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Chapter 1

Introduction

There are compelling arguments in favor of formulating quantum statistical
mechanics in classical phase space. The approach has many potential applications
in condensed matter, and it has already led to a new explanation for the λ-transition
and superfluidity in liquid helium. However, for the idea to reach its full potential,
significant challenges to its practical computational implementation must be met.

1.1 Why phase space?
At the conceptual level, one motivation for seeking a phase space formulation of
quantum systems is to gain new insight into the structure of the physical universe.
Specifically, mathematical derivations that give a quantitative characterization of
quantum systems, but in the setting of classical phase space, would surely help close
the puzzling gap between the quantum nature of the sub-microscopic world and the
classical nature of the macroscopic world. One can no more deny the validity of
quantum mechanics as the law of the Universe, than one can close one eyes to the
classical behavior of the world around us. Indeed the great triumph of Newton’s
mechanics from the seventeenth century was that they encapsulated the observed
laws of nature. Thus the shock in the early twentieth century when it was discovered
that at the fundamental level the Universe is actually governed by quantum
mechanics. This tension between the fundamental quantum behavior at the sub-
microscopic level and the classical behavior of macroscopic everyday phenomena
remains present today.

The simplistic explanation for the origin of classical behavior—that quantum
mechanics applies to sub-microscopic particles and classical mechanics applies to
macroscopic objects—begs the question. It offers neither physical insight into how
our world comes to be, nor any new quantitative methods for treating it. What
would actually be useful is a mechanistic and mathematical treatment for the
transition from quantum to classical behavior. In answering the question of how
classical behavior arises, one might hope to delineate quantitatively the respective
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limits of quantum and classical behavior, and perhaps even to develop methods for
characterizing that gray boundary region where both coexist to greater or lesser
degree.

Of course quantum mechanics can be used to describe—in principle but not in
practice—the behavior of many-particle systems in any regime. However to treat
systems that are unambiguously classical using the direct methods of quantum
mechanics (i.e., operators, wave functions, Schrödinger’s equation, eigenstates,
particle statistics, symmetrization, etc) rather than the established methods of
classical statistical mechanics (phase space, probability distributions, particle
dynamics, etc) would be both unnecessary and so numerically inefficient as to be
beyond the powers of present-day or even foreseeable computers.

Currently then there is a curious dichotomy wherein reliable exact methods exist
for the treatment of either few-body fully quantum systems, or else many-body fully
classical systems. But, despite many approximate approaches explored over the
years (see below), there is arguably a dearth of practical reliable tools to deal with
many-body systems between these two extremes.

Here lies the practical motivation for seeking methods to describe quantitatively
those systems that are primarily classical, but which have small but measurable
quantum effects. Almost all terrestrial condensed matter systems are classed in this
category. As a quantitative example, the quantum contribution to the thermody-
namic properties of water at standard temperature and pressure is on the order of
one part in ten thousand. Other properties of water (e.g., spectral lines, hydrogen
bonds) have larger quantum contributions. The degree to which it is necessary to
account for quantum effects in characterizing materials, technologies, or industrial
processes of course varies with the system being studied and the property that is
sought. Although as argued above it is not feasible to use direct quantum methods,
equally one should pause before treating terrestrial condensed matter systems solely
with the methods of classical statistical mechanics. In any particular case such
classical calculations are of doubtful reliability and accuracy unless there is some
means of calculating or bounding the quantum contribution.

A practical quantitative description of real-world, many-particle systems must lie
between approaches that invoke the axioms of quantum mechanics directly, and
uncorrected methods of classical statistical mechanics that neglect quantum con-
tributions entirely. The former is computationally prohibitive, and the latter is
possibly an over-simplification that leaves out what could be important effects.
Calling attention to the predominantly classical nature of the observed world opens
the door to new approaches or more efficient procedures that are better designed for
describing it. After all, the fact that the world of common experience is predom-
inantly classical, with a soupçon of quantum, surely suggests that a theory mixed
from similar ingredients would be useful.

To this end one might envisage a form of quantum perturbation theory, with
classical statistical mechanics as the leading order term. Depending upon the
structure of the theory that emerges, one could imagine a systematic expansion in
which higher order terms account for successive quantum contributions. In those
circumstance it is tempting to move the goal posts, with more ambitious aims to
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treat many-particle phenomena in which quantum behavior is not just a perturba-
tion but is a significant or even dominant contribution. The point is that although
one might begin with, and be motivated by, quantum perturbations to classical
statistical mechanics, the final applications of the approaches that are developed
could well extend deep into the quantum regime (cf the treatment of the λ-transition
and superfluidity in liquid helium in chapter 5).

Ultimately the only limit on the application of the theory should be its accuracy
and reliability. Perhaps in the fullness of time algorithms based in classical phase
space can be developed to the point where they are more efficient computationally
for a fully quantum many-body system than direct quantum methods based on
finding the full system eigenstates and symmetrized eigenfunctions.

1.2 Why not direct quantum methods?
In the preceding subsection the main argument advanced for formulating quantum
statistical mechanics in classical phase space was that the most useful applications of
science lie in the terrestrial sphere, and in this regime classical behavior is
predominant. Even though in a formal mathematical sense such classical behavior
is ultimately due to and expressible by the axioms and equations of quantum
mechanics, it is arguably better to develop approximate or exact theories from a
starting point that is in close proximity to the eventual application. Such a base is
provided by classical phase space.

To anticipate the detailed results set out in the text, the starting point is a formally
exact transformation of quantum statistical mechanics in which the specific quantum
rules and axioms are embodied in particular functions of phase space. The
evaluation of these phase functions may require approximate techniques, and
different approximations may suit different applications. The key questions are of
course how general are the approximations, how efficient are the computational
algorithms, and how reliable are the final results. Specific examples and applications
of such algorithms are given in the text.

For brevity, I shall refer to alternatives to this classical phase space formulation as
direct quantum mechanics, such as methods based on the direct evaluation of the
energy eigenstates and symmetrized eigenfunctions of the system, or other wave
function methods, with statistical averages being a weighted sum of expectation
values. Before listing a number of such direct methods, I paint in broad strokes the
generic impediments in practice to the application of direct quantum methods to
many-particle condensed matter systems.

The computational challenges for the quantum mechanics of many-particle
systems primarily arise from the difficulty in finding the energy eigenfunctions and
eigenvalues of the system, and from the difficulty in enforcing the boson and fermion
occupancy rules. In addition to the technical barriers that inhibit the accurate
numerical description of many-particle systems, it is the rapid increase in computa-
tional cost with system size that can be prohibitive (Bloch et al 2008, Hernando and
Vaníček 2013). Common partial differential equation algorithms, for example, grow
exponentially with system size (Morton and Mayers 2005).
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One can see this with simple scaling arguments. Consider a quantum system
consisting of N particles in d dimensions. If one stores the eigenfunctions on a grid of
M points per axis, then the amount of memory required grows as MNd . Such
exponential growth severely limits the size of a system that can be treated directly.
Further, suppose that the system either exactly or approximately can be expressed in
terms of single-particle energy states. If these have fixed spacing ΔE, then for a
temperature T the number of accessible excited single-particle states can be expected
to be on the order of Δ ≳k T / 1B E . Realistically, then, one would require on the order
of Δk T( / )N

B E eigenvalues and orthogonal eigenfunctions in order to characterize the
whole system. Again this grows exponentially with the size of the system. Finally, it
is essential that the eigenfunctions be fully symmetrized for bosons, or anti-
symmetrized for fermions, which requires ! ∼N NN operations. These estimates
show how challenging a direct quantum calculation is for a large many-particle
system.

Of course these scaling arguments provide rather crude estimates. Various and
sophisticated attempts to ameliorate the difficulties with direct quantum methods
have been made. The breadth of such attempts can be illustrated by a small
selection: imaginary-time non-uniform mesh methods (Hernando and Vaníček
2013), pseudo-potential and mean-field methods (Dalfovo et al 1995, Savenko
et al 2013, Rogel-Salazar 2013), density functional theory (Parr 1994, McMahon
et al 2012), quantum Monte Carlo methods (Pollet 2012, McMahon et al 2012,
Mallory and Mandelshtam 2015, Ancilotto et al 2017), lattice Gaussian approaches
(Dimler et al 2009, Shimshovitz and Tannor 2012, Machnes et al 2016), collocation
methods (Kosloff 1988), discrete variable representation methods (Harris et al 1965),
and variational Gaussian wave-packet methods (Frantsuzov et al 2003, Frantsuzov
and Mandelshtam 2004, Georgescu and Mandelshtam 2010, Georgescu and
Mandelshtam 2011, Georgescu et al 2011). These methods usually invoke one or
more approximations (e.g., variational functionals, discrete grids, truncated eigen-
value spectrum or even restriction to the ground state, neglect symmetrization, etc),
which can limit their individual reliability and range of application.

Despite in many cases the proven merits of these algorithms and their demon-
strated improvement over, for example, partial differential equation methods, the
size of quantum many-body systems that can currently be treated computationally
remains perhaps two orders of magnitude smaller than classical many-body systems.
Faced with the many serious challenges inherent in direct treatments of quantum
systems, workers are faced with two choices: either they can focus on a small system
and develop techniques to solve it exactly up to a certain level, or else they can look
to use approximate approaches on larger systems.

As an example of the exact but small system approach, Hernando and Vaníček
(2013) found the first 50 energy eigenvalues and eigenfunctions for five Lennard–
Jones particles using a non-uniform discretization of space and time. The algorithm
is said to be considerably more efficient than the exponential scaling of standard
finite difference methods. Nevertheless limiting the system to five particles and
obtaining no more than 50 energy levels gives an indication of the severity of the
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computational challenges with the method. (Compare this with the results in
table 9.1 below, where 104 energy states were found to be necessary for a four
particle system with similar interaction strength at standard temperature.)

As an example of the approximate but large system approach, Georgescu and
Mandelshtam (2011) used unsymmetrized Gaussian wave packets in a variational
approximation to study the ground state of 6500 Lennard–Jones atoms. They
estimated that the scaling with system size was reduced from N( )3O to N( )2O .
Although the size of the system is impressive, it comes at the price of a variational
approximation, the neglect of wave function symmetrization, and the neglect of
excited states.

This brief survey of direct quantum methods for many-body systems does not
do justice to the efforts that have been expended by many workers in pursuit of
practical algorithms for realistic systems. It does not detail the very real
improvements that have been made over the years. (For comprehensive reviews
of the state of the art in computational methods see the two papers just
mentioned.) But in many ways the point is not whether one can make incremental
improvements in the computational efficiency of direct approaches, but rather
whether the problem is inherently so difficult that a fundamentally different
viewpoint is required.

1.3 Advantages and challenges of phase space
Why are quantum many-body systems so difficult to treat computationally? The
question becomes all the more pertinent when one draws the contrast with classical
many-body systems. Whereas the full direct quantum treatment of many-body
systems scales exponentially with particle number, accurate and reliable computer
simulations for classical many-body systems scale sub-linearly with particle number
(this is for fixed statistical relative error with cut-off potentials).

Of course, this favorable scaling of classical systems is no guarantee that
transforming quantum statistical mechanics to classical phase space will enjoy the
same computational advantages. After all, the system remains fundamentally
quantum, and if the transformation is formally exact (which it is), then one would
want to know how it is that the quantum phase functions that are introduced in the
process avoid the exponential scaling with system size (which they do). But even
before explaining these things, one can appreciate the motivation not only for
looking for alternatives to direct quantum methods, but also for looking in the
direction of classical phase space.

In order to understand at a general conceptual level why classical phase space
might be advantageous, and perhaps to narrow down the search for efficient
algorithms, we need to figure out more precisely just what it is about quantum
systems that make them so computationally challenging. We also need to under-
stand how it is that fundamental quantum axioms do not automatically preclude a
classical phase space formulation, and how a classical phase space formulation can
accommodate these quantum axioms.

Quantum Statistical Mechanics in Classical Phase Space

1-5



To these ends one can pinpoint five key generic differences between quantum and
classical systems:

• quantization
• superposition
• non-commutation
• symmetrization
• non-localization.

1.3.1 Quantization

Quantization, or the discrete nature of system states, first lead to the discovery of
quantum mechanics. Two phenomena that come to mind are optical spectra and the
photo-electric effect. In addition one can mention the ultraviolet catastrophe—the
divergence of the energy density of black-body radiation—which was resolved when
Planck (1900) postulated the quantization of electromagnetic radiation. The issue
quantization raises with the classical phase space formulation of quantum statistical
mechanics is that the classical particle momenta are continuous. (The positions are
continuous in both quantum and classical mechanics.) In quantum mechanics for a
system with edge length L in which the wave function does not go to zero at the
boundaries, the momentum eigenvalues must be discrete and separated by

πΔ = ℏ L2 /p per particle per dimension in order for the momentum operator to be
Hermitian (Messiah 1961, chapter V, section 11). Since we are interested in
macroscopic systems and ∼L N1/3, one sees that this spacing is infinitesimal.

One property of the continuum momentum formulation requires attention,
namely that the phase space integral accords vanishing weight to the point of zero
momentum in two- or three-dimensional space. For non-interacting bosons this
point is the energy ground state, which is of specific interest in, for example, Bose–
Einstein condensation. To describe such phenomena with non-interacting bosons,
the point of zero momentum has to be treated explicitly and additionally to the
integral over phase space (section 5.2).

In the case of direct quantum methods, quantization is a major challenge because
the discrete states must be individually characterized, and the number of such states
grows exponentially with system size. Even for as few as four particles, the data in
table 9.1 in the text shows that more than 104 energy states may be needed for a
reliable description at standard temperature. Furthermore, higher energy eigenfunc-
tions need to be made orthogonal to all the lower order ones, a process that grows
quadratically with the number of states.

1.3.2 Superposition

The second quantum feature listed above is the superposition of states. This stems
from the fact that any linear combination of wave functions that are solutions to
Schrödinger’s equation is itself a solution. Since any wave function is a linear
combination of eigenfunctions, the expectation value of an operator for a system in a
particular wave state is the correspondingly weighted sum over the elements of the
matrix representation of the operator,
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∑ψ ψ ψ ψ〈 ∣ ˆ∣ 〉 = *A A .
n m,

n m nm

The off-diagonal elements in this sum correspond to the superposition of the
respective states. The physical interpretation is in essence that the system exists in
the different eigenstates simultaneously, and these interfere with each other. This is
contrary to our experience of the classical world in which systems occupy one, and
only one, state at a time.

In addressing the impact of superposition on the classical phase space formulation
of quantum systems we first slightly digress to discuss the general physical reasons
that superposition effects are absent in the classical world. Take a cat, for example,
which in common observation is in a single state at any one time. If the cat is placed
in an opaque box, it stretches credulity to assert that it then exists in a superposition
of states. This has never been observed, possibly because the box is opaque, but
more likely because it never happens. There can only be one outcome when Occam’s
razor is applied to Schrödinger’s cat (Attard 2018).

It is essential to accept, as a matter of observation and as a matter of principle,
that superposition effects do not occur in the classical world. In general super-
position effects occur on scales of the order of Planck’s constant, ℏ. For example, in
the two-slit experiment, the spacing between the slits must be less than about the de
Broglie wavelength of the particle in order for the interference pattern to be visible.
One can use this fact to explain the absence of observed superposition effects in the
classical world.

The mathematical argument relies upon the construction of a set of orthogonal
non-overlapping wave packets of width ℏ( )O , indexed by a grid of points in classical
phase space with spacing greater than Planck’s constant (Attard 2018). This set
makes a low pass filter for changes in position and momentum and it provides a
complete basis for measurements with no better than classical resolution. With this
basis only the diagonal terms contribute to the expectation value, which is to say that
there is no interference between the superposed states. This explains the suppression
of the superposition of states in the classical world.

Of course, as a matter of logic and of mathematics, the fact that superposition
effects cannot be measured if the resolution is sufficiently coarse does not of itself
mean that indirect effects of the superposition of states are absent. Nor in fact is any
argument provided that one is justified is restricting phase space to such a coarse
grid. It is possible, even likely, that the quantum phase functions that occur in the
transformation to classical phase space display structure on scales smaller than
Planck’s constant, and serious errors would be introduced by the introduction of
such a coarse-grained filter. At the end of the day the aim is to obtain a formally
exact transformation to classical phase space and in such an exact transformation all
quantum properties must be present until and unless additional approximations are
later introduced. In other words, although the above arguments correctly explain the
absence of quantum superposition in the classical world, they do not themselves
justify neglecting the superposition of states in the formally exact transformation to
classical phase space.
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In fact the suppression of superposition effects already occurs at the quantum
level. Indeed it is the reason why the present book focuses on quantum statistical
mechanics rather than on quantum mechanics itself. In chapter 12 it is shown that
the exchange of a conserved variable between the subsystem of interest (a so-called
open quantum system) and the environment or reservoir collapses the entangled
wave function into a mixture of pure states. Such collapse has been explored in the
quantum theory of measurement (Zurek 1982, Joos and Zeh 1985, Zeh 2001, Zurek
2003, 2004, Schlosshauer 2005). Indeed, open quantum systems have also been
studied with versions of the Schrödinger equation that include Langevin-type
dissipative and fluctuation terms (Breuer and Petruccione 2002, Weiss 2012),
including those that result from the projection from the reservoir onto the subsystem
of the density matrix (Spohn 1980, Gardiner 1991) or operator (Gardiner 1988, Iles-
Smith et al 2013).

In chapter 12 it is shown that wave function collapse is the reason that the von
Neumann partition function of quantum statistical mechanics is of the form

∑= ′ = ′β β− ˆ −{ }Z e eTR .
n

nnH H

Due to the collapse of the wave function there are no superposed states and the only
contributions to the partition function and to statistical averages comes from the
diagonal elements of the various operator matrices. Since this is the starting point for
the transformation to classical phase space, superposition effects need not be
considered.

1.3.3 Non-commutation

The third distinction between quantum and classical systems listed above is non-
commutativity. In the context of the transformation to classical phase space the
relevant commutator relation is that for the position and momentum operators,

^ ^ = ℏq p[ , ] i .

From this the Heisenberg uncertainty relation for the variance of their expectation
values follows, Δ Δ ⩾ ℏq p . The commutator relation is often interpreted to mean
that one cannot measure the position and momentum of a particle simultaneously,
and the uncertainty relation is often said to mean that a particle does not possess an
exact position and momentum.

However one should be cautious in applying everyday language to quantum
phenomena. Generally the former has a well-accepted meaning and intuitive
interpretation inevitably based on classical experience. There is no reason to suppose
that such words apply at the quantum level in the same way as at the macroscopic
level. When it comes to quantum mechanics one should be guided by the axioms and
specific equations, and one should eschew the temptation to interpret these in
everyday terms. Specifically, there is no ambiguity or dispute with the mathematics
of an expectation value; but the meaning of measurement at the quantum level is
highly contestable. Whereas it is straightforward to take the expectation value of the
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position or momentum operators, or to apply the commutator relation to them, or
to deduce the uncertainty principle for them, it makes no sense to couple any of these
to the word ‘measurement’ if the latter cannot be expressed in agreed mathematical
terms. Conversely, if measurement is taken to be isomorphic to a specific mathe-
matical operation in quantum mechanics, then the name of that mathematical
operation should be used in preference to the word ‘measurement’ because there is
no ambiguity or classical baggage with the former, unlike the latter.

This discussion of the proper use of language in the quantum context is not
merely an academic exercise. It has direct consequences for the present program of
transforming quantum statistical mechanics to classical phase space. Since the latter
is classical, we can say without hesitation that a phase space point gives the ‘position’
and the ‘momentum’ of every particle in the system. These words have their
everyday meaning, and amongst other things it implies that we can attribute to
each particle values of position and momentum simultaneously. Moreover, since
phase space is a continuum, we can do so with infinite precision. (It also implies that
that we can label each particle, the consequences of which will be discussed in the
following subsection on symmetrization.) The point is, however, that there is no
reason to suppose that this violates the axioms of quantum mechanics because the
words we use at the macroscopic level have no meaning at the quantum level —
unless we specify exactly the axiom, equation, or symbol to which they refer.

For the case of the classical position one can identify at least four different
quantum mathematical symbols that it could be the analog of: the position
representation coordinate, the position eigenvalue, the position expectation value,
and the position operator. These are quite distinct from each other, and the classical
word ‘position’ should not be used to refer to more than one of them. To cut a long
story short, in the text it will be shown that the position coordinate of classical phase
space corresponds to the quantum position eigenvalue.

Exactly the same issue arises for momentum and exactly the same conclusion
applies: the momentum coordinate of classical phase space corresponds to the
quantum momentum eigenvalue. (As was discussed above, the actual discretization
of momentum eigenvalues versus the continuous variation of the momentum
coordinate in phase space can be assumed to be unimportant in the limit of a
macroscopic system—with one exception.) Once one realizes that phase space points
correspond to position and momentum eigenvalues the difficulties raised above
disappear. Since eigenvalues are scalars, they commute. There is no uncertainty
relation for eigenvalues. And eigenvalues can be specified simultaneously (which is
not the same thing as saying that their respective operators can be applied
simultaneously—see chapter 7). Whether or not the usual interpretation of the
uncertainty relation (the position and momentum of a particle cannot be measured
simultaneously, or a particle does not possess an exact position and momentum) has
any meaning is irrelevant to the present phase space formulation because the
uncertainty relation and the commutator equation do not apply to position and
momentum eigenvalues.

Having dealt with the most common objection to using classical phase space for
quantum systems, it is important to add that the non-commutativity of the position
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and momentum operators does in fact create significant computational challenges
for the transformation of quantum statistical mechanics to classical phase space.
It would be fair to say that dealing with this issue has taken more time and effort
than all the other issues combined.

In a nut-shell the problem arises from the Maxwell–Boltzmann operator, β− ˆe H.
Since the Hamiltonian or energy operator is the sum of the kinetic energy operator,
which is the sum of the squares of the momentum operators, and the potential
energy, which depends upon the positions, the power series expansion of the
exponential mixes the two in all possible ways. Non-commutativity prevents one
writing this as the product of two exponentials, which one could do in the classical
case.

The easy part of the problem is to define a phase function by a certain asymmetric
expectation value of the Maxwell–Boltzmann operator that occurs in the exact
transformation to classical phase space (chapter 7). I call this the commutation
function; its defining equation is essentially the same as that given by Wigner (1932)
and by Kirkwood (1933). The hard part of the problem lies in finding practical,
efficient, and accurate ways to compute this function. To this end four different
approaches have been tried: high temperature expansions (chapter 8), including the
fluctuation series (section 8.5), nested commutator expansions (chapter 9), local state
expansions (chapter 10), and many-body expansions (chapter 11). These have been
tested for specific systems and they are illustrated with numerical results in the text.

The high temperature expansion, which is little different to an expansion in powers
of Planck’s constant, extends the results of Wigner (1932) and Kirkwood (1933). It is
systematic, and each term comprises purely classical functions: the momenta, and the
potential energy and its gradients. In so far as the gradients of the interaction
potential are more short-ranged than the potential itself, then this expansion for the
commutation function is local. Perhaps the most promising expansion derived in
chapter 8 is the one formulated for the commutation function exponent, because this
is an extensive function. However there are several limitations of the high temper-
ature expansion method: the derivation is inelegant, the individual terms rapidly
become complicated to derive and numerically challenging to evaluate, and the series
appears slowly converging for temperatures typical of terrestrial condensed matter.
One cannot help but compare the high temperature expansion for the commutation
function to the virial expansion for the pressure in classical statistical mechanics: it is
formally exact, it is of some historical interest, but it is questionable whether it will
ever prove a viable numerical approach for realistic systems.

The fluctuation series, section 8.5, writes the commutation function in terms of
the fluctuations of the phase space expectation value of the energy operator. The
terms are readily obtained from a recursion relation and are directly related to the
temperature expansion coefficients. A modified exponentiated series for the com-
mutation function exponent has extensive terms that are essentially the fluctuations
of the fluctuations; alas, to date the computational implementation of these has
proved wanting. Nevertheless the fluctuation series provides a physical interpreta-
tion for the terms in the temperature expansion and a rational basis for believing in
the convergence of the series for the commutation function.
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The nested commutator expansion for the commutation function, chapter 9,
factorizes the Maxwell–Boltzmann operator into exponentials of the potential
energy operator, the kinetic energy operator, and a residual operator. The latter
expresses the correction to the classical Maxwell–Boltzmann factor as a series of
nested commutators weighted by powers of inverse temperature, with explicit
expressions being given for second, third, and fourth order terms. One method
given for deriving the commutation function exponent operator is via a temperature
derivative, and there is consequently some overlap between the high temperature
expansion and the nested commutator expansion. One advantage of the latter is that
the individual terms appear in a highly compact form, and a great deal of internal
cancelation occurs in them. Like the high temperature expansion, the expectation
value of the commutation function exponent operator involves gradients of the
potential energy, and as such is highly localized.

The local state and the many-body approaches to the commutation function are
summarized in section 1.3.5 below.

In summary, the consequences of the non-commutativity of the position and
momentum operators poses less a conceptual challenge—how classical particles
possess position and momentum simultaneously and with infinite precision—than a
numerical one: how to compute the commutation phase function that arises
efficiently, accurately, and reliably.

1.3.4 Symmetrization

It is a fundamental postulate of quantum mechanics that the wave function must be
fully symmetric (bosons) or fully anti-symmetric (fermions) with respect to permu-
tations of identical particles (Messiah 1961, chapter xiv). This leads to particle state
occupancy statistics, in which more than one boson, but not more than one fermion,
can occupy the same single-particle state (Merzbacher 1970, chapter 20). Arguably
the formulation in terms of symmetrized wave functions is more fundamental than is
the formulation in terms of particle statistics because not all operators have
eigenstates that are single-particle states, but all eigenfunctions must be symme-
trized. Wave function symmetrization implies particle occupancy statistics in the
single-particle state case (chapter 2). In the case of multi-particle states, such as the
energy states for interacting particles, wave function symmetrization gives rise to a
so-called symmetrization factor, which is useful in evaluating any sum over states,
and which may be regarded as the generalization of particle occupancy statistics to
multi-particle states (chapter 3).

A second issue with the particle statistics formulation is that it is difficult to see
how the occupancy rules for single-particle states can be formulated or enforced in
the continuum limit that the spacing between states goes to zero. In the present phase
space formulation of quantum statistical mechanics, both the position and the
momentum eigenvalues describe single-particle states in the continuum limit, and so
particle occupancy statistics are potentially an issue here. Fortunately however, the
symmetrization factor alluded to above carries over in the continuum limit to
become a symmetrization function for phase space. This is the way that the
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fundamental rule for wave function symmetrization is enforced in classical phase
space.

Beyond particle statistics, a point needs to be made on the computational cost of
symmetrization, which will be expanded upon in the context of non-localization,
section 1.3.5 below. In discussing the challenges faced by direct quantum methods in
the subsection above, it was pointed out that the symmetrization of the wave
function required the permutation of all N particles in the system, !N operations in
total. This of course is prohibitive for a large system. The question therefore arises,
both for direct methods and for the proposed phase space formulation, whether it is
possible to reduce this number, and perhaps restrict the symmetrization to a subset
or subsets of the particles in the system. If valid, the computational savings would be
enormous.

Messiah (1961, chapter xiv, section 8) addresses a similar question. He points out
that if the total system wave function factorizes into the product of wave functions
for groups of particles confined to respective domains, and if these wave functions do
not overlap, then it is possible to permute the particles within each group
independently. These are pretty big ifs. It is hard to see how they would be satisfied
within the usual sorts of systems treated by quantum statistical mechanics.
Symmetrization appears to pose insurmountable difficulties for direct quantum
methods.

As mentioned, the formulation proposed here introduces the so-called symmet-
rization function of classical phase space. The highly favorable feature of the
derivation is that it is formulated as a systematic permutation loop expansion. The
terms involve Fourier exponents of the momenta and separations of specific groups
of particles, with closely separated particles dominating. It is shown that this gives
the known analytic results for the quantum ideal gas and for non-interacting
quantum harmonic oscillators, and leads to a novel physical interpretation and a
more efficient computational formulation of the latter, chapter 4. It also leads to a
new interpretation and physical mechanism for the λ-transition in liquid helium, and
consequently for Bose–Einstein condensation and superfluidity in general, chapter 5.
The terms in the loop expansion are effectively ordered in powers of fugacity, which
means that the error due to truncating the infinite series decreases with decreasing
density. The computational resources required for obtaining each term appear to
scale linearly with N. Separating commutation and symmetrization effects into two
phase functions enables an infinite order re-summation of the latter that accelerates
its convergence, chapter 3.

The final point to be made on symmetrization was alluded to above: the formally
exact transformation to classical phase space gives a label to each particle. The label
is arbitrary, but it serves to unambiguously associate a specific position and
momentum with each particle. In quantum mechanics the symmetrization of the
wave function is said to make identical particles indistinguishable (Messiah 1961,
chapter xiv). In truth we need not inquire into the meaning of the word ‘indis-
tinguishable’ or to the physical picture that it is meant to convey. We only have to
make sure that we follow the mathematical consequences of wave function
symmetrization. Since all symmetrization effects are subsumed exactly into the
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symmetrization phase function, we can assert that it is correct and proper for
particles to be distinguished in classical phase space by labels. Whatever ‘indistin-
guishable’ might actually mean in quantum theory, the full mathematical conse-
quences of wave function symmetrization are conveyed by the symmetrization
function using labeled particles in phase space.

1.3.5 Non-localization

Quantum mechanics is a non-local theory. The most eye-opening if not most
common manifestation of this is the Einstein–Podolsky–Rosen (EPR) paradox
(Einstein et al 1935, Mermin 1985). The simplest realization of this paradox
concerns a spin zero particle that decays into two spin half particles, which fly
apart until their spins are subsequently measured by detectors aligned at possibly
different angles. Upon measurement the entangled wave function collapses. The
quantum prediction is such that prior to collapse the properties of the wave function
cannot be considered local to each particle but rather global to the system as a
whole, even when the detectors are separated by macroscopic distances. The collapse
is apparently instantaneous, and certainly super-luminal. The quantum prediction of
non-locality has been unambiguously and quantitatively confirmed by laboratory
measurement (Aspect et al 1981).

In the context of the proposed program to perform quantum statistical mechanics
in classical phase space, the non-locality of quantummechanics is directly relevant in
explaining the ultimate reason why direct quantum methods are not computation-
ally feasible, and in underscoring the significant challenge faced by classical phase
space methods to do better.

The most common, almost mundane, manifestation of quantum non-locality is
quantization itself. The discrete solutions to Schrödinger’s equation, the eigenstates,
ultimately arise from the boundary conditions enforced on the wave function. Such
boundary conditions must be applied even when the boundaries are separated by
macroscopic distances. In general it is not possible to subdivide a system into
subsystems and to solve Schrödinger’s equation independently on each. Of course
one could match the wave function and its gradient across the boundaries of the
subsystems, but ultimately one has to impose conditions at the boundary of the
system itself, which vitiates the point of creating the subsystems in the first place.
The discrete eigenstates of the system are those states that satisfy the boundary
conditions of the full system, and there is no general method that gives these as the
product of eigenstates of quasi-independent subsystems. The necessity of solving for
the system as a whole means that all N particles contribute, and so it is not possible
to avoid the exponential scaling with system size that was discussed above.

The non-local nature of quantum mechanics in necessitating eigenfunctions for
the system as a whole also explains why wave function symmetrization requires !N
operations. For a system of interacting particles one cannot assume that the wave
function breaks up into products of non-overlapping wave functions of distinct
groups of particles, and so one cannot confine the permutations to within such
groups.
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From these arguments one can see the problems faced by direct quantum methods
in developing feasible computational algorithms. But what of methods based in
classical phase space? If the transformation of quantum statistical mechanics is
formally exact, how does one preclude the non-local phenomena just elucidated
from being equally prohibitive?

The detailed answer to this question must await the mathematical analysis of the
following chapters, specifically chapters 2 and 3 for wave function symmetrization.
But at this introductory stage one can give an overview that the reader might take on
trust until the details are filled in.

First we can return to the concept of non-locality and ask why the EPR paradox is
so surprising. The answer is of course that in the classical world everything is local,
and all of our intuition and experience is based on classical macroscopic phenomena.
One can perhaps therefore appreciate why the transformation to classical phase space
has a chance of overcoming the global scaling problems that impede direct quantum
methods: the starting point is described by a local theory. As an example, reliable
computational methods are known for sub-dividing classical phase space, even for
particles with long-range interaction potentials, which is the reason that computer
simulations of classical systems are able to scale sub-linearly with system size.

This does not entirely answer the question because two quantum phase functions
remain after the transformation to classical phase space: the commutation function
and the symmetrization function. These supposedly embody completely and exactly
quantum statistical mechanics, including its non-local nature.

Turning first to the symmetrization function, it was mentioned above that this was
formulated in terms of a loop expansion. The loops are compact and localized, and
small loops dominate (but see chapter 5). If all terms in the series were kept, it would
require !N operations to evaluate. But keeping only the first few or several terms, and
exponentially resumming those that are kept, is much more tractable computation-
ally. Of course this is an approximation, but the point of such a systematic expansion
is that error estimates of the neglected terms can be made.

For the commutation function four computational algorithms are derived in the
text. These divide naturally into two classes: in the first class are the high temper-
ature expansion (chapter 8), including the fluctuation series (section 8.5), and the
nested commutator expansion (chapter 9); in the second class are the local state
expansion (chapter 10), and the many-body expansion (chapter 11). In the brief
outlines of the high temperature series, the fluctuation series, and the nested
commutator approaches given above it was pointed out that they yielded classical
phase space functions that invoked the gradients of the potential energy and that as
such they were highly localized.

The many-body expansion, chapter 11, is a series for the commutation function
that is formally exact for an N-particle system if N terms are retained. The hope is
that truncating the series after a few or several terms will yield accurate results. In
order to calculate the n-body term, one has to obtain the energy eigenvalues and
eigenfunctions of an n-particle system. The energy spectrum depends upon the
specified boundary conditions, which are non-local. This presents a conceptual issue
for the approach that remains to be satisfactorily resolved. The promise of this
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many-body approach is that it casts the commutation function as an effective
potential and all of the known results for classical statistical mechanics can be
carried over directly. Numerical data obtained to date indicate that terms beyond
the pair level of the expansion are required for reliable results.

Finally, the local state expansion for the commutation function, chapter 10, as the
name implies, is specifically designed to deal with the inherently non-local nature of
quantum mechanics. Although the direct effect of position and momentum non-
commutativity is highly localized, occurring in a volume in phase space of Planck’s
constant per particle per dimension, because the expression for the commutation
function involves the exponential of the energy operator, the non-local nature of the
energy eigenstates and eigenfunctions have a bearing on it if it is reformulated as a
sum over such states. (The high temperature expansion, fluctuation series, and the
nested commutator expansion remain local because they are not formulated as a
sum over energy eigenstates.)

The local state expansion decomposes the total system phase space configuration
into independent clusters of one or more quantum particles in an effective potential
field due to their fixed configuration neighbors. This relies upon the distinction that
was alluded to above between the position representation coordinate and the
position eigenvalue. The effective local field differs from the actual local field at
each particle, and is designed to maximize the analytic cancelation of terms in the
expansion. One can formulate increasingly sophisticated approximations, namely
singlet, pair, …, n-particle clusters. For a given cluster size, temperature-dependent
corrections to the effective local energy operator may be developed that systemati-
cally improve the corresponding effective Maxwell–Boltzmann operator. The n-
particle eigenvalues and eigenfunctions of the effective local energy operator are
used to calculate the n-particle commutation functions, which are combined to form
the full N-particle commutation function. Numerical results in chapter 10 using just
the first term of the singlet effective field expansion already appear quite accurate.

Without going into mathematical detail, the effective local field is a purely
classical construct, and as such it is local in nature. This is how one gets around the
conventional quantum prohibition on localization, and which allows the sub-linear
scaling with system size of classical statistical mechanics to be exploited.

This effective local field offers exciting possibilities for developing other novel
approaches to quantum statistical mechanics. At the conceptual level it explains how
the non-local nature of quantum mechanics is transformed to the local behavior of
classical statistical mechanics. In practical terms, the localized commutation
function that results gives confidence that the formally exact transformation of
quantum statistical mechanics to classical phase space provides a viable basis for
developing practical and reliable computational approaches to many-particle
quantum systems.

1.4 Old applications, new perspectives
One of the strongest arguments given above for formulating quantum statistical
mechanics in classical phase space is that the terrestrial world is predominantly
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classical, and that successive quantum corrections are just that. Beyond this it was
argued that the formulation might actually or eventually prove useful even for
systems that are fully quantum in nature. Both of these arguments raise the question:
apart from its undoubted formal and conceptual interest, how credible is it that this
new approach to quantum statistical mechanics might actually have useful appli-
cation or lead to new discoveries?

There are three things to look for in concrete applications. First, whether it
reproduces well-known and broadly accepted quantum results, thereby raising
confidence in the phase space approach. Second, whether it provides new insight
or novel interpretation in what are already well-tilled fields. And third, whether the
application to a concrete problem reveals specific techniques otherwise overlooked
in the formal and generic development of the method.

I shall not pretend that this book is replete with problems or worked examples;
only three chapters are focused on applications (chapters 4, 5, and 6). It is early days
in the development of the classical phase space approach, and it takes time to build
up a collection of methods and applications. Nevertheless to date a limited
repertoire has been gathered, and already enough results, both old and new, and
some quite significant, have been established to provide examples for each of the
three points listed above.

One of the first applications is to the quantum ideal gas, section 4.1, where it is
shown that the phase space formulation yields the same analytic expressions as the
fugacity expansion given in the usual textbooks (Point 1). It is also shown that the
terms in the fugacity expansion lie in a one-to-one relationship with the terms in the
permutation loop expansion (Point 2).

A second example is that of independent harmonic oscillators, section 4.2. As the
very first quantum application—applied by Planck (1900) to the problem of black-
body radiation—many would be surprised that anything new remains to be said on
the subject. But here not only is it shown that the phase space formulation
reproduces the textbook result for the single oscillator (Point 1), but also a new
infinite series is given for a collection of oscillators. The new series can be
mathematically transformed into the conventional infinite series (Point 1), whilst
the terms have a novel physical interpretation as permutation loops that arise from
wave function symmetrization (Point 2).

A third example, also found in most quantum and solid state textbooks, is that of
the heat capacity due to lattice vibrations, section 6.1. These were originally treated
as quantum harmonic oscillators, first by Einstein (1907), and later superseded by
Debye (1912). Here benchmark results are given for a one-dimensional harmonic
crystal (nearest neighbor interactions), for which an analytic solution to the
quantum many-particle problem is obtained, section 6.2. Contrary to popular
wisdom, here it is found that at absolute zero the heat capacity goes to zero
exponentially, in agreement with Einstein (1907), but in contradiction to the power
law decay predicted by Debye (1912) (Point 2). (Of the two, Debye’s theory can be
fitted more accurately to the exact analytic results in the intermediate temperature
regime.)
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A fourth example, numerical in nature, is for interacting Lennard–Jones atoms in
one-dimension, section 5.3. In this case the Monte Carlo simulations in classical
phase space are shown to agree over a limited regime with benchmark results
obtained by more conventional quantum methods (Hernando and Vaníček 2013)
(Point 1). They also offer insight into the roles that position–momentum non-
commutativity and wave function symmetrization play in a realistic system of
interacting particles (Point 2).

Not all applications treated in the book fulfill one or other of the three aims listed
above. In some cases I have used examples from other texts with minor changes and
limited insight. In other cases I present numerical results that stand on their own as
there is no conventional benchmarks to compare them with. Also there are a few
examples where the application is generic but concrete (such as the primary quantum
departure from classical statistical mechanics, section 8.2.2), which correct the
currently accepted expression (Point 2), and which stand or fall on the validity of
their mathematical derivation (Point 1).

1.4.1 λ-Transition and superfluidity

By far the most significant application studied here is the λ-transition in liquid
helium and its relation to Bose–Einstein condensation and superfluidity, chapter 5.
This turns out to provide examples of all three points listed above. The system is
analyzed using five methods: the conventional ideal gas model originally put
forward by London (1938) (section 5.2), an exact summation over states for the
ideal gas (section 5.3), Monte Carlo simulations in classical phase space using
Lennard–Jones interactions between the helium atoms (section 5.4), a factorization
method on the far side of the λ-transition (section 5.5), and an integral equation
method using a Markov superposition approximation (section 6.3). The first and
second methods provide an illustration of Point 3: the exact summation confirms the
ansatz that underscores London’s (1938) treatment of the ideal gas model—for
bosons the ground state has to be added separately and explicitly to the integral over
the continuum of excited states—thereby revealing an important issue that is
otherwise overlooked by the continuum phase space formulation of quantum
statistical mechanics. The Monte Carlo simulations give a detailed molecular picture
of the λ-transition from the high temperature side (Point 2), and, in agreement with
the exact enumeration (Point 1), gives a picture of Bose–Einstein condensation in
terms of the growth and decay of permutation loops that offers a new physical
picture of the λ-transition and Bose–Einstein condensation (Point 2). The simula-
tions are limited in a number of aspects (neglect of the ground state, dilute
permutation loop approximation, ‘only’ the Lennard–Jones interaction potential),
but nevertheless qualitatively and by one quantitative measure the prediction for the
λ-transition in liquid helium-4 is closer to the experimentally measured transition
than that of the ideal gas model.

The study of the λ-transition offers a new physical understanding of Bose–
Einstein condensation and superfluidity, section 5.6. It is found, for example, that it
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is not the occupation of the energy ground state per se that is primarily responsible
for the λ-transition. Rather, the λ-transition marks the explosive growth in number,
size, and extent of position permutation loops. These nucleate the condensation of
bosons into low-lying momentum states, which provides the concrete mechanism for
superfluidity that has arguably been missing to date.

The two currently accepted theories for superfluidity, the two-fluid ideal gas
model (Tisza 1938), and the two-fluid phonon-roton model (Landau 1941), both
assert that the superfluid comprises bosons in the energy ground state that are
transparent to the normal fluid (Balibar 2014). But neither offer a mechanism for
this, and both suffer the long-standing criticism of Landau (1941) himself—that
bosons in excited states must interact and collide with each other, thereby creating
friction and viscosity, which would destroy the superfluid state. The present
calculations for momentum states overcome this objection, since they emphasize
that collisions that destroy momentum permutation loops and momentum state
occupancy are statistically suppressed because they decrease loop entropy. The
present picture explains superfluidity as due in part to the non-local nature of the
momentum loops, since in micro-pores this leads directly to inviscid plug flow. In
addition, it is pointed out that there is a transverse momentum gap in pores or thin
films that suppresses momentum transfer with the walls; the absence of momentum
transfer implies superfluid flow (section 5.6.2). The theory’s prediction of the critical
flow velocity, above which superfluidity is destroyed, is in agreement with measured
values, and it provides a detailed molecular explanation of superfluidity.

Of course one can debate the merits of these insights, the reliability of the
interacting boson approximations, or the molecular mechanisms proposed for Bose–
Einstein condensation and superfluidity. But if nothing else this example of the
λ-transition in liquid helium demonstrates the applicability of classical phase space
methods to systems that are predominantly quantum. And they show that this novel
formulation of quantum mechanics for condensed matter systems can lead to new
discoveries.
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Quantum Statistical Mechanics in Classical Phase Space

Phil Attard

Chapter 2

Wave packet formulation

Points in classical phase space are shown to correspond to the position and
momentum eigenvalues of the particles in the system. In general for single-particle
states, particle statistics and state occupancy rules can be enforced by a symmetri-
zation factor that allows a sum over unique, allowed states to be written as an
unrestricted, weighted sum over all states. The symmetrization factor gives an
internal entropy for the quantum microstates.

These ideas are illustrated with wave packets, which are approximately simulta-
neous eigenfunctions of the position, momentum, and energy operators. They are
more exact in the classical low density limit in which phase space can be discretized
coarsely. The leading order correction due to wave packet symmetrization is shown
to give a temperature-dependent effective potential, leading to a Gaussian pair
probability in phase space.

2.1 Introduction
In the real world, physical systems are complicated, and to describe them it is
ultimately necessary to resort to simplifying approximations. The best practice for
developing approximate approaches is to formulate the problem in a formally exact
fashion as far as possible, and to delay the introduction of the approximate part of
the approach until near the end. The reasons for this are primarily that approx-
imations can often be specific to the problem at hand, whereas exact approaches are
more universal and have a wider range of applicability. Also, approximations can be
ad hoc, their domain of validity can be unclear, and they can lack systematic
corrections or improvements. In contrast proceeding from a formally exact basis
often opens the door to a systematic expansion with terms becoming successively
smaller in specified limits.

So much for the theoretical ideal. In actual practice approximations are usually
introduced at an early stage in the analysis, often motivated by physical consid-
erations. Although this approach has the limitations adumbrated in the preceding
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paragraph, it can have compensating virtues, such as making for a simpler analysis,
finding consonance with physical intuition, and providing a pedagogic introduction
to the problem.

This chapter takes the second, approximate, approach to the problem of
formulating quantum statistical mechanics in classical phase space, and defers to
chapters 3 and 7 the more formal exact analysis.

The specific aim here is to get quickly to the classical limit from an elementary
starting point in quantum mechanics. Beginning with Gaussian wave packets as an
approximation to the energy eigenfunctions of a multi-particle system, the von
Neumann trace over the density matrix for the statistical average and partition
function is transformed to an integral over classical phase space. The point of the
analysis is to identify the physical conditions in which the classical limit holds.

Three concepts—commutation, symmetrization, localization—raised in this
chapter will recur throughout the book. First, in quantum mechanics the position
and momentum operators do not commute, but in classical phase space both values
are specified simultaneously. The wave packets used in this chapter enable the
transformation to classical phase space within the approximation that they are
simultaneous eigenfunctions of the two operators.

Second, the symmetrization of the quantum mechanical wave function usually
necessitates specifying the system by quantum state occupancy rather than by
distinguishable particle labels, but in the classical limit labeled particles are at a
point in the continuum that is phase space; there are no discrete states capable of
being unambiguously occupied or unoccupied. In this chapter the symmetrization of
wave packets is used to show how particle statistics of bosons and fermions can be
reconciled with the phase space continuum and distinguishable particles, and the
primary correction in a systematic expansion of symmetrization effects is calculated.

And third, the quantization of states in general arises from the imposition of
boundary conditions; the eigenfunctions of a macroscopic system are global and in
general they cannot be obtained by sub-division into local regions. Similarly the
symmetrization just alluded to refers to the wave function of all particles in the
system, and to the occupancy of whole-system states. In contrast classical mechanics
and classical statistical mechanics are local theories in which such global require-
ments do not apply. In the present chapter the problem of localizing a quantum
system is avoided by simply invoking wave packets unconstrained by specific
boundary conditions without addressing explicitly the validity of doing so. In later
chapters the problem of localization will turn out to be one of the main challenges in
the formally exact transformation of quantum statistical mechanics to classical
phase space.

The present chapter suffers from two limitations: first the analysis is approximate,
and the results are motivated more by physical considerations than by mathematical
rigor. And second, in arriving at the final destination of the classical limit, nothing is
said about the fly over states, namely those intermediate regimes which are primarily
classical, but where quantum effects may be measurable. Or those regimes where
quantum phenomena are possibly significant, or even dominant. These lacunae are
filled by the more formal procedures in the rest of the book.
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2.2 Wave packets as eigenfunctions in the classical limit
2.2.1 Definition

The primary goal here is to show how to get from the quantum picture to classical
statistical mechanics, which is of course formulated in the classical phase space of
the particles’ positions and momenta. To this end we use wave packets because they
are localized simultaneously in position and momentum. Some care must be taken
with using these as a basis, as there are issues with their orthogonality and
completeness. Also the meaning of simultaneous localization must be reconciled
with the Heisenberg uncertainty principle.

Consider a system consisting of N particles in three dimensions, with position
representation coordinates = …r r r r{ , , , }N1 2 , = r r rr { , , }j jx jy jz , = …j N1, 2, , .
Define analogous vectors for the position label q, and the momentum label p. It
will sometimes be convenient to write the combined labels as Γ ≡ q p{ , }. The
representation coordinates r belong to the real continuum. The labels are discretized,
for example = Δα αq ℓj jq, q and = Δα αp ℓj jp, p, with the ℓq and ℓp being integers. Below
Γ and ℓ are used interchangeably to label the system state. The meaning of position
and momentum labels emerges from the following analysis.

At this stage we do not need to be more precise about the grid spacing or the
system size. Messiah (1961, chapter V, section 11) insists that in order for the
momentum operator to be Hermitian periodic boundary conditions must be
imposed on all wave functions, and discrete momentum eigenvalues must have
spacing πΔ = ℏ L2p where L is the system edge length. This is true if the wave
function does not go to zero at the boundaries. In any case, here we do not explicitly
use this (but we consistently do so in later chapters), but instead observe that for a
macroscopic system, → ∞L , the present grid spacing could be made an integer
multiple of this.

Spin could be included in the set of commuting dynamical variables, with
σ=x r{ , }j j j , where σ ∈ − − + …S S S{ , 1, , }j is the z-component of the spin of

particle j. See Messiah (1961, section 14.1), or Merzbacher (1970, section 20.5), or
section 6.4 below. However, we do not include spin in the present analysis.

The minimum uncertainty wave packet for the system is (Messiah 1961,
Merzbacher 1970)
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∏ ∏
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where ξ is the packet width, and πξ=C (2 ) N2 2 3 2. This is normalized,
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∫ζ ζ ζ ζ〈 ∣ 〉 = =*r r rd ( ) ( ) 1. (2.2)q p q p q p q p, , , ,

Note how the wave packet for the full multi-particle system is the product of
independent single-particle wave packets.

In general these wave packets do not form a strictly orthonormal set. Instead one
has

ζ ζ
ξ

ξ= − ′ − − ′ −
ℏ

− ′ · − · ′
ℏ′ ′

q q p p q p q p
exp

( )
8

( )
2 i

. (2.3)q p q p, ,

2

2

2 2

2

⎧⎨⎩
⎫⎬⎭

This is a Gaussian in position separation and momentum separation, with an
oscillatory modulation. In the continuum limit, it may be regarded as the product of
soft Dirac-delta functions, δ δ′ − ′ −ξ ξℏq q p p( ) ( )2 , neglecting the modulation.
Alternatively, with the discretization of the labels, it can be seen as the product of
approximate Kronecker-deltas, δ δ′ ′ℓ ℓ ℓ ℓ, ,q q p p

.

The interpretation as a Kronecker-delta can be made more exact by taking the
spacing between phase space grid points to be much larger than the variance of the
Gaussians,

ξ ξΔ ≫ Δ ≫ ℏ2 , and . (2.4)q p

In this case one sees that the imaginary part of the exponent is zero when ′ =ℓ ℓq q, and
′ =ℓ ℓp p. Conversely, when the imaginary part is non-zero, the Gaussians themselves
are zero. The orthogonality of non-overlapping wave packets confined to coarse grid
points is sketched in figure 2.1. This condition for the orthonormality of the wave

Figure 2.1. Orthogonality of wave packets on a coarse grid.
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packets with discrete labels, Δ Δ ≫ ℏ2q p , is ultimately a reflection of the Heisenberg
uncertainty principle.

Our goal is to apply the analysis to statistical averages in classical phase space. In
practice this means transforming from a sum over grid points to an integral over the
phase space continuum. This raises the question of the sensitivity to the choice of
wave packet width, since the limits ξ → 0 and ξ → ∞ appear to pose difficulties. For
fixed width ξ, the orthonormality condition equation (2.4) would appear to preclude
the continuum limit Δ → 0q , Δ → 0p . We shall not address these questions here, but
we do point out that in practical terms such a transformation from the sum to an
integral is valid without actually taking the zero width limit if the phase space
function whose average is sought is slowly varying over the volume of the grid cells,

Δ Δ Δ Δ+ + = + · ∇ + · ∇ + ⋯
= + Δ Δ

f f f f

f

q p q p q p q p
q p

( , ) ( , ) ( , ) ( , )

( , ) ( , ).
(2.5)

q pq p q p

q pO

For the transformation to the continuum to work, the second equality needs to be a
reasonable approximation in those regions of phase space that contribute signifi-
cantly to the statistical average. We shall refer to the restriction on the grid widths,
equation (2.4), as the classical limit, and we shall attempt to elucidate the physical
conditions for which this limit is likely valid.

In addition to orthogonality, an important property of basis functions is that they
form a complete set, which is to say that any wave function in the Hilbert space can
be expanded in a series of them. We note that the first factor of the wave packet, the
Gaussian in position peaked at q, can be used to fit the amplitude of a wave function
ψ r( ) at ≈r q, and the second factor, the plane wave with wave number p, can be
used to fit its phase. If one can tolerate the discretization error in the phase, the wave
packet can be used to fit any wave function on the position grid points. However in
the classical limit the wave packets go to zero between grid points in position, and so
they cannot fit an arbitrary wave function between such points. They are therefore
complete only in the subspace of wave functions that are sampled exclusively at grid
points. This is sufficient for slowly varying phase functions, and this initial
formulation of quantum statistical mechanics in classical phase space is only valid
in the classical limit regime where such functions can be taken to be the only relevant
ones.

2.2.2 Eigenfunctions

The probability amplitude in the position representation is

ζ ζ = ξ* − − · −

C
er r( ) ( )

1
. (2.6)q p q p

r q r q
, , 2

( ) ( ) 2 2

This is a Gaussian of width ξ (per particle, per direction), peaked at the position
label q. Similarly in the momentum representation, the probability amplitude has
width ξℏ 2 and is peaked at the momentum label p. To within an error of these
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magnitudes, the minimum uncertainty wave function is approximately a simulta-
neous eigenfunction of the position and momentum operators,

ζ ζ ζˆ = ≈q r r r q r( ) ( ) ( ), (2.7)q p q p q p, , ,

and

ζ
ξ

ζ ζˆ = ℏ − + ≈p r r q p r p r( )
i

2
( ) ( ) ( ). (2.8)q p q p q p, 2 , ,

⎡
⎣⎢

⎤
⎦⎥

(Recall that the momentum operator is ˆ = − ℏ∇ip r.) Since the probability amplitude
is sharply peaked about q p{ , }, the approximation in these is to neglect contributions

ξ( )O and ξℏ( 2 )O , respectively.
Because the wave packet is an approximate simultaneous position and momen-

tum eigenfunction, for any sufficiently slowly varying phase function one can write
ζ ζˆ ˆ ≈f fq p r q p r( , ) ( ) ( , ) ( )q p q p, , . In particular, the wave packet is an approximate

energy eigenfunction,

ζ ζ ζˆ ≡ ˆ ˆ ≈H H Hr r q p r q p r( ) ( ) ( , ) ( ) ( , ) ( ). (2.9)q p q p q p, , ,

The eigenvalue is the classical Hamiltonian energy function of phase space, which is
usually split into kinetic and potential energies,

∑= + = =
α

αH U
p
m m

pq p p q p( , ) ( ) ( ), ( )
2

1
2

. (2.10)
j,

j

2
2K K

Here identical particles of mass m are assumed.
The position and momentum labels, q and p, occur naturally in the Hamiltonian

function of classical mechanics, and they therefore play precisely the same role as the
classical positions and momenta. Of course the discretization of phase space on a
grid of width Δ Δ ≫ ℏ2q p , equation (2.4), is inherently a reflection of the uncertainty
principle. However, when we eventually transform the various sums over the
position and momentum labels to an integral over continuum phase space, the
grid width, the wave packet width, and their relation to the uncertainty principle will
disappear.

It should be noted in the above that the position labels are distinct from the
position representation coordinates. Similarly the momentum labels are distinct
from the momentum representation coordinates. This distinction between position
eigenvalues and position representation coordinates will play a key role in the
formally exact local state expansion that is derived in chapter 10.

2.3 Wave packet symmetrization and overlap
A fundamental axiom of quantum mechanics is that the wave function must be
either fully symmetric (bosons) or fully anti-symmetric (fermions) with respect to
interchange of identical particles (Messiah 1961, Merzbacher 1970). For the present
wave packets, the symmetrized form is
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The meaning of particle permutation can be seen from the fact that a vector is an
ordered set. In the present case the first element of the vector of coordinates, or of the
vector of position–momentum labels, is associated with the first particle, the second
element with the second particle, etc. Hence the particle permutator P̂ can be applied
to one vector relative to the other.

In the above expression for the symmetrized wave packet, the sum is over all !N
permutations of the N particles. Recall that we sometimes write the combined
position and momentum labels as Γ ≡ q p{ , }. Here and below ˆp(P) is the number of
pair transpositions that comprise the permutation operator P̂ (or simply their
parity). The plus sign is for bosons and the minus sign is for fermions.

By inspection one sees that the symmetrized wave functions show the mandated
behavior for bosons and fermions under particle interchange,

ζ ζˆ = ±Γ Γ
± ±r r(P ) ( 1) ( ). (2.12)p

That is, for bosons it is unchanged, but for fermions it changes sign if the
permutation has odd parity (i.e., an odd number of pair transpositions).

Note how the permutation operator can be equivalently applied to the repre-
sentation coordinates, or to the position q and momentum p labels. (Technically

ζ ζ= ˆΓ Γˆ
−r r( ) (P )P

1 , but this is unimportant when summed over all permutations.)
Because these labels are discrete and are the product of single-particle states, we can
speak sensibly of a quantum state being occupied or unoccupied, and of the number
of occupying particles. For the general case of exact energy eigenfunctions, the
quantum states are not single-particle states, and it makes no sense to discuss the
number occupancy of a given state (but see section 3.3 below).

The normalization of the symmetrized wave function is ensured by taking
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p

The quantity χΓ
± is here and below called the symmetrization factor. It was originally

called the overlap factor because in the general case of non-orthonormal wave
packets it reflects the overlap between them (Attard 2016). In fact it is more general
than the original application, as it also works for orthonormal eigenfunctions and
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for either single-particle or multi-particles states. It also works in the continuum
limit. In these more general cases the symmetrization factor tells how much
symmetrization counts the same microstate multiple times, as is discussed in
chapter 3. In the simplest case, such as the present orthonormal wave packets that
are composed of discrete single-particle states, the symmetrization factor enforces
particle statistics and occupancy rules, as is shown in section 2.3.2 below.

