


This book is about how to understand quantum mechanics by means of
a modal interpretation. Modal interpretations provide a general framework
within which quantum mechanics can be considered as a theory that describes
reality in terms of physical systems possessing definite properties. The text
surveys results obtained using modal interpretations, and is intended as both
an accessible survey that can be read from cover to cover, and a systematic
reference book.

Quantum mechanics is standardly understood to be a theory about proba-
bilities with which measurements have outcomes. Modal interpretations are
relatively new attempts, first proposed in the 1970s and 1980s, to present
quantum mechanics as a theory which, like other physical theories, describes
an observer-independent reality. In the 1990s much work has been car-
ried out to develop fully these interpretations. In this book, Pieter Vermaas
summarises the results of this work. A basic acquaintance with quantum
mechanics is assumed.

This book will be of great value to undergraduates, graduate students
and researchers in philosophy of science and physics departments with an
interest in learning about modal interpretations of quantum mechanics.

PIETER VERMAAS studied philosophy and theoretical physics in his home
town at the University of Amsterdam. He obtained his PhD with research
on modal interpretations of quantum mechanics at Utrecht University with
Dennis Dieks. He published several papers on especially the modal interpre-
tation in the version proposed by Simon Kochen, Dennis Dieks and Richard
Healey, in physics and philosophy journals ranging from Physical Review
Letters to Minnesota Studies of Philosophy of Science. Together with Dennis
Dieks he proposed a generalised modal interpretation. This generalisation
has since formed the basis of much further research on modal interpreta-
tions. He has worked at the University of Cambridge with a British Council
Fellowship. Currently he is a Research Fellow at the Delft University of
Technology, where he is involved in developing the new field of philosophy
of technology.
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Preface

When I decided to enter research on modal interpretations of quantum
mechanics, I barely knew what it was about. I had attended a talk on the
subject and read bits about them, but the ideas behind these interpretations
didn't stick in my mind. Modal interpretations were at that time (1993) not
widely known, and their approach to quantum mechanics was not common
knowledge in the philosophy of physics. So my decision was a step in the
dark. But what I did know was that I was beginning research on one of the
most irritating and challenging problems of contemporary physics. Namely,
the problem that quantum theories, unlike all other fundamental theories in
physics, cannot be understood as descriptions of an outside world consisting
of systems with definite physical properties.

Your decision to read this book may be a step in the dark as well, because
modal interpretations are presently, especially among physicists, still rather
unknown. The reason for this may lie in their somewhat isolated and slow
development. The first modal interpretation was formulated in 1972 by Van
Fraassen. Then, in the 1980s, Kochen, Dieks and Healey put forward similar
proposals which, later on, were united under Van Fraassen's heading as
modal interpretations. But these proposals were not immediately developed
to fully elaborated accounts of quantum mechanics. Moreover, modal inter-
pretations were proposed and discussed in journals and at conferences which
were mainly directed towards philosophers of physics, rather than towards
general physicists. Modal interpretations are in that sense true philosophers'
understandings of quantum mechanics. But, as a possible down-side of that,
the discussion of the possibilities and the impossibilities of the modal ac-
count remained slightly formal and therefore maybe not that appealing to
the general physicist.

In the 1990s, however, the development of modal interpretations gained
momentum and took a turn which made them much more accessible and
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interesting to a wider audience. A group of researchers started to work on
modal interpretations and took up the challenge to systematically answer
physical and theoretical questions about the way these interpretations de-
scribe our world. This has led to a burst of results about, for instance, the
algebraic structure of the properties ascribed by modal interpretations, the
correlations and the dynamics of those properties, the way in which modal
interpretations describe measurements, and how one can philosophically and
physically motivate modal interpretations.

These efforts have meant that nowadays many of the more important
issues for modal interpretations have been resolved or have been proved
to be unresolvable. Modal interpretations have thus matured into what can
be taken as a well-developed and general framework to convert quantum
mechanics into a description of a world of physical systems with definite
properties. This general framework is of interest to anyone who aims at
understanding quantum mechanics. Presently, one can therefore witness a
second burst of activity, namely a burst of publications which present modal
interpretations to the wider communities of physicists and philosophers and
to those interested in philosophy and physics. This book introduces the
reader to modal interpretations and guides him or her through many of
their results. It may also be used as a reference book which can be consulted
without the need to read it from cover to cover. The text is accessible to those
who have a basic understanding of the quantum mechanical formalism. For
experts I have added proofs of the various results in separate subsections.

This book is the result of five years of research at the Institute for History
and Foundations of Mathematics and the Natural Sciences of Utrecht Uni-
versity. This research has started as a PhD project, supervised by Dennis
Dieks and financially supported by the Foundation for Fundamental Re-
search on Matter (FOM) and by the Foundation for Research in the Field
of Philosophy and Theology (SFT) which is subsidised by the Netherlands
Organisation for Scientific Research (NWO).

I thank Dennis Dieks for his invitation to work on modal interpretations.
I feel indebted for the way in which he, one of the modal pioneers, supported
my work and enabled me to develop my own views on the subject. I am
also grateful to Tim Budden, Fred Muller and Jos Uffink, for their helpful
discussions and advice, and for their friendship during my time at Utrecht
University.

In addition to Dennis Dieks, I acknowledge the fruitfulness and importance
for my work of discussions and joint projects with Guido Bacciagaluppi and
Rob Clifton as well as with Michael Dickson, Matthew Donald and Meir
Hemmo. I also thank the British Council for providing a fellowship to
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visit Cambridge University, and I thank Jeremy Butterfield for his friendly
support.

Finally a word of dedication: It has become a tradition to dedicate aca-
demic books to those who are important to the author. However, to be
honest, I have not written this book to honour my family, my friends or
the one I love. Instead I have written it for those who wish to read it and,
possibly, in dedication to the academic adventure to get to the heart of the
matter. (And adding the names of the ones I am close to on one of the first
pages of this book seems to me an academic variation of tattooing them on
one of my arms, which, incidently, I haven't done either.) However, to meet
tradition halfway, I heartily thank my parents, send sincere apologies to my
friends for being absent during the period that I have worked on this book,
and express my deep affection to Florentien Vaillant.

Delft University of Technology Pieter Vermaas
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Introduction

Imagine this strange island you have just set foot on. The travel agencies
had advertised it as the latest and most exciting place to visit, an absolute
must for those who still want to explore the unknown. So, of course, you
decided to visit this island and booked with your friends a three-week stay.
And now you've arrived and are sitting in a cab taking you from the airport
into town. The landscape looks beautiful but strange. For some reason you
can't take it in at one glance. You clearly see the part right in front of you,
but, possibly because of the tiring flight, everything in the corners of your
eyes appears more blurred than usual.

In town you buy a map. They don't sell one single map of the island but
offer instead a booklet containing on each page a little map which covers
only a small patch of the town or of the surrounding countryside. 'How
convenient,' your friends say and off they go to explore this new and exciting
place. But you approach things differently. You want to figure out where the
places of interest are. So you buy the booklet, seek the nearest cafe, take out
the pages and try to join the little maps together to make a single big one.
Unfortunately you don't succeed; the little maps seem not to match at the
edges. You start to suspect that the little maps are in some way incorrect.
However, your friends, when they come around to see what's keeping you,
tell you that the maps are fine: you just use the map containing your present
position and when you reach the edge, you simply take the next map, look
up your new position and continue.

You then try to convince your friends that something funny is going on.
This island is patchwise accurately described by little maps but it is impossible
to construct a map that depicts the island as a whole. Your friends agree, they
have had some strange experiences themselves. For instance, in a bar they
have found that if you order a drink, then, when you are absorbed in some
discussion, you sometimes find that most of your drink is gone, even though

1



2 Introduction

you can't remember having taken a single sip. When this happened the first
time, they complained about it, but the bartender didn't look impressed and
mentioned something about tunneling times.

During such a holiday I would definitely try to solve the puzzle of the
map. I would try to draw a map myself, firstly only of, say, the coastline
and then also of the main roads and streets. And I would test all kinds
of hypotheses: maybe the little maps depict the island on different scales,
maybe roads which are straight lines on the maps are actually curved, or
maybe it is the other way round. But what if it really is impossible to make
a general map? All the islands and towns we know of can be described by
single maps, so what is wrong with this one? Is it some fantastic amusement
park full of trompes Voeil constructed by those travel agencies? Or does this
island perhaps not exist at all? Have you perhaps landed in a huge fata
morgana ?

The possibility that there really doesn't exist a general map of an island
would be challenging. All the islands we know can be described by single
maps and we therefore can understand that these islands can be described
by booklets of little maps as well: the little maps are just fragments of
the general map. The question is now whether we can also understand
a description of an island in terms of little maps if these maps are not
fragments of a general description. In addition to this epistemic question,
the challenge has an ontological twist. We usually assume that the islands on
which we set foot are part of a physical world which exists outside of us and
independently of us. And given that islands form sufficiently smooth spatial
surfaces in this world, it is clear that there exist single maps of islands. But,
conversely, if it is impossible to draw a single map of an island, then that
island can't exist in the assumed way. The ontological part of the challenge
is thus whether you are forced to conclude that an island on our planet
doesn't exist if it can only be described patchwise by little maps. And if you
indeed are forced to this conclusion, can you then still understand that this
non-existent island is describable by maps at all?

There are at least three ways to handle this challenge. The first is the
boldest one, namely to deny that there is a challenge in the first place:
maps are only meant to find your way, and any requirement on maps over
and above the requirement that they are effective for finding your way, is
philosophically unfounded and superfluous. Hence, if there exists an island
which can only be described by little maps, then this is simply a fact of
life; there is no need to understand this patchwise description in terms of a
single map, nor is it meaningful to draw on the basis of these little map any
conclusion about the existence or non-existence of the island because maps
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of islands do not conceal information about the (ontological) existence of
islands.

The second way is the pragmatic one, namely to just ignore the challenge,
to join your friends and to enjoy the rest of your stay. Tomorrow your
friends will hire a car — a vw-Golf — and drive through one of the town
gates. This gate has two passages and if you drive through it with your eyes
open, you will pass it in a fairly straight line, taking one of the passages.
But if you drive through it with your eyes closed, you'll feel that your car is
making the most peculiar manoeuvres. You certainly don't pass through the
gate in a straight line and at the end it's more or less impossible to determine
through which of the passages you went.1

The third way to approach the challenge is a more introspective one,
namely to question your notions about islands. If all the known islands
allow a description in terms of a single map, it is natural to assume that the
island you're presently on can be described by a single map as well. So, if
your notions are telling you that such a map doesn't exist, it seems sensible
to assume that there is something wrong with your notions. Or, from an
ontological point of view, the island you're on does exist in some sort of way:
you can see it, live on it and find your way about on it. So, if your notions
about islands tell you that it can't exist, then there must again be something
wrong with your notions. If you take this third route, your stay will start
to resemble the adventures of Raphael Hythlodaeus in Utopia, of Mr Higgs
in Erewhon and of Captain Gulliver during his travels,2 or, for those who
prefer more contemporary science fiction, of Captain Kirk in Star Trek. All
these stories have in common that what appears to be an exploration of
the unknown is also an investigation of our own presuppositions. In the
three novels, the challenged presuppositions mainly concern our views about
society, but in modern science fiction our ideas about physical reality are
also questioned. Captain Kirk is thus not only exploring strange new worlds;
our own is investigated as well.

Quantum mechanics is, of course, not the theory with which one describes
exotic islands. Instead, it is a theory about light and about elementary
particles such as electrons and protons. However, quantum mechanics does
confront you with questions which are similar to the ones presented by
the island. On the one hand, quantum mechanics gives descriptions of
the behaviour of light and elementary particles which conform with our
observations. For instance, according to quantum mechanics light is diffracted
by slits in walls in specific ways and using photographic plates we can

1 Some even whisper that you pass through both passages simultaneously.
2 See More (1516), Butler (1872) and Swift (1726).
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indeed register the resulting diffraction patterns. Also quantum mechanics
predicts that the electrons emitted by radioactive atoms, are emitted at
specific rates and leave trails of bubbles when they fly through chambers
filled with supersaturated water vapour, and we can check those rates and
observe those trails. The predictions by quantum mechanics are even so
reliable that they can be put to work: the laser which scans the discs in
your CD-player, for instance, functions according to quantum mechanical
principles. Moreover, quantum mechanics is the first in a series of more
sophisticated quantum theories, such as quantum field theories, which are
generally seen as physically fundamental and universally valid. Hence, if
there exists a description of light and elementary particles, there are good
reasons to assume that this description is consistent with the predictions
given by quantum mechanics.

On the other hand, quantum mechanics doesn't provide a full description
of light and elementary particles. In its standard formulation quantum me-
chanics assigns a quantum mechanical state to a system and that state has
a meaning only in terms of outcomes of measurements performed on that
system. Imagine, for instance, an experiment in which you shoot a particle,
say an electron, at a distant screen. Quantum mechanics then tells you that
given that the electron is shot, you can assign a certain state to the electron,
and from this state you can calculate that the electron hits the screen with
certain probabilities at specific spots. However, quantum mechanics is silent
about how the electron flies from the source to the spot where it finally
hits the screen: it doesn't give a trajectory through space which the electron
follows, nor does it give values for magnitudes like the velocity and the
energy of the electron. Now, in this particular example it seems easy to
supplement quantum mechanics and fill in the details of how the electron
flew (along a straight line with constant velocity, isn't it?) but in general it
is much harder to determine what happens. That is, there have been many
attempts to describe the behaviour of light and elementary particles when
no measurements are performed, but up to now all these attempts haven't
lead to a generally accepted picture.

Quantum mechanics in its standard formulation is thus as challenging to
our view of the world as the non-existence of a general map of an island
would be: quantum mechanics gives partial descriptions of the behaviour of
light and elementary particles. However, attempts to fix a general description
of light and particles which includes these partial descriptions have not yet
been fully successful. This makes quantum mechanics the first fundamental
and universally valid theory in physics which cannot be straightforwardly
understood in terms of a general description of nature, which seems to
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rule out that the systems it describes exist in a usual way in the outside
world.

Some physicists and philosophers have concluded from this that quan-
tum mechanics should be taken solely as an instrumentalistic theory about
our observations of light, electrons, protons, etc. Such instrumentalists thus
reject the idea that there is an all-encompassing description of quantum
reality or that light and elementary particles exist 'out there.' And even
though instrumentalists also tend to explain quantum mechanics by giving
descriptions which exceed the quantum mechanical predictions about meas-
urements (when they explain the setup of some experiment, instrumentalists
also draw pictures of the unobservable trajectories through space along slits
and beam-splitters, etc., which the particles in the experiment are supposed
to follow), they hold that one can understand quantum mechanics without
ever giving such descriptions. Physicists in general, however, simply ignore
the challenge and continue to explore the partial descriptions that quantum
mechanics does provide.

This is a book about modal interpretations of quantum mechanics and
can be seen as an attempt to take the third approach to the challenge of
quantum mechanics. That is, in this book it is assumed that there does exist
a general description of light and elementary particles. And the questions
which are addressed are questions about how this description looks according
to modal interpretations, and about which of our standard notions about
the description of light and particles can still be upheld and which of these
notions have to be abandoned.

In general the aim of an interpretation of quantum mechanics is defined
as to provide a description of what reality would be like if quantum me-
chanics were true.3 As I said before, quantum mechanics itself does not yield
such a description because in its standard formulation it is a theory which
assigns states to systems which only describe the outcomes of measurements
performed on those systems. Modal interpretations now modify the standard
formulation by giving the quantum mechanical state of a system at all times
a meaning in terms of properties possessed by that system. With this modifi-
cation quantum mechanics does provide a description of reality because now
systems always have properties regardless of whether or not measurements
are performed.

Modal interpretations aim furthermore to provide a description of what
reality would be like in the case that measurements are treated as ordinary
physical interactions. The reason for this is that in the standard formula-

3 See page 6 of Healey (1989) and Section 8.1 of Van Fraassen (1991).
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tion of quantum mechanics interactions between systems and measurement
devices have a special status as compared to other interactions between
systems. According to the standard formulation, the evolution of the states
of systems is governed by the Schrodinger equation except if a measure-
ment is performed; if a measurement is performed, states evolve according
to the so-called projection postulate. It is, however, felt that a description
of reality, or a physical theory in general, should be formulated without
giving such a special role to measurements: measurement interactions are in
physics only instances of interactions between two or more systems and a
measurement interaction should therefore affect the dynamics of states in the
same way as any other interaction affects this dynamics. This requirement is
implemented in modal interpretations by assuming that quantum mechanical
states always evolve according to the Schrodinger equation, even if meas-
urements are performed. Modal interpretations thus reject the projection
postulate.

In this book I explore the possibilities and impossibilities to understand
quantum mechanics in terms of a general description of a world. This book
thus mainly deals with the epistemic side of the challenge of quantum
mechanics, and not with the ontological side. I am therefore not entering the
ongoing debate about scientific realism (the position that scientific theories
aim at giving a literally true description about what the outside world is
like). However, the results presented do have a bearing on this debate. For if
it can be proved that there does not exist an (acceptable) general description
of the world which is consistent with the partial descriptions provided by
quantum mechanics, then it becomes quite difficult to still maintain that light
and elementary particles exist in the sense in which we usually assume that
physical systems exist. This would be a fantastic ontological conclusion, as
it would be a fantastic conclusion if it could be proved that there are islands
which do not exist in the usual sense.

In this book I focus specifically on the version of the modal interpretation
proposed by Kochen (1985) and Dieks (1988), as well as on two generalisa-
tions of this version. The first generalisation is the one presented in Vermaas
and Dieks (1995) and the second is the one proposed by Bacciagaluppi and
Dickson (1997) and Dieks (1998b). I develop these three modal interpreta-
tions to full descriptions of reality, to determine whether these interpretations
are able to give empirically adequate descriptions of measurements and to
consider the question of whether they can be taken as metaphysically tenable
interpretations of quantum mechanics.

In addition to these three interpretations, there exist other versions of
the modal interpretation, notably the very first one by Van Fraassen (1972,
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1973),4 the modal interpretation by Healey (1989) and the interpretation by
Bub (1992). These further modal interpretations are not the subject of this
book, although many of the results presented also apply to them.5

The contents of this book are organised such that it can be accessed in at
least three ways. Firstly, if the reader wishes to be introduced to modal inter-
pretations and to follow their development step by step, the book can be read
linearly. In Chapter 2 I start by giving a brief survey of quantum mechanics
and by discussing the problems one encounters if one tries to interpret this
theory. In Chapter 3 I introduce modal interpretations in general by giving
their common characteristics and by defining the way in which they describe
reality. The remainder of the book is then organised around the three tasks
which I mentioned above. In Part one the different modal interpretations
are defined and their descriptions of reality are developed as far as possible.
In Part two the empirical adequacy of modal interpretations is assessed by
determining how they describe measurements. In Part three the metaphysical
tenability of modal interpretations is discussed, and in Chapters 14 and 15
I collect the more important results about modal interpretations and draw
general conclusions.

Secondly, if the reader is not interested in yet another introduction to the
conceptual problems of quantum mechanics, he or she can decide to have
a quick look at the last paragraph of Section 3.2 (page 29) and then to
go directly to Part one, which starts with Chapter 4 in which the different
versions of the modal interpretation are introduced. Chapter 5 fixes the full
set of properties ascribed to a single system, and deals with the question of
how this property ascription induces a value assignment to the magnitudes
pertaining to that system. In Chapter 6 I consider the joint ascription of
properties to different systems and discuss the possibility of correlating these
properties. In this chapter a no-go theorem is derived which substantially
limits the existence of such correlations.

Chapters 7 and 8 are concerned with the dynamics of the ascribed proper-
ties. Chapter 7 gives the proof that the dynamics of the set of properties which
a system possibly possesses is discontinuous and highly unstable. Chapter 8
discusses the dynamics of the properties which a system actually possesses,
and shows that this dynamics is not uniquely fixed by the dynamics of the
states of systems. In Chapter 9 it is proved that this loose relation between
the dynamics of the actually possessed properties and the dynamics of the

4 If authors refer to the modal interpretation by Van Fraassen, they are referring to the one given in
Van Fraassen (1973).

5 In Section 4.2 I briefly discuss Van Fraassen's modal interpretation and in Section 4.6 I briefly discuss
Bub's. See footnote 27 for references to Healey's modal interpretation.
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states of systems allows the description of reality by modal interpretations
to be non-local in a quite explicit way.

In Part two it is determined whether modal interpretations are empiri-
cally adequate when applied to measurement situations. In Chapter 10 I
consider the question of whether modal interpretations solve the so-called
measurement problem by ascribing outcomes to (pointers of) measurement
devices at the end of measurement interactions. In Chapter 111 prove that
if modal interpretations solve this measurement problem, then they ascribe
and correlate outcomes of measurements with the empirically correct Born
probabilities.

In Part three modal interpretations are analysed from a more philo-
sophical point of view. In Chapter 12 I motivate the criteria I impose on
metaphysically tenable interpretations of quantum mechanics. Then I anal-
yse the relations between properties, states and outcomes of measurements
in modal interpretations and I discuss how modal interpretations, when re-
stricted to the description of measurement outcomes, recover the standard
formulation of quantum mechanics. Chapter 13 concerns the relations be-
tween the properties ascribed to composite systems and subsystems. I show
that the modal interpretation by Kochen (1985) and Dieks (1988) as well
as the one by Vermaas and Dieks (1995) can be characterised as holistic
and non-reductionistic. The interpretation proposed by Bacciagaluppi and
Dickson (1997) and Dieks (1998b) is, on the other hand, non-holistic and,
to a certain extent, reductionistic. I argue that notwithstanding the lack of
reductionism or holism, the description of reality by these interpretations
can still be taken as tenable. Finally, as I said above, Chapters 14 and 15 are
used to collect the more important results and to reach general conclusions.

The third way to use this book is to not read it at all but only to consult
it as a reference book. For this third way, I have included an index at the
end of the book.

Note, finally, that many of the proofs of the different results are put
in separate subsections, which are called 'MATHEMATICS' and which appear,
when necessary, at the end of sections. Please do not read these as parts of
the running text but consult them when desired. The proofs are intended to
be rigorous with regard to quantum systems defined on finite-dimensional
Hilbert spaces; the modifications necessary to also include the infinite-dimen-
sional case are not always discussed.
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Quantum mechanics

I start by briefly overviewing quantum mechanics as it is standardly formu-
lated and by discussing the question of whether this standard formulation
needs to be supplemented by an interpretation. The overview is based mainly
on Von Neumann (1932, 1955) and its aim is not to give the reader a crash
course in quantum mechanics, but to present those parts of the standard
formalism which I use in this book. For a more complete treatment, the
reader may consult the standard textbooks on quantum mechanics or, for
instance, Sudbery (1986) or Redhead (1987).

2.1 The standard formulation

The standard formulation of quantum mechanics can be introduced in four
steps. The first step is that in quantum mechanics one describes the physics
of a system by means of a Hilbert space Jf. This Hilbert space is a complex
linear vector space on which an inner product is defined.6 Let's adopt the
convention (please consult the Glossary at the end of the book for notational
conventions) that a refers to a system and that Jfa is the Hilbert space that
is associated with this system. Let \xpa) denote a vector in J^a and let (t/;a|</>a)
be the inner product between the vectors |t/;a) and | ^ a ) . With this notation
I can give a few definitions: a normalised vector \xpa) is a vector for which
it holds that the Hilbert space norm |||i/;a)|| := <v/(v>alv>a) is equal to 1
(all vectors considered in this book are assumed to be normalised except
in a few explicitly stated cases); two vectors \xpa) and |</>a) are orthogonal
if their inner product (tpa|(/>a) is equal to 0; and an orthonormal basis for

6 To be more precise, a Hilbert space Jf is a complex linear vector space (A) on which an inner product
is defined, (B) which is separable (that is, there exists a denumerably infinite sequence of vectors in
tf which lies dense in Jf) and (c) which is complete (that is, every Cauchy sequence of vectors in
^ converges to a vector in Jf). A finite-dimensional complex vector space with an inner product is
automatically a Hilbert space (Redhead 1987, App. II).
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Discrete spectral resolution

If a self-adjoint operator A is defined on a finite-dimensional Hilbert
space or if it is trace class (see footnote 7), then this operator is compact.
A self-adjoint compact operator allows a discrete decomposition01

Here, {cij}j is a set of real and distinct values which are the eigenvalues
of A. The set of vectors {\djk)}j,k are the eigenvectors of A and form an
orthonormal basis for Jf. The set of projections {%2k \ajk)(ajk\}j are the
pair-wise orthogonal eigenprojections of A that correspond one-to-one to
the eigenvalues {aj]j. This decomposition (2.1) is called the discrete spec-
tral resolution of A and is unique in the sense that the set of eigenvalues
and the corresponding eigenprojections are uniquely fixed by A.

a See Reed and Simon (1972, Sect. VI.5).

Jfa is given by a set of normalised and pair-wise orthogonal vectors {le")};
(the vectors thus satisfy (e"|ejjf) = 8jk) with which one can decompose every
vector \xpa) in Jfa as |t/;a) = J2j cj \e°j)> where Cj is equal to (^|tpa). For every
Hilbert space there exist such orthonormal bases. If a Hilbert space Jfa is
JV-dimensional (with N either finite or equal to oo), then any basis {|e*)}; of
Jfa contains exactly N elements.

The second step is that quantum mechanics speaks about observables
pertaining to a system a. Examples are the position, the spin and the energy
of a. These observables are all represented by self-adjoint linear operators
defined on Jfa. Let A* denote such an operator. Self-adjoint linear operators
allow in a number of cases a so-called discrete spectral resolution, for instance,
if they are defined on finite-dimensional Hilbert spaces or, more generally,
if they are trace class.7'8 This discrete spectral resolution has the form of a
discrete sum:

7 A self-adjoint linear operator A is trace class if its trace norm ||̂ 4||i := Tr\A\ = £ ,• (e/1y/A^A\ej),
with {\ej)}j an orthonormal basis for Jf, is finite (Reed and Simon 1972, Sect. VI.6).

8 A self-adjoint (hypermaximal) linear operator A in general has not a discrete but a continu-
ous spectral resolution. A continuous spectral resolution has the form of a Stieltjes integral
A = J^=_OOX6EA({—00, A]). The operator EA(T) is a projection on Jf and is a member of the
so-called spectral family of A and T is a (Borel) set of values. See formula (5.18) for the properties of
the spectral family {E^(r)}r and see Von Neumann (1955, Sect. II) and, in a more accessible form,
Jauch (1968, especially Sect. 4.3) for the general theory of spectral resolutions.
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In this sum the values {#/}_/ are the different eigenvalues of Aa and are
all real-valued. The vectors {\d*jk)}jyk are the eigenvectors of A* and form
an orthonormal basis for Jfa (so {a\\a^fkr) = djfdkk')- An eigenvector \a°-k)
corresponds to an eigenvalue a; and if two or more different eigenvectors
correspond to the same eigenvalue, one calls the spectral resolution (2.2)
as well as A01 itself degenerate (the second sum in (2.2) with the label k
runs over possible degeneracies). One can define for every eigenvalue aj an
eigenprojection ^2^ \a%)(a%\ of Aa. The spectral resolution (2.2) is unique
in the sense that A* uniquely fixes the set of eigenvalues {aj}j and the
corresponding eigenprojections {J2k |a^)(a^ |}y .

A special class of self-adjoint linear operators on Jfa is given by the
idempotent projections. Let Qa denote such a projection. It satisfies [Qa]2 =
QCL _ [g«]t? where [Qa]^ is the adjoint of Q01. An example of such a projection
is given by Qa = YX=\ \eD(el\ w i t h

 { I 4 ) ) L I
 a s e t o f normalised and pair-

wise orthogonal vectors. This projection has a discrete spectral resolution
with only the two eigenvalues 0 and 1. This projection is called an n-dimen-
sional projection because it projects vectors in J f a onto the n-dimensional
subspace of Jfa spanned by the vectors {\ek)}k=1. Two projections Qa and
g a are called mutually orthogonal if QaQa = QaQa = 0.

With these definitions it follows that the eigenprojections {J2k \a%)(a%\}j
of an operator Aa with a discrete spectral resolution (2.2) are pair-wise
orthogonal projections. If this resolution is non-degenerate, then all the
eigenprojections are one-dimensional, whereas if it is degenerate, some eigen-
projections are multi-dimensional.

A first prediction of quantum mechanics is now that the possible outcomes
of a measurement of an observable represented by an operator Aa with a
discrete spectral resolution (2.2) correspond one-to-one to the eigenvalues
{aj}j of Aa. That is, a measurement of such an observable always has an
eigenvalue of A* as an outcome.

The third step is to assign states to systems. In quantum mechanics the
state of a system a is represented by a density operator Wa defined on J»fa

and a special case of such a density operator is given by a one-dimensional
projection |tpa)(^a|, with \xpa) a normalised vector in Jfa. In this case one
says that the state of a is pure and one can speak about the state vector |tpa)
of a.

The states of composite systems and subsystems are related. Consider, for
instance, two disjoint systems a and p.9 The Hilbert space associated with the

9 Two systems a and /? are disjoint if they have no subsystems in common. Loosely speaking a and /?
are disjoint if you can simultaneously put a in one box and p in another. Two different electrons are
thus disjoint but a chair and a leg of that chair are not.
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Quantum mechanical state

The state of a system a is represented by a density operator Wa defined
on J^a which by definition satisfies

(xpa\W"\\p")>0 V| t />E^a, [W^ = W\ Tra(Wa) = l. (2.3)

The set of density operators is convex: if W* and W% a r e density operators,
then so is w\W* + W2W2, provided that w\ and W2 are both positive and
sum to 1. The pure states represented by one-dimensional projections
|t/)a)(t/)a| with |tpa) G J^a are the extreme elements of this convex set.

composite system consisting of both a and /?, which is denoted by a/?, is then
the tensor product of the Hilbert spaces J^a and jpP, so Jt?*P = J f a ® ^ . 1 0

The states of a, /? and a/? are related by means of so-called partial traces:

(2.4)

with {|^)}a and {\e^)}b arbitrary orthonormal bases for, respectively, Jfa

and j^$}l The partial traces Wa and W& are called the reduced states.
A second prediction of quantum mechanics is that if a system a has the

state Wa and one performs a perfect measurement12 of an observable Aa

with a discrete spectral resolution (2.2), then one obtains with probability

an outcome corresponding to the eigenvalue a,. This rule is called the Born
rule and the probability pBom(aj) is called the Born probability.

10 The tensor product Jf ^ := ^Ta <g> &$ of two Hilbert spaces ^Ta and 3/e* is the Hilbert space
which contains all the linear combinations of the tensor product vectors \\pa) <g) \<j>^) with \xpa) e Jfa

and |0^) G Jf^. If {\e°j)}j and {|/f>}fe are orthonormal bases for X a and jfP, respectively, then

l/fc>bjk is an orthonormal basis for ^ . And if 1 ^ ) = J2j,kcjk \e*) ® l/f> a n d i f l ^ > =

\eaj) ® | / f ) , then the inner product (^|<Da/*> is equal to £ , - w c;-^/fc, <eJ|^>(/£l/£> =

djk- Finally, the tensor product of the operators Aa and £^ defines an operator on Jfa^ by

> = E ^ cyk^|ej> (8) B^|/jf), where | ^ > = Zj,k <jk \tf) ® l/f >.
11 It follows from the relations (2.4) that W^ uniquely fixes the states W* and W$. Conversely, the

states Wa and W$ uniquely determine W^ if and only if W* or W$ is pure: if W" or W& is pure,
then W^ is equal to Wa ® W^ (for a proof see Von Neumann (1955, Sect. VI.2)) and if neither W«
nor W$ is pure, then there exist in addition to W*P = Wa (8) W? other states W^ which have W*
and W$ as partial traces.

12 A perfect measurement of an observable A* with a discrete spectral resolution (2.2) is defined as a
measurement which yields with probability 1 an outcome corresponding to the eigenvalue a/ if the
state of a is given by Wa = |fl^)(fl^l (with k arbitrary).
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The fourth step lays down the dynamics of the states of systems. In the
standard formulation of quantum mechanics there are two ways in which
this dynamics comes about. In general, that is, if no measurements are
performed, states evolve according to the Schrodinger equation. The most
simple case of such so-called Schrodinger evolution is given by a system a
which does not interact with other systems and which has at time t a pure
state, so W^it) = |ipa(r))(t/;a(f)|. The evolution of the state vector |ipa(0) is
then given by ift(d/d£)|tpa(t)) = f/a \ipa(t)), where ifa is the Hamiltonian of
a.13 This Hamiltonian is a self-adjoint operator and represents the energy of
a. A slightly more general case is given by a system a which does not have
a pure state but which still evolves without interacting with other systems.
The dynamics of the state of a is in this case governed by the generalised
Schrodinger equation

dt ih

where [ifa, W«(t)] is the commutator H«W«(t) - W«(t)H«. The solution to
this equation is

W«(t) = U«(t,s)W«(s)U«(s,t\ (2.7)

with s some initial instant and with I7a(x,j;) a unitary operator equal to
exp([(x-y)/ifi]H«).

The most general case is given by as system a with a pure or non-pure state
which interacts with other systems. In this case the dynamics is determined
as follows. Firstly, one takes a composite system, call it co, which contains a
as a subsystem and which itself does not interact with systems disjoint from
co (in the most extreme case one may take the whole universe as co). The
state W^it) of co then evolves as given in (2.7). Secondly, one calculates the
evolution of the state of a by taking at all times the partial trace of W^it).
So, for interacting systems the Schrodinger evolution is

W«{t) = Trw/cc(Uw(t, s) Wm(s) tT(s, t)\ (2.8)

where co/a is shorthand for the system given by co 'minus' a.
This Schrodinger evolution (2.7) or (2.8) of states is now interrupted at

the end of a measurement. The states of systems then change according
to a second type of dynamics which is governed by the so-called projection
postulate. In order to properly formulate this postulate, I continue with some
measurement theory.

13 In this book I always use the Schrodinger representation.
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The simplest model of a measurement has been given by Von Neumann
(1955, Sect. VI.3). Let a be the system on which the measurement is performed
and let Aa = Yljaj la?)(fl?l r e P r e s e n t the (non-degenerate) observable which
is measured. Let JJL be a measurement device and let M** be an observable
(pertaining to the device) which we can directly observe. This observable M^
is traditionally called the pointer reading observable. If its spectral resolution
is given by M* = Y2jmj lRy)(Ryl' ^ e n ^ e projections {|R^}(R^|}7 represent
the individual readings of the pointer. In a Von Neumann measurement
it is assumed that, before the measurement, the system a is in some pure
state \\pa) (which can be written as a superposition \xpa) = J2jCj \d*j) of the
eigenvectors of A*) and that the measurement device is in a pure 'ready to
measure' state |RQ). The interaction between a and ja during the measurement
is then (for every possible set of coefficients {CJ}J) supposed to be such that
the state of the composite OC/LL evolves as

i ^ ) = [ E CJ i°">] ® K) —> i* a / i ) = E CJ K> ® iR7>- <2-9)
j J

(There indeed exist Hamiltonians Ha/i such that this evolution is obtained
through the Schrodinger evolution (2.7) or (2.8).)

In order to see that this interaction (2.9) models a perfect measurement,
one can apply the Born rule (2.5) to a. Initially the state of a is \\pa)(xpa\.
Hence the Born rule yields that any perfect measurement of A* produces
an outcome corresponding to the eigenvalue aj with a probability pBom(^)
equal to Tra(|tpa)(v;a| \af)(cFj\) = \CJ\2. Let's see whether the interaction (2.9)
satisfies this description. After the interaction the state of the device is
W^ = Y2j \CJ\2 |R^)(R^|. The Born rule, this time applied to JLL, yields that a
measurement of the observable M^ gives with a probability pBorn(wiy) equal
to Tr^(W^ |R^)(R^|) = \CJ\2 an outcome corresponding to m7. Since it is
assumed that one can directly observe the readings of M^, that is, that a
look at the device \i counts as a measurement of M^, this implies that a direct
observation of \i yields with probability PBorn(^) = \CJ\2 the reading m7 of
the pointer observable AP. So, the interaction (2.9) means that the Born
probabilities for outcomes of a measurement of Aa are exactly transferred
to the probabilities with which we see that the pointer displays one of its
readings (that is, PBom(fl/) = PBom(mj) f° r all j)- Hence, if one identifies the
observation that the device displays outcome m7 after the interaction (2.9)
with the outcome that corresponds to a;, it follows that this interaction is
a proper model for a measurement of Aa. Moreover, the interaction (2.9)
models a perfect measurement in the sense of footnote 12: if the initial state
of a is given by an eigenvector of Aa, say |tpa) = \a°j)9 then the final state of
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the device is |R^)(R^| such that an observation yields with probability 1 the
outcome m; corresponding to the eigenvalue a7.

There exist many other interactions between a system a and a measurement
device \i which count as measurements of the observable Aa.14 They all have
in common that after the interaction, \x is in some final state W^9 that the
possible outcomes are represented by a pointer observable M^ = J2j mj Rj
(the projections {Rfij are the eigenprojections of Af) and that Tr^( W^R?)
is the probability that the measurement yields the outcome corresponding
to the eigenvalue ay. For a Von Neumann measurement this probability
T^iW^Rft is equal to the Born probability Tra(Wa \df)(a)\) with W" the
state before the measurement. In general, however, this need not be the case
(there can be errors in a measurement, for instance).

Let's return to the projection postulate. As I said before, this postulate
governs the dynamics of states at the end of a measurement. Let co denote
the universe and assume that a measurement performed on some subsystem
of co by means of a device ja ends at time t. Then the projection postulate
states that at t the state of the jmiverse makes the following instantaneous
transition with probability

[Rff ® p/"] W<°(t) [Rf}- V
Here P ^ is the unit operator defined on the Hilbert space Jf7^ associated
with the universe co minus the measurement device JLL. Note that this state
transition is fundamentally different from the Schrodinger evolution. By
definition the universe does not interact with systems disjoint from the
universe, so if the state of the universe evolves according to the Schrodinger
equation, then this evolution is given by (2.7). However, there exist no unitary
operators U0J(x,y) which reproduce the transition (2.10).

If one applies the projection postulate after the Von Neumann meas-
urement (2.9), one obtains that the state |*F°̂ ) of a/i at the end of the
measurement becomes equal to \d*j) ® |R^) with probability |c7|

2. Then, if one
takes the partial trace of this evolution of the state of a/z, the result is that
the state of a evolves with probability \CJ\2 as

j \ 2 \aaj){a]\ — > \xpa) = \a«). (2.11)
j j

The state of a before the measurement is thus projected onto one of the
14 I discuss measurements more generally in Chapter 10 but see Busch, Lahti and Mittelsteadt (1991)

for a rigorous treatment of quantum mechanical measurements.
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eigenvectors of the measured observable Aa (which explains the name 'pro-
jection postulate'). The state of a collapses to one of the eigenvectors, so to
say.

One can also consider series of measurements (joint measurements as well
as sequential measurements) and calculate with the standard formulation
conditional and joint probabilities for the outcomes of such measurements
(such calculations are given in Sections 8.2, 11.2, 11.3 and A.2). The resulting
predictions are all in good agreement with our observations of the outcomes
of measurements.

2.2 The need for an interpretation

There are two reasons to be dissatisfied with the standard formulation of
quantum mechanics. The first is that the standard formulation does not
say much about the quantum mechanical systems themselves. The second
concerns the exceptional status of measurements in this formulation. I start
by discussing the first reason.

If one settles for a strict instrumental approach to physical theories, one has
reached the end of the story. Quantum mechanics in the standard formulation
yields predictions about outcomes of measurements on elementary particles.
These predictions are in good agreement with our observations and that is all
an instrumentalist desires from a theory. If, instead, one adopts a more realist
attitude towards quantum mechanics and assumes that it is a theory about
electrons, protons, etc., which exist independently of us and independently of
the performance of measurements, then the standard formulation can only be
a beginning. In the realist conception, a true physical theory about elementary
particles, aims at (literally) describing the properties of those particles as they
exist out there. And the fact that quantum mechanics is in good agreement
with observation adds support to the assumption that quantum mechanics is
such a true theory. However, in its standard formulation, quantum mechanics
clearly does not give a description of elementary particles; it only says
something about measurements on these particles. Hence, from a realist
point of view one arrives at the need for an interpretation, that is, the need
to provide a description of what reality would be like if quantum mechanics
were true. But, as I pointed out in the introduction, even if one rejects this
realist conception and takes a more agnostic view towards ontological claims
about the existence of elementary particles, then one can still be interested in
finding an interpretation of quantum mechanics from an epistemic point of
view.15 Our common understanding of scientific theories is that they describe

15 Consider, for instance, Van Fraassen (1980, 1991) who took such an agnostic point of view about
the existence of quantum mechanical systems and proposed the first modal interpretation.
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entities that exist independently of us. Newtonian mechanics, for instance,
is usually understood and explained as a theory about the properties that
objects like apples, billiard balls and planets have independently of us. An
ontological agnostic can now be interested in an interpretation of quantum
mechanics in order to also understand and explain quantum mechanics in
this way: namely, in terms of a description of the properties of hypothetical
objects named photons, electrons, etc.

If one accepts the need for an interpretation of quantum mechanics, the
question arises of what such an interpretation should provide. A first demand
is that an interpretation should give a well-developed description of reality.
That is, an interpretation should take things like position, spin and energy
not as merely observables of systems (things which can be observed on
those systems). Instead, an interpretation should take such things as normal
physical magnitudes which pertain to systems and which exist independently
of the notion of observation or measurement (things like position, spin and
energy should be be-ables in the words of Bell (1987, page 52); things which
can exist). An interpretation should, moreover, ascribe properties to systems,
that is, it should yield that the physical magnitudes of those systems have
definite values and an interpretation should yield a fully-fledged theory of
these properties. A second demand is that the description of reality given
by an interpretation should be empirically adequate. This means that an
interpretation should reproduce the predictions of the standard formulation
of quantum mechanics with regard to the outcomes of measurements. A
third demand is that an interpretation should give a metaphysically tenable
description of the magnitudes and properties of systems.

In the next chapter I make these demands more explicit, but let's adopt
for the moment the following starting points about how an interpretation
describes reality.16 Firstly, all the observables defined by the standard for-
mulation are taken as physical magnitudes in an interpretation. And the
magnitude that corresponds to an observable represented by an operator
Aa in the standard formulation is in an interpretation represented by that
same operator. Secondly, a magnitude represented by an operator Aa with a
discrete spectral resolution (2.2) may assume one of the eigenvalues {aj}j of
A* as a definite value. And the property that this magnitude has value a,- is
represented by the eigenprojection J2k \a<jk)(a<jk\ corresponding to a7. Hence,
the magnitude Aa has value aj if and only if the property J2k \a°jk)(a<jk\ *s

possessed.
Now let [Aa] = aj denote that Aa has the value aj and let [£)fe \a°jk)(a°}k\] =

16 These starting points are consistent with the ones I adopt in Section 3.2.
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1 denote that a possesses the property represented by J2k\a%)(a°jk\'
relation between the value assignment to magnitudes and the ascription of
properties is then captured by

[A*] = aj if and only if [ £ I^X^I] = 1- (2.12)
k

An example of an interpretation of quantum mechanics which satisfies
these starting points is the so-called orthodox interpretation. This interpreta-
tion is based on an assumption that can be found in Von Neumann (1955,
e.g. Sect. III.3), namely, that a magnitude Aa has the eigenvalue a/ as def-
inite value if and only if the state of a is given by an eigenvector \a°jk)
corresponding to that eigenvalue aj. A motivation for this assumption can
be that if the state of a is indeed an eigenvector \a\) of Aa, then a Von
Neumann measurement (2.9) of A* yields with certainty (with probability 1)
the outcome aj. A good explanation for this certain outcome is that Aa ac-
tually has value aj. This assumption has become known as the (generalised)
eigenvalue-eigenstate link:17 a magnitude Aa has value aj if and only if the
state of a is such that aj has Born probability 1, or, in terms of properties:

C 14x411 =1 vand only tf Tx^wa E/ _j I JKI \ JK\' V /

k k

The orthodox interpretation is now the interpretation obtained by adding
this eigenvalue-eigenstate link to the standard formulation of quantum
mechanics.

This orthodox interpretation is in complete harmony with the standard
formulation. That is, the orthodox interpretation reproduces the prediction
of the standard formulation that a measurement by means of a device
with a pointer reading magnitude M^ = YljmjRj yields with probability
Tr̂ (W ĴR )̂ the outcome mj that corresponds to the eigenvalue aj of the
measured magnitude A*. To see this note that by the projection postulate,
the state of the measurement device collapses with probability
to the state

Given this collapsed state W*, the Born probability TV(W^JRp is 1. Hence,
the orthodox interpretation yields that [R^] = 1 and by the relation (2.12)
it then follows that the pointer reading magnitude M^ has with probability

17 The name 'eigenvalue-eigenstate link' was introduced by Fine (1973).
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j the value my after the measurement. This is exactly the prediction
of the standard formulation.

One may think that with the orthodox interpretation, one has again
reached the end of the story: the orthodox interpretation assigns values to
magnitudes, ascribes properties to systems, reproduces the predictions of the
standard formulation and thus yields an acceptable description of reality if
quantum mechanics were true. However, there still is the question of whether
the orthodox interpretation gives a tenable theory about these magnitudes
and properties. This question leads us to the second reason to be dissatisfied
with the standard formulation.

One of the striking characteristics of quantum mechanics in its standard
formulation is that measurement interactions have an exceptional status as
compared to other interactions between systems. This status hangs together
with the projection postulate: if an interaction between a system and a meas-
urement device counts as a measurement, one should apply this postulate
and the state of the universe makes the transition (2.10); and if this interac-
tion does not count as a measurement, one should not apply the projection
postulate and the state of the universe evolves according to the Schrodinger
equation as in (2.7). As I said in the previous section, these two types of
state dynamics are fundamentally different. From a methodological point of
view this exceptional status of measurements is, however, quite strange. In
physical theories a measurement is considered as a special instance of an
interaction between systems. It seems therefore that a measurement inter-
action should affect the dynamics of states in the same way as any other
interaction affects this dynamics. Hence, from a methodological point of
view it seems preferable if one could remove the exceptional status of meas-
urements in quantum mechanics. The same remarks hold mutatis mutandis
for interpretations of quantum mechanics. So, within interpretations it also
seems methodologically more sound if measurement interactions could be
taken as ordinary physical interactions.

The orthodox interpretation does not meet this desideratum. Consider, for
instance, three systems a, /J and JJL. Let the initial state of the composite of
these systems be

K> ® !*>?>] ® K), (2-15)

where the vectors {\a°j)}j are the pair-wise orthogonal eigenvectors of an
operator Aa and the vectors {\bj)}j are pair-wise orthogonal vectors in jtfP.
Assume that the state of ft remains constant (say, (5 is very remote from
a and fi and does not interact with these two systems) and assume that
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the states of a and JJL evolve according to the interaction (2.9) which can
model a Von Neumann measurement of the magnitude A*. The state of the
composite a/?ju after the interaction is then

If now the interaction between a and \i is an ordinary interaction, that is, if it
is not a measurement, the state of /? before and after the interaction is equal
t° E / lc;l2 \bj)(bj\. The orthodox interpretation then constantly ascribes the

n O

property Y2j\bj)(bj\ to /?. If, on the other hand, the interaction between
a and \x counts as a measurement, the projection postulate yields that the
state of P collapses at the conclusion of the measurement from W@ =
E ; \°j\2 lfe?)(fo; I t0> say> wP = \bk)(bk\- S o > t h e Property ascribed to P by the
orthodox interpretation then changes from ]T\ \tf)(b?\ to |fc£)(&£|. Hence, the
properties ascribed to /? depend on whether the interaction (2.9) between a
and fi is an ordinary interaction or is modelling a measurement. Measurement
interactions thus have an exceptional status and cannot therefore be taken
as ordinary interactions in the orthodox interpretation.

So, one is still empty-handed if one wants to give an interpretation of quan-
tum mechanics which does not grant an exceptional status to measurements.
There have now been many attempts to give an interpretation of quantum
mechanics in which measurements are taken as ordinary interactions. Exam-
ples are Bohmian mechanics, the consistent histories approach, many worlds
and many minds interpretations and, more recently, modal interpretations.
This book is about three versions of these modal interpretations.

An obstacle one can encounter when trying to define an interpretation
which takes measurements as ordinary interactions is given by what I will
call the measurement problem for interpretations. Consider the interpretation
which accepts the eigenvalue-eigenstate link and which says that the states of
systems always evolve according to the Schrodinger equation (measurements
thus lose their exceptional status in this interpretation because the projection
postulate, which distinguishes measurements from ordinary interactions, is
rejected). Such an interpretation is unable to reproduce the predictions of the
standard formulation because it is unable to ascribe outcomes after measure-
ments. Take again the Von Neumannjneasurement (2.9). After this measure-
ment, the state of the device /LL is still W^ = J2j \cj\2 lRy)(Ryl because one has
rejected the projection postulate. Application of the eigenvalue-eigenstate
link now yields in general that \i possesses the property E/lR;)(Ryl a nd
not one of the individual pointer readings {|R^)(R^|};-. Hence, our interpre-
tation does not reproduce the prediction of the standard formulation that
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the measurement (2.9) has with probability \CJ\2 the outcome |Rp(R^| that
corresponds to the eigenvalue a,j. This problem that interpretations some-
times fail to ascribe outcomes to measurement devices is the measurement
problem for interpretations.

So, to sum up, from a realist point of view and from an epistemic point
of view one may want to add an interpretation to quantum mechanics, and
from a methodological point of view one may want to remove the excep-
tional status of measurements. However, if one tries to do so, one can be
confronted with the measurement problem for interpretations. In order^to
formulate this measurement problem more generally, consider the state W^
of a measurement device after a measurement of A*. Let M^ = ]£ • mj ^
be the pointer reading magnitude. Then the standard formulation predicts
that the measurement yields with probability Tr^iW^Rj) the outcome cor-
responding to the eigenvalue aj of A*. This prediction implies that the
measurement device possesses the property JR? with probability Tr^W^Rj).
So, if an interpretation of quantum mechanics should reproduce this predic-
tion, it should ascribe with probability TT^W^RJ) the pointer reading Itf to
the measurement device. The orthodox interpretation achieves this but still
grants measurements their exceptional status. An interpretation that accepts
the eigenvalue-eigenstate link and rejects the projection postulate is not able
to ascribe the readings. The question is now whether modal interpretations
can avoid the measurement problem as successfully as the orthodox inter-
pretation while, at the same time, taking measurements as ordinary physical
interactions.
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Modal interpretations

Before considering the particulars of the different versions of the modal in-
terpretation in the next chapter, I first present their common characteristics.
Then I list the starting points from which I develop these modal interpreta-
tions to fully-fledged descriptions of reality. Finally, I give the criteria I think
interpretations should meet and present a number of desiderata I hope they
meet.

3.1 General characteristics

The name 'modal interpretation' originates with Van Fraassen (1972) who,
in order to interpret quantum mechanics, transposed the semantic analysis
of modal logics to the analysis of quantum logic. The resulting interpretation
was for obvious reasons called the modal interpretation of quantum logic.
Since then, the term modal interpretation has acquired a much more general
meaning and lost its direct kinship with modal logics. In particular new
interpretations of quantum mechanics developed in the 1980s by Kochen
(1985), Krips (1987), Dieks (1988), Healey (1989) and Bub (1992) became
known as modal interpretations and also older traditions like Bohmian
mechanics (Bohm 1952; Bohm and Hiley 1993) were identified as modal
ones. But why are all these interpretations still called modal? And what is
the present-day meaning of this term?

I think part of the answer to the first question has to do with public
relations. The name 'modal' is short, sounds nice and is rather intriguing.
Furthermore, I guess that also Van Fraassen's prestige as a philosopher of
science adds a special gloss to the term. But, apart from all this, I believe the
name 'modal interpretation' is quite suited. This name pin-points a feature
all modal interpretations share, and that brings me to the second question.

22
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In order to delineate this feature, I first present the common characteristics
of modal interpretations and then propose a general definition.

A first characteristic of modal interpretations is that they keep close to the
standard formulation of quantum mechanics. That is, they all accept that the
quantum mechanical description of a system a is defined on a Hilbert space
Jfa. So, magnitudes of a are represented by self-adjoint operators A* and
the state of a is given by a density operator Wa. In modal interpretations
it is thus not assumed that there exists a more precise state for a system
represented by something different to a density operator. In this sense modal
interpretations are not so-called hidden-variable theories because in such
theories one does assume that there exist more precise states.

Secondly, states of systems evolve in modal interpretations only according
to the Schrodinger equation; the projection postulate is rejected.

Thirdly, modal interpretations take quantum mechanics as a universal
theory of nature. Quantum mechanics thus applies not only to elementary
particles, but also to macroscopic systems like measurement devices, planets,
cats and elephants.

Fourthly, modal interpretations give rules to ascribe properties to systems
at all times. This property ascription depends on the states of systems and
applies regardless of whether or not measurements are performed. States of
systems thus have a meaning in terms of properties possessed by systems
and not merely in terms of outcomes of measurements.

Fifthly, these rules by which properties are ascribed are stochastic. So, a
system a is not simply ascribed one set of properties (as was the case with the
eigenvalue-eigenstate link (2.13)) but is ascribed a number of sets of proper-
ties with corresponding probabilities. Each set contains properties possibly
possessed by a and the corresponding probability gives the probability that
these properties are actually possessed by a.

A final common characteristic is that the probabilities with which modal
interpretations ascribe properties to a system a are taken as representing
ignorance about the actual properties of a only. These probabilities thus do
not represent ignorance about the state of a. To make this point clear, I
briefly discuss the so-called ignorance interpretation of quantum mechanics.

Consider for a moment an ensemble of N similar systems a, say N
electrons. Assume that all these systems are in pure states but that the
ensemble is inhomogeneous with regard to these states. Say, N\ < N systems
are in state |t/^a)(tpa| and N2 = N — N\ systems are in |</>a)((/>a|. If one
now wants to give predictions about measurements on a system randomly
chosen from this ensemble, one can proceed as follows. The state of such
a random system is with probability N\/N equal to |tpa)(ipa| and with
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probability N2/N equal to |</>a)(</>a|. Hence, by the Born rule (2.5), there
exists a weighted probability

PBom(«;) = ^ Tra(|tpa)<i/| |a«)(a«|) + ^ Tv°(\r){r\ \a«)(a«\) (3.1)

that a measurement of ^4a = J^/fl/ |0?)(fl?| yields the outcome corresponding
to cij. This prediction can now be reproduced by assigning a statistical or
mixed state W^ix to the ensemble which is equal to the weighted sum of
the states of the systems in the ensemble, so, Wmix = (Ni/N)\xpa)(xpa\ +
(N2/N) |</>a)((/>a|.18 For, if one applies the Born rule to this mixed state, one
directly obtains the Born probability (3.1).

The ignorance interpretation is now the interpretation one obtains if one
accepts the eigenvalue-eigenstate link and makes the assumption that every
non-pure state Wa assigned by quantum mechanics should be taken as a
mixed state that describes an inhomogeneous ensemble of systems in pure
states. A prevalent idea among physicists is that this ignorance interpretation
solves the measurement problem. Consider, for instance, the Von Neumann
measurement (2.9). The state of the measurement device /LL after the measure-
ment is W^ = J2j \cj\2 lRjf)(Rĵ l- According to our assumption, one can take
this state as describing an ensemble consisting of \c\\2N devices with state
Ri)(Ril, of \C2\2N devices with state |R£)(R£|, etc.19 If one then applies the

eigenvalue-eigenstate link to this ensemble, one obtains that |ci|2N devices
possess the reading |R^)(R^|, that |c2|2JV devices possess the reading |R£)(R£|,

etc. It thus follows that a device chosen randomly from this ensemble pos-
sesses reading |R^)(R^| with probability |c/|2, which is exactly the prediction
of the standard formulation. Now, apart from the fact that this solution
to the measurement problem doesn't work,20 one understands within the

18 Note that mixed states satisfy the definition of a quan tum mechanical state (see the box on page 12)
because mixed states are convex sums of pure states.

19 Given the assumption that the state W11 describes an inhomogeneous ensemble of systems with pure
states, it is not yet fixed that this state describes an ensemble with \CJ\2N devices in state |Rp(R^|.

The decomposit ion W*1 = Y2j \cj\2 l R p ( R j I *s n o t t n e o n ^y possible decomposit ion of W1* in terms of

pure states, so W^ may equally describe another ensemble. However, let us, for the sake of argument,

put this worry about uniqueness aside.
2 0 The ignorance interpretat ion does not solve the measurement problem because the assumption

that W^ describes an inhomogeneous ensemble, leads to inconsistencies. Proof: Consider the states

generated by a Von N e u m a n n measurement (2.9). The state of the device is W^ = Y2j \cj\2 lRy)(Ry I-

In order to solve the measurement problem, the ignorance interpretat ion takes this state as describing

an inhomogeneous ensemble of N devices with \CJ\2N devices in the state \R^)(R^\ (j = 1,2, . . . ) .

The state of the object system is Wa = Yli\cj\2 \a°j)(aCj\ a n ( ^ m the ignorance interpretat ion also

describes an inhomogeneous ensemble, say, an ensemble of Nf object systems with Xr
tN' systems in

the state |0?)(0?| (i = 1,2,...), where ^M. = 1 and Wa = X ^ ! I^X^I- The state of the composite
a/i is equal to |^a^) = J^- c/ |a") (8) |Ry) and there are now two routes to apply the ignorance
interpretation to this composite state. Firstly, one can construct an ensemble of composites ecu which
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ignorance interpretation a non-pure state as a description of a system which
leaves one ignorant not only about the precise properties of the system, but
also about its precise state. For it follows that, for instance, the final state
W^ assigned to the measurement device is not the real state of the device.
Instead, in the ignorance interpretation the real state is with probability \CJ\2

equal to \RJ){^J •
The final characteristic of modal interpretations is now that this igno-

rance with regard to states is rejected. Within modal interpretations the
state assigned to a system is the state of an individual system and not a
description of an ensemble of systems. The probabilities with which modal
interpretations ascribe properties represent ignorance only with regard to
the actual properties of a system and not with regard to the actual state
of the systenxjUonsequently, if at the end of a measurement the state of
the device is W^ = ]T\- \CJ\2 |R^)(R^| and one observes that it possesses the
reading |R^)(R^|, one does not conclude that the state of the device is actually
|Ry)(Ry |. Or, put differently, one never uses the actually possessed properties
of a system to 'update' the state of that system.

I believe that this last characteristic is the common feature that dis-
tinguishes modal interpretations from other interpretations of quantum me-
chanics. Take the orthodox interpretation, for instance. After a Von Neumann
measurement the uncollapsed state W** = J2j \cj\2 lR;)(Ry I °f ^ e measure-
ment device is taken as that it actually possesses the outcome |R^)(R^| with
Born probability PBom(aj) = \cj\2- And the device possesses this outcome
if and only if its state has collapsed to W11 = |R^)(R^|. The probability
PBom(fl/) is thus also the probability that the device actually has the state
|R^)(R(?|. Hence, in the orthodox interpretation the Born probabilities rep-

is consistent with the ensembles described by Wa and by W1*. Let this ensemble contain N" systems

and consider one of its elements a/*. It has already been established that the subsystem a of this

element has one of the pure states {|0")(#f |}i, say, !</>£) (</>£ I• And the subsystem \x of this element

has one of the pure states {|Rp(R^|};-, say, |R{J)(RJJ|. It then follows (see footnote 11) that the state

of the element oc^i itself is uniquely |$J)($J| ® |R£)(R£|. This result holds for every element of the

ensemble of composites, hence, every element has one of the product states {|$f)(0f | <8> |Ry)(R^|},-j.

In order to get the distributions right, the ensemble of composites contains K^N" elements with the

state |^?><0?| <S> |R;)(Rjl, where Xr(j satisfies E , / ^ = ^ a n d Hi^'lj = \cj\2- Secondly, one can directly

apply the ignorance interpretation to the state |*Fa/x) of a/x. This state is pure and thus describes a

homogeneous ensemble of N" systems which all have the state |4/a^)(4/a// |. These two routes thus

lead to descriptions of ensembles which are different from one another. Hence, taking the state W^

as describing an inhomogeneous ensemble leads to an inconsistency. •
More generally, d'Espagnat (1971, Sect. 6) (see also d'Espagnat (1966)) has proved that not every

non-pure state can be taken as a mixed state describing an inhomogeneous ensemble. One therefore
has to distinguish so-called proper mixtures and improper mixtures. A proper mixture can be taken
as describing an inhomogeneous ensemble and an improper mixture cannot. The mixed state W^ix

denned in the main text is an example of a proper mixture. And the device state W^ is, according to
the proof given in this footnote, an example of an improper mixture.
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resent ignorance about the actual properties and about the actual state of
systems.

Modal interpretations can thus be defined by means of this characteristic
of rejecting ignorance with regard to states. Consider any theory and let
TS denote the Theoretical State which this theory assigns to a system (for
quantum mechanics TS is thus a density operator) and let SoA denote a
description of a State of Affairs for that system (in quantum mechanics SoA
is a set of definite properties of the system or a set of values assigned to
magnitudes of that system). The definition I then propose is:

Definition of a modal interpretation

An interpretation of a theory is a modal interpretation iff:

(A) the theoretical state TS of a system a is interpreted in terms of one or more
possible states of affairs {SoAj}j from which exactly one describes the actual
state of affairs, and

(B) if the theoretical state TS of a system a does not uniquely determine the
actual state of affairs SoAk (that is, if TS is interpreted in terms of two or
more different possible states of affair), then a is not assigned a more accurate
theoretical state TS' which does uniquely determine the actual state of affairs
SoAk.

This definition is my answer to the second question raised in the be-
ginning of this section: the term 'modal interpretation' presently covers all
interpretations which, more informal then the above definition, (A) interpret
a state of a system in terms of ignorance with regard to the properties of
the system, but (B) do not take this ignorance as ignorance with regard to a
more accurate state of that system.21

The name 'modal' is in my opinion suited because one may understand
it as pointing to the fact that modal interpretations interpret quantum me-
chanics by slightly changing the standard understanding of the modalities
'actuality' and 'possibility.' To illustrate this non-standard treatment, consider
again the fact that modal interpretations maintain that after a Von Neu-
mann measurement a device \i that actually possesses the reading |Rp(R^|

may still have the state W* = J2j \cj\2 IR;)(R;I- T h i s means that the terms
{\ck\2 lRfc)(Rfcl}̂ 7̂ ^ a t re^er t o the non-actualised outcomes are not removed
from the state of the device. This procedure of removing the non-actualised

21 Given this definition, one may argue that the interpretation of statistical mechanics counts as a
modal interpretation: the statistical state of, say, a gas is interpreted in terms of a number of possible
mechanical states of the gas molecules (part (A) of the definition) but one never replaces in statistical
mechanics the statistical state by a state which uniquely determines this mechanical state of the gas
(part (B) of the definition). Private communication with Jos Uffink, 1997.
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possibilities is, however, quite standard in statistical theories. Take, for in-
stance, the weather forecast. Say, yesterday's prediction warned us that we
may have a blizzard today with a ten per cent probability. If today the actual
weather is quite sunny, the meteorologists, when preparing the weather fore-
cast for tomorrow, start calculating with the actual sunny state of today's
atmosphere. They thus ignore the non-actualised possibility of today's bliz-
zard but use an updated state of the atmosphere which no longer contains
references to that blizzard. Non-actualised possibilities are thus standardly
removed from states. In modal interpretations the state is now not updated
if a certain state of affairs becomes actual. The non-actualised possibilities
are not removed from the description of a system and this state therefore
codifies not only what is presently actual but also what was presently pos-
sible. These non-actualised possibilities can, as a consequence, in principle
still affect the course of later events. This implies, if one translates it to the
weather forecast, that blizzards that did not actually occur can still affect
tomorrow's weather. Modal interpretations are thus called modal because
they treat modalities non-standardly.

3.2 Starting points

Before presenting the different modal interpretations in the next chapter, I
briefly list the general starting points which I adopt in developing how these
interpretations give descriptions of reality (the first two points have already
been mentioned in Section 2.2).

Firstly, physical magnitudes pertaining to a system a are represented by
self-adjoint operators Aa defined on the Hilbert space Jfa associated with
a. Secondly, a magnitude that is represented by an operator with a discrete
spectral resolution Aa = J2jajJ2k \a%) (a<jk\> c a n assume as a definite value
only one of the eigenvalues {aj)j of Aa. The property that this magnitude has
value cij is represented by the corresponding eigenprojection ^2k \cfjk)(d*jk\.
The notation [A*] = aj captures that magnitude Aa has the definite value a,
a n d E/c \a%)(a%W = 1 denotes that a possesses the property ^ \a*k){cfjk\.
It then follows that [A*] = aj if and only if [J2k \a%)(a%\] = 1.

Thirdly, it can be the case that a magnitude Aa does not assume the
eigenvalue a7 as a definite value, for instance, if Aa has the value ay ^= aj.
In that case a also does not possess the property Ylk\a°jk)(a(jk\' Let now
[A*] ^ aj denote that A* does not have value aj and let [J2k \a

a
jk)(a

a
jk\] = 0

denote that a does not possess the property J2k\a%)(a%\' ^ follows that
[A«] ± aj if and only if [ £ , \a«k)(a«k\] = 0.

Fourthly, I do not commit myself to the position that it is always the
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case that a magnitude A* either has definite value aj or does not have that
value. Instead I allow the possibility that it is indefinite whether or not A01

has value aj. As a consequence, I also do not commit myself to the position
that a property J2k \a<jk) (a°jk\ *s either possessed or not possessed; a property
can also have the status of being indefinite (in the Sections 4.1, 5.6 and
14.1 I return to this possibility that properties and values of magnitudes are
indefinite).

To capture these starting points more briefly, I adopt the following link
between the values assignment and the property ascription to a system a:22

[A*] = aj if and only if [ £ \a%)(a«jk\] = 1,
k

[A"\±aj if and only if [J2\a%)(a%\] =0,
k ' K }

it is indefinite whether
if and only if > \a%)(a%\ is indefinite,

or not A* has value aj k

(I emphasise that this link is a starting point; in Section 5.6 I introduce
generalisations of (3.2) in order to also accommodate magnitudes with
continuous spectral resolutions.)

According to the general definition formulated in the previous section, a
modal interpretation interprets the state of a system in terms of a number of
states of affairs {SoAj}j. Since the physical state of affairs of a system a can
be described by means of the properties of a or by means of the magnitudes
pertaining to a, there is some freedom in capturing these states of affairs. I

22 The link (3.2) is not as innocent as it may seem. Consider, for instance, two magnitudes Aa and
A* represented by operators which do not commute but which share the eigenprojection |aj)(a||.
Then, if [Aa] = ai, it follows immediately from this link that [Aa] = 7i\. Now, according to quantum
mechanical orthodoxy one should be cautious about simultaneously assigning definite values to
magnitudes represented by non-commuting operators (although the orthodox eigenvalue-eigenstate
link (2.13) allows such value assignments: if the state of a is W* = \a\)(a\\, this link yields that both
[Aa] =a i and [3a] = ai).

If one wants to avoid that [A01] = a\ always implies [Aa] = #i, one should reject the link (3.2) and
adopt instead, for instance, the following more restrictive link:

[A"]=aj iff [ £ \a%)(a%\] = 1 and [ £ \a}k)(a}k\] = 0 for all f + j , )
k k \ (3.2*)

[A«] ± aj iff [A*] = af with af j - aj. J

This alternative link (which is more restrictive than the link (3.2) because now [^2k \a*k)(djk\] = 1
does not automatically imply that [A*] = aj) is accepted by, for instance, Dieks (1988, 1989) and
Clifton (1995a). I prefer my more liberal link (3.2*) because, given a set of projections with definite
values, it assigns definite values to more magnitudes than the link (22). It is furthermore my position
that it should not a priori be excluded that magnitudes represented by non-commuting operators can
have simultaneously definite values; quantum mechanics only says that one cannot simultaneously
measure such magnitudes and is silent about whether or not they can have simultaneously definite
values. For a further discussion, see Reeder (1998), for instance.
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now choose to describe them in terms of the ascribed properties. The value
assignment to the magnitudes of a can then be derived by means of these
ascribed properties and the link (3.2).

More precisely, I describe the state of affairs SoAj as follows: A deter-
mination of the properties of a system a is according to my starting points
equivalent to an assignment of the value 0 or 1 to a number of the eigenpro-
jections of the magnitudes of a. These eigenprojections are projections on the
Hilbert space Jfa associated with a. Hence, a determination of the properties
of a system a can be given by an assignment of values to projections {<2a}
defined on J f a. Now let Q)0>j be the set of projections with definite values
and let [.]j be the map from 2<Pj to the set {0,1} which gives the definite
value of the projections in Q)SPj. The state of affairs SoAj is thus captured
by the ordered pair (20*j9 [.]_/). The modal interpretations discussed in this
book also give the probability pj with which a state of affairs (20*j9 [.]_/) is
actually the case. So, an even more informative description is given by the
ordered triple (pJ9@0>J9 [.];).

With all these notational means one can now characterise the rules of a
modal interpretation by the map

W*~{(pj,®0>j,tij)}j. (3.3)

This map should be read as follows: If a has a state Wa, then it is with prob-
ability pj actually the case that, firstly, a possesses the properties represented
by the projections Qa G 3)&j with [Qa]7 = 1, secondly, a does not possesses
the properties represented by the projections Qa e Q)SPj with [Qa];- = 0,
and, thirdly, the properties of a represented by projections Qa ^ Q&j are
indefinite.

3.3 Demands, criteria and assumptions

In Section 2.2 I have given a preliminary discussion of what interpretations
of quantum mechanics should provide. The points I mentioned were that an
interpretation should describe reality by assigning values to magnitudes of
systems and that this description of reality should meet the demands of being
well developed, empirically adequate and metaphysically tenable. Now, since
modal interpretations ascribe properties to systems by means of the map
Wa i-» {(pj,S>^j, [.];)};, they automatically assign values to magnitudes via
the link (3.2). So what is left is the question of when do modal interpretations
meet the three given demands.

Unfortunately, the first demand that a modal interpretation should give
a well-developed description of reality is quite open-ended. It is clear, of
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course, that such a description must satisfy some conditions. An obvious
candidate is the condition that the property ascription {{pj9@&j9[-]j)}j *s

well defined. It is also clear that a fully-blown description should include
the correlations between the properties ascribed to different systems, as well
as the dynamics of these properties. However, there also exist conditions for
which it is not that obvious whether well-developed descriptions should meet
them. Consider, for instance, the condition that a description of reality always
assigns definite values to such key magnitudes as position, momentum or
energy. Or take the condition that a description of reality is invariant under
Lorentz transformations. Such conditions may seem obvious candidates to
some authors but not to others. And even if there is consensus about a
condition, say, that a well-developed description should be well defined,
there need not be consensus about what such a condition implies: Most
authors agree that this means that the sets of definite-valued properties
{@&*j}j must be closed under negation, conjunction and disjunction. But
they again disagree about the question of whether this condition implies that
the property ascription should satisfy the rule that [ga] = 1 implies that
[<2a] = 1 for every QaQa = Qa (see Chapter 5 for a full discussion of the
conditions for property ascriptions).

Due to this open-endedness, I take the position that any choice for a
criterion for whether a description of reality is well developed or not, is
arbitrary. I therefore do not propose one myself. Instead I develop modal
interpretations as much as possible by trying to properly define the property
ascription and by trying to determine the correlations between the ascribed
properties as well as their dynamics. Afterwards, one can then review the
results and reconsider the question of whether or not they give rise to a
physically acceptable description of reality.

I use a number of assumptions to develop modal interpretations. I now
present these assumptions and discuss their reasonableness.

The first assumption delimits the information necessary to give the pro-
perty ascription to a system a. This property ascription is a map Wa i—•
{(Pj9@&j9[']j)}j a nd because in physical theories the state of a system is
meant to fully describe the physics of that system, it is natural to assume that
Wa codifies all information about the property ascription {{pj9^^j9[-]j)}j-
The standard formulation, for instance, fulfills such an assumption with
regard to its predictions about measurements: the probabilities for the out-
comes of a perfect measurement performed on a at time t depend solely
on the state of a at t. I therefore assume that the property ascription
{(pj9@0>p []j)}j to a at time t also depends solely on the state of a on t. I
call this assumption Instantaneous Autonomy: the state of a at time t codifies
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all information about the property ascription to a at t or, more briefly, the
state of a determines autonomously the instantaneous property ascription to
a. Slightly reformulated, this reads:

Instantaneous Autonomy

If two systems have equal states, then the instantaneous property ascriptions
Pj, [.];)}; to those systems are also equal.

A necessary condition for this assumption is that the property ascription
to a system a is a function of the state of a only. For if this property
ascription were, for instance, a function of the state W^ of a and a system
/} disjoint from a, one can violate Instantaneous Autonomy by changing the
state W^ while keeping Wa fixed.

In principle Instantaneous Autonomy does not need to hold. It could, for
instance, be the case that the statistical property ascription to a is a function
of the state of a composite of a and a second system /?. Or the statistical
property ascription could simply not be a function of a state of any system
at all. In both cases the properties ascribed by modal interpretations would
become rather difficult to determine. Consider, for example, an experimenter
on earth who is preparing a system a in a specific state in order to examine
the properties of this system. In the first case a change in the state of a second,
possibly distant, system /J, for instance, le petit prince who is rearranging
his asteroid,23 can make the properties of a change. In the second case
there is no unique relation which fixes the properties of a. Hence, however
precisely the experimenter prepares the state of a, he or she can never fix the
property ascription to a. One can thus take Instantaneous Autonomy as the
assumption that the state of a system uniquely fixes the property ascription
to the system.

For composite systems which evolve freely (that is, composite systems
which do not interact with an environment), the standard formulation also
satisfies a dynamical version of autonomy. Consider, for instance, two or
more measurements performed on a system a at different instants and as-
sume that the composite co of a and the measurement devices evolves freely.
Then the statistical predictions about the correlations between the respective
outcomes (and by correlations I mean not only correlations between out-
comes which are simultaneously displayed by the devices but also sequential
correlations between outcomes displayed at different times) depend solely
on the state of co at a given instant and the Hamiltonian H^ of co. The

23 See de Saint-Exupery (1943).



32 Modal interpretations

analogue of this dynamical autonomy for modal interpretations would be
the following assumption:

Dynamical Autonomy for composite systems

If two composite systems evolve freely and have, during an interval, equal states and
equal Hamiltonians, then the (simultaneous and sequential) correlations between the
properties ascribed to these composites and their subsystems at different times in
that interval are also equal.

One of the results reached in this book is that if one accepts Instantaneous
Autonomy and the criterion of Empirical Adequacy (see below), then modal
interpretations become contradictory if one also accepts this assumption of
Dynamical Autonomy for composite systems. It is thus not possible to also
assume Dynamical Autonomy. Instead, I formulate three weakened versions
of the assumption of Dynamical Autonomy which can be accepted with
varying success. The first version concerns only the correlations between
properties ascribed to freely evolving composite systems as a whole (and
thus not between properties ascribed to the subsystems of this composite).
The second concerns the correlations between properties ascribed to freely
evolving atomic systems. The third version concerns only the correlations
between the initially possessed properties of an object system and the finally
possessed outcomes of a measurement device if one measures the initially
possessed properties of the object system:

Dynamical Autonomy for whole systems

If two, possibly composite, systems evolve freely and have, during an interval, equal
states and equal Hamiltonians, then the correlations between the properties ascribed
to the systems as a whole at different times in that interval are also equal.

Dynamical Autonomy for atomic systems

If two atomic systems evolve freely and have, during an interval, equal states and
equal Hamiltonians, then the correlations between the properties ascribed to the
atoms at different times in that interval are also equal.

Dynamical Autonomy for measurements

If two composite systems evolve freely and have, during an interval, equal states and
equal Hamiltonians and if these composite systems consist of an object system and a
measurement device and one is dealing with a measurement of the initially possessed
properties of the object system, then the correlations between the initial properties
of the object system and the finally possessed outcomes of the measurement device
are also equal.
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Necessary conditions for these weakened versions of Dynamical Autonomy
are that the correlations between the ascribed properties are functions of
only the state and the Hamiltonian of the respective freely evolving system.

The second demand that modal interpretations have to be empirically
adequate is clear-cut: modal interpretations should yield a description of re-
ality that confirms our observations that measurements usually have definite
outcomes and that the probabilities and correlations with which these out-
comes occur are correctly predicted by the standard formulation of quantum
mechanics. Hence, modal interpretations are empirically adequate if they
satisfy the following criterion:

Empirical Adequacy

The predictions about outcomes ascribed to measurement devices are equal to the
predictions generated by the standard formulation of quantum mechanics.

In order to develop modal interpretations to fully-blown descriptions, I
now also employ this criterion of Empirical Adequacy. More precisely, I
require on two occasions that the predictions generated by modal interpre-
tations about measurement outcomes satisfy Empirical Adequacy.

The reader might want to object that this criterion is not meant as a
tool for developing modal interpretations, but is meant for testing them once
they have been developed. However, sometimes modal interpretations lack
enough structure to uniquely develop them to fully-blown theories. That is,
it can happen that one cannot uniquely deduce one solution to a problem
because the problem is underdetermined and thus allows many solutions. In
such cases I now reverse the order of deduction and derive on the basis of
the assumption that modal interpretations are fully-blown and empirically
adequate theories, necessary conditions for modal interpretations.

To put it more pointedly: if I can't solve a problem because there exist too
many solutions, I require that the correct solution is empirically adequate.
On the basis of this requirement I then deduce necessary conditions for
modal interpretations. One can take this reversed deduction as a secular
version of the transcendental deduction developed by Kant (1787).

A further objection could be that if one indeed feeds in this criterion, modal
interpretations are by construction empirically adequate. This is, however,
not the case. I use Empirical Adequacy only to fix the correlations between
measurement outcomes in two specific series of measurements. It is thus still
very possible that in other series of measurements, modal interpretations yield
predictions which differ from the ones given by the standard formulation.
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So, by a limited use of this criterion, the task of being empirically adequate
is still a genuine burden for modal interpretations.

