Albert S. Schwarz

Quantum
Field Theory
and Topology

With 30 Figures

Springer-Verlag

Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest



Contents

Imtroduction . . .. . . . . @ i i i e e e 1
Definitions and Notations . . . . . ... ... ..., ... ........ 6
Part I The Basic Lagrangians of Quantum Field Theory ... 11
1 The Simplest Lagrangians . . . . ... ... .. .. .......... 13
2 Quadratic Lagrangians . . . . . .. ... .. ... ... 17
3 Internal Symmetries . . .. ... ... ... ..o 19
4 GangeFields . .......... ... ... ...y 24
5 Particles Corresponding to Nonquadratic Lagrangians . . . ... .. 28
6 Lagrangians of Strong, Weak and Electromagnetic Interactions ... 30
7 Grand Unifications . . . . .. .. ... ... .. . . oo 37
Part II Topological Methods in Quantum Field Theory . ... 41
8 Topologically Stable Defects . . . . .. .. .............. 43
9 Topological Integrals of Motion . . . ... ............... 56
10 A Two-Dimensional Model. Abrikosov Vortices . ... ... ... .. 62
11 't Hooft—Polyakov Monopoles . . . . ... ... ... ... ...... 68
12 Topological Integrals of Motion in Gauge Theory ... ... .. ... 74
13 Particles in Gauge Theories . . . . ... ... .. .. ... ...... 80
14 The Magnetic Charge . .. ... ... ... ... ... ..., 83
15 Electromagnetic Field Strength and Magnetic Charge

in Gauge Theories . . . . . ... .. ... i 89
16 Extrema of Symmetric Functionals . . . ... ............. 94
17 Symmetric Gauge Fields . . . . . ... ......... ... .. ... 97
18 Estimates of the Energy of a Magnetic Monopole . . . .. ... ... 104
19 Topologically Non-Trivial Strings . . . . .. .. ... ... ... ... 109
20 Particles in the Presence of Strings . . . . . .. ... ... .. .... 115
21 Nonlinear Fields . ... ... ... ... ... .. 122
22 Multivalued Action Integrals . . . .. ... .............. 128
23 Functional Integrals . . . ... ... ... .. ... ........... 132
24 Applications of Functional Integrals to Quantum Theory . ... ... 138

25 Quantization of Gauge Theories . . ... ... ... ......... 146



VIII Contents

26 Elliptic Operators . . .. .. .. ... ... ... 158
27 The Index and Other Properties of Elliptic Operators . . . ... .. 163
28 Determinants of Elliptic Operators . . .. ... ............ 169
29 Quantum Anomalies . .. ... ... ... ... . ... 173
30 Instantons . . . . . . . . i e e e e e e e e e e e e 183
31 The Number of Instanton Parameters . ... ............. 194
32 Computation of the Instanton Contribution . ............. 199
33 Functional Integrals for a Theory Containing Fermion Fields . ... 207
34 Instantons in Quantum Chromodynamics . ... ... ........ 216
Part IIT Mathematical Background . . ... .. ... ....... 221
35 Topological Spaces . . . . . .. . .. .. 223
36 GIOUPS - .« « « v« v o e et e e e e e e 225
37 GIUNES . .« . v o o e e e e e e e e e e 229
38 Equivalence Relations and Quotient Spaces . . .. .......... 233
39 Group Representations . . ....................... 235
40 Group Actions . . . . . . ... e e 241
41 The Adjoint Representation of a Lie Group . . ... ......... 245
42 Elements of Homotopy Theory . .. ... ............... 247
43 Applications of Topology to Physics . . . ... ............ 257
Bibliographical Remarks . ... ... e e e e e e 261
References . . . . . . v i o v i i e e e e e e 263

Index . . . . . i e e e e e e e e e e e e e e e e e e e e e e 269



Introduction

Topology is the study of continuous maps. From the point of view of topology,
two spaces that can be transformed into each other without tearing or gluing
are equivalent. More precisely, a topological equivalence, or homeomorphism, is
a continuous bijection whose inverse, too, is continuous.

For example, every convex, bounded, closed subset of n-dimensional space
that is not contained in an (n — 1)-dimensional subspace is homeomorphic to
an n-dimensional ball. The boundary of such a set is homeomorphic to the
boundary of an n-ball, that is, an (n — 1)-dimensional sphere.

For continuity to have a meaning, it is sufficient that there be a concept of
distance between any two points in the space. Such a rule for assigning a distance
to each pair of points is called a metric, and a space equipped with it is a metric
space. But a space doesn’t have to have a metric in order for continuity to
make sense; it is enough that there be a well-defined, albeit qualitative, notion
of points being close to one another. The existence of this notion, which is
generally formalized in terms of neighborhoods or limits, makes the space into
a topological space.

Topological spaces are found everywhere in physics. For example, the con-
figuration space and the phase space of a system in classical mechanics are
- equipped with a natural topology, as is the set of equilibrium states of a system
at a given temperature, in statistical physics. In quantum field theory there
arise infinite-dimensional topological spaces.

All this opens up possibilities for using topology in physics. Of course, the
primary focus of interest to a physicist—quantitative descriptions of physical
phenomena—cannot be reduced to topology. But qualitative features can be
understood in terms of topology. If a physical system, and consequently the as-
sociated topological space, depends on a parameter, it may happen that the
space’s topology changes abruptly for certain values of the parameter; this
change in topology is reflected in qualitative changes in the system’s behav-
ior. For instance, critical temperatures (those where a phase transition occurs)
are characterized by a change in the topology of the set of equilibrium states.

Physicists are interested not only in topological spaces, but even more so in
the topological properties of continuous maps between such spaces. These maps
are generally fields of some form—for example, a nonzero vector field defined
on a subset of n-dimensional space can be thought of as a map from this set
into the set of nonzero vectors.
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Most important are the homotopy invariants of continuous maps. A number,
or some other datum, associated with a map is called a homotopy invariant of
the map if it does not change under infinitesimal variations of the map. More
precisely, a homotopy invariant is something that does not change under a
continuous deformation, or homotopy, of the map. A continuous deformation
can be thought of as the accumulation of infinitesimal variations.

For example, given a nonzero, continuous vector field on the complement of
a disk D in the plane, we can compute an integer called the rotation number
or index of the field, which tells how many times the vector turns as one goes
around a simple loop encircling D. More formally, let the vector field ¥(z, )
have components (¥, (z, y), P2(z, y)), and assume without loss of generality that
D contains the origin. We can form the complex-valued function

Y (r,p) = ¥ (r cosp, rsin ) + i¥(r cos p, r sin )

and write it in the form ¥(r,p) = A(r, )e’*¥), where a(r, ) is continuous:
this is because the field is nowhere zero (so e*¥) is well-defined and continuous)
and the domain of the field avoids the origin (so a branch of the log can be chosen
continuously for ). The index n is defined by 2an = a(r,27) — a(r,0). It is
easy to see that the index is a homotopy invariant: by definition, it changes
continuously with the field, but being an integer it can only vary discretely.
Therefore it cannot change at all under continuous variations of the field.

In particular, the radial field ¥(z,y) = (z,y) has index n = 1, because
¥ (r,p) = re'; this agrees with the intuitive idea that as you go around the
origin the field turns around once. The tangential field ¥(z,y) = (—y, z) also
has index n = 1, because ¥(r, ) = re'?+"/2, The field ¥(z,y) = (z? — 3°, 2zy)
has index 2, because ¥ (r, p) = r2e?%.

Maps that can be continuously deformed into one another are called homo-
topic, and a continuous family of deformations going from one to the other is
a homotopy between the two. Homotopic maps are also said to belong to the
same homotopy class. For fields we often talk about a topological type instead
of a homotopy class.

By definition, any homotopy invariant has the same value for all maps in a
homotopy class. Conversely, it may happen that if a certain homotopy invariant
has the same value for two maps, the maps belong to the same homotopy class:
we then say that the invariant characterizes such maps up to homotopy.

For example, the index is sufficient to characterize the homotopy class of
nonzero vector fields defined away from the origin: two vector fields having
the same index can be continuously deformed into one another, without ever
vanishing. (This is somewhat harder to prove than the fact that the index is
a homotopy invariant.) If a nonzero vector field defined outside a disk can be
extended continuously to a nonzero field on the whole plane, its index is zero
and the field is said to be topologically trivial. Generally, n can be interpreted as
the algebraic number of singular points that appear when the field is extended
to the interior of the disk. (Singular points are those at which the field vanishes
as well as points where the field is undefined.)
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There are many physical interpretations for the mathematical results just
discussed. For instance, the plane with a given vector field may represent the
phase space of a system with one degree of freedom, in which case the field
determines the dynamics of the system. The topology of the problem then gives
information about the equilibrium positions (points where the vector field van-
ishes). Or the vector field may represent a magnetization field, and the singular
points can be interpreted as defects in a ferromagnet. A complex-valued function
might represents the wave function of a superconductor (the order parameter),
and its singular points vortices in the semiconductor.

In field theory, both classical and quantum, topological invariants can be
considered as integrals of motion: if we can assign to each field with a finite
energy a number that does not change under continuous variations of the field,
this number is an integral of motion, because it does not vary with time as
the field changes continuously. In particular, topological integrals of motion can
arise in theories that admit a continuum of classical vacuums (a classical vacuum
is the classical analogue of the ground state). One can capture the asymptotic
behavior of the field at infinity by defining a map from a “sphere at infinity”
into the space of classical vacuums, and any homotopy invariant of this map is
a topological integral of motion for the system, This works whether the classical
vacuums form a linear space or a manifold such as a sphere.

An example of a topological integral of motion is the magnetic charge. The
magnetic charge of a field in a domain V is defined as (47)~! times the flux of
the magnetic field strength H over the boundary of V. If the field is defined
everywhere inside V, the relation div H = 0 implies that the magnetic charge is
zero. That is the situation in electromagnetism. But in grand unification theories
(theories that account for electromagnetic, weak and strong interactions), the
electromagnetic field strength is not defined everywhere, and it is possible to
have fields with nonzero magnetic charge. In fact, it turns out that such fields
always exist, and one concludes that in grand unification theories there exist
particles that carry magnetic charge (magnetic monopoles).

The simplest and most important applications of topology to physics have
to do with homotopy theory. But another branch of topology, homology theory,
also plays an important role. Homology theory can be applied either directly
(for example, in analyzing multiple integrals arising from Feynman diagrams)
or as a technical means for building homotopy invariants. Homology theory is
closely linked with the multidimensional generalizations of Green’s formula, of
Gauss’s divergence theorem and of Stokes’ theorem. Such generalizations are
generally formulated most conveniently in the language of exterior forms, that
is, sums of antisymmetrized products of differentials.

The basic concepts of homology theory are cycles, which can be seen as
closed objects (that is, curves, surfaces, etc., having no boundary), and bound-
aries. Boundaries are cycles that are homologous to zero, or homologically triv-
ial. For example, if I' is a closed curve in three-space, the complement R3 \ I"
contains one-dimensional cycles that are not homologous to zero—that is, that
cannot bound a surface that avoids I". This intuitive statement can be proved
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formally by considering the magnetic field of a current flowing along I'. The field
strength H satisfies the condition rot H = 0 outside I". If a one-dimensional cy-
cle (closed curve) I in R3\ I is the boundary of a surface S that lies entirely
in R3\ I', Stokes’ Theorem implies that

ﬁlH-dl=/SrotH-dS.

Hence, a cycle I for which §, H - dl does not vanish cannot be homologous to
zero in R\ I'.

If a cycle that is not homologous to zero undergoes a continuous deforma-
tion, the result cannot be homologous to zero. This remark opens the way for
the application of homology theory to homotopy theory. For example, if ¢ is a
loop in the domain R3\ I considered above, that is, a map from the circle into
the R3 \ I', Stokes’ Theorem implies that the integral §,H - dl is a homotopy
invariant.

Another important concept from topology that finds an application in
physics is that of a fiber space or fibration. A common situation in both math-
ematics and physics is to have, for each point b of a space B, some space F;
depending on b € B. If all the F; are topologically equivalent, we say that the
union E of the Fj is a fiber space over the base space B, and each Fj} is called
a fiber.

Suppose, for example, that B is the configuration space of a mechanical
system. Fixing a point in B, we consider all possible sets of values for the gen-
eralized velocities; each such set of values is a tangent vector to the configuration
space B at the given point. If the system has n degrees of freedom, we get an
n-dimensional vector space for each point of B. The union of all such vector
spaces is a fiber space, called the tangent space of B.

Another example of a fiber space is the space of all gauge fields, each fiber
being a class of gauge-equivalent fields, and the base space being set of all
classes.

It is often necessary to select in each fiber a single point that depends con-
tinuously on the fiber: in other words, to construct a section of the fiber space.
In both examples above the concept of a section has a physical interpretation: a
section of the tangent space is a vector field (or velocity field) on the configura-
tion space; while for the fibering of the space of gauge fields, the construction of
a section amounts to choosing a gauge condition. (For nonabelian gauge fields
it is not possible to find a gauge condition that singles out exactly one field in
each class. This means that the fiber space has no section.)

Besides arising directly from physical applications, fiber spaces play an im-
portant technical role in the solution of problems of homotopy theory. The con-
cept of a gauge field, so important in physics, is intimately linked to the concept
of a fiber space. Mathematically it is equivalent to the notion of a connection
on a principal fiber space (a fiber space whose fiber is a group).

Many other topological concepts, in addition to the ones mentioned above,
are used in contemporary physics. Although we cannot cover them all in this
brief introduction, we will encounter several of them later on.
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It is worth mentioning that the flow of ideas between topology and physics
goes both ways. Ideas from quantum field theory have recently been applied to
topology and have led, in particular, to new invariants of smooth manifolds and
of knots. One such construction is based on the following simple idea.

Consider an action functional on fields defined on a smooth manifold M, and
the associated physical quantities (partition function, correlation functions). If
the action functional does not depend on the metric on M, these quantities are
also independent of the metric. (This statement can be violated in the case of
the so-called quantum anomalies, but in many cases one can prove that quantum
anomalies do not arise.) For example, one can consider the action functional

) S(A) = % [ aduhu s,

where A, (z) is an electromagnetic field on the compact three-dimensional mani-
fold M. This functional does not depend on the metric on M. It is invariant with
respect to gauge transformations A, — A, + 8,), and therefore to calculate
the partition function we have to impose a metric-dependent gauge condition;
the answer can be expressed in terms of the determinants of the scalar-field and
vector-field Laplacians. Both determinants depend on the choice of the metric,
but the partition function is independent of this choice. We thus obtain an in-
variant of the manifold M, which turns out to be the well-known Ray—Singer
torsion (a smooth version of the Reidemeister torsion).

One can generalize the action (*) in many ways, obtaining new invariants.
In particular, for gauge fields A, taking values in the Lie algebra of a compact
Lie group, one can construct an analog of (+) leading to invariants of three-
dimensional manifolds closely related to the Jones polynomial of a knot.



Definitions and Notations

Set Theory

The set of points o satisfying the condition (or conditions) Y is denoted by
{a|Y}.

If f is a map from A into B, the image of A is the set f(A) = {f(a) | a € A},
and the inverse image of a point £ € B is f1(z) = {a | a € A, f(a) = z}.

A transformation is a bijective map between two sets. (A map between
topological spaces is always assumed to be continuous.)

The Cartesian product of two sets A and B is

AxB={(z,y)|z€ A,y € B}.

Linear Algebra

R™ denotes the n-dimensional real vector space of n-tuples of real numbers, and
C" the n-dimensional complex vector space of n-tuples of complex numbers.

E* denotes the dual space to a vector space E, that is, the space of linear
functionals on E. If f € E* is a linear functional on E, the value of f on z is
denoted by f(z) = (f,z), and is called the scalar product of f and z.

If A is a linear operator from E, into E,, the adjoint A’ of A is a linear
operator from Ej into E}, defined as follows: (A’ f,z) = (f, Az) for f € E; and
z € E;. If E is a Hilbert space, there is a canonical identification of E with E*.

The image of an operator A: E — F isIm A= {Az |z € E}.

The kernel of an operator A: E — F is Ker A= {z | z € E, Az = 0}.
The dimension of a vector space E is denoted by dim E.

The nullity of an operator A is [(A) = dim Ker A.

Ay = (i]A|k) stands for a matrix entry of the operator A acting on E.

The trace of an operator A is tr A = Y (i|A|i) = }_ \;, where the A; are the
eigenvalues of A.
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Group Theory

G, = G, indicates that the groups G; and G are isomorphic. The same notation
is used for the (topological) isomorphism of topological groups.

G, ~ G, indicates that the topological groups G; and G, are locally iso-
morphic.

A (left) action of a group G on a space X is a family of transformations ¢y,
for g € G, such that @g, g = ©g@g,. A right action is similar, but it satisfies
Po2gr = P1Poa-

Given an action of G on X, the orbit of a point z € X is the set N; =
{4(z) | g € G}, and the stabilizer of a point = € X is the subgroup H; = {9
0q(z) = T,g € G}. An action is free is the stabilizer of every point is trivial,
that is, wg(z) = z only if g = 1. The set of orbits is denoted by X /G and is
called the quotient space of X by G.

If H is a subgroup of G, the right action of H on G is given by the formula
on(9) = gh, where g € G and h € H. The quotient space G/H is the set
of all orbits of this action (right cosets). If H is a normal subgroup (that is,
a subgroup invariant under inner automorphisms ogh = ghg™?), the quotient
G/H inherits a group structure, and is called the quotient group of G by H.

GL(n,R) and GL(n, C) denote the groups of invertible real and complex
n-by-n matrices.

U(n) = {a | a'a = aa! = 1} denotes the group of unitary matrices of
order n.

SU(n) = {a | a'a = aa' = 1,deta = 1} denotes the group of unimodular
unitary matrices of order n.

O(n) = {a | a¥a = aa” = 1} denotes the group of orthogonal matrices of
order n.

SO(n) = {a | aTa = aa” = 1,deta = 1} denotes the rotation group of
order n.

The Lie algebras corresponding to these groups are denoted by gl(n,R),
gl(n, C), u(n), su(n), o(n) and so(n). In general, G will denote the Lie algebra
of a group G (Chapter 36).

The adjoint representation of a group G (Chapter 41) is denoted by 7,4(z) =
gzg~!, for g € G and z € G. The adjoint representation of a Lie algebra G is
denoted by o,(z) = [e, 2], for a,z € G.

Homotopy Theory

HACXand BCY,amap f: X — Y is said to be a map from the pair
(X, A) into the pair (Y, B) if f(A) C B. If A and B consist of a single point,
we talk of maps of pointed spaces of basepoint-preserving maps.

Two maps fo, f1 : X — Y are homotopic (as maps from X to Y') if there is
a continuous family of maps f; : X — Y connecting fy and f;. (In other words,
there is a map F : [0,1] x X — Y such that fp and f; equal the restriction of
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F to {0} x X and {1} x X, respectively.) Such a family is a homotopy between
fo and f;. A similar definition applies for maps between pairs of spaces.

The set of homotopy classes of maps from X into Y is denoted by {X,Y},
and the set of homotopy classes of maps from (X, A) into (Y, B) is denoted by

5" = {z | £ € R*™1,||z|| = 1} denotes the unit sphere of dimension n, and
s =(-1,0,...,0) € S™ its south pole.

We denote by m,(X,z) = {(S",s); (X, o)} the set of homotopy classes of
basepoint-preserving maps from the sphere S™ with basepoint s into a space X
with basepoint zo. For n > 1 the set m,(X, zo) has a group structure, and is
called the n-th homotopy group of X (T8.1). The relative homotopy group of
the pair (X, A) is denoted by (X, A).

Manifolds

A smooth map is one whose coordinate functions are differentiable infinitely
many times. A smooth manifold M is a space that can be covered with coordi-
nate patches (local coordinate systems) such that the change-of-coordinate map
between any two overlapping patches is smooth.

An exterior form of degree k, or k-form, on M is given in local coordinates
by the formula w = w;,_ ;, () dz'* A- - - Adz*, where A is the exterior product of
differentials (dz* A dz¥ = —dz7 A dz*) (T5.1 and T6.3). The exterior derivative
of wis dw = dw;,._ 4 Adz" A--- Adz*. A k-form w is closed if dw = 0; it is
exact if there exists a (k — 1)-form o such that w = do.

The k-th cohomology group of M, denoted by H*(M) = Z¥(M)/B*(M), is
the quotient of the space Z*(M) of closed k-forms by the space B*¥(M) of exact
k-forms (T5.2 and T6.3).

The k-th homology group of M, denoted by Hy(M) = Z,(M)/B(M), is the
quotient of the group of cycles, or k-dimensional closed surfaces, by the group
of boundaries, or closed surfaces that bound a (k+ 1)-dimensional surface (T5.2
and T6.1).

The homology and cohomology groups with coefficients in the abelian group
A (T6.1 and T6.2) are denoted by H(M, A) and H*(M, A), respectively.

Fibrations

A fiber space or fibration (E, B, F,p) is a map p: E — B such that the inverse
image of every point in B is homeomorphic to F. We call B the base space, F
the fiber, p the projection and E the total space (T9.1). Sometimes E itself is
called a fibration. A Cartesian product E = B x F is a trivial fibration with
projection p(b, f) = b€ B.

A section of a fibration (E, B, F,p) is a map ¢q : B — E such that g(b) €
p~1(b) = F, for all b € B (T9.2).
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If a group G acts freely on F, the fibration (E, E/G, G, p) is called a prin-
cipal fibration (T9.3).
The exact homotopy sequence of a fibration is

e} ’II',,(F,E()) - Wn(Ea 60) - Wﬂ(BibO) - Wﬂ—l(F’ 60) ety

where o and by are base points in E and B (T11.2). (An exact sequence of
homeomorphisms is one in which the image of each homeomorphisms coincides
with the kernel of the next.)

If G acts on a space F and (E, B, G, p) is a principal fibration, the associated
F-fibration is the fibration obtained by patching together the products U; x F
in the same way that E is patched together from the products U; x G (T9.4
and T15.1).

Miscellaneous

All functions, maps, manifolds and sections of fibrations are assumed smooth
unless we state otherwise. (However, all the assertions remain valid if instead of
infinite differentiability we assume differentiability up to a certain order, which
depends on the problem. Usually continuous differentiability or just continuity
is enough.)

A,(z) denotes a gauge field (a covector field with values in the Lie algebra
of a gauge group G). The strength of the gauge field A, is denoted by Fy, =
A, — AL+ A A

The covariant derivative of a field ¢ that transforms according to some
representation T' of the gauge group G is Vo = (8, + t(A,))p, where ¢ is
the representation of the Lie algebra G corresponding to T (see Chapter 4 and
T15.1).

We adopt throughout the convention that repeated indices are to be summed
over. We denote by boldface letters the spatial components of a space-time
vector.

The line element of Minkowski space-time is written

dz,dz* = (dz°)? - (dx)?,

where z° = t. The speed of light ¢ is taken to be 1.



Part 1

The Basic Lagrangians of
Quantum Field Theory



1. The Simplest Lagrangians

Classical field theory is founded upon the action functional
Ly - = [cds,

where £, the action density or Lagrangian, is a function of the field variables
and of their derivatives, and the integral is over all spatial variables and time.
The equations of motion are obtained from the principle of least action: the
variation of S must vanish under fixed boundary conditions.

We will consider the simplest Lagrangians that are invariant under the
Lorentz group. We start with the Lagrangian of a free scalar field ¢(z):

(1.2) L=18,p8% — 1a*p%

The corresponding equation of motion, called the Klein—Gordon equation, has
the form
Op 4 ap =0,

where 00 = 8,8,. The solutions to this equation are linear combinations of plane
waves

(1.3) exp(—ikr) = exp(—ik®z° + ik - x),

with k% = (k°)2 — k% = a®

Upon quantization, the Lagrangian (1.2) yields a theory describing particles
of mass ha; the plane wave (1.3) corresponds to a particle with energy E = hk°
and momentum p = fik, so that E?2 — p? = m? = h%a? Notice that (1.2)
does not contain Planck’s constant }; this constant appears in the mass of the
particle only because it occurs in the canonical commutation relations

[t (x), p(x')] = —iRb(x — x'),

which are postulated in process of quantization. The same remark is true of all
the other Lagrangians about to be discussed.

The Klein—Gordon equation is often considered the result of quantization
of the Lagrangian of a free relativistic particle. (For this reason the process of
quantization of the Klein—-Gordon equation is sometimes called second quan-
tization.) In this approach, the Planck constant occurs in the Klein—-Gordon
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equation proper. We do not adhere to this point of view, however. From now
on we set i = 1.

An electromagnetic field can be described by a potential A,(z), which trans-
forms as a vector under Lorenz transformations. If two fields A}, (z) and A,(z)
differ by the gradient of a scalar function ), that is, if A, = A,+3,2, the fields
are physically equivalent. The transformation A, — A, + d,A is known as a
gauge transformation. The tensor Fy, = 0,A, —08,A, is called the field-strength
tensor; it does not change under gauge transformations. The components Fp;
of this tensor are identified with the components E; of the electric field E, and
the components Fy;, for i,j = 1,2,3, are related to the components Hy of the
magnetic field H by

Fj = €ijrHy.
The Lagrangian of an electromagnetic field can then be written in the form
(1.4) L=—3F,F".

Taking advantage of gauge invariance, we can impose on the vector potential
A, additional restrictions such that in each class of physically equivalent fields
there exists at least one field satisfying these restrictions. These are known
as gauge conditions. For instance, we can impose the Lorentz gauge condition
8, A* = 0 or the Coulomb gauge conditions A® = 0 and div A = 0. The Coulomb
gauge singles out exactly one field in each class of physically equivalent fields (if
one requires that fields fall off at infinity); the Lorentz gauge does not possess
this property.

The equations of motion corresponding to the Lagrangian (1.4) are given
by 8,F*” = 0, and coincide with the Maxwell equations in a vacuum. In the
Coulomb gauge, to each wave vector k there correspond two linearly indepen-
dent plane waves with frequency k° = |k|, both satisfying the equations of
motion. (A plane wave is characterized by a wave vector k and a polarization
vector orthogonal to the wave vector.) This implies that, upon quantization,
the Lagrangian (1.4) gives a theory describing massless particles (photons). For
each value of the momentum the photon can be in two independent states.

Adding to (1.4) the “mass term” 1a®>A,A¥*, we obtain the Lagrangian

(1.5) L=1(0,4,8"A" — 8,A, & A*) + Ja®A, A",

which describes a massive vector field. This Lagrangian is no longer gauge in-
variant. Upon quantization, it gives a theory that describes vector particles of
mass a; for a given value of the momentum p a particle can have three in-
dependent states, because for a fixed value of the wave vector there are three
independent plane waves satisfying the equations of motion.

‘We now turn to fields that transform according to two-valued representa-
tions of the Lorentz group.

When quantizing such fields one must use canonical anticommutation relations.
In fact, strictly speaking, even before quantization these field values should be consid-
ered anticommuting. For our purposes, however, this subtlety is almost everywhere
inessential.
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We start with a two-component spinor field p®, that is, a field that trans-
forms according to a two-dimensional complex representation of the Lorentz
group. (We do not include reflections in the Lorentz group.) From two spinors,
say ¢ and x®, we can set up a scalar £,50°x” = @x and a vector ¢° hXE =
o*x, where o° stands for the identity matrix, and o', o2 and o? for the Pauli
matrices. (The spinor X® = ¥%, the complex conjugate of x*, transforms as a
dotted spinor.) Thus, we can write the Lagrangian of ¢* as

(1.6) L = Re(ipo* 0,6 + 2app) = %(‘PU" 0up — Oupa*@) + a(pp + PP).
The corresponding equations of motion,
. i0ypo* — ag =0,
have solutions in the form of plane waves:
p = uexp(—ikz),

with k2 = a?. Hence, if we quantize Lagrangian (1.6), we get a theory that
describes particles of mass m = a. Sin¢e in the quantization process we employ
the canonical anticommutation relations

[v*(x), @ (x)]4 = 0,

[p*(x), @ X))+ = 66(x — x),
these particles are fermions.

In quantum field theory, charged particles are described by complex-valued
fields: the corresponding Lagrangian must remain unchanged when the field is
multiplied by a complex number of absolute value 1. If a # 0, the Lagrangian
(1.6) is not invariant under the substitution ¢® — e*¢*; hence, it describes
neutral massive fermions, or Majorana neutrinos. For a = 0 it describes Weyl
neutrinos, which are massless.

To construct a Lagrangian that will describe charged fermions we must use
two spinor fields, ¢® and x“. The resulting Dirac Lagrangian has the form

(1.7 L = i(Fup o*@ + Gux 0*X) — m(px + XP)-

By introducing the bispinor

(1.8) Y= (;:) )

where ¥s = edﬁ)'(f’ , we can rewrite the Dirac Lagrangian as
(1.9) L = ipy*db — myp,

where
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aoy  d=vt e=(10) (2 7).

The matrices in (1.10) satisfy
(1.11) P+ = 2"

Four-dimensional matrices y* that satisfy (1.11) are known as Dirac matrices.
If in (1.9) we replace matrices (1.10) by arbitrary Dirac matrices, we obtain an
equivalent Lagrangian.

A two-dimensional complex-valued representation of the Lorentz group can
also be seen as a four-dimensional real-valued representation of the same group.
In other words, a two-component complex-valued spinor ¢* can be considered
as a four-component real-valued spinor, or Majorana spinor:

In terms of Majorana spinors, we can rewrite the Lagrangian (1.6) in the form
(1.9), where the v* are real-valued Dirac matrices.



2. Quadratic Lagrangians

We consider the simplést Lagrangians describing multicomponent fields. We
start with the Lagrangian

1 . 1 .
(21) £ =530 0% — 5 T ks,
i i,

which describes an n-component scalar field ¢ = (¢!,...,¢"). One can always
diagonalize the quadratic form ¥, ; ki;¢'¢’ by means of an orthogonal trans-
formation o' — ¥°; i, where (a}) is an orthogonal matrix. This substitution
does not affect the kinetic part 3 3=; 8,¢° 8#¢* of L, so (2.1) can be reduced to
the simpler form

(2.2) L= 3 Z(a,‘tp’ 0% — vy,

where the y; are the eigenvalues of the symmetric matrix (k;;). Thus, when all

the eigenvalues are nonnegative, the Lagrangian (2.1) describes scalar particles

of mass m; = /v;. If there is at least one negative eigenvalue, the Hamiltonian

is not bounded below, so the theory cannot be interpreted in terms of particles.

(One sometimes says that the theory describes particles of imaginary mass, or

tachyons, but it must be added that such particles do not exist in nature.)
The quadratic Lagrangian describing a multicomponent vector field,

1 . . . . 1 . ,
(2.3) == > _(BuA, — 0, AL)(O* A" — ¥ A*) + 5 > ki AL A4,
i LY

can be studied in a similar manner. If the symmetric matrix (k;;) is nonneg-
ative definite and has eigenvalues »;, we conclude by diagonalizing that the
Lagrangian describes particles of mass /.

Next we consider the quadratic Lagrangian describing n spinor fields,

i _ - -
(2.4) L= 2 S (0% 8,5 — Ouxio*X;) + Y_(Myxixi + MijXi%s)s
J iJ

where the M;; form a symmetric complex matrix (the mass matrix). By applying
a transformation x; — Uj; x’, where U = (U;;) is a unitary matrix, we can reduce
{(2.4) to the form
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i _ _ _ -
28)  L£=53 (60"0uXi — 9uXso"Xs) + 2 mi(xiXs + XiXs):
j j

where the m; are the square roots of the eigenvalues of M'M. We show the
existence of a diagonalizing matrix in the next paragraph; here we just observe
that the transformation y; — Ui;x; does not change the first sum in (2.4),
and that it has the effect of replacing the mass matrix M = (M;;) by UTMU.
Thus MM becomes UTMIUTITUTMU = U-*MtMU, so its eigenvalues do not
change, and we conclude that the m; can be interpreted as masses.

We must still show that the quadratic form M(x) = ¥, ; Mi;xix; on C" can
be reduced to the form ¥, m;x:x: by a unitary transformation. We identify C™ with
R2", via the correspondence (u; + V1, . ..,Un + Ws) — (U1, V1,-..,Un, V), and we
consider the quadratic form

N(z) = M(z) + M(z)
= M,,_.,-('u,k + ivk)('u,_,- + ‘l:‘UJ') + Mkj(’ll,k - iuk)('u._,- - ’l:'l)j)

on R?". Multiplication by i in C" gives in R?" a linear operator J satisfying J% = —1,

and taking (41, ¥1,...,Un,%) € R¥™ to (—v1,%y,..., Vs, us). The standard basis
vectors in R?" are €;, Jey, ... , €n, Jeén, where {e1,...,6,} is the standard basis of
C™. Since M(iz) = —M(z), we have

(2.6) N(Jz) =-N(z).

The standard Hermitian scalar product in C™ corresponds to the standard scalar
product in R*", and unitary operators in C" are orthogonal operators in R? that
commute with J. Using the scalar product in R**, we can write the quadratic form
N(z) as N(z) = (Nz,z), where N is a self-adjoint operator in R**. From (2.6)
it follows that NJ = —JN, which means that for each eigenvector z of N with an
eigenvalue ) there is an eigenvector Jz with eigenvalue —\. A standard reasoning then
implies that there exists a complete orthonormal set of eigenvectors of N, consisting
of the vectors z,, JZ1, . .. , Tn, JTr, corresponding to eigenvalues A1, —A1, .- -, Ay —An,
with each ); nonnegative. The orthogonal operator that maps the standard basis
vectors ey, Jey,...,en, Je, to the eigenvectors 1, JZy,...,Tn, JZ, of N commutes
with J, and therefore represents the desired unitary transformation in C".



3. Internal Symmetries

By a symmetry we mean a transformation of fields that leaves the action func-
tional unchanged. A symmetry is internal if it affects only the values of the
fields and not the coordinate variables.

Take, for instance, the Lagrangian of a system of n massless scalar fields
o (z),...,¢™z), or, equivalently, of an n-component scalar field p(z) =

(@'(2),. (@)
(31) £1= 333 0 = H0up ).

(The angle brackets stand for the standard scalar product in R™.) This La-
grangian, and hence the corresponding action functional, do not change under
a transformation of the type

(3:2) p(z) = ¢'(z) = Ap(z),

where A = (a}) is an orthogonal matrix. Thus (3.1) possesses the group of
internal symmetries O(n). In Chapter 2 we used this fact to reduce (2.1) to
(2.2).

The Lagrangian

(3.3) L=Ly— %mz ()2
i=1
which describes n noninteracting scalar fields of equal mass, and the Lagrangian
no 2
(3.4) L=Ly— A(E(¢')2 - az) ,
i=1

also possess the group of internal symmetries O(n).
More generally, the Lagrangian of an n-component scalar field invariant
under Lorentz transformations can be written as

(3.5) L = 3(0up, 0*p) — U(9p),

where U(p) = U(4?,...,¢") is a function on R™. (This encompasses (3.3) and
(3.4) as particular cases, with U(p) = im*(p, ) and U(p) = A({w, ) — a?)?,
respectively.) This Lagrangian has internal symmetry group G C O(n) if U(yp)
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is a G-invariant function on R™®, that is, if U(gp) = U(p) for all g € G and
p €R™

In the examples above, the action functional was defined on fields taking
values in R™. We can also speak of an internal symmetry group when the action
functional is defined on M-valued fields, where M is a manifold. Any homeo-
morphism of M gives rise to a transformation of fields; a group G acting on M
is an internal symmetry group if the action functional remains unchanged under
the field transformations corresponding to the elements of G. In particular, if
an n-component scalar field ¢(z) can take on values only on the unit sphere
(¢, ) = 1, the Lagrangian

(3.6) L = 5(0up, 0")

has internal symmetry group O(n).

Next, we can speak of internal symmetries not only of with scalar fields,
but also of fields that transform by other representations of the Lorentz group.
For instance, we have seen that the Dirac Lagrangian (1.9) is invariant under
the transformation

3.7 Y(z) — ¥ (z) = eY(z),

and so has internal symmetry group U(1). To the symmetry (3.7) corresponds
an integral of motion Q = [ d3z 14y, which has the physical meaning of charge.
The Lagrangian

Ly = z Z(Ejam #Ej - anfjﬂ“gj),
2 s

where the &; are (two-component) spinor fields, is obviously invariant under the
transformation & — u;;€;, where (ui;) is a unitary matrix. Thus, the internal
symmetry group for Lagrangian (3.8) can be taken as U(m). This fact was used
when we analyzed Lagrangian (2.4).

The Lorentz-invariant Lagrangian describing n scalar fields ¢!,...,¢" and
m spinor fields &, . . ., &, can be written in the form

(3.9) L=Ly+ Ly + Lins,
where £ and L; are defined by (3.1) and (3.8) and

(3.10) Lt = Y Ligriic™ — U(p).

ik

If we impose the additional condition that the quantum field corresponding to
(3.10) be renormalizable, we must assume that U(y) is a polynomial of degree
no higher than four:

(3.11) U(p) = g’ + bijo'e? + cijed oo + digup’ o oy
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Note that the coefficients Iy, bij, ... , in (3.10) and (3.11) can be assumed to
satisfy the symmetry conditions

-Fl'jk = —1jik, bij = bjia

If Liny = 0, the Lagrangian (3.9) has internal symmetry group O(n) x U(m),
consisting of orthogonal transformations of the scalar fields and unitary trans-
formations of the spinor fields. If Li;; # 0, the symmetry group is the subgroup
of O(n) x U(m) that leaves L invariant.

The question often arises of how to describe Lagrangians for which the
internal symmetry group is isomorphic to a given group G, such as SU(2), for
instance. -

First, G must be realized as a subgroup of O(n) x U(m), that is, we must
construct an isomorphism from G into O(n) x U(m). Suppose we have an n-
dimensional real and an m-dimensional complex representation of G, that is,
homomorphisms T3 : G — O(n) and T; : G — U(m). Then we can construct
a homomorphism G — O(n) x U(m), by taking g € G to (T1(g), T2(g)). Thus
we associate with g an internal symmetry of the Lagrangian L, + Ly, in which
scalar fields transform according to T; and spinor fields according to T5.

It may occur that for some g # 1 both images T1(g) and T:(g) are the
identity, that is, the associated internal symmetry is trivial. In this case the
homomorphism from G into O(n) x U(m) is not an isomorphism.

If the representations 7 and T are fixed, one can establish, using group-
theory considerations, what form the Lagrangian Li, must have in order to
be invariant by all the transformations T}(g) and T5(g). In other words, if we
know how the scalar and spinor fields ¢ and ¢ transform, we can find out all
G-invariant expressions in these variables.

For example, take G = SO(3), and let the scalar field transform by a
three-dimensional irreducible representation of SO(3), and the spinor field by
the direct sum of two three-dimensional irreducible representations. In other
words, the scalar fields ¢ = (¢!, ¢?,¢®) form a three-dimensional vector, and
the spinor fields form two three-dimensional vectors, Ly = (L, L}, L}) and
L, = (L3, L%, L3). From two vectors, say A; and A, one can construct a unique
(to within a factor) scalar (A;, Ag) = X, A{A$ that depends linearly on A, and
Ag,; from three vectors A,, Ay, A3, one can construct a unique scalar Eapc A AL AS
that depends linearly on A;, Ay, A3 (this scalar will be antisymmetric in the
three vectors); and finally, there is a unique scalar (A, A)? that is a fourth-
degree polynomial in the components of a vector A. Using these facts, one can
easily write the most general form of Ly for this case:

Lint = a0 + Y bi(o, L) + Y cij(Lis, Ly) + deanep® LY LG + fop*.
i ij

In general, to establish the most general form that a G-invariant expression
of type (3.11) can take, we must find out how many times the trivial (scalar)

representation of G appears in the decomposition of Tl(z), Tl(a) and T1(4) into
irreducible representations, where Tl(") denotes the k-th symmetric tensor power
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of Ty. To specify all the ways to construct the remalmng terms m L,,,t, one must
solve a similar problem for the representations Tz and 71 ® T

Lagrangians having symmetry group U(1) are easily cha.ra.ctenzed. Indeed,
every complex representation of U(1) can be decomposed into one-dimensional
irreducible representations. This means that, after applying a unitary transfor-
mation, we can ensure that the spinor fields &, ..., &, transform as

(3.12) & > ™%

under the action of e € U(1), where a € R and each n; is an integer, called
the U(1)-charge of &;.

A quadratic Lagrangian that contains spinor fields and is invariant with
respect to U(1) can be written as

(3.13) L=CLs+ (Z M€ + C.C.),
i

where M;; # 0 only if n; + n; = 0. This can be decomposed as a sum of La-
grangians £,,, where each £,, involves only fields whose U(1)-charge has absolute
value n.

To reduce L, to its simplest form, we use complex conjugate fields (that is,
dotted spinors) with positive U(1)-charges, instead of spinor fields with negative
U(1)-charges. Thus we have, for n > 0:

(3.14) Lo =5 360" 8 ~ 0t o)
+ % Z()_(W" Buxk — OuXr oxk) + Z(ajkﬁj)_(k +c.c.),

where the &; are spinors and the x; are dotted spinors.

Using well-known algebraic facts, one can find a unitary transformation
that takes the matrix (a;;) into a diagonal matrix with non-zero elements (the
unitary transformation being performed on &; and x separately).

To prove this, look at (a;i) as representing a linear operator A from a complex
vector space F into a complex vector space E’. We are looking for orthonormal
bases {e;} for E and {e}} for E’ such that A, expressed with respect to these bases,
is diagonal. For E we select an orthonormal basis consisting of eigenvectors of the
nonnegative self-adjoint operator ATA. If AfAe; = )jej, with A; positive, we set
e; = ,\_,,-_1/ 2 Ae;. These new vectors are orthogonal to each other and normalized,
because
(Aey, Ae;) =

(AtAe,-, CJ') = —=X\ 6,_., = 6.,

ey = L _1
el = S ,/—A )

We obtain the necessary orthonormal basis for E' by adjoining to the e} a sufficient
number of normalized vectors orthogonal to the ¢} and among themselves.

If (ai;) is a square matrix, that is, if the original Lagrangian contained an
equal number of fields with U(1)-charges equal to n and —n, we conclude that
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L, can be represented as a sum of several Dirac Lagrangians. But if (ai;) is
not square, the reduced form of Lagrangian (3.14) will comprise, in addition to
Dirac Lagrangians, other Lagrangians describing massless (Weyl) neutrinos.

Thus, if a fermion has some type of U(1)-charge (for example, an electric,
baryonic or leptonic charge), it is described either by the Dirac equation (if
massive) or by the Weyl equation (if massless). A fermion may be thought of
as being a massive Majorana neutrino only if it carries no U (1)-charge. This
explains the special role played by the Dirac and Weyl equations in elementary
particle physics.

Every real-valued representation of U(1) breaks down into a direct sum of
one-dimensional trivial and two-dimensional irreducible representations. More-
over, two-dimensional real representations of U(1) are in obvious correspondence
with one-dimensional complex representations. Thus, given a real-valued repre-
sentation of U(1) describing the transformation of scalar fields, we can choose
new fields ¢’ that transform by the rule

o eniepl forj=1,...,r,
17 forj>r

under the action of ¢* € U(1). Each new field ¢?, for 1 < j < r, should be
thought of as a complex scalar field, and n; is called its U(1)-charge, just as
in the case of a fermion field. The remaining scalar fields are real-valued; they
don’t change under U(1), and their U(1)-charge is zero.

A Lorentz-invariant Lagrangian that contains spinor and scalar fields and is
invariant under U(1) can be expressed by a formula similar to (3.13); one must
only make sure that each term in the Lagrangian contains a product of fields
whose U(1)-charges add up to zero.



4. Gauge Fields

As noted before, the Dirac Lagrangian (1.9) is invariant under the transforma-
tion ¢/(z) = Us(z), where U = €' (in other words, a transformation in U(1),
the internal symmetry group of this Lagrangian). It is not invariant under trans-
formations of the form ¥'(z) = U(z)%(z), where U = €**) is a function taking
values on the unit circle. However, one can consider the Lagrangian of a bispinor
field interacting with an electromagnetic field A,(z); this Lagrangian is already
invariant under the transformation v'(z) = U(z)¥(z) if the transformation law
for the electromagnetic field is chosen as

4,(a) = A4(@) + ~Buelz),

where e is the electric charge.

There exists a simple general rule that makes it possible to switch on the
interaction with the electromagnetic field: namely, we must replace 9, with
V, = 8,—ieA, and add —}F,, F* to the Lagrangian, where F,, = 8,4, —8,4A,
is the electromagnetic field strength tensor. This rule can always be applied if we
are dealing with a complex-valued field and the Lagrangian does not change as a
result of multiplying the field by e*. For example, the Lagrangian of a complex-
valued scalar field ¢(z) interacting with an electromagnetic field A,(z) has the
form

L = Y(Bup — ieA,p)(0*¢" +ieAtp*) — gmPpp* — Fu F*.

Now let G be a group of n-dimensional matrices, and consider a Lagrangian
having internal symmetry group G, that is, invariant under symmetries of type
¢'(z) = go(z), where p(z) is an n-component field and g € G. Starting from £,
we construct a new Lagrangian L invariant under transformations of a broader
class,

(4.1) ¢'(z) = g(z)p(z),

where g(z) is a G-valued function. More precisely, in full analogy with the
standard procedure for introducing an electromagnetic field, we must replace
8, with V,, = 8, + eA,(z), where A,(z) is a matrix-valued vector field and V,
is the covariant derivative. The transformation law for A,(z) must be selected
in such a way that

(42) V,.¢'(z) = 9(2)Vuio(2),
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with V, = 8, +eA},(z). One easily checks that the transformation law must be

4 1 _
(4.3) Ay =94u97 — -0u997"

Condition (4.2) implies that the new Lagrangian L is invariant under the trans-
formations (4.1) and (4.3).

Note that we need not take arbitrary matrix-valued functions as candidates
for A,(z), but only functions taking values in the Lie algebra G of G. For
example, if G = U(n) is the group of all unitary matrices, A,(z) takes on values
in the set of anti-Hermitian matrices. Equation (4.3) should also be interpreted
as taking place in the Lie algebra G; indeed, if g(z) is a function with values in
G, the matrix 8,9(z) g~}(z) belongs to G, and if a € G, we have gag™ € G. We
can easily verify directly that (4.3) transforms an anti-Hermitian field A,(z)
into another such field.

Thus, starting from a Lagrangian £ having internal symmetry group G, and
replacing 8, with V, = 3, + eA,, where A,(z) is a vector field taking values
in the Lie algebra G, we have constructed a Lagrangian L invariant under the
local gauge transformations (4.1) and (4.3). A,(z) is known as a gauge field, or
Yang-Mills field, and represents a generalization of the electromagnetic field.
The electromagnetic field can be considered, to within a factor of —i, as a gauge
field for the group U(1).

However, if the gauge field A,(z) is to be dynamic, like the electromagnetic
field, we must add to £ an expression that contains the derivatives of Ay(z)
and is invariant under gauge transformations. To construct such an expression
we note that the commutator of two covariant derivatives can be written as

(4.4) Vi Vil = eFup,

where F, = 0,A, — O,A, + €[A,, A)] is known as the strength of the gauge
field A,(z). Equations (4.3) and (4.4) imply that F,, = ¢F,,g7", so that

Lyy = Y tr F 7

is gauge-invariant. Physically, Lyy stands for the Lagrangian of the gauge field
Au(z). It must be added to L so that we obtain a Lagrangian £ describing the
field p(z) and its interaction with the field A,(z). One says that the Lagrangian
L is obtained from £ by localization of the internal symmetry group G, which
is called the gauge group.

It is convenient to include the factor e, the “charge”, in the gauge field..
Then the covariant derivative becomes V,, = 8, 4+ A,, the gauge field strength
becomes

Fp =8,A, — 0,A, +[Au A,

and an additional factor e~ appears in the expression for Lyu.
We now look at a simple but important example that illustrates the con-
struction above. Let £ be the Lagrangian (1.9), describing an n-component



26 Part I. The Basic Lagrangians of Quantum Field Theory

bispinor field. As we know, £ is invariant under the transformation 9'(z) =
gu(z), for g € U(n). By localizing the U (n)—symmetry, we get

(4.5) L =iy (0, + Ay — m¢¢+ trf,,.,f o

where A, belongs to the Lie algebra of U(n), that is, it is anti-Hermitian.

It is not necessary to start with the full internal symmetry group of the La-
grangian when localizing; we can use any subgroup. For instance, for Lagrangian
(1.9) we could limit ourselves to localizing the SU(n) symmetry. Then in (4.5)
we must assume that the matrices A, belong to the Lie algebra of SU(n), that
is, that they satisfy tr A, =0 in addltlon to being anti-Hermitian.

So far we have assumed that the elements of the internal symmetry group
G are matrices acting on the space V where the multicomponent field ¢ takes
its values. As already noted, it is often convenient to assume instead that G is
an abstract group, and that we have a representation T of G in V, with the
Lagrangian £ being invariant under transformations ¢(z) — ¢'(z) = T(g)e(z).
Then the procedure for constructing L changes in the following manner:

By a covariant derivative we now understand the expression V, = 9, +
t(A,), where t is the representation of the Lie algebra G of G corresponding to
T. The gauge-field Lagrangian must be written as

1 v
['YM = —-4?<FMIH‘F“ )1

where the angle brackets stand for the invariant scalar product in G, which
means that (7,a,7,b) = (a,b), fora,b € G, g € G, and 74 the adjoint represen-
tation of G. (For a matrix group we have T,a = gag™ 1. and the invariant scalar
product can be taken as (g, b) = —trab.) It follows from the transformation law

Fp, (@) = To@z)Fu(zT) that L is invariant under the local gauge transformations

¢'(z) = T(g(z))e(z),
AL(:L‘) = Tg(:r)Au(I) - a,,g(:l:)g—l(.'l:).
When G is a direct product of two groups G; and Gs, its Lie algebra is the
direct sum of the two Lie algebras G; and G,. This makes it possible, knowing the

invariant scalar products {, ); and (, )2 in G; and G, to set up a two-parameter
family of scalar products in G, namely,

(z,y) = M(z1, )1 + Ao (T2, ¥2)2,

where z; and z, are the projections of z € G onto G, and G, and similarly
for 4, and y,. Accordingly, the Lagrangian of the gauge field with values in
G = G,+G, contains two coupling constants:

Loy = —Zi—%((.ﬁ),w, (F)™), — 4%%((5)“,, (F2)™)a.

In general, the Lie algebra of a compact Lie group G breaks up into a di-
rect sum of simple Lie algebras; the number of parameters on which the scalar
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product in G depends, and consequently the number of coupling constants in
the gauge-field Lagrangian, is equal to the number of elements in this decom-
position.



5. Particles Corresponding to
Nonquadratic Lagrangians

We consider the Lagrangian

(51) ~ 30 W (o)

describing a multicomponent scalar field, and put it in the form
(52) L=Lo-V(o)= %;fw o~ S kel = V(o)

where V is a polynomial in ¢ containing terms of order three and higher. In
Chapter 2 we showed that if the matrix (k;;) is nonnegative definite, Ly describes
particles whose squared masses are the eigenvalues of this matrix. The term
V(p) can be taken into account by perturbation techniques; although it does
not change the spectrum qualitatively, it nevertheless introduces corrections to
the masses of the particles. .
If (ki;) is not nonnegative definite, L cannot serve as a meaningful initial
approximation for the perturbation approach. In this case it is reasonable to
replace the fields ¢'(z) by new fields x*(z) = ¢'(z) — ¢, where the constants
& are chosen so that the quadratic part of £ in the new fields does become
nonnegative definite, and so allows an interpretation in terms of particles. It is
enough to choose for ¢ = (c',...,c") a point where W(yp) is minimal; such a
point is known as a classical vacuum. For example, if W(p) = ap? + bp*, with

a < 0, we take ¢ = £/—a/2b. Setting x(z) = p(z) — c, we get

2

(5.3) L = 18,x 0*x + 2ax* F V—8abx® - bx4+%,
which, to order zero, describes particles of mass m? = —4a.

There may be many classical vacuums: this phenomenon is usually related
to symmetry breaking. Symmetry breaking arises when not all transformations
that leave the Lagrangian invariant map a classical vacuum into itself. For ex-
ample, the polynomial W (p) = ap® + by? is invariant under the transformation
 +— —p, but for @ < 0 this is a broken symmetry, since it permutes the classical
vacuums */—a/2b.
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As in the example of (5.3), so in the general case we can find the particle
spectrum by looking at the quadratic part of the expansion of the Lagrangian
in powers of the deviation of the field from a classical vacuum. But if the theory
contains gauge fields, we must impose gauge conditions in advance, which lift
the gauge freedom in the definition of a classical vacuum. Consider, for example,
the Lagrangian
(5.4) L = |0up —ieAup|” — Mlpl® — a*)* — 1F2,,
which describes a complex scalar field ¢ interacting with the electromagnetic
field A,. Assuming A > 0, the condition for a classical vacuum is |¢| = a, that
is, ¢ = ae'®. All these vacuums are gauge-equivalent, so we can impose a gauge
condition that lifts the degeneracy. One straightforward condition is

(5.5) Imp =0, Reyp > 0.
Then (5.4) becomes
(5.6) L= (8ux)* — W*(x + 2a)® - 1 Fp, + €2 A2 (x +a)?,

where x(z) = ¢(z) — a. We see that, to order zero, £ describes a scalar particle
of mass m = 2a+/) and a vector particle of mass v/2ea. By contrast, for A =0
the Lagrangian (5.4) describes two scalar particles, with charges +e, and one
massless vector particle, the photon. For A > 0 the U(1)-symmetry breaks
down, the vector particle becomes massive, and there remains only one scalar
- particle; this is a manifestation of the Higgs effect. This effect also occurs in
non-abelian gauge theories; in Chapter 6 we discuss this in greater detail, using
the Weinberg-Salam model.

The procedure described above for finding the particle spectrum by choosing
an appropriate initial approximation and employing perturbation techniques is
based on the assumption that the corrections do not radically alter the spectrum
- of the system. This, however, is not always the case. In quantum chromodynam-
ics (QCD) (Section 1.6), the procedure leads to the prediction that fermion and
gauge fields correspond to particles—quarks and gluons. These particles, how-
ever, are not observed in experiments as free particles. Nevertheless, the study
of quarks and gluons has proved to be extremely fruitful at high momenta.
The explanation is that, in QCD, the higher the momentum, the better the
perturbation-theory approximation (asymptotic freedom). '
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Electromagnetic Interactions

Hadrons can be considered as consisting of quarks. Each quark is characterized
by color—yellow, blue or red—and flavor. At present six flavors are known, and
are commonly called up (u), down (d), strange (s), charmed (c), bottom (b)
and top (t). Quarks are described by a multicomponent bispinor field 9%, where
the superscript denotes the color (and therefore takes three values) and the
subscript the flavor (six values).

The Lagrangian describing free quarks has the form

(6.1) L =Y (itkr" 8,45 — mats¥s).
k.a

Since the mass of a quark depends only on its flavor, not on its color, this
Lagrangian is invariant under rotations in “color space,” that is, transformations
Y. v ¢i’ = glip], where (g}) is a unitary 3 x 3 matrix. Thus, (6.1) is invariant
under U(3), and a fortiori under SU(3). It is postulated that strong interactions
are described by the Lagrangian Lqcp obtained from (6.1) by localizing the
SU(3) symmetry (color symmetry), namely

(6.2)

Laom = 3 (T (0485 + (AN — maBbvh) + 103 TFwh (g
kn

n,k,c

T - 1
= ; Wa’Y"VMPa - Xa: MmePeta + Ei tr F, pu-r w,

Here A, takes values in the Lie algebra of SU(3), that is, (A,)7 = —(A,)? and
Yn(Au)h =0, and

(6-3) (FMV):' = II(AV)T - au(Au):nn + ;((Au);c"(Au)ﬁ - (A,,)L"(A,‘):).

The particles corresponding to the field A, are known as gluons. Thus, the
central hypothesis of QCD is that the interaction between quarks is carried by
eight vector particles, the glions. :
Often, instead of working with bispinor fields i, it is convenient to use
spinor fields L and R? such that 1} decomposes into Lj and the dotted spinor
complex conjugate to R¢. Under the action of the color group SU(3), the spinor
Li transforms like ¢, (that is, like a vector), but Rf transforms like a complex
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conjugate quantity. (For the group SU(n), the complex conjugate of a vector
can also be seen as a covector, that is, a vector with subscripts instead of
superscripts.)

We now turn to the Weinberg—Salam theory, which unifies weak and elec-
tromagnetic interactions. We start its construction by describing bosons. We
take two complex scalar fields ! and ¢?, with the Lagrangian

(6.4) Ls = 80" o1 + 8,07 % — A(|¢'[* + |** — n?)?
= (B, 80) — M{p, ) — ™).

We consider the following action of U(2): a unitary matrix u € U(2) transforms
a vector ¢ = (¢, ¢?) into ¢/, with 9" = w}y’. (In other words, ¢ is an SU(2)-
doublet and carries a U(1)-charge of +1.) Clearly, Lg is invariant under this
action.

Now, using the localization procedure, we switch on the interaction of ¢
with a gauge field taking values in the Lie algebra of U(2) (the algebra u(2) of
all anti-Hermitian matrices). The resulting Lagrangian is

(6.5) £ = (Y, V¥0) — M{0, ) — 1*)* + Lym,

where V,po = 9,0 + Aup, with A, an anti-Hermitian matrix, and the field
0 = (¢',%?) is written as a column. Now U(2) is not simple, since U(2) =
U(1) x SU(2); in terms of Lie algebras, this says that every element of u(2) (an
anti-Hermitian matrix) is the sum of a scalar matrix with a traceless matrix.
Therefore, the Lagrangian of the gauge field with values in u(2) contains two
coupling constants, g; and go:

(6.6) Lvm = 43 Tafu ™ + —;—trG G

where f,, is the scalar part and G, the traceless part of F,:

(-7'-#")::" = %f#V&rT + (G;w)#-
It is convenient to take the matrices 3i, i7", 1i7* and it as generators
of U(2), where the 7% are the Pauli matrices. The first matrix generates the
subgroup of scalar matrices, and the other three generate SU(2). If we write A,

in terms of these generators,
- A, = Jib, + Lic,T,
the Lagrangian (6.5) becomes
£ = [(3u + §ibu + FicuT)e|* — Ml + |** — n*)?

1
- 7O = 8~ 2 (Ohes — Bt few )

In the theory described by Lagrangian (6.5) there is spontaneous symmetry
breaking. Indeed, the minimum of the function U(yp) = A({p, ) — 7%)? is at-
tained at (i, @) = n?. Choosing @y = (?,) as a classical vacuum, we see that the
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group of symmetries that do not alter the classical vacuum (the unbroken sym-
metry group) consists of matrices of the form (3(1))’ for |a| = 1, and therefore
is isomorphic to U(1). As a generator of the unbroken symmetry group we can
take 1i(1 + 7%). Bearing in mind that fields related by a gauge transformation
are physically equivalent, we conclude that we can impose the conditions ¢! = 0
and Im ¢? = 0 to single out one field in each gauge equivalence class.

Expanding Lagrangian (6.5) in powers of the deviation from the classical
vacuum o, and retaining only the quadratic terms, we obtain

ax\’ _
(6.7) Lg= (%) — AN+ i(cﬂ — )’ + %,fcﬂ ch + Lym
»

= (9ux)% — D*x* + §(G — bu)’n® + Jcic
1 1 2
— Zg—%(a,,b,, b 6,,b,,)2 - Eg(a,,c,, - Buc,.) N
where cf = J5(c}, +ic3) and x = wr—1.
To find the masses of the particles described by the quadratic Lagrangian

(6.7), we must diagonalize it. This can be done by introducing the following
fields:

1 ) 1
W:: = E(C‘I‘i‘.’lﬁi) = ;2-0’:::,

Z,= b
Vi +93
4= 90195"C; + 9293 b
9+ 93

Now (6.7) takes the form

(6.8) Lqu= (Bux)* — AN’y — 3B, W, - B W, )(BW, — avW: )
+ 39 W Wy — 10, — 8,A,)?
— 18,2, - 0,2,)* + 7 (91 + 93)Z;.

Thus, the Lagrangian (6.7) describes a scalar particle of mass 2A7, a massless
vector particle (photon), and three massive vector particles, one with mass
5/ 9% + g3 and two with mass ~5792-

Notice that there are two U(1)-charges involved here: one, associated with
the generator 3i(1 + 7°) of the unbroken symmetry group, is the usual electric
charge; the other is associated with the U(1) from the direct-factor decompo-
sition of U(2) = U(1) x SU(2), and is called the hypercharge. The photon and
the particle corresponding to the field Z,, known as the Z-boson, are electri-
cally neutral. The vector particles corresponding to the fields Wni’ known as
W -bosons, have electric charge 1.

From (6.8) and (6.5) it follows that the electromagnetic coupling constant is

e=g192/ \/ g% + g3. Often one considers, instead of the two coupling constants g;
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and g,, the electromagnetic coupling constant e and the so-called Weinberg angle
Ow, defined by e = g, cos 8w = g, sin fyy; it has been determined experimentally
that Oy = 20°.

‘We now examine how to incorporate fermions in the Weinberg—Salam model.
To describe the representation of U(2) =~ SU(2) x U(1), according to which
fermion fields transform, it is convenient to study the behavior of these fields
under the action of SU(2) and U(1) separately. We recall that irreducible rep-
resentations of SU(2) are ¢haracterized by the dimension, and those of U(1) by
the U(1)-charge, an integer.

It turns out that leptons are described in the Weinberg—Salam model by
spinor fields that are SU(2)-doublets or singlets. The U(1)-charges of these
fields (hypercharges) are Ygoust = —1 and Ysing = 2. Considering that there is
one doublet I* and one singlet  in the model, the most general Lorentz-invariant
Lagrangian having internal symmetry group U(2) and describing the interaction
of the spinor fields [* and r with the scalar field ¢° is

(6.9) Line = f(I°r@a + LTe"),

where @,, I, and 7 are the fields complex conjugate to ¢%, I and r. Here we
have assumed the interaction Lagrangian to be quadratic in the spinor fields
and linear in the scalar fields: see (3.10). The total Lagrangian of the spinor
and scalar fields is

(6.10) L= L5+ Ly+ Lirt + Lselt-int

where Ly and L, are the massless spinor and scalar field Lagrangians, and
Leatt-int = —A(p? —1?)? is the self-interaction Lagrangian of the scalar field. The
Lagrangian in the one-generation Weinberg-Salam model can be obtained from
(6.10) by localizing the U(2) internal symmetry group, that is, by replacing the
derivatives with covariant derivatives and adding the gauge-field Lagrangian
(6.6). Note that the covariant derivative of I* can be written as

(Vul)* = (8, + %i—rc,‘ - %ib,‘)l)“,
and the covariant derivative of r as
Vur = (0, +iby)r.

As before, we impose the gauge conditions ¢! = 0 and Im ¢? = 0. Expanding
the Weinberg-Salam Lagrangian in powers of the deviation x = ¢? — 7 of the
field from the classical vacuum, and retaining only the quadratic terms, we
obtain the particle spectrum. The boson part of the spectrum was described
earlier. To establish the fermion spectrum, we notice that the mass term is

(6.11) fnl’r +-cc.

This implies that the field I* describes a massless particle (identified with the
electron neutrino), while I? and r together define a bispinor field corresponding
to a Dirac particle of mass f7 (identified with the electron).
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We have described the Weinberg—Salam model for a single generation of lep-
tons: the electron and electron neutrino. Other leptons—the muon and muon
neutrino, and the antiparticles of all of these—can be incorporated in a straight-
forward way. For this we must assume that the model contains spinor fields I, g
and [2, for a = 1,2, which are doublets in SU(2), and spinor fields ry, and r3,
which are singlets in SU(2). The U(1)-charges of these fields must be assumed
equal to —1 and +2, respectively. The Lagrangian giving the interaction of the
spinor fields I¢ and r, with the scalar field ¢® must be chosen as

3
(6.12) Lr=Y_ fi(l{ripa +c.c.).
i=1

By repeating the reasoning and the procedure above, we obtain a Lagrangian
that describes three types of massless particles (neutrinos) and three types of
charged particles with masses f,, f; and f3.

Formula (6.12) does not give the most general Lagrangian for the interaction
of the fields I¢, r and ¢®. We can also consider an interaction of the type

3

(613) Ly= Z fikl?’l‘k(ﬁa +c.c.,
ik=1

where f* is an arbitrary complex matrix. However, a unitary transformation
of variables reduces (6.13) to (6.12) because, as shown in Chapter 3, the matrix
f* can be diagonalized by multiplication on the right and on the left by unitary
matrices. This means that the Weinberg-Salam model does not mix different
generations of leptons.

This restriction is lifted if we make the neutrino massive. We can do this
by introducing spinor fields s, s, and s3 that are singlets in SU(2) and have
U(1)-charge equal to zero.

We now turn to theories that account simultaneously for strong, weak and
electromagnetic interactions. In such a theory the gauge group must contain the
group SU(3) of strong interactions and the Weinberg-Salam group SU(2)xU(1).
Thus SU(3) x SU(2) x U(1) is the smallest possible gauge group. It breaks down
to SU(3) x U(1) via a doublet of complex-valued scalar fields o' and ¢?, which
transforms like a two-dimensional vector under transformations belonging to
U(2) =~ SU(2) x U(1), and does not change under transformations belonging
to SU(3). Hence, the boson part of the SU(3) x SU(2) x U(1) theory differs
from the corresponding part in the model of electroweak interaction only by the
presence of eight gauge fields corresponding to SU(3)—the gluon fields.

The fermion part of the the SU(3) x SU(2) x U(1) model contains first
of all leptons, fields that are present already in the Weinberg-Salam model.
They do not change under transformations in SU(3), that is, they are SU(3)
singlets. There are also quark fields, which transform by the vector or covector
representation of SU(3) (representations 3 and 3.) If quarks are represented by
bispinor fields 9, all of them transform according to the vector representation
of SU(3); but for us it is more convenient to work with the spinor fields Li

and R{.
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Quark fields may be SU(2)-doublets or singlets: those that transform by the
vector representation of SU(3) are SU(2)-doublets and have a U(1)-charge of
1, while those that transform by the covector representa.tion ale SU(2)-singlets
\tha.t is, SU(2)-invariant) and their U(1)-charge may be —% or 2. To summarize,
quark fields transform according to one of the following representa.tlons (3,2, 3)
(3,1, 2), or (3,1, —3), where the first number gives the transformation law with
respect to SU(3), the second the transformation law with respect to SU(2), and
the third the U(1)-charge."

The fact that the U(1)-charges of quarks are fractional and multiples of 3 is
due to convention; one could always make all charges integral by renormalizing
the generator of U(1).

In the minimal set of quark fields necessary to explain the existing exper-
imental data, each of the multiplets (3,2,1), (3,1,2) and (3,1, —%) appears
three times. In other words, there are three generations of quarks. Thus, the set
of quark fields consists of the spinors L§®, L3®, L3®, Rq1, Raz, Ras, ft!.,l, R,z and
Rus, where a = 1,2,3 is the SU(3)- 1ndex, or color, a = 1 2 is the SU(2)-index,
and the U(1)-charges of the fields L, R and R are 3, —% and 2.

To construct the Lagrangian of the SU(3) x SU(2) x U (1) model we must
write the most general Lagrangian £ that is invariant under SU(3) xSU(2)xU(1)
and describes the interactions of all the spinor fields in the model and the fields
*, and then switch on the interaction with the gauge fields, that is, localize the
SU(3) x SU(2) x U(1) symmetry. The part of L responsible for the lepton fields
and for ¢ was constructed above, so we need only describe the part responsible
for the interaction of the quark fields with ¢.