2.3.1 Pair transposition

Before exploring the general properties of the symmetrization factor, it may be
worth illustrating the nature of particle permutations with a simple example.

Because the wave function is the product of individual particle wave packets, it is
simplest to focus on a single pair transposition, since all permutations can be
decomposed into consecutive pair transpositions. Let P̂jk transpose particles j and k,
so that
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ζ ζ ζ

ˆ = … … …

= … … …
Γ Γ Γ Γ
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… … …r r r r

r r r

(P ) ( )
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(2.14)
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1

The so-called dimer symmetrization or overlap factor consists of the inner product
of the original and the transposed wave function,
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k j k j

r q p r q

r q p r q

, (2)

(1) (1) (1) (1)

(1) (1) 2

2 3
( ) 4 ( ) i

( ) 4 ( ) i 2

2
2

2

2
2

j k j k

j k

j k k j k

j j j j j

2 2

2 2

⎧⎨⎩
⎫⎬⎭

The second equality follows because the unpermuted single-particle wave packets
are normalized and so their respective inner product each gives a factor of unity. The
third equality follows because what remains in the product of two integrals over the
dummy variables rj and rk, respectively, and these integrals are the complex
conjugate of each other. The final equality shows that for the general wave packet
the dimer overlap factor is evidently an un-normalized Gaussian in position and
momentum that ties the two particles together.

The positive sign, for bosons, and the negative sign, for fermions, will ultimately
add or subtract from the phase space weight for the pair of particles in this
configuration. Even at the dimer level, and before detailed analysis, one can already
see how the symmetrization factor might convert particle occupancy statistics into
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an effective potential, either attractive or repulsive, between particles in classical
phase space.

In general the single-particle wave packets do not form an orthonormal set, and
so the right hand side lies between 0 and ±1. In the classical limit, equation (2.4), the
wave packets are orthonormal, and in this case

ζ ζ δ ξ ξˆ = Δ ≫ Δ ≫ ℏΓ Γr r(P ) ( ) , 2 , and / . (2.16)ℓ ℓjk , q pj k

Note that we use the vector of integers ℓ interchangeably with the vector of real
numbers Γ = q p{ , } to label the quantum state. The inner product is one if the two
particles are in the same position–momentum one-particle state, and it is zero
otherwise.

The symmetrization factor is most clearly explained in terms of one-particle
states, which is the case with the present wave packets. However, the formalism itself
holds in general for multi-particle states, which will be treated in chapter 3.

2.3.2 Symmetrization and occupancy of single-particle states

Particle statistics, or state occupancy, for bosons and for fermions arise from the
rules for wave function symmetrization. The purpose of this section is to show that
the symmetrization factor defined above from the normalization of the symmetrized
wave function, equation (2.13), is exactly the correct weight factor that is required to
replace an arbitrary sum over occupied states by a sum over all states whether the
particles be bosons or fermions. This is one example of the utility of the
symmetrization factor. Two other advantages are that it generalizes the occupancy
rules to multi-particle states, and to overlapping states (i.e., those with non-
orthogonal wave functions).

The usual texts on quantum mechanics treat the subject of wave function
symmetrization by invoking quantum states that comprise single, identical particle,
states (Messiah 1961, Merzbacher 1970, Pathria 1972). Indeed the familiar concept
that an arbitrary number of bosons, but at most one fermion, can occupy the same
state is predicated upon, and only makes sense, if the state referred to is a single-
particle state. Since the present basis consists of wave packets, whose states are
single-particle, we need to show that the symmetrization factor is related to these
usual rules of particle occupancy. In section 3.3, the analysis is generalized to
systems in which the concept of occupancy is inapplicable because the relevant states
are not single-particle.

The position–momentum states are discrete so that Γj is equivalent to ℓ ;j it is the
single-particle state occupied by particle j. The state of the system is
Γ Γ Γ Γ= …{ , , , }N1 2 , which is equivalently = …ℓ ℓ ℓ ℓ{ , , , }N1 2 . We may order the
possible single-particle states = …a A1, 2, , , and say equivalently that particle j is
in the state ℓj , or else that it is in the ath state, with = ℓa a( )j . Let δ= ∑ℓm ( ) ℓa j a a( ),j

be

the number of particles in the single-particle state a when the system is in state ℓ. We
may regard ma as a component of the A-dimensional vector ℓm( ), which tells the
occupancy numbers of the possible single-particle states when the system is in the
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labeled particle state ℓ. Clearly there is a many to one mapping from the system state
ℓ to the occupancy state m, since the latter doesn’t distinguish which particle or
particles are in the given single-particle state.

A function of the state of the system may be written ℓf ( ), or as f m( ), the latter
being short-hand for the more precise =ℓ ℓf fm( ( )) ( )s . Since the particles are
identical, and since the labels are arbitrary, either description should suffice,
provided that the rules are properly accounted for.

Define the maximum possible number of particles in a single-particle state to be
= ∞+N (for bosons) and =−N 1 (for fermions). With these the sum of a function in

the occupancy picture may be written

∑

∑ ∑ ∑

≡

= …
= = =

± ±

± ± ±

F f

f

m

m

( )

( ).
(2.17)

m

N

m

N

m

N
m

0 0 0A1 2

Each possible state appears once, and once only, in this sum. (This sum over distinct,
allowed, states is just the primed trace ′TR.)

One would like to write this instead as a sum over the states of the labeled
particles, ℓ,

∑

∑∑ ∑

χ

χ

≡
!

=
!

…

± ±

±

ℓ

ℓ

F
N

f

N
f

1
( )

1
( ).

(2.18)ℓ

ℓ ℓ ℓ

ℓ

ℓ

N1 2

The sum over the states of each particle here is unrestricted. This means that it
includes forbidden states occupied by more than one fermion, and it includes the
same state (i.e., ones that differ only by a permutation of the labels of bosons in the
same single-particle state) multiple times. We need to show that the symmetrization
factor χ±

ℓ corrects for this and makes this agree with the preceding expression.
Figure 2.2 illustrates the idea, with the weight referred to being χ !± Nℓ .

Figure 2.2. The nine possible configurations of a system with two identical particles and three single-particle
states. To the right of each configuration is the weight χ χ! !+ −N N( , )ℓ ℓ for bosons (first number) and for
fermions (second number).
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From equation (2.13), the symmetrization factor is

∑ ∑ ∏χ δ≡ ± 〈 ˆ ∣ 〉 = ±
ˆ ˆ =

′
± ℓ ℓ( 1) P ( 1) , (2.19)

j

N

P P 1
ℓ ℓ ℓ

p p
,j j

where ′ℓ j is the state that particle j is in after the permutation P̂. (Recall that there is a
one-to-one map from ℓ to Γ = q p{ , }.)

For the present single-particle states with orthogonal wave packets, the inner
product 〈 ˆ ∣ 〉ℓ ℓP is zero for any permutation that swaps particles in different states.
Conversely it is unity for any transposition of particles in the same state, and for any
permutation composed solely of such same state transpositions.

2.3.2.1 Bosons
For bosons, the sum over all particle states, ∑ℓ, counts the same occupancy state
multiple times. There are ! ∏ !N ma a ways of re-arranging the N labeled particles
without changing the occupancy state ℓm( ). To correct for this double counting, it is
necessary to weight each state by the inverse of this, namely

∑

∑
∏

∑χ

=

=
!

!

=
!

+

+

ℓ
ℓ

ℓ

F f

m

N
f

N
f

m( )

( )
( )

1
( ).

(2.20)
ℓ

ℓ

a

m

ℓ

a

Here ℓm ( )a tells how many particles are each in the same single-particle state a when
the system is in the state ℓ. One can easily confirm the final equality directly from the
definition of the symmetrization factor, equation (2.19): for bosons it is just the
number of permutations amongst particles in the same state, χ = ∏ !+ ℓm ( )ℓ a a .

2.3.2.2 Fermions
To show that the formula works for fermions, it must be proven that χ =− 0ℓ if any

⩾m 2a . The proof is as follows.
If =ℓm ( )a 0 or 1 for all possible single-particle states = …a A1, 2, , , then any

permutation of the actual particle states must make the inner product zero,
〈 ˆ ∣ 〉 =ℓ ℓP 0, ˆ ≠ ˆP I. Hence only the identity permutation survives in the sum over
permutations and χ =− 1ℓ in this case.

Contrariwise consider a particular single-particle state a occupied by more than
one particle, ⩾ℓm ( ) 2a , when the system is in state ℓ. The permutations of particles

within the state a have 〈 ˆ ∣ 〉 =ℓ ℓP 1
a( ) , where the superscript indicates that the

permutation is restricted to one of the !ma permutations amongst those particles
in the state a. The symmetrization factor will vanish in this case if the number of
even permutations equals the number of odd permutations, since these have opposite
sign in the sum over the permutations.
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To see that these two are indeed equal, suppose that ˆα α=
!{P }M
1 is any set of

permutation operators giving all the !M permutations of M objects. Let
′ˆ = ˆ ˆ
α αP P Pjk , where P̂jk transposes objects j and k. Clearly ′ˆ

αP has opposite parity to
ˆαP . Since ′ˆ

α α=
!{P }M
1 is also a set giving all the !M permutations of M objects, it follows

that the number of even permutations of M objects must equal the number of odd
permutations.

From this one can conclude that for fermions, χ−
ℓ must be zero for any ℓ with two

or more particles in the same state. This is because there are an equal number of odd
and even permutations, each yielding unity for the inner product, and each with
opposite sign in the sum over permutations. That is

∑

∏ ∏ ∑

∏ ∏

χ = − 〈 ˆ ∣ 〉

= × −

= × −

= <
⩾

ˆ

ˆ

−

< ⩾

< ⩾ { }

ℓ ℓ

N m N m

m
m

( 1) P

1 ( 1)

1 ( ) ( )

1, all 2,
0, any 2.

(2.21)
a a m

a a

P

P( )

ℓ

ℓ ℓ

ℓ ℓ

p

m m p m

m m
a a

a

a

( ) 2 ( ) 2 ( )

( ) 2 ( ) 2 even odd

a a

a

a

a a

⎧⎨⎩
Here ˆ mP( )a is a permutation of the ℓm ( )a particles in the single-particle state a, and
N m( )a

even odd is the number of such permutations with even or odd parity.
These two results for bosons and fermions confirm that the expression for the

symmetrization factor, equation (2.19), enables the unweighted sum of a function of
occupancy numbers to be written as in equation (2.18). The latter is a weighted sum
of the function of particle states over all particle states, including forbidden states and
the same state counted multiple times, with the correct weight being the symmetriza-
tion factor. In general terms it is much more convenient to evaluate an unrestricted
sum than a restricted one. Also, the definition of the symmetrization factor as the
normalizing constant for the symmetrized wave function, equation (2.19), is general,
and it holds also for wave functions that do not form an orthonormal set (such as the
present wave packets not in the classical limit), for wave functions that represent
multi-particle states (such as the exact energy eigenfunctions for a system of
interacting particles), and for a continuum of states (such as classical phase space).
In these three cases it would be difficult if not impossible to write a statistical average,
for example, as a sum over occupancy numbers. It is plausible that the present
definition also works in these cases. Plausibility is transformed into certainty with the
proof for multi-particle states in section 3.3.

2.4 Statistical averages in phase space
2.4.1 Partition function

We consider a canonical equilibrium system, where the subsystem has number of
particles N and volume V, and the reservoir has temperature T. Instead of the latter
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we usually exhibit the inverse temperature, β ≡ k T1 B , where kB is Boltzmann’s
constant. The partition function is (Messiah 1961, Merzbacher 1970)

= β± ′ − ˆZ N V T e( , , ) TR . (2.22)H

This is derived in chapter 12, and it is used in chapter 7 as the starting point for a
formally exact transformation of quantum statistical mechanics to classical phase
space, valid in all regions of the phase diagram. Here that transformation is
performed using wave packets, and it is strictly valid only in the classical limit.

The prime on the trace in the above formula is quite important as it signifies that
only allowed quantum states should be included, and that these should be distinct
and each counted once only. Messiah (1961, chapter XIV, sections 6 and 7) makes a
similar point that the trace should be performed on a restricted subspace containing
only allowed distinct states. The symmetrized wave function normalization factor
given by him in the case of one-particle, orthogonal states is equivalent to the
symmetrization factor given here, at least for the same case.

Unfortunately not all workers avert to the need to restrict the trace. Pathria (1972,
equation (9.6.2)), gives the partition function as the Boltzmann weighted sum over
energy states, with the implication being that these are all states (the issue of distinct
states is not raised), but no symmetrization correction is exhibited.

As mentioned in the previous section it is usually most convenient to invoke an
unrestricted sum, together with a weight factor that is zero for forbidden states and
in inverse proportion to the number of times an allowed distinct state is counted. It
was shown that the symmetrization factor had these properties.

In the present classical limit, we can take the wave packets to be the energy
eigenfunctions of the subsystem. The partition function can be derived directly using
the symmetrized wave packets,

∑

∑ ∑

∑ ∑

∑

χ ζ ζ

χ
χ χ

ζ ζ

χ
χ

ζ ζ

χ Γ

=
!

=
! !

±

=
!

±

=
!

ˆ ˆ ″

ˆ

β

β

β

β

Γ

Γ

± ± ± − ˆ ±

±
+ ″

ˆ
±

ˆ ″
± ˆ − ˆ

ˆ ″

±
±

− ˆ

± −

′

′

′

′

Z N V T
N

e

N N
e

N
e

N
e

( , , )
1

1 1 ( 1)

1 ( 1)

1
( ) .

(2.23)

ℓ

ℓ

ℓ

ℓ

P ,P

P

ℓ ℓ ℓ

ℓ
ℓ ℓ

ℓ ℓ

ℓ
ℓ

ℓ ℓ

p p

p

P P

P P

( )
P

( )

H

H

H

H

Note that we use ℓ interchangeably with Γ = q p{ , } to label the quantum state. For
the sum over states we use the former integer label, whereas when we transform to
the continuum we shall use the latter real argument. The first equality here reflects
the argument given in the preceding subsection, namely that an unrestricted sum
over all states can be used provided that they are weighted with the symmetrization
factor. The third equality arises because the symmetrization factor is unchanged by a
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permutation of its label, χ χ χ Γ= =ˆ
± ± ±( )ℓ ℓP

. For this equality also is invoked the fact
that in general for identical particles the Hamiltonian operator is unchanged by a
permutation of the particles,

ˆ = ˆ ˆr r( ) (P ). (2.24)H H

The reason that this must be the case is that it ensures that a symmetrized or anti-
symmetrized wave function conserves its symmetry during its time evolution, which
is to say that bosons remain bosons, and fermions remain fermions. It also means
that an eigenfunction of the energy operator remains an eigenfunction when it is
symmetrized, and it has unchanged eigenvalue.

The symmetrization factor as it appears here provides a weight for phase space,
and as such it represents the internal entropy for phase space points,

χΓ Γ=± ±S k( ) ln ( ). (2.25)s,
B

The nature of its derivation as arising from the sum over permutations confirms that
it counts the internal configurations of the quantum microstates.

2.4.2 Averages

Consider now the statistical average of an operator that is an ordinary function of
the position and momentum operators, ˆ = ˆ ˆO O q p( , ). As discussed in section 2.2.2, in
the classical limit the wave packets are approximate simultaneous eigenfunctions of
the position and momentum operators, and therefore also of this operator

ζ ζˆ ≈O Or q p r( ) ( , ) ( )q p q p, , . Therefore the analysis for the partition function carries
through unchanged for the statistical average

∑

∑

χ ζ ζ

χ Γ Γ

ˆ = ˆ

=
!

ˆ

=
!

β

β

β Γ

±
′ − ˆ

±
± ± − ˆ ±

±
± −

{ }O
Z

Oe

Z N
Oe

Z N
O e

1
TR

1

1
( ) ( ) .

(2.26)
ℓ

ℓ

ℓ ℓ ℓ

stat

( )

H

H

H

2.4.3 Phase space

The transformation of these results to classical phase space is straightforward. With
= Δα αq ℓj jq, q and = Δα αp ℓj jp, p, the volume element is

Γ = Δ Δ →ℓ ℓhd ( ) d d . (2.27)N N
q p

3 3

In taking the classical limit, equation (2.4), we have set π ξΔ = 2q and

π ξΔ = ℏ2p . We could have used arbitrary multiples of these, since constant
factors have no physical effect on the partition function or averages. We could also
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set Planck’s constant equal to unity with no physical effect on classical averages or
classical thermodynamics (Attard 2002). In any case it is significant that the volume
element is independent of the width of the wave packets that were used to derive the
results.

In view of this result one can transform directly the sum over quantum states to
an integral over classical phase space. The partition function becomes

∫ χΓ Γ=
!

β Γ± − ±Z N V T
h N

e( , , )
1

d ( ), (2.28)
N3

( )H

and the statistical average becomes

∫ χΓ Γ Γ=
!

β Γ±
±

− ±O
h N Z

e O
1

d ( ) ( ). (2.29)
Nstat 3

( )H

It is worth reiterating that this result relied upon the classical limit equation (2.4).
(Strictly speaking, we have only demonstrated that the symmetrization factor
enforces the particle occupancy rules in the case that the wave packets form an
orthonormal set.) Transforming the sum over position–momentum states to the
phase space integral is valid when the integrand is slowly varying between grid
points. The Maxwell–Boltzmann factor is slowly varying when the exponent is
small, which is the case at high temperatures, β → 0. Also, in general the particle
interaction potential contains a sharp, rapidly varying repulsion at small separations
that defines the particle size and keeps them from interpenetrating each other. At
low densities (equivalently, low pressures) the particles are on average well-separated
and only access the slowly varying tail of the potential. In this case again the
Maxwell–Boltzmann factor varies but slowly, which makes the phase space integral
also valid in low density regime.

It remains to elucidate the rôle of the symmetrization factor χ Γ±( ) in the classical
regime.

2.4.4 Symmetrization factor in the classical limit

The symmetrization factor will be formally analyzed in chapter 3. Here we discuss it
less rigorously with a view to understanding its behavior in the classical limit.

The symmetrization factor is a sum over all permutations of the inner product of
the permuted wave function and the original wave function. Since here the wave
function is the product of single-particle wave packets, for any permutation the
unpermuted particles contribute unity to the product of inner products. The inner
product of the remaining permuted particles is zero unless the wave packets of
consecutive particles in each permutation loop that comprise it overlap (cf. the
discussion of the dimer transposition in section 2.3.1). This means that the particles
involved must be close together in order for the contribution to the symmetrization
factor from a particular permutation to be non-zero.

As was discussed above, the transformation to the phase space integral is valid at
low densities. In this regime particles are only rarely close together. The probability
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of two particles being close together is small, and the probability of three or four
particles being close is even smaller. Therefore in the low density regime one can
neglect permutations that involve many particles. In the sum over all permutations
for the symmetrization factor one need only retain the identity permutation, and all
permutations of two particles,

∑

∑

∑

∑

χ ζ ζ

ζ ζ ζ ζ

ζ ζ

= ± ˆ

≈ ˆ ± ˆ + ⋯

= ± ∣
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ξ ξ

Γ Γ Γ

Γ Γ Γ Γ

Γ Γ
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− − − − ℏe e

r r

r r r r
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(2.30)
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q q p p

(1) (1) 2

( ) 4 ( )

j k

k j k j
2 2 2 2 2

In the second equality permutations involving 3, 4 particles, etc, have been
neglected. Only the identity and all permutations involving 2 particles have been
retained. Equation (2.15) has been used for the final two equalities. The final term of
the final equality is evidently a sum of Gaussians in position separation and in
momentum separation with variance ξ√2 and ξℏ √2 , respectively. This Gaussian
form for the dimer overlap factor holds for the general wave packet, not just the
classical limit (although the latter has been invoked in the transformations to
classical phase space).

As mentioned, at low densities configurations with two particles close enough for
their wave packets to overlap are exceedingly rare. Thus the leading order term of
unity dominates the dimer contribution in this regime, leaving χ Γ =±( ) 1. In this
limit there is no distinction between bosons and fermions. With this result, the
partition function and statistical average given in the preceding subsection become

∫ Γ=
!

β Γ−Z N V T
h N

e( , , )
1

d , (2.31)
N3

( )H

and

∫ Γ Γ=
!

β Γ−O
h N Z

e O
1

d ( ). (2.32)
Nstat 3

( )H

These are the classical results.
It remains to establish parameters for each given system that give quantitative

meaning to ‘high’ in high temperature, and to ‘low’ in low density. And it remains to
formulate explicitly quantum perturbations in regimes approaching the classical
limit, and quantum effects far from the classical limit. These tasks are approached
from a formally exact analysis in the succeeding chapters.
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Chapter 3

Symmetrization factor and permutation
loop expansion

The formally exact transformation of quantum statistical mechanics to classical
phase space is derived. The symmetrization factor generalizes state occupancy rules
(i.e., particle statistics) to multi-particle states, and allows the trace to be written as
an unrestricted sum. This theorem enables the partition function to be written in
terms of multi-particle energy states. The symmetrization factor as a sum over
permutations gives the internal entropy for the subsystem microstate.

Examples of localized permuted states motivate writing the sum over particle
permutators as a series of products of disjoint permutation loops naturally ordered
in terms of increasing size and number. These permutation loops play important
roles in succeeding chapters. For single-particle states, the permutation loop series
for the grand partition function can be analytically resummed giving the loop
expansion for the grand potential.

3.1 Introduction
In the preceding chapter wave packets were invoked as approximate energy
eigenfunctions, and the quantum statistical average and partition function were
transformed to classical phase space. Although approximate, the analysis did show
how the classical limit emerges, and it did raise general issues such as the
simultaneous specification of position and momentum, the symmetrization of the
wave function and its implications for the counting of distinct, allowed states, and
the localization of eigenfunctions, eigenstates, and symmetrization effects. All of
these recur in the formally exact transformation of quantum statistical mechanics to
classical phase space, which is the task set for this chapter.

For a canonical equilibrium quantum system, the partition function may be
written symbolically as

H= ′ β− ˆZ T e( ) TR . (3.1)

doi:10.1088/978-0-7503-4055-7ch3 3-1 ª IOP Publishing Ltd 2021
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Feynman (1998) describes this as the summit of statistical mechanics, explaining that
the latter consists either of the descent, where the law is applied to various cases, or
else the ascent, where the law is derived and the fundamental thermodynamic and
statistical concepts are elucidated.

In this book the ascent is deferred to chapter 12, where the law is derived by
analyzing the collapse of the wave function in an open quantum system. The descent—
applications—occupies chapters 4, 5, and 6. Most of the book, including this chapter,
is spent at the summit itself, manipulating and reformulating the expression for the
partition function with the aim of transforming it to classical phase space, and with
developing practical algorithms and expansions that can be applied not just in the
near-classical regime where quantum effects act as a mere perturbation, but also to
the regime where quantum phenomena are dominant.

3.2 Partition function
Conceptually, the partition function is the total number of quantum states.
Technically this means the total states of the total system. In fact it is only the
subsystem states that are summed over, with the Boltzmann weight providing the
number of states of the reservoir or environment that depend on each subsystem
state (Attard 2002). I use the word ‘subsystem’ in order to explicitly denote that part
of the total system that is of direct interest; others call this an ‘open system’ or simply
‘system’. The remainder of the total system is the reservoir or environment (Attard
2002). In any case, it is obvious that for the partition function one should count only
allowed states, and each such allowed state should be distinct and counted once
only. These two restrictions are signified by the prime on the trace.

The formulation of the partition function as a trace is deliberately generic. It can
be explicitly expressed as a sum over quantum states of any complete operator of the
subsystem. We shall return to this general option later. Here we begin with the
concrete case of energy states.

Let ϕ r( )n be an energy eigenfunction in the position representation,

H ϕ ϕˆ = Er r r( ) ( ) ( ). (3.2)n n n

We shall sometimes write the energy eigenfunction as ϕ∣ 〉n or even as ∣ 〉n . For
simplicity we do not deal with spin variables here; a brief discussion of these in the
present context is given in section 6.4. We suppose that the energy eigenfunctions
form a complete orthonormal set

∑ϕ ϕ δ ϕ ϕ δ〈 ∣ 〉 = ′ ″ = ′ ″′ ″ ′ ″ *r r r r, and ( ) ( ) ( , ). (3.3)
n

n n n n n n,

In general the potential energy in the Hamiltonian operator is the sum of one-
body, two-body, etc, potentials, and as such it is a many-body operator. This means
that the energy states n are multi-particle states that cannot be decomposed into
single-particle states. It is possible that the energy state label n is a N3 -dimensional
vector. But even so it is not possible to identify the individual components with a
single particle. This is a significant development on the analysis of wave packets in
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chapter 2, which consist of the products of single-particle wave functions and
quantum states.

It is a fundamental axiom of quantum mechanics that the actual wave function of
the system (in our language subsystem) must be either fully symmetric (bosons) or
else fully antisymmetric (fermions) with respect to particle interchange (Messiah
1961, Merzbacher 1970). Using a plus sign for bosons and a minus sign for fermions,
the symmetrized energy eigenfunctions are as in equation (2.11),

∑ϕ
χ

ϕ≡
!

± ˆ
ˆ

±
±N

r r( )
1

( 1) (P ). (3.4)
P

p
n

n
n

Recall that P̂ is one of the !N particle permutations and ˆp(P) is its parity. It is not
meaningful to apply the particle permutator to the multi-particle energy state
label n.

As in equation (2.13), normalization is ensured by taking

∑ ∑χ ϕ ϕ ϕ ϕ=
!

± 〈 ˆ ∣ ˆ ′ 〉 = ± 〈 ˆ ∣ 〉
ˆ ˆ ′ ˆ

± + ′

N
r r r r

1
( 1) (P ) (P ) ( 1) (P ) ( ) . (3.5)

P,P P

p p p
n n n n n

Since the symmetrization factor depends upon the wave function, it would be clearer
to show this explicitly, as in χ ϕ± [ ]n , but for simplicity we do not do this unless
required for disambiguation.

In chapter 2, section 2.3.2, it was shown that the symmetrization factor enabled
the sum over distinct allowed quantum states to be replaced by an unrestricted sum
over all states. This was particularly useful in formulating the partition function as a
sum over given quantum states. However, the proof of the validity of the
formulation was specific to single-particle states, and it needs to be modified or
carried out anew for the multi-particle case. Such a proof is given in subsection 3.3.2.
Anticipating that proof, here we simply assume that the symmetrization factor
correctly accounts for particle statistics and that in effect it generalizes the concept of
state occupation to multi-particle states. In this case the partition function can be
written as an unrestricted sum over multi-particle states, just as for single-particle
states,

H

H

H

∑

∑ ∑

χ ϕ ϕ

ϕ ϕ

= ′

=
!

=
!

± ˆ
ˆ

β

β

β

± − ˆ

± ± − ˆ ±

− ˆ

Z N V T e

N
e

N
er r

( , , ) TR
1

1
( 1) ( ) (P ) .

(3.6)n

n P

p

n n n

n n

The form of the second equality leads to the interpretation that the symmetrization
factor can be considered to be an internal entropy for the subsystem microstate,

χ=± ±S k lnn n
s,

B . The final equality corrects an analogous expression given by
Kirkwood (1933, equation (10)). Here V is the volume of the subsystem which
contains the N particles, and the inverse temperature is β ≡ k T1/ B . The Hamiltonian
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operator is necessarily symmetric, H Hˆ ˆ = ˆr r(P ) ( ) (Messiah 1961, Merzbacher 1970).
This formula applies to any complete set of states. In the particular case of energy
states, Ĥ∣ 〉 = ∣ 〉En nn , one has Hϕ ϕ〈 ∣ ∣ 〉 =β β± − ˆ ± −e e E

n n
n.

The partition function as written here is for the canonical equilibrium system,
which is a subsystem that can exchange energy with a reservoir or environment of
temperature T (Attard 2002). In the treatment of symmetrization of energy
eigenfunctions comprising single-particle states in section 3.4.3 below, we shall
analyze a grand canonical system, in which the subsystem can exchange both energy
and particles with a reservoir of temperature T and chemical potential μ (Attard
2002). The grand canonical partition function essentially sums the canonical
partition function over number

H∑ ∑μ χ ϕ ϕΞ =
!=

∞
β± ± ± − ˆ ±V T

z
N

e( , , ) , (3.7)
N n0

N

n n n

where the fugacity is = βμz e , μ being the chemical potential.

3.3 Symmetrization and occupancy for multi-particle states
In section 2.3.2, it was shown that the symmetrization factor for single-particle states
correctly gave the occupancy rules for bosons and fermions. This meant that a sum
over allowed occupied states could be written as an unrestricted sum over all states,
with the symmetrization factor providing the correct weight. In the present case of
multi-particle states, it is necessary to show likewise that the unrestricted sum over
all states with symmetrization factor weight gives the correct result. We begin by
setting out the formal properties of basis functions that are the product of single-
particle functions, which corresponds to the case that the quantum states of the
subsystem can be identified with the occupancy of single-particle states.

3.3.1 Single-particle states

Let ζ ζ= ∏ =r r( ) ( )ℓ ℓj
N

j1
(1)
j

be a complete set of orthonormal basis functions that consist
of the product of single-particle functions and states. One has the completeness and
orthonormality conditions of the full functions on the full Hilbert space,

∑ζ ζ δ ζ ζ δ〈 ∣ 〉 = ′ ″ = ′ − ″′ ″ ′ ″ *r r r rand ( ) ( ) ( ). (3.8)
ℓ

ℓ ℓ ℓ ℓ ℓ ℓ,

The symmetrized form is

∑ζ
χ

ζ≡
!

± ˆ
ˆ

±
±N

r r( )
1

( 1) (P ), (3.9)
P

ℓ
ℓ

ℓ
p

with

∑ ∑χ ζ ζ ζ ζ=
!

± 〈 ˆ ∣ ˆ ′ 〉 = ± 〈 ˆ ∣ 〉
ˆ ˆ ′ ˆ

± + ′

N
r r r r

1
( 1) (P ) (P ) ( 1) (P ) ( ) . (3.10)

P,P P
ℓ ℓ ℓ ℓ ℓ

p p p
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In case of ambiguity we shall write χ ζ± [ ]ℓ . The symmetrization factor allows a sum
over allowed, distinct states to be written as an unrestricted sum over all states,

∑ χ ζ ζ= ′ ˆ =
!

〈 ∣ ˆ ∣ 〉± ± ± ±F f
N

fTR
1

. (3.11)
ℓ

ℓ ℓ ℓ

This was proven to be consistent with the well-known particle occupancy rules in
section 2.3.2.

To recapitulate that proof, let ℓm ( )a be the number of particles in the single-
particle state = …a 1, 2, when the subsystem is in the state ℓ. For bosons, the
number of permutations of particles that leave the subsystem state unchanged is

! ∏ !ℓN m/ ( )a a . The unrestricted sum over all states counts each unique state this
many times. To correct for this, each term has to be weighted by the inverse of this,
namely χ ! = ∏ ! !+ ℓN m N/ ( ) /ℓ a a , or χ = ∏ !+ ℓm ( )ℓ a a . This can be seen to be true
directly from the definition.

For fermions, only zero or one particle may be in any one single-particle state.
Hence χ−

ℓ must vanish if ⩾ℓm ( ) 2a for any a. In section 2.3.2, this was indeed shown
to be the case. There remains !N as the number of times the sum over all states
counts each permutation of the particles. Since the occupied states have at most one
particle in them, there is no need to correct for any internal permutations within a
single-particle state.

The ζ ± r( )ℓ belong to the fully symmetric or fully antisymmetric sub-space of the
Hilbert space. We now want to show in what sense they respectively form a complete
orthonormal basis for these sub-spaces.

From the orthonormality of the full functions, δ ζ ζ= 〈 ∣ 〉′ ″ ′ ″ℓ ℓ ℓ ℓ, , one has

∑ ∑

∑

δ ζ ζ

ζ ζ

χ χ ζ ζ

± = ± 〈 ∣ 〉

= ± 〈 ˆ ′ ∣ ˆ ″ ′ 〉

= ! 〈 ∣ 〉

ˆ ′ ˆ ″ ˆ ′ ˆ ″

ˆ ′ ˆ ″

′+ ″
ˆ ′ ′ ˆ ″ ″

′+ ″
ˆ ′ ′ ˆ ″ ″

′+ ″
′ ″

′
±

″
±

′
±

″
±N

r r

( 1) ( 1)

( 1) (P ) (P )

,

(3.12)

P ,P P ,P

P ,P

ℓ ℓ ℓ ℓ

ℓ ℓ

ℓ ℓ ℓ ℓ

p p p p

p p

P ,P P P

or

∑ζ ζ
χ χ

δ
χ

δ〈 ∣ 〉 = ± ≡
ˆ

′
±

″
±

′
±

″
±

ˆ ′ ″
′
± ′ ″

±1
( 1)

1
. (3.13)

P
ℓ ℓ

ℓ ℓ

ℓ ℓ
ℓ

ℓ ℓ
p

P , ,

The symmetrized Kronecker-δ picks out subsystem states that are related by a
particle permutation.

Conversely from the completeness condition, δ ζ ζ′ − ″ = ∑ ′ ″ *r r r r( ) ( ) ( )ℓ ℓ ℓ , one has

∑ ∑ ∑

∑

δ ζ ζ

χ ζ ζ

± ˆ ′ ′ − ˆ ″ ″ = ± ˆ ′ ′ ˆ ″ ″

= ! ′ ″

ˆ ′ ˆ ″ ˆ ′ ˆ ″

′+ ″ ′+ ″ *

± ± ± *N

r r r r

r r

( 1) (P P ) ( 1) (P ) (P )

( ) ( ) ,
(3.14)ℓ

ℓ

P ,P P ,P

ℓ ℓ

ℓ ℓ ℓ

p p p p
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or

∑ ∑χ ζ ζ δ δ′ ″ = ± ˆ ′ − ″ ≡ ′ − ″
ˆ

± ± ± * ±r r r r r r( ) ( ) ( 1) (P ) ( ). (3.15)
ℓ P

ℓ ℓ ℓ
p

This symmetrized Dirac-δ function picks out positions that are the permutation of
each other.

We now need to obtain the form for the expansion of any symmetrized wave
function as a series of symmetrized basis functions. The normalized projection onto
a symmetrized sub-space of any wave function is

∑

∑ ∑

∑

ψ
χ ψ

ψ

χ ψ
ζ ψ ζ

χ ψ
χ ζ ζ ψ ζ

=
!

± ˆ

=
!

± 〈 ∣ 〉 ˆ

= 〈 ∣ 〉

ˆ

ˆ

±
±

±

±
± ±

N

N

r r

r

r

( )
1

[ ]
( 1) (P )

1

[ ]
( 1) (P )

1

[ ]
[ ] ( ).

(3.16)
ℓ

ℓ

P

P

ℓ ℓ

ℓ ℓ ℓ

p

p

This uses the completeness of the set of full basis functions. This obviously has the
correct symmetries. Now if we take ψ itself to be symmetrized, ψ ψ⇒ ±r r( ) ( ), then
χ ψ = !± ± N[ ] and this becomes

∑

∑

∑

ψ
χ ψ

χ ζ ζ ψ ζ

χ ζ χ ζ ζ ψ ζ

χ ζ ζ ψ ζ

= 〈 ∣ 〉

=
! !

〈 ∣ 〉

=
!

〈 ∣ 〉

±
± ±

± ± ±

±
±

± ± ±

± ± ± ±

N N

N

r r

r

r

( )
1

[ ]
[ ] ( )

1
[ ]

[ ]
( )

1
[ ] ( ).

(3.17)

ℓ

ℓ

ℓ

ℓ ℓ ℓ

ℓ
ℓ

ℓ ℓ

ℓ ℓ ℓ

Using the fact that ζ ψ ζ ψ ζ ψ〈 ˆ ∣ 〉 = 〈 ∣ ˆ 〉 = ± 〈 ∣ 〉± ± − ±r r r r r r(P ) ( ) ( ) (P ) ( 1) ( ) ( )ℓ ℓ ℓ
p1 , the second

equality follows since

∑ζ ψ ζ ψ χ ζ ζ ψ〈 ∣ 〉 =
!

± 〈 ˆ ∣ 〉 =
!

〈 ∣ 〉
ˆ

± ±
±

± ±

N N
r r

1
( 1) (P ) ( )

[ ]
. (3.18)

P

ℓ ℓ
ℓ

ℓ
p

Equation (3.17) is the desired expansion of any symmetrized wave function as a
series of symmetrized basis functions. Notice how the symmetrization factor allows
this to be written as an unrestricted sum over all states.

It is a useful exercise to confirm that this expression for the expansion of a
symmetrized function is consistent with the above results for completeness and
orthonormality. Using the above result for completeness the right-hand side is
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∫

∫

∑

∑

∑

χ ζ ζ ψ ζ ψ δ

ψ δ

ψ

ψ

!
〈 ∣ 〉 =

!
′ ′ ′ −

= ±
!

′ ′ ˆ ′ −

= ±
!

ˆ

=

ˆ

ˆ

± ± ± ± ± ±

±

±

±

N N

N

N

r r r r r

r r r r

r

r

1
[ ] ( )

1
d ( ) ( )

( 1)
1

d ( ) (P )

( 1)
1

(P )

( ).

(3.19)

ℓ

P

P

ℓ ℓ ℓ

p

p

This is the necessary result. For future reference this shows that the symmetrized
completeness expression is an identity that can be inserted into the inner product of
symmetrized wave functions. For example

∑

∑

ψ ψ ψ ζ ζ ψ

χ ζ ψ ζ ζ ψ

〈 ∣ 〉 = 〈 ∣ 〉 〈 ∣ 〉

=
!

〈 ∣ 〉 〈 ∣ 〉

± ± ± ±

± ± ± ± ±

N
1

[ ] .
(3.20)

ℓ

ℓ

ℓ ℓ

ℓ ℓ ℓ

1 2 2 2

2 2

The first equality uses the completeness of the full eigenfunctions on the full Hilbert
space, and the second uses the completeness just established of the symmetrized
eigenfunctions on the symmetrized sub-space.

Using the above result for orthogonality one has

∑

∑

∑ ∑

∑

ζ ψ χ ζ ζ ψ ζ ζ

χ ζ ζ ψ
χ ζ χ ζ

δ

χ ζ ζ ψ
χ ζ χ ζ

δ

χ ζ ζ ψ
χ ζ χ ζ

ζ ψ

〈 ∣ 〉 =
!

〈 ∣ 〉 〈 ∣ 〉

=
!

〈 ∣ 〉

=
!

〈 ∣ 〉 ±

=
!

± 〈 ∣ 〉

= 〈 ∣ 〉

ˆ

ˆ

′
± ± ± ± ±

′
± ±

± ± ±
±

′
± ′

±

± ± ±
±

′
±

ˆ ′

± ˆ ′ ˆ ′
± ±

±
′

± ˆ ′

′
± ±

N

N

N

N

1
[ ]

1
[ ]

1

[ ] [ ]

1
[ ]

1

[ ] [ ]
( 1)

1
( 1) [ ]

1

[ ] [ ]

,

(3.21)

ℓ

ℓ

ℓ P

P

ℓ ℓ ℓ ℓ ℓ

ℓ ℓ
ℓ ℓ

ℓ ℓ

ℓ ℓ
ℓ ℓ

ℓ ℓ

ℓ ℓ
ℓ ℓ

ℓ

p

p

,

P ,

P P
P

since χ ζ χ ζ=± ˆ ′
±

′[ ] [ ]ℓ ℓP . Note that χ±
ℓ is generally complex. Again this is the necessary

result.

3.3.2 Multi-particle states

The particle permutator P̂ gives a permutation of N objects. Primarily it is applied to
the position representation coordinates, r, which is an N-dimensional vector, with
each entry being a 3-dimensional vector. Single-particle states, such as the position-
momentum states that were used for wave packets in chapter 2, or momentum states
in general, have a vector label with elements in one-to-one correspondence with the
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particles. As such the particle permutator can be applied to the single-particle state
label, as was done above on occasion.

In the case of multi-particle states, such as the energy states for a subsystem of
interacting particles, the states do not correspond to individual particles, and so the
particle permutator cannot be applied to the vector label that denotes the subsystem
state. With this limitation in mind, we have to show explicitly that the correct
formula for an unrestricted sum over multi-particle states is formally weighted with
the multi-particle symmetrization factor, just as is the case of single-particle states.
Preliminary to this, we establish the general properties of the multi-particle basis
functions and their symmetrized projections.

Let ϕ r( )n be one of a complete set of orthonormal eigenfunctions that forms a
basis for the Hilbert space. Here n labels a multi-particle state. One has

∑ϕ ϕ δ ϕ ϕ δ〈 ∣ 〉 = ′ ″ = ′ − ″′ ″ ′ ″ *r r r rand ( ) ( ) ( ). (3.22)
n

n n n n n n,

The symmetrized form is

∑ϕ
χ

ϕ≡
!

± ˆ
ˆ

±
±N

r r( )
1

( 1) (P ), (3.23)
P

p
n

n
n

with

∑ ∑χ ϕ ϕ ϕ ϕ=
!

± 〈 ˆ ∣ ˆ ′ 〉 = ± 〈 ˆ ∣ 〉
ˆ ˆ ′ ˆ

± + ′

N
r r r r

1
( 1) (P ) (P ) ( 1) (P ) ( ) . (3.24)

P,P P

p p p
n n n n n

When there is a risk of ambiguity we shall write the symmetrization factor as χ ϕ± [ ]n .
The derivation of the completeness condition given above for single-particle

symmetrized eigenfunctions carries over directly to the multi-particle case, and one
ends up with

∑ ∑χ ϕ ϕ δ δ′ ″ = ± ˆ ′ − ″ ≡ ′ − ″
ˆ

± ± ± * ±r r r r r r( ) ( ) ( 1) (P ) ( ). (3.25)
n P

p
n n n

The derivation of this only requires the permutator to be applied to the particle
representation coordinates.

We are required to prove that even in the case of multi-particle states one can use
an unrestricted sum over all states with the symmetrization factor as the weight,

∑ χ ϕ ϕ≡ ′ ˆ =
!

〈 ∣ ˆ ∣ 〉± ± ± ±F f
N

fTR
1

. (3.26)
n

n n n

The multi-particle symmetrized eigenfunctions may be expressed as a series of
single-particle symmetrized basis functions, equation (3.17),

∑ϕ χ ζ ζ ϕ ζ=
!

〈 ∣ 〉± ± ± ± ±

N
r r( )

1
[ ] ( ). (3.27)

ℓ
ℓ ℓ ℓn n
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Using this, the right-hand side of the result to be proven may be written

∑

∑ ∑

∑ ∑

∑

∑ ∑

∑

χ ϕ ϕ ϕ

χ ϕ χ ζ χ ζ ϕ ζ ζ ζ ζ ϕ

χ ζ χ ζ ζ ζ ζ ζ

χ ζ χ ζ ζ ζ ζ ζ

χ ζ χ ζ
χ ζ χ ζ

δ ζ ζ

χ ζ ζ ζ

!
〈 | ˆ | 〉

=
! !

〈 ∣ 〉 〈 ∣ ˆ ∣ 〉 〈 ∣ 〉

=
!

±
!

〈 ∣ ˆ ∣ 〉 〈 ˆ ∣ 〉

=
!

〈 ∣ ˆ ∣ 〉 〈 ∣ 〉

=
!

± 〈 ∣ ˆ ∣ 〉

=
!

〈 ∣ ˆ ∣ 〉

=

± ± ±

′ ″

ˆ ′ ″

′ ″

′ ″ ˆ

′

± ±
′

±
″

±
″
±

″
±

′
±

′
± ±

±
′

±
″ ″

±
′
±

′
±

″
±

±
′

±
″ ″

±
′
±

′
±

″
±

±
′

±
″

±
′

±
″

ˆ ′ ″ ″
±

′
±

±
′ ′

±
′
±

±

N
f

N N
f

N N
f

N
f

N
f

N
f

F

r r

r r

1
[ ]

1 1
( )

[ ] [ ]

1
( 1)

1
( )

[ ] [ ] (P ) ( )

1
( )

[ ] [ ] ( ) ( )

1
( )

[ ] [ ]

[ ] [ ]
( 1)

1
[ ]

,

(3.28)

ℓ ℓ

ℓ ℓ

ℓ ℓ

ℓ ℓ

ℓ

n
n n n

n ,

P ,

,

, P

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ

ℓ ℓ
ℓ ℓ ℓ ℓ

ℓ ℓ ℓ

p

p

n n n2

2

2

2 P ,

⎡⎣ ⎤⎦

as required. Recall that the validity of the expression as an unrestricted sum over
single-particle states was proven in section 2.3.2.

In can be mentioned that there is another way to interpret the unrestricted,
weighted sum over all states that avoids explicitly invoking particle statistics or state
occupancy rules. One has

∑

∑ ∑

χ ϕ ϕ

ϕ ϕ

′ ˆ =
!

〈 ∣ ˆ ∣ 〉

=
!

± 〈 ˆ ′ ∣ ˆ ∣ ˆ ″ 〉
ˆ ′ ˆ ″

± ± ±

′+ ″

f
N

f

N
fr r

TR
1

1
( )

( 1) (P ) (P ) .
(3.29)n

n P ,P

p p

n n n

n n2

The second equality, which follows the first upon insertion of the definition of the
symmetrization factor, explicitly symmetrizes the basis functions, which necessarily
embodies, and is more fundamental than, the particle statistics and state occupancy
rules. Summing over permutations over-counts the number of distinct states by a
factor of !N( ) ;2 hence this factor in the denominator. (The neglect of this factor is
one contribution to the error in a widely used result for the primary quantum
correction to classical statistical mechanics (Kirkwood 1933). This is discussed in
section 8.2.2.) The second equality has a direct physical interpretation that does not
require reference to particle state occupancy, and so it applies directly to multi-
particle states as well as to single-particle states. Of course from the mathematical
point of view it is entirely equal to the first equality in which the symmetrization
factor appears explicitly.

3.4 Symmetrization expansion of the partition function
Shortly a formally exact series expansion will be made for the symmetrization factor.
An ordering of the terms and a resummation of the series is made based on certain
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arguments about the relative size of various contributions. These rely upon the
notion that the symmetrized permutations of particles are localized in space. Before
proceeding with the formal analysis this localization idea is discussed and demon-
strated in two simple models, section 3.4.1.

Following this is an exact analysis of the symmetrization factor, section 3.4.2,
where it is written as a series expansion, the terms of which are products of closed
permutation loops. In section 3.4.3, the analysis is applied to energy eigenstates that
are single-particle states. In this case it is shown that in the thermodynamic limit an
infinite resummation can be performed that enables the grand potential to be written
as a series of loop grand potentials, each term of which is extensive with the
subsystem volume. This result is used in chapter 4 to obtain the known analytic
expressions for the free energy of a quantum ideal gas, section 4.1, and for non-
interacting quantum harmonic oscillators, section 4.2.

The analysis of the symmetrization factor for single-particle states will prove
directly relevant to the transformation to classical phase space, chapter 7, where
momentum states will be used, although of course these are not energy eigenstates.
However before then, in section 3.4.4 a short digression is taken to explore the
localization of the symmetrization loops in the case of multi-particle energy
eigenstates.

3.4.1 Localization of permuted states

3.4.1.1 Wave packets
In section 2.3.1, using wave packets as the basis functions, it was shown that the
dimer symmetrization factor, which results from the transposition of two particles
and which might therefore be expected to be the leading symmetrization correction
to classical results, was a Gaussian in position separation and in momentum
separation. Basically this says that the effects of particle permutations are only
important if the particles involved are close enough for their single-particle wave
functions to overlap. Obviously wave packets are an approximation to the multi-
particle energy eigenfunctions for a real subsystem of interacting particles, but
nevertheless the clustering picture that results contains an element of reality.

3.4.1.2 Non-interacting particles. I.
It might be thought that this localization of particle permutations is a specific
consequence of the localized nature of wave packets and that it would not hold for
the exact eigenfunctions of the system. After all, the discrete nature of the exact
quantum eigenstates of a system arises directly from the boundary conditions
applied to the wave function; these are necessarily global, not local. However we
can demonstrate that symmetrization localization also holds for non-localized basis
functions by analyzing the case of ideal, non-interacting particles. For these the
energy operator consists solely of the kinetic energy

H K ∑ ∑ˆ = ˆ = −ℏ ∇ = −ℏ ∂
α= =

αm m
r r( ) ( )

2 2
. (3.30)

j

N

x y z1 , ,
j

id
2

2
2

2
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The energy eigenfunctions are just plane waves,

∏ϕ ϕ ϕ= = =
=

− · ℏ − · ℏe
L

e
L

r r r( ) ( ), ( ) , (3.31)
j

N

1
N j jp

p r

p p

p ri

3 2
(1) (1)

i

3 2j j

j j

where L is the subsystem edge-length. This is the product of single-particle
eigenfunctions and the subsystem state is a vector of single-particle momentum
states, = …p p p p{ , , , }N1 2 . (In fact, the eigenfunctions are just wave packets with
ξ → ∞.) The eigenvalue equation is

H ϕ ϕˆ = p
m

r r r( ) ( )
2

( ). (3.32)p p
id

2

Obviously because they don’t decay, the plane wave eigenfunctions are not localized
in position space. (Admittedly, they are highly localized in momentum space.)

As in section 2.3.1 where the dimer symmetrization factor for wave packets was
derived, let P̂jk transpose particles j and k (more precisely, transpose the jth and kth
elements of the relevant vector), so that

ϕ ϕ

ϕ ϕ ϕ

ˆ = … … …

= … … …

… … …r r r r

r r r

(P ) ( )

( ) ( ) ( )
(3.33)

jk k j

k j

p p p p

p p p

1

(1)
1

(1) (1)

j k

j k

1

1

The dimer symmetrization factor is the inner product of the original and the
transposed wave function,

∫

∏

χ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

δ

≡ ± ˆ

= ±

= ± 〈 ∣ 〉

= ±

= ± ℏ
−

−

= ±
α= α α

±

−
· ℏ − · ℏ

− ℏ − − ℏα α α α

L
e e

L p p
e e

r r

r r r r

r

(P ) ( )

( ) ( ) ( ) ( )

1
d

1
[ ]

.

(3.34)

x y z, ,

jk jk

k j j k

L

L

j

k j

p p L p p L

p p

p p p p

p p

p r p r

p p

,(2)

(1) (1) (1) (1)

(1) (1)
2

6 2

2
i i

2

6

2

2
2i 2i

2

,
2

j k j k

j k

k j j j

k j k j

k j

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

This is a Kronecker-δ function if the momentum components are quantized,
π= ℏα αp n L2 /j j . Since ultimately → ∞L , we can take it to go over to a Dirac-δ

function. This result shows that for non-interacting particles the energy eigenfunc-
tion dimer symmetrization factor vanishes unless the two particles are close together
in momentum space.
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3.4.1.3 Non-interacting particles. II.
Perhaps even more instructive is to analyze the effect of symmetrization on the
position density for this ideal subsystem. To this end the complete orthogonal set of
position eigenfunctions are just Dirac-δ functions,

δ∣ 〉 = −q r q( ). (3.35)

One can take the symmetrized position basis functions to be

∑ δ∣ 〉 =
!

± ˆ −
ˆ

±

N
q r q

1
( 1) (P ). (3.36)

P

p

This sets χ =± 1q , which gives the correct orthonormalization,

∫∑

∑

∑

δ δ

δ

δ

〈 ′ ∣ ″ 〉 = ±
!

ˆ ′ − ′ ˆ ″ − ″

=
!

± ˆ ′ ′ − ˆ ″ ″

= ± ˆ ′ − ″

ˆ ′ ˆ ″

ˆ ′ ˆ ″

ˆ

± ± ′+ ″

′+ ″

N

N

q q r r q r q

q q

q q

( 1)
1

d (P ) (P )

1
( 1) (P P )

( 1) (P ).

(3.37)

P ,P

P ,P

P

p p

p p

p

The right-hand side is zero unless ″q is a permutation of ′q . In the latter case, if, for
example, ˆ ′ = ″q qP0 , then one term on the right-hand side is non-zero, namely

δ± ″ − ″q q( 1) ( )p0 . This is the correct normalization for the continuum.
There are two reasons for believing that there is at most one permutation that

transforms one position label into the other. First, in the continuum there is
vanishingly small mathematical probability for two particles being at the same
position point. And second, on physical grounds particles must have a repulsive core
that precludes the individual Dirac-δ functions from overlap.

We can therefore take it as axiomatic that for physical position eigenstates
≠ ⇔ ≠j k q qj k. This means that the occupancy of each single-particle position

state is zero or one, and therefore that there are no internal permutations within a
single-particle position state. In other words, each subsystem position state q belongs
to an equivalence class with exactly !N members, which explains why χ =± 1q .

In chapter 12, the Maxwell–Boltzmann operator Hβ− ˆe is shown to give the
reservoir or environment weight to the otherwise equally weighted states of the
subsystem. Accordingly we can identify the quantum probability density for the
superposition of position to be (we neglect proportionality constants that don’t
depend upon position)

H

H∑

∑

χ ϕ ϕ

χ ϕ ϕ

″ ′ ∝ 〈 ″ ∣ ∣ ′ 〉

= 〈 ″ ∣ ∣ 〉 〈 ∣ ′ 〉

= 〈 ″ ∣ 〉 〈 ∣ ′ 〉

β

β

β

± − ˆ ±

± ± − ˆ ± ± ±

± − ± ± ± ±

W e

e

e

q q q q

q q

q q

( , )

.

(3.38)p

p

N

p m

p p p

p p p
22
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Now

∑

∑

∑

ϕ
χ

δ ϕ

χ
δ ϕ

χ
ϕ

〈 ″ ∣ 〉 =
!

± 〈 ˆ ″ − ″ ∣ ˆ ′ 〉

= ± 〈 − ″ ∣ ˆ ′ 〉

= ± ˆ ′ ″

ˆ ′ ˆ ″

ˆ ′

ˆ ′

± ±
±

′+ ″

±
′

±
′

N
q r q r

r q r

q

1
( 1) (P ) (P )

1
( 1) ( ) (P )

1
( 1) (P ).

(3.39)

P ,P

P

P

p p

p

p

p
p

p

p
p

p
p

With this and transforming to the momentum continuum, one sees that the position
probability density is proportional to

∫

∫

∫

∫

∑

∑

∑

∑

∑

ϕ ϕ″ ′ ∝ ± ˆ ″ ″ ˆ ′ ′

∝ ±

∝ ±

= ±

∝ ±

ˆ ′ ˆ ″

ˆ ′ ˆ ″

ˆ

ˆ

ˆ

β

β

β

β β β

π

′+ ″ − *

′+ ″ − − · ˆ ″ ″ ℏ · ˆ ′ ′ ℏ

− + · ′− ˆ ″ ℏ

− + ℏ ′− ˆ ″ − ′− ˆ ″ ℏ

− ′− ˆ ″ Λ

W e

e e e

e

e e

e

q q p q q

p

p

p

( , ) ( 1) d (P ) (P )

( 1) d

( 1) d

( 1) d

( 1) .

(3.40)

P ,P

P ,P

P

P

P

N
p p p m

p p p m

p p m

p i m m m

p

p p

p q p q

p q q

p q q q q

q q

2

2 (P ) i (P ) i

( 2 ) ( P ) i

[ ( )( P )] 2 ( P ) 2

( P )

2

2

2

2 2 2

2 2

Here and throughout the thermal wavelength is πΛ ≡ ℏ mk T2 /2
B . The diagonal

element of the particle position density is therefore

∑

∑ ∏

= ±

= ±

ˆ

ˆ =

π

π

− − ˆ Λ

− − Λ′

W e

e

q q( , ) ( 1)

( 1) ,
(3.41)

j

N
P

P 1

N
p

p

q q

q q

( P )

( )j j

2 2

2 2

where ′j is the label of particle j after the permutation P̂.
The nature of the Gaussians that appear here means that the particle position

density is dominated by permutations amongst particles that are close together
(since in order for − ′q q( )j j

2 to be small, originally particle j must have been close to

particle ′j ). To leading order this is the identity permutation, Î, with ′ =j j , followed
by a single transposition, say P̂jk, with ′ =j k and ′ =k j , followed by the

permutation of three particles, ˆ = ˆ ˆP P Pjkℓ ℓj jk, with ′ =j ℓ, ′ =k j , and ′ =ℓ k, etc.
Hence one can expand the density as

∑ ∑= ± + + ⋯
< < <

π π π π− Λ − Λ − Λ − ΛW e e e eq q( , ) 1 (3.42)
j k j k ℓ

N
q q q q2 jk jk kℓ ℓj

2 2 2 2 2 2 2 2
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where = −q q qjk j k and = ·q q qjk jk jk
2 . The Gaussian in qjk vanishes when ≫ Λqjk .

In the low density →N V/ 0 and/or high temperature Λ → 0 limits, one has
Λ ≪N V/ 13 . Since the spacing between particles is on the order of the inverse of

the cube root of the number density, one sees that in the high temperature, low
density limit the corrections due to quantum symmetrization are negligible. This
decay of symmetrization effects with distance illustrates how it is localized to clusters
of neighboring particles.

In the low density, high temperature limit the single pair transpositions dominate
the permutation sum. In this case one can write the position probability density in
Maxwell–Boltzmann form with an effective pair potential

v = − ± π− Λq k T e( ) ln [1 ]. (3.43)jk
q

B
2 jk

2 2

This potential is for ideal particles and it arises from wave function symmetrization.
The upper sign is for bosons and the lower sign is for fermions. This is graphed in
figure 3.1. One can see that wave function symmetrization induces an effective
attraction between bosons and an effective repulsion between fermions. This is how
particle occupancy statistics manifest themselves in the continuum. Although this
effective potential was derived for ideal non-interacting particles, one will not go too
far wrong in thinking of real interacting particles as having a similar effective
potential.