From the second demand of empirical adequacy, one can argue that modal
interpretations should in some sense re-establish the standard formulation
of quantum mechanics. From a fundamental point of view, modal interpre-
tations reject and overthrow the standard formulation, especially by denying
the projection postulate. But at the same time they have to reproduce the
predictions of this formulation, because these predictions are correct. In that
sense they need to recover the standard formulation. More generally, modal
interpretations should try to account for what physicists do in their lab-
oratories and institutes. Physicists constantly use the standard formulation
in their descriptions of quantum mechanical phenomena and it seems a bit
pedantic to discard this as wrong. I therefore take the position that modal
interpretations should try to explain or maybe even be the foundation of
the standard formulation of quantum mechanics as a correct theory about
measurement outcomes.

The third demand that a modal interpretation should yield a metaphysi-
cally tenable description of reality surpasses the first two demands because
a fully developed and empirically adequate description of reality can still
give a totally weird and unacceptable description of the properties of non-
observed quantum systems. In Section 12.1 I argue that precisely because
modal interpretations describe states of affairs which are in principle unob-
servable, one should be careful about discarding modal descriptions of reality
as metaphysically untenable. Our criteria about what is tenable and what is
not may be guided by our intuitions about the states of affairs that we can
observe. And it seems to me that it is incorrect to impose intuitions about
descriptions of what is observable on descriptions of what is, in principle,
unobservable. The criteria I propose for metaphysical tenability are thus very
sparse:

Consistency

The description of reality should be free of contradiction.

Internal Completeness

The description of reality by an interpretation should be complete with regard to
the standards set by that interpretation: that is, an interpretation should deliver the
description of reality that it promises to deliver.

This book is divided into three parts called Formalism, Physics and Philo-
sophy. Each part is devoted to meeting one of the discussed demands.
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In Part I the different modal interpretations are introduced and further
developed. Part II is about their empirical adequacy. And in Part III
I consider the metaphysical tenability of modal interpretations and the
way in which they resurrect the standard formulation.





Part one

Formalism

In Chapter 4 the different modal interpretations are introduced. Their pro-
perty ascription to a system a is characterised by a core property ascription
{(PhCJ)}j.

Chapter 5 treats the question of how the core property ascription to a
system determines the full property ascription {{p9@0>j9 [.]j)}j to the system,
and of how that full property ascription induces an assignment of values to
the magnitudes of the system.

In Chapter 6 it is determined whether the properties that modal interpreta-
tions simultaneously ascribe to different systems can be correlated. A no-go
theorem is derived which restricts the possibility of giving such correlations.

In Chapter 7 it is shown that the set of properties, which a system possibly
possesses, evolves in a number of undesirable ways. This evolution is, for
instance, discontinuous and unstable.

Chapter 8 is concerned with the evolution of the actually possessed pro-
perties of a system. It is proved for the case of freely evolving systems that
this evolution is deterministic and for the case of interacting systems it is
argued that this evolution cannot be uniquely fixed.

In Chapter 9 it is proved that the evolution of the actually possessed pro-
perties of systems violates a number of the Dynamical Autonomy assump-
tions presented in Section 3.3. It is shown that this allows the descriptions
of reality by modal interpretations to be non-local in a quite explicit way.





4

The different versions

In this chapter I introduce the different versions of the modal interpretation,
including the three on which I focus in this book. The property ascription of
these versions is characterised by the map W* i—• {(j>j9 CJ)}j which I call the
core property ascription. In the next chapter I discuss how this core property
ascription determines the full property ascription Wa i-> {(pp@0*j9 [-]j)}j-

4.1 The best modal interpretation

The best imaginable modal interpretation is, I guess, an interpretation which
(A) ascribes at all times all the properties to a system which pertain to
that system, and (B) ascribes these properties such that the classical logical
relations between the negation, conjunction and disjunction of properties are
satisfied.

The content of the first requirement (A) is clear: assuming that every
projection onto a subspace of a Hilbert space Jfa represents one and only
one property of a, it follows that all sets {2J^J}J of definite-valued projections
should contain all the projections in Jfa and that all the maps {[.]_/}_/ should
be maps from all the projections in jtfa to the values {0,1}.

The content of requirement (B) is, however, less clear because there is
consensus neither about how to define the negation, conjunction and dis-
junction of properties in quantum mechanics nor about how to impose the
logical relations. In Section 5.1 I present my choice for the definitions of
the negation, conjunction and disjunction. But assume here, for the sake of
argument, that requirement (B) implies that the negation -i of a property
represented by the projection Qa is represented by the projection

and that the conjunction A and disjunction V of two properties represented

39
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by two pair-wise commuting projections Q\ and Q^ are given, respectively,
by

6 ! A <?2 = Q\Ql QaiVQ«2 = Ql + Qa
2- QUO}. (4.2)

(In my notation I do not distinguish between the property Q* and the
projection Qa which represents this property.) Requirement (B) then implies
that the maps {[.]j}j should satisfy the classical logical relations

[fif v <®j = [QRj + WJ ~ IQiWQih J

where Qa is any projection in QJSP^ where Q\ and Q^ are any pair of
commuting projections in Q)&j and where Oa and F are, respectively, the null
and unit operator. (The conditions (4.3) express the classical logical relations
because they imply that if Qa is possessed, then ->ga is not possessed and vice
versa, that if Q\ and Q\ are possessed, then Q\ A Q^ is also possessed, etc.)

Unfortunately, Kochen and Specker (1967) proved the theorem that for
Hilbert spaces Jf^ with a dimension strictly larger than 2, there do not exist
maps [,]j from the set of all projections in Jfa to the values {0,1} (needed
to satisfy requirement (A)) which obey the conditions (4.1), (4.2) and (4.3)
(needed to satisfy (B)). Hence, Kochen and Specker proved that the best im-
aginable modal interpretation does not exist.24 Interpretations of quantum
mechanics thus all have to give up on at least one of the two requirements
(A) and (B). The modal interpretations considered here now all drop the
first requirement. A property pertaining to a system then need not be either
possessed or not possessed but can have a third ontological status of being
indefinite. To acquire some sort of feeling for this third status, one can con-
sider the properties 'heads' and 'tails' during the toss of a coin. When the coin
has fallen, either heads or tails is a possessed property and tails respectively
heads is a property not possessed. However, when the coin is still flipping, one
usually does not ascribe heads or tails to the coin since these properties apply
to coins at rest on a surface. The properties 'heads' and 'tails' can thus be
taken as not applicable or indefinite for flipping coins. Modal interpretations
which take this route of dropping requirement (A) specify which properties
are definite (possessed or not possessed) and which are indefinite.25

One can now raise the question of which of the existing modal interpre-
tations can be regarded as the second best modal interpretation. And in

24 See Bub (1997, C h a p . 3) for an extensive discussion of the Kochen and Specker theorems.
25 A n example of a m o d a l in te rpre ta t ion tha t gives u p on requi rement (B) is given by the one by Healey

(1989).
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attempts to answer this question, a number of authors have given motiva-
tions for specific versions.26 In general, such a motivation consists of a proof
that the considered version is the only one that satisfies a set of natural crite-
ria. However, as I argued in Section 3.3, it is not that clear which criteria one
should impose on interpretations. It therefore seems that these motivations
do not really answer the question of which version is the second best modal
interpretation, but that they only rephrase it to the question of which set of
'natural' criteria is the most natural. I sympathise with Feyerabend's (1975)
slogan that anything goes, meaning that I think that any choice of criteria
as the 'natural' ones is of limited value. Instead, my position is that the
determination of the second best modal interpretation should be based on
the success with which the different versions meet the more general demands
discussed in Section 3.3. Hence, I firstly develop modal interpretations into
fully-fledged descriptions of reality and investigate afterwards how they fare
in meeting these demands.

In this book I limit myself to only three versions of the modal interpre-
tation, namely the version by Kochen (1985) and Dieks (1988), the version
presented in Vermaas and Dieks (1995) and the version proposed by Baccia-
galuppi and Dickson (1997) and Dieks (1998b). I call these versions the bi
modal interpretation, the spectral modal interpretation and the atomic modal
interpretation, respectively. Also I briefly sketch the modal interpretation by
Van Fraassen (1973) and the interpretation by Bub (1992). (I do not discuss
the modal interpretation by Healey (1989). This interpretation is in many re-
spects similar to the bi modal interpretation of Kochen and Dieks. However,
because there are also substantial differences between these interpretations,
it is better not to identify them.27)

The reason why I limit myself to the bi, spectral and atomic modal
interpretations, is that they can be seen as being part of one and the same
programme towards an interpretation of quantum mechanics. Historically
this programme started with the bi modal interpretation. The spectral modal
interpretation followed in order to answer questions left open by the bi modal
interpretation. And then the atomic modal interpretation was formulated to
by-pass problems encountered in the spectral modal interpretation. There
is also a methodological connection between these three interpretations:
namely, they all aim at defining the properties possessed by a system from
only the state of that system. That is, the map which gives the sets

26 Papers which mot ivate specific moda l interpretat ions are Clifton (1995a,b), Dickson (1995a,b) and
Dieks (1995). More general a rguments are given in Bub and Clifton (1996), Bub (1997) and Z imba
and Clifton (1998).

27 Fur ther papers on Healey's (1989) interpretat ion are Healey (1993a,b, 1994,1995,1998), Reeder (1995,
1998), Reeder and Clifton (1995) and Clifton (1996).
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of definite properties of a system, is a function solely of the state of that
system and not a function of factors other than the state. To illustrate
this common feature, consider the orthodox interpretation (see Section 2.2)
and consider Bohmian mechanics (Bohm 1952; Bohm and Hiley 1993). The
orthodox interpretation ascribes by means of the eigenvalue-eigenstate link
the properties {Qa \ Tra(Wa Q*) = 1} to a system a. This ascription shares
the common feature of the bi, spectral and atomic modal interpretations
because these properties are defined solely from the state of the system
a. On the other hand, Bohmian mechanics does not share this common
property: Bohmian mechanics ascribes the positions {|ra)(ra|} at all times
to an elementary particle and these positions cannot be defined solely from
the state of that particle but must have their origin elsewhere.

To make this feature of 'being defined solely from the state' precise, one can
use the notion of implicit definability as developed by Malament (1977). The
idea is that if one object Y is defined solely from another object X, then any
transformation of Y that is induced by a symmetry of X should be a symme-
try of Y as well. For if there exists a symmetry of X which induces a trans-
formation of Y that is not a symmetry of 7 , then the definition of Y must
contain, in addition to X, ingredients which account for the loss of symmetry.

In our case, X is a state Wa and Y is a set of properties {Qa}. The
properties in this set are all represented by operators defined on the Hilbert
space 34fa. This means that any transformation of the state W* is immediately
also a transformation of a property <2a. Now, transformations of Wa, which
may be symmetries, are given by W01 i—• C/a W* [U*]^ with Ua a unitary
operator on Jfa. Thus, a property <2a is definable solely from the state Wa if
and only if Qa is preserved under all the transformations Q* i—• (7a Qa [U*]^
that preserve Wa. And a set of properties {Qa} is definable from the state Wa

if the set {Ua Q* [U*]^} of transformed properties is equal to the original set
{6a}> for all the unitary transformations Ua that preserve Wa. This criterion
of definability is called 'implicit definability' by Malament:

Implicit Definability
A property Qa is implicitly definable from the state W" if and only if Ua Q* [l/a] t =
Qa for all U* with L/a W« [U«^ = W".

A set of properties {ga} is implicitly definable from the state W* if and only if
{£/a ga [C7a]t} = {Qa} for all U" with U« W« [l/a]t = W".

The set of properties {Qa |Tra(P^aga) = 1} ascribed by the orthodox
interpretation is indeed implicitly definable from VFa. And the set of posi-
tions {|ra)(ra|} ascribed by Bohmian mechanics is generally not implicitly
definable from W«.
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Core property ascription

The core property ascription W* \-> {{Pj,CJ)}j assigns with probability
Pk the value 1 to the core projection C£ and generates the full property
ascription to a.

The property ascriptions by the bi, spectral and atomic modal interpre-
tations are now all implicitly definable from the states of systems, and this
distinguishes them from the modal interpretations by Van Fraassen and by
Bub. This common feature of the bi, spectral and atomic modal interpre-
tations means that they form a programme towards an interpretation of
quantum mechanics which stays close to quantum mechanics. That is, these
interpretations ascribe properties to systems which are fixed by the states
of the systems themselves. The ascribed properties are thus not fixed by
something which is not part of the quantum formalism — they are not put
in 'by hand,' for instance.

In the next sections I introduce the different interpretations. However,
before doing so, it should be noted that the property ascriptions of modal
interpretations are usually given in two steps. Firstly, authors give what I call
a core property ascription. This core property ascription to a system a consists
of a map Wa i—• {{pj9Cj)}j from the state of a to a set of ordered pairs
(pp CJ) containing a probability pj and a corresponding core projection CJ.
And this core property ascription implies that with probability pk the core
projection C% has the value 1, that is, it implies that a at least possesses the
property represented by C£. Secondly, authors give rules for how this core
property ascription [C£] = 1 generates the full property ascription {QtSP^ [.]&).
I present here the core property ascription of the different versions and in
the next chapter I discuss how this core property ascription fixes the full
property ascription.

4.2 Van Fraassen's Copenhagen modal interpretation

As I have said before, Van Fraassen formulated the first modal interpretation
in 1972 which he called the Copenhagen modal interpretation.2* Its core

28 The name 'modal interpretation' indeed first appeared in Van Fraassen (1972). However, if authors
refer to the modal interpretation by Van Fraassen, they are refering to the one presented in Van
Fraassen (1973). This latter interpretation is also the one discussed in Van Fraassen (1991, Sect. 9.2
and 9.3 and the Proofs and illustrations of Sect. 9.3) (see footnote 1 of Chapter 9 of Van Fraassen
(1991) for a short chronological overview). Other papers on Van Fraassen's modal interpretation are
Van Fraassen (1976, 1981, 1990, 1997) and Leeds and Healey (1996).
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property ascription29 as formulated in Van Fraassen (1973), complies with
the following rules. Firstly, if a system a has a state W*, the core property
ascription assigns the value 1 to some one-dimensional projection Ca in the
support of Wa.30 So, if the state of a is pure, say, Wa = |t/>a)(va|, then the
core property ascription is uniquely [|tpa)(t/;a|] = 1 since |tpa)(t£>a| is the only
one-dimensional projection in the support of Wa. However, if the state of
a is not pure, there are many different core property ascriptions possible. If
the state is, for instance, Wa — | |wi)(w"| + \ IwfXwII, then any projection
|t/>a)(v>a|, with |t/;a) equal to a superposition c\ \wf) +C2 |w|)' may be the core
projection.

Secondly, if the core property ascription to a composite a/? is [C°^] = 1,
the core property ascription to the subsystem a assigns the value 1 to
a one-dimensional projection Ca not in the support of Wa but in the
(usually smaller) support of the density operator Tr^(C°^). Hence, if, say,
W*P = Zj*]\q)(q\ ® l/f></fl (with (e*j\e® = Sjk and </f|/jf) = Sjk)
and if the core projection of a/J is given by Î XeS-l ® \fs)(fsl then the
core projection of a is a one-dimensional projection in the support of
TV*(|^}(^| ® |/f )(/f |) = |^)(e§| (the core projection Ca is thus uniquely
\ef) (e^\) and not an arbitrary one-dimensional projection in the support of

w" = EjWj\q)(q\.
Thirdly, at the conclusion of a measurement,31 the core projection of the

measurement device is with probability Tr^W* |R£)(R£|) equal to |R£)(R£|,

where {|R^)(R^|}7 represent the pointer readings of the device. Fourthly, if
after a Von Neumann measurement of a magnitude ^4a, the state of the
composite aju is equal to |*Fa^) = Yljcj\a<j) ® lRy)? then the core property
ascriptions to a and to the device \i are with probability \ck\

2 simultaneously
[\al){al\] = 1 and [|R£)(R£|] = 1, respectively.

The Copenhagen modal interpretation manages to solve the measurement
problem by ascribing, more or less by construction, pointer readings to
devices after measurements. However, a drawback of this interpretation is
that its property ascription is usually not that informative because the set
of one-dimensional projections in the support of a non-pure state contains a
non-denumerable number of elements. Consider, to illustrate this, a spin \-
particle a with a state WG = wi |M?)(M?| + W2 |d?)(d?| (the projection |M?)(M?|

29 In Van Fraassen 's terminology, the core proper ty C a is the value state of a.
30 The support of a state with spectral resolution W = J^; wjPj is t n e subspace of Jf corresponding to

the projection J2{j\w^o} Pj (^Q s u m contains only the eigenprojections with non-zero eigenvalues).
31 Van Fraassen (1991, Sect. 7.4 and page 284) defines measurements as a special class of interactions

between systems, and this definition does not refer to (human) observers. Hence, a measurement is
neither a primitive notion in the Copenhagen modal interpretation, nor an anthropomorphic one.
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represents spin up in the v direction, |d?)(d?| represents spin down in the
v direction and (t*?|d?) = 0). The property ascription to this particle is
then equivalent to the idle statement that a possesses with an unspecified
probability spin up or spin down in an unspecified direction. In the modal
interpretations to be introduced next, the set of core projections is much
more limited and thus much more informative.

The core property ascription to a system by the Copenhagen modal
interpretation is not always implicitly definable from the state of the sys-
tem. The core property ascription to a system, which is not a measure-
ment device at the end of a measurement, is implicitly definable from its
state: the set of one-dimensional projections in the support of a state is
clearly preserved by any transformation that preserves that state. How-
ever, the ascription of the core properties {|Rp(R |̂};- to a measurement
device \i at the end of a measurement need not be implicitly definable from

The biorthogonal decomposition

A biorthogonal decomposition of a vector l1?0^} with respect to the
bisection of a/J in a and /?, is given by

|c«)<g>|cJ> (4.4)

with {|cp}7 and {\cj }}j sets of pair-wise orthogonal vectors in Jfa and
respectively. A biorthogonal decomposition has a spectrum {fa}d which is
the set of all the different values in the set {|c/|2}7. Every element fa of this
spectrum generates a projection on Jfa and a projection on 2tf$ defined
as P\fa) = Zjeid \tf)(q\ and P^(fa) = Zjeid I^X^I, respectively (the
index-set Id contains all the indices j with \CJ\2 = fa). It holds that |\Fa0)
uniquely fixes this spectrum and the corresponding projections. That is,
all possible biorthogonal decompositions of |^a^) with respect to the
bisection of a/J in a and /? give the same values {fa}d and the same
corresponding projections {P(X(Xd)}d and {pP(fa)}d-

32 Without going into full detail: If one considers a measurement of the second kind (the measurement
given by interaction (10.1) on page 174, for instance), then the final state of the measurement device
allows unitary transformations which do not preserve the set {\R^)(R^\}J.
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4.3 The bi modal interpretation

The first of the modal interpretations considered in this book is the one
proposed by Kochen (1985) and Dieks (1988).33 This interpretation ascribes
properties only to the subsystems of a composite co with a pure state. Let a
and P be two disjoint systems which together form such a composite co. That
is, co is equal to a/J and the Hilbert space Jfw associated with co is equal to
the tensor product J f °^ = Jfa ® jfp of the Hilbert spaces associated with
a and p. And the pure state of co is given by a vector |*F° )̂ in jfa ® j f ^.
Kochen and Dieks now ascribe properties to a and /? by means of the
so-called polar or biorthogonal decomposition of this state vector |*F°^).

Let me start by introducing this biorthogonal decomposition. Take a vector
1 ^ ) in jfa ® jf£ and let the sets {\e°j)}j and {\ep

k)}k be orthonormal bases
for jfa and Jf^, respectively. A well-known fact is that the set {\e°j) ® |ef )};,/c
is then an orthonormal basis for Jf0^ and that the vector |*F° )̂ can be
decomposed as

This decomposition contains two independent summations and the coeffi-
cients Cjk are equal to ((e"| ® (e^DI^F0^). A lesser-known fact is that for each
vector |¥°0) there exist orthonormal bases for ^fa and for Jf^, let's call
them {\<*)}j and {|cj)}fc, respectively, such that the values ((cj| ® ( c j | ) | ^ >
are zero for all j =£ k. The above decomposition can thus be simplified to
one which contains only one summation:

|c«><g>|cf). (4.6)

This second decomposition is called a biorthogonal decomposition of |*Fa^)
with respect to the bisection of a/? in a and j8. Because the proof of its
existence stems via Von Neumann (1955, Chap. VI.2) from Schmidt (1907),34

it is also called the Schmidt decomposition.
In order to formulate the core property ascription by Kochen and Dieks,

I need further mathematical machinery. Firstly, define the spectrum {Xd]d of
a biorthogonal decomposition of |*Fa0) as the set of all the different values
\CJ\2, where the CjS are the coefficients in (4.6). Secondly, construct for each
spectrum value X& the index-set Id of all the indices j for which it holds that
\cj\2 = fa. Then let n[Id] be the number of indices in /</. A biorthogonal
decomposition is now called non-degenerate if each index-set Id contains

33 See also, for instance, Dieks (1989, 1993, 1994a).
34 See Schrodinger (1935) for ano the r p roof of the existence of the b io r thogona l decomposi t ion .
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only one index (such that \CJ\2 ^ \ck\2 if and only if j ^ k) and is called
degenerate if some index-sets contain two or more indices. Each value Id of
the spectrum selects with its index-set Id a number of vectors \c°j) in Jfa and
c^} in j^P, namely those with an index j e Id- Finally, define the projections

Pa(Xd) and P^{Xd) as the projections on the subspaces spanned by the thus
selected vectors. That is,

jeld

The projections {Pa(^d)}d are pair-wise orthogonal. So, if J>fa is a n-dimen-
sional Hilbert space (n = 1,2,...oo), the set {Pa(Xd)}d contains at most n
elements. Further, all projections Pa(A<0 are one-dimensional if the bior-
thogonal decomposition is non-degenerate and some projections are multi-
dimensional if the decomposition is degenerate. The same remarks apply to
the projections {P^(^d)}d-

Kochen and Dieks then propose the following:35 if ayS is in the state |*F°^),
the core projections of a and /? are given by, respectively, the projections
{Pa(Xd)}d and {pP(Xd)}d generated by the non-zero members of the spectrum
of a biorthogonal decomposition of |*F°^), and the projections Pa(Xa) and

have with probability

a\pP(Ab)) = n[IaUa dab (4.8)

simultaneously the value 1.
Thus, to sum up, in order to ascribe properties one has to take a composite

co in a pure state I1?60), bisect co into two disjoint subsystems a and /? and
then determine the core properties of a and /? by means of a biorthogonal
decomposition of Î F03). The property ascription is thus defined by means
of a bisection of a composite system and by means of a biorthogonal
decomposition of the state of that composite. I therefore call the modal
interpretation by Kochen and Dieks the bi modal interpretation.

The bi modal interpretation yields the same positive results for Von Neu-
mann measurements as the Copenhagen modal interpretation. Consider the
final state pp0^) = J2j cj \a<j) ® IR;) °f the object system a and device fi after
the measurement. The decomposition of this state is exactly a biorthogo-
nal decomposition so if it is not degenerate, the projections {Pa(A^)}^ and
{pv(kd)}d are equal to {|tf*}(< |̂}7 and {|R^)(R^|};-, respectively. The core pro-

35 In fact Kochen (1985) considered the property ascription to a and p only in the case that the state
vector l^0^) has a non-degenerate biorthogonal decomposition. The general formulation of the bi
modal interpretation, which includes the degenerate case, is given by Dieks (1993).
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perty ascription is therefore [ |^)(^ |] = 1 and [|R£)(R£|] = 1 with probability
\ca\

28ab. The device thus possesses its readings with the right probabilities.
The bi modal interpretation gives, on the other hand, a much more

detailed description of the properties of systems than the Copenhagen modal
interpretation. Firstly, the bi modal interpretation ascribes at most n possible
core properties {Pa(/l^)}^ to a system a, where n is finite if Jfa is finite-dimen-
sional and where n is denumerable infinite if Jfa is infinite-dimensional. In
contrast, the Copenhagen modal interpretation ascribes, in general, a non-
denumerable number of possible core properties to a system. The bi modal
interpretation gives, moreover, at all times the probabilities that a system
a possesses one of its core properties {Pa(Xd)}d, whereas the Copenhagen
modal interpretation does not. So, to illustrate this, consider again the spin
^-particle a and assume that it is part of a composite ax with a pure state. If
this state is given by Î F*71) = c\ |w?)®|e])+C2 \d^)®\ex

2) (which is a non-degen-
erate biorthogonal decomposition by taking (ejlej) = 0 a n d |ci|2 ^ \c2\2),
the bi modal interpretation yields that in the v direction a possesses with
probability |ci|2 spin up and with probability \c2\2 spin down. The reduced
state of a is WG = |ci|2 |M?)(U?| + \c2\

2 \d^){dZ\9 so the Copenhagen modal
interpretation still yields that a possesses some spin is some direction with
an unspecified probability.

Another advantage is that the bi modal interpretation gives correlations
between the properties of two disjoint systems a and /? with a pure com-
posite state. With the joint probabilities (4.8) and the standard definition of
conditional probabilities, one has

\Xa)) = 5ab. (4.9)

So, if [Pa(A/)] = 1, then [Pp{Xj)\ = 1 with probability 1, and vice versa.
There are, however, also questions which remain unanswered in the bi

modal interpretation. Firstly, if a system a is not part of a composite in
a pure state, does a then still possess properties? Secondly, if one has a
number of systems which are ascribed properties, say, the systems a, /?, y,
a/J, ay, and j8y which are part of a composite co = a/ty with a pure state, can
one then correlate these properties? The first question is answered in neither
Kochen (1985) nor the early writings of Dieks. With respect to the second
question one can go two ways: either one denies that correlations between
the properties of sets of systems always need to exist or one admits that
the bi modal interpretation should be supplemented by such correlations. In
Kochen (1985) one can find evidence that he takes the first way, Dieks takes
the second.

In Kochen's account of the bi modal interpretation one can deny the need
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for correlations between the properties of all possible subsystems of a com-
posite because for Kochen properties have a truly relational character. In
order to see how Kochen arrives at this relational character, I briefly discuss
how hê  constructs the bi modal interpretation. Firstly, Kochen considers the
state l1?0^) = ^2jCj\a!j) ® |R^) that one obtains after a Von Neumann meas-
urement.36 He notes that in the usual analysis of the measurement process,
this state is interpreted as that a possibly possesses one of the properties
{\aCj)(aCj\}j and that the actual possessed property \a%)(al\ is determined by
the observation that the device JLL possesses the reading |R£)(R£|. Then he
notes that the biorthogonal decomposition of this state yields these possible
possessed properties of {\df) (<fj\} j of a as well as the readings {|R^)(Ry|};-
of the device \i. Secondly, Kochen constructs the bi modal interpretation by
proposing that any pure state pF0^) of a composite of two disjoint systems
a and ft should receive this interpretation.37 That is, if the (non-degenerate)
biorthogonal decomposition of this state is |*Fa^) = Y2jcj\c<j) ® lc;) ' then
a possibly possesses one of the properties {|c")(c"|}7- and the actual pos-
sessed property |c^)(c^| is determined by the observation that /} possesses
the property | Q ) ( Q | . However, because we (usually) cannot observe atomic
events directly, Kochen replaces the criterion that a possesses |c^)(c^| iff an
'official human observer' observes that fl possesses | Q ) ( Q | , by the criterion
that a possesses |c^)(c^| iff ft witnesses that a possesses |c2)(c"|. And /?
witnesses that a possesses |c^)(c^| if jS possesses itself the property | Q ) ( Q | .

Conversely, |*Fa^) = S / c . / l c p ® lcf) *s ^so interpreted as that /? possibly
possesses one of the properties {\CJ)(CJ\}J and that the actually possessed
property |c£)(c£| of ft is witnessed by the actually possessed property |cjj!)(cjjj|
of a.

It is now this witnessing relation which may be taken as introducing
perspectives into the bi modal interpretation. For, in order to be able to
determine the actual properties of a system a, one has to find a composite
system co = a/J with a pure state and to bisect that composite to fix the system
P which witnesses the actual property of a. The property of a thus comes
about in relation to the bisection of co into a and /?. In Kochen's words: The
world from this view becomes one of perspectives from different systems, with
no privileged role for any one, and of properties which acquire a relational
character by being realized only upon being witnessed by other systems.'38

If one accepts such perspectivalism, one indeed can deny that the bi modal

36 See Kochen (1985, Sect. 2). I have reproduced his reasoning (specifically the second half of the line
which runs from page 154 to page 155) in te rms of my language of possessed propert ies .

37 See Kochen (1985, pages 160-1).
38 Quotation from Kochen (1985, page 164).



50 The different versions

interpretation always needs to supply correlations between the properties of
systems. Consider again the composite co = a/?y with a pure state and
take the two subsystems a/? and ay. These two subsystem have properties
which are realised with respect to different perspectives: a/? has properties
relative to the perspective 'co bisected in a/? and y' and ay has properties
relative to the perspective 'co bisected in ay and /?.' Hence, if one argues
that one cannot adopt simultaneously two different perspectives (one could,
for instance, say that there doesn't exist a system which simultaneously
witnesses the properties of a/? and of ay), one can deny that the bi modal
interpretation ever needs to say something sensible about the joint occurrence
of the properties of a/? and ay.

On the other hand, if one accepts perspectivalism, an unpleasant con-
sequence is that one may lose the ability to correlate the outcomes of
measurements. Consider, for instance, the philosophically popular correla-
tions between the measurement outcomes obtained in the two wings of
the Einstein, Podolsky and Rosen (1935). Let a and /? be the two parti-
cles and let JJL and v be the two space-like separated devices with which
one performs measurements on a and /?, respectively. One can now with
the bi modal interpretation ascribe outcomes to the two devices at the
end of the measurements. Just bisect, a/J/zv firstly into \i and ajSv and sec-
ondly into v and a/J/i, respectively. But since these bisections correspond to
two different perspectives, one cannot determine correlations between the
outcomes.

In Dieks' account of the bi modal interpretation the properties ascribed to
systems do not have a relational character. Dieks (1994a, Sect. IV) therefore
started to look for more general correlations like, for instance, the correla-
tions between the properties of two systems a and a/?, part of a composite
CD = a/?y with a pure state. This eventually led to the formulation of modal
interpretations which generalise the bi modal interpretation, starting with
the spectral modal interpretation.

I end here by noting that the spectral modal interpretation proved in
retrospect that the property ascription of the bi modal interpretation can
also be formulated without invoking the somewhat enigmatic biorthogonal
decomposition. In the MATHEMATICS it is proved that the core property
ascription of the bi modal interpretation is equivalent to the following: if a
composite a/J of two disjoint systems a and /? has a pure state l1?0^}, such that
the states of a and p are given by the partial traces W" = Tr^(|lPa^)(lFa^|)
and W& = Tra(|vFa^)(lFa^|), respectively, then the core projections of a are
the eigenprojections {Pf}j of W* corresponding to the non-zero eigenvalues
{w°f}j and the core projections of /? are the eigenprojections {P£}k of
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corresponding to the non-zero eigenvalues {wfyk- Also the projections P%

and PJf have with probability

b X ^ | [P«a ® P£]) (4.10)

simultaneously the value 1. In this book I now use this more straightforward
formulation of the bi modal interpretation instead of the one by means of
the biorthogonal decomposition.

MATHEMATICS

The core property ascription of the bi modal interpretation is well defined.
Firstly, for every vector |*Fa^) there exists a biorthogonal decomposition.
Secondly, the core property ascription to a and /? constructed by the bior-
thogonal decomposition of |^a^) can be captured by the map

)¥«/>) _> {(nUaUaSa^P^UP^h^U (4.11)

(a triple (n[/fl]/lf l^,Pa(/la),P^(^)) represents that with probability
n[Ia]Aa<)ab the core projections Pa(Afl) and P^{h) simultaneously have the
value 1) and it can be proved that this map is uniquely defined by |*F°^).
Thirdly, the probabilities {n[Ia]Aa 5ab}a,b define a classical probability measure
on the joint core property ascription to a and fi.

I start by proving that for every vector *F°̂ ) there exists a biorthogonal
decomposition.39 The proof is essentially the one given by Bacciagaluppi
(1996b, Sect. 2.3.1).

Proof: Take any vector |*F°^). This vector defines, by means of a partial
trace, the density operator Wa and, according to the spectral theorem (see
the box on page 10), Wa has a set of eigenvectors {|wp}7 which forms an

orthonormal basis for Jfa. Take now any orthonormal basis {\ej)}j for
and decompose l1?0^) as

Consider the sum over the index j and delete all terms for which it holds
that Cjk = 0 for all k. Define the non-normalised vectors \e^) = J2kcjk \eu)
for all terms j which are left. One can then rewrite the decomposition as

39 The proof is valid only for the case where all sums are finite. The additions needed to include the
case of infinite sums are left to those who are mathematically more skilled than I.
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The partial trace W« = Ti^(|^>(T°^|) is thus equal to

^ K ) < w ° , | (4.14)
A/'

and because the vectors {|wj)}7- are eigenvectors of Wa, the cross terms in

this sum vanish. So (ei\e?) = 0 for all j =£ f and it follows that all vectors

*j}j are pair-wise orthogonal. Hence, the decomposition

(4.15)

with {\epj)}j normalised vectors given by \ePj) = ( ( e ^ ) H | i j ) , is a biorthog-
onal decomposition of |^a^) . D

Secondly, I prove the uniqueness of the map (4.11) by proving that it is
equivalent to the map

|^») _ ^ {(Tr^ir^OF^I [Pa
a ® Pb%P^Pl)}ab, (4.16)

with {Pa}a and {PJI}b the eigenprojections of W* and W&, respectively. This
last map is obviously unique because the state |^a^) uniquely determines its
partial traces W* and W& and these partial traces uniquely determine their
respective eigenprojections {P^}fl and {P^}b- Hence, if the maps (4.11) and
(4.16) are equivalent, the first map (4.11) is unique as well.

Proof: The probability n[Ia]^a^ab in the map (4.11) can be expressed as a
function of | ^ ) and the projections Pa(Afl) and Pp(h)' namely,

n[IaUaSab = T r a ^ ( | ^ ) ( ^ | [P\Xa) ® P*(A*)]). (4.17)

(To check this equality, substitute a biorthogonal decomposition of l^0^) as
well as the definitions of the projections Pa(Aa) and pP(kb).) So, the map
(4.11) is equivalent to the map

HF«/>) ^ { ( T ^ ( | ^ > ( ^ | [P^a) ® PP(h)]),Pa(ka),PP(h))}a,b. (4.18)

I now show that the projections {Pa(/lfl)}a are the eigenprojections of Wa

that correspond to the non-zero eigenvalues of W*. Take a biorthogonal
decomposition | ^ > = Yljcj\cfl ® \tf)- T h e partial trace Wa is then

JJ'
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because the vectors {\cj )}j are pair-wise orthogonal. Using firstly the defini-
tion of the spectrum {Xd]d of the biorthogonal decomposition and secondly
the definition of the projections {Pa(A<0}d> one can rewrite W* as

^ ^ E (4-20)
d jeld d

The right-hand expression is a spectral resolution of Wa because the pro-
jections {Pa(Ad)}</ are pair-wise orthogonal. So, given the uniqueness of the
spectral resolution, the projections {Pa(Ad)}d are the eigenprojections of W*
and the spectral values {^d}d are the eigenvalues of Wa. Hence, the set of
projections {Pa(/l^)}^ corresponding to the non-zero values {ld]d is equal
to the set of all the eigenprojections {P%}a of W* which correspond to the
non-zero eigenvalues of Wa.

Analogously one can show that the set of projections {P^(Xd)}d corre-
sponding to the non-zero values {^d}d is equal to the set of all the eigen-
projections {PJI}b of the partial trace W@ which correspond to the non-zero
eigenvalues of W&.

With this identification of the projections {Pa(>la)}fl with the eigenprojec-
tions {P£}a and of the projections {pP(lb)}b with the eigenprojections {Pfyb*
it follows that the map (4.18) can be rewritten as the map (4.16). •

From this proof of the equivalence of the maps (4.11) and (4.16), it immedi-
ately follows that the core property ascription of the bi modal interpretation
can be rephrased in terms of the eigenprojections of the partial traces Wa

and W$ and in terms of the joint probabilities (4.10), as was done at the end
of the main text of Section 4.3.

Finally, I prove that the probabilities {n[Id\kadab}ajb define a classical
probability measure.

Proof: In the bi modal interpretation the elementary events are given by
the joint core property ascription [Pa(Aa)] = [P^(h)] = 1 with Xa ^ 0 and
Xb =£ 0. Label these elementary events with (a,b). The probability measure
over the set of elementary events is then p^ = n[Ia]XaSab. This measure is
indeed positive or equal to 0. Furthermore, it yields 1 when summed over all
possible elementary events:

(^0,4^0) (yl^O) (\Cj\2i=0)

^2 n[Ia\AaSab= ^2 n[Ia]Aa= ^ \Cj\2 = l'
a,b a,b a j

(4.21)

The last equality holds because I^P^) is normalised. •
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4.4 The spectral modal interpretation

The second modal interpretation I consider in this book is the one developed
by Vermaas and Dieks (1995). This interpretation ascribes properties to
any system a by taking the eigenprojections of the state Wa as the core
projections40 and correlates the properties ascribed to any set of disjoint
systems.

Consider, firstly, the spectral resolution of the state W* of a system a.
States are always trace class operators,41 so the spectral resolution of Wa is
discrete:

JJP?. (4.22)

In this resolution the eigenvalues {w/}7 are pair-wise distinct (that is, Wj ^ Wk
for j ^ k) and the eigenprojections {P*}j are pair-wise orthogonal (P*Pg = 0
for j =£ k). If the state Wa is degenerate with regard to the eigenvalue
Wj9 the corresponding eigenprojection P? is a multi-dimensional projection.
(Throughout this book I adopt the convention that P? denotes the possibly
multi-dimensional eigenprojection of W* that corresponds to the eigenvalue
Wj.)

According to Vermaas and Dieks, the core projections of a are now given
by the eigenprojections {Pj}j that correspond to the non-zero eigenvalues
of Wa. And the probability that one of these eigenprojections, say, P£, has
the value 1 is equal to

p(P2) = Tr«(W«P2). (4.23)

Vermaas and Dieks also give correlations between the properties ascribed
to sets of disjoint systems. Take N disjoint systems a, /?, y9 etc. The joint prob-
ability that the core property ascriptions to these systems are simultaneously
TO = 1, [P£] = I [Pi] = 1, . . . , is then equal to

p(PZ9Pl,py9...) = Ti"(W™ [P«a®PP
h®PZ ® '' •]), (4.24)

where W™ is the state of the composite co = a/?y • •. From this joint
probability one can determine the correlations between the properties of a,
P, y, etc.

Because the core property ascription of the modal interpretation by Ver-
maas and Dieks is formulated by means of the spectral resolution of states,
I call it the spectral modal interpretation.

4 0 This first feature of the moda l interpretat ion by Vermaas and Dieks (1995) is shared with the moda l
interpretations by Krips (1987) and by Clifton (1995a).

4 1 A state W is trace class because its trace no rm | |W| | i (see footnote 7) is finite: | |W| | i = 1 because
Y^j Wj Tr(Pj) = 1. The spectral resolution of W is therefore discrete (see the box on page 10).
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In the case of a Von Neumann measurement with the final state \Va^) =
J2jcj\a°j) ® IR;) ^ e spectral modal interpretation solves the measurement
problem as well. Given this final state, the device // has a final state W^ =
^2j |c/|2|Ry)(R^| and if this decomposition is not degenerate, it is a spectral
resolution. Hence, the core property ascription yields that the reading |R£)(R£|

is possessed with probability \ca\
2.

The spectral modal interpretation is a generalisation of the bi modal
interpretation. That is, if one accepts the two constraints to (A) only ascribe
properties to systems a which are part of a composite co with a pure
state, and (B) only correlate the properties of two systems a and (I if their
composite a/? has a pure state |*Fa^), then the spectral modal interpretation
becomes equivalent to the bi modal interpretation. This fact has already been
demonstrated by the reformulation of the bi modal interpretation given at the
end of Section 4.3 (but see Lemma 6.2 on page 96 for an explicit proof). On
the other hand, it can be proved that the spectral modal interpretation follows
naturally from the bi modal interpretation. That is, if one accepts (A) the
assumption of Instantaneous Autonomy, (B) the assumption of Dynamical
Autonomy for measurements and (c) the criterion of Empirical Adequacy
(see Section 3.3), one can uniquely derive the spectral modal interpretation
from the bi modal interpretation (see Appendix A for the proof).

As a generalisation, the spectral modal interpretation manages to (partly)
answer the questions raised for the bi modal interpretation. Firstly, if a
system a is not part of a composite that is in a pure state, this system
still possesses properties. Secondly, the spectral modal interpretation gives
correlations between the properties of arbitrary sets of disjoint systems.

The project started with the bi modal interpretation and continued with
the spectral modal interpretation would now be successfully concluded if one
could also determine correlations for non-disjoint systems. Unfortunately, it
has been proved (Vermaas 1997) that the spectral modal interpretation
cannot be completed with such correlations. This no-go result is given in
Section 6.3.

The impossibility of correlating the properties of non-disjoint systems
seems to reintroduce perspectivalism. In the bi modal interpretation per-
spectivalism means that one can only correlate the properties of two systems
a and /? if they are disjoint and divide a composite co with a pure state Î F0*)
into two parts. Here, in the spectral modal interpretation, one can apparently
only correlate the properties of N systems if they are disjoint and divide a
composite co into N parts. Hence, if one defines a (generalised) perspective
as a subdivision of a composite in N disjoint systems, it seems to be the case
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that there only exist correlations between the properties of systems which
can be viewed from one and the same perspective.

The third modal interpretation to be considered in this book can be seen
as an interpretation in which only one generalised perspective is accepted,
namely the one corresponding to the subdivision of systems into atoms.

The core property ascription to a system by the spectral modal interpre-
tation is implicitly definable from the state of that system. Every unitary
transformation Ua which preserves the state Wa also preserves the eigenpro-
jections of that state (see the MATHEMATICS). Every individual eigenprojection
P* is thus implicitly definable from Wa. And since the bi modal interpreta-
tion is a special case of the spectral modal interpretation, this proves that
the core property ascription of the bi modal interpretation is also implicitly
definable from the states of systems.

MATHEMATICS

Consider any unitary operator Ua which satisfies Ua Wa [ [ / a ] t = W*. If one
substitutes the spectral resolution into this equality, one obtains

j Pj- (4.25)

The decompositions on each side of the equation are both spectral resolutions
of W* and, since the eigenprojection of Wa corresponding to, say, the
eigenvalue wk is uniquely fixed by W", one obtains that U« Pj? [ l / a ] t = Pfe

a

for every k. This proves that any unitary transformation Ua which preserves
Wa also preserves the core properties ascribed by the bi and the spectral
modal interpretations.

4.5 The atomic modal interpretation

In the modal interpretation introduced by Bacciagaluppi and Dickson (1997)
and Dieks (1998b), it is assumed that there exists in nature a special set of
disjoint systems {ocq}q which are the building blocks of all physical systems.
These building blocks are for obvious reasons called atomic systems. And
because these atomic systems play a privileged role in the property ascription
to systems, I call the interpretation by Bacciagaluppi, Dickson and Dieks
the atomic modal interpretation.

The core property ascription to an atom aq in the atomic modal inter-
pretation is equal to the core property ascription in the spectral modal
interpretation. Thus, the core projections are the eigenprojections {P*q}j of
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the state of ocq and P%q has the value 1 with probability

p(P?) = Tra«(Wcc«Paq). (4.26)

Moreover, the joint probability that the core property ascriptions to a set of
different atoms <xq9 <xr, as, ... are simultaneously [P%q] = 1, [P£r] = 1, etc. is
equal to

p{Pa\P^\Pcs^ •) = Tra^as"\Wa^as"-[Paq ® Plr 0 P?s ® • • • ] ) . (4.27)

The core property ascription to a system which is a composite of atoms
(called a molecular system, obviously) in the atomic modal interpretation
is, however, different from the one in the spectral modal interpretation.
Consider such a system /J = (xq(xr(xs • • • consisting of the atoms ccq, ccr, etc.
The core projections of /? are now the products {P*q ® Pj* 0 P*s ® • • • }j,k,i,...
of the eigenprojections of the states of the atoms in p.42 The core property
ascription to [5 assigns the value 1 to the projection P%q ®P£r ®P^S0- • • if and
only if the core property ascriptions to the atoms in fi assign simultaneously
the value 1 to Pa°\ P%\ etc. Let pfkl... be shorthand notation for Pjq ® Pf ®
Pj*s ® • • •. The joint probability for the simultaneous core property ascription
to P and its atoms is thus (use the joint probability (4.27))

...) = Saa,Sw • • • TAW^P^J. (4.28)

It follows that the core property ascription to only fi is [i^c...] = 1 with
probability

p(P;bc...) = TrP(Wlipebc...). (4.29)

The atomic modal interpretation thus gives correlations between the pro-
perties of collections of atoms and between the properties of collections of
one molecule and its atoms. In Section 6.4 I derive correlations for collections
containing N molecules.

The core property ascription to atoms by the atomic modal interpretation
is, as I said above, equal to the core property ascription by the spectral
modal interpretation. It thus follows that this property ascription to atoms
is implicitly definable from the states of those atoms.

42 This rule that the core projections of molecular systems are products of the core projections of the
constituting atoms has been used before in Healey's (1989) modal interpretation.
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4.6 Bub's fixed modal interpretation

The last modal interpretation I briefly discuss is the one by Bub (1992).43

In this interpretation it is assumed that for every system a there exists a
preferred magnitude which has always a definite value. This magnitude is
fixed in the sense that it is independent of time or of the state of a. Let Fa

denote the preferred magnitude and let's call Bub's interpretation the fixed
modal interpretation because this magnitude is fixed.

Consider now the special case that the preferred magnitude of a system
a has a discrete spectral resolution given by Fa = J2jfj 1C/J//& )(/#!• ^n

order that this magnitude has a definite value via the link (3.2) (or via the
alternative link (22) given in footnote 22) the core properties in the fixed
modal interpretation always equal the eigenprojections {52k\fjk)(fjk\}j °^
Fa. And the probability that, say, the eigenprojection ^2k | / ^ ) ( / ^ | has the
value 1 is equal to

\fak){fak\)- (4-30)

If one then applies the link (3.2) (or the link (22)) to this core property
ascription, one obtains that with probability Tra(P^a £)* \fa

ak)(flk\) the value
of the preferred magnitude is given by [Fa] = fa.

The fixed modal interpretation solves the measurement problem if one
assumes that at the conclusion of a measurement the preferred magnitude
F^ of the measurement device JLL has the pointer readings {|R^)(R^|}7- as
its eigenprojections. For if the preferred magnitude has a spectral resolution
F^ = J2jfj lRy)(Ry I' t ' i e n the core property ascription (4.30) yields that at the
end of the measurement the device has the reading |Ra)(Ra| with probability
Tr"(W^ |R£) (41), where W* is the final state of the device.

Note that there is quite a difference between the way in which the fixed
modal interpretation (and the Copenhagen modal interpretation) solve the
measurement problem and the way in which the bi, spectral and atomic
modal interpretations hope to do this. These latter interpretations propose
precise rules which lay down the core property ascription to every system
exactly. Hence, it is then a non-trivial matter whether these rules, when
they are applied to measurement devices at the conclusion of measurements,
yield that measurement devices assume their readings. The Copenhagen and
fixed modal interpretations, on the other hand, propose rules which leave
substantial room for the precise core property ascription to systems. In the

43 See also Bub (1997). Other papers on Bub's interpretation are Bub (1993, 1995, 1998a,b), Bub and
Clifton (1996), Bacciagaluppi and Dickson (1997), Bacciagaluppi (1998) and Dickson and Clifton
(1998).
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Copenhagen modal interpretation the core properties of a system can be
given by any projection in the support of the state of the system. While in
the fixed modal interpretation the core property ascription only depends on
the choice of the preferred magnitude. Hence, in these two interpretations
one can simply declare that at the conclusion of measurements the core
properties of the devices are their readings. This makes the question of
whether they solve the measurement problem rather trivial.

If for an elementary particle one takes position as the preferred magnitude,
then the core property ascription of the fixed modal interpretation becomes
equivalent to the ascription of positions by Bohmian mechanics (Bohm 1952;
Bohm and Hiley 1993). Bohmian mechanics can thus be seen as a special
case of the fixed modal interpretation. In fact, if one drops the requirement
that the preferred magnitude is fixed in time, many modal interpretations are
special cases of the fixed modal interpretation. If, for instance, the preferred
magnitude of a system a has at all times the same eigenprojections as the
state of that system, so Fa = ]T; fj P?, then the fixed modal interpretation
yields the spectral modal interpretation.44 (Note that Fa = J ] • fj P* is indeed
time-dependent because the eigenprojections {Pf}j of an evolving state are
usually time-dependent.)

The core property ascription to a system a by the fixed modal inter-
pretation is, in general, not implicitly definable from its state. If the state
of a is given by Wa = |t/?a)(t/;a| with |tpa) some non-trivial superposition
^2jkcjk l///c)> ^en a unitary transformation which preserves this state gen-
erally changes the set of core properties {J2k !/#)(/# I }./• The core property
ascription thus cannot be defined from solely the state of that system, as
is the case in the bi, spectral and atomic modal interpretations. So, this
preferred magnitude should have (part of) its origin elsewhere. One could,
for instance, just choose it — Fa is then simply put in 'by hand' — or one
may define it from other ingredients of the quantum formalism, say, from
the Hamiltonian.

4.7 Some measurement schemes

In the next four chapters I develop the bi, spectral and atomic modal
interpretations further. In order to do so, I occasionally consider schemes of
measurements for which it holds that these interpretations ascribe outcomes
after the measurements. In this section I present these schemes. (A thorough
44 The proofs in Bub and Clifton (1996) and Bub (1997) that modal interpretations follow uniquely

from a set of natural criteria (see footnote 26) make use of this general characterisation of modal
interpretations.
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discussion of the ability of modal interpretations to solve the measurement
problem is given in Chapter 10.)

I have shown that after a Von Neumann measurement (2.9), the bi and
spectral modal interpretations ascribe the properties {|R^)(R^|}7- to the meas-
urement device fi (I ignore for a moment complications due to degenera-
cies). If one assumes that the pointer reading magnitude is represented
by M* = J2jmj\Rlj)(Rljl o n e indeed obtains that the measurement yields
pointer readings as outcomes. But how plausible is this assumption? The
magnitude represented by M^ is a magnitude pertaining to the measurement
device as a whole but it seems that in typical measurements the outcome is
not a property possessed by the device as a whole. Consider, for instance,
a Geiger counter consisting of a mechanism and a pointer on top of it
which is supposed to indicate the number of detected particles per second.
We observe that such a measurement has an outcome by observing that the
pointer assumes a specific reading, but we don't observe that the Geiger
counter as a whole assumes a reading. Hence, the pointer reading magnitude
need not be a magnitude pertaining to the device as a whole, but is rather a
magnitude pertaining to a subsystem (the pointer) of the device.

From this remark, it seems that the bi and spectral modal interpretations
do not solve the measurement problem for the Von Neumann measurement
(2.9); these two interpretations ascribe specific properties to the measurement
device as a whole, but that does not prove that they ascribe readings to the
pointer. Let's therefore start again and assume that in a Von Neumann
measurement the interaction between an object system and the device is
given by

where the vectors {|D^)};- are pair-wise orthogonal device vectors in j f . The
pointer of the device is a subsystem of the device so let's divide \i into this
pointer % and a remainder Ji equal to /i/n. Assume that the vectors {|D^)} ;

are given by |D^) = |f>̂ ) ® |RJ) , where the vectors {|D^)}7- are again pair-
wise orthogonal and the vectors {|R* )}y are the eigenvectors of the pointer
reading magnitude Mn. This pointer reading is then indeed a magnitude of
the pointer itself. The final state of the composite a]Xn is J2j £/ | ^
and the final state of the composite an thus becomes

J\2 \aaj){aaj\ ® | R J ) < R J | . (4.32)

If one applies the bi modal interpretation to this physically more realistic
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model of a Von Neumann measurement, one still obtains that n possesses
the reading |R£)(R£| with probability \ca\

2 and that a possesses the eigenstate
\ab)(ab\ °f the measured magnitude with probability |Q,|2. However, the nice
correlation that n possesses |R^)(R^| with probability 1 if and only if a
possesses \a^)(a^\ can no longer be derived since the composite of a and n
is not in a pure state.

So, if one splits the measurement device into a pointer n and some
additional mechanism Ji, the bi modal interpretation can still ascribe readings
after a Von Neumann measurement but no longer correlates these readings
with the properties possessed by the object system after the measurement.
In the proof that the bi modal interpretation generalises to the spectral
modal interpretation (Appendix A) and in the derivation of the evolution
of the core properties for the bi modal interpretation (Chapter 8), I need,
however, to use these correlations. I therefore consider measurements where
the device consists of only a pointer (so JLL = n and |D^) = |Rp for all j). It is
then again possible to derive the correlations between the finally possessed
pointer readings and the finally possessed properties of the object system.
From a physical point of view, I think one should reject the possibility that
such a device exists and this rejection proves its value when in Chapter 10
the measurement problem is considered in general. However, there is nothing
in quantum mechanics which rules out the theoretical possibility that such
measurement devices exist. Hence, although physically implausible, it is
theoretically allowed to consider devices for which the bi modal interpretation
correlates the final pointer readings with the final properties of the object
system.

The spectral modal interpretation fares better in solving the measurement
problem for the more realistic Von Neumann measurement (4.31). Apply
the spectral modal interpretation to the final state (4.32). One obtains that
the pointer n possesses its readings and that a possesses the eigenstates
{\af){d)\}j and the joint probability that a and n simultaneously possess
their properties is p(|fl2)(flflURjJ)(RJI) = Sab\ca\

2- Hence, for the spectral
modal interpretation one need not introduce physically implausible devices
if one wants to consider measurements which correlate the readings with the
final properties of the object system.

There also exist measurement devices containing a pointer n and a mech-
anism Jx for which the atomic modal interpretation fully solves the measure-
ment problem. Let the pointer n consist of the atoms {ocq}^=1 and assume
that all vectors |D?) are given by |D^) ® ID*1) ® • • • ® |D""), where {|6 )̂}7- and
{ID*1)};, ..., {|D*")}7 are sets of pair-wise orthogonal vectors. Let the pointer
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reading projections {RJ}j be given by

R] = |D7
ai)(D;

ai| ® • • • ® |D;
a")(Dy

a"|. (4.33)

Then, if one considers a Von Neumann measurement (4.31) on an atomic
system a and applies the atomic modal interpretation to the final state
|*F°^), one obtains that the pointer n possesses the readings {Rj}j, that
a possesses the properties {Mp^Dy and that the correlations are again

So, to conclude, for the bi, spectral and atomic modal interpretations
there exist (sometimes unrealistic) measurement schemes for which these
interpretations ascribe readings to the pointer and correlate these readings
to the final properties of the object system.



5
The full property ascription

The different modal interpretations all advance a core property ascription
{(Pj,Cj)}j. This chapter is about how this core property ascription fixes the
full property ascription {(pj,@0>j9 [.]j)}j. I start with some logic and algebra.
I then present two existing proposals for determining the full property
ascriptions as well as four conditions one can impose on them. Lastly I give
my own proposal and end by discussing how the full property ascription
leads to a value assignment to magnitudes.

5.1 Some logic and algebra

To prepare the ground for discussing the full property ascription, I firstly
define the logical connectives (negation, conjunction and disjunction) for
properties. Then because, as discussed in Section 4.1, all the modal interpre-
tations which I consider give up on the idea that the full property ascription
assigns definite values to all properties, I secondly define two types of subsets
of properties: Boolean algebras and faux-Boolean algebras.

I have already assumed that every property Q* pertaining to a system a
is represented by one and only one projection Qa defined on the Hilbert
space Jfa associated with a. Each projection Qa in its turn corresponds
one-to-one to the subspace of Jf a, denoted by «=2a, onto which it projects.
One thus has a bijective mapping from a property ga to a projection Qa

to a subspace =2a. For the set of subspaces of a Hilbert space one can
in a natural way define an orthocomplement, a meet and a join. I now
choose45 to define the logical connectives for properties pertaining to a

45 I define the logical connectives for properties by means of the lattice of the subspaces of a Hilbert
space but I am aware that this is open to debate. An alternative way to define the logical connectives
is by taking the set of properties of a system as a partial Boolean algebra, as, for instance,
Bacciagaluppi (1996b, 2000) does. A difference between these two approaches is that the conjunction
and disjunction of two incompatible properties (that is, two properties represented by projections

63



64 The full property ascription

The logical connectives

The negation ->ga of a property Qa is represented by the projection F —Qa

onto the subspace 2l\. The conjunction Q\ A Q\ of two properties is the
property represented by the projection onto the subspace 2\ n &\. The
disjunction Q\ V Q2 is the property represented by the projection onto the
subspace 2\® 2L\.

system by means of this orthocomplement, meet and join for subspaces and
the bijective mapping between properties and subspaces (by means of an
isomorphism, more shortly).

The set of subspaces {£*} of a Hilbert space Jfa has the algebraic struc-
ture46 of an orthocomplemented lattice47 if one defines the orthocomplement
-1, the meet A and the join V in the following (standard) way. The orthocom-
plement -1 J a of J a is the subspace 2l\ containing all the vectors orthogonal
to all the vectors in ^ a . The meet 2L\ A £\ of two subspaces J? and 2l\ is
the subspace 2\ n 2l\ of all the vectors in the intersection of 2\ and 2L\. And
the join 2\ V Q\ ° f t w o subspaces is the subspace 2\ © 2l\ of all the vectors
spanned by all the vectors in 2L\ and 2L\.

Using the above mentioned bijection, I define the logical connectives as
follows. The negation -<<2a of a property Qa is the property represented by
the projection onto the subspace <2j_. This projection -iga is equal to F — Q*.

which do not commute) are defined in the lattice approach but not in the partial Boolean algebra
approach.

I prefer the lattice approach because I see no reason why moda l interpretations should not ascribe
simultaneously incompatible properties to a system. Incompatible properties are incompatible in
the sense that they cannot be simultaneously measured. However, they are not incompatible in
the sense that they cannot be simultaneously possessed by systems. Hence, if in principle they can
be simultaneously possessed, it should also be possible in principle to consider their conjunctions
and disjunctions. The differences between the lattice and part ial Boolean algebra approach are for
modal interpretations, however, ra ther academic since Bacciagaluppi and I reach essentially the same
conclusions about the full property ascription.

4 6 All the algebraic not ions used in this chapter are introduced and defined in the main text for sets of
projections on Hilbert space. For those interested in the general definitions of these notions, I add
footnotes. The discussion in this section is based on Redhead (1987, Sects. 1.4, 7.4 and App . I l l ) from
which I also have taken the general definitions.

4 7 A n or thocomplemented lattice is defined in four steps. Firstly, a partially ordered set Sf is a set with
a relation < which is reflexive (a < a for all a G Sf), antisymmetric (if a < b and b < a, then a = b
for all a, b G SP) and transitive (if a < b and b < c, then a < c for all a,b,c G Sf). Secondly, a lattice
i f is a partially ordered set with a meet a A b and a join a V b in i f for every pair a,b e S£. The meet
a A b is the highest element with respect to the ordering < of i f with [a A b] < a and [a A b] < b. The
join a V b is the lowest element with a < [a V b] and b < [a V b]). A lattice contains a zero element 0
and a unit element 1 which satisfy 0 < a and a < 1 for all a e i f .

Thirdly, a complemented lattice i f is a lattice which contains a complement ->a for every element
a E $£ which satisfies a A -ia = 0 and a V -«a = 1. Finally, an orthocomplemented lattice i f is a
complemented lattice where the complement ->a is unique for every element a G i f and satisfies
-,[-,«] = a as well as a < b iff -ib < -*a for all a,b e J£.
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The conjunction Q* A Q\ of two properties is the property represented by
the projection onto the subspace 2L\ n SL\. Their disjunction Q\ V Q^ is the
property represented by the projection onto the subspace 2\ © 2L\.

The set of properties of a system also obtains with these definitions the
algebraic structure of an orthocomplemented lattice. As a consequence, the
set of all properties acquires the non-classical (and unwelcome) structure of
a non-distributive lattice, that is, the conjunction and the disjunction do not
satisfy the relations

?A$)V«2?A$) 1
J

One can regain this distributiveness by considering subsets of the set of all
properties. Let {Sj}j be a set of properties represented by pair-wise orthog-
onal projections, so SjS% = SjkSj- Then the Boolean algebra48 obtained
by closing this set {Sj}j under negation, conjunction and disjunction, and
denoted by &({Sj}j)9 satisfies the relations (5.1). Furthermore, restricted to
such a Boolean algebra, the projections representing the properties and their
negations, conjunctions and disjunctions, are related by the following simple
relations:

Finally, value assignments [.] to the properties in Boolean algebras can be
given by homomorphisms49 to the set {0,1} satisfying the classical rules

H21-1-K2T. [O"]=0, 1
= 1 ' \ (5.3)

)

A slight extension of the notion of a Boolean algebra is given by a faux-
Boolean algebra,50 denoted by #X{S?}7). A faux-Boolean algebra, generated
by a set of properties {SJ}j represented by pair-wise orthogonal projections,
is defined as the closure under negation, conjunction and disjunction of the
union of the set {Sj}j and the set {Sa} containing all the projections which
are orthogonal to all projections {SJ}j. In general, a faux-Boolean algebra

48 A Boolean algebra & is a distributive complemented lattice, tha t is, a complemented lattice i f which
satisfies a A [b V c] = [a A b] V [a A c] and aV [bAc] = [a V b] A [a V c] for all a,b,c e <£.

49 A homomorphism h between two Boolean algebras $ and & is a m a p h : 88 —• $ which satisfies
h(-*a) = ^h(a) and h(a Ab) = h(a) A h(b) for all a,b e @.

50 Faux-Boolean algebras were int roduced by Dickson (1995a,b) and also appea r as the X-form sets
in Z imba and Clifton (1998) and as the lattice S£\rieri-erk in Bub (1995). Tha t is, the X-form set
generated by the set of mutual ly or thogonal projections {X} is equal to ^({X}) and &erier2-eTk

generated by the mutual ly or thogonal one-dimensional projections {er .}y= 1 is equal to <^({er }y=i)-
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Faux-Boolean algebra

Let {Sj}j be a set of pair-wise orthogonal projections and let {Sa} be
the set of all the projections orthogonal to all the projections {S*}j. The
faux-Boolean algebra ^({Sfij) generated by {SJ}j is then the closure
under negation, conjunction and disjunction of the union {SJ}j U {Sa}.

does not satisfy relations (5.1) nor are the logical connectives of its members
given by the simple rules (5.2). However, value assignments can still be given
to the properties in a faux-Boolean algebra by homomorphisms that satisfy
the classical rules (5.3).

In this chapter I present three proposals for the full property ascription
by modal interpretations. According to these proposals the sets {®&j}j are
either Boolean or faux-Boolean algebras because then the value assignments
can satisfy the rules (5.3).

In this chapter I also prove various claims. In order to facilitate these
proofs, I show in the MATHEMATICS of this section that any member Qa of

or of ^({SJ}j) can be written as

" + fii. (5.4)

Here, Qa
± is a projection orthogonal to all the projections {S*}j and the

index-set IQ« is defined by the relation k € JQ« if and only if QaS% = S%.
For a({SJ}j) the projection Q\ is either Oa or F - J2j Sf. For ^({SJ}j) the
projection Q\ can be Oa or any projection orthogonal to all projections {SJ}j.
With this decomposition the negation, the conjunction and the disjunction
become

MATHEMATICS

Firstly, I prove that any member of a faux-Boolean algebra ^({Sj}j) can
be decomposed as Q = Yljei $j + Q±- (I ^e r e suppress the superscript a).
Let {Sj}j be a set of pair-wise orthogonal projections and let {S} be the
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set of projections orthogonal to all the projections {Sj}j. Let ft be the set
{616 = J2jei Sj + Q±} wit*1 6_L a projection orthogonal to all {Sj}j and with
/ an index-set such that J2jei $j is a s u m o v e r a number of projections in
{Sj}j. I prove that Q is equal to {}

Proof: Firstly, ft cz #"({S7}7): any member of ft can be written as [V/e/S/] V
<2_i_. And since Q± € {S}, it follows that any member of ft is in the closure
of {Sj}j U {S} under disjunction. Any member of ft is thus in J^({S7}7).

Secondly, to prove that &({Sj}j) a ft, note that {Sj}j U {§} is a subset of
Q. I prove that ft is closed under negation, conjunction and disjunction. It
then follows that the closure of {Sj}j U {S}, that is, ^({Sj}j), is also a subset
of ft.

The negation -><2 of Q = JZjei $j + 6_L is given by I — Q and can be
written as - g = J2j^iQ Sj + [I - E 7 S7 - Q±]. The projection I - J2j Sj - Q±
is orthogonal to all {Sj}j so -iQ is a member of ft.

The conjunction Q A Q of g = J2jeiQ
 sj + Q± and Q = J2jei~Q

 sj + Q±

is a projection onto the subspace 2, n =2. <2 projects onto the subspace

, 6 projects on the subspace Yljei- ^j + ^±- Inspection yields

that the meet of these subspaces is given by J2jei m~ ̂ I + i i n i j

that Q A Q is equal to Y^jei n/~ $j + 6-L A 6.L- The projection Q_L A Q± is

orthogonal to all {Sj}j so Q A Q is ajnember of ft.
Analogously the disjunction Q V Q is the projection onto the subspace

Z^e/ou/- 5^/ + J_L © Jj_. This projection is given by J2jeiQui~ $j + 6_L v 6-L

and because Q± V Q± is orthogonal to all {S/};, 6 v 6 is a member of ft.

Hence, ft is closed under negation, conjunction and disjunction. •

With the above proof expressions (5.5) for the negation, conjunction and
disjunction of members of a faux-Boolean algebra are also proved.

The proof that the members of a Boolean algebra 08({Sj}j) also satisfy
expressions (5.4) and (5.5) proceeds analogously and is therefore omitted.

5.2 The full property ascriptions by Kochen and by Clifton

We are now in the position to review two proposals for how the core property
ascription {(pj9CJ)}j fixes the full property ascription {{pj,@0>j9 [.];}};.

Firstly, Kochen (1985, page 161) considered the bi modal interpretation
and proposed that the sets {2#&j}j of a system a are all equal to the Boolean
algebra J*({PJ};) generated by the core projections {Pf}j of a (these core
projections are eigenprojections of the state Wa, and because eigenprojections
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are pair-wise orthogonal, they generate a proper Boolean algebra j
The value assignments {[.]j}j are homomorphisms from this set &({P*}j) to
the values {0,1}. For (pk,^^k, [•]&)> corresponding to the core property P^,
the homomorphism [,]k obviously assigns the value 1 to the core projection
P£, the value 1 to any projection Qa in 2&k with PgQ" = Pg, and the value
0 to all other projections in 2SPk. This value assignment can be captured
by the function [Q*]k = TTCC(P^QCC)/TYCC(P^). SO, the proposal is that, for all
fc, the core property ascription (pk = Tra(WaPg\Ck = Pk) induces the full
property ascription:

Kochen: (pk = Tra(WaP£), 3f&k = @{{Pj}j), [Qa]k =

(5.6)

Or in words: the core property ascription is [Pg] = 1 with probability
pk = Tra(WaP£) and this core ascription induces the projections in the set
$)0>k = @{{Pf}j) to have the value [Qa]k = Tra(P/c

aQa)/Tra(P^a).
Kochen motivates his proposal by pointing out that on this proposal

the sets of definite-valued projections {3f^j)j are closed under the logical
connectives and that the value assignments {[.]j}j satisfy the rules (5.3) of
classical logic. So, if Qa is possessed, then -i<2a is not possessed, and if Qa

and Qa are possessed, then g a A Qa is also possessed, etc. The advantage
of Kochen's proposal is thus that the full property ascription satisfies the
following condition:

Closure

If g a and Qa are members of @0>k, then so are -nQa, Qa A g a and Qa V Qa.
The value assignment to 20>k satisfies the classical rules [^Qa]/c = 1 — [Q*]k,
[Q« A Q«]k = [Q%[Q% and [ga V Q% = [Q«]k + [Q*]k - [Q*]k[Q"]k.

Secondly, Clifton (1995a, Sect. 3) gave a full property ascription for the
spectral modal interpretation. He proposed that the sets {2&j}j are all equal
to the set

{2aiea = Qi+ Ql with Q\ G ̂ ({P/};) and with Qa
2 e JT(Wa)}. (5.7)

Here, {Pf}j is the set of the eigenprojections of Wa corresponding to the
non-zero eigenvalues, and Jf(Wa) is the set of projections onto subspaces
of the null space of Wa. Clifton's value assignments {[.]j}j are equal to the
ones by Kochen, so are again captured by the homomorphisms [Qa]k =
Tra(P/c

aQa)/Tra(Pfe
a). It can now be proved (see the MATHEMATICS) that the
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set (5.7) is equal to the faux-Boolean algebra #X{Pj*};-). Hence, this second
proposal is, for all fe, equal to:

Clifton: (pk = Tra(^aPf e
a) , 3>&>k = ^({Pf}j)9 [Qa]k =

D
(5.8)

Since faux-Boolean algebras are closed under the logical connectives and
since the value assignments are again homomorphisms, Clifton's proposal
shares with Kochen's the advantage of satisfying the Closure condition.
But Clifton's proposal adds a second advantage. Consider a property Qa

for which quantum mechanics predicts that a perfect measurement of this
property has either with certainty a positive outcome or with certainty
a negative outcome. That is, consider a property Qa for which the Born
probability Tra(VFaga) is either 1 or 0. Clifton's proposal is now such that
this property is always definite-valued. Clifton stresses this advantage by
pointing out that 'the existence of the value [Qa] provides the best causal
explanation of why we are bound to find a 0 or 1 if Qa is measured in state
W*.'51 Clifton's proposal thus satisfies Closure and the following condition:

Certainty

If a projection Qa has a Born probability Tvcc(W0LQcc) equal to 0 or 1, then ga e Q)^k
for all k with value [Qa]k = 0 or [Qa]k = 1, respectively.

Kochen's full property ascription does not satisfy this Certainty condition.

MATHEMATICS

Kochen's full property ascription satisfies Closure.

Proof: Firstly, @)({P*}j) is by definition closed under ->, A and V. Sec-
ondly, the value assignment functions {[.]j}j satisfy the rules of the Closure
condition:

Any member Qa of $({Pj}j) can, according to (5.4), be decomposed as
<2a = J2jei PJ + 21 - Substitution of this decomposition in the function [,]k

yields that [Qa]k = 1 if k e IQ and [Q*]k = 0 if k $ IQ. The value 1 - [Q«]k

is thus equal to 0 if k e IQ and equal to 1 if k ^ IQ. Substitution of the
decomposition (5.5) of -«ga in [.]k yields that [~>Qa]̂  = 0 if k e IQ and
h 2 a k = 1 if k i IQ. Hence, the rule [^Qa]k = 1 - [Qa]k holds.

The product [Q*]k[Q*]k is equal to 1 if k e IQ n IQ and equal to 0 if

k ^ IQ n / g . Substitution of the decomposition (5.5) of Qa A Qa in [.]k yields

51 Quotation from Clifton (1995a, page 43) with the notation adjusted to the present notation.
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that [Qa A Q*]k is also 1 if k e IQ n IQ and 0 if k $ IQ n IQ. Hence, the rule

[Qa A QF\k = [Q«]k [Q«]k holds as well.

Analogously one can derive that [Qa V Q"]k = [Q"]k + [Q«]k - [Q"]k[Q"]k
holds. D

Kochen's property ascription does not satisfy Certainty.

Proof: Consider the bi modal interpretation and take the state |*F° )̂ =
\xpa) ® \xpP). Let Jfa be a three-dimensional Hilbert space. The reduced state
of a is Wa = |i/;a)(tpa| and the definite properties of a are according to
Kochen with probability 1 equal to {Oa,\xpa)(\pa\9 la - \xpa)(xp% F} . The
projection |^a)(t/;a| + |</>a)(</>a| with (ipa|(/>a) = 0 has now Born probability 1
but is not definite-valued. •

According to Clifton's proposal the sets {@}&j}j are equal to the set (5.7).
It can be proved that this set is the faux-Boolean algebra ^({Pj}j). Firstly, I
show that every member of the set (5.7) is a member of ^({Pfij). Secondly,
I show the converse.

Proof: Any member Qa of the set (5.7) is a sum Q\ + Q\ with Q\ in
^{{PJ}j) and Q\ in J^(Wa). According to decomposition (5.4) of a member
of £({Pf}j)9 Qa can be further expanded as Qa = T,jeiQ

 Pj +QI + Q2 w i t h

Q\ equal to either Oa or F - J2jPj- Let g a be the sum Q\ + Q\. Then
Qa is either Q\ or F - £V P? + Q\. In both cases Qa is orthogonal to all
{Pj}j and thus, according to decomposition (5.4), a member of #~({Pj*}7).
Also all {Pf}j are members of ^({P^}j). Qa is thus a sum of pair-wise
orthogonal projections which are individually all members of ^({P^}j) and
since #X{Pj*}7) is closed under V, it follows that g a = [VjelQP?] V Qa is also
a member of ^({Pf}j).

Any member g a of ^({Pfij) can according to decomposition (5.4), be
written as Qa = Y^jeiQ

 PJ + Q±- T h e Projection Y,jeiQ
 Pj i s a member of

a({Pj}j). 2 1 is orthogonal to all {Pfy and is thus a member of N(W*\
Hence, g a is a sum of two projections Q\ e @({PJ}j) and Q\ e JT(W*) and
thus a member of the set (5.7). •

To prove that Clifton's full property ascription satisfies Closure, consider
the above proof that Kochen's property ascription satisfies Closure. By
changing 'Boolean' into 'faux-Boolean' this proof also delivers the goods for
Clifton's proposal.

To prove that Clifton's property ascription satisfies Certainty, note that
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a projection g a with Born probability 0 is a projection in the null space
of W*. So Qa is a member of JV(W*) and thus a member of the set (5.7).
A projection Qa with Born probability 1 is a projection onto a subspace
which includes the support of W*. Such a projection can be written as
Qa = YtjPj + Qi w i t h Qi a member of J^(Wa). The projection £ \ P ? is a
member of &({Pf}j) so Qa is a member of the set (5.7).

5.3 Conditions on full property ascriptions

The presentation of the proposals by Kochen and by Clifton introduced two
conditions on the full property ascription: the Closure and the Certainty
conditions. One can now impose at least two more conditions. And, given
my link (3.2) between the property ascription to systems and the value
assignment to magnitudes, it can be proved that these further conditions
must be necessarily satisfied by the full property ascription if one assumes
that (A) the full property ascription satisfies Closure with respect to the
negation -. (that is, if g a e ®&\^ then -.Qa e 3>&k and [^Q"]k = 1 - [fiak)
and (B) any value assignment to a magnitude A01 with two possible values a\
and a2, satisfies the rule52

[A*] = a\ implies that [Aa] ± a2. (5.9)

The first of the two further conditions hangs together with the assumption
that if a magnitude Aa has a value a7, then Aa does not have any other
value ay ^ aj (this is a generalisation of the rule (5.9) to magnitudes Aa

with n eigenvalues). This assumption holds if the full property ascription
satisfies the condition that if the property ]Tfe |a^)(a^| is possessed, then the
properties J2k |a",fc)(a",fc| for all / ^ j are not possessed. More generally, this
assumption holds if possession of the property Qa means that any property
Qa with QaQa = 0 is not possessed. Possession of g a thus excludes that such
properties Q* are possessed or are indefinite. I therefore call this condition

Exclusion

If^Q^ is a member of 3)0^^ and [Qa]k = 1, then all the projections in the set
{2al6a2a = 0} are also members of @0>k with [Q«]k = 0.

If one accepts rule (5.9), the necessity of this condition is proved as follows.
Let a projection Qa have the value 1, and consider any projection Qa in the

52 The rule (5.9) may seem trivial: if Aa can have only two values, what else does [Aa] = a\ mean than
[A*] =/= #2? However, since the link (3.2) between the property ascription and the value assignment
to magnitudes allows that it is sometimes indefinite whether a magnitude has a specific value, there
exists the logical possibility that it is simultaneously the case that Aa has value a\ and that it is
indefinite whether or not Aa has value ai. So, although natural, the rule (5.9) is non-trivial.
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set {<2a|2aga = 0}. Since Qa is orthogonal to Qa, one can construct a two-
valued magnitude Aa which has both Qa and Qa as its eigenprojections,
namely Aa = a1Q

cl + a2 Q*. By the link (3.2) it then follows that the property
ascription [Qa] = 1 is equivalent to the value assignment [Aa] = a\. By rule
(5.9) this value assignment implies that [Aa] =/= a2 and by the link (3.2) this
is equivalent to [<2ak = 0.

Healey (1989, Sect. 2.2) makes a case for a second condition which he
called53

Weakening

If^Q^ is a member of 2<Pk and [Q*]k = 1, then all the projections in the set
{Q«|Q«<2« = ga | a r e a l s o m e m b e r s of 3>&k with [ga]/c = 1.

The necessity of this condition is proved as follows.54 Firstly, it has already
been shown from rule (5.9) that the full property ascription must necessarily
satisfy Exclusion. Secondly, one can prove that if the full property ascription
is closed with regard to the negation, then the necessity of Exclusion implies
the necessity of Weakening (and vice versa). This proof is given in the
MATHEMATICS.