Invariance under SU(3) x SU(2) x U(1) reduces the possibilities to L** Ry@q
and L**R, @, (and their complex conjugates), where @, = Eqpp’ and @, = 7.
(Notice that @ transforms by the same representation of SU(2) as ¢, but has
opposite U(1)-charge.) Therefore the desired interaction Lagrangian is

(6.14) Lt = Y _(AixL{*Rarpa + Bt L RorPo) + c.C.
ik

Using unitary transformations
Ly - UL,  Ru—V{fRa,  Ru— WiRa,

which do not alter the free part of the Lagrangian, we can simplify the matrices
A and By. As discussed in Chapter 2, Ay can be diagonalized, so it takes
the form A;; = a;6;;. Next, by transforming the fields R appropriately, we can
make the matrix B;; Hermitian; this is because any matrix can be written as the
product of a Hermitian matrix and a unitary one. But even after doing this, we
can still simplify B;; by performmg transformations of the type L§* — u,Lg”,
Ry — ug ~1R.x, and Ry — Uy Ra,,, where the u; are complex numbers of
absolute value 1.

For the case of two generations, we can then make the matrix (By;) real—
the diagonal entries are already real because the matrix is Hermitian, so there
is only one other complex entry By = By, that needs to be made real, and this
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is possible because we have two independent parameters at our disposal. In the
case of three generations B cannot generally be made real, because it includes
three complex parameters, Bia = By, Bi3 = By and Bys = Bg,.

To analyze what particles are described by this model, we must, as usual,
expand the Lagrangian in a power series in the deviation from the classical
vacuum, retain only the quadratic part, and diagonalize it. For the boson part
and for lepton fields this was done when we examined the Weinberg—Salam
model. To see what particles correspond to the quark fields L§*, R, and Ry,
we must diagonalize the relevant mass term, which is obtained from (6.14) by
replacing the field ¢® with its vacuum value (0,7), and which has the form

3
(6.15) M= 3" (AwLRan + Bt L2 Ryxn) +c.c.

ik=1

For the case of two generations, this equation becomes (replacing the sum-
mation limit by 2):

(6.16) M= a1 L3 Ra1n + a2 L3 Reon + b11LT2Ra1"7
+ b12(L%% Ry + L32Ry1)n + baa L3 Reon + c.c.

(We assume that the matrix A = a:bi is diagonal and that B;; is Hermitian
and real.) We combine the spinors L$', L§?, L§' and L3® with the spinors com- *

plex conjugate to Ra1, Ra1, Raz and Rgs to form the bispinors u®, d'¢, ¢* and
s'e. Then (6.16) becomes

M = aniiu + agnic + bund'd + bian(d's’ + §'d’) + byans's’.
Next we change from d’ and &' to the bispinors d and s given by
d = d cosfc — §' sinfg, s =d'sinfc — §' cosfg,

where 0 is selected in such a way that the mass term, expressed in terms of ,
¢, d and s, is diagonal. Now the fields u, ¢, d and s correspond to the physical
quarks. The angle 6¢, which characterizes generation mixing, is known as the
Cabibbo angle, and experiments place it at ¢ = 13°.
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The SU(3) x SU(2) x U(1) model describes strong, weak and electromagnetic
interactions, but it cannot be considered a unified theory for all these interac-
tions, because each of the groups SU(3), SU(2) and U(1) has its own coupling
constant. A true unification of all three interactions is achieved in the so-called
grand unification theories, which, although duplicating much of the Weinberg—
Salam and SU(3) x SU(2) x U(1) models, involve a simple gauge group and
therefore a single coupling constant.

The possibility of having only one coupling constant arises because in quan-
tum field theory the effective coupling constant depends on the momentum.
More precisely, in studying the scattering matrix, even to the lowest order of
approximation one cannot use the “bare” coupling constant that occurs in the
Lagrangian; one must replace it by a corrected number that depends on the
characteristic momentum of the particle participating in the scattering process.

Within the perturbation-theory framework, the semiclassical approximation cor-
responds to using tree diagrams. (An expansion in powers of i corresponds to grouping
perturbation diagrams by the number of closed loops.) However, the use of only tree
diagrams with bare vertices proves to be insufficient, although one often can make
do with tree diagrams containing “heavy” vertices, that is, vertices in which the bare
coupling constant is replaced with a vertex function depending on the momenta of
the incoming lines. If all the momenta in the diagram have the same order of magni-
tude, say p, we can assume that each vertex has the same number (depending on p,
of course). This means we can employ the semiclassical approximation—that is, tree
diagrams, or, for the next order, diagrams with one loop—assuming that the coupling
constant depends on p. In Chapter 25 we will study this dependence in greater detail.

In the SU(3) x SU(2) x U(1) model, the dependence of the effective coupling
constants on the momentum is such that, for a certain value of the momentum
(roughly 10'® GeV), these constants approach each other. It is therefore assumed
that the true gauge group is larger than SU(3) x SU(2) x U(1), but that below a
certain energy the symmetry breaks down to SU(3) x SU(2) x U(1) (and below
energies of about 102 GeV it breaks down to SU(3) x U(1)).

There are many choices for the gauge group G underlying a grand unification
theory. The smallest admissible group is SU(5), which gives rise to the model
we discuss now.

The boson part of this model consists of two multicomponent scalar fields,
¢ and , which transform according to the adjoint (24-dimensional) and vector
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(five-dimensional) representations of SU(5). Thus, ¢ can be considered as a
traceless Hermitian matrix, and x as a column vector. Of course, the boson
part of the model also incorporates vector gauge fields, which take on values in
the Lie algebra of SU(5).

The interaction potential of scalar fields is selected in such a way that the
classical vacuum can be chosen in the form ¢ = aypp and x = bxo, where

-2
3

(7.1) Yo = -2 ) Xo =

-0 O OO

and a and b are real. The unbroken symmetry group corresponding to this choice
of the classical vacuum is the subgroup of SU(5) consisting of block-diagonal
matrices of the form

K
a2 ( l )
1

where K is a 3 x 3 matrix. Obviously, K is a unitary matrix, |/| = 1 and
Idet K = 1; in other words, K = e"**A and | = %, for A € SU(3). This implies
that the unbroken symmetry group H is locally isomorphic to SU(3) x U(1). (If
o = 27n/3 and A = e*™/3, we have K =1 and [ = 1; hence H is the quotient
of SU(3) x U(1) by a subgroup of order three.)

However, the constants a ~ 10'® GeV and b ~ 10? GeV are selected in such
a way that at high energies the symmetry breaking associated with the field x
becomes inessential. At these energies the unbroken symmetry group becomes
bigger: it equals Hp of all matrices h € SU(5) that commute with g, that is,
all matrices of the from

(7.3) h= (]‘g ]%) ,

where M is a 3 x 3 matrix and N is a 2 x 2 matrix. The group Hj is locally
isomorphic to SU(3) x SU(2) x U(1), since h = hoe'®¥°, where ho = Mo Nn) for
unimodular 3 x 3 and 2 x 2 matrices Mp and Ny, and ¢y is defined by (7.1),
that is, is a generator of U(1).

The fermion part of the SU(5) model consists of the spinor fields %, and
k%, for a,b=1,2,...,5. Under the action of SU(5) the field pq, transforms as a
covector (a vector with subscripts instead of superscripts), and xk°® as an anti-
symmetric tensor. In other words, v, transforms by the representation 5 and K%
by 10. We can easily decompose these representations in SU(3) x SU(2) x U(1),
as follows:

The field 9, breaks up into the irreducible components ¥, and ¥r. (We
reserve the indexes a, B, for the first three coordinates and o, T for the last
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two.) Clearly, ¥, is an SU(3)-triplet (more precisely, it transforms according
to the covector representation 3), an SU(2)-singlet, and has U(1)-charge (hy-
percharge) 2. Meanwhile, ¢, is an SU(3)-singlet, an SU(2) doublet, and has
U(1)-charge —1.

Next, the field k% has irreducible components k*# = £*#7p,,, K* and k™ =
£™. It is clear that p, is an SU(3) covector, an SU(2) singlet and has U(1)-
charge —3; while " is an SU(3) vector, an SU(2) doublet and has U(1)-charge
1. Finally, v is a singleton with respect to both SU(3) and SU(2), and has
U(1)-charge 2.

We see that the representations of SU(3) x SU(2) x U(1) obtained as a result
of decomposing the representations of SU(5) that appear in the SU(5) model
coincide with the representations by which quarks and leptons transform in the
SU(3)xSU(2)xU(1) model. From this we can conclude that, at energies E in the
range from 100 to 10'® GeV, the SU(5) model reduces to the SU(3) xSU(2) xU (1)
model. Further symmetry breaking via the field x, as we saw above, decreases
the symmetry group to SU(3) x U(1).
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8. Topologically Stable Defects

We now discuss applications of topology to the classification of defects, or vio-
lations of local equilibrium, in condensed media. These applications derive from
the fact that, in many important cases, the state of thermodynamic equilibrium
is degenerate at temperatures below a certain critical temperature.

For example, if the temperature of a ferromagnetic material is less than the
so-called Curie point T,, spontaneous magnetization sets in and the equilibrium
magnetization vector M can take different directions—in fact, any direction, if
the material is isotropic. Only the length of M is determined by the temperature,
M| = M(T). Thus, for T < T, the space of possible equilibrium states of an
isotropic ferromagnetic material, or degeneracy space, is the two-dimensional
sphere S2.

In an anisotropic ferromagnetic material of the easy-plane type, M must lie
on a certain plane, and its length is, as before, given by the temperature. In this
case the degeneracy space is a circle S'. Finally, for a ferromagnetic material
of the easy-axis type, M can point in two opposite directions; the degeneracy
space has two points, and can be thought of as a zero-dimensional sphere S°.

In general, the degeneracy space R of a system is the set of equilibrium
states at a fixed temperature T'. This is a topological space, because there is
a notion of equilibrium states being close to each other. One can formalize the
notion of closeness, but we will not do it here because in each concrete situation
it will be clear what it means.

Usually the structure of the degeneracy space can be studied by applying
the Landau theory of second-order phase transitions. Recall that an equilibrium
state is a state with minimum free energy. The Landau theory assumes that an
equilibrium state can be found by minimizing the free energy not over the
set of all states, but over a set of states defined by a finite number of order
parameters. For example, the magnetization vector M is an order parameter for
a ferromagnetic material. In the isotropic case, the symmetry makes it possible
to conclude that the free energy is a function of [M|? and T'. For T > T, this
minimum is attained for M = 0, while for T' < T it is attained for values
of M such that |[M|? = M%(T') > 0. For a uniaxial crystal the free energy’s
anisotropic term has the form K M2, in appropriate coordinates. If K is positive,
the minimum in the potential energy occurs for M, = 0; since the free energy
is invariant under rotations about the z-axis, for T < T, the set of minima
is a circle in the zy-plane, and the material is of the easy-plane type. If K is



4 Part II. Topological Methods in Quantum Field Theory

negative, the free energy attains its minimum for M along the z-axis itself, and
the material is of the easy-axis type.

Usually the degeneracy of an equilibrium state is connected with symmetry
breaking. For instance, the energy functional for an isotropic ferromagnetic
material is invariant under spatial rotations, that is, elements of SO(3). But
equilibrium states are characterized by the vector M, and therefore are not
invariant under SO(3), but only under a proper subgroup, isomorphic to SO(2).

In general, we denote by G the group of transformations that leave the
energy functional invariant, and by H the subgroup of transformations that
leave invariant a particular equilibrium state e € R. Thus H is the stabilizer
of e (in mathematical terminology), or the unbroken symmetry group of e (in
physical terminology). Any transformation in G takes any equilibrium state into
another, because equilibrium states are defined as those that minimize the free
energy, which is invariant under G.

A common situation occurs when any two equilibrium states can be obtained
from one another by the action of a transformation in G: we say then that G
acts transitively. Physically, this means that the degeneracy of an equilibrium
state is determined solely by symmetry properties. If this is the case, R can be
identified with the quotient space G/H (see Chapter 40).

We now consider a body, or region thereof, that is in local thermodynamic
equilibrium. In this case we can still talk about the body’s temperature, but the
temperature changes from point to point. If the equilibrium state is degenerate,
it is not only the temperature that depends on the point, but also the other pa-
rameters characterizing the equilibrium state—for example, the magnetization
vector of a ferromagnetic material. It is natural to assume that this dependence
is continuous.

We first show that, possessing information on the local equilibrium state in
a certain set, we can sometimes conclude that outside this set local equilibrium
must be violated. Take the simplest case, that of an easy-axis ferromagnetic
material. Then the spontaneous magnetization vector is always parallel to the
axis, so it can be described by a scalar times a fixed unit vector along the axis.
If there are two points at which the magnetization has opposite directions, and
we can connect them by a curve lying inside the region of interest, we deduce
that somewhere along this curve the magnetization vector vanishes (since a
contimuious scalar function that changes sign inside an interval must have a zero
in that interval).

We conclude that either there is a point on the curve with temperature
T > T, or there is a point where local equilibrium is violated. If T < T,
everywhere, there must be in fact a whole surface where local equilibrium is
violated: this is because the two original points can be connected by a two-
parameter family of disjoint curves, and along each curve there is at least one
point where local equilibrium is violated, as shown in Figure 1. Defects of this
kind are known as domain walls. Of course, equilibrium may be violated on a
set of higher dimension—in a domain wall of non-zero thickness, for example.
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‘We now turn to the case of an isotropic ferromagnetic material. We assume
that local equilibrium with 7' < T} occurs on a two-dimensional sphere. The
magnetization vector field on this sphere is non-zero everywhere, so we get a
map S2 — R?\ 0 from the sphere to R? minus the origin.

If local equilibrium with T < T, prevails inside the sphere as well, we have
a non-zero vector field in the whole ball D?® bounded by $2. Thus we get a map
D?® — R3\ 0, which is continuous and extends the map on the sphere, discussed
i the previous paragraph. This means the map on the sphere is not arbitrary;
for example, the “porcupine” map of Figure 2, where the magnetization points
outward everywhere, cannot be extended continuously to the ball.

More precisely, a map S? — R3\ 0 can be extended to a map D* — R3\ 0
if and only if it is null-homotopic (see T1.3), that is, if and only if it can be
continuously deformed into a constant map (a constant vector field), always
avoiding the zero vector. A field that is not null-homotopic, like the one in
Figure 2, cannot be extended to an everywhere non-zero field on D? (see T1.3),
and therefore local equilibrium with T < T, must fail somewhere inside the ball.
The violation can occur at a single point—this is what is called a point defect—
but it can also occur in a larger set, possibly an entire domain, connected or
not.

To every map f : S¥ — R*¥+!\ 0 we can assign an integer n(f), called its
degree, which remains fixed under continuous changes in f. Two maps f, and
f1 are homotopic, that is, can be deformed continuously into one another, if
and only if n(fy) = n(f1). (This is proved in T2.3 for maps S* — S*; the result
for maps S¥ — RF+!\ 0 follows because S* and R*+! \ 0 are homotopically
equivalent: see T1.3.) Thus, the set {S*, R¥*+1\ 0} of homotopy classes of maps
S* — RFH!\ 0 is in one-to-one correspondence with the set of integers. In
particular, a map f : S¥ — R¥*1\ 0 is null-homotopic if and only if it has index
Zero.

Using these results, we can easily classify defects in isotropic ferromagnetic
materials. Recall that a defect is a point, or larger set, where local equilibrium
is violated. If we have a defect that is entirely surrounded by a sphere S2, so
that on the sphere local equilibrium does hold, we can look at the magnetization
vector field M(z) on the sphere as a map from S? into R\ 0. We then define the
index of the defect as the degree of this map. A defect whose index is non-zero
is said to be topologically nontrivial.
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Finally, we discuss the case of an easy-plane ferromagnetic material. Con-
sider a circle where local equilibrium with 7' < T has established itself, and look
at the magnetization vector at each point of this circle. Since the magnetization
vector must lie on the easy plane, this gives a map from the circle S! into R?\0.
If the map is not null-homotopic, it cannot be extended to a map from the disk
D? bounded by S! into R?\ 0, and there must be a defect somewhere in the
disk. Furthermore, the disk can be deformed into any other surface that spans
the circle and is homeomorphic to a disk; on each such surface there must be a
point where local equilibrium is violated or T' < T. There is a one-parameter
family of disjoint topological disks of this type, so local equilibrium is violated
at least along a one-dimensional family of points, that is, a curve. We thus get
a stringlike topologically nontrivial defect.

Again, equilibrium may be violated not only along a curve, but also on a set
of higher dimension. As a rule, equilibrium is violated in a small neighborhood
of a curve. For example, the magnetization vectors can behave as in Figure 3:
outside a certain neighborhood of the line there is local equilibrium (the mag-
netization vector lies in a horizontal plane, the easy plane); along the line, the
vector is vertical, and in a neighborhood of the line it gradually passes from
begin vertical to being horizontal.

The defects whose existence is guaranteed by the above reasoning are sta-
ble, that is, they cannot vanish with time. Consider, for definiteness, a topo-
logically nontrivial defect in an isotropic ferromagnetic material. On a sphere
5? surrounding the defect, the magnetization vector M(z) determines a map
52 : R®\ 0 that is not null-homotopic. If this map evolves continuously, and
local equilibrium is not violated on the sphere as time goes by, the map must
remain homotopic to what it was at the beginning, and therefore can never
become null-homotopic. Thus there continues to be a defect inside the sphere
(whose position, of course, may change). Not only is the defect preserved, but
also the number characterizing its topological type, since this number, being an
integer, cannot change under continuous transformations. A similar reasoning
holds true for the other cases considered here.

More generally, if some region U is in local equilibrium, we have a map from
U to the degeneracy space R (assuming for simplicity that the temperature is
uniform). We consider the restriction f : S? — R of this map to a sphere lying
entirely within U. If f is not null-homotopic, it cannot be continued to the
ball D?® bounded by S?, so somewhere inside the ball there are points where
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‘ocal equilibrium does not hold (a defect). In particular, the ball is not entirely
zontained in U. As time goes by, so long as local equilibrium always holds on
52, the homotopy class of f : 52 — R remains the same, because f is changing
rontinuously. The homotopy class of f characterizes the topological type of the
defect, so the topological type of the defect also remains the same.

As we have mentioned, the topological type of a defect in an isotropic fer-
romagnetic material is an integer, since in this case R = 52 and the homotopy
class of a map f : §2 — R is characterized by an integer, the degree (T2.3).

The topological type of a defect is also independent of the choice of a sur-
rounding sphere. More precisely, let S? and S? be two spheres that can be con-
rinuously deformed into one another within the region U where local equilibrium
prevails. In order to say that the maps f; : S — R and f : S; — R defined
on the two spheres have the same homotopy class, we must somehow identify
-he set {S7, R} of homotopy classes of maps S; — R with the set {S?, R}.
To do this we take a model sphere S? and homeomorphisms ¢; : $? — S}
and ¢, : 82 — S3, so that ¢; and g, are homotopic as maps $2 — U (this
s possible because S? and S2 can be deformed into one another within U).
Then we identify {S?, R} with {S?, R}, by the one-to-one correspondence that
associates with the homotopy class of a map f : S? — R the class of the map
fop: 8% > R. We identify {S3, R} with {S%, R} in the same way. With this
identification, it is clear that the homotopy classes of the maps S? — R and
52 — R coincide, since the composite maps S — R are homotopic.

K R is simply connected, that is, if every map S' — R is null-homotopic,
one can define an operation of addition on the set {S*, R} of homotopy classes
of maps from S* into R (T7.1). This makes {S*, R} into a commutative group
7k(R), called the k-th homotopy group of R. If R is connected but not simply
connected, addition in {S*, R} is not well-defined; we can think of it as being
multivalued (T7.2). But the homotopy group m(R) is still well-defined for any
k > 1, and is commutative for k > 2 (T8.1). In this case {S*, R} can be
identified with the quotient mi(R)/m(R), that is, the set of orbits under the
natural action of m (R) on m(R) (T8.2). The first homotopy group m (R),
called the fundamental group of R, is usually not commutative, so we write the
corresponding operation multiplicatively rather than additively; this operation
can be thought of as concatenation of loops (maps S* — R).

Let U be a domain in R¥+!, bounded outside by a k-sphere S* and inside
by two k-spheres S¥ and S%, and let f, f; and f be maps from S¥, St and S%
into R. If there is a map F' : U — R that coincides with f on S*, with f, on
Sk, and with f; on S¥, the homotopy class [f] of f is equal to the sum (or one
of the possible values of the sum) of [f,] and [f2] (T7.3). If you wish, you can
consider this as a definition for addition in {S*, R}.

What is the physical meaning of this discussion? Suppose there is local
equilibrium in the domain U C R3, so that we have a map F' from U to the
degeneracy space R. Denote the defect inside S? by K;, the defect inside S2 by
K3, and the union of the two by K = K; U K,. The homotopy class [F|sz2] of
the restriction of F' to S? gives the topological type of K, and the homotopy
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classes [F|sz] and [F'|sz] give the topological types of K and K,. We see that the
topological type of the composite defect K is equal to the sum of the topological
types of K, and K, (Figure 4), or, more precisely, one of the possible values of
this sum, since the addition operation is multivalued in general.

This fact can yield information on the dynamics of point defects. For one
thing, it implies that when a point defect splits, the sum of the topological types
of the new defects is equal to the topological type of the disintegrated one.

If R is simply connected, addition in {S?, R} is well-defined, so the topolog-
ical type of a composite defect is uniquely determined by the types of the com-
ponents. This is also true when R is not simply connected, but U is. (Roughly
speaking, the simple connectivity of U means that there are no stringlike de-
fects.) Indeed, if U is simply connected, {S?, U} and my(U) coincide, so a sphere
S? surrounding the defect determines an element o € m(U). We also have a
map U — R, which gives rise to a homomorphism mp(U) — m2(R). The image
of o € my(U) under this homomorphism gives the topological type of the defect.
The element of ma(R) corresponding to the composite defect equals the sum of
the elements corresponding to the component defects.

We see that topologically nontrivial point defects can appear whenever R is
not aspherical in dimension two, that is, whenever there exist maps S — R that
are not null-homotopic. Topologically nontrivial stringlike defects can appear if
R is not simply connected, that is, if there are maps of S — R that are not
null-homotopic. Finally, wall-like topologically nontrivial defects can appear if
R is not connected.

Suppose we have a stringlike defect, so that local equilibrium is violated
along a smooth curve or in a small neighborhood of the curve. Draw a small
circle 8! around the curve, contained entirely in the local equilibrium region
U (Figure 5). As usual, we have a map f : U — R, and the topological type
of the defect is given by the homotopy class of the restriction f|s : S - R.
As discussed above, the set {S!, R} of homotopy classes of such maps can be
identified with the quotient of the action of m;(R) on itself by inner automor-
phisms z + gzg~'—in other words, with the set of conjugacy classes of m (R).
Using the same reasoning as for point defects, we see that if the stringlike defect
splits into two, the topological type of the old defect equals the product of the
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topological types of the new ones (or, more precisely, one of possible values for
the product, when the product is multivalued).

In a nematic liquid crystal, the order parameter is the traceless symmetric
1ensor €45, and the symmetry group G is the group SO(3) of space rotations. In
all examples observed in nature, the free energy attains its minimum when two
eigenvalues of €44 coincide; let A be their value. The eigenspace of the remaining
eigenvalue —2) is called the crystal’s axis. The unbroken symmetry group H is
isomorphic to the orthogonal group O(2) preserving the axis, which is also the
group preserving the eigenspace with eigenvalue A (a plane orthogonal to the
axis).
Thus, in equilibrium, the system is completely characterized by the direction
of the axis; opposite directions are equivalent. The degeneracy space H is the
space of directions in R?, which is, by definition, the projective plane RP2. This
space can also be thought of as the sphere $2 with antipodal points identified:
52 is the space of unit vectors in R3, but unit vectors that differ only by a sign
define the same direction. This gives another proof that R = RP?: we have R =
G/H = S0O(3)/0(2), and SO(3)/SO(2) is homeomorphic to S? (Chapter 40),
so R =80(3)/0(2) = S?/Z, = RP2.

Stringlike defects in a nematic crystal are known as disclinations. By the
preceding discussion, the topological type of a disclination is an element of
{S', RP?}. It turns out that RP? is not simply connected; its fundamental
group is m; (RP?) = Z; (this follows from the representation of RP? in the form
52/Z, and from the results of T3.2), and since Z, is commutative all conjugacy
classes have a single element, so we can identify m,(RP?) with {S!, RP?}. Thus,
all maps S* — RP? that are not null-homotopic are homotopic to one another,
and there is a single type of topologically nontrivial disclination. Figures 6
and 7 show a cross-section of the direction field for a nontrivial and a trivial
disclination, respectively. The disclination is perpendicular to the plane of the
page.

When studying the type of a disclination, it is useful to know that a loop
in RP? is null-homotopic if and only if it is covered by a loop in S? (T3.2).
This is equivalent to saying that a direction field on S is topologically trivial
if and only if we can make it into a unit vector field by assigning arrows to the
directions in a consistent way.

The homotopy group my(RP?) is isomorphic to 73(S?) = Z (T8.2). If the
region U of local equilibrium is simply connected, the topological type of a point
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defect is an element of m3(RP?), and hence an integer. When defects merge,
these integers are added. But if U is not simply connected—for example, if
stringlike defects are present—point defects are classified by {S?, RP?}, rather
than by m,(RP?). Recalling that {S?, RP?} is the quotient of m3(RP?) by the
action of m;(RP?), and that the nontrivial element of m (RP?) takes a class
in my(RP?) to its negative (T7.2), we see that the elements of {S%, RP?} are
integers up to sign. The result of merging two point defects with topological
numbers m and 7 is not unique; the resulting point defect can have topological
number m +n or |m —n|, because all these numbers are only defined up to sign.
Thus two defects with the same topological type can annihilate or reinforce each
other, depending on the path they follow in approaching each other.

Theoretically, in addition to the uniaxial nematic crystals considered above,
there can exist biaxial nematic crystals, although they have never been observed
in nature. In a biaxial crystal, the free energy attains its minimum for a tensor
Eqap all of whose eigenvalues are distinct; by a change of coordinates, we can
assume that the eigenspaces are the coordinate axes. Then the stabilizer H
consists of those rotations of R2 that map each eigenspace into itself. This group,
denoted by K4 and sometimes called the Klein group, has four elements; each
nontrivial transformation in K, leaves one coordinate unchanged and reverses
the signs of the other two. The degeneracy space is homeomorphic to R =
SO(3)/ K4, and the quotient map SO(3) — R is a fourfold covering map. This
implies that m3(R) = m(SO(3)) = 0 (T8.2), and therefore biaxial nematic
crystals cannot have topologically stable point defects.

To compute m (R), we use the fact that SU(2) is a twofold cover of SO(3).
The covering map p is actually a homomorphism, and can be defined as follows:
an element of SU(2) is a matrix (; _';’), where |z)? + |w|?2 = 1, so SU(2) can
be identified with the three-sphere S3. Writing z = z + iy and w = ¢ + i,
we map (; _';:’) to the element of SO(3) that fixes the line spanned by the
vector (y,t,u) € R3, and rotates space around this line through an angle
2arctan(/y? + 2 + u2/z). It is easy to see that two elements of SU(2) map
to the same rotation if and only if they differ by a factor of 1 or —1, so that p
is a twofold cover.

Since R = SO(3)/H, we also have R = SU(2)/H, where H = p~'(H) has
eight elements. The nontrivial elements of H are rotations by 180° around the
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coordinate axes, so H consists of the matrices +1, :l:l.zl, +hy and :I:ﬁa, with
_h = exp(pio;/2) = io;, where 0, 02 and o3 are the Pauli matrices. Since
:U(2) S8 is simply connected, we conclude that m(R) = A (T3.2). The
anticommutation relations h,h h_ h,, derived from the same relations for
the Pauli matrices, imply that h a.nd —h; are conjugate in H. Thus H has
five conjugacy classes: two one-element classes, {1} and {—1}, and three two-
element classes {h;, —h;}, for j =1,2,3.

Thus, in a biaxial nematic crystal, there exist four types of topologically
nontrivial stringlike defects. To see how defects combine, we look at the group
law in m (R): given the topological types of two defects, that is, two elements
of {S, R}, we take all possible representatives for them in (&), and list the
possible con]ugacy classes of the product of these elements. If we multiply a
class {hj, —h;} by itself, the result is either {1} or {—1}, since 1 = h;h; and
-1 = —h; h In all other cases, multiplication is single-valued: for exa.mple,
'nultlplymg {h,, —hi} by {h,,—h } gives {hs, —hy}, for k # i, 7, since Mh =
_,th,k and the choice of sign does not affect the class. Thus, if two merging
sirings have different topological types, the topological type of the resulting
string can be predicted unambiguously; but if they have the same type, and the
tvpe is not 1 or —1, the result may have type 1 (a topologically trivial string)
or type —1.

We now explain how to compute 71 (R) and m2(R) in the general case when
R = G/H, that is, when the degeneracy of the equilibrium state is caused
solely by symmetry breaking. We assume, for simplicity, that G is connected
and simply connected; if G is not simply connected, we can replace it by its
universal cover, and H by its inverse image under the covering map. This is
what we did in the preceding discussion, replacing G = SO(3) by SU(2) and
H = K4  SO(3) by the order-eight group H C SU(2).

Under these conditions, 73(G/H) is isomorphic to m(H) and m(G/H) is
isomorphic to mo(H) = H/Hcon, Where Heoy is the maximal connected subgroup
of H, that is, the set of elements of H that can be connected to the identity by
a continuous path, also called continuous unbroken symmetries; see T14.1. (A
svmmetry outside Ho, is called discrete.) Thus, topologically nontrivial point
defects exist if and only if the group H of unbroken symmetries is not simply
connected, and topologically nontrivial stringlike defects exist if and only if H
is disconnected.

Consider the example of superfluid quantum liquids. For superfluid “He, the
only broken symmetry is the gauge invariance. The group of global gauge trans-
formations is isomorphic to U(1): under a gauge transformation the wave func-
zion is multiplied by e*®. Thus the degeneracy space R is homeomorphic to S*.
This also follows directly from Landau theory: the order parameter is a complex
aumber ¥, and, below the critical temperature, equilibrium is achieved on the
circle |¥| = ¢, where c is a positive constant. Since m3(S*) =0 and m (S") = Z
there are no topologically nontrivial point defects in “He, while stringlike defects
can be characterized by a single integer. Physically, the stringlike defects take
the form of vortices in the superfluid. Indeed, the order parameter in a state of
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local equilibrium is a complex-valued function ¥(x) of the coordinate x. The
topological number 7 of a stringlike defect is (27)~! times the phase variation
of ¥(x) as one goes once around the defect. If we denote the phase by $(x), the
superfluid velocity v, is given by v, = (i/m)V®, so that

m

ok Jr ' dx,

1
n= ZWﬁVGD(x)dx—
where I' is a path going around the defect once. An example of an vortex
with topological number 1 can easily be given in polar coordinates: ¥(r, ¢, z) =
a(r)e™, where a(r) is a real-valued function. In this case the superfluid velocity
is tangent to horizontal circles centered along the z-axis; Figure 8 shows a
horizontal section.

The topological analysis of defects in a superconductor is entirely analogous
to that of superfluid “He.

We discuss briefly topologically stable defects in *He. The order parameter
in this case is the rank-2 complex-valued tensor A;, where i can be thought of
as a spin index and k as a coordinate index. If we ignore spin-orbit coupling,
the free energy is invariant under the group G = SO(3) x SO(3) x U(1). An
element (V, W, ¢'®) of this group, where V = (Vi) and W = (Wj,) are rotations
in spin space and coordinate space, respectively, transforms A;; into the tensor

te = € VaWir Ay

In the B-phase space of *He, one equilibrium state is given by Aix = A0,
where ) is a scalar related to the energy gap A by the formula A = A/ V3.
Every other equilibrium state can be obtained from this one by the action of
an element of G, and therefore is given by

(8.1) A = MV,

where (Vi) is a rotation matrix. The unbroken symmetry group H consists of
triples (V, W, e**) with @ = 0 and V = W, and is isomorphic to SO(3). Thus the
degeneracy space R is homeomorphic to SO(3) x SO(3) x U(1)/SO(3) x U(1).
Using the fact that the k-th homotopy group of a product of two spaces is the
direct sum of the direct sum of the k-th homotopy groups of the factors, and
the equations

m(S0(3)) =0, m(U(1)) =0, m(SOQB))=12Z; m(U(1)=2%,
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we see that m3(R) = 0 and m;(R) = Zo+Z. Since m(R) is commutative, it can
be identified with {S*, R}. Thus, there are no topologically stable point defects,
and stringlike defects are classified by an integer and a residue modulo 2.

In the A-phase the equilibrium state can be selected in such a way that

A 000
(8.2) Ax=—10 0 0].
‘/511'0

This tensor is invariant under rotations about the z-axis in spin space, and
it gets multiplied by e~** under a rotation through an angle o about the z-
axis in coordinate space. Therefore the unbroken symmetry group H contains
all transformations of the form (V,W,e'?), with V any rotation about the 2-
axis and W a rotation through an angle o about the z-axis; the group of such
transformations is isomorphic to U(1) x U(1). In fact, it turns out that there are
no other continuous unbroken symmetries, so U(1) x U(1) = Hop, the maximal
connected subgroup of H.

In addition, H contains discrete symmetries, namely, transformations of
the form (V, W, "), where V and W are rotations through 7 about horizontal
axes that meet at an angle § (V and W map the z-axis to itself, reversing its
direction). All discrete symmetries can be obtained from one such symmetry by
multiplication by a transformation in He,, = U(1) x U(1), that is, H/H, has
two elements, and therefore equals Z,. On the other hand,

G/Heon = SO(3) x SO(3) x U(1)/U(1) x U(1) = §? x SO(3),

so that R = (G/Hcon)/(H/Heon) = 5% x SO(3)/Z,. Thus R has the twofold
cover S? x SO(3); this space, in turn, has the twofold cover S% x SU(2), which
is simply connected. Therefore R has S2 x SU(2) as a fourfold cover, and 7;(R)
has four elements. In fact it is easy to see that m,(R) = Z4, so that {S*, R} can
be identified with w(R), we conclude and stringlike defects are classified by a
residue modulo 4.

As to point defects, we have

ma(R) = ma(S? x SU(2)) = my(S?)4ma(SU(2)) = Z,

so the topological type of a point defect is characterized by an integer.

Interesting effects occur when a weak field is applied to a system with defects.
Consider, for example, a uniaxial nematic crystal placed in a magnetic field. The
degeneracy of equilibrium states is lifted, because the crystal axis tends to align itself
with the field. If the crystal contains a point defect of the type depicted in Figure 6, the
result is that the axis direction field aligns itself with the field throughout the entire
crystal, with the exception of a small tube originating at the defect: see Figure 9,
which shows lines tangent to the direction field.

Generally, if we apply a weak field to the system, or allow for a weak interaction,
such as spin-orbit coupling in 3He, we single out in the degeneracy space R a subspace
R consisting of those states that remain in equilibrium in the new situation. Now to
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each point in local equilibrium we must associate a point in R, rather than in R.
However, the weakness of the field implies that the free energies of the new and old
equilibrium states differ but little, so it is reasonable to consider also states that are
in local equilibrium in the old sense, or partial local equilibrium. If a region is in
partial local equilibrium, we have a map from this region to R as before.

Just as topological considerations can imply that certain violations of local equi-
librium cannot disappear, they show that, in some cases, one cannot get rid of partial
local equilibrium. Consider a sphere S? on which total local equilibrium holds ev-
erywhere, and such that partial local equilibrium holds inside the ball D* bounded
by S2. This gives rise to a map of pairs (D?,5?) — (R, R), that is, a map D®* —» R
such that $? is taken entirely inside R (T1.3). Of course, there may be points in the
interior of the ball that are mapped into R C R; this means there are points in the
ball where total local equilibrium holds, which, of course, does not contradict our
assumption that partial local equilibrium holds.

We assume that the system evolves in such a way that total local equilibrium
always holds on S?, and partial local equilibrium always holds in D®. Then the map
of pairs (D3, 8%) — (R, R) changes continuously with time, and therefore its relative
homotopy class, that is, its class as a map of pairs, cannot change. In particular, if
the map (D?, S?) — (R, R) is not null-homotopic, total local equilibrium cannot be
established everywhere inside D?; if it did, the map would have been homotopic to a
map that takes the entire ball D? into R, and would, by definition, be homotopically
trivial.

Thus, a point or region where total local equilibrium is violated can be assigned
an element in the set {(D?, $%); (R, R)} of relative homotopy classes. If R is connected
and simply connected, {(D?, 52); (R, R)} can be identified with the relative homotopy
group m3(R, R). It R is connected but not simply connected, {(D?, §%); (R, R)} is the
quotient of m3(R, R) by the action of m,(R) (T11.3). If R has a single point, that
is, if the perturbation lifts the degeneracy completely, the relative homotopy group
n3(R, R) coincides with the absolute homotopy group m3(R). In general, m3(R, R) can
be computed from the homotopy exact sequence

- — ms(R) < 75(R) — m(R, B) < my(R)
5 ma(R) = ma(R, B) -2 m(R) 25 m(R).

(see T11.3).
If total local equilibrium is violated along a string, or a tube surrounding the
string, we can take a circle S! going around the string and a disk D? bounded by
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”Z
Figure 10

the circle. Assuming that total local equilibrium holds on the circle, and that partial
local equilibrium holds on the disk, we obtain a map (D?, §") — (R, R). The relative
homotopy class of this map does not change with time, and it determines the topo-
logical type of the string. Thus, in this case the topological type is an element of the
set {(D?,8"); (R, R)}. If R is connected and simply connected, this set coincides with
the relative homotopy group m(R, R)

It may happen that the string along which total equilibrium is violated ends at
a point defect (Figure 9). This imposes conditions on the topological type of the
defect: the corresponding map from (D?,5") — (R, R) cannot be arbitrary, but must
give rise to a null-homotopic map S* — R, because S! can be spanned by a surface
homeomorphic to a disk and lying entirely within the region of total equilibrium

(Figure 10).



9. Topological Integrals of Motion

Consider a one-dimensional particle moving in a field with potential V(z), and
suppose that the potential has an infinite spike at a point £ = @, as in Figure
11. The particle cannot penetrate an infinitely high potential barrier: if it starts
to the left of point a, for example, it remains to the left of that point for all
time. This is true for both classical and quantum particles.

To state this in topological language, let U be the set of positions that the
particle can occupy. If U is disconnected, the particle must remain in the same
connected component where it starts. (Two points belong to the same connected
component if they can be connected by a path.) In Figure 11, U is disconnected:
it consists of the two intervals (—oo,a) and (g, 00).

Now consider a classical system with n degrees of freedom, described by the
Hamiltonian H = T + V, where the kinetic energy T is a quadratic function of
the momenta and the potential energy V(z!,...,z") may become infinite for
certain configurations of the system. Assume that the domain U where V is
finite is disconnected, and has connected components U, . . ., Ug. Here again, it
the particle starts in component U;, it will remain in the same component for
all time; in other words, the component where the particle lies is an integral of
motion.

A similar statement is true if we quantize the system. If a wave function
() is zero outside of U;, the same will be true for the wave function obtained
by solving the appropriate time-dependent Schrodinger equation with initial
condition ¥(z).

The domain U where the potential energy is finite is the system’s configu-
ration space. Instead of the configuration space, we can also consider the phase
space, that is, the set of points (p1,..-+PnrZ',...,2") Where the Hamiltonian
is finite. Again, a particle cannot leave the connected component of the phase
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space where it starts. For the system just discussed, the phase space is simply
R™ x U, because the kinetic component of the Hamiltonian is always finite.
Therefore the phase space has the same number of components as the configu-
ration space.

‘We now discuss the ground state and the weakly excited states of the system
just discussed. Suppose the minimum of V(z) is attained at a point zo. The
Taylor series at zg is

(9.1) V(z) = V(zo) + 3k:s€'€ + W(E),

where £ = z — 7o and W(£) = o(|¢[?). Assume the quadratic form k;;E'¢7 is
non-degenerate. Neglecting the term W(£), we get the Hamiltonian of a multi-
dimensional harmonic oscillator, whose energy levels are given by

(9:2) V(zo) + B Y _(ns + 3)wi,

where the w; are the normal modes (proper frequencies) and the n; are non-
negative integers. Perturbation theory tells us that the correction to the energy
levels once we take into account the influence of W (£) is of order (N%)3/2, where
N = maxn;. This implies that the energy of weakly excited states is determined
in the semiclassical approximation by (9.2). In particular, the energy Ey of the
ground state in the semiclassical approximation is V(zg), or, more precisely,
Eo=Vo + AT wi + O(R¥2).

There is an obvious lower bound for the ground-state energy: Ep > V'(zo).
To obtain an upper bound, one can use the variational principle, taking as a
trial function the wave function of the ground state for the harmonic oscillator.
A similar estimate can be carried out even when the quadratic form k;;¢'¢7 is
degenerate, and in this case, too, Fy = V(z,) in the semiclassical approximation,
with an error of the order of f.

In finding the ground state of the system we expanded the potential V' (z) in
powers of £ = z — zy, where 2z is the point where V has its absolute minimum.
We could instead have used a point z; where V' has a local minimum. The
states obtained in this manner are, in general, quasi-stationary. For example,
for the potential depicted in Figure 12, the ground-state wave function of an
oscillator with potential V" (z,)(z — z1)? represents a quasi-stationary state,
whose lifetime is determined by the semiclassical transmission coefficient
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D-eo(-2 [ otV - Bide),

which accounts for the transmission through the barrier between the two minima
at zo and ;. Thus the lifetime increases exponentially with the width of the
barrier and the square root of its height.

The situation changes if the potential barrier is infinitely high and z, is
the absolute minimum of one of the other components, as in Figure 11. Then
the quantum states concentrated around z; are stationary, rather than quasi-
stationary. Repeating the above reasoning, we conclude that in the semiclassical
approximation the lowest possible energy of a quantum state whose wave func-
tion is zero outside the connected component of z; is given by V(z1).

To summarize, we have a topological integral of motion whenever the phase
space of a system—the set of (p, z) for which the Hamiltonian H(p, =) is finite—
is disconnected. The integral of motion is the connected component of the phase
state occupied by the system; it remains the same for all time. Topological
integrals of motion arise for classical and quantum systems alike; in the quantum
case they are often called topological quantum numbers.

In the semiclassical approximation, if the phase space has connected compo-
nents Uy, . . ., Uy and the minimum of the Hamiltonian on Uj; is E;, the minimal
energy of a state with topological quantum number ¢ is E;. In particular, the
ground-state energy is the absolute minimum of H, that is, min{Ey,..., Ex}.
To obtain the energy values of weakly excited states, we need only expand the
Hamiltonian in a power series in the neighborhood of that point, keeping only
the quadratic terms.

Topological integrals of motion arise not only in systems with a finite num-
ber of degrees of freedom, but in field theory as well. Consider a theory that
describes a scalar field ¢(z) = ¢(t,x) in one dimension, and assume that the
action integral is

©3) S= / L dx dt
1 Oy ’ dp : 2 __ 2)2

= 5/((&) - (Ex_) dxdt—A/(tp — a®)?dxdt,

where £ is the Lagrangian. Then the energy functional has the form
_1 2 1 dp : 2 _ 22

(9.4) E—E/w(x)dx+§/(a) dx+A/(<p —a®)*dx,
where m(x) = 8L/0p(x) = ¢(x) is the generalized momentum corresponding
to the field o(x). The phase space consists of all pairs (m(x), p(x)) for which
the energy (9.4) is finite.

Notice that in this case the energy functional can be written in the form
E=T+V, with T =1 [ n?3x and

(9.5) V=V]p]= % /(%‘0)2 dx+ A /(c,o2 —a?)%dx.
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The term T', which is quadratic in the generalized momenta m(x), represents the
kinetic energy, and V, which depends only on the generalized coordinates p(x),
represents the potential energy. The configuration space can be interpreted as
the set of fields ¢(x) with V[y] < oo.

Both phase space and configuration space are disconnected. Indeed, in order
for (9.5) to be finite, we must have limyg|_,+o0 |(2)| = a. (By itself, the finiteness
of the second term in (9.5) does not imply this, because the integral of a function
may be finite even if the function does not tend to 0 as £ — +o0. But if the
limits exist, they are necessarily equal to a. One can prove the existence of
the limits by using the finiteness of the first term in (9.5). We omit the proof
because, in physical problems, we can clearly assume that the functions behave
nicely at infinity. From now on, we will always assume that a function of n
variables tends to zero at infinity if its integral over R™ is finite.)

Thus, both phase space and configuration space consist of four components,
characterized by the field’s behavior at infinity. The possibilities are:

(1) @(+00) = p(—00) = a; (2) @(+00) = —p(—00) = g;
(3) @(+00) = —p(—00) = —a; (4) (+o0) = p(—00) = —a.

A field satisfying one of these conditions cannot be continuously transformed
into a field satisfying another in such a way that all intermediate fields have
a finite energy. Thus, fields of different types are effectively separated by an
infinitely high potential barrier. On the other hand, fields having the same
behavior at infinity can be connected by a continuous family of fields with finite
energy. Thus the sets in configuration space determined by these four conditions
are indeed the four connected components of this space. The corresponding sets
in phase space are likewise connected and form different components; this can
be seen, for example, from the fact that any point (w(x), ¢(x)) in phase space
can be joined to the point (0, ¢(x)) by a continuous curve, such as (77 (x), p(x))
for0<7<1.

The minimum of the energy functional (9.4) is zero, and is reached when
7(z) = 0 and ¢(z) = a or ¢(z) = —a. Thus, the energy functional achieves
its minimum at two points in the phase space separated by an infinitely high
energy barrier. These points are known as classical vacuums. By convention, we
will normalize the energy of the classical vacuums to zero. In all the examples
that will concern us, the classical vacuums are translation-invariant fields.

Classical vacuums are linked with the ground states of quantum field theory,
in the semiclassical approximation. For example, let’s apply the semiclassical
approximation to the theory obtained by quantization of the action integral
(9.3). Since the classical vacuums are separated by an infinitely high energy
barrier, each corresponds to a ground state of the system. We thus have sponta-
neous breaking of the symmetry ¢(x) — —(x). As in the case of finitely many
degrees of freedom, in order to find the energies of weakly excited states we
must expand the action integral (or the energy functional) in a power series in
the deviation from a classical vacuum, or energy-minimizing field. Thus, instead
of the field ¢(x) we must consider either £{(x) = ¢(x) — a or £'(x) = ¢(x) + a.



60 Part II. Topological Methods in Quantum Field Theory

In terms of £(x), the action becomes S = Sgu + 51, Where

2 2
Squ = -;- / ((g—f) - (?—ai) - 8Aa2§2) dx dt,
S, = —4Xa / £ dxdt — / hdx dt.

Quantization of the action integral Sg, results in scalar particles of mass
m = 2afiv/2X. The terms of order greater than two, subsumed under 5, yield
small corrections to the energy of the particles. A similar reasoning can be
applied if we expand in powers of the deviation £'(x) of the field from the other
classical vacuum.

We now consider the minimum of the energy functional on the components
of the phase space where p(—00) # @(+00). Assume, for definiteness, that
¢(—00) = —a and ¢(+00) = a. It can easily be checked that the minimum is

(9.6) = i‘;—ix/i a®,

which is achieved for the field
(9.7 ¢(x) = atanh(aV2 (x — c)),

where ¢ € R is arbitrary. Thus, in the semiclassical approximation, the lowest
energy of quantum states in these two components of the phase space is M, and
this is also the mass of the quantum particles corresponding to the fields (9.7).
We will not proof this last statement; we merely note that it is true in general.

A field like (9.7), which represents a local minimum of the energy functional,
is called a soliton. Solitons cannot be translation-invariant, so the minima are
degenerate: if a minimum is attained for ¢(x), it is also attained for p(x — c),
because the energy functional is translation-invariant.

A soliton is a time-independent solution to the classical equations of mo-
tion. In the relativistically invariant case that interests us here, Lorentz trans-
formations can be used to transform a time-independent solution into one that
depends on time according to the law s(x — vt), where v is a constant. We talk
then of a soliton with with velocity v.

This terminology differs from the one used in mathematics, where a solution to
the equations of motion that has the form s(x — vt) is called a solitary wave with
velocity v, and the term “soliton” is used for solitary waves in completely integrable
systems.

A soliton in a classical problem resembles a particle, in that it is a localized
time-invariant solution of the equations of motion. The reason it is localized is
that a soliton, like all fields considered here, has a finite energy, and therefore
it differs considerably from a classical vacuum only in a finite region of space.

It turns out that, in the semiclassical approximation, a soliton corresponds
to a quantum particle whose mass equals the soliton’s energy. In general, this
particle is not stable, but in many interesting cases its stability is guaranteed
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by topological conservation laws. For example, if the soliton yields an absolute
minimum for the energy functional among all fields of a given topological type
(that is, among all fields in a given component of the phase space), it is sta-
ble, because the topological type cannot change with time, as discussed at the
beginning of this chapter. This is the case for the field (9.7), and is true in
multidimensional, as well as one-dimensional, field theories.

Throughout this book we use a system of units in which A = 1. This is
caused by the desire not to deviate from the standard notation, in which the
commutation relation for the generalized momenta w(x) and the generalized
coordinates ¢(x) is given by [r(x), p(x’)] = i7'8(x — X). If we lift the condi-
tion % = 1, we must carry out quantization by using the commutation relations
[x(x), p(x')] = Ai~'6(x — x'). Then the mass of particles corresponding the
quadratic part of the action turns out to be of order % (in the model above, for
example, it equals Za.h\/2_)\). On the other hand, the mass of the particle corre-
sponding to a soliton is determined by the classical energy of the soliton, and
therefore does not contain #. Thus, as E — 0, the ratio between the masses of
the soliton and of the standard particle tends to infinity. It can be demonstrated
that, when it makes sense to talk of a particle corresponding to a soliton (that is,
under conditions ensuring the validity of the semiclassical approximation), this
ratio is always high. For example, in the model above this ratio equals %az /h.
Correspondingly, the semiclassical approximation is applicable if a?/h> 1, or
a? > 1 if we take A= 1.



10. A Two-Dimensional Model.
Abrikosov Vortices

We now describe more complicated examples of theories that have topological
integrals of motion. We start with the analog of the action integral (9.3) for a
complex scalar field ¥ in two dimensions:

(10.1) S=[Lda=3 [0,00w s} [(#F - o) d's,

where = 0,1,2, z = (z°, 2, 2%) = (z° x) € R?, 8 = 8" = 8/9z° = 9/3t, and
8, = —& for i = 1,2. We can also think of ¥ as a two-component real scalar
field, instead of a complex field.
The energy functional can be expressed in terms of the generalized coordi-
nates ¥(x) and the generalized momenta 7 (x) = dL/0¥(x) as follows:
o

2
el ) #z
+2X /(I!Pl2 - a?)?d%z.

2
+

1 1 ov
(10.2) E=T+V=§/|1r(m)|2dﬂz+§/(—a—zf

Again, the energy breaks down into two components: the kinetic energy T =
T[x] and the potential energy V = V[¥]; the configuration space consists of
those fields ¥(z) for which V[¥] < co.

We first study the set of fields that satisfy

(10.3) / (I2]? - 6)? dz < oo,

and behave nicely at infinity: more precisely, we assume that, in polar coordi-
nates (r, ), the limit

(10.4) Jlim ¥(r, o) = &(p)

exists and is finite for every ¢, and that the convergence is uniform in . Since
¥ is continuous, so is $(y). Furthermore, (10.3) implies that |$(p)| = a, so we
can write () = ae~**¥), where a(y) is a continuous, real-valued function on
the interval [0, 2x], and satisfies

(10.5) a(27) — a(0) = 2mn,
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because $(0) = H(27). The integer n = n(P) characterizes the topological type
of ®. Geometrically, 7 is the degree (T2.3) of @, seen as a map from the ¢-circle
into the circle |z| = a.

We assume that &(¢) varies continuously with the field ¥. Since the integer
n(®) does not change under a continuous variation of @, it does not change
under a continuous variation of ¥ either. Thus the set of fields satisfying (10.3)
splits into components characterized by the topological number n.

As an example of a field with n = 1 and satisfying (10.3), take ¥(x) =
a(r)e, where lim,_,o, a(r) = a. By the preceding discussion, it is not possible
to connect this field with one that satisfies ¥(x) = a as |x| — co by means of
a continuous family of fields such that (10.3) is finite.

Although the space of fields satisfying (10.3) is disconnected, it does not
follow that the action integral (10.1) has topological integrals of motion, because
in fact every field of finite energy is topologically trivial. To see this, we write
in polar coordinates the second summand from the expression (10.2) for the

o

(35 (2 ]) == 115

If this is finite, @ has trivial asymptotic behavior, because the last term diverges
logarithmically unless 0¢/0¢ tends to 0 as r — oco.

We can modify the action integral (10.1) in such a way that topological inte-
grals of motion do arise. To do this, we make ¥ interact with an electromagnetic
field A, obtaining the action integral

dcpéz

922

(10.6) S = / GV.F VA — N[ - a®)?) dPz — é / F. F* &z,

where z is as in (10.1), V,, = 8, —iA, for p,v =0,1,2, and F,, = 9,A, -8, A,
is the electromagnetic field tensor, so that H = 0;A; — 04, represents the
magnetic field and (B, E;) = (A; — 6140, A2 — 82Ao) the electric field. (Usually
the covariant derivative V, is defined as 9, +ieA,, where e is the electric charge;
for our purposes, however, it is more convenient to include e in the potential
A,.) The action integral (10.6) is invariant under gauge transformations

(10.7) A, Ay — O, U s Te,

Using gauge invariance, we impose the gauge condition Ag = 0. Viewing
¥(z), Ai(z) and Ay(z) as generalized coordinates, and m(z) = ¥(z) and the
electric field B = (Ey, Ep) = A as generalized momenta, we can write the
energy functional corresponding to the action integral (10.6) as

(10.8) E== /|7r|2d2:1:+ /(E2+E2+H2)d2:c
+ [GAVAZP +19281) + $A(¥i2 - 0*))dz,

the second integral being the energy of the electromagnetic field.
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Now we can construct fields (¥, A) of finite energy such that ¥ has any
desired topological number n. For example, for n =1 we can choose
! + iz’

¥(x) = a(n T

with a(r) = a for r > R, and

J
Ap=0, A= p('r)E,-]-% for i,j=1,2,

with p(r) =1for r > R.
For n arbitrary we use polar coordinates, where the energy (10.8) takes the
form

_1 2 1 2
E=3 / (|v,sp| + 1V, )rdrdgo
1 o1
+ -};A/(WP —a¥)rdrdp+ %2 /(Af + ﬁAf, + Hz)rdr dy
(recall that we have set m(x) = 0). The following field has finite energy:

(10.9) O(r,0) =a(r)e™, Ap=0, A =0, A,=1(),

where a(r) = a + B(r), ¥(r) = —n + A(r), and the functions B(r) and A(r)
decay rapidly as r — co. The energy of this field is basically localized in a ball
centered at the origin; the radius of the ball depends on a(r) and 7(r).

Replacing d°z by dz in the action integral (10.6), and letting 4 range from 0
to 3, we obtain a theory of fields in three-dimensional space. This theory does
pot contain topologically nontrivial fields of finite energy. However, if we in-
terpret (10.9) in cylindrical coordinates (r,p, z), we get a field invariant under
translations along the z-axis, and having a topologically nontrivial string. (For
a precise definition, see Chapter 19). Such a field has energy density e(r, ¥, 2)
independent of z, so its total energy is infinite. It is an interesting field, nev-
ertheless, because it has a finite linear energy density (the energy of the field
within a region bounded by two horizontal planes is finite). To be more graphic,
we can say that the energy of these fields is localized within a tubular region
surrounding the z-axis.

We return to the two-dimensional case. For a field of finite energy, the
topological number 7 equals (2) " times the circulation of the field A, along
an infinitely distant circle in the (z', z?) plane. This, in turn, equals the integral
of the magnetic field H with respect to ! and z*:

1 1
: == d A dr = — / ]
(10.10) n=o- }f wist = [Hds
This is most easily verified in polar coordinates. The finiteness of the energy

implies that V,¥ = 8,¥ + A, ¥ tends to 0 as r tends to oco. Recalling that ¥
behaves as ae—*¥) as r — 00, we see that
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A, 019, =B,

so that 1 o L o 1
= — —_ — —_ — L
n=o /0 OpA dyp o /0 Ay, dp o f A, dz".

To make this proof more rigorous, we must require that the covariant derivatives
decay rapidly as |x| — co. It is sufficient to assume that |V,¥| < const [x|~(+%), which
in polar coordinates corresponds to |V, ¥| < constr~(+% and |V, ¥| < constr~%. If
we impose the gauge condition A, = 0, we conclude from the fact that |9,¥| =
|V,&| < constr~(+% that the limit $(y) = lim, .o ¥(r, ) exists, and that

< const r6.

#0) - 2o =| [ 080 ar

Thus the above reasoning is justified in the gauge A, = 0. Since both sides of (10.10)
are gauge-invariant, the equality follows in all gauges.

To summarize, the phase space of the system with action integral (10.6) is
disconnected: for every integer n there exist fields of finite energy with topolog-
ical number n, and fields with different topological numbers are separated by
an infinitely high energy barrier.

If we quantize this theory, we can again assign an integer to each quantum
state of the system, and this topological quantum number is a topological inte-
gral of motion. If the number is non-zero, the state is topologically nontrivial.
In particular, there may exist topologically nontrivial quantum particles.

Let E,()) be the infimum of the energy functional on the set of fields with
topological number n. E,(}) is a lower bound for the energy of quantum states
with topological number 7. It is easy to see that Enin()) < En(X) + Ea(2).
Indeed, if we have two fields with topological numbers m and n, we can assume
(by translating one field if necessary) that their energies are localized in regions
far apart. By adding the two fields, we get a field with topological number m+n
and an energy approximately equal to the sum of the two energies; hence the
above inequality.

Later we will show that E, = m|n|a® for A = e2. A heuristic reasoning
suggests that E,()) < |n| E1()) for A < €? and E,()) = |n| E1()) for A > €.
For A > e? the infimum is not reached; the fields that best approximate it are
superpositions of fields with topological numbers n = +1.

As noted in Chapter 9, in order to study topologically nontrivial fields in the
semiclassical approximation, we need to find a field that represents a local minimum
for the energy function in the set of topologically nontrivial fields. In our two-dimen-
sional model, it is easy to find extremal fields for the energy functional having arbi-
trary topological number (such a field is a time-invariant solution for the equations
of motion). In fact, it is sufficient to look for such an extremum among fields of the
form (10.9), for the following reason: if we write down Euler’s variational equations
for the action integral (10.6) and then plug in the field (10.9), the result is the same
as if we reversed the order of the two operations, that is, if we first plugged (10.9)
into (10.6) and then varied a(r) and «(r). This fact can easily be verified by direct
calculation.
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(That we can restrict ourselves to fields of the form (10.9) also follows from
Chapter 17. In order to apply the results from that chapter, we note that the field
(10.9) is symmetric with respect to rotations in the (z, y)-plane, because the change
caused by a rotation can be compensated by & gauge transformation. More precisely, a
rotation through an angle ¢ multiplies ¥ by ¢i"®_ and does not change the gauge field;
this is equivalent to a gauge transformation with gauge function ni independent of
position (a global gauge transformation). Conversely, if a field (¥, A) does not change
after a rotation through ¢ and a gauge transformation with gauge function np, the
field can be written in the form (10.9).)

Thus, to prove that the action integral (10.6) has an extremum with arbitrary
topological number 7, it is sufficient to show that this integral attains its minimum
when considered only on fields of the form (10.9). But this follows from the fact that
a continuous function on a compact space achieves its minimum: the action integral
is weakly continuous in the appropriate Hilbert space, and a ball in a Hilbert space
is compact in the weak topology.

Note that the field (#™, A™) that realizes the minimum of (10.6) on fields of the
form (10.9) does not necessarily correspond to a local minimum of (10.6) considered
on all fields, even if (#™, A™) is an extremum for (10.6). We will show that if A = 2,
the field (¥, A™) gives the minimum of (10.6) on the set of fields having topological
number n. In other words, for A = €2, we have E,()) = E(¥™, A™). A heuristic
reasoning suggests that the same is true for A < €?, and also for A > e?if n = %1
but it is not true if A > €2 and |n| > 1. Thus, in the semiclassical approximation, the
field (W™, A™) with A > €? corresponds to a topologically nontrivial stable particle
only for n = %1, while for A < €2 there exist stable charges with arbitrary topological
charges.

To analyze the case A = e? we integrate by parts the expression for the energy,
reducing it to the form

1
(10.11) E= / (%azH + i|=f? + 2—e;(Ef + E3 + LV — iV
1
+ s (H + 3P - ) ) &

Here all terms on the right-hand side, except for the first, are non-negative; and,
by (10.10), the first term coincides with the topological number % up to a factor.
Therefore E > mna?, and E = wna? if and only if the all but the first term of the
integrand vanish. In other words, the energy is wna? if 7(x) =0, £(x) =0,

(10.12) Vi@ —iVy¥ =0, and H+ 1e*(|Z[? —a?) =0.

This field clearly realizes the minimum of the energy functional among fields of the
form (10.9), and therefore also the minimum of the energy functional among fields
with a given topological number n > 0.

The case 1 < 0 is reduced to the case n > 0 by reflection in a plane; the energy
functional is invariant under reflection, and the topological number changes sign. We
thus get the bound E > 7|n|e® and and an analog to (10.12) for fields such that
E = n|n|a?.

Tt can be proved that the system (10.12) and its analog for n < 0 bas a 2|n|-
parameter family of solutions, where gauge-equivalent solutions are considered iden-
tical. Every field in this family realizes the minimum of the energy function on fields
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with topological number n, so that the second variation of the energy in each of these
felds is non-negative definite. In can be proved that the second variation of the energy
functional on (¥, A™) is non-negative definite also if A/e? is less than 1 but close
enough to 1. This implies that the field (¥(™, A™™) corresponds to a minimum.

On the other hand, if A/e? is greater than 1 and close enough to 1, the second
variation of the energy ceases to have a constant sign, so that (#™, A™) is not even
a local mrinimum. The proof of this is based on the fact that the zero modes of the
operator corresponding to the second variation of the energy functional at (#(), A(™)
can be computed explicitly for A = €?; in addition to the zero modes corresponding
to gauge degeneracy, there are 2|n| zero modes corresponding to the 2|n|-parameter
family of solutions of (10.12) that are gauge-inequivalent. This enables one to use
perturbation methods to study the second variation for A/e? close to one. For such
values of A one can show that E(Z®™, A™) > n(TW, AMW) if X > €*; that is, fields
having rotational symmetry turn out to be less energy-minimizing than superpositions
of distant fields with n = +1. The results obtained for A/e? close to one agree with
the assertions made earlier for the general case.

The mathematical problem discussed above arises also in statistical physics,
and, in fact, it arose there before it did in quantum field theory. The free-energy
functional in the Ginzburg-Landau model of superconductivity is given by

10.13) E = %/|grad!lf+iAW|2d3z
1
1 2 _2\2 3 2 3
+8)\/(|!F| a?) d:l:+—2€2/|rot.A| d’z

where ¥(z) is the complex-valued order parameter and A is the electromagnetic
field potential. The extrema of the functional (10.8) studied above are associ-
ated with topologically nontrivial strings of the functional (10.13), known as
Abrikosov vortices. When A < ¢* we get a type I superconductor, and when
A > e? a type II superconductor.
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To construct a three-dimensional theory having topological integrals of motion,
we start by considering the action functional

(1L1) S= % [y s - [ -aPda,

where @ = (¢, ¢, ¢°) is a three-component scalar field. The energy functional
then has the form

- _lf g s 1 2 3 2 _2y2
(11.2)E—E1+E2—2/w(x)dz+2/(gradtp)dz+A/(cp a?)? d%z,

where m(x) = ¢(x) is the generalized momentum corresponding to the gener-
alized coordinate (o(x).
We investigate the space of fields ¢ for which the integral

(11.3) /(<p2 -a?)?d’z
is finite. We assume that the fields considered are continuous, that the limit
(11.4) lim ¢p(An) = &(n)

A—co

exists for every vector n, and that the convergence is uniform as n runs through
the set of vectors of unit length. Under these conditions the vector #(n) depends
continuously on n. From the finiteness of the integral it follows that |#(n)| = a;
thus, if we look at @(n) on the set of unit vectors n, we obtain a continuous
map from the two-sphere [n| = 1 into the two-sphere |#| = a. The topological
number of p(x) is the degree (T2.3) of this map S* — S? describing the asymp-
totic behavior of #(n). The topological number is an integer, and is therefore
invariant under continuous changes in ((x), if we make the natural assumption
that the asymptotic behavior of #(n) varies continuously with ¢(x).

Thus, the set of fields for which (11.3) is finite is disconnected: it has one
component for each value of the topological number. Just as for the model
discussed in Chapter 10, this does not imply that the space of fields for which
(11.2) is finite is disconnected, because, if [(grad ¢)?d®z is finite, (x) tends
to the same value as one goes away to infinity in any direction. This means that
the topological number is zero for any field for which (11.2) is finite.
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To obtain a theory that has topological integrals of motion, we incorporate
into from (11.1) the Yang-Mills or gauge field A,(z) = (A}, A%, A3), which is
a generalization of the electromagnetic field. Namely, we consider the action
integral

(11.5) S= %/(V,;‘P)Z &z — )\/(‘Pz — a?)?diz — _4% /(J:py,f“")fa;,

where V,p(z) = 8,0(z) + [Au(c), ¢(2)] and Fp = 8,8, ~ 8,4, + [Ay, A,
Here p = 0,1,2,3, the square brackets stand for the cross product, and the
angle brackets for the scalar (dot) product.

The passage from (11.1) to (11.5) is a particular case of the procedure pre-
sented in Chapter 4, whereby one localizes the internal symmetry group on an
action functional. Here, (11.1) has internal symmetry group SO(3), since S is
invariant under transformations ¢(z) — V(z), for V an orthogonal matrix.
After localization, S acquires local gauge symmetry: the functional (11.5) is
invariant under the transformation (z) — V(z)¢(z), for V(z) an orthogo-
nal matrix varying smoothly with z, provided the gauge field A,(z) is also
transformed appropriately.

Generally speaking, a gauge field takes its values in the Lie algebra of the internal
symmetry group. In the present case, we think of A,(z) as a three-dimensional vector,
using the fact that the Lie algebra of SO(3) is isomorphic to R?, with multiplication
given by the cross product.

The action functional (11.5) gives the boson part of the model suggested by
H. Georgi and S. Glashow to describe weak and electromagnetic interactions;
the model also contains a three-component fermion field that transforms via
the vector representation of SO(3). Currently, after the discovery of neutral
currents, this model cannot be considered realistic. Nonetheless, its study is
important to the understanding of the physics of grand unification, because,
like the grand unification models, it is based on a simple gauge group.

The energy functional derived from (11.5) is

(116) E= % [®@dz+ % [Vl @4 [0~ a2 + B,

where

Eym = 4%’2 /(2(-7"05,-7:&) + (Fij, Fij)) &z

is the energy functional for the gauge field. Here we have imposed the gauge
condition Ag(x) = 0, taking advantage of local gauge invariance.

The space of fields of finite energy is disconnected. Indeed, if (11.6) is finite,
so is (11.3), and thus we can define the topological number 7 of the field, as in
Chapter 10. Conversely, for every integer n, we can construct a field of finite
energy having that topological number. For example, for n = 1 we can set

ra(r)+1

(11.7) A;(x) =i — 5 Aj(x) =0, e(x) = (B(r) + a)n,

-~
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where k,i,j = 1,2,3, r = |x|, n = x/r, and the functions a(r) and G(r) decay
rapidly and satisfy a(0) = —1 and #(0) = —a. From now on we assume m(x) =0
and E(x) = 0. This corresponds to studying the configuration space instead on
the phase space, and obviously has no effect on the topological properties of the
space.

