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Table 2.1: One-dimensional eigenfunctions of the harmonic oscillator, [3, p. 56]
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The total energy E of the complete system is the sum of £,. E,, and E.. Any nonnegative
choice for number n,, combined with any nonnegative choice for mumber ny, and for n.,
produces one combined total energy value Ev, + Eyn, + Exn., which we will indicate by
Epnyn.. Putting in the expressions for the three partial energies above, these total energy

cigenvalues become: o s
, + 2y + 20, +
.. % hw (2.38)

where the “quantum numbers” n,, n,. and n. may each have any value in the range 0, 1, 2,
3

Ennyn.

The corresponding eigenfunction of the complete system is:

Unngn, = b, (2)hn, (y) P, (2) (2.39)

where the functions hg, hy. ... are in table 2.1

Note that the ., n,, n. numbering system for the solutions arose naturally from the solution
process: it was not imposed a priori.
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defines angular momentum L as the vectorial product 7 x ji, where
 is the position of the particle in question and i is its linear momentum.

Following the Newtonian analogy, quantum mechanics substitutes the gradient operator hV/i
for the linear momentum, so the angular momentum operator becomes:
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This can be verified by looking up the gradient operator V in spherical coordinates in [5,
Pp. 124-126] and then taking the component of 7 x V in the z-direction.
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Figure 2.14: The energy spectrum of the harmonic oscillator.
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Another striking feature of the energy spectrum is that the lowest possible energy is again
nonzero. The lowest energy oceurs for n; = n, = n. = 0 and has a value:

Epo = $hw (2.40)
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Figure 2.11: True ground state of a particle in a pipe.

The ground state energy is
W R W

B = 2nE * 20 B

(2:24)

Sinee the cross section dimnensions £, and . are sall compared to the length of the pipe, the
last two terms are large compared to the first one. They make the true ground state energy
wuch larger than what we got in the one-dimensional case, which was just the first term.

The next two lowest energy levels oceur for n, = 2,1,
ne = 1. (The latter assumes that the cross section dimen
alternative possibilitis n, = 2,1, = n.
energy cigenfunctions

respectively n, = 3.1, =
jons are small enough that the
and n, = 2,n, = n, = 1 have more energy.) The

sin (Fr) sin (%y) sin

(2.25)
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are shown in figure 2.12. They have energy levels:

===

Figure 2.12: True second and third lowest energy states.
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Since we assume that the cross section of the pipe is square or rectangular of dimensions
£, % -, the y and = directions have one-dimensional solutions completely equivalent to the

direction:
By P By = ST = 1,23, (219)
i 5, ") B e L o

e

Atter all, there is no fundamental difference between the three coordinate directions; each is
along an edge of a rectangular box.

and

forn.=1,2, (2:20)

Now
a

t turns out, {6}, that the full three-dimensional problem has eigenfunctions v, that
mply products of the one dimensional ones:

(221)

Gnamgns =
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For example, the ground state of lowest encrgy oceurs when all three quantum numbers are
lowest, n. = 1. The three-dimensional ground state wave function s therefore:

\/— sin (—r sm( )ﬂn( = :) (223)

‘This ground state is shown in figure 2.11. The y- and =-factors ensure that the wave function
ncw sere si-all the sisluren of the tibe:

ny
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Wx, ) = e H
where y(x) is an cigenfunction satisfying the energy cigenvalue equation
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Substituting the assumption in the eigenvalue problem above, and dividing everything by
2(x)1hy (y)to=(2) reveals that E consists of three parts that will be called E,, E,., and E.:

E=E.+E+E.

