkσ − P1(k)

}
,

(15.53)

6See e.g. C. Nash, op. cit.; or C. Itzykson and J.B. Zuber, op. cit. See also the interesting
derivation by H. Sivak (1984).
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which we now give at T = 0K. The real part of Πµν
mat(k) is obtained from

the real parts of P1(k) and P2(k); P1(k) is found to be

ReP1(k) =
k2

12π

{
8
εfpf

k2
− 2arsh

(pf

m

)
+
(

1 +
2m2

k2

)√∣∣∣∣1− 4m2

k2

∣∣∣∣I(k)
+

2εf

|k|3
(

3
4
k2 + ε2f

)
ln

∣∣∣∣∣ (k
2 − 2pf |k|)2 − 4ω2ε2f

(k2 + 2pf |k|)2 − 4ω2ε2f

∣∣∣∣∣
+

ω

4|k|3 (3k2 − 12ε2f − ω2) ln
∣∣∣∣ k4 − (pf |k|+ ωεf )2

k4 − 4(pf |k| − ωεf )2

∣∣∣∣
}
,

(15.54)

while P2(k) is given by

ReP2(k) =
1

8π2k2

{
− 4pfεf

(
1 + 2

k2

k2

)

+
k2

4|k|
∑

�′=±1

[(
1− 4m2

k2
− (2εf + �′ω)2

k2

)

×(2εf + �′ω) ln
∣∣∣∣k2 − 2|k|pf + 2�′ωεf

k2 + 2|k|pf + 2�′ωεf

∣∣∣∣
]}

, (15.55)

where I(k) is given by

I(k) =
1
2

ln

∣∣∣∣∣∣∣
(
εf + pf

√
1− 4m2

k2

)2

− 4m4ω2

k4(
εf − pf

√
1− 4m2

k2

)2

− 4m4ω2

k4

∣∣∣∣∣∣∣ , (15.56)

for 1− 4m2

k2 ≥ 0

I(k) = artg

[
2m2 |k|+ k2pf

εf

√
k2(4m2 − k2)

]
− artg

[
2m2|k| − k2pf

εf

√
k2(4m2 − k2)

]
. (15.57)

for 1− 4m2

k2 < 0
This result is identical with B. Jancovici’s (1961) except for a misprint:

I(k) has a negative sign for k2 > 0.
At the frequencies of pair creations of whatever kind (electron–

positron or electron–hole), the real part of Πµν
mat(k) presents singularities,

i.e. whenever {
|ω| = |ε− ± εf |,
|ω| = ε+ ± εf .

(15.57)
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15.6. Quasiparticles in the Relativistic Plasma

As mentioned at the beginning of this chapter, the thermal properties of the
QED plasma play an important role in astrophysics. Here only two prop-
erties are considered. First, the modification of the blackbody spectrum due
to the propagation of quasiphotons in the medium; next, the modifications
brought by the quasielectrons in the QED plasma. While the first consid-
erations apply mainly to white dwarfs and the second ones to the primeval
cosmology, only very small variations were obtained [M. Lemoine (1995)].
In this section, we follow M. Lemoine’s (1995) work. Note that this has
been considered in the nonrelativistic case by R. Chappell.7

15.6.1. Quasiphotons in thermal equilibrium

Basic definitions and equations. The quasiphotons obey the field equation

[k2 − (1− λ)kµkν −Πµν(k)]Aν(k) = 0, (15.57b)

where λ is still the gauge-fixing parameter and Πµν(k) is intended to be
the retarded polarization operator. This field equation can be derived from
the Lagrangian

L = −1
4
FµνFµν − λ

2
(∂A)2 +

1
2

∫
d4yAµ

(
x+

1
2
y

)
Πµν(y)Aν

(
x− 1

2
y

)
.

(15.58)

The Hermitian character of L implies that

Πµν+(y) = Πµν(−y). (15.59)

From these equations, the energy–momentum tensor is found as in the
preceding chapter, and reads

T µν
quasiphotons = −1

2
[∂νAαF

µα + Fµα∂νAα]− λ

2
[∂νAµ(∂A) + (∂A)∂µAν ]

+
1
2

∫
d4y yµ

∫ 1/2

0

ds

{
∂νAα

(
x− y

[
s− 1

2

])
Παβ(y)

×Aβ

(
x− y

[
s+

1
2

])
− Aα

(
x+ y

[
s+

1
2

])
Παβ(y)

×∂νAβ

(
x+ y

[
s− 1

2

])}
− Lηµν . (15.60)

7R. Chappell, Thesis (1959).
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This expression can be rewritten in terms of the covariant Wigner operator8

of the quasiphoton field,

fµν(x, k) ≡
def

∫
dR

(2π)4
exp(−ik · R) Aν

(
x+

1
2
R

)
Aµ

(
x− 1

2
R

)
, (15.61)

where the following useful properties are still valid:

fµν(k, p) =
1

(2π)4
Aν

(
1
2
k − p

)
Aµ

(
1
2
k + p

)
, (15.62)

Aµ(x)Aν(y) =
∫

d4R

(2π)4
exp[ip · (x− y)]fνµ

(
x+ y

2
, p

)
, (15.63)

∂αAµ(x)∂βAν(x) = −
∫

d4k

(2π)4
exp(−ik · x)

∫
d4p

(
1
2
kα − pα

)

×
(

1
2
kβ + pβ

)
fνµ(k, p). (15.64)

With these notations and definitions, the equation for the Wigner operator
can be written as


{(
p+

1
2
k

)2

ηαν − (1− λ)
(

1
2
kα + pα

)(
1
2
kν + pν

)

−Παν

(
1
2
k + p

) }
fνβ op(k, p) = 0,

fαµ op(k, p)

{(
p− 1

2
k

)2

ηµβ − (1− λ)
(

1
2
kµ − pµ

)(
1
2
kβ − pβ

)

−Πµβ

(
1
2
k − p

)
= 0,

(15.65)
while those for the energy–momentum tensor read

T µν
quasiphoton(k)

=
∫
d4p

1
2

[(
1
2
kν − pν

)(
1
2
kµ + pµ

)
fα

α

8This corresponds to the general definition of fµν ; however, in the case considered
here, one has 〈Fµν〉eq = 0, and 〈Aµ〉 reduces to a pure gauge. Note that fµν is not
Sp(Fσµν ). For the sake of simplicity, we shall choose 〈Aµ〉 = 0, and we must show the
gauge invariance of the final results.
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−
(

1
2
kν − pν

)(
1
2
kα + pα

)
fµ

α +
(

1
2
kµ − pµ

)(
1
2
kν + pν

)
fα

α

−
(

1
2
kα − pα

)(
1
2
kν + pν

)
fµ

α + λ

(
1
2
kν − pν

)(
1
2
kα + pα

)
fµ

α

+λ

(
1
2
kα − pα

)(
1
2
kν + pν

)
fµ

α

]

+
1
2

∫ 1/2

0

ds

[(
1
2
kν + pν

)
∇µΠαβ(p− ks)

−
(

1
2
kν − pν

)
∇µΠαβ(p+ ks)

]
fβα

− ηµν

[
1
2

(
1
4
k2 − p2

)
fα

α −
1
2

(
1
2
kα − pα

)(
1
2
kβ + pβ

)
fβα

+
λ

2

(
1
2
kα − pα

)(
1
2
kβ + pβ

)
fαβ +

1
2
Παβ(p)fβα

]
. (15.66)

The second-quantized field Aµ(x) is expressed in terms of the plane wave
solutions to the wave equation in the same way as in Chap. 13 and reads

Aµ(x) =
∑

�

∫
d4k

(2π)3/2

1∣∣∣∂D�

∂k0

∣∣∣1/2

{
εµ

� (k)a�(k) exp(−ik · x)

+ εµ∗
� (k)a+

� (k) exp(+ik · x)}∣∣
k0=ω�(k)

. (15.67)

As in Chap. 3, the dispersion relations read

DT (k) ≡ k2 − πT (k) = 0,
(transverse modes)

DL(k) ≡ k2 − πL(k) = 0,
(longitudinal modes)

(15.68)

so that the sum over � is a sum over T and L, T being twice-degenerated.
We now quantize the field Aµ exactly as in Chap. 13 and, finally, the
quasiphoton Hamiltonian can be written as

Hquasiphoton =
1
2

∑
�=L,T

∫
d4p p0δ[p0 − ω�(p)]sgn

(
∂D�(p)
∂p0

)

×{a+
� (p)a�(p) + a�(p)a+

� (p)
}
, (15.69)
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which is quite similar to the ordinary Hamiltonian of quantum field theory,
but with two differences: (i) there exists an extra degree of freedom that con-
cerns the longitudinal mode and (ii) according to the sign of the derivative
of the dispersion relation, it is possible to get the so-called “negative energy
modes” discussed in Chap. 13.