To construct a field of finite energy with n arbitrary, we consider an arbitrary
field ®(n) defined on the unit sphere [n| = 1 and satisfying |®(n)| = a. We
extend this field to the exterior of the unit ball, by setting ¢(x) = ®(x/[x]).
We choose the gauge field A,(x) in such a way that the covariant derivative
V,.p(x) = 8,p(x) +[A,(x), ¢p(x)] vanishes. This is possible because |#(n)|=a
implies that ¢(x) is orthogonal to the vectors dy¢0(x), dap(x) and O5¢p(x), and
therefore the field

Aux) = M—lx)l,_;kp(x), B (X)) + M(X)e(x),

where the \,(x) are arbitrary functions, satisfies the desired condition. Inside
the unit ball we define ¢(x) and A,(x) arbitrarily, the only requirement being
that they be smooth functions of x. It is easy to see that the energy of the
field thus constructed is finite, at least in the case Ay(x) = 0. Indeed, the
energy density outside the unit ball reduces to the energy density of the gauge
field A,(x), and the energy of the gauge field is finite because we can write
A, (x) = |z| " A,(x/[x]), so that the energy density decreases as 2|4

We now discuss the physical meaning of the topological number of a field.
We first observe that every vector ¢ can be transformed, by means of a rota-
tion, into a vector with ¢! = ? = 0 and ¢® = |p|. In view of this, it is natural
to impose on (x) the gauge condition ¢'(x) = ¢*(x) = 0. It turns out, how-
ever, that this gauge condition cannot be imposed if the topological number of
the field is non-zero, because a field satisfying this gauge condition has triv-
ial asymptotic behavior at infinity: #(n) = V(n)®,, where $, = (0,0,a) and
V(n) is a continuous function defined on the unit two-sphere |n| = 1 and tak-
ing values in SO(3). But every mapping S — SO(3) is null-homotopic, because
12(SO(3)) = 0 (T10.2). This implies that #(n) = V(n)®, is a null-homotopic
map from the two-sphere S? into itself, and hence that ¢(x) has topological
number zero. Therefore, if a field is gauge-equivalent to a field satisfying the
condition ¢! = ¢? = 0, it is topologically trivial. The converse is also true.

The field ¢(x) = P = (0,0,a) has energy zero, and thus minimizes the
functional (11.6), which is clearly non-negative. As usual, the energy of the field
considered here is the semiclassical approximation to the ground-state energy
(the energy of the physical vacuum). It is natural, then, to call this field the
classical vacuum. To find the energies of weakly excited states, one must expand
the action integral in a power series in the deviations from the ground-state
field, and retain only the quadratic terms. Doing this to (11.5), we arrive at the
following expression for the quadratic part of the action integral:
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11.8) Squ= _?1% / ((0uA, — B,AL)? —2a%%(( A‘l‘)z +(A42)%) d'z
+ % /(((’:),,17)2 — 8Xa’n?) d'z,

where 7(z) = ¢*(z) — a. Quantization gives a theory that contains a scalar
narticle of mass 2a+v/2)\, two vector particles of mass ag, and one massless vector
oarticle. The massless particle corresponds to the filed Af, and must be identified
with the photon, and the field A,"‘ with the electromagnetic field.

Notice that the classical vacuum P, has SO(2)-symmetry, instead of the
SO(3)-symmetry of the original Lagrangian. The vector fields corresponding to
:he broken symmetries acquire mass. This phenomenon is a manifestation of
the Higgs effect.

In the gauge ¢! = p? = 0, the field A3(z) can be seen as the electromagnetic
feld, so F,, = 8,A3 — 8, A3 can be seen as the electromagnetic field tensor. The
electromagnetic field tensor can be expressed in a form independent of the choice
of gauge as

. 1
11.9) Fu = <]:IW’ |%|-> - ITPFEklm‘Pk(Vp‘P)I(Vu‘P)m;

this is the correct expression, because it is gauge-invariant, and reduces to the
standard expression in the gauge ¢! = ¢? = 0. This tensor satisfies Maxwell’s
equation

OoFup + O Fys +0,F,, =0;

this can be seen immediately in the gauge ¢! = ¢? = 0, and is true in any gauge
because of gauge invariance. In particular, the magnetic field H = (Fas, Fa), F12)
has divergence zero.

The expression (11.9) for the electromagnetic field tensor retains its mean-
ing for topologically nontrivial fields at any point where ¢(x) # 0. The jus-
tification given above, involving the imposition of the global gauge condition
' = ¢? = 0, cannot be used non-trivial fields; however, the electromagnetic
field is determined locally, and in any small region where (x) does not vanish
the gauge condition ¢* = ¢? = 0 can be imposed.

Using (11.9), we can link the topological number to the magnetic charge of
the field. The magnetic charge is defined as

. 1
(11.10) m= = f HdS,

where the integral stands for the flux of H through an infinitely distant sphere.
In classical electrodynamics the equation divH = 0 holds true at all points,
so that (11.10) is always zero. In the present model, on the other hand, the
magnetic field is only defined at points where (x) # 0, so that divH = 0 only
at those points. This leaves open the possibility of the existence of fields with a
non-zero magnetic charge. In particular, it is easy to verify that



72 Part II. Topological Methods in Quantum Field Theory

x
(11.11) H=rp
for the field (11.7), so this field has magnetic charge 1. (The definitions of A,
and F, adopted here differ from the standard definitions by a factor of g~*. If
we use the standard notation, the magnetic charge is g~!.) We see that for the
field (11.7) the topological number coincides with the magnetic charge. This is
not accidental, and it holds true in general.

We now analyze in greater detail the concepts of topological number and
magnetic charge, and in particular prove that the two coincide. First we note
that the topological number of a field ¢(x) can be defined in much greater
generality. It is enough to assume that there is some ball D?® outside of which
¢(x) does not vanish. Then on the sphere S? bounding this ball, ¢(x) can
be thought of a map from S? to R?)\ {0}. Such a mapping can be assigned a
degree (really the degree of the mapping S§? — S? obtained by composing with
the projection x +— x/|x|); this integer is then, by definition, the topological
number of (x). The topological number is obviously independent of the choice
of §2, and when the field has asymptotic behavior #(n), this number coincides
with the topological number defined earlier. The topological number (under the
new definition) has the analytic expression

1 Eabe?® O’ B’
11.12 n=—— Cabef Ou¥ VY g+ dz”,
(11-12) 4m ,gu}{ leof?

where the integral is over any sphere outside of which ¢(x) does not vanish.
This expression is derived in T2.3, and generalized in T2.1.

Formula (11.9) for the electromagnetic field tensor is meaningful whenever
(x) does not vanish anywhere outside some ball D®*—the same circumstances
under which we can talk of the topological number of ¢p(x). When calculating
the magnetic charge, we can use any sphere 5 bounding such a ball; by Gauss'’s
divergence theorem, the flux of H is the same for all such spheres.

The magnetic charge does not change under continuous variations of ¢ and
A,, the only requirement being that in the process ¢ does not vanish outside
a certain ball. Indeed, suppose that (¢(x, 7), Au(x, 7)) is a family of fields that
depends continuously on the parameter 7, for 0 < 7 < 1. Consider the field
(p(x, T(X)), Au(x, T(x))), where 7(x) equals 0 for |x| < 2L and 1 for x| > 3L.
Expressing the magnetic charge of this field first in terms of the flux of H
through a sphere of radius less than 2L and then in terms of the flux of H
through a sphere of radius greater than 3L, we find that it coincides with the
magnetic charge of the field (o(x, 7),A,(x,7)) at 7 = 0 and 7 = 1. On the
other hand, the flux does not depend on the choice of sphere, so the magnetic
charges of (p(x,7), Au(x,7)) for T=0and 7 =1 coincide.

We are now ready to prove that the topological number given by formula
(11.12) coincides with the magnetic charge. Indeed, consider the family of fields
(¢(x), TAy(x)), which depends continuously on the parameter 7. For 7 = 0 the
magnetic charge of this field equals the expression (11.12) for the topological
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aumber of ¢. Since the magnetic charge does not depend on 7, the equality
remains true for 7 = 1, that is, for an arbitrary field (¢(x), A,(x)). We remark
that (¢(x), 7A,(x)) can have infinite energy for certain values of 7, even if the
energy of (¢(x), A,(x)) is finite. This, however, is not a problem, because the
magnetic charge still has meaning.



12. Topological Integrals of Motion
in Gauge Theory

The existing models combining strong, weak and electromagnetic interactions
(grand unification models) are built using the same principles as the theory of
electroweak interaction. We take the Lagrangian

(12.1) L= Lo— TP —U(yp),

where ¥ = (¥1,...,%™) is a multicomponent fermion field, ¢ = (..., 0™ a
multicomponent scalar field, and Ly the free Lagrangian describing the interac-
tion of these fields. Assume that (12.1) is invariant under an internal symmetry
group G. This means that 9 and ¢ transform in a certain way under transfor-
mations in G (they take values in some representation space of G) and that the
Lagrangian is a scalar with respect to this group; in particular, the polynomial
U(y) and the expression I Yo = G Pl are G-invariant.

As explained in Chapter 4, we construct from £ a Lagrangian L, invariant
under local gauge transformations corresponding to G-valued functions 9(z),
and involving the gauge fields A,(z), which take values in the Lie algebra G of
G. We do this by replacing all derivatives 8, by covariant derivatives V,, and
adding the term

1
‘CYM = —E(]:;w’f“u)’

where F,, = 0,4, — 0, A, + [Ag, A)] is the gauge field strength, and the angle
brackets stand for the invariant scalar (dot) product in the Lie algebra of G.

Thus, a “field” in the theory described by £ comprises a fermion field ¥(z),
a scalar field ¢(z) and a gauge field A,(z). Fields differing by a gauge trans-
formation are physically equivalent. This allows us to restrict the class of fields
that must be considered by the imposition of a gauge condition, chosen in such
a way that any field is equivalent, under a gauge transformation, to a field
satisfying the gauge condition. We usually impose the gauge condition Ap=0.

What topological integrals of motion exist in the theory described by the
Lagrangian £ obtained from (12.1)? To answer this question, we note first that
fermions are inessential to the problem, so we can keep just the boson part of
the Lagrangian:

(12.2) £ = UV,up, V#0) = U(p) + L.
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Here ¢(z) = (¢'(z),...,¢"(z)) is an n-component (that is, R"-valued) scalar
field, which transforms according to some representation 7" of the compact Lie
group G; the gauge field A, takes values in the Lie algebra G of G, and V,, = 9,+
t(A,)p, where t is the representation of G corresponding to the representation
T of G. The subset of R" on which the function U(yp) = U(y; ..., ") achieves
its minimum is called the set of classical vacuums, and is denoted by R. Assume
that R is a submanifold of R™. Without loss of generality we can assume that
the value of U(yp) on R is zero.

What are the topological properties of the phase space in this theory? We
impose the gauge condition Ag = 0. Then the energy functional can be written
as

12.3) E= [(47+}(Vio, Vo) + U(9)) 3 + B,

where

B f (5520 B0 + 2P ) |2

with ¢, j = 1,2, 3, w(z) = @(z) is the generalized momentum associated with the
generalized coordinate p(z), and E;(z) = —A;(z) = Fio(z) is proportional to
the generalized momentum associated with A;(z). The phase space P consists
of fields (m(x), p(x), Ei(x), Ai(x)) for which (12.3) is finite.

Obviously, P has one connected component for each component of the space
Py of fields (p(x), A;(x)) for which the functional

(12.4) Elp, A = — / Ldz
= [ (390 5u0) + V) + 555, 7))

is finite, where i, j = 1, 2, 3. For this reason we restrict our attention to Fp from
now on.

Consider the mapping o that assigns to each point (¢!,...,¢") € R" the
nearest point of R. This map is well defined, one-to-one and continuous in a
small enough neighborhood R of R (T4.4). We fix such a neighborhood.

The finiteness of (12.4) requires that, as [x| — oo, the field ¢(x) approach
the manifold R of classical vacuums. We therefore insist that the values of ¢
outside a ball D? must belong to the neighborhood R of R. In other words, we
require that the set of points for which ¢(x) ¢ R be bounded.

To each field p(x) we assign the homotopy class {(¢) of the mapping op
from a large enough sphere into R. This is well-defined because, by assumption,
2 takes large spheres into R, and o takes R into R. We call (i) the topological
type or topological charge of .

From now on we assume that fields with finite energy behave well at infinity,
that is, that the covariant derivative V;p(z) decays fast enough as |x| — oc:

(12.5) [Vip(x)| < const [x|~*+9),  with d > 0.
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The function V;ip(x) is square-integrable because the energy functional is as-
sumed finite. If V;p(x) ~ |x|™* as |x| — oo, square integrability implies that a > 3.
This means that the condition we have imposed will certainly be met if V;p(x) tends
to zero is more or less at the same rate in all directions.

We also assume that along each ray An, with |n] =1 and 0 < A < 0o, the
field ¢ has a finite limit ®#(n) = limp—.0 ¢(An), and that it approaches that
limit fast enough: |#(n) — p(An)| < const A~ for § > 0. Note that this is true
if the gauge field satisfies (12.5) and the gauge condition ziA; =0, for then

|e*Bip ()| = | Vigp(x)| < comst [x]*,

so that
8¢(An)
aA

Under the conditions above, the finiteness of (12.4) implies that #(n) € R
for every direction n. The topological charge of ¢ can be defined as the homotopy
type of @, considered as a map from the unit sphere |n| = 1 into R. This
definition coincides with the one given earlier because (n) and op()n) differ
little for large |n|, so the homotopy types of @ and o coincide, the latter being
seen as a map on a sphere of large radius. -

If the field (i, A,) depends continuously on a parameter 7 and has finite
energy for every T, its magnetic charge is independent of 7. More precisely, we
must require that when 7 varies within a bounded interval, there exists a ball
D3 outside of which ¢, takes values in the neighborhood R of R. Then the
topological charge of ¢, can be calculated using the map defined by ¢, on the
boundary of this ball.

In particular, since the field changes continuously with time, the topological
charge is an integral of motion. In other words, we can talk of the topological
charge of a time-dependent field p(z) = ¢(t,x), defining it as the topological
charge of p(to,X), for a fixed value of . It suffices to assume that for every
bounded interval [to, 1] there is a ball D* C R? such that ¢(t,x) € R for all
toststl a.ndalla:qéD"

The group G acts on the manifold R of classical vacuums: since U (p) is
invariant under G, an element of G takes a point that minimizes U to another
such point. We will always assume that G acts on R transitively, that is, that
any classical vacuum can be obtained from any other by the action of a transfor-
mation in G. Physically, this means that the degeneracy of the classical vacuum
is due solely to invariance under G. Then R can be thought of as the right coset
space G/H, where H, the group of unbroken symmetries, is the subgroup of G
that fixes a given classical vacuum (Chapter 40 and T9.3).

Under the assumptions above, the set of homotopy classes {S?, R} can easily
be calculated. We assume that G is simply connected; as explained in Chapter 8
(see also T14.1), this can be done without loss of generality, by replacing G with
its universal cover. Then the homotopy group ma(R) = m2(G/H) is isomorphic
to the group m (H) (T14.1). If H is connected, R = G/H is simply connected
and the set of homotopy classes {S?, R} can be identified with the homotopy

< consta~ (49,
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group ma(R) = m(H), so that the topological type of the field is determined by
an element of m (H).

If H is isomorphic to SU(3) x U(1), we have m(H) = m(U(1)) = Z, that
is, the topological type is an integer. (Later we will see how this number can
be identified with the magnetic charge.) In the SU(5) grand unification model,
and in all grand unification models encountered in the literature, this is still
true, although H and SU(3) x U(1) are only locally isomorphic (the symmetries
in the color group SU(3) and in the electromagnetic group are not broken).
To compute m1(H) in the case of local isomorphism H ~ SU(3) x U(1), we
notice that the universal cover of SU(3) x U(1) is SU(3) x R (since SU(3) and
R are simply connected, and the map A — e*! is a covering map R — U(1)).
Therefore there is a covering homomorphism SU(3) x R, — H, and m (H) is
isomorphic to the kernel D of this homomorphism, since SU(3) x R, /D = H
(T14.1).

For the SU(5) model, the covering homomeorphism takes (u, ) € SU(3) x R
to the matrix (7.2), with K = ue~*»3 and ! = ¢**. Thus the kernel D is the set
of pairs (e*2™*/3, ¢?™*) with k € Z, and in particular is isomorphic to Z. A loop
in H that begins and ends at the identity can be lifted to a path in the universal
cover SU(3) x R connecting the identity with a point of D. Therefore it has the
form (K,1) = (u(t)e /3 1) where u : [0,1] — SU(3) and A : [0,1] = R
are continuous. Its homotopy class is given by the integer (2r)~1(A(1) — A(0)),
and depends only on I(t), not on K(t)—that is, it is determined solely by its
projection in J(1). In other words, the projection map H — U(1) taking the
matrix (7.2) to ! € U(1) gives rise to an isomorphism between m;(H) and
m(UQ1)) =2.

Generally, D is a discrete subgroup of the center of SU(3) x R. This center
is isomorphic to Zz + R, where Z3 is the group of order three. Every discrete
subgroup of Z3 + R is isomorphic to either Z or Z3 + Z. If D = Z3 + Z, we
have H = (SU(3)/Z3) x U(1). This is possible only if all scalar fields transform
according to representations of SU(3) in which the center Zj3 of this group acts
trivially. In the existing. models this is not the case, so m(H) = Z.

Under the assumption that G is simply connected, x;(R) is isomorphic to
mo(H), which in turn equals H/H,,, (we recall from Chapter 8 that H,, is the
group of continuous unbroken symmetries, the maximal connected subgroup of
H). If there are discrete unbroken symmetries, that is, if H is not connected, it
follows that R is not simply connected. Furthermore, {S?, R} can be thought
of as the set of orbits of m (R) = mo(H) acting on ma(R) = m(H) (see T8.2).
In this chapter and in Chapter 15 we assume that H is connected, and defer
to Chapters 19 and 20 the study of effects that arise when there are discrete
unbroken symmetries.

The topological charge of ¢(z) does not change under gauge transforma-
tions. This is because, for a given gauge transformation specified by a function
g(x), one can find a continuous family of gauge transformations g.(x) joining
g(x) to the identity transformation.
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If g(x) is defined in all of R, this follows immediately from the contractibility
of R®. It remains true when g(x) is defined only outside a ball, for in this case the
domain of definition of g(x) is homotopically equivalent to the sphere S§2. The analysis
of a map form this domain into G reduces to the the analysis of a map S° — G, and
this implies the assertion in general because 73 (G) =0 for any Lie group G.

We now show that the space P, of fields (p, A) with finite energy (12.4)
contains fields of arbitrary topological type. (Naturally, we mean the topological
type of (.) We must construct, for each homotopy class of maps S — R, a field
¢ whose asymptotic behavior determines the prescribed homotopy class, and
then find for ¢ a field A such that E(p, A) is finite. Consider an arbitrary
smooth map o from the unit sphere S? into R, and define the scalar field for
|z| > 1 by the formula ¢(x) = a(x/ |x|). To define the gauge field, set

(12.6) Ax) = -lch—la,, (l-’;—l)

for |x| > 1, where the function a,(n) is chose so that V,p =0 for [x| > 1 (we
will see in the next paragraph that such a function must exist). Then extend
¢(x) and A,(x) to the interior of the unit ball arbitrarily, the only condition
being that they be smooth. It is clear that the energy of the resulting field
(i, A) is finite: outside the unit ball all terms in (12.4) vanish, except for the
gauge field, and the energy of the gauge field is finite because the field strength
decreases as |x|™2.

We show now that we can choose a,, so that V,¢ = 0. The desired equation can
also be written as

(12.7) a(n + dn) = a(n) + t(a,(n))a(n) dn*,

where [n| = 1 and (n,dn) = 0. Now, for every n we can find a,(n) satisfying (12.7);
this is because G acts transitively on R, so a point a(n + dn) lying infinitely close to
a(n) can be obtained from a(n) by an infinitesimal transformation in G, that is, by
an element of the Lie algebra of G. This element depends linearly on dn, and so can
be represented as a,(n)dn”.

The choice of a,(n) is not unique; for example, we could add to a,.(n) any element
in the Lie algebra of the stabilizer of a(n), that is, any by(n) such that ¢(b,(n))a(n) =
0. Therefore, we still have to check whether the choice of a,,(n) can be made to depend
continuously in n. To do this, we use a topological argument: for each n the vectors
a,(n) that obey (12.7) form a linear space Q(n). The collection of spaces Q(n) forms
a fiber bundle over the sphere $%; a continuous choice of a,(n) means the choice of
a continuous section of this bundle. Such a section exists because the bundle has a
contractible fiber.

We have established that the space of fields of finite energy has exactly one
connected component for each element of the group m (H) = wz(R). The group
w1 (H) is isomorphic to the direct sum of a finite abelian group with r copies of
Z, where r is the dimension of the center of H. This follows from the fact that a
connected compact Lie group H is locally isomorphic to the product of r copies
of U(1) and a compact, simply connected Lie group (T14.1). We thus see that
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the topological type of a field is characterized by the choice of r integers and an
element of a finite abelian group. Since a finite abelian group can be written as
a direct sum Z,, + - - - + Zn,, an element of it can be thought of as an n-tuple
(K1, ..., kn), where k; is a residue modulo m;. These integers and residues will
be called the topological numbers or topological charges of the field.

The topological charge can be defined even if the domain of definition V' of
the field is not all of R?, provided that, on the boundary I" of V, the field takes
values near a classical vacuum (say in the neighborhood R of R.) In this case,
we consider the topological charge of the field ¢ defined on V' as the homotopy
class ¢ of the map o : I' — R. We assume here that the boundary I" of V' is
homeomorphic to S?, so that V U I" is homeomorphic to the ball D3, Then (r
can be thought of as an element of mo(R) = m(H).

We denote by K the set of points x € I' such that ¢(x) ¢ R. If Kr is
empty, the mapping ¢ : I' — R can be continued into V, and must be null-
homotopic, so that {r = 0. Furthermore, {r, = (r, if K, = K, that is, the
topological type of the field inside I' is determined solely by Kr. Indeed, if
Kr, = Kr,, we can find a continuous family of surfaces I; joining Iy and I3,
all homeomorphic to the sphere and satisfying ¢(x) € R at every point x € I;.
Then o is defined on I}, so the homotopy type of oy : It — R does not depend
on i.

The topological charge of ¢ is additive: if K is the union of disjoint sets
K, and Kr,, we have {r = (ry + r,. This follows from the results in T7.1: we
assume, without loss of generality, that I and I are disjoint and lie inside a
ball bounded by I, and we look at the region bounded outside by I" and inside
by I3 1 and I’ 2.

To interpret physically the additivity of the topological charge, we consider
a field ¢ whose energy is localized in a domain D equal to the union of domains
D, and D, that are far apart. Outside D = D; U D, the field must be close
to a vacuum field—that is, have values in R—so we can talk of the topological
charge of ¢ in D, D; and D,. Additivity means that the topological charge in
D equals the sum of the topological charges in D; and in Ds.

Up to this point our reasoning has been classical. However, as we noted
in Chapter 9, the existence of topological integrals of motion in the classical
theory (corresponding to the fact that the phase space is disconnected) usually
implies their existence in the corresponding quantum theory as well. The current
situation is no exception.

Mathematically, the concept of the topological type of a field inside a surface
T is similar to the concept of the topological type of a defect of local equilibrium,
as defined in Chapter 8. The points at which the field ¢(z) takes values in R
are to be seen as analogous to the points where local equilibrium is present.
The set K is the analog of the set of defects in local equilibrium (points in I"
at which local equilibrium is violated). The proof that the topological charge is
additive is similar to the proof of a similar assertion in Chapter 8.
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We now analyze the particles that appear in the theory described by the La-
grangian (12.2). As usual, we must expand the Lagrangian in the neighborhood
of a classical vacuum (g, having lifted the degeneracy of the classical vacuum
by imposing a gauge condition. A natural gauge condition is

(13.1) ap(z) = po,

where g, as before, is the map taking a point in R" to the nearest point in R. We
recall that, in general, o is one-to-one and continuous only in a neighborhood of
R, say R, so that the gauge condition (13.1) is only meaningful for fields that
are near the vacuum manifold. Generally, the fields considered here satisfy this
condition only for |x| large enough, so we will consider gauge transformations
defined outside a certain ball, rather than on the whole of R3. (Also, the gauge
transformation can depend on time, but this is not important to the current
discussion.)

The map o commutes with transformations in G, since such transformations
preserve distances and map R into itself:

(13.2) oT(g) =T(g)o.

In view of this and of the assumption that G acts transitively on R, we can find
for every point ¢ € R a transformation g € G such that T(g)y satisfies the
gauge condition (13.1): we just choose the element that takes oy to o, so that

oT(g9)¢ = T(g)op = vo.

This argument implies that every field ¢(x) can be transformed into a field
satisfying (13.1) by means of a gauge transformation. If ¢ is topologically non-
trivial, the gauge transformation must be discontinuous, because any field satis-
fying (13.1) is topologically trivial, and continuous gauge transformations, even
when defined only in the complement of a ball, preserve topological type, as we
have seen. Since we are only considering continuous (and in fact smooth) gauge
transformations, it is not the case that an arbitrary field p(x) can be gauge-
transformed to one satisfying (13.1). However, it is always possible to effect
such a gauge transformation inside a contractible domain V' C R3 (provided, of
course, that the values of ¢ in V belong to the set R where the mapping o is
one-to-one and continuous).
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To verify this, consider for each point x the set H, of elements g € G satisfying
T(g)ow = pqo; we already know that this set is non-empty. In fact, H, is homeomorphic
ro the stabilizer H = H(y): if T(g)op(z) = T(g")ow(x)po, we have (T(g')) 1o =
.T(g)) o, so that g’g~! € H. The union of all the sets H, forms a fiber bundle
over the domain of definition of (x), the fibers being the H,. Finding the required
gauge transformation means choosing for each fiber Hy an element g(x) that depends
continuously on x, or, equivalently, constructing a section of the bundle. But a bundle
over a contractible base space always has a section (T11.2), so the desired gauge
:ransformation exists.

Consider the Lagrangian (12.2) under the gauge condition (13.1). The ex-
pansion of this Lagrangian in terms of the gauge field, in the neighborhood of
the vacuum ¢y, contains a quadratic term

13.3) 3 (H(Au) o, t(A*)0),

which comes from the term 3(V,p, V¥yp) in (12.2). This term gives rise to
the mass terms in the gauge fields. The Lie algebra G of G is the direct sum of
subspaces H and M1, where H is the Lie algebra of the subgroup H: that is, any
A € G can be represented uniquely as A’ + A", with A’ € H and A” orthogonal
to H (in the sense of the invariant scalar product). Clearly, t(A")pp = 0 for
A’ € H. Writing A,(z) = A),(z) + A} (z), where A, (z) € H and Alj(z) € HL,
we see that (13.3) equals

13.4) 3 (t(A0)0, t{A"™) o).

This means that the gauge fields corresponding to the generators of the subgroup
H remain massless after spontaneous symmetry breaking.

If we select an orthonormal basis {e,,...,e,} for the Lie algebra G, such that
che first 7 vectors ey, ..., e, lie in H, the gauge field A, can be written in this basis
2s A, = Ake,. The mass term for A% can be written as m;;AL A%, with my; =
3{t(e:)wo, t(€;)o)- In particular, the fields A}, ..., A}, correspond to massless vector
particles, since my; = 0 if i < r or j < r. The masses of the other vector particles are

defined as the eigenvalues of the matrix (mj;), for r + 1 < i, j < n: see Chapter 2.

Thus, as a result of symmetry breaking, n — r vector fields acquire mass,
where n = dim G and r = dim H, and n —r scalar fields disappear as a result of
:he gauge condition (13.1). The number of degrees of freedom does not change
‘n the process, because a massive vector particle has three spin states for a given
momentum, while a massless vector particle has two.

The particles studied so far do not exhaust the particle spectrum of the
Lagrangian (12.2). They can be called elementary particles or elementary exci-
rations of the physical vacuum. Of course, bound states of elementary particles
also exist. In quantum field theory, elementary particles correspond to the poles
of two-point Green’s functions, and their bound states to the poles in multipoint
Green’s functions.

Moreover, in the theories considered here there must be topologically non-
crivial particles, that is, particles with non-zero topological charge. (It is easy
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to see that elementary particles and their bound states have zero topological
charge.) For, as we have said, the concept of a topological charge is defined for
quantum states of finite energy, as well as for classical fields. The topological
charge is an element mp(R) = m1(H) that does not change as the state evolves
with time. On the other hand, it is assumed in quantum field theory that every
state with a finite energy splits, as ¢ — oo, into stable particles positioned far
apart. In view of additivity, the sum of the topological charges of these stable
particles must be equal to the topological charge of the initial state. Therefore,
when there are topologically nontrivial states (that is, when H is not simply
connected), there are also topologically nontrivial stable particles.

As we have said, in grand unification theories the topological charge can be
identified with the magnetic charge, so topologically nontrivial particles carry
a magnetic charge: we say they are magnetic monopoles.

If m,(H) # Z, we can not only state that there are topologically nontrivial parti-
cles, but also compute the number of topologically nontrivial stable particles. Indeed,
since there are quantum states with arbitrary topological charge, any element of
my(R) = my(H) can be represented as the sum of topological charges of stable parti-
cles. Each particle has an antiparticle with the opposite topological charge (just as
for all other charges). Hence, each element of 7 (H) is a linear combination, with
integral coefficients, of the topological charges (y,.. ., ¢, of stable particles, that is,
{¢i,-.-,Cs} generates the group m (H). (Of course, the classification in particles and
antiparticles is purely conventional; but once a convention has been agreed upon, we
can represent an element of m;(H) in terms of particles and not of antiparticles). The
number s of generators cannot be smaller than the dimension r of the center of the Lie
group H. We conclude that there must be at least r types of topologically nontrivial
stable particles.

Actually, the reasoning in the previous paragraph needs a bit more care,
because, as it is, it assumes implicitly that the number of particles obtained as
a result of the decay of a state of finite energy is finite. If the theory contains
massless particles, this assumption is unjustified. However, in Chapter 18 we
will find a lower bound for the mass of topologically nontrivial particles, and
the existence of this bound implies that all massless particles in this theory are
topologically trivial, and so irrelevant to the argument.

The particles considered above correspond to the Lagrangian (12.2), the
boson part of Lagrangian (12.1). As mentioned earlier, the presence of fermions
does not alter our results. The fermion spectrum can be found by standard
methods from the quadratic part of the Lagrangian, expanded in powers of
deviations from the classical vacuum.
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Suppose that the unbroken symmetry group H is a connected one-parameter
group. Then H = U(1), since that is the only connected one-dimensional com-
pact Lie group. (H is compact because it is a closed subspace of the compact
topological space G.)

We saw in Chapter 13 that the number of gauge fields that remain massless
after symmetry breaking is equal to the dimension of H. Thus, for H = U(1)
there remains only one massless field, which we call the electromagnetic field.
In the gauge (13.1), the potential of the electromagnetic field is the component
AL = (A,(z), e1) of Au(z) associated with the generator e; of H = U (1). The
electroma.gnet.lc field tensor is expressed in terms of the potential A}(z) by the
usual formula

(14.1) Fiu(3) = 8,4%(z) — 8,AL(2).

Now consider a field (¢(z), Au(z)), and assume that, within a certain do-
main, ¢(z) takes on values in the vacuum manifold R and satisfies V,p(z) = 0
Then, in the gauge (13.1), the field A,(z) belongs to the Lie algebra H of
H =U(1), that is, A,(z) = AL(z)e;. (In this gauge, we clearly have p(z) = o,
so Vup(z) = t(Au)we = 0.) In the same gauge, therefore,

(14.2) Fu(z) = Fu(z)ey,
or, equivalently,
(14.3) Fu(z) = (Fu(z), €1),

since e; was assumed to have unit norm. If the energy of the field is finite,
2(z) approaches R and V,p(z) approaches zero as |x| tends to infinity. This
means we can apply equation (14.2) for the electromagnetic field strength (or
the strength of the gauge field) as |x| tends to infinity. Thus, at great distances,
only the electromagnetic part F),,(z) of the tensor F,,(z) remains; this is related
to the fact that the remaining gauge fields acquires mass.

Since H = U(1), we have

mo(R) = m(G/H) =m(H) =m(({UQ1))=2Z

which means that the topological type of the field is characterized by an integer,
the topological charge. We will show that this integer coincides, to within a
factor, with the magnetic charge.
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First we explain what we mean by the magnetic charge of a field (¢(z),
A,(z)). As noted earlier, in the gauge (13.1) the electromagnetic field tensor
F,,(z) has the standard form (14.1). To find this tensor for an arbitrary field
(¢(z), Au(z)) at point z, we must first gauge-transform (p(z), A,(z)) so it satis-
fies (13.1), and then apply (14.1). The required gauge transformation must exist
if the value of @ at z belongs to the neighborhood R of the vacuum manifold
introduced in Chapter 13. The gauge transformation is not unique, but if two
gauge fields obtained from ¢ by applying gauge transformations both satisfy
(13.1), they can be transformed into one another by a gauge transformation
with function g(z) € H = U(1). Indeed, if op(z) = o and oT(g9(z))e(z) = po,
equation (14.2) implies that

T(g(z))op(z) = T(9(z))po = Yo,

so that g(z) € H = H,,. This means that A, is defined to within the
gauge equivalence usual in electrodynamics, and that the tensor F,, is defined
uniquely. Thus, we can talk about the electromagnetic field strength F,(z) of
a field (p(x), Au(z)) at any point where the value of ¢ belongs to R. Later we
will show an explicit formula to compute Fj,(z) from (p(z), Ay(x)). Here we
note only that, if ¢(z) belongs to the vacuum manifold R and V,up(z) vanishes
in the neighborhood of z, we have

(14.4) Fu(z) = (Fu(2), he(2))),

- where h(yp) is a generator for the stabilizer Hy, of ¢ € R, satisfying the normal-
ization condition ||h()]] = 1. Equation (14.4) follows from (14.3) in the gauge
(13.1), and therefore in all gauges because it is gauge-invariant.

Formula (14.4) is also true for any field of finite energy o(z) as |z| — oo,
because in this case p(z) approaches R and V,(z) approaches zero as [x| tends
to co. More precisely, what we have is the equation

(14.5) Fpu(z) = (Fpu(x)’ h(acp(:z:))),

which differs from (14.4) by the introduction of o, necessary because the value
of ¢(z) does not belong to the vacuum manifold R, but is merely close to it.
The electromagnetic field tensor satisfies Maxwell’s equation

(14.6) OuFpo + 0,Fou + 0, Fp = 0;

this is clear in the gauge (13.1), and is true in general by the gauge invariance
of Fy,. In particular, the magnetic field H = (Fy3, Fa1, Fi2) satisfies divH = 0.
Thus we can define the magnetic charge of any field (¢(z), A,(z)) for which the
values of ¢(z) outside a three-dimensional ball lie in R. Namely, we set

1
(14.7) m=_— f HdS,

where the integral is over any two-dimensional sphere enclosing all points at
which ¢(z) ¢ R. Since divH = 0, this integral does not depend on the choice
of a sphere. The integral may be non-zero if H is not defined everywhere.
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The magnetic charge of a field of finite energy also satisfies

14.8) m= ﬁ § (), () dS,

where M = (Fa3, Fa1, F12) and the integral is taken over a sphere infinitely far
away. This is obtained by applying (14.5) to a sphere at infinity.

It is easy to see that the magnetic charge does not vary when the field
"»(x), Au(x)) varies continuously, so long as we assume, as in Chapter 12, that
zhere is some ball outside of which ¢ takes values in R at all times. In other
words, the magnetic charge is the topological number of the field (p(x), A,(x)).
The proof is the same as the one given in Chapter 11 for the Georgi-Glashow
model.

As in the case of the topological charge, in the definition of the magnetic
-harge we look at the field (¢, A,) at a fixed time ¢, but the charge does not
depend on £, because it is invariant under continuous changes in . Therefore,
in what follows we assume that ¢ and A, depend only on x.

Also as before, if I is a surface on which ¢(x) takes values in R, we can de-
4ne the magnetic charge of (p(x), A,(x)) enclosed by I asmp = (47)~! [~ HdS.
Then mp is invariant under continuous changes in the field, so long as the value
of the field on I' remains in R at all times.

The magnetic charge of (p(x), Au(x)) depends only on ¢(x), that is,
* p(x), Au(x)) and (ip(x), Au(x)) have the same magnetic charge, because they
2an be joined by a continuous family of fields

(p(x), tfi,,(x) + (1 — t)Au(x)).

Moreover, the magnetic charge mr of (p(x), A,(x)) in the region enclosed by a
surface I depends only on the topological charge of ¢(x): if v1(x) and p2(x)
have the same topological charge, the corresponding mappings I" — R are in the
zame homotopy class, and so can be connected by a continuous transformation,
so the magnetic charges also coincide. The magnetic charge is, in fact, a linear
function of the topological number,

14.9) mr(p) = C¢r(e),

secause both charges are additive. We will prove that C = (47) v, where v
is the smallest positive number such that exp(ve;) = 1. Geometrically, v is the
iength of the circle H = U(1).

In view of (14.9), it is sufficient to check that

14.10) mr(p, A) = %Cp(w, A)

for at least one topologically nontrivial field (¢(z), A(z)). We will check this
when ¢(z) bas values in R and 8,¢(z) = 0. (Alternatively, we can derive (14.10)
without using additivity, since any field can be transformed into a field for which
-14.10) can be verified directly.)
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We assume that I" is homeomorphic to a sphere S?, and consider on S?
the coordinate system (p, @), where o € [0, 2x) is the longitude and p € [0,1)
is the distance to the south pole. We can use either the chordal distance or
the intrinsic distance along the surface of S%; in either case we normalize the
distance between the poles to one, by dividing by the diameter or by the half-
circumference. We have p = 0 for the south pole and p = 1 for the north pole,
and in both of these cases « is undefined.

We transfer this coordinate system to I" by a fixed homeomorphism S22,
still denoting the coordinates by p and a. We then construct a map f:D*->T
by taking the point with polar coordinates (p,a) on the disk D? to the point
on I' with the same coordinates; thus f is a homeomorphism on the interior of
the disk, and maps the whole boundary of the disk (the circle p = 1) to the
north pole on I'. By T14.1, there is a standard isomorphism between 72(R) and
m1(H) obtained as follows: given a map ¢ : I’ = R, we find a lift 3: D? — G,
that is, & map such that

(14.11) ¢(p,a) = T(B7 (b, @))0,

where the exponent —1 denotes inversion in G (rather than the inverse map),
and g is the value of ¢ at the north pole of I'. We have T(B (1, @))po = o
by (14.11), so we can consider the restriction of #~! to the boundary of D? as a
map from S into H, the stabilizer of ¢o. The isomorphism is defined by taking
the element of mo(R) defined by ¢ to the element of 1 (H) defined by S.

To verify that (14.11) is equivalent to the relations used in T14.1, notice that the
projection map on the bundle (G, G/H, H, ) assigns to each element g € G the point
w(g) =T(g " )po € R=G/H.

It follows that, for H = U(1), the topological number of ¢ can be defined as

1 27 9\ 1
(14.12) r=-/ 7a da = ;(A(ZW) - X(0)),
where A(a) is the continuous function specified by the formula B8(l,a) =
exp(—A(a)e;). This formula follows by taking 2rA/v as the angular coordi-
nate on H = U(1); we recall that every element of H = U(1) can be uniquely
written in the form exp(Xe;), where 0 < A < »v.

To show that ¢p coincides with the magnetic charge, we note that the gauge
transformation with function $(p, o) maps ¢ into a field having value o every-
where except perhaps at the north pole. The resulting field, therefore, satisfies
the gauge condition (13.1). In view of the condition V¢ = 0 imposed before,
our gauge transformation takes A, to a field A}, with values in the Lie algebra of
the subgroup H, that is, AL = a,e;. We can think of a, as the electromagnetic
potential in gauge (13.1); the electromagnetic field tensor is expressed in terms
of a, by means of the standard formula. The magnetic charge equals (47)7!
times the magnetic flux through I". Now the electromagnetic field has no singu-
larities; this means that we can delete a small neighborhood of the north pole
without affecting the flux considerably. More precisely, let I'; denote the subset
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of I' where p < 1 — ¢; then, as € — 0, the flux through I, approaches the
Jux through I'. The boundary of I is a small circle L,; it easy to see that the
magnetic flux through I'; equals the circulation of a, along this circle. Thus,

14.13) m=1i.m—1—-/HdS

2n
_ s —
= B_E%fa,, o = o llﬂ(l) A aqo(1 —€,0)da.
Here a,(p, @) and a,(p, @) are the components of the vector potential a,, in terms
of the coordinates p and « on I'. We assume, for simplicity, that the gauge field
A, vanishes near the north pole. Then a gauge transformation transforms this
deld into 96-(p, a)
N
Ay(p,@) = aa(p,a)er =~ P (p, )

for p > 1 — . Since B(p, o) approaches (1, a) = exp(—A(a)e;) as p — 1, we
see that a,(p, @) approaches 9)\/8a, which implies that

14.14) mr = %(f\(%) — A(0))

by (14.13). Combining this with (14.12), we get the desired equation (14.10).

We now show that in the theories considered here the electric charge is
quantized, and establish the link between the quantization of the electric and
magnetic charges. The electric charges of particles corresponding to the field ¢
are defined as —i)\;, where the A, are the eigenvalues of the operator #(e; ), which
are purely imaginary, since t(e;) is anti-Hermitian. Indeed, if ¢ = Y " fx,
where fy, ..., fn are the eigenvectors of t(e;), and if A, = a,e;, that is, only the
slectromagnetic part of the gauge field A, is non-zero, we get

Viup = Oup + t{auer)p = 3 (0,9 + M, ) fi.
k

Since exp(ve;) = 1, we have T'(exp(ve;)) = exp(vT'(e1)) = 1. Thus, every
sigenvalue A; of t(e;) satisfies exp(v);) = 1. It follows that v\, = 27wni, where
n is an integer, so the electric charges are multiples of 27 /v. Since the magnetic
-harges are multiples of v/4w, we see that the product of the electric charge of
a particle by the magnetic charge of another particle is a half-integer:

14.15) em = in.

Note that we used a non-standard normalization condition for the electro-
magnetic potential a,. If we employ the standard normalization, in which the
coefficient of F2, in the Lagrangian is —; instead of —3¢* as it is here, the
slectric and magnetic charges will be equal to iA,g = (2rn/v)g and (v/4wg)(,
respectively, where n and { are integers, and g is the coupling constant. This
-learly shows that (14.15) remains valid under the standard normalization.

Until now we have assumed that the unbroken symmetry group H is iso-
morphic to U(1). The transition to an arbitrary connected group H requires
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only small changes to the reasoning. It is always the case that H, as a com-
pact Lie group, is locally isomorphic to the product of r copies of U (1) with a
simply connected group K r is the dimension of the center of Lie algebra of
H. In the gauge (13.1), the generator e; of the i-th copy of U(1) has associated
to it an “electromagnetic” potential and an “electromagnetic” field tensor; the
potentials are defined by A,"‘ = (Ay, ex) and the field tensors are expressed in
terms of the potentials by the standard formulas. In grand unification theories
we have r = 1, and we can talk of the electromagnetic potential and field tensor
without quotation marks.

We can say that each element e of the center Z of the Lie algebra H cor-
responds to an electromagnetic potential a, = (Ay,€); among these poten-
tials we can choose r linearly independent ones, corresponding to the gener-
ators ej,..., e, The field-strength tensor for any potential can be calculated
by passing to gauge (13.1) via a gauge transformation, and using the formula
Fy = 0ua, —d,a,. It is easy to check that the result is independent of the choice
of gauge transformation. Indeed, as we noted earlier, two gauge-equivalent po-
tentials A, and A, satisfying (13.1) are, in fact, gauge-related by a transforma-
tion whose corresponding function has values in H. This implies that the fields
au = (Ay,e) and a), = (A, e) are gauge-related by a transformation of the type
used in electrodynamics, and therefore have the same strength. For example, in
the case of an infinitesimal gauge transformation, A}, = A, — A — [Ag, A, and
our assertion follows from the fact that the scalar product of the commutator
[Ay, A] with any element in the center of H is zero. The case of a finite gauge
transformation with H connected can be reduced to that of an infinitesimal
transformation.

Magnetic charges associated with the electromagnetic field tensors just in-
troduced can be defined in a standard manner. Working as in Chapter 11, we
can prove that these magnetic charges are invariant under continuous variations
of the fields, that is, they are topological invariants. Moreover, we defined the
topological type of a field by looking at the asymptotic behavior of the scalar
field . Thus the topological type of a field is an element of {S?, R}, that is,
a homotopy class of mappings from S? into the vacuum manifold. As we men-
tioned in Chapter 12, when H is connected, the set {S?, R} can be identified
with the group m3(R) = m(H), which is a direct sum of r copies of Z with a
finite group. Thus there are r topological charges, as many as there are mag-
netic charges. Clearly, the magnetic charges completely determine the integral
values of the topological charges of a field. In addition to integral topological
charges, there may be charges taking values in a finite group Zn,; these do not
correspond to magnetic charges.



15. Electromagnetic Field Strength and
Magnetic Charge in Gauge Theories

Formula (14.5) gives the electromagnetic field strength F,,(z), as [x| — oo,
for a field of finite energy, so long as the stabilizer H is one-dimensional. This
formula leads to the expression (14.8) for the magnetic charge of such a field.
However, to obtain an explicit expression for the magnetic charge mp(yp, A) of
the field in the region bounded by a surface I', we need a way to compute
the electromagnetic field strength of (p, A,) directly, without using the gauge
(13.1). To this end it suffices to find a gauge-invariant expression that coincides
with (14.1) in gauge (13.1). It is natural to look for an expression of the form

(15.1) Fu(z) = (Fu(2), b(09(2))) + wan(0(@))(Vup)* (V)

where wgy() = —wpa(p). The first term in this expression coincides with (14.5),
and the second generalizes the corresponding term in the expression for the field
strength in the Georgi—Glashow model (Chapter 11).

Setting w,(z, y) = was(p)z®y’, We can rewrite (15.1) as

(15.2) Fu(z) = (Fu(z), Mow(x))) + wp(Vup: Vip)-
The function we () can be found from the requirements

115.3) we(Z, Y) = Woy(04T, 04Y),
15.4) weo(E(A) 0, t(B)wo) = ~([4, B, h(0)),

where o, denotes the differential of the map o, that is, (0,z)* = (00®/8¢®)z".

The vectors o,z and o,y are tangent to R, so (15.3) reduces the problem
of finding w,(z,y) to the case where ¢ € R and z,y are tangent to R. Now,
every vector tangent to R at the point o € R can be written in the form
#(A)yo, where A is an element of the Lie algebra G of G; this is because G acts
sransitively on R, so a point in R infinitesimally close to o can be obtained
from (g by the action of an infinitesimal transformation in G, that is, an element
of G. Then (15.4) determines wy,(z, y) in the particular case that ¢ € R and z,y
are tangent to R, and therefore w,(z,y) is determined everywhere.

Take, for example, the Georgi—Glashow model. Here o assigns to each vector
» € R3 the point a¢p/|p|, and the stabilizer of ¢ consists of all rotations around
an axis parallel to . From this we see that h(y) = ¢/|¢|; this also follows from
the relation
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t(h(e))e = [w/lpl ] = 0.

The differential of o(¢) is given by
, a X 1 ,
ou(9); =716 — ——s0'<p-),
0= 1g1(- e

so that

i —¢* 0,0 + ;00" i) ¢’
a.V = +t(A,) Ja—.
@9 = (FEHEG (Al o1

Combining this with (15.4), we find
1 .
wo(Z,¥) = —=Eiixp'’Yy".
lP( y) |‘PI3 Jk‘P yk

This shows that (15.1) agrees with formula (11.9) for the electromagnetic field
strength in the Georgi—Glashow model.

We now check that, by selecting wgs(i0) using (15.3) and (15.4), we do get
a gauge-invariant expression for F,,(z). We show that

(15.5) WMT(g)op) = T4h(o0),
(15.6) wT(y)w(T(g)I’T(g)y) = wy(z, ).

Formula (15.5) expresses the gauge invariance of the first term in the right-
hand side of (15.2), since both F,(z) and h(cp(z)) transform by the adjoint
representation under a gauge transformation, and the scalar product (,) is
invariant under the adjoint representation. Similarly, (15.6) implies the gauge
invariance of the second term in (15.2).

To prove (15.5), note that the stabilizer Hryg), of T(g)y can be obtained
from H, by an inner automorphism: if T'(h)¢ = ¢, we have

T(ghg )T (g9)p = T(9)T ()T (9)T ()¢ = T(9)%.

This implies that a generator of Hr(g), can be obtained from a generator of H,
by an inner automorphism. Recalling that the adjoint representation acts by
means of inner automorphisms, we see that (15.5) holds if ¢ € R. For arbitrary
¢, the formula holds because

ha(T(g)p)) = M(T(g)op) = Tsh(a),

where we have used (15.2).

To verify (15.6), we start with the case where ¢ = o € Rand z = t(A)po,
y = t(B)yo are tangent to R; then w,(z,y) is defined by (15.4). Notice first
that

(15.7) T(g)t(A)p = t(1y(A)T(9)p;

this follows by direct computation:



Electromagnetic Field Strength and Magnetic Charge 91

T(g)p + T(9)t(A)p = T(9)T(1 + A)p = T(g)T(1 + A)T(9)T(g)p
=T(g9(1+ A)g " )T(9) = T(g)(1 + 75(A))T(g)p
= (1+t(5(A)))T(9)p = T(g)p + t(14(A))T(g)e,

where we have used the equalities T(1+ A)p = (1+t(A))p and g(1 + A)g™' =
1 + 74(A), which hold for A infinitesimal. Combining (15.7), (15.5) and the
invariance of the scalar product under the adjoint representation 7,, we see that

wr(g)po(T(9)t(A)wo, T(9)t(B)eo)
= wr(g)po (t(15(A4))T(g) 0, t74(B)) T (9)0)
= —([74(4), 74(B)], k(T (9)0)) = —{74[A, B], 75h(00))
= —([A, B], k(o)) = wy, (£(A)0, t(B)so)-

The verification of (15.6) in general can be reduced to the case just considered
by the use of (13.2) and (15.3).

Thus, we have proved that the right-hand side of (15.2) is gauge-invariant.
To check that (15.2) gives the right expression for the electromagnetic field
strength, we need only show that, if the gauge condition (13.1) is satisfied, the
right-hand side of (15.2) reduces to the standard expression dya,(z) — d,a,(z),
where a,(z) = (Au(z), h(yo)). By differentiation, we see that if (13.1) is satisfied
we have

do"
a—ga,,(auﬁf’)b =0
in other words, 6.9, = 0. Thus, in gauge (13.1),

Fu(2) = (Fuu(2), h(o9p(2))) + wau(0:Vup, 0.V 00)
= (Fuv(z), b(p0)) + weo(0:t(Au)p, 0.t (Av) )
= (Fuv(z), h(0)) + wyy (t(Au) w0, t(Av) o)
= (0uAy — By + [y, A, hlipo) = ([ Au], (o))
= (apAu - avAm h’(‘PD)) = ana'v — 0,ay,

where we have used the equality a.t(A)y = t(A)oyp, which follows from applying
:13.2) to g = 1+ A, where A is an infinitesimal transformation. This concludes
:he proof that formulas (15.2), (15.3) and (15.4) determine the electromagnetic
Held strength for H = U(1).

The same formula (15.2) can be used when H is an arbitrary disconnected
sne-dimensional group. However, in this case F,,(z) may be a two-valued func-
ion, and it may not be possible to make it single-valued by choosing a contin-
10us branch for it. For more details, see Chapter 19.

As observed before, the generator h(y) is defined only up to sign, so, strictly
speaking, the value of F,, in (15.2) is also defined only up to sign. Fixing h(¢y) for a
given ¢ and extending by continuity, we can choose a well-defined value for h(yp) for
every ¢ € R. For H = U(1) this extension can be carried out consistently, and we
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get a continuous single-valued function h(y). But if H is disconnected, one may run
into inconsistencies, so h(p) cannot be made single-valued.

It is convenient to express the electromagnetic field strength using differen-
tial forms. We can associate to the antisymmetric tensor was(¢) the two-form
w = wa(p)de® A de®. Equality (15.3) says that this form can be written
as w = o*p, where p is a G-invariant closed two-form on the manifold R. In
the principal fiber bundle (G,G/H, H) = (G, R,U(1)) we can construct a G-
invariant connection, that is, a gauge field on H, whose change under a trans-
formation in G can be compensated for by a gauge transformation. The form p
can be interpreted as the strength of this gauge field (Chapter 17).

We now turn to the case where the stabilizer H = Hp of ¢p € R is not
one-dimensional. We choose an element hy € H invariant under the adjoint
representation of H, that is, such that

(158) Tgho = ho

for every g € H. If H is connected, this is equivalent to saying that ho is
invariant under the adjoint representation of the Lie algebra H. Now the adjoint
representation o of a Lie algebra is given by o4h = [A, h], so saying that hg is
invariant under o is the same as saying that it commutes with every element of
H, or that it lies in the center Z of H.

If hy € H is invariant under o we can construct a function h(y) on R

satisfying

(15.9) h(T(g)e) = Th(#),
(15.10) h(o) = ho;

we just use (15.9) and the transitivity of the action of G on R to extend h
from (g to other points on R, and (15.8) guarantees that this extension is
consistent. From h(y), we can build w using (15.3) and (15.4), and then define
the electromagnetic field strength by (15.2). From (15.9), (15.10) and (15.2)
it follows that conditions (15.5) and (15.6) are met, and hence that the field
strength is gauge invariant. This reasoning shows that in gauge (13.1) the field
strength is given by the standard expression, with a, = (Ay, ho) playing the
role of the electromagnetic potential:

Fuv = BM(A,,, hO) - av(Am hD)-
Therefore the electromagnetic field strength satisfies Maxwell's equation
8, Fuy + 0yFyg + 0, F5, = 0.

Because of gauge invariance, Maxwell’s equation is also satisfied in gauges other
than (13.1).

Thus, if H is connected, every element hg of the center Z of H can be used
to construct the electromagnetic field strength and the corresponding magnetic
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charge (this was proved in a somewhat different way in Chapter 14). If the center
is an r-dimensional Lie algebra, there are r independent magnetic charges.

What happens if H is disconnected? In general, an element hy € Z does
not satisfy (15.10). However, the set of elements of the form 7k, with g € H,
is finite, because Tgho = ho if g is in the connected component of the identity,
and there are finitely many connected components. We denote the number of
distinct elements 7,hg by s. Defining i() on R by means of (15.9) and (15.10),
we obtain an s-valued function. Indeed, if ¢ € R can be written both as T'(g)wo
and as T(g)wo, we have T,ho = h(p) = T3he, by (15.9). It may happen that
T,ho and Tzhe = T47g-15h0 do not coincide, so that h(yp) is not single-valued,
but since 7,-15ho can take on at most s different values, we conclude that h(y)
is at most s-valued. Thus, for H disconnected, F),, is in general a multivalued
function. For more details, see Chapter 19.



16. Extrema of Symmetric Functionals

Consider a linear representation of a compact Lie group G on a vector space
M, and a differentiable function f(z) on M invariant under this representation.
We will show that the G-invariance of f(z) can be used to determine its critical
points (those where the gradient vanishes).

Let N be the set of points of V invariant under all transformations in G;
since G acts linearly, N is a vector subspace of V. We will show that a critical
point of the restriction of f to N is also a critical point of f considered as a
function on all of M.

This statement remains true even when M is infinite-dimensional, if we
define differentiability appropriately. (In this case we use the term “functional”
instead of “function,” and sometimes also “extremal point” instead of “critical
point”.) A functional f is differentiable if

(16.1) F(z +h) - £(z) = (A, h) + o(z, }),

where the angle brackets denote a scalar product invariant under G (it is well-
known that such a product always exists: see Chapter 39), and a(z, h) vanishes
at a higher order than h, that is, lim._.o e 'a(z,eh) = 0 for any h. Notice that
differentiability, then, depends on the choice of a scalar product. The expression
6f = (A, h) is called the variation or differential of f, and the vector A = grad f
is the gradient of f at the point z. We say that zisa critical point if the gradient
of fat zisO.

Here is an example to illustrate the application of the symmetry properties
of a functional to the search for extremals. Take the functional

(16.2) Figl = 1 [(gad () ¢z + [ Ulp(0)

defined on fields ¢(z) that vanish on the sphere x| = R. On the space M of
such fields we consider the following scalar product:

(16.3) o) = [0l ds.

The increment of functional (16.2) can be written in the form (16.1) if we set
A = —V2p + U'(yp). Accordingly, the extremality condition (Euler’s equation)
takes the form —VZ2p + U'(p) = 0. Clearly, (16.2) and (16.3) are invariant
under rotations; more precisely, the group G = SO(3) of rotations of R3 can
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also be considered to act on the space M, and it preserves the functional (16.2)
and the scalar product (16.3). The set N of G-invariant points consists of all
spherically symmetric fields , that is, fields that depend only on [x|. We can
say, then, that an extremal of (16.1) among spherically symmetric fields is also
an extremal among all fields in M.

This fact simplifies drastically the task of finding extremals, because it al-
lows one to reduce Euler’s equation to a set of ordinary differential equations.
Of course, there is no guarantee that all extremals are spherically symmetric; all
we are saying is that we can find some solutions to Euler’s equation by applying
a spherically symmetric substitution.

Note that, in searching for extremals, we need not require that the points
be invariant with respect to the complete symmetry group of the functional. For
example, one can examine the behavior of (16.1) on fields invariant under the
group SO(2) of rotations about some fixed axis. An extremal of the functional
considered on this set is also an extremal of the functional on M.

We now prove the statement made at the beginning of this chapter. The
gradient of f at a point zo € N is invariant under the action of G, because of
the invariance of f and of the scalar product. Thus grady f(zo) € N, where the
subscript indicates the space on which f is being considered. By the defining
equation (16.1), this implies that grady f(zo) = grady f(zo), so if Zo is a critical
point for f restricted to N it is also a critical point for f on V.

This result can be generalized for functions defined on a (possibly infinite-
dimensional) Riemannian manifold. Suppose G is a compact Lie group acting on
a smooth manifold M, and let f(z) be a differentiable function on M invariant under
this action. Let N C M be the set of fixed points under G. Under an additional
condition, which is usually met, we can say that the critical points of f restricted to
N are also critical points of f on M.

To formulate the condition, take an arbitrary zo € N. By definition, any element
of G leaves z, invariant, and so takes a tangent vector at zy to another such vector.
Therefore G acts by a linear representation T' on the tangent space at o. For points
close to z, the map ¢, corresponding to a group element g can be written as

4) ¢o(To+h) =20+ T(g)h+---,

where the dots indicate terms of order greater than one in h. From this it follows that
for a curve in N the tangent vector at zo must satisfy T(g)h = h for all g € G, and
so must belong to the vector space A of G-invariant vectors at 2o (where G-invariant
means invariant under the representation T').

The condition we want is that o € N be non-degenerate, which means, by
definition, that N is a manifold in a neighborhood of z, and NV is the tangent space
to N at z, (that is, every vector in N at z, is tangent to N). We show that, in this
case, if z is a critical point for f on N, it is also one for f on M. Since G is compact
we can give tangent spaces to M a G-invariant scalar product (in other words, M
has a G-invariant Riemannian metric). Equation (16.1) is still meaningful. The vector
grad,, f(zo) lies in N, by the invariance of the function and of the scalar product.
We conclude the argument exactly as before, bearing in mind that N coincides with
the tangent space to N at z, by the non-degeneracy assumption. This reason is still
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valid if M is infinite-dimensional (in which case differentiability is defined by means
of (16.1), as in the case of an infinite-dimensional vector space V).

Note that this result is still interesting when N is zero-dimensional, that is,
consists of isolated points. In this case a G-invariant point z, is a critical point of f
if there are no G-invariant tangent vectors at To.



17. Symmetric Gauge Fields

Consider n scalar fields o(z) = (¢*(%),...,¢"(z)), interacting with X-valued
zauge fields A,(z), where K is the Lie algebra of the gauge group K. As we
aave seen, the extremals of the energy functional are connected with quantum
oarticles in the semiclassical approximation. How does one find such extremals?
Using the results in the preceding chapter, one can take advantage of the in-
ariance of the energy functional under gauge transformations and (usually)
nder spatial transformations such as rotations. More precisely, let L be the
zroup generated by the group K of local gauge transformations together with
-he group O of spatial symmetries. If G C L is a subgroup, an extremal of the
“unctional restricted to the space of G-invariant fields is also an extremal for the
nrestricted functional. (We will see below that the non-degeneracy condition
is met.)

The simplest way to choose a subgroup G C L is the following: Let A be a
~omomorphism from the rotation group SO(3) into the gauge group K. To each
zlement g € SO(3) assign the transformation p(g) € L obtained by applying the
-otation g € SO(3) followed by the global-gauge transformation corresponding
-0 X(g) € K. Clearly, p : SO(3) — L is a homomorphism, and its image G, is
2 subgroup of L.

It is useful to generalize this construction slightly by assuming that A is a
-wo-valued homomorphism from SO(3) into K, which we can lift to a single-
+alued homomorphism A : SU(2) — K; we recall that SU(2) is the universal
cover of SO(3), with covering map p : SU(2) — SO(3). From X we get the
subgroup G, C L consisting of products of a rotation p(g), for g € SU(2), with
the global gauge transformation corresponding to A(g).

A field invariant under G can be seen as spherically symmetric in a certain
sense, for the change it undergoes under a spatial rotation can be compensated
‘or by a global gauge transformation. The compensation is specified by the
homomorphism A : SO(3) — K; we can say that the type of spherical symmetry
is determined by ), up to conjugacy. (If A and ) are conjugate, a field (p, A)
with symmetry type A can be transformed into a field (¢', A’) with symmetry
zvpe X by the action of the element k € K such that XN(g) = k\(g)k™!.) For
=xample, if the gauge group is SO(3), the identity map SO(3) — SO(3) = K is
essentially distinct from the trivial homomorphism that takes every element to
he identity element of K.
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We now describe all G-invariant fields (p(x), Ai(x)), with ¢ = 1,2, 3, also
called fields with symmetry of type ). First we note that they satisfy the con-
ditions

(17.1) T(Ag))p(x) = w(gx),
(17.2) giT(M(9))A;(x) = Ai(gx),

where ¢/ is a rotation matrix g € SO(3), T is the representation of K by which
the multicomponent scalar field ¢ transforms, and A\(g) € K, as usual, acts on
the gauge field via the adjoint representation 7. Equations (17.1) and (17.2)
imply that (¢(x), A;(x)) will be known everywhere if we know its value on the
positive z3-semiaxis (or on any other ray starting at the origin); this is because
any point of R3 can be taken to the semiaxis by a rotation. Also, (p(x), Ai(x))
does not change under a transformation in G that corresponds to a rotation
about the z3-axis. In other words, we have

(17.3) T(M9))e(r) = #(r),
(17.4) 7(M9))gi A;(r) = Ai(r),

where o(r) and A;(r) are the values of p(x) and Ai(x) for x = (0,0, r), with
r >0, and g;7 is the rotation matrix corresponding to g, a rotation about the z3-
axis. In infinitesimal terms, if ¢ denotes the representation of X corresponding
to the representation T of K, and I; € K, for i = 1,2,3, is the infinitesimal
rotation around the r'-axis, (17.3) and (17.4) become

(17.5) t(Is)p(r) =0
(176) [I3,A3(’f')] = 0, [I3, Al(‘l')] = Az(T), [I3, Az(’l')] = —AI(T).

For example, if K = SO(3) and ) is the identity map, (17.6) gives

Ai(r) = r Y (B(r) 1 + v(r)L2),
Ay(r) =r7HB(r) o — () L),
As(r) =rta(r)L,

where ofr), B(r) and 7(r) are arbitrary functions. If ¢(x) transforms by
the vector representation of K = SO(3), it follows from (17.5) that ¢(r) =
(0,0,772¢(r)), where £(r) is likewise arbitrary.

To summarize, if we prescribe values for (¢, A) on the positive z3-semiaxis,
satisfying (17.5) and (17.6), we can reconstruct the spherically symmetric field
on the whole of R3 by using (17.1) and (17.2). In particular, if K = SO(3) and
) is the identity, we obtain

P =E05,
()

(17.8) Al(x) = ?g(a(r) — B(r) I + TL’ - 7(r)€ijk:_;Ik-
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For o = 8 = 0 we obtain the fields used to analyze magnetic monopoles in the
Georgi—Glashow model.

Note that all quantities associated with a spherically symmetric field can
be expressed in terms of the field values along the positive z°-semiaxis. For ex-
ample, let us compute the energy of a spherically symmetric field (¢(x), Ai(x)).
The energy density £(x) depends only on r = |x|, because it is gauge-invariant,
and a rotation takes the field to a gauge-equivalent one. In terms of the energy
density £(x) on the positive z3-semiaxis, the total energy £ can be found by

integrating
(17.9) E=4rm /o E(r)r*dr.

To find £(r) = £(0,0,7), we need the derivatives of p(x) and A;(x), evaluated
along the z3-axis. To obtain them, we apply (17.1) and (17.2) to the case where
x = (0,0,r) and g is an infinitesimal rotation g = I; or g = I>. We get

_ag(;c) = 1't(-[l)‘no(‘r)v
% le=oor) T
(17.10) Bp(x) 1
ozl x=(0,0,r) B ;t(Iz)‘p(r)
and
_61:91;5:) - %((Il){Aj(r) + [0, A(r)]),
x=(0,0,r)
S o ~((B)]A;(r) + [T, Ad(r))-

Using (17.10) and (17.11), we conclude that
(17.12)

£0) = g (0, W) + 1 W)+ (), Watr)?

+ ([IZ, Wa(‘l")] + [Wl("'), Wa(,r)] _ Taué;;(’l'))

+ ([11, Wi(r)] — [Wa(r), Wa(r)] + ralgrﬂ—("—))z)

o (rz (%"l)2 - (H(W + I)p(r)? + (E(Wa — Il)sa(r))’)

+ V()

where Wi(r) = rA;(r) and the charge e = 1.

In order to use the results of Chapter 16 to find the extremum of the energy
functional on the space of fields (i(x), Ai(x)), we define a scalar product on
this space as follows:
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(17.13)
(((00), A0)), (900, 4400)) = [ (), /() dx + [ (i), Ai(x) dx,

where the angle brackets stand, in the first integrand, for the invariant scalar
product on the space of representation T, and in the second term for the in-
variant scalar product on the Lie algebra K. To guarantee that the integrals in
(17.12) are finite, we assume that the fields fall off fast enough at infinity. We
denote by V the space of such fields, endowed with the scalar product (17.13).

The elements of G are linear transformations on V and preserve the scalar
product. Local gauge transformations, in contrast with global transformations,
are not, in general, linear transformations on V; but they are isometries, that
is, they preserve distance between fields, where distance is defined by the scalar
product (17.13).

One can easily check that the energy functional is a differentiable functional
on V, with respect to the scalar product (17.13). In view of the preceding dis-
cussion, the extremals of this functional considered only on G,-invariant fields
(fields with symmetry of type \) are extremals of the functional on the whole of
V. Recall that on Gj-invariant fields the energy functional has the form (17.9),
where £(r) is given by (17.12).

In particular, if the gauge group is K = SO(3) and ) is the identity map
from the group SO(3) of spatial rotations into K, and if ¢ transforms by the
vector representation, the energy functional (17.9) on spherically symmetric
fields of the form (17.7) and (17.8) is given by

(17.14) €= 47r/ ‘—:; ((é(Z’y + 2+ + (a+ay—rB8) + (1Y + af)?)