The conclusion that symmetrization effects are localized was made on the basis of
two approximate calculations: wave packets, which are themselves localized but
approximate eigenfunctions for interacting particles, and plane waves, which are
non-localized wave functions that are the exact eigenfunctions for non-interacting
particles. The consonance of these two different calculations is rather persuasive that
symmetrization effects are in general only important between neighboring particles,
and that therefore they can be usefully ordered in terms of clusters of increasing size.
(Localization here can be in either momentum space or else in position space. In

Figure 3.1. Effective pair potential due to wave function symmetrization for ideal bosons (solid curve) and
fermions (dashed curve).
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later chapters, specifically chapter 5, the momentum permutation loops are non-
localized in the position continuum and fully localized for the quantized momentum
states.)

3.4.2 Loop expansion of the permutation series

The symmetrization factor, which enables the partition function to be written as an
unrestricted sum over all quantum states, requires the sum over all permutations of
the particle positions, equation (3.5). We now obtain a systematic series expansion
for this function.

Any permutation can be cast as the product of disconnected loops (figure 3.2). A
loop is the cyclic permutation of a set of particles. This can be written as a sequence
of connected pair transpositions, which is to say that the end label of one
transposition is the start label of the next transposition. A monomer is a one-
particle loop (the identity permutation). A dimer is a two-particle loop (a single
transposition), for example, → →1 2 1, which is equivalent to the single trans-
position P̂21. The trimer, or three-particle loop, → → →1 2 3 1, is equivalent to the
double transposition ˆ ˆP P32 21. This permutation can also be achieved as ˆ ˆP P21 13 and as
ˆ ˆP P31 12. The tetramer → → → →1 2 3 4 1, is equivalent to the triple transposition
ˆ ˆ ˆP P P43 32 21, and others besides. In general an l-mer is an l-particle loop. An l-mer of
particles … l1, 2, , in order can be written as the application of −l 1 successive

transpositions, ˆ ≡ ˆ … ˆ ˆ−
−P P P P

l
l l

1
, 1 32 21. Because one has to sum over all permutations,

the nodes of the loops can be re-labeled as convenient.
Evidently the parity of a loop is the parity of the number of nodes minus one.

That is, an l-mer has parity −l 1. We usually restrict the word ‘loop’ to dimers and
above, and use the word ‘monomer’ for the case that the identity permutation is
applied.

Figure 3.2. Six objects (top row) and a permutation of their order (second row). The third row shows the
permutation factored into its loops: the dimer → →a e a, the monomer →c c, and the trimer

→ → →d f b d .
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The sum over permutation operators can be written as the sum over all possible
loop factors, with the smallest loops, and the smallest number of factors ordered
first,

∑ ∑ ∑ ∑± ˆ = ˆ ± ′ ˆ + ′ ˆ ˆ + ′ ˆ ˆ ± …
ˆ

( 1) P I P P P P P (3.44)
i j i j k i j k lP , , , , , ,

p
ij ij jk ij kl

The prime on the sums restrict them to unique loops, with each index being different.
The first term is just the identity. The second term is a dimer loop, the third term is a
trimer loop, and the fourth term is the product of two different dimers, etc.

3.4.3 Exact expansion for single-particle states

The present subsection focuses upon single-particle states. In this case it will be
shown that the individual terms in the loop expansion of the permutation sum just
derived factorize into independent products of monomers and permutation loops.
This enables a powerful resummation of the partition function into a simple series
for the grand potential that is formally exact in the thermodynamic limit.

Apart from this infinite resummation, the treatment of the overlap factors that
occur in the permutation loops is rather useful for single-particle states in general. In
the case, for example, of momentum states, the eigenfunctions are just plane waves,
and the symmetrization or loop overlap factors can be calculated explicitly for a
given momentum state. These will play a key role in the formulation of quantum
statistical mechanics in classical phase space in chapter 7.

3.4.3.1 Single-particle states
Define the relevant unsymmetrized subsystem basis functions for the present case of
single-particle states to be

∏ϕ ϕ=
=

r r( ) ( ). (3.45)
j

N

1

jn n
(1)
j

These could be momentum states and eigenfunctions, but they don’t have to be. The
equations in terms of momentum states p used above are now invoked using generic
single-particle states n in their place.

In equation (3.44), the sum over all particle permutators was systematically
decomposed into sums over permutation loops and their products. The symmetri-
zation or overlap factor, χ±

n =∑ ±ˆ ( 1) p
P ϕ ϕ〈 ˆ ∣ 〉r r(P ) ( )n n , is the sum of the expectation

values of these loops. The monomer symmetrization factor is unity,

χ ϕ ϕ= 〈 ∣ 〉 =± r r( ) ( ) 1. (3.46)n n n
,(1)

The dimer overlap factor for particles j and k in the state n is

χ ϕ ϕ

ϕ ϕ ϕ ϕ

= ± 〈 ˆ ∣ 〉

= ± 〈 ∣ 〉 〈 ∣ 〉

= ± 〈 ∣ 〉 〈 ∣ 〉

± r r

r r r r

n n n n

(P ) ( )

( ) ( ) ( ) ( )

.

(3.47)
jk jk

k k j j

j k k j

n n n

n n n n

;
,(2)

(1) (1) (1) (1)
j k k j
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This dimer overlap factor for the permutation of particles j and k only involves their
respective single-particle wave functions.

Similarly the trimer overlap factor is

χ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

= 〈 ˆ ˆ ∣ 〉

= 〈 ∣ 〉

= 〈 ∣ 〉 〈 ∣ 〉 〈 ∣ 〉

= 〈 ∣ 〉 〈 ∣ 〉 〈 ∣ 〉

± r r

r r r r r r

r r r r r r

n n n n n n

(P P ) ( )

( , , ) ( , , )

( ) ( ) ( ) ( ) ( ) ( )

.

(3.48)

jkl jk kl

l j k j k l

j j l l k k

k j j l l k

n n n

n n n n n n

n n n n n n

;
,(3)

, ,
(3)

, ,
(3)

(1) (1) (1) (1) (1) (1)

j k l j k l

k j j l l k

Again since the expectation values of the unpermuted monomers each contribute a
factor of unity, only the permuted particle’s and their states contribute to this.

In general for single-particle states the l-loop symmetrization or overlap factor is

χ

δ δ δ

= ± 〈 ∣ 〉 〈 ∣ 〉…〈 ∣ 〉

= ± …
…

± −

−

n n n n n n( 1)

( 1) .
(3.49)

j j j
l l

j j j j j j

l

n

n n n n n n

;
,( ) 1

1
, , ,

l l

j j j j jl j

1 2 1 2 2 3 1

1 2 2 3 1

The product of Kronecker-deltas means that this is only non-zero if all the particles
in the permutation loop occupy the same single-particle state. This result is exact,
correct, and necessary, even for fermions. It is only the sum over all permutations
(i.e., over all permutation loops and products thereof) that must come to zero if
more than one fermion is in the same single-particle state. In section 4.2 it will be
shown by explicit calculation that this expression gives the known textbook result
for independent harmonic oscillators for both bosons and fermions.

Since the particle states are independent, disjoint permutation loops factorize into
the product of their corresponding expectation values. Hence the overlap factor for
the product of dimer loops reduces to the product of dimer overlap factors,

χ ϕ ϕ

ϕ ϕ ϕ ϕ

χ χ

= 〈 ˆ ˆ ∣ 〉

= 〈 ˆ ∣ 〉 〈 ˆ ∣ 〉

=

±

± ±

r r

r r r r

(P P ) ( )

(P ) ( ) (P ) ( )

.

(3.50)

ij kl ij kl

ij kl

ij kl

n n n

n n n n

n n

; ,
,(2, 2)

;
,(2)

;
,(2)

By definition of distinct permutations, the i j k, , , and lmust all be different, in which
case this factorization is exact. By this same argument, a similar factorization holds
for the overlap factors of all products of permutation loops.

Because the overlap factor χn is the sum over all permutations, it can be rewritten
as the sum over all possible monomers and loops. This gives the loop expansion for
the overlap factor for use in the partition function as

∑ ∑ ∑χ χ χ χ χ= + ′ + ′ + ′ + ⋯± ± ± ± ±1 (3.51)
ij ijk ijkl

ij ijk ij kln n n n n;
,(2)

;
,(3)

;
,(2)

;
,(2)

Note that the parity factor for fermions and bosons, ± −( 1)l 1, has been incorporated
into the definition of the χ± l

n
,( ).
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3.4.3.2 Energy eigenstates
It is convenient to work in the grand canonical system. The grand canonical
partition function is

H∑ ∑ ∑μ χΞ = =
!=

∞

=

∞
β± ± ± −V T z Z N V T

z
N

e( , , ) ( , , ) , (3.52)
N N n0 0

N
N

n
n

where the fugacity is = βμz e , μ being the chemical potential, and the energy
eigenvalue is H H= ∑ =j

N
n n1

(1)
j
. This is the first point in the current subsection 3.4.3

that we assume that the quantum states n are energy eigenstates. It is assumed that
the set of single-particle energy eigenstates is complete; contrariwise, sum over the
principle and the degenerate states.

One can insert into this the loop expansion of the overlap factor and evaluate the
terms one at a time. The monomer term is

H H∑ ∑ ∑ ∏ ∑

∑

Ξ =
!

=
!

≡
!

≡

=

∞

=

∞

=

=

∞

β β

β

− −

− Ω

z
N

e
z
N

e

z Z
N

e .

(3.53)
N N j

N

N

n n0 0 1

0

N N

N N

1

1

j

jn n
(1)

1

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

This does not distinguish bosons from fermions, and, in the continuum limit, is just
the classical expression (assuming that the single-particle eigenvalues Hn

(1)
j
have a

classical counterpart). The monomer grand potential is given by Hβ− Ω = ∑ β−z en1
j

jn
(1)
,

the particle label j being arbitrary.
The single dimer term is

H

H

H H

H

H

∑ ∑ ∑

∑ ∑

∑ ∏ ∑ ∑

∑ ∑

∑

χ

χ

χ

χ

χ

β

Ξ =
!

′

= −
!

= −
!

=
− !

= Ξ

≡ − Ω Ξ

=

∞

=

∞

=

∞

=

=

∞

β

β

β β

β

β

± − ±

− ±

− − ±

−
− − ±

− ±

±

z
N

e

z N N
N

e

z N N
N

e e

z
N

Z
z

e

z
e

( 1)
2

( 1)
2

( 2) 2

2

( ) .

(3.54)

N ij

N

N j

N

N

n

n

n n n

n n

n n

2

2

2 3 ,

2 ,

,

N

ij

N

N

N
N

n

n

n

n

n

2 ;
,(2)

;12
,(2)

;12
,(2)

2

1
2

2

;12
,(2)

1

2

;12
,(2)

2 1

j

j

n

n

n n n

n n

n n

(1)

1 2

1, 2
(2)

1 2

1, 2
(2)

1 2

1, 2
(2)

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥
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The second equality follows because the sum over all states makes all dimer pairs
equivalent. Obviously H H H= +n n n n,

(2) (1) (1)
1 2 1 2

, and similarly below.
Similarly the single trimer term is

H

H

H

H

∑ ∑ ∑

∑ ∑

∑ ∑

∑

χ

χ

χ

χ

β

Ξ =
!

′

= !
! − !

=
− !

= Ξ

≡ − Ω Ξ

=

∞

=

∞

=

∞

β

β

β

β

± − ±

− ±

−
− − ±

− ±

±

z
N

e

z
N

e

z
N

Z
z

e

z
e

2
3 ( 3)

( 3) 3

3

( ) .

(3.55)

N jkl

N

N

n

n

n n n

n n n

3

3

2 , ,

, ,

N

jkl

N

N
N

n

n

n

n

3 ;
,(3)

;123
,(3)

3

1
3

3

;123
,(3)

1

3

;123
,(3)

3 1

n

n

n n n

n n n

1 2 3

1, 2, 3
(3)

1 2 3

1, 2, 3
(3)

The combinatorial pre-factor comes from two contributions. In general there are
! ! − !N l N l/ ( ) ways of choosing l different particles from N particles. And there are
− !l( 1) distinct ways of arranging these clockwise in a loop of l particles. Obviously

l = 3 here.
The double dimer product term is

H

H

H

H H

H

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

∑ ∑ ∑

∑

χ

χ χ

χ χ

χ χ

χ

β

Ξ =
!

′

=
!

′

=
!

− − −

=
− !

= Ξ

= − Ω Ξ

=

∞

=

∞

=

∞

=

∞

β

β

β

β β

β

± − ±

− ± ±

− ± ±

−
− − ± − ±

− ±

±

z
N

e

z
N

e

z
N

N N N N
e

z
N

Z
z

e e

z
e

( 1)( 2)( 3)
2

( 4) 2

1
2 2

1
2

( ) .

(3.56)

N ijkl

N ijkl

N

N

n

n

n

n n n n

n n

4

4

4

4 , ,

,

N

ij kl

N

ij kl

N

N
N

n

n n

n n

n n

n

22 ; ,
,(2, 2)

;
,(2)

;
,(2)

3 ;12
,(2)

;34
,(2)

4

1
4

4

3 ;12
,(2)

;34
,(2)

1

2

;12
,(2)

2

2
2

1

n

n

n

n n n n

n n

1 2

1, 2
(2)

3 4

3, 4
(2)

1 2

1, 2
(2)

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

In the third equality the combinatorial factor gives the number of distinct ways for
allocating four particles to two dimers.
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Continuing in this fashion it is clear that
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where ml is the number of loops of l particles, and the loop grand potential for ⩾l 2
is given by
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This formula also holds for the monomer grand potential, l = 1.
Notice how equation (3.49) for the loop symmetrization factor collapses the l

sums over all loop particles’ single-particle states to a single sum over the single-
particle states, since the loop symmetrization factor is only non-zero when all the
loop particles are in the same single-particle state. This makes the loop expansion
very efficient. If one includes M single-particle states and L-loop potentials, then
there are just L × M terms in the series for the grand potential. The contribution of
successive loops decays exponentially with l, so L need not be large. Contrast this
with the direct calculation of the partition function for N̄ particles, which would
require on the order of N̄ M terms.

The grand potential is given by the logarithm of the partition function,
μ μΩ = − Ξ± ±V T k T V T( , , ) ln ( , , )B , which is just the sum of the loop potentials,
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Even with permutation particle symmetrization, this reduces to a sum over single-
particle states, as one might expect for independent, non-interacting particles.

In the case that the particles can move throughout the volume of the subsystem V,
the loop potentials are extensive. That is, they scale with the volume of the
subsystem (assuming no externally applied potential). Hence one can define the
loop grand potential density, μΩ± V T V( , , )/l . The reason that the loop potentials are
extensive is that the center of mass of the l-mer is free to roam throughout the
homogeneous volume V. But the particles of the loop must remain in the vicinity of
the center of mass because of the connectivity of the loop. It is essential that the loop
potentials are extensive because the grand potential of the quantum system has to be
extensive.

In the general case where the particles interact via an interaction potential, the
single-particle state basis functions are not eigenfunctions of the energy operator.
However in the absence of inter-particle interactions, single-particle energy eigen-
functions exist, as was assumed from equation (3.52) onwards, and in this case one
can factorize and resum the symmetrization factor as here. The energy eigenstates
comprise single-particle states when the subsystem is composed of non-interacting
particles. In chapter 4, some examples of these are treated, such as the ideal gas,
section 4.1, and independent harmonic oscillators, section 4.2.

3.4.4 Approximate localization for multi-particle states

In the preceding subsection a loop expansion for the symmetrization factor was
given that in the case of single-particle energy states allowed an infinite resummation
of the partition function that gave the grand potential as a simple series of loop
potentials. Here is briefly discussed an approximate treatment of multi-particle
energy states that allows a similar factorization and resummation. Here we focus on
a dimer permutation, which is sufficient to illustrate the idea.

For N particles in the multi-particle energy state n, the transposition of particles j
and k gives a dimer symmetrization or overlap factor

∫
χ ζ ζ

ζ ζ

= ± 〈 ˆ ∣ 〉

= ± … … … … … …

±

*

P r r

r r r r r

( ) ( )

d ( ) ( ).
(3.60)

jk jk

k j j k

n n n

n n

;
,(2)

The question addressed in the present subsection is to what extent the states n that
give a non-zero overlap factor correspond to a localization of the permuted particles’
states. For example, ideally the inner product of the non-permuted particles would
cancel these particles out leaving just a two-particle state,

∫χ ζ ζ≈ ±± *r r r r r rd d ( , ) ( , ). (3.61)jk j k k j j kn n n;
,(2)

jk jk

Obviously this would be exact if the eigenfunction were the product of one-particle
eigenfunctions, as for the non-interacting subsystem analyzed above in sections
3.4.1.2 and 3.4.3.
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Perhaps less drastically, one could identify a quasi-independent, localized cluster
⩽ ≪c N2 of particles in a multi-particle state ∈n nc that contain the permuted

particles,

∫χ ζ ζ≈ ± ˆ± *Pr r rd ( ) ( ). (3.62)jk
c

jk
c c

n n n;
,(2)

c c

The reason for discussing the possibility of localized clusters is that the product of
closed permutation loops occurs in the permutation expansion of the symmetriza-
tion factor. If each permutation loop can be considered to be contained within a
localized cluster, then their states are independent and the overlap of the product
factorizes into the product of the individual permutation loop overlap factors. As for
the single-particle states above, this considerably simplifies the subsequent analysis.

A shown in equation (3.42) above for non-interacting particles, the quantum
correction due to symmetrization decays rapidly with separation. The conclusion is
that quantum permutation is only significant when the particles are in the same
locality in position space.

A similar point about localization is made by Messiah (1961, chapter XIV,
section 8). He shows that if the particles are represented by wave packets, then the
wave function need not be symmetrized with respect to interchange of particles in
non-overlapping wave packets. This is another way of viewing the present clusters.

From the point of view of formally exact analysis, it is unclear how one would
actually set about obtaining the exact wave function of a cluster that in some way
fitted with the wave function of particles outside of the cluster. To this end the local
state expansion given in chapter 10 is perhaps the best way to implement the idea
quantitatively.

A detailed analysis of symmetrization loops in the case of liquid helium in chapter 5
shows how localization varies with temperature. It also shows that it is actually the
non-locality of momentum permutation loops that is responsible for Bose–Einstein
condensation and for superfluidity.
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Chapter 4

Applications with single-particle states

This chapter presents some simple, concrete applications of quantum statistical
mechanics. Although the final results can be found in standard textbooks, here the
emphasis is placed on those aspects relevant to classical phase space, or to the loop
formulation of wave function symmetrization and particle occupation statistics. The
applications are the ideal gas (section 4.1), a system of independent harmonic
oscillators (section 4.2), the occupancy of single-particle states (section 4.3), and
ideal fermions (section 4.4).

4.1 Ideal gas
This section derives the fugacity expansion for the quantum ideal gas. This is a
system in which the particles do not interact with each other, nor with any external
potential. The purpose is to illustrate and to verify the permutation loop expansion,
both for single-particle states, and for the classical phase space formulation.

4.1.1 Single-particle states

For ideal particles, the potential energy is zero, =U r( ) 0, and the energy operator is
just the kinetic energy operator,

H K ∑ˆ = ˆ = −ℏ ∇ = −ℏ ∇
=m m

r r( ) ( )
2 2

. (4.1)
j

N

1
j

id
2

2
2

2

The energy eigenfunction equation is

H Hζ ζˆ =r r r( ) ( ) ( ). (4.2)n n n
id

For the ideal gas, the energy eigenfunctions are just momentum eigenfunctions,
which are the product of plane waves,
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Here pj is the momentum eigenvalue of of particle j, n is a 3N-dimensional integer

vector, α ∈ x y z{ , , }, and =V L3 is the volume of the subsystem. The energy
eigenvalues are

H ∑=
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2
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The symmetrization or overlap factor for an l-loop, equation (3.49), is
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where the indices are counted mod l (i.e., ≡r rl0 ). This reduces to a Kronecker-δ, as
in equation (3.49), but it is better to leave it as an integral as the continuum limit for
the energy will now be taken.

The loop potential, equation (3.58), for ⩾l 2 is given by
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Here = βμz e is the fugacity, ′ ≡ −r r rj j l, = … −j l1, 2, , 1, πΛ = ℏ mk T2 /2
B is

the thermal wavelength, and G l( ) is an − × −l l( 1) ( 1) tridiagonal matrix with 2 on
the main diagonal and −1 just above and just below the main diagonal, with all
other entries 0. It is straightforward to show that the determinant is

= −
=

− −G G G

l

2

.
(4.7)

l l l( ) ( 1) ( 2)

With this the loop grand potential for ⩾l 2 is given by

β− Ω = ± Λ± − − −z V l( 1) . (4.8)l
l l,id 1 3 5 2

This expression can also be shown to hold for the monomer grand potential,
l = 1.

In thermodynamics, the grand potential is just the pressure times the volume,
Ω = −pV . Hence this result for the loop potential gives the fugacity expansion for
the pressure of the quantum ideal gas as

∑ ∑β
β

Λ =
− Ω Λ

= ±
=

∞

=

∞
±

±
− −p

V
z l( 1) . (4.9)

l l1 1

l l l, id 3
,id 3

1 5 2

What is here derived as a loop expansion agrees with the known fugacity expansion
for the pressure (Pathria 1972, equations (7.1.7) and (D5)).

The relationship between density and fugacity for the quantum ideal gas is readily
obtained from the thermodynamic result (Pathria 1972, Attard 2002),

μ
¯ = −∂Ω

∂
N z V T

z V T
( , , )

( , , )
. (4.10)

Applying this to the loop expansion gives the fugacity expansion of the quantum
ideal gas density,

∑

ρ
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z T
p z T

z
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z l
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( 1) .
(4.11)

l 1

l l

, id
, id

3 1 3 2

Using the fugacity as a parameter, these give the equation of state of the ideal gas,
which is plotted in figure 4.1. The classical result is just the monomer contribution,
l = 1, which is β ρ=pid . It can be seen that the equation of state for bosons lies below
the classical curve, and that of fermions lies above it. As well, the density and
pressure for bosons extends to higher values than for fermions. The fugacity
expansions do not converge for >z 1.

It should be mentioned that in deriving these last two results via the integral over
momentum states, the zero momentum contribution, which is the ground state, has
been given zero weight by the three-dimensional volume element π= k kkd 4 dj j j

2 .
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In some circumstances, such as bosons at low temperatures, this suppressed
contribution can be significant and should be added explicitly (see section 5.2).

4.1.2 Classical phase space

Now the derivation is carried out using the classical phase space formalism.
For an ideal gas the potential energy is zero, =U r( ) 0, and the classical

Hamiltonian is just the kinetic energy, H K= = p mq p( , ) /2p
id 2 . The momentum

eigenfunctions, ϕ = − − · ℏV er( )p
p r1/2 /i , are also eigenfunctions of the energy operator,

H Kϕ ϕˆ =r r r( ) ( ) ( )p p p
id .
With these, the defining equation for the commutation function, equation (7.7),

becomes

H H

K

ω ϕ ϕ

ϕ

=

=

β β

β

− − ˆ

−

e e

e

r p r r

r

( , ) ( ) ( )

( ).
(4.12)

r p
p

r
p

p

( , ) id ( )

p

id id

Evidently the commutation function for the ideal gas equals unity,

ω =r p( , ) 1. (4.13)id

This is not unexpected as there is no potential energy in this system, and so there are
no non-commutativity issues for the kinetic energy operator and the potential energy
in any expansion of the Maxwell–Boltzmann operator.

The loop grand potential is given by equation (7.36). For the present ideal gas
with commutation function unity and using equation (7.29) for the loop symmet-
rization function it is

Figure 4.1. Equation of state for the ideal gas for bosons (full curve), for fermions (long-dashed curve), and for
classical particles (short-dashed curve) for fugacity ∈z [0, 1].
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The final equality here is identical to the third equality in the expression for the loop
potential given in the preceding subsection, equation (4.6). Hence the present phase
space formulation of the quantum ideal gas gives the same result for the fugacity
expansion as the single-particle state formulation.

4.2 Independent harmonic oscillators
The following treatment of a system of independent harmonic oscillators is a specific
example of the exact expansion for general single-particle states given in section
3.4.3.

4.2.1 General single-particle energy states

Let

∏ϕ ϕ=
=

r r( ) ( ) (4.15)
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j

be one of a complete orthogonal set of unsymmetrized energy eigenfunctions, with
the eigenvalue equation being
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1
n n n n nj

These are evidently single-particle energy states. Since the single-particle states are
orthonormal, δ〈 ′ ∣ ″ 〉 = ′ ″n r n r( ) ( )j j n n, , equation (3.49) for the l-loop symmetrization
factor applies,
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Following the analysis of single-particle energy states in section 3.4.3, the loop
grand potential, equation (3.58), is given by

∑β− Ω = ± β ε±
−

−z
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e
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The n1 labels a single-particle state. It is worth emphasizing that this result holds only
because all the particles of the loop are in the same single-particle state, even
fermions. The grand potential itself is

∑ ∑
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= ∓ ∓
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4.2.2 Simple harmonic oscillators

For the case of the simple harmonic oscillator of frequency ω in d-dimensions, the
well-known single-particle energy is (Messiah 1961, Merzbacher 1970)

ε ω= + + + ⋯ + ℏd
n n n

2
, (4.20)jx jy jdnj

⎡
⎣⎢

⎤
⎦⎥

with = …αn 0, 1, 2,j . Using the above result the grand potential for a system on
non-interacting simple harmonic oscillators is therefore

∑ ∏ ∑

∑

∑

β− Ω = ±

= ±
−

= ± −

α=

∞

= =

∞

=

∞

=

∞

β ω β ω

β ω

β ω

β ω β ω

±
−

− ℏ − ℏ

− − ℏ

− ℏ

−
ℏ − ℏ −

α

α
z

l
e e

z
l

e
e

z
l

e e

( 1)

( 1)
1

( 1)
[ ] .

(4.21)

l x

d

n

l

l

1 0

1

1

l l
dl l n

l l l

l

d

l l
l l d

1
2

1 2

1
2 2

⎡
⎣⎢

⎤
⎦⎥

Note that this diverges for > β ωℏz ed /2.
The average energy of this system of independent harmonic oscillators is

H
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This is plotted in figure 4.2, where the monomer l = 1 term may also be called the
result for classical or distinguishable particles. It can be seen that at fixed temper-
ature the average energy increases with increasing fugacity. In general the average
energy for bosons is greater than that for fermions, and the monomer energy lies
between the two. At low values of the fugacity all three energies converge. As
→ β ωℏz ed /2, the boson energy diverges.
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The average number of oscillators in the open system is given by the fugacity
derivative of the grand potential. Hence the average number of oscillators in a
permutation loop of size l is
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∂

= ±

= ±

= ± −
α= =

∞

β ε

β ω β ω

β ω β ω

±
±

− −

− − ℏ − ℏ

− ℏ − ℏ −
α

α

N z
z

z e

z e e

z e e

( 1)

( 1)

( 1) [ ] .

(4.23)

x

d

n

n

0

z T
l

l

T

l l l

l l dl l n

l l l l d

,
,( )

, ( )

1

1 2

1 2 2

n

1

1

⎛
⎝⎜

⎞
⎠⎟

The average number of oscillators in total is
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It can be seen in figure 4.3 that the average number increases monotonically with
increasing fugacity. Fractional numbers of course result from the averaging process.
At low values of the fugacity particle statistics again have no influence, and all three
cases—bosons, fermions, and monomers—coincide. In general there are more
bosons for a given fugacity than fermions, and the number of monomers lies
between the two. The average number of bosons diverges in the limit → β ωℏz ed /2.
The average energy per particle, Ĥ ± ±Nz T z T, , , at constant temperature with
increasing fugacity decreases monotonically for bosons, increases monotonically for
fermions, and is a constant (equal to the ratio of the first terms in the respective
series) for monomers that lies between the two.

Figure 4.2. Average energy of a system of independent harmonic oscillators at β ωℏ = 1 and d = 3 for bosons
(full curve), for fermions (long-dashed curve), and for monomers (short-dashed curve).
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4.2.3 Conventional derivation and interpretation

Although the present derivation of the general result for non-interacting particles via
the loop expansion is different to the approach usually taken in textbooks, it may be
shown to agree with those standard results. The loop series does provide a novel
interpretation of how symmetrization effects contribute to the grand potential.

Following Pathria (1972, section 6.2), single-particle states labeled by ε can be
occupied by = …ε ±N N0, 1, , particles, with = ∞+N for bosons, and =−N 1 for
fermions. The grand partition function is the weighted sum over all possible
occupancies of each state,

∑ ∑ ∑

∏ ∑

∏

∏ ∏ ∏

Ξ = …

= ′

= ′ ∓

= … ∓

∑ ∑

ε

ε

= = =

=

∞

=

=

∞

=

∞

=

∞

=

∞

β ε

βε

βε

βε

±
′ − ′

−

− ∓

− ∓

ε
ε

ε
ε

ε

ε ε

± ±

∞

±

±

z z e

z e

ze

ze

( )

[1 ]

[1 ] .

(4.25)

N

N

N

N

N

N

N

N

n n n

0 0 0

0 0

0

0 0 0

N N

N N

1

1

x y d

n

0 1

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

The sums and products over energy is an abbreviated notation that visits each state
once, as is explicit in the final equality. This is the expression given by Pathria (1972).
The grand potential is given by the logarithm of this, a subsequent expansion of
which yields

Figure 4.3. Average number of independent oscillators in the system at β ωℏ = 1 and d = 3 for bosons (full
curve), for fermions (long-dashed curve), and for monomers (short-dashed curve).
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∑

∑∑

∑ ∑

β− Ω = ∓ ∓

= ± ±

= ±
=

∞

=

∞

βε

βε

βε

± −

−

−
−

ze

z
l

e

z
l

e

ln[1 ]

( )

( 1)
.

(4.26)
l

l

n

n

n

1

1

l
l

l l
l

1

n

n

n

1

1

1

1

1

1

This agrees with the above expression based on symmetrization loops, equation
(4.19).

Again it must be emphasized that in the loop expansion all particles in the loop
must be in the same single-particle state in order for the symmetrization factor to be
non-zero. This holds even for fermions. From this perspective it is remarkable that
the loop expansion approach gives the same result as the textbook particle
occupancy approach, which explicitly excludes system states with more than one
fermion in the same single-particle state.

For the case of a system of independent simple harmonic oscillators, the first
equality in equation (4.26) is

∑ ∑β− Ω =∓ … ∓ …
=

∞

=

∞
β ω β ω β ω± − ℏ − ℏ − ℏze e eln[1 ]. (4.27)

n n0 0

d n n2

x d

x d

This multi-dimensional sum over possible energy states is not as neat as the one-
dimensional sum over symmetrization loops, equation (4.21). That latter appears to
be rapidly converging and computationally efficient.

Although the present approach and the textbook approach arrive at the same result
for ideal states, the present approach proceeds from a rather different view-point,
namely that the symmetrization of the wave function is the fundamental axiom, and
that the occupancy of states (multiple for bosons, single for fermions) is a quantity
derived from it. The present approach is extremely useful when the results are
transformed to the continuum that is classical phases space. In the case of the
continuum it is impossible to define unambiguously discrete states and the occupancy
thereof, whereas the symmetrization of the wave function itself remains a valid concept.

4.3 Occupancy of single-particle states
4.3.1 Loop grand potential and derivatives

The independent harmonic oscillators analyzed in the preceding section belong to a
general class of systems wherein the energy states are single-particle states. The
occupancy statistics of such states has been analyzed by Pathria (1972, section 6.3),
which treatment is largely followed here.

Equation (3.59) expresses the grand potential for single-particle state systems as a
series of loop potentials. As mentioned above, following the analysis of single-
particle energy states in section 3.4.3, the loop grand potential, equation (3.58), is
given by
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∑β− Ω = ± β ε±
−

−z
l

e
( 1)

. (4.28)
n

l

l l
l

1
n

Here n labels a single-particle state, and εn is its energy, which is the energy of a
particle in that state. The fugacity is related to the chemical potential as = βμz e . The
grand potential itself is the sum of these loop potentials

∑ ∑

∑

β− Ω = ±

= ∓ ∓
=

∞
βε

βε

±
−

−

−

z
l

e

ze

( 1)

ln [1 ].
(4.29)l n

n

1

l l
l

1
n

n

As derived in equation (4.26), the final equality is the expression for the grand
potential of single-particle state systems more usually to be found in textbooks
(Pathria 1972, section 6.2).

The l = 1 term in the loop expansion corresponds to the classical case. The
particles in this case can be called distinguishable, since it arises from the neglect of
all permutations, and it manifests no difference between bosons and fermions. The
classical grand potential is given by β− Ω = ∑ βε± −z en1

n.
From the usual equations of equilibrium thermodynamics (Pathria 1972, Attard

2002), the average number of particles in the open system is given by the fugacity
derivative of the grand potential

∑ ∑

∑

β= − ∂Ω
∂

= ±

=
∓

=

∞
βε

βε

βε

±
±

− −

−

−

N z
z

z e

ze
ze

( 1)

1
.

(4.30)
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z V T
V T

l l l

, ,
,

1 n

n

n

⎜ ⎟⎛
⎝

⎞
⎠

(This is the average rather than the most likely quantity that usually results from a
thermodynamic derivative because we are using the grand potential as a proxy for the
logarithm of the grand partition function, and derivatives of the latter yield statistical
averages (Attard 2002). The two are equal in the thermodynamic limit.) The second
equality can be interpreted for bosons as the sum of the most likely number of particles
belonging to permutation loops of each size. Similarly the average energy is

∑ ∑

∑

β
β

ε

ε

= ∂ Ω
∂

= ±

=
∓

=

∞
βε

βε
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z e
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(4.31)
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⎞
⎠⎟

The pressure is given by β = −Ω±pV z V T( , , ).
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4.3.2 Average occupation number

The average occupation number of level j is given

∑

β β
ε

= ∂ Ω
∂

= ±

=
∓

=

∞
ε

βε

βε

βε

± −
±

− −

−

−

≠

N

z e

ze
ze

( )

( 1)

1
.

(4.32)

l 1

j z V T
j z V

l l l

, ,
1

, ,

1

k j

j

j

j

⎛
⎝⎜

⎞
⎠⎟

Summing this, and εj times this, over the energy levels gives the above results for the
average number and energy. In the classical case average occupation number is

β
β

ε
= ∂ Ω

∂
=

ε

βε−
±

−

≠

N ze
( )

. (4.33)j z V T
j z V

, ,

cl 1 1

, , k j

j

⎛
⎝⎜

⎞
⎠⎟

Figure 4.4 shows the average occupancy number of a single-particle state with
energy ε as a function of the parameter β ε μ−( ). The latter is the negative of the
exponent in =βε β ε μ− − −ze e ( ). It can be seen that the occupancy decreases with
increasing parameter value (decreasing chemical potential). For β ε μ− ≫( ) 1, there
is on average less than one particle in the state, which is what one would expect at
low densities. In this regime there is no difference between bosons, fermions, and
classical particles, which is what one would expect, since wave function symmetri-
zation and particle statistics are only important at high densities.

As the chemical potential approaches the energy of the state from below, μ ε→ −,
figure 4.4 shows that the average number of bosons in that state (i.e., with that value

Figure 4.4. Average occupation number of energy level ε for ideal bosons (solid curve), fermions (long-dashed
curve), and classical particles (short-dashed curve). The dotted line is a guide to the eye.
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of single-particle energy) diverges. This is the remarkable phenomenon of Bose–
Einstein condensation.

As the parameter becomes more negative, μ ε≫ (or else μ ε> and β → ∞), it is
increasingly likely that the state will be occupied by a fermion. The average
occupancy number must be less than one because not more than one fermion can
be in the single-particle state with that energy. This means that for the fermionic
system as a whole, as the chemical potential is increased, (or the temperature is
decreased for μ ε> ), the states will fill successively from the ground state up, each
with a single fermion, until near the Fermi surface, where μ ε= .

For classical particles, figure 4.4 shows that the average occupancy number
continues to increase with increasingly negative values of the parameter (increasing
chemical potential).

4.3.3 Occupancy fluctuations

It is of interest to analyze the fluctuations in the occupancy of the single-particle
states. In general fluctuations are given by the second derivative of the grand
potential (Pathria 1972, Attard 2002). In the present case we have (dropping the
subscripts on the averages)

β
β
ε

β
ε

− = ∂ − Ω
∂

= −
∂
∂

ε

± ± −
±

−
±

≠

N N

N

( )

.

(4.34)
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⎦
⎥⎥
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⎢⎢

⎤
⎦
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Hence the mean square relative fluctuation is

β ε

−
= − ∂

∂

= ±
∓

= ±

βε
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± ±

± ±

±
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−

−

±

N N
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1 1
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(4.35)
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z V

j j
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2 2

2

,

j

j

⎡
⎣
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⎤
⎦
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The first term on the right-hand side is the classical result, (without the super-
script ±). At low occupancy, →±N 0j , this dominates, as is expected. It shows that
the fluctuations in the occupancy of any single-particle state are relatively large in
this regime, again as expected.

The quantum correction for bosons, +1, shows that the fluctuations are of the
same order as the occupancy number itself in the high occupancy regime, μ ε→ −

j ,

→∞±Nj . In contrast, the quantum correction for fermions, −1, cancels with the

classical contribution in the full occupancy regime, μ ε≫ j, →−N 1j , which is to say
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that the fluctuations vanish. In this regime there is a high probability that the single-
particle state is always occupied by a fermion, and a correspondingly low probability
that it is ever unoccupied.

4.3.4 Occupancy probability distribution

The statistics of the occupancy numbers for the different types of particles may be
further elucidated by examining the probability distribution. For the case of classical
particles, the probability that N particles have energy ε is

ε
ε

ε℘ ∣ =
!

≡
βε

βε
−

−N
z e
N Z

Z ze( )
( )

, ( ) exp[ ]. (4.36)
N N

This is proportional to the corresponding term in the expression for the monomer
grand partition function, equation (3.53), withH ε⇒n

(1)
j

. Using the classical average

occupancy, equation (4.33), =ε
βε−N ze , this may be written

ε℘ ∣ =
!
ε − εN

N
N

e( ) . (4.37)
N

N

The classical occupancy probability is just a Poisson distribution, with the
optimal occupancy number (i.e., that for which the distribution is a maximum)
equal to the average occupancy number. The ratio of successive terms,

ε ε℘ ∣ ℘ − ∣ = εN N N N( )/ ( 1 ) / , decreases monotonically with N. For N larger than
the average value, this ratio is less than unity.

For the case of fermions, the average occupancy number can be written in terms
of the probability distribution as

∑ ε ε= ℘ ∣ = ℘ ∣
=

∞

ε
− − −N N N( ) (1 ), (4.38)

N 0

since ε℘ ∣ =− N( ) 0, >N 1. Hence one has

ε ε℘ ∣ = ℘ ∣ = −ε ε
− − − −N N(1 ) , and (0 ) 1 . (4.39)

The fact that the occupancy probability vanishes for ⩾N 2 may be interpreted as
saying that a fermion in a single-particles state strongly repels other fermions from
occupying the same state.

For the case of bosons, equation (2.20) gives the symmetrization factor for bosons
as χ = ∏ !+ ℓm ( )ℓ a a , where ℓm ( )a is the number of particles in the same single-particle
state a when the system is in the state ℓ. With this the grand partition function
equation (3.52) for bosons in the present notation is

H∑ ∑

∑ ∑ ∑ ∑ ∏

μ χΞ =
!

=
!

… !

ε

ε ε ε ε

=

∞

=

∞

=

∞

=

∞

=

∞

ε
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ε
β ε

+ + −

−

ε

ε ε

V T
z
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e

N
N z e

( , , )

1
.

(4.40)N
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N N
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Here the state ε ε ε ε= …{ , , , }N1 2 gives the energy of each particle, and Nε gives the
number of particles with energy ε; obviously∑ =ε εN N .

The quantity χ ! = ∏ ! !ε ε ε
+ N N N/ / is the combinatorial correction that makes the

sum over all states equivalent to the sum over unique states. The remaining part of
the summand, β ε−ε εz eN N is the weight of the state ε when it is occupied by Nε particles.
Hence the normalized occupancy probability distribution for bosons is

ε℘ ∣ = −

=
+

β ε βε

ε

ε

+ − −

+

+ +

N z e ze

N
N

( ) (1 )

( )
(1 )

.
(4.41)

N N

N

N 1

The ratio of successive terms, ε ε℘ ∣ ℘ − ∣ = +ε ε
+ + + +N N N N( )/ ( 1 ) /(1 ), is less than

unity and independent of N. This contrasts with the behavior of the occupancy
probability for classical particles, wherein the ratio decreases with increasing N (see
figure 4.5). The fact that the probability for classical particles decays increasingly
rapidly, whereas that for bosons decays at a constant rate, might be interpreted to
mean that, due to the symmetrization of the wave function, bosons have an excess
attraction to already occupied states.

4.4 Ideal fermions
4.4.1 Loop grand potential, energy, number

The loop grand potential for ideal fermions, equation (4.8), is

β− Ω = − Λ ⩾− − − −gz V l l( 1) , 1. (4.42)l l,( ) 1 l 3 5 2

This result was derived by an integral over the energy (i.e., momentum) continuum
for the ideal gas. As such it neglects the ground state contribution, (cf section 5.2).
This is significant for bosons at low temperatures, where multiple, eventually most,
bosons occupy the ground state. This is the phenomenon of Bose–Einstein

Figure 4.5. Single-particle state occupation number probability distribution for 〈 〉 =εN 10 for bosons (full
curve) and for classical particles (dotted curve).

Quantum Statistical Mechanics in Classical Phase Space

4-14



condensation, which is treated in detail in chapter 5 in the context of the λ-transition
in liquid helium.

Since no more than one fermion can occupy the same single-particle state (two for
spin-1/2 particles, if we mean energy states), for them the ground state can never
become dominant. Hence neglecting the ground state contribution, as in the
derivation of the above expression, is of no significance for fermions.

This expression includes g, which is a weight factor for the internal configurations
that have not been counted such as spin; it is often set equal to 2 for spin-1/2 particles
(Pathria 1972, section 8.1). The pressure due to loops of size l is = −Ω− −p V/l l, ( ) , ( ) .
The average number of fermions in such loops is β¯ = ∂ − Ω ∂− −N z z( ( )/ )l l

T V
, ( ) , ( )

, ,
which, as for bosons, is just l times the loop grand potential itself,

¯ = − Λ− − − −N gz V l( 1) . (4.43)l l l, ( ) 1 3 3 2

The loop energy for these ideal fermions is

β
β β

¯ = ∂ Ω
∂

= − Λ−
−

− − −E g Vz l
( ) 3

2
( 1) . (4.44)l

l

V z

l l, ( )
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,

1 3 5 2
⎛
⎝⎜

⎞
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As for all versions of the ideal gas, this is proportional to the loop pressure,
¯ =− −E p V2 /3l

l
, ( ) .
Summing over all loops gives

β = Λ− −p g f z( ), (4.45)3
5 2

and

¯ = Λ− −N g Vf z( ). (4.46)3
3 2

Here the Fermi–Dirac integral is (Pathria 1972, appendix E)
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1

1

A feature of the permutation loop analysis of wave function symmetrization is that it
provides a physical interpretation for the otherwise purely mathematical terms in the
fugacity expansion of the Fermi–Dirac integral.

4.4.2 Heat capacity, free energy, and entropy

Now

∂ ¯
∂

= Λ
−

− −N
z

g Vz f z( ), (4.48)
T V,

3 1
1 2

⎛
⎝⎜

⎞
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since ′ = −
−f z z f z( ) ( )n n

1
1 , and
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∂ ¯
∂
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From the average loop energy found above, the average energy is

∑
β

¯ = ¯ = Λ
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∞
− − −E z V T E z V T g Vf z( , , ) ( , , )

3
2

( ). (4.50)
l 1

l, ( ) 3
5 2

Inserting these into the general expression for the heat capacity at constant number
and volume, section 5.2.3, equation (5.18), gives
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The Helmholtz free energy is the thermodynamic potential of the canonical
equilibrium system (specified subsystem number N, volume V, and reservoir
temperature T) (Attard 2002). It can be obtained from the grand potential as
(Pathria 1972)

μ μ= Ω + = −− −F N V T V T N Nk T z
f z

f z
( , , ) ( , , ) ln

( )

( )
. (4.52)B

5 2

3 2

⎧⎨⎩
⎫⎬⎭

Here the fugacity is βμ= = ¯−z z N V Texp ( , , ) (or else = ¯ −N N z V T( , , )). This uses
the above results for the most likely pressure and number. The total unconstrained
entropy for the canonical equilibrium system is = − −S N V T F N V T T( , , ) ( , , )/tot

(Attard 2002). Since the subsystem-dependent part of the reservoir entropy is
∣ = −S E T E T( ) /r s s , the subsystem entropy is

= ¯ − = −− − −{ }S N V T
T

E F N V T Nk T
f z

f z
z( , , )

1
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The classical limit is either high temperature β → 0 or low fugacity →z 0. In the
latter case the loop series show ∼f z z( )n , →z 0. This is the same as keeping just the
monomer contribution. Hence in the low fugacity limit one has to leading order

β

β

∼ Λ
¯ ∼ Λ

¯ ∼ Λ

∼

− −

− −

− −

−

−

p g z

N g Vz

E z V T g Vz

C
k N

,

,

( , , )
3

2
, and

3
2

.

(4.54)

V

3

3

3

B

If one were to eliminate the fugacity in favor of the number density, ρ = ¯− −N V/ , one
would confirm that these are the same as for the classical ideal gas. In this limit the
gas is said to be nondegenerate. Basically there are no consequences of wave
function symmetrization evident because the probability of two fermions occupying
the same state are so small: high temperature means many accessible states, and low
density means relatively few fermions.

4.4.3 Fermi energy

In the opposite limit, Λ ≫−N gV/ 13 , the gas of fermions is said to be degenerate.
Equation (4.32) gives the average occupation number for single-particle states of
energy ε; for fermions it reads ¯ = +ε

βε βε− − −N ze ze/(1 ). Figure 4.6 plots this for
different temperatures. The transition at the Fermi energy that was identified in
figure 4.4 becomes increasingly sharp as the temperature is decreased. In fact it tends
to a Heaviside step function μ ε¯ → Θ −ε

−N g/ ( ) at low temperatures, β → ∞. As
mentioned for the fermionic system as a whole, as the chemical potential is
increased, low energy states fill first, each with a single fermion. As the temperature

Figure 4.6. Average occupation number of single-particle energy level ε for ideal fermions for βμ =0 1 (solid
curve), 2 (long-dashed curve), and 10 (short-dashed curve). This sets g = 1.
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is decreased for μ ε> , low energy states also first fill. It is only near the Fermi
surface, where ε μ= , that the states are on average partially occupied.

The Fermi energy is the upper limit on occupied states at absolute zero. It is
related to the Fermi momentum as ε = p m/2F F

2 . This is of course non-relativistic.
With πΔ = ℏ L2 /p being the spacing between momentum states per particle per
dimension, counting every state as occupied by g fermions gives (Pathria 1972)

∫π π=
Δ

=N
g

p p
gV
h

p
4

d
4
3
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Hence ρ π=p h g(3 /4 )F
3 1/3 and ε ρ π= h g m(3 /4 ) /2F

3 2/3 .
The ground state or zero point energy of the system is (Pathria 1972)
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From this and the preceding expression the ground state energy per particle is
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. (4.57)0 F
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The ground state pressure is

ρε ρ= = ∝−
−

p
E
V

2
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2
5

. (4.58)0
0

F
5 3

That the fermionic pressure is non-zero in the ground state is due to the forced filling
of single-particle energy states up to the Fermi surface. It is positive because
increasing the volume decreases the spacing between states, which reduces the
subsystem energy and increases the reservoir entropy. The situation is very different
than for bosons, which all condense into the ground energy state at absolute zero.
Figure 4.6 shows that at absolute zero the state occupancy is a Heaviside step
function, ε ε= Θ −ε

−N g/ ( )F . At finite temperatures, departures from this occur only
when Oβ ε ε∣ − ∣ = (1)F , which is to say in a small number of states on either side of
the Fermi energy. The fraction of fermions in on average partially occupied states is
O βε(1/ )F . Only these are capable of changing state and therefore of contributing to a
change in thermodynamic properties with temperature.

For the degenerate case Λ ≫−N gV/ 13 , the Fermi–Dirac integrals can be
expanded in powers of z1/ ln . One has (Pathria 1972)

π
π

π
π

π
π

=
√

+ + ⋯

=
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+ + ⋯

=
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− + ⋯
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−

−

f z z z

f z z z

f z z z
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8

15
(ln ) 1

5
8

(ln )

( )
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3
(ln ) 1

8
(ln )
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(ln ) .

(4.59)
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⎧⎨⎩
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⎧⎨⎩
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These give for the average number (Pathria 1972)

π
π¯ = Λ

√
+ + ⋯− − −N g V z z

4

3
(ln ) 1

8
(ln ) . (4.60)3 3 2

2
2

⎧⎨⎩
⎫⎬⎭

To leading order this gives

β μ β ρ π ε≡ = Λ =− −z gln (3 4 ) . (4.61)1 1 3 2 3
F

This agrees with the result derived above at absolute zero. To next order one has

β μ ε π βε≡ = − + ⋯− −zln 1
12

( ) . (4.62)1
F

2

F
2

⎧⎨⎩
⎫⎬⎭

Similarly one can show that the average energy per fermion is (Pathria 1972)

ε π βε
¯
¯ = + + ⋯
−

−
−E

N
3
5

1
5
12

( ) , (4.63)F

2

F
2

⎧⎨⎩
⎫⎬⎭

and that the pressure is

ρε π βε=
¯
= + + ⋯−

−
−p

E
V

2
3

2
5

1
5
12

( ) . (4.64)F

2

F
2

⎧⎨⎩
⎫⎬⎭

The specific heat is just the temperature derivative of the average energy

π
βε¯ = + ⋯

−

−
C

N k 2
(4.65)V

B

2

F

This vanishes linearly with temperature at absolute zero.
The heat capacity for this system of ideal fermions is shown in figure 4.7. At high

temperatures it tends to the classical value, =C Nk3 /2V
id,cl

B . It vanishes linearly with

Figure 4.7. The specific heat capacity for ideal fermions as a function of temperature (g = 2). The dotted lines
are the asymptotes.
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temperature approaching absolute zero, π βε∼−C Nk /2V
,id 2

B F. It is worth mentioning
that the results in the figure were obtained by the numerical evaluation of the Fermi–
Dirac integrals. The utility of the loop expansion is limited to <z 1
(βε ρ≲ Λ ≲1, 1.5F

3 ). In contrast to bosons, the fugacity for fermions becomes large
without limit approaching absolute zero, in which case the loop expansion is of no
direct use.
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Chapter 5

The λ-transition and superfluidity in
liquid helium

The λ-transition in helium-4, which is an example of Bose–Einstein condensation, is
modeled by an ideal gas, sections 5.2 and 5.3, and by interacting particles, sections 5.4
and 5.5. Monte Carlo simulations of Lennard–Jones bosons show that position
permutation loops cause the spike in heat capacity on the high temperature side of
the transition. The non-local ground momentum state occupancy that macroscopically
dominates on the low temperature side gives rise to superfluidity. The predicted critical
velocity for superfluid flow in a pore is in reasonable agreement with measured values.

5.1 Introduction
This chapter analyzes the λ-transition in liquid helium, one of the more striking of
the early quantum phenomenon (Keesom et al 1927, 1932). Signified by a sharp
spike in the heat capacity at 2.17 K, it is associated with the onset of superfluidity.
Keesom et al (1927) suggested that the second order nature of the λ-transition
showed it to be a liquid–liquid phase transition, from helium I at high temperatures
to helium II at low. London (1938) argued that it was an example of Bose–Einstein
condensation, which general low temperature phenomenon marks the transition
from majority energy excited state occupancy to majority energy ground state
occupancy (Landsberg 1954). Tisza (1938) proposed that superconductivity below
the λ-transition could be accounted for by the coexistence of two fluids, one
comprising bosons in the energy excited states with normal viscosity, and the other
comprising bosons in the energy ground state with zero viscosity.

Balibar (2014) has reviewed the history of low-temperature studies of liquid
helium and the λ-transition. In particular, he discusses the ideal gas model that was
originally used to relate the λ-transition to Bose–Einstein condensation by London
(1938), and the two-fluid model of superconductivity proposed by Tisza (1938).
Balibar (2014) quotes Landau (1941) in criticizing this model: [F London and]
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‘L Tisza suggested that helium II should be considered as a degenerate ideal Bose
gas… This point of view, however, cannot be considered as satisfactory… nothing
would prevent atoms in a normal state from colliding with excited atoms, i.e., when
moving through the liquid they would experience a friction and there would be no
superfluidity at all. In this way the explanation advanced by Tisza not only has no
foundation in his suggestions but is in direct contradiction to them’.

Section 5.2 gives the conventional London (1938) ideal gas model of Bose–
Einstein condensation and the λ-transition. This treats the ground state separately
and explicitly, and the excited states via an integral over the continuum. A feature of
the present treatment is that it invokes a series of permutation loops, which provides
a new perspective on the λ-transition and prepares the ground for the later analysis.
That the permutation loop treatment ultimately gives the same final results as can be
found in the usual textbooks should provide comfort in the approach.

In section 5.3, the ideal gas model is revisited using exact enumeration of the
momentum states. This broadly confirms the explicit ground state plus continuum
excited state approximation, but gives a more nuanced picture of Bose–Einstein
condensation. The change in energy state occupancy is continuous across the
λ-transition, with about 10% of the bosons being in the ground state at the transition.
Also, it is found that it is the growth and decay of permutation loops that causes the
spike in the heat capacity. Section 5.4 presents Monte Carlo simulations of a
Lennard–Jones model of liquid helium. Wave function symmetrization effects are
included up to the heptamer loop level. Along the Lennard–Jones saturation density
line, which is significantly higher than for actual helium, the heat capacity is
observed to sharply increase with decreasing temperature, apparently diverging at
about 4–5 K. This resembles the λ-transition in liquid helium, albeit at a somewhat
higher temperature. In the simulations the symmetrization loop contributions to the
total heat capacity are dominant leading up to the transition.

In section 5.5, the role of the interaction potential is analyzed on the low-temper-
ature side of the λ-transition. A certain factorization of the partition function together
with the relatively negligible contribution from the potential energy explain the success
of the ideal gas model for the heat capacity in this regime. The analysis also shows that
momentum correlations increase the subsystem permutation loop entropy.

The conclusion, section 5.6, builds on the evidence gleaned in the preceding four
sections to offer a physical explanation of the λ-transition and Bose–Einstein
condensation more generally. It suggests that it is the non-local nature of momen-
tum loops that is responsible for superfluidity. It also says that the loop entropy
drives the stochastic collisional dynamics to enhance momentum correlations and to
preserve the loops. This final point answers Landau’s (1941) above quoted criticism
of the London’s (1938) ideal gas treatment of Bose–Einstein condensation, and
Tisza’s (1938) two-fluid superconductivity model.

5.2 Ideal gas approach to the λ-transition
This section presents the conventional ideal gas description of the λ-transition in the
heat capacity of liquid He4. It begins with the analysis of the quantum ideal gas from
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section 4.1, which is based on an integral over the momentum or energy continuum.
Pathria (1972) argues that such an integral neglects the contributions from the ground
state (because in three-dimensional space the volume element vanishes at zero energy),
and that therefore one has to add explicitly the quantum ground state contribution to
the continuum energy integral. The initial presentation follows Pathria (1972,
section 7.1), except for the emphasis on the permutation loop contributions.

5.2.1 Loop forms of the grand potential and number

In order to show explicitly the essential assumptions that underpin the conventional
approach, the analysis begins with the expression derived in this book for the loop
grand potential for the ideal gas, equation (4.6), which transforms the sum over
momentum eigenstates into an integral over momenta, ∫π∑ ⇒ ℏV p( /(2 ) ) dl l l

n
3

l .
We depart from that expression to follow conventional treatments (Pathria 1972,

section 7.1): because in three dimensions π= p ppd 4 dj j j
2 , this gives zero weight to the

ground state of zero momentum, =p 0j . Hence the transformation to the continuum
represents the contribution from the excited states only, and the discrete ground
state contribution has to be added explicitly. Therefore, beginning with equa-
tion (4.6) for bosons, and retaining the ground state explicitly while transforming the
excited states to the continuum, the loop grand potential becomes

H

H H

H∫

∑

∑

β χ

χ χ

π
χ
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= +

= +
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⩾

=
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− + − +

− +
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n

p

( )

0
( ) ( )

The explicit ground state contribution, the first term z l/l , follows from the facts that
the ground state energy vanishes, H = 0l

0
( ) , and the symmetrization factor for the

ground state is unity, χ =+ 1l
0

,( ) , equation (4.5). The integral may be extended to the
origin because the integrand goes to zero, and so, it is argued, the ground state is not
counted twice. This is equation (4.6) to which has been added the explicit
contribution from the ground state. Hence the loop grand potential for bosons,
equation (4.8), with the added ground state is

β− Ω = + Λ ⩾+ − − −z l Vz l l, 1, (5.2)l l l, ( ) 1 3 5 2

where the thermal wavelength is

β πΛ ≡ h m2 . (5.3)2

Here and below = βμz e is the fugacity, where μ is the chemical potential and
β = k T1/ B is the inverse temperature. In the context of the following discussion,
small fugacity means →z 0, and large fugacity means → −z 1 .