V)

(232)
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A nonzero commutator [A, B] demands a minimum amount of uncertainty in the corresponding
quantitics a and b 1t can be shown, {15}, that the uncertainties, or standard deviati
ina and g, in b are at least so large that:

a2 H(1A, B ©29)

This equation s called the “generalized uncertai

v relationship” .
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Note that such eigenfunctions are not necessarily the only game in town. As a counter-
example, for the hydrogen atom H, L%, and the z-component of angular momentum L, also
all commute, and they too have a common st of eigenfunctions. But that will not be the
i, since L, and L. do not commute. (It will however be the ¢, after you rotate them all
90 degrees around the y-axis.) It would certainly be simpler mathematically if each operator
had just one unique set of eigenfunctions, but nature does not cooperate.
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(Recall that (¥|A|¥) is just the inner product (¥|A¥); the additional separating bar is often
visually convenient, though.) This formula for the expectation value is easily remembered as
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“leaving out ¥ from the inner product bracket. The reason that (¥|A|¥) works for getting
the expectation value is given in note {13}.

The simplified expression for the expectation value can also be used to find the standard
deviation, o4 or 0,:

{4

)2 @21

where (A — (4))?) is again the inner product (¥|(4 — (4))?¥).
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where:

« A=the amplitude, the peak deviation of the function from zero.
« £=the ordinary frequency, the number of oscillations (cycles) that occur each second of time.
 w =27/, the angular frequency, the rate of change of the function argument in units of radians per second
« = the phase, specifies (in radians) where in its cycle the oscillation is at £ = 0.
« When ¢ is non-zero, the entire waveform appears to be shifted in time by the amount p/w seconds. A
negative value represents a delay. and a positive value represents an advance.

The sine wave is important in physics because it retains its wave shape when added to another sine wave of the
same frequency and arbitrary phase and magnitude. It is the only periodic waveform that has this property. This
property leads to its importance in Fourier analysis and makes it acoustically unique.
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The wavenumber is related to the angular frequency by:
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Next collect the terms involving the angular derivatives and name them E,. They are:

00 = £,

9\ ®

96) " 5006
By this definition, Ep, only depends on # and 6, not r. But it cannot depend on 0 or 6 cither,
since none of the other terms in the original equation (3.16) depends on them. So Eg, must

be a constant, independent of all three coordinates. Multiplying by ©, we have obtained a
reduced eigenvalue problem involving ©% only, with cigenvalue Egg

& 3 f il
AN
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Repeat the game with this reduced eigenvalue problem. Multiply by sin? 0/©1, and name the
only ¢-dependent term E. It i

Laf & -
Le(Z)e-n

By definition E; only depends on 6, but since the other two terms in the equation it came
from did not depend on &, £, can neither, o it must be another constant. We now have a
simple eigenvalue problem just involving ®:

In fact, we already know how to solve it, since the operator involved is just the square of the
angular momentum operator L, of section 3.1.2:

> no\
()= (44)"

So this equation must have the same eigenfunctions as the operator L.,

@,

and must have the square

Ey = (mh)?
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Anyway, the eigenfunctions of the operator L, above turn out to be exponentials in ¢. More
precisely, the eigenfunctions are of the form

C(r0)ems (33)

where m is a constant and C(r. 8) can be any arbitrary fnction of r and . The mumber m is
called the “magnetic quantum number”. Tt must be an integer, one of . 11,2,3,:0
The reason is that if we increase the angle 6 by 27, we make a complete circle around the
s-axis and return to the same point. Then the cigenfunction (3.3) must again be the same,
but that is only the case if m is an integer, as ean be verified from the Euler identity (1.5).

The above solution is easily verified dircetly, and the eigenvalue L. identified, by substitution
into the eigenvalue problem L.Ce™ = L.Ce™ using the expression for L, above:

nocem
o0

—LCeé™ = :lim(?r,""’— Gent

of the form:

L

It follows that every eigenvalue

il for m an

nteger 34)
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with 7 the distance from the nucleus. The constant
161077 C (3.12)
is the magnitude of the clectric charges of the electron and proton, and the constant
@=88510"2C*/Im (3.13)

is called the “permittivity of space.”

Unlike for the harmonic oscillator discussed earlier, this potential energy cannot be split into
separate parts for Cartesian coordinates r, y, and 2. To do the analysis for the hydrogen atom,
we must put the muclens at the origin of the coordinate system and use spherical coordinates
 (the distance from the mucleus), 6 (the angle from an arbitrarily chosen 2-axis), and 6 (the
angle around the z-axis): sce figure 3.1. In terms of spherical coordinates, the potential energy
above depends on just the single coordinate r.

