Preface

On the occasion of Wolfhart Zimmermann’s 70th birthday a conference on Quan-
tum Field Theory was held on June 21-24, 1998 at the Ringberg Castle situated
in the splendid scenery of Upper Bavaria.

Twelve invited speakers gave talks on topics related in one or the other way
to the scientific work of Wolfhart Zimmermann. All participants agreed that the
conference was a great success and we would like to thank the speakers for their
interesting and well-prepared talks covering a wide range of interesting actual
quantum field theoretical problems.

With great regret we had received the short-term cancellation of Harry
Lehmann’s participation due to his worsening health conditions. Harry Lehmann,
like Wolfhart Zimmermann, one of the pioneers of modern QFT had planned to
give a historical talk on the “Gottinger Feldverein”, which we are sure would
have been spiced with many personal anecdotes. Harry Lehmann died a few
months later on Nov. 22, 1998.

In addition to the talks held at the conference we decided to include in
these proceedings a small selection of Wolfhart Zimmermann’s scientific papers,
which proved fundamental to various important developments of modern QFT
as there are the treatment of bound states in QFT, Renormalized Perturbation
Theory, Composite Operators and Operator Product Expansions. We resisted
the temptation to include the famous LSZ papers from the fifties, whose content
has already entered in most of the standard text books on QFT.

We would like to thank the Max Planck Society for funding the conference
and A. Hérmann and his crew at the Ringberg Castle for their warm hospitality
and perfect organization.

Munich, Peter Breitenlohner
July 2000 Dieter Maison
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Anomalies

William A. Bardeen

Fermi National Accelerator Laboratory,
P.O. Box 500, Batavia, IL 60510, USA

Abstract. I discuss the role of anomalies in the modern development of quantum field
theory and the implications for physics.

1 Introduction

Symmetries play an essential role in our understanding of elementary particle
physics. Global symmetries in the form of conserved charges label the physical
states and reflect the existence of conserved local currents. Local symmetries in
the form of gauge field theories are used to describe practically all aspects of
elementary particle physics phenomena and imply the existence of vector gauge
fields coupled to conserved local currents.

In electromagnetism, the photons are the quanta of the electromagnetic gauge
field. In the theory of electroweak interactions, the massive W and Z particles are
the quanta of the electroweak gauge fields in addition to the massless photon. The -
strorg dynamics of the quarks and gluons are controlled by the color interactions
of the quantum chromodynamic gauge fields. Local Lorentz symmetries are used
to describe the gravitational interactions.

In some cases the symmetries are not realized explicitly although these in-
visible symmetries still involve exact symmetries at the fundamental level. In
quantum chromodynamics, the color confinement phenomena results from an
exact local color gauge symmetry. However color confinement implies that there
are no asymptotic states with color, such as the fundamental quarks and gluons,
and only color singlet particles can be directly observed as isolated states.

Symmetries can also be dynamically broken without destroying the exact
underlying symmetry. Spontaneous magnetization occurs when the spins in a
material tend to align in a particular direction breaking the explicit rotational
symmetry. This spontaneous breaking of the rotational spin symmetry implies
the existence of spin waves which govern the long range fluctuations of the
spins. Chiral symmetries reflect the independent rotations of the left and right
handed components of fermions which is an exact symmetry of a gauge field
theory of massless Dirac fermions as in the case of quantum electrodynamics
with massless electrons. PCAC and the dynamics of massless pions are thought
to reflect the dynamical breaking of the approximate chiral symmetries of the
strong interactions. At the fundamental level these global chiral symmetries are
due to local gauge dynamics of the color interactions becoming exact in the limit
where the light quarks are massless.

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, [pp. 3-14, 2000.
[ Springer-Verlag Berlin Heidelberg 2000



4 William A. Bardeen

Local gauge symmetries can also be spontaneously broken. Superconductivity
results from the dynamical breaking of the electromagnetic gauge symmetry.
This dynamical breaking implies the existence of supercurrents and the Meissner
effect which is related to the generation of a dynamical magnetic mass for the
photon, the gauge quanta of the electromagnetic gauge field. In a similar manner,
the electroweak interactions described by an exact local gauge symmetry which is
dynamically broken generating masses for all of the presently observed particles
including the massive gauge bosons, the W and Z particles, which mediate the
observed electroweak forces.

At present the Standard Model is used to explain all of the observed phenom-
ena of elementary particle physics. The Standard Model is based on exact local
gauge symmetries and the dynamics generated by the local gauge fields coupled
to the corresponding local conserved currents. The Standard Model currently
invokes the local gauge symmetries,

SU(3)color ® (SU(Q) ® U(l))ew ® Gravity s

of the strong, electroweak and gravitation interactions. Of course there are many
speculations about additional dynamical structure including supersymmetry,
technicolor grand unification and strings.

2 Anomalies — Clashing Symmetries

Symmetries provide the fundamental framework for our present formulation of
theoretical particle physics. However, anomalies arise when apparent classical
symmetries come in conflict. This clashing of symmetries has an important im-
pact on both the dynamics and the symmetry structure of the theories we use
to describe elementary particles. In the following sections, I will discuss the ori-
gins of anomalies, the structure of anomalies and some of the implications of
anomalies for physics.

The original anomaly puzzle arose in attempts to apply the newly formulated
quantum field theory to the two photon decay of the neutral pion [1,2]. J. Stein-
berger computed the decay from the one loop, triangle diagram for a virtual
proton with point couplings to the neutral pion and photons (Fig. 1). The decay

Y
7t0_<{
Y

Fig. 1. One loop diagram for the two photon decay of the neutral pion.

amplitude seemed to depend strongly upon whether pseudoscalar or pseudovec-
tor couplings were used for the interaction of the pion with the proton. However,
these interactions seemed to be equivalent if one integrated by parts and used the
field equations. This contradiction between the naive application of the quantum
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field equations and the direct calculation of the triangle diagrams became known
as the anomaly. Although the pseudoscalar coupling eventually proved to give
the correct experimental result, it is possible that this early attempt to apply
quantum field theory to problems beyond QED convinced Steinberger to focus
his future career on experimental physics instead of struggling with unreliable
theories.

A formal resolution of the problem of the equivalence of pseudovector and
pseudoscalar couplings was provided J. Schwinger [3] using proper time methods.
He showed that a careful definition of singular operator products was required
before the equations of motion could be used to study the anomaly using the
equations of motion of the quantum field theory.

A 'more complete understanding of the anomaly and its physical impact came
from the study of the anomalous divergence equations for the axial-vector current
[4,5]. Axial-vector currents had become an important focus of research because
of their role in understanding hadronic chiral symmetry or PCAC. The partial
conservation of the axial-vector current followed from this chiral symmetry and
implied particular couplings for the pions at low energy. Massless pions are iden-
tified as the Goldstone bosons of dynamical chiral symmetry breaking. Adler
showed that the anomaly required the existence of specific operator corrections
to the fermion axial-vector divergence equation.

O {pyuysw} = 2m{Pys} + %FW *F,, .

This result for a free fermion can be generalized to the axial-vector current for .
hadronic chiral symmetry. The anomaly modifies the divergence equation and
predicts the decay amplitude for the Goldstone pion,

aquu = trfermions{T3Q2}f7‘r‘FuV : *F;w ’

1

fx’

where the anomaly coefficient is determined by the fundamental fermion struc-
ture of the theory. The anomalous divergence equation implies that the axial
vector current can not be conserved in the presence of electromagnetism even
in the symmetric limit where the pions are massless. From this perspective, the
chiral symmetry associated with axial-vector current clashes with local gauge
symmetries of electromagnetism.

Because the magnitude of the pion decay amplitude is directly related to the
strength of the anomaly, it is a sensitive measure of the fundamental fermion
structure of a dynamical theory of hadrons. The measured values of the anoma-
lous pion decay amplitude and the e+e- annihilation cross-section could be com-
bined with current algebra and operator product expansion methods to provide
the first convincing evidence for the dynamical color triplet quark picture [6]. Of
course, the observed pion decay rate was also consistent with the original Stein-
berger calculation if pseudoscalar pion-nucleon couplings were used to compute
the proton loop amplitude.

AT(O—P}"Y = trfermions{T3Qz}
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3 The Nonabelian Anomaly

Anomalies have a more complex structure than the abelian anomaly observed in
the anomalous divergence of the neutral axial-vector current. Nonabelian anoma-
lies can be studied using generalized fermion loops for nonabelian currents where
the fermions have arbitrary nonabelian couplings to vector, axial-vector, scalar
and pseudoscalar densities.

L=9{v"Vy + v 154, — Z — iy} = 9{I}y .

Explicit perturbative computations of general fermion loops for arbitrary ex-
ternal fields can be made where the short distance singularities are controlled
by a well-defined cutoff or regularization procedure. This vacuum functional,
or fermion loop effective potential (Fig. 2), can be used to define consistent

r
ro)=3 T()"
r U

Fig. 2. Vacuum functional for fermions with arbitrary nonabelian couplings.

matrix elements of the nonabelian current and other operators. The covariant
derivative of these currents can then be studied for possible anomalous terms.
This study corresponds to an explicit check of the gauge covariance of the effec-
tive potential. Anomalous terms reflect the explicit breaking of the nonabelian
gauge symmetries. A general regularization procedure will normally break many
of these symmetries. Local counter-terms can then be added to the effective
potential to restore the classical gauge symmetries. When this is not possible,
the fermion loops are said to contain anomalies. By explicit calculation [7], all
anomalous terms can be made to cancel except those involving certain external
vector and axial-vector fields. For a particular choice of counter-terms, the gauge
variation of the general fermion loop effective action be reduced to an especially
simple form,

D(Ay,T) = R(I'idy — iA_T' —-8A,.T)
2
- %(;T)“ / 26 trys (2iALOFVYOOVT — PVIVIVIY

where A is a left-handed gauge transformation and V; is the left-handed ex-
ternal gauge field. Right handed gauge transformations yield a corresponding
result. The generalized anomalous divergence equation for nonabelian currents
yields

2

D# Jf}l_u(x) 6(2 }i

o tTAL {201V 07V — B (VIVIVI)Y
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where D* is the appropriate covariant derivative. Since the anomalous diver-
gence only involves other external gauge fields, the breaking of the nonabelian
symmetries can be viewed as a clash between the symmetries associated with
the current and the symmetries associated with the external gauge fields.

The form of the nonabelian anomaly is not arbitrary but is constrained by
consistency conditions which must be satisfied by any proper formulation of the
quantum theory [8]. The Wess-Zumino consistency conditions provide a powerful
constraint on the algebraic structure of the anomaly and a simple test for the
consistency of any specific calculation of anomalous terms.

The general result for the fermion loop anomaly obtained above has been
confirmed by many different methods. A particularly elegant derivation of the
anomaly invokes the path integral formulation of quantum field theory [9].
Fermion loops are generated by the functional integral,

[ pui exp{z' / da:{z/?w-Dw}} ,

where the classical fermion action is presumed to be covariant under generalized
gauge transformations, but the fermionic measure may not preserve this covari-
ance. Even here great care must be used in giving precise meaning to these
formal expressions. In this formalism, anomalies are directly related to the non-
invariance of the fermionic measure and not to problems associated with defining
composite operators. Of course, this approach gives the same result as the direct
calculation of the fermion loop diagrams, but it adds an important perspective
to our understanding of anomalies.

4 Nonrenormalization Theorem

A remarkable feature of anomalies concerns their behavior under renormaliza-
tion. A careful study of higher order radiative corrections shows that these correc-
tions do not modify the fermion loop anomaly computed above. Since anomalies
reflect unavoidable gauge symmetry breaking, they are determined solely by the
structure of the small fermion loops and their symmetries [10]. The nonrenor-
malization theorem was originally checked by explicit two loop computations
and confirmed by general regularization arguments to all orders and extended
to arbitrary renormalizable quantum field theories in four dimensions [10,11].
The nonrenormalization theorem was also proven using renormalization group
methods [12].

The nonrenormalization theorem is extremely important as it establishes
the fundamental significance of the anomaly. The anomaly is not simply an
artifact of a particular method of calculation or order of perturbation theory.
As stated in our discussion of the evidence for color triplet quarks, the anomaly
directly measures properties related to the fundamental fermion structure of the
underlying quantum field theory. This feature has great significance in the many
applications of anomalies to physics.
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5 Classical Applications

Anomalies have many different implications for quantum field theory. The con-
sistency of gauge field theory requires the absence of anomalies associated with
the dynamical currents (D) which implies that the fermion loop anomalies must
cancel between different kinds of fermions in the theory. If the anomalous cur-
rent divergence involves dynamical gauge fields, then the global symmetries (G)
associated with the anomalous current are explicitly broken by dynamics of the
gauge fields. Even if no dynamical currents are involved, anomalies can have im-
portant implications for the global current algebra associated with the external
symmetries of a quantum field theory.

5.1 Anomaly Cancellation (DDD)

Anomalies reflect an intrinsic breaking of local gauge symmetries which can not
be compensated by simply adding local counter-terms in higher order calcula-
tions. Since gauge field theories are consistent only if the local gauge symmetries
are preserved by the quantum theory, the presence of anomalies implies that
certain gauge models simply do not exist at the quantum level. Hence, anoma-
lies associated with the dynamical gauge currents must cancel if the dynamical
gauge symmetries are to be preserved. The fermion loop anomalies depend only
on the charge structure of the dynamical fermions, and their cancellation con-
strains the fermion matter content of many gauge field theories. The nonrenor-
malization theorem then guarantees that this cancellation will be preserved to all
orders. From the form of the nonabelian anomaly, it can be shown that models
with vectorlike gauge couplings, such as QED or QCD, do not have dynamical
anomalies. Only theories where the fermions have chiral gauge couplings can
have nontrivial anomalies.

The Standard Model of the electroweak interactions provides an interesting
example of a chiral gauge theory where anomalies do occur but are canceled
between the various quark and lepton contributions [13,14]. The anomalies for
a single generation of quarks and leptons are listed in Table 1. It is a remark-

Table 1. Contributions of leptons and quarks to nonabelian anomalies.

Standard Model | Leptons Quarks Sum
SU(22 ®U(1) - 3. 0
U(1)? 1-3 |%—-3+3 0

1
6

(N1

W
©lo

able feature of the Standard Model that a theory involving only quarks or only
leptons would not be consistent, but the combined theory of quarks and leptons
is free of all dynamical anomalies. Anomaly cancellation is a central element
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in building models beyond the Standard Model including grand unification, ex-
tended technicolor or any other theory which adds new fermions or additional
gauge interactions.

5.2 Global Symmetry Breaking (GDD)

In gauge field theories, the anomalous divergence equations imply that various
global symmetries can be broken by anomalies. In the original calculation of
the axial current anomaly, the chiral symmetry of the neutral pion current was
broken by the coupling to the electromagnetic gauge fields which modified the
low energy theorem for the coupling of pions to photons.

Global symmetries can be broken more dramatically by the presence of non-
trivial gauge dynamics. The U(1) problem of QCD is a classic example. The
original formulation of quark model seemed to have too much symmetry as
there were nine conserved chiral currents in the limit where the light quarks are
massless. Weinberg had argued that there should be an extra Goldstone boson,
an 7', nearly degenerate with the pion. Instead, the physical ' has a mass of
order 1 GeV. In quantum chromodynamics, the singlet axial-vector current has
an anomaly involving the QCD gauge fields. An explicit calculation by 't Hooft
[15] showed that instanton effects could break the U(1) symmetries and generate
a mass for the ' [16].

In a similar vein, instanton effects can be shown to generate explicit break-
ing of the baryon number symmetry in the Standard Model [15]. This may be
somewhat surprising as the baryon number current is a vector current and not
normally associated with anomalies. However, the Standard Model requires that
the SU(2) x U(1) gauge symmetries be exactly preserved. Since these currents
have chiral structure, the anomaly must be shifted away from the dynamical cur-
rents, and it reappears as an anomaly in the baryon number current. Hence, the
anomaly predicts the proton will decay in the normal Standard Model although
the explicit calculation shows that the vacuum decay rate is so highly suppressed
that a proton has yet to decay via this mechanism in the entire lifetime of the
universe.

Another implication of the QCD anomaly concerns the strong CP problem.
Naively, all CP violating phases in the quark and lepton masses matrices can be
rotated away leaving only the weak CP phases of the CKM matrix. However, the
anomaly induced U(1) breaking of QCD implies that the U(1) phase cannot be
freely rotated and a strong CP violation remains. Since there are precise limits
on the size of any strong CP violation, alternative models beyond the standard
model were considered where a new Peccei-Quinn symmetry [17] would allow the
strong CP phase to be rotated away. However, Wilczek and Weinberg [18] ar-
gued that this new symmetry would imply the existence a new pseudo-Goldstone
boson, the axion. Detailed predictions about the mass and couplings of the ax-
ion could be made using the anomalous current algebra reflecting the strong
breaking of the U(1) symmetry in QCD [19]. Extensive tests of these predictions
show that axions associated with the scale the electroweak interactions are now
ruled out [20] and only much higher scales are consistent with the axion picture.
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The resolution of the strong CP problem remains an outstanding puzzle of the
Standard Model.

5.3 Global Current Algebra (GGG)

Anomalies also modify the current algebra relations associated with purely global
symmetries. This is clear from the anomalous divergence equation where the
external gauge fields in the anomalous divergence are associated with global
symmetry currents and not the dynamical gauge fields. These anomalies reflect
the clash of symmetries generated by the quantum effects of the fermion loops.
In many applications of current algebra one combines the constraints of current
algebra with low energy theorems associated with the infrared dynamics of the
system. Wess and Zumino used their consistency conditions to derive an effective
action for the Goldstone pions consistent with the anomalous couplings to the
electromagnetic field [8]. Witten showed that this could be extended to derive
anomalous terms in the purely strong strong dynamics of pseudoscalar mesons
[21].

The anomaly has both ultraviolet and infrared implications. The anomaly
associated with the global symmetries of a given theory provides a set of con-
sistency conditions which must be satisfied by any infrared realization of the
theory. These consistency conditions place severe constraints on the massless
spectrum of fermions and Goldstone bosons even when the dynamics is highly
nonperturbative [22].

6 Topology and Geometry

Anomalies have important relations to the topology and geometry of gauge fields.
Atiyah and Singer [23] showed that index theorems and the spectral properties
of the Dirac operator relate the anomaly to the topological structure of gauge
fields. The eigenvalues of the Dirac operator,

VD =79"D, =4*8, —iT*y* A},

depend upon the deformations of the background gauge fields and reflect their
topological structure. The anomalous divergence of the axial vector current,

8 Js, = SE4{GH(4) - *Gru(A)}

~ &2

is directly related to the topological index of the gauge field

v = Flﬂa /dztr{G’“’(A(z)) . *Guu(A(z))} ’

which takes on integer values.
Differential geometry has been used to analyze the structure of anomalies
in arbitrary dimensions of space-time [24]. The descent equations can be used
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to connect various aspects of the anomaly structure. As in the case of the
Wess-Zumino consistency conditions, the descent equations strongly constrain
the anomalous structure allowed for any theory.

The anomaly also implications for topological objects which occur in gauge
field theories. Instantons, sphalerons and similar objects are related to fermion
number changing processes which are determined by the anomaly structure of the
underlying theory [22]. Anomalies are related to the mechanisms of charge frac-
tionalization and induced charge on topological defects such as dyons, skyrmeons
and polyacetylene. Anomalies also have an important impact on the physics of
magnetic monopoles, cosmic strings, domain walls, vacuum bubbles, D-branes,
etc. In many cases where the physics is highly nonperturbative, the anomaly
structure provides the only precise information on the behavior of complex sys-
tems.

7 Gravitational Anomalies

Anomalies also occur for systems interacting with gravitational fields. In precise
analogy with the axial-vector current anomaly in a background electromagnetic
field, the fermion loop processes generate a gravitational anomaly in the diver-
gence of the axial-vector current [26],

1

3“.]5# = Wﬁuuor

Ruuaﬁ RZE ,

where the anomaly is related to a topological index of the gravitational field.
Since the Standard Model contains chiral U(1) currents, the potential for grav-
itational anomalies exists. Such an anomaly would imply a clash between the
Standard Model gauge symmetries and the general covariance of the background
gravitational field. We would expect the gravitational anomalies to cancel if we
wish to preserve our normal picture of gravity. In the Standard model, the indi-
vidual fermions do have anomalous contributions, but the sum over all fermionic
contributions cancels (Table 2). Contrary to the case of the gauge anomalies,
the cancellation occurs separately for quarks and leptons.

Table 2. Contributions of leptons and quarks to the gravitational anomaly.

Standard Model | Leptons Quarks Sum
R*@U(1) |@(—3)+1[3(3)+3(=3) +6(3)] 0

Pure gravitational anomalies can also exist in 2, 6 and 10 dimensions [26]. As
in gauge theories, it is important to determine the precise form of the consistent
gravitational anomaly as distinguished from the covariant anomalies associated
with various currents or densities. In theories with fermions, the vierbein field
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must be introduced to define the spin using the tangent space symmetries. In
this case, the local gravitational symmetries can be viewed from the perspectives
of local Lorentz symmetry or general covariance. By using the veirbein field, the
gravitational anomalies can be transformed from one perspective to the other by
adding the analogue of Wess-Zumino counter-terms to the gravitational action

[27].

8 Supersymmetry

Supersymmetry adds additional complexity to the anomaly picture. Here there
is potential for the gauge symmetries or global symmetries to clash with super-
symmetry. Indeed, there was initially considerable confusion between the non-
renormalization theorem associated with the axial-vector currents, the renormal-
ization of the supersymmetric b-function and the nonrenormalization theorems
associated with the holomorphy of the superpotential [27-30]. Anomalies also
have an important impact on the nonperturbative structure of the superpoten-
tial, holomorphy and duality [31].

9 Superstrings

The modern superstring era began in 1984 with the observation by Green and
Schwarz [32] that the anomalies which affected earlier formulations of string the-
ory could be made to cancel. The apparent loop anomalies were found to cancel
against anomalous couplings of the graviational sector. Consistent superstring
theories were found to exist in 10 dimensions (four visible dimensions and six
compact dimensions) for particular gauge groups. The most interesting early
string model was the heterotic string [33]. The low energy spectrum of the the-
ory is determined by anomalies in terms of index theorems and the topological
structure of the compact six dimensional manifolds. In this way the anomalies
could be used to predict the generation structure of the chiral fermions [34].
More recently, theoretical efforts have focused on superstring duality, M-theory
and D-branes [34]. Even here anomalies and related phenomena continue provide
important insights into the structure and applications of string theory.

10 Conclusions

Anomalies started out as a troublesome ambiguity about how to apply the new
ideas of quantum field theory to interesting physical problems. The resolution
of this ambiguity led to a more fundamental understanding of quantum field
theories and their symmetries. The discovery and analysis of the complete non-
abelian anomaly showed that the anomaly was much more complex than the
simple form of the anomalous divergence of the axial-vector current. Anoma-
lies could be viewed as the fundamental clash between the classical symmetries
which can occur in a quantum system. The nonrenormalization theorems showed
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that the anomalies reflected the fundamental structure of the quantum field the-
ory and were not just an artifact of a particular computation in some order in
perturbation theory. As nonabelian gauge theories began to take over the theo-
retical foundations of particle physics, the anomaly played an important role in
determining the structure of the gauge models and the symmetry structure of
the resulting theories. Anomalies cancellation was a required condition for model
building, the global symmetry structure is modified by the presence of anoma-
lies, and the anomaly also changed the global current algebras. In many cases,
the anomaly provides the only nonperturbative information about specific gauge
field theories, as reflected by the constraints of the *t Hooft anomaly matching
conditions and by many other applications.

Connections to fundamental mathematical structures have led to a deeper un-
derstanding of anomalies and their implications Differential geometry provided
an elegant mechanism for the analysis of anomaly structure and pointed to gen-
eralizations of the anomaly picture. Index theorems, spectral flow and related
techniques revealed the deep connection between anomalies and the topological
structure of gauge fields. The interplay between the mathematics and the physics
has led to a much richer view of both fields.

Anomalies played an important role in the rebirth of string theory. They
continue to have an important impact on recent developments of string theory,
M-theory and D-branes. String theories have revealed a much richer symmetry
structure that goes far beyond the symmetries of normal gauge field theory, and
anomalies may help provide a path to a more complete understanding of the
symmetries and the dynamics.

Many people have played important roles in understanding the mathematical
structure of anomalies and in developing the vast array of applications in both
physics and mathematics. In my original derivation of the nonabelian anomaly,
I knew the result had fundamental significance but had little idea how pervasive
anomalies would become in the future.
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Abstract. We give short historical account of the origin of the algebraic quantization
method from Zimmermann’s construction of normal products. We also give a sketchy
description of a recent application of the same method.

In his report at the Aix-en-Provence Conference in 1973 Symanzik mentioned
among the most relevant achievements of renormalization theory, the “Normal
Operator Products”: “There exist (in renormalization theory, at least) operators
which are finite, local, and transform as the naive operator product would”. In his
speech Symanzik referred mainly to the role of these operators in the construction
of the short distance operator product expansions {1], and hence he considered
only minimally subtracted operators. It had however been clear for a couple of
years that the normal products provided a new, general and rigorous tool for
the study of renormalization theory and in particular of symmetry properties in
field theory.

Indeed, after the pioneering Zimmermann’s work [2], in a sequence of pa-
pers published between 1971 and 1973 Lowenstein, Schroer, Gomes and Lam
showed that the use of normal products allows a rigorous and simple formula-
tion of the Majorana-Schwinger Quantum Action Principle {4,5]. They discussed
in particular the derivation of single current Ward Identities in models with
broken symmetries, the origin of a generalized class of anomalies, the structure
of renormalized energy-momentum tensor [6]. With the same level of rigor and
simplicity Lowenstein was able to derive a class of parametric equations gener-
alizing Callan-Symanzik equations and, in two remarkable papers with Schroer,
gave the first rigorous proof of the gauge independence of the S-matrix in mas-
sive QED [7] and of the absence of radiative corrections to the axial anomaly in
the same framework [8].

The renormalized version of the Majorana-Schwinger Quantum Action Prin-
ciple describes the first-order effect of an “infinitesimal” quantum field transfor-
mation on a generic T-ordered vacuum correlator. In general this introduces into
the correlators new operators that, in the framework of Zimmermann’s scheme,
are characterized by different, possibly anisotropic, subtraction degrees [9]. These
over-subtracted normal products do not transform “as they would” under field
transformations. They can be reduced to linear combinations of minimally sub-
tracted normal products that, in perturbation theory, generate a basis for the
local point-like operators. This reduction yields a generalized class of anomalies.

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, {jp] 15-25, 2000.
[ Springer-Verlag Berlin Heidelberg 2000
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Lam, in his detailed study of the Quantum Action Principle, extending Lowen-
stein’s work, put into evidence the relation between the over- and anisotropic
subtractions and the diagrammatic and forest structure of the renormalized am-
plitudes, in particular in the case of non-linear field transformations. The need
of some refinement of Lam’s analysis was later shown by Breitenlhoner and Mai-
son [10]. The extension of the analysis to models involving massless particles
required a further generalization of the method of normal operator involving
infra-red subtractions [11].

From a general point of view the normal product method is rigorous and
simple. However its direct applicability requires a detailed analysis of the dia-
grams contributing to the correlators and of their subtractions. This is therefore
limited to a particular but important class of models which includes QED and
the simplest models with broken linear symmetries.

Taking into account the complexity of the diagrammatic and subtraction
structure of the Feynman amplitudes, it is clear that a detailed and direct study
of the renormalization corrections to non-abelian gauge theories and to the Ward
identities corresponding to the non-abelian current algebra relations [12] is out
reach even for the top experts. There are however few general properties of
the quantum corrections that are independent of the particular diagrammatic
and subtraction structure of the correlators and direct consequence of power
counting.

Indeed, independently of any detail of the theory, the quantum corrections
appear as linear combinations of (integrated) point-like normal products of the
external and quantized fields. These are Lorentz scalars and have dimensions
limited by that of the variation of the classical action. One has therefore a finite
number of independent contributions.

To keep a sufficient level of generality it is convenient to adopt the func-
tional framework in which the point-like operators are defined through functional
derivatives with respect to corresponding external fields. In this framework the
Schwinger terms, that we consider together with the contact terms required by a
covariant T-ordering, appear as normal products of external and quantized fields
(with subtraction indices depending on both kinds of field legs). The current al-
gebra Ward identities describe the invariance of the vacuum functional under
non-abelian gauge transformations of the external vector fields coupled to the
currents and the chiral anomalies correspond to genuine quantum breakings to
these identities: they are 4-dimensional normal products of external gauge fields.

For what concerns the construction of the quantum theory, we assume a sub-
traction scheme fixed a priori. Consider for example the minimal dimensional
scheme or the Lowenstein-Zimmermann’s zero-momentum subtraction method.
Once the subtraction scheme is chosen, the quantum theory is identified by a
Lagrangian — that we shall call “ Effective Lagrangian” ~— whose coefficients
are formal power series in /i and are identified with the series of the finite coun-
terterms implementing the wanted renormalization conditions. In particular a
theory with prescribed invariance properties is renormalizable if there exist de-
formations of the Effective Lagrangian for which the quantum corrections to the
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wanted Ward Identities vanish to all orders of perturbation theory. Assuming
this attitude, the study of the quantized theory should be extended from that of
the classically invariant theories with A-dependent coefficients to a wide class of
deformations. Power counting and Lorentz invariance are the only classical prop-
erties that are generally preserved at the quantum perturbative level. Therefore
by deformations of the classical theory we shall mean the Effective Lagrangians
corresponding to generic Lorentz invariant and power-counting renormalizable
actions with the wanted quantum and external field content.

Let the generic deformations of the classical theory be identified by a finite
number of A-dependent parameters: ¢t for i = 1,..,n . The vanishing conditions
for the quantum corrections correspond to a finite number (say N ) of algebraic
relations, ensuring the vanishing of the coefficients of the N independent break-
ing operator (Schwinger) terms. In perturbation theory these algebraic relations
appear as formal power series in the perturbative parameter h ; that is, they can
be written in the form:

B, (h,c)=0 for a=1,.,N ¢

with B,, and of course c, formal power series in /. The classical theory is iden-
tified by the system:
B, (0,¢0) = 0. (2)

At least a subset of the solutions of this system lie on a non-singular (g-dimen-
sional, if ¢ is the number of the parameters of the classical theory) submanifold
M, of R* . The tangent space to this manifold at the point ¢ is defined by:

Ba,i (07 CO) Ui =0 (3)

for every tangent vector v. Here the index i labels the ct-partial derivative.

In perturbation theory the condition (1) is replaced by its linearized version
that ensures recursively the existence of i formal series solutions to (1). This
linearized condition requires that the system

B, (B, ¢) 4+ Ba,i (0,c0) 6¢* = O (hB) 4)

has solutions d¢ = O (B) for every point co of M. Indeed, assuming that B, (R, c)
be of order m in i (m, owing to (2), must be greater than zero), one has from 4
that B, (h,c + d¢) is of order greater than m. This is expressed in closed form
by

B, (h,c+ éc) = O (hB, (R, c)), (5)

which is equivalent to the vanishing of B,.

Thus, according to (4), one should prove that B, (h,c) belongs to the im-
age of the matrix B, ; (0,co) in R™ if ¢p € M., up to higher order corrections.
Notice that B, ; (0, co) dc’ represents the variation of the classical action. There-
fore (4) means that the genuine quantum corrections should be compensable by
deformations of the action.

Let us illustrate the above equations by a “trivial” example. Suppose we are
given a massive scalar field theory carrying an orthogonal representation of a
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simple group. We want to analyze the renormalizability of the theory under the
condition that the Green functions of the theory be invariant under the action of
the above group. Let the infinitesimal action of the group on the field be given
by: ’ .

0w ¢' = wT,;¢ . (6)

Let I'[¢] be the one-particle-irreducible Green functional of the theory. The
renormalized invariant theory should satisfy:

- )
oo I'= | d "‘T’ —I'=0. 7
J e Tt @) =0 @
For a generic choice of the Effective Lagrangian, according to the normal product
version of the Quantum Action Principle, this Ward Identity is written in the
broken form:

5T = / dz Ny [wab@02%(2)] I = / dz [wab229(z) + O (D)) (8)

where the symbol N4 [X] in front of I" means the insertion of the corresponding
operator into the one-particle irreducible Green functions and {§2¢} for a =
1,..,N is a basis of 4-dimensional point-like operators. Notice that in (8) the
operators §2° play two different roles; indeed in the first equation they appear as
normal product operators while in the second one they are functionals. This puts
into evidence that in the tree approximation the insertion into I of a normal
product generates the corresponding elementary vertex.

Now we can identify the coefficients B, (%, c) introduced above with wab%
and hence Eq. (1) corresponds to the system wab? (A,c) = 0, that we write in
the form of a functional equation:

/ dz web® () 24(z) = 0. ©)

In this functional form we can also represent the symmetry breaking induced
in the classical approximation by an infinitesimal deformation of the action 61"
corresponding to the variation dc of the parameters. Introducing the complete
system {+;} of independent 4-dimensional integrated Lorentz scalar functionals
— that is a basis for the Effective Lagrangians — we can write 61" = 4; éc* and
the corresponding symmetry breaking is written:

/d:c B,,i (0,c0) £2°(2)dc* = 6,%; - (10)

Now we can translate into our functional formalism the recursive version of the
renormalizability condition (4):

/ dz wabS () Q°(@) + 6.4 6¢ = O (hb) . (1)
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Taking into account that the basis of functionals {+;} is complete, we can write
this equation in the simpler form:

/ dzwab® (B, ¢) 2°(x) = 6,X + O (hb) . (12)

where X is any 4-dimensional integrated Lorentz scalar functional of order b.
This is the final form of the perturbative renormalizability condition for our
symmetric theory.

In the present situation the diagrammatic analysis is sufficient to prove that
(12) has solutions X. Indeed in this example the infinitesimal field transforma-
tions are linear and homogeneous and the normal products transform as the
corresponding classical functionals; therefore the left-hand side of (12) can be
written as the action of §, on the Effective Action.

However, for example, the same diagrammatic analysis appears particularly
complex in the study of current algebra Ward identities in a linear sigma model
[12]). Adopting in this specific case the same functional framework, one is led to
a situation formally analogous to our example in which, however, the number
and structure of the elements of the £2° basis is exceedingly rich. This is why the
idea emerged to reduce this number by using a consistency condition introduced
by Wess and Zumino [13] to characterize the non-abelian axial anomaly.

In the case of our example the consistency condition appears as a consequence
of the Lie algebra commutation relations:

[5w'76w] = é[w,u’] . (13)

Indeed, if we compute [d,/,8,] " by means of Eq. (8) we obtain:
0w /da:wa be2%(z) — b /d:l:w; b2 2% (z) =
/da: [w,w'], b502°%(z) + O(hb) . (14)

This is the rigid version of Wess-Zumino consistency condition. It is easy to show
by purely algebraic means that, in the case of semi-simple symmetry groups, Eq.
(14) guarantees the existence of solutions to Eq. (12) and hence the renormal-
izability of the symmetric theory. This is the historical origin of the algebraic
renormalization method.

The second important situation requiring more powerful algebraic tools ap-
pears in the study of non-abelian gauge theories in which the invariance prop-
erties of the theory are controlled by the Slavnov-Taylor identity. The essential
novelties of this theory, in the Faddeev-Popov quantization scheme, are the non-
linearity and nilpotency of the field transformations leaving the classical action
invariant [14)].

The non-linearity of the field transformations implies that they are affected
by quantum corrections in much the same way as the couplings appearing in the
Lagrangian. In other words the infinitesimally transformed fields are composite



20 Carlo Becchi, Stefano Giusto, and Camillo Imbimbo

operators that must be written as linear combinations of normal products and
suitably renormalized. In our functional scheme this implies the introduction
for (almost) every field of a corresponding external field. We shall use for these
external fields the name of anti-fields that has been introduced quite recently
without any substantial change with respect to the original framework. The anti-
fields obey the opposite statistics of the corresponding fields: those corresponding
to bosonic fields are elements of a Grassmannian algebra. They anticommute
with the fermionic fields whose anti-fields are c-number valued. Fields and anti-
fields carry a ghost-number conserved charge (possibly anomalous, as it is the
case, for example, in string theory). The sum of the field and corresponding
anti-field charge is minus one.

In the case in which there is an anti-field for every field the Slavnov Taylor
identity is written according;:

§ 6
/dz ; WF WF =0, (15)

i

where the sum runs over all the quantum fields ¢* and the corresponding anti-
fields ¢7. There are many important situations — in particular the standard case
of a gauge theory with linear gauge fixing function (for example the Feynman
gauge choice) — in which the prescription of supplementary conditions on the
form of the gauge fixing function allows the reduction of the effective number of
pairs field-anti-field.

In a generic gauge theory with generic subtraction prescriptions the Slavnov-
Taylor identity is modified by quantum corrections:

JE > %F afT;F = [aNifa@) T = [ds1a@) +0(a),  (6)

where, to keep contact with (1), we decompose A on a suitable basis of normal
products with Faddeev-Popov charge one:

A(z) = Ba (hc) 2%(z). (17)

Let I be the classical action corresponding to a generic point on M, and
F=r,+4 (18)

be its local generic deformation. Iy satisfies Eq. (15). The functional 4 corre-
sponds to a tangent vector to M, if:

5
Dry= [dz Y |—To i;7+—‘5—;r0 iﬁ =0. (19)
|56 ° 567" T 560 56

This is the functional version of Eq. (3). The functional differential operator Dr,
is nilpotent since I satisfies Eq. (15). Dr, acts on the space of the local defor-
mations of Iy giving possible breaking terms. Given a basis of local deformations
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and the basis {£22(z)} for the possible breakings, the action of Dr, corresponds
to the matrix B, ; (0,¢p) in (3).

Therefore the renormalizability condition Eq. (4) is written in the functional
language according:

/ dz A(z) + Drydq = O (hA) (20)

that should be solved in terms of 4,, the deformation of the classical action
corresponding to dc in Eq. (4). Eq. (20) means that the Slavnov-Taylor identity
is renormalizable if the breaking [dz A(z) belongs to the image of Dr, in the
breaking space.

Also in this case the existence of 4, solutions of (20) is controlled by a con-
sistency condition following from the identity:

Dp/dxzw 5 r=o0 (21)

that implies:
/ dz A(z) = O (R4). (22)

For the theory to be renormalizable it is sufficient that the image of the
“coboundary operator” Dr, in the space of breakings coincides with its kernel.
Otherwise the coboundary operator has a non-trivial cohomology in this space
that corresponds to the potential anomalies of the theory. The study of the
actual presence of these anomalies goes beyond the algebraic method [8].

Beyond the analysis of the quantum corrections, the operator Dr, plays an
essential role in the identification of the physical content of a perturbative gauge
theory. Indeed, let us assume that a given theory has been fully renormalized. In
other worlds, we are given the functional I" as formal power series in 7 satisfying
Eq. (15) to all orders. I' is a function of all the parameters associated with the
possible deformations of our theory and a functional of external fields coupled
to all the relevant point-like operators.

Were we able to define an asymptotic space H,s we could find a nilpotent
Fermionic charge @ [15] corresponding to Dy and commuting with the S-matrix.
This is the direct consequence of the Slavnov-Taylor identity. One could conse-
quently define the cohomology Hg of Q in the asymptotic space, that is the
quotient of the kernel versus the image of @ in Hy,. At least in the perturbative
framework, the original scalar product induces a Hilbert space structure into Hg
and the S-matrix defined in H,, induces an unitary S-matrix into Hg. Therefore
Hg can be identified with the physical asymptotic space (14].

To any external bosonic field o commuting with Dr

)

Drs-I'=0, (23)

there corresponds an operator O, in Hgys such that:

[Q,04] = 0. (24)
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Furthermore among the solutions of (23) one finds those satisfying:

s )
5ol =DPrygl (25)

The corresponding relation in the operator formalism is

O = [Q,0p], (26)

and O, has vanishing matrix elements in the physical space.

This shows that the non-trivial point-like observables correspond to external
fields « such that %I’ belongs to a cohomology class of Dr and the correspond-
ing operators belong to a cohomology class of Q.

In perturbation theory, having recourse to the implicit function theorem, one
sees that Dr is replaced by Dr, and I" by Ip.

The above considerations about the role of D, justify a deeper analysis of
its structure. It is apparent from Eq. (19) that D, is the sum of two terms; the
second one, that we call s, is a field derivative; therefore it can be considered as
the generator of a field transformation that in general is anti-field dependent.
The first term is the generator of a field dependent anti-field variation. We shall
limit ourselves to the case of mass-shell-closed gauge algebras which means that
Iy is linear in the anti-fields:

Iy = Doy + Ty = Ty + / dz ) ¢;(x)s¢' (). (27)

In this situation s is anti-field independent and nilpotent, while in the general
case it is nilpotent only modulo the field equations.

One can thus consider the cohomology of s and ask what is its relation with
that of Dpy.

To answer this question if we consider a generic Dp,-closed functional X. It
satisfies: 5 5

DX = sX +/dz Y sglogg X =0 (28)

1

The second term in the right-hand side is proportional to the field derivatives of
the classical action Ig: this means that X is s-closed on the classical mass-shell.
Henneaux and his collaborators [16] have performed a very general analysis of
the solutions to the Dr,-closeness condition in the case of standard, semi-simple,
gauge theories. They find that in this case the Dp,-cohomology coincides with
that of s on the functional space constrained by the field equations. Therefore
it corresponds to gauge invariant, anti-field independent, operators.

There is however a wide class of models in which the cohomology of D, is
substantially different from that of s. Since a general analysis has not yet been
completed, we conclude this report mentioning a very simple example of a model
of this class.

We consider a particularly simple topological o-model [17,18] whose target
space is a n-dimensional complex torus 7. Given the complex structure J of T
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we choose a system of complex coordinates V, V adapted to J. The basic fields
in the holomorphic sector are the world-sheet scalars V(z), the world-sheet one-
forms P(z) and the two-forms F'(z) carrying ghost number -1 and -2 respectively
and taking values in holomorphic tangent of T'. The anti-holomorphic sector con-
tains only world-sheet scalar fields: the coordinates V and the anti-holomorphic
tangent vectors X, A and H with ghost number +1, +1 and +2 respectively.
Concerning the statistical properties: V, V,H and F are bosonic while ¥, A and
the components of P are fermionic fields.

The symmetry of the model emerges from a particular heterotic twisting of
a N = 2 supersymmetry which gives rise to the so-called B-model [17]. In the
B-model the nilpotent functional differential operator s, introduced above acts
according to:

sP=dV sF =dP
sV=2x sA=H. (29)

The model being topological, its classical action reduces to a gauge fixing term
that is trivial in the s-cohomology:

Liny = s¥, (30)

where ¥ is an integrated two-form with ghost number -1 constrained by the con-
dition that the kinetic term in the Lagrangian be non-degenerate. For example:

v = / gip [FP AT + +PidV7) (31)
Py

where P is the form Hodge dual to P and d is the exterior differential on the
world-sheet X; g;; is the target space Kahler metric.
The anti-field dependent part of Iy is

I, = / [P*dV + F*dP + V*Z + A*HJ. (32)
=

Notice that, in the present model, the anti-fields are world-sheet forms and the
sum of the form degrees of every field-anti-field pair is two.
The anti-field-independent part of Iy is obtained from Iy by translating the

anti-fields according to: 5
v
et —. 33
o (33)
Now we consider the structure of the relevant cohomology. As discussed above
one is interested in the cohomology of Dr,. However it is not difficult to verify
that this can be obtained from that of Dr, by the translation (33). Therefore,
for the purpose of classifying the “observables”, we can choose the classical
functional (27) with vanishing I5n,, i-€.:

FO:-Fs- (34)



24 Carlo Becchi, Stefano Giusto, and Camillo Imbimbo

The action of Dr, on the fields coincides with that of s, while on the anti-fields
one has:

Dr,V*=dP*  Dr P* =dF*
Dr,2*=-V* DprH*=A* (35)

The functional space upon which Dr, acts corresponds to the polynomial func-
tionals in the variables dV, P, F,dV,X, A, H and the anti-fields, whose coeffi-
cients are target space tensors. These operators must be globally defined on the
target space.

Under this condition, it is apparent that the zero-form cohomology consists
of the polynomials in ¥ — since this is the image of V which is not globally
defined — and F™*. Further cohomology elements are associated to one and two-
form valued operators which satisfy the so-called descent equations:

Dr,2W =d® Do = 4n® (36)

The corresponding cohomology elements are obtained by integrating 2¢V) and
23 over non-trivial one and two-cycles of 5.
The zero-form cohomology is generated by:

0O =yl Fy 57, (37)
where the coefficients u;- are constant tensors. The corresponding one-form is:
QW = L [P 57— Frdv7], (38)

and the two-form is: _
2@ = s [V £7 - Prdv7]. (39)

The construction of the corresponding operators obtained after the anti-
field translation (33) is left to the reader. It turns out that integrating over the
world-sheet the operator generated by £2(2) one finds the variation of Iy under
a deformation of the complex structure of the target space parametrized by u;i.

This remark is just the starting point of a field theory construction of spe-
cial geometry [19] that will be developed elsewhere. It is however important
to notice here that the presence of anti-field dependent elements of the Dr,-
cohomology implies that the corresponding elements of the Dp,-cohomology
depend on the parameters appearing in the gauge-fixing fermion ¥. This can
transform “unphysical” into “physical” parameters inducing an “holomorphic
anomaly” [20,18].

We think that this sketchy example gives an idea of the extension of the range
of the algebraic quantization method that has originated from Zimmermann’s
construction of the method of normal products.
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Modular Groups in Quantum Field Theory

Hans-Jiirgen Borchers

Institut fiir Theoretische Physik, Universitit Gottingen,
Bunsenstrafle 9, D-37073 Gottingen, Germany

1 Introduction

Quantum Field theory appears in several different settings:

1. Lagrangean quantum field theory together with perturbation theory.

2. L.S.Z.~theory, which is useful for scattering problems {1].

3. Wightman’s quantum field theory [2] and its derivative, the Euclidean field
theory.

4. The theory of local observables in the sense of Araki, Haag and Kastler [3].

It is believed that these different branches of quantum field theory describe es-
sentially the same physics. But there is only very little known about the rigorous
equivalence of the above-mentioned theories. Wolfhart Zimmermann and myself
[4] were the first to look at the passage from Wightman’s theory to the theory of
local observables. We found only sufficient conditions. Meanwhile, there exists a
large number of them, but necessary and sufficient conditions are still missing.
The situation is not better for the reverse direction or the other equivalence
problems.

If one thinks that two theories are equivalent then one should at least try to
transcribe the great achievements of one of the theories to the other. However,
in many cases it is not so simple as it seems to be at first inspection. I will try
to discuss this problem by looking at two examples. One is the PCT-thoerem
and the other is the tensor product problem.

2 The PCT-theorem

This theorem tells us that the product of time reversal, space reflection, and
charge conjugation is always a symmetry. Reading the paper of Pauli [5] on this
subject one gets the impression that a precurser of the PCT-theorem has been
discovered by Schwinger [6]. But it was a mysterious transformation containing
the interchange of operators. The first development of the PCT-theorem in the
frame of Lagrangean field theory is due to Liiders [7]. This result has triggered
the clarification of the connection between spin and statistics and the role of the
positive energy. (See W. Pauli [5] and also G. Liiders and B. Zumino [8].)

1957 R. Jost [9] gave a proof of the PCT-theorem in the frame of Wightman’s
field theory. The beauty of this proof is the clarification of the role of the different
conditions one has to impose. These are

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, (jp] 26—42, 2000.
O Springer-Verlag Berlin Heidelberg 2000
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1. Covariance of the theory under the (connected part of the) Poincaré group.

Positivity of the energy.

3. There are only fields, which transform with respect to finite dimensional
representations of the Lorentz group. (Transformation of the index space.)

4. Locality, which means that for spacelike distances the Bose fields commute
with all other fields and the Fermi fields anti-commute with eachother.

5. The Minkowski space has even dimensions.

6. To every field in the theory appears its conjugate complex partner.

N

From the spectrum condition it follows that the Wightman functions have an
analytic continuation into the forward tube T,;

TF={z1,...,20n €C,;Sm(2z; — 2:41) € VT}.

Using locality, Poincaré covariance of the theory, and the appearence of only
finite dimensional representation of the Lorentz group, Hall and Wightman [10]
could show that the analytically continued Wightman functions can be consid-
ered as functions on the complex Lorentz group. If the index space transforms
under infinite dimensional representation of the Lorentz group then the Hall
Wightman theorem fails because of lack of analyticity. Examples are given by
Streater {11] and by Oksak and Todorov [12]. The Hall Wightman theorem was
the starting point of Jost’s investigation. If the Minkowski space has even di-
mensions then the complex Lorentz group contains the element —1

-10 0 0
0-10 0
—l= 0 0 -10
0 0 0 —1

This transformation is the product of time reversal and space reflection. But
there is the time translation e'f* with the positive energy operator. In order
to keep the energy positive one has to change 2 into —2. Therefore, the time
reversal has to be an antiunitary operator. If @ is an antiunitary total reflection
one obtains for a scalar field

0d(z)0 = &*(~z) .

The passage to the conjugate complex is closely related to the charge conjuga-
tion. Therefore, one has to look at the product of C and PT. One remark more
to the role of locality: The passage to the conjugate complex interchanges the
order of an operatorproduct. At totally spacelike points the original order can
be restored. Putting things together one gets the PCT—theorem for scalar fields.
The general case needs in addition the handling of finite dimensional matrices
which appear with fields of higher spin.

For a long time it was impossible to show the PCT-theorem in the theory of
local observables because one did not know the meaning of condition 3 and 6 in
the setting of local observables. These are:



28 Hans-Jiirgen Borchers

3. There are only fields which transform with respect to finite dimensional
representations of the Lorentz group. (Transformation of the index space.)
6. To every field in the theory appears its conjugate complex partner.

That it took such a long time to understand the two conditions in the setting of
local observables is due to the lack of proper mathematics. This new technique
is the Tomita—Takesaki theory. At the 1967 Baton Rouge conference Tomita [13]
distributed a preprint describing his theory of modular Hilbert algebras. As one
knows by now this is the biggest progress in the theory of operator algebras since
von Neumann. Tomita himself did not publish his result and it was Takesaki [14]
who presented this theory in form of a lecture note. This theory is concerned
with the following:

Let H be a Hilbert space and M be a von Neumann algebra acting on this
space with commutant M'. A vector {2 is cyclic and separating for M if M2 and
M2 are dense in H. If these conditions are fulfilled then a modular operator A
and a modular conjugation J is associated to the pair (M, §2) such that
(i) A is self-adjoint, positive and invertible

A2 = (2, J2=10.

(ii) The operator J is a conjugation, i.e. J is antilinear, J* = J, J?2=1,and J
commutes with A¥. This implies the relation

AdJA=A"1.
(iii) The unitary group A% defines a group of automorphisms of M
AdA*M =M, VteR.

(iv) For every A € M the vector Af2 belongs to the domain of Az,
(v) J maps M onto its commutant

AdIM =M".

Because of the Reeh-Schlieder theorem [15] the vacuum vector is cyclic and
separating for every algebra M(G), where G is any domain which has a spacelike
complement with interior points.

In order to get a better understanding for these new symmetries it is impor-
tant to find examples where these groups can explicitly be computed. So far one
knows the following examples:

(a) G is a spacelike wedge and the local algebras are generated by Wightman
fields, which transform covariantly with a finite dimensional representation
of the Lorentz group [16,17].

(b) G is a forward light cone and M(V*) is generated by a massless, non-
interacting field [18].

(c) G is a double cone and M(D) is generated by conformally covariant fields
[19].
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(d) G is a spacelike wedge and the local algebras are generated by generalized
free fields of a certain type, which break Lorentz covariance [20].

(e) G is the forward light cone or the wedge for a quantum field in a ther-
mal equilibrium state of two dimensional models that factorize in light-cone
coordinates [21].

In (a) the modular group is the group of Lorentz boosts that leave the wedge
invariant, and the conjugation is the PCT operator (combined with a rotation).
The precise connection of the modular group and the Lorentz boosts of the wedge

is
cosh2nt —sinh27t 00

—sinh 27t cosh2nt 00
0 0 10
0 0 01

At the same time Bisognano and Wichmann showed that in their situation wedge
duality holds, this is the relation

A, = Aw(t) ==

MW) = M(W'),

where W' denotes the opposite wedge.
From this result one can learn the following: Let &;(z) be Wightman fields.
Then one has

U(Aw (8))®i()U* (Aw (1)) = DF (Aw (£)) e (Aw (t)z) .

If D¥(Aw (t)) has an analytic continuation into the complex Lorentz group then
the spectrum condition implies that for z; € W the expression

U(Aw (£))®i,(z1) ... D5, (z0) 12
= DI} (Aw () &k, (Aw (t)z1) . .. DE (Aw (£)) &, (Aw ()2,) 2 ,

has an analytic continuation into the strip -—% < 8mt < 0. At the lower bound-
ary one finds Aw (t — )z € W'

This gives the hint how to solve problem (3) for local observables. The result
[22] needs some explanation:
Let Ky be a double cone in the characteristic two—plane of the wedge with center
at the origin and K be the cylindrical set with the same cylindrical direction as
that of W, such that the intersection with the characteristic two—plane is K.
Let A € M(K) and denote by A(K,z) the translated operator T'(z)AT(—z),
where T'(z) is the given representation of the translations. With this notation
one introduces the following set:

Let A, be the set of operators A(K,0) with the properties:

(¢) The operator A(K, z) with K+x C W, is such that U(A(t))A(K, )2 has
a bounded analytic continuation into the strip S(—%,0) with continuous
boundary-values and
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(11) A*(K,z) with K+x C W, is such that U(A(t))A*(K, z){2 has a bounded
analytic continuation into the strip S(0, %) with continuous boundary—
values.

The set A% will be denoted by A;. It has the corresponding property with

respect to M(W,).

Recall the main result about wedge duality:

Theorem:
Consider a Lorentz covariant theory of local observables in the vacuum-
sector. This theory fulfils wedge—duality exactly if
{A(K,z); A(K,0) € A, K+ 2z CW,}
{A(K,z); A(K,0) € A, K+ C W}

are *—strong dense in M(W,) and M(W}), respectively.

In the above result it has not been mentioned what one knows about the structure
of the elements U(A(F))A(K,z){2, where K + z is in the right wedge. This
question has been answered in

Theorem 3.6 of [22]:
(i) For every A(K,0) € A, and every x with K + x C W, there exists an

element A(K,0) € Aj, such that the following relation holds:
U(A(-35)A(K,2)2 = A(K, Pu)22,

where Py is the reflection in the characteristic two—plane, which does
not change the perpendicular directions.

(1) For every y with K +y € W; and A(K,0) € A; there exists an element
A(K,0) € A, fulfilling the relation

U(AG)AK,9)2 = AK, Pwy)2.
The above statement
U(A(—%))A(K,z)!) = A(K, Pwa)?,

says nothing about what is happening if with A(K) also A(K)* belongs to A,.
In Wightman’s theory one has for x € W:

F*(2)2 = {$(Pw(z))}* 2 .

The reality condition to be introduced is of the same form.

Reality condition:
We say a Poincaré covariant theory of local observables in the vacuum sector
with the property of wedge duality fulfils the reality condition if



Modular Groups in Quantum Field Theory 31

(¢) every A(K,0) € A, N A; and every z such that K + x C W, fulfils the
relation . A
A*(K, Pwz) = {A(K, Pw:z:)}* .

(i1) 12 is cyclic for the set
{A(K,z); A(K,0) € A, N A, and K +z C W,.}.

With the wedge duality and this condition it is possible to give a proof of
the CPT-theorem. Before formulating the result it is useful to understand the
reason for this. Together with the modular group of the algebra M (W) there is
a conjugation Jy which maps M(W) onto its commutant

Jw M(W)Jw = M(WY' .

If the theory fulfils wedge duality one has M(W)' = M(W'). A good candidate
for the CPT-operator is
0 = JwU(Rw(n)),

provided the origin is contained in the edge of the wedge. Rw(a) denotes the
rotation in the two—plane perpendicular to the characteristic two—plane of the
wedge. This can only be correct if Jy acts local. From a result of [23] one knows
only that Jw maps the cylinder K +x onto the cylinder K + Py (z). If one wants
to have local action for Jw then the modular group Al, must also act local.

If Al acts local then the result of Bisognano and Wichmann suggests that
Al and U(Aw(t)) coincide. This is guaranteed by the reality condition [24].

Theorem:
In a representation of a Poincaré covariant theory of local observables in
the vacuum sector the modular group associated with the algebra of any
wedge coincides with the corresponding Lorentz boosts iff the theory fulfils
wedge duality and the above reality condition with respect to the Lorentz
transformations.

Using this one gets the CPT-theorem by a result of Brunetti, Guido and
Longo [25] and Guido and Longo [26].

Theorem:
Assume the theory of local observables is such that for every wedge W the
modular group acts as the corresponding Lorentz boosts, i.e.

Ay M(D) Ay = M(Aw(t)D)

where D is any double cone, then:
(1) The theory is Poincaré covariant, i.e. there exists a continuous unitary
representation U(g) of the Poincaré group with

U(dw(t)) = Ay -
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(2) The theory fulfils the CPT-theorem and one has for every wedge with 0
in the edge of the wedge

0 = JwU(Rw () .

We collect the results obtained previously and get:

Theorem:
If a Poincaré covariant theory of local observables fulfils wedge duality and
the reality condition then this theory is CPT-covariant.

Remark:

Brunetti, Guido and Longo and also Guido and Longo have used group
theoretical methods for their proof. That the theory is Poincaré covariant if
the modular groups fulfil the Bisognano Wichmann property can be shown
also directly [27]. The construction of the CPT-symmetry using only the
duality and reality condition is still missing. The problem is the following: For
every wedge the expression U(Aw (t)Rw (¢))A(D + z){2 can be analytically
continued to the group element —1. If one starts from two different wedges
such that A(D + z) belongs to the corresponding algebras one has to show
that the two different analytic continuations do not land on different sheets.
This part is still missing.

3 Tensor product decomposition

As an example which is solvable in the theory of local observables is the tensor
product problem. In Wightman’s field theory there are two operations which are
related to the tensor product. These are the s— and the p—products. If #; () and
&, (z) are Wightman fields, then the s—product corresponds to

&, ($)8¢2(Z) = (.’B) L +1; ® ¢2(.’E) s
while the p—product corresponds formally to
b, (2)pP2(z) = P1(z) ® P2(z) -

As operators the product on the righthand side is not well defined. But since
one can multiply Wightman functions in the complex one can give the above
expression a well defined meaning.

For the s-product there exists a reduction theory due to Hegerfeldt [28], but
his investigation has not solved all the problems associated with the s—product.
In particular a characterization of indecomposible fields is missing. There exists
no decomposition theory for the p—product.

In order to understand the problems involved with the tensor product de-
composition in the theory of local observables let us start with two theories
{Mi(0),Ui(A, ), Hi, 2}, i = 1,2. One can define a new theory on H;®H: by

M(O) = M1(0)®M2(0)7 U(A,.’B) = Ul(A’ 1‘) ® UZ(Aa .’L‘) ) N=Me .
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The new theory {M(0),U(A, z),H, 2} fulfils again all axioms of local quantum
field theory. In order to uncover the direct product structure one has to look at
the sub—theory

(M1(0) ® LU(A,z),1, 2}, and {1® M3(0),U(A,z),H, 0},

which fulfils the assumptions of the theory of local observables, except the cycli-
city assumption for the vacuum vector. If one denotes the algebras M, (0)®1 by
N1(0) and 1® M3(0) by N2(O) then one has to answer the following questions:

1) In order to obtain a tensor product it is necessary that all the A;(O) com-
mute with all the A3(0). Does this imply that the algebra N;(O) vV N(O)
can be written as tensor product?

2) It is a very strong assumption to start with sub—quantum-field-theories
N1(0) and N>2(O). Therefore, one would like to start with only one do-
main, for instance a wedge Wy, and assume that M(Wp) can be written as
a tensor product

N (W) = N1 (Wo)®N2(Wo)

Is it possible to construct a tensor product decomposition for all other wedges

and for all double cones?

3) In order to obtain a tensor product decomposition of the whole theory it
is not only necessary to have a decomposition for every wedge and every
double cone but the family of decompositions has to fulfil some coherence
property. If one wants to get a tensor product decomposition of the whole
field theory, then all the algebras N (W) and N; (D) must act on the same
Hilbert space #; and the N2(W) and N,(D) must act on the Hilbert space
Ha.

The technique by which one can handle the questions is the Tomita-Takesaki
theory. Besides the usual axioms of local quantum field theory in the vacuum
sector one has to assume that the theory fulfils the Bisognano-Wichmann prop-
erty. This is the assumption used also in the derivation of the PCT-theorem,
namely, for every wedge W the modular group A, of M(W) coincides with the
corresponding Lorentz boosts U(Aw (t)).

Remark:

(1) As a consequence of the Bisognano—Wichmann property one concludes that
the theory fulfils the wedge duality, i.e, for every wedge the relation

MW = M(W')

holds, where W' denotes the opposite wedge of W. For the proof see [25] or
[27].
(2) If one identifies the algebra of the double cone D with

M(D)=n{MW); DCW}.
then the general duality property
M(D)' = M(D")

holds, where D' denotes the (interior) of the spacelike complement of D.
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The existence of a cyclic vacuum vector together with the locality condition
implies that the global algebra M := M(IR?) is of type I. More precisely, the
commutant of M is an abelian algebra [29,30] which must be the same as the
center of M.

If the algebra M is of the form

M= M1§M2 on H=HiQH, with 2= ,
then also the modular group splits, i.e.
Alt = Al @ Alf

If this is the case, then M; ® 1 is a subalgebra of M, which is mapped by o*
onto itself.
oM )=M; 1.

Subalgebras, which are mapped by ¢* onto itself, are “modular covariant subal-
gebras”.

The treatment of the modular covariant subalgebras and the tensor product
decomposition of von Neumann algebras is taken from an article of Takesaki
[31]. Modular covariant subalgebras have the following well known and easy to
verify properties. (See [31-33] and [34].):

Lemma:
Let N' be a modular covariant subalgebra of M. Let Ha be the closure

of N2 and denote by Ex the projection onto Hy. By N one denotes the
restriction of N to Hpr. Then:

1. Ey commutes with Ait and J. The restriction of A and J to Hy will
be denoted by A and J.
A and J are the modular group and modular r conjugation of (N ).
The commutant of N in Hy coincides with JN'J.
The map N' — N is an isomorphism of von Neumann algebras.
A€ M and[A,Ex] =0 implies A € N.
A € M then

S o N

ExNAEy €N .
The results of the last lemma have been strengthened.

Theorem (Takesaki [31]):
With the previous assumptions and notations one obtains:
1) There exists a normal faithful conditional expectation £ from M onto
N.

2) £ commutes with the modular action:
E(Ad At A) = Ad ATE(A), AaM .

3) There exists also a conditional expectation &' from M' to JE(M)J de-
fined by
(AN =JEJA I, AeM .
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4) Let E be a projection with Ef2 = {2. If there is a von Neumann algebra
N Cc M with E € N' and the central support of E in N' is 1, and
if in addition one has EME = NE, then N is a modular covariant
subalgebra of M.

Notice that the conditions of 4) imply that there exists a conditional expectation
from M onto N.

Let N = N’ N M be the relative commutant of A’ in M. Since N is a
modular covariant subalgebra of M the same is true for N¢. Hence exists a
second conditional expectation £¢ with

ECM — NE.

The existence of the two conditional expectations £ and £¢ has some important
consequences. These have been discovered by Takesaki [31].

Theorem:
Let M be a von Neumann algebra with cyclic and separating vector [2.
Assume the modular covariant subalgebra N of M is a von Neumann sub-
factor. Let N¢ be the relative commutant of N in M and let R = NV N°¢
be the von Neumann algebra generated by N' and N¢. Then the map

W:ZA,’@BiEN@NC—)ZAiB,’ERCM

extends to an isomorphism of NN onto R = N V N°. Moreover, the
vacuumstate (£2,.12) is a product state on R, i.e. A € N and B € N°®
implies

(2, ABR) = (2, A)(2,BR) .

In order to apply the concepts just described one starts with a wedge W and
assumes that the algebra M(W) has a modular covariant subalgebra N (W).
Let Ew be the associated conditional expectation and Eyw the projection onto
[M(W)£2]. If one now changes the wedge to AW + z then, of course,
U(A,z)N(W)U(A,z)* is a modular covariant subalgebra of M(AW + z). But
in order to obtain a decomposition of the global field theory the projections Ew
and E w4, have to coincide. We do not only have to transport the conditional
expectations to different wedges, but one also needs conditional expectations
for the algebras M(D) associated with double cones. In order to be able to
construct such conditional expectations the algebras must be closely related to
the algebras of wedges. Therefore, one sets

M(D) = N{M(AW +z); D C AW +z}.

Now the coherence property can be defined.

Definition:
Assume that the modular covariant subalgebras N'(D) C M(D) and N (W)
C M(W) are associated with every double cone D and ever wedge W. Then
this family is called coherent if the projections Ep and Ew coincide for all
double cones D and for all wedges W.
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One can show the following result:

Theorem:
Assume one is dealing with a quantum field theory fulfilling the usual axioms
and the Bisognano—Wichmann property. Assume also that for one wedge Wy
the algebra M(W;) has a modular covariant subalgebra N'(W;). Then there
exists a coherent family of modular covariant subalgebras {N(W),N (D)}
of {M(W), M(D)} such that N(W,) is the given subalgebra of M(Wp).

The key to the demonstration is the following result taken from {24] Thm. 4.11,
which needs some explanation of the notation. Let M be a von Neumann alge-
bra with cyclic and separating vector 2. Then a one—parametric group V (t) of
unitaries is called half-sided translation for M if

ivV@e)2=0NforallteRR,
ii V(t) =eHt with H >0,
iii V(#)MV*(t) Cc Mfort >0 (or for t <0).

Proposition:
Let M be a von Neumann algebra on H with cyclic and separating vector
2 and let V(t) be a half-sided translation for M. Assume N is a modular
covariant subalgebra of M and £ the associated conditional expectation.
Then the map AdV (t) commutes with £ for t > 0 if V(t) is a + half-sided
translation and for t < 0 if V(t) is a — half-sided translation. This implies

[V(t),Ex]=0 forall telR.

In the boundary of a wedge W there are two different lightlike vectors £
and €. The translations in the direction of these lightlike vectors are half-sided
translations for the algebra M(W), so that one can transport the modular co-
variant subalgebra N (Wy) of M(Wp) in a coherent way to all translated wedges.
Therefore, the projection Eyw, onto [N (Wj){2] commutes with all translations
in the two-plane spanned by ¢;, {2, which is called the characteristic two-plane
of the wedge. From this one can derive

Lemma:
Let the dimension of the Minkowski space be larger than 2. Let N(W) be a
modular covariant subalgebra of M(W). Then Ew commutes not only with
the translations in the characteristic two—plane but Ew commutes with all
translations.

With this result one can transport the modular covariant subalgebras from
one wedge to all translated wedges in a coherent way. In order to get to Lorentz
transformed wedges one has to use the Bisognano-Wichmann property. This im-
plies that there exist other half-sided translations for M(W) besides the trans-
lations in the two lightlike directions. These translations do not have an easy
interpretation and need some explanation.
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If AV is a von Neumann subalgebra of M with the same cyclic and separat-
ing vector {2, then one says that A fulfils the condition of half-sided modular
inclusion with respect to M if

AdAY N CN for t<0 (or t>0)

holds. This situation implies by a result of H.-W. Wiesbrock [35,36] that there
exists a half-sided translation U(t) such that one has

N=AdUMM or (N =AdU(-1)M).