Quantum Statistical Mechanics in Classical Phase Space

5-3



5.2.1.1 Digression: single-particle energy states
This expression for the boson loop grand potential including the ground state
contribution was derived from the continuum results for the quantum ideal gas given
in section 4.1. Alternatively it is worthwhile to derive the result from the expression
for the loop grand potential as a sum over energy states for a general single-particle
state system. Equation (3.58), repeated as equation (4.28), may be written for bosons
with the ground state explicit

∫
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∑

β

π ε ε

− Ω =

= +

= +
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m V
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z l Vz l l
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(5.4)
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l

l
l

l

n
l

l l
l

l l

, ( )

3 2

3 0

1 2

1 3 5 2

n

n0

The εn that appears here is the energy of a single-particle state, and dn is the
number of degenerate states. (The degeneracy varies from 1 to 48 in an erratic
fashion.) For the ideal gas, the energy of a particle with momentum p is
ε = p m/22 , where m is its mass. The spacing of momentum states is πΔ = ℏ L2 /p

per particle per dimension, where L is the edge length of the subsystem (Messiah
1961). In three dimensions the subsystem volume is =V L3. Hence the volume
element of energy space per particle is π π ε ε= =p p m mpd 4 d 4 2 d2 . The third
equality uses the fact that the ground state energy for the ideal gas is zero, ε = 00 .
The quadrature for the final equality is given by Gradshteyn and Ryzhik (1980,
equation (3.371)). One can see that this is the same result as was derived above
from the continuum ideal gas analysis.

5.2.1.2 Number of bosons
The average number of bosons contributed by an l-loop is the fugacity derivative of
the loop grand potential, β¯ = ∂ − Ω ∂+ +N z z( ( )/ )l l

T V
, ( ) , ( )

, . This is evidently just l times
the loop grand potential itself,

¯ = + Λ ⩾+ − −N z Vz l l, 1. (5.5)l l l, ( ) 3 3 2

One can identify zl as the average number of bosons contributed by an l-loop to the
ground state. This is actually lz l/l , where the l in the numerator is the number of
bosons in the loop, and that in the denominator is the correction for over-counting,
namely the number of cyclic permutations of the particles that leave the loop
unchanged. The average number of bosons in the ground state in total is

∑¯ = =
−=

∞
+N z

z
z1

. (5.6)
l 1

l
0
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The number in the ground state evidently diverges as → −z 1 . One can invert this to
express the fugacity as = ¯ + ¯+ +z N N/(1 )0 0 , which is strictly less than one.

The average total number of bosons is the sum of that in the ground state and that in
the excited states, ¯ = ¯ + ¯+ +

*
+N N N0 . For the average number of bosons in a loop of given

size, the ratio of those in the excited states to those in the ground state is independent of
the fugacity and decreases with increasing size, ¯ ¯ ∼ →*

+ + −N N l/ 0l l,( )
0

,( ) 3/2 , → ∞l . As
→ −z 1 , larger loops contribute increasingly to the total number, and hence the total

proportion of contributions from the ground state also increases, ¯ ¯ →+ +N N/ 10 , → −z 1 .
One can conclude that as the fugacity approaches one from below, large symmetriza-
tion loops become filled in the ground state but not in the excited states. This is said to
be the phenomenon of Bose–Einstein condensation.

It has just been shown that for particle number the ground state contribution
becomes dominant as the fugacity approaches unity. In contrast for the grand
potential the ground state contribution may be neglected, which can be seen from
the total,

∑

∑

β β− Ω = − Ω

=− − + Λ

=

∞

=

∞

+ +

− −z V z lln(1 ) .

(5.7)l

l

1

1

l

l

, ( )

3 5 2

The excited state contribution here is extensive, being proportional to volume V. It is
obvious that for small values of the fugacity the excited states dominate this. In the
opposite limit, → − ¯ +z N1 1/ 0 , the ground state contribution grows as the logarithm
of system size, β− Ω ∼ ¯+ Nln0 , which again is relatively negligible. Hence for all
values of the fugacity only the excited state contribution to the boson grand
potential needs to be retained (Pathria 1972, section 7.1).

Perhaps the difference in the two thermodynamic properties can be understood by
noting that the contribution with loop size falls off faster for the grand potential than
for number, and hence large loops are relatively unimportant for the former. But as
the fugacity approaches unity, large loops increasingly contribute, and they occupy
the ground state. This explains why the ground state is relatively negligible for the
grand potential but not for number.

The loop energy for these ideal bosons is

β
β β

¯ = ∂ Ω
∂

= Λ+
+

− −E Vz l
( ) 3

2
. (5.8)l

l

V z

l, ( )
, ( )

,

3 5 2
⎛
⎝⎜

⎞
⎠⎟

Obviously the ground state does not contribute to this. Since the total pressure is
related to the total grand potential by β βΩ = −+ +p V , we may identify the
contribution to the pressure from each permutation loop as = −Ω+ +p V/l l, ( ) , ( ) .
Hence one sees that the pressure is proportional to the energy,
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This is the usual result for the ideal gas.

5.2.2 Total grand potential and number

We now work with the total grand potential and number, which are the sum of the
loop contributions. To this end it is useful to define the Bose–Einstein integral
(Pathria 1972, appendix D)
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n

x

x

l n

0

1

This is related to the Riemann zeta-function, ζ =n g( ) (1)n . The symmetrization loop
analysis provides a physical interpretation for the hitherto purely mathematical
fugacity expansion of the Bose–Einstein integral. With this one sees that the total
grand potential, neglecting the ground state contribution, is

∑β β− Ω = − Ω = Λ
=

∞
+ + − Vg z( ), (5.11)

l 1

l, ( ) 3
5 2

and, keeping the ground state, the total number is

∑¯ = ¯ = ¯ + ¯ = ¯ + Λ
=

∞
+ + +

*
+ + −N N N N N Vg z( ). (5.12)

l 1

l, ( )
0 0

3
3 2

In the limit →z 0, where ∼g z z( )3/2 , then ¯ ∼+N z0 and ¯ ∼ Λ*
+ −N Vz3 . The second is

a factor of volume larger than the first, and so for a macroscopic system one
concludes that for small values of the fugacity most bosons are in excited states, and
that ¯ ≈ ¯ ∼ Λ+

*
+ −N N Vz3 , which is the classical result.

The Bose–Einstein integral g z( )3/2 increases monotonically with z and has
largest value at the terminus of its domain, ζ= =g (1) (3/2) 2.6123/2 . It follows
that the total number of excited bosons at a given temperature is bounded,

ζ¯ ⩽ Λ*
+ −N z V T T V( , , ) ( ) (3/2)3 .
For large values of the fugacity, ≲z 1, the Bose–Einstein integral is a relatively

slowly varying function of z, ζ≈ =g z g( ) (1) (3/2)3/2 3/2 . Hence as the fugacity is
increased the actual number of bosons in the excited states is close to the upper
bound at the specified temperature.

When the total number of bosons exceeds the maximum number that can be
accommodated in the excited states at the specified temperature, ζ>Λ+ −N V (3/2)3 ,
then the excess must go into the ground state. This is Bose–Einstein condensation.
Rewriting this criterion for the temperature one can say that condensation occurs
when
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π ζ
< ≡
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. (5.13)c

2

B

2 3⎛
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⎞
⎠⎟

The thermal wavelength at this condensation temperature is about 40% larger than
the average spacing of neighbors in the liquid.

For low temperatures, ⩽T Tc, the system can be regarded as a mixture of two
phases:

• the gaseous phase, which consists of ¯ =*
+N T T N( / )c

3/2 bosons in excited states
• the condensed phase, which consists of ¯ = − ¯+ +

*
+N N N0 bosons in the ground

state.

For >T Tc, there is only a gaseous phase of bosons in excited states ¯ =*
+ +N N and

¯ =+N 00 . This corresponds to Keesom’s (1927) helium I. Below the λ-transition these
two coexisting phases that emerge from London’s (1938) ideal gas model of Bose–
Einstein condensation correspond to Tisza’s (1938) two-fluid model of super-
conductivity, with bosons in the ground state forming the zero-viscosity liquid.
Using different models on either side of the transition makes it appear sharper than
would otherwise be the case. Figure 5.1 plots the fraction of the system in the ground
and excited states according to this model.

The boson number density is ρ = ¯ +z V T N z V T V( , , ) ( , , )/ . For temperatures
greater than the condensation temperature, >T Tc, ρ = Λ −z V T T g z( , , ) ( ) ( )3

3/2 . In
the high temperature limit this is ρ = Λ −z V T T z( , , ) ( ) 3 , → ∞T , which is the
classical result. For <T Tc, the ground state ground state plus continuum excited
states ideal gas picture gives ρ ζ= − + Λ −z V T z z V T( , , ) /(1 ) ( ) (3/2)3 . One expects
that for fixed N, O∼ − −z V1 ( )1 .

The pressure is proportional to the grand potential,

β β= − Ω = Λ+
+

−p z V T
z V T
V

T g z( , , )
( , , )

( ) ( ), (5.14)3
5 2

Figure 5.1. Ideal gas model of Bose–Einstein condensation. The graph shows the fraction of ideal bosons in
the ground state (full curve) and in excited states (dashed curve) as a function of temperature.
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as also derived above, equation (5.9). The present result derives from classical
thermodynamics and is based on the facts that the pressure is the volume derivative
of the grand potential, and that the grand potential is proportional to the volume. In
the present case we have shown above that the ground state contribution to the
grand potential, which is not proportional to the volume, can be neglected. The
excited state contribution is proportional to the volume, and so the above result
holds in the present case. One sees that the pressure depends upon only two intensive
variables, even in the condensed regime.

It was shown in earlier chapters that wave function symmetrization created an
effective attraction between pairs of bosons (cf section 2.3.1 and also equation
(3.41)). Hence compared to the classical ideal gas, the ideal boson fluid should have
a lower pressure at the same temperature and density. This can be seen to be the case
in figure 4.1, which, accepting that it neglects the ground state contribution to the
density, is only valid in the non-condensed regime.

5.2.3 Heat capacity

Now for the heat capacity at constant number and volume. One has at constant
volume ¯ = ∂ ¯ ∂ + ∂ ¯ ∂N N z z N T Td ( / ) d ( / ) dT V z V, , . Hence ∂ ∂ = − ∂ ¯ ∂z T N T( / ) ( / )N V z V, ,

∂ ¯ ∂N z/( / )T V, . Now

∂ ¯
∂

=
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+ Λ
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− −N
z z
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(1 )
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1
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( ). (5.16)
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⎞
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From the average loop energy found above, the average energy is

∑
β

¯ = ¯ = Λ
=

∞
+ + −E z V T E z V T Vg z( , , ) ( , , )

3
2

( ). (5.17)
l 1

l, ( ) 3
5 2

Putting these together the heat capacity per particle at constant number and volume is

= ∂ ¯
∂

= ∂ ¯
∂

− ∂ ¯
∂

∂ ¯
∂

∂ ¯
∂

= Λ −

Λ Λ
− + Λ

+

+ +

+

+

+ + + + −

+
−

− −
− −

− − −

C

k N k N
E
T k N

E
T

E
z

N
T

N
z

k N
k

Vg z

k T
Vz g z

T Vg z

z Vz g z

1 1

1 15
4

( )

3
2

( )
(3 2) ( )

(1 ) ( )
.

(5.18)

V

N V z V T V z V T VB B , B , , , ,

1

B

B 3
5 2

B 3 1
3 2

1 3
3 2

2 3 1
1 2

⎪ ⎪
⎪ ⎪

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎧⎨⎩
⎫⎬⎭

We now evaluate this for the ideal gas model above and below the transition
temperature.
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For ⩽T Tc, ¯ =*
+ +N T T N( / )c

3/2 and ¯ = −+ +N N T T(1 ( / ) )0 c
3/2 . In this regime we can

take ζ= =g z g n( ) (1) ( )n n , and ∂ ¯ ∂ = −+ −N z z( / ) (1 )T V,
2. This gives
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The second term in the first equality is proportional to the fugacity times the square of
the ratio of the number of bosons in excited states to the number in the ground state,
which may be taken to be negligible for temperature less than the condensation
temperature. (The neglect of this term is equivalent to neglecting the added explicit
ground state contribution and retaining only the continuum energy integral. The term
that remains says that only bosons in excited states contribute to the heat capacity.)
Since in the ideal gas model of Bose–Einstein condensation ρ ζΛ = −T T T( ) ( / ) (3/2)3

c
3/2 ,

this says that at low temperatures the heat capacity is proportional to T 3/2.
At the condensation temperature, where ρ ζΛ =T( ) (3/2)c

3 this is

ζ
ζ

= =
+

+
C T
k N

( ) 15 (5 2)
4 (3 2)

1.925. (5.20)V c

B

For >T Tc, we can neglect the ground state contributions and take = ¯ =+
*
+N N

Λ− Vg z( )3
3/2 , or ρΛ = g z( )3

3/2 , which implicitly gives ρz T( , ). This gives

=
Λ

Λ −
Λ

= − >

+

+ −
−

−C
k N k Vg z

k
Vg z

k Vg z

g z

g z

g z

g z

g z
T T

1
( )

15
4

( )
9
4

( )

( )

15 ( )

4 ( )

9 ( )

4 ( )
, .

(5.21)

V

B B
3

3 2

B 3
5 2

B
3

3 2
2

1 2

5 2

3 2

3 2

1 2
c

⎧⎨⎩
⎫⎬⎭

As →z 0, this gives → − =+ +C k N/ (15/4) (9/4) 3/2V B , which is the classical result.
As →z 1, → ∞g z( )1/2 , and the second term in can be neglected. The formula then

gives ζ ζ=+ +C k N/ 15 (5/2)/4 (3/2)V B , which equals the result found above at the
condensation temperature. Hence the model predicts that the heat capacity is
continuous at the condensation temperature. However it does give a second order
discontinuity at the transition point.

For plotting purposes use the facts that ρΛ =T g z( ) ( )3
3/2 , ⩾T Tc, which implicitly

gives ρz T( , ), ρ ρΛ Λ =T T T T( ) / ( ) ( / )3
c

3
c

3/2 at constant density, and ρ ζΛ =T( ) (3/2)c
3 .

Hence

ρ
ζ ζ

ζ
=

Λ
= ⩽

+

+
C

k N
T T T T

15
4

(5/2)
15 (5/2)
4 (3 2)

( / ) , , (5.22)V

B
3 c

3 2
c

and
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= − >
+

+
C

k N

g z

g z

g z

g z
T T

15 ( )

4 ( )

9 ( )

4 ( )
, , (5.23)V

B

5 2

3 2

3 2

1 2
c

with ζ=T z T g z( )/ [ (3/2)/ ( )]c 3/2
2/3.

These are plotted in figure 5.2, where the second order discontinuity at =T Tc is
evident. It can be seen that the heat capacity asymptotes to the classical ideal gas
result at high temperatures. Also it falls to zero as →T 0, where almost all the
bosons are in the ground state of zero energy, and those that are excited by
increasing the temperature from absolute zero are a negligible fraction of the total.
The famous λ shape of the curve is reasonably clear in the figure. The similarity in
shape to the measured heat capacity of He4 allows the laboratory data to be
interpreted as signifying ground state condensation, which is ultimately due to the
fully symmetrized wave function of bosons. Undoubtedly particle interactions play
some role in the quantitative values of the heat capacity. For example, the transition
in He4 is measured at 2.17 K, and the ideal gas model gives =T 3.13c K
(Pathria 1972, section 7.1). Also the peak value of the predicted heat capacity is a
factor of three or more smaller than the measured values.

5.2.4 Critique of the ideal gas model

In many ways the qualitative and semi-quantitative success of the ideal gas model in
describing the λ-transition in liquid helium is surprising. In the first place, it is
unusual for an ideal gas model to have any quantitative accuracy for a liquid. After
all the reason that a liquid condenses from a gas is because of the attractions between
the particle, which interactions are neglected entirely in the ideal gas model.

Second, the assumptions that the ground state is unoccupied on the high
temperature side of the transition, and that the continuum integral refers solely
but entirely to the excited states, seems to be an extreme simplification that is
responsible at least in part for the second order discontinuity and spike in the heat

Figure 5.2. Specific heat capacity of ideal bosons as a function of temperature. The dotted line is the classical
result.

Quantum Statistical Mechanics in Classical Phase Space

5-10



capacity. But a more continuous transition would leave unexplained the molecular
origin of the measured second order discontinuity in the heat capacity.

Third, it would be useful to have an explicit derivation showing that the sum over
quantum states can be rigorously expressed as the ground state alone plus the
integral over the continuum. The current argument is physically plausible but lacks
mathematical rigor.

Given the success of the model, one could perhaps conclude that the inter-particle
potential gives negligible contribution to the heat capacity at low temperatures
(which conclusion is supported by the simulation data reported below). Further, it
seems that the contributions from boson statistics dominate the λ-transition, and
these can be obtained reliably with the ideal gas model. How to include interactions
to correct the relatively small discrepancies in the transition temperature and in the
value of the heat capacity is not so obvious.

5.3 Ideal gas: exact enumeration
One can further explore the ideal gas model of Bose–Einstein condensation and the
λ-transition in liquid helium by the exact enumeration of the quantum states. This
avoids the transformation to the continuum, and the need to use different functions
and assumptions on either side of the transition. By avoiding such assumptions, it
should offer reliable insight into the physical state of the system at the λ-transition.

For non-interacting particles the energy states are single-particle states. For the
present ideal gas the single-particle energy eigenvalues are

H π=
Δ

+ + = ± ± … Δ = ℏα
m

n n n n L
2

[ ], 0, 1, 2, , 2 / . (5.24)p
x y z pn

(1)
2

2 2 2
1

Here the volume of the system is =V L3.
From chapter 3, the loop grand potential for bosons is given by equation (3.58),

H∑

∑

β− Ω =

= ⩾
=−∞

∞

β

π

+ −

− Λ

z
l

e

z
l

e l, 1,

(5.25)

n

n

l
l

l

l
l L n

, ( )

( )

3

x

x

n

1

1
(1)

2 2
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where the thermal wavelength is β πΛ = h m/22 . The total grand potential is

∑β− Ω =− − = + +π+ − Λze n n n nln [1 ], . (5.26)
n n n, ,

L n
x y z

( ) 2 2 2 2

x y z

2 2

This is exact. The nature of its derivation in chapter 3 means that loop intersections
are precluded.

One sees from these two equations the regime in which the excited states are
occupied. The magnitude of the exponent for the loop grand potential in the first
excited state, =n 12 , is
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π π ρΛ = Λl
L

l
N

( ) . (5.27)
2

2 2 3
3 2 3

Near the λ-transition one has OρΛ = (1)3 , although it can be larger than this at lower
temperatures. With this value one sees that loops ≳l N 2/3 must be in the ground
state, but smaller loops need not be. For the grand potential itself (set l = 1 in this
formula), one sees that the exponent is negligible for a macroscopic system, and so
the occupancy of the excited states can be expected to be significant at the
λ-transition. This says that it is not until the thermal wavelength is of the same
order as the system size, OΛ =L/ (1), that the occupancy of the excited states
becomes negligible.

The number of bosons in a loop of size l is

∑β¯ = ∂ − Ω
∂

= ⩾
=−∞

∞
π+

+
− ΛN z

z
z e l( ) , 1. (5.28)

n

l
l

l l L n, ( )
, ( )

( )

3

x

x
2 2 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

The total number is

∑¯ =
−

π

π
+

− Λ

− Λ
N

ze

ze1
. (5.29)

n n n, ,

L n

L n

( )

( )
x y z

2 2 2

2 2 2

The number of bosons in a ground state loop is ¯ =+N zl l
0

,( ) , and the total number in
the ground state is ¯ = −+N z z/(1 )0 .

The average energy is

∑β
β

π β¯ =∂ Ω
∂

= Λ
−

π

π
+

+ − Λ

− Λ
E

ze n L

ze

( )

1
. (5.30)

n n n, ,

L n

L n

( ) 2 2 2

( )
x y z

2 2 2

2 2 2

The heat capacity per particle at constant number and volume is

β
β β

= ∂ ¯
∂

= − ∂ ¯
∂

− ∂ ¯
∂

∂ ¯
∂

∂ ¯
∂

+

+ +

+

+

+ + + + −

C
k N k N

E
T

N
E E

z
N N

z

1

.

(5.31)

V

N V

z V T V z V T V

B B ,

2

, , , ,

1

⎪ ⎪
⎪ ⎪

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

For this one requires

∑
β

π β∂ ¯
∂

= − Λ
−

π

π

+ − Λ

− Λ

E ze n L

ze

[ ]

[1 ]
, (5.32)

n n n, ,z V

L n

L n
,

( ) 2 2 2 2

( ) 2
x y z

2 2 2

2 2 2

⎛
⎝⎜

⎞
⎠⎟

∑ π β∂ ¯
∂

= Λ
−

π

π

+ − Λ

− Λ

E
z

e n L

ze[1 ]
, (5.33)

n n n, ,T V

L n

L n
,

( ) 2 2 2

( ) 2
x y z

2 2 2

2 2 2

⎛
⎝⎜

⎞
⎠⎟
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∑
β

π β∂ ¯
∂

= − Λ
−

π

π

+ − Λ

− Λ

N ze n L

ze[1 ]
, (5.34)

n n n, ,z V

L n

L n
,

( ) 2 2 2

( ) 2
x y z

2 2 2

2 2 2

⎛
⎝⎜

⎞
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and

∑∂ ¯
∂

=
−

π

π

+ − Λ

− Λ

N
z

e

ze[1 ]
. (5.35)

n n n, ,T V

L n

L n
,

( )

( ) 2
x y z

2 2 2

2 2 2

⎛
⎝⎜

⎞
⎠⎟

5.3.1 Numerical results

Figure 5.3 shows the specific heat capacity at constant density for ideal bosons at a
function of temperature near the λ-transition. The ground state plus continuum
excited states model, equations (5.19) and (5.21) (full curve) is the same as in
figure 5.2. The exact enumeration results use the formula given in this section, with
the fugacity for a given number of bosons, density, and thermal wavelength being
obtained by bisection methods using equation (5.29). The sum over states was
terminated when the magnitude of the Maxwell–Boltzmann exponent exceeded 20.

It can be seen that there is relatively good agreement between the ground state
plus continuum excited states model and the exact results for finite N. Indeed it
appears that in the thermodynamic limit, the present exact results converge upon the
earlier results. As an example of this, the present peak occurs at:

ρΛ =N C Nk{ , , / }c
3

V,c B {500, 2.25, 1.948}, {1000, 2.34, 1.944}, {2000, 2.40, 1.940}
and {5000, 2.45, 1.937}. The ground state plus continuum excited states model
gives ρΛ = 2.612c

3 and =C Nk/ 1.925V,c B .
Figure 5.4 shows the average number of ideal bosons in the energy ground state

(solid curve) and in the first (long-dashed curve) and second (short-dashed curve)

Figure 5.3. Specific heat capacity of ideal bosons as a function of temperature. The solid curve is the ground
state plus continuum excited states model, section 5.2, and the remaining curves are exact results for fixed
density ρ = 0.3 and N = 500 (dotted) and N = 5000 (short dashed). The condensation temperature Tc was
defined by the location of the maximum for each curve. The dotted line is the classical result.
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excited energy states around the λ-transition. The number in the ground state
increases monotonically with decreasing temperature. The number in the first
excited energy state at high temperatures is low, but more than in the ground
energy state. The number in the second excited state is higher still. Of course this is
due to the degeneracy of the energy states being 6 and 12 respectively. The
occupancy of a first excited momentum state is always less than that of the ground
momentum (equals energy) state. Obviously most bosons are distributed amongst
even higher excited energy states in this regime. The number density for the energy
continuum would be peaked at a non-zero value that increased with increasing
temperature.

On the low temperature side of the transition, the number of bosons in the first
and second excited energy states reaches a peak before decreasing to zero at absolute
zero. For the first excited energy state this peak occurs at =T T/ c 0.957 for
=+N 1000, and 0.951 for =+N 5000. Below this peak the order of energy state

occupancy is inverted from the order above the transition. Figure 5.5 shows the
number of bosons as monomers and in the first three loops as a function of
temperature. At high temperatures most bosons are monomers and permutation
loops are practically non-existent. The number of monomers decreases monotoni-
cally with decreasing temperature. Obviously, this means that the number of bosons
in permutation loops increases monotonically with decreasing temperature. The
number of bosons in each of the loops shown increases with decreasing temperature
and reaches a peak on the high temperature side of the transition. For dimers this
peak occurs at =T T/ c 1.44 for =+N 1000, and 1.48 for =+N 5000, which is almost
within the plotting point digitization error. The number of bosons in dimers exceeds
those as trimers, which exceeds those as tetramers, for all temperatures shown. The
gap between these decreases with decreasing temperature.

Figure 5.4. Average number of ideal bosons in the energy ground state (solid curve), in the first excited energy
state (long-dashed curve), and in the second excited energy state (short-dashed curve). The total number is
=+N 1000 and the density is ρ = 0.3, both fixed while the temperature and fugacity are varied. The dotted line

is a guide to the eye.

Quantum Statistical Mechanics in Classical Phase Space

5-14



The decrease with decreasing temperature in the number of bosons in the first
several loops on the low temperature side of the transition, together with the
decrease in the number of monomers, suggests that larger loops are being populated
at the expense of monomers and smaller loops (because the total number of bosons is
fixed). But bosons in these larger loops must increasingly be in the ground state,
because of the l in the Maxwell–Boltzmann exponent in equation (5.28). (It was
pointed out in section 5.2.1 that large loops are mainly in the ground state, and that
large loops increasingly dominate as →T 0.) This is consistent with the increasing
occupancy of the ground state shown in figure 5.4.

The total heat capacity is the sum of the heat capacity of the monomers and
loops. The loop heat capacity varies with the excited state of the loop. Ground state
bosons contribute nothing to the heat capacity. Hence one can see the reason why
the heat capacity first increases and then decreases with decreasing temperature at
the λ-transition: on the high temperature side the number of bosons in small loops is
increasing, and a significant number of these bosons are in excited states. On the low
temperature side the number of bosons in small loops decreases as they are
cannibalized by large loops of bosons in the ground state.

5.4 The λ-transition for interacting bosons
The section develops a computer algorithm for simulating wave function symmet-
rization effects in general, and gives results for liquid helium near its λ-transition in
particular.

The simulation algorithm is designed to produce classical equilibrium canonical
averages, such as the average energy H〈 〉cl, as well as classical averages of quantum

loop symmetrization functions, such as η〈 〉
◦± l

q
( )

cl and similar. As will be shown these
can be combined to produce any desired quantity for the quantum system. The
classical averages can also be called monomer averages. All of the following
averages are classical and the subscript on the angular brackets is therefore dropped.

Figure 5.5. Average number of ideal bosons as monomers (solid curve), as dimers (long-dashed curve), as
trimers (short-dashed curve), and as tetramers (dotted curve). The total number is =+N 1000 and the density is
ρ = 0.3, both fixed while the temperature and fugacity are varied. The dotted line is a guide to the eye.
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The commutation function, which is derived in chapter 7 and for which various
series expansions and numerical examples are given in chapters 8–11, is set to unity
in this and the following section. (For the ideal gas it is identically unity.) This is one
limitation of the simulation algorithm. The reasons for neglecting (i.e., setting to
unity) the commutation function are partly that it is difficult to calculate, and partly
that it might indeed be unimportant (in view of the success of the ideal gas
approach). In general the commutation function exponent at large separations is
proportional to the gradient of the interaction potential, and it therefore goes to zero
faster than the potential itself. Hence when the system is dominated by long range
effects, as appears to be the case here, the commutation function can be neglected. It
can also be mentioned that equation (7.23) below shows that the Maxwell–
Boltzmann-weighted integral over phase space of the temperature derivative of
the commutation function must vanish, which suggests that it is a reasonable
approximation to set the temperature derivative throughout phase space to zero,
which is equivalent to taking the commutation function to be a constant equal to its
high temperature limit of unity. A final reason for setting it to unity is that the
commutation function depends upon the particles’ momenta, and in its absence the
various momentum integrals can be performed analytically, which gives a great
saving in computer time.

As will be discussed in the concluding section 5.6, another limitation of the
following simulations is that they rely upon ideal solution theory: the permutation
loops must be so dilute that their interaction is unlikely. The loop grand potential,
whose derivatives give the loop series for the heat capacity calculated in the
simulations, is derived by neglecting correlations between the permutation loops.
It is not clear that these limitations are of any significance.

A third limitation is that the simulations invoke integrals over the momentum
continuum. As discussed in section 5.2, these represent excited states only. Of course
on the high temperature side of the transition this is the same as London’s (1938)
ideal gas model, which also neglects the ground state contribution to the excited
state continuum, section 5.2.2.

5.4.1 Momentum integrals

5.4.1.1 Partition function and configuration integral
Consider a canonical equilibrium system withN particles, volume V, in thermal contact
with a reservoir of temperature β=T k1/ B . The classical Hamiltonian is the usual sum
of kinetic and potential energy, H KΓ = + Up q( ) ( ) ( ), with the kinetic energy being

K = = ∑ ·=p m mp p p( ) /2 /2j
N

j j
2

1 . The classical or monomer partition function is

K∫
∫π β

=
!

=
!

≡ Λ
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β β
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− −

−

−

Z N V T
h N

e e
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m e
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p q
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1
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The configuration integral is ∫≡ β−Q eqd U q( ), and the thermal wavelength is

β πΛ = h m/22 .
The classical average of the single loop symmetrization function for ⩾l 2 is

H

K

∫

∫

η ηΓ Γ=
!

=
!
± !
− !

× …
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The momentum integral here is
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where ′ =+ +q qj j1 1, = … −j l1, 2, , 1 and ′ =+q ql 1 1. Hence for ⩾l 2,
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This is a classical configuration average (i.e., over positions). For an l-loop
composed of = …q q q q{ , , , }l

j j jl1 2
, the sum of the square of the bond lengths is

L = + + ⋯ +q q qq( )l
l

j j j j j j
2

,
2

,
2

,
2
l1 2 2 3 1

. With this, the loop Gaussian to be averaged is
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The equality of these two expressions is to be understood after the fluid averaging
process. (The final expression is correct in all circumstances.) For what follows, it is
important to note that the Gaussian loop factor depends upon temperature. Note
that the clockwise loop …i j j j{ , , , , }l2 3 must be counted as distinct from the anti-
clockwise version, …−i j j j{ , , , , }l l 1 2 even though the two loop Gaussians have the
same numerical value.

5.4.1.2 Average energy
The kinetic energy is included in the average monomer energy,

H
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¯ ≡ 〈 〉 = −∂
∂
= + 〈 〉E

Z
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3
2

. (5.41)(1) B

This is of course just the classical average energy.
The average energy for the loops ⩾l 2 is
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There is no kinetic energy contribution to these. The first term on the right hand side
of the average loop energy, which is negative, might be called the ideal loop
contribution to the average loop energy, because it is the only term that survives if
U = 0. It is negative because the effective potential for bosons induced by wave
function symmetrization is attractive, equation (3.42). It arises from the derivative of
the loop Gaussian,
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5.4.1.3 Heat capacity
The monomer contribution to the heat capacity is
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This is the usual classical result.
The contributions to the heat capacity at constant number and volume from loops
⩾l 2 is

L

β
β

β
β β

β

β

π
β

= ∂ ¯
∂

= − ∂ Ω
∂

〈 〉 + Ω ∂ ¯
∂
− ∂

∂

− + ∂
∂

= − ¯ 〈 〉 + Ω − + 〈 〉

− +
Λ

± ±
± ±

±
±

± ± ±

± ±

C
E

T
C

k T
U

U
Q

Q
U G

U G U
G

C
k T

E U U U U U G

U G U G

1 1

1
[ ]

.

(5.46)

V
l

l

N V
V

l
l

l l

l
l

V
l l l l

l l l

( )
( )

,

( ),idx

B
2

( )
( ) ( )

2 ( )
( )

( ),idx

B
2

( ) ( ) 2 2 ( )

2 ( )
2

2
( ) ⎪

⎪

⎪

⎪

⎪

⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎧⎨⎩
⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

Gathering terms this may be written as
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The fluctuation correlation part explicit here need not be positive.
In the loop heat capacity,CV

l( ),idx is the ideal excess contribution. This is thus called
because it comes from the ideal contribution to the loop energy. The strictly ideal part
of it can be obtained from the following expression by setting U = 0. In full it is
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This should be understood as an abbreviated notation. In more detail one has
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This second derivative of the Gaussian is the explicit non-U or ideal gas contribution
to the heat capacity. Of course one should not forget that its average involves the l-
particle density, which gives the structure of the fluid and which depends strongly
upon the potential and the temperature.

The simulation results obtained to date all show that the individual loop
contributions to the heat capacity are positive. I have no analytic proof that this
must always be true. Of course the total heat capacity over monomers and loops
must be positive for the thermodynamic state to be stable.

5.4.2 Monte Carlo algorithm

The preceding analysis, which performs the momentum integrals analytically, casts
the necessary statistical quantities in terms of classical canonical equilibrium
averages, which are just Maxwell–Boltzmann weighted integrals in position space.
These lend themselves directly to the usual Monte Carlo (Allen and Tildesley 1987)
or stochastic molecular dynamics (Attard 2018) computer simulation procedures.

In the canonical equilibrium simulations the number N and volume V was fixed,
and most of the results were obtained as a function of temperature along a path of
fixed total density, ρ = N V/tot . According to the notions advanced in sections 5.2
and 5.3, this represents =*N N bosons in excited states and does not include those in
the ground state.

In the results obtained here the Metropolis Monte Carlo algorithm was used.
A cut-off σ=R 3.5cut was used for the Lennard–Jones potential. A spatial neighbor
table with cubic cells of size σ≈0.7 was used. This is about three times more efficient
than the commonly used cells of size Rcut, since the small cells considerably reduce
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the neighborhood volume that needs to be searched, it being only about twice the
size of the actual cut-off sphere. The neighbor tables mean that the computer time
required for a given statistical accuracy scales sub-linearly with system size. The
neighbor table also makes the evaluation of the loop functions more efficient, as is
now detailed.

The novel aspect of the simulations is the evaluation of the loop Gaussians, 〈 〉G l( ) ,
and related quantities such as 〈 〉UG l( ) , L〈 〉Gl

l2 ( ) , etc. There are ! − !N N l l/( ) distinct
l-loops, and since the number of atoms in the simulation is O∼N (10 )3 , it would be
prohibitive to evaluate all of them for every configuration. Here a more efficient
algorithm is described.

In order for the Gaussian to be non-zero, the loop has to be compact. Therefore
one can confine the loops to be considered to a defined neighborhood Ni of each
atom i. Let N∈j i if and only if ⩽q Rij cut and >j i. (The condition >j i allows
distinct loops to be generated with the first atom i also having the lowest index,
which means that the combinatorial factor of l in the denominator is no longer
required.) It is not essential to use the same cut-off as for the potential, but it is
convenient to do so because the same neighbor table can be used for both the
potential and the loop calculations. With this approximation the expression for the
loop Gaussian becomes
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In the results reported below, the cut-off was σ=R 3.5cut , and the thermal wave-
length was σΛ ≲ 2 , depending on the temperature. For a loop with one atom outside
the neighborhood L > R2l

2
cut
2 , the exponent is π≲− × = −2 3.5 /2 192 2 , and the

Gaussian is ≲ × −4 10 9. This is a fairly conservative estimate. To the extent that
this is small compared to unity, neglecting loops that extend beyond the neighbor-
hood should not unduly underestimate the loop contribution to the various
averages.

For the results reported below, the number of atoms in the defined neighborhood
is N O∼ (150)i (for small i). The number of possible l-loops for each such atom is
N N! − !l/( )i i , which is still much too large to evaluate exhaustively except for l = 2
and possibly l = 3. Instead a random sample N<Mi i of the possible loops was
evaluated, and the loop Gaussian was estimated as
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Usually, for each i, the number of trimers evaluated explicitly was N=M /4i i
2 , for

tetramers it was N=M /27i i
3 , and for pentamers it was N=M /256i i

4 . In one test, for
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heptamers N=M /12i i
6 6 was increased to N /9i

6 6, the computer time increased by a
factor of 2.5, and the statistical error was reduced by a factor of 0.56. The inverse
square root of the time factor was 0.63.

A further refinement was added to the loop Gaussian evaluation algorithm.
Loops were generated using nested sums to randomly choose the next atom in the
loop from amongst the neighbors of the first atom. This ‘grows’ a loop by adding
bonds to the existing stem, in a tree-like arrangement. The current branch is pruned
if the length of the stem exceeds a pre-set threshold, typically the sum of the bonds
squared is less than 12 or 18 Λ2. (In one test the smaller threshold ran about twice as
fast as the larger one, and about five times as fast as no pruning.) Upon hitting the
threshold, the current and all future loops based on this stem are given zero weight
without actually calculating them, the counter is incremented by how many such
future loops there would have been, and the nested sums are restarted at the next
atom in line for the current loop position after the atom that caused the threshold to
be exceeded. In this final form of the loop Gaussian evaluation algorithm, the
number of trees actually generated is much less than those that would possibly be
generated by the nested sums, which is much less than the number of possible loops
of neighbors, which is much less than the number of possible loops of all atoms.
Tests confirm the accuracy and the efficacy of this approach.

Finally, although the loop Gaussian evaluation algorithm is rather efficient
compared to what it could have been, it can still be the rate determining step for the
Monte Carlo algorithm. Under these circumstances it is important that the number
of calls to the evaluation regime be restricted and as much information as possible be
extracted from each call. This means that the position configurations for successive
calls should be uncorrelated. Since the classical Metropolis Monte Carlo algorithm
for generating a trajectory through position space is relatively cheap in terms of
computer time, in the results reported below 100 attempted trial moves were made
for each and every atom in the system between successive calls to the loop Gaussian
evaluation subroutine.

5.4.3 Results for liquid helium

Results are now given for the classical canonical equilibrium Metropolis Monte
Carlo simulations of liquid helium-4 at low temperatures. These include permuta-
tion loop contributions up to heptamers using the algorithm described above. The
Lennard–Jones pair potential was used, ε σ σ= −u r r r( ) 4 [( / ) ( / ) ]12 6 , with parameters
appropriate for helium: well-depth ε = k10.22 B J, core diameter σ = 0.255 6 nm,
and mass = × × −m 4.003 1.660 54 10 27 kg (van Sciver 2012). Results were at
overall number density ρ σ = 0.3tot

3 (mass density ρ = 119.4 kgm,tot m−3). The
thermal wavelength at ε =k T / 1.3B ( =T 13.286 0 K) is σΛ = 0.936 64 , and that at
0.4 (4.088 K) is σ1.688 6 .

The number of atoms used was N = 500, giving edge length of the cubic
simulation cell σ=L 11.86 , for overall number density ρ σ = 0.3tot

3 . Periodic
boundary conditions were applied and the minimum image convention was used.
The pair potential was cut-off at σ=R 3.5cut . This was used to define the
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neighborhood volume for the small cell spatially-based neighbor tables. The same
neighbor tables was used for the permutation loop Gaussian calculations, as
described above. The threshold for pruning the permutation loops was set at Λ12 2.
A typical simulation attempted 0.4–1.6 ×106 moves per atom, with an acceptance
rate of 30%–50%. It took from several hours to a day to complete a simulation at a
single temperature on an adolescent desk-top personal computer.

The results reported below are along the line of liquid–vapor coexistence in the
Lennard–Jones model. The density of the liquid is significantly higher than the
specified overall density (table 5.1). The central density in the table was obtained for
a sphere of radius σ about the center of mass of the simulation cell. The latter was
obtained after a uniform shift of the atoms (including moving some out one face and
in the opposite face of the central simulation cell) so as to minimize the second mass
moment. This somewhat convoluted procedure was necessitated by the periodic
boundary conditions. The higher the central density, the more inhomogeneous is the
system. At high temperatures the liquid practically extended homogeneously
throughout the system. The liquid region took the form of a diffuse spherical
droplet for ≳T 11 K, transitioning to a lens or oblate ellipsoid or cylinder for
≲T 10 K. These shapes, particularly the cylinder, are evidently affected by the cubic

periodic boundary conditions. The results reported below are averaged across the
full system, although obviously they are dominated by the contributions from the
liquid.

The central densities using the Lennard–Jones parameters of helium in the
simulations are much higher than the measured liquid density at saturation, which
is 146.2 kg m−3 at 2.177 K and 100.8 kg m−3 at 5 K, with the critical point at
5.195 K (Donnelly and Barenghi 1998). It was confirmed that the simulations were
performed for the fluid state by monitoring the diffusion of the atoms.

The high liquid density is undoubtedly an artifact of the model used, and it is
worth listing its artificial aspects. One contribution to the high density of the

Table 5.1. Central number density in the Monte Carlo simulations. The overall number density is ρ = 0.3tot
(ρ = 119.4 kgm,tot m−3)† and N = 500.

εk T /B ρσ3 ρΛ3 T (K)† ρm (kg m -3)† T (K)‡ ρm (kg m -3)‡

0.4 0.98 4.72 4.088 390.04 1.742 155.55
0.5 0.91 3.13 5.110 366.16 2.177 144.44
0.6 0.88 2.31 6.132 350.24 2.612 139.68
0.7 0.81 1.68 7.154 322.38 3.048 128.57
0.8 0.77 1.31 8.176 306.46 3.483 122.22
0.9 0.73 1.04 9.198 290.54 3.919 115.87
1 0.62 0.76 10.220 246.76 4.354 98.41
1.1 0.55 0.58 11.242 218.90 4.789 87.30
1.2 0.39 0.36 12.264 155.22 5.225 61.90
1.3 0.37 0.30 13.286 147.26 5.660 58.73

† εHe = 10.22 kB J and σHe = 0.255 6 nm.
‡ 0.43εHe and 1.4 σHe.
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liquid is the Laplace pressure due to the surface tension of the highly curved
interface of the droplets. (Small droplets are nevertheless stable in a finite-sized
system of fixed number (Moody and Attard 2002).) Possibly a more important
contribution is the approximate nature of the Lennard–Jones pair potential itself,
which is likely inaccurate in the short-separation core-dominated region that
becomes important at high densities, even though the parameters are derived by
fitting scattering data (van Sciver 2012). Three-body potentials, such as the
Axilrod–Teller triple dipole potential, and higher many-body potentials have
been neglected, and these tend to be net repulsive (Barker and Klein 1973, Attard
1992). The commutation function (see chapter 7), which is neglected in the present
simulations, is of unknown importance and effect at these low temperatures.
Finally, the simulations are based on the momentum continuum and so they
represent the contribution from bosons in excited states only. This effect is less
important on the high temperature side of the λ-transition. In general for
interacting bosons, it is unclear how to separate out the ground state bosons, or
how to obtain their specific contribution, or how they effect the liquid–vapor
equilibrium.

It would be possible to bring the simulated λ-transition temperature and density
(and approximately the saturation density curve) into agreement with the measured
values by making the replacements ε ε⇒ 0.43 , and σ σ⇒ 1.4 , as in the final two
columns in table 5.1. The results reported below use the original Lennard–Jones
parameters fitted for helium. Ultimately the discrepancy between the simulations
and the measurements is due to the Lennard–Jones potential itself rather than the
parameter values that it uses. The value of the dimensionless quantity ρΛ3 would not
be changed by any such replacement.

In view of these approximations and artifacts, one should not expect the
simulations to provide an accurate quantitative description of liquid helium-4.
Instead, they should be regarded as an initial investigation of the effects of wave
function symmetrization on the λ-transition, and as providing molecular-level
insight into the physical mechanisms that underlay the associated phenomena.

Figure 5.6 shows the average potential energy per particle as a function of
temperature at constant overall density, ρ σ = 0.3tot

3 . See table 5.1 for the saturated
liquid density at each temperature. One can see that the total potential energy
decreases with decreasing temperature. The total potential energy is dominated by
the monomer or classical contribution. The kinetic energy, K〈 〉 = Nk T3 /2B , can
simply be added to this term.

The loop contributions to the average energy are small. For ε >k T / 0.5B

( >T 5.11 K), the contributions decrease in magnitude with increasing loop size
l. For lower temperatures than this the opposite trend may be seen in the figure.
This suggests that the permutation loop series converges at higher temperatures,
and diverges at lower temperatures. At ε =k T / 0.5B , for the total density
ρ σ = 0.3tot

3 , one has ρ Λ = 1.03tot
3 , and for the central density ρσ = 0.913 , one has

ρΛ = 3.13 .
The heat capacity at constant volume is shown in figure 5.7. Above about T = 8K

it is dominated by the monomer (classical) contribution. There is a local maximum
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at about 10.6 K, that is relatively broad, and that is almost entirely classical in
structure. These three points (the high temperature, the broad maximum, and the
classical dominance) rule it out as a candidate for the λ-transition in liquid helium-4.
This maximum appears to be associated with the transition from a diffuse spherical
liquid droplet at higher temperatures to an oblate ellipsoid in the simulations at
lower temperatures.

The classical contribution to the heat capacity monotonically decreases with
decreasing temperature below this maximum. In contrast the total heat capacity
begins to increase again at about 8 K, and continues to increase for the rest of the

Figure 5.6. Average potential energy per particle for Lennard–Jones He4 as a function of temperature at
constant overall density ρ σ = 0.3tot

3 . The contribution curves are monomer (classical, full), dimer (long
dashed), trimer (short dashed), tetramer (dotted), and pentamer (dash-dotted). The symbols are the total of
these. The statistical error is less than the size of the symbols.

Figure 5.7. Constant volume heat capacity per particle for Lennard–Jones He4 as a function of temperature at
constant overall density ρ σ = 0.3tot

3 . The curves and symbols are as in the preceding figure. Each arm of the
error bar is twice the statistical error on the mean (i.e., 96% confidence level).
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simulated regime. This is due to the increasingly significant contributions from the
permutation loops, which increase with decreasing temperature.

The loop contributions to the heat capacity decrease with increasing loop size l for
ε >k T / 0.6B ( >T 6.132 K). They show the opposite trend for lower temperatures

than this, with the cross-over point clear in figure 5.7. Therefore for temperatures
lower than about 6 K, the permutation loop series appears to be divergent, and
therefore the results in the figure for the total heat capacity for this regime must be
treated with caution. The individual loop contributions are reliable.

Based on the sharp increase in either the individual loop contributions or the total
heat capacity for ≲T 5 K it seems reasonable to conclude that this is the high
temperature side of the λ-transition for the Lennard–Jones model of helium-4. This
is obviously a specific quantum effect, indeed an effect due entirely to wave function
symmetrization, since the classical contribution has the opposite behavior to that
measured. At this temperature and overall density, ρ Λ = 1.03tot

3 . (The central
density is ρσ = 0.913 , and ρΛ = 3.13 .) The dominant contribution to the loop heat
capacities ∈l [2, 7] in the simulations at this temperature comes from the non-U
part, which is to say the temperature derivative of the thermal wavelength in the
loop Gaussian, equation (5.50). This is the same contribution that occurs for the
ideal gas, although of course here its average is affected by the structure in the
Lennard–Jones system.

The discrepancy between the laboratory transition temperature of 2.17 K and the
present estimate of 5 K can be attributed in part to the fact that the liquid density in
the simulations is many times the saturated liquid density of helium-4 (table 5.1).
This probably exacerbates the errors due to using the ideal solution approximation
for the permutation loops (neglecting loop correlations), and the neglect of the
ground state. The last two probably cause the loop contribution to the heat capacity
to be increasingly overestimated with decreasing temperature.

Figure 5.8 shows the purely classical radial distribution function at three
temperatures. At the highest temperature shown, there is a single peak at

σ = ±r/ 1.10 .02 that represents nearest neighbors, and then more or less monotonic
decay to unity. At the middle temperature the nearest-neighbor peak has grown, but
remains at the same position, and there are signs of a secondary peak at

σ = ±r/ 2.15 .02. It is noticeable that the radial distribution function is
=g r( ) 1.24 at the cut-off distance used for the potential. This is rather larger than

the asymptotic limit of unity. At the lowest temperature there is noticeable widening
and possible bifurcation of the secondary peak. The first four maxima are at σ =r/
1.10, 1.94, 2.10, and 2.87. This seems to signify the beginning of the onset of
crystalline structure in the liquid. It is noticeable that the oscillatory structure has
not died out by the cut-off radius. Although the classical radial distribution function
at this lowest temperature displays more structure than at higher temperatures, one
would say that the differences are more quantitative than qualitative. This reinforces
the point that the high value of the heat capacity at this temperature shown in
figure 5.7 is a quantum effect that may be perturbed by the underlying classical
structure but is in no way due to it.
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The growth in the height of the nearest-neighbor peak with decreasing temper-
ature corresponds to an increasing adsorption excess. This causes the simulation
time to markedly increase with decreasing temperature as more neighbors have to be
accounted for within the cut-off of the loop calculations. The increase in adsorption
excess causes the growth in the loop symmetrization contributions to the heat
capacity. This fact underlies the Markov approximation for the various loop
averages that is developed in section 6.3.

5.5 Interactions on the far side
The treatment of the λ-transition for interacting bosons with computer simulations
using the algorithm detailed in the preceding section is currently limited to the high
temperature side, due to the dilute loop approximation, and also to the neglect of the
ground state, which become increasingly important below the transition. In seeking
to quantify the effects of the interaction potential on the low temperature side of the
λ-transition one needs a different approach.

In this section an analytic but approximate approach is pursued that is motivated
on physical grounds. It explains mathematically the success of the ideal gas model
detailed in sections 5.2 and 5.3 by demonstrating the insensitivity of the system to the
interaction potential at low temperatures.

5.5.1 Factorization and the heat capacity

We proceed with discrete momentum states. The canonical equilibrium partition
function for bosons, equation (3.6), neglecting the commutation function, and with
= Δα αp nj j p, πΔ = ℏ L2 /p , is

Figure 5.8. Classical radial distribution function for Lennard–Jones He4 at ρ σ = 0.3tot
3 . The temperatures are

ε=k T /B 1.3 (13.3 K, full curve), 1.0 (10.22K, long-dashed curve), and 0.4 (4.09 K, short-dashed curve). The
dotted line is a guide to the eye.
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the commutation function to unity. (See chapter 7 for its definition; arguments for
setting it to unity were given in the introduction to section 5.4.)

This section focuses on low temperatures, β → ∞. In this case there is a limited
number of accessible momentum states available, say ∣ ∣ ≲ Λαn L/j . (In subsection
5.6.1.3 below the number of accessible momentum states per particle at the λ-
transition is shown to be on the order of = Λ ≲−n V Np

3 .) Under these circumstances
the permutation loops are predominantly momentum loops in which all particles in
a loop are in the same momentum state. In this case the momentum sum and the
position integral factorize (because if − =α α′n n 0j j , then the Fourier factor is unity
for all values of q). The momentum factor that arises is

∑∏ ∑ δ=
!

−
αˆ =−∞

∞
β

α α
+ − Δ

′

α

αZ N V T
N

e n n( , , )
1
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All the wave function symmetrization effects are contained within this momentum
factor. Because of the factorization, this is purely an ideal gas result, and it is directly
connected with the grand canonical ideal gas results of section 5.2 and 5.3. As in that
analysis, the sum over momentum states can be written as the integral over the
momentum continuum, plus the explicit ground state contribution.

The remaining factor is the classical configuration integral, =Q N V T( , , )cl

∫ β−eqd U q( ), and so one has

β= → ∞+ + −Z N V T Z N V T V Q N V T( , , ) ( , , ) ( , , ), . (5.55)N, id cl

The average energy is just the logarithmic temperature derivative of this,
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This is the sum of the quantum average energy for ideal bosons plus the classical
average potential energy of their interactions. Hence the heat capacity at constant
density is similarly the sum of the quantum ideal part and the classical interaction
part. The former is given by the ground state plus continuum excited states ideal gas
heat capacity derived in subsection 5.2.3.

Approaching absolute zero, the potential energy is practically constant as the
structure of the fluid is insensitive to temperature, 〈 〉 →U N V T, ,

cl const. Hence its
contribution to the heat capacity must be negligible, and to a good approximation
the dominant energy contribution to the heat capacity at constant density is that
from the ideal gas. In other words, at low temperatures approaching absolute zero,
the present analysis of interacting bosons shows that the classical excess contributes
negligibly to the heat capacity. The ideal gas expression, equation (5.18), dominates
even for interacting bosons. One concludes that interactions make little difference to
the ground state plus continuum excited states ideal gas model below the transition
temperature.

It should be emphasized that the main approximation in the above analysis is to
include only permutation loops consisting of bosons all in the same momentum
state. This neglects permutation loops composed from bosons in different momen-
tum states. These give the dominant contribution to the heat capacity in the vicinity
of the λ-transition temperature, and so the present analysis cannot be expected to be
accurate in that regime.

5.5.2 Permutation entropy

There is an alternative way to view the preceding factorization that brings out its
explicit relationship to entropy and that sheds light on the nature of the system in the
superfluid regime.

The microstates = …n n n n{ , , , }N1 2 , which we take to be single-particle momen-
tum microstates, = Δp npn , πΔ = ℏ L2 /p , = ± ± …αn 0, 1, 2,j , have an internal
subsystem entropy due to permutations,

χ=± ±S k ln . (5.57)n n
s,

B

Here χ±n is the symmetrization factor, and its relation to entropy was mentioned in
connection with equation (3.6). For bosons, with which we are here concerned, the
symmetrization factor is given by equation (2.20),

∏χ = !+ N n( ) , (5.58)
a

n a

with the occupancy of the single-particle momentum state a being

∑ δ= −
=

N n n a( ) ( ). (5.59)
j

N

1

ja

Here = a a aa { , , }x y z , = ± ± …αa 0, 1, 2, .
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Obviously we add this internal entropy to the canonical equilibrium reservoir
entropy to get the total entropy of the subsystem microstate,

H
χ= + = −± ± ±S S S k

p

T

q
ln

( , )
. (5.60)n n n n

ns, r
B

The specific contribution from the permutation entropy can be elucidated in terms
of a trial momentum move,

→ → − +{ } { }N N N Np p , or , 1, 1 . (5.61)a b a b a b

Obviously ⩾N 1a . The change in the internal subsystem entropy for this is

Δ → = ++S k
N

N
a b( ) ln

1
. (5.62)n

b

a

s,
B

This is positive if the number of bosons in the destination state ends up being greater
than the number in the initial state (the rich get richer). This what drives the bosons’
momenta to become highly correlated at low temperatures, the formation of large
momentum loops, and increased momentum state occupancy. (Single boson
transitions and occupied state transitions are discussed in the context of superfluidity
and the momentum gap in section 5.6.2.4 below.)

The change in reservoir entropy, βΔ → = − −S p p ma b( ) ( )/2n b a
r 2 2 , should be added

to this. This tends to drive the particles into the momentum ground state. One can
independently change the particles positions, βΔ → ′ = − ′ −S U Uq q q q( ) ( ( ) ( ))r .
(These changes in momentum are conveniently but not necessarily done one particle
at a time, and similarly for position.) The changes in entropy can be used in
conjunction with, for example, the Metropolis algorithm, to generate a trajectory
through (semi-discrete) phase space (which includes the ground momentum state)
that ensures that the trajectory average equals the equilibrium average. They can also
be used to formulate stochastic dissipative equations of motion (see chapters 4 and 5
of Attard 2015).

The canonical equilibrium partition function for bosons, equation (3.6), is
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The third equality neglects the commutation function. The fourth equality makes the
same approximation as in the preceding subsection, namely it neglects permutations
between bosons in different momentum states on the grounds that these give highly
oscillatory Fourier factors. Also, the expectation value is dominated by regions beyond
the range of the pair potentials and therefore orthogonality can be invoked. This means
that we only need retain permutations amongst bosons in the same momentum state,
the number of which is given by χ+n , and the logarithm of which number gives the
internal subsystem entropy of the microstate. The final factor is just the configurational
integral,Q N V T( , , )cl , and so this expression is the same as that given in the preceding
subsection, equation (5.53), except that here the sum over permutations has been
performed explicitly to give the subsystem internal microstate entropy.

The symmetrization factor differs from unity only at low temperatures when there
are a restricted number of momentum states accessible so that there is high
probability of some being occupied by multiple bosons. It is the entropy embodied
in the symmetrization factor, and its increase with increasing momentum correla-
tion, that is ultimately responsible for superfluidity below the λ-transition. Although
the present results for discrete momentum states on the low temperature side of the
λ-transition have been cast in terms of permutation loops, one could present them
instead in terms momentum state occupancy.

5.5.3 Kinky loops

The preceding two subsections analyzed the low-temperature side of the λ-transition
based on the idea that the permutation loops were dominated by those with the
bosons in the same momentum state, and that only these loops need be taken into
account. This naturally raises the question of testing the validity of that assumption
by formulating corrections to it.

Obviously the first correction to the single-momentum state model is the case of
permutation loops with two momentum states. Consider then an l-loop comprising a
bosons in the momentum state αp , and l − a bosons in the momentum state γp .
(Strictly speaking, α and γ are three-dimensional integer vectors.) Since the
symmetrization function for the loop consists of Fourier factors of the type
− · ℏ

+ +e q p /ijk jk jk1 1, , its oscillatory behavior is minimized by grouping together the bosons
in the respective states, so that there are just two changes in momentum between
neighbors (kinks) going around the loop.

As a specific example, choose two initial bosons from the fluid, the first at α αq p{ , }
and the second at γ γq p{ , }. (Strictly speaking, the first subscript of each should be αq and
γq.) Choose another −a 1 bosons with momentum αp and another − −l a 1 bosons
with momentum γp . Form a two-kink permutation loop from these, with the first boson
of the initial pair placed in the first position, and the second in the +a 1 st position.

The number of possible two-kink l-loops based on the original pair is quite large;
it grows exponentially with the number of bosons in the system occupying the two
given momentum states. If there are Nα bosons besides the first with momentum αp ,
and Nγ bosons besides the second with momentum γp , then the permutation loop
entropy associated with this particular two-kink loop is
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α γ =
! !

− + ! − + + !
α γ

α γ

+S a k
N N

N a N l a
( , ; ) ln

( 1) ( 1)
. (5.64)ls, , ( )

B

One sees that this is maximized by the maximal loop,
α γ + = ! !α α γ

+ + +α γS N k N N( , ; 1) ln( )N Ns, , ( 2)
B .

The symmetrization function for the given two-kink loop is

∏ = =
=

− · ℏ − · − ℏ − · − ℏ − · ℏα α γ γ γ α αγ αγ+ +e e e e . (5.65)
j

l

1

q p q p p q p p q pi i i ikj kj kj1 1,
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Note that this is independent of the positions of all the bosons except the initial pair.
This non-localization property is ultimately the reason for the macroscopic number
of two-kink loops. In the general case this result might provide a basis for simulating
the primary correction to the ideal gas-configuration integral factorization approx-
imation derived in the preceding two sections.