To get the Hamiltonian, we need to add to this potential energy the kinetic energy operator T
of chapter 2.3, which involves the Laplacian. The Laplacian in spherical coordinates is readily
available in table books, [5, p. 126], and the Hamiltonian is thus found to be:

W {0 (0, 10( 0\ 1 #F|_ &1
L Zm,r"{z)v (’W * 000\ %) * 570065 " Tmeor 649

109107 kg (3.15)

3

where

m,
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(each application of L. multiplies the ecigenfunction by mh). It may be recalled that the
magnetic quantum number m must be an integer.

The cigenvalue problem for O s even easier; it is exactly the one for the square angular
momentum L? of section 3.1.3. Its cigenfunctions are the spherical harmonics,

and its eigenvalues are

It may be recalled that the azimuthal quantum number | must be an integer greater than or
equal to |

Returning now to the solution of the original cigenvalue problem (3.16), replacement of the
angular terms by I(! + 1)A* tumns it into an ordinary differential equation problem for the
radial factor R(r) in the energy eigenfunction. As usual, this problem is a pain to solve, {11},
o we will once again skip the details and just give the solution.
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50 the principal quantum number must be at least 1. And if n = 1, then { = m

In tems of these three quantum munbers, the final energy cigenfunctions of the hydrogen
atom are:

Ynim = Rou(1)Y"(6,0) (3.18)
where the spherical harmonics ;" were described in section 3.1.3. The additional radial wave
functions Ry can be found written out in table 3.2 for small values of n and L. They are in
terms of a scaled radial distance from the nucleus p = r/ag, where the length ag s called the

“Bohr radius” and has the value
_ dmeh®

a 3
et

(3.19)

or about half an Angstrom. The Bohr radius is a really good length scale to describe atoms in
terms of. The Angstrom itself is a good choice 00, it is 10~19 m, or one tenth of a nanometer

If you need the wave functions for larger values of the quantum numbers than tabulated, the
‘sgeneric expression is, drums please, (do not for a second think that I am really enjoying this):

2 (oot (20! (2

) Y6, 0) (3.20)
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T can sce that you cannot wait for a rainy afternoon to check it all out. The functions
L2 (2p/n) are, of course, the “associated Laguerre polynomials.” If you forgot one or two
of their properties, you can refresh your memory in table books like [5, pp. 169-172]. Do keep
in mind that different references have contradictory definitions of the associated Laguerre
polynomials, {12). Combine the spherical harmonics of section 3.1.3 and the uncertain def-
inition of the Laguerre polynomials in the formulae for the hydrogen energy cigenfinctions
Yt above, and there is of course a possibility of getting an cigenfunction wrong if you are
not careful.

The energy eigenvalues are much simpler and more interesting than the cigenfunctions; they
are

g
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of the operator A

Next, the probabilities of getting those values are according to quantum mechanics the square
magnitudes of the coefficients when the wave function is written in terms of the cigenfunctions
of A. In other words, if 1, 0,as,... are the eigenfunctions of operator A, and the wave
function is

U =i + 200 + 303 + ..

then [c1|? is the probability of value ay, [e2f? the probability of value as, etcetera.

The expectation value is written as (a), or as (4), whatever is more appealing. Like for the
die, it is found as the sum of the probability of each value times the value:

(@) = |eif*ay + leal*az + leafa +
Of course, the cigenfunctions might be mmbered using multiple indices; that does not really

make a difference. For exanple, the eigenfunctions Gin of the hydrogen atom are numbered
with three indices. In that case, if the wave function of the hydrogen atom is

W = caontron + Caootann + enotimo + eanthant + eno1not + a0l + Ciotao +
then the expectation value for energy will be, noting that £y = —13.6 eV, Ey = —3.4 eV,
(B) = —|ei00/*13.6 eV — [cagof?3.4 €V — |ez1[?3.4 €V — [eyy [*3.4 eV —
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Also, the expectation value of the square angular momentum will be, recalling that its eigen-
values are (1 + 1)h*

