ELEMENTARY QUANTUM
MECHANICS

BY
R. W. GURNEY, M.A.,, Pa.D.

Research Associate in the University of Bristol

CAMBRIDGE
AT THE UNIVERSITY PRESS
1940

A Lib.,
—




First Bdstion 1934
Second Bdstion 1940



CONTENTS

~ Preface page Vii
Chap. I Energy Diagrams 1
II The New Language of Physics and Chemistry 8

III The Wave Equation—The Hydrogen Atom—

Magnetic Moment and Electron Spin—Simple
Problems 16

IV The Uncertainty Principle—Systems con-

taining many Particles—Electron Configura-
tions and the Periodic Table—Metals 49
V The Movement of Particles 66

VI Two Interacting Particles—Diatomic Mole-
cules 83

VII Independent Observable Quantities—Homo-
nuclear Molecules—Valence Bonds 99

VIII Electrons in Crystals—Insulators and Con-
ductors 112

IX Perturbation Theory—The Description of

Physical Events 122
X The same continued 139
Mathematical Appendix 148

Table of Electron Configurations and First Ionisation
Potentials 159
Subject Index 160
Name Index 162
Plate (Fig. 10) facing page 14






FROM THE PREFACE TO THE FIRST EDITION

The inclusion of sixty-seven diagrams in this book has enabled
me to treat the problems of quantum mechanics by graphical
methods. At the same time I have tried to present the principles
in a form congenial to the experimentalist, keeping always in
view the physical significance and actual numerical magnitudes
of the various quantities. Two chapters have been devoted to
the problems of valency and the properties of molecules.

My thanks are due to the editors of the Physical Review and
to Professor H. E. Whyte for the loan of the block from which
fig. 10 is printed.

I wish to express my gratitude to Professor N. F. Mott both
for criticising the book in manuscript and for assistance in
proof reading. |

R.W.G.

BrisroL, 1934

PREFACE TO THE SECOND EDITION

The rapid progress in theoretical physics during the last four
years has left the basic principles of quantum mechanics un-
changed. In thisedition I have, however, taken the opportunity
to include references to recent work, and to add in the Appendix
four further notes, which I hope will be of interest.

R.W.G.

Brisror., 1940






CHAPTER I

§1. Nowadays when a physicist wishes to investigate a molecular

or atomic problem, often the first thing he does is to draw an
energy diagram. He draws a graph, plotting the potential energy

of the system as ordinate against some co-ordinate as abscissa.

For example, it may be the energy of mutual attraction or repul-

sion of two atoms plotted against their distance apart, or it may

be the potential energy of an electron in a molecular electrostatic

field. This way of tackling problems is characteristic of quantum

mechanics, and is due to the fact that the potential energy V of
the system, as a function of the co-ordinates, occurs in every form

of the Schroedinger wave equation.

Facility in the rapid construction and rapid interpretation of
these energy diagrams is easily acquired, and is of great help in
understanding the innovations of quantum mechanics. We will
therefore first consider energy diagrams according to classical
laws, beginning with the simplest problem. The reader who is
‘already familiar with these graphical methods may prefer to pass
on to §2.

If we throw a mass m vertically upwards with an initial velocity
v, it will rise to a height equal to v?/2g, where g is the acceleration
due to gravity. During its flight, the total energy of the body, W,
neglecting air-resistance, will be constant. If 3
then we plot W as ordinate against h as abscissa, A e/ 1_)
we obtain a horizontal straight line, suchas 4 Q,
fig. 1. As the body rises, it acquires potential
energy V,at any height hequal to mgh. Plotting
this on the same diagram, we obtain a straight
line BD, whose slope is mg. The vertical dis-
tance at any point between the two lines, such
as 4 B, gives of course the kinetic energy of the Fig. 1
body at the corresponding height. As the body rises, the potential
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2 ENERGY DIAGRAMS

energy goes on increasing untilit becomes equal to the total energy
W, when the two lines intersect; the kinetic energy has obviously
fallen to zero, i.e. the particle has come to rest at a certain
height H corresponding to the vertical dotted line through @.
And according to classical mechanics the particle will return from
this point. The suggestion that the particle might rise to a height
beyond H is absurd, because its potential energy would be greater
than its total energy, and its kinetic energy would need to be
negative, which is meaningless. The region beyond H is therefore
a forbidden region into which particles of energy W cannot enter.
The process of retardation and stoppage, illustrated in fig. 1, is
at the basis of the stability of the material universe. When in
the nineteenth century the idea was developed by Clausius and
Maxwell that all heat was due to the unceasing rapid motion of
molecules, there was no difficulty as regards gases; on the con-
trary, the hypothesis accounted for their fluid properties very
well. But for solids the position was different. To quote from the
FEncyclopedia Britannica: The distances traversed by the atoms
of a solid are very small in extent, as is shown by innumerable
facts of everyday observation. For instance, the surface of a
finely carved metal (such as a plate used for steel engraving) will
retain its exact shape for centuries, and again, when a metal body
is coated with gold-leaf, the atoms of the gold remain on its
surface indefinitely; if they moved through any but the smallest
distances, they would soon become mixed with the atoms of the
base metal and diffused through its interior. Thus the atoms of a

" solid can make only small excursions about their mean positions.
Thus the kinetic theory of heat was reconciled with the
stability of solid matter by using the idea of allowed regions
where W >V, and forbidden regions with a sharp boundary be-
tween them, as in fig. 1. It is supposed that for each atom of a
solid there is a little allowed region in which the atoma moves, the
whole of the rest of space being the forbidden region. In whatever
direction the atom moves, its potential energy rapidly increases,
its kinetic energy meanwhile decreasing, as in fig. 1, until the
atom is brought to rest and turned back again at the surface
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where W = V. Theé potential energy along any straight line will be
of the form of fig. 2, so that the atom is confined in a kind of
potential bowl or box. In this respect the atom
resembles the bob of a pendulum, whose potential
energy plotted against the displacement will

always be like fig. 2, the kinetic energy being P Q
greatest in the middle. The width of the allowed A~
region for the atom depends upon the total energy Fig. 2

which it has, just as the amplitude of oscillation of a pendulum
or of a tuning-fork depends upon its energy. Thus any line PQ
lying above 4B represents a higher total energy and possesses
a wider allowed region. The V-curve may be symmetrical as in
fig. 2, or else, when the retardation is much more rapid in one
direction than in the other, it may be very unsymmetrical, as in
fig. 49 on p. 88.

It is not only in a solid that atoms must be pictured as confined
to a small region as in fig. 2, but the same is true for any atom
which forms part of a diatomic or polyatomic molecule. Each
atom remains attached to the others, because it is in a potential
box, surrounded on all sides by a forbidden region. Or, rather, it
remains attached so long as its total energy W is less than V on
all sides. If at any time the atom acquires so much energy that
(W —7V) is greater than the depth of the potential bowl, fig. 49,
the atom can escape, i.e. the molecule can dissociate.

The next step will be to discuss the motion of an electrically
charged particle in an electrostatic field. Let 4 and B in fig. 3a
be two parallel metal plates charged respectively positive and
negative. And suppose we throw a ray of ultra-violet light on to
the middle of 4, so that a photoelectron is ejected from the metal.
We will suppose that it is ejected at right angles to the surface, as
indicated by the arrow. When the electron has escaped from the
metal it moves against a uniform retarding field, in which its
potential energy must be represented by a straight line, such as
DF in fig. 3b. Now the particle may, or may not, have sufficient
energy to get across to the opposite plate. If the total energy of
the particle is such as to be represented by the line M N it will

I-2



4 ENERGY DIAGRAMS

arrive; in fact, it will reach the plate with the small kinetic energy
NZF. If, on the other hand, the total energy is only such as to be
represented by the line GC, then the electron will come to rest at
@, and according to classical mechanics will return to the plate
from which it came. '

In the above we have not considered the initial escape of the
electron from the interior of the metal. This will be very similar
to the familiar escape of a molecule from the surface of a liquid, a
case which we shall treat first. Suppose a straight line 4 B be
drawn perpendicular to the surface of a homogeneous liquid, as

—

(@)

b
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Fig. 3 Fig. 4

infig.4a; and consider what will be the potential energy of a mole-
cule along thisline. In fig. 4blet the abscissae be the height 4 along
the line 4 B, and let S represent the point where 4B cuts the
surface of the liquid, the liquid being to the left of S and the
vapour to the right. A molecule at rest in the vapour possesses
more energy than a molecule at rest within the liquid; let this
. difference in potential energy be represented by CE, so that FG&
represents the potential energy outside the surface, and CD that
within. Then the potential energy of a molecule along the line
A B will be given by a curve like CDFG.

We know that when a molecule approaches a liquid surface
from within with an energy greater than a certain critical energy,
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it can escape from the liquid. This case will be represented by a
molecule moving along the line A B with kinetic energy equal to
(" M. It will be heavily retarded as it approaches the surface, but
will escape with the small residual kinetic energy NGQ. 1t is of
course only very exceptional molecules which approach with
kinetic energies as great as (/3. The average kinetic energy will
he much smaller; let it be equal to CP. For this molecule the
region beyond ¢ is in elassical mechanies a forbidden region, so
that the molecule is turned back from the boundary at . 1f P
and M have been chosen so that CF and GN are the awerage
alues of the kinetic energy in the liquid and vapour respectively,
then the quantity represented by the vertical distance PM is just
the latent heat of vaporisation of the liquid at the temperature
considered.

We may now return to the problem of the extraction of an
cleetron from a metal. At room temperature the spontaneous
eascape of an electron from a metal surface is a comparatively rare
occurrence, since the latent heat of evaporation of metallic
electrons is many times larger than for molecules of liquids, such
aswater, But the energy diagramof fig. £ may be used if wesuppose
the seale of ordinates to have been changed. Let A B intig. 4a be
a line drawn perpendicular to a metal surface, and let S in fig. 46
now represent the point where 1 I3 cuts the surface of the metal,
a vacuum being to the right of 8, and metal to the left. By con-
sidering an eleetron at rest inside the metal and an electron at rest
in the vacuunt, we obtain the potential energy curve CDEG. An
eleetron having a kinetie energy such as €'F is turned back at the
surtitee. 1f, however, light is incident on the surface, and the
eleetran absorbs from the light a quantum of energy equal to PM
in fig. 44, then the eleetron may escape from the metal with a re-
sidnal kinetie energy equal to (/N5 this is the photoelectric effeet.

If, instead of considering only one surface of 4 metal, we con-
sider the potential energy along aline drawn right through a picce
of metal, woe shall have the complete curve of fig. 5, showing how
an cleetron is turned back at either surface. And this diagram
would apply equally to a molecule in a drop of liquid. In either
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case any horizontal line which cuts the V-curve (such as W in
fig. 5) represents the energy of a particle which is confined to the
‘““potential box”’, while any W lying wholly above the V-curve
will be the energy of a free escaping or entering particle. _
In figs. 4 and 5 we have been dealing with large-scale systems;
the allowed region was the whole volume of the drop of liquid or

0 P ¢ R

—-——-—b———-———-‘»———w

Fig. 5 Fig. 6

piece of metal. But if we alter the scale of abscissae of fig. 5, we
arrive at the situation already described in fig. 2, where the
width of the allowed region was only one atomic diameter. Fig. 6,
which is a simplified version of fig. 2 formed from two straight
lines, will be discussed in Chapter 111. Here it is only necessary
to add that in the same type of diagram is embraced the
union of electrons and a positive nucleus to form a neutral
atom. Although the electrons within an atom are in rapid
motion, with kinetic energy equal to W—V, each is of course
confined in a very small allowed region. If, for example, we
plot the mutual potential energy,
V = —€?/r, of the electron and proton
in a hydrogen atom, we have fig. 7.
Any value of W lying wholly above
this curve represents a free electron; .
for a bound electron the V- and W- Fig. 7

curves must cut, as in fig. 7. It was an essential feature of Bohr’s
atomic model to suppose that for bound electrons only certain
discrete values of W occurred in nature.

§ 2. In the following chapters it will often be necessary to con-
sider the actual magnitude of atomic and molecular energies.
And this seems the most convenient point to look into the orders
of magnitude involved. The spacing of the allowed energy levels
in atoms and molecules determines the frequencies v of the radia-
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tion that thesystem can emit and absorb, according to therelation
hw=WwW,-W,,

where /= 6-5 x 10-2" erg secs., and W, and W, are any two of the
energies expressed in ergs. The frequency of violet light is about
10% sec.”; hence a quantum of violet light contains about
6 < 10-1% ergs. The most convenient unit for measuring atomic
energies is the electron-volt, that is, the energy acquired by an
electron or proton in falling through a potential difference of one
volt; it is equal to 1-6 x 10~12 ergs. Hence quanta of visible light
contain from 2 to 4 electron-volts of energy. (The volt is defined
as 108 em.u.; dividing this by the velocity of light, namely
c=3x 1019, we find that the volt is 1/300 e.s.u. The electronic
charge ¢ is 477 x 10~% ¢ s.u., and the value of the electron-volt in
ergs, often written “e-volt”, is 1/300 of this.) It is useful to
remember that the infra-red wave-length 12,345 Angstrém units,
or 1-2345u, corresponds to exactly one e-volt (as may easily be
verified from the relation Av=Ahc/A). The vibrational energies of
molecules are usually a little less than this, while the rotational
energies give rise to spectra in the far infra-red, with wave-
lengths approaching a millimetre.

It will be useful to compare these values with those of thermal
energies at room temperature. The molar gas constant is 8-3 x 107
ergs; dividing this by Avogadro’s number, 6-06 x 1023, we obtain
the atomic gas constant, &= 1-37 x 10716 ergs. According to the
Boltzmann relation, in an assembly at temperature 7' the num-
ber of atoms or molecules having internal energy equal to & is
proportional to e~#*T Tt is useful to remember that at room
If then we ask how many molecules possess energy as great as
one e-volt, the answer is that a fraction e=%, or 10—17, will do so.
It is only at high temperatures that an appreciable number of
atoms or molecules are excited to levels as high as this. On the
other hand, the spacing between the rotational levels of mole-
cules, mentioned above, is often of the order of 0-01 e-volt.
Consequently, even at room temperature the molecules are
distributed among a number of different rotational states.



CHAPTER II

It is a commonplace of scientific observation, that when a par-
ticular quantity is measured repeatedly with the highest possible
precision, not a single value is obtained, but a series of values
lying about a certain mean value. Values differing from the mean
by a large amount are obtained less often than nearer values. If
against each value obtained we plot the number of times it has
been obtained, we shall have some form of the familiar “error
curve’’, fig. 8a, p. 11.

When a physicist predicts the result of an atomic experiment,
his prediction is often embodied in a distribution curve. His
recording instruments are not usually sensitive to individual
atoms, and in any case the conditions of experiment cannot be
made sufficiently precise to enable him to predict a single definite
value for the quantity being measured. Often the best he can do
then is to express the expected result by means of a curve showing
the number of particles for which the measured value will lie,
say, between ¢ and g+ dg. To such a curve it will be convenient
to give a name; we will call it the pattern of the predicted
results, characteristic of the particular conditions and apparatus
used. |

An important innovation of quantum mechanics is that it has
entirely altered our attitude to such “patterns”. The former
method of predicting them was as follows: (a) calculate what
would happen under various ideally precise conditions, predicting
for each ideal experiment, not a pattern, but one definite value;
and (b) having done this, take into account the finite width of the
slits in the apparatus, etc., and putting together the various pre-
dicted values in thejr proper proportions, obtain the required
curve. The whole method was thus based on the assumption that
any ideally precise measurement would lead to one unambiguous
result, and that by compounding these results the required pat-
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tern was to be obtained. Quantum mechanics, however, is based
on the revolutionary idea that the initial assumption is often
wrong. If we imagine ourselves to be using ideal apparatus to
make observations on a molecular system, we have to admit
that there is often no such thing as a single correct value for
each measured quantity; even by a series of ideally precise
measurements the values obtained will have a certain residual
““spread””. Quantum mechanics has thus introduced the idea of
purely theoretical patterns whose shape depends only on the
nature of the universe and not at all on any particular apparatus
or conditions of experiment.

The reasons for this innovation may be approached in the
following way. To determine the position of a moving object we
may direct a beam of light on to it, and look to see where it is at
a given moment. The ray of light will, we know, exert a pressure
on the object, but this is usually too small to disturb its motion.
Unless the object has a very small mass, it will not be appreciably
accelerated by the incident light. But when we come to very
small particles we are faced with a dilemma. For if, on the one
hand, the light is not scattered to our eye or sensitive instrument,
it does not tell us where the particle was. And if, on the other
hand, the radiation is scattered by the particle, there is a transfer
of momentum and the particle suffers a recoil, which changes its
velocity. Now it might be thought that we could make an exact
allowance for this recoil, and so determine precisely both the
position and velocity of the particle at a given moment. But this
turns out not to be possible, even by an ideal experiment. And
we know of no more delicate way of making the observation than
by this method ofincident radiation; all other methods are in fact
clumsier. A serious oversight had thus been made in atomic
theory; the fundamental fact had been overlooked, that we cannot
observe an atomic system without disturbing it.

In science it is valueless to make an experiment upon a system
about whose condition we have scanty information; for no useful
conclusion could be drawn from it. Itis essential to get the system
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as well as possible under control by means of preliminary ob-
servations. In the older physics it was assumed that in an ideal
experiment this initial information would be obtained as a set of
definite values, one for each quantity necessary to describe the
state of the system at a given moment. But it is now recognised
that the preliminary observations are themselves of the nature
of a physical experiment, and can give only a blurred substitute
for the information which a physicist used to demand; for some
quantities at least, they give patterns instead of definite values.
The patterns belonging to any system are not independent. As
will be explained in Chapter 1v, a moderately accurate knowledge
of one quantity involves a proportionately greater ‘‘spread’ in
the pattern for some other quantity.

It was formerly assumed that small particles, such as electrons
and protons, would obey the same laws of mechanics as macro-
scopic particles had been found to obey. But we must now admit
that, for the reasons given above, atomic particles will never be
found to obey the usual laws of mechanics. Since this involves
abandoning to some extent the use of definite values, we have to
invent a new language in which to talk about molecular systems.
It might be thought that, if definite values are renounced, it
would now be impossible to specify a definite state of a system.
But this is not so; all we have to do is to use the patterns in place
of the corresponding definite values. We have at least a definite
- pattern for each observable quantity. And the reader will see at
once that a complete group of patterns will specify one particular
state of the system. Any other state will be specified by a group
containing different patterns. These patterns are the new lan-
guage of physics, and it requires only a slight mental readjustment
before we can use them as readily as the older language. It is the
business of the theoretical physicist to find the shape of these
patterns for various atomic problems, and to study how the shape
of the patterns will change when he makes some alteration in the
system, e.g. when he applies a magnetic field, a beam of incident

radiation, or an impinging particle. When this study has been
completed he knows all that he needs to know.
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It will be as well to recall in some detail what are the obvious

properties of any theoretical or empirical pattern. Su};ipose
first that we have made an experiment, and

that fig. 8 gives the smoothed curve embody- @
ing the results of a very large number of
measurements of some quantity ¢, the abscis- G
sae being ¢. If we take a small range of values
8¢ and construct a vertical strip, as in fig. 8,
the area of this strip &V (g) 8¢ gives the number ()
of observations whose results lay in this little
range 3q. Since the same is true for any other L =
strip, the total area under the curve is clearly 0q 7
equal to the total number of observations Fig. 8

that have been made. If now we decide to make a few additional
observations of the same quantity, say n observations, we can
find at once from the curve what is the probability that any of
them will lie in the range 8q. We do this by altering the scale of
ordinates until the total area under the curve becomes equal to »;
in particular, if we were to make the area under the curve equal
to unity, then the area of any strip would give us P (g) dq, the
probability that the result of any one observation lies between
g and q+38g. This has been mentioned here because it is the
standard method of dealing with the theoretical patterns of
quantum mechanics. When the area under the curve has been
made equal to unity, the pattern is said to be ‘“normalised” to
unity. Of course we intend to predict the patterns from pure
theory, not to obtain them from measurements.

The meaning of patterns can be made clearer by considering
what would be the shape of some pattern according to classical
mechanics. For example, we know that if at random intervals we
were to take a number of instantaneous snapshots of a slowly
swinging pendulum, few of the photographs would be found to
show the pendulum near its central position—or rather it is un-
likely that they would—simply because the swinging pendulum
spends comparatively little time near its central position where
its velocity is greatest. In classical mechanics the probability
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P (g) dq that the displacement of the pendulum bob will be found
s0 have a value lying between ¢ and g+ dg is easily calculated.
For P is inversely proportional to the velocity at any point, and
the velocity is proportional to Va2 —g?, where a is the amplitude
»f swing. When plotted, P gives a curve such as fig. 9a. The value
>f P is large for values of ¢ just less than @, where the pendulum
travels very slowly, and P is of course zero for | ¢ | greater than
|a|. The same curve applies to any quantity which varies simple
harmonically, such as the displacement in a monochromatic
wave. If we were to use patterns in
classical mechanics, this would be the
pattern for an atomic oscillator. But
in quantum mechanics we may expect
that the unavoidable “spread” will give
us some blurred version of the classical
pattern, as in curve b of fig. 9. We shall
see in the next chapter to what extent
these anticipations are fulfilled. Fie ©

Having decided to use probability &
patterns, what we need is a method for calculating the appropri-
ate function for every quantity that we can measure. If we had
an equation giving us P (¢) directly, we should have all that we
require. Here, however, we come upon an unexpected feature of
the theory. For the Schroedinger equation, and other equations,
which have been so successful in leading to results in agreement
with experiment, never give us the probability P directly, but
always give us first a kind of square root of P. This is a general
feature of quantum mechanics, which we could not have anti-
cipated. It applies to every kind of pattern, of which we will give
a few examples, as diverse as possible.

(1) If we are dealing with a beam of polarised light, there will
be a pattern telling us the probability that the intensity of the
electric field in the wave (the electric vector) will be found to have
a value lying between E and E+dE. Instead of dealing with
P (F) directly, we have to say, Let P (E)=|J(E)|?. And our

equations deal with ¢ (E), from which we only obtain P (E) by
squaring the modulus.

(@)

han
is
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(2) If we are considering the momentum p of a particle, and
require the pattern giving the probability P that the value lies
between p and p+dp, we have to say, Let | (p) |2= P (p). And
our equations give us 3 (p), from which we obtain P.

(8) Suppose that we are dealing with an atom which can exist
~in a number of different states, which we can call 1, 2, 3, etc.
Let the probability that it will be found in state 1 be denoted by
P,, the probability that it will be found in state 2 by P,, and so
on. Then we have to say, Let |a, |2=P,, | ay|2=P,, ..., and we
have to use a¢; and @, in our equations instead of P,, P,themselves.

(4) Suppose that we are considering two particles making a
head-on collision. The pattern describing the impact will tell us
the probability P (z,, ;) dx; dx, that one particle will be found at
apoint between z, and x; + dx, and the other particle will be found
simultaneously between z, and x, -+ dx,. This we shall obtain in

the form | (21, %) 2= P (21, ).

Why we have to use the square roots of each probability in this
way is not at all clear; the theory of quantum mechanics has been
built up by guesswork, and we use this method because it enables
us to obtain patterns in agreement with experiment. The use of
square roots has analogies in various parts of physics: in all kinds
of wave motion—sound-waves, light-waves, etc.—it is with the
square root of the intensity that we always work, i.e. with the
amplitude of the wave. All interference phenomena are due to
the fact that intensities are only to be obtained by squaring the
amplitudes. Making use of this analogy, one may speak of pro-
bability amplitudes. The equation which gives us any i is called
a wave equation; and quantum mechanics is known as wave
mechanics.

On examining the amplitudes in examples (1) to (4), it will
be seen that they are of quite a different nature from the familiar
“waves of physics. The essential feature of sound-waves, light-
waves, etc. is that they travel in ordinary space, i.e. the displace-
ment in the wave is a function of the ordinary space co-ordinates,
such as z, y, z (as well as of the time). And it will be seen that this
is not true of the ) in any of the examples mentioned; these
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particular amplitudes cannot then be visualised as those of
waves of the familiar kind, and here the wave analogy is not
helpful. Fortunately, however, there is just one class of patterns
—an important class—whose i} can be visualised in this way,
since they are functions of the simple space co-ordinates. What
patterns will have this property? Clearly we shall have P as a
function of x, y, z—and consequently i (z,y,2)—when we are
considering the probability that some single particle shall be
found at or near any point z, y, z. Patterns of this kind, and the
J-waves belonging to them, may be visualised as existing in
- ordinary space. To take an example—the ‘“orbit*’ of an electron
in a hydrogen atom will be represented by a probability pattern,
and this pattern can for some purposes be visualised as a little
electron cloud surrounding the positive nucleus, a little distribu-
tion of negative charge in which the proton is embedded. For
each of the excited states of the atom the pattern will have a
shape different from that of the ground state. Pictures of some
of these patterns are reproduced in fig. 10. It is only natural that
we use this simplest type of y-wave whenever possible. We shall
not need to make use of a more complicated type until Chapter vi.

The reader will be familiar with the fact that de Broglie in 1924
suggested that waves are somehow to be associated with moving
particles. To a particle of mass m, moving with uniform velocity v

(that is, with kinetic energy W — V =1m42), he ascribed an as-
sociated wave-length

N h
- omv V2m (W =T)

where % is Planck’s constant. This expression was derived only
by analogy; like most of the ideas of quantum mechanics it was
a conjecture. As will be explained in the next chapter, these wave-
lengths have been incorporated into the general theory as the
appropriate J-pattern for particles moving with uniform velocity
v. For example, in the interior of the potential box of fig. 5, where
(W —V) is constant, the -pattern will be just a simple sine curve
or cosine curve with wave-length given by (1). In these patterns
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Fig. 10, Pictorial representations of the di-patterns or clectron clouds
helonging to the ground level and to some of the excited levels of the

hydrogen atom
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s of course takes negative as well as positive values; this does not
lead to difficulties, since | |? is necessarily positive, giving a
positive value of the probability P.

According to the expression for A, the higher the velocity of the
particles the shorter is the associated wave-length. Hence where
a stream of particles suffers gradual acceleration or retardation
there is a continual change of wave-length. In physics we are
accustomed to waves of light and sound travelling in media like
air, water and glass, which are homogeneous, or nearly so. We
are not so familiar with waves travelling through a medium whose
refractive index varies slowly and continuously from place to

place; but this is merely because it is so diffi-
cult to construct such a medium to order. We \/\/\_/
know, however, that in a medium of this kind T

the wave-length of any monochromatic wave Fig. 11
would vary from point to point, as in fig. 11. With the change of
wave-length is associated a change of amplitude, not shown in
the diagram. .

Suppose that we have such a medium, and that we know how
the refractive index for light of any frequency varies with z, ¥, z.
A physicist will be able to tell by inspection the approximate-
nature of the wave form for any frequency. By solving the appro-
priate equation of wave propagation, a mathematician will be
able to calculate the precise wave forms. It is just this type of
problem and this procedure which most nearly resemble the
methods, qualitative and exact, of tackling an atomic problem in
wave mechanics. For in any atomic problem we are given certain
forces of attraction and repulsion between the particles, with
which there is associated a certain potential energy V. When we
are given the ¥V as a function of z, ¥, 2z, as in the problems of
Chapter 1, this is equivalent to being given the value of the
refractive index of the medium at all points. By solving the
Schroedinger wave equation, the mathematician can sometimes
calculate the precise value of ¢ at all points. But for a physicist or
chemistitisalsoimportant to be able to tell by inspection the rough
form of the s, and hence approximately how thesystem will behave.



CHAPTER III

§1. THE WAVE EQUATION

Having discussed the nature of probability patterns for
atomic systems, we may attack the problems of Chapter 1. We
saw there how in classical mechanics the potential energy V was
responsible for keeping electrons and atoms in their places. Each
particle in the universe is moving in a region where V< W; in
whatever direction it is moving, it comes sooner or later to a
surface where V=W, and here it is turned back. We shall not
expect to find in quantum mechanics anything so definite as this
sharp dividing surface. And it is of the first importance to decide
what shall replace it.

Schroedinger hit on the idea that an equation whose solutions
are de Broglie waves where W >V might also give reasonable
results where V' > W. Such an equation is

d%f 8u®m

dzt T 72
For when (W —V) is positive and either constant or varying
slowly with x, this equation has as solution

(W=V)p=0 .. 2).

() =4 cos 2n5 + Bsin 277; ...... (3),

where 4 and B are constants, and A is the de Broglie wave-
length given by (1), as may easily be verified by differentiating (3)
with respect to 2. Thus so long as W>V and V varies slowly,
equation (2) is merely the mathematical expression of the fact
that i) has a wave-length A/V'2m (W — V). Schroedinger went on
to suppose that the equation was still applicable for W <V, and
for V varying quickly with z. Solutions of (2) in fact turn out to
be patterns of a type which we require, namely those whose ||2
gives the probability P (z) when W is known.

Let us apply equation (2) to the problem of a particle in the
potential box of fig. 5 on p. 6, in which the lines PO and QR are
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supposed to extend to infinity in either direction. The solution
(3) is valid in the interior of the potential box for any W grcater
than V. In the forbidden region on either side we have (W — V)
constant and of negative sign. The solution of (2) now is

P (x)=Ce**4 Dekz ... (4),

where C and D are constants, and

k=~27:1\/2m(v— 178} e (B),

as may be easily verified by differentiating (4).

We see that i contains a term which decreases exponentially
and a term which increases exponentially. Evidently the coeffi-
cient of the latter must be zero if the pattern is to represent a
particle bound in the potential box; otherwise i) and 2 would
become infinite, representing a particle which spent its time at an
infinite distance from the laboratory. To the right-hand side of
the potential box D must be zero, and to the luft, where x goes to
— o0, ¢ must be zero. On each side then we are left with the
decreasing exponential only; and if & is sufficiently large we have
a ¢ whose value falls off rapidiy as we penetrate into the region
beyond the classical boundary where W =7V. The pattern for
fig. 5 is to be obtained by joining the three portions together—
in the middle is the sine curve
or a portion of one, and ex- (a)‘/\ /\ /\ ¥
ponential tails stretching out vV V U
indefinitely in either direc-
tion. Curve a of fig. 12 gives (b) /\/\/\/\/\/\__ ,
a possible shape of the pattern
for a particular value of W;
and curve b gives the form of the corresponding i$2. When the
ordinates of curve a have been chosen so that the total area
under curve b is equal to unity, the pattern is said to be nor-
malised.

§2. Until the ’eighties of the last century the nature of the
electric current which flows through metals was unknown. It was .

G 2

b ! -
—fa - -

Fig. 12
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provisionally supposed that positive electricity was flowing in
the direction called positive, while perhaps negative electricity
was simultaneously flowing in the reverse direction. Finally it
was discovered that only one kind of electricity was in motion,
namely electrons streaming in the direction which had unluckily
been called negative. When a current passes through a series of
metals in contact, the cores of the atoms remain in position, while
the electrons stream freely from one metal to the next in the
circuit. If then it comes to modifying the classical laws of
dynamics, we shall perhaps be prepared to admit a greater
measure of freedom to electrons than to atoms.

Now we have seen in the preceding section that, if we use
patterns derived from equation (2), the classical division into
allowed and forbidden regions disappears, for |4 (x) |2dx is the
probability of finding the particle in any range dz. A particle
approaching and penetrating beyond the former boundary will
be turned back sooner or later, but there is no limit to the distance
it may go before returning. Instead of a complete ban beyond the
classical boundary we have 2 decreasing at the rate e~2%%, which
we must now evaluate. We need the following quantities:

Planck’s constant: h =6-5x 10—27 ergs secs.
Mass of electron: m =9:0 x 10—28 grams.
Mass of proton: M =1-6x10—2* grams.
One Angstrém =108 cm.

One electron-volt =1-6 x 10-12 ergs.

log,,e=0-4343.

The most convenient units to use for atomic systems are for

length the Angstrém unit, and for energy the electron-volt.
Using these units we find

2kx=38x10BxVm . VV-W ... (6).

Choosing any typical atomic energies we can use this expression
to find how efficient the factor is in providing a substitute for the
classical boundary. Let us for example set (V' — W) equal to one
electron-volt, and calculate the value of e—2%* at a distance of
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2 Angstrom units beyond the classical boundary. We find
approximately:

for electrons e~ 2T — g—23 — (-],
and for protons e 2T = ¢—100 = ] 0—43,

We see that there is an acute discrimination between electrons
and protons. For electrons the value of i does not decrease
rapidly, and their behaviour will be quite different from that
predicted from classical mechanics. For protons, on the other
‘hand, there is a fairly efficient substitute for the classical boun-
dary, which will be still more efficient for heavier particles; it was
for this reason that the inadequacy of classical mechanics was
not discovered earlier. It will be noticed that the electric charge
borne by the particle does not occur explicitly in equation (2).
It enters, however, through the potential energy V, since in any
electric field ¥V will depend on the value and sign of the charge
carried.