The oscillatory behavior of the symmetrization function can be further minimized
by choosing that sub-set of all two-kink loops such that the initial pair of bosons
have a difference in momentum state that is approximately perpendicular to their
difference in position,

π∣ · ∣ ≲ ℏ
αγ αγq p

2
. (5.66)

An example of such a seven-boson, two-kink loop is sketched in figure 5.9. In so far
as this is non-localized for the initial pair, it seems that such two-kink loops are more
likely than two-kink loops in general.

Figure 5.9. Sketch of a two-kink 7-loop. The circles represent bosons (original pair filled), the block arrows
symbolize their momentum state, the dashed arrows depict pair transpositions, the lightning bolts denote
kinks, and the dotted line portrays the z-axis. Except for the initial pair, the pictured positions have no
meaning.
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5.6 Permutation loops, the λ-transition, and superfluidity
This concluding section draws on the evidence to address two questions: what is the
nature of the λ-transition, and what are the implications for superfluidity? The
explanation for the λ-transition provides a detailed physical picture that differs a
little from the usual understanding of Bose–Einstein condensation. It emerges that
the non-local momentum ground state is ultimately responsible for superfluidity,
which adds nuance to existing two-fluid theories while providing a molecular picture
of the role of collisions and excited states.

5.6.1 The λ-transition

5.6.1.1 Simulation of liquid helium
The simulation results, section 5.4, were obtained by transforming to the momentum
continuum and performing the momentum integrals explicitly. On the high temper-
ature side of the λ-transition we do not expect invoking the momentum continuum
to be unreliable or to be specifically responsible for the observed phenomena.
Similarly the implicit neglect of the ground state contributions can be expected to
have more significant consequences at low temperatures than at high. Simplifying
assumptions such as using the Lennard–Jones pair potential and neglecting the
commutation function, and their consequences such as the larger than measured
saturation density, will have quantitative effects, but should not change the
qualitative features of the simulations.

It was found that below about 11K the monomer (classical) heat capacity
decreases with decreasing temperature. Below about 8 K the loop heat capacity ⩾l 2
increases with decreasing temperature. This increasingly sharp rise in the heat
capacity is thus a specific quantum phenomenon due to wave function symmetriza-
tion. The computed increase in loop heat capacity correlates with the measured
increase in heat capacity approaching λ

+T in the laboratory. The simulation data
supports the widely held notion that the λ-transition is related to wave function
symmetrization and boson state occupancy statistics, and as such it is a form of
Bose–Einstein condensation.

According to the simulations, section 5.4, the permutation loop series for the heat
capacity diverges approaching T = 5 K. One could make this temperature equal the
measured Tλ by rescaling the Lennard–Jones parameter εHe, as in table 5.1, but we
have not done this as it seems better to emphasize the approximate nature of the
Lennard–Jones potential itself. In any case, the loop series in the simulations
currently cannot be used reliably at lower temperatures. Using the central density
from table 5.1 at the predicted transition temperature of T = 5 K gives the
dimensionless parameter ρΛ = 3.13 . (Using T = 4K gives ρΛ = 4.723 .) This is not
far off the measured value for helium-4 at the λ-transition, ρΛ = 4.573 , and a little
closer than the ideal gas model prediction, ρΛ = 2.612c

3 , section 5.2.

5.6.1.2 Simulated divergence of the heat capacity
The properties of liquid helium have been comprehensively tabulated (Donnelly and
Barenghi 1998). The experimentally measured heat capacity has an extremely sharp
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maximum at the λ-transition temperature, with ∂ ∂ ∣ → ∓∞λ
±C T/ TV . The maximum

value is large, but probably not divergent. The heat capacity appears to be
continuous across the transition, so that the discontinuity is second order.

The permutation loop Lennard–Jones simulations also give a sharp increase in
the heat capacity approaching the λ-transition. The loop series is actually divergent.

There are several approximations in the simulations: the simple Lennard–Jones
potential that gives a high saturation density and high transition temperature,
table 5.1; the neglect of the ground state by the continuum momentum integral,
section 5.2; the neglect of the commutation function, chapter 7; and the neglect of
correlations between loops in expressing the grand potential as a series of loop grand
potentials, section 7.2.2. These doubtless have a quantitative effect on the simulated
heat capacity but it seems unlikely that they would qualitatively change the
simulated divergence or its molecular origin.

The approximation in the simulations that possibly becomes most significant
approaching the λ-transition is the implicit neglect of interactions and correlations
between loops. In deriving the expression for the grand potential of an interacting
system as a series of loop grand potentials, the average of products of loops is
factored as the product of independent loop averages, equation (7.35). This is argued
to be valid in the thermodynamic limit for compact loops, section 7.2.2. Similar to
an ideal solution, the loops are taken to be dilute solutes in a dense fluid of
monomers.

In the present case, approaching the λ-transition, this assumption possibly breaks
down as the increasing number, size, and extent of the loops causes them to interact
with each other. In these circumstances the loops can no longer be considered
independent, and the series of loop grand potentials may become a poor approx-
imation to the actual grand potential of the system.

The simulated divergence of the heat capacity is dominated by the non-potential
(i.e., ideal) contributions, which is to say the average of the temperature derivative of
the loop Gaussians, equation (5.50) (cf the discussion of figure 5.7). The loop
Gaussians themselves are an ideal gas term, but their average involve integrals
weighted by the particle correlation functions. The latter most certainly depend
upon the interaction potential. This last point is important because it explains how
the heat capacity for interacting bosons, both measured and simulated, can be so
much greater than that for the ideal gas at the λ-transition. Hence the simulated
divergence in the heat capacity is due to the change in structure of the fluid (increase
in number, size, and extent of loops), which is missing in the ideal gas, sections 5.2
and 5.3.

In summary, what the simulations unambiguously show is that approaching the
λ-transition from the high temperature side the number, size, and extent of
permutation loops increase, as does their contribution to the heat capacity.
Whether or not the simulations are quantitatively accurate for the rate of divergence
in the heat capacity, the molecular picture of the λ-transition that emerges is that it is
a type of percolation transition. The number and size of permutation loops surpasses
a threshold density that allows their concatenation to form loops of macroscopic
spatial extent.
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5.6.1.3 Position and momentum symmetrization loops
A symmetrization loop, in either the discrete quantum picture or in the continuum
phase space prior to momentum integration, consists of loops of Fourier factors that
can be written either as − · ℏ

+e q p /ijk jk jk, 1 , or as − · ℏ
+e q p /ijk jk jk, 1 . Although both forms yield the

same value when evaluated over the loop, they serve to explain the different regions
of phase space where the permutation loops contribute. In order for the loop to
which it belongs to be significant upon averaging, the exponent must be small in
magnitude. Hence in practice there are two cases: either all

+
qj j,k k 1

are small (position
loops) or else all

+
p j j,k k 1

are small or zero (momentum loops). This division is
convenient as the two types are qualitatively different.

Position loops are localized in position space. They are the ones that give rise to
the loop phenomena that have been identified on the high temperature side of the
λ-transition in the simulations, section 5.4. Position loops are usually small in size l,
and small in spatial extent. For high temperatures they are few in number.
Approaching the transition from the high temperature side, → λ

+T T , their number,
size, and extent increases.

Increasingly for < λT T , loops are localized in momentum space (momentum
loops). They tend to be large in size l and large in spatial extent. (These assertions are
justified below.) They are an example of the non-locality of quantum mechanics. The
particles belonging to a momentum loop are highly correlated in momentum
notwithstanding the fact that they are separated beyond the range of the interaction
potential. With quantized momenta, all atoms in a loop can be in the same single-
particle discrete momentum state, =

+
p 0j j,k k 1

(cf section 5.5). Quantum leaps in
momenta around the loop limit the loop’s size and spatial extent in a way that
having all the bosons in the same momentum state does not. Indeed to be definite,
one can define a momentum loop to be one in which all bosons are in the same
momentum state, and position loops to be everything else. (By this definition both
the permutation loop simulations of section 5.4, and the kinky loops of section 5.5.3,
invoke position loops.)

When there are many more accessible momentum states than bosons, most
bosons are monomers. Any loop that they belong to is a position loop. When the
number of accessible momentum states is comparable to or less than the number of
bosons, a significant number, or even the majority, of bosons share a momentum
eigenvalue with others.

In the quantized picture, the number of accessible single-particle momentum
states is π≈ Δ = Λ−n mk T V( 2 / )p pB

3 3 . This formula for np comes from the momen-
tum eigenvalues and the exponent of the Maxwell–Boltzmann factor for a single
boson. The factor of 2π is an order of magnitude constant that simplifies the
following estimate. Since πΔ = ℏ L2 /p , the number of accessible single-particle
momentum states is macroscopic even at low temperatures, ∝n T Vp

3/2 . However,
the number of bosons is also macroscopic, and the probability that none of the N
bosons is in the same momentum state as any other is vanishingly small when

O=n N( )p (birthday paradox). This occurs at low temperatures when OρΛ = (1)3 .
More exactly, with the above formula, ρ= ⇔ Λ =n N 1p

3 . In the simulations of the
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Lennard–Jones liquid, the λ-transition occurs at about ρΛ = 3.13 (central density).
The measured value for helium-4 is ρΛ = 4.573 , and that for the ideal gas is
ρΛ = 2.612c

3 . These suggest that the present criterion, ρΛ ≳ 13 (equivalently, multi-
ple occupancy of momentum states), is necessary but not sufficient for the
λ-transition.

In any case, for temperatures near ρΛ ≈ 13 , there must be a significant number of
momentum states occupied by more than one boson. This is the condition for the
formation of momentum loops. As the temperature is further decreased, the
number of accessible momentum states per boson decreases, and so the number
of momentum loops that can have different momentum eigenvalues also decreases.
It follows that the number of bosons with the same momentum eigenvalue
increases. It will be shown below that the size l of the momentum loops also
increases. Assuming few loops, or even one maximal loop for each distinct
momentum eigenvalue, these mean that the number of momentum loops eventually
decreases with decreasing temperature. This is consistent with the ideal gas results
in figure 5.5.

The momentum state occupancy is sometimes a more convenient description than
the individual loops that make up the permutations of the state. The two descriptions
are ultimately equivalent. Bearing this in mind, we shall nevertheless continue to
invoke momentum loops just to emphasize the distinction from position loops in which
spatial order is important. Also, this is consistent with the formulation of the grand
potential as a series of loop grand potentials, and it is exact for the ideal gas.

In summary, on the high temperature side of the λ-transition, the system is
dominated by position loops, whose number, size l, and spatial extent all increase
with decreasing temperature. Passing through the transition momentum loops
become increasingly common; the occupancy of low-lying momentum states
increases as the number of accessible momentum states decreases with decreasing
temperature. Indeed it will be argued below that the transition marks the switch in
dominance of the two types of loops.

5.6.1.4 Molecular contributions to the entropy of loops
Position loops do not strongly restrict momenta, although they definitely favor low-
lying momentum states. Momentum loops do not strongly restrict positions.
Strictly, momentum loops comprise bosons with the same momenta, which can
only occur in the quantized case, and since they are non-local they can extend
spatially throughout the whole system.

These differences in the two types of loops induce a difference in the configura-
tional or molecular contribution to their entropy. (The combinatorial entropy of
loops is treated below.) Momentum loops require highly correlated momenta, and
they therefore have low momentum entropy. This is quite costly at high temper-
atures where there are many momentum states available. It is much less costly at low
temperatures where there are few accessible momentum states.

In contrast the spatial structure of the liquid is relatively insensitive to temperature,
and so the configuration cost of the short-range spatial order of position loops changes
little with temperature. This is particularly true at temperatures below the λ-transition.
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What favors momentum loops is that the atoms that comprise them can range
throughout the volume of the system, because the differences in consecutive
momenta can (or must) be precisely zero. Momentum loops are unconstrained by
space. As mentioned, they are an example of quantum non-locality. In three-
dimensional space, there are many more possible loops comprising far-separated
consecutive atoms than close-separated ones because the number of possible
partners increases quadratically with separation.

Position loops never have the same freedom in momentum space because the
atoms never attain zero separation. And also, the accessible volume of momentum
space decreases with decreasing temperature. Instead there is a threshold where the
thermal wavelength extends beyond the nearest-neighbor separation in which the
atoms in position loops can be composed from the available momentum states.

In this context it is worth reiterating that the permutation loop Monte Carlo
simulations are based upon performing the continuum momentum integrals analyti-
cally, which gives the thermal wavelength. This treats the momenta as independent
and, because of the momentum continuum, the bosons never occupy the same
momentum state. It also neglects the contributions of bosons in the ground
momentum state.

Consider a point in phase space in the discrete momentum picture prior to the
momentum integration that gives the thermal wavelength. For a given positional
configuration that could form a position l-loop, = …q q q q{ , , , }l

j j jl1 2
, the permu-

tation weight of the loop, which can be written in position loop form,
∏ =

− · ℏ
+ek

l p q
1

/ijk jk jk, 1 , is maximized (i.e., is made less oscillatory) by low-lying values
of the momenta. The momentum ground state, =p 0jk

, removes all restrictions on
the bond

+
q j j,k k 1

, which obviously increases dramatically the number and extent of the
viable loops. But even the excited states, π= ℏp n L2 /j x,k

, for small n allows large
separations while still giving a small loop exponent. Since such small momenta
means that averaging over slight changes in position gives a non-zero result, this case
maximizes the combinatorial entropy contribution of the position loops (see below).
Because it increases the loop configurational and combinatorial entropy, position
loops induce condensation into low-lying momentum states. Due to the position
correlation function, the positional configurations suitable for forming position
loops are much more common for interacting bosons than for an ideal gas.
Therefore, the occupancy of low-lying momentum states must be greater for
interacting bosons than for an ideal gas.

This discussion of the configurational contribution to the loop entropy suggests
that momentum loops become more common as the temperature is lowered,
consistent with the ideal gas analysis, figure 5.5. That position loops are favored
on the high temperature side of the λ-transition is confirmed by the data from the
Monte Carlo simulations, section 5.4.

5.6.1.5 Combinatorial entropy of loops
The loop grand potential in the form β− Ω± l, ( ) measures the entropy due to loops.
The reader may have trouble accepting this, particularly in view of the fact that
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position loops require atoms localized to small spatial neighborhoods, and momen-
tum loops require the atoms to have highly correlated momenta. To understand the
loop entropy, one has to recall that the loop expansion begins with the monomer or
classical term. This accounts for in its entirety the classical picture of entropy in
terms of molecular configurations in phase space. The loop entropy is in addition to
the classical entropy, and it is irrelevant that the loops themselves consist of ordered
sets of molecules.

Loops are distinct arrangements of molecules, and such arrangements can be
counted. Hence there is an entropy associated with them. The partition function, for
example, equation (3.6), is the sum not just over energy states, but also over wave
function symmetrization permutations. The logarithm of the partition function is the
total entropy. In the case of bosons, all distinct permutation states add to the
entropy. In the case of fermions, some permutations preclude otherwise
acceptable states, which subtracts from the total entropy. As shown in equation
(3.42) the attractive effective pair potential for bosons, and the repulsive one for
fermions, come from the dimer loop. This effective potential is entropic in nature, as
is signified by its temperature-dependence.

5.6.1.6 Dominance of large momentum loops
Large lmomentum loops are favored over small ones, as is now shown. Let Na be the
number of bosons in the momentum state a, ∑ =N Na a . Let there be m la loops of
size l in this momentum state, ∑ =lm Nl la a. The distribution of loops given Na is
determined by the entropy of the macrostate m{ }la ,

∏
∑∣ = !

!
=

=

=

S m N k
N

m l

lm N({ } ) ln , . (5.67)
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Each of the l rigid rotations (i.e., cyclic permutations) of a loop of size l leaves the
loop unchanged, which explains the factor of l m la . The factor of !m la represents
permutations of loops of the same size.

This shows that large loops are favored over monomers and small loops, and that
for a given number of bosons in the same momentum state, the entropy is maximized
if they a form a single permutation loop. In particular, the entropy is zero if the Na
bosons are all monomers, δ=m Nl la a ,1, and it is − !k Nln( 1)aB if there is a single
maximal loop, δ=m l l na , a

.
The same conclusion was reached in section 5.5.2, where equation (5.62) shows

that the internal entropy of the momentum microstates increases with transitions to
more highly occupied momentum states. Section 5.5.3 analyzed a specific type of
momentum loop, namely one with two kinks. There it was concluded that for a
given original pair of bosons, the combinatorial loop entropy was maximized by the
maximal two-kink loop. These results explain the prevalence of positive momentum
correlations and of bosons in the same single-particle quantum state.
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As mentioned above, instead of subdividing the permutations into momentum
loops, it is often more convenient to focus on the occupancy of the momentum state
as a whole. In the present example of Na bosons occupying the single-particle
momentum state a, there are χ = !+ N N( )a a a possible arrangements in total, which is
not very much greater than the − !N( 1)a arrangements if they all formed a single
maximal momentum loop. The logarithm of this gives the internal entropy of the
momentum state with this occupancy, = !+S k Nlna a

,int
B .

In summary, as the temperature is decreased below the transition temperature,
the number of accessible momentum states decreases, the number of atoms in a
given accessible momentum state increases, and the size l of the momentum loops
increases.

5.6.1.7 Loops, condensation, and the phase transition
Laboratory measurements show that the λ-transition signifies a phase change in
liquid helium. The temperature =T 2.17 K marks a sharp maximum (possibly a
divergence) in the heat capacity, and a discontinuous change in sign of its temper-
ature derivative. It also marks a weak maximum in the density, as well as a sharp
transition to the superfluid state (Donnelly and Barenghi 1998).

The above subsections outline the evidence for the increase in number, size, and
extent of position loops approaching the λ-transition from the high temperature side.
It was also pointed out that momentum loops are non-local, driven to maximal size
by combinatorial entropy, and favored at low temperatures by position configu-
ration entropy. It is plausible therefore that the λ-transition swaps the dominance of
these two types of loops. This subsection sets out a mechanism by which this occurs,
and explains how this is consistent with the experimental evidence summarized
above for the λ-transition.

Above it was pointed out that the configurational entropy of position loops
in phase space is increased by bosons in low-lying momentum states as they
allow large separations between consecutive bosons without an excessively
oscillatory permutation loop factor. Bosons in the ground momentum state
are particularly efficacious in this regard. The combinatorial loop entropy is
also increased due to the greater number, extent, and size of the loops that
occupancy of the low-lying momentum states enables. It was concluded that
position loops in an interacting system nucleate the occupancy of low-lying
momentum states, including the ground momentum state, over and above what
would occur in an ideal gas.

It is a moot point whether one says that position permutation loops cause bosons
to condense into low-lying momentum states, or that bosons in low-lying momen-
tum states enable more position permutation loops. In so far as this effect does not
occur in an ideal gas, it is arguable that the position loops are the cause, and that the
condensation is the result. Either way, the configurational and the combinatorial
entropy of the position loops are increased as more bosons in low-lying momentum
states enable more and more various position loops. One can say that the increase in
number, size, and extent of position loops nucleates the condensation of bosons into
low-lying momentum states, and vice versa. The catalytic mechanism appears to be
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the gain in permutation entropy by the non-local concatenation of compact position
permutation chains into loops, each chain headed by a ground momentum state
boson. This suggests that the λ-transition results from a form of positive feedback
between the number of position loops and the number of bosons in low-lying
momentum states. Once a critical concentration is reached both grow explosively to
macroscopic size.

The divergence of the heat capacity in the simulations largely captures this effect.
The low-lying excited momentum states are included in the continuum momentum
integrals. In essence they give rise to the increase in the thermal wavelength with
decreasing temperature. What the simulations don’t include is the contribution from
the bosons in the ground momentum state. In so far as these additionally enhance
the formation of position loops, they might be expected to add to the divergence of
the heat capacity.

At the λ-transition the simulations suggest that the position loops become
macroscopic in number, size, and extent. Based on the above arguments one
concludes that there must be an associated increase in the occupancies of the
ground and low-lying momentum states. In fact, for ⩽ λT T , the number of bosons in
the momentum ground state itself must be macroscopic, and the number of bosons
in excited but low-lying momentum states must be microscopic. This is because the
number of bosons Nε in the energy state ε is proportional to β ε− εe N , which can never
be macroscopic for an excited state. (This argument conflates the ground momentum
state with the ground energy state, which is strictly true only for the ideal gas.)

The situation for the heat capacity is different for the ideal gas, which in the
momentum continuum (i.e., with thermal wavelength representing the excited states)
has uniform positional correlations. Because the interaction potential induces
positional correlations, the number, size, and extent of position loops is much greater
for real bosons than for the ideal case. Hence the heat capacity for interacting bosons,
both computed and measured, is much greater than that for the ideal gas.

One sees that ground momentum state condensation for interacting bosons is also
different to that for the ideal gas, sections 5.5 and 5.3. For the present interacting
bosons ground momentum state occupancy becomes macroscopic discontinuously
at the λ-transition. For the exact ideal gas ground state occupancy increases
continuously through the λ-transition, figure 5.4, depending on the size of the
system. (For the two-fluid approximation to the ideal gas, section 5.2, the ground
state occupancy artificially increases from zero at the λ-transition.) In so far as
superfluidity is closely connected with ground momentum state occupancy (see
below), the present arguments for interacting bosons give a sharp superfluid
transition coincident with the λ-transition, consistent with experimental observation.

It seems difficult to reconcile this sudden increase in ground momentum state
occupancy with the fact that the experimentally measured enthalpy is continuous at
the λ-transition (Donnelly and Barenghi 1998). Of course, if the measured heat
capacity were divergent at the λ-transition, then the energy and enthalpy would have
to be discontinuous there. The bottom line is that it does not seem possible to
account for the sharp superfluid transition that is actually observed without having a
sharp condensation into the momentum ground state.
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Returning to the heat capacity, position loops continue to exist and to contribute
on the low temperature side of the λ-transition. This follows because the exper-
imentally measured heat capacity continues to be much greater than that of the ideal
gas, which is due to momentum loops alone, section 5.2 and 5.3. The analysis of
section 5.5 says that when momentum loops dominate, the classical excess free
energy should simply be added to the ideal gas loop free energy. But the classical
excess heat capacity for the Lennard–Jones model at the λ-transition is

≈C Nk/ 3.5V
LJ,cl,ex

B , figure 5.7, which on its own is not sufficient to raise the ideal
gas result to the measured values close to the λ-transition. One must therefore
conclude that the large values of the heat capacity measured for ≲ λT T are
indicative of the continued presence of position permutation loops.

As the temperature is decreased below Tλ, the number of bosons in the ground
momentum state must further increase. Also the number of accessible momentum
states must decrease, leading to increased momentum correlations and increased
occupancy of those low-lying momentum states that remain occupied. In these
circumstances momentum loops increase, and the system increasingly looks like an
ideal gas. These mean that the heat capacity, even though still dominated by position
loops, must decrease with decreasing temperature for < λT T . This is consistent with
the laboratory fact that ∂ ∂ >C T/ 0V in this regime (Donnelly and Barenghi 1998).
Approaching absolute zero the measured heat capacity vanishes asT 3/2, just as in the
ideal gas, which indicates that momentum loops and momentum state occupancy
become dominant at very low temperatures.

Experimental data show that the liquid saturation density for helium-4 is a
maximum at the λ-transition (Donnelly and Barenghi 1998). Usually in a simple
liquid the density increases monotonically with decreasing temperature because the
thermal energy makes the nearest-neighbor separation on average greater than the
minimum in the pair potential, which effect decreases with decreasing temperature. The
relatively sharp increase in density in liquid helium approaching the λ-transition from
the high temperature side is consistent with the increase in position permutation loops,
since these create an attractive effective potential between bosons, as was shown
explicitly for the case of dimers in equation (3.42). The more gradual decrease in
density with decreasing temperature on the low temperature side of the transition
suggests that this extra attraction is diminishing. In part this appears due to the decline
in position permutation loops themselves. Also the attractive force due to the Gaussian
effective potential weakens once the thermal wavelength significantly exceeds the
separation at which the pair potential is a minimum as further increase does little to
alter the structure of the liquid. In any case it should be mentioned that the measured
density appears to be continuous, but its temperature derivative appears discontinuous
at Tλ (Donnelly and Barenghi 1998, Sachdeva and Nuss 2010).

5.6.1.8 Bose–Einstein condensation
If the λ-transition in liquid helium is to be regarded as a form of Bose–Einstein
condensation, then these results suggest that the latter should not be narrowly
defined as the point at which it becomes favorable for multiple bosons to occupy the
single-particle momentum (or energy) state. In liquid helium above the λ-transition,
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but with ρΛ ≲ 13 , momentum states occupied by multiple bosons are certainly
common. The formation of momentum loops and multiple occupancy of momen-
tum states may sharply increase at the λ-transition and the momentum ground state
may become macroscopically occupied due to nucleation by the position loops. But
even for ≲ λ

−T T , after the transition has taken place, the greater than ideal heat
capacity is evidence that positions loops remain significant. The ideal gas calcu-
lations of section 5.2 and 5.3, which are perhaps the canonical example of Bose–
Einstein condensation, differ significantly from the λ-transition in that they give a
heat capacity that has a relatively low maximum and a relatively weak second order
discontinuity. For the reasons discussed in the above subsection, the sharp spike of
the measured λ-transition seems to have proximal cause in the growth of position
loops, and the condensation into momentum loops or momentum states appears to
be a secondary effect.

Of course this may simply be a semantic argument. It would be fair to say that the
position loops themselves are an example of the correlational attraction of bosons due
to their symmetry properties. As such it would be quite reasonable to regard their
growth to macroscopic size through the whole system at the λ-transition as a form of
Bose–Einstein condensation. The concomitant growth in the occupancy of individual
momentum states, and the macroscopic occupancy of the ground momentum state,
which are close to the more conventional interpretation of Bose–Einstein condensation,
is not the only phenomenon associated with the λ-transition.

Bose–Einstein condensates represent a low-temperature state of matter for bosons
(Cornell et al 1999). Their nature is not addressed in detail here, but doubtless the
picture of the λ-transition derived here also applies to such condensates. One cannot
help but observe that the relatively small size of the condensates means that the
quantization of momentum states is even more marked than for liquid helium, and
so one would expect permutation loops to play a significant role in their properties.
Also, the low density of the condensates compared to liquid helium make them an
attractive proposition for the application of quantum statistical mechanics in
classical phase space.

5.6.2 Superfluidity

5.6.2.1 Two-fluid theory
The two currently accepted theories for superfluidity are the ideal gas two-fluid
theory of London (1938) and Tsiza (1938), and the phonon-roton two-fluid theory of
Landau (1941). The ideal gas two-fluid theory asserts that the system consists of
coexisting superfluid and normal fluid, with the superfluid being bosons in the
ground energy state, which are said to have zero viscosity, and the normal fluid
being bosons in excited states having the usual viscosity (Tsiza 1938). The superfluid
is said to be able to flow through the normal fluid, just like the aether, and vice versa.
The equilibrium thermodynamics of the two-component mixture is given by the
ideal gas approach of London (1938), as detailed in section 5.2.

The phonon-roton theory of Landau (1941) is also a type of two-fluid scheme,
with the superfluid again being bosons in the ground energy state, forming a
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quiescent background, and again said to have zero viscosity. But in this case the
normal fluid consists of a gas of elementary energy excitations, which are related to
quantized sound waves, which are termed phonons and rotons, and which are taken
to be bosons. The empirical energy-momentum spectrum fitted from thermody-
namic data by Landau (1941) also fits later neutron scattering measurements
(Pathria 1972), although this casts no light on the nature of rotons or on their
relevance to superfluidity. The theory is applicable far below the λ-transition close to
absolute zero (Pathria 1972).

It is not clear to the present author how Landau’s (1941) phonon-roton two-fluid
model overcomes his own objection to Tisza’s (1938) ideal gas two-fluid model:
‘nothing would prevent atoms in a normal state from colliding with excited atoms,
i.e., when moving through the liquid they would experience a friction and there
would be no superfluidity at all’ (Landau 1941). Feynman (1954), despite modifying
and extending Landau’s model, also expressed doubts: ‘The division into a normal
fluid and superfluid although yielding a simple model for understanding the final
equations, appears artificial from a microscopic point of view. This opinion is shared
by Landau and by Dingle.’

In any case the two models are more alike than is often recognized (Balibar 2017).
The difference between the models is that London (1938) and Tsiza (1938) use an
ideal gas approach, whereas Landau (1941) incorporates particle interactions at
some level via quantized sound waves. One thing both have in common is the
assertion that superfluidity sets in sharply at the λ-transition even though the fraction
of superfluid component is zero in the model at the transition. Another thing in
common is the etherial nature of the two-fluid model, with the superfluid component
being ghost-like bosons in the energy ground state. A final common point is the
absence of any explicit mechanism that explains exactly how it is that energy ground
state bosons flow without viscosity. In favor of the models of Tisza (1938) and
Landau (1941) are the detailed two-fluid hydrodynamic calculations that are
consistent with a range of superfluid phenomena.

5.6.2.2 Momentum loop entropy in collisions
The present equilibrium analysis of the λ-transition in this chapter has so far not
directly addressed the origin of superfluidity. This is more properly a topic for non-
equilibrium thermodynamics and statistical mechanics, specifically in relation to
hydrodynamics (Attard 2012, chapter 5 and section 9.6). Nevertheless given that the
λ-transition in helium-4 also marks the onset of superfluidity, the present equilibrium
account of the transition provides a new perspective on the nature of superfluidity.

The present work focuses on momentum states, as distinct from the energy states
that form the basis of the two models discussed above. The fluid after the λ-transition
was here characterized by the increasing importance of momentum permutation
loops. It was argued that position loops nucleate momentum loops, and that
therefore the explosive growth in number, size, and extent of position loops at the
λ-transition induces a similar transition in momentum state occupancy, with the
occupancy of the ground momentum state becoming macroscopic. All bosons in a
momentum loop are in the same momentum state and the loop is non-local.
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This means that there is no spatial relationship between the momentum-correlated
bosons. We first explore the consequences of permutation loop entropy for
collisions, and below we analyze the effects of non-locality.

In general the equations of motion of particles in a fluid, classical (Attard 2012,
sections 7.4 and 11.1) or quantum (Attard 2015, sections 4.2, 5.1 and 5.2), are
stochastic and dissipative. The stochastic terms tend to randomize the momenta or
quantum state, and the dissipative terms increase the reservoir or subsystem entropy.
In the case of classical shear flow it is the dissipative terms that drive the tendency to
homogenize and to zero the momenta, which gives rise to classical viscous drag
(Attard 2012, chapters 2 and 5 and section 9.6).

What is different to the classical case in the present problem is that below the
λ-transition there is an additional contribution to the entropy, namely the permutation
loop entropy. This favors correlated momentum states, which in the non-equilibrium
case do not necessarily average to zero. For the present quantum systems, the entropy
whose gradient gives the driving force for the stochastic dissipative Schrödinger
equation and quantum microstate transitions (e.g., Attard 2015, equation (5.39)),
should include the internal subsystem permutation entropy, which can be added to the
reservoir entropy, as in the present equation (5.60). The general principle is that the
dissipative term in the stochastic equations of motion supplies a force in the direction of
increasing entropy precisely calibrated to the variance of the random forces that
ultimately ensures the correct probability distribution.

The relevance of this to superfluidity is as follows. Below the λ-transition, for an
equilibrium quantum system, forward and backward momentum states are equally
likely, and hence the most likely single-particle momentum state is the zero
momentum state, ¯ =n 0. In fact the number of bosons in this ground momentum
state is macroscopic. As the most occupied state, it is the state with the most and the
largest momentum permutation loops. It is therefore the momentum state with
largest internal loop entropy. It is also the state of largest reservoir entropy. The
dissipative terms in the equations of motion in this equilibrium case drive the system
toward the zero momentum state, whereas the stochastic terms tend to drive the
system randomly into excited momentum states. These plus the adiabatic term
balance each other to maintain the equilibrium probability distribution.

For a non-equilibrium case, again quantum and again below the λ-transition, we
consider an external field or pressure gradient that drives flow in the positive
z-direction. In this case the most likely single-particle momentum state can be labeled
¯ >n 0z , with the transverse components zero. By definition this must be the most highly
occupied state, and therefore it is the state with the most and the largest momentum
permutation loops, and the largest internal loop entropy. The dissipative terms in the
equations of motion in this non-equilibrium case drive the system toward the
momentum state n̄z (cf equation (5.62)), whereas the stochastic terms tend to drive
the system randomly into nearby momentum states. These plus the adiabatic term
balance each other to maintain the non-equilibrium probability distribution.

Ultimately what is different about the non-equilibrium fluid above and below the
λ-transition is that above the transition the entropy is predominantly configura-
tional, which is maximized by random momenta, and so in any flow the collisional
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driving force is toward momentum dissipation, which is manifest as non-zero shear
viscosity. Below the λ-transition, the momentum loop entropy dominates, and this is
maximized by correlated momenta. Hence in any flow the collisional driving force is
toward momentum preservation, which means zero shear viscosity.

This answers Landau’s (1941) objection that collisions should randomize the
momenta and give rise to a non-zero viscosity. The momentum loop entropy causes
boson correlations, which gives an entropic driving force that maintains their
momenta, which fact Landau (1941) did not consider. (It appears that Landau
(1941) did not accept London’s (1938) idea that the λ-transition was a manifestation
of Bose–Einstein condensation (Balibar 2014), so it is hardly surprising that he did
not consider the consequences of correlations induced by multiple bosons occupying
the same single-particle state.)

5.6.2.3 Non-local momentum correlations
In addition to the permutation loop entropy dominating the stochastic dissipative
collisions, the non-local nature of the momentum correlations induced by the loops
is essential for superfluidity. To elucidate this point we summarize the role of space
above and below the λ-transition.

Recall the molecular origin of shear viscosity in a classical fluid. In shear flow, the
inhomogeneous momentum flux is dissipated by molecular collisions. In effect faster
moving fluid layers are slowed and adjacent slower layers are accelerated as
momentum is transferred between them. This momentum dissipation has the effect
of increasing the subsystem entropy, since the order represented by spatial variations
in momentum flux is a state of low configurational entropy.

In general for a classical fluid, or for a quantum fluid above the λ-transition, the
momentum correlations must be spatially localized, which gives rise to shear flow. For
example, for Poiseuille flow, which is laminar flow in a pipe or channel under a pressure
gradient, the flow is zero at the walls and increases continuously toward the center.

In the case of bosons below the λ-transition, the non-local momentum correla-
tions prohibit the Poiseuille parabolic profile, since the high momentum state in the
center of the channel would induce the same state in the bosons near the walls. Non-
local momentum correlations imply momentum spatial homogeneity: the only
mathematical solution for non-zero flow is plug flow in which the most likely
momentum state of the bosons is uniform across the channel. This of course is also
the classical solution for inviscid hydrodynamic flow.

5.6.2.4 Momentum gap
In understanding the nature of superfluidity a crucial piece of evidence is the existence
of a critical velocity above which laboratory measurements show that superfluid flow
through pores is destroyed. Pathria (1972, section 10.8) gives measured experimental
values for the critical velocity of v =c 0.13, 0.08, and 0.04m s−1 for capillary diameter
=D 0.12, 0.79, and 3.9 μm, respectively. The common explanation is that above a

critical velocity the production and growth of excitations destroy the superfluid. The
type of excitations generally invoked are associated with the rotons of Landau’s
(1941) theory, which are commonly interpreted as vortex rings.
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In the context of the present approach to the λ-transition based upon momentum
state occupancy, the fact that the critical velocity increases with decreasing pore
diameter suggests instead that we should compare it to the velocity of the first
excited transverse momentum state. For the rectangular geometry that we have
focused on thus far this is v π= Δ = ℏm mL/ 2 /y p . (This would apply to a liquid film,
where the vanishing of the wave function at the surface and at the liquid–vapor
interface creates just such a transverse momentum gap.) In cylindrical geometry it is
v = ℏj mD2 /r 01 (Blinder 2011), where =j 2.401 is the first zero of the zeroth order
Bessel function. This calculated velocity is plotted in figure 5.10, together with the
measured values and the vortex prediction of Kawatra and Pathria (1966).

Although it appears in figure 5.10 that the first excited transverse momentum
state overestimates the critical velocity for small pore diameters, this may be
misleading as other data indicate the opposite. For example, the reported value
v = 7c m s−1 for D = 20 nm (Allum et al 1977) is about double the present prediction
of 3.8 m s−1. Hence the present prediction is within about a factor of two of the
measured critical velocity over a range of a factor of 200 in pore diameters. Given
the simplicity of the present theory, the absence of adjustable parameters, and the
possibility of material-specific and statistical contributions to the wall collisions, the
correlation of the present prediction with the measured values is satisfactory.

These results suggest that superfluid flow down a channel in the z-direction occurs
in the transverse momentum ground state, ¯ = n̄n {0, 0, }z . This is the macroscopi-
cally-occupied, non-equilibrium, momentum ground state. Since the channel is
usually much longer than it is wide, the spacing of momentum states in the flow
direction is much less than those in the transverse direction. Such flow with all
bosons in the transverse momentum ground state is presumably collisionless, which
one expects for inviscid flow. It will be shown shortly that when the flow velocity

Figure 5.10. Velocities associated with superfluid flow of helium through a pore of diameter D. The circles are
the measured critical flow velocity (Pathria 1972, section 10.8), the solid curve is the velocity of the first excited
transverse momentum state v = ℏj mD2 /r 01 (cylindrical boundary conditions), and the dotted curve is the
vortex result of Kawatra and Pathria (1966) v = ℏ mD1.18 /c .
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exceeds the velocity of the first excited transverse momentum state, interactions and
collisions with the wall are able to excite the bosons out of the state n̄, thereby
destroying the superfluid flow.

The measured critical velocities are about 1–3 orders of magnitude smaller than a
component of the thermal velocity of an individual boson, which at T = 1 K is 45m
s−1. But this measure is not entirely appropriate because bosons taking part in the
superfluid flow occupy a single-momentum state, and so one cannot really consider
them individually. Following the λ-transition, the overwhelming (i.e., macroscopic)
number of bosons in the pore are in the non-equilibrium ground momentum state
¯ = n̄n {0, 0, }z , and a negligible fraction (i.e., microscopic) are in excited momentum
states. The external potential or pressure gradient provides the driving force that
effectively raises the equilibrium ground momentum state to ¯ >n 0z , the most likely
state in the pore.

The stochastic dissipative equations of motion provide a quantitative estimate of
the effect of a collision. Suppose that all the bosons in the pore initially occupy the
most likely state n̄, ρ≈¯N Vn , where ρ is the density and V is the volume of the pore.
Let v = ¯ Δn m/z z pz be the flow velocity for this initial state. Consider the final state to
be the first excited transverse momentum state and longitudinal ground state,
′ =n {1, 0, 0}. We consider two possible collisions with the wall related to this final
state. In the first case one particular boson transitions to the final state. In this case
the changes in internal and reservoir (wall) entropy from the collision are (cf
equation (5.60))
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respectively. The first term is negative and much larger than the second because ¯Nn is
macroscopic, whereas the second is of molecular size. This means that the dissipative
part of the stochastic equations of motion suppress such individual boson collisions.
This is a dynamic example of the tendency of bosons to occupy the same state,
otherwise known as Bose–Einstein condensation.

The second type of collision to be considered is when all of the bosons in the pore
are excited into the state ′n . This might be called an occupied state collision. In this
case the respective changes in entropy are
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For this occupied state collision the decrease in the internal entropy of the initial
state cancels with the increase for the final state. In contrast, the change in reservoir
entropy is now macroscopic. It is positive if and only if the flow velocity vz exceeds
the velocity of the first excited transverse momentum state vr. Because it is
macroscopic, its exponential is effectively a Heaviside step function so that the
dissipative part of the stochastic equations of motion either forbid or else mandate
such an occupied state collision and transition, depending on the relative size of the
two velocities.
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These calculations do not rule out bosons in the pore being in excited momentum
states. In fact the classical probability of N1 bosons being in the first excited
transverse momentum state ′n is proportional to β− N mvexp /2r1

2 . For a typical pore
the exponent is order unity when O=N (10 )1

5 , which is negligible compared to the
total number for say =L 1 mmz , O=N (10 )0

13 . If the classical probability is
applicable, which is not at all clear, then superfluid flow can occur even with a
small minority of bosons in such excited states. It is not until a macroscopic number
of bosons make the transition from the non-equilibrium ground state to the first
excited transverse state, as in the second calculation, that superfluid flow is
disrupted.

The first calculation shows that when the most likely state is occupied by
macroscopic numbers of bosons, then excitation or transition by individual bosons
is effectively forbidden. (This result holds even taking into account the fact that N1

may be non-zero but microscopic.) The second calculation shows that the measured
critical velocity is indeed the first excited transverse state velocity, v v≡ rc , and that
the necessary and sufficient condition for stable superfluid flow is that the flow
velocity is less than this critical velocity.

This calculation combines all three of the above mechanisms for superfluidity.
The non-local nature of momentum correlations is necessary for almost all of the
bosons in the pore to be in a single-momentum state. The stochastic dissipative
equations of motion are necessary to show how entropy drives occupied state
collisions, and how the superfluid flow state ¯ = n̄n {0, 0, }z is stable up until the flow
velocity exceeds the velocity of the first excited transverse momentum state. And the
transverse momentum gap is necessary for the critical velocity to be non-zero.

Superfluid flow occurs not just in microscopic pores but also in macroscopic bulk
systems. For example, at the λ-transition turbulent boiling in a macroscopic sample
is suppressed due to the high thermal conductivity of superfluid convective flow
(Balibar 2014). In such a case a transverse momentum gap also exists, albeit much
smaller than in a pore or thin film. This would place an upper bound on the velocity
of the convective superfluid flow.
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Chapter 6

Further applications

Exact analytic results are obtained for the quantum mechanics of a one-dimensional
harmonic crystal (section 6.2). These provide in other chapters benchmark tests for a
model with interacting particles. Here they are applied to the textbook example of
the vibrational heat capacity of solids (section 6.1). Contrary to conventional
wisdom, approaching absolute zero the exact benchmarks confirm the exponential
decay predicted by Einstein (1907) rather than the power law decay predicted by
Debye (1912). A loop Markov superposition approximation is derived (section 6.3),
which is useful for obtaining wave function symmetrization corrections for interact-
ing particles. The final application is symmetrization for spin-position factorization
(section 6.4).

6.1 Vibrational heat capacity of solids
In this section the heat capacity of solids is obtained by treating the lattice vibrations
as simple harmonic oscillators. This elementary approach, originally due to Einstein
(1907) and later modified by Debye (1912), can be found in most textbooks on
statistical mechanics. Arguably as an independent single-particle energy state
method, it would be better placed in chapter 5. The reason for presenting it here
is connected with the way it treats—or doesn’t treat—wave function symmetriza-
tion. This turns out to be directly relevant to the exact and not so elementary
analysis of the one-dimensional harmonic crystal in section 6.2.

Consider a system of N atoms with positions = …q q q q{ , , , }N1 2 . Three-dimen-
sional space is assumed, = q q qq { , , }j jx jy jz . We suppose that the system is a
crystalline solid, with q̄ denoting the lattice positions, which are the positions of
lowest potential energy. Let = − ¯d q q be the displacement of the atoms from their
lattice positions.
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The potential energy may be expanded to second order about its minimum,

= + __ ″U U Uq dd( )
1
2

: . (6.1)0 0

Here the minimum value of the potential is = ¯U U q( )0 , and the ×N N3 3 matrix of
second derivatives is likewise evaluated at the lattice positions,
″ = ∂ ∂ ∂α γ α γ =¯

U U q qq( )/j k j k q q
0; ,

2 . These second order terms represent the harmonic

component of the lattice vibrations (Pathria 1972, section 7.3). With this quadratic
form for the potential energy, the Hamiltonian operator is

ˆ = −ℏ ∇ +
m

Uq q( )
2

( ). (6.2)
2

2H

The important point to make is that this Hamiltonian operator is not symmetric
with respect to particle permutations,

ˆ ˆ ≠ ˆq q(P ) ( ). (6.3)H H

This is because the potential energy depends upon the displacement of each particle
from its own lattice position. If particle j and k are transposed, then the original
displacements − ¯q qj j and − ¯q qk k become − ¯q qk j and − ¯q qj k, which are quite
different. Hence the potential energy is not invariant with respect to particle
permutation, and similarly the energy operator.

One concludes from this that the particles are not identical. This in turn means
that the wave function has no particular symmetry with respect to particle
permutations. It will be recalled that it is a fundamental requirement of quantum
mechanics that the wave function be fully symmetric or fully anti-symmetric with
respect to permutations of identical bosons or of identical fermions, respectively
(Merzbacher 1970, Messiah 1961). Since the present lattice system does not comprise
identical particles, no symmetry requirements are imposed on its wave function.

Because we are expanding about a minimum in the potential, the symmetric
second derivative matrix is positive definite. Hence an orthogonal transformation
diagonalizes it with positive eigenvalues,

ω__ ″ = __ __ __ ″ __ __ = ′ __ ′U X X U X Xdd d d q q: ( ) ( ) . (6.4)0
T T T

0
T T

The diagonal matrix has elements ω ω δ=′ ′n n n n n, , , and the mode amplitudes are
′ ≡ __Xq dT . Because the transformation is orthogonal, __ __ = __X X IT , the functional form
of the classical kinetic energy is unchanged

= · = ̇ · ̇ = ̇ · ̇ = ̇′ · ̇′ = ′ · ′
m

m m m
m

p p p q q d d q q p p( )
1

2 2 2 2
1

2
. (6.5)K

Hence the classical Hamiltonian takes the form of independent particles or modes,

∑ ω= + ′ + ′
=
{ }U

m
p qq p( , )

1
2 2

. (6.6)
j

N

1

3

j
n

j0
2 2H
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The fact that the modes have different frequencies means that they are not identical.
Since there is one mode of each type, it would be meaningless to describe them as
bosons or as fermions.

The lattice vibrations are the normal modes of the crystal. These dynamic
distortions of the crystal are just sound waves. Since they are quantized, they can
be regarded as particles and are called phonons. The solid may be considered as a set
of N3 independent harmonic oscillators, with characteristic frequencies determined
by the second derivatives of the interparticle potential. The energy eigenvalues are

∑ ω= + + ℏ
=

E U n
1
2

. (6.7)
j

N

1

3

j jn 0
⎡
⎣⎢

⎤
⎦⎥

Here = …n 0, 1, 2,j is the energy state of phonon (oscillator) of type j.
For a single harmonic oscillator of frequency ω able to exchange energy with a

reservoir of temperature β=T k1/ B, the average energy is

∑

∑

∑

∑

ϵ

ω

ω ω

¯ =

=
+ ℏ

= ℏ + ℏ
−

=

∞

=

∞

βϵ

βϵ

β ω

β ω

β ω

β ω

−

−

− + ℏ

− + ℏ

− ℏ

− ℏ

E T

e

e

n e

e

e
e

( )
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2 1
.

(6.8)
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0
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n

n

[ 1/2]

[ 1/2]

n

n

Hence for the present model of N3 -independent oscillators, this gives the average
energy of the crystal,

∑ ∑ω
ω¯ = + ℏ +
ℏ
−= =

β ω

β ω

− ℏ

− ℏE N T U
e

e
( , )

2 1
. (6.9)
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N

j
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1

3

1

3

j
j

0

j

j

The first two terms give the ground state or binding energy of the crystal. This must
be negative. The temperature-dependent part gives the heat capacity

∑ β ω

= ∂
¯
∂

=
ℏ
−=

β ω

β ω

− ℏ

− ℏ

C
E N T

T

k
e

e

( , )

( )

(1 )
.

(6.10)

j

N

1

3
j

V

B

2

2

j

j

Einstein (1907) estimated the heat capacity of a crystal assuming that all modes
had the same frequency, ω ω=j E, in which case the formula reduces to
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β ω= ℏ
−

β ω

β ω

− ℏ

− ℏC Nk
e

e
3

( )
(1 )

. (6.11)V,E B
E

2

2

E

E

In view of this one can define the Einstein temperature, ωΘ ≡ ℏ k/E E B. For temper-
atures much greater than this, ≫ ΘT E, ∼C Nk3V,E B, which is the classical limit.
Conversely at low temperatures, ≪ ΘT E, ∼ Θ −ΘC Nk T e3 ( / ) T

V,E B E
2 /E , which is to

say that the heat capacity vanishes exponentially.
Debye (1912) modified Einstein’s assumption to allow for the continuous

distribution of modes up to a cut-off frequency ωD. The latter is determined by
the density of modes, ωg( ), and the total number of modes, N3 , such that (Pathria
1972)

∫ ∫ω ω ω ω
π

ω
π

= = +
ω ω

N g V
c c

3 d ( ) d
2

2
2

. (6.12)
0 0

2

2
L
2

2

2
T
2

D D ⎧⎨⎩
⎫⎬⎭

Here cL and cT are the velocity of propagation of longitudinal and transverse modes,
respectively. This gives the Debye frequency

ω π= +− − −{ }N
V

c c18 2 . (6.13)D
3 2

L
2

T
2 1

The corresponding Debye temperature is ωΘ ≡ ℏ k/D D B. The heat capacity in the
Debye approximation is =C Nk D x3 ( )V,D B 0 , with (Pathria 1972)

∫ ω=
−

≡ ℏ = Θ−

−D x
x

x
x e

e
x

k T T
( )

3
d

(1 )
, . (6.14)

x x

x0
0
3

0

4

2 0
D

B

D
0

For high temperatures, ≫ ΘT D, the heat capacity asymptotes as
= − Θ + ⋯C Nk T3 [1 ( / ) /20 ]V,D B D

2 . To leading order this is the classical result. In
the opposite limit of low temperatures (Pathria 1972),

π∼
Θ

≪ ΘC Nk
T

T
12

5
, . (6.15)V,D B

4

D

3

D

⎛
⎝⎜

⎞
⎠⎟

This says that the heat capacity vanishes as the cube of temperature approaching
absolute zero, which is slower than the exponential dependence predicted by
Einstein.

Note that the Debye approach implicitly assumes that that the speed of sound is
independent of temperature, which implies that the Debye temperature is similarly
constant. The speed of sound can be written as the reciprocal of the square root of
the adiabatic compressibility and the mass density. This is equivalent to assuming
that the mode frequency is linear in the wave number, which may be true for small
wave numbers. Depending on the system and the temperature regime, these may or
may not be reasonable assumptions.

Figure 6.1 compares the Einstein and Debye predictions for the heat capacity due
to lattice vibrations. At high temperatures both asymptote to the classical result. As
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the temperature is decreased, the heat capacity is reduced and approaches zero at
absolute zero. The heat capacity in Einstein’s model vanishes faster than that in
Debye’s. The T 3 behavior predicted by the latter is said to be in agreement with
laboratory measurements (Pathria 1972). (But see the comparison with exact results
in figure 6.5 below.)

6.2 One-dimensional harmonic crystal
In this section is analyzed a one-dimensional harmonic crystal in which the particles
are attached by linear springs to each other and to lattice sites. A feature of the
analysis, which follows that of Attard (2019), is that the energy eigenfunctions and
eigenvalues are obtained exactly. This makes it one of the few quantum mechanical
many-particle systems for which exact analytic results are known. The normal
modes given below were originally obtained in the context of classical statistical
mechanics (Attard 2002). Numerical results from this model will be used in section
9.6.3 and 10.5.1.

In the following analysis a misconception in the original quantum treatment
(Attard 2019) is corrected: now it is pointed out that the lack of particle permutation
symmetry of the model potential means that the energy eigenfunctions do not obey
any symmetrization rule. This same point was made above in the analysis of lattice
vibrations, section 6.1. Because the wave function is not symmetrized, arguably the
phonons, which are the quantized vibrations, should not be called bosons.

6.2.1 Model

Consider a one-dimensional harmonic crystal in which the particles are attached by
linear springs to each other and to lattice sites. Let the coordinate of particle j be qj,

Figure 6.1. Heat capacity due to lattice vibrations. The full curve is the Debye model and the dashed curve the
Einstein model. The dotted line is the high temperature asymptote and the dotted curve is the low temperature
T3 asymptote to the Debye model.
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and let its lattice position (i.e., the position of the minimum of the external harmonic
potential acting on it) be ¯ = Δq jj q. The lattice spacing is also the relaxed interparticle
spring length. There are fixed ‘wall’ particles at =q 00 and = + Δ+q N( 1)N q1 . Let
≡ − ¯d q qj j j be the displacement from the lattice position; for the wall particles,

= =+d d 0N0 1 . The system has overall number density ρ = Δ−q 1.
In this model, there is an external harmonic potential of spring constant κ acting

on each particle centered at its lattice site. The interparticle spring has strength λ and
relaxed length Δq. With these the potential energy is

∑ ∑

∑ ∑

κ λ

κ λ

λ

= − ¯ + − − Δ

= + −

= − __

= =

= =

+

+

U q q q q

d d d

K

q

dd

( )
2

[ ]
2

[ ]

2 2
[ ]

2
: .

(6.16)

j

N

j

N

j

N

j

N

1 0

1 0

j j j j q

j j j

N

2
1

2

2
1

2

( )

Here __K N( ) is an N × N tridiagonal matrix with elements

=
=
= ±K

K j k
j k

,
1, 1,
0, otherwise,

(6.17)jk

⎧
⎨⎪
⎩⎪

where κ λ≡ − −K 2 / .
It should be emphasized that the lattice positions are in order, ¯ < ¯ +q qj j 1,
= …j N1, 2, , . However for the particle positions themselves there is no constraint

on their order save that encouraged by the potential itself. The fact that each particle
is tied to its respective lattice position and to its labeled neighbors means that they
can be distinguished one from another. That is, they are not identical particles. The
fact that the present potential is not invariant with respect to a permutation of the
particle positions is just another way of saying that the system is not composed from
identical particles. This point was also made in the discussion of the vibrational heat
capacity of solids, section 6.1.

As has been mentioned many times in this book, the wave function of identical
particles must be either fully symmetric (bosons) or full anti-symmetric (fermions)
(Messiah 1961, Merzbacher 1970). Because the particles are not identical to each
other, the wave function of the present model of the harmonic crystal does not need
to obey any particular symmetry requirements.

6.2.2 Eigenvalues and eigenvectors

The eigenvalues of the potential energy matrix are required, and these may be
obtained from the characteristic equation,
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μ μ
μ

μ
μ

μ

μ μ

μ
μ

μ
μ μ μ

− ≡ __ −

=

− …
− …

− …
⋮ ⋱ ⋮

… −

= − __ −

−

…
− …

− …
⋮ ⋱ ⋮

… −
= − − − −

−

− −

S K K

K
K

K

K

K K

K
K

K

K S K S K

( ) I

1 0 0
1 1 0
0 1 1

0 0 1

( ) I

1 1 0 0
0 1 0
0 1 1

0 0 1

( ) ( ) ( ).

(6.18)

N
N

N

N N

( )

( 1)

1 2

This is just the recursion relation for the Tchebyshev polynomials of the second kind,
which are denoted =S x U x( ) ( /2)n n by Abramowitz and Stegun (1970, equation
(22.7.6)). They give θ θ θ θ= = +S U N(2 cos ) (cos ) sin(( 1) )/ sinN N , which evidently
vanishes when θ π= ± +n N/( 1)n , = …n N1, 2, , . Hence the characteristic equa-
tion vanishes when μ θ− =K 2 cosn n, or

μ π= +
+

= …K
n

N
n N2 cos

1
, 1, 2, , . (6.19)n

These are the eigenvalues, and since κ λ≡ − −K 2 / , they are negative.
The corresponding eigenvectors, un, have elements

π=
+ +

= …u
N

jn
N

j N
2

1
sin

1
, 1, 2, , . (6.20)n j,

It may be shown that these form an orthonormal set.
Figure 6.2 shows the positions of the particles in the eigenvectors of the potential

energy matrix for the harmonic crystal consisting of four particles. For the lowest
frequency mode, the particles are all displaced in the same direction (in phase), with
the central two particles having twice the amplitude of the outer two. For the second
lowest frequency, the middle pair of particles are out of phase. For the second
highest frequency, both outer pairs of particles are out of phase. And finally, for the
highest frequency, all three consecutive pairs of particles are out of phase.

6.2.3 Normal modes

The matrix of eigenvectors,
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__ ≡ … =

…
…

⋮ ⋱ ⋮
…

X

u u u
u u u

u u u

u u u{ , , , } , (6.21)N

N

N

N N N N

1 2

1, 1 2, 1 ,1

1, 2 2, 2 ,2

1, 2, ,

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

is orthogonal, __ __ = __ __ =X X X X IT T . (It is also symmetric, __ = __X XT .) With this the
potential energy may be written

λ

λ

λ

= − __

= − __ __ __ __ __

= − ′ __ ′

U K

X X K X X

D

q dd

d d

q q

( )
2

:

2
( ) ( )

2
.

(6.22)T T T T

T

Here __ ≡ __ __ __D X K XT is diagonal, μ δ=′ ′Dn n n n n, , , and the mode amplitudes are defined
as

′ ≡ __Xq d. (6.23)T

The amplitudes are a function of the ordered particle positions q̃ q( ).
Suppose that the particles have massm, and that the momentum of the jth particle

is = ̇p mqj j. Hence the classical kinetic energy is

= · = ′ · ′
m m

p p p p p( )
1

2
1

2
, (6.24)K

where ′ ≡ __Xp pT . Accordingly the classical Hamiltonian is

Figure 6.2. Eigenvectors of the potential energy matrix, as described by positions of the N = 4 particles
(λ κ ω= = m LJ

2 ). The corresponding eigenvalues increase in magnitude from bottom to top. The dotted lines
indicate the lattice positions q̄j . The displacements are all scaled by the same amount.
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λΓ = + = ′ · ′ − __ ′ ′U
m

Dp q p p q q( ) ( ) ( )
1

2 2
: . (6.25)H K

Evidently, the normal modes represent independent harmonic oscillators.