(L%) = leaol"0 + [ea0l"0 + leaol*2h* + [eans P20 + [ens[*20% + [eaon|0 + [emal 25 +

Also, the expectation value of the 3-component of angular momentum will be, recalling that
its eigenvalues are mh,

(L) = leronl*0 + leannl*0 + le2so 0 + leans [*h — ea—1[*h + |eaonl*0 + |eznol?0 + .
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the expectation value is 3.5. After all, mumber 1 will show up in about 1/6 of the throws, as
will numbers 2 through 6, so the average is

(number of throws) x (11+£2+£3+444+15+16) _ -
number of throws -

The general rule to get the expectation value is to sum the probability for each value times
the value. In this example:
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On average then, the throws are 171 points off from 3.5,
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Note that /=T is not an ordinary, “real”, number, since there is 1o real number whose square
is ~1; the square of a real mumber is always positive. This section summarizes the most
important properties of complex mumbers.
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Any complex number of magnitide one can therefor be written as e, Note that the only two
real mumbers of magnitude one, 1 and —1, are included for a = 0, respectively a = . The
number i is obtained for a = /2 and —i for a = —7/2.
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where both ; and ¢; are ordinary real numbers, not involving v/=T. The number c, is called
the real part of ¢ and c; the imaginary part
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The complex conjugate of a complex number ¢, denoted by ¢*, is found by replacing i every-
where by —i. In particular, if ¢ = ¢, + ic,, where ¢, and ¢, are real numbers, the complex
conjugate is

(L3)
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Two vectors, or two functions, f and g are by definition orthogonal if their inner product is

zero:

(flg) = 0 iff £ and g are orthogonal.

Sets of vectors or functions that are all

o mutually orthogonal, and
 normalized

(L11)

oceur a lot in quantum mechanics. Such sets should be called “orthonormal®, though the less
precise term “orthogonal” is often used instead. This document will refer to them correctly

as being orthonormal.

So. a set of functions or vectors fi, fa, fa, .. is orthonormal if

0=(filfa) = (flfr) = (filfs) = (sl o) = (felfs) = (ol fo) = -

and

ilfi) = ol fo) = (Blfs) =






OEBPS/Images/image00202.jpeg
In a finite number of dimensions, a matrix A can transform any arbitrary vector v into a

different vector A7 T

7 &= A7

Similarly, an operator transforms a function into another fnction:

Py~ |y = ase)

Some simple examples of operators:

fl@) —Z+

d

9(x) = f'x)

S
Note that a hat is often used to indicate operators: for example, 7 is the symbol for the
operator that corresponds to multiplying by . If it is clear that something is an operator,
such as d/dr, no hat will be used.

It should really be noted that the operators that we are interested in in quantum mechanics
are “linear” operators: if we increase f by a number, Af increases by that same number; also,
if we sum £ and g, A(f + g) will be Af plus Ag.
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A nonzero vector @ is called an eigenvector of a matrix A if A7 is a multiple of the same
vector:

aififf 7 is an cigenvector of A (L12)

The multiple a is called the eigenvalue. It is just a number.

A nonzero function f is called an cigenfunction of an operator A if Af is a multiple of the
same function:

Af =af iff f is an cigenfunction of A. (1.13)
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Figure 2.1: A visualization of an arbitrary wave function.”
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That is the definition, but Hermitian operators have the following additional special properties:





OEBPS/Images/image00205.jpeg





OEBPS/Images/image00210.jpeg
Px

Figure 2.3: The uncertainty principle illustrated.
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“The factor i in ji; makes it a Hermitian operator (a proof of that is in note {4}).

reflecting our mactoscopic physical quantities are Hermitian.
The operators f, and j, are defined similarly as f..