§3. We may now obtain the appropriate pattern for the pro-
blem of fig. 1 and fig. 3 on pp. 1 and 4, where we had particles
retarded and brought to rest by a
constant force. The potential energy
is linear, hence for (W — V') in equa-
tion (2) we must write (W — cx), where
¢ is a constant. The solution of the
equation involves a Bessel function.
. Of the two terms we again reject the
one which becomes infinite, using the
other solution which tends to zero at
an infinite distance. The resulting
patternfor 4 and for s2in the interest-
ing région near the classical boundary
is plotted in fig. 13 for a particular
slope of the V-curve. The steeper the slope, the more rapidly
will A change. Where the particle is being retarded the amplitude
increases (as we should expect from the argument given on
p. 12), and beyond the classical boundary, represented in fig. 13

2-2

>
4

Z

Fig. 13
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by the vertical dotted line, the value of ¢ falls off exponentially,
as in the previous problem. There is again a small probabﬂity
of the particle being found a long way beyond the classical turning
point. The exponential rate at which i falls off again depends
violently on the mass of the particle; and we may say at once
that a calculation similar to that given above applies to any
form of V-curve which provides a boundary.

We find then that we can safely abandon classical mechanics
and use equation (2) instead. Although the division into allowed
and forbidden regions seemed to be essential to preserve the
stability of matter, we obtain a qualitative substitute which is
just sufficiently rigorous to control heavy atoms, while allowing
considerable freedom to electrons, and in a smaller degree to
protons. The programme of quantum mechanics involves then
nothing less than the re-examination of the whole of atomic and
molecular physics, using the new mechanics to describe the
behaviour of particles.

§4. We may notice thatin the problem of § 3 the y-pattern has
the same form for all values of the energy W. For if in fig. 1 we:
draw a horizontal line to represent some other value of W, we see
that the values of (W — V) are the same as before, only all shifted
to the left, or all to the right. We may use this fact to obtain the
J-pattern for the problem of fig. 6 (p. 6), in each half of which the
potentialenergy is that with which wehave justdealt. Ineach half
the J-curve must be a portion of fig. 13. Choosing a value of W at
random, we obtain a boundary on either side; let these be repre~
sented by the vertical dotted lines in fig. 14. Fitting back to back
the requisite portion of fig. 13 we obtain fig. 14a, with an absurd
kink in the middle. If we invert one half, which is permissible, we
obtain fig. 14b, in which the curve again fails to join up. 1t
occurred first to Schroedinger that such solutions were to be
rejected, and that thisleads directly to quantisation of the energy -
For if with fig. 6 we had chosen a slightly lower value for W, with
consequently a narrower allowed region, the maxima which fail
to coincide in the centre of fig. 14a would have fallen slightly
nearer together; and we can clearly find a particular value of W
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for which the two halves of the curve join up to give a satisfactory
pattern. This, Schroedinger suggested, will be one of the allowed
quantised levels. In the same way we can find a certain higher
energy for which the allowed region will have exactly the right
width to enable the two halves of fig. 145 to join up. By sliding
the two halves in fig. 14 relative to one another in this way, we
obviously obtain an unlimited number of satisfactory i-patterns
corresponding to discrete energies spaced at intervals. The use
of equation (2) to obtain probability patterns thus yields as a
by-product a set of discrete quantised levels, a welcome result.

(@)

C

C>

(b)

N
D

Fig. 14

This conclusion is fundamental, for it applies to any kind of
potential box, whatever the form of the V-curve. Inoffering fig. 12
as a possible solution for a rectangular potential box, we refrained
from pointing out the difficulty of fitting the exponentials on the
de Broglie sine curve. In general this cannot be done without a
kink somewhere; for, the length of the box being given in advance,
there are only certain wave-lengths which just fit into it and join
on smoothly to the required exponentials at both ends of the box.
Y and dis/dr must be made continuous everywhere. (This could
always be done if we were allowed to use the mixture of increasing
and decreasing exponentials of (4), but the value of 4 would be-
come infinite and the result would be meaningless.) As in the
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previous problem there are only certain discrete energies, spaced
at intervals, which have acceptable patterns. The lowest allowed
energy is one possessing a de Broglie wave-length more than twice
the length of the potential box, so that the pattern consists of the
two exponentials with less than half a wave of the sine curve fitted
in between, fig. 15a. Clearly itisimpossible to obtain a continuous
Y-curve for any energy lower than this. The next higher level
belongs to an energy for which nearly a whole wave-length fits
into the potential box, fig. 155, and so on. Returning to fig. 14,
we see that the lowest patterns there will be similar, although

/\/\ (d)/\/\/\/\__
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they belong to a potential box of entirely different form. The
lowest level is obtained from small portions of fig. 14 and has a
Pattern like fig. 15a; the next level is obtained from fig. 145 with
a pattern like fig. 15b; the next from fig. 14a with a pattern like
fig. 15¢, and so on.

For a reason which will be explained below, the main cha-
racters of the set of Y-patterns are quite independent of the torm
of the potential box. The y-curves always resemble the normal
modes of vibration of a piano wire. The i-curve for the lowest
level is always without any node, fig. 15a; the next always has
one node, as in fig. 15b; the third with two nodes, and the nth
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with n— 1 nodes. The curves plotted in fig. 15 are, as a matter of
fact, the solutions for a potential box whose V-curve is a parabola,
as in fig. 2, that is, for a harmonic oscillator. The curve for the
sixth allowed level will resemble fig. 12, except that the amplitude
of the sine curve will not be uniform across the box, and the five
zeros will not be quite equally spaced. Itis only to this extent that
the patterns for any type of potential box differ from one another.

It is easy to see why the {-curves appropriate to different
potential boxes resemble one another so closely. For d%//dx? is
the rate of change of slope of the curve, i.e. the curvature; and
equation (2) may be written

2 2
fi-—‘%@?- ——CW=T) ) .

Where W >V, both sides of this equation are negative, and the
curve must everywhere keep its concave side towards the z-axis,
as it always does, for example, in sine and cosine curves, etc.
Where W <V, on the other hand, the curve must keep its convex
side towards the z-axis, as in exponential curves. The classical
boundary, where W =V, must always mark the division where the
character of the yj-curve changes over from one to the other. Thus
in solving any problem we always have in advance a good idea of
what the forms of the possible patterns are going to be as soon
as we have drawn an energy diagram.

In the following chapters, when confronted by the problem of
finding the allowed energies of a system, we shall refer back to
the programme carried out here. The method consists of “fitting ”’
Y-curves into the potential box. The pattern for the lowest level
is always without any node; this is the most important level,
because the system cannot have an energy lower than this.
The next higher allowed level will be that energy whose pattern
will fit into the box with one node. In looking for successive
higher levels, we are using successively shorter wave-lengths, and
(except for the artificial V-curve of fig. 5) at the same time
the potential box is getting wider. The spacing of the levels,
i.e. the difference in energy betweén one level and the next,
depends upon the size and shape of the potential box. Clearly it
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may happen that for a particular kind of V-curve the successive
energy levels are exactly equally spaced. This in fact happens for
the harmonic oscillator, in which the potential energy is propor-
tional to the square of the displacement from the mean position,
V = }ox2. The allowed energies to which the series of patterns of
fig. 13 belong are given by

W, =(n+ %)%«/m ...... (8),

‘where 7 takes the integral values 0, 1, 2, ... for successive levels
and is known as the quantum number. The set of levels thus has

h
uniform spacing throughout, the interval being 5-Va/m. In

fig. 7, on the other hand, the width of the potential box increases
at first slowly and then rapidly, and becomes infinite; conse-
quently the levels are at first widely spaced, the higher levels are
more and more closely spaced, and finally converge to a limit.
At the end of Chapter I attention was drawn to the fact that
the energy levels in an atom are spaced about a hundred times as
widely as those in molecules. Patterns like those of fig. 15 will be
used to represent an electron in an atom or an atom in a molecule,
but the wave-length will be very different, since it depends on
the mass of the particle by the relation A=A/mv. What then will
be the spacing in each case between the levels to which these
patterns will belong? It will be convenient to show here numeri-
cally that the spacing isgoing to be of theright order of magnitude.
For electronic levels, de Broglie wave-lengths differing by a
factor of 2 or 3 should correspond to energies differing by several
e-volts. For an electron in an atomic box of width 3 Angstrom
units we will take $}A=3 x 10—® cm., and estimate the kinetic

energy from (1):

2
(W-=7)= I =5 x 10712 ergs = 3 e-volts.

2mA2

For a proton or heavier particle, on the other hand, the spacing

of the levels will be closer, even when the width of the potential
box is considerably less.
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§5. THE HYDROGEN ATOM

Steps must now be taken to extend these methods to
problems in three dimensions. Consider once more the problem
of fig. 1. Our particlein fig. 1 rose to a height corresponding to the
point @, the height at which W — ¥V =0; this was because we had
stipulated that the particle had been projected vertically. A par-
ticle projected at an angle to the vertical, with the same energy
W, would not rise to so great a height, because part of the kinetic
energy is associated with the horizontal component of the motion.
To find how high the particle will rise, one has to subtract this
part of the energy, and in this way one obtains the classical
boundary. The procedure of finding the appropriate J-pattern is
the same as before. With rectangular axes, z, ¥, 2, one has to use
in place of equation (2)

dxp  dx) . d2  Sam

dx2+dy2+dz2+ 78 (W—-V)¢g=0  ...... (9),
where the kinetic energy
W-v="2( g2 (10).

A three-dimensional potential box will be a region where W >V,
surrounded on all sides by a forbidden region where W < V. To
this an argument will apply similar to that given with reference
to equation (7). Inside a certain surface the i-pattern will have
one character, and outside the surface the value of s will die away
exponentially in all directions.

Since a charged particle, such as an atomic nucleus, has a
spherically symmetrical field, we are most interested in spherical
potential boxes. Corresponding to figs. 5, 6 and 7 there will be
three-dimensional problems in which the V-curves of figs. 5, 6
and 7 give the potential energy along any diameter. We shall not
discuss the problems of figs. 5 and 6 further, but fig. 7 becomes
the very important problem of the hydrogen atom. The proton
provides a potential box for the electron; and for the classical
electron orbit one must substitute the idea of a pattern. For some
purposes this pattern may be thought of as an electron cloud,
whose density is proportional to | ¢ |2, and thins out rapidly in all
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directions. This density is a “probability density”, since in the
hydrogen atom the whole J-pattern must be normalised to give
exactly one electron, i.e. the value of ¥ must be adjusted so that
the integral over all space is equal to unity:
[np*dv=1 ceeen.(11).

The electron occasionally makes long excursions from the nucleus,
but the probability of finding the electron far outside what we
ordinarily regard as an atomic volume is very small. If we mul-
tiply 42 at every point by e, the electronic charge, we may picture
the cloud as a distribution of negative electricity, the total quan-
- tity when integrated over all space being €. When normalised as
in (11) > must have a definite numerical value at every point, and
we may consider in what units it may be expressed. Its dimen-
sions must clearly be the reciprocal of a volume, in order that (11)
shall be a pure number. The order of magnitude of the normalised
Y for an atomic electron may be obtained by a rough calculation.
If the atomic volume inside which i is appreciable is, say,
10—22¢m.%, we could obtain unity by multiplying this by 1022cm.—3;
this value would therefore be a suitable mean value for % in the
atom; and its square root, 101 cm.—%2, would be a satisfactory
mean value for ;. As a matter of fact, in the pattern belonging to
the lowest level of the hydrogen atom it is found that s has the
value 5 x 1011 cm.—3/2, at the centre, and falls away exponentially
from this value in all directions, as in fig. 21a, p. 36. (One would
not expect i in this case to hayve the form of fig. 15, since the
Positive nucleus is of course situated in the centre of the potential
box.) This simplest type of electron cloud, of which a pictorial
representation is given in fig. 10, is very different from a classical
orbit in which the motion of the electron is confined to a plane.
In most cases the i-pattern belonging to an excited state shows a
greater resemblance to an orbit, and before going further it will be
convenient to look into the part played by angular momentum
in the latter.

Consider, for example, a rotating elliptical orbit, according to
the olderideas. The electron never goes nearer to the nucleus than
OP, fig. 16, nor farther from it than 0Q. Values of r between
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r= 0P and r= 0@ are the allowed values of r, while r > 0@ and
r < OP define forbidden regions;
which implies an effective V-
curve of a form such as A BCD

in place of the Coulomb curve
EF@G, which is a plot of — e?/r,

as in fig. 7. Returning to the
orbit P, we see that at @ the W
radial velocity is zero, but the \/
particle still possesses an amount

of kinetic energy represented by

AF. The boundary at D is also

to be expected, for it is of course

the angular momentum about O Fig. 16

which prevents the electron from colliding with the nucleus;
and in determining the allowed values of r the kinetic energy
associated with this angular momentum must be subtracted
from the total kinetic energy, W — V. Taking any vertical line
HBG, HG represents the total kinetic energy; let BG be the
angular part, and H B the radial part. As H approaches 4 or D,
H B tends to zero, giving a boundary at A or D. In this way
we obtain a potential box ABCD in place of the original
potential box. We shall see later how this idea enters into the
quantum mechanical treatment.

§6. Thealkali atomsLi, Na, K, Rb, Cs are said to be hydrogen-
like; each consists of a positive core and a single valence electron.
The core as a whole bears a single positive charge, since it con-
tains Z—1 electrons surrounding a positive charge Ze. The
potential box for the valence electron is provided by the core in-
stead of by the nucleus. The valence electron spends most of its
time outside the core, and consequently in a field almost identical
with the field of a proton. For reasons which will appear later, it
is convenient to carry on the discussion of these atoms at the same
time as that of the hydrogen atom itself. To account for the com-
plicated series spectra emitted by the hydrogen-like atoms, Bohr
postulated the existence of several series of energy levels, of

X
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which the most important are known as the s-series, the p-series,
and the d-series.* Anticipating the results, we may at once state
roughly how it is that the y-patterns belonging to these various
series arise. We obtain the s-series by ‘““fitting’’ s-patterns into
the simple potential box of fig. 7, or the curve EF G of fig. 16.
We obtain the p-series of levels by fitting a set of ys-patterns into
a potential box like A BCD of fig. 16; and the d-series by fitting
anotherset of patternsintoanother potential box of thesame type.

In the Appendix on p. 148 it is shown that the Schroedinger
equation, whenexpressed in spherical polar co-ordinates, splits up
into three simpler equations involving 7, §, and ¢, separately. In
the equations for 8 and ¢ the potential energy does not occur, and
consequently the angular variation of s which we shall find will
apply to all fields of spherical symmetry. Thus, although the dis-
cussionto be given belowis directed primarily to the hydrogen atom
only, it is worth bearing in mind that it has wider applications.

The simplest of the three equations is (84), of which the solution

is ® = A cosme¢+ Bsinméd ...... (12).

In the special case of m =0 we see that @ is constant and there is
no variation with ¢. Since the value of

¢ must lie between 0 and 27, the value If/ ) ‘\
of the normalising factor is evidently A ,'A
A =1/V/27. When m isnotzero, the value C~-_.""
of ¢ by (12) varies sinusoidally with the (@)

angle ¢, and this has important conse-

quences. For in fig. 17a let ABC be a /7&\
circle in the equatorial plane with the 180"

atomic nucleus ascentre. At anypoint.4, ¢ \/ ¥ 60(’6)
chosen at random, ¢ will have a certain :
~ value. Starting from A4, let us go round Fig. 17

the circle watching the sinusoidal variation of . When we come
back to the point 4, iy must obviously come back to the value

* The letters s, p and d are the initial letters of ‘‘sharp’’, ‘‘principal
and “‘diffuse’—terms formerly used for classifying spectrum lines, and
later transferred to the levels which were believed to give rise to these

series of spectrun lines.
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from which we started, since we are merely looking at the same
thing twice. This imposes a restriction on the possible forms of .
For example, fig. 176 shows an impossible form. The portion of
the curve between 360° and 450° must of course be identical with
the portion between 0° and 90°, since it is recording the same
thing twice. Butin fig. 175, with a value of m chosen at random,
the curve fails to join up, and is to be rejected; the situation is
similar to that of fig. 14. We can, however, find certain discrete
solutions which are satisfactory, namely when m is an integer;
for only then is it everywhere true that cosm (¢ + 2+) = cos md.

A similar argument applies to the curves giving the variation
- of ¢ with 6—see fig. 22. As mentioned in the Appendix, satis-
fabtory patterns are obtained only when I takes the values 0, 1,
2,...; and there is the further restriction that m must not be
greater than I nor less than —I. When /=0 there is no variation
with 6, and this combined with the constancy of ® gives patterns
with complete spherical symmetry. For other values of I one has
various curves analogous to fig. 17.

This restriction to integral values of ! introduces an angular
quantisation similar to that which had previously been assumed
by Bohr. He had supposed that only those orbits occurred in
nature whose angular momentum was equal to I4/2s, where % is
Planck’s constant, and [ is any integer. Writing u for the mass
of the electron, the amount of kinetic energy associated with this
angular momentum is of course (_g:;)z / 2ur? =12h2/872ur2. This
brings us back to the question of the potential box 4 BCD of
fig. 16, which we expected to obtain by subtraction from the total
kinetic energy. If Bohr’s assumption still held, we should expect
that in the radial equation the kinetic energy (W — V) would be

reduced to (W —V = 12h2/8n%ur).

This is, in fact, the form which the Schroedinger equation (87) is
found to take, with the exception that I(I+ 1) occurs in place
of I2. This at once strongly suggests that Bohr’s original idea of
angular quantisation was very nearly correct, and that the
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which was introduced into equation (86) will play the usual réle
of an angular quantum number, while m will measure the time-
average of the projection of this angular momentum on the axis.
This view is supported by the forms of the patterns. For, recalling
- the case of linear momentum, in which we had the relation
A=h/uv, we should expect a similar relation for angular momen-
tum. And we see, in fact, that the larger the value of m or 7, the
shorter is the wave-length in figs. 17 and 22. When in Chapter v
we have considered how a flow of current is to be described in
quantum mechanics, it will be possible to confirm these ideas by
showing that to any electronic state there is to be ascribed a
continuous flow similar to the circulation of an electron in an
orbit, and proportional to /.

§ 7. Before looking into the details of any particular pattern,
we will first consider how the various series of energy levels arise.

Write V—1(+1)h2/8n2ur2=V, ...... (13).
Then equation (87) takes the form

d2F

E;z_/ﬁ':G(V,-—W) ...... (14).

The character of the F-curve depends upon the sign of (V,— W),
as in equation (7). Any region where V;< W denotes a potential
box into which F-curves may be fitted. When [ =0 the potential
energy is the original potential energy of the electron in the field
of the positive core or nucleus. It will be noticed that the question
of the exact form of this field now arises for the first time. All the
results that have been obtained so far are independent of V (r),
since V (r) does not occur in equations (82) and (83). In the
atomic problem ¥ (r) approximates to, or is equal to — e2/r.

To obtain a curve for (13) we may plot the two terms separately
and add the ordinates. When 7 is one Angstrém unit, the value
of h?/8n%ur? is 6 x 10~12 ergs, while the value of €2/r is 2-3 x 10-11
ergs. In fig. 18 the lowest curve is a plot of the Coulomb term,
while the two dotted curves are plots of the other term for I=1
and for /=2. Adding the ordinates of each of these curves to the
Coulomb energy we obtain the curves labelled P and D, which are
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similar to the curve A BCD of fig. 16, p. 27. For I=3, etc., we
shall obtain less important curves lying just above the curve D.
For large values of r all the curves become asymptotic to the axis.
Any horizontal line above the axis cuts a curve such as P once
only, and represents the energy W of a free electron. Any hori-
zontal line below the axis cuts a curve such as P twice, if at all,
and thus represents the energy W of an electron confined in the
potential box. The allowed region in space is of course obtained
by rotating about O as centre; the region where W >V is thus a
spherical shell whose width depends on W.
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By fitting solutions of (14) into the potential box labelled P,
we obtain in the usual way a set of levels—in fact, the whole
series known as the p-levels. This set of patterns will have the
same features as those of § 4. That belonging to the lowest p-level
will resemble curve a of fig. 15, with its maximum lying inside
the box P of fig. 18. For the next higher p-level the value of
¢ will (as in curve b of fig. 15) for a certain value of r inside the
box be equal to zero. Since this is true at all angles, it means
that i is zero over the whole surface of a sphere of a particular
radius. For the next higher p-level (as in curve c¢ of fig. 15) the
will be zero for two values of r inside the box, thus giving two
spherical nodal surfaces, and so on. The same remarks apply to
the potential box labelled D; the lowest d-level will have no
spherical nodal surface, and so on.
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For =0 we are left with the unmodified Coulomb spherical
box of fig. 7. In contrast to fig. 16, the nucleus is not in this case
situated in a forbidden region; there is nothing to prevent the
electron from frequently colliding with the nucleus. Yet the
Schroedinger equation gives a set of acceptable patterns, namely
those of the important s-series, which includes, as we shall see, the
ordinary ground level of the hydrogen atom. For these levels,
with = 0, there is no angular momentum; the electron moves
along any diameter, passing right through the nucleus. It will be
seen that ‘“s”’, ““p’” and ““d”’ are merely names given to the levels
with 1=0, I=1, and I =2, respectively. We have in addition less
important series for =3, 4, etc. In the next paragraph we shall
discuss both the exact Coulomb field and fields which differ
slightly from it.

To facilitate discussion, three specimen values of the energy W
have been indicated in fig. 18. In the energy range near W, a
horizontal line will cut only the lowest curve and the P-curve;
in this range only s- and p-levels will be possible. Near W,
d-levels will be possible as well. Near W, only s-levels are pos-
sible; the H-atom has only one level in this range—the lowest
level, whose pattern has already been referred to in § 5. The
ground level of every alkali atom is likewise an s-level. The first
excited level will be either the second s-level or the first p-level,
whichever happens to be the lower. The next higher level than
these will be the second p-level, the third s-level or the first
d-level, and so on. All the higher levels are crowded into the
range of energies between these levels and the limiting energy
at which the electron becomes free (the horizontal axisin fig. 18).
This limiting energy provides the usual zero from which to
measure the negative energies of the atomic levels. The negative
energy of the lowest quantised state, measured from this zero, is
of course the ionisation potential of the atom.

In the hydrogen-like atoms the positive core provides for the
valence electron a potential box which differs from — €%/rin a way
characteristic of the element. Hence for each element we have
a similar set of levels occurring at energies peculiar to the par-
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ticular atom; the ionisation potential and the energies of the
excited levels have characteristic values. The qualitative dis-

cussion of fig. 18, however, applies to all, spdf spdf
and we can see how a system of levels 0 |
arises like that shown in fig. 19, for ex- 114 3i i # +
ample, which is part of the empirical 117 |
scheme of levels which enables us to IR 2¢ ¢
account for every line in the optical 2|
spectrum of sodium. A scale of volts is
given,and everyspotrepresents anenergy
level. The lowest level is an s-level, and we
see how at higher energies the p-, d- and 4
Jf-levels are added in turn, the order being
P, then d, and then f, as we expect from
fig. 19. (The many upper levels have
been omitted from fig. 19.) 6

In the problems of §4 there was for
each allowed energy just one possible
Y-pattern. But we see here that it might happen that for a
particular type of the nuclear field we should find the first
p-level coinciding with the second s-level; we should then have
more than one -pattern for a single allowed energy. This, in fact,
does happen for the hydrogen atom itself. Not only that, but the
energies of the third s-level, the second p-level, and the first
d-level all coincide, and so on through the scheme of levels, as in
fig. 20. This systematic coincidence is a property of the exact
inverse-square field; the allowed levels given by the Schroedinger
equation coincide, in agreement with the empirical scheme of
levels, fig. 20.

In the case of the valence electron of the alkali atoms the
departure of the atomic field from the inverse-square law has the
effect, shown in fig. 19, of completely destroying this systematic
coincidence of levels possessing different values of I. It does not
however spoil the coincidence of levels with different values of m.
As mentioned above, the restrictions on the values of the quantum
number m are that it shall be integral, and neither greater than

G 3

10+

1¢

15+
Fig. 19 Fig. 20
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! nor less than —I. For p-levels, where [=1, m can have the
three values 1, 0, and — 1, and to each of these values belongs a
different i)-pattern as shown for hydrogen in fig. 10. These three
patterns all belong to the same value of the allowed energy, even
in an alkali atom. For d-levels, where I =2, m takes the values
2,1,0, —1,and —2, and there are thus five different patterns for
each level. When an atom is placed in a strong electric or mag-
netic field, the potential box for the electron is no longer quite
spherical, and the energy levels belonging to these various pat-
terns no longer coincide. The frequency of the light emitted or
absorbed by the atom is no longer the same, and hence arises the
familiar splitting of the spectrum lines in the Stark and Zeeman
effects. When the intensity of the applied field is reduced to zero,
the component levels close up again into a single level, which is
sald to be “ degenerate’’. For any value of { the * multiplicity ”’
is evidently (27 + 1). All s-levels are single,* for m can only have
the value 0.

The coincident energy levels of hydrogen are numbered up
from the bottom, 1, 2, 3, ..., as shown in fig. 20. These numbers
are known as the principal quantum numbers, and define the
energy of the levels by expression (19) in a way analogous to (8).
In this notation the lowest p-level, whose i-pattern has no
spherical nodal surface, is not called 1p, but it is called 2p because
it belongs to the level with principal quantum number n=2. In
the same way the lowest d-level is the 3d. The same notation is
carried over to levels of the alkali atoms, although the levels no
longer coincide; there is thus no such thing as a lp-level or a
2d-level.

- §8. Iftheseseries of levels were only of importance for clearing
up optical spectra, so much space would not have been devoted
to them. But, as the reader will be aware, the above classification
of levels turns out to be of the first importance for the under-
standing of atomic and molecular structure. Of considerably less
importance are the details of the patterns and energies, which

* It will be shown in §9 that when the “spin’ of the electron is taken
into account there are twice as many patterns.
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will be briefly dealt with in this section. It is only in systems with
one electron, the H atom, the Het, Lit+ ions, etc., that the
patterns can be obtained exactly.

The volume of a spherical shell of radius r and thickness dr is
4mridr, and [ R (r)]? gives the density of the electron cloud in this
shell. The probability of finding the electron at a distance from
the nucleus between r and r +dr is not [ R (r)]2d» but

47r2[R (r))2dr =4= [F (r)2dr ...... (15).
It is not surprising then that in (87) F (r) is found to satisfy a

simpler equation than R (r) itself. The forms taken by both F (r)
and R (r) are of interest (fig. 21). It is easy to see that when {=0,

leaving V;= —€?/r, a particular solution of (14)is
‘ F(ry=reT ... (16).
For differentiating (16) twice with respect to r, we find
a2 F 1 2.
W:(ﬁ—a) F ...... (17),
2,2
which is of the required form, provided that §= §%’;—— . The

bracket changes sign at a spherical boundary given by r=2a,
and this must be where W = V. An allowed value of W will there-
fore be given by (W +€2?/2a)=0. This is, in fact, the lowest level
of the hydrogen atom:

which agrees with the value of the observed ionisation potential
of the hydrogen atom, 13-53 electron-volts.
The allowed energies of the excited levels are found to be 1/4,

1/9, ..., and so on, of the ionisation potential, the general expres-
sion being 92t 1
Wn = "’""72’!5”“” ;?“"’z‘ ...... ( 19),

where 7 is the principal quantum number. When = is large, the
spacing between the levels is evidently small, and the series tends
to the familiar limit. Expression (19) shows that in a Coulomb
field the quantum number ! plays no part in determining the
allowed energies. The smallest amount of internal energy that a

3-2
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hydrogen atom can take up, i.e. the first resonance potential, is
by (19) equal to 3/4 of the ionisation potential.

To compare the patterns belonging to these various levels with
one another, consider in what regions we shall have W >V, for
the different curves of fig. 18. For the d-levels the allowed region
0bviously occurs at larger values of 7 than for the lowest p-level,
and still larger than for the 1s-level. The volume through which
theelectron cloudis spread outincreases rapidly with the quantum
number n, which agrees with our ideas of electrostatic energy.

(@) is )

(%) zp /\ (e)
3 € z I 6

(c) 6 9 3p (f)
 p— 3 3 3

Fig. 21. In curves a, b and ¢ the ordinates are proportional to R (r), and
in curves d, ¢ and f to [F (r)]2 for the same three levels, abscissae
being 7 in Angstrém units

In fig. 10 the patterns have been reduced for convenience all to

the same size, but in fig. 21 the scale of each curve is given. The

critical radius @ which occurs in (17) has the value 5:3 x 10~ cm.,
or about half an Angstrom. Expression (16) shows that for
the 1s-level the value of F (r) is a maximum at a radius r=a;
this maximum appears in curve d of fig. 21. For this level the ex-
pression for R (r) with the required normalising factor inserted is

R(r)= T’f-f_i—)% el Ll (20).
At r =0 this has the value 5 x 10 ¢cm.—%2 mentioned in § 5; it is
only at infinity that the value is zero. The difference in character
between curves b and ¢ and curve a is due to the fact that for all
levels except s-levels there is a forbidden region enclosing the
orvigin, with W < ¥,;. It is unnecessary to pursue this subject
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respectively, but with larger values of . When there are two or
more maxima the outermost is always the largest as in curve f,
indicating the presence of something analogous to the large orbit. -
Finally, a word may be added about the variation of 4 with 6.
The symmetry for =0 has already been mentioned. When /=1,
the variation is very simple, being cos9 when combined with
m=0, and —~1= sin 6 °O°

: V2 sin
0 =90°, cos =0 and gives rise to a nodal plane cutting the atom
in halves, as can be seen for the 2p-pattern in fig. 10. For m=1the

a
90°
0° 8 — 780°
b

Fig. 22
Curve a is for =3, m=1
Curve b is for I=3, m=2
same nodal plane occurs rotated through aright angle. For =2, 3,
and higher values, wehave more complicated patterns, asin fig. 22.
For any level of principal quantum number » the pattern has
always (n—1) nodal surfaces. Take for example the 3p-level.
This is the second p-level and accordingly has one spherical nodal
surface. There is also the nodal plane, mentioned above, passing
through the nucleus, making two nodal surfaces in all. The same
is true of all the levels.
As examples of the complete function B (7). ©® (9) .® (¢) we may

give the expressions for the 2s- and 2p-levels of the hydrogen
atom. They are

¢ when combined with m =1. When

25 b (2 - -’l—) e-ri2a |
2a
br
Jm-——:O —a-e"'/mcosG P eeeees (21),
2p b
lm =1 T e-t2agin @ . eid
aVv'2 /

1

Where —_— I .
4V 27303
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§9. MAGNETIC MOMENT AND ELECTRON SPIN

The model of the hydrogen atom in its normal state, given
by quantum mechanics, is so different from our previous con-
ceptions that we are forced to make a revision of our ideas as to
the magnetic properties of atoms, and in particular to a re-
interpretation of the Stern-Gerlach experiment. The ideas of the
older quantum theory may be briefly summarised as follows:

(1) One knows that any circuit carrying an electric current
behaves as a magnet when placed in a magnetic field; this is the
basis of the moving-coil galvanometer and loud-speaker. Now
an electron describing a Bohr orbit so many times per second
constitutes an electric current, and possesses an angular mo-
mentum lA/27. The value of the magnetic moment bears a definite
ratio ¢/2uc to the angular momentum. Hence any quantised
orbit has a magnetic moment whose value is an integral multiple
of eh/4muc. This quantity was known as the Bohr magneton, and
has the value 9°2x 1021 e.m.u.

(2) It was found possible to account quantitatively for the
simple Zeeman effect by assuming that when an atom was placed
in a magnetic field, the plane of the orbit could take up only cer-
tain directions with respect to the field. For the normal unexcited
hydrogen atom, for example, it was supposed that the magnetic
axis must be either parallel to the field, or anti-parallel. In an
assembly of such atoms half would set themselves one way, and
half the other.

(3) Next consider a small magnet placed in an inhomogeneous
field. If the north pole is in a stronger part of the field than the
south pole, there will be a force acting on the magnet as a whole.
If the south pole is in a stronger part of the field than the north,
there will be a force acting in the opposite direction. If then the
ideas in (2) as to the orientation of atomic magnets in a field were
correct, it should be possible to separate one half of the atoms from
the other half by passing them through an inhomogeneous field.

The experiment was successfully performed with hydrogen-like
atoms and later with hydrogen atoms from a discharge tube. A
stream of atoms was passed between the pole pieces of an electro-
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magnet in a high vacuum. The faces of the pole pieces had been
shaped to give as inhomogeneous a field as possible. When the
magnetic field was turned on, the fine stream of atoms was found
to divide into two streams with a narrow blank space between
them, as had been anticipated. Nevertheless the original inter-
pretation of this experiment must be rejected, especially as
regards atoms whose normal state is an s-state.

In the first place the hydrogen atom no longer contains a flat
electron orbit which can be oriented in the field. It must be pic-
tured as a spherically symmetrical electron cloud, devoid of
angular momentum or magnetic moment. And the same is true
of all hydrogen-like atoms in their normal state. A different origin
must therefore be found for the magnetic moment which is
undoubtedly observed in the Stern-Gerlach experiment. The
explanation is that the electron itself is a little magnet, and in
this experiment we are measuring the magnetic moment of the
electron itself; its value is that found in the Stern-Gerlach
experiment and originally assigned to the orbit, i.e. one Bohr
magneton. At the same time an angular momentum, known as

the ““spin” momentum and equal to % /4, is now assigned to the
" electron. For atomic states other than s-states, i.e. when 7 is not
zero, the resultant magnetic moment of the atom will be a vector
sum of the spin moment of the electron itself and of the moment
given by the value of [ for the atom.