Statistical properties of the quasiphoton gas. In thermal equilibrium
where the system is invariant under space–time translations, the energy–
momentum tensor reads

T µν
quasiphoton = −1

2

∫
d4p pν ∂D

αβ(p)
∂pµ

fβα(p), (15.70)

where an irrelevant δ(4)(k) factor has been eliminated. The calculation of
fβα(p) is straightforward, owing to the quasiusual form of the Hamiltonian
operator and hence to the fact that

〈a+
� (p)a�′(p′)〉eq = δ(3)(p− p′)

1
exp[βω�(p)]− 1

, (15.71)

and one finds that

fµν(p) = −2πδ(p2)
{
θ(p0) +

1
exp (βp · u)− 1

}[
ηµν −

(
1− 1

λ

)
pµpν

p2

]
.

(15.72)

Finally, the quasiphoton energy–momentum tensor has the perfect fluid
form, where the energy density and the pressure are given by



ρquasiphoton =
∑

�=L,T

∫
d3p

(2π)3
ω�(p)sgn

(
∂D�(p)
∂p0

)

× 1
exp(βp0)− 1

∣∣∣∣
p0=ω�(|p|)

,

Pquasiphoton = −1
3

∑
�=L,T

∫
d3p

(2π)3
1∣∣∣∂D�(p)

∂p0

∣∣∣p·
× ∂D�(p)

∂p
1

exp(βp0)− 1

∣∣∣∣
p0=ω�(|p|)

.

(15.73)

In these expressions a vacuum term — which has to be discussed — has
been dropped. In the various figures below, some comparisons with the
usual cosmological blackbody results are given.

The numerical results shown in Fig. 15.5, obtained by M. Lemoine
(1994), indicate that the difference from the usual blackbody equation
of state is very small. Lemoine has also calculated the effects of these
modifications on the light element production in the early universe and,
as expected, they are quite tiny.
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Fig. 15.5 The shift of the pressure, with respect to the ideal photon gas, as a function
of the temperature and at zero chemical potential (after M. Lemoine).

15.6.2. Gauge properties

We now have to discuss the gauge properties of what we outlined from
the statistical properties of quasiparticles. We are going to show that our
results are gauge-invariant provided that they are considered in thermal
equilibrium.

We first use the Wigner function

fµν(x, k) ≡
def

∫
d4R

(2π)4
exp(−ik · R)Aν

(
x+

1
2
R

)
Aµ

(
x− 1

2
R

)
, (15.74)

which is transformed as

fµν → fµν +
1
2

∫
d4R

(2π)4
exp(−ik · R)

[
+Aν

(
x+

1
2
R

)
∂µΛ

(
x− 1

2
R

)

+ ∂νΛ
(
x+

1
2
R

)
Aµ

(
x− 1

2
R

)
+ ∂νΛ

(
x+

1
2
R

)
∂µΛ

(
x− 1

2
R

)]
(15.75)

when performing a gauge transformation

Aµ(x)→ Aµ(x) + ∂µΛ(x); (15.76)

note that the derivatives act as

∂µ → ∂

∂(x± 1
2R)µ

. (15.77)
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Let us use the Fourier transform of this last quantity,

fµν(k, p) =
1

(2π)4
Aµ

(
p− 1

2
k

)
Aν

(
p+

1
2
k

)
; (15.78)

after a gauge transformation, we have

fµν → fµν +
1

(2π)4

{(
1
2
kµ − pµ

)
Λ
(

1
2
k − p

)
Aν

(
1
2
k + p

)

+
(

1
2
kν + pν

)
Aµ

(
1
2
k − p

)
Λ
(

1
2
k + p

)

− pµpνΛ
(

1
2
k − p

)
Λ
(

1
2
k + p

)}
. (15.79)

At this point, we have all that is necessary for proving the gauge invariance
of our results.

In thermal equilibrium, k = 0, the Fourier transform of fµν is somewhat
simpler. Let us look, however, at the energy–momentum tensor in thermal
equilibrium; it reads

T µν
quasiphoton = −1

2

∫
d4p pν ∂D

αβ(p)
∂pµ

fβα(p), (15.80)

where

Dαβ(p) = p2ηαβ − (1− λ)pαpβ −Παβ . (15.81)

Discarding the λ-dependent terms for the moment, taking account of the
transverse character of Aµ, i.e. pαA

α = 0, using the fact that k = 0, and also
the transverse character of Πµν (which makes the term including ∇µΠαβ

vanish), we find that after a gauge transformation

−pαΛ(−p)Aβ(+p) + pβAα(−p)Λ(+p)− pαpβΛ(−p)Λ(+p) (15.82)

× ∂

∂pµ
[p2ηαβ − pαpβ −Παβ ] = 0. (15.83)

Let us now take the average value: it follows that the equilibrium energy–
momentum tensor is itself gauge-invariant. Similarly, all the average
values, i.e.

〈B(p)〉µ = −1
2

∫
d4p B(p)

∂Dαβ(p)
∂pµ

〈fαβ(p)〉, (15.84)

are gauge-invariant. It remains for us observe that the remaining λ part
does not play any role: this is due to the independence of the macroscopic
quantities of this term; it contains no term in Aµ — only on Λ(−p)Λ(p).
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This can also be inferred from the fact that, in spite of the lack of gauge
invariance of the equation

�Aµ(x) − (1− λ)∂µ∂νA
ν(x) = 4πeSp

∫
d4p γµFop(x, p), (15.85)

its poles, i.e. P||(k) andP⊥(k), are independent of the gauge chosen; from
the four equations leading to the poles, only one depends on the gauge [see
Eq. (15.81)]. As a result, the calculation of the data of the quasiphotons —
such as the pressure or the energy density — is actually gauge-independent.
This also results from the use of only P||(k) andP⊥(k) in the thermal equi-
librium Wigner function.

Finally, it should be noticed that the same results as those obtained with
replacing in the equilibrium distribution the only gauge-invariant quan-
tities, are obtained.

15.6.3. Quasielectron modes in thermal equilibrium

The quantum-electrodynamical plasma involves a phenomenon which does
not occur in the relativistic classical case: the temperature- and density-
dependent “dressing” of the electron mass. This can be understood easily,
since the one-loop mass operator is proportional to �. One expects that in
astrophysical conditions — such as in the case of white dwarfs — this effect
does not play an important role, owing to the energies involved; and this is
what was actually found [M. Lemoine (1995)].

Let us rederive the electron mass operator Σ(p) at order e2, by using
the Wigner function technique. We start again from the first equations of
the quantum BBGKY hierarchy:



{iγ · ∂ + 2[γ · p−m]}F (x, p)

= 2e
∫

d4R

(2π)4
d4p′ exp[−i(p′ − p) · R]

×
〈
Fop(x, p′)γµA

µ

(
x− 1

2
R

)〉
,

F (x, p){iγ ·
←
∂ − 2[γ · p−m]}

= −2e
∫

d4x′

(2π)4
d4p′ exp[−ip′ · (x − x′)]

×
〈
γµA

µ

(
x+

1
2
R

)
F (x, p′)

〉
,

(15.86)
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{iγ · ∂ + 2[γ · p−m]}〈Fop(x, p)Aα(x′)〉

= 2e
∫

d4R

(2π)4
d4p′ exp[−i(p′ − p) · R]

×
〈
Fop(x, p′)γµA

µ

(
x− 1

2
R

)
Aα(x′)

〉
,

〈Aα(x′)Fop(x, p)〉{iγ ·
←
∂ − 2[γ · p−m]}

= −2e
∫

d4x′

(2π)4
d4p′ exp[−ip′ · (x− x′)]

×
〈
γµAα(x′)Aµ

(
x+

1
2
R

)
F (x, p′)

〉
,

(15.87)