2
+ %(r% - ) +((1+7)*+84% + V({)r‘).

Thus, in this case the conditions stated in the previous chapter are met, and
any extremal of the energy functional considered on symmetric fields is also an
extremal of the functional on all of V. In particular, the extremals of functional
(17.14) are extremals of the energy functional in the Georgi—Glashow model.
They may be thought of as spherically symmetric monopoles in this model (or,
more precisely, as classical fields—solitons—corresponding in the semiclassical
limit to particles carrying magnetic charge). Standard mathematical methods
allow one to prove the existence of extremals for functional (17.12).

It turns out that in other models, too, spherically symmetric extremals can
be thought of as magnetic monopoles. This follows from the fact, to be proved
momentarily, that the topological type (and hence the magnetic charge) of a
spherically symmetric field is completely determined by the type of symmetry.
Recall that, by the definition given in Chapter 12, the topological type depends
on the behavior of the scalar field ¢(z) at infinity. For simplicity, we assume
that the asymptotics of the scalar field is ¢(x) ~ $(x/|x|), where &#(n) is a map
from the sphere |n| = 1 into the vacuum manifold R = K/H, where H is the
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group of unbroken symmetries. The symmetry properties of ¢(x), expressed by
(17.1), imply that its asymptotic behavior has similar properties:

(17.15) &(gn) = T()\(g))(n)

for every rotation g € SO(3). In particular, if n = k = (0,0, 1) is the unit vector
in the positive z-direction, (17.15) implies that A(g)®y = ®o, where g = P(k).
In other words, A can be interpreted as a map from the group SO(2) of rotations
around the z-axis into the group H of elements of K that fix the classical vacuum
&,. Topologically, SO(2) is just a circle, so the homotopy class [A] of A is an
element of m)(H). On the other hand, the topological type of the scalar field ¢
is determined by the homotopy class of the map &, that is, by an element of
the group ma(R) = mo(K/H), which, as we know, is isomorphic to 7 (H) when
K is simply connected.

We now show that, for a spherically symmetric field, the topological type
is determined by the element 2[)\] € m(H) = mo(K/H). (We denote the group
law in 7 (H) additively.) In fact, we prove a slightly more general assertion,
valid also for the case where the symmetry type is determined by a two-valued
homomorphism A : SO(3) — K, or, which is the same thing, a homomorphism
X : SU(2) — K. Then the symmetry condition (17.1) for the scalar field ¢(x)
is replaced with

(17.16) w(p(9)x) = T(A(9))p(x),

where g € SU(2) and p is the covering homomorphism SU(2) — SO(3). Like-
wise, (17.15) is replaced by

(17.17) &(p(g)n) = T(X(9))&(n),
which implies that
(17.18) Ag)d(k) = &(k) if p(g)k =k,

where k = (0,0,1).

The set of elements of SU(2) satisfying p(g)k = k is a topological circle,
and is a double cover of the subgroup SO(2) C SO(3) of rotations about the
z-axis, the covering map being p. We denote this circle by SO(2) From (17.18)
it follows that A _maps SO(2) into H, so the homotopy class [A] of the map
X considered on SO(2) defines an element of m;(H) = wy(K/H). We wish to
show that the topological class of a field whose symmetry is determined by
X is given by [\] € m(H) = w(K/H). This will imply the assertion in the
previous paragraph about the topological type of a field with symmetry of type
A, because [A] = 2[)] for A = Ap (since p is a double cover).

To find the element of m;(H) corresponding to the homotopy class of & we
must find a map & from the disk D? into K that is a lifting of &. Then the desired
element of m,(H) is the homotopy class of & restricted to the boundary of D?
(T14.1). More precisely, given & : S? — R = K/H, we look at $p : D* — R,
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where p : D* — §? is a homeomorphism in the interior of D? and maps the
whole boundary of D? to the north pole k of 5°. The map & is a lifting of & if
the element &(z) € K takes the point &y € R to $(p(z)); in symbols,

(17.19) T(®(z))Po = B(po(z))
for all z € D2.

We first find a map ¥ : D? — SU(2) satisfying
(17.20) p(¥(z))k = p(z)

for all z € D?. Then we get & by setting $(z) = A(¥(z)). Indeed, using (17.17),
(17.19) and (17.20), we see that

T(&(2))Bo = T(M¥(2)))@(k) = S(p(¥(z))k) = &(p(z))-

For points z on the boundary S! of D? we have p(z) = k, so the rotation
p(¥(z)) takes k to itself, that is, ¥(z) lies in SO(2).

We will shortly give an explicit procedure for finding ¥, which implies that
¥, considered as a map from S' C D? to S' = SO(2), has degree one, and is
in fact a homeomorphism. Recalling that the topological type of the field p(z)
is given by the homotopy class [#] of the map & = M : S* — H, we conclude
that [8] = [X].

We now proceed to construct ¥. This can be done, for example, by thinking
of D? as the closed unit disk |w| < 1 in the complex plane, and by setting

' 1—IWI"’
V(w) =
= (_ i

To check that the map p : w — p(¥(w))k is a homeomorphism in the interior
of the disk, it is enough to show that p(w) # p(w’) if w and w’ are distinct and
have absolute value less than 1. Now p(g)k = p(¢')k if and only if ¢’ = gh with
h € S0O(2), so the assertion follows because ¥(w')¥(w) does not belong to
SO(2) for such values of w and w’'.

We thus arrive at the following result. Let A be a homomorphism from
SO(3) into the gauge group K, and let I3 be the element of the Lie algebra K
of K corresponding under A to an infinitesimal rotation about the z-axis. If I
belongs to the Lie algebra of the stabilizer H of the classical vacuum Py, there
exists an extremal of the energy functional having spherical symmetry of type
. The magnetic charge of the extremal is determined by the homotopy class of
the map that takes a € S (where a is the angular coordinate) to e**'* € H.

The first assertion follows from the fact that there are fields of finite energy
with symmetry type A, which in turn follows from the explicit formula (17.12)
for the energy functional. An energy-minimizing field (among those of symmetry
type A) is the desired extremal. However, one must still prove that the minimum
is attained; this is done by standard mathematical methods, which lie outside
the scope of this book. The second assertion of the preceding paragraph follows
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from the fact that the map from the circle SO(2) C SO(3) into K induced by A
has the form a — e®5.

‘We now use these results to study spherically symmetric magnetic monopoles
in the SU(5) grand unification model. Given what we have proved above, we
must consider the various homomorphisms A : SO(3) — SU(5) that map an
infinitesimal rotation about the z-axis to an element I3 of the Lie algebra of
the stabilizer H. The latter consists of block matrices of the form (7.2). With-
out loss of generality we can assume that I3 is a diagonal matrix with entries
“imy, img, Mg, imy, ims). Then the conditions above imply that ms; = 0. The
magnetic charge of a field with symmetry type A can be computed as the ho-
motopy class of the map S* — H that takes a point with angular coordinate
a to the matrix e22/2; this matrix is diagonal, with elements e?™ along the
diagonal. From Chapter 12 it follows that the desired homotopy class is de-
termined by the dependence of the fourth diagonal entry on a, because the
map H — U(1) taking m € U(1) to the matrix (7.2) generates the group iso-
morphism m;(H) ~ m;(U(1)). Thus, the magnetic charge is determined by the
homotopy class of the map a — e%™ from S? into itself; it is therefore equal
t0 2my. This is true also when ) is a two-valued homomorphism and the m; are
half-integers.

There is a certain arbitrariness in the determination of the magnetic charge,
namely, the choice of a generator for the electromagnetic group U(1). A different
choice of generator results in the charge having the opposite sign.

We can easily enumerate all homomorphisms from SO(3) into SU(5), that
is, all five-dimensional representations of SO(3). The simplest possibilities are
Iy = diag(0, 0, —4/2,i/2,0) and I = diag(0,0,i/2, —i/2,0); each corresponding
representation splits into the direct sum of a two-dimensional and a three-
dimensional representation. The magnetic charge in either case is £1.

The possible values of the magnetic charge of a spherically symmetric field
in the SU(5)-model are 0, +1, +2, +3 and +4. Indeed, every five-dimensional
representation of SO(3) is a direct sum of irreducible representations. If the
representation is reducible, the dimensions of the irreducible components cor-
respond to the possible partitions of the number 5:

4+1, 3+1+1, 3+2, 2+2+1, 2+1+1+1, 1+1+1+1+1L

Since the matrix entries of I3 in an irreducible representation are half-integers
in the interval (—1,1), where [ is related to the dimension of the representation
by the formula d = 2l + 1, we see that the magnetic charge of a spherically
symmetric field is an integer ranging from —4 to 4. Moreover, all such integers
can be realized as magnetic charges of spherically symmetric fields: for example,
the value 4 for the magnetic charge corresponds to the irreducible representation
given by I; = diag(—i, ¢, —2, 2i, 0).

Using (17.12), one can easily write down the expression for the energy of a
spherically symmetric field in the SU(5)-model.



18. Estimates of the Energy
of a Magnetic Monopole

As already mentioned, in order to find the mass of magnetically charged par-
ticles in the semiclassical approximation, we must calculate the minimum of
the energy functional on the set of fields with non-zero magnetic charge. We
first do this for models where the scalar field transforms according to the ad-
joint representation of the gauge group G. These include the Georgi-Glashow
model, where G = SO(3), and the SU(5) grand unification model, if we restrict
ourselves to the first symmetry breaking.
In this case, the action integral is given by

(18.1) S= ‘Z%ﬁ [ Py 2
+1 [+ (A 20+ 14 g d'z =X [Ulo) ',

where ¢ and A, take values in the Lie algebra G of G, and U () is an invariant
polynomial on G that assumes its minimum on the manifold R of classical
vacuuims.

The group of unbroken symmetries H corresponding to a classical vacuum
(o consists of the elements g € G that commute with . We are assuming that
G, and consequently its Lie algebra G, are realized by means of matrices; then
the adjoint representation is given by 7,() = gpgt. We let H® C H be the
subgroup generated by o, that is, the one-parameter subgroup whose elements
are of the form e2¥°. This clearly belongs to the center of H. We will consider
the electromagnetic field strength F,, and the magnetic charge m corresponding
to H®. (In the Georgi-Glashow model and the SU(5)-model the center of H is
one-dimensional, so there is essentially no other possibility for the definition of
the electromagnetic field strength.)

At great distances the electromagnetic field strength can be written as

7
EFy = -7: LTI Al
o < - ||<P||>

because h(p) = @/|l¢ll is the normalized generator of the “glectromagnetic
subgroup” of the unbroken symmetry group of the vacuum ¢ € R. We can
therefore write the magnetic charge as (47)~! times the flux of the magnetic
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field strength ‘H through a sphere at infinity, where H has components H® =
1gotk Fy = 1699%(Fjk, 0)/|l¢|l- Note that the norm of any classical vacuum is
the same, since any two classical vacuums can be taken to one another by an
element of G, which preserves the norm. This allows us to set a = ||¢|| for any
¥ € R.

Using Stokes’ theorem to replace the flux by a volume integral, we get

1 1 iy
(18.2) m= El" /HdS = -8_‘[I't_1,- fa,-s‘-""(fjk,tp) d3:t:.

We now note that
9%, Fjk, 0) = €7*Vi(Fjr, ¢)
= e ((ViFir, 0) + (Fik, Vi) = €7 Fj, Vi),
and that for the gauge-invariant quantity (Fjt, ¢), the partial derivative ; co-

incides with the covariant derivative V;. Using Bianchi’s identity 7¥V;Fj, = 0
(T15.2), we obtain

1 .
(18.3) m=—— / €9%(Fpp, Vip) d°x.

We now notice that, if b(z) and c(z) are vector-valued functions, we have [{c—b,
— bydz > 0, and therefore

(18.4) [tebyds <3 [(e.c)+ b0 da,

and that equality holds if and only if b and ¢ coincide identically. Applying this
inequality to the vectors (2¢) &% F;, and V,p, we get

1 ..
(18.5) / Z_EEUk(.ij, V,-tp) daz
1 1
< 2 /(E(-ijv}.jk) +(Vip, Vi‘P)) d’z.

The integral on the right differs from the energy E of the field (p, A,)
only by the absence of the term E; = A [U(p) d®*z. On the other hand, the
left side of the equality equals the maguetic charge up to a fa.ctor, so we get
m < e(E — E,)/(4ma), or
(18.6) E> 47rmg +E,
with equality only if

1 .. .
(18.7) 2—eE'Jk.7'-jk = V'(p.

Since E, is non-negative and the magnetic charge is integer-valued (under
our normalization), the energy of a magnetically charged field is bounded below:
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‘We now show that this bound becomes sharp as A — 0, if the parameters a
and e remain constant. This is known as the Bogomolnyi-Prasad-Sommerfeld
limit. In this limit we have E), = 0, that is,

1 1
(18.9) E= L [Fm Tz +3 [(Vie Vi) &'z

Note that, although the term E; disappears from the energy functional, it leaves
a trace in that, for finite ), only fields for which ¢(x) — R as |x| — co can have finite
energy, and this condition must be preserved for A = 0.

The reasoning above shows that fields satisfying (18.7) are extremals for the
functional (18.9), since they realize the minimum

e
Epin(m) = 47"“;

(among fields with |l¢(x)|| — a at infinity and having fixed magnetic charge m).
Tt is easy to verify that such fields exist. For example, in the Georgi-Glashow
model with m = 1 we can look for a solution of the form (11.7): substituting
(11.7) in (18.7) and solving the resulting first-order equations in a(r) and S(r),
we obtain

Ag(x) =0,
k
e EgikT ae |x|
g = 1-—
(18.10) A = Txp ( sinh ae |x|)’
a —_— Ia —
P (x) = Y (ae |x| cothae x| — 1).

For an arbitrary positive integer m it can be shown that (18.7) has a (2m +2)-
parameter family of gauge-inequivalent solutions.

For )\ > 0 the lower bound (18.8) is not sharp. But, in addition to the lower
bound provided by (18.6) for the minimum energy of a field with magnetic
charge m, it is easy to obtain an upper bound by selecting a trial function that
satisfies (18.7). We get

(18.11) 47rmg < Epin < 47rm% +AC,

where C does not depend on A.

In the semiclassical approximation, ae coincides with the mass My of a
charged vector particle, the intermediate vector boson (see Chapter 11). The
bounds in (18.11) imply that the mass of a magnetic monopole is of the same
order of magnitude as Mw /e?.

By a slight modification of the reasoning above, we can obtain a lower bound
for the energy of a magnetically charged field in any grand unification model.
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Recall from (14.8) that in such a model the magnetic charge of a field of finite
energy is the flux of the vector field

EH’ siaffkmk(x),h(w(x)»

through a sphere at infinity. Take a G-invariant smooth function a(y) equal to
one in a neighborhood of the manifold R of classical vacuums, and equal to zero
outside a larger neighborhood of R.

To construct this function we can start by making p(p) equal to the distance
from ¢ to R. We then set a(yp) = B(p(y)), where 8 : R, — R, is a smooth function
equal to 1 for values of the argument less than £/3 and equal to 0 for values greater
than 2¢/3. One must select € so that in an e-neighborhood of R the function p(yp) is
continuous and single-valued.

Obviously, the magnetic charge also equals the flux of
. 1 ..
A = ey, o))

through a sphere at infinity, since far from the origin the function (x) is close
to R, and therefore a(p(x)) = 1. Notice that, unlike H*, the vector A* is defined
for all x. Indeed, the element h(yp(z)) € G is defined only when ¢(z) is close
enough to R; but when this element is not defined, we have a(yp(x)) = 0. Thus
the product h(p(x))a(p(x)) is always defined.

Expressing the flux of A*(z) in terms of a volume integral, we have

(18.12) m = [0 F, al)h(p)

Using the gauge invariance of (Fjx, o(¢)h(p)) and repeating the argument that
led to (18.3), we get

1 .
LI Y v 3
(18.13) m= o [ *(F, Vilaloh(e))) ds.
Applying (18.4) to the functions d*/2e%*Fy, and d~'/2V;(a(p)h(p)), we get
(18.14)
m < o (34 P70 € + 5 (Tl TilaH) )
where d is an arbitrary number. The G-invariance of a and the fact that
h(7,()) = Tgh(p) imply that

(18.15) Vi(a(o)nip) = LMD g,y

We see that

(18.16) m< (zd(fjk,f,-k) + gg.w(so)(v,-sa)“(v,-so)") és,
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where

sul0) = <3(a(so)h(<p)) B(a(w)h(w))>
o’ b )
We now choose a number 7 such that gu(p)€%€® < 72 |€|? for all &; this

number can be chosen independently of ¢, since the tensor gas(yp) is non-zero
only on a bounded set. Setting d = 7/ (2e), we get from (18.16) the estimate

ne 1 ne
ns 2 [(s5tn 7 + 4V Vi) 2 < B A)
We see that the energy E(p, A) of the field (p, A,) with magnetic charge m
satisfies m
E(yp, A) 2> 4r—.
ne

This implies that the mass of a magnetic monopole has the same order of
magnitude as My /e?, where My is the mass of the heaviest vector particle.
Indeed, My has same order of magnitude as e |a|, where |a| is the maximum of
the expectation values of components of a field ¢ corresponding to a classical
vacuum. (Instead of |a], one could also take the length of ©.) On the other hand,
n has same order of magnitude as |a|~%; this gives the desired bound for the
mass of a magnetic monopole.



19. Topologically Non-Trivial Strings

We have seen that in grand unification theories there exist topologically non-
trivial fields, that is, fields that cannot be reduced to a vacuum field by a
continuous deformation in the class of fields of finite energy. Roughly speaking,
such fields are objects whose energy is located within a bounded region of space
and whose stability is guaranteed on topological grounds. In a quantum theory
they represent stable particles carrying a topological charge; this charge, as we
say, can be identified with magnetic charge, and topologically charged particles
with magnetic monopoles.

‘We now show that in grand unification theories there can also exist topo-
logically nontrivial strings, which are objects whose energy is located within
a tubular region, and whose stability is also topologically guaranteed. We saw
some examples of strings in Chapter 10.

A string can be defined as a field (¢, A,) that differs significantly from a
vacuum field only in the neighborhood of a curve I". We will require that outside
this neighborhood ¢ has values in a neighborhood R of the vacuum manifold
R (see Chapter 12). Consider a circle S surrounding I”, and lying in the region
where ¢ takes values in R. For example, if I" is a vertical line and ¢ is close
to the vacuum except in a cylinder of radius 6, we can take for S' a horizontal
circle of radius greater than § and center along the vertical line. The restriction
of ¢ to S* determines a map S — R, and we will say that the topological type
of the string is the homotopy class of this map, or the homotopy class of the
map oy : ST — R, where o takes a point in R to the nearest point in R.

The two definitions in the last sentence are equivalent, because ¢ is a homotopy
equivalence (if R is a small enough neighborhood of R), and thus establishes a one-
to-one correspondence between {S',R} and {S*, R}.

A string is topologically nontrivial if its topological type is nontrivial, that
is, if the map oy : S* — R is not null-homotopic.

As noted in Chapter 10, strings occur in the model described by the La-
grangian (10.6). We now study another simple model admitting strings. Let
G = S0(3) be the gauge group, and assume that the scalar field transforms
by the five-dimensional irreducible representation of SO(3). In other words, we
think of the scalar field as a symmetric traceless tensor ¥, for i,j = 1,2,3.
We choose a polynomial V(@) such that the manifold R consists of matrices $*/
with two equal eigenvalues ), for A fixed. For example, we can take
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Figure 13

V(®) = a(tr & — b?)? + etr &°,

where ¢ is a small enough positive number.

To each matrix with two equal eigenvalues A we assign the straight line
going through the origin and parallel to the eigenvector with eigenvalue —2\.
This gives a one-to-one correspondence between R and lines through the origin.
Thus, R is homeomorphic to the space of lines through the origin, which is the
projective plane RP2. We see that m1(R) = m(RP?) = Zj, so that {S", R} has
exactly two elements, as does m1(R) (T3.2).

An example of a topologically nontrivial string that occurs in this model is

3(,0) = alo)V (—30)80V (36),
As(p,0) = %Lzﬁ(p)’ A=A, =0,

where p, 0 and z are cylindrical coordinates, L, is the element of the Lie algebra
of SO(3) corresponding to an infinitesimal rotation around the z-axis, V(o) =
exp(L,0) is the matrix expressing a rotation by around the z-axis, &y is a
diagonal matrix with eigenvalues A, X and —2), and o(p) and 3(p) are numerical
functions decaying rapidly to zero as p — oo and vanishing at 0. It is possible
to select o and J so that the string (19.1) satisfies the equations of motion. (We
will prove more general results below, valid in arbitrary gauge models.)

We always assume that the degeneracy of the classical vacuum is due solely
to symmetry. This allows us to identify R with G/H, where H is the stabilizer
of a point B € R. If G is simply connected, 7;(R) is isomorphic to the quotient
mo(H) = H/Hcon. Thus, to every discrete unbroken symmetry h € H we assign
an element of m; (R) (T14.1). This correspondence is defined as follows. To each
path g(t), with 0 < ¢t < 1, in G we assign a path

(19.2) r(t) = T(g(£))o

in R; every path in R can be written in the form (19.2). If g(0) and g(1), the
endpoints of g, lie in H, the path 7(t) is closed. Since G is simply connected,
the element [r] € m;(R) defined by the path r(t) depends only on the endpoints
of g(t). Moreover, since g(t) and g(t)h give the same path r(t) € R, for any
h € H, the element [r] € m(R) depends only on g(0)g~'(t). If g(0)g~'(%)
changes continuously, [r] does not change. This means there is a correspondence
between H/H,,y, and m1(R), which is easily seen to be an isomorphism (T14.1).

(19.1)
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Two elements of 7 (R) give the same homotopy class of mappings S —» R
if they are conjugate; in other words, {S*, R} can be identified with the set of
conjugacy classes in mo(H) = H/Hcon (T3.2). Thus, the topological type of a
string is determined by an element of wo(H), but conjugate elements give the
same type. Likewise, an element of H can be seen as an element of mo(H), if
we keep in mind that two elements of H joined by a continuous curve are the
same element of mo(H).

We now consider in greater detail linear strings, that is, fields localized in
the neighborhood of a straight line. If a field is localized in the neighborhood
of an arbitrary curve I', it can still be considered linear if the width of the
neighborhood is much smaller than the radius of curvature of I'. A typical
example of a linear string is a field (p, A,) invariant under translations along
the z-axis and having a finite linear energy density; this latter condition means
that the energy in the region bounded by two horizontal planes is finite. Because
the field is translation-invariant along the z-axis, the total energy is infinite.

In order for the linear energy density to be finite, the covariant derivative
V,.(p) must tend to zero as we move away from the z-axis. We assume that

(19.3) V., < const p~ {1+,

where p = /22 + 32 is the distance from the z-axis. We also assume that in
cylindrical coordinates (p, 6, z) the field ¢(p,8, z) = p(p, ) has a limit as p —
oo:

(19-4) o(6) = lim ¢(p,6).

In the gauge TA; +yA, = 0 the existence of this limit follows from (19.3). Even
more: one can show that |$(6) — ¢(p, §)| < const p~4. This is shown in the same
way as the corresponding assertions in Chapters 10 and 12.

The function $(#) can be thought of as a map S* — R; the topological type
of (p, A,) obviously coincides with the homotopy class of ®.

For a linear string (i, A,) satisfying (19.3), the topological type can be
expressed in terms of the gauge field A,. More precisely, the element of mo(H)
corresponding to the topological type can be represented as

(195)  a= (P exp(— f 4, da:“))—l - (Pexp(— / 2"A,de))fl,

where the integral is taken along a circle at infinity going around the string,
P exp stands for a path-ordered exponential, and Ay = A,(9z*/00) is the 6-
component of the gauge field in cylindrical coordinates (p,0,z). We will see
below that (19.5) defines an element of the stabilizer H of #(0) € R, and
consequently also an element of mo( H).

We can also define o as a = lim, ., a(p, 21), where a(p, #) is a solution to
the differential equation

dea(p, 0) — a(p,0)Ag(p,0) =0
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with initial condition a(p,0) = 1. In other words,

a~}(p,6) = Pexp ( - [ Adlo#) d¢).

In order to prove (19.5), we take the limit p — oo in the equation
Vol = |86 + t(As(p, )| < const p~’,

which follows from (19.3). Here ¢ is the representation of the Lie algebra corre-
sponding to the representation T' of the gauge group G according to which ¢
transforms. We get

(19.6) (5 + t(As(6)))2(0) = 0,
with Ag(f) = lim, . Ag(p,6). This implies that
(19.7) ®(0) = T(a~'(6))%(0),

where a71(f) = Pexp(— Ie° A dB). Since #(2r) = $(0), we see that a =
a(2r) belongs to stabilizer H of @. The path g(f) = a (), for 0 < 6 < 2m,
in G corresponds to the path &() in R. As explained above, the homotopy
class of ¢(f) corresponds to the element of H/Heon defined by g(0)g~1(2m) =
a~1(0)a(2r) = a € H. This proves (19.5).

The reasoning above needs the assumption that Ag(p, §) has a limit as p — oo.
This restriction can be removed at the cost of complicating the proof somewhat.

To analyze the quantum analog of strings in the semiclassical approxima-
tion, we must find strings that satisfy the classical equations of motion. We do
go now, finding for any topological class linear strings with finite linear energy
density and satisfying the equations of motion. It is natural to try out axially
symmetric fields, that is, fields where the change caused by a rotation can be
compensated for by a global gauge transformation corresponding to an element
go = exp(M8) € G, where M is an element of the Lie algebra of G. An axi-
ally symmetric field (i, A,) that is also invariant under 2-translations has the
following expression in cylindrical coordinates:

v(p, 8, 2) = T(exp(M8))e(p),
Ao(p, 6, 2) = exp(M) Ag(p) exp(MO),
Ay(p, 8, z) = exp(MB)A,(p) exp(—M?0),
A.(p,0,2) = exp(M06)A,(p) exp(—M?¥),

(19.8)

For these expressions to have the same value at § = 27 and 6 = 0, we must have
T(a)p(p) = w(p), where a = exp(—2rM), and o must commute with Ay(p),
A,(p) and A,(p). For the field not to be singular along the 2-axis, we must have
Ay(0) = A;(0) = 0. We assume that p(p) = Po + a(p) and Ag(p) = M + B(p),
with the functions a(p), 8(p), A,(p) and A;(p) decaying fast enough as p — co.
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Then the linear energy density £ of (19.8) is finite, as can be seen from its
explicit expression:
(19.9)
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The extremals of (19.9) satisfy the classical equations of motion. This can
be checked directly, or derived from the general results of Chapter 16. From this
it is easy to deduce that every class of axial symmetry contains a string that
satisfies the classical equations. Such a string can also be found in the narrower
class of fields that satisfy (19.8) and the additional conditions A, = A, = 0 and
Ag(p) = M~(p), where (p) is a real-valued function.

Note that the topological type of an axisymmetric string is completely de-
termined by the class of axial symmetry of the string, that is, by the element
M € G. Indeed, the topological type of a string is the homotopy class of the map
&(0) = T(exp(M8))Py; the element o = exp(—27M) € H corresponds to this
homotopy class. Since every element a € H C G is of the form exp(—27 M), we
see that every topological class contains linear strings of finite energy density
that are solutions to the equations of motion. Using these solutions, one can con-
struct curved closed strings that satisfy the equations of motion approximately.
In the semiclassical approach one can construct, using these approximate solu-
tions, quantum objects that we will call closed strings.

The preceding discussion allows one to predict the existence of strings in
particular grand unification models. We mention the following cases:

If the gauge group G is simply connected, topologically nontrivial strings
exist if and only if there are discrete unbroken symmetries.

If G = SO(n), we replace G by its universal cover Spin(n), which is sim-
ply connected. It H C SO(n) is the group of unbroken symmetries, we con-
sider the inverse image H of H under the covering map. The vacuum manifold
R = SO(n)/H is isomorphic to Spin(r)/H, and by the preceding paragraph
topologically nontrivial strings exist if and only if H is disconnected. This is
certainly the case if H is disconnected; but it may also happen even if H is
connected. Indeed, if H is connected, it contains a path connecting the two
inverse images of the identity in Spin(n) (recall that Spin(n) is a double cover
of SO(n)). The image of this path under the covering map is a loop in H that
is not null-homotopic. We conclude that H is necessarily disconnected if H is
contained in a simply connected subset of SO(n), for in this case all loops in
H are null-homotopic. We therefore have the following criterion: if G = SO(n),
a sufficient condition for the existence of topologically nontrivial strings is that
the scalar field transforms by a single-valued representation of SO(n) and there
exists a simply connected subset of SO(n) containing the group H of unbroken

symmetries.
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In the SO(10) grand unification model the group H is connected and con-
tained in the simply connected group SU(5) C SO(10). This means that His
disconnected and hence that there are topologically nontrivial strings in the
model. In particular, the axial symmetry associated with the generator M of
SO(2) C SO(10), normalized so that exp(2rM) = 1 and exp(6M) # 1 for
0 < § < 2, yields such strings. (If M is regarded as a generator of Spin(10), it
does not satisfy exp(2rM) = 1.)

Topologically nontrivial strings may exist not only in grand unification mod-
els but also in models describing electroweak interactions. There are none in the
standard Weinberg-Salam model, but it can be proved that they exist in the
Lee-Weinberg model based on SU(3) x U(1). (This group is not simply con-
nected; if we want to apply the results of this chapter, we must replace it with
a simply connected non-compact gauge group. It is easier, however, to compute
m1(R) using an exact homotopy sequence.)
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We now show that, when a particle goes around a string, it may change its
quantum numbers, and in particular it may change its electric charge in some
models. These models are not realistic, but it is possible to construct realistic
grand unification models that contain “mirror” particles that interact weakly
with ordinary ones, and in which a particle is turned into its mirror image when
going around a string. Such strings can, in principle, be discovered through
astronomical observations.

For simplicity we start with models where the unbroken symmetry group
H is one-dimensional. In this case, as shown in Chapter 15, the electromagnetic
field strength F),,(z) is of the form (15.1). This formula contains the function
h(oy(z)), where h(yp) is the generator of the one-dimensional group H,, of trans-
formations that fix a given classical vacuum ¢, and ¢ is the map taking a point
in the set R to the nearest point in R. In particular, for a finite-energy field,
F,,(z) tends to (Fu(z), h(op(z))) as |z| — oo: see (14.5). (In the discussion
below we do not use the explicit form (15.1) for F,,.) As noted in Chapter 14,
after the gauge condition has been imposed, the generator h(yp) is defined up
to sign. We now study when this ambiguity can be eliminated.

First we note that both h(oy(z)) and F,,(z) are defined only on the set V'
of points z where (z) is close enough to a vacuum, that is, ¢(z) € R. If this
set is simply connected, we can take a continuous single-valued branch from the
function h(ow(z)); this is a general property of simply connected spaces.

If a function is defined on an interval, we can construct a single-valued branch of
it by partitioning the interval into small subintervals and extending the chosen branch
from one subinterval to the next. For a general simply connected space, we fix the
value of the function at a point zo, connect this point with other points z, by paths,
and choose a continuous branch along each of these paths. The value of the function
at x; defined in this way does not change if the path is deformed continuously. Since
in a simply connected space any two paths between z, and z; can be continuously
deformed into one another, this construction gives a well defined value for the function
everywhere.

Next, if R is simply connected, that is, if H is connected, the same reasoning
allows us to choose a continuous, single-valued branch of (o) on R, and hence
a single-valued branch of h(op(z)) defined on V. The most interesting case is
when R is not simply connected, so topologically nontrivial strings exist. Then it
may happen that the ambiguity in h(oy(z)), and consequently in the magnetic
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field strength, cannot be eliminated. For example, in the model of Chapter 19,
for the field of (19.1), we cannot get a continuous single-valued branch for
h(oyp(z)). This is clear from the expression

(20.1) h(ow(p,8)) = £V(~36)hoV (20),

where hg is the generator of the group H = Hy(x0,0)-
For the field (19.8),

h(ow(p,0)) = £ exp(MO)h(ap(p)) exp(—M¥),
which shows that the ambiguity in h(cy(z)) cannot be eliminated if
(20.2) ahga™t = —hy,

where a = exp(—27M) and hy is the generator of U(1) C H = Hy(eo,0)-

This situation is general: a necessary and sufficient condition for the exis-
tence of a field that cannot be assigned an unambiguous electromagnetic field
strength is that the unbroken symmetry group H contains an clement a sat-
isfying (20.2), where hy is a generator of U(1). (In this case a conjugates any
element of U(1) to its inverse). For, if such an o exists, h(cy(z)) has no con-
tinuous single-valued branch for any string (¢, A,) of topological type a, and
therefore the ambiguity cannot be eliminated unless the electromagnetic field
strength vanishes identically. (If it does vanish, as in the case of the field (19.8),
there is no ambiguity to eliminate.)

We now consider the electric and magnetic charges of particles, assuming
that far from any particles the fields can be considered classical. By definition,
the electric charge of a particle is (47)™" times the flux of the electric field
strength through a sphere surrounding the particle. Similarly, the magnetic
charge of a particle is defined in terms of the magnetic flux. However, if a
particle is in the field of a string whose topological type c satisfies (20.2), these
definitions are no longer valid, or, more precisely, they are only definitions up
to sign, since the electromagnetic field strength is two-valued.

Even when the electric and magnetic charges of a single particle are only
defined up to sign, the relative sign of the charges of two particles connected by
a curve is well defined, provided that all along the curve the electromagnetic
field strength is well defined, that is, that ¢ takes values in R. Take a sphere
12 enclosing this curve, and consider the open set U bounded outside by §2 and
inside by two smaller spheres {2, and 2, containing the particles (Figure 14).
Since U is simply connected, we can take a continuous, single-valued branch
for F,, on U, and compute the flux of the electric or magnetic field strength
through {2, and {2,. If the fluxes have the same sign, we say that the particles
have charges of the same sign; otherwise, of opposite signs. The relative charge
of a pair of particles may depend on the curve connecting them, but it does not
change under a continuous deformation of the curve, so long as the curve does
not leave the domain where ¢(z) € R.

Now consider a system consisting of a string and several particles, so that
its state differs significantly from a vacuum state only in the neighborhood of
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a closed curve and of several points. (We could also allow the curve to be dis-
connected: then we have several strings.) Where the state is close to a vacuum,
we think of it as being semiclassical, that is, we replace it with a classical field.
We assume that the electromagnetic field strength of this classical field changes
sign as we go through the string.

In this situation, it follows from the preceding discussion that the relative
sign of two charged particles does depend on the choice of the curve connecting
the particles—more specifically, if two curves v; and -y; connecting the particles
form a loop that encircles the string, as in Figure 15, they define opposite
relative signs. This is because the field strength changes sign when one goes
around the loop.

Furthermore, if we have a time-dependent field, the relative sign of two fixed
charges, with respect to to a fixed curve -y, will nonetheless change if the curve
is crossed by the string as the system evolves. In any case, the relative sign
of the charges with respect to -y is undefined at the moment when the string
Crosses 4.

It is reasonable to define the relative sign of two charges by using straight-
line segments whenever possible. Then, if we fix the sign of one particle, we
determine the sign of any other charge, unless the segment connecting the two
happens to be crossing a string at that moment. In this case, the relative signs
before and after the crossing differ.

All of this indicates that in these models charge is not conserved. However,
it is possible to define charge in such a way that conservation of charge is true in
a certain sense. To this end we span the string with a film, or, in other words, we
consider a surface whose boundary is the curve in whose neighborhood the field
differs considerably from a vacuum. If there are several strings, we assume that
these films do not intersect one another. We now consider the space obtained by
removing the films, as well as the neighborhoods where the electromagnetic field
strength F),, is undefined. The result is a simply connected set on which we can
select a continuous, single-valued branch for F,,. We use this branch to define
the (electric or magnetic) charge of a particle; likewise we define the charge of a
string as (4m)~! times the flux of the field strength through the boundary of a
neighborhood of the spanning film, Maxwell’s equations imply that the charge,
so defined, is conserved. The tensor F),,, and therefore the charge of a particle,
changes sign when one goes through the film spanning a string. However, this
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change in the particle’s charge is accompanied by an appropriate change in the
string’s charge.

Obviously, conservation of charge in this sense is nonlocal: the charge of
a particle depends on the choice of a film spanning the string, and its change
when the film is traversed has no physical meaning. This resembles the situation
in general relativity, where we can formulate a law of conservation of energy,
but there is no covariant concept of energy density, so we cannot talk of energy
localization.

The reasoning above applies equally well to electric and magnetic charges:
both types are defined in the same way, in terms of flux.

Recall that, if H = U(1), the magnetic and topological charges coincide.
We now want to study the relationship between the the two when H is a one-
dimensional disconnected group. Given a field inside a bounded region on whose
boundary I the field is close to a vacuum, and assuming that I" is a topological
sphere, we define the topological charge of the field as the homotopy class of
the obvious mapping I' — R, that is, as an element of {S%, R} = {S? R}.
If H = U(1), the space R is simply connected and {S? R} = m(R) = Z.
But if H is a one-dimensional disconnected group, R = G/H is not simply
connected. (We assume that G itself is simply connected, so that m(R) =
no(H) = H/Hgon.) This means that, in general, we cannot identify {S2%, R}
and 7(R) = m(H) = Z. We can obtain {S%, R} from my(R) by identifying
elements that can be mapped to one another under the action of m (R) on
m2(R) (T8.2). If @ € H conjugates each element of U(1) C H to itself, that is,
aua~! = u, the class of @ in m(R) = H/H,o, acts trivially on ma(R) = Z. If, on
the contrary, a conjugates elements of U(1) C H to their inverses, the class of a
in m(R) = H/Hon maps each element of m3(R) to its opposite. Thus an element
of {S?, R} is characterized by a non-negative integer; the topological charge is
defined up to sign. This agrees with the fact that the magnetic charge, too, is
only defined up to sign, because of the essential ambiguity in the magnetic field
strength.

Until now we have assumed that the gauge group G is simply connected
and that the unbroken symmetry group H is one-dimensional. It is not difficult
to generalize our reasoning to the case where H is not one-dimensional, but the
center of the Lie algebra H of H is. (As we saw in Chapter 14, the electromag-
netic field strength is defined in terms of the generator of the center of H.) This
is the case for the standard models of grand umification, in which H is locally
isomorphic to SU(3) x U(1). As we noted in Chapter 19, grand unification mod-
els may contain topologically nontrivial strings. However, they do not contain
strings that change the magnetic charge of particles that go around them.

A discrete symmetry a giving the topological type of such a string would trans-
form an electron into a positron. But in the Weinberg-Salam model, which is the
low-energy limit of the usual grand unification models, there is no such symmetry.

We now study the case when the center Z of the Lie algebra of H has
dimension r > 1. Using a formula like (15.1), we can assign an electromagnetic
field strength tensor to each A € Z. We must use in the definition a function
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h(y) such that h(pe) = h and h(T(g)p) = Toh(y); as shown in Chapter 14,
such a function exists (and is single-valued) if H is connected. However, in
the situation that interests us here, where there exist topologically nontrivial
strings, H is disconnected, so that i(p) and the electromagnetic field strength
defined by means of it are generally multivalued. It is easy to see that the change
in h(op(z)) caused by going around a string is related to the string’s topological
class.

Suppose we go around the string following a closed curve along which
takes values close to vacuum values, that is, ¢ € R. For simplicity, we assume
that in fact these values lie in R; this does not change our results. The field
 on the curve z; is of the form T'(g(t))yp, where 0 < ¢ < 1 is the parameter
along the curve, g(t) is a continuous function of ¢ with values in G and equal to
the identity at 0, and ¢ is the value of ¢ at the point o (which is the same as
I, since the curve is closed). By definition, the topological type of the string is
determined by the element & = g~1(1) € H = H(ipo). On the other hand, it is
obvious that the continuous branch of h((z)) on the curve is given by

h(t) = g(t)hg™'(t),  h(t) =h(p(zs)), k= h(po).

(Strictly speaking, for groups other than matrix groups we must write 7,h in-
stead of ghg~!.) When one goes around z, the value A of the function h(p(z))
is replaced by aha~l. Thus, if aha™' # h, the field strength tensor changes
when one goes around the string.

These results are of interest to theories that contain “mirror” particles. It is
well known that theories that contain the standard set of elementary particles
are not invariant under spatial reflection. But this invariance can be reinstated
by introducing new particles obtained from the old by spatial reflection (mirror
particles). Of course, the interaction of mirror particles with standard particles
must be extremely weak, in order not to contradict experimental data.

It is easy to construct a grand unification theory that includes both ordinary
and mirror particles. The connected part of the unbroken symmetry group H
must be locally isomorphic to SU(3) x U(1) x SU(3) x U(1). This is because every
ordinary particle has a mirror counterpart; therefore, in addition to the SU(3)
and U(1) corresponding to gluons and photons, the unbroken symmetry group
must include as factors an SU(3) and a U(1) for mirror gluons and photons. In
addition, besides the connected part, H must contain a discrete symmetry a that
interchanges ordinary and mirror particles. By the preceding discussion, this
means that the theory contains topologically nontrivial strings corresponding
to a.

In a theory with mirror particles, there are two essentially different electro-
magnetic field strength tensors, associated with ordinary photons and mirror
photons, respectively—or, more precisely, with the generators h; and hs of the
two copies of U(1) that are direct factors in H. Upon going around a string with
symmetry of type a, the ordinary and mirror field strengths are interchanged. In
other words, both are branches of the same multivalued function. This follows
from the equality ah;a™! = hy.
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We can say that in the presence of such strings the difference between
ordinary and mirror particles is purely conventional. This is the same situation
observed in theories with nonlocal conservation of electric charge. If there are
no strings in a given subset of three-dimensional space (that is, if the part
of that subset where ¢ € R is simply connected), the subset has two single-
valued electromagnetic field strength tensors, and one can distinguish between
ordinary and mirror particles, at least when these particles participate in an
electromagnetic interaction. But if an ordinary particle leaves this subset, goes
around a string, and comes back, it becomes a mirror particle. We call such
strings “Alice strings,” since they behave like Alice’s looking glass. If Alice
strings exist, they can be found through astronomical observations. (The term
“Alice string” was introduced in [57). It prompted the creation of the term
“Cheshire charge” for nonlocalized charge.)

It is natural to think that if topologically nontrivial strings exist, they must
be extremely long. They would necessarily have appeared in the early stages of the
universe. Strings that are not very long would have disappeared, or collapsed, during
the evolution of the universe.

A cosmological analysis shows that extremely massive objects would contain
ordinary and mirror particles in approximately equal numbers, while smaller
objects must contain mostly particles of a single type. If a string happens to
intersect the line from the earth to a galaxy (or some other astronomical object)
consisting mostly of ordinary matter, the galaxy becomes invisible. Indeed, to
establish whether a particle is made of ordinary or mirror particles, we must
link the particle to a fixed standard object by means of a curve, and consider
the branch of the field strength tensor that is continuous along this curve. Since
light moves along geodesics, we can determine the type of the particles in a
galaxy by connecting them with the earth with a geodesic. If a galaxy has
different amounts of ordinary and mirror matter, its brightness will change as a
string crosses in front of it. As the string moves, this phenomenon is observed for
different objects along its visual path: the string generates a wave of brightness
variation. (Unfortunately, for distant objects there exist less exotic explanations
for the observed changes in brightness).

The motion of a string can have observable effects even if the objects behind
it have about the same amount of ordinary and mirror matter. For example,
the brightness of a quasar might change suddenly, since the brightness of the
ordinary and mirror matter in a quasar vary independently. This might be the
explanation for abrupt changes in brightness that have actually been observed;
this phenomenon is difficult to explain otherwise.

We now discuss briefly the change in type of particle occurring when one
goes around a string in an arbitrary model. If there are no strings, one can
classify the existing particles in a standard way. In the presence of strings, the
same classification is applicable only within a simply connected domain that
does not contain strings. Suppose a particle leaves such a domain, circles around
a string whose topological class is a € H, and returns to the domain. The group
H acts in the obvious way on the set of stationary states of the system; one-
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particle states transform into one-particle states. The type of particle, however,
may change under the action of discrete unbroken symmetries. It turns out that
the change in type caused by going around a string is controlled by the action
of the element @ € H giving the topological type of the string. To see this,
consider a particle following a loop I" that encircles a straight string but lies at
a great distance from it. As a result of going once around I', the state vector of
the particle is multiplied by P exp (— rA, d:z:“). On the other hand, we showed

in Chapter 19 that .
= (Pexp| - #
a ( exp( _ﬁA“ dz ))

is the element of H that gives the topological type of the string, as we wished
to show.

The assertions made earlier in this chapter about the change in electric
charge and in mirror type as a particle goes around a string follows easily from
the previous paragraph.



21. Nonlinear Fields

Classical field theory generally studies fields with values in R or in R™ (in
the latter case we can think of a multicomponent field, or of = scalar-valued
fields). We now turn to theories where the fields take values in a manifold with
nontrivial topology, the so-called nonlinear fields.

As we know from Chapter 8, a local equilibrium state is described by a field
with values in the degeneracy space R. The dynamics of such a space is fixed by
the Lagrangian, whose form is determined to a great extent by the symmetry
properties of the system. In quantum statistical physics, the Lagrangian can
also be regarded as being quantized.

Quantum field theory can be thought of as quantum statistical physics at
absolute zero, with ground states playing the role of equilibrium states. Thus,
the degeneracy space R in quantum theory is the manifold of all ground states.

Consider, for example, the theory given by the Lagrangian

(21.1) L= 38,000 - V(p),

where ¢ = (¢,...,¢") is an n-component scalar field. The lowest energy is
realized on constant fields that minimize V(). In particular, if

V(p) = M(") +--- + (¢")? - &7,

the minimum of V(i) is achieved at the set of points of R® where (¢')?+---+
(¢™)? + a® = 0, which is an (n — 1)-dimensional sphere S™*.

The fields ¢ that minimize V{(y) can be called classical ground states or
classical vacuums. If there is only one classical vacuum, it corresponds to the
quantum ground state in the semiclassical approximation, and its energy differs
from the energy of the quantum ground state by corrections of the order of A. If
the classical vacuum is degenerate, the quantum corrections to the energies of
different classical vacuums may be different. Then, in quantum theory, the de-
generacy is lifted completely or partially. However, in the most interesting case,
when the degeneracy is caused solely by symmetry, the quantum corrections
to all classical vacuums are the same. Then in the semiclassical approximation
every classical vacuum has a corresponding quantum ground state.

The analogs of states of local equilibrium are called Goldstone fields; they
are fields that assume values in the manifold R of ground states. If the degener-
acy of the ground states is entirely due to the action of the internal symmetry
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group G (that is, if G acts transitively on R), R can be identified with the quo-
tient G/H, where H is the unbroken symmetry group. It is natural to assume
that Goldstone fields vary slowly; indeed, since they energy differs little from
that of the ground state, they cannot bear high gradients in either space or time,
since such gradients would contribute greatly to the energy. For this reason, and
using relativistic invariance, we can write the Goldstone field Lagrangian in the
form

(21.2) L= %gij (v) au‘Pi e,

where (¢, ..., ") are the local coordinates of the ground state manifold R and
9ij(¢) = gji(p) is a symmetric tensor field on R. We assume that the coordinates
(', ...,¢"), and therefore the Lagrangian (21.2), are invariant under Lorentz

transformations. More than that: (21.2) is the only expression that is Lorentz-
invariant and quadratic in the derivatives 8,¢".

To justify the choice of the Goldstone field Lagrangian in the form (21.2), we
note that one cannot construct a Lorentz-invariant expression involving only the
first derivatives of the field and linear in these derivatives. On the other hand,
an expression involving derivatives of order greater than one, or terms of order
higher than two in the first derivatives, are small in comparison with (21.2)—
except for linear terms in the second derivative, but these can be reduced to
the form (21.2) by integration by parts. Of course, the Lagrangian (21.2) is
approximate, and sometimes higher-order corrections are substantial.

If we use the semiclassical approximation to find the vacuum manifold, the
same approximation can be used to find the Goldstone field Lagrangian. More
precisely, we must consider the original Lagrangian, assuming that the field can
only take values in R. For instance, for Lagrangian (21.1) with

V(e) = (¢ + -+ + (9" —a?)?,
the Goldstone field Lagrangian has the form
(21.3) L = 3(0up, 0"9),

where the values of ¢ are constrained by the equation (¢!)% +--- + (¢")? = a2,
that is, they lie on a sphere of dimension n — 1. We introduce stereographic

coordinates (!,...,7""!) on the sphere, so that
2 ] oria?
r=a™M 8 oy =TT pri<icn,
a® + (m,7) a? + (m, )

where (m,7) = (r1)2 + .- + (7" 1)2. Then (21.3) becomes
(O, O*mr)
(@ + (m,m))*

Clearly (21.3) is invariant under the orthogonal group SO(n), so that the same
is true about (21.4).

(21.4) L =2a*
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The symmetric tensor field g;;(y) gives a metric ds? = gi;() d¢* dy’ on R.
Since the energy corresponding to Lagrangian (21.1) must be positive, the tensor
i () is positive definite, so ds? is a Riemannian metric. Using this metric, we
can write (21.2) as

(21.5) L = 3{8up, 0"p),

where the angle brackets stand for the scalar product corresponding to ds?. If G
acts transitively on R, that is, if R = G/H, the metric on R is invariant under
G, 5o the tensor field g;;(¢) is completely determined by its value at a point o of
R. Not only that, but the value at ¢ is not arbitrary: it must be invariant under
the stabilizer H at that point. In other words, g;; must define an H-invariant
scalar product on the tangent space Ty, (R) to R at y. If the representation of
H in T,y (R) is irreducible, it is easy to show that there is a unique H-invariant
scalar product (up to a factor). In this case the Lagrangian (21.2) is essentially
unique, since a multiplicative factor does not affect the equations of motion.

If G = SO(n), H = SO(n—1) and G/H = S, the representation of H in
the tangent space is the vector representation of SO(n—1), and so is irreducible.
This means that for fields with values in S™!, there exists a unique SO(n)-
invariant Lagrangian of the form (21.2) (or (21.4) in stereographic coordinates),
up to a factor.

The fields ¢, ...,o" appearing in the Lagrangian (21.2) describe massless
particles. To see this, we just have to expand the Lagrangian in the neighbor-
hood of a coordinate-independent field ¢(z) = (3§, ...,¢3), which acts as a
classical vacuum. This justifies the term “Goldstone field.”

Recall that Goldstone’s theorem states that if G is the continuous symmetry
group and H is the group of unbroken symmetries, the theory contains n massless
particles, where n is the number of violated symmetry generators, n = dim G dim H.
In the semiclassical approximation these particles correspond to the field ¢, ..., ¢",
which take values in R = G/H. Goldstone's theorem does not apply to gauge theori.

We now consider topological integrals of motion in theories with nonlinear
fields. The energy functional corresponding to Lagrangian (21.2) has the form

(21.6) E= % / (g (Q)mim; + 9i5(p) B’ Bayp’) &z,

where a = 1,2, 3, the m;(x) = gi;(¢)¢’ are the generalized momenta, and g* (i)
is the matrix inverse to g;;(y). As usual when considering the topology of space
fields with finite energy, we can assume that m;(x) = 0; the energy functional
then acquires the simple form

(21.7) E= [ 94(0) 006’ 00! &'5.

Fields with finite energy tend to the same limit as one goes off to infinity in
different directions. Indeed, suppose that lim,_, (An) = #(n), where [n| = 1;
then, passing to spherical coordinates in (21.7), we see that the energy in infinite,
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unless $(n) is a constant. Hence, in discussing fields of finite energy we assume
that they tend to a finite limit as x — oo:

(21.8) Jim o(x) = go.

The field p(x) can be regarded as a map from R? into R = G/H. Condition
(21.8) means that this map can be extended to a continuous map on the sphere
S8, taking the point at infinity to py € R (we recall that S? is obtained from
R3 by adjoining a point at infinity).

We see that two Goldstone fields are separated by an infinitely high potential
barrier if the corresponding maps $ — R are not homotopic to each other. In
other words, the topological type of a Goldstone field is determined by the
homotopy class of the map S* — R = G/H. If R is simply connected, we can
identify the set of such homotopy classes with w3(R) = 73(G/H); see T14.2 for
the calculation of this group. If R = "~ (as is the case when V(yp) is quadratic:
see Lagrangian (21.4)), topologically nontrivial fields exist for n = 3 and n = 4,
since m3(9?%) = w3(S%) = Z (T10.2).

Our conclusions about the structure of the space of fields of finite energy
remain valid when we add to the Lagrangian (21.2) terms containing higher
derivatives. Furthermore, only in the presence of such terms can the minimum
of the energy functional on the set of topologically nontrivial states be nonzero.

Tf the energy functional (21.7) has value E at (x), it has value a~'E at the field
y(ax). By increasing o and noticing that p(ax) has same topological type as p(x),
we conclude that there are fields of a given topological type with arbitrarily small
energy.

The general assertions made above find their most important application
in quantum chromodynamics. The basic constituents of quantum chromody-
namics are fermion bispinor fields ¥2#(z), called quark fields. Here ¢ = 1,2, 3 is
the “color,” and i is the “flavor.” The common approach to constructing the
Lagrangian is to begin with the free fermion Lagrangian, assuming that the
quark mass is independent of the color. This Lagrangian is invariant under “ro-
tations” in color space, that is, transformations of the form %? — Sgy?, where
S? € SU(3) is a unitary matrix of determinant one. Introducing, as usual, gauge
fields with values in the Lie algebra of SU(3), we can construct a Lagrangian
that is invariant under local gauge transformations with group SU(3). This La-
grangian, which contains quark fields and gauge fields (gluon fields), is known
as the quantum chromodynamics Lagrangian (see Section 1.6). It can be used
to describe strong interactions.

The masses of the two lightest quarks (up and down) are close to each
other. If we consider them equal, the quantum chromodynamics Lagrangian is
invariant under SU(2)-rotations in flavor space, that is, transformations of the
form 9¢ — V7yg, with 4,5 = 1,2 and V] € SU(2). If we assume that the
two light quarks are massless, the symmetry group extends to SU(2) x SU(2),
because we can rotate independently (in flavor space) the left-hand and the
right-hand components of a quark field, in each case choosing a matrix from
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SU(2). There is a spontaneous symmetry breaking that reduces SU(2) x SU(2)
to SU(2), the group obtained by applying the same rotation to the left- and
right-hand components of the field. The corresponding degeneracy space R =
SU(2) x SU(2)/SU(2) can be identified with SU(2).

If G is any group, we can define an action of G X G on G by assigning to each
element (g1, 92) € G X G the map taking g € G into ¢199: . The pairs (g,9) € Gx G,
for g € G, take the identity element to itself, so the quotient of G x G by the set of
such diagonal pairs can be identified with G itself.

Topologically, SU(2) is equivalent to the sphere S, so that 73(SU(2)) =
m3(S%) = Z2. This means that the topological type of a Goldstone field is
specified by an integer.

Under the usual identification of SU(2) with S® (T1.2), the action of SU(2) x
SU(2) on SU(2) gives rise to the group of rotations of S°. This implies that the
Goldstone field Lagrangian in this situation is of the form (21.4), with n = 4.
The corresponding Goldstone particles are identified with = mesons; if we ignore
the mass of the two lightest quarks, the 7 mesons become massless.

If we ignore the mass of the three lightest quarks (up, down and strange),
the symmetry group becomes SU(3) x SU(3). This breaks down spontaneously
to the subgroup consisting of elements (g, g), for ¢ € SU(3), which is obvi-
ously isomorphic to SU(3). The degeneracy space R = SU(3) x SU(3)/SU(3) is
identified with SU(3). Since 3(SU(3)) = Z (T10.2), the topological type of a
Goldstone field is again specified by an integer.

To construct the Goldstone field Lagrangian, we take a metric on R = SU(3)
invariant under left and right translations. Such a metric is unique to within
multiplication by a constant, and can be written as

(21.9) ds? = trdgdg™ = —tr(g "' dg g dg).

Indeed, the tangent space to SU(3) at the identity is identified with the Lie
algebra su(3). Thus, the desired metric is determined by the unique scalar
product in su(3) invariant under inner automorphisms g — hgh~!. We ob-
tain (21.9) if we recall that this scalar product is given, to within a factor,
by (a,b) = trab! = —trab. Using (21.9), we can write the Goldstone field
Lagrangian (up to a constant factor) as

L=1trd,gdg "

We return to Goldstone fields in general. Note that the space of fields on
which the action integral is defined may be disconnected. Of course, adding a
constant to the integral changes nothing in the equation of motion. If the space
of fields is disconnected, a different constant can be chosen for each component.
This has important consequences. We think of a Goldstone field ¢(x,t) = ¢:(x)
as a path in the space £ of fields ¢(x) on the spatial variable x. We assume
that ((x) satisfies (21.8), where (g is fixed; then (;(x), for ¢ fixed, can be
interpreted as a map S — R, and £ as the space of spheroids in R (T8.1).

Given two Goldstone fields ¢; and ¢,, consider the space C(¢1, ¢2) of paths
in £ joining the two fields, that is, the space of of time-dependent Goldstone
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fields @;(x) that equal ¢;(x) at t = t; and @,(x) at ¢ = ¢,. This space comes up
naturally in the calculation of the evolution operator, for the amplitude of the
transition from ¢, to 9 in time ¢y — %, is represented as the functional integral
of exp(ih~8S) over C(p1,p2) (Chapter 24). Allowing for the constant terms in
the action integral S, we can represent this amplitude in the form

(21.10) Y ca /‘;u(mm) exp(%S) [1de(z,1),

where S is determined by the Lagrangian (21.2) (without the constant) and
a indexes the components Co(ip1, p2) of C(i1,02). If 1 = s, these compo-
nents are in one-to-one correspondence with the elements of the fundamental
group (€, ¢1), and we can assume that & runs through this group. The group
property of the evolution operator implies that c,g = cqcg. If 1 # 2, we can
reduce to the case ¢; = a2, because C(p1, pz) is either empty or homotopically
equivalent to C(y1, ¢1); to set up a homotopy equivalence, fix a path v from ¢,
to 1, and associate to every path A € C(p,, ¢2) the path Av € C(p1,¢1)-

The group m1(€, ¢1) is isomorphic to 74(R). We show this first if ¢ (x) = ¢p.
In this case, a path ,(x) can be seen as a map from the four-dimensional cube
I* into E: for each ¢ we consider the spheroid ¢;(x) as a map from the cube
I? into R taking the entire boundary of I® to @y. Thus we can identify four-
dimensional spheroids in R with closed paths in £ beginning and ending at
o- In the general case, when (;(x) is not constant, we take into account that
all connected components of £ are homotopically equivalent, say by the map
@ — @ + p, where p is a fixed spheroid; this implies that the groups m1(€, 1)
are isomorphic, for different values of ¢;.

As already seen, if R is simply connected, we can assign to each field of finite
energy an element of 73(R) giving the homotopy type of the field. If we include
terms with higher derivatives in the Lagrangian, we can arrange it so that the
energy on the set of topologically nontrivial fields is minimized for some field
(x)—a topologically nontrivial soliton. In the semiclassical approximation a
quantum particle corresponds to this soliton. To establish whether the particle
is a boson or a fermion, we must consider the element a € my(R) defined by
the composition @(A(x)) of the soliton ¢ (seen as a map S® — R) with a
homotopically nontrivial map A : §* — S3. If the coefficient ¢, in (21.10)
corresponding to the element o € m4(R) = m(£) is 1, the particle is a boson;
otherwise ¢, = —1 and the particle is a fermion. We will not prove this here, but
we observe that for R = S? and R = S? we have m3(R) = Z and my(R) = Z,. In
these cases, the composition of the map S* — R with a homotopically nontrivial
map X : S* — S® determines a nonzero homomorphism from n3(R) — m4(R)
(T7.4 and T10.2). This means that the particle associated with a soliton with
an odd topological number is a fermion if ¢, = —1 for a nonzero a € my(R).
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In quantum mechanics and quantum field theory many quantities can be rep-
resented as functional integrals over possible histories: that is, along possible
trajectories in quantum mechanics and over possible time dependencies of the
fields in quantum field theory. The set of histories over which integration is per-
formed and the form of the integrand depend on the quantity to be calculated:
see Chapter 24. The important point to us is that the integrand includes the
exponential of the classical action integral S multiplied by i /B. This means that
a functional integral may be meaningful even if S is a multivalued functional,
5o long as exp(iS/h) is single-valued. In other words, several values of S corre-
spond to the same integrand if they differ by an integral multiple of 2nA = h.
This condition on multivalued functionals implies that the constants appearing
in S may assume only a discrete set of values, that is, they are quantized. We
give examples of this.

First we show that the quantization condition for the magnetic charge can
be obtained from the requirement that the motion of a quantum particle in the
field of this charge has meaning. Recall that the action integral S of a classical
particle moving in an electromagnetic field according to the usual equations of
motion

a2z dz
o e Y _
(22.1) 152 eF Is 0
can be written in the form
(22.2) S[z(r)] = —m / ds—e / A, dz*,

where m is the mass and e the charge of the particle, ds is the space-time line
element, A, the electromagnetic field potential, and the possible path zh(T)
is determined how time z° and the space coordinates z!,z%,z* depend on the
parameter 7, with 7o < 7 < 71. f z(7) is a closed path in Minkowski space-time,
that is, if £#(r0) = z#(71), we can use Stokes’ theorem to rewrite (22.2) as

(223)  Sfz(r)]) = —m/ds—%/rFu.,dz“/\dz"=—m/ds—e/rF,

where I’ is an arbitrary surface spanning the closed path z(r) and F =
3 Fy dz* A dz” is the two-form that corresponds to the electromagnetic field
strength. Recall (T5.1) that F is closed, by Maxwell’s equations.
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If the electromagnetic field and the form F' are defined on all of space-time,
F is exact, that is, it can be written as ' = dA, where A = A, dz* is the
electromagnetic field potential. But we are interested in the case when the elec-
tromagnetic field is not defined on all of space-time, only in some domain V.
This occurs when a point magnetic charge is present, because the electromag-
netic field is not defined at that point. We must exclude the trajectory of the
charge in space-time from the domain of definition V of F.

If the domain of definition V of F is not all of space-time, F' may not be
exact. In this case we can talk about the field strength, but there is no globally
defined field potential, and (22.2) is no longer valid. However, (22.3) is still
meaningful, although it may be multivalued, depending of the choice of I'. The
difference between two values of S in this case is of the form f. F', where I" is
a closed surface—the closed surface obtained by combining two surfaces that
span the loop z(7), one of them with reverse orientation.

Thus, we see that the quantum mechanics of a particle moving in an elec-
tromagnetic field of strength F' makes sense only if, for every closed surface I’
the integral of F over I is a multiple of 27h/e, for only then will the functional
exp(iS/h) be well defined. If all of I" has the same time coordinate z°, the inte-
gral [ F reduces to the magnetic flux through I', for only the time components
of F,, take part in the integral. By definition, the magnetic charge mp inside
I equals this flux divided by 4w. We therefore get the following condition for
magnetic charge quantization:

h
(22.4) mr= 2e‘n,
where n is an integer (Chapter 14).

Condition (22.4) is not only necessary, but also sufficient for exp(iS/h) to
be single-valued if the domain of definition V' is the complement of the world
lines of punctual magnetic charges. For in this case any two-dimensional closed
surface in V (every two-cycle) is homologous to a surface lying in a single time
slice. The integral of F over two homologous surfaces is the same, so if (22.4)
is satisfied the integral is a multiple of 27h for every closed surface.

Although the action integral (22.3) is defined only on closed paths, this
restriction is not essential. For paths with different endpoints z(79) = To and
z(r1) = 1, we can still find a multivalued action integral that leads to the
equations of motion (22.1). We must fix an arbitrary path Z(7) having the same
endpoints, and use for I" in formula (22.3) an oriented surface spanning the loop
formed by z followed by 7 in the reverse direction. Different choices of Z(7) lead
to values of the integral that differ by a constant. Repeating the reasoning of
the preceding paragraphs, we see that exp(i.S/h) is single-valued under the same
condition (22.4) as in the case of closed loops.

We now discuss a general approach to the construction of multivalued action
integrals for non-linear fields. We assume, for definiteness, that our fields (x, t)
are defined in space-time, that is, that they depend on three space variables and
on time. We let M denote the manifold where the fields take values. As noted
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in Chapter 21, the simplest Lorentz-invariant action integral for such fields has
the form (21.5), and we can add to it more complicated terms containing higher
derivatives or higher powers of the first derivative. We assume that p(x,t) tends
to a finite limit as x — oo; as discussed in Chapter 21, this is necessary if the
field’s energy is to be finite.

We let t vary from 7o to 71, and assume for now that e(x,10) = p(x,71);
we will lift this restriction later. In this situation, the field o(x,t) determines
a map S% x S' —» M. Indeed, for every value of ¢ we have a map R} - M
that can be extended to S by assigning lim, .o ¢(X, t) to the point at infinity.
The family of these maps $° — M gives a map 3 x [0, 1] = M, but we
can identify the endpoints of the interval [ro,71] because the field is the same
for these two values of ¢ (in other words, we can assume that ¢ takes values in
the circle). The map S* x S* — M thus obtained defines a closed, oriented
four-dimensional surface (cycle) in M, which we denote by Z (p)-

We now show how, given a closed 5-form w on M, we can construct a
multivalued functional S, associated with ¢, and that S, can be included in
the expression for the action integral as a separate term. The definition of S, is

(22.5) 5u() = [

w!
I(y)

where I'(¢) is a five-dimensional oriented surface whose boundary is Z(yp).

Such a surface only exists if Z() is null-homotopic. For this reason we must
either impose on M conditions that guarantee the existence of I'(yp), or restrict our
discussion to fields for which Z(¢) is null-homotopic.

The value of S, may depend on the choice of I'(y). If I'(p) and I 2(p) are
both bounded by Z(y), we have

(22.6) / w— w= / w,
(e} I2(p) r

where I is a five-dimensional cycle (closed oriented surface) consisting of I3,
together with I; with the opposite orientation. We say that w is an integral
form if the integral of w over any cycle is an integer (T5.2).

From (22.6) it follows that for an integral form w any two values of S, differ
by an integer. When S, is included in an action integral S, we can construct
a quantum theory based on S if and only if w is 27h times an integral form,
for then the multivaluedness of S, disappears when we take the exponential
exp(iS/h).

The general construction above acquires physical meaning when we use a
non-linear field to describe quantum chromodynamics in the low-energy limit.
Recall that, in quantum chromodynamics, when we ignore the masses of the
three lightest quarks (up, down and strange), the SU(3) x SU(3) symmetry
breaks down to SU(3) symmetry. Thus the Goldstone fields, which play an
important role at low energies, take on values in R = SU(3) x SU(3)/SU(3),
which we identify with SU(3). Thus, a Goldstone field is a matrix field g(z) =
(g8(x)) such that g~'(z) = g'(z) and detg(z) = 1. The action integral for
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CGoldstone fields must be Lorentz-invariant and also invariant under the action
of SU(3) x SU(3), that is, invariant under left and right translations in SU(3).
The simplest functional with these properties is

22.7 S = const | tr(8,98*g Vd'z
(22.7) (Ou90%97")

(Chapter 21). However, this functional has too many symmetries, including
some that are broken in quantum chromodynamics, namely those of the form
g(z) — g7(z). To see why this symmetry is unwanted, write the Goldstone

field as as .
o(2) = exp (L m()Y),

i=1
where MAl,...,)® are the generators of SU(3) and the m;(x) are the fields of
Goldstone mesons. Then g(z) +— g~'(z) corresponds to the symmetry m;(z) —
—t;(x), which forbids transitions from a system with an even number of mesons
into one with an odd number. However, the transition K* K~ — n*a%7r~ is
allowed in quantum chromodynamics. Thus, in the action integral for Goldstone
fields there must be a term to break the symmetry g(z) — g~!(z). For this role
we take (22.5), where w is the 5-form on SU(3) given by

wfg ng_l dg - 99 g 89 = 39
2401r2 ! oy’ op? ot oyt
x dy* Ady? A dy® Ady' A dy™,

(22.8) w=k——

where k is any real number. This form is invariant under left and right trans-
lations in SU(3) (and in fact every 5-form in SU(3) with this property can be
so written). This implies that w is closed (T14.2), a fact that can also be ver-
ified directly. Furthermore, w is integral if k = 1. Therefore we should choose
k = 27nh, with n an integer, in order for exp(iS/#) to be well defined, where
S is the action integral.