The kinetic energy operator T is:

e BAR i
_BAR+R

2m

Its shadow is the Newtonian notion that the kinetic energy equals:

(mu)* + (mv)* + (mw)*
2m

(o4t ) =

All operators

(26)

“This is an example of the “Newtonian analogy™: the relationships between the different op-
erators in quantum mechanics are in general the same as those between the corresponding

numerical values in Newtonian physics. But since the momentum operators are gradients, the

actual kinetic energy operator is:

®(P & o’
(G i ).
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Figure 1.3: More dimensions.
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Figure 14: Infinite dimensions.
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A vector f (which might be velocity #, linear momentum j5 = m#, force F, or whatever) is
usually shown in physics in the form of an arrow:
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Figure 1.1: The classical picture of a vector.
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as the dot product f-7. Otherwise, in the inner product fand 7 are no longer interchangeable:
the conjugates are only on the first factor. /. Interchanging  and  changes the inner product
value into its complex conjugate.

The length of a nonzero vector is now always a positive number:

\fi= VAR =[5
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Physicists take the inner product “bracket” verbally apart as

aom
bra ¢ ket

and rofer to veetors as bras and kets.
The inner product of functions is defined in exactly the same way as for vectors, by multiplying

values at the same z position together and summing. But since there are infinitely many -
values, the sum becomes an integral:

o) = [, /" @ate)dx 8
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Figure 1.7: Forming the inner product of two functions.

The equivalent of the length of a vector is in case of a function called its “norm:"

111= VI = [, V@R as i)

The double bars are used to avoid confusion with the absolute value of the function.

A vector or function is called “normalized” if its length or norm s one:

(J17) = Lif 1 is normalized. (110)
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Figure 1.5: The classical picture of a function.
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The constant 4 is called Planck’s constant. (Or rather, it is Planck’s original constant h
divided by 27.) If it wonld have been zero, we would not have had all these troubles with
«quantum mechanics. The blobs would become points. Unfortunately, /i is very small, but
nonzero. It is about 10~ kg m?/s.
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Figure 2.4: Classical picture of a particle in a closed pipe.
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the “Laplacian”, and indicate it by V2
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In those terms, the kinetic energy operator can be written more concisely as:
(2.9)

Following the Newtonian analogy once more, the total energy operator, indicated by H. is the
the sum of the kinetic energy operator above and the potential energy operator V/(z. y, z,1):

o]
2m

+V (2.10)

This total energy operator H is called the Hamiltonian and it is very important. Its eigenvalues
are indicated by £ (for energy), for example £y Ey, E, .. with:

Hyy = Eppn forn=1,2,3, (2.11)

where v, is eigenfunction number n of the Hamiltonian.
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Figure 2.5: Quantum mechanics picture of a particle in a closed pipe.
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‘To bring the notation into line with the conventions of quantum physics, we
shall rewrite this Fourier series as

b

B =Y cmZm(d),  where Zp(h) ®27)

where my is an integer that runs from —oo t0 +o00.

In problem 5, we shall show that the basis functions Zy,(¢) are cigenfunc-
tions of L. with cigenvalues myf. Thus Eq. (8.27) is yet another example of the
principle of finear superposition in quantum mechanics, which states that any
quantum state is a lincar superposition of other quantum states; in this case, a
linear superposition of quantum states with definite values for L.. The coeffi-
cients G, are probability amplitudes for L, because e, i the probability that
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Vim0, 0.6) =0 v, 0,90,

where i, (r)is an eigenfunction given by the radial Schrodinger equation (9.9)
for an electron in a Coulomb potential

@

Incor
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By using the orthogonality and normalization conditions for spherical harmon-
ics, Es. (8.24) and (8.25), we can show that the coeflicients cr,m,(r) of this series
are given by

am(r) = f il (0,607, 0.6) d2. (®29)

These cocflicients are probability amplitudes for orbital angular momentum;
in fact, the probability that the particle is found between r and 7+ dr with
orbital angular momentum L = /I + Dk and L.=mih is given by
letm(O)Prdr. .