{�ηµν − (1− λ)∂µ∂ν}〈Aν(x)〉 = 4πeSp
∫
d4p′F (x, p′),

{�ηµν − (1− λ)∂µ∂ν}〈Aν(x)Aα(x′)〉
= 4πe Sp

∫
d4p′γµ〈Fop(x, p′)Aα(x′)〉,

{�ηµν − (1− λ)∂µ∂ν}〈Fop(x′, p)Aν(x)〉
= 4πe Sp

∫
d4p′γµ〈Fop(x′, p)Fop(x, p′)〉,

(15.88)




{iγ · ∂ + 2[γ · p−m]}F (x, p)

= 2e
∫

d4R

(2π)4
d4p′ exp[−i(p′ − p) · R]

〈
Fop(x, p′)γµA

µ

(
x− 1

2
R

)〉
,

F (x, p){iγ · �∂ − 2[γ · p−m]}
= −2e

∫
d4x′

(2π)4
d4p′ exp[−ip′ · (x − x′)]

〈
γµA

µ

(
x+

1
2
R

)
F (x, p′)

〉
,

(15.89)
which are formally inverted as

〈γµFop(x, p′)Aµ(x′)〉eq = e

∫
d4y d4p′′{�ηµν − (1− λ)∂µ∂ν}−1(y)

×〈γµFop(x, p′)γνFop(x′ − y, p′′)〉, (15.90)

〈γµFop(x, p′)Aµ(x′)〉eq = e

∫
d4R′

(2π)4
d4y d4p′′ exp[−i(p′′ − p′) ·R′]

× γµ{iγ · ∂ + 2[γ · p−m]}−1(y)γν

×
〈
Fop(x − y, p′′)Aν

(
x− y − 1

2
R′
)
Aµ(x′)

〉
eq

.

(15.91)
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In these expressions — which look quite different from each other — two
uncompletely defined operators appear: the propagator

{�ηµν − (1− λ)∂µ∂ν}−1 (15.92)

and

{iγ · ∂ + 2[γ · p−m]}−1. (15.93)

Actually, they are defined up to a homogeneous solution and it can be
checked that one form obtained above for 〈FopA〉 is a homogeneous solution
for the other equation. As a result, a general expression for this last quantity
is the sum of the two solutions up to a common homogeneous solution
which can be obtained from the initial conditions on the system, such as
an adiabatic switching-on of the interactions.

In order to obtain a simple form for the mass operator Σ(p), a few
approximations must be made. First, use is made of the Hartree–Fock
approximation of 〈FopFop〉. Its form has been given in Chap. 8.

Feq(k; p, p′) ≈ (2π)4δ(4)(p− p′)Feq

(
p+

1
2
k

)
FT

eq

(
p− 1

2
k

)
, (15.94)

and, next, the “photon gas” is considered as being uncorrelated (only col-
lective effects of the latter are considered) with the electron matter

〈FopAA〉 ≈ F × 〈AA〉; (15.95)

〈AA〉 is essentially the photons’ Wigner function.
A calculation, made by D. Lemoine (1995), with the help of the

fluctuation–dissipation theorem, yields

〈AµAν〉
∣∣
k

= 2
{
θ(k0) +

1
exp(βk · u)− 1

}

×
(
− π

{
δ[k2 − Re ΠT (k)]δ[Im ΠL(k)]

}
Pµν

+ δ[k2 − ReΠL(k)]δ(Im ΠL)Qµν

+ sgn(k0)P
[

Im ΠT (k)
[k2 −ΠT (k)]2

Pµν +
Im ΠL(k)

[k2 −ΠL(k)]2
Qµν

])
,

(15.96)

where P is the principal value. With these approximations and after the
replacement of the expression obtained for 〈FopA〉, the first equation of the
quantum hierarchy can be rewritten in the form

{γ · p−m− Σ(p)}Feq(p) = 0, (15.97)
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with

Σ(p) ≡ G(1)(p) +G(2)(p) (15.98)

and

G(1)(p) = e2

∫
d4k

γµFT
eq(p− k)γν

k2

{
ηµν −

(
1− 1

λ

)
kµkν

k2

}
,

G(2)(p) = −e2
∫

d4k

(2π)4
γµ[γ · (p+ k) +m]γν

(p+ k)2 −m2
〈AµAν〉eq(k).

(15.99)

Note that, in Chap. 14, for systems that contain only the tensor uµ, Σ(p)
has the form

Σ(p) = a(p)I + b(p)γ · u+ c(p)γ · p, (15.100)

where a(p), b(p) and c(p) are known functions. This immediately leads to

D(p) = [1− c(p)]u · p− [b(p)]2 − [1− c(p)]2∆µν(u)pµpν − [m+ a(p)]2,

(15.101)

which in turn leads to the dispersion relation of the quasielectron mass,
D(p) = 0.

The mass operator is then obtained at order e2 by replacing FT
eq and

〈AµAν〉eq with their ideal gas expressions:


〈AµAν〉(0)(k)

= −2π
{
θ(k0) +

1
exp(−βk0)− 1

}
δ(k2)

{
ηµν −

(
1− 1

λ

)
kµkν

k2

}
,

FT
eq(0)(p) =

1
(2π)3

[1− feq(p)][γ · p+m]sgn(p0)δ(p2 −m2).

(15.102)

Otherwise, the expression for Σ(p) is a rather involved nonlinear expression
which exhibits the nonperturbative nature of the Hartree–Fock approxi-
mation. Note that an expression for 〈AµAν〉(k) has already been obtained
by H. Sivak (1984) in terms of the polarization tensor given above, and
another form by D. Lemoine (1995).
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Appendix A

A Few Useful Properties of Some
Special Functions

A.1. Kelvin’s Functions

Kelvin’s functions must be considered when dealing with the Jüttner–Synge
equilibrium distributions and in various approximation schemes. They are
defined by

Kn(x) =
∫ ∞

0

ds cosh (sn) exp (−x cosh s),

Kn(x) =
(x

2

)n Γ
(

1
2

)
Γ
(
n+ 1

2

) ∫ ∞
1

ds exp (−x cosh s) sinh2n s.

(A.1)

The following relations are repeatedly used in relativistic statistical
mechanics:

Kn+1 (ξ) =
2n
ξ
Kn (ξ) +Kn−1 (ξ) , (A.2)




d

dξ
[ξnKn(ξ)] = −ξnKn−1(ξ),

d

dξ

[
ξ−nKn(ξ)

]
= −ξ−nKn+1(ξ).

(A.3)

Equivalently, one has{
ξK ′n(ξ) − nKn(ξ) = −ξKn+1(ξ),

ξK ′n(ξ) + nKn(ξ) = −ξKn−1(ξ),
(A.4)

2K ′n(ξ) = −{Kn+1(ξ) +Kn−1(ξ)} , (A.5)

2n
ξ
K ′n(ξ) = {Kn+1(ξ) −Kn−1(ξ)} . (A.6)
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The Kelvin’s functions obey the second-order differential equation

d2

dξ2
Kn(ξ) +

1
ξ

d

dξ
Kn(ξ) −

(
1 +

n2

ξ2

)
Kn(ξ) = 0. (A.7)

They have several integral representations:

Kn(ξ) =
ξn

1 · 3 · 5 · · · (2n− 1)

∫ ∞
0

dζ sinh2n ζ exp (−ξ cosh ζ)

=
∫ ∞

0

dζ coshnζ exp (−ξ cosh ζ) . (A.8)

For large values of argument ξ, the functions Kn(ξ) behave like

Kn(ξ) =
(
π

2ξ

)1/2

exp (−ξ)
{

1 +
4n2 − 1

1!8ξ
+

(4n2 − 12)(4n2 − 32)
2!(8ξ)2

+ · · ·
}
,

(A.9)

while for small values of ξ, one has

K0(ξ) = −0.5772− log

ξ

2
+ · · · ,

Kn(ξ) =
1
2
Γ(n)

(
2
ξ

)n

+ · · · .
(A.10)

More properties can be found in M. Abramovicz and I.A. Stegun (1965) or
in I.S. Gradshteyn and I.W. Rizhik (1965).