For the following it is essential that the theory enjoys the Bisognano-Wich-
mann property. Let W (£, 1) ,W (£, £;) be two wedges with the same first vector
then the algebra

fulfils the condition of half-sided modular inclusion with respect to both al-
gebras M(W (£,£1)) and M(W(¢,£;)) [27]. Using this result one can trans-
port the modular covariant subalgebras from one wedge to all others in such
a manner that the coherence property is fulfilled. Starting from W (£3,£9) and
choosing W (£9,£3),£3 # £} then one obtains a modular covariant subalgebra of
MW (£2,£3) N W(£,3)) by means of the half-sided translation which maps
MW (£, £3)) onto M(W (£,£3) N W (£9,£3)). Since this transportation is done
by a half-sided translation the coherence property is fulfilled. There exists also a
half-sided translation which maps M (W (£, £1)) onto M(W (€2, 83) "W (€2, £3))
which is at the same time a half-sided translation for M(W (£, £3) "W (£3,63)). .
Reversing the last construction one is able to find a modular covariant subalgebra
of M(W (£, £3)), such that the coherence condition is satisfied.

NW(@,8) — NW(&,8) nW(R,64)) — NW(&,6)) -

Repeating this procedure with the second and eventually with a third lightlike
vector, one can get to every other wedge. By this procedure one has to use
alternatively the first and the second lightlike vector defining the wedge.

Using also the translations one can construct to every wedge W a modular
covariant subalgebra N(W) of M(W), such that Ew is independent of W.

It remains to construct a modular covariant subalgebra for every double cone.

Lemma:
Let N (W) be a coherent family of modular covariant subalgebras of M(W).
Define for any double cone

N(D)=n{N(W); DCW}.
Then N (D) is a modular covariant subalgebra of
M(D) =n{M(W); D CW}.

Moreover, one has

WD) =NW)] .
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These are the steps to show the theorem. Since the projection E commutes
with the Poincaré group one obtains:

Theorem:
Let {M(D),U(A,z),H,$2} be a theory of local observables fulfilling the
usual axioms and the Bisognano-Wichmann property. Let N'(W;) be a mod-
ular covariant subalgebra of M(W,). Then one obtains a coherent sub—
theory
{N(D),U(4,2),H, 02},

which fulfils the axioms of local quantum field theory except the cyclicity of
the vacuum vector. Let E be the projection onto [N (W) (2], which commutes
with all N(D) and the representation of the Poincaré group, then

{N(D),U(A,z), EH, 2}

defines a local quantum field theory with cyclic vacuum. N denotes the
restriction of N to EH. In particular one has for every wedge

NW) =V{N(D);D c W}.

In order to apply Takesaki’s result on tensor products the modular covariant
subalgebra N (W) of M(W) must be a factor. This can be shown under the
assumption that M(W) itself is a factor. This is known to be the case if the
global algebra is a factor. Since the factor property for M(D) is not known one
is not able to show that A'(D) is a factor. Hence Takesaki’s result can not be
used. Here one has to use a characterization of tensor products due to Ge and
Kadison [37].

For the factor property of N'(W) the following result can be used ([24] Lemma
IL.3):

Let U(t) be a half-sided translation for the von Neumann algebra M. Denote
by Eo the projection onto the U(t) invariant vectors and by Fj the projection
onto the eigenvectors of A to the eigenvalue 1. Then one has

F, <Ey.

From this one concludes:
Proposition:
Let {M(D),U(A,z),H, 2} be a theory of local observables. Assume the
global algebra is a factor and hence M(W) is a factor. Then every modular
covariant subalgebra of M(W) is a factor.

Now one is in the following situation: Starting with one wedge Wy and a
modular covariant subalgebra N (W) of M(Wj) there are the modular covariant
subalgebras

N(W()), NC(W[]), NP(W()) = N(Wo) VNB(W()) .
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Associated with these algebras there are three field theories
{N(D),U(A,x),H, 12}, {N°(D),U(A,z),H, R}, {N(D)",U(A,zx),H, 2}
For every wedge Takesaki’s theorem implies
NP(W) = NW)BNC(W) .

For the double cones it is not known whether or not the algebras A (D) are
factors. Therefore, one has to apply different techniques in order to conclude
that A'P(D) is isomorphic to a tensor product. Here one can use a result of L.
Ge and R. Kadison [37]. They characterize subalgebras of a tensor product R®S
which themselves are tensor products R1®S1, with Ry C R and §; C S. Since
every double cone is contained in a wedge their result can be applied and one
finds
NP(D) 2 N(D)QN(D) .

Collecting the results one obtains:

Theorem:
Let {M(0),U(A,z),H,12} be a theory of local observables fulfilling the
usual axioms and the Bisognano—Wichmann property. Let Wy be a wedge
and assume that N (W) is a modular covariant subalgebra of M(W,). Let
N¢(Wy) be the relative commutant of N(Wp) in M(W,) and NP(Wp) =
N (Wo) V N¢(Wy). Then:
(1) There exists on ‘H a sub-theory of local observables

{NP(D),NP(W),U(4,2)}

covariant under the existing unitary group U(A, z). Moreover,
{N?(D),NP(W)} are modular covariant subalgebras of {M(D), M(W)}
such that N?(W) has a trivial relative commutant in M(W). In addition,
for Wy the algebra NP(W) coincides with the given N?(Wy). If E? denotes
the projection onto [N'?(Wy){2] then E? commutes with N?(D), N?(W) and
the group representation U(A, z). Moreover, 12 is cyclic for N?(D) in EPH.
If one denotes the restriction of NP(D) and U(A,z) by N?(D) and U(A, z)
respectively then . R
{N?(D),U(A,z), EPH, 2}

defines a theory of local observables satisfying the usual axioms and the
Bisognano—Wichmann property.

(2) There exist two coherent families {N(D),N(W)} and {N¢(D),N¢(W)} of
modular covariant subalgebras of {M (D), M(W)} extending N (Wp) and
N¢(Wo), respectively. If E and E° are the projections onto [N(Wy)] and
[N¢(W,y)] then these projections commute with U(A,z), and E with N(D)
and E° with N°(D). With this one obtains:

-~

{N?(D),U(A,z), E*H, 2} =
{N°(DYSN(D),U°(A,z) @ U(A, z), EHREH, 2° ® 2°} .
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In this formula X° denotes the restriction to EH, X¢ the restriction to E°H,
and XP the restriction to EPH.

It remains to discuss the situation where the relative commutant is trivial, i.e.
N¢(W) = C1. This situation appears in the hidden charge problem, which is the
following: If we start with a theory of local observables {N(0),U(4,z),H, 2},
such that the theory has charged sectors, which are connected by localized Bose
fields, then we can add these Bose fields and obtain a field algebra {F(0),
U (4, z), #, {2}, which also fulfils the assumptions of the theory of local observ-
ables. Knowing only the latter theory one would like to discover the local net
{N(0),U(A,z),H, 2} and the structure of the charged fields.

Unfortunately the proof is missing that the case of the trivial relative com-
mutant is only connected with the hidden charge problem. There are strong
indications that this is true. Let us assume that this is the case. Then, in gen-
eral, one is in the situation characterized by the diagram Fig. 1.

(N, N} B (wee ve}

NENe B negne B

Fig. 1. General situation for the hidden charge case: N is a modular covariant subal-
gebra of M, and N = M NAN".

t.p. stands for the construction of the tensor product;

B.f. stands for the construction of the Bose field.

Looking at the diagram it would be interesting to understand why one does
not obtain the whole algebra by going first from A to AN'°° and forming the
tensor product N°°®N ¢ afterwards. It can happen that both theories N and
N ¢ have superselection sectors connected to the vacuum by Fermi fields. Forming
the tensor product of the two Fermi fields one obtains a field which commutes
for spacelike distances, i.e. a Bose field. In field theories on low dimensional
Minkowski space the same phenomenon can be achieved with help of anyonic
fields. Examples are due to K.-H. Rehren [38].

Since by philosophy of the theory of local observables one should start from
the observable algebra and reconstruct the whole theory from it. Therefore, one
has to start from elementary theories. A theory is indecomposible with respect to
the tensor product and the hidden charge problem iff the algebra of any wedge
contains no non-trivial modular covariant subalgebra. Since every non-trivial
operator of M(W) and the modular group generate all of M(W) it follows that
the vacuum Hilbert space is separable.
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Current Trends
in Axiomatic Quantum Field Theory
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Bunsenstrafie 9, D-37073 Gottingen, Germany

Abstract. In this article a non-technical survey is given of the present status of
Axiomatic Quantum Field Theory and interesting future directions of this approach
are outlined. The topics covered are the universal structure of the local algebras of
observables, their relation to the underlying fields and the significance of their relative
positions. Moreover, the physical interpretation of the theory is discussed with emphasis
on problems appearing in gauge theories, such as the revision of the particle concept,
the determination of symmetries and statistics from the superselection structure, the
analysis of the short distance properties and the specific features of relativistic thermal
states. Some problems appearing in quantum field theory on curved spacetimes are
also briefly mentioned.

1 Introduction

Axiomatic Quantum Field Theory originated from a growing desire in the mid-
fifties to have a consistent mathematical framework for the treatment and inter-
pretation of relativistic quantum field theories. There have been several profound
solutions of this problem, putting emphasis on different aspects of the theory.
The Ringberg Symposium on Quantum Field Theory has been organized in
honor of one of the founding fathers of this subject, Wolfhart Zimmermann. It
is therefore a pleasure to give an account of the present status of the axiomatic
approach on this special occasion.

It should perhaps be mentioned that the term “axiomatic” is no longer pop-
ular amongst people working in this field since its mathematical connotations
have led to misunderstandings. Actually, Wolfhart Zimmermann never liked it
and called this approach Abstract Quantum Field Theory. Because of the modern
developments of the subject, the presently favored name is Algebraic Quantum
Field Theory. So the invariable abbreviation AQFT seems appropriate in this
survey.

The early successes of AQFT are well known and have been described in
several excellent monographs [1-3]. They led, on the one hand, to an under-
standing of the general mathematical structure of the correlation functions of
relativistic quantum fields and laid the foundations for the rigorous perturbative
and non-perturbative construction of field theoretic models. On the other hand
they provided the rules for the physical interpretation of the theory, the most
important result being collision theory and the reduction formulas.

It was an at first sight perhaps unexpected bonus that the precise formula-
tion of the foundations of the theory payed off also in other respects. For it led

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, (jp] 43—64, 2000.
[ Springer-Verlag Berlin Heidelberg 2000
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to the discovery of deep and general features of relativistic quantum field theo-
ries, such as the PCT-theorem, the relation between spin and statistics, disper-
sion relations, bounds on the high energy behavior of scattering amplitudes, the
Goldstone theorem etc. These results showed that the general principles of rel-
ativistic quantum field theory determine a very rigid mathematical framework
which comprises surprisingly detailed information about the physical systems
fitting into it.

These interesting developments changed their direction in the seventies for
two reasons. First, it became clear that, quite generally, the linear and nonlinear
properties of the correlation functions of quantum fields following from the prin-
ciples of AQFT admit an equivalent Euclidean description of the theory in terms
of classical random fields. Thereby, the construction of relativistic field theories
was greatly simplified since one could work in a commutative setting [4]. Most
results in constructive quantum field theory were obtained by using this powerful
approach which also became an important tool in concrete applications.

The simplification of the constructive problems outweighed the conceptual
disadvantage that the Euclidean theory does not have a direct physical interpre-
tation. To extract this information from the Euclidean formalism is frequently
a highly non—trivial task and has been the source of mistakes. So for the inter-
pretation of the theory the framework of AQFT is still indispensable.

The second impact came from physics. It was the insight that gauge theories
play a fundamental role in all interactions. It was already clear at that time that
quantum electrodynamics did not fit into the conventional setting of AQFT. For
the local, covariant gauge fields require the introduction of unphysical states
and indefinite metric. The idea that one could determine from such fields in an
a priori manner the physical Hilbert space had finally to be given up. Features
such as the phenomenon of confinement in non-Abelian gauge theories made
it very clear that the specification of the physical states is in general a subtle
dynamical problem.

A way out of these problems had already been discovered in the sixties,
although its perspectives were perhaps not fully recognized in the beginning.
Namely it became gradually clear from the structural analysis in AQFT that
the local observables of a theory carry all relevant physical information. In par-
ticular, the (charged) physical states and their interactions can be recovered
from them. The situation is analogous to group theory, where the set of unitary
representations can be determined from the abstract structure of the group.

From this more fundamental point of view the gauge fields appear to be noth-
ing but a device for the construction of the local (gauge invariant) observables of
the theory in some faithful representation, usually the vacuum representation.
The determination of the physical states and their analysis is then regarded as
a problem in representation theory.

It also became clear that one does not need to know from the outset the
specific physical significance of the local observables for the interpretation of the
theory. All what matters is the information about their space-time localization
properties. From these data one can determine the particle structure, collision
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cross sections, the charges appearing in the theory and, finally, identify individual
observables of physical interest, such as the charge and energy—densities.

These insights led to the modern formulation of AQFT in terms of families
(nets) of algebras of observables which are assigned to the bounded space-time
regions [5]. Field operators, even observable ones, no longer appear explicitly
in this formalism. They are regarded as a kind of coordinatization of the local
algebras without intrinsic meaning; which fields one uses for the description of
a specific theory is more a matter of convenience than of principle.

This more abstract point of view received, in the course of time, its full
justification. First, the framework proved to be flexible enough to incorporate
non—pointlike localized observables, such as the Wilson loops, which became rel-
evant in gauge theory. Second, it anticipated to some extent the phenomenon
of quantum equivalence, i.e., the fact that certain very differently looking the-
ories, such as the Thirring model and the Sine-Gordon theory or the recently
explored supersymmetric Yang-Mills theories, describe the same physics. The
basic insight that fields do not have an intrinsic meaning, in contrast to the
system of local algebras which they generate, found a striking confirmation in
these examples. Third, the algebraic approach proved natural for the discussion
of quantum field theories in curved spacetime and the new types of problems
appearing there [6]. There is also evidence that it covers prototypes of string
theory [7].

So the general framework of AQFT has, for many decades, proved to be con-
sistent with the progress in our theoretical understanding of relativistic quantum
physics. It is the appropriate setting for the discussion of the pertinent mathe-
matical structures, the elaboration of methods for their physical interpretation,
the solution of conceptual problems and the classification of theories on the basis
of physical criteria. Some major achievements and intriguing open problems in
this approach are outlined in the remainder of this article.

2 Fields and algebras

As mentioned in the Introduction, the principles of relativistic quantum field
theory can be expressed in terms of field operators and, more generally, nets of
local algebras. In this section we give an account of the relation between these
two approaches.

We proceed from the for our purposes reasonable idealization that spacetime
is a classical manifold M with pseudo-Riemannian metric g. In the main part
of this article we assume that (M, g) is four-dimensional Minkowski space with
its standard Lorentzian metric and comment on curved spacetime only in the
last section.

Fields: In the original formulation of AQFT one proceeds from collections of
field operators ¢(z) which are assigned to the space-time points z € M,

z— {¢(z) }. 1)
(In order to simplify the discussion we assume that the fields ¢(z) are observable
and omit possible tensor indices.) As is well known, this assignment requires some
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mathematical care, it is to be understood in the sense of operator—valued distri-
butions. With this precaution in mind the fundamental principles of relativistic
quantum field theory, such as Poincaré covariance and Einstein causality (local-
ity), can be cast into mathematically precise conditions on the field operators
[1-3]. As a matter of fact, for given field content of a theory one can encode these
principles into a universal algebraic structure, the Borchers-Uhlmann algebra of
test functions [1].

It is evident that such a universal algebra does not contain any specific dy-
namical information. That information can be put in by specifying a vacuum
state (expectation functional) on it. This step is the most difficult task in the
construction of a theory. Once it has been accomplished, one can extract from the
corresponding correlation functions, respectively their time-ordered, advanced
or retarded counterparts, the desired information.

The fact that the construction of a theory can be accomplished by the spec-
ification of a vacuum state on some universal algebra has technical advantages
and ultimately led to the Euclidean formulation of quantum field theory. But
it also poses some problems: Given two such states, when do they describe the
same theory? That this is a non—trivial problem can be seen already in free field
theory. There the vacuum expectation values of the basic free field ¢ and those
of its Wick power ¢3, say, correspond to quite different states on the abstract
algebra. Nevertheless, they describe the same physics. A less trivial example,
where the identification of two at first sight very differently looking theories re-
quired much more work, can be found in [8]. So in this respect the field theoretic
formalism is not intrinsic.

Algebras: In the modern algebraic formulation of AQFT one considers families
of W*-algebras! A(Q) of bounded operators which are assigned to the open,
bounded space-time regions O C M,

O — AO). (2)

Each A(O) is regarded as the algebra generated by the observables which are
localized in the region O; it is called the local algebra affiliated with that region.
Again, the principles of locality and Poincaré covariance can be expressed in this
setting in a straightforward manner [5]. In addition there holds the property of
isotony, i.e.,

AO) C A(O2) i O) C O, (3)

This condition expresses the obvious fact that the set of observables increases
with the size of the localization region. Despite its at first sight almost tau-
tological content, it is this net structure (nesting) of the local algebras which
comprises the relevant physical information about a theory. To understand this
fact one has to recognize that the assignment of algebras to a given collection of
space—time regions will be very different in different theories.

! The letter W indicates that the respective algebras are closed with respect to weak
limits and * says that they are stable under taking adjoints.
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The algebraic version of AQFT defines a conceptually and mathematically com-
pelling framework of local relativistic quantum physics and has proved very
useful for the general structural analysis. It is rather different, however, from
the field theoretic formalism which one normally uses in the construction of
models. The clarification of the relation between the two settings is therefore an
important issue.

From fields to algebras: The problems appearing in the transition from the field
theoretic setting to the algebraic one are of a similar nature as in the transition
from representations of Lie algebras to representations of Lie groups: one has to
deal with regularity properties of unbounded operators. Heuristically, one would
be inclined to define the local algebras by appealing to von Neumann’s charac-
terization of concrete W*—algebras as double commutants of sets of operators,

A©) = {(z) : z € O}, (4)

that is they ought to be the smallest weakly closed algebras of bounded opera-
tors on the underlying Hilbert space which are generated by the (smoothed-out)
observable fields in the respective space—time region. Because of the subtle prop-
erties of unbounded operators it is, however, not clear from the outset that the
so—defined algebras comply with the physical constraint of locality assumed in
the algebraic setting.

The first courageous steps in the analysis of this problem were taken by
Borchers and Zimmermann [9]. They showed that if the vacuum [0) is an an-
alytic vector for the fields, i.e., if the formal power series of the exponential
function of smeared fields, applied to |0), converge absolutely, then the passage
from the fields to the local algebras can be accomplished by the above formula.
Further progress on the problem was made in [10], where it was shown that fields
satisfying so—called linear energy bounds also generate physically acceptable nets
of local algebras in this way.

The latter result covers all interacting relativistic quantum field theories
which have been rigorously constructed so far. As for the general situation, the
most comprehensive results are contained in [11] and references quoted there.
In that analysis certain specific positivity properties of the vacuum expectation
values of fields were isolated as crucial pre-requisite for the passage from fields
to algebras. In view of these profound results, it can now safely be stated that
the algebraic framework is a proper generalization of the original field theoretic
setting.

From algebras to fields: As already mentioned, the algebraic version of AQFT
is more general than the field theoretic one since it covers also finitely localized
observables, such as Wilson loops or Mandelstam strings, which are not built
from observable pointlike localized fields. Nevertheless, the point-field content
of a theory is of great interest since it includes distinguished observables, such
as currents and the stress energy tensor.
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Heuristically, the point-fields of a theory can be recovered from the local
algebras by the formula

{6(x)} = [ AO). (5)

O>z

It should be noticed here that one would not obtain the desired fields if one would
simply take the intersection of the local algebras themselves, which is known to
consist only of multiples of the identity. Therefore, one first has to complete
the local algebras in a suitable topology which allows for the appearance of
unbounded operators (respectively forms). This step is indicated by the bar.

The first profound results on this problem were obtained in [12], where it has
been proposed to complete the local algebras with the help of suitable energy
norms which are sensitive to the energy—momentum transfer of the observables.
Using this device, it was shown that one can reconstruct from local algebras, if
they are generated by sufficiently “tame” fields, the underlying field content by
taking intersections as above. These results were later refined in various direc-
tions [13]. They show that the step from fields to algebras can be reversed.

From a general point of view it would, however, be desirable to clarify the
status of point fields in the algebraic setting in a more intrinsic manner, i.e.,
without assuming their existence from the outset. An interesting proposal in
this direction was recently made in [14]. There it was argued that the presence
of such fields is encoded in phase space properties of the net of local algebras?
and that the field content can be uncovered from the algebras by using notions
from sheaf theory. In [15] this idea was put into a more suitable mathematical
form and was also confirmed in models. The perspectives of this new approach
appear to be quite interesting. It seems, for example, that one can establish in
this setting the existence of Wilson-Zimmermann expansions [16] for products
of field operators. Such a result would be a major step towards the ambitious
goal, put forward in [14], to characterize the dynamics of nets of local algebras
directly in the algebraic setting.

3 Local algebras and their inclusions

Because of their fundamental role in the algebraic approach, much work has
been devoted to the clarification of the structure of the local algebras and of
their inclusions. We cannot enter here into a detailed discussion of this subject
and only give an account of its present status. To anticipate the perhaps most
interesting perspective of the more recent results: There is evidence that the
dynamical information of a relativistic quantum field theory is encoded in, and
can be uncovered from the relative positions of a few (depending on the number
of space-time dimensions) algebras of specific type. This insight may be the
starting point for a novel constructive approach to relativistic quantum field
theory.

2 A quantitative measure of the phase space properties of local algebras is given in
Sec. 7.



Current Trends in Axiomatic Quantum Field Theory 49

To begin, let us recall that the center of a W*-algebra is the largest sub-
algebra of operators commuting with all operators in the algebra. A W*-algebra
is called a factor if its center consist only of multiples of the identity, and it is said
to be hyperfinite if it is generated by its finite dimensional sub-algebras. The
hyperfinite factors have been completely classified, there exists an uncountable
number of them.

Because of this abundance of different types of algebras it is of interest that
the local algebras appearing in quantum field theory have a universal (model-
independent) structure [17], they are generically isomorphic to the tensor prod-
uct

A(0) ~ M® 2, (6)

where M is the unique hyperfinite type III; factor according to the classification
of Connes, and Z is an Abelian algebra. That the local algebras are hyperfinite
is encoded in phase space properties of the theory, the type III; property is a
consequence of the short distance structure, cf. [17] and references quoted there.
The possible appearance of a non-trivial center Z in a local algebra is frequently
regarded as a nuisance, but it cannot be excluded from the outset.

Under the above generic conditions also the global (quasilocal) algebra

A =] A©), (M
o

which is the C*—inductive limit of all local algebras, is known to be universal.
It is the so—called “proper sequential type I, funnel”. So one has very concrete
information about the mathematical objects appearing in the algebraic setting.
From the conceptual point of view, these results corroborate the insight that the
individual local algebras as well as the global one do not comprise any specific
physical information. This information is entirely contained in the “arrow” in
(2), i.e., the map from space-time regions to local algebras.

In view of these results it is natural to have a closer look at the possible
“relative positions” of the local algebras with respect to each other. Depending
on the location of the regions it has been possible to characterize in purely
algebraic terms the following geometric situations.

(a) The closure of O, is contained in the interior of O.

(@

In that case there holds generically

A(O) CN C A(02), (8)
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where N is a factor of type I, i.e., an algebra which is isomorphic to the algebra
of all bounded operators on some separable Hilbert space. This “split property”
of the local algebras has been established in all quantum field theories with
reasonable phase space properties, cf. [17] and references quoted there. It does
not hold if the two regions have common boundary points [18].

(b) O; and O, are spacelike separated.

Then, under the same conditions as in (a), it follows that the W*-algebra which
is generated by the two local algebras associated with these regions is isomorphic
to their tensor product,

A(01) V A(O2) ~ A(O1) ® A(Os). 9)

Thus the local algebras satisfy a condition of causal (statistical) independence,
which may be regarded as a strengthened form of the locality postulate.

(c) O1 and O, are wedge-shaped regions, bounded by two characteristic planes,
such that O; C O and the edge of O; is contained in a boundary plane of O,.

O,

O,

In this geometric situation the corresponding algebras give rise to so—called
“half-sided modular inclusions” or, more generally, “modular intersections”. It
is a striking fact that one can reconstruct from a few algebras in this specific
position a unitary representation of the space-time symmetry group, the PCT
operator and the net of local algebras [19,20]. This observation substantiates the
claim that the dynamical information of a theory is contained in the relative
position of the underlying algebras. Thus the concept of modular inclusions and
intersections seems to be a promising starting point for the direct construction
of nets of local algebras.

The preceding results rely heavily on modular theory, which has become an
indispensable tool in the algebraic approach. It is not possible to outline here
the many interesting applications which are based on these techniques. Some
recent results and further pertinent references can be found in [21].
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4 Particle aspects

We turn now to the physical interpretation of the mathematical formalism of
AQFT. Here the basic ingredient is the notion of particle. According to Wigner
the states of a single particle are to be described by vectors in some irreducible
representation of the Poincaré group, or its covering group. This characterization
of particles has been extremely useful in the solution of both, constructive and
conceptual problems.

As for the interpretation of the theory, the particle concept enters primarily
in collision theory, whose first precise version was given by Lehmann, Symanzik
and Zimmermann [22]. By now collision theory has been rigorously established in
AQFT, both for massive and massless particles [5]. These results formed the basis
for the derivation of analyticity, crossing and growth properties of the scattering
amplitudes [23]. There remain, however, many open problems in this context. In
view of the physical relevance of gauge theories it would, for example, be desirable
to determine the general properties of scattering amplitudes of particles carrying
a gauge charge. In physical gauges such particles require a description in terms
of non-local fields, hence the classical structural results cannot be applied. Some
remarkable progress on this difficult problem has been presented in [24].

Another longstanding question is the problem of asymptotic completeness
(unitarity of the S—matrix): Even in the models which have been rigorously con-
structed, a complete solution of this problem is not known [25]. So the situation
is quite different from quantum mechanics, where the problem of asymptotic
completeness was solved in a general setting almost two decades ago.

In order to understand the origin of these difficulties, one has to realize
that, in contrast to quantum mechanics, one deals in quantum field theory with
systems with an infinite number of degrees of freedom. In such systems there
can occur the formation of superselection sectors which require an extension of
the original Hilbert space. So one first has to determine in a theory the set of all
superselection sectors and particle types before a discussion of the problem of
asymptotic completeness becomes meaningful. In models this step can sometimes
be avoided by technical assumptions, such as restrictions on the size of coupling
constants, by which the formation of superselection sectors and new particles
can be excluded. But the determination of the full physical Hilbert space from
the underlying local operators is an inevitable step in any general discussion of
the problem. Some progress on this problem will be outlined below.

Still another important problem which deserves mentioning here is the treat-
ment of particles carrying charges of electromagnetic type. As is well known, the
states of such particles cannot consistently be described in the way proposed
by Wigner, cf. [26] and references quoted there. In the discussion of scattering
processes involving such particles this problem can frequently be circumvented
by noting that an infinite number of soft massless particles remains unobserved.
Because of this fact one can proceed to an “inclusive description”, where the
difficulties disappear. This trick obscures, however, the specific properties of the
electrically charged particles. It seems therefore worthwhile to analyze their un-
common features which may well be accessible to experimental tests.



52 Detlev Buchholz

It is apparent that progress on these problems requires a revision of the
particle concept. A proposal in this respect which is based on Dirac’s idea of«
improper states of sharp momentum has been presented in [27]. The common
mathematical treatment of improper states as vector—valued distributions would
not work in the general setting since it assumes the superposition principle which
is known to fail for momentum eigenstates carrying electric charge. Instead one
defines the improper states as linear maps from some space (more precisely, left
ideal) of localizing operators L € A into the physical Hilbert space,

Lv+— L|p,¢). (10)

Here p is the momentum of the particle and ¢ subsumes its charges, mass and
spin. In quantum mechanics, the simplest example of a localizing operator L
which transforms the “plane waves” |p,t¢) into normalizable states is the pro-
jection onto a compact region of configuration space. In quantum field theory
such localizing operators can be constructed out of local operators by convolu-
tion with suitable test functions which restrict the energy—-momentum transfer
of the operators to spacelike values. It can be shown that by acting with any
such operator on an improper momentum eigenstate of a particle one obtains
a Hilbert space vector. Thus, from a mathematical point of view, the improper
states are weights on the algebra of observables A.

Using this device one can, on the one hand, determine the particle content of
a theory from the states |$) in the vacuum sector by means of the formula [27]

Jin_ [ d%e @lae(L Do) = ¥ [ w0 ol L. (1)

Here L is any localizing operator, a;z are the automorphisms inducing the
space-time translations on A and p. are measures depending on |[®). Thus if
one analyzes the states |$) at asymptotic times by spatial averages of localizing
operators, they look like mixtures of improper single particle states. These mix-
tures are formed by the members of the incoming respectively outgoing particle
configurations in the state |#) which generically include also pairs of oppositely
charged particles. By decomposing the mixtures in (11) one can therefore recover
all particle types. As outlined in [28], this result also allows one to recover from
the underlying local observables in the vacuum sector the pertinent physical
Hilbert space of the theory.

Relation (11) does not only establish a method for the determination of the
particles in a theory, but it also provides a framework for their general analysis.
It is of interest that this framework also covers particles carrying charges of
electromagnetic type. Whereas for a particle of Wigner type the corresponding
improper states lead, after localization, to vectors in the same sector of the
physical Hilbert space, this is no longer true for electrically charged particles.
There one finds that the vectors L|p,:) and L'|p’,t) are orthogonal for any
choice of localizing operators L, L' if the momenta p,p’ are different. So the
superposition principle fails in this case and wave packets of improper states
cannot be formed. Nevertheless, the charges, mass and spin of such particles
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can be defined and have the values found by Wigner in his analysis. The only
possible exception are massless particles whose helicity need not necessarily be
restricted to (half-)integer values [27].

So there is progress in our general understanding of the particle aspects of
quantum field theory. Further advancements seem to require, however, new meth-
ods such as a more detailed harmonic analysis of the space-time automorphisms
[29].

5 Sectors, symmetries and statistics

One of the great achievements of AQFT is the general understanding of the
structure of superselection sectors in relativistic quantum field theory, its relation
to the appearance of global gauge groups and the origin and classification of
statistics. Since this topic has been expounded in the monographs [5,30] we need
to mention here only briefly the main results and open problems.

The superselection sectors of interest in quantum field theory correspond to
specific irreducible representations of the algebra of observables A, more pre-
cisely, to their respective unitary equivalence classes. It is an important fact
that each sector has representatives which are (endo)morphisms p of the algebra
A (or certain canonical extensions of it), so there holds

p(A) C A. (12)

Using this fact one can distinguish various types of superselection sectors ac-
cording to the localization properties of the associated morphisms.

Localizable Sectors: These sectors have been extensively studied by Doplicher,
Haag and Roberts. Each such sector can be characterized by the property that
for any open, bounded space-time region @ C M there is a morphism po, be-
longing to this sector, which is localized in O in the sense that it acts trivially
on the observables in the causal complement O' of O,

po | A(O'") =id. (13)
Localizable sectors describe charges, such as baryon number, which do not give
rise to long range effects.

Sectors in Massive Theories: It has been shown in [31] that the superselection
sectors in quantum field theories describing massive particles can always be
represented by morphisms p¢ which are localized in a given spacelike cone C,

pc T A(CT) =id. (14)

This class of sectors includes also non—localizable charges appearing in certain
massive gauge theories. The preceding result says that the long range effects of
such charges can always be accommodated in extended string-like regions.

It is possible to establish for both classes of sectors under very general con-
ditions, the most important one being a maximality property of the underlying
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algebras of local observables (Haag-duality), the existence of a composition law.
Namely, if ¢, k, A are labels characterizing the sectors there holds for the corre-
sponding morphisms the relation

popr =Y c(t5,X) pa, (15)
A

where ¢(t, , A) are integers and the summation is to be understood in the sense of
direct sums of representations. Moreover, for each p, there is a charge conjugate
morphism p, such that p, o p, contains the identity.

It is a deep result of Doplicher and Roberts that these general facts imply
the existence of charged fields 1 of Bose or Fermi type which connect the states
in the various superselection sectors. More precisely, each morphism p can be
represented in the form

d
P('):Z¢m' ;1’ (16)
m=1

where the fields v, have the same localization properties as p and satisfy Bose
or Fermi commutation relations at spacelike distances. Moreover, these fields
transform as tensors under the action of some compact group G,

d

Yo (Yn) = Z Dnm(9_1)¢my (17)

m=1

where 7. are the automorphisms inducing this action and Dy, (-) is some d-
dimensional representation of G. The observables are exactly the fixed points
under the action of G and the whole structure is uniquely determined by the
underlying sectors.

In order to appreciate the strength of this result one has to notice that it
does not hold in low space-time dimensions. In that case there can occur fields
with braid group statistics and the superselection structure can in general not be
described by the representation theory of compact groups, while more complex
symmetry structures, such as “quantum groups”, seem to emerge [32). These
facts have stimulated much work in the general analysis of low dimensional
quantum field theories in recent years, yet we cannot comment here on these
interesting developments.

With regard to physical space-time, there are several interesting problems
which should be mentioned here. First, it would be of interest to understand
in which way the presence of supersymmetries is encoded in the superselection
structure of a theory. It seems that this problem has not yet been thoroughly
studied in the general framework of AQFT.

Second, there is the longstanding problem of the superselection structure in
theories with long range forces, such as Abelian gauge theories with unscreened
charges of electromagnetic type. In such theories there exists for each value of
the charge an abundance of sectors due to the multifarious ways in which ac-
companying clouds of low energy massless particles can be formed. These clouds
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obstruct the general analysis of the superselection structure since it is difficult
to disentangle their fuzzy localization properties from those of the charges one
is actually interested in.

A promising step towards the solution of this problem is the observation,
made in some models [33], that charges of electromagnetic type have certain
clearcut localization properties in spite of their long range effects. Roughly speak-
ing, they appear to be localized in a given Lorentz system with respect to dis-
tinguished observables, such as current densities. In the framework of AQFT
this restricted localizability of sectors can be expressed by assuming that there
is a subnet O — B(O) C A(O) on which the corresponding morphisms are
localized,

po [ B(O') =id. (18)

In contrast to the preceding class of localizable sectors, the net O +— B(0) need
not be maximal, however. In the case of electrically charged sectors, it will also
not be stable under Lorentz transformations. So the general results of Doplicher
and Roberts cannot be applied in this case. Yet there is evidence [33] that if the
localizing subnet of observables is sufficiently big (it has to satisfy a condition
of weak additivity) one can still establish symmetry and statistics properties
for the physically interesting class of so—called simple sectors which are induced
by automorphisms p of the algebra of observables with the above localization
properties.

Another important issue which is closely related to the sector structure is the
problem of symmetry breakdown. The consequences of the spontaneous break-
down of internal symmetries are well understood in AQFT in the context of
localizable sectors, cf. [34] and references quoted there. They lead to a degener-
acy of the vacuum state and, under more restrictive assumptions, to the appear-
ance of massless Goldstone particles. For the class of cone-like localizable sectors
the consequences of spontaneous symmetry breaking are less clear, however. One
knows from model studies in gauge theories that under these circumstances there
can appear a mass gap in the theory (Higgs mechanism). But the understanding
of this phenomenon in the general framework of AQFT is not yet in a satisfactory
state.

6 Short distance structure

Renormalization group methods have proved to be a powerful tool for the anal-
ysis of the short distance (ultraviolet) properties of field-theoretic models. They
provided the basis for the discussion of pertinent physical concepts, such as
the notion of parton, confinement, asymptotic freedom, etc. In view of these
successes it was a natural step to transfer these methods to the abstract field
theoretic setting [35]. More recently, the method has also been established in the
algebraic formulation of AQFT [36). We give here a brief account of the latter
approach in which renormalization group transformations are introduced in a
novel, implicit manner.
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The essential idea is to consider functions 4 of a parameter A € R, fixing
the space—time scale, which have values in the algebra of observables,

A A, €A (19)

These functions form under the obvious pointwise defined algebraic operations
a normed algebra, the scaling algebra A, on which the Poincaré transformations
(4, z) act continuously by automorphisms a 4 , according to

(g_A,.'E (é_)),\ = QAN (_é,\) (20)
The local structure of the original net can be lifted to A by setting
AO)={A: 4, € ANO), Ae R} (21)

It is easily checked that with these definitions one obtains a local, Poincaré
covariant net of subalgebras of the scaling algebra which is canonically associated
with the original theory.

We refer the reader to [36] for a discussion of the physical interpretation of
this formalism and only mention here that the values A, of the functions A
are to be regarded as observables in the theory at space-time scale A. So the
graphs of the functions A establish a relation between observables at different
space—time scales, in analogy to renormalization group transformations. Yet, in
contrast to the field theoretic setting, one need not identify specific observables
in the algebraic framework since the physical information is contained in the
net structure. For that reason one has much more freedom in the choice of the
functions A which have to satisfy only the few general constraints indicated
above. Thus one arrives at a universal framework for the discussion of the short
distance structure in quantum field theory.

The physical states, such as the vacuum |0), can be analyzed at any scale
with the help of the scaling algebra and one can define a short distance (scaling)
limit of the theory by the formula

(0|_0___0 : __0'0) = )1‘13}) (Olé,\é,\"'g,\ |0) (22)
To be precise, the convergence on the right hand side may only hold for suit-
able subsequences of the scaling parameter, and it should also be noticed that
the limit may not be interchanged with the expectation value. The resulting
correlation functions determine a pure vacuum state on the scaling algebra. So
by the reconstruction theorem one obtains a net O — Ay(O) of local algebras

and automorphisms a( ) which induce the Poincaré transformations on this net.
This scaling limit net descrlbes the properties of the underlying theory at very
small space-time scales.

Based on these results the possible structure of scaling limit theories has
been classified in the general framework of AQFT [36]. There appear three
qualitatively different cases (classical, quantum and degenerate limits). There
is evidence that they correspond to the various possibilities in the field theo-
retic setting of having (no, stable, unstable) ultraviolet fixed points. One can
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also characterize in purely algebraic terms those local nets which ought to cor-
respond to asymptotically free theories. Yet a fully satisfactory clarification of
the relation between the field theoretic renormalization group and its algebraic
version requires further work.

The framework of the scaling algebra has also shed new light on the physical
interpretation of the short distance properties of quantum field theories [37]. Par-
ticle like entities and symmetries appearing only at very small space-time scales,
such as partons and color, can be uncovered from a local net of observables by
proceeding to its scaling limit. Since the resulting net has all properties required
in AQFT, the methods and results outlined in the preceding two sections can be
applied to determine these structures. It is conceptionally very satisfactory that
one does not need to rely on unphysical quantities in this analysis, such as gauge
fields; moreover, the method has also proven to be useful as a computational
tool.

There remain, however, many interesting open problems in this setting. For
example, one may hope to extract in the scaling limit information about the
presence of a local gauge group in the underlying theory. A possible strategy
could be to consider the scaling limit of the theory with respect to base points
p # 0 in Minkowski space and to introduce some canonical identification of
the respective nets. One may then study how this identification lifts to the
corresponding algebras of charged fields, which are fixed by the reconstruction
theorem of Doplicher and Roberts outlined in the preceding section. It is an
interesting question whether some non-trivial information about the presence of
local gauge symmetries is encoded in this structure.

Another problem of physical interest is the development of methods for the
determination of the particle content of a given state at short distances which,
in contrast to the determination of the particle content of a given theory, has not
yet been accomplished. In order to understand this problem one has to notice
that there holds for any physical state |®)

- C 0}, (23)

lim (8|4, B, - C, |#) = (04, B,
so all states look like the vacuum state in the scaling limit [36]. In order to
extract more detailed information about the short distance structure of |®), one
has to determine also the next to leading contribution of the matrix element on
the left hand side of this relation. One may expect that this term describes the
particle like structures which appear in the state |$) at small scales, but this
question has not yet been explored.

7 Thermal states

The rigorous analysis of thermal states in non-relativistic quantum field theory is
an old subject which is well covered in the literature. Interest in thermal states in
relativistic quantum field theory arose only more recently. For this reason there
is a backlog in our understanding of the structure of thermal states in AQFT and
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one may therefore hope that this physically relevant topic will receive increasing
attention in the future.

We recall that, from the algebraic point of view, a theory is fixed by specifying
a net of local algebras of observables. The thermal states correspond to distin-
guished positive, linear and normalized functionals (-) on the corresponding
global algebra A. We will primarily discuss here the case of thermal equilibrium
states, which can be characterized in several physically meaningful ways, the
technically most convenient one being the KMS—condition, which imposes ana-
lyticity and boundary conditions on the correlation functions [5]. Having char-
acterized the equilibrium states, it is natural to ask which properties of a local
net matter if such states are to exist. The important point is that, in answering
this question, one arrives at criteria which distinguish a physically reasonable
class of theories and can be used for their further analysis.

It has become clear by now that phase space properties, which were already
mentioned at various points in this article, are of vital importance in this context.
A quantitative measure of these properties, where the relation to thermodynam-
ical considerations is particularly transparent, has been introduced in [38]. In
that approach one considers for any 8 > 0 and bounded space-time region @)
the linear map @p o from the local algebra A(O) to the vacuum Hilbert space
‘H given by

Os,0(4) = e7?H 4)0), (24)

where H is the Hamiltonian. Roughly speaking, this map amounts to restricting
the operator e #H to states which are localized in O, whence the sum of its
eigenvalues yields the partition function of the theory for spatial volume |O| and
inverse temperature 3. This idea can be made precise by noting that for maps
between Banach spaces, such as @3 o, one can introduce a nuclear norm || - ||
which is the appropriate generalization of the concept of the trace of Hilbert
space operators. Thus ||@p.0||1 takes the place of the partition function and
provides the desired information on the phase space properties (level density) of
the theory. If the theory is to have reasonable thermodynamical properties there
must hold for small 2 and large |O|

85,0l < ecloA, (25)

where ¢,m and n are positive constants [38]. This condition, which can be
checked in the vacuum sector H, should be regarded as a selection criterion
for theories of physical interest.

It has been shown in [39] that any local net which satisfies condition (25)
admits thermal equilibrium states (- )z for all § > 0. As a matter of fact, these
states can be reached from the vacuum sector by a quite general procedure.
Namely, there holds for A € A

(A)g = Jim, 7= TrEoePMEo A, (26)

where Eo projects onto certain “local” subspaces of H and Zo is a normalization
constant [39]. This formula provides a direct description of the Gibbs ensemble
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in the thermodynamic limit which does not require the definition of the theory in
a “finite box”. It has led to a sharpened characterization of thermal equilibrium
states in terms of a relativistic KMS~condition [40]. This condition states that
for any A, B € A the correlation functions

¢+ (Aag(B))s (27)

admit an analytic continuation in all space-time variables z into the complex
tube R* +iCg, where Cg C Vy is a double cone of size proportional to 5,

B

and the boundary values of these functions at the upper tip of Cg coincide with
z+— (Bag(A))s- (28)

The relativistic KMS~condition may be regarded as a generalization of the rela-
tivistic spectrum condition to the case of thermal equilibrium states. One recov-
ers from it the spectrum condition for the vacuum sector in the limit 8 — oo.

The (relativistic) KMS—condition and the condition of locality lead to en-
largements of the domains of analyticity of correlation functions of pointlike
localized fields, in analogy to the case of the vacuum. Moreover, there exists
an analogue of the K&llén—-Lehmann representation for thermal correlation func-
tions which provides a basis for the discussion of the particle aspects of thermal
states. These results are, however, far from being complete. We refer to [41] for
a more detailed account of this topic and further references.

Amongst the many intriguing problems in thermal AQFT let us also mention
the unclear status of perturbation theory [42], the still pending clarification of
the relation between the Euclidean and Minkowski space formulation of the
theory [43] and the characterization of non—equilibrium states. Any progress on
these issues would be an important step towards the consolidation of thermal
quantum field theory.

8 Curved spacetime

The unification of general relativity and quantum theory to a consistent theory
of quantum gravity is an important issue which has become a major field of
activity in theoretical physics. There are many stimulating proposals which are
based on far-reaching theoretical ideas and novel mathematical structures. Yet
the subject is still in an experimental state and has not yet reached a point



60 Detlev Buchholz

where one could extract from the various approaches and results a consistent
mathematical formalism with a clearcut physical interpretation. In a sense, one
may compare the situation with the status of relativistic quantum field theory
before the invention of AQFT.

In view of these theoretical uncertainties and lacking experimental clues it
seems appropriate to treat, in an intermediate step, the effects of gravity in
quantum field theory as a classical background. This idea has motivated the
formulation of AQFT on curved space-time manifolds (M, g). As far as the al-
gebraic aspects are concerned, this step does not require any new ideas. One
still deals with nets (2) of local algebras which are assigned to the bounded
space-time regions of M. On these nets there act the isometries of (M, g) by
automorphisms and they satisfy the principle of locality (commutativity of ob-
servables in causally disjoint regions). A novel difficulty which appears in this
setting is the characterization of states of physical interest. For in general the
isometry group of (M, g) does not contain global future directed Killing vec-
tor fields which could be interpreted as time translations and would allow for
the characterization of distinguished ground states, representing the vacuum, or
thermal equilibrium states.

The common strategy to overcome these difficulties is to invent local regu-
larity conditions which distinguish subsets (folia) of physically acceptable states
amongst the set of all states on the global algebra of observables. Such conditions
have successfully been formulated for free field theories [6], yet their generaliza-
tion turned out to be difficult and required new ideas. There are two promising
proposals which can be applied to arbitrary theories, the “condition of local
stability” [44], which fits well into the algebraic setting, and the “microlocal
spectrum condition” [45,46], which so far has only been stated in a setting based
on point fields. These conditions have proved to be useful for the discussion of
prominent gravitational effects, such as the Hawking temperature [44,47], and
they provided the basis for the formulation of a consistent renormalized pertur-
bation theory on curved spacetimes [48].

In the long run, however, it appears to be inevitable to solve the problem
of characterizing states describing specific physical situations. If the underlying
spacetime is sufficiently symmetric in the sense that it admits Killing vector
fields which are future directed on subregions of the space-time manifold (an
example being de Sitter space) one can indeed identify vacuum-like states by
symmetry and local stability properties [49,50]. The general situation is unclear,
however. It has been suggested in [51] to distinguish the physically preferred
states by a “condition of geometric modular action” which can be stated for a
large class of space-time manifolds. But this proposal has so far been proven to
work only for spacetimes where the preceding local stability conditions are also
applicable. So there is still much work needed until our understanding of this
important issue may be regarded as satisfactory.

Even more mysterious is the generalization of the particle concept to curved
space-time manifolds and the description of collision processes. Since curvature
gives rise to interaction with the classical background its effects have to be taken



Current Trends in Axiomatic Quantum Field Theory 61

into account in the characterization of the corresponding states. These problems
are of a similar nature as those occuring in the description of particle states in
Minkowski space in the presence of long range forces or in thermal states. One
may therefore hope that progress in the understanding of the latter problems
will also provide clues to the solution of these conceptual difficulties in curved
spacetime.

9 Concluding remarks

In the present survey of AQFT emphasis was put on issues which are of rele-
vance for the discussion of relativistic quantum field theory in physical spacetime.
There has been considerable progress in recent years in our understanding of the
general mathematical framework and its physical interpretation. In particular,
it has become clear that the modern algebraic approach is suitable for the dis-
cussion of the conceptual problems appearing in gauge theories. Yet there are
still many intriguing questions which deserve further clarification.

Several topics which are presently in the limelight of major research activities
had to be omitted here, such as the general analysis of low—dimensional quantum
field theories. These theories provide a laboratory for the exploration of new
theoretical ideas and methods and their thorough investigation brought to light
novel mathematical structures which stimulated the interest of mathematicians.
It was also not possible to outline here the many pertinent results and interesting
perspectives which are based on the powerful techniques of modular theory. For
an account of these exciting developments we refer to [52,53].

Thus, in spite of its age, AQFT is still very much alive and continues to be a
valuable source of our theoretical understanding. One may therefore hope that
it will eventually lead, together with the constructive efforts, to the rigorous
consolidation of relativistic quantum field theory.
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Operator Product Expansion,
Renormalization Group and Weak Decays

Andrzej J. Buras
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D-85748 Garching, Germany

Abstract. A non-technical description of the Operator Product Expansion and Renor-
malization Group techniques as applied to weak decays of mesons is presented. We use
this opportunity to summarize briefly the present status of the next-to-leading QCD
corrections to weak decays and their implications for the unitarity triangle, the ratio
€' /e, the radiative decay B — X, and the rare decays K — n*vi and K1 — n%05.

1 Preface

It is a great privilege and a great pleasure to give this talk at the symposium
celebrating the 70th birthday of Wolfhart Zimmermann. The Operator Product
Expansion [1] to which Wolfhart Zimmermann contributed in such an important
manner [2-4] had an important impact on my research during the last 20 years.
I do hope very much to give another talk on this subject in 2008 at a symposium
celebrating Wolfhart Zimmermann’s 80th birthday. I am convinced that OPE
will play an important role in the next 10 years in the field of weak decays as it
played already in almost 25 years since the pioneering applications of this very
powerful method by Gaillard and Lee [5] and Altarelli and Maiani [6].

2 Operator Product Expansion

The basic starting point for any serious phenomenology of weak decays of hadrons
is the effective weak Hamiltonian which has the following generic structure

G )
Hers = T 2 VexmCilmQi - M

Here G is the Fermi constant and @Q; are the relevant local operators which
govern the decays in question. The Cabibbo-Kobayashi-Maskawa, factors Vi, ,
(7,8] and the Wilson Coefficients C; [1] describe the strength with which a given
operator enters the Hamiltonian.

In the simplest case of the 3-decay, H.ss takes the familiar form

Gr _ _
HD, = 2L cos Ol (1 — 5)d ® ey*(1 — y5)ve] (2)
V2
where V,4 has been expressed in terms of the Cabibbo angle. In this particular
case the Wilson Coefficient is equal unity and the local operator, the object be-
tween the square brackets, is given by a product of two V — A currents. This

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, jp] 65-85, 2000.
[ Springer-Verlag Berlin Heidelberg 2000
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Fig. 1. B-decay at the quark level in the full (a) and effective (b) theory.

local operator is represented by the diagram (b) in Fig. 1. Equation (2) repre-
sents the Fermi theory for 8-decays as formulated by Sudarshan and Marshak
[9] and Feynman and Gell-Mann [10] forty years ago, except that in (2) the
quark language has been used and following Cabibbo a small departure of Viq
from unity has been incorporated. In this context the basic formula (1) can be
regarded as a generalization of the Fermi Theory to include all known quarks
and leptons as well as their strong and electroweak interactions as summarized
by the Standard Model. It should be stressed that the formulation of weak de-
cays in terms of effective Hamiltonians is very suitable for the inclusion of new
physics effects. We will discuss this issue briefly later on.

Now, I am aware of the fact that the formal operator language used here
is hated by experimentalists and frequently disliked by more phenomenological
minded theorists. Consequently the literature on weak decays, in particular on
B-meson decays [11], is governed by Feynman diagram drawings with W-, Z-
and top quark exchanges, rather than by the operators in (1). In the case of the
B-decay we have the diagram (a) in Fig. 1. Yet such Feynman diagrams with full
W-propagators, Z-propagators and top-quark propagators really represent the
situation at very short distance scales O(Mw,z,m;), whereas the true picture
of a decaying hadron with masses O(my,mc,mk) is more properly described
by effective point-like vertices which are represented by the local operators Q;.
The Wilson coefficients C; can then be regarded as coupling constants associated
with these effective vertices.

Thus H,sy in (1) is simply a series of effective vertices multiplied by effective
coupling constants C;. This series is known under the name of the operator
product expansion (OPE) [1]-[4], [12]. Due to the interplay of electroweak and
strong interactions the structure of the local operators (vertices) is much richer
than in the case of the -decay. They can be classified with respect to the Dirac
structure, colour structure and the type of quarks and leptons relevant for a
given decay. Of particular interest are the operators involving quarks only. They
govern the non-leptonic decays. To be specific let us list the operators relevant
for non-leptonic B—meson decays. They are:
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Current—Current:
Q1 = (Cabp)v-a (5sca)v-a Q2 = (eb)v—a (3c)v-a 3)

QCD-Penguins:

Qs=(b)v-a Y. (@v-a Qi=Gabg)v_a >, (@sda)v-s (4)

g=u,d,s,c,b q=u,d,s,c,b
Qs=b)v_a Y, @via Qo=@Gabg)v-a D (3p%a)vsa ()
g=u,d,s,c,b g=u,d,s,c,b

Electroweak—Penguins:

3 ,_ _
Qr =5 (8b)v-a D e (@@vsa
q=u,d,s,c,b
3, ) (6)
Qs = 3 (3abg)v-a Z eq(d89a)via
g=u,d,s,c,b

3
Qo = 5 (8b)v-2a D e(@@)v-a
g=u,d,s,c,b
3. ) (7)
Qio = 5 (3abp)v-4 Y e (@ga)v-a-

g=u,d,s,c,b

Here, o and § are colour indices and e, denotes the electrical quark charges .
reflecting the electroweak origin of Q,...,Q10. @2, @3-6 and Q79 originate in
the tree level W*-exchange, gluon penguin and (v, Z°)-penguin diagrams re-
spectively. These are the diagrams a)—c) in Fig. 2. To generate Q1, Qs and Q1o
additional gluonic exchanges are needed. The operators given above have dimen-
sion six. Of interest are also operators of dimension five which are responsible
for the B — s7v decay. They originate in the diagram d) in Fig. 2 where v and
the gluon are on-shell. They will be given in Section 7. In what follows we will
neglect the higher dimensional operators as their contributions to weak decays
are marginal.

Now what about the couplings C;() and the scale u? The important point
is that C;(p) summarize the physics contributions from scales higher than p
and due to asymptotic freedom of QCD they can be calculated in perturbation
theory as long as p is not too small. C; include the top quark contributions and
contributions from other heavy particles such as W, Z-bosons and charged Higgs
particles or supersymmetric particles in the supersymmetric extensions of the
Standard Model. At higher orders in the electroweak coupling the neutral Higgs
may also contribute. Consequently C;(u) depend generally on m; and also on the
masses of new particles if extensions of the Standard Model are considered. This
dependence can be found by evaluating the boz and penguin diagrams with full
W-, Z-, top- and new particles exchanges shown in Fig. 2 and properly including
short distance QCD effects. The latter govern the u-dependence of the couplings

Ci(n)-
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Fig. 2. Typical Penguin and Box Diagrams.

The value of s can be chosen arbitrarily. It serves to separate the physics
contributions to a given decay amplitude into short-distance contributions at
scales higher than p and long-distance contributions corresponding to scales
lower than p. It is customary to choose p to be of the order of the mass of
the decaying hadron. This is O(mp) and O(m,) for B-decays and D-decays
respectively. In the case of K-decays the typical choice is p = O(1 — 2 GeV)
instead of O(mg), which is much too low for any perturbative calculation of the
couplings Cj.

Now due to the fact that u < Mw, z, mq, large logarithms In Mw/u com-
pensate in the evaluation of C;(u) the smallness of the QCD coupling constant
a, and terms o?(In Mw /p)™, a™(In My /p)™~! etc. have to be resummed to all
orders in a, before a reliable result for C; can be obtained. This can be done
very efficiently by means of the renormalization group methods [13-15]. Indeed
solving the renormalization group equations for the Wilson coefficients Ci(u)
summs automatically large logarithms. The resulting renormalization group im-
proved perturbative expansion for C;(u) in terms of the effective coupling con-
stant o, (1) does not involve large logarithms and is more reliable.
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It should be stressed at this point that the construction of the effective Hamil-
tonian #H.zy by means of the operator product expansion and the renormalization
group methods can be done fully in the perturbative framework. The fact that
the decaying hadrons are bound states of quarks is irrelevant for this construc-
tion. Consequently the coefficients C;(u) are independent of the particular decay
considered in the same manner in which the usual gauge couplings are universal
and process independent.

Having constructed the effective Hamiltonian we can proceed to evaluate the
decay amplitudes. An amplitude for a decay of a given meson M = K, B,.. into
a final state F' = wvw, nw, DK is simply given by

AL~ F) = (FlHes M) = T5 3 VeruGUFIQIM),  ®)

where (F|Q;(p)|M) are the hadronic matrix elements of Q; between M and F.
As indicated in (8) these matrix elements depend similarly to C;(x) on u. They
summarize the physics contributions to the amplitude A(M — F) from scales
lower than p.

We realize now the essential virtue of OPE: it allows to separate the prob-
lem of calculating the amplitude A(M — F) into two distinct parts: the short
distance (perturbative) calculation of the couplings C;(1) and the long-distance
(generally non-perturbative) calculation of the matrix elements (Q;(u)). The
scale u, as advertised above, separates then the physics contributions into short
distance contributions contained in C;(u) and the long distance contributions
contained in (Q;{u)). By evolving this scale from p = O(Mw) down to lower
values one simply transforms the physics contributions at scales higher than p
from the hadronic matrix elements into C;(y). Since no information is lost this
way the full amplitude cannot depend on p. Therefore the y-dependence of the
couplings C;(u) has to cancel the py-dependence of (Q;(1)). In other words it
is a matter of choice what exactly belongs to C;(u) and what to (Q;(x)). This
cancellation of u-dependence involves generally several terms in the expansion
in (8).

Clearly, in order to calculate the amplitude A(M — F), the matrix elements
(Q:(p)) have to be evaluated. Since they involve long distance contributions one
is forced in this case to use non-perturbative methods such as lattice calculations,
the 1/N expansion (N is the number of colours), QCD sum rules, hadronic sum
rules, chiral perturbation theory and so on. In the case of certain B-meson decays,
the Heavy Quark Effective Theory (HQET) turns out to be a useful tool. Needless
to say, all these non-perturbative methods have some limitations. Consequently
the dominant theoretical uncertainties in the decay amplitudes reside in the
matrix elements (Q;(p)).

The fact that in most cases the matrix elements (Q;(u)) cannot be reliably
calculated at present, is very unfortunate. One of the main goals of the exper-
imental studies of weak decays is the determination of the CKM factors Vi
and the search for the physics beyond the Standard Model. Without a reliable
estimate of (Q;(u)) this goal cannot be achieved unless these matrix elements
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can be determined experimentally or removed from the final measurable quan-
tities by taking the ratios or suitable combinations of amplitudes or branching
ratios. However, this can be achieved only in a handful of decays and generally
one has to face directly the calculation of (Q;(u)).

Now in the case of semi-leptonic decays, in which there is at most one hadron
in the final state, the chiral perturbation theory in the case of K-decays and
HQET in the case of B-decays have already provided useful estimates of the
relevant matrix elements. This way it was possible to achieve satisfactory de-
terminations of the CKM elements Vs and V4 in K — wev and B — D*ev
respectively. Similarly certain rare decays like K — wv7 and B — pji can be
calculated very reliably.

The case of non-leptonic decays in which the final state consists exclusively
out of hadrons is a completely different story. Here even the matrix elements
entering the simplest decays, the two-body decays like K — 7w, D — K or
B — DK cannot be calculated in QCD reliably at present. More promising in
this respect is the evaluation of hadronic matrix elements relevant for K° — K°
and BY , — By , mixings.

Returmng to the Wilson coefficients C;(p) it should be stressed that similar
to the effective coupling constants they do not depend only on the scale u but
also on the renormalization scheme used: this time on the scheme for the renor-
malization of local operators. That the local operators undergo renormalization
is not surprising. After all they represent effective vertices and as the usual ver-
tices in a field theory they have to be renormalized when quantum corrections
like QCD or QED corrections are taken into account. As a consequence of this,
the hadronic matrix elements (Q;(u)) are renormalization scheme dependent and
this scheme dependence must be cancelled by the one of C;(u) so that the phys-
ical amplitudes are renormalization scheme independent. Again, as in the case
of the pu-dependence, the cancellation of the renormalization scheme dependence
involves generally several terms in the expansion (8).

Now the p and the renormalization scheme dependences of the couplings
Ci(p) can be evaluated efficiently in the renormalization group improved per-
turbation theory. Unfortunately the incorporation of these dependences in the
non-perturbative evaluation of the matrix elements (Q;(x)) remains as an im-
portant challenge and most of the non-perturbative methods on the market are
insensitive to these dependences. The consequence of this unfortunate situation
is obvious: the resulting decay amplitudes are p and renormalization scheme
dependent which introduces potential theoretical uncertainty in the predictions.
On the other hand in certain decays these dependences can be put under control.

So far I have discussed only exclusive decays. It turns out that in the case of
inclusive decays of heavy mesons, like B-mesons, things turn out to be easier. In
an inclusive decay one sums over all (or over a special class) of accessible final
states so that the amplitude for an inclusive decay takes the form:

A(B - X) f =3 VimCi(w)(£1Qi(w)|B) - (9)

fex
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At first sight things look as complicated as in the case of exclusive decays.
It turns out, however, that the resulting branching ratio can be calculated in
the expansion in inverse powers of my, with the leading term described by the
spectator model in which the B-meson decay is modelled by the decay of the
b-quark:

Br(B — X) = Br(b = q) + 0(#) . (10)

b

This formula is known under the name of the Heavy Quark Expansion (HQE)
[16]-[18]. Since the leading term in this expansion represents the decay of the
quark, it can be calculated in perturbation theory or more correctly in the renor-
malization group improved perturbation theory. It should be realized that also
here the basic starting point is the effective Hamiltonian (1) and that the knowl-
edge of the couplings C;(u) is essential for the evaluation of the leading term in
(10). But there is an important difference relative to the exclusive case: the ma-
trix elements of the operators (); can be “effectively” evaluated in perturbation
theory. This means, in particular, that their 4 and renormalization scheme de-
pendences can be evaluated and the cancellation of these dependences by those
present in C;(1) can be explicitly investigated.

Clearly in order to complete the evaluation of Br(B — X) also the remaining
terms in (10) have to be considered. These terms are of a non-perturbative origin,
but fortunately they are suppressed by at least two powers of m;. They have been
studied by several authors in the literature with the result that they affect various
branching ratios by less than 10% and often by only a few percent. Consequently
the inclusive decays give generally more precise theoretical predictions at present
than the exclusive decays. On the other hand their measurements are harder.
There is of course an important theoretical issue related to the validity of HQE
in (10) which appear in the literature under the name of quark-hadron duality.
I will not discuss it here. Recent discussions of this issue can be found in [19].

We have learned now that the matrix elements of @; are easier to handle in
inclusive decays than in the exclusive ones. On the other hand the evaluation of
the couplings C;(u) is equally difficult in both cases although as stated above
it can be done in a perturbative framework. Still in order to achieve sufficient
precision for the theoretical predictions it is desirable to have accurate values of
these couplings. Indeed it has been realized at the end of the eighties that the
leading term (LO) in the renormalization group improved perturbation theory,
in which the terms o7 (In Mw/u)™ are summed, is generally insufficient and the
inclusion of next-to-leading corrections (NLO) which correspond to summing
the terms a?(In Mw/p)"~! is necessary. In particular, unphysical left-over p-
dependences in the decay amplitudes and branching ratios resulting from the
truncation of the perturbative series are considerably reduced by including NLO
corrections. These corrections are known by now for the most important and
interesting decays and will be briefly reviewed below.
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3 Penguin—-Box Expansion and OPE

The FCNC decays, in particular rare and CP violating decays are governed by
various penguin and box diagrams with internal top quark and charm quark
exchanges. Some examples are shown in Fig. 2. These diagrams can be evalu-
ated in the full theory and are summarized by a set of basic universal (process
independent) my-dependent functions F,(z;) [20] where z; = m?/M3,. Explicit
expressions for these functions can be found in [21-23].

It is useful to express the OPE formula (8) directly in terms of the functions
F,(z¢) [25]. To this end we rewrite the A(M — F) in (8) as follows

AM > F) = %VCKM Z(F | Ok(u) | M) Ui (1, Mw) Ci(Mw), (11)
i,k

where 0kj (4, M) is the renormalization group transformation from My down
to p. Explicit formula for this transformation will be given below. In order to
simplify the presentation we have removed the index “i” from Vg

Now C;(Mw) are linear combinations of the basic functions Fy.(z;) so that
we can write

Ci(Mw) =ci+ Y _ hirFr(zt) (12)

where ¢; and h;, are mi-independent constants. Inserting (12) into (11) and
summing over ¢ and k we find

AM — F) = Po(M = F) + Y _ P.(M — F) Fy (), (13)
with )
Po(M = F) =Y (F | O(p) | M) Uk (1, Mw)es (14)
i,k
P(M = F) = (F|Ox(p) | M) Uri (g, Mw)hir , (15)
i,k

where we have suppressed the overall factor (Gr/v/2)Vek . I would like to call
(13) Penguin-Boz Ezpansion (PBE) [25].

The coefficients Py and P, are process dependent. This process dependence
enters through (F | Ok(p) | M). In certain cases like K — 7v¥ these matrix
elements are very simple implying simple formulae for the coefficients Py and
P.. In other situations, like ¢’/e, this is not the case.

Originally PBE was designed to expose the m¢-dependence of FCNC pro-
cesses [25]. After the top quark mass has been measured precisely this role of
PBE is less important. On the other hand, PBE is very well suited for the study
of the extentions of the Standard Model in which new particles are exchanged in
the loops. We know already that these particles are heavier than W-bosons and
consequently they can be integrated out together with the weak bosons and the
top quark. If there are no new local operators the mere change is to modify the
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functions F,(z;) which now acquire the dependence on the masses of new parti-
cles such as charged Higgs particles and supersymmetric particles. The process
dependent coefficients Py and P, remain unchanged. This is particularly useful
as the most difficult part is the evaluation of Ukj (4, Mw) and of the hadronic
matrix elements, both contained in these coefficients. However, if new effective
operators with different Dirac and colour structures are present the values of Py
and P, are modified. Examples of the applications of PBE to physics beyond
the Standard Model can be found in [26-28].

The universality of the functions F,(z;:) can be violated partly when QCD
corrections to one loop penguin and box diagrams are included. For instance
in the case of semi-leptonic FCNC transitions there is no gluon exchange in a
Z9-penguin diagram parallel to the Z°-propagator but such an exchange takes
place in non-leptonic decays in which the bottom line is a quark-line. Thus the
general universality of F(z;) present at one loop level is reduced to two univer-
sality classes relevant for semi-leptonic and non-leptonic transitions. However,
the O(a;) corrections to the functions F,(z¢) are generally rather small when the
top quark mass m(m,) is used and consequently the inclusion of QCD effects
plays mainly the role in reducing various u-dependences.

In order to see the general structure of A(M — F') more transparently let us
write it as follows:

A(M — F) = BM_,FVCKM’I)QCDF(:L}) + Charm (16)

where the first term represents the internal top quark contribution and
“Charm” stands for remaining contributions, in particular those with internal
charm quark exchanges. F(z;) represents one of the universal functions and
nacp the corresponding short distance QCD corrections. The parameter By F
represents the relevant hadronic matrix element, which can only be calculated by
means of non-perturbative methods. However, in certain lucky situations By F
can be extracted from well measured leading decays and when it enters also other
decays, the latter are then free from hadronic uncertainties and offer very use-
ful means for extraction of CKM parameters. One such example is the decay
K+ = ntvp for which one has

adpp Br(K* — %)
V2 272 sin? Oy

* * ¢ 2
x |V Veangep F(we) + VcchdUQCDF(Ic)‘ (17)

Br(Kt = ntuvp) =

The factor in square brackets stands for the “B-factor” in (16), which is given
in terms of well measured quantities. Since Vs, Vg and Vis are already rather
well determined and F'(z;) and néCD can be calculated in perturbation theory,
the element V;4 can be extracted from Br(K+ — ntvi) without essentially any
theoretical uncertainties. We will be more specific about this in Section 7.
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4 Motivations for NLO Calculations

Going beyond the LO approximation for C;(u) is certainly an important but
a non-trivial step. For this reason one needs some motivations to perform this
step. Here are the main reasons for going beyond LO:

e The NLO is first of all necessary to test the validity of the renormalization
group improved perturbation theory.