Recall that, since 73(SU(3)) = Z, the topological type of a Goldstone field
is given by an integer. In the semiclassical approximation, a quantum particle
corresponds to a topologically nontrivial soliton g(z). One can show that this
particle is a fermion if the topological number of the soliton and the integer
n = k/(2wh) are both odd. This makes it possible to identify solitons with
baryons.
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A functional integral is an integral over an infinite-dimensional space, usually
a space of functions in one or several variables. One generally defines a func-
tional integral as a limit of ordinary multiple integrals. For example, consider
a functional F(p) on the space of functions ¢(t) of a single variable ¢, with
a <t < b. We can restrict F' to the space of continuous functions that are
linear in each of the segments [to, 1], - .., [tn—1,tn], With &; = a +i(b — a)/N.
This space is finite-dimensional, since every such function is determined by its
values at @ = tg,t1,...,tny = b. If we call these values @, ..., ¢n, the space is
parametrized by (o, ...,¥n), and we can consider the integral Jy of F with
respect to 1, .. .,on. The integral of F(y) is naturally defined as the limit of
the approximations Jy, as N — oo:

(23.1) 7= [Flgl T] de(r) = Jim Jn.
a<r<b -

However, in many important cases, the limit does not exist. Then it is
expedient to isolate the divergent part of Jy and to interpret the limit of the
remainder as the functional integral. For example, if there is a constant C for
which C—VJy has a limit, we define the functional integral as this limit. We
merely have to redefine Jy, replacing dy; by Cldyp;.

This definition can be modified in several ways. Suppose we consider, for
each piecewise linear function ¢, not F(yp) itself but an approximation to it.
For example, if the functional is defined by an integral, we could approximate
the integral by a Riemann sum using the same partition fo,...,tN. It turns
out that in many interesting cases the value of the functional integral depends
on the choice of an approximation. Hence, strictly speaking, the expression
J = [F(p)1dp(t) is only meaningful when we specify in what way we are
passing to the limit.

Now suppose ¢(t) is defined on the whole t-axis, rather than just on an
interval. Then, to construct a multiple-integral approximation to the functional
integral, we must not only partition the axis into small segments, but also limit
ourselves to a finite number of segments. Likewise, if F[y] is defined on functions
in m variables, we construct the approximation by replacing R™ with a lattice,
and determining Jy by integrating with respect to the values of v at a finite
number of lattice points (for example, those lying inside a cube).

In quantum field theory, the transition from a functional integral J to its
finite-dimensional approximation Jy is closely related to the cutoff procedure.
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Passing from functions on R™ to discrete functions on a lattice corresponds to
the cutoff of high momenta (ultraviolet cutoff); ignoring all but a finite set of
lattice points corresponds to a cutoff in the coordinates (infrared cutoff).

Let us consider Gaussian integrals, the simplest and most important exam-
ples of functional integrals. A Gaussian integral is an integral of the exponential
of a quadratic form. In the finite-dimensional case we have

(282) [ ex(=4(Az,2)) d = (2m/%(det 4)2,

where the angle brackets denote some real-valued scalar product in an N-
dimensional space, and A is a positive, self-adjoint linear operator; if (a;;) is
the matrix for A, we have (Az,z) = ai;z'z’.

Now consider an infinite-dimensional Gaussian integral

(23.3) J = [exp(~}(Az,2)) de,

where z takes values in an infinite-dimensional Hilbert space, and A operates
on this space. We approximate (23.3) by the finite-dimensional integrals

(23.4) Iy = / exp(—L(Anz, 7)) dz,

where z takes values in a finite-dimensional space, and Ay is an approxima-
tion for A on this space. For example, if A is a differential operator acting on
functions in R™, we restrict to functions defined on a finite portion of a lattice,
and choose for Ay the operator obtained by replacing derivatives with finite
differences.

If det Ay tends to a finite limit as N — oo, it is natural to define the deter-
minant of A as this limit: det A = limy_,., det Ay. The Jy have no finite limit
because of the factor (2m)V/?; as explained above, we get rid of this divergent
factor by replacing dz with (2r)~'/2dz. We then define the Gaussian integral J
as the limit of the redefined Jy, and this limit is (det A)~*/2.

It is reasonable to retain the formula

(23.5) J= / exp(—31(Az, 7)) dz = (det A)7'/?

as the definition of an infinite-dimensional Gaussian integral even when the limit
lim,_,o det Ay does not exist. In this case the (regularized) determinant of A
can be defined in other ways. The simplest way, from the technical point of view,
is by means of the {-function of A. We assume that the self-adjoint operator
A is non-negative (that is, (Az,z) > 0) and that its spectrum is discrete. The
(-function of A is given by

(23.6) ¢(s) =D A%,

where the A are the non-zero eigenvalues of A. This formula makes sense only
for values of s at which the series converges; for other values {(s) is defined by
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analytic continuation. If {(s) can be analytically continued to the point s =0,
we define det A by the equation

(23.7) Indet A = _d_(_(s_) ,
d §=0
which is motivated by the fact that
Iy =-2 1
ds |,

If A is an elliptic operator of order r on an m-dimensional compact manifold
(Chapter 26), the series converges for Res > m/r. The resulting function ¢(s) can
be analytically continued into a meromorphic function of s, having no singularity at
8 = 0. Thus (23.7) can be used in this case to define det A. For .more details, see
Chapter 27.

As an example, consider the functional integral
(29) 7= [exp(-3 (@0 + mg7) ) TLdote)
1 2
= /exp —§/¢(—A+m Yedz | [T de(z),

where @(z) is a field in R, assumed to decay to zero at infinity, V is the

four-dimensional gradient, and A the four-dimensional Laplacian. By (23.5),

this integral equals (det(—A +m?))~¥2 In order to compute the (-function of
= —A + m?2, we use the identity

-8 __ 1 o0 a—1
29 - WO=XX' =T /0 £ exp(—Net) dt
= ﬁ /o Z gty exp(—At) dt.

The matrix entries K(,Zo,t) = (z|exp(—At)|zo) of the operator exp(—At)
satisfy the equation

(23.10) %K(z,zo,t) — _AK (3,50, t),

with initial condition K(z,Zo,t = 0) = 6(z — Zo). For A = —A + m? this
equation can easily be solved, to yield

ezl

1 2
(23.11) K(z,zo,t) = Tor =P (—m t ym

where we have used the fact that p(z) decays to zero at infinity. In particular,

1
(23.12) K(z,z,t) = = exp(—m?t).
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In order to find the trace of exp(—At), we must integrate K(z,z,t) with
respect to dz; but this integral clearly diverges. To get a finite answer, we must
introduce a coordinate cutoff, that is, assume that ¢(z) is defined only on a
finite box of volume V. Then

1
(23.13) trexp(—At) = 1 =] ——— exp(—m?t).
This allows us to compute the {-function, using (23.9):
— 1 2 2—sF (s—2)
(23.14) {(s) = V167r2 (m*) (s) .

Equation (23.9) can only be used when Res > 2, since only then does the
integral in ¢ converge. However, (23.14) allows us to analytically continue ¢(s)
to the whole s-plane, except for the points s = 1 and s = 2, where ¢ has simple
poles. From (23.4) we see that

(23.15)  det(—A+m?) = —¢'(0) = V—l—m (=2 + Inm?).

It is often interesting to know not only the regularized determinant of an
operator, but also the asymptotic behavior of the approximating discrete opera-
tors. The determinant of —A +m? becomes finite when we introduce ultraviolet
cutoff (that is, when we pass to a lattice) and infrared cutoff (when we restrict to
domain to a finite volume V). It is important to study the asymptotic behavior
of the finite determinants when the cutoffs are lifted. This problem is certainly
solvable, but it is technically much simpler to proceed instead by introducing
what is called cutoff in proper time. The results do not change significantly.
The determinant of a positive operator A cut off in proper time is the number
det, A defined by

oo ] 00
(23.16) Indet. A=) — / n exp(—At) dt = / %tr exp(—At) dt.
For A = —A + m?, it follows from (23.13) that

Vm! 1 2 2 3w
(23.17) lndetsA~§2—ﬂ_2-(-stz-+T—n2—E+lnE+lnm —E—F(I) .
and the error tends to zero as ¢ — 0. We denote by In det’ A the number obtained
from (23.17) by discarding the part that diverges as € — 0. Just as we did in
connection with det A = exp(—(’(0)), we can consider det' A as the regularized
determinant of A. Equation (23.17) implies that, for A = A + m?2,

V 4
(23.18) Indet’ A=Indet A —

1 (1)-

This is a particular case of a general relation that we will prove in Chapter 28.
Substituting = + a for =, we can reduce the functional integral
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(23.19) / exp(—3(Az, 7) + (b,)) dz = (det A)™"/ exp(—3(A75, 1))
f0 (23.5). A reasoning similar to the one we used to study (23.5) gives
(23.20) / exp(Li(Az, 7)) dz = (det A)™V/2

and

(321) [ exp(}i(Az, o) + i(b,2)) dr = (det A) ™ exp(~Fi4~'b.1)),

where A is a self-adjoint operator on a Hilbert space.

Gaussian integrals arise in quantum field theory when one studies La-
grangians that depend quadratically on the field. But they are also important
in the study of more complicated Lagrangians, as they occur in the approxi-
mate calculation of functional integrals by the stationary-phase method or the
Laplace method. We recall that, if f(z) is a real-valued function of n real vari-
ables, the main contribution to the multiple integral [ exp(ia~1f(z))d"z as
a — 0 comes from neighborhoods of the critical points of f(z). We will write
the answer, in the case where there is a unique critical point zo, by taking the
Taylor series of f(z) at Zo, keeping only terms of order at most two, and evalu-
ating the resulting Gaussian integral. The asymptotic behavior of the solution is

(23.22) )
/ exp(ic ™ £(z)) dz ~ exp(ia™" f(z0))(~2mia)"/? (det gZ{ ((92)

T=T0

If there is more than one critical point, the asymptotic behavior is given by a
sum of expressions like (23.22), one for each point.
Similarly, we can find the asymptotic behavior of the integral

[ exo(—af(z) dz,

where f(z) is a real-valued function with an absolute maximum at zo. The
dominant asymptotic term in this case is

-1/2
(23.23) exp(—a~" f(z0))(2ma)"/ (det 3:{(.(32)

T=T9

There are analogs of (23.22) and (23.23) for functional integrals, although
the proof of these formulas is much more delicate. We can easily derive higher-
order terms in (23.22) and (23.23): we just have to expand the exponential in
a power series and include terms of order three or higher. For functional inte-
grals, the approximations thus obtained correspond to results from perturbation
theory.

The definition of a functional integral given above is not always adequate.
Sometimes one must use a procedure known in quantum field theory as renor-
malization. Suppose the integrand in a functional integral depends on a pa-
rameter A (possibly a vector (Al,...,A")). Then the approximating multiple
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integral Jy will also depend on A. It may happen that, even if Jy()) does not
have a finite limit as N — oo for A fixed, one can choose a sequence Ay of
values of A such that Jy(\y) does converge to a nonzero finite limit as N — oo.
This limit is then defined as the value of the functional integral. Of course,
there can be many sequences Ay with this property, leading to different limits
limy—00 Jn(An). In this case the functional integral is not well defined, but it
can be seen as depending of a parameter u (possibly a vector), which describes
the passage to the limit. In quantum field theory the parameters X!, ..., A" that
appear in the integrand are called bare charges or bare masses; the parameters
that describe the passage to the limit are called physical charges or physical
masses.



24. Applications of Functional Integrals to
Quantum Theory

We will now obtain expressions for several important physical quantities in
terms of functional integrals. These expressions are often very useful in quantum
mechanics and quantum field theory.

Consider the operator

(241) i=La@(ia) - Sm@r
The function
(24.2) Alp,q) = aa(g)p"

is called the symbol (or gp-symbol) of A. One can say that A is obtained from
A(p,q) by replacing the coordinate ¢ by the coordinate operator §, and the
moment p by the moment operator p = i~*(8/8q), with the condition that §
is written to the left of p. The transition from A(p, g} to A can be seen as the
quantization of the classical physical quantity A(p, g). One can easily verify that
the function f(q) = Af(q) can be written as

(243) f@) = o [ AG,0)f(@)e?e™ dpd.

This formula allows us to obtain A from A(p,q) even when A(p,q) is not a
polynomial in p. It also gives an expression for the matrix entries (21 A | @)
in terms of the symbol A(p, g):

(24.4) (@l Ala) = o [ABa)e ™ dp.

Equation (24.3) also implies that if A, B and C are operators with C = AB,
their symbols are related by

1 :
(245)  Cp.) =5 [ Alpr, B @) @ dpy dgs

We use this formula to compute quantities of interest in quantum physics
in terms of functional integrals. Specifically, we consider an operator H with
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symbol H(p,q), and compute the matrix entries (y | e*# | z) of the operator
e~®H in terms of a functional integral.
In the applications, H(p, q) is the Hamiltonian of a classical mechanical system,

H is the Hamiltonian operator of the corresponding quantum system, and e~*¥ is
the evolution operator for the system.

We show that
(246) le™# | ) = [ exo(iS) []dp(r) da(r),

where
@7) s = [ (% - Hiptr) o)) o

The functional S can be interpreted as the classical action integral along the
phase trajectory (p(t), q(t)). On the right-hand side of (24.6) we have a func-
tional integral along the trajectory (p(t), q(t)), for 0 < 7 < t, with boundary
conditions ¢(0) = z and g¢(¢) = y. The meaning of this functional integral will
be clarified by the proof.

To derive (24.6), we use the relation

(24.8) exp(—itH) = (exp(—(it/N)H))",

and notice that for N large we have exp(—(it/N )H) =~ 1 — (it/N)H. Thus the
symbol of the operator exp(—(it/N)H) is approximately equal to

exp(—(it/N)H(p,q)),

and the error is of order N™2 as N — oo. Using (24.5) and (24.8), we get an
approximate expression for the symbol of exp(—itH), which we call G(p, g, t):

(24.9) G(P, 2,t)
(21(')(” (2r)v-1 /exp( Zpa(qa a-1) — i3z ZH(pa:Qa—l)) H dpa dga,

where we have st go = gy = g and py = p. The error in this estimate approaches
zero as N — oo. i

Combining (24.9) and (24.4) we get an approximation for (y | e~# | z),
which closely resembles (24.9), except that it contains an extra integral with
respect to to py = p, and an extra factor (27)~! coming from the extra integral;
also, the boundary conditions are gy = £ and gy = y. Thus,

(24.10) (y|e ™| z)
N N-1

= (2r)~N / exp(i(i::pa(qa —Qa-1) — %iﬂ (Pas ‘Ia—l))) [1dpa I da,

1 1
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where go = = and gy = y. The expression in the inner big parentheses is a
Riemann sum for the integral in (24.7), where the trajectory g(7) goes from z
to y, and no boundary conditions are imposed on p. This leads us to set the
limit of the right-hand side as N — oo the functional integral of ¢ over the
space of paths (p(7), g(7)) with boundary conditions ¢(0) = z and ¢q(t) = y. By
convention, the factor (2)~" is absorbed into the terms dp, and dg,.

Using a similar reasoning, we obtain

(411) (w1 |2) |
= exp( 1) 2 - [ ot () L),

where, as before, the integral is over all paths (p(7), g(7)) with boundary con-
ditions ¢(0) = z and g(t) = . This formula can also be obtained directly by
substituting iH for H in (24.6), something we can do because we have not
assumed that H is self-adjoint.

All the relations proved above hold practically unchanged for the case of
an arbitrary (finite) number of degrees of freedom. Of course, one should then
think of the variables p and ¢ as vectors

Pa = (Pat, - - - » Pan), 9o = (q,i, @)y

where n is the number of degrees of freedom, and one must also replace (2m)" 2 by
(2r)~" everywhere. In addition, formulas (24.6) and (24.11) have counterparts
even in the case of an infinite number of degrees of freedom.

We define the symbol of the differential operator

24. 2 A — 11...1k -—k_.__.
o LT, 0 s g
acting on the space of functions in the n variables q',...,q" as the following
function of the 2n variables ¢!,...,¢" P1,...,Pn:
(2413) A(p, q) = Z Z a,i‘"""‘ (q)p,-l .-+ Pip-

E i1yik

As before, A can be obtained from A(p, g) by replacing the varisbles ¢!, ...,q" by
the position operators §*,. . .,4" (operators of multiplication by ¢',...,q"), and
the variables py,...,pn by the momentum operators p; = i~1(8/dgq"), ..., Pn,
making sure we write the $; to the right of the §;.

Another concept, the principal symbol of A, is often useful. The principal
symbol of a differential operator of order r is defined as the sum of terms of
order r in the p;, in the expression (24.13).

We examine the important particular case where the Hamiltonian H(p, )
is quadratic in the momenta. Then the integrals with respect to the p-variables
in (24.9) and (24.10) are Gaussian integrals. Evaluating them by means of the
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standard formulas given in Chapter 23, and taking the limit as N — oo, we ob-
tain expressions for (y| exp(—itH)|z) and (y| exp(—tH)|z) in terms of functional
integrals along trajectories in ¢-space. For example, if

1 .
H =33 a%(q)pp; + Ula),
where the a*/(g) form a positive definite matrix, the approximate expression

(24.10) for (y| exp(—itH)|z) is
(24.14)

/ exp( al](qa—l)(Qa Go-1)'(@a—Ga—1)’ ‘%U(qa-l))l;l(iﬁz:_l))ﬁ’

where (a;;(g)) is the matrix inverse to (a(q)).
This allows us to write (y| exp(—itH)|z) as a functional integral

(24.15) (vl exp(~it)iz) = [ exp(iSla]) [T da(),
where
(24.16) Sl = [ La(). i) dr = [Gay(@d'd - U@) dr

is the classical action along the trajectory ¢(7) in configuration space, and the
integral is taken over trajectories satisfying the boundary conditions ¢(0) = z
and ¢(t) = y. The factor (det a(g))"/? in (24.14) is accounted for by the introduc-
tion, in configuration space, of the volume element dg = (det a(q))*/2dq" . .. dg",
corresponding to the metric ds? = a;;(g) dg* dg’.

A similar reasoning gives

(2417) (vl exp(—ti)Iz) = [ exp(—Seualal) [T da(r),
where
(24.18) Seuclg] = / (30(9)d'¢ +U(q)) dr

is called the Fuclidean action. (Apart from a sign, the Euclidean action can be
obtained from the action (24.16) by replacing time ¢ by imaginary time it.)

We remark that the functional integral (24.17) is much easier to deal with
than (24.15), and therefore increasingly more popular. This is because the in-
tegrand in (24.15) has absolute value 1, so convergence depends on the fact
that the integrand oscillates. The passage from (24.15) to (24.17) is known as
Euclidean rotation or Wick rotation, and is related to analytic continuation in
the time domain.

Usually the operator exp(—tH) can be defined for complex values of ¢ in the half-
plane Ref > 0, and it varies continuously with ¢ in this half-plane, and analytically
in the open half-plane Ret > 0. The matrix entries (y|exp(—tH)|z) have the same
analyticity properties.
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Physical information can be extracted equally well from (24.15) and (24.17),
although the operator exp(—itH) has a more immediate physical interpretation.
For example, we have the relation

(yl exp(—tH)|z) = >yl exp(~tH)In){nz) = ;exp(—snt)(yln)(nlz),

where the |n) form a basis of eigenvectors for H and the €, are the corresponding
eigenvalues. From this it follows that, if (y|0) # 0 and (0|z) # O, the asymptotic
behavior of (y| exp(—tH)|z) as t — oo is defined by the energy &o of the ground
state |0) of the Hamiltonian H:

1 -
g0 = — Jim - In{y| exp(~tH)lz).

Further, the partition function Zg) of a quantum system with Hamiltonian
H at a temperature T' = 1/0 is given by

(24.19) Zip) = trexp(~pH) = [(o|exp(~pH)|z) dz.
This becomes
(24.20) Zip = [ exp(~Semala()]) [ da(r),

where 0 < 7 < f and the integral is taken over all possible closed trajectories,
2(0) = g(B). (One can say that the trajectory q(7) is required to satisfy periodic
boundary conditions, or that it is defined on the circle.)

The generating functional of the correlation function at temperature T" =
1/0 can be written as

(24.21) G(J)= Zp),
Zp)

where Z(g)(J) is the partition function in the presence of a source:
(24.22) Zip(J) = [ exp(—(Sewala] + Ja)) T da(7).

(Here Jq = [ Ji(7)g*(r) d7, and the function J (7) is known as the source.)

Equation (24.21) can be considered the definition of the correlation function. To
see that this definition coincides with the standard one, notice that

—1\yr P B .
02 6 =5 L [an. [[an G | T R) - )
where
(2424) G:Ill“ (Tla <oy Tn I T) = Z(Tﬂ; /qil (Tl) ERY i (Tn) exp(_seucl[q]) HdQ(T)’

and the integral is taken over closed trajectories.
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We will momentarily show that, for ; < --- < 7,, we have

(24.25) G *(1ry,...,7. | T)
= (79% tr(ex‘p(—fI(ﬂ - "-71))qm‘"l exp(—I;T('r,, - ""'n—l))‘:l\""_l e qﬁ EXP(—FITI))

= Zg tr(exp(—HB)G" (a) ... 4" (1)) = (4" (7a) - .- §" (7)),

where (1) = exp(H)§* exp(—HT), and the angle brackets denote averaging with
respect to the equilibrium state at temperature 7' = 8~1. The right-hand side of the
last equality in (24.25) is the usual definition for the correlation function.

To prove (24.25), we impose additional conditions g% (1) = sy, for s, fixed. Using
(24.17), we integrate under these conditions, and then integrate over all possible values
of the sg.

From (24.24) it is clear that G (ry,..., 7, | T) does not change if we permute
the 7%, so long as we apply the same permutation to the ix. Thus, we can extend
(24.25) to define Git*n(1y,..., 7, | T) for arbitrary 1,...,7,: it is enough to apply a
permutation that puts the 7, in increasing order. Making T tend to zero, we obtain
functions G#*(7y,...,7,) called Euclidean Green’s functions, or Schwinger func-
tions. They are expressed in terms of the products (7). ..§" (r1) averaged with
respect to the ground state; the times 7,, ..., 7; must be in decreasing order. By ana-
lytic continuation of the Euclidean Green’s functions we obtain the ordinary Green’s
functions, which are the average with respect to the ground state of the products of
Heisenberg operators, exp(iHt)§* exp(—iHt), arranged in order of decreasing time.

Equations (24.15), (24.17) and (24.20) also hold in the case of infinitely many
degrees of freedom; this can be checked by taking the limit of the finite case as the
number of degrees of freedom tends to infinity. Note, however, that the divergences
that arise in the infinite case usually lead to a situation where the functional integrals
cannot be interpreted literally; a meaningful definition for these integrals must include
a renormalization procedure.

Consider, for instance, the quantum partition function of the scalar field
with action functional

§= [(e" updup - Ulp))d'z,

(24.26)
U(p) = 3m*@” + §Ae,

assuming that we have introduced cutoff in the spatial variables x = (z!, 22, z3).

Here g* is the metric tensor in Minkowski space-time, x lies in a three-dimen-

sional cube W, and the field ¢(z) = (¢, x) satisfies periodic boundary condi-

tions in the three spatial variables. The partition function Zy can be written in

terms of a functional integral:

(24.27) Zy = / exp(~—Seuctl]) [ [ do(z),

where the integral is over the four-dimensional box V' with coordinates 0 < ¢ <
B = 1/T and x € W, and the field ¢ is defined on V and satisfies periodic
boundary conditions in all four coordinates. (Equivalently, we can say that ¢
is defined on the four-dimensional torus T¢ = S! x S! x S! x §! obtained by
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identifying opposite walls of V.) The Euclidean action Seuc [#] is obtained form
(24.26) by replacing g** by 6" and changing the sign of U(y).

The energy density of the ground state of a quantum system obtained by
quantizing the classical theory with action integral (24.26) is

) InZ
(24.28) £ = Jim — V"

This is because, as T — 0, the main contribution to the partition function
Zy = trexp(—BH) = ¥;exp(—pe;) comes form the term exp(—pfeo), which
corresponds to the ground state energy €o in the volume W.

If only the spatial dimensions of the box V' tend to infinity, rather than all
four dimensions, equation (24.28) gives the value of the free-energy density at
temperature T = §~'. The generating functional of the correlation functions in
WatT=p"'is

(24.29) evti) =242,

v
where Zy(J) is the partition function in the presence of a source and V has the
same meaning as in (24.27). The functional integral for Zy(J) differs form the
one for Zy only by the addition of the term [, J(z)yp(z) dz to the Euclidean
action. As the dimensions of V' tend to infinity, the functional Gv(J) becomes
the generating functional for the Euclidean Green’s functions:

(24.30) G(J) = Jim Gv(J) = z(—‘;l JEXCREATCAR CATL

From (24.25) it follows that the Euclidean Green’s functions have the form

Gn(zll vee ,.’B") = (‘p(zl) ce- ¢(In))o

for z; = (7, %) withy > - > T, where the angle brackets denote averaging
with respect to the ground state, and the symbol #(z) = @(7,x) denotes a
field operator that depends on the spatial coordinates x and imaginary time 7.
By analytic continuation with respect to 71,..., 7, one can obtain from the Eu-
clidean Green’s functions the ordinary Green’s functions (averages, with respect
to the ground state, of chronological products of Heisenberg operators).

As noted before, if there are infinitely many degrees of freedom one runs
into ultraviolet divergences, so one cannot directly determine the functional
integrals discussed above simply by taking the limit of the discrete case. One
must first renormalize the bare mass T and the bare charge X in (24.26), and
also divide J(z) by a number 2 depending on the scale of the lattice, or, al-
ternatively, renormalize ¢ by multiplying it by 2. Perturbation theory shows
that the dependence of m, A and z on the scale of the lattice can be chosen in
such a way that, by isolating in a certain way the divergent numerical factors
not depending on J, we obtain a finite (non-zero) limit for Zy(J). When we
compute Gy(J), the divergent factors cancel out. Thus the divergences in the
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Green’s functions can be eliminated by renormalizing the mass m, the charge
A and the field ¢(z).

It is important to emphasize that the considerations in this chapter are not
mathematically rigorous. Along the lines of the reasoning above, one can give a
justification of the use of functional integrals in quantum mechanics (i.e., a proof
of (24.6) and (24.11)). However, the situation in quantum field theory is much
more subtle. In particular, it appears that the results motivated by perturbation
theory are not necessarily confirmed by rigorous consideration. This is true, in
particular, of the theory with action functional (24.26) (the so-called ¢} theory).

The theory of functional integrals in quantum field theory is far from being
complete. For an exposition of many important results already obtained, see

[82].



25. Quantization of Gauge Theories

The action integral in gauge theories is invariant under local gauge transforma-
tions. Such a large group of symmetries makes the Lagrangian degenerate, that
is, the generalized velocities cannot be expressed uniquely in terms of the gen-
eralized momenta. This makes difficult the use of the Hamiltonian formalism in
quantization. The difficulties are surmountable, but it is simpler to choose an al-
ternative approach, based on functional integrals. Note that in the Hamiltonian
formalism we can express physical quantities in terms of functional integrals
whose integrand contains exp(iS) or exp(—Seua), Where S is the action integral
and S,,q is the Euclidean action integral. Our strategy will consist in postu-
lating, without resorting to the Hamiltonian formalism, that similar equalities
hold in gauge theories.

For the sake of simplicity we consider the theory of a gauge field that does
not interact with other fields; the effect of such interactions can be easily taken
into account later. Recall that in a gauge theory the action integral has the form

1
(25.1) S = v f 929" (Fap, Fu) d'z,

where g" is the metric tensor in Minkowski space. As usual, the strength Fog
of the gauge field A, which takes values in the Lie algebra G of the gauge group
G, is defined by

Fop = OaAp — OpAa + [Aa, Agl,
and the angle brackets denote an invariant scalar product on G (if G is a matrix
group, we can assume that (a,b) = —2tr(ab)).

By definition, the Euclidean action integral for Yang-Mills fields is obtained
from the action integral (25.1) by replacing g* with 6* (that is, by replacing
the Minkowski metric with the Euclidean metric) and switching signs. Less
formally, the Euclidean action is obtained form the pseudo-Euclidean action by
replacing time with imaginary time.

It will also be convenient to consider the Euclidean action integral for gauge
fields on arbitrary Riemannian manifolds. This is given by

(25.2) Seual = 4ig2 / 9" g"P (Fop Fuw) AV = 4%;2 / (Fap, FP)dv,

where F# = g#gf*F,,, and dV = /detge d'z is the volume element for
the manifold. Notice that (25.2), like the action functionals discussed above, is
invariant under the local gauge transformations
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Au(z) = A, (2) = 9(2)Au(2)9 7 () — Dug(z)g™" (),

where g(z) is a G-valued function.
Consider the functional integrals

(25.3) Zy = [ exp(~SeualA) [T dA(),
(25.4) 2v(®) = [ 8(4) exp(—SwalA]) [ dA(@),

where V is a four-dimensional box over which the integral is taken, the gauge
field A,(z) is defined in this box and satisfies periodic boundary conditions,
and &(A) is an arbitrary gauge-invariant functional. For example, we can take
&(A) = o(z1)...0(zs), where

1

Eigmguﬂ(faﬂ(z)’ Fu(z))

o(z) =
is the Euclidean action density at a point £ € R*. Another possible choice is
&(A) = tr br, where br- is the element of the gauge group that represents parallel
transport around a loop I" (T15.1):

br = Pexp(—/rA,,da:“).

We will call (25.3) the partition function in the four-dimensional box V', and
the ratio of (25.4) to (25.3) the Euclidean Green’s functional in V. Equation
(24.28) implies that the limit of V~'(—In Zy) as V' — oo should be interpreted
physically as the energy density in the ground state (in fact, under the approach
we are using this limit is the definition of that density). Similarly, in view of
(24.29) and (24.30), it is natural to interpret the limit

. Zy(P)
(25.5) Jim =25

as a Euclidean Green’s functional or Euclidean Green’s function (dependent on
the choice of $(A)). For example, for $(A) = o(z)...o(z,), this limit can be
interpreted physically as the average of the T-ordered product &(z1)...5(zn)
with respect to the ground state. (Here the temporal coordinate of a point
z € R*? corresponds to imaginary time, T-ordered means ordered with respect
to imaginary time, and &(z) stands for the operator corresponding to o(z) in
the operator formalism that we chose not to adopt.)

It is easy to construct analogs for Zy and Zy(®) for V' an arbitrary complex
Riemannian manifold: we use the same formulas (25.3) and (25.4), where Seua[A]
now denotes the Euclidean action integral on the manifold, given by (25.2). The
case of a box with periodic boundary conditions corresponds to the manifold
being a four-dimensional torus T*, since we can identify opposite walls of the
box.
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One should bear in mind, however, that for a gauge field the term “periodic
boundary conditions” can have two different meanings: we can require that the re-
strictions of the field to opposite sides of the box should coincide, or merely that
they should be gauge-equivalent. In the first case the gauge field has the geometric
meaning of a connection on the trivial principal bundle over the torus T4, and in the
second, that of a connection on an arbitrary principal bundle over T*. Similarly, a
gauge field on a manifold can be seen as a connection on an arbitrary principal bundle
over the manifold (T15.3).

Naturally, the functional integrals (25.3) and (25.4), like any other func-
tional integral, require a precise definition in terms of limits of finite-dimensional
approximations. To provide such a definition, we consider a cubic lattice in R*.
If a gauge field A,(z) is defined in R*, we can associate, to every oriented edge
~ of the lattice, the element b, of the gauge group G that represents parallel
transport along 7:

(25.6) by = Pexp (— L A,,dz“).

A change in the orientation of <y replaces b, by its inverse. Next, under a gauge
transformation with gauge function g(z), the element b, transforms according
to the simple law

(25.7) B, = g(z1)by9~* (%0),

where 1 and z; are the beginning and end points of v (T15.2). This suggests
that we take as the discrete analog of a gauge field a correspondence y +— by
assigning to each oriented edge of the lattice an element of the gauge group G,
in such a way that b, is replaced by its inverse when the orientation of v is
switched. As the discrete analogue of a gange transformation we take (25.7),
where g(z) is a function defined on lattice vertices. To construct a discrete
analog for the action integral that is invariant under transformations (25.7), we
assign to each oriented two-face o of the lattice the element ¢, € G representing
parallel transport around the boundary of 0. For a cubic lattice, the faces are
squares, and if the boundary of an oriented two-face o consists of the oriented

edges 71, 72, 73 and 4 (Figure 16), we have
(25.8) Co = by bbby, -

The value of ¢, depends on the choice of a starting point for the boundary; for
example, if we had started at the vertex between <3 and <4, we would have obtained

Ey = bygbyybayby, = b2 1C,bny.

In the case that interests us (see the next paragraph), the replacement of ¢, by a
conjugate has no effect in subsequent computations, and therefore this ambiguity is
not important.
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Figure 16

Under a gauge transformation, ¢, is replaced by a conjugate element in G:

C:,. = g(IO)CGQ—I(ZO);

where z; is the starting point of edge ;. If f is a function on G that is constant
on each conjugate class, f(kgk~') = f(g), the value of f(c,) does not change
under a gauge transformation. We can, therefore, construct a gauge-invariant
functional by, say, attaching to each discrete gauge field the sum of the f(c,)
over all faces o of the lattice.

It is easy to choose f(c,) so that the discrete gauge theory thus obtained
approximates the continuous gauge theory of interest. For instance, if G is a
matrix group, we can make f(g) proportional to tr(g — 1)?, where 1 represents
the identity. For a small square face o with adjacent edges z* and z¥, we have
(see T15.2)

Ce=1— a.z.ﬂ,,,

where a is the length of the edges, so that
(25.9) f(cs) = consta’ tr F,,,..

This means that, for an appropriate choice of the constant, the action 3, f(c,)
approximates the action of a continuous gauge theory. Another possible choice
for f(g) is a constant times trg.

Once we bave constructed an approximating discrete action, we can define a
discrete analog for the functional integrals (25.3) and (25.4) simply by replacing
Seucl [A] with

(25.10) 5°06) = 3_ £(ca).

In addition, integration over gauge fields is to be replaced by its discrete coun-
terpart. We restrict ourselves to a finite lattice, so that there are only finitely
many vertices and edges. Recall that a “discrete gauge field” is a map v — b,,
where the b, can be chosen independently of one another, under the sole condi-
tion that if v and 7 represent the same edge with opposite orientations, we have
by = b;l. Thus the space of gauge fields is simply the direct product of finitely
many copies of g, one per (non-oriented) edge. The invariant scalar product
on the Lie algebra G of G gives an invariant metric and an invariant volume



150 Part II. Topological Methods in Quantum Field Theory

element on G, and therefore on the product [, G. Integration over gauge fields
is with respect to this volume element.

The large group of symmetries that gauge fields possess complicates not only
work in the Hamiltonian formalism, but also the evaluation of the functional inte-
grals (25.3) and (25.4). Indeed, the perturbation theory approach to the calculation
of a functional integral is based on discarding all but the quadratic part of the expo-
nent, and evaluating the resulting Gaussian integral. However, since in gauge theories
the quadratic part of the Lagrangian is degenerate because of the existence of an
infinite-dimensional symmetry group, we cannot apply this procedure directly. The
difficulty can be overcome if we note that the integral of a quantity that enjoys certain
symmetries can be replaced by the integral of a related quantity over a subspace of
the domain—for example, the integral of an even function over R is twice the integral
over the positive axis only. This reduction yields integrals that can be dealt with as
in the non-degenerate case.

To make this precise, we start with a general discussion of the integration of
invariant functions of finitely many variables.

Let M be a Riemannian manifold and f(z) a function on M, which is invariant
under the action of a compact group G of isometries of the manifold: f(gz) = f(z)
for all g € G and all z € M. We show that

(15.11) [ f@aw,

where dy is the Riemannian volume element, can be reduced to an integral over a
space of dimension lower than M if the orbits of G have positive dimension. For
example, if f(z) is a spherically symmetric function on R?, the integral of f can be
reduced to a one-dimensional integral:

(15.12) . / F(le]) d°z = 4r /o ” f(r)r? dr.

For now we assume that G acts freely (that is, all stabilizers H;, for z € M,
are trivial), and that there is a submanifold N of M that intersects each orbit of G
exactly once. Then (25.11) can be transformed into an integral over N. The simplest
way to do this is to use the so-called Faddeev—Popov trick. Assume that N is locally
defined by equations

(25.13) Fl(z) = .-+ = F¥z) =0,

which are assumed independent (that is, the differentials of F*,... , F* are linearly
independent at each point £ € M). We can also write (25.13) as a single vector
equation F(zx) = 0, where F = (F?,... , F*%) is a map from M into R*. Saying that
the equations are independent means that the differential F, of F at each point of
x € M has rank k.

Define the function Wr(z) by the equation

(25.14) We(z) [ 8(Flg=))dg =1,

where dg is the invariant element of volume on the group G, normalized so that the
total volume of G is 1. Then
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(25.15) [ f@ du= [, We@F@5(F(z) du,

where the presence of 6(F(z)) on the right-hand side transforms the integral over M
into an integral over N. To verify this equality, write (25.11) in the form

/M f@)dp= /M dp /G dg f(z)Wr(z)6(F(gz)).

Replacing gz by % and noting that both f(z) and Wy (z) are G-invariant, we get

| t@du= [ du [ do f@We(@)6(F ().

Evaluating the integral over G, we see that
[ 1@ du=V(G) [ We@)f@8(F(z))dn,
M M

which implies (25.15) because the volume V(G) of G was assumed to be 1.

Although the argument above is for a finite-dimensional manifold and a compact
group G of isometries, it can be extended to the infinite-dimensional case, with G not
compact. It is often convenient to consider (25.15) as the defining equation for the
functional integral when the integrand has an infinite-dimensional symmetry group.
We apply this now to the integrals (25.3) and (25.4).

The integrands in these integrals are invariant under the group G*™ of all local
gauge transformations. However, this group does not act freely on the space of gauge
fields A, (z), which here plays the role of the manifold M (T15.9). We therefore replace
G™ by G@°, the group of all local gauge transformations arising from functions g(z)
whose value at a fixed point z, is 1. When the fields are defined on Euclidean space-
time, which we will assume for simplicity to the case, it is convenient to take the
point at infinity for xy, so that G§° consists of transformations arising from functions
g(z) such that lim,_,, g(z) = 1. Now G{° does act freely on the space of gauge fields
(T15.9). We must therefore select a set N of gauge ficlds that intersects each orbit of
G{ exactly once.

We do this by imposing on the fields the gauge condition 8,A*(z) = 0. Strictly
speaking, this only works in the abelian case; if G is non-abelian there may be no way
to select, in a continuous way, a single representative for each orbit of G (T15.9). But
even then we can use the gauge condition d,A*(z) = 0 to construct a perturbation
theory, for the following reason: in such a theory, only gauge fields that differ little
from a vacuum field (by which we mean a field that is gauge-equivalent to a zero field)
play a significant role. However, two fields that are sufficiently close to being vacuum
fields and that satisfy d,A#(z) = 0 cannot be linked by a gauge transformation
arising from a function g(z) with values near 1. This is because the nonlinear equation
for g(z) in this case differs by ouly a small term from a linear equation having no
nontrivial solutions, and hence itself has no nontrivial solutions. (In the abelian case
all equations are linear, and one need not assume that the fields are near a vacuum.)

When (25.15) is applied to (25.3) and (25.4), the role of Wp(z) is played by the
functional W[A] defined by the equation

(25.16) w4 / 50 45) [[dg =1,
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where A% = gA,g~" — 8,997, and the integral is over GZ. As observed above, if a
field A, satisfies ,4* = 0 and is sufficiently weak, we have A% = 0 if and only if
g(z) = 1. Thus, in calculating the integral we can assume that g(z) differs from 1 by
an infinitesimal amount. Noting that

A (z) = Au(z) — Vie(@),

where ¢ is an element of the Lie algebra of G°, we see that the computation of W[A]
reduces to that of the integral

(26.17) [ 50,94 1 = gmrzom

over the Lie algebra of G. Applying the Faddeev—Popov trick to (25.4), for example,
we obtain

(26.18) / B(A) det(8"V,,) exp(—Senet) (0" 4,.) [ 2A.

A perturbation theory applicable to this functional integral can be constructed in
the standard way. To do this, it is convenient to replace A, with A, =g 'A,, where
g is the coupling constant. Then the factor g~2 vanishes from the action integral and
the field strength F,, is replaced with %, = 9,4, — 8,4, + g[A,, A.]. Notice that
the perturbation series expansion is in powers of g2, rather than in powers of g, since
it is g that appears in the action integral. Hence, instead of g one often calls g%/ (4m)
the coupling constant, and denotes it by a. If necessary to distinguish it from the
effective coupling constant, we will call a the bare coupling constant and denote it
by Qpare+

The terms of the resulting perturbation series in powers of apere are generally
subject to ultraviolet divergences. To eliminate them, we must introduce cutoff in
momenta by discretizing, then lift the cutoff by passing again to the continuous limit,
while making the coupling constant apar depend on the cutoff parameter. This de-
pendence is usually fixed by the condition that the effective coupling constant at a
certain point (the normalization point) must assume a given value ao. The perturba-
tion series can then be transformed into a series in powers of ap. The terms of any
series arising by this process and describing a physically meaningful quantity remain
finite when the cutoff is lifted (assuming that the gauge field theory is renormalizable).

We now discuss in greater detail the passage from discrete to continuous
gauge theories. For definiteness, we assume that the action theory of the discrete
theory is given by (25.10), with f(c) = Btr(c? — 1). (This assumes the gauge
group G is a matrix group; if not, we set f (c) = Btré, where c is the operator
corresponding to an element ¢ € G in the adjoint representation.) If we choose
the dependence of 8 on the scale a of the lattice in an appropriate way, this
discrete action integral tends, as a — 0, to the action integral of a continuous
gauge theory. However, for such a choice of B as a function of a, the physical
quantities computed from the discrete action integral have no meaningful limit.

Therefore, we take another approach, one motivated by perturbation theory.
The dependence of B on a should be such that at least one physical quantity
remains constant as a varies; it can then be expected that all other physically
meaningful quantities will have a finite limit as @ — 0. The correlation functions
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of a discrete gauge model fall off exponentially with increasing distance, a fact
that has been rigorously proved for 3 large. The rate of this decrease is char-
acterized by the radius of correlation r(8). In a continuous theory, the radius
of correlation is the inverse of the mass of the lightest particle. (Recall that in
our system of units, K = ¢ = 1, so that mass is expressed in units of inverse
length.) Hence, in passing to a continuous limit, it is convenient to assume that
r(8) is independent of a; to see that one can force 3 to depend on a so that this
condition is satisfied, notice that as 8 — 0 the correlation radius gets very large
in relation to a. If 8 is so chosen, all other physically meaningful quantities have
a finite limit.

In this way we obtain all the physical quantities associated with a contin-
uous gauge theory. Actually, although the initial Lagrangian of the continuous
gauge theory depended on a dimensionless coupling constant, as a result of
renormalization we get a whole family of theories, depending on a parameter
that has the dimension of length, the fixed radius of correlation. It will be con-
venient to use the inverse of the correlation length, which is a mass m in our
system of units, as the parameter.

Essentially all these theories are equivalent, that is, they differ only in the
choice of scale. If, for example, we take a dimensionless physical quantity that
depends on the vector of momenta k = (ki,...,ky), in our theories it will
depend only on the ratios k;/m, ..., k,/m. In particular, the effective coupling
constant a, considered as a function of k, actually depends only on k/m. (The
effective coupling constant can be defined in different ways, but the assertion
above is true in all cases since it depends only on dimension considerations.)

It is common in perturbation theory to express the effective coupling con-
stant in terms of its value at a fixed point v, the normalization point. Thus, the
coupling constant is a function of the momentum k, the normalization point v,
and the value ag of the coupling constant at that point:

a(k/m) = a(k,v, ag), with ag = a(v/m).

We see that instead of one, we now have two parameters, v and ap. In other
words, a change in the normalization point v can be canceled by a corresponding
change in ap. This property is known as renorm-invariance.

We now show how to compute the effective coupling constant when it is
small, by using perturbation theory techniques and renorm-invariance. Since in
this continuous limit one should expect invariance under rotations, we assume
that the effective coupling constant a is independent of the direction of the vec-
tor k, and therefore is a function of k2/m2. Conversely, ¥?/m? can be expressed
as a function of . One easily verifies that the derivative of In & with respect to
In k? depends only on k?/m?, and so can be seen as a function of a, known as
the Gell-Mann—Low function:

Ona
ame P

Obviously, 8(0) = 0, since in the absence of interactions the effective coupling
constant is zero for all values of k. This means that the expansion of #(c) in

(25.19)
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powers of & begins with linear term:
(25.20) Ble) =ba+--.

Substituting (25.20) into (25.19) and ignoring terms of order higher than 1, we
get

(25.21) dlna _ i'l% = bdInk?.
[0 [0
This in turn implies
2
(25.22) a (k% v?, a0) = g — bm%,

where v is the normalization point and ap = a(v?,v? ag) is the value of the
effective coupling constant at that point. This equation is valid only when a(k)
is small, since otherwise we cannot ignore the non-linear terms in (25.20).

The factor b in (25.20) can be calculated using perturbation techniques, or
using Seeley coefficients (Chapter 32). For instance, for a gauge theory with
G = SU(N) we get

11N
(25.23) b= Ton
It turns out that b is negative whenever the gauge group G is non-abelian. This
means that in such theories (25.22) holds when k? is large, so that a tends to 0
as k increases. This is known as asymptotic freedom. If b were positive, (25.22)
could be used only for small values of k%, and we would be able to derive no
information on the behavior of the effective coupling constant for large values
of k2.

The arguments above can be applied, with minor changes, to any renormal-
izable theory where the action integral is scale-invariant, that is, does not change
under the transformation z +— Az. The latter requirement implies, among other
things, that the Lagrangian of the theory contain no mass terms. If the theory
is asymptotically free, it remains so even if mass terms are added to the La-
grangian, since at high momenta the contribution of mass terms is negligible.
Of course, in the process of adding mass terms the renormalizability must not
be violated.

In the sequel we will need a group-invariant version of the Faddeev-Popov trick
introduced above to reduce the integral of a function having certain symmetries to an
integral of lower multiplicity. Assume, as before, that M is a Riemannian manifold
acted on by a compact group G of isometries. Instead of taking a set IV that intersects
each orbit exactly once, we will work with the space of orbits itself, which we denote
W = M/G. By removing from M, if necessary, a set of volume zero, we can assume
that the stabilizers of all points in M are conjugate, and in particular that all orbits
have the same dimension m.

We define the distance between two orbits as the minimum of the distance be-
tween two points, one on each orbit; this minimum is achieved and is non-zero if the
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orbits are distinct because G is compact. Further, in seeking a pair of closest points
one of the points can be fixed arbitrarily, because, since G acts by isometries, all
points in an orbit are equivalent. With this metric, W becomes a Riemannian man-
ifold: if £ € M is a point with orbit Gz, and dz is a vector orthogonal to Gz at z,
the distance between Gz and G(z + dz) is the length of the vector dz, because the
geodesic in M connecting a pair of closest points on the two orbits is perpendicular
to both orbits.

Using the Riemannian metric one can define on W a volume element dv. Denoting
by A(z) the m-dimensional volume of the orbit Gz with respect to the Riemannian
metric of M, we get a G-invariant weight function on M (since A(gz) = A(z) for
g € @), and therefore a function on W, which we still denote A(z). If f(z) is a
G-invariant function on W, we easily see that

(25.24) [ f@du= | @@,

where dy is the element of volume on M. For example, for a spherically symmetric
function on R3, formula (25.24) becomes (25.12), since A(r) = 472 is the area of a
sphere of radius r.

To use (25.24), we must be able to compute the volume A(z) of the orbits. Fix
an invariant scalar product on the Lie algebra G of G, and normalize it so that the
total volume of G with the induced metric is 1. For each point z € M, define a linear
operator T, : G — T, M, where T, M is the tangent space to M at z, describing the
action of the Lie algebra at z—that is, 7; maps an infinitesimal transformation to the
vector that it defines at z. The kernel of T is the Lie subalgebra H, corresponding
to the stabilizer H, of z; passing to the quotient, we get a linear operator T :
G/H, — T ;M. The operator T}, is non-degenerate if and only if G acts with
discrete stabilizers, while 7,7, is always non-degenerate. We let D(z) be the product
of the non-zero eigenvalues of T} 7, or, equivalently, the determinant of ‘T t7.. We

claim that
vD(z)
V(H;)'

where the volume V(H,) is with respect to the Riemannian metric induced from G. To
verify (25.25), consider the quotient G/H_, with the Riemannian metric induced from
the one on G (the distance between two orbits being, as for M /G, the minimum of the
distance between two points, one on each orbit). The quotient G/H is homeomorphic
to the orbit Gz, under the map g — gz, for g € G; this map is well defined because
two elements g and gh, for h € H,, map z to the same point of the orbit. The
differential of this map at the identity coincides with the operator T,. The volume
elements on Gz and G/H, differ by a factor that depends only on the orbit, but not
on z, and this factor is

K(z) = det T, = (det T} T;)/2 = /D(z),

(25.25) Az) =

so that
(25.26) Az) = V(L(z)) = (D(z))"/*V(G/Ha).

To compute the volume of G/H,, we must use (25.24) with f(z)=land M =G
(the space G/H, can be thought of as the space of orbits of H acting on G from the
right, all orbits having the same volume). We see that
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1

V(G/H:) = vy

Using the assumption that all stabilizers are conjugate, and consequently have the
same volume, we get

[ 1@ du= gz [ D@ as

To conclude this chapter, we apply this invariant version of the Faddeev—Popov
trick to the calculation of the partition function of an electromagnetic field on a
compact Riemannian manifold M. The Euclidean action integral is

-1 -1 1 _1
(25.27) Sut = 3g3(F. F) = 4o5(04,44) = £ 5(d'dA, 4) = (54, 4),

where § = (2¢®)~'d!d and the field strength F is seen as a two-form, the exterior
derivative of the one-form A, the potential. (For the scalar product of forms, see
T6.9.) For notational simplicity, we set 2g> = 1. The action (25.27) is invariant under
gauge transformations A — A + dg(z), so the quadratic form in it has an infinite
order of degeneracy. Accordingly, the operator § = d'd has infinitely many zero
modes, each corresponding to a closed one-form, dA = 0. We impose on A the gauge
condition d'A = 0, which singles out one representative in each class of gauge fields;
in coordinates, the condition is V*A, = 0, that is, the covariant divergence of the
vector field A* is zero.

Thus we have a submanifold N of the space I of all one-forms, and N can be
identified with the space of orbits of I} under the action of the gauge group. Moreover,
N is orthogonal to the orbits, since (dg, A) = (g,d'A) =0 if A € N. This means that
the metric on the space of orbits coincides with the induced metric on N, since, as
discussed above, the distance between neighboring orbits is measured along a normal.
Therefore we can apply the invariant form of the Faddeev—Popov trick, with the role
of the operator 7 in the paragraph preceding (25.25) being played by d. We get

(25.28) Z= /r exp(—Seua)(4) [[ d4 = /N exp(—Seuat)(A)(det d'd)'/* [] dA.

Actually, we have not justified the use of (25.24) in the infinite-dimensional case.
‘We should therefore consider the reasoning above as being of heuristic value only, and
(25.24) as the defining equation for the integral on the left-hand side, which otherwise
has no precise meaning. Also, we should include a factor of V(H)™! on the right-hand
side of (25.28), where H is the stabilizer of the group of gauge transformations. In our
case the stabilizer consists of functions such that dg = 0, that is, constant functions,
so H = R. Tts volume is infinite, and for this reason we will ignore the factor V{(H)™!,
as well as other divergent factors.

The operator S on N now has only a finite number of zero modes, namely, the
number of linearly independent one-forms that satisfy simultaneously the conditions
dA =0 and d'A = 0. Such forms are called harmonic, and they form a space whose
dimension is the first Betti number b of M (T6.9). If b! = 0, that is, if M is acyclic
in dimension one, S has no zero modes on N, and the integral of exp(—Seua) over N
equals v/det §; in this case N coincides with the space spanned by the eigenvectors
of S with non-zero eigenvalues. We see, therefore, that
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(25.29) Z = (det S)"V?(det d'd)"/? = det(~Ay) /2 det(—Ao),

where A, = —(d'd + dd')) is the Laplace operator on one-forms and Ay = —d'd is
the scalar Laplacian (see the following chapter).

This expression for the partition function of an electromagnetic field can also
be used when b! is non-zero, although the presence of harmonic one-forms, the zero
modes of the operator d'd + dd', leads to certain anomalies (Chapter 29).



26. Elliptic Operators

Recall that a second-order differential operator
(26.1) A=Y a"(2)8:9; + Y_b(z)d; + c(z)

is called elliptic if the quadratic form ¥ ¥ (z)p;p; is positive or negative definite
for every z. More generally, recall that for a k-th order differential operator

(26.2) A=Y a*(z)d,...0, +lower order terms,

11,00k

the principal symbol o(z, p) is the polynomial comprising the terms of highest
degree, with the 8; replaced by ip; (Chapter 24):

(26.3) o(z,p) =i Y a*(z)pi, .. Py

i1, mik

We say that A is elliptic if o(z,p) venishes only for p = 0.

We can also consider an operator of the form (26.2), with the a®-*(z)
being 7 X r matrices. In this case A acts on R"-valued functions (that is, -
component column vectors of functions), and the principal symbol is a matrix
of polynomials in p. The operator is called elliptic if its principal symbol o(z, p)
is non-degenerate except for p = 0.

As examples of elliptic operators, we consider the Laplacian

A=)+ + ()
and the Euclidean Dirac operator
¢= Z’YJaJ )

where the 77 are Hermitian matrices satisfying v'7/ + /7' = 264, In dimension
d = 2n or d = 2n + 1 the matrices v* have order 2", and the Dirac operator can
be seen as acting on spinor functions, or 2"-component column vectors of func-
tions. It is easy to check that the Dirac operator is invariant under orthogonal
transformations: for every g € SO(d), we have an associated transformation of
spinor functions 9(z) — v¥/(z) = Sy¥(g9'z), where S is the image of g under
the spinor representation of SO(d), which is 2"-dimensional. Furthermore, we
have
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@) =0y
The Laplace and Dirac operators can also be defined on Riemannian man-

ifolds. If g;;(z) is the metric tensor and g”(z) its inverse, and if V; denotes the
covariant derivative in the i-th coordinate direction, the Laplacian is

(264) A= g"jV,-Vj = ViV,' = V,‘Vi.

Thus A is the covariant divergence of the vector field with components Vip =
9. The Laplacian can also be written in the form A = —&d, where d is the
exterior derivative (which associates to a scalar function ¢ the one-form dy),
and § = d! is its adjoint operator with respect to the scalar product in the
space of forms. (For more on d, § and the scalar product of forms, see T6.9.)
The operator & associates with a one-form A;dz’ the scalar function V*4;, the
covariant divergence of the vector field with components A;.

We can generalize the Laplacian so it acts on k-forms, rather than functions.
The definition is

(26.5) Ay = —(6d + db),

where the exterior derivative d takes r-forms to (r + 1)-forms, and the adjoint
operator § = d! takes (r + 1)-forms to r-forms (T6.9).

On an open set U C R™, a k-form w = w;, _;, (2)dz A - - - A dz** is specified
by its coefficient functions w = w,. (), for all k-tuples ) < --- < ix. Thus we
can see Ay as acting on d(k)-tuples of real-valued functions, where d(k) =
is the dimension of the space of k-forms. We can also see a k-form as a sectlon
of the trivial R¥*)-bundle over U. For a general n-dimensional manifold M,
it is not possible to identify k-forms with d(k)-tuples of functions, since the
functions depend on the local coordinate system. But we can still see k-forms
as sections of a vector bundle with fiber R¥*) and base M, and the Laplacian
acts on the space of such sections.

This situation generalizes to elliptic operators acting on the space of sections
I'(¢) of a vector bundle £ = (E, M,R?) over an n-dimensional manifold M.
The total space E is formed by gluing together the total spaces of a number of
trivial bundles & = (U; x R4, U;, RY), where the U; are open sets in R", and the
gluing maps take fibers to fibers, acting linearly on each fiber. By restriction,
a section ¢ of £ gives rise to sections ; of the local trivializations U; x RY,
each of which can be seen as an R%valued function on U;. We can talk a.bout
differentiable operators on each space I'(¢;) of sections of U; x R?. To define
a differentiable operator on I'(£), we must specify a differentiable operator on
each I'(§;), subject to the obvious compatibility conditions. A differentiable
operator on I'(£) is elliptic if its restriction to each of the I'(§;) is elliptic—in
other words, if it is elliptic in any coordinate system.

In order to define the Dirac operator on an n-dimensional Riemannian man-
ifold M, we work as follows. At each point of M we fix an (ordered) orthonormal
basis (ej, .. ., €,). We denote the coordinates of these vectors by eg’; the super-
script m is known as the world index and the subscript @ as the internal index.
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The orthonormality condition implies that gmn(z)eTe} = 8gp. Any vector A™
can be expressed in this basis as A™ = A%". For a covector (a vector with
subscripts instead of superscripts) we set Am = €, A,, where the €7, are the en-
tries of the matrix inverse to e™. The transition from world indices to internal
indices is carried out in a similar way for any other tensor. In particular, the
covariant derivative satisfies

(296) Vn.Ab = e;"e:’,VmA" = aaAb + WabcAca

where the w,b, are called the Ricci rotation coefficients, and satisfy web, =
—w,%. We see that, for a fixed, we can regard w,b. as an elemen w, of te Lie
algebra so(n) of skew-symmetric matrices. Given an s-dimensional representa-
tion T of SO(n), the element w, € so(n) maps to an s X s matrix &, by the
adjoint representation.

We say that an s-component quantity ¢ defined on a Riemannian manifold
M transforms according to the representation T’ of SO(n) if, when we change
from the coordinate system ey, . . ., e, to the coordinate system &, = ghey (where
the g? form an orthogonal matrix), @ transforms according to the law

& = T(g)®.

If & is a field that transforms according to T, we can define the covariant
derivative of @ as
VP = 8,0 + W P.

A quantity that transforms according to the spinor representation of 8O(n) is
called a spinor. By the preceding equation, we can write the Dirac operator on
spinors in the standard form

V= iv"V,.

So far we have assumed that an orthonormal basis can be consistently de-
fined at all points of M. This is not always possible, but we can always cover
M with domains U, inside each of which there is such a field of orthonormal
bases. In the intersection U, N U, we have two coordinate systems, related by
é)(z) = g(z,a, B)2e)(z), where the g(z,, f)} form an orthogonal matrix
(dependent on z). A field that transforms according to the representation 7 is
defined by its expression in coordinates when restricted to each U,, and these
restrictions must satisfy the compatibility conditions

&)(z) = T(g(z, a, £))P ().

For a spinor field this definition needs refining, because the spinor represen-
tation is two-valued. For the spinor field to be well defined we need to select in
each overlap U, NUj a branch of the two-valued function T(g(z, @, B)), in such
a way that on triple overlaps U, N Up N U, the choice is consistent, that is,

T(9(z, a, 7)) = T(9(z, @, B)) T(9(=, B, 7))-
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Once such a choice is made, we say that we gave given the manifold a spinor
structure.

Not every manifold can be given a spinor structure. A necessary and suf-
ficient condition for this to be possible is that the so-called two-dimensional
Stiefel class w, vanishes. If the manifold is not simply connected, it may have
inequivalent spinor structures—the set of such structures is in one-to-one corre-
spondence with the set of homomorphisms (M) — Z,, or, which is the same,
with the first homology group H!(M, Z;). When talking about the Dirac opera-
tor, we will always assume that the manifold has been given a spinor structure.

The spinor representation of SO(n) is reducible if n is even. Indeed, in this
case the matrix 4"*! = —i"/24! ... 4" is Hermitian and anticommutes with all
the +%; its eigenvalues are +1 because its square is the identity. The space of
spinors then splits into a direct sum of subspaces consisting, respectively, of
right spinors (those satisfying y"*'¢ = 1) and left spinors (those satisfying
4"+lyp = —1p). These subspaces are invariant under any operator of the spinor
representation. Since y**! and @ anticommute, @ transforms left spinors into
right spinors and vice versa.

Using the Euclidean Dirac operator, we define the Euclidean action func-
tional for Dirac’s equation as

(267) Seucl['()b] = (wa a 1»0) - zm(zp, "tb))

where the scalar product of two spinor fields, (1, %2) = [{¥1(z), ¥2(z)), is based
on the scalar product {, ) invariant with respect to the spinor representation
of SO(n). (Since the 4* are Hermitian matrices, we can take as the invariant
scalar product the sum of products of components of one spinor with complex
conjugates of components of the other.)

Equation (26.7) still makes sense if 1) represents a k-component spinor field
(that is, a field with values in C*), with the Euclidean action being a sum of
terms corresponding each to one component. The action functional is invariant
under unitary transformations in isotopic space, that is, under transformations
9* — ufy®, where uf is a unitary matrix and 1 < a,b < k, the isotopic indices,
refer to the component of the spinor field.

This allows us to introduce, in a standard way, the Euclidean action of
fermions interacting with a gauge field. Namely, if we localize with respect to
the subgroup T(G) C U(k) of the internal symmetry group, where G is the
gauge group (a compact Lie group), the Euclidean action of a fermion field in
an external gauge field A,(z) is

(26.8)  Sewatl®] = (¥,i7*(0u + t{(A))Y) — im($,¥) = (¥, ¥ ¥) —im(¥, ¥).

Here, as usual, A, takes values in the Lie algebra G of G, and { is the represen-
tation of G corresponding to the representation T of G. In order to obtain the
total Euclidean action functional incorporating the interaction of the fermion
and gauge fields, we must add to (26.8) the Euclidean action functional of the
gauge field.
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The operator Y= iv*V,, = iy*(0, + t(A,)) is called the Dirac operator in
an external gauge field. Like the usual Dirac operator, it is elliptic, because the
introduction of the gauge field does not alter the principal symbol. In (26.8), for
simplicity of notation, we considered the field on a subset of Euclidean space.
The passage to the case of a field defined on a Riemannian manifold presents
no difficulties. In particular, one can define the Dirac operator in the presence
of a gauge field on a Riemannian manifold by means of the formula

7*(0a + @a + t(Ad)),

where A, = €4 A,.

In Equation (26.8), if n is even and m = 0, the symmetry group contains also
the chiral transformations exp(ay"*!). Then the homomorphism T of the gauge
field G can act on the group generated by unitary transformations of isotopic
space together with chiral transformations. In other words, the generators of

the representation ¢ of the Lie algebra G may include the matrix ~mFL



27. The Index and Other Properties
of Elliptic Operators

We now enumerate, mostly without proof, the most important properties of
elliptic operators. Let A be an elliptic operator on a compact manifold M,
that is, an elliptic operator on the space of sections I' = I'(§) of a vector
bundle £ = (E, M,R",p) over M. The kernel of A, denoted Ker A, is the set
of solutions of the equation Af = 0; the dimension I(a) of Ker A is also called
the number of zero modes of A. It can be proved that all eigenvalues of A have
finite multiplicity, and in particular that {(A) is finite. It can also be shown that
the image of A, that is, the set of g € I" such that g = Af for some f € G, is a
subspace of finite codimension 7(A4) in I'; in other words, that set is the space
of solutions of a finite set of linear equations.

Suppose that M has a Riemannian metric, and the fibers of £ have a scalar
product that varies differentiably over the base (in other words, £ is a U(n)-
bundle: see T9.4). Then the space I' of sections has a natural scalar product,

(27.1) (fuf2) = [(fi(a), Falah aV,

where the angle brackets denote the scalar product on the fibers, and dV’ is the
element of volume given by the Riemannian metric on M. The scalar product
on I' allows us to define the operator A' adjoint to A. If g = Af is in the image
of A and h is in the kernel of Af, we have (g,h) = (f, Ath) = 0. This means
that any g € Im A satisfies the equations

where hi,...,h,, for 7 = I(Al), are the zero modes of A!. With a bit more
trouble one can show that (27.2) is sufficient to characterize the vectors in the
image of A, so that

(27.3) r(4) = I(A").
The index of an elliptic operator is the difference
(27.4) index A = I(A) — r(A).

Because of (27.3), the index can be defined as the difference between the number
of zero modes of A and A':
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(27.5) index A = I(A) — I(AY).

It turns out that the index does not change under continuous changes in the
operator (so long as the operator remains elliptic all the time). This fact, which
will follow from the properties of elliptic operators stated below, suggests that
the index of an elliptic operator is computable by topological methods. This
is, indeed, the case: that so-called Atiyah-Singer theory allows one to reduce
the calculation of the index to a topological problem. We will not discuss this
theory any further; instead we will show how one can compute the index by
means of more elementary, although lengthier, calculations. We note in passing
that the invariance of the index under continuous changes implies that the index
is determined entirely by the principal symbol: two operators of order r that
differ only by terms of order lower than r can be continuously deformed into
one another without changing the terms of highest order, which are the ones
that determine ellipticity.

To obtain a formula that enables us to calculate the index, we start by
remarking that

(27.6) index A = I(A'A) — I(AAT).

Indeed, if Af = 0, clearly A*Af = 0. If, conversely, A'A = 0, we get (Af, Af) =
(f, AtAf) = 0, so that [(AtA) = [(A). Similarly, I(AAY) = (A1),

AtA and AA' are non-negative elliptic operators, and to understand them
better we turn our attention to this class of operators. Let B be a non-negative
elliptic operator. We can then consider the equation

(27.7) =2 = _By,

called the heat equation by analogy with the usual case, where B is a constant
multiple of the Laplace operator. The methods used in the study of the ordinary
heat equation suggest that (27.7) has, for ¢ > 0 and any smooth initial condition,
a unique solution, which depends smoothly on the parameter { and on z € M.
We denote by exp(—Bt) the operator that assigns to each initial condition
g € I the element g(t) € I" obtained at time ¢ by solving (27.7) with initial
condition g. (If we assume that the exponential of an operator obeys the usual
rules of differentiation, we can easily verify that g(t) = exp(—Bt)g satisfies
(27.7) with initial condition g(0) = g.) It can be shown that the matrix entries
(y| exp(—Bt)|z) are smooth functions for ¢ > 0, which implies that exp(—Bt)
has finite trace. Moreover, the matrix entries of the operator R; exp(—Bt)Ra,
where R; and R, are arbitrary differential operators, are also smooth functions,
and therefore R; exp(—Bt)R,, too, has finite trace.

In studying non-negative elliptic operators B, it is very useful to consider
the asymptotic behavior of trexp(—Bt) as t — +0 or t — +o00. The latter is
manifested when tr exp(—Bt) is represented as a sum over the eigenvalues:

(27.8)  trexp(~Bt) = Yexp(-th) = (B) + A _ exp(=th),
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and it follows immediately that tr exp(—Bt) approaches I(B) with an error that
tends to zero exponentially as t — oo.
The asymptotic behavior as ¢ — 40 is given by

(27.9) S & (B)t:
k

where k takes on the values —n/r, —(n — 2)/r, —(n — 4)/r, and so on; here
n is the dimension of M and r is the order of B. The ®(B) are called Seeley
coefficients: we will consider them in more detail below in the case where B has
order two.