Another innovation is that quantum mechanics leads one to
adopt a new language in which to describe magnetic forces. It
will have been noticed that in this book the acceleration of par-
ticles is scarcely mentioned. In quantum mechanics attention is
always directed to potential and total energies. The intensity of
a field never enters the discussion except indirectly as the slope
of a V-curve. It is quite in keeping with this point of view that
one should confine attention to magnetic energies, asking no
questions as to orientation by magnetic couples. If we place a
hydrogen atom in a magnetic field, the shape of the atomic
potential box is slightly modified. The y-pattern belonging to any
initial allowed energy no longer fits, hence the allowed energy is
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shifted by an amount proportional to the field. The magnetic
moment is the quantity which measures the change in energy.
From the Stern-Gerlach experiment on hydrogen-like atoms we
conclude that for an electron with spin in any field H there are
two allowed energies, one higher and the other lower than the
initial energy, the shift being + MH, where the magnetic
moment M has the value of one magneton.

If the electrons themselves have a magnetic moment, it looks
at first sight as if we ought to be able to perform a Stern-Gerlach
experiment with a stream of free electrons, without using atoms
as their carriers. But it turns out that the mass of the electron is
so small that we cannot obtain a sufficiently well-defined beam of
electrons, for reasons given in the next chapter. The electrons
within an atom, however, moving round the nucleus, produce a
magnetic field, and perform a kind of Stern-Gerlach experiment
upon themselves. In this internal magnetic field the spin moment
of the electron has a certain energy which is quantised and can
take either of the two values + M H. For everyset of values of the
quantum numbers =, 7, and m, we have now a pair of y-patterns
belonging to energies which (except in the case of s-states) do not
coincide. The levels thus occur in pairs, whose members may be
distinguished by means of a fourth, or spin quantum number.
In the case of s-levels, as we have seen, there is no angular motion
associated with the i-pattern, and consequently no internal
magnetic field to split the level. For s-states then the effect of spin
i8 to give two possible states of the same energy. The separation
of all other levels gives rise to spectrum lines of different fre-
quencies; this may be taken roughly as the origin of the familiar
twin sodium D lines.

This seems the most convenient point to mention the spin of
the proton. When the spin of the electron was discovered, a spin
angular momentum of A/4w was assigned to the proton also, and
this would give rise to a much smaller magnetic moment than
that of the electron. The ratio between the two was again taken

- to be e/uc, where n is the mass of the particle. Hence the magnetic
spin moment of the proton should be about 1840 times smaller
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than that of the electron ; see, however, § 3 of Chapter vir. The
discussion of electron spin will be resumed in §3 of the next
chapter.

§10. SIMPLE PROBLEMS

From this long discussion of the hydrogen-like atom it
will be seen that even an elementary treatment of the simplest
atomic problem is somewhat complex. It is worth noting that
the occurrence of several iy-patterns belonging to one value of the
energy is always found for potential boxes possessing symmetry.
For example, compare an isotropic harmonic oscillator, whose
potential energy is given by

V = (22 +y*+22),

with a harmonic oscillator, whose potential box is not spherical,
i.e. with V=ax?+ By?+y22. The former possesses the same
number of possible i)-patterns as the latter, but many of these
coincide as regards their energy; the allowed energy levels are, in
fact, still given by expression (8), p. 24, but the quantum number
7 is now the sum of three independent quantum numbers =, n,,
n,, each of which may take the values 0, 1, 2, .... To each com-
bination of n,, n, , and n, belongs a unique y-pattern. There will,
- for example, be six patterns belonging to the energy given by
N, + 1y, +n,= 2, namely

n, 1 1 0 2 0 0

7, 1 0 1 o) 2 0

n, 0 1 1 0 o0 2

When 7 is large the number of patterns for a single energy level
is approximately n?/2. The harmonic oscillator whose potential
~ box is not spherical possesses the same number of patterns but
the energies do not coincide.

Fortunately, many atomic and molecular problems may be
studied to some extent in one dimension, with results agreeing
with those obtained by the proper analysis in three dimensions.
For this purpose we need to follow up the methods introduced in
§4. In the following examples we shall consider only the lowest
allowed level of each system. We shall often make use of the
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property of a sine curve, that where the ordinate is large the slope
of the curve is small, and where the ordinate is small the curve is
steep.

(1) Compare two potential boxes of the same width but of
different depths, and contrast the y-patterns which will fit into
them. Ttis clear that the wave-length which fits into the box with
high walls (fig. 23a) is shorter than that which fits into the box
with low walls (fig. 235), since the latter needs a gentle slope at
each boundary, to join on the exponentials with a small value of %.
Now a shorter wave-length in the box means a larger momentum
and a larger kinetic energy there; hence in the former case the
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lowest allowed level will be further from the bottom of the box
than in the latter.

(2) The form of the pattern for the lowest level of the box
shown in fig. 24 follows at once. On the right, where the wall is
low, the value of & will be less than on the left, where the value of
(V — W)is greater. Hence when the portion of sine curve is fitted
In between, it must be put “out of centre”’, so that the steep
part joins up smoothly on the left, and the less steep part on
the right, as in fig. 24b; there is just one value of the energy
W for which this is possible with no node.

(3) In OPQ'T, fig. 25, we have a potential box whose -
patterns we already know; but consider what will be the patterns
for the V-curve OPQRST, where ST and PO are supposed to
extend to infinity in either direction. In the region QR the value
of (V — W) is less than in the region beyond S. Hence in the ex-
pression e~*%, k has a smaller value in the region O R than bevond -
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let these values be k, and ky, given by (8). We are of course not
allowed to have a kink in the curve where ¢—*1= changes over to
e %%, ag in fig. 25b; how can this be avoided? The portion beyond
S certainly cannot be tampered with, since » must fall to zero at
infinity. A curve must therefore be found for the region QR
which will join on smoothly; this can be obtained by using a
mixture of increasing and decreasing exponentials in this region,
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as shown in fig. 25¢. Here the curve EF represents Ce—%*:*, and
the curve GH represents De¥1* (D having a small negative
value). Adding together the ordinates of £ F and GH we obtain
the curve J L, which evidently has a steeper slope at L than the
curve EF has at F. By adjusting the values of €' and D a curve
can be obtained which joins on to the curve LM. In this way a
curve can be obtained which falls smoothly to zero at infinity for
any value of W, but only certain discrete values of W give curves
which join on to the sine curve in the potential box.
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(4) It is worth noticing that just as we obtained here a curve
which became steeper than e—%, so we can obtain a curve which
becomes less steep, or which even reverses its slope. This is shown
in fig. 26a, where D is given a small positive value, and JL is
again the sum of the curves EF and GH. If the value of D is
still smaller, 4 may fall to a negligible value for quite a long
distance, but will eventually rise again when De*® becomes
appreciable, as in fig. 265.

(8) Looking back over what we have done, we recall that a
- potential box represents an allowed region in which a particle
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may move. Now let fig. 27 represent the potential energy of a
single particle along a line which happens to pass through two
such regions, PQ and RS. The straight lines S7 and PO are
supposed to extend to infinity in either direction. In classical
mechanics the two boxes would be quite independent. If a
particle were placed in the potential box on the left, the existence
of another box at a large distance from it could not possibly affect
the motion of the particle. And if it were placed in the box on the
right, the existence of the box on the left could not be relevant
to its motion. In quantum mechanics, however, the J-pattern
belonging to any allowed energy W extends through the whole of
space. There will therefore no longer be a set of patterns for each
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box separately. Any allowed energy must be determined by the
whole V-curve including both boxes. And each -pattern must
belong to the pair of boxes conjointly. Further it is clear that
there will be a set of discrete allowed energies, as for a single box.
From S and from P there must be exponential tails extending
to infinity in either direction, and the restriction in making dy;/dx
continuous operates as in §4, so as to give quantisation.

In accordance with equation (7) there must be a portion of a
sine curve inside each potential box. And it is evident that the
type of curve mentioned in the preceding paragraph is exactly
what is needed in the intervening region QR in order to connect
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up the sine curves which we shall fit into PQ and RS. If the
barrier Q R is at all wide, the values of Y2 must fall almost to zero
in this region, but must rise again in time to join on to the sine
curve in the other box; for this the curve of fig. 26b is suitable.
If the barrier @R is low and narrow, a curve like J L of fig. 26a is
suitable. The problem is to adjust the values of ¢' and D to give
a curve which will join up smoothly everywhere.

A very important case in practice is where the boxes P and
RS are identical (for example, potential boxes provided by two
protons in the hydrogen molecular ion H,*). In this case the
system will have complete symmetry about its mid-point.
Hence the value of /2 at any point in the right-hand half must be
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the same as at the corresponding point in the left half; in par-
ticular, 2 must have the same value at R as at Q. How this can
be achieved using Ce—** + De** will be clear from fig. 28, where the
points M and N correspond to @ and R. The curve GH, repre-
senting De*?, is the mirror image of E F'; hence when the ordinates
of the curves are added together we obtain the symmetrical curve
J L, as required for joining on to the sine curves. Let the distance
QR=d, and at @ let x=0. Then at @ we have y= C + D, and the
values of C and D must be adjusted so that

D= C(Ce*a

since GM = FN = Ce~%2. A curve like J L is possible for any value
of the energy W, but there will be only one value which gives a
complete curve like that of fig. 275. ~

The important fact now emerges that, for 2 to have symmetry
about the mid-point, it is not essential that s itself shall have the
form of fig. 2756.  may have opposite signs at corresponding
points, asin fig. 27 ¢; for this too, onsquaring, gives a symmetrical
curve for ¢?; compare curve b of fig. 15. In place of the curve
JL we have J'L’ of fig. 29. Here the curve G'H’ is identical
with EF but reversed; and on adding the ordinates of the two
curves J'L’ is obtained. A curve of the type of J'L’ is possible
for any value of W, and we are led to enquire what particular

value of W will possess an acceptable pattern embodying such a
- curve. By looking at the details of the pattern we can decide
whether it will belong to the same energy as the symmetrical
pattern, to a higher energy, or to a lower energy. Comparing
figs. 28 and 29, it will be seen that the slope of the curve J'L’ at
J’ is slightly steeper than the slope of EF at £, while the slope of
J L at J is slightly less steep. These differences in slope evidently
depend on the relative value of GM or ' M to EM, and are very
small when the barrier @ R between the boxes is large.

When we come to complete the y-curve by joining a portion
of sine curve to J or J', the problem is similar to that of fig. 23
above. We see that the sine curve to be fitted on to J must be
joined slightly nearer its crest, while that for J’ must be joined
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slightly lower down, with the final result that the value of ¢ at @
is rather greater than at P (curve b, fig. 27) or else rather smaller
than at P (curve c¢), as indicated by the slanting dotted lines in
fig. 27. Into the box P we have to fit a rather smaller fraction
of a wave-length than we should if the box RS were absent, or
else (curve ¢) a rather larger fraction of a wave-length. Since the
width of the potential boxes P@ and RS is fixed in advance, it
follows that these two acceptable solutions of the Schroedinger
equation have different de Broglie wave-lengths in the potential
boxes; the A to be fitted to the J L type is a little longer than that
to be fitted to the J' L’ type. Now this difference in wave-length
means a small difference in momentum and in kinetic energy.
In other words we have a pair of energy levels near together.
The symmetrical pattern of fig. 27b evidently belongs to the
lower level of the pair, and the anti-symmetrical pattern of
curve ¢ to the upper. The energies of these twin levels lie on
either side of the energy of the lowest state belonging to one box
when the other is absent. The original ground level has become
split into two by the presence of the second box in the neighbour-
hood.This will be true of each
of the original levels. The
original first excited level, //\
whose pattern had one node {
in the box, splits into two \
levels whose patterns have :‘

the form of fig. 30. For the
same reason as before the ' ; :
anti-symmetrical  pattern \/ E E

again has the shorter de Fig. 30

Broglie wave-length and thus belongs to the upper of the pair
of levels.

In later chapters we shall have to discuss the interpretation of
these patterns, and to make use of the important fact that twin
levels diverge exponentially as the boxes are brought together,
as in fig. 31, where the energies are plotted against the distance
apart. It is clear from figs. 28 and 29 that the value of this




4  SIMPLE PROBLENS

divengence for any distance between the boxes depends upon
- the maguitude of FN compared with EM. That is to say,
a5 the boxes are hrought ogether, the
divergence beging to be important af

that distance ¢ which makes the value

of ¢ appreciable. Although, for the

sake of simuplicity, rectangular potential /2
boxes were taken in fig 27, all themain g 3L

results are quite independent of the shape of the boves; the
anti-symmetrical pattem alwags helongs to the higher level
of the pair.

2




CHAPTER 1V

§1. THE UNCERTAINTY PRINCIPLE

To obtain a better understanding of -patterns, one must
look more closely into the factors which govern their form. The
most delicate ideal observation which we can imagine is that in
which we use only one incident quantum of light. In light of
- frequency v each quantum moves with a momentum equal to
hv/c, where h is Planck’s constant and ¢ is the velocity of light.
It is the presence of this momentum which causes the recoil of
any small particle with which the quantum collides. This dis-
turbance, mentioned in Chapter 1, is unavoidable, and we should
not mind very much how large the recoil was, provided that we
could make an exact allowance for it; if we could there would be
no need to substitute patterns for definite values, for this is not
due to our ignorance of the laws of the process. When a quantum
1s scattered through an angle 8 by collision with a particle, the
recoil momentum of the latter is given by (23) below; experi-
mental studies of the Compton effect are in complete agreement
with theory on this point. The only question is, how accurately
can we measure the angle #? This leads us to examine the con-
ditions under which we may catch the scattered quantum in an
ideal ultra-microscope. _

We may attempt to measure the velocity of a particle by find-
ing how far it travels in a very short interval of time. For this
 purpose we make two observations, using one quantum for each,
incident along the x-axis, which is at right angles to the axis of
the microscope, fig. 32. If the quantum is scattered through an
angle 6 the particle acquires a momentum whose z-component is

%’f(lmcos e ... (23).
The theory of the resolving power of the microscope, developed
in the nineteenth century, supports the well-known fact that, in
order to obtain good definition and resolution, one must use as
G 4
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large an aperture as possible; for the smallest distance that can

be resolved is given by . ~

Ar=—s— L (24),

where « is the value of the aperture (the angle subtended by the

objective lens) and v the frequency of the light used for illumina,-
tion. Nowalargeapertureis just ,

what we wish to avoid. For in P
fig. 325, where the aperture has
been stopped down, any quan-
tum of light whichisobserved to
reach P is known to have come
through the smallholein the dia-
phragm D,and hence & is known
with good accuracy. But in
fig. 32a the quantum reaching P
may have travelled along any
path lying within the large cone Fig. 32

of the aperture. Since cos 8 is not greater than sin «, the value of

P

(&)

—— -

the recoil momentum may lie anywhere between _c—]i (1 —sina)and

]icli (1 +sin«). Hence the uncertainty in the momentum is

Apm=g?sm.oc  eeeeas (25).

This quantity is small only when v sin « is small. Unfortunately
by (24) when vsin« is small the uncertainty in the position is
large. We have then to compromise: the more precisely we mea,-
sure the position, the less we know about the momentum, and the
more precisely we measure the momentum, the less we know about
the location of the particle. In fact, multiplying (24) by (25), we
find that the product of the uncertainty in  and the uncertainty
in p, is of the order of Planck’s constant

AzxAp, ~h ... (26).

To get some idea of the magnitudes involved, we may evaluate
the uncertainty in thc position of an electron whose velocity is
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known within 20 per cent. to be 107 cm./sec. (corresponding to
1/40 of an electron-volt). The value of mwv is about 10—29, and thus
Apis 2 x 1021, Since h=6-5 x 10—27, we find that the uncertainty
in position is more than 300 Angstréoms. Conversely, if we knew
the position of the electron to greater accuracy, this would involve
a proportionately greater uncertainty in its velocity. For any
macroscopic particle, on the other hand, the effect will not be
noticeable. If, for example, the velocity of a mass of one milligram
is known to be 1 cm. per second with an error of one in a million,
the uncertainty in location is found to be negligibly small. This
is because no massive particle suffers an appreciable recoil from
incident radiation.

By imagining an analogous experiment, one can show that any
measurement of an energy involves the measurement of a time,
with a mutual limitation on the precision given by

AWAEL ~h e (27).

The period of vibration in a light wave is of the order of 10—15 sec.;
 if we wish to deal with times to this accuracy, it involves an un-
certainty in the energy of more than one electron-volt. Expres-
sions (26) and (27) give a quantitative measure to the ideas which
were put forward at the beginning of Chapter 11, as providing the
rawson d’étre of J-patterns. Chapter 11r, on the other hand, has
been spent in studying the solutions of equations (2) and (9)—
equations which, as we have seen, grew out of the idea of de
Broglie waves. We are led to look for connections between these
various points of view. From the discussion of (26) we should
expect the patterns giving the position of heavy particles to be
less blurred than those of lighter particles, leading to classical
behaviour in the case of massive particles. And in fact the values
of e~2%= calculated in the preceding chapter showed that the
patterns derived from the Schroedinger equation have this
property. In Note 3 of the Appendix on p. 150 it is shown that
(26) may be regarded as equivalent to equation (2).

Attention has been concentrated in Chapter 1ix on that type
of i-pattern which gives expression to the uncertainty in the

4-2
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location of a particle. But we see from (26) that the uncertainty
in its momentum is on exactly the same footing. It has already
been mentioned that the momentum of a free particle must be
dealt with by means of a y-pattern. For a particle in field-free
 space the relation (W — V)= p2%/2m holds; hence corresponding
to the pattern i (p) there is a corresponding pattern ¢ (W) for the
energy. And in general, when we have ‘‘ prepared’’ any system in
a state by means of preliminary observations, there must always
exist a pattern such that | s (W) |2 W gives the probability that
the value of the energy lies between W and W +dW . This s must
be expressed in ergs—1/2, and the total area under the ¥? curve,
fig. 33, must be made equal to unity,since the energy certainly has

-

1y
®
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Fig. 33 Fig. 34

some value. Obviously such & curve applies only to free particles
for which all energies are allowed. In this book we are more
interested in particles bound together to give a quantised system
which is stable only for certain discrete values of the energy,
Wi, Wy, Wy, .... For such a system the pattern for the energy
distribution willnot be a continuous curve, buta series of separate
points (as in fig. 34), whose ordinates a,, a,, @3, ... are such that
| @, |2 is the probability of finding the system in the nth state,
with energy W,, . These a,, are just numbers,independent of x,y, 2.
Their values will depend on the way in which the system has been
prepared, but must be such that

la, |2+ as |2+ as|2+...=1 ... (28).
§ 2. In the preceding chapter it was shown how those par-
ticular solutions of the Schroedinger equation which tend to zero
at infinity yield at once the values of the characteristic levels of

the hydrogen atom in agreement with observation. For this pur-
pose it was not necessary to have a clear idea of the meaning of
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the solutions themselves. A caution was put forward against
regarding each y-pattern as a substitute for the corresponding
Bohr orbit. To see the reason for this, let us consider for example
the ¢ belonging to the energy W, of an atom, the energy of the
so-called first excited state. Here, when i, has been properly
normalised, |, (x,y,2) |2dzdydz tells us what would be the
probability of finding the electron in a small volume at the point
z, ¥, 2, if the energy of the system were known to be W, at the
moment of observation—which would be only true if | a, |2 were
equal to unity, and all the other a, were zero. If there is uncer-
tainty as to the energy of the system at the particular moment—
and there usually is—if the atom may be in other states as well as
state 2, then the probability of finding the electron in this volume
dz dy dz will depend on contributions from the Y-patterns belong-
ing to all the states concerned. And each contribution must
obviously be weighted according to the probability of the state
to which it belongs. The fact that the required i is the sum of all
these contributions is expressed by writing

P (X, y,2) =a,fy +Qgifg+agthy+... ... (29).

Every system must be described by means of a composite i of
this kind except under special circumstances. To be able to add
together different fractions of the various y-patterns in this way,
one must have, so to speak, a ‘“standard size’’ for each pattern.
This is obtained by the normalisation, already described. The use
of normalised patterns, in conjunction with (28), is sufficient to
ensure that the composite shall be normalised.

The use of (29) can best be made clear by a simple example.
Consider again the problem of fig. 27 on p. 44, in which we had
two similar potential boxes at a considerable distance from one
another. Let us prepare the system by putting a particle into one
of the boxes, say the box on the left. It is reasonable to suppose
that there will be a very high probability of finding the particle
in the box on the left, if we look again after a short interval of
time. Let us see whether the value of 2 supports this expectation.
If we square the ordinates of curve b of fig. 27, or those of curve ¢,
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we obtain in either case a curve like that of fig. 35a, in which the
probability of finding the particle in the box on the right is just
as great as that of finding it in the box on the left. This result, at
variance with common sense, has only been obtained because we
have made the mistake of using the i-pattern belonging to a
single level to represent the system. We must at least take

R | veeees(30).

If we put @, =a,, and add the ordinates of curves b and ¢ of fig. 27
before squaring, we obtain curve b of fig. 35, in which the particle
is almost certainly in the box on the left. A composite ¢ is clearly
what is needed for describing the D
situation. In the same way, the Y
pattern describing the situation
when the particle is in the box on
the right is obtained from fig. 27
by writing a,= —a,, which gives
curve ¢ of fig. 35, and illustrates (p)
what is meant by saying that the
values of the various a,, depend on
the way in which the system has
been prepared. ,

These results point the way to ©
a better insight into the meaning
of the y-patterns which were ob- el L
tained in Chapter mx from the Fig. 35

Schroedinger equation. Although it is often convenient to think
of J-waves as existing in ordinary space like a real orbit, they are
really devices which we use to represent our knowledge about the
system. When we obtained curve a of fig. 35 by squaring either
i, alone, or s, alone, we were 4pso facto dealing with the case
where the energy is known with an uncertainty smaller than the
small separation between the twin levels; the contingent ignor-
ance in the location of the particle is automatically expressed in
fig. 35a. Conversely, if one knows which potential box the par-
ticle is in, one does not know which the energy state is. Thus the
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solutions of the Schroedinger equation (2), when used in the
form of a composite ¢, exhibit a mutual uncertainty similar to
that of (26).

If 4, and s, are normalised, it is worth enquiring what must be
the value of @ in order that the pattern may remain normalised
when, in forming a composite s, we write = a (), +14,). The area
under the 2 curve is given by

Joda = a? [ f prde+ [ pordz+2 [ g, dx] ...... (31).
Of the three integrals on the right-hand side the first two are by
the normalising condition equal to unity, and the third is easily
seen to be equal to zero. Taking the curves b and ¢ of fig. 27, it is
clear that at any point in the right-hand half the value of i, , is
negative, while at the corresponding point in the left-hand half
the product has an equal positive value; the value of this integral
is therefore zero. It follows that the correct value of @ in this case
is 1/4/2. In (30) we thus have a,?+ a,% =1, in agreement with (28).
The reader will see that by adding and subtracting the curves of
fig. 30, as was done for those of fig. 27, patterns are obtained
representing a particle in a higher level of either the box on the
left or that on the right.

When we make use of a composite i to describe an atom, we are
clearly attaching a new meaning to the phrase, if we speak of its
‘““being in an excited state’’. According to (29) there is a pro-
. bability of the atom having any of the energies W,, W,, ... as well
as W,. Since an excited state is unstable, the question arises as
to whether we can ever prepare an atom with a definite energy.
It may be pointed out that in every system of levels there is one
which is unique, namely the lowest level of all. An atom in this
stable level can leave it only by the acquisition of energy; so that,
if neither radiation nor other particle is permitted to approach
the atom, it will remain in this state indefinitely. In this case we
are not compelled to use a composite ¢, but may have all the a,,
except a, equal to zero. If we wish to study the behaviour of an
atom with greater energy, with (say) energy equal to W,, we write



56 ~ THE UNCERTAINTY PRINCIPLE

| @, |2=1, and all the other @,=0. (Strictly speaking, however,
such a level, being unstable, cannot remain for a finite interval
of time isolated from all lower levels of the system.)

§3. SYSTEMS CONTAINING MANY PARTICLES

In the problems so far considered we have always dealt with
a potential box containing a single particle. In fitting patterns
into the allowed region, we did not stop to consider whether the
box could accommodate more than one particle; nor was there
any need to do so. In the singly charged helium ion He+ there is
one electron and a vacancy for a second. And the ion Li+t+ has
vacancies for two additional electrons; but these vacancies do
not affect the levels or the patterns of the first electron bound in
the box. We must now examine what happens when a box con-
tains many particles. When to Het a second electron is added,
each electron moves in a potential box provided jointly by the
positive nucleus and the other electron. The discussion of hy-
drogen-like atoms in Chapter 1t made use of the idea of treating
a single valence electron as moving in a potential box provided
by the nucleus and the core electrons. The core of a hydrogen-like
atom is almost the same whether the valence electron is present
or absent; this is because the valence electron spends most of
its time outside the core. This is an exceptionally simple case;
usually the patterns are determined by mutual adjustment. For
example, in the helium atom the form of the electron cloud
representing one electron determines the shape of the potential
box in which the other electron moves, and hence the form of its
Y-pattern; the latter in turn determines the shape of the box in
which the first electron moves. (Another method of treating this
type of problem will be given in Chapter vi.) In an atom con-
taining &V electrons we may regard each electron as moving in
a potential box provided by the positive nucleus and (IV— 1)
electrons. *

This idea may be extended to the free electrons in a metal.
If a valence electron is free to move through the metal, and is onl v
turned back at the surfaces, the whole piece of metal forms a huge

* Sec also Note 8 on p. 156.



MANY PARTICLES 57

potential box. Consider a piece of metal containing Vmonovalent
atoms. Fixing attention on one free electron, we may consider it
to be moving in a box provided by IV positive cores and (VN — 1)
electrons. Every other valence electron is doing the same,
namely moving in a potential box whose boundaries coincide
with the surfaces of the metal. The possible -patterns are the
same for each electron, and are to be obtained as in Chapter 111.
Each i-pattern fills the whole volume of the metal uniformly, as
in fig. 12, and dies away exponentially outside the surface. The
same rules apply to a metal as to an atom with many electrons.
But the problem of the metal is somewhat clearer, because the
y-patterns belonging to high energies aredistributed through the
same volume as those of low energies, whereas in an atom the
y-patterns for low energies are concentrated close round the
nucleus.

In discussing a potential box containing many electrons, we
may keep in view both the atomic and the metallic problems. The
total energy is the sum of the energies of the individual electrons
in their quantised levels. At absolute zero temperature the
assembly of electrons in the box will settle down into the lowest
state of which it is capable. The first part of the problem is to
decide what is this state of lowest energy. In his theory of atomic
structure Bohr long ago suggested that when electrons are intro-
duced into an atomic box they occupy various levels, starting
from the bottom. If one could start with a bare atomic nucleus
with a large positive charge, and could build up an atom by
adding electrons one by one, what would happen? The first two
electrons, Bohr suggested, would go into the lowest level, the
K-level, the next eight electrons into higher levels, the L-levels,
the nexteighteen electrons into still higher levels, and so on; even
at zero temperature the electrons could not sink down into lower
levels than these. This scheme was merely an empirical idea
introduced to account for X-ray levels and for the periodic table
of the elements, in which it was very successful. When in 1926
the idea of the spinning electron had been introduced, together
with the rule that the spin guantum number could take two



58 MANY PARTICLES

values and no more, it was possible to express Bohr’s scheme by
means of the rule: In an atom no two electrons can be in identical
quantum states. In the K-level, for example, there is room for a
pair of electrons with opposite spins, but there is no room for a
third electron. The rule prevents electrons from crowding into
the same level, and is known as the Exclusion Principle. It
applies to any potential box, small or large. Even in a piece of
metal no two electrons can be in exactly the same quantum state.
The free electrons are therefore distributed through millions of
levels, only a small fraction of them being accommodated in levels
of low energy. The Exclusion Principle will be applied to atomic
structure in §4, and to the free electrons of metals in § 5.

§4. ELECTRON CONFIGURATIONS AND
THE PERIODIC TABLE

With the i-patterns of Chapter 111 at our disposal, let us re-
consider Bohr’s idea of building up a heavy atom. Starting with
a bare nucleus with a large positive charge Ze, let us bring up the
first electron. The allowed levels and the possible patterns for this
~ one electron are obtained at once from those of hydrogen; only
alterations in the constants are required, since the potential
energy occurring in the Schroedinger equation will be — Ze2/r in
place of — 2/r. Thescheme of energylevelsis thesame as thatgiven
by (19), only each level is exactly Z2 times as deep. The J-patterns
are an exact replica in miniature of the hydrogen i)-patterns,
with the radius reduced exactly Z times in scale. We are here only
interested in the ground level into which this electron will go; the
negative energy of thislevel will be exactly Z2 times the ionisation
potential of the hydrogen atom (13-53 electron-volts). For ex-
ample, when Z = 80 the value will be 86,400 e-volts. This is the
~work required to remove this electron from the nucleus when no
other electrons are present. When the 79 other electrons have
been added to build up a complete mercury atom (with atomic
number 80), the work required to remove this electron, now a
K-electron, will be somewhat less; but not very much less, for the
value is known to be 82,900 e-volts (the value obtained from the
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wave-length of the K-absorptionedge for X-rays). Since the same
is true for other elements, the energy of the K-level is nearly pro-
portional to the square of the atomic number Z: so that if the
square root of the energy is plotted against Z, we have a straight
line, the well-known Moseley diagram.

Going on now to the addition of further electrons to these
K -electronswe see that the application of the Exclusion Principle
means that the levels occupied by the various electrons will follow
the same classification as the possible excited levels for the single
electron of the hydrogen atom, namely, 1s, 2s, 2p, 3s, 3p, 3d, ete.
The principal quantum number no longer gives the value of the
energy by'(19), but it still specifies the number of spherical nodal
suriaces in the electron cloud, namely »n — 1 for s-levels, n — 2 for
each p-level, n — 3 for each d-level, and so on. The values of the
energies and the forms of the patterns are determined by the
mutual adjustment of the electrons among themselves, and can
only be determined by laborious calculation. A knowledge of the
types of the levels, however, enables us to account for the prin-
cipal physical and chemical properties of the elements in the
periodic table.

The two K-electrons, being both s-electrons, co-operate with
the nucleus in providing a spherically symmetrical positive core.
The lowest vacant level is a 2s, with a pattern whose principal
density lies outside this core. From electrostatic principles
y-patterns whose main density is relatively distant from the
nucleus should belong to high energies; and they do. The first
ionisation potential of lithium is less than half that of hydrogen,
as will be seen from the Table given at the end of this
book.

There is evidently room in the L-shell for eight electrons,
i.e. a pair of 2s-electrons with opposite spins, and three pairs
of 2p-electrons. The quantum numbers of each of the four
pairs are

n: 2 2 2 2
l: 0 1 1 1
m: 0) 1 0 -1
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The next electron must go into a level with n =3 outside
core containing ten electrons. Consequently the element

atomic number 11 is monovalent sodium, resembling lith
In discussing figs. 18 and 19, it has already been menti
that for each hydrogen-like atom the normal lowest lev:
the valence electron is an s-level. It is in fact a 3s-leve
sodium, a 4s-level for both potassium and copper, and sc¢
as will be seen from the Table at the end of the book
stating the structure of an atom, the number of electrons

Particular kind is usually expressed by an index. In the stan.
notation the structure of the nitrogen atom in its normal sta
written 1s2. 2s2. 2p3, meaning two ls-electrons, two 2s- and t
2p-electrons. In the same way the structure of sodium is

1s2.2s2 . 2p8 . 3s.

The M-shell can accommodate eighteen electrons, that is,
pairs whose quantum numbers are

l: 0 1 1 1 2 2 2 2 2
m: 0 1 o -1 2 1 O -1 -2

This accounts for the eighteen elements in the table between. 1
10 and copper 29, which has the M-shell full and one electrc
the N-shell. It will be noticed that of these eighteen elect
twelve have values of m differing from zero. But the magr
moments show no tendency to pile up and to give large valu
the heavier elements; for it will be seen that for every pa.
electrons with m =1 there is a pair with m= — 1, and for e
Pair with m =2 there is a pair with m = — 2, which cancels
their magnetic moment. In the same way the sSpin momen-
the individual electrons show no tendency to pile up. For in
closed shell they occur in pairs such that in a magnetic field
acquires energy and the other loses an equal amount of ene
by definition the magnetic moment of the pair is zero. In
beaviest elements there are more than forty such pairs ma.
no contribution to the magnetic moment of the atom.
Coming finally to the electron cloud itself, we find an ir
esting result for the contributions of p-electrons. As mentic
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on p. 37, when I=1 the variation of ® is given by cos 6 when

|
m=0, and by —=sinf when m= + 1. The contribution made

V2

to the electron cloud of the atom by any p-electron therefore
varies as cos?2f or as % sin?6. Ifin any atom there are three similar
p-electrons with values of m equal to 1, 0, and — 1, their combined
contribution to the atomic electron cloud will be spherically
symmetrical, since by (12) | ® |2 is constant, and further

$sin?60 4 cos? 0+ §sin20=1 .. ... (32).