A.2. Associated Laguerre Polynomials

They repeatedly enter into the quantum calculations that involve magnetic
fields. We give only a few formulae that are used here:



x
d

dx
Lα

n = nLα
n − (n+ α)Lα

n−1

= (n+ 1)Lα
n+1 − (n+ α+ 1 − x)Lα

n,

xLα+1
n = (n+ α+ 1)Lα

n − (n+ 1)Lα
n+1

= (n+ α)Lα
n−1 − (n− x)Lα

n,

Lα−1
n = Lα

n − Lα
n−1

(A.11)
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Appendix B

γ Matrices

In the derivation of various formulae dealing with the covariant Wigner
function for spin 1/2 particles, use was made of the following properties of
Dirac’s matrices. Besides the usual anticommutation relations

γµγν + γνγµ = ηµν (B.1)

and the definitions 


γ5 =
i

4!
εµναβγµγνγαγβ

σµν =
i

2
[γµγν − γνγµ]

, (B.2)

from which one has

γµγ5 + γ5γµ = 0, (B.3)

use was made of the representation

γ0 =

(
I 0

0 −I

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 −I
−I 0

)
(B.4)

where the σi’s are the common Pauli matrices. From the commutation
relations and the various definitions given, one easily gets the following
formulae

γµγν = σµν + ηµν , (B.5)

γµγνγσ =
{
ηµ[νησ]α + ηµαηνσ

}
γα + iεµνσαγ5γα, (B.6){

γνσβλ = ην[βγλ] − iενβλσγσγ
5,

σβλγν = ην[λγβ] − iενβλσγσγ
5,

(B.7)

γ5γλ =
i

3!
εµναλγµγνγα, (B.8)

448
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γµγνσαβ = ην[αηβ]µ +
{
ητ [αηβ]µηλν + ηλ[αηβ]νηµτ

+ ηαληβτηµν
}
σλτ + iεαβµνγ5,

σαβγµγν = ην[αηβ]µ +
{
ηµ[αηβ]τηλν + ην[αηβ]ληµτ

+ ηαληβτηµν
}
σλτ + iεαβµνγ5,

(B.9)

γµγνγαγ5 = −iεµναβγβ +
{
ηα[βηµ]ν + ηµβηνα

}
γβγ5, (B.11)[

γ5, σµν

]
= 0,

γ5σµν = − i
2
εµναβσαβ . (B.12)

Furthermore, any 4 × 4 matrix M can be decomposed on the basis of the
16 matrices γA of the Dirac’s algebra


γA =

{
I, γµ, σµν , γ5, γ5γλ

}
,

γA =
{
I, γµ , σµν , γ

5, γλγ5

} (B.13)

with

γAγA = I, Sp
{
γAγB

}
= 4δA

B, Sp {γA} = 0. (B.14)

Therefore, one has 

M =

1
4

∑
A

mAγ
A,

mA = Sp{MγA}.
(B.15)

Let pµ and uµ be two time-like four-vectors such that

p2 = m2, u2 = 1,

then the following relations too are extremely useful:

(γ · p±m) γµ (γ · p±m) = 2pµ(γ · p±m), (B.16)

(γ · p±m)σαβu
αpβ (γ · p±m) = 0, (B.17)

(γ · p±m)σµν (γ · p±m) = 2
{
p[µσν]λpλ +m2σµν ± iεµναβpαγ5γβ

}
,

(B.18)
(γ · p±m)

2m
γ5

(γ · p∓m)
2m

= γ5
(γ · p∓m)

2m
, (B.19)
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(γ · p+m)
2m

γµ
(γ · p−m)

2m
=

1
2m2

{
pµγ · p+mσµνp

ν −m2γµ

}
,

(B.20)
(γ · p+m)

2m
γ5γµ

(γ · p−m)
2m

= −p
µ

m
γ5

(γ · p−m)
2m

, (B.21)

γ · pσµνγ · p = m2σµν + 2p[µσν]λpλ, (B.22)

γ · p±m
2m

γµγ5 γ · p±m
2m

=
1
2
γµγ5 ± i

4m
εµναβpνσαβ − pµ

2m2
γ · pγ5,

(B.23)

γ · p−m
2m

γ · uγ · p+m

2m
=
{p · u
m
− γ · u

} γ · p+m

2m
, (B.24)

(γ · p+m)
2m

σµν (γ · p−m)
2m

=
1

2m2

{
mp[µγν] + p[µσν]αpα

}
, (B.25)

(σµνpµuν)2 = −∆µν(u)pµpν , (B.26)

[γ · p, γ · u]+ = 2p · u, (B.27)

[γ · p, σµνuµpν ]+ = 0, (B.28)

[γ · u, σµνuµpν ]+ = 0. (B.29)

Various formulae including the Levi-Civita tensor εµναβ are also used. This
tensor is completely antisymmetric and is such that

ε0123 = −ε0123 = +1 (B.30)

and obeys the relations

ετλµνε
µναβ = −2

(
δα
τ δ

β
λ − δα

λ δ
β
τ

)
, (B.31)

εσβµνεσρλα = −

∣∣∣∣∣∣∣∣
δβ
ρ δµ

ρ δν
ρ

δβ
λ δµ

λ δν
λ

δβ
α δµ

α δν
α

∣∣∣∣∣∣∣∣
. (B.32)
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Appendix C

Outline of Functional Methods

Functional methods are nowadays absolutely basic in various branches
of theoretical physics. Functional integration, for instance, has become
essential when quantizing gauge theories and/or for the decription of
their thermal properties. In this appendix,1 mathematical problems are
completely skipped and our approach is merely formal or intuitive; it is
important that the reader gets familiar with these methods and can make
some elementary manipulations.

In what follows, we start with a given functional, that is a mathematical
object that depends on a function in its entirety as E({ϕ}; a, b, f(x), etc),
where f(x) is a given function, a, b, . . . are constants, etc.; E depends on
the function ϕ in its globality as, e.g. in

E({ϕ}; a, b, f(x), etc.) = ag(x)
∫
dxϕ(x)f(x) + b. (C.1)

In a sense, a functional is a “function of functions.” Of course, ϕ(x) itself
is a also functional.

Several definitions are of common use in theoretical problems.
One consists in making the line interval discrete, the interval of defi-

nition of the function ϕ is then divided into intervals ∆xi where the function
ϕ is approximated by its average value ϕi, so that a functional E({ϕ})
reduces to

E({ϕ}) = E(ϕ1, ϕ2, . . .). (C.2)

In this case, the functional appears to be approximated by a function of an
infinite number of variables.

1See, W.F. Chen, Lecture notes on Techniques and Method in Path Integral Quanti-
zation of Field Theory [NCTS]. These notes are particularly clear and comprehensive.
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The second possible definition rests on the fact that in many cases the
function ϕ is an element of a separable Hilbert space and hence can be
expanded on an orthonormal basis {αn}n=0,1,...:



ϕ(x) =
∞∑

n=1

αn(x)
∫
dx′αn(x′)ϕ(x′),

∫
dxαn(x)αm(x) = δnm,

∞∑
n=1

αn(x)αn(x′) = δ (x− x′),

(C.3)

so that, finally, the functional is still expressed as a function of an infinite
number of variables

E({ϕ}) = E (α1, α2, . . .) . (C.4)

C.1. Functional Differentiation

By analogy with ordinary differentiation, the functional derivative with
respect to ϕ of a given functional E({ϕ}) is defined through

δ

δϕ(y)
E(ϕ(x)) = lim

ε→0

E(ϕ(x) + εδ(x− y))− E(ϕ(x))
ε

, (C.5)

so that we have the useful relation

δϕ(x)
δϕ(y)

= lim
ε→0

ϕ(x) + εδ(x− y)− ϕ(x)
ε

= δ(x− y). (C.6)

For instance, the functional

E({ϕ}) =
∫
dx′K(x, x′)ϕ(x′) (C.7)

has the following functional derivative with respect to ϕ(y):

δ

δϕ (y)

∫
dx′K(x, x′)ϕ(x′) = K(x, y). (C.8)

It can be checked that, mutatis mutandis, the ordinary chain rule for deriva-
tives still applies for functional differentiation.
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In statistical mechanics or in quantum field theory, one encounters
expressions like

E({ϕ}) = K0(x) +
∫
dx′K1(x;x′)ϕ(x′)

+
∫
dx′dx′′K2(x;x′, x′′)ϕ(x′)ϕ(x′′) + · · ·

+
∫
dx′K�(x, x1, x2, . . . , x�)ϕ(x1)ϕ(x2) · · ·ϕ(x�) + · · · (C.9)

which can be called a functional power series in ϕ. It is not difficult to
check that, when the kernels K� are symmetric in all their arguments
(x, x1, x2, . . . , x�), then one has

K� (x, x1, x2, . . . , x�) =
1
�!