A generalization of (27.9) can also be obtained for tr Rexp(—tB), where
R is a differential operator of order s. In this case the asymptotic behavior as
t — +0 is given by

(27.10) Y- —k(R|B)t ¥,

where k takes on the values (n — 2I)/r, (n — 21 — 2)/r, and so on, [ being the
integer part of s/2. The numbers ¥y (R|B) are also called Seeley coefficients.

‘We now show that the index of an operator can be expressed in terms of See-
ley coefficients. First, note that A'A and AA! have the same positive eigenvalues,
with the same multiplicities, because A'Af = Af implies (AAY)(Af) = AAf.
Using this on (27.6), we get

(27.11) index A = trexp(—tAfA) — trexp(—tAA")
for any ¢t > 0. Taking the limit as ¢ — +-0, we see that
(27.12) index A = Gp(ATA) — Dy(AAY).

Using (27.11) or (27.12), we prove easily the index invariance property men-
tioned above. For the right-hand side of (27.11) changes continuously with A,
while the left-hand side is an integer, which therefore has to remain constant so
long as A varies continuously.

We turn briefly to the calculation of the Seeley coeflicients and of the index.
We start with the case where B is a scalar elliptic operator of order two on
an n-dimensional manifold, and we write B in the form (26.1), in some local
coordinate system. Then the asymptotic behavior of (z|exp(—tB)|y) as t — 0
is

@19 Glon-tBl von( L) 5 A

where k takes on the values —n/2, —n/2 + 1, —n/2 4+ 2, and so on. One easily
ascertains that S(z,y), for y fixed, satisfies the equation

8.5'3.5'
" qi 6"

(27.14) +5=0.
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A solution of this equation is given by
(27.15) 5(z,y) = 1p(z.9)%,

where p(z,y) is the distance from z to y in the Riemannian metric ds? =
—ay, dz* dz®, the a;; forming a matrix inverse to the matrix of the a**. Choosing
S(z,y) to be of this form and setting

(27.16) A_qp(z,y) = (4m)™/ 2,/det(—au),

we satisfy the initial condition
(27.17) Jim (| exp(~¢B)ly) = &z — )-

For the remaining functions Ak (z,y) in (29.13), we obtain a system of equations
that is to be solved by expansion in powers of z — y (we are still fixing ).
Once we know the right-hand side of (29.13), we can easily find the asymptotic
behavior of tr(Rexp(—tB)) as t — +0, where R is a differential operator. In
particular, we consider the case where R has order zero, that is, is an operator
of multiplication by a function R(z). Then

(27.18) tr(Rexp(~Bt)) = /M R(z)(z| exp(~tB)|z) dV.

Thus, computing the Seeley coefficients boils down to finding the asymptotics
of the expression (z|exp(—tB)|z), which, by (20.13), has the form

(27.19) (| exp(~tB)|z) = >_ Be(z)t",
where ¥y (z) = Ak(z, ). Setting ¥(R|B) = [ R(z)¥(z) dV, we can write
tr(R exp(—Bt)) = Z%(R|B)t’°.

In this way, we can obtain the value of A(z,z) with a finite number of
arithmetic operations; notice that in the end we didn’t have to evaluate any
integrals. The same method can be used for matrix (rather than scalar) op-
erators of second order whose principal symbol is a multiple of the identity
matrix—for example, the square of the Dirac operator. The only difference is
that for matrix operators the integrand in (29.18) should be replaced by the
trace tr(R(z)(z| exp(—tB)|z)). Although conceptually there is no difficulty, in
practice the calculations are quite complicated.

These calculations have been carried out in great generality for the first few
Seeley coefficients. Here we give the expressions for ¥_y(z), ¥-,(z) and ¥o(z), in
the case of a four-dimensional manifold. Recall that our elliptic operator has the
form (26.1), where bé(z) and c(z) are matrix functions and the a¥(z) are scalar
functions. (Of course, the ¢¥ form a matrix with respect to the spatial indices
i, j, but in isotopic space each a* is a scalar, or, if you prefer, a multiple of the
identity matrix.) By the ellipticity assumption, the quadratic form —a* (z)p;p;



27. The Index and Other Properties of Elliptic Operators 167

is positive or negative definite; we assume without loss of generality that it is
positive definite. We define a Riemannian metric on M by the formula ds® =
—a;i(z) dz* dz?, where the matrix of the ay; is inverse to the matrix of the a”. It
is easy to see that one can find a gauge field A;(z) on M such that the elliptic
operator under consideration takes the form

(27.20) B =4d"V,V, - E(z),

where the V; represent the covariant derivative with respect to the Riemannian
metric —a;;(z) and the gauge field A;(z). When V; acts on a field ¢ having
only an isotopic index a, the result is

¥ = 0,9" + (A;)5d".

When V; acts on 9¢, a field with both a spatial index and an isotopic index,
the result is

0w — T + (Aied,
where the I'; are the Christoffel symbols for the metric —a;;. A calculation

shows that, for an operator of the form (27.20), the Seeley coefficients are given
by

(27.21) 3= (4m)7?,
(27.22) W¥_; = —(4n) X E+iR),
(27.23) W = (4n)"* (-1 V2R + AR?— &R,;RY
+ 35 RijuR™ + 1RE + 1E? — IV?E + L F,; 79),

where Ryji is the Riemann tensor, R;; the Ricci tensor, R the scalar curvature,
and F;; the strength of the gauge field A;.

The same relations apply to an operator on an n-dimensional manifold if
we replace (4m)~2 with (47)~™/2 and the left-hand sides ¥_p, ¥_; and ¥, with
¥_pn/2, Y_pnja41 and ¥, 242. One can also obtain the coefficients @, from these
formulas, by taking the trace and integrating over z.

We now show how equations (27.12) and (27.23) can be used in the compu-
tation of the index of the Euclidean Dirac operator in a gauge field. We consider
that we have a spinor field that transforms according to the representation T of
the gauge group G. The definition of the Dirac operator in a gauge field differs
from the ordinary definition only in that the usual derivative is replaced by the
covariant derivative V,, = 8, + t(A,), where t is the representation of the Lie
algebra G of G that corresponds to T: see Chapter 26.

We assume the dimension to be even. Then the Dirac operator Y splits into
two operators L and L, the first of which maps left spinors to right spinors,
and the second the other way around. Since the Dirac operator is self-adjoint
and elliptic, L and L are adjoint to one another and elliptic. The zero modes
of L are called the left zero modes of Y, and the zero modes of L' are the right
zero modes of Y. Thus, the index of L is the difference between the number of
left and right zero modes of Y.
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We compute the index of L using (27.12). For simplicity, we assume we are
in a compact four-dimensional manifold with a flat metric—the four-torus, for
example. Then the square of the Dirac operator is given by

72 = ('h’“(au + t(Au)))2 = —y*"V,.V,
=377 (VuVu + V,V,,) - 7Y (VuV, = V.,V,,)
= —V,V* — 1y YU F).

The action of ¥* on left and right spinors coincides with the action of L'L and
LL!, respectively. Computing the Seeley coefficients by means of (27.23), we get

index L = &(L'L) — ®o(LL!) = —375 / tr(t(Fu)t(F*)) d'z,

where F# = %E"“"" Foo-
Now we make the assumption that G is a simple group. Then

2tr(t(a)t(b)) = —ar{a,b),

where the number ar is the so-called Dynkin index of the representation T
(T14.2), and is an integer if the invariant scalar product {, ) on the Lie algebra
G is normalized in an appropriate way (T14.2)." If we set

(27.24) a(4) = 5 / (Fy, F™) d'z,
we obtain
(27.25) index L = ar g(A).

We call g(A) the topological number of the gauge field A (T15.4). This
number does not change if A varies continuously; this is shown in T15.4, and also
follows from (27.24), since the index of an operator satisfies the same property.

The same arguments can be applied to the Dirac operator on an arbitrary
compact four-dimensional Riemannian manifold, and they lead to the formula

index L = —3—2—2 / dV (r(t(Fu)t(F™)) — ™0 R0, R5)

= orq(A) + 37(M),

where T(M) = (9672)~ [ dV #**PR,,,», R}, called the signature of M, is an
integer that does not depend on the metric on M (this again follows from the
fact that the index does not change as the operator changes continuously).
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As noted in Chapter 23, the (regularized) determinant of a non-negative opera-
tor B can be defined in terms of the ¢{-function of B by the formula Indet B =
—('(0). This definition can be used whenever the {-function ¢{(s) = 3 A;° can
be analytically continued to the point s = 0. We now show that for a non-
negative elliptic operator, the poles of the analytic continuation of {(s) coincide
with the values that k takes in the asymptotic expression (27.9) for tr exp(—tB),
namely, s = —n/r, —(n — 2)/r, and so on, and that the residue of {(s) at s = k
is I'"(k)®_x(B), where I' is the usual I™-function. Furthermore, {(s) is analytic
at s = 0, and ¢(0) = $y(B) — I(B). Because of this we can define det B using
the {-function.
To study the behavior of the {-function we use the formula

1 oo _
-8 _ a—1 —+).
(28.1) A% = () /0 t*~" exp(—tA;) dt.
Summing over all non-zero eigenvalues of B, we get
_ 1 2] —1 _ _
(28.2) ¢(s) = T() o t*}(trexp(—tB) — I(B)) dt.

(We used this formula in Chapter 27 for B positive.) For (28.2) to be valid it
is necessary that the integral converge. It always does converge as { — +o00, by
the remark following (27.8); it also converges as t — +0 if Res > n/r. We now
write tr exp(—tB) in the form

(28.3) trexp(—tB) = Y ®_r(B)t™* + p(t),
k>0

where |p(t)| is bounded by a constant times ¢ as t — +0, by (27.9). Splitting
(28.2) into an integral over [0, 1] and one over (1, 00), we find that

o_(B) _ #(B) ~1(B)

k + s

@) <o) =15(Z

ko 5
+ fo * (trexp(—tB) — I(B))t*~ dt + /0 Loyt dt) .

Clearly, the right-hand side defines an analytic continuation for {(s) on the
half-plane Re s > 0. From (28.4) we can easily read out the position of the poles
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and the residues. The singularity at s = 0 turns out to be removable, since
limy_gsI'(s) = 1.

To analytically continue ¢(s) to the left half-plane, one needs to use more
terms in the asymptotic expansion (27.9); here, however, we have no need for
this continuation.

From (28.4) follows the following expression for the determinant of a non-
negative elliptic operator:

(285) IndetB=Y 9%3) + I"(1)(@0(B) — I(B))

k>0

00 A 00
- / (trexp(—tB) — l(B))d— - / (trexp(—tB) -y (D_k(B)t"‘) ‘—if
1 t 1 >0 i
Another definition for the determinant of a non-negative elliptic operator is
suggested by the formula

(28.6) Indet A — Indet B = — /ooo(tr exp(—tA) — tr exp(—tB))gtE,

valid for finite-dimensional positive operators. To prove this formula, express
both sides in terms of the eigenvalues of A and B and use the analog of (28.6)
for numbers.

For the operators we are interested in, the integral J3° t ttrexp(—Bt)dt
diverges near zero. To obtain a finite result, we replace the lower limit by some
positive number € > 0. We say that

(28.7) det, B = exp (— Z /E * exp(—tz\,-)étf) ,

where the ); are the strictly positive eigenvalues of B, is obtained from the
(infinite) determinant of B by cutoff in proper time. From (28.7) we have

(28.8) Indet. B = — /oo(tr exp(—tB) — l(B)))(—j’LE

Since we know the asymptotic behavior of trexp(—tB) as ¢ — 0, we can also
find the behavior of Indet. B as ¢ — 0. The divergent part of Indet, B can be
written as

(28.9) -3 E‘%—E_—k + ($o(B) — (B)) Ine.

k>0

We denote by Indet’ B the “finite part” of Indet, B, that is, the limit of the
difference between In det, B and the expression in (28.9). We have

(28.10) Indet'B=— /:o (tr exp(—tB) = ) &_(B)t™*

k>0

— 8(1 — t)Bo(B) — B(t 1)1(13)) it?
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Comparing (28.5) and (28.10), we conclude that the regularized determinant
det B, defined by means of the {-function, does not differ significantly from
det’ B, defined by cutoff in proper time:

(28.11) Indet' B = Indet B — I"(1)(®o(B) — i(B)).

So far we have considered only the determinants of non-negative elliptic
operators. The determinant of an arbitrary elliptic operator A can be defined
as

(28.12) Indet A = 1Indet A'A.

To conclude this section, we derive a relation between the determinants of
operators that differ only by a numerical factor. Notice that the ¢{-functions of
aB and B satisfy

(28.13) Can(s) = a™*(p(s).

For large s this follows form the obvious formula A, = a\; relating the eigen-
values of aB with those of B; for other values of s it follows by analytic con-
tinuation. Differentiating (28.13) with respect to s and setting s = 0, we get

(28.14) IndetaB =Indet B + (Ina)(s(0) = Indet B + (Ina)(Po(B) — I(B))
because of (28.4). Combining this with (28.12), we get
(28.15) Indet A = Indet A + (Ina)(o(AT4) — I(A4)).

We now use these formulas to study how the determinant of the Dirac op-
erator in a gauge field A,(z) is affected when we apply a scaling transformation
to the gauge field, that is, a transformation A,(z) — AM(z) = AA,()z). For
concreteness, assume the operator operates on fermion fields in four-dimensional
Euclidean space. The transformation W), that takes the fermion field 9(z) into
the field ) = A%p(Az) preserves the scalar product, and conjugates the op-
erators Y=¢ +t(A,) and A yW= (@ +t(A]M)), so that they are unitarily
equivalent. (Here, as usual, ¢ is a representation of the Lie algebra of the gauge
group into the space where the fermion fields take values.) A formal application
of (28.14) gives

(28.15) Indet YV=Indet(A\~! ¥) = Indet ¥ —(In X) ¢y(0),

whence we get, by (28.15),

(28.17) Indet M= Indet ¥ +1n,\(z(y) 963 / d*T(Fp, F* ))

The application of (28.15) to operators defined in all of R™ is not quite
justified because of our previous assumption that we were working in a compact
manifold. To be rigorous, we must introduce spatial cutoff, say, by going over to
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fields that are periodic in each coordinate, with period R (that is, fields on the
four-dimensional torus). The gauge field should be thought of as concentrated
in a bounded region of space. In (28.17), then, the cutoff parameter for the left-
hand side is AR, while for the right-hand side it is A. This can also be applied to
the case A,(z) = 0, which allows one to determine how the determinant depends
on the cutoff parameter. Consider the difference between the logarithm of the
determinant of the Dirac operator in a field A, and the same quantity in the
absence of the field, and let p(A) be the limit of this quantity as R — oo, that
is, as the spatial cutoff is lifted. We have

My —_ar v
(28.18) P(AP) = p(4) =~z In A / (Fu, F*) dbz.
This formula can be seen as a more accurate version of (28.17).

The arguments above can be applied to other operators as well—for exam-
ple, to the Laplacian in a gauge field.



29. Quantum Anomalies

One talks about an anomaly in quantum field theory when a relation that holds
on the classical level fails to do so after quantization.

For example, it can happen that a symmetry of the classical Lagrangian
is not a symmetry of the corresponding quantum theory. In particular, the
conformal invariance of the classical action does not always lead to the same
property after quantization.

We consider the simplest example: a scalar field in general relativity. The
Euclidean action functional can be written as

1 1
= - g —_ 2
(29.1) Sl 2(/g upd,pdV + G/Rgp dV).

Here g,, is the Riemannian metric on the four-dimensional manifold M (when
we pass to the Euclidean action, the pseudo-Riemannian metric of general rela-
tivity becomes Riemannian), R is the scalar curvature, and dV = /g d*z is the
element of volume. We assume the manifold M is compact (this corresponds
to the introduction of spatial cutoff). One can verify that the functional (29.1)
is conformally invariant, that is, it does not change if one replaces the metric
guv(z) with the new metric p(z)g,.(z), which is conformally equivalent to the
first. As explained in Chapter 24, the quantities that arise in quantum the-
ory can be expressed by means of functional integrals whose integrands include
exp(—S). We look at the partition function Z, arising from (29.1), which is the
functional integral

(20.2) Z, = [ exo(=S,l¢) [Tde

over the space of fields ¢(z), equipped with the scalar product
(29.3) (0, ¢) = [ ela)e @) av.

The integral in (29.2) is a Gaussian integral:

(29.4) Sl = (Sgp, ) = (p, Sg0),

where

(29.5) S;=—Ao+ 1R,
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Ay being the scalar Laplacian (with respect to the metric guv) and R the opera-
tor of multiplication by the function R(z). Thus, Z, is related to the determinant
of the elliptic operator Sg:

(29.6) Z, = (det(—Aq + 1R)) /2.

To study whether the conformal invariance of the classical theory is pre-
served after quantization, we make the substitution ¢(z) — p(z)~/%p(z) in the
functional integral. We know that the integrand remains unchanged under this
substitution if, at the same time, we replace the metric g,,(z) by p(z)gu(z).
We might expect, then, that the partition function Z; does not change either
under the (conformal) change in the metric. But this is not the case: although
the integrand does not change, the scalar product (29.3) used in the definition
of the functional integral does. (Roughly speaking, the volume element in the
space of functions changes.) It is exactly this effect that leads to the conformal
non-invariance of the quantum theory.

We show now how to compute the variation in the partition function Z,
under an infinitesimal conformal change in the metric. The calculation is based
on general facts about the variation of a Gaussian functional integral under
changes in the scalar product.

Consider the functional integral

(29.7) Z= / exp(~S[f]) df,

where S[f] is a non-negative quadratic functional; this integral can be seen as
the partition function for the functional S. Assume that the integral in (29.7)
is with respect to a scalar product that depends on a parameter u. Then the
value of the integral also depends on u; we denote this value by Z,.

To compute the variation of Z, with respect to u, we first write the quadratic
functional § in the form

(29-8) S[f] = (Suf1 f)u;

where S, is an operator that is self-adjoint with respect to the scalar prod-
uct {, )u. As explained in Chapter 23, the evaluation of (29.7) reduces to the
calculation of the determinant of the operator S,:

(29.9) Z, = (det S,)"'/.
Differentiating (29.8) with respect to u, we get
as,

du

(29.10) = —B,S,,

where B, is the operator that describes the change in the scalar product with
respect to u:

d;d’u,(f’ g)u = (Bufv g)u = (f’ B“g)“'
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To compute the variation Z,, we compute first the variation tr exp(—Syt), using
(29.10). Clearly,

d dSy
(29.11) 7 trexp(—Sut) = tr (—Et exp(—Sut))

= tr(tBySy exp(—Sut)) — t% tr( By exp(—Syt)).

This equation allows us to find the variation of the determinant of S, cutoff in
proper time (see (28.8)). We get
(29.12)

d d [eodt oo f d dt
Elndete Su= _EL Ttrexp(—S,,t) = —/e (@ trexp(—S,,t))?

- % tr(Bu exp(—Sut)) dt = tr(By exp(~S)1)"

The asymptotic behavior of the right-hand side as ¢ — oo is determined
by the zero modes of S,. Indeed, by decomposing with respect to a basis of
eigenfunctions 1, of S,, we get

(29.13) tr By exp(—Sut) = Y _{(@n|Buln) expf—Ant),

so that, if all the eigenvalues )\, of S, are positive, tr B, exp(—S,t) tends to
zero as t — oo. But if S, has zero modes, we have

(29.14) }_1}([,10 tr By exp(—Syt) = Z (@n|Bulen) = tr BLII(S,),
An=0

where the operator II(S,) projects a function onto the kernel of S, that is,
I1(Yn catpn) = Lrn=0CnPn-

The asymptotic behavior of the right-hand side of (29.12) as ¢t — 40 is
given by (27.10) for elliptic operators. Recall that the regularized determinant
Indet’ S, is defined by eliminating the divergent part of Indet. S, as £ — 0.
Thus (d/du)Indet’ S, is also the non-divergent part of (d/du) In det. S, and we
get

(29.15) ‘-i% Indet’ S, = —To(Bu|Su) + tr BuII(Sy).

(Here we have assumed that tr(B, exp(—S,t)) behaves like Y W_i(By|Su)t~*
as t — +0. This is the case, in particular, if S, is an elliptic operator on a
compact manifold and B, is a differential operator.)

Although it does lead to correct results, the proof above cannot be con-
sidered rigorous, since the variation in the divergent part of Indet. S, could
contribute to the finite part. But for elliptic operators on compact manifolds, it
is fairly easy to give a rigorous proof, based on (27.10) and (28.10). One must
also use the fact that (29.11) implies that
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(29.16) d%qsk(s.‘) — —kU(BulS)

where the @ (S,) are the coefficients of the asymptotic behavior of tr exp(—Sut)
as t — +0.
We can also write (29.15) in the form

(29.17) Slndet' S = —W(6B|s) + tr(SBII(S)),

where 6B is the operator describing infinitesimal variations in the scalar prod-
uct:

8(p, ¢') = (6B, ¢').

Equation (29.17) holds even if we replace det’ with det, that is, when the regu-
larized determinant is defined by means of the -function, rather than by cutoff
in proper time.

From (29.17) we get a formula for the variation of the partition function
(29.7) with respect to the scalar product:

(29.18) §InZ = 3(%(6B|S) — tr(6BII(S))).

We use this formula to calculate the variation in the partition function (29.2)
caused by conformal changes in the metric. As noted before, the variation is due
to the change in the scalar product (29.3). The change in the scalar product
due to an infinitesimal conformal change in the metric,

(29.19) 69u(z) = 6p()gu(z),
is given by
(29.20) (e, ¢') = (v, 6p¢),

taking into account that the field changes by 6p(z) = —36p(z)p(z). Thus,
the operator 6B in (29.18) is the operator of multiplication by §p(z). Using
Equation (27.23), we obtain an expression for Wy(6B | —Ao + %R). Since the
operator —Ag + %R has no zero modes, we get

(29.21) §lnZ / 5p(z) (RIS R%E — RagR®P — AoR)dV.

1
"~ 360(4n)?
Thus, the partition function (29.2) of the conformally invariant functional (29.1)
changes under a conformal change of the metric. This fact is known as conformal
anomaly.
The variational derivative of the action functional with respect to the metric
tensor g,, equals, by definition, the energy-momentum tensor

2 &5
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Using this, we can obtain an expression for the energy-momentum tensor aver-
aged over the ground state:

i élnZ
V9 69u(z)

Since the action functional (29.1) is invariant under conformal changes of the
metric, the trace of the energy-momentum tensor in the classical theory is zero:

2 08
V599 @) =0

Here we have used the fact that the variation of S under a conformal change in
the metric (29.19) is given by

(29.23) (T™(z)) =

(29.24) T (z) = gu(z)T"(z) =

(29.25) 58 = / B3 () @) AV

A similar formula holds for any functional. Using the counterpart of (29.25) for
the functional In Z, together with (29.23) and (29.21), we get

1

(29.26) (T2) = Teoamy

A (Rapys R* — RopR°P — V2R).

Thus, the quantity T%(z), which is zero in the classical theory, becomes non-
zero after quantization. Sometimes just this phenomenon is understood as a
conformal anomaly.

We conclude by computing the conformal anomaly for the electromagnetic field.
As we saw in Chapter 25, the partition function in this case is

(29.27) = (det(—V?))~ /2 det(—V3),

where V2 = —(d'd + dd!) is the Laplace operator on one-forms and V3 = —d'd is
the scalar Laplacian. We want to find the variation in the partition function due to a
conformal variation in the metric. The calculation is based on a general result, which
we will use often in what follows.

Consider a quadratic functional S[f] defined on a space I'; and invariant under
transformations of the form f — f + Tg, where T : I'y — I is a linear operator. An
example of such an operator is the action integral for the electromagnetic field, which
is invariant under gauge transformations, with 7' : g — dg mapping functions into
one-forms (covector fields). After fixing scalar products in I} and I, we can write S .
in the form S[f] = {Sf, f), where S is a self-adjoint operator, and define the operator
Tt adjoint to T'. Arguing as we did for the electromagnetic field in Chapter 25, we
find that it is reasonable to define the partition function for § by the formula

(29.28) = (det §)"Y2(det T'T)? = (det(S + TT")) /2 det T'T.

In any case, this definition is reasonable if S + TTT and T'T are elliptic operators,
which we will assume from now on.
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We study the variation of the partition function (29.28) arising from an infinites-
imal change in the scalar products on Ip and I3, described by the operators 6B, and
6B, (that is,

(29-28') &(f, 9)0_= (6Bof,g)0 = (f 6Bag)o

for the scalar product on Iy, and likewise for the scalar product on I;). Then the
variation in the partition function can be expressed as

(29.29) §1nZ = 18(6B1|0) — 3B(8BolD),
where we have set
(29.30) B(B|A) = ¥y(B|A) — tr(II(B)A), Oy =S+TT', Dh= T'T.

The proof of (29.29) is basically the same as that of (29.18). First we must study the
variations in S and T with respect to the scalar products. It is easy to see that

(29.31) 68 = —(6B,)S,

and, by taking the variation of the equation (T' f,9)0 = {f,Tg)1, that
(29.32) 6Tt = T16B, — (6Bo)T".

From these two equations we get

(29.33) 601, = —(6B,)S + TT'6B; — T6B, T,

(29.34) 600p = T16B,T' — 6B, T'T.

Using the relations

(29.35) exp(—t0h)T = T exp(—tl),
(29.36) exp(—tTo)T" = T exp(—tD),
(29.37) exp(—t0,)8 = S exp(—tD,),

which follow from the equations 0,7 = TOy, DT = T, and [hS = STh, we
obtain

(29.38)  &(—3 tr(exp(—t0:) + trexp(—t[h)))
= -;ft tr((—6313 + TTflsBl - T&BﬂTt) exp(—tEIl))

— tte((T186B,T — 6ByT'T) exp(—tll))
= %t tr((—6B.S — 6B1TT1) exp(—t0,)) + %t tr(&BonT exp(—ity))
= 32 (1(6B, exp(~400)) — tr(6Bo exp(~t)-
Now we note that
(29.39) 6(—1 Indet, O, +Indet.Oo) = — / °° (-1 trexp(—ty) + trexp(—tl:lo))%

Substituting (29.38) into (29.39), we obtain the integral of a derivative, which we
then evaluate, completing the reduction of the study of the variation to the study of
the asymptotic behavior of the integrand.
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We now apply (29.29) to the study of the variations of the partition function
(29.27) under conformal changes in the metric, with VZ and V3 playing the role of
0, and Oy. An infinitesimal conformal variation of the metric, g, — (1 + o(z))gu.,
gives rise to variations in the scalar products on the spaces I and Iy of one-forms
and functions, given respectively by 6B; = & and §B, = 24, where 4 is the operator
of multiplication by the function o(z). We see that

§1n Z = 18(610) — 2A(24100)
= 1@ (81h) — tr(6TT())) ~ (#o(510h) — bx(51T(T))).

The number of zero modes of A;, as we know, is the i-th Betti number b* of the
manifold M. If M is acyclic in dimension 1, we have b' = 0 and 5° = 1. The zero
modes of V2 are the constant functions. Clearly,

treI(V2) = V/cr(:c)dV 15V,

where V is the volume of M. Using the expression for the Seeley coeflicients demon-
strated in Chapter 27, we get

i — prpos ‘w 25 p2
61n( ﬁ)‘ 180(4702 / AV 0(8 R, R — 4R, B + BRI — 9V2R).

We have considered here only four-dimensional theories as examples. How-
ever, the general theorems proved above can be used to obtain important results
in other dimensions as well. In particular, they are very useful in the explicit
calculation of two-dimensional determinants arising in string theory and in two-
dimensional nonlinear theories.

Consider, for example, the determinant of the scalar Laplacian Aq on the
two-dimensional sphere S? with an arbitrary Riemannian metric g,,. The deter-
minant of this operator is connected with the partition function corresponding
to the Euclidean action functional

1
(29.40) 5,(0) =3 [ #0updupdV.

This action functional remains unchanged if we replace the metric g,.(z) by
o(Z)9,(z), but the inner product (p,¢') changes. We can study the corre-
sponding change in Z = (det Ag)~"/2 by means of (29.18). The variation in Z
under an infinitesimal variation 8g,,(z) = 6p(z) = gu () is given by

(29.41) S Z = ﬁ [ s1p(z)Riz)av - % [smp(z)av.

(Here we used (27.29) and the fact that Ay has one zero mode ¢ = V™2,
where V is the area of S? with respect to the metric g,,.) Every two-dimen-
sional Riemannian manifold homeomorphic to S? is conformally equivalent to
52 with the standard metric gy,; in other words, it is isometric to S? with the
metric g, (z) = p(z)Gu (). Integrating (29.41) and using the relations

(29.42) R=p(R—Alnp)
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and
(29.43) R=p"'(R+Ap),

where R and A denote the curvature and the Laplacian with respect to the
metric g, and R, A are the corresponding quantities for the metric gy, we
obtain an expression for Z.

An interesting three-dimensional example is given by the action

(29.44) S(4) = -;- / ANdA= / %P1 A, 05A, &z,

where A denotes a one-form on the compact three-dimensional manifold M.
This functional is invariant with respect to gauge transformations A — A +dA,
where ) is an arbitrary function (0-form). It is also independent of the choice of
a Riemannian metric on M; therefore one can conjecture that the corresponding
partition function Z also does not depend on the metric. This is not obvious
(since the calculation of Z involves a metric-dependent gauge-condition), but
it turns out to be true. The proof can be based on a slight modification of the
results above.

Namely, note that we can apply in this case the general formula (29.28) for
the calculation of the partition function, but it is not convenient to use (29.28')
because S + T'T™ is not elliptic. We will represent the partition function in the
form

(29.45) Z = (det(S? + TT"))"V4(det(T'T))*/4,

which is equivalent to (29.28) and useful when S? + TT* and T'T are elliptic.
For the functional (29.44), T'T coincides with the scalar Laplacian Ag, and
S? + TT' is the Laplacian A; = —(dd’ + d'd) on the space of one-forms; we
obtain

(29.46) Z = (det A;)~V4(det Ag)¥/4.

The arguments used in the proof of (28.29), applied to the partition function
represented in the form (29.45), lead to the formula

(29.47) §1nZ = L1B(6B1|S* + TT") — 3B(6Bo|T'T).

This formula allows us to calculate the variation of (29.46) under an infinitesimal
change in the metric of M.

For the functional (29.44), the Seeley coefficients Wy vanish. (¥, vanishes
for every elliptic differential operator on an odd-dimensional manifold.) Hence
§1n Z can be expressed in terms of the zero modes of A; and Ag. It is well-
known that the number of zero modes of 6; coincides with the i-th Betti number
b; of M. Suppose that b; = 0 and that M is connected, so that by = 1 and Ay
has only one zero mode @p = V~'/2, where V is the volume of M. We get

61n Z = L(6Bowo, wo) = 3 InbV.
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This means that the expression
(29.48) VY2Z = V-Y3(det A;)~V4(det Ag)*/*

does not depend on the Riemannian metric on M. We thus obtain a nontrivial
invariant of the three-dimensional smooth manifold M. A somewhat more gen-
eral invariant can be obtained if we regard (29.44) as a functional on one-forms
taking values in the fibers of a locally flat vector bundle over M.

The invariants just described constitute what is known in mathematics as
the Ray-Singer torsion, which is a smooth version of the Reidemeister torsion.
It can be defined for any m-dimensional manifold M by

(29.49) logTorM=l S (-1)*kIndet Ag,

0<k<m

where A, = —(dd! + d'd) denotes the Laplacian on the space of k-forms. This
multidimensional torsion, too, can be obtained from considerations based on
quantum field theory. One can consider, for example, the functional (29.44),
where A denotes an n-form on a (2n + 1)-dimensional compact manifold. (In
this case we cannot use the standard Faddeev—Popov trick to calculate the
partition function, because the gauge group A — A+d), where ) is an (n—1)-
form, does not act freely. However, the definition of the partition function can
be modified to cover this case; see [55].)

The idea of obtaining invariants of different mathematical objects by consid-
ering physical quantities (the partition function or correlation functions) arising
from appropriate action functionals is quite general. It is the central idea of
topological quantum field theory. One of its most important generalizations is
connected with a nonabelian generalization of (29.44).

The one-form A = A.dz® in (29.44) can be considered as an electromagnetic
field on the three-dimensional manifold M; the equations of motion correspond-
ing to (29.44) have the form

(29.50) eV Py =0,

where F,g denotes the electromagnetic field strength: Fog = 0,Ap — OpAq.
We would like to replace the electromagnetic field by a gauge field A that
takes values in the Lie algebra g of a compact Lie group G, and construct
an action functional leading to the equations of motion (29.50), where Fog =
OaApg — OgAq + [Aq, Ag] is the strength of the gauge field. It is easy to check
that such an action functional can be written as

(29.51) S(4) = / e ALFS dz — %— / e fuc AL ALAS &z,
where A% and F§, are components of A, and Fg, with respect to an orthonormal

basis in g, and fz5. denotes the structure constants of g with respect to this basis.
(We have fixed an invariant scalar product on g.)
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This action functional, called the Chern—Simons functional, is invariant with
respect to infinitesimal gauge transformations A, — A, + VA, where A is a
function taking values in g, and V,A = §,a + [A,, A]. It does not depend on
the metric on M; therefore its partition function should give an invariant of the
smooth structure on M. The same is true for appropriately chosen correlation
functions. The physical quantities associated with the action functional (29.51)
were calculated by Witten [79], who proved that these quantities are closely
related to the Jones polynomial of knots.



30. Instantons

‘We have seen that several quantities in quantum field theory can be expressed in
terms of functional integrals whose integrands contain either exp(iS), where S is
the action integral, or exp(—Seuc1), Where Seyq is the Euclidean action integral.
For the approximate evaluation of these integrals, one can use the stationary-
phase method in the first case, and the Laplace method in the second. The
application of these methods can be seen as an application of the semiclassical
approximation. Indeed, if we momentarily abandon our convention that i =1,
so the exponentials involve iA~1S and A~1S,, instead of i.S or Sey, We can
establish the asymptotic behavior as B — 0 by applying the stationary-phase
method or the Laplace method.

We will discuss here the Laplace method, whose first step is to find a global
minimum for Seuq. The next step is to replace Seye near this minimum with its
quadratic part, and then calculate the resulting Gaussian integral.

The same procedure can be applied to local minima of Seyq as well. At
first glance the contribution to the functional integral near a local minimum is
insignificant, because it is dampened by the factor exp(—#i~1AS), where AS is
the difference between the global and the local minimum. But this contribu-
tion is nonetheless interesting, because it leads to corrections that cannot be
obtained by perturbation theory. In any case, for certain physical quantities the
contribution of the local minima can be decisive.

The local minima of Se,q are known as instantons. Wee are mainly interested
in instantons in gauge theories, but we start our discussion with instantons in
a simple quantum-mechanical model. Consider the Hamiltonian

(30.1) H=1p"+ M¢* - a?)?

and the corresponding Euclidean action

(30.2) Sewa = [ (% (j’—;)Q A - a2)2) dr.

The potential energy U(g) = A(g? — a2)? has two minima, ¢ = +a, and thus
there are two classical ground states, or classical vacuums. The same minima
(more precisely, the constant functions ¢(t) = a and ¢(7) = —a) minimize
the functional (30.2). As explained in Chapter 9, a classical vacuum can be
used to find a quantum ground state by first replacing the potential energy
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with its quadratic part, and then allowing for deviations from the quadratic
approximation by using perturbation techniques. Using this procedure, we can
obtain from the two classical vacuums two ground states for the Hamiltonian
(30.1), both having the same energy.

It is well known, however, that the energy levels of the one-dimensional
Hamiltonian (30.1) are non-degenerate. This apparent contradiction is resolved
if we notice that, near each classical vacuum, we have not a stationary state but
only a quasistationary one, thanks to the possibility of tunneling from one well
to the other. Formally, this translates into the fact that the perturbation series
diverges, and the energy of the ground state is not analytic in A. The possibility
of tunneling leads to a situation in which, instead of two ground states that can
be transformed into one another by replacing g with —g, we have a ground state
with an even wave function and an excited state with an odd wave function.
The energies of the two states differ by an exponentially small amount

(30.3) AE = hu\/- ( - 2,\n)

where w = 2av/2)\.

We now revert to our usual system of units, where i = 1, and investigate
the Hamiltonian (30.1) using the Euclidean action integral. The essential contri-
bution to this functional integral come from the global minima of the Euclidean
action, corresponding to the classical vacuums ¢(7) = +a. But, in addition
to these, the functional (30.2) also has local minima, with value % 2Aa® and
achieved by the functions

(30.4) g(t) = xs(r —¢),
where
(30.5) s(r) = atanh(av2X 7).

‘We are considering that the functions g(7) in (30.2) are defined on the whole real
line. Strictly speaking, we should first assume that these functions are defined on a
finite interval, and then make the length of the interval go to infinity.

Notice that the functional (30.2) has appeared before, in a different nota-
tion, as the energy functional (9.4) of the one-dimensional field theory with La-
grangian (9.3); in that context the functions (30.4) have the meaning of topolog-
ically nontrivial local minima of the energy functional. They are global minima
in the class of topologically nontrivial functions (functions that have different
limits at +o0o and —oc), and thus they are instantons. To distinguish between
them, we call one—say, the one with the + sign in (30.4)—an instanton, and
the other an anti-instanton. Using the functions (30.4), which are stationary
points of the functional (30.2), we can construct almost-stationary points by
matching instantons and anti-instantons, that is, by setting, say,
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Figure 17

s(tr—e) for T <b,
g(r) = {
~8(T —¢p) for 7 >b,
where ¢; < b < ¢; (Figure 17).

Similarly, one can construct almost-stationary points of the functional S.,q
consisting of several alternating instantons and anti-instantons. These are some-
times called multi-instanton solutions. When computing the functional integral,
one must take into account all these stationary and almost-stationary points of
Seuci- It turns out that the answer can be reproduced by means of elementary
quantum mechanical methods. We will not detail these calculations; we note
only that the value of S, on the functions (30.4) coincides with the exponent
in (30.3).

The physical meaning of instantons is obvious from the discussion above.
They are solutions of the classical equations of motion with an imaginary time
variable and describe the tunneling between potential wells (here between g =
—a and ¢ = a). In particular, if one wants to find the transition probability
from one classical vacuum to the other (the matrix entry (—al exp(—H7)|a)
as T — 00), one must consider instantons, because the topologically trivial
solutions do not contribute to the corresponding functional integral. Classical
vacuums only mix because of instantons.

Of course, the use of instantons in the example above is only of methodolog-
ical interest, since the problem can be solved by essentially simpler methods.
But instantons also arise in more complicated problems, and then it makes sense
to use them. Such is the case, for example, with the two-dimensional Georgi—
Glashow model (Chapter 11). The Euclidean action integral for this two-dimen-
sional model coincides, to within notation, with the energy functional for the
three-dimensional Georgi-Glashow model. This means that the local minima of
the energy functional can be interpreted as instantons in the two-dimensional
model. A topologically nontrivial minimum of the energy functional (magnetic
monopoles) can be interpreted as a topologically nontrivial instantons, that is,
an instanton that cannot be connected with a classical vacuum by means of a
continuous family of fields having finite Euclidean action.

We now turn to instantons in gauge theories. We start by studying the
space of gauge fields in R* for which the Euclidean action integral (25.2) is
finite. At infinity, such fields resemble purely gauge fields, that is, they have the
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asymptotics g~ (z)8,9(z) as z — oo, where g(z) is a function with values in
the gauge group.

To prove this statement rigorously, we must insist that the fields behave well at
infinity. Then the finiteness of the Euclidean action integral implies that F,,(z) tends
to zero fast enough, so that the field can be considered to be a gauge field to within
a specified precision.

To each field A, that has the asymptotic behavior g~ (z)3,g9(z) as £ — oo
we can assign a homotopy class of maps from a sphere of very large radius into
the gauge group G, the class being realized by the function g.

We now assume that G is a simple, non-abelian, compact Lie group. Then
the set of homotopy classes of maps S* — G is in one-to-one correspondence
with the integers:

(30.6) {S3,G} =m3(G)=1Z

(T14.2). Thus, a field with a finite action integral has an associated integer, its
topological number. (If G = SU(2), which is homeomorphic to S3, this integer
is the degree of the mapping S® — S°.) The topological number does not
change under continuous variations of the field, so long as the Euclidean action
integral remains finite. Thus, the space of gauge fields with finite Euclidean
action integral splits into components, one for each topological number. It turns
out that the topological number g of a field A, can be expressed analytically by

1 1

(30.7) 1= Ban 3277

[ e F, Fon) = [ o Fun ),
where F* = 1e#P F s is the antisymmetric tensor dual to F,,, and the angle
brackets denote the invariant scalar product on the Lie algebra G, normalized
as explained in T14.2. (For G = SU(n) we have (a,b) = — trab.)

We show (30.7) for G = SU(2); for the general case, see T15.4. If G = SU(2),
an element of the Lie algebra can be seen as a three-dimensional vector; in

particular, A, = (AL, A2, A3) and Fp, = (Fj,, FL,, Fj,). It is easy to verify

B w S
that
(30.8) (Fowr F*) = Fo, Ft¥ = 8,K*,
where

(30.9) KM = 26977 A2(9,A% + Leasc ALAC) = €47 (ALFS, — dean ASALAS).

Using this, we can easily transform the four-dimensional integral (30.7) into
an integral over a sphere at infinity. It is easy to check that for a field A,
that behaves at infinity like g10,g, the integral over this sphere reduces to the
standard expression for the degree of the map g : S® — SU(2), where SU(2)
is identified with S°. The terms containing F?, in the right-hand side of (30.9)
can be ignored at infinity.

We now use (30.7) to find a lower bound for the action integral for fields
with a fixed topological charge g. We have
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(010 0% [a(Fut Fu) =2 [ dia (Fu) & (Fun 5.
From this it follows that
2
(30.11) s> 89L2|q|,

and clearly equality holds if and only if

30.12 Fu=F, forg>0
Ir [~

or

(30.13). Fy=—Fu forg<o

Fields satisfying (30.12) are called self-dual, and those satisfying (30.13) are
anti-self-dual. Obviously, self-dual and anti-self-dual fields are extremals of the
Euclidean action integral. (We could also have used Bianchi’s identity (T15.2) to
prove directly that (30.12) and (30.13) imply Euler’s equations for the functional
(25.2), that is, the Euclidean equations of motion.)

We will see that there exist self-dual fields with any non-positive charge ¢.
This implies that the smallest value of the Euclidean action integral on fields
with topological charge g is exactly (872/g%)|q|.

To construct a self-dual field with ¢ = 1 for G = SU(2), we recall that the
map

3
(30.14) n—un)=n"+1)_ o'n’,
j=1

where n = (n%n!,n% n3) € R* and o!,0% 0% are the Pauli matrices, is a
homeomorphism between S* and SU(2), and therefore has degree 1. Hence it is
natural to look for a solution of the form

(30.15) A, = ofjz)u? (Fti) a“"(%)'

For a(z) = A%(z? + A?)~1, where ) is an arbitrary real number, we indeed get
a solution for (30.12). Translations preserve self-duality, so we obtain a five-
parameter family of solutions to (30.12), with ¢ = 1:

A2 afz-a T—a
(30.16) =G (Iz—al)a“"(lz~al)'

where wu is defined by (30.14).

Under a spatial reflection a self-dual field is transformed into an anti-self-
dual field, so (30.16) gives a five-parameter family of solutions to (30.13) with
g = —1. It turns out that the fields just described exhaust (to within gauge
equivalence) all solutions with ¢ = +1. Self-dual fields with ¢ = 1 are often
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called instantons, and self-dual fields with g > 1 are called g-instanton solutions.
Anti-self-dual fields with ¢ = —1 are called anti-instantons. (However, according
to the definition given at the beginning of this chapter, all these fields are
instantons.)

The parameter A gives the size of an instanton (or anti-instanton), and the
vector a the position of its center.

To construct self-dual fields with ¢ = 1 in the case G = SU(N), we need
only note that there is a natural inclusion of SU(2) into SU(N)—for an element
of SU(2) given by a 2 x 2-matrix A, we simply form the block matrix with A
and I,,_, as blocks along the diagonal, where I, 5 is the rank-(n — 2) identity
matrix. Likewise, the Lie algebra of SU(2) is naturally identified with a Lie
subalgebra of SU(N). We now interpret (30.16) as a field taking values in the
Lie algebra of SU(N); this field is clearly self-dual, with ¢ = 1. Every solution
to the self-duality equation for G = SU(n) is gauge-equivalent to a field of the
form (30.16).

We can construct in an analogous way instantons with ¢ = 1 for G an
arbitrary simple non-abelian compact Lie group. It is enough to use the existence
of an inclusion of SU(2) into G that gives rise to an isomorphism between
m3(SU(2)) = Z and 73(G) (see T14.2). Using such an inclusion, we can interpret
(30.16) as a solution to the self-duality equation for G, with ¢ = 1.

A broader class of self-dual fields can be obtained using the substitution

(30.17) AY=09,Inf and Aj; = (kO — SaiBo}In f for i,k =1,2,3,

where f is an arbitrary function satisfying the four-dimensional Laplace equa-
tion (82 + V2)f = 0. In particular, if we set

g+l )‘g
(30.18) @)=Y e

we get a self-dual field having singularities at z1,. . ., Tg+1. It is easy to see that
these singularities can be removed by a gauge transformation, so that the field
has a finite strength and a finite Euclidean action integral, and has topological
charge q.

Up to this point we have studied instantons in gauge theories in Euclidesn
space. It is also natural to consider the extremals of the Euclidean action integral
on a Riemannian manifold. As noted earlier, in defining functional integrals for
the Euclidean Green'’s functions we must introduce spatial cutoff. If we impose
periodic boundary conditions, spatial cutoff becomes equivalent to considering
gauge fields on a four-dimensional torus. Passing to fields on the four-sphere
S4, too, can be seen as a form of spatial cutoff. The reasoning in the preceding
paragraphs can be applied to instantons on general Riemannian manifolds, with
the difference that the tensor dual to Fos should be taken as

(30.19) Fob = 1g V2B E,

where g, as usual, denotes the determinant of the metric tensor g,s. Note that
(30.12) and (30.13) are invariant under a conformal transformation of the met-

ric, gap(z) — 9ap(%) = P(2)9ap(2)-
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Using stereographic projection from the four-sphere S* to R?, we can asso-
ciate to any gauge field in R* a gauge field on S, defined in the complement
of the north pole. Under the condition, imposed above, that our fields on R4
behave at infinity like pure gauge fields g~*(z)8,9(z), the corresponding fields
on S* minus the north pole can be continuously extended to the whole sphere
(for more details, see T15.3). For this reason the study of gauge fields on R*
having finite Euclidean action integral can be conveniently reduced to the study
of the corresponding fields on S$*. Moreover the metrics of $* and R* are confor-
mally equivalent under stereographic projection, so the question of self-duality
(or anti-self-duality) is also equivalent in R* and 5.

To specify a gauge field on S*, we must give two gauge fields A‘(}) and
AS") in two coordinate systems whose domains together cover the whole sphere,
and the fields must be gauge-equivalent in the intersection of the domains of
the coordinate systems. Geometrically, a gauge field on S* is a section of the
fiber bundle obtained from two direct products by pasting them together using
the function that establishes the gauge equivalence between Ag}) and A‘(f). The
topological type of this bundle uniquely defines the topological number of the
global gauge field (T15.5).

In Chapter 31 we show that for G = SU(2) and g > 1 there exists a (8¢ —3)-
dimensional family of gauge-inequivalent self-dual fields on S*, and hence on R*,
with topological number g. Similarly, for ¢ < —1 the dimension of the space of
gauge-inequivalent anti-self-dual fields is 8|q| — 3.

To clarify the physical meaning of the number 8¢ — 3, we consider a field
that coincides with a purely gauge field far from the points a;,.. ., a,, and near
these points has the form

by T—a T—0o
9 A — ‘,’ i 'l'.l',_l 1 V_l,
(30.20) W@ = Vi e (Iz—ail)a"u(lw—ail) '

with V; € SU(2), and |z — a;| < |a; —a;4| and ); < |a; —a;|. (Roughly speaking,
such a field consists of g distant single-instanton solutions (30.16), each affected
by a gauge rotation with a matrix V; € SU(2)). This field is an approximate
solution for the self-duality equation. It depends on 8¢ parameters (4¢ coming
from the a;, plus ¢ from the );, plus 3¢ from the V}), but three of them are
inessential, since multiplication of all the V; by the same matrix V € SU(2)
does not affect the field up to gauge equivalence. It can be shown that the exact
solutions to the self-duality equations lie near these approximate solutions. This
result is by no means trivial, and in fact one can easily construct approximate
extremals for the Euclidean action by combining distant instanton and anti-
instanton solutions, without there being any corresponding exact extremals.

If G = SU(N), for N > 2, we can use the inclusion SU(2) C SU(N) as ex-
plained above and look at (30.20) as an approximate solution to the self-duality
equation. In fact, we can consider each V; in (30.20) as an element of SU(N), so
the equation represents a field consisting of ¢ distant single-instanton solutions,
each affected by a gauge rotation with a matrix V; € SU(N). The resulting set of
approximate solutions to the self-duality equation has 4Ngq parameters. Indeed,
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each V; contributes N2 — 1 parameters, since dimSU(N) = N? — 1. But every
matrix V taken from SU(2) C SU(N) commutes with an (N — 2)*-dimensional
family of matrices (block matrices with the rank-two identity matrix at the top
left and an arbitrary (N — 2) x (N — 2) matrix at the bottom right). Thus,
although at first glance the field (30.20) depends on (N 2 — 1)q + 5q parameters,
we must subtract (N — 2)2q, leaving 4Ng. It can be shown that for each such
approximate solution there is an exact solution near it, so the space of solutions
to the self-duality equation with topological number ¢ has dimension 4Ng. Fur-
thermore, every solution to the self-duality equation with topological number
g can be transformed into one of the fields obtained in this way by means of a
gauge transformation in G§°. (Recall that G§° is the group of gauge transfor-
mations determined by functions g(z) that equal unity at a fixed point zo. On
R* we generally take zo = 00, s0 the condition is that g(z) — 1 as z — 00).

Our restriction to gauge transformations in G§° means that we have ex-
cluded global gauge transformations. If we think of gauge-equivalent fields as
being identical, the dimension of the space of solutions to the self-duality equa-
tion decreases. If the topological number ¢ is at least %N , this dimension, which
we denote by 74, is 4Nq — (N? — 1). Indeed, let Hy be the group of gauge
transformations that fix a generic instanton A. By identifying together instan-
tons that are G*°-equivalent rather than only those that are Gg°>-equivalent, the
number of parameters for A drops by dim G — dim Hy4. One can verify that, for
g > 1N, only the trivial gauge transformation fixes 4, so dim H4 = 0 and the
dimension of the space of solutions drops by dimG = dimSU(N) = N? — 1.
For 1 < g < 1N one can show that A is gauge-equivalent to an instanton with
values in the Lie algebra of SU(2g) C SU(N), so that dim Hy = (N — 2q)?, the
dimension of the subgroup of SU(N) consisting of elements that commute with
SU(2q) (this subgroup is isomorphic to U(N — 29)). We conclude that in this
case 1, = 4¢* + 1.

We now show that instantons in a gauge theory can also be associated with
tunneling between classical vacuums. We use the gauge condition Ag = 0. Then
a field of lowest energy (a classical vacuum) is given by A;(x) such that F;; =0
for i,j = 1,2,3. Such a field is purely a gauge field, that is, it can be written
as A;(x) = g~1(x);g(x). We will assume that the function g(x) has a limit as
X — 00:

(30.21) lim g(x) = go.

Then g(x) can be considered as a map from the sphere §* = R*U {oo} into G.

Condition (30.21) can be explained by passing to the limit as the size of the
sphere goes to infinity. It corresponds to imposing zero boundary conditions on a
field in a finite volume. Periodic boundary conditions would correspond to a function
g(x) : T® — G on the three-torus.

We can associate to every function g(x) satisfying (30.21), and, conse-
quently, to every classical vacuum, a topological number, giving the homotopy
class of the corresponding map S? — G. (Here we are using the assumption that
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G is a simple, non-abelian, compact Lie group, which implies that {S% G} = Z).
Instantons correspond to tunneling between classical vacuums with different
topological numbers. To see this, we impose the gauge condition Ay = 0 and
the condition that our fields have the asymptotic behavior A, ~ g~1(z)8,9(z)
at infinity, where g(z) = g(x,t) tends to 1 for x € R? and t — —o0, and also
for t € R and £ — oo; and g(z) tends to g(x) as ¢ — oo. (These conditions can
be ensured by the application of an appropriate gauge transformation.) If the
instanton A, (x, t) satisfies these conditions, it describes a tunneling process be-
tween the classical vacuums 4, = 0 and A, = g~'d,¢. In particular, (30.16) is
gauge-equivalent to a field that describes tunneling between a classical vacuum
of topological number 0 to one of topological number 1.

As noted at the beginning of this chapter, instantons must be taken into ac-
count when we compute the functional integrals (25.3) and (25.4) by the Laplace
method. It is important, however, that in calculating the instanton contribution
we can substitute a Gaussian integral for the integral over directions orthogonal
to the space (manifold) of instantons, so that the Laplace method reduces the
overall integral to an integral over the instanton manifold. Taking into account
gauge invariance and using the Faddeev—Popov trick, one can reduce the integral
over the infinite-dimensional instanton manifold to an integral over the space
of gauge-inequivalent instantons, which is finite-dimensional. For instance, for
G = SU(2) the contribution to (25.4) of instantons with topological number
¢ =1 can be written as

(30.22) / B(), a)p(), a) d\ da,

where &(), a) is obtained by substituting the field (30.16), with parameters X
and a, into the functional #(A), and

(30.23) dp = p(A,a)d\da

is some measure on the instanton manifold. The measure du can be expressed in
terms of infinite-dimensional determinants. The problem of computing a mea-
sure on the instanton manifold is discussed further in Chapter 32; here we note
only that for g = 1 the measure du can be derived from the requirement that
the answer be renorm-equivalent.

It turns out that for G = SU(2) and ¢ = 1 the instanton contribution is
given, to within a factor, by the expression :

2
8w )d)\ da,

2/ »

where g(2) is the effective coupling constant corresponding to the scale A (or to
the momentum p = 1/1), and is given by the formula

(30.24) / 97°®(A, @) exp (—

2 2
8w 87 22 In A

(30.25) 20 = Z T3y
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where )p is the normalization point. The measure A~%dAd*a on the instan-
ton manifold is invariant under translations and expansions—in fact, under all
conformal transformations—of R*.

The integral (25.4) diverges, but this divergence can be eliminated if we di-
vide (25.4) by (25.3) and renormalize the quotient. In calculating the ¢-instanton
contribution, we divide (25.4) by the contribution to (25.3) of topologically triv-
ial fields; this contribution is computed by the Laplace method. The factor g—8
in (30.24) could be replaced by g())78, but this is not necessary since we are
limiting ourselves to the main approximation term in the Laplace method, and
the difference between g8 and g(\)~® only plays a role in the next order of
approximation.

We now discuss briefly the provenance of the term g~ 8. In the formal calcu-
lation of the integral (25.4) by the Laplace method, it turns out that integration
along each direction orthogonal to the instanton manifold yields a factor g~1.
The total number of these factors is

(30.26) dim &, — (rq + dim G* — hy),

where dim £, and dim G* are the (infinite) dimensions of, respectively, the space
of all fields with topological number g and the group of all gauge transforma-
tions; 7, is the number of parameters on which depends the general solution
of the self-duality equation with topological number ¢ (with gauge-equivalent
fields considered as the same); and h, is the dimension of the subgroup of G*
consisting of elements that fix a given instanton with topological number g.
Formula (30.26) holds for any G, not just for SU(2). If G = SU(2), we have
rq=8g—3and hy=0for g 2 1.

As discussed above, in calculating the instanton contribution to (25.4) it is
necessary to divide by the contribution of instantons with topological number
g = 0 (classical vacuums) to (25.3); this contribution contains the factor g!
with multiplicity dim £ — dim G* + 3 (this is formula (30.26) with 7o =0 and
ho = 3). Setting dim £, = dim &y, we see that in the the g-instanton contribution
the factor g~ appears with multiplicity 8¢. If G = SU(N), as we saw above,
wehave'rq=4Nq—(N2—1) and hy =0 for g > %N; while for 1 < ¢ < %N we
have rg = 42 +1 and hy = (N — 2q)?, and for ¢ = 0 we of course have ro =0
and hg = N2 — 1. We conclude that the g-instanton contribution to (25.4), after
the normalization discussed above, has the factor ¢~ always with multiplicity
4Ngq. For q = 1 we get (30.24), where g~® should be replaced with g~ and the
effective coupling constant g*(\) is defined by

(30.27)

The single-instanton contribution (30.24) clearly diverges for #(4) = 1.
This means that (30.24) can reasonably be used only when the factor $(}, a)
suppresses the contribution from large-scale instantons. This could be expected
because, as A tends to infinity, the effective coupling constant ceases to be
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small. But, in spite of this divergence, much effort has been put into analyzing
the contribution of instantons to the partition function (25.3).

In general, as we will show in Chapter 32, the g-instanton contribution for
q > 1 can be written as

o el ) e

where the integral is over the manifold of instantons with topological number ¢
(gauge-equivalent fields being considered as the same), the measure djg comes
from the natural metric on the instanton manifold, ¢ is a constant depending
on G and equal to 4N for G = SU(N), and A(A) is defined as

(det A%)~2 det AZ,

where A4 = d'yd, and A# = 1d!,(1 — ¥)da + dad}; denote the Laplacian oper-
ators acting, respectively, on functions and on one-forms with values in the Lie
algebra of the gauge group (here d4 is the covariant derivative and * denotes
taking the dual). The determinants of A and A{ are regularized via cutoff in
proper time or with the help of the {-function (see Chapters 23 and 28); zero
modes are disregarded in this calculation.

From (30.28), using a reasoning similar to the one at the end of Chapter 28
in order to find out the dependence of the determinants on the scale of the
instanton (there is no dependence on the position, by translation invariance),
we can obtain an explicit expression for the single-instanton contribution. We
will not work out this computation here, because Chapter 32 contains a more
general discussion, based on a similar idea.

In quantizing a gauge theory we begin with the Euclidean action integral
(25.2). Without changing the classical equations of motion, one can add to this
functional the following term:

(30.29) Lio(F, «F) = Li6 / 42 (F, Fag)e™®.

Indeed, as we know, this so-called §-term differs from the topological charge
only by a factor, and does not change under continuous variations of the gauge
field, so that it does not contribute to the equations of motion. We can derive
the same result by noting that the integrand in (30.29) is a total divergence.
However, after quantization the f-term has sizable effects. This is especially
evident when we calculate the instanton contribution: the presence of the 8-
term in the expression for the contribution from fields with topological number
¢ (in particular, in the expression for the g-instanton contribution) leads to an
additional factor exp(—16n2g6i). Thus, a new parameter § appears in the theory
after quantization.
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The main object of this chapter is to calculate the number of parameters on
which the general g-instanton solution on the sphere 5* depends. But since most
of our reasoning is valid for an arbitrary compact Riemannian manifold M, we
start with this general situation.

First we repeat some of the reasoning of the previous chapter using coordin-
ate-free notation. Let M be a four-dimensional compact oriented Riemannian
manifold and G a simple, non-abelian, compact Lie group. A gauge field A on
M is interpreted geometrically as a connection on the principal bundle £{ =
(E, M, G,p) with base M (T15.3). The strength F of the field A is a two-
form on M taking values on the fibers of the associated vector bundle &, =
(Er, M,G,p,), where G is the Lie algebra of G, and G acts on G by the adjoint
representation.

The operation of taking the dual of an antisymmetric tensor gives rise to
a duality operation on forms, because of the correspondences between skew-
symmetric tensors and forms; we denote this operation by *. For example, if
F = 1 F,pdz®AdzP, we have xF = 1 Fop dz® AdzP, where Fop =3\ /GEapy .
If ¢ = agdz® is a oneform, the dual is *a = 2bagydz™ A dzf A dz", where
bagy = /FEapysa’- For more details, see T6.9.

The Euclidean action of a gauge field A is

(31.0) SU) = 1535, F) = 33 [ Fens )V,

that is, a constant times the scalar product of the field with itself, where the
scalar product of two two-forms f = 1 fog dz*Adzf and h = Lhop dz®Adz?, with
values on the fibers of the vector bundle, is given by (f,h) = [(fap, hag) dV.
This definition works whenever there is a scalar product defined on the fibers
and a Riemannian metric on the base manifold. The scalar product of two
k-forms is defined similarly (T6.9).

The topological number of a gauge field (T15.4) can obviously be written
as

1
(31.2) 1= g (FoeF).
Using the fact that (xF,»F) = (F,F) and (F,*F) = (xF,F), we get
(31.3) 0 < (F £ +F, F £ +F) = 2(F, F) + 2(F, +F),
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so that (F,F) > (F,*F), and equality holds if and only if
(31.4) F =sF.

We see that S[A] > 8n2g~2g, and equality is achieved if and only if (3.14) is
satisfied. Analogously, for g < 0, we get S[A] > 8n2g~|q|, with equality if and
only if

(31.5) F = —xF.

Of course, these equations simply translate to coordinate-free notation the re-
sults of the previous chapter.

Let A be a gauge field satisfying the self-duality condition (31.4). We will
look for solutions A’ of (31.4) that lie near A. Since we are considering gauge-
equivalent solutions as identical, we remove the degrees of freedom due to gauge
equivalence by imposing on A’ the condition

(31.6) di(A' — A) =0,

where dl, is the operator dual to the covariant derivative d (recall that the
difference between two gauge fields can be seen as a one-form with values in the
fibers of the vector bundle &, = (E., M, G, p;); see T15.2). We can think of d,
as the covariant divergence: if a = a,, dz*, we have

dLa, = —(Vua* +[4,, a¥)),

where V,, is the covariant derivative with respect to the Riemannian metric.
So, suppose the field A' = A + a satisfies (31.4) and (31.6). If we set P =
3(1 — x), the one-form a satisfies

(31.7) P(daa + 3[a,a]) =0
and
(31.8) diya =0,

where the bracket of one-forms is defined by [axdz?, budz*] = [aa, bs] dz* A dz*.

‘We now consider Equations (31.7) and (31.8), ignoring the non-linear terms
in (31.7). We introduce the linear operator 7 = (Pdg,d},), that is, 7 maps
the one-form a to the pair (f, h), where f = Pdaa is an anti-self-dual two-form
(f=—xf)and h= dYa is a zero-form (all these forms take values in the fibers
of ;). Then (31.7) and (31.8) are equivalent to

(31.9) Ta=0.

If we denote the space of one-forms by I'!, the space of zero-forms by I,
and the space of anti-self-dual two-forms by I, the operator 7 maps I3 into
Iy + I'p. We show that 7 is elliptic. In local coordinates, 7 maps a = ay dz* to
(f,h), where
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f=%fx.,d:z:'\/\dz" for f)‘.,=%(6>‘a,,—8,,a,\)—% 9 Exvpe0’a’ + -+,
h=8a,+--;

the omitted terms do not contain derivatives, and have no effect on the principal
symbol of 7. Thus, the principal symbol of T is the matrix linear operator that

maps ay to
(%i(p,\a,,, — D) — \/EEAupappaa)1 ip”a'u)-

Both the domain and range of this operator have dimension 4dim G. Indeed
ay, for each value of A = 1,2,3,4, takes values in the Lie algebra of G; while
the tensor fy,, being skew-symmetric, has three independent components, and
h supplies a fourth one. It is easy to check that the principal symbol of T is
a non-degenerate linear operator, and therefore T is elliptic. (Strictly speak-
ing, in order to talk of 7 being elliptic, we must consider Il and I3 + I as
spaces of sections of certain vector bundles; we can do this-by introducing local
coordinates.)

As mentioned before, the Riemannian metric on M and the invariant scalar
product on G allow us to the define a scalar product between forms that take
values in the fibers of &,. It follows that we can introduce a scalar product on
I, and I, + I, and consider the adjoint operator Tt from I + Iy to I;. This
operator takes a pair (f, k) € I3 + Ip to the one-form d:“f +dsh eI, This is
shown by using the fact that

(Pdag, f) + (dha, k) = (a,d}sf) + (a,dah).

We want to know the number of solutions of (31.9), that is, the number I(7)
of zero modes of 7. A lower bound for this number is provided by the index of
T, since

IT) = index T + I(77) > index 7.

The index of T can easily be computed using well-known topological results. A
more transparent, although longer, calculation can be carried out using Equa-
tion (27.12), which expresses the index of an operator in terms of Seeley coeffi-
cients. For simplicity, we consider only the case where M = S§* and G = SU(2).
Then one can show that index7 = 8g — 3, so that I[(T) > 8¢ — 3. In fact, we
will show below that in this case [(71) = 0, that is, 71 does not have zero
modes. Therefore I(T) = 8¢ — 3, that is, the linear approximation to the system
of equations (31.7)-(31.8) has an (8¢ — 3)-dimensional space of solutions. From
this one can show that the nonlinear system itself has an (8¢ — 3)-parameter
family of solutions.

The reasoning above is based on the infinite-dimensional inverse function
theorem, which applies to a differentiable nonlinear map W : E; — E,, where
E, and E, are Banach spaces. We assume that W (zo) = yo, and seek a solution
to the equation W (z) = y, where y is near . The theorem says that, if the
differential W of W at z, is an invertible linear operator, the equation Wz)=y
has a unique solution near o, for y near yo. In other words, if the derivative of
an operator is invertible at a point, the operator itself is locally invertible near
that point.
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From this theorem one can also derive the infinite-dimensional implicit func-
tion theorem, which provides information about the map W even when the
derivative W is not invertible, so long as the image of W is the whole range
E,. That is, we assume that the equation W(z) = y has a solution for any
y, but do not assume that the solution is unique—the space of solutions is
some [-dimensional subspace of FE;, where I = l(W) is the number of zero
modes of E,. Then the solutions of W(z) = y, for y near y,, also form an
l-parameter family. To show this, we take [ linear functionals ry(z),...,r(z)
that are linearly independent on the space Ker W of zero modes of W. Setting
r(z) = (ri(z),...,m(z)), we get a map r : E; — R!, and then a mapping
W' : E; — Ey xR}, taking z € E,; to (W(r),r(z)). Our assumptions imply that
the differential of W’ at z, is invertible, so we can apply the inverse function
theorem to conclude that the equation W’(z) = (y,7) has a unique solution for
y close to yp and r close to 0. The solutions of this equation, as r varies, give
an [-parameter family of solutions to the equation W(z) = y for y close to o
(and in particular for y = y).

All we have to do now is notice that the nonlinear system (31.7)—(31.8) can
be written in the form of a single nonlinear equation T'a = 0, where T is the
nonlinear operator that maps a one-form a € I3 to the pair (f,h) € I3 + Iy,
where f = P(dsa+1[e,a]) and h = d}a. The linear operator T is the differential
of T at a = 0. From I(7) = 0 it follows that 7 is surjective, so that T satisfies
the conditions given above for the applicability of the implicit function theorem.
Therefore the number of parameters needed to describe the space of solutions
of Ta = 0 equals I(T).

Actually, the argument above needs to be strengthened somewhat. Accord-
ing to our conventions, all functions, forms, and bundle sections are taken to be
smooth (differentiable infinitely many times). But under these conditions one
cannot make I} and I'; + I into Banach spaces with the necessary properties;
we must instead enlarge these spaces somewhat. One could, for example, take
I} as the space of one-forms whose coeflicient functions have derivatives of or-
der up to k, and whose k-th derivatives are integrable when raised to the p-th
power, for p > 4. (I is an example of a Sobolev space, and is denoted by W;‘)
About the elements of I, + I'y we assume that their (k — 1)-th derivatives are
integrable when raised to the p-th power.