¢ Without going to NLO the QCD scale Az75 [29] extracted from various high
energy processes cannot be used meaningfully in weak decays.

e Due to renormalization group invariance the physical amplitudes do not
depend on the scales u present in o or in the running quark masses, in
particular m¢(u), mp (i) and me(p). However, in perturbation theory this
property is broken through the truncation of the perturbative series. Con-
sequently one finds sizable scale ambiguities in the leading order, which can
be reduced considerably by going to NLO.

e The Wilson Coefficients are renormalization scheme dependent quantities.
This scheme dependence appears first at NLO. For a proper matching of the
short distance contributions to the long distance matrix elements obtained
from lattice calculations it is essential to calculate NLO. The same is true
for inclusive heavy quark decays in which the hadron decay can be modeled
by a decay of a heavy quark and the matrix elements of Q; can be effectively
calculated in an expansion in 1/my,.

e In several cases the central issue of the top quark mass dependence is strictly
a NLO effect.

5 General Structure of Wilson Coefficients

We will give here a formula for the Wilson coefficient C(u) of a single operator

@ including NLO corrections. The case of several operators which mix under

renormalization is much more complicated. Explicit formulae are given in [21,23].
C(p) is given by

C(u) = U(p, Mw)C(Mw) (18)
where w
= ex 9ot 1 7Q(9:)
U(p, Mw) = exp [/g,(Mw) dg B } (19)

is the evolution function, which allows to calculate C(x) once C(Myw) is known.
The latter can be calculated in perturbation theory in the process of integrating
out W*, Z° and top quark fields. Details can be found in [21,23]. Next g is the
anomalous dimension of the operator Q and §(g;) is the renormalization group
function which governs the evolution of the QCD coupling constant a ().

At NLO we have
as(Mw)

C(Mw)=1+ -

B (20)
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©% 1) 2
1elas) =19 -+ 10 ( 47T) (21)
P 9
IB( ) - ﬂo 16 2 :BI (16 2)2 (22)
Inserting the last two formulae into (19) and expanding in o, we find
) ] (@) [, _ as(Mw)
i) = o+ 2400 [0 [t )
with O ©
Jo _To
J=— 24
&3 = %, (24

Inserting (23) and (20) into (18) we find an important formula for C(p) in
the NLO approximation:

Clp) = [1 + az(:) J] [a;(sﬁ")")]d [1 + %(3 - J)] . (25)

6 Status of NLO Calculations

Since the pioneering leading order calculations of Wilson coefficients for current—
current [5,6] and penguin operators [30], enormous progress has been made, so
that at present most of the decay amplitudes are known at the NLO level. We
list all existing NLO calculations for weak decays in table 1. In addition to the
calculations in the Standard Model we list the calculations in two-Higgs dou-
blet models and supersymmetry. In table 2 we list references to calculations of
two-loop electroweak contributions to rare decays. The latter calculations allow
to reduce scheme and scale dependences related to the definition of electroweak
parameters like sin? Oy, agQED, etc. Next, useful techniques for three-loop cal-
culations can be found in [77] and a very general discussion of the evanescent
operators including earlier references is presented in [78]. Further details on these
calculations can be found in the orignal papers, in the review [21] and in the
Les Houches lectures [23]. Some of the implications of these calculations will be
analyzed briefly in subsequent sections.

7 Applications: News

7.1 Preliminaries

There is a vast literature on the applications of NLO calculations listed in table 1.
As they are already reviewed in detail in [21-23] there is no point to review them
here again. I will rather discuss briefly some of the most important applications
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Table 1. References to NLO Calculations

| Decay |[Reference|
AF =1 Decays

current-current operators [31,32]

QCD penguin operators [33,35-38]

electroweak penguin operators [34-37]

magnetic penguin operators [39,40]

Br(B)stL [31,41—43]

inclusive AS = 1 decays [44]
Particle-Antiparticle Mixing

M [45]

72, 1B [46,47]

3 [48]

Rare K- and B-Meson Decays
K} = 7%vp, B > 717, B = X,vi|[49-52]

KY 5 atvp, Ky, — ptp™ [53,52]

K* = ntuj [54]

K1 — nlete” [55]

B X,utyu~ [56,57]

B = X.vy [58]-[65]

Alp, [67]

inclusive B — Charmonium [68]
Two-Higgs Doublet Models

B — X,y [[64,66,65]

Supersymmetry
AMy and ex (69,70]
B — X,y [71]

Table 2. Electroweak Two-Loop Calculations

Decay Reference
K? = 7°vi, B = IT17, B = Xwi|[72]
B — Xy [73-75]
B° — B° mixing [76]

in general terms. This will also give me the opportunity to update some of
the numerical results presented in [23]. This update is related mainly to the
improved experimental lower bound on B? — BY mixing ((AM)s > 12.4/ps) and
a slight increase in |Vyp|/|Ves|: 0.091£0.016, both presented at the last Rochester
Conference in Vancouver [79].

7.2 Unitarity Triangle

The standard analysis of the unitarity triangle (see Fig. 3) uses the values of
[Vasls [Vebly |Vub/Ves| extracted from tree level K- and B- decays, the indirect
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C=(0,0) B=(1,0)
Fig. 3. Unitarity Triangle.

CP-violation in Ky — 77 represented by the parameter ¢ and the BS , — By,
mixings described by the mass differences (AM)4,s. From this analysis follows
the allowed range for (g,7) describing the apex of the unitarity triangle. Here

81] 2

=ol-%),  a=ut-3) (26)

where ), o and 7 are Wolfenstein parameters [82] with [Vys| = A = 0.22. We
have in particular

Vb = MVasl(@ —im),  Vaa = AVas|(1 — & — 7). (27)

n # 0 is responsible for CP violation in the Standard Model.

The allowed region for (g,7) is presented in Fig. 4. It is the shaded area
on the right hand side of the solid circle which represents the upper bound for
(AM)4/(AM),. The hyperbolas give the constraint from £ and the two circles
centered at (0,0) the constraint from |Vub/Ves|. The white areas between the
lower e-hyperbola and the shaded region are excluded by BY — BY mixing. We
observe that the region g < 0 is practically excluded. The main remaining theo-
retical uncertainties in this analysis are the values of non-perturbative parame-
ters: Bx in ¢, F,v/Bain (AM)gand § = Fp,A/Bs/Fp,v/Bgin (AM)4/(AM)s.
I have used Bx = 0.80%0.15, Fg,/Bg = 200 £ 40 MeV and max = 1.2. On the
experimental side |Vyp/Ves| and (AM); should be improved.

From this analysis we extract

and
sin28 = 0.71 £ 0.13, siny = 0.83 +0.17 (29)
7.3 ¢€'/e

¢'/e is the ratio of the direct and indirect CP violation in K — mr. A measure-
ment of a non-vanishing value of ¢'/e would give the first signal for the direct
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T
(E.(AM),)=(1.2,12.4ps™")
08 B
/" (1.2,15ps™)
0.6 [
(1.2,25ps™)
=
04
02
0.0 L

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
p

Fig. 4. Unitarity Triangle 1998.

CP violation ruling out the superweak models [83]. In the Standard Model &' /e
is governed by QCD penguins and electroweak (EW) penguins. The correspond-
ing operators are given in (4)-(7). With increasing m; the EW penguins become
increasingly important [84,85], and entering ¢'/e with the opposite sign to QCD
penguins suppress this ratio for large m;. For m; ~ 200 GeV the ratio can even
be zero [85]. Because of this strong cancellation between two dominant contribu-
tions and due to uncertainties related to hadronic matrix elements of the relevant
local operators, a precise prediction of €' /e is not possible at present.

A very simplified formula (not to be used for any serious numerical analysis)
which exhibits main uncertainties is given as follows

4 1°®
g Lo [ mAVel® 1T 120 Mev 12 A
€ _15. Bs—Z
;110 [1.3.10—4 my(2 GeV)| |300 MeV [Bs — Z(z:)Bs] (30)

where Z(z;) = 0.18(m/Mw)' 8% represents the leading m-dependence of EW
penguins. Bg and Bg represent the hadronic matrix elements of the dominant
QCD-penguin operator Q¢ and the dominant electroweak penguin operator Qg
(see (5) and (6)) respectively. Together with mg(2GeV) the values of these pa-
rameters constitute the main theoretical uncertainty in evaluating ¢’/e. Present
status of ms, Bs and By is reviewed in [86,23]. Roughly one has Bg = 1.0 &+ 0.2
and Bg = 0.7 £ 0.2. Taking these values, 7 of Fig. 4 and |V,;| = 0.040 £ 0.003, I
find:

e = {(BT£36) 107 m,(2GeV) = 130+ 20 MeV
FIETUO1£5.7)-107 | my(2GeV) = 110 + 20 MeV.

where the chosen values for ms are in the ball park of various QCD sum rules
and lattice estimates [86]. This should be compared with the result of NA31

(31)
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collaboration at CERN which finds (¢'/e) = (23£7)-10~* [87] and the value of
E731 at Fermilab, (¢'/e) = (7.4£5.9) - 107* [88].

The Standard Model expectations are closer to the Fermilab result, but due
to large theoretical and experimental errors no firm conclusion can be reached
at present. The new improved data from CERN and Fermilab in 1999 and later
from DA®NE should shed more light on &’/e. In this context improved estimates
of Bg, Bg and m; are clearly desirable.

74 B — X7y

A lot of efforts have been put into predicting the branching ratio for the inclusive
decay B — X,v including NLO QCD corrections and higher order electroweak
corrections. The relevant references are given in table 1 and in [23], where details
can be found. The final result of these efforts can be summarized by

Br(B = X47)w = (3.30 & 0.15(scale) = 0.26(par)) - 10~* (32)

where the first error represents residual scale dependences and the second error is
due to uncertainties in input parameters. The main achievement is the reduction
of the scale dependence through NLO calculations, in particular those given in
[61] and [40]. In the leading order the corresponding error would be roughly +0.6
[89,90].

The theoretical result in (32) should be compared with experimental data:

_ {(3.15+0.35+0.41)-10~*, CLEO
Br(B = XoYexp = { (3114080 £072)-10-*, ALEPH, 9
which implies the combined branching ratio:
Br(B = XY)exp = (3.14£0.48) - 107* (34)

Clearly, the Standard Model result agrees well with the data. In order to see
whether any new physics can be seen in this decay, the theoretical and in par-
ticular experimental errors should be reduced. This is certainly a very difficult
task. Most recent analyses of B — X7 in supersymmetric models and two—Higgs
doublet models are listed in table 1.

75 Kp— n%vpand Kt — ntup

K — 7% and K+ — ntvp are the theoretically cleanest decays in the field
of rare K-decays. K; — n%vv is dominated by short distance loop diagrams
(Z-penguins and box diagrams) involving the top quark. K + — 7T vi receives
additional sizable contributions from internal charm exchanges. The great virtue
of K1, — w% is that it proceeds almost exclusively through direct CP violation
[91] and as such is the cleanest decay to measure this important phenomenon. It
also offers a clean determination of the Wolfenstein parameter n and in particular
offers the cleanest measurement of ImV;t V4 [92]. K+ — wtvi is CP conserving
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and offers a clean determination of |Vid|- Due to the presence of the charm
contribution and the related m, dependence it has a small scale uncertainty
absent in K — 7.

The next-to-leading QCD corrections [49,50,53,51,52] to both decays consid-
erably reduced the theoretical uncertainty due to the choice of the renormaliza-
tion scales present in the leading order expressions, in particular in the charm
contribution to K+ — n+vi. Since the relevant hadronic matrix elements of
the weak currents entering K — 7v7 can be related using isospin symmetry
to the leading decay K+ — n%%w, the resulting theoretical expressions for
Br( K; — n%®p) and Br(Kt — @tvp) are only functions of the CKM pa-
rameters, the QCD scale Ay and the quark masses my and mc. The isospin
braking corrections have been calculated in {93]. The long distance contribu-
tions to K+ — mtvi have been considered in (94] and found to be very small: a
few percent of the charm contribution to the amplitude at most, which is safely
neglegible. The long distance contributions to Kz — 7% are negligible as well
[95].

The explicit expressions for Br(K+ — n*wvp) and Br(K; — 7°7) can
be found in [21-23]. Here we give approximate expressions in order to exhibit
various dependences:

Br(Kt = ntvp) = 0.7-1071° Veal 1° 11 Veo 11° [ mimy) 1% +cc + te
' 0.010] |0.040| |170 GeV
(35)
— 2.3 4
0, _an. 1011 [_1 1% [ me(my) | Veo |
Br(Ky = mvp) =3.0-10 [0.39] [170 GeV] [0.040 (36)

where in (35) we have shown explicitly only the pure top contribution.

The impact of NLO calculations is the reduction of scale uncertainties in
Br(K* — ntvp) from £23% to £7%. This corresponds to the reduction in the
uncertainty in the determination of |Vi4| from £14% to +4%. The remaining
scale uncertainties in Br(Ky — 7%7) and in the determination of 7 are fully
negligible.

Updating the analysis of [23] one finds [52]:

Br(K* — rtuvp) = (82+3.2)-10711 (37)
Br(Kp = %) = (3.1£1.3)- 107!,

where the errors come dominantly from the uncertainties in the CKM parame-
ters.

As stressed in [92] simultaneous measurements of Br(K+ — 7n+vi) and
Br(Kp, — n%w) should allow a clean determination of the unitarity triangle as
shown in Fig. 5. In particular the measurements of these branching ratios with
an error of £10% will determine |V;4], ImV;%V;4 and sin 28 with an accuraccy of
+10%, £5% and £0.05 respectively. The comparision of this determination of
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sin 28 with the one by means of the CP-asymmetry in B — ¥ K should offer a
very good test of the Standard Model.
Experimentally we have [96]

BR(K*+ — ntvp) = (4.2+9.7-3.5) - 10710 (38)

and the bound [97]
BR(Ky, - n°vp) < 1.6-107°. (39)

Moreover from (38) and isospin symmetry one has [98] BR(KyL — n°vp) <
6.1-107°.

(0,0) (1,0)

Fig. 5. Unitarity triangle from K — mvv.

The central value in (38) is by a factor of 4 above the Standard Model
expectation but in view of large errors the result is compatible with the Standard
Model. The analysis of additional data on K+ — 77vP present on tape at
BNL787 should narrow this range in the near future considerably. In view of the
clean character of this decay a measurement of its branching ratio at the level of
2.10~1° would signal the presence of physics beyond the Standard Model [52].
The Standard Model sensitivity is expected to be reached at AGS around the
year 2000 [99]. Also Fermilab with the Main Injector could measure this decay
[100].

The present upper bound on Br(Ky, — n°v?) is about five orders of magni-
tude above the Standard Model expectation (37). FNAL-E799 expects to reach
the accuracy O(107%) and a very interesting new experiment at Brookhaven
(BNL E926) [99] expects to reach the single event sensitivity 2-1072 allowing a
10% measurement of the expected branching ratio. There are furthermore plans
to measure this gold-plated decay with comparable sensitivity at Fermilab [101]
and KEK [102].
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8 Summary

We have given a general description of OPE and Renormalization Group tech-
niques as applied to weak decays of mesons. Further details can be found in
[21-23,103]. One of the outstanding and important challanges for theorists in
this field is a quantitative description of non-leptonic meson decays. In the field
of K-decays this is in particular the case of the AI = 1/2 rule for which some
progress has been made in [104]. In the field of B-decays progress in a quanti-
tative description of two-body decays is very desirable in view of forthcoming
B-physics experiments at Cornell, SLAC, KEK, DESY, FNAL and later at LHC.
Recent reviews on non-leptonic two-body decays are given in [105-107] where
further references can be found.

I would like to thank Peter Breitenlohner, Dieter Maison and Julius Wess for
inviting me to such a pleasant symposium.
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Abstract. We review our recent work, hep-th/9803030, on the constraints imposed by
global or local symmetries on perturbative quantum field theories. The analysis is per-
formed in the Bogoliubov-Shirkov-Epstein-Glaser formulation of perturbative quantum
field theory. In this formulation the S-matrix is constructed directly in the asymptotic
Fock space with only input causality and Poincaré invariance. We reformulate the sym-
metry condition proposed in our earlier work in terms of interacting Noether currents.

1 Introduction

The relation between symmetries and quantum theory is an important and fun-
damental issue. For instance, symmetry relations among correlation functions
(Ward identities) are often used in order to prove that a quantum field theory
is unitary and renormalizable. Conversely, the violation of a classical symmetry
at the quantum level (anomalies) often indicates that the theory is inconsistent.
Furthermore, in recent years symmetries (such as supersymmetry) have been
instrumental in uncovering non-perturbative aspects of quantum theories (see,
for example, [1]). It is, thus, desirable to understand the interplay between sym-
metries and quantization in a manner which is free of the technicalities inherent
in the conventional Lagrangian approach (regularization/renormalization) and
in a way which is model independent as much as possible.

In a recent paper [2] we have presented a general method, the Quantum
Noether Method, for constructing perturbative quantum field theories with glo-
bal symmetries. Gauge theories are within this class of theories, the global sym-
metry being the BRST symmetry [3]. The method is established in the causal
approach to quantum field theory introduced by Bogoliubov and Shirkov [4]
and developed by Epstein and Glaser [5,6]. This explicit construction method
rests directly on the axioms of relativistic quantum field theory. The infinities
encountered in the conventional approach are avoided by a proper handling of
the correlation functions as operator-valued distributions. In particular, the well-
known problem of ultraviolet (UV) divergences is reduced to the mathematically
well-defined problem of splitting an operator-valued distribution with causal sup-
port into a distribution with retarded and a distribution with advanced support
or, alternatively [6,7], to the continuation of time-ordered products to coincident
points. Implicitly, every consistent renormalization scheme solves this problem.

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, jp. B6-105, 2000.
O Springer-Verlag Berlin Heidelberg 2000



The Quantum Noether Conditionin Terms of Interacting Fields 87

Thus, the explicit Epstein-Glaser (EG) construction should not be regarded as
a special renormalization scheme but as a general framework in which the con-
ditions posed by the fundamental axioms of quantum field theory (QFT) on any
renormalization scheme are built in by construction. In this sense our method
is independent from the causal framework. Any renormalization scheme can be
used to work out the consequences of the general symmetry conditions proposed
in [2].

In the EG approach the S-matrix is directly constructed in the Fock space
of free asymptotic fields in a form of formal power series. The coupling constant
is replaced by a tempered test function g(z) (i.e. a smooth function rapidly
decreasing at infinity) which switches on the interaction. Instead of evaluating
the S-matrix by first computing off-shell Greens functions by means of Feynman
rules and then applying the LSZ formalism, the S-matrix is directly obtained
by imposing causality and Poincaré invariance. The method can be regarded as
an “inverse” of the cutting rules. One builds n-point functions out of m-point
functions (m < n) by suitably “gluing” them together. The precise manner in
which this is done is dictated by causality and Poincaré invariance (see appendix
A for details). One shows, that this process uniquely fixes the S-matrix up to
local terms (which we shall call “local normalization terms”). At tree level these
local terms are nothing but the Lagrangian of the conventional approach (2].

The problem we set out to solve in [2] was to determine how to obtain a
quantum theory which, on top of being causal and Poincaré invariant, is also
invariant under a global symmetry. For linear symmetries such as global inter-
nal symmetries or discrete C, P, T symmetries the solution is well-known: one
implements the symmetry in the asymptotic Fock space space by means of an
(anti-) unitary transformation. The focus of our investigation in [2] was symme-
tries that are non-linear in the Lagrangian formulation. The prime examples are
BRST symmetry and supersymmetry (in the absence of auxiliary fields). The
main puzzle is how a theory formulated in terms of asymptotic fields only knows
about the inherent non-linear structure.

The solution to the problem is rather natural. One imposes that the Noether
current that generates the asymptotic symmetry is conserved at the quantum
level, i.e. inside correlation functions. This condition, the Quantum Noether
Condition (QNC), constrains the local normalization terms left unspecified by
causality and Poincaré invariance. At tree-level one finds that the asymptotic
Noether current renormalizes such that it generates the full non-linear transfor-
mation rules. At the quantum level the same condition yields the correspond-
ing Ward identities. The way the methods works is analogous to the classical
Noether method [8,9], hence its name. In addition, we have shown that the QNC
is equivalent to the condition that the S-matrix is invariant under the symmetry
under question (i.e. the S-matrix commutes with the generator of the asymptotic
symmetry).

Quantum field theory, however, is usually formulated in terms of interacting
fields. In the Lagrangian formulation, the symmetries of the theory are the sym-
metries of the action (or more generally of the field equations) that survive at
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the quantum level. These symmetries are generated by interacting Noether cur-
rents. It will, thus, be desirable to express the QNC in terms of the latter. As we
shall see, this is indeed possible. The QNC in term of the interacting current is
given in (22). If the symmetry is linear then the condition is that the interacting
current is conserved (as expected). If the symmetry, however, is non-linear the
interacting current is only conserved in the adiabatic limit (g — const.).

One important example is Yang-Mills theory. In this case, the corresponding
Noether current is the BRST current. Because there are unphysical degrees of
freedom present in gauge theories, one needs a subsidiary condition in order
to project out the unphysical states. The subsidiary condition should remain
invariant under time evolution. This means that it should be expressed in terms
of a conserved charge. The appropriate charge for gauge theories is the BRST
charge [10]. The subsidiary condition is that physical states should be annihilated
by the BRST charge Qin¢ (and not be Qiu;-exact).

The considerations in [10], however, (implicitly) assumed the naive adiabatic
limit. For pure gauge theories this limit seem not to exist. Then from the Quan-
tum Noether Condition (22) follows that the interacting BRST current is not
conserved before the adiabatic limit. We stress, however, that the Quantum
Noether Condition allows one to work out all consequences of non-linear sym-
metries for time-ordered operator products before the adiabatic limit is taken.
As we shall see, one can even identify the non-linear transformation rules.

We organize this paper as follows: In the next section we shortly review the
Quantum Noether Method. In section 3 we express the Quantum Noether Condi-
tion in terms of the interacting Noether current. Section 4 contains a discussion
of future directions. In the appendix we present the main formulae of the causal
framework and our conventions.

2 The Quantum Noether Method

In the EG approach one starts with a set of free fields in the asymptotic Fock
space. These fields satisfy their (free) field equations and certain commutation
relations. To define the theory one still needs to specify 7}, the first term in the S-
matrix. (Actually, as we shall see, even T} is not free in our construction method
but is also constrained by the Quantum Noether Condition). Given T} one can,
in a well defined manner, construct iteratively the perturbative S-matrix, The
requirements of causality and Poincaré invariance completely fix the S-matrix
up to local terms. The additional requirement that the theory is invariant under
a global and/or local symmetry imposes constraints on these local terms.

To construct a theory with global and/or local symmetry we introduce the
coupling g,jo in the theory, where j§' is the Noether current that generates
the asymptotic (linear) symmetry transformations, and we impose the condition
that “the Noether current is conserved at the quantum level”

0 ZE(x1, -, zn; B) = 0, (1)
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where we introduce the notation (we use the abbreviation 8/0z}" = BL)

aﬂk%{‘(xla "y In h’) = ZBL nﬂ/l’ (2)
=1
and
Fap = TTu(21) -+ 3 (1) -+ Ta(zn)]. )

(for n = 1, Z(z1) = j§(x1)). In other words we consider an n-point function
with one insertion of the current J& at the point x;. Notice that since the left
hand side of (1) is a formal Laurent series in A, this condition is actually a set
of conditions.

One may apply the inductive EG construction to work out the consequences
of (1). This may be done by first working out T'[jo7}...T}] and then constructing
(2). However, there is an alternative route [2]. One relaxes the field equations of
the fields ¢. Then the inductive hypothesis takes the form: for m < n,

>a, e =D RN THapPo(z1, ..., zm), (4)
=1 A
where )
0% 0%,

Fapd? = *

B(ongR) ~ g8 (5)

are the free field equations (£; is the free Lagrangian that yields (5); the present
formulation assumes that such a Lagrangian exists). The coefficients R4™ (k) are
defined by (4) and are formal series in A.

Clearly, if we impose the field equation we go back to (1). The converse is also
true. Once one relaxes the field equations in the inductive step, (1) implies (4)
as was shown in [2]. The advantage of the off-shell formulation is that it makes
manifest the non-linear structure: the coefficients R4™ (%) are just the order m
part of the non-linear transformation rules. In addition, the calculation of local
on-shell terms arising from tree-level graphs simplifies:

We now discuss the condition (1) at tree-level. For the analysis at loop level
we refer to [2]. At tree-level we only need the A° part of (4). Let us define

1
Sm-19” = MRA’ (A°). (6)

Depending on the theory under consideration the quantities R4™ (k%) may be
zero after some value of m. Without loss of generality we assume that they are
zero for m > k + 1, for some integer k& (which may be infinity; the same applies
for &’ below.). One shows that

k

s =) g"sme? (7)

m=0
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are symmetry transformation rules that leave the Lagrangian,

»
F = g"Fm, (8)

m=0

invariant (up to total derivatives), where k' is also an integer (generically not
equal to k). The Lagrangian % will be determined from the tree-level normal-
ization conditions as follows,

L = = ‘, for m>1, 9)
i ml
where N, denotes the local normalization ambiguity of T [T1(21)...T1(Zm)] in
tree graphs defined with respect to the naturally split solution (i.e. the Feynman
propagator is used in tree-graphs). For m = 1, %, = (f/i)T1. The factor m!
reflects the fact that Tj,[...] appears in (A.55) with a combinatorial factors m!
while the factor //i is there to cancel the overall factor i/A that multiplies the
action in the tree-level S-matrix. Notice that we regard (9) as definition of Z,,.
Let us further define j# as the local normalization ambiguity of T, [507 1Tt

T8 (@) T (22) - - Ta(2n)] = Tenlih (21)T1(22) - Ti(za)] + G416 (10)

where T}, . denotes the naturally splitted solution. We shall see that the normal-
ization terms j, complete the asymptotic current jo to the Noether current that
generates the non-linear symmetry transformations (7).

We wish to calculate the tree-level terms at nth order. The causal distribution
Yoy 8’ " 71 at the nth order consists of a sum of terms each of these being a
tensor product of Trn[T1..T10joT1... T1) (m < n) with T- products that involve
only T; vertices according to the general formulae (A.61,A.62,A.68). By the off-
shell induction hypothesis, we have for all m < n

Zafl 1::/1 = Z(m!sm—1¢A)%AB¢BJ(m). (11)
=1 A

As explained in detail in [2], at order n one obtains all local on-shell terms
by performing the so-called “relevant contractions”, namely the contractions
between the ¢& in the right hand side of (11) and ¢ in local terms. In this
manner we get the following general formula for the local term A.n arising
through tree-level contractions at level n,

c n tree) Z Z auym Lr(1)s--- aIﬂ(m))Nn—m6($ﬂ(k+l)a cee sxr(n))
r€ll™ m=1
(12)

1 We use the following abbreviations for the delta function distributions:
8™ = §(x1,..., &) = 6(z1 — 2) - - - §(&n-1 — Tn).
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where it is understood that in the right hand side only “relevant contractions”
are made. The factors N,,_,, are tree-level normalization terms of the T-products
that contain n — m T} vertices.

In [2] we have provided a detailed analysis of (12) for any n (under the as-
sumption that the Quantum Noether Method is not obstructed). In the next
section, we will need these results in order to show that condition (22) is equiv-
alent to condition (1). We therefore list them here without proofs.

The n = 1 case is trivial. One just gets that R41(h%) = so¢4. For 2 < n <
k + 1, the condition (4) at tree-level yields the following constraint on the local
normalization terms of the To,, m < mn,

$0Lp_1+51Fpn_o+ -+ Sn—2F = ap.g,f:_l + 5n—1¢A'%AB¢B (13)

and, furthermore, determines j4_;,

=2 6$n 1-1

Jh = —nlF (-1 (I + 1)WS:¢A- (14)
=0
For n > k + 1 we obtain,
50Fn-1+81Fn-2++ + sk Bn_1-k = O BY 5, (15)
and . ‘
jE_ = -nlFE  + (n-1) lz; z%%s,_l¢A. (16)

Depending on the theory under consideration the %&,’s will be zero for n > k',
for some integer k’. Given the integers k and k’, there is also an integer k"
(determined from the other two) such that ¥ = 0, for n > k".

Summing up the necessary and sufficient conditions (13), (15) for the Quan-
tum Noether method to hold at tree level we obtain,

k”

sZg’Sﬁ > 0.7 + (Zg 516 Fapd® (17)

=1 l=1

Using s0-%p = Oukf and for [ < k

510 FHapg® = (3 3, ¢A)Sl¢ ) = si%o (18)
we obtain,
k//
sF = 0,03 d'k) (19)

1=0
where, for 1 <1 <k,

ki =%+ 5194 (20)

0%
9(0u64)



92 Tobias Hurth and Kostas Skenderis

and for | > k, k' = Z". We therefore find that £ is invariant under the
symmetry transformation,

k
A= Zglsl¢A. (21)
=0

According to Noether’s theorem there is an associated Noether current. One
may check that the current normalization terms j¥ (14), (16) are in one-to-one
correspondence with the terms in the Noether current. Therefore the current jo
indeed renormalizes to the full non-linear current.

3 Conservation of the Interacting Noether Current

The Quantum Noether Condition (1) can be reformulated in terms of interacting
fields. Let ]0 in¢ @nd 7 ;. be the interacting currents corresponding to free field
operators j& and 7%, respectively, perturbatively constructed according to (A.82).

7 is equal to — &} (defined in (13)) as will see below. Then the general Ward
identity

BNJO int — aﬂgjl int (22)

is equlvalent to condition (1). According to condition (22) the 1nteract1ng Noether
current ]0 .t 18 conserved only if it generates a linear symmetry, i.e. 7| vanishes,
or otherwise in the adiabatic limit g(z) — 1, provided this limit exists. In the
following we shall show that the condition (22) yields the same conditions on the
the time-ordered products T[T} ...T3] as the Quantum Noether condition (1). In
this sense the two general symmetry conditions are considered equivalent.

Because Poincaré invariance and causality already fix the time-ordered prod-
ucts Ty [Ty...Ty] up to the local normalization ambiguity Nn, we only have to
show that these local normalization terms N,, are constrained in the same way
by both conditions, (22) and (1).

First, we translate the condition (22) to a condition on time-ordered products
using the formulae given in the appendix:

The perturbation series for the interacting field operator jb, of a free field
operator j* is given by the advanced distributions of the corresponding expansion
of the S-matrix (see (A.82)):

fol®) = @)+ Y / diz, ... d'z,
n=1
Adpi1 [Ti(z1) . Ta(zn); 54 (@) 9(21) - - g(zn),  (23)

where Ad,; denotes the advanced operator-valued distribution with n vertices
T, and one vertex j*(z) at the (n + 1)th position. This distribution is only
symmetric in the first n variables x, ..., z,. The support properties are defined
with respect to the unsymmetrized variable x.
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With the help of (23), we rewrite the left hand side of equation (22)

O 81 (@) = a5<x)+2 o [ dtan
3,,Adn+1 [Ta(z1) ... Ta(zn); 56 (2)] 9(z1) - - . 9(Tn)  (24)

and the right hand side of (22)

o0
1
1 ine (2)0ug(x Z;/d‘lm AT diTa

Adnyy [Ti(z1) ... T1(zn); 71 (2)] 6(z — Tpta)
9(z1). .. g(zn)0+ g(Tn1) (25)

After partial integration, symmetrization of the integrand in the variables (z;,
., Zn+1) and shifting the summation index, the right hand-side of (22) can be
further rewritten as

y 1
Jlll,int(m)aug(x) = - Z oy} /d4x1 Ldiz
n=1""

Zn: {Ad,, [Tl(xl) . T(z,). ..T(xn);j’l‘(x)] 0%i6(z; — x)}
j=1
9(z1) ... g(zn) (26)

where the hat indicates that this coupling has to be omitted. Equation (22) reads
then

B;J(’)L =0, (n=0)
B2 Adn g1 [Th(z1) . .. T(zn); 5§ ()]

+3° Ady [Ti@2). . T(3;) .. Tlea); 7 (2)] 8276(z; — 2) = 0, (n> 0)(27)
i=1

where the local normalization terms of the Ad-distributions with respect to a
specified splitting solution will be given below.

In the following we discuss the equivalent condition of the time-ordered dis-
tributions instead of the advanced ones in order to compare the unsymmetrized
condition (22) with the symmetrized Quantum Noether Condition (1). We get
instead of (27)

8ﬁTn+1 [Tl(.’ltl) e Tl(xn);j{)‘(x)]

= -3 T [Ti@) .. Tiley) . Ti(za)i R ()| 076(z; — ) (28)
i=1
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These distributions get smeared out by g(z1)...g(z,)g(x), where the test func-
tion § differs from g. One easily verifies the left hand side of (28) is just the
Quantum Noether Condition (1) but without the symmetrization; the missing
symmetrization produces the extra terms on the right hand side of (28) as we
shall see.

We shall use the same off-shell procedure in order to fix the local on-shell
obstruction terms (which is explained in detail in [2], section 4.2). The starting
point (n = 0) of both conditions is the same

0ud8(x) = s09” Fapd® (29)
We have now for n =1,
3 (Ta,c[Ta(z1)j6 (2)] + 51 6(z1 — 7)) = —F (2)0;* (21 — ) (30)
Working out the left hand side (and using Ty = £.%}) we obtain,

BZ (§1d(z1 — x)) + s0-L£10(71 — ) — Bff (%—)Sofﬁfté(ﬁ - .7:))
w

= 7(2)9%5(z1 — 7) (31)

This condition fixes the local renormalization of j§ at order g, denoted by j¥
(defined with respect to the natural splitting solution T3 ) and also 7} in condi-
tion (22). The latter term, proportional to the derivative of the d-distribution,
is left over in our new unsymmetrized condition. Note that in the symmetrized
case, we reduced these kind of terms to ones proportional to the J-distribution
with the help of distributional identities.

The condition (31) can be fulfilled for some local operators j{ and 7; if and
only if s0-% is a divergence up to field equation terms,

$0. 1 = 6,,561“ + Sl(ﬁA%AB(ﬁB. (32)
In the absence of real obstructions this equation has solutions and we get

0%,
= B _s09? 33
Nn 1 + a(aﬂ¢A)30¢ ( )
as local renormalization of j§;,, at order g! and
== (34)

Equation (33) should be compared with the analogous formulae (14) for n = 22.
We finally have

02Ty [Ty(z1)58 ()] + 4 (2)05 6(z1 — z) = 516" Fapd®o(z1 — z).  (35)

2 Notice that n in the present section should be compared with n + 1 in section 2.
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The off-shell term on the right hand side of (35) is responsible for local
obstruction terms at the next order, n = 2. We get (taking special care of
derivative terms and advantage of our off-shell procedure):

82Ty ¢ [T1(21)Ti(22)58 (2)] + (Ta,c [Ti(21)74 (2)] 82 8(z2 — 7) + [z1 ¢ 72])

h 3 T z aT‘l A
= ; [QSlTﬂS( ) _ (28}1 + Bul + Bﬁ’) (W31¢ 5(3))

N,
+50N28® — 82 (5(5——;753045’46(3))} (36)
7

where Ny denotes the tree-normalization term of T3[T1Ty] which is uniquely
defined with respect to the natural splitting solution T3 ([T1T1]. Now we include
also the normalization ambiguity of the other distributions involved:

T; [Ty (z1)Ti(22) 55 (2)] = Ts.c [T1(@1)T1(22) 6 (2)] + 55 (2)0(x1, 2, 7) (37)
T, [Ty (x:) 71 ()] = To.c [T1(z:) ) (2)] + Fo0(zi — x)

According to (13) the Quantum Noether Condition (1) at order n = 3 is fulfilled
if and only if

Slfg] + 30552 = 8,,,3; + 32¢A%AB¢B (38)

where the definition %, = (h/i)(Nn/n!) is used. Now the same is true for
condition (36). Only if (38) holds one can absorb the local terms on the right
hand side of (36) in the normalization terms j4 (z) and 75(z) given in (37). The
reasoning is again slightly different from the one in the symmetrized case. The
distributions are only symmetric in the variables z;, but z is a distinguished

variable. This means that the two local operator-valued distributions 3
2 ~
A06 .’E1,1L'2, ZB (Al(S(IL'l,.’Eg,:E)) y (39)

=1

where Aqo(z) and A;(x) are local operators, are independent (on the test func-
tions §(z1,72,7) := 9(z1)9(e2)(z) with g # §)*.

So if and only if (38) is true the condition (22) can be fulfilled at order n = 2
and the local normalization terms of the interacting currents, j§,, and 7 i,
get fixed to

o 0L, A 0%

]g' —2!( z” 6(8 ¢A)SO¢ + ( “¢A)81¢ )

5 A

7= 228 R R ¢4 (40)

3 One could also choose as a basis Aoé(xl,xz, z); 0% (A”ld(zl, xg,a:)).

4 In the symmetrized case, where one smears out with totally symmetric test
functions g(z1,z2,73) := g(z1)g(x2)g(x3), one has 2 0a; (A16(a:1,$2,:1:)) =
(2/3)0A16(z1, 72, T).
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Note the different symmetry factors in j5 compared with the symmetrized case
(14). With these normalizations we get

aﬁTg [Tl(a?l)Tl(iL‘g) (.’t ] + (Tz [Tl(.’El jl( )] 312(5 322 - .’13) + [IE1 — .’L‘l]) (41
= 2!82¢A%AB¢B5($1,$2, )

This corresponds to (22) at order n = 2:
Bij&int(:r)’gz = j‘l‘,int(m)lglaﬂg(m) + o264 Fapd® (). (42)

From these first two steps of the inductive construction, one already realizes
that in general the additional terms proportional to d,g in (22) correspond to
terms proportional to 0,,6™ which are now independent. In the former condition
(1) we got rid of these terms by symmetrization and moding out the general
formula Y, 8'6™ = 0. This formula is a direct consequence of translation in-
variance. Regardless this slight technical difference both conditions, (1) and (22),
pose the same consistency conditions on the physical normalization ambiguity.

For 0 < n < k, (where k is the minimal integer such that Vm > k, s,,, = 0),
condition (28) yields

n-—1
8 (jnd D) + n! (Z slzn_l> s+ _

=0
n—1 . n N 3:%,1_ .
- g ( nl % +1(n—1)! ;(aﬂt)) (Ws@f‘a( +1>)
= Ja(z)agetn+h (43)

where j# and 7% are defined by analogous to (37) formulae. The sufficient and
necessary condition for this equation to have a solution is

S[)Zn +- 4+ 5n~1cg)1 = aua%# + 3n¢A%AB¢B' (44)

This agrees with (13) (we remind the reader that n in present section corresponds
to n + 1 in section 2). Then the current normalization terms are given by

0Fn_t .4

( $“+Za(a¢/4) ,¢) (45)

P =-nlZ+(n Zl ag’; 517 (46)
=0 Ut

and we have

Oug(z) + n!sn¢A.%'AB¢B($) 47

T M )
3u30,int(93)| =J,int| . _
9" gn-1!
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For n > k, equation (28) yields

k
8% (jn ™) + ! (Z s,zn_,> §n+1)

1=0
k no 0F,_
- Z (n!&ﬁ —l(n-1)! Z(aﬁ’)) <m81¢A5("+1))
=0 i=
= Ja(z)a5s" ) (48)

This equation now implies
50fm + -+ Sk Lk = 3;,%#. (49)

We further obtain for the current normalization terms,

) 0K

];;znl( szrZa(a d)Al lqu) (50)
k asg »

Mo !fu Z=nol 4 A 51

Therefore,

Fug(x) (52)

61]0 mt( )1 n =jf,int no1
g g
without using the free field equations.

In exactly the same way as in section 2, we deduce that the sum of all tree-
level local normalization terms consitute a Lagrangian which is invariant (up to
a total derivative) under the symmetry transformation s¢pA = 3" s;¢*. Inserting
now the local normalization terms (45) and (50) into (23) we obtain,

w _ 0F A
Jo,int = WW‘ -k (53)
where we have used the definitions (8), (7), and (20). The combinatorial factor
n! in (45) and (50) exactly cancels the same factor in (23). We, therefore, see
that the interacting free current exactly becomes the full non-linear current.
We have, thus, found that going from condition (1) to condition (22) just
corresponds to a different technical treatment of the 8,0 terms which has
no influence on the fact that both conditions pose the same conditions on the
normalization ambiguity of the physical T}, distributions, namely the consistency
conditions of the classical Noether method. Our analysis of the condition (1) at
the loop level is also independent of this slight technical rearrangement of the
derivative terms. Thus, the issue of stability can be analyzed in exactly the same
way as before (see section 4.3 of [2]). One shows (under the assumption that the
Wess-Zumino consistency condition has only trivial solutions) that condition
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(22) at loop level also implies that the normalization ambiguity at the loop
level, N, (k), is constrained in the same way as the tree-level normalizations,
N, (h%). Once the stability has been established the equivalence of (1) and (22)
at loop level follows.

Summing up, we have shown that conditions (1)-(22) yield all consequences
of non-linear symmetries for time-ordered products before the adiabatic limit.
So at that level currents seem to be sufficient. As mentioned in the introduction,
however, if one wants to identify the physical Hilbert space, one may need to
use the Noether charge Qiny = [ d3zj2,(z). As our Quantum Noether Condition
(22) shows, only in the adiabatic limit (provided the latter exists) the interacting
Noether current is conserved. Moreover, there is an additional technical obstacle.
In the construction of the BRST charge a volume divergence occurs. In [11] a
resolution was proposed for the case of QED. It was also described there how
the analysis of Kugo-Ojima may hold locally. One may expect more technical
problems in the construction of the BRST charge in the case non-abelian gauge
theories where the free non-interacting Noether current includes two quantum
fields. However, at least for the implementation of the symmetry transformations
in correlation functions, such an explicit construction of the BRST charge is not
necessary, as we have shown. Symmetries are implemented with the help of
Noether currents only.

4 Discussion

We have presented a general method for constructing perturbative quantum field
theories with global and /or local symmetries. The analysis was performed in the
Bogoliubov-Shirkov-Epstein-Glaser approach. In this framework the perturba-
tive S-matrix is directly constructed in the asymptotic Fock space with only
input causality and Poincaré invariance. The construction directly yields a finite
perturbative expansion without the need of intermediate regularization. The in-
variance of the theory under a given symmetry is imposed by requiring that the
asymptotic Noether current is conserved at the quantum level.

The novel feature of the present discussion with respect to the usual ap-
proach is that our results are manifestly scheme independent. In addition, in
the conventional approach one implicitly assumes the naive adiabatic limit. Our
construction is done before the adiabatic limit is taken. The difference between
the two approaches is mostly seen when the symmetry condition is expressed
in terms of the interacting Noether current. If the interacting current generates
non-linear symmetries, it is not conserved before the adiabatic limit is taken.
An important example is pure gauge theory. In this case, the global symmetry
is BRST symmetry. The interacting BRST current is not conserved before the
adiabatic limit. Nevertheless, one may still construct correlation functions that
satisfy the expected Ward identities.

In the present contribution and in [2] we analyzed the symmetry conditions
assuming that there are no true tree-level or loop-level obstructions. The algebra
of the symmetry transformation imposes integrability conditions on the possible
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form of these obstructions [12]. Therefore, to analyze the question of anomalies
in the present context one would have to understand how to implement the
algebra of symmetry transformations in this framework. This is expected to be
encoded in multi-current correlation functions. We will report on this issue in a
future publication [13].

The Quantum Noether Condition (1) or (22) leads to specific constraints
(equations (13), (15)) that the local normalization terms should satisfy. We have
seen that these conditions are equivalent to the condition that one has an in-
variant action. So, one may infer the most general solution of equations (13),
(15) from the most general solution of the problem of finding an action invariant
under certain symmetry transformation rules.

For the particular case of gauge theories the global symmetry used in the
construction is BRST symmetry. In EG one always works with a gauged fixed
theory since one needs to have propagators for all fields. Therefore, the symmetry
transformation rules are the gauged fixed ones. Physics, however, should not
depend on the particular gauge fixing chosen. The precise connection between
the results of the gauge invariant cohomology (which may be derived with the
help of the antifield formalism [15,16]) and the present gauged-fixed formulation
will be presented elsewhere [14].

The symmetry condition we proposed involves the (Lorentz invariant) condi-
tion of conservation of the Noether current. There are cases, however, where one
has a charge that generates the symmetry but not a Noether current (for this to
happen the theory should not possess a Lagrangian). A more fundamental for-
mulation that will also cover these cases may be to demand that the charge that .
generates the symmetry is conserved at the quantum level (i.e. inside correlation
functions). A precise formulation of this condition may require a Hamiltonian
reformulation of the EG approach. Such a reformulation may be interesting on
its own right.
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5 Appendix

In this appendix we give the basic conventions and formulae of the causal frame-
work, in particular the definition of the interacting field. A self-contained intro-
duction to the EG construction may be found in section 3 of [2]. For further
technical details we refer the reader to the literature [5,6,17,18].

We describe the construction for the case of a massive scalar field. The very
starting point is the Fock space % of the massive scalar field (based on a rep-
resentation space H™ of the Poincaré group) with the defining equations

C+m?)e=0 (a), [p(z)¢y)]=irDm(z—-y) (b), (A.54)
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where D, (z —y) = ﬁg‘ J dk*5(k? — m?)sgn (k°) exp(—ikz) is the Pauli-Jordan
distribution. In contrast to the Lagrangian approach, the S-matrix is directly
constructed in this Fock space in the form of a formal power series

21
S =14 o [datdah TG imnih) glon):gen). (A5
n=1"

The coupling constant g is replaced by a tempered test function g(z) € % (i.e. a
smooth function rapidly decreasing at infinity) which switches on the interaction.
The central objects are the n-point operator-valued distributions T,, € .,
where . denotes the space of functionals on .%. They should be viewed as
mathematically well-defined (renormalized) time-ordered products,

To(z1, - 2ns ) = T [T1(21) - - Th(20)] (A.56)

of a given specific coupling, say Ty = £ : * : (c), which is the third defining
equation in order to specify the theory in this formalism. Notice that the expan-
sion in (A.55) is not a loop expansion. Each T, in (A.55) can receive tree-graph
and loop-contributions. One can distinguish the various contributions from the
power of A that multiplies them.

Epstein and Glaser present an explicit inductive construction of the most
general perturbation series in the sense of (A.55) which is compatible with the
fundamental axioms of relativistic quantum field theory, causality and Poincaré
invariance.

The main guiding principle is the property of causal factorization which can
be stated as follows:

e Let g; and g; be two tempered test functions. Then causal factorization means
that

S(g1 + g2) = S(g2)S(g1) if suppg; < suppgs (A.57)

the latter notion means that the support of g; and the support of gz, two closed
subsets of R, can be separated by a space like surface.
It is well-known that the heuristic solution for (A.57), namely

To(z1, ..., 2n; h) (A.58)
=Y Ti(@aq) - T1 (@) O30 (1) = 22(2)) - - - O o1y = To(my)s

is, in general, affected by ultra-violet divergences (7 runs over all permutations
of 1,...,n). The reason for this is that the product of the discontinuous ©-step
function with Wick monomials like T} which are operator-valued distributions
is ill-defined. One can handle this problem by using the usual regularization
and renormalization procedures and finally end up with the renormalized time-
ordered products of the couplings T7.

Epstein and Glaser suggest another path which leads directly to well-defined
T-products without any intermediate modification of the theory using the fun-
damental property of causality (A.57) as a guide. They translate the condition
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(A.57) into an induction hypothesis, Hy,,m < n, for the T,,-distribution which
reads

Tm(XUY) =T (X) Trem, (Y)

if X>Y, X,Y#0, 0<m<m
[Tml(X)vaz(Y)] =0

if X~Y (& X>=YAXXY), Vmp;,m<m

H,, : (A.59)

Here we use the short-hand notation Ty, (z1, . ..,Zm; i) = T(X); | X |= m.
Besides other properties they also include the Wick formula for the T;, distri-
butions into the induction hypothesis. This is most easily done by including the
so-called Wick submonomials of the specific coupling 71 = (i/h) : &4 : as addi-
tional couplings in the construction T7 := (i/R)(4!/(4 —j)!) : $*77 :,0 < j < 4.
Then the Wick formula for the T}, products can be written as

Tm[le1 (z1) - 'lem (Tm)]

m 5;
=Y O1 7@t ) T )10 [T (A60)
S1yees8m i=1 v
That such a quantity is a well-defined operator-valued distribution in Fock space
is assured by distribution theory (see Theorem O in {5], 2. p. 229). Note also
that the coefficients in the Wick expansion are now represented as vacuum ex-
pectation values of operators.

Now let us assume that T}, distributions with all required properties are
successfully constructed for all m < n. Epstein and Glaser introduce then the -
retarded and the advanced n-point distributions (from now on we suppress the
h factor in our notation):

Ra(z1s. .1 @n) = Ta(@1,- - 20) + Ry Rh= Y Tnon, (Y 2a) 10, (X) (A61)
P,

An(@1, .. Tn) = Tu(@1, -, Tn)+ Ay, AL =) Tn (X)Tnon, (Y, zn). (A.62)

Py

The sum runs over all partitions P, : {z1,...2n_1} = X UY, X # § into
disjoint subsets with | X |=n1 > 1,| Y |< n— 2. The T are the operator-valued
distributions of the inverse S-matrix:

(o o] 1 _
S(g)‘1 =1+ Z = /d4x1 o diz, Tz, - Zn)g(z1) - - - 9(2n) (A.63)
n=1""
The distributions T can be computed by formal inversion of S(g):

Sy '=1+T) =1+ i(—T)' (A.64)
n=1

To(X) = (9" ) Ty (X1) ... Tn (Xy), (A.65)
P,

r=1
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where the second sum runs over all partitions P, of X into r disjoint subsets
X=XU...UX,, Xj#@, |Xj |=nj.

We stress the fact that all products of distributions are well-defined because
the arguments are disjoint sets of points so that the products are tensor products
of distributions. We also remark that both sums, R}, and A/,, in contrast to T,
contain T;'s with j < n — 1 only and are therefore known quantities in the
inductive step from n — 1 to n. Note that the last argument z, is marked as
the reference point for the support of R, and A,. The following crucial support
property is a consequence of the causality conditions (A.59):

SUppRm(z1,...,2m) C It _i(zm), m<n (A.66)
where I}, is the (m — 1)-dimensional closed forward cone,
L (@) ={(z1,. .-, Zm-1) | (z; —zm)? >0, x? > 20 ,Vj}. (A.67)

In the difference
def

Dp(z1,...,2,) = R, — Al (A.68)

the unknown n-point distribution 7, cancels. Hence this quantity is also known
in the inductive step. With the help of the causality conditions (A.59) again,
one shows that D,, has causal support

suppD,, C IF_ 1 (zn) UL (z0) (A.69)

Thus, this crucial support property is preserved in the inductive step from n —1
to n.

Given this fact, the following inductive construction of the n-point distribu-
tion T, becomes possible: Starting off with the known T, (z1,...,2,), m < n-1,
one computes A,, R, and D, = R/, — Al. With regard to the supports, one can
decompose D,, in the following way:

Dp(z1,...,2p) = Ru(21,...,2,) — Ap(z1, ...y Tp) (A.70)
suppR, C IT_(zn), suppAn, C I7_;(zn) (A.71)

Having obtained these quantities we define T, as
T,=R,—R,=A, - A, (A.72)

Symmetrizing over the marked variable x,,, we finally obtain the desired T},
1
Tn(T1,..-Tn) = Y STo(@r (1), ) (A.73)
kig

One can verify that the T, satisfy the conditions (A.59) and all other further
properties of the induction hypothesis [5].

Summing up, with the help of the corresponding causal factorization property
of the T,-distribution one is able to reduce the problem of constructing well-
defined time-ordered products to the following splitting problem of distributions:
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Given an operator-valued tempered distribution D,, € .”/(R*") with causal
support,
suppDn C I} (zn) U I, (zn). (A.74)

one has to find a pair (R, A) of tempered distributions on R*® with the following
characteristics:

e R Ac¥'(R*™) (A) (A.75)
e suppR C I'*(x,), suppA C I'"(zn) (B) (A.76)
« R—A=D (C) (A.77)

A general solution of this problem was given by the mathematician Mal-
grange some time ago [19]. As mentioned already, every renormalization scheme
solves this problem implicitly. The advantage of the Epstein-Glaser formulation
is that it separates the purely technical details (which are essential for explicit
calculations) from the simple physical structure of the theory.

The singular behavior of the distributions d,, for z — 0 is crucial for the
splitting problem because IF_,(0)NI,_;(0) = {0}. One therefore has to classify
the singularities of distributions in this region. This can be characterized in terms
of the singular order w of the distribution under consideration which turns out
to be identical with the usual power-counting degree. For details on the theory
of distribution splitting we refer to the literature [5,17].

One has to ask whether the splitting solution of a given numerical distribution
d with singular order w(d) is unique. Let r; € .9 and r2 € ' be two splitting
solutions of the given distribution d € .%”’. By construction r; and r, have their
support in I't and agree with d on I't \ {0}, from which follows that (r; —r2) is
a tempered distribution with point support and with singular order w < w(d) :

supp(r; —72) C {0}, w(ri—r2) =w(d), (r1—r2)e.S”’ (A.78)

According to a well-known theorem in the theory of distributions, we have

ri—ry= Y C.8%(z). (A.79)
la]=0

In the case w(d) < 0 which means that d, is regular at the zero point, the
splitting solution is thus unique. In the case w(d) > 0 the splitting solution is
only determined up to a local distribution with a fixed maximal singular degree
wo = w(d). The demands of causality (A.57) and translational invariance leave
the constants C, in (A.79) undetermined. They have to be fixed by additional
normalization conditions.

One shows that, besides this normalization ambiguity, the T, distributions
are already fixed at all orders by the fundamental axioms of QFT and the defining
equations of the specific theory under consideration which includes the definition
of the specific coupling T7.

Having constructed the most general S-matrix one can construct interact-
ing field operators (compatible with causality and Poincaré invariance) (second
reference in [5], section 8) as follows:
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One starts with an extended first order S-matrix
S(g.91.92,-) = [ da(Ti(@)g(a) + 5 (@121 (@) + 22(x)oa(z) +.)} (A.50)

where ®; represent certain Wick monomials like ¢ or : ¢ :. Following Bogoliubov
and Shirkov [4], Epstein and Glaser defined the corresponding interacting fields
" as functional derivatives of the extended S-matrix:

05(9,q1,--.)

» h
27 (g,2) = =S g, 91,
i (g, ) (9,91,---) 091 (@) o=

- (A.81)
i

One shows that the perturbation series for the interacting fields is given by the
advanced distributions of the corresponding expansion of the S-matrix, namely

o0
. 1
P (g,x) = &i(x) + E p /d4x1 ... d4a:nAn+1/n+1(11, .o, Tnsz), (A.82)
n=1

where Ay, 1/n+1 denotes the advanced distributions with n original vertices T}
and one vertex ®; at the (n + 1)th position; symbolically we may write:

Antime1(Z1, ., 205 2) = Adpyy [Ta(z1) . .. T1(z0); Bi()] (A.83)

One shows that the perturbative defined object ¢! fulfills the properties like
locality and field equations in the sense of formal power series. The definition
can be regarded as a direct construction of renormalized composite operators.
Epstein and Glaser showed that the adiabatic limit ¢ — 1 exists only in the
weak sense of expectation values in massive theories. The limit possesses all the
expected properties of a Green’s function such as causality, Lorentz covariance
and the spectral condition.
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Applications of the Reduction of Couplings

Jisuke Kubo

Institute for Theoretical Physics,
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Abstract. Applications of the principle of reduction of couplings to the standard
model and supersymmetric grand unified theories are reviewed. Phenomenological
applications of renormalization group invariant sum rules for soft supersymmetry-
breaking parameters are also reviewed.

1 Application to the Standard Model

High energy physicists have been using renormalizability as the predictive tool,
and also to decide whether or not a quantity is calculable. As we have learned
in the previous talk by Professor Oehme, it is possible, using the method of re-
duction of couplings [1-3], to renormalize a theory with fewer number of counter
terms then usually counted, implying that the traditional notion of renormal-
izability should be generalized in a certain sense 1, Consequently, the notion
of the predictability and the calculability [5] may also be generalized with the
help of reduction of couplings. Of course, whether the generalizations of these
notions have anything to do with nature is another question. The question can
be answered if one applies the idea of reduction of couplings to realistic models,
make predictions that are specific for reduction of couplings, and then wait till
experimentalists find positive results 2.

In 1984 Professor Zimmermann, Klaus Sibold and myself [8] began to apply
the idea of reduction of couplings to the SU(3)c x SU(2)L x U(1)y gauge model
for the strong and electroweak interactions. As it is known, this theory has a lot
of free parameters, and at first sight it seemed there exists no guiding principle
how to reduce the couplings in this theory. There were two main problems associ-
ated with this program. The one was that it is not possible to assume a common
asymptotic behavior for all couplings, and the other one is how to increase the
predictive power of the model without running into the contradiction with the
experimental knowledge (of that time) such as the masses of the known fermions.

! Earlier references related to the idea of reduction of couplings are given in [4]. Pro-
fessor Shirkov who is present here was oue of the authors who considered such the-
oretical possibilities. For reviews, see [6].

2 Here I would like to restrict myself to phenomenological applications of reduction of
couplings. See [7,9] for the other applications. Professor Oehme reminded me that
in his seminar talk given at the Max-Planck-Institute early 1984, professor Peccei
suggested phenomenological applications of this idea .

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, pfj. J06-126, 2000.
O Springer-Verlag Berlin Heidelberg 2000
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Professor Zimmermann suggested to use asymptotic freedom as a guiding prin-
ciple, and assumed that QCD is most fundamental among the interactions of the
standard model (SM). Since pure QCD is asymptotically free, we tried to switch
on as many SM interactions as possible while keeping asymptotic freedom and
added them to QCD. The result was almost unique: There exist two possibilities
(or two asymptotically free (AF) surfaces in the space of couplings). It turned
out that on the first surface, the SU(2)L gauge coupling ay is bigger than the
QCD coupling a3, and on the second surface, az has to identically vanish. We
decided to choose the second possibility, because we found out that it is possible
to include the SU(2)L gauge coupling as as a certain kind of “perturbation”
into the AF system. Since the perturbating couplings should be regarded as free
parameters, the reduction of couplings in this case can be achieved only partially
(“partial reduction”). For the first case, it was not possible.

Asymptotically free surface
Reduction solution
/
oly/0 3
-——RG trajectory
/

0.069..

2/9 0

o/ as

Fig. 1. Reduction of a: and a, in favor of as.

Thus, the largest AF system which is phenomenologically acceptable (at
that time) contains as, the quark Yukawa couplings a; (i =d,s,b,u,c,t) and
the Higgs self coupling a,. However, because of the hierarchy of the Yukawa
couplings, we could not expect that all couplings can be expressed in terms of
a power series of a3 without running into the contradiction with that hierarchy.
So we decided to apply to the reduction of couplings only to the system with
a3 , a; and oy, and to regard the other couplings as perturbations like as. Fig. 1
shows the AF surface in the space of a3, a;/q, and ax /as. The reduction of the
top Yukawa and Higgs couplings in favor of the QCD coupling corresponds to
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the border line on the surface, i.e., the line defined by

2 V/689 — 25
9 18

~in the one-loop approximation. This border line was already known as the
Pendleton-Ross infrared (IR) fixed point (line) [10]. Note that the existence
of the AF surface (shown in Fig. 1) at least for a3 closed to the origin is math-
ematically ensured (see also [11]), while the line for large a3, Pendleton-Ross
infrared IR line, can be an one-loop artifact which was pointed out by Professor
Zimmermann. He showed explicitly in the two-loop approximation that this is
indeed the case [12].

atfaz ==, arfaz = ~ 0.0694 (1)

Pendleton-Ross

L NN

Bardeen-Hill-
Lindner

2/9 oa¢/ot3 O

Fig. 2. Asymptotically free surface in the as — a¢/as space.

worthwhile to mention that the branches above the Pendleton-Ross IR line (the
lines left to it in Fig. 2) are used by Professor Bardeen and his collaborators
[13] to interpret the Higgs particle as a bound state of the top and anti-top
quarks. From Fig. 2 one can see that the higher the energy scale where the top
Yukawa coupling diverges (the horizontal dotted line in Fig. 2 will be lowered),
the similar is the prediction of the top mass in two methods. However, I would
like to emphasize that how to include the corrections to this lowest order system
(especially those due to the non-vanishing SU(2), and U(1)y gauge couplings)
depends on the ideas behind, so that the actual predictions are different. We
included these corrections within the one-loop approximation and calculated
at/as and ap/as in terms of az and the perturbating free couplings. Then we

An asymptotically free renormalization group (RG) trajectory lies exactly on
the surface. Fig. 2 shows trajectories projected on the as — oy /a3 plane. It may be
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used the formulae
M2/M2 = 2cos?bwai/az , ME/M% = 2cos® Owan/az , (2)

to calculate the top quark and Higgs masses, M; and M}, from the known values
of the parameters such as the Z boson mass Mz and the Weinberg mixing angle
6w . We obtained (8]

M; ~ 81 GeV , M, ~61 GeV . (3)

Later I included higher order corrections such as two-loop corrections and found
that the earlier predictions (3) become M; = 98.61+9.2 GeV and M}, = 64.5+1.5
GeV, which should be compared with the present knowledge [14]

M, =173.8+5.2 GeV ,M; 2 77.5 GeV . (4)

The failure of our prediction was disappointing in fact. However, this failure
relieved Professor Zimmermann from a self-contradicting feeling. As we know
he likes low-energy supersymmetry and also good wines. If our prediction would
have been confirmed by an experiment, it would be very unlikely that low-energy
supersymmetry is realized in nature, which would imply that he would loose
again a lot of bottles of wines. So, the decision of nature was welcome at the
same time. Fig. 3 summarizes.

SUSY

m, &

AN

Fig. 3. Enttduschung und Hoffnung.

2 Why Is Supersymmetry as Ideal Place for Application?

2.1 Naturalness and supersymmetry

Let me now come to the application of reduction of parameters to supersym-
metric theories. I do not know why Professor Zimmermann likes low energy



110 Jisuke Kubo

supersymmetry. But let me assume that he likes the usual argument for low
energy supersymmetry, which is based on the naturalness notion of ’t Hooft [15].
I would like to spend few minutes for that. (Let me allow to do so, although for
the superexperts in the audience it might be superboring.) 't Hooft [15] said that
there exist a natural scale in a given theory, and that the natural energy scale of
spontaneously broken gauge theories which contain the SM is usually less than
few TeV. The argument is the following. Suppose the scale at which the SM goes
over to a more fundamental theory is A. That is, there are in the fundamental
theory particles with masses of this order. Now consider the propagator A(p?) of
a boson field with the physical mass mp much smaller than A, and suppose that

it is normalized at A so that the propagator assumes a simple form at p? = —A2:
iZ(42)
li Ap?) » —2 7
i, A7) = Sy (5)

where Z is the normalization constant for the wave function. The physical mass
squared m% can be expressed as

m3 = my(A%) + om} . (6)

Then we ask ourselves how accurate we have to tune the value of m3(42?) to
obtain a desired accuracy in the physical mass squared m3. This depends on
dm3,, of course. 't Hooft said that for a theory to be natural the ratio m} (A?)/m}
should be of O(1), which implies that [dm}| < m%. If quadratic divergences are
involved in the theory, the correction dm} will be proportional not only to the
masses of the light fields, but also to the masses of the heavy fields, and so dm3
can be of the order (a/4m)A?, where a is some generic coupling. Since the Higgs
mass should not exceed few hundred GeV in the SM, the natural scale of the
fundamental theory, which contains the standard model Higgs and also involves
quadratic divergences, is at best few TeV. So according ’t Hooft, ordinary Grand
Unified Theories (GUTSs), for instance, are unnatural [15].

Supersymmetry, thanks to its very renormalization property known as non-
renormalization theorem [16,17], can save the situation. The cancellation of the
quadratic divergences, which was first observed by Professors Wess and Zumino
[16], is exact if the masses of the bosonic and fermionic superpartners are the
same. However, supersymmetry is unfortunately broken in nature, so that the
cancellation is not exact. The mass squared difference, m3 ~m#, characterizes the
energy scale of supersymmetry breaking. To make compatible supersymmetry
breaking with the naturalness notion of ’t Hooft, we must impose the constraint
on the supersymmetry-breaking scale Msysy. A simple calculation yields that
Msysy should be less than few TeV.

2.2 Soft supersymmetry-breaking parameters

Since the pioneering works by Professor Iliopolos (who could not participate in
this meeting) with P. Fayet [18] and the others in late 70’s, a lot of attempts
to understand supersymmetry-breaking mechanism have been done. However,



Applications of the Reduction of Couplings 111

unfortunately, we still do not know how supersymmetry is really broken in na-
ture. It, therefore, may be reasonable at this moment to pick up the common
feature of supersymmetry breaking which effect the SM. The so-called minimal
supersymmetric standard model (MSSM) is “defined” along this line of thought.
The MSSM contains the ordinary gauge bosons and fermions together with their
superpartners, and two supermultiplets for the Higgs sector. (With one super-
multiplet in the Higgs sector, it is not possible to give masses to all the fermions
of the MSSM.)

It is expected that the common effect of supersymmetry breaking is to add
the so-called soft supersymmetry-breaking terms (SSB) to the symmetry theory.
The SSB terms are defined as those which do not change the infinity structure
of the parameters of the symmetric theory. So they are additional terms in the
Lagrangian that do not change the RG functions such as the 8- and y-functions
of the symmetric theory. (More precisely, there exists a renormalization scheme
in which the RG functions are not altered by the SSB terms.) There exist four
types of such terms [19)].

Soft scalar mass terms :  (m?)i¢;¢**

B —terms: BY¢;¢; + H.C, (7)
Gaugino mass terms: MAA+ H.C,

Trilinear scalar couplings :  h* '“¢>,;¢j o+ H.C,

oW o

where ¢; and X denote the scalar component in a chiral supermultiplet and the
gaugino (the fermionic component) in a gauge supermultiplet, respectively.

If one insists only renormalizability for the MSSM, the number of the SSB
parameters amounts to about 100, which is about five times of that of the SM.
The commonly made assumption to reduce this number is the assumption of
universality of the SSB terms, which is often justified by saying that supersym-
metry breaking occurs in a flavor blind sector [20]. That is, it is assumed that
the soft scalar masses and the trilinear scalar couplings are universal or flavor
blind at the scale where supersymmetry breaking takes place. The so-called con-
strained MSSM contains thus only four independent massive parameters. But
we could easily imagine that nature might not be so universal as one wants. In
fact it possible to construct a lot of models with non-universal SSB terms [21]
(even in models in which supersymmetry-breaking occurs in the so-called hidden
sector which does not interact directly with the observable sector), and once we
deviate from the universality, there will be chaotic varieties.