As an example, let us consider the wave function o, given by Eq. (8.22).
By using Table 8.1, we find

Y0 =

201,00, 1 9, 10,00

Because this is a linear superposition of spherical harmonics with
=1L =+1 and [ =l,m =1, a measurement of the magnitude and
2 component of the orbital angular momentum can have two possible out-
comes: L = V/2h, L, = +hor L= v/2h, L, = —h. Becausc the magnitudes of the
coefficients of the superposition are the same, each of these outcomes has the
same probubility,
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Specifically, the radial eigenfunction u,,,(r) is a solution of the differential
equation

7 Py [I(H e e

s ]'w = En 1, ©.15)

‘which satisies the boundary conditions

Un () =0 at ©.16)

The qualitative features of the energy levels given by the cigenvalue problem

defined by Egs. (9.15) and (9.16) may be deduced by considering the effective.
potential that occurs in Eq. (9.15),

©.17)

‘The shape of this potential for clectrons with different values for the orbital
angular momentum quantum number / are shown in Fig. 9.2. We see that, for
non-zero values of I, the effective potential i attractive at large r and repulsive
at small r. By setting dV/dr to zero, we can casily show that V,(r) has a
minimum value of
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When a quantum state is represented by a wave function W¥(r,0, ), the
dependence on 0 and ¢ specifies an angular shape that determines the orbital
angular momentum properties of the state. In fact, all possible orbital angular
momentum properics can be described using simultancous cigenfunctions of
1? and L. These cigenfunctions are called spherical harmonics. They are
denoted ¥i,u,(0, ) and they satisfy the cigenvalue cquations:
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where the quantum numbers [ and my can take on the values = 0,1,2,.... and
m=—dy L
These eigenfunctions are orthogonal because they satisfy

/y;._;y,.,vdn—n i Pflondmm (8:24)
and they are usually normalized so that

[Vl a2

Tn these integrals df2 is the solid angle
40 = sin0d0d

®.25)

and the limits of integration are from 0 = 0 to 0 = x and from ¢ =0 to ¢ = 2r.

Explicit forms of the spherical harmonics with =0,/ = 1, and =2 are
given in Table 8.1. If we compare these with the wave functions given by
Eas. (8.18) and (8.19), we see that

Va0 To,o0.9)

and that
Va0 Yio0 ) and Y 1y Vi, a1(0,9).
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where 7 is an integer that runs from —o0 (o 00, and where the coefficients ¢,
are given by

@0 [} @)
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where ay and Eg are the natural units of length and energy in atomic physics,
defined as follows: the Bohr radius

a0= [ﬁ] 2 o osm9x10m ©.19)
& |m

and the Rydberg energy

E
Srcaan

13.6eV. ©.200

The minimum given by Fq. (9.18) implies that bound states with angular
momentum L= \/I[{+ Dh have energies somewhere  between
E = —Eg/I(l + 1) and E = 0. It also implies that the spatial extent of bound
state cigenfunctions with low angular momentum is of the order of ag and that
the cigenfunctions extend to larger distances when the angular momentum
increases. When the angular momentum greatly exceeds A, we expect many
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where a s a dimensionless constant, called the fine structure constan,
given by

©32)
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there is an energy of interaction given by

This estimate has given the right order of magnitude for the spin-orbit
interaction. A more carcful calculation, which takes account of the acceleration
of the electron, introduces a factor of one-half and gives

&

Fs = oz

LS. ©.35)

‘The quantitative effects of the spin-orbit interaction on the energy levels of
the hydrogen atom can be obtained by evaluating expectation values of £,
However, two general aspects of the spin-orbit interaction are worth mention-
ing here:

(1) The spin-orbit interaction is really a relativistic effect and we can confirm
this by showing that it leads to a correction which is comparable with the
relativistic correction to the Kinetic energy given by Eq. (9.33)

() — g m

Using the fine structure constant @ defined in Eq. (9.32), we rewrite
Ed. (9.35) for the spin-orbit energy as
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For a low-lying state of the hydrogen atom, we can assume that the
expectation value of L-S/r is of the order of #*/aj. Rewriting the Bohr
radius ao defined in Fq. (9.19) in terms of the fine structure constant as

3
amec’

a

we find that the spin-orbit energy of a low-lying hydrogen atom state is of

the order of

(Emag) = a'mec’.
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If p << me, we can use the binomial theorem to give the approximate expres-
sion

2 .
comd i Lo (L) me

‘The first term is the rest-mass energy, the second is the non-relativistic kinetic

energy and the third term is the leading relativistic correction to the kinetic

energy. We note that, because the average momentum of an clectron in a

hydrogen atom is of the order of po = amec, the relativistic correction to its

kinetic energy is of the order of

(B} ~ J( Ll )‘mfz s Lovens ©033)

8 Unee,

Corrections of a similar magnitude also arise from the interaction of the spin
magnetic moment of the electron with a magnetic field caused by the relative
motion of the nucleus and the electron. This interaction is called the spin-orbit
interaction.