δ

δϕ(x1)δϕ(x2) · · · δϕ(x�)
E({ϕ})

∣∣∣∣
ϕ≡0

, (C.10)

and in this case only can one speak of a functional Taylor expansion of the
functional E({ϕ}). When this symmetry property is not satisfied, then K�

is not given by this last expression. A sufficient condition for a functional
to possess a Taylor expansion

E({ϕ}) =
∞∑

�=0

1
�!

δ

δϕ(x1)δϕ(x2) · · · δϕ(x�)
E ({ϕ})

∣∣∣∣
ϕ≡0

ϕ(x1)ϕ(x2) · · ·ϕ(x�)

(C.11)

is that the function θ(λ) defined by

θ (λ) ≡
def
E ({ϕ+ λϕ′}) (C.12)

possesses a Taylor expansion.2 The proof, which is quite simple, uses the
alternative definition of the functional differentiation

δ

δϕ(y)
E (ϕ(x)) = lim

λ→0

E (ϕ(x) + λϕ′(x))− E (ϕ(x))
λ

. (C.13)

C.2. Functional Integration

The notion of functional (or path) integration goes back to 1923, with
N. Wiener approach of the Brownian motion. Later R.P. Feynman invented
the path integrals, now commonly used in quantum physics, with a then
new interpretation of quantum mechanics.3

2See C. Nash, op. cit.
3R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948).
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A functional integral is an expression of the form∫
Dϕ E({ϕ}), (C.14)

to which it is intended to make sense and where ϕ(x) is supposed to be
an element of a separable Hilbert space such as L2(Cn). In general, one is
interested in functional integrals of the form∫

Dϕ E({ϕ}) exp[−S({ϕ})], (C.15)

where S({ϕ}) is quadratic in ϕ, and where E({ϕ}) can be expanded into a
Taylor series. In particular, one is interested in Gaussian integrals, i.e. where
S[{ϕ}] is quadratic and where the functional E is independent of ϕ:∫

Dϕ exp
[
−1

2

∫
d4xϕ(x)Aϕ(x)

]
, (C.16)

where A is an operator acting on ϕ. In an ordinary finite-dimensional space,
such a Gaussian integral would be equal to [2π det (A)]−1/2, provided the
positive definite character of the matrix A is verified. Functional integrals
require some simple generalizations. In the above integral, the functional

E({ϕ}) ≡
[
−1

2

∫
d4xϕ(x)Aϕ(x)

]
(C.17)

is then approximated as

E({ϕ}) ≈ −1
2

i=n∑
i=1

j=n∑
j=1

ϕiAijϕj , (C.18)

with

Aij =
∫
dx αi(x)Aαj(x). (C.19)

The functional integral under study is now defined as∫
Dϕ exp

[
−1

2

∫
d4xϕ(x)Aϕ(x)

]

= lim
n→∞

∫ �=n∏
�=1

d4x� exp


−1

2

i=n∑
i=1

j=n∑
j=1

ϕiAijϕj


; (C.20)

in other words, it is defined (in fact, ill-defined!) as the limit of an
ordinary n-dimensional Gaussian integral. Note that if Aij were an ordinary
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diagonalizable matrix, the value of this integral would be

∫ �=n∏
�=1

d4x� exp


−1

2

i=n∑
i=1

j=n∑
j=1

ϕiAijϕj


 = det [2πA]−1/2, (C.21)

with, obviously,

det [2πA] = exp(Tr ln 2πA). (C.22)

This last relation is then extended to operators and hence∫
Dϕ exp

[
−1

2

∫
d4xϕ(x)Aϕ(x)

]
= exp

(
−1

2
Tr ln 2πA

)
. (C.23)

Let us calculate this last integral in the case of the free real scalar field

LE =
1
2

∫ β

0

d4x
{
∂µϕ(x)∂µϕ(x) +m2ϕ2(x)

}

=
1
2

∫ β

0

d4x {− (∂/∂τ)ϕ(x) · (∂/∂τ)ϕ(x)

−∂ϕ(x) · ∂ϕ(x) +m2ϕ2(x)
}
, (C.24)

and remember that we are working in the Euclidean space so that∫ β

0

d4x =
∑

n

∫
d3x→

∑
n

∑
k

=
∑

n

1

(2π)3

∫
d3k, (C.25)

where the sum over n is over the Matsubara frequencies ωn = 2πnT . An
integration by parts in the expression of LE yields

LE = −1
2

∫ β

0

d4x
{
ϕ(x)

[
(∂/∂τ)2 + ∂2

]
ϕ(x)−m2ϕ2(x)

}
, (C.26)

which, in Fourier space can be rewritten as

LE =
1
2

∑
n

∑
k

{
ϕ(ωn,k)

[
ωn + k2 +m2

]
ϕ(ω,k)

}
, (C.27)

with ωn = 2πnT . In the preceding expressions for LE , the operator A is
respectively given by{

A = −
[
(∂/∂τ)2 + ∂2

]
+m2,

A = k2 +m2 = ω2 + k2 +m2.
(C.28)



February 10, 2011 16:8 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-App-C FA

456 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

Using the Fourier form of the operator A thus provides

logZ = −1
2

∑
n

1
(2π)3

∫
d3k ln

[{
ω2

n + k2 +m2
}]
, (C.29)

where an irrelevant factor of 2π has been eliminated since it plays no role in
the thermodynamics of the system; it only leads a constant term. In order
to calculate log Z, we use the known formula

1
2

n=+∞∑
n=−∞

1
ω2 + ω2

n

= − β

4ω

[
1 +

2
exp (βω)− 1

]
, (C.30)

to arrive at

logZ = −
∫

d3k

(2π)3

{
1
2
βω(k) + log [1− exp (−βω(k))]

}
, (C.31)

where, once more, an irrelevant infinite constant term has been dropped.
With the above definition of a Gaussian functional integral, one can

calculate integrals of the form

I =
∫
Dϕ E [{ϕ}] exp

(
−
∫
d4xϕ(x)Aϕ(x)

)
, (C.32)

i.e. the ones to which one generally has to face, as

I =
∑

n1,n2,...,n�

∫
D ϕ En1n2...n�

ϕn1ϕn2 . . . ϕn� exp
(
−
∫
d4xϕ(x)Aϕ(x)

)
.

(C.33)
They can indeed be deduced by functional derivations with respect to j(x)
from the generating functional

I(j) =
∫
Dϕ exp

(
−
∫ β

0

d4x [ϕ(x)Aϕ(x) + j(x)ϕ(x)]

)
(C.34)

since the latter can also be cast into a Gaussian form by “completing the
square.”
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Appendix D

Units+

D.1. Ordinary Units
c = 2.99792458× 1010

h = 1.05457266× 10−27 = 6.582122× 10−22 MeV s

kBoltz = 1.3806513× 10−16 = 8.617344× 10−11 MeV/K

e = 4.8032068× 10−10

α = e2/�c = 137.0359895−1

G = 6.67259× 10−8

g = 980.665

melectron = 0.91093897× 10−27 = 0.51099906 MeV = 5.92989× 109 K

mproton = 1.6726231× 10−24 = 938.27231 MeV = 1.0888184× 1013 K

mneutron = 1.6749286× 10−24 = 939.56563 MeV = 1.0903193× 1013 K

m±
π = 2.48801× 10−25 = 139.567 MeV

mo
π = 2.40594× 10−25 = 134.963 MeV

λcelectron = 3.86159323× 10−11

λ−3
celectron

= 1.73660252× 1031

λcproton = 2.10308937× 10−14

λ−3
cproton

= 1.07504542× 1041

λcneutron = 2.10019445× 10−14

λ−3
cneutron

= 1.0794971× 1041

λc
π± = 1.41385× 10−13

λcπo = 1.46208× 10−13

+Compiled by H.D. Sivak.
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MeV = 1.60217733× 10−6 = 5.0677289× 10−3 fm−1