Instead of eliminating the gauge freedom by imposing condition (31.8), we
can talk of an instanton manifold where gauge-equivalent fields are identified.
Denote by N, the infinite-dimensional set of solutions to the self-duality equa-
tion (31.4), and by R, the set obtained from N, by identifying gauge-equivalent
instantons. In other words, R, is the set of orbits Ny/G* under the action of
the group G™ of local gauge transformations. From the preceding discussion it
follows that for G = SU(2), M = S* and ¢ > 1 the set R, has dimension 8¢ — 3.

Now consider an arbitrary simple, compact, non-abelian gauge group G,
and M = S* as before. Then it is already not true that [(77) = 0 in general.
Notice first that (71) = I(TT'), where 777 is the operator taking a pair
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(f,h) € I3 + Iy to (ALf, Afh), for Af = Pddly and A = dlyda. This implies
that I(T1) = I(Af) + U(AF).

Analogously, [(T) = {(T'T) = I(A4), where Af = d}yPds + dadly. One
can show that [(A#) = 0 for any instanton on S*. The number [(Af) = I(da)
equals the dimension of the subspace HA C Iy consisting of forms w such
that d,w = 0. To each element w € I is associated an infinitesimal gauge
transformation defined by

6A = dAw.

In other words, I'y can be identified with the Lie algebra G* of the infinite-
dimensional Lie group G* of all gauge transformations. Thus, ‘HA consists of
infinitesimal gauge transformations that leave A invariant. Put another way,
HA is the Lie algebra of the Lie group H# of gauge transformations taking
A to itself. For G = SU(2) and instantons with topological number ¢ > 0 we
have HA = 0, but for ¢ = 0 we have dim H4 = dim {4 = 3: the field A = 0
is fixed by any global gauge transformation, that is, any gauge transformation
generated by a constant function. )

When HA is trivial, that is, [(T1) = dim H4 = 0, the instanton is called
irreducible. The solutions to the self-duality equation can be studied in the
neighborhood of an irreducible instanton A in the same way as in the case
G = SU(2). The dimension of the space of solutions of (31.7)-(31.8), for A
irreducible, equals I(7") = index 7. For G = SU(n) we have

indexT = 4nq — (n® — 1),

where ¢ is the topological number. If g > %n, there exist irreducible instantons,
so the dimension is 4ng — (n? — 1). This implies that

dim R, = 4ng — (n* — 1)
for ¢ > %n. If, on the other hand, the instanton is reducible, we have
I(T) = index T + dim H*.

Thus, the number of zero modes of 7 depends on the dimension of HA,
An instanton is called regular if this dimension does not change under a small
variation in the field A. It can be shown that the dimension of R, is I(T) =
index T + dim H4, where A is a regular instanton. Noting that

index T = I(A%) — (AD) — I(AD) = I(AY) — L(AF)

and
dim HA = I(AY),

we conclude that dim R, = [(A£).
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As discussed earlier, instantons play an important role in the calculation of the
functional integrals of type (25.3) and (25.4) by the Laplace method. Recall
that this method is based on expanding the exponent of the exponential in
a neighborhood of its minimum, discarding terms of degree greater than two,
and computing the resulting Gaussian integral. In the case of instantons the
exponent achieves its minimum not at a single point, but on an entire manifold.
This requires a modification to the Laplace method, which we now describe.
Consider the integral

(32.1) I= [ pla)explg?S())dV,

where M is an n-dimensional Riemannian manifold and dV is its volume ele-
ment. We assume that S(z) takes its minimum < on a k-dimensional critical
manifold N, that is, S(z) > yfor all z € M, and S(z) = v for z € N. We
assume that S is non-degenerate on N, that is, that the second differential of
S at each point of N is a quadratic form of rank n — k. It will be convenient
to write this second differential at z € N as d2S = }(S” dz, dz), where S” is
a self-adjoint linear operator on the tangent space to M at the point z € N;
the non-degeneracy condition is equivalent to the condition that S” has k zero
eigenvalues. (Clearly, every tangent vector to N is an eigenvector of 5" with
eigenvalue zero, so S” has at least k zero eigenvalues.) The leading term in the
asymptotic approximation of (32.1) as g — 0 is

(32.2) (V2rg)tmM—amN exp (—%) /N (z)(det S"(z)) "/ dp,

where dy is the measure on N determined by the Riemannian metric inher-
ited from M, and the determinant of the singular operator is understood as
the product of its nonzero eigenvalues. To obtain (32.2), we must notice that
the asymptotics of (32.1) is determined by a neighborhood of N, and that in
integrating in directions orthogonal to N one can employ the usual Laplace
method.

If o(z) and S(z) are invariant under the action of a compact Lie group
acting G on M, we can modify (32.2). Let ¢ € G act by the transformation
T'(g), which we assume is an isometry for all g. If w € G is an element of the Lie
algebra of G, denote by T w the vector at £ € M arising from the infinitesimal
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transformation w: informally, T'(1 + w)z = z + T;w. The linear operator 7; can
be interpreted as the differential of the nonlinear map g — T'(g)z at g = 1. We
normalize the invariant scalar product {, ) on G in such a way that G has unit
volume.

The manifold N where S is minimized is obviously invariant under G, and
likewise the functions that appear in (32.2). Hence, as explained in Chapter 25
(see (25.24)), the integral over N can be replaced by an integral over the space
of orbits R = N/G. The leading term in the asymptotic expansion of (32.1) as
g — 0 then becomes

(32:3) 1= (Vg == exp(~ %) [ ote)
for

(32.4) du = Z(z)V(H)" dpo,

where

(32.5) Z(z) = (det §"(x))"/*(det T} T;)"/2,

dyo is the volume element in R arising from the Riemannian metric inherited
from N, and V(H) is the volume of the stabilizer of G' with respect to the
Riemannian metric on G. (We assume that all stabilizers are conjugate to a
fixed subgroup H C G, and therefore all have the same volume.)

Using the operators [ = §”(z) + 7,7} and [ = T}T;, which satisfy the
relations

(32.6) det (12 = det §"(z) det T, T = det S” det 17,
(32.7) det (¥ = det T/ T,

we can also write
(32.8) Z(z) = (det %) ~/? det [F;.

To prove (32.6), we note that the G-invariance of S implies the invariance of the
second differential of S at = € N under the transformation dz — dz + T;£, for
£ € G. This implies S"T; = 0, which in turn implies S"Z. T = 0 and TTIS" =
0. Thus, we can find for §” and 7; 7} a common system of eigenfunctions, each
of which has eigenvalue zero for one or the other of the operators. Since in
computing the determinant of & singular operator we only consider nonzero
eigenvalues, we obtain (32.6).

We now apply these results, concerning the asymptotic behavior of multiple
integrals (of finite multiplicity) with infinitely many minima, to the calcula-
tion of the instanton contribution to (25.3) and (25.4). (Of course, in this case
the integrals are infinite-dimensional, so our calculations cannot be considered
rigorous.) The Euclidean action Seua(A) = (4¢%)~(F,F) will play the role of
g~25(z), and S(x) will correspond to the functional (F,F). For M we take the
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set £, of gauge fields with a fixed topological number ¢ > 0, so N will be the
space Ny of solutions of the self-duality equation (31.4).

To expand the Euclidean action in powers of deviations from the solution
to the self-duality equation, we write it in the form

(32.9) Senct = %(2(}1 *F) + (F — +F,F — xF))

and use the formula for the variation of the field strength caused by an infinites-
imal variation of the gauge field,

(32.10) 6F =da6A

(see T15.4). This implies that 6(F — *F) = 2Pd,6A, where P = (1 — *).
Using (32.9), we conclude that the increment in the Euclidean action caused by
an infinitesimal variation of the self-dual gauge field A is

1 1
(32.11)  ASeua ='2—!’3(Pd,4 6A,PdybA) +--- = 2—g2(dj,PdA 6A,6A) +---,

the discarded terms having order three or higher in §A.

We have just calculated the second variation of the Euclidean action func-
tional Seu at an arbitrary point of N,. The role of S”, as we have seen, is
played by dLPdA, acting on the space I of one-forms with values in the fibers
of the fibration &, = (E,, M G, p;). Further, Sey is invariant under the infinite-
dimensional group G*™ of local gauge transformations. The Lie algebra G* of
this group can be identified with the space Iy of sections of £,. The effect of an
infinitesimal gauge transformation w € G™ = I on a gauge field A is given by

(32.12) 6A = dw.

This means that for 7, in the discussion above we can take the operator d4
mapping I'y = G* into I, and for T,/ T; we take deA. Therefore (32.5) becomes

(32.13) Z4 = (det(d' Pd )"/ det(dl,d4)"/? = (det Af) Y2 det AL,

where A2 = dl, Pd4 + dad, and A$ = d',d4. We remark that A and A§ are
the same as in the previous chapter.

The Lie algebra H# of the stabilizer H# consists of elements w € G* = I
such that dqw = 0, that is, of covariantly constant sections of &,. Thus, the
dimension of H4 equals the number of zero modes of d4 or, which is the same,
the number of zero modes of A2 = dlyds. As we have seen, A has no zero
modes for G = SU(2) and g > 1; for G = SU(2) and g = 0 there are three zero
modes, corresponding to global gauge transformations.

We are now ready to formally apply (32.3) to the computation of the con-
tribution of instantons with topological number ¢ > 1 to the functional integral
(25.4). We have

@19 L= Eeesmen(-220) [ o(A)Zadm
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where dpg is the measure on the instanton manifold R, coming from the Rie-
mannian metric inherited from N,.

This metric is defined as follows: if A and A + a are instantons with a small, the
distance between the corresponding points in R, is (a + dap, a + dayp)'/?, where @ is
given by the condition dly(a+day) = 0. Indeed, the field A+ a + dyp is obtained from
A+ a by an infinitesimal gauge transformation, and the vector a +da¢ is orthogonal
to the orbit of G* passing through A.

Almost all quantities in (32.14) are infinite—in particular, the determinants
of the infinite-dimensional operators A{ and A#, and the dimensions dim £, and
dim N, of, respectively, the space of all gauge fields and the set of instantons
with topological charge g. We can attempt to make better sense of (32.14) by
discarding infinite constant factors and by regularizing determinants (Chap-
ter 23). Such considerations allow one to conclude that, in integrating over the
instanton manifold R,, one must use the measure dp = Z 5 dpy, where Z, is
defined in (32.13), with the determinants being assumed regularized.

It is more satisfying, however, to give (32.14) a meaning by first going over
to a lattice and then taking the limit as the lattice step tends to zero (that is,
lifting the cutoff in momentum).

We now show how this can be done in calculating the contribution J; of
instantons with topological number ¢ to the Euclidean Green’s functions. Re-
call that these functions are the quotients of (25.4) by the partition function
(25.3). In computing (25.3) we assume that the main contribution comes solely
from classical vacuums, that is, instantons whose topological number is zero.
Therefore J; can be represented by

(32.15) si=on(-52a) [ o) e

where A(A) = Z4V(H#)™! and where A(0) = ZoV (H®)™".

The number ¢ in (32.15) equals dim Ny — dim Ny, but this definition has no
rigorous meaning since both dimensions are infinite. However, we can represent
dim N, as

(32.16) dim N, = dim R, + (dim G* — dim H*) = [(Af}) — [(A}) +dimG™,

where we have used the relation dim R, = [(A#}), which holds for a regular
instanton A: see (31.10). In particular,

(32.17) dim Ny = dim Ry + (dim G® — dim H?) = dimG* — dim G.
We see that
(32.18) o = dim R, — dim Ry — (dim H* — dim H°)

= I(Af) — (A7) — (HA) - UAD))-

To avoid considering infinite dimensions, and also to give an interpretation
to the integrand of (32.15), we pass to a lattice. In particular, we must study the
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asymptotic behavior of the discrete analogues A{!(a) of A2 as a — 0. However,
we will not follow this path, which leads to certain (surmountable) difficulties.
Instead of cutoff in momenta, we will use cutoff in proper time (Chapter 28), as-
suming that the asymptotic behavior is the same for In det A#(a) and In det, A2,
where £ = const a?. Using (28.9), we conclude that, for a — 0,

Indet A(a) ~ Indet, A%
~ —30,(AM)e™? — &1 (ALt + (Bo(AF) — I(AH)) Ine.

In the discrete case, as discussed in Chapter 25, the analogue of a gauge field is
a function b, defined on the oriented edges of the lattice (an orientation for each
edge having been fixed). Integration over the space of gauge fields A, is replaced
with integration over a product of copies of G, one for each edge. The volume
element in this product is determined by the invariant Riemannian metric

(32.19) ds® = Z(b;‘ ! db,, by 1 db,),

¥
where the sum is over all the edges. In order to establish a link between the
volume element dyy in R, and its discrete analogue du§, we recall that we have
associated to the gauge field A, the function b, = Pexp(— [, A, dz,). If the
lattice step is small, we have b, = 1 — A,a (assuming that v is parallel to the
z*-axis). Using this we get

(32.20) ds® = a2 / (6A,, 6A") dV = a~2(6A, 6A).

It follows that
(32.21) dpg =~ a~ 9™ Ba dpg = g~ HAD) gy,

The volume of the discrete analogue of the group H is computed using the
invariant metric

(32.22) ds® = (p3' dpa, p;" dpa)

[+

in the discrete analogue of the group of gauge transformations G*. Here p,, is the
element of G assigned to vertex a of the lattice, and the sum is over all vertices.
For each gauge transformation with a function p(z) there is a corresponding
discrete gauge transformation; the element of length (32.22) is related to the
metric in G*™ by the formula

(32.23) ds? ~ a4 / (=X () 6p(x), p~Y(z) 6p(z)) dV.

Thus, upon discretization, we must replace V(H#) by a~2dmH*y(HA) —
a2 ANV (HA).

We are now in a position to investigate the asymptotic behavior of J, as
a — 0. We note first that A(A) dug/A(0) behaves like
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(32.24) const exp(—(p(A) — p(0)) Ina),
where
(32.25) p(A) = Bp(Af) — 28(AF).

Indeed, the difference

(—11ndet Af(a) + Indet Af(a)) — (—} Indet Al(a) + Indet Aj(a))
has the asymptotic behavior

—L(@o(Af) — U(AD)) + (Bo(AF) — UAF)) ne
— (—1(@o(AY) — UAD)) + (Bo(AD) — UAD))) Ine
= —(p(A) — p(0)) Ina + (I(A]) — 2U(AF)) ~ ((A) — 2(A])) Ina

as a — 0; the factors that diverge linearly and quadratically in € = a? cancel
out. Taking into account the divergent factors in duo and V(H 4)~1 we obtain

(32.24). We see that for (32.14) to have a finite limit as a — 0, the bare coupling
constant g should depend on @ in such a way that

8
9*(a)

has a finite limit. Computing the Seeley coefficients $o(A#4) and $o(A§) (Chap-
ter 27), we get

— 9+ (p(4) — p(0)) Ina

1 1 1
g—z(;) 7 +8 260!1[1(0,’0)

where o is a coefficient that depends only on the gauge group, g should be
interpreted as the physical coupling constant, and v is the renormalization point.
This equation represents the standard law of variation of the bare coupling
constant under renormalization in a gauge theory. If g(a) is chosen to be of this
form, we get the following finite expression for the instanton contribution to the
Euclidean Green'’s function as a — 0:

(32.26)

87%q
o~ —c —_—
(32.27) Jy = const g exp( p ) / &(A)dv

for dv = (v(A)/~(0)) dpo, where
(32.28) Y(A) = Z,V(HA) ™! = (det AL)~/3(det ALV (HA) ™.

We have not included in the general constant the factors v(0) and V(H4)™!,
which are independent of A, because they do not change under a conformal
variation of the metric, which we consider below. For G = SU(n) we have
a = 2n and o = 4ng. (In general, one can show that ¢ = 2aq.) The infinite-
dimensional determinants in (32.28) are assumed regularized as explained in
Chapter 28.
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The calculation of these infinite-dimensional determinants requires consid-
erable effort. However, important information about the measure dv on the
instanton manifold R, can be obtained without computing the determinants,
simply by using the conformal invariance of the action integral (25.2) for a
gauge field (clearly, (25.2) does not change if the Riemannian metric g,,(z) on
M is replaced by a conformally equivalent metric g, (z) = e”®)g,,(z)). But the
functional integral (25.4) does change under conformal changes in the metric; as
mentioned in Chapter 29, this phenomenon is termed conformal anomaly, and is
related to the change in scalar product in the space of fields over which we are in-
tegrating. The measure dv = v(A)due(v(0))~! changes too. However, using the
results of Chapter 29, one can examine the variation in dv caused by an infinites-
imal conformal variation in the metric of M. In view of (29.28), we can interpret
Z, as the partition function of the quadratic functional S4(a) = (df, Pda, a),
which is invariant under the change a — a + dw.

Using (29.29), we obtain an expression for the variation in Z, caused by an
infinitesimal conformal variation in the metric, 6g,, = o(z)g..(z):

(3229) &6ln Z4 = 36(61a1) — 18(261A8),

where & is the operator of multiplication by o(z). This gives an expression for
the variation § du in the measure du = Z,V(H4)™! dup = v(A) duo caused by
an infinitesimal conformal variation in the metric:

(32.30) 5dp = (306(5]07) — To(8108)) dp.

The measure duy and the volume V(H*) also change under a conformal change
in the metric. Their variation is governed by the zero modes of A{ and A#. The terms
corresponding to the variation in the measure dyy cancel out with the contribution
of the zero modes to the variation of the partition function Z,4.

Similarly, we can prove that the variation of 4(0) caused by a conformal
variation in the metric is

(32.31) §7(0) = (3%(51A7) — ¥(6145))7(0)-
Combining this with (32.20), we get
(3232)  bdv = (W (6]A%) - %(]AF) — 1Te(6]AT) — Ty(6]A)) dv.

Computing the Seeley coefficients (Chapter 27), we obtain
(32.33) Py / () (Fop, F*) dV ) dv.
' = \ 38474 W '

(Below we will show that in studying instantons in R* we can make do with
the previously computed coefficients $o(Af) and y(AY)).

We now turn to the case where M is the sphere S* with the usual metric.
5% is acted on by the 15-dimensional group @ of conformal transformations
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(a transformation 7' = ¢(z) is called conformal if it gives rise to a conformal
change in the metric: ds'? = e”(*) ds?). Thanks to the conformal invariance of
the self-duality equation, the action of  on S* gives rise to an action of @ on
R*. The measure (32.28) is not invariant under this action, but using (32.30)
we can study the variation of this measure under the action.

If ¢ = 1, the action of @ on R, is transitive, that is, any instanton can
be obtained from any other by some conformal transformation. Hence, starting
with (32.30), we can determine the measure dv on R; uniquely, to within a
numerical factor. Properly speaking, the measure on R, when M = 5% is of
no interest since the passage to S* is only a means to introduce spatial cutoff;
what is important is the limit of the instanton contribution when the radius of
the sphere tends to infinity, that is, when the size of the instantons considered
is much smaller than the radius of the sphere. By taking this limit we obtain a
measure dv on the instanton manifold for R%. We now turn to the study of this
measure.

As explained in Chapter 30, for G = SU(n) the instantons with topological
number g = 1 are characterized by their size X and by their center a, a four-
vector. The measure dv on R; can be written as dv = 7(), a) dA d'a. It is clear
that dv is translation-invariant, so 7(), a) does not depend on a. From (32.32)
it follows that the variation of dv under an expansion T — (1 + $0)z is

8dv = a(18o(Af) — Bo(AF) — 3B0(AY) + Po(AY)) dv.

The Seeley coefficients that appear in this formula have already been used above.
We get
bdv = i—;aqa dv,

hhlc}l’ fUI q 1) glhes

We have thus derived the expression for the single-instanton contribution given
at the end of Chapter 30. If ¢ = 2 and G = SU(2), the manifold R, has
dimension 8 x 2 — 3 = 13, and the orbits of @ in R, are 12-dimensional. Hence,
the conformal properties of dv enable one to establish this measure to within a
function of a single variable.



33. Functional Integrals for a Theory
Containing Fermion Fields

In Chapter 24 we showed that many important physical quantities in quantum
mechanics and quantum field theory can be represented in the form of functional
integrals. The integrands of these integrals contain the exponential of either the
action functional of the classical theory, or its Euclidean analogue (obtained
by passing to imaginary time). The ideas of Chapter 24, however, cannot be
directly applied if the theory contains fermions. One reason is that we cannot
speak of a classical fermion field. Indeed, in the boson case quantization is based
on the canonical commutation relations

(33.0) lpipel = lasad =0, oy = 7
or on the equivalent relations

(33.2) [a;,ax] = [al,a}] = 0, [a;,al] = by,
where

1, f o1
a = E(Qk +ipy), e = W(Qk — ipg).

In the limit K — O the operators p, and g (or a and a;rc) commute, and can
be thought of as being classical quantities. By contrast, in the fermion case one
starts from anticommutation relations

(33.3) [aj, ails = [a},al]l+ =0,  [aj,al]+ = Fbjs,

where [a, b]+ = ab+ ba is the anticommutator of a and b. Clearly, a; and al do
not commute even in the limit £ — 0. The conclusion we can draw is that a
fermion field has no classical limit.

However, there is a more fruitful point of view. We can say that in the limit
ki — O the operators a; and a,;fc become anticommuting quantities. This is an
indication that in the classical limit fermion fields must be thought of as fields
taking on anticommuting values. This interpretation is very fruitful because,
in particular, the expression of physical quantities as functional integrals re-
mains valid in the presence of fermions, provided that we have an appropriate
procedure for integrating over fields with anticommuting values. For example,
for a theory that describes the interaction of a spinor field ¥(z) with a scalar
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field ¢(z), the generating functional of the Euclidean Green’s function can be
written as

_ Zlxx]

where Z[j, x, x!] can be interpreted as the partition function in the presence of
sources j and Xx:

(33'5) Z= /exP (—Seucl + /(.750 + XT"/’ + "»b‘X) d4:z;>) Hd‘P dy d"/)tf

where the integral is over fields ¥(z) and x(z) taking anticommuting values,
and

(336) Seuet = [(4(8u0)" + 91 P4+ ¥t + Ag*) o

(@ being the Euclidean Dirac cperator: see Chapter 26).

A precise definition of integration over fields with anticommuting values
will be given later. Here we limit ourselves to remarking that, in the theo-
ries that most interest us, the action functional depends on the fermion fields
quadratically, so the resulting functional integrals over anticommuting fields
are Gaussian. As in the ordinary case, the evaluation of Gaussian integrals over
anticommuting fields can be reduced to the calculation of determinants. The
result is somewhat different, however; while in the ordinary case the integral is
(det A)~1/2, where A is the operator corresponding to the quadratic form in the
exponent, in the case of anticommuting fields the answer is (det A2,

We now give some rigorous statements and definitions. We consider symbols
€l,...,e" that satisfy

(33.7) %P = —ePe?,

and look at expressions of the form

(33.8) w=Y Y af ...
k Q1,...,0f

Expressions of this form can be added and multiplied together, and multiplied
by scalars, in the obvious manner (taking into account (33.7)). Therefore they
form an algebra known as the Grassmann algebra with generators gly..., "
More formally, we can say that a Grassmann algebra is an associative algebra
with unity and with generators £,...,e" satisfying (33.7). Every element of
the Grassmann algebra can be written in the form (33.8) with the af, . skew-
symmetric, and this representation is unique. (Another unique representation
arises by imposing instead the condition that af, , =Ounlesso; < a3 <--- <
ax.) The product of an even number of £*’s is called an even monomial, and a
linear combination of even monomials is called a even element of the Grassmann
algebra. Odd monomials and odd elements of the algebra are defined similarly.
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From (33.7) it follows that an even element of a Grassmann algebra commutes
with any other element, and two odd elements anticommute. If a® = 0 in (33.8),
that is, if every term contains at least one €%, then w is nilpotent, that is, w"¥ = 0
for some N > 0.

The expression (33.8) has the form of a polynomial in €!,...,&". This indi-
cates that we should consider w as a function of the anticommuting variables
gl,...,&", and accordingly we write w = w(e). We now show that, for functions
of anticommuting variables, we can define operators analogous to the usual
operators of analysis. We start with the partial derivatives dw/de?. If

(33.9) w=¢geM, g%
we set

ow o o
(3310) B—E'\=EI.“E..

Any other monomial either coincides, up to sign, with a monomial of the form
(33.9), or else does not contain &*, in which case we set dw/de* = 0. We ex-
tend the operation of partial differentiation to arbitrary elements of the form
(33.8) by linearity. Thus, in order to compute dw/d¢*, where w is written as
sum of monomials, we must put £ in first place in each monomial, using the
anticommutation relation, and then cross out the £*.

It is easy to see that, for w; an even or odd monomial,

sz

Oun
de e’

where the + sign holds for w; even and the — sign for w; odd.
The definition of the integral of a function of anticommuting variables
(Berezin integral) is based on the relations

(33.11) —wytw—

A Wiwe =

(33.12) /e'\ de* =1, /dz-:" -0

Multiple integration, with element d"e = de™...de!, is defined by iteration.
From (33.12) it follows that fw d"e vanishes if w is a monomial of degree

less than n. The integral of £* ... e% equals £1, depending on the parity of the

permutation a; . ..ay,. For an expression of the form (33.8), with the af ..

skew-symmetric, we have

(33.13) / wd® =nla? .

Integration can be expressed in terms of differentiation:

/‘”d“e_—av

as can be seen from the relation
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"
Oem ... 0el

and from the fact that after n-fold differentiation the degree drops to zero.
Integration of functions of anticommuting variables has many of the prop-
erties of ordinary integration. In particular, integration by parts takes the form

(e'...em) =1

w a
(33.14) / Sawnde = F / le‘:—f e,

where w, is either even (— sign) or odd (+ sign). This follows from the rule
(33.11) for the derivative of a product and from the equation

(33.15) / %d"s =0,

for every w, which in turn is a simple consequence of the fact that dw/0e* is a
sum of monomials of degree less than n.

There is also a change-of-variable formula. For instance, in a Grassmann
algebra one can replace the system of generators el,...,e" by the system
&,...,&", where & = Aje? for some nonsingular matrix A3. Then (32.8) can
be written in terms of the £€* as

w=w(E) =Y a8 o .. £,
with
k ~k
(32.16) af o =k g AD .. AR

We easily conclude from this that, if the coefficients in (32.8) are skew-
symmetric,

(32.17) a}.n =det AGT .,

and consequently that
/w(é) d"é = /det Alw(e) d.

Notice that this rule differs from the change-of-variable rule for ordinary inte-
grals: here, the determinant of the change-of-variable matrix appears raised to
the power —1.

We will not discuss here more general (nonlinear) changes of variables. We
will need, however, one special case: substitutions of the form e® — &* + 5>,
where the 3 anticommute. The “jacobian” for such a transformation is 1.

We now list simple examples of integrals over anticommuting variables.
These formulas can easily be derived from the definitions.

For o an even element of the Grassmann algebra, we define expo by the
usual series expansion: we write o = 0g + 03, where gg € R and o, is nilpotent,
and set
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1
expo = expap (E ma{‘),

where the series has only finitely many non-zero terms. With this definition we
have

(32.18) f exp(acle?) de? de* = a,
where @ is any number.

We also have

n
(32.19) /exp(z x,,s“) de=Xn...x1,
a=1

where the x, are anticommuting quantities (that is, the integrand is an element
of the Grassmann algebra with generators x1,..., Xn,€!,...,&").

One often has to deal with expressions of the form (33.8) where the af,
depend on variables z',...,z™. (We can consider such an expression as a func-

tion of ordinary (commuting) variables z* as well as of anticommuting variables
€*.) For such an expression w the integral [wd™z d"c is defined by iteration:
assuming the a,'gl_._ak are skew-symmetric in the of, we have

/wd”'a: d*c = n! /al___,.(z) d"z.

The most important kind of integral over anticommuting variables is the
Gaussian integral, namely, the integral of w = exp g, where 0 = 1Cppee is a
quadratic expression on the £*. Without loss of generality, we can assume that
the matrix C,g is skew-symmetric, and we do so from now on. We have

(33.20) /expa de = /exp(%C’ap %) d"c = y/det Cup.

This follows immediately from (33.18) when o = )e'e? 4+ Age%t + -+ -; the
general case can be reduced to this one by a linear change of variables. A more
general formula is sometimes useful:

(33.21) / exp(3Cap €°® + Xat®) d"c = Vdet C exp(2xa(C1)*x5).

Here, as in (33.19), the x; are anticommuting objects; furthermore the matrix
C is assumed invertible.

One often encounters Grassmann algebras equipped with an involution,
interpreted as complex conjugation: w — @. Usually in this case the alge-
bra has an even number of generators that occur in complex conjugate pairs:
el &l,...,e" & An element of such a Grassmann algebra is real if it does not
change under complex conjugation; we also say that such an element is a real
function of the generating variables £!,&!,...,e" &". An important special case
of (33.21) is the following: if ¢ = C,pe®e® is a real quadratic form, that is, if
the matrix C,g is Hermitian, we have
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(33.22) I= /exp(a + %o + XaE")d"Ed"e
= / exp(Cape®e® + €%Xa + Xof™) d"Ed e
= det Cpg exp(—Xa(C™1)**X5).

Here, as in (33.21), C is assumed invertible. We can lift the invertibility as-
sumption as follows: let p§ be an orthonormal system of eigenvectors for the
matrix C,g, and let A be the corresponding eigenvalues. Assume that Ax = 0
for k=1,...,s, and A\ # 0 otherwise. Then

(33.23) I =i ...v,det’ Cexp(—xa(C71)%s),

where v = Xal, det’ C is the product of the nonzero eigenvalues of C, and c1
denotes the operator that in the basis ¢f has diagonal elements A lif k> sand
0if k < s. (C~! is uniquely defined by C~*IT =0 and CC~' = c'Cc=1-1,
where IT denotes projection onto the nullspace of C.) Equation (33.23) can be
proved by the linear change of variables

€ > gk, &% gt
In addition one must use (33.21) and the equation

/exp(Xaéa + Ea)_(a) d"ed"e = x1X1- - - XnXns

which is a particular case of (33.19).

Up to this point we have considered finitely generated Grassmann algebras.
In quantum field theory one also encounters functions of an infinite number of
anticommuting variables, that is, elements of Grassmann algebras with infinitely
many generators.

Consider, for concreteness, a set of generators parametrized by a continuous
parameter £: for example, £ might be a real number or a point in R®. We denote
the generators by £(£), and assume they satisfy

e(€1)e(€a) = —€(€)e(6r)-

The elements of the Grassmann algebra generated by the e(£) are given formally
by

(33.25) =3 [ Eel6) - elde) der -

which is the same as (33.8) if we replace the discrete index a by the continuous
index £ and the sum by the integral. We say that w is a function of infinitely
many anticommuting variables, or that it is a functional of the anticommuting-
valued function &(£). (Actually, the definition just given is not rigorous because
we have not specified the class of functions w*(&1,...,&s) that can appear in
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(33.25). There are different ways in which the necessary refinements can be
made, but we will not dwell on them here.)

By (33.24) we can, without loss of generality, assume that the coefficient
functions in (33.25) are skew-symmetric in the &. Addition and multiplication
of functionals of an anticommuting-valued function are defined in the obvious
way. One can also define differentiation and integration. As with functionals
of ordinary functions, the integral in this case can be defined as a limit of
approximating multiple integrals. More precisely, in (33.22) we must replace
integration with respect to the continuous parameter £ by summation over a
finite lattice, then evaluate the integral of the resulting function of a finite
number of anticommuting variables, and finally take the limit. We will not
dwell here on the choice of approximating multiple integrals or on the passage
to the limit, since it is essentially the same process as in Chapter 23.

Formulas (33.20)—(33.23) for Gaussian integrals can also be applied to the
infinite-dimensional case. For example, (33.20) becomes

@) [ e’“’(% fee E’)E(E)E(E’)d€d£’) [1de(€) = (det C)',

where C is the operator whose matrix has entries C(€, £').

In fermion theories one can express physical quantities as functional in-
tegrals if one allows integration over anticommuting-valued functions. More
exactly, the important physical quantities can be represented as functional
integrals whose integrands contain either exp(iS), where S is the action, or
exp(—Seuc1), Where Seyq is the Euclidean action. The only difference between
this case and the ones studied so far is that here the fermion fields must be
assumed to take on anticommuting values; accordingly, integration over these
fields follows the rules laid out in this chapter.

For example, the partition function of a fermion field in an external gauge
field (which we think of as classical) is

(33.27) Z = / exp(—Seuet) [[ d9 dtp = det(Y —im),

where we have assumed that the Euclidean action is given by (26.7). To re-
move infrared divergences we must introduce infrared cutoff by assuming, for
example, that all fields are defined on a compact Riemannian manifold. Ultra-
violet divergences are removed by regularizing determinants, as explained in
Chapter 28. The Gaussian functional integral is evaluated using (33.26), and
the Green’s functions of the fermion field in the presence of an external gauge
field A are

(3328) Gﬂ(zlv ey I Y- Un | A)
=271 /'l.b(a:l) e (@)Y (1) - . W (n) XD(—Seuar) [T dwt dp

(this is the formula for a 2n-point Green's function).
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Instead of these Green’s functions it is often convenient to consider their
generating functional

(33.29)  Gnn'l=2" / exp(—SmI + / ('Y +¥'n) dz) 1 dvt dv.

Evaluating this functional integral by means of the infinite-dimensional analogue
of (33.22), we obtain

(3330)  Clnil=ex ( [ @D | An(e) e df),

where D(z,z' | A) = (z|(Y —im)~|z').

So far we have assumed that the Dirac operator Y —im has no zero modes.
If this is not the case, we obtain Z = 0. But even in the presence of zero modes
the functional integral

[ (@) bz 41) .. ¥ (0n) exp(~Senct) [T '

can be non-zero. It is therefore still convenient to define the Green’s functions
of a fermion field by means of (33.28), where we replace Z by det(Y —im) and
disregard zero eigenvalues when computing the determinant (see Chapter 28).
Then the generating functional of the Green’s functions can be defined, as be-
fore, by (33.29). Applying the infinite-dimensional version of (33.23), we get

(3331) Gl = xixa. .- Xhxe exp ( [ @)al(Y —im) e In(e") dz dz'),

where x; = (n,9:) = [ 7'(z)pi(z) dr and p;(z) runs over the elements of an
orthonormal system of zero modes for the Dirac operator. This formula readily
yields an expression for the Green’s functions of a fermion field in the presence
of an external gauge field. in particular, we see that the first nonzero Green’s
function is a 2s-point Green’s function, where s is the number of zero modes.
This function is given by

(33.32)

Gol@1s -1 Tsi Y1, - -+, Us | A) = 28ym(p1(z1) - - @a(@e) el (31) - - - 0} (3)),

where asym stands for antisymmetrization in the z;’s and y;’s.

So far we have discussed fields in a space of arbitrary dimension. We now
concentrate on massless fermion fields in a 2n-dimensional manifold. In this case
the Euclidean action is invariant under the substitution

(33.33) P(z) = ¥'(z) = exp(Brans1)(2),

where Yzp41 = —i™172- - - Yon- But the Green’s functions are not generally in-
variant under this transformation. Indeed, without loss of generality we can as-
sume that the zero modes of the Dirac operator in the expression for the Green’s
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function have a well-defined parity (that is, are either left zero modes or right
zero modes). The difference n_ — n,, where n_ and n; are the numbers of left
and right zero modes, respectively, is the index of the Dirac operator consid-
ered as acting on the space of left spinors (Chapter 27). The preceding formulas
show that under the transformation (33.33) the Green’s function is multiplied
by exp(—28(n_ — n,)), and by (27.25) this equals to exp(—28arg(A)), where
g(A) is the topological number of the field:

(33.34) G (Z1, - - Zn) = Gp(z1, . . ., Tn) exp(—2Barq(A)).

We have just computed the so-called axial anomaly for the particular case of
axial (chiral) transformations. For the sake of completeness we dwell briefly on a
more general situation. Assume the gauge field on a four-dimensional manifold
contains the matrix 4°, that is, that it can be written as

Ay(z) = Vu(z) + i7" Wa(z),

where the fields V,(z) and Wy(z) (the vector and axial parts of the gauge
field) take values in the Lie algebra of the gauge group. The Euclidean action
integral (26.7) is invariant under gauge transformations of the fermion field,
¥(z) — T(g(z))y(z), if the field A,(z) is gauge-transformed at the same time.
If the fermion field is massless, there is also an additional invariance under axial
gauge transformations. Infinitesimal axial gauge transformations have the form

(33.35) ¥(z) = (1+ir’t(w(z))¥(z),
(33.36) Au(z) = Ay(3) — °Ow(z) — i [Au(z), w(z)],

where w(z) is a function with values in the Lie algebra of the gauge group.

While the invariance of the Euclidean action integral under gauge transfor-
mations implies that the partition function is likewise invariant, the axial gauge
invariance breaks down at the quantum level, that is, an anomaly emerges.
In other words, the partition function does not change if A, is replaced by a
gauge-equivalent field, but it does change if A, undergoes the transformation
(33.36). As mentioned in Chapter 29, the appearance of anomalies is due to the
non-invariance of the scalar product. Under gauge transformations the scalar
product of fermion fields is preserved, but under the axial gauge transformation
(33.35) it changes as follows:

(33.37) 6(1, ¥a) = 2(11, Ywip).

The ideas discussed in Chapter 29 allow one to reduce the computation
of the change in the determinant of Y under the substitution (33.36) to the
calculation of the change in the same determinant under a change in the scalar
product of fermion fields described by (10.5). Using (29.17), we get

6nZ = Sindet Y= JoIndet V= / W@ (F, F*) d'z.
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Recall that the QCD Lagrangian is obtained from the free fermion Lagrangian
(34.1) L= Po;—iy meps;
f f

by localizing the SU(3)-symmetry. Here, for f fixed, ¥; = (V5 vhv3) is a
three-dimensional vector of bispinors. In other words, when considering the
quark fields 11)'}, where k specifies the color and f the flavor, we discard the
color index k, a consider v as a vector in color space.

The Euclidean action associated with (34.1) is

(342) 5= [ (b0 ¥ = iy, ¥ ) 4,

where the components ¢’; of 1, take values in the space of the spinor repre-
sentation of SO(4),and @ denotes the Euclidean Dirac operator. The Euclidean
QCD action functional, obtained by localizing the SU(3)-symmetry in (34.2), is

(343) 5= XY b = imilr b )V + So

where Syy is the Euclidean action functional for the gauge field A, that takes
values in the Lie algebra of SU(3) (namely, the algebra of anti-Hermitian trace-
less matrices), and Y= i7*V, = iy#(8, + A,). (Here the action of A, on ¥,
is by matrix multiplication, %, being understood as a column vector in color
space.)

In order to express the QCD Green’s functions in terms of functional inte-
grals, we must think of the fermion fields in (34.1)-(34.3) as fields with anti-
commuting values. For example, for a given gauge-invariant functional @[A, ¢]
of the fields A, and 1y, the corresponding Euclidean Green’s function is Zs/Z,
where

(34.4) Zp= / (A, yle-S [[dA] d dv'

and the partition function Z is given by he same formula with @[ A, ] replaced
by 1. Take, for example,

(345) @[A,"l)] = (bl"‘/’("zl)a "/)(12))1
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where by = Pexp(— [ A, dz") is the path-ordered integral over a curve I’
joining z; and z,. This functional is gauge-invariant and the corresponding
Green’s function is called the two-point fermion Green’s function. Of course, for
the functional integral (34.4) to have a meaning, we must introduce infrared and
ultraviolet cutoff, the former by considering fields over a compact Riemannian
manifold (e.g., the sphere) and the letter by passing to a lattice.

Without loss of generality we can assume that

(34.6) P[A, 9] = %(z1) ... Y(@m)¥' (91) - .- ¥ (1) VIA];

any gauge-invariant functional is a linear combination of functionals of this
form. The resulting Green’s function is nonzero only if m = n in (34.6), because
the expression is invariant under the transformation v ~ e**y (which implies
' — e~@y!). From now on we assume that m = n. The Green’s function
corresponding to (34.6) is called the 2n-point fermion Green’s function.

Note that we are restricting our attention to gauge-invariant functionals
®[A, 9. In particular, this excludes the possibility of setting V[A] = 1 in (34.6).
(Tt is often convenient to consider Green’s functions coming from V[A] = 1, but
this requires fixing the gauge.)

The functional integral over the anticommuting fields 1, ¥ is Gaussian and
can be expressed by means of the formulas of the previous chapter. For example,
applying (33.27) we get for the partition function:

(34.7) Z= / I;[det(V —imy) exp(—Symr) [] dA.

For the functional integral (34.4), with ®[A, 9] of the form (34.6), we get
(34.8)

Zg = /G"(:L'l, ey Tl YLy Un | A)V[A]I;[det(y —imy) exp(—Sym) [[ dA,

where Gp(Z1,. .-, Tnj Y1, -+, Ya | A) is the fermion Green’s function in the pres-
ence of an external gauge field A. (Here we have used (33.28), where, as discussed
before, zero modes should be discarded in the computation of the determinant
of the Dirac operator.) Note that we have discarded spin, color and flavor indices
from (34.7) and (34.8).

The integrals (34.7) and (34.8) can be computed using the Laplace method.
The contribution of fields with topological number g can be written as an in-
tegral over the manifold of instantons with this number. From Chapter 32 it
follows that the contribution from g¢-instantons is

Y 82 ) A
(349) Jq =g ~exp —Fq /Rq Gﬂ(zli eIy ln I A)V[ ]dﬂ,,

where the notation is the same as in Chapter 32, the Green’s functions and the
functional V[A] are calculated in the presence of the instanton field A, and
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with v(a) = [1; det(Y —ims)y(A) = [1; det(Y —imy) det™/2 Ad det AL
If the quark masses are small, we can write

(34.10) det(Y —imy) = m{ det Va,

where N is the number of zero modes of Y 4, and the zero modes are disregarded
in the calculation of det Y 4.

To find out the number of zero modes of the Dirac operator, we can use the
index theory developed in Chapter 27. By (27.26), the difference between the
numbers of left and right zero modes of ¥ 4 (that is, the index of ¥ 4 considered
as acting on left spinors only) is equal to three times the topological charge
g of A. (We assume that spatial cutoff is carried out by considering the fields
on a sphere or torus and applying (27.26), taking into account that signature
of either of these manifolds is zero, and that the Dynkin index of the vector
representation of SU(3) is three.) We conclude that the number N of zero modes
of Y 4 is no less than 3|g|.

If the field A is a solution to the self-duality equation (30.12) or of the anti-
self-duality equation (30.13), the number of zero modes is exactly 3|g|. Indeed,
in this case one can show that Y 4 has only left zero modes (if ¢ > 0) or only
right zero modes (if ¢ < 0). If, for example, the field is given on a torus and
satisfies the self-duality equation, the square of the Dirac operator on right
spinors is given by

(34.11) V= -V,V¥

this follows from the formula given at the end of Chapter 27 for Vz, and from
the fact that 3&,,,07"71" = —7,7%7°. Noting that (3, —V,V*) = (V,u9, V¥9),
we see that any right zero mode 9 of the Dirac operator satisfies V,3 = 0.
Using the relation between ¥, and the commutator of covariant derivatives,
we obtain t(F,, )¢ = 0. If the se]f dual field is irreducible (Chapter 31), we get
% = 0. We conclude that, for an instanton A,

(34.12) det(Y 4 —imy) ~m det Y4

if the quark mass my is small. This allows us to write the measure on the
instanton manifold as

(34.13) dy = 1'[ %l 'f((‘;))

where

(34.14) 7(A) = det V4 (det Af) /2 det AF.
If g=1, we get

82 3 8n2 \did'a
(34.15) exp(——gz—)dp, = If:[mf exp(—m)T,
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where, as usual, a is the position of the center of the instanton, )\ is its size,
which we assume much smaller than the spatial cutoff parameter, and g(}) is
the effective coupling constant:

87?2 8m?

(34.16) . m = g_g

- (11 - %nf) ln/\io

Equation (34.15) can be derived from renorm-group considerations. Alter-
natively, one can use the approach from the end of Chapter 28 to compute the
variation of the determinant of the Dirac operator arising form a scale change in
the gauge field. These calculations give the dependence of det ¥ 4 on the instan-
ton size. The other determinants appearing in (34.14) can be found from the
discussion in Chapter 22. This way of computing the single-instanton measure
also gives the effective coupling constant.

'We now turn to the case where one of quarks is massless. The contribution of
the topologically nontrivial fields to the partition function vanishes in this case:
indeed, the index of the Dirac operation in a field with a nonzero topological
charge is nonzero, so there are always zero modes and the determinant must
vanish.

Nonetheless, a topological nontrivial field can contribute to the functional
integral (34.4). The results derived at the end of Chapter 33 imply that the
2n-point Green’s function of the Dirac operator in an external gauge field can
be nonzero only if n > N, where N is the number of zero modes of the Dirac
operator. Hence, fields with topological charge ¢ can contribute to the 2n-point
Green’s function only if n > |[3¢|, and in particular topologically nontrivial
fields only contribute to Green’s functions with n > 3, and only instantons
with ¢ = £1 contribute to the six-point Green'’s function. Equation (33.13) can
be used to express this contribution in terms of the zero modes of the Dirac
operator in the field of an instanton of size A and center a.

Note that for massless quarks the QCD action is invariant not only under
transformations 1 +— exp(ia)y, but also with respect to the transformations
% > exp(087°)y (chiral invariance). These invariance properties also hold for the
Euclidean action integral, provided that the definition of a chiral transformation
is modified appropriately (Chapter 33). It is important to note that taking into
account the instanton contribution violates the chiral U(1)-symmetry. Indeed,
at the end of Chapter 33 we discovered that this invariance is violated already
in the calculation of the Green’s function of a fermion in an external gauge field
of nonzero topological charge. It can be said that instantons provide a solution
to the so-called U(1)-problem, which can be posed as follows.

Recall that in the massless quark approximation the breakdown of chiral
invariance under rotations in flavor space leads to the existence of massless
Goldstone bosons (Chapter 21). In the real world the first three quarks have
a small finite mass, and this leads to an approximate chiral U(1)-invariance,
whose breakdown guarantees the existence of a multiplet of eight pseudoscalar
mesons of relatively small mass. By analogy, one could think that there exists
a ninth light meson, related to the breakdown, discussed above, of the chiral
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U(1)-symmetry. Such a meson does not exist in nature, and the U(1)-problem
consists in explaining its absence. We have seen that if we calculate the Green’s
functions taking into account the instanton contribution, they turn out not
to be invariant under the chiral group U(1), and do not contain any poles
corresponding to the massless boson that is connected with the breakdown of
U(1)-symmetry.

As in the case of a purely gauge theory, we can incorporate into the QCD
Lagrangian a f-term %ie Jd*z (Fo, Fuww }, without changing the classical equa-
tions of motion. This term again leads to a change in the contribution to the
Green’s function from fields with topological charge g # 0: there appears an ad-
ditional factor exp(—1672g#i). In the case of massless quarks this change can be
eliminated by redefining the fermion fields. Indeed, as noted earlier, in this case
there is chiral U(1)-invariance at the classical level, but this invariance is broken
at the quantum level. It can easily be verified, using the formulas obtained at
the end of Chapter 33, that the change in the fermion Green's functions brought
about by a chiral U/(1)-transformation can be canceled by an appropriate 6-term
in the Lagrangian. In the real world of nonzero quark masses the -term must
lead to non-conservation of parity in strong interactions. This suggests that 6
is close to zero.
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35. Topological Spaces

We say that a set E is a topological space if we have in it the notion of open
sets, a class of subsets of E satisfying the following conditions:

1. The intersection of a finite number of open sets is an open set.
2. The union of any number of open sets is an open set.

A metric space X can be made into a topological space in a natural way,
if we define as open sets all unions of open balls B.(z) = {y : d(z,y) < €}, for
z€ X ande>0.

Using the notion of open sets in a topological space, one defines neighbor-
hoods and limits in the standard way. Continuity of maps between topological
spaces is defined in terms of neighborhoods exactly as in the case of metric
spaces. Equivalently, we say that a map ¢ : E — F between topological spaces
is continuous if ¢~}(U) C E is open whenever U C F is open. We say that
p is a topological equivalence, or a homeomorphism, if ¢ is one-to-one and
bicontinuous (this means that both ¢ and ¢! are continuous).

A subset F C E of a topological space F is closed if its complement E \ F
is open. Clearly, the union of finitely many closed sets is closed, and the inter-
section of any number of closed sets is closed. If all points z, of a convergent
sequence belong to a closed set F, the limit of the sequence also belongs to F.

Every subset E' of a topological space E is itself a topological space in a
natural way: a set U C E’ is defined to be open in E' if and only if there exists
an open set V C E such that V N E' = U. This topology on E' is said to be
induced by the topology on E. In what follows we will always give subsets of
topological spaces the induced topology.

Axioms 1 and 2 above are too weak to guarantee that limits and other
constructions behave in reasonable ways. For example, without further condi-
tions, a sequence might converge to two distinct limits. In order to exclude such
pathologies one generally works with topological spaces that satisfy additional
requirements, called separation axioms. One can require, for example, that the
intersection of all the neighborhoods of a point consist of that point alone; this
implies that every set consisting of a single point is closed.

More commonly, the separation axiom that is used is the Hausdorff axiom,
which says that any two distinct points have disjoint neighborhoods. In a Haus-
dorff space a sequence can have only one limit. All concrete topological spaces
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encountered in this book satisfy the Hausdorff axiom, and even stronger sepa-
ration conditions. For this reason we will assume (except in Chapter 38) that
all spaces are Hausdorff.

A topological space is discrete if every one-point set is open. For instance,
the set of integers, with the topology induced from the real line, is discrete.
So is a finite space: by our standing assumption that the Hausdorfl axiom is
satisfied, every one-point set is closed; therefore the complement of a one-point
set, being the union of finitely many closed sets, is closed.

A topological space E is compact if every open cover of E has a finite
subcover. An open cover of E is a family {U,} of open subsets of E whose
union is all of E; compactness means that we can choose finitely many indices
a1, ..., 0, such that {Usa,, ..., Uy, } is still a cover for E. If F' is compact, every
sequence of points ,, € E has a convergent subsequence, that is, a subsequence
Ty - - Lny,--- that converges to a point of E. For metric spaces this condition
is equivalent to compactness. A compact subspace E of a space E’ is closed in
E'. Every closed subspace of a compact space is compact. If ¢ is a continuous
map from a compact space E into an arbitrary space E’, the image w(FE) of E is
compact. If p is a continuous and one-to-one map from a compact space E onto
a space E', the inverse ¢! of ¢ is also continuous, so ¢ is a homeomorphism.

The direct product (or simply product), E; x E; of two sets Ey and Ey
is the set of ordered pairs {(ei,e2) : &1 € Ey, e3 € Ep}. If Ey and E; are
topological spaces, E; x E; has a natural topology, called the product topology:
a set U C E; x E, is open if it is the union of sets of the form U, x Uj, for Uy
open in E; and U, open in E;. A map ¢ : E; x E, — E, where E is another
topological space, can be seen as a function (e, e;) of two variables, with
values in E. Saying that o is continuous implies that it is continuous jointly in
both variables. The product of two compact spaces is compact.

If every point of a topological space E has a neighborhood that is homeo-
morphic to R*, we call E an n-dimensional manifold. Thus, an n-dimensional
manifold is a space that can be covered by open sets, called charts, each of
which is equipped with a local coordinate system (z',...,z"). If, for any two
overlapping charts, the transition from one local coordinate system to another
on the overlap is a smooth map, we say that E is a smooth manifold. A two-
dimensional manifold is also called a surface.

A vector at a point e € E of a n-dimensional smooth manifold is an assign-
ment of an n-tuple of numbers to each chart that contains e, with the condition
that the n-tuples (A1, ..., A") and (Al,..., A") associated with the charts with

coordinate systems (z',...,z") and (%', ...,%") satisfy the relation
Y Al
A=
ozi

The set of all vectors at a point e € E is a linear space, called the tangent space
to E at e.
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Let G be a set with a composition law, that is, a rule that assigns to each pair
(a,b) € G x G an element of G, denoted ab. The composition law is often called
multiplication. We say that an element e € G is an identity if ce = ea = a for
every a € G. Any set has at most one identity. An element b € G is the inverse
of another element a € G if ab = ba = e, where e is the identity. Multiplication
on G is associative if (ab)c = a(bc) for every a,b,c € G. A group is a set G with
an associative multiplication, having an identity, and in which every element
has an inverse. It is easy to verify that in this case each element has exactly
one inverse; we denote the inverse of 2 € G by a™!. In a group, ab = e implies
ba = e and therefore b = a™!, where e is the identity. The left translation by an
element g € G is the map L, : G — G taking h to gh; the right translation R,
takes h to hg.

A map ¢ : G — G’ from one group to another is a homomorphism if
it preserves multiplication, that is, if ¢(ab) = ¢(e)p(b). An isomorphism is a
homomorphism that is one-to-one and onto. An isomorphism of a group onto
itself is also called an automorphism. The inner automorphisms of a group G
are the maps a, defined by
(35.1) ag(h) = ghg™;
we also call @, conjugation by g, and two elements h € G and ghg™" are called
conjugate.

A subset H C G is a subgroup of G if all products of elements of H and all
inverses of elements of H are still in H. A subgroup H is normal if it is invariant
under inner automorphisms, that is, if h € H implies ghg~' € H for all g € G.

Two elements k and A’ of G are conjugate if they are taken to one another
by an inner automorphism, that is, if there is g € G such that b’ = ghg™'.
Similarly, two subgroups H and H’ of G are conjugate if H' = gHg™! for some
g € G. Thus, a subgroup is normal if it has no conjugates other than itself.

The image Im ¢ of a group homomorphism ¢ : G — G’ is the set of elements
©(g), for g € G; clearly Im ¢ is a subgroup of G'. The kernel of ¢ is the set of
elements that map to the identity e € G, that is, Ker ¢ = ¢7*(e); it is easy to
check that Kery is a normal subgroup of G. A homomorphism is injective if
and only if its kernel is the trivial group, that is, the group that consists only
of the identity element.

Two elements g, € G are said to commute if g¢' = ¢'g. A group G
is called commutative or abelian if all its elements commute with one another.
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Often for a commutative group the composition law is called addition instead of
multiplication, and the identity element is called zero; accordingly we write a+b
instead of ab and 0 instead of e. The set R of real numbers is an abelian group
under the usual addition, and the set R, of positive real numbers is an abelian
group under the usual multiplication. The map z — €* is an isomorphism
between these two groups.

The totality of the transformations of a set X—that is, of the one-to-one
maps from X onto itself—forms a group, with multiplication given by compo-
sition of maps:

(f9)(z) = (f o g)(=) = f(g(x))-

This is called the full transformation group of X, and any of its subgroups is
also called a transformation group. For transformations groups one generally
writes 1 for the identity.

The set of invertible n x n real matrices (those with nonzero determinant)
forms a group under the usual matrix multiplication; we denote this group by
GL(n, R), or simply GL(n). We define GL(n, C) similarly. A homomorphism
from a group G into GL(n, R) or GL(n, C) is called a (resl or complex) repre-
sentation of G (see also Chapter 39).

The subgroup of GL(n,R) consisting of orthogonal matrices is denoted
O(n), and the subgroup of GL(n, C) consisting of unitary matrices is denoted
U(n). The subgroups of O(n) and U(n) consisting of matrices of unit deter-
minant are denoted by SO(n) and SU(n). A matrix group is one of GL(n, R),
GL(n, C) or their subgroups. We can regard matrix groups as groups of linear
transformations, since linear transformations are in one-to-one correspondence
with invertible matrices, the correspondence being established by the choice of
a basis.

The group of linear transformations of four-dimensional space that leave
invariant the space-time element

d82 — (dz())z _ (d.'l:l)2 _ (d$2)2 _ (d23)2 = gix dzi dz"

is called the full Lorentz group. The Lorentz group is the subgroup of the full
Lorentz group consisting of transformations that preserve the direction of time
and the orientation of space; in terms of the entries a}, of the transformation’s
matrix, this means that aJ > 0 and det aj, > 0.

A topological group is a group G that is also a topological space, and such
that multiplication and inversion are continuous maps (naturally, multiplication
is seen as a map G X G — G). A subgroup of a topological group is also a
topological group. Since GL(n, C) is a topological group (being an open subset
of the space of n x n complex matrices, which can be identified with Rz"z),
every subgroup of GL(n, C) is also a topological group.

The direct product of two groups G, and Gy is the product of the sets G1
and G, with componentwise multiplication: (g1, 92)(91, 92) = (9191, 9293)- If G1
and G, are topological groups, so is G1 X Gz, with the product topology. If Gy
and G, are abelian groups with group law denoted by addition, we generally
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talk about the direct sum G, 4G of G, and G, instead of their direct product.
We then write (g1, 92) + (91, 92) = (91 + 91, 92 + 93)-

A topological group G is an n-dimensional Lie group if, as a topological
space, it is an n-dimensional manifold (see the end of Chapter 35). One can
show that in this case the multiplication and inversion maps are smooth, not just
continuous, for appropriately chosen local coordinate systems on G. Therefore G
can be considered a smooth manifold. GL(n, R), GL(n, C), U(n), O(n), SU(n)
and SO(n) are all examples of Lie groups.

A (real) Lie algebra is a real vector space A equipped with a bracket oper-
ation (a, b) — [a, ] that is distributive (that is, [Ae + ub, ¢] = Aa, ¢] + (b, ¢| for
A\ ¢ € R and a, b, ¢ € A), anticommutative (that is, [a,b] = —[b, a] for a,b € A),
and satisfies the Jacobi identity

[a'r [b, C]] + [br [C, a]] + [c’ [a" b]] =0

for a,b,c € A. A complex Lie algebra is defined analogously. As an example of
a Lie algebra, take the vector space of all real n x n matrices (with the usual
addition and multiplication by scalars), and let the bracket of two elements be
their commutator [a, b] = ab — ba.

Lie subalgebras, homomorphisms of Lie algebras, and the direct sum of
two Lie algebras are defined like their group counterparts. For example, a map
t: A — A between Lie algebras is a homomorphism if it is linear and preserves
the bracket operation, that is, ¢([a,b]) = [t(a), ¢(b)] for a,b € A.

Every Lie group G has an associated Lie algebra, which we denote by G.
As a linear space, G is simply the tangent space to G at the identity element.
If G is a matrix Lie group (a subgroup of GL(n, R)), the tangent space can be
seen as a linear subspace of the space of all n X n matrices, and the bracket
operation on G is given by the commutator [a,b] = ab — ba; one can show that
the commutator of two matrices in G also lies in G.

The Lie algebras of GL(n,C) and GL(n,R) are denoted by gl(n, C) and
gl(n, R), and they consist, respectively, of all complex and all real n xn-matrices.
The Lie algebra of U(n) is the space u(n) of complex anti-Hermitian matrices:
indeed, if 1 4+ a € U(n) differs infinitesimally from the identity, the unitariness
condition (1 + a)(1 + a!) = 1 becomes a + a' = 0. The Lie algebra of SU(n)
is the space su(n) of traceless anti-Hermitian matrices, and the Lie algebra of
SO(n) is the space so(n) of real skew-symmetric matrices.

Representations of Lie groups are closely related to representations of Lie
algebras. An n-dimensional complex representation of a Lie algebra G is a homo-
morphism from G into gl(n, C), and real representations are defined analogously.
If T is a representation of a Lie group G, there is a corresponding representa-
tion of the Lie algebra G. More generally, given a Lie group homomorphism
¢ : G — @', there is a corresponding Lie algebra homomorphism G — &', which
is the differential (T4.1) of the map ¢ at the identity (recall that G is identified
with the tangent space to G at the identity, and likewise for G').

Two topological groups G and G’ are locally isomorphic if there is a one-
to-one correspondence between neighborhoods of the identity in G and G’ that
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preserves multiplication. Local isomorphism is denoted by G' = G'; isomorphism
is denoted by G = G'. Two Lie groups having the same Lie algebra G are locally
isomorphic. Among Lie groups with Lie algebra G there is a simply connected
Lie group Gy, unique up to isomorphism; for any Lie group G with the same Lie
algebra there is a homomorphism Gy — G whose kernel is a discrete, central
subgroup of Gy (central means each element of this subgroup commutes with
all elements of G). We can consider Gy the universal cover of G (T3.3).

For example, U(n) is locally isomorphic to R4 x SU(n). To define the local
isomorphism, we associate with each pair (e®,u) € Ry x SU(n) — U(n) the
element €*** € U(n). This gives a homomorphism, whose kernel is a subgroup of
R, x SU(n) isomorphic to Z. As a special case, U(1) ~ R, since SU(1) = {1}.
It follows that

U(n) =~ Ry x SU(n) = U(1) x SU(n).

Every compact topological group G can be given an invariant measure,
unique up to a constant factor. Therefore one can integrate over G, and one has
the equalities

/Gf(gh)d9=/f(hg)dy=/f(g)dg

for every continuous function f on G and every h € G. In other words, we
can define on the space of continuous functions on G a linear functional, the
integral, which is invariant under left and right translations. One can normalize
the invariant measure on a compact group so that the total volume [;dg of
the group is 1. We will not dwell on the general construction of the invariant
measure, but in the particular case of a matrix group G, the construction is as
follows: we give the Lie algebra G of G a scalar product (z,y) = —trzy that
is invariant under inner automorphisms: {g~'zg,g 'yg) = (z,y). This scalar
product gives rise to a Riemannian metric

ds® = (g dg, g7 dg) = —tr(g™" dg)(g" dg)

invariant under left and right translations; the volume element for this metric
gives the desired measure.
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We now describe a process of gluing or identification through which one can
obtain new topological spaces from old ones. Our presentation in this chapter
will be informal, and mainly pictorial.

We start by taking a rectangle and gluing two opposite sides together. If we
do the gluing without twisting (Figure 18), we obtain a cylinder (the cylindrical
wall, not the solid). If, however, we apply a half-twist to the rectangle before
gluing opposite sides, the result is the so-called Mébius strip (Figure 19).

If the top and bottom edges of the cylinder are glued together, we get a
torus (Figure 20). This is the same as starting from a rectangle and gluing the
top and bottom edges together, as well as the right and left edges (Figure 21).

If all the points of the circumference of a disk are identified, the result is
homeomorphic (topologically equivalent) to the sphere S2. Figure 22 shows how
concentric circles in the disk are mapped to parallels of latitude of the sphere.
Analogously, if we take a ball, whose boundary is a sphere, and identify all
the points of the boundary, the resulting space is homeomorphic to the three-
dimensional sphere S%, the set .of points in R* at a fixed distance from the
origin.

Now consider a square divided into vertical lines, one for each value of the
z-coordinate (Figure 23). Identify together all points in each segment, so that
each segment becomes a single point. The result is an interval, which we can
take as the bottom edge of the square for concreteness: there is a one-to-one
correspondence between vertical lines in the square and points in the bottom
edge, and this correspondence is continuous in both directions (that is, segments
close together correspond to points that lie close together, and vice versa).

Next, take the two-dimensional sphere $? and identify together pairs of di-
ametrically opposite points. The result is the projective plane RPZ2. A point of

@

Figure 18 Figure 19

0
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'
Figure 20 Figure 21
‘
Figure 22 Figure 23

the projective plane is a set consisting of two diametrically opposite points in
the sphere. To better visualize RPZ, observe that each point below the equator
is identified with one point above the equator, so we could also get the pro-
jective plane by starting with the upper hemisphere only, and identifying pairs
of diametrically opposite points on the equator. Since a hemisphere is homeo-
morphic to a disk, the projective plane can be obtained from a disk by gluing
together pairs of opposite points on the boundary.

Now concentrate on the portion of the disk bounded by two parallel chords
of equal length (Figure 24). If we take the arcs that form the ends of this strip
and glue them together so that opposite points on the circle match, the result
is clearly the Mébius strip, whose boundary is a topological circle coming from
the two chords. If, moreover, we glue together the two arcs that bound the two
pieces of the strip’s complement, this is the same topologically as gluing two
half-disks along a diameter, so the result is homeomorphic to a disk. Thus, the
projective plane can also be described as the result of gluing a Mobius strip and
a disk along their boundaries.

Figure 24 Figure 25 Figure 26
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Similarly, n-dimensional projective space RP" is defined as the n-sphere S™
with pairs of diametrically opposite points identified. It can also be thought of
as the n-ball with diametrically opposite points of the bounding (n — 1)-sphere
identified.

Another way to define RP™ is to consider the complement of the origin in
R™*! and identify together points that have proportional coordinates (that is,
that lie on the same line through the origin). To see that this construction does
indeed yield RP™, note that any z # 0 gets identified with z/|z|, and this point
lies on the unit sphere. So the identification process just described breaks down
into two steps, one leading from R™*! \ {0} to S", and the second from S™ to
RP".

The surface shown in Figure 25 (a handle) is homeomorphic to the surface
obtained from a pentagon ABCDEFE by identifying AB with DC and BC with
ED (Figure 26). A handle is a surface whose boundary is a topological circle.
Now take a sphere and delete & disjoint disks. This gives a sphere with k holes.
A surface with k£ handles, or surface of genus k, is the result of gluing to the
boundary of each of these deleted disks the boundary of a handle. Figure 27
shows surfaces with one, two and three handles; the first of these is topologically
the torus. It is easy to verify that a sphere with k handles can be obtained form
a 4k—gon A1B\C\D, ... ABiCi Dy by identifying D;C; with A;B; and A,',+1Di
with B;C;, where 1 = 1,...,k and Ag,; = A; (Figure 28).

Consider again a sphere minus k disks, but this time glue onto the bounding
circles kK Mobius strips (recall that the boundary of a Mébius strip is a circle).
The resulting surface can be obtained from a 2k-gon by gluing in the pattern of
Figure 29: if the 2k-gon is A1 By A3Bs. .. Ag By, we glue A;B; to B;_; A;, where
i=1,...,kand By = Bg. To show this, cut off each triangle B;_, A; B;; the result
is topologically a disk, of which k boundary points are identified together, so we
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|
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|
A X c A
Figure 30

get a sphere with & holes. Each triangle B;_; A;B;, after sides A; B; and B;_, A;
are glued together becomes a Mdbius strip, as can be seen from Figure 30:
cutting a triangle ABC along the altitude BK and gluing AB to BC, we arrive
at the standard representation of the Mébius strip in the form of a rectangle in
which one side is paired with the opposite side after a twist.

Every closed surface is homeomorphic either to a sphere with handles or a
sphere with Mobius strip attached. (Closed in this context means the same as
compact.)



38. Equivalence Relations and Quotient Spaces

In many situations in physics and mathematics it is reasonable to comsider
two different objects as equivalent in some sense. For example, in quantum
mechanics the state of a particle or system of particles can be described by a
nonzero vector in a complex Hilbert space (the state vector). But two vectors
1 and 7/ proportional to each other are physically equivalent, that is, they
describe the same state. Likewise, an electromagnetic field can be described by
a vector potential, but two potentials A,,(z) and A,(z) that differ by a gauge
transformation (that is, that satisfy A)(z) = A,(z) + 9,M(z)) are physically
equivalent.

Consider a set X and a relation on X, that is, a rule to decide whether
one element of X is related (in some fixed sense) to another. If the relation
is reflexive, symmetric and transitive (definitions follow), we say that it is an
equivalence relation, and we write £ ~ y if z and y are equivalent, that is,
related by the equivalence relation. Reflexive means that = ~ z for every z € X;;
symmetric means that z ~ y implies y ~ z for z,y € X; and transitive means
that z ~ y and y ~ z imply z ~ 2, for z,y,z € X.