‘The magnitude of the spin-orbit interaction can be estimated by considering a
classical electron moving around the nucleus in a circle of radius r. If the lectron
has velocity v and orbital angular momentum L = mero, it will take time

2 2amr?
v L
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to complete one orbit. Just as we perceive the sun to move around the carth, the
electron perceives a nucleus which appears to move in a circle of radius r with
period . Because the nucleus has charge ¢, an clectric current / = ¢/ circles the
clectron constituting a current loop. Using the standard formula for the mag-
netic feld at the centre of a circular current loop of radius r, B = g/ /2r, and
the relation & = 1/./afi, we find that the electron perceives a magnetic field of
magnitude

©34

Fncomecr

Because the electron has a spin magnetic moment, which according to Eg. (8.8)
is given by
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then the action of A on the wave function ¢;'¥; + ;¥, where ¢, and ¢;
two arbitrary complex numbers, i given by

AWy + W) = ey + ey, (
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Tn this expression c,,(¢) and c(@’, ) are probability amplitudes for the observ-
able A. If a measurcment takes place at time £ on a particle with wave
function ¥, then |c,, (1) is the probability of outcome a, and |c(, 1) da’
is the probability of an outcome between @’ and '+ da’.'
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is real for any wave function ¥. R
It also ensures that the eigenvalues of the operator A are real. There may
be cigenfunctions , (r) with discrete cigenvalues a, given by
i = b,

and/or cigenfunctions . with continuous cigenvalues d given by

Ay =diy.
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By using the propertics of the harmonic oscilltorcigenfunctions, one can show that x, » ~ 0if
Im ] 7 1. (S problem 11 at the end of this chapter)
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As mentioned in Section 1.3, these lines form a series of ines in the ultra-violet
called the Lyman series, with wavelengths given by

E_n(p-8). v m-zae

a series of lines in the visible called the Balmer series, with wavelengths given by

with n=3,4,5...,
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The value of [¥* at a point P on the screen can be found using the wave
function Eq. (3.11). Making the approximation 4; = A; = A, we have
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which gives
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Using the mathematical relations

cosh= (e e /2 and wsﬂ:lcosz(
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we find

[ = 24 cos® @
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in the limit 6t — 0 and 7, 7, . Here symbol ©, represents a differential element of
volume in the set .

Circular waves pictured by dotted circumferences in Fig. 11 lustrate working of the
Huygens Fresnel principle (Landsberg, 1957; Longhurst, 1970). The principle proclaims that
each point 7, at an advanced wave front is, in fact, the center of a fresh disturbance and itis
the source of a new wave radiation. The advancing twave as a whole may be regarded as the
sum of all the secondary waves arising from points in the medium already traversed by the
wave. All the secondary waves are coherent, since they are activated from the one source
givenin 7,

It s important to note, that all rays from such secondary sources represent virtual
trajectories emanating from the source at 7, up to the point 7, . Along with the other virtual
trajectories generated by the other secondary sources, all together they create in the pont 7,
an averaged effect of contribution of these secondary sources. This averaged effect shows
whether a real particle passes by this route and what probability of this event can be.

We suppose that the integral kernel

s PO !
B ey )

as astandiard form of the Lagrengian (eymman & Hibbs, 1969)
1fai) 2B )

Hete U(7,) is a potential energy of the particle localized at the point ,= @ And
(3,-7,)/ 8t 15 a velocity , attached to the same point 7, and oriented in the direction of
the point 7,

‘The next step is to expand terms, ingoing into the integral (34), into Taylor series. The wave
function written at the left is expanded up to the first term

VAt 30 = V@A St @)
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which gives transitional probability densities of a Markovian sequence.