6.2.4 Quantum mechanics

The Hamiltonian operator in the normal mode representation is

∑ ∑

∑

λ

λ μ

ω

ˆ = ˆ′ · ˆ ′ − __ ′ ′

= ˆ ′ − ′

= ℏ ˆ +

= =

=
{ }

m
D

m
p q

P Q

p p q q
1

2 2
:

1
2 2

2
,

(6.26)
n

N

n

N

n

N
1 1

1

n n n

n
n n

2 2

2 2

H

where ′ ωˆ ≡ ˆ ℏP p m/n n n , ′ ω≡ ℏQ q m /n n n , and ω λμ≡ −m n n
2 . Since μ < 0n and λ > 0,

the frequencies are real.
For each mode, the energy eigenvalues are (Messiah 1961, Merzbacher 1970)

ω= + ℏ = …E l l( 0.5) , 0, 1, 2, , (6.27)n l n n n, n

and the corresponding energy eigenfunctions are the Hermite functions (Messiah
1961, Merzbacher 1970),

ϕ
π

≡
!

−Q
l

e Q( )
1

2
H ( ), (6.28)n l n l

n

Q
l n,

/2
n

n

n
n

2

where QH ( )ln is the Hermite polynomial of degree ln. These are normalized over the
mode amplitudes,

∫ ϕ ϕ =
−∞

∞
*Q Q Qd ( ) ( ) 1. (6.29)n n l n n l n, ,n n

The eigenfunctions of the system have product form,

∏ϕ ϕ=
=

QQ( ) ( ), (6.30)
n

N

1
ℓ n l n, n

and the energy in such an eigenstate is of course = ∑ =E Eℓ n
N

n l1 , n
.

Because the transformation to modes ⇒q Q is orthogonal, these eigenfunctions
are orthonormalized in the sense that

∫ ∫ϕ ϕ ϕ ϕ δ= =′
*

′
* ′CQ Q Q q Q Qd ( ) ( ) d ( ) ( ) . (6.31)ℓ ℓ ℓ ℓ ℓ ℓ,

Here ω≡ ∏ ℏ=C m /n
N

n1 is a constant independent of the state of the modes, and so
it has no more than trivial effects.
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As mentioned above, this particular model potential for the harmonic crystal
distinguishes the particles one from another (i.e., they are not identical), and so the
energy eigenfunctions have no particular symmetry requirements and it is not
possible to analyze the system in terms of bosons or fermions.

The reason for giving the energy eigenfunctions is that they facilitate the
calculation of such quantities as the density profile of the crystal and the
commutation function. For other quantities one can use the known results for
the simple harmonic oscillator together with the fact that the modes are independ-
ent. In particular, the average energy of the harmonic crystal is

∑ ω ω¯ = ℏ + ℏ
−=

β ω

β ω

− ℏ

− ℏE T
e
e

( )
2 1

, (6.32)
n

N

1

n n
n

n

⎧⎨⎩
⎫⎬⎭

and the heat capacity is

∑ β ω= ℏ
−=

β ω

β ω

− ℏ

− ℏC T k
e

e
( )

( )
(1 )

. (6.33)
n

N

1

n
V B

2

2

n

n

The latter goes to zero exponentially as the temperature approaches absolute zero, in
agreement with the prediction of Einstein (1907).

6.2.5 Numerical results

Figure 6.3 shows the quantized energy levels for the harmonic crystal for several sets
of parameters. Initially the energy of each level increases rapidly with level number.
But for large level numbers, the rate of change of energy with energy level is sub-
linear. Or to put it another way, the density of energy states increases with increasing
energy. For ≳l 10, the data is well fitted by ∝E ll

N1/ , as can be seen in the inset to
the figure.

Figure 6.3. The first 5000 quantum energy levels for N = 4, λ κ ω= = m LJ
2 (solid curve); for N = 4, λ ω= m LJ

2 ,
κ = 0, (dash–dotted curve); and for N = 5, λ κ ω= = m LJ

2 (dashed curve). In all cases, Δ = rq e. Inset: Log–log
plot.
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Figure 6.4 shows the average energy for a canonical equilibrium system as a
function of inverse temperature. The data tests the dependence of the average on the
number of levels used, lmax. One can see that for β ωℏ ≳ 0.8LJ , the results for all

⩾l 500max are indistinguishable. For β ωℏ ≲ 0.5LJ , there is a discernable difference
between =lmax 2000 and 5000, and this difference increases with increasing temper-
ature (decreasing inverse temperature).

The figure also shows the energy of the ground state, ω= ∑ ℏ=E /2n
N

n1 1 . It can be
seen that for these parameters, excited states make negligible contribution when the
temperature is lower than β ωℏ ≳ 2LJ .

The present crystal has N2 harmonic modes in the classical Hamiltonian (N in the
potential energy, and N in the kinetic energy). Hence by the equipartition theorem,
the average energy is β〈 〉 = N /clH , which is the dotted curve in figure 6.4. One can
see that this lies increasingly below the quantum results as the temperature decreases
(inverse temperature increases), and it lies increasingly above the quantum results as
the temperature increases. In the present case there is a region, β ω≲ ℏ ≲0.3 0.4LJ , in
which the quantum results for =l 5000max coincide with the classical result. The data
suggests what one knows to be true: the classical result must be the limiting result at
high temperatures, but an increasing number of energy levels contribute to the
average as the temperature increases. Hence for fixed lmax, there is always a
temperature above which the quantum results become inaccurate.

One can draw the important conclusion from this figure that starting from the
exact quantum approach is a very inefficient way of obtain the classical result, which
is the exact high temperature limit.

Figure 6.5 shows the heat capacity of the crystal for the same case as the
preceding figure. Two versions of the exact results are shown: the direct simple
harmonic oscillator expression as the sum of the modes, equation (6.33), and the
brute force approach that identifies and sums the first =lmax 5000 energy levels, using

Figure 6.4. Average energy calculated with various numbers of levels (N = 4, Δ = rq e, and λ κ ω= = m LJ
2 ).

From bottom to top, =lmax 500 (long dashed), 1000 (dash–dotted), 2000 (short dashed), and 5000 (full). The
dotted curve is the classical result, β〈 〉 =E N /cl . The dotted line is the energy of the ground state,

ω= ∑ ℏ=E /2n
N

n1 1 .
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the finite difference of the average energy from figure 6.4. It can be seen that the heat
capacity goes to zero at zero temperature. The analytic exact result goes smoothly
over to the classical asymptote at high temperatures. In contrast the brute force
exact approach reaches a peak of about =C Nk/ 0.94V B at about β ωℏ = 0.5LJ , and
drops below the classical asymptote =C Nk/ 1V B for higher temperatures. This is an
artifact of using a limited number of energy levels. As observed in connection with
the preceding figure, the exact quantum approach is not recommended for obtaining
the classical result. Figure 6.5 also tests the Debye model for the lattice vibrational
heat capacity. The fitted Debye temperature was ωΘ ℏ =k / 3B D LJ , which gives a
reasonable fit for β ωℏ ≲ 0.8LJ . Although it correctly goes over to the classical limit
at high temperatures, the Debye model with this parameter value does not fit the
exact data at low temperatures. The Debye model takes the velocity of sound to be a
constant, which neglects its dispersion with frequency and its temperature
dependence.

The mode density of the harmonic crystal at n = 1, upon expanding the
trigonometric functions for large N, is ω κ π λ= +g N m( ) 2( 1) /32 2 , which gives

ω π λ ω κΘ ℏ = + =k N N m/ (3 /2( 1) ) / 2.37B D LJ
2 2

LJ for the present case, N = 4 and
λ κ ω= = m LJ

2 . The discrepancy between the high temperature fit and the zero
temperature calculation underscores the limitation of the Debye model in neglecting
the frequency and temperature dependence of the sound velocity.

It should be mentioned that the low temperature value, ωΘ ℏ =k / 2.37B D LJ , did
not give a good fit of the Debye model to the exact calculations at low temperatures.
Further, equation (6.33) shows that the exact heat capacity must vanish exponen-
tially approaching absolute zero, ∝ β ω− ℏe 1, as →T 0. Interestingly enough this agrees
with the prediction of the Einstein model, undoubtedly because at low temperatures

Figure 6.5. Heat capacity per particle of the harmonic crystal (N = 4,Δ = rq e, and λ κ ω= = m LJ
2 ). The crosses

are the exact analytic result, equation (6.33), the solid curve is the exact result with the first =lmax 5000 energy
levels, the short-dashed curve is the Einstein model with ω ω=E 1 ( ωΘ ℏ =k / 1.2B E LJ ), and the long-dashed
curve is the Debye model with ωΘ ℏ =k / 3B D LJ . The dotted line is the classical asymptote. Inset: Magnified
view at high temperatures.
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only the lowest frequency mode is occupied, and Einstein (1907) assumes a single
frequency for his model. In contrast Debye (1912) predicts for a one-dimensional
system that the heat capacity should go to zero linearly with temperature as →T 0,
which is clearly incorrect. It can be seen in figure 6.5 that the model of Einstein
becomes less accurate than that of Debye at intermediate temperatures as the higher
order modes are activated. Figure 6.6 shows the average energy for several values of
the interparticle spring constant λ. In this figure the lattice spring constant has been
set to zero, κ = 0. The wall particles fixed at =q 00 and = + Δ+q N( 1)N q1 interact
via λ with their moveable neighbors and serve to localize the harmonic crystal. In
general at a given temperature, the average energy increases with increasing
interparticle spring constant. In the low temperature limit, β → ∞, the average
energy is the ground state energy, ω= ∑ ℏ=E /2n

N
n0 1 . It can be seen in figure 6.6 that

for β ωℏ ≳LJ 3–9 (λ ω =m/ LJ
2 0.5–0.02) the system may be considered to be in the

ground state. The system reaches the ground state at higher temperatures for larger
interparticle spring constants.

Figure 6.7 shows the density profiles corresponding to the same cases as the
preceding figure at the temperature β ωℏ = 2LJ . As mentioned, although the lattice
spring constant has been set to zero, κ = 0, the fixed wall particles at =q 00 and

= + Δ+q N( 1)N q1 prevent the moveable atoms from wandering because they interact
via λ with their moveable neighbors. The profiles are normalized to integrate to
N = 4. In general the peaks and troughs in the profiles indicate that the particles are
mainly localized to their respective lattice positions. At the highest interparticle
spring constant shown, the density is zero between lattice points, which means that
there is little overlap between the particles. Conversely, at the lowest coupling
shown, the density peaks are much broader and there is a high probability of finding
a particle between the lattice positions.

Figure 6.6. Average energy for various values of the interparticle spring constant λ (N = 4,Δ = rq e, κ = 0, and
=l 5000max ). From top to bottom, λ ω =m/ LJ

2 0.5 (solid curve), 0.1 (short-dashed curve), 0.05 (dash–dotted
curve), and 0.02 (long-dashed curve). The dotted lines are the respective ground states.
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6.3 Loop Markov superposition approximation
In chapter 5, the λ-transition in liquid helium was explored using Monte Carlo
simulations, section 5.4. That method obtained successive terms in the series of
permutation loop grand potentials. It is obvious that in such an approach there will
always be a limit on how large in size l are the loops that can be included. In this
section a practical approximation is developed that allows the infinite loop series to
be resummed and calculated with no more than a one-dimensional Fourier trans-
form and integration.

The Monte Carlo results in section 5.4 relied upon certain expressions for
statistical averages in which the momentum integration was performed explicitly.
This situation arises quite generally when the commutation function is neglected.
(This function is introduced in the formal transformation to classical phase space in
chapter 7.) Hence the approximation now given has wide applicability beyond liquid
helium and Bose–Einstein condensation. The simulation results of section 5.4 serve
as benchmarks against which the present approximate approach can be tested.

In the first instance we shall focus on the loop grand potential,
β− Ω = ± 〈 〉−± G( 1)l 1l l, ( ) ( ) . The loop Gaussian is = ! − ! π− ΛG N N l l eq( ) ( /( ) )l l q( ) ( )/l

l 2L

for averaging, with the sum of the squares of the bonds being
= + + ⋯ +q q qq( )l

l
l

2
12
2

23
2

1
2L , and the thermal wavelength being β πΛ = h m/22 .

The present canonical equilibrium average of the loop Gaussian can be written in
terms of the canonical equilibrium l-particle density. This is normalized such that
∫ ρ = ! − !N N lq qd ( ) /( )l

N
l l( ) (Attard 2002, equation (7.72)). One has

∫

∫

β ρ

ρ

− Ω = ± 〈 〉 = ± − !
!

= ± π

± −
−

−
− Λ

G
N l

N
G

l
g e

q q q

q q

( 1)
( 1) ( )

d ( ) ( )

( 1)
d ( ) .

(6.34)

l l l
l

l
N

l l l l

l l
l

N
l l q

, ( ) 1 ( )
1

( ) ( )

1
( ) ( )/l

l2 2L

Figure 6.7. Density profiles for various values of the interparticle spring constant λ (N = 4, Δ = rq e, κ = 0,
=l 5000max , and β ωℏ = 2LJ ). From top to bottom at the peaks, λ ω =m/ LJ

2 0.5 (solid curve), 0.1 (short-dashed
curve), 0.05 (dash–dotted curve), and 0.02 (long-dashed curve).
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Here ρ is the one-particle number density, a homogeneous system being assumed.
This expression is formally exact (accepting the neglect of the commutation function
and the validity of the loop grand potential).

We now introduce the Markov superposition approximation for the l-particle
density. This approximation was originally developed for one-dimensional applica-
tions (Attard et al 1997), although it can readily be generalized to higher dimensions
(Attard 1999, Attard 2018). Since the permutation loop is essentially a one-dimen-
sional object in three-dimensional space, one can expect the Markov approach to be
particularly easy to apply. Previous tests for highly correlated systems have shown
that for the l-particle density the Markov superposition approximation is much more
reliable than the Kirkwood superposition approximation (Attard et al 1997, Attard
1999, Attard 2018). The Markov superposition approximation for a loop of size
⩾l 2 takes the l-loop distribution function to be the product of pair distribution

functions consecutive around the loop,

= …g g q g q g qq( ) ( ) ( ) ( ). (6.35)N
l l

l
( ) (2)

12
(2)

23
(2)

1

A homogeneous system is again assumed, and the pair distribution function is taken
to be only a function of separation. This is not quite the original Markov super-
position approximation and it might more accurately be called a Markov–Kirkwood
variant, as is briefly discussed in the tests below.

With this the loop Markov superposition approximation for the loop grand
potential is

∫β ρ− Ω = ± … ⩾π±
−

− Λ

l
e g q g q g q lq

( 1)
d ( ) ( ) ( ), 3. (6.36)l

l l
l

l
q, ( )

1
( )/ (2)

12
(2)

23
(2)

1
l

l2 2L

The dimer contribution is

∫
∫

β ρ

ρ

− Ω = ±

= ±

π

π

± − Λ

− Λ

e g q

V
e g q

q q

q

2
d d ( )

2
d ( ),

(6.37)

q

q

, (2)
2

1 2
2 / (2)

12

2

1
2 / (2)

1

12
2 2

1
2 2

which is exact.
Using the fact that in three-dimensional space

∫ π δ=− ·ek qd (2 ) ( ), (6.38)ik q
1

3
1

1 1

the Fourier transform pair is defined to be

∫ ∫π
ˆ = = ˆ− · ·f k e f q f q e f kq k( ) d ( ), and ( )

1
(2 )

d ( ). (6.39)i ik q k q
3

For the present radial function the Fourier transform is one-dimensional,
∫πˆ =
∞

f k q q f q kq kq( ) 4 d ( )sin ( )/
0

2 .
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Define ≡ π− ΛF q e g q( ) ( )q / (2)2 2 to be the Gaussian-weighted radial distribution
function. This is a well-behaved short-ranged function whose Fourier transform is
straightforward to obtain numerically. Then with the loop Markov superposition
approximation, and using homogeneity,

∫

∫

∫ ∫

∫

β ρ

ρ

ρ
π

ρ
π

− Ω = ± …

= ± …

= ± …

× ˆ ˆ … ˆ

= ± ˆ ⩾

±
−

−
−

−

−
− · · · − ·

−

− −

l
F q F q F q

l
V F q F q F q F q

V
l

e e e e

F k F k F k

V
l

F k l

q

q

k q

k

( 1)
d ( ) ( ) ( )

( 1)
d ( ) ( ) ( ) ( )

( 1)
(2 )

d d

( ) ( ) ( )

( 1)
(2 )

d ( ) , 3.

(6.40)

l
l l

l
l

l l
l

l

l l

l
l l i i i i

l

l l
l

k q k q k q k q

, ( )
1

12 23 1

1
1

12 23 1 1

1

3
1

1 2

1

3 1 1

l l l1 12 2 23 1 1 1

This expression for the loop grand potential is just a one-dimensional integral of the
Fourier transform of the Gaussian-weighted radial distribution function.

Readers from a certain era will recognize these as the ring diagrams, which
underlie the hypernetted chain closure approximation (see Attard 2002, equation
(10.78)). The function F q( ) plays the role of the total correlation function. The
factor of 1/2 that appears in the hypernetted chain case corrects for double counting
of the clockwise and mirrored anti-clockwise rings, which are identical. In the
present case one must always traverse the loop clockwise, and so the anti-clockwise
version is counted as distinct even though it is numerically equal to the clockwise
version. For example, the 3-loop → → →1 2 3 1 is distinct from → → →1 3 2 1
even though their Gaussians are numerically equal.

The series of loop grand potentials gives the symmetrization contribution to the
grand potential,

∫

∫

∫

∑ ∑

∑

β

β ρ
π

π
ρ ρ ρ

ρ

− Ω = ± 〈 〉

= − Ω + ± ± ˆ

= ∓ ∓ ˆ ± ˆ + ˆ

±

=

∞

=

∞

=

∞

π

± −

±

− Λ

G

V
l

F k

V
F k F k F k

V
e g q

k

k

q

( 1)

( )
(2 )

d ( )

(2 )
d ln [1 ( )] ( )

2
( )

2
d ( ).

(6.41)

l l
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2 2

3

l l l
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q

, ( ) 1 ( )

, (2)
3 1 1

3 1 1 1

2

1
2

2

1
2 / (2)

1
1
2 2

⎧⎨⎩
⎫⎬⎭

This is a surprisingly simple closed form expression for the total contribution to the
grand potential from symmetrization loops. It requires only the classical canonical
equilibrium radial distribution function as input, which is relatively trivial to obtain
by computer simulation, integral equation approaches, or even x-ray or neutron
scattering measurements.
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In order for the argument of the logarithm to be positive, for bosons one requires
ρ ˆ <F k( ) 11 . Assuming that the Fourier transform is a maximum at =k 01 , this
condition is

∫πρ <π
∞

− Λq q e g q4 d ( ) 1. (6.42)q

0

2 / (2)2 2

(For fermions, the integral must be >−1, which it certainly is.) Presumably, within
the loop Markov superposition approximation, this defines the spinodal boundary
of a thermodynamic phase.

6.3.1 Temperature derivatives

The temperature derivative (at constant number density) is

∫β
β

ρ
π

∂ − Ω
∂

= ± ˆ ̇ˆ ⩾
± −

−V
F k F k lk( ) ( 1)

(2 )
d ( ) ( ), 2, (6.43)

l l l
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3 1 1
1

1
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π π− Λ − ΛF q
F q

e g q
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2

2
/ (2)2 2 2 2
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Alternatively, in total one has
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The second derivative is
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∫∑
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6.3.2 Average bond length in a loop

The root mean square bond length for an l-loop is ¯ = 〈 〉 〈 〉b G G l/l l
l l2 ( ) ( )L . Define
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The l in the numerator of the first equality comes from the fact that there are l bonds

+qj j, 1 that are equivalent to q12 upon averaging. Hence
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The mean square dimer bond length is
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6.3.3 Tests

The loop Markov superposition approximation is tested against simulation results
for liquid helium near the computed λ-transition in table 6.1. As detailed in table 5.1,
in the simulations the central density at this state point is approximately ρσ = 0.623

(ρ = 246.76 kgm m−3). The saturation mass density at 5 K is 100.8 kg m−3, and that
at 2.177 K is 146.2 kg m−3 (http://www.engineeringtoolbox.com). The thermal
wavelength at the temperature of the data in the table is σΛ = 1.04 .

It can be seen that loop grand potential, the average of the loop Gaussian, given
by the simulations decreases with increasing loop size. This trend also holds for the
loop Markov superposition approximation. The latter is quantitatively accurate for
dimers and trimers, but less so for tetramers where it is about a factor of two too
large. It is about 50% too large for pentamers. The total Markov loop Gaussian is
〈 〉 =G 0.801 85. Overall one would say that given the simplicity of the theory the
performance of the loop Markov superposition approximation in predicting the
average value of the loop Gaussian is quite satisfying.

Table 6.1. Boson loop grand potential, βΩ = 〈 〉+ Gl l, ( ) , and root mean square bond length b̄l given by Monte
Carlo simulations and by the loop Markov approximation for helium-4 at ε =k T / 1.05B ( =T 10.73 K) and
ρ σ = 0.3tot

3 (ρ = 119.4 kgm m−3).

βΩ+ l, b̄l

l Monte Carlo Markov Monte Carlo Markov

2 0.803 4(26) 0.787 4 1.071 1 1.071 0
3 0.016 130(97) 0.017 61 1.128 5 1.126 6
4 6.824(63) × −10 4 1.2 × −10 3 1.134 8 1.126 8
5 4.271(61) × −10 5 6.9 × −10 5 1.134 7 1.130 6
6 × −4.7 10 6 1.131 9
7 × −3.4 10 7 1.133 3
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The stability integral, equation (6.42), has value 0.103 at this particular
thermodynamic state, as obtained from the simulated radial distribution function.
As can be seen from the loop grand potential data in the table, the loop series
appears to be convergent. At the same overall density that integral has value 1.02 for

ε =k T / 0.6B (6.132 K). At higher temperatures than this, the integral is less than one,
and the loop heat capacity decreases with increasing loop size. At this temperature
and below, the integral is greater than one, and the loop heat capacity increases with
increasing loop size. This suggests that the stability criteria is relatively accurate.

It can also be seen in table 6.1 that the simulated root mean square loop bond
length is relatively insensitive to the loop size. The simulations show that it increases
weakly with increasing loop size. For comparison, the first peak of the simulated
radial distribution function occurs at 1.11 ± 0.02. The atoms in a dimers are
separated on average by less than this, but consecutive atoms in trimers and above
are on average separated by more than this. Again the performance of the loop
Markov superposition approximation is very good, since it predicts the same trend
with loop size, and is within 1% of the Monte Carlo results.

The Markov approximation is tested at a lower temperature in table 6.2. The
central density at this state point is ρσ = 0.883 (ρ = 350.2 kgm m−3). It can be seen
that its performance for the grand potential in this case is not as good. The Markov
results for the loop grand potential would agree better with the Monte Carlo results
if they were divided by −l 1.

The bond lengths given by the loop Markov superposition approximation in
table 6.2 are again in good agreement with the Monte Carlo results. This is not a
very sensitive test. The bonds are slightly longer at this lower temperature than those
that occur at the higher temperature of the previous table. This appears to be due to
the fact that the classical penetration into the core region is greater at higher
temperatures than at lower. (Incidentally, this point suggests that symmetrization
effects will be larger when the commutation function is included as it gives greater
quantum penetration into the core than the classical approach allows.)

In table 6.2, it can be seen that the loop grand potentials are large, but decreasing
with increasing loop number. The Monte Carlo loop heat capacities for this
thermodynamic state point, ε =k T / 0.6B , ρ σ = 0.3tot

3 , are approximately constant

Table 6.2. Same as preceding table but for ε =k T / 0.6B ( =T 6.132 K).

βΩ+ l, b̄l

l Monte Carlo Markov Monte Carlo Markov

2 29.40(41) 30.04 1.116 41(94) 1.114 8
3 8.15(24) 16.50 1.180 6(12) 1.173 5
4 3.33(17) 11.09 1.195 1(12) 1.170 8
5 1.72(13) 6.49 1.201 1(11) 1.179 5
6 4.50 1.182 8
7 3.31 1.186 5
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with loop size. The integral in equation (6.42) is 1.056. This state point seems to be
on the border between convergence and divergence of the loop series. Probably
convergence depends upon the loop quantity that is being obtained.

The probable reason for the overestimate of the loop grand potential evident in
table 6.2 is that the version of the Markov approximation given above is actually a
hybrid of the original and the Kirkwood superposition approximation. It is actually
equal to the Kirkwood superposition approximation for l = 3. In a highly correlated
system the Kirkwood superposition approximation is known to overestimate the
correlations (Attard et al 1997, Attard 1999, Attard 2018). The original Markov
superposition approximation applied to a loop is

= … −g g q g q g qq( ) ( ) ( ) ( ). (6.55)N
l l

l l
( ) (2)

12
(2)

23
(2)

1,

This contains −l 1 factors. Here there is nothing to prevent overlap of the first and
last atoms in the loop, which is the region where the Gaussian between them is
largest. It may be better to use instead

σ= … Θ −−g g q g q g q qq( ) ( ) ( ) ( ) ( ). (6.56)N
l l

l l l
( ) (2)

12
(2)

23
(2)

1, ,1

Here Θ x( ) is the Heaviside step function. These alternatives will reduce the estimate
of the loop grand potential and may well perform better in more highly coupled
systems.

Table 6.3 compares results at the lower temperature =T 5.11 K for the Markov–
Kirkwood superposition approximation, Markov 1, equation (6.35), and the
Markov superposition approximation, Markov 2, equation (6.56). It can be seen
that the latter performs much better for larger loops. The table also gives Monte
Carlo results for the heat capacity. Whereas the series for the loop grand potential is
borderline convergent, the loop series for the heat capacity is clearly divergent at this
temperature, at least for the terms shown. The integral in equation (6.42) is 1.67.

On the basis of the present numerical results the loop Markov approximation
could be described as semi-quantitative in accuracy. It certainly appears to give the

Table 6.3. Boson loop grand potential and heat capacity per particle given by Monte Carlo simulations and by
the loop Markov approximation for helium at ε =k T / 0.5B ( =T 5.11 K) and ρ σ = 0.3tot

3 (ρ = 119.4 kgm
m−3).

βΩ+ l,
+C Nk/l
V

,( )
B

l Monte Carlo Markov 1 Markov 2 Monte Carlo

1 3.603(86)
2 64.477(49) 65.9 65.9 0.855(95)
3 31.450(49) 67.4 16.1 1.927(96)
4 21.239(54) 71.8 17.1 2.88(14)
5 19.060(78) 68.9 16.9 4.49(23)
6 17.92(14) 77.6 19.2 6.03(53)
7 19.83(25) 93.4 23.4 9.7 (10)
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correct physical picture of the behavior of permutation loops in liquid helium near
the λ-transition.

Higher order Markov approximations for the l-particle distribution function exist
(Attard 2018, section 5.6.3). More accurate results might be obtained using, for
example, products of the pair and triplet distribution functions.

6.4 Symmetrization for spin-position factorization
6.4.1 Exact form

The set of commuting dynamical variables for one particle j may be taken to be
σ=x q{ , }j j j , where σ ∈ − − + …S S S{ , 1, , }j is the z-component of the spin of

particle j (Messiah 1961, section 14.1, Merzbacher 1970, section 20.5). Note that
here σ is not a spin operator or a Pauli spin matrix. Label the +S2 1 spin eigenstates
of particle j by ∈ − − + …s S S S{ , 1, , }j , and the spin basis function by
α σ δ= σ( )s j s ,j j j

. Note that this is not a spinor. For N particles, σ σ σ σ≡ …{ , , , }N1 2 ,
and similarly for s and q, and the basis functions for spin space are

σα δ δ= = ∏σ σ=( ) j
N

ss s, 1 ,j j
. The states n may be single or multi-particle states.

An unsymmetrized wave function ψ x( ) in general has symmetrized form

∑ψ
χ

ψ≡
!

± ˆ
ˆ

±
±N

x x( )
1

( 1) (P ), (6.57)
P

p

with the symmetrization or overlap factor being

∑χ ψ ψ≡ ± 〈 ˆ ∣ 〉
ˆ

± x x( 1) (P ) ( ) . (6.58)
P

p

Alternatively, one can expand the wave function in terms of spin-position basis
functions,

∑ σψ α ϕ ψ α ϕ= 〈 ∣ 〉 Φ Φ ≡x x x q( ) ( ), ( ) ( ) ( ). (6.59)
s n,

s n n s n s s n, ,

Here and below the αs will be called the spin basis functions, and the ϕn will be called
the position basis functions. This nomenclature favors brevity over precision; better
might be, for example, the basis functions for spin and position space, respectively.
Instead of position one could use the momentum representation. It will often prove
useful to choose the ϕn to be energy eigenfunctions. The σα ( )s and the ϕ q( )n form a
complete orthonormal set.

The symmetrization of any wave function in spin-position space can be accom-
plished by using symmetrized basis functions in its expansion. The latter are given by

∑ σ
χ

α ϕΦ =
!

± ˆ ˆ
ˆ

±
± N

x q( )
1

( 1) (P ) (P ). (6.60)
P

p
n s

n s

s n,

,

This is exact.
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6.4.2 Approximate form

In place of this exact symmetrization, one can invoke an approximation that relies
upon the factorization of the spin-position basis function into the sum of products of
symmetrized position basis functions and symmetrized spin basis functions, namely

σ σ

σ σ

χ
α ϕ α ϕ

χ
α ϕ α ϕ

Φ =
˜

˜ ˜ + ˜ ˜

˜
˜ ˜ + ˜ ˜

±
+

+ + − −

−
+ − − +

x

q q

q q
( )

1
( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( )

. (6.61)n s
n s

s n s n

n s
s n s n

,
,

,

⎧

⎨
⎪⎪

⎩
⎪⎪

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

The merits or otherwise of this approximation are discussed at the end of section
6.4.3 below. Although the left-hand side is normalized by the overall factor of χ√˜±n s, ,
the individual factors on the right-hand side are not normalized. This is essential to
the correct formulation of the ansatz and is emphasized by the tilde. The un-
normalized symmetrized basis functions are

∑ϕ ϕ˜ ≡
!

± ˆ
ˆ

±

N
q q( )

1
( 1) (P ), (6.62)

P

p
n n

and

∑σ σα α˜ ≡
!

± ˆ
ˆ

±

N
( )

1
( 1) (P ). (6.63)

P

p
s s

The σα ( )s and the ϕ q( )n are normalized. The√ !N here is an immaterial constant that
is convenient but not essential. Respective symmetrization or overlap factors for use
below may be defined in terms of these,

χ ϕ ϕ χ α α≡ 〈 ˜ ∣ ˜ 〉 ≡ 〈 ˜ ∣ ˜ 〉± ± ± ± ± ±, and . (6.64)n n n s s s

It is essential that these symmetrization factors are not used to normalize the ϕ̃±
q( )n

and the σα̃ ±( )s individually. The reason for this is that without individual normal-
ization, all terms in the approximation forΦ± x( )n s, have equal weight when written as
permutation sums. If the individual factors were normalized, then the symmetric
factors would have a different weight to the anti-symmetric factors, and since
different products have two, one, or zero of each of these, individual terms in the
permutation sum would have different weights.

This point also explains why the two products in each line of the approximation
are simply added together symmetrically. In principle, the two products could be
superposed with a relative phase factor and with a relative probability factor. The
reason they aren’t is that ultimately the expression is meant to approximate a
permutation sum in which all terms have equal weight (apart from the −( 1) p for
fermions). These two points will be taken up in the next subsubsection 6.4.3, and
with the concrete example of two particles following that.

The approximation is sufficient to ensure the symmetrization of the spin-position
basis functions,

Φ ˆ = ± Φ± ±x x(P ) ( 1) ( ), (6.65)p
n s n s, ,
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as can be confirmed by inspection.
The overall normalization factor for the symmetrized basis function Φ± x( )n s, for

the approximation is

χ
α α ϕ ϕ α α ϕ ϕ

α α ϕ ϕ α α ϕ ϕ

χ χ χ χ
χ χ χ χ

˜ ≡
〈 ˜ ∣ ˜ 〉 〈 ˜ ∣ ˜ 〉 + 〈 ˜ ∣ ˜ 〉 〈 ˜ ∣ ˜ 〉

〈 ˜ ∣ ˜ 〉 〈 ˜ ∣ ˜ 〉 + 〈 ˜ ∣ ˜ 〉 〈 ˜ ∣ ˜ 〉

=
+
+

±
+ + + + − − − −

+ + − − − − + +

+ + − −

+ − − + .

(6.66)

n s
s s n n s s n n

s s n n s s n n

s n s n

s n s n

, ⎪
⎪

⎪

⎪

⎧
⎨
⎩
⎧
⎨
⎩

It should be noted that in certain states the Fermi exclusion principle means that
σα̃−( )s or ϕ̃−

q( )n vanish. In such states χ−s and χ−n also respectively vanish.

6.4.3 Comparison of exact and approximate forms

One can label the !N permutations of the dynamical variables σP and qP,
= … !P N1, 2, , , in such a way that the permutation has the same parity as its

label. The exact result is

∑ σ
χ

α ϕΦ =
!

±
=

!
±

±N
x q( )

1
( 1) ( ) ( ). (6.67)

P

N

1

P
P Pn s

n s

s n,

,

The approximate expression may be written

∑

∑

∑

σ σ

σ

σ

σ

χ
α ϕ α ϕ

χ
α ϕ

χ
α ϕ

χ
α ϕ

Φ =
˜

˜ ˜ + ˜ ˜

=
! ˜

± + − ∓

=
! ˜

±

+
! ˜

± + −

′ ″=

!

=

!

′ ″

±
±

+ ± − ∓

±
″ ′ ″

′ ″

±

±
′≠ ″ ″ ″+ ′

′ ″

N

N

N

x q q

q

q

q

( )
1

( ) ( ) ( ) ( )

1
[( 1) ( 1) ( 1) ] ( ) ( )

2
( 1) ( ) ( )

1
( 1) [1 ( 1) ] ( ) ( ).

(6.68)
P P

N

P

N

P P

, 1

1

,

P P P
P P

P
P P

P P P P P
P P

n s
n s

s n s n

n s

s n

n s

s n

n s

s n

,

,

,

,

,

( )

⎡⎣ ⎤⎦

In the final equality, the single sum is over terms where the permutation of the spins
is the same as that of the positions. This is the same as the exact result. (Evidently, if
this were the only contribution, then the normalization constants would be related as
χ χ˜ = !± ± N4 /n s n s, , .) The double sum, where the permutation of the spins differs from
that of the particles, does not appear in the exact result and is unphysical in the sense
that it disassociates the spin and position of each particle. It may be noted that only
permutations of spin and position with the same parity make a non-zero contribu-
tion to this double sum. In the case of N = 2 no such terms exist, so the double sum is
zero, and the approximation is exact in this case (see also next).
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Notice that the agreement of part of the approximation with the exact formu-
lation depends upon using the un-normalized symmetrized basis functions, σα̃ ±( )s

and ϕ̃±
q( )n , and upon superposing the two terms without any phase factor or

probability weight. As mentioned, the justification for this is that this procedure
weights all terms in the permutation sum equally.

In the light of this analysis of the symmetrized basis functions, it is worth
discussing whether or not the approximation equation (6.61) has any advantages
over the exact form, equation (6.60). One could argue that the sum of products in the
approximate form has a transparent interpretation that lends itself to the physical
interpretation of symmetrization effects, and of physical phenomena such as Bose–
Einstein condensation and Fermi exclusion. Indeed, the long-standing electronic
orbital theory for optical spectra is predicated on this sum of products form, (which
is exact for N = 2; see also next). It could also be argued that there could be
computational advantages to obtaining and storing the symmetrized spinless
functions, and at a later stage combining them with the symmetrized spin functions
for different values of S. Finally, it might be argued that exploring the properties of
the symmetrized spinless functions leads directly to an understanding of the spatial
(or momentum) localization of symmetrization effects, which is often missed in the
formal treatment of symmetrization. Such localization shows that in many impor-
tant terrestrial cases the nearest neighbor dimers give the dominant contribution,
and for such pairs the approximation is exact.

The numerical results in this book using fully symmetrized and fully anti-
symmetrized spinless wave functions implicitly assume that such arguments carry
some weight.

6.4.4 Simple example, N = 2

For two particles, N = 2, the comparison of the exact formulation for symmetriza-
tion with the approximate form can be performed rather directly. With ′ ≡ ˆx xP12 ,
the exact result is

σ σ
χ

α ϕ α ϕΦ = ± ′ ′±
±x q q( )

1

2
( ) ( ) ( ) ( ) . (6.69)n s

n s

s n s n,

,

⎡⎣ ⎤⎦

The approximation gives

σ σ

σ σ

σ σ

σ σ

χ
α ϕ α ϕ

χ
α α ϕ ϕ

α α ϕ ϕ

χ
α ϕ α ϕ

Φ =
˜

˜ ˜ + ˜ ˜

=
˜

+ ′ ± ′

+ − ′ ∓ ′

=
˜

± ′ ′

±
±

+ ± − ∓

±

±

{ }

{ }

x q q

q q

q q

q q

( )
1

( ) ( ) ( ) ( )

1

2
{ ( ) ( )} ( ) ( )

{ ( ) ( )} ( ) ( )

1
( ) ( ) ( ) ( ) .

(6.70)

n s
n s

s n s n

n s

s s n n

s s n n

n s

s n s n

,

,

,

,

⎡⎣ ⎤⎦

⎡⎣
⎤⎦

⎡⎣ ⎤⎦
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This is the same as the exact form. (Evidently in this case χ χ˜ =± ±2n s n s, , .)
One can illustrate the approximation further by making direct contact with

conventional electronic orbital theory for the simple case of two fermions, N = 2,
=S 1/2. In this case the symmetrized, un-normalized spin basis functions are

σα α σ α σ α σ α σ

δ δ δ δ

˜ ≡
√

±

=
√

±σ σ σ σ

±( )
1

2
{ ( ) ( ) ( ) ( )}

1

2
{ },

(6.71)

s s s s

s s s s

s 1 2 2 1

, , , ,

1 2 1 2

1 1 2 2 1 2 2 1

and the symmetrization or overlap factor is

∑χ δ= ± 〈 ˆ ∣ 〉 = ±
ˆ

± s s( 1) P 1 . (6.72)
P

p
s ss ,1 2

This may be re-written to show the same and different state occupancies explicitly,

σα
δ

δ δ
δ

δ δ δ

δ δ δ
δ δ δ

δ δ δ δ
δ δ δ

˜ =
√

± +
¯

√
¯ ±

=
√

+
¯

√
¯ ± ¯

=
√

+
¯

√

¯
¯ − ¯

σ σ

σ

σ

σ σ σ σ

σ σ σ σ

σ σ

σ σ σ σ

±( )
2

[ ]
2

[ ( )]

2

2
0 2

[ ]

2

2
0 2 [ ].

(6.73)

s s s s
s s

s s s s
s s

s s s s

s s

s s s

s

s

,
, ,

,
, , ,

, , ,
, , ,

, , , ,

, , ,

1 2 1 2
1 2 1 1 1 2

1 2 1 2
1 2 1 1 1 1

1 2 1 2 1 2

1 2 1 1 1 1
⎪

⎪

⎧⎨⎩
⎧⎨⎩

⎧
⎨
⎩

Here and throughout, the complementary Kronecker delta is δ δ¯ ≡ −1j k j k, , .
For the basis functions in position one can consider single-particle states,

ϕ ϕ ϕ=q q q( ) ( ) ( )n n n1 21 2
. In the case of electronic orbitals, typically = n l mn { , , }j j j j .

Then

∑χ δ= ± 〈 ˆ ∣ 〉 = ±
ˆ

± n n( 1) P 1 , (6.74)
P

p
n n n,1 2

and

ϕ ϕ ϕ ϕ ϕ

δ ϕ ϕ

δ
ϕ ϕ ϕ ϕ

˜ =
√

±

=
√

+
¯

√
±

±
q q q q q

q q

q q q q

( )
1

2
( ) ( ) ( ) ( )

2

2 ( ) ( )

0

2
( ) ( ) ( ) ( ) .

(6.75)

n n n n n

n n n n

n n
n n n n

1 2 2 1

, 1 2

,
1 2 2 1

1 2 1 2

1 2 1 2

1 2

1 2 1 2

⎡⎣ ⎤⎦
⎧⎨⎩

⎡⎣ ⎤⎦

On the first line of the right-hand side of the final equality, the upper line
ϕ ϕq q2 ( ) ( )n n1 21 2

is for bosons (the superscript + on the left-hand side), and the lower
line 0 is for fermions (the superscript −). Shortly use will be made of a result that
follows from this, namely
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ϕ ϕ δ ϕ ϕ

δ
ϕ ϕ
ϕ ϕ

˜ ± ˜ =

+ ¯

+ −
q q q q

q q

q q

( ) ( ) 2 ( ) ( )

2
( ) ( )

( ) ( ).

(6.76)
n n n n n n

n n
n n

n n

, 1 2

,
1 2

2 1

1 2 1 2

1 2

1 2

1 2
⎪

⎪⎧⎨
⎩

The left-hand side is the sum and difference of the basis functions for bosons and for
fermions.

The overall normalization factor is

χ
δ δ δ δ
δ δ δ δ
δ δ

˜ =
+ + + − −
+ − + − +

= ±

± (1 )(1 ) (1 )(1 )

(1 )(1 ) (1 )(1 )

2(1 ).

(6.77)
s s s s

s s s s

s s

n s
n n n n

n n n n

n n

,
, , , ,

, , , ,

, ,

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

⎧⎨⎩

For fermions, this vanishes if both are in the same state (i.e., both spin state and
energy state). Since the normalization factor appears in the denominator of Φ± x( )n s,

as the square root, the symmetrized spin-position basis function, Φ− x( )n s, , also
vanishes in this case.

Putting these together, the anti-symmetrized two fermion wave function is

σ

σ σ

ψ

χ
α ϕ α ϕ

χ
δ δ ϕ

δ
χ

δ δ ϕ ϕ

δ δ ϕ ϕ

χ
δ δ ϕ

δ
χ

δ δ δ ϕ ϕ

δ ϕ ϕ

δ
χ

δ δ δ ϕ ϕ

δ ϕ ϕ

δ δ
δ

ϕ ϕ ϕ ϕ

δ
δ δ ϕ ϕ

δ
δ δ δ ϕ ϕ δ ϕ ϕ

=
˜

˜ + ˜

=
√
˜

˜ +
¯

˜
˜ + ˜

+ ˜ − ˜

=
√
˜

˜ +
¯

˜
√

+ ¯ √

−
¯

˜
√

+ ¯ √

=
¯

√
−

+
¯

−
¯

+ ¯

σ

σ

σ

σ σ

σ σ

σ σ

σ σ

σ σ

σ σ

−

−
+ − − +

−
−

−
− +

− +

−
−

−

−

{

}
{

}

{ }

{ }

{ }

q

q q

q q q

q q

q q q

q q

q q

q q

q q q q

q q

q q q q

( , )

1
( ) ( ) ( ) ( )

2
( )

1

2
( ) ( )

( ) ( )

2
( )

2
2 ( ) ( )

2 ( ) ( )

2
2 ( ) ( )

2 ( ) ( )

2
( ) ( ) ( ) ( )

2
( ) ( )

2
( ) ( ) ( ) ( ) .

(6.78)

s s
s s

s s

s s

s s
s s

s s

s s
s s

s s

s s
s s

s s
s s

n s

n s
s n s n

n s
s n

n s
n n

n n

n s
s n

n s
n n n n

n n n n

n s
n n n n

n n n n

s
n n

n n n n

n n

n n n n n n n n

,

,

,
, ,

,

,
, ,

, ,

,
, ,

,

,

, , , 1 2

, 1 2

,

,

, , , 1 2

, 2 1

, ,
,

1 2 2 1

,
, , 1 2

,
, , , 1 2 , 2 1

1 2
1 2

1 1 2 2

1 2 2 1

1 2
1 2

1 1 2 2 1 2 1 2

1 2 1 2

1 2
1 2 2 1 1 2 1 2

1 2 1 2

1 2
1 2

1 2 1 2

1 2
1 1 2 2 1 2

1 2
1 2 2 1 1 2 1 2 1 2 1 2

⎡⎣ ⎤⎦

⎡⎣
⎤⎦

⎡⎣ ⎤⎦
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For =s s1 2 this is

σψ δ δ ϕ ϕ ϕ ϕ= ¯ −σ
− { }q q q q q( , )

1

2
( ) ( ) ( ) ( ) . (6.79)n s s n n n n n n, , , 1 2 2 11 2 1 2 1 2

This vanishes if =n n1 2, which is just the Fermi exclusion principle.
For =n n1 2 one has

σψ
δ

ϕ ϕ δ δ δ δ=
¯

√
−σ σ σ σ

− q q q( , )
2

( ) ( )[ ]. (6.80)
s s

s s s sn s n n,
,

1 2 , , , ,
1 2

1 2 1 1 2 2 1 2 2 1

This vanishes if =s s1 2, which is again the Fermi exclusion principle. The term in
brackets is equivalent to the so-called singlet state.

For ≠n n1 2 one has

σψ δ δ ϕ
δ

δ δ ϕ ϕ

δ
δ δ ϕ ϕ

= ˜ +
¯

√

−
¯

√

σ σ σ

σ σ

− −
q q q q

q q

( , ) ( )
2

( ) ( )

2
( ) ( ).

(6.81)

s s
s s

s s

s s
s s

n s s n n n

n n

, , ,
,

, , 1 2

,
, , 2 1

1 2
1 2

1 1 2 2 1 2

1 2
1 2 2 1 1 2

These terms are equivalent to the so-called triplet state (the first term represents the
++ and−− states, and the second and third terms are a superposition of the +− and
−+ state).

References
Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions 9th edn (New York:

Dover)
Attard P, Jepps O G and Marčelja S 1997 Information content of signals using correlation

function expansions of the entropy Phys. Rev. E 56 4052
Attard P 1999 Markov superposition expansion for the entropy and correlation functions in two

and three dimensions Statistical Physics on the Eve of the Twenty-First Century ed M T
Batchelor and L T Wille (Singapore: World Scientific)

Attard P 2002 Thermodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation
(London: Academic)

Attard P 2018 Entropy Beyond the Second Law. Thermodynamics and Statistical Mechanics for
Equilibrium, Non-Equilibrium, Classical, and Quantum Systems (Bristol: IOP Publishing)

Attard P 2019 Fermionic phonons: exact analytic results and quantum statistical mechanics for a
one dimensional harmonic crystal arXiv:1903.06866

Debye P 1912 Zur theorie der spezifischen wärme (The theory of specific heat) Ann. Phys. 344 789
Einstein A 1907 Plancksche theorie der strahlung und die theorie der spezifischen wärme (Planck’s

theory of radiation and the theory of specific heat) Ann. Phys. 22 180
Merzbacher E 1970 Quantum Mechanics 2nd edn (New York: Wiley)
Messiah A 1961 Quantum Mechanics vols 1 and 2 (Amsterdam: North-Holland)
Pathria R K 1972 Statistical Mechanics (Oxford: Pergamon)

Quantum Statistical Mechanics in Classical Phase Space

6-28

https://doi.org/10.1103/PhysRevE.56.4052
http://arxiv.org/abs/1903.06866
https://doi.org/10.1002/andp.19123441404
https://doi.org/10.1002/andp.19063270110


IOP Publishing

Quantum Statistical Mechanics in Classical Phase Space

Phil Attard

Chapter 7

Phase space formalism for the partition
function and averages

It is shown that the formally exact transformation of the quantum partition function
to classical phase space gives rise to commutation and symmetrization functions.
The former accounts for the non-commutativity of the position and momentum
operators in the Maxwell–Boltzmann operator. The latter generalizes particle state
occupancy rules to the continuum that is classical phase space.

The same commutation function can be used for the statistical average of any
pure function of the position operator or of the momentum operator, or the sum
thereof. In the dilute loop approximation, the symmetrization function can be
written as a series of products of disconnected permutation loops, which series can
be exponentially resummed. The average energy can be written as a series of single-
loop fluctuation averages, and similarly for other thermodynamic derivatives and
averages.

7.1 Partition function in classical phase space
The aim of this chapter is to formulate without approximation quantum statistical
mechanics in classical phase space. To this end expressions for the grand canonical
equilibrium partition function and statistical averages are derived. One of the major
issues that will recur in later chapters is accounting for the non-commutativity of
position and momentum operators in the transformation to classical phase space, a
point in which represents the simultaneous specification of the particles’ positions
and momenta. A second issue is the accounting for the consequences of wave
function symmetrization for bosons and fermions in the continuum of states that is
classical phase space.

In section 3.3, it was shown that the symmetrization factor correctly accounted
for particle statistics and state occupancy so that a sum over distinct allowed states
could be written as a sum over all states with it as weighting factor. At the end of

doi:10.1088/978-0-7503-4055-7ch7 7-1 ª IOP Publishing Ltd 2021

https://doi.org/10.1088/978-0-7503-4055-7ch7


that section, equation (3.29) showed that one did not have to invoke explicitly the
symmetrization factor. Instead one could include directly in the sum the symme-
trized permutations of the basis functions

∑

∑ ∑

∑ ∑

χ ϕ ϕ

ϕ ϕ

ϕ ϕ

′ ˆ =
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〈 ∣ ˆ ∣ 〉
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1
( 1) (P ) ( ) ( ) .

(7.1)

n

n

n

P ,P

P

p p

p

n n n

n n

n n

2

Here ϕn is any complete orthonormal set of unsymmetrized basis functions. The final

equality assumes that the operator is symmetric, ˆ ˆ = ˆf fr r(P ) ( ), so that after a change
in the dummy position integration variable, ˆ ″ ⇒ ″r rP , and dummy summation
permutation operator, ˆ ′ ˆ ″ ⇒ ˆ−P P P1 , the summand is independent of ˆ ″P and the sum
may be replaced by a factor of !N . This is a fecund way to view the trace as it
manifests the fundamental axiom that the wave function must be symmetrized
without resorting to the lemma concerning the restricted occupancy of single-particle
states. However it must be observed that in order to get correctly the factors of

!N1/( )2 and !N1/ in the second and third equality it is necessary to derive the result
from the first equality involving the symmetrization factor. It has already been
proven that this factor enables the trace to be written as an unrestricted sum over all
states, sections 2.3.2 and 3.3. If one simply takes a guess at the form of the second
equality, one is liable to get this wrong (Kirkwood 1933, equation (10); see section
8.2.2 below). In any case this result provides the starting point for transforming the
partition function to classical phase space.

7.1.1 Grand partition function

Consider N spinless particles in d dimensions confined to a hypercube of volume
=V Ld . The position representation will be invoked, = …r r r r{ , , , }N1 2 , with
= …r r rr { , , , }j jx jy jd . The unsymmetrized position and momentum eigenfunctions

are respectively (Messiah 1961)

δ∣ 〉 = − ∣ 〉 =
− · ℏe

V
q r q p( ), and . (7.2)

N

p r/i

/2

The position eigenvalues belong to the continuum. The momentum eigenvalues are
discrete with spacing πΔ = ℏ L2 /p per particle per dimension (Messiah 1961); almost
immediately the continuum limit for this will be taken. Each set of eigenfunctions is
complete.

These will now be used to transform the grand partition function to classical
phase space, after which each stage of the derivation will be discussed in detail. The
grand partition function is
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Here = βμz e is the fugacity, β = k T1/ B is the inverse temperature, h is Planck’s
constant, and Γ = p q{ , } is a point in classical phase space. The grand partition
function is related to the canonical partition function as μΞ =± V T( , , )
∑ =

∞ ±z Z N V T( , , )N
N

0 .
The first equality here has the appearance of von Neumann trace form for the

partition function (Messiah 1961, Merzbacher 1970, Pathria 1972). It arises from the
collapse of the total wave function due to entanglement of the subsystem with
the reservoir upon energy (and particle) exchange (see chapter 12, and also Attard
2015, Attard 2018a). The prime on the trace signifies that it is over unique states,
which is to say that each distinct state can only appear once, or if more than once
each occurrence must have appropriately reduced weight. Not all workers avert to
this requirement.

The second equality writes the trace as a sum over momentum states. It also
symmetrizes the eigenfunctions by summing over all particle permutations P̂, with
the upper (plus) sign for bosons, the lower (minus) sign for fermions, according to
the parity p of the permutation. The factor of !N in the denominator corrects for the
double counting of the states due to this symmetrization, equations (3.29) and (3.52).
Kirkwood (1933) gives the equivalent of this second equality as his equation (10) for
Z N V T( , , ), although he erroneously neglects a factor of !N in the denominator (cf
the transition from the second to the third equality in equation (7.1); see also section
8.2.2 below). The present formulation of particle statistics is formally exact, and
carries over to the continuum where it would otherwise be impossible to enforce
particle state occupancy rules.

The third equality inserts the completeness condition ∫ δ∣ 〉 〈 ∣ = ′ − ″q q q r rd ( ),
equation (3.20). This draws a distinction between the position representation
coordinate r and the position eigenvalue that appears in phase space q. This
distinction, and q itself, is not present in the second equality, but is important
because it will allow commutation effects and symmetrization effects to be
encapsulated in separate phase functions, and it will be essential to the local state
expansion in chapter 10. The position basis functions are not symmetrized as they
were in equation (3.36) because the basis functions for the whole position space are
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required here. Introducing the completeness condition to the left of the Maxwell–
Boltzmann operator as here produces an asymmetry in position and momentum that
is discussed shortly.

The fourth equality transforms to the momentum continuum. The factor from the
momentum volume element, Δ−dN

p , combines with the factor of = 〈 ∣ 〉 〈 ∣ 〉−V q p p qN

that cancels the denominator introduced here to give the prefactor −h dN . This is now
an integral over classical phase space.

The fifth equality writes the phase space integral in terms of the commutation
function ωp, and symmetrization function η ±

q , both of which will be defined explicitly
next. If at the third equality the completeness condition had instead been inserted to
the right of the Maxwell–Boltzmann operator one would have ended up with
position and momentum swapped in these subscripts,

H∫∑ ω ηΓ Γ ΓΞ =
!=

∞
β Γ± − ±z

h N
ed ( ) ( ). (7.4)

N 0

N

dN
( )

q p

Obviously the partition function must remain unchanged.
The symmetrization functions are defined as

∑η ≡
〈 ∣ 〉

± 〈 ˆ ∣ 〉
ˆ

± p q
p q

p q( , )
1

( 1) P , (7.5)
P

p
q

and

∑η ≡
〈 ∣ 〉

± 〈 ˆ ∣ 〉
ˆ

± p q
q p

q p( , )
1

( 1) P . (7.6)
P

p
p

Since 〈 ˆ ∣ 〉 = 〈 ∣ ˆ 〉−p q p qP P
1 , it is evident that these are just the complex conjugate of

each other, η η=± ± *p q p q( , ) ( , )p q . Also, since ∣ 〉 ≡ − · ℏe Vp /i Np r/ /2, η η= −± * ±p q p q( , ) ( , )p p .
The symmetrization function is related to, but is different from, the symmetrization
or overlap factor, χ±

n , introduced in the preceding chapters. The former is a sort of
asymmetric version of the latter. The symmetrization function will be discussed in
greater detail below, section 7.2.

The commutation function introduced here is very closely related to a function
introduced by Wigner (1932) and analyzed by Kirkwood (1933). Although the
application differs, it has essentially the same defining equation,

H
H

ω = 〈 ∣ ∣ 〉
〈 ∣ 〉

β
β

−
− ˆ

e
e

p q
q p

q p
( , ) , (7.7)p q( , )
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H
H
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β
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−
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e
e

p q
p q

p q
( , ) . (7.8)p q( , )

q
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For the complex conjugates one has ω ω= *p q p q( , ) ( , )p q , and also
ω ω= −*p q p q( , ) ( , )p p . High temperature expansions for the commutation function
have been given (Wigner 1932, Kirkwood 1933, Attard 2018b) and will be treated in
chapter 8. Other expansions for the commutation function will be derived in
chapters 9, 10 and 11.

The commutation function in phase space can also be written as a series of energy
eigenfunctions and eigenvalues, Ĥ∣ 〉 = ∣ 〉En nn . Using the completeness properties of
these one obtains (Attard 2018b)

H
H

H∑

∑

ω = 〈 ∣ ∣ 〉
〈 ∣ 〉
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〈 ∣ 〉
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q p
q n n p

q p
q n n p

( , )

1

1
,

(7.9)
n

n

E

p q( , )
p

n

and analogously for ωq. There is reason to believe that this formulation in terms of
energy eigenvalues and eigenfunctions is useful in computational applications, as
will be demonstrated in chapters 10 and 11.

It is clear that the grand partition function is real, because the imaginary parts of
ω and of η± are odd in momentum. Furthermore, as discussed for equation (7.4), the
partition function is unchanged by the replacement ω η ω η⇒± ±

p q q p . Since these are
the complex conjugate of each other, this proves that the partition function is real.
On the occasion below we shall omit the subscripts on these, in which case it is
implicit that whichever is used for ω, the other must be used for η±.

The integrand of the grand partition function, H ω ηΓ Γβ Γ− ±e ( ) ( )( )
p q , can be inter-

preted as the weight density of a point in classical phase space. In classical statistical
mechanics and in classical probability theory it is essential that the weight density be
real and non-negative. But in quantum statistical mechanics there is no such
requirement, and in general the quantum weight density of phase space is complex.
Any problems associated with ω and η± being complex are practical and computa-
tional rather than fundamental and principled.

Interestingly enough, when integrated over momenta the consequent position
weight density is real and non-negative, and when integrated over positions the
consequent momentum weight density is real and non-negative. Proof: The
Maxwell–Boltzmann operator is Hermitian, and integrating over one is equivalent
to the diagonal expectation value or matrix element of the operator with respect to
the other label. Integrating over the positions gives the momentum weight density as
proportional to H〈 ∣ ∣ 〉 = ∑ ∣〈 ∣ 〉∣β β± − ˆ ± − ±e ep p n pE

n
2n , which is a sum of non-negative, real

terms. Similarly, integrating over the momenta gives the position weight density as
proportional to H〈 ∣ ∣ 〉 = ∑ ∣〈 ∣ 〉∣β β− ˆ −e eq q n qE

n
2n , which again is a sum of non-negative,

real terms.
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7.1.2 Statistical averages

The grand canonical average of an operator can be transformed to phase space in a
derivation identical to that used above for the grand partition function. One obtains

H

H∫∑ ω ηΓ Γ Γ Γ

ˆ =
Ξ

′ ˆ

=
Ξ !=

∞

β
β

β Γ

±
±

− ˆ

±
− ±

{ }A e A

z
h N

e A

1
TR

1
d ( ) ( ) ( ).