= 1.16045× 1010 K

gram = 5.6095862× 1026 MeV

fermi−1 = 197.32705 MeV

second−1 = 1.5192669× 1021 MeV

Ry = 1/2α2mec
2 = 2.1798741× 10−11 = 13.6056981 eV

re = e2/mec
2 = 2.81794092× 10−13

σT = 8π/3r2e = 0.66524616× 10−24

a0 = �
2/mee

2 = 0.529177249× 10−8

µB = e�/2mec = 9.2740154× 10−21

µN = e�/2mpc = 5.0507866× 10−24

NA = 6.0221367× 1023

σ = π2k4
B/60�

3c2 = 5.670399× 10−5

= 6.418014× 1041 l/cm2 s MeV3

D.2. Other Units of Interest

Absolute units

Energy =
√

�c5/G = 1.95633× 1016

Time =
√

�G/c5 = 5.39056× 10−44

Length =
√

�G/c3 = 1.61605× 10−33

Mass =
√

�c/G = 2.17671× 10−5

Degenerate electron Fermi gas at pF =m

Pressure = 7.38231× 1022 = 4.60768× 1028 MeV/cm3

= 3.54031× 10−4 MeV4 = 82.1393 g/cm3

Energy density = 6.05263× 1023 = 3.77776× 1029 MeV/cm3

= 2.90264× 10−3 MeV4 = 673.446 g/cm3

Electron density = n = 5.86515× 1029 = 4.5065× 10−3 MeV3

Critical magnetic field

Hcrit = m2
electronc

3/e� = 4.4140056× 1014 Gauss
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Symmetric nuclear matter at the saturation density
(as a degenerate Fermi gas)

nsaturation = 0.16 fm−3 = 1.6 × 1038 = 1.23 × 106 MeV3

Fermi momentum = 1.33 fm−1 = 263 MeV = 0.28mneutron

Pressure = 3.67 × 1033 = 2.29 × 1039 MeV/cm3

= 1.76 × 107 MeV4 = 4.09 × 1012 g/cm3

Energy density = 2.46 × 1035 = 1.54 × 1041 MeV/cm3

= 1.18 × 107 MeV4 = 2.74 × 1014 g/cm3
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Appendix E

Some Useful Formulae for Wigner
Functions

E.1. Useful Formulae for Bosons

We now provide a few useful formulae for bosons and, the calculations
being straightforward, no details are given. For simplicity, it is assumed
that 〈φ〉 = 0. A first remark, trivial but important to avoid errors, deals
with the Fourier transform of the fields, i.e.

φ(k) =
∫
d4x exp(ik · x)φ(x); (E.1)

one has

φ∗(k) =
∫
d4x exp(−ik · x)φ∗(x)

�=
∫
d4x exp(ik · x)φ∗(x).

(E.2)

The Fourier transform of the Wigner operator

fop(x, p) =
1

(2π)4

∫
d4R exp (−ip · R)φ∗

(
x+

1
2
R

)
φ

(
x− 1

2
R

)
(E.3)

is given by

fop(k, p) =
1

(2π)4
φ∗
(
p− 1

2
k

)
φ

(
p+

1
2
k

)
, (E.4)

or, equivalently,

φ∗ (k)φ (k′) = (2π)4 fop

(
k − k′, k + k′

2

)
, (E.5)

while the product of fields reduces to

φ∗ (x)φ (y) =

∫
d4ξ exp (iξ · (x− y)) fop

(
x+ y

2
, ξ

)
,

φ (x)φ∗ (y) =
∫
d4ξ exp (iξ · (x− y)) ∗fop

(
x+ y

2
, ξ

)
.

(E.6)

460
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Note also that f+ =∗f . In the derivation of the energy–momentum tensor,
use was made of the following useful relations:


∂µ
(y)φ

∗ (y)φ (x) =
∫
d4p exp(ip · (y − x))

[
+ipµ +

1
2
∂µ
(w)

]
×fop(w, p)|w=(y+x)/2 ,

φ∗ (y) ∂µ
(x)φ (x) =

∫
d4p exp(ip · (y − x))

[
−ipµ +

1
2
∂µ
(w)

]
×fop(w, p)|w=(y+x)/2 ,

(E.7)




φ∗ (y) ∂2
(x)φ (x) =

∫
d4p exp(ip · (y − x))

[
−ip2 − ip · ∂(w) +

1
4
∂2
(w)

]

×fop(w, p)|w=(y+x)/2 ,

∂2
(y)φ

∗ (y)φ (x) =
∫
d4p exp(ip · (y − x))

[
−p2 + ip · ∂(w) +

1
4
∂2
(w)

]

×fop(w, p)|w=(y+x)/2 ,

(E.8)

∂µ
(y)φ

∗ (y) ∂ν
(x)φ (x) =

∫
d4p exp(ip · (y − x))

[
− pµpν +

1
2
ip(µ∂

ν)
(w)

+
1
4
∂µ
(x)∂

ν
(x)

]
fop(w, p)|w=(y+x)/2 . (E.9)

For completeness, the main equations derived from the equations[
k2 −Π(k)

]
fop(k) = 0 (E.10)

are repeated:


{
p · k − 1

2

[
Π
(
p+

1
2
k

)
−Π

(
p− 1

2
k

)]}
fop(k) = 0,

{
p2 +

1
4
k2 − 1

2

[
Π
(
p+

1
2
k

)
+ Π

(
p− 1

2
k

)]}
fop(k) = 0.

(E.11)

The main observables then read

〈Jµ(k)〉 = 1
2

∫
d4pf(k, p)

[
2pµ −

∫ +1/2

−1/2

ds∇µΠ(p+ ks)

]
(E.12)
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(still with ∇µ ≡ ∂/∂pµ) for the four-current; and

〈T µν(k)〉 =
∫
d4pf(k, p)

[
2pµpν − 1

2
kµkν

]
f(k, p)− aµν(k)− ηµνL(k)

(E.13)

for the energy–momentum tensor; and where aµν(k) is given by

aµν(k) =
∫ 1/2

0

ds

∫
d4pf(k, p)

[(
pν − 1

2
kν

)
∇µΠ

(
p+

1
2
k

)

+
(
pν +

1
2
kν

)
∇µΠ

(
p− 1

2
k

)]
(E.14)

and where the Lagrangian is given by

L(k) =
∫
d4p

[
p2 − 1

4
k2 −Π(p)

]
f(k, p). (E.15)

Finally, let us also note the very useful relations

k · ∇Π(p± ks) = ± ∂

∂s
Π(p± ks). (E.16)

E.2. Useful Formulae for Fermions

The equations of motion for the quasifermion, in the case of interacting
quasiparticles, 


iγ · ∂ψ(x) −

∫
d4x′Σ (x, x′)ψ(x′) = 0,

ψ(x′)iγ ·
←
∂ +

∫
d4x′ ψ(x′)Σ (x′, x) = 0,

(E.17)

are obtained from the Lagrangian

L =
i

2
ψ(x)γ · ∂ψ(x)−

∫
d4x′ ψ

(
x+

1
2
x′
)

×Σ
(
x+

1
2
x′, x− 1

2
x′
)
ψ

(
x+

1
2
x′
)
. (E.18)

Note the relation

Σ (x, x′) = γ0Σ+ (x′, x) γ0 (E.19)
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which arises from the consistency of the equations of motion, where the
cross indicates the Hermitian conjugation. From the Lagrangian, the four-
current is derived as

Jµ
op(x) = ψ(x)γµψ(x) + i

∫
d4y

∫ +1/2

−1/2

ds yµψ

(
x+ y

[
s+

1
2

])

×Σ
[
x+ y

[
s+

1
2

]
, x+ y

[
s− 1

2

]]
ψ

[
x+ y

[
s− 1

2

]]
(E.20)

and the energy–momentum tensor as

T µν =
i

2
ψ(x)γµ←→∂ νψ(x)−

∫
d4y yµ

∫ 1/2

0

ds

{
∂νψ

[
x− y

(
s− 1

2

)]

×Σ
[
x− y

(
s− 1

2

)
, x− y

(
s+

1
2

)]
ψ

[
x− y

(
s+

1
2

)]

−ψ
[
x+ y

(
s+

1
2

)]
Σ
[
x+ y

(
s+

1
2

)
, x+ y

(
s− 1

2

)]

× ∂νψ

[
x− y

(
s− 1

2

)]}
− ηµνL. (E.21)

Let us note that this tensor is nonconservative since

∂µT
µν =

∫
d4x′ ψ

(
x+

1
2
x′
)

Σ
(
x+

1
2
x′, x− 1

2
x′
)
ψ

(
x− 1

2
x′
)
.