In the tables of quantum numbers given above for the - and
M -shells, it will be seen that there are three pairs of such similar
p-electrons. The spherical symmetry of the complete L-shell
follows at once. In the M-shell there are in addition five pairs of
d-electrons. For five similar d-electrons a relation similar to (32)
holds, which leads to the complete spherical symmetry of the
M -shell. In the older quantum theory the readiness of a halogen
atom to take up an electron had been correctly ascribed to the
tendency of the incomplete shell to take up the one missing
electron. Of this quantum mechanics gives now a more detailed
picture. In the electron cloud of a
halogen atom there is a kind of
“hole’” whose shape 1s that of the |
pattern belonging to the quantum
numbers of the missing electron.
When an extraelectronis taken into
the shell, this hole is filled up,
giving' complete spherical sym-
metry.

The electron clouds representing
the various K-, L-, M-shells will of
course overlap, and there remains
the resultant cloud to be considered,
i.e. the radial factor of the density
of the complete atom with its mutually interfering electrons.
Before the introduction of quantum mechanics it was recog-

L

—
Fig. 36
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nised that this distribution of density was very important as
governing the scattering of X-rays by atoms of different
elements. In those days such a curve as fig. 36, where the
electron density is plotted against the radius, would have been
regarded as giving the time-average of well-defined electron
orbits of various shapes overlapping. Now, however, we regard
a Y-pattern as the only legitimate way of describing the electrons

in an atom.
§5. METALS

It is often said that in the absence of a current no electric
field exists inside a conductor. If this were literally true, the
potential energy of an electron would be the same everywhere
throughout the interior, and the potential box would be like
fig. 5. Inreality the positive core of every atom in the metal gives
rise to a local intense field, not unlike fig. 7. But many of the
properties of metals may be deduced by imagining these positive
charges to be smoothed out into a uniform cloud, which is almost
neutralised by a similar uniform negative cloud due to the (N —1)
electrons. That is, the potential box for any valence electron is to
be of the simple type of fig. 5, with a depth that is characteristic of
the particular element and wvaries from about 6 e-volts for a
monovalent metal to more than 12 e-volts for metals of higher
valency. The possible levels are found by the usual method of
fitting i)-patterns into the box. Those belonging to the lowest
levels will be similar to the curves of figs. 12 and 15, but will be
de Broglie waves of enormous length. The spacing between the
levels is obtained by a calculation like that given for atomic levels
on p. 24. For any macroscopic piece of crystal the intervals
between successive levels is found to be so small that there are
millions of levels within a range of one electron-volt. If, for
example, we try to fit a de Broglie wave-length of 10 Angstroms
into a potential box one millimetre in length, we see that two
million half-wave-lengths will fit in; this is therefore the
2,000,000th level of the set. We see further that the larger the
piece of metal, the closer will be the spacing of the levels. When
the problem is solved for a cube, there are for each allowed energy
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a number of possible patterns, whose energies coincide; for the
nth level there are approximately n?%/2, as in the problem on p. 41.
For a piece of metal of the same size which is not a cube, there will
be the same number of levels, but they will fail to coincide. The
scheme of levels which we obtain from this simplified model of a
metal is very similar to that at which one arrives from taking
properly into account the periodic structure of metallic crystals,
which will be considered in Chapter viIx.

To find what will be the state of the metal at absolute zero
temperature, electrons have now to be inserted into these levels
in accordance with the Exclusion Principle. Each level can
accommodate a pair of electrons with opposite spin. Com-
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paratively few electrons will go into the low energy levels; but
the number increases as n2. At the millionth level, for example,
there will be vacancies for about 102 electrons. In this way,
although there may be more than 1022 free electrons per cubic
centimetre, we can find room for them all without violating the
principle that no two electrons may be in the same quantum
state; there are, in fact, always plenty of levels to spare. We will
consider first a typical metal at zero temperature, and can
afterwards add the thermal energies for higher temperatures.
The depth of the potential box is.supposed to vary from about 6
to 18 e-volts for different elements, and the electrons fill up about
the lower two-thirds of this, leaving the rest of the box, above
a certain level, completely empty. This empty range, fig. 37,
provides the characteristic work function ¢ of the metal. The
resemblance of this quantity to a latent heat of vaporisation was
described in Chapter 1. For different elements the observed value
of ¢ ranges from 2 e-volts for the alkalis to more than 6 e-volts
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for platinum. For any particular element the value of ¢ is
independent of the size of the piece of metal considered; for,
though in a larger piece there are more electrons to put into the
box, yet this is exactly counterbalanced by the fact, mentioned
above, that the spacing-of the levels is closer in a larger potential
box. The range of energies over which the electrons are spread
depends only on their density, not on their total number. Since
the spacing of the levels is so close, we may speak of themr as if
they formed a continuous instead of a discrete set; if the number
of electrons per cubic centimetre having energies between W and
W +dW is plotted against W, the full curve of fig. 38 is obtained.
In classical mechanics one supposed that at very low tempera-
tures the kinetic energy of the free electrons would tend towards

zero like the kinetic energy of molecules of a gas. But in figs. 37
~ and 38 the average kinetic energy is very high even at absolute
zero. When the temperature is raised, some electrons from the
highest levels are thrown up above the critical level, which may
be called W, so that the latter no longer marks a clear division
between occupied and vacant levels. At temperature 7 the levels
at the critical level are half full, and above them the number of
electrons falls off as e~k ag shown by the dotted line in
fig. 38. At room temperature the fall of this exponential is so
sudden that the curve would be indistinguishable from the
straight line in fig. 38. The majority of the electrons are still
in the same levels as they were in at zero temperature. They
therefore make a much smaller contribution to the specific heat
of the metal than free electrons would do in classical theory.
Whether one regards the division between the occupied and
vacant levels as still fairly sharp depends upon the physical
process under consideration. In the photoelectric effect the
division is sufficiently sudden to give the sharp threshold
frequency, observed even above room temperature, when for
the incident light Av=¢. In thermionics, on the other hand, it is
the electrons which are thrown up above the critical level by
collisions within the metal which are responsible for the whole
effect, even in dull emitters; this will be discussed in Chapter viII.
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Any gas exerts a pressure on its boundaries and tends to expand.
If, then, there is some truth in the above method in which the
metallic electrons are treated as a monatomic gas, we ought to.
offer some explanation of the factors
which determine the specific volume of
each element. When we diminish the
volume of a piece of metal by compres- B
sion or enlarge it by stretching, in either
case we do work. If, then, the energy is
plotted against the volume, the curve
must have a minimum at the observed
specific volume, like curve C in fig. 39.
Comparing this curve with the minima, Fig. 39
in figs. 18 and 51, we might suspect that it is the resultant of
two curves such as curves 4 and B, one representing an energy
of attraction, the other an energy of repulsion.

When we diminish the volume of a piece of metal, we are
diminishing the volume of the potential box in which the elec-
trons move. And since each allowed pattern has a wave-length
A which must fit into the box, it follows that every wave-length
must be proportionately diminished when we compress the metal.
This applies to all the millions of levels. But a shorter de Broglie
ngre—length means a higher kinetic energy for the electron;
the kinetic energy of every free electron has been increased.
At the same time, when we compress the metal the average
distance between the positive and negative charges is dimin-
ished, so that the potential energy is lowered to some extent.
According to this simple model, if the electrostatic energy is
given by curve 4, and the total kinetic energy of the electrons
by curve B, the sum of the ordinates, curve (, represents the
total energy. The slope of curve B at any point represents the
pressure of the electron gas.

This brief discussion of fig. 37 has been included here only
as an introduction to the study of metals which will be given
in Chapter viii, taking into account the fact that they are
crystalline.

G S




CHAPTER V

§1. THE MOVEMENT OF PARTICLES

In Chapter 11 the aims of quantum mechanics were taken to be
the prediction of (1) the possible -patterns of a system, and (2)
the changes which would take place when we make some altera.-
tion in the system. Hitherto we have been dealing with problems
~under the first heading—the permanent structure of atoms and
metals. And we could go on now to obtain the {-patterns for
molecules and for insulators by an extension of the same methods.
It seems better, however, to postpone that work, and to devote
this chapter to a preliminary survey of the mechanics which falls
under the second heading—describing the motion of particles ix
physical changes.

A disturbance comes to an atom or molecule mostly in the
form of an electric or electromagnetic field, which has usually beena
thought of as accelerating and deflecting the electrons and atoms.
In quantum mechanics, however, the disturbance will always be
considered as a change in the potential energy V. In the presence
of the new added field the potential energy of any charged par-
ticle at a point 2, y, z will be different from what it was initially;
that is to say, there is an alteration in the V-curve. The original
Y-patterns are of course no longer appropriate to this modified
V-curve; they are replaced by patterns of different shape and this
represents a physical event.

We may conveniently distinguish two types of disturbance.
In the first type (1) the disturbance is transient, and after a short
interval the V-curve returns to its original form. Consider for
example a hydrogen atom near which a fast electrorn passes.
Initially the mutual potential energy of the atomic electronin the
field of its nucleus has the form of fig. 7. As the fast particle goes
* by it superimposes on this an intense field, thus modifying the
V-curve for perhaps 10~ of a second, after which the potentia.l
energy near the nucleus is once more that of the simple Coulom k>
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potential. When the V-curve has returned to its initial form, the
original y-patterns are once more the appropriate ones—in fact,
the only possible ones. But this does not mean that nothing has
happened. For the state of the system is given by
b=ayf +aypa+aghs+ ... '

and the various ’s may now be mixed in different proportions
according to new values of a,, a,, a5, .... If the atom or molecule
was initially in its ground level, it may have been raised to any
one of its excited states. The solutions i, i, ... of equation (9)
for a particular ¥V are obviously unchangeable, and form a kind
of alphabet of quantum mechanics; a composite i, formed from
them, changes by a rearrangement of the proportions in which
the component patterns are mixed.

(2) In the second type of disturbance the alteration in the
potential energy is not transient. With an altered V-curve the
original permanent i)-patterns no longer give us correct informa-
tion about the system. While things are in a state of flux, the
probability P (q) dq that any observable quantity has a value lying
between ¢ and ¢ +dg is no longer constant, but varies with the
time. We need a method of finding the value of dP/dt. Since we
always find P in the form | ¢ |2, it is natural to proceed by taking
d/dt of ¢ itself. The quantitative description of these two types of
physical process is a very large subject, and will only be dealt
with in Chapters 1x and x. Here we shall merely clear the ground
by considering what new principles must be introduced to
describe the motion of particles. Obviously equation (9), which
does not contain the time, can tell us nothing about movement;
we need a new equation.

§2. Although in the last two chapters it has been possible to
make good progress, only now are we confronted by the funda-
mental problems of quantum theory. For any method we may
devise for dealing with disturbed atoms must be competent to
deal with that most important type of disturbance, the absorp-
tion of light. And it was just on this absorption process that the
divergence between classical theory and the older quantum
theory was most unsatisfactory. According to classical theory the

5-2
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absorption of radiation by atoms and molecules was a resonance
process, similar to that in acoustics. Electrons in atoms were
supposed tomovewith characteristic frequencies which responded
to the same frequencies in the incident light, thus picking out the
narrow absorption lines from any continuous spectrum. Similarly,
the atoms in molecules were supposed to move to and fro with
characteristic frequencies which gave rise to absorption lines in
the infra-red. These simple conceptions were undermined when
the idea was introduced that radiation of any frequency v could
only be absorbed as a definite quantum of energy Av. To account
forabsorptionone had now to provide not a resonance mechanism,
but a mechanism for the absorption of definite amounts of energy,
without worrying very much about the frequency. This was done
by relating the frequency to the energy states W,,, W, of the
atom or molecule before and after the absorption, which is a very
different thing from relating it to the frequency of a particle
vibrating during the absorption process. It is one of the triumphs
of quantum mechanics that it has succeeded in reconciling these
two points of view.

To the y-patterns which were found to give us quantised levels
must now be welded the idea of characteristic vibrations. In
reference to fig. 15 attention was drawn to the resemblance of
those yi-curves to the forms taken up by the standing waveson a .
vibrating wire. The resemblance may be made closer if we suppose
that at every point in a y-pattern the value of i, like the displace-
ment of a wire, continually changes sign from positive to negative
v times per second. Proceeding by guess-work, we suppose that
the frequency is related to the energy W by v=W/k, as for a
Planck oscillator. Retaining for the symbol s the meaning which
it has had all along, it is customary to use a capital letter, ¥, for
the product of ¢ and its time factor (cos 27vi —¢sin 27vt), where
=1 —1 (see Note 2 of the Appendix, p. 149) Thus for the value
of ¥ at any time ¢ we write

L - ¢,e—-2mvt — ¢e—-2m, (win)t
and for the conjugate complex R (33).
gk — ¢*62wzvt
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Each pattern belonging to an allowed energy W, thus vibrates
with its own frequency W, /A. This development has no effect at
all on any interpretations of the pattern that have been made so
far, since W'¥'™* = yuf* = | 4 [2. It will be understood that there is
no reason why the i-curves of figs. 13, 15 and 27 should be drawn
inr those forms in preference to those of fig. 40. We now consider
every 1" to be oscillating between the two forms.
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§ 3. Itis worth pointing out that, without making any further
development, the vibrations of ¥ receive a neat application in
the problem of fig. 27, p. 44. A particle put into the potential box
PQ of fig. 27 will move to and fro, and will not always be turned
back near P and near Q, but will sometimes penetrate a consider-
able distance beyond the boundary, the relative probabilities
being given by the calculation on p. 19. We can hardly escape the
conclusion that sooner or later in one of these excursions it will
reach R, after which it will be found for a time in the box RS.
There is of course no certainty in this, only a probability, which
should be represented by a leaking of the probability pattern.
Let us see whether these expectations are fulfilled without intro-
ducing any new assumption. The situation when the particle is
known to be in the box on the left was obtained in fig. 35, p. 54,
by adding together equal quantities of the twin J-patterns of
fig. 27 b and ¢, which belong to the twin energies W, and W,. It
will be recalled that when this is done the patterns almost com-
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pletely cancel each other out in the box on the right. Owing to
the very small separation between W, and W, the vibration
frequencies which we ascribe to ¥, and ¥, will be very nearly but
not quite the same, namely v, = W, /k and v,= W,/h. The state of
the system is then to be represented by

Y (z,t) =+ Vy=a, e~ 2™l L qyif e~ 272l (34).
It is obvious now that something is going to happen. The fre-
quencies v, and v, being nearly equal, ¥; and ¥, begin by vibrat-
ing in phase with each other; but since the frequencies are not
identical, the synchronism as time goes on must get worse and
worse. In the box on the right the cancellation gets less and less
complete, and the value of ¥ is growing there all the time at the
expense of the box on the left, where the vibrations are getting
out of phase with each other. This is a first example of how
quantum mechanics describes a physical event. There is an
increasing probability that the particle initially placed in one
box will be found to have passed into the other.

At the same time we may notice that in going from one box
to the other in fig. 27, the particle has passed right through a
region where classically it could not go. This power of particles
of burrowing through a potential barrier where W < ¥ plays an
important part in quantum mechanics, and is known as the
““tunnel effect’. In the above problem we should anticipate
that the larger the intervening barrier between the potential
boxes the smaller would be the chance of the particle having
slipped through it in a given short interval of time. We see at once
that this expectation is realised; for the rate of leak given by
(34) is proportional to the ‘“beat frequency” of the component
vibrations, namely (v,—»,), and hence to the energy separation
(W,—W,); and the latter is proportional to e~*¢, where d is the
distance between the boxes. Hence the initial rate of leak
depends exponentially upon the width of the intervening barrier,
as we should expect, and becomes negligible at long distances.
When, on the other hand, the barrier is extremely narrow, it
ceases to present an obstacle to the particle, so that the pair of
boxes almost forms a single potential box.
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§4. While the problem just discussed has illustrated an im-
portant role which the vibrations play in quantum theory, we
may return now to the question raised in § 2 as to the possible
correspondence of the frequencies to the characteristic fre-
quencies of classical radiation theory, in spite of the fact that the
patterns themselves belong to quantised levels. Consider the
atoms in a flame, a stellar atmosphere, or a discharge tube which
is emitting light; in the language of the quantum theory a certain
fraction of these atoms is at any moment in each of the excited
states. Similarly in a molecular gas, even at room temperature,
molecules have various amounts of quantised rotational energy,
as explained on p. 7, i.e. only a fraction of them are in their
ground state. And it is not the same molecules which remain
permanently in the ground state, but the molecules are con-
tinually going from one state to another by the absorption and
emission of energy. Though it would seem at first sight as if some
molecules should be represented by ¥, belonging to the ground
level, and others by ¥',, ¥'; and so on, yet we have to admit that
in such an assembly we have no means of telling in which state
any particular atom or molecule is at any moment. There are only
certain probabilities of finding a molecule in state 1, 2, or 3, ...;
and since these probabilities are the same for every molecule, we
must not use different W-patterns to represent molecules in
different states, but a single pattern, the same for every molecule.
This will be composite, as in (29): _ ]

VY=a,¥,+a,Vs+a,¥V;+... PR (35).
For simplicity let us take first only two states, for which ¥ is
given by (34), and its conjugate complex by
Pk a1* ¢,1* e2mi(Wylh)t o az* '/’2* e2mi(Wylh)E

To obtain ¥"'¥* we multiply the two together, and obtain one of
the most important results of quantum mechanics:
W™ = a; @y * Py ™ + @ @p* Py ® + @y @ *ihy hp* €27 (T Wik}
+a ¥ ay i Koy e 2 W= WAL (36).

It will be seen that the frequencies belonging to the separate
states have disappeared from the expression, and the pattern
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possesses instead an oscillation of frequency (W, — W,)/k. This is
exactly what is needed for incorporating classical and quantum
ideas into a new theory. It enables us to use the quantum relation
in absorption and emission without renouncing the classical ideas
of resonance. However feeble the intensity of incident radiation,
an atom cannot absorb less than one quantum. The calculation
of an absorption coefficient will be given in Chapter 1x.

In the meantime we may enquire what verdict quantum
mechanics gives on a question about which the older theories
were at variance. Let the arrows in fig. 41 represent two possible
quantum transitions from the state W, with

emission of a spectrum line. It was an essential "
part of the older quantum theory that at any

‘moment an atom could emit in only one or other : 1 #
of these monochromatic lines. In classical theory, _ t
on the other hand, an electron could emit various Fig. 41

frequencies at the same time, just as the diaphragm of a gramo-
phone can emit simultaneously tones of different pitch. In the
Zeeman effect, for example, where a line has become doubled, in
the classical treatment both frequencies are emitted by the same
electron; whereas in the Bohr theory it was necessary to insist
that one line was being emitted by some of the atoms and the
other line by other atoms. To decide this point we must write
out ¥"'P'* for a state including several levels. In agreement with
classical theory many frequencies will be present in the oscilla-
tion. But this may be interpreted as meaning that there is a
definite probability of a quantum of any of these frequencies
being emitted. Modern theory intentionally leaves the mechan-
ism vague since it is not accessible to experiment.

§ 5. The original proposal to find a general expression for
oY /ot may now be carried out. Differentiating (33) with respect
to the time we obtain

o 2mW ) 21
- — —2mi(W/h)t — """
3t S W

T e (37).

W\F::??;—a—i— )
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The Schroedinger equation (2) may be written in the form
oy
W‘I"-—V‘P‘+x—é}§~=0 ...... (38),

where «=h?/87?m. Substituting (37) in (38), we obtain the
following pair of equations: |

th oW o*w

—2-7r—~—é—t'-—-VIF+K*é-x-—2—=O ...... (39);.
th OF'* ., O™*
e e (40)

Equations of this form play the same part in predicting the
behaviour of patterns as equations (2) and (9) played in predicting
the form of the patterns themselves. The remarkable fact is that
(39) contains explicitly v/ — 1, which increases the difficulty of
attaching a physical reality to the ¥-waves. But this does not
madtter, for quantum mechanics recogrises that its only object is
to predict the probable results of observations. And it becomes
increasingly clear that in order to predict the results of atomic
experiments it is unnecessary to have any detailed atomic
model. To make use of the welcome result of (36), for example, it
is not necessary to know what oscillates, nor to suppose that the
frequencies v,, v,, v3, ... have any particular values, since only
differences (v,, —v,,) are significant. Further, it would have been
natural, in introducing the vibrations, to express them by a simple
periodic factor, as ¥, =,, cos 2mv,,t; but this is useless because it
does not lead to the desired result like (36) in which (W, — W ,)/h
occurs unaccompanied by the frequency (W,,+ W,)/h. The use of
imaginary quantities is essential, and has the additional advan-
tage that when ¥ is given by (33) the value of ¥"'I"* integrated
over all space does not fluctuate, but remains equal to unity for
all values of ¢.

§6. It is presumably the uncertainty relation AWA¢ ~Fk which
is responsible for the difficulties in giving a clear description of
physical events. In all movements of particles we have to be
satisfied with a symbolic representation. For this reason the
¥ .waves for free particles have not been considered earlier in this
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book. We might have expected that the usual form of expression
in physics, A4 cos 27 (vt + 2/A), would represent a travelling plane
wave. It will be shown below, however, that we must use the

forms h=Ae*2mizh W= Je-2mivt=ah) (41).

- Here the amplitude of the wave A4 is a kind of normalising
factor. For the density of particles in the stream, or the pro-
bability of finding a particlein unitlength or in unit volume, will be

p=FY¥* =44 ... (42).
Consider first a stream of macroscopic particles flowing parallel
to the x-axis. If the number of particles crossing every section is
the same, i.e. if the current j is the same everywhere, there will be
no accumulation of particles anywhere. But if somewhere j varies

with x, the density there must be either increasing or decreasing.
Consider a small range 3z, fig. 42; if the current flowing in is

J, that flowing out will be ( J +g7—8x) . In an interval of time &¢ a

ox
quantity 2‘7 dx 8t accumulates in the region, or else there is an

equal depletion, according as the

=1 ts ’
value of 9j/0x is negative or positive. —J = :J+7ﬂ-b‘x —
In either case the density in the k- b
region changes at a rate given by Fig. 42
e 07
§=—% ...... (43),

which merely gives expression to the conservation of matter.
To apply this to ¥'-waves we need an expression for dp/0f. This
is easily obtained from equations (39) and (40). Multiply every
term in (39) by ¥'*, and every term in (40) by ¥, and subtract.
We find
¥ o¥* zh (‘I" N ale*)

v ét_-py ot 4mm ox? -V ox?

which may be written in the form

—‘P“P‘*—-——a—{——h—: (‘P‘ 9‘1}_?1}’—*)} ...... (45).

..(44),

ct ox |4mma ox ox
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Comparing (45) with (43), since ¥"¥'* corresponds to p, we see that
the expression in the large bracket ought to correspond to j5. To
illustrate this we may take first the simplest motion in field-free
space, for which there will be a constant de Broglie wave-length.
If (41) represents a uniform stream of particles, the 5 derived from
it ought to be simply the product of p and v, the density and
velocity of the stream. Taking first the negative sign in (41), and
differentiating with respect to z, we find

h o o> h (200AA* 2miA*A

ooy (1F 5% "t o ) = Tomi ( x  tTa ) -+ (46),

Azk
T mA

:p’v

since A = k/mv. The current is thus found to have the proper form.
Similarly, (41) taken with the other sign will be found to represent
a uniform flow in the opposite direction. And when s is of the form

Ae—2miaiA 4 Bermied (47),

where A and B are real, it is easily verified that (46) gives the net
flow. In the special case of B = A there will be no net current; in
fact, iy becomes simply 24 cos 27x/A, with no imaginary part, so
that there is no flow. For owing to the V' —1 in (45) we can only
obtain a real current j when the bracket in (44) and (46) is
imaginary.

In dealing with various potential boxes in previous cha,pters it
" has been pointed out that in each case a horizontal line lying
wholly above the V-curve represents the energy W of a free
particle. To such an energy there belongs a ¥-pattern which is
characteristic of the V-curve, and is to be obtained in the usual
way by inserting the particular form of ¥ into the Schroedinger
equation. There is no quantisation, all values of W giving accept-
able patterns, which are oscillatory everywhere. These patterns
are important in special problems. For example, when an electron
is ejected from an atom, its original pattern becomes replaced by
a W-pattern representing the liberated electron moving away.
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The other problems in which free motion is importa,nt are thosge
of the collisions between particles. These may be divided into two
types, according as we are interested in the fate of both particles,
or of one particle only. The latter type is naturally the easier to
deal with, and embraces such problems as the elastic scattering
of a beam of electrons by atoms; we wish to know the angular
distribution of the scattered electrons. Starting with a homo-
. geneous stream, (41) will represent a plane wave so long as the
value of (W —7V) remains constant. If, however, an atom or
molecule is introduced into the path of such a wave, the value of
(W —V) changes violently in a small region. As usual, ¥ and
its derivative must be made continuous ~at the boundary,
and this gives rise to a spherical wave spreading out in all
directions, just as a piece of refractory matter placed in a beam
of light scatters a feeble spherical wave. The square of the
amplitude of the ¥-wave spreading out in any direction will
represent the probability of the incident particle being scattered
in that direction.

In introducing the idea of theoretical patterns in Chapter 1r,
attention was drawn to the important fact that the shape of any
pattern does not depend on the number of particles which it
represents. The ¥'-waves under discussion here afford an illustra-
tion of this point. In discussing the flow of a current, it was
natural to start with a ¥-wave representing a stream containing
many similar particles. It is clear, however, that the same
uniform wave train (41) must be used for representing a single
particle moving with velocity » in field-free space. A moving
particle represented by (41) never gets any farther, for by (42)
the value of ¥'¥'* remains the same everywhere. This is because
the momentum has been given a definite value in A, and conse-
quently by the uncertainty relation (26) we have no information
where the particle is. In order that we may have some knowledge
of the position of the moving particle, a ¥ incorporating various
energies must be used, as was done for a bound particle in (30).
When for a free particle a continuous range of energies is used, as
in-fig. 33, the composite ¥ is known as a wave packet. The initial
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spread of this ¥ (z, y, z), that is, the initial accuracy in our know-
ledge of the particle’s position, will depend on how the particle
has been prepared.

In most problems we do not require to know the position of a
particle at a particular moment. In the scattering of electrons,
for example, we wish to know what will happen to an electron
which is incident with velocity »; and this incident particle is
represented by a plane monochromatic wave train. In the older
mechanics one used to say, If an electron is aimed to pass at a
distance d from the centre of an atom, it will be scattered through
a definite angle 6. Now, however, we have to recognise that we
cannot know the initial values of both » and d accurately; hence
the wave front of the monochromatic incident wave which we
use includes all values of d. By these methods the intensity of
scattering from atoms of different elements can be calculated by
introducing the appropriate forms of V (x, y, 2).

§7. Having seen how to represent moving particles, we are led
to re-examine the hydrogen atom with regard to angular momen-
tum. We wish to know whether an electron circulating round the
nucleus produces a permanent circular current j. For this purpose
we may introduce a complex amplitude into (12), as was done for
(2), by writing B= + ¢4, and so obtain

D = :_':____ *img

T

If s is any distance measured along the circumference of a circle
of radius r, we have s/r=¢. We obtain a convenient ¥-wave to
introduce into (45) if we consider an electron constrained to move
on a definite circle of radius r, writing

1}“ ( 8) - _._,:1::_ e-—i 2rvik Is/r)’
27rr
where [ is the quantum number.
We can now use (45) to find the magnitude of the electric
current and of its magnetic moment, which is the product of the
current and the area of the circuit. Writing u for the mass of the
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electron, and taking the positive sign first, we differentiate along
the circumference: -

h oY oY* h [ 7l 14
* =
4t (lF 0s ¥ os ) 47 (277'7‘2+ 2777‘2)

h
=1 oyl (49).

We thus obtain a circular flow whose value is consistent with an
angular momentum equal to l2/27w. We obtain the current in
electromagnetic units on multiplying by e/c. It is this current
which, as mentioned in Chanter 1rr, performs a kind of Stern-
Gerlach experiment on the electronic spin and causes the familiar
splitting of the electronic levels into doublets, triplets, etc. For
s-states [ =0, there is no circular current, and no splitting of the
electronic level.

The value of the magnetic moment is obtained on multiplying
this current by the area =2, with the result

h errr? eh

l47727‘—§;. c drpc’

But eh/4mpc is exactly the value of one Bohr magneton (the same
as the spin moment of the electron itself). The magnetic moment
is then either zero (when 7=0) or an integral number of Bohr
magnetons. The same is true of the projection of the magnetic
moment on the axis, given by (12). For a ¥-pattern with which
is associated an angular momentum IA/2n the resolved magnetic
moment may take any integral value from I to —! magnetons.
The plus and minus signs in (48), like those in (41), represent
electrons circulating in opposite directions. As mentioned in
Chapter 1v, when an electron with quantum number m and
another with quantum number —m are present in an atomic
level, their magnetic moments cancel each other out, so that any
complete shell is diamagnetic.

§ 8. For a particle bound in a potential box the current J must
be zero for each quantised level except in the special case of
circulation round an axis, as above. The W-curves for particles
merely moving to and fro in a potential box, as in figs. 15, 27,
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etc., represent standing waves for each allowed level. Neverthe-
less, it was shown in § 3 of this chapter that when a composite ¥
is formed, the component ¥’s get out of phase with one another,

causing the pattern to shift. If this represents the probability of
a genuine movement of the particle, one would think it ought to
possess meanwhile a real current j, in spite of the fact that for each
of the component ¥'-functions, taken separately, j is zero. To test
this we may introduce (34) into (45), taking ,, ¥,, a,, a, as all
real quantities. We find

o oY%
e Y o

(“1“25“1 ﬁ“ — Q5 _c_l%,l) (€2t ve—vi)l _ g—2mi(va—vpt)

d d ;
=10, &y (x/tl dﬁz T/ E—j) sm 27 (vo—vy)t ..., (50).

On multiplying by ¢k/47m we have a real current whose direc-
tion changes periodically. By combining two or more standing
waves in this way one can always represent a particle moving in
the desired direction during a certain interval, though at some
other time the motion is reversed. By means of such a wave
packet one can, for example, represent an electron moving
about inside an insulated piece of metal.

In the problem of fig. 13, in which V =cz everywhere, it is im-
possible, taking a particular value of W, to set up a ¥ analogous
to (41) to represent a flow parallel to the z-axis. This is what we
ought to expect; for although particles need not be reflected at
the point where 1"= W, they must be turned back somewhere;
hence the flow from right to left must be equal to the flow from
left to right, and there are only standing waves. From these a
wave packet may be formed, which will move up to the boundary
and suffer total reflection.

If, on the other hand, the V-curve 4B, instead of rising in-
definitely, turns down again somewhere, as BC in fig. 43, then
for values of W like that indicated we have a potential barrier,
where W < V, separating two allowed regions. The same situation
occurs in fig. 430; in this case we know that in the forbidden
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regiony is given by (4). Nowexpressions (46) and (49) suggest that

if a complex amplitude were introduced into (4) we should have

a steady current ﬂowing through the forbidden region. Writing
= (Ce—*= 1 {Dek) e=27,

with C and D real and substituting in (45), we obtam as the

expression for j Lh oD
—CcD L (51),

. 2m
where k is given by (5).

Suppose then that a y-wave is incident from the left on to a
fairly wide potential barrier (and nothing incident on to the
right-hand side). The amplitude of the B
wave reflected from the barrier willno w_ __ _~7 _ (a)
longer be quite equal to that of the in- c
cident wave, giving a small net current
to theright, which must also be the value (b)
of the current leaking through and W===q====
emergingontheotherside. In Chapter it
it was shown that the probability of a
particle making an excursion to a dis- \/\Af\mc_;
tance x beyond the classical boundary :
was proportional to e—2%=. It is reason- Fig. 43
able then to expect that, if d is the width of the potential barrier
in fig. 4356, the ratio of the emergent to the incident intensity
will be of the order e~2%2. The whole J-pattern must be obtained
by joining together the various pieces, as was done in figs. 25 to
29, making iy and dis/dx continuous everywhere by adjusting the
phases and the values of the constants 4, B, C, D, etc. When
this is done, it is found that for a given V-curve the emergent
current bears a definite ratio to the incident current; except when
the barrier is extremely small, this ratio is of the order e—2#4,

§9. This type of problem will be dealt with in Chapter x. Here
it seems better to conclude the chapter by bringing forward a
physical processin which a current such as (51) is important. Let
us consider the behaviour of the free electrons, when two pieces
of metal are brought near together. Since each piece of metal is
a potential box, the pair provide a pair of boxes with a potential
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barrier between, as in the problem of fig. 27, which has been
further discussed in § 3 of the present chapter. Electrons making
excursions into the forbidden region may from time to time stray
from one piece of metal into the other. If the metals are identical
the number going in one direction is equal to the number going
in the other, and nothing observable happens. If, on the other
hand, the two pieces of metal are of different elements such as
copper and zinc, possessing —— —
different characteristic work >
functions, the initial situation (@/
will be like that of fig. 44a,
where the shaded parts re- , —
present the occupied electron — d

levels. It is clear that the
higher occupied levels in A4
come opposite vacant levels Fig. 44

in B; so that any leaking of electrons through the gap from 4 to
B will not be compensated by an equal leak in the opposite
direction. The metal B therefore acquires a negative charge, and
A a positive charge, slowly or quickly according to the size of
the gap. The growth of these charges means of course the growth
of a potential difference; the V-curve in the gap acquires a slope
which depresses the potential box 4 with respect to B, as in
fig. 440. The leak from 4 to B must continue until the potential
difference is sufficient to stop it; which will occur when the
electrons in 4 and B have been exactly levelled up, fig. 44b; the
whole will then be in equilibrium.