Given an equivalence relation on a set X, we can consider for each z € X
the set N of elements equivalent to x; this set is called the equivalence class
of z. It is easy to verify that the equivalence classes of two elements either
coincide (if the two elements are equivalent) or are disjoint (if not). Thus, an
equivalence relation on X gives rise to a partition of X into pairwise disjoint
subsets. Conversely, given a partition of a set into pairwise disjoint subsets,
we can define an associated equivalence relation, under which two elements are
equivalent if and only if they belong to the same subset.

If we have an equivalence relation on a set X, we can form a new set
X by replacing each equivalence class by a single point; we call this process
identifying or gluing together equivalent elements. We call X the quotient of X
by the equivalence relation. We saw examples of identifications in Chapter 37.
For example, in the space of Figure 23, we identified points in the square [0, 1] x
[0,1] that have the same horizontal coordinate, obtaining a line segment. The
equivalence classes in this case are the vertical segments. The identification of
opposite points on a sphere to give the projective plane is another example:
each equivalence class here has two points, z and —z.

There exists a natural map = from X into X, taking each point z to its
equivalence class N,. This is known as the identification map. A map g from
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X into some set Z gives rise to a map § = gm from X into Z, which clearly
takes equivalent points into a single point. Conversely, if a map maps assigns the
same image to all points in each equivalence class, it factors into a composition
f=hr= h, for some h : X — Z. Returning to the example of opposite-point
identification on a sphere: any even function on the n-dimensional sphere gives
rise to a function on n-dimensional projective space.

A map p from a set X into a set Y defines naturally an equivalence relation
on X, where two points are equivalent if and only if they have the same image.
The equivalence classes are the nonempty inverse images of points y € Y. If the
map is onto, there is a one-to-one correspondence between XandY.

If X is a topological space with an equivalence relation, the quotient X can
be given the quotient topology, under which a map g : X — Z is continuous if
and only if § = g7 : X — Z is continuous, where Z is an arbitrary topological
space. (In particular, if Z = X and g is the identity map, we see that 7 : X — X
is contlnuous) The quotient topology can also be characterized as follows: a
set U C X is open in the quotient topology if and only if its inverse image

7~ }(U) C X is open in X. However, the quotient topology may not satisfy any
separation axioms. For example, one-point subsets in X are closed if and only
if equivalence classes are closed in X. Usually, however, the quotient topology
is well-behaved in the cases of interest in physics.
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Suppose we associate with each element of a group G a linear transformation
T, of a vector space E, in such a way that to the product of elements of G is
associated the composition of the corresponding transformations:

(391) Ton = TgTh, for g,h € G.

We then say that the correspondence g — T, also denoted T, is a linear rep-
resentation of G. In other words, T is a homomorphism from G into the group
GL(E) of linear transformations of E. We also say that E is the representation
space of G (under the representation T').

A subspace E' C FE is called an invariant subspace of the representation
T if all the operators T, map E' into itself. Obviously, the restrictions of the
T, to E' make up a representation of G in E'. If E has no nontrivial invariant
subspaces (nontrivial means different from E and from the space consisting of
the origin only), we say that T is an irreducible representation. If 7! and 72
are representations of E in vector spaces E; and E,, their direct sum is defined
as the representation T' of G in E; + E, given by

Tg(el, 62) = (T;Cl, T:Ez),

for e; € Ey and ey € Es.

Two representations T and T2 are equivalent if there exists an isomorphism
o : Ey — E, such that oT, = T;a for all g € G. We say that a representation
T is unitary or orthogonal if each Ty is unitary or orthogonal. (Of course, this
presupposes that the representation space E is a real or complex Hilbert space.)
If F is an invariant subspace of an orthogonal or unitary representation T, so is
its orthogonal complement F''; furthermore, F' and F! inherit representations
of G by restriction, and the original representation T is the direct sum of the
two restrictions.

For any representation T of a compact group G on a space E one can
find a scalar product on E that is invariant under 7. In other words, for an
appropriate choice of a scalar product on E, every representation of a compact
group is orthogonal (if E is a real vector space) or unitary (if E is complex).
Such an invariant scalar product is constructed as follows: one starts with any
scalar product and averages its images under T;, with respect to the invariant
measure dg on G. The existence of an invariant scalar product implies that
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every finite-dimensional representation of a compact group is equivalent to the
direct sum of irreducible representations.

The representations of the Lorentz group G play an important role in
physics, because the law governing the transformations of a physical quantity
when one passes form one inertial frame of reference to another is described
by such a representation. More specifically, suppose a physical object, such as
a point or a field, is described in one inertial frame of reference K by an n-
tuple (¢1,---,¥a), and in another frame K’ by (¢,...,¢,). We assume that
the dependence of the new n-tuple in terms of the old one is described by a
linear transformation Ty, where g € L is the element of the Lorentz group
taking frame K to frame K'. Equation (39.1) is obviously satisfied; it simply
means that changing coordinates from frame K to frame K’ and then from K’
to another frame K" is equivalent to passing directly from K to K.

Here are some examples of Lorentz group representations (physical quanti-
ties). A scalar is a quantity that does not depend on the coordinate system—we
can say that it transforms according to the trivial one-dimensional representa-
tion of L (all the T, are the identity). A (contravariant) vector is a quantity
(A°, A1, A%, A®) that transforms in the same way as the components of the co-
ordinate system:

(39.2) A" = al AF,

where (ai) is the matrix describing the Lorentz transformation. A covector (or
subscripted vector) is a quantity (Ao, A1, Az, As) that transforms according to
the law s

(39.3) A=A,
where bfal = &, that is, (b¥) is the matrix inverse to the (a}). An example
of a covector is the quantity dp/@z', where p is a scalar field. A (rank-two

contravariant) tensor A is a quantity that transforms as the product BC* of
two vectors:

(39.4) A% = gigk A'™,

The transformation laws for a rank-two covariant tensor and a rank-two mixed
tensor are obtained similarly:

(39.5) Ay, = b7 A,
(39.6) A* =gl AL

These three types of rank-two tensors can be written in matrix form. In
particular, in this notation the transformation laws (39.4) and (39.6) become

A' = aAd”, A =agAa7l

Tensors or higher rank (that is, with more indices) are defined analogously.
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The invariance of the space-time line element ds® = g;.dr*dz* under Lorentz
transformations implies that the metric tensor g; does not change when one
passes from one inertial reference frame to another:

__l,m
ik = @;0p Gim.

The invariance of the four-dimensional volume element under Lorentz trans-
formations implies the same invariance for the tensor &;;y. (This is a totally
antisymmetric tensor taking the value 1 or —1 according to whether (3, j, k, 1)
is an even or odd permutation; if any two indices coincide, of course, its value
is zero.)

The transformation laws (39.2)—(39.6) determine the corresponding rep-
resentations of the Lorentz group. These laws can be applied also in the case
where a] is an arbitrary matrix, not necessarily a Lorentz transformation. Thus,
(39.2)—(39.6) define representations for any matrix group. In particular, (39.2)
defines the vector representation of GL(n, R) if the a? form an arbitrary nonsin-
gular matrix of order n and the numbers A7 are real, for 1 < j < n. Similarly,
(39.3) defines the covector representation of GL(n, R). If the a} form a complex
nonsingular matrix and the A’ and A; are complex numbers, (39.2) and (39.3)
define the vector and covector representations of GL(n, C).

In the complex case we can also consider the transformation laws

(39.7) A™ = gh Ak,
(39.8) A, =B A

where the bar denotes complex conjugation and 1 < k,7m < n. A quantity
that transforms according to (39.7) or (39.8) is called a vector or covector with
dotted indices.

A broader class of matrix group representations is obtained if we consider
tensors of arbitrary rank; in the complex case, each index can be either ordinary
or dotted.

-For the Lorentz group the vector and covector representations are equiva-
lent, and the representations defined by (39.4)—(39.6) are also equivalent. This
is because upper indices can be lowered by applying the metric tensor g;; for
example, to the vector A! we can associate the covector Ay = guA!, and with
the tensor A% we can associate the tensor Ay = grigr.A".

For GL(n, R) and GL(n, C), the representations defined by (39.2) and (39.3)
are not equivalent, and likewise for (39.7) and (39.8). They are also irreducible,
while the representations defined by (39.4)—(39.6) are reducible. For example,
the subspaces consisting of, respectively, symmetric tensors A* = A* and anti-
symmetric tensors A% = —-A’“ are invariant under the group of nonsingular ma-
trices. An invariant subspace of the representation (39.6) is given by all tensors
of the form A6}, and another by all traceless tensors (those with A% = 0). These
invariant subspaces are irreducible with respect to GL(n, R) and GL(n, C).

Every representation of the Lorentz group can be realized using tensors,
that is, it is equivalent to the representation of the group in one of the invariant
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subspaces of a tensor representation. However, the concept of a representation
can be broadened by lifting the restriction that each element g of the group
be associated with a single transformation Tj,. A representation in this more
general sense is called multivalued. The Lorentz group has double-valued repre-
sentations that do not come from tensor representations. The simplest of them
have complex dimension two, that is, each element of the Lorentz group is asso-
ciated with a complex 2 x 2 matrix. The matrices have unit determinant, that
is, they belong to SL(2, C). Instead of describing the double-valued map from
the Lorentz group into SL(2, C), we will construct the inverse map.

We start from the representation of SL(2,C) built with tensors of rank
two having one ordinary index and one dotted index. If we regard such tensors
as matrices, the representation in question assigns to each a € SL(2,C) the
operator T, given by

(39.9) T.(A) = aAd',

for A a 2 x 2 complex matrix. Hermitian matrices form an invariant subspace
for this representation. The space of two-dimensional Hermitian matrices is a
four-dimensional real vector space, since such a matrix is determined by its
(real) entries a;; and a2, and by the entry a;, whose real and imaginary parts
are arbitrary. We will parametrize this space by the numbers % = %(au + ag3),
z' = Reayy, 2 = —Imayy, and z* = 1(a1; — az), so that a Hermitian matrix

X is given in terms of the parameters by

(39.10) X= 0 3)=ZO+X'U,

~ 0+ 28 ! —iz?
ot +iz? -z

where o = (04, 02, 03) has as components the Pauli matrices

p_fo1 2 (0 —i s_ (1 0
"‘(10’ A U 7 A U IS §

Note that z* = 1 tr(¢*X), with 2° = 1. Transformation (39.9) can be regarded as
a representation of SL(2, C) in the space of Hermitian matrices, and it preserves
the determinant function on this space:

det T,(A) = det(aAa’) = det adet Adet a' = det A.

The determinant function itself is a quadratic form on the space H of Hermitian
matrices—in fact, it is connected with of the space-time interval

det(:z:o, 1.1, 22, 1:3) — (zo)z — (21)2 — (z2)2 — (13)2

in the parametrization of H described above. In other words, for each a €
SL(2, C), the operator T, is a Lorentz transformation on the space of Hermitian
matrices considered with the determinant form. More precisely, we have shown
that 7, lies in the complete Lorentz group, so we have a homomorphism from
SL(2, C) to this group. Since SL(2, C) is connected, its image is contained in
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the connected component of the identity, which is exactly the Lorentz group L.
Therefore, T, lies in L. The kernel of the homomorphism SL(2, C) — L is the
two-element group Z,: the identity matrix and its opposite both correspond to
the identity Lorentz transformation.

Now consider the one-to-two correspondence from L into SL(2, C), inverse
to the map just described: each Lorentz transformation has two associated el-
ements of SL(2, C), differing by a sign. This correspondence can be considered
a double-valued two-dimensional complex representation for the Lorentz group,
known as the spinor representation. The two-component quantities that trans-
form according to it are called spinors. Their complex conjugates are called
dotted spinors. (One also says left and right spinors instead of spinors and
dotted spinors.)

Note that under the homomorphism SL(2,C) — L just considered, the
subgroup SU(2) of SL(2, C) is mapped into SO(3). Indeed, for a unitary matrix
a € SL(2,C), we have T,(X) = aXa™!, and therefore tr T,(X) = tr X. Under
our parametrization of the space H of Hermitian matrices, the trace is given
by tr X = z°, so a Lorentz transformation corresponding to a unitary matrix
a preserves z°, and is therefore an orthogonal transformation of the comple-
mentary three-dimensional space, with coordinates (z!,z?,z3). We have thus
built a three-dimensional representation of SU(2). Its inverse can be seen as a
double-valued two-dimensional real representation of SO(3).

The correspondence between L and SL(2, C) just discussed allows one to
consider any representation of SL(2,C) as a (single- or double-valued) repre-
sentation of the Lorentz group. An irreducible representation of SL(2,C) is
characterized by two nonnegative integers p and g, as the rank-(p,q) tensor
representation, that is, as the representation in the space of tensors with p or-
dinary indices and g dotted indices. (For given p and ¢, this representation is
essentially unique. It does not matter if the indices are upper or lower, because
the antisymmetric tensors €45 and €4, being invariant under SL(2, C), allow
one to lower or raise indices at will.) If p+ q is even, the resulting representation
of L is single-valued, and it is double-valued if p + ¢ is odd.

The concept of a tensor is closely connected with that of the tensor product
of representations. Recall that the tensor product E; ® E; of two vector spaces
E, and E,, with bases {e{,...,e®} and {e?,.. ,e?}, respectively, is the
space of formal linear combmatlons of the symbols ef,l) ® e,(,z)—“formal” means
that each element of E; ® E; is expressed uniquely in the form 3=, , c*e{!) ®e,(,2).
Now suppose that T is a representation of a group G in a space Ej, and that

= (M!,...,M™) is in E; (that is, M transforms according to the represen-
tation T3). Suppose, likewise, that N = (N,..., N™) is a quantity transforming
according to a representation T3 in a space Ey. Then, by definition, the quantity
with components M®N® transforms according to the tensor product represen-
tation 7} ® T3, whose space is the tensor product F; ® Fy. The representation
T, ® T; acts in E; ® E, and changes the coordinates ¢*® according to the law

¢® = (Ti(g)i(Ta(9))ic”,
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where (Ti(g))2 is the matrix of Tj(g) in the basis {el”, ..., e}, and likewise
for (Ta(g))}-

Although we gave a definition involving particular bases for F;, and Fs,
the definition of the tensor product of representations (and of spaces) does not
depend on the choice of bases. The rank-k tensor representation of a group is
the tensor product of k copies of the vector representation.



40. Group Actions

An action (or left action) of a group G on a set E is a correspondence that
associates to each element g € G a map ¢, : E — FE in such a way that

(40.1) Pgig2 = Pg1Pga-

In other words, a group action is a homomorphism from G into the group of
transformations of F. An important special case is when this homomorphism
is injective, so we get an isomorphism between GG and a subgroup of the trans-
formation group of E. In this case we say that G acts effectively. For example,
matrix groups can be considered as groups of linear transformations of R™ or
Cm, so they act effectively on R™ or C".

If E is a vector space and the transformations o, are linear, the action is
a (linear) representation of G in E. In the general case, the term nponlinear
representation is often used in the physics literature for a group action.

A right action is a correspondence that associates with g € G a map ¢, :
E — E in such a way that

(40.2) Parg2 = PgaPar-

Given a right action of G on F, we can form an associated left action by assigning
to each g € G the transformation Ay = ¢,-1; we have Ay, = Ay Ay, because
(9192)~* = g5'g7". This means that one can reduce the study of a right action
to the study of a left action. We might not even have bothered defining right
actions at all, but they prove to be natural and useful in certain contexts. Note
that, unless we say otherwise, all actions are assumed to be on the left.

If G acts on the left, we often write gz for y,(z), so that (40.1) becomes
(9192)T = 91(g2z). For aright action we can write zg for 4(z), so (40.2) becomes
z(g192) = (T91)92-

If a topological group G acts on a topological space E, we always assume
that the action is continuous, that is, that ¢4(z) is continuous jointly in g € G
and z € E.

A group action of GG on F gives rise to a natural equivalence relation on E,
as follows: z; € F and z; € E are equivalent if they can be obtained from one
another by the action of some element of G, that is, if zo = @y(z;) for g € G.
The equivalence class N; of a point z € F is said to be the orbit of z; thus N;
is the set of points that can be obtained from z by the action of elements of G.
Two orbits that are not the same must be disjoint, that is, the orbits form a
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partition of E. The set of orbits of G in E is denoted by E/G, and it can be
given the quotient topology (see Chapter 38). Note, however, that the quotient
topology may not satisfy any separation axioms; in particular, all points are
closed in E/G if and only if all orbits of G are closed in E. A simple case where
no separation axioms are satisfied is when GL(n) acts on R™. There are exactly
two orbits, one consisting of the origin and one made up of everything else;
therefore E/G has two points, only one of which (the orbit of the origin) is
closed.

If there is only one orbit, any point of E can be obtained from any other
point by the action of G. We then say that G acts transitively.

The stabilizer H, of a point z € H is the set of elements of G that leave
r fixed, that is, h € H, if pu(z) = z. Clearly, H; is a subgroup of G. If
h € H, we have ghg~' € H, (z). Therefore H,, ) is obtained form H, by an
inner automorphism, and the two subgroups are conjugate, and in particular
isomorphic (Chapter 36).

The definitions in the last five paragraphs apply to right as well as to left
actions.

To each three-dimensional orthogonal matrix A of determinant one we can
assign a rotation z — Az of R3 about an axis that goes through the origin. This
determines an action of SO(3) on R3. The orbits are two-dimensional spheres
centered at the origin, plus one orbit containing only the origin. The space of
orbits is topologically equivalent to the closed half-line R.,. Every orthogonal
matrix fixes the origin, so the stabilizer of the origin is SO(3) itself; by contrast,
the stabilizer of a point z distinct form the origin consists of rotations about
the line connecting the origin with z. It is therefore isomorphic to SO(2), since
a rotation about an axis can also be seen as a rotation of a plane perpendicular
to the axis.

Similarly, we can consider SO(n), the group of n x n matrices with unit de-
terminant, as a group acting on R™. The orbits are (n — 1)-dimensional spheres.
The stabilizer of the point (0,...,0,7), for r # 0, is the group of matrices
ai € SO(n) such that ap, =1 and ap; = ag, =0 forall k # n. By ignoring the
last row and column of such a matrix, we can think of it as an (n—1) x (n—1)
orthogonal matrix of determinant one, so we see that the stabilizer of the point
(0,...,0,r) is SO(n—1). The same is true for any point z € R" distinct from the
origin: any such point can be obtained from a point of the form (0,...,0,r) by
the action of SO(n), and therefore the two stabilizers are conjugate, as discussed
above.

For another example, consider the action of GL(1,R), the multiplicative
group of nonzero real numbers, on R™\ {0} given as follows: for each A # 0, the
associated transformation is the map

(z,...,2") — (Az',..., Az").

The orbits are straight lines through the origin; the orbit space is the real
projective plane RP™! (see Chapter 37). The stabilizer of any point is trivial—
it includes only the identity element A = 1.
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One can define in the same way an action of GL(1,C) on C" \ {0}. The
orbit space is obtained by identifying any point (z!,...,z") € C*\ {0} with
the points (cz!,...,cz"), for ¢ € C\ {0}. This quotient is known as (n — 1)-
dimensional complex projective space, and denoted CP™!. All stabilizers of
the action are again trivial.

Let G, denote the set of k-dimensional linear subspaces of R™. Define
an action of GL(n) on G, as follows: given an n X n nonsingular matrix,
the corresponding linear transformation maps k-subspaces to k-subspaces, and
therefore gives a map from G, into itself. This action is transitive: any k-
subspace can be taken to any other by some linear transformation. The stabilizer
of an element a € G, is isomorphic to the group of matrices of the form (g g, ,
where A is an (n — k) x (n — k) matrix, B is a k X (n — k) matrix, and C is a
k x k matrix.

Now let G be a group and H C G a subgroup. H acts on G on the left
by left translations Ly, for A € H (Chapter 36). The right action R}, is defined
similarly. The orbits of the left action are the left cosets of H, and the orbits
of the right action are the right cosets. We will call the space of right cosets
the quotient space or coset space of G by H, and denote it by G/H; thus G/H
is obtained from G by identifying elements that differ by right multiplication
by elements of H. (Left and right cosets are in one-to-one correspondence: if
g1 € G and g, € G lie in the same left coset, g;! and g5 are in the same right
coset, because g; = hg, for h € H implies g1 = g;'h~!. For this reason we
won't use a separate notation for the space of left cosets.)

Consider the identification map a : G — G/H that takes each g to the
coset where it lies. When can G/H be made into a group in such a way that
a is a homomorphism? If it can, H is the kernel of the homomorphism «, and
therefore H is normal in G' (Chapter 36). Conversely, if H is normal, we can
define the product of two cosets A; and )y by choosing representatives g; and
g2 and taking the coset containing their product. (Since H is normal, the result
does not change if we use different representatives ¢ = g1h; and g = goha,
with hy,hy € H: we have gjg) = g192h, where h = (g5'h1g2)hy € H.) The
coset space G/H with this group law is called the quotient of G by the normal
subgroup H.

If H is a normal subgroup, its left cosets and right cosets coincide. For
if g1,92 € G are in the same right coset, we have g, = g,h with h € H, so
g2 = (g1hgr)g: is in the left coset of g,.

As an example of a quotient group, take for G the group Z of the integers
with addition, and for H the group mZ of multiples of a fixed integer m. Two
integers belong to the same coset if they are congruent modulo m, that is, if
their difference is a multiple of m. The quotient Z/mZ has m elements. It is
called the cyclic group of order m and is denoted by Z,.

A set E where a group G acts transitively is called a homogeneous space.
Every orbit of a (not necessarily transitive) group action is a homogeneous
space. For example, we have seen that the orbits of SO(n) acting on R" are
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(n — 1)-dimensional spheres; each such sphere is a homogeneous space with
respect to the action of SO(n).

Let G act transitively on E, and fix a point ey € E. Denote by K(e) the
set of group elements that take eg to e, that is, elements such that ¢4(ep) = e.
In particular, K(ep) is the stabilizer of eg; we set H = K(eg). If g € K(e) and
h € H, we have gh € K(e), and if g, g2 € K(e), we have g; = gah, with h € H.
In other words, K(e) is a right coset of H. We thus obtain a one-to-one map
between E and the coset space G/H.

If H is an arbitrary subgroup of G, we can define on the right coset space
G/ H aleft action of G by multiplication. The transformation of G/H associated
with a given element g € G takes the coset of an element g, € G to the coset
of gg1 € G. The image coset is well-defined, because if we replace g, by another
clement g, = g1h in the same coset, we have gg; = gg1h, so gg» and gg; are also
in the same coset. The resulting action of G on G/H is transitive.

Any transitive action of a group G on a set E is equivalent to one of the type
just described. For, if H is the stabilizer of a point e € H, we can construct
a map p : G/H — E such that p,p = p@,, where ¢, denotes the action of
g € G on E and @, denotes the action of g on G/H. If G is a topological group,
the map p : G/H — E is one-to-one and continuous. In all cases that concern
us its inverse is also continuous. In particular, the sphere S"! is topologically
equivalent to the quotient SO(n)/SO(n — 1).



41. The Adjoint Representation of a Lie Group

Every group G acts on itself by inner automorphisms: the map associated with
an element g is h — ghg™'. If G is a Lie group, the differential of each inner
automorphism determines a linear transformation on the tangent space to G at
the identity element, because the identity is fixed by any inner automorphism.
This gives rise to a linear representation of the group G in the Lie algebra G of
G, the adjoint representation of G. If G is a matrix group, the Lie algebra G,
too, is realized by matrices, and the adjoint representation 7, maps z € G to
9zg".

As we have mentioned, if G is a compact Lie group, any representation space
of G can be given an invariant scalar product. In particular, the Lie algebra G
of a compact Lie group G has a scalar product (-,-) invariant under G, that is,
such that (74(z1), 7y(z2)) = (Z1,z2). If we consider 7, for g infinitesimally close
to the identity, that is, g = 1+ h, with A € G, we find that 714(z) = £+ [h, z].
Thus, the representation o, of G corresponding to the adjoint representation of
G is given by o4(z) = [h, z]. If (-,) is an invariant scalar product we have

([h" 1:1],.’1.'2) + (zl’ [h, 32]) =0,

so that the expression ([z, ], z}, with z,y, z € G, is antisymmetric in z, y and
z. This expression is therefore a G-invariant antisymmetric multilinear form
(multilinear means linear in each variable). If we choose an orthonormal basis
e1,...,ep for G, and denote by z* the coordinates of an element z = 1%, in
this basis, we can write

([Ia y]! z) = faﬂ'yzayﬂz7;

where f,g, is an antisymmetric G-invariant tensor. The components fogy =
([ea; €], €4) of this tensor are known as structure constants.

If a linear subspace H of a Lie algebra G is invariant under the adjoint
representation of G, we have o(z) = [h,z] € Hforal h€e Gandz € H,s0 H
is an invariant subalgebra of G.

If the adjoint representation of a Lie algebra G is irreducible, G is simple,
that is, it has no nontrivial invariant subalgebras. If G is the Lie algebra of a
compact Lie group G, it follows from the results in Chapter 39 that the adjoint
representation is a direct sum of irreducible representations. Thus G is a sum
of simple Lie algebras. A Lie group whose Lie algebra is simple is also called
simple.
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Every simple compact Lie group is locally isomorphic to one of the following:

1. the classical groups SU(n) for n > 2, SO(n) for n > 2 and n # 4, and
Spin(n) for n > 1; or

2. or one of the so-called exceptional groups, which are denoted G2, Fy, Eg,
E7 and Es.



42. Elements of Homotopy Theory

This chapter and the next are adapted from a lecture published in the Proceed-
ings of the Third Physics Workshop, held at the Institute of Theoretical and
Experimental Physics, Moscow, in 1975. They focus on the uses of homotopy
theory in physics, and especially on the calculation of homotopy groups. The
next chapter summarizes briefly the ways in which homotopy theory can be
applied to quantum field theory.

Throughout this chapter, a “space” will mean a topological space (see Chap-
ter 35).

Two maps fo and f; from a space X into a space Y are homotopic if one
can be continuously deformed into the other, that is, if there is a continuous
family of maps, indexed by a parameter ¢ € [0,1], that connects fo and f;.
More precisely, there must be a continuous map f(z,t) from X x [0,1] into YV
satisfying the conditions f(z,0) = fo(z) and f(z,1) = fi(z). We write f;(z) for
f(z,t), and we refer to either f or the family f; as a homotopy between f, and
fi-

Clearly, the condition for two maps being homotopic gives rise to an equiv-
alence relation (Chapter 38). The equivalence classes of this relation are called
homotopy classes; all maps in the same homotopy classes are homotopic to each
other.

As a simple example, let Y be the Euclidean space R™. Then all maps from
a space X into Y are homotopic to one another; a homotopy is given by the
formula

flz) = (1 - 1) fo(z) +tfi(2)-

In particular, all maps into R™ are null-homotopic, that is, homotopic to a
constant map. (A null-homotopic map is also called homotopically trivial.)

IfY = S* and X = S' are spheres, with [ < k, all maps from S* into
S* are again homotopic to one another. To show this, we need the fact that a
continuous map fp : S' — S* can be approximated to arbitrary accuracy by
a smooth map f; : S' — S*, which is homotopic to fo. Now the image of f;
cannot cover the whole of S*, because the dimension of the domain S* is less
than the dimension of the range S*; thus, there is a point n on S* that is not in
the image of f;. Then we can consider f; as a map into S*\ {n}, and this space
is topologically equivalent to R™ (by stereographic projection, for example: see
Chapter 21). It follows that fy is null-homotopic, and that all maps S' — S*
are homotopic to one another if | < k.
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We now turn to maps from the circle S! into itself. A point of S! is
parametrized by a real number ¢ defined up to multiples of 2, so a map
S — S! can be specified by a real-valued function f(y), continuous on the
closed interval [0, 27] and satisfying the condition f(27) = f(0) + 2wn, where n
is an integer. The number 7, called the degree of the map, says how many times
the circle wraps around itself under the action of the map; for example, the
degree of the map f(p) = ny is n. Clearly, two maps having the same degree
are homotopic, while maps of different degrees are not.

A similar assertion is true for maps from the k-sphere S* into itself. One
can define an integer, the degree, that completely classifies homotopy classes:
two maps are homotopic if and only if they have the same degree.

Recall that a space X is connected if any two of its points can be joined by
a continuous curve, or path. (A path in X is a map z : [0,1] — X; we say that
the path z(t) joins the starting point z(0) with the endpoint z(1).) Every space
can be partitioned into connected parts, called its connected components.

A space X is said to be aspherical in dimension k if every map from S* into
X is null-homotopic. As we have seen, S™ is aspherical in dimensions lower than
n. A space that is aspherical in dimension 1 is also said to be simply connected.

The k-dimensional homotopy group mx(X) of a space X is a measure of
how far X is from being aspherical in dimension k. (In particular, mx(X) is the
trivial group if X is aspherical in dimension k.) To define 7;(X), we need to fix
a point £g € X, called the basepoint; we also need a basepoint for the sphere
S*, which we can take as the south pole s. Let a k-spheroid be a map from Sk
into X taking s to zo; then m(X) is the set of homotopy classes of k-spheroids.

A one-spheroid can be regarded as a path beginning and ending at zo. If f,
and f, are two such paths, we define their concatenation f = ff2 as the path
obtained by going over first f; and then f,. More formally, f(t) = fi1(2t) for
0 <t < 1and f(t) = fo(2t—1) for § <t < 1. If we replace fi (or f2) by another
path in the same homotopy class, the concatenation f;f; also remains in the
same homotopy class. Therefore the operation of concatenation is well-defined
on homotopy classes, and it defines an operation on m;(X). With this operation
71(X) is a group: the identity element is the class of null-homotopic paths,
and the inverse of a path is the same path traversed backwards. We call m; (X)
the fundamental group of X. By the discussion above, m1(S") equals Z, while
m(S™), for n > 1, is trivial. Note that the fundamental group is not always
commutative.

Giving a group structure to mx(X), for k£ > 1, is a bit harder. We define the
sum of two k-spheroids as follows (we use the word “sum” because the result
is commutative on the level of homotopy classes). Divide S* into hemispheres
E* and E¥ so that the separating sphere S*~1 = E} N Ef goes through the
south pole. Define a mapping p; : Ef — S* taking S*! to the south pole
and mapping the open hemisphere EF \ $*~! homeomorphically onto S* \ {s}.
Define p; : Ef — S* analogously. The spheroid f = fi + f; is defined as the
map S*¥ — X that coincides with fip; on Ef and with fap, on Ef. Loosely
speaking, f is defined by f; on one hemisphere and by f; on the other. Once
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more, replacing f; or f» by homotopic maps has no effect on the homotopy class
of the sum, so we have an operation defined on the set mx(X) of equivalence
classes of k-spheroids, which makes 7,(X) into a commutative group.’

A map from the k-ball into X taking the entire boundary of the ball into
the point zy can also be regarded as a k-spheroid, because we can collapse the
boundary of the k-ball to a single point to obtain a k-sphere. We can also think
of a spheroid as a map from the k-dimensional cube [0, 1]* into X such that the
entire boundary of the cube has image z: this follows from the fact that a cube
and a ball are topologically equivalent. In terms of maps on the cube it is easy
to write a formula for the sum of two spheroids: we set

1
Fltryee e t) = {f1(2t1,t2,---,tk) fOI‘(l)ShS 3
f2(2t1 - 1,t2,.. . ,tk) for 2 <t <1.

Strictly speaking, the homotopy groups mx(X) depend not only on X but
also on the basepoint zy, so it would be more precise to denote them by
(X, To). But, if X is connected, the groups (X, zo) for different choices
of z, are isomorphic.-An isomorphism from (X, o) to mx(X,z1) can be con-
structed by fixing a path joining z, and z,. If X is simply connected, the isomor-
phism does not depend on the path, and the identification between m(X, zo)
is me(X, z1) canonical, so we can write 7¢(X) in good conscience. If X is not
simply connected, there is no distinguished isomorphism between n(X, zo) and
mx(X, 1), and sometimes we have to include the basepoint in the notation.

One sometimes also needs to talk about mo(X), the set of homotopy classes
of mappings from the zero-dimensional sphere S° into X. The zero-sphere con-
sists of two points s and n; a zero-spheroid takes s to the basepoint of X and
n to an arbitrary point. Two zero-spheroids are homotopic if they map » to
points that can be connected by a path: therefore 7o(X) coincides with the set
of path components of X. In general, this set does not have a group structure,
but it does have a “zero element”, the class of zero-spheroids that take n into
the path component of the basepoint.

If X is a topological group, m(X) is commutative, even if X is not. More
generally, if X is a group, the group structure on m(X), for £ > 1, has the
following alternative definition, equivalent to the one above: the concatenation
or sum f of two spheroids f; and f; is given by f(z) = fi(z)f2(z). This definition
also works for k = 0, so m(X) has a (possibly noncommutative) group structure
if X is a group.

We now turn to the study of fibrations, a powerful tool in the calculation
of homotopy groups. Consider a map p from a space E into a space B. Denote
by Fy, = p~1(b) the set of points of E that have image b. If all the spaces F} are
homeomorphic, we say that p is a fibration, with base B, total space E and fiber
F;, over the point b. (We often write F for any of the fibers F}, or for an abstract
space homeomorphic to them, and we say F is the fiber of the fibration.) The
map p is called the projection. A fibration with base B, total space E, fiber F'
and projection p is denoted by (E, B, F, p), or just (E, B, F'). One also uses the



250 Part III. Mathematical Background

terms fiber space or fiber bundle instead of fibration. (Strictly speaking, a fiber
bundle is a fibration with some additional structure.)

The simplest fibrations are products. Given B and F, we take E = B x F,
the set of pairs (b, f) with b € B and f € F. The projectionis p: (b,f) = b. A
fibration of this type is called trivial.

A fibration is locally trivial if every point in the base has a neighborhood
over which the fibration is trivial. In symbols, for every point by € B we can
find a neighborhood U of by and a homeomorphism %y : U x F' — p~!(U) such
that pyy(b, f) =bforallbe U and all f € F.

Now let ¢, for g € G, be a transitive action of a topological group G on a
space X (in other words, X is a homogeneous space under G: see Chapter 40).
Fix zo € X, and let H be the stabilizer of zo. Define a map p: G — X by
setting p(g) = @,To- Then (G, X, H, p) is a fibration with base X and fiber H,
since, as discussed at the end of Chapter 40, the set of g such that gzo =
for fixed = is a coset of H. In all cases of interest to us this fibration is locally
trivial; in particular, this is always the case if G is a compact Lie group.

Examples of this type of fibration are easy to construct. Consider a linear
representation of a group G and a point a in the space of this representation.
Since G acts transitively on the orbit X, of a, we get a fibration (G, X,, H,),
where H, is the stabilizer of a. For example, take G = SO(n) acting on R" in
the usual way (that is, according to the n-dimensional vector representation).
If a is not the origin, the orbit X, is an (n — 1)-dimensional sphere, and the
stabilizer H, is isomorphic to SO(n — 1) (see end of Chapter 40). Thus, we have
a fibration (SO(n), S*~%,S0(n — 1)). In exactly the same way we get a fibration
(SU(n), S2*1,SU(n — 1)).

From now on we assume that all fibrations are locally trivial. As mentioned
before, this requirement is almost always met in the cases of interest.

How do fibrations help calculate the homotopy groups of topological spaces?
One tries to decompose a complicated space into simpler ones, whose homotopy
groups are known. The following results are the most important ones to keep
in mind. (They are particular cases of a result we will discuss later.)

(i) i E = B x F is a product, mx(E) is the direct sum of m(B) and mx(F).

To prove this, write a spheroid in E in the form f(z) = (f1(z), f2(z)), where
f1 is a spheroid in B and f is one in F. If @ € m(E) is the homotopy class of
f, we associate with o the pair (@i, o), where a; € m(B) and o5 € m(F) are
the homotopy classes of f; and fs. It is easy to see that this correspondence is
one-to-one.

(ii) If the base space of a fibration (E, B, F) is aspherical in dimensions k and
k + 1, that is, if 7x(B) = mx41(B) = 0, then m(E) = me(F).

To construct the isomorphism, note that the inclusion F° C E gives a ho-
momorphism 7 (F) — m;(E), since every spheroid in F' can be regarded as a
spheroid in E. If mx(B) = 0, any k-spheroid in E is homotopic to one in F, that
is, the homomorphism 7 (F) — m(E) is onto. If mx41(B) = 0, any k-spheroid
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in F that is null-homotopic in E is null-homotopic in F as well, that is, the
homomorphism #x(F) — mx(F) is injective. Therefore it is an isomorphism.

(iii) If the fiber F of the fibration (E, B, F) is aspherical in dimensions k and
k + 1, that is, if mx(F) = mg41(F) = 0, then me(E) = m(B).

This is because the fibration projection p : £ — B gives rise to a homo-
morphism 7, (E) — m(B). Asphericity of F' in dimensions k£ and k + 1 implies
that this homomorphism is one-to-one and onto.

(iv) If the total space of a fibration (E, B, F) is aspherical in dimensions k and
k — 1, that is, if 7.(F) = me—1(E) = 0, then m(B) = me_1(F).

Consider a (k — 1)-spheroid f in the fiber F. Because F is aspherical in
dimension k — 1, this spheroid is null-homotopic in E, so there is a map g :
Sk — E that coincides with f on the boundary $*! of S*. The map pg,
where p is the fibration projection, takes S* into B, with the boundary mapped
to a single point; therefore pg can be seen as a k-spheroid in B. Using the
asphericity of E in dimension k, one can show that the homotopy class of pg
depends only on the homotopy class of f. We have, therefore, a homomorphism
mk—1(F) — m(B); it can be proved that this is an isomorphism.

Note that this result also applies when &k = 1, in which case it can be
rephrased as follows: if E is connected and simply connected, m(F) = m(B).
(The equality is between sets, since mo(F') generally does not have a group
structure.)

(v) I G is a simply connected group and H is a discrete subgroup of G, we have
m(G/H) = H and me(G/H) = m(G) for k > 1. (H is discrete with respect to
the topology induced from G if any point in H has a neighborhood in G that
contains no other point of H. In particular, H is closed.)

To show the first equality, consider a path in G connecting the identity
element 1 to some element h € H. Its image in G/H is a closed path, and so
determines an element of 7,(G/H); we associate this element with H, defining a
map H — m(G/H), easily seen to be a homomorphism. Because H is discrete,
it is identical with mo(H) (each point is a connected component). On the other
hand, recall that the identification map G — G/H is the projection map of a
fibration (G, H,G/H). By (iv) above, the map from H = mo(H) to m(G/H) is
one-to-one and onto, and therefore it is an isomorphism.

The equality m(G/H) = m(G) for k > 1 follows from (iii) above, since
m(H) is trivial for k > 1.

It follows from (v) that locally isomorphic Lie groups have the same ho-
motopy groups in dimensions greater than 1. For, as we saw at the end of
Chapter 36, two (connected) Lie groups are locally isomorphic if and only if
they can be written as G/H; and G/H;, where G is a simply connected Lie
group and H,, H; are discrete subgroups of G.

We now turn to some examples. Let X = S'. Then X = R!/Z, where R is
the group of real numbers under addition and Z is the subgroup of the integers.
Z is discrete in R, so (v) implies that 7;(S") = Z (which we had already proved
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otherwise) and m(S!) = 0 for k > 1. We also have m(80(2)) = m(U(1)) = Z,
since SO(2) and U(1) are homeomorphic to S*.

Near the beginning of this chapter we showed that every map S' — S is
null-homotopic if I < k; therefore m(S*) = 0 for [ < k. In particular, since
SU(2) is homeomorphic to S2, we have m;(SU(2)) = m2(SU(2)) = 0. Moreover,
7x(S*) = Z for every k; therefore m3(SU(2)) = Z. Since SO(3) = SU(2)/Z,,
where Z, is the order-two group, we get m(SO(3)) = Z; and m(SO(3)) =
m(SU(2)) for k > 1. In particular, m5(SO(3)) = 0 and 73(SO(3)) = Z.

Property (ii) above, together with the fact, shown above, that SO(n) fibers
over S™! with fiber SO(n — 1), implies that

(43.1) m(SO(n — 1)) = me(SO(n))

for k < n — 2. Thus, 7;(SO(n)) = 7;(SO(3)) = Z; for n > 3. Moreover, SO(4)
is locally isomorphic to SO(3) x SO(3), so property (i) gives

7(SO(4)) = m(SO(3)) + m(SO(3)) = me(S®) + me(S%)

for k > 2. In particular, m3(SO(4)) = 0 and 73(SO(4)) = Z + Z. From (43.1) it
follows that m2(SO(n)) = 0 for all n.

Using property (ii) and the fact that SU(n) fibers over S?*~! with fiber
SU(n — 1), we likewise get

(43.2) m(SU(n — 1)) = mx(SU(n))

for k < 2n — 2. Combining this with 72(SU(2)) = 0 and m3(SU(2)) = Z we get
w2(SU(n)) = 0 for all n and w3(SU(n)) = Z for n > 2. It can be proved that
m2(G) = 0 for every Lie group G.

Now consider a space X and a transitive action of a compact simply con-
nected Lie group G on X. Since m(G) = 72(G) = 0, we can apply property
(iv) to the fibration (G, X, H), where H is the stabilizer of a point. This gives
m2(X) = m (H). This relation was used in Chapter 12.

We now turn to the computation of w3(S?). Recall that SO(3) acts transi-
tively on S2. Since SO(3) = SU(2)/Z,, we see that SU(2) also acts transitively
on S2, with stabilizer U(1). Now SU(2) is homeomorphic to S? and U(1) to S*.
We therefore get a fibration of S® over S?, with fiber S* (the Hopf fibration).
Keeping in mind that m(S) = 0 for k > 2 and applying property (iii), we get
m(S%) = m(S?) for k > 3; in particular, m3(S?) = m3(S®) = Z. Every element
of m3(S?) is of the form na, where n is an integer and « is the homotopy class
of the projection S — $2 of the fibration just constructed.

Properties (i)—{(v) are sufficient to compute many of the homotopy groups of
interest in physics. We now give a general theorem that implies all of properties
(i)-(v), and that sometimes allows one to compute a homotopy group that does
not follow from these properties alone.

We start by defining an exact sequence. A sequence of groups A, and ho-
momorphisms a,,,

. W T TN T S
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is exact at A, if Im o,y = Ker o, that is, if the image of a,4; coincides with
the kernel o, (see Chapter 36). A sequence is exact if it is exact at each term.

Let (E, B, F,p) be a fibration. We have an obvious homomorphism i, :
Tn(F) — mp(E), coming from considering a spheroid in F' as a spheroid in
E by inclusion. Similarly, we have a homomorphism p, : m,(E) — m,(B) by
projection. We can also construct a connecting homomorphisms 8, : mp(B) —
mn—1(F") in a less obvious way, using a construction similar to the one used in the
description of property (iv) above (see details below). Now we have a sequence
of groups of homomorphisms

(43.3) co B (F) 225 ma(E) 22 1a(B) 25 o (F) 253+

called the long homotopy sequence of (E, B, F, p). This sequence can be shown
to be exact for any fibration.

(Strictly speaking, in constructing the long homotopy sequence, we should
fix basepoints e € F and b = p(e) € E, and consider the homotopy groups
7n(F,€e), m,(E,€) and m,(B,b). However, for the sake of simplicity, we will
ignore the dependence of the homotopy groups on the basepoint. The last three
terms of the sequence, mo(F, €), mo(E, €) and mg(B, b), are not groups, but they
do have a “zero element”, as discussed above, and this allows us to talk about
the kernel of 8y, ip and pp. Therefore exactness makes sense even at the last
three terms.)

Properties (ii)—(iv) follow immediately from the exact homotopy sequence.
Suppose, for example, that 7,1 (B) = 0. Then Im 8;4; = 0, and, by exactness,
Ker i, = 0, that is, i is injective. If m,(B) = 0, we have Kerp;, = m(E), and,
again by exactness, Im i = 7 (E). Thus 4\ is both injective and surjective, and
therefore is an isomorphism, proving (ii). The proof of (iii) and (iv) is analogous.

To prove the exactness of the homotopy sequence (43.3), we use the homo-
topy lifting property of fibrations. If (E, B, F, p) is a fibration and X is a space,
amap f: X — FE is said to be a lift of g : X — B if g = pf, that is, if the
image of a point = under f is in the fiber that lies above the image of z under g.
Similarly, a homotopy f; (for ¢ € [0, 1)) is a lift of a homotopy g; if g: = pf;. The
homotopy lifting property says that, for any fibration (E, B, F, p) and any space
X, every homotopy X X [0, 1] — B can be lifted to a homotopy X x [0,1] — E,
with a prescribed initial map. What this means is that, if g; : X — B is a family
of maps depending continuously on ¢, for ¢ € [0,1], and b : X — E is a lift of
go, there exists a continuous family of maps f; such that fy = h and that f; is
a lift of g; for all £.

For a trivial (that is, product-like) fibration the homotopy lifting property
is obvious. The case of an arbitrary (locally trivial) fibration can be reduced to
that of a trivial fibration.

The homotopy lifting property easily implies that any map from the cube
[0,1]* to B can be lifted to a map [0,1]* — E taking the origin to a speci-
fied point. We simply observe that a map [0,1]® — B can be considered as a
homotopy between maps [0, 1]*~! — B, with fi(t1,...,ta-1) = f(t1,- .-, tn-1,1).
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The connecting homomorphism 8, that appears in the long exact sequence
(43.3) can be defined as follows. For a given a € m,(B,b), take a spheroid
representing o, and regard it as a map ¢ : [0,1]* — B taking the boundary
of the cube to the basepoint b. By the previous paragraph, we can lift ¢ to a
map [0, 1]® — E such that the origin is mapped to the basepoint e € E and the
boundary of the cube is mapped into the fiber F over b. Since the boundary
of [0, 1] is homeomorphic to S®!, we have defined a spheroid S*~! — F;. The
homotopy class of this spheroid does not depend on how we choose the lift for
¢, nor does it depend on the spheroid ¢ chosen to represent a € m,(B,b). We
call this class d,c.

To prove exactness, we must show that Im i, = Ker p,, Imp,, = Ker 8, and
Imd, = Keri,_;. It is immediate that Imi, C Kerp,, Imp, C Kerd, and
Im 8, C Keri,_,, or, equivalently,

(434) Pnin = 0, anpn =0, tn-10n = 0.

For instance, if we think of a spheroid in F as a spheroid in E and then project
it to B, we get the zero spheroid in B, and the first relation follows.
It is somewhat harder to prove the opposite inclusions,

(43.5) Kerp, C Imi,, Ker 8, C Imp,, Keri,_; C Im@,.

Suppose, for example, that o € Ker p,. This means that a spheroid S™ — E' in
class & becomes null-homotopic when projected to B; equivalently, there exists
a continuous family of spheroids g, : S* — B with go = pf and g; the constant
map with image b. By the homotopy lifting property, there exists a continuous
family of spheroids f; : S® — E with fo = f and f; a map into the fiber F; over
b. Regarding f; as a spheroid in F;, and denoting its homotopy class by 3, we
see that a = i,0, that is, a € Imi,, showing the first inclusion in (43.5). The
other two inclusions are proved analogously.

So far we have used fibrations as a tool for computing homotopy groups, but
they are interesting for other reasons as well. We will discuss one more relevant
concept, that of a section of a fibration. A section of the fibration (E, B, F,p)
is a map ¢ : B — E such that py is the identity, that is, ¢ takes each z € B
into the fiber over z. In other words, a section is a way to select a point from
each fiber, in a continuous way.

Not all fibrations have sections. If a fibration has a section, the homo-
morphism p, : m,(E) — w,(B) is onto, because any spheroid in B can be
composed with the section to give a spheroid in E. This shows that the Hopf
fibration (S?,S52,S!), for example, does not have a section, since m3(S3) = 0
and m5(S?) # 0. Using the same argument, one can show that if G is a simply
connected, compact Lie group and H is a non-simply-connected subgroup of G,
the fibration (G, G/H, H) has no section.

In many important cases the existence of a section is a consequence of the
following theorem: if the base space B has dimension n and the fiber F is
aspherical in all dimensions less than n, the fibration (E, B, F') has a section.
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For smooth fibrations the existence of a (continuous) section implies the
existence of a smooth section. (A fibration is smooth, or infinitely differentiable,
if the base, fiber and total spaces are smooth manifolds, and if it has local
trivializations that are smooth maps and whose inverses are smooth maps.)

We conclude this chapter with a compilation of results on the homotopy
groups of spheres and classical Lie groups, collected here for ease of reference.

Homotopy Groups of Spheres

1I'1(Sl) =2Z
1(S*) =0 for k>2
7l'1(52) =0

7l'2(S2) = 7I'3(32) =2
7!'4(32) = 7l'5(-5'2) = z2

7l's(52) =2y
m1(S%) = m(S¥) =0
7e(S%) = m(S?) fork>3
m(S™) =0 fori<n
m(S")=2Z
Tn+1(S™) = Mp42(S™) = Zy forn>3
ni3(S") = Zigy forn>5
Tns4(S™) =0 forn>6
Tes(S™) =0 forn>7
T (S™) = g1 (S™H) form<2n-1

Tan-1(S™) = Z + finite group

All groups 7, (S™), except for m,(S™) and my,_1(S?"), are finite.

Homotopy Groups of Classical Lie Groups

m (SO(n)) = Z, forn>1
m(SU(n)) = m(Spin(n)) =0 forn>1
m(U(n)) =2 fork>1
m2(G) =0 for all Lie groups
m3(8O(n)) =2Z forn=3andn>5
m3(S0(4))=2Z+2Z '

m3(SU(n)) = Z for n > 2
m3(Spin(n)) = Z forn>1
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7I'4(SO(3)) = 7l'4(SU(2)) =Zs
1!'4(50(4)) =Zy+ 7y
m4(SO(5)) = Z,

m4(SO(n)) =0 forn>6

m4(SU(n)) =0 forn>3

m4(Spin(1)) = Z, forn>1

mx(SU(1)) = 0 for k> 1

mx(SO(3)) = me(SU(2)) = m(Spin(1)) = me(S?) for k> 1
7k(SO(4)) = m(S?) + me(S?) fork>1

m,(U(n)) = m(SU(n)) for k> 1

The groups 7(SO(n)), mx(U(n)) and m(Spin(n)) do not depend on n for, re-
spectively, 1 <k<n—2,1<k<2n-—1and 1<k < 4n+1; the are denoted
by mx(SO), m(U) and m(Spin) and are known as stable homotopy groups. The
following results allow the computation of all stable homotopy groups:

7l'k+3(SO) = 7l'k(SO)
Ty2(U) = me (V)
T+8(Spin) = m¢(Spin) = me44(50)

m(S0) =Z,

ma(S0) =0

m3(S0)=12Z

m4(S0) = 75(SO) = 76(S0) =0
m™(S0)=12Z
ma(80) =Z,

m(U)=12

m(U)=0

The first three of these equalities constitute the Bott periodicity theorem.
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We now turn briefly to applications of topology to quantum field theory, many
of which were discussed in Part II.

We start with the phase space £ of classical field theory, consisting of all
fields of finite energy. We assume that zero is the energy minimum. We choose
an arbitrary basepoint e € £. If £ has several connected components, one can
associate with each field the component that it belongs to, that is, an element
of mo(€, ). This element is an integral of motion: it cannot change as the field
evolves, as we discussed in Chapter 9.

The same is still true after quantization of the classical theory. To see this,
think of the quantized theory as the limit of theories with finitely many degrees
of freedom, say by introducing spatial and momentum cutoff. (That is, replace
the coordinate space by a lattice of points (an,, ans, ans), where n;, ny, n3 are
integers in the range 0 < an; < L: see Chapter 23.) The phase space in this case
is connected, but it consists of several potential wells (one for each connected
component of the classical phase space), separated by potential barriers whose
height tends to infinity as @ — 0 and L — oo. In the limit, then, there is no
tunneling from one well to another. (The probability of tunneling, which can
be estimated using the Feynman functional integral, depends not only on the
height of the barrier but also on its width, so a rigorous argument must establish
that the width does not decrease so fast as to annul the increase in the height.)

Thus, when € is not connected, the theory displays topological integrals of
motion, or topological quantum numbers. The particles usually considered in
quantum field theory and the many-particle states consisting of such particles
have the same topological quantum numbers as the physical vacuum (ground
state). If the theory predicts the existence of states with nontrivial quantum
numbers, “unusual”® particles with these quantum numbers should also exist.
In the case of weak coupling, these particles correspond to the particle-like
solutions of the classical equations.

To apply these ideas, one must construct theories in which the phase space
£ is disconnected. At present two approaches to this problem are known: one
is used in [19, 24, 26, 61], and the other in [32, 44, 65, 66]. The first approach
is based on considering fields ¢(z,t) that take values in a nonlinear manifold.
An example of such a theory is chiral dynamics, where fields take values on the
three-sphere S [61).
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Consider the space F of fields ¢(z) with values in a manifold M and such
that ¢(z) — m as |z| — oo, where m is a fixed point of M. When can the
investigation of the phase space of a Lagrangian be reduced to the investigation
of F7? Take the Lagrangian

(44.1) L = 1gu(p) Baip'(z) 89" (2),

where gix(m) is a Riemannian metric on M. The corresponding Hamiltonian
has the form

Hmp) = 3 [ S OmEm@) ds+ 3 [ 0@} (Ve @), Vo) do.

If H(m, p) < 0o, there exists a point m € M such that ¢(z) — m as |z| — oco.
Therefore the phase space is closely related to . (The Lagrangian (44.1) is
not renormalizable. Another deficiency is that the greatest lower bound on the
energy functional vanishes on all components of the phase space. This prob-
lem can easily be eliminated if we include in the Lagrangian terms containing
derivatives of higher order.)

A field p(z) in F defines an element of 3(M). To construct this element, let
o be (for example) stereographic projection from the south pole of S3. Then po
is a spheroid whose class is the desired element of m3(M, m). (Assume that M is
simply connected, so the various 3 (M, m), as m varies over M, are canonically
identified.) Two fields belong to the same connected component of F if and only
if they determine the same element of m3(M).

Note that 7 may not be simply connected, for we have m; (F, f) = ma(M,m)
for f an arbitrary point of M. In general, m(F, f) = mr4+3(M, m). In particular,
7(F, f) does not depend on f, despite the fact that JF is not connected.

Finkelstein and Rubinstein [26] showed that theories in which fields take
values on a nonlinear manifold can describe fermions as well as bosons (cf. Chap-
ter 33). They considered closed paths in F of the form

(44.2) pi(z) = p(s:(2)),

where p € F and s; represents the rotation of R3 through an angle ¢ € [0, 27]
about a fixed axis. Finkelstein and Rubinstein assume that if there are homo-
topically nontrivial paths of this type, the theory can contain fermions. Without
getting into the merit of this assumption, we observe that the path (44.2) is null-
homotopic if and only if the four-dimensional spheroid o) is null-homotopic,
where \ : S — 53 is a homotopically nontrivial map. In other words, (44.2)
is null-homotopic if and only if of = 0, where a is the element of w3(M) de-
fined by ¢ and g is the unique nonzero element of m4(S3). This assertion, whose
proof we will not give here, makes it easy to analyze concrete manifolds M. For
example, when M = 5% or M = S3, there are paths of type (44.2) that are not
null-homotopic, and so, according to Finkelstein and Rubinstein’s assumption,
the theory can contain fermions.

The second approach to constructing theories with a disconnected phase
gpace is based on considering Lagrangians that lead to degeneracy of the clas-
sical vacuum. In this approach, to each field of finite energy we can assign a
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map from S? into the manifold of classical vacuums. Such a map determines
the asymptotic behavior of the field at infinity. This approach is described in
[66], and also in Part II of this book, starting with Chapter 12.

Note, finally, that topological ideas can be applied in quantum field theory
even when the topology is trivial in the corresponding classical problems. For
more details, see [66].
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[45] and Belavin et al. [4], which were taken up by many researchers. Later on
other important applications of topology to quantum field theory emerged, most
of which lie outside the scope of this book (an exception being the analysis of
many-valued action integrals). Mention should be made of the studies of the
spin and statistics of particles corresponding to solitons, by Finkelstein and
Rubinstein [26] and Witten [4] (see also [66]), the discovery by Rubakov [49)]
that proton decay is greatly accelerated in the presence of magnetic monopoles,
and the discovery by Witten [72, 77] of a new type of anomaly, related to
the topological properties of the field space (global anomalies). A very useful
concept in the study of supersymmetry breaking was introduced by Witten [75],
namely, the index of a supersymmetric theory (similar to the index of an elliptic
operator).

The interaction of topology and physics goes both ways: ideas originating in
quantum field theory have led to new topological results. It was shown in [53, 55}
that physical quantities associated with appropriate action functionals can give
invariants of manifolds. This idea led to the development of topological quan-
tum field theory, where the most important results were obtained by Witten
[78, 79]. In particular, Witten analyzed invariants connected with the so-called



262 Bibliographical Remarks

nonabelian Chern—Simons action functional, and proved that they are related
to the Jones polynomial of knots. (The abelian version of this functional was
studied in [53], and [58] suggested the study of the invariants connected with
the nonabelian version, conjecturing that they are related to the Jones poly-
nonimal.) A review of the results of topological quantum field theory can be
found in [5].

Another area where ideas from physics are applied to topology was opened
up by Donaldson [15, 16]. See [27-29] for a review of very important results in
low-dimensional topology arising from this connection.

The successful application of topology to quantum field theory has stimu-
lated the study of defects in continuous media using topological methods [62,
69-70]. The problems in this area are mathematically similar to the ones en-
countered in quantum field theory, which is why Part II of this book opens with
a chapter on topologically stable defects of local equilibrium.

Here is a brief list of articles that served as sources for the material in some
chapters, and that can be consulted for background or further study.

Chapter References
9,11 (1D-models, Georgi-Glashow models)  [32, 44]
10  (Abrikosov vortices) [7, 41]
12-15 (magnetic monopoles) [1, 43, 50, 65]
17 (symmetric gauge fields) [2, 9, 47, 51, 72]
18 (energy of magnetic monopoles) [7, 48]
1920 (topologically nontrivial strings) [56, 57, 67]
21  (nonlinear fields) [26, 60, 61, 76]
22 (multivalued action integrals) [14, 42, 76]
30-34 (instantons) [3, 4, 33, 34, 45, 52, 54]

In addition, the following surveys of the applications of topology in quantum
field theory can be consulted: [10 (pp. 50ff.), 18, 31, 37, 40, 46]. For basic
topology material, see especially [17, 59], which are most accessible to physicists;
other good references are [8, 30, 35, 39, 71]. Some textbooks on quantum field
theory are [6, 23, 36, 68].
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— quantum, 173
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asymptotic freedom, 29
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chiral transformation, 162, 215
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coupling constant, 31, 37
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critical manifold, 199
critical temperature, 43
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cutoff, 132

— in proper time, 135, 170
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cyclic group, 243
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defect, 43, 79

degeneracy space, 43, 122
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determinant of an elliptic operator, 169
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differential, 94

differential form, 9
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Dirac matrices, 16

Dirac operator, 159
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duality of forms, 194

Dynkin index, 168
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electromagnetic coupling constant, 32
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— action integral in, 128

electromagnetic interaction, 31, 69

electromagnetic potential, 92

electromagnetic subgroup, 104

electron, 33

electron neutrino, 33

electroweak interaction, 114

elementary excitation, 81

elementary particle, 81

elliptic operator, 158, 159, 163

— determinant of, 169

endpoint, 248

energy of a magnetic monopole, 104

equivalence class, 233

equivalence relation, 233

equivalent, 233, 235

Euclidean action, 141, 200

— integral, 146

Euclidean Dirac operator, 208

Euclidean Green’s functions, 143, 147,
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Euclidean rotation, 141

Euler’s equation, 94, 187

even element, 208

even monomial, 208

exact form, 9

exact homotopy sequence, 10
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exterior derivative, 9

exterior form, 9

extremal point, 94
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Faddeev-Popov trick, 150, 152, 154, 191
fermion, 15

— fields, 207

— Green’s function, 217

- interacting with a gauge field, 161
ferromagnetism, 43

fiber, 4, 9, 249

fiber bundle, 250

fiber space, 4, 9, 250

fibration, 4, 9, 249

field-strength tensor, 14

free, 8

free fermion Lagrangian, 216

full Lorentz group, 226

full transformation group, 226
functional integral, 128, 132, 146, 173
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gauge field, 10, 24, 25, 69

— symmetric, 97

gauge group, 25

gauge transformation, 14

Gaussian integral, 133

Gell-Mann-Low function, 153

genus, 231

Georgi—Glashow model, 69, 89, 99, 104,
185

Ginzburg-Landau model, 67

gluing, 229, 233

gluon, 29, 30

gluon field, 125

Goldstone boson, 219

Goldstone field, 122, 130

grand unification, 37, 74, 103, 104, 114

— symmetry breaking in, 37

Grassmann algebra, 208

group, 225

group action, 8

— on Riemannian manifold, 154

hadron, 30

Hamiltonian formalism, 146
handle, 231

harmonic, 156

harmonic oscillator, 57
Hausdorff axiom, 223

heat equation, 164

helium, 51

Higgs effect, 71
homeomorphism, 1, 223
homogeneous space, 243
homologically trivial, 3
homologous to zero, 3
homology group, 9
homology theory, 3
homomorphism, 225
homotopic, 2, 8, 247
homotopically trivial, 247
homotopy, 2, 9, 247
homotopy class, 2, 247
homotopy group, 9, 47, 248
homotopy invariant, 2
homotopy lifting property, 253
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Hopf fibration, 252
hypercharge, 32

identification, 229, 233
identity, 225

image, 7, 163, 225

index, 2, 45, 163

induced, 223

infrared cutoff, 133, 135
inner automorphism, 48, 225
instanton, 183, 188

— contribution, 199

- in quantum chromodynamics, 216
— topologically nontrivial, 185
— parameters, 194

integral form, 130

interaction Lagrangian, 24
intermediate vector boson, 106
internal symmetry, 19, 20
invariant subspace, 235
inverse, 225

inverse image, 7

irreducible, 198, 235
isomorphism, 225

isotopic index, 161

isotopic space, 161

Jacobi identity, 227

k-form, 9

kernel, 7, 163, 225

Klein group, 50
Klein—Gordon equation, 13

Lagrangian, 13

Landau theory, 43, 51
Laplace method, 183, 199
Laplacian, 134
Lee-Weinberg model, 114
left action, 8, 241

left coset, 243

left spinor, 161, 239

left translation, 225

left zero mode, 167

Lie algebra, 227

Lie group, 227

lift, 253

limit, 1, 223

linear representation, 235
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linear string, 111

liquid crystal, 49

local, 57

local coordinate system, 224

local gauge symmetry, 69

local gauge transformation, 25, 97, 146
local thermodynamic equilibrium, 44
localization, 25

locally isomorphic, 227

locally trivial, 250

long homotopy sequence, 253
Lorentz gauge, 14

Lorentz group, 226

magnetic charge, 83, 89, 100, 104, 128

magnetic field, 53, 71

magnetic monopole, 3, 82, 99, 100

magnetically charged particle, mass of,
104

magnetization, 43

Majorana neutrino, 15

Majorana spinor, 16

manifold, 224

map, 7

mass matrix, 17

mass of magnetically charged particle, 104

mass term, 14

massive neutrino, 34

massive vector field, 14

massless neutrino, 23

massless scalar field, 19

matrix group, 226

Maxwell’s equations, 84, 92, 117

metric, 1

metric space, 1

mirror particle, 115, 119

mixing of classical vacuums, 185

Mobius strip, 229

multi-instanton solution, 185

multicomponent bispinor field, 30

multicomponent field, 17, 19, 37

multiplication, 225

multivalued representation, 238

multivalued action integral, 128

multivalued functional, 128

muon, 34

muon neutrino, 34

neighborhood, 1, 223

nematic liquid crystal, 49
neutral current, 69
nilpotent, 209
non-degenerate, 95
nonconservation of charge, 117
nonlinear field, 122
nonlinear representation, 241
nonquadratic Lagrangian, 28
nontrivial, 235

normal, 225

null-homotopic, 247

nullity, 7

open ball, 223

open cover, 224
open set, 223

orbit, 8, 241

order parameter, 43
orthogonal, 235

parallel transport, 148

partial local equilibrium, 54

partition function, 142, 147, 173

path, 248

path-ordered exponential, 111

Pauli matrices, 238

periodic boundary conditions, 147, 188

photon, 32, 71

physical charge, 137

physical mass, 137

7 meson, 126

Planck’s constant, 13, 37, 57, 122, 128,
153, 183, 184, 207

point defect, 45

principal fibration, 10

principal symbol, 140, 158

product, 224

product topology, 224

projection, 9, 249

projective plane, 229

projective space, 231

gp-symbol, 138

quadratic Lagrangian, 17, 22
quantization, 13, 173

— of gauge theories, 146

quantum anomaly, 173

quantum chromodynamics, 29, 125, 216
quantum statistical physics, 122
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quark, 29, 30 Sobolev space, 197
— field, 125, 216 solitary wave, 60
quotient, 8, 233, 234, 243 soliton, 60, 100
— group, 8 source, 142
— of Riemannian manifold, 154 spatial cutoff, 188

sphere with k holes, 231
Ray-Singer torsion, 181 spheroid, 248
real, 211 spin-orbit coupling, 53
reflexive, 233 spinor, 160, 239
regular, 198 — field, 15, 20
regularized determinant, 133, 169, 202 — structure, 161
Reidemeister torsion, 181 stabilizer, 8, 44, 242
relation, 233 stable homotopy group, 256
relative charge, 116 starting point, 248
relative homotopy class, 54 stationary-phase method, 183
renorm-invariance, 153 Stiefel class, 161
renormalization, 136 strength, 10
representation, 226 — of the gauge field, 25
— space, 235 string, 109, 115
Ricci rotation coeflicients, 160 stringlike defect, 46
Ricci tensor, 167 structure constants, 245
Riemann tensor, 167 subgroup, 225
Riemannian manifold, 95, 146, 194, 199  gyperconductivity, 52, 67
— Dirac operator on, 159 superfluid quantum liquid, 51
— with group action, 154 surface, 224, 231
right action, 8, 241 symbol, 138
right coset, 243 symmetric, 233
right spinor, 161, 239 symmetric gauge field, 97
right translation, 225 symmetry, 19
right zero mode, 167 symmetry breaking, 28
rotation number, 2 — in grand unification, 37

ymmet. , 97
scalar curvature, 167 s etry type

scalar particle, 17 tachyon, 17

scalar product, 7 tangent space, 4, 224

Schwinger functions, 143 tensor product, 239

second quantization, 13 #-term, 193

section, 4, 9, 254 't Hooft—Polyakov monopole, 68

Seeley coefficients, 154, 165, 204 topological charge, 75, 79, 83

self-dual, 187 topological equivalence, 1, 223

self-duality equations, 195 topological group, 226

self-interaction, 33 topological integrals of motion, 56
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separation axioms, 223 topological space, 1, 223
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total space, 9, 249
trace, 7
transformation, 7, 226
transitive, 44, 233, 242
trivial, 250

trivial fibration, 9
trivial group, 225
tubular region, 109
tunneling, 185
two-point fermion Green’s function, 217

ultraviolet cutoff, 133, 135
unbroken symmetries, 44, 76
uniaxial, 43, 50, 53

unitary, 235

U(1)-problem, 219
U(1)-charge, 22, 31, 32

variation, 94

vector, 224
vector particle, 32

W -boson, 32

weak interaction, 31, 69
Weinberg angle, 33
Weinberg—Salam model, 37, 114
Weinberg—Salam theory, 31
Weyl equation, 23

Weyl neutrino, 15, 23

Wick rotation, 141

Yang-Mills field, 25, 69
Yang—Mills Lagrangian, 74, 146
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{-function, 133