(E.22)

In term of the covariant Wigner operator for the quasifermions and of the
convenient definition

Σ (x, y) ≡ Σ̃
(
x+ y

2
, x− y

)
, (E.23)

the four-current reads

Jµ = Sp
∫
d4p

{
γµF (x, p) + i

∫
d4y yµ

∫ +1/2

−1/2

ds

× exp(ip · y)Σ(x+ ys, y)

}
F (x+ ys, p)}, (E.24)
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while the energy–momentum tensor has the form

T µν = Sp
∫
d4p

{
pµγν − ηµν

[
γ · p− Σ̃(x, p)

]}
F (x, p)

+
∫
d4yd4p

∫ 1/2

0

dsyµ exp(ip · y)

×
[
Σ̃ (x+ ys, y)

(
pν +

1
2
∂ν

)
F (x+ ys, p)

+ Σ̃ (x− ys, y)
(
pν − 1

2
∂ν

)
F (x− ys, p)

]
(E.25)

and the equations satisfied by the Wigner function in Fourier space read


γ ·
(
p+

1
2
k

)
F (k, p)

= −
∫

d4k′

(2π)4
Σ̃
(
k − k′, p+

1
2
k′
)
F

(
k′, p− 1

2
[k − k′]

)

F (k, p)γ ·
(
p− 1

2
k

)

= −
∫

d4k′

(2π)4
F

(
k′, p+

1
2
[k − k′]

)
Σ̃
(
k − k′, p− 1

2
k′
)
.

(E.26)
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Droz-Vincent Ph. and R. Hakim, Collective motions of the relativistic gravita-
tional gas, Ann. Inst. H. Poincaré 9, 17 (1967).
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A. Holl, V.G. Morozov and G. Röpke, Kinetic theory of QED plasmas in a strong
electromagnetic field II: The mean-field description. Preprint (2001).

Holm D.D. and B.A. Kupershmidt, Hamiltonian theory of relativistic magneto-
hydrodynmics with anisotropic pressure, Phys. Fluids 29, 3889 (1986).

Holm D.D. and B.A. Kupershmidt, Lyapunov stability conditions for relativistic
multifluid plasmas, Physica D18, 405 (1986).

Hoodbhoy P., A variational approach to dense relativistic matter using functional
techniques, Ann. Phys. (N.Y.) 139, 68 (1982).

Hora H., Strong coupling of electrons to black-body radiation at high tempera-
tures, Phys. Stat. Sol. B686, 685 (1978).

Hore S.R. and N.E. Frankel, Thermodynamic functions in the intermediate region
of an ideal Fermi gas in a weak magnetic field, Phys. Rev. A12, 2177
(1975).

Hore S.R. and N.E. Frankel, Thermodynamic functions of an ideal Fermi gas in
the intermediate quantum region, Phys. Rev. A12, 1617 (1975).

Horvath J.I., Contributions to the relativistic generalization of the kinetic theory
of gases and statistical mechanics, ZZ, ZZ, 47 (ZZ).

Horowitz C.J. and B.D. Serot, Self-consistent Hartree description of a finite nuclei
in a relativistic quantum field theory, Nucl. Phys. A368, 503 (1981).

Horowitz C.J. and B.D. Serot, The pion–nucleon interaction in a relativistic
Hartree–Fock theory of high-density nuclear matter, Phys. Lett. B108, 377
(1982).

Horowitz C.J. and B.D. Serot, Relativistic Hartree–Fock description of high-
density nuclear matter, Phys. Lett. B109, 341 (1982).

Horowitz C.J. and B.D. Serot, Properties of nuclear and neutron matter a rela-
tivistic Hartree–Fock theory, Nucl. Phys. A399, 529 (1983).

Horowitz C.J. and B.D. Serot, Two-nucleon correlations in a relativistic theory
of nuclear matter, Phys. Lett. B137, 287 (1984).

Horowitz C.J. and B.D. Serot, The relativistic two-nucleon problem in nuclear
matter, Nucl. Phys. A464, 613 (1987).

Horowitz C.J. and B.D. Serot, Nuclear currents in a relativistic mean-field theory,
Nucl. Phys. A468, 539 (1987).

Horwitz L.P., Rest frames in relativistic thermodynamics, Phys. Rev. D4, 3812
(1971).

Horwitz L.P. and E. Dagan, The covariant Boltzmann–Fokker–Planck equation
and its associated short-time transition probability, J. Phys. A21, 1017
(1988).



January 24, 2011 20:21 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ref FA

494 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

Horwitz L.P., S. Shashoua and W.C. Schieve, A manifestly covariant relativistic
Boltzmann equation for the evolution of a system of events, Physica A161,
300 (1989).

Hosoya A., M.-A. Sakagami and M. Takao, Nonequilibrium thermodynamics in
field theory: Transport coefficients, Ann. Phys. (N.Y.) 154, 229 (1984).

Hosoya A. and K. Kajantie, Transport coefficient of QCD matter, Nucl. Phys.
B250, 666 (1985).

Hosotani Y., Magnetic superconductivity and a linear response theory for non-
abelian gauge fields, Phys. Rev. D23, 2318 (1981).

Hsieh S.-H. and V. Canuto, Scale covariant theory of gravitation V: Kinetic
theory, Astrophys. J. 248, 790 (1981).

Hu B., Relativistic superconductivity and superfluidity: a unified view. Preprint
(1977).

Hsu J.P., Four-dimensional symmetry from a broad viewpoint, 4-covariant statis-
tical mechanics with common time, Nuovo Cimento B80, 183 (1983).

Hsu J.P., Four-dimensional symmetry from a broad viewpoint, 4-covariant statis-
tical mechanics with common time, Nuovo Cimento B78, 85 (1983).

Hsu J.P., Four-dimensional symmetry from a broad viewpoint, 4-covariant statis-
tical mechanics with common time, Nuovo Cimento B78, 85 (1984).

Hwa R.C., Statistical description of hadron constituents as a basis for the fluid
model of high-energy collisions, Phys. Rev. D10, 2260 (1974).

I.A. and R.V. Polovin, Theory of relativistic magnetohydrodynamic waves, Sov.
Phys. JETP 36, 1316 (1959).

Ignat’ev Yu. G., Relativistic kinetics and cosmology I, Sov. Phys. J. 23, 682
(1981).

Ignat’ev Yu. G. Relativistic kinetics and cosmology II, Sov. Phys. J. 23, 771
(1981).

Ignat’ev Yu. G., Relativistic kinetic theory and conformal transformations, Sov.
Phys. J. 25, 372 (1982).

Ignat’ev Yu. G., Relativistic kinetics and theory of gravitation, In General
Relativity and Gravitation, Vol. 1, Classical Relativity — Proc. 10th Int.
Conf. General Relativity and Gravitation 4–9, July 1983; Padova, Italy, eds.
B. Bertotti, F. de Felice and A. Pascolini (Consiglio Nazionale delle Ricerche,
Rome, 1983), p. 63.

Ignat’ev Yu. G., Conservation laws and thermodynamic equilibrium in the general
relativistic kinetic theory of inelastically interacting particles, Sov. Phys. J.
26, 1068 (1984).

Ignat’ev Yu. G., Relativistic canonical formalism and the invariant single-particle
distribution function in the general theory of relativity, Sov. Phys. J. 26, 686
(1984).

Ignat’ev Yu. G., Relativistic kinetic equations for inelastically interacting particles
in a gravitational field, Sov. Phys. J. 26, 690 (1984).

Ignat’ev Yu. G., Relativistic kinetics of baryon production in the big bang, Sov.
Astron. 29, 371 (1985).

Ikeuchi S. and K. Tomisaka, The structure and expansion law of a shock wave in
an expanding universe, Astrophys. J. 265, 583 (1983).



January 24, 2011 20:21 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ref FA

Bibliography 495

Ilgenfritz E.M. and J. Kripfganz, Quantum Liouville equation and non-
equilibrium processes in quantum field theory, Phys. Lett. A108, 133 (1985).

Imaeda K., Statistical thermodynamics of hadron gas and liquid drops, Lett.
Nuovo Cimento 1, 290 (1971).