We have here the origin of the well-known Volta contact
potential difference, which arises when any two metals are put
in contact. Volta found that the metals could be arranged in a
series such that each member became negatively charged with
respect to the preceding member in the series. His series is found
to agree with a list of the metals in the order of their work func-
tions, in so far as they have been determined by thermionic and
photoelectric methods, the value of the contact potential being
the difference between the work functions (¢, — ¢,).

G 6

(0) |-
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CHAPTER VI

§l. TWO INTERACTING PARTICLES

The type of energy diagram introduced in Chapter 1 has so far
sufficed for a simple discussion of each of the problems con-
sidered. Even when the system was in three dimensions, as in the
hydrogen atom at rest, one could still use a simple V-curve by
plotting the potential energy against the radius 7. Problems
involving the motion of two interacting particles, however,
“cannot be simplified in this way; reduction to one variable is out
of the question. Instead of an energy diagram, one needs at least
an energy map. The V-curve becomes a V-surface; and the energy
W, instead of being represented by a horizontal line, will now be
represented by a horizontal surface.

Taking a one-dimensional problem, suppose that we have a
proton and an electron free to move along a straight line. Take
any point ¢ on the line as origin, and let
A and B be the momentary positions
of the proton and electron respectively.
Any such configuration can be repre- S’
sented by a point on an x-y diagram;
let the distance of the electron from @
be z, and that of the proton be y. In
fig. 45 measure off OC equal to @B, and Df--->4------- ,
measure off OD equal to @4. Then the :
point S represents the configuration 0 c
when the electron is at B and the proton Fig. 45
at 4. In the same way every point in the z-y plane represents a
possible position for the pair of particles; and any motion of the
pair of particles is expressed by a motion of the representative
point.

Along the diagonal OP, drawn at 45° through the origin, we
have x =y everywhere. Hence for points near this diagonal the
particles are near together, and for points far from the diagonal

‘ 6-2

¢ 4 B
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the particles are far from each other. The V-surface is obtained at
once by using the z-co-ordinate to represent the potential energy .
When the particles are so far apart that their interaction is
negligible, the V-surface is a plane parallel to the plane of the
diagram. But all along the diagonal there will be in the V-surface
a permanent groove, whose uniform cross-section, taken parallel
to the z-axis, is the curve of fig. 7. (If a contour map of the
V-surface were drawn, the contour lines would all be straight
lines parallel to the diagonal.) The value of W will be represented
by a plane parallel to the plane of the diagram. For an electron
and a proton bound together the W-plane will cut the V-surface
in the groove, and the allowed region will be that portion of the
plane lying inside the groove.

If, on the other hand, we start by considering two electrons
or two protons making a head-on collision along the line Q.4 B,
their mutual energy will be one of repulsion, and the V-surface
will be exactly reversed. Along the
diagonal OP will be a permanent
ridge, whose cross-section has the
form of fig. 46. All W-planes cut the —
V-surface. In classical mechanics, Fig. 46
when the two particles collide, the representative point comes up
to this ridge and is reflected from it as the particles separate. If
the particles have a certain initial relative velocity v, classically
their mutual repulsion will prevent them on impact from coming;
closer together than a definite distance a; under the ridge is a.
forbidden region, into which the representative point cannotenter.
In quantum mechanics there is of course a substitute for this
classical boundary. Instead of a representative point we have a
W-wave, whose value will die away exponentially into the region
under the ridge—meaning that there is a small probability of the
particles approaching on impact much closer than the classical
distance. The allowed and forbidden regions are evidently not
regions of ordinary space, and the ¥-pattern cannot be pictured
as existing in ordinary space.

Hitherto we have been discussing two particles moving in




TWO INTERACTING PARTICLES 85

field-free space. At the other extreme we may consider the case
where the potential energy in the external field is very important,
for example, when it provides a potential box for the particles.
It is convenient to forget about the 0 R S (@)
mutual interaction of the particles — -

for the moment, and to reintroduce
it later. Suppose that the potential
energy of one particle along the line
@RS, fig. 47, is given by curve b. If
the charge carried by the other
particle is different, it will have a
different V-curve. But if the two
particles are identical, and both
move along the line @RS, the po-
tential energy of both will be given
by curve b. Measure off OM and
OM' equal to Q R, also ON and ON"
equal to @S. We obtain a plane V-
surface with two similar channels at
right angles, one parallel to the x-
axis, the other parallel to the y-axis,
represented in fig. 47 by the shaded
areas. At the intersection of the
two channels there is a square box, twice as deep as the original
box of curve b. If a section were taken through the V-surface
along a line such as EF, it would (in the absence of the diagonal
ridge) look like curve d. For any W-plane cutting the lower half
of curve d it is only in the square 4 BCD that W > V; when the
system has such a value of W, both particles must be bound in
the box. (For higher values of W we may have one particle free
and the other bound in the box. In what follows we shall con-
sider only the lowest values of W.) Just as in Chapter 111 we fitted
a curve i (x) into the potential box of a V-curve given by V (x),
so here we shall have to fit a -surface into the potential box
ABCD in the V-surface given by V (z,y). To represent this
Y-surface we may again use the z-co-ordinate. Outside the walls

7

%

Fig. 47
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of the box the value of s must fall in all directions exponentially
to zero at infinity. There are only certain discrete energies which
give y-surfaces without kinks. The i-surface for the lowest
allowed level will be dome-shaped in the box 4 BCD, so that any
section through the surface will look like curve a of fig. 15; when

this oscillates with its frequency v, it will alternate between this
form and the cup-shaped form whose section is fig. 405; and so
on for the higher levels.

than that discussed in Chapter 1. In fig. 8, to represent the
probability that the observed quantity lay between ¢ and g + dgq,
we used the vertical strip gz
other hand, we have a volume

under a surface. Whenever we

are observing two quantities,

vertical parallelepiped erected Oq, '/ e
on any area 8¢, .d8q, (fig. 48) ) Fig. 48

gives the probability that the value of ¢, lies in the range 3¢, and
tion of ¢ it is in this case the whole volume under the 2 surface
that must be made equal to unity, for each of the two quantities
must certainly have some value. In the problem of fig. 45 the two
and each particle must certainly be somewhere.

Reintroducing a repulsion between the two particles (elec-
trons), we shall have again a permanent ridge running along the
either be to swamp the potential box 4 BOD, or else to divide it
into two equal compartments. If the box is swamped, it means
that the mutual repulsion prevents the existence of a stable
an alkali atom can accommodate one but not two electrons.
When, however, the box 4 BCD is large enough the effect of the
ridge is to divide it into two exactly equal compartments, one

1Y g2)/? —>

On squaring, ¢? gives a probability pattern of less simple type

under the curve; here, on the
27e / &

¢; and ¢,, the volume of a
the simultaneous value of g, in the range 89,. For the normalisa-
quantities are the distances of the two particles from the origin,
diagonal of fig. 47 in the V-surface. The effect of this ridge will
system. For example the potential box provided by the core of
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in ABC, the other in ADC. Into this pair of compartments we
can fit a J-surface to represent the two electrons. In this way we
obtain a one-dimensional model of the helium atom,* with two
electrons confined in the potential box (and of the hydrogen
atomic negative ion). The important feature is that the two
compartments with the diagonal ridge between introduce the
same properties as the boxes PQ and RS of fig. 27. The -
patterns will be all either symmetrical about this diagonal, or
else anti-symmetrical.

When the problem has not been simplified by imagining the
two electrons restricted to motion along a line, both V and
are functions of six co-ordinates. We need the probability of
finding one particle in the little volume dv, at the point z,, ¥, 2,
and the other particle simultaneously in the volume dv, at the
point Z,, ¥, 2,. The -pattern will be in six-dimensional space,
and the required probability will be given by | 4 | 2dv, dv, . The sym-
metrical properties of V and s persist in essentially the same form.

An approximate method of dealing with a potential box con-
taining N electrons was mentioned in Chapter 1v. We fixed
attention on one electron, and imagined the charge of the other
(V—1) electrons to be smoothed out, thus determining the
average shape of the potential box in which the one electron
moved. In this way one obtains an approximate is-pattern for
each electron separately. On the other hand, the method just
described for the helium atom is clearly the correct one, in which
we take into account exactly the effect of one electron at x;, ¥,, 24
upon the other electron at x,, ¥,, 2,. In the lithium atom the
three electrons would have to be described by a single y-pattern
in nine dimensions. The proper treatment of the diffraction of
electrons from a crystal surface—the effect which was largely
responsible for the development of wave mechanics—is still more
complicated. The importance of the method, however, arises
from its application to the two electrons in the H, molecule, and
thence to general problems of valency bonds.

* For orthohelium and parheliurn see Mott’'s Wave Mechanics,
Chapter vI.



88

§2. DIATOMIC MOLECULES

Atoms that combine to form a molecule have usually been
regarded as held together by forces of attraction. One imagined
an atom A4 and an atom B brought together, and asked whether
the forces between them would be attractive or everywhere
repulsive. Quantum mechanics now approaches the subject from
a different point of view. We start with an atom A4 in a definite
quantised state, and an atom B in a quantised state, so that the
energy of the system is definite. We now suppose that the atoms,
initially at rest, are brought nearer together, and we ask, Is the
potential energy of the system higher or lower than the initial
energy? If it is higher we must have done work in bringing the
atoms together; we deduce the fact that
the atoms are repelling one another. On
the other hand, if the potential energy is
lower than the initial value, we detect the
presence of an attractive force. (This fix-
ing of attention on the energy is similar to
the standpoint adopted in discussing mag- :
netic moments in Chapter 111.) On bringing Fig. 49
two atoms still closer together, the attraction always changes
over somewhere to a more intense repulsion, so that the potential
energy rises again steeply, asin fig. 49, where the potential energy
is plotted against the distance apart of the atoms. Thus we obtain
a potential box, permitting the existence of a stable molecule,
the depth of the box being the work required to dissociate the
molecule.

It will be noticed that here we have come upon a type of
problem different from those which have already been treated in
this book. In each problem hitherto our V-curve was given in
advance. Here, on the other hand, we have to use the methods
of quantum mechanics to discover whether a stable system is
possible, and, if so, what is the shape of the potential box.
Empirical V-curves of the type of fig. 49 had been in use for some
time before the introduction of quantum mechanics, the con-
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stants of the curves having been deduced from molecular spectra.
There will be one curve for the molecule when the electrons are in
- their normal lowest state, and a different V-curve for each state
where the valence electrons are in an excited level. There may be
a marked difference between the curves, as shown in fig. 63, p. 136,
since an electron may have quite a different bonding action when
it is in a level of higher energy. In this chapter we shall be con-
cerned almost exclusively with the most important V-curve
belonging to the normal lowest electronic state. The interpreta-
tion of fig. 49 according to classical mechanics would have been
as follows: Drawing any horizontal line to represent W, we have
inside the box a kinetic energy (W — V). The value of the distance
d between the nuclei oscillates continually between two extreme
values, such as 4 and B, depending upon W ; for this particular
value of the vibration energy, values of d less than 4 or greater
than B are classically forbidden. In quantum mechanics there
will of course be a substitute for this classical boundary. But this
is anticipating a discussion whose proper place is much later. The
first step is to find the potential box.

§ 3. The simplest molecular system is the ionised hydrogen
molecule, H,*, consisting of two protons and one electron. We
will consider the formation of this molecular ion, starting with a
hydrogen atom in its ground state and a proton at a large dis-
tance away. The initial {s-pattern for the electron must be almost
exactly that given by (20) for the 1s-level of the H atom, since a
sufficiently distant proton can only modify it slightly. Cons’ ler,
however, what will be the potential energy along the line joining
the protons; it will be like curve « of fig. 51. The problem is that
of two identical potential boxes, which has already been solved
in one dimension in figs. 27-29. The results may be taken over
directly into three dimensions. The essential property of the
potential energy is that it is symmetrical about the centre of the
system. Taking as origin the mid-point between the protons, the
value of V' at the point (—z, —y, —2) is the same as the value at
the point (z, ¥, z). Hence the value of 42 at any point in one half
must be the same as at the corresponding point in the other. But
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for this it is not necessary that the values of i itself should be
identical, for they may have opposite signs:
5[’( —x, —Y, —2)= —‘ﬁ(x: y:z)'

In this way we obtain a set of levels with anti-symmetrical
patterns, of which we are only interested in the lowest. For this
level the value of ¢ taken along any line parallel to the axis would
look like curve ¢ of fig. 27. To obtain the forms of the patterns and
the values of the allowed energies, one would have to insert the
proper V (z,y, z) and solve the Schroedinger equation—a problem
much more complicated than that of the H atom which occupied
the greater part of Chapter 1. But the reader will have noticed
that curve b of fig. 27 is almost the same as would be obtained by
adding together the ordinates of the yi-curves of each potential
box taken separately, while curve ¢ of fig. 27 is almost the same
as would be obtained by subtracting the ordinates. It will be
clear from fig. 50 that the value of ¢ at @ is going to be rather
greater than the value at P in the symmetrical pattern, and

Fig. 50
rather less than at P in the other pattern; so the resemblance is
close. If s, (x) denotes the pattern belonging to the box P alone,
and 5 () denotes the same pattern belonging to the box RS

alone, the distance between the boxes, when both are present,
being @R, we have approximately

¢1=;/1§(¢A+¢B) and ,sb2=;-/1§<¢4-—¢3> ...... (52),

where the V2 has been inserted to preserve the normalisation.
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This similarity to the correct patterns is not an accident, but is
an example of a general principle, which is discussed in Note 6 of
the Appendix, p. 153. It holds for patterns in three dimensions,
and will give nearly the correct patterns for the problem under
discussion. Take the protons at a definite distance apart, and let
i, be the pattern for the ls-level of hydrogen with the proton on
the left taken as origin, and let i, be the same pattern round the
proton on the right. Then, when both protons are present, we
have approximately

Y, = + fig) e 2Tl Ceeees (53),

_\/- (¢'A
111'2-.-_-% (g —ihg) e~2mvat L, (54).

So long as the protons are far apart the level to which (54) belongs
is only slightly higher than the twin level of (53). In either type
of pattern the electron cloud is distributed exactly half round one
proton and half round the other. This must be reconciled with the
fact that, if we start with a hydrogen atom and a proton, the
electron is certainly attached initially to one proton or the other.
A composite ¥ like that of fig. 35 will evidently meet the case, if,
inserting the correct normalising factor, we write

\P=7= (IP‘1+IF2):

and enquire what will be the form of ¥W* at time £=0. From
(53) and (54), since i, and i, are both real, we find at time ¢

YU* =3 [ 2 +pp® + (P2 —fp°) 08 27 (vy —vy) L],

which is just 2 at time £ =0, representing the electron attached
in the 1s-level to the proton on the left. When the protons are far
apart the value of (v, —v,) is small because the separation of the
levels (W,— W,) is small, and the value of the cosine falls
extremely slowly from unity. In the same way, by taking
(¥, —Y',) one can represent the electron initially attached to the
proton on the right.

As the protons are brought nearer together, we are no longer
interested in the momentary position of the electron, but we wish
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to know accurately the energy as the separation d is made
smaller. In the first place the protons repel one another, and work
has to be done equal to their Coulomb potential €2/d, which is
plotted in the upper dotted line of fig. 51¢. At the same time the
separation of the twin electron levels increases, as in fig. 31,
until it reaches a value of several electron-volts. The method of
computing these energies will be given in Chapter 1x. When the
protons are at any distance d apart, the system will be in one
of two alternative states, whose total energies are obtained by
adding ?/d to one or other of the alterna-

tive electronic energies. \m (a)

When the latter have been calculated,
one may take in hand the programme pro- AN .
posed in the preceding section, by asking m
whether over a certain range of d the total
energy is less than when the protons were |
far apart. For the upper of the two alterna- N
tive states this will clearly not be so any- | = ~~---
where, for the total energy is everywhere —\ —
'increasing. For the lower state it will de- N
pend on whether the electronic energy falls -7
more rapidly or less rapidly than the ‘
energy of repulsion rises. Calculation for | ./
the H,* ion gives the lower dotted curve of _
fig. 51 ¢ as the energy of the lower electronic Fig. 51
level. Adding together the ordinates of the two dotted curves,
one obtains as the total energy the middle curve, which is a
potential box permitting the existence of a stable ionised hy-
drogen molecule. The most important part of the box lies between
d=0-8A. and 1-4 A,

To sum up, it is the symmetrical electronic -pattern which
leads to the stable ground state of the H,* ion. In this single
Y-pattern the electron cloud is distributed half round one proton
and half round the other. Although we started with a hydrogen
atom and a proton, the electron now belongs to the two protons
jointly. Before considering the properties of the H,* ion, we will
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first examine how to obtain the corresponding potential box for
the neutral hydrogen molecule.

§4. In the neutral H, molecule the two protons provide a pair
of identical potential boxes for each electron, exactly as in the
H,+ positive ion, fig. 51b. But since there are now two electrons
repelling one another, the considerations of §1 of this chapter
come into force. In order to avoid having to use six dimensions,
we first suppose that the electrons move along the line joining the
two protons; for this we may use an z-y diagram. Take for sim-
plicity the rectangular poten- |
tial boxes PQand RS of fig. 52, e
initially at a considerable dis-
tance apart. With any point 4
as origin,let the distance of one
electron from A4 be z, and the
distance of the other electron
from A4 be y. When we lay off S
the potentialenergy parallel to X A S\X_\&\_
the x-axis, each of the two po-
tential boxes produces in the
V-surface an infinitely long
channel, running perpendi-
cular to the z-axis. When we
lay off parallel to the y-axis the same potential energy for the
other electron, each of the boxes produces a permanent channel
perpendicular to the y-axis. The mutual repulsion of the electrons
produces the usual diagonal ridge OP. At E, where the channels
intersect, we have a potential box of twice the original depth, and
another at F. If we take a section through the V-surface along
any line such as EF,the V-curve so obtained has the symmetrical
property of fig. 27. When the protons are held far apart the
allowed levels will occur in very close pairs, the J-patterns being
symmetrical and anti-symmetrical about the diagonal. That is to
say, when the ij-surfaceis dome-shaped in the box &, it will either
be identical in the box F or else cup-shaped with exactly the
reverse form. |
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The rest of the argument runs as for the molecular ion. We
bring the protons nearer together, and notice that the splitting
of the levels increases exponentially. At the same time there is
the Coulomb energy of repulsion to be added. That the upper of
the twin levels should lead to a stable molecule is again out of the
question; the two hydrogen atoms in this state repel one another
at all distances. For the lower of the two levels the result depends
on whether the electronic energy decreases more rapidly than
the energy of repulsion rises, the total energy of the molecule
being the sum of the two. The calculation, which must be made
in six dimensions, agrees with observation in providing a curve
with a minimum, i.e. a potential box permitting the existence of
the familiar H, molecule. The depth of the box—the dissociation
potential of the molecule—is known from experiment to be 4-4
electron-volts; and the minimum of the curve occurs when the
protons are 0-76 Angstrém apart. In concluding this section,
it may be pointed out that the potential boxes of fig. 515 may be
provided by positive atomic cores instead of by protons. Thus
when we bring together two sodium atoms, each with one valence
electron, the argument of this section applies. In this way we
obtain the familiar molecules Na,, Li,, etc., which are common
in the vapour of the alkalis. To calculate the shapes of the
potential boxes for molecules containing more than two electrons
is at present impossible, but they may be deduced empirically
from observed band spectra.

§5. Having obtained the potential boxes for H, and H,*, the
next step is to consider the use to be made of them. In contrast
to the classical interpretation given in §2, we shall not in any
diatomic molecule claim to know the distance apart of the nuclei
at any moment with precision. Instead of this, we shall fit
J-patterns into the potential box, and use 2 to give the probable
separation of the nuclei. These y-patterns must not be confused
with the electronic s-patterns with which we have hitherto been
dealing.

To find these new y-curves, one cannot simply say, Let z be the
nuclear separation, and then use equation (2) to find (). For
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equation (2) contains m, the mass of the moving particle; and here
we are not dealing with one particle, but with the simultaneous
motion of both nuclei. This question is discussed in the next
chapter, where it is shown that for two particles of the same mass
equation (2) may be used as it stands, if we introduce for m half
the mass of either particle. The de Broglie wave-lengths which
we have to fit into the potential box are by (1) much shorter than
those of electrons. Looking for acceptable i-patterns for the
V-curve of fig. 49, we obtain as a by-product a set of discrete
quantised levels, as we did with electrons. The y-curve for the
lowest allowed energy W, will have no node, the next will have one
node, and so on as in fig. 15. The lowest levels are nearly equally
spaced, as in (8); but for higher levels the width of the potential
box increases rapidly and becomes infinite, so that the spacing
of the levels becomes narrower and the series tends to a limit.
The difference in energy between the lowest and the next
higher vibrational level is very important in connection with the
specific heat of the gas. Since the last century it has been a pro-
blem why the specific heat of diatomic gases is not larger than the
observed values. For the total internal energy per gram-mol at
temperature 7' a value $k7 was expected, where k is the gas
constant, namely 3 k7" as translational energy, k7" as vibrational
and k7 as rotational energy, leading to the value Z% for the
specific heat at constant volume. But the experimental value
is only $%. The reason for this becomes clear when we fit the
vibrational -patterns into the potential box, and estimate the
spacing between the lowest level and the next higher level. The
difference in energy turns out to be several times larger than the
value of k7', the magnitude of the thermal energy, at room tem-
perature. Consequently in a gas at room temperature, or even
above, nearly all the molecules are still in the lowest vibrational
level, just as the electrons are in the lowest electronic level; hence
the vibrational energy does not appear in the specific heat until
quite high temperatures are reached.
§6. In the treatment of the H,* ion in § 3 we saw the impor-
tance of the splitting of the allowed electron levels when two
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potential boxes are brought together. If the distance between thhe
potential boxes P¢) and RS of fig. 27 is diminished, the V-curve
will take the form of curve b of fig. 53, and finally, when the intex -
vening barrier { R disappears, the boxes will coalesce to give the
single box P8 of curve a. To the V-curve in all these stages thexre
will belong a set of a,lloyved levels and a set of y-patterns which
will change their shape continuously as the V-curve is altered -
At the stage shown by curve b of P S |
fig. 53, the patterns belonging to the ,,
lowest levels will have the shapes

shown in curves ¢ and d. Whenthe __ P
boxes were far apart the level to )
which curve ¢ belongs was the upper

of the twin levels into which the /\
ground level split. But now in fig. 53
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greater resemblance to the usual
Y-pattern of the first excited state (d,
with one node, of the type shown !
in fig. 15b, p. 22. In fact, when the : !
boxes coalesce to give a single box Fig. 53

P8, curve ¢ will actually become the -pattern of the first excited
level of the box, while curve d passes over into the pattern fox
- the ground level. We have thus obtained a quantitative measure
of the divergence of the levels. The lower of the twin levels haus
gone continuously down to become the ground level of the box
PS8, while the upper has become the next higher level. In the
same way, it is easy to see that the curves of fig. 30 will pass overx
into the patterns belonging to the third and fourth levels.

This suggests a new method of considering the electron levelss
of molecules and molecular ions. For example, in an H,* ion eacl
of the protons, as we have seen, provides a potential box for the
electron. We cannot in practice bring these protons together; but
if we could, their potential boxes would coalesce, and the electror
would be in the nuclear field of a positive charge 2¢; that is, we
-should have obtained an He™ ion, all of whose allowed levels we
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know very accurately, together with their-patterns. Asexplained
in Chapter 1v, the ionisation potential of He* is Z2 times the
ionisation potential of the hydrogen atom, that is, 4 x 13-5 e-volts.
When the protons are far apart the work required to remove an
electron from the system is 13-5 e-volts, the ionisation potential
of the hydrogen atom. Hence we know the total fall of the lower
dotted curve in fig. 51¢; it is 3 x 13-5 or 40-5 e-volts. The shape
of the curve can be calculated by the method to be given in
Chapter 1X, and so the normal unexcited state is determined. If,
on the other hand, we start with a proton and a hydrogen atom
with its electron in an excited state, we can trace a similar curve
connecting it with the corresponding excited level of the He* ion.
Again adding to this curve the Coulomb energy, as in fig. 51¢, we
should obtain another potential box for the H,* ion, with its
electron this time in a particular excited level.

More interesting than the H,* ion is the neutral H, molecule,
to which a similar argument will apply. Starting with the V-
surface of fig. 52, we must bring both pairs of channels together,
until finally they coalesce, giving a single box at the junction, like
ABCD of fig. 47. This illustrates the proccss which must be car-
ried out in six dimensions. If the two protons of a hydrogen
molecule could be brought together, we should find the two
electrons revolving around a positive charge 2¢; that is to say, the
electronic i-pattern would have become that of a neutral helium
atom, whose levels we know. Every level of the H, molecule is in
a sense intermediate between a level of the H atom and a level of
the helium atom. For example, the ionisation potential goes down
from 13-5 e-volts for the H atom, through 17 e-volts for the H,
molecule, to 24-5 e-volts for the He atom. And the systems must
have very similar properties, since the electronic {-patterns are
transformed continuously. In the ground state of the H atom the
electrons have no angular momentum; hence they have none in
the ground state of H, and He. The 1s-level of He accommodates
two electrons only if they have opposite spin; the spins are anti-
parallel in the ground state of H, also. The electronic J-function,
not counting spin, for this level of H, is symmetrical, as in fig. 275;

G 7
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it is also symmetrical for the corresponding level of the helium
atom.When amoleculeis formed from atoms in excited states, the
electrons will retain any angular momentum they had initially.

This resemblance of a molecule to the atom which contains the
same number of valence electrons is important because it applies
to more complicated molecules containing protons, such as the
HCI molecule. Let us compare the chlorine atom, of atomic
number 17, with the argon atom, of atomic number 18. The
chlorine atom has a nuclear charge 17¢ and 17 electrons, while the
argon atom has a nuclear charge 18¢ and 18 electrons. The ¥LCI
molecule will also have 18 electrons, with nuclear charge (17 —+ 1).
It is reasonable to suppose that the HCl molecule only differs
-from the argon atom in that one positive charge is separated from
the other 17 instead of being united into a single nucleus. Instead
of studying the union of a neutral H atom with a neutral Cl atom,
we should approach the structure of the HCl molecule by the
methods of Chapter 1v, using the Exclusion Principle for thie 18
electrons, asif we were dealing with a, single atom. This treatment,
if successfully carried out, should give for the nuclei a V-curve
- like fig. 49, allowing the existence of the HCl molecule.

The molecular axis of such a diatomic molecule, i.e. the line
passing through the nuclei, is of course not fixed in space. O the
contrary, we shall allow the proton to rotate about the chlorine
nucleus, just as in Chapter 111 we allowed the electron to rotate
about the hydrogen nucleus. In fig. 18 the original Coulomb curve
became modified by the rotation, to give other potential boxes;
so here the original V-curve will become modified by various
amounts. In no diatomic molecule does one nucleus really rotate
about the other, but both of course rotate about their common
centre of gravity. And, strictly speaking, it was incorrect in
Chapter 111 to treat the electron in the H atom as rotating round
the proton; for both really rotate about their common centre of
gravity. The whole treatment, however, becomes valid if the r
and p denote respectively the distance apart of the particles and
the ““ reduced mass™, m, m,/(m, + m,), which was already used in
classical mechanics and in Bohr’s theory.



CHAPTER VII

§ 1. INDEPENDENT OBSERVABLE QUANTITIES
Let the probabilities of the occurrence of various events be
denoted by P,, P,, Py, ...; then if these events are independent
of each other, the probability of their occurrence together is
given by their product

P=P,P,P,....

This at any rate is a theorem which is not undermined by quan-
tum mechanics, and may be applied to the kind of probabilities
in which we are interested, namely the kind which give the pro-
babilities that certain observable quantities, say, ¢, 7, s, ..., have
values lying simultaneously in particular ranges dgq, dr, ds,
In Chapter 11 it was pointed out that in any complicated system
“there are many quantities that can be measured—distances,
angles, ete.—and that, when we cannot get definite values, we
need patterns to describe all these observables. The above
theorem suggests how the state of a complex system may be
described, the only difference being that we shall use square roots
of P, expressing our probabilities in the usual form | |2. In any
special case, then, where the quantities ¢, r, s are independent of
one another, we may take the product

I ‘/’q Iqu I /8 |2d7‘ I b |2d8:

i ‘tbq . ‘l‘r . ‘/’s |2d(]d7‘d8 ...... (55).

Hence this system is to be described by a composite s which is the
product of three y-functions:

b(q,r, 8)"""/’«1‘#1"/’3 """" (56).
This ¢ may be contrasted with the composite ¢ which was ob-
tained in Chapter 1v by adding together various i-functions.
The iy, ,, ... which were added together were different functions
of the same variable, and all had the same dimensions. On the
7-2

which is equal to
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other hand, the i ¢4, which are multiplied together in (56)
are functions of different variables ¢, 7, s, and will not in
general have the same dimensions. As usual in physics, we add
together like quantities and multiply together unlike quantities.
It is obvious that, whatever dimensions ¢, r and s may have, the
quantity given by (55) is always a pure number.

The kinetic energy possessed by a complicated system at any
moment is obviously the sum of the kinetic energies possessed
by its parts; and the same is true of the potential energy. The
total energy W must be the sum of the sum of W, W,and Wy-
The use of (56) will make nonsense unless multiplying together
- y-functions is compatible with adding together energies. We see
at once that the two are made consistent by the property of
exponents, since |

O WY =i i, e 2Tyt Prt Wik}t

In earlier chapters it has not been necessary to mention these
aspects of J-patterns, because we were fixing attention, as far as
possible, on one observable quantity at a time. But in the last
chapter, in describing a diatomic molecule, we had found the
need of one i-pattern, which may be called i, to describe
electrons, and another y-pattern to express the distance apart of
the nuclei, and there is also the rotation of the molecular axis to
be dealt with. It will be best to review the whole chapter from
the beginning.

Starting in §1 with two charged particles moving along a
straight line, attention was fixed in fig. 45 on their distance from
some origin. The probability of finding one particle near a certain
point depended upon whether the other particle was at or near
that point, or not. Therefore the ¢ (x, ¥) which we were to obtain
from fig. 45 could not be derived as a product ¢, (x) i, (v7), as
the two quantities were not independent; see Note 4 of the
Appendix. If it were possible, it would clearly be to our
advantage to pick out quantities to measure which specify the
configuration, and yet are independent of each other. In the case
of two interacting particles moving in otherwise field-free space
this can be achieved by fixing attention on (@) the distance of the
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centre of gravity of the pair from some origin, and (b) the
distance apart of the particles from each other. See Note 5 of
the Appendix. For example, if in fig. 45 OD had represented
the distance of the centre of gravity from the origin, and OC
the distance apart, then the point S would have represented a
particular configuration of the pair; and all possible configura-
tions can be represented by other points S. For all points near
the y-axis, on either side of it, the value of x is small, and so the
potential ridge or groove, as the case may be, which in fig. 45
ran down the diagonal in the V-surface, now runs down the
y-axis. Motion in the y-direction represents motion of the centre
of gravity, while motion in the z-direction represents the two
particles approaching or separating. For example, if the centre of
gravity is known to be moving along a line with velocity v given
by h/mv=A (where m is the sum of the masses), we shall use

¥ = ofs (x) . Ae—2miwt =y,

In this way, by making use of (20), a moving hydrogen atom may
be represented by

k4

— A _ e—Q@miWlilh +ria* 2riy/A)

(ra )3/ )
where W includes the kinetic energy mov? of the atom. In this
case we have no information as to the momentary position of the
atom (i.e. of the centre of gravity); where we have such informa-
tion ¥ (y) must be a wave packet instead of a monochromatic
wave.

Any standing y-waves incident on and reflected from the per-
manent potential ridge in the V-surface will represent two par-
ticles colliding; from such standing waves a wave packet moving
parallel to the z-axis may also be formed. When the two particles
are in otherwise field-free space, the potential ridge has the same
cross-section everywhere; in this case there is no need to use a
V-surface, for one may obtain i () and i (y) separately from the
two corresponding V-curves. The proper V-curve for finding the
separation of the particles is clearly one in which the potential
energy is plotted against the distance r between them. And this
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is just the type of V-curve whose derivation for a molecule was
considered in figs. 49-51. As already explained, by fitting
patterns into such a potential box we obtain a function ¢ (r) for
the nuclear separation. And at the end of the last chapter we
saw the need of a i (6, ¢) to give the probability of finding the
‘molecular axis lying in any direction 6, ¢. In the absence of any
external field the nuclear separation is quite independent of the
orientation of the axis in space. Hence, when we have found s,
for the nuclear vibration and i, for the rotation of the molecule,
a composite ¢y may be obtained by multiplying the two together:

= ‘/’vib ‘/’rot .

Although we did not approach the subject from this point of
view, we see that it was in agreement with this procedure that for
the electron and proton in the hydrogen atom we obtained the

pattern as a product
R(r).0 (6).D(p).