Kochen's and Clifton's full property ascriptions fail to satisfy these two
further conditions (see also the MATHEMATICS). AS a result of this failure one
is faced with the following strange consequences. Assume that somebody
asks you if it is already five o'clock.55 You can now have a look at your
watch and answer 'yes' if it is exactly displaying that it is five ([AP] = 17.00
if the reading magnitude of your watch is given by Mn = J2J=ooooJ IRJ)(R;D-
However, if your watch indicates that it is four o'clock, you cannot safely
answer 'no:' given what you know about the properties of your watch

([Mn] = 16.00, or [|Ri6.oo)(Ri6.ool] = 1 by t h e l i n k (3-2))> li i s o n l y possible
to answer that it is four or that the present time is not different to four
([F — |Ri6.oo)(Ri6.ool] = 0' which is warranted because Kochen's and Clifton's
proposals satisfy Closure). But you cannot give the usual answer that it is
not yet five (represented by [Mn] ^ 17.00 or [|Rnoo)(Ri7Ool] = 0) because,
if Exclusion does not hold, the property ascription [iR^ooX^ool] = 1 ^ o e s

not imply that [|R?7.oo)(Ri7.ool] = °-

53 The name 'weakening' refers to the fact that the property ascription [Qa] = 1 is less precise or weaker
than the property ascription [Qa] = 1 if Qa£ a = g a .

54 Hea ley mot iva tes W e a k e n i n g by a requ i remen t which he calls the property inclusion condition a n d
which says that if a magnitude Aa has a value restricted to a set T, then the value of Aa is also
restricted to any larger set A D T (see Healey (1989, page 67)).

55 This example is a variation of Problem 1 of Arntzenius (1990, Sect. 3)).
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Or assume that somebody asks if it is tea-time yet (and let it be tea-
time between, say, 15.30 and 16.30 hours). If your watch shows that it is
four, you can certainly answer that it is four o'clock. But it is uncertain
whether you can confirm that it is indeed time for tea. Let the property
'it is tea-time' be represented by the projection 8fea.time = Z)j=i5.3o IRJ)(RJI>
that is, by the disjunction of all the projections that represent a time in the
tea-time interval. You can then confirm that it is tea-time if this projection
has value 1. However, if Weakening is not satisfied, your observation that

[|R16.00)(R16.00l] = 1 n e e d n o t imP!y t h a t [QL

MATHEMATICS

I start by proving that if the sets {2#&j}j are closed under negation -< and
if the value assignment functions {[.]j}j satisfy the rule [-><2a];- = 1 — [Qa]j9

then Exclusion implies Weakening.

Proof: LetQae @0>j and let [Qa]j = 1. Consider a projection Qa element
of the set {Q*\Q«Q* = Qa}. The negation -nga satisfies - Q a g a = 0. By
Exclusion it thus follows that [-^Qa] = 0 and by closure under -> it follows
that -.-nQa = Q« is also definite-valued. The rule [->Q"]j = 1 - [Qa]j now
implies that [ga]7- = 1 - [^Q*]] = 1. Hence, if Qa e @0>j and [Qa]j = 1,
then every projection in {Qa\QaQa = Qa} is also a member of QJSPJ with
[Q«]j = l. •

The proof that if the full property ascription is closed under negation,
then Weakening implies Exclusion goes analogously and is therefore left to
the reader.

To prove that neither Kochen's nor Clifton's full property ascription

56 The proofs that the full property ascription should satisfy Exclusion and Weakening, hinge on the
link (3.2) between the property ascription and the value assignment to magnitudes. Hence, if one
rejects this link and, instead, adopts the more restrictive link (22) given in footnote 22, one need
not be worried about the fact that the full property ascriptions by Kochen and by Clifton violate
Exclusion and Weakening. Moreover, if one indeed accepts this restrictive link, one can prove that
these two full property ascriptions escape the strange consequences illustrated by the example of the
watch.

Firstly, it follows from the second line of the restricted link (22) that if [Aa] = aj, then [Aa] ± ak

for all a/c =/= aj. (Rule (5.9) is thus automatically satisfied.) So, if somebody asks if it is five o'clock and
your watch indicates [Mn] = 16.00, then one may safely answer 'no' because [Mn] = 16.00 implies
that [Mn] + j for all j j= 16.00. Secondly, it follows from the first line of the restricted link (22) that
if [Mn] = 16.00, then [|R")(R*|] = <5/i6.oo- Because the full property ascriptions by Kochen and by
Clifton satisfy Closure, it follows that [Q^a-timel = *• Hence, if your watch indicates that it is four
o'clock, then you may also safely conclude that it is time for tea.

On the other hand, with the restrictive link (22), a new strange conclusion is that if you observe that
your watch possesses the property |Ri6oo)(Ri6Ool> ^ o u m a ^ n o t conc^U(^Q t n a t ^ indicates [Mn] = 16.00,
that is, that it is four. This conclusion is only correct if it is also the case that the watch does not
possess the properties |R") (RJ | for all values j ^ 16.00. So, if only iR^oo^i^ool *s Po s s e s s ed , it is
unclear what you observe; in that case, I guess, you will conclude that you need a new watch.
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satisfies Exclusion and Weakening, take the state Wa = J2f=i 2~J?

with {\e°j)}j an orthonormal basis for an infinite-dimensional Hilbert space
J^a. The full property ascription to a for both Kochen and Clifton is then
such that 29k = #({|ep(^|}7-) for all k. Assume now that [\e\){e\\\ =
1 (which is the case with probability \) and consider the full property
ascription Q)SP\ generated by this core property ascription. The projection
5(^2) + l^))((^2l + (e*\) i s n o t a member of S^i , so Exclusion is violated.
And the projection |ef)(ef | + \(\e§ + \e%))({e?>\ + (e%\) is also not a member
of Q)gP\, so Weakening is violated as well.

5.4 A new proposal

The proposals by Kochen and Clifton do not only fail to satisfy Exclusion and
Weakening, they are also applicable only to modal interpretations which put
forward pair-wise orthogonal core projections.57 This latter fact makes these
proposals unsuitable for application to the Copenhagen modal interpretation,
for instance. Finally, Kochen and Clifton define sets {Sf^j}j which all contain
the same projections (so, Q)2Pk = 3*0*1 for all k ^= I). They, however, do not
argue why this should be the case.

In an attempt to overcome these disadvantages581 develop a new proposal
which is applicable to any modal interpretation and which always satisfies
Closure, Exclusion and Weakening. And for those modal interpretations
in which the core projections {CJ}j project only in the support of the
state W* (the Copenhagen, bi and spectral modal interpretations), it also
satisfies the Certainty condition. Thus only for the atomic and fixed modal
interpretations, does the new proposal fail to satisfy Certainty. The newly
determined sets {@&j}j do not, in general, contain the same projections.

I propose to determine the sets {S)^j}j by assuming that the full property
ascription is closed under negation and by assuming that the rule (5.9) for
two-valued magnitudes holds. That is, I propose to construct every set @f&k
by starting with the core property ascription [C%] = 1 and then adding all

57 Kochen's proposal cannot be applied to modal interpretations with pair-wise non-orthogonal core
projections since the closure of a set of such projections under orthocomplement, meet and join does
not result in a Boolean algebra. Clifton's proposal cannot be applied to such modal interpretations
since faux-Boolean algebras are not denned for pair-wise non-orthogonal projections.

58 On the basis of the remarks made in footnote 56, one can dispute whether it is disadvantageous
that the proposals by Kochen and by Clifton violate Exclusion and Weakening: if one adopts the
restrictive link (22) to relate the property ascriptions and value assignments to magnitudes, there
is no reason why full property ascriptions need to satisfy these two conditions. However, with the
restrictive link (22), the full property ascriptions by Kochen and by Clifton are still not applicable
to modal interpretations with pair-wise non-orthogonal core projections. So, even if one adopts this
alternative link, there are still reasons to try to improve on Kochen's and Clifton's proposals.

In addition, I still prefer the link (3.2) because, given a set of definite-valued projections, this link
assigns values to more magnitudes than the restrictive link (22).
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those projections to 3>&k whose membership is necessary by closure under
negation and by the rule (5.9).

Given my starting point that the relation between the property ascription
and the value assignment to magnitudes is fixed by the link (3.2), rule
(5.9) implies that the full property ascription satisfies Exclusion (see the
previous section). Conversely, given the link (3.2), Exclusion implies that the
full property ascription satisfies rule (5.9) (the proof is left to the reader).
Hence, my proposal is equivalent to adding all the projections to Q)3Pk whose
membership is necessary by closure under negation and by Exclusion.

To execute this new construction of the full property ascription, consider
the set Q)SPk induced by the core property ascription [C£] = 1. Let's start by
adding all those projections such that Exclusion is satisfied. That is, add to

all the projections {ga} orthogonal to C£ and let their values be 0. So,

with [C£]* = 1 and [Q"]k = 0 if g«C£ = 0. (5.10)

Then add all the projections such that 9)3Pk is closed under negation and
that the value assignment function [,]k satisfies [^Qa]k = 1 — [gak- The
negation ->C£ of the core projection C£ is already added to $}0Pk because
-iC£ is in the set {ga|gaC£ = 0}. The value of -.C£ satisfies by (5.10) the
relation [->Ca]/c = 1 — [Ca]k. The negations ->ga of the other projections in
the set {ga|gaC£ = 0} are, however, not yet in 2&>k. These negations {^Qa}
form the set {Q"\Q"C£ = C%} because gaC£ = 0, and their values should be
1 because the projections Qa have the value 0. I therefore also add all the
projections in {ga|g*C£ = C£} to Q)3Pk with their required values, so

with [Q*]k = 1 if g«C£ = C£ and [Q% = 0 if g«Cj? = 0. (5.11)

(Note that C£ is in the set {Qa|gaC£ = C%}; thus C£ is also, according to
(5.11), a member of 3)SPk with the value 1.)

The Exclusion condition does not force one to add more members to Q)2Pk.
Every projection in {ga|gaC£ = Cj*} U {Q«\QaC% = 0} which has the value
1 is a member of the set {<2a|gaC£ = C£}. Also every projection orthogonal
to a member of {ga|gaC£ = qa} is in the set {ga|gaC£ = 0} and has, as
required by Exclusion, the value 0. Hence, if one identifies Q)SPk with the set
{ga|gaC£ = CD U {ga |gaC^ = 0}, it satisfies Exclusion and is closed under
negation.

It can be proved that, with this identification, <2>&k becomes equal to the
faux-Boolean algebra J^(C^) and that the full property ascription is, for all
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k, equal to:

New proposal: ( pk = p(C£), ®9k = &(C£), [Q«]k = ~^0~ )• (5.12)

Or in words: the core property ascription is [C£] = 1 with probability
Pk = p(C%) and this core ascription induces the projections in the set

to have the value [Q*]k = Tra(Cj*Qa)/Tra(qa).

MATHEMATICS

I start by proving that the property ascription (5.11) with 3 replaced by a
'=' sign, is equal to the property ascription (5.12).

Proof: Firstly, any member Qa of {£HgaCj* = C£ orO} is either orthogonal
to C£ or can be written as a sum Qa = C% + Q\ with Q\ orthogonal
to C£. In both cases Qa is a member of #XC£). Conversely, any member
Qa of #XC£) can be written (see decomposition (5.4)) as either Qa = Qi
or Qa = Cl + ĝ _ with Q\ orthogonal to C .̂ Hence, Qa is a member of
{2aieaqa = qor0}. a

The new full property ascription satisfies Exclusion by construction. Be-
cause it is also by construction closed under negation ->, the new full property
ascription satisfies Weakening as well (Exclusion and closure under -> imply
Weakening according to the MATHEMATICS of the previous section). The new
full property ascription also satisfies Closure for the conjunction A and the
disjunction V (the proof is again a variation of the first proof given in the
MATHEMATICS of Section 5.2). Finally, for all modal interpretations in which
the core projections {CJ}j project in the support of the state Wa, the new
full property ascription satisfies Certainty.

Proof: Assume that all core projections C£ project in the support of W*.
This support is the space onto which the projection J2{j\w^o}Pji (the sum
of all the eigenprojections of W* corresponding to non-zero eigenvalues)
projects. Hence Z{j\«jf0} P«C% = C«k for all k.

Consider now a projection Qa with Trcc(WaQa) = 0. Qa is then a member
of J^(Wa) and thus orthogonal to the projection J2{j\w^o}P? o n t o the
support of W*. It follows that Qa is orthogonal to every core projection C£
since Q a q = Qa E{7>^o} pfCk = °- Hence> 6a i s a member of ,F(C£) for
all k. Application of the value assignment function gives [Qa]k = 0 for all k.

Consider next a projection Qa with Trcc(WaQa) = 1. Qa then projects on a
space which includes the support of Wa so ga

 Y1{J\WJ^O}
 pf = J2{j\w^o} pr

Multiplying each side of this relation with C£ at the right-hand side yields
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Q*Cl = C% so Qa can, for every k, be written as Qa = C% + Q\ with Q\
orthogonal to C£. Hence, Qa is a member of J^(C^) for all /c and application
of the value assignment function gives [(?a]/c = 1 for all k. •

Finally, I prove that the new full property ascription does not satisfy
Certainty if it is applied to the atomic or the fixed modal interpretation.

Proof: Let a/? be a composite of two atoms a and /? and let the state
of ocp be pFa") = ^ \xpf) ® \<f){) + i |v>|) <g> |^ f ) , where <vflvf> = ° a n d

(</>i l^f) = 0- The core projection of a/? is then, according to the atomic modal
interpretation, either cf = lv>iXv>il® l0iX<rf I or cf = IvSXvSI® WfX^I-
The projection |^/0C^)(lPa^| clearly has Born probability 1 but this projection
is in neither 2f^\ nor 2&i.

This conclusion follows also for the fixed modal interpretation if the
preferred magnitude of aj8 is given by F** = Y,)=i fj lv"Xv"l ® l</>; X</>; I- •

5.5 Results

The new proposal (5.12) can be applied to any modal interpretation and
the resulting full property ascription satisfies for a number of modal inter-
pretations all the given conditions. Only for the atomic and fixed modal
interpretations does the proposal slip by not satisfying Certainty.

More specifically, application of the new proposal to the Copenhagen
modal interpretation yields that the full property ascription to a system a with
state W* is given by #XlvaXval) w ^ lva)(val a projection in the support
of W*. This property ascription reproduces the full property ascription one
would obtain on the basis of the eigenvalue-eigenstate link if the state of a
had been |tpa)(t/;a|. (Application of this link to the state |tpa)(ipa| yields that
all projections with Qx\xpcc)(xpoc\ = lva)(tpa| have the value 1. Application of
proposal (5.12) to the core property ascription [|ipa)(va|] = 1 yields the same.)
Hence, as already pointed out by Van Fraassen (1991, page 282), it seems
as if the ignorance interpretation (see Section 3.1) is correct. That is, the
core property ascription to a system is [|tpa)(tpa|] = 1, modal interpretations
(with the new full property ascription) do ascribe properties as if a were in
a pure state |tpa)(tpa|.

Application of the new proposal to the bi modal interpretation yields that
the definite-valued projections of a system a, which is part of a composite
a/3 with a pure state 1 ^ ) , are with probability p(P£) = Tra(P^aPfc

a) the
projections in the set S)^k — ^XP£). In general, this set contains more pro-
jections than the set 3>&k = ^({PJ}j) proposed by Kochen. (By considering
the relevant definitions, one can conclude that any member of &({P*}j) is
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also a member of ^{Pk). On the other hand, a projection Qa orthogonal to
P^ is a member of J^(P^) but need not be a member of ^({P?}y).)

A similar remark holds for the spectral modal interpretation and Clifton's
proposal. The new proposal applied to the spectral modal interpretation
yields that the definite-valued projections of a system a with a state W* are
with probability p(P%) = Tra( W^P^) the projections in the set 9>0>k =
and this set contains, in general, more projections than the set

j) proposed by Clifton. (Any member of J^({Pj*}7) is a member of
>

/c
a). Also a projection Qa orthogonal to P% is a member ^(Pk) but need

not be a member of #X{Pj*}7).)
A further result is that Clifton's proposal can be understood as equivalent

to the new proposal (5.12) if one restricts attention to those properties which
are with certainty (that is, with probability 1) assigned a definite value.
Consider a system a with a state Wa and let Q)SPV=\ be the set of projections
that have with probability p = 1 a definite value. This set is clearly equal
to the meet of the sets {9>9j}j since if a projection is a member of all the
sets {@&j}j9 it has a definite value independent of the specific core property
ascription to a. So, if one restricts the full property ascription (5.12) to this
set Q)0>

v=\^ one obtains the property ascription

Pk =

It can be proved that if the core projections are pair-wise orthogonal, the
meet of the faux-Boolean algebras {#XP/)}; generated by the individual
core projections is equal to the faux-Boolean algebra ^({Cfij) generated by
the set of all core projections. In the spectral modal interpretation the core
projections are indeed pair-wise orthogonal so the full property ascription
(5.12) restricted to the set Q)SPV=\ is in the spectral modal interpretation
given by (use that p(P%) = Tr«(WaP£)):

Pk =

This restricted property ascription is equivalent to Clifton's proposal.5 9

59 Clifton (1995a) motivates his proposal for the spectral modal interpretation by proving that any
full property ascription to a system a which assigns definite values to a set of projections different
from ^({Pj}j) must violate at least one of six desirable requirements. In Vermaas (1998a, Sect. 9)
it is argued that these six requirements should only be imposed on the set of projections which
have definite values with probability 1. Clifton's proof thus shows only that the set Q}^v=\ should
be equal to ^({PJ}j). As such, the new proposal (5.12) complies with this proof via the restricted
full property ascription (5.14). The new proposal yields, however, that there also exist projections
which have a definite value with a probability strictly smaller than 1 (all the projections in the set
Uj^(Pj) — ^({PJ}j). In this way the new proposal (5.12) assigns definite values to more projections
than there are in the set
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Application of the new proposal (5.12) to the atomic and fixed modal inter-
pretations yields a full property ascription that, as I said, violates Certainty.
This implies that there can exist a projection Qa which is indefinite-valued
while a measurement of Qa has with certainty a positive or with certainty
a negative outcome. Hence, in the atomic or fixed modal interpretation, a
measurement of <2a which has with certainty a positive or with certainty a
negavite outcome, need not reveal a pre-existing value of <2a. Consequently,
one cannot explain the certain outcome of this measurement by means of
a pre-existing value [Qa], as was proposed in the quotation of Clifton on
page 69). A question is now what does a measurement with a certain out-
come reveal. This question is taken up for the atomic modal interpretation
in Section 13.4.

MATHEMATICS

For pair-wise orthogonal projections {CJ}7- the sets H/J^C?) and
are identical.

Proof: Let Qa e nj^(CJ). Then Qa e ^(CJ) for all ;, and one can write
Qa with (5.4) as Qa

± or CJ + Q\ with Qa
± orthogonal to CJ. It follows that

Q«CJ = 0 or QaCJ = CJ for all ;. Define now the index-set IQ as k e IQ iff
= C£. One can then derive that

r - E c") = E CJ + ea(ia - E

The projections ga and P-J2j Cj commute, so 6 a ( F ~ Z \ CJ) is a projection.
Moreover, Qa(F — ]TV CJ) is orthogonal to all projections in {CJ}j. Hence,
by decomposition (5.4), Qa is a member of ^({CJ}j).

By inspection it follows that any member Qa of ^({CJ}j) is a member of
for all k. Hence, (?a is also a member of the meet nj^(CJ). •

5.6 Definite-valued magnitudes

The new full property ascription (5.12) specifies how modal interpretations
ascribe properties to systems. In this final section I discuss how this property
ascription induces a value assignment to the magnitudes of those systems.

As I have already said on a number of occasions, I adopt the link (3.2) as
my starting point to relate the ascription of properties to the assignment of
values to magnitudes.60 So, let Aa be a magnitude represented by an operator

60 And as I have said in a number of footnotes, some authors choose to adopt the more restrictive link
(22) given in footnote 22.
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with a discrete spectral resolution Aa = ^2jCij ^k \a°-k)(a%\. Then the value
assignment to A* is related to the full property ascription (5.12) by the link

[A«\=aj if and only if [ ]£ \a%)(a%\] = 1,
k

[A*]j:aj if and only if [ £ \a%)(a%\] = 0,

it is indefinite whether ^-^
z/am/ on/y z/ > \ajk)(a]k\ is indefinite,

or not A* has value a7 k

This link has now two drawbacks. Firstly, it applies only to magnitudes
represented by operators with a discrete spectral resolution. Many important
magnitudes in quantum mechanics are, however, represented by operators
with a continuous spectral resolution (position and energy of a free particle,
for instance) and one would also like to assign values to those magnitudes, but
the link (5.16) is silent about such values. Secondly, even when applied only
to magnitudes represented by operators with a discrete spectral resolution,
the link seems not to capture all that can be said about the values of
magnitudes. Consider, for instance, a magnitude Aa = ^2jaj\aCj)(acj\ and
assume that the state of a is given by |t/;a) = c\ \a\) + c^ \dj). The new full
property ascription (5.12) to a in, say, the spectral modal interpretation is
in this case with probability 1 equal to 3)0*1 = #X|t/?a)(i/;a|). The link yields
that it is then indefinite whether or not Aa has the value a\ or the value aj,
and that [A*] is not equal to a?,, a^ etc. From these value assignments it now
seems acceptable to conclude that the value of Aa is in this case in some
sense confined to the set {ai,a2}- However, the link (5.16) is again silent
about such a confinement.

In an attempt to overcome these two drawbacks I develop in this section
a generalisation of the link (5.16) which yields information about the values
of all the magnitudes of a system. The two drawbacks then vanish because
the generalised link applies equally to magnitudes represented by operators
with continuous spectral resolutions and to magnitudes A* for which the
link (5.16) only yields that [Aa] is not equal to specific values. However,
this generalised link turns out to suffer from a new problem, namely that
value assignments become genuinely inexact. That is, the value assignment
to a magnitude is in general not given by the assignment of one exact
eigenvalue, as is the case if one uses the link (5.16), but is captured by the
assignment of a whole set of values. And this assignment of, say, the set
F to the magnitude Aa need not mean that Aa has a single exact value x,
where x is an element of the set F, but may mean that Aa has an inexact
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value restricted to the set T. Hence, the assignment of values to magnitudes
confronts one with a dilemma. Either one stays with the link (5.16) which
assigns exact values to some magnitudes represented by operators with a
discrete spectral resolution and one swallows the two drawbacks. Or one
adopts the generalised link which applies to all possible magnitudes and
one swallows that value assignments can be inexact. Here, I do not attempt
to resolve this dilemma; I only explore the second option of defining the
envisaged generalised link.61

Consider therefore a magnitude represented by a self-adjoint, hypermaxi-
mal operator Aa defined on Jf?a. Let {T} represent the Borel sets on the real
line R and let {£^(r)}r be the projections which form the spectral family of
Aa. The spectral resolution of A* is then given by62

Aa= / AdE%((-ao9X\). (5.17)
JX=-oo

The spectral family {£^(F)}r has the properties:

EA{T n A) = E\{Y)EA(A), f ' (5.18)

Being projections, the members of the spectral family can have definite
values. The question now is how can a value of a member E\{T) induce
a value assignment to Aa. In order to answer this question I return for a
moment to operators with a discrete spectral resolution. For such operators
integral (5.17) simplifies to the sum

Aa — \ ^ n- Fa(n \ (^ 19"!
rV — 7 (Aj M-jAyyl-i). yj.±yj

j

A projection E^(aj) is thus the eigenprojection J2k\a°jk)(aCjk\ °f ̂  corre~
sponding to the eigenvalue a, and a general spectral projection E\{T) of A*
is equal to

j l l I — 7 lit A\\A, i I. \J,£i\Jl

Consider the special case that one eigenprojection of such an operator
61 A way out of the d i lemma might be to a im at a generalised link which does no t apply to all magni tudes

of a system but which only assigns exact values to some magni tudes represented by opera tors with
a discrete spectral resolution and to some magni tudes represented by opera tors with a cont inuous
spectral resolution. Such a less ambi t ious generalisation overcomes the first d rawback of the link
(5.16) (but not the second) and saves one from assigning inexact values. Private communica t ion with
R o b Clifton, 1998.

62 See footnote 8 for the spectral resolutions of hypermaximal self-adjoint operators .
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with a discrete spectral resolution has the value 1, say [E^(ak)] = 1. In
such a case one can straightforwardly derive relations between the value
assignment to the spectral projections {EA(F)}r and the value assignment
to A* itself. Firstly, because the full property ascription (5.12) satisfies the
Exclusion condition, it follows that all the other eigenprojections of Aa have
a value 0, so [EA(aj)] = Sjk for all j . Secondly, because the full property
ascription (5.12) satisfies Closure, it follows that all the spectral projections

have values. Moreover, these values are [£^(F)] = 1 if a& G F and
= 0 if #£ ^ F. Thirdly, it follows from the (ungeneralised) link (5.16)

that [Aa] = ak. This in turn implies that [A*] e F if ak e F and [Aa] £ F if
ak ^ F. Hence, the value assignments to the projections {£^(F)}r and to A*
itself satisfy the relations

[A*] e F if and only if [2^(F)] 1, 1

[A«] i F if and only if [E\(T)] = 0. J

These relations are still valid only for magnitudes represented by operators
with a discrete spectral resolution for which one eigenprojection has the
value 1, but on first sight they look like a proper basis for the envisaged
generalised link. However, one immediately runs into trouble if one applies
these relations to a magnitude represented by an operator with a discrete
spectral resolution for which there does not exist an eigenprojection with a
value 1. To see this, consider a system with a state

= E«A(ai) + E«A(a2)

The full property ascription (5.12) to a in, say, the spectral modal inter-
pretation is then with probability 1 given by Q)&\ = &{E\(a\) + E\{a2)\
such that [EA(a\) + E\(a2)] = 1 and the individual eigenprojections E\(a\)
and E\(a2) are not definite-valued. The projection EA(a\) + £^(#2) is equal
to the spectral projection EA({a\,a2]) and if one applies relations (5.21),
it follows that [Aa] e {ai,a2}- This value assignment in turn implies that
either [Aa] = a\ or [Aa] = a2 and by using again relations (5.21), one can
derive that either [£^(ai)] = 1 or [E\(a2)] = 1. But this last conclusion is
in contradiction with the full property ascription (5.12) which yields that
EA(a\) and EA(a2) have no definite values. Hence, the relations (5.21) cannot
be taken as the generalised link.

The assumptions used in the derivation of this contradiction were: (A)
the new full property ascription (5.12), (B) the sum rule (5.20) to identify
the spectral projection EA({a\,a2}\ (c) the equivalence of [E\{{a\,a2})] = 1
and [Aa] e {a\,a2}, and (D) the equivalence of [Aa] = aj and [E\(aj)] = 1.
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I have already adopted (A) and (D), and assumption (B) is a mathematical
fact. So, the only way left for me to escape the contradiction is by denying
(c). And one can deny (c) by assuming that [£^(F)] = 1 need not mean that
A* has an exact definite value x, where x is an element of the set F, but that
[£^(F)] = 1 in general means that Aa has an inexact value restricted to the
set F. It then follows that [E\(a\) + E\(a2)] = 1 does not imply that either
[£^(ai)] = 1 or [E^(ci2)] = 1, such that the derivation of the contradiction is
blocked.

The trouble now is that it is difficult to make sense of this assumption
that the value assignment [£^(F)] = 1 may mean that a magnitude Aa has
an inexact value restricted to a set F. At the end of this section I say more
about the meaning of inexact value assignments. But note here that these
assignments already show up if one tries the generalise the link (5.16) to
all magnitudes represented by operators with a discrete spectral resolution;
thus it is not specifically the value assignment to magnitudes represented by
operators with a continuous spectral resolution which forces one to accept
inexact value assignments.

If one does accept the assumption that [£^(F)] = 1 may mean that A* has
an inexact value restricted to the set F, one can continue with formulating a
generalised link. Let's write this inexact value assignment as [Aa] e* F (the
* is added to indicate that [Aa] need not be an exact value x element of F).
The value assignment [£^(F)] = 0 should then analogously be taken as that
Aa has an inexact value which is not restricted to the set F. One can read
this negation is two ways: as that Aa has an inexact value restricted to a set
A different to F, or as that Aa has an inexact value restricted to the set R —F.
Here I adopt the second reading because if Aa has an exact value (which
still can be the case if, for instance, Aa has a discrete spectral resolution
and if [E\(aj)\ = Sjk)9 then [£^(F)] = 0 is equivalent to A* having a value
restricted to R — F. Let's write this negation as [A*] ̂ * F. The generalised
link then becomes

[A*] E* F if and only if [E^(T)] = 1,
[A"](fr if and only if [E%(T)]=09

it is indefinite whether or
if and only if EAT) is indefinite,

not [A«] is restricted to F A

This link can now be consistently applied to magnitudes represented by
operators with a discrete and with a continuous spectral resolution. The
resulting value assignment satisfies the following relations. From the full
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property ascription (5.12) and the properties (5.18) of the spectral family
} r one can derive that:63

(5.24)

(5.25)

[A«] £* 0 ,

[A*] G* R,

[A«] e* r => [A*] f R - r ,

[A*] f r ^ [A«] G * R - r .

A second series of relations is:

[A0"} G* T => [A0"] G* A for every A with A => F,

[A01] G* r => [Aa] £* A for every A with A n F = 0 ,

[A*] £* T => [A*] £* A for every A with A c r ,

[Aa] £* r => [Aa] G* A for every A with A U F = R.

A final series concerns the propositional logic of the value assignment:

not [A*] G* r o [A«] G* R - r , ]

[A*] G* r and [.4a] G* A <^ [A«] G* T n A, I (5.26)

K ] G* T or [A*] G* A => [Aa] G* T U A, J

(where 'not [Aa] G* P is defined as [A*] ^* F). One relation is missing in
this last list and that is

[A*]eTuA [A«] G* T or [A*] G* A (5.27)

This relation doesn't hold in general, proving once again that [A*] G* F is
a genuinely inexact value assignment. If A* has an exact value (that is, if
[E\(aj)\ = djk), then this missing relation holds.

These three sets of relations give the rules obeyed by the generalised value
assignment (5.23) to magnitudes and fix in that sense partly what it means
to assign an inexact value to such magnitudes. It is much harder, however,
to directly describe what it means, physically speaking, to assign an inexact
value to a magnitude. Two answers can be given but neither yields a positive
description. The first answer is that [A*] G* F means that A* does not have
an exact value x which falls outside the set F (which is a straightforward
consequence of the second relation of (5.25)). However, this answer only
gives a negative description; it tells you what is not the case if [A*] G* F.
A second answer is given by Healey (1989) when he writes about his own
construction of a value assignment to magnitudes (his construction differs
in a number of points from the one presented here, but his remarks still

63 See also Healey (1989, Sect. 2) for a discussion of this generalised value assignment.
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apply) that The content of the claim [that LE^(F)] = 1] is best unpacked by
examining the inferences which may be drawn from it. One such inference is
that if one were to observe whether or not a has E^(T), one would find that
it does: And if one were to conduct a less precise observation as to whether
or not a has E%(A) (with F a A), one would find that it does. On the other
hand, there is no maximally precise observation of A* which would locate its
value with maximal precision [...].'64 However, this description of the physical
meaning of [£^(F)] = 1 or, equivalently, of [Aa] e* F, is formulated in terms
of possible measurement outcomes. And this seems to be against the spirit
of interpretations of quantum mechanics: the aim of an interpretation is to
describe reality and thus to give a meaning to quantum mechanical assertions
which goes beyond the realm of measurement outcomes.

A positive description of the meaning of the assignment [A*] e* F seems
to be given by the generalised link (5.23) itself, namely that [A*] €* F implies
that a possesses the property represented by the projection £^(F). However,
if this is the only positive description of the physical meaning of [A01] e* F,
the gain of the generalised link seems to be of minimal value because then
linking the property ascription [£^(F)] = 1 with [A*] e* F does not tell
much about the value of Aa.

MATHEMATICS

All the relations in (5.24), (5.25) and (5.26) can be transposed into relations
between the values of the projections E\{T). These latter relations can then
be proved by means of the full property ascription (5.12) and the properties
(5.18).

The first two relations in (5.24) are easily proved. Both Oa and F are,
according to (5.12), members of every set 3f0^k a n d are always assigned the
values 0 and 1, respectively. So, it is with probability 1 the case that [Oa] = 0
and [F] = 1. Also by using the properties (5.18), it follows that [Aa] e* M
and [A*] $* 0 with probability 1.

The third relation in (5.24) is equivalent to

[E%(r)] = 1 => [E%(R - F)] = 0 (5.28)

and can be proved because the full property ascription (5.12) satisfies Closure.
It thus follows that if [£^(F)] = 1, then the negation of E\(T) simultaneously
has the value 0. This negation F — E\{T) is according to (5.18) equal to
£^(R - F) so if [E\{Y)} = 1, then [E%(R - F)] = 0. The fourth relation in
(5.24) can be proved analogously.

64 Quotation from Healey (1989, page 75) with his italics and with the notation adjusted to the present
notation.
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The first relation in (5.25) is equivalent to

[E%(T)] = 1 => [£1(A)] = 1 for every A with A =2 T. (5.29)

Since A 3 T, it follows that T n A = T. Using the third property of (5.18),
the above relation holds if

rar)] = 1 =* [£1(A)] = 1 for every E%(A) with £^(A)£^(r) = E\(T).

(5.30)

This last relation holds because the full property ascription (5.12) satisfies
Weakening.

The second relation in (5.25) can be proved analogously by using that the
full property ascription (5.12) satisfies Exclusion. The third relation in (5.25)
follows by the fourth relation in (5.24) and the second of (5.25). The fourth
relation in (5.25) follows by the third relation in (5.24) and the first of (5.25).

The first relation of (5.26) holds by definition. The <= part of the second
relation of (5.26) is a consequence of the first relation of (5.25) since Y n A
is a subset of both T and A. The => part of the second relation of (5.26) is
proved as follows:

If for a system a the projections £^(F) and £4 (A) simultaneously have
the value 1, then they are simultaneously members of the actual property
ascription Q)&k to a. According to (5.12), one can conclude (using decom-
position (5.4)) that a member of £&&k with the value 1 is a sum of the core
projection C£ and some projection orthogonal to C£. Hence, it holds that
E%(T)C£ = Cl and E%(A)C£ = C£. Using the properties (5.18), it follows
that E\(Y n A)C£ = C£. Hence, E%(T n A) is simultaneously with E\(Y) and
£^(A) a member of Q)&k with the value 1.

The proof of the third relation of (5.26) is left to the reader.
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Joint property ascriptions

The previous chapter dealt with the property ascription to single systems.
In this chapter I consider correlations between the properties ascribed to
different systems by the bi, spectral and atomic modal interpretations. These
correlations are captured by means of a joint property ascription, that is,
by means of joint probabilities p ( Q , C^,Cj,. . .) that the core property as-

n

criptions to the systems a, /?, y, . . . , are simultaneously [C%] = 1, [C£] = 1,
[Cj] = 1, . . . , respectively. I start by listing the existing results and then dis-
cuss the possibilities and impossibilities of extending these results to general
joint property ascriptions.

6.1 A survey

According to the rules of the bi modal interpretation, the joint property
ascription to two disjoint systems a and /? is given by

P(Pa^l) = T r w ( | ¥ w )0n [Pa
a <S> Pf])9 (6.1)

if the composite co = a/J has a pure state 1^) . If one accepts perspectivalism
(discussed in Section 4.3), this is all one needs to know about joint property
ascriptions. One can, of course, bisect a composite co in more than one way,
say, firstly into a and /? and secondly into y and d. But these different bisec-
tions correspond to different perspectives and, because it makes sense only to
simultaneously consider properties of systems defined from one perspective,
any attempt to find a joint property ascription to a, j8, y and 8 is superfluous.
If, however, one rejects perspectivalism, the search for such a joint property
ascription does make sense. Unfortunately, a no-go theorem, presented in
Section 6.3, proves that if one accepts Instantaneous Autonomy, Dynamical
Autonomy for measurements, and Empirical Adequacy (see Section 3.3), the
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Joint property ascription

A joint property ascription to the systems {a, /?, y,. . .} consists of the joint
probabilities p(C%9c£9Cc9...) that the core property ascriptions to these
systems are simultaneously [C%] = 1, [C^] = 1, [Cj] = 1, etc.

bi modal interpretation cannot be supplemented by general joint property
ascriptions.

According to the rules of the spectral modal interpretation, the joint
property ascription to the disjoint systems a, /?, y9 ... is given by

p(P%,PJJ, P I . . . ) = TJ°>(W<° [ P « 0 P { 0 p y ® • • • ] ) , (6.2)

with co equal to the composite of the systems a, /?, y9 etc.
Again, if one accepts perspectivalism, this is the end of the story because

then one only simultaneously considers the properties of sets of disjoint
systems. However, if one denies perspectivalism, one can continue to try to
also fix joint property ascriptions to non-disjoint systems. In the next section
I show that in special cases one can indeed give such ascriptions. However,
the no-go theorem of Section 6.3 proves that joint property ascriptions to
non-disjoint systems do not exist in general.

In the atomic modal interpretation joint property ascriptions are given
for collections containing a molecule /? and the atoms ocq, ar, as, ... in that
molecule:

X (6.3)

where P^bc... := Paq ® P^r ® P?s ® ' ' ' • Joint property ascriptions for general
collections of atoms and molecules exist and are derived in Section 6.4.

6.2 Snoopers

In the spectral modal interpretation there exist in special cases joint property
ascriptions to non-disjoint systems. Take a collection {co,a,j8,y,...} of a
number of disjoint systems a, /?, y, . . . , and their composite co = a/Jy
This collection contains non-disjoint systems (a and co, for instance) and one
can derive the joint probabilities

p(PZ,pg,...,P?) (6.4)

for a joint property ascription to this collection (Vermaas 1996, App. A). The
ingredients of this derivation are the assumption of Instantaneous Autonomy
and the joint probabilities (6.2) for disjoint systems.
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At this point, the reader might want to argue that the above joint prob-
abilities cannot exist, for if they did exist, then one could construct joint
probabilities for sets of non-commuting operators. And notably Fine (1982)
has proved that these latter joint probabilities cannot exist. To develop this
argument, define a mapping which associates the operator P% with P ^ ® p / a ,
which associates PJj with PJj ® F ^ , and so on. Under this mapping (6.4)
becomes a joint probability

p(PZ®r/*9pl<8>r"9...9p?) (6.5)

over projections defined on stf™ which, in general, do not commute.65 (Note
that (6.5) is not a joint probability for some property ascription to co; it is
solely a mathematical object constructed by means of (6.4).) Furthermore,
since the joint probabilities (6.4) need to be consistent with the joint proba-
bilities (6.2) (that is, the marginal Y,dP(pZ>Pb>-- >Pd) should return (6.2)),
the joint probabilities (6.5) should satisfy

(6.6)

Hence, if the joint probabilities (6.4) exist, one can enrich quantum mechanics
with joint probabilities for non-commuting projections consistent with the
joint Born probabilities for commuting projections (the right-hand side of
(6.6)). And Theorem 7 in Fine (1982, page 1309), in particular, seems to rule
out such an enrichment.

The strongest rebuttal of this argument is, however, an explicit derivation
of (6.4).66 To do so, suppose that there exists a system a disjoint to co and
that the composite aco has a state WG(D which satisfies the condition

Vd, e : d + e => Tr™( W™ [P/ ® Pf}) = 0. (6.7)

This assumption does not constrain the state of co: for any possible state
W™ with spectral resolution W°> = J2jwfPj°> t h e s t a t e Wam can be

65 Let, for instance, the state of co be Iv?") = ^-\e\) 0 \e{) + \\e%) <8> \e{) wi th (e\\ea
2) = (e{\e{) = 0.

Then the project ions P f = | t /) ( y)(^c o | and P f ® 1^ = |ej)(ef | (8) 1^ d o no t commute .
66 Fine's (1982) T h e o r e m 7 rules ou t jo in t probabil i t ies for n o n - c o m m u t i n g project ions which are

consistent with the jo in t Born probabil i t ies and which are ( among o ther things) definable for all
possible states W™ of co. I here escape Fine 's t heo rem because I don ' t require tha t the jo in t
probabil i t ies (6.4) are, given a fixed set of project ions P £ , P ^ , . . . , Pf, definable for all possible states
Wm; I only need tha t the jo in t probabil i t ies are definable for those states W03 which generate {P£}a,
{P^}^,..., {Pf}d as the eigenprojections of its partial traces Wa, W^,..., and as the eigenprojections
of Wm itself, respectively.
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Snooper

A system a is called a snooper for a system a if the joint property
ascription to a and o satisfies p(CJ, C£) = 0 for all j ^ k. The actually
possessed core property of the snooper thus reveals with probability 1 the
actually possessed core property of a (a 'snoops into' a).

chosen as

W™ = Y^ wf PJ ® Pj*> (6-8)
j

with {PJ}j a set of orthogonal projections.
Due to the above condition there exist strict correlations between the core

projections to a and co: the joint probabilities (6.2) for disjoint systems yield
with probability 1 that [Pf] = 1 if and only if [PJ] = 1. The system a
thus acts like an indicator or snooper which records the actual core property
ascription to co. For this reason I call o a snooper system for co.

From the strict correlations between the core property ascriptions to a and
co, it follows that (6.4) is equal to the joint probability p(Pa

a,P^,... ,PJ) for
the joint property ascription to a, /?, ... and o. This latter joint probability
can be determined with (6.2) because a, /?, . . . , a are all mutually disjoint
systems. Given the condition (6.7), one can thus derive that

£ [PZ®P2®P£ ® • • •]) (6.9)

and rewrite this (see the MATHEMATICS) as

S f [PZQPl <S> • • •]). (6.10)

This second result is still only proved in the special case that there exists a
snooper a for co. By now invoking Instantaneous Autonomy one can turn
this result into a generally valid one.

Consider any system co with a fixed state W™. If there exists a snooper a
for co, the joint property ascription to {co, a, /?,...} is given by (6.10). If there
does not exist a snooper for co, this joint property ascription is unknown.
Instantaneous Autonomy demands that in both cases the property ascription
is equal since the state of co is in both cases equal. Hence, also if there does
not exist a snooper for co, the joint probabilities are given by (6.10).67

67 Note that according to (6.10) the joint property ascription to {a,/?,... ,co} is only a function of the
state of co as demanded by the necessary condition of Instantaneous Autonomy. If this joint property
ascription were a function of the state Wa(O of co plus snooper, as it appears to be according to
formula (6.9), this necessary condition would be violated and application of Instantaneous Autonomy
would not be possible.
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MATHEMATICS

To prove from condition (6.7) that

Tr™(W w [PJ ® Pa
a ® P( ® •••]) = Tr^PT" P ^ [P« ® P* ® • • • ]) (6.11)

I give a lemma and a theorem:

Lemma 6.1
For each density operator W and each orthonormal set {\ej)}j of vectors, the
following holds

{ej\W\ej) = 0 o Vfc : (ej\W\ek) = (ek\W\ej) = 0. (6.12)

Proof: The <= part is trivial. To prove the => part, consider a density oper-
ator W. Because W is self-adjoint and positive, it follows that {ip\W\xp) > 0
for every vector \xp). Now take {ej\W\ej) = 0 and assume that (ej\W\ek) ^ 0.
Define the vector \xp) = X \ej) + \ek). Then

= {ek\W\ek)+2Ke\k(ej\W\ek)\. (6.13)

If (ek\W\ek) = 0, choose X = -l/(ek\W\ej), if (ek\W\ek) ^ 0 (W is positive,
so {ek\W\ek) > 0), choose X = -(ek\W\ek)/(ek\W\ej). In both cases (\p\W\\p)
is negative, contradicting that W is positive. By reductio ad absurdum it
follows that if (ej\W\ej) = 0, then (ej\W\ek) = 0. The complex conjugate of
this result yields (ek\W\ej) = 0 . •

Theorem 6.1
V {Qq}q l s an orthogonal set of projections on JifK with J2qQq = ^K> an^ if
{Qr}r is an orthogonal set of projections on J ^ with J2r Q\ = 1 ,̂ and WK^ is
a density operator with partial trace TrK(WK*) = W^, then

Vq,r : TrKA(WKX[QK
q ® Q?]) = 5VTrK\\VKX[QK

q ® Qx
q]) (6.14)

if and only if

Vs : TrK(WKA[QK
S ®1X]) = QA

SW
X = WXQX

S. (6.15)

Proof: To prove the 'if part of the theorem, consider a density operator
WKX that obeys (6.15). Then, for all q and r:

TrKX(WKX[QK
q ® Qx]) = TrA(TrK(WKX[QK

q ® Ix]) Qx) = Trx(WxQx
qQ

x)

= V Trx(WxQxQx) = V TrK\WKX[QK
q ® Qx]). (6.16)

To prove the 'only if part, take a density operator WKX that obeys (6.14).
Define orthonormal bases {lv£&)}a,6 f° r ^K a n d {\V>X

td)}c,d for JfA such
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that all g*s and Qxs can be expanded as, respectively, QK
q = J2b l v £ > £

and Qx = Z)rflVr,d)(Vr,dl- A n orthonormal basis for tfKk is then (|T/>£&) <8)

IVc^)}«»^c,d- If o n e performs the trace in (6.14) with respect to this basis, one

obtains

Because the density operator WKX is a positive operator, each term in this
summation must be positive or equal to 0. It thus follows that each term is
0 and from Lemma 6.1 one can conclude that

a + c or e + g => ( V ^ K V ^ I ^ ^ I V ^ I V ^ ) =0. (6.18)

It can be shown that (6.15) holds because the matrix elements of the three
operators in (6.15) with respect to the basis {\y>cd)}cA> coincide. Consider the
matrix elements of the operator TTK(WKX[Q* <8> P1]) with 5 arbitrary. From
(6.18) it follows that

ajb

K ^ | ^ ) | ^ ) . (6.19)
b

The matrix elements of QXWX are according to (6.18) equal to

ajb

= Y,8csdgs {wtb\{wid\WK'\wlb)\wik)' (6.20)
b

The same expression can be derived for the matrix elements of WXQX. These
matrix elements all coincide so (6.15) holds. •

The equality (6.11) can now be proved by first noting that by definition

= Tro>(Tra(WrffCO[P/ (8) Iw]) [Pa
a ® PJJ (8) • • •]). (6.21)

The state Waco obeys condition (6.7) and Theorem 6.1 yields that
Tva{WGO) [PI ® H ) equals W^Pf for all d. Substitution of this into (6.21)
gives (6.11).
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6.3 A no-go theorem

In special cases one can thus give joint property ascriptions to collections
of non-disjoint systems in the spectral modal interpretation. In this section
I prove that such property ascriptions cannot be given in general. Firstly, I
determine a necessary condition for the existence of general joint property
ascriptions. Then, I establish a no-go theorem by proving that the spectral
modal interpretation cannot always meet this necessary condition (Vermaas
1997).68

Consider a collection {K;,V1,V,...} of subsystems of a large system co.
The states of K, X ... are then partial traces of the state W°*. If a joint
property ascription to {/c, A, v,. . .} exists, there exist probabilities p(P^, P£,...)
which necessarily generate a classical probability space (E,s/,p) obeying
Kolmogorov's axioms: take for the set E of elementary events the set {P£}k x

{P/}/ x ••• with x the Cartesian product for sets; let s/ be the a-alge-
bra generated by the members of E, and let the probability measure p
be equal to p(P£, P£9 • • •) itself. Furthermore, the marginals of p(P£, P£,...)
necessarily give the probabilities for the (joint) property ascriptions to subsets
of {K,A,V, . . . } . For instance, the probabilities p(P^,Pc

v,...) for the joint
property ascription to {/l,v,...} must be the marginal J2aP(^a^b^c^")-
Hence, joint property ascriptions exist only if the following condition is
satisfied:

Necessary condition for joint property ascriptions

For every collection {K,X,...} of subsystems of a system co and for every state
W™, there exist classical probabilities p(P£,P£,...) which are consistent with the
probabilities for the property ascriptions to subsets of {K, X,...}.

This condition can easily be satisfied: just let p(P£,P£,...) be the product
of its one-slotted marginals p(P^), p(P£), etc. However, in the spectral modal
interpretation some joint probabilities are already fixed, namely those for
disjoint systems and those derived in the last section. And these joint proba-
bilities are not, in general, products of their one-slotted marginals. Hence, the
question becomes whether the necessary condition can be satisfied given the
constraint that some joint probabilities are already defined by the spectral
modal interpretation. The answer is no: it can be proved that the joint prob-
abilities (6.2) for disjoint systems make it impossible for the above necessary
condition to be satisfied.

68 The no-go theorem in Vermaas (1997) is the third in a series which started with no-go theorems by
Bacciagaluppi (1995) and by Clifton (1996). These earlier theorems, however, do not pertain to the
spectral modal interpretation but disprove the possibility of enriching it with a property ascription
rule called Property Composition (see Section 13.2 and Bacciagaluppi and Vermaas (1999)).
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In order to sketch this no-go proof, consider a composite a> of four disjoint
systems a, /?, y and 3. Assume that the state of co is pure and consider
the systems {a,a/J,a/?y}. If there exists a joint property ascription to these
systems, then, according to the above necessary condition, the corresponding
joint probabilities p(P%,P^,P^y) should be classical probabilities and be
consistent with the (joint) property ascriptions to subsets of {a5a/?,aj8y}.

Let, for a moment, p(a,b,c) be shorthand notation for p{P%,pf\P?py). A
general result is that a set of values {p(a, b, c)}a,b,c defines classical probabili-
ties that satisfy

p(a, b, c) > 0, ] T p(a, ft, c) = 1,
a,b,c

(6.22)

if and only if the marginals p(a), p(b\ p(c\ p(a, b\ p(a, c) and p(b, c) of these
values (which are defined by p(a) = J2b,c P(a> ^>c) an (* P(a> ^) = Ylc P(a> ^ c)>
etc.) satisfy the so-called Bell-Wigner inequalities:69

0 < p(x, y) < p(x) < 1, Vx, y E {a, b, c] with x =̂ y,

p(x) + p(y) - p(x, y) < 1, Vx, y G {a, b, c] with x ^ y,

p(a) + p(&) + p(c) - p(a, b) - p(a, c) - p(b, c) < 1,

p(a) - p(a, b) - p(a, c) + p(b, c) > 0,

p(b) - p(a, b) - p(fo, c) + p(a, c) > 0,

p(c) - p(a, c) - p(b, c) + p(a, b)>0.

Thus the fact that the probabilities p(P^pf,Pcpy) should be classical prob-
abilities implies that their marginals should satisfy these Bell-Wigner in-
equalities. So, p(P%,P^,P?Py) should satisfy, say, the fifth inequality, which
reads

(6.23)

0. (6.24)

And the fact that the probabilities p{P^pf,P^y) should be consistent with
the property ascriptions to subsets of {a,ajS,aj8y}, implies that the (joint)
probabilities in this fifth inequality may be calculated by directly applying
the spectral modal interpretation to these subsets. Hence, one can check this
inequality without being forced to determine p(P%,P^\P^y) itself.

The probabilities in the fifth Bell-Wigner inequality (6.24) can all be
calculated by the spectral modal interpretation. The first probability is clearly

= Tv(o(Wc Vs]), (6.25)

69 See Pitowsky (1989, Sect. 2.4) and Beltrametti and Maczynski (1993, Sect. V).
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and the joint probabilities p(P^pf), p(P^Pfy) and p(Pf,Pfy) can be
determined with the joint probabilities (6.2) for disjoint systems. Consider,
for instance, p(P%,P^). Since a and ocp are not mutually disjoint, one cannot
calculate p(P^P^) directly with (6.2). But because co has a pure state, it
follows from (6.2) that the core properties of ajS and of yd are one-to-one
correlated (yd thus acts like a snooper for a/?; see the MATHEMATICS). Hence,
p(P^P^) is equal to p(P%,Py

h
d) and this latter joint probability can be

calculated with (6.2). Exploiting also the one-to-one correlations between the
core property ascriptions to 8 and a/ty, it follows that

I (6.26)

p(PgP,P?Py) = p{Pf,P6
c) = Tr^iW™ [Pf ® F ®P*]). J

To sum up, if a joint property ascription to {a,a/?,a/?y} exists, the spectral
modal interpretation satisfies the above necessary condition. And if this
necessary condition is satified, then the spectral modal interpretation satisfies
the fifth Bell-Wigner inequality (6.24). It is, however, possible to choose
the state of co such that this Bell-Wigner inequality is violated (see the
MATHEMATICS). Hence, it follows by reductio ad absurdum that there does not
always exist a joint property ascription to {a,a/?,a/Jy} in the spectral modal
interpretation.

This no-go theorem proves that the spectral modal interpretation cannot
be supplemented by general joint property ascriptions to non-disjoint sys-
tems. Thus there exist only general correlations between disjoint systems,
supporting the view that if one accepts the spectral modal interpretation,
one has to accept perspectivalism as well.

The no-go theorem also proves that the bi modal interpretation cannot
be supplemented by joint property ascriptions if one accepts Instantaneous
Autonomy, Dynamical Autonomy for measurements, and Empirical Ade-
quacy. The bi modal interpretation leads in this case to the spectral modal
interpretation (as proved in Appendix A) such that joint property ascriptions
also have to obey (6.2) and the above necessary condition.

MATHEMATICS

I firstly prove a lemma for the spectral modal interpretation which says that
if two disjoint systems a and T have a pure composite state \Vax), then the
properties ascribed to a and to T are one-to-one correlated. (This lemma
essentially says that if two systems have a pure composite state, then the
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spectral modal interpretation yields the same core property ascription as the
bi modal interpretation.)

Lemma 6.2
If a composite ox has a pure state {W™), the eigenvalues of Wa and Wx can
be labelled such that wj = wj for all j . Given this labelling, the core property
ascriptions to a and % are one-to-one correlated, that is, p(P?\P£) = 0 for all

Proof: The biorthogonal decomposition of IW^) yields that the eigenvalues
of both W° and WT are {kj}j. Now label the eigenprojections of WG and
WT such that PJ = PG{Xj) and Pj = PT(A/) for all ;. Substitution of the
biorthogonal decomposition into the joint probabilities (6.2) for {a, T} gives

P£) = n[Ij]Xj6Jk. •

Now take co = otflyd and assume that co has a pure state. From the lemma
it then follows that the properties of a/J are one-to-one correlated with the
properties of yd, and that the properties of a/?y are one-to-one correlated
with the properties of d. Hence, yd is a snooper for a/? and 6 is a snooper
for a/ty, proving the equalities (6.26).

I secondly prove that one can give a pure state for co such that the
fifth Bell-Wigner inequality (6.24) is violated. This inequality gives with the
equalities (6.26)

? * ? P*) > 0. (6.27)

Let the Hilbert spaces Jfa, Jf ^, 3fP and tfb all be two-dimensional and let,
respectively, {\eaj)}2

j=v {\epj}}2
j=v {\e^)}j=1 and {\eSj)}2

j==1 be orthonormal bases
for these Hilbert spaces. With these bases one can construct orthonormal
bases for all tensor product Hilbert spaces. For instance, a basis for Jfa® Jf ̂
associated with a£ is given by {\ef) ® |e£)}^=i- Choose \X¥(D) to be

m = y/l Ivf > ® \4>\*) + \[\ lv?> ® Wi) (6.28)

with \xpf) = ^710(2,2,-1,1) and \xpf) = ^ ( - 1 , 0 , 0 , 2 ) with respect
to the basis {\e\) ® \e{),\e\) ® |^ ) , | ^ ) ® |«?>,|^> ® 1^)} and with |(/>f) =
^75(2,0,0,-1) and \(j)y

2
d) = ^ ( 1 , 0 , 0 , 2 ) with respect to the basis {\e\) ®

In order to evaluate the inequality (6.27) one has to determine the eigen-
projections of the states of a/J, yd, a and d. The state {H?™) is chosen such
that (6.27) is violated for the eigenprojections corresponding to the largest
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eigenvalue of all the states. The states of a/? and yd are

Since (v^ lv^) = 0 a nd {^Wi) = ®> ^ e a b ° v e decompositions are spectral
resolutions. Their largest eigenvalue is in both cases | , the corresponding
eigenprojections are, respectively, P^ = lv>î )(v>î l a n ^ P{3 = I ^ X ^ I -

The reduced states of a and 5 can be determined with explicit matrix
representations. For instance W^ is equal to

(6.30)

with respect to the basis {\e\) ® \e{), \ef) <g> | ^ ) , \e%) ® |ef), | ^ ) ® | ^ ) } . Partial
tracing yields

2

with respect to the basis {\ef)9 lef)}. The eigenprojection corresponding to the
largest eigenvalue of this state of a is given by P* = \e%)(e%\. Analogously one
can calculate that the eigenprojection corresponding to the largest eigenvalue
of Ws isPf = \e\)(e\\.

One can now calculate all terms in (6.27) for a = b = c = 1. One obtains
p(Pf) = I p(P?,Pf) = &, p(Pf,Pt) = & a n d P(P">P*) = 5 s u c h t h a t

the left-hand side of (6.27) becomes — ̂ . This inequality is thus violated.

6.4 The atomic modal interpretation

For the atomic modal interpretation it is possible to give general joint
property ascriptions. The joint property ascriptions to arbitrary sets of
atoms can be determined with (6.3). Take a set of atoms {a/};. The joint
probabilities to these atoms are then

0 ])

with co equal to the composite oti^^
Consider then the joint property ascription to the atoms {OCJ}J plus a

molecular system /? consisting of the atoms {0^,... ,am}. The core property
ascription to this molecule is according to (6.3) given by [Pfj b ] = 1 if and
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only if the core property ascriptions to its atoms are, respectively, [P^] = 1,

...,[P£] = 1. Hence,

- b m > K l > r % > • • • ) = K a k • • • h m a m T i » ( w * [P% ® P % ® • • • ] ) . ( 6 . 3 3 )

Using that P£...6mP«,f ® • • • ® Pfl
a; is equal to 8hak • • • bbm<lm P% ® • • • ® P«™,

the above result can be rewritten as

Kbm%% K b m l % • • • ] ) • ( 6 - 3 4 )
For a second molecule y = ocq • • • as one can equally derive that

[p£k...bm (g) r ^ ] [ P C ; . . C S ® r'n[P^ ® pa
a
2
2 ® •••]) . (6.35)

By repeating this procedure over and over again, one can construct joint

probabilities for any set of atoms and molecules.



Discontinuities, instabilities and other bad
behaviour

In this chapter I begin the discussion of the question of how the core
properties of systems evolve in time. This question breaks up in two separate
subquestions. Firstly, there is the question of how the set of all possible core
properties of a system evolves. Secondly, one has the question of how, given
this dynamics of the set of possible core properties, the actually possessed
core property of that system evolves. Here, I consider only the first question
of the dynamics of the whole set of core properties. In the next chapter I
focus on the evolution of the actually possessed core property.

The modal interpretations that I consider ascribe core properties to systems
by means of the spectral resolutions of states. The dynamics of the set of core
properties is thus determined by the dynamical behaviour of these spectral
resolutions. Study of the dynamics of the spectral resolutions now reveals
a number of problematic features of the modal property ascription. Firstly,
the set of the eigenprojections of a state Wa(t) can evolve discontinuously.
Secondly, this set can evolve highly unstably. Finally, the eigenprojections of
a state can evolve rather deviantly when compared with the evolution of the
state itself. As a result of all this, the evolution of the set of core properties
of a system can be discontinuous, unstable and deviant as well.

7.1 Discontinuities

Up to now I have only considered the property ascription to systems at
single instants. It is now time to set things in motion.

Consider two interacting spin ^-particles a and x and assume that at t = 0
they are both in a pure spin up state in the z direction. So, let o have a state
|w?) and let x have a state \u\). Let the composite ax evolve freely and let its
Hamiltonian be HGT = -i|wf)(df| ® \u\)(d\\ +i|df)(wf| ® \dV)(u\\. Then the

99
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Schrodinger equation yields that the evolution of the state of ax is given by

|*F'T(t)> = cos t |uf) ® \u\) + sin t \d\) ® \d\). (7.1)

The state of one of the particles, say a, thus evolves as

WG{t) = cos21 | 4 ) ( 4 | + sin21 |df )(d£|. (7.2)

In the bi, spectral and atomic modal interpretations the core property as-
cription to this particle a is given by

2 t

| [ | 4 ) (4 | ] - 1 with probability cos2. %

\[I4)(4I] = 1 with probability sin2t } (7.3)

[T7] = 1 with probability 1 at t = n/4 (mod n/2).

So, the core properties evolve as follows: at t =/= n/4 (mod7c/2) the set of core
properties is given by {CJ}j = {|wf)(uf |, \d\)\d\|} and at t = n/4 (mod7r/2)
it is given by {F}.

This evolution raises two questions. Firstly, how does the actually possessed
core property of a evolve? Consider, for instance, the time interval [0,TC/2].

At the beginning at t = 0, the actual spin of a is with certainty up in the z
direction. That is, [|M|)(M?|] = 1 with probability 1. Then the probability that
the spin is actually down, that is, [|df)(df |] = 1, increases. And at the end
of the interval at t = n/2, the spin is down with certainty. But how does the
actually possessed spin evolve in this interval? Does it oscillate randomly
between up and down, before it ends being down with certainty? Or does
the spin flip only once from up to down? This question of the evolution of
the actually possessed core property is taken up in the next chapter.

A second question is what happens at t = n/4. At this instant the state
Wa(t) passes through a degeneracy in its spectral resolution: at t ^= n/4
the state has two eigenvalues and thus two eigenprojections |M?)(M?| and
|df)(d||, and at t = n/4 the state has only one degenerate eigenvalue \
and one eigenprojection F . The core property ascription to a consequently
exhibits a discontinuity: the set of core projections changes at t = n/4 from
the set {|wf >(M||, |df )(df |} to the set {F}, and back again. The question now
is whether this discontinuity reveals a real discontinuity in the properties of a
or whether it proves that modal interpretations are not properly interpreting
states with degenerate spectral resolutions.

This possibility that modal interpretations do not accurately interpret
degenerate states becomes more pressing if one considers the two spin ^-par-
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tides in the Einstein-Podolsky-Rosen-Bohm experiment. In this experiment
the two particles are emitted in the singlet state ^(t)) = \y/l{\uf) <g> \dl) -
\d°) ® |up). Particle a thus has the permanently degenerate state

w°(t) = \ \u\w\\ + \ i4)(4i = \ r. (7.4)
The core property ascription to this particle is therefore the tautology that
[F] = 1 with probability 1. So, if modal interpretations indeed properly
interpret degenerate states, their property ascription can be quite trivial.

These observations led to two attempts to improve on the modal inter-
pretation of degenerate states. Before discussing these attempts I give two
definitions: let's call degeneracies of states that are restricted to single in-
stants, like the ones in (7.2), passing degeneracies,10 and let's call degeneracies
that occur during whole intervals, like in (7.4), permanent degeneracies.

The first attempt was by Elby and Bub (1994) who tried to devise a modal
interpretation which always singles out one-dimensional core projections.
They considered a composite of three disjoint systems a, /? and y with a pure
state I^P0^) and wrote down the so-called triorthogonal decomposition,

) (7.5)

(the sets {\c°j)}j, {\Cj)}j and {\cyj)}j are sets of pair-wise orthogonal vectors).
Elby and Bub then proposed that the core property ascription to, for instance,
a is [|c*)(c*|] = 1 with probability \ca\

2. This property ascription makes sense
because they proved that if a triorthogonal decomposition of l1?0^7) exists,
then the projections {|cy)(cy|}7- are uniquely fixed by this decomposition (see
also Bub (1997, Sect. 5.5) for the proof).71

If this 'tri modal interpretation' had been defensible, one would indeed
have had a procedure for improving on the bi, spectral and atomic modal
interpretations of degenerate states. To see this, consider a spin ^-parti-
cle a which is part of a composite OTT' with the pure state \¥OTX'(t)) =
c\ \uf) ® \uV) ® \ui) + c2 \d\) ® \dl) ® 14'}. The state of a is then W°{t) =
kil2 |wf )("f I + \C2\2 \d°)(d?\. Thus, if WG(i) is non-degenerate, the bi, spectral
and atomic modal interpretations agree with the tri modal interpretation
that the core properties of a are given by {|Mf)(«f |,|df)(df |}. But if Wa(i)
is degenerate, the bi, spectral and atomic modal interpretations ascribe the

70 More precisely, a degeneracy of a state Wa(t) a t tQ is called passing if there exists a punc tua t ed
interval (to — e, to + s)/{to} in which Wa(t) does no t have this degeneracy.

71 The triorthogonal decomposition thus outclasses the biorthogonal decomposition: the biorthogonal
decomposition only uniquely singles out the one-dimensional projections {|c")(c"|};- if the values

{|c/|2};- are non-degenerate (see page 51) whereas the triorthogonal decomposition always singles out
these projections, even if the values {|c;|

2}; are degenerate.
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core property V, whereas the tri modal interpretation still ascribes the core
properties {|M|)(M||, |df)(df|}. Unfortunately, the tri modal interpretation is
not defensible. Clifton (1994) proved that not all possible states |*Fa^) allow
a triorthogonal decomposition (7.5). Hence, the property ascription by Elby
and Bub is applicable only in special cases.

The second attempt was the one by Bacciagaluppi, Donald and Vermaas
(1995). The aim was to remove the discontinuities in the property ascription
of modal interpretations, by basing the core property ascription to a system
at time to on the state of the system as it evolves in an interval around to.

Consider again the degeneracy at to = rc/4 in the state (7.2) of the spin
particle a. In a small punctuated interval (TT/4 — z,n/4 + s)/{n/4} around
this degeneracy, the spectral resolutions of WG(t) yield for every instant
t the eigenvalues cos2£ and sin2t and the corresponding eigenprojections
|M|)(M|| and |d|)(d?|, respectively. These individual spectral resolutions of
WG(t) can be joined together to give what I propose to call a continuous
dynamical decomposition. Such a dynamical decomposition has the general
form Wa(t) = Y<q fq(t) T%(t), where {f%(t)}q are continuous eigenvalue func-
tions and where {T*(t)}q are eigenprojection functions which are continuous
with regard to the trace norm ||.||i.72 In the case of our spin particle,
these functions are given by fa(t) = cos2t, f%(t) = sin2£, T[(t) = \u°)(u°\
and Tgit) = \d°)(d°\. This dynamical decomposition of W°(t) can now
be extended to the instant to = rc/4 of the degeneracy: the left-hand
limits limt^n/4fq(t) and the right-hand limits lim^^/4/^(t) both yield the
values /f (TT/4) = ± and /f (TT/4) = ±, and the limits limt^/4 Tjj(t) and
limtW4 T%(t) both yield the projections Tf (TT/4) = |M|)(M|| and Tf (TT/4) =
\df){d^\. So, by continuing the eigenvalue and the eigenprojection func-
tions, one can extend the dynamical decomposition of WG(t) defined on
(7c/4 — e,7r/4 + £)/{7r/4} to the whole interval (TT/4 — 8,TT/4 + £). This extended
dynamical decomposition yields a resolution of the degenerate state Wa(n/A)
which decomposes this state in more terms than the spectral resolution
of Wa(n/4) does. The spectral resolution Wa(n/4) = T,jw<j(n/4)p?(n/4)
yields one eigenprojection Pf (TT/4) = F , whereas the extended dynami-
cal decomposition W<7(n/4) = ^qfq{Ti/4)TG(n/4) yields two projections

Let's call the functions {T^(t)}q the continuous trajectories of eigenpro-
jections of Wa(t). These continuous trajectories of projections evolve (by
definition) without discontinuities through the degeneracy at to = n/4. The
idea by Bacciagaluppi, Donald and Vermaas was now to define a modal

72 See footnote 7 for the definition of the trace norm.
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A continuous trajectory of eigenprojections

A projection-valued function T^(t) is a continuous trajectory of eigenpro-
jections of an evolving state Wa(t) if T*(t) is an eigenprojection of Wa(t),
for every t, and if T*(t) is continuous with respect to the trace norm ||.||i.

interpretation, called the extended modal interpretation, in which the core
properties of a system a at to are not given by the eigenprojections {P^(to)}j
of the state of a, but by the projections {T£(to)}q which lie on the continuous
trajectories of eigenprojections of the state of a.

If this idea had worked in general, one would again have had a method
of improving on the bi, spectral and atomic modal interpretations. Assume
for a moment that every evolving state Wa(t) allows at all times to a unique
dynamical decomposition Wa(t) = Y^q f%(t) T*(t). Then the extended modal
interpretation and the bi, spectral and atomic modal interpretations all agree
that if the state of an atomic system is non-degenerate in a small interval
around to, the core properties of that system at to are given by the eigen-
projections of that state at to (if there are no degeneracies, the projections
{T*(to)}q are equal to the eigenprojections {Pj*(to)}7). However, if a state
passes through a degeneracy at to (that is, Wa(to) is degenerate at to but
non-degenerate at a small punctuated interval around to), the extended modal
interpretation and the bi, spectral and atomic modal interpretations differ
because then the projections {T£(to)}q are not equal to the eigenprojections
{Pj(to)}j. Moreover, at a passing degeneracy the core property ascription by
the bi, spectral and atomic modal interpretations evolves discontinuously,
whereas the sets of core properties ascribed by the extended modal interpre-
tation evolves by definition continuously. The extended modal interpretation
does not, however, improve on the property ascription to systems with per-
manently degenerate states. Consider, for instance, the state WG(t) given
in (7.4). Because this state is permanently degenerate, it follows that the
dynamical decomposition in a small punctuated interval around any instant
t0 is given by Wa(t) = /f (t) T[(t) with f°(t) = \ and T{(t) = F . If this
dynamical decomposition is extended to to, one obtains that the only pro-
jection lying at to on a continuous trajectory of eigenprojections of WG(t) is
given by Tf (to) = F . For permanently degenerate states, the core properties
ascribed by the extended modal interpretation are thus equal to the core
properties ascribed by the bi, spectral and atomic modal interpretations.
Hence, the extended modal interpretation is only an improvement in the
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sense that discontinuities in the core property ascription related to passing
degeneracies are removed.73

Unfortunately, there are indications that the extended modal interpreta-
tion also cannot be applied in general. That is, it need not be the case that in
quantum mechanics states have continuous trajectories of eigenprojections.
The extended modal interpretation is thus threatened by the same verdict as
the tri modal interpretation of Elby and Bub: that is, it is useless because it
is applicable only in special cases. But irrespectively of this possible verdict,
the results of Bacciagaluppi, Donald and Vermaas proved their worth since
they revealed a number of things about the evolution of the core properties
ascribed by the bi, spectral and atomic modal interpretations. It was shown
that, given certain assumptions, evolving states can be decomposed in terms
of continuously evolving trajectories of eigenprojections. And these trajecto-
ries, when they exist, sometimes evolve in undesirable ways. Notably, small
changes in the state can induce large changes in the set of eigenprojections
and the evolution of the eigenprojections of a state can exhibit deviant be-
haviour when compared with the evolution of the state itself. The evolution
of the set of core properties ascribed by the bi, spectral and atomic modal
interpretations can thus be not only discontinuous, but also unstable and
deviant.

In this chapter I sketch the results of Bacciagaluppi, Donald and Vermaas
(1995). A rigorous review would lead to much mathematical force of arms.
Therefore, in order to concentrate on the results themselves, I choose to
sometimes give up on full mathematical precision. For the precise mathe-
matics I refer the reader to the original paper;74 for a concise discussion the
reader may consult Donald (1998). In Sections 7.2 and 7.3 I consider the
dynamics of the spectral resolutions of states by discussing the question of
whether the eigenprojections of evolving states can be joined to continuous
trajectories. In Section 7.4 I discuss the consequences of the dynamics of
spectral resolutions, especially with regard to the instability of the modal
property ascription. Readers who are allergic to continuity proofs are advised
to skip the next two sections and go straight to Section 7.4 on page 127.

73 Guido Bacciagaluppi (private communication, 1998) noted that the extended modal interpretation
does not comply with my assumption of Instantaneous Autonomy. Compare, for instance, two spin
\ -particles a, one with the state (7.2) and the other with the state (7.4). In the first case the extended
modal interpretation ascribes the core properties {|wf )(M||, \d?)(d?|} at t = n/4 and in the second case
it ascribes the core property F at t = n/4, although in both cases the state W(7(n/4) of these particles
is given by ^F7. One can save Instantaneous Autonomy by reformulating it as: If two systems have
equal states during a small time interval around to, then the instantaneous property ascriptions to those
systems at to are also equal.

7 4 See also Bacciagaluppi (2000).
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7.2 Continuous trajectories of eigenprojections

A necessary condition for applying the extended modal interpretation out-
lined above is that every evolving state Wa(t) in quantum mechanics allows
at every instant to a dynamical decomposition Wa(to) = J2q f%(to) T£(to) in
terms of projections {Tq(to)}q which lie on continuous trajectories {T*(t)}q of
eigenprojections of Wa(t). Moreover, this dynamical decomposition should
be (implicitly) definable (see page 42) from the state evolution Wa(t). For, if
there does not always exist such a decomposition, the core property ascrip-
tion of the extended modal interpretation is on occasions inapplicable. And,
if the dynamical decomposition is not definable from the state evolution
Wa(t), then this evolution does not provide the means to fix a dynamical
decomposition.

If one compares the dynamical decomposition with the spectral resolu-
tion W*(to) = ^2j^j(to)Pf(to)9 it follows that every eigenprojection Pg(to)
that corresponds to a non-zero eigenvalue Wk(to) is given by the sum
pk(to) = J2{q\f«(to)=wk(to)}

 Tq(to)- Hence, if there exists a dynamical decompo-
sition which is implicitly definable from Wa(to), then every eigenprojection
P%(to) with Wfc(to) 7̂  0 is a sum of projections {T*(to)}q on eigenprojection
trajectories {T*(t)}q implicitly definable from Wa(t). Conversely, if every
eigenprojection P£(fo) with Wfc(fo) =h 0 is a sum of projections {T£(to)}q on
trajectories {T£(t)}q, implicitly definable from Wa(t), then one can construct
a dynamical decomposition which is implicitly definable from W^ito): just
replace all the eigenprojections P%(to) in the spectral resolution of Wa(to) by
the sums over the projections {Tq(to)}q. So, the condition that there exists a
dynamical decomposition of every state at every instant is equivalent to the
following condition:

Dynamical Decomposition

For every state evolution W*(t), for every instant to and for every eigenprojection
Pj?(to) of Wa(t$) with Wfc(to) 7̂  0, there exists a set of continuous trajectories {T%(t)}q

of eigenprojections implicitly definable from Wa(t) on a small interval / around to
for which holds that P£(t0) = J2q T%(t0).

One can show that the state of a freely evolving system a satisfies this
condition. Take any eigenprojection P£(to) of the state Wa(to) with Wk(to) ^ 0
and consider a small interval / around to. If Wa(t) evolves freely on this
interval, its evolution is by the Schrodinger equation (see Section 2.1) equal
to

W*{t) = U"(t, t0) W\to) t/a(t0, t\ (7.6)
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where f7a(x,y) is given by exp([(x — y)/ih] Ha). Substitution of the spectral
resolution of W^ito) yields that Wa(t) can be decomposed as

W"(t) = J2 *j(to) U"(t, t0) Pf(to) U"{t0, t). (7.7)
j

This decomposition is a spectral resolution for all t e I because the values
{wj(to)}j are distinct and the projections {C/a(t, to)P*{to) Ua(to,t)}j are pair-
wise orthogonal. Hence, the eigenvalue Wk(to) of W^ito) is also an eigenvalue
of Wa(t) for every instant t e I around to. The eigenprojection P£(t) that cor-
responds to this eigenvalue Wk(to) of W*(t) is given by Ua(t, to) Pgito) U^ito, t)
for every t ^ to. These eigenprojections P%{t\ together with P%(to), can be
joined on / to a trajectory

T£(t) = U*(t9to)Pk(to)U"(to9t), (7.8)

which is continuous with regard to the trace norm.75 This proves that P%(to)
is given by the 'sum' Pj*(to) = Tg(to) with Tg(to) lying on a continuous
trajectory T%(i) of eigenprojections of the state Wa(t) as it evolves around
to-

Moreover, since each eigenprojection I7"a(t,fo)-P]?(*o) ^a(*o>O is implicitly
definable from the state W*(t) for all t e I, the trajectory Tg(t) is implicitly
definable from the state evolution of Wa(t) on /. Hence, any eigenprojection
P£(to) of a freely evolving state with Wk(to) ^ 0 satisfies the Dynamical
Decomposition condition.

The question is now whether the same positive result holds for the states
of interacting systems. In this and the next section, building on the results
by Bacciagaluppi, Donald and Vermaas (1995), I give an answer to this
question. I do so by means of four propositions about the dynamics of states
(see the MATHEMATICS for proofs or references to proofs):

The first proposition yields that in quantum mechanics states evolve con-
tinuously:

Proposition 7.1
If a system a is part of a composite co which, as a whole, evolves freely by
means of the Schrodinger equation, then the state Wa(t) of that system evolves
continuously with regard to the trace norm.

In quantum mechanics states of freely evolving composites indeed evolve by
means of the Schrodinger equation. So, if one assumes that, say, the state
of the whole universe evolves freely, then the states of all the systems in the
universe evolve continuously with regard to the trace norm.

75 Continuity of this trajectory T£(t) can be proved with Proposition 7.3, which I give below.
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The second proposition yields the continuity of the evolution of the
eigenvalues of a state. Consider a state evolution Wa(t) and let

N

(t)\ (7.9)

be a decomposition of this state at all times t in terms of eigenvalues {rf(t)}i
and one-dimensional eigenprojections {\rf(t))(rf(t)\}i (if W^it) is degenerate
at r, some of the rf(t)s are equal). Let the eigenvalues be ordered like
rf(t) > r%(t) > ...> rfj(t). The number N is the dimension of J^a and may
be finite or infinite. It then holds that:

Proposition 7.2
If a state Wa(t) evolves continuously with regard to the trace norm, then each
eigenvalue function rf(t) evolves continuously as well.

The third proposition yields constraints on the evolution of the one-dimen-
sional eigenprojections {\rf(t))(rf(t)\}i in the decomposition (7.9). Take an
interval (a, b) with a < b and consider all the one-dimensional eigenprojec-
tions \rf(t))(rf(t)\ whose eigenvalues rf(t) are within (a,b) for a small time
interval around to. Let P{*ab)(t) be the sum of these projections {\rf(t))(rf(t)\}i,
so

)I- (7.10)
rf(t)e(a,b)

Then it holds that:

Proposition 7.3
If a state W^it) evolves continuously with regard to the trace norm, then each
projection-valued function P*ah^(f), where a and b are not eigenvalues ofW*(f),
evolves continuously as well with regard to the trace norm.