The application of reduction of couplings in the SSB sector is based on the
assumption that the SSB terms organize themselves into a most economic struc-
ture that is consistent with renormalizability. I will come to discuss this later. 1
have spent a lot of time for low energy supersymmetry, because I wanted to argue
that supersymmetric theories offer an ideal place where the reduction method,
especially for massive parameters, can be applied and tested experimentally. It
is worthwhile to mention that the current research program of Professor Zim-
mermann is the reduction of massive parameters [22].
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3 Supersymmetric Gauge-Yukawa Unification

Before I come to discuss the SSB sector, I would like to stay in the sector of
the dimensionless couplings in realistic supersymmetric GUTs and tell about
certain phenomenological successes of reduction of parameters in these theories.
I would like to emphasize that in contrast to the SM, supersymmetric GUTs can
be asymptotically free or even finite.

3.1 Unification of the gauge and Yukawa couplings
based on the principle of reduction of couplings

Few year ago, Professor Zimmermann and I were trying to apply the reduction
method in the dimensionless sector of the MSSM, but we had no success. The
main reason was that the power series solution to the reduction equation seemed
to diverge. So we stopped to continue. About the same time, George Zoupanos
(who unfortunately could not come here today) visited the Max-Planck-Institute,
and told me that he obtains a top quark mass of about 180 GeV in a finite SU(5)
GUT [23]. Although the top quark was not found at that time (it was end of 1993,
so just before we heard the rumor from Fermilab), 180 GeV for the top quark
mass was a reasonable value. Finite theories have attracted many theorists. By
a finite theory we mean a theory with the vanishing 3-functions and anoma-
lous dimensions. As we know, the N = 4 supersymmetric Yang-Mills theory is
a well-known example [24]. And there were many attempts to construct N = 1
supersymmetric finite theories [23,25,26]. Klaus Sibold and his collaborators [27]
gave an elegant existence proof of finite N = 1 supersymmetric theories, where I
would like to recall that their proof is strongly based on the Adler-Bardeen non-
renormalization theorem of chiral anomaly (28] (about which Professor Bardeen
talked yesterday)3. The reduction of Yukawa couplings in favor of the gauge
coupling is one of the necessary condition for a theory to be finite in perturba-
tion theory. So in a finite theory, Gauge-Yukawa unification is achieved. Since
Gauge-Yukawa unification results from the reduction of Yukawa couplings in
favor of the gauge coupling, it can be achieved not only in finite theories but
also in non-finite theories, as Myriam Mondragén, George Zoupanos and myself
explicitly showed [30]. Relations among the gauge and Yukawa couplings, which
are missing in ordinary GUTsS, could be a consequence of a further unification
provided by a more fundamental theory. And so Gauge-Yukawa unification is a
natural extension to the ordinary GUT idea. This idea of unification relies on
a symmetry principle as well as on the principle of reduction of couplings. The
latter principle requires the existence of RG invariant relations among couplings,
which do not necessarily result from a symmetry, but nevertheless preserve per-
turbative renormalizability or even finiteness as I mentioned.

3 It is currently studied how to extend their theorem; for instance a non-perturbative
extension has also been proposed in [29].



Applications of the Reduction of Couplings 113

3.2 The double-role of tan 3

Before I come to discuss Gauge-Yukawa unification more in details, I would like
to talk about an important parameter, tan 3, in the MSSM. It is a very popular
parameter among SUSY physicists, but let me allow to spend few minutes for this
parameter, because it plays also an important role for Gauge-Yukawa unification.
As I mentioned the MSSM contains two Higgs supermultiplets. The most general
form of the Higgs potential which is consistent with renormalizability and with
the softness of the SSB parameters can be written as

V = (m¥y, + |unl?) BYH + (¥, + |uul®) BYH, + (BHHy + HC.)
Vi A ~ A~ ~
+5(3at/5+ ad) (A} Ha — HHL) (8)

where py is the only massive parameter in the supersymmetric limit, while m%{u

, m};, and B are the SSB parameters in this sector. ( m%, , m};, are real while

py and B may be complex parameters.) Here H u,d denote the scalar components
of the two Higgs supermultiplets. There are four independent massive parameters
in this sector as we can see in (8). These parameters should give the only one
independent mass parameter of the SM, for instance the mass of Z. Now instead
of regarding these parameters as independent one can regard also the ratio of
the vacuum expectation values [32]

tanﬂ = — (9)

as independent. (tan 3 can be assumed to be real.) Usually one regards |upr| and
B as dependent 4. So the Higgs sector in the tree approximation is characterized
by the parameters

tanB , my, , my, - (10)

The crucial point for Gauge-Yukawa unification is that tan § plays a double-role.
On one hand, it is a parameter in the Higgs potential as we have seen above,
and on the other hand it it is a mixing parameter to define the standard model
Higgs field out of the two Higgs fields of the MSSM. That is, tan B3 appears also
in the dimensionless sector, and in fact it can be fixed through Gauge-Yukawa
unification with the knowledge of the tau mass M, as I would like to explain it
more in detail below.

3.3 How to predict M; from Gauge-Yukawa Unification

The consequence of a Gauge- Yukawa unification in a GUT is that the gauge and
Yukawa couplings are related above the GUT scale Mgur-. In the following dis-
cussions we consider only the Gauge-Yukawa unification in the third generation

4 If tan A is real as we assume here, B can become complex starting in one-loop order
[31).
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sector 2:

gi = K; g Z( 1 +fs£n)g?" ) (3 = 1,2,3,t,b,7’) ’ (11)

n=1

where g denotes the unified gauge coupling, ¢; denote the gauge and Yukawa
couplings of the MSSM. Note that the constants k;’s can be explicitly calcu-
lated from the principle of reduction of couplings. Once tan 8 and the Yukawa
couplings are known, the fermion masses can be calculated as one can easily see
from the tree level mass formulae

M. M.
M, = \/ﬁg—z sin fcosbw gt , My, = \/ig—z coscosBw 9b,r , (12)
2 2
where My, M, and M, are the masses of the top and bottom quarks and tau,
respectively. Assume that we use the tau mass M, as input and also that be-
low Msyusy (> M;) the effective theory of the GUT is the SM. At Msysy the
couplings of the SM and MSSM have to satisfy the matching conditions ¢

SM SM SM
a b

=a sin?f, a =abc052ﬂ,a, = a, cos’f,

! —l(ﬁa + a3) cos? 20 (a-—g?—) (13)
v =zata i=g3)

where o$M (i = t,b,7) are the SM Yukawa couplings and a, is the Higgs cou-

pling. It is now easy to see that there is no longer freedom for tan 3 because with a
given set of the input parameters, especially M, = 1.777 GeV and Mz = 91.187
GeV, the matching conditions (13) at Msysy and the Gauge-Yukawa unifica-
tion boundary condition (11) at Mgy can be simultaneously satisfied only if
we have a specific value of tan 8. In this way Gauge-Yukawa unification enables
us to predict the top and bottom masses in supersymmetric GUTs.
Table 1 shows the predictions in the case of a finite SU(5) GUT [26], in which
the one-loop reduction solution is given by
g3=§g2,g§=93=§gz- (14)

The experimental value of M;, M, and a3(Mz) are [14]
a3(Mz) =0.119+£0.002, M; =173.8+5.2 GeV, M =52+0.2 GeV(15)

We see that the predictions of the model reasonably agree with the experimental
values”. This means among other things that the top-bottom hierarchy could

5 A naive extension to include other generations into this scheme fails phenomenolog-
ically.

% There are MSSM threshold corrections to the matching conditions [33,34], which are
ignored here.

7 The correction to M, coming from the MSSM superpartners can be as large as
50% for very large values of tan [33,34]. In Table 1 we have not not included
these corrections because they depend on the SSB parameters. The GUT threshold
correction are ignored too.
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Table 1. The predictions for different Msysy for the finite SU(5) model.

M [GeV] Ota(Mz) tan S| MguT [GeV] M, [GeV] M; [GeV]
800 0.118 [48.2] 1.3 x 10™® 5.4 173
10° 0.117 [48.1] 1.2 x 10™ 5.4 173

1.2 x 10°} 0.117 [48.1] 1.1 x 10™ 5.4 173

be explained to a certain extent in this Gauge-Yukawa unified model, which
should be compared with how the hierarchy of the gauge couplings of the SM
can be explained if one assumes the existence of a unifying gauge symmetry at
Mgur [35). More details on the different gauge-Yukawa unified models and their
predictions can be found in [7,36,37].

4 Reduction of Massive Parameters: Application
to the Soft Supersymmetry-Breaking Sector

To formulate reduction of massive parameters, one first has to formulate reduc-
tion of dimensionless parameters in a massive theory, which was initiated by
Klaus Sibold and his collaborator Piguet [38], about ten years ago. To keep the
generality of the formulation in the massive case is much more involved than in
the massless case, because the RG functions now can depend on the ratios of
mass parameters in a complicated way. In the massless case they are just power
series in coupling constants (at least in perturbation theory). For phenomenolog-
ical and also practical applications of the reduction method, it is therefore most
convenient to work in a mass independent renormalization scheme, such as the di-
mensional renormalization scheme. There exists a transformation of one scheme
to another one, which was in fact proven first by Dieter Maison in the $* theory
as far as I am informed, but not published. As I mentioned, the current research
program of Professor Zimmermann is to include into the reduction program the
massive parameters. He has already succeeded to carry out the program in the
most general case and is able to show the renormalization scheme independence
of the reduction method [22]. Consequently, there exist a transformation of a set
of the reduction solutions in a mass-dependent renormalization scheme into a set
of the reduction solutions in a mass-independent renormalization scheme, which
generalizes the unpublished result of Dieter Maison. Thus, the naive treatment
on the massive parameters (which was performed in phenomenological analyses
[39,40]) can now be justified by his theorem 8.

4.1 Application to the minimal model

Now I would like to come to the SSB sector of a supersymmetric GUT. Recall
that the Higgs potential (8) (in the tree approximation) is completely charac-

8 Tt is assumed in the theorem that the -functions in a mass-dependent renormaliza-
tion scheme have a sufficiently smooth behavior in the massless limit [22].
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terized by the soft scalar masses m% , m} and tanp, where tang is fixed
through Gauge-Yukawa unification as we have seen before. We [40] applied the
the reduction methode of massive parameters to the SSB sector of the minimal
supersymmetric SU(5) GUT with Gauge-Yukawa unification in the third gen-
eration (g7 = (2533/2605)g? , g7 = g2 = (1491/2605)g?) [30], and obtained the
reduction solution

he =-gM, hhy=—-gM, (16)
my, = —-gg?Mz , my, = ;%Np ,

mg,. —m;".L:mif_gg_’_? 2

mi, =m?, =mi =ml, =ml, =ml = 2M?, (a7)
mi, =mi, =mi, =m2, = oM,

me, =, =ml, =mE, = md, =, =i, = m, = Zage

in the one-loop approximation, where h;’s are the trilinear scalar couplings, m;’s
are the soft scalar masses, and M is the unified gaugino mass. We found moreover
that we can consistently regard ugy and B as free parameters. As we can see from
(16) and (17) the unified gaugino mass parameter M plays a similar role as the
gravitino mass my/3 in supergravity coupled to a GUT and characterizes the
scale of the supersymmetry-breaking °. Note that the reduction solution for the
soft scalar masses (17) is not of the universal form while those for the trilinear
couplings (16) are universal in the one-loop approximation.

Regarding the reduction solutions (16) and (17) as boundary conditions at
Mgy in the minimal supersymmetric GUT with Gauge-Yukawa unification in
the third generation, we can compute the spectrum of the superpartners of the
MSSM, which is shown in Table 2, where we have used the unified gaugino mass
M = 0.5 TeV. The mass values '° in Table 2 are the running masses at Msysy
which is ~ 0.95 TeV ! for M = 0.5 TeV. The prediction above depends basically
only on the unified gaugino mass M, and so the model has an extremely strong
predictive power. Note also that m%{u , my , and tan f (see the Higgs potential
(8) and the definition (9)) are now fixed outside of the Higgs sector, so that there
is no guaranty that the Higgs potential (8) yields the desired symmetry breaking
of SU(2)L x U(1)y gauge symmetry. Surprisingly, in the case at hand it does! (If
the sign of m%_in (17) were different, for instance, it would not do.) In Table
3 I give the predictions from the dimensionless sector of the model. At last but
not least we would like to emphasize that the reduction solutions (16) and (17)
do not lead to the flavor changing neural current (FCNC) problem. This is not

9 See for instance [20].

10 For the mass of the lightest Higgs, the RG improved corrections [41}] are included.

"' Msusy is no longer an independent parameter and we use Méysy = (mtgl + m?z) /2,
where my, , are the masses of the superpartners of the top quark.



Applications of the Reduction of Couplings 117

Table 2. The prediction of the superpartner spectrum for M = 0.5 TeV in the minimal
gauge-Yukawa unified model. The mass unit is TeV.

My, 0.22||ms; = mg, 1.18
My, 0.42||ms, = mg, | 1.30
Mys 0.90 ms, 0.42
My 0.91 Mi, 0.59

m 0.42 ms, 0.54
m & 0.91llma, = me, | 0.72
mi, 0.87||mg, = ma,| 0.80
mg, 1.03|jmz, = ms, | 0.72

mg, 0.87 ma 0.33
m; 1.01 Mpy+ 0.34

Mg, = My, 1.26 mH 0.33
Mey = My, 1.30 mp 0.124
M3 1.16

Table 3. The predictions from the dimensionless sector of the minimal model. (M = 0.5
TeV)

aa(Mz) tan 8| Mgur [GeV] M, [GeV] M, [GeV]
0.119 |48.8] 1.47 x 10™® 5.4 177

something put ad hoc by hand; it is a consequence of the principle of reduction
of couplings.

5 Sum Rules
for the Soft Supersymmetry-Breaking Parameters

5.1 Renormalization group invariant sum rules

Now I would like to come the next topic. To proceed I recall the result of the
reduction of the SSB parameters in favor of the unified gaugino mass M in the
minimal SUSY SU(5) model which I have discussed just above. As we have seen,
the reduction solutions for the trilinear couplings are universal while those for
the soft scalar masses are not (see (16) and 17)). However, if one adds the soft
scalar mass squared in an appropriate way, one finds something interesting [42)].
For instance,

2 2 2 2
M?%=mi +m] +my, = my, + My +my, . (18)

This is not an accidental coincidence. One can in fact show that the sum rules
in this form are RG invariant at one-loop [42].

In last years there have been continues developments [43]-[47] in computing
the RG functions in softly broken supersymmetric Yang-Mills theories, and the
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well-known result on the QCD S-function obtained by Professor Zakharov and
his collaborators [48] !2 has been generalized so as to include to the SSB sector
[43]-[47], which is based on a clever spurion superfield technique along with
power counting '3. Using this result, it is possible to find a closed form of the
sum rules that are RG invariant to all orders in perturbation theory [44]-[47].

To be specific, we consider a softly broken supersymmetric theory described
by the superpotential

1. .., 1 ..
W = 6 yiik ¢i¢j¢k + 5 ut Q,’Qj , (19)
along with the Lagrangian for the SSB terms,
L ik L3 Lo oy ei 1
—Lsp = g h7" ¢ididn +507 ¢ig + E(m )i 9% 5 + 3 MAX+He., (20)

where ¢; stands for a chiral superfield with its scalar component ¢;, and A is the
gaugino field. It has been found [45] that the expressions 14

i ;;dIn p'(g)

U g\
b My dng

i dY 7 (g)

ok = oy —% 21
h M dng (21)

1 dvi(g)
2 _ Z|MI2 @ri\g)

are RG invariant to all orders in perturbation theory in a certain class of renor-
malization schemes, which are the higher order results for the one-loop reduction
solutions (16) and (17). Similarly, the sum rule (18) in higher orders becomes
(46]

1 dinY#9*  1d2InYiik
2 2 2 _ 2 2
metmyt = M T e e ding 2 ding?
2 i.k
meT(Rl) dlnY’
2
+;C(G)—87r2/92 dlng ’ =

in the renormalization scheme which corresponds to that of [48]. Here C(G) is
the quardratic Casimir in the adjoint representation, T'(R) stands for the Dynkin
index of the representation R, f, is the S-function of the gauge coupling g, v;
is the anomalous dimension of &;. These expressions look slightly complicated.

'? Klaus Sibold pointed out that there is some correction to this B-function. See [27]
for the argument.

18 1t is not clear at the moment in which class of renormalization schemes exactly the
result is valid; a renormalization scheme independent investigation of this result is
certainly desirable.

!4 The Yukawa couplings Y*/* and p¥ are assumed to be functions of the gauge coupling
g
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But if one uses the freedom of reparametrization [3] (as discussed in the previous
talk of Professor Oehme), they can be transformed into a more simple form
((dInY'¥* /dIng) = 1):

ik = ~Yik(g)M , (24)

2 2 2 _ 2 1 m3T (Ry)

mi+mi+mi = MP —araEe 2o g
It is exactly this form which coincides with the results obtained in certain orbifold
models of superstrings [26] 15. I believe that this coincidence is not accidental,
and I also believe that target-space duality invariance [51], which is supposed to
be an exact symmetry of compactified superstring theories '¢, is most responsible
for the coincidence. In fact there exist already some indications for that. I hope
I can report on the true reason of this interesting coincidence in near future.

5.2 Finiteness and sum rules

At this stage it may be worthwhile to mention that the reduction solution (21)
and the sum rules (23) ensure the finiteness of the SSB sector in a finite theory
17 For the N = 4 supersymmetric Yang Mills theory written in terms of N =1
superfields, for instance, we have Y°, m2T(R;) = (m} + m? + m})C(G) so that
the all order sum rule (25) assumes the tree level form m} + m? + mi = |M|*.
Applied to the finite SU(5) model [26] which I discussed in the previous section
(Table 1 presents the prediction from the dimensionless sector), it means that
the sum rules [26]

2 2
M g =
should be satisfied at and above Mgyt for the two-loop finiteness of the SSB
sector requires that, where

m};, +2miy = M?, my, - 2m3, = — (26)

M10 = Mi, = My, = Mgy = Mypg , Mg = Mpy = My, = My, . (27)

In his casewe have an additional free parameter, mjp, in the SSB sector. It
turned out that the mass of a superpartner of the tau (s-tau) tends to become
very light in this model. Consequently, in order to obtain a neutral lightest
superparticle (LSP) (because we assume that R- parity is intact), we have to
have a large unified gravitino mass M 2 0.8 TeV. For M = 1 TeV, only the
window 0.62 TeV < mip < 0.66 TeV is allowed. In Table 4 we give the
prediction of the superpartner spectrum of the model for mo = 0.62/0.66 TeV
and M = 1 TeV. We have assumed the universal soft masses for the first two
generations. But this assumption does not change practically our prediction of
the spectrum expect for those that are directly of the first two generations.

15 Tyee-level sum rules (like (18) in string theories are found in [42], [49]-[50]

16 See [52], for instance, for target-space duality.

17 There exists a fine difference in the opinions about this point. See, for instance,
(44,45].
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Table 4. The predictions of the superpartner spectrum for the finite SU (5) model.
M =1 TeV and mio = 0.62/0.66 TeV.

my,  [0.45/0.45][ms, = my | 1.95/1.95
My, |0.84/0.84][ms, = my, | 2.06/2.05
My, |1.29/1.32| mn 0.46/0.46
my,  |1.29/1.32] ms, 0.73/0.66

m i+ [0.84/084] ms, 0.70/0.57
m s [1.29/1.32][mz, = ma,| 0.70/0.71

m;__ |1.50/1.51|[mz, = maz,| 0.89/0.89
m;,  |L.72/1.74][m;, = ms,| 0.89/0.88
m;, |LBL/146|  ma 0.63/0.77
m;, |L70/171|| mye | 0.63/0.77
M, = maq, |1.96/1.96|| mn 0.63/0.77
M, = may |2.05/2.05] ms  [0.127/0.127
M;  |2.21/2.21

5.3 Sum rules in the superpartner spectrum

The sum rules (18) or (25) can be translated into the sum rules of the superpart-
ner spectrum of the MSSM [53] as I will show now. To be specific we assume an
SU(5) type Gauge-Yukawa unification in the third generation of the form (11).
For a given model, the constants «’s are fixed, but here we consider them as free
parameters. As before we use the tau mass M, as an input parameter, and we go
from the parameter space (x; , x3) to another one (k; , tanp), because in this
analysis we use the physical top quark M, too, as an input parameter. Then
the unification conditions of the gauge and Yukawa couplings of the MSSM (i.e.,
9= =92 =93, g = gr) fixes the allowed region (line) in the x; — tan 3
space for a given value of the unified gaugino mass M. The parameter space in
the SSB sector at Mgy is constrained due to unification:

M =M1:M2:M37

2 _ 02 .2 __ .2 2 _ 02 .2
mta_th—mbL"mrn’mbR”'mTL_mVr’ (28)

where M; (i = 1,2,3) are the gaugino masses for U(1)y (bino), SU(2)L, (wino)
and SU(3)c (gluino). And the one-loop sum rules at Mgyt yield

he==M, hy=hr =-Mg,, M* =m3, =my, =mi,y, (29)

where

— 2 —
mi;(t) = mtR + m?L + m%{u ; mzz(by_’.) = ng,TR + mgL,,.L + m%ld . (30)
(The above equations are the same as (16) and (18), respectively.) I would like to
emphasize that in the one-loop RG evolution of m2,’s in the MSSM only the same
combinations of the sum of m?’s enter. Therefore, as far as we are interested in
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the evolution of m%’s, we have only one additional parameter Msysy. To derive
the announced sum rules for the superpartner spectrum, we define

si = my /M; (i=1,b1) at Q= Msusy. (31)

The parameters s;’s do not depend on the value of the unified gaugino mass M,
but they do on tan 8. This dependence is shown in Fig. 4. We then express the

1.8 T T T T T T T T T

1.6

14

1.2

1k

Stpr 0.8
0.6

0.4 T B

0.2

0

0.2 1 } 1 ] ! 1 i I I
0 5 10 15 20 25 30 35 40 45 50
tan 8

T

Fig. 4. s¢, sp, sr against tanS.

masses of the superpartners in terms of the soft scalar masses and the masses of
the ordinary particles to obtain the sum rules [53],

—cos2B m? = (sp — 8¢) M3 + 2(1h2 — m?2) — 2(? — m?)

= (sr — se)Mg + 2(if — m) — 2(R2 — m?2), (32)
where m? is the neutral pseudoscalar Higgs mass squared, and 772 stands for
the arithmetic mean of the two corresponding scalar superparticle mass squared.
Since we have assumed an SU(5)-type supersymmetric GUT with a gauge-
Yukawa unification in the third generation, the result (32) is not a direct con-
sequence of a superstring model, although the form of the sum rules in both
kinds of unification schemes might coincide with each other as I mentioned (see
footnote 11). However, under the following circumstances (only rough), the sum
rules (32) could be a consequence of a superstring model: (i) The Yukawa cou-
pling of the third generation is field-independent in the corresponding effective
N = 1 supergravity. (ii) Below the string scale an SU(5)-type gauge-Yukawa
unification is realized so that the sum rules are RG invariant below the string
scale and are satisfied down to Mgur. (iii} Below Mgyt the effective theory is
the MSSM.

The sum rules (32) could be experimentally tested if the superpartners are
found in future experiments, e.g., at LHC. In any event, an experimental verifica-
tion of the sum rules of the SSB parameters would give an interesting information
on physics beyond the GUT scale.
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6 Conclusion

Now I will come to conclusion. Professor Zimmermann, obviously an interesting
feature is coming. So please keep staying in physics and experience new devel-
opments in physics with us.
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Abstract. We show how the combination of analyticity properties derived from local
field theory and the unitarity condition (in particular positivity) leads to non-trivial
physical results, including the proof of the “Froissart bound” from first principles and
the existence of absolute bounds on the pion-pion scattering amplitude.

I would like to begin by wishing a very happy birthday to Wolfhart Zim-
mermann. I have chosen a topic which is close to the interests of Wolfhart and
as you will see soon, in which Wolfhart has made a crucial contribution which
makes all the work made in the “pre-quark” era still valid now.

My task would have been much easier if the scheduled first speaker of this
conference, Harry Lehmann, had been present. Unfortunately he was ill, and, at
the time of writing this talk, we know that he left us. As we shall see all through
what follows, the contributions of Harry Lehmann to that domain are many and
all of them are fundamental.

In 1954, Gell-Mann, Goldberger and Thirring [1] proved that dispersion rela-
tion, previously developed in optics could be established for Compton Scattering:
vP — vP, from the existence of local fields satisfying the causality property

[A(z), A®)] =0 for (z-y)* <0,

i.e., spacelike. This made it possible to express the real part of the forward scat-
tering amplitude as an integral over the imaginary part of the forward scattering
amplitude, i.e., by the “optical theorem”, an integral over the total cross-section
for Compton Scattering. At the same time a general formulation of quantum
field theory incorporating causality giving in particular general expression for
scattering amplitude was developed by Lehmann, Zimmermann and Symanzik
(LSZ) in their pioneering paper (in german!) in Nuovo Cimento [2].

On this basis, dispersion relations were “proposed” for massive particles in
the work of Goldberger on the pion-nucleon scattering amplitude [3]. Soon, his
“heuristic proof” was turned into a real proof by various authors using the LSZ
formalism [4]. One of these proofs is due again to Harry Lehmann!

Before going on, I would like to explain that if these results, even after the
discovery that protons and pions are not elementary but made of quarks, are
still valid, it is thanks to a fundamental contribution of Wolfart Zimmermann

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, pf. 727-135, 2000.
[ Springer-Verlag Berlin Heidelberg 2000
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entitled “On the bound state problem in quantum field theory” [5], in which it is
proved that to a bound state we can associate a local operator. This constitutes
an excellent answer to sceptics like Volodia Gribov [6] or Klaus Hepp [7] (qui
briile ce qu’il a adoré!).

Now I believe that it is necessary to give some technical details, even if most
of you know about it.

In 3+1 dimensions (3 space, 1 time) the scattering amplitude depends on
two variables energy and angle. For a reaction A+ B — A+ B

Ec,m,=,/M§+k2+\/ilg+k2, (1)

k being the centre-of-mass momentum. The angle is designated by 6. There are
alternative variables:

s=(Ecm)?, t=2k*(cosf—1) (2)

(Notice that physical t is NEGATIVE).
We shall need later an auxiliary variable u, defined by

s+t+u=2M5+2M} (3)

The Scattering amplitude (scalar case) can be written as a partial wave ex-
pansion, the convergence of which will be justified in a moment:

F(s,cos6) = zkdf 2(2(5 + 1) f¢(s) Pe(cos6) (4)

fe(s) is a partial wave amplitude.
The Absorptive part, which coincides for cosd real (i.e., physical) with the
imaginary part of F), is defined as

Aq(s,cos8) = lk—i 2(26 + 1) Im f¢(s)(cos®) (5)
The Unitarity condition, implies, with the normalization we have chosen
Im fo(s) > |fe(s)P? (6)
which has, as a consequence
Im fi(s) >0, |[fel<1. (7

The differential cross-section is given by

do 1

o = Z |F)?
and the total cross-section is given by the “optical theorem”
4
el Ag(s,cos80=1) . (8)

Ototal = k\/g



The Rigorous Analyticity-Unitarity Program and Its Success 129

With these definitions, a dispersion relation can be written as:

F(s,t,u):%/M_kl/M (9)

s'—s T u —u

with possible subractions, i.e., for instance the replacement of 1/(s' — s) by
sN /s'"N(s' —s) and the addition of a polynomial in s, with coefficients depending
on t.

The scattering amplitude in the s channel A + B —+ A + B is the boundary
value of F for s+i€,€ > 0 — 0, s > (Ma+Mp)2. In the same way the amplitude
for A+ B - A+ B, B being the antiparticle of B is given by the boundary
value of F for u+ie, € >0 u> (M4 + Mp)?. Here we understand the need
for the auxiliary variable u.

The dispersion relation implies that, for fixed ¢ the scattering amplitude can
be continued in the s complex plane with two cuts. The scattering amplitude
possesses the reality property, i.e., for ¢ real it is real between the cuts and takes
complex conjugate values above and below the cuts.

In the most favourable cases, dispersion relations have been established for
-T <t <0T >0. A list of these cases have been given in 1958 by Goldberger
[8] and has not been enlarged since then. It is given in the Table.

In the general case, even if dispersion relations are not proved, the crossing
property of Bros, Epstein and Glaser states that the scattering amplitude is
analytic in a twice cut plane, minus a finite region, for any negative ¢ [9]. So it is
possible to continue the amplitude directly from A+ B — A+ B to the complex
conjugate of A + B — A + B. By a more subtle argument, using a path with
fixed v and fixed s it is possible to continue directly from A + B -+ A + B to
A+B—> A+B

At this point, we see already that one cannot dissociate analyticity, i.e., dis-
persion relations, and unitarity, since the discontinuity in the dispersion relations
is given by the absorptive part. In the simple case of ¢t = 0, the absorptive part
is given by the total cross-section and the forward amplitude is given, as we
said already for the case of Compton Scattering, by an integral over physical
quantities.

It was recognized very early that the combination of analyticity and unitarity
might lead to very interesting consequences and might give some hope to fulfill
at least partially the S matrix Heisenberg program. This was very clearly stated
already in 1956 by Murray Gell-Mann [10] at the Rochester conference. Later
this idea was taken over by many people, in particular by Geff Chew. To make
this program as successful as possible it seemed necessary to have an analyticity
domain as large as possible. Dispersion relations are fixed ¢ analyticity properties,
in the other variable s, or u as one likes.

Another property derived from local field theory was the existence of the
Lehmann ellipse [11], which states that for fixed s, physical, the scattering am-
plitude is analytic in cos@ in an ellipse with foci at cosf = =+1. cosf =1
corresponds to t = 0 the ellipse therefore contains a circle

|t < Ta(s) (10)
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Table 1. Dispersion Relations
a) Proved Relations
Process Limitation in invariant Continuation of
momentum transfer absorptive part into
k+po Kk +p the unphysical region

by convergent partial
wave expansion

2
r+No7+N Tnax = Sz optin 0 < T < Tmax
P E.g
T+TTHT Tinax = 28m2 0 <T < Tmax
_ 2 (2m ‘+"’"7r)2
Yy+N-=y+N® Tmex _4m"{4<mp+mw)’ 0<T<T.
+ 2mp+ma Pl max
mp

Y+ N n+N®

e+ N set+n+ N

Tiax = 4F(0)**) ~ 12m?

Tonae = 4F ()
y=k3-k®

F(=9m2) ~ 6m2

Tt,h S T< Tmax

Tth=m—:|_?;n—"x(m,r—7)

b) Some unproved relations

and spectrum; 7 =0

Mass restrictions appearing
in proof based upon causality

Perturbation theory
(every finite order)

N+N->N+N

mx > (V2 - 1)m,

proved for T < m2

K+N—>K+N

narrow margin

complicated; not fulfilled by

n+D—-o>n+D

e>Tr;mp=2mp—c¢

In the Lehmann derivation Ty (s) = 0 for s = (M4 + Mp)? and s — oco.

The absorptive part is analytic in the larger ellipse, the “large” Lehmann

ellipse, containing the circle

|t| < T2(s)

(11)

with Ty(s) = ¢ > 0 for s = (M4 + Mg)?, Ta(s) — 0 for s = oco.

It was thought by Mandelstam that these two analyticity properties, dis-
persion relations and Lehmann ellipses, were insufficient to carry very far the
analyticity-unitarity program. he proposed the Mandelstam representation [12]

which can be written schematically as
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1 p(s’, tds'dt’
72 ) (s'—s) (¢ —t)
+circular permutations in s,t,u
+one dimensional dispersion integrals
+subtractions (12)

This representation is nice. It gives back the ordinary dispersion relations
and the Lehmann ellipse when one variable is fixed, but it was never proved
nor disproved for all mass cases, even in perturbation theory. One contributor,
Jean Lascoux, refused to co-sign a “proof”, which, in the end, turned out to be
imperfect.

One very impressive consequence of Mandelstam representation was the proof,
by Marcel Froissart, that the total cross-section cannot increase faster than (log
s)2, the so-called “Froissart Bound” [13].

My own way to obtain the Froissart bound [14] was to use the fact that the
Mandelstam representation implies the existence of an ellipse of analyticity in
cos @ qualitatively larger than the Lehmann ellipse, i.e., such that it contains a
circle |t| < R, R fixed, independent of the energy. This has a consequence that
Im f¢(s) decreases with £ at a certain exponential rate because of the convergence
of the Legendre polynomial expansion and of the polynomial boundedness, but
on the other hand the Im f,(s)’s are bounded by unity because of unitarity [Eq.
(7)]. taking the best bound for each ¢ gives the Froissart bound.

To prove the Froissart bound without using the Mandelstam representation
one must find a way to enlarge the “small” and the “large” Lehmann ellipses.
In the autumn of 1965, I had very stimulating discussions with Harry Lehmann
at the “Institut des Hautes Etudes Scientifiques” about an attempt made in
this direction by Nakanishi in which he combined in a not very consistent way
positivity and some analyticity properties derived from perturbation theory. He
was using a domain shrinking to zero when the energy became physical and this
lead nowhere. Finally, in December 1965 [15], I found the way out. The positivity
of Im f, implies, by using expansion (5),

d )Tl d n
— As(s,t) < ’(——) As(s,t)
» (dt —4k2<E<0 dt

! !
Fs,t) = = / Aq(s't)ds’

(13)

t=0

To calculate

T s —s

(forget the left-hand cut and subtractions!), for s real < so one can expand F(s,t)
around ¢ = 0. From the property (13) one can prove that the successive deriva-
tives can be obtained by differentiating under the integral. When one resums
the series one discovers that this can be done not only for s real < so, but for
any s and that the expansion has a domain of convergence in ¢ independent of s.
This means that the large Lehmann ellipse must contain a circle [t| < R. This is
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exactly what is needed to get the Froissart bound. In fact, in favourable cases,
R = 4m2, m, being the pion mass. A recipe to get a lower bound for R was
found by Sommer [16]

R> Supso<s<ooT1(5) (14)

It was already known that for |t| < 4m2 the number of subtractions in the
dispersion relations was at most two [17], and is lead to the more accurate
bound [18]

or < —7% (log 5)? (15)

Notice that this is only a bound, not an asymptotic estimate.

In spite of many efforts the Froissart bound was never qualitatively improved,
and it was shown by Kupsch [19] that if one uses only Im f; > |f¢|*> and full
crossing symmetry one cannot do better than Froissart.

Before 1972, rising cross-sections were a pure curiosity. Almost everybody
believed that the proton-proton cross-section was approaching 40 millibarns at
infinite energy. Only Cheng and Wu [20] had a QED inspired model in which
cross-sections were rising and behaving like (logs)? at extremely high energy.
Yet, Khuri and Kinoshita [21] took seriously very early the possibility that
cross-sections rise and proved, in particular, that if the scattering amplitude
is dominantly crossing even, and if oy ~ (log s)? then

__ ReF e
P= TmF " logs ’

where ReF and ImF are the real and imaginary part of the forward scattering
amplitude.

In 1972, it was discovered at the ISR, at CERN, that the p — p cross-section
was rising by 3 millibarns from 30 GeV c.m. energy to 60 GeV c.m. energy [22].1
suggested to the experimentalists that they should measure p and test the Khuri-
Kinoshita predictions. They did it [23] and this kind of combined measurements
of or and ReF are still going on. In o7 we have now more than a 50 % increase
with respect to low energy values. For an up to date review I refer to the article
of Matthiae [24]. it is my strong conviction that this activity should be continued
with the future LHC. A breakdown of dispersion relation might be a sign of new
physics due to the presence of extra compact dimensions of space according to
N.N. Khuri [25]. Future experiments, especially for p, will be difficult because of
the necessity to go to very small angles, but not impossible [26].

Before leaving the domain of high-energy scattering I would like to indicate
the new version of the Pomeranchuk theorem. When it was believed that cross-
sections were approaching finite limits, the Pomeranchuk theorem [27] stated
that, under a certain assumption on the real part

or(AB) — ar(AB) = 0

If cross-sections are rising to infinity, one can actually prove, according to
Eden [28] and Kinoshita [29] that

UT(AB)/UT(AB) —+1.
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Now I would like to turn to another aspect of analyticity-unitarity. A conse-
quence of the enlargment of the Lehmann ellipse is that, in the special case of
Tm — 7w scattering, one can, by using crossing symmetry, obtain a very large
analyticity domain [30], but one can prove that the domain is smaller than the
Mandelstam domain [31]. By playing with crossing symmetry and unitarity in
a clever way (with years enormous progress has been made according to the
Figure), one gets a bound on the scattering amplitude at the “symmetry point”
which is [32]

|F(s=t:u=4mfr/3’<4,

where F is normalized in such a way that F(s = u,t = 0,u = 0) is the momo
Upper bound

A

25 ¢ (1)

20

15
10
51 13 (4 ),

1965

A
(=]
T

&
o
T

-100 -

\
Lower bound

Fig. 1. Bounds on the scattering amplitude at the symmetry point s =t =u = 4/3m?2
as a function of time. Normalization: F(s = 4m?2,0,0) = scattering length.

scattering length, ago. One can also obtain a lower bound on the scattering
length, the bound value being [33]

ago > —1.75 (mﬂ.)_l ,

a number which is off the model predictions only by a factor 10.
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Though these latter results may seem “useless”, they are remarkable, since

they prove that the combination of analyticity and unitarity have a dynamical
content.
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Abstract. The general method of the reduction in the number of coupling parame-
ters is discussed. Using renormalization group invariance, theories with several inde-
pendent couplings are related to a set of theories with a single coupling parameter.
The reduced theories may have particular symmetries, or they may not be related to
any known symmetry. The method is more general than the imposition of invariance
properties. Usually, there are only a few reduced theories with an asymptotic power
series expansion corresponding to a renormalizable Lagrangian. There also exist ‘gen-
eral’ solutions containing non-integer powers and sometimes logarithmic factors. As an
example for the use of the reduction method, the dual magnetic theories associated
with certain supersymmetric gauge theories are discussed. They have a superpoten-
tial with a Yukawa coupling parameter. This parameter is expressed as a function of
the gauge coupling. Given some standard conditions, a unique, isolated power series
solution of the reduction equations is obtained. After reparametrization, the Yukawa
coupling is proportional to the square of the gauge coupling parameter. The coefficient
is given explicitly in terms of the numbers of colors and flavors. ‘General’ solutions
with non-integer powers are also discussed. A brief list is given of other applications of
the reduction method.

1 Introduction

The method of reduction in the number of coupling parameters [1-5], [6-10], [11]
has found many theoretical and phenomenological applications. It is a very gen-
eral method, based essentially upon the requirement of renormalization group
invariance of the original multi-parameter theory, as well as the related reduced
theories with fewer couplings. Combining the renormalization group equations of
original and reduced theories, we obtain a set of reduction equations. These are
differential equations for the removed couplings considered as functions of the
remaining parameters. They are necessary and sufficient for the independence of
the reduced theories from the normalization mass. We consider massless theo-
ries, or mass independent renormalization schemes, so that no mass parameters
appear in the coefficient functions of the renormalization group equations. This
can be arranged, provided the original coeflicient functions have a well defined
zero-mass limit [12]. ‘
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In this paper, we discuss only reductions to a single coupling, which covers
most cases of interest. Usually, we can choose one of the original couplings as
the remaining parameter. The multi- parameter theory is assumed to be renor-
malizable with an asymptotic power series expansion in the weak coupling limit.
However the reduced theories, as obtained from the reduction equations, may
well not all have such expansions in the remaining coupling. Non- integer powers
and logarithms can appear, often with undetermined coefficients. Such general
solutions do not correspond to conventional renomalized power series expan-
sions associated with a Lagrangian. But they are still well defined in view of
their embedding in the renormalized multi-parameter theory. Nevertheless, it is
the relatively small number of uniquely determined power series solutions of the
reduction equations, which is of primary interest. Depending upon the character
of the system considered, there may be additional requirements which further
reduce the number of these solutions. Although we consider renormalizable the-
ories, with appropriate assumptions, the reduction method can also be applied
in cases where the original theory is non-renormalizable.

Regular reparametrization is a very useful tool in connection with the re-
duction method. For theories with two or more coupling parameters, it is not
possible to reduce the S-function expansions to polynomials. However, in the
reductions to one coupling, we can usually remove all but the first term in the
power series solutions of the reduction equation with determined coefficients.
The B-functions of the corresponding reduced theories remain however infinite
series. As seen from many examples, these reparametrizations lead to frames
which are very natural for the reduced theories.

The imposition of a symmetry on the multi-parameter theory is a conven-
tional way of relating the coupling parameters. If there appear no anomalies,
we get a renormalizable theory with fewer parameters so as to implement the
symmetry. These situations are all included in the reduction scheme, but our
method is more general, leading also to unique power series solutions which ex-
hibit no particular symmetry. This situation is illustrated by an example we have
included. An SU(2) gauge theory with matter fields in the adjoint representa-
tion. Besides the gauge coupling, there are three additional couplings. With only
the gauge coupling remaining after the reduction, we get two acceptable power
solutions. One of the reduced theories is an N = 2 supersymmetric gauge theory,
while the other solution leads to a theory with no particular symmetry.

The main example presented in this article is connected with duality 13-
16]. We consider N = 1 supersymmetric QCD (SQCD) and the corresponding
dual theory, magnetic SQCD. The primary interest is in the phase structure of
the physical system described by these theories. Essential aspects of this phase
structure were first obtained on the basis of supercovergence relations and BRST
methods [17-19], and more recently with the help of duality. [13,15]. We exhibit
the quantitative agreement of both approaches [20,21]. While duality is formu-
lated only in connection with supersymmetry, the supercovergence arguments
can be used also for QCD and similar theories [18,19], [22]. Of particular in-
terest is the transition point at Ny = $N¢ for SQCD [17,15], where Nr and
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N¢ are the numbers of flavors and colors respectively. It is the lower end of the
conformal window. For smaller values of Np, the quanta of free, electric SQCD
are confined, the system is described by free magnetic excitations of the dual
theory (for N¢ > 4), and eventually by mesons and baryons. (The corresponding
transition point for QCD is given by N = 14—3NC- ).

As the original theory, SQCD has only the gauge coupling g.. The dual the-
ory is constructed on the basis of the anomaly matching conditions [13,15]. It
involves the two coupling parameters g, and A;, where A; is a Yukawa coupling
associated with a superpotential. This potential is required by duality, mainly
since theories, which are dual to each other, must have the same global symme-
tries.

At first, we apply the reduction method to the magnetic theory in the con-
formal window %Nc < Np < 3N¢ [21,23]. We find two power series solutions.
After reparametrization, one solution is given by A (¢2,) = ¢2,f(N¢, Nr), with
f being a known function of the numbers of colors and flavors for SQCD. The
other solution is A;(g2,) = 0. Since the latter removes the superpotential, it is
excluded, and we are left with a unique single power solution. This solution im-
plies a theory with a single gauge coupling g,,, and renormalized perturbation
expansions which are power series in g2,. It is the appropriate dual of SQCD.
There are ‘general’ solutions, but they all approach the excluded power solution
A1(g?) = 0. With one exception, they involve non-integer powers of g2,. The
reduction can be extended to the ‘free electric region’ Nr > 3N¢, and to the
‘free magnetic region’ Ng + 2 < Np < %NC, (N¢ > 4). The results are similar,
and discussed in detail in [23]. In the free magnetic case, we deal however with
the approach to a trivial infrared fixed-point.

Possible connections of the reduction results with features of brane dynamics
remain to be considered. Internal fluctuations of branes may be of relevance for
the field theory properties obtained here.

2 Reduction Equations

We consider renormalizable quantum field theories with several coupling param-
eters. It is assumed that there is a mass-independent renormalization scheme, so
that no mass parameters occur in the coefficient functions of the renormalization
group equations. Let A, A1, ..., A, be n+1 dimensionless coupling parameters of
the theory. One can reduce this system in various ways, but we want to consider
the parameter A as the primary coupling, and express the remaining n couplings
as functions of A:

}\k=)\k()\), k:l,...,n. (1)

It is assumed, that these functions A (A) are independent of the renormalization
mass k, which can always be arranged.

The Green’s functions G (ki, &%, X, A1,..., A) of the original multi-parame-
ter version of the theory satisfy the usual renormalization group equations with
the coefficient functions 3, fx, and the anomalous dimension 7g, which depend
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upon the n+ 1 coupling parameters. The corresponding Green’s functions of the
reduced theory are given by

Glki, k3, ) = G (kiy 5,0, A1 (N), -, An (V) - (2)

Renormalization group invariance requires that they satisfy the equation

0 a
2 —
(Kl 'éF-F/B(/\)a—)“*"YG()\)) G(ki,fiz,k) =0 y (3)
where B()\) and yg()\) are given by the corresponding original coefficients with
the insertions Ay = Ac(}), k =1,...,n . Comparison of Eq.(3) with the original
multi-parameter renormalization group equation implies then

d\(A)

B(N) ) =6(A), k=1,...,n (4)

These are the Reduction Equations, which are necessary and sufficient for the
validity of Eq.(3).

It is of interest to briefly consider the relationship between the reduction
method as described above, and the equations for the effective coupling functions
A(u), A (u), where u is the dimensionless scaling parameter u = k%/k2. These
functions satisfy the equations

dX -~
U(_i;; _ﬁ(A7A1" :An)a
D ocr 3
'U,-EZL- —,Bk(A,)\l,...,An) . (5)

With X(u) being an analytic function, we can choose a point where (dA(u)/du)
# 0 and introduce A(u) as a new variable Egs.(5,6). The result is again the
reduction equations (4).

With effective couplings, we study the multi-parameter theory at different
mass scales. In the reduction method, we consider the set of different field theo-
ries with one coupling parameter (or a reduced number), which can be obtained
from a given multi-parameter theory as solutions of the reduction equations.
The elements of this set are labeled by the free parameters of the solution, and
all are considered at the same fixed mass scale. With some natural assumptions
the number of theories in this set is usually smaller than the number of original
coupling parameters, and the different theories have characteristic physical and
mathematical features. This is best seen in examples, some of which we discuss
below. It must be remembered, that the origin of the coupling parameter space
is a singular point, so that the Picard-Lindeloef theorem about the uniqueness
of solutions at regular points does not apply.

As described so far, the reduction scheme is very general, but in practice
we usually know the B-functions only as asymptotic expansions in the small
coupling limit. Within the framework of renormalized perturbation theory, we
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restrict ourselves here to expansions of the form

BAL - An) = BoA? + ( Bid® + B A? + Biar Ar A X )

oo n—1
FD 0D Broakrkn My Ay AT
n=4 m=0
Be(A AL -5 An) = (A2 +C£OL,)\,E/)\+c§c1k,kuz\k:)\k,, ),
FY D N A A (6)
n=3 m=0

In writing the expansions (6), we have assumed that the primary coupling A is
chosen such that 8(0,A1,...,A,) = 0.

With the original g-functions given as asymptotic power series expansions,
we will consider in the following solutions Ag (A\) of the reduction equations, which
are also of the form of asymptotic expansions. Of special interest are solutions
which are power series expansions. But in general, non-integer powers as well as
logarithmic terms are possible.

3 Power Series Solutions

Let us first consider solutions of the reduction equations (4) which are asymptotic
power series expansions. Then the Green’s functions G(k;, k2; A) of the reduced
theory have power series expansions in A and are associated with a corresponding
renormalizable Lagrangian. It is reasonable to write

M) = A0, k=1,...,n, (7)

where the functions fi()) are bounded for A — 0 so that A¢(0) = 0. Ac-
cording to the reduction equations, if we had A;(0) # 0, the vanishing of
B(0, A1(0), ..., A,(0)) would imply that also 8x(0,A1(0),..., A, (0)) vanishes,
which is too strong a restriction and not fulfilled by Eq.(6). In terms of the
functions fx{(A) the reduction equations are of the form

d
ﬂ( df)}f-i'fk)Iﬂk, (8)
where we have introduced the g-functions
BO) =B, A ) =) Ba(HAE, 9)
n=0
Br(N) = B M1, M) = 3 BI(HA™? (10)
n=0

Here the argument f stands for fi(A),..., fu(A). The coefficients are easily ob-
tained from Eqs.(6). For example, the one-loop terms are given by

Bo(f) = Bo, ﬂl(eo)(f) =6 ) kk'fk’ + ckk’k”fk'fk” . (11)
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For the functions fi()), we write the expansions
fe) = £+ Z XA (12)

and insert them, together with the series (9) and (10), into the reduction equa-
tions. At the one-loop level, there result then the relations

Bu(f°) = fiBo) =0, (13)
or in explicit form using Eq.(11),
Cg)) (Ckkl ,B(](Skk’ )fkl + ckk’k” fkl fku —_— 0 (14)

These are the fundamental formulae for the reduction.

Given a solution f§ of the quadratic equations (14), we obtain for the expan-

sion coefficients Xfcm) the relations

(M (£°) = mBodia) X = (Bm(FO) S8 - B (1)) + X, (15)
where m =1,2,..., k=1,...,n. The matrix M(f°) is given by
Mkkl (fO) = Ck L, + 2c§c(,)2c’k”f,8” - 5kk/,30 . (16)

The rest term X (™ depends only upon the coefficients x(),...,x{™~V, and
upon the f—function coefficients in (9) and (10), evaluated at fi = f2, for order

m — 1 and lower. They vanish for x(1) = ... = x(m=1 = 0.
We see that the one-loop criteria
det (Mik (f°) — mBodk:) 0 for m=1,2,... (a7)

are sufficient to insure that all coefficients x(™) in the expansion (12) are deter-
mined. Then the reduced theory has a renormalized power series expansion in
AX. All possible solutions of this kind are determined by the one-loop equation
(13) for f2.

With the coefficients x(™ fixed, we can use regular reparametrization trans-
formations in order to remove all but the first term in the expansion (12) of the
functions fx()). These reparametrization transformations are of the form

X =N, A) = A+aCOX 4 oA+
L= MO An) = Ak 00 A Ak + B A A+ L (18)

They leave invariant the one-loop quantities
12, Bo(£°), B (£°), Muw (£°) - (19)
Given the condition (17), we then have a frame where

A(A) = Aff - (20)
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This result is valid to all orders of the asymptotic expansion and determined by
one-loop information. With the expressions (20), the S-function expansions (9)
and (10) of the reduced theory have constant coefficients 8, (f°), ﬂ,(cm) (%), but
they are generally not polynomials. They satisfy the relations

) = £Ba(f0) = o. (21)

for all values of m. Only the relations for m = 0 are reparametrization invariant.
They are the fundamental formulae (13).

So far, we have implicitly assumed that f? #0. But it is straightforward to
include the cases where f,g = 0. They are of particular interest for supersym-
metric theories. Suppose we have a solution of the reduction equations with the
asymptotic expansion

o0
N
FO) = xfOA 4 3 iy (22)
m=N+1
where N > 1 and Xch) # 1. Then coefficients appearing in this equation are
again determined except for the first one, which is invariant. Hence, using regular
reparametrization, there is a frame where

Fe) = x VAN (23)

We have considered here only expansions at the origin in the space of coupling
parameters. However, one can use the method also in connection with any non-
trivial fixed point of the theory.

4 General Solutions

At first, let us briefly consider the case where the determinant appearing in
Eq.(17) vanishes. Suppose there is a positive eigenvalue of the matrix By M(£°)
for some m = N < 1, By # 0. Then the asymptotic power series must be
supplemented by terms of the form A™(IgA\)?, with m < N and 1 < p < o(N).
After reparametrization, we obtain then an expansion of the form

) = £+ XN g A+ VN 4 (24)

All parameters in Eq.(24) are determined except the vector xiN), which contains

as many free parameters as the degeneracy of the eigenvalue. Even though the

theory considered here can have logarithmic terms in the asymptotic expansion,

it is ‘renormalized’ in view of it’s embedding into the original, renormalized

multi-parameter theory. In special cases it may happen that the coefficients of

the logarithmic terms vanish, as in the example of the massless Wess-Zumino
model.

We now return to systems with non-vanishing determinant for all values of m.

In addition to the power series solutions described before, there can be general
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solutions of the reduction equations, which approach the latter asymptotically.
In order to describe a characteristic case, we assume that 8y # 0 and that the
matrix 85 ' M(f°) has one positive eigenvalue 7 which is non-integer, with all
others being negative. Then the reduction equations (4) have solutions of the
form

) = FR 4 Do xR 4 A (25)
a,b m
withe=1,2,... ,b=0,1,... , an+ b = non-integer. After reparametrization,

powers with m < 7 are removed, and we have

Fe) = f XN+ (26)
In this expansion all coefficients are determined except Xi"), which may contain
up to r arbitrary parameters if the eigenvalue 5 is r-fold degenerate:

" =g+ + e, (27)

where the E,(:) are the eigenvectors.

The results described above can be generalized to situations with several
positive, non-integer eigenvalues. In special cases, where the matrix also has a
zero eigenvalue, logarithmic factors may appear.

So far, we have assumed that 8y # 0, and obtained general solutions which
approach the power series solution (20) asymptotically with a power law as
indicated in Eq.(26). The situation is quite different if 8y = 0. Then th Matrix
M is given by

(0)
M (%) = (aﬂgfk(f)) (28)
0

and we find that the general solutions and the power series solutions differ asymp-
totically by terms which vanish exponentially. We refer to [2] for more details.

Besides the general solutions, which approach the power series solutions
asymptotically, there can be others which move away in the limit A — 0. These
are not calculable unless the B-functions are known more explicitly. However,
we can get information about the existence or non-existence of such solutions on
the basis of the linear part of the reduction differential equations (4). We find
that the theorems of Lyapunov [24] , with generalizations by Malkin [25], are
applicable here [26]. We refer to [5] for some more discussion, and to [27] for an
application. Generally, it turns out that a power series solution (20) is asymp-
totically stable if there are no negative eigenvalues of the matrix 85 ' M(f°) (or
the matrix By' M(f°) in the case of the solution (23)). A solution is unstable if
there is at least one negative eigenvalue.
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5 Gauge Theory

It should be most helpful to discuss briefly an example. We use a gauge theory
with one Dirac field, one scalar and one pseudoscalar field, all in the adjoint rep-
resentation of SU(2) [4]. Besides the usual gauge couplings, the direct interaction
part of the Lagrangian is given by

Lair.int. = iV A1 €9 (A° + iy BY)y
1
- (44t + B®B%)? + i/\g(A“Ab + B*B%)? . (29)

Writing A = g2, where g is the gauge coupling, and A\ = Afi, with k=1,2,3 , the
one-loop S-function coefficients of this theory are given by

(167%)Bg0 = —4

(167%)8) = 8ff —12f

(167%)BY = 3f2 —12f3f + 14f; +8f1fo — 8f2 — 12f2 + 3

(167%)83 = —9f3 +12fsf2 + 8fsf1 — 12f3 — 3. (30)

The algebraic reduction equations (14) have four real solutions, which are given
by

=1 f£=1, =1

0 _ o 9 o _ T
fl_]-, f2"\/m7 f3_\/m7 (31)

and two others with reversed signs of fJ and f2, so that the classical potential
approaches negative infinity with increasing magnitude of the scalar fields. These
latter solutions will not be considered further. We note that the Yukawa coupling
is required for the consistency of the reduction.

The eigenvalues of the matrix /J’;)IM (f°) are respectively

(-2, -3, +%) (32)

and

i 325+343 3 25-/343
4 105 T 4 V105

There are no positive integers appearing in the equations (32) or (33). Hence
the coefficients of the power series solutions are determined and can be removed
by reparametrization, except for the invariant first term. With A = ¢2 as the
primary coupling, g being the gauge coupling, these solutions are

) =(-2,-3.189...,-0470...). (33)

(a) )\1 = Ag = /\3 = g2 y (34)



Reduction of Coupling Parameters and Duality 145

which corresponds to an N = 2 extended SUSY Yang-Mills theory, and

_ 2 _ 9 _ 7T 9

(b) ’\1 g, }‘2 \/1—05-9, )‘3— \/1—039 ’ (35)
which is not associated with any known symmetry, at least in four dimensions.
Both theories are ‘minimally’ coupled gauge theories with matter fields. The
eigenvalues of the matrix ﬂg_OlM (f°), given in Egs.(32),(33), are all negative
with the exception of the third one for the N=2 supersymmetric theory. In this
case we have a general solution corresponding to Eq.(26) with n = +%, and with
the coefficient given by x(%) = (0,C,3C), where C is an arbitrary parameter.
The theory with C # 0 corresponds to one with hard breaking of SUSY. It has
an asymptotic power series in g and not in g%, as is the case for the invariant
theory.

As we see from Egs.(32) and (33), both power series solutions have some
negative eigenvalues of the matrix ﬁg_olM (f°), and are therefore unstable. Not
all nearby solutions approach them asymptotically.

From the present example, and many others, we realize that the special frame,
where the power series solutions of the reduction equations are of the simple
form (20), is a natural frame as far as the reduced one-parameter theories are
concerned. The - functions of the reduced theories are still power series and are
not reduced to polynomials.

6 Dual SQCD

As the main application of the reduction method, we consider here the reduction
of multi-parameter theories appearing in connection with duality. As a particular
example, we discuss the dual magnetic theory associated with SQCD [13,16].
While SQCD, as the ‘electric’ theory, has the gauge coupling ge as the only
coupling parameter, the dual ‘magnetic’ theory has two parameters: the magnetic
gauge coupling g, and a Yukawa coupling A;, which measures the strength of the
interaction of color-singlet superfields with the magnetic quark superfields. It is
our aim to discuss the reduced theories where the Yukawa coupling is expressed
in terms of the gauge coupling.

For SQCD the gauge group is SU(N¢) with N=1 supersymmetry. There
are Np quark superfields Q; and their antifields Q' i = 1,2,...,Np in the
fundamental representation. For completeness and later reference, we give here
the B-function coefficients for the electric SQCD theory:

Be(92) = Beo gs + Ber go + -+, (36)
with
Beo = (1672)71(-3N¢ + Np)

2
Be1 (167%)~? (ZNC(—3NC+NF) + 4NFN20N 1) ) (37)
C

Il
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The corresponding dual magnetic theory is constructed mainly on the basis
of the anomaly matching conditions [13,15,28]. It involves the gauge group G¢ =
SU(N§) with N& = Np — Nc. Here N is the number of quark superfields
¢, ¢, 1 =1,2,..., N in the fundamental representation of G¢. Because both
theories must have the same global symmetries, the number of flavors N F should
be the same for SQCD and it’s dual. As we have mentioned, duality requires a
non-vanishing Yukawa coupling in the form of a superpotential

W = v /\1M;qi(jj. (38)

The N2 gauge singlet superfields M J' are independent and cannot be constructed
from q and §. The superpotential not only provides for the coupling of the M
superfield, but also removes a global U(1) symmetry acting on M, which would
have no counterpart in the electric theory.

In the following, we will be dealing essentially only with the magnetic theory.
For convenience, we therefore write g in place of g,, for the corresponding gauge
coupling. We also omit the subscript m for the S-function coefficients. Then the
B-function expansions of the magnetic theory are

B(g%, A1) Bo g* + (B1 ¢° + Bn ) + -
Big® A1) = VA + QA2 4+ ... (39)

I

The coefficients are given by [21,23,29], [30]

Bo = (167%)7'(3N¢ — 2NF) ,
~ _ (Np = Ne)2-1
= (167*)7* ( 2(Nr - No)(3Nc ~ 2NF) + 4Np 2(NF — No) )

fu = (167 (2NF)

© _ - _,(Np=Ng)* -1

a” = (167?) 1( 4—__2(NF—NC) )

Y = (1672~ (3Np — Ng)) . (40)

Il

Already at the one-loop level, we see some important features from Eqgs.(37),
(40). In the interval

3
§NC < Nr < 3Nc, (41)

both theories are asymptotically free at large momenta, in particular the mag-
netic theory for Ng > %NC. For Nr > 3Ng, the electric theory is not asymptot-
ically free in the UV but in the IR, where the magnetic version remains strongly
coupled. Hence we expect that the original electric excitations are present in
the ‘physical’ state space. The situation is reversed for Np < %Nc, where the
electric quanta are confined, and the elementary magnetic excitations describe
the system, at least for Np > N¢ + 2 where the dual theory exists which is the
‘free magnetic region’. This is the duality picture as proposed by Seiberg, with
both theories describing the same physical system.
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In the conformal window given in Eq.(41), the electric as well as the magnetic
theory are in an interacting non-Abelian Coulomb phase, and it is indicated
that they both have non-trivial conformal fixed points at zeroes of the exact
B-functions. At these fixed points the theories are actually equivalent. Near an
endpoint of the window, in the infrared limit, one theory may be in a weak
coupling situation, and the other, dual theory in a strong coupling regime. Since
both theories represent the same system, we can describe the strongly coupled
field theory by the weakly coupled dual. The free excitations of the latter may
be considered as composites of those of the former theory.

Within the framework of this duality picture, the system undergoes an im-
portant phase transition at the point Np = $N¢. As has already been mentioned
above, below this point the elementary electric quanta are confined in the sense
that they are not elements of the physical state space. In the original electric
theory, the transition at Np = %NC is not apparent from the S-function coeffi-
cients, in contrast to the phase change at N = 3N¢, where B0 = 0. But in the
duality picture, we have Sy = 0 at Np = %N(; for the magnetic theory, and this
is the indication for the phase transition of the system.

Many years ago, we have obtained the phase transition of SQCD at Np =
3 Nc by using a rather different method [17]. It involves analyticity and super-
convergence of the gauge field propagator, as well as the BRST-cohomology in
order to define the physical state space of the theory [18,21]. The supercon-
vergence relations, where they exist, are exact. They connect long and short
distance information, and are not valid in perturbation theory [31-33].

The asymptotic form of the gauge field propagator is governed by the ratio
Y00/ Bo, Where Yoo is the anomalous dimension of the gauge field (not the super-
field) at the fixed point @ = 0. Here o > 0 is the conventional gauge parameter.
Because this parameter is effectively a function of the momentum scale, it tends
to a fixed point asymptotically. For example, in general covariant gauges, the
discontinuity of the structure function has the asymptotic form

2\ —700/Bo
Kok g0) = O0) (Boinlg) (12)

which is independent of a with the possible exception of the coefficient.

For the discussion of confinement using the BRST cohomology or the quark-
antiquark potential, it is most convenient to work in the Landau gauge, where
the superconvergence relation is of the form

o0
/ dk2p(K, K2, 9,0) = 0, (43)

-0

provided voo/80 > 0. For general gauges a > 0, the relation is the same except
that the right hand side is given by a/ag, were ap = —3%, with y(a) =
Yoo + &Yo1 [33].

In contrast to the duality arguments, the superconvergence method is applica-
ble to non-supersymmetric theories like QCD, where the interval corresponding
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to the window (53) for SQCD is given by

17?-]\/0 < Np < %Nc, (44)
For Ny < L3N¢ for QCD and for Np < 3 N¢ for SQCD, our arguments show
that the transverse gauge field excitations are not elements of the physical state
space and hence confined. With some further arguments one can extend this
result to quark fields.

For SQCD and similar theories, the connection between duality and super-
convergence results is quantitative. For electric and magnetic SQCD, we have
the anomalous dimensions

3
Yeoo = (1672)1 (~§Nc + Np)

-1
Ymoo = (167!'2)—17(—31\"0 + NF) s (45)

and with the 3-function coefficients from Eqs.(37),(40), we obtain the relations
[20,21]

Bmo(NF) = —2%e00(NF)
,BeO(NF) = "27m00(NF) 3 (46)

where the argument Nr on both sides refers to matter fields with different quan-
tum numbers corresponding to electric and magnetic gauge groups. We have re-
stored the subscript m for these duality relations. We see that .00 (Nr) changes
sign at the same point Nr = 3 N¢ as Bm0(Nr), and the ratio Ye0o (NF)/Beo(NF)
is positive below this point, indicating superconvergence and confinement as dis-
cussed before.

The exact relations (46) are an indication, that the anomalous dimension
coefficients of the gauge fields at the fixed point & = 0 may have a more funda-
mental significance, similar to the one-loop S-function coefficients.

Our discussion about the relation of superconvergence and duality results
can be extended to similar supersymmetric gauge theories with other gauge
groups [21,34,35]. The results are analogous. However, in the presence of matter
superfields in the adjoint representation [36], the problem is more complicated.
There the construction of dual theories requires a superpotential already for
the original electric theory, and a corresponding reduction of couplings would be
called for. Also the application of the superconvergence arguments is not straight
forward. These cases deserve further study.

Duality in general superconformal theories has been discussed in [37], and
for softly broken SQCD in [38].

7 Reduced Dual SQCD

The magnetic theory dual to SQCD contains two parameters, the gauge coupling
g and the Yukawa coupling A\;. We now want to apply the reduction method



Reduction of Coupling Parameters and Duality 149

described in the previous sections and express the coupling parameter A1 as a
function of g2. With Eq.(7) we write

M(g?) = PA(g%) , with fi(g®) ="+ xVg*. (47)

=1

The essential one-loop reduction equation is then

pof® = (70 + &) £ (48)
There are two solutions:
(0)
—c
o= o =2 and 0= fun=0, (49)
Ci1

where fo1 is a function of N¢ and N, and is given by

for(N¢,Nr) = (Nr = No)(3Nr = No)

(50)

using the explicit expressions (40) for the coefficients. Here and in the following,
we do not consider possible additional terms which vanish exponentially or faster
[5). The criteria for the unique definition of the coefficients x(¥) in the expansion
(47) are given by

(M(f°) —1Bo) #0 for 1=1,2,... (51)
with
M(f%) = ¢” +2¢9 f° - Bo - (52)

Upon substitution of the solutions (49) and the explicit form of the coefficients
from Eqs.(40), wie find

M(fo1) —1fo = —Bo(§ +1)
M(foo) — 1o = +Bo(§ —1) , (53)

with 8o from Eq.(40) and £ as a function of N¢ and Np given by

N¢ (Ng — No — 2/N¢)

§We:Nr) = Ny~ No)@Nr - 3No) |

(54)

The equations for the coefficients x® are of the general form given in Eqs.(15).
For [ + 1 loops, they are simply

(M (%)~ 1h0) X = (B 1° = BO () + X, (55)

where I = 1,2,... , and where f° is to be replaced by the solutions fo1 or
foo respectively. The S-function coefficients are as in Eq.(11) with appropriate
substitutions.
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In the following , we consider characteristic intervals in Np separately, and
concentrate on the conformal window.

We have already discussed the window %NC < Np < 3Ng, where both
SQCD and dual SQCD are asymptotically free at small distances. Considering
first the solution fo1(N¢, Nr) as given in Eq.(50), we see that it is positive in
the window, as is the function £(N¢, NF). Since also 8y < 0, the coefficients in
Eq.(55) do not vanish. Consequently the expansion coefficients x® are uniquely
determined and can be removed by a regular reparametrization transformation.
We are left with the explicit solution

M(g®) = ¢ fou(Ne,Np) (56)

with fo1 given by Eq.(50). The S-functions of the reduced theory, as defined by
the solution (56), are now simply given by Egs.(9) and (10)) with the argument f
of the coefficient functions replaced by fo;(NcN F) , so that they are constants:

B(9®) = B(g* 9% for) = D Bi(for)(@®)*?, Bi(d®) = fuuB(g®) .  (57)

=0

The second relation follows from the reduction equation (4) with Eq.(56). The
coefficient f is as given in Eq.(40), and for 81 (fo1) we obtain explicitly [21,23]

_ 2 _
(167r2)2ﬂ1(f01) = 2(NF - NC)(3NC — ZNF) + 4NF£A;IETFA1%C)_1
NC(NF - NC - 2/No)

—4N?} )
F 2(Np = No)(3Nr — N¢)

(58)

These relations are used later in connection with the infrared fixed point of
dual SQCD in the conformal window near Ny = %NO. We must note here,
that for the expansion (57), in addition to By, the two-loop coefficient 8 (fo;) is
reparametrization tnvariant. This result follows because fy; satisfies the reduc-
tion equation (48).