Imre K., Oscillations in a relativistic plasma, Phys. Fluids 5, 459 (1962).
Imshennik V.S. and Yu. L. Morozov, Relativistically covariant equations for the

coupling of radiation with matter, Sov. Astron. 13, 628 (1970).
Imshennik V.S. and Yu. L. Morozov, Radiative relativistic gas dynamics of high-

temperature phenomena (Atomizdat, Moscow, 1981) (in Russian).
Imshennik V.S. and Yu. L. Morozov, Dissipative relativistic radiative hydrody-

namics, Sov. Astron. 33, 619 (1990).
Israel W., Relativistic theory of shock waves, Proc. R. Soc. London A259, 129

(1960).
Israel W., Relativistic kinetic theory of a simple gas, J. Math. Phys. 4, 1163

(1963).
Israel W. and J.N. Vardalas, Transport coefficients of a relativistic quantum gas,

Lett. Nuovo Cimento 4, 887 (1970).
Israel W., The relativistic Boltzmann equation, In General Relativity: Papers

in Honour of J.L. Synge, ed. L.O’. Raifeartaigh (Clarendon, Oxford, 1972),
p. 201.

Israel W., Electrodynamics, gravitation and spin, Lett. Nuovo Cimento 7, 860
(1973).

Israel W., Foundations of a relativistic kinetic theory of spinning particles, In
Colloques Internationaux du Centre National de la Recherche Scientifique
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Poincaré 15, 275 (1971).

Maugin G.A. and A.C. Eringen, Polarized elastic materials with electronic spin —
a relativistic approach, J. Math. Phys. 13, 1777 (1972).

Maugin G.A. and A.C. Eringen, Deformable magnetically saturated media-II-
constitutive theory, J. Math. Phys. 13, 1334 (1972).

Maugin G.A., An action principle in general relativistic magnetohydrodynamics,
Ann. Inst. Henri Poincaré 16, 133 (1972).
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and Technical Information Division, Office of Technology Utilization, NASA,
Washington, DC, 1969).

Webb G.M., G.P. Zank and J.F. McKenzie, Relativistic oblique magnetohydro-
dynamic shocks, J. Plasma Phys. 37, 117 (1987).

Weber F. and M.K. Weigel, Relativistic nuclear and neutron matter at finite
temperatures, Z. Phys. A330, 249 (1988).

Weber F. and M.K. Weigel, Equation of state of dense baryonic matter, J. Phys.
G15, 765 (1989).

Weber F. and M.K. Weigel, Neutron stars properties and the relativistic nuclear
equation of state of many-baryon matter, Nucl. Phys. A493, 549 (1989).

Weber F. and M.K. Weigel, Relativistic many-baryon matter and neutron stars,
Nucl. Phys. A495, 363c (1989).

Weigel M.K. and J. Winter, On the general theory of nuclear non-equilibrium
systems (statistical equations and nuclear hydrodynamics), J. Phys. G9, 913
(1983).

Weldon H.A., Covariant calculations at finite temperature: the relativistic plasma,
Phys. Rev. D26, 1394 (1982).

Weldon H.A., Effective fermion masses of order gT in high-temperature gauge
theories with exact chiral invariance, Phys. Rev. D26, 2789 (1982).

Weldon H.A., Simple rules for discontinuities in finite-temperature field theory,
Phys. Rev. D28, 2007 (1983).

Weldon H.A., λϕ4 coupling at high temperature, Phys. Lett. B174, 427 (1986).
Weldon H.A., Proof of zeta-function regularization of high-temperature expan-

sions, Nucl. Phys. B270, 79 (1986).
Weldon H.A., Comparison of symmetry breaking in the canonical and micro-

canonical ensembles, Ann. Phys. (N.Y.) 193, 177 (1989).
Weldon H.A., Particles and holes, Physica A158, 169 (1989).
Weldon H.A., Scalar field propagators in the microcanonical ensemble, Ann. Phys.

(N.Y.) 193, 166 (1989).
Weldon H.A., Quasi-particle in finite-temperature field theory [arXiv:hep-

ph/9809330 v2].
Wehrberger K. and F. Beck, Effect of vacuum fluctuations on the quasi-elastic

response functions in quantum hadrodynamics, Nucl. Phys. A491, 587
(1989).



January 24, 2011 20:21 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ref FA

Bibliography 527

Weinberg S., Entropy generation and the survival of protogalaxies in an expanding
universe, Astrophys. J. 168, 175 (1971).

Weinberg S., Gauge and global symmetries at high temperature, Phys. Rev. D9,
3357 (1974).

Wienke B.R., Mean, mean-square, and most probable momentum for a relativistic
Maxwellian ensemble, Am. J. Phys. 43, 317 (1975).

Wilets L., Green’s functions method for the relativistic field theory many-body
problem, In Mesons in Nuclei, Vol. III eds. M. Rho and D. Wilkinson (North-
Holland, Amsterdam, 1979).

Williams D.R.M. and D.B. Melrose, Covariant response tensors for spin zero and
spin one boson/antiboson plasmas, Aust. J. Phys. 42, 59 (1989).

Wilson J.W., Transport methods for relativistic ions, Trans. Am. Nucl. Soc. 52,
389 (1986).

Winter J., Covariant extension of the Wigner transformation to non-abelian
Yang–Mills symmetries for a Vlasov equation approach to the quark–gluon
plasma, J. Phys. (Paris) 45, C6 (1984).

Winter J., Wigner transformation in curved space–time and the curvature cor-
rection of the Vlasov equation for semi-classical gravitating systems, Phys.
Rev. D32, 1871 (1985).

Winterberg F., Radiative collapse of a relativistic electron–positron plasma to
ultrahigh densities, Phys. Rev. A19, 1356 (1979).

Witte N.S., R.L. Dawe and K.C. Hines, Relativistic charged bosons in a mag-
netic field I: Wave functions and matrix elements, J. Math. Phys. 28, 1864
(1987).

Witte N.S., V. Kowalenko and K.C. Hines, Relativistic charged bosons in a mag-
netic field II, Phys. Rev. D38, 3667 (1988).

Wright T.P. and G.R. Hadley, Relativistic distribution functions and applications
to electron beams, Phys. Rev. A12, 686 (1975).

Yadavalli S., A note on the relativistic Boltzmann equation and some applications,
368 (1961).

Yakovlev D.G., Transport properties of the degenerate electron gas of neutron
stars along the quantizing magnetic field, Astrophys. Space Sci. 98, 37 (1984).

Yoon P.H., Electromagnetic Weibel instability in a fully relativistic bi-Maxwellian
plasma, Phys. Fluids B1, 1336 (1989).

Yoon P.H. and R.C. Davidson, Exact analytical model of the classical Weibel
instability in a relativistic anisotropic plasma, Phys. Rev. A35, 2718 (1987).

Yoon P.H. and R.C. Davidson, Alternative representation of the dielectric tensor
for a relativistic magnetized plasma in thermal equilibrium, J. Plasma Phys.
43, 269 (1990).

Zakharov A.V., A kinetic theory for the growth of perturbations in an isotropic
cosmological model, and the ultrarelativistic limit, Sov. Astron. 22, 528
(1978).

Zakharov A.V., Influence of collisionless particles on the growth of gravitational
perturbations in an isotropic universe, Sov. Phys. JETP 50, 221 (1979).

Zakharov A.V., Collision integral in a Friedmann universe, Sov. Phys. JETP 59,
1 (1984).



January 24, 2011 20:21 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-ref FA

528 Introduction to Relativistic Statistical Mechanics: Classical and Quantum

Zakharov A.V., Relativistic kinetic equation for gravitating particles in a
Friedmann universe, Sov. Astron. 33, 624 (1989).



January 24, 2011 20:9 9in x 6in Introduction to Relativistic Statistical Mechanics . . . b1039-index FA

Index

λϕ4 theory, 216, 357, 360, 389, 391

abnormal matter, 247, 249

Abramovitz, 7, 510

action-at-a-distance, 3, 96, 97, 127

Adam, P., 160

Adams, D., 310, 355

Adams, J.C., 181, 182

additive integrals, 153

additive observables, 153

Akama, 27

Akhiezer, 421

Alexseev, 376

alternative approach to stochastic
processes, 137

alternative treatment of radiation,
111

Alvarez, 29, 87, 187

Anderson, 14, 29, 31, 34–36, 38, 183,
264, 352, 388

Anderson–Witting, 265, 267–269,
293, 300

angular momentum, 324, 363,
365–367

annihilation/creation operators, 162,
172, 372, 373, 402

Aono, 356, 376
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