Let's return to the question of whether the states of interacting systems
satisfy the Dynamical Decomposition condition and see what these three
propositions yield (I present the fourth proposition in the next section). Ac-
cording to Proposition 7.1, in quantum mechanics all the states of interacting
systems evolve continuously with regard to the trace norm. Propositions 7.2
and 7.3 thus always apply. Consider now any eigenprojection P%(to) of a state
W*(to) that corresponds to a non-zero eigenvalue w/c(̂ o). One can distinguish
five different cases. In the first case P%(to) corresponds to a non-degener-
ate eigenvalue and in the other four cases it corresponds to a degenerate
eigenvalue. Let's start with the first case.
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CASE 1: Pg(to) corresponds to a non-degenerate eigenvalue Wk(to) i= 0.
In this case P£(to) is a one-dimensional projection and the eigenvalue

is different to all other eigenvalues of Wa(to). In terms of the decomposition
(7.9) of Wa(t), this means that there exists an eigenprojection function
\r${t))(r$(t)\ such that P£(t0) = \r«(to))(r«,(to)\ and such that wk(t0) = r«(t0).
Moreover, it holds that rf^^to) > rf,(to) > rff+1(to). By Proposition 7.2
all functions {rf(t)}t evolve continuously. One can thus construct a small
interval / around to with rjLiW > rf,(t) > rff+1(t) for all t e I. And by
Proposition 7.3 the eigenprojection function \rf,(t))(r*(t)\, corresponding to
the eigenvalue function r*(t), is continuous on this interval with regard to
the trace norm (this continuity follows from Proposition 7.3 if one chooses
the interval (a,b) such that it contains only rf,(t) on /) . Hence, if one defines

one has a continuous trajectory of eigenprojections of Wa(t) on the interval
/ with P£(to) = Tg(to). Furthermore, since the value rf,(t) is a non-degen-
erate eigenvalue of Wa(t) for all t e /, the corresponding eigenprojection
\r$(t))(rf,(t)\ is implicitly definable from W*(t) for all t e /. Hence, the
trajectory Tj*(t) is implicitly definable from the state evolution of Wa(t) on
/. Any eigenprojection that corresponds to a non-zero and non-degenerate
eigenvalue thus satisfies the Dynamical Decomposition condition.

CASE 2: Pg(to) corresponds to a permanently degenerate eigenvalue
Wfc(to) + 0.

In this second case Pg(to) is a K-dimensional projection with K > 1. In
terms of the decomposition (7.9) of W*(t\ this means that there exist K eigen-
projection functions {\rf(t))(r?(t)\9 |r?+1(0>(r?+1(0l,• • • , I ^ + K - I ( 0 ) ( ^ + X - I ( 0 I }

such that P£(t0) = E f ^ l ^ o ^ W o ) ! and wk(t0) = r«(t0) for all
/ e {i'9... J + K - 1}. Moreover, it holds that rJLifo) > r$(to) = ... =
r*+K_{(to) > rf+K(to). Because Wk(to) is permanently degenerate, the func-
tions {rf ( 0 } j ^ - 1 remain equal around to. By Proposition 7.2 all functions
{rf(t)}i evolve continuously and one can thus construct a small interval /
around to with rf^t) > rf,(t) = ... = rl?+x_1(0 > rf,+K(t) for all t e /. And
by Proposition 7.3 the projection Yll'i=^~l lr?(0)(rf(0l is continuous on this
interval with regard to the trace norm (choose the interval (a, b) such that it
contains only the values rf,(t) = ... = rl5+x_1(0 on /) . Hence, if one defines



7.2 Continuous trajectories of eigenprojections 109

one obtains a continuous trajectory of eigenprojections of Wa(t) on the
interval / with Pg(to) = Tg(to). Furthermore, since the value rf,(t) = ... =
r*+K-i(t) is a -K-fold degenerate eigenvalue of Wa for all t e J, the cor-
responding K-dimensional eigenprojection Yl\=^~l lr?(0)(r?(*)l is implicitly
definable from Wa(t) for all t e /. Hence, the trajectory T£(f) is implic-
itly definable from the state Wa(t) as it evolves on /. Any eigenprojection
that corresponds to a non-zero and permanently degenerate eigenvalue thus
satisfies the Dynamical Decomposition condition as well.

CASE 3: P£(to) corresponds to an eigenvalue Wk(to) ^ 0 which passes a
degeneracy.

In this case P£(to) is again K-dimensional with K > 1. One thus has
K eigenprojection functions {|rf(O)(^(OI}f=J^~1 such that P^o) =
E ! ? " 1 k?('o)>(r?fa>)l and such that wk(t0) = rf(t0) for all i e {*',... J +
K — 1}. Now, however, because Wk(to) is passing a degeneracy, the functions
{ff (t)})^"1 are all distinct on an interval around to. This means that the
Dynamical Decomposition condition can be violated. To see this, assume for
simplicity that one is only dealing with two non-zero eigenvalue functions.
So

W*{t) = rftt) |rf(O><r?(t)| + rf(t) |r2
a(0)(r2

a(t)| (7.13)

with r?(to) = r%(to) = \ and with r\(t) ^ r\(t) for all t in a small punctuated
interval I /{to} around to. The degenerate eigenprojection P£(£o) is thus
ki(*o))(ri(*o)l + l^^oJX^^o)!. Because the eigenvalues r?(f) and rj(t) are
distinct on //{t0}, the eigenprojections |rf(*))(rf(f)| and |rf(t))(r5(OI evolve
by Proposition 7.3 continuously with regard to the trace norm on this
punctuated interval I/{to}. And the sum |rj(t)>(rf(t)| + \r%(t)) (r%(t)\ of the
eigenprojections evolves by Proposition 7.3 continuously with regard to
the trace norm on the whole interval /. But this need not imply that the
individual eigenprojections |rf(t))(rf(t)| and I^COX^WI evolve continuously
at the instant to of the degeneracy. There are, in fact, three possibilities and for
one of them the eigenprojections {\r*(t))(rf(t)\}i do not evolve continuously
at t0.

The first possibility is that the eigenprojection function \r*(t))(r*(t)\ be-
fore to evolves continuously to the function |rj(t))(rf(£)| after to and that
lr2(*))(r2(0l before to evolves continuously to \r%(t)}(^(01 after to. One can
then define

T?(t) = |r?(t)>(r?(t)|, T$(t) = \fi(t)) (ri(t)\9 (7.14)

and write P£{to) as T*(to) + T|(to). The Dynamical Decomposition condition
is thus satisfied. (Since the eigenvalues r*(t) and r2(t) are non-degenerate
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on I/{to}, the eigenprojections \rf(t)) (r^(t)\ and \r%(t)) (r%(t)\ are implicitly
definable from Wa(t) for all t e I/{to}. The trajectories Tf(t) and T%(t) are
thus implicitly definable from Wa(t) on I /{to} and since these trajectories
on I /{to} extend uniquely to to, Tf(t) and T%(t) are also implicitly definable
from Wa(t) on the whole interval /.) If this first possibility applies, the
passing degeneracy can be understood as that the eigenvalue functions r\(t)
and r^it) touch at the time of the degeneracy. This is illustrated by the
passing degeneracy at to = 0 in the state evolution

W°{t) = (1 - icos20l4)(4l + \ ^ 2 t \dl)(dl\. (7.15)

The second possibility is that the eigenprojection function \rf(t))(rf(t)\
before to evolves continuously to the function Ir^OXffMI after ô and that
lr2(0)(r2(*)l before to evolves continuously to |rj(t))(rj(t)| after to. One can
then define

fK(0)W)l if.s*. m ) = \mMW\ »<**. (716)
\k2

a(t))(r2
a(t)| if t > t 0 , \|f(O><rf(OI Xt>t

One again has P£(to) = Tf(to) + T%(to) and the Dynamical Decomposition
condition is satisfied. (The implicit definability of these trajectories follows
by an argument similar to the argument given for the first possibility.) If
this second possibility applies, the passing degeneracy can be understood as
that the eigenvalue functions r*(t) and ^(t) cross, as is illustrated by the
degeneracy at to = n/4 in the state evolution (7.2).

The third possibility is, however, that the eigenprojection functions do not
evolve continuously through to. An illustration of this is

W°(t) = I 0 0 8 l | M ? ) ( " f ' + Sln21Mz?)(^' if f - U/4' (117)
\cos21 |up(M|| + sin21 \dp(d?\ if t > n/4.

One can still define continuous trajectories {T°(t)}q for this state evolution:
they are {|ufXuf|,|df)<4|} before t0 = n/4 and they are {\up(uj\,\dp(d?\}
after to = n/4. But these trajectories can never be joined to continuous
trajectories defined on an interval / around to = n/4. Hence, the Dynamical
Decomposition condition is violated.

CASE 4: P^(to) corresponds to an eigenvalue Wk(to) ^ 0 which is partly
passing and partly permanent.

In this case there again exist K > 1 eigenprojection functions
{|r?(O)<r?(t)|}f+*-1 such that P£(t0) = E ! ' ^ " 1 l»?fa>)> W O ) I and wk(t0) =
rf(t0) for all i e {?, ...,i'+K-l}. Now, however, Ki functions {rf(t)}^~1

are distinct around to and K2 = K — Ki functions {rfit)}]*?^ remain
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equal around to. In this fourth case the Dynamical Decomposition con-
dition can again be violated because the K\ eigenprojection functions
{lr?(O)(rf(OI}U^+x1

1 neec* n o t e v° l v e continuously through to, as was the
shown by the third possibility of CASE 3.

CASE 5: P%(to) corresponds to a degenerate eigenvalue Wk(to) =/= 0 which is
neither passing nor permanent.

In this final case one also has K > 1 eigenprojection functions
{k?W>(rfWDjj^-1 such that P£ft>) = E ^ " 1 \rf(to))(rf(to)\ and wk(t0) =
rf(t0) for all i e {*',... , f+K-l}. Now, however, the K functions {r?(f)}fj^"1

cannot be divided in K\ functions which are distinct around to and K2 =
K —K\ functions which remain equal around to. Instead K3 functions are
distinct from one another before to andK4 = K—K3 functions remain equal
before to. And K5 =/= K3 functions are distinct after to and K^ = K — K$
functions remain equal after to. A simple example of this final case is given
by the state evolution

w*(t) = Jcos21l"f)(4I + sin21 \A\Wl\ if t < n/4,
[ i f if t>n/4. "

This state is degenerate at to = n/4 with P[(to) = V. The eigenvalue
functions are

= fcos21 if t < n/4, = f sin* t if t < n/4,
1 \i ift>7i/4, 2V \ i ift>7i/4.

These functions are distinct before to (so K3 = 2) and equal after to (so K5 =
0 i= K3). The two initially non-degenerate eigenvalue functions thus merge
to one permanently degenerate eigenvalue function. A second illustration
can be obtained by reversing the time in the state evolution (7.18). One
then has X3 = 0 and K5 = 2 and one can speak about one permanently
degenerate eigenvalue function which splits into two distinct eigenvalue
functions. More generally, one can understand P£(to) in this fifth case as a
degenerate eigenprojection which corresponds to eigenvalue functions which
both merge and split at to.

This final case also violates the Dynamical Decomposition condition.
Consider the state evolution (7.18). Before to the eigenvalue functions are
distinct. Hence, analogously to CASE 1, one can construct the trajectories
T°(t) = |uf)(wfl and T%(t) = |df)(df | for all t < n/4 and these trajectories
are implicitly definable from the state evolution WG(t) before to. After to
the eigenvalues are equal to one another. And, analogously to CASE 2, one
can construct the trajectory Tf (t) = F for all t > n/4 and this trajectory



112 Discontinuities, instabilities and other bad behaviour

is also implicitly definable from the state evolution WG(t) after to. These
trajectories do not, however, connect continuously at to = n/4. Hence, there
do not exist trajectories {T°(t)}q of eigenprojections of Wa(t) which are
continuous around to with regard to the trace norm, such that the Dynamical
Decomposition condition cannot be satisfied.

It is, of course, possible to construct trajectories which are continuous
around t0: take, for instance, T[(t) = \ua)(ua\ and T$(t) = \dff)(d?\. But
one does not meet the Dynamical Decomposition condition by means of
these trajectories because they are not implicitly definable from the state
Wa(t). After to = n/4, the state is degenerate. The only projection which is
implicitly definable from this state is thus the degenerate eigenprojection V
and there are no means to define the trajectories T°(t) and T^t) from this
degenerate eigenprojection.

To sum up, Propositions 7.1, 7.2 and 7.3 restrict the discontinuous dynam-
ics of the spectral resolutions of states in quantum mechanics. The eigen-
values always evolve along continuous functions. And the eigenprojections
that correspond to non-degenerate eigenvalue functions or to permanently
degenerate eigenvalue functions evolve along trajectories which are contin-
uously with regard to the trace norm. However, if two or more eigenvalue
functions cross or touch such that one passes a degeneracy, or if two or more
eigenvalue functions merge or split, the corresponding eigenprojections can
evolve discontinuously. Propositions 7.1, 7.2 and 7.3 therefore do not warrant
that the Dynamical Decomposition condition holds for all possible states
in quantum mechanics. In the next section I present a fourth proposition
which yields that, given certain assumptions, state evolutions which violate
Dynamical Decomposition do not occur.

MATHEMATICS

I start by giving a lemma:

Lemma 7.1
If AaP is a trace class operator of Jf70 '̂, then Aa := Tr^(^4a^) is a trace class
operator of 3tfa and Ma| | i < | | ^ | | i .

This lemma is proved as Lemma 4.7 in Bacciagaluppi, Donald and Vermaas
(1995). Proposition 7.1 can be derived by means of this lemma.

Proof of Proposition 7.1: Consider, firstly, a freely evolving system co with
a pure state |yw(0) an(^ w ^ a Hamiltonian H™. The Schrodinger evolution
is then given by |t/Hf)) = exp([(t - s)/ih] H
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Calculation yields that the operator \a)(a\ — \b)(b\ has two non-zero eigen-
values equal to ±y/l - \(b\a)\2. The difference
is thus a trace class operator with

11 = (7.20)

The inner product (y^ lV^C)) is equal to /icl_ooexp([(t - s)/ift] E")
|(£a)|T/)a;(O)|2d£ft; and this function is according to Kawata (1972, Theo-
rem 3.5.1) continuous in t. Since limt^s(xp(O(s)\xpco(t)) = 1, it follows that
(7.20) is a continuous function of t equal to 0 in the limit t -> s. Hence,
IV^WXv^COl evolves continuous with regard to the trace norm.

Consider, secondly, a freely evolving system co with a non-pure state Ww(i)
and a Hamiltonian H™. One can always construct a (hypothetical) freely
evolving composite COG with a pure state \xp(oa(t)) such that the Schrodinger
evolution of co is equal to the evolution of the partial trace of the Schrodinger
evolution of the state of COG, that is W^it) = Tr'flv^WXv^WI)- Let
the Hamiltonian of COG be Hwa = H™ ® F + ¥° ® H° and let \\pma(0)) =
Ejik

 cj \P%\ ® I£P> where {cj}j are values with |c7f = wf(0), where {!?#>}#
are pair-wise orthogonal vectors with Ek\P%)(P%\ = Pj°(®) a n ^ where
{\Ejk)}j^ are pair-wise orthogonal eigenvectors of the Hamiltonian H°'.
Lemma 7.1 then implies that

l\W<»{t)_wco(s)h < || 1 ^ ( ^ ( ^ ( 0 1 - Iv^WXv^WI 111- (7.21)
Hence, continuity of the evolution of \\pWG(ij){xp^(t)\ with regard to the
trace norm implies continuity of the evolution of W^it) with regard to the
trace norm.

Consider, finally, a system a which is part of a composite co which, as a
whole evolves freely by means of the Schrodinger equation. The state W^it)
of this composite then evolves continuously with regard to the trace norm.
The state Wa(t) is a partial trace of W^it) and by Lemma 7.1 it follows that
W*(i) evolves continuously as well with regard to the trace norm. •

Proposition 7.2 is a consequence of:

Lemma 7.2
Let Wa, Wa be density operators on a Hilbert space Jfa and let {rf}jLv

{rf}^ be the corresponding sequences of ordered eigenvalues, as in (7.9).
Then \rf -rf\ < \\W"-W*\\i,for i= 1,... ,N.

This lemma is proved as Lemma 2.1 in Bacciagaluppi, Donald and Vermaas
(1995).
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Proof of Proposition 7.2: Take a state Wa(t) which evolves continuously
with regard to the trace norm such that l im^s II Wa(i) — Wa(s)||i converges
to 0. By Lemma 7.2 it then follows that limt_>s \rf(t) — rf(s)\ also converges
to 0, so the eigenvalue r?(t) evolves continuously as well. D

I give a third lemma to prove Proposition 7.3:

Lemma 7.3
Let Wa be a density operator on Jfa. Suppose that a < b and that a and b
are not eigenvalues of Wa. If dim(jf?a) = oo, then suppose also that a, b ^ 0.
Choose s e (0,j) such that inf{|rf — a\} > e and inf{\r* — b\) > £ (where
the rfs are the eigenvalues of W* which lie in (a, b)). Then, for any density
operator Wa such that \\W« - W«\\i < fe2, Tra[(P(

a^ -P^ b ) )
2 ] < e.

Here, P*a^ and P*a^ are the sums of the one-dimensional eigenprojections

of Wa and Wa, respectively, as in (7.10). This lemma is proved as Lemma 2.2
in Bacciagaluppi, Donald and Vermaas (1995).

Proof of Proposition 7.3: Take a state Wa(t) which evolves continuously
with regard to the trace norm and consider a projection P?ab\(t) ^ Oa, where
a and b are not eigenvalues of Wa(t). I start by proving that this projection
evolves continuously with regard to the trace norm in the case that the
interval (a, b) does not contain the value 0, that is, if a > 0.

The projection P*afy(t) is the sum of all the eigenprojections {\rf{t))(rf(t)\}
of W^it) for which the corresponding eigenvalues lie in the interval (a, b). And
since the eigenvalues are ordered, these eigenvalues are given by a sequence
b > rg(t) > r£+1(f) > ... > rf(t) > a > 0. One thus has inf{|r?(t) - a\} =
rf(t) - a > 0 and inf (|r?(t) -b\} = b- r«(t) > 0.

Consider all the values s > 0 which are strictly smaller than min{^,rf(t) —
a,b — r%(t)}. There indeed exist such values s because \, rf(t) — a and b — r%(t)
are all strictly larger than 0. For these values s one has that s e (0, 5), that
infflrf (t) - a\} > e and that inf{|rf(r) - b\} > e. Hence, by Lemma 7.3, one
obtains that

|| w*(t) _ w*{s)h < 4£2 ^ TfHPfoft) - P^b)(s))2] < 8. (7.22)
The projection P*ab)(t) projects on a finite-dimensional subspace of Jfa,

for if it projected on an infinite-dimensional subspace, there would exist an
infinite number of eigenprojections \rf(t))(rf(t)\ with rf(t) > a > 0 which
contradicts the fact that the trace Trcc(Wcc(t)) = ]>[),• rf(f) is equal to 1.
It follows analogously that P?ab\(s) also projects on a finite-dimensional
subspace.
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Consider now the operator P(ab)(t) — P^ab^(s). This operator is self-adjoint
and has a finite-dimensional support. (The support is equal to or smaller
than the join of the subspaces onto which P^ab^(t) and P*ab^(s) project. These
latter subspaces are both finite-dimensional, so the support is finite-dimen-
sional as well). The operator P(ab)(t) — P^ab^{s) can thus be taken as defined
on a finite-dimensional Hilbert space (that is, the Hilbert space given by
all the vectors in the join of the subspaces onto which P^ab^(t) and P*ab)(s)
project) and therefore allows a discrete spectral resolution Ylnj=ixj\x°j)(x(j\
with a finite number of terms (so n < oo).

Substitution of this spectral resolution in the right-hand inequality

T r ' K ^ W " P(V5))2] < s o f (7-22) yields E"=i *? < * So> o n e obtains
for all j that x2 < s and |x7-| < ^fs. Substitution of the spectral resolution

E" \\P(lb)(t) - P^b)(s)h < nJS-
One can therefore rephrase (7.22) as

\\W*(t) _ wa(s)h < Is2 = * \\P(lb)(t) - P(lb)(s)\\i < n^~8. (7.23)

The projection P^ab^(t) evolves continuously with regard to the trace norm
if for all (small) s > 0 there exists a d > 0 such that

\\W*(t)-WWli <d => | |P(^)W-^(Ws)ll i <2- ^7'24)

If one takes e = n^/e, (7.23) is equivalent to

WW^-W^h < [4/9n2]s4 => HP^W-P^^Hi <s (7.25)

for all 0 < s < nmin{4j, s/rf(t) — a, y/b — r%(t)}. So, if one chooses 3 =
[4/9n2] £4, then (7.24) holds. Hence, in the case that (a, b) does not contain
the value 0, P(ab)(t) evolves continuously with regard to the trace norm.

Consider, secondly, P?ab)(t) in the case that (a,b) does contain the value
0, that is, if a < 0. In this case P?ab\{t) is the sum of all the eigenprojections
{k?(0)(r?(01} °f Wa(t) for which the corresponding eigenvalues are smaller
than b (all the eigenvalues of a state Wa(t) lie in the interval [0,1]; there
thus do not exist eigenvalues of Wa(t) which are smaller than a). These
eigenvalues are given by a sequence b > r%(t) > r%+1(t) > ... > r^(t) > 0,
where N can be infinite. Because I only consider non-trivial projections
P*ah}(t) =£ Oa, the interval (a,b) contains at least one eigenvalue and, in order
that this is possible, b is strictly larger than 0.

Consider now the projection PfliAt). Because the eigenvalues of Wa(t)
are not strictly larger than 1, it follows that all the eigenvalues {rfii)}^
of Wa(t) which do not lie in the interval (a,fc), lie in the interval (6,1].
Hence, P(bl](t) is the sum of all the eigenprojection {\rf(t)){rf(t)\}^ which
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are not part of P^b)(t\ so P^b)(t) = F — P"bli(t). Using this relation, one
can conclude that

\\P(a,b)(t) ~ P(ajb)(s)\\l = \\P(b,l](s) ~ P(Xfl]Will. (7.26)

Since b is strictly larger than 0, the interval (fe, 1] does not contain the value
0. So, according to the above proof, P*h ^(t) evolves continuously with regard
to the trace norm. Hence, limt_>s \\P*bl](s) — ̂ ijCOIIi converges to 0, which
yields that limt_>s \\P^b)(t) — P(ab)(s)Wi c o n v e r g e s to 0. Hence, if (a,b) does
contain the value 0, P*ab)(t) also evolves continuously with regard to the
trace norm. •

7.3 Analytic trajectories of eigenprojections

The fourth proposition gives stronger continuity results for the spectral
dynamics of a state Wa(t) than Propositions 7.2 and 7.3. The applicability of
this fourth proposition is, on the other hand, not secured by the continuous
evolution of Wa(t) with regard to the trace norm. It reads:

Proposition 7.4
Let a state W*^) evolve analytically on an interval I around t$. Let w£(to) be
an eigenvalue of J^a(£o) with a corresponding K-dimensional eigenprojection
P£(to), where K < oo. Then there is an open interval h cz I around to on
which there exist K (not necessarily distinct) analytic functions {rf(t)}f=l and
K projection-valued functions {|^(O)(*?(OlHLi which are analytic with regard
to the trace norm. It holds that rf(to) = w%(t0) for all i G {1,2,... 9K} and
that {rf (0}]Li is a set °f eigenvalues of Wa(t) for each t G h- It also holds
that Yti \rf(to))(rf(to)\ = P£(to) and that {|rf(t)> (rf (t)l}^i is a set of pair-
wise orthogonal eigenprojections of W*(t) for each t G Ik, where \rf(t))(rf(t)\
corresponds to the eigenvalue 7f(t).

(Note that the eigenvalues {rf(t)},- and the corresponding one-dimensional
eigenprojections {\rf(t))(rf(t)\}i need not satisfy the convention J\(t) > T^it) >
etc. They thus need not be equal to the eigenvalues {rf(t)}i and the eigen-
projections {\rf(t))(rf(t)\}u respectively, defined by the decomposition (7.9).)

To unpack the meaning of Proposition 7.4,1 start by discussing the notion
of analytic evolution.

A complex-valued function a(z) is called analytic on a region D of the
complex plane C if the limit of [a(zo + h) — a(zo)]/h exists for all zo G D as h
goes to zero in C. This notion of analyticity can be generalised to operator-
valued functions.76 Consider an operator-valued function Aa(z) : z G D i—•

76 Reed and Simon (1972, Sect. VL3) and, more extensively, Bacciagaluppi (1996b, Sect 6.4).



7.3 Analytic trajectories of eigenprojections 117

A*(z) which is a map from a region D in the complex plane to the set of
operators on Jfa which are bounded with regard to the operator norm.77

This function is called analytic on D if the limit of [Aa(zo + h) — A*(z$j\/h
exists with regard to the operator norm for all zo E D as h goes to zero in C.

A state evolution W*(t) is now taken as analytic on a time interval /
if there exists a region D in the complex plane which is an extension of
/ , and if there exists a function Aa(z) which is analytic on D and which
yields W^it) when restricted to / , that is, Aa(t) = W«(i). In order to obtain
a straightforward criterion for the analyticity of a state evolution, one can
prove the following

Sufficient condition for analytic state evolution

A state W*(t) evolves analytically on an interval / if there exists a decomposition
W«(t) = Y^jSS ajk(t) \e)){el\ which (A) contains a finite number of terms, where (B)
the set {|e")}yLi is a fixed orthonormal basis for Jfa, and where (c) the coefficients
{fl/fc(0}$fc=i c a n be extended to functions {0/fc(z)}$fc=i which are analytic on a
complex region D which includes /.

Take now a state Wa(t) which evolves analytically in an interval / by
considering, for instance, a state that satisfies the above sufficient con-
dition. Then Proposition 7.4 applies to any non-zero eigenvalue of the
state at any instant to e I. To see this, note that any eigenprojection
P£(to) corresponding to a non-zero eigenvalue Wk(to) is finite-dimensional,
that is, Tra(P/c

a(^o)) < oo. If P£(to) w e r e infinite-dimensional, then the trace
Tra( Wa(t0)) = £ \ Wj(to) Tra(Pj*(£0)) would be infinite (every eigenvalue w/(t0)
is positive or equal to zero). The trace Trcc(Woc(to)) is, however, equal to 1,
so Pj*(to) is finite-dimensional.

Proposition 7.4 yields strong continuity results for such analytically evolv-
ing states. A first result is that any non-zero eigenvalue w%(to) corresponding
to a X-dimensional eigenprojection P£(to) lies on K eigenvalue functions
{?f (0}jLi which are analytic on an interval Ik around to. A property of func-
tions that are analytic on an interval / is that if they have the same values
on a subinterval of / , they have the same values on the whole interval / .
Two eigenvalue functions rf(t) and rf,(t) are thus either equal to one another
at single instants in Ik or equal on the whole interval J^. The eigenvalue
functions {rf(t)} can therefore touch or cross in /^. However, they cannot
merge or split in Ik for then two or more eigenvalue functions {rf(t)} must
be equal on one subinterval of Ik and be distinct on another.

77 T h e o p e r a t o r n o r m ||.|| of A is defined by \\A\\ : = s u p | v ) G c ^ Mlv>)ll / || | y ) II-
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A second result by Proposition 7.4 is that any K -dimensional eigenprojec-
tion P%(to) corresponding to a non-zero eigenvalue w%(to) is equal to the sum
of K projections {|??(to))(??(fo)l}lLi which lie on K eigenprojection func-
tions {\ff{t))(jf(t)\}f=l which are analytic with regard to the trace norm on
an interval Ik around to. By this analyticity, these eigenprojection functions
{Ff(O)(̂ ?(OI}jLi form trajectories of eigenprojections which are continuous
with regard to the trace norm.

With these results one can prove that any state Wa(t) which evolves
analytically and by means of the Schrodinger equation meets the Dynamical
Decomposition condition. That is, any eigenprojection P^ito) of such a state
with Wk(to) i=- 0, is a sum P%(to) = Y<q T%(to) of projections on continuous
trajectories {T*(t)}q of Wa(t). To prove this, I return to the five possible
cases which I discussed in the previous section.

For CASES 1 and 2 (see page 108) of an eigenprojection P£{to) correspond-
ing to an eigenvalue Wk(to) =£ 0 which is non-degenerate or permanently
degenerate, respectively, it has already been proved that the Dynamical De-
composition condition is satisfied. This followed from the Propositions 7.1,
7.2 and 7.3 and from the fact that states evolve by the Schrodinger equation.

So let's consider CASE 3 (page 109) of an eigenprojection Pj?(to) correspond-
ing to an eigenvalue Wk(to) =j£ 0 that passes a degeneracy. Proposition 7.4
yields that there exist K eigenvalue functions {rf(t)}f=l and K eigenprojection
functions {|r«(O)(?«(OI}jLi of W«(t) such that P£(t0) = £ * i |r?(to)> Wo)l
and such that Wk(to) = rf(to) for all i G {1,... ,K}. The eigenvalue functions
{*?(0}jii a r e analytic on an interval h around to and, because Wk(to) is a
passing degeneracy, this interval Ik can be taken such that all {rf (0}jLi a r e

distinct on the punctuated interval Ik/{to}. So, for every t € h/{to} these val-
ues {rf (t)}jLi a r e aU non-degenerate eigenvalues of Wa(t). This implies that
for every t G h/{to} the corresponding eigenprojections {|̂ f(O)(̂ TWI}jii a r e

implicitly definable from Wa(t). These eigenprojections can now be joined to
continuous trajectories of Wa(t) on the punctuated interval Ik/{to} by taking

ni(t) = m))(7?(t)\ (7.27)

for all i G {1,... 9K}9 because, as I said before, the analytic eigenvalue
functions {Ff(O)(̂ ?(OI}jLi a r e continuous with regard to the trace norm.
Moreover, these trajectories can be uniquely extended to the instant to be-
cause, again by the continuity of the functions {|rf(O)(7?(OI}jli> linit->t0 T^(t)
exists and is equal to |rf(*o))(rf(to)|. The trajectories (7.27) are thus contin-
uous on the whole interval Ik- The trajectories {T^(t)}i are, as I said,
implicitly definable from the state evolution Wa(t) on the interval Ik/{to}-
Because these trajectories extend uniquely to to, they are implicitly definable
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from Wa(t) on the whole of /&. Hence, for any eigenprojection /\a(to) with
Wfc(£o) i=- 0 that passes a degeneracy, there exists a set of continuous tra-
jectories {T^(t)}f=l of eigenprojections implicitly definable from Wa(t) such
that Pg(to) = J2i TkMo)- (Proposition 7.4 thus rules out that analytically
evolving states Wa(t) have eigenprojection trajectories which evolve discon-
tinuously through to. The third possibility of CASE 3, illustrated by the state
evolution (7.17), therefore does not occur if one considers only analytic state
evolutions.)

For CASE 4 (page 110) one can also prove that the Dynamical De-
composition condition is satisfied. In this case Proposition 7.4 yields that
there are K eigenvalue functions {rf(O}jli and ^ eigenprojection func-
tions {\7«(t))(7«(t)\}f=1 such that P£(f0) = E ^ i |r?('o)><r?(*o)l and such that
Wfc(fo) = r?(*o) f° r all i G {1, . . . ,K}. However, now, because Wfc(to) is partly
a passing and partly a permanent degeneracy, there exists an interval Ik
around to on which K\ functions in the set {rf(O}jLi are distinct from one
another before to and on which K2 = K — K\ functions are equal to one
another before to. And K\ functions in the set {rf (0}jli are distinct after to
and K2 functions are equal after to- A consequence of Proposition 7.4 is that
the K2 functions which are equal to one another before to are also the K2
functions which are equal to one another after to (this follows because the
function {rf (0}jii are all analytic on Ik, and functions, which are analytic on
an interval / and are equal to one another on a subinterval of/, are equal on
the whole of/) . Hence, one can order the eigenvalue functions {/?(0}fLi such
that the first K\ functions {7?(0}£i are the functions which are distinct from
one another on the punctuated interval Ik/{to} and such that the remaining
K2 functions {7?(0}jixi+i a r e equal on that interval. The rest of the proof is
a variation of the proof for CASE 3. For every t e Ik/{to}, the eigenprojections
{|rf(to))(rf(to)|}£1 and E?=K1+I |7?(to)><r?ft))l are implicitly definable from
Wa(t) (the eigenprojections {|rf (to))(rf ( to)!}^ correspond to the non-degen-
erate eigenvalues, the eigenprojection ]C*Lx1+i l̂ ?(^o))(^f(^o)l corresponds to
the permanent degenerate eigenvalue). These eigenprojections can be joined
to the trajectories

T&(t) = \7f(t))(rf(t)\, f o r a l l i e { 1 , . . . , i } , 1

J
These trajectories extend uniquely to continuous trajectories {/
of eigenprojections of W*(t) on the whole interval Ik by taking 7^(to) =
|r?(to))(r?(to)| for all i e { l , . . . ,K i} and by taking T£Ki+1(t0) =

ô)l- These extended trajectories are therefore also im-
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plicitly definable from the state evolution Wa(t). Finally, one has that
= Yl~ ^/(^o) which proves the Dynamical Decomposition con-

dition for this fourth case.78

Consider finally CASE 5 (page 111). This case is analogous to CASE 4, but
now there exists an interval Ik around to on which K3 functions in the set
{*?(0}jii a r e distinct to one another before to and on which K4 = K — K3
functions are equal to one another before to. And K$ functions in the set
{rf(t)}iLi a r e distinct after to and K^ = K — K5 functions are equal after
to. As was noted in the proof for CASE 4, a consequence of Proposition 7.4
is that the K4 functions which are equal to one another before to are by
their analyticity on Ik also equal to one another after to. Conversely, the
Ke functions which are equal to one another after to are also equal to one
another before to. It thus follows that the number of functions which are
equal to one another before to is equal to the number of functions which are
equal after to, so K4 = K$. This implies that CASE 5 is not possible for an
analytically evolving state Wa(t) because in that case it holds that K4 ^ K^.
(Proposition 7.4 thus rules out that analytically evolving states Wa(t) have
eigenvalue functions which merge or split at to. The state evolution (7.18)
does not therefore occur if one considers only analytic state evolutions.)

To conclude, any state Wa(t) which evolves analytically and by means of
the Schrodinger equation meets the Dynamical Decomposition condition.
That is, any possible case of an eigenprojection i\a(to) of such a state
with Wk(to) 7̂  0, is a sum Pk(to) = ^2q T*(to) of projections on continuous
trajectories {T£(t)}q of W"(t).

Proposition 7.4 thus again restricts discontinuous dynamics of spectral
resolutions of states in quantum mechanics. If Wa(t) evolves analytically,
its non-zero eigenvalues always evolve along analytic functions and the
corresponding eigenprojections always evolve along analytic trajectories. Two
or more non-zero eigenvalue functions can cross or touch at an instant,
giving rise to a passing degeneracy in the spectral resolution of Wa(t), but
the corresponding trajectories of eigenprojections pass continuously through
this degeneracy. Moreover, non-zero eigenvalue functions can neither merge
nor split.

The evolution of the spectral resolution of states can be captured more
fully if one also takes into account the eigenprojection P (̂£o) which corre-
sponds to the zero eigenvalue Wk(to) = 0. Let's consider, firstly, the case in
which the Hilbert space Jfa of a system a is finite-dimensional and the state

78 Note that this proof of the Dynamical Decomposition condition can easily be generalised to eigen-
projections P£(to) corresponding to eigenvalues Wk(to) i= 0 which are partly a passing degeneracy
and partly a sum of N permanent degeneracies.
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Wa(t) of that system evolves analytically during a (large) interval / = (t\9 ti).
In this case the eigenprojection Pk(to) with wk(to) = 0 is finite-dimensional as
well (one can derive that Tra(P/c

a(t0)) < Tra(Ia) < oo). Hence, Proposition 7.4
also applies to this zero eigenprojection.

Consider any instant to E I. Because the Dynamical Decomposition
condition holds for every eigenprojection of Wa(to), the spectral resolu-
tion of Wa(to) can be rewritten as a dynamical decomposition Wa(to) =
J2k,t fkito) Tfaito), where the trajectories {T^(t)}i associated with the eigen-
projection Pk(to) evolve analytically on an open interval Ik around to. The in-
terval on which all the trajectories {T^(t)}k,i evolve analytically is given by the
meet nklk. Since Wa(t) has a finite number of eigenprojections (if there are an
infinite number of eigenprojections, one has oo = Tra(X^ Pk(to)) = Tra(F),
which contradicts that Tra(F) < oo for finite-dimensional Hilbert spaces),
this meet is an open interval around to as well. One can thus extend
the dynamical decomposition defined at to to a dynamical decomposition
Wa(t) = Y,k,ifkM) Tki^) w h i c h h o l d s f o r e v e ry l i n t h e °Pe n interval C\klk

around £o-
Let the interval HkIk be given by (t,t) and consider the instant t. One

can construct a dynamical decomposition Wa(t) = ^k^fMt)TZ,(t) on an

open interval n ^ around i. The two intervals nklk and n ^ have a non-
trivial meet [DkIk] n [ n ^ ] and on this meet the eigenvalue functions of
Wa(t) are given by both {fki{t)}Ki and {?^(t)}^v

 A n d t h e trajectories of
eigenprojections of W*(t) are given by both {T^(t)}kyi and {T^t)}^. One
can thus identify these eigenvalue functions and trajectories, respectively.
And if one relabels them as {f%(t)}q and {T*{t)}q, one obtains eigenvalue
functions and eigenprojection trajectories of W*(t) that are analytic on the
join [DkIk] U [ n ^ ] . The dynamical decompositions on nklk and on n ^ , can
thus be extended to a dynamical decomposition

;(^;w (7.29)

on this join [Pi/Ĵ ] U [n^I^]. One can now do the same for t such that this
decomposition extends to the join [ n ^ ] U [nklk] U [ n ^ ] . And by repeating
this procedure over and over again (so by writing [nklk] U [nklk] U [ n ^ ]
as (i,t) and then again considering the dynamical decompositions at t and
at t) one obtains that Wa(t) has the dynamical decomposition (7.29) on the
whole interval / on which it evolves analytically. It follows that if a state
Wa(t) defined on a finite-dimensional Hilbert space evolves analytically on
an interval /, then all eigenvalues (zero and non-zero) evolve along analytic
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functions on / and all corresponding eigenprojections evolve along analytic
trajectories on /.

Consider, secondly, the case that the Hilbert space Jf a of a system a is
infinite-dimensional and that the state Wa(t) evolves analytically during an
interval / = (̂ 1,̂ 2)- The construction of the global dynamical decomposition
(7.29) is in this case in general not possible. Firstly, the zero eigenprojection
P£(to) with Wk(to) = 0 may be infinite-dimensional. Hence, Proposition 7.4
need not apply to the zero eigenprojection such that may evolve discontinu-
ously. Secondly, there may be an infinite number of eigenprojections Pg(to)
with Wfc(£o) =h 0. This implies that the meet Hkh of the intervals on which
all the trajectories {T^(t)}k9i associated with these eigenprojections Pj?(to)
evolve analytically need not be an open interval around to. This meet dkh
can instead converge to only {to}.79

An analytically evolving state W*(i) defined on an infinite-dimensional
Hilbert space can thus, in general, only be decomposed at each individual
instant t0 as W«(t0) = £^/£(to) T£(r0) with /«(t0) > 0. Each eigenvalue
function f*(t) and corresponding trajectory T*(i) can be analytically contin-
ued around to as long as f*(t) remains non-zero. However, there need not
exist an interval around to on which all functions {fq(t)}q and trajectories
{Tq(t)}q can be simultaneously continued.

The following picture seems appropriate. At fortn a new term f^(t) T*(i)
in the spectral resolution of Wa(t) comes into existence. That is, at forth the
eigenvalue function f*(t) is born by becoming non-zero and a corresponding
trajectory T£(t) of eigenprojections breaks away from the null eigenspace of
Wa(t). Then, after forth this term evolves analytically as long as f%(t) is non-
zero. Finally, at tdeath, the eigenvalue function /£(£) dies by becoming zero
again and the trajectory T*(t) dissolves in the null eigenspace. The dynamics
of the spectral resolution of VFa(£) is a sum of such temporal living terms
fq(t) Tq(t). At each instant to one can decompose Wa(t) by means of these
terms, so Wa(t0) = T,qfq(to)T%(to\ but it need not be the case that this
decomposition can be extended to an interval around to.

To sum up: If Wa(t) evolves analytically and dim(jfa) is finite, the spectral
dynamics of Wa(t) is given by the global dynamical decomposition (7.29)
consisting of permanently existing terms f*(t) T*(t) of analytic eigenvalue
functions f*(i) and analytic trajectories T%(t) of eigenprojections. If dim(Jfa)
is infinite, the spectral dynamics of Wa(t) is given by sums of temporary
existing terms f*(t) T*(t) of non-zero analytic eigenvalue functions f*(t) and
analytic trajectories T£(i) of eigenprojections.

79 See Example 5.5 in Bacciagaluppi, Donald and Vermaas (1995).
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Two questions still need attention: Do all states evolve analytically in
quantum mechanics? And what can happen if states do not evolve analyti-
cally?

Let's consider the first question. Take any system a whose state evolves
by means of the Schrodinger equation. This system a evolves freely or
interacts with other systems. In both cases one can construct a composite
co that contains a as a subsystem, which evolves freely by means of the
Schrodinger equation and which has a pure state ^^(f)).80 Hence, the
state evolution of any system a can always be taken as a partial trace
W"(t) = Trw/a(|¥w(0)(^(01) with 1^(0) evolving by the Schrodinger
equation.

It can be proved that if the Schrodinger evolution of a state vector
1^(0) is analytic with regard to the Hilbert space norm 11^(0)11, then
any state Wa(t) obtained as a partial trace Trco/a(|xFco(t)><xF^(0l) evolves
analytically as well.81 So, the question of whether the state of a system a
evolves analytically, reduces to the question of whether one can construct a
system co that contains a as a subsystem, and that has a state vector \x¥co(t))
which evolves analytically by the Schrodinger equation.

In order to answer this latter question, consider the complex extension
^ ( z ) ) = exp([z/i«]HG))|VG)(0)) of the Schrodinger evolution of 1
The vector ^^(z)} is by definition equal to

n=0

This vector ^ ( z ) ) exists if all the vectors { [ r / f | r ( 0 ) > } ^ exist and if
(z)) is an element of JtTw, that is, if ^ ( z ) ) has a finite Hilbert space

80 The system co may be an existing system or a non-existing hypothetical system. The point is that any
state evolution W"(t) can mathematically be taken as if it is a partial trace Tra>/a(|lF(U(0)(xF(U(0l)
with I^^CO) a pure state of a composite co.

The construction of this composite co goes as follows. If a evolves freely and has a state VFa(£)
and a Hamiltonian Ha, then take as co the composite aa. Let the Hamiltonian H™ be equal to
H* <g> F + F <g> H°. Let the state of co be 1^(0)) = Y^j,k cj \P%) ® \E%)> w h e r e icj)j a r e v a l u e s

with \CJ\2 = w?(0), where {\v)k)}j,k are pair-wise orthogonal vectors with Ylk \P°jk)(Pajk\ = ^/(°)> a n d

where {\Ejk)}jjc are pair-wise orthogonal eigenvectors of the Hamiltonian H°'. The partial trace
T ^ f l ^ M X ^ M I ) then yields the free state evolution of a.

If a interacts with other systems, there exists a composite aj5 with a state W^{t) and a Hamiltonian
HaP such that W*{t) = Tr^(W^{t)). Construct then co as a/te in a way similar to that described
in the previous paragraph, but now with a/? in the role of a. One then obtains a system co with a
pure state which satisfies W^(t) = Tr*W¥<°(t))(fV™(t)\) and thus satisfies W«(t) ^ ^

d C O X W I )
81 See Theorem 4.10 in Bacciagaluppi, Donald and Vermaas (1995).
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norm. This norm satifies

n=O ^ ' ' n=0

(7.31)

Hence, ^ ( z ) ) exists if all the vectors {[Hco/H]n\x¥o))}^=0 exist and if this
last summation is finite.

Define now an analytic vector for the operator Hw /H with regard to a
complex region D = {z\\z\ < s} around z = 0 as follows. For e > 0, a vector
PF") G Jffw is an analytic vector for H<°/H in a region D = {z\ \z\ < e}, if \x¥co)
is in the domain of [Hco/h]n for all w, and if E^=odzIV"!) II [H<°/fi\n | ^ ) \\ <
oo.82 It thus follows that if 1^(0)) is an analytic vector for H^/h for some
e > 0, then the vector-valued function ^^(z)) is defined on D = {z\ \z\ < e}.
This function is now analytic because the limit of [^(zo + h)) - ^(zo))]//*
exists for all ZQ e D as h goes to 0 in C Hence, if ^^(O)) is an analytic
vector for H^/h for some e > 0, then the Schrodinger evolution |xFa(0) =
exp([r/ift] H°") ^^(O)) is analytic in the time interval / = (-e,e).

One thus has the following criterion for analytic state evolution. The
evolution of the state of a system a is analytic if one can construct a system
co that has a as a subsystem and that has a state {^(t)) which is an analytic
vector for H^/H.

By means of this criterion one can deduce that if (A) the dimension
of Jfw is finite, or (B) the Hamiltonian H™ is bounded with regard to
the operator norm, then any possible state of a subsystem of co evolves
analytically. Condition (A) implies condition (B) because if d i m ^ ^ ] is finite,
every operator defined on Jf°\ including H^/H, is bounded with regard
to the operator norm. Condition (B) (and condition (A) via condition (B))
implies that the state {^(t)} is an analytic vector for H^/H because if an
operator is bounded with regard to the operator norm, every vector in Jfw

is an analytic vector for that operator.
By condition (A) one can conclude that if a freely evolving system a is

defined on a finite-dimensional Hilbert space Jfa or if an interacting system
a is part of a freely evolving composite a/?, defined on a finite-dimensional
Hilbert space J»fa ,̂ then the state W^it) always evolves analytically. This
follows because in this case one can define the system co on a finite-dimen-
sional Hilbert space Jfw as well (see footnote 80).

To illustrate this conclusion, take a freely evolving composite ajS defined
on a finite-dimensional Hilbert space Jf ° .̂ The Hamiltonian of aj8 has a

82 See the first definition in Section X.6 of Reed and Simon (1975).
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discrete spectral resolution H^ = J2f=i Ej \Ef){Ef\, where N is dimpr^)
and {\Ef)}f=1 is an orthonormal basis for Jf?^. The state W^{t) can thus
be decomposed as

N (E—Ek)t

W"p(t) = Y^ {Ef\W"p(O)\Ef) e i n — \Ef)(Ef\. (7.32)

And since the functions {(Ef\ Wap(0)\Ef) Qxp[(Ej-Ek)z/iH]}lk are analytic
functions and since the summation contains a finite number of terms, the
state W^(t) evolves analytically according to the sufficient condition given
on page 117.

Consider then the subsystem a of this composite. Let {|^)}a and {\fc)}c

be orthonormal bases for Jfa and jtfP, respectively. Partial tracing of WaP(t)
yields that the state of a is given by W*(t) = J2a,b

 aab(t) K)(el\ with

r -, o a f 1 (EJ-Ek)t
aah(t) = > le*a\ ® lfj!\\ \Ef) (Ef\W^{Q)\Ef) (Ef\ \el) ® |/f) e m .

^ L i J J K K L C J
C,J,k

(7.33)

The functions {aab(z)}atb are again analytic functions and the summation
contains a finite number of terms, so FTa(t) also evolves analytically.

By condition (B) one can conclude that if a freely evolving system a has
a bounded Hamiltonian Ha, or if an interacting system a is part of a freely
evolving composite a/? with a bounded Hamiltonian HaP, the state Wa(t)
also evolves analytically. This follows because in this second case one can
define the Hamiltonian of the system co such that it is also bounded with
regard to the operator norm (see footnote 80).

However, if a freely evolving systems a is defined on an infinite-dimensional
Hilbert space and has an unbounded Hamiltonian, or if an interacting system
a is part of a freely evolving composite a/? defined on an infinite-dimensional
Hilbert space and with an unbounded Hamiltonian H^, it is unclear whether
or not Wa(t) evolves analytically. Any system co that contains a or a/? is
in this case also defined on an infinite-dimensional Hilbert space and also
has an unbounded Hamiltonian. Hence, by our criterion, Wa(f) evolves
analytically only if one can construct a system co with a state ^^(t)) that
satifies W«(t) = Trw/a(|xFco(0)(xIfG;(0l) and which is an analytic vector for
H^/h. If this construction is impossible, Wa(t) need not evolve analytically.

The question thus becomes a question of whether one can construct for
every system a a composite co with a state {^(t)) which is an analytic vector
for Hm /h. The answer is probably negative. The set of analytic vectors for
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H03 /h is a dense set in 2tfw. All the vectors in the subspace &[-sjs] of
spanned by the eigenvectors {\Ef)}j of H°> with -S < Ef < S, where
S is finite, are analytic vectors for HW/HP But there does not (yet) exist
an argument why {^(t)) needs to be a member of this dense set. (If
one assumes that the system a> is the whole universe, then the condition
that the universe contains a finite amount of energy yields the constraint
( ^ ( O l i P I ^ O ) < oo on the state vector of co. But this constraint does not
yield that ^(t)) is in the set £[-s,sy)

So, to conclude, not every Schrodinger-like state evolution needs to be
analytic: if the universe is defined on an infinite-dimensional Hilbert space,
if it has an unbounded Hamiltonian with regard to the operator norm and if
its state vector is not an analytic vector for Hw /H, then the states of systems
in the universe can evolve non-analytically.

The last question to address is that of what can happen if the Schrodinger
evolution of a state is not analytic. In this case the dynamics of the spectral
resolution of the state is not constrained by Proposition 7.4. The continuous
eigenvalue functions can thus merge and split, and the trajectories of eigen-
projections can evolve discontinuously at passing degeneracies. Matthew
Donald has designed an explicit example84 which proves that these disconti-
nuities in the eigenprojection trajectories can indeed occur. Donald considers
an interacting system a defined on a two-dimensional Hilbert space and
shows that its state evolves (in terms of matrices) as

W«{t) =

i

(7.34)

with Wj(0) = H>2(0) = \. The above decompositions of W*(i) are spectral
resolutions, revealing a true discontinuity in the evolution of the eigenpro-
jections at t = 0.

MATHEMATICS

The Sufficient condition for analytic state evolution on page 117 is proved
as follows:

83 See Section X.6 of Reed and Simon (1975).
84 See Example 5.6 in Bacciagaluppi, Donald and Vermaas (1995).
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Proof: Assume that one can decompose a state as Wa(r) =
Y^,k™\ ajk(t) [ef) (ell where the summation contains a finite number of terms,
the set {|e")}jLi *s a fixed orthonormal basis for Jfa and the coefficients
{(ijk(t)}fk=i can be extended to functions {a^(z)}^r

/c=1 which are analytic on
a complex region D which includes / .

Now define the operator-valued function Aa(z) = ^ / S ajk(z) \e°j)(e%\
on D. Then ]imh^o[Aa(z0 + h) - ^a(z0)]//z is ^ { l i m ^ ^ z o + h)-
a77C(zo)]//i}|^)(^| for all zo G D (one may interchange the limit and the
summation because the summation contains a finite number of terms). The
limit [ajk(zo + h) — ajk(zo)]/h exists for all zo G D as h goes to zero in C.
Hence, A*(z) is analytic. And because Aa(z) is equal to Wa(t) when restricted
to / , W*(i) evolves analytically. •

Proposition 7.4 can be proved by a theorem by Rellich (1969) and by the
fact that if a vector-valued function \\pa{t)) is analytic with regard to the
Hilbert space norm, the projection-valued function \xpa(t))(xpa(t)\ is analytic
with regard to the trace norm. Rellich's theorem reads:

Theorem 7.1
Let Wa(t) be analytic on I and suppose that to G / . Let w%(to) be an iso-
lated eigenvalue of Wa(to) with a corresponding K-dimensional eigenprojec-
tion P£(to), where K < oo. Then there is an open interval h ^ I with tk G Jo
on which there exist K (not necessarily distinct) numerical analytic functions
{??(0}jii and K vector-valued analytic functions {|?f(O)}jLi- It holds that
7f(to) = w%(to) and, for each t G Ik, {|7f(0)}^i *5 a set of pair-wise orthogonal
eigenvectors of Wa(t) with \7f (t)) corresponding to the eigenvalue 7f(t).

This theorem is proved in Rellich (1969, Sects. 1.1 and 2.2) and in Kato
(1976, Sects. II.l, II.4, II.6, VII.l and VII.3). The proof that if the function
|t/;a(f)) is analytic, the function \tpa(t)){xpa(t)\ is analytic as well can be found
in, for instance, Bacciagaluppi (1996b, the proof of Theorem 6.11 on the
pages 234-7).

7.4 Instabilities and other bad behaviour

The results presented in the last two sections prove that the spectral resolu-
tions of the states of systems evolve in many cases in a very continuous way.
If the states evolve by means of the Schrodinger equation, the eigenvalues
of the states always evolve along continuous functions. And if the states
evolve analytically, the eigenprojections of the states that correspond to
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non-zero eigenvalues always evolve along continuous trajectories. However,
these results also prove that in some cases the spectral resolutions can evolve
discontinuously. If the states evolve by means of the Schrodinger equation
but not analytically, the eigenvalues of the states evolve along functions
that can cross, touch, merge and split at specific instants. The corresponding
eigenprojections evolve at those instants not along continuous trajectories
but exhibit genuine discontinuities, as is pointedly illustrated by Matthew
Donald's example (7.34).

Let's now return to modal interpretations and see what conclusions can be
drawn. Take, firstly, the extended modal interpretation. In this interpretation
the core property ascription is defined only for systems whose states have
at all times continuous trajectories of eigenprojections. Since the results
of the last two sections prove that such continuous trajectories need not
always exist, a first conclusion is that the extended modal interpretation is
not always applicable. This interpretation can therefore not be taken as a
general interpretation of quantum mechanics.

Consider, secondly, the bi, spectral and atomic modal interpretations. The
core properties of these interpretations evolve discontinuously as was shown
in Section 7.1. Moreover, the attempts to (partly) remove these discontinuities
by Elby and Bub (1994) and by Bacciagaluppi, Donald and Vermaas (1995)
both failed. Hence, a second conclusion is that the property ascription to a
system by the bi, spectral and atomic modal interpretations is unresolvable
discontinuous at those instants at which the continuous eigenvalues of the
state of that system cross, touch, merge or split.

Unfortunately one can arrive by means of the results of the last two
sections at further negative conclusions about the bi, spectral and atomic
modal interpretations. Take an atomic system a defined on an infinite-
dimensional Hilbert space and with a Hamiltonian which is bounded with
regard to the operator norm. The state of that system then evolves analyti-
cally. And in those time intervals in which the non-zero analytic eigenvalue
functions {f%(t)}q are not passing or touching, the bi, spectral and atomic
core properties of a evolve along the analytic trajectories {Tjf(t)}q. The re-
sults of Section 7.3 revealed that these analytic trajectories can emerge at
an instant £birth and vanish at another instant tdeath- This phenomenon of
emerging and vanishing trajectories of eigenprojections may seem at first
sight rather harmless. Because a trajectory T*(i) emerges or vanishes only
when the corresponding eigenvalue function f*(t) is zero, the probability
Tra(Wa(t)T^(t)) = /£(0Tra(T£(0) with which the bi, spectral and atomic
modal interpretations ascribe the core property T^(t), is also zero. The core
properties which are born are thus at their birth actually possessed with
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probability zero; they are not instantaneously launched with large probabil-
ities. And the core properties which die, do not drop dead in broad daylight
but rather fade away. The phenomenon of emerging and vanishing trajecto-
ries of eigenprojections thus does not lead to a wild and irregular dynamics
of the set of core properties.

However, a number of examples by Matthew Donald prove that this
dynamics of emerging and vanishing trajectories of eigenprojections need
not harmonise with the dynamics of the state of the system. For instance,
a state which evolves periodically with a period 2n/0 can have trajectories
of eigenprojections which exist from tbirth = —°o onwards but disappear at
the finite times fdeath = rnn/6, (m = 1,2,...).85 The vanishing trajectories
thus do not straightforwardly reflect the periodicity of Wa(t). Hence, a third
conclusion is that the dynamics of the set of core properties ascribed by the
bi, spectral and atomic modal interpretations to a system can deviate from
the dynamics of the state of that system.

A final conclusion about the property ascription of modal interpretations
is that the dynamics of the set of core properties can be highly unstable if
the spectral resolution of a state is close to a degeneracy. This instability has
already been noted by, for instance, Albert and Loewer (1990, 1993). I now
end by giving some explicit examples of state evolutions where this instability
is clearly present. I start by reconsidering the problem of discontinuities.

Consider the set of states defined on a two-dimensional Hilbert space and
represented by two-by-two density matrices {W}. This set can be parame-
terised by means of three real parameters vu V2 and v$ and the Pauli matrices
if one takes W equal to

W = \ { 1 + V-G) (7.35)

with86

Hence, the set of two-by-two density matrices has three (real) dimensions.
Furthermore, the set of degenerate two-by-two density matrices is zero-
dimensional since only one exists, namely W = \l.

Given this difference in the dimensionality of these sets of states and
degenerate states, one now can argue that it is quite rare that states actually
hit degeneracies. It is of course imaginable that a state hits ^1, for instance,
by writing down evolutions like (7.2). However, in the real world, state

85 See Example 5.1 in Bacciagaluppi , Dona ld , and Vermaas (1995).
86 This parameter i sa t ion defines a m a p from the unit ball in R 3 , called the Bloch sphere, to the set of

two-by-two density matr ices (see, for instance, D o n a l d (1998)).
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evolutions do not follow such well-defined and straight paths as given by
(7.2). Environmental influences perturb the evolution of states, generating
irregular paths containing random fluctuations. And since for any sensible
measure on the set of two-by-two matrices the subset {̂ 1} of degenerate
states has measure zero, one can conclude that a generally evolving state has
zero probability of ever hitting a degeneracy. Hence, even if modal property
ascriptions are discontinuous at passing degeneracies, the whole problem is
not worth being bothered with.

This argument that randomly fluctuating states hit degeneracies only with
probability zero has been made rigorous by Matthew Donald who proved
for finite-dimensional Hilbert spaces that the space of degenerate states has
always co-dimension 3. That is, if the space of all states has a real dimension
of N, the set of degenerate states has a real dimension of N — 3.87

If one accepts this argument, further nice results follow from the Proposi-
tions 7.1, 7.2 and 7.3. For if the states defined on a finite-dimensional Hilbert
space are degenerate with probability zero, their continuous eigenvalue func-
tions {fq(t)}q cross, touch, merge or split with probability zero. Hence, with
probability 1 one can order these functions like ff(t) > / |(t) > ... for all
t. Proposition 7.3 then yields that the corresponding trajectories {T*(t)}q of
eigenprojections evolve continuously. So, with probability 1, the core proper-
ties {Tq(t)}q ascribed by the bi, spectral and atomic modal interpretations
evolve continuously.

I do not like this argument. For all practical purposes it may be that states
do not hit degeneracies but we are not yet discussing practical purposes. We
are trying to find out whether modal interpretations give a well-developed
description of reality. So, if the discontinuities related to degenerate states
give rise to a problematic description of reality, one either proves that it is
strictly impossible for states to hit those degeneracies, or, if such a proof is
impossible, one tries to make sense of these discontinuities. And in this last
case it is irrelevant whether or not it is probable that such discontinuities
actually occur.

However, even if one accepts the argument, it can be shown that the
possibility that a state fluctuates randomly around a degeneracy is quite
problematic in itself within modal interpretations. Let's see what happens.

The idea is that a state which comes near a degeneracy does not hit
the degeneracy but rather grazes it due to environmental perturbations.
Let's therefore take a state evolution which hits a degeneracy with certainty
and construct a family of perturbed copies of this evolution. I work on a

87 See Proposition 3.2 in Bacciagaluppi, Donald and Vermaas (1995).
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two-dimensional Hilbert space and represent the states by the two-by-two
matrices given in (7.35). Let the unperturbed evolution be

W(t) = \ (I + g(t) ai) = $ Q t )
 g(

1
t)) , (7.37)

where g(t) is a real-valued function which is equal to zero at t = 0, which is
monotonously and strictly increasing on an interval around t = 0 and which
satisfies \g(t)\ < 1 (W(t) is then indeed a density matrix). This unperturbed
state evolution W(t) passes through the degeneracy at t = 0. Now assume
that the environmental influences add a small term ^&(t)G2 to W(t) with s(t)
again real-valued and with \e(t)\ <C 1. The family of perturbed evolutions is
then given by

A member W(t, s(t)) of this family hits the degeneracy at t = 0 if and only
if e(0) = 0.

I show three things by means of this family of perturbed evolutions. Firstly,
an arbitrarily small perturbation of a state which hits a degeneracy can
maximally change its set of eigenprojections in the limit to the degeneracy.
Secondly, two arbitrarily close evolutions can have maximally different sets
of eigenprojections near a degeneracy. Thirdly, the set of eigenprojections
of a state which comes near a degeneracy can change maximally in an
arbitrarily small time interval.

I start by giving some results. The distance \\W(t) — W(t,e(t))\\i between
the unperturbed evolution and a perturbed evolution with respect to the
trace norm, is at any time t equal to \s(t)\. So, by taking s(t) arbitrarily small,
the perturbed evolution W(t,s(t)) is arbitrarily close to W(t). The distance
between two perturbed evolutions W(t,si(t)) and W(t,&2{t)) is analogously
at any time equal to |ei(t) — £2(01- Hence, two perturbed evolutions can also
lie arbitrarily close.

The spectral resolution of the unperturbed evolution is at all times (except
at t = 0) given by W(t) = w1(t)P1(t) + w2(t)P2(t\ where w{(t) = (1 +g(t))/2,
where W2(t) = (1 — g(t))/2 and where

The spectral resolution of a perturbed evolution is at all times (except at t = 0
if 8(0) = 0) given by W(t,s(t)) = wi(f,e(t))Pi(t,e(t)) + w2(t,s(t))P2(t,s(t)),
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where wi(t,e(t)) = (1 + r(t))/29 where w2(t,s(t)) = (1 - r(t))/2 and where

J (7.40)

Here, r(t) is the modulus of g(t) + k(t) and (p(t) is its phase.
In order to compare the sets of eigenprojections of W(t) and W(t,e(t)),

I need a measure to capture their closeness. A convenient measure for the
closeness of two projections P = \ip)(ip\ and P = \</>){<l>\ which project onto
the rays \xp) and |</>), respectively, is given by Tr(PP) = |(tp|</>)l2- If P and
P project onto the same ray, then |(v>|0)| = 1 and Tr(PP) = 1. If P and
P project onto different rays, Tr(PP) decreases if the angle cos~1(|(i/;|(/))|)
between \xp) and \4>) increases. So, the smaller Tr(PP) is, the more different P
and P are. Now let the one-dimensional eigenprojections of two states W and
W be given by the sets {P\9PT} and {Pi,P2}, respectively. The projection Pi
is maximally different to both Pi and P2 if the values Tr(PiPi) and Tr(P2Pi)
are both as small as possible. Since the sum Pi + P2 is equal to the unit
operator I (I am still working on a two-dimensional Hilbert space), it holds
that Tr(PiPi) + Tr(P2Pi) = Tr(Px) = 1. Hence, Tr(PiPi) and Tr(P2Pi) have
simultaneously their smallest value if one of them, say Tr(PiPi), has value
\. And if Tr(PiPi) = ±, such that Tr(P2Pi) = \9 one can derive that also
Tr(PiP2) = 2 and Tr(P2P2) = \ (using that Pi + P 2 = I). So, a good criterion
for {PuPi} and {PuPi} to be maximally different is that Tr(PiPi) = \.

Now, let's consider how arbitrarily small perturbations of evolving states
can affect the eigenprojections of those states near degeneracies. Consider,
firstly, how a perturbation of W(i) given by W(t,s(t)) affects the eigenpro-
jections {Pi(t),P2(0} of W(t) around t = 0. The distance between W(t) and
W(t,s(t)) is \e(t)\ so the perturbation of W(i) can be taken to be arbitrarily
small by taking for all t the perturbation s(t) arbitrarily small. Calculation
of Tr[Pi (t) Pi (t, e(t))] yields

\ cos q>{t) = \ + \ cosCtan"1 W)/g{t)}). (7.41)

So, irrespective of how small the perturbation s(t) is, if s(0) ^ 0 (and if s(t)
is sufficiently smooth around t = 0), the limit t -> 0 of Tr[Pi(t)Pi(t,e(t))]
goes to 2 since the limit t —• 0 of e(t)/g(t) goes to +00. Hence, for arbitrarily
small perturbations, the eigenprojections of W(t) and W(t9 s(t)) can become
maximally different if one approaches the degeneracy at t = 0.

Compare, secondly, two perturbed evolutions W(t, —s) and W(t, e) with s



7.4 Instabilities and other bad behaviour 133

a constant larger than zero. The distance between these evolutions is 2s. So,
by taking s arbitrarily small, they are arbitrarily close to one another and
they are arbitrarily near the degeneracy W(0) = ^1 at t = 0. Calculation of
Tr[Pi(t,-e)Pi(t,e)] yields

Tr[Pi(t,-fi)Pi(t,e)] = \ + \ cos(2<p(t)) = \ + \ cos(2tan-1[£/g(0]). (7.42)

Now take an instant tf < 0. The value g(V) is then strictly smaller than
zero since g(t) is monotonously and strictly increasing. Choose s such that
0 < s < —g{tf) (s can thus be arbitrarily small). Because g(t) is increasing
there is a second instant f that is closer to t = 0 than tf is (so tl < f < 0)
and for which it holds that g(f) = -s. At this instant Tr[Pi(f,—e)Pi(t,e)] is
5. So, two arbitrarily close evolutions can have maximally different sets of
eigenprojections near a degeneracy.

Consider, thirdly, a single state evolution W(t,s) that comes arbitrarily
close to the degeneracy W(0) = jl but does not hit it. Let t\ be an instant
before t = 0, let £2 be one after t = 0 and compare the eigenprojections of
W(t,s) at those two instants. The value Tr[Pi(ti,e)Pi(t2,e)] is

Tr[Pi(ti,fi)Pi(*2,s)] = \ + \ cos(p(ti) - <p(t2)). (7.43)

For any t\ before t = 0 one can choose s = —g(t\) and £2 = g-1(£) (g
is monotonously and strictly increasing, so g"1 exists). The phases cp(t\) =
tan~1[s/g(^i)] and cpfa) = tan~1[e/g(t2)] are then —TC/4 and 7i/4, respectively,
and Tr[Pi(^i,e)Pi(^2,e)] is equal to \. One can now take the limit t\ \ 0 and
in this limit s and £2 also go to zero. If one does so, it follows that the set of
eigenprojections of a state that comes arbitrarily close to a degeneracy can
change maximally in an arbitrarily small time interval £2 — *i-

These results prove that whenever a state is approaching a degeneracy,
it is much wiser if it accepts its fate, takes a deep breath and dives along
a straight line through the degeneracy. In the above case, the unperturbed
state W(i) has during its dive at all times t ^ 0 the eigenprojections P\(t)
and P2(t) given in (7.39). The set of core properties generated by W(t) is thus
constant and goes awry only at the isolated instant t = 0. If, however, the
state grazes the degeneracy or fluctuates around it, the set of core properties
can change rapidly, resulting in an unstable property ascription during a
finite time interval.

This possibility that modal property ascriptions can be unstable due to
rapidly changing eigenprojections is, of course, not limited only to randomly
fluctuating states. For instance, the smoothly evolving state W(t,s) has also
been proved to exhibit maximal changes in its set of eigenprojections during
small time intervals.
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To conclude, the study of the dynamics of the spectral resolution of
evolving states not only proves that modal property ascriptions can be
discontinuous and that the core projections can evolve along (deviantly)
emerging and vanishing trajectories. It also proves that modal property
ascriptions can be unstable.

A final remark concerns yet another source for incorrect property ascrip-
tions. In this book I always assume that one can precisely identify the systems
a, /?, y, etc. Consequently, one can also precisely identify the composites of
these systems. If, however, one proceeds the other way round and starts
with a set of composites, one has to answer the question of how exactly to
factor these composites into disjoint subsystems. In Bacciagaluppi, Donald
and Vermaas (1995, Example 7.3) it is proved that the property ascription
to a subsystem can depend with high sensitivity on the precise identification
of that subsystem.



8
Transition probabilities

Having dealt with the evolution of the set of core properties of a system, I
continue with the evolution of the actually possessed core property.

8.1 Introduction

Consider again the spin ^-particle a described at the beginning of Section 7.1.
Its state is W°(i) = cos21 \u\)(wf| + sin21 \d\)(df | and its actually possessed
core property at time t is |M?)(M?| with probability cos2t and |d?)(d?| with
probability sin21. So, at t = 0 the actual spin of a is up with probability 1 and
after t = 0 the probability that the spin is actually down becomes non-zero
and increases in time. The question is now how does this actually possessed
spin of a evolve. Does the actual spin remain up as long as possible, allowing
only one jump from up to down? Or does it randomly flip up and down
with an increasing bias towards being down?

In this chapter I address this question of the evolution of the actu-
ally possessed core properties. More precisely, following early proposals by
Dieks (1993, 1994a,b), I determine this evolution by means of the transition
probabilities p(C%(t)/C%(s)), which are the conditional probabilities that the
actually possessed core property of a system a is C%(t) at time t, given that
this property is C£(s) at time s < t. With these transition probabilities one
cannot, in general, derive the probabilities which should be assigned to whole
histories of actually possessed core properties. However, transition proba-
bilities already constrain such histories enough to derive some interesting
results.

One can easily see that there exist many candidate expressions for these
transition probabilities p(C%(t)/C%(s)). Let p(Q(s), C%(t)) be the joint prob-
ability that the actual core properties of a are sequentially C£(s) at s and
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Transition probabilities

Let the core projections of a system a be {CJ(s)}7- at time s and {C%(t)}k at
time t (with s < t). The evolution of the actually possessed core property
of a from s to t is then described by transition probabilities p(C%(t)/C£(s))
that are the conditional probabilities that [C£(£)] = 1 at t, given that
[C2(s)] = 1 at s.

C%(t) at t. One then has

piCbit)/Cais))-ZbP(Q(s),c«b(t)Y
 ( }

The joint probability p(C%(s), C%(t)) must be consistent with the core property
ascriptions to a at 5 and at t. So, its marginals must yield the single time
probabilities assigned to C%(s) and C%(t). That is,

It is a standard result that, in general, the marginals of a joint probability do
not uniquely determine that joint probability. Hence, modal interpretations,
which fix the marginals p(C%(s)) and p(C^(t)), do not uniquely determine
the joint probability p(C%(s), C%(t)) and thus do not uniquely determine the
transition probabilities p(C%(t)/C%(s)). Therefore, since, in principle, there
exist many candidate expressions, the task of giving transition probabilities
becomes not so much a matter of finding a specific candidate expression,
but rather one of arguing why a specific candidate is the correct one.

In the light of this underdeterminateness of transition probabilities, the
results are somewhat limited. For freely evolving systems one can indeed
argue for specific transition probabilities (Section 8.2). If the bi and the
spectral modal interpretations satisfy the assumption of Dynamical Auton-
omy for whole systems and the criterion of Empirical Adequacy, then one
can argue that the transition probabilities for a freely evolving system a
are given by p(C%(t)/C%(s)) = dab- And if the atomic modal interpretation
satisfies Dynamical Autonomy for atomic systems and Empirical Adequacy,
one can argue that the transition probabilities for a freely evolving atom a
are also given by p(C£(t)/Q(s)) = 5ah.

Using these first results, one can also argue for specific transition proba-
bilities for interacting systems in the special case that there exists a 'snooper'
for the interacting system (Section 8.3). However, this second result does
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not hold for interacting systems in general because snoopers for interacting
systems need not always exist.

With these transition probabilities, based on Dynamical Autonomy and
Empirical Adequacy in the above cases, one can arrive at some impor-
tant conclusions about general transition probabilities. The first is that in
the spectral and atomic modal interpretations the transition probabilities
for subsystems of a freely evolving composite are not, in general, uniquely
fixed by the evolution of the state of that composite (failure of the as-
sumption of Dynamical Autonomy for composite systems). Another conclu-
sion is that in the spectral modal interpretation the transition probabilities
p(C%(t)9CJI(t)/CZ(s)9Cfr(s)) for two disjoint systems a and /? need not exist.
A third conclusion is that in the atomic modal interpretation the transition
probabilities for molecular systems are not uniquely fixed by the evolution
of the state of that molecule (failure of Dynamical Autonomy for whole
systems).

The underderminateness of transition probabilities is clearly visible in the
work by Bacciagaluppi and Dickson (Sections 8.4 and 8.5). In a number of
publications88 they have constructed by means of the theory of stochastic
processes a framework with which one can find transition probabilities for
all freely evolving and interacting systems (so the existence of such general
transition probabilities is proved). This framework allows the generation
of many different expressions for modal transition probabilities, although
some of these expressions are ruled out by the already established transition
probabilities p(C%(t)/C%(s)) = dab for freely evolving systems.

So, to sum up, there exist in modal interpretations transition probabilities
p(C%(t)/C%(s)) which describe the dynamics of the actually possessed pro-
perties of systems. But, with the exception of a number of cases, there does
not yet exist an argument which fixes these transition probabilities uniquely.

8.2 Freely evolving systems: determinism

I start by deriving transition probabilities for freely evolving systems (Ver-
maas 1996, Sects. 3 and 4). There exist, as I have said, many expressions
for transition probabilities which are compatible with modal interpretations.
Modal interpretations thus lack the necessary structure to develop them
uniquely into fully-fledged theories about possessed properties. In order to
proceed I therefore reverse the order of deduction: I require that the cor-
rect solution for transition probabilities for freely evolving systems satisfies

88 The original paper is Bacciagaluppi and Dickson (1997) but see also Bacciagaluppi (1996b, 2000)
and Dickson (1998a,b). A comprehensive paper is Bacciagaluppi (1998).
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the criterion of Empirical Adequacy and then uniquely derive this correct
solution from this criterion (see Section 3.3 for this Kantian reversal of
deduction).

First a word about notation. In quantum mechanics the state of a freely
evolving system a is at time t given by (see Section 2.1)

W^t) = U^t, s) Wa(s) Ua(s, t) (8.3)

with s some initial instant and with U*(x,y) equal to exp([(x — y)/ih] H*).
Repeating remarks made in Section 7.2, the eigenprojections of both Wa(t)
and Wa(s) lie on continuous trajectories {T£(t)}q given by

T«(t) = U«(t,s)P«(s)U«(s,t). (8.4)

I now adopt the convention of labelling the eigenprojections of a freely
evolving state such that Pg(t) of W*^) and P?(s) of Wa(s) lie on the same
trajectory T*(t) if and only if k = j . This implies the labelling

P£(t) :=U"(t9s)P£(s)U"(s9t). (8.5)

In order to execute the announced reverse deduction, I define a model
in which the transition probabilities for a freely evolving system uniquely
fix the transition probabilities for outcomes possessed by a pointer. By then
invoking the criterion of Empirical Adequacy, one can calculate the transition
probabilities for the outcomes and hence fix the transition probabilities for
the freely evolving system as well. Take, firstly, the bi modal interpretation.
The model then consists of a system a and a pointer n. From so to s a
measurement is performed on a by means of n and the measured magnitude
is represented by the operator Aa = J2jajPjj(s) (^a *s thus an operator
which has the same eigenprojections as the state of a at s). Let {\p^)}j,k be a
set of pair-wise orthogonal vectors in tfa which satisfy P?(s) = J2k IPjfc)(P?fcl-
And let the measurement interaction between a and n induce the following
evolution

U™(s,s0) \p%) ® |Rg> = \p%) ® |R£>, (8.6)

where { J R ^ ) } ^ are pair-wise orthogonal vectors which are related to the
reading states {RJ}j of the pointer as RJ = ^k |RJ/C)(R^|, for all j . (I here
thus consider the unphysical case of a measurement device consisting of only
a pointer, see Section 4.7.) According to the standard formulation of quantum
mechanics, this interaction is an acceptable measurement interaction: if a
is initially in an eigenstate corresponding to the eigenvalue aa of Aa, say

= Ekck \P*ak), the final pointer state is Wn(s) = £f c \ck\
2
 | R ^ ) ( R ^ | ;
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and given this final state, the probability Tvn{Wn(s)R*) to find the reading
R% is equal to 1.

Then, from s to t, the systems a and n evolve freely, a evolves by means
of some internal dynamics given by Ua(t, s) and n evolves by means of the
unit operator. The evolution of an is thus given by C/a7C(£,s) = l/a(t,s) ® F .

Let |*Fa7U(so)) = Y<j,k \/wCj(s) \P%) ® lRo) b e t h e i n i t i a l s t a t e o f t h e model
(the values {w*(s)}; are the eigenvalues of the state of a at s). At 5 and t the
state of the model is then

Partial tracing yields that the states of a and n evolve from s to t as

j

Wn(s) = '
J J

(8.8)

with Pjj(t) defined as in (8.5). Note that one can embed every possible free
evolution (8.3) of a in the model: the model poses no restrictions on the
eigenvalues {wj(s)}7 and the eigenprojections {Pj*(s)}7 of the state Wa(s),
and poses no restrictions on the evolution Ua(t, s).