It remains to consider the second solution presented in Eq.(49), with f° =
foo = 0. In this case the second expression in Eq.(53) is relevant for the de-
termination of the higher coefficients in the expansion of f;(g?). There could
be a zero if {(N¢, Nr) is a positive integer in the window. Generally however,
this is not the case (at least for N < 16), with the characteristic exception of
N¢ = 3,Nr = 5, where £(3,5) = 2 and the magnetic gauge group is SU(2).
Ignoring this case, we have again the situation that all coefficients x(*) are de-
termined and can be removed by regular reparametrization. Then the second
power series solution of the reduction equations is given by

’\1(92) = 07 (59)

and leads to a theory without superpotential. As we have discussed earlier, this
situation is not acceptable for the dual magnetic theory.
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Returning to the exceptional case with the magnetic gauge group S U(2), we
find that, after reparametrization, it leads to a solution of the form

M(g?) = Ag® +x®BP + -, (60)

where the coefficient A is undetermined, and the higher ones are fixed once A is
given. They vanish if A = 0. We do not discuss this case here any further.

Finally, we briefly consider possible ‘general’ solutions of the reduction equa-
tions. It turns out that for dual SQCD there are no such solutions which asymp-
totically approach the relevant polynomial solution (g% = ¢%fo1 given in
Eq.(56). The only general solution we obtain is associated with the excluded
polynomial solution A1(g?) = 0. It is given by

Mg =A@+, (61)

where A is again an undetermined parameter with properties analogous to those
discussed above for Eq.(60). As we have pointed out, the exponent &, as given in
Eq.(54), is positive and generally non-integer in the limit. The only exception is
for No = 3, Np = 5, in which case we are back to the exceptional solution (60)
discussed above.

We see that, within the set of solutions of the reduction equations for mag-
netic SQCD, the power series A1(g?) = g*fo1 is the unique choice for duality.
Ignoring the isolated SU(2) case, the second power series solution Ay (¢¥) =0is
excluded. The general solution (61), which is associated with it, leads to asymp-
totic expansions of Green’s functions involving non- integer powers. This is not
consistent with a conventional, renormalizable Lagrangian formulation. Since
there are no general solutions approaching the power solution A1(g?) = g% for,
the latter is isolated or unstable.

From the one- and two-loop expressions for the S-functions of the electric and
the reduced magnetic theories given in Egs.(37) and (40), we can obtain some
information about non-trivial infrared fixed points in the conformal window
[39,40]. These expansions are useful as long as the fixed points occur for values
of N¢, Ng near the appropriate endpoint of the window. We find [23]

9*2 z NF—%NC

2y = 0 f = 62
Bm(9™) or 16 3 -"%—1 + ) (62)
and
*2 3Nc - N
Be(gf?) = 0 for P = L 4 ..., (63)

1672 6(N& —1)

for sufficiently small and positive values of 3Nc— Nr and N — %NC respectively.
Larger values of N¢ may be needed in order to have a useful approximation.
Higher order terms have been calculated and may be found in [29].

With the reduced dual theory depending only upon the magnetic gauge cou-
pling, it is straightforward to obtain the critical exponent ¥m(N¢, Nr) near the
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lower end of the window at Np = %NC [29]. This exponent is relevant for de-
scribing the rate at which a given charge approaches the infrared fixed point.
With Eqs.(40), (58) and (62), the lowest order term is given by

dBm (g 14 (Np — 3N¢)?
’ym:(-_:ing = ?—m“z_ + See (64)
q g2=g*2 _40. -1
where we have written g in place of g,, as before. For the electric theory in the
window near N = 3N, the corresponding expression is
_ (dﬂe(gg)) _ 1 8Ng — Nr)® +
’ 92=g22 6

dg? NZ -1 (65)

In both cases we refer to [29] for the next order.

In this report we consider mainly the reduction of dual magnetic SQCD in
the conformal window. A detailed discussion of the situation in the free magnetic
phase N¢ +2 < Np < %NC may be found in [23]. This interval is non-empty
for Ng > 4. The electric theory is UV-free and the magnetic theory IR-free. At
low energies, it is the latter which describes the spectrum. Because of the lack of
UV-asymptotic freedom, one may be concerned that the magnetic theory may
not exist as a strictly local field theory. However, it can be considered as a long
distance limit of an appropriate brane construction in superstring theory, which
can also confirm duality [41]. Except for special cases involving again SU(2) as
the magnetic gauge group, the unique power series solution (56) remains the
appropriate choice also for this phase. It correspond here to the approach to
the trivial infrared fized point. Below Nr = N¢ + 2 there is no dual magnetic
gauge theory, and the spectrum should contain massless baryons and mesons
associated with gauge invariant fields.

In the free electric phase for Np > 3Ng, the magnetic theory remains UV-
free, and the results of the reduction method are the same as in the conformal
window.

8 Conclusions

In the application to Duality, we see that the reduction method is most helpful
in bringing out characteristic features of theories with superpotentials. In the
case of the dual of SQCD, we get an essentially unique solution of the reduction
equations, which corresponds to a renormalizable Lagrangian theory with an
asymptotic power series expansion in the remaining gauge coupling. This dual
magnetic theory is asymptotically free. It is UV-free in the conformal window
and above, and IR-free in the free magnetic region below the window. In this
latter region, it describes the low energy excitations. These can be considered as
composites of the free quanta of the electric theory, which is strongly coupled
there.

As we have mentioned before, dual theories can be obtained as appropriate
limits of brane systems [41]. In these brane constructions, duality corresponds
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essentially to a reparametrization of the quantum moduli space of vacua of a
given brane structure. It is of interest to find out how the reduction solutions
are related to special features of these constructions, in particular as far as the
unique power solution (56) is concerned.

Besides the use of the reduction method in connection with duality, which
we have described in this article, there are many other theoretical as well as phe-
nomenological applications. Examples of applications in more phenomenological
situations are discussed in this volume by J. Kubo [42].

Without detailed discussions, we mention here only a few applications:

o Construction of gauge theories with “minimal” coupling of Yang-Mills and
matter fields [4].

o Proof of conformal invariance (finiteness) for N = 1 SUSY gauge theories
with vanishing lowest order 8-function on the basis of one-loop information
43,44).

) keduc]tion of the infinite number of coupling parameters appearing in the
light-cone quantization method [45].

¢ Reduction in an effective field theory formulation of quantum gravity and in
effective scalar field theory [46].

We see that the reduction method can be used also within the framework
of non-renormalizable theories, where the number of couplings is infinite a
priori.

¢ Applications of reduction to the standard model (non-SUSY) give values for
the top-quark mass which are too small, indicating the need for more matter
fields [47)].

e Gauge-Yukawa unifications within the framework of SUSY GUT’s. Success-
ful calculations of top-quark and bottom-quark masses within the framework
of finite and non-finite theories [9,48,42).

e Reduction and soft symmetry breaking parameters. In softly broken N =1
SUSY theories with gauge-Yukawa reduction, one finds all order renormal-
ization group invariant sum rules for soft scalar masses [49,50,42]. There are
interesting agreements with results from superstring based models.

There are other problems where the reduction scheme is a helpful and often an
important tool [51].
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Abstract. This text follows the line of a talk on Ringberg symposium dedicated to
Wolfhart Zimmermann 70th birthday. The historical overview (Part 1) partially over-
laps with corresponding text of my previous commemorative paper — see Ref. [61] in
the list. At the same time second part includes some recent results in QFT (Sect. 2.1)
and summarize (Sect. 2.4) an impressive progress of the “QFT renormalization group”
application in mathematical physics.

1 Early History of the RG in the QFT

1.1 The birth of Bogoliubov’s renormalization group

In the spring of 1955 a small conference on “Quantum Electrodynamics and El-
ementary Particle Theory” was organized in Moscow. It took place at the Lebe-
dev Institute in the first half of April. Among the participants there were several
foreigners, including Hu Ning and Gunnar Kallén. Landau’s survey lecture “Fun-
damental Problems in QFT”, in which the issue of ultraviolet (UV) behaviour
in the QFT was discussed, constituted the central event of the conference. Not
long before, the problem of short-distance behaviour in QED was advanced sub-
stantially in a series of articles [1] by Landau, Abrikosov, and Khalatnikov. They
succeeded in constructing a closed approximation of the Schwinger-Dyson equa-
tions, which admitted an explicit solution in the massless limit and, in modern
language, it resulted in the summation of the leading UV logarithms.

The most remarkable fact was that this solution turned out to be self-
contradictory from the physical point of view because it contained a “ghost
pole” in the renormalized amplitude of the photon propagator or, in terms of
bare notions, the difficulty of “zero physical charge”.

At that time our meetings with Nicolai Nicolaevich Bogoliubov (N.N. in what
follows) were regular and intensive because we were tightly involved in the writ-
ing of final text! of our big book. N.N. was very interested in the results of
Landau’s group and proposed me to consider the general problem of evaluating
their reliability by constructing, e.g., the second approximation (including nezt-
to-leading UV logs) to the Schwinger-Dyson equations, to verify the stability of
the UV asymptotics and the very existence of a ghost pole.

! Just at that time the first draft of a central part of the book has been published [2]
in the form of two extensive papers.

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, pj. 167-176, 2000.
O Springer-Verlag Berlin Heidelberg 2000
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Shortly after the meeting at the Lebedev Institute, Alesha Abrikosov told
me about Gell-Mann and Low’s article[3] which had just appeared. The same
physical problem was treated in this paper, but, as he put it, it was hard to
understand and to combine it with the results obtained by the Landau group.

I looked through the article and presented N.N. with a brief report on the
methods and results, which included some general assertions on the scaling prop-
erties of the electron charge distribution at short distances and rather cumber-
some functional equations — see, below, Section 1.3.

N.N. immediate comment was that Gell-Mann and Low’s approach is very
important: it is closely related to the la groupe de normalisation discovered a
couple of years earlier by Stueckelberg and Petermann [4] in the course of dis-
cussing the structure of the finite arbitrariness in the scattering matrix elements
arising upon removal of the divergences. This group is an example of the contin-
uous groups studied by Sophus Lie. This implied that functional group equations
similar to those of paper [3] should take place not only in the UV limit but also
in the general case as well.

Within the next few days I succeeded in recasting Dyson’s finite transfor-
mations and obtaining the desired functional equations for the QED propagator
amplitudes, which have group properties, as well as the group differential equa-
tions, that is, the Sophus Lie equations of the renormalization group (RG). Each
of these resulting equations — see, below Eqgs.(3 — contained a specific object,
the product of the squared electron charge @ = e? and the transverse photon
propagator amplitude d(Q?). We named this product, €*(Q?) = €*d(Q?), the
invariant charge. From the physical point of view this function is an analogue of
the so—called effective charge of an electron, first discussed by Dirac in 1933 [5],
which describes the effect of the electron charge screening due to quantum vac-
uum polarization. Also, the term “renormalization group” was first introduced
in our Doklady Akademii Nauk SSSR publication [6] in 1955 (and in the English
language paper [7]).

At the above-mentioned Lebedev meeting Gunnar Kéallén presented a paper
written with Pauli on the so—called “Lee model”, the exact solution of which
contained a ghost pole (which, in contrast to the physical one corresponding to
a bound state, had negative residue) in the nucleon propagator. Kallén—Pauli’s
analysis led to the conclusion that the Lee model is physically void.

In view of the argument on the presence of a similar pole in the QED photon
propagator (which follows from the abovementioned solution of Landau’s group
as well as from an independent analysis by Fradkin [8]) obtained in Moscow,
Kallén’s report resulted in a heated discussion on the possible inconsistency of
QED. In the discussion Kéllén argued that no rigorous conclusion about the
properties of sum of an infinite nonconvergent series can be drawn from the
analysis of a finite number of terms.

Nevertheless, before long a publication by Landau and Pomeranchuk (see,
e.g., the review paper[9]) appeared arguing that not only QED but also local
QFT were self-contradictory.
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Without going into details, remind that our analysis of this problem carried
out [10] with the aid of the RG formalism just appeared led to the conclusion
that such a claim cannot have the status of a rigorous result, independent of
perturbation theory.

1.2 Renormalization and renormalization invariance

As is known, the regular formalism for eliminating ultraviolet divergences in
quantum field. theory (QFT) was developed on the basis of covariant pertur-
bation theory in the late 40s. This breakthrough is connected with the names
of Tomonaga, Feynman, Schwinger and some others. In particular, Dyson and
Abdus Salam carried out the general analysis of the structure of divergences in
arbitrarily high orders of perturbation theory. Nevertheless, a number of subtle
questions concerning so-called overlapping divergences remained unclear.

An important contribution in this direction based on a thorough analysis of
the mathematical nature of UV divergences was made by Bogoliubov. This was
achieved on the basis of a branch of mathematics which was new at that time,
namely, the Sobolev-Schwartz theory of distributions. The point is that propa-
gators in local QFT are distributions (similar to the Dirac delta—function) and
their products appearing in the coefficients of the scattering matrix expansion
require supplementary definition in the case when their arguments coincide and
lie on the light cone. In view of this the UV divergences reflect the ambiguity in
the definition of these products.

In the mid 50ies on the basis of this approach Bogoliubov and his disciples
developed a technique of supplementing the definition of the products of singular
Stueckelberg-~Feynman propagators [2] and proved a theorem [11] on the finite-
ness and uniqueness (for renormalizable theories) of the scattering matrix in
any order of perturbation theory. The prescription part of this theorem, namely,
Bogoliubov’s R-operation, still remains a practical means of obtaining finite and
unique results in perturbative calculations in QFT.

The Bogoliubov algorithm works, essentially, as follows:

o To remove the UV divergences of one-loop diagrams, instead of introduc-
ing some regularization, for example, the momentum cutoff, and handling
(quasi) infinite counterterms, it suffices to complete the definition of di-
vergent Feynman integral by subtracting from it certain polynomial in the
external momenta which in the simplest case is reduced to the first few terms
of the Taylor series of the integral.

e For multi-loop diagrams (including ones with overlapping divergencies) one
should first subtract all divergent subdiagrams in a hierarchical order regu-
lated by the R-operator.

The uniqueness of computational results is ensured by special conditions im-
posed on them. These conditions contain specific degrees of freedom (related to
different renormalization schemes and momentum scales) that can be used to es-
tablish the relationships between the Lagrangian parameters (masses, coupling
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constants) and the corresponding physical quantities. The fact that physical pre-
dictions are independent of the arbitrariness in the renormalization conditions,
that is, they are renorm-invariant, constitutes the conceptual foundation of the
renormalization group.

An attractive feature of this approach is that it is free from any auxiliary
nonphysical attributes such as bare masses, bare coupling constants, and regular-
ization parameters which turn out to be unnecessary in computations employing
Bogoliubov’s approach. As a whole, this method can be regarded as renormal-
ization without reqularization and counterterms.

1.3 The discovery of the renormalization group

The renormalization group was discovered by Stueckelberg and Petermann [4] in
1952-1953 as a group of infinitesimal transformations related to a finite arbitrari-
ness arising in the elements of the scattering S-matrix upon elimination of the
UV divergences. This arbitrariness can be fixed by means of certain parameters
C;i:

“ .. we must expect that a group of infinitesimal operators

P; = (8/9¢;)c=0, exists, satisfying
P;S = h;(m,e)0S(m,e,...)/Oe
admitting thus a renormalization of e.”

These authors introduced the normalization group generated (as a Lie group)
by the infinitesimal operators P; connected with renormalization of the coupling
constant e.

In the following year, on the basis of Dyson’s transformations written in the
regularized form, Gell-Mann and Low [3] derived functional equations for QED
propagators in the UV limit. For example, for the renormalized transverse part
d of the photon propagator they obtained an equation of the form

k? 2 dC(k2/7”2>€%) 2 2 2.2 2
X - A S S il VA — m 1
d(/\2162) dC(/\z/ 2,6%) y €3 eldc'()‘ / 761) ’ ( )

where X is the cutoff momentum and e, is the physical electron charge. The
appendix to this article contains the general solution (obtained by T.D.Lee)
of this functional equation for the photon amplitude d(z,e?) written in two
equivalent forms:

with
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A qualitative analysis of the behaviour of the electromagnetic interaction at
small distances was carried out with the aid of (2). Two possibilities, namely,
infinite and finite charge renormalizations were pointed out:

Our conclusion is that the shape of the charge distribution surround-
ing a test charge in the vacuum does not, at small distances, depend on
the coupling constant except through the scale factor. The behavior of
the propagator functions for large momenta is related to the magnitude
of the renormalization constants in the theory. Thus it is shown that
the unrenormalized coupling constant e2 /4whe, which appears in pertur-
bation theory as a power series in the renormalized coupling constant
e? /Anhc with divergent coefficients, many behave either in two ways:

It may really be infinite as perturbation theory indicates;

It may be a finite number independent of 2 [4rnhc.

Note, that the latter possibility corresponds to the case when ¥ vanishes
at a finite point: (@) = 0. Here, ay is known now as a fixed point of the
renormalization group transformations.

The paper [3] paid no attention to the group character of the analysis and the
results obtained there. The authors failed to establish a connection between their
results and the standard perturbation theory and did not discuss the possibility
that a ghost pole might exist.

The final step was taken by Bogoliubov and Shirkov [6,12] — see also the
survey [7] published in English in 1956. Using the group properties of finite
Dyson transformations for the coupling constant and the fields, these authors
derived functional group equations for the propagators and vertices in QED
in the general case (that is, with the electron mass taken into account). For
example, the equation for the transverse amplitude of the photon propagator
and electron propagator amplitude were obtained in the form

. o2) — 27t Y. 2 . 02
d(z,y;€?) = d(t,y;e)d (7, 5ietd(t yie?)) ®
s(z,y;€?) = s(t,y; e%)s (;, > ezd(t,y;GQ)) :

in which the dependence not only on momentum transfer z = k2/u? (where p
is a certain normalizing scale factor), but also on the mass variable y = m?2/u?
is taken into account.

As can be seen, the product e?d of electron charge squared and photon prop-
agator amplitude enters in both functional equations. This product is invariant
with respect to Dyson transfermation. We called this function — invariant charge.

In the modern notation, the first equation (which in the massless case y = 0
is equivalent to (1)) is an equation for the invariant charge (now widely known
as an effective or running coupling) & = ad(z,y;a = €?):

a(z,y;a) = a(z/t,y/t;alt,y;a)) - (4)

Let us emphasize that, unlike in the Ref.[3] approach, in our case there are
no simplifications due to the massless nature of the UV asymptotics. Here the
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homogeneity of the transfer momentum scale is violated explicitly by the mass
m. Nevertheless, the symmetry (even though a bit more complex one) underlying
the renormalization group, as before, can be stated as an exact symmetry of the
solutions of the quantum field problem — see eq. (11) below. This is what we
mean when using the term Bogoliubov’s renormalization group or renorm-group
for short.

The differential group equations (DGEs) for & and for the electron propaga-
tor:

da(z,y; _ 0 » Us -
%y;—a—) =p (%,a(z,y;a)) ; i(a%lyx—a) =7 (%,a(m,y;a)) s(z,y; @) E5)
with o5 . ds(E.v:
ﬂ(y,a)=L%Ey’—gl, 7(%(1):3_567%22 at £=1. (6)

were first derived in [6] by differentiating the functional equations. In this way an
explicit realization of the DGEs mentioned in the citation from [4] was obtained.
These results established a conceptual link with the Stueckelberg-Petermann
and Gell-Mann — Low approaches.

1.4 Creation of the RG method

Another important achievement of paper [6] consisted in formulating a simple
algorithm for improving an approximate perturbative solution by combining it
with the Lie differential equations (modern notation is used in this quotation
from [6]):

Formulae (5) show that to obtain expressions for & and s valid for all
values of their arguments one has only to define a(§,y,a) and s(¢,y, @)
in the vicinity of ¢ = 1. This can be done by means of the usual pertur-
bation theory.

In our adjacent publication [12] this algorithm was effectively used to analyse
the UV and infrared (IR) asymptotic behaviour in QED. The one-loop and two-
loop UV asymptotics

a

1—ﬁ-lnw

dg)G(z;a) = &gé(z,o,a) =

, (7)

~(2) (. N a
apa(r; o) [ Eher i—ﬁln(l ~ o) (8)

of the photon propagator as well as the IR asymptotics
s(z,y;0) & (z/y — 1)73/*" = (p?m? — 1)73e/3"

of the electron propagator in transverse gauge were obtained. At that time these
expressions had already been known only at the one-loop level. It should be
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noted that in the mid 50s the problem of the UV behaviour in local QFT was
quite urgent. As it has been mentioned already a substantial progress in the
analysis of QED at small distances was made by Landau and his collaborators [1].
However, Landau’s approach did not provide a prescription for constructing
subsequent approximations.

An answer to this question was found only within the new renorm-group
method. The simplest UV asymptotics of QED propagators obtained in our pa-
per [12], for example, expression (7), agreed precisely with the results of Landau’s
group.

Within the RG approach these results can be obtained in just a few lines of
argumentation. To this end, the massless one-loop approximation

&'l (x'a)-a+a—2€+ {=Inzx
prn(Tia) = 3ol =
of perturbation theory should be substituted into the right-hand side of the first
equation in (6) to compute the generator 8(0,a) = ¥(a) = a?/3x, followed by
an elementary integration of the first of Egs.(5).

Moreover, starting from the two-loop expression dgg,'h (z,; ) containing the
a?£/4n? term we arrive at the second renormalization group approximation (8)
performing summation of the next-to-leading UV logs. Comparing solution (8)
with (7) one can conclude that two-loop correction is extremely essential just in
the vicinity of the ghost pole singularity at z; = exp (37/a). This demonstrates
that the RG method is a regular procedure, within which it is quite easy to
estimate the range of applicability of the results. '

The second order renorm—group solution (8) for the invariant coupling first
obtained in [12] contains the nontrivial log-of-log dependence which is now
widely known of the two-loop approximation for the running coupling in quan-
tum chromodynamics (QCD).

Quite soon [13] this approach was formulated for the case of QFT with two
coupling constants g and h, namely, for a model of pion—nucleon interactions with
self-interaction of pions. To the system of functional equations for two invariant
couplings

7 (z,y;9°,h) =7 (% %,gz(t,y;gz,h),ﬁ (t,y;gz,h)) ,

h(z,y;9%h) =h (% %,ﬁz (t,y; 9% h) ,h (t,y;g2,h))

there corresponds a coupled system of nonlinear differential equations. It was
analysed [14] in one-loop appriximation to carry out the UV analysis of the
renormalizable model of pion-nucleon interaction.

In Refs. [6,12,13] and [14] the RG was thus directly connected with practical
computations of the UV and IR asymptotics. Since then this technique, known
as the renormalization group method (RGM), has become the sole means of
asymptotic analysis in local QFT.
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1.5 Other early RG applications

Another important general theoretical application of the RG method was made
in the summer of 1955 in connection with the (then topical) so-called ghost pole
problem. This effect, first discovered in quantum electrodynamics [8,15], was at
first thought [15] to indicate a possible difficulty in QED, and then [9,16] as a
proof of the inconsistency of the whole local QFT.

However, the RG analysis of the problem carried out in [10] on the basis
of massless solution (2) demonstrated that no conclusion obtained with the aid
of finite-order computations within perturbation theory can be regarded as a
complete proof. This corresponds precisely to the impression, one can get when
comparing (7) and (8). In the mid 50s this result was very significant, for it
restored the reputation of local QFT. Nevertheless, in the course of the following
decade the applicability of QFT in elementary particle physics remained doubtful
in the eyes of many theoreticians.

In the general case of arbitrary covariant gauge the renormalization group
analysis in QED was carried out in [17]. Here, the point was that the charge
renormalization is connected only with the transverse part of the photon propa-
gator. Therefore, under nontransverse (for example, Feynman) gauge the Dyson
transformation has a more complex form. This issue has been resolved by con-
sidering the treating the gauge parameter as another coupling constant.

Ovsyannikov [18] found the general solution to the functional RG equations
taking mass into account:

®(y,a) = & (y/z,a(z,y; @)

in terms of an arbitrary function @ of two arguments, reversible in its second
argument. To solve the equations, he used the differential group equations repre-
sented as linear partial differential equations of the form (which are now widely
known as the Callan—Symanzik equations):

a a a1 _ _
{zé_:;+y'éz —ﬁ(yaa)%—}a(:ﬂayva) =0.

The results of this “period of pioneers” were collected in the chapter “Renor-
malization group” in the monograph [19], the first edition of which appeared
in 1957 (shortly after that translated into English and French [20]) and very
quickly acquired the status of the “QFT folklore”.

2 Further Bogoliubov’s RG Development

2.1 Quantum field theory

The next decade and a half brought a calm period, during which there was
practically no substantial progress in the renorm-group method.

1. New possibilities for applying the RG method were discovered when the
technique of operator expansion at small distances (on the light cone) appeared
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[21]. The idea of this approach stems from the fact that the RG transform,
regarded as a Dyson transformation of the renormalized vertex function, involves
the simultaneous scaling of all its invariant arguments (normally, the squares
of the momenta) of this function. The expansion on the light cone, so to say,
“geparates the arguments”, as a result of which it becomes possible to study the
physical UV asymptotic behaviour by means of the expansion coefficients (when
some momenta are fixed on the mass shell). As an important example we can
mention the evolution equations for moments of QCD structure functions {22].

2. In the early 70ies S. Weinberg [23] proposed the notion of the running
mass of a fermion. If considered from the viewpoint of [17], this idea can be
formulated as follows:
any parameter of the Lagrangian can be treated as a (generalized) coupling
constant, and its effective counterpart should be included into the renorm-group
formalism.

However, the results obtained in the framework of this approach turned out
to be, practically, the same as before. For example, the most familiar expression
for the fermion running mass

Aea) =m (=2

alz,a

in which the leading UV logarithms are summed, was known for the electron
mass in QED (with v = 9/4) since the mid 50s (see [1], [12]).

3. The end of the calm period can be marked well enough by the year 1971,
when the renormalization group method was applied in the quantum theory of
non-Abelian gauge fields, in which the famous effect of asymptotic freedom has
been discovered [24].

The one-loop renorm-group expression

(e 4]

~ (1) (- - s
O (w5 ts) 1+a;filnz’

for the QCD effective coupling &, exhibits a remarkable UV asymptotic be-
haviour thanks to B; being positive. This expression implies, in contrast to
Eq.(7), that the effective QCD coupling decreases as & increases and tends to
zero in the UV limit. This discovery, which has become technically possible only
because of the RG method use, is the most important physical result obtained
with the aid of the renorm-group approach in particle physics.

4. One more interesting application of the RG method in the multicoupling
case, ascending back in 50ies [14], refers to special solutions, so called separatrices
in a phase space of several invariant couplings. These solutions relate effective
couplings and represent a scale invariant trajectories, like, e.g., g; = gi(g1) in
the phase space which are straight lines at the one-loop case.

Some of them, that are “attractive” (or stable) in the UV limit, are related
to symmetries that reveal themselves in the high-energy domain. It has been
conjectured that these trajectories may be connected to hidden symmetries of a
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Lagrangian and even could serve as a tool to find them. On this basis the method
has been developed [25] for finding out these symmetries. It was shown that in
the phase space of the invariant charges the internal symmetry corresponds to a
singular solution that remain straight-line when taking into account the higher
order corrections. Such solutions corresponding to supersymmetry have been
found for some combinations of Yukawa and quartic interactions.

Generally, these singular solutions obey the relations

dgi _ dgi dg

= t=1
dt  dg; dt ’ ne

which are known since Zimmermann’s paper [26] as the reduction equations. In
the 80ies they have been used [27] (see also review paper [28] and references
therein) in the UV analyzis of asymptotically free models. Just for these cases
the one-loop reduction relations are adequate to physics.

Quite recently some other application of this technique has been found in a
supersymmetrical generalizations of Grand Unification scenario in the Standard
Model. It has been shown [29-31] that it is possible to achieve complete UV
finiteness of a theory if Yukawa couplings are related to the gauge ones in a way
corresponding to these special solutions,that is to reduction relations.

5. A general method of approximate solution of the massive RG equations
has been developed [32]. Analytic expressions of high level of accuracy for an
effective coupling and one-argument function have been obtained up to four-
and three-loop order [33]. For example, the two-loop massive expression for the
invariant coupling

&S(Q27m2)rg,2 =

2,2
as{1+asA1(Q2,m2)+asA2(Q )

Al (Q2,m2)

at small a, values corresponds to adequate perturbation expansion

-1
In (14 a,;A1(Q% mz))} ©)

&s(QZ’mz)pert,z = (10)
Qg {1 — asA1(Q%,m?) + a2 A2(Q%,m?) — a2 Ax(Q*,m?) + .. } .

At the same time, it smoothly interpolates between two massless limits (with
Ae >~ BeIn Q% +¢¢) at Q% < m? and Q? > m? described by equation analogous
to Eq.(8). In the latter case it can be represented in the form usual for the QCD
practice:

2 2
’ds_l(Q2/A2)rg,2 = 5 {ln % +b ln (ln %)} by = _g_lg_

The solution (9) demonstrate, in particular, that the threshold crossing gen-
erally changes the subtraction scheme [34].

Our investigation [32,33,35] was prompted by the problem of explicitly taking
into account heavy quark masses in QCD. However, the results obtained are
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important from a more general point of view for a discussion of the scheme
dependence problem in QFT. The method used could also be of interest for
RG applications in other fields within the situation with disturbed homogeneity,
such as, e.g., intermediate asymptotics in hydrodynamics, finite-size scaling in
critical phenomena and the excluded volume problem in polymer theory.

In the paper [35] this method was used for the effective couplings evolution
in Standard Model (SM). Here, new analytic solution of a coupled system of
three mass-dependent two-loop RG evolution equations for three SM invariant
gauge couplings has been obtained.

6. One more recent QFT development relevant to renorm-group is the Ana-
lytic approach to perturbative QCD (pQCD). It is based upon the procedure of
Invariant Analytization [36] ascending to the end of 50ies.

The approach consists in a combining of two ideas: the RG summation of
leading UV logs with analyticity in the Q? variable, imposed by spectral rep-
resentation of the Killén-Lehmann type which implements general properties
of local QFT including the Bogoliubov condition of microscopic causality. This
combination was first devised [38] to get rid of the ghost pole in QED about
forty years ago.

Here, the pQCD invariant coupling &,(Q?) is transformed into an “analytic
coupling” a,n(Q?/A?%) = A(z), which, by constuction, is free of ghost singulari-
ties due to incorporating some nonperturbative structures.

This analytic coupling A(z) has no unphysical singularities in the complex
Q?-plane; its conventional perturbative expansion precisely coincides with the
usual perturbation one for &,(Q?); it has no extra parameters; it obeys an uni-
versal IR limiting value A(0) = 47 /By that is independent of the scale parameter
A; it turns out to be remarkably stable with respect to higher loop corrections
and, in turn, to scheme dependence.

Meanwhile, the “analytized” perturbation expansion [39] for an observable
F, in contrast with the usual case, may contain specific functions A,(z), in-
stead of powers (A(z))". In other words, the pertubation series for F(z), due
to analyticity imperative, may change its form [40] turning into an asymptotic
expansion & la Erdélyi over a nonpower set {A,(z)}.

2.2 Ways of the RG expanding

As is known, in the early 70ies Wilson {41] succeeded in transplanting the RG
philosophy from relativistic QFT to a quite another branch of modern theoretical
physics, namely, the theory of phase transitions in spin lattice systems. This new
version of the RG was based on Kadanoff’s idea[42] of joninig in “blocks” of few
neighbouring spins with appropriate change (renormalization) of the coupling
constant.

To realize this idea, it is necessary to average spins in each block. This opera-
tion reducing the number of degrees of freedom and simplifying the system under
consideration, preserves all its long-range properties under a suitable renormal-
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ization of the coupling constant. Along with this, the above procedure gives rise
to a new theoretical model of the original physical system.

In order that the system obtained by averaging be similar to the original one,
one must also discard those terms of a new effective Hamiltonian which turns
out to be irrelevant in the description of infrared properties. As a result of this
Kadanoff-Wilson decimation, we arrive at a new model system characterized
by new values of the elementary scale (spacing between blocks) and coupling
constant {(of blocks interaction). By iterating this operation, one can construct
a discrete ordered set of models. From the physical point of view the passage
from one model to some other one is an irreversible approximate procedure. Two
passages of that sort applied in sequence should be equivalent to one, which gives
rise to a group structure in the set of transitions between models. However, in
this case the RG is an approximative and is realized as a semigroup.

This construction, obviously in no way connected with UV properties, was
much clearer from the general physical point of view and could therefore be
readily understood by many theoreticians. Because of this, in the seventies the
RG concept and its algorithmic structure were successfully carried over to di-
verse branches of theoretical physics such as polymer physics [43], the theory of
noncoherent transfer [44], and so on.

Apart from constructions analogous to that of Kadanoff~-Wilson, in a number
of cases the connection with the original quantum field renorm-group was estab-
lished. This has been done with help of the functional integral representation.
For example, the classic Kolmogorov-type turbulence problem was connected
with the RG approach by the following steps [45]:

1. Define the generating functional for correlation functions.

2. Write for this functional the path integral representation.

3. By a change of functional integration variable establish an equivalence of the
given classical statistical system with some QFT model.

4. Construct the Schwinger-Dyson equations for this equivalent QFT.

5. Use the Feynman diagram technique and perform a finite renormalization.

6. Write down the standard RG equations and use them to find fixed point and
scaling behavior.

The physics of renormalization transformation in the turbulence problem is re-
lated to a change of UV cutoff in the wave-number variable.

Hence, in different branches of physics the RG evolved in two directions:

e The construction of a set of models for the physical problem at hand by
direct analogy with the Kadanoff-Wilson approach (by averaging over cer-
tain degrees of freedom) — in polymer physics, noncoherent transfer theory,
percolation theory, and others;

¢ The search for an exact RG symmetry directly or by proving its equivalence
to some QFT: for example, in turbulence theory [45,46] and turbulence in
plasma [48].

What is the nature of the symmetry underlying the renormalization group?
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a) In QFT the renorm-group symmetry is an exact symmetry of a solution
described in terms of the notions of the equation(s) and some boundary
condition(s).

b) In turbulence and some other branches of physics it is a symmetry of a
solution of an equivalent QFT model.

¢) In spin lattice theory, polymer theory, noncoherent transfer theory, perco-
lation theory, and so on (in which the Kadanoff-Wilson blocking concept
is used) the RG transformation involves transitions inside a set of auxiliary
models (constucted especially for this purpose). To formulate RG, one should
define an ordered set M of models M;. The RG transformation connecting
various models has the form R(n)M; = M,; . Here, the symmetry can be
formulated only in the terms of whole set M.

There is also a purely mathematical difference between the aforesaid RG
realizations. In QFT the RG is a continuous symmetry group. On the contrary, in
the theory of critical phenomena, polymers, and other cases (when an averaging
operation is necessary) we have an approzimate discrete semigroup. It must be
pointed out that in dynamical chaos theory, in which RG ideas and terminology
can sometimes be applied too, functional iterations do not constitute a group
at all, in general. An entirely different terminology is sometimes adopted in
the above-mentioned domains of theoretical physics. Terms like “the real-space
RG”, “the Wilson RG”, “the Monte-Carlo RG”, or “the chaos RG” are in use.

Nevertheless, the affirmative answer to the question “Are there distinct renor-
malization groups?” implies no more than what has just been said about the
differences between cases a) and b) on the one hand and c) on the other.

For this reason, we shall use notation of the “Bogoliubov Renormalization
Group” for the exact Lie group, as it emerged from the QFT original papers
[4,6,7] (see also chapter “Renormalization Group” in the monograph [19,20]) of
mid-fifties. This is to make clear distinction between exact group and the Wilson
construction for which the term “Renormalization Group” is widely used in the
current literature.

2.3 Functional self-similarity

An attempt to analyse the relationship between these formulations on a simple
common basis was undertaken about fifteen years ago [49]. In this paper (see
also our surveys [50-52]) it was demonstrated that all the above-mentioned
realizations of the RG could be considered in a unified manner by using only
some common notions of mathematical physics.

In the general case it proves convenient to discuss the symmetry underlying
the renorm—-group with the aid of a continuous one-parameter transformation
of two variables z and g

R :{z > a' =zft, g— g =3(t,9)} . (11)

Here, z is the basic variable subject to a scaling transformation, while g is a
physical quantity undergoing a more complicated functional transformation. To
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form a group, the transform R; must satisfy the composition law
RiR, = Ry, ,

which yields the functional equation for g:

g(z, 9) = g(z/t,3(t, 9)) . (12)

This equation has the same form as the functional equation (4) for the effective
coupling in QFT in the massless case, that is, at y = 0. It is therefore clear that
the contents of RG equation can be reduced to the group composition law.

In physical problems the second argument g of the transformation usually is
related to the boundary value of a solution of the problem under investigation.
This means that the symmetry underlying the RG approach is a symmetry of
a solution (not of equation) describing the physical system at hand, involving a
transformation of the parameters entering the boundary conditions.

Therefore, in the simplest case the renorm-group can be defined as a continu-
ous one-parameter group of transformations of a solution of a problem fixed by a
boundary condition. The RG transformation affects the parameters of a bound-
ary condition and corresponds to changing the way in which this condition is
introduced for one and the same solution.

Special cases of such transformations have been known for a long time. If we
assume that F' = g is a factored function of its arguments, then from Eq.(12)
it follows that F(z, f) = fz*, with k being a number. In this particular case the
group transform takes the form

Po:{za2=z/t, f=f=ftF},

which is known in mathematical physics long since as a power self-similarity
transformation. More general case R; with functional transformation law (11)
can be characterized [49] as a functional self-similarity (FSS) transformation.

2.4 Recent application in mathematical physics

We can now answer the question concerning the physical meaning of the symme-
try that underlies FSS and the Bogoliubov renorm-group. As we have already
mentioned, it is not a symmetry of the physical system or the equations of the
problem at hand, but a symmetry of a solution considered as a function of the
essential physical variables and suitable boundary conditions. A symmetry like
that can be related, in particular, to the invariance of a physical quantity de-
scribed by this solution with respect to the way in which the boundary conditions
are imposed. The changing of this way constitutes a group operation in the sense
that the group property can be considered as the transitivity property of such
changes. ;

Homogeneity is an important feature of the physical systems under consid-
eration. However, homogeneity can be violated in a discrete manner. Imagine
that such a discrete inhomogeneity is connected with a certain value of z, say,
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z = y. In this case the RG transformation with canonical parameter ¢ will have
the form:

Ry : {2'=z/t, y'=y/t, ¢ =3(t,y;9) }. (13)

The group composition law yields precisely the functional equation (4).

The symmetry connected with FSS is a very simple and frequently encoun-
tered property of physical phenomena. It can easily be “discovered” in various
problems of theoretical physics: in classical mechanics, transfer theory, classical
hydrodynamics, and so on [51-54].

Recently, some interesting attempts have been made to use the RG con-
cept in classical mathematical physics, in particular, to study strong nonlinear
regimes and to investigate asymptotic behavior of physical systems described by
nonlinear partial differential equations (DEs).

About a decade ago the RG ideas were applied by late Veniamin Pustovalov
with co-authors [56] to analyze a problem of generating of higher harmonics
in plasma. This problem, after some simplification, was reduced to a couple of
partial DEs with the boundary parameter — solution “characteristic” — explic-
itly included. It was proved that these DEs admit an exact symmetry group,
that takes into account transformations of this boundary parameter, which is
related to the amplitude of the magnetic field at a critical density point. The so-
lution symmetry obtained was then used to evaluate the efficiency of harmonics
generation in cold and hot plasma. The advantageous use of the RG-approach
in solving the above particular problem gave promise that it may work in other
cases and this was illustrated in [57] by a series of examples for various boundary
value problems.

Moreover, in Refs. [51,57] the possibility of devising a regular method for
finding a special class of symmetries of the equations in mathematical physics,
namely, RG-type symmetries, was discussed. The latter are defined as solution
symmetries with respect to transformations involving parameters that enter into
the solutions through the equations as well as through the boundary conditions
in addition to (or even rather than) the natural variables of the problem present
in the equations.

As it is well known, the aim of modern group analysis [58,59], which goes
back to works of Sophus Lie [60], is to find symmetries of DEs. This approach
does not include a similar problem of studying the symmetries of solutions of
these equations. Beside the main direction of both the classical and modern
analysis, there also remains the study of solution symmetries with respect to
transformations involving not only the variables present in the equations, but
also parameters entering into the solutions from boundary conditions.

From the aforesaid it is clear that the symmetries which attracted attention in
the 50s in connection with the discovery of the RG in QFT were those involving
the parameters of the system in the group transformations. It is natural to refer
to these symmetries related to FSS as the RG-type symmetries.

It should be noted that the procedure of revealing the RG symmetry (RGS),
or some group feature, similar to RG regularity, in any partial case (QFT, spin
lattice, polymers, turbulence and so on) up to now is not a regular one. In
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practice, it needs some imagination and atypical manipulation “invented” for
every particular case — see discussion in [61]. By this reason, the possibility to
find a regular approach to constructing RGS is of principal interest.

Recently a possible scheme of this kind was presented in application to math-
ematical model of physical system that is described by DEs. The leading idea
[54,57,62] in this case is based on the fact that solution symmetry for such sys-
tem can be found in a regular manner by using the well-developed methods
of modern group analysis. The scheme that describes devising of RGS is then
formulated [63] as follows.

Firstly, a specific RG-manifold should be constructed. Secondly, some auxil-
iary symmetry, i.e., the most general symmetry group admitted by this manifold
is to be found. Thirdly, this symmetry should be restricted on a particular solu-
tion to get the RGS. Fourthly, the RGS allows one to improve an approximate
solution or, in some cases, to get an exact solution.

Depending on both a mathematical model and boundary conditions, the first
step of this procedure can be realized in different ways. In some cases, the desired
RG-manifold is obtained by including parameters, entering into a solution via
equation(s) and boundary condition, in the list of independent variables. The
extension of the space of variables involved in group transformations, e.g., by
taking into account the dependence of coordinates of renorm-group operator
upon differential and/or non-local variables (which leads to the Lie-Backlund
and non-local transformation groups [59]) can also be used for constructing the
RG-manifold. The use of the Ambartsumian’s invariant embedding method [64]
and of differential constraints sometimes allows reformulations of a boundary
condition in a form of additional DE(s) and enables one to construct the RG-
manifold as a combination of original equations and embedding equations (or
differential constraints) which are compatible with these equations. At last, of
particular interest is the perturbation method of constructing the RG-manifold
which is based on the presence of a small parameter.

The second step, the calculating of a most general group G admitted by
the RG-manifold, is a standard procedure in the group analysis and has been
described in detail in many texts and monographs — see, for example, [58,65,66].

The symmetry group G thus constructed can not as yet be referred to as
a renorm-group. In order to obtain this, the next, third step should be done
which consists in restricting G on a solution of a boundary value problem. This
procedure utilizes the invariance condition and mathematically appears as a
“combining” of different coordinates of group generators admitted by the RG-
manifold.

The final step, i.e., constructing analytic expression for solution of boundary
value problem on the basis of the RGS, usually presents no specific problems. A
review of results, that were obtained on the basis of the formulated scheme can
be found, for example, in [63,67,68].

Up to now the described regular method is feasible for systems that can
be described by DEs and is based on the formalism of modern group analysis.
However, it seems also possible to extend our approach on physical systems
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that are not described just by differential equations. A chance of such extension
is based on recent advances in group analysis of systems of integro-differential
equations [69,70] that allow transformations of both dynamical variables and
functionals of a solution to be formulated [71]. More intriguing is the issue of
a possibility of constructing a regular approach for more complicated systems,
in particular to that ones having an infinite number of degrees of freedom. The
formers can be represented in a compact form by functional (or path) integrals.
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Algebraic Renormalization,
from Supersymmetry to the Standard Model

Klaus Sibold

Institut fiir Theoretische Physik, Universitat Leipzig,
Augustusplatz 10/11, D-04109 Leipzig, Germany

Abstract. It is reviewed how supersymmetry and BRS invariance can be established
to all orders of perturbation theory without involving a specific subtraction scheme.
The same algebraic technique can also be applied to the electroweak standard model
and brings to light which postulates uniquely determine its structure.

1 Introduction

The year 1975 represents a landmark in renormalization theory. In that year the
normal product algorithm originally developped by Zimmermann [1] for mas-
sive theories had been generalized by him and Lowenstein to include massless
fields [2,3]. This opened the way to treat non-abelian gauge theories in a rigorous
fashion, in fact independent of a specific renormalization scheme once the math-
ematical existence of Green functions was ensured. This had been demonstrated
by Becchi, Rouet and Stora in the same year [4]. Using the idea of Piguet that
a symmetry, more precisely a Ward identity, should characterize a model and
not a Lagrangian'® [5], they based their reasoning on the action principle [6] and
consistency conditions which had been formulated before by Wess and Zumino
in the context of effective theories [7]. So within one year an extremely powerful
machinery was built up and called for its application. And the subject for appli-
cation also waited around the corner: supersymmetry had just been discovered
[8], a few papers on its renormalization had been written, but it became clear
very soon that for supersymmetric Yang-Mills-theory an invariant regularization
did not exist hence the recourse to the algebraic technique of BRS was unavoid-
able and the existence of normal products also in massless theories established
at the right moment.

In the present note I would like to describe the program of renormalizing
supersymmetric theories in this spirit and then go on to the electroweak standard
model, where the same technique can be applied so fruitfully. My point of view
will be purely subjective: I shall tell the story how I witnessed it.

2 Elements of supersymmetry

Central in supersymmetry is the algebra of its generators

{QarQa} =2044Pu (1)

! “A Lagrangian is an opinion.” (Becchi); or: “... a letter of intent.” (Seiler)

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, pf. 1J77-191, 2000.
[ Springer-Verlag Berlin Heidelberg 2000
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{Qanﬂ} =0= {QdaQﬂ'} . (2)
Here Q,, is a spinorial charge, hence transforms under Lorentz-transformations
according to

[ ana] U,uua Qﬁ (3)
Q := (Q)' is its conjugate and we work in Weyl basis, i.e. the range of the indices

a, &, ...is 1 and 2.
ot = {1,0%} 4 = {1, -0%}

3(0,6, — 0,5,) o : Pauli matrices

e

(4)

P, is the generator of translations. Linear representations of supersymmetry
on fields, superfields, are to be obtained from the group action. If G(a, ,£) =
¢H(a" PutQat+84Q%) i5 4 group element it operates on a second one according to

Ouv

G(a,¢,€)G(z,0,0) = G(z + a + €0l — i00€,0 + £,0 + &) (5)
and thus gives rise to an infinitesimal motion described by
0 uw 7a O
50: 50_(1 — 10 dﬁ a—x-ﬁ . (6)
It furnishes a linear representation via
i[Qa, P(z,8,0)] = 6.P. (7)
Covariant derivatives are defined by
D, = i ot 0Y — 9
[e4 aga aa a 17 (8)
- 0 0

- oo 1

Dd = _-8—5_‘5" —1 O'ad‘ax—“ y
meaning that D,®, Ds® are superfields if & is a superfield. They permit to
impose covariant constraints

DsA =0 A chiral A= 4+0y+ 6?F
D,A=0 A antichiral A=.4+ 0y + 62 F
DD® =0 & linear
DD® =0 & linear 9)
d=0 & real ¢ = C+0x+6’x+102M
+16°M + 00“91)” 1020)\
+50%6X + 1626°D

Invariant actions can be formed out of the highest §-components of superfields
because they transform as total derivatives. I.e. f d4m( )F,p is invariant. One
can covariantly project onto them by:

/ dS = / d*zDD  chiral measure
/ ds = / d*z DD antichiral measure (10)

/ dv = / d*z DDDD vector measure
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One goes on building invariant actions by observing that sums and products
of one type of superfield are superfields of the same type. The most notable
examples are:

Chiral model (Wess-Zumino model)

cl

v = L[4V (eiﬂaéaA(m,e)) (e-ieaéag(w’g))
1 A%(z,6) + L A%(z,0)) +c.c.
_ / Az (0402 + Lpicdp + FF)
z (mAF - Tyy + $8°F — 3 8y + c.c.)
Supersymmetric QED (SQED)
u= 1k dV (DDDD - %{DD,DD}+8M?) &
+ & / dV (A4e?®A, + A_e P4 ) - 2 / dSALA_ +cec.
= / d*zo* (nwn — 0,0,) — $0,0, + M2n,w) v” (12)

+ /d4:v (D”L/@i Dy Ay + il + mAyF_ — Ripyip_
+...+...+c.c.)

Supersymmetric Yang-Mills (SYM)

Iy = W'I‘r/dSDD ~?D%?) DD (e ?Dq4e?) + c.c.
+ L /dVAeT“¢ A+/ds/\mkAAAk+cc
— g Tr /d% FMFuy+ ... (13)
+ / d*z D*. 4D, 4+ ...
+ /d4z (—4XNijk it Fr + .. )

with ¢ = #?7¢, F),, = Fj;,7* and D*, D gauge covariant derivatives.

3 Renormalization

The aim of renormalization is to construct finite Green functions to all orders of
perturbation theory such that relevant symmetries are maintained and axioms
can be proved. If the S-matrix exists it should be Lorentz invariant, unitary and
causal.
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3.1 Supersymmetry

Green functions are constructed with the help of the Gell-Mann-Low formula,
amended by a subtraction scheme, rendering the diagrams finite. Since — as we
shall indicate below — for massless vector superfields there arises an infrared
problem already off-shell, we assume for the time being all fields to be massive.
As subtraction scheme one may think of Zimmermann normal products suit-
ably generalized to superspace [9]. Our reasoning will not depend essentially on
this ingredient. On the classical level supersymmetry can be expressed by Ward
identities (WTI).

Woly=0, Wale =0, (14)

with 5 p
W, = ——z/dz 509@ , Wy = —1 /dz 5(-,9@ (15)

and I being the classical action. It is important that é,¢ is linear in the fields.
(dz denotes the appropriate measure.) The Ward identity operators satisfy an
algebra:

{Wa, Ws} = 20”dWlf

adc fu 16

[Wa, Wg} = 0 = {Wa, Wy} (16)

i.e. take over to the level of functionals the role of the charges Q.. Perturbation
theory consists in the loopwise expansion

F=Ty+hl'® 4 52r® ¢ (17)

of the generating functional I" of one-particle-irreducible Green functions whose
zeroth approximation can be identified with the classical action. I' is translation
invariant

Pp _
wrr=o, (18)

whereas for supersymmetry we only know from the action principle [6] that
WoI =4, T, Wel = Ay T (19)

with Ay, A4 being local insertions. The algebra (16) now leads to consistency
conditions for these insertions. They have to satisfy

WQ(A_,'X-F)-I-V_VQ(AQ-F) =0
Walds - I) + Wy(Ae - I) =0 (20)

Wd(AB'-F)+Wﬁ'(Ad-F)=O.

Eqns. (19) and (20) should actually hold even outside of perturbation theory,
but within perturbation theory we can make use of the fact that for every local
insertion

AT = A+o(h4), (21)
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where the first term on the right hand side denotes the trivial contribution in
terms of diagrams whereas the second stands for all contributions having at least
one loop. The consistency conditions reduce in lowest oder to

WQA_(, + WdAa =0
Wolp +Wslda =0 (22)
WC-,AG + WBAd =0,

i.e. an algebraic problem for classical integrated field monomials! Its solution is
given by a

Theorem: A B o
A, =W,A, Ay = WA, (23)

i.e. algebraically there is no anomaly for N = 1 supersymmetry [10].

Remarks:

1. As fields ¢ are admitted: chiral, antichiral, vector.

2. The off-shell IR problem has been avoided by assuming masses for vector
fields.

3. Spontaneous breaking of susy (i.e. shifts in W, ) are permitted.

The theorem implies that susy can be restored if A can be absorbed in I' as a
counterterm. This is always possible as far as UV power counting is concerned;
it may be forbidden if its IR dimension is too low. An example is provided by
the O’Raifeartaigh model:

Iy = Dn + ( / dS (340 + ZA 1Az + 5 A0A}) + c.c.) (24)

A, m, g are real; the model being defined by parity, I : Ap — Ao, A12 = —Aig,
R-symmetry: drA = i(n + 09p) A, n(Ao) = n(Az) = -2, n(4,) = 0.

Susy turns out to be spontaneously broken: the multiplet Ao is massless, it
contains the Goldstone spinor; in multiplet A; the spinor has mass m, the scalar
resp. pseudoscalar components have mass?: m? + %/\g.

Ao Ao

AO'I ++ /Ao

Fig. 1. IR anomaly

In higher orders [4]

Wol = uMW, /d4$~/@0=/@_o + o(hu), (25)
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i.e. algebraically there is no obstruction, the breaking is the variation of a mass
term but this term cannot be absorbed as counterterm because it could cause
IR divergencies (see Fig. 1): IR anomaly.

> > + ¢ +  ———  +

Fig. 2. Sum over insertions

There is a (somewhat formal) solution to this problem [12]: just perform
the infinite sum over all such insertions to a given %y %-line (see Fig. 2).
This should yield a nonzero, computable mass for the field 4. The appropriate
general setting has been formulated in [13] for purely scalar field models: admit
a perturbation series as

r= 5" VEr(nrrmres (26)

n,k(n)

For the O’Raifeartaigh model it turned out that the expansion

r= " K(Inkkmpmnk (27)
n,k(n)
is realizable. Susy can then be strictly established:

Wo,=0 Wyl'=0, (28)

the propagator of the field .4, has a pole (with computable position), this pole
is invariant under the renormalization group [14].

3.2 Abelian gauge symmetry

The abelian gauge transformations read

0Ay = FigAAy

08 =1i(4-4) 6AL = +igAA,

(29)
The classical action (12) is the solution of the local WI

—) é 1) _ -
= — - — +gA_— | I'= L (O DD
wal’ (DD645 gA+6A++g 5A_) 5e(0+EM7) DD (30)
and its conjugate, some normalization conditions having been imposed. The
main problem for establishing higher order Green functions originates from the
propagator:

. 1 e—ér‘/@zp 1+2§2p2
(Te2) = _2—81_2h s 2( 2 - 2 (31)
p*—M? 16 (p? — M?)(p? - EM?)
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(61, = 61,87, = (61 — 62)%(81 ~ 62)?)

For vanlshlng M, £ # 1 the propagator is no longer locally integrable at p = 0. In
the abelian theory this problem can be circumuvented. One constucts the massless
theory at & = 1 which is stable and studies gauge parameter dependence in the
massive version. For all quantities of physical interest the massless limit turns
out to be controllable. The local WI (30) can be established to all orders. Like
in ordinary QED it ensures unitarity (M # 0) since it says that the longitudinal
parts DD®, DD® of the vector field @ are free. In the massless case the same is
true, unitarity, of course, being only formal [15].

3.3 Non-abelian gauge symmetry
The non-abelian gauge transformations of a vector multiplet transform

e — e HePeih (32)
¢ = 78, A = A%r?, A = A%7°,

7% generates the fundamental representation of the simple gauge group G. The
infinitesimal form of (32) reads

60 =i(A—A)+ [0, A+ A+ 5[8, [, A - A +... (33)
and permits the transition to the BRS transformations

s¢ = Cy _5+ + %[¢,6+ +5+] + ﬁ[@, [@,C.{. ~5+]] + ...
= Qs(P)

(s for special).
An important observation is that the requirement of nilpotency of the trans-
formation law

(34)

s’ =0 (35)

admits in s® an arbitrary parameter as,

a2
s@ = Qy(P) + az{P,cy — T4} - —‘@ [Pcr —C4]l+... . (36)

The prime at the anticommutator indicates that trace terms are to be omitted.
A closer analysis in fact reveals that at every order in the field ¢ new parameters
may appear. The reason simply is that every new vector field

S F(P) =D+ ard® +azd®+... (37)

is as good a dynamical variable as the old one. In & = C + 0x + ... the com-
ponent C has canonical dimension zero hence we have to expect generalized
field amplitude renormalizations of the type (37) with aq, a3, ... as parameters.
What saves the theory and prevents a disaster is the fact that these infinitely
many parameters are gauge parameters. (The components C, x, X, M, M are
longitudinal components of the gauge vector superfield @.)
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Constructing Green functions proceeds in two steps: in step one vector fields
are assumed to be massive, all desired WI’s are established modulo soft breaking
terms; in step two the off-shell infrared problem is solved by singling out which
quantities of physical interest really exist.

For step one we impose the rigid WI, the gauge condition and the Slavnov-
Taylor identity (ST)

W'T =0 (38)
T L

55 —¢DDB+}1DDDD (39)
4(I) ~0. (40)

Here & (I') is a I'-bilinear functional

orér or ér or
J«(F TI'/ (5p 5¢ (EE +BE -I‘C.C.) + matter) =0 (41)

which arises because one organizes the renormalization properties of non-linear
field transformations in general by coupling them to external fields

or
8C4 = —CpCp — — sc. =8B
oo
5T (42)
s® = Qs(P) — — sB=20
op
In order to find consistency conditions one linearizes:
B Tr/él"é 51"6+(5F6+6F5+Bi+c
r= 560 " 5885 "\ 0 des Tdcr 00 T Do teo
+ matter) (43)
and finds the crucial relations
drs (M) =0 vr (44)
dror =0 fOI‘FWithJ(F):O. (45)

They can be used to constrain the deviation from BRS invariance in higher
orders

s(I') =A.-T'=A+o0(h4) (46)
4rd (') =4 pA+ o(hA)
0 =4r,4. (47)

Le. the local insertion A which in (46) was only restricted by power counting
has to satisfy (47). Since furthermore

dradry =0, (48)
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one can utilize & p, to solve (47). Due to the vanishing dimension of & this is a
fairly involved problem but it has been solved with the solution

A=sp,A+red ) (49)
o =Tr / dSc, DDDSDDDS — Tr / d5z, DDDSDDD®
+o(4). (50)

The coefficient r is independent from all gauge parameters

0o, =0 (51)
and has the value 3
1 dik ipark
Tyt g (52)

where T generates the representation of the matter fields

sA=—c{T'A
sA= ATz, . (53)
d¥* is a totally symmetric tensor of the group G (e.g. SU(n)) [16]. One can in
fact prove a

Non-Renormalization Theorem [17]:
r#0=r=r,

Le. if r is non-vanishing it starts with one loop.

Crucial for step two, the solution of the off-shell IR problem, is the obser-
vation that the redefinition (37) does not violate BRS invariance but rather
redefines it. If we then perform the redefinition

& — (1+ 1u%0°60%)®, (54)

we shall also not violate BRS, but — of course — supersymmetry. In I, this field
transformation means

D? - (D 4 2u%C +0C)? (55)
and leads to the new propagator
i E-¢°
TCC) = "7 5
( ) 4 p2 _ u2 + i€ ( 6)

which is IR regulated! Hence the parameter u? breaks supersymmetry softly,
regulates IR-wise and is a gauge parameter like ag, a3, .... The dependence of
the theory on u? can be followed by letting it vary under BRS

spt =102 (57)

like
sap = fk y (58)
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v? and x4 being Grassmann parameters. They contribute to the ST identity.
Establishing the enlarged ST identity then means that Green functions of BRS
invariant operators exist IR-wise because they are gauge parameter independent.
On these quantities supersymmetry is linearly realized [18].

These results had been derived prior to 1985. They are complemented by a
study of the currents of the theory which form an interesting structure under
superconformal transformations. For a review see [19)].

In order to facilitate the transition to non-supersymmetric theories Piguet
and collaborators reformulated renormalized supersymmetry in the Wess-Zumino
gauge. The technical complication arises from the fact that susy is non-linearly
realized [20]. Similarly the work on the supercurrent is being pushed forward on
the level of multiple insertions of it [21].

4 The electroweak standard model

Since experimentally supersymmetry has not yet been found one could regard
the algebraic method as an academic game within an academic field. That —
to the contrary - it is an eminently practical and useful tool will follow by
considering the most relevant model for physical applications: the electroweak
standard model (SM).

4.1 The problems

If one attempts to renormalize the electroweak standard model to all orders of
perturbation theory one is faced with the observation that no obvious invariant
regularization is known. Dimensional regularization has to cope with the ~s-
problem, whereas BPHZ or analytic regularization spoil BRS invariance. Hence
an all order treatment can only be based on the algebraic method which we
exemplified above in the context of supersymmetric models. It has to deal with
the following peculiarities specific to the SM:

1. The gauge group SU(2) x U(1) is not semisimple and the position of the
unbroken U(1) subgroup has to be determined and fixed in the course of
renormalization.

2. The photon has to be kept massless. Its mixing with Z,, has to be controlled
such that a particle interpretation is possible. Off-shell IR problems have to
be avoided.

3. W,f, Z,, are unstable: the definition of their mass is non-trivial and gauge
parameter dependence is a crucial issue.

In order to solve problem 1) one needs

e the Slavnov-Taylor identity,
o (deformed) rigid Ward identities,
e an abelian local Ward identity.

The solution of problem 2) requires
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e careful IR power counting,
e suitable normalization conditions.

For problem 3) a complete solution to all orders is not yet known, but the ST
identity and reasonable normalization conditions guarantee unitarity and permit
the LSZ asymptotic limit at least in a formal sense.

Under the simplifying assumption that CP is maintained and families are not
mixed problems 1) and 2) have been solved by E. Kraus [22]. The remarks that
follow are based on this paper.

4.2 The abelian subgroup

It turns out that fixing the abelian subgroup is equivalent to finding equations
whose solutions together with normalization conditions characterize uniquely
the model. In order not to miss parameters or representations one sharpens the
algebraic method: one does not give the Wl-operators beforehand but prescribes
only type (scalar, vector, spinor) and number of fields and the algebra of the
Wl-operators. For the rigid transformations one requires

[Wa’ Wﬁ] = ieaﬂv‘f'm’ % (59)
for consistency with the ST identity

Was ([) =8 rWol =0 V. (60)

is totally antisymmetric.

I= correlates +,— of the electric charge.

o
Q
@
<
OO O
My My
et
Ld
I
o

[=XeRal g
OO0 0O

® cooco
mv

We present a sample for the respective ansatz (contribution of some vector fields)

- é
Wa = Taa /d V“a,,c o ot —5 SVE +--- (61)

4 (I) =/ 4(sin68,cz + cos 030,ca) X

or or
ing¥ — v
sin f, 57, + cos 6, 6Au> +

or or or
+6—5§zg (cos Bgm - sin9¥m> +- (62)
(Here the first two lines stand for linearly transforming vector pieces in ST, the

third line for non-linearly transforming ones. p§ is an external field coupled to
a part of the BRS transformations of A,,.)
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The parameters a", 63, 9:‘,: 4» %4, zg are to be chosen such that (59) and
(60) is satisfied. In order to make this ansatz conceivable we give their tree
approximation values in the conventional parametrizations.

& = OT(0,)en 0 (0) (63)
10 0 0
01 O 0

O (6.) = (0 0 cos @y, —sinf,, (64)
00 sinf, cosfy,

8o -,

Z4 =zg=1 (63)

It is to be noted that electric charge and Faddeev-Popov-charge neutrality is
naively maintained by the ansatz. Similarly one chooses the parameter values
such that

Wi=W_. Wi W (66)
4

;
3
4
This work has to be performed for all sectors (vectors, scalars, fermions, ghosts);
then the eqns. (59), (60) have to be solved and the solutions have to be parame-
trized such that the free parameters can either be fixed naively or via normal-
ization conditions. It is most remarkable that a non-diagonal transformation

8Cq = Gab By (67)

is compatible with the algebra. If one has succeeded with this first step, namely
solving the algebra, one can go on and find now in a second step the most general
classical solution of the rigid WI

Waly =0 (68)

and the ST identity
s (Lg)=0. (69)

As experience tells one and as one confirms in the present case too, this yields
all possible renormalizations in the form of possible redefinitions of fields and
parameters. With the help of the action principle and the consistency conditions
as inferred from (59), (60) one performs in an analogous manner the search for
the solutions of the WI’s (68), (69) to all orders. Here contact is made with the
work of BBBC [23] because it turns out that this analysis can equivalently be
performed in terms of physical fields (W“i Zu, Ay, .. .). The absence of unitarity
ruining anomalies follows from the structure of the standard multiplets.

In a third and last step one can now indeed proceed to the identitification of
the abelian subgroup. First of all one has to note that the naive electromagnetic

WI operator ;
Wem =/d4:rwem :i/d":c oM gy —— 70
Z;Q w (70)
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is not abelian. In particular
WemI = OBem + Qem - I (71)

with Qem a non-trivial insertion. On the non-integrated level it is not the elec-
tromagnetic direction which is abelian in the sense of having a trivial right hand
side (which could then naively be constructed to all orders). It rather turns out

wf ‘= Wem — W3 i8 a good starting point leading eventually to
1 ] 1 )
He = 9 _ —sin6V8,— — — cos6V8, — . 72
Wy = 1wy -7 sin “5Z, 7 cos “(SA# (72)
This operator is singled out by
[, W] =0 (73)
$ru§T —wds(I)=0 VI. (74)
It satisfies a local WI
in§Y A4
wdr =2 0B, + <5 0B, (75)
Tz TA

which can be postulated and established to all orders of perturbation theory
because the right hand side is linear in propagating fields. This WI, which can
only be required — due to its characterization by (73) and (74) — after the rigid
WI and the ST identity have been established, fixes eventually the instabilities
of the abelian subgroup.

The parameter

g1 = +o(h) (76)

cos @,

is in QED-like normalization conditions fixed on this local WI. The parameters
gV, rYy 4 are determined in We.

As far as interpretation is concerned one has to note that algebraically no dis-
tinction is possible between gauging the electromagnetic current or lepton- and
quark number currents; hence this local WI is needed as additional requirement.

4.3 Photon/Z mixing

In order to keep the photon massless and also control the mixing one imposes
as normalization conditions

Iia(p® =0) =0 (77)
I'7A(p* =0) =0 (78)
Re I'7,(p* = M%) =0. (79)

Egns. (77) and (78) are automatic if one uses the BPHZL scheme {1-3]. The
crucial point is now to check that one has indeed enough parameters at ones
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disposal to satisfy these normalization conditions after having arranged all WI’s.
Since IR dangerous terms like f Cacz are to be avoided as counterterms this task
is non-trivial. It turns out that one can avoid off-shell IR danger by using the
freedom left in the transformation law (67) of the antighost fields. This introduces
a ghost angle 6 as an important paramter into the theory.

All other masses are similarly introduced via two-point-functions in order to
ensure poles. This in turn requires to have non-trivial parameter dependence in
the rigid WI operators: they become deformed in higher orders. Likewise follows
the antighost eqn. as a consequence of local WI and ST. Had one fixed and a
priori prescribed WI operators and the antighost eqn. as a postulate one could
not have fixed all masses as physical ones - as poles of propagators.

As a overall consistency check one derives the Callan-Symanzik equation
because it controls the motion of all parameters of the theory under renormal-
ization. The outcome is as follows:

€T =soft-I' (80)

e exists IR-wise,
e contains B-functions for mass ratios,
e shows that 6, and ¢ are independently renormalized.

This yields a consistent picture.
We collect the result:

e the algebra of WI operators (59), (60)
e rigid WI + ST + local WI
o on-shell normalization conditions

determine I' uniquely to all orders. The rigid WI operators are deformed; as
a new parameter enters the angle g in the ghost sector. It goes along with
non-diagonal transformations (67) of the antighost in higher orders.