Thus O .® gives the orientation of what may be called the atomic
axis as it rotates about the centre of gravity. The molecular
problem is in fact the same, and must be solved by means of
equations (80) to (87). A constant, C =5 (j+ 1), where j is integral,
must be introduced, leading to quantisation of the energy of
molecular rotation. The initial potential box becomes modified
by the subtraction of various amounts of rotational energy
J(j+1)A%/872u. But whereas in the H atom the reduced mass u
was almost the mass of the electron, for the nuclei of a diatomic
molecule it is of course much larger, so that the potential boxes
for various values of j are almost identical with each other and
with the original box for j=0. The result is that, when we fit
Yi-curves into each of these boxes, the 7th level of any box almost
coincides with the nth level of any other box. These small energy
differences, when we form WW* for a composite ¥, as in (36),
give rise to oscillations of very low frequency, and are responsible
for very long infra-red wave-lengths that are absorbed and

emitted when the molecule jumps from one rotational level to
another.
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In this paragraph we have shown that the behaviour of the
two nuclei in a diatomic molecule is quite similar to the be-
haviour of the two particles which form a hydrogen atom. We
have said nothing about the electrons in the molecule. The
Yo for a rotating molecule is the same as for a stationary
molecule, which has already been discussed in the last chapter.

Part of the scheme of levels for a vibrating molecule is shown
in fig. 54. The levels shown all belong to one particular electronic
level of the molecule—say the lowest electronic level. To each of
the other electronic levels will belong a similar set of vibration-
rotation levels. The range of energies covered by the diagram is
intended to be less than one e-volt, i.e. small compared with the
energies of electronic excitation. If this differ-
ence of scale is borne in mind, fig. 54 may be ,
compared with fig. 20. In either diagram the :
spots in any vertical row belong to the same :
angular quantum number, i.e. to a particular :
modified potential box. The lowest level in any ¢
vertical row has-no node, the next has one, 41 h +i !

J1234567

which becomes a spherical nodal surface, and | 3 !
so on; a change of vibration involves a change
in the number of these, while a rotational
transition leaves their number unchanged. (It | z5¢? $t
might have been asked why, if the problems
are similar, the electron in a hydrogen atom Fig. 54

does not emit vibrational and rotational spectrum lines. The
answer is that it does; only from fig. 20 it is clearly not profitable

to distinguish between the two types, because they are mixed up
together.)

[\

§2. HOMONUCLEAR MOLECULES

Diatomic molecules whose nuclei are identical are called
homonuclear. Although in fig. 52 identical potential boxes were
drawn, in order to represent H,, the identity of the boxes did not
play any part in the discussion. For consider what the V-surface
would be like if the boxes were of different width. Laying off the
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potential energy parallel to the z-axis and parallel to the y-axi-s,
we obtain two pairs of channels in each of which one channel is
wider than the other. The potential boxes at E and F now become
rectangular in plan, instead of square. But the important point.
is that they lie symmetrically with respect to the diagonal; in
fact the entire V-surface is by construction completely symmetri-
cal about the diagonal. Hence again || must be symmetrical
but ¢, may be anti-symmetrical. Whereas in the H,* ion these
symmetry properties depended on the identity of the protons,
here they depend on the identity of the two valence electrons.
Taking two particles which we label 1 and 2, consider fig. 45
once more. The point § represents the situation when, say, par-
ticle number 1 is at' 4 on the line QA B, and particle number 2 is
at B. Now the corresponding point S8’ lying on the other side of
the diagonal represents the situation when particle number 2 is
at 4 and number 1 is at B. If the particles are identical, the two
labels are meaningless, and the probabilities of the two situations
‘must be the same, since they are not distinguishable by any
experiment. We may therefore make the following remark about
any system of whose particles two are identical: Every i de-
scribing the system must be such that when we interchange the
labels of the two particles 42 remains unaltered ; but i may change
sign. As we have seen in fig. 51, the difference in energy between
symmetrical and anti-symmetrical levels is often very important.
The forces accompanying these energies were an innovation in
quantum mechanics, and the mame ““exchange forces’” has been
given to them, because they arise in situations where we suppose
identical particles to be exchanged or interchanged.
- Since the material universe is supposed

to consist mainly of electrons and protons, Q
the H atom is perhaps the only non-

nuclear stable system which does not 7] X
contain identical particles. Other ways in /

which the identity enters into molecular L

physics mustat least be considered briefly. Fig. 55

Take for example a rotating homonuclear molecule, with re-
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ference to fig. 17, and consider the projection of the molecular
axis. In fig. 55 the two nuclei have been labelled P and Q;
let ¢ be the angle which OP makes with OX at any moment; in
the diagram ¢ is about 210°. If now we interchange the labels
P and @, the angle X-OP will be 30° or 390°, i.e. (¢ + 7). We
must now recall that if ¢ is any angle, and m is any odd integer,

\ cosm (¢ + w)= —cosmd,
sinm (¢ + m) = —sinmd.

If therefore we use (48), namely ® = A cos m¢ + 1.4 sin me, we see
that for those levels for which the quantum number m is odd,
when we interchange the labels, @ changes sign, and is therefore
anti-symmetrical. On the other hand, those levels for which m is
even have a symmetrical ®, since interchanging the nuclei leaves
its sign unchanged. It can also be shown that we have symmetri-
cal and anti-symmetrical patterns according as the rotational
quantum number j is even or odd.

This property has a large and unexpected effect on the specific
heat of hydrogen. When we cool H, down towards absolute zero,
we should ordinarily expect nearly all the molecules to fall into
the lowest rotational level, i.e. with m =0. But it can be shown
that we should expect transitions from any anti-symmetrical
state to any symmetrical state to be very infrequent; and ob-
servation supports this view in various phenomena. Conse-
quently,although molecules initially in even rotational levels will
go into the level with m =0, those initially in odd levels will go
first into the lowest anti-symmetrical level, i.e. with m=1, and
will take days to change over to the lower level. Thus hydrogen
behaves like a mixture of two gases; the two forms have been
called orthohydrogen and parahydrogen. It will obviously take
more heat to warm up the H, from the level m =0 than from
m=1, so that the two forms have different specific heats, the
usual specific heat being that of the mixture. As this difference in
specific heat is accompanied by a difference in vapour pressure,
it is actually possible to separate the two forms from each
other.
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§3. Consider now the properties of a composite 4 which is a
productof twoy’s each of which has symmetry properties, such as
p=y,,. Consider a particular level for which both i, and i,
are anti-symmetrical. When we interchange the particles i,
changes sign, and also i, changes sign. The product i, i, has not
changed sign, so that the complete i for this level is symmetrical.
This may be expressed in the form 4 . 4 =.8. On the other hand,
when either i, or ¢, is anti-symmetrical, but not both, the com-
plete i is anti-symmetrical, that is, A.S=4 and S.4=A4. The
same argument will apply to a product of three y’s, the sign
following the ordinary rules of algebra.

Consider now the various excited states of a homonuclear
molecule which give rise to its band spectrum. We may leave
Yreip out of account because it is always S and so does not affect
the result. The ¢, will be S for some electronic levels and 4 for
others, while ¢, is 4 or 8§ according as the rotational quantum
number is odd or even. We should have expected, then, that in

any molecule both kinds of complete  would be represented
among the levels, namely,

S.8 S. 4
A.A}=S, A_S}:A ...... (57).

From the observed levels, however, it appears that homonuclear
molecules of different elements may be divided into two classes.
For some elements only those patterns occur in which the com-
plete s is A, while for others only those patterns occur whose
complete ) is S; by a kind of exclusion principle no molecule
possesses both kinds. This has important consequences, depend-
ing upon whether the nuclei of the molecule possess internal spin
momentum. |

It was mentioned in Chapter 11x that the proton possesses a
small spin angular momentum. In the H, molecule the spins of
the two protons will lie sometimes parallel to each other, and
sometimes anti-parallel; this has no appreciable effect on the
values of the allowed energies. The directions of the nuclear spins
in any molecule must be expressed by a factor ., which may
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or may not change sign on interchanging the nuclei. The cha-
racter of the complete s is now given by the product of three

factors
b =1he1 Prot Sl’ns .

Some atomic nuclei, such as Het, C12, 01, do not possess spin,;
and for any of these there will be no i, to be added. It is
clear now that homonuclear molecules formed from such atoms
without nuclear spin, such as common O,, will, according to
the rule given above, possess only half as many levels as a
molecule with nuclear spins. Alternate rotational levels will not
occur in nature because by (57) they give a complete s of the
wrong kind. For molecules with internal nuclear spin there is no
restriction, because i, may be combined with any i, which
is 4 or with any i, which is S, whichever is required.

Our knowledge of these molecular levels is of course obtained
from the band spectra emitted in quantum transitions. It is
observed that for molecules such as 01%0 each band is the same
as the corresponding band for an ordinary molecule, except that
every other line is missing— alternate missing lines*’. Molecules
which show this effect are found to be those whose atoms from
other evidence are believed to possess no nuclear spin; hence the
above rule has been deduced.

In parahydrogen all molecules have their nuclear spins anti-
parallel, so that these contribute nothing to the magnetic
moment. In orthohydrogen two-thirds of the molecules have
their nuclear spins parallel, and one-third anti-parallel. By
means of a Stern-Gerlach experiment on a stream of ortho-
hydrogen it should thus be possible to determine the value of
the magnetic spin moment of the proton. Frisch and Stern in
1933 obtained a value 2-5 times the expected value; i.e. it was
about 1/730 of an electronic magneton, instead of 1/1838. A
similar experiment with the heavy isotope of hydrogen gives for
the magnetic moment of the deuteron a value about one-third of
that of the proton. This difference is ascribed to the magnetic
moment of the neutron.
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§4. VALENCE BONDS

The whole discussion so far has thrown very little light on
the tundamental question as to why some atoms unite to form
ntable molecules, while others do not. The core of the problem is
obviously the existence or non-existence of a V-curve with a
minimum, like fig. 49. But is there any guiding princij_ale by which
the form of the I'-curve may be estimated? And in particular,
what ix the connection between the new methods and the
empirical rules which have been in vogue since the last century,
numiely, the rules of valeney? There must be some connection,
becanse the valency rules were satisfactory, apart from certain
mportant exceptions.

Let us hegin by asking why a helium atom and a hydrogen atom
will not combine to form a molecule HeH. Why cannot a curve
like that of fig. 49 be obtained? The electrons in a helium atom
in it ground state are both 1s-clectrons, and that in a hydrogen
atom ixalso n ls-electron. By the Exclusion Principle no system
may contain more chan two ls-electrons (with opposite spin).
When therefore we try to form an HeH molecule by bringing the
ntoms together, it is essential that one of the electrons shall be
raisedl towards a higher level, namely a 2-quantum level. We have
already seenin fig. 53 how a level may pass over gradually into a
level of higher quantum number. When such a level is occupied
by nn electron, the process is known as the ““promotion’ of the
electron, In the H, problom of fig. 52 the descending level was
enpable of accommodating the eclectrons of both combining
ntoms.  But here when we bring together a helium atom and a
hydrogen atom, there is an electron left over, which must go into
n aseending level, As far as the positive nuclei and two of the
plectrons are concerned, the process is similar to that in H,, i.e.
the repulsion of the former is counteracted by the lowering of the
level ot the latter. The question is whether the work necessary to
promote the third eleetron is sufficient to turn the scales against
the formation of a molecule. The amount by which the valence
lever] ts raised may be estimated by an argumen't like that used
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in the last chapter. If the proton and the helium nucleus did
not repel one another, we could bring them together to form a
single nucleus. Starting with a hydrogen and a helium atom, we
should finally have three electrons circulating round a positive
charge 3¢;that is, we should have a lithium atom, whose ionisation
potential is only 5 e-volts. As a result of the promotion the
valence level is more than 8 e-volts higher than it was in the
hydrogen atom. Whether H and He repel one another at all
distances can only be decided by detailed calculation. A similar
argument applies when we bring together two helium atoms in
their ground state. There are four 1s-electrons, two of which must
be promoted, leading to a repulsion.

It has already been mentioned on p. 94 that the single valence
electron in a lithium atom will behave like the electron in a
hydrogen atom. On bringing together two lithium atoms the
lower of the twin levels into which the valence level splits leads to
an attraction between the atoms. We must not, however, neglect
the fact that the atoms together contain four ls-electrons, two
of which must be promoted, as in the case of helium. We must
satisfy ourselves that the consequent repulsion is small compared
with the attraction due to the bonding action of the 2s-electron;
then we shall be justified in calling the 2s-electron the valence
electron of the atom. Now it was pointed out with regard to
fig. 31 that promotion or its converse begins to be appreciable
when the distance d between the atoms is small enough to give an
appreciable value to e~%¢; and we recall that the factor k contains
(V— W) the height of the potential barrier between the boxes.
The K-level of the lithium atom is of course a low-lying level,
about 60 volts lower than that of the 2s-electron. Hence the
factor e~%¢ which determines the promotion of the K-electrons is
negligible until d becomes very small, and hence does not inter-
fere with the formation of the observed Li, molecule, whose
normal nuclear separation 1is as great as 2°6 Angstroms. This
reasoning is applicable to low-lying levels in all atoms; we are
justified then in regarding the loosely bound electrons in an atom
as alone concerned with valency.
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But loosely bound electrons often contribute a repulsion be-
tween atoms, as we shall see in the molecules N,, NO and O, . To
deal with these atoms we may use the notation explained in
Chapter 1v. The configurations from carbon to neon are:

Carbon 1s2 . 282 2p2
Nitrogen  1s2.2s2.2p3
Oxygen 1s2.2s2 . 2p4
Fluorine 1s2%.2s2 . 2p5
Neon 1s2.2s2 . 2p8

Neon possesses a closed shell because only eight electrons are
allowed in the 2-quantum level. When, however, we bring to-
gether two nitrogen atoms, we have initially ten electrons in the
2-quantum level, namely five in each atom. Consequently two
of these electrons will clearly need to be promoted towards a
3-quantum level. The fact that a stable molecule is formed is due
to the fact that this repulsion is exceeded by the attraction due
to the bonding action of the other eight electrons. The formation
of the molecule may be described by saying that each atom con-
tributes four bonding electrons and one anti-bonding electron;
the latter cancels out one of the bonds, leaving three bonds.

In the formation of the NO molecule there are initially eleven
electrons in the 2-quantum level, three of which need to be pro-
moted. And in the formation of O, there are twelve, of which four
need to be promoted; each oxygen atom contributes four bonding
electrons and two anti-bonding electrons, leaving two bonds. We
should expect that the presence of these promoted electrons
would lead to a smaller value for both the ionisation potential
- and the energy of dissociation of O, and NO than for N 2 and
smaller still for fluorine ¥,. The observed values show that
this is so.

The molecules HF, H,0, NH, and CH, with ten electrons each.
must all have the same electron configuration as the neon atom.
Theradical CH has the same electron configuration as the nitrogen
atom. It is not surprising then that two CH radicals combine to
form acetylene C,H, just as two nitrogen atoms combine to
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form N,. In the same way the boron hydride radical BH; with
eight electrons has the same configuration as the oxygen atom,
and so has CH,. Consequently they are found only in the forms
B,H, and C,H,, corresponding to O,, while the molecule C,H,
corresponds to fluorine F,.
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CHAPTER VIII

~§1. ELECTRONS IN CRYSTALS
The potential energy of an electron along any line passing

through a positive atomic core has the form of fig. 7, while that
taken along a line passing through two identical atomic positive

- cores has the form of fig. 51 5. Now ﬂﬂ/\/\/\[\/\[\/\[\ﬂ (@)

in any crystal, such as diamond or

silver for example, there are from N VVVVVVV VN (8)

the point of view of a valence elec-
tron rows of identical positive cores UL U UL (€)

equally spaced throughout the

lattice. The V-curve will therefore |
be like curve a of fig. 56, if the line ()
taken passes through the atomic

nuclei, and like curve b, if it does

not. The essential features of the
problem may first be analysed by "]\/b\“’\»\/w (e
replacing this V-curve by the

simpler curve c. To investigate the Fig. 56

behaviour to be expected of electrons in crystals, we enquire
what will be the forms of their J-patterns belonging to various
energies W. The problem falls for analysis into two parts: (@)
where the periodic variation of curve ¢ is supposed to be repeated
ad infinitum in either direction, and (b) where an actual piece of
crystal possesses definite boundaries. We shall begin with (a), and
introduce the boundaries of the lattice later.

Taking any curve such as curve ¢, we draw as usual a hori-
zontal line to represent W; and we distinguish between a line
which lies wholly above the V-curve, and one which cuts it
repeatedly. But this distinction, usually of such fundamenta.l
significance, is found in this problem to have lost much of its
importance. This fading out of the customary division gives rise
to the most interesting features of the problem. (1) Taking first
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a W-line lying wholly above the V-curve, we shall have possible
patterns representing a flow to the right or to theleft. The kinetic
energy of the moving particle (W — V) will vary periodically, but
to any particular value of W there corresponds a definite speed
of motion through the lattice. Any y-curve for curve c is obtained
by fitting together fragments of sine curves of the two different
wave-lengths involved; the curves for the real and imaginary
parts are obtained separately. (2) Turning next to a W-line which
cuts the V-curve repeatedly, we see that there is no reason why
the y-patterns should necessarily be of a different nature from
the former. Although space is divided up into small allowed
 regions, the width of the intervening barriers is never more than

NadId
J&

Yoo V7, Lo e S S VAW, %

' Fig. 57
about 2 or 3 Angstrém units (we know this from the lattice spacing
of crystals), and such thin barriers present scarcely any obstacle
to the motion of electrons, unless the barrier is very high. The
J-patterns are to be obtained by the method of figs. 28 and 29,
adjusting the amplitudes of the fragments of sine curve and ex-
ponentials to give a continuous smooth curve. This could always
be done if we did not mind a lavish use of an increasing exponen-
tial. But of course we are restricted as usual to patterns which
remain finite everywhere. For some energies the only possible
patterns have an amplitude which goes on increasing indefinitely
in one direction (curve d) while decreasing indefinitely in the
other; these are to be rejected. In acceptable patterns the ampli-
tude may oscillate to any extent (curve e), provided that it
remains finite. An investigation shows that these two types of
patterns occur in successive zones of energy, which consequently
become alternating allowed and forbidden zones of energy. This
is illustrated in fig. 57 if we suppose that the shaded zones re-
G 8
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present energies where all patterns remain finite, while in the
intermediate zones there are no patterns representing electrons
resident in the crystal. Each crystal will possess its own cha-
racteristic zones, depending on its lattice spacing and upon the
particular form of the field provided by the positive atomic cores.
In the infinitely large crystal which we have been considering all
energies within the allowed zones are possible. For an electron
confined within a finite piece of crystal, on the other hand, the
value of s must die away exponentially from the boundaries in
all directions. As for any potential box this is only possible for
certain discrete energies. This quantisation selects from each of
the allowed zones a definite number of levels, depending upon the
size of the piece of crystal. (The i)-patterns for valence electrons
are really more complicated than curve e of fig. 56. In lithium
the pattern must have a node in the interior of every atom, since
by the Exclusion Principle only the K-electrons may have no
- node in the potential boxes. In heavier elements the L-electrons
will have one node, and the valence electrons must have two or
more in the interior of each atom.)

§2. The problem of the levels may be approached from a
different angle. Starting with the one atom, we may imagine the
row of atomsof fig. 57 to be built up by adding similar atoms one by
one (an extension of the process of building a diatomic molecule).
We find that each atom contributes its own levels to the crystal,
so that when the row contains NV atoms there are exactly N levels
in each allowed band, each level being able to accommodate two
electrons with opposite spin. When all the electrons have been
inserted into the levels in these bands, some of the bands will be
filled while those above will remain empty. We can see now the
connection between this model and the model of Chapter 1v.
The bottom of the simple potential box of fig. 37 corresponds
to the bottom of one of these allowed bands, namely that occupied
by the valence electrons, below which is a wide zone of for-
bidden energies. In lithium metal there is a gap of nearly
60 e-volts between the K-levels and the wide band occupied
by the valence electrons. With this potential barrier, nearly 60
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e-volts high, between adjacent atoms, the K-electrons are im-
mobile and may be treated as attached to particular atoms, asin
the Li, molecule. In fact, the main result of this discussion is to
show that every crystal is nothing more than a large molecule.
In Chapter vI it was emphasised that in a diatomic molecule the
valence electrons do not belong to one atom or the other, but
circulate around both cores. So here the i)-patterns for the valence
electrons are not localised round particular atoms, but extend
uniformly through the whole crystal. A standing wave such as
curve e of fig. 56 is not essentially different from the simple
de Broglie standing waves which were used for metallic electronsin
Chapter 1v. In both cases a composite ¥ may be formed from
them, representing a current j flowing at any moment through
the crystal, as explained in § 8 of Chapter v.

§3. INSULATORS AND CONDUCTORS

Very surprising at first sight is the fact that these con-
siderations must apply to insulating crystals as well as to metals.
That we are right in supposing a free flow of electrons through an
insulator to be possible is shown by the phenomenon of photo-
conductivity. Many good insulators when illuminated with light
of suitable wave-length exhibit electronic conduction, showing
that electrons may travel through the lattice. The problem is to
explain why they are good insulators in the dark. In classical
mechanics there was no difficulty, because no motion through
the interatomic regions where W <V was possible; one merely
had to say that in an insulator no electrons were free to move.
But in quantum mechanics there is a much greater resemblance
between an insulator and a metal than had previously been
supposed.

- In a crystal the electrons are normally streaming uniformly in
all directions. When a voltage is applied to a metal, some of the
electrons are accelerated in the direction of the field. Any electron
which has acquired kinetic energy in this way has jumped to a
level of slightly higher energy. Consider a crystal of an alkali
metal containing IV atoms. According to the Exclusion Principle,

8-2
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the N levels in the band containing the valence electrons can
accommodate N pairs of electrons with opposite spin, that is 2N
electrons. Since each atom possesses one valence electron only,
this band of levels will be exactly half full. The situation at zero
temperature and at room temperature is similar to fig. 38, since
the finite width of the band is not affecting the distribution.
Immediately above the occupied levels are plenty of vacant levels
into which electrons can jump when accelerated. Hence alkali
crystals must be good conductors of electricity at all tempera-
tures. It is important to recognise, however, that only a small
fraction of the valence electrons are accelerated by the field and
help to carry the current, namely those in the highest occupied
levels of the valence band. The energy that can be acquired from
the applied field is quite small, and at ordinary low temperatures
the electrons in the lower parts of the band have almost no vacant
levels to go to. Consequently, the number of conduction electrons
is much smaller than the number of valence electrons.

Going on now to the alkaline earths, we see that since each
atom possesses two valence electrons, there will be exactly enough
electrons in any crystal to fill an allowed band of levels. This at
once gives a clue to the existence of insulating crystals (in fact, at
first sight one would expect the alkaline earths to be insulators).
In all the familiar insulators () the number of electrons is such as
to exactly fill a certain number of allowed bands of levels, and
(b) the forbidden zone of energy separating these occupied levels
from the next higher vacant band is of considerable width.
Although the y-patterns of the electrons extend through the
whole crystal, it is impossible to use them for conduction. An
applied field does not accelerate the electrons because there are
no levels of slightly higher energy to which the accelerated
. electrons can jump. From applied fields of ordinary intensity

an electron cannot acquire enough energy to jump to the next
allowed band. The essential feature of an insulator then is that
the valence electrons form a closed group in the crystal.

The metallic nature of the alkaline earths depends on a pro-
perty of the system of levels which has not yet been mentioned.
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It has been pointed out that in a one-dimensional row of atoms
there are always forbidden zones separating the allowed bands,
the position and width of these zones depending upon the spacing
of the atoms. In a three-dimensional crystal the spacing between
the lattice planes is different in different directions. In a cubic
crystal, for example, the (100) planes are farther apart than
the (110) or the (111) planes. In any crystal each complete band
comprises levels representing motion in all directions. Hence it
may happen that the top of one band of levels overlaps the
bottom of the next higher band, i.e. there is no intervening zone
in which all directions of motion are forbidden. In the range of
energy where the bands overlap, the electrons will be distributed
partly among one kind of level and partly among the other, and
above them there are plenty of vacant levels. Such a crystal will
be metallic. In an insulator the allowed bands must be com-
pletely separated. &

The motion of electrons through a crystal will be unimpeded
only when the lattice is -perfect. At every temperature except
absolute zero the V-curve of fig. 56 is no longer completely regular
but is subject to distortion by the thermal vibrations of the
lattice. When a current flows through a metal the motion of the
electrons is continually being checked, and a mean free path must
be assigned to the electrons, depending on the temperature. The
energy acquired from the accelerating field is given back to the
lattice and appears as heat. The electrical resistance of metals,
which arises in this way, is small at low temperatures, and in-
creases rapidly as the temperature is raised. The presence of
impurities in a metal has the effect of increasing the resistance,
because the regularity of the periodic V-curve is thereby
diminished. In an insulator the presence of impurities has the
opposite effect, as will be explained later.

Turning next to the optical properties of crystals, we see that
the proposed scheme of levels explains why insulators are usually
transparent. The transparency and the insulating property arise
from the same cause, namely, that electron transitions are only
possible from one band of levels to the next. A pure crystal cannot
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absorb wave-lengths whose hv is less than the width of the inter-
vening zone of energy. Transparent crystals always exhibit
characteristic absorption in the ultra-violet region, as we should
expect. From the wave-lengths at which this absorption occurs
we deduce the width of the zone between the allowed levels. For
any crystal which is transparent to all visible light the gap must
be at least 3 e-volts. For those crystals which are transparent into
the Schumann region of the ultra-violet the gap must be at least
5 or 6 e-volts.

§4. Atoms present as impurities in such a crystal play an
important réle, even if present in very small quantity. For there
is no reason why the electron levels of such an atom should lie
within the allowed bands belonging to the lattice; usually they
lie in the empty zone of energy between the lattice bands. Hence
they can absorb wave-lengths other than those characteristic of
the lattice, and give to the crystal a feeble continuous absorption
spectrum. Consider the yi-pattern for an impurity level such as
A B of fig. 57 lying within an otherwise empty zone; the amplitude
of s will be large only inside the impurity atom itself. Hence the
level is localised, and an electron occupying the level cannot move
through the lattice. Yet the presence of impurities has an im-
portant effect in diminishing the insulating power of a crystal.
Imperfections in the lattice and sub-microscopic cracks will
give rise to similar localised levels even in a pure crystal.

Fig. 38 showed how in a metal at any temperature a certain
number of electrons are thrown up into higher levels. Similarly
in an insulator the effect of the thermal vibrations will be to keep
a few electrons up in the otherwise vacant band of levels above
the forbidden zone. These electrons will be accelerated by any
applied voltage, but their motion will not give any detectable
current at room temperature, because their numbers are so small;
calculation by the Boltzmann relation shows that when the width
of the forbidden zone is 2 e-volts, it is unlikely that there will be
even one such running electron in any cubic centimetre. This may
be contrasted with the behaviour of the valence electron of an
impurity atom whose valence level happens to lie just below this
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nearly empty band as AB in fig. 57; by the Boltzmann relation
the probability of the electron being jerked up into the conduction
Jevels of this nearly empty band may be many million times
greater. Hence even at room temperature a very small number
of such impurity atoms will supply enough conduction electrons
to carry a measurable current. The higher the temperature the
greater will be the number of such electrons kept in the running
- levels. And it is a well-known fact that the resistance of insulators
diminishes with increasing temperature, in contrast to that of
metals. It is now thought that the whole class of solids inter-
mediate in properties'between metals and insulators, and known
as semi-conductors, would be good insulators if they could be
obtained in a pure form. Ordinarily their conduction electrons
are supplied by impurity atoms whose valence levels lie above,
in, or just below, the empty conduction levels. And it is estab-
lished that the resistance of such substances is higher the purer
the specimen.

- In view of the band of levels through which electrons can run
freely, there is still a question to be answered. Why, when an
insulating crystal is placed between two pieces of metal, cannot
the free electrons of one metal be caused to run through the in-
sulator into the other metal? To answer this question properly
one must consider what happens when an insulating crystal is
placed in contact with a metallic crystal, before any voltage is
applied. The situation is analogous to fig. 44. Electrons from the
metal cannot make transitions to the full band of the insulator
nor to the forbidden zone of energies, so we have only to fix
attention on the metallic levels opposite to the nearly empty
running levels of the insulator. As the two crystals are first
brought together, the number of electrous in these levels of the
metal will be either greater or less than the few electrons present
in the nearly empty band. If it is less, electrons will make
transitions to the metal, charging the latter negatively, and
raising the metallic levels, until there is equilibrium. If it is
greater, a few electrons will make transitions to the crystal,
charging its surface negatively, thereby lowering the levels of
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the metal urttil the number of electrons opposite the running
. band Is as small as in the band itself. When a voltage is
‘applied these electrons may stream through the insulator, but
.they are not more plentiful than the initial running electrons of
3 *‘ct*qlator Most of the conduction electrons of the metal are
gMay below the empty running levels of the insulator, and

‘no mechanism for raising them.
. Returning to the row of atoms of fig. 57, consider the
potentlal energy of the last atom at the right-hand end. If we
;Xsh the atom to the left, there is an intense repulsion. If we pull

the atom to the right, there is an attraction which falls off as the
distance increases. The V-curve for this atom is in fact like fig. 49.
The work required to detach an atom from a crystal surface is
the sublimation energy, corresponding to the dissociation energy
of a molecule. In the case of a metallic crystal we may detach
instead a positive atomic core, leaving behind N electrons and
N —1 cores; for this there will be another V-curve like fig. 49.
There will be a set of vibration levels for the V-curve, as for a
molecule.

Still fixing attention on the last atom at the right-hand end of
the row, let us ask to what extent the situation would be different
if this one atom belonged to a different element, i.e. if we had a,
foreign atom adsorbed on to the surface of a metal. If the
original crystal is just a super-molecule, the final state is merely
a super-molecule containing another atom. The V-curve for the
electrons will still be like fig. 57,except that () the mean distance
- of the adsorbed atom from its neighbour may be different, and
(b) the internal field provided by its atomic core may be different.
When we determine the shapes of the electronic i-patterns
belonging to this V-curve, the amplitude which  has at this
end of the row may be greater than before for some energies,
and less than before for other energies. When we have a
monatomic layer of foreign atoms adsorbed on to a metal
surface, the total density of the electron cloud may be less than
normal in the adsorbed layer, or greater than normal. When it
is less, we shall find at the surface an electrical double layer,
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positive outwards; when it is greater, we shall have a double
.layer, negative outwards.

When an electric charge is conveyed through a double layer,
work is done or else energy is liberated: i.e. there is an additional
step up or down in the V-curve, as in curves
a and ¢ of fig. 58. For an electron at a metal ——
surface on which a layer is adsorbed, curves a
and ¢ may be combined with the V-curve of
fig. 37. Thus we obtain curve b when the layer
is negative outwards; the value of the work
function for electrons is effectively increased.
We should expect the position of the photo-
electric threshold to be affected by the
presence of adsorbed atoms. Both the photo-
electric and thermionic effects are in fact Fig. 58
extremely sensitive to contamination of the surface. It is found
by experiment that oxygen adsorbed on to a surface of tungsten
metal raises the work function from 4-4 e-volts to more than
8 e-volts. On the other hand, when the double layer is positive
outwards, the work function is reduced. In curve d we have a
narrow potential barrier through which the ¥'-wave can leak.
It is in this way that the filaments of dull-emitter valves emit a
large thermionic current at a fairly low temperature.
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CHAPTER IX

§ 1. PERTURBATION THEORY

Starting once more with a charged particle moving in a
potential box, for which we know the values of the allowed
~ energies, W,, W,, W,, ..., suppose we make some permanent
alteration in the electrostatic field in a region near or including
the box. How will the values of the allowed energies be altered ?
To clear the ground, there are two simple cases which can be
disposed of. (1) Suppose that the whole V-curve containing the
potential box is raised or lowered by a uniform amount %,
relative to our zero of energy. The allowed values of W will all
be raised or lowered by an equal amount %, since the acceptable
Y-patterns depend only on the value of (W —¥). (2) At the other
~ extreme suppose that the alterations of the V-curve were made
in a region throughout which the value of one or more of the ’s
were zero. The allowed energies belonging to these i/’s would be
unaffected, Strictly speaking, neither of these cases can be exactly
realised, since every y-pattern occupies the whole of space. But
we can say what comes to the same thing, that if the alteration in
V is made in a region where the value of any i is negligibly small,
the modification of the allowed energy to which this pattern
belongs will' be negligible. We can lay it down then as a first
obvious principle (@) that in the following discussion only regions
where the value of ¢ is appreciable will be taken into account.
And, returning to the first problem, we can say in case (1) that if
the uniform alteration %2 embraces all but a negligible fraction of
any pattern, the change in the allowed energy will be almost
exactly equal to 2.