Apply the bi modal interpretation to a and n at s and t. The state of
arc is pure at all times so one can indeed ascribe properties to a and rc as
well as correlate them. At s the core projections of a and n are {P*(s)}j
and {RJ}j9 respectively, and at t they are {Pg(t)}k and {R£}k9 respectively.
Consider now the joint probability p(P£(s\P%(t),R* at s,R% at t) that the
respective actual core properties of a and n are sequentially P"(s) and Pjf(t)
and R* at s and R% at t. The joint property ascription (4.10) given on page 51
correlates the properties of a and n one-to-one at both s and t. This implies
that p(P2(s)9Pg(t),R£ at s,R% at t) is zero if either a =£ c or b ^ d. One can
thus derive that

at t/Rn
a at s). (8.9)

Hence, the desired transition probabilities for a in the model are equal to the
conditional probabilities that the pointer possesses the reading R^ at t, given
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that it possessed R% at s. These latter conditional probabilities (the right-
hand side of (8.9)) yield statistical predictions about measurement outcomes
and should according to Empirical Adequacy be equal to the conditional
probabilities generated by the standard formulation of quantum mechanics.

Apply therefore the standard formulation to the model. If n assumes the
outcome K% at s, then, according to the standard formulation, the state of
can collapses to

^ Tra(P«(s)) ' {*'W)

This collapsed state evolves to t by Uan(t9s) and it follows from the Born
rule that

PBom(Rn
b at t/F£ at s) = Tr™(W«n(t) [F ® R%]) = 8ab. (8.11)

So, by invoking Empirical Adequacy, one can uniquely fix the right-hand
side of (8.9) and conclude that

p(Pb«(t)/P«(s)) = 8ab. (8.12)

This result follows uniquely from the criterion of Empirical Adequacy but
is still valid only in the special case that a is part of the sketched model.
By now using the assumption of Dynamical Autonomy for whole systems,
one can turn (8.12) into a generally valid result (here I copy exactly the
line of reasoning followed at the end of Section 6.2). Take any system a
with a freely evolving state (8.3). If this system is embedded in the above
model, the transition probabilities p(Pb(t)/P%(s)) are equal to bab. If this
system is not embedded in such a model, the transition probabilities are
unknown. Dynamical Autonomy for whole systems demands that in both
cases the transition probabilities are the same.89 Hence, also if a system
with a freely evolving state (8.3) is not embedded in the above model, the
transition probabilities p(P£(t)/P%(s)) are equal to bab.

For the spectral modal interpretation one can use a similar argument
to derive the same result (8.12) but now with a physically more realistic
measurement. Take a model comprising a and a measurement device fi
which consists of a pointer n and a mechanism Ji. Let the pointer reading
magnitude be given by Mn = J^j mj IRJ)(RJI and let {|D^)};- be a set of pair-
wise orthogonal vectors in ^ . From so to 5 a measurement is performed

89 Dynamical Autonomy for whole systems can be used because the transition probabilities
p(Ph(t)/P%(s)) = Saij derived with the model are independent of the state of the pointer n of
the model.
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on a by means of the evolution

U^&so) \p%) ® |Dg> = \p%) ® |5f> ® |RJ>. (8.13)

And from s to t the evolution of the model is governed by Ua(t, s) ® W such
that all the systems a, JL and TC evolve freely.

By starting with an initial state Wafi(so) = J2jw](s)pf(s) ® lDo)(Dol> a n d

by applying the spectral modal interpretation to a and n at s and at t,
one again obtains the evolution (8.8) for the states of a and of n such that
one can derive the identity (8.9). Repeating the above argument yields the
transition probabilities (8.12).

With a few changes one can use this last model also to derive the transition
probabilities (8.12) for any freely evolving atom in the case of the atomic
modal interpretation. These changes concern the pointer vectors {|Rj}}; in
(8.13) and are necessary for ascribing readings to the pointer with the atomic
modal interpretation (see Section 4.7). Let the atoms in the pointer be given
by {Pq}q=i- Then, firstly, the vector |Rp in (8.13) should be equal to the

O f ) ft O

vector IR^1) ® • • • ® |RV*), where the vectors {\Rj)}j, . . . , {\Rj)}j are all sets
of pair-wise orthogonal vectors. Secondly, the readings should be defined as

R R R R

RJ = \RJ)(RJ\ ® • • • ® \Ry)(Ry\. With these changes one can again derive
that the transition probabilities for any atom a embedded in the model, are
given by (8.12). Then by using the assumption of Dynamical Autonomy for
atomic systems one can turn this result into a generally valid one.

The evolution of the actually possessed core property of a freely evolving
molecule in the atomic modal interpretation is in general not given by
(8.12). Take, for instance, a molecule y consisting of the atoms ai and 0C2.
The free evolution of y can then map a state \e\l) ® |/^2) at 5 to a state
ci \e?) ® I/D + c2 \e%) ® l/2

a2) at t, where (e?\e?) = </?2|/2
a2> = 0. The

actual core property of y is le"1)^1! ® | / i 2 ) ( / i 2 | at s with probability 1 and
k"1)^"1! ® l / f ) ( / f I at t with probability \cj\2, j = 1 or 2. The transition
probabilities for y are thus
P(k;

ai)(^ail®l/f)(/;2l at t/ \e?)(e?\ ® |/?></«2| at s) =

P(\e?)(e?\ ® |/f></f I at t) = \Cj\
2 (8.14)

which clearly contradicts (8.12).
One can try to determine the transition probabilities for freely evolving

molecules in the atomic modal interpretation by means of the evolution
of the properties of the atoms. If all the individual atoms {(xq}q in a mol-
ecule y evolve freely (so, Uy(t,s) = t/ai(t,5) ® £/a2(£,s) ® •••), this indeed
works. Loosely, if y possesses ^ c . . . ( 5 ) at s, the atoms in y possess with
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probability 1 simultaneously, respectively, P£l(s), P%2(s), . . . , at s. Then, us-
ing (8.12), the atoms possess with probability 1 simultaneously, respectively,
U^{t,s)P^{s)U^{s,t\ U^(t,s)P^2(s)UCC2(s,tl . . . , at t, and it follows with
probability 1 that y possesses Py

ahc.M -= Uy(t,s)Plbc..Xs)Uy(s,t) at t. Hence,
if the atoms in y evolve freely, the transition probabilities are

P i P l b ' c ' - M / K b c - M ) = Saa>Sbb>Scc> ' " . (8.15)

If, on the other hand, y evolves freely but its atoms {ocq}q interact with one
another, one cannot yet derive transition probabilities for y from the property
evolution of the atoms because transition probabilities for interacting atoms
are not yet determined.

Evaluating these results, it can be concluded that the evolution of the
actually possessed core property of a freely evolving system a (or of a
freely evolving atomic system in the case of the atomic modal interpretation)
is with probability 1 confined to only one continuous trajectory T*(i) of
eigenprojections of the state Wa(t). For if at some instant s the actual core
property is given by PJ(s), then the actual core property is according to (8.12)
with probability 1 at all times t given by P*{i). And all these projections lie
on the same trajectory Tf(t) = UJ(t,s)P?(s)Uy(s,t).

One can characterise this confined evolution as deterministic: if the actual
core property lies at one instant on trajectory TJ(t) it lies with certainty
always on that trajectory; the actual core property jumps only with zero
probability from one trajectory to another, ruling out a truly stochastic
evolution.90

Finally, one can observe that the property evolution of freely evolving
systems harmonises with the standard formulation of quantum mechanics.
If one calculates the transition probabilities p(P£(t)/P£(s)) by means of the
Born rule (ignoring the fact that this rule should only be used if measurements
are performed), one finds the same result as (8.12).

8.3 Interacting systems: stochasticity

With the help of the deterministic evolution derived for freely evolving
systems, one can determine for the spectral and the atomic modal interpreta-
tion transition probabilities for special cases of interacting systems (Vermaas
1996, Sect. 5). The trick is to embed the interacting system a in a model
in which a freely evolving snooper system a carries a record of the core
property that a actually possesses at instant s from s to a second instant t.

90 In the literature this deterministic evolution is often described by stating that the actual core properties
of freely evolving systems exhibit stability.
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By then determining the correlation between the actual core property of a at
t and this record, one indirectly fixes the transition probabilities for a from
s to t

In quantum mechanics the state of a system a that interacts with an
environment /? is at t given by (see Section 2.1)

W«{t) = TrU(U"p(t,s) Wap(s) U*p(s,t))9 (8.16)

with WaP(s) the state of the composite a/? at some initial time s and with
U^(x,y) equal to exp([(x — y)/\h] HaP) (it is thus assumed that a/? as a
whole evolves freely). The results of the last chapter yield that, in general,
there are no continuous trajectories which connect the eigenprojections of
Wa(t) and of Wa(s). I therefore do not (or, more accurately, cannot) adopt
a convention of labelling the eigenprojections of Wa(t) similar to (8.5).

Let's start with the spectral modal interpretation. Take a model with three
systems: a, the environment /? and a snooper a. At a first instant 5 the state
of the model is such that there exists a strict correlation between the core
properties of a and of a. The state Wa^(s) thus obeys

Vi, j : i^j=> Traap (W^is) [P?(s) ® P/(s) <8> I*]) = 0. (8.17)

Then, from s to t, the snooper evolves freely by means of the unit operator
F , a interacts with the environment /? and the composite a/J evolves freely
with some arbitrary UaP(t,s). At t the state of the model is then

W°"p(t) = [F (8) U^(us)] W°"p(s) [F (8) U"p(s9t)]. (8.18)

By taking partial traces, it follows that the state of a evolves as in (8.16).
However, not every possible evolution (8.16) of a (characterised by the pair
WaP(s) and UaP(t,s)) can be embedded in this model. One can choose every
evolution U"p(t,s) but the choice of W«P(s) is limited by (8.17). In the
MATHEMATICS I prove that if W™p(s) obeys (8.17), then WaP(s) obeys

s) ® Ip] W"p(s) [P«(s) (8) I*]. (8.19)

Conversely, if one has a state W^(s) that obeys (8.19), then there exists
a state Wa*P(s) that obeys (8.17). Hence, one can consider a system a
interacting with (I if and only if the composite state Wap(s) obeys condition
(8.19).

Apply the spectral modal interpretation to this new model. At s the core
properties of the snooper and a are, respectively, (Pi

<7(s)},- and {P*(s)}j. At t
these core properties are, respectively, {Pg(t)}k (with P£(t) = P£(s) for all k)
and {P?(t)}i. Consider then the joint probability p{P%{s\P%(t\P°(s\P%(t))
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that these systems possess sequentially their respective actual core properties.
Due to the one-to-one correlations between the snooper and a at s, this
joint probability is zero if a ^ c. And by the free evolution of a and the
deterministic transition probabilities (8.12), this joint probability is also zero
if c ^ d. Hence, one can derive that

p(P«(s), Pg(t)) = p(PZ(t), Pg(t)). (8.20)

The right-hand side is the probability that a and the snooper possess si-
multaneously their respective actual core properties at t. These systems are
mutually disjoint, so this probability can be calculated with the spectral
modal interpretation, yielding

p{Pg(s)9Pg(t)) = Tr™P(W™P(t) [PZ(t) ® Pg(t) ® P]). (8.21)

In the MATHEMATICS it is proved from condition (8.17) that one can rewrite
this joint probability as

p(Pg(s)9Pg(t)) = TT*P(U*P(t9 s) W**{s) [PZ(s) <S> I '] U«P(s, t) [Pg(t) ® I']).

(8.22)

With this solution one can derive two sets of transition probabilities. In
the model it is assumed that s < t. The properties of a thus evolve from 5 to
t and the transition probabilities are equal to

Tt"l>(U*P(t9 s) W'Hs) [PZ(s) 9 I»] U«p(s, t) [Pg(t)
p{Ph{t)/Pa{s)) = T r « ( W « ( s ) P a « ( s ) ) '

(8.23)

However, one can also assume that t < s (the state of eotf} then satisfies
condition (8.17) at the final instant s) such that the properties of a evolve
from t to s. The transition probabilities are then

T&(u(t, s) W*P(s) [Pfts) ® P] U*P(s, t) [Pg(t) 9
p(Pa(s)/Pb(t)) = TT*(W*(t)Pg(t)) '

(8.24)

If one stipulates that the snooper a is an atomic system, one can also use
the above model for deriving transition probabilities for interacting atoms
in the atomic modal interpretation. So, take both a and a atomic (jS may be
a huge molecule) and apply the atomic modal interpretation to the model.
Since the spectral and atomic modal interpretations are equivalent with
regard to the property ascription to atoms, one can again use the above
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argument and conclude that the transition probabilities (8.23) and (8.24)
also hold for atoms in the atomic modal interpretation.91

These results still hold only for an interacting system a for which there
exists a snooper a at the instant s. The question is now whether these results
also hold for interacting systems a if such a snooper is absent.

In the previous section we have seen that the transition probabilities
derived for freely evolving systems in the special case that a measurement
device is present could be used to fix the transition probabilities for freely
evolving systems in the general case that no measurement is present. This
generalisation was made possible in the spectral modal interpretation by
invoking the assumption of Dynamical Autonomy for whole systems, and
was made possible in the atomic modal by invoking the assumption of
Dynamical Autonomy for atomic systems. Essentially these two assumptions
say that the transition probabilities for freely evolving systems or for freely
evolving atoms are uniquely fixed by the evolution of the state of that system
or atom, respectively. Hence, if one knows in one special case the transition
probabilities for a freely evolving system or atom, one knows them in all
cases.

One may now try to do something similar for interacting systems. That
is, one may try to argue that the transition probabilities (8.23) and (8.24)
also hold for interacting systems in the general case that no snooper for a is
present.

A first step towards such a generalisation is to reformulate the above
results such that they do not refer to the snooper a. This first step is indeed
possible. The transition probabilities (8.23) and (8.24) are functions of W^(s),
UaP(t,s), P£(s), and P£(t) only, so they do not refer to the snooper. And
condition (8.17) on the state W^(s) can be replaced by the condition (8.19)
(these two conditions were proved to be equivalent) such that this condition
does not refer to the snooper either.

The second step is to invoke the assumption of Dynamical Autonomy for
composite systems and thus to assume that the transition probabilities for
a, the subsystem of a freely evolving composite a/?, are uniquely fixed by
the evolution of the state of that composite a/?. However, one can show that

91 One can try to determine with the above model transition probabilities for interacting systems in
the bi modal interpretation. Unfortunately this does not work in general. To see this, consider the
state of <xp at s and at t. In order to fix the transition probabilities p{P%(i)/P%(s)\ one has to know
the correlations between G and a at s and at t. However, these correlations exist in the bi modal
interpretation only if the states W™{s) and W™(t) are pure. This implies (see footnote 11) that era/?
has a state \¥™)(*i>™\ ® w^ at s and at t. Hence, W^ = W" <g> W* at s and at t such that one
can determine p(Pg(t)/P%(s)) only if the state of aft is factorised at s and at t. Since interactions
between systems in general entangle the states of those systems, one thus cannot, in general, determine
transition probabilities in the bi modal interpretation.
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if the transition probabilities (8.23) and (8.24) are valid for all interacting
systems a with states W^(s) that satisfy the condition (8.19), then the spectral
and atomic modal interpretations are contradictory. This is proved by an
example, given in Section 9.2 of the next chapter, in which two composites a/?
and cdfif of atomic systems evolve freely and with equal states that satisfy the
condition (8.19). If one then assumes that the transition probabilities for the
systems a and a' are both given by (8.23), one arrives at a contradiction. The
transition probabilities for a system a, part of a freely evolving composite
a/?, are thus not uniquely fixed by the state of a/J. Hence, the transition
probabilities (8.23) and (8.24) are not valid for all interacting systems a that
satisfy the condition (8.19); these transition probabilities are valid if there is
a snooper a for a actually present at s.92

The example which proves that the spectral and atomic modal interpreta-
tions violate Dynamical Autonomy for composite systems93 can also be used
to arrive at two further worrisome conclusions. The first is that if one accepts
the deterministic evolution (8.12) of the core properties of freely evolving
systems, then the transition probabilities p(P?(t),Pff(t)/P%(s),p£(s)), which
give the joint evolution of the core properties of two systems, sometimes
do not exist in the spectral modal interpretation. And the only way to
circumvent this first conclusion is by accepting perspectivalism. The second
conclusion is that if one accepts the deterministic evolution (8.12) for freely
evolving atoms, then the atomic modal interpretation violates the assump-
tion of Dynamical Autonomy for whole molecular systems. This means that
two freely evolving molecules a/J and a'/?' can have the same state evo-
lution while the transition probabilities p(Pc

a(t) ® Pf (f)/P*(s) ® P^(s)) and
p(Pc(t) ® PJ[(i)/P£(s) ® PJI'(s)) for the core properties of these molecules
are not the same. (See Section 9.2 for the proofs of these two conclusions.)

From the transition probabilities (8.23) and (8.24) one can reach some
general conclusions about the evolution of the core properties of interacting
systems. Firstly, this evolution is truly stochastic in the sense that the tran-
sition probabilities can have values between 0 and 1. So, if the state of an
interacting system a allows a dynamical decomposition in terms of contin-
uous trajectories {T*(t)}q of eigenprojections, then the actual core property

92 In Section 5 of Vermaas (1996) I claimed tha t the transi t ion probabilit ies (8.23) and (8.24) could
indeed be turned into generally valid ones. I argued for this generalisation by means of an assumpt ion
(called R2") which is equivalent to Dynamica l A u t o n o m y for composi te systems. However, dur ing
discussions, G u i d o Bacciagaluppi (private communica t ion , 1998) m a d e it clear to me that this
assumpt ion is untenable. M y conclusion in Vermaas (1996) tha t the transi t ion probabilit ies (8.23)
and (8.24) are generally valid is thus wrong.

93 One cannot give a proof that Dynamical Autonomy for composite systems is also untenable in the
bi modal interpretation because this interpretation is silent about the transition probabilities (8.23)
and (8.24) used in this proof.
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of a is thus only for finite times confined to one trajectory and then jumps to
another trajectory. Secondly, it can be proved that the transition probabilities
need not be equal to those derived by the Born rule. The transition proba-
bilities (8.23) are surprisingly exactly equal to those given by the Born rule
but the transition probabilities (8.24) can be different. Finally, the evolution
of the actual core properties need not be a Markov process. That is,94 the
evolution of the actually possessed core property of a need not satisfy the
relation

p(P£(t)/P«(s)) =p{P£{t)/P«{sl\P«2{s2\... 9Pf(s))9 (8.25)

where {sj; are ordered instants si < 52 < ... < s < t. It follows that in order
to most precisely determine the probability that a actually possesses P£(t) at
t, one should not conditionalise only on the last known actually possessed
core property P*(s) of a, but on the whole history of actually possessed
core properties P£(si), P^feX etc. Hence, the last actually possessed core
property of a does not carry all information for predicting the future actually
possessed properties of a.95

These three conclusions (stochasticity, non-Born like and non-Markovian
transition probabilities) are proved and illustrated by an example given at
the end of the MATHEMATICS.

MATHEMATICS

Firstly, I prove that if WaocP(s) satisfies condition (8.17), then its partial trace
WaP(s) satisfies condition (8.19).

Lemma 8.1
IfTx™P(WO0LP [P° ® P? ® IP]) = Ofor all i + j , then its partial trace W«P is

equal to Y,miPm p P ^

Proof: Suppose that Tr™P(W™P [P? ® P? ® P]) = 0 for all i =/= j . If
one identifies the projections {QK

q}q with {P/7},- and {Q^}r with {PJ ® fP}j9

Theorem 6.1 on page 91 yields

Vs : Tr^iW^ [P/ ® I"p]) = [Ps
a ® 1̂ ] W«P = W"P [Ps

a ® 1^]. (8.26)

94 See, for instance, D o o b (1953, Sect. II.6) and Feller (1950, Sect. 15.10).
95 Jeremy Butterfield (private communica t ion , 1995) noted tha t this absence of the Markov proper ty is

in a sense to be expected. Since a is interacting with an environment /?, all possible information abou t
the future behaviour of a should be expected to be present in the composi te a/?. So, if the evolution
of actual core propert ies should satisfy the M a r k o v property, it should satisfy it with respect to the
actually possessed core propert ies of a, of f$ and possibly also of aft.
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The operators {Ps
a ® I^}s therefore commute with W^ and one can derive

that

W"p = Fp W«p = Y^[K ® 1̂1 Wafi = J][Ps
a ® I^]2 WaP

s s

®P]Wa^[P^®lp]. (8.27)

a

Secondly, I prove that for every state W^(s) satisfying condition (8.19),
there exists a state Wa^{s) which satisfies condition (8.17) and has W^(s)
as a partial trace.

Lemma 8.2
IfW«P is equal to ^ K ® t f ] r ^ [ P > I ^ then there exists a state W™$
which satisfies that Tf^W™* [Pf ® Pf ® 1̂ ]) = 0 for all i ̂  j .

Proof: Take, for instance,

(8.28)

with {Pfym a set of one-dimensional and pair-wise orthogonal projections. •

Thirdly, I prove from condition (8.17) the equivalence of (8.21) and (8.22):

Theorem 8.1
/ / U°"P(t,s) = F ® U«P(t,s) and if Wa^(s) obeys

Mij : i ^ j ^ Tr™? (W™P(s) [P?(s) ® Pf(s) ® I*]) = 0, (8.29)

then

Va, b : Trffa^(^ffaP(t) [Pfl
ff(t) ® Pg(t) ®IP]) =

Tr^(U^it, s) W*p(s) [P%(s) ® lp] U*p(s, t) [Pg(t) ® 1^]). (8.30)

Proof: To prove this theorem, rewrite the left-hand side of (8.30) as

® U^{Us)} W°*p{s) [F ® U"p(s,t)] [P^(t) ® P%{t) ® P]) =
a^XU"p(t,s) {Tr*(W°*p(s) [PZit) ® rp])} U*p(s, t) [P%{t) ® Ip]). (8.31)

Condition (8.29) is equivalent to (6.14) of Theorem 6.1 if one identifies
the projections {QK

q}q with {P/7}, and {Q*}r with {Pf ® P}j. Theorem 6.1
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yields that

Vs : T

with which one can derive (8.30).

(8.32)

•

Finally, I prove by means of an example that the transition probabilities
for interacting systems are stochastic, non-Born like and non-Markovian.

Consider a composite of three atoms a, a and /?. The Hilbert spaces j ^ a
9

2tfa and Jf^ are all two-dimensional an the state of era/? at t = 0 is given by

\e[){e[\ \e\)(e\\

(8.33)

with {|ej)}j=1, { I 4 ) } L I a n d (lef ))Li a11 orthonormal bases. Let the Hamil-
tonian of aa/i be given by Ha ® V? + ¥ ® #°^ (so o- and a;8 do not interact)
with

(8.34)

where the matrix of Ha is with respect to the basis {\e\)9 {e^)} and where
the matrix of H^ is with respect to the basis {\ef) ® \e{), |ef) (8) |^>, |^> ®
\e\), l^) ® l^)} . The evolution of the state of era/? is then governed by the
operator

a
0 b)> H ~h

/o
0
0

\ i

0
0
0
0

0
0
0
0

0
0

o)

Q-Ht-s) o

0 -ib(t-s)

/cos(t-s) 0 0 -sin(£-s)\
0 1 0 0
0 0 1 0

\sin(r—5) 0 0 cos(t—s) )

(8.35)

where the matrices are again with respect to the above bases. With this
evolution it follows that Wa"P(0) = WG^{kn) with k G Z.

The state of this composite satisfies condition (8.17) at s = 0 and, due to
the above remark, also at s = kn with k G Z. Hence, a acts like a snooper
for a at s = kn with k G Z and one can determine the transition probabilities
p(Pg(t)/P£(s)) in both the spectral and atomic modal interpretations for all
t and all s = kn with k G Z.
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The reduced states of a/? and a evolve like

/ l+cos 2 f 0 0 cost sin t\
0
0

\ cost sin t

W*t(t) = \
5
0
0

0
0

W*(t) = |
6 + cos21

0

0

0

1 + sin2 tj (8.36)

1 + sin21

where the last matrix is with respect to the basis {\e\), l^)}-
Since the state of a is at all times diagonal with regard to the this basis,

the core properties of a lie at all times on the continuous eigenprojection
trajectories

,0 0,T?(t) = (8.37)

(Wa(t) is never degenerate). Let's now fix the transition probabilities from
s = 0 to any t > 0 by means of (8.23) and from any t < n to s = n by means
of (8.24). One obtains

p(Pf(t)/Pf(0)) = (5+ 2cos20/7, p(P?(n)/P?(t)) = (5 + 2cos20/(6 + cos21),)

p(Pf(0/P2 (0)) = sin21, p(P1
a(Tr)/P2

a(0) = 2 sin2 t/(l + sin21),

p(P2
a(0/Pf(0)) = 2 sin21/7, p(P2

a(7r)/Pf(t)) = sin21/(6 + cos21),

p(P2
a(Tr)/P2

a(0) = cos2 t/(l + sin21).

(8.38)

p(P2
a(0/P|(0)) = cos21,

It follows that the evolution of the actual core property of a is truly
stochastic since the above transition probabilities all can have values between
0 and 1. The evolution of the actual core property thus hops randomly from
the one continuous trajectory T*(i) to the other T%(t) and back again.

Secondly, the right-hand transition probabilities differ from the transition
probabilities derived with the Born rule. Take, for instance, p(Pf(n)/P*(i)).
The Born rule yields

jn, t) [Pf(f) ® P] W"P(t) [Pt
a(Q ® P]

cos2t(l +cos20
(8.39)

6 + cos21
which clearly contradicts (8.38). The evolution of the actual core property of
interacting systems is thus non-Born like.
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Finally, it can be proved that this evolution is not a Markov process,
satisfying (8.25). For if the evolution is Markovian, one can derive for all
t e (O,TT) the so-called Chapman-Kolmogorov equations:

(8.40)

Take a = 1 and c = 2. With the left-hand transition probabilities in (8.38) it
follows that p(P|(rc)/-Pf(O)) is equal to 0, but the above equation yields by
(8.38)

The Chapman-Kolmogorov equations are thus not satisfied and it follows
that the evolution of the actual core property of interacting systems is
non-Markovian.

Note that the state (8.33) is chosen such that the reduced states of <r, a,
a/? and f5 never pass a degeneracy in their spectral resolution. Hence, it is
not possible to 'blame' the singularities related to degenerate states for the
violations of the Born rule and the Chapman-Kolmogorov equations.

8.4 Stochastic processes

A framework for finding transition probabilities for all possible systems
has been given by Bacciagaluppi and Dickson (1997). They arrived at this
framework by describing the evolution of the core properties by means of the
theory of stochastic processes. And they showed that with this framework one
can generate a multitude of expressions for general transitions probabilities,
even if one requires that these expressions are consistent with the results
given in the previous sections. I start by introducing the framework and by
briefly discussing stochastic processes.96 In the next section I present two
concrete proposals for general transition probabilities by Bacciagaluppi and
Dickson, and make some tentative remarks about how one may devise an
argument that singles out one of these proposals.

The framework developed by Bacciagaluppi and Dickson yields general
transition probabilities for systems {a,/?,...} for which it holds that: (A)
there exist probabilities p(P^(t)9P^(t)9...) for the joint property ascription
to {a,/?,...}, (B) the core properties {P*(t)}a, {P^(t)}b9 etc., lie on trajectories

96 I only discuss the ingredients necessary to present the results by Bacciagaluppi and Dickson. See
the references given in footnote 88 for a full treatment of these results. Textbooks on the theory of
stochastic processes are Feller (1950) and Doob (1953).
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which have well-defined time derivatives, and (c) the joint probabilities
n

p(P£(t),P£(t),...) have well-defined time derivatives.
Due to the condition (A) the framework is not suitable for the bi and

spectral modal interpretations since it was proved in Chapter 6 that these
interpretations only yield joint probabilities for sets of disjoint systems.
Hence, transition probabilities can only be derived for general sets of systems
in the atomic modal interpretation and for sets of disjoint systems in the bi
and spectral modal interpretations. And due to the conditions (B) and (c) the
framework is suitable only if the evolution of the systems a, /?, . . . , satifies
some constraints since it was proved in Chapter 7 that the core projections
{P£(t)}a9 {P{j(t)}b9 etc., need not lie on continuous trajectories. However, if,
for instance, the Hamiltonian of the universe is bounded and if one ignores
discontinuities related to degenerate states, it follows that the core properties
{P%(t)}a, {PJI(t)}b, etc., lie on analytic trajectories such that all the derivatives
of the trajectories and of the joint probabilities are well defined.97

One thus has the following situation: the core properties of the systems
{a,/?,...} evolve along trajectories {P£(t)}a, {PJj(t)}b9 ... (I adopt the con-
vention that two eigenprojections P*(t) and P*(t) of a systems X lie on the
same trajectory iff a = a') and at each instant t one can give a joint probabil-
ity p(P%(t\ PJI(t)9...) that these systems actually possess P%(t\ P^{t\ etc. Let
Pj(t) be shorthand notation of the whole set {Pfa(t),P?(t)9...} of the core
properties of {a,/?,...}. Then p(Pj(t)) = p(P"a(t)9Pjp(t)9...) and the evolution
of the actually possessed properties is given by the transition probabilities
p(Pk(t)/Pj(t)).

In order to develop the framework, define, firstly, infinitesimal transition
probabilities by

»,(Q t ) ) (8.42)

for j ^ k and by

yW (8-43)

such that J2k Tkj(t) = 0. (Loosely speaking, eTkj(t) gives the first order
contribution to the transition probability from Pj(t) to Pk(t + s).)

97 Bacciagaluppi and Dickson developed their framework for the atomic modal interpretation. Moreover,
they assumed that states evolve analytically such that by Proposition 7.4 on page 116 all trajectories
of eigenprojections of states are analytic as well. Finally they removed the discontinuities related to
passing degeneracies by defining the atomic core properties by means of these analytic trajectories of
eigenprojections, similar to the extended modal interpretation. In the light of the results of Chapter 7
one may question these assumptions.
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These infinitesimal transition probabilities satisfy the master equation98

P(Pk(t)) = J2 T^) P(pj(t)) - TJk(t) P(P*(O). (8-44)
j

Define, secondly, a probability current J(t) as

Jkj(t) = Tkj(t) p(Pj(t)) - Tjk(t) p(Pk(t)). (8.45)

This current is antisymmetric (Jkj(t) = —Jjk(t)) and represents the net flow
of probability from Pj(t) to Pk(t) at t. The master equation can then be
rewritten as a continuity equation p(Pk(t)) = J2jJkj(t) for the current J(t).

The first step in giving the transition probabilities p(Pk(f)/Pj(t)) is the
determination of a probability current J{t) which satisfies this continuity
equation. The second step is the determination of the infinitesimal transition
probabilities {Tkj(t)}jjc by means of this probability current and the relation
(8.45). The resulting expressions for {Tkj(t)}jjc then automatically satisfy the
master equation (8.44). The final step is to construct the transition proba-
bilities p(P/c(O/P/(0) f°r finite time intervals by means of the infinitesimal
transition probabilities {Tkj{t)}j£.

As is noted by Bacciagaluppi and Dickson, it is not the case that the first
and the second steps yield unique solutions for, respectively, the probability
current and the infinitesimal transition probabilities. Consider the first step
and assume that one has a probability current J(t) which solves the continuity
equation p(Pk(t)) = ^2jJkj(t)> Then one can always construct a second
solution to this equation by adding to J(t) an antisymmetric term J(t) which
satisfies J2j A/W = 0- That is, J(t) + J(t) is a solution to the continuity
equation as well. And one can always find such an extra term J(t). Take, for
instance, Jn(t) = Juit) = —J\3(t) = — J21W =h 0 and take all other values
Jkj(t) equal to zero.

The second step does not yield a unique solution either. Assume that one
has chosen a current J(t). Then a well-known solution to the relation (8.45)
is given by

98 This master equation is derived as follows. By definition p(Pk(tf)) = Y^jP{Pk(t')/Pj(t))p(Pj{t)) and
P(P*to) = £;P(P;(f')/Pfc(0)p(Pfc(0). Hence,

P(P*C)) - P(P*M) = E P(pk(t')/Pj(t))p(Pj(t)) - p(Pj(O/P*W)p(P*W).
j

If one takes t' = t + e and divides both sides by 8, the limit s —> 0 yields the master equation.
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for all k =fi j . This solution has been adopted by Bell (1987, pages 173-
180) and Vink (1993) in the context of Bohmian mechanics and by Bub
(1997, 1998b) in the context of his fixed modal interpretation. However,
one can again construct a second solution by adding transition probabilities
{Tkj(t)}jJc which satisfy Tkj(t)p(Pj(t)) - Tjk(t)p(Pk(t)) = 0. That is, the tran-
sition probabilities {Tkj(t) + Tkj(t)}jyk form a solution to the relation (8.45)
as well. These transition probabilities {Tkj(t)}jyk can, for instance, be

TV*)-! 0' ,8.47)
' \0 if P<Py(O)-O.

More precisely, the transition probabilities (8.46) only follow uniquely from
the probability current J(i) if one assumes that there are no transitions
from Pj(t) to Pk(t) if the net flow Jkj(t) of probability from Pj(t) to Pk(t) is
negative. For then one takes the net flow J(t) as the real flow of probability
and one can only have transitions in the direction of J(t) as is expressed by
(8.46). If, on the other hand, one adds transition probabilities like (8.47) to
the solution (8.46), then one also has transitions from Pj(t) to Pk(t) if Jkj(t)
is negative.

The final step of constructing the finite time transition probabilities from
the infinitesimal transition probabilities is, in the generic case, properly (and
uniquely) defined but is, in some special cases, mathematically somewhat
problematic." One of the assumptions used by Bacciagaluppi and Dickson in
this step is that the evolution of the core properties of {a, /?,...} is Markovian.
That is, they assume that the transition probabilities p(Pk(t

f)/Pj(t)) satisfy
the Markov property (8.25). According to Section 8.3, the evolution of the
properties of a single interacting system is not Markovian. This does not,
however, rule out that the joint evolution of the properties of a set of
systems {a,/?,...} is Markovian. Moreover, as was noted in footnote 95,
if the composite a/? • • • evolves freely, it is to be expected that this joint
evolution of the properties of {a, /?,...} is Markovian.

8.5 Two proposals by Bacciagaluppi and Dickson

With the framework presented in the previous section one can choose tran-
sition probabilities for any set of systems {a,j8,...} in the atomic modal
interpretation, and for sets of disjoint systems in the bi and spectral modal

99 See Bacciagaluppi and Dickson (1997, Sect. 2.2), Bacciagaluppi (1996b, Chap. 7) and Bacciagaluppi
(1998, Sect. 4.2) for a full discussion of this step from the infinitesimal to the finite time transition
probabilities.
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interpretations. The only thing one has to do is to give a probability cur-
rent J(t) which is compatible with the evolution of the joint probabilities
{p(Pj(t))}j9 and to specify how this probability current fixes the infinitesimal
transition probabilities {Tkj(t)}j^-

Bacciagaluppi and Dickson themselves considered transition probabilities
for sets of disjoint systems {a, /?,...} (atoms in the case of the atomic modal
interpretation) for which it holds that the composite co = a/? • • • has a freely
evolving pure state |^w(r)). They have given two possible expressions for the
probability current J(t) and proposed that this current fixes the infinitesimal
transition probabilities by the relation (8.46). Hence, Bacciagaluppi and
Dickson take the net probability current J(t) as a real probability current.
The first current is the minimal flow current, denoted by Jmm(t). The second
is called the generalised Schrodinger current, denoted by JSchr(t). They are

(8-48)

where D the number of different sets of properties in Pj(t), and

(t)\(Pl(t) <g> Plfi(t) ® • • • )H»(Pl(t) ® Pffi(t) (

(Pfa(t) ® Pffi) ® •

\ V / I i , V fCa V / /eg V '

(8.49)

where ifw is the Hamiltonian of co.
Bacciagaluppi and Dickson arrived at these two currents as follows. The

minimal flow current Jmm(t) is the one obtained if one minimises the overall
flow of probability between the different sets {Pj(t)}j. Or, more precisely,
Jmm(t) is obtained if one minimises the value ^/fc«/jy(O-100

The generalised Schrodinger current JSchr(t) is a generalisation of a prob-
ability current one can define by means of the Schrodinger equation. To
illustrate this, note that the probability p(Pk(t)) is equal to

p(Pk(t)) = ( ^ ( O K P ^ ® P[ ® • • • JIVCO). (8.50)

Consider, firstly, the special case in which the properties possessed by the
systems {a,/?,...} are all time-independent. The time derivative of p(Pk) is

100 See Appendix 1 of Chapter 7 in Bacciagaluppi (1996b) for the proof.



156 Transition probabilities

then by the Schrodinger equation equal to

p(Pk) = 2lm[(^(t)\(Pl ® p£ ® • • • )Hm\r°(t))] . (8.51)

If one now uses that Y]i? , Pf ® pf ® • • • = P , one can in a natural
*-^J<x>Jp)— Jot Jp

way construct a current which satisfies the continuity equation p(Pk(t))
 =

Jkj(t) = 2Im[0F"(OI(P£ ® P^ ® • • • W £ ® K ® ' ' * )I^W>] • (8.52)

This current is equal to JSchr(t) because if the properties of {a, /?,...} are all
time-independent, the second and third terms of JSchT(t) vanish.

Consider, secondly, the general case that the properties possessed by
{a,/J,...} are time-dependent. The derivative of p(Pk(t)) contains then an
extra term:

p(Pk(t)) =

(8.53)

Hence, if one again wants to construct a current from this expression which
satisfies the continuity equation, one has to add to the current (8.52) an extra
term Jkj(t) which is real and antisymmetric and which, when summed over
the index j , yields (^a)(0|d(Pj^(t) ® p£(t) ® • • • )/dt| lFw(0). And the sum of
the second and third terms of JSchr(t) is exactly such a term. The generalised
Schrodinger current JSchT(t) is thus a generalisation of the current (8.52)
from the case of time-independent properties to the case of time-dependent
properties.

From Jmm(t) and JSchr(t) one can derive the infinitesimal transition prob-
abilities by means of relation (8.46). And even though Bacciagaluppi and
Dickson do not explicitly calculate these transition probabilities, they do
prove that in the case of the generalised Schrodinger current, such transition
probabilities are consistent with the deterministic evolution (8.12) for freely
evolving systems derived in Section 8.2. This proof proceeds as follows. Take
a system a which is part of the set {a,/?,...}, and consider all the pairs
of sets Pj(t) = {Pfa(t)9Pfp(t)9...} and P*(r) = { P ^ ^ P ^ t ) , . . . } for which it
holds that ja ^ fea. If the net current Jkj

hr(t) is equal to zero for all these
pairs of sets, then by the chosen relation (8.46) between the net current and
the infinitesimal transition probabilities, there are no transitions from Pj(t)
to Pk(t) if 7*a ^ fea. It then follows that there are also no transitions from
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the property PJJj) to the property P£(£) of a if ya ^ ka. Bacciagaluppi and
Dickson now prove that if a evolves freely, J^jhr(t) is indeed equal to zero if

h + K-
Such a proof cannot be given for the minimal flow current. Take the

freely evolving system a in the composite aaj} discussed in the MATH-

EMATICS of Section 8.3. Consider Pj(t) = {\el){el\^el)(e\l\e{){e{\} and
p ^ ) = {\el){el\,\e\)(e\l\e{)(e[\}. The corresponding joint probabilities are
p(Pj(t)) = \ cos21 and p(Pk(t)) = | sin21. Since D = 8, it follows that
Jjk?n(t) = >̂ c o s * s i n ^ Hence, on f = TT/6 the minimal flow current allows
transitions from |^f)(^| to lejXefl-

Reviewing the results of Bacciagaluppi and Dickson, my position is
that their proposal to generate transition probabilities with the generalised
Schrodinger current shows that one can arrive in a natural way at generally
applicable transition probabilities for the bi and atomic modal interpreta-
tions (and for the spectral modal interpretation only for sets of disjoint
systems). This proposal is formulated while keeping close to the formalism
of quantum mechanics and is in that sense attractive. The proposal to gen-
erate transition probabilities with the minimal flow current should, on the
other hand, be rejected since it contradicts the deterministic evolution of the
properties of freely evolving systems. Let's therefore concentrate only on the
proposal with the generalised Schrodinger current.

As Bacciagaluppi and Dickson emphasise, the determinations of both the
current and the relation (8.46) between the current and the infinitesimal
transition probabilities are not unique: one can choose another current J(t)
and one can choose another relation between Jkj(t) and Tkj(t). This non-
uniqueness raises the question of whether the choice of JSchr(t) and the
choice for relation (8.46) can be backed up by further arguments or whether
they should be challenged.

My present position is that there may exist an argument that singles
out the derivation of transitons probabilities by the generalised Schrodinger
current as the correct one. The starting point of such an argument could
be that in quantum mechanics the net probability current between time-
independent properties { P £ , P J , . . . } of sets of systems is uniquely given
by the 'ungeneralised' Schrodinger current (8.52). The first step of such an
argument is then to uniquely fix the generalised Schrodinger current (8.49)
from this 'ungeneralised' current. Such a derivation is possible as was proved
by James Cushing, who used the fact that one can construct the case of
time-dependent properties {Pfa(t)9 Pj (t),...} from the case of time-independ-
ent properties {P",Pv,...} by means of a unitary transformation C/w(£)
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which satisfies

Pfjit) ® PJ?(O ® • • • = U°(t) (P« ® Pffi 0 • • •) [[/"(0]f. (8.54)

Under this transformation C/w(0? the ungeneralised current (8.52) transforms
uniquely to the generalised Schrodinger current (8.49).101

The second step of this argument is to fix the relation (8.46) between the
current and the infinitesimal transition probabilities. As I noted at the end of
the previous section, if the probability current J(t) is a real probability current
instead of a net current, then the infinitesimal transition probabilities (8.46)
follow uniquely from this current. Hence, what is needed is an argument
why J(t) is a real current. Such an argument may be possible by using that
the properties of freely evolving systems have to evolve deterministically
according to the results derived in Section 8.2. The argument may go as
follows. If a system a evolves freely, then the transition probabilities are
given by the deterministic expression Tkj(t) = 0 if ja ^ ka. Bacciagaluppi
and Dickson have proved that if a evolves freely, then Jfjhr(t) = 0 if ja ^ fea.
If this current J^jhr(t) is a net current, then this zero current Jkj

hr(t) does
not imply that there are no transitions between P*a(t) and Pjj^it), which is
inconsistent with the determistitic evolution of a. Hence, Jjy **(£) cannot be
a net current, but must be a real current. (And if JSchr(t) is a real current,
then J*jhT(t) = 0 does indeed imply that Tkj{t) = 0.)

This argument is, of course, tentative. My conclusion is therefore that
presently we cannot uniquely fix transition probabilities for all interacting
systems. Only for freely evolving systems can one argue that the transitions
probabilities are uniquely equal to (8.12) and for some interacting systems
one can argue that they are uniquely equal to (8.23) or (8.24). However,
future work may reveal that generally applicable transition probabilities are
uniquely generated by the generalised Schrodinger current.

101 See Section 4.3 in Bacciagaluppi and Dickson (1997) for the derivation of JS c h r(0 by Cushing.
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Dynamical Autonomy and Locality

In this chapter I prove that the transition probabilities, which describe
the dynamics of the actually possessed properties of systems, violate the
assumption of Dynamical Autonomy for composite systems. And, related to
this violation, it is also proved that the dynamics of the actually possessed
properties is non-local in a quite explicit way.

9.1 Introduction

When I introduced the assumptions of Instantaneous and Dynamical Au-
tonomy in Section 3.3, I motivated them by making an appeal to locality.
In the case of Instantaneous Autonomy, I argued that a state of a system
a should codify all the information about the property ascription to that
system. For if a state does not codify all the information, it may happen
that a change in the state of some distant system a (I used the example
of a far-away asteroid) means that the properties of a change as well. And
this would make modal property ascriptions undesirably non-local. In the
case of Dynamical Autonomy one can give a similar motivation. The state
of a system a, as it evolves during a time interval /, should codify all the
information about the simultaneous and sequential correlations between the
properties ascribed to a in that interval /. For if the evolving state does
not do so, it may happen that a change in a distant system changes the
correlations between the properties of a as well.

Modal interpretations satisfy a number of the Autonomy assumptions. All
modal interpretations satisfy Instantaneous Autonomy by construction. The
transition probabilities derived in Section 8.2 prove that the bi and spec-
tral modal interpretations satisfy Dynamical Autonomy for whole systems
and that the atomic modal interpretation satisfies Dynamical Autonomy for
atomic systems. This implies that the properties ascribed by modal inter-

159
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pretations are local in a number of cases, as is noted by Dieks (1998a):
the properties of a system a (an atom in the case of the atomic modal
interpretation) are not affected by changes in the states of distant systems
if there is no physical interaction between a and the distant systems, and
the dynamics of the properties of a freely evolving system a are also not
affected by changes in the states of those distant systems. So, in the context
of the Einstein-Podolsky-Rosen experiment, it follows that a measurement
performed on one of the particles changes neither the properties ascribed to
the other particle, nor the dynamics of these properties.

However, as reported in Section 8.3, the spectral modal interpretation fails
to satisfy the assumption of Dynamical Autonomy for composite systems
and the atomic modal interpretation fails to satisfy Dynamical Autonomy for
composite systems and Dynamical Autonomy for whole molecular systems.
This failure opens up the possibility that these two interpretations are non-
local in cases different to the ones described in the last paragraph.

In Section 9.2 I prove that the spectral and atomic modal interpretations
violate Dynamical Autonomy. Then, in Section 9.3, I give two examples
which explicitly demonstrate that these two modal interpretations are non-
local in the sense that they violate the following condition

Locality

The dynamics of the properties ascribed to systems, which are part of a freely
evolving composite co that is confined to a space-time region R, is unaffected by any
change in the state of another freely evolving composite cor confined to a second
space-time region Rf, if R' is space-like separated from R.

It may not come as a surprise to the reader that modal interpretations
give a description of reality which is non-local. Bohmian mechanics, an
interpretation which is identified as a modal interpretation, also violates the
above locality condition.102 Moreover, it is already established that quantum
mechanics itself is non-local: if one takes quantum mechanics in the standard
way as a theory which ascribed outcomes to measurement devices, then
quantum mechanics violates the notion of 'local causality,' as was shown by
Bell (1987, pages 52-62).

On the other hand, not all accounts of quantum mechanics violate the
above Locality condition. Consider again quantum mechanics in its standard
formulation. As I noted in Section 3.3, the standard formulation satisfies
Dynamical Autonomy for composite systems and therefore satisfies Locality.
102 In Bohmian mechanics a measurement on one spin ^-particle in the Einstein-Podolsky-Rosen

experiment affects the description of the other particle (see, for instance, Albert (1992, pages 145-
170) and Holland (1993, Sects. 11.2 and 11.3)).
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So, a theory which is non-local in Bell's local causality sense need not
necessarily be non-local in the sense of Locality. (In other words, locality
comes in grades and 'local causality' is a weaker condition than the Locality
condition which I have given above.) It thus may be obvious that modal
interpretations are non-local is some sense, but it may still come as a surprise
(it was to me, at least) that modal interpretations violate Locality, making
them non-local in such an explicit sense.103

9.2 The violation of Dynamical Autonomy

In order to prove that the spectral and atomic modal interpretations violate
a number of Dynamical Autonomy assumptions, I rephrase an example of
four interacting systems by Dickson and Clifton (1998).104 The example is
essentially the Einstein-Podolsky-Rosen-Bohm experiment with two spin
^-particles which interact with two measurement devices. The differences are
that here the two spin particles are not in the singlet state but in a more
general entangled state, that the measurements do not occur simultaneously
but at different times and that the measurement devices are spin ^-particles
as well.

Consider four atoms a, /?, y and 5, all defined on two-dimensional Hilbert
spaces. Let these systems be spin ^-particles. Initially, at t = 1, the particles
a and fi are in an entangled state \xpaP(l)) = Ylj=i cj \e°j) ® lef )> where the
vectors \e\) and |^ ) , respectively \e{) and |e^), are mutually orthogonal, and
y and S are initially in the states \f\) and \ff)9 respectively. The state of the
composite a/ty<5 at t = 1 is thus

CJ k«) <g) \eP) g, \fl) ® \ff), (9.1)
7=1

From t = 1 to t = 2, the particles a and y interact and this interaction
satisfies the scheme

i ® \si), j
where |gf) and Ig^), respectively \f\) and \f2), are again mutually orthogonal
vectors. The particles /? and 8 evolve both freely from t = 1 to t = 2 in
103 For a full discussion of non-locality in modal interpretations, the reader may consult, for instance,

Healey (1989), Dieks (1994a, 1998a), Bacciagaluppi (1996b, 2000), Dickson (1998b) and Dickson and
Clifton (1998).

104 Dickson and Clifton used the example to prove that the modal transition probabilities are not
Lorentz-invariant.
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such a way that their states do not change. Define the coefficients {djk}j,k
djk = (g%\e°j). The state of (xfiy8 at t = 2 is then

cjdjk |g£> ® \Jj) ® \fk) ® \ff). (9.3)

From t = 2 to t = 3 the particles /? and 5 interact and a and y evolve
freely in such a way that their states do not change. The interaction between
P and 8 is also given by the scheme (9.2) but now with a replaced by /?
and with y replaced by 8. The value (gf |e^) is then equal to the coefficient
dji = (gf\e°j) and the state of a/Jy<5 at t = 3 is

2

Igf) ® I/I) ® l/f )• (9.4)

(If y and (5 are taken as pointers of measurement devices one regains the
Einstein-Podolsky-Rosen-Bohm experiment because then the interactions
(9.2) between a and y and between /? and 8, respectively, count as Von
Neumann measurements (2.9) performed on two spin ^-particles a and /?
which have a joint entangled state.)

Assume that the vectors \e\) and \e^)9 respectively | ^ ) and 1^), represent
the same spin magnitudes, say \e\) and \e[) both represent spin up in x
direction and 1^) and {e^) both represent spin down in x direction.105 Assume
also that the vectors \f\) and \ff), respectively \f2) and | / | ) , represent the
same spin magnitudes, say \f\) and \ff) represent spin up in y direction
and I/2) and | / | ) represent spin down. Finally, assume that the vectors \gf)
and |gj), respectively |g|) and \g^)9 represent the same spin, say spin up and
down in direction v (with v unspecified). In this example one is then dealing
with two interactions in which the states of the composites ay and (18 evolve
identically and freely as

l̂ l2 \ef)(ef\ ® l/f )(fl\ —
7=1 M,/=i

where X and 7 are, respectively, a and y in the time interval from t = 1 to
£ = 2, and where X and Y are, respectively, /? and 8 in the interval from
t = 2 to t = 3.
105 The vectors \e\) and |ej) (or |e2[) and |e^), mutatis mutandis) cannot strictly speaking represent the

same spin magnitude because the first vector represents a magnitude pertaining to a and the second
represents one pertaining to p. However, they can represent the same magnitude in the sense of that
they both represent magnitudes which are measured by the same procedure. The spins represented by
\e\) and \e^) are, for instance, both measured by a Stern-Gerlach device oriented in the x direction.
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The property ascription to a and ft in the spectral and atomic modal
interpretations is straightforward. The states of a and /J are

2

2\djk\2/ I*JWI> W"W = W"(3) = J2 \Cj\2\djk\
7=1 M =

\cf\
2 \cf\

2\dfl\
2 |gf ><gf |.

(9.6)

(I used here that Yl\=\ djkdfk = <5//-)
The given decompositions are spectral resolutions if the two values

{N2,|c2|2}, respectively {E;=i \cj\2\dji\2
9Y?j=i \cj\2\dj2\2}, are not degen-

erate.106 So, the core properties of a are {\e<x
1)(e

($l\e%)(e%\} at t = 1 and
{IgiXgiUgfXgfl} at t = 2 and at f = 3, and the core properties of /? are
{\e[){e{\,\eP

2)(e{\} at t = 1 and at t = 2 and {|gf)(gf |, |gj >(gj |} at r = 3.
One can furthermore calculate the simultaneous correlations between the

core properties of a and /? at t = 1 and at £ = 3. They are

p(|«3[>(ej| at 1, \Jf)$\ at 1) = ^ \c/, 1

PdgkXgkl at 3, |gf )(gf | at 3) = I d ^ , + c2d2kd2l\
2. j

Consider then the joint transition probabilities

P(\g"k)(gk\ at 3, \gf )(gf | at 3 / |^}(^ | at 1, | ^ ) ( ^ | at 1) (9.8)

for a and 8̂ from t = 1 to t = 3. If these transition probabilities exist, then
the joint probabilities

p(\e«)(e«j\ at 1, \e]){e],\ at 1, \gl)(gl\ at 3, |gf )(gf | at 3) (9.9)

exist as well: just multiply the above transition probabilities with the joint
probability p{\e))(e«\ at 1, \ePf)(/f\ at 1).

Assume now that the core properties of freely evolving systems evolve
deterministically, that is, by means of the transition probabilities (8.12).
Then, if one also assumes that Dynamical Autonomy for composite systems
holds, one can prove that the joint probabilities (9.9), and consequently the
transition probabilities (9.8), sometimes do not exist. This proof proceeds
in three steps. Firstly, the transition probabilities for a from t = 1 to
t = 2 are determined with the results of Section 8.3. Secondly, application
of Dynamical Autonomy for composite systems yields that the transition
106 Below I give values {CJ}J and {djk}j,k such that degeneracies do not occur.
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probabilities for /? from t = 2 to t = 3 are equal to those of a from t = 1
to t = 2. Finally, it is shown that given these transition probabilities for a
and /?, the joint probabilities (9.9) cannot always exist. More specifically it is
proved that these joint probabilities are sometimes not classical probabilities
in the sense that they violate the Bell-Wigner inequalities (6.23) given on
page 94.

The first step of the proof goes as follows. At t = 1 the system /? is a
snooper for a. Hence, at t = 1 the state of a/?y satisfies condition (8.17)
with P in the role of the snooper and ay in the role of the freely evolving
composite containing a. One can thus calculate the joint probabilities and
the transition probabilities for a from t = 1 to t = 2 with (8.22) and (8.23).
One obtains

p(\e«)(e°\ at 1, \g«k)(g«k\ at 2) = \cj\2\djk\
2, j ^ ^

As has been said, the evolution of the state Way(t) from t = 1 to t = 2 is
equal to the evolution of W^s(t) from t = 2 to t = 3. Hence, by invoking
Dynamical Autonomy for composite systems, one can conclude (and this is
the second step of the proof) that the joint probabilities and the transition
probabilities for /? from t = 2 to t = 3 are equal to, respectively, the joint
probabilities and the transition probabilities for a from t = 1 to t = 2. So,

at 2, |gf }<g? | at 3) = \cf\
2\dfl\

2, j

| 2 ) |rf|2 J

For the third step, return to the joint probabilities (9.9). Due to the one-to-
one correlations between the core properties possessed by a and /? at t = 1,
these joint probabilities are zero for j ^ f and equal to

p{\e«){e«\ at l,|g,a}(g£l at 3,|gf)(gf | at 3) (9.12)

if j = / . These latter joint probabilities should be classical probabilities
satisfying the Bell-Wigner inequalities (6.23). Specifically they should satisfy
the fourth inequality:

p{\e«)(e«\ at 1) - p(\e«)(e«\ at 1, |g£)(g£| at 3)

-p{\e«){e«\ at 1, |gf)(gf | at 3) + p(|g,a)(g£| at 3, |gf )(gf | at 3) > 0. (9.13)

The terms in this inequality can be calculated. Firstly, the probability
P(\e°j)(e(j\ a t 1) is equal to |c7|2. Secondly, a evolves freely from t = 2 to t = 3,
so its core properties evolve deterministically. Hence, a possesses |g£)(g£| at



9.2 The violation of Dynamical Autonomy 165

t = 3 with probability 1 if and only if a possesses |g£)(g£| at t = 2 (assuming
that C/a(3,2) = F). The joint probability p(\ePj)(e?j\ at 1, |g£)(gg| at 3) is thus
equal to the joint probability given in (9.10), that is, it is equal to \cj\2\djk\2.
Thirdly, the core properties possessed by a and P are one-to-one correlated
at t = 1. The core properties of P evolve deterministically from t = 1 to
t = 2. Hence, a possesses |e?)(e*| at £ = 1 with probability 1 if and only if
P possesses |gf)(gf| at t = 2. It follows that p(\e?j)(tf\ at l,|gf)(gf| at 3) is
equal to the joint probability given in (9.11), that is, it is equal to \cj\2\dji\2.
Finally, the joint probability p(|g£)(g£| at 3,|gf)(gf| at 3) is given in (9.7)
and is equal to \c\d\kdu + c2d2kd2i\

2. The fourth Bell-Wigner inequality thus
becomes

\2\CJ\2 - \cj\2\djk\
2 - \cj\2\dji\2 + \adikdu + c2d2kd2i\

2 > 0. (9.14)

By choosing the appropriate coefficients {cj}j and {djk}j,k one can now

violate this inequality. Take, for instance, c\ = — ̂ , c2 = \, d\\ = ^ ,

d12 = i , d2\ = \ and d22 = —^.1 0 7 Then, for j = k = I = 1, one obtains

that the left-hand side is equal to 2~3y3 « —0,1. So, the joint probabilities
(9.9) and, consequently, the transition probabilities (9.8) do not exist.

This result has a number of consequences for the spectral and atomic
modal interpretations. I start with the atomic modal interpretation. The
assumptions leading to the contradiction are: (A) the existence of the tran-
sition probabilities (9.8), (B) the deterministic evolution for freely evolving
atoms and (c) Dynamical Autonomy for composite systems. Giving up as-
sumption (A) does not seem to be attractive because transition probabilities
like (9.8) do exist: if one adopts the proposals by Bacciagaluppi and Dick-
son (1997) and defines transition probabilities by means of the generalised
Schrodinger current JSchr(t) (see Section 8.5), then these transition proba-
bilities (9.8) can be derived in the atomic modal interpretation. Giving up
(B) is not attractive either: the deterministic evolution for freely evolving
systems is a straightforward consequence of Instantaneous Autonomy and
Empirical Adequacy (see Section 8.2). Hence, the assumption which should
be dropped is (c) such that it is proved that the atomic modal interpre-
tation violates Dynamical Autonomy for composite systems. Without this
assumption, the atomic modal interpretation is again free of contradiction:
in the above example one can then still derive the transition probabilities
(9.10) for a from t = 1 to t = 2 because ft serves at t = 1 as a snooper
for a. However, the transition probabilities for P from t = 2 to t = 3 can
107 With these coefficients the states of a and /? are not degenerate at t = 1,2,3. The values {djk}j,k are

obtained by taking |gf > = ^\ef) + \\e$) and |gf) = ±|ef) - *£\e$) for X both a and p.
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no longer be determined because at t = 2 or at t = 3 none of a or y
or ay as a whole serves as a snooper for /?. The only thing one knows is
that the transition probabilities for /? are not given by (9.11), because if
they are given by (9.11), one would again violate the fourth Bell-Wigner
inequality.

A second consequence is that the atomic modal interpretation also violates
Dynamical Autonomy for whole molecular systems. The core properties
of the molecule ay are given by {|e")(e"| ® \fl){fl\}j at t = 1 and by
{\ga

k)(g
a
k\ ® \fl)(fk\}k *tt = 2. Now, since ay possesses \q)(q\ ® \fl){fy

0\ at

t = 1 if and only if a possesses |e")(e"| at t = 1, and since ay possesses
\gk)(gi\ ® I/ZX/ZI at t = 2 if and only if a possesses |g£)(g£| at t = 2, it
follows that the evolution of the core properties of ay from t = 1 to t = 2 is
given by

P(\gi)(gi\ ® I/IX/JI at 2 / leJXeJI ® |/2>(f?l at 1) =
t 2 / | ^ > ( ^ | a t l ) . (9.15)

Analogously one can derive that the evolution of the core properties of (IS
from t = 2 to t = 3 is given by

p(\g()(g(I ® l/f )(/f I at 3 / I^X^I ® iroXXol at 2) =
4 4 t 2 ) . (9.16)

We have established that the transition probabilities for a from t = 1 to
£ = 2 have to be different to the transition probabilities for /? from t = 2
to t = 3 (the first are given by (9.10) whereas the second are not given by
(9.11)). So, due to the equalities (9.15) and (9.16), it follows that the transition
probabilities for the molecule ay from t = 1 to t = 2 are also different to the
transition probabilities for the molecule /id from t = 2 to t = 3. And since
these molecules both evolve freely and since the evolution of their states is
identical (they are both given by (9.5)), one can conclude that there is no
unique relationship between the state of a freely evolving molecule and the
transition probabilities for the properties possessed by that molecule. Hence,
the atomic modal interpretation violates Dynamical Autonomy for whole
molecular systems.

Consider now the spectral modal interpretation. If one again doesn't want
to give up assumptions (A) and (B), one is again forced to the conclusion
that the assumption of Dynamical Autonomy for composite systems is
violated. Unfortunately, if one drops this assumption, the spectral modal
interpretation is still not free of contradiction because one can also derive
the transition probabilities (9.10) and (9.11) without Dynamical Autonomy
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for composite systems. The transition probabilities (9.10) for a follow with
the results of Section 8.3 if one identifies /? as a snooper for a at t = 1.
The transition probabilities (9.11), however, also follow from these results
because the composite ay serves in the spectral modal interpretation as a
snooper for fi at t = 2 (the state of afiyd dXt = 2 satisfies condition (8.17) if
one takes ay as the snooper for P and if one takes fid as the freely evolving
composite comprising fi). If one then applies (8.22) and (8.23) to /?, one again
obtains (9.11). The proof that the transition probabilities (9.8) do not exist
can thus be given for the spectral modal interpretation even if one denies
Dynamical Autonomy for composite systems.

In order to escape the above contradiction in the spectral modal inter-
pretation without giving up the deterministic property evolution for freely
evolving systems, one can return to perspectivalism. If one accepts perspec-
tivalism, one can only simultaneously consider the properties of the systems
a and /? from the perspectives 'otPy8 divided by a, /?, y and 8' or '%Py8
divided by a, P and y8? Hence, if one wants to consider the transition prob-
abilities (9.8) or the joint probabilities (9.9), one has to adopt one of these
perspectives. One can then argue that from both these two perspectives it is
impossible to fix the transition probabilities (9.11) for P during the second
measurement, but the costs of this argument are high.

The argument goes as follows. The transition probabilities (9.11) can only
be derived because the composite ay serves as a snooper for P at t = 2.
Because the properties of ay are one-to-one correlated at t = 2 with the
properties of P at t = 2, and because the properties of ay evolve determin-
istically from t = 2 to t = 3, one can fix the transition probabilities for
P from t = 2 to t = 3. Hence, these transition probabilities for P are de-
rived by simultaneously considering the properties of P and of ay. However,
these properties can only be considered simultaneously from the perspective
'aPyd divided by /?, ay and 8' and thus not in the perspectives necessary
to consider the transition probabilities (9.8) and the joint probabilities (9.9).
Hence, if one adopts the perspectives needed to consider these latter proba-
bilities, one cannot derive the transition probabilities for /? during the second
measurement.

The consequence of this argument is that transition probabilities become
perspective-dependent because now the transition probabilities for p seen
from the perspective 'ocPyS divided by /?, ay and 8' are equal to (9.11)
whereas these same transition probabilities seen from the perspectives '%Py8
divided by a, /?, y and 8' or 'ocPy8 divided by a, P and yd9 are not equal
to (9.11) (for if the transition probabilities for P seen from the perspectives

divided by a, /?, y and 8' or 'a/?yc> divided by a, P and yd9 are equal
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to (9.11), one would again violate the fourth Bell-Wigner inequality within
these two perspectives). Hence, if one accepts the argument, one also has to
accept that there don't exist unique and perspective-independent transition
probabilities for systems but that transition probabilities are only defined
relative to a perspective.

A final remark concerns the assumption of Dynamical Autonomy for
measurements. A slightly stronger version of this assumption is given by

Assumption of Dynamical Autonomy for measurements, #2

If two composite systems evolve freely and have, during an interval, equal states
and equal Hamiltonians and if these composite systems consist of an object system
and a measurement device and one is dealing with a measurement of any property
of the object system, then the correlations between the initial properties of the
object system and the finally possessed outcome of the measurement device are also
equal.

(In the formulation given in Section 3.3, Dynamical Autonomy is only
assumed for measurements of the initially possessed properties of the object
system.)

Using the above example it is easy to prove that both the spectral and
atomic modal interpretations violate this stronger assumption. Firstly, one
has to take the systems y and 8 as pointers of measurement devices. Secondly,
one has to assume that the vectors {\f\)9 \fl)} are eigenvectors of the pointer
reading magnitude My = Y%=i mk lRI)(RIl>that is> l/i) = lRi) a n d I/I) = IR;>)
and similarly one has to assume for 8 that \ff) = |Rf) and | / | ) = IR2).
Thirdly, one has to assume in the case of the atomic modal interpretation that
these pointer reading states are given by. (4.33) such that the atomic modal
interpretation ascribes the readings to the pointers y and 8 (the spectral
modal interpretation ascribes these readings without further assumptions).
Fourthly, one has to assume that the transition probabilities

p(\Ry
k)(R

y
k\ at 3,|R?>(R?| at 3/I^X^I at l\ep

f)(e
p

f\ at 1) (9.17)

exist. One can then rerun the above argument and prove that these transition
probabilities sometimes do not exist (one has to recalculate all the above
expressions (9.10)-(9.14) with |gg)(g£| replaced by |R£)(R£| and with \gf){gf
replaced by |Rf)(Rf|).

So, if the transition probabilities (9.17) do exist, the spectral and atomic
modal interpretations violate the stronger assumption of Dynamical Au-
tonomy for measurements. This is the reason why I restrict Dynamical
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Autonomy for measurements to only measurements of the initially possessed
properties of an object system.108

9.3 The violation of Locality

By means of the example given in the previous section, one can demonstrate
that the spectral and atomic modal interpretations are non-local in the sense
that they violate the Locality condition (Vermaas 1999).

Consider, firstly, the example described in the previous section. Let co be
the composite ay and let co' be the composite /?<5 and assume that there is a
huge distance between these two composites co = ay and co' = (3d. Say, this
distance is such that the space-time region R which is occupied by ay in the
time interval / = [—1,4] is space-like separated from the space-time region
R' which is occupied by fid in the time interval / = [—1,4].109 Hence, no
signal emitted by co' after t = — 1 and travelling with the speed of light, or
more slowly, can reach co before t — 4, and vice versa.

The derivation of the transition probabilities for a from t = 1 to t = 2 is
still valid under these extra assumptions. So, by (9.10) one has that both the
spectral and atomic modal interpretations predict that

P(\gk)(gk\ at 2 / | ^>(^ | at 1) = \djk\\ (9.18)

The derivation of the transition probabilities for /? from t = 2 to t = 3
is no longer valid because Dynamical Autonomy for composite systems is
untenable. However, the result (9.11) of this derivation cannot be right, for
if this result were right, one would again violate the fourth Bell-Wigner
inequality (9.13) and such a violation contradicts the fact that transition
probabilities like (9.8) exist. Hence, one may conclude that the transition
probabilities for jS from t = 2 to t = 3 satisfy the constraint

p(\gf )(gf I at 3 / |ej)(ej| at 2) ^ \dfl\
2. (9.19)

Consider, secondly, a modification of the example of the previous section.
Namely, let fi and 3 not interact with one another in the time interval from
t = 2 to t = 3 but in the time interval from t = 0 to t = 1. Let this interaction
108 If one measures the initially possessed properties of a and of /?, that is, if one takes \gj) = \ej) for

X both a and /?, one can derive that

R [ ) ( R [ | at 2 / \ettj){eaj\ at 1) = Sjk P( |R?)(R? |P( |R[ ) (R[ | at 2 / \ettj){eaj\ at 1) = Sjk, P( |R?)(R? | at 3 / | ^ ) ( ^ | at 2) = Sfh

and that the transition probabilities (9.17) are equal to Sjkdji if j = / . In this case the above transition
probabilities thus satisfy Dynamical Autonomy for measurements without the consequence that the
transition probabilities (9.17) do not exist.

109 I here consider only one inertial coordinate system with t the time coordinate.
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again be given by the scheme (9.2). So, in the modified example the order
of the interactions between a and y and between /3 and <5, respectively,
is reversed as compared to the original example. That is, in the modified
example fi and d interact first from t = 0 to t = 1, and a and y interact
second from t = 1 to t = 2.

Due to the symmetry between the original example and the modified
example (the modified example is obtained from the original one by inter-
changing ay and fid and by subtracting 1 from the time coordinate) the
results (9.18) and (9.19) for the transition probabilities are, mutatis mutandis,
still valid for the modified example. So,

p(\gf )(gf | at 1 / |4><4| at 0) = \dfl\\ 1
P(|g*a)(gkBl at 2 / 1 ^ ) ^ 1 at 1) +\djk\\ J

If one now compares the original and the modified examples, one can
prove the stated violation of Locality. The evolution of the state of the
composite co = ay from t = — 1 to £ = 4 is equal in both examples. The
only difference between the two examples is the evolution of the state of the
composite a/ = (IS in the interval from t = 0 to t = 3. In the first example the
interaction (9.2) between /? and S changes the state Ww (t) in the time interval
I\ = (2,3) and in the second modified example this interaction changes the
state W03\i) in the interval 12 = (0,1). By assumption this difference in the
evolution of W™ (t) takes place in a region space-like separated from the
region in which co = ay is confined from t = — 1 to t = 4. If the spectral and
atomic modal interpretations satisfy Locality, this difference in the evolution
of Ww (t) may thus not affect the transition probabilities for a from t = 1
to t = 2. But these transition probabilities are affected: in the first example
they are by (9.18) equal to \djk\2, whereas in the second example they are
by (9.20) equal to values different to \djk\2. Hence, the spectral and atomic
modal interpretations violate the Locality condition.

Put more straightforwardly, these two modal interpretation are non-local
because one can manipulate the evolution of the properties ascribed to a
system a confined to a space-time region #, by changing the state evolution
of a freely evolving composite cof confined to a second space-time region Rf

which is space-like separated from R.



Part two

Physics

In Part one the description of reality by modal interpretations has been
developed as far as possible. In this part I determine whether modal in-
terpretations are empirically adequate by considering their descriptions of
measurements.

In Chapter 10 I focus on the measurement problem. After a measurement,
according to our observations, the measurement device displays a definite
outcome. Such an outcome is traditionally called a pointer reading and the
question is whether modal interpretations manage to ascribe such pointer
readings.

In the standard formulation of quantum mechanics one predicts by means
the Born rule the probabilities and the correlations with which measurements
have outcomes. In Chapter 111 discuss whether modal interpretations can
reproduce these empirically correct predictions.
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The measurement problem

In Part one of this book I have considered on occasions special measurement
interactions for which modal interpretations solve the measurement problem
by ascribing readings to the pointers of the measurement devices. In this
chapter I address the question of whether modal interpretation are empiri-
cally adequate by considering whether they solve the measurement problem
for all possible measurement interactions.

10.1 Introduction

One of the facts of physics is that measurements produce outcomes in the
form of, say, pointers that assume readings, counters which indicate numbers,
or plotters that write something on paper. These outcomes correspond to
properties possessed by the pointer, the counter or the ink, etc., and are
observed by us. So, if modal interpretations are to be empirically adequate,
they should in some way confirm that pointers, counters, etc., have these
outcome properties after measurements.110

For the measurement interactions that I have considered up to now,
modal interpretations indeed yield that measurements have outcomes. Unfor-
tunately, however, there also exist measurement interactions for which
this is not the case. Consider, for instance, a measurement of the

110 One may claim that modal interpretations are already empirically adequate if they yield that after
measurements an observer of the measurement device acquires a brain-state that corresponds to
the observer's belief that the pointer, counter, etc., displays an outcome. However fruitful this
latter approach may be, I ignore it here since it diverges too much from the idea maintained
in this book that interpretations of quantum mechanics aim at describing reality in terms of
(empirically adequate) properties which are possessed by systems independently of the presence of
observers.

173
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second kind:111

Here, the vectors {|«J)}y are the pair-wise orthogonal eigenvectors of the
measured magnitude AG of the object system a and the vectors {|«J)}7 are
the not necessarily pair-wise orthogonal perturbed eigenvectors of Aa. That
is, if before the measurement a is in the eigenstate |a£), then the measurement
interaction changes this eigenstate to the state |5£). The state of the pointer n
after the measurement is Wn = J2j,f cj^f(^f\^(j) IR*)(R/I- A n d because this
state is, in general, not diagonal with respect to the reading states {|Rp(Ry \}j,
the bi and spectral modal interpretations do not, in general, ascribe these
readings.

For the atomic modal interpretation one can consider a Von Neumann
measurement (2.9), where the pointer n consists of two atoms a and /?
and where the reading states are given by |RJ) = \e*) ® \ej) for all j . The
interaction then becomes

7 7

The vectors {|Rj)}7 are eigenvectors of the reading magnitude Mn =
^2 /m7'lRp(R^l a nd are therefore pair-wise orthogonal. Hence, assume that
the vectors {\e^)}j are pair-wise orthogonal and that the vectors {\ej)}j are
pair-wise non-orthogonal (the vectors {|Rp}7- are under these assumptions
indeed pair-wise orthogonal). One can then prove that the pointer does not,
in general, assume its readings after the interaction (10.2).112

So, according to modal interpretations not all possible measurements have
outcomes. And, to make things worse, Albert and Loewer (1990,1993) argued
that measurements which are performed in the real world are typically those
measurements for which modal interpretations fail to ascribe outcomes.
Consider an ideal measurement which establishes strict correlations between
the pointer readings {|Rj)}y and the eigenvectors {|aj)}y of the measured
111 Bacciagaluppi and Hemmo (1996, Sect. 3.3) attribute this example to Harvey Brown.
112 Proof: Assume that there exists a state of n for which the atomic modal interpretation ascribes with

non-trivial probabilities {pj}j the readings {|RJ)(RJ|};- to n. If TT is ascribed the reading |RJ£)(RJJ|, then,
according to the Weakening condition (see page 72), n is ascribed a core property Cn that satisfies
|R£)(R£| Cn = Cn. Since |RJ ) (RJ | is a one-dimensional projection, the only projection Cn that satisfies

this relation is |R£)(R£| itself. So, n is ascribed the core property |R£)(R£| = k p ( ^ l ® |ef }{e%\. This

implies that the atom /? is ascribed the core property |ef )(ef I and that |e£)(e£| is an eigenprojection

of the state W@ of this atom. Repeating the argument for all the readings {|RJ>(RJ|}7 yields that all

the projections {\ej)(e?\}j are eigenprojections of WK This is, however, impossible since the vectors

{\ej)}j are assumed to be non-orthogonal. •
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magnitude, and which does not perturb these eigenvectors {|#J)}; to vectors
{lap}; 7̂  {lap};. Such a measurement can be modelled by a Von Neumann
measurement interaction given by

After this interaction the bi and spectral modal interpretations generally do
ascribe the readings to the pointer, but Albert and Loewer now argue that
real-life measurements almost never satisfy the idealisations with which we
describe them. So, an ideal measurement, which is meant to strictly correlate
the pointer readings and the eigenvectors of the measured magnitude, in
reality makes small errors by correlating |R£) with the wrong eigenvector
|ap. A more realistic model for the interaction is therefore

iY™> = E C J i*?) ® iRo) —> i * " ) = E c J k I«J> ® IR£> (10-4)
j j,k

with Cjj « Cj and Cjk « 0 for all j -=j=- k (the coefficients {cjk}j^k model
the errors). The state of n after this more realistic interaction is Wn =
Yljkk'cjkCjkr\Rk)(Rk'\- ^nc^ ^ S s t a t e ^S generally n o t diagonal with respect
to the pointer readings. So, for realistic measurements, the bi and spectral
modal interpretations do not ascribe readings, in general, to the pointers.
Moreover, Albert and Loewer pointed out that even if the errors {cjk}j=£k
are arbitrarily small, the pointer properties can still be substantially different
to the readings.113 Hence, even if modal interpretations ascribe readings
to pointers after measurements, this ascription is unstable in the sense
discussed in Section 7.4. That is, small changes in the final pointer state may

113 Take, for instance, a pointer n with two possible readings and choose

c22 = (9jT

Cn = C2i =

The coefficients c\i and c2\ modelling the errors of the measurement are in a first order expansion
equal to z j ^ e + O(e2) so can be taken arbitrarily small by taking e arbitrarily small.

The state of the pointer after the measurement (10.4) is

wn _ JL f ^ i '° 24s
50 ^ 24a 25 - 7e

with respect to the pointer basis {|RJ), IRJ)}. The eigenvalues of Wn are ^(1 + a) and ^(1 — a), the
corresponding eigenvectors are ( | , | ) and ( | , — 3), respectively. So, the core properties of the pointer
are in the bi and spectral modal interpretations for every value a substantially different to the pointer
readings represented by the vectors (1,0) and (0,1).
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radically change the pointer properties from readings to properties different
to readings, and back again.114

Similar remarks can be found in Elby (1993) who argued that a real-life
measurement always makes small errors due to the infinitely spread 'tails'
of the state of the object system c. Ruetsche (1995) showed that modal
interpretations in general do not ascribe readings after normal unitary meas-
urements and Bacciagaluppi and Hemmo (1996) extended this conclusion to
unsharp measurements.

Modal interpretations thus do not confirm that every measurement im-
aginable in quantum mechanics has an outcome. Some authors, like Albert
(1992, page 191), therefore conclude that modal interpretations do not solve
the measurement problem and should thus be discarded as empirically inad-
equate interpretations. However, if this conclusion is based on measurement
interactions like (10.4), as Albert does, it seems that this conclusion is un-
founded exactly for the same reasons with which Albert and Loewer criticise
the ability of modal interpretations to solve the measurement problem. Al-
bert and Loewer argued that in real life ideal measurements are properly
modelled not by interaction (10.3) but by interaction (10.4). And for this
last interaction, modal interpretetations do not ascribe outcomes. However,
this last interaction is also quite unrealistic. Measurement devices \i consist
in real life of a pointer TT (which may also be a counter, a dot of ink, etc.)
plus some supporting mechanism Ji (see Section 4.7). A realistic model of
a measurement therefore includes interactions not only between the object
system a and the pointer n, as in the case of interaction (10.4), but between
o", 7i, the mechanism Ji and most probably also between those systems and the
surrounding environment. Hence, if one takes Albert and Loewer's criticism
seriously one should also reject interaction (10.4) as a realistic model of a
measurement.