(7.10)

N 0

z V

N

dN

, ,

( )
A,p q

There are in fact six equivalent versions of this average, corresponding to the !3
permutations of the order of the three operators Hβ− ˆe , ∣ 〉〈 ∣q q , and Â. (One could
probably make this twelve by swapping position and momentum for the initial
trace.) We shall examine only four in detail: two with ∣ 〉〈 ∣q q after (as here) or before
(swap the subscripts p and q on the commutation and symmetrization functions)

H ˆβ− ˆe A, times two with Â after (as here) or before (to be indicated by a tilde) Hβ− ˆe .
The commutation functions for the average are defined by
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Swapping the order of the operators gives ω̃,
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In the simplest case the operator being averaged is an ordinary function of the
momentum and position operators, ˆ = ˆ ˆA A p q( , ), which leads directly to the phase
space function A p q( , ) appearing as here. More generally, one should probably use the
right-hand side to define the product ωA p q( )( , )A,p , etc, as a single phase space function.

Assume that the operator is Hermitian, ˆ = ˆ†
A A , that the phase function is real,

= *A Ap q p q( , ) ( , ) , and that the average is real. Taking the complex conjugate of the
defining equation yields

H
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(7.15)
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Of course if Hˆ = ˆA A( ), it commutes with the Maxwell–Boltzmann operator. In such
a case ω ω˜ =A,q A,q, and ω ω˜ =A,p A,p.

In general
ω ω ω ωΓ Γ Γ Γ≠ ≠( ) ( ) and ( ) ( ). (7.16)A,q q A,p p

Unlike classical statistical mechanics, for quantum statistical mechanics the phase
space weight depends upon the function being averaged. However in the case of
‘pure’ functions, from the definitions one can show that

ω ω
ω ω

Γ Γ
Γ Γ

ˆ = ˆ =
˜ =

A A pif ( ) then ( ) ( )

and ( ) ( ).
(7.17)A,p p
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And also that

ω ω
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and ( ) ( ).
(7.18)A,q q
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One can see that any linear combination of pure functions of the position and
momentum operators has an average that can be arranged as a linear combination
of averages with the original commutation function, ωp or ωq. This is now illustrated
explicitly for the energy operator.

7.1.3 Energy

The first expression for the average energy takes Hˆ = ˆA and uses Hω ,p or Hω ,q, giving
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Obviously because the energy operator commutes with the Maxwell–Boltzmann
operator, H Hω ω˜ =,q ,q and H Hω ω˜ =,p ,p.

The Hamiltonian is the sum of the kinetic and potential energies, which is indeed
a linear combination of pure functions,

H Kˆ = ˆ + ˆUp q( ) ( ). (7.20)

Hence one can also write
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The penultimate equality follows by taking the complex conjugate of the average
potential energy in the second equality. The final equality follows by taking the
complex conjugate of the average kinetic energy in the second equality. One sees
from these that one can obtain the average energy using the same commutation
function as for the partition function.

Differentiating with respect to β− the defining equation for ωp, equation (7.7),
one obtains

H H HH H
H

H
Hω

ω
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ωΓ Γ
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p
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,p

since H Hω ω˜ =,p ,p. Hence HHω ω ω β= − ∂ ∂− /,p p
1

p . Inserting the left-hand side into
equation (7.19), and comparing this with equation (7.21) one sees that in order for
the two expressions for the average energy to be equal one must have
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h N
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N 0
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An analogous result holds for ω βΓ∂ ∂( )/q .

7.1.3.1 A useful result
It is now proven that this vanishes individually for each particle number N and for
each permutation P̂. This turns out to be necessary for thermodynamic consistency,
as will be explained below.

With ∣ 〉 = − − · ℏV ep N p r/2 /i , one has that H Hˆ ∣ 〉 = ∣ 〉p p r p( , ) . Also since the permuta-
tions are between identical particles, H H H= ˆ = ˆp q p q p q( , ) (P , ) ( , P ), for any
permutation P̂. (This assumes that there are no velocity dependent forces, which
is the usual case. Lorentz forces need thought.) Hence

H H〈 ˆ ∣ 〉 = 〈 ˆ ∣ ˆ ∣ 〉p q p q p q( , ) P P . (7.24)

With this one has
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The term in braces vanishes for each N and for each permutation P̂, as was to be
shown. This result will prove important shortly. It also vanishes for each momentum
configuration p, which will not be required.

7.2 Loop expansion, grand potential and average energy
7.2.1 Symmetrization loops

As discussed in section 3.4.2, any particular particle permutation operator can be
factored into loop permutation operators, where a loop is a closed connected
sequence of successive pair transpositions. Hence the sum over all permutation
operators can be written as the sum over all possible factors of loop permutations,
equation (3.44)

∑ ∑ ∑ ∑± ˆ = ˆ ± ′ ˆ + ′ ˆ ˆ + ′ ˆ ˆ ± …
ˆ

( 1) P I P P P P P (7.26)
i j i j k i j k lP , , , , , ,

p
ij ij jk ij kl

Here P̂jk is the transpose of particles j and k. The prime on the sums restrict them to
unique loops, with each index being different. The first term is just the identity. The
second term is a dimer loop, the third term is a trimer loop, and the fourth term
shown is the product of two different dimers.

With this, the symmetrization function, η Γ±( )q =∑ ±ˆ ( 1) p
P 〈 ˆ ∣ 〉 〈 ∣ 〉p q p qP / , is the sum

of the expectation values of these loops. The monomer symmetrization function is
obviously unity, η ≡ 〈 ∣ 〉 〈 ∣ 〉 =p q p q/ 1q

(1) .
The dimer symmetrization function in the microstate Γ for particles j and k is

η =
±〈 ˆ ∣ 〉

〈 ∣ 〉

=
±〈 ∣ 〉〈 ∣ 〉
〈 ∣ 〉〈 ∣ 〉

= ±

±

− · ℏ − · ℏe e

p q

p q
p q p q

p q p q

P

.

(7.27)

jk
jk

k j j k

j j k k

q q p q q p

q;
(2)

( ) /i ( ) /ik j j j k k

Recall that ∣ 〉 ≡ − · ℏe Vp /i Np r/ /2. Note that since the basis functions are the product of
single-particle functions, the expectation value factorizes leaving only the permuted
particles to contribute (cf section 3.4.3).

Similarly the trimer symmetrization function for particles j, k, and l is

η =
〈 ˆ ˆ ∣ 〉

〈 ∣ 〉

=
〈 ∣ 〉〈 ∣ 〉〈 ∣ 〉
〈 ∣ 〉〈 ∣ 〉〈 ∣ 〉

=

±

− · ℏ − · ℏ − · ℏe e e

p q

p q
p q p q p q

p q p q p q

P P

.

(7.28)

jkl
jk kl

k j j l l k

j j k k l l

q q p q q p q q p

q;
(3)

( ) /i ( ) /i ( ) /ij k k k l l l j j
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In general the l-loop symmetrization function is

∏η = ±
=

−

…
± − · ℏ · ℏ+e e( 1) , (7.29)

j

l

1

1

l
l l q p q p

q;1
( ) 1 /i /il l j j j1 1,

where ≡ −q q qjk j k. Recall that η η= *
p q .

The product of Fourier exponentials that occurs here makes each specific l-loop
symmetrization function highly oscillatory unless successive particles around the
loop are close together in either momentum or position space. This means that the
only non-zero contributions to phase space integrals come from such compact loops,
since otherwise their oscillations would average to zero. (See equation (7.38) below
for an explicit example.)

With these loop symmetrization functions, the symmetrization function itself can
be written as a series of loop products,

∑ ∑ ∑η η η η ηΓ = + ′ + ′ + ′ + ⋯± ± ± ± ±( ) 1 (7.30)
ij ijk ijkl

ij ijk q ij klq q;
(2)

q;
(3)

;
(2)

q;
(2)

Here the superscript is the order of the loop, and the subscripts are the atoms
involved in the loop. The prime signifies that the sum is over unique loops (i.e., each
configuration of particles in loops occurs once only) with each index different (i.e.,
no particle may belong to more than one loop).

Figure 7.1 is a diagrammatic representation of the loop expansion of the
symmetrization function. The filled circles represent a sum over particle labels,
which must obey certain constraints, and the bonds represent a Fourier pair factor.
The full power of such diagrams becomes apparent upon integration over phase
space. These are the analog of the Mayer f-bond diagrams that have proved useful in
classical statistical mechanics (Hansen and McDonald 1986, Attard 2002).

In this one can identify the terms that consist solely of a single loop, and define the
single-loop symmetrization function,

∑ ∑ ∑

∑

η η η η

η

Γ

Γ

≡ ′ + ′ + ′ + ⋯

≡

◦

=

∞
◦

± ± ± ±

±

( )

( ).
(7.31)

jk jkm jkmn

l 2

jk jkm jkmn

l

q q;
(2)

q;
(3)

q;
(4)

q
( )

This gives the single l-loop symmetrization function η Γ
◦ ± ( )l

q
( ) as the sum over the

! − !N N l l/( ) distinct arrangements of the l particle labels. This is sketched in
diagrammatic terms in figure 7.2. In taking the average of each single-loop

Figure 7.1. Diagrammatic representation of the loop expansion of the symmetrization function, equation
(7.30).
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symmetrization function, since the particles are identical, all the terms in the sum
over particles gives the same average value. Therefore, what will be shown next to be
the loop grand potential can be obtained by evaluating any one arrangement, say
particles … l1, 2, , ,

∑

β η

η

η

Γ− Ω ≡

= ′

= !
− !

◦

…

ω
ω

ω

ω

± ±

…
±

…
±N

N l l

( )

( )
.

(7.32)
j j

l l

j j
l

l
l

( )
q

( )

q;
( )

q;1
( )

l

l

p
p

1

1

p

p

Here and below we often attach subscripts to the grand partition function, grand
potential, and statistical average to indicate the quantum phase functions that are
being used in the integrand. The full quantum grand potential is written Ω ≡ Ωω η

±±
p q

,

and the classical grand potential, which has ω ηΓ Γ= =±( ) ( ) 1p q , is Ωcl.

7.2.2 Grand potential

The grand potential is the thermodynamic free energy of an open equilibrium system
(i.e., one in which the subsystem exchanges energy and particles with a reservoir). In
general the grand potential is the logarithm of the grand partition function,

μ μΩ = − Ξ± ±V T k T V T( , , ) ln ( , , ). (7.33)B

This is of course just the usual relationship linking thermodynamic free energies to
statistical mechanics.

In the present section an expression for the grand potential is derived that invokes a
factorized form for integrals involving the symmetrization function. This factorization
ansatz is exact for non-interacting systems, section 3.4.3, and it gives the known results
for the quantum ideal gas, section 4.1, and for a system of non-interacting quantum
harmonic oscillators, section 4.2. The ansatz neglects correlations between loops in the
interacting case, and in this case it is expected to be exact for dilute loops, as is
discussed in subsection 7.2.2.1 below. The thermodynamic limit is the large volume
limit taken at constant fugacity or density. For interacting bosons the factorization
ansatz appears to break down at low temperatures, section 5.4.

In fact the factorization ansatz is not essential for the theory, since one can just
take the grand potential from the logarithm of the partition function, the latter

Figure 7.2. Diagrammatic representation of the single loop version of the symmetrization function, equation
(7.31).
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having been evaluated using the full series for the symmetrization function, and
similarly for any average. Undoubtedly, however, it would be somewhat tedious to
calculate the series in full, and the exponential that results from the factorization is
convenient and much more rapidly converging.

The monomer grand partition function comes from setting η =± 1,

H∫∑ ωΞ =
!=

∞

ω
β± −z

h N
ep q p qd d ( , ). (7.34)

N 0

N

dN
p q( , )

pp

Recall that the imaginary part of ωp is odd in momentum, and that ω ω=*
p q. Hence

the subscript p or q (and also the superscript ±) is redundant in the monomer case.
Nevertheless it seems best to signify explicitly which of these commutation functions
is being used.

The ratio of the full, Ξ ≡ Ξω η
± ±

p q
, to the monomer, Ξωp

, grand partition function is
the monomer average of the symmetrization function,

∑ ∑ ∑

∑ ∏

∏ ∑

∏

η

η η η η

η η

η

η

η

Ξ

Ξ
=

= + ′ + ′ + ′ + ⋯

= +
− !

+ !
− !

+ !
− !

+ ⋯

=
!

!
− !

=
!

!
− !

≡

=

∞

=

∞

=

∞

=

∞

ω η

ω ω

ω ω ω

ω ω

ω

ω

ω

β

±

± ± ± ±

± ±

±

…
±

…
±

− Ωω

±

±

N
N

N
N

N
N

m
N

N l l

m
N

N l l

e

1

1
( 2) 2 ( 3) 3

1
2 ( 2) 2

1
( )

1
( )

.

(7.35)

ij ijk ijkl

m l

l m

l

{ } 2

2 0

2

ij ijk ij kl

l
l

l
m

l
l

l
m

q

q;
(2)

q;
(3)

q;
(2)

q;
(2)

q;12
(2)

q;123
(3)

q;12
(2)

2

q;1
( )

q;1
( )

l

l

l

l

l

p q

p p

p p p

p p

p

p

p

p
( )

The third and following equalities write the average of the product as the product of
the averages. For example, the double dimer term has been written as

η η η〈 ! − ! 〉 = 〈 ! − ! 〉ω ω
± ± ±N N N N( /8( 4) ) ( /2( 2) ) /2q;12

(2)
q;34

(2)
q;12

(2) 2
p p

, and similarly for other
products. This is valid in the thermodynamic limit, since the product of the average
of two loops scales as V2, whereas the correlated interaction of two loops scales as V,
and similarly for all the other products. As mentioned above, only compact loops
contribute to the integral; see the discussion on the excess dimer correlation in
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subsection 7.2.2.1, as well as section 5.6 for a counter-example. The combinatorial
factor accounts for the number of unique loops in each term.

The grand potential is given by the logarithm of the partition function
β− Ω = Ξ± ±ln . The monomer grand potential is given by β− Ω = Ξω ω

± ±ln
p p

. For the
monomer term the superscript ± is redundant and will usually be dropped.

The difference between the full grand potential and the monomer grand potential
is just the series of loop grand potentials,

∑

∑

β

η

β

− Ω − Ω =
Ξ

Ξ

= !
− !

≡ − Ω

=

∞

=

∞

ω η ω
ω η

ω

ω

ω

…
±

±

±

±

N
N l l

[ ] ln

( )

.

(7.36)
l

l

2

2

l
l

l

q;1
( )

( )

p q p

p q

p

p

p

Here ηq is paired with ω ;p one could alternatively pair ηp and ωq. These give the
same, real, value for the grand potential.

This factorization of the grand partition function and series for the grand
potential is in essence based on classical concepts of short-ranged correlations. It
presupposes that the commutation function is in some sense a localized function.

7.2.2.1 Excess dimer correlation
Above, the product of two dimers was written as

∑ η η η′ = !
− !

ω ω

± ± ±N
N

1
2 ( 2) 2

. (7.37)
jkmn

jk mn jkq;
(2)

q;
(2)

q;
(2)

2

p
p

The prime on the sum indicates that each configuration of loops occurs once only,
and that no two indeces are equal. On the right-hand side the indeces are arbitrary
apart from ≠j k. The right-hand side is an approximation because it treats the two
sums on the left-hand side as independent.

With η =± − · ℏejk
p q

q;
(2) /ijk jk , in the case of a classical average (i.e., ω = 1p ), one can

perform the momentum integrals by completing the square,

H∫

∫

∫

η Γ= ±
!

=
±

!

=
±

!

β

β β β

β π π

Γ±
−

− − · ℏ

−
− − ℏ − ℏ

−
− − Λ − Λ

Z
h N

e e

Q

V N
e e e

Q

V N
e e e

q

q

d

d

d ,

(7.38)

jk N

N
U mq mq

N
U q q

p q

q

q

q;
(2)

cl

cl
1

3
( ) /i

cl
1

( ) /2 /2

cl
1

( ) / /

jk jk

jk kj

jk kj

2 2 2 2

2 2 2 2
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where the thermal wavelength is π βΛ ≡ ℏ m2 /2 . The integrand is zero except for
separations less than the thermal wavelength, ≲ Λqjk . This means that effectively
particle j is tied to particle k, which means that a volume integral is lost, so that

Oη ∼± −V( )jkq;
(2)

cl

1 .

It is clear from this that η〈∑′ 〉ω
±

jk jkq;
(2)

p
involves an integral over position space of

the two particle density ρ(2). Recall that in classical statistical mechanics, ρ(2) at large
separations goes asymptotically as the square of the singlet densities. Similarly,

η η∑′
ω

± ±
jkmn jk mnq;

(2)
q;

(2)

p

involves an integral of the four particle density ρ(4), which for

large separations between the pairs goes like ρ ρ ρ∼ q qq q q q( , , , ) ( ) ( )j k m n jk mn
(4) (2) (2) .

Hence in the thermodynamic limit, the relative error in the factorization of the dimer
product vanishes

∑ ∑

∑

η η η

η

′ − ′

′
→ → ∞ =

ω ω

ω

± ± ±

±
V z T

1
2

1
2

0 , , const. (7.39)
jkmn jk mn jk jk

jk jk

q;
(2)

q;
(2)

q;
(2)

2

q;
(2)

2

p p

p

The denominator is O −V( )2 . The numerator is O −V( )3 , because three volume
integrals are lost when all four particles are correlated, which is required for the
difference to be non-zero. An analogous argument holds for the arbitrary product of
arbitrary loops. This justifies the factorization of the symmetrization function in the
thermodynamic limit.

7.2.3 Energy

The most likely energy can be written as the temperature derivative of the grand
potential. As above the latter can be written as a series of loop derivatives. One has

∑
β

β
¯ =

∂ Ω

∂
= ¯

=

∞

ω η
ω η

ω

±
±

±E E . (7.40)
l 1

l( )
p q

p q

p

The monomer term is

H

H
H

H

H

∫∑

β
β β

ω
ω

β
Γ Γ Γ

Γ

¯ =
∂ Ω

∂
=

−∂ Ξ
∂

=
Ξ !

−
∂

∂
=
=

=

∞

ω
ω ω

ω

β

ω

ω

Γ−

E

z
h N

e

ln

1
d ( ) ( )

( )

.

(7.41)
N 0

N

dN
( )

p
p

p

p p

p

p

,p

⎧⎨⎩
⎫⎬⎭

In and about equation (7.22) above, it was shown that HHω ω ω β= − ∂ ∂− /,p p
1

p . It
was also shown in equation (7.25) that the integral of the second part must vanish for
each N and for each permutation P̂. One can therefore interchange Hω ,p and ωp in
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the present monomer integrals, including HΞ = Ξω ωp ,p
. This says that H

¯ = ¯ω ωE Ep ,p
, so

that the commutation function in the subscript is redundant.
For the loops ⩾l 2 one has

H

H

H

H

H
H

∫∑

β

β

β
η

β
β

ω
ω

β
η

β η

β η

Γ

Γ Γ
Γ

Γ

¯ =
∂ Ω

∂

= −∂
∂

!
− !

= − Ω
Ξ

∂Ξ
∂

+
Ξ − !

× −
∂

∂

= Ω ¯ +

= Ω ¯ +

=

∞

◦

◦

ω
ω

ω

ω
ω

ω

ω

β

ω ω
ω

ω ω
ω

Γ

±
±

…
±

±
−

−

…
±

± ±

± ±

E

N
N l l

z h
N l l

e

E

E

( )

1 1
( )

d

( ) ( )
( )

( )

.

(7.42)N l

l
l

l
l

l
N dN

l
l

l l

l l

( )
( )

q, 1
( )

( ) ( )

p
p

q, 1
( )

( )
q

( )

( )
q

( )

p

p

p

p

p

p

p

p p
p

p ,p
,p

⎧⎨⎩
⎫⎬⎭

Recall that η ηΓ = ∑′
◦ ±

… …
±( )l

j j j j
l

q
( )

q;
( )

l l1 1
. Again, equation (7.25) has been applied here,

showing that one can equally use Hω ,p or ωp. This expression has the form of the
average of a fluctuation,

H η η¯ = − ¯ − 〈 〉
◦ ◦

ω ω ω
ω

± ± ±E E , (7.43)
l l l( )

q
( )

q
( )

p p p
p

⎡⎣ ⎤⎦⎡⎣ ⎤⎦
where ⩾l 2, and where either commutation function may be used. This result will be
derived by a different route in section 7.3. below.

7.2.3.1 Heat capacity
The heat capacity at constant volume and fugacity is

∑β
β

β
β

= ∂ ¯
∂

= − ∂ ¯
∂

= − ∂ ¯
∂=

∞
±

± ± ±
C

E
T

k
E

k
E

. (7.44)
l 1

V

l

B
2

B
2

( )

The monomer contribution comes from (ωp is not constant)

H

H H H

H H

H∫∑
β β

ω

ω
β

ω
β

ω
β

Γ Γ Γ∂ ¯
∂

= ∂
∂ Ξ !

= −
∂

∂
¯ − −

∂
∂

= ¯ − −
∂

∂

=

∞

ω

β

ω ω

ω

Γ−E z
h N

e

E

E

1
d ( ) ( )

ln ln

( )
ln

.

(7.45)

N 0

N

dN

(1)
( )

p

p (1) 2 p

(1) 2 2 p

p

p p

p
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The loop contribution ⩾l 2 comes from the derivative of equation (7.42), with
Hω ω⇒,p p,

H

H H

H∫∑
β β

β ω η

β
β

β
ω

β

Γ Γ Γ Γ∂ ¯
∂

= ∂
∂

Ω ¯ +
Ξ − !

= ¯ ¯ + Ω ∂ ¯
∂

+ ¯ ¯ − Ω ¯ − −
∂

∂

ω

β

ω η

Γ
±

± ±
±

−
−

…
±

± ± ± ±

=

∞

◦±

E
E

z h
N l l

e

E E
E

E E E

1
( )

d ( ) ( ) ( )

ln
.

(7.46)

l

l

N dN

l
l

l
l

l
l

( )
(1) ( )

p q;1
( )

( ) (1)
(1)

(1) ( ) (1) 2 p

N lp

l
p q

( )

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎡⎣ ⎤⎦

7.2.4 Average number

Making the usual assumption that most likely values equal average values, in
classical thermodynamics and statistical mechanics the average number is (Attard
2002)

μ
= −∂Ω

∂μN . (7.47)V T, ,

For quantum systems, the right-hand side is a sum of monomer and loop potentials,
so that one has

∑ ∑
μ

= ≡
−∂Ω

∂=

∞

=

∞

μ
ω±
±

N N . (7.48)
l l1 1

V T
l

l

, ,
( )

( )
p

The monomer term is ≡ ωN N(1)
p
, or

H∫∑
μ μ

ωΓ Γ= −∂Ω
∂

=
Ξ

∂Ξ
∂

=
Ξ !=

∞

ω
ω

ω

ω

β Γ−N
k T Nz

N h
e

1
d ( ). (7.49)

N 1
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N
1 B

3
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p

p

p

The symmetrization quantum corrections to the average number are given by the
terms ⩾l 2,
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In the third equality both terms are O N( )2 . The fourth equality shows the cancel-
ation between them, with the residue quantum correction presumably O N( ).
Interestingly enough, this thermodynamic derivative has the linearized form of the
factorized average that now follows.

7.2.5 Factorization of averages

The above results for the average energy and for the loop grand potential relied upon
the factorization of the symmetrization function,

∏η〈 〉 ≈ 〈 〉
=

∞
η±
◦±e . (7.51)

ℓ 2

ℓ( )

Using the same idea, the average of an operator that is a linear combination of ‘pure’
operators can be written

∏

∑

∑

η

η

η η

η η

η

〈 ˆ〉 =

=

= −

= −

≈ + Δ Δ

=

∞
◦ ◦

=

∞
◦ ◦

=

∞
◦

μ ω η

ω

ω

ω

ω
ω ω

ω
ω ω ω

ω

ω
ω

±

±

± ±

± ±

±

±A A

A

A

A
A

A A

A A

exp

exp
1

.

(7.52)
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ℓ
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The fluctuations are η η ηΔ ≡ −
◦ ◦ ◦

ω

± ± ±ℓ ℓ ℓ
q

( )
q

( )
q

( )

p

and Δ ≡ − ωA A A p
. In so far as

fluctuations are relatively negligible, the linearization for the final approximation
should be accurate.

This result shows how quantum corrections due to symmetrization effects appear
successively as terms from single loops of increasing size. The result relies upon the
localization inherent in the permutation loop expansion.

7.2.6 Explicit comparison for the ideal gas

For single-particle states, equation (3.57) writes the grand partition function as the
product of loop exponentials, μΞ = Ξ ∏±

=
∞ ±V T e( , , ) l

Z
1 2

l , with the exponents being
the loop grand potentials, equation (3.58),

H∑β χ− Ω ≡ =
…

β± ± −
…

±…Z
z
l

e . (7.53)
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In comparison, for the general case, equation (7.35) similarly factorizes the grand
partition function, but now the loop grand potential is an average, equation (7.36).
For interacting particles the loop grand potential is given as
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For the case of an ideal gas, U = 0,H KΓ = p( ) ( ), and ω Γ =( ) 1p . The integrals of
the N − l particles that are not part of the loop factorize, and the dummy summation
variable may be relabeled, ′ = −N N l , so that these sum to the classical grand
partition function, which cancels with the denominator to give

K∫β ηΓ− Ω =ω
β Γ± −

…
±z

lh
ed . (7.55)l

l

l
l

l
l( ),id

3
( )

q;1
( )l

p

One can see by inspection that this is the direct phase space analog of the loop grand
potential expressed as a sum over single-particle states above.

It is axiomatic in thermodynamics that the average value of a quantity is
independent of the type of thermodynamic system (closed, canonical, grand canon-
ical, isobaric, etc) that is used to obtain it (at the equivalent thermodynamic state
point). It is of interest to test this explicitly for the ideal gas by obtaining the loop
grand potential using canonical rather than grand canonical averages. One then
obtains
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In the penultimate equality has been written ! − ! ≈N N l N/( ) l. The final equality
follows since for the classical ideal gas, ρ = Λ− z3 . Since the averages are classical
averages (in this case ω = 1p ), one must use the classical relationship between
fugacity and number to compare the grand canonical and the canonical average. It is
consoling that the two averages, at least in this case, are equal.
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7.3 Multi-particle density
Consider a position configuration of n particles, = …Q Q Q Q{ , , , }n

n1 2 . The
distinct n-particle density quantum operator for this is

∑ ∏ρ δˆ = ″ −
… =

Q r Q r( ; ) ( ). (7.57)
k k

N

j

n

, , 1

n n
j k

( )

n

j

1

The sum is over the particle indeces, and the double prime indicates that in any term
no two indeces are equal. If there are N particles in the system, then there are

! − !N N n/( ) terms in the sum. This says any particle is at Q1, any different particle is
atQ2, etc. The density operator is evidently unchanged by a permutation of the Qj or
of the particle labels.

Since this is only a function of the position operator, the commutation function
ωq or ωp may be used for its average. The average n-particle density is

H∫∑ ∑ ∏

ρ

ρ
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p q
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p q 1

It is worth mentioning that one does not actually have to define the quantum
operator density, ρ̂ Q q( ; )n n( ) , but that instead one can introduce the phase function
ρω Q( )n n( )

p
directly via the phase space integral. More generally one can define the n-

particle density for positions and momenta in phase space as

∑ ∏γ γρ δΓ Γ= ″ −
… =

( ; ) ( ), (7.59)
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and its average as
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We shall use this below for the average energy.
The n-particle density for positions is evidently normalized as

∫ ρ = !
− !ω η ±
N

N n
Q Qd ( )

( )
, (7.61)n n n

z V T

( )

, ,
p q
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which is in agreement with the classical convention (Pathria 1972, Attard 2002). One
also has the reduction condition

∫ ρ ρ

ρ

= !
− !

!
− + !

≈ ¯ − +

ω η ω η

ω η

−
− −

− −

± ±
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(7.62)
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( 1) 1

p q p q

p q

This n-particle density can be used for the average of any operator that is a
function of the position operator. For example, suppose that the potential energy is
the sum of pair potentials,

∑ ∑= ″ = ′U u uq q q q q( )
1
2

( , ) ( , ). (7.63)
j k j k, ,

j k j k

The double prime again indicates that ≠j k, and the single prime indicates that the
sum is over unique pairs, <j k. The average potential energy in this case is

∫ ρˆ = ω η ±U uQ Q Q Q Q Q
1
2

d d ( , ) ( , ), (7.64)z V T, , 1 2
(2)

1 2 1 2p q

as can be confirmed by substituting in the definition of the pair density and
interchanging the order of integrations. The factor of one half again corrects for
double counting of each particle pair.

Define the density fluctuation

ρ ρ ρ

ρ ρ

Δ ˆ ≡ ˆ − ˆ

≡ ˆ −
ω

ω

Q q Q q Q q

Q q Q

( ; ) ( ; ) ( ; )

( ; ) ( ).
(7.65)
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Here the monomer average, η Γ =±( ) 1q , is used for the fluctuation,

ρ ρ≡ 〈 ˆ 〉ω ωQ Q q( ) ( ; )n n n n( ) ( )
p p

. Similarly one has the symmetrization function,

η η ηΓ Γ ΓΔ ≡ −
ω
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With these the average density may be written

ρ ρ

ρ η

η ρ η

ρ η

ρ ρ η

Γ

Γ Γ

Γ

Γ

≡ ˆ

=
Ξ

Ξ
ˆ

= ˆ

+ Δ ˆ Δ

= + Δ ˆ Δ
◦

ω η ω η

ω

ω η ω

ω ω ω

ω

ω ω

±

± − ±

±

±

± ±

±

Q Q q

Q q

Q q

Q q

Q Q q

( ) ( ; )

( ; ) ( )

( ) ( ; ) ( )

( ; ) ( )

( ) ( ; ) ( ) .

(7.67)

n n n n

n n

n n

n n

n n n n

( ) ( )

( )
q

q

1
( )

q

( )
q

( ) ( )
q

p q p q

p

p q
p

p
p

p

p

p
p

⎧⎨⎩
⎫⎬⎭

Quantum Statistical Mechanics in Classical Phase Space

7-20



This holds in the thermodynamic limit, → ∞V , =z T, const. Recall that η
◦ ±

q is the
series of single-loop symmetrization functions defined in equation (7.31). From
equation (7.36), the prefactor in the second equality is ηΞ Ξ = 〈 〉 =ω ω η ω

η± − −〈 〉ω±
◦±

e/ q
1

p p q p
q p.

Also, since ρ〈Δ ˆ 〉 =ω 0n( )
p

, one can write successively
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The final equality in equation (7.67) is justified by the passage from the second to the
third equality here. The average of the density fluctuation without loops vanishes,

ρ〈Δ ˆ 〉 =ωQ( ) 0n n( )
p

. Hence the only configurations that contribute to the average in
the second equality in equation (7.68) are those with at least one loop in the vicinity
ofQn. This means that in any product of loops in the symmetrization function η Γ±( )q ,
one loop must be tied to Qn, and the rest are free to wander throughout the volume.
Hence just as in the factorization of the grand partition function in section 7.2.2, the
average of the density fluctuation times such a product can be written as the product
of the average of the density fluctuation times the tied loop, times the product of the
averages of each of the free loops. The symmetry number reflects the number and
type of the free loops, because these are equivalent and distinct from the tied loop.
Hence just as in section 7.2.2, they sum to the exponential, η〈 〉ω

◦±
e q p, which gives the

third equality in equation (7.68). The final equality in that equation, combined with
the prefactor η〈 〉 =ω

η± − −〈 〉ω
◦±

eq
1 q
p

p from the penultimate equality in equation (7.67), gives
the final equality in equation (7.67).

The result equation (7.67) for the multi-particle position density holds analo-
gously for the multi-particle phase density, equation (7.60). It follows that the
average of any phase function can be written in terms that involve only the single-
loop symmetrization function, as is now shown for the energy.

7.3.1 Average energy factorized

Suppose that the classical Hamiltonian consists of many-body potentials
H HΓ Γ= ∑( ) ( )n

n( ) , with

H H∑Γ Γ Γ=
!

″ …
…n

( )
1

( , , ). (7.69)
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1

The kinetic energy is included in the one-body term.
In terms of the position and momentum n-body density, equation (7.60), the

average Hamiltonian energy may be written
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This agrees with the expression obtained from the temperature derivative of the
grand potential, section 7.2.3, where the loop contributions were given by equation
(7.43),

H η η¯ = − ¯ − 〈 〉
◦ ◦

ω ω ω
ω

± ± ±E E , (7.71)
l l l( )

q
( )

q
( )

p p p
p

⎡⎣ ⎤⎦⎡⎣ ⎤⎦
for ⩾l 2. It also agrees with equation (7.52).

7.4 Virial pressure
The thermodynamic pressure is the volume derivative of the grand potential (Pathria
1972, Attard 2002)

∑¯ =−∂Ω
∂

= −∂Ω
∂=

∞
±

± ±

p
V V
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l 1
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With the subsystem occupying a hypercube of volume, =V Ld , one can perform
the usual trick of scaling the position coordinates by the edge length L, ′ = Lq q/ , so
that = −L Lq qd d1 . Recall that the spacing between momentum states is πΔ = ℏ L2 /p ,
and so = − −L Lp pd d1 . These give the change in a phase function as
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In terms of the partition function, the pressure is
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It follows that η Γ =± Ld ( )/d 0q , and that therefore
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The commutation function is given by
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The prefactor is a constant with respect to L, and so one has
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The final equality defines what might be called the quantum phase space virial. Note
that the p that appears explicitly in the middle of the first term to the right of the
penultimate equality is the momentum variable, not the momentum operator, and
that the gradient operator ∇r that appears explicitly in the second term acts on
everything to its right.

With this the pressure is given by
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or, equivalently, from the derivative of the series of loop grand potentials, this can
also be written

V V

V V∑

β η
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The gives the pressure as the sum of single-loop averages of the virial fluctuation and
the single-loop symmetrization function fluctuation. Such a sum over single-loops is
of the same form as the general expression for an average derived in equation (7.52).

In practice possibly the simplest way to obtain the quantum phase space virial will
turn out to be from the right-hand side of the first equality in the defining equation
(7.78)
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This is useful when the ‘bare’ commutation function ωp can be otherwise obtained
and differentiated.

In the classical limit of the present expression, ω ηΓ Γ= =±( ) ( ) 1p q , and assuming
only an internal potential, this reduces to
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Therefore, in the classical limit ω ηΓ Γ= =±( ) ( ) 1p q , the pressure is given by
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This agrees with the known classical expression for the virial pressure (Pathria 1972,
Hansen and McDonald 1986, Attard 2002).
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Chapter 8

High temperature expansions for the
commutation function

The temperature derivative of the defining equation for the commutation function
yields recursion relations for the expansion coefficients in powers of Planck’s
constant or of inverse temperature. The commutation function is also written as a
series of fluctuations of the phase space expectation value of the energy operator.
The related expansions contain higher derivatives of the potential, and the terms
grow rapidly in number and complexity. Exfact results for the simple harmonic
oscillator indicate that the commutation function is largest at the potential
minimum, and test the rate of convergence of the various expansions.

The necessity of counting unique quantum states once only is emphasized. This
corrects the primary quantum correction to classical thermodynamics given by
Kirkwood (1933), and confirms the second order correction given by Wigner (1932).

8.1 Preliminary definitions
The aim of this chapter is to derive high temperature expansions that are suited for
computing the commutation function. It will be recalled that this function arose in
the transformation to classical phase space derived in chapter 7. It accounts for the
non-commutativity of the position and momentum operators, since if they did
commute it would be unity.

In sections 8.2, 8.3, and 8.4 expansions for the commutation function are derived
using a temperature-derivative procedure based on that originally given by Kirkwood
(1933). Differences in detail arise from different definitions. (Also an error in
Kirkwood’s result for the primary quantum correction is corrected.) The present
expansions are either high temperature, with terms involving successive powers of the
inverse temperature, β = k T1/ B , kB being Boltzmann’s constant and T the absolute
temperature. Or else they are in powers of Planck’s constant h, with πℏ = h/2 . In
section 8.5, the commutation function is written as a series of fluctuations in the phase
space expectation value of the energy operator, and a recursion relation is developed
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for the coefficients. This provides an interesting physical interpretation of the high
temperature expansions derived by the temperature-derivative method. Section 8.6.2
presents numerical results of the expansions applied to the simple harmonic oscillator.

8.1.1 History

The defining equation for what I have called the commutation function,
equation (7.7), originally appeared in essence in Wigner’s (1932) analysis of the
leading order high temperature quantum correction to classical thermodynamics.
Wigner’s particular formulation of a type of integral wave function in a pseudo-
phase space given in that paper is not related to the present formulation of quantum
statistical mechanics in classical phase space, chapter 7.

Kirkwood (1933) showed that a temperature derivative of Wigner’s defining
equation gave an easier route to obtaining the primary high temperature quantum
correction, and in addition he obtained the leading order correction for wave
function symmetrization, again valid in the high temperature limit. (Actually his
expression for the partition function (Kirkwood 1933, equation (10)) is missing a
factor of !N , which is an error that appears to arise from the manner of its
derivation.) Kirkwood’s (1933) derivation gave a classical phase space form for the
partition function that is rather close to the formulation given in chapter 7. The main
difference is that the present formulation separates non-commutation and
symmetrization effects into two separate phase functions, whereas Kirkwood kept
the two as a single function. The present commutation function can be compared to
Kirkwood’s function with the identity permutation.

8.1.2 Definition

The present commutation function was defined in equation (7.7),

ω = 〈 ∣ ∣ 〉
〈 ∣ 〉

=

β
β

β

−
− ˆ

· ℏ − ˆ − · ℏ

e
e

e e e

p q
q p

q p
( , )

,

(8.1)
p q

q p q q p

( , )
p

/i ( ) /i

H
H

H

and

ω = 〈 ∣ ∣ 〉
〈 ∣ 〉

=

β
β

β

−
− ˆ

− · ℏ − ˆ · ℏ

e
e

e e e

p q
p q

p q
( , )

.

(8.2)
p q

q p q q p

( , )
q

/i ( ) /i

H
H

H

For the complex conjugates one has ω ω ω= = −* *p q p q p q( , ) ( , ) ( , )p q p .
The classical Hamiltonian is taken to be the sum of the kinetic energy and the

potential energy, = + Up q p q( , ) ( ) ( )H K . The kinetic energy is

∑∑= =
α= =

α
p
m m

pp( )
2

1
2

, (8.3)
j

N

x

d

1
j

2
2K
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where m is the particle mass, which is assumed the same for all particles. The
potential energy consists of one-body, two-body, etc, terms,

∑ ∑ ∑

= + + + ⋯

= + + + ⋯
= < < <

U U U U

u u u

q q q q

q q q q q q

( ) ( ) ( ) ( )

( ) ( , ) ( , , )
(8.4)

j

N

j k

N

j k ℓ

N

1
j j k j k ℓ

(1) (2) (3)

(1) (2) (3)

Commonly only a central pair potential is considered, =u u qq q( , ) ( )j k jk
(2) (2) . Again

all particles are assumed identical.

8.1.3 Classical limit

In the classical limit quantum effects, including non-commutativity, must be
negligible. Hence the phase space weight must go over to the classical Maxwell–
Boltzmann factor, which means that the commutation function becomes unity,

ω ω β= = = ℏ =p q p q( , ) ( , ) 1, 0, or 0. (8.5)p q

8.1.4 Extensivity

In thermodynamics the concept of extensivity is extremely important (Attard 2002).
An extensive function scales with the size of the system. System size can mean
volume, or particle number. Some examples of extensive thermodynamic functions
are the energy (both potential and kinetic), the free energy (Helmholtz, Gibbs, grand
potential), the entropy (both subsystem and total). The reason why the logarithm of
the partition function arises in statistical mechanics is that it is thereby made
extensive and can be equated to the free energy. On a personal note, the present
author’s theory for non-equilibrium thermodynamics was initially driven by the fact
that the first energy moment is an extensive variable (Onsager 1931, Attard 2012).

In the present book we have already met extensivity in the resummation of the
symmetrization function to give the exponential of single loop functions and the
loop grand potential, equations (3.58) and (7.36). This concept of exponential
resummation of the symmetrization function originally arose when the author
noticed that continuing the series of permutation corrections to the classical free
energy given by Pathria (1972, section 5.5) would not be extensive.

Like the relation between the free energy and the partition function, one can
define a version of the commutation function that is just the logarithm of that
defined above,

ω ω≡ ≡W ep q p q p q( , ) ln ( , ), or ( , ) . (8.6)W p q
p p p

( , )p

Based on the structure of the defining equation for the commutation function, there
is reason to believe thatW is extensive. In slightly loose nomenclature, we shall refer
to both ω and W as the commutation function.

Of course the relation between ω and W is so trivial that one may question
whether it is worth defining a separate function. Two points can be made in
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response. When mathematical operations are carried out the equations take on
different forms, and it is possible that the structure of one version is simpler, or more
conducive to physical interpretation, or more amenable to approximation or
calculation, than the other. Second, when one introduces an approximation, such as
truncating an infinite series after a finite number of terms, then the two versions are
no longer mathematically equivalent, and one may prove more accurate and reliable
than the other. As an example, from the strict mathematical point of view there is no
need to introduce free energy into thermodynamics since it is just the logarithm of
the partition function, and any equation in one could be transformed into an
equation in the other. But experience shows that the thermodynamic formula and
expansions take on a simpler forms when written in terms of free energy rather than
in terms of the partition function.

8.2 Expansion 1
8.2.1 Derivation of expansion

Recall that the commutation function is defined by ω β 〈 ∣ 〉 =β−e p q q p( , ; )p
p q( , )H

〈 ∣ ∣ 〉β− ˆeq pH , the Hamiltonian operator is ˆ = −ℏ ∇ +m U q( /2 ) ( )q
2 2H , and the momen-

tum eigenfunction is 〈 ∣ 〉 = − · ℏe Vq p / Np q/i /2. Following Kirkwood (1933) the definition
of the commutation function may be differentiated with respect to inverse
temperature. Suppressing the arguments the derivative of the left-hand side is

β
ω

ω
β

ω∂
∂

=
∂
∂

−β β− − · ℏ − − · ℏ{ }e e e e . (8.7)p q p q
p

/i p
p

/i
⎧⎨⎩

⎫⎬⎭HH H

That of the right-hand side is

β
ω

ω ω ω

∂
∂
〈 ∣ ∣ 〉

= − ˆ

= − + ℏ ∇ + ℏ · ∇

β

β

β β β

− ˆ

− − · ℏ

− − − − · ℏ

{ }

e

e e

e
m

e
m

e e

q p

p[ ]
2

[ ] 2
i
2

[ ] .

(8.8)p q

p q

p
/i

p

2
2

p p
/i

⎧⎨⎩
⎫⎬⎭

H

H

H

H

H H H

Equating these and rearranging gives

ω
β

ω ω
∂
∂

= ℏ · ∇ + ℏ ∇β β β β− −{ } { }
m

e e
m

e ep
i

2
. (8.9)U U U Up

p

2
2

p

By inspection, ω β = =( 0) 1p , and so integrating this gives

∫

∫

ω β ω β

β ω β

= + ℏ ′ · ∇ ′

+ ℏ ′ ∇ ′

β
β β

β
β β

′ − ′

′ − ′

{ }

{ }
m

e e

m
e e

p1
i

d ( )

2
d ( ) .

(8.10)

U U

U U

p
0

p

2

0

2
p
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This is essentially identical to an expression given by Kirkwood (1933) for the case of
the identity permutation. (In the present approach wave function symmetrization is
treated differently to Kirkwood.)

This provides the basis for an expansion in powers of ℏ,

∑ω ω= ℏ
=

∞

. (8.11)
n 0

n
n

p p,

The term ω = 1p,0 is the classical term, and the terms ω np, , ⩾n 1 may be called the
quantum corrections due to non-commutativity. They arise from the action of
the kinetic energy operator on the potential energy and they involve gradients of the
potential energy.

With ω = 1p,0 , successive substitution gives the first order correction as

∫
∫

ω β ω β

β β

β

= ′ · ∇ ′

= ′ − ′ · ∇

= − · ∇

β
β β

β

′ − ′{ }
m

e e

m
U

m
U

p

p

p

i
d ( )

i
d ( )

i
2

,

(8.12)

U U
p,1

0
p,0

0

2

and the second order correction as

∫
∫

∫

∫

ω β ω β

β ω β

β β β β

β β β

β β β β

= ′ · ∇ ′

+ ′ ∇ ′

= ′ − ′ · ∇ − ′ · ∇ + − ′ · ∇

+ ′ − ′∇ + ′ ∇ · ∇

= − · ∇ + · ∇ − ∇ + ∇ · ∇

β
β β

β
β β

β

β

′ − ′

′ − ′

{ }

{ }
m

e e

m
e e

m
U

m
U

m
U

m
U U U

m
U

m
U

m
U

m
U U

p

p p p

p p

i
d ( )

1
2

d ( )

i
d ( )( )

i
2

i
2

( )

1
2

d { }

8
( )

6
( )

4 6
.

(8.13)

U U

U U

p,2
0

p,1

0

2
p,0

0

2 2
2

0

2 2

4

2
2

3

2
2

2
2

3

⎡
⎣⎢

⎤
⎦⎥

These are essentially the same as Kirkwood (1933, equation (16)). In general

∫
∫

ω β ω β

β ω β

= ′ · ∇ ′

+ ′ ∇ ′

β
β β

β
β β

′ − ′
−

′ − ′
−

{ }

{ }
m

e e

m
e e

p
i

d ( )

1
2

d ( ) .
(8.14)

n
U U

n

U U
n

p,
0

p, 1

0

2
p, 2

This is essentially the same as Kirkwood (1933, equation (17)).
It is shown below that ωp,1 plus ωp,2 (and neglecting symmetrization corrections)

give a configuration position probability density, section 8.2.3, and an average
kinetic energy, section 8.2.4, that are the same as that given by Wigner (1932) and by
Kirkwood (1933).

Quantum Statistical Mechanics in Classical Phase Space

8-5



8.2.2 An error in Kirkwood

Kirkwood (1933) derived the first two (i.e., primary and secondary) quantum
corrections to classical statistical mechanics. It turns out that there is an error in his
analysis. Under normal circumstances one might ignore this, giving the benefit of
doubt to an otherwise reliable scientist. However, because Kirkwood is an authority
of the first rank, because the result is historically significant, because the error
appears to be of conceptual rather than arithmetical or typographical nature, and
because the erroneous result continues to contaminate the literature (e.g., Allen and
Tildesley 1987), it seems important to explicitly address the error.

Kirkwood (1933, equation (10)) gives for the canonical equilibrium partition
function (my notation)

∫∑=
!

±
ˆ ′ ˆ ″

β′+ ″ ˆ ′ · ℏ − ˆ − ˆ ″ · ℏZ N V T
h N

e e ep q( , , )
1

( 1) d d . (8.15)
P ,P

N
p p p q r p q

3
(P ) /i ( ) (P ) /iH

One can compare this to equation (7.1), which transforms a sum over unique
allowed states, to a sum over all states weighted with the symmetrization factor, to a
sum over states and permutations. My equation provides the exact way to count
unique states, since it is derived from the symmetrization factor, which was shown to
count particle occupancy statistics correctly, and it provides the basis for the
partition function, equation (7.3). Compared to my result, one sees that this
expression by Kirkwood is missing a factor of !N in the denominator. Since
Kirkwood doesn’t publish a derivation of his result, and since a single factor of !N
occurs in classical statistical mechanics, and since a related error is shown below to
occur in his quantum correction explicitly, it seems likely that this is a conceptual
rather than typographical or algebraic error. My guess is that Kirkwood did not
avert to the need to count distinct states once and once only.

Kirkwood (1933) includes the particle permutator in what I call the commutation
function ωp (again my notation). He gives ω ω= ∑ ℏl

l
lp p, , with ω = 1p,0 ,

∑ω β= − ˆ · ∇
=m

Up
i

2
P . (8.16)

k

N

1
k kp,1

2

This, his equation (16), in the case of the identity permutation is the same as
equation (8.12). In the context of pair transposition Kirkwood invokes ω jk( )1 and
ω kj( )1 , without explicit definition, but which I interpret to mean

ω β ω β= − · ∇ = − · ∇jk
m

U kj
i
m

Up p( )
i

2
, and ( )

2
. (8.17)j k k jp,1

2

p,1

2

His first quantum correction (Kirkwood 1933, equation (20)) is

∫∑

ω ω

= ±

× ℏ + ℏ
≠

β± −

− · ℏ · ℏ{ }

Z
h

e

e jk e kj

p q
1 1

2
d d

( ) ( ) .

(8.18)k j
N

N N q p

p q p q

1 3
( , )

/i
p,1

/i
p,1jk jk jk jk

H
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I gave the linear order term for the commutation function (without including the
particle permutator) as equation (8.12) above. It agrees with Kirkwood (1933,
equation (16)) for the identity permutation. In my approach, the leading quantum
correction due to symmetrization comes from the single dimer contribution to the
symmetrization function, which is

∑

∑

η = ±

= ±

◦

<

<

± − · ℏ ˆ · ℏ

− · ℏ − · ℏ · ℏ · ℏ

e e

e e e e

q p( , )

.
(8.19)j k

j k

q
q p q p

q p q p q p q p

(2) /i (P ) /i

/i /i /i /i

jk

j j k k k j j k

The combination of ωp,1 and η
◦±

q
(2) yields for the primary quantum correction to the

partition function

∫

∫

∑

∑

β

β

= ±
!

− ℏ · ∇

= ±
!
− ℏ

× · ∇ + · ∇

<

β

β β

± − − · ℏ − · ℏ

≠ − −

− · ℏ − · ℏ

Z
h N

e
m

U e e

h N m
e e

U U e e

q p p

q p

p p

1
d d

i
2

( )

1 i
2

1
2

d d

[ ] .

(8.20)

j k

j k,

N

N
j k U p m

j j k k

q p q p q p

q

q p q p

1, 1
(2)

3
( , )

2
/i /i

3

2
( ) ( ) /2

/i /i

jk j kj k

jk j kj k

2

H

Compared to this, one can see that Kirkwood (1933, equation (20)), equation (8.18)
above, has doubled up on this term. It seems to me that Kirkwood has arrived at his
result by treating the pair transpositions P̂jk and P̂kj as distinct, whereas I treat them
as one and the same state. In my judgment he double counts this term.

One can perform the momentum integrals to obtain from my result

∫

∫

∑

∑

π β

β β
π β

= ±
!

− ℏ

× −
ℏ

· ∇ + −
ℏ

· ∇

= ±
!

× · ∇ − ∇

β β

β β

± ≠ − − ℏ

≠ − − ℏ

Z
h N

mk T
m

e e

m
U

m
U

mk T
h N

e e

U U

q

q q

q

q

1
(2 )

i
4

d

i i

(2 )
4

d

.

(8.21)

j k

j k

,

,

N
N j k U mq

jk j kj k

N

N
j k U mq

jk j k

q

q

1, 1
(2)

3 B
3 /2

2
( ) ( ) /2

B
3 /2

3
( ) ( ) /2

kj

kj

2 2

2 2

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
The factor of !N1/2 that appears here is missing from the leading order correction
given by Kirkwood (1933, equation (21)).

Interestingly enough Kirkwood (1933) recognizes that his correction is a factor of
2 larger than the supposedly same correction derived by Uhlenbeck and Gropper
(1932). Kirkwood says that the latter is in error due to a trivial oversight. In my
opinion it is Kirkwood’s expression that is the one in error. (I have not checked
Uhlenbeck and Gropper (1932).)
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8.2.3 Position configuration weight density

Recall that in general for free energies, partition functions, and statistical averages
we use a subscript of the form ω η±f

qp
to denote the particular approximation that we

are currently analyzing. In the full quantum case both factors in the subscript are
often suppressed. The case ω η= =± 1qp is the classical case, and we usually denote

this as fcl. (The quantity ±Z1, 1
(2) introduced in equation (8.21) above does not follow

either convention; instead it results from the leading order terms ωp,1 and η
◦±

q
(2).)

Wigner’s (1932) formulation of the quantum states that represent phase space and the
consequent phase space quasi-probability function neglect the effects of wave function
symmetrization. This may be compared to setting η =± 1 in the present approach, which
is just the monomer contribution. The monomer grand potential isΩ = − Ξω ω

± ±k T lnBp p
,

with the monomer grand partition function being given by equation (7.34)

∫∑ ω

ω

Γ ΓΞ =
!

= Ξ

ω
β Γ± −z

N h
ed ( )

,

(8.22)N

N

N3
( )

p

cl p cl

p
H

where a classical average and the classical grand partition function appear in the
final equality.

Hence the grand potential in this approximation is

ω

ω

Ω = Ω −

= Ω − ℏ + ℏ

ω
± k T

k T

ln

( ).
(8.23)

cl B p cl

cl B
2

p,2 cl
4

p

O

The final equality follows because the first quantum correction due to non-
commutativity, equation (8.12), is proportional to the momentum p, which averages
to zero in an equilibrium system, ω = 0p,1 cl

.
The second order term is given by equation (8.13),

ω β β β β= − · ∇ + · ∇ − ∇ + ∇ · ∇
m

U
m

U
m

U
m

U Up p
8

( )
6

( )
4 6

. (8.24)p,2

4

2
2

3

2
2

2
2

3

The classical equilibrium phase space weight is an even function of the momenta, and,
by the equipartition theorem or directly, = mk Tpp Icl B . Hence to quadratic order

ω ω

β β β β

β β

β

= + ℏ + ℏ

= − ℏ ∇ − ∇ · ∇ + ∇ · ∇ − ∇

= − ℏ ∇ − ∇ · ∇

= − ℏ ∇

m
U

m
U U

m
U U

m
U

m
U

m
U U

m
U

1 ( )

1
4 6 8 6

1
12 24

1
24

.

(8.25)

p cl
2

p,2 cl
4

2
2

2
3 3 2

2

cl

2
2

2
3

cl
2 2

2
cl

O

The final equality uses the fact that β〈∇ · ∇ 〉 = 〈∇ 〉−U U Ucl
1 2

cl, which may be derived
by an integration by parts, assuming that either β−e U q( ) or∇U vanish on the boundary
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of the system. (Or else that boundary contributions are relatively negligible in the
thermodynamic limit.) Numerical confirmation of this result can be found in section
8.4.1.1 below. This gives the first quantum correction to the grand potential due to the
non-commutativity of the position and momentum operators. With this the second
order quantum correction to the classical grand potential is given by

β β− Ω − Ω = −ℏ ∇ω
m

U[ ]
24

. (8.26)cl

2 2
2

clp,2

The statistical average of an operator that is an ordinary function of the position
coordinates can be taken with the ordinary commutation function, equation (7.18).
Taking only the monomer term in such a case gives

ω

ω
≈ =μ ωO O

O
r( ) . (8.27)V T, ,

p cl

p cl

p

It follows that since the operator is a function only of the position

ω

β β

Γ

= − ℏ ∇ − ∇ · ∇

O

O
m

U
m

U U O

q( ) ( )

12 24
.

(8.28)

p cl

cl
2

2
2

3

cl

⎡
⎣⎢

⎤
⎦⎥

Hence the leading non-commutativity correction to an average of a function of the
position is

ω

ω

β β

=

=

= − ℏ ∇ − ∇ · ∇

× − + ℏ

μ ωO O

O

O
m

U
m

U U

O O

r q

q

q

q q

( ) ( )

( )

( )
12 24

[ ( ) ( ) ] ( ).

(8.29)

V T, ,

p cl

p cl

cl
2

2
2

3

cl cl
4

p

⎡
⎣⎢

⎤
⎦⎥

O

From this one can identify the probability of a configuration position in
classical phase space, neglecting wave function symmetrization, to quadratic order
in ℏ

β β℘ ∝ − ℏ ∇ + ℏ ∇ · ∇β−e
m

U
m

U Uq( ) 1
12 24

. (8.30)U q( )
2 2

2
2 3⎧⎨⎩

⎫⎬⎭
This is identical to Wigner (1932, equation (28)). Kirkwood (1933) states that his
configuration position probability density is also identical to Wigner’s.

One has to distinguish three quantities: the configuration position probability
density, the configuration momentum probability density, and the phase space
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probability density. As just mentioned, the present theory agrees with Wigner and
Kirkwood for the configuration position probability density (in the absence of wave
function symmetrization). As will be shown next, it gives the same result for the
average kinetic energy, which suggests that it also agrees with Wigner and Kirkwood
for the configuration momentum probability density (in the absence of wave
function symmetrization). However the present theory does not give a phase space
probability density, at least not one that is independent of the operator being
averaged in the most general case for an arbitrary function of position and
momentum operators. This is in contrast to Wigner (1932) and Kirkwood (1933)
who each claim to give a phase space quasi-probability density. Unfortunately, those
two densities do not agree with each other.

8.2.4 Average kinetic energy

Now as an example of an operator that is a function of the momentum operator,
consider the kinetic energy operator, ˆ = −ℏ ∇m( /2 )2 2K . Since the kinetic energy
operator in a pure operator (i.e., an ordinary function of the momentum operator
alone), we can use ωp as the commutation function, equation (7.17).