The examples of this review demonstrate that normal products, combined
with the action principle and used algebraically realize perturbation theory in
its most powerful fashion.
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Semi Classical Aspects of Gauge Theories

Raymond Stora

Laboratoire de Physique Théorique LAPTH, URA 1436,
Chemin de Bellevue, B.P. 110, F-74941 Annecy-le-Vieux Cedex, France

It is a pleasure to greet Wolfhart on his seventieth birthday. Not because 70 is
a magic number -many of us are still surprised by the beauties of numbers-, but
because we owe him a lot as far as our understanding of something is concerned.
I am certainly one of those who benefited most. I believe we first met (in 1964)
in New York when he and Kurt Symanzik were at New York University, as I was
returning from a Symposium in Boulder about the Lorentz and the Poincaré
group, a subject I was introduced to by Hans Joos in Princeton, in 1961-62. The
contribution I presented there, in collaboration with P. Moussa, and about which
I gave a seminar in New York was so close to E.P Wigner’s famous 1939-article
on the representations of the Poincaré

group that it took no less than V. Bargmann to explain E.P. Wigner what
I was talking about! We met again in the Paris area -Wolfhart was visiting
IHES, and I was back in Saclay- on which occasion we found we had comple-
mentary knowledges about the renormalization of massive QED. Wolfhart then
proposed that we should write a small paper together, also with C. de Calan
with whom I had discussed these matters in CERN for very practical reasons.
Indeed Wolfhart did write this short paper (Lettere Nuovo Cimento 1 (1969)
877) signed by the three of us ... I must say that cosigning a paper with one of
the authors of L.S.Z. was an honour for young people as we were at the time.
In that same year, I had long discussions with Wolfhart about his efforts to un-
derstand how to renormalize gauge theories. Somehow, the times were not ripe,
and the Faddeev Popov guess quite hard to recover using standard field theory
methods not appealing to ill defined functional integrals, a standing problem,
as it seems! Later, in 1973-74, when Carlo Becchi, Alain Rouet and I tried to
understand the renormalization of gauge theories performed by G.’t Hooft and
M. Veltman thanks to the dimensional regularization -renormalization scheme in
terms of standard field theory techniques, we were lucky to have at our disposal
the artillery prepared by Wolfhart, John Lowenstein, Peter Lam and already
successfully applied to massive QED by John Lowenstein and Bert Schroer, and
to symmetry breaking by John Lowenstein, Wolfhart and two early thirds of
the future Marseille team. The rest of that story has been described in Carlo
Becchi’s talk. In these times, it has been an immense pleasure -it always is- to
visit MPI, and later to meet again in Schloss Ringberg.

So much for good memories and down to present reality even though it may
not be as pleasing as the old days.

In the remaining of this talk I want to mention two topics concerning gauge
theories which I have been looking at reasonably closely.

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, pfj. 92-196, 2000.
O Springer-Verlag Berlin Heidelberg 2000
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The first one, developed in Tobias Hurth’s contribution concerns an approach
to the renormalization of gauge theories which is not completed yet, but there
is sufficient experimental evidence that it eventually will. It is grounded on the
consequences of locality as an essential ingredient in the renormalization pro-
gram as described by N.N. Bogoliubov and D.V. Shirkov and streamlined by H.
Epstein, V. Glaser. It aims at defining renormalized gauge theories as solutions
of an operator deformation problem of abelian gauge fixed gauge theories, the
deformation being parametrized by local interactions. This is a quantum version
of the so called iterated Noether method (c.f., for instance S. Deser, Gen. Rel.
and Grav. I, 1 (1970) 9). It is conceptually more economical than the usual
construction which provides a formal power series in A, starting from a classical
gauge fixed gauge theory. Here, the deformation parameter is a set of gauge cou-
pling constants associated with a gauge Lie algebra. The Lie algebra structure
stems from locality and an innocent looking Ward identity

[Q’['] =0, Ky

where @ is the Kugo Ojima asymptotic -abelian- operator which implements the
asymptotic Slavnov symmetry, £ the local interaction Lagrangian, and K, some
local “current”. Suitably generalized to time ordered products of the L’s, this
has so far reproduced much of the gauge theories, in all examples which have
been looked at. This program has all chances to reproduce gauge theories as we
know them perturbatively. It is actively pursued in Ziirich in G. Scharf’s group,
and outside, since former students are now experts.

The second topic concerns the celebrated Faddeev Popov gauge fixing proce-
dure which proceeds through the factorization of the volume of the gauge group
from the assumed gauge invariant formal functional integral and leads to a sound
perturbative expansion. Even if one keeps in mind that formal manipulations on
functional integrals need to be subjected to checks of some mathematical rigour,
even at the formal level, some of the assumptions made in the Faddeev Popov
argument are known to be a priori violated. As soon as one puts the theory inside
a thermodynamic box (i.e.one does it on a compact riemannian space time), one
knows (Singer 1978) that there does not exist an everywhere defined gauge func-
tion: this is a geometrical version of the celebrated Gribov problem. Therefore
the construction is at best suitable for perturbation theory (since gauge choices
always exist locally in field space). Besides, factoring out the gloriously infinite
volume of the gauge group creates a certain psychological discomfort. Conse-
quently, the Slavnov symmetry which characterizes the classical action used as
a starting point to define the perturbative expansion might well be limited to
the perturbative regime. We are going to see that the situation is slightly bet-
ter. Putting together an argument in J. Zinn Justin’s book which produces the
Faddeev Popov gauge fixed action without factoring the volume of the gauge
group, and the notion of vertical (i.e. along the gauge group) differentiation
described for instance in C. Becchi’s Ziirich notes, one can recast the Faddeev
Popov construction into the following form.

Let A be the space of gauge fields, G the gauge group. Let us assume for the
sake of definiteness that A,G and A/G are finite dimensional smooth, but that
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G is non compact. Let p;,, be a G invariant differential form of maximal degree
(dim A = |A|) on A. Let Oj,, be a G invariant function on A. The question is
whether one can define

f A Hinv Oiny

”
< Oinv > =
f A Minv

1)

Let eq be a basis of Lie G ( of dimension dim G = |G|) and X, the corresponding
vertical vector fields on A and let A e, be a G-invariant volume on Lie G.

Define *

Hrs = /\i(Xa),uimJ (2)
«
R. S. stands for Ruelle Sullivan (D. Ruelle and D. Sullivan, Topology 14 (1975)
319).
Obviously

i(Xy)ptrs = 0 (3)

for any vertical vector field (a linear combination of the X,’s): igs is horizontal.
If G is unimodular (the left invariant Haar measure equals the right invariant
Haar measure), then ugs is closed:

5A Hrs = O (4)

where 6 4 is the exterior differential on A. It is therefore invariant:
UX)pns = [i(X),5A]+ brs =0 (5)

where X represents Lie G for the right action of G on A.
rs is thus basic and defines a differential form figs of maximal degree (dim
AJG =|A/G|) on A/G.

Then a tentative definition for < O;p, > is

fA/g ﬁas@inv
[ iss

where @;,,,, is the function on A/G defined by O;y,,,. This definition is independent
of the definition of the volume form on Lie G, up to scaling.

Now, cover .4/G by open sets U; and use a partition of unity 8; subordinated
to it (X'9; = 1). Choose local sections a; over U;, with local defining equations
g; = 0 and use the Faddeev Popov identity

(6)

< Oinv >=—

/ 5(g:) N oA gi =1 )
fiber

where the first J denotes the Dirac function and “fiber”is the copy G; of G over
a€U;.
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So insert into both integrals in Eq. 6

5200 [ | e Ada(a) =1 ®)
Now, introduce a G connection @ on A
. = ég_l = Es.g_l 7 — »
ia gila) = 2 ba= [ (9-Dud) ©
where 5
Y =46a+ D, (10)

is the horizontal part of da :

i(Xy)9 =0 (11)

Since pgs is basic of maximal degree the term involving ¥ in Eq. 9 will drop
out upon insertion into Eq. 6 and only the Faddeev Popov contribution to Eq.
9 involving

8g:
da
will remain. Introducing a Faddeev Popov field w to reconstruct piny from pgs

m; = Da (12)

yields
f.A Dwﬂ'inv X(ayw)oinv(a)

< Oiny >= 13
Y fA DuwptinyX (@, w) (13)

where
x(a,@) = 0:(a)8(g:) Ami & (14)

i
is a gauge fixing form and

x(a,w) = 20 (@)8(gi) Am; w (15)

is the representative of x(a,®) in the quotient £2*(A)/Z; where I/ is the dif-
ferential ideal (for &4, acting on {2* A, the differential forms on .A) generated by
horizontal forms of strictly positive degrees. From the structure equations

daa =J—Daw

‘S.A 1:[; :Da -6"'[5’,{/;]

54 @ =ﬁ-%[@, @)

6a 12 =—[@, 0 (16)

sw = ——2-[w,w] (17)
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namely, the geometrical part of the Slavnov symmetry, which, as suspected, is a
robust geometrical ingredient.
The non geometrical part

sw = —ib
sb =0 (18)

on the other hand is connected with the Fourier integral representation of §(g;) -
Am; w and disappears from the global treatment.
Note the defining property of x(a,®)

/,  xe@) =1 (19)

Xx(a,D)|siver has compact support.
Assuming that G is connected, it follows that two gauge forms differ by a
coboundary :
x1(a,w) = x2(a,w) = s x12(a,w) (20)

As expected, the choice of a connection & has disappeared from the final answer
(by the argument that the difference of two connections is horizontal and pgs is
horizontal of maximal degree).

Finally, the above construction shows that the space of gauge fixing forms is
non empty and convex.

These remarks conclude our rewriting of the Faddeev Popov argument, which
although not computable as it stands is rid of the Gribov problem.

Even though gauge fixing can be rightly considered as one of the nightmares
of gauge theories, its necessity is required by the present formulation which uses
locality in field space for which so far no equivalent has been found which could
be formulated directly on orbit space.

At this point, it is in order to apologize for the remoteness of the level of
rigour adopted here from that of BPHZ.
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On the Bound State Problem in Quantum Field Theory (*).
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Summary. — A causal and invariant sealar field involving a stable bound
state is investigated. A Tormula for the S-matrix is derived and it is
shown (hat the bound state can be described by a local and invariant
field operator. For simplicily only the case of spin zero particles and
bound states is considered; however, {he extension to other cases is
possible.

Introduction.

For a relativistic quantum mechanical system with an energy momentum
operator P the one particle states are defined as eigen states of — P8 with
i dbiserete non-vanishing rest mass (*#). In general, there may be several kinds
of particles, each characterized by a certain value of rest mass, spin,charge, efe,
Usually a division is made between elementary and composite particles, But,
it seemy to be hard to define this distinetion in a convincing manner, In the
conventional formulation of quantum field theory each of the elementary

(*) This research was supported in part by the United States Air Force under
contract no. AR 49(638)-327 monitored by the AT.Office of Scientific Research of (he
Air Rescarch and Development Command.

(") On leave of alsence from the Max-Planek Institut fiir Physik, Gottingen,
Germany.

(") Vor a diseussion of the particlo aspect in gquantum field theory compare R Haaa:
Dan, Mal. Fys. Medd., 29, 12 (19535), especially chap. 1, no. 1.

(*) We exeludo the ease of particles with zero rest mass.

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, pf. ]99-216, 2000.
[ Springer-Verlag Berlin Heidelberg 2000
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particles iy described by o basie field operator whereas the composite particles
(like the deuteron in the ground state, ete)) appear as the stable bound states
of the system. But thiy definition of a composite particle depends, of course,
on the formalism. The same particle which is regarded as an elementary par-
ticle in one formalisn may be a composite particle in another (1),

In this paper we want to investigate whether the prineiple of microscopie
augality sheds any new light on this question. We consider a model of a
ausal and invariant sealar field AA(r) deseribing just two kinds of particles,
an clementary particle of mass e and a composite particle of mass M, both
of spin zevo. 16 will be shown that it is possible (o define a field operator f(r)
for the composite particle (explicitly expressed in lermys of the original field
A()) which iy in some respeel analogous Lo the field operator of an clementary
particle. The invariant operator B(e) satisfies the vequirement. of nreroscopie
swsality, furthermore the N-matrix ean be expressed by the vacnum z-funie-
tions (*) of the field operator A(r) and B(e) exactly in the same way as in
the case of clementary particles only. Thevefore the principle of microscopic
amusality offers no posgibility of distinguishing between elementary and com-
posite particles.  With respect to the S-matrix the elementary particles as
well as the composite particles of the model are deseribed by invariant field
operators which satisfy the requirement of microgeopic eausality (7).

The formalism developed in this paper is closely related to other recent
investigations,  Starting from gimilar requirements one can derive the same
results by applying the method of strong operator convergenee in the form
developed by Iaad (**).  An equivalent formalism was also oblained from
the recursion formulae for retarded funetions recently proposed by Nisingiia
as an axiomatic formulation of quantum field theovy ('-17),

(") Compare E. et and €0 NG YaNa: Phys, Ree., 78, 1739 (1949). o (his paper
the hypothesis that z-mesons may be composite parvticles is disenssed,

(" In this conncelion an interesting example is Gitrsey’s model of o theory of
elementary particles (I', Giwsiyv: (o be published). There, following a suggestion of
Heisenberg, all particles appear as composite and no elementary particles corvespond
to the hasic fields.

(*) The vacuum r-funetions ave defined as the vacuum expectation values of mul-
tiple, time ovdered, operator products.

(") "This possibility was first mentioned by N. Bocoriosov: unpublishied leeture notes.

(*y The S-miatrix of the model considered is causal according to the definition given
in IT. Lensmany, Ko Syuanzic and W, ZinMeRMANN: Nuoco Cimento, 6, 319 (1957).

(8) R. HaaaG: Proe. of the Lille Conference on Mathematical problems of lhe quantum
theory of fields (1957), in print.

™) R. Haadg: preprint, to he published,

(') K. Niswaamas: Progr. Theor. Phys., 17, 765 (1957).

("y K. Nisunma: preprint, to he published,
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1. - General conditions.

We consgider the model of a neubral sealar field desceribed by a hermitian
operhtor A(x) assumed to be invariant under the inhomogeneous Lorentz group.
We assume that the principle of microscopic causality

- [A(@), A@)] =0 for (@ —y): >0

holds and that no negative eigenvalues appear in the energy and rest mass
speetrum.  The operators A(x) will be supposed to form an irreducible ope-
rator ring. Ior simplicily we assume that there are just two.non-vanishing
discrete oigonvalues m* and M* of — I’} and that

(2, A(x)P) £ 0 if —Pd=m
but
(2, A@@)W) =0

if ——P;“I’ = MY.
(2, A() A(y)P)s£0
In addition we suppose that the states @ and ¥ have spin zero.
Thig situation may occur for example in the case of A'-coupling if there
is an clementary particle of mass m and a stable two particle bound state
of the mass M.

In order to describe the bound states we introduce the operator (2)
(2) Bz, §) =TA@ + £) Az — &)

and define (*) incoming fields, according to WIGHTMAN (11), by

| o) = +f Ay @ — a)j@') e
(3) |
ln(m’ 5) ( ) + Allet(]‘[’ @t — )7(m 5) da’ y

(**) & may be Laken as spacelike or timeliko 4-vector, but it is supposed that &2 £0,
(**) The integral expressions in ‘eq. (3) are o be understood in the sense of weak
operator convergence which means that

(P, Ayp (£) V) = (P, A(x)¥) ’Fff‘hm("m @ = @) (P, j") V) A’

between any normalizable state vectors @ and Y. .
(1) The following definition of the asymptotic heldu A(e), Ay le) was first sug-
gested by WicnrTman: private communication,
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with the current operators

j@) = (0,—m)A(x),
(3) O.=53 56: .
j@, &) = (O, — M?)B(x, &), a2,

The outgoing fields 4, («), I, (x, £) are correspondingly defined with the
help of the advanced functions A, (m, x) and 4, (M, x). The general con-
ditions under which the so defined operators A () exist have been given and
investigated in details by GREENBERG and can easily be extended to the ease
of the operators B, (&, &) (1519).

n

Finally we demand that the incoming field operators A, (x), B, (v, £) to-
gether form an irredueible operator ring and corvespondingly the outgoing
fields A, (x), B, (v, &).

So far we have listed the general requirements which we need in the work
which follows. We conclude this section by deriving some simple propertics
of the operators ‘Ii'.'." (), lf;::u (@, &). A8 a consequence of definition (3) they are
solutions of the Klein-Gordon equations for the masses m and 3, respectively:

((3: — m2) A?..t () =0,

@ (0. — M) By, £) = 0.

We have the invariance propertics

DBy, £)

ut "

3A«|:.:t (.’I;‘)
R a‘D_ .

(5) = —i[l,, A ()], — [Py By E)],
"

Agu(La) = UL A @ UL, Byi(La, LE) = U(L)Byule, §T(L),

for an arbitrary Lorentz transformation L. (U(L) denotes the unitary operator
transforming A(x) into A(Lz).) These invariance properties are easy to prove
if (3) is written in momentum space,

As o consequence of (1), (5) the vacnum expectation values of the incoming
fields vanish:

) (2, 4 I-;:u(.r)Q) =0, (£, B (a, HQ) =0,
For example,
, o2
A, B, (v, £)Q) =3 ot (£, B, (x, £)2) =0,
#H

because P, Q= 0.

(*®) O. W, Greensere and A, S, Wicnryan: preprint, to be published.
(*) In Sect. 2 we will use somewhat more restrictive conditions than Greenberg,
for details see reference (29).
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Furthermore Agw(x) and Bow (w, &) satisfy the asymptotic conditions

lim ((P, Ay (t)'[l) = (D, A«’::‘u, vy,

t—»} o

(f

@ lim (@, B,(t, £)T) = (P, B, (6)P),
t—»4 o

with

. o . 0
B, &) = — @fdam {B(:I:, &) 5;;;7,1' *(a) — 1™ (x) Y B, 5)} ,
)
Py (8) = — 1 Qg0 [ Boua(, 8) -2 3%() — T%(0) 22 B (0, &)
mes = 1 | A N C B, W R
(correspondingly the definition of A, and Age) for any normalizable solution
J(x), F(x) of the Klein-Gordon equation
@—m*)f@x=0,
O —M)Fx)=0.

Eq. (7) ean be proved by forming the integral expression (7') for both sides
of (3) and taking the limit ¢ — 4 oo,

2. — Commutation relations for the asymptotic fields.

2'1. Blementary particles. — Our first aim is to derive commutation re-
lations for the incoming (or outgoing) ficlds defined in Sect. 1. 'We begin with
the case of clementary particles and prove the relation (17)

(8) [‘[llu (‘I'.)’ 'A in (!/)] = [:“luut (""‘)’ “‘iulll (-'/)' = i /‘I (”"? v— :’l)

it A(x) is normalized in the following manner. Leb @, he a one-particle state
with energy momentam eigenvalue l.:“

P b, =k, b
ne we — kb = ms2, kT=|\/k“—|~m”|.
(Di, Pi) = 2k7 83 (k— k'),

('7) This was already shown by GreeNperd, reference (**) under the assumption
that the equal time commutator [1(x)d (y) lzg=v, 18 @& c-number. lere we use a difierent
method which ean he extended to the case of hound states,
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Then it follows from translation invariance that

exp [tkx]

(Q$ A(w)(pk) =¢ —(2‘;;)!'— y

with the constant
¢ = 2} (Q, A(0)D,) .
Now A(x) shall be normalized by the condition ¢ = 1.

It is easy to determine the matrix elements of 4, (x) between the vacuum
state and an arbitrary state vector. From the definition (3) it follows that

exp [ika]
(2a)

(2, A, (@)D,) = (2, A@@)D,) =

for the one-particle state @,. Oun the other hand if @ is an cigenstate of
— 1’,2. with a rest mass »® 54 m? we have

(2, A, ()D) =0

because
(m* —x)(2, 4,,(2)P) =0

follows from (4) and ().
With this result we can calculate the vacuum expectation value of the
commutator (8). We see that

(£, A,n(w)Am(y).Q) =];;;1: (Q; 4, (.’U)¢~)(q)k, A, (y)Q2) =idtm, v —y).

Hence,

9) (2, [Agn(2) Ay (9)] Q) =i A(m, m—3) .

Now we turi to the operator form (8) and using the conditions ol Sect. 1
we shall show that

(i) the commulators of the incoming and the outgoing fields coincide:

(10) [A..m. (@), Auut (.’/)] = [Am (@), An. (?/)]
and that

(ii) the commutators of the incoming field is a c¢-number:

(11) (4, (), 4, W] = (Q, [4,, (), 4, (?/)]‘Q) .
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Relation (8) is, of course, a conscquence of the statements (i), (ii) and 1Eq. (9).

In order to prove (i) and (ii) it is convenient to expand the field operators
with respect to a complete orthonormal system {f, ()} of the positive frequency
solutions of (00 — m3) f(x) = 0:

A@) =Y @A (@) + 2 (@) 4, (),
Agn (@) = 3 f, (@) Agn, + 3 [ (@) A,

Tor the proof of statement (i) we start with the identity (%)
(12) fd.'vfdy/‘\ (@) fun) K3 Ky T A(e) Ay) ;/dyJ(l.‘n NN Ky TA(x)A(y) ,
0?
cm__ o Py
K z a‘v?‘ md.

This relation is not gelf evident because there are simple examples of patho-
logical fields which do not satisfy eq. (12). But using the fact that as a con-
sequence of causality and spectrum conditions the vacuum expectation values

(92, A(w,) Afa) T(A (@), A@Y) Aly) - Alyn) Q)

are boundary values of Wightman’s analytical functions (**) o more defailed
investigation (*) justifies the interchanging of the @ and y-integration in

f do / dy f @) KRED (2, A@) .. A@)T(A(), AW)AW) - AYa)Q) .

Then relation (12) holds for every matrix element of 7'A{x) A(y) because, ac-
cording to the irreducibility of the operators A(z), any state veetor can be
written as a linear mnpurposill'.i(m of vectors A(e,) ... A(x,)Q.

Rearranging the integeal on the left hand gide with the help of Green's
theorem we gob

oy
0

. ) - s ' d ) m
— i [y LA AG) = — i j gz [y TA@A) - o)~
. Yo, Yo

= jl,(ﬂf)tll‘“” —_ fl..;.u,u‘l (.’I)) y

o .
(1) gz 101 = 11@) %92 — gt ).

(*®) In the sense of weak operator convergence (compare footnoto (‘“)), correspond -
ingly for all following operator expressions containing time integration,

(‘%) A, S. Wianeman: Phys. Rev., 101, 860 (1056),

(20) W. ZammeErMaNN: Ovder of integrations in reduction  forndae, unpublished
manuseripl,
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Carrying out the integration over # in the same way, we oblain

f dx j .dy @K Ky TA@)A(y) = AjpAl, —A ap i — A Ay Al A%,
For the integral on the right hand side of (12) we have, correspondingly
Jau [antt@rionics s TA@ AW = A2 Ay~ Adis Ay — At A Al
Toserting (hese expressions into (12), we get

[y Auip] —[ A Al =0

With the corresponding velations belween A-I}:-;u\ and A'.’:"‘ﬂ or Aweand Agu,
¢ I} u n
statement (i) follows:

(4, (@), 4, ()] =[4,,(2), 4. ()]
The scecond statement (i) may be dervived from the identity
(13) f da f Ay fL@)fs ()KL BT A2) A(y) A (z) =
= j dy j Ax f @) () K2 TA@) A(y) A(2)
which can again be rearranged with the help of Green’s theorem. The final
result iy
¥ (z)["l-n'.-‘\*’lm/a] el R ‘>;||/t]A(z) .

Using statement (i), we get

[[A |:;,\ Al 4 (z)] =0,

gl
and this shows that [, 4,,] is a e-number because we have assumed that
the A(x) form an irreducible operator rving. With the corresponding results
for [A4,,, A5.), [An. 45, we have proved the statement (ii).

2:2. Bound states. — In the next step we want to derive commutation
relationy for the field operators Bu(e, £). We begin with the proofl ol the fol-
lowing statements:
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(i) The commutators of the incoming and outgoing fields coincide:
(14) (B (@ ) B, (9, )] = [ B, (@, &) B, @, 1.
(ii) The commutator of the incoming field i3 & e-number:
(15) [B, (2, & By, m)] = (2, [B, (% & B, (v, )]2) .

We expand the operators I8 and Bue with respect to a complete orthonormal
system {F (@)} of the posilive frequency solutions of (O — M?) F(x) = 0:

Bla, &) =3 P (&)B! (€, &) + P @) B (w4, &)
Bow (i, &) == 3 () Baw (£) -- 3 B () Bue (8) .

The coefficients are determined by (2')

B (@, &) = F i|dsw {B(w, £) a%, Fl(x)— Fi() a_z,, B(w, E)} )
Fl(x) =F, (), F(x) =% (@),

(and similarly for Baa (€)).
As a consequence of causality and spectrum conditions we have the identity

(16) f dx fdyFﬁ @) F, ()5, Ifé'l’A(w + &A@ —EAly +nAly—n) =
- f ay f QI () By () K2 K2 T A -+ £) Al — &) Aly +m)Aly —1).
After integration over @y and y,, this relation yields
[B (8)y Boys )] Bi (), BL,(m)] =0,
and similarly for [ B (&), li;_“;‘_,,(;])‘l. So we have proved that

[Buuc (=, E)) Buut (?/, ’7)] = [Bin ("U) &)’ Bm (3/1 7])] .

(') If & is spacelike we have
Bilag, &) - By, §)* .

This relalion is no longer true if & is n timolike vector,
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.Stutement (ii) may be derived from

a7 [as [ar @B KT A + 40— 4G + Al — A

~ f ay j QT (o) By (y) K K DA + &) A(w — E)A(y + ) Ay — ) A(),
which yields

[Bou (&) Brs1AR) = AE)[B (&) B, ()]

ln\

or

[[B5.6) B, )] AE)] = 0.

Therefore the commutator [B, (@, B, (yy )] is a c-number (statement. ii).
Now we can determine the commutator (15) by ecaleulating the vacuum
expeetation value. For this purpose we delermine first the matrix elements
of B, (x, &) between the vacuum state and an arbitrary state veetor.
If @, ig an eigenstute of P, belonging to the eigenvalue k, and the rest
mass — k; = M? we have

(.Q, TA(x + 5)11(m~ 5)@)) - Okp [”ﬁ.’v]

with
(18) (&) = @)} (2, TAE) A(— &P,
and

Oz + M) (Q, TA(@ + &) Az — §)Dy) == 0
From this and the definition (3) of B, (x, £) it follows that

exp [ika]

(19) (2, B, ) = (2, B, o) = P 1

Fi(€).

On the other hand it @ is an eigenstate belonging to the eigenvalue k, with
the rest mass —k -« M?* we get from (5):

(K + M2)(Q, B, (v, ) = — (O, — M)(Q, B, (v, E)P) = 0

hence_
(Q’ Bllx(:v’ 5)(1)) = ()

Therefore we have

(2, B.. (2, &)B..(y, )Q2) = f dkf,’ (9, B.(x, EYD,) (D, Bily, 9)R) =

1 [d;k ,
= (@m) f oqon e (E) Py () oxp [ikw — )],
& L)
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where we have used the invariance under space time reflection for
(20) (D, TAM) A(—n)R) = (2, TAW) A(—n)DP,) = Filn) .

Introducing the Fourier transform B, (%, &), we have

in

B (z, &) = fd,k exp [tkx)d (k2 + M2)B,(E, &),

(2a)!

and defining ereation and annihilation operators

Bit(ky &) = Bu(k, &), for ky = -+ |Vk3 -+ M2|,
Balk, §) = Bu(—Fk &),  for k= —|VE | M?|,

we get from (19) and (15) the final commutation relations

(21) [ B (K, &) B, (p, )] = Fu(&) F, () 2k 85 (k — p) ,
(22) [BE Kk, &) BE(p, )] = 0.

Finally we only mention that the same methods used in this Seetion o
prove the commutation relations (8) and (21) may be applied in order to derive

(23) [ (@), B, )] = 0.

3. - Derivation of an S-matrix formula.

The operators Bac(e, §) depend on the relative co-ordinate & of the hound
state,  Ior the S-matrix we are only interested in the center of mass motion
of the bound states and want to carry ont the limit & — 0, Therefore we
define operators Bae(x) by

Bow (, &)
Ny Bw@) =m0 gy

Fy(&) = (2n)} (91 TAE)A(— £)¢0) y

where @, is the bound state at rest.
In order to prove the existence of the limits £ - 0 in (24) we divide (21)
by 1"(&) and get

I'a(&) Wy )| = Fin)dy(k—p) .
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Differentintion with respeet to & yields

[ 0 B.,,(Ic §)

35‘, _FL (E) b lgl—ll(p! 17)] = 0)

and correspondingly from (22), (23)

o Bk, &) 0 ]
[55_,, RACRRC '])l -0

KRR J |
Iaf,‘ P (8) y Adu(p)| = 0.

Thus (8/85”)(1)',;(/;, EY(F (&) commutes with all operators A, (&) and B, (y, y).
Since we have assumed that the operators A, (x), B, (y,) together form an

irveducible operator ring (0/0£ )(B} (¥, E)/F.(E) is a e-number:

o B (k, &) 0 (9, Bi(k, E)!))

%, P& 0%, RE
because of (G). Therefore the expression

-“Iu ("’7 5)

I
Iy = B,

is indcpenduut of £ and

B.(k, &)
o Bu (k) =m0

does exigt beeauso
P (&) P(kE, &)
&) (0, &)

is in the limit £ — 0 independent of k:

F (&)
lnz}) () =1,
Trom (21), (22), (23) we get:

[ B, (k), B.:.(I’)I == 2k 3, (k — p),
[BL(k), BL(p)] =0,
[‘Bn.(k), Aln (!j)_] =0,
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Ilence

(26) [ By (@), Byn(y)] = MM, x—y),

(27) []fﬂ:l*(.’l"r), Af:‘n (y)] =0.

"Further we have
(D . M-’) 13;:;)“(.’17) =0
and

__exp ik |

(.(.., lfuuc(b)‘l) ) (2m)} )

k4 M2 == 0,

it @, is the bound state with four momentum k. Bae(x) is given in terms
of A(x) by

il o ’ N 1

(28) Bow(z) = hm A (5) 1111(:0 + §A(x — &) + |dx AM‘.(M, x — ') (2, .{-’)I )
J(x, &) = (0, — M2)TA(x + & A(x — &) .

According Lo (25) Bl(k, &) is a multiple of B, (k). From this fact we con-

clude that the operators A, (x), B, (y) together already form an ireducible

operator ring. Thercfore the whole TTilbert space € can be built up by the
crealion operators

_A(‘El‘ /( k) y ]{iﬁlt (k)

of incoming or outgoing elementary particles or bound states of momentum k.
The state vectors

(29) Pt = Ay (b)) By ) B (R Q2

ay well as
30) Phiote = A= (k) AD K BL (K)o Bo (k) 2,

(Bl=—mt for i<l, K*=—M* fori>1

form a complete orthonormal system of Z. The S-matrix is defined as the
operator trangforming the incoming into the ountgoing states:

(31) (@, SO ) < (D, B

Since both systems (29) and (30) form a complete basis of the Tilbert spaco
the S-matrix is unitary.
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It is possible to express the S-matrix by the vacuum expectation values
of T-products only. To show this we derive from (7) the following reduction

formula (32)

(32) [8T(z, ... x:), AE] = &+ i]dzﬁ (?)RT 8T (2, ... 7,2) ,

33)  [8T(w, ... x), BF.(0)] = + ifszf ()EYST (2, . 0y 2 —Cy 2 4 0),

with
1R == [, (2),

P@reee,) == TA@,) o A0, RIS

Tt we now insert plane waves instead of the wave packets f (z) we get

(34) [8T(x, ... z), A%(E)] = — :267(11;2 dz exp [ik2]KT ST'(, ... x2) ,
(35) [ST(w, ... z), B, (k)] =
te(k
= — '('277:):(F,),(C5 dz exp [ikz| K ST (@, ... ¢ y2— ¢, 2 4- ).

Since the state vectors (29) form a complete basis S can be expanded with .
respect to the incoming fields:

o @ (_ 'l:)"”'"
(36) S 2".,,2.0 ey | U W @y oy Fons e L)

: 1‘[ S(k3 -I- m2) H O(kd 4 MY A (ky) oo A (k) Biu(ly) oo Bua(l)
i~1 Jwl .

where the coceflicients are

(’(,ﬂl wee km; l1 ‘e ln) =
= (k) ... e(kn)e(h) oo Q) 2, [oor [S, AL (K] ... AL ()] BEW)]... BLI)IQ) =

L .
== e 2y ... dz,exp [d + 3 1z -
(2m)iminF, (2)) .. F,n(c,.)jd"" A Q2 ... 2o oxp [i(Z Hi+ 3 2]

I K G K (2 T e Yy 21 Loy oo Zat Gy 20— Cay evey 20— £a)2)

(22) ANl reduction formulae in 1L LeadanN, K. Symanzis and W, ZIMMERMANN:
Nuovo Cimento, 1, 425 (1955), Sect, 2 aro contained in the single Tormula (32) which
was given by K. Symanzik: unpublished.
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The last line of (37) follows by iterating (34), (35) and taking the vacuum
expectation value. Transforming (37) into co-ordinate space we get (**)
s=3 S0 L fay, . dyade o Qe KD KD KX
maeo min! (o Fy(f) v Ym0 n
(2, T Y 2a+ &y eyt G 2n— 8, 2 — 0)02)
AL e A () B (21) - Bu(za)

(38)

The Tunction F(&) which enters in the expansions (37) and (38) can casily
Lo expressed by vacuum z-functions (i, vacuum expeelation values of
T-produets) if we take the vacuum expectation value of reduction formula (35)
for k=2, ,=§ o,=—§:

(39) F(§)F(n) =—i f dy GXf Liky]K:’ (2, TAG)A(— Ay + Ay —n)Q) .
Putting £ =1 we get

(10) B8 =—i f du exp [ika] k¥ (2, TAGA(— HA( + HA(w — Q) . |
Inserting (40) in (37) or (38) the S-matrix is completely given by the vacuum

T-functions.

4. - Local field o.perators.for. bound states.
In this soction we want to take the limit & — 0 of the operator
Blw; §) = TA(@ 4§ A —§)
itself. We assume the existence of

TA(@ + §A@—§) — (2, TAG)A(—HRQ)
@2m)}(2, TA()A(— §)Do) ’

(41) B(z) =lim

(#%) One gets corresponding expansions of the 7-product replacing S by ST(r, ... w,)
and
T(yl s Ymr 2y + c‘l' ey By + cuv 4 CU vy By n Cn) v
by
,1'(:"'1 eoe wkl 3/1 hidd ym) zl ‘i‘ Cln srey zn + Cnv z] - C[y ey Z,, - c") i)

in the expansions (37) and (38).
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which in a formal sense can be written as (24)

(42) Bx) = et A(@)2—-atp

with the two (probably divergent) renormalization constants « and b

a = f(,xp [— iMz,)(2, TA(0)24(2)2Q2) dx, ,

(according to (40))

|
o |
l

b = (£, A(0)20) .

The operator B(e) iy, o course, invariant under the inhomogeneons Lorents
gronp and commutes with B(y) and Ay) it (@ —y)2 > 0. Furthermore we
get from (7) or (28) the asymptotic conditions

(44) lim (@, B, (O)V) == (D, By, V)
4> | @ 0
with

i £}
B.(t) = — zjdzm B(ax) e F*a),
3

for any normalizable solution of (O0, — M2) F(2) == 0,

Therefore the field operators A(x) and B(x) together satisfy the three prin-
ciples of invariance, causality and asymplotic conditions exactly in the same
formulation which was given in an earlier paper for clementary particles
only (**). From these principles we get in the usual way an expansion of the
S-matrix:

— fymin ]
(45) N == Z (m')n' j(ll/l e U g LAz, K L KGR L K-
e MR- . .

'(Q; ’l'A (?/l) LA A(?Im)”(f«ﬁ) oo H(zn)g) : A-In(?’l) eoe Aln(f’/m)];ln(zl) see Blll(zﬂ): ?

which may also bo oblained directly from (38) taking the limit § — 0,

Wa remark that there remaing ad least one formal difference between the
case of two independent elementary particles and the case of one elementary
and one composite particle. If B(x) belongs to a bound state composed of
clementary particles described by a field A(z), it is possible to represent B(x)

(34) Tor the case of A*-coupling at least in perturbation theory the matrix elements
of B(x) can he made finite to any order of the coupling constant it « and b arve deter-
mined by (4.‘!).

(238) H. Lumany, K. Symanzik and W, ZiMMeERMANN . Nuovco Cimenlo, 1, 126 (1065).

Although there only the case of one sealar field was considered the ;_,nu-mluulmn to
several fields is obvious.
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—roughly speaking—as a polynomial in A(x) (in our model Bq. (42)). We
may impose this relationship as an additional condition beyond the principles
of invariance, causality and the asymptotic condition in order to exclude the
case of two elementary particles.

5. - Examples.

In this Section wo shadl give simple examples for the expansions of the
N-madrix. which wo have devived in the Tast sections,  Instemnd of the model
of one sealar ficld we congider the more inferesting ease of o charged sealar
«nueleon » field y (@) interacting with a neutral sealar « meson » field A ().
We assume that there are just three non-vanishing discrete cigenvalues me,
x* and M?* of — I’} m* belongs to the one nucleon states, »* to the one meson
states and M2 to a stable bound state ¥ of charge two and spin zero (¢« den-
teron » state). As a consequence of charge congervation

(2, p(e)¥) = 0

vanishes identically for i denteron state YV, Under the comesponding assump-
tions, a8 formulated in Seet. 1 for the case of one sealar ficld, we can apply
the methods developed in the last seetions. As an example for the S-mabrix
expangions (36), (38) and (45) we consider the special seattering process with
one deuteron and one meson of momentum g, vesp &, in the initial staic and
two outgoing nucleons with momentum p’: and pf, in the final state:

1 \ »
(3(\ ) ( n v" by(l)pl ) = (c;n)llf' (C) dwl ‘1'/1’.2 d:'/ dz UXP [z(”z -‘_ l"!/ - lel - I['Z:I’.Z)J '
- 1,

KRS K9, To@)pa) A + Ol — H)R)
(38) : 11_1)1‘1, B )“14’ (C)Jdaldl dy ds exp [i(qz + ky — p,.r, — pay)]
KL KD RN (Q, Ty(@)p(@) AN + O — Q)

= f dw, da, dy dz exp [i(gz + ky — p,2, — pams)]-
KK RYEY(Q, Ty(@, (@) A(W)BR)2),

(45')

pPl=pi=—mr, qt=— M2, =z,
‘The function F,({) is given by

B 0) = @ (@, TpQ) p(— O ®,) = @) (B, Ty()p(~) Q)



216 Wolfhart Zimmermann

18 W, ZIMMERMANN [614]

and satisfies
F, ()P = —i(2m)} f dz exp [igz] ;' (2, Typ(C)p(— O)p(z + L)pz—0)Q).
The deuleron ficld operator B(2) is delined by

B(z) =1lim Ty + Oyle = 0)

-0 ]{'0( N ) o

where Fy(¢) belongs to the deuteron state ¥, at rest. In o formal sense /3(2)
may be written as

B(z) == 0“5 w(z)2

with the renormalization constant
¢ = (27)*(8, p(0)*¥,)? = — ifexp [— iMx,} (2, Ty(0)y(x):Q)dx.

Finally we remark that expressions (367), (38') and (15') hold also if the
model containg additional stable bound states. In this case the incoming
nucleon, meson and deuteron fields ave, of course, not irreducible in the whole
Hilbert space, and the S-matrix expansions contain in addition the incoming
fields belonging to the higher bound states. But if the state vectors Pf-*
and @2 contain only nuecleon, meson and deuteron states, expressions for
the S-matrix eclements (@% ", ®5-%) can be derived from the asymptotic
properties of Adgw, Yo and Bpe in o gimilar way as in Seet. 3.

LA

I would like to thank Professor Oprenngisgek for the kind hospitality of
the Tnstitute for Advanced Study, and T am grateful to the Tnternational
Co-operation Administration, Washington, for a grant., T am indebted to many
physicists in Gottingen, Princeton and Berkeley for helpful discussions.

RIASSUNTO (*)

Siesnmina un campo sealare causale o invarianto coinvolgente uno stato stabilo
legato. Si deriva una formula per la matrice § ¢ si dimostra che lo stato legato si puo
descrivere per mezzo di un operatore di campo locale e invariante. Per semplicita si
considera solo il caso di particelle di spin nullo e di stati legati; I'estensione ad altri
casi & tuttavia possibile.

(*) Traduzione a cura della Iteduzione,
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Abstract. Bogoliubov's method of renormalization is formulated in momentum space.
The convergence of the renormalized Feynman integrand is proved by an application of

the power counting theorem.

1. Introduction

A general theory of renormalization has been developed by Bogoliubov
for arbitrary local and invariant interactions. It was shown by Hepp
that the renormalized Feynman integrals constructed according to
Bogoliubov’s rules converge to well defined distributions when the

regularization is removed [1-4].

In a recent paper [5] a different formulation of Bogoliubov’s method
was used which works in momentum space and does not refer to a
regularization. The starting point of this approach is the integrand I

of the unrenormalized Feynman integral
Jrpy oo p)= lim §dk, - dky Ipky- Ky, py - p,)

in momentum si)acc. The integrand R;- of the finite part of (1.1)
Fr(py - p)= lim §dky - dky Rp(ky - kpypy - p))

is defined as a rational function of the internal and external momenta
by substracting appropriate counter terms from I.. The method is thus
an extension of the original work of Dyson and Salam [6-8]'. For
handling the overlapping divergencies Bogoliubov's combinatorial
technique is used which applies to renormalizable as well as non-re-

normalizable theories.

' For some references of other methods of renormalization see [9—12].

* On leave of absence from Courant Institute of Mathematical Sciences, New York

University, New York.

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, pfj. 217-243, 2000.
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In this paper the convergence of the renormalized integral (1.2) is
proved by a simple application of the power counting theorem [13-15].
The main problem will be to verify the hypothesis of the power counting
theorem, i.e. to check that the dimension of (1.2) and any sub-integral
along an arbitrary hyperplane in k-space has negative dimension. The
power counting theorem for Minkowski metric then implies that the
integrals are absolutely convergent for ¢ > 0 and yield co-variant distri-
butions in the limit e—0 [15].

In Section 2 the definition of the finite part (1.2) is discussed. An
explicit formula for R, is derived in Section 3. Section 4 contains the
proof that the renormalized Feynman integral meets the requirements
of the power counting theorem.

2. The Finite Part of an Arbitrary Feyman Integral

We consider a Feynman diagram I with N vertices V,, ...,Vy. The
lines connecting the vertices V,, ¥, will be denoted by L(V,, V,,0) or
Lope (0 =1, ..., v(ab)). V,, V, are called endpoints of L,,,. Lines connecting
a vertex with itself are excluded, (a = b). Each vertex is supposed to be
endpoint of at least one line. No restriction is placed on the number
of lines joining at a vertex.

2(I) denotes the set of lines, ¥ (I') the set of vertices.

Zr’ nl‘

aba abo

denote sum or product resp. over all lines L,,, of the diagram I".

;I‘s l]r

denote sum or product resp. over all vertices ¥, of the diagram I".
To each line L,,, we assign an internal momentum

laba = _Ibaa . (21)

To each vertex ¥, a momentum g, is assigned. In general the g, will
be linear combinations of external momenta p,, ..., p,

Qa = Qa(pl Tt pr) . (2'2)

The internal and external momenta are subject to the relation of momen-
tum conservation at cach vertex

Y4 lpo=4, a=1,..,N. (23)
be
Here )% denotes the sum over all lines L,,, of the diagram I" having

bo
V, as one of its endpoints. As consequence of (2.1), (2.3) the external mo-
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menta must satisfy momentum conservation

Yr 4.=0 v=1,..,¢ (2.4)

with I, ..., I. denoting the connected components of I'.
To each line L,,, we assign a propagator

A‘I‘"tm = Pulm(luhﬂ) (Ilzlhﬂ - llghn + “:(lﬁhﬂ + “3!:0))_ l’ L> 0* /lslm > 0 (25)

where P,,, denotes a polynomial in the components of [,,,. To cach

verlex V, we assign a polynomial
Pa = l)u(lubl 15 2 lub,v(ub,)) (26)

in the components of the vectors [,,,,... Here V,, ..., V, dcnote the
vertices which are connected to V, by an internal line. With these insertion
rules the corresponding unrenormalized integral becomes

J(py, .- P) = CETO j dk, --- dk,, nr Vil nr P,. (2.7

aho a

aba:

The internal momenta in 44", P,(Eq. (2.5-2.6)) arc of the form
[uba = kulm + Quba - (28)

The q,,, are linear combinations

Qabe =qw}rr(ql’ Tty (IN) (29)
of q,, ..., qy and form a particular solution of
Z‘I’ qulm =y Guba + Qbaa = 0. (2 10)
ha

The q,,, are called basic internal momenta. The k,,,, are lincar combina-
tions
kuba = kuha(kla LEER] km) (2 l l)

of the integration variables ki, ..., k,, and represent the general solution
of the homogeneous equations

Z‘l‘ Kupa =0, kapo +kpaa = 0. (2.12)
ba
m of the forms k,,, are chosen as independent four vectors ky, ..., k,,.

We introduce the following abbreviations

kos(hy, o k) qe=(qy, o qn)s p=(py,ap). (2.13)
K denotes the set

K = {kaba}l‘ahqeft’(r) ’ (2l4)
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of four vectors k,,, satisfying (2.12). Equations (2.2), (2.11) are written as

q=4(p), K=K(k). (2.15)
In this notation the Feynman integral becomes
J(p)= c!'illni) fdk, - dk,, LK), q(p)) (2.16)
where _
LIK,g)=]]r 8" T1s Pu- (2.17)
aba a

A44%° P, are given by (2.5-2.6) with the substitutions

laba = Iuba(Kq) = kuba‘ + Qaba(q) . (21 8)
In this section the finite part of (2.16) will be defined in the form?
Fr(p)= lim fdk, - dk, Ry(K(K), 4(p) (2.19)

where the modified integrand R, (k¢) is obtained from the original in-
tegrand I,(kq) by a suitable number of subtractions. Unfortunaltely the
definition of R, will depend on the choice of the basic internal momenta
daso(q). Though the final integral (2.19) is the same for a large class of
basic momenta, we will — for the sake of definiteness — make a unique
choice of q,,, in the definition of the finite part. To this end we define
the canonical momenta as that solution of (2.10) for which the quadratic
form

Y1 ina (2.20)
aba
is stationary under the constraints (2.10). With the Lagrange multi-
pliers uy, ..., uy of the constraints (2.10) the ¢,,,, bccome uniquely deter-
mined by

qulm = “a - “b ’

(2.21)
‘I" qaha‘:qu’ ZI", qu=0

bo

These are N —c¢ independent equations for the N —c¢ independent
differences u, —u, if ¢ is the number of connected components of I.

We introduce some combinatorial concepts which will be needed
later on.

Let . 2(A) denotes the set of lines and V(A1) denote the set of vertices
of a diagram 4. To any sct . C.2(1') we define a subdiagram A of I’
by the lines Le .2 and the vertices which are endpoints of a line in 7"

2 The integral does not depend on the choice of ky, ..., k. For, any two scts ky, ..., k,,
and k}, ..., ki, of m linearly independent internal momenta &, are related by an orthogonal
transformation.
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We say that the diagram A is spanned by the set ¢ of lines. The
following definitions concern subdiagrams of a given diagram I. We
define A =A,n4, as the diagram spanned by

L(A)=L(4)nZL(4,).

A4, is called a subdiagram of 4,, ie. 4,C 4, if £(4,)C.L(4,). If
A4, 4,, the diagram 4,\4, is defined as the diagram spanned by
L(ANL(4))°

Let & be a subdiagram of A with connected components d,, ..., d,.
We form the reduced diagram

A=A)8=A/3, 9, (2.22)

by contracting each line of d to a point. More precisely the reduced
diagram A is defined by (

LA = LUNLG), V(D =V ANV (O)U{F, ..., V). (223)

Here _
Vo= Vo=V (224)

serve as new vertices of 4 replacing the vertices of the reduced diagrams
8, ...,0,. Two vertices V, V'e ¥ (A)\# () arc connected in A by the
same lines as in 4. Ve ¥ (A)\#(8) and V¥, are in A connected by all lines
of L(A)\Z(d) which in A connect V with any vertex of ¥, V, and V,
are connected by all lines of £(4)\%(5) which in 4 connect a vertex of 3,
with a vertex of d,.

In the work that follows we will consider subdiagrams as well as
reduced diagrams of our original Feynman diagram I'. Let yC I be a
subdiagram of I m(y) denotes the number of independent internal
momenta, N(y) the number of vertices of y. The unrenormalized integrand

I, is defined by the same inscrtion rules as for Ip.. Lxplicitly

WK g = | [, 437 ], P,
aba a

(2.25)
K'={klpo} tupertns 4= {‘lz}v‘,w(y) .
44, P, are given by (2.5-2.6) with the substitutions
laba = lea(K}" qy) = kZbu + qua(qy) . (226)

Here ¢q?,, denote the canonical momenta defined in reference to the sub-
diagram . Le. ¢,, is that solution of

S e =bus Upa+ Ahaa =0, V,€ V() (2.27)
aba

B denotes the dilference of the two sets A, B.



222 Wolfhart Zimmermann

Convergence of Bogoliubov’s Method of Renormalization 213
for which
2 (@lbo)? (2.28)
abo

is stationary. The four vectors k?,, satisfy

Yok =0, k2, +k}, =0, V,e ¥(y). (2.29)

aba

We next define k2, ,, ¢ as linear combinations of k,,,, 4, by requiring

an(qu)’) = Iuba(K (l) (230)
for all L,,, € £(y). According to
QUK Q= Yyl K@), koK@ =l (K@) = qin(Kq) (231

aba

the kX, ,, 2 are uniquely determined by this requirement. Equation (2.31)
implies "
qZ(Kq) =- Z?‘\y labu(Kq) = - Z?'\y(kaba + qaba(q)) . (232)

aba abo

It can further be shown that the k2,. depend only on the k,,,. For
the Egs. (2.21) and (2.31) imply

quba(q) = un - ub f()r V“, l/h € 1 ('Y) +
Z; qaha(q) = 11‘7‘(0’ ‘l) .

aba

(2.33)

These equations, however, determine the functions ¢J,,(0, g).
Accordingly

QZba(OQ) = qaba(q)
kzba(o‘l) = luba(oq) - q(yuhn(oq) =0

and

which proves the assertion. Hence we have the result that KY, " arc
linear combinations of the form

K'=K"K), ¢"=¢"(Kq). (2.34)

With the substitutions (2.26), (2.34) the unrenormalized integral I,
becomes a function of K and gq.

Let u be a subdiagram of y C I'. In an analogous way we introduce the
function

K*=K{(K"), ¢"=q3(K"q") (2.35)
by the requirement
lapa(K*q") = 14.(K7, ) - (2.36)

For later use we note the relation corresponding to (2.32)

ah (KT ") = = Y klna + dlpalg). (2.37)

aba
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If y is proper we define the dimension d(y) by
dy)=Y,d(L,,)+Y,dV)+4m(y). (2.38)

aba a

Here d(L,,,) is the degree of the propagator corresponding to L,,,
with respect to the components of 1,,,, d(V,) is the degree of the poly-
nomial assigned to V,. Apparcently d(y) is the dimension of the un-
renormalized Feynman integral of y. Proper subdiagrams of dimension
d(y) 2 0 are called renormalization parts.

We next study reduced diagrams of I'. Let y,, ... y. be subdiagrams
of I', proper and mutually disjoint. We consider the reduced diagram

F=rp, ... (2.39)

We define the unrenormalized integrand I by the same insertion rules
asfor I-except that thefactor 1 is assigned to the reduced vertices V,, ..., V..
Explicitly

g K)=[1r 48 1T P, (2.40)

abo a

with (2.5-2.6) and (2.18). Here [],-, ]|i- denotes the product over all

aba

lines L,,, or vertices V, resp. of I" which do not belong to y,,..., 7.
Apparently (2.40) agrees with the definition (2.17) if applied to the reduced
diagram T.

After these preparations we now give the definition of the finite
part of a Feynman integral. The integrand R (K, ¢) of the finite part
(2.19) is defined by

RUK,q)=1(K,q)+ Y Ly, (K q) 11 0, (K™ q™) (241)
Yie Ve -1
with
K*=K"(K), q"=q"(K,q). (2.42)
The sum extends over all sets s =(y,, ..., ,) of renormalization parts of I’
which are mutually disjoint
y.Ny,=0 for t+a.

This includes the case that s consists of I" itself provided I is a renormali-
zation part. The functions O, are recursively defined for every renormali-
zation part y of I' by

0,(K7¢)
= _.,::iyw {IY‘KY"Y) + er ll'/y....y,(KT‘ly) ”l ())"(KY', (l"')}

YieeYe

(2.43)

with
K= K;‘(K”) , gl = ‘ﬁ:(KY’ q"). (2.44)
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37 denotes the sum over all sets s=(y,, ..., 7.) of renormalization
parts y, %y of y which are mutually disjoint. The ’ indicates that s = {y}
is excluded in the sum. ¢} applied to a function F(q") of g}, ..., 4}, denotes
the Taylor series in the components of the vectors g} up to the order v.
This completes the definition of the finite part.

We further introduce a function R, by

R(K'q") = L(K'q + T Iy (K@) 1] O, (K¥q7). (249)
Vi Ye =
Apparently one has

0,=—13" R, (2.46)
R, is related to R, by
R =R, (2.47)
if I is no renormalization part and
Rr=R,+0,=(1-t)R, (2.48)

if I' is a renormalization part.

The definition of the finite part can be gencralized in various respect.
First of all we remark that it is sometimes nccessary to consider other
sets of basic internal momenta besides of the canonical momenta.
We give the appropriate definitions for a sufficiently general class of
basic internal momenta.

Let q?,, be basic internal momenta given for every subdiagram y of I".
We consider the set S of all q7,,. Again we can define ¢}, k?,, as linear
combinations of ¢, k requiring that

zhn(KY* qy‘ = Iulm“\’i (I) (249)
with
Izha = k;llba + q};ba‘(qy) ) (250)
luba = kahn + quha(q) .
The set S is called admissable if the momenta K? depend only on K or
K* resp.
K?=K"(K), K*=K}(K*) forany u>y. (2.51)

The canonical internal momenta are an example of an admissable
set of basic internal momenta®.

Let {q2,,} be a set of basic internal momenta for I'. Then a set of
basic internal momenta {§3,,} for the reduced diagram /3, ...9

<
4 It can be shown that the finite part (2.19) is the same for any admissable set of basic
internal momenta.
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may be introduced in the following way. For

Loyo€ L), ACT/S,...8,, A=y/d,...8,,yCT . (2.52)

quu = ‘IZM - (253)

{gl,,} is called the set of basic internal momenta induced by {q!,,} in
/s, ... 8. 1f {q},,} is admissable {G},,} is also admissable. Apparcntly
the function Ii(K, q) as defined by (2.40) is constructed by using the
basic internal momenta of I" which are induced by the canonical momenta
of I

Another generalization concerns the number of substractions.
Sometimes it is convenient to take more substractions than would
actually be necessary for convergence. For self-energy diagrams, for
instance, one will always take at least two substractions even if the dia-
gram should be convergent. To include this possibility we introduce a
function d(y) which assigns to every proper subdiagram y of I an integer
larger or equal to the dimension of y

d() 2 Y, d(Lap,) + Y, d(V,) +4m(y). (2.54)

aba a

Set

d(y) is called the degree of y*. Proper diagrams of non-negative degree
are called renormalization parts relative 1o d(y).

Relative to d(y) and an admissable set of basic internal momenta
the finite part and the functions R, 0, E, are then defined by the same
equations (2.41-2.44).

3. Explicit Form of the Finite Part

The integrand Ry of the finite part was defined recursively by Ligs.
(2.41--2.44). In this section we will derive explicit formulac for the function
Rr. Webegin withsomecombinatorial definitionsconcerningsubdiagrams
of a given diagram I'. The diagrams y,, y, are said to overlap

Y1972
if none of the following three relations holds
YV1$Y25 Y2571, 1Ny =0.
Otherwise y,, y, are called non-overlapping
Y1272
Let I' be any diagram. A I'-forest U is a set of diagrams satisfying the
following conditions

* In uddilipn we require d(y) 2 d(@) -+ d(y,) for any reduced diagram 5= y/y, ...y,
with d(y) defined by (2.38).



226 Wolfhart Zimmermann

Convergence of Bogoliubov's Method of Renormalization 217

(i) the elements of U are proper subdiagrams of I',
(i) any two elements 7', y” are non-overlapping

Yey,

(iii) U may also be the empty set.

If in addition each element of U is a renormalization part we call U
a restricted I'-forest.

Any subset U’ of a Iforest U is again a Iforest. All possible /-
forests are partially ordered by C. A Iorest U is called maximal if
there is no other I-forest U’ such that U C U'. Let U, ..., U, be the maximal
I-forests. Then all possible I-forests are given by the subsets of any U,

We will next be concerned with the structure of a given I-forest U.
An element y of U is called maximal (minimal) if there is no other y'e U
such that yCy’ or y' Cy resp. Let ¥, y” be two maximal elements of U.
Since y' Cy” and y” Cy’ are excluded we must have

ylnyﬂ=e

for maximal elements of U.

Let y be any diagram of U. Denote by U(y) the set of all y’ € U satisfy-
ing y' Cy. U(y) is a I'forest as well as a y-forest.

Let y,, ..., 7. be the maximal elements of U(y). Then we define

FUY=v/r1 - Ve (3.1)

A I'-forest U containing I itself is called full, a I'-forest U not con-
taining I' is called normal. If I' is no renormalization part all restricted I'-
forests are normal. If I' is a renormalization part then there is a one-to-
onc correspondence between full restricted Iforests T and normal
restricted I-forests U given by

T=Uu{r}. (3.2)

Note that the empty set U =0 corresponds to T = {I'}.
Let U be a normal [“forest and y be an element of U. By P(y) we
denote the set of all y" e U with

Since
yl nvll 4: 6

for any two elements of P(y) the set P(y) is totally ordered by C.

We now define the position n(y) of y in U by the number of elements
contained in P(y). Any two renormalization parts with the same position
in U are disjoint.
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Let T be a full I'-forest. Then we assign the position 0 to I in T.
For any other element y € T we define the position in T by the posi-
tion which y has in

U=T\{I'}.

Let £(U) denote the set of all lines which belong to at least one
diagram of U. All clements of U containing a given line L,,, € 2(U)
are totally ordered by C. Hence there is a uniquely determined ele-
ment y,,, with

Laba € "(Z()’aba)
such that
Luba¢°(£(y) if )’CY,,,,.,, }’EU
Therefore £(U) is partitioned into mutually disjoint sets Z(3(U))

2U)= ) £GW)),
vel (33)
YU)YNY(U)=0 for y+7y'.

Thediscussion of the recursive Eq. (2.43) can considerably be simplified
by introducing substitution operators of the following kind. S, denotes
the substitution operator

S,:K"-K"(K"), g’—>q"(K",q") for ycCup. (3.4)
S, denotes the substitution operator
S K'=KYK), ¢>-q'(K, q). (3.5)
More precisely S, is defined as follows. Let f be a function of the variables
K, K% q,q"

where y runs over all renormalization parts of I'. Then S, [ denotes
the function which is obtained from f by substituting

KL(KY), qi(K*, ¢%)
for all variable K?, ¢* with y C u. With the notation
K'=K, q"=¢q
this definition holds for ;- too. In addition we use the abbreviation

= ) (3.6)
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With this notation the defining Egs. (2.41) and (2.43) for R;-and O, become

RAK,Q=I(Kq)+Sr ¥ I, Ka) []0,(K™¢™),  (3.7)
=1

Y1 Ye
O(K'q)=—tI(K'q) =18, 3, L. ﬂ (K™q™). (3.8)
YieeeYe =
The following lemma states an cxplicit formula for the O-functions.

Lemma 3.1. The O-function of a renormalization part y of I may explicitly
be written as

0,K'q)=—1'S, ¥ [[(=t*$H 1)

Uk, ieU 39
or
0,(K?q" =Y ]_[(—t S; I(T). (3.10)
Te%# AeT

The sum in (3.9) extends over the set A, of all normal restricted y-forests U
including the empty set. The sum (3.18) extends over the set Z, of all full
restricted y-forests. 1(U) is essentially the function I, but with a special
choice of the variables. We define

L(U)= ]_IY Asb° H P, (3.11)
aba a

with (2.5-2.6) and the substitutions

laba = DpoK'q") if  Lypo € L) (3.12)
and
libs = lunal Ko @) if Lyps ¢ L(U). (3.13)
In the product
[T(=2s)
yeU

the factors —t,8" are ordered from lefi to right according (o increasing
position. For elements of equal position in U the order is irrelevant since
S S, =t'S,. 'S, for yny' =86.
Proof. We use the notation
D(U)= n (—1'S)). (3.14)

yelU
First we note that the function
O(Kg)=—1"S, Y. DW)IU) (3.15)

Uen
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may also be written as
O0(Kgq)= Y D(T)I(T) (3.16)

TeF
using the relation (3.2) between full and normal forests. We prove
0 = 0, by showing that O solves the recursive Eq. (2.39). First we re-
wnte the right hand side of (3.15)

Y DU LU)= - LK')~0S, ¥, Y DULW). 17

Ued YieYe UeK(yrove)

Here K(y, ... y.) is the class of all normal restricted y- -forests having the
maximal elements yy, ..., 7. The first term of the r.h.s. of (3. I7)corrcsponds
to U=0. Now any U € K(y, ... y.) has the form

U=Ti)v VTl (3.18)

where T.(y,) is the set of all ye U with ySy.. Ti(y)) is a full restricted y,
forest. On the other hand any set T,, ..., T. of full restricted y.-forests
defines a U e K(y, ... 7)) by

U=T,u-uT,.

Hence
Y DWLW=[] ¥ DT)LWU) |
UeK(y1-..yc} t=1 T.e %, ) (319)
=l,..4K"q) l_[ Z D(T) 1,(T;)
=1 Te:

where Z, denotes the set of all full y-forests. Using (3.16-3.17) we get

0,(K", q") = — ' 1(K", @)= 'S, X" by, (K m)llo (K™, ¢™)

Y1-Ye
which proves Oy =0,.
Theorem 3.1. The function Ry is given explicitly by
Ry(Kg)=S; 3 [l(-S)IU) (3:21)

Ue%, yeU
with the sum extending over the set U, of all restricted I'- forests.
Proof. From (3.7) and the explicit formula (3.10) for O, we obtain
R,‘(K‘I) = ’r(K ‘I) +5y Z ll'/y..‘.y.,“\"l) l-l Z D(T),) Iv.(T)'.)
Yivo Ve [ | T". [ >

=1(Kq)+S ) Y D) IL).

Yie-Ye UeK(vy...ve)
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Formula (3.21) can considerably be simplified by using the identity

[10=08, U= Y [1(='S)LU) (3.22)

yeUo Ug Uo yeU

which holds for any Iforest U,. Let now I' be a diagram with no over-
lapping divergencies, i.e.

Y1972

for any two renormalization parts of I. Then the set U of all renormaliza-
tion parts is a Iforest. The subsets of U, form all possible restricted
Iforests. Using (3.21) and (3.22) we obtain the following theorem.

Theorem 3.2. Let I be a Feynman diagram with no overlapping re-
normalization parts. Then the integral of the finite part is given by

R(Kq)=Sr [] 1 =), 1:(Uo) (3.23)

yelo

where the product extends over all renormalization parts of T.

Formula (3.23) represents Dyson’s prescription for removing non-
overlapping divergencies [16]. Using the power counting theorem it is
not difficult to prove that the corresponding integral (2.19) is absolutely
convergent. A generalization of (3.23) to the case of overlapping diver-
gencies can be given. The formula obtained, however, is not useful for
proving convergence. We therefore quote the result only.

Theorem 3.3. Let U,, ..., U, be the maximal restricted I-forests of
a diagram I. Form the intersections

U.' = Uilﬁ ”-ﬂU‘-v (324)

Teoriv

Jor all subsets
(il s ‘v)g(l’ "',(')

(some of the intersection (3.24) may be empty). The integrand of the finite
part is then given by
Ri(Kg)=Sr ¥ (="' I (a-=-581(U, ). G295
iy...iy yeUi, ..U,

For the convergence proof of the following section it is convenient
to use Eq. (3.21) in a more general form given by the following theorem.

Theorem 3.4. The function R, is given explicitly by

RUAK@) =S, ¥ |] (=0 S) L) (3.26)
e yo I
6 Commun. math. Phys, Vol. 15
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with the sum extending over the set U of all Iforests. Here the conven-

tion is used that
'=0 o d(y<0. (3.27)

The proof is trivial since on account of (3.27) all non-restricted I~
forests give zero contribution to (3.26).

4. Convergence Proof
In this section it will be shown that the finite part
§ R(K(k), q)dk, ... dk, @41

satisfies the requirements of the power counting theorem. In a previous
paper the power counting theorem was proved for integrals of the form

J dk Pk, q) 4.2)

(o =17 —p} +iel} + 1)
=1

J

where P(k, q) is a polynomial in k and g. Clearly (4.1) is of the form (4.2)
since R, (K, g) may be written as

R.— A
"T BBy’
B, = l—[r(lfha — 1, ey, + 120)
abo (4 3)
Bz = n I_Iv {kfufa - ﬂ,l:hq + I'C(kzzd + pfba)}c(yaba) , .
y daba

lahn = kuha + qabu(q) ’ k;';ba = kZha(K)

where A is a polynomial in K and ¢. The product || extends over all
Y
renormalization parts y of I

The hypothesis of the power counting theorem is contained in the
following theorem

Theorem 4.1. The finite part of a Feynman integral
{ dk R (K(k), q) (4.4)
H

has negative dimension for R,,, and any hyperplane H described by a
set of linear equations
k=k(t)y=a+bt,
a=(a), t=(1), b=(h), (4.5)
i=1,...,mj=1..,h.
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With this result the power counting theorem (Thcorem 2 of Ref. [6])
implies that (4.1) is absolutely convergent Jor £> 0 and approaches a well
defined distribution in the limit ¢~ +0.

For the proof of the theorem we begin with a couple of definitions.
A I'forest U is called complete on H if I" € U and if for anyye U

either (i) all lines L,,, € £(7) are variable on H relative to y

or (i) all lines L,,, € 2(7) are constant on H relative to y.
A line L,,, € £(I') is called constant on H relative to y if

ki, =conston H, ie. k!, (T)= const.

Let U be an arbitrary forest of I We are going to define a completion U
of U which will be shown to be the unique minimal complete forest
containing U.

We begin defining U for a full U, ie. I'e U. Let W(U) be the set of
all ye U with the property that at least one line of y(U) is constant
relative to y. For any y e W(U) let s(y U) be the subdiagram of y which
is spanned by the set of constant lines of F(U) relative to y°. Letd,, ..., 8,
be the connected components of y\s(y U) 3. We first show that each 4,
is proper.

Lemma 4.1. Each connected component of y\s(y U) is proper.

Proof. Assume that L,,, e Z(y) is an improper line of y\s(y U). Then
momentum conservation at each vertex implics

kZba = 2: CI' kz.bw. ’ Laibm‘ € .,(!)(b(’y U)) .

By definition of s(y U) the momenta k}.;.4, are constant on H, hence also
ki, is constant on H. If L,,, € #(7) we have a contradiction because
s(yU) is the set of all constant lines of (U). Therefore L¢ £(y), ie.
Le £(¢) with pe U, ¢ Cy. Since ¢ is connected we have @Co, If L
were an improper line of d, it would also be an improper line of ¢ which
is impossible. This completes the proof that P\s(y U) does not contain
improper lines i.c. cach §, must be proper.