Thus, to make the argument precise, one can say that it is too strong
to assume that an interpretation is empirically adequate only if it ascribes
outcomes after every imaginable measurement interaction. Instead, empirical
adequacy of an interpretation is already obtained if one can prove that it
yields that every physically realistic measurement has an outcome. After all
it is only a fact of physics that measurements which are realistic in the sense
114 Consider, for instance, a pointer state which changes as

24£
25-78

This change can occur in a very small interval because the difference between Wn(t\) and Wn(t2) is
arbitrarily small if one takes e arbitrarily small. But the eigenprojections of n change substantially: at
t\ they are (1,0) and (0,1) and at ti they are according to footnote 113 equal to (§, 3) and (3,-3).
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that they can actually be performed in the real world have outcomes. Hence,
an interpretation which fails by not ascribing outcomes after inoperable
measurements like (10.1) or (10.4) is not immediately empirically inadequate.

In Section 10.2 I present a well-elaborated solution to the measurement
problem by Bacciagaluppi and Hemmo (1994, 1996). Their solution can be
understood along the lines of the ideas sketched above because Bacciagaluppi
and Hemmo prove that if the pointer of the measurement device interacts
with the environment (and if the dimension of the Hilbert space associated
with the pointer may be taken as effectively finite), then after any measure-
ment the pointer state has eigenprojections {Pj(t)}j which become very fast
very close to the readings {|Rp(Ry|}7. Hence, for physically more realistic
models of measurements in which the pointer interacts with the environment,
the pointer possesses in the bi and spectral modal interpretation properties
which are close to readings.

In Sections 10.3 and 10.4 I derive necessary and sufficient conditions for
solving the measurement problem with the bi, spectral and atomic modal
interpretations (Vermaas 1998c). These conditions apply to the internal
structure of a measurement device. A measurement device is taken as a
composite Jin of a mechanism and a pointer and if this mechanism and
pointer satisfy the sufficient conditions, modal interpretations ascribe after
any measurement exactly the readings to the pointer. These results also draw
upon the idea that not every imaginable measurement is physically realistic
in the sense that not any system counts as a physically realistic measurement
device. (And it is, of course, my hope that all realistic devices satisfy the
sufficient conditions.)

I believe it is not yet decided whether or not modal interpretations solve the
measurement problem for physically realistic measurements. There are some
strong indications that modal interpretations do not solve this problem (see
Section 14.5) so the possibility that modal interpretations may be proved to
be empirically inadequate seems present. However, this proof should be based
on realistic measurement schemes. The discarding of modal interpretations
by Albert, based on a model in which a measurement device consists only
of a pointer, is thus far too rash for me.

10.2 Bacciagaluppi and Hemmo: decoherence

Healey (1989) and Dieks (1994a,b) argued that a solution to the measurement
problem can be found if one includes the environment in the description of
measurements. Interactions between the environment and the pointer would
then make by decoherence that the state of the pointer becomes (almost)
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diagonal with respect to the reading states very fast. And this would imply
that the bi and spectral modal interpretations ascribe properties to the
pointer which become (almost) the readings very fast.

Bacciagaluppi and Hemmo took up this idea and in two excellent papers
(Bacciagaluppi and Hemmo 1994, 1996)115 gave a quantitative analysis of
the effects of decoherence on the pointer. They considered in particular a
model of a measurement in which the pointer is (effectively) described by a
few-dimensional Hilbert space. Then, by applying the results of decoherence
theory as developed by Zeh (1970, 1973) and Zurek (1981, 1982),116 they
proved that the eigenprojections of the pointer state indeed converge to the
reading states.

The model by Bacciagaluppi and Hemmo is roughly as follows. Before
the measurement, the object system a has an arbitrary state J2jcj\a^)
and the pointer is in its 'ready to measure' state |RQ). The environment,
denoted by co, initially has an arbitrary pure state \Sco). Then, a measurement
takes place by a measurement interaction similar to the interaction (10.4)
considered by Albert and Loewer. During this measurement interaction the
pointer also interacts with the environment and this second interaction is
governed by a Hamiltonian Hn(D which commutes with the pointer reading
projections {|RJ)(RJ| ® ¥°}j (which expresses that the pointer readings are
conserved quantities during the evolution induced by the interaction between
the pointer and the environment). Finally, the measurement interaction is
assumed to be 'slow' compared to the interaction between the pointer and
the environment.117 The evolution of the state of anco then becomes

-1<> ® iRo> ® i ^> i—> I

K)®!^)®^^)) (10.5)

and the state of the pointer after the measurement is therefore

j,h,kf

It is a result of decoherence theory that the environment states {\Sf(t))}k
which are coupled to the reading states {|R^)}^, respectively, become al-
most orthogonal very fast. More precisely, for k ^ kr the inner prod-
uct \{S^f(t)\S^{t))\ approaches zero exponentially, that is, proportional to

115 See also Bacciagaluppi (1996b, Chap. 5) and Hemmo (1996, Chap. I.I).
116 See footnote 21 in Bacciagaluppi and Hemmo (1996) for more references.
117 See Bacciagaluppi and Hemmo (1996) for a more precise exposition of the various assumptions.
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exp(—t/xD), with a decoherence time TD that can be of the order of 10~25

seconds. By this exponential decay, the pointer state Wn(i) rapidly converges
to the state Wn = J2j,k \cjk\2 IR£)(R£I which is diagonal with respect to the
reading states.

This convergence of Wn(t) to Wn need not imply that the eigenprojections
of Wn(t) converge to the eigenprojections {\RJ)(RJ\}J of Wn because states
which are close to Wn need not have the same eigenprojections as Wn (see
footnote 114). The remarkable result by Bacciagaluppi and Hemmo is now
that they were able to prove that, for their model, the eigenprojections of
Wn(t) do converge to the eigenprojections of Wn. Hence, they were able
to prove that after the measurement interaction (10.5) the eigenprojections
of Wn(t) converge to the readings {|Rp(Rj|}7. The proof consists of the
following steps.

Consider the operator Wn(t) — Wn. The operator norm of this difference
has an upper bound given by118

\Wn(t)-Wn\\ < dim(Jlfn) max

j

(10.7)
ajb(a±b)

J

Assume that the eigenvalues {J2j\cjk\2}k of Wn are not degenerate and
define the nearest neighbour eigenvalue distance 8a as

b&a)

Finally, let {\w%(t))}k be the set of eigenvectors of Wn(i). Bacciagaluppi and
Hemmo then prove the following relation between the eigenprojections of
Wn(t) and W71:119

Proposition 10.1
Let 0 < s < 1. Then,

— S2F2

\\Wn(t)-Wn\\2 < ̂ — => |(W£(0|R£)|2 > l - £ 2 . (10.9)
118 Bacciagaluppi and Hemmo posit this upper bound of the norm of Wn(t) — Wn as a crude estimate

without further argument. A derivation which nearly does the trick goes as follows. The operator
Wn(t) can be represented by a matrix A with the elements Aab = YljcjaCjb{£f(t)\&%(t)) and
Wn can be represented by a matrix B with the elements Bab = dabY,jcjaCjb{^{t)\^{t)). The
operator Wn(t) — Wn is thus represented by a matrix M with the elements Maa = 0 and Mab =
JljCjaCjb{S^{t)\S^{t)) if a ± b. (All matrices are with respect to the pointer basis (|RJJ)}fc.) For
any operator Mn represented by a matrix M it can be proved that \\Mn\\ = \\M\\ < \\M\\, where
M is the matrix with the elements Mcd = maxfl^|Ma^| for all c and d. It holds that ||M|| =
dim(J^a)maxa^ \Mab\ because M has only two eigenvalues, namely 0 and dim(^a)maxa^ \Mab\. It
thus follows that \\wn(t)-Wn\\ < d i m ( j r « ) m a x ^ ( ^ ) | E ; C ; ; ^

119 This proposition is Proposition 5.2 in Bacciagaluppi (1996b, Sect. 5.4.2).
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By (10.7) it follows that one can choose e2 to be

U0.10)

The factor 4(dim(Jtf?n))2/5l is constant and can be enormously large. How-
ever, because the inner product ( ^ ( 0 1 ^ ( 0 ) approaches zero so fast for
a jz b, s2 will rapidly become smaller than 1 (such that the above proposi-
tion holds) and will one instant later be so small that |(W£(£)|R£)| is virtually
equal to 1. Hence, by decoherence, the eigenprojections of Wn(t) converge
to the projections {|RJ)(RJ|}jt. It follows that the bi and spectral modal inter-
pretations ascribe after the measurement interaction (10.5) properties which
in Hilbert space are very fast very close to the pointer readings.

This nice result has, however, a number of drawbacks. Firstly, Baccia-
galuppi and Hemmo note themselves that this result holds only if the pointer
n is indeed (effectively) described by a few-dimensional Hilbert space. For
measurements in which the pointer is described by an infinite-dimensional
Hilbert space, there are indications that decoherence will not make that
the eigenprojections of the pointer state converge to reading states (Baccia-
galuppi 1996a).

Secondly, as pointed out by Bacciagaluppi and Hemmo as well, it is
assumed in the above model of a measurement that the environmental
influences do not affect the diagonal matrix elements {(Rj|W/7C(0|Ra)}« °f
the pointer state. The eigenvalues of Wn are therefore constant in time
and the distances {dk}k are therefore constant as well. If, however, these
diagonal matrix elements are also perturbed, the distances {dk}k fluctuate
such that s as given in (10.10) is no longer fixed. It might, for instance,
happen that during (small) time intervals, dk approaches zero faster than
\(&%(t)\&%(t))\ does. Then s becomes larger in time and the eigenvectors
of Wn(t) can again differ substantially from the reading states. Hence, if
the values {(R^|^7r(0lRa)}a change in time, the properties ascribed to the
pointer after measurement interaction (10.5) can become unstable.

Thirdly, it is assumed in the model that before a measurement the state
of the pointer and the environment factorises, that is, Wnco = |RQ)(RQ| ®
\S>(O)(S>a)\. This factorisability now seems possible only if the interaction be-
tween the pointer and the environment in the period before the measurement
satisfies strong constraints. See Arntzenius (1998) for an extensive discussion
of this assumption of factorisability in decoherence theory.

Fourthly, there is not yet consensus about whether the ascription to
a pointer of properties, which are represented by projections that are in
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Hilbert space close to projections {|Rp(Ry|}7? counts as a proper solution
to the measurement problem. Bacciagaluppi and Hemmo (1994, 1996) and
also Dieks (1994a,b) argue that the ascription of properties which in Hilbert
space are approximately pointer readings is sufficient but Ruetsche (1998),
for instance, has questioned this position.

Finally, the above results yield only that the bi and spectral modal inter-
pretations ascribe properties to the pointer that are close to readings. For
the atomic modal interpretation one is still empty-handed. Consider again
the measurement interaction (10.2). The proof, given in footnote 112, that
the pointer cannot assume its readings in the atomic modal interpretation
is independent of the specific state of the pointer. Hence, decoherence can
change the final state of this pointer to whatever one likes, but the atomic
modal interpretation remains incapable of ascribing the readings.

10.3 Exact solutions for the atomic modal interpretation

According to the last remark of the previous section one cannot solve the
measurement problem for the atomic modal interpretation by using that
pointers of realistic measurement devices interact with the environment.
Hence, in order to obtain empirical adequacy for this interpretation, one
has to use something else. In this section I show that if the pointer of
a measurement device satisfies certain conditions, then the atomic modal
interpretation ascribes exactly the readings to this pointer (Vermaas 1998c,
Sects. 4.1 and 4.2).

The idea that the measurement problem can be solved by focusing on
the internal structure of measurement devices is not new. Healey (1989)
and Dieks (1994a,b) have already argued in this direction. In a sense it
is even preferable if a pointer assumes its readings, not because of the
interaction between the pointer and the environment, but because of the
internal make-up of the measurement device. For if the interaction between
the pointer and the environment must induce that the pointer possesses
its readings after a measurement, one explicitly has to assume that this
interaction can change the properties of the pointer. And it is this assumption
which leads to the problem that the properties of the pointer are sometimes
only close to the pointer readings and that these properties are unstable:
if the interaction between the pointer and the environment can change
the properties of the pointer, then, if the pointer possesses its readings
at one instant after a measurement, this interaction can induce that the
pointer possesses at the next instant properties which are close to readings
or which are substantially different to readings; if, on the other hand,
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the pointer always exactly possesses its readings because of the way the
measurement device is structured, then the interaction between the pointer
and the environment cannot affect the properties of the pointer — this
interaction can then at most change the probabilities with which the pointer
possesses its readings. Hence, if the internal structure of a measurement
device makes the pointer exactly assumes its readings, the measurement
problem is solved exactly. One then is saved from instabilities and one need
not argue that the ascription of properties which are close to the readings
also counts as a solution to the measurement problem.

I start by deriving necessary conditions for ascribing pointer readings by
means of the atomic modal interpretation. These conditions apply to the
eigenprojections {R]}j of the pointer magnitude Mn. Then it is argued that
for physically realistic pointers these necessary conditions can be slightly
strengthened. These strengthened conditions are proved to be (with a few
exceptions) sufficient for ascribing readings to pointers by means of the
atomic modal interpretation.

So, let's see under which conditions the atomic modal interpretation as-
cribes readings to a pointer n. Let the pointer magnitude be Mn = ^ . m7 RJ,
where the projections {R]}j which represent the readings are pair-wise or-
thogonal but not necessarily one-dimensional. Let the atoms in the pointer
be a, ft, y, etc.

Suppose that there exists at least one pointer state for which the atomic
modal interpretation ascribes non-trivially all readings to n. That is, if the
pointer is in this state, then there is for every possible reading a non-zero
probability that n possesses it and with probability 1 the pointer actually
possesses exactly one of these readings. Denote this state by Wn. The states
of the atoms in the pointer are then the partial traces Wa, W^9 etc. Let
{P%}a be the set of the eigenprojections of W*, let {P^}b be the set of
the eigenprojections of W&9 and so on. Finally let P^Z be shorthand for

n

P% ®Pjj ® " ' - The atomic core property ascription to the pointer is then

[p£;;] = 1 with probability Tra(WnP^;"). (10.11)

This core property ascription should yield that n assumes with probability 1
exactly one of its readings as well as that all the readings are with non-zero
probability possibly possessed. Hence, each assignment [P^..[] = 1 occurring
in (10.11) with non-zero probability should induce that exactly one reading
RJ is assigned the value 1. (If [P^.'.'.'] = 1 does not induce that exactly one
RJ has the value 1, then either there exists a non-zero probability that n
assumes no reading, or there exists a non-zero probability that n assumes
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two or more readings simultaneously; both cases block that with probability
1 all the readings are properly ascribed.) So,

vpflf;;• withTrn(wnp*l;;;) =/= o 3\RJ -. R]P*£::: = p*£:::. (10.12)

And because there should exist for every reading a non-zero probability that
n assumes it, it also holds that

vi?j apaf; with T?{w*p$;;;) + 0 : RJP^;;; = pf:. (10.13)

Define the index-sets {Ij}j of tuples (a,b,...) belonging to the strings

{p£:u- as
(a,b,...)elj iff [Tt*(W*P$:)i=OandR]P$:: = p£:;]. (10.14)

From (10.12) it follows that these index-sets are mutually disjoint, and from
(10.13) it follows that they are non-empty.

If two projections Rn and^P71 obey the relation RnPn = Pn, then Rn can
be written as Pn +Rn with Rn the projection equal to Rn -Pn. Hence, using
relations (10.12) and (10.13) as well as the index-sets {//}_/, one can expand
all RJs as

Rl= E p£'-+Rj- (10.15)

This is the first necessary condition that the projections {RJ}j have to obey.
Furthermore, these projections {RJ}j are pair-wise orthogonal, which implies
that Plt'.P%:.. = 0 if (a,fo,...) e Ij and (a',&',...) e h with j + k. This

product Pat.'Pfb''- i s e c l u a l t o pa pa' ® p ^ p ^ ® * " a n d i s t h us zero only if
there exists at least one atom X for which the product P*P* is equal to
zero. A second necessary condition is thus

P*P$ = 0 for at least one atom I e { « , j 8 , . . . } . (10.16)

To sum up: if there exists at least one pointer state for which the atomic
modal interpretation solves the measurement problem, the projections {i?7};
necessarily obey relations (10.15) and (10.16). The index-sets {/7}7 occurring
in these conditions are non-empty and mutually disjoint. The projections
P*H''' are strings P% ® P^ ® • • • generated by sets of pair-wise orthogonal
projections {P%}a, {P^}h, etc.

These two necessary conditions are not yet sufficient conditions for ascrib-
ing readings with the atomic modal interpretation. Consider, for instance, a
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measurement (10.1) of the second kind and assume that all the readings are
given by

RJ = \e*j){e"j\ <S> \ep)(eP\ ® \ey){ey\ ® • • • (10.17)

with {kp}j a set of pair-wise orthogonal vectors. Define P* as |e")(e"| and
define P^ as \e^)(e^\9 P\ as \ey)(ey\, etc. These readings then satisfy the
conditions (10.15) and (10.16) if one takes Ij• = (j, 1,1,...). The pointer state
after the interaction (10.1) is

Wn = ^2cjCf(a
(J

f\a
<7

j) \e°j)(e}\ ® \ep)(ep\ ® | ^ ) ( ^ | ® • • • . (10.18)
hi'

Since the eigenprojections of the state of a are generally not given by
{\eGj)(e°j\}j> the atomic modal interpretation generally does not ascribe the
readings to the pointer. Hence, sufficient conditions for ascribing readings
should be stronger than (10.15) and (10.16). I propose now to strengthen
condition (10.16) to

V(a,b, . . . )eJ; ,(a ' ,&' , . . .} e 4 with j^k:

pfpx = 0 for at least n > 2 atoms X e {a, j8,...} (10.19)

and my argumentation for this strengthening goes as follows.
Condition (10.16) permits two different readings to be represented by

projections RJ and R£, which are mutually orthogonal only with respect
to the state of one atom. Take a second look at the reading states given
by (10.17). If, in that example, the state of the pointer changes from one
reading to another, only the state of atom a changes; the states of the other
atoms remain constant. The readings RJ and R£ are thus orthogonal only
because the states |e")(e"| and |e£)(e£| are orthogonal. This implies that the
(macroscopic) difference between two readings RJ and R% supervenes only a
difference in the state of one atom. And if one removes this one atom from
the pointer, the 'pointer readings' of the pointer-minus-one-atom become
identical (in the case of (10.17) the 'readings' {Rj}j of the stripped pointer
n/(x are all represented by \e^)(e^\ ® \ey)(ey\ (8) • • •)• For physically realistic
measurements it is, however, very implausible that if the pointer loses one
atom, the readings of that pointer will become identical. Hence, for a realistic
pointer, two readings RJ and R£ should be pair-wise orthogonal with respect
to the states of at least two (but most probably many more) atoms, as is
expressed by the strengthened condition (10.19); the pointer can then indeed
lose an atom while its readings remain orthogonal.

One can now prove that the strengthened conditions (10.15) and (10.19)
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are sufficient conditions for ascribing readings with the atomic modal inter-
pretation. Consider any measurement performed on an object system a. The
measurement device can be divided into a pointer n (or some other indicator)
to display the outcome, and some supporting mechanism Ji which consists
of wires, electronics, magnets, etc. The device is thus the composite /LL = Jin.
Assume that the measured magnitude is represented by an operator AG with
a discrete and non-degenerate spectral resolution A° = ^2p==1 ap \ap)(ap\.

m

Before the measurement, n displays that the device is ready to measure. Let
this 'ready' reading be represented by the projection Rfi. After the measure-
ment n is supposed to display outcomes that correspond to the eigenspaces
{\ap)(ap\}p of A°. Let these 'outcome' readings be represented by the pro-
jections {Kj}j=i and assume that all readings {i?J}7=o obey the conditions
(10.15) and (10.19).

Before the measurement, a is in some arbitrary state Wfi and the device \i
is in an initial state |v>o)(v>ol- Define the coefficients Wpq as (a£| WJ|a£). The
initial state of the composite is then121

PA

To make sure that before the measurement the pointer possesses the reading
Rfi with probability 1, one has to demand that the initial device state obeys

o o ) yields the core property ascription

F i " . " ] = ! with probability TT*(W5P$") if (a,&,.. .) €= Jo

and satisfies E ( ^ . . > € / 0
T r W ( ^ o Kb---) = 1- (1 0- 2 1)

From condition (10.15) it then follows that initially [Rfi] = 1 with probability
1.

Take firstly the special case of a perfect measurement. So, if the ini-
tial state WQ obeys the relation WJj = 1 (such that the Born probability
Trcr(VFo" |aj)(aj|) of finding an outcome corresponding to the eigenvalue
cij is 1), then after the measurement the pointer possesses the reading RJ
with probability 1. This perfectness can be obtained by assuming that the
measurement interaction is given by

K) ® |Vff> —> | ^ 7 ) ? p = 1,2,... , (10.22)

120 I consider for simplicity only non-degenerate magnitudes A° but all the results generalise to degenerate
magnitudes (Vermaas 1998b, Sect. 9.3), although the formulae become a bit lengthy.

121 The state of \i is pure. Hence, W^ is uniquely given by Wg ® Wg (see footnote 11).
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where the pair-wise orthogonal vectors {l^p^p meet the condition

Wj = Tr^(|xF^)(xFj / ' |) yields the core property ascription

[P«J.-] = 1 with probability Trn{Wjpf:.) if (a,b,...)elj

and satisfies E ^ . . . ) ^ 1 ^ / Kl."") = 1- (10-23)
Again from condition (10.15) it then follows that finally [RJ] = 1 with
probability 1.

It can be proved that, barring degeneracies, the atomic modal interpre-
tation solves the measurement problem for this perfect measurement: for
every initial state WQ the atomic modal interpretation yields that the pointer
finally possesses the reading RJ with probability Tra(W^|aJ)(aJ|) = WJ} (see
the MATHEMATICS).

Take secondly the general case of a measurement in which errors can also
occur in the sense that an initial state WQ with WJj = 1 can sometimes yield
that the pointer possesses after the measurement a reading R£ with k =fc j .
An interaction for such a general measurement is given by

// = 1,2,... , (10.24)

where the vectors {l^p^p still obey condition (10.23). The values
satisfy Yip IVpl2 = 1 anc* model the erroneous correlations between the
eigenvector \afy) and the final state l1?^). In the MATHEMATICS it is proved that
the atomic modal interpretation also solves the measurement problem for
this interaction (barring degeneracies): for every initial state WQ the pointer
possesses the reading RJ with probability Ypf

 q
f ^p'q'^p'jK'i- Furthermore,

environmental influences may distort interaction (10.24) by freely changing
the values {VP)P',P

 an<^ by changing the vectors {l^p^)}^ provided they still
satisfy condition (10.23).

MATHEMATICS

Let a pointer n consist of the atoms a, /J, ... and let its readings {RJ}j be
represented by projections obeying the strengthened conditions (10.15) and
(10.19). So

Rj= E pS""+5"> 7 = U , . . . , (10.25)
(aj>,-..)elj

and

= 0 for at least n > 2 atoms X e {a, ft,...}. (10.26)
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Here, {Ij}j are non-empty and mutually disjoint sets of ordered indices
(a, b,...) and P^' is equal to P« ® pg ® • • •, where {Pa°%, {p£}b, ... are
sets of pair-wise orthogonal projections.

Given the initial state (10.20) and the interaction (10.24), the final pointer
state is

^ ^ Ypq I ^ O F ^ I ) (10.27)
p,q

with Ypq equal to J2P
f,q'

 Wp'q'^pfp\fq an(* with {l^p^)}^ pair-wise orthogonal
vectors that obey the condition (10.23). So,

WJ = T r ^ l ^ p ^ l ) yields the core property ascription

[pat"] = 1 with probability Tv%{WjPf:.) if (a, &,...) e Ij

and satisfies ^ . . . ^ T r W / P^') = 1. (10.28)

This condition has two consequences which I use later. The first is that
the state 1^7)(^71 must yield 'pointer-atom' states W«, Wp, ... with
eigenprojections in the sets {P%}a, {Pfyb, •••> respectively. If not, the core
property ascription to the pointer cannot be in terms of the projections P*f,"'-
For the second consequence I need

Lemma 10.1
Let \*¥"P) be a normalised vector with a partial trace W? =
Then Trp(Wp QP) = 1 and [QP]2 = Qp implies that | ^ > = (F

Proof: One has ( ^ | ( r ® e ' ) | ^ ) = Tr^d^X^I (F (8) Qp)) =
TrP(WP QP) and by assumption this is equal to 1. Consider the identity
|©«/*) = (F ® QP) \Q>aP) + (laP -P® QP) |O°0). The squared norm of the last
vector is

P) = 0. (10.29)

This last vector is thus the null vector, yielding |Oa^) = (Ia ® QP) |Oa^). D

By this lemma and condition (10.28) it follows that the vector

is equal to (F* 0 ^(aX^ijKl') l ^ > - And because E ( ^ , . . ) e / ;
P a t

Yl(a',b',...)eik Pa'ts- a r e orthogonal if j ^ k, one can conclude that
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Theorem 10.1
If the pointer state is equal to (10.27), the atomic modal interpretation yields
(barring degeneracies) that [RJ] = 1 with probability Yjj for all j .

Proof: In order to apply the atomic modal interpretation to state (10.27)
one firstly has to determine the states of the atoms in the pointer. The state
of a is

M ^ ^ I ) . (10.31)
PA

— R

By using relation (10.30) and cyclic permutation of the operator IafM ® P£ ®
Pc ® * * * >122 one can deduce that

E
p« g, pPpP 0 p7pV ® . . . ) ) . (10.32)

Since there exist at least two atoms X e {a, /?,...} with P*P* = 0 (condition
(10.28)), there exists at least one atom X e {fi,y,...} with P*P$ = 0.
Therefore (10.32) is equal to zero if p ^ q and Wa becomes

|). (10.33)

The state \xVG
p^)^VG

p
ll\ is subject to condition (10.28). The eigenprojections

of every term T r ^ / a ( | ^ ) ( ^ | ) are therefore in the set {P%}a and it fol-
lows that the eigenprojections of Wa itself are in the set {P%}a (barring
degeneracies).

Repeating the same argument for the other atoms j8, y, ... yields, barring
degeneracies, that the eigenprojections of W$ are in the set {P^}b, that the
eigenprojections of Wy are in the set {Pc}C9

 etc. The core property ascription
to n is thus

[P*l;;;] = I with probability Trn(Wn P%."). (10.34)

The probability Tvn{Wn P^) is equal to

Ypq 1^)0171 (1^ ® Pf:.)). (10.35)
PA

Using that laJl®P^'.'' = ( I^®^f . . " ) 2 and cyclic permutation, this probability

122 For a partial trace one has that TrT([F ® Pr] QaT) and TrT(gaT [F (8) PT]) are equal.
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can be rewritten as

Tr«( w* p$ :;•)
P.9

(10.36)

Let's assume that (a,b,...) e /,. By (10.30) it then follows that (¥* ®
^ " • ) I^PO = 0 if P ± h and that ( ^ " | (F* <g> Paf I") = 0 if q + j . So, again
using cyclic permutation,

Trn(wn p$;;;) = Yn T r ^ ( i ^ ) ( ^ i ( i ^ (g) ?il ;;•)). (10.37)

The state |^/J^)(vFj/x| is still subject to condition (10.28), so one can derive
that the core property ascription to TT satisfies

£ TrWXt-) = ^ E Tr"(^/pi") = y7> (10.38)
(fl,ft,..>e/y (a,b,...)elj

The reading .RJ is assigned the value 1 if and only if a string P*£'m" with
(a,fc,...) e /7, is assigned value 1. So, with this last result it follows that
[RJ] = 1 with probability Yn. •

This theorem yields that the atomic modal interpretation ascribes after
measurement (10.24) reading RJ with probability Yjj = J2P>q

f ^p'q'^p'j^q'j t 0

the pointer. For perfect measurements this probability simplifies to WJj.

10.4 Exact solutions for the bi and spectral modal interpretations

The results by Bacciagaluppi and Hemmo (1994, 1996), presented in Sec-
tion 10.2, proved that the bi and spectral modal interpretations are able to
(almost) ascribe readings to pointers after measurements. However, in their
approach it is the interactions between the pointers and the environment
which induce the pointers to possess their readings approximately. And, as
argued in the beginning of the previous section, it is preferable if it is the
internal structure of the measurement devices that makes pointers to assume
their readings. In this section I show that, analogously to the case of the
atomic modal interpretation, one can formulate conditions pertaining to
this internal structure which are sufficient for exactly solving the measure-
ment problem for the bi and spectral modal interpretations (Vermaas 1998c,
Sect. 4.3).

The derivation of necessary conditions for ascribing readings to a pointer
is trivial within the bi and spectral modal interpretations. Any choice of the
reading projections {RJ}j will do, for there exists for every possible set {RJ}j
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a state such that n assumes with probability 1 exactly one of its readings
(take Wn = J2jWjR])'

Sufficient conditions for solving the measurement problem can be derived
as follows: Consider again the measurement sketched in the previous sec-
tion.123 Thus, let the initial state W^ again be given by (10.20). In the bi
and spectral modal interpretations n possesses with probability 1 reading Rfi
before the measurement if and only if124

Wg = Tr*(|V£>(v£l) satisfies Uff Wg = Wg. (10.39)

Consider firstly the special case of a perfect measurement. Let the meas-
urement interaction be given by (10.22). Perfectness is then obtained if and
only if124

Wf = T r ^ l ^ O F ^ I ) satisfies RJ Wf = Wf. (10.40)

Now take the property ascription to the mechanism Ji also into account.
Let {D^ }j (projections on jffP) represent properties of the mechanism for
which it holds that if the final state of o\i is I ^ X ^ I then the mechanism
possesses D?. This implies that

Wf = T r ^ f l ^ ) 0*7*1) satisfies Z)J Wf = Wf. (10.41)

Thus, after a measurement with an initial state Wg = |a")(a"|, the pointer
possesses RJ and Ji possesses D^9 both with probability 1. It is natural to
assume that the projections {D^}j are pair-wise orthogonal, so

Df D\ = 5jk Dj, j , k = 1,2,3,... (10.42)

and my motivation for this is as follows. Pointers of measurement devices
acquire their readings because they are in a certain way, mechanically or
electronically, driven by the mechanism of the device. If one then assumes
that the properties of the mechanism which drive the pointer to reading RJ,
are macroscopically distinguishable from the properties of the mechanism
which drive the pointer to #£, j ^ fe, those mechanism properties are
represented by pair-wise orthogonal projections as expressed by condition
(10.42).

It can be proved that, barring degeneracies, the bi and spectral modal
123 All the results generalise to degenera te measured magni tudes (Vermaas 1998b, Sect. 9.4).
124 Proof: 'If: If RJjW* = Wn, then for every eigenprojection p; of Wn it holds that R*p; = Pa\

The core property ascription yields with probability 1 that one of the eigenprojections {P^}a has
the value 1. Hence, the full property ascription yields with probability 1 that [RJ] = 1. 'Only if: If
[RJ] = 1 with probability 1, then all core properties {P"}fl ascribed to n mean that [RJ] = 1. So, for
every eigenprojection PI of Wn it follows that RJP; = P* and thus that RJWn = Wn. U
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interpretations solve the measurement problem for the measurement inter-
action (10.22): given the conditions (10.39)-( 10.42), these two interpretations
yield for any initial state Wfi that n possesses the reading RJ with probability
Tra(W$ |flj)(aj|) = WJj (see the MATHEMATICS).

These results also hold for the erroneous measurement interaction (10.24).
As long as the vectors {|XF7))P m e e t conditions (10.40)-( 10.42), the bi
and spectral modal interpretations ascribe the reading RJ with probability
Ylp'rf W°,qlkp>jlq>j. Environmental influences may again distort the interac-
tion (10.24) by freely changing the values {>V,PV,P anc* by changing the
vectors {|¥^)}p provided they still satisfy the mentioned conditions.

MATHEMATICS

Given the initial state (10.20) and the interaction (10.24), the final pointer
state is

^ ] T Ypq | ^ 7 ) ( ^ | ) (10.43)
PA

with Ypq equal to J2P
f,q'

 Wp'q>^p'p\'q anc* with {|*F )̂}p pair-wise orthogonal
vectors that obey the conditions (10.40), (10.41) and (10.42). So,

W? = Tr^(|¥7)0F7|) satisfies i?? Wf = Wf, )
> (10 44)

satisfies D^Wf Wf J

with {RJ}j and {D*f}j sets of pair-wise orthogonal projections.
From the second condition one can derive that

SJP | 17 ) = (Fw ® Dj) | ^ 7 ) , UP- (10.45)

Proof: The second condition of (10.44) yields that Wf = Tr(77r(|^)(xF^|)
satisfies D] Wf = Wf. The trace Tr^ of this last equality yields Tr^D? Wf) =
1. Lemma 10.1 on page 187 then gives (10.45). •

Theorem 10.2
If the pointer state is equal to (10.43), the bi and spectral modal interpretations
yield (barring degeneracies) that [RJ] = 1 with probability Yjj for all j .

Proof: By relation (10.45) the final pointer state (10.43) is equal to

Ypq (I™ ® /)£) I ^OF^I ) . (10.46)
PA

Cyclic permutation of F®Dj? and using relation (10.45) again yields that Wn

can be written as a sum £ / Y;7Tr^(|lP^}(^/J/l|). Let the spectral resolutions
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of the terms in this sum be T ^ d ^ X ^ I ) = EftW/jP^. The state
satisfies condition (10.44). Consequently, the eigenprojections

R]P£k = Pfc, j = 1,2,... ;k = 1,2,... . (10.47)

From this, one can conclude that the projections {PJk}j^k are pair-wise
orthogonal (by using RJRj = 0 one can derive that PJ^Pjl^ = Sjfhk'Pf*
for all j,f,k9k'). The expansion Wn = Y,j,k YjjWjJcPfji i s therefore, barring
degeneracies, a spectral resolution and it follows that, barring degeneracies,
{Pfkljjk a r e the eigenprojections of Wn. The core property ascription to
7i in the bi and spectral modal core property ascriptions is thus, barring
degeneracies, [PJk] = 1 with probability Trn(WnP?k). Using relation (10.47)
it follows that a reading R7- is assigned the value 1 if and only if PJk (with k
free) is assigned the value 1. So, [RJ] = 1 with probability J2kTvn(WnP^k).
Using the expansion Wn = Yljk^jjwj,kPJk o n e c a n calculate that this
probability is equal to Yjj. •

This theorem yields that after the measurement interaction (10.24) the bi
and spectral modal interpretations ascribe the reading RJ with probabil-
ity E p v W°fqlhp>jXq'j. For the perfect measurement interaction (10.22) this
probability simplifies to WJj.

10.5 Degeneracies and a continuous solution

The exact solutions to the measurement problem given in the last two
sections, still have two blanks. Firstly, pointers assume their readings only
before and after the measurement interaction, and not during the interaction.
Secondly, the ascription of readings is always 'barring degeneracies.' I start
by making some tentative remarks about the first blank.

It is natural to assume that the pointer of a measurement device always
possesses readings, that is, not only at the beginning and at the end of, but
also during the measurement interaction. One may expect, for instance, that
initially the actual pointer reading will be the ready reading Rfi and that
during the measurement this actual reading will jump from Rfi to i?f to R%,
etc. (a 'rotation') until it finally reaches the outcome Rk.

It is now possible to give measurement interactions such that the pointer
indeed always possesses, barring degeneracies, its readings. (I consider for
simplicity only the perfect measurements (10.22) but the erroneous ones
(10.24) can be treated similarly.) Suppose that the measurement interaction
(10.22) starts at to and ends at t\ and suppose that the composite o\i evolves
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freely. Then, the state Wfffl(t) evolves with a unitary operator Uafl(t, to) for
which it holds that Uff/i(tuto) maps the initial state \a°) ® \\p%) to the final
state |*FpM). Let this unitary operator yield

) ® |Vg> = y/1-gP(t) \aa
p{t)) ® \xpS) + ^fgfi) 1^7) (10.48)

for all p, where {\ap(t))}p are sufficiently smooth vector-valued functions
with \aa

p(to)) = \ap), and where {gp(t)}p are functions which obey gp(to) = 0,
gp(t\) = 1 and 0 < gp(t) < 1. For instance, if one takes gp(t) = sin((7r/2) [(t —
to)/(t\ — to)]) and \ap(t)) = \ap), the evolution consists of simple rotations in
Hilbert space.

With this interaction one can derive the evolution of state of a\i and de-
termine for the various modal interpretations which properties are possessed
in time by the pointer. By again imposing the sufficient conditions, one can
prove that the pointer always possesses, barring degeneracies, its readings. To
be precise, if WG(to) is the initial state of the object system a, then, barring
degeneracies, the pointer possesses at all times t e \to,t\\ reading R7- with
probability gj{t)WJj(to) for all j = 1,2,... and reading Rfi with probability
l—JlpgpitfWppito). Thus, given interaction (10.48), the pointer nearly always
possesses readings: initially it assumes the ready reading Rfi and finally an
outcome reading RJ with probability WJj(to). (The specific dynamics of the
actual readings during the interaction is given by the transition probabilities
discussed in Chapter 8.)

Consider, secondly, the problem of degeneracies.125 In the case of the
atomic modal interpretation, degeneracies can frustrate the ascription of
readings as follows. At the end of the measurement the state of an atom
in the pointer, say a, can according to (10.33) be written as the sum Wa =
^]YjjTrff*/'(\W°S){}¥°J

IA\)9 where Yn = (aJ|W^|aJ). The eigenprojections of
all the terms {Tr^/a(|^J/x)(xFj/i |)}7 are in the set of projections {Pa°%. So, the
spectral resolution of each term is given by Tr^/a(|xPjM)(lP^|) = £ * wlk P%
and one obtains

In general the values {^. YjjWj^k are all different, yielding that the eigen-
projections of W* are also in the set {Pfya- The core properties of the atom
are then also in the set {P%}a. Hence, the core properties of the pointer as a
whole can then be given by {P^...}a,b,.- s u c h that the atomic modal interpre-
tation can ascribe the readings {RJ}j. If, however, two values ^ • YjjWj^ and

125 See also Healey (1989, page 99) and Dieks (1994a, Sect. VII) for a discussion of degenerate pointer
states.
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Xjz^; -jj-js (with k ^ I) are equal, then Pk and Pf are not eigenprojections
of the state of the atom a at the end of the measurement (Pk + Pf is the
eigenprojection). The core properties of the pointer are then not given by the
projections {P^".'}a,b9... and the atomic modal interpretation does not ascribe
the pointer readings.

In the case of the bi and spectral modal interpretations there is an
analogous problem. According to the MATHEMATICS of the previous section,
Wn can be written as

% (10.50)

with PJk PJ,k, = SjfSw P?k and RJ PJk = PJk. If the set of values {Ynwjik}jik

is non-degenerate, the projections {Ph}jjc are the eigenprojections of Wn

and the bi and spectral modal interpretations ascribe readings to the pointer.
If, however, this set of values is degenerate at the end of the measurement,
say YjjWj>k = Y//w/)m, then PJk + Pfm is an eigenprojection of the state of n.
In this case the bi and spectral modal interpretations ascribe the property
RJ + Rf to the pointer and not the individual readings.

To my knowledge this problem cannot be resolved. Two attempts to im-
prove on the interpretation of degenerate states (the tri modal interpretation
and the extended modal interpretation discussed in the beginning of Chap-
ter 7) both failed. Hence, there is presently no way to modify the atomic
modal interpretation such that it ascribes the readings if, after a measurement
(10.22) or (10.24), the state of one of the atoms in the pointer is degenerate
in the way described above. There is presently also no way to modify the bi
and specral modal interpretations such that they ascribe the readings if the
state of the pointer itself is degenerate in the way described above.

The question is now whether this problem of degeneracies proves that
the bi, spectral and atomic modal interpretations are empirically inadequate.
From a principal point of view it indeed does prove this inadequacy because
it is in principle possible that the mentioned degeneracies occur after meas-
urement (10.22) or (10.24). However, from a practical point of view one may
try to maintain that it doesn't. As I noted in Section 7.4, it holds for states
defined on finite-dimensional Hilbert spaces that if the dimensionality of the
set of all states is N9 then the dimensionality of the set of degenerate states is
N — 3. One may thus argue that with regard to any sensible measure on the
set of all states, states are not degenerate. Hence, after measurement (10.22)
or (10.24), the pointer still in practice possesses with probability 1 a reading.
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The Born rule

Measurements not only have outcomes, their outcomes also occur with cer-
tain frequencies and, in the case of a number of measurements, with certain
correlations. The standard formulation of quantum mechanics generates by
means of the Born rule predictions about these frequencies and correlations
and these predictions are empirically correct. In the previous chapter I have
discussed whether modal interpretations confirm that measurements have
outcomes. In this chapter I consider the question of whether modal inter-
pretations reproduce the empirically adequate frequencies and correlations.

11.1 Probabilities for single outcomes

Consider a single measurement which establishes an outcome at instant t.
Let this outcome be a property of a system n which may be a pointer, a
counter, a piece of magnetic tape, a dot of ink, etc. and let the different
possible outcomes be represented by the pair-wise orthogonal projections
{Kj}j- The standard formulation then predicts by means of the Born rule
that we observe with probability

PBom(R] at t) = Trn(Wn(t)R]) (11.1)

that n possesses at t the outcome represented by RJ.
Assume now that the bi, spectral and atomic modal interpretations solve

the measurement problem by ascribing at t exactly one of the possible out-
comes to 7i. It can then be proved that these modal interpretations ascribe
the outcomes with probabilities which are equal to the Born probabilities
(11.1). This can be proved from three features which the bi, spectral and
atomic modal interpretations share, namely: (A) the core projections {C%(t)}a

ascribed to n are pair-wise orthogonal, (B) the core projection C*(t) is as-
cribed to 7i with probability Trn(Wn(t) Q(t)), and (c) all the core projections

195
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{C%(t)}a which are ascribed with a non-zero probability mean that exactly
one of the outcomes is actually possessed by n. Feature (c) follows from the
assumption that the modal interpretations solve the measurement problem
because if there exists a core projection C%(t) which means that either no
or more than one outcome is possessed by n9 then there exists a non-zero
probability that, respectively, no outcome is possessed or two or more out-
comes are simultaneously possessed. Both cases contradict a solution to the
measurement problem so (c) holds.

A consequence of (c) is that for every core projection C%(t) there ex-
ists exactly one outcome projection RJ such that RJ C%(t) = C%(t). Using
assumption (A) one can then expand the outcome projections as

The index-sets {/,•},• are defined by a e Ij iff RJ Q(t) = Q(t). The projec-
tions {RJ}j are defined by RJ = RJ - ]T)fl€/ Q (0 a n d satisfy the relation
RJ C£(t) = 0 for all j and b. From (A) and (B) one can furthermore prove
that Wn(t)^2aC2(t) = Wn(t\ where the sum ]Tfl runs over all the core
projections {C%(t)}a which are ascribed to n with a non-zero probability (see
the MATHEMATICS for the proofs of these relations).

Let's now calculate the probability with which modal interpretations as-
cribe the outcomes to n at t. It is clear that n possesses RJ only if n possesses
a core projection CJ(t) that makes n possess RJ. So,

p(Rj at t) = ]Tp(C(0) = ̂ T r ^ r W C W ) . (11.3)
aelj

The Born probability

PBorn(#J aU) = ^ T
a

(11.

vn(V\

aelj

1) can

V(t)C

in its turn

'a(t)Rj) =

be

/ j

aelj

rewritten as

Tv«(Wn(t)CZ(t)). (11.4)

(In the first step I used that Wn(t) = Wn(t)J2a
Ca(tl i n t h e second I

substituted (11.2) and used that RJ C£(t) = 0 for all j and a.)
Hence, if the bi, spectral or atomic modal interpretations solve the meas-

urement problem, they ascribe outcomes to n with the same probabilities
as predicted by the Born rule. This result is obtained without making any
assumption about how the measurement outcomes come about; the result
thus hold for every type of measurement.

MATHEMATICS

Firstly, I prove the relation RJ C£(t) = 0 for all j and b.
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Proof: If b € Ij9 then RJ Cf(t) = C£(t) and £f l€ / ,C*(f)C£(t) = C£(t).
From the definition of RJ it then follows that RJ C%{t) = 0. If, on the other
hand, b £ Ij, then b e h with k ^ j because for every core projection there
exists exactly one outcome such that R% C%(t) = C%{t). If one multiplies
this last relation from the left-hand side with RJ, one obtains RJ C%{t) = 0
because the projections RJ and R£ are orthogonal. Furthermore, one has
Eaeij Q C ) C?W = ° because £ a G / . Q(t) and CJ(t) are orthogonal if fe ̂  /,,
Hence, it again follows that RJ C%(t) = 0. D

Secondly, I prove from assumptions (A) and (B) the relation
Wn{t)Y^aC%(i) = Wn(t), where the sum runs over all the core projections
ascribed to n with the non-zero probability p(Q(t)) = Trn(Wn(t)C%(t)).
The sum of all the non-zero probabilities p(C%(t)) should be equal to 1, so
Y,a Tf7r(Wn(t) Q ( 0 ) = Trn(Wn(t) J2a

 ca (0) = 1- From the following lemma
it then follows that Wn(t) Y^a

 Ca(l) = Wn(t).

Lemma 11.1
If W is a density operator and if Q is a projection, then

= 1 if and only if WQ=W. (11.5)

Proof: The 'only if part is trivial, so take the 'if part. Expand Q as
E/c l<?i/c)(<?ifcl a n d expand I - Q as "£k \q2k)(q2kl Then {\qjk)}j,k is an ortho-
normal basis for the Hilbert space on which W and Q are defined and one
can expand W as

2
W = E E \9jk)(qjk\W\qfV)(qfkf\. (11.6)

A/'=i W

From the left-hand side of (11.5), one can deduce that Tr(W [1 - Q\) = 0
and thus that (q2k\W\q2k) = 0 for all k. Lemma 6.1 on page 91 then yields
that (q2k\W\qjk') = 0 and {qjk'\W\q2k) = 0 for all j,k,k'. The expansion of
W thus simplifies to

(qw\ (11.7)
kjc'

and it is easy to check that WQ = W. •

11.2 Correlations between multiple outcomes

In the standard formulation one can also correlate the outcomes of a
number of measurements. Consider, firstly, a series of measurements which
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simultaneously yield outcomes. Let the pointers or the counters, etc., be
given by TTI, TT2, 713, . . . , and assume that all these systems are pair-wise
disjoint.126 Let the different possible outcomes be represented by the pair-
wise orthogonal projections {^J1};, {R^2}^ • •-, respectively. The Born rule
predicts that the probability that TTI, 712, ... simultaneously possess their
outcomes at instant t is given by

PBom(R]\Rk\ ' ' • at t) = Tvn^-(Wn^-(t) [Rf ® i?f ® • • • ]) (11.8)

with Wni7l2'"(t) the state of the composite 711712 • • • at t.
The bi modal interpretation cannot reproduce these joint probabilities

because it does not correlate the properties of three or more systems. So,
consider the spectral and atomic modal interpretations.

Assume that these two interpretations solve the measurement problem for
7Ci9 7C2, 7T3, ... at t. Following the line of reasoning given in the previous
section, one can decompose the outcome projections as

RT = E ca1^+*?> Rk2 = E C W+*? 2 > etc-
ael) bell

and Rf C?(t) = 0 for all j and a, and R%2 C*2(t) = 0 for all k and b, etc.
Furthermore, it holds that127

v / / L^r7 V / ^ J — v /? I

" \ (11.10)
WWlW2"'(0 2 j t C ? 2 W ® ri713""] = Wninr"(t\ etc.

6 J
The Born probability (11.8) can thus be rewritten as

« ( L>nl L>n2 ^,+ * \
PBornV^/ ? ̂ A: ' ' ' ' &* t) =

~ " " ® - ] ) , (li . i i)

126 In the case that one considers outcomes displayed by a set of pointers, it is clear that these pointers
are pair-wise disjoint. It is, on the other hand, also clear that in quantum mechanics there exist
situations in which non-disjoint systems simultaneously record outcomes of measurements. A famous
example is Einstein's photon box (Bohr 1949): the hands of the clock in the box register the time
of the opening of the shutter and the oscillation of the centre of mass of the box, which includes
the mass of the hands of the clock, indicates the frequency of the emitted photon. As discussed
in Chapter 6, only the atomic modal interpretation can in general give joint property ascriptions
to non-disjoint systems. It would thus be of interest to see how this interpretation describes this
experiment.

127 To prove the first re la t ion of (11.10), n o t e t h a t Tr71^" (Wn^-(t) ^2ai
cal(t) <S> I712713'"]) is equa l to

Cal(t)) and is thus equal to 1. The first relation then follows by Lemma 11.1.
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which again simplifies to

(11.12)
aelj

This latter probability is exactly the joint probability with which the
spectral and atomic modal interpretations ascribe at t the outcomes R1?1,
R£2, ... to TCI, 7i2, >-, respectively. So, these two interpretations yield the
same predictions for the correlations between the outcomes of simultaneously
performed measurements as the Born rule.

Consider, secondly, a series of measurements which sequentially yield
outcomes. The outcomes are again recorded by the mutually disjoint systems
Til, 7i2,7i3? etc. Assume that n\ acquires its outcome at a first instant t\9 that 712
acquires its outcome at a second instant t2> t\, and so on. One may think,
for instance, of a series of measurements performed by different measurement
devices (such that n\, 712, ... refer to the different pointers) or of a series
of measurements performed by one device (such that TCI, 712, ... refer to
the different bits of paper or magnetic tape on which the outcomes are
registered). The outcomes are again represented by the pair-wise orthogonal
projections {^J1};, {^2}&> • •-, respectively.

The standard formulation fixes by means of the Born rule and the pro-
jection postulate the correlations between these sequentially established out-
comes. Let the systems TTI, TC2, ... be part of a larger composite co which,
as a whole, evolves freely (co could ultimately be the whole universe). The
evolution of the state of this composite from one instant 5 to a second instant
t is then given by

Ww{t) = U<°(t,s) W<°{s) Uw(s,t) (11.13)

with UVfay) equal to exp([(x - y)/iH] Hw).
At t\ a measurement outcome R7*1 is recorded by n\ and the standard

formulation predicts via the Born rule that

at h) = T^iW^ih) [Rf ® r^] ) . (11.14)

If R*1 is indeed recorded, the state of co collapses to

R*1 ® P/ 7 r i ]7 - (1115)

At t2 a second outcome R£2 is recorded by 712 and the standard formulation
gives via the Born rule a probability for the occurrence of this outcome con-
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ditional on the occurrence of the first outcome Uj1. Let /?Ji;w be shorthand
for Rf ® F°/«i and let R*2;(O be shorthand for R%2 ® I™/712. Then

(#f at t2/R? at n) = Ti"(l7"(t2,ti) W^(ti) IH'1,'2) J O > (11.16)

where t/^te,*!) W ^ i ) t / ^ i , ^ ) is the state of co which evolved unitarily
from the collapsed state (11.15). From this conditional probability one can
calculate a joint probability for the outcomes (substitute (11.15) into (11.16)
and multiply by (11.14)):

at tuR,/ at ti) =
(11.17)

If R*1 and R£2 are indeed recorded at t\ and at £2, respectively, the state of
co collapses at ti to

From this new collapsed state one can again determine the probability for
a third outcome i?^3, registered by 713, conditional on the occurrences of
the two previous outcomes. And with this conditional probability one can
determine the joint probability for the three outcomes î J1, R%2 and R*3,
write down the collapsed state at £3 and consider a fourth outcome, etc., etc.
For AT outcomes the resulting joint probability is

PBom(R? at tuRl2 at t2,• • • ,KN at tN) =

(11.19)

I am not able to generally determine the modal counterpart of this joint
Born probability. Results about correlations between properties possessed
by systems at different times were given in Chapter 8 when discussing the
evolution of the actually possessed properties, and these results were rather
poor. However, in special cases one can calculate the joint probability (11.19)
within the spectral and atomic modal interpretations (Vermaas 1996, Sect. 7)
and if one does, one obtains the same results as obtained by the Born rule.

Consider the case in which the systems nu n2, ..., TIN evolve freely from
the time that they register their outcomes. So, n\ may interact with the rest
of co before t\ but after t\ it evolves freely; and 712 evolves freely after t2, etc.
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This implies that the evolution operator [/<"(£, s) factorises after t\9 t2, . . . , so

i) ® U(t9ti)9 1

, t2) ® Un2(t, t2) ® C/w/7ri7C2(^ t2\ etc. J

Let's assume for simplicity that during their free evolution the states of the
systems m9 712, . . . , TIN remain fixed, so Uni(t9ti) = F 1 , Un2(t9t2) = F2 , etc.
Physically this assumption means that one freezes the states of the systems
7ti, 7C2, . . . , TIN, once they have registered their respective outcomes. (What
follows can also be derived without this simplifying assumption.)

A first consequence of this free and constant evolution of n\, %2, . . . , TIN
is that the projection R7*1 ® F0/*1 commutes with the evolution operator
[/"(Mi), that Rl2 ® p / ^ commutes with U(D{Ut2\ etc. Hence, the Born
probability (11.19) can be rewritten as

(i?J1 at tu R%2 at t2,.. • , 1 C a t ^ ) =

T^W^itN) [R]1 ® i?^2 ® • • • ® RlN ® ]T/W1W2"^]) (11.21)

(using that [ / " ( t V ) [/"(^r) equals U^ifj), using (11.13) and using cyclic
permutation).

Another consequence of the free and constant evolution of n\9 712, . . . ,
7TN is that the properties modal interpretations ascribe to TTI, 712, . . . , TIN
evolve deterministically. So, if TCI possesses the outcome i^J1 at t\9 then, with
probability 1,7ii continues to possess that outcome JRJ1 at any instant t later
than ti. The property that n\ possesses at t > t\ is thus a faithful record of
the outcome registered at t\. The same result holds mutatis mutandis for the
other pointers. So, the joint probability that modal interpretations yield for
the sequence of measurement outcomes satisfies

p(R? at tu Rl2 a u 2 , . . . , KN at tN) =

p(R]1 at tN, Rl2 at tN,... , R™ at tN). (11.22)

This latter probability is the joint probability that the disjoint systems n\9

7C2,..., TIN possess simultaneously their outcomes and can be calculated with
the spectral and atomic modal interpretations. One obtains

p(R? at tu Rf at t2,... , R^N at tN) =

[C?(tN) ® Cn
b\tN) • • •

ael) bell del"

(11.23)
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and by the relations (11.9) and (11.10) this joint probability is equal to the
Born probability (11.21).

A second case generalises aspects of the case sketched above. The starting
point is the idea that in physics one does not directly observe properties
possessed at different instants but that one can only observe properties
possessed at the same instant. This means that if one has two measurement
outcomes which come into existence at different times, say, at t\ and at
t29 then one cannot directly compare these outcomes. Instead one has to
have some kind of record of the first outcome which still exists at t2.
Then at t2 one can only compare this record of the first outcome with the
second outcome. This simple fact reveals the presupposition that records
of measurements earlier performed are supposed to be faithful in the sense
that they do not change in time. Records, in the language of Chapter 8,
thus have to evolve deterministically. To illustrate this, consider two spin
measurements. At t\ one measures the spin of a first particle and at t2

one measures the spin of a second particle. Both measurements produce
a black spot on a photographic plate. If one now concludes that the two
measurement outcomes were sequentially 'up' because one has at t2 two 'up'
black spots on the photographic plate, one implicitly assumes that the black
spot created at t\ evolved with probability 1 to the black spot present at t2.
One thus assumes that the spot evolved deterministically.

The second case is therefore as follows. Assume explicitly that the records
{R]l}j, {Rk2}k, ••• of the outcomes ascribed at tu t2, . . . , respectively, evolve
deterministically. So, if at t\ the system n\ possesses outcome R*\ then n\
also possesses .Rj1 at any time t later than t\ and mutatis mutandis for 712,
etc. Assume, furthermore, that the records, once they have been established,
are so-called conserved quantities with regard to the evolution of a>. This
implies that after h the Hamiltonian Hw of co commutes with Uj1 ® ¥°/n\
etc. A consequence of this second assumption is that if, for instance, the
state of m at tx is given by Wni(h) = Rf /Tr711 (flj1), then this state remains
constant after t\.

With these two assumptions one can again derive that the predictions
of the spectral and atomic modal interpretations agree with those of the
standard formulation. From the first assumption one can derive (11.22)
and thus (11.23). From the second assumption it follows that tfj1 ® Ew/7ri

commutes with Uw(t,ti) for all t > tu that R%2 ®Y°/n2 commutes with
U(0(t,t2) for all t > t2, etc., so one can derive (11.21) from (11.19). The rest
is similar to the first case.

To sum up, the standard formulation of quantum mechanics gives by the
Born rule empirically adequate predictions about the probabilities with which



11.3 Correlations between preparations and measurements 203

single measurements have outcomes. If the bi, spectral and atomic modal
interpretations solve the measurement problem by ascribing outcomes after
measurements, then these three interpretations reproduce these predicted
probabilities for single measurements. Furthermore, the standard formula-
tion gives by the Born rule empirically adequate correlations between the
outcomes of different measurements. The spectral and atomic modal in-
terpretations reproduce these correlations for the case of simultaneously
performed measurements. And, in so far as it is possible to calculate the
correlations for the case of sequentially performed measurements, the spec-
tral and atomic modal interpretations reproduce the predicted correlations
as well.

11.3 Correlations between preparations and measurements

The above proofs have one drawback, and that is that it is assumed that
the standard formulation and the modal interpretations assign the same
states to systems before the first measurement. In the proof for sequentially
established outcomes, for instance, I have calculated the correlations between
the outcomes by assuming that the standard formulation and the modal
interpretations all assign the same initial state W^^i) to co. The possibility
that they disagree about this initial state is thus ignored.128

If one holds the position that a system has its state as a kind of intrinsic
feature which pertains inalienably to that system, then this assumption
seems warranted. One can then argue that at the Big Bang the universe was
born in an initial state WUmverse(£o). One can then argue that, in order to be
empirically adequate, the standard formulation and the modal interpretations
must all agree that this initial state of the universe is given by WUmverse(£o).
The standard formulation and the modal interpretations then also agree
that the state of the universe evolves unitarily to the state wUmverse(t) =
l7Universe(t,to)^Universe(to)C/Universe(fo,O up to the instant h when the first
measurement is performed. Only after this first measurement do the standard
formulation and the modal interpretations start to disagree about the state
of the universe and about the states of the systems within the universe.

Within the context of modal interpretations, this position seems very nat-
ural. In modal interpretations the state of a system represents the properties
possibly possessed by the system. And since it seems natural to take these
128 In the proof for sequentially established outcomes, I do not ignore that the standard formulation

and the modal interpretations disagree about the state of co after the first measurement. According
to the standard formulation the state collapses and I calculated its predictions from this collapsing
state; and according to the modal interpretations the state of co evolves unitarily and I calculated
their predictions from this unitarily evolving state.
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possibly possessed properties as intrinsic to the system, it also seems natural
to take the state as intrinsic to the system.

Within the context of the standard formulation, however, other more
instrumental views are possible as well. One can, for instance, hold the
position that we, the people, assign states to systems in order that we can
calculate the correlations between the outcomes of different measurements.
Paradigmatically, one then assigns a state to a system only after a first
measurement on that system. The first measurement thus functions as a
preparation of the state and this state is then used to calculate the statistics
for the outcomes of subsequent measurements. On this instrumental view,
states assigned to systems are thus not intrinsic to those systems but rather
bookkeeping devices for us which codify information about the outcome of
the first preparational measurement. If one accepts this view, it is meaningless
to speak about the state of a system before any preparational measurement
takes place. And, as a consequence, the above proofs that the standard
formulation and the modal interpretations yield the same predictions about
measurement outcomes break down.

In this section I discuss an example of a series of two measurements
performed on a system a in which the first counts as a preparation of
the state of a. I show that the predictions by the standard formulation
in the sketched instrumental view agree with the predictions by the modal
interpretations, regardless of whether the standard formulation and the
modal interpretations disagree about the state of a. The discussion is based
on the one given by Bacciagaluppi and Hemmo (1998, Sect. 3).

The example consists of two consecutive measurements of the second
kind. The first measurement measures AG = ^2q=iaq |a£)(fl£| by means of
the interaction

The second measures a magnitude B° = Ylr=\br\br){b°\ by means of the
interaction

r

The systems Ji and v are the mechanisms of the two measurement devices fi
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and v, respectively. The sets {|D^)}^ and {|DJ!)}r are sets of pair-wise orthog-
onal vectors such that both measurements satisfy the sufficient condition
(10.42), given in Section 10.4, for solving the measurement problem with
the spectral modal interpretation. The systems n and p are the pointers of
the devices /a and v, respectively. And the pointer reading vectors {|Rj)}9

and {\Rr )}r both satisfy the sufficient conditions (10.15) and (10.19), given in
Section 10.3, for solving the measurement problem with the atomic modal
interpretation.

According to the instrumental approach to the standard formulation, the
first measurement on a counts as a preparation of the state of o\ if the
outcome of this measurement is |Rp(Rj|, the state of a is |2J)(aJ|. This state
can then be used to calculate the probabilities of finding outcomes at the end
of the second measurement: given that the first measurement indeed yields
the outcome |Rp(Rj | and given that a evolves freely during the time interval
between the two measurements (say the first measurement ends at t\ and
the second starts at ti), the probability of finding (say at £3) the outcome
|R£)(R£| corresponding to the eigenstate |&£)(fc£|, is by the Born rule equal to

PBorn(l<)«l at t3/|R7><R7l at h) = K&Zle^'iapi2. (11.26)

Note that this conditional probability is calculated without assuming that a
has a state before the first measurement.

If one applies the spectral and atomic modal interpretations to these
two measurements, one needs to assume that a has a state before the first
measurement. Let the first measurement begin at to and assume that a has
at to the (unknown) state Wa(to). The measurement devices are initially in
their 'ready-to-measure' states so the whole lot is initially in the state

= W°(to) ® \^)(4\ ® IROXROI ® IDOXDOI ® |Rg)<Rg|. (11.27)

The system a then interacts from to to t\ with the first device \i. This
interaction is given by (11.24). From t\ to £2? 0" evolves freely and with
U°(t2,ti) = exp([(*2 — ti)/ih]Ha) and from £2 to £3, a interacts with the
second device v according to (11.25). If one now assumes that the first
measurement device evolves freely from t\ to £3 with U^it^ti) = W and that
the second device evolves freely from to to £2 with Uv(t2,to) = F, one can
calculate the final state of a^iv after the second measurement. The result is

(11.28)
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The spectral and atomic modal interpretations predicts that n possesses
at t\ one of the readings {|R^)(RJ|}^ and that p possesses at t3 one of
the readings {\R?)(Rr |}r. Moreover, if n evolves freely from t\ to t3 with
C77C(t3,ti) = F , the actual outcome |RJ)(RJ| at t\ evolves deterministically to
itself at £3. Hence, the predicted joint probability for the outcomes of the
two measurements is

P(|R7>(RJ| at tl9 R £ ) K I at t3) = P(\R«)(R]\ at t3, | < > « | at t3) =

Ti*t>(W«r(t3) [\R])(R]\ <8 | < > « | ] ) = | (6 J | e^ H ' | 2 J ) | 2 (a°\W°(to)\a°)
(11.29)

and, since

p(\R«)(R]\ at h) = }^p(\R] )(R]\ at tu |R£)(R£|
 a t 'a) = <aj| W"(*o)|aJ>,

(11.30)

it follows that the spectral and atomic modal interpretations yield the same
conditional probability (11.26) as the Born rule.

Hence, the spectral and atomic modal interpretations can also (at least in
this example) reproduce the predictions by the standard formulation if one
takes the view that the standard formulation assigns states to systems only
after preparational measurements.



Part three

Philosophy

In this final part I analyse the modal interpretations from a more philosoph-
ical point of view.

In Chapter 12 I start by arguing that modal interpretations describe
noumenal states of affairs and that therefore metaphysically tenable in-
terpretations need only to meet the criteria of Consistency and Internal
Completeness. Then I analyse the relations between properties, states and
outcomes of measurements in the modal description of reality. I end by
discussing how modal interpretations, when restricted to the description
of measurement outcomes, recover the standard formulation of quantum
mechanics.

Chapter 13 concerns the relations between the properties ascribed to
composite systems and subsystems. I show that the property ascriptions of
the bi and spectral modal interpretations can be characterised as holistic
and non-reductionistic, whereas the property ascription of the atomic modal
interpretation is non-holistic and to a large extent reductionistic. I argue
that notwithstanding the lack of reductionism, the bi and spectral modal
interpretations are empirically adequate and metaphysically tenable. I also
discuss the possibility of saving the metaphysical tenability of the atomic
modal interpretation by taking holistic properties as dispositional properties.

In Chapter 14 I give a survey of the possibilities and impossibilities of
modal interpretations and in Chapter 15 I end with general conclusions.





12

Properties, states, measurement outcomes and
effective states

Starting with a more philosophical review, I discuss how modal interpreta-
tions describe reality. Firstly, it is shown that they describe states of affairs
which need not be observable. Secondly, I underpin my position that in order
to be metaphysically tenable, interpretations need only to satisfy the criteria
of Consistency and Internal Completeness. Thirdly, I analyse how proper-
ties, states and measurement outcomes are related to one another within
the modal descriptions of reality. Finally, I show how modal interpretations
recover the standard formulation of quantum mechanics if one defines, in
addition to the true states, so-called effective states of systems.

12.1 Noumenal states of affairs

The aim of an interpretation of quantum mechanics is, as I said in the intro-
duction, to provide a description of what reality would be like if quantum
mechanics were true. This formulation underlines two aspects of interpreta-
tions. Firstly, interpretations intend to construe quantum mechanics in terms
of a description of reality and not merely in terms of the outcomes of meas-
urements. Secondly, this description need not be correct. The objective is only
to prove that there exists a construal of quantum mechanics which yields an
acceptable description of reality. And because it is already difficult enough
to give such a proof of existence, it is not (yet) the aim of interpretations to
provide the one and only correct description of reality.

The above formulation, however, disregards another aspect of interpre-
tations of quantum mechanics, namely that they describe states of affairs
which need not always be observable. The project of interpreting quantum
mechanics is thus in principle different from, say, a historian's attempt to
give a description of what Athens would have been like at the time Socrates
lived, or from a child's dream of imagining what life would be like if one

209
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were as small as, say, a smurf.129 These latter two projects concern a reality
which can, in principle, be observed, namely by, respectively, Socrates and the
smurfs. They thus aim at describing states of affairs which are, in principle,
observable and which can be designated in that sense as phenomenal states
of affairs. In contrast, when interpreting quantum mechanics, one not only
aims at describing phenomenal states of affairs, such as, for instance, the
properties possessed by a measurement device, but also at describing states
of affairs which are, in principle, not observable.

Consider, for instance, the description of the properties possessed by
two elementary particles a and /? and their composite a/?. The spectral
modal interpretation says that a, /? and a/? simultaneously possess, say, the
respective core properties P%9 P£ and P^. If we now want to observe the
joint possession of these properties, one has to measure them simultaneously.
However, because these properties P%9 P^ and P<r are not, in general,
comeasurable (the projections P% ® 1 ,̂ F ® Pf, and Pc in general do not
commute), quantum mechanics rules out such a simultaneous measurement.
Hence, the state of affairs for a, /? and a/J given by the spectral modal
interpretation cannot be observed. Or consider the transition probabilities
for the actually possessed properties of an atom a during the time interval
that a evolves freely and that the composite state of a and a second atom
p is constantly given by the pure state |*Fa )̂ = J2jcj\c°j) ® lcy )• T h e H
spectral and atomic modal interpretations then all yield that these transition
probabilities are p(|cg)(cg| at t / \c«)(c«\ at s) = Sab (see Section 8.2). But this
can never be observed, not by us nor by any other being. To prove this,
assume that there exist beings, say quantum smurfs, which can, in accordance
with the rules of quantum mechanics, directly monitor the properties of
individual atoms (like we can monitor the properties of macroscopic systems).
Then an observation of these transition probabilities for a would consist of
the observation that if a possesses the property \c^)(c^\ at a first instant s,
then a possesses with probability 1 the same property at a later instant t while
the state of a/? remains constantly equal to |^a^) . However, even a quantum
smurf cannot observe that a possesses \c^)(c^\ at s without disturbing the
pure state of a/? at s because any non-trivial correlation between a and
the smurf makes the state of a become entangled with the state of the
smurf. This entanglement is ruled out because the state of a/? at s is pure.130

This conclusion holds for every possible observer, so, according to quantum

129 See Peyo (1967).
130 Let a be the smurf. Then, because the state of ajS is pure at instant s, it follows (see footnote 11) that

the state of <ra/? at s is equal to WaaP(s) = WG{s) <g) |^Fa^)(^Fa^|. The state of croc thus factorises, that
is, W™(s) = Wa{s) (g) Wa(s), ruling out any entanglement between the states of a and of a.
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mechanics, no being can observe the transition probabilities for a freely
evolving atom a part of a composite a/? with a pure state.

Thus, to conclude, a third aspect of interpretations of quantum mechanics
is that they aim not only at describing phenomenal states of affairs but also
at describing states of affairs which cannot be observed. Interpretations of
quantum mechanics thus exceed the realm of the phenomena and are in
that sense aiming at describing noumenal states of affairs, where 'noumenal'
should be taken in its literal meaning as 'known by the mind as against the
senses.'131

Let's now return to the discussion in Section 3.3 of the demands an
interpretation of quantum mechanics should meet. I listed three: an in-
terpretation should yield a description of reality which is well developed,
empirically adequate and metaphysically tenable. Consider, firstly, the last
demand. It is beyond controversy to require that a metaphysically tenable
interpretation should yield a consistent description of reality and that such
an interpretation should deliver all that it promises to deliver. That is, the
description should be free of contradiction and be complete with regard to
the standards set by the interpretation itself. The spectral and atomic modal
interpretations, for instance, aim at probabilistically ascribing properties to
systems and at giving correlations between these properties. Given this, it
is warranted to demand that these interpretations consistently correlate the
properties in the case of both the phenomenal and the noumenal states of af-
fairs. In Section 3.3 I have called these two criteria, respectively, Consistency
and Internal Completeness. On the other hand, I believe that one should be
careful about accepting further 'natural' criteria for metaphysically tenable
interpretations. Natural criteria usually capture our intuitions about what
we observe, but the analysis which I have given above proves that interpre-
tations also describe noumenal states of affairs. Interpretations of quantum
mechanics thus enter domains beyond what we observe. And it seems in-
correct to me to demand that the description of noumenal states of affairs
should conform to our intuitions about the phenomena. For instance, Clifton
(1996) has argued that a metaphysically tenable interpretation should satisfy
the condition that if a system a possesses a property Qa, then any composite
ap should simultaneously possess the property Qa®I^.132 I agree that on the

131 I am well aware that the term 'noumenon' has a strong Kantian connotation. However, according
to two handbooks of philosophy, Lacey (1976, page 145) and Honderich (1995, pages 657-658),
'noumenon' also has a literal pre-Kantian meaning of 'thing known by the mind as against the senses,'
respectively 'things that are thought.' When characterising interpretations of quantum mechanics as
(also) aiming at describing noumenal states of affairs, I refer to this literal meaning. I thus do not
mean that interpretations intend to describe the realm of the Kantian Ding-an-sich.

132 The condi t ion tha t if a possesses Qa, t hen a/? should s imul taneous ly possess Qa <S>P, is called the
Property Composition condition, and is extensively discussed in the next chapter.
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basis of our observations of properties of systems and composite systems,
one can make a case for this condition. However, our observations yield
by definition information about only phenomenal states of affairs and not
about the noumenal states of affairs. Hence, there is no reason whatsoever
to also assume that these noumenal states of affairs should satisfy the con-
dition that if a possesses Qa, then a/J possesses Qa ® P. Put more generally,
I take the somewhat liberal position that the descriptions of the noumenal
states of affairs by modal interpretations need only to satisfy Consistency
and Internal Completeness, and that the descriptions may for the rest defy
all our common intuitions.

With regard to the descriptions of the phenomena, one should of course
expect more. One should demand that interpretations of quantum mechan-
ics should yield empirically adequate descriptions of phenomenal states of
affairs. Hence, a third criterion for interpretations is that their descriptions
of the phenomenal states of affairs satisfy Empirical Adequacy.

One can now go one step further and also formulate every-day intuitions
about the phenomena and demand that an interpretation is well developed
only if its descriptions of the phenomenal states of affairs satisfy these every-
day intuitions as well. Examples of such intuitions are Instantaneous and
Dynamical Autonomy as presented in Section 3.3, and the conditions on
full property ascriptions as discussed in Section 5.3. I think, however, that
one should not impose these intuitions as criteria on interpretations.133 As
I said in Section 3.3, there is not yet consensus about which conditions
should be imposed on well-developed interpretations. I therefore do not
impose further criteria on modal interpretations apart from Consistency and
Internal Completeness with regard to the phenomenal and the noumenal
states of affairs, and Empirical Adequacy with regard to the phenomenal
states of affairs. The route I follow in this book is firstly to develop the
modal descriptions of reality and afterwards to assess (and to leave it to the
judgement of the reader) whether these developed descriptions are acceptable
(see Chapters 14 and 15).

12.2 Relations between properties, states and measurement outcomes

Quantum mechanics in the standard formulation can be understood as
an interplay between states and outcomes of measurements. By means of
states of systems quantum mechanics yields predictions about outcomes of
measurements performed on those systems. Conversely, outcomes of so-called
133 In Section 3.3 I argued that Instantaneous and Dynamical Autonomy are reasonable assumptions

about interpretations; I did not present them as generally valid truths.
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preparational measurements (see Section 11.3) determine, via the projection
postulate, the states of systems.

Within modal interpretations this picture changes, yielding a different
understanding of quantum mechanics. A first change is induced by the
introduction of properties of quantum systems: quantum mechanics becomes
therefore an interplay between states, measurement outcomes and properties.
A second change is due to the rejection of the projection postulate: states
do not collapse during measurements blocking the possibility of preparing a
state by means of a measurement. In this section I analyse this new picture
of quantum mechanics by discussing how properties, states and measurement
outcomes interlock.

FROM STATES TO PROPERTIES: Consider, firstly, how the state of a system
fixes the properties of the system. Recapitulating Chapters 4 and 5, modal
interpretations determine a core property ascription {{pj,Cj)}j by means
of the state Wa of a system a. This core property ascription says that a
possesses with probability pk = p(C%) the core property C£ and induces a
full property ascription {pio^tPk* Ih) to a given by

Pk = p(Cl), 99k = *(Cl), [Q«]k = T ^ * ^ ) )• (12-1)

This full property ascription implies that it is with probability p(C%) the case
that a actually possesses the properties Qa e &3?k with [Qa]k = 1, that a
actually does not possess the properties Qa e Q)d?k with [Qa]k = 0, and that
the properties Qa <£ Q)$Pk are actually indefinite. Hence, the state of a system
determines probabilistically the actual properties of the system.

FROM STATES TO OUTCOMES: If modal interpretations solve the measurement
problem, then states determine in the usual quantum mechanical way the
outcomes of measurements. That is, if at the end of a measurement the
state of a pointer n is Wn, then (see Section 11.1) this pointer possesses the
outcome R£ with the Born probability Trn(WnR£).

FROM PROPERTIES TO STATES : Suppose we know those properties which are
actually possessed by an individual system a and those which are actually
not possessed. What does this then say about the state of the system?
Given that in modal interpretations the actual properties of a form a faux-
Boolean algebra #XC£), one can easily fix the core property C£ of a:
it is simply the property actually possessed by a that is represented by
the lowest-dimensional projection. This core property C£ now yields some
information about the state of a but does not fix it: in the bi and spectral
modal interpretations C£ is an eigenprojection of the state Wa. So, the
spectral resolution Wa = ^jWjP? must contain a term WkC%. However,



214 Properties, states, measurement outcomes and effective states

the corresponding eigenvalue Wk can have any value strictly larger than
0 and the other eigenprojections {PJ}^ can be any set of projections
orthogonal to Cj* (and to one another). In the atomic modal interpretation
Cy. is a product Pa ® Pjj2 ® • • • of eigenprojections of the states of the
atoms in a. In this case C£ thus says even less about the state of a. Hence,
if one knows the actual properties of a system, one can determine the
core property of the system but one cannot determine the state of that
system.

In contrast, if one considers within the bi and spectral modal interpre-
tations an ensemble of N systems which are all in the same state Wa, one
can obtain more conclusive information about this state. Let #(C?) denote
the number of systems in this ensemble which actually possess the core
property Cj. If one then accepts a frequency interpretation of probabilities,

it is clear that the state defined by Wa = ^7(#(CJ)/[Ndim(CJ)])CJ con-
verges to Wa in some way if N goes to infinity. Within the atomic modal
interpretation one can reach the same conclusion only for ensembles of
atoms. (For ensembles of molecules co there exist mutually different states
W™ and W™ which yield the same statistics for the core properties of co.134

So, if one knows these statistics, one still cannot uniquely fix the state of
the molecules.) Hence, the actually possessed properties for an ensemble of
systems with the same state, determine the core property ascription to those
systems. And this core property ascription determines in the bi and spectral
modal interpretations in some approximation the state of the systems. If
these systems are atoms, the same conclusion holds in the atomic modal
interpretation.