The supposition, made above, that the alteration % should be
uniform throughout a certain region is of course highly artificial.
It may be used for illustrating the principles, just as we have often
used a potential box of artificial shape, but in practice the altera-
tion will always vary from point to point. To the original potential
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energy V (z,y,2)is added @ (z,y, z), so that the resultant potential
energy is (V+%). Often the effect of the alteration may be to
raise the V-curve in some places and to depress it in others. On
the other hand, the alteration may be everywhere of the same sign,
varying in magnitude from point to point. At any rate we may
say that if in the regions given by (a) as relevant the alteration
in V is everywhere positive, the shift of every level W, will be
positive; and if in the relevant regions % is everywhere negative,
the shift of every W, will be negative. This agrees with what we
already know of allowed energies. We know, for example, that
any change which makes a potential box narrower will raise all
the levels, while any change which makes the box wider will
. lower them.

Having cleared the ground in this way, the next step will be
more easily made by considering an actual example. Suppose
that the alteration in V is due to the arrival of a free proton
which was initially absent. The alteration, being — ¢2/r, is every-
where negative. It extends through the whole of space, but is
negligibly small outside a certain spherical volume. We may lay
it down then as a second obvious principle () that only regions
where the value of 9 is appreciable will be taken into considera-
tion in determining the shift of the allowed energies W,. Com-
bining this idea with (a) we are led to what may be called the
Principle of Overlapping, which plays many different réles in
quantum mechanics, as explained below. Every region where
¥, and 9 appreciably overlap contributes to the shift in the
corresponding W, . The contribution made by an element of
volume dx dy dz depends upon the value which ¢/ has, and which
the normalised | i, |2 has in that volume. The shift in the allowed
energy is obtained by integrating over all space. If W, is the
new value of W, the shift is to a first approximation

W, —W, =[], |2dv = [, Db, *dv  ...... (58).

The derivation of (58) is given in Note 7 of the Appendix. It will
be noticed that in the case of complete uniform overlapping this
leads by (11) to the result of case (1) given above.
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A simple example of incomplete overlapping is given in fig. 59
for the sake of illustration. Let curve a be the initial V-curve, and
let curve ¢ be the pattern belonging to the lowest level of thfz box.
Now let the potential energy be modified by the application of
curve b; the alteration is to be zero except in the range P, where
it is equal to %; the effect is just to deepen the potential box by
an amount %/. All the levels will be lowered, but since the altera-
- tion overlaps only the central portion of each pattern, t})fe lowe%'-
ing of each level should be proportionately less than %/ if (58) is
correct. Since the modified potential box has higher walls, the
discussion of fig. 23 on p. 42 is sufficient to verify the conclusion
without further comment.
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The usefulness of (58) becomes evident when we remember how
quantum mechanics regards the forces between atoms. To find
the magnitude of the repulsion or attraction between two atoms,
we suppose the distance between them altered, and enquire how
much the energy has been raised or lowered. Equation (58) is
clearly an instrument for this purpose. As an illustration we may
apply it to the simplified H,* ion, using a pair of rectangular
boxes. Since we already know the result for this simple case by
direct consideration of the patterns, we shall be able to test the
use of (58). Starting then with curve & of fig. 60 as our original
V-curve, we wish to push the potential boxes nearer together.
The necessary alteration in the potential energy is evidently of
the form of curve . On adding the ordinates of curvesa and b, the
effect is to fill up a portion of the potential box at P, and to carve



PERTURBATION THEORY 125

out an equal portion from the potential barrier @R, with the
result that the box PQ is shifted sideways to the right, i.e. nearer
to the box RS, as shown in curve ¢. Curve a is then our ? (),
the alteration being zero everywhere except near P and €. The
integral (58) will have to be taken only over these two small
ranges, and the only portions of the i-curve which will enter into
the calculation will be the values near P and near Q.

The negative value of # near @ is of course equal to its positive
value near P, both being equal to the depth of the potential box.
The value of the integral (58) would therefore be zero if /> had
exaotly the same values near @ as near P. It has, however, been
sufficiently emphasised with reference to figs. 27 and 50, that
in every anti-symmetrical pattern the value of i is slightly
smaller at @ than at P, while in every symmetrical pattern it is
slightly smaller at P than at Q. The familiar splitting of the levels
follows at once, for the integral (58) will be positive for each anti-
symmetrical pattern, raising the allowed level, and negative for
each symmetrical pattern, lowering the allowed level as in fig. 31.
If the values of any ¢ at P and at @ are denoted by (P) and (&),

then if the distance between the boxes is reduced by an amount
dx, we have AW

dz V[ (L)1 - [H(@)F-

It is easily verified that the right-hand side of this equation has
the dimensions of a force, i.e. mass times acceleration. This ex-
ample gives some idea of the calculation which must be made in
three dimensions to obtain by this method the shape of the
dotted curve in fig. 51 ¢ for the H,™ ion.

§2. The method for the neutral H, molecule may be illus-
trated in the same way. The V-surface of fig. 52 must clearly be
modified by means of a #-surface in such a way as to bring each
pair of channels closer together. The integral (58) must then be
taken over the relevant strips of the z-y surface. We need to
know the approximate electronic i-surface to be introduced
into (58). In contrast to fig. 50, we cannot of course obtain the
approximate i-pattern for the molecule by adding together the
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separate patterns for the electron in each atom. Knowing the
electronic y-pattern for each of the separate atoms, we must
decide on the proper method of combining them. Inthey-surface
of fig. 52 we have seen that the value of ) must be small except
in the potential boxes F and F, which are the two regions where
W > V. Asin Chapter vi, let i, be the pattern for the box P&,
and 5 that for the box RS when there is a definite distance @ 2
between the boxes. Then let us form the product ¢, (x) ¥y (¥)-
This product has a definite value at every point of the x-¥
diagram; and we see that its value is large only in the region &
and falls away exponentially outside the box owing to the
exponential decrease of one factor or the other, or of both. In the
same way it is clear that the product ¢, (), (y) is large only
in the region F' and is small everywhere else. Suppose then that
we take the y-surface

=y (@) Pp(¥) +p (@) ha(®)  ...e.. (59).

This surface will be dome-shaped in the boxes £ and F, falling

to a small value between them and elsewhere. In the same way
the J-surface

o=t () (W) —dp (@) ba(y) .-e... (60)

will be dome-shaped in the box E and cup-shaped in F, with
exactly the reverse form. But these are respectively the cha-
racters which the symmetrical and anti-symmetrical patterns of
lowest energy for fig. 52 must have. In fact (59) and (60) represent
the first step in combining the electronic patterns of the separate
atoms, when the atoms are far apart. As we have entirely
‘neglected the presence of the diagonal ridge in the V-surface,
it is at first sight a little surprising that (59) and (60) resemble the
correct patternswhen the ridge is present. But this depends upon
the fact that when the atoms are far apart, the value of i is very
small near the diagonal, and provides an illustration of the
Principle of Overlapping, i.e. that alterations in the potential
energy are unimportant if they occur only in those regions
where i is very small.

The above illustrates the method which in the genuine problem
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of two atoms must be carried out using six co-ordinates, z,, y,,
21, Ty, Y2, Z2- For two atoms whose ground states are s-states we
know what we mean by ¢, and 5 as soon as we have chosen a
particular distance apart of the nuclei. For comparatively few
elements, however, is the ground state an s-state. For the others
the electronic y-pattern of the ground state is not spherically
symmetrical. For any two patterns taken from

fig. 10 the combined pattern will clearly depend  ,~7"™ ™
on their relative orientation. Fig. 61 represents oo g
an atom in an s-state and an atom in a p-state 7T\,
at a fixed distance apart but differently oriented. 7™~
If the two atoms combine to form a molecule when HCEG I
brought together, their stable configuration willbe ~=-7" = ™=~
that which provides the V-curve with the lowest Fig. 61
minimum; the same is true of three or more atoms. Although
the necessary calculations are laborious, this treatment opens up
a very important field—the spatial orientation of valency bonds
and the actual shapes of polyatomic molecules.

§3. At the beginning of this chapter we supposed that we
knew the allowed energies and the -patterns for a particular
V-curve, and we set out to enquire whether, using the material
at our disposal, we could find the allowed energies W,  of a
slightly different V-curve. An extension of this problem is
obviously to enquire whether we can, again using the material
at our disposal, find also the new patterns i,". Consider, for
example, the pattern belonging to the level W,'; this will differ
slightly from the original {,. And the idea is that we could
modify i, in the right direction; by adding to it small quantities
of the other original i)-curves which we already know, writing

Jo' =hatayPytaghs ... eeeenn (61),

where @, ag, ... are small numbers, positive or negative. The
problem is to know the best possible values of these numbers to
insert. The rule for calculating them is derived in Note 7 of the
Appendix.
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§ 4. TﬁE DESCRIPTION OF PHYSICAL EVENTS

At the beginning of Chapter v the excitation of an atom
was cited as an example of a physical process. For a given dis-
turbance there will be no certainty to which excited state the
atom will be raised, but only a set of probabilities. If the atom is
known to be initially in the ground state, the value of a, will be
unity until time £=0. Then the ¥-patterns of the excited levels
will start growing at the expense of the pattern belonging to the
ground level. This is merely a particular illustration of a general
type of description. The growth of ¥-patterns at the expense of
the initial pattern or patterns, when some alteration is made in
the V-curve, is the standard representation of a physical event -
in quantum mechanics. Asin § 1, 4/ is added to the initial potential
energy V, to give (V+%).

When we ask, Which ¥-patterns will grow most rapidly? we
can begin to clear the ground, as in §1, by a few obvious pre-
liminary answers. In the first place, if the alteration 2 is made
in regions where the value of the initial ¥, is negligibly small,
nothing measurable will happen at all. Secondly, if there were
any ¥”’s which did not overlap the initial ¥, at all, these need not
be taken into account, because there would be no possibility of the
particle represented by the initial ¥'; making a transition to the
other state. Since, however, every pattern occupies the whole of
space, this rule must be put in the form: Any ¥ which does not
anywhere overlap the initial ¥'; appreciably need not be taken
into account. On the other hand, the patterns which have the
largest overlapping with the initial pattern are not necessarily
the most important. For it may be that in the region where this
large overlapping is, the value of the alteration %’ will happen to
be small. We are not interested in transitions in general, but only
in transitions caused by 2. We are asking what effect the altera-
tion % will have when it is applied, and even large overlappings
of patterns in regions where % is negligibly small will be irrelevant.
It is obvious then that what is important is a triple mutual over-
lapping of a pattern ¥, with # and with the initial ¥,. Only
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regions where a 'V, overlaps both 4/ and the initial ¥, contribute
to the growth of this particular ¥, . The contribution made by an
element of volume dxdydz is proportional to the values which
these three factors have in that little volume. As in (58) the total
effect will be obtained by integrating the product over all space,
(62)- It is scarcely necessary to point out that in this section the
use of normalised values is to be understood throughout; in the
growth of any ¥, it is the value of @,, which increases.

The above argument seems to be a reasonable method of
approaching the description of events, and will be shown to
follow directly from (39). But, whereas in § 1 we set out to
find the value of an energy and found it in the integral (58),
here we set out to find the probability of an event, and have
so far found an integral (62) whose dimensions are again those of
an energy. We recall that the various patterns belong to quantised
levels, and that the transition from an initial state of energy W,,
to a higher state of energy W, involves the acquisition of an
amount of energy (W, — W,,) from the disturbing agency. If this
acquisition of a quantum involves Planck’s constant, as we should
expect from equation (39), we should not be surprised to find the
frequency (W, — W, )/h appearing as an oscillation frequency.
In fact, writing out the integral with the overlapping patterns in
full, as in (36), we obtan

I ‘Fn* VY m dv = \f lrbn* @'I’m 2T W =Wkt dy ... (62)*

In §5 the proper use of this integral will be derived from equa-
tion (39). The derivation depends upon a certain property of
J-functions which must be first explored.

The Y-functions belonging to the allowed energies of any
particular potential box (or any V-curve) form a family with
certain properties common to all members. Taking first patterns
in one dimension, consider, for example, the value of the integral

f T (@) < () da ceeeen(63),

e

where i, and s, are any two of the normalised patterns. We have
already come upon one example of such an integral, namely in
G 9
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(31) on p. 55; the value there turned out to be zero. As another
example take the curves a and b of fig. 15 on p. 22. At any point
in the right-hand half the product ;, is negative, while at the
corresponding point in the left-hand half the product has an
equal positive value. Hence in this case the value of the integral
is again zero, and the same is true of any odd and even pair.
Considering next curves @ and ¢ of fig. 15, we have, on multiply-
ing the ordinates, a negative contribution from the middle part,
and positive contributions from the right and left. The result
is not obvious, but these do cancel each other, so that (63) is
again zero. These examples are merely illustrating a general
property, which is quite independent of the shape of the V-curve
~ to which the patterns belong, so long as it is the same V for all.
And it is true not only in one dimension, but for any number of
dimensions; that is, the integral [, 4, *dv taken over all space is
always zero. The fact that the’sall satisfy the same Schroedinger
equation and are zero at infinity suffices to give them this
property, which is known as orthogonality.

When we are dealing with the usual composite state expressed
by a sum of normalised i’s, as in equation (29), this orthogonal
property enables us to pick out the term belonging to any
particular energy level that we please. Suppose that we wish to
pick outfrom the series the term belonging to the particular energv
level W,. We multiply the whole sum by ¢,*, and integrate over
all space, with the result

J(ayhy + agihy +agify+ ... ) h*dv=a,  ...... (64).

For by the orthogonal property every term in the series except
the second is going to be zero. And since i, is normalised, the
second term yields just a¢,. Use will be made of this method in
what follows.

§5. Equation (39) tells us how the value of ¥ at any point
varies with the time. But in the type of problem under discussion
we are not interested in what happens at any particular point
x, ¥, z. We are interested in how the values of a,, a,, @5, ... vary
with the time. And the question is then how to adapt equation
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(39) for this purpose. Although the method is of general applica-
tion, we may keep in mind our problem of the excitation of an
atom. To avoid the necessity of handling a large number of
states, we will consider only two. In the Schroedinger equation
(39) write ¥'= (¢, ¥, + @, ¥,), where a, and a, are constants:

h 0 02
s (41?1‘*‘“2 z)+"a 2(‘31? + 1)

—V (@, 1+, ¥)=0 ...... (65).

If now at a certain moment the potential energy is altered from
V to (V+%), it gives us a new equation containing two extra
terms, Ya,¥'; and Ya,¥,. To solve this equation, the idea is to
find terms of opposite sign which will cancel out these new terms.
For this purpose we suppose that the effect of the alteration in V
is to make the values of a, and a, vary with the time, instead of
being constants as in (65). When the first bracket is written out
in full, we shall now obtain new terms in da,/d¢ and da,/dt, which
were formerly zero. The whole expression is now:

zh( 4%, da,  d¥, daz) 92

1 di +1F1 dt+ 2 dt +‘F2 di +x-é—;2(a1‘F1+az‘F2)
- (V ’+‘ 02)) (alllj‘l + azllj.z).

Comparing this with (65), we see that this expression will be
equal to zero, provided that

;‘T (‘Iﬁdc;1+‘lf2 ‘Z‘;) D (@, +a.F) =0 ... (66).
Although for simplicity we have been using only the z-co-
ordinate we should have obtained (66) if we had started with
x, ¥y and z.

If now the system is known to be initially in state 1, we know
until time {=0 that a, =1 and a,=0. Then, as a, grows at the
expense of a,, we wish to know the value of a, at any subsequent
time. A simple problem is to find the initial rate at which a, rises
from zero. During a sufficiently short interval after { = O the value
of a; will still remain nearly equal to unity, and the value of a,

9-2
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will be negligible in comparison; that is, during this interval
then we have approximately

D (@, ¥y +a,¥) =V, e (67).
Hence (66) may be written |
"Ifl-zl? +\F2—a—t——-—,—;~h— Q)IFI ...... (68).

By making use of the orthogonal property described above, we
may now select the term referring to state 2. Multiply both sides
by ¥,*, and integrate over all space. The first term on the left-
hand side becomes zero, and the second term becomes just da,/dt:

d“" J YAV dy .. (69).

We see that our suggested Pr1nc1ple of Overlapping is vindicated;
every element of volume in which ¥, overlaps both 2’ and ¥,
contributes to the rate at which the value of a, increases. The
amount of mutual overlap measures the chance of % causing a
transition from the state represented by ¥, to that represented
by ¥',. As mentioned in §4, the integral has the dimensions of
an energy; we see now how, in conjunction with Planck’s quan-
tum of action, it gives the probability of something happening
in unit time. Integrating (69) with respect to the time

) t
Ap=": f f Y AVY dodt ee.nn. (70).
“ ?r’l' 0

Although for simplicity we started with a system in its ground
state, we might have started with a composite ¥'; in this case the
rate of growth of @, would depend on transitions from each of the
states initially present. The value reached by a, at time ¢ may be
expressed as a sum of all these contributions:

ay (t)#a12+(532+a-42+... ...... (71).

Any | a,,, | then measures the probability that ¢ causes a tran-
sition from state m to state n, and is given by

2
a,, V', VYV, dvdt| ...... (72).

I ‘mn. |
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The utility of equation (72) is extremely comprehensive. It
enables us to calculate theoretical absorption coefficients for
visible, infra-red, X-ray and vy-ray radiations, as well as the
magnitudes of the photoelectric effect, and the ionisation and
excitation by all kinds of moving particles.

Integrals [\¥, * 'Y, dvtaken overall space are used so frequently

that it is convenient to use an abbreviation;

Ve Wiy %4 for this purpose the notation %/,,, is used, or

Yoy Wsy else (m|%|n). These @,,, are known as the
Y, matrix elements of 2, because when set out
they form an array or matrix.

Since the volume of an atom is so small-—since the region in
which the atomic electron cloud is appreciable is only about
10—22¢c.c.—problems are very common in which the intensity of
the electric field E causing the disturbance ? is uniform through-
out this volume; that is, although the intensity X of the field may
be changing rapidly with the time, it has at any moment the
same value throughout the atomn; that is to say, the V-curve
for an atomic electron becomes uniformly tilted, fig. 62a or b.
If we take the direction of the lines of force as the z-axis, the
slope of the V-curve being €&, we have ¥ = e lz, and

JW,*VY , dv=ell [V, *a,, dv ...... (73).
Writing the ¥ out in full,
JW, >V, dv=e2mml o)y ¥z do  ...... (74),

where v,,, = (W, — W,)/h.

Now it is clear that 4, * x4y, dv is a permanentatomic quantity,
and has nothing to do with any disturbance which may or may
not be applied to the atom; for brevity such an integral is usually
written x,,,. Bach of the quantities x,,, is a definite length, less
than an atomic radius, and characteristic of the particular pair
of states of the particular atom or molecule. They may be
calculated once and for all, and subsequently used to estimate
transitions caused by any disturbance whose field is sufficiently
nearly uniform over an atomic volume. In any atom some of
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the quantities x,,, may turn out to be zero, owing to symmetry;
compare (63). Thus z,,, will be zero for any pair of s-states of
an atom. :

§6. It is when we come to apply these methods to the absorp-
tion of radiation that we find in what a satisfactory way quantum
mechanics joins on to classical theory. For in this problem we
disregard the existence of light-quanta, and treat the incident
radiation as a classical wave train. We shall take for simplicity
a plane-polarised beam of frequency v. As the wave train passes
over an atom, the latter is subject to a rapidly alternating electro-
static field, whose intensity at any moment may be written
E = A cos 2mvt. Visible light has a wave-length of 5000 Angstrém
units, so that even in ultra-violet radiation the wave-length will
be nearly 1000 times an atomic diameter. The intensity of the
field may therefore be taken to be uniform over the atom. Taking
the curve of fig. 7 as the initial V-curve for the valence electron,
consider how it will be altered in differ-
ent directions. In the direction of the ~—— f‘{:—
light ray it will remain unaltered, because faj
the field in the wave is entirely trans- __———

verse. In the transverse direction the T\/
V-curve will oscillate with frequency v

between curves a and b of fig. 62. Taking Fig. 62
x in the direction of the vector,
Y = EBex =Aexcos 2nvt = A;x (ermivt 4 g—2mivty ... (75).

To find how the electron in an atom possessing a characteristic
frequency v,,, will respond to incident light of frequency. v, we
must substitute for ) in (70). Some time before the introduction
of quantum mechanics it had been realised that when an atom is
initially in an excited state, incident light may have either of two
alternative effects; it may cause the atom to jump to a higher
excited state (absorption), or to a lower state (stimulated emis-
sion). Instead of taking an atom initially in its ground state, it
will therefore be better to suppose that the initial state, of energy
W, ,is anexcitedlevel, and that the energy of the final state, W, ,



THE DESCRIPTION OF PHYSICAL EVENTS 135

may be either greater or less than W,,. From (75), since z,,, is
independent of {, we obtain

i

t
f f VYV, * VY, dvdt= Aexmnf e>mWmnt | cos 27t . di
0 0

e 21t (vmp—)t e2miwmpt+v)t "¢

= %-A €Xmn [

From this expression we can find the value of | e,,, |2 for inci-
dent light of any wave-length we choose. Since v,, denotes
(W, — W)/, it will be positive or negative according as the final
level which we are considering is higher or lower than the initial
level. When v,,, is positive, the first term in (76) will obviously
give resonance. The nearer the incident frequency v is to any
natural frequency v, of the atom or molecule, the smaller will
be the bracket (v,,, — v) in the denominator, and the greater will
be the response. In fact, the probability of the absorption of a
quantum is negligible except when there is resonance between v
and one of the v,,, thus leading to line-absorption spectra.
Whatever the intensity, the effect is strictly proportional to 42,
the square of the amplitude. The relative strengths of the various
absorption lines are given by the values of | z,,, |2; whenever this
happens to be zero the line does not occur.

'When we fix our attention on any possible transition down to a
lower level, (W, — W,,) is negative. The bracket in the denomin-
ator of the second term in (76) can now give resonance for certain
incident frequencies, for which the contribution from the first
term will be negligible.

The problem of the strength of absorption lines is thus solved
when we know the i-patterns of the system, from which to
calculate ,,,. For the hydrogen atom and for the ions He* and
Li++ the functions are known exactly, and the absorption co-
efficients can be calculated in absolute magnitude. Since a
thermodynamic argument shows that the intensity of emission
must bear a definite ratio 87wh13/c® to the intensity of absorption,
the strength of the emission lines is known as well.

For investigating the excitation of atoms, the 1", above was

2712 (Vpp, — V) + 27 (Y +v) _lo
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taken to be that of an electron bound in one of the discrete levels.
But there is nothing in the equations to impose this restriction.
For the final state we mayinsert instead any ¥ representing a free
electron moving away from the atom, i.e. a ¥ belonging to the
same V-curve but for a higher energy; in this case (72) will give
the probability of photo-ionisation. There is of course no quanti-
sation for free particles; hence an atom can respond to all fre-
quencies whose Av is greater than .#, the ionisational potential,
the electron escaping with kinetic energy $mv?=~hv— 4. Beyond
the ultra-violet limit of the atomic line spectrum there is thus
a continuous absorption spectrum, whose intensity can be cal-
culated from (72). This treatment may be extended to electrons
in the inner shells of an atom; by taking as the initial state the
Y-pattern of a K-electron or an L-electron, the intensity of the
photoelectric absorption of X-rays may be calculated. In the
same way one can investigate the photoelectric effect at metal
surfaces by using for ¥'; and ¥, the patterns for an electron in
the metal and for an electron escaping from the surface.

The electronic excitation of a molecule is a rather more com-
plicated process. In the atomic
problem we had only the overlap-
ping of the two electronic patterns
to consider. But for a molecule the
initial and final states must each be

w4

o
i

S

represented by a product e ilyip. E ! ¢
Hence .

l)bl ‘IbZ‘: ‘al’eh ¢Vib1 l/’elz "/‘Vibz """ (77) - .4 .'p
If for any initial and final states i E —

the overlapping of ¢y, With gy, 1s
small, this fact alone will suffice to
inhibit a strong absorption of the corresponding wave-length.
The curves of fig. 63 have already been referred to on p. 89.
ILet CD be the lowest vibrational level of the first excited state,
while 4B is the lowest vibrational level of the normal state.
Abscissae being the nuclear separation r, the vertical distance

Fig. 63
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G H represents the energy required for the corresponding atomic
excitation when the atoms of the molecule are far apart. For
the level AB the iy will be like fig. 15a, dying away ex-
ponentially to the right of B and to the left of 4, so that its
value will be small except for those values of the nuclear separa-
tion r lying between the vertical dotted lines which have been
drawn in the diagram.

Consider now the excitation of a molecule initially in the level
AB. The smallest energy required to raise the molecule to a
higher electronic state is that given by the vertical distance
between 4B and CD. For this type of molecule, however, such
a transition is very improbable, because the i, for the level CD,
falling off exponentially from C, has a very small overlapping
with the iy, of the level 4 B. Any higher vibrational level near
EF has a better overlap with 4 B. Consider next what will
happen if a molecule in the level 4B is illuminated with white
light. It will absorb wave-lengths corresponding to the vertical
distance BF much more strongly than longer wave-lengths.
Further it will appear that this argument applies also to
excitation of molecules by electron impact. But we will first
discuss the excitation of atoms.

When an electrically charged particle passes with high speed
through a gas, the atoms or molecules near its track experience
an intense transient field as the particle goes by. Atoms more
distant from the track experience a field which, though varying
rapidly in intensity, will be nearly uniform over the atom at any
moment. For an electron in the atom the V-curve will be
uniformly tilted, as in fig. 62 @ or . This field may be relatively
very weak; yet by (73) there is a probability of excitation and
ionisation, however weak the field. Thus a few atoms distant
from the track may be excited, the probabilities being given by
the values of z,,,, as in the case of excitation by light. On the
other hand, a large part of the ionisation and excitation, which
takes place mearer the track, must be calculated from (72),
taking into account that ? is not uniform over the atom. For
molecules the excitation will take place in accordance with fig.63.
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In discussing the conductivity of metals in the last chapter, it
was pointed out that when an electron in the metal has been
accelerated by the applied voltage, it has acquired energy, that
is to say, it has made a transition to a higher level. At first sight
this excitation does not appear to fall in the class of problems in
which the alteration in the potential energy is transient. When a
voltage is applied to two ends of a wire, the V-curve of fig. 37 is
modified; but ordinarily the voltage must be kept on permanently,
in order to maintain the current. This at any rate is always
necessary at room temperature. If, on the other hand, we have
near the absolute zero of temperature a piece of metal capable of
supra-conductivity, a momentary e.m.f. is sufficient to generate
a current which will persist for a long time after the e.m.f. is
removed. At room temperature the thermal vibrations on their
own account cause a secondary modification of the V-curve which
destroys the low of current almost as soon as it begins.
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CHAPTER X

§1. THE DESCRIPTION OF PHYSICAL EVENTS
(continued)

The transitions considered in the preceding chapter were be-
tween two allowed energies W,, and W, belonging to the same
V-curve. Problems like that of fig. 44, p. 81, are equally im-
portant, but of a different type. Here the disturbance radically
changes the V-curve, and calls into existence new possible
motions which were formerly absent. In fig. 44 the electrons
could escape from the metal 4 without any change in the energy
W. To predict what will happen in this type of problem, we must
again adapt equation (39) so as to describe the change in the
Y-pattern. But before developing the theory it will be as well to
mention other examples of this kind of physical process.
Consider a free atom ¢n vacuo near a metal surface. The poten-
tial energy of the valence electron in the field of the atomic
nucleus or positive core will be like fig. 7, while at the metal sur-

- face it will be like fig. 37. The DU o
V-curve along a line perpen- PY,
dicularto the metal surface and

passing through the atom will Fig. 64

be obtained by joining these together as in fig. 64; it comprises
two potential boxes with a barrier between, whose width is the
distance of the atom from the surface. For convenience suppose
that the metal is at ordinary low temperature so that there is a
sharp division at the critical energy between the occupied and
vacant levels. The problem now is whether the valence electron
from the atom will pass through the potential barrier into the
metal. It cannot do so if the only vacant levels in the metal are
higher than the initial level in the atom, i.e. when ¢ is less than %
The ionisation potentials of alkali atoms, however, lie between
4 and 5 e-volts; and when such an atom is incident on a metal
- with a sufficiently large work function, there is a high probability
that it gives up its valence electron to the metal. In fact, a
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standard method of producing an intenseé stream of ions is to
direct a stream of alkali vapour at a hot filament (the high tem-
perature prevents the incident atoms from sticking to the metal
surface).

Alternatively, we may suppose that the valence level in the
atom is initially vacant, i.e. we have a positive ion approaching
the metal surface. An electron from the metal may now pass
through the barrier to the ion, neutralising it, except when . is
less than ¢. This is presumably the usual process by which atomic
and molecular positive ions become neutralised on approaching
an electrode in vacuo, while negative ions lose their electrons by
the reverse process above.

For a second example, suppose that we have two pieces of
metal, as in the problem of fig. 44; but, instead of putting them
near together, charge one toahigh ———
potential with regard to the other.

The shape of the V-curve along a
line passing through them will be
changed from fig. 27 to fig. 65.
Looking now at the electrons in
the potential box on the left,

which is the negatively charged R
metal, we notice that they are
only held in the box by a po- Fig. 65

tential barrier of triangular shape, which is shown on a larger
scale in curve b, The width QR of this forbidden region will be
less, the greater the applied voltage. And there is the possibility
of electrons escaping from the metal, even at room temperature.
In practice the height of the barrier is at least two volts, the
value of the work function of an alkali metal; and the width QR
is that distance in which the electrical potential falls by two
volts; that is to say, if the intensity of the field is a million volts
per centimetre, QR will be about 200 Angstrom units. A tri-
angular potential barrier will be a little more transparent to
electrons than a rectangular barrier two volts high and of the
same width. But from the calculation given on p. 18 we should
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hardly expect an appreciable number of excursions through the
barrier until its width is well under 100 Angstrém units. It is
found by experiment that the escape of electrons from metals
at room temperature becomes measurable for applied fields of
intensity greater than 107 volts per centimetre.

§2. The most striking example of this leaking of particles
through a forbidden region occurs in the phenomena of radio-
activity, which remained a complete mystery until after the
development of quantum mechanics. Stable nuclei exist for the
same reason that stable atoms and molecules exist, namely, that
the constituent particles move in a potential box. For radio-
active elements the unanswerable question always was: Why
should a nuclear particle, after remaining in the box for days or
years, suddenly escape for no apparent reason?

In order to treat the expulsion of alpha particles by quantum
mechanics, one must know the shape of the V-curve for the
potential energy of the alpha particle in the field of the nucleus.
Unlike the stable systems already discussed in this book, both the
alpha particle and the nucleus bear charges of the same sign.
In the study of the scattering of alpha particles by nuclei of
various elements the ordinary Coulomb repulsion is in fact
found, indicating a V-curve like that of fig. 46. It had, however,
been recognised that at closer distances this intense repulsion
must change over into an attraction, which enables the ordinary
nuclei to exist in spite of their large positive charge. The required
V-curve will be like fig. 46, with some kind of potential box in
the middle. From a V-curve like fig. 66 we can see how both
stable and unstable nuclei may exist. A particle inside the
nucleus, whose energy W is to be represented by a horizontal line
lying below the axis OX, cannot escape into surrounding space.
With a higher occupied level, on the other hand, such as 4B, if
the ideas under discussion are correct, it should be possible to
represent the state by a W-pattern which would leak out
steadily, even if it took centuries to do so. In this way one could
account for the existence of the radioactive elements.

§3. Before linking up this type of problem with those of
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Cﬁapter X, a more direct approach would seem to be a discussion
of a V-curve like that of fig. 665, where the straight lines 87" and
PO are supposed to extend to infinity in either direction. A

potential box PQ is separated from

empty space by a barrier QRE. In /\_l;\\ (@)
looking for acceptable i)-patterns, AB- s —
we find at once that for this potential 7| X

box there are no discrete quantised

levels. In the region S7' there will 0 £ L (b)
- be a uniform sine curve, extending ~=f W
to infinity; while in P@ will be a S T

- Fig. 66

- portion of the same sine curve of
different amplitude. In fig. 27 the i-curve had to fall
exponentially to zero on the right as well as on the left;
remove this restriction, and at once there are acceptable
J-patterns for all values of W. These may be divided into
y-curves for which the amplitude of ¢ is (a) small in PQ
compared with the amplitude outside in S7', and (b) large in PQ
compared with that outside. The -curve under the barrier QR
being given by (4) the relative amplitude outside depends on
whether D is greater or less than Ce=*¢, where d is the width of
the barrier QR. All kinetic energies from zero upwards being
allowed, for the lowest energies the amplitude of i inside PQ is
very small, because the wave-lengths are much too long to fit
approximately into P@. Looking at higher energies, we come
to a range whose i will fit into P with small values of
D; this narrow range occurs round what would be the lowest
allowed level of PQ if the barrier () R were infinitely wide. Every
Ji-pattern in the range will vibrate with its own frequency W/h;
and, if a wave packet is formed from them to represent a particle
initially in P@, they will get out of phase, so that the amplitude
in P decays with the time.