We define .o¢/(U) as the set of all diagrams t ¢ U which are connected
components &, of y\s(y U) with y € W(U). The completion of a full forest U
is then defined by

U=Uuu(U). (4.6)
Our first aim is to show that U is a forest. We begin with

Lemma 4.2. If t© is a connected component of y\s(yU) and y' e U,
y' Cy we have
YNTt=0 or yCr.
* Note that s(y(U)) is defined as a subdiagram of y but not of 5(U). That means that no
vertices of are identified in s(y(U)).

16*
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Proof. Since all y'Cy, y e U are connected and ¢ Sy\s(yU) it
follows y'C 4, where J, is a connected component of y\s(y U). Hence
y'€d,+ 1 or ¥ Ct. In the first case 't =0, in the second case y'Ct.

Lemma 4.3. U is a forest.

Proof. (i) We first prove that any elements 1€ .&/(U) and y' e U do
not overlap. Let T be a connected component of y\s(yU). We have

YDy, Yny=0 or Yy Cy.

9Dy implies y'D1. YNy =0 implies ynt=0. y'Cy implies y'Ct or
9’7 =0 (Lemma 4.2). Hence y' o t for any 1€ &/(U) and y' e U.

(i) We next show that any two different elements 1,,7, €% do
not overlap.

(a) Let t,,7, both be connected components of y\s(yU). Then
T,NT,=0.

(b) Let 7, be a connected component of y, \s(y, U), 7, be a connected
component of y,\s(y, U). Ify, Cy, Lemma 4.2 implies y, Cy,0rt,Nn1, =0.
Hence 7, C1, or 1,N1,=0.

If on the other hand y, ny, =0 then also 1,7, =0. This completes
the proof that U is a forest.

Lemma 4.4. Let te o/(U) be a connected component of y\s(yU).
Let U(t) be the set of all 6 € U with aCt and y,, ..., 7. be the maximal
element of U(z). Then all lines of

W) =1/7, ... 7.
. are variable relative to .

Proof. Let L,,, € Z(t(0)). By definition

k;ba + q;ba(qr) = kZbd + quu(qy) »
4" =q"(K"q"), kipe=kopo(K).

4.7
Setting ¢” =0 we obtain
kpo + Qinold) = Klbo s 4" =q"(K",0), kipo=Kipa(K'). (4.8)
Since t is a connected component of y\s(y U) we have

q:(Ky: O) = 2: ci kz‘bm, ’ Lu.b.m € 2’(5()’ U)) . (49)

Hence all ¢%(K?,0) are constant on H. If k},, is constant on H Eq. (4.8)
implies that k2,, is also constant on I in contradiction to L,,, € £(7)

aba

CLF\sly V)

uha
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Lemma 4.5. U is complete.

Proof. (i) I'e U.

(i) Let ye U, y¢ W(U). All lines of 5(U) are variable relative to y
since 3(U) =F(U).

(iii) Let ye W(U). Then £(HU))= L(s(yU)) ie. all lines of F(U)
are constant relative to y.

(iv) Lette o/ (U). Thent(U) =1/, ... y. wherey, ... y.are the maximal
elements of U(r). Lemma 4.4 implies that all lines of 7(U) are variable
relative to 7.

Lemma 4.6. Let U be a full forest. Any set V with

ucveu (4.10)
is a forest with completion U.

Proof. Clearly V is a forest. We will show that W(V)= W(U).
(i) ye W(U) implies y e W(V) since s(y U)=s(y V).
(if) ye U, ye W(V) implies y € W(U) since

LEWVYELEW)).

(iii) If te V\U € «/(U) all lines of T(V)=7(U) are variable.
Combining (i)—(iit) we obtain W(V)= W(U). Hence

A (V)=LUN\V\U)
and V=U.

Next we will define the base U of a forest U which will turn out to
be the minimal forest among all forests with the completion U. The set
#(U) is defined as the set of all diagrams t € U satisfying

(i) T¢ W(U).

(ii) T is a connected component of y\s(y U) with ye W(U). Let U
be full. The base U of U is defined by

U=U\BU)\{T} (4.11)
U is a forest. Furthermore define a full forest U’ by
U'=U\%W). 4.12)

Lemma 4.7. If U is a complete forest on H the sets W(U) and #(U)
are given by the following conditions:

W(U) is the set of all ye U for which all lines of ¥(U) are constant re-
lative to y.

If y ¢ W(U) all lines of y(U) are variable on H relative to y.

#(U) is the set of all diagrams t € U satisfying

(i) ¢ W().

(ii) © is @ maximal element of U(y) with y e W(U).
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Proof. The first and the second statement follow immediately from
the definition of W(U).
If U is complete we have

L(s(yU)=LFWU)) for ye W(U) (4.13)
or
Ly\s(y U)) =Ly, 00y, (4.14)

where ¥, ... y, are the maximal elements of U(y). Hence the connccted
components of y\s(yU) are identical with the maximal clements y,
of U(y). This proves the last statement.

Lemma 4.8. For any full forest U holds

w(U)=w(). (4.15)

Proof. (i) If te U\U'=%(U) the diagram 7(U) does not contain
any constant lines relative to y. Hence

re U\U' implies ¢ W(U). (4.16)

(ii) Let ye U’, ye W(U). Then y(U) contains a line L,,, which is
constant relative to y. Since £ (F(U)) ¢ Z(3(U") the line L,,, belongs to
y(U’). Hence

ye U, ye W(U) implies ye W(U"). 4.17)

(iii) Let y e U’, y ¢ W(U). Then 3(U) does not contain a line which is
constant relative to y. By definition H(U)=1y/y, ...y, where y, ...y,
are the maximal elements of U(y). Since y ¢ W(U) each y, belongs to
U, therefore y(U")=¥(U). Hence

yeU’, y¢ W(U) implies y¢ W(U"). (4.18)
Combining (4.16-4.18) we obtain the statement of the lemma.

Lemma 4.9. For cach ye W(U')= W(U) the two sets s(yU), s(yU’)
are equal

sy U)=s(yU") (4.19)
Proof. Let y e W(U). Any line of (U) also belongs to 3(U’). Hence
s(yU)Ss( U

Suppose that L,,, € L(s(y U))\s(y U). L,,, must belong to a te B(U)
which is a connected component of y\s(y U) with y e W(U). It cannot
belong to any geU with 6Ct since ZL(s(yU)<SZL(F(U"). Hence
L,y € T(U). Using Eqgs. (4.7-4.9) of Lemma 4.4 we find that

k?,, = const on H implics k},, = const on I

in contradiction to the requirement on the elements of 4.
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We now extend the definition of completion and base to normal
forests. If U is a normal forest we define the completion U and the
base U by

U=V, U=V where V=Uu{I}.

_ Lemma 4.10. Let U be a given forest with completion U and base U.
U is the completion of U and U is the base of U.
Proof. 1t is sufficient to consider a full forest U. Lemma 4.8 and 4.9
imply
A (U)=B(U)u.(U).

With the notation B=U’, C=U
B=Bug(U)udg(U)=UuA(U)=C.

Lemma 4.4 implies
B(CO)=L(U)YuRB(U).
Hence C=C—%(C)=B.
Theorem 4.2. Let C he a given complete forest with base B. The set
of all forests U with the completion C is given by the condition

BcUCC. 4.21)

Proof. Let U have the completion C. Then U S C and U=B
(Lemma 4.10). Hence BC U L C.

Since C is the completion of B (Lemma 4.10) any U satisfying (4.21)
has the completion C.

Theorem 4.3. The finite part of the integrand of a Feynman integral
is given by

RAK)=5S, Y Xy, (4.22)
Ue®
Xy=[] (&) S,) L), (4.23)
yeU

JW=1=t" if yeBWU),f(=-0" if y¢BU). (424

The sum in (4.22) extends over the set € of all complete forests of T.
The set #(U) is given by Lemma 4.7.

Proof. Two forests are called equivalent if they have the same com-
pletion. According to the Theorem 4.2 the corresponding equivalence
classes are given by the condition C € U € C where C is a complete forest
with base C. This partition of the set of all forests into cquivalence
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classes leads to the following formula (see Eq. (3.21))

Ry=Y Xc, Xc=Sr Y [T(=e8) I (V). (4.25)
Ce¥ CQUCC yelU
An alternative formula for X is
Xe=S: [T (/0 $) 1(C). (4.26)
yeC

An equivalent definition of f(y) is

fip=1-1" for yeC~-C=2%(C),

S)=—tr for yeC.
In order to show the equivalence of the two formula for X we work
out the products of factors (1 —¢?) in (4.26)

Xc=Sp Q%_C YE[L (goy) $) Ir(C) 4.27)

gop)=—1" for yeQ, go(v)=1 for 7¢0.

The sum extends over all subsets Q of C—C. Introducing V=C+ 0
as new variable of summation we obtain (4.26) which can be rewritten
in the form (4.23).

The next aim is to give upper bounds for the degree of the function
X, with respect to the parameters T of the hyperplane H. This will
eventually lead to the desired result that the dimension of the renormaliz-
ed Feynman integral is always negative.

We first state a recursion formula determining X, which follows
easily from the definition (4.23). The subscript U will be omitted in the
work that follows. For the scts W(U), #4(U) given by Lemma 4.7 we
will use the notation

#B=2U), W=W(QU).

Lemma 4.11. For a given complete forest U the function Xy is deter-
mined by
Xy=X=(1-1"Y; (4.28)
where for any ye U
Y=L .S Yoo i Yo (4.29)

Y
Y1s -+ -» e denote the maximal elements of U(y). If y is minimal we set Y,=1I,.
f, is defined by (4.24).
The function Y, has the general form

Y(K'q") = (4.30)

BB,
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where A4 is a polynomial in K, q* and
Bl = Hy (Igba - uzba + ie(lgba + ”Zba)) s
abo

BZ = n I—[rp(kgbzc - “gba + is(kgbza + #zba))cw“ba) ’ (431)

@pelU(y) abo
—_ Y
laba - ,‘abu + QZba ’
kfba = kzba(ky) .

We next want to determine the degree of the function Y,. To this end
the following lemma will be useful.

Lemma 4.12. Let F be a function of the form

Y=, C=TT(E—p2+isl?+p2) (432)

where A is a polynomial in t,, ..., t, and

l,=a,+ ZC‘,ptﬂ + Zdﬂﬂqﬁ

with all
Y capts£0.
Then the relation
degr, , F=1 (4.33)
implies
degr, (1 — t:) F<l—d—-1 4.34)

degr F denotes the degree of a rational function F with respect to the
variables x =(x, ... x,).

Proof. We decompose the polynomial

[
A=) A, (4.35)
y=0
such that 4, is homogeneous in g of degree 7. (4.29) implies
degre, ,A<e+0 (4.36)
if
degr, ,C=4. (4.37)
From (4.35) we get
degr, A, Se+6—vy. (4.38)
Since A, is homogenceous in g
A 1
(1=t E:’— =A4,(1 -4 T (4.39)
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degr(l—t:_y)%§—5—d+y—l. (4.40)
Hence
A 1
degr,(1 —t%) YIL < degr, A, + degr,(1 — t‘;”)—c— (4.41)
L<e—d—1

using (4.34) and (4.36).
It is convenient to introduce the following integer

M(y)=43" m(D) (4.42)

where the sum extends over all u satisfying the condition
uelU, uSy and ué¢Ww.

m(f) is the number of independent internal momenta of ji. Apparently
M(I') is the number of independent integration variables on H. For jt
contains only variable lines if y¢ W while jt contains only constant
lines if pue W.
Lemma 4.13. The following inequalities hold
degr!, Y,(K'(K),q")Sd(y)—M(y) for yeU, y¢W, (443)
degr, Y(K"(K), @) < —M(y) for yeW. (4.44)
Proof. As hypothesis of induction we assume the inequalities to be
valid for all maximal elements y, of U(y). It will then be shown that the
inequalities also hold for y itself.
(i) Case ye W. Then the recursion formula holds with
Sy, ==t for y,eW.
fro=1=1 for y, ¢W.

We will find the following relations

dcgrl !7/)’1 Ve = 0 B (445)
degr, S, 1 ¥, < —=M(y,) if y,eW, (4.46)
degr, S,(1 7)Y, < —M(@y) if 7,¢W (4.47)

(4.45-4.47) imply the inequality (4.44)
degr, Y, < =2 M(y)= —M().

We next prove the relations (4.45-4.47):
() Relation (4.45) follows since all lines of ¥(U) are constant relative
to y (Lemma 4.7).
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(B) Proof of relation (4.46). According to the hypothesis of induction
we have

degr, Y, (K™(K), g") < — M(y,) .
This implies
degrl tv, Yy,(Ky“(K)v qh) <- M(?a) .
For it is
e Yoo = Y, (K™, 04 o1
degr, 1,7 Y, (K™(K), 0q") £ degr, Y, (K™(K), 04™).
By definition of the substitution operator S,
(S, 7 Y, ) (K'q") = (" Y, ) (K™(K?), ¢"(K?, ¢")).
In ¢™(K?, q") only those k},, occur with L,,, € Z(7) which are constant
on H relative to y. Hence
degr,(S, "= Y, ) (K*(K) ¢”) = degr, (£ Y, ) (K™(K),g™).
(7) Proof of (4.47). Let y, ¢ W. According to the hypothesis of in-
duction.
degr, ., Y, (K™(K(T)), ") S d(y,) — M(y,).
Applying Lemma 4.12
degr,(1 —¢t,) Y, (K™(K), ") < —M(y,).
Applying the substitution operator we obtain
(S,(1—1t,) Y,)(K"(K), g)=((1—¢, Y, )(K™(K),q") (K"(K),q").

Again ¢" depends only on components k?,, of K? which are constant
on H.

Hence
dcgr,(S,(l -1,) Yh) (KY(K), ") = degr (1 — ") Y,) (K"(K), ¢")
and
degr,(S,(1 —¢,) Y, )(K'(K), ¢") < —=M(y,) .
(i) Case y¢ W. ,
In that case the recursion formula reads
Y,= Ly, ooye Sv( -t,) Y, ...(—t) Y, .
The relations
degr!qV Iy/yl Ve d(?) - 4m(?) > (448)
degr,, S, 1, Y, Sd(y)—M(y) il y, ¢ W, (4.49)

Ya =

degr, Syt Y <d(y)—M(y,) il y,e W (4.50)
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imply
degr,,» Y, <d() ~ 4m@) + ) (") — M)

<d(y)—M(y)

since d(y) + 2. d(y,) £d(y).

(4.51) is the inequality (4.42) stated in the lemma.
We now prove the relations (4.48-4.50).
(¢) The relation (4.48) follows from the definitions of I.
(f) The hypothesis of induction

degr,p, Yye(K™(K), g") S d(y) < M(y,)

(4.51)

implies
degr, . t™ Y, (K™(K), ¢") S d(y,) — M(7.) .

Application of the substitution operator S, to t™ Y, yields
(S, Y,) (K'(K), ") = (= ¥, ) (K*(K), ¢") (K" (K), q).

Since "+ Y.

,. is a polynominal in g the substitution

un - qYu(KV(K)’ (I’Y)
can only decrease the degree with respect to T, ¢”
degr, »(S, "= ¥, ) (K*(K), q")
< degr g (Y, ) (K™(K), ™) S d(v,) — M (1),

(y) Proof of relation (4.50). We assume y,€ W. According to the
hypothesis of induction

degr, Y, (K™(K), ¢") < = M(y").
This implies
degr, v, 1" Y, (K™(K), ") <d(y,) — M(y,),
degr, (S, t,, 1,) (K'(K), q")
= degr, »(t,, Y,) (K™(K), ") (K"(K). q")
< degr, g, (t,, Y,) (K™*(K), g™) < d(y) — M(y,) .

This completes the proof of the lemma.
The results obtained in Lemma 4.13 will now be used in order to
show that the dimension of the integral (4.1) is negative. We have

X=(1=1,)Y. (4.52)
First let 'e W. Then
degr, YH(Kq) < —M(I)
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implies
| degr,(1 — t;) Yp(K q) < — M(I).
Let I'¢ W. Then
degr, , Yr(Kq) sd(I')— M(I)

implies
degr,(1 —ty) Y(Kq) < —M(I).
In any case
degr, X < — M(I') (4.53)
and therefore
degr, R(Kgq)< — M(TI'). (4.54)

Since M is the number of independent parameters of the hyperplane

H it follows
dim j dk R <0.
1}

This completes the proof of the theorem.

Appendix

We shortly indicate the proof of the following generalized form of
Eq. (4.54)
degr, s Rp(K q) < —M(I') (A.))

which is useful for checking the equivalence of Bogoliubov’s original
definition of the renormalized Feynman integral to the one used in this
paper [17] M denotes a subset

M g {.uabcr}

of the mass parameters.
First we note that under the hypothesis of Lemma 4.12

degr,p (1 — ) F < degrp F —d — | (A.2)

can be derived which is a generalization of (4.33-4.34). The Liq. (4.43-4.44)
can be generalized to

degrime Y,(K'(K), ") Sd(y) —M(y) for yeU, y¢ W, (A3)

degr,y Y (K"(K),g") < —M(y) for yeW. (A4)

These relations are derived from
degr, y va. Ve =0, (AS5)
degr,p S, 7 Y, <—M(y,) il y, ¢ W, (A.6)

degr,y S,(1 -0 Y, < —M(y,) if y,¢ W (A7)
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if ye Wand from

degtprgr by, .y S A7) —4m(3), (A.8)
degrl Mq” Sy ly“ Yya é d(’)}a) - M()}a) lf Ya ¢ W’ (A9)
degr g S, 17 Y, <d(y) — M(y,) it y,eWw (A.10)

if y ¢ W. The result (A.1) follows if the Eqs. (A.3-A.4) are applied to (4.52).

I am grateful to Dr. K. Hepp for many useful discussions and 1 wish to thank
Dr. G. Dell’Antonio and Dr. L. Motchane for the kind hospitality extended to me at the
1.LH.E.S. and the Istituto di Fisica Teorica.
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In perturbation theory the Green’s functions of composite operators are constructed
by applying Bogoliubov’s method of renormalization. Normalization conditions for the
composite operators are derived, as well as identities which relate composite operators
of different degree.

1. INTRODUCTION

The purpose of this paper is to define composite operators and discuss some of
their properties in the perturbation theory of renormalizable interactions. As an
example we consider the model of a scalar field with a mixed 43— and A*-coupling

LA} = LA} + Lin{A) (1.1
L{d} = (1/2) 8,444 — (m?[2) A2 (1.2)
LA} = — -3‘5} A — 41!,4‘ -+ gA" + b B A} (1.3)
A0 (1.4)

Z{A} will be used as an effective Lagrangian in the following sense. m, g and A
represent the renormalized mass and coupling constants. The parameters a and b
are power series in g and A with finite coefficients depending on m. The coeflicients
are recursively defined by the condition that the propagator has a pole at m? of
residue i. In contradistinction to the Lagrangian of conventional renormalization
theory £{A4} does not contain infinite parameters.
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The time ordered Green’s functions of the theory are defined by the Gell-Mann
Low expansion [1]

(TA(x,) -+ A(xn)> = Fin((Te# a2 4%(x;) -+ A%(x,)Do/(Te? Fnd=y) (1.5)
Lt = Znt{Ao(z)}

A® denotes a free scalar field of mass m, O, the free field vacuum expectation value.
The symbol ‘Fin’ indicates that the finite part of the contribution from cach
Feynman diagram should be taken. Various methods for separating the linite part
from a divergent Feynman integral are available [2-7]!. In the original version of
Bogoliubov’s method the finite part is first defined for the regularized contribution
from a given diagram [2]. As was shown by Hepp the finite part thus defined
approaches a well defined distribution when the regularization is removed [3]. In
this paper Bogoliubov’s method is used in the version of [5]. Without regularization
the finite part is separated by taking suitable subtractions for the integrand of a
Feynman integral in momentum space, as in the original work of Dyson and
Salam [8-9]. The appropriate subtraction terms are obtained by applying
Bogoliubov’s R-operation to the unrenormalized integrand. The resulting integrals
can be shown to be convergent as a consequence of the power counting theorem [5].
Composite operators B(x) will be defined through their Green’s function

CTB(x) A(y1) - A(ya)> (1.6)

The matrix elements of B(x) between incoming and outgoing states can be expressed
in terms of the Green’s functions (1.6) by using the reduction formulas. It is not
obvious, however, that the time ordered Green’s functions of the operator thus
defined are identical to the original functions (1.6). For this certain consistency
conditions® on the corresponding retarded functions are required which also yield
the locality of B, This point will not be discussed in the present paper.
Let
M = M{A(x)} (1.7

be a monomial of the field A4 and its derivatives. Our aim is to define an operator B
which can be interpreted as the finite part of (1.7). Formally the time ordered
Green’s functions of M are given by the Gell-Mann Low expansion

(TM{A)} A(yy) - A(ya)>
= (KTe!l a2 M{A(x)} A°(yy) -+ A% ya)>ol<TeZtuds)0) (1.8)
This suggests defining the Green’s functions
TB(x) A(yy) =+ A(ya)> (1.9)

! The Epstein-Glaser method [6] including some applications is reviewed in ref, [7).
2 For a formulation of the consistency conditions sce [10].
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of the composite operator B by taking the finite part of (1.8). B may be called a
normal product of (1.7), in generalization of Wick’s definition of a normal product
in the free field case [11].

The Feynman diagrams appearing in the expansion (1.8) contain a new vertex x
which requires additional subtractions. Depending on the number of subtractions
employed for removing the new divergencies we obtain different versions of the
normal product. The minimal normal product of (1.7) is constructed by making
only those subtractions which are required for removing all divergencies. In this
paper a family

No[M{A(x)}] (1.10)

of normal products will be introduced. The normal product (1.10) of degree a is
constructed by making @ — r 4- 1 over-all subtractions for any proper diagram
which contains x and has r external lines. It will be shown that this operator is
finite provided

a > d(M) (1.11)

where d(M) is the dimension of the monomial M. If the degree equals the dimen-
sion we use the notation

NIM{A(x)}] = N.[M{A(x)}},

a = dan), (1.12)
and say that the normal product is of minimal degree. If the 43-coupling is absent,
i.e., g = 0, the operators (1.12) represent the minimal normal products. For g#0
the operators (1.12) are not minimal. In the general case the minimal operators do
not seem to be very useful and will not be considered in this paper.

Alternative methods of defining composite operators have been developed by
Epstein-Glaser [6, 7] and Wilson [12]. Wilson’s method uses a renormalized
version of the relations

r’)A(x) o
= —] dy, | dy [-(Lolnt(.}’): A(x)]
Tox f o °f (1.13)
A — i [ dyy [ dy o) Lim)

On the basis of these relations the short distance expansion and composite opera-
tors are constructed recursively in perturbation theory.

In the method of Epstein and Glaser composite operators are first constructed
for a model where the coupling constant is replaced by an external source A(x).
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The adiabatic limit A(x) — A is then shown to exist [6, 7]. One advantage is that
composite operators are constructed directly as local operators—without reference
to Green’s functions. On the other hand the method described in the present paper
seems to be more suitable for investigating anomalies [18, 19, 26].

In Section 2 some definitions of Green’s functions are collected. After a review
of the renormalization of Feynman integrals (Section 3) the Green’s functions of
composite operators are construcied and their normalization conditions derived
(Section 4). The integrands of Feynman integrals contributing to composite
operators satisfy certain algebraic identities which will be derived in Section 5.
These identities imply that any normal product

Ny[M] (1.14)

may be written as a linear combination of normal products of degree a, for any
given integera > b

Ny[M] =}, coa(M, M") No[M'] (1.15)

(Section 6). The sum contains only a finite number of terms, it extends over all
monomials M’ for which the dimension d(M’) is less or equal than the degree a,

dM’) < a. (1.16)

As a consequence of (1.15) any composite operator (1.10) may be linearly expressed
in terms of the operators (1.12).

We finally review some applications of the normal product algorithm [17-19,
24-29]. The field operator A satisfies a finite field equation which has the form of
the Euler-Lagrange equation derived from the effective Lagrangian (1.1-3), but
with normal products N, applied to the interaction terms. The Wilson expansion
may be used to express the normal product in terms of 4 by the point-splitting
method. In this way Valatin’s form of the field equation is obtained [13-17.

Lowenstein [18] constructed a finite energy-momentum tensor {19-22]!

T,, = Ny[0,] -+ c(2,9, — g.,[0) No[4%] (L.17)
in perturbation theory which has all required properties, in particular the appro-
priate Ward identities are satisfied. 6, is the formal energy-momentum tensor

0, = (0L/00"4) 0,4 — g, &
of the Lagrangian (1.1-3), ¢ is an arbitrary constant. As was shown by Lowenstein

3 A derivation of local field equations in the framework of the Epstein-Glaser method was
given by Stora [7].

4 The improved energy-momentum tensor introduced in [21] for a regularized thcory with
As-coupling does not have a finite limit when the regularization is removed. Symanzik [22]) found
a corrected form of this tensor containing one free parameter which in the limit approaches (1.17).
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the trace of the tensor (1.17) is never soft in perturbation theory, no matter how ¢
is chosen.

In a paper by Schroer it was shown that independent of perturbation theory the
trace of the tensor (1.17) is soft for suitable ¢ provided a Gell-Mann Low eigen-
value of the coupling constant exists. This would imply the asymptotic conformal
invariance of the Green’s functions [23].

Lowenstein [25] found an elegant proof of the Callan-Symanzik equation [23]
and derived a differential equation of the renormalization group. Anomalous
Ward identities and gauge invariance problems were studied for various cases [26].
Field equations were derived for a very general class of interactions [27, 29].
Lam proposed a generalization of the subtraction scheme which is particularly
useful for studying nonlinear transformations [27]. Finally, the normal product
algorithm has been extended by Lowenstein to Green’s functions involving
several composite operators [25].

2. NotaTION OF GREEN’S FUNCTIONS

In this section we collect some definitions concerning Green’s functions. For the
Fourier transform f of a function f of n four vectors Xx, ,..., X, we use the unsym-
metric definition

Fpy o pa) = [ dxy v dxg @5 (xy o %)
2.1

flry oo x0) = f (;?:)4 (‘211,,:'34 e_izpmf(h *** Pn)

Let TO,(x,) *- On(x,) be a suitably defined time ordered product of components
0, ,..., 0, of local field operators such as the scalar field 4, derivatives thercof or
composite field operators. The Fourier transform or partial Fourier transform of
TO,(x,) ** O,(x,) will be denoted by

TO1(I’1) On(Pn) == f dxy -+ dxy, eizmm‘Toﬂxl) o Op(xy) (2.2)
Tol(xl) h Or(xr) Or+1(pr+1) On(Pn)
= [ dxysy -+ dxe T TO,(xy) -+ On(Xn) 2.3)

For the Fourier transform 4,'( p) of the propagator
45 (2) = TAx) A(y)>, z=x—y (2.4)

we have

<T/T(1’1) A( Py == (2m) 3(py -+ p2) Jl",( )] (2.5)
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and

Ay (p) = <T4(0) A(p)) 2.6

{> denotes the vacuum expectation value.
The connected part of a time ordered vacuum expectation value is recursively
defined by

(TO(xy) *+ Onx)y = ¥, KTO, (x4, >0 o {TOy 4 (x1,) =50 (2.7)
The sum extends over all partitions of x; ,..., X, into classes
(Fipy s Xigy seee)s (Kayy 5 Xigg yordyees (Xi gy » Xigg 50e)
The Fourier transform of the connected part is of the form

(TO\(py) *** Op(pa)deonn = (2m)* 8 (Z p,-) (TO(py) -+ Ou(pa)yirune  (2.8)

¢ trune js called the truncated part. A Fourier transformation with respect to p,
yields

<T1O(P1) On(pn))"nmc = <T01(0) Oz(Pa) o O”(p")>corm 2.9)
The generalized Wick product
101():1) On(xn):
is defined recursively by

TO(xy) **+ On(Xn) = 104(xy) ++ Ou(xn): + Y. {TO0;, (x5) > ¢ 04 (x4} -

. (2.10)
The sum extends over all partitions of (x; ..., x,) into classes

(xlol ’ xig, a"')) (xi" ’ xi” s)

where the second class may be empty.
The mixed product

T :04(x;) *** Ou(xn): Oy (31) *** O’ (Ym)
is defined by
TOy(xy) ** On(%y) Oy’ (1) *** O/ (Ym)
= Tzol(xl) o On(xﬂ):oll(yl) Oml(ym) (21])
-1 Z <T0‘m('\'lu|) ) T:O‘u('xfu) :()ll(yl) ot Om’(}’)-
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Next we introduce the factorization by
CT{O\(x1) *** Op(x4)} Or'(31) ** Oy’ (ym)>tact
= 2 KT}, (i) - TONx)) 07 (yy,) +++>e08R X -+ (2.12)
X {TO(x5) 07, (yi,,) -->conn

The sum extends over all ordered partitions of y, ,..., y,. into n - 1 classes

(yl'ul ’ yi“ )'-')a (yi" > yim s--'):'"s (yi,u ’ y{,,g l"')

(¥, ) is assigned to x,(j = 1,..., n). (s, ") may be empty.
We give some simple properties of the factorization. For m = n

(T{AQx) -+ AQxn)} A(y) = A(ya)dreet = 3 AF(x;, — yy) - AF (xi, — Ya)

(2.13)
with the sum taken over all permutations of the x; .

(T{O\(x1) ** Ou(xa)} O'(3y) =~ O’ (yu))2t =0 for n>m
CT{O(x)} Ox(y1) *** Ou(ym)1ct = (TO(X) Oy(y)) ** O ¥m))

Let Goy(X1 5005 X0 5 Y1 ye0s Vuu) be a set of Green’s functions which are symmetric
in y; ,..., ym . We may take, for instance,

(X1 Xu 301 7 Ym) = T :A(x) - A(x,): A(3y) = A(yn)>  (2.15)

(2.14)

or
Gu(X; Y1 7 ym) = (TB(x) A(yy) * A(ym)> (2.16)

where B(x) is a composite operator. We introduce the proper part GP™P of G,, by
the recursion formula

m

1
Gm(xl xn ;.)'1 'm) = Z l_IT j dzl (IZ,. Ga(xl Tt X ;zl o zu)lll'OI)

X KT{A(z) - Az} A(py) - A(ym)yaet  (2.17)

For a unique definition we must require G™P to be symmetric in y, ,..., y,, . We
give a few examples. For the set

Gu(x; y1 =" ym) = (TA(X) A(py) - A(y)>
of Green’s functions we have
(TA(x) A(y)prror = §(x — y)

(2.18)
<1'A(.\') A(.yl) e A(}’m)>""“" =0 it m oo 1.
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For (2.15) we find

(T:d(p) - Appy:Agymor — L) Ap) M) (g 1)

a F(p)

For later reference we give the free field value of the proper parts .

(T:Ay(xy) -+ Ag(xn):4o(y1) Ao(}’m)>4l]’mp = Omn ; 8(x; — )’il) e 8(xy — J’i,,)
(2.20)

with the sum extending over all permutations P of y; ,..., y» . Derivatives of the
field operator will be denoted by

Aw(x) = 8)A(x) (2.21)
where .
(f“') = (.u' yeees Fa)
' 2.22)
a(n) = aul ot au., .
The time ordered product of field operator derivatives is defined by
T, () = A, (06) = 628, - 0, TA(x) -+ A(xy)
(15 = (g1 5005 i) (2.23)
3:2)’ = a::l aﬁ;nm > 3:’: = 8/0(x,)"

We will also use abbreviations of the form

T(A (1) - Ao, w) A™gy) -+ A™(q,))

= g1, v 8 0 DUNT(A(x)) - Ax,) Alg) - Alg,))  (2.24)

(udy (ndy, 4y

3. FEYNMAN RULES FOR RENORMALIZED GREEN’S FUNCTIONS

In perturbation theory the Green’s function
(TA(x,) - Alxa)> (3.1

is defined by the finite part of the Gell-Mann Low expansion (1.5) which we write
as an expansion with respect to Feynman diagrams

(TAXY) = A(x)y = 3 KTAGx) = Ax)r (3.2)

Cu'
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The sum extends over the set €', of Feynman diagrams with endpoints x; ,..., x,
which can be built by using 4-vertices (corresponding to the A4-term), 3-vertices
(corresponding to the A3-term) and 2-vertices (corresponding to the quadratic
terms in Z,,). Disconnected closed loops (i.e., connected components to which no
coordinates x; are attached) are excluded.

Let I'e €, be a diagram with N vertices. The endpoints carrying the coordinates
X1 5., X, are called exterior® vertices and are denoted by V, ,..., ¥,, . The remaining
vertices ¥,y ,..., Vy are called interior vertices. The lines connecting the vertices
Vo, Vy will be denoted by Ly, (o == 1,...,v(ab)). V,, V, are called endpoints
of L,, connecting an exterior vertex V, with another vertex are called exterior
lines. The exterior line L, is also denoted by L, . Lines connecting a vertex with
itself will be excluded.®

In momentum space the unrenormalized contribution from the connected
diagram I" € €, has the form

& . d
AP+ At = s lim, [ 55 s 1y
3.3)
8p = 2m)* 8(py + *** + pa)
The symmetry number & (I') is
LI = a25(31)P (3.4)

where « is the number of double lines (i.e., pairs of vertices connected by two lines
in Fig. 1), B is the number of triple lines (pairs of vertices connected by three lines
in Fig. 2), and o is the number of automorphisms of the diagram, i.e., permutations
of vertices which leave the diagram unchanged.

The integrand I, is constructed according to the following insertion rules. Each
line L, carries the internal momentum

Iuba = _]lma (3'5)

To the exterior vertices V, ,..., ¥, the external momenta

D1 Pu (3.6)
are assigned. For an interior vertex the external momentum is set equal to zero
pi=0 if j=n+41,.,N. 3.7
8 Exterior lines should be distinguished from external lines which will be introduced later in
connection with subdiagrams.

¢ Contributions from diagrams containing such loops would vanish anyhow after renormaliza-
tion,
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Fic. 1. Double line.

Fig. 2. Triple line.

The momenta are subject to momentum conservation at each vertex
a
Z laba = Pa > a= 19---1 N. (3-8)
bol

Y% .r denotes the sum over all lines Ly, of I'" with ¥, as one of its endpoints. The
internal momenta are written as linear combinations

Iabu == abo(k) 'I— qaba([)) (3'9)

The ., are linear combinations of the external momenta p = (p, *** p,) and form
a particular solution of

a
Y, dave = Pas  dave + Goas = 0. (3.10)

bol

The k,, are linear combination of s independent internal momenta k = (k, - k)
and form the general solution of the homogeneous equations

zrknba = 0- kubu 'l" k!ma == 0 (3.] l)
bo
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With these notations the insertion rules of /. are:

Ir =[] 4%°[] P. (3.12)
abol el
with
A9° = i(l3,, — m® + ie(l%,, -+ mP))? (3.13)
P, = —iX for a 4-vertex,
P, = —ig for a 3-vertex,

P, = ia + ib(I2 — m?) for a 2-vertex,

(%] is the momentum of the lines joining at the 2-vertex)
P, = 1 for an exterior vertex,

and [, given by (3.9).

The products [ T,,.r and T].r extend over all lines or vertices of the diagram I.
The renormalized contribution of the connected diagram I” is given by the finite
part of (3.3)

diey . dk,
@n)t @2m)t

TA(p) -+ Apa)>r = s Iim Re  (14)

Ry is constructed by applying Bogoliubov’s subtraction rules to the original
integrand Ir. (for details see [5]). The number of subtractions used in the definition
of Ry is specified by the degree

3(y) =4 —r(y) (3.15)

which is assigned to every proper subdiagram y of I'. r(y) denotes the number of
external lines of y (for a precise definition see the Appendix). As is shown in the
Appendix the degree (3.15) satisfies conditions which are sufficient for the con-

vergence of (3.14). In particular 8(y) is greater or equal than the dimension d(y) of
the unrenormalized integral

3(y) Z diy) = 4 —r(y) — vy(y) (3.16)

with v4(y) denoting the number of 3-vertices in y.
If the diagram I' is not connected the contribution factorizes in the usual way.
Let I" consist of the connected components I ,..., I', . Some of the I'; may consist
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of a single disconnected line. Let pjy ,..., Pin, be the external momenta attached to
I’; . Then the contribution from I' is

(TA(py) -+ Ap)>r = T1 <TA(ps) - Al )r,

j=1
s dk dk,
=) | Gy @y R pes R k(g 17)
where |
[ n,
5r =1 @8 ( L pu)
jal =1
(3.18)

.9’(1’):1—[9’(]",), RF=HRP,,
] i
k, ,..., k, are the independent internal momenta of all nontrivial connected com-
ponents.
4. DEFINITION OF COMPOSITE FIELD OPERATORS

In this section we will define composite field operators through their time-
ordered functions. We consider the monomial

M {AX)} = A (%) - A, (%) @.1)
with the notation

A(u), = a(u),Ar

()5 = (g1 seers Bgmin)s

4.2)
a(“)l = a“ﬂ o a"jm(l) a“ = a/ax“
{f“'} = ((f“)l 3srey (f“‘)'m)
The dimension of the monomial (4.1) is
d=dMy)=m+ Y #w; (4.3)
j=1

#s denotes the number of elements of a sct s,

#(); = m(j).
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We begin with the definition of the normal product
Ba(x) = N[M»{4(x)}] 44

of minimal degree. The time ordered Green’s functions of (4.4) are defined by the
finite part of the expansion

<TB{u)(x) A(yl) o A(ym)>
= Fin((Te MM\ (4°x)} A°(yy) -+ A%y )>e/(TeHEimizy )y (4.5)

The diagrams contributing to (4.5) contain a new vertex with the coordinate x
which requires additional subtractions. The number of subtractions will be specified
later. We first give the rules for constructing the unrenormalized integral of the
contribution

<TBy(p) A(q) -+ Alg.)>* (4.6)

from a given diagram 4. €,,,,, is the set of all diagrams contributing to the Green’s
function

CTA(xy) - Alxm) A(y1) =+ A(yn))-

Let I' be such a diagram with coordinates x, ,..., X,, ; ¥1 5..., ¥ and corresponding
exterior vertices Vy ,..., Vi 5 Viuia seos Vansw - The interior vertices are Vi, opigseees Ve
Identifying the coordinates x; by setting x; = x we obtain a diagram contributing
to (4.6). For diagrams I', 4 related in this way we use the notation

A=0I TI =4 4.7

The new exterior vertex of 4 obtained by identifying ¥ ,..., ¥,, will be denoted by
V, . The exterior vertices of 4 are then Vg, Vg 5e.s Vinen » the interior vertices
are Vypnsa 5o Vi - The set of all diagrams contributing to (4.6) will be denoted by
D,u - (4.7) represents a one-to-one correspondence between €., and 92,,,, .

Let I'e €,,,, have the following connected components:

Pl ey Po: PI.I:"" P«;" PI”"--, P;" (48)

To I at least one x; and one y; are attached. To I'y’ only y’s are attached and to
I’} only x’s. With this the unrenormalized contribution from I" becomes

dk,  dk,
@mt Q2w)

TA(p) = Apw) Ag) - Aqat = 5 lim, Ir

(4.9)

.

8- = [T (@m)* 3 (g Pra -t ‘Z 1) :[jl(hr)‘ 8 (% (15“) ﬁ(Zﬂ)‘ 8 (z::l p;,)

Jw=l a=1 a=1 a1
(4.10)
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Pi1 seees Dim(p) @Nd @y ...y §inis) denote the external momenta of py ..., p,, 0r ¢y 4., ¢4
which belong to exterior lines of the connected component I';. Likewise
gf1 5-» Qin-(s denote the momenta of g, ,..., g, belonging to I'y and pj; ,..., Pime(s
denote the external momenta of p, ,..., p, which belong to I';. To simplify the
notation we set

41 = Pm+1 s+ 9n = Pm+n - (4.1 1)
I is given by (3.12-13) with
p = (pl 3y Pm+n)- (412)
A Fourier transformation with respect to p, yields
{TA, (%) *+ A, (xXm) Alqy) -+ Alga)dF
= dpl dpm e TP ‘”‘l dk,
f Gt e € P lim f G e @19
with

ATl
Puy = (=), P,

4.14
(1) = (s (0)). @19
Introducing new variables of integration
pm
Pie = "”,’;;' + Kju» Pia = Kj,
. (4.15)
@ == Z Gia
a1
and carrying out the integration over K, , K,”m;
(T4 (u)l(xl) A(u),,,(xm) J(ql) o A(qn)>?‘
(lij dKja _,zp 2 : dk’
-5 /1] i ami 1l T e P i, [ 1 g
a=1 a=sl (
4.16)
¢’ ny' -
= [T @m* 8 (X ai) (4.17)
i=1 =]

In Py and I the substitutions (4.15) are made for the external momenta. The
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product [T is restricted to values j with m; > 1, [T; is restricted to values of j with
mj = 1. Setting x; = x and taking a Fourier transformation with respect to x we
get

<TM(u)(p) ‘q(ql) A(‘]m))ﬁ

my— ny—1

b dK, dKj, & dk
— s I, | I G Il IT G 1L g - (418)
where
82= Q18 (p+ ¥ ) H (2n)46(z )
- (4.19)
L) = #I)
and
Iy = SPir. (4.20)

The substitution operator S prescribes that the substitutions (4.15) be made for

momenta py ,..., p.. . According to (4.20) the insertion rules for the construction

of I, are the usual ones except that the monomial Py, is assigned to the vertex V.
The renormalized Green’s function (4.5) is then defined by

KTBuy(x) A(y) = A(ya)> = ) (TBux) A(y) - A(ya)>a  (421)

4€ Dy,
with the Fourier transform of
(TBy(x) A(yy) = A(¥u)d4 (4.22)
given by the finite part of (4.18), namely
<TB(u)(17) /I(‘h) J((I7n)>d

my—1

.S’(A) 6—»+0fn Il

a=1

dKje dK,, ¢ dk

a=)

RY.  (4.23)

We still have to specify the number of subtractions to be used in constructing R4
from the unrenormalized integrand I, . This is done by prescribing the degree
84(y) of any proper subdiagram y of 4. If y does not contain ¥, we define 8,(y) by
(3.15). If y contains ¥, we define 8,(y) by

Sy(y) = d —r(y) 4.24)
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where d is the dimension (4.3) of the operator B{3), and r(y) denotes the number of
external lines of y (for a precise definition of r(y) see the Appendix). As is shown in

the Appendix 8,(y) satisfies the conditions (A.35) and (A.36) which are sufficient
for the convergence of (4.23).

We will also need composite operators

B{&(x) = N [M){Ax)}] (4.25)

which are constructed with additional subtractions. The degree a of the operator
may be any integer which is greater or equal to the dimension (4.3)

>d, a—d=0,1,2,.. (4.26)

The Green’s functions

CTBE(x) A(y) - A(y,) (4.27)
are defined similarly to (4.4), (4.21-23) but with a larger number of subtractions
CTBEX) A(y) = Ay = ¥ <TBEX) Ay -+ A(yn)a

€D mn

<TBE(p) Algy) /T(qn)> (4.28)

M,

(IK,., dKa 5 _dk a
9’4 H+0J.H H (2,".)4 H ﬂ (27:)4 H L2 14) ()

a=1

In order to specify the number of subtractions used in constructing R\ from I, we

assign a degree 8,(y) to any proper subdiagram & of 4. If y does not contain ¥, we
set '

8(y) = &(y) (4.29)
If V, belongs to y we set
8u(y) = a —r(y) (4.30)
According to (4.24)
84(y) = 84(y) + a — d if V, belongs to y. 4.31)

Again the degree 8,(y) satisfies the conditions (A.35), (A.36) of the Appendix which
are sufficient for the convergence of (4.28).
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For the derivation of some normalization conditions we write down the
expansion of the proper part, as defined by (2.16-17);

(TBE(x) A(3) -+ Ay " = (T:dly,(x) -+ ALy, (): ApD) -+ A(P)5™"

+ X y@) CTBEN(x) A(y) -+~ A(ya)e™”

PEF
4.32
The first term on the right side *32)
(T AL (%) =+ AL (%) %) = A ()5 "
= Smﬂa::]l (u) Z 0(x; — yll) 8y — yi,,) I:c,-w (4.33)

represents the zero order contribution and comes from the trivial diagram con-

sisting of the vertex V, only. 4° denotes a free field, { ), the free field vacuum

expectation value. The sum Y ¢.#n, on the right side of (4.32) extends over the set

. of all proper diagrams @ which can be obtained by dropping the lines with

endpoints y, ,..., y, from a diagram @* contributing to {TB{3(x) A(») - A(ya)>-
In momentum space the contribution from a diagram @ is

KTBE(p) A(gy) -+ Ag)>5®

n—l d . "yt d 4 s n .
Iz (d’) ‘!}}},J H I (217?)4 I 11 (217?)4 I1 (; 34 Ry (434

a=1 a=1

8o =Qm}8(p—Ya) F@) =LY
in the notation of (4.28). The renormalized integrand R'® can be written as
RY = (1 — ) RY (4.35)

where 1® denotes the Taylor operator with respect to ¢, ,..., ¢, up to and including
the order 8,(®). For the definition of R see [5]. Equation (4.35) implies

o, -+ ol R =0 (4.36)
or
o0, - 0% CTBAO) Alqy) -+ A@)5™ = 0 (4.37)
at q, = - = ¢, = 0 provided

Y #w); < 8(P) = a — n. (4.38)
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Hence
<TBRO) 4»y,(0) -+ Ay, (0" (4.39)
= (T:48)(0) -+ A% (0): A% (0) -+ A2, (0)>5"° provided n + 3 #(); < a

(TBE0) Ay, (0) -+ Ay, (0))P™F =0

if n-+Y #0)<a and {}p{y} (4.40)
i m 3
(TBE(0) Ay, (0) -+ Aoy (O = iZ*Wi [T, 1 [T [T s !
=1 Jual awsl

if n4+ Y #0);<a and {v} ~{p}.

In these equations the following notations were used. Two sets (), , (v); are called
equivalent

()i ~ () 4.41)
if (v); is a permutation of (u); . {u} and {} are called equivalent
() ~ ) (4.42)

if n = mand if there is a permutation ((+);, ,..., (»):) of {v} such that
(I"')J ~ (V)i'j
Otherwise we write {u} % {1}, 51 ,..., 5; are the numbers of equivalent (u), occurring

in {u}. aj, is the number of «’s occurring in (w); .
We finally show that the vacuum expectation values

(BE(x)> =0 (4.43)

vanish. The contribution from a Feynman diagram 4 is given by

lKa ! a
<Bpa = 5 lim [ T] T STl gk @

a=1
If 4 is proper the integrand is of the form
RY =(1—1,9RY =0

and vanishes since R'® does not depend on p. If 4 is not proper it contains at least
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one proper subdiagram y with one external momentum p only and degree
b = &(y) = 0. Such a diagram contributes to R} the factor

R =(1—1)RY =0

since R{”’ does not depend on p».

As has been emphasized by Lowenstein [13] the time ordered Green’s functions
defined in this section are not uniquely determined. It frequently occurs that the
same local operator B(x) may be represented by different polynomials of 4(x)

B(x) =} ;N [M{A(x)}] (4.45)
B(x) =} ¢/ Ny [M; {A(X)}] (4.46)

M;, M;" denote monomials of A and its derivatives, j includes Lorentz indices.
While the time ordered functions of a given monomial were uniquely prescribed
the Green’s function

(TB(x) A(yy) = A(ya) (4.47)

as calculated from the representation (4.45) and (4.46) may differ by 8-function
terms.

5. ALGEBRAIC IDENTITIES

Let I'be a diagram of €,,,,and 4 = '€ 9,,,, . In this section we will investigate
the relation between R and the integrand RY” which we used in (4.28) for defining
the Green’s functions of composite operators. Using the explicit formulas derived
in [5, Section 3], R and R'* may be written as

R,v == Sp Z ]—[ (—‘tySy) S(/’p (5])
Ued(I) y¢U

RY =58, Y TI(—17S)Sul, (5.2)
Ue (') veU

I and I, are related by (4.20). U(I") is the set of all I'-forests, U,(4) the set of all
A-forests relative to the degree 8,(y). For the definition of the substitution opera-
tors S, see [5]. In addition we introduce the substitution operator Sy, . If applied to
a function of the momenta /,;,(p, k) the operator Sy prescribes the substitutions

lavo(PK) = 13yo(P7K7)

if Lqs, belongs to y € U but not to any other ' € U with ' C .
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Apparently
U = TV D (5.3)

where @ is the set of all A-forests with at least one element y containing ¥, . From
(5.1-3)

RY = SP R+ X (5.4)
with
X=35, Z H (—1.7S,) Sul, (5.5)
Ued yelU

Our aim is to write X in a more convenient form, First we note that any two
elements v, ¢’ of U containing ¥, must satisfy

yCy ory'Cy

For y and ' are not disjoint since they have the vertex ¥, in common. Hence
among all elements y € U containing ¥, there is a smallest one which we call 7.
Then

U=U,vU,v{r (5.6)

U, is the set of all y € U(y # 7) with 7 Cy or 7 and y disjoint. U, is the set of all
y € Uy # 7) with y C 7. (5.6) implies

l—I (_taySv) = n (_tavSv)(—taTS'r) 1—_[ (_tyS'y) (5‘7)

velU veU; velUg

With this information Eq. (5.5) becomes

X=Y Y Y |1 (=1S)X=t8) [] (—S,) Svl, (5.8)

16Ty U e, Uge¥(r) yeU, veU,

Here T, denotes the set of all proper subdiagrams = of 4 which contain V¥, and
have degree 8,(r) = 0. ., is the set of all A-forests U; which have the property
that each y € U, satisfies

7Cy orTNy =@,

u(7) is the set of all v-forests. (5.4) and (5.8) represent the final form of the algebraic
identities.

We finally discuss a generalization of (5.4), (5.8) which will be needed in the
following section for establishing relations between normal products of different
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degrees. Suppose R'® and RY’ are formed with different degrees 8, and 8, defined
through (4.29-30), assuming @ > b. We have

RP =S, Y [I(=17S)Sul, (5.9
Ue (4) veU

RO =8, ¥ TI(~t7S,)Suls (5.10)
Ued,(4) veU

In (5.10) we used the convention
=0 if §(y) <O.
For any y containing ¥, we split

tav = tbv + (tav — tbv) (5.11)
while

17 =t =3 (5.12)
holds for all y’s which do not contain ¥, . Substituting (5.11) into (5.9) we obtain

R =8, ¥ Y TJIFSula (5.13)

Ue¥,(4) FEF(U) veU

Here #(U) is the family of functions with the property

(]) F‘v = _tbySv or Fv = '_(tav - tby) Sv
if y contains ¥,

(i) F, = —t,7S, = —4,¥S,
if y does not contain V.

For any U there is a function F, in #(U) which assigns F, = —#,»S, toany y e U.
Taking out all terms with F = F, we find

R@ — R® 4 x (5.14)
X=5,Y% Y [IFESuvls (5.15)
Ue! FeF(U) veU
F#F,

' is the set of all forests having at least one element y which contains ¥, . Our
aim is again to write X in a convenient form. For F # F, there is a smallest element
7 in U which contains ¥V, and salisfies

Fpo= —(t7 — 1,7) S, (5.16)



Composite Operators in the Perturbation Theory 265
COMPOSITE OPERATORS 557

For given U and F we decompose
U=U,vvUu{r} 5.17)

where U, and U, are defined as below Eq. (5.6). As generalization of (5.4), (5.8) we
finally obtain

(@) __ plb)
Ri" = Ra" -+ X (5.18)

X = Z ): Z H (""tavS-/)(_(taT - th')) S‘l’ H (—tby y) SUIA

1€T, Ue M, Uye¥(r) vel, veU,

T, , #, are defined as below Eq. (5.8).

6. RELATIONS BETWEEN COMPOSITE OPERATORS OF DIFFERENT DEGREE

In this section we will derive some identities which relate composite operators of
different degree. We consider the formal operator product

M {A(X)} = A (x) = Aw, (), m =2 (6.1
of dimension
d=m+ Y #uw, >2 6.2)
and form the composite operators
BA(s) = No[Ma (4] (6.3)
BE)(x) = N[MafA()] (6.4)
It will always be assumed that

d<b<a. (6.5)

We will compare the power series expansions of the Green’s functions

(TBEX) A(y) = A(y)> = ¥ (TBE(x) A(yy) - Ay a (6.6)

€Dy,

KTBE() A(yy) -~ A(y)) = Y <TBEG) A(y) = A(ya)>a. (6.7

46Dy,
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According to (4.28) the contributions from the diagram 4 are given by

KTBE(p) Alqy) -+ A(g.)) 4

dKu dK;a & dk a
9’(4) lim 11 H ami 1l il e LG B 69)

a=1

<7B‘..,(p) Aqy) - A(q,,»d

my—

dKy, kg dly
./(A) €—>+0 f H H (21:)4 H H (2,”)4 H (2 ’)4 ; . (69)

a=1

The renormalized integrands R\ and RY are related by the identity (5.14-15). We
first determine the set T, appearing in (5.15). By definition T, is the set of all proper
subdiagrams of 4 which contain ¥V, and have nonnegative degree

8,(1) = 0. (6.10)
The definition (4.24) of the degree yields the inequality

a—r=0 (6.11)
where r is the number of external lines of 7. This implies

r=1,.,a (6.12)

The case r = (0 may be excluded since

(ta" - tbf) S‘r H (_tbySv) SUIA =0

veU,

vanishes if = has no external lines. For then all momenta 1%, are independent of
the external momenta p*. Hence 7, is the set of all proper subdiagrams of which
contain V, and have r == 1,..., a external lincs.

The unrenormalized integral I, factorize according to

Iy = 1,1, (see Eq. (A.26)). (6.13)
With (6.13) the identity (5.14-15) becomes
RY = R + X

X = - Z Z z ]—[ (_tavSy) (6.]4)

16Ty UeM, Uje(7) veU;

X Sydan(ts — 1,7) S, [T (—17S) Su ., .

velly



Composite Operators in the Perturbation Theory 267

COMPOSITE OPERATORS 559

In order to work out the explicit form of the differential operator #," — #,” we list
all nonvanishing external momenta of 7. The external lines of = are given by (A.2).
Some of the subscripts a; may be zero. In this case external lines of = are attached
to ¥, . The nonvanishing external momenta of = are then

Pi" =Do =P
and
Pilseen PY7

corresponding to the external lines (A.2). The momenta p,yq = 1 5ot Prnin = 4
cannot be external to . For the corresponding exterior vertices Vg 5.y Vimin dO
not belong to  since 7 is proper. The sum of all external momenta of 7 must vanish

P+ Y = (6.15)
i

Since 7 is connected (6.15) is the only linear relation among the external momenta.
Choosing py",..., p,” as linearly independent external momenta we have

= =3 T i P 8 -+ 8 6.16)
with
(P)i = (Pir s--s Pir1)s {e} = (P15 (P)r)
DI, = Pim " P+ Do = T O 6.17)
[ 0

A peT)

Pik
The sum Z?‘,)a extends over all sets {p} with
b<r+ Y #p);<a (6.18)
ie1

The operator 67 prescribes that the external momenta p;” be set equal to zero. Let
S, be the first substitution operator of

SI‘ I_I (_tavSv)

vel,

to act on (6.16). That is,  is either I" or the smallest element of U, which contains
7. S, then effects the substitution

pim = piTkY, pt)
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PR P) = —lape, = —kipo (k") — gap,e(P") (6.19)

In (6.14) we may therefore replace

.. Su ...p;(p)l "'P:(n)f
by

Sy (—ilgpe )W, (—ilay o ) (—D) o

We thus obtain the following factorization of X:

--r % %’{2:*;’): R (@~ 07nROY (620)
ROy = u,g:,«, v]ll (—147S,) ﬁ 120,0,(k", P*) ), Sud /21
6.21
= VefZ(A/r) DI;I;,(——’GDSp) Svlatsio )
R = ¥ T[(—47S)Sul,. (6.22)

UeF (1) velU

In (6.21) the substitution p = y/r was used. For the notion of the reduced diagram
4/ and related definitions see the Appendix. Ly, is defined by

IA/-r(p) = l_[ I(fbl_;ri(k’ p)(n), Idl‘r (6‘23)
Jual

Integrating (6.20) over the internal momenta, summing over all 4 and taking a
Fourier transformation with respect to p, ¢, ..., ¢, we obtain

CTBE() A(y) -+ A(yn)y = (TBE(x) A(yo e A(y)d

1y P G @) Ay - ACy)

Lo T #(p ) ]
(6.24)
b<rt il#(p), <a
The coefficients are
Gy = ¥ <18©0) A90) - A0 (6.25)

TeF,
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where %, is the set of all nontrivial diagrams contributing to the proper part. The
notation in (6.25) is similar to (2.24), i.e.,

(TBE(x) A¥(g,) -+ A(g, ™"
= 9% - oW T (x) A(gy) - A(g,)yPrer (6.26)
The contribution
(T A0 (0) ++ Ao, (0): AP(O) -+ AL 7O

from the trivial diagram (with the notation of (2.24)) vanishes because

=m+ Y #p); <b<r+Y #p)
in (6.24), and therefore {p} +* {u}. Hence
G(b)(a) <TB(D)(0) J(n),(o) /I(o),(o)>pmp (627)

for the coefficients of (6.24) with the notation (6.26). According to this the GO}
are invariant tensors which can be composed of g,,- and ¢,,,,,-tensors only.

Applying the reduction technique to the variables y, ,..., y» of Eq. (6.24) we
obtain the operator identity

B® B -l) () {6} pla)
(u)(x) (u)(x) + (;)b 'n #( ) 1 G Bfo)(x)

(6.28)
b<r-+ ) #py<a

=1

with the coeflicients given by (6.27). If the reduction technique is applied to only
part of the variables y; we obtain (6.24) in operator form

TBE(x) A(yy) -+ A(yn)

A\ 2 (o)
TBEG) A~ Ay + YA

G(Z)(D)TB(II) x) A oo 4 n
& 'T1 #(p); ! {u) {0 (x) (r) (¥n)

(6.29)
b<r-+ Y #py<a

j=1

The coefficients GZ)*} can also be calculated directly from (6.24) and the normaliza-
tion conditions (4.40) of the normal products.
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We finally derive a formula which expresses B{‘,'j; in terms of the operators B,

of minimal degree. To this end we write (6.28) fora = b - 1

A Z#(p)
B(b) _ B(b+l) + Zb+1 )2 "

. I‘I #( ) ' G(b)(p)B(b+l) (630)
{0}

The sum is restricted by
b<r ) #p,<b+ L
jed

Hence the degree b + 1 equals the dimension of the composite operators appearing
in the sum

P+ ) = b+ 1

(
B = By, .
With the abbreviation

GO =Gl if b=r Y #) — 1 (6.31)
Jr=1
we find
; 2#(0),
B = By — Yo =7 g 6.32
{u} {u} (zo}:a ! H #(p)j ! {u} 210} ( )

Here d denotes the dimension of By,

m

d=m-|- Y #w),.
J+1

The sum is restricted by

d<r+Y #py<a (6.33)

A corresponding formula holds for time ordered products

CTB{R(x) A(py) =+ A(y)> = <TBuy(x) A(yy) - A(y.)>
_’)2#( 0);

(p)
(Zp):d r! I'I #( ) ! (u)<TB(o)(t) A(Yl) A(yn)>
(6.34)

Many examples for the relations (6.24--34) can be found in the applications of the
normal product algorithm by Lowenstein and Schroer [18, 24-26].
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APPENDIX: SUBDIAGRAM AND REDUCED DIAGRAMS

The conventions concerning subdiagrams and reduced diagrams used in this
paper are slightly different from those of [5]. We briefly introduce the relevant
modifications.

A subdiagram y of I'e €,, or 4 € D,,,,

yCrI or yC4

is defined by a nonempty subset of lines of I'.” The vertices of y are formed by all
endpoints of lines belonging to y. A line of I'" or 4 not belonging to y is called an
external line of y if one or both endpoints lie in y.
We next introduce external and internal momenta for y. Let
Vi seees Ve

4

(A.1)
be the vertices and

(A2)

Lalblal EEREE La,b

rOr

be the external lines of y. The indices a; , b; are ordered such that a; refers to the
endpoint Va, which belongs to y. If both endpoints ¥, and ¥, of a line L,,, belong
to y this line is listed twice in (A.2) as Lg, and Ly, -

As external momenta of y we introduce

Poy 5o Pe, (A3)

(corresponding to each vertex (A.4) of y) and the new variables

ply’---, pry (A4)

corresponding to each external line of y as listed in (A.2). The combined sets (A.3)
and (A.4) of variables will be denoted by the symbol

pv = .(p°1 0oy pc, ’ plv,--'a Pry) (AS)

The momenta p,, associated with an interior vertex ¥V, of I" or 4 vanish. Hence
only those momenta p; in (A.3) can be different from zero which belong to the
exterior vertices

Vs Va of T'e®, (A.6)
7 The emply sct or a trivial diagram consisting of a single vertex and no line is not a subdiagram

in the sense of (his definition. On the other hand the full diagram itself is considered as a sub
diagram.
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or

Vos Vintr seees Vingen of 4€9,,,. (A7)

At each vertex ¥, of y we introduce the total external momentum

OX‘
=g’ (P =pa+ Y. p;
a = Cl yrovy CN(.,,)

(A.8)

The sum extends over all external lines La,, o, of ¥ which are attached to ¥, . These
are all lines listed in (A.2) with a; = a.

The internal momenta 1%, are required to satisfy momentum conservation at
each vertex of y

2y e = 447(p") (A.9)
The 1%, will be written in the form
Lo = kano(k") + qine(P") (A.10)

where the g7,,(p?) are linear combinations of the external momenta p? and form a
particular solution of

Z: qzba = qa‘V(pv)’ q:bo + q;aa = 0. (A] ])

The k7, are linear combinations of s(y) independent internal momenta

= (ky"sees KD

and form the general solution of

Yo ki, = Cavo 1 Kiao = 0. (A.12)
k¥ and pr are expressed in terms of k and p
kr = kv(k,p),  p* = pr(k, p) (A.13)
by requiring
Lo (K, P7) = Lono(k, P) (A.14)

for each internal line of y and

Pay = —laws(k, p) (A.15)

for each external line of y.
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Let u be a subdiagram of y C I'. In an analogous way we introduce the func-
tions
k# = kpkr, pr),  p* = pA(kY, p7) (A.16)
by setting

Lavo(K*, p*) = Loo(K, P7) (A.17)
for every line Ly, of u. Moreover, we require
Pt = —lipe K" p") (A.18)
if La‘,,,,,! is an external line of u, but not of y, and
= DY (A.19)

if Lapo, = Lo, is an external line of u and y. (The numbering (A.2) of external
lines may be different for u and y, hence j # k in general.)

The choice of the particular solutions g,.(p) of (A.11) should be such that k7
depends on k only and k* on k” only in (A.13) and (A.16)

k = k(kv),  k* = k2(k). (A.20)

As was shown in [5] such g.p0(P), ¢2.(P?) can always be constructed.
The unrenormalized Feynman integral associated with a subdiagram y of
I'e¥, or 4 € 2,, is given by

J, = f dicy? - i I, (A.21)

where
I, = Hy AFabu H, P, (A.22)
c

abo
with the usual insertion rules. The products extend over all lines and vertices of .
The dimension d(y) is defined by the dimension of the integral (A.21).

A diagram is called trivial if it consists of a single vertex and no line. A diagram
is called proper if it cannot be separated in two parts by cutting a single line. Two
diagrams are called disjoint if they have neither a line nor a vertex in common. Let
y be a subdiagram of I'e €, or 4 € Z,,,, . Let yy ..., v be mutually disjoint proper
subdiagrams of y. The reduced diagram

7 =72lv1" 7 (A.23)

is then defined by reducing each y, in y to a vertex. In other words, the lines of y
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are formed by those lines of y which do not belong to any y; . The vertices which
are formed by the corresponding endpoints but with all vertices identified which
belong to the same y;. The unrenormalized Feynman integral associated with
(A.23) is given by

Jy = [diy? - iy Iy (A.24)
where
Iy = [T, 4rae I 1 Po (A.25)
abo 4

is formed with the usual insertion rules. The products extend over the lines and
vertices of y which do not belong to any vy, . Accordingly the factor 1 is assigned to
each reduced vertex. I, , I, ..., and I, are related by

Iv = Iv/v;---y.,lvl Iv (A26)

[

Let y be a subdiagram of I'e €, . The dimension d(y) of y is defined by the
dimension of the integral (A.21) which is given by

d(y) = 4s(y) + 204(y) — 2U(y) (A.27)

Here s(y) is the number of independent internal momenta of vy, v,(y) the number
of 2-vertices, /(y) the number of lines belonging to y. The dimension d(y) of the
reduced diagram, i.e., the dimension of the corresponding integral (A.24), is
given by

d(y) = 4s(7) + 20y'(y) — 2U(y) (A.28)

where v,'(7) is the number of original 2-vertices belonging to  (i.e., not counting
those 2-vertices which were obtained by reducing proper self-diagrams of ). The
relation

diy) = dF) + ¥ diyo) (A.29)

a=1

then follows from (A.27-28). This is obvious in the absence of 2-vertices in y.
Moreover, the insertion of 2-vertices into the lines of y does not change (A.29)
since the degree of a factor A + B(/? — m?) is cancelled by the degree of an
additional Feynman denominator. Hence (A.29) holds in general.

We next derive two conditions for the degree 8(y) defined by (3.15). (A.24) may
also be written as

d(y) = 4 — r(y) — vy(y). (A.30)
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Here r(y) is the number of external lines of y with those external lines counted
twice for which both endpoints lie in y. v,(y) denotes the number of 3-vertices in y.
From (3.15) and (A.27) we obtain

8(y) = d(y) + vs(y) (A.31)
which implies

8(y) > dy). (A32)
Moreover, (A.29), (A.31) and

Us(')’) = ; vy(y5) (A.33)
imply
5) = d3) + 3 dly). (A34)

j=1

The conditions (A.32) and (A.34) guarantee that the final renormalized integral

(3.14) is absolutely convergent and approaches a distribution in the limit € — -|-0.%
We finally derive the corresponding formulas for the contribution from a

diagram 4 € 9,,, to the Green’s function (4.28) of the operator B} . Let y be a

subdiagram of 4. We have to verify that the degree function 8,(y) as defined by

(4.31) satisfies the conditions

3.(y) = d(y) (A.35)

5:y) = d@) + 3 8av2) (A.36)

j=1

for any reduced diagram (A.23). Only the case where y contains the vertex ¥, need
be checked. In this case the dimension of y is given by

d(y) = Y, #(p)s + 4s(y) + 20,(y) — 2U(y) (A.37)
which may also be written as
d(y) = d — r(y) — vy(y). (A.38)

d is the dimension (4.3) of the operator B{f) , s(y) the number of independent inter-
nal momenta of vy, vy(y) the number of 2-vertices (excluding V), v(y) the number

8 See ref, [5]. Apart from minor changes the convergence proof is not affected by the modi-
fications of this paper.
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of 3-vertices (excluding V), /(y) the number of lines belonging to y. (4.30) and
(A.38) imply

3u(y) = d(y) +v(y) +a—d (A.39)

yielding (A.35).
In order to check (A.36) we note that (A.37) implies

4

dly) == d@) -+ Y. d(y;) (A.40)

i=1

in the absence of 2-vertices. Since the insertion of a 2-vertex does not change the
dimension of a diagram Eq. (A.40) holds in general. Assuming that none of the .
subdiagrams vy, ,..., ¥, contains V, we have

8alys) = 8(yy). (A.41)
Then (A.31), (A.39), (A.41), and

c

v3(y) = ). va(yy) (A.42)

j=1

imply (A.36). Next we assume that y; contains ¥, . Since y, ,..., v, are disjoint only
y; contains ¥, . Hence

aa(}’!) = d('}’a) + vs('}’j) +a—d
8o(ys) = d(y;) + vy(yy)  if i # .