FROM PROPERTIES TO OUTCOMES : Consider how the actual properties of a
system are related to the outcomes of a measurement performed on that
system. Take a system a which actually possesses the core property CJ at
some initial instant and perform a measurement on a yielding an outcome
R£ possessed by a pointer n at a final instant. Let the measured magnitude
be given by Aa = J^p

 ap \af)iap\ a nd let R£ be the outcome that corresponds
to the eigenvalue a^ of Aa. Assume, moreover, that there exists a snooper
system a for a at the initial instant and that this snooper evolves freely
during the measurement. Then it can be proved for the perfect measurements
discussed in Sections 10.3 and 10.4 that the spectral and atomic modal
134 Consider a system consisting of two atoms a and /?. The states

Wf =YJCjCf\e)){e)l\® | ^ X ^ | and wf = "£ \Cj\
2 \e)){e)\ ® \J\)tf\

hi' J

then both yield that the core property of a/? is k?)(ef | ® \e{)(ef| with probability \ck\
2.
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interpretations135 yield the following conditional probabilities between the
initially possessed core projection of a and the finally possessed outcomes:

(12.2)

This result is rather attractive for if these conditional probabilities are
generally valid, it proves that one can use, in addition to the state of a
system, the actually possessed core property of the system to give predictions
about the outcomes of a measurement. Furthermore, the actually possessed
core property determines these predictions for outcomes independently of
the specific state of the system. Finally, the way in which the actual core
property CJ determines these predictions appears to be quantum mechanical
in the sense that (12.2) can be taken as the Born probability of finding the
outcome R£, given that the state of a is CJ/ dim(CJ). So, it seems that before
the measurement a effectively has a state equal to the (normalised) actually
possessed core property.

Unfortunately, the conditional probabilities (12.2) are not generally valid.
In Section 9.2 it was proved that the spectral and atomic modal interpre-
tations do not satisfy the stronger assumption of Dynamical Autonomy for
measurements (see page 168). That is, one can construct two identical meas-
urement situations (given by, respectively, an object system a interacting with
a pointer n and an object system a' interacting with a pointer n', where a
and ct! initially possess the same core property and where the composites an
and cdnf initially have the same composite state which evolves with the same
Hamiltonian) for which p(R^/Cc-) and p(R%'/C/) are nevertheless different.
Thus, the nice conditional probabilities (12.2) are not generally valid.

Hence, there do exist conditional probabilities for the initially possessed
core property of a system and the final outcomes of a measurement per-
formed on that system, but these conditional probabilities are neither unique
functions of the initially possessed core property nor unique functions of
the initial core property and the composite state of the system and the
measurement device. Thus there does not exist a unique general rule with
which one can predict measurement outcomes from the initially possessed
core property of a system.

FROM OUTCOMES TO PROPERTIES: AS mentioned at the beginning of this
section, within the standard formulation of quantum mechanics one can use
an outcome RJ of a so-called preparational measurement to fix the (final)
state of the system on which the measurement was performed. This follows
135 Analogous results cannot be derived for the bi modal interpretation since this interpretation does

not in general correlate the properties of the snooper and of the pointer after the measurement.
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because one has the projection postulate within the standard formulation.
Modal interpretations, however, reject this projection postulate and therefore
outcomes of preparational measurements do not yield such determinate
information about the object system. To demonstrate this let's consider a
preparational measurement and see what the outcome reveals about the
object system. I start by discussing the relation between the outcome and the
properties possessed by the object system. After that, I focus on the relation
between the outcome and the final state of the object system.

As I said in Section 11.3, measurements of the second kind count in
the standard formulation as preparational measurements. So, take a meas-
urement of the second kind on a system a measuring the magnitude
Aa = J2P

ap \ap)(ap\- The measurement interaction yields

\a«) ® |Dg> ® |Rg) —> |2£) ® |D{j> ® \Rn
p) (12.3)

and, given the initial state W$ ® |D(J)(D(J| ® |RQ)(RQ|, the final state of a/i is

J |® |RJ ) (R ; | . (12.4)

The state of a after the measurement is thus equal to

(12.5)

and due to the rejection of the projection postulate, this remains the state of
a. It can now be proved that the set of core properties assigned to a by the
spectral and atomic modal interpretations after the measurement depends on
the initial state of a.136 Hence, a first conclusion is that after a preparational
136 Let a be an atom defined on a two-dimensional Hilbert space. Let {|e"), l^)} ^e a basis for this

Hilbert space and assume that \d\) = \e\) and |a|> = \ yjl \e\) + \yj2\ea
2). Let the initial state of a

be given by Wft = wi \af){a\\ + w2 I^X^I- Its final state (12.5) is then equal to

V T T
with respect to the basis {\e\), l^)}. Consider the case that w\ = | and wi = 7. The eigenprojections
of Wa are then given by the matrices

"-1=5 12 1)' r 2 = ! l - 2 4 >
a ! / 1
2 - 5 [-2

Consider, secondly, the case that w\ = ^ and W2 = | . The eigenprojections of P^a are then

, / 1 - 3 \

Hence, the core properties which are ascribed to a by the spectral and atomic modal interpretations
after the measurement depend on the state of a before the measurement.
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measurement the finally possessed core properties of the object system are
not in general uniquely fixed.

Assume that the measurement interaction (12.3) satisfies the conditions laid
down in the Sections 10.3 and 10.4 such that the spectral and atomic modal
interpretations ascribe after the measurement the outcomes {|R^)(RJ|}7- to the
pointer. Let {C%}k be the core properties ascribed to a after the measurement.
The conditional probability that a actually possesses the core property C£
given that n possesses outcome |Rp(R^| is then in the spectral and atomic
modal interpretations equal to

So, a second conclusion is that after a preparational measurement the
probabilities for the finally possessed core properties of the object system,
conditional on the measurement outcomes, are fixed independently of the
initial state of the object system.

An interesting special case is given by a preparational measurement (12.3),
where the vectors {|«p}p are pair-wise orthogonal. The core properties of
a are then in the spectral modal interpretation given by {|2p(a?|}p (bar-
ring degeneracies) independently of the initial state WQ, and the conditional
probabilities (12.6) become equal to Sjk. Within the spectral modal inter-
pretation an outcome |RJ)(RJ| of such a special preparational measurement
thus determines with probability 1 that the actually possessed core property
of a is given by |a")(a"|. For the atomic modal interpretation such special
measurements also exist. If the vectors {|5p)}p are pair-wise orthogonal and
if they are given by |5£) = \efj,\) ® \ep2

2) • • •, where the systems {/?;}; are the
atoms in a and the sets of vectors {!£#)}# are sets of pair-wise orthogonal
vectors, then an outcome |Rp(Ry | also reveals with probability 1 that a pos-
sesses the core property |a")(a"|. Hence, a final conclusion is that in special
cases, the outcome of a preparational measurement does uniquely fix the
actually possessed core property of the object system. That is, the outcome
of such a special measurement determines with probability 1 which core
property is actually possessed by the object system after the measurement,
independently of the initial state of that object system.

FROM OUTCOMES TO STATES: After the preparational measurement (12.3),
the object system a remains in the state (12.5) because modal interpretations
reject the projection postulate. Moreover, this final state depends on the
initial state Wft of the object system. Hence, if one does not know this
initial state, one cannot determine the state (12.5) of the object system
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after this measurement, regardless of whether one knows which outcome the
measurement has.

An exception to this conclusion is given by the case in which the prepara-
tional measurements are of the special kind which determine with probability
1 the actually possessed core property of the object system after the meas-
urement. If one performs N such special measurements on an ensemble of
N systems which all have the same initial state WQ , one can determine the
final state of these systems. Let #( |RJ)(RJ|) denote the number of times that
the measurements yield the outcome |RJ)(RJ|. Then one can conclude that
#(|Rp(Rj|) object systems actually possess the core property |2p(a"| after
the measurements. Then using how the actually possessed core properties
of systems determine the states of those systems (see FROM PROPERTIES TO

STATES), one can conclude that the state W* = T,J(#(\R])(R1J\)/N) l^/)(#/l
converges in some way to the final state (12.5) of a. (This holds in the spec-
tral modal interpretation for every ensemble of systems and in the atomic
modal interpretation only for ensembles of atoms.)

When reviewing all these relations between properties, states and meas-
urement outcomes, the following picture arises. The state of a system prob-
abilistically determines the actually possessed properties of the system and
probabilistically determines the outcomes of measurements performed on
that system. Conversely, neither the actual core property of an individual
system nor the outcome of a preparational measurement performed on an
individual system yields conclusive information about the state of that sys-
tem. The state of a system is thus rather elusive from the perspective of
properties and measurement outcomes. Furthermore, the initially possessed
core property of a system probabilistically determines the outcomes of a
measurement performed on the system. But, since this probabilistic rela-
tion is not unique and is only derivable in special cases, it is not of much
use. Finally, there exists a special class of preparational measurements for
which the outcome determines with probability 1 the actually possessed core
property of the object system after the measurement.

12.3 States and effective states

The aim of an interpretation is to provide a description of what reality
would be like if quantum mechanics were true. And modal interpretations
aim to furnish this description by ascribing properties to quantum systems
on the basis of the states of those systems. However, given the analysis of the
previous section, one now has to conclude that is quite hard to obtain definite
knowlegde of this modal description of reality because it is often impossible
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to determine the states of systems. Consider, for instance, an incoming muon
reaching earth from outer space. This muon has some unknown state and a
(preparational) measurement on this muon will neither disclose this state nor
alter it to a known one. At best a preparational measurement can determine
with probability 1 the final actually possessed property of the muon. On the
other hand, in some special cases it is imaginable that one can obtain definite
knowledge about states of systems. Examples are processes for which one can
decide on theoretical grounds what the final state of a system is (this might
be the case for particles emitted during a well-defined atomic de-excitation).
Or one can think of processes which yield an ensemble of systems which are
always in the same unknown final state. A series of measurements can then
determine this state. However, in general it is difficult to know the states of
systems. Hence, within modal interpretations states have, as already noted,
epistemologically a rather elusive status. And because modal interpretations
describe reality on the basis of these states, these descriptions are elusive as
well: modal interpretations ascribe properties to systems but it is, in general,
impossible to know these properties.

Given that one indeed cannot determine the states of most systems,
one faces a second problem, namely, how to properly generate predictions
about measurement outcomes with modal interpretations. In Chapter 111
gave the expressions which modal interpretations yield for the probabilities
and the correlations of measurement outcomes and these probabilities and
correlations (formulae (11.3), (11.12) and (11.23)) are all functions of the
states of systems. So, if one, in general, cannot know states, how can one
then still determine these probabilities and correlations? This second problem
can, however, be addressed and this brings us back to the collapsed states
assigned to systems by the standard formulation.

Consider a measurement performed on a system a from t\ to t2 and
assume that one knows the state of a. One can then calculate within the
spectral and atomic modal interpretations the probabilities for the outcomes
by applying the Born rule. That is,

p(R] at t2) = Tr^(U^(t2, h) [W*{h) <S> W^h)] U^(tu t2) F * ® R]])9 (12.7)

where W^(t\) is the initial state of the measurement device and U^(t2,t\)
is the measurement interaction. If, on the other hand, one does not know
the state of a, the probabilities for the outcomes are still given by (12.7)
but one can obviously not calculate them. Return now for a moment to the
stardard formulation of quantum mechanics and assume that before t\ a
preparational measurement was performed on a yielding at to an outcome
R? possessed by some pointer p. One can then determine the state of a:
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conditional on the outcome R%9 the state of a at t\ is within the standard
formulation the Schrodinger evolute Wa(t\) of the collapsed state Wa(to)
assigned to a after the preparational measurement. With this state one can
then calculate the conditional probabilities as

PBomiR] at t2/R? at t0) =

Tr^(U^(t2, h) [W"(h) ® W^ih)] U^(tu ti) [Pn ® R]]). (12.8)

In Section 11.3 it was proved that, if the state of the pointer p evolves freely
from to to £2, these last conditional probabilities are also correct within the
spectral and atomic modal interpretations regardless of whether or not one
knows the true state of a.

The similarity of (12.7) and (12.8) now suggests the following solution to
our second problem concerning the prediction of measurement outcomes.
Say, one cannot determine the state of a system a but one does know that
a preparational measurement has been performed on that system. Then, in
order to calculate the probabilities for the outcomes of a second measurement
within the spectral and atomic modal interpretations, one can pretend that
the collapsed state Wa(t)9 assigned by the standard formulation, is the state
of a. This collapsed state is, of course, not the real state of the system, so the
collapsed state does not fix the properties of a, but is merely a bookkeeping
device to calculate the statistics for future measurements.

I end this chapter by discussing a train of thought which leads to the
conclusion that this collapsed state assigned by the standard formulation
plays within modal interpretations a role more significant than that of a
bookkeeping device. I start by considering a discussion by Bacciagaluppi
and Hemmo (1998, Sects. 2 and 3) of what they call a selective preparational
measurement.137 In such a measurement one begins with an ensemble of
systems a, then performs a preparational measurement on each member of
the ensemble and finally constructs a subensemble by selecting all those
systems for which the measurements yield the same outcome. Suppose the
measurement is a measurement of the second kind given by (12.3) and say
one selects the systems which produce the outcome |RJ)(RJ|. This selected
subensemble is homogeneous according to the standard formulation: all its
members have the same collapsed state |5")(5"|. This collapsed state is thus
a proper characterisation of the subensemble.

Within modal interpretations it is less obvious how to characterise the
selected subensemble. The states of the systems are in any case not suitable.
Assume, for instance, that all the systems in the ensemble with which one
137 See also Section 3.2.3 of Bacciagaluppi (1996b).
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started have the same initial state. Then all the systems also have the same
state after the measurement. Hence, non-trivial subensembles cannot be dis-
tinguished by means of the state of the systems in the ensemble. The actually
possessed properties of the systems also do not yield a proper characterisa-
tion. The possible possessed properties of a system a after a preparational
measurement in general depend, as was proved in the previous section, on
the initial state W§. So, if the selected subensemble is inhomogeneous with
regard to this initial state, the subensemble can also be inhomogeneous with
regard to the set of possible properties possessed after the measurement and
thus with regard to the actually possessed properties.

The question is thus how to characterise the selected subensemble within
modal interpretations. Bacciagaluppi and Hemmo observed that all members
of this subensemble have in common that the past preparational measure-
ments yield the same outcome |RJ)(RJ|. Hence, they propose characterising
the subensemble by means of the outcome |RJ)(RJ | possessed by the pointers
of the measurement devices.

Secondly, Bacciagaluppi and Hemmo discuss the question of how to pre-
dict the probabilities for the outcomes of future measurements performed
on the selected subensemble. Repeating the discussion of Section 11.3, one
predicts these probabilities within the standard formulation by applying
the Born rule to the collapsed state |5")(2"|, and one predicts these prob-
abilities within modal interpretations by calculating the joint probabilities
p(\Rj)(Rj\ at £3, |R£)(R£| at £3).138 Bacciagaluppi and Hemmo therefore con-
clude that within modal interpretations the measurement outcome |RJ)(RJ|

of the preparational measurement is in two respects a proper description of
the selected subensemble: it characterises the subensemble and it determines
the probabilities for outcomes of future measurements on this ensemble.

I believe one can improve on this answer in two respects. Firstly, quan-
tum mechanics is within modal interpretations a theory about properties of
individual systems and not (merely) a theory about ensembles of systems.
I therefore think that one should take the outcome |RJ)(RJ| as a charac-
terisation of each individual system in the selected ensemble and not as a
characterisation of that ensemble as a whole. Secondly, it is rather unusual to
represent the future behaviour of a system a (or, if one doesn't like the first
improvement, of an ensemble of systems) by means of a feature pertaining
to a second system. More precisely, the assignment of the outcome |RJ)(RJ|

to a to characterise its behaviour during future measurements, means that

138 It is here assumed that the outcome |R")(RJ| of the preparational measurement evolves deterministi-
cally to the instant £3 at which the future measurement produces its outcome |R£)(R£|.
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The effective state

After a preparational measurement performed on a system a yielding
outcome R7- at £, one may assign an effective state W^n(t) to a at t.
This effective state is equal to the collapsed state which the standard
formulation of quantum mechanics assigns to a after the preparational
measurement, and is, in general, different from the true state Wa(t) of
a. The effective state evolves according to the Schrodinger equation and
generates via the Born rule the probabilities for outcomes of future
measurements on a conditional on the outcome RJ of the preparational
measurement.

a disposition of a is represented by an operator defined on a Hilbert space
ffln which is not associated with a. Instead, it is usual in quantum theory
to represent a feature or a disposition of a system by means of an operator
defined on the Hilbert space associated with the system itself.

So, in order to improve on the answer of Bacciagaluppi and Hemmo, I
propose the following. If a preparational measurement is performed on a
system a yielding an outcome represented by, say, the projection R7-, then
one may assign, within modal interpretations, the collapsed state Wa(ti) to
a to describe its behaviour during future measurements. I propose to call
this assigned state the effective state of a. And because an effective state
is assigned conditional on an outcome R1- of a preparational measurement,
I denote it by W^n(t). This effective state is assigned to individual systems

and is by definition defined on J»fa.139 (As an illustration: in the case of
the preparational measurement (12.3), the effective state HP|R«\/R«I(£I) of a is

With this last addition, the modal picture of quantum mechanics becomes
as follows. A system has a state which determines the possible possessed
properties of the system and which determines via the Born rule the (uncon-
ditional) probabilities of finding outcomes after measurements. The dynamics
of the state is given by the Schrodinger equation. In addition to this state,
one can assign after a preparational measurement an effective state to a
system which determines via the Born rule the probabilities for outcomes of
future measurements conditional on the outcome of the preparational meas-

139 This proposal to assign the state W^n(t) to a after a preparational measurement can also be found

in Healey (1989) (Wgn(t) is for Healey the quantum state of a). The motivation to call it an effective

state is given by the analogy between Wgn(t) and the effective state in Bohmian mechanics.
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urement. The dynamics of this effective state is also given by the Schrodinger
equation. A system always has a state which need not be known and a sys-
tem sometimes has an effective state (only if a preparational measurement
has been performed) which is then always known. During a (preparational)
measurement neither the state nor the possible effective states collapse; the
outcome of this measurement at best allows one to define a new effective
state of the system.

By means of this picture one can now reconstruct the standard formulation
of quantum mechanics as that part of the modal theory with which one can
best predict the outcomes of measurements in the case that preparational
measurements are performed. To see this, consider a system a on which a
preparational measurement is performed at time t\. It then follows within
modal interpretations that the best predictions about the outcomes of a
future measurement on a at t > t\ are obtained by applying the Born rule
to the Schrodinger evolute of the effective state W*ni(t{) assigned to a at t\.
If now a second preparational measurement is performed on a at ti > t\,
one can improve on our theory about measurement outcomes because then
the best predictions for a future measurement on a at t > ti are no longer
generated by applying the Born rule to the Schrodinger evolute of W*H(ti)
but by applying this rule to the Schrodinger evolute of the new effective
state W*n2(t2) assigned to a at ti. And if a third preparational measurement
is performed at £3 > t2, one can again improve and predict the outcomes of
future measurements most accurately by using the evolute to the effective
state W*n3(ti), etc. The succession in time of these effective states with which
one can best predict the outcomes of future measurements on a establishes
exactly the collapsing dynamics of the state of a in the standard formulation
of quantum mechanics.
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Holism versus reductionism

In quantum mechanics the properties of a composite system can be divided
into properties which are reducible to the properties of the subsystems of the
composite and properties which are irreducible to those subsystem properties.
The irreducible properties are called holistic and emerge when one describes
the system as a whole.

In this chapter I show that the bi and spectral modal interpretations
can ascribe the holistic properties to composites but, in general, fail to
reproduce the relations between the reducible properties of a composite
and the properties of the subsystems. The atomic modal interpretation, on
the other hand, fails to ascribe the holistic properties but is much more
successful in reproducing the relations between the reducible properties and
the subsystem properties. I discuss whether these failures harm the empirical
adequacy and the metaphysical tenability of modal interpretations.

13.1 Holistic properties of composite systems

The basic principle of reductionism, that all the properties of composite
systems are amalgamates of the properties of the subsystems of these com-
posites, has triumphed so much in classical physics that I find it difficult to
come up with a clear example of a classical property that cannot be taken as
a complex of the subsystem properties. So, in order to make a case for the
idea that composites can also possess, in addition to reducible properties,
so-called holistic properties which cannot be reduced to the properties of
the subsystems, one has to move outside physics or to draw upon some
counterfactual development of physics. In the first case, one may claim that
many of the (mental) properties which we ascribe in psychology or sociology
to humans cannot be reduced to the properties of the atoms and molecules
of those humans. And, in the second case, one may argue that if it had been

224
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proved that it is impossible to reduce thermodynamics to classical statistical
mechanics, then thermodynamical properties like pressure, temperature and
entropy would have been taken as holistic properties of, say, a gas. For
then these properties would not have been reducible to the properties of the
particles of the gas. However, I guess such examples do not do much good
to the idea of the existence of holistic properties in physics. Firstly, the claim
that the mental properties of humans cannot be reduced to the properties
of the particles of humans is not generally accepted. Moreover, even if it is
the case that the properties ascribed by psychology or sociology to humans
cannot be reduced to the properties ascribed by physics to particles, this does
not yet prove that the properties ascribed by physics itself to composites
like humans cannot be reduced to the properties ascribed to the particles.
Secondly, in physics, properties like the pressure, temperature and entropy
of a gas are generally taken as reducible to the properties of the particles of
the gas. So, even though we might imagine that these properties are holistic,
in actual physics this is not the case.

One of the peculiarities of quantum mechanics is now that it is highly
holistic. And this holism is present within quantum mechanics itself and
is thus not something which arises because quantum mechanics and some
other physical theory cannot be reduced to one another (analogously to that
thermodynamical properties would be holistic in the counterfactual case
that thermodynamics could not be reduced to statistical mechanics). That is,
holism arises because the quantum mechanical properties of the composites
cannot be reduced to the quantum mechanical properties of the subsystems
of those composites. Hence, although reductionism has triumphed in classical
physics, holism is strongly present in quantum physics.

Before proving this quantum mechanical holism, I lay down more explicitly
what I mean by reducible and holistic properties of composites. Consider
two particles a and P which both have two energy levels: El and E\ > ^i>

R R R

and E[ and E^ > ^1 > respectively. Then the property of the composite a/?
that these two particles have together the energy Ef + E\ is clearly reducible
to a pair of properties of a and /?. Namely, a/? possesses the property that
the joint energy is Ef + £f if and only if it is simultaneously the case
that a possesses the property that its energy is Ef and that /? possesses the
property that its energy is E[. The property of a/? that the joint energy is
strictly larger than E\ + E± is in its turn reducible to a number of pairs of
properties of a and /?: the composite a/? possesses this second property if
and only if it is the case that a has energy Ef and /? has energy ££, or a

o

has energy £ | a nd fi has energy £f, or a has energy E\ and ($ has energy
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E% • More generally, a property Q^ of a composite a/? is reducible to the
pairs of properties {(Qj9Qj)}j in the case that a/? possesses Q^ if and only
if a and /? possesses simultaneously Qa and Q^, respectively, for some pair
(Q",Qfi) €{«}", QPj)}j- In contrast, all the properties Q^ for which there do
not exist such pairs {(Qj,Qj)}j to which it can be reduced are irreducible
holistic properties of a/?. Let's now generalise this to composites containing
more than two systems. One then arrives at the following definitions.

Reducible and holistic properties

A proper ty Q™ of co = a/? • • • is reducible to the propert ies {(Qp Q?9...)}_/ of a, /?,
etc., if and only if

[ < T ] = 1 o 3 ( Q * , Q p , . . . ) e { ( Q « , Q f > , . . . ) } ] - . [Q«] = [QP] = - = l . (13.1)

A property Q™ of co = ot/3 • • • is holistic if and only if it is not reducible to the
properties of any set of the subsystems of oo.

Let's consider whether quantum mechanics is holistic in the sense of these
definitions. A first remark is that quantum mechanics in its standard formu-
lation can be neither reductionistic nor holistic: the standard formulation
does not speak about properties, so one cannot apply the above definitions.
Hence, it is only meaningful in the context of an interpretation to consider
the question of whether quantum mechanics is holistic. It is now possible
to argue that any interpretation of quantum mechanics which reproduces
the predictions of the standard formulation with regard to measurement
outcomes is necessarily holistic. The argument goes as follows.

If a property QaP of the composite a/J is reducible to the properties of
a and /?, then there should exist at least one pair (Qa,Q^) of properties
for which it holds that if a and /? possess Qa and Q&9 respectively, then a/J
possesses Q*K Or, in terms of measurement outcomes, if Q^ is reducible,
then there should exist at least one pair (Qa,Q^) such that if two ideal
measurements performed on a and on /?, respectively, reveal with probability
1 that Qa and QP are possessed, then a subsequent measurement on a/?
yields with probability 1 that a/J possesses Q*K This latter consequence is
now violated by the predictions of the standard formulation of quantum
mechancs and is therefore violated by any interpretation which reproduces
these predictions.

Assume that a and (I are each defined on two-dimensional Hilbert
spaces, ^ a and Jf^, with the orthonormal bases {\e\), \efj} and {|/f), \f2)},
respectively. Consider a property of aj8 represented by the projection
Q*P = (¥«/*)(¥«/*|, where |¥°0) is a non-trivially entangled vector
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|4>a/?) = Y^2j=i cj \e<j) ® \fj )• If this property is reducible, there exist properties
(6a

?2^) such that if two ideal measurements on a and on /?, respectively,
reveal with probability 1 that these properties are possessed, then a subse-
quent measurement on a/? reveals with probability 1 that QaP is possessed as
well. However, such properties (Qa,<2^) do not exist:
Because a and /? are defined on two-dimensional Hilbert spaces, Qa and Q?
are zero-, one- or two-dimensional projections. The possibility that g a or Q?
is a zero-dimensional projection falls away; it makes no sense to reduce a
property of a composite to a property of a part for which it holds that a
measurement always reveals with probability 1 that it is not possessed. So,
Qa and Q^ are either one- or two-dimensional. Consider, firstly, the case that
they are both one-dimensional, say Qa = |aa)(aa| and Q? = \bp)(bp\. If the
state of aj8 is given by W"p = \aa){aa\ ® \bp)(bp\9 then the measurements on
a and /J to check whether Qa and Q^, respectively, are possessed yield with
probability 1 positive outcomes. But a subsequent measurement of Q^ yields
a positive outcome with a probability K^^KI^)®!^))! 2 , and this probability
is strictly smaller than 1 because |*Fa0) is non-trivially entangled. So, Q^
cannot be reduced to properties (Qa,Qp) represented by one-dimensional
projections.

Consider, secondly, the case that Qa is one-dimensional (Qa = |aa)(aa|)
and that Q? is two-dimensional (Q& = P). If the initial state of a/J is again
|aa)(aa| <x) \bP){bP\, the measurements on a and /? again yield that Qa and Q^
are possessed with probability 1. However, the subsequent measurement of
Q*P still yields a positive outcome with a probability |(*Fa0|(|aa) ® \b^))\2 < 1.
The same conclusion holds if Qa is two-dimensional and Q? one-dimensional
and if g a and Q? are both two-dimensional. So, Q^ is not reducible to
properties (Qa,Qp) of a and p.140

Hence, in any interpretation of quantum mechanics that reproduces the
predictions of the standard formulation, one must take the property Q^ =

140 The probability | ( ^ | ( | a a ) ® | ^ ) ) | 2 is calculated by the following measurements. In the case of a
one-dimensional projection Qx = \qx){qx\, where \qx) can be \aa), \b&) or \xHa^), the measurement
interaction is

\qX) (8) |Dg) <g> |Rg> ^ \qX) ® |D?) ® |RJ>,

I5X) ® |Dg> (8) |Rg> ^ |$x) (8) |DJ> ® |RJ>, for all |$x) with (^x|$x> = 0.

In the case of a two-dimensional projection Qx = lx, where X can be a or /?, the measurement
interaction is

\qX) (8) |Dg> (8) |Rg) ^ ^ \qX) ® |D?> (8) |RJ>, for all | ^ x ) .

All these measurements are ideal in the sense that they establish strict correlations between the
eigenstates {|gx}} of Qx and the outcome |RJ) , and in the sense that they do not perturb these
eigenstates {\qx)j to states {\qx)} different to {\qx)}.
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| with PF°0) = E j = i ^ l ^ ) ® l/f), as a holistic property. Or,
more generally, in any such interpretation the properties of a composite
co represented by projections Q0" = |xFft))(lFa;| with 1^) a non-trivially
entangled vector are holistic properties of co. That such properties exist in
quantum mechanics is proved by a composite of two spin ^-particles a and
T. The spin of the composite ax in the v direction is represented by the
operator Sf = Sg ® F + F ® S5, where S5 = (h/2) |ti£)(w*| - (fi/2) |d£)(d?|
and S5 = (fi/2)|wl)(wl| - (ft/2) |dl)(dl|. And the squared total spin of ax
is given by S?x • S*T = [S|T]2 + [S*T]2 + [Sf]2. The property '[S5T] = 0
and [Si71 • S5T] = 0' now has a clear physical meaning and is represented
by a holistic property QGT = |¥^)(Y<H because I1!"71} is the singlet state

Quantum mechanical properties of composites are, of course, not all
holistic. Return, for a moment, to the example of the two particles a and (!
with the two energy levels E\ and £f > Ef, and E[ and E{> E[. Let the
projection Q°j represent the property that a has energy EJ (the Hamiltonian

of a is then Ha = EfQl + E% Q%) and let gf represent the property that /?

has energy £^. It is then standard in quantum mechanics to assume that the

property of the composite a/J that a and ft have together the energy E* + E%

is represented by the projection Q* (8) Qjj ,141 Consider now the property that

a and /? have together the energy Ef + E±. This property is by the above

assumption represented by the projection Q\ ® Qp
v And since this property

n

is reducible to the properties that a has energy E\ and that ft has energy £ [ ,
it follows that the property Q\ ® Q\ of a/? is reducible to the pair {Q[9Q{)
of properties of a and /?. More generally, the above assumption implies that

R R
Q* ® Qp

k is reducible to (Q°j9 Qy. It should thus be the case that a/? possesses
n n

Q°j ® Q^ if and only if a possesses Q* and /? possesses Q^.
Consider, secondly, the property of a/J that the joint energy of a and fi

is strictly larger than Ef + E±. This property is, as I said above, reducible
to a number of pairs of properties of a and /?. Namely, a/? possesses this
property if and only if a possesses Q\ and /J possesses g^, or a possesses
Q2 and j8 possesses Qf, or a possesses g^ a n d i& possesses Qp

2. Because,
by the above assumption, a/? possesses Q0- (8) Q^ if and only if a possesses
Qy and /? possesses Q^, it follows that this second property is possessed by
a/?, if and only if a/? possesses Q\ ® Q^ or Q^ ® Q[ or Q^ (8) QP

2. Using the
Weakening condition, one can thus conclude that a/J possesses the property

141 Assume, here, that the sums {EJ + E[}jJc are not degenerate, that is, Ef + E$ j= E% + E%.
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n

that the joint energy of a and /? is strictly larger than Ef + E\ if and only
R R R

if a/J possesses the property Q\ ® Qp
2 + Q\ ® Q{ + Q\ ® g^- Hence, one may

conclude that the property represented by g? ® Q{ + Q\ ® gf + Q\ ® g^
should be reducible to the pairs of properties {(gf, g^>, (Q2[, gf), (g2f, g^)}.

Moveover, if one generalises this to arbitrary composites co = a/J • • •, one
may take any property gw = ]>̂  • Q* ® g^ ® • • •, represented by a projection
which is a sum of products of projections defined on Jfa, Jf^, etc., as a
property that is reducible to the strings of properties {{Qp g^,...)}7-.142

One can now raise two questions about an interpretation of quantum
mechanics with regard to the reducible and the holistic properties. The first
is whether the property ascription of an interpretation respects the relations
between the reducible properties and the properties to which they are re-
ducible. That is, does it hold that co possesses a reducible property Qw if
and only if a, /?, etc., possess the properties (ga,g^,...) e {(g^,g^,...)}7.
Let's call an interpretation which respects this relation a reductionistic in-
terpretation. The second question is whether the property ascription of an
interpretation can ascribe the holistic properties to composite systems and
let's call an interpretation which can a holistic interpretation. Ideally an
interpretation is both reductionistic and holistic. In the next section I show
that modal interpretations do not meet this ideal.

13.2 The violations of holism and of reductionism

The bi and spectral modal interpretations are without restriction holistic
because they can ascribe any holistic (or reducible) property Qw to any
composite co: if co has the state W™ = gw/dim(gco) and, in the case of the
bi modal interpretation, if co is also a part of a larger composite in a pure
state, then co possesses gw with probability 1.

The bi and spectral modal interpretations are, however, not reductionistic.
Consider the composite a/? and assume that a and /} are both defined on
the two-dimensional Hilbert spaces Jfa and Jf7^ with the orthonormal bases
{l^),!^)} and {|/f),|/2)}> respectively. Take then the reducible property
Q*P = \el)(e\\ ® |/f)(/fI and assume that ajS has the state vector |^a^) =
2 lei) ® I/?) + \ lei) ® I/2 )• The bi a nd spectral modal interpretations then

142 Note that these properties satisfy the necessary condition for reducibility: if a series of ideal meas-
urements on a, p, etc., yields that they possess the properties (g a ,£^ , . . . ) e {(QpQp...)}j, then a

subsequent measurement of Qm = YljQ) ®Qj ® " ' ' n a s w ^ t n probability 1 a positive outcome.
Note also that I have not given a clear demarcation between holistic and reducible properties; I have
only argued that such a demarcation should yield that Qm = |XFG))(^/(U|, with 1^ ) a non-trivially
entangled vector, is a holistic property and that Q™ = JV Q0- <g) Qj ® • • • is a reducible property.
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3
4yield that with probability i the systems a and /J possess simultaneously
R R

the properties | ^ ) ( ^ | and \f[){f[\, respectively. If these two interpretations
are reductionistic, then they should yield that a/? possesses the property Q^
with a probability equal to or larger than | . However, if one applies these
interpretations to a/?, one obtains (assuming in the case of the bi modal
interpretation that a/? is a part of a larger composite with a pure state) that
its core property is \*¥"P)(*¥*P\ with probability 1. And since Q0^ |*Fa/J) is
equal to neither |^a^) nor 0, it follows that the full property ascription (5.12)
to <x/3 leaves Q^ indefinite with probability 1. Hence, the bi and spectral
modal interpretations are not reductionistic.

For the atomic modal interpretation the situation is more or less the other
way round: its property ascription is not holistic but is to a large extent
reductionistic. To see that it is not holistic, take a composite of two atoms a
and P and consider a property of a/J represented by the projection |*F°^)(*Fa^|,
where \*¥"P) is a non-trivial entangled vector 1 ^ ) = Y,jcj \e°j) ® \fj )• I f t h e

atomic modal interpretation can ascribe this property to a/J, there must exist,
according to the full property ascription (5.12), a core property C0^ such that
l^a/f)(¥«/*| c«P = C^. Since \¥"P)(¥*P\ is a one-dimensional projection, this
can only be the case if C*p = |*Fa^)(*Fa^|. However, in the atomic modal
interpretation the core property of a/? is always a product P% ® PJj, so C0^
can never be equal to |xFa^)(^/a^| and it follows that the holistic property
|tp«0)(¥*/*! c a n n o t b e ascribed to ajff.

The atomic modal interpretation is partly reductionistic in the sense that it

reproduces the relations between a reducible property Q™ = X]/ 6 /®2/®* '

of a composite co and the properties {{Q*,Ofj9.-.)}j of the subsystems a, /?,
etc., only if the sets {Q°j}j, {Qj}j> etc-? a r e aU s e t s of pair-wise orthogonal
projections.

Consider, for instance, the property Qa ® Q^ of the composite a/J. Let
the atoms that make up a be <7i,...<7m, and let the atoms that make up
P be <7m+i,...<Tn (because a and /? are disjoint they do not share atoms).
Consider any simultaneous core property ascription to the atoms o\,...on,
for instance, [P^] = 1,... [Pa

d
m] = 1, and [P/m+1] = 1,... [P*»] = 1. Then the

core property ascriptions to a, /? and a/J are according to the joint probability
(6.35) simultaneously given by

[Pe
P..h] = [Pem+l ® * * * ® P?] = 1, \ (13.2)
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Assume that [Qa ® Q?] = 1. It then follows that

Because P^.de...h is equal to P«..d ® Pp..h, it follows that

QPplh = plh. (13.4)

And given the simultaneous core property ascription (13.2), one can conclude
that [Qa] = 1 and [Q^] = 1. In a similar way one can prove that [Qa] = 1
and [QP] = 1 implies that [Qa ® Qp] = 1.

In the MATHEMATICS it is proved that the atomic modal interpretation is also
reductionistic with regard to the reducible properties QM = X]/ 2 / ® 2 / ® ' ' '

if the sets {Q°j}j, {Qj}j-> etc-> a r e a ^ s e t s of pair-wise orthogonal projections.
However, the atomic modal interpretation ceases to be reductionistic for

more general reducible properties. Return for a second time to the ex-
ample of the two particles a and /? with the two energy levels E\ and

n n n

E2 > E*9 and E\ and E2 > E\, and let these particles be atoms. The pro-

perty that a/J has an energy strictly larger than El + E[ is represented by

Q^ = Ql® Qp
2 + Ql® Q{ + Ql® Qi and should be reducible to the pairs

of properties {(Q"l9Q
p
2), (Q%,Q{), (QIQP

2)}- The projections Q\ and Q\ are
R R

orthogonal and Q\ and Qp
2 are orthogonal (they are the pair-wise orthog-

onal eigenprojections of the Hamiltonians of a and /?, respectively). Hence
QaP is reducible to three pairs {(QpQPj)}3

j==1 for which it holds that the
projections {Q°-}3j=1 and {2;}y=i a r e not pair-wise orthogonal. Let the state
of a/3 now be given by l1?^) = \E%) ® \\pP), where \xpP) = a \E{) + c2 \E^)
and where Q\ |£«> = |£ | ) , Q{ \E{) = \E{) and Q{ \EP

2) = \EP
2). The atomic

core property ascription to a/? then yields that [|xFa^)(vFa^|] = 1 with prob-
ability 1. Since Q«0 |*p«/*)(¥«/* | = I ^ X ^ I , this yields that ajS possesses
Qa^ with probability 1. The core property ascription to ft yields, however,
that [|y/)(t/^|] = 1 with probability 1. And since it is generally not the case
that 0 i \xpp)(xpP\ = \ipp){*pp\ or that Qp

2 \ip
p){ipp\ = | t / ) ( t / | , it follows that

R R

fi possesses neither Q\ nor Q^. Hence, the atomic modal interpretation does

not (always) confirm that if [Qap] = 1 with QaP = Q\®QP
2+Ql®Q{+Ql®Qp

2,

there exists a pair {Q\QP) e {{<%,(£), (Qa
2,Qi), (QIQ2)} w i t h tGa] = 1 and

[Qp] = l.

In the next sections I discuss the consequences of the violations of reduc-
tionism and holism. In the case of the bi and spectral modal interpretations
I do so not by focusing directly on reductionism, but by focusing on the
conditions of Property Composition and Property Decomposition. Property
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Property Composition and Property Decomposition

An interpretation satisfies Property Composition if [Qa] = x implies
[Qa ® F°/a] = x (with x either 1 or 0) for any system a and any composite
co which contains a.
An interpretation satisfies Property Decomposition if [Qa ® Y0/*] = x
implies [Qa] = x (with x either 1 or 0) for any system a and any composite
co which contains a.

Composition says that if a system a possesses a property Qa, then any sys-
tem co containing a as a subsystem, simultaneously possesses the property
represented by Qa ® F°/a. And if a does not possess <2a, then such a system
co simultaneously does not possess Qa ® p / a . This condition follows from
two assumptions. The first is that (A) a property of a is also a property of
a composite co that contains a, and the property of a represented by the
projection <2a is, as a property of co, represented by the projection Qa ® F°/a.
The second assumption is that (B) the property ascription to a is re-endorsed
by the property ascription to co. The condition of Property Decomposition
says the converse, namely that if the composite co possesses Qa ® F°/a, then
a simultaneously possesses Qa. And if co does not possess Qa ® p / a , then a
simultaneously does not possess Qa. This second condition follows from the
assumption (A) and the converse of (B).

It can now be proved that a modal interpretation satisfies the conditions
of Property Composition and Decomposition if and only if it is reduction-
istic with regard to the reducible properties Qw = Qa ® Q? ® • • • (see the
MATHEMATICS). Hence, the bi and spectral modal interpretations violate Pro-
perty Composition and Decomposition and the atomic modal interpretation
satisfies these two conditions.

A last remark is that it may seem simple to the reader to define a
modal interpretation which is both holistic and reductionistic. On the one
hand, just ascribe to systems all the properties the bi or spectral modal
interpretation ascribes such that one obtains a holistic interpretation, and
then, on the other hand, add enough extra properties that it also becomes
reductionistic.143 Unfortunately, Bacciagaluppi (1995) and Clifton (1996)

143 Healey's (1989) modal interpretation comes close to this outlined interpretation. Healey's property
ascription satisfies by construction what he calls the Composition, the System Representative and the
Subspace Decomposition conditions. By the Composition condition his interpretation always satisfies
what I call Property Composition. And by the System Representative and Subspace Decomposition
conditions it often ascribes the properties the bi modal interpretation ascribes (see Healey (1989,
Sect. 2.2)). However, because the System Representative condition contains a proviso, it can happen
that Healey's interpretation ascribes less holistic properties than the bi modal interpretation.
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have proved that such a super modal interpretation yields an improper
property ascription. Briefly summarised, Bacciagaluppi took a composite co
defined on a nine-dimensional Hilbert space and considered a number of
factorisations co = a,-/?*, i = 1,2,..., of co in subsystems {a,-},- and {/?*}; defined
on three-dimensional Hilbert spaces. Then he considered the core properties
{Pf}ij and {Pfr}i,k ascribed to these subsystems by means of the bi modal
interpretation. Next he ascribed these properties via Property Composition
to co (such that the property ascription is reducible with regard to the
properties {Pjl ® P^}ij,k of co). Finally Bacciagaluppi proved that all the
properties ascribed to co include the set of properties for which Kochen and
Specker (1967) have shown that it does not allow a homomorphism to the
set of values {0,1}. Hence, the envisaged super modal interpretation ascribes
a set of properties to co which does not allow a proper value assignment.

One can block Bacciagaluppi's no-go result by denying that a composite
co can be freely factorised into pairs of subsystems. For instance, if one takes
an atomistic view, it makes sense only to factorise co into its atoms. Clifton
(1996) has proved, however, that even then the super modal interpretation
does not yield a proper property ascription. Clifton considered a composite
co defined on a 64-dimensional Hilbert space which is factorisable into only
two subsystems a and (I defined on eight-dimensional Hilbert spaces. By
ascribing properties with the bi modal interpretation to a, /? and co and
by employing Property Composition, he derived that co possesses a set of
properties similar to a set for which Kernaghan (1994) proved that it does
not allow a homomorphism to {0,1}.144

So, to conclude, there does not exist a super modal interpretation which
integrates the holistic and reductionistic features of the bi, spectral and
atomic modal interpretations. Instead one has to choose and settle for either
a holistic or a reductionistic interpretation. In the next sections I discuss the
consequences of this choice.

MATHEMATICS

To prove that the atomic modal interpretation is reductionistic with regard
to the reducible properties g w = J2jQ°j ® 8y ® ' *' if the sets {Qfij, {2;}; ,
etc., are all sets of pair-wise orthogonal projections, I need:

Theorem 13.1
Let {a,/J,y,...} be N mutually disjoint systems and let {Qfij, {0,]}j> {Q)}j>

144 See Bacciagaluppi and Vermaas (1999) and Bacciagaluppi (2000) for a more extensive discussion of
the no-go results by Bacciagaluppi and by Clifton.
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etc., be sets of pair-wise orthogonal projections. Then one has that

j

if and only if

l Q P , . . . ) } j : Q«kQ* = Qa, Q & = QK e t c . (13.6)

Proof: The 'if part is trivial, so consider the 'only if part. Take, firstly, the
case that N = 2, so assume that

? e a ® QP- (13.7)
7

Multiply this relation from the left-hand side with Y ® Qk. Because the

projections {QAj are pair-wise orthogonal, one obtains

QZQ" ® OlQp = Qa® Q£QP, (13.8)

from which it follows that (Q£Qa - ga) ® Qf 6^ = 0 and that

Qa
kQ« = Q« or e f ^ = O . (13.9)

And if one multiplies (13.7) from the left-hand side with Qk ® 1 ,̂ one obtains
similarly

Q«kQ
a = 0 or QP

kQ
p = Qp. (13.10)

One can show by these results that the pair (Q%9Qy satisfies

[Q«Q« = Qa and ef ^ = QP] or [g^Qa = 0 and Q£QP = 0]. (13.11)

Assume, firstly, that g£Qa = Qa. By (13.10) it then follows that QP
kQ

p = QP.

Assume, secondly, that QIQ* = 0. By (13.9) it then follows that gf Qp = 0.
Assume, finally, that 0 ^ Qa

kQ
a ± Qa. By (13.9) it then follows that Q{& = 0,

and by (13.10) it follows that Q{QP = Q?. This is contradictory, so QIQ* is
equal to either 0 or Qa.

Return to relation (13.7) and assume that there does not exist a single pair

(QlQk) G {(QpQPj)}jfor w h i c h it h o l d s t h a t QtQ* = Q" a n d Q& = Qp-
This implies that the left-hand side of (13.7) is equal to 0, which contradicts
(13.7). Assume, secondly, that there is exactly one pair (Q%,Qy for which it
holds that Q^Q* = Qa and gf Q$ = QP. This is consistent with (13.7). And
assume, finally, that there exist two or more pairs (Q%9Qy with QkQ

a = Qa

and QP
kQP = QP. The left-hand side of (13.7) is then equal to 2Qa ® QP,
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which again contradicts (13.7). Hence, given relation (13.7), one has that

3!<g£,gf> € {(QpQ<j)}j : QkQ* = Q" and gfg^ = Q?. (13.12)

Take, secondly, the case with N > 2. The projections {g^ ® ĝ - <g> • • • }7 in
(13.5) are pair-wise orthogonal, so using that (13.7) implies (13.12), one can
conclude that (13.5) implies

* = 2 a and (gf ® g£ <g> • •
(13.13)

The relation (gf ® g£ ® • • • )(g^ ® g^ ® • • •) = Q$ ® gy ® • • • implies in its
turn that gf g^ = g^, g^g^ = Q\ etc., and so one obtains (13.6). •

Let's now apply the atomic modal interpretation to the property gw =
Ylj Q°j ® Qj ® " ' > where the sets {gy}y, {g^}j9 etc., are all sets of pair-wise
orthogonal projections. Let co consist of the atoms {(TPq}Ptq9 let a consist of
the atoms {<Tiq}q and let /? consist of the atoms {o2q}q, etc. Consider any
simultaneous core property ascription to the atoms {(Tpq}p,q. For instance,
[Papq] = 1 for all p,q. Then the core property ascriptions to a, /?, . . . , and
co are, according to the joint probability (6.35), simultaneously given by,
respectively,

(13.14)\?L22a2y] = [C / ® C2? ® C 3 ® • • • ] = 1, etc.,
] _ rpa fa pP fa . . . -i i

3 " J L «11«12«13"* W a21«22«23-" W J >/

Assume that g w = 53. g" ® g^ ® • • • is assigned value 1. It then follows that

*j 9 QPj ® • • • )

Since ^ i a i r ^ 2 1 a 2 2 is equal to Pa
a
nai2... ® Pf21a22 ® • • •, one has by Theo-

rem 13.1 and (13.15) that there exists exactly one set of properties (g£ ®
gf ® • • •) € {{Q*j ® g^ ® • • •)};- for which it holds that

Ql P , W - = *W-> ef < . 2 2 - = < . 2 2 - ? etc. (13.16)

Given the simultaneous core property ascription (13.14), one can conclude

that [gg] = 1 and [gf ] = 1, etc. Hence, if Qw = Y*j Qj ® 6 ; ® ' ' * i s assigned

value 1, there exist properties (g£ ® g£ ® • • •) e {(g^ ® g^ ® • • •)}; with

[g,a] = 1 and [gf ] = 1, etc.
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Conversely, if there exists properties (Q% ® gf ® • • •) e {{Q) ® Q] ® • • • )}j

with [Q£] = 1 and [gf] = 1, etc., then one can prove by means of the
n

simultaneous core property ascription (13.14) that Qw = YljQ) ® Qj ® " '
is assigned value 1. Hence, the atomic modal interpretation is reductionistic
with regard to Q™ = Y,jQ* ® QPj ® ' ' *> if {Qfij, {QPJ)P etc., are sets of
pair-wise orthogonal projections.

Finally I prove that modal interpretations satisfy Property Composition
and Decomposition if and only if they are reductionistic with regard to the
properties Qw = Qa ® QP ® • • •.

Proof: Take a modal interpretation that satisfies Property Composition
and Decomposition and consider a property Q^ = Qa ®Q^ (I consider only
properties with two factors; the proof can easily be generalised to properties
with three or more factors). If a/J possesses QaP, it also possesses Qa ® 1̂
and F ® Q^ since for modal interpretations the full property ascription
satisfies the Weakening condition (see page 72). Application of Property
Decomposition yields that a possesses Q* and /? possesses QP. Conversely,
if a possesses Qa and /? possesses QP, application of Property Composition
yields that a/J possesses Qa ® P and F (8) QP. And because the full property
ascription satisfies the Closure condition (see page 68), a/? also possesses
the conjunction Qa ® \P A F ® Q^ = Q?K Hence, if a modal interpretation
satisfies Property Composition and Decomposition, it is reductionistic with
regard to ga/? = Qa®QP.

Take, secondly, a modal interpretation which is reductionistic with regard
to Qw = Qa ® QP ® - - -. Let a possess property Qa and consider any composite
co which comprises a, say co = a p. According to modal interpretations /?
possesses the property 1^. By using reductionism, one can thus infer that a/?
possesses Qa ® IP. So, [Qa] = 1 implies [Qa ®fP] = 1. Let a now not possess
ga. Since the full property ascription satisfies the Closure condition, a does
possess the negation -«Qa = F — g a and one can conclude that a/J possesses
(F — Qa) ® fP. The full property ascription to a/? also satisfies Closure, so
a/? does not possess the negation of (F — Qa) ® fP. Hence, [Qa] = 0 implies
[Qa ® fP] = 0. A modal interpretation which is reductionistic with regard to
Qw = Qa ® QP <g> • • • thus satisfies Property Composition.

Now let a/? possess Qa ® fP. Reductionism then immediately yields that a
possesses <2a, so [Qa ® fP] = 1 implies [Qa] = 1. Let, finally, a/? not possess
Qa ® 1 .̂ By using Closure it follows that ajS possesses (F - Qa) ® 1^, by
using reductionism it follows that a possesses F — Qa and by again using
Closure, it follows that a does not possess Qa. So, [Qa ®P] = 0 implies
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[<2a] = 0. A modal interpretation which is reductionistic with regard to
Q™ = g a (g) QP <x) • • • 9 thus also satisfies Property Decomposition. D

13.3 Holism with observational reductionism

If one accepts the bi or spectral modal interpretations, one does not have
reductionism and, consequently, one does not have Property Composition
and Decomposition. The question is how one should judge this absence. In
the literature Arntzenius (1990, 1998) and Clifton (1995c, 1996) especially
took the position that this absence makes the bi and spectral modal interpre-
tations metaphysically untenable. In Vermaas (1998c) I tried to counter this
conclusion. The following discussion focuses on the violations of Property
Composition and Decomposition.

So, consider the property ascription to a system a and to a composite
a/? and let's try to make sense of the fact that the bi and spectral modal
interpretations sometimes assign different values to the projections Qa and
<2a ® 1 .̂ As I said in the previous section, Property Composition follows
from two assumptions, namely that (A) a property of a is also a property of
a composite a/?, where the property of a represented by Qa is, as a property
of a/?, represented by Qa ® 1 ,̂ and that (B) the property ascription to a
is re-endorsed by the property ascription to a/J. Property Decomposition
follows from assumption (A) and from the converse of (B), namely that (B')
the property ascription to a/? is re-endorsed by the property ascription to
a. If one clings to these assumptions, the assignment of different values to
Qa and ga ® 1̂  leads straightforwardly to a contradiction: Let the property
ascription to a yield that Q* has value 1 and let the property ascription to
a/? yield that Qa ® 1̂  has no definite value. Then a possesses the property Qa

and from (A) it follows that a/J possesses the (same) property Qa ® 1 .̂ Hence,
[Qa ® 1̂ ] = 1 which, according to (B), should be re-endorsed by the property
ascription to a/J. However, this contradicts that the property ascripiton to
a/? yields that Qa ® 1̂  has no definite value. Therefore, to save the bi and
spectral modal interpretations from being inconsistent, one should reject (A),
reject (B) and (B')> or reject all three assumptions.

If one adopts perspectivalism (see Sections 4.3 and 4.4), then it is possible
to reject assumptions (B) and (B7), for then one accepts that the ascription of
properties to systems depends on the perspective with which one considers
those systems. And since there does not exist a perspective with which one
can simultaneously ascribe properties to both a and a/? (a division of the
universe co into disjoint systems cannot yield both the systems a and a/?),
(B) and (B') relate property ascriptions defined from different perspectives.
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However, perspectivalism implies that property ascriptions defined from
different perspectives are not related to one another, so one can in a natural
way deny (B) and (B'). And if one does so, the fact that Qa and Qa ® 1̂
are sometimes assigned different values only reflects that if one compares
the properties ascribed from different perspectives, one gets different results.
Let the property ascription to a yield that [Qa] = 1 and let the property
ascription to a/J yield that Qa ® 1̂  has no definite value. Then from the
perspective 'co divided by a, /?, y, ..., ' from which the property ascription to
a is defined, one can say that a possesses Q* and, by assumption (A), that
a/J possesses Qa ® 1^. And from the perspective 'co divided by a j 8 j , . . . ' one
can say that the property Qa ® 1̂  is indefinite for a/J and, by (A), that Qa

is indefinite for a. But these different property ascriptions do not lead to
a contradiction; they only confirm that the property ascription depends on
perspectives.145

If one does not adopt perspectivalism, it is much harder to deny (B)
and (B') because then one has to deal with two different sources to ascribe
properties to, say, a/?. The first is the property ascription of the bi and
spectral modal interpretations directly applied to a/? and the second is the
property ascription applied to a and via assumption (A) mapped to a/J. One
might now take the position that these two sources are independent sources
of information about the properties of a/? which need not re-endorse one
another. However, a consequence of this position is that a/? possesses both the
properties ascribed directly to a/?, and the properties obtained by applying
assumption (A) to the properties ascribed to a. This integrated property
ascription leads, however, to the super modal interpretation discussed in
the previous section and Bacciagaluppi and Clifton proved that that modal
interpretation does not allow a proper property ascription.

So, if one does not adopt perspectivalism, one has to deny assumption (A),
that is, one has to deny that the projections Qa and Qa ® 1̂  represent the
same property. However, such a denial brings one into immediate conflict
with what is seen as a basic tenet of quantum mechanics, namely that the
operators Aa and A** ® 1̂  represent the same magnitude (see, for instance,
Healey (1989, pages 231-232)). The question thus becomes whether it is

145 Note that if one adopts perspectivalism, denies (B) and (B') but accepts (A), then not only the
correlations between properties but also the properties of systems themselves are perspective-depend-
ent. For in this case, as shown above, one ascribes from the perspective 'co divided by a, p, y,...' other
properties to, say, a than from the perspective 'co divided by a/?, y, . . . ' (from the first perspective
a possesses Qa whereas from the second perspective Qa is indefinite). If one wants to avoid such
perspective-dependence of the properties themselves, one should not only deny (B) and (B') but also
(A). In that case a can only be ascribed properties from the perspectives that divide co into a and
other systems disjoint from a. From all these perspectives a has the same set of possible possessed
properties (see also the discussion in Section 14.2).
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possible to reject this tenet. There are various arguments in support of the
tenet which roughly say that one cannot distinguish the magnitudes repre-
sented by A* and by Aa ® 1̂  by means of measurements.146 Firstly, quantum
mechanics in the standard formulation predicts that the possible outcomes
of measurements of A* and Aa ® 1̂  correspond to the same values (Aa and
A* ® 1̂  have the same eigenvalues {aj}j). Secondly, for every state of the
universe co it holds that the Born probability PBom(aa) of finding an outcome
corresponding to the eigenvalue aa after an Aa measurement is equal to the
Born probability PBorn(^) of finding an outcome corresponding to that same
eigenvalue after an Aa ® 1̂  measurement (if P% is the eigenprojection of Aa

corresponding to aa, then P% ® 1̂  is the eigenprojection of A* ® 1̂  corre-
sponding to aa\ the respective Born probabilities are thus Tra(Trco/a(Ww)Pa

a)
and Tra/?(Tra)/a/?(^0)) [Pfl

a ® P]), which are obviously equal). And, thirdly, it
is assumed that any model of a measurement of Aa also counts as a model
of a measurement of A* ® 1̂  and vice versa.

Now, I think that it is possible to question the assumption that any model
of an Aa ® 1̂  measurement is also a model of an A* measurement (see the
MATHEMATICS). But the above points certainly make a strong case that at
the level of observation (that is, at the level of measurement outcomes) one
cannot notice a difference between the magnitudes represented by Aa and
by A* ® 1 .̂ In addition, the spectral modal interpretation147 confirms this
observational indistinguishability of Aa and A* ® 1 .̂ Consider for simplicity
the magnitudes represented by the projections Qa and Qa ® 1̂  and measure
them by means of perfect Von Neumann measurements in an arbitrary order.
Assuming that the state of /? does not evolve during the Qa measurement, one
can prove the following proposition within the spectral modal interpretation.

Proposition 13.1
If a Q* measurement has a positive or a negative outcome, then a subsequent
Qa ® 1̂  measurement has with probability 1 also a positive or a negative out-
come.

If a Qa ® 1̂  measurement has a positive or a negative outcome, then a sub-
sequent Qa measurement has with probability 1 also a positive or a negative
outcome.

If one accepts the assumption that a measurement of Aa is automatically

146 This discussion is not intended to do justice to all the arguments in favour of the tenet; I am only
exploring whether it is possible to distinguish the magnitudes represented by Aa and by A* <g> 1 .̂

147 It is unclear whether what follows also holds for the bi modal interpretation; the truth of Proposi-
tion 13.1 cannot be established within the bi modal interpretation because this interpretation does
not, in general, correlate the outcomes of two different measurements.
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a measurement of A* ® 1̂  and vice versa, then this proposition is trivial
since Von Neumann measurements, when repeated, yield with probability 1
the same result. However, if one rejects this assumption, Proposition 13.1
becomes less trivial but still holds.148

However, this observational indistinguishability of the magnitudes repre-
sented by Aa and by Aa ® 1̂  does not necessarily force one also to take
these magnitudes from a theoretical point of view as indistinguishable. In
fact quantum mechanics makes a clear distinction between these two mag-
nitudes. The operator Aa is defined on the Hilbert space Jfa associated with
the system a so the magnitude represented by Aa is according to quantum
mechanics, a magnitude pertaining to a. And Aa ® 1̂  is defined on the
Hilbert space Jf70^ associated with a/? and thus represents a magnitude of
a/J. The operators A* and Aa ® 1̂  thus represent magnitudes pertaining to
different systems so that they cannot, strictly speaking, represent the same
magnitude. Hence, it follows that the tenet that Aa and Aa ® 1̂  represent the
same magnitude can be viewed as an addition to quantum mechanics, which
can be accepted but which can also be denied as, for instance, Van Fraassen
(1991, Sect. 9.4) does.

Let's return to assumption (A). AS I have argued, one can deny that Aa

and Aa ® 1̂  represent the same magnitude so that one can deny also that
<2a and Qa ® 1̂  represent the same property. On the other hand, if one
indeed takes such a position, one should acknowledge that at the level of
observation one still cannot distinguish the properties Qa and Qa ® P. It is,
for instance, quite impossible to assume that Qa represents the energy of a
and that Qa ® 1̂  represents the position of a/?. Instead one should demand
that the properties Qa and Qa ® 1̂  are both different from a theoretical point
of view and indistinguishable from an observational point of view.

Arntzenius (1990, page 245), when discussing the violation of Property
Composition in the bi modal interpretation, put forward a description of the
properties represented by Qa and Qa®I^. He considered the left-hand side of
a table (system a) and the table as whole (system a/?) and he let Q* represent
148 In Vermaas (1998c, App. A) one can find an explicit proof of Proposition 13.1. The Von Neumann

measurements of g a and Q* <g) P are given by the respective interactions:

\q%) 9 |Dg> 9 K) i— \q%) 9 \T>%)

Here, the vectors {1^)} ;^ are given by the spectral resolution g a = Y^j=\ Yjk tf ItfjfcK̂ Jfcl* where

q\ = 1 and q\ = 0. And the vectors {\q^)}i,m are given by the spectral resolution Qa ® 1̂  =

E?.i E m qf I92j>«,tl.where 9f = ! a n d 9f ' - °-
More briefly one can note that since Proposition 13.1 is definitely true in the standard formulation,

this proposition is by the results of Chapter 11 also true in the spectral modal interpretation.
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the property 'greenness' of the object 'the left-hand side of the table' and
Qa <g>1& represent the property 'greenness of the left-hand side' of the object
'table'. This description of the properties Qa and Qa ® 1̂  meets the demands
of being different and of being observationally indistinguishable: From a
logical point of view Qa represents the proposition 'The left-hand side of the
table is green' and Qa ® P represents the proposition 'The table is green at
the left-hand side.' And these propositions can be analysed as predicating
two different predicates, 'green' and 'green at the left-hand side,' respectively,
to two different individuals, 'the left-hand side of the table' and the 'the
table as a whole,' respectively. Hence, logically speaking (the propositions
represented by) Q* and Qa ® 1̂  can be taken as different. On the other hand,
in daily life one normally does not distinguish between these propositions.

If one indeed accepts that Qa and Qa ® 1̂  represent different properties,
then the fact that these projections are sometimes assigned different values
reflects (trivially) that they indeed do represent different properties.

To sum up, one can save the bi and spectral modal interpretations from
being inconsistent by either adopting perspectivalism and rejecting that the
property ascriptions to a and a/? re-endorse one another, or rejecting that the
properties Qa and Qa ® I@ represent the same property. This, however, still
leaves us with the fact that the bi and spectral modal interpretations violate
Property Composition and Decomposition. Both Arntzenius and Clifton
argued that these violations themselves challenge the tenability of these two
interpretations.

Arntzenius (1990, page 245) discussed the violation of Property Compo-
sition and judged this violation to be bizarre since it assigns different truth
values to propositions like 'the left-hand side of a table is green' and 'the
table has a green left-hand side' which are normally not distinguished. I
agree with Arntzenius: the property ascription by the bi and spectral modal
interpretations is certainly at odds with our every-day notions about pro-
perties. However, it is still open to debate whether such bizarreness makes
these two interpretations untenable.

In Section 12.1 I have argued that an interpretation should meet the crite-
ria of Consistency and Internal Completeness in order to be metaphysically
tenable, and that an interpretation should meet the criterion of Empirical
Adequacy with regard to the phenomena in order to be empirically adequate.
As discussed, the violations of Property Composition and Decomposition
need not reveal an inconsistency. Furthermore, the bi and spectral modal
interpretations never claimed to deliver Property Composition and Decom-
position, so the violations also do not reveal an internal incompleteness.
That leaves us with the criterion of Empirical Adequacy.
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I believe it is indeed possible to take Property Composition and Decom-
position as instances of the criterion of Empirical Adequacy because we
usually observe that composites and their parts simultaneously possess ga

and Qa ® I'*. But because Proposition 13.1 holds for at least the spectral
modal interpretation, Property Composition and Decomposition are not
violated at the level of observation (taken in the limited sense of the ob-
servation of outcomes of measurements). Hence, one can conclude that the
spectral modal interpretation observationally satisfies Property Composition
and Decomposition and that it is consequently observationally reductionistic
(with regard to the reducible properties Q™ = Q* ® Q& ® • • •).

Hence, given my liberal conception of tenable interpretations of quantum
mechanics, the violations of Property Composition and Decomposition do
not prove that the spectral modal interpretation is metaphysically untenable
nor that it is empirically inadequate (whether this also holds for the bi
modal interpretation is difficult to say since this interpretation is silent
about Proposition 13.1). Still I agree with Arntzenius when he judges that
these violations are bizarre. But if indeed these violations never manifest
themselves at the level of observation, this bizarreness is restricted only
to the description of non-observable or noumenal states of affairs. And
I can live with the conclusion that the description of noumenal states of
affairs is on occasions bizarre in the sense of abnormal when compared with
the description of phenomenal states of affairs. By definition we have never
observed a noumenal state of affairs, so I do not see it as a problem to accept
that the description of such a state of affairs deviates from the description
of the phenomenal states of affairs which we can observe.

Clifton (1996, Sect. 2.3), however, developed a telling example in which it
seems that the violations of Property Composition and Decomposition do
have implications which exceed the realm of the noumenal states of affairs.
The example is a plane with a possibly warped left-hand wing: a is the
left-hand wing and a/? is the plane as a whole (a Boeing 747). The projection
<2a represents the wing property of being warped and Qa ® 1̂  represents the
plane property of the left-hand wing being warped. The implication of a
violation of Property Composition ([ga] = 1 and [Qa ®P] =fc 1) is according
to Clifton now that 'a pilot could still be confident flying in the 747 despite
the fault in its left-hand wing' If, on the other hand, Property Decomposition
fails ([Qa ® 1̂ ] = 1 and [Qa] ^ 1) the implication is 'certainly no one would
fly in the 747; but, then again, a mechanic would be hard-pressed to locate
any flaw in its left-hand wing'149 It can, however, be argued that the bi

149 Quotations from Clifton (1996, page 385).
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and spectral modal interpretations are not necessarily committed to these
implications. The argument goes as follows.

Let's assume that either the bi or the spectral modal interpretation is the
correct interpretation of quantum mechanics and let's assume that assump-
tion (A) does not hold (if one prefers to reject (B) and (B'), the following holds
mutatis mutandis). That is, assume that A* and Aa ® 1̂  do not represent the
same magnitudes and assume that reality satisfies the description given by
one of these interpretations. Then it follows, that we, the inhabitants of this
'bi' or 'spectral' world, will have become accustomed to the fact that in our
world the conditions of Property Composition and Decomposition hold for
observed systems, but that theoretical descriptions of non-observed systems
have proved that these conditions do not hold in general. Hence, the inhabi-
tants of the 'bi' or 'spectral' world, will reasonably use Property Composition
and Decomposition not as a generally valid law about their world, but as
a rule which applies to observations only. Consequently, they will take the
questions of whether a and a/? possess A* and Aa ® 1 ,̂ respectively, as two
separate questions; only the questions about the outcomes of measurements
of Aa and A01 0 1@ will be regarded as equivalent questions. Clifton's alleged
implications of the violation of Property Composition and Decomposition
now only arise because he assumes that people still take Property Compo-
sition and Decomposition as general truths. For instance, the confidence of
Clifton's pilot that, despite the fault, the left-hand wing is fine rests on a
deduction by means of Property Decomposition: because it holds for the
plane as a whole that [Q* ® 1̂ ] ^ 1, Clifton's pilot concludes that [Qa] ^ 1
for the left-hand wing. And that is exactly what a pilot would not do if the
bi and spectral modal interpretations correctly describe reality. A pilot who
is well trained in 'bi' or 'spectral' ontology acknowledges that the properties
of the plane as a whole do not reveal information about the properties of
the wings and vice versa, and therefore will check the properties of the wings
independently of the property ascription to the plane as a whole. And even
in our world most cockpits are actually equipped with instruments which
directly reveal the properties of the parts of the plane.

Consider, secondly, the mechanic in Clifton's example. The pilot notices
that the plane as a whole possesses the property [Qa ® I'*] = 1 and concludes
(incorrectly, since the conclusion is reached on the basis of Property De-
composition) that the left-hand wing is warped, that is, that [Qa] = 1. The
mechanic is sent to fix the wing but according to Clifton cannot locate the
flaw because the wing does not possess the property ga. But if the mechanic
is a skilled 'bi' or 'spectral' mechanic, he or she knows how to handle the
pilot's report. Within at least the spectral modal interpretation it can be
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proved, given an assumption,150 that for, for instance, measurements of the
second kind, the following proposition holds

Proposition 13.2
If the property ascription to a/? yields that [Qa ® I'*] = 1, then a Qa measure-
ment yields with probability 1 a positive outcome.

(See the MATHEMATICS for a proof.) From this proposition and the information
given by the pilot, the mechanic deduces that it takes only one test (good
mechanics do perform tests) to reveal with probability 1 that the wing is
indeed warped. Hence, the mechanic is not at all hard pressed to find the
flaw but just performs a measurement.

So, if one accepts the bi or spectral modal interpretation, the implications
put forward by Clifton need not arise. The 747 example is begging the
question for it proves the truism that, given an interpretation that violates
Property Composition and Decomposition, one gets into trouble as soon as
one reasons as if Property Composition and Decomposition hold.

Arntzenius (1998, Sect. 5) agrees that the violations of Property Composi-
tion and Decomposition do not lead to problems at the level of observation.
Instead he thinks the problems are of a metaphysical nature. Elaborating on
Clifton's example Arntzenius writes: 'One should view the mechanic as having
a list of all the definite properties of the left-hand wing handed to him, e.g.
by God, while the pilot has handed to him a list of all the definite properties
of the entire plane. The pilot says to the mechanic: "Hm, the left-hand wing
is warped, that's a problem". The mechanic responds: "No, I've got all the
properties of the left-hand wing, and nowhere it is listed that it is warped".
This seems bizarre.'

It is indeed bizarre that Property Composition and Decomposition are
sometimes violated. But, as illustrated by Arntzenius' example, these vio-
lations can appear only if one considers the properties of systems from a
theoretical (or theological) point of view: if the pilot and the mechanic leave
their armchairs and go to their work, the violations of Property Composition
and Decomposition do not occur. The bizarreness related to these violations
is thus metaphysical in the sense that one is confronted with it not when
one considers the phenomena but only if one considers noumenal states of
affairs. Pilots and mechanics thus need not worry, only philosophers are con-
fronted with violations of Property Composition and Decomposition when
they are studying noumenal states of affairs as given by the spectral modal
interpretation. And, where Arntzenius takes the position that these violations
150 The assumption is that there exists a snooper system for the composite ocp.
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damage the metaphysical tenability of the spectral modal interpretation, I
take, on the basis of my liberal criteria for tenable interpretations, a more
light-hearted view.

MATHEMATICS

Consider the assumption that any model of a measurement of a magnitude
A* pertaining to a counts as a measurement of the magnitude Aa ® 1̂
pertaining to ot/3 and vice versa. This assumption can be questioned if one
adopts the view that a measurement of a magnitude pertaining to a is an
interaction between only a and a measurement device. For then it follows
that a measurement of Aa should keep the state of any system /? disjoint from
a, in principle, constant. Consequently, if an A* ® P measurement counts as
an Aa measurement, any measurement of Aa ® 1̂  should also keep the state
of P constant. This consequence need, however, not be true.

Take a magnitude of a represented by the operator Qa = |#i)(#il + |?2)(#2l
(a two-dimensional projection) and consider the eigenvectors {\q^)}j of <2a®
1 .̂ If Jfa is three-dimensional and #f$ is two-dimensional, these eigenvectors
are, for instance,

\qf) = \qf) ® |«f >, \qf) =
\qf) = \Jl(\qf) ® \4) + \4) ® \4 »> \~qf) =
\9?) = \ V2(k?> ® \4) -?) = \ V2(k?> ® \4) - i^) ® \4
where |q) and \e%) are mutually orthogonal vectors. The eigenvectors \qf),
|q^)9 \q°f) and \qf) correspond to the eigenvalue 1 of Qa <g) 1 ,̂ the eigen-
vectors \qf) and \qf) correspond to the eigenvalue 0.

The measurement interaction

Cj \qf) ® log) ® |Rg) ^ I**'") = Y^CJ \qf)

(13.18)

can then be taken as a measurement of <2a ® 1̂  because the interaction
correlates the eigenvectors of ga ® 1̂  to the pointer readings {|RJ)(RJ|};.

The outcome |RJ)(R"| can thus be taken as an outcome corresponding to an
eigenvalue of Qa®P.

This measurement of Qa ® 1@ does not keep the state of fi constant. Start
with the state W^ = \qf)(qf\ ® \e%)(e%\ such that the initial state of ft is
Wp = \eP

2){ep
2\. Then, after the measurement, W«p is equal to \\qf)(qf\ +

\\qf)(qf\ so that the final state of j8 is Wp = \ \e[){e{\ + \ \e{){e{\. Hence,
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if a measurement of g a keeps the state of ft constant, then the above
measurement of Qa ® 1̂  is not a measurement of Qa. (This argument can
be blocked by taking the view that the above measurement is actually a
measurement of the non-degenerate operator A*P = Ylja(f \fff)(tff\ an<^
not a measurement of g a ® 1̂ .)

Proposition 13.2 can be proved for the spectral modal interpretation for
measurements of the second kind provided that there exists a snooper system
for a/? at the beginning of the g a measurement.

Proof: Let Qa = Y?j=i E/c 9j !«#)(«# I b e a spectral decomposition (q\ = 1
and gf = 0) a n d let the measurement interaction be

\q%) ® log) ® |Rg> —> \q]k) ® | D J ) ® |Rjk). (13.19)

Let {|Ry/c)(R Î}y,/c represent the measurement outcomes and let [|R^)(RJ/C|] =
1 correspond to a positive outcome of the Q* measurement if j = 1 and to
a negative outcome if j = 2. Let ( I D ^ ) } ^ be a set of pair-wise orthogonal
vectors such that (see Section 10.4) the spectral modal interpretation indeed
ascribes outcomes to the pointer after the measurement.

Take now a composite a/? and assume that [Qa (8) 1̂ ] = 1 at t = 0. The
core property ascription to a/J is then given by [P^] = 1, where P^ is
an eigenprojection of W^ which satisfies [Qa ® 1̂ ] P^ = P^- Assume,
furthermore, that there exists a snooper a for a/? at t = 0. So, a possesses
P° with probability 1 if and only if a possesses P* and the state aap thus
satisfies

T r ^ ( j p ^ o ) [ p ; ® P ^ ] ) = <5̂  Trffa/?( Wffa/?(0) [P ; ® Pa
a^]). (13.20)

Then perform the Qa measurement and assume that during this measurement
the states of a and /? evolve freely and remain constant. The state of aaPjin
after the measurement, say at t = 1, can be calculated (a rather long
expression) and it follows that the state of snooper and pointer becomes

a,b,c,j,k

(13.21)

where {|e£)}a and {|ejj)}& are arbitrary orthonormal bases for, respectively,
Jfa and jpP.

We are interested in the conditional probabilities

p(\Kn
2y)(R%\ at t = \/Pf at t = 0) (13.22)

since they give the probabilities with which one obtains a negative outcome
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after the Qa measurement given that [Qa ® 1̂ ] = 1. By using the one-to-one
correlations between the core properties of a/? and o at t = 0 and by using
the deterministic evolution of the core properties of a from t = 0 to t = 1,
one can derive that these conditional probabilities are equal to

p(Px° at t = 1) *
The numerator is equal to Tran(Wan(l) [P£ ® I R ^ X ^ U ) for the spectral
modal interpretation and by substituting the state Wan(l), it becomes

Tr™P(W™P(0) [P; ® \q%){q%\ ® lp]) =

Tr«P(Tr°(W™P(0) [P? ® 1^]) \q%)(q%\ ® Ip). (13.24)

Since W™p(0) satisfies (13.20) one can apply Theorem 6.1 (see page 91) and
rewrite the numerator as

f [\q%){q%\ ® 1̂ ]) = wf Tx^(Pf [\q%){q%\ ® I*]), (13.25)

where P^ is an eigenprojection of W^ corresponding to the eigenvalue w^.
Since [Q«®P] Pf = Pf, it follows that [\q%){q%\®Ip]Pf = 0 (multiply the
first relation at the left-hand side with IgfyX^I ®^)- Hence, the numerator
is zero such that the conditional probability of finding a negative outcome
after the Qa measurement if [Qa ® 1̂ ] = 1, is zero. •

13.4 Reductionism with dispositional holism

If, instead of the bi and spectral modal interpretations, one accepts the
atomic modal interpretation, one has to a large extent reductionism but now
holism is lacking. And again one can raise the question of whether this
makes the atomic modal interpretation unacceptable.

The fact that the atomic modal interpretation does not ascribe holistic
properties to composites makes it in a sense a quite classical interpretation
of quantum mechanics: it is generally assumed that in classical physics
the properties of composites are all reducible to the properties of their
subsystems and the atomic modal interpretation now proves that one can
also interpret quantum mechanics in terms of solely reducible properties. On
the other hand, it is quite bold not to ascribe the holistic properties. Quantum
mechanics in the standard formulation says that one can measure holistic
properties and that they can have a clear physical meaning. Consider again
the example of the property '[Sf] = 0 and [S5T • Si71] = 0' of two spin \-
particles. The atomic modal interpretation denies that ox ever possesses this
property, even though one can easily measure it. However, I believe that this
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bold denial leads to neither an inconsistency nor an internal incompleteness
in the atomic property ascription. Hence, given my criteria, the atomic modal
interpretation is not metaphysically untenable due to its lack of holism. So,
if the lack of holism is to cause problems, I suspect that it will be because
this lack in some way violates the criterion of Empirical Adequacy. Such
a violation would clearly arise if observations yield that systems sometimes
actually possess the holistic properties that the atomic modal interpretation
cannot ascribe. In particular, if there exist measurements with outcomes
represented by pointer readings {RJ}j which are such holistic properties,
then the atomic modal interpretation would fail to be empirically adequate
since then it denies that the pointer ever can possess its readings. I return to
this latter possible threat at the end of this section.

A further question one can raise when assessing the atomic modal inter-
pretation is concerned with the ontological status of holistic properties. As
said, the atomic modal interpretation does not ascribe every holistic pro-
perty. However, composite systems can be in states such that a measurement
of such a non-ascribable holistic property has with probability 1 a posi-
tive outcome. If, for instance, the composite ox of the two spin ^-particles
is in the singlet state | ^ T ) = \yjl{\uf) ® \d\) - \df) ® |u|)), a measure-
ment of the property '[Sf] = 0 and [Si71 • S?T] = 0' has with certainty a
positive outcome. The question is now what such a measurement reveals
according to the atomic modal interpretation. And this question also arose
at the end of Section 5.5 when discussing the full property ascription. As
proved in the MATHEMATICS of Section 5.4, the atomic modal interpretation
does not satisfy the Certainty condition. That is, it is sometimes the case
that properties (which we can now identify as holistic properties) have a
Born probability 1 even though they are not possessed according to the
atomic modal interpretation. The measurement of such a property has with
probability 1 a positive outcome and the question is thus what does this out-
come reveal since it cannot reveal that the measured property was initially
possessed.