§4. Looking now at the physical problems in which this leak-
ing through a potential barrier occurs, we see that such a leak
cannot have been going on for all time. In every case it is a tem-
porary phenomenon due to the fact that the present V-curve is
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different from what it was during some previous period. In the
problem of fig. 44 the two pieces of metal had been far apart, and
an appreciable transfer of electrons only started when they were
brought nearer together. In fig. 64 the barrier between the atom

and the metal only becomes narrow when the atom approaches
~ the surface. In fig. 65 electrons only begin to escape when the
V-curve is made sufficiently steep by a large applied voltage. And
in fig. 66 the leak from any radioactive nucleus only begins at the
moment when the parent atom in the series disintegrates. For
example, Radium F (polonium) emits alpha particles while its
parent substance Radium E does not (at any rate not in observ-
able quantity). The disintegration of Radium E evidently leaves
behind a situation like fig. 66 a, say at time ¢ =0, so that the steady
leak of an alpha particle starts from this moment.

This point of view suggests that equation (39) may be adapted
for describing the physical process by a method similar to that of
Chapter x, namely, by modifying the initial potential energy V'
bya %-curve, to give (V+%'). For ex-

ample, let curve a of fig. 67 be the L R 1?

initial V-curve with an isolated E : (@)
potential box P, which will have ‘ i
discrete levels. If we start with SR (b)
a particle in the lowest level of PQ, ! 2

we have an initial state without any L] | _J‘———-———-
ambiguity; the W', falls off expo- _ _L-—-— (€)
nentially outside the box. Now take Fig. 67

curve b as the #-curve, the disturbance being zero cxcept be-
tween R and S. On adding the ordinates, the sum (V + %)) gives
curve ¢ with two potential boxes. It will be convenient to suppose
that the box RS is much wider, compared with P@Q, than is shown
in the diagram, for then the allowed levels will be very close
together, and there are sure to be a few levels of nearly the same
energy as the initial level in Q. Suppose then that at time =0
this box RS comes into existence, with a set of levels all of which
are empty. The problem is to find the rate at which a \I"-pattern
springs up in the box ES owing to the fact that RS overlaps the
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exponential tail of the initial ¥',. As in Chapter 1x, let us fix
attention first on one only of the possible final states, which, for
comparison with (64), we may denote by ¥,. Whereas in
Chapter 1x both ¥, and ¥, belonged to the V-curve, here ¥, is a
characteristic pattern of the %-curve, and satisfies the equation
; 52
—;—% %az‘lf2+xé%§a2‘l"2—@a2‘}"2=0 ...... (78).

Writing down the similar equation with a,, ¥, and V,and adding,
an equation identical with (65) is obtained except that the term
Ya,¥, occurs in place of Va,¥,. To obtain a solution of the
equation with (V + @) we follow the same argument as before, and
arrive at an equation identical with (66) except that Va, ¥, occurs
in place of Yu,¥,; this is because it is the box PQ which is
foreign to ¥',, while the box RS is foreign to ¥,;. But during a
short interval of time a, remains small compared with a,, so that
(68) is again true, and brings us again to equation (69). In spite
of the difference between this problem and the previous type, the
Principle of Overlapping may be applied in exactly the same form
as before. The value of da,/dt now.gives the rate at which the
pattern ¥, springs up in the empty box RS, and hence the
probability of the particle passing through the barrier into the
particular level on which we are fixing attention.

For simplicity suppose that the potential energy, after chang-
ing rapidly from V to (V + /), remains constant for a certain
interval. Then, 2 being independent of the time, (70) may be

written
2

A= — = Yo X1y dvf; e?m? *(Wa—Wl)/"?‘ At o...... (79).
The probability of a transition from any initial level to any final
level will again be given by the square of a matrix element. In

“order to deal with problems like those of figs. 65 and 66,in which a
particleescapes into free space, it will be necessary later to suppose
that the box RS is indefinitely long; then the set of allowed
levels of RS will close up into a continuous range of allowed

energy. In any case let W, be some energy in the neighbourhood
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of the initial level W, of the box P@Q. The factor e27t {(W—Wu/kit jn
(79) oscillates between positive and negative values with a period
T=h/(W,— W,). And if it has changed sign several times within
the short interval considered, the positive and negative portions
of the integral will nearly cancel each other out, leading to a
negligibly small value of |a,|. In order that the factor may not
have changed sign several times during the interval, the value of
T must be large, which occurs only when (W,— W,) is small. That
is to say, the only ¥-patterns which spring up in the box RS are
those which have almost exactly the same energy as the initial
level W, . The slight uncertainty in the energy, depending upon
the length of the interval, is to be expected from (27).
Expression (79) applies to a potential barrier of any shape,
provided that it is not too small. We should expect the pro-
bability of a transition to be in agreement with the usual estimate
of excursions into a forbidden region for a particle of any mass.
That is, in fig. 67, for example, it should depend upon the amount
by which the exponential tail of the pattern i, extends beyond,
~ the point R. We see that this will be so in (79). For, since 2’ is zero
- exceptintheregion RS, the value of the integral will depend upon
the amount to which the exponential tail of i, extends into this
region. If the distance @R is d, the probability of a transition will
be proportional to e~*4¢. Potential barriers are usually too broad
~ to allow the passage of particles having a greater mass than a
proton. In the nucleus, however, we find barriers of width less
than 10-* ¢cm., which are transparent to alpha particles. All the
methods of treating the problem of fig. 666 show that the pro-
bability of escape per second may be taken to be of magnitude
ve~2kd where v is the frequency of the to and fro motion of the
particle in the box. 1t is useful to remember that for a potential
barrier of height one e-volt, and breadth one Angstrém unit, the
value of e~24¢ for an electron is almost exactly e~1, or 1/e (compare
p.- 19). For an electron in an atom the value of v may be taken
as roughly 101% per second, and thus the probability of escape
through any barrier may be roughly estimated.
In the V-curve and @-curve of fig. 67 we were concerned with

G LO
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the potential energy of a single particle. We could, on the other
hand, start with a V-surface for a pair of particles; modifying this
by means of a #-surface, we could introduce new regions where
V will be less than the initial W. We can then find the rate at
which the W-pattern, representing the pair of particles, leaks into
these new regions. ‘

§ 5. In the problems of excitation by electron impact, etc.,
discussed in the last chapter, the atom or molecule was raised to
a state of higher energy W,. For this it was essential that the
disturbance % should vary with the time. For, as we have just
seen, when % is constant, equation (70) becomes (79), and pro-
vides transitions only between states of the same energy. On
looking at the process more closely, however, we recall that when
a system is raised to a higher level, the energy must have come
from somewhere. Energy is conserved; the transition is really
from a certain state to another state of the same energy. In the
case of excitation by impact, the impinging particle loses as much
energy as the atom gains. In fact, transitions are always between
states of equal energy when the whole system is taken into
account. Hence the method of this chapter is for most problems
more fundamental than that of Chapter x. The transitions
through potential barriers which we have been considering must
be merely one class among many for which equation (79) may
be used.

With reference to figs. 5, 7, ete., it has been pointed out that a
W-line lying wholly above the V-curve represents the energy of
a free particle. At first sight one would expect that a W-plane
lying well above a V-surface, such as that of fig. 47, would
represent a pair of free particles. But W is the sum of the energies
of the two particles; and one particle may be a free particle with
nearly all the energy, while the other is bound in the lowest level
of the potential box. For such a value of W there are evidently
several states of the same energy. For, alternatively, the free
particle may have rather less kinetic energy, while the other
particle is in the first (or higher) excited level of the potential box.
These two states will be represented by distinct W-patterns
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belonging to the same energy. If a transition takes place between
the first state and the second, the atom becomes excited, while
the free particle loses an equivalent amount of kinetic energy.
This is, in fact, the familiar process of excitation by impact.
Naturally the transition only occurs when the particles collide.
If the energy of the interaction between the atomic electron and
the free particle is denoted by 2/, we may look upon %/ as causing
the excitation. Whereas in fig. 62 2 was a #-curve varying with
the time, here it is a #-surface independent of the time (a diagonal
ridge or the equivalent in six dimensions). When % causes a
transition from ¥, (belonging to energy W,) to ¥, (belonging to
energy W,), use of equation (79) ensures that the reduction in
the energy of the impinging particle will not differ by a
measurable amount from the excitation energy of the atom.
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APPENDIX

NoTE 1. CENTRAL FORCE PROBLEM

In spherical polar co-ordinates equation (9), p. 25, becomes

2
19 r28¢:+ 1 8¢+ 19 sine?lb)
r2 or or

r28in%6 02 * r2sinH 06 06
8 2
+ Zz‘“(W V)p=0 ...... (80)

Compare Jeans, Electricity and Magnetism, Chapter virr. It is
well known that for this type of equation a solution can be
obtained as a product of two factors, of which one is a function of
r only, and the other a function of § and ¢ only. Write

$=R(r).8(6,4),
substitute in (80), and multiply through by 72/ RS. We obtain

1a(,dR)y F 1 288 1 3 iea_g)
Rar\" &)™ | Ssin6 347 T Sema 35512055
8arZpr?
+_~.”hg (W=")=0 ...... (81).
The large bracket is independent of r, and must be constant; it
has the dimensions of a pure number; set it equal to — G:

1 a8 1 a/. 28
Ssin?f 942 +Ssin0 ajo‘(smgﬁ) +G=0 ...... (82).

Repeating the process, let S (0, 4) be the product of two factors,
of which one is a function of 6 only, and the other of ¢ only.

Writin
nre 8(6,4)=0(8).9 (),
we obtain o
1 d20 1 d(. ,dO
(I)SinzequZ+®Sin0d—0'(811’10&—6-)+a=0 -‘”.”(83).,

On multiplying through by sin%6 the first term becomes in-
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dependent of # and must be constant; for convenience let this
constant be written —m?; then we have the simple equation

d*®
azg+m2@ o ... (84).
Equation (83) now becomes
1 d de , m2 Y\ ~
Si"ri‘g ([é ( sin @ (18) (G — ;ﬁi?_f)) G=0 ...... (3-)).

We notice that when § =0, 1/sin § becomes infinite, and there are

only certain values of G for which the solution remains finite.

These are known to be the integral values 0, 2, 6, 12, etc., given

by G=1(l+1), where Il is an integer. And there is the further

restriction that m must not be greater than I nor less than —1{.
Setting the bracket in (81) equal to — G, we have

d 8 2
%%(72 dlf)—l— 7”” - (W—=V)=1l(1l+1)=0...... (86).
This may be simplified by introducing a new function
- Fry=r.R(@);
then (86) takes the form |
d?F  8n%u L({-+1) kz)
s (W Vi JF=0 e (87).
NoTEr 2

From the three series:
x2 3 ot
=1+ +57+t

sitIrt
y_x =
COS X = —-~§7+Z—- ceey
x3 x5
sin x = x——'g"'-—l-g-'- ceey

it follows at once that
e =cos 0+ isin 8)
e~ =cos 6 — isin@}
cos =1} (e +e~?), ¢sinf=1 (e —e19).

If z=a+1b, and z*=a —1b, where a and b are any two real
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quantities, z and z* are said to be conjugate to each other. The
positive square root of the product zz* is known as the modulus
of 2, and is written |z |. Here |z |2=a2+b2.

From (88) it is clear that e and e~ are complex conjugates;
the modulus in this case is unity.

NorE 3
It appears from (33) that differentiating ¥ with respect to the
time is equivalent to multiplying it by %&—T W, or

'This relation between W, % and ¢ shows a resemblance to (27):

h
AW ~ A
If this resemblance is significant, we may expect an analogous
relation for (26): 3

Apa: NA—x.

By analogy with (89) we should expect
ih ©
P,= % "a_a; s
with similar expressions for p, and p,. These expressions are, in
fact, important for throwing light on the meaning of the Schroe-
dinger equation.

We begin with the fact that the total energy W is the sum of the
potential energy V and the kinetic energy 3mv2. The latter may
be written (mv)2/2m, or p?/2m:

| W=V + p?/2m,
P’ +p,2+ 2,2 2m (W —-V)=0.
Substituting for p,, p,, p,, we have

02 92 0% S8am
ax2+ay2+azz+ 7;;2 (W-V)=0 ...... (90).

On inserting s we have exactly (9), the Schroedinger equation.
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NoTe 4. Two PARTICLES

Let a particle of mass m; move along a straight line, its distance
from the origin being x,, and the potential energy along this line
being V,(z,). Let another particle of mass m, move along a
straightline, the distance from its origin being z, , and its potential
energy V, (x,). First suppose that these particles neither attract
nor repel one another; then their y-functions are obtained from
the equations

1 d 1 d2 1
l‘l‘ ( 1"‘V1)¢1=07 ‘@dxf§+§(wz”vz)‘ﬁz=or

my da,? 9

where g::hz/S'ITz.
Multiply the first of these equations by s, and the second by
i, , and add them together:

s

mydx,® My day?

+ = (W1+W —~V,i—=Vo)hy=0 ...(91).
d*fy .

Since i, is not a functlon of ., Y= az, 5 is equal to i 5 P1fy, and
1

the same for the next term.
Hence writing

Wi+ Wo=W, Vi+V,=V(2y,%,),
(91) takes the form
1 0% 1 0%

My 0,2 My 0X,°

~—(W V)gp=0 ... (92),

where =y, ,. We have proved that for any pair of particles
that do not interact the proper form of ¢ is a product; which
agrees with the general theorem for two independent observable
quantities, (55) and (56).

So long as V is merely the sum of V; and V,, (92) merely em-
bodies the two equations from which we started. But we go on
now to make the assumption that (92) is the right equation for
giving the y-patterns for a palr of particles which do attract or
repel one another.
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NoTE 5

Consider two interacting particles in otherwise field-free space.
The potential energy depends only on their distance apart, and
not on the position of their centre of gravity. Let them move
along the same straight line; and, taking some point on this line
as their common origin, let their distances from the origin be
z, and z, respectively. Let the distance of their centre of gravity
from the origin be denoted by X, so that

(my +my) X =m2; +My%,.

Let £ denote their distance apart:

E=x,— 2.
The potential energy depends on & only, and may be written

V="Vy+V (£), where V, is a constant depending on the zero of
energy from which we choose to measure V. Now

8_6X8+8§2_ m, 8__2_3_
0x, 0x;0X  0x 0f m +my0X 0f
o2 m;, © 0)%2
Hence 0z,2 {ml+ mg 0X —875} ’
0% { Mg G, 8 }2
0Z,2  (My+my 5x T o€
Substituting in (92) and usmg (37) we obtain

th oY g oY go*t
2m 0t +VE- M oX2 u o€

where M is the total mass, m;+ m,, and p is the “reduced mass”,
My Mg/ (Mg + My). :

Equation (93) may be separated into two equations by the
same method as was used for splitting up equation (80). That is,
we try the effect of supposing that ¥ is a product of two factors,
one of which, ¥, is a function of the position of the centre of

gravity of the particles only, and the other, ¥, a function of
their distance apart only:

Y=",(X). ¥, ()

=0 ... (93),
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Substituting (94) in (93), and dividing through by ¥, , we obtain

ih oW, g 2°%, ih ¥, _g %%,
5y 31 TV FeT w 0&% +|:27T‘I"'a ot axz:l ¥p=0.

The bracket in this equation is a function of X only, and the
other terms, including V‘Fb , are functions of ¢ only. The bracket
must be constant. It has the dimensions of an energy. If we set
it equal to — V,, we have the following pair of simple equations:

ih 0%, g ¥,

. at VOIIJ. ﬂ—a"j—.‘é—-—o ...... (95),
XL g 02, ‘
ot V(g)lif',,-;; =0 e (96).

Comparing (95) with (39), we see that it is simply the equation
for a particle of mass m, +m, in field-free space.

Although in Notes 4 and 5 only one dimension has been
taken, it is clear that similar results will be obtained using z,
y, and z.

NoTE 6

To understand under what circumstances a sum or difference,
i, + g, gives a good approximation to the correct patterns, asin
fig. 50, we may carry out an argument like that used for equation
(78). Taking a V-curve with a single potential box P, and
another with a single potential box RS, as in fig. 67, we shall call
them ¥V, and V4, instead of ¥V and %. The equation satisfied by

i, 18
d*b 4
dac®

Wi'iting down the equation containing V,, satisfied by 5, first
add it to (97), and secondly subtract it from (97), and we obtain

Wi, —kVha=0 e (97).

Gt b + W (g 2 4hg) =B (Vha 2 Vi) =0 oo (98).

Since we are looking for patterns appropriate to the potential
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energy (V,+ V), with two boxes, we may compare (98) with the
expression

2
s a tha) W () — B (Va V) iy ) -..(99),

which would be equal to zero if (i, + ;) were the desired pat-
terns. We see that (99) differs from the foregoing by the presence
of two extra terms, Vi, and V ,4,, which are missing from (98).
Ifin any particular case these extra terms happen to be negligibly
small, then the correct patterns will not differ appreciably from
(4 +45) and (b, — ). Returning to figs. 50 and 67, we see that
so long as the boxes are far apart these are just the conditions
which are fulfilled there. By definition ¥, only differs from zero
between P and @, and here 5 is very small; similarly ¥V, only
differs from zero between R and S, and here i, is small. Hence
the missing products are unimportant, in accordance with the
Principle of Overlapping; and both (4, +5) and (4, — ;) are
good approximations to the correct patterns. If the boxes are
brought nearer together, we see why the approximation becomes
progressively less good.

NoTeE 7. DERIVATION OF (58)

When V is altered to (V + %), let each initial level W, be shifted
- to a slightly different energy (W, +%¢,), while the corresponding
i, 1s altered to a slightly different pattern (4, + ¢,,). We wish first
to show that the value of each %¢, is given by the overlapping
Integral (58), and secondly to modify each i, by adding the most
suitable small portions of the other initial patterns. We will fix
attention on one particular level, say the level W,, as in (61). To
avoid having to deal with the whole series of levels at once, we
will first modify i, by the addition of portlons of ¢y, and ¢, only;

that is to say,
'7[’2 = '7[’2 + ¢2 )

where bo=ay i +az, 0 Ll (100).
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Each original pattern satisfies equation (9), which may be written
in the abbreviated form

(-’%Vz_v) n=—Woth,  ene (101),

while each modified pattern satisfies the equation

1
;c' V2 (‘pn + ?Sn) - (V + t’b’) (‘/Jn + 9577,)
+ (Wn + L’Z(/’n) (l/Jn + d’n) =0 ...... ( 102)'
Since the alterations 2¢ and ¢ are to be small, we may neglect the

products 20¢ and V$. Subtracting (101) from (102) and writing
n =2, we obtain the equation satisfied by ¢,:

(;1; ve_ V) ot Wads+Wphy =Dy ... (103).
Substituting (100) in (103), we have
1, 1,
ay (; Ve — V) hy +ay (;E VE— V) s+ Waa iy

‘+‘ W2a3l/13+ (?02‘#2 == dzjl,llz ...... (104:).

We see now that by (101) the first term in (104) is equal to
—ay Wiy, , while the second term is equal to —a; Wiib,. Hence
(104) becomes

@y (Wo= W)y +ag (Wy— W)y +WWpthy= V'hy  ...(105).

Consider now what will happen if we multiply every term in
this equation by ,* and integrate every term over all space as
was done in (64). Since i, i, and i, all belong to the same
system, they are orthogonal, and the first two terms when in-
tegrated will become zero. The third term becomes just 77,.

Hence
Wy — Wo=2ly= [ |, |2 do,

which is just the overlapping integral. If in (100) we had had an
infinite number of terms, instead of only two specimen terms, the
same result would clearly have been reached.
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Consider next what will happen if we multiply every term in
(105) by *, and again integrate over all space. The second and
third terms now become zero, leaving

ay (Wy— W) [y *dv = [y * iy do.

Hence the best value of @, to insert in (61) is obtained as a ratio
between two energies

1
s f bxVhody . (106).

The value a; is obtained by multiplying (105) by ,*; and again
the value does not depend on how many terms (105) contains.
The value of each a, is found in the same way, so long as the
levels are not degenerate.

Norr 8 THE VALENCE ELECTRON OF
AN ALKALI AToM

The brief discussion given on pages 56 to 58 requires us to add
further details about the origin of the energy levels of fig. 19 on
page 33. Although the scale of electron-volts given on that figure
refers to the sodium atom, the scheme of levels of the other alkali
atoms is so similar that the figure may be used for them. Let us
take lithium first, and suppose that fig. 19 is a theoretical dia-
gram constructed for the lithium atom. In that case, in drawing
the diagram, one energy level has been omitted, namely the 1s-
level. This level, if its energy were calculated by the method of
the self-consistent field, would lie much lower than those in the
figure. It has been omitted because, by the exclusion principle,
the valence electron of lithium cannot occupy a ls-state. The
lowest level shown in fig. 19 does not correspond to the lowest
level of fig. 20; but, in the case of lithium, it will correspond to
the next higher s-level.

The reason why the 2s-level is pulled down below the 2p-level
can be readily understood by use of equation (58) on page 123.
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In each alkali atom the valence electron moves in a field which
is similar to the Coulomb field except near the nucleus, where
the field is stronger; we thus need in (58) a % which lowers the
potential energy in the neighbourhood of the nucleus. Now we
see from curves b and ¢ of fig. 21 on page 36 that for the p-states
the value of 4 is zero at the origin. For all the s-states, on the
other hand, the value of s near the nucleus is considerable. It
follows from (58) that for the s-states the downward shift of the
quantised energy will be larger than for the p-states.

We may return now to the sodium atom, to which fig. 19
properly belongs. For the valence electron of sodium it would
be possible in theory, by the method of the self-consistent field,
to calculate -functions for the 1s-, 2s-, and 2p-states. But, as
the valence electron cannot occupy these states, they are
omitted from fig. 19. The lowest level is the 3s, which lies well
below the 3p-level for the reasons given here.

NoTE 9. DIFFRACTION OF ELECTRONS

In fig. 57 on page 113 only part of the system of energy levels is
‘shown; the band-structure will continue for higher energies,
even above the top of the potential box. Consider now what
effect this will have if, from outside, we fire a homogeneous
beam of electrons at the surface of a metallic crystal. For most
velocities of incidence the wave functions of the electrons after
entering the crystal will be of the form (e) in fig. 56. But for
certain velocities of the electrons (incident, say, from right to
left) the wave functions will be of the form (d) in fig. 56; in this
case the beam will be intensely reflected. At the angles and
energies at which this occurs we have the well-known diffracted
beams, first observed by Davisson and Germer. For high veloci-
ties of incidence, their directions follow the ~ Bragg angles ™.
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NoTr 10. SEMI-CONDUCTORS

On page 119 is mentioned the view that the electronic conduc-
tivity of semi-conductors arises entirely from small quantities of
impurity in the crystal. It has now been recognised that in
many important cases this does not mean that the compound
contains atoms of any foreign element, but that the constituents
of the compound are not present in their proper chemical pro-
portions. Thus zinc oxide is a semi-conductor when it contains
a small excess of zinc as an impurity.

NoTE 11. EMISSION OF RADIATION

A method similar to that described on page 147 is used for
obtaining the intensities of emission and absorption of radiation.
Let there be a box with totally reflecting walls, containing visible
or ultra-violet light in the form of standing waves. Radiation of
any frequency that is present at all must have an intensity
corresponding to one or more quanta. Let the box also contain
a gaseous atom in its normal state; and in the radiation let there
be at least one quantum of a wave-length which the atom can
absorb. The state of the whole system can be represented by a
composite ¥, incorporating wave functions of the kind (&)
described at the bottom of page 12. We can now consider an
alternative state V', in which the valence electron of the atom
is excited to a certain level and one quantum has temporarily
disappeared from the radiation in the box. The total energy is
the same as before. Intensities of both emission and absorption
can be obtained in this way by calculating probabilities of tran-
sition between two states of equal energy.



ELECTRON CONFIGURATIONS AND FIRST
IONISATION POTENTIALS

K L M - N F
1s | 28 2p | 38 3p 3d | 48 4p 4d | e-volis
H 1 1 . . 13:53
He 2 2 ] . 2447
Li 3 2 1 . 5-37
Be 4 2 2 . 9-28
B 5|2 |2 1 8-28
C 6 2 2 2 11-22
N 7 2 2 3 14-48
O 8 2 2 4 13:-55
F 9 2 2 5 18:6
Ne 10 2 2 6 21-47
Na 11 2 2 6 1 . 512
Mg 12 2 . 7-61
Al 13 2 1 5-96
Si14 10 2 2 8:12
P 15 Neon core 2 3 10-3
S 16 2 4 10-3
Cl 17 2 5 12-96
A 18 2 6 15-68
K 19 2 2 0 2 6 . 1 4-32
Ca 20 . 2 6-09
Se 21 1 2 . 67
Ti 22 2 2 . 6-81
VvV 23 3 2 . 6-76
Cr 24 18 5 | 1 . 674
Mn 25 Argon core 5 | 2 . 7-41
Fe 26 6 2 . 7-83
Co 27 7 2 . 8-5
Ni 28 8 2 . 7-67
Cu 29 2 2 6 2 6 10 1 . 7-68
Zn 30 2 . 9-36
Ga 31 28 2 1 5-97
Ge 32 Copper core 2 2 8:09




SUBJECT INDEX

Absorption of coefficients, 1347
of radiation, 7, 67-8, 102, 117-18

Acetylene molecule, 110

Adsorbed atoms, 120-1

Alpha particles, 107, 141-3, 147
Ammonia molecule, 110

Amplitude of y-wave, 74-7, 80, 101,

113, 120, 142

Angular momentum, 27-32, 3840, 77-8, -

102

Anti-parallel spins, 60, 97, 106-7, ]14~
16

Anti- symmetrical functions, 46-8, 87,
90-1, 96, 104-7

Approximate -functions, 90-1, 195—6,
153

Atomic number, 27, 58, 97-8

Autoelectronic effect, 1401, 143, 147

Band spectrum, 89, 95, 103, 107, 136-7

Boron hydride molecule, 111

Boundary, classical, 16, 23, 25, 27, 35,
69, 84

Central force problem, 25-37, 148-9

Centre of gravity, 98, 101-2, 152

Closed shells, 59-61, 78, 110

Collisions, 76, 84, 101

Composite i-function, 53—4 67, 70-1,
99

Compressibility of metals, 65

Compton effect, 9, 49, 82

Conductivity, electrical, 17-18, 115-20,
138 ,

Configurations, electronic, 58-61, 98,
110

Core, atomic, 27, 30, 32-3, 56, 59-61,
94, 112, 120

Current, circular, 77-8

linear, 745
Curvature, 23

De Broglie waves, 14, 16, 51, 62, 65,
74-7, 80, 95

Degeneracy, 33-4, 40-1, 63

Density, 25-6, 35-6, 61, 74-5

Deuteron, 107

Diamagnetic atoms, 78

Diffraction of electrons, 87

Dirac perturbation theory, 131-2, 138
Dissociation of molecule, 88, 110
Double-layers, electrical, 81, 121

Electronie collisions, 767, 84
configurations, 58-61, 98, 110
density, 256-6, 35-6
diffraction, 87
gas, 65
magnetic moment, 3940, 60
shells, 59-61, 78, 110
spin, 34, 3940, 57-60, 82

| Electrons, anti-bonding, 110, 125

bonding, 934, 109-10, 127
conduction, 115—-16
free, 56-7, 62-5, 79, 8I,
138—40
promotion of, 108-9, 125
Emission of radiation, 7, 71-2, 102, 107,
134 ‘
Ethylene molecule, 111
Exchange forces, 104, 108-10, 124-5
Excitation, 67, 128, 131-8, 147
Excited states, 6-7, 35-6, 53, 55, 71-2,
89, 97, 103.
Exclusion principle, 58-60, 63, 98, 106,
108, 114-15

114-17,

Films, adsorbed, 120-1

Frank-Condon principle, 136-8

Free electrons in metal, 56-7, 62-b, 79,
81, 114-17, 138-40

Frequencies, characteristic, 68-73, 79—
80, 129, 133-5, 144, 147

Harmonic oscillator, 12, 24, 41
HCI molecule, 98
Helium atom, 56, 87, 97
positive ion, 35, 56, 96~7
Homonuclear molecules, 103-7, 111
Hydrogen atom, 6, 25-39, 58, 77, 97,
101-2, 108-9, 135

molecular ion, 89-92, 94, 96, 104,
124-5

molecule, 87, 93-5, 97, 103, 105-8,
125-6

Impurities in crystal, 117-19
Infra-red, 7, 68, 102-3, 133



SUBJECT INDEX

Insulators, 115-20
Ionisation, 75, 13640
potential, 32-5, 59, 97, 110,
13940

136,

K-electrons, 57-9, 61, 109, 114, 136

Lithium atom, 27, 59, 87, 109
metal, 114
molecule, 94, 109, 115
positive ion, 35, 56, 135

Magnetic moment, 38-40, 60, 77-8,
107, 111

Magneton, 38, 78, 107

Matrix element, 133-5, 144, 155

Momentum, 13-14, 50-2, 75, 101, 150

Multiplicity, 34, 40, 78

Negative ion, 87, 140
Neon atom, 60, 110
Nitrogen atom, 60
molecule, 110
Nodal surfaces, 31, 34, 37, 59, 103, 114
Normalisation, 11, 26, 36, 55, 74, 77, 86,
90, 123, 129
Nuclei, radioactive, 142-3, 147
stable, 106-7, 141

Observable quantities,
99-100

Orthogonality, 129-30, 132, 155

Orthohelium, 87

Orthohydrogen, 105, 107, 111

Overlapping, principle of, 123-37, 1448,
154-5

Oxygen molecule, 110

nucleus, 107

10, 51, 72-3,

Parahydrogen, 105, 107, 111

Periodic table, 58-61

Perturbation, 66, 128-9, 131-5, 143-7

Photoconductivity, 115, 121

Photoelectric effect, 5, 64, 81, 121, 133,
136

Photo-ionisation, 136

p-levels, 31-37, 59-61, 110, 127

Potential barrier, 70, 79-81, 109, 113-
15, 140-5

Probabilities, 11-14, 16, 52-3, 67, 72,
86-7, 99, 128

Promotion, 108-9, 125

Quantisation, 21,
95, 102, 114

28, 3841, 45-6, 86,

161

Quantum numbers, 24, 2941, 59-60,
102-3, 108-9, 149

Reduced mass, 98, 102, 148, 152
Rotation, molecular, 7, 71, 95, 98, 102-7

Schroedinger equation, 16, 25, 52, 54,
58, 73
perturbation theory, 122—4, 127, 154-5
Self-consistent field, 56-7, 61-2, 82, 87
Semi-conductors, 118-19, 121
Series limit, 24, 32-3, 95, 136
s-levels, 32-3, 3640, 58-60, 78, 91, 97,
108-10, 134
Sodium atom, 27, 33
Spacing of levels, 6-7, 24, 33-5, 62, 95,
103, 143

Specific heat of gases, 95

of hydrogen, 105
of metals, 64
Specific volume, 65
Spectrum, band, 89, 95, 103, 107, 136-7
continuous, 136
line, 334, 68, 72, 135
Spherical harmonics, 148-9
Spin of electron, 34, 39—40, 57-60, 82
of nuclei, 106-7, 111
of proton, 40, 107
Standing waves, 68-9, 75, 79, 115
Statistics, Fermi-Dirac, 82
Stern-Gerlach experiment, 38—40, 78, 107
Stream of particles, 74—5
Sublimation energy, 120
Symmetry, 45~7, 87, 89, 93, 104-7, 126
spherical, 25-6, 28-9, 39, 61, 127, 134

Thermal energy, 7, 64, 71,95, 105, 117-19
Thermionics, 64, 81, 121
Threshold, photoelectric, 63—4, 121

Uncertainty, principle of, 50, 54-5, 73,
76-7, 101, 145, 150

Valence bonds, 94, 108-11, 127, 138
Vibrations, molecular, 7, 89, 94-5, 102-3,
106
of lattice, 117-19
Volta effect, 81, 139, 143

Wave-length, 14, 24, 30, 62, 65, 95, 101
Wave-packet, 76, 79, 101, 142
Work function, 5, 634, 81 121, 13940

X-ray absorption, 133, 136
levels, 57-61, 109

Zeeman effect, 34, 72



NAME

Andrade, 82

Bethe, 147

Black, 82

Bloch, 121

Bohr, 6, 38, 57, 72
Born, 147

Breit, 82
Brillouin, 121

Compton, A. H., 49
Condon, 82, 138, 147

Davisson, 157
Dubridge, 121
Dennison, 111, 138
Dirac, 82, 138

Estermann, 111
Eyring, 138

Farkas, 111

Fermi, 82

Fowler, R. H., 82, 121
Franck, 138

Fraser, 82

Frenkel, 82

Frisch, 111

Gamow, 147
Gerlach, 38, 78
Germer, 157
Gossling, 147
Gurney, 82, 147

Hartree, 82
Heisenberg, 82
Heitler, 111

INDEX

Hughes, 121
Hund, 82

Jeans, 148
Jones, H., 121

Kronig, 111, 121

Lennard Jones, 138
London, 111

Massey, 82, 138
Morse, 138

Moseley, 59

Mott, 82, 87, 121, 138

Mulliken, 111

Nordheim, 82
O’Bryan, 121

Pauli, 82
Pauling, 82, 138

Peierls, 121

Penney, 121
Planck, 14, 18, 49
Polanyi, 138

Rosen, 138

Skinner, 121
Smyth, H., 111
Sommerfeld, 82
Stern, 38, 78

Williams, E. J., 138
Wilson, A. H., 121

.('AMBRIDGE: PRINTED BY PHOTOGRAFHIC PROCESS FOR THE UNIVERSBITY PRESS