Combined with (A.39), (A.42) these relations imply (A.36).
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Normal products are defined in perturbation theory for renormalizable interactions
of a scalar field. Various identities involving normal products are derived. As an applica-
tion Wilson’s asymptotic short distance expansion is verified in perturbation theory for
a product of two field operators.

1. INTRODUCTION

In a previous paper composite operators

No[Mp{A(x)}] (L.1)

were defined in perturbation theory for the model of a scalar field 4 with mixed A3,
A%-coupling {1]. M, denotes the formal monomial

M{A(x)} = A (x) -+ A, (%) (1.2)
with the notation

A, = 94 Ay

(s = (Pt seeor Bimtn),  m(j) =0

(1.3)
0y = Oupy Oy » O, =1 if m(j)=0
{1 = (W5 W), 8, = 0f0x~.
a may be any integer greater or equal than the dimension of the monomial
a = dM,) (1.4)

* This work was supported in part by the National Science Foundation Grant No. GP-25609.
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Renormalization and Composite Field Operators, in “Lectures on Elementary Particles and
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d(My,) is the dimension of My, in the naive sense, where the dimension 1 is
assigned to the field 4 and the derivative 0, , i.e.,

A (AGN) = m + 3 m(j) (1.5)

Composite operators for which the degree a equals the dimension (1.5) are
called composite operators of minimal degree and denoted by

NIMp{AX)}] = No[Mp{A(x)}]  with  a = d(M). (1.6)

In this paper (1.1) will be generalized to a definition of a normal product

Na[A (u)l(xl) o A(u),,‘(xm)] (] 7)

which depends on different coordinates x, ,..., X,, . @ may be any integer. Fora <0
the operator (1.7) equals the corresponding time ordered product

Na[A(u)l(xl) ot A(u)m(xm)] = af,‘,)l e afx‘)mTA(xl) = A(xp)
if a=—1,-2,... (1.8)
If a is greater than or equal to the dimension of the monomial the normal product
(1.7) approaches the composite operator (1.1) in the limit x; — x.
For the special case of two operators the normal product

Na[A ), (x1) Aoy (x)] (1.9)

will be defined in two different ways. In Section 2 the operator (1.9) is defined by a
linear combination

N
Na[Ag) (51) A (X)) == 008, 07, TA(xy) A(x) -+ Y, Gi(€) By(x)

(dy (udg A

x = (% + xp)/2, €= (x; — x)2

of the corresponding time ordered product and composite operators Bj(x) of
minimal degree d < a. The coeflicients G; are explicitly given in terms of Green’s
functions. An alternative method of defining normal products is developed in
Section 3. There the Green’s functions

<TNa[A(u)1(x1) A(u),,.(xm)] A(yl) A(yn)> (111)

are defined in perturbation theory by a simple generalization of the corresponding
definition of

(1.10)

<T’N“[A(,‘)‘(X) e A(u) (\')] A(yl) ot A(yn)>

"
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which was given in [1], (Ref. [1] is referred to as I throughout). For the case of
m = 2 the complete equivalence of both definitions is established in Section 5.
A generalization of (1.10) to the case of more than two operators is possible,
but will not be given in the present paper.
The normal product (1.9) satisfies

0, N[ A, (x1) A, (x2)] = Nad,f[A ), (x1) A, (x2)] (1.12)
and Lowenstein’s rule [2]
0,5 No[A (), (x1) A (x2)] = N1, A, (x1) A, (x2)] (1.13)

The normal product formalism is applied to Wilson’s short distance expansion
for a product of two operators [3]. In Section 4 the principal part of the Wilson
expansion

TA(xy) A(xy) = ny(f) Bi(x) 4+ R(x1x,)

(1.14)
x = (x;+x)/2, &= (x1— xp)/2, lim R =0

is derived in perturbation theory, confirming earlier results by Brandt {4]'. On the
right side the sum extends over all composite operators (1.6) of minimal degree and
dimension

d <2,

including the identity. The index j includes possible Lorentz indices. Explicit
expressions for the coefficients f; in terms of Green’s functions are found. The
remainder is obtained in the form

R(x1x9) = No[A(x;) A(x)] — No[A(x)] (1.15)

which vanishes in the limit x; — x.
In Section 6 the asymptotic form of the Wilson expansion
o0, 0%, TA(x,) A(xy) = Y f(€) B/(x) + Ruxexs) (1.16)

is proved to be valid in perturbation theory?. The sum extends over all composite
operators (1.6) of minimal degree and dimension

d<n. (1.17)

1 The form (1.14-15) of the principal part was applied by K. Symanzik in ref. {5] to the asymp-
totic behavior of vertex functions at large momenta. The paper also contains another derivation
of (1.14-15) which makes use of the 2-particle structure of Green’s functions.

2 Another proof of the asymptotic form of the short distance expansion has been given by K.
Wilson [6], using a different method.
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The coeflicients f; are expressed in terms of Green’s functions. The remainder R,
is related to the normal product by

Ru(x1%9) = N[, (x1) 4G, (x2)] — teN[Ay (X + ) Ay, (x — §)]
xx=x+§&, xp=x—¢§
- (1.18)
(W) = pn " Bims

¢c=n—2—m(l) — m(2).

Applied to a function F of ¢ the expression 1°F denotes the Taylor series of F at
¢ = 0 up to and including terms of order ¢. The remainder (1.18) vanishes at least
like (£2)°72 for £ — 0.

2. DEFINITION OF NORMAL PRODUCTS

As a generalization of the Wick product we introduce a family of normal
products

No[A ), (x1) A(yy(x2)] @0
where a may be any integer. If a is negative we set®
Nold,(01) 4w, (x2)] = TAw,(x1) A(x2), a <O. (2.2)
N, is identical with Wick’s : : -product
No[A ), (x1) A (x2)] = 146, (x1) A, (x2):

= TA(u)l(xl) A(u),(xz) - <TA(u)‘(xl) A(u),(xl)> ’ l
(2.3)
For positive a we define

No[A),(x)) Ay (x2)] = T, (x1) A (x2) — <TAw),(6) Aw,(—E) 1

(— i)}:#(p),

~ L AT Ay
x = (x; + x)/2, £ = (%, — xp)[2

G Biy(x) (2.4)

3 The time ordered product of derivatives of field operators is defined by
(TA@ (31) = A () = &3, =+ 85 CTAMx) <+ ACe)).

1
vl (17
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The sum extends over all sets

{P} = ((P)l AR (P)r)
(P); = (P11 soees Pint) #n(j) =0, 1,...
with

0<r+ Y #p)<a (2.5)

=1
#(p); denotes the number n(j) of elements in (p); . Byy(x) is the composite operator
B,y (x) = N[A(),(x) = A, ()] (2.6)

of minimal degree

d=r+Y #p).
i1

The coefficients G((f‘}) will be given later. According to (2.4) the normal product is a

linear combination of the time ordered product and local operators depending on
x = (x; + x;)/2. This suggests a natural definition of the time ordered product

T(NalAw,(x1) A6 (x2)] A(y1) =+ A(y3)). 2.7)

In order to form (2.7) we multiply (2.4) by the operators A(yy),..., 4(y,) and apply
the time ordering separately to every term on the right side. We thus arrive at the
following formula for the time ordered products (2.7)

'I‘Nu[A(u)l(xl) A(“)g("\.g)] A(yy) = A(py)
= TA(AA),(xl) A(u.)g(xz) A(yl) A(yn)
~ (TAwW(§) AW (—E)) TA(y) =+ A(yy)

_ya _(=D¥E
% rl H #(P):i 1 G‘u)(f) TB(D)(x) A(yl) A(}’n)- (28)

We finally define the coefficients G{¢}(£) by

GI(&) = (TN, A4 (£) Ay (—E] AD(0) -+ AP if r£2
(2.9)
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and
G () = (TN, [ () A (—E1 A(0) A¥3(0)yP

_ i#(a)1+#(n),(_1)#(u)g+#(n)g a(u)lf(n)la(“)’f(o)g

(2.10)
_ i#(p)1+#(n)3(__1)#(u)z+#(n)l a(u)lf(p)ga(“)gf(a)l

é'.'(ﬂ)l — gﬂu E"xnm’ E(D)a — gﬂax fﬂun(z) if r=2.
b denotes the integer
b=r+Y #p)— L

(For the definition of the proper part { >Prov see I, Section 2].) The notation used
in (2.9-10) is

(TOA(qy) -+ AW (g Y™™ = o2 -+ o< TOA(qy) -+ Ag ™™™ (2.11)

for the proper part of a time ordered function involving the operator O. In the
formula (2.4) for the normal product N, all coeflicients Gﬁf,{ are determined
recursively. For every term of the sum satisfies

b=r+ Y #py—1<a—1 @.12)

so that all coefficients G‘(‘,?, are given by normal products N, with b < a.

According to (2.8) reduction formulas hold in their usual form for the time
ordered product (2.7). In particular, the matrix elements of (2.4) are uniquely deter-
mined by the vacuum expectation values of (2.7).

The normal product (2.4) satisfies the differentiation rules

0N[4 (x -1 &) A — 6)] = N f A (x -+ €) Adw(x — ] (2.13)

3, 5N, [A(y (x - &) Ay, (x — O] = Napnd Ay (x + &) A, (x — 6]
2.14)

(2.13) follows immediately from the definition (2.4), (2.9-10) of the normal product.
(2.14) was derived by Lowenstein [2] in perturbation theory. It can also be derived
by using the definition (2.4), (2.9-10) and Lowenstein’s relation for composite
operators

8,°N[A(,),(x) - Ay (0] = NO[A () (%) -+ A (X))
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Repeated application of (2.13-14) yields
) Naldi,(x + &) A (x — 6] = Nadipld,(x + &) A, (x — §)]

2.15)
Oy Na[A (x + &) A (x — O] = Nl (x + §) Aw,x — §)]
b=a+ #0). (216)

Using (2.15) and (2.16) any derivative of a normal product with respect to x; and x,
may be wrilten as a linear combination of normal products.
For time ordered products we have similar differentiation rules

)TN (A (x + &) A(x — 1 A(yy) -+ A(yy)
= TNy No[d ), (x + &) Aw,(x — A - A(yn) (2.17)

00 TN[Aw (x + &) A (x — 1 A(yy) =+ A(Ya)
= TN [A,(x + &) Aw,(x — O1 A(31) - A(yn) (2.18)
b= a-} #).

Normalization conditions for the normal products (2.1) can easily be worked out.
We first consider the Green’s function

O eeyxs) = (TN [Aw,(x), g ()] AO) - AO)P™®  (2.19)

(1) (u)g
for x, = £, x, = —§¢ with the notation (2.11). Taking the vacuum expectation
value of (2.8) and setting x = 0 we find

QWO gy 0 (2.20

() ()

ifY #(0); <aandn # 2,

Q((:))ll((v::’(f’ _§) — i#(v)ﬁ#(v),(_ 1)#(u)g+#(v). a(")lg(v)la(u)gf(v)a

+ i#(w)1+#(v)g(__1)#(u)g+#(v)1 a( )f(v)ga( ) f(v)l lf n = 2
iy g *
(2.21)

In deriving these relations the normalization conditions (see [1, Eq. 4.40]) for the
composite operators of minimal degree were used.
Next we consider (2.19) for arbitrary values

xy=x--§ age=x-—¢
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By translation invariance (2.19) is a polynomial in x. Likewise

), () i # () +# (g 52, & (] ,(v) (V)1 +#0) @ W)y,
P(u):(u)z,(xlxz) = TR0 O Xy Xy T 332),3(:),"2 Xt

is a polynomial in x. Differentiating (2.19) with respect to x and using (2.18),

(2.20-21) we find that Q:;’,‘;&,‘:’" and SznP:;),:‘(:f,'z coincide at x = 0 with all deriva-
tives. Hence the normalization condition

(TN (A (%) A (x)] AD1(0) -+ AP(0))P™P

. () + 0w, oz L0 .0) () 4wy omy oz ), ()
= 3, eVgm gu xVxWh | § O, g Wil (2.22)

z #(V)J' <- a,

is valid everywhere, with the notation (2.11).

As examples for the definition of normal products we work out N,[A4(x,) A(x,)]
and N,[A(x,) A(x;)). It is convenient to use the notation G(£) for the coefficient of
A(x), G,(¢) for the coefficient of

B,(x) = N[4*x)], (2.23)
Geren(€) for the coefficient of 4, ..., (x), and GP®)(€) for the coefficient of
Byp) o) (X) = N[A'(x) Ay, (%) =+ Ay (¥)] (2.29)
With this notation we have

Ni[A(xy) A(xg)] = TA(xy) A(xz)
— (TA() A(—£)> 1 — G(€) A(%), (2.25)
G(§) = (T :A(¢) A(—£): A(0)yrrov, (2.26)

No[A(xy) A(x5)] = TA(xy) A(x;) — <TAE) A(—€) 1
— G(£) A(x) + iG*(§) A,(x) — 3Gy(§) N[4*(x)],  (2.27)
G*(§) = (TN,[A(§) A(—£)] A(0)yrrop
= (T :A(§) A(—£): A(0))rrop, (2.28)

Gy(§) = (TN,[4(§) A(—£)] A(0) A(O))rror — 2
= (T :4(£) A(—£): 4(0) AQ))rror — 2. (2.29)
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In (2.28) and (2.29) the definition (2.25) of the Ny-product was used with

CA(x)y =0
and

(TA(0) A(0))rror = 0,
(TA(0) A(0) A©)ypror = 0.

3. GreEN’S FuncTioNs OF NORMAL PRODUCTS

The time ordered Green’s functions of the composite operator

No{d (%) - A, (%)},

3.1)
azd=m+Y #p),

were defined in [1] by a formal power series with respect to the coupling constants.
In this section we will extend this definition by constructing a set of Green’s
functions

CTNG[A),(x1) -+ Ay, ()l A(31) - A(ya)> (3.2)
in perturbation theory which in lim x; — x approach the Green’s functions
CTNG[A @, (x) **+ A, ()] Ay - A(ya)> (3.3)

of (3.1), provided a = d. For m == 2 the functions thus defined will turn out to be
identical with the vacuum expectation values of the time ordered products (2.7).
The equivalence of the two definitions will be established in Section 5.

The power series of (3.1) will be set up in the form

{TNL[Aw (%) *** A, (Xxm)] A(y1) - A(pa))
= Y (TNJAw(x) A, (xm)) A1) - A(yaor (3.9)

re€,in
A corresponding expansion

(TN (A, (X) - A, ()] A(py) - A(ys)>
= Y (TN [Aw,(x) > Aw, ()] A(3) - A(ya))a (3.5)

45Dy



Normal Products and the Short Distance Expansion 287

579 NORMAL PRODUCTS

for (3.2) was given in [1]. The diagrams I' € €,.,, and 4 € D,,,, are related by the
one-to-one correspondence

4=I TI=A4. (3.6)

The terms of the expansion (3.5) were defined in [1, Eq. 4.28]. A Fourier trans-
formation with respect to x yields

(TB&(x) Algy) - A@w))a

87 ive K e T ARGk
= vy ¢ lim | I oIl 1 e [ e 5 6D

aml

5, = n<2w>«s(zq,¢), P=—Ya

a=1 =1

This suggests defining

(TN[AW, D)+ A, )] Algy) - Alg)>r

a=l 40

dKse 11 K, . dk; @
-5y 11 il o I I e B ) Mgy 52

&' =84, SI)= L),

which, fora > m + ¥ #(u); , approaches (3.7) in a suitable limit x; — x. However,
due to the presence of the e-limit it is not easy to study the limit x; — x rigorously.
The limit should be taken such that all quantities

e — x)(1Gei — x,)* DV (3.9)

stay bounded. Otherwise the limit may diverge since (3.8) in general has singulari-
ties on the light cone. Thus

tim CTN [, (5) = Ao, ()] A0 -+ AQy)>
= (TNJAG () At () A -+ AP

for (x; — x,)/(I(x; — x;)2)2 bounded and a = m + ) #(p); .
(3.10)
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If a is negative the degree 3.,(y) of any proper subdiagram y containing V, is
negative. Consequently no subtractions for any such diagram are made, therefore

<TNa[A(u)l(x1) e A(u),,,(xm)] A(yy) - A(yn)

= (TAw (%) " Ay, (xm) A(3) - A(ya)>  if a=—1,—-2,...
(3.11)

If a = 0 only those proper subdiagrams containing ¥, require subtractions
which have no external lines. A connected diagram 4 € 9,,,, contains such sub-
diagrams iff 4 itself has no exterior vertices except ¥, (see Fig. 1). In this case

Ri=(l—1t)R, =0, (3.12)

Fic. 1. Subdiagram of 4 which has no external lines.

since R, does not depend on the external momentum. Hence
CTNo[ A (1) ** A, (x)] A1) -+ A(ya))
= <TA(n),(xl) A(u),,,(xm) A(y) = A(ya)>

— (T A (x1) ** A, m)XTA(y) -+ A(pa)). (3.13)

We finally give a generalization of the normalization conditions 1.4.40. The
proper part of (3.4) as defined by Eq. (1.2.17) has the expansion

CTNG[A@, (%) -+ Ay, (xm)] A(3y) *++ A(pn)>PToP
= <T:A?u)l(xl) e A?u)m(xm): Ao(yl) o Ao(yn)>grop

-2 ;,;(ﬂ(TNa[Am,(xl) S CARD i (3.14)

e
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The sum extends over the set Z of all diagrams /7 which are related to the diagrams
@ of the class Z,,, (as defined below Eq. (1.4.33) by

O=¢é, &=1
Applying the differential operator 8, +* &, and using (1.4.36) we obtain

o, v+ o (TNG[ A (60) Ao (x0) A(g)) - Alq)>™* =0 if ;=0

if n+Y #0);<a
(3.15)
for any diagram I € 2. Hence the relations

(TN [ (52) A, (5m)] AVH0) -+ AP " (3.16)

= (T:AL) (%) -+ Ay (Xn): A0 - AMOPY™®  for n+ Y #(); < a,
follow as normalization conditions for the Green’s functions of normal products,
with the notation (1.2.24) and (2.11). Using (1.2.20) the right side of (3.16) can be
worked out as follows

(Tidly (52) *++ Al (xn): A1) -+ ADn0)P"°

=8m,,§iz*(”)’6”l o g X0 O I ERY)

(1) ay

The sum extends over all permutations

oy gy
- (l m)
For m = 2, Eqgs. (3.16-17) are in agreement with the normalization condition
(2.22).

4. PRINCIPAL PART OF WILSON’S SHORT DISTANCE EXPANSION

According to Wilson’s hypothesis the short distance expansion of TA(x,) 4(x,)
has the principal part

TA(x +- €) A(x — £) = E(§) | |- E\(§) A(x) — iE)(€) 0,A(x)
+ 1Ey(§) N[A(x)*] + R(x, §) @.1)
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where the remainder vanishes as £ — 0 with £+/(| £2 |)'/2 bounded [3], Wilson’s
dimensional rules imply the following bounds on the dimensions of the coefficients

dE) <2, dE) <1
d(E) <0, d(E;) <0.

4.2)

Here the following definition of the dimension d( f) of a function f(£) is used
lpigg pt(pn) =0 if s> d()

1293 pitlpn) = o if s < d(t)

for any fixed vector n with £ 0.

It was first shown by R. Brandt that these statements hold to all orders of
renormalized perturbation theory [4]. An alternative proof will be given here as a
first illustration of the combinatorial methods developed in [1]. The generalization
to the product of field operator derivatives is not discussed in this section since this
will follow from the complete short distance expansion of TA(x,) A(x,) by differen-
tiation.

We will first check Wilson’s hypothesis for Green’s functions in the form

STA(x + €) A(x — &) A(p)) -~ A(ya)> '
= Ey(6XTA(y) *+ A(ya)> + Ev(EXTA) A(yy) - A(ya)>
— IE*(£) 0.KTA(x) A(yy) - A(yn)>
+ E(E)XTN[A(x)*] A(yy) -+ A(ya)>

+ r(xéyy - ya). (4.3)
We begin by comparing the Green’s functions
(T A(x,) A(xp): A(yy) =+ A(ya)> (44
CTN[AP] A(yy) = A(ya)> (4.5)
(TN [A(x,) A(x2)] A(y1) - A(yn)> (4.6)

in perturbation theory. For (4.6) we will use the definitions (3.5), (3.8) of the
preceding section. It will be shown later in this section that the Green’s functions
thus defined are identical with the time ordered function of the normal product
No[A(x,) A(x,)] as defined by (2.27).

We first give convenient expressions for the contributions of a diagram I'e €, .,
or 4 € 2, , to (4.4-6). In the notation of [1] %, is defined as the set of all dia-
grams contributing to {TA(x,) A(x,) A(yy) - A(y,)>. We distinguish the classes
s, s, , oy of diagrams in %,, which are defined as follows.
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&7, is the set of diagrams I' € €, for which x; , X, and at least one coordinate
y; are attached to the same connected component of I" (Fig. 2).

&4, is the set of diagrams I'€ €, for which x, and x, belong to different con-
nected components of I" (Fig. 3).

&7, is the set of diagrams I' € €, for which x; and x, belong to the same con-
nected component of I' to which no coordinate y; is attached (Fig. 4).

Xy X,

YI Yz Y3 Y4

Fic. 2. Example of a diagram belonging to &/, .

X, X,

R

Y, Y, Y, Y, Yo Ye .

Fic. 3. Example of a diagram belonging to &/; .

Xy X,
Y, Y,

Fig. 4. Example of a diagram belonging to &7y .
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As for the notation of the connected components we follow the convention of
Eq. (1.4.8). If I'e &/, , the connected component containing x, and x, is denoted
by Iy . If I e o, the connected component containing x; is called I';. If I'e <,
the connected component containing X, , x, is denoted by I'y. Accordingly the
connected components of I" are

Pl > l”o'-’ F,;' if PE»&I
r,r,Iy..I if e,
. Iy T if Tes

where the I'y' are the connected components to which only coordinates y; are
attached.
Apparently
gn+2 = ‘% v ‘% v ‘ds

The set of diagrams obtained from % by identifying x, = x, = x will be denoted
by gj .
Doy =B, VB, VB, .

The contributions from a diagram I'e €,,,, or 4, ,, have the form*

(T:A(x)) A(xo): Alqy) ++ A(gn)d>r 4.7
. 8[" dK _—i( 121 2“2) . dkl . dk, .
S I@) T T B Gy g e I ek

KTN[AGXY) Algy) -+ A(qu)>a
_ A e (dK dky | dk,
IR N BT v T o

R, if 4e®B,or%,, (4.8)

CTNJ[Ax) AGe)) Al - Alg)dr 4.9)
= (/,8—("1'15 (—2‘%{)-4- e~ Bt mz) ‘h'% (Td:;? (g_f,-;f R, if I'estorod,
where ) o
A=T 8/=38; = i(zﬂ)4s(i 0%)
= = (4.10)
n=0D+K p=GR—K p=— g:l G, FD)= 2Q).

i1 5ees qa; denote the external momenta of the connected component.

¢ For integrands Ry it is always understood that the substitutions p, = p/2 4 X, ps=pl2 — K
are made. Hence Ry corresponds 1o SR, in the notation of 1.
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For I' € s, , o/; we have

(TN [A(x;) A(x)] A(yp) = A(ya)dr 4.11)
= (T:A(x,) A(xp): A(yy) - A(ya)or

dr e—i(pl+ﬂg)x—i(pl—pg)£ lim dkl . dks Rr if I'Edz,

= ) 10 ) Qmt T @n)

(TN[A(x) A(x)] A(yy) -+ A(yador
= (T:A(x) A A(p) - A(ya>r =0 if T'esly. (412)

In (4.11) it was used that any subdiagram of 4 = I" containing V, is one-particle-
reducible (see Fig. 5). If I" € < the integrand R, of (4.9) contains the factor

Ros; = (1 — ;) Rosy = 0, 1=1TIy (4.13)

which vanishes since R, 4 does not depend on p. Therefore (4.12) holds.

Y? Y 8
FiG. 5. One-particle-cut of the diagram 4 = I' with I" as shown in Fig. 3.

Because of (4.11-12) we may restrict ourselves to the nontrivial case I' € &/, or
4 = I'e %, for the comparison of the Green’s functions (4.7) and (4.9). In general
Ry and R, are related by (1.5.4-5), i.e.

Ry=Rr+X (4.14)
X=53 Y Y [IIES)=rS) ] (—e8)Suls. (415
1€T U 67 UeF (0) yeU, veU,

We will study the expression X in some detail. First we determine all possible
diagrams 7 to be summed over in (4.15). The set 7' was introduced as the set of all
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proper subdiagrams 7= of which contain ¥ and have nonnegative degree. The
definition (I.4.24) of the degree 8,(7) yields the inequality

0 o(r) =2—r (4.16)

where r is the number of external lines of r. This implies r = 0, 1, 2. r = 0 is not
possible since in any I'e & x, , x, are connected to at least one y,. Hence only
diagrams = with r = 1, 2 are eligible. Accordingly the set T is given by

T=T,UT, (4.17)

where T; is the set of diagrams = with r = j. The corresponding contributions to
(4.15) are denoted by X; and X,

X=X, + X, (4.18)

=8, Y Yo 01 (=o8) [T (—2S,) Sul, 4.19)
T€T, Uef, UeF(a) vel, veEU,

Xe=8,), 2 Y [T (—eS)(—17S)) [T (—tS)Sul,. (4.20)
1€Ty Ujell, UeF (o) veU, veUg

The diagram o is defined by
o =7 4.21)

i.e., 7 is obtained from o by identifying x; = x, . The set of all such o is called S.
(4.21) is a one-to-one correspondence between S and 7. The unrenormalized
integrands belonging to o and 7 are identical:

I =1,. (4.22)

For any subdiagram  of 4 containing ¥, the unrenormalized Feynman integrand
factorizes
IA = Id/‘rl‘r = 14/1']0 . (423)

It will be seen that X can be written as a sum of factorizing terms. We begin with a
discussion of X, . In this case

(1) =2 —m =0. 4.24)
Therefore, the Taylor operator becomes

8(z) _

1T =107 == 1y, (4.25)

and merely prescribes that the external momenta ol 7 be set equal (o zero.
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We rearrange the products occurring in (4.20) by using (4.23), (4.25), and the
fact that I, does not depend on the external momenta g, of the diagram

Ss [1 (—1S)(—1Sy) 11 (—"S) Suly

yeUl 'wEUa
= Sd H (_—tySv)(—thf) I_[ ('—IVS.,) SUIIAITSUaIa
'yGUl vEUl
— 84 [ (=S, SuLast?, js T] (—1'S,) Su,L. (4.26)
velU, veUy

With this X, becomes

X, =— ) XiXz 4.27)
7€Ty
where
Xp =384 Y, [l (~S)Svlas 4.28)
U,e M, veU,
L= ZS I1 (—S,) Su,L}. (4.29)
2€F (o) ve U,

We recall that the sum Zu ek, extends over all forests of renormalization parts y
of I'" which satisfy y O = or are d1s10mt Accordmgly (4.28) may be replaced by the
sum over all forests U’ of 4/r with elements ¥’ = y/r. Hence

Xa = San Z n (—17S,)Svlaye = Rapms (4.30)
e F(am) veu
=1, =g, Sy =38&W) if ¥y =y

Thus X,, represents the renormalized integrand R}, of the reduced diagram At
with respect to the degree 8, . On the other hand,

S, Y [l(=rs)L =g, 431)

UeF (o) veU

represents the renormalized integrand belonging to the diagram o. Combining
(4.27) with (4.28-30) we obtain

X, = — ¥ RE.R, (4.32)

7€T

Ru = R, ‘uT——u (4-33)
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Hence X, is a sum of terms which factorize into the renormalized integrand of the
reduced diagram 4/r and the renormalized integrand of o.
In case of X; we have

Sry =2—r=1 (4.34)

There is only one external momentum for each = which we denote by ¢. Hence the
Taylor operator becomes

0
T = tql =1 +Zq“.é? (435)

with g, set equal to zero afterwards. We thus obtain the following factorization of
X

Xl = z RA/‘rRa - Z Z("’) Rud/'r{aauR‘r}q—o (436)
7€T; 7€Ty u
where
RA/'r = Sdlr Z H (—tVS.,) IA/T (4‘37)
vel, vel,

is a contribution to the Green’s function {TA4(x) 4(q,) -*- A(q,)> and

RuA/-r = SA/T Z I_[ (—"Sv){(""‘h) IA/‘r} (4'38)

Uedl, vel,

is a contribution to the Green’s function

(TA,(x) A(q)) - Algn)

Combining (4.18-20) with (4.32-33) and (4.36) we find

Rr=R2+ Y RVR, + ¥ Y (—i) R0 R }ems + ¥ RER,,

7€T, 7€T) n T€Ty
(4.39)
Multiplying by
8(1(1 + Kz) e—i(m:clﬂ:zz,) _ S(Kl + Kz) e—ipze—i(KrKg)E
with

x=xtb me=x—&  p=pitp
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and integrating over K, and k; we obtain
CT:A(xy) A(xp): A(gy) -+ A(@m)>r (4.40)
= (TN{A(x,) A(x5)} A(‘Il) A(‘Im»r
+ Y, KTAX) Aqy) + A(@n)> 41K TAE) A(—£) AO),

1€l
ZT: (—iXTAx) A(q) - Aqm)) 2K TAE) A(—£) A0)),

+ Y KTN[AG] A(q) -+ Algu)) 4 TAE) A(—£) A©0) A(0)),
76Ty

for any I'e &/ . Summing over all I' e & and taking the Fourier transform with
respect to ¢y ,..., g, we obtain

Y (T:A(x)) A(xp): A(yy) - A(yador
resdy

= Z (No[A(xy) A(x)] A(yy) - A(Ya)or

resdy

+ E(§) Y, <KTAK) A(yy) - A(yar

re€i,

—PEM(€) Y, (T8,A(x) A(yy) - A(ya)dr

re¢,
+ 3E4(6) Y. <TN[AX)? A(y) - A(¥u)>a (4.41)
295,
with
E(§) = Y (T:A(¢) A(—§): A(0), (4.42)

a€F gy

EME) = Y, (T:A€) A(=£): A4O), (4.43)

aeF gy,

E®) = Y (T:A() A(—£): 4©0) A©O)), (4.44)

geF g

€., and 9;, denote the set of all diagrams I'e €, or 4 € 2,,, for which x is
connected to at least one y; . %, is the set of all proper nontrivial diagrams with
coordinates X; ,..., X » V1 »---» Vn as defined below Eq. (1.4.33).

For diagrams in which x is not connected to any y; we have

(7‘/1():) A(yl) v A(y")>l‘ =0

, (4.45)
{TTAXY] A(yy) o+ A(Yn)da =0
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because of (I.4.43). With (4.11-12) and (4.45) Eq. (4.41) yields

(T :A(xy) A(xg): A(yy) - A(Ya))
= (TN[A(x) A(x))] A(yy) - A(yn)) (4.46)
+ Ey(§)XTAx) A(y) - A(ya))
— IE(£) 0,%CTA(x) A(yy) =+ A(yn))
+ FE(EXTNIAX)?] A(yy) - A(Yn))-

The expansions (4.42-44) represent the Green’s functions

E(§) = (T:A(¢) A(—§): A0)™° (4.47)
ES(§) = (T:A(¢) A(—§): 4 (0))™ (4.48)
Ey(§) = <T:A(¢) A(—§): 4(0) 40"

— (T:A(&) Af(—£): 4(0) 4y(0))5"° (4.49)

In (4.49) the contribution from the trivial diagram was subtracted which equals
(T:AyE) Af(—8): Ay(0) A(0))5"" = 2 (4.50)
Introducing the remainder

r(xtyy - yu) = {TNG[A(xy) A(x2)] A(yy) - A(ya)>

— KTNL[A(x)*] A(py) -+ A(ya)> 4.51)

we can write (4.46) in the equivalent form (4.3) with (4.47-48) and
Ey(£) = (TA() A(—€) (4.52)
Ey(§) = (T :A(¢) A(—§): A(0) A(0)yvror (4.53)

The remainder (4.51) vanishes as ¢ — 0 for £+/(] £* [)*/% bounded

lim r(x€yy -+ yn) = 0 (4.59)

This completes the proof of the short distance expansion (4.3) of the Green’s
function.

We next prove Wilson’s short distance expansion in the operator form (4.1). A
comparison of (4.46-49) with (2.27-29) shows that the Green’s functions

CTN[A(x) A(x)] A(py) = A(Ya)> (4.55)
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as defined in perturbation theory (Section 3) are identical with the time ordered
functions of the operator Ny[A(x,) A(x,)] given by (2.27). Since the matrix elements
of N,[A(x,) A(x,)] are related to (4.55) by reduction formulas the relation

lm NofA(x + £) A(x — £)] = No[A(x)*] (4.56)

follows from (4.51) and (4.54). Hence the definition (2.27-29) of the normal product
represents the Wilson expansion (4.1) in operator form with the coefficients
(4.47-48), (4.52-53) and the remainder

R(x€) = Ny[A(x + §) A(x — £)] — No[A(x)?] (4.57)

which vanishes in the limit

]eil% R(x, &) = 0. (4.58)

Similarly we obtain

TA(x + §) A(x — &) A(y)) -+~ A(ya)
= Ey(é) TA(yy) *** A(yn) + Ey(§) TA(X) A(yy) - A(yn) (4.59)
— iE*(€) 0,°TA(x) A(yy) *** A(yy)
+ 3E4(§) TN[A(x)*] A(py) -+ A(Y)
+ R(x€py ** ym)
with

lim R(x{yy + ya) = 0. (4.60)
We finally check the dimension of the coefficients E, , E, , E;* and E, given by

(4.47-48), (4.52-53). Let I" be a diagram contributing to E, . The dimension of any
subdiagram y of 4 = I" which contains ¥, is

diy) <2 (see Eq. (I.A.38)).
Accordingly E, is at most quadratically divergent for &£ — 0
d(E) <2 4.61)

Let I' contribute to E, or Eg#, A subdiagram y of 4 = [ which contains ¥, has the
dimension

dy) <0
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as follows from Eq. (I1.A.38) and the structure of the Feynman diagram for a mixed
A3, A*-coupling. Hence
dE) <0 (4.62)
and
d(E#) < —1 (4.63)

since E,* is of the form
E» = EEy(¢)
Similarly one finds
d(E,) <0 (4.64)

It can be checked in low orders of A and g that the indicated singularities are
actually present. Hence Wilson’s rule is satisfied with

d(E)) = 2, d(E)) =0

if g, A0, (4.65)
d(E») = —1, d(E) =0
For pure A4-coupling, i.e., g = 0, one has
E=0, E*=0 if g=0 (4.66)
and

5. RELATIONS BETWEEN NORMAL PRODUCTS OF DIFFERENT DEGREE

In this section we will derive some identities which relate normal products of
different degree. To this end we compare the power series expansions of the Green’s
functions

(TN A, (%1) 4w (x)] A(y) =+ A(ya)) (5.1
(TN [A ), (x1) A, (xD] A(31) *+- A(yn)> (5:2)

assuming a > b > 0. The Equation (4.46) of the preceding section represents the
special case a = 2, b = 0O since

CTNG[A(xy) A(x0)] A(py) *+* A(yn))> = (T :4(x,) A(xp): A(y1) - A(ya))

according to (3.13).
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The contributions from a diagram I' € &% or & to (5.1) and (5.2) are identical
according to the following generalization of (4.11-12)

(TN, [A ), (x1) A (x2)] A(y2) - Ay )or
= (TNy[A),(*) A (X)) A(¥) - A(y)>r  if I'e o4 or .

53
For I' e & both contributions vanish. 63
For contributions from a diagram I' € & are given by
<TNa[A(u)1(xl) A(u),(xz)] A((h) A(qn)>l‘
. 8 dK —i(py@y+pazs) 1 dk, ... dk, (a)
=) Gt 5 | Gy @y Ra
<TNb[A(u)l(x1) A(u),(xz)] A(‘Il) A(qn»r
_ 3 dK —i(py@+poza) 1; dkl dk, ®)
= ) @i € I ) Gyt oy R4 (5-4)

with the notation (4.10).
The renormalized integrands R'® and R% are related by the identity (1.6.14)
with X given by (1.6.20-23). Multiplying (I1.6.14) by

8(Ky + Ky) e it e — §(K 4 K,) et 9%t K- Kade (5.5)

taking a Fourier transformation with respect to ¢, ,..., ¢, , integrating over the
internal momenta and summing over all I" we obtain

(TN[Aw(x + &) A, (x — O A(y) + A(ya))
= <TNa[A(u)l(x + f) A(u}z(x - E)] A(yl) tr A(yn)>

= W (@)
+ iz;: ATT ), T 00 EXTBOE) A(y) - A(ya)>  (56)

With the notation (2.11) the coefficients G{}}**} are given by

GEW (&) = T (TN [ (&) 4w (—E1 ADY0) -+ ADO)HFP  (5.7)

€F,
where &, is the set of all nontrivial diagrams contributing to the proper part. Hence
G () == (TN A, (6) A (O A0) - A“n(0)yPrP

— (T: A% (&) ALy (—£): A(O) --- AP (0)pEP (5.8)
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or explicitly
GAP© = (TN[40 (&) 4w (—H) A1(0) -+ A“0)yP P
if r # 2 and

GONGhgy = (TN, [ (€) A, (—£)] A(0) AP+(0))""

. i#(n)l+#(a)2(___ 1 )#(o)ﬁ#(u)z a(“)lf(p)la(u)ag(a)g

- i#(0)1+#(u)3(__l)#(n)ﬁ-#‘(u)g a(u)lg(n)ga(“)zf(p),
ifr=2

594

5.9

(5.10)

Equation (5.6) is particularly interesting in the case of @ = b 4 1. Then the

sum is restricted by

r+ Y #ey=a=>b+1

(5.11)

so that only normal products of minimal degree occur on the right side. With the

notation
GHY =G, if b=r4+ Y #pE);—1
B{ =By if a=r+Y #p),
Eq. (5.6) takes the form

(TN [, (x1) A, (3] A(p1) =+ A(pa))
= <TNb-H[A (u)l(xl) A (u)._,(x'.’.)] A(yl) e A(yn)>

]
Solving this recursion formula we obtain
CTA (%)) A (x2) A(3y) - A(yn))
= (TAW,(&) Aw(—EXTA() - A(ya)>

(o)
G
+ ‘g)o ;Tﬁ‘;;(‘)*f GE(EXTB(x) A(yy) +* A(ya)>

+ KTN[A G, (x1) A, (x2)] A(p1) - A(ya)).

+ 3 P Gh T A AW

(5.12)
(5.13)

(5.14)

(5.15)
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The coefficients G{:’, are given recursively by (5.9-10) with
b=r+Y #py—1 (5.16)

Comparing (5.9-10), (5.15-16) with (2.8), (2.10-11) we find complete equivalence
of the two definitions of

(TN, (x1) A6, (x)] A(31) = A(yn)). (.17)

The Green’s function (5.17) as defined by the power series expansions (3.4), (3.8) is
identical with the corresponding time ordered function of the normal product (2.4).
This equivalence may be used to prove the existence of derivatives

TN [Aw (x + &) A (x — O1 A - A(ya) (5.18)

According to (3.10) the limit of the right side of (2.17) exists for

E—0,  &p/(l €2 1)2 bounded (5.19)
provided
2+ #O) + #ph + #pe < a (5.20)
Therefore, the limit (5.19) exists for all derivatives (5.18) which are of order
#) <a—d (521

This property of the normal products will be used in the following section for
proving Wilson’s asymptotic form of the short distance expansion.

6. AsymptoTIC FORM OF WILSON’S SHORT DISTANCE EXPANSION

The defining equation (2.4) of the normal product already has the form of a
Wilson expansion

TA ) (%)) Ay, (0) = (TA), () A (—E) 1

. (__,-)2#(9), o
+2Z AT #), T Gonen(®) Ba(x)

+ Na[A (u)‘(xl) A(u),(xz)]’ (6' l )

xl=x+£l x2=x—§'
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However, (6.1) is certainly not asymptotic since the remainder

N, [A ) 1(x1) A () ,(xz)]
approaches

BB w,x) for £—0

which in general does not vanish. In order to modify (6.1) we introduce a new kind
of normal product

M [A (%)) Ayy(x2)]

which will vanish for x; — x with a sufficient number of derivatives provided the
degree a is chosen large enough. We define

M, [A) () A, ()] = (1 — 1) No[A,(x1) 4, (x2)],
x=x+¢& xp=x-§ (6.2)
c=a—2— #ph— #w..

This is well-defined since all ¢-derivatives involved exist according to (see (2.15))
O Nu[ A, (x1) A4, (%2)] = Nodinld (1) A, ()] (6.3)

which stays finite for £ — 0 provided

#) <c 6.4)
Some examples of M-products of A(x;) A(x;) are

M_[A(x)) A(xg)] = N_j[A(xy) A(x9)] = TA(x,) A(x2) (6.5)
M[A(x;) A(x5)] = No[A(xy) A(x)] = :A(x,) A(xp): (6.6)
M,[A(x,) A(xg)] = Ni[A(x;) A(x5)] 6.7
M,[A(x,) A(xy)] = Ny[A(x)) A(x2)] — No[A(x)] (6.8)
My[A(xy) A(xy)] = Ny[A(xy) A(xy)] — Ny[A(x)*] (6.9)

M, [A(xy) A(x5)] = Ny[A(xy) A(xa)] — No[A(x)?]

- E“&JNd[Auv(x) A(x)]

+ £4E°N,[4.(x) A(x)] (6.10)
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In (6.9-10) we used

BEN[A(x + §) Ax — Ollemo = NDHAX - £) A(x — Ollemo
= No[4,(x) Ax)]
— Ny[A(x) 4(x)] =0 (6.11)

3“£3,£NG[A(x + f) A(x - f)]'f-o
= N9, 0,4 [A(x + £) A(x — §)le=o
= 2N [4,,(x) A(x)] — 2N,[4.(x) 4,(x)]. (6.12)

In order to discuss the behavior for £ — 0 we set

£§=py (6.13)
and write

M [ A (%) A, (x)] = (1 — £,9) No[A (), (x1) A (x2)]

= (1 — {71 No[d (%)) 4, (xa)]

— BN A (k) A ()] “o
ol apc al 4 ) \X1) A@)\re o
Xx=x-1pn Xp=Xx—p
In perturbation theory the matrix element
(D, No[A4,(x1) A, (x2)]) (6.15)

between suitable state vectors exists as a continuous function of p (including
p = 0) provided

a>2+ #@h+ #e  and 7 #0, (6.16)
Likewise
on
CR A CRICARIRENT)

6.17)
X, = x -+ py, Xp == X — p7)

is continuous in p provided

a =2+ n+ #ph + #p: or n<e. (6.18)
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Equation (6.3) implies
n on
'agp_,, (‘D: NG[A(u)I(xl) A(u)g(x‘l)]‘/’) = ((D, N, a_P,, [A(u)l(xl) A(u),(xz)]'/‘) (6.19)

Hence (6.15) is continuous in p with all p-derivatives up to and including the order
¢. Hence

(1 — £7)(@, Naldw,(x) 4w, (x2)1¥)

- %,- 555 @ Naldw,(x + om) dw,x — o) | (6.20)

for some value 8 with

)
N
D
A

(6.14) thus becomes

M[A ) (x1) A (x2)]

= B (@, N s Ao, (x + om) Ao 6 — om)1¥)

gmBp
— £ Mgz Mo - on) A6 = apl)|_ . 621
The behavior of the M-products for £ — 0 is therefore given by
M4 A
lim ol (u),(xla) Wyl _ 0 622)
0 p
provided
c=a—2— #ph— #p)2 = 0. (6.23)

We will now derive an asymptotic form of the short distance expansion with the
M-product as remainder. First we write (6.1) as recursion formula

No[ A, (x1) A, (x)] = Yo 7,%’%—)—, G{3,,©) B

+ N, b+1[A(u),(x1) A(u),(xz)]- (6.24)
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Application of (1 — #,°) with
c=b—2— #Hph— #p)

to (6.24) yields

_ n\Z#lo),
My () A 0] = T =S (119 G 0 ©) B
r! TT #(p); !

+ My i[A), (1) A (x2)]

f(v)

T T N 1800 [460,(x1) A, (x2)] .

@) = (V1 5000y Voyr)- (6.25)

Introducing

HEL (6 = TM[A(8) A (— O AO) -+ AD(0))PP
(6.26)
b=r+Y #@p)—1

(notation (2.11)) we obtain

(1 — 1) GBa (& = HE B i r+2 (6.27)

and

(1 . téa) G(o)l(a)s(f) H(D)‘(")‘(f) #(p)ﬁ#(n)g( 1)#(u)g+#(p)3 a( ‘f(p);a(“) g(a)g

(u)y(u)g (w)gluyy

. i#(a)1+#(p)g(_1)#(u)2+#(0)1 a(u)lg(o)ga(“)zg(n)ll (628)
(6.25) then takes the form

My[Ag, (1) A, ()] = 3" —+ ,, H #( ) ] 1{,00,6) Bia(%)

()

+ My a4, (x1) 4, (x)] (6.29)
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In deriving (6.29) we used the fact that the last term on the right side of (6.25)
cancels the contributions from the polynomial expression in (6.28) because

)

E = Ny & [, (%) A(..),(As)]

s E(v), E(v),
M%:“. (-n* ORI ON N[8), A, (%) 91,4 0,(0)]

(D) gt {s) ( )y f(p)l ( )a g(p)’
— b1 0 yrledgtalu); 0 - B
W2, D F T Hpal Zoon)

(o) (o)
so41 (et J0EXE T p
(9),(:), 2V #(ph! #(p)g! 1o

a(u)‘f(o)ga(“)af(n)l 5 (x)
20 H (! #p)g! e

zgn (___ 1)#(a)l+#(u)g

(p)y(p)g

(6.30)

The sum 3, ), extends over all sets
W1 = (11 50-)s ) = (31 5..2)
#0h + #()=C+1
(6.29) may equivalently be written as
TA,(x1) Awy(xa) = (T4, (&) 4w (—) - 1
(=i o

+ % rl I'I #p ) 1 (ul(f) + M [A(u) (x1) A(u) (x2)]-
(6.31)

with

By (6.22) the remainder vanishes stronger than any power for £ — 0, provided a is
chosen large enough. Moreover,

o

lim “zf”") 0 (6.32)
for

n=r—3- Y #p)— #W — #p), = 0.

Accordingly (6.31) represents Wilson’s short distance expansion in asymptotic
form,
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Abstract. Dyson’s power counting theorem is extended (o the case where some of the mass
paramelers vanish. Weinberg’s ultraviolet convergence conditions are supplemented by infrared con-
vergence conditions which combined are sufficient for the convergence of Feynman integrals.

1. Introduction

In the theory of renormalization Dyson’s power counting theorem plays a
decisive part [ {-3]. The contribution of a proper Feynman diagram to a Green’s
function has the form

J= j(IkR(k, P

R=— P (1.1)
Ul(l}—m}-kis(?} +m)y
where "
k=(k,...k,), p=(py...py),

kj= (’\'jo’\'jlkakjs)v Pi= (I’j()l’jll’jll’j.l) >
dk=dk,...dk,, dk;...dk;odk;dk; dk;,
m;20, n;>0.

(1.2)

k;j and p; are Minkowski vectors with the metric (+1, — 1, — I, — 1). The vectors
l; are linear combinations

li=K(k)+ P;(p) (1.3)

of the vectors k,...,k,, and p,, ..., py with K;%0. P is a polynomial in the com-
ponents of k and p. The denominator of R is the common denominator of the
unrenormalized integrand and the subtraction terms.

If all masses are non-zero Weinberg’s version of the power counting theorem
can be used to prove that the integral (1.1) is absolutely convergent provided the
renormalized integrand R has been constructed according to Bogoliubov's sub-
traction rules [3,4]. It can further be shown that the limit = 40 exists as a
covariant tempered distribution.

So far the power counting theorcm has only been stated for non-vanishing
masses. In the present paper Weinberg’s ultraviolet convergence conditions are

P. Breitenlohner and D. Maison (Eds.): Proceedings 1998, LNP 558, pf. 310-323, 2000.
[ Springer-Verlag Berlin Heidelberg 2000
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supplemented by infrared convergence conditions which will be shown to be
sufficient for the convergence of integrals (1.1). The limit £— +0 [5] as well as the
application to ficld theoretic models [6--9] are discussed in separate papers.

Our results are consistent with recent work by Bergére and Lam, as well as by
Trute and Pohlmeyer, on the asymptotic behavior of parametrized Feynman
integrals for small mass values [10-12].

Some general definitions are given in Section 2. Section 3 contains the state-
ment and proof of the power counting theorem. The concept of reduced integrals,
which is useful for some application of the theorem, is introduced in Section 4.

2. General Definitions
We consider integrals of the form (1.1). L denotes the space of the lincar forms

n

N
=1

i=1
which will be interpreted-as inhomogeneous linear forms in the integration varia-
bles k,, ..., k,. Elements of L are called linerarly (in)dependent if their homo-
geneous parts (in k) are linearly (in)dependent. A set of elements in L is called
a basis of L if their homogeneous parts form a basis for the space of the homo-
geneous forms in k.

We observe that always for an absolutely convergent integral (1.1) a basis

byl 2.2)
exists consisting of linear forms which occur in the denominators of (1.1). Other-
wise there would be at most m’ <m linearly independent forms

iseees b 23)
with the remaining I; being linear combinations of vectors (2.3) and p;. Extending
(2.3) to a basis

l l

il Wis oW, M tc=m
of L with Jacobian one (relative to ky,...,k,,) we find
J=J“”jl ...(“jm,‘lW| ...(lW‘.R
with the divergent subintegral
e
[103 —nid + ...y
Therefore, a basis (2.2) of L must always exist if the integral (1.1) is to be absolutely
convergent.
For the formulation of the power counting theorem we will need certain sub-
integrals which we set up as follows. Let

=l u,=l,0,=l,...,0,=1 (2.4)
be a basis of L with Jacobian one (relative to k,,...,k,). Using (2.4) as new inte-
gration variables for (1.1) we obtain

J '—-:..dmlnR ,
u=(,...u,), v=(v,...0,), (2.5)
du=du,...du,, dv=dv,...dv,

fdw,...dw.R= dw, ...dwP.
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where P and [; are expressed in terms of u, v and p through
k=k(u,v,p).

We consider a hyperplane H defined by the condition that the linear forms
vy =l;,...,0,=1;,

have constant values. The subintegral of (1.1) along H is then given by
J(H)=[duR . (2.6)

We distinguish two different definitions for the dimension of a subintegral (2.6).

The upper dimension dim refers to the behavior for large values of the inte-
gration variables. The lower dimension dim refers to the behavior for small
values of the integration variables. We define

dimJ(1)=dcg R +4a, 2.7
dimJ(H)=deg,R +4a. (2.8)

The upper degree deg, (or lower degree deg,) denotes the leading power of g in
the limit g— o0 (or ¢—0) il u;=gii is substituted into R. More precisely,

v=deg,R, y=deg,R, 2.9)
if
. R . R
lim -~ #0,00, lim o &0, 00 (2.10)
q—'«)e g—*()(.)

for almost all values of u,,...,u, and the remaining parameters v,,...,0,, Py, ..., P

We quote some rules for the upper and lower degree. Let N, D, F,F,,...,F,
be complex-valued functions of real four-vectors uy,...,u,, v(,...,0p Pyy...,Py 1O
which the definitions deg, and deg, may be applied. Then the following rules hold

deg, F"=ndcg,F, (2.11)

deg,F"=ndcg,F, (2.12)

— N — -

deg, b= deg,N—deg,D, (2.13)
N

deg, 7, =deg, N—deg,D, (2.14)

deg, [1F;=Y deg,F;, (2.15)
i=1 Jji=1

deg, [ Fj= 3 deg,F; (2.16)
ji=1 j=1-

deg, Y F;<max{deg,F}}, (2.17)
i i

deg, Y F;zmin{deg,F;} . (2.18)

j=1 J
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Let F be a polynomial of u=(u,,...,u,), v=(vy,...,v,) and p=(p,....py) with
veetors , v, p,. ‘Then we may write

F=Y0M, 0,%0 2.19)

where M, are independent monomials in u and Q, are polynomials in v, p which
are not identically zero. The upper and lower degrees of F are given by

deg, F= max {degM,}, (2.20)

dcg“F=main{degMa} . (2.21)

3. Convergence Theorem

In this section the power counting theorem will be formulated for integrals J
of type (1.1) assuming that a basis (2.2) of L can be formed. Weinberg’s hypo-
thesis of the power counting theorem may be stated as follows:

Ultraviolet Convergence Condition. The inequality

dimJ(H)=deg,R +4a<0 (3.1
holds for any basis (2.4) and for any hyperplane 11 defined by constant values of
UgyeeesUpe

In particular, the upper dimension of the full integral J should be negative.
Weinberg’s condition (3.1) is sufficient for the absolute convergence of J provided
all masses are different from zero

m;>0, j=1..,n.
In the general case we propose in addition the following

Infrared Convergence Condition. The inequality

dimJ(I)=deg, R +4a>0 (3.2)
holds for any busis (2.4) satisfying

m;, =...=ny;, =0 (3.3)
and for any hyperplane H defined by constant values of vy,...,0,,.

The ultraviolet and infrared convergence conditions combined form the
hypothesis of the

Power Counting Theorem. Let J be an integral of the form (1.1) for which a
basis (2.2) of L can be formed. J is absolutely convergent if the ultraviolet con-
vergence condition (3.1) and the infrared convergence condition (3.2 3) hold.

Due to the inequality
2412+ m? (l 4)’
|2~ 12— m? +ie(I* +m?)|

IIA
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the absolute convergence of (1.1) is implied by the absolute convergence of the
corresponding Euclidean integral

J={dkR(k, p)

[10}+mi)
ji=1
where now

B=0+T;

Therefore, we may restrict ourselves to proving the absolute convergence of (3.4)
under the conditions (3.1--3).

We begin proving a lemma on the infrared convergence of certain integrals
which are homogeneous in the integration variables.

Lemma. Consider integrals of the form

M
F= I dul...duaw
uf =1 l_[ J
i
where the U are linear combinations of the Euclidean four-vectors uy,...,u, and M
is a monomial in the components of u,,...,u,. M may be factorized as

(3.5)

M=]]M, (3.6)
i)
where M; is a monomial of u,. For any subset
TR 7 (3.7)
of the integration variables we form the integral
i M,
F e fe (3.8)

L= du,...du; =—"—5
e }-Ll i lcn (U )1
i

where the product ||, .. extends over all U; which are linear combinations of

J
vectors (3.7) only. The integrals (3.8) are called sections of (3.5).
The statement is that the integral (3.5) is absolutely convergent if the dimension
d;,. .. of each section (3.8) is positive:

dimF;, ; =d;, ;>0. (39)
This condition includes the dimension of the full integral which we denote by d,

d=dimF=d, ,>0.

Progf. We decompose the integral (3.5) into

& (3.10)
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with the sum extending over all permutations

l’=(| .,.a).

iy...d,

We will check the convergence of each term F,. In order to simplify the notation

we rename the integration variables and monomials by
w, =u,-|, o W=,
N,= WN,=M;,

Morcovcr, we denote the momenta U; and exponents n; of the denominators by
Wit osWatseeos oo Wapsen.

”l]""?”Zl’ "‘*“""ul’ “en

such that each W is a lincar combination of wy,...,w; with non-vanishing cocf-
ficient of w;.

Z CijiWis  Ciji¥0.

ir=1

In this notation F,, may be written in the form

N
Fp= dw dw, = . dw,
! “'{2 l I—[( Wl I)"I wi< ;‘:'1 2 ]_I(W22j)uzj wl 15“\;’5 <1 n( u_[)""}
1 (3.1
According to the hypothesis of the Lemma the dimension d, of each section
N,
F,=F . dw, =—5— 3.12
= e L n( 2y )
j
is positive,
dimF.=d.>0.
d. satisfics the recursion formula
d,=4+degN, —deg[[(WD)"+d, -, . (3.13)
i
We choose a number d with
d.>6>0 for c=1,...,a (3.14)
and form the integral
IN,| IN,| INJ
G= dw, =—-—5-— dw dw
wfjé ] ! l—[(wlzj)"” wis ;‘t 2 n(w )"“ ,é‘-» ld 6” ‘u)"""
! T@as)

Since w,| S 1 and d—3=d,- 5>0 the integral F, is majorized by G,

[Fpl=G. (3.16)
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We will prove the convergence of G by recursively estimating the integrals

T N A o IN
¢ wiswl, s o n(VVL )"c hat wi_  swlisl ¢ Iwald_‘in(mj)nuj
J

The dimension of

3.17

IN,|
Gu—l= ! r et IW la al‘[

2
Wa-1=Wa2

(l])"“J

is [see Eq. (3.13)]
dimG, . =4+degN,—deg[ [(W2Y +5~d.
j

Now, by a change of integration variable,

In the last line the limit 1/|u?_ |- oo could be performed since the dimension of
the integral is negative. Hence

Ya-1
Gamr S — s
1

e, _

where y,_, is a constant.,
Repeating this argument recursively we obtain

Ve
OeS g

by Eq. (3.13—14). Finally

INy|
G< dw - o
b4 waj;_‘l llwlldl ﬁn(WIZJ) ¥]
4

The integral on the right hand side exists since its dimension

diml |, —d;+3=06>0
is positive. By (3.16) cach term of the decomposition (3.10) is absolutely convergent
which implies the absolute convergence of (3.5). This completes the proof of the

lemma.
We now turn to the

Proof of the Power Counting Theorem. Let S, be the set of all momenta /]
with m;=0. Let S be any subset

SESo
T denotes the complementary sct

T=S()\S .
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We require that with a momentum /; the set S should contain any /; which satisfies

=ik, m=0.
We decompose the integral (3.4) into
J=Y A (3.18)
S
where P
AS=:(:§;§:“ :dkljl(l? +m/2;)71: . (3‘9)

For studying A we select momentum vectors

w=l,...u,= (3.20)

i(l
in S which form a basis of S. Then [,e$ is a lincar combination of uy,...,py,...,
Li=U;+0Q;

a N

U,-=ZC,-jllj, Q"= Zdupl

j=1 j=1

We say that S or the integral Ag has zero external momenta if Q;=0 for all [;€S5.

For r small enough the term Ay vanishes unless all external momenta vanish.
For the proof we observe that 12 <r? since the u, occur among the L,eS. The U;
are of the form

o
Uj= Z Hallg

a=1
where || <n with n being characteristic number of the integral. Now
IQj'§|1j|+ |Uj|§(1 +n)r

implies

104l
r2 = foran ,
=13y y 0

if the domain of integration is not empty. Il at lcast onc Q;4-0 we may choose r
such that

0<r<—IQL|. (3.21)

1+n

But then the domain of integration is empty and A¢=0. Hence for r small enough
we find

J=Y A (3.22)
A

where S is restricted to those subsets for which Q=0 for any /;eS.
In cach integral Ag we introduce new variables of integration as follows. By
adding suitable vectors

vy =l,....0,=l;,, atb=m, (3.23)
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we extend (3.20) to a basis
Upy conn Uy U4y, D, (3.24)

of L with Jacobian one (relative to k,...,k,). Then each /;eS§ is a linear com-
bination of uy,...,u,. The remaining /; are linear combmduons ofuy,...,u,,vy,...,0,
P1s---»Px- We next write the numerator P as a polynomial in u

P=YCsM,,

l_[ My, a=(a,...a,), (3.25)
i=1

X A a a J—
M, =g WGy, o= (0o, 03)

with the coefficients being polynomials in v,,...,0,, p,,...,py- Then

As=ZAsa s

M, Cq
Ag, = du dv it - 3.26
5= b s TR TGP LG T (26
U =(ll,...,1")\SU .
We now estimate the v-integrals
Cs
dv e S 327
e TP Tl + 627
To this end we consider the integral
P
fdv (3.28)

TG+ MY TG+ mi)

with M >0. In (3.28) all masses are different from zero. Because of the ultraviolet
convergence conditions the integral (3.28) is absolutely convergent. Each /; in
(3.28) is of the form

Li=Vi(0)+ R u, p).

Using
1 +m? l+”j_ Vj|+|[j_[/j'2
V2+m m m?
we find
d( 1P
n (V2+M )'l,”U(VZ+M )u_,
. Pl
Zcldv,. ' . .
=( j( Ul IT(I}‘*_MZ)H,I lll([12+ MZ)II]
Hence
fdv P

[TV + MY O0F +mi)
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is absolutely convergent. The denominator does not depend on u while the
numerator is a polynomial in «. Applying Lemma 3 of Ref. [13] we find that

C,(v, p)
[TAVZ +MH T ]uV; VZE+mdym

is absolutely convergent. With this we can estimate (3.27):

[ do |Csal
Bzr [T To(® +mi)

fdv

<(|+M~2)' I ICl
b 2 “n 12+M2)n,” (12 + M2y

12 4 M2 M?
(using—-’--:-zMé | +~r-2-~)

i

Gl

|
J(Dl——[ (V2 MZ)n,l‘[y(vZ_{_mZ)n,
using
V2 +M? =V ;= V?
VAL VIR Vi

The integral of the last line only depends on p and the masses. Hence
|M,|
=YDy, | du N
; > irl l[ (12) i
The integrals on the right hand side can further be estimated by
IM,| IM,|
dit == " du;
1 .[ inS ns(lz) .g!n. ns(lz)"’
M|
' l (,2):1;

where d is the dimension of the integral. Thus

M,
|J|<ch, J zlun e (3.30)

h

(3.29)

Il/\

‘ (Iu

with the sum restricted to those M, which occur in (3.25) with non-vanishing
coefficient. According to the Lemma (page 8 of this paper) we have convergence
of the integrals on the right hand side if the dimension of any scction is positive.
In order to check the dimension d of the full integral

o ldu ns(’z)"‘ (331
we form the subintegral
l)
JH)Y={duy ...du, 5555 (3.32)
N (TR
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of (3.4) along a hyperplane H defined by constant values of v,,...,0,. By the
hypothesis (3.2-3) the lower dimension & of J(H) is positive,
d=4da+deg,P—deg, [l 4-miye>o0. (3.33)
This implies ’
0<d=4a+deg,P—deg[ |52y —deg, [ [ (13
<da-+deg,P—deg|[s(1}™
Sda+degM,—deg[ (3=

Hence the dimension of (3.32) is positive.
We further have to verify that the dimension d;, ...;, of cach scction

I““J‘:I(lu“...du ———“'—'~——— (3.34)

is posilive. Here M, ., is the restriction of the product (3.25) to factors depending
on u;, Al denotes the product over all factors for which [;€S is a linear
combmatlon of the vectors u;, ...u; only. Useful information is obldmed by com-
paring the expansion

P=YCM, (3.35)
of P with respect to monomials M, in u,,...,u, with the expansion
=YC,.M, (3.36)

with respect to independent monomials M., in u;,...u; only. We know that
M,;, ., occurs as a factor of at least one monomial M, with C,#+0. Since the

monomials M, are linearly independent the factor C.. of M., = wiy...i, in (3.36)
must also be different from zero. This implies the inequality
deg, P<degM,;,  ; (3.37)

which will be crucial for the proof of the theorem. deg,. denotes the lower degree
with respect to the variables o =qu,,, ... o). We now form the subintegral
. r
J(” )= jdlli‘ llll‘vc m{:zﬁ—f-—;l?_)—"—f (338)
J

along a hyperplance H’ defined by constant values of v,,...,0, and the momenta
u; which do not belong to . The lower dimension &' of (3.38) is positive by
hypothesis (3.2-3),

0<&' =4c+deg, P—deg, [ |(F +mj),

i
<dc+deg, P—deg[], .y
With (3.37)
di, Ly =dc+degMy,, o —deg] |, 3y

24c+deg, P dc;:,][,l )
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follows. Hence the dimension d;, . ; of (3.38) is positive. According to the lemma
each integral on the right hand side of (3.30) converges. This completes the proof

of the theorem.
4. Reduced Integrals

In this section we discuss integrals of the form

j=1
in the notation of (1.1) and
M
Afl)=-—- Jooe n;>0, (4.2)

B—ml+ il)(i} +m)m
where M, is a monomial in k and p. For integrals of this type we introduce the
concept of the reduced integral. Let
S=(l_i|""’(ljc) (43)
be any subset of the momenta /,,...,1,. From the elements of S we select a basis,
i.e. we choose linearly independent forms u,,...,u, of L such that each [;€S is

a linear combination of u,,...,u, and p,,...,py. With respect to S we form the
reduced integral

1o(S) o §duy...du, T]s 441

4.49)
L=1u,p), u=(u,...,u,)

where the product ns extends over the [;eS only. The reduced integral (4.4) is
defined up to a factor which depends on the chosen basis.

Of special interest are reduced integrals of vanishing masses and vanishing
external momenta, i.e.

m;=0 il l;eS,
l;=1u), independent of p, if [€S.

In this case cach factor 4;(1)) oceurring in the reduced integral is homogencous
inu.

In case that (4.1) represents an unrenormalized Feynman integral the reduced
integrals have a simple graphical interpretation: I,,(S) is the Feynman integral
which corresponds to the reduced diagram §'=S/T where all lines of T have
been contracted to a point.

With the concept of the reduced integral we can give an equivalent formula-
tion of the infrared convergence condition for integrals of type 4.1)!. Consider
a basis

u =l,..ou,=l, o=, 0=l (4.5)
of L. with
m,=..=m =0. (4.6)

' This formulation was used by Mack [14] to study infrared convergence of integrals like (4.1)
in the context of conformally in variant thcorems.
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For any such basis the infrared convergence condition reads
(_l_e_g,,nAj(lj)+4a>0 . 4.7)
We now form the reduced integral

IealS) o« [duT]s AAL) 4.8)

with respect to the set S of all momenta [; with m;=0 and I;=0 at u=0. Then
for any ;¢S we have

+0
"iF } it 1¢S.
or L0 at wu=0
Therefore,
dig“nAJ{lj)= deg] [¢4,(1) (4.9)
and
g_gg,,]_[Aj(lj)+4a= dim_.(S). (4.10)

Hence an equivalent formulation of the infrared convergence condition for the
integral (4.1) is
dim/,,(S)>0 4.11)
for any sct S of momenta [; with
mj=0 .
if [,eS. 4.12)
and ;=0 at u=0

With this result, we are able to formulate the infrared convergence condition for
an integral of the type [notation of (1.1) and (4.1)]

JdkQ || 41) (4.13)
i=1

where Q is a polynomial in k and p, in terms of a power counting criterion in-
volving the formal integral

Jk [ s,d,01) (4.14)
where the product is restricted to the set S, of momenta with m;=0. In particular,
we have the following

Corollary to the Power Counting Theorem. The integral (4.13) is absolutely con-
vergent if the ultraviolet convergence condition (3.1) holds and if any reduced
integral of (4.14) with vanishing external momenta has positive dimension.

Proof.

deg, O | 4;1)=deg,Q+deg, | | 4,41)
Jj=1 j=1

2 deg, [ 4,(1).
ji=1
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Hence the infrarcd convergence condition of (4.13) is implicd by that of (4.1).
Any reduced integral of (4.1) with (4.12) is also a reduced integral of (4.14). This
completes the proof.

"
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