Clifton (1996, Sect. 2) has given a first answer to this question. If a
measurement of a property Qa has with probability 1 a positive outcome and
a does not possess ga, then the measurement reveals that a has a disposition
to yield with probability 1 a positive outcome. By this answer, Clifton doubles
the description of reality. Firstly, a system a has actually possessed properties
which are really there. These actually possessed properties are given by the
property ascription of the atomic modal interpretation. Secondly, a system
a has dispositions which, when measured, elicit that the measurement device
possesses with probability 1 a positive outcome as an actual property at the
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end of the measurement. Such dispositional properties are represented by
projections Qa with Born probability 1 and do not need to correspond to
the actually possessed properties.

Dieks (1998b, Sect. 4) has given a more extensive answer. If a measurement
of Qa has with probability 1 a positive outcome and a does not possess ga,
then the measurement reveals that a has a collective dynamical effect on
the measurement device. The idea behind this second answer is that in
quantum mechanics the atoms in a molecular system a can interact as a
collective with the environment. Dieks illustrates this idea with an ammonia
molecule which interacts with an electric field. Such a molecule consists of
three hydrogen atoms and one nitrogen atom but behaves essentially like
a two-state system which emits and absorbs energy quanta. The interaction
between the molecule and the field is, of course, the result of the interaction
between the field and the individual atoms in the molecule. However, this
interaction can also be considered as an interaction between the field and the
molecule taken as one collective. And with regard to the effects the molecule
has on the state of the field, such a description of the molecule as a collective
suffices in the sense that if one considers the ammonia molecule as a system
which emits and absorbs quanta, one need not focus on the individual atoms
anymore. Hence, generalising this, the idea is that composite systems, when
interacting with their environment, can behave as collectives, screening off
the contributions of the individual atoms. This collective behaviour of the
composite is called by Dieks a collective dynamical effect of the composite
on the environment.

In measurements molecules can exhibit such collective effects. Let the state
of a system a, which consists of the atoms a and T, be given by an entangled
state vector I^F71). Then a measurement of a property ga, which satisfies
QOC |\j/ff̂  _ |vj>tf̂  y ^ i ^ wjth probability 1 a positive outcome because the
two atoms interact collectively by means of their composite state with the
device. This collective effect of ax is now represented by the projection
|\T/(TT\ /\T/CTT I

According to Dieks, the collective effects of a molecule a are related
to a coarse-grained description in which a is taken as if it is an atomic
system. There is still only one fundamental description of the properties
of systems and that is the one given by the atomic modal interpretation.
Molecular systems consist of atoms, these atoms are ascribed properties
and the properties of the molecular systems are built up from these atomic
properties. However, in physics one often replaces this fundamental fine-
grained description by a coarse-grained description in which collections of
atoms are taken as the building blocks of nature. If one does so and applies
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the property ascription of the atomic modal interpretation to such an as if
atom a, one obtains not the definite properties of a, but the collective effects
of a. In the case of our molecule ox with the state l^ 1 ) coarse-graining
implies taking ox as if it is an atom. The property ascription of the atomic
modal interpretation then indeed yields that the property |^(TT)(^ffT| is a
collective effect of ox.

The answers by Clifton and Dieks reintroduce holism into the atomic
modal interpretation since any holistic property Qa can be ascribed to any
system a as a disposition or as a collective effect: just assume that the state of
a is given by W* = Qa/ dim(ga). The clever thing in this reintroduction is that
now the atomic modal interpretation can be said to be both reductionistic
and holistic without falling prey to the no-go theorems of Bacciagaluppi
(1995) and Clifton (1996), or to the no-go theorem discussed in Section 6.3.
To see how these theorems are evaded, suppose that systems possess their
dispositions and collective effects unconditionally. One is then immediately
led back to the problem of defining a joint value assignment to all the
properties, dispositions and collective effects of a composite, as well as to the
problem of defining a joint probability that different systems a, /?,... possess
simultaneously their properties, dispositions and collective effects. However,
dispositions and collective effects can be understood as contextual features of
systems: conditional on a specific interaction with an environment, a system
exhibits a corresponding disposition or collective effect. And given that there
do not exist interactions between a, /?, ... in which all the dispositions and
collective effects can be exhibited simultaneously, the task of defining joint
value assignments and joint probabilities is evaded.

A further and slightly more critical comment is the following. As I have
said, the introduction of dispositions (I concentrate here on dispositions,
but the following holds mutatis mutandis for collective effects) doubles the
description of reality: a system possesses not only real properties, but also
dispositional properties. This doubling is, however, unproblematic because
both the real properties and the dispositions have a meaning in terms of the
actual properties: The real properties of a system are the properties which
it actually possesses, and the dispositions are features of the system which
manifest themselves in measurement contexts by eliciting that the pointer
of the measurement device actually possesses an outcome at the end of
the measurement. So, although the description of reality is doubled, both
descriptions still refer to one single realm of actual properties.

This last conclusion can now be endangered depending on the precise def-
inition of dispositional properties. If dispositions are only those properties
of systems which are revealed by measurements which have with certainty
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an actual outcome, then the above conclusion is fine: all dispositions then
elicit by definition actually possessed outcomes. If, however, dispositions are
defined as those properties Qa of systems which have a Born probability
Tra(Wa Qa) equal to 1, the above conclusion should be weakened. The rea-
son for this is that it need not always be the case that a measurement of
a property with Born probability 1 yields an actual outcome. To see this,
consider the possibility that the atomic modal interpretation does not always
solve the measurement problem. Assume, for instance, that the already men-
tioned threat that there exist pointer readings which are holistic properties
themselves becomes true. Then, since the atomic modal interpretation cannot
ascribe such holistic readings as actually possessed properties, a measure-
ment of a property with Born probability 1 need not always yield an actual
outcome.

Therefore, if one defines dispositions of systems as those properties which
have a Born probability 1, then dispositions are features which only elicit
in some measurement contexts that the pointer of the measurement device
actually possesses an outcome. On the other hand, since a measurement of
a disposition always yields that the final outcome has a Born probability
equal to 1, this final outcome is itself a disposition of the pointer after the
measurement. So, dispositions are features which in any case elicit in meas-
urement contexts that the pointer of the measurement device possesses an
outcome as a disposition. Hence, the conclusion is now that the introduction
of dispositions doubles the description of reality and that the description in
terms of dispositions only refers in some cases to the realm of the actual
properties. In the worst case (if we, for instance, only have measurement
devices with holistic pointer readings at our disposal) dispositions manifest
themselves only in terms of other dispositions such that they describe a realm
of reality which is completely cut off from the realm of the actually possessed
properties. Dispositions (and collective effects) then describe a realm which,
in the words of Guido Bacciagaluppi in Bacciagaluppi and Vermaas (1999),
can be characterised as a virtual reality.

So, to conclude, the lack of holism does not affect the metaphysical
tenability of the atomic modal interpretation. And, provided that the readings
of the pointers of measurement devices are never holistic properties, this lack
also need not affect its empirical adequacy. For if pointer readings are not
holistic, it is still possible to solve the measurement problem by ascribing
them after measurements as actually possessed properties. Moreover, if the
atomic modal interpretation indeed solves the measurement problem in this
way, one can in a sensible way ascribe holistic properties to composites as
dispositions or as collective effects.



14
Possibilities and impossibilities

As a last step towards general conclusions, I collect and assess the more
important results obtained in the previous chapters. In the next and final
chapter I then consider the question of whether the modal descriptions of
reality meet the demands of being well developed, empirically adequate and
metaphysically tenable.

14.1 Indefinite properties and inexact magnitudes

The bi, spectral and atomic modal interpretations do manage to interpret
quantum mechanics by providing a description of what reality could be
like in terms of systems possessing properties. Moreover, if one accepts the
full property ascription (5.12) as developed in Section 5.4, this description
of reality satisfies a number of desirable conditions. However, these modal
interpretations do not simultaneously ascribe all the possible properties to a
system. Instead they select at each instant a specific subset of the properties
pertaining to a system and ascribe only these. And the properties which are
not selected are taken to be indefinite.

This possibility that properties of systems are sometimes not definite is in
itself not that problematic for in some cases it is perfectly understandable
what this means. Consider again the example of a tossing coin. During the
toss the properties 'heads' and 'tails' can be said to be indefinite and this
can be understood as meaning that these two properties are applicable only
to coins which lie on surfaces. However, in other cases it is less clear what
is going on. Suppose that during the toss the property 'the centre of mass
of the coin has position f' becomes indefinite for every vector r, and that
nevertheless the (coarse-grained) property 'the centre of mass of the coin is
in this room' is possessed at all times. Such cases can occur according to the
bi, spectral and atomic modal interpretations. (For macroscopic coins which

252
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interact continuously with their environment one will not easily encounter
such cases but for more microscopic systems one can.) And it is now much
harder to understand what happens with the coin: should this description be
understood as that the coin disperses in some kind of cloud located within
the room when it is tossed? And does it then again 'materialise' at a specific
position when it comes down after the toss? However, even though this
description of a coin or of any other system may seem strange to us who
are living at the dawn of the third millennium, I guess that the judgement of
whether or not such a description is understandable is in the end not that
self-evident. This judgement depends, among other things, on what one is
used to. If an experimentalist manages to demonstrate that objects can indeed
disperse when they are tossed, we would soon consider this behaviour as an
acceptable phenomenon — we presently accept that a fluid like superfluid
helium can flow up the sides of its container and over the brim, something
which must have been very strange to the physicists who first observed this.
Nevertheless, the fact that the bi, spectral and atomic modal interpretations
sometimes leave properties like position indefinite makes their descriptions
of reality at the least rather 'futuristic' when compared to the descriptions of
systems in daily life. (Our attempts to interpret quantum mechanics indeed
made us part of the adventures of Captain Kirk in Star Trek!)

On the other hand, the properties which modal interpretations do as-
cribe to systems satisfy the Closure condition, the Exclusion condition, the
Weakening condition and in the case of the bi and spectral modal inter-
pretations, also the Certainty condition (see Section 5.5). The atomic modal
interpretation does not satisfy Certainty but, as discussed in Section 13.4, if
the atomic modal interpretation solves the measurement problem, one can
introduce dispositional properties in a meaningful way. And by means of
these dispositions, the atomic modal interpretation satisfies the Certainty
condition at least in spirit. Hence, with regard to the definite properties,
the property ascriptions of the bi, spectral and atomic modal interpreta-
tions are quite satisfactory. The set of ascribed properties is closed under
negation, conjunction and disjunction, and satisfies the rules of classical
logic. If a system a possesses a property represented by the projection Qa,
it also possesses all the weaker properties represented by the projections Qa

with QaQa = <2a. Moreover, if a measurement of the property Qa has with
certainty a positive outcome, then that property Qa was indeed possessed
before the measurement (as a disposition in the case of the atomic modal
interpretation).

The property ascription to a system can be transposed to a value as-
signment to the magnitudes pertaining to that system. According to the
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discussion in Section 5.6, the choice of rules which govern this transposition
confronts one with a dilemma: either one assigns exact values only to a
specific set of magnitudes represented by operators with a discrete spectral
resolution, or one assigns genuinely inexact values to all magnitudes per-
taining to a system. Either way it follows that there exist some magnitudes
with exact values. Consider, for instance, a spin ^-particle with a state WG

which is diagonal with respect to the projections |M?)(M|| and |d|)(df |. The
bi, spectral and atomic modal interpretations then all yield that the mag-
nitude 'spin in x direction' represented by the operator S | has a precise
value, namely [S|] is —\h or +\h. If one now chooses to assign only exact
values to magnitudes, the consequence is that many magnitudes pertaining
to system are indefinite. In the case of the spin ^-particle this implies that
the magnitudes of 'spin in v direction' are indefinite-valued for all v ^ x. If,
on the other hand, one chooses to assign values to all magnitudes, then a
magnitude Aa is generally assigned a set of values, denoted by [Aa] €* F,
where the * accompanying the e sign is a reminder that this assignment
should be taken as that A* has an inexact value restricted to the set P. In
the case of the spin ^-particle it follows that for all v i= x the value of the
spin Si7 is given by the trivial assignment [Si7] G* {—3^+3^} which does
not imply that Si7 has either the value — \h or the value +\h.

The bi, spectral and atomic modal interpretations thus succeed in assigning
at each instant exact values to some physical magnitudes but fail to assign
such values to all magnitudes. Again I believe that this failure need not
be problematic. It's strange, for sure, but maybe an experimentalist will
demonstrate that sometimes magnitudes indeed do not have exact values
(what ever that may mean), so that we can get used to this phenomenon.

14.2 Correlations and perspectivalism

Modal interpretations can with varying success correlate the properties they
ascribe. Consider, firstly, the bi modal interpretation. This interpretation
ascribes properties to all the subsystems of composites co which have a
pure state |XPCO)(XFCO|. And this interpretation gives correlations between the
properties ascribed to two disjoint subsystems a and j8 if these two systems
bisect co, that is, if a/J is equal to co. These correlations are captured by the
joint probabilities
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However, the bi modal interpretation is silent about the correlations between
the properties ascribed to two non-disjoint subsystems of co or to more
general sets of subsystems.

If one accepts perspectivalism as discussed in Section 4.3 and as possibly
embraced by Kochen (1985), the joint probabilities (14.1) give the correlations
between all the properties one can consider simultaneously. For, according
to perspectivalism, one can only simultaneously consider the properties of
subsystems if these systems can be considered from one and the same
perspective. And a perspective in the bi modal interpretation is given by a
bisection of the composite co into two disjoint subsystems. Hence, from the
perspective 'co bisected into a and /?' one can simultaneously consider the
properties of the subsystems a and /?, and from the perspective 'co bisected
into y and 3' (with co = yd) one can simultaneously consider the properties
of the subsystems y and 3. However, one cannot, in general, simultaneously
consider the properties of all these subsystems a, /?, y and 3. For if y ^= a
and y ^ /?, then the bisection of co into y and 3 serves as a perspective
which is incompatible with the perspective 'co bisected into a and /?.' Hence,
with perspectivalism the bi modal interpretation satisfies the criterion of
Internal Completeness with regard to the correlations, because it correlates
by means of (14.1) all the properties of the systems which can be considered
simultaneously.

This completeness is, however, obtained at the expense of the content
of the bi modal interpretation; by adopting perspectivalism most of the
interesting questions in quantum mechanics are simply evaded. The per-
spectival bi modal interpretation is, for instance, silent about questions on
the correlations between outcomes of two or more measurements as was
illustrated by the example of the Einstein-Podolsky-Rosen experiment in
Section 4.3. Let's assume therefore along the lines of Dieks (1994a) that the
bi modal interpretation should correlate the properties of all the subsystems
of a composite co with a pure state. If one accepts the criterion of Empirical
Adequacy and the assumptions of Instantaneous Autonomy and Dynamical
Autonomy for measurements (see Section 3.3), it can be proved that the bi
modal interpretation is equivalent to the spectral modal interpretation (see
Appendix A). And, as is discussed in the next paragraph, the spectral modal
interpretation is also in the end condemned to perspectivalism. So, if one
wants to add correlations to the bi modal interpretation but avoid perspec-
tivalism, one should reject one of the mentioned assumptions and arrive at
a modal interpretation different to the spectral modal interpretation.151

151 Papers by Dieks (1998a) and Hemmo (1998) can be seen as attempts to develop the bi modal
interpretation differently compared to how it is developed in Vermaas and Dieks (1995).
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Consider, secondly, the spectral modal interpretation. This interpretation
ascribes properties to any system and gives correlations between the pro-
perties of disjoint systems {a,/J,...}. Let co be the composite ajS---. The
correlations are then given by the joint probabilities

p(P^Pl,...) = Tr-(fT» [P« ® Pi ® • • •]). (14.2)

In Section 6.3 it has been proved that there cannot exist classical joint proba-
bilities for collections of non-disjoint systems which are compatible with the
above joint probabilities (14.2) for disjoint systems. Hence, if one assumes
that the spectral modal interpretation ascribes properties simultaneously to
all possible systems and that it gives correlations between these properties in
terms of classical joint probabilities, then one should judge that the spectral
modal interpretation is internally incomplete.

A possible way out of this predicament can be found in Svetlichny,
Redhead, Brown and Butterfield (1988). They proved the following. Consider
a (sufficiently random) sequence of three simultaneously occurring events
denoted by A, A' and B. Then, if one construes probabilities as Von Mises-
Church relative frequencies, it is possible that: (A) the sequence is such
that one can define probabilities (as limiting relative frequencies) for the
occurrence of the events A, Ar and B separately, (B) one can define joint
probabilities for the simultaneous occurrence of A and B as well as for
the simultaneous occurrence of Ar and J5, but (c) one cannot define joint
probabilities (as limiting relative frequencies) for the simultaneous occurrence
of A and Ar. This result shows that the non-existence of the joint probabilities
p(A,Af) need not be inconsistent with the assumption that the events A, Ar

and B occur simultaneously.
If this result generalises to the property ascription to systems in the spectral

modal interpretation, the following position with regard to correlations
becomes possible. Firstly, disjoint and non-disjoint systems possess their
properties simultaneously. Secondly, for every separate system there exist
probabilities that it possesses its properties, and for specific collections of
systems there exist joint probabilities that they simultaneously possess their
properties (for collections of disjoint systems these joint probabilities are
equal to (14.2)). And, thirdly, there are collections of (non-disjoint) systems
for which there do not exist joint probabilities that they simultaneously
possess their properties, and this means that the limiting relative frequencies
corresponding to these joint probabilities are not defined. The advantage
of such a position is that one can account for the non-existence of joint
probabilities for collections of non-disjoint systems and still maintain that
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these systems possess their properties simultaneously. Whether this position
is in the end tenable (mathematically or otherwise) is not yet clear.

A second way out of this predicament is by again introducing perspectival-
ism by proclaiming that one can only simultaneously consider the properties
of a collection of systems {a,/?,...} if these systems are disjoint and divide
a composite co. It then no longer makes sense to try to find correlations be-
tween the properties of non-disjoint systems because these properties cannot
be viewed from one mutual perspective (see Section 4.4).

If one accepts this perspectivalism, it still is possible to claim that the
properties ascribed to a system are objective in the sense that they do not
depend on the specific perspective from which they are considered. So, the
core properties of a system a part of a composite a/ty(5, for instance, are
represented by the projections {Pf}j irrespectively of whether one considers
a from, say, the perspective 'ocf}y5 divided by a, /?, y and S' or from the
perspective 'oc/lyd divided by a, /? and yd' Also the probabilities {p(Pf)}j with
which these core properties are ascribed are objective in this sense. Finally,
the correlations have this objectivity as well since the joint probabilities
p(Pf,p£) are given by TT*P{W"P [Pf 0 P{]) in all the perspectives from
which one can simultaneously consider the properties of a and /?.

A drawback of perspectivalism is, however, that the objectivity of the
transition probabilities p(Pg(t)/P*(s)) which describe the dynamics of the
core properties of a system a is not easily achieved. More precisely, in
Section 9.2 it has been proved that if one accepts (A) perspectivalism, (B)
that the core properties of freely evolving systems evolve deterministically
(that is, if a evolves freely, then p(P%(i)/Pj(s)) = Sjk9 where P£(t) is equal
to Ucc(t,s)P^(s)Ucc(s,t)\ and (c) that there exist joint transition probabil-
ities p(P?(t\PJ}(t)/PZ(s),Pfl(s)) for two disjoint systems a and j8, then the
transition probabilities of a system as determined from one perspective can
differ from the transitions probabilities of that same system as determined
from another perspective. Hence, given the assumptions (A), (B) and (c), it is
impossible to claim that transition probabilities are objective.

The reader might wonder whether this perspective dependency of the
transition probabilities p(Pg(t)/P?(s)) is consistent with the objectivity of the
single time probabilities p(P*(s)) and p(P£(t)). A provisional answer is that
it need not be inconsistent: since the single time probabilities p(P*(s)) and
p(Pg(t)) do not uniquely fix the transition probabilities p(P£(t)/Pj(s)) (see
Section 8.1), it is possible that these transition probabilities are different in
the relevant perspectives whereas the single time probabilities are always the
same.
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Finally, the atomic modal interpretation correlates without difficulty the
properties of atomic and molecular systems. Let {/?, y,...} be any set of
molecules, let co be any system which has these molecules /?, y, ... as
subsystems and let {a/}j=i be the collection of atoms in co. The correlations
between these systems are then given by

14.3 Discontinuities and instabilities

In the analysis of the evolution of the core properties I have distinguished
two types of evolution. On the one hand one has the evolution of the
actually possessed core property of a system and on the other hand there
is the evolution of the set of possibly possessed core properties of a system.
Both types of evolution give rise to discontinuities.

Consider an atom a with a state for which the spectral resolution is given
by Wa(t) = Yljwj(t)P^(t)- The set of core properties ascribed to the atom
is then in the bi, spectral and atomic modal interpretations given by the
set of eigenprojections {PJ(t)}j. Assume now that the actually possessed
core property of a is given by Pj*(s) at instant s. Then, in the case that
the atom evolves freely, this actual core property evolves continuously to
the actual core property P%(t) = Ua(t9 s) Pg(s) l/a(s, t) for every instant t,
where Ua(x,y) is equal to exp([(x — y)/ih] H*) (see Section 8.2). However, in
the case that the atom interacts with other systems, the actually possessed
core property can evolve discontinuously. Consider, for instance, the state
evolution Wa(i) = cos21 \u\)(«f | + sin21 \d\)(df | of a spin ^-particle a. The
actual core property of this particle jumps discontinuously from |M?)(W|| to
|df )(df | at some instant between 5 = 0 and t = n/2.

The set of possible core properties of a system evolves too: for an atom a
with a state with a spectral resolution Wa(t) = ^ w/(t) Pj*(t), this set evolves
from {Pj/(s)}j at instant s to {Pf(t)}j at instant t. This evolution can now
be continuous if, for instance, the eigenvalues {wj(t)}j are always different
and if the eigenprojections {P*(t)}j are time-independent. But this evolution
can also be discontinuous. If, for instance, the eigenvalues {w7(t)}7 are not
always different, it can happen that Wa(t) is non-degenerate at one instant
s but degenerate at another instant t. The set of eigenprojections of W*
then evolves discontinuously from a set containing only one-dimensional
projections to a set containing (also) higher-dimensional eigenprojections.
Consequently, the set of possible core properties of a evolves discontinuously.
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In Chapter 7 it has been assessed whether one can remove the disconti-
nuities in the evolution of the set of the possible core properties which arise
due to a passing degeneracy of a state (a passing degeneracy is a degeneracy
which occurs at an isolated instant; consider, for instance, the degeneracy in
the above given state Wa(t) of the spin ^-particle o at to = TT/4). The idea
was that one should identify the core properties of a system a at time to
not with the eigenprojections {P^(to)}j given by the instantaneous spectral
resolution of the state Wa(to), but with the projections {T*(to)}q which lie
on continuous trajectories of eigenprojections of the state. These continu-
ous trajectories {T£(t)}q are defined by means of the spectral resolutions of
the state Wa(t) in a time interval around to. With this modified property
ascription one obtains the extended modal interpretation (Section 7.1).

Unfortunately, the state dynamics can be such that continuous trajectories
of eigenprojections do not exist. More precisely, continuous trajectories
{Tq(t)}q exist if and only if the state satisfies the Dynamical Decomposition
condition (see page 105). If the evolution of the state is analytic, then
this condition is satisfied. But Example 5.6 of Bacciagaluppi, Donald and
Vermaas (1995) (see (7.34) on page 126) proves that there also exist states
which evolve by the Schrodinger equation and which violate the Dynamical
Decomposition condition. So, it is impossible, in general, to use continuous
trajectories of eigenprojections to remove discontinuities in the evolution of
the set of the possible core properties ascribed by the bi, spectral and atomic
modal interpretations.

In order to save the extended modal interpretation as a generally applicable
interpretation, one can try to argue that not every theoretically imaginable
evolution is physically possible and that physically possible evolutions do
not violate the Dynamical Decomposition condition. The idea that not every
imaginable function W^it) gives a physically possible evolution is in itself
not new. For example, evolutions W^it), where the expectation value for
the energy becomes infinite, are not physically allowed. Elaborating on this,
one may try to argue that physically possible state evolutions are analytic
evolutions, which, incidentally, is the case if the Hamiltonian of the whole
universe is bounded with regard to the operator norm. To my knowledge
such an argument has not yet been given, so the question of whether the
extended modal interpretation is generally applicable cannot yet be answered
positively.

The analysis of the evolution of the set of the possible core properties also
yielded that this evolution need not harmonise with the evolution of the state
and that this evolution can be highly unstable. The first phenomenon was
illustrated by Example 5.1 of Bacciagaluppi, Donald and Vermaas (1995)
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(see page 129), where the state of a system evolves periodically but the set of
the possible core properties does not. The second phenomenon is discussed
in Section 7.4, where it was proved that if a state has a spectral resolution
which is nearly degenerate, then an arbitrarily small change of that state (by
an interaction with the environment or by internal dynamics) can maximally
change the set of the possible core properties.

Perhaps this instability is one of the more serious defects of modal inter-
pretations because, firstly, it can have consequences for their ability to solve
the measurement problem. For even when a modal interpretation ascribes
readings to a pointer at a specific instant, a small fluctuation of the state
may mean that at the next instant the pointer possesses properties which are
radically different to readings (see Section 14.5 below). Secondly, instability
can have epistemological consequences. For if one wants to determine the
state of a system and ascribe by this state properties to that system, then
a small error in the determination of the state can make that the property
ascription is substantially wrong (see Section 14.7 below). On the other hand,
instability is not a defect which specifically haunts modal interpretations, but
is instead a more generic problem also present in classical physics (consider
chaotic systems, for instance).

14.4 Determinism and the lack of Dynamical Autonomy and of Locality

The results about the evolution of the actually possessed core properties of
systems were both limited and worrying. A first result concerns freely evolv-
ing systems (Section 8.2). Namely, if one accepts the criterion of Empirical
Adequacy and the assumption of Dynamical Autonomy for whole systems,
one can derive that the core properties of freely evolving systems evolve
deterministically in the bi and spectral modal interpretations. And if one
accepts Empirical Adequacy and Dynamical Autonomy for atomic systems,
one can derive that the core properties of freely evolving atoms evolve deter-
ministically in the atomic modal interpretation. That is, if a system a (an atom
in the case of the atomic modal interpretation) evolves freely and possesses
at an instant s the core property P*(s), then it possesses with probability 1
at any second instant t the core property P%{t) = Ua(Us)Pg(s) Ua(s9t). And
this result is rather attractive since it supports the idea that the properties
of a system evolve undisturbed and stably when outside influences on the
system are absent.

A second result is that, given this deterministic evolution of the properties
of freely evolving systems, one can determine in special cases the evolution
of the core properties of interacting systems in the spectral and atomic
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modal interpretations. This evolution, captured by transition probabilities
p(P£{t)/Pj(s)\ can be calculated for an interacting system a provided that
the properties of a are at time s or at time t one-to-one correlated with the
properties of a freely evolving snooper system (see Section 8.3). It can be
proved that these transition probabilities are truly stochastic, non-Markovian
and different to the probabilities calculated with the Born rule.

Thirdly, Bacciagaluppi and Dickson (1997) have given for the bi and spec-
tral modal interpretations (both with perspectivalism) and for the atomic
modal interpretation a framework for choosing transition probabilities for
all freely evolving and interacting systems (see Sections 8.4 and 8.5). The
existence of this framework illustrates that such general transition probabil-
ities do exist but that we presently do not have the right arguments to fix
them uniquely. However, future research may reveal that a specific choice for
general transition probabilities by Bacciagaluppi and Dickson (the choice by
means of the generalised Schrodinger current, see Section 8.5) can be backed
up by sufficient argumentation.

Further and less attractive results are that the spectral and atomic modal
interpretations violate the assumptions of Dynamical Autonomy (Section 9.2)
in a number of ways. This means that it is, in general, impossible to give a
unique functional relationship between the evolution of the state of a freely
evolving composite and the transition probabilities which govern the evolu-
tion of the properties possessed by (parts of) that composite. For the spectral
modal interpretation the results are that if one accepts Empirical Adequacy
and Dynamical Autonomy for whole systems such that the properties of
freely evolving systems evolve deterministically, then it is sometimes impos-
sible to give the joint transition probabilities p(P?(t),PJf(t)/P2(s),PJI(s)) for
two disjoint systems. When adopting perspectivalism, these joint transition
probabilities can again exist but then the spectral modal interpretation vio-
lates the assumption of Dynamical Autonomy for composite systems. Hence,
the transition probabilities for an interacting system a part of a freely evolv-
ing composite a/? are not uniquely fixed by the evolution of the state of a/?.
It is furthermore impossible to maintain that the transition probabilities of
a system a are objective in the sense of being independent of the perspective
from which one considers a (see also Section 14.2).

For the atomic modal interpretation the results are that if one accepts
Empirical Adequacy and Dynamical Autonomy for atomic systems such
that the properties of freely evolving atoms evolve deterministically, then
its property ascription violates both Dynamical Autonomy for composite
systems and Dynamical Autonomy for whole systems. Hence, in the atomic
modal interpretation it is even impossible to uniquely fix the transition



262 Possibilities and impossibilities

probabilities for an freely evolving molecule by means of the state of that
molecule.

These violations of the assumptions of Dynamical Autonomy are in my
opinion worrying for they imply that in modal interpretations states of
systems codify far less information about the properties of systems than
states usually do in physics. In deterministic theories, for instance, the state
of a system at time t uniquely fixes the actual properties of the system at
t. And the dynamics of the state of a system therefore uniquely fixes the
evolution of the properties of that system. In statistical theories the states
of systems no longer uniquely fix the actual properties of systems, but in
such theories the state of a system at time t still gives unique statistical
information about the actual properties of the system. My expectation is
that the dynamics of the state of a freely evolving composite system also
gives unique statistical information about the evolution of the properties
of the composite itself and about the evolution of the properties of the
systems which are part of that composite. This expectation is not now
met by modal interpretations of quantum mechanics. The state of a system
at time t still uniquely determines the statistics of the actually possessed
properties of the system at t (the assumption of Instantaneous Autonomy is
not violated by modal interpretations). However, since Dynamical Autonomy
is violated, the dynamics of the state of a freely evolving composite need
not uniquely determine the statistics of the evolution of the properties of the
composite, and need not uniquely determine the statistics of the evolution of
the properties of the systems in that composite. Hence, modal interpretations
break with the idea that states of freely evolving composite systems encode
all the information necessary to (statistically) describe the behaviour of the
system and its parts.

An unpleasant consequence of the fact that modal interpretations break
with this idea is that the results already derived by means of the Dynam-
ical Autonomy assumptions become questionable in retrospect. Take, for
instance, the deterministic evolution for freely evolving systems. This evolu-
tion was derived in the bi and spectral modal interpretations by assuming
that these interpretations satisfy Dynamical Autonomy for whole systems.
And in the atomic modal interpretation this deterministic evolution was de-
rived by assuming that it satisfies Dynamical Autonomy for atomic systems.
But how can one justify these assumptions now that one knows that the
state of a freely evolving system does not need to codify the information
necessary to describe the behaviour of that system? Instead, it seems much
more natural to take the violations of Dynamical Autonomy in general as
a strong indication for that Dynamical Autonomy is also not satisfied in
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the special cases of a freely evolving whole system and a freely evolving
atomic system. If one indeed concludes that Dynamical Autonomy is also
not satisfied in these special cases, one is (or, more precisely, I am) empty-
handed when trying to derive deterministic evolution for freely evolving
systems or when trying to derive any other result presented in this book
which makes use of deterministic evolution. Hence, the violations of Dy-
namical Autonomy cast doubts on many of the results obtained for modal
interpretations.

A further and more practical consequence of the violations of Dynamical
Autonomy is that it is, in general, impossible in experimental setups to
control the evolution of the properties ascribed by modal interpretations.
Consider an experiment in which a composite system is prepared in some
initial state and in which the evolution of this state is controlled in the
sense that the Hamilitonian of the composite is known. The experimenter
can then exactly fix at all times the state of the composite and the states
of the subsystems of that composite. It follows that the experimenter can
also exactly determine at all times the possible possessed properties of the
composite and of the subsystems, as well as the probabilities with which
these possible properties are actually possessed. However, the experimenter
cannot deduce the transition probabilities which govern the evolution of these
properties. In the atomic modal interpretation the transition probabilities for
the properties of the composite are not uniquely fixed by the dynamics of its
state since the atomic modal interpretation violates Dynamical Autonomy for
whole molecular systems. And the transition probabilities for the properties
of the subsystems are not uniquely fixed by the dynamics of the states
since all modal interpretations violate Dynamical Autonomy for composite
systems. Hence, even if the state of the composite is precisely controlled in
the experiment, the evolution of the properties of at least the subsystems
cannot be controlled. It may thus happen that this evolution changes, in the
sense that the transition probabilities change, while the state of the composite
remains the same (see Section 14.7 for a more extensive discussion of the
elusiveness of the properties ascribed by modal interpretations).

Finally, it has been proved that the properties ascribed by modal in-
terpretations are non-local (Chapter 9). Specifically, it is possible that the
evolution of the properties of the subsystems of a freely evolving composite
co, confined to a space-time region R, changes if the evolution of the state of
another composite co\ confined to a second space-time region R', space-like
separated from R, changes (see Section 9.3). This explicit non-locality of the
modal transition probabilities is a special case of the phenomenon, sketched
in the last paragraph, that the transition probabilities for the subsystems of
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a freely evolving composite can change even though the dynamics of the
state of the composite is fixed.

This non-locality of modal interpretations is worrying as well. And since
one is always in some way or another confronted with non-locality in
quantum mechanics (in its standard formulation or in any interpretation),
one has to conclude that modal interpretations certainly do not have the
advantage of in some way resolving this quantum mechanical non-locality.

14.5 The measurement problem and empirical adequacy

Measurements have definite outcomes and it is impossible to confirm this
fact with modal interpretations for every measurement interaction one can
theoretically imagine. Hence, modal interpretations do not, in general, solve
the measurement problem. The question addressed in Chapter 10 was now
whether modal interpretations still satisfy the criterion of Empirical Ade-
quacy by solving the measurement problem for physically realistic measure-
ment interactions.

Bacciagaluppi and Hemmo (1994, 1996) have proved that if pointers of
measurement devices interact with an environment and if pointers are (effec-
tively) described by few-dimensional Hilbert spaces, then, by decoherence,
the bi and spectral modal interpretations approximately ascribe pointer read-
ings after measurements (see Section 10.2). It is clear that every pointer of a
realistic measurement device interacts with its environment but it is also clear
that there exist pointers which are described by high- or infinite-dimensional
Hilbert spaces. For instance, a pointer which can assume a continuous set
of readings is modelled by an infinite-dimensional Hilbert space. So, in spite
of the fact that Bacciagaluppi and Hemmo considered measurement interac-
tions which comprise many types of measurements (perfect measurements,
measurements of the second kind, unsharp measurements), their results fail
to prove that the bi and spectral modal interpretations ascribe outcomes
after every physically realistic measurement interaction.

In Sections 10.3 and 10.4 I have defined sufficient conditions for exactly
ascribing after measurements the pointer readings with modal interpreta-
tions. These sufficient conditions constrain the internal structure of measure-
ment devices but are compatible with many types of measurements (perfect
measurements, erroneous measurements, measurements of the second kind,
measurements perturbed by the environment). It is, however, an open ques-
tion whether all physically realistic measurements do indeed obey these
conditions.

A vulnerable aspect of the sufficient conditions (10.40), (10.41) and (10.42)
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(see page 190) for ascribing outcomes with the bi or spectral modal inter-
pretation is that they imply that there exist strict one-to-one correlations
between the properties {Dfij ascribed to the mechanism Ji of the measure-
ment device and the readings {RJ}j ascribed to the pointer of the device (that
is, [D^] = 1 if and only if [Kj] = 1). Whenever it can be proved that realistic
measurements fail to comply with these strict correlations, or whenever it
can be argued that environmental perturbations are bound to disrupt such
correlations, my results also fail to prove that the bi and spectral modal
interpretations solve the measurement problem for realistic measurements.

The sufficient conditions (10.15) and (10.19) (see pages 183 and 184) for
ascribing outcomes with the atomic modal interpretation are vulnerable as
well. Take two readings represented by

« f = |Df)<Df | ® |Df >(D{I ® |D5)<D5| ® • • • , 1
| | f > < ? | \l)(l\ J

Condition (10.15) then demands that for every atom X in the pointer
the projections \Df){of | and I D ^ D * ! are either orthogonal or equal.152

However, it is quite conceivable that the readings (14.4) do not meet this
demand. Assume that there indeed exists a number of atoms X for which
|Df )(Df | and ID^XD^I are orthogonal such that R* and i?2 a r e orthogonal.
Then it may very well be the case that there exist other atoms Y for
which |Df )(D^ | and |DJ ) (DJ | are neither orthogonal nor equal. One can, for
instance, think in terms of wave functions and conclude that there surely
exist some atoms for which the tails of the wave functions that correspond
to the states |Df) and |DJ) extend to a common region in space. It then
follows that the inner product (D^ |DJ) has a value between 0 and 1 such
that |D^ )(D^ I and |DJ ) (DJ | are neither orthogonal nor equal. The readings
i?f and R% then do not satisfy condition (10.15).

If there indeed exist physically realistic measurements for which modal
interpretations do not solve the measurement problem exactly, one still can
hope that modal interpretations solve this problem in good approximation.
So, following Bacciagaluppi and Hemmo, one can consider the interaction
between the pointer and the environment and try to prove that decoherence
effects ensure that the properties of the pointer converge to the readings.
This approach has two disadvantages. Firstly, it is debatable whether the
ascription of properties to a pointer which, taken as projections in Hilbert

152 Condition (10.15) says that there exist sets of pair-wise orthogonal atomic projections {P%}a> {̂& }&>

... such that R7? = J2(aj>,...)eij Pa ® H ® "" + ^ r T h i s i m P l i e s t h a t i f Ri = lDi)(Dil ® "" a n d

R* = IDJXDJI ® • • •, then |Df)(Df| and |D |>(D | | are orthogonal or equal.
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space, are close to pointer readings, is a proper solution to the measurement
problem.153 Secondly, if interactions with the environment mean that the
pointer acquires its readings, then the solution of the measurement problem
can become unstable. For if interactions with the environment can change the
pointer properties to properties which are close to readings, these interactions
can also change the pointer properties within a small time interval from
readings to properties which are not close to readings (see also Section 14.3).

Measurements not only have definite outcomes but these outcomes also
occur with certain frequencies and with certain correlations. The standard
formulation of quantum mechanics predicts these frequencies and correla-
tions by means of the Born rule, and these predictions are empirically correct.
If one now assumes that the bi, spectral and atomic modal interpretations
indeed ascribe outcomes after measurements, it is possible to prove that these
interpretations reproduce these empirically correct predictions with regard
to the occurrence of outcomes of single measurements (see Section 11.1). The
spectral and atomic modal interpretations also reproduce these predictions
with regard to the correlations between the outcomes of simultaneously
performed measurements, and, in so far as they can be calculated, with
regard to the correlations between the outcomes of sequentially performed
measurements (see Section 11.2).

So, if physically realistic measurement interactions satisfy the above men-
tioned sufficient conditions, modal interpretations satisfy Empirical Ade-
quacy. For, if these conditions hold, then modal interpretations ascribe
exactly definite outcomes after measurements. These outcomes are then, ac-
cording to the last paragraph, automatically ascribed with the empirically
correct probabilities and correlations. If, in contrast, there exist realistic
measurement interactions which do not satisfy these conditions and deco-
herence should make pointers possess their outcomes after measurements,
then the fact that the modal property ascription can be highly unstable
prevents a proper solution of the measurement problem.

14.6 The lack of reductionism and of holism

The quantum mechanical properties of a composite system co can be divided
into reducible and holistic properties. Examples of reducible properties are
the ones represented by Q™ = J^j Q) ® Q] ® ' *' a nd examples of holistic
properties are the ones represented by |lF(U)(4/G>|, where |*F°̂ ) is a non-triv-
ially entangled vector. An interpretation is holistic if it can ascribe every

153 See Bacciagaluppi and Hemmo (1994, 1996), Dieks (1994a,b), Arntzenius (1998) and Ruetsche (1998).
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holistic property of a composite to that composite. And an interpretation
is reductionistic if it respects the relations between any reducible property
and the properties to which this reducible property is reduced. That is, an
interpretation is reductionistic if it yields that co possesses Qw = J2j Q°j ®
Qj ® • • • if and only if the subsystems a, /?, etc., possess, respectively, the
properties (<2 a ,^ , . . . ) e {(Q*j9Q

p
j9...)}j (see Section 13.1).

In Section 13.2 it has been proved that the bi and spectral modal in-
terpretations are holistic but not reductionistic, and that the atomic modal
interpretation is not holistic but reductionistic with regard to the reducible
properties Qw = YljQj ® QPj ® * * * f o r w h i c h & h o l d s t h a t t h e s e t s {Qj}j>
{Qj}p etc., are sets of pair-wise orthogonal projections. Moreover, it was
argued that it is impossible to merge the bi, spectral and atomic modal
interpretations into a super modal interpretation which is both reduction-
istic and holistic. Finally, it has been proved that a modal interpretation is
reductionistic with regard to the reducible properties Qw = Qa ® Q& (g) • • •
if and only if its property ascription satisfies the conditions of Property
Composition ([Qa] = x implies [Qa ® 1̂ ] = x9 for x = 0,1) and of Property
Decomposition ([<2a ®P]=x implies [Qa] = x).

The discussion in Section 13.3 of whether the lack of reductionism harms
the bi and spectral modal interpretations focused on the related violations
of Property Composition and Decomposition. Firstly, it has been shown
that these violations lead to a contradiction except if one denies (A) that Qa

and Qa ® 1̂  represent the same magnitude, or if one accepts perspectivalism
and denies (B) that the ascription of Qa to a should be re-endorsed by the
ascription of Qa ® 1̂  to a/J and vice versa. Both options lead to bizarre
consequences. If one denies (A), it can simultaneously be the case that the
left-hand side of a table has the property 'green' and that the property
'greenness of the left-hand side' is indefinite for the table as a whole. And
if one denies (B), it can be the case that from one perspective a system has
the property 'green' and that from a second (incompatible) perspective the
property 'green' is indefinite for that same system. However, these bizarre
consequences do not imply that the bi and spectral modal interpretations
violate the criteria of Consistency and Internal Completeness.

Secondly, it has been proved that the spectral modal interpretation satis-
fies Property Composition and Decomposition at the level of observation.
That is, successive measurements of Qa and Qa ® 1̂  have with probability 1
either two positive or two negative outcomes (Proposition 13.1 on page 239).
Hence, the spectral modal interpretation satisfies Property Composition and
Decomposition with respect to the observations. Therefore one can say that
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the spectral modal interpretation is observationally reductionistic with regard
to the reducible properties Q™ = g a ® Q$ ® • • •. This result shows that the
bizarre consequences of the violations of Property Composition and Decom-
position are restricted to only unobservable or noumenal states of affairs.
And this result shows that if one takes Property Composition and Decom-
position as empirical conditions, then the spectral modal interpretation is in
this respect satisfying Empirical Adequacy.

The impossibility of ascribing holistic properties to composites by means of
the atomic modal interpretation does not also lead to violations of the criteria
of Consistency and Internal Completeness. On the other hand, if observations
yield that holistic properties are sometimes actually possessed properties, for
instance, if measurement outcomes are holistic properties, then the atomic
modal interpretation fails to be empirically adequate since it then cannot
ascribe properties that systems actually possess. The proposals by Clifton
(1996) and Dieks (1998b) to take holistic properties in the atomic modal
interpretation as dispositions or as collective dynamical effects makes sense
only if the atomic modal interpretation solves the measurement problem by
ascribing outcomes as real (non-dispositional) properties (see Section 13.4).

This leaves us with the fact that the bi, spectral and atomic modal
interpretations are not reductionistic with regard to every reducible property
2W = Z)j Q* ® QPj ® *'' • A first remark is that at the level of observation
modal interpretations are reductionistic with regard to every property Qw =
J2j Q°j ® Qj ® " ' • That is, if a series of measurements of the properties

(6a>2^-••) £ {(Q!j9Qfj9---)}j a ^ yi^d positive outcomes, then a subsequent
measurement of Qw yields with probability 1 a positive outcome as well. And
if a measurement of Qw yields a positive outcome, then there is a non-zero
probability that subsequent measurements of the properties (Qa,QP,...) E
{(Qj9Qj9-")}j a ^ yield positive outcomes (the proofs are left to the reader).
Hence, if Empirical Adequacy implies that interpretations are reductionistic
at the level of observation, then one can make a case that the bi, spectral
and atomic modal interpretations satisfy this criterion.

The discussion in Section 13.3 did not touch on the question of whether
modal interpretations violate Consistency and Internal Completeness by not
being reductionistic with regard to every reducible property. My conjecture
is (but I confess that a thorough discussion has not yet been given) that one
can address this question in a similar way to the question of whether the
violations of Property Composition and Decomposition violate Consistency
and Internal Completeness. That is, my conjecture is that the fact that
modal interpretations do not respect the relations between the reducible
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property Qw = J2jQ* ® Qj ® ' ' * and the properties {{Qj9Q
p

j9...)},-, leads to
a contradition. This contradiction can then be avoided by denying (A) that
Gw = E ; Q°j ® Qj ® ' ' ' should be reducible to the properties {{Q°j,Q1},...)};,
or by accepting perspectivalism and by denying (B) that the ascription of the
property Q™ = J2j Q*®Qj®" ' to the composite co should be re-endorsed by
the ascription of properties (Qa,QP,...) G {{QJ,QJ,...)}J to the subsystems
a, /?, etc., and vice versa. Both options again lead to bizarre consequences,
but these consequences do not imply that the bi, spectral or atomic modal
interpretations violate Consistency and Internal Completeness.

14.7 An elusive ontology

The bi, spectral and atomic modal interpretations provide descriptions of
what reality could be like. And these descriptions comprise descriptions of
phenomenal states of affairs, which we can observe, but also descriptions of
noumenal states of affairs, which we can never observe (see Section 12.1).

An unattractive feature of these descriptions of reality is now that it is
quite hard to acquire knowledge of them. If one knows in advance the
exact evolution of the state of the whole universe, there is, of course, no
problem: one can then determine for every system at every time the set of
possible possessed properties and calculate the correlations between these
properties. However, in practice we do not know in advance the state of the
universe, or of any other system. So, our knowledge of the descriptions of
reality can only come from direct observations of the properties actually pos-
sessed by systems, from the outcomes of measurements and from theoretical
considerations.

The difficulty is now that the results of Section 12.2 prove that the actually
possessed properties of a system a, as well as the outcomes of measurements
performed on that system, are poor sources of information about the state
of a. If one, for instance, directly observes the actually possessed properties
of a, one can determine merely one eigenprojection of Wa according to the
bi and spectral modal interpretations, and merely one eigenprojection of
the state of each atom in a according to the atomic modal interpretation.
Only in a few special cases can one fix (approximately) the state of a system
by means of observations or measurements, namely if one has an ensemble
of N systems a which are all in the same (unknown) state W*. If one
observes that #(CJ) systems in such an ensemble actually possess the core

property CJ (j = 1,2, • • •), then the state W« = X)7(#(CJ)/[Ndim(CJ)]) CJ is
according to the bi and spectral modal interpretations a good approximation
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of the true state Wa of the systems (if N is large). And if one performs a
measurement on each member, where the measurements are part of the
special class of measurements defined in Section 12.2, the state W* =
^;.(#(|Rp(Ry|)/JV)|ap(fly| is according to all modal interpretations a good
approximation of the true state Wa of the systems after the measurements.
Hence, although we are used to the fact that in classical physics knowledge of
the actually possessed properties of a system or knowledge of the outcome
of a measurement performed on that system generally gives immediate
knowledge of the state of the system, this is usually not the case in the
bi, spectral and atomic modal interpretations. And, as a consequence, it
is usually impossible to determine by means of observations or by means
of measurements the full description of reality as put forward by these
interpretations.

However, maybe this is all too much to expect. Maybe one should already
be happy if one can predict on the basis of observations or of measurements,
the future properties ascribed by modal interpretations to systems. Now, in
the bi and spectral modal interpretations it is in a number of cases indeed
possible to predict the future actually possessed properties of systems but
in the atomic modal interpretation the results are disappointing.154 To see
this, assume that one directly observes the actually possessed properties of a
system a at time s or that one performs a measurement on a which yields an
outcome at s. Assume furthermore that after s the system a evolves freely by
means of some Hamiltonian Ha which is known to a good approximation.
In classical physics such cases are straightforwardly described. On the basis
of the observation or on the basis of the outcome of the measurement one
determines the state of a at s. And because one knows the Hamiltonian of
a to a good approximation, one also knows the evolution of the state of a
after s to a good approximation. Any prediction about the future properties
of a can then be determined by means of this approximate state evolution.

In the bi and spectral modal interpretations one can also give such
predictions. Consider, firstly, the case of a direct observation of a and, say,
the observation yields that a actually possesses the core property Pj(s). Then,
because the core properties of freely evolving systems evolve deterministically,
it follows that one can predict that a actually possesses with probability 1
at all times t > s the core property PJ(t) given by Ua(t,s)P?(s) Ua(s,t).
Consider, secondly, the case of a measurement on a. The outcome of such a

154 Note that the issue is not whether one can generate on the basis of actual measurement outcomes
predictions about the outcomes of future measurements (one can use the effective state defined in
Section 12.3 to arrive at such predictions); the issue is whether one can generate predictions about
the actual properties of systems, independently of whether or not measurements are involved.
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measurement does not, in general, determine the actually possessed properties
of a after the measurement; only for the above mentioned special class of
measurements one can uniquely infer from the outcome the final actually
possessed core property of a. And in this special case, the above results for
predictions again hold: if a actually possesses core property PJ(s) after the
measurement, then, with probability 1, it actually possesses the core property
Ua(t,s)P?(s)Ua(s,t)2Ltt>s.

In the atomic modal interpretation these nice results do not, however,
hold. The properties we can directly observe are usually properties of huge
molecular systems and for a molecule a it generally is not the case that if it
possesses the core property Pjk...(s) at 5 and a evolves freely, it then actually
possesses the core property Ua(t,s)P^k...(

s) Ua(s, t) at t (see Section 8.2).
Instead, if one wants to predict how the core properties of such a molecule
a evolve, one needs to know the state of a but that is, as I said, usually
impossible. So, an observation of the actually possessed properties of a freely
evolving molecule cannot be used to predict the future possessed properties of
that molecule. Consider, secondly, a measurement on a. In the atomic modal
interpretation it also holds that the actual outcome of a measurement does
not, in general, determine the actually possessed core property of a after the
measurement. Again there exists a special class of measurements for which
one can uniquely infer from the outcome the final actually possessed core
property of a. However, if a is a molecule, this determination of the final
possessed core property in this case still does not give the means to predict
the future actual core properties. Only if a is atomic, does it hold that if the
actual core property after the measurement is P*(s)9 then, with probability
1, a actually possesses the core property Ua(t, s) P?(s) Ua(s, t) at t > s.

Moreover, even if one can precisely or approximately fix the state of a
at time s, say, on theoretical grounds or by means of the above described
ensembles, one still runs into trouble when trying to predict the future
possible possessed properties of a. Echoing a point made by Donald (1998),
one usually makes approximations in physics. One neglects, for instance,
interactions between distant systems when determining the Hamiltonian of
a system. The Hamiltonian is thus only approximately correct. So, even if
one knows the exact state of a at s, one ends up with only an approximately
correct state of a at t > s when one applies the Schrodinger evolution to this
exact state of a at s. Now, if one applies the bi, spectral and atomic modal
interpretations to this approximately correct state, the resulting description
of reality need no longer be approximately correct. The property ascriptions
of the bi, spectral and atomic modal interpretations are unstable when states
of systems are close to being degenerate (see Section 14.3): Hence, a small
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error in the determination of the state of a at t can, near a degeneracy,
induce huge errors in the determination of the set of the possible possessed
properties of a at t. (This problem that small errors in the determination
of the state of a system can induce large errors in the future description
of the system is, as I said before, not a problem which haunts only modal
interpretations.)

So, the descriptions of reality provided by the bi, spectral and atomic
modal interpretations are from an epistemological point of view often rather
intractable and elusive.
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Conclusions

Let's return to the three demands I have imposed on the bi, spectral and
atomic modal interpretations. The first was the demand that these inter-
pretations should provide well-developed descriptions of reality. And a first
conclusion is that the bi, spectral and atomic modal interpretations indeed
provide the necessary starting points to develop them. That is, they all de-
scribe reality by means of well-defined property ascriptions: for all it is clear
on which points these descriptions of reality need improvement, and for all
one has the means to make a start with these improvements.

A second conclusion is, however, that the success with which the bi, spec-
tral and atomic modal interpretations can be developed varies. The results
with regard to the full property ascription to a single system are in my
opinion satisfactory for all three interpretations (Chapter 5). But with regard
to the correlations between the properties ascribed to different systems the
results start to diverge. For the atomic modal interpretation such correla-
tions can be given (Section 6.4). But for the spectral modal interpretation
it is proved that such correlations do not always exist for the properties
ascribed to non-disjoint systems (Section 6.3). And for the bi modal in-
terpretation correlations are unknown or, when one accepts Instantaneous
Autonomy, Dynamical Autonomy for measurements and Empirical Ade-
quacy (Section 3.3), do not exist as well (Section 6.3). Only if one adopts
perspectivalism, that is, if one assumes that one can simultaneously only
consider the properties of two disjoint systems in the bi modal interpretation
and of n disjoint systems in the spectral modal interpretation, these two
interpretations give all the defined correlations.

The results with regard to the dynamics of the ascribed properties also
diverge. The bi, spectral and atomic modal interpretations all allow the
derivation of transition probabilities which govern the dynamics of the pro-
perties of freely evolving systems (Section 8.2). However, for the case of

273



274 Conclusions

interacting systems it is generally impossible in the bi modal interpretation
without perspectivalism to derive transition probabilities. And for the spec-
tral modal interpretation without perspectivalism the results even turn out
to be contradictory (Section 8.3). Only for the atomic modal interpretation
and for the bi and spectral modal interpretations with perspectivalism do
there exist general expressions for the transition probabilities for the ascribed
properties (Sections 8.4 and 8.5).

From this, I conclude that only the atomic modal interpretation and the
bi and spectral modal interpretations with perspectivalism can be taken
as interpretations which allow well-developed descriptions of reality: these
interpretations correlate the properties they simultaneously ascribe to system,
and they allow candidate expressions for the transition probabilities for the
dynamics of these properties. For the bi and spectral modal interpretations
without perspectivalism these correlations and transition probabilities cannot
be given.

However, this conclusion does not imply that all the results obtained for
the atomic modal interpretation and the bi and spectral modal interpreta-
tions with perspectivalism are favourable. The facts that the set of properties
possibly possessed by a system evolves discontinuously (Section 7.1) and ex-
hibits instabilities (Section 7.4) are worrisome. These facts mean, for instance,
that the problem of the classical limit of quantum mechanics becomes even
more difficult than it already was: we now not only have to retrieve the phase
space description of classical mechanics from quantum mechanics, we also
have to prove the relative continuity and stability of the properties in our
classical world from a quantum mechanical reality which is fundamentally
discontinuous and unstable. Furthermore, the facts that the dynamics of the
actually possessed properties of systems violates Dynamical Autonomy (Sec-
tions 8.3 and 9.2) and that this dynamics is explicitly non-local (Section 9.3)
are unattractive as well. The violations of Dynamical Autonomy prove that
the states of systems do not uniquely determine the statistics of the dynamics
of the properties of those systems. And, even though quantum mechanics
in the standard formulation is also non-local, the non-locality which is ex-
hibited by our modal interpretations is much more manifest than the usual
quantum non-localities. Now, in my opinion the instability of the property
ascriptions and the violations of Dynamical Autonomy especially threaten
the tenability of modal interpretations. Below I return to these threats.

The second demand on modal interpretations is that their descriptions of
reality are empirically adequate in the sense that they solve the measurement
problem. That is, the descriptions of reality must yield that measurements
have outcomes and that these outcomes appear with the probablities and
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correlations that are predicted by the standard formulation of quantum
mechanics. A first conclusion is now that the bi modal interpretation with
perspectivalism cannot meet the second part of this demand. With per-
spectivalism the bi modal interpretation can only give correlations between
at most two measurement outcomes, whereas the standard formulation of
quantum mechanics predicts that the outcomes of three or more measure-
ments are also correlated. A second conclusion is that it is beyond doubt
that the atomic modal interpretation and the spectral modal interpretation
with perspectivalism do not solve the measurement problem for every the-
oretically imaginable measurement: for both interpretations one can give
measurement interactions for which they do not ascribe outcomes after the
interaction (Section 10.1). So, if these interpretations are to be empirically
adequate, they are so by solving the measurement problem for only the class
of physically realistic measurements.

I have defined schemes for measurements for which, due to the internal
structure of the measurement device, the spectral and atomic modal inter-
pretations exactly ascribe the outcomes after measurements (Sections 10.3
and 10.4). But I believe it is fair to say that it is conceivable that there exist
realistic measurements which do not fit this scheme (Section 14.5). So, one
probably has to hope that the spectral and atomic modal interpretations
solve the measurement problem by ascribing approximately the outcomes
after measurements. And for the spectral modal interpretation there in-
deed exist measurements where the interactions between the device and the
environment (decoherence) make that after the measurement the device is
ascribed properties which are close to the outcomes (Section 10.2). This so-
lution to the measurement problem has, however, a serious drawback. And
this is that the interactions with the environment are not only able to change
the properties of a measurement device to properties that are approximately
outcomes, but that they sometimes also make the properties of the device
change from outcomes to properties which are not outcomes. And, due to
the mentioned instability of the property ascription, this latter change may
be possible within a small time interval (Sections 10.2 and 14.5). It is here
that the instability of the modal property ascription seriously threatens the
spectral and atomic modal interpretations: this instability may make these
interpretations empirically inadequate in the sense that they do not yield a
stable solution to the measurement problem.

A positive result is that if the spectral and atomic modal interpretations
solve the measurement problem, then they automatically ascribe the out-
comes with the correct Born probabilities and with the correct correlations
(Chapter 11).
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With regard to the third demand, I have taken an interpretation of
quantum mechanics as metaphysically tenable if it satisfies the criteria of
Consistency and Internal Completeness. And since modal interpretations
give descriptions of states of affairs which are noumenal in the sense that
these states of affairs cannot, in principle, be observed, I have defended
the position that one should not impose further criteria on metaphysically
tenable interpretations (Section 12.1). Given this position, my conclusion
is that on the basis of the problems and results presented in this book,
the atomic modal interpretation and the spectral modal interpretation with
perspectivalism are metaphysically tenable.

This conclusion again does not imply that these interpretations yield
descriptions which are philosophically or physically attractive, or that they
yield descriptions which are in full harmony with our every-day notions
about reality. It rather means that they are consistent with our observations
and that the most poignant violations of every-day notions do not show up
at the level of the phenomena, but are restricted to the descriptions of the
noumenal states of affairs only. For instance, the facts that the atomic modal
interpretation is non-holistic and that the spectral modal interpretation is
non-reductionistic (Section 13.2) do not harm their metaphysical tenability.
And this means that these facts do not violate Consistency and Internal
Completeness, and that at the level of observation these facts need not bother
us. The descriptions of our observations and of the outcomes of measurement
by the spectral modal interpretation do satisfy reductionism (Section 13.3).
And if the atomic modal interpretation solves the measurement problem,
then this interpretation can assign in a sensible way holistic properties as
dispositions to systems (Section 13.4).

I have also argued that it is often impossible to obtain knowledge about
the descriptions of reality by the spectral and atomic modal interpretations
(Section 14.7). Hence, from an epistemological point of view one has to hold
against these interpretations that they put forward descriptions of reality
which are often unknowable to us.

Hence, to summerise, I take the bi and spectral modal interpretations
without perspectivalism as interpretations which cannot be developed to full
descriptions of reality. And I take the bi modal interpretation with per-
spectivalism as empirically inadequate. The atomic modal interpretation and
the spectral modal interpretation with perspectivalism are metaphysically
tenable. However, it is questionable whether they are empirically adequate
for it may very well be the case that there exist measurement interactions
for which the spectral and atomic modal interpretations do not manage to
solve the measurement problem in a stable way.
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I have become rather hesitant about the modal interpretations consid-
ered in this book. My hesitance has not only to do with the somewhat
disappointing results about the well-developedness, empirical adequacy and
metaphysical tenability of these interpretations. It also has to do with the
starting points of these interpretations. The bi, spectral and atomic modal
interpretations belong, as I said when I introduced the different modal in-
terpretations, to the same programme towards an interpretation of quantum
mechanics (Section 4.1). Methodologically, this programme is characterised
by the common feature that the property ascriptions to systems are implicitly
definable from the states of the systems. This implicit definability is achieved
because the bi, spectral and atomic modal interpretations all employ the
spectral resolutions of states to define the properties of systems. And this
made these modal interpretations, when they were proposed, promising in-
terpretations of quantum mechanics: they not only rejected the projection
postulate but also advanced descriptions of reality which kept close to the
quantum formalism because it is the quantum states themselves which fix
the properties of systems. And that all seems natural.

However, in retrospect one can detect a certain incoherence in the spectral
and atomic modal interpretations which has to do with the violations of
Dynamical Autonomy (it is unclear whether the following applies to the bi
modal interpretation because this interpretation is, in general, silent about
the tenability of Dynamical Autonomy). The spectral and atomic modal
interpretations define, as I have said, the properties of a system by means of
the state of the system and the property ascription therefore satisfies Instan-
taneous Autonomy. That is, there exists a unique relation between a state
of the system and the properties possessed by that system. However, since
the spectral and atomic modal interpretations violate Dynamical Autonomy
for composite systems, there does not exist a unique relation between the
evolution of the state of a freely evolving composite system and the evolu-
tion of the properties of the subsystems of that composite. And since the
atomic modal interpretation violates Dynamical Autonomy for whole sys-
tems as well, there also does not exist a unique relation in that interpretation
between the evolution of the state of a freely evolving molecule and the
evolution of the properties of that molecule.

There is, of course, no logical contradiction involved in this difference
between the way in which states and properties are related and the way in
which the evolution of states and properties is related. However, it is at least
slightly incoherent and a possible ground to question the spectral and atomic
modal interpretations. For if it is the case that the evolution of the properties
of systems is not uniquely related to the evolution of the states of those
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systems, why should it then be the case that the properties themselves are
uniquely related to those states? By their violations of Dynamical Autonomy,
the spectral and atomic modal interpretations force us to understand the
physics of the properties of a quantum system not as being uniquely fixed
by the state of that system, but as being dependent on the state of the whole
universe. But if this is the case, why then not be brave and also take the
properties of a quantum system itself as being dependent on the state of the
whole universe? So, the inability of these modal interpretations to satisfy
Dynamical Autonomy undermines, in my mind, their very starting point that
the properties of a system should be defined from the state of the system.

To conclude, even if in the end the spectral and atomic modal interpreta-
tions are rejected because they are proved to be empirically inadequate or
because they are generally seen as being incoherent, I believe that all the
work done on these interpretations will prove its worth. The development
of their property ascriptions to fully-developed descriptions of reality, the
results obtained when checking their empirical adequacy and the analysis of
their metaphysical tenability have yielded fertile techniques for interpreting
quantum mechanics without being committed to the projection postulate.
That is, many of the results obtained for the spectral and atomic modal
interpretations can be applied directly to other (modal) interpretations. Ex-
amples of such easily transposable results are the full property ascription
(Chapter 5) and the proofs about the probabilities and the correlations with
which modal interpretations ascribe outcomes after measurements (Chap-
ter 11). So, even though I expect that the ultimate interpretation will not
ascribe properties to quantum systems by means of the spectral resolutions of
the states of systems, I surely believe that modal interpretations represent a
general and powerful approach to the interpretation of quantum mechanics.

Possibly Bub's fixed modal interpretation (Section 4.6) may eventually be
recognised as a modal interpretation which yields a full, empirically ade-
quate and tenable description of reality. And the reason for this is that
the fixed modal interpretation does not suffer from the problems that the
spectral and atomic modal interpretations have. Its property ascription is
by definition fixed and thus stable. And since the core property ascription
to a system is only loosely connected with the state of the system, the fixed
modal interpretation violates Instantaneous Autonomy equally as it violates
Dynamical Autonomy. The only problem I see for the fixed modal inter-
pretation is the question of how to define the core property ascription (or,
equivalently, of how to define the preferred magnitude). As I said before,
the attractive feature of the bi, spectral and atomic modal interpretations is
that their property ascriptions stay close to quantum mechanics. In the fixed
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modal interpretation it now seems difficult to define a property ascription
which shares this feature. Just to assume, for instance, that for pointers of
measurement devices the core properties are given by the pointer readings,
seems like putting the desired description of reality in 'by hand' and does not
provide the attractive feature of being close to quantum mechanics. Instead,
what seems to be required is an argument which starts from the quantum
formalism and which yields a natural core property ascription for the fixed
modal interpretation. And then, if this core property ascription is applied
to measurements, it should be a consequence (and not an assumption) that
pointers assume their readings. (An obvious route to go is to follow the exam-
ple of Bohmian mechanics and to argue that the quantum formalism singles
out a core property ascription which ascribes positions to systems.) And if
it is indeed possible to define a property ascription which follows naturally
from quantum mechanics and which makes the fixed modal interpretation
solve the measurement problem, then the framework advanced in this book
turns this fixed modal interpretation into a well-developed interpretation of
quantum mechanics.



Appendix A

From the bi to the spectral modal interpretation

The bi modal interpretation generalises uniquely to the spectral modal interpretation
if one assumes that (A) all systems possess properties, that (B) there exist correlations
between the properties of mutually disjoint systems, and that the property ascription
meets (c) Instantaneous Autonomy, (D) Dynamical Autonomy for measurements and
(E) Empirical Adequacy (see Section 3.3).155

Firstly, I prove by these assumptions that the bi modal interpretation ascribes
core properties to any system independently of whether or not systems are part of
a composite with a pure state. Secondly, I show that there exists for any system
at any time a measurement which reveals with probability 1 the actually possessed
core property of that system. Thirdly, I derive for arbitrary sets of disjoint systems
the correlations between the core properties of those systems.

A.I The general core property ascription
Consider a system a with a state Wa. If a is part of a composite CD with a pure state
1^), then the core property ascription to a is in the bi modal interpretation given
by

[P«] = l with probability p(P%) = Tra(WaPa
a). (A.I)

Here, Pa
a is an eigenprojection of W* corresponding to the non-zero eigenvalue w*.

This property ascription is only valid in the special case that a is part of a
composite co with a pure state. However, by invoking Instantaneous Autonomy, one
can turn this property ascription into a generally valid one (I again copy the line of
reasoning followed at the end of Section 6.2). Consider any system a with a state
W*. If a is part of a composite co with a pure state, the core property ascription to
a is in the bi modal interpretation given by (A.I). If a is not a part of a composite
with a pure state, a still possesses properties according to my assumption (A), but
the core property of a is unknown. Instantaneous Autonomy now demands that the
property ascription to a is equal in both cases since the state of a is in both cases
equal.156 Hence, also if a is not a part of a composite with a pure state, the core
property ascription to a is in the bi modal interpretation given by (A.I).

155 The proof is based on the one given in Vermaas a n d Dieks (1995).
156 Instantaneous Autonomy can be used because the property ascription (A.I) to a satisfies the necessary

condition that it is a function of the state of a only.
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A.2 Core property revealing measurements
Consider the magnitude represented by the state Wa = ^ \ - w ] P* of a system a. If
{\pajk)}j,k is a set of pair-wise orthogonal vectors which expands the eigenprojections
of Wa as Y2k \P%)(P%\ = P?> a measurement interaction of this magnitude is given
by

U«*(t2, h) \p%) ® |RS) = \p%) <g> \R%), (A.2)

where n is a pointer and {IRjk )}_/,& are pair-wise orthogonal vectors which are related
to the eigenprojections {RJ}j of the pointer reading magnitude Mn = YjWijRJ as
^ = EfcI^X^I, for ally.

According to the bi modal interpretation this measurement reveals with prob-
ability 1 the core property that a actually possesses before the measurement. To
prove this, I consider a special model in which two of these measurements (A.2) are
embedded. The model comprises a and two pointers n and n'. The initial state of
cun'n at time to is J2jk -y/wj IPjk) ® lRo ) ® lRo) w n e r e the values {w?};- are assumed
to be the eigenvalues of the state W* at t\. Then, from to to t\ a first measurement
(A.2) is performed on a with pointer n' and from t\ to t2 a second measurement
(A.2) is performed on a, now with the pointer n. The states of the model at t\ and
t2 are then

The second measurement is the one I am interested in. (Note that the model poses
no restrictions on the state of a before this second measurement; by tuning the
coefficients {wj}; and the vectors {\p°jk)}jk, one can obtain every possible state

Now apply the bi modal interpretation to the systems a and %' at t\ and to n at t^.
At t\ the state of a is Wa(ti) = J2jw] p?> s o i t s c o r e properties are {PJ}j. The state
of nf is W71'(t\) = ^2jWj Rj', so its core properties are the readings {Rj'}j. And the
state of n at £2 is Wn(t2) = J2j WJ R]> s o i t s c o r e properties are {R]}j. Since all these
properties are by assumption (B) correlated, one can introduce the joint probability
p(P£(ti),R£(ti),Rc(t2)) that a actually possesses Pfl

a at tu that nr actually possesses
R$ at t\, and that n actually possesses R* at ti. The state of the composite <xnf is
pure at tu so one can derive with the bi modal interpretation the joint probabilities
p(P;(ti),Rg(ti)). By (4.10) these joint probabilities are zero if a ^ b. It follows that
p(P%(ti),RZ'(t\),Rc(ti)) is zero if a ± b and one can conclude that

P(^(r2) /Pa
a(r0) = p{R:{t2)/R*{h)). (A.4)

Hence, the left-hand conditional probability, which correlates the actually possessed
property of a before the second measurement with the final reading of that meas-
urement, is equal to the conditional probability for the two readings possessed by nf

at t\ and by % at t2. This latter conditional probability (the right-hand side of (A.4))
yields predictions about measurement outcomes and should, according to Empiri-
cal Adequacy, be equal to the conditional probabilities generated by the standard
formulation of quantum mechanics.
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Apply therefore the standard formulation to the model. If at t\ the pointer nf

assumes the outcome R%'9 the state of cm'n collapses in the standard formulation to

^ E \Paq)(Par\ ® l<>(4l
q,r

This collapsed state evolves with (A.2) to

\Paq)(P*ar\ ® l<><l£l ® Kq)Mrl (A.6)
q,r

From the Born rule it follows that

PBorn(Rc(t2)/Ra(h)) = Tx^n(W^n(t2) \F* ® «?]) = <5flc (A.7)

So, by using Empirical Adequacy, one can fix the right-hand side of (A.4) and
conclude that

P(R«(t2)/P2(h)) = Sac. (A.8)

This result can be made generally valid with Dynamical Autonomy for measure-
ments. Take any measurement (A.2) performed on a system a with an initial state
Wa = Y^j w] P"> I n the case that this measurement is embedded in the above model,
the conditional probabilities p(R£(t2)/P5(h)) are equal to dac. In any other case, these
conditional probabilities are not known. Dynamical Autonomy for measurements
demands that these conditional probabilities are the same in both cases.157 Hence,
in all cases it holds that p(R*(t2)/P2(ti)) = 5ac.

So, every measurement (A.2) on a system a with the state Wa = J ^ w^ PJ reveals
with probability 1 the actual core property of a before the measurement.

A.3 The correlations between disjoint systems
Consider finally an arbitrary set of disjoint systems a, /?, y, ... with a composite
state Ww, where co = a ft • • •. The core properties of these systems are correlated by
assumption (B). Suppose now that one measures one by one the core properties of
these systems with a series of the property revealing measurements which I defined
above. So, a first pointer n\ interacts with a, a second n2 interacts with /?, and so
on. They all reveal with certainty the initial actually possessed core property. So, the
probability that these pointers n\9 n2, etc., possess simultaneously the readings R%1,
R%2, etc., after the measurements, is equal to the probability p(Pfl

a,P^,...) that a, ft,
... possess simultaneously their core properties before the measurements. Hence,

p{P«,P^...) = p{Rl\Rl\...). (A.9)

This latter probability is again a joint probability for measurement outcomes so must
by Empirical Adequacy be equal to the joint probability for measurement outcomes
predicted by the standard formulation. A straightforward calculation yields that the

157 Dynamical Autonomy for measurements can be used here because the conditional probabilities
p(Rc(t2)/P£(ti)) = Sac derived with the model do not depend on the specific state of the pointer n'.
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standard formulation predicts that the joint probability to obtain the outcomes R%\

R%2, etc., after the measurements is given by Tr(O{W(a [Pfl
a ® pg ® •••]) . Hence,

By invoking Instantaneous Autonomy158 one can transpose this result, derived for
this special case of a series of property revealing measurements, to the general case
when no measurements are performed on the systems a, /?, etc. (The argument is a
variation to the arguments given at the end of the two previous sections.)

The conclusion is thus that if one generalises the property ascription of the bi
modal interpretation to a property ascription which is applicable to any system,
which establishes correlations between the properties of sets of disjoint systems and
which satisfies Instantaneous Autonomy, Dynamical Autonomy for measurements
and Empirical Adequacy, one uniquely arrives at the property ascriptions (A.I) and
(A. 10) of the spectral modal interpretation. Conversely, Lemma 6.2 on page 96
proves that the property ascription of the bi modal interpretation can be regained
as a special case of the property ascription of the spectral modal interpretation.

158 The joint probabilities (A. 10) for {a, /?,...} are only a function of the state of co as demanded by the
necessary condition of Instantaneous Autonomy. One can thus use this assumption.
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a, /?, y, ... physical systems
{(xq}q atomic systems
a/? • • • composite system containing the disjoint systems

a , fi, ...
A</ spectral value of a biorthogonal decomposition

of PF°0)
ju, v measurement devices
Ji mechanism of the measurement device \i equal to ja/n
n, p pointers of measurement devices
|t/;a), | 0 a ) , ... vectors in the Hilbert space Jfa

X¥CD) vector in the Hi lber t space Jt?m wi th co a
compos i te system

co composite system
co /a the system equal to the composite co minus its

subsystem a
cij eigenvalue of the operator A*
\a%) eigenvector of Aa corresponding to the eigenvalue a/

12k \a°jk)(a°jk\ eigenprojection of A* corresponding to the eigenvalue aj

Aa, Ba operators on the Hilbert space J^a (usually self-adjoint)
09({Sj}j) Boolean algebra generated by the projections {Sj}j
CJ projection on Jfa representing the core property of the

system a
|d?) vector representing spin down in v direction of spin

^-particle a
\TP) vector in the Hilbert space 3tf**• of the measurement

device JJL
^ vector in the Hilbert space 2tfv- of the mechanism Ji
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projection on Jf7^ representing a property of the
mechanism ft
set of definite-valued projections

{\e°-)}j, {\fy}k sets of normalised and pair-wise orthogonal vectors
Ej eigenvalue of the Hamiltonian Ha

\Ejk) eigenvector of the Hamiltonian H*
E\(T) spectral projection of the operator Aa corresponding

to the set T
\SW) vector in the Hilbert space Jfw with co the environment
fq(t) continuous function of eigenvalues of the state Wa(t)
F a preferred magnitude (in the fixed modal interpretation)

j) faux-Boolean algebra generated by the projections

Ha Hamiltonian of the system a
Jfa Hilbert space associated with the system a
J(t) probability current
nij eigenvalue of the pointer reading magnitude Mn

Mn = J2j mj R] reading magnitude of the pointer n
J^(Wa) the set of projections onto subspaces of the null space

of W«
Pj, p(" -) probabilities
P* eigenprojection of the state Wa

PJIbc... projection Pa
ai ® P%2 ® • • • on jfP with {ocq}q the atoms

in fi
Pa(^d) projection on Jfa defined by a biorthogonal

decomposition

P(a,b)(t) the projection Er?(t)e(a,b) !*?(')>(rf(t)\

Pj t h e set o f p r o j e c t i o n s {P^,Pf,...}

Qa projection on the Hilbert space Jtfa

J a subspace of Jfa onto which the projection Qa projects
rf(t) ordered eigenvalue function of the state Wa(t)
\rf(t))(rf(t)\ ordered one-dimensional eigenprojection function of

W«(t)
rf(t) eigenvalue function of the state W*(i)
\7f(t))(rf(t)\ one-dimensional eigenprojection function of Wa(i)
|R^ ) eigenvector of Mn corresponding to the eigenvalue

mj

RJ = J2k \Rlk)(Rlk\ eigenprojection of Mn corresponding to the eigenvalue
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Rf™ the projection RJ ® ¥°/n on the Hilbert space Jfw

Si7 spin magnitude in the direction v of spin particle a
{Sjj}j set of pair-wise orthogonal projections on Jfa

T*(t) continuous trajectory of eigenprojections of Wa(t)
Tkj(t) infinitesimal transition probabilities
\u°) vector representing spin up in v direction of

spin ^-particle a
U* unitary operator on the Hilbert space Jfa

Ua(x,y) unitary time evolution operator exp([(x — y)/ih] Ha) on

Wj eigenvalue of the state Wa

W* density operator representing the state of the system a
W£n effective state of a given preparational measurement

outcome R7-
[.]j value assignment to properties and magnitudes
Ia unit operator on the Hilbert space Jf^
Oa null operator on the Hilbert space &a

-" negation
A conjunction
V disjunction
|||t/;a)|| Hilbert space norm of the vector \xpa)
||yla|| operator norm of the operator Aa

\\Aa\\i trace norm of the operator A*
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