Fig. 11. Computation of all possible paths that pass from point 4, to point ¢; through
possible intermediate points 4, « & represents a core of the path integral method. Pink
circles conditionally represent radiation of Huygens waves.

Essential difference from the classical probability theory is that instead of the probabilites
quantum mechanics deals with probability amplitudes containing imaginary terms. They
bear information about phase shifts accumulated along paths. In that way, a transition from
an initial state g, to a final state 7, through all intermediate positions 7, given on a
conditional set @ (see Fig; 11) is represented by the following path integral
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We finally have a possibility to get a nonzero coefficient C: this equation can be satisfied if
sin(kf.) = 0 instead of Cy. In fact, there is not just one possibility for this to happen: a sine
is zero when its argument equals 7, 27, 37, ... So we have a nonzero solution for each of the
following values of the positive constant :

™ .
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Each of these possibilities gives one solution . We will distinguish the different solutions "
by giving them a numeric subscript:

L3 2m 3%
9= Cusn(22) 1= Cosn (22), = o (222),

The generic solution can be written more concisely using a counter n as;

3,

usin () forn =1,

Let’s check the solutions. Clearly each is zero when = 0 and when x = £,. Also, substitution

of each of the solutions into the ordinary differential equation
By
2m a7

shows that they all satisfy it, provided that their energy values are, respectively:
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When j = } there are two cnergy levels, when j = I there are three energy level
when j = § thee are four energy levels, and 5o on, as shown in Fig. §.2.

Indirect evidence for atomic magnetic energy levels is provided by observing
the effect of a magnetic field on spectral lines. The magnetic field splits atomic
energy levels with a given j into 2 + | magnetic energy levels with different
values for my, and radiative transitions between states with different values of j
now give rise to several closely spaced spectral lines instead of one. This effect is
called the Zeeman effect

However, direct evidence for the quantization of magnetic energies is pro-
vided by a Stern-Gerlach experiment. In this experiment individual atoms pass
through a non-uniform magnetic field which separates out the atoms according
the value of their magnetic moment in a given direction.
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Figure 2.9: Second aud third lowest one-dimensional energy states.
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Let’s first look at the ground state eigenfunction
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Figure 2.8 One-dimensional ground state of a particle in a pipe.
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which gives transitional probability densities of a Markovian sequence.
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One can see that the term (7, 7,4) s presented from both the lef side and from the right

side. These both term can remove each other, if the right part will satisfy the following
condition

@2)
From here it follows

@)

e pover 3 arises here becaus that the ntegration fulilled on the 3-dimensional st &5
It would be destrable also o ntegrate the terms (Vy/-2) and vy -2/2 exiting n the

integral (41). With this aim in the mind, we mention the following two integrals (Feynman &
Hibbs, 1963)
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In general, the expectation value (A() will vary with time as the
function W(r, 1) ebbs and flows in accord with the Schrodinger equation

v
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We can find the rate of change of (A() by differentiating both sides of
Eq. (7.20). Using the rules for differentiating a product of functions, we obtain
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1 we use the Schridinger equation (7.21) and the complex conjugate of this
cquation, we find

iy A des L [we i e d
/(H‘V?AWdr+E/WA(H‘Y)dr.

Because the Hamiltonian /7, like any other operator for an observable in
‘quantum mechanics, is a Hermitian operator, we can use Eq. (7.2) to show that

[ ivae= [veiiver

and rewrite the expression for the rate of change of (A() as

L f o rd e b
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where [4, ] is a commutator. This equation can be used to determine the
time-dependence of the expectation value of any observable.

For an observable A which is compatible with the encrgy, the commutator
[A. H] is zero and Eq. (7.22) gives

di)
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Such an observable is called a constant of motion because its expectation value
does not change as the wave function evolves with time.
‘These ideas can be illustrated by considering a particle with the Hamiltonian

24V,

where V(r) is a potential energy which only depends on the distance r of the
particle from a fixed origin. For this Hamiltonian, it is casy to show that
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