The first three terms in an expansion of the commutation function in powers of ℏ
were given above: the zeroth order term ω = 1p,0 , the first order term, equation (8.12),

ω β= − · ∇
m

Up
i

2
, (8.31)p,1

2

and the second order term, equation (8.13),

ω β β β β= − · ∇ + · ∇ − ∇ + ∇ · ∇
m

U
m

U
m

U
m

U Up p
8

( )
6

( )
4 6

. (8.32)p,2

4

2
2

3

2
2

2
2

3

We shall retain only the single dimer term in the symmetrization function,

∑η = ±
◦

<

± − · ℏ − · ℏe eq p( , ) . (8.33)
j k

q p q p
q

(2) /i /ijk j kj k

The average kinetic energy expanded to leading order is

ω η

ω η

ω ω η

ω ω η

ω η ω

ω η ω

Γ Γ

Γ Γ
=

=
+ ℏ + ℏ + ℏ +

+ ℏ + ℏ + ℏ +

=
+ ℏ + ℏ + ⋯

+ ℏ + ℏ + ⋯

◦

◦

◦

◦

μ

±

±

±

±

±

±

p( ) ( ) ( )

( ) ( )

1 ( ) 1

1 ( ) 1

1
.

(8.34)

V T, ,

p p cl

p p cl

p,1
2

p,2
3

q
(2)

cl

p,1
2

p,2
3

q
(2)

cl

cl p,1 q
(2)

cl

2
p,2 cl

p,1 q
(2)

cl

2
p,2 cl

⎡⎣ ⎤⎦⎡⎣ ⎤⎦
⎡⎣ ⎤⎦⎡⎣ ⎤⎦

K
K

K O

O

K K K
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8.2.4.1 Some momentum integrals
We shall require the following momentum integrals:

∫ π=β−e mk Tpd (2 ) , (8.35)ℓ
p m/2

B
3/2ℓ

2

∫ π=β β− − · ℏ − ℏe e mk T epd (2 ) , (8.36)k
p m mqq p/2 /i

B
3/2 /2k kj k kj

2 2 2

and

∫
π

β

· ∇

=
ℏ

· ∇

β

β

− − · ℏ

− ℏ

e e U

mk T e
m

U

p p

q

d

(2 )
i

.
(8.37)

j
p m

j j

mq
jk j

q p/2 /i

B
3/2 /2

j jk j

kj

2

2 2

Also

∫ π=β−e p mk T mk Tpd 3 (2 ) , (8.38)ℓ
p m

ℓ
/2 2

B B
3/2ℓ

2

∫

π
β

=
−

ℏ
+

β

β

− − · ℏ

− ℏ

e e p

mk T e
m q

mk T

pd

(2 ) 3 ,
(8.39)

k
p m

k

mq kj

q p/2 /i 2

B
3/2 /2

2 2

2 2 B

k kj k

kj

2

2 2
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

and

∫

π
β β

· ∇

=
ℏ

· ∇ −
ℏ

· ∇

β

β

− − · ℏ

− ℏ

e e Up

e mk T
m

U
m

q U

p p

q q

d

(2 )
5i i

.
(8.40)

j
p m

j j j

mq
jk j jk jk j

q p/2 /i 2

/2
B

3/2
2

2

3

3 3
2

j jk j

kj

2

2 2
⎧⎨⎩

⎫⎬⎭

8.2.4.2 Primary quantum correction
The primary correction comes from the single dimer transposition for the
symmetrization function combined with the first quantum correction for the
commutation function. This is

ω η

ω η

ω η ω η

=
+ ℏ + ℏ

+ ℏ + ℏ

= + ℏ − ℏ + ℏ

◦

◦

◦ ◦

μ

±

±

± ±

( )

1 ( )

( ).

(8.41)
V T, ,

cl p,1 q
(2)

cl

2

p,1 q
(2)

cl

2

cl p,1 q
(2)

cl
p,1 q

(2)

cl
cl

2

K
K K O

O

K K K O
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The classical partition function is

∫ ∫=
!

= Λ
!

β β β− −
−

−Z
h N

e e
N

eq p q
1

d d d , (8.42)
N

U p m
N

Uq q
cl 3

( ) /2
3

( )2

where the thermal wavelength is πΛ = ℏ mk T2 /2
B . With this and the above

integrals we have

∫

∫

∑

π

=
!

=
!

=

=

β β

β

− −

−

Z h N
e e

m
p

Nk T
mk T

Z h N
e

Nk T

q p

q

1
d d

1
2

3
2

(2 )
1

d

3
2

,

(8.43)

j

N

1
N

U p m
j

N
N

U

q

q

cl
cl

3
( ) /2 2

B
B

3 /2

cl
3

( )

B

2K

∫

∫

∫

∫

∑ ∑

∑

∑

∑

∑

ω η

β

β

β π

β β

β β
β

β β β

=
!

× − · ∇ ±

=∓
!

× · ∇ + · ∇ + +

=∓
!

× − −
ℏ

· ∇ − ∇ + −
ℏ

· ∇ − ∇

+
ℏ

· ∇ − ∇ −
ℏ

· ∇ − ∇

= ±
Λ !

· ∇ − ∇

× −
ℏ

+
ℏ

−
ℏ

◦

< =

<

=

<

<

β β

β β

β β

β β

±

− −

− · ℏ − · ℏ

− −

− · ℏ − · ℏ ≠

− − ℏ

− − ℏ

Z h N
e e

m
U e e

m
p

m
Z h N

e e

e e U U p p p

m
Z h N

e mk T e

N
m

U U
m

U U

m
U U

m
q U U

m
Z N

e e U U

N
m m m

q

q p

p

q p

p p

q

q q

q q

q q

1
d d

i
2

1
2

i /4
d d

i /4
d (2 )

( 2)
i

[ ]
3

i
[ ]

5i
[ ]

i
[ ]

/4
d [ ]

( 2)
8

.

(8.44)

j k ℓ

N

j k

ℓ

N

j k

j k

1

1

N
U p m

ℓ

N
U p m

j j k k j k
ℓ j k

ℓ

N
U N mq

jk j k jk j k

jk j k jk jk j k

N
U mq

jk j k

jk

q

q p q p

q

q p q p

q

q

p,1 q
(2)

cl

cl
3

( ) /2

2
/i /i 2

2 2

cl
3

( ) /2

/i /i 2 2 ( , ) 2

2 2

cl
3

( )
B

3 /2

2

2

2

2

2

2

3

3 3
2

2 2

cl
3

( ) /2

2

2

2

2

3

3 3
2

jk j kj k

jk j kj k

kj

kj

2

2

2 2

2 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭
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Also, from the result for ±Z1, 1
(2), equation (8.21),

∫∑

ω η

β

ℏ

= ±
Λ !

· ∇ − ∇

◦

<

β β

±

− − ℏ

Z N
e e U Uq q

/2
d .

(8.45)

j k
N

U mq
jk j k

q

p,1 q
(2)

cl

cl
3

( ) /2kj
2 2 ⎡⎣ ⎤⎦

To leading order the quantum correction for the average kinetic energy is

ω η ω η

−

= ℏ − ℏ + ℏ
◦ ◦

ω η

± ±

±

( ).
(8.46)

cl

p,1 q
(2)

cl
p,1 q

(2)

cl
cl

2

qpK K

K K O

Putting these together gives

∫

∫

∑

∑

∑

β
β β β

β

β

β

−

= ±
Λ !

· ∇ − ∇

× ℏ −
ℏ

+
ℏ

−
ℏ

−

= ±
Λ !

× · ∇ − ∇ −
ℏ

= ± · ∇ − ∇ −
ℏ

<

<

<

ω η

β

β β

β

− ℏ

− − ℏ

− ℏ

±

Z N
e U U

m
N

m m m
q

Nk T

Z N
e e

U U
m

q

e U U
m

q

q q

q

q

q

1
d

4
( 2)

8 3
4

1
d

3
2 4

3
2 4

.

(8.47)

j k

j k

j k

N
mq

jk j k

jk

N
U mq

jk j k jk

mq
jk j k jk

q

cl

cl
3

/2

2

2

2

2

2

2

3

3 3
2 B

cl
3

( ) /2

2
2

/2
2

2

cl

q

kj

kj

kj

p

2 2

2 2

2 2

⎡⎣ ⎤⎦
⎡
⎣⎢

⎧⎨⎩
⎫⎬⎭

⎤
⎦⎥

⎡⎣ ⎤⎦
⎧⎨⎩

⎫⎬⎭
⎡⎣ ⎤⎦

⎧⎨⎩
⎫⎬⎭

K K

One can see by transforming ℏ ⇒ ˜q q/jk jk that this is ℏ( )O . The integrand is only non-
zero when qj is close to qk, and so one loses one factor of volume in the average.
However there are −N N( 1)/2 identical contributions to the average, so that in net
terms the quantum correction is extensive.

8.2.4.3 Second order correction
If one neglects symmetrization effects, η Γ =±( ) 1q , then the leading quantum
correction comes from ωp,2, an expression for which was given above. We shall
require the readily proven results

〈 〉 =
〈 〉 =

〈 〉 = − +

p Nmk T
mk T

p N mk T

pp
pp

3 ,
I,

[3 1 3]( ) I.

(8.48)

2
cl B

cl B

2
cl B

2

Quantum Statistical Mechanics in Classical Phase Space

8-13



With these one has

ω

β β

β β

β β

β

= − ∇ ∇ + ∇∇

− ∇ + ∇ · ∇

= + ∇ − ∇

= − ∇

m
p

m
U U

m
U

m
U

m
U U

m m
N mk T U

m
N mk T U

m
N U

pp pp
1

2 8
: ( )( )

6
( : )

4 6

1
2 24

[3 2]( )
2
24

3 ( )

48
[2 3 ] .

(8.49)

p,2 cl

2
4

2

3

2

2
2

3

cl

3

2 B
2 2

2

B
2

cl

2
cl

⎧⎨⎩
⎫⎬⎭

K

The penultimate equality uses the fact that β〈∇ · ∇ 〉 = 〈∇ 〉−U U Ucl
1 2

cl, which may be
derived by an integration by parts, assuming that either β−e U q( ) or ∇U q( ) vanish on
the boundary of the system. (Or else that boundary contributions are relatively
negligible in the thermodynamic limit.) See section 8.4.1.1 below.

One also has

ω

β β β β

β β β β

β

β

= − ∇ ∇ + ∇∇ − ∇ + ∇ · ∇

= − ∇ · ∇ + ∇ − ∇ + ∇ · ∇

= − + − + ∇

=− ∇

m
U U

m
U

m
U

m
U U

m
U U

m
U

m
U

m
U U

m
U

m
U

pp pp
8

: ( )( )
6

( : )
4 6

8
( ) ( )

6 4 6

24
[ 3 4 6 4]

24
.

(8.50)

p,2 cl

4

2

3

2

2
2

3

cl

3 2
2

2
2

3

cl
2

2
cl

2
2

cl

Hence the secondary quantum correction for the average kinetic energy that
neglects symmetrization, η =q p( , ) 1q , is

ω ω

β β

β

− = ℏ − ℏ + ℏ

= ℏ − ∇ − ℏ − ∇

= ℏ ∇

ω

m
N U

m
U Nk T

m
U

( )

48
[2 3 ]

24
3
2

24
.

(8.51)

cl
2

p,2 cl
2

p,2 cl cl
4

2
2

cl
2

2
2

cl B

2
2

cl

p,2K K K K O

This agrees with Wigner (1932, equation (30)).

8.3 Expansion 2
From the temperature derivative of the defining equation for the commutation
function, equation (8.9), an expansion in powers of inverse temperature can be made
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∑ω ω β= ˜
=

∞

. (8.52)
n 0

n
n

p p,

One has ω̃ = 1p,0 , which is the classical limit, and ω̃ = 0p,1 , since there are no terms of
order β0 on the right-hand side of the temperature derivative. Further,

ω̃ = −ℏ ∇ − ℏ · ∇
m

U
m

Up
4

i
2

, (8.53)p,2

2
2

and

ω̃ = ℏ ∇ · ∇ − ℏ ∇ ∇ − ℏ · ∇∇ + ℏ ∇∇
m

U U
m

U
m

U
m

Up pp
6 24

i
6 6

: . (8.54)p,3

2 4

2
2 2

3

2
2

2

2

The recursion relation is

ω ω ω

ω ω

ω ω

˜ = −ℏ
+

∇ ˜ − ℏ
+

∇ · ∇ ˜

+ ℏ
+

∇ · ∇ ˜ + ℏ
+

∇ ˜

+ ℏ
+

· ∇ ˜ − ℏ
+

· ∇ ˜

+ − −

−

−

n m
U

n m
U

n m
U U

n m

n m n m
Up p

2( 1)
( )

( 1)

2( 1)
( )

2( 1)
i

( 1)
i

( 1)
( ) .

(8.55)

n n n

n n

n n

p, 1

2
2

p, 1

2

p, 1

2

p, 2

2
2

p,

p, p, 1

8.4 Expansion 3
In the preceding sections expansions in powers of Planck’s constant or in inverse
temperature were given for the commutativity function ω Γ( )p . The coefficients were
determined from a recursion relation that arises from the temperature derivative of
the defining equation. Alternatively, the commutation function can be re-defined as

ω Γ ≡ Γe( ) . (8.56)W
p

( )p

This was given as equation (8.6), where it was argued that in being extensive,Wp has
an advantage over ωp.

With this the temperature derivative of the defining equation (8.9) becomes

β

β β β

β

∂
∂

= ℏ · ∇ + ℏ ∇

= ℏ · ∇ − + ℏ ∇ − · ∇ −

+ ∇ −

β β β β− − − −

{

}

{ } { }
W

m
e e

m
e e

m
W U

m
W U W U

W U

p

p

i
2

i
( )

2
( ) ( )

( ) .

(8.57)

U W W U U W W Up
2

2

p

2

p p

2
p

p p p p

One can expand Wp in powers of Planck’s constant,

Quantum Statistical Mechanics in Classical Phase Space

8-15



∑≡ ℏ
=

∞

W W . (8.58)
n 1

n
n

p p,

This begins at n = 1 because the classical part must vanish,
ω ℏ = = ⇒ ℏ = =W( 0) 1 ( 0) 0p p . Also ω β β= = ⇒ = =W( 0) 1 ( 0) 0np p, .

The first coefficient satisfies

β
β∂

∂
= − · ∇

W

m
Up

i
, (8.59)

p,1

which gives

β= − · ∇W
m

Up
i

2
. (8.60)p,1

2

The second coefficient satisfies

β
β β

∂
∂

= · ∇ + ∇ · ∇ − ∇{ }
W

m
W

m
U U Up

i 1
2
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2 2

which gives
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U U Upp
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2 3 2
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⎧⎨⎩
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In general for >n 2
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For n = 3 one can show that
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and for n = 4 one has
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(HereWp,4 is taken from Attard (2018a), which corrects equation (7.112) of Attard
(2018b).)

Dealing withW has arguably two advantages over ω. First, experience shows that
the expansion of an exponent converges more quickly than the expansion of an
exponential. For example keeping only the termsW1 andW2 encompasses the terms
ω1 and ω2, and an infinite number of higher order terms besides. Second, W is an
extensive variable, as can be seen by inspection, whereas ω is a sum of terms of every
power of the system size.

8.4.1 Second order analysis

In the first instance one can focus on the monomer grand potential, η Γ =±( ) 1. (A
completely analogous argument to that which follows can be applied to the loop
grand potentials for ⩾l 2.) The monomer grand potential isΩ = − Ξk T lnW WB , with
the monomer grand partition function being

∫∑ ΓΞ =
!

β Γ Γ−z
N h

e ed . (8.66)
N

e

N

N
W

3
( ) ( )W H

It makes no difference which of = = −* *W W Wq p q p q p( , ) ( , ) ( , )p q p is used here
because the imaginary part integrates to zero.

The difference between the monomer grand potential and the classical grand
potential is just the logarithm of the classical average of the commutation function,

β− Ω − Ω = e[ ] ln . (8.67)e
W

cl clW

The left-hand side is extensive, which is to say that it scales with the volume of the
system. Hence the grand potential density is independent of the size of the system. Since
∝W V , and since ℏ = =W ( 0) 0, one can suppose that there exists a volume small

enough that ≪W 1. For such a volume one can expand the exponential to obtain

β− Ω − Ω = = + + + ⋯

= + − + ⋯

e W W

W W W

[ ] ln ln 1
1
2

1
2

[ ]

(8.68)
e

W
cl cl

2

cl

cl cl
2

cl

W

The first term on the right-hand side is extensive. The second term, as the fluctuation
of an extensive variable, is also extensive. Having obtained the final result, one can
now allow the volume to become as large as desired.

8.4.1.1 Explicit second order result
The first order in ℏ correction vanishes, β− ΔΩ = ℏ =W 0e

(1)
1 clW , because W1 is odd

in p. (Recall we have set the symmetrization function to unity.) The second order
correction is given by
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β
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U U
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24 12

(8.69 )2
3 2

2

cl

β= −ℏ ∇
m

U b
24

. (8.69 )
2 2

2

cl

This is the same as the result given above, equation (8.26), which in turn agrees
with that given by Wigner (1932) and by Kirkwood (1933). The present derivation
is more satisfactory than the others because it explicitly takes into account
extensivity. Also, the higher order terms lend themselves to practical implementation
either as an expansion, or else as the original exponential combined with umbrella
sampling.

The justification for the final equality is an integration by parts, assuming that surface
integrals are negligible, as has been used above. This is tested explicitly by computer
simulations in table 8.1, rows (a) and (b). The results labeled d correspond to averaging

Table 8.1. Quantum correction for monomers due to non-commutativity, β σ− ΔΩ V/e
(2) 3

W , for Lennard–Jones
models of neon and helium in three dimensions at ϵ =k T / 1.5B and ρσ = 0.53 . For comparison, the classical
pressure is 0.275 75 ± 0.000 80. The results are from Metropolis Monte Carlo simulations, with 50 × 100
configurations for averages, 20 trial steps per atom between averages, acceptance rate ≈50%, σ=R 3.5cut , tail
correction added, and no umbrella sampling, for a canonical system with =N 250, 500, or 1000. The
statistical error (68% confidence level) in the final digit is shown in parenthesis. Taken from Attard (2016).

250 500 1000

Neon
a −0.034 84(8) −0.035 00(5) −0.035 04(3)
b −0.034 75(5) −0.035 00(3) −0.034 98(2)
d −0.025 6(6) −0.028 5(3) −0.030 0(2)

Helium
a −0.730(2) −0.734(1) −0.734 6(7)
b −0.728(1) −0.733 8(7) −0.733 3(5)
d −.38(1) −0.518(7)
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the full exponential without umbrella sampling, β− ΔΩ = ℏ + ℏW Wln exp[ ]W
d

1
2

2 cl2
. It

can be seen that this approach has a significant system size dependence, and that in the
case of helium numerical overflow occurs for the largest size studied.

8.4.2 Higher order analysis

8.4.2.1 Fourth order correction
Here the symmetrization function continues to be set to unity, η Γ =±( ) 1. Again in
this case it does not matters whether ΓW ( )p or ΓW ( )q is used.

The classical fluctuation of the commutation function exponent ΓW ( ) is

Γ ΓΔ ≡ −W W( ) ( ) . (8.70)W cl

Define a phase space constant that is a series of averages of powers of the fluctuation
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This is constant in phase space, and so it can be taken in and out of averages. The
average of the exponential of W less this particular constant is
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W D W
W W W

W W

W W W W

W W W

W W W

W

[ ]
cl

2
cl

3
cl

4
cl

2
cl

2

cl

cl
2

cl
3

cl
4

cl

2
cl

2 2
cl

2

cl

2
cl

3

cl

4
cl

5
cl

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

O

This enables expansions to ℏ( )4O to be obtained relatively painlessly. For example,
the monomer potential is

= Ξ
Ξ

= =

= + Δ

β− Ω −Ω −e e e e

e 1 ( ) .
(8.73)

e W D W W D

D W
W

[ ]

cl
cl

[ ]
cl

[ ] 5
cl

eW
W

Wcl

⎡⎣ ⎤⎦O
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Hence

β β− Ω = − Ω + +D W h[ ] ( ), (8.74)e cl
5W O

assuming that ΓW ( ) itself has been obtained to at least fourth order.

8.4.2.2 Averages
The average of a ‘pure’ operator, ˆ = ˆ ˆ = ˆ + ˆA A B Cq p q p( , ) ( ) ( ) is

∫∑ η

η

η

Γ Γ〈 ˆ〉 =
Ξ !

=

=

∞

μ
η

β Γ Γ− ±

±

±

±
A

h N
e e A

e A

e

q p
1 1

d ( ) ( , )

.

(8.75)
N 0

V T
e

N
W

W

W

, , 3
( ) ( )

q

q cl

q cl

Wp
q

p

p

p

H

Again neglect the symmetrization function, η Γ =±( ) 1q , so it doesn’t matter
whether Wp or Wq is used. Define the fluctuation

Δ ≡ − ≡ −W W W
AW

A
. (8.76)AW A

cl

cl

Define the phase space constant

≡ + Δ +
!
Δ +

!
Δ − ΔD AW W[ ]

1
2

1
3

1
4

1
8

. (8.77)A AW A AW A AW A AW A
2 3 4 2 2

One has

=
=
= + ℏ

−

Ae A e

A e e

A e [1 ( )].

(8.78)

W W
A

D AW W D AW
A

D AW

cl cl

cl
[ ] [ ]

cl
[ ] 5O

This result gives directly the monomer average of of a ‘pure’ operator.
For the loop potential one need only take η⇒

◦±A l
q

( ) (cf the discussion in
section 7.2.5). With this the loop potential ⩾l 2 can be expanded as

β
η η

η

− Ω = =

= +

◦ ◦

◦

η

η

±

± ±

± −

◦±

◦±

e

e

e

e

e h( ).

(8.79)
l

l W

W

l W

W

l D W D W

( )
q

( )

cl

cl

q
( )

cl

cl

q
( )

cl

[ ] [ ] 5

l

l

p

p

p
q

( )

p

q
( )

p p O

In equation (7.52), it was argued that the average of a pure operator could be
factored into loop averages. Replacing ω by eW the factorization can be written as
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∏

∏

∏

∑

η η

η η

η

η

〈 ˆ〉 =

= −

= −

= −

≈ + −

=

∞
◦ ◦

=

∞
◦ ◦

=

∞
◦

=

∞
◦

μ η

± ±

± ±

±

±

±A A

A

Ae

e

Ae

Ae

e

e
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e
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Ae

e
e

Ae

e
Ae
Ae

e
e

exp

exp

exp

1 .

(8.80)
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ℓ

ℓ

ℓ
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ℓ
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W

W

ℓ W

W

ℓ W
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ℓ
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ℓ
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q
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W
W W
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p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p
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⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥

The status of this as an exact or approximate result and its utility as a means to
practical calculation are unclear. In the present context the classical averages that
appear here involving η

◦± Aeℓ W
q

( ) p can be evaluated using η
◦±D AW[ ]l

q
( )

p . Whether there
is any computational advantage in doing so is also unclear.

8.5 Fluctuation expansion
In this section an alternative derivation of the temperature expansion for the
commutation function is given based on the fluctuations in the phase space
expectation value of the energy operator. This lends itself rather directly to a
recursion relation for the coefficients and to their physical interpretation. The
fluctuation expansion may be rewritten as an exponentiated series, which becomes a
temperature expansion for the commutation function exponent, the terms of which
are extensive with system size and represent fluctuations of fluctuations.

8.5.1 Hamiltonian fluctuations as a phase function

Define

≡ 〈 ∣ ˆ ∣ 〉
〈 ∣ 〉

q p
q p

q p
( , ) . (8.81)n

n
( )H H

One has =q p q p( , ) ( , )(1)H H , the classical Hamiltonian. Also define the nth order
fluctuation

Δ ≡ 〈 ∣ ˆ − ∣ 〉
〈 ∣ 〉

q p
q q p p

q p
( , )

[ ( , )]
. (8.82)n

n
( ) H H
H

One has Δ =q p( , ) 1(0)
H and Δ =q p( , ) 0(1)

H .
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The phase space density (sans symmetrization) may be expressed as a series of
these fluctuations, namely

∑

ω

β

≡ 〈 ∣ ∣ 〉
〈 ∣ 〉

= 〈 ∣ ∣ 〉
〈 ∣ 〉

= −
!
Δ

=

∞

β
β

β
β

β

−
− ˆ

−
− ˆ −

−

e
e

e
e

e
n

q p
q p

q p

q p
q p

q p

( , )

( )
( , ).

(8.83)

n 0

n
n

q p

q p
q p

q p

( , )
p

( , )
[ ( , )]

( , ) ( )

H
H

H
H H

H
H

The second equality follows because the Hamiltonian operator and Hamiltonian
phase function commute, ˆ =r q p[ ( ), ( , )] 0H H . This gives the commutation function
phase space density as a fluctuation expansion,

∑ω β= + −
!
Δ

=

∞

n
q p q p( , ) 1

( )
( , ). (8.84)

n 2

n
n

p
( )
H

Evidently this could also be called a high temperature expansion with a physical
interpretation for the coefficients.

8.5.2 Exponentiated fluctuation series

One may modify this fluctuation series by writing it instead as

∏〈 ∣ ∣ 〉
〈 ∣ 〉

=
=

∞β
β β

− ˆ
− − ! Δ̃e

e e
q p

q p
. (8.85)

n 2

nq p q p( , ) (( ) / ) ( , )n n( )H
H H

One has Δ̃ = Δ(2) (2)
H H , Δ̃ = Δ(3) (3)

H H , and

Δ̃ = Δ − !Δq p q p q p( , ) ( , )
4
2

( , ) . (8.86)(4) (4)
3

(2) 2
H H H

This is like the fluctuation of a fluctuation. As such it may be expected to be smaller
than the fourth order fluctuation itself.

There are similar modifications for the higher order fluctuations. The series of
modified fluctuations may be equated to the commutation function exponent,

β= ∑ − ! Δ̃=
∞W nq p q p( , ) (( ) / ) ( , )n

n n
p 2

( )
H . Terminating the modified fluctuation series at

order n can be expected to be yield more accurate results than terminating the
original fluctuation series at the same order. This is because the first neglected term,
Δ̃ +n( 1)

H , is on average smaller in magnitude than Δ +n( 1)
H .

The fluctuation expansion coefficients Δ q p( , )n( )
H are not in general extensive with

system size. (The n = 2 and n = 3 terms derived explicitly below are extensive with
system size. The term Δ(4)

H is not extensive, but the term Δ̃(4)
H is.) The exponentiated

fluctuation expansion is extensive with system size. The fluctuation expansion (8.84)
is directly comparable to expansion 2 (section 8.3). The exponentiated expansion
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(8.85) is indirectly comparable to expansion 3 (section 8.4). (The difference is that
the former is in powers of inverse temperature, whereas the latter is in powers of
Planck’s constant.)

It should be mentioned that the author has been unsuccessful in the computa-
tional implementation of the fourth order exponentiated fluctuation series for a
Lennard–Jones system. The problem appears to lie in the core region, where analysis
indicates that the most divergent terms are the products of gradients,
Δ̃ ∼ ∇ ⌊ ⌋U(( ) )

n n( ) 2 /3OH , and that the infinite series of these is divergent in the core
region.

8.5.3 Explicit form for the fluctuations

One can write

= 〈 ∣
ˆ ∣ 〉
〈 ∣ 〉

= − ℏ ∇ − ℏ · ∇

= − ℏ ∇ − ℏ · ∇

−

−

m m

m m

q p
q p

q p

q p p q p

q p p q p

( , )

( , )
2

i
( , )

( , )
2

i
( , ).

(8.87)

n
n

n

n

( )

2
2 ( 1)

2
2

( 1)

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

H H

H H

H H

Using this or directly, the phase space expectation value of the square of the
energy operator is explicitly

= − ℏ ∇ − ℏ · ∇

= − ℏ ∇ − ℏ · ∇

m m

m
U

m
U

q p q p p q p

q p q p q

( , ) ( , )
2

i
( , )

( , )
2

( )
i

( ),

(8.88)

(2)
2

2

2
2

2

⎡
⎣⎢

⎤
⎦⎥H H H

H

and that of the cube is

= − ℏ ∇ − ℏ ∇ · ∇ + ℏ ∇ ∇ + ℏ · ∇∇

− ℏ · ∇ + ℏ · ∇∇ − ℏ ∇∇

m
U

m
U U

m
U

m
U

m
U

m
U

m
U

q p

p

p p pp

( , )

4
i
2

2i i
2

: .

(8.89)

(3)

(2)
2

2
2 4

2
2 2

3

2
2

3

2
2

2

2

H

HH H

H

The second order fluctuation is explicitly

Δ ≡ 〈 ∣ ˆ − ∣ 〉
〈 ∣ 〉

= −

= −ℏ ∇ − ℏ · ∇
m

U
m

U

q p
q q p p

q p

q p q p

q p q

( , )
[ ( , )]

( , ) ( , )

2
( )

i
( ).

(8.90)

(2)
2

(2) 2

2
2

H H

H H

H
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This is clearly N( )O , which proves that the (root mean square) fluctuations are
relatively negligible in the thermodynamic limit. The third order fluctuation is
explicitly

Δ

=〈 ∣
ˆ − ∣ 〉

〈 ∣ 〉
= − +

=−ℏ ∇ · ∇ + ℏ ∇ ∇ + ℏ · ∇∇ − ℏ ∇∇
m

U U
m

U
m

U
m

U

q p

q q p p
q p

q p q p q p q p

p pp

( , )

[ ( , )]

( , ) 3 ( , ) ( , ) 2 ( , )

4
i

: .

(8.91)
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3

(3) (2) 3

2 4

2
2 2

3

2
2

2

2

H H

H H H H

H

This is also clearly N( )O .

8.5.4 Recursion relation

One can extend the definition of the fluctuation phase space function in a way that
lends itself to a recursion relation, namely

Δ

≡ ˆ −

= ˆ − Δ

= − Δ + + Δ

− ℏ ∇ Δ − ℏ · ∇Δ

= − − ℏ ∇ − ℏ · ∇ Δ

· ℏ − · ℏ

· ℏ − · ℏ −

− −

− −

−

( )
e e

e e

U

m m

U U
m m

r q p

r q p

r q p r q p

q p r q p r p r q p

r q p p r q p

r q p r q p

( ; , )

[ ( ) ( , )]

[ ( ) ( , )] ( ; , )

( , ) ( ; , ) [ ( ) ( )] ( ; , )

2
( ; , )

i
( ; , )

( ) ( )
2

i
( ; , ).

(8.92)

n

n

n

n n

n n

n

r p r p

r p r p

r r

r r

( )

/i /i

/i /i ( 1)

( 1) ( 1)

2
2 ( 1) ( 1)

2
2 ( 1)

⎧⎨⎩
⎫⎬⎭

H H
H H

H K

H

H

H H

H H

H

It is convenient to define ≡ −ΔU U Ur q r q( ; ) ( ) ( ). The actual fluctuation is given by

Δ = Δ
=

q p r q p( , ) ( ; , ) . (8.93)n n

r q

( ) ( )
H H

In section 8.3, the recursion relation derived from the temperature derivative and
power series expression is given. It ought to be directly comparable to the present
recursion relation, with β ω β˜ = − ! Δn q p(( ) / ) ( , )n

n
n n

p,
( )
H .

Starting with Δ =r q p( ; , ) 1(0)
H , the recursion relation yields the first order

fluctuation as

Δ = − = ΔUr q p r p q p r q( ; , ) ( , ) ( , ) ( ; ), (8.94)(1) H HH

which may be confirmed directly from the definition. The second order fluctuation
function is
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Δ = − ℏ ∇ − ℏ · ∇

= − ℏ ∇ − ℏ · ∇
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At =r q this agrees with the result obtained explicitly above. Note that
∇ = ∇ΔU Ur q r( ; ) ( )r r . The third order fluctuation function is

Δ

= − ℏ ∇ − ℏ · ∇
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which agrees with the result obtained directly above.
The fourth order fluctuation function may be shown to be

Δ = Δ + ℏ ∇ · ∇∇ + ℏ ∇ ∇∇

+ ℏ ∇∇ ∇∇ − ℏ ∇ ∇ ∇ − ℏ · ∇∇ ∇
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(4) (2) 2
4

2
2

3

2

4

2
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2 2 2
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4

3
2

3

3

H H

This can be shown to agree with the fourth order result independently obtained from
the nested commutator expansion, equations (9.63) and (9.65). Apart from the first
term, all terms here are N( )O . One can see that the first term cancels in the modified

fluctuation, which supports describing Δ̃ q p( , )
(4)
H as the fluctuation of a fluctuation.

Expressions for the higher order gradients of singlet and pair power law potentials
are given in sections 9.5.2 and 9.5.3.

The fourth order result was derived from the recursion in the form
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Δ = −ℏ ∇ − ℏ · ∇ Δ
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Retaining only the first term of this yields

Δ ≈ −ℏ ∇ − ℏ · ∇
m

U
m

Uq p p( , )
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i
, (8.100)n
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⎥⎥

This is of course complex, with an apparently immaterial branch cut for the square
root. The utility of this approximation is not clear; it does not, for example, give the
correct asymptote in the core region, section 11.4.2.

8.5.5 Advantages and disadvantages of the fluctuation expansion

The fluctuations are phase functions. Hence, for example, the commutation function
can be evaluated during the course of a computer simulation. Methods for obtaining
the commutation function by summing over energy states or by numerical
temperature quadrature (see, for example, chapters 10 and 11) necessitate pre-
computing the commutation function and storing it on a grid in phase space or few-
body sub-space thereof.

The fluctuations are localized. In contrast to summing over energy states methods
they don’t need boundary conditions to be specified, and they don’t require the
calculation of a set of few-body energy eigenvalues and eigenfunctions.

The fluctuations involve the gradients of the potential. As such this form of the
commutation function is more short-ranged than the potential, and is likely to be
rapidly converging at large separations.
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A possible disadvantage is that the required gradients of the potential diverge
more rapidly than the potential itself in the core region. However, the fluctuation
series is multiplied by the Maxwell–Boltzmann factor, which goes to zero
exponentially in the core region. The increasingly divergent terms in the core
region, Δ̃ ∼ ∇ ⌊ ⌋U(( ) )

n n( ) 2 /3OH , pose serious difficulties for the exponentiated form of
the series. It is unclear whether or not the known analytic core asymptote (see section
11.4.2 for the core asymptote of the Lennard–Jones pair potential) can be achieved
numerically.

The exponentiated fluctuation expansion is extensive with system size. This is
likely advantageous both from a thermodynamic viewpoint and from a computa-
tional aspect. The exponentiation is equivalent to an infinite resummation, which
means that it is likely more rapidly converging than a strict temperature expansion
such as that given in sections 8.2 or 8.3. This idea is supported by the fact that the
modified form (i.e., the expansion of the exponent) is in the form of a fluctuation of a
fluctuation, which might be expected to be smaller at a given order than the
fluctuation itself.

The fluctuation expansion (8.84) is directly comparable to expansion 2
(section 8.4). The exponentiated expansion (8.85) is indirectly comparable to
expansion 3 (section 8.4). Therefore the present fluctuation series can be said to
provide a physical interpretation and basis for the earlier expansions.

Possible disadvantages of the fluctuation expansion (and the related high
temperature expansions) are that they may be slowly converging, and the higher
order terms grow rapidly in complexity and number of contributions. For the case of
a power law potential, evaluating the gradients analytically is not a problem.
However for the case of a hard-sphere potential, some sort of resummation will have
to be invoked for the potential gradients. Expressions for the higher order gradients
of singlet and pair power law potentials are given in sections 9.5.2 and 9.5.3.

8.6 Numerical results
8.6.1 Interacting Lennard–Jones particles

The fluctuation form of the high temperature expansion has been used to perform
computer simulations of interacting particles. The numerical result are for a one-
dimensional system with the simple harmonic oscillator singlet potential and
Lennard–Jones pair potential. The singlet potential is that of a simple harmonic
oscillator,

ω=u q m q( )
1
2

, (8.102)j j
(1) 2 2

and the pair potential is Lennard–Jones,

ε= −u q
r

q

r

q
( ) 2 . (8.103)jk

jk jk

(2) e
12

12
e
6

6

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥
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The system parameters are the same as in Hernando and Vaníček (2013). The so-
called de Broglie wavelength is fixed at εΛ ≡ ℏ =r m2 / 0.16dB

1/6
e , and the frequency

is fixed by ω ε =r m/ 1/2e . These mean that ε ωℏ =/ 14.03. The results scale the
energy and temperature by the Lennard–Jones frequency, which equals
ω ω≡ ″ =u r m( )/ 16.97LJ LJ e for the present parameters.

The standard Metropolis algorithm in classical phase space was used, with the
classical Maxwell–Boltzmann factor used for umbrella weight. The quantum
contribution to the weight, both the commutation function and the symmetrization
function, was explicitly included for the respective averages. Eighteen averages for
each quantity were collected simultaneously: three averages for symmetrization
(distinguishable particles, bosons, and fermions), and six high temperature averages
(classical, linear β( )2O , β( )3O , β( )4O , and exponentiated β( )3O and β( )4O ).

It was found that umbrella sampling on the classical Maxwell–Boltzmann
distribution was unsuitable for the exponentiated averages due to numerical
overflow in the exponent of the quantum weight, and no results are reported for
these. Using instead the real part of the fourth order fluctuation series exponent as
the weight for the Metropolis sampling gave unphysical results as it favored overlap
of the cores of the Lennard–Jones particles. These unpublished computational
results of the author support the proposition that the finite order exponentiated
fluctuation series is non-viable for the Lennard–Jones potential.

Table 8.2 shows the results of the Monte Carlo simulations of these Lennard–
Jones particles. It can be seen that for the highest temperatures shown, β ωℏ ≲ 0.5LJ ,
the fluctuation series appears to converge, with successive quantum corrections
decreasing in magnitude. For temperatures lower than this the corrections tend to be
large and to change sign, and the final result is of doubtful reliability. One can
conclude from the data in the table that the average energy for the quantum system
is larger than the classical prediction, and that it approaches the classical limit from
above as the temperature is increased.

At high temperatures, β → 0, the Lennard–Jones potential has negligible effect,
and so the particles behave like an ideal gas in a confining singlet simple harmonic

Table 8.2. Average energy, β〈 〉H , of a canonical equilibrium one-dimensional Lennard–Jones system for N = 4
un-symmetrized particles. Monte Carlo results are given for the linear high temperature expansion, equation (8.84),
to the given order. The statistical error (96% confidence level, twice the standard deviation of block sub-averages) is
shown in parentheses for the final two digits. The exact limiting result is β〈 〉 → =N 4H , β → 0.

β ωℏ LJ classical β( )2O β( )3O β( )4O

0.033 94 4.126 5(79) 4.125 7(79) 4.129 0(79) 4.128 1(79)
0.084 85 4.188 4(48) 4.185 7(48) 4.198 5(48) 4.200 5(48)
0.169 7 4.258 7(79) 4.252 6(80) 4.290 1(79) 4.320 6(78)
0.339 4 4.293 9(75) 4.285 6(78) 4.407 0(74) 4.597 5(70)
0.509 1 4.260 7(45) 4.270 3(48) 4.555 7(44) 4.879 7(43)
0.678 8 4.161 7(42) 4.237 6(48) 4.958 3(41) 5.016 7(44)
0.848 5 4.002(18) 4.296(24) 8.172(76) 4.991(19)
1.018 2 3.807 9(36) 5.417(11) 0.293 3(86) 4.863 9(41)
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oscillator potential. One can’t neglect the latter because the particles can always
access sufficiently large displacements where it becomes comparable to or larger
than k TB . Hence in the high temperature limit the classical system has two quadratic
degrees of freedom per particle (the kinetic energy, and the oscillator energy).
According to the equipartition theorem (Attard 2012, section 3.7.4), these each
contribute to the average energy an amount k T /2B . Therefore the average energy of
the system in the high temperature limit is Nk TB , or β〈 〉 = 4H in this case.

The data in table 8.2 indicate that with increasing temperature, the quantum
results approach the respective classical result faster than the classical results
approach the classical limit.

The preceding argument leads one to conclude that the spatial extent of this
particular system increases with increasing temperature. This means that high
temperatures pose numerical challenges for the calculation of the commutation
function in the local state approximation, chapter 10, since it has to be stored on a
grid that encompasses the likely configurations of the system. At lower temperatures
than those in table 8.2 the calculations are much easier (see section 10.5.2).

8.6.2 Simple harmonic oscillator

Using ωℏ as the unit of energy, and dimensionless momentum and position
operators, ωˆ = ˆ ℏP p m/ and ωˆ = ℏ ˆQ m q/ , the Hamiltonian operator for the
simple harmonic oscillator may be written (Messiah 1961)

ˆ = ˆ + ˆ{ }P Q
1
2

. (8.104)2 2H

In these dimensionless units, ℏ = =m 1.
For one particle in d dimensions,∇ =U Q and∇ =U d2 . Hence with ≡ ·P P P2 ,
≡ ·Q Q Q2 , and ≡ ·R P Q, the recursion relation for the temperature expansion

coefficients of the simple harmonic oscillator, ω ω β= ∑ n
n

p p, , is

ω ω ω ω

ω ω ω

= −
+

−
+

· ∇ +
+

+
+

∇ +
+

· ∇ −
+

+ − − −

−

d
n n

Q
n

n n
R

n

Q

P

2( 1)
1

1 2( 1)
1

2( 1)
i

1
i

1
.

(8.105)
n n n n

n n n

p, 1 p, 1 p, 1

2

p, 2

2
p, p, p, 1

(These coefficients for the temperature expansionwere denotedwith a tilde in section 8.3.)
The first several expansion coefficients are explicitly ω = 1p,0 , ω = 0p,1 , and

ω

ω

ω

ω

= − −

= +

= + + + −

= − + − + − −

d
R

P Q

d d d
R R

d
P

d
Q RQ RP

4
i
2

1
6

1
6

3 4
96

3 5
24

i
1
8

5 8
120

5 8
120

1
12

i
1

12
i .

(8.106)

p,2

p,3
2 2

p,4

2
2

p,5
2 2 2 2
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Each of these is symmetric in P and Q, which is a useful check.
The first several coefficients in the exponential form of the commutation

function expansion in powers of Planck’s constant, = ∑ ℏW W n
n

p p, , for the simple
harmonic oscillator for one particle in d dimensions are explicitly (with β
dimensionless)

β

β β β

β

β β β

= −

= + −

=

= − + −

W R

W P Q
d

W R

W P
d

Q

i
2

6 6 4
5i
24

15 24 15
.

(8.107)

p,1

2

p,2

3
2

3
2

2

p,3

4

p,4

5
2

4 5
2

8.6.2.1 Series in energy states
Now the commutation function will be expressed in energy eigenfunctions, which
will give a formally exact phase space representation.

The energy eigenfunctions and eigenvalues satisfy ˆ ∣ 〉 = ∣ 〉En nnH . At this stage
there is no need to be specific about the dimensionality or the number of particles.
Formally the commutation function can be written as

∑

∑

ω

ϕ

=

= ∣ 〉 〈 ∣ 〉

= 〈 ∣ 〉

β β

β

β

− · ℏ − ˆ − · ℏ

· ℏ − ˆ

· ℏ −

e e e e

e L e

e L e

p q

n n p

n p q

( , )

( ).

(8.108)n

n

Nd

Nd E

p q p q p q

p q

p q
n

( , )
p

/i /i

/i /2

/i /2 n

H H

H

This expression is general and is not restricted to ideal systems or to the simple
harmonic oscillator. In the summand appear in essence the energy eigenfunctions
and their Fourier transform,

∫ ϕ

ϕ

〈 ∣ 〉 =

≡ ˇ

− − · ℏ

−

L e

L

n p q q

p

d ( )

( ),
(8.109)

Nd

Nd

p q
n

n

/2 /i

/2

With this the weighted commutation function may be written

∑ω ϕ ϕ= ˇβ β− · ℏ −e e ep q p q( , ) ( ) ( ). (8.110)
n

Ep q p q
n n

( , )
p

/i nH

The imaginary part of this is odd in p. This result is formally exact.
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8.6.2.2 Simple harmonic oscillator commutation function
This form for the commutation function can be given explicitly for the simple
harmonic oscillator. In dimensionless units, the energy eigenvalues are
= ∑ +α αE n[ 1/2]j jn , , and the energy eigenfunctions are the Hermite functions,

∏ϕ
π

≡
!α α

α
−

α
α

αn
e QQ( )

1

2
H ( ), (8.111)

j,
n

j

Q
n jn

/2
j

j
j

2

where QH ( )n is the Hermite polynomial of degree n. The Hermite function is
essentially its own Fourier transform,

∏ϕ π
π

ˇ =
!α α

α
−

α

α

α
αn

e PP( )
i 2

2
H ( ). (8.112)

j,

n

n
j

P
n jn

/2
j

j

j
j

2

8.6.2.3 Numerical results
Figure 8.1 shows the simple harmonic oscillator commutation function for one
particle in one dimension at = =P Q 0. One can see that the phase space weight is
increasingly reduced from the classical Maxwell–Boltzmann weight as the temper-
ature is decreased. At higher temperatures, β ≲ 1, there is good agreement between
the exact series form and the six (up to ωp,5) and five (up to Wp,4) term high
temperature expansions for ωp and Wp, respectively. The exact series used up to
n = 54 terms for high temperatures, β → 0. As the temperature is reduced the
number of necessary terms declines: at β = 1 the tenth term was −(10 )10O , and at
β = 2 the fifth term was −(10 )10O . The commutation function can differ significantly
from unity at lower temperatures; at β = 2 and = =P Q 0, it reduces the phase
space weight by about 50% from its classical value. It can be seen that the expansion

Figure 8.1. The commutation function and Maxwell–Boltzmann weight, ωβ−e P Q( , )P Q( , )
p

H , of the simple
harmonic oscillator at = =P Q 0 as a function of inverse temperature β. The solid curve is the exact result, the
dashed curve is the high temperature expansion using all coefficients up to ωp,5, and the dotted curve is the high
temperature expansion using all coefficients up toWp,4. Note that =(0, 0) 0H , and that ω (0, 0)p is real.

Quantum Statistical Mechanics in Classical Phase Space

8-31



in W np, remains accurate to lower temperatures than the expansion in ω np, even
though it uses fewer terms.

Figure 8.2 shows the phase space weight, ωβ−e P QRe ( , )P Q( , )
p

H , along the line
P = Q at a fixed temperature β = 1. The inset compares results for β = 1with β = 2.
The commutation function generally decreases the phase space weight from that
given by the classical Maxwell–Boltzmann factor alone. The effect is most
significant in the region of the potential minimum, in this case = ≲P Q 1, or,
equivalently, ≲ 1H . It can be seen in the main figure that the high temperature
expansions remain relatively accurate at β = 1. Fewer terms need be retained in the
exact series as the temperature is decreased; at β = 2 results with n = 4 terms were
indistinguishable from those with n = 5–10.

Some oscillatory behavior was observed at larger energies, which depended upon
the number of terms retained in the series. One would like a probability density to be
non-negative, but there is no fundamental requirement that the transformation of
quantum statistical mechanics to classical phase space should yield an actual
probability density. In any case, the numerical problems (i.e., the sensitivity to the
number of retained terms) with the exact series for the commutation function at
large energies and high temperatures are likely moot because the Maxwell–
Boltzmann factor makes the total phase space weight negligible in this regime.
Figure 8.3 compares the monomer grand potential obtained as a phase space
integral of the weighted commutation function

∫

∫

∑β ω

ω

Γ Γ

Γ Γ

− Ω =
!

=
=

∞
β

β

Γ

Γ

−

−

z
h N

e

z
h

e

ln d ( )

d ( ),

(8.113)N 0

N

dN
N N N

d

1
( )

p
( )

1
( )

p
(1)

1

N N( )

(1)
1

H

H

Figure 8.2. Real part of the commutation function and Maxwell–Boltzmann weight, ωβ−e P QRe ( , )P Q( , )
p

H ,
along the line P = Q at β = 1.0. The dash–dotted curve is β−e P Q( , )H , the solid curve is the exact result using
n = 4 terms, the dashed curve is the high temperature expansion using all coefficients up to ωp,5, the dotted
curve is the high temperature expansion using all coefficients up toWp,4. The horizontal dotted line is a guide to
the eye. Inset: Results for β = 1 (above) and β = 2 (below).
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with the =ℓ 1 term of the exact analytic result (derived in section 4.2),

∑β− Ω = ±
−=

∞ β ω

β ω
±

− − ℏ

− ℏ
z

l
e

e
( 1)

1
. (8.114)

l 1

l l l

l

d1 /2⎡
⎣⎢

⎤
⎦⎥

The imaginary parts of the phase space expressions integrate to zero. As expected,
the energy series expressions with a small number of terms works well at low
temperatures, and the two high temperature expansions work well in the opposite
regime. The purpose of the figure is to show that it is quite feasible to obtain
computationally the quantum grand potential from an integral over classical phase
space.

Because the grand potential diverges in the classical limit, β → 0, it can be more
challenging to obtain accurate numerical results in the high temperature regime. At
β = 0.2, for the monomer grand potential β− Ω−z 1

1, the exact analytic result is 4.99,
using the energy series for the commutation function with n = 4 terms it is 3.16, and
with n = 8 terms it is 4.17. Again at β = 0.2, for the dimer grand potential β∓ Ω− ±z 2

2 ,
the exact analytic result is 1.24, using the energy series with n = 4 terms it is 1.07 and
with n = 8 terms it is 1.21. At high temperatures, the high temperature expansions
are more sensitive to the limits used for the phase space integrals than is the energy
series form.

The dimer grand potential is typically about 5–10 times smaller than the
monomer grand potential at the same temperature. For the loop grand potential, the
symmetrization factor induces an effective interaction between the adjacent particles
around the loop, typically of the form + +Q Pcos( )j j j j, 1 , 1 or + +Q Psin( )j j j j, 1 , 1 . Since rapidly

oscillating terms tend to cancel, it was found efficacious to introduce a cut-off R p q
cut

/

Figure 8.3. The monomer grand potential for ideal oscillators as a function of inverse temperature. The solid
curve is the exact analytic result. The remaining curves result from numerical quadrature over phase space,
using for the commutation function the series over energy states up to n = 4 (dashed curve, coincident with the
analytic data at low temperatures), the high temperature expansions up to ωp,5 (dotted curve) and up toWp,4

(dash–dotted curve), both coincident with the analytic data at high temperatures. Inset: Corresponding results
for the dimer grand potential.
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and to neglect configurations unless both ∣ ∣ ⩽+Q Rj j
q

, 1 cut and ∣ ∣ ⩽+P Rj j
p

, 1 cut. For the

present simple harmonic oscillator, a value of =R 4p q
cut

/ was found to change the
results by about 2% at β = 0.1 and by less than 0.1% at β = 1, while substantially
reducing the computation time. (The results in the inset of figure 8.3 do not use a cut-
off.)
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Chapter 9

Nested commutator expansion for the
commutation function

The Maxwell–Boltzmann operator is factorized as exponentials of the potential energy
operator, and the kinetic energy operator, betwixt a residual operator that is a series of
nested commutators of the original two operators. This yields the classical Maxwell–
Boltzmann weight as the leading order, high temperature limit. Substantial cancelation
in the expansion of the commutation function exponent operator portends numerical
efficiency. Explicit terms to fourth order are extensive. Numerical comparison is made
with benchmark results for the one-dimensional harmonic crystal.

9.1 Introduction
One motivation for the phase space formulation of quantum statistical mechanics is
that quantum effects are a small perturbation for most terrestrial condensed matter
systems. However this is also the source of a significant computational challenge when
it comes to obtaining the commutation function because it means that the dominant
contribution in the defining equation is the classical Maxwell–Boltzmann factor, and
this has to be subtracted or canceled to obtain the specific quantum effects of non-
commutativity. Such cancelation demands high accuracy of the individual terms in any
numerical calculation, which can be problematic. In the case of an analytic expansion,
the contributions from the expansion of the Maxwell–Boltzmann factor can unduly
complicate the individual terms and they have to be identified and removed to leave the
specific quantum contribution that is really sought.

In the present chapter the defining equation for the commutation function is
reformulated in such a way that the classical Maxwell–Boltzmann factor appears
explicitly on both sides of the equation, which allows it to be canceled analytically.
This leaves the commutation function expressed as the phase space expectation
value solely of a commutation function operator, so that all quantum effects due to
non-commutativity are explicit and no further numerical or analytic cancelation due
to the Maxwell–Boltzmann factor is required.
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Compared to the high temperature expansion, this exponential commutator
factorization method writes the terms in a very compact fashion. The first four
terms are here obtained and written explicitly as nested commutators.

From these, the first three non-zero terms in the high temperature expansion of
the commutation function exponent operator are obtained explicitly. A deal of
cancelation occurs in this process, which suggests that the series is rapidly converg-
ing. The terms contain gradients of the potential, and their products and higher
powers. These are more short-ranged than the potential itself, which is another good
sign. Conversely, however, these are larger than the potential in the core region,
which is precisely where one expects the effects of non-commutativity to be manifest.
Whether or not this will pose a significant computational challenge is unclear.

9.2 Commutator factorization of exponentials
The exponential of the sum of two operators can be formally factorized as

=
=

ˆ+ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
e e e e

e e e .
(9.1)

A B A C A B B

B C B A A

( , )

( , )

The product of the exponential and its inverse gives the identity operator,

ˆ = =− ˆ− ˆ ˆ+ ˆ − ˆ − ˆ − ˆ − ˆ ˆ ˆ ˆ ˆe e e e e e e eI , (9.2)A B A B B C B A A A C A B B( , ) ( , )

or

= ˆ− ˆ − ˆ ˆ ˆe e I. (9.3)C B A C A B( , ) ( , )

It follows that the central exponent, or residual operator function, must satisfy

ˆ ˆ = − − ˆ − ˆC A B C B A( , ) ( , ). (9.4)

9.2.1 Second order

Here ˆ ˆC A B( , ) is obtained to quadratic order in the operators. Below the factoriza-
tion is applied to the commutation function, in which case each of the two operators
is linearly proportional to the inverse temperature. Hence quadratic order in the
operators will be the same as quadratic order in the inverse temperature.

Expanding both sides of the factorization to quadratic order one has

= + ˆ + ˆ + ˆ + ˆ + ˆ ˆ + ˆ ˆˆ+ ˆe A B A B AB BA1
1
2

1
2

1
2

1
2

, (9.5)A B 2 2

and

= + ˆ + ˆ + ˆ ˆ + ˆ + ˆ

= + ˆ + ˆ + ˆ + ˆ + ˆ ˆ + ˆ ˆ

ˆ ˆ ˆ ˆe e e A A C A B B B

A B A B AB C A B

(1
1
2

)(1 ( , ))(1
1
2

)

1
1
2

1
2

( , ).
(9.6)

A C A B B( , ) 2 2

2 2
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Equating these two gives the second order term for the residual operator function,

ˆ ˆ = ˆ ˆC A B B A( , )
1
2

[ , ], (9.7)2

where the brackets indicate the usual quantum commutator, ˆ ˆ = ˆ ˆ − ˆ ˆB A BA AB[ , ] .

9.2.2 Third order

The cubic order terms in the exponentiated sum are

= ˆ + ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ + ˆˆ+ ˆe A A B ABA BA AB BAB B A B
1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

. (9.8)A B 3 2 2 2 2 3

The factorized form with quadratic residual operator function expanded to cubic
order is

= + ˆ + ˆ + ˆ + ˆ ˆ

+ ˆ + ˆ + ˆ

= + ˆ + ˆ + ˆ + ˆ + ˆ ˆ + ˆ ˆ
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1
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1
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1
2

.

(9.9)

A C A B B( , )

2 3

2 3

2 2

3 3

2

The difference between the cubic parts of these two expressions is the third order
residual operator function,

ˆ ˆ = − ˆ ˆ ˆ − ˆ ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ

= ˆ ˆ ˆ + ˆ ˆ ˆ

C A B ABA BAB A B BA AB B A

A A B A B B

( , )
1

3
1
3

1
6

1
6

1
6

1
6

1
6

[ , [ , ]]
1
6

[[ , ], ].
(9.10)

3
2 2 2 2

Hence to cubic order one has

=ˆ+ ˆ ˆ − ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ ˆe e e e . (9.11)A B A A B A A B A B B B[ , ]/2 [ ,[ , ]]/6 [[ , ], ]/6

The neglected terms are O Â( )
4 , etc.

9.2.3 Fourth order

The expansion to fourth order from the third order commutator form are

Quantum Statistical Mechanics in Classical Phase Space

9-3



= + ˆ + ˆ + ˆ + ˆ
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The fourth order terms here are
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4

[ , ]
1
2

[ , ]

1
6

[ , [ , ]]
1
6

[ , [ , ]]
1
6

[[ , ], ]

1
6

[[ , ], ]
1
8

[ , ] .

(9.13)

4
4 4 3 3 2 2

2 2

2

The expansion of the original ˆ+ ˆeA B form has fourth order terms

ˆ = ˆ + ˆ

= ˆ + ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ

+ ˆ ˆ + ˆ ˆ ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ ˆ

+ ˆ ˆ + ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ + ˆ

E A B

A A B A BA ABA BA

A B ABAB AB A BA B BABA

B A B A B AB BAB AB B

1
24

( )

1
24

1
24

1
24

1
24

1
24

1
24

1
24

1
24

1
24

1
24

1
24

1
24

1
24

1
24

1
24

1
24

.

(9.14)

4
4

4 3 2 2 3

2 2 2 2

2 2 3 2 2 3 4

The fourth order residual is ˆ ˆ = ˆ − ˆC A B E D( , )4 4 4. The term involving three Â and
one B̂ is

ˆ ˆ = ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ

− ˆ ˆ − ˆ ˆ ˆ − ˆ ˆ ˆ ˆ

= − ˆ ˆ + ˆ ˆ ˆ + − ˆ ˆ ˆ + ˆ ˆ

= − ˆ ˆ ˆ ˆ

C A B A B A BA ABA BA

A B A B A A A A B

A B A BA ABA BA

A A A B

( , )
1
24

1
24

1
24

1
24

1
6

1
4

[ , ]
1
6

[ , [ , ]]

1
24

3
24

3
24

1
24

1
24

[ , [ , [ , ]]].

(9.15)

31
3 2 2 3

3 2

3 2 2 3
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From equation (9.4), the term involving one Â and three B̂ is
ˆ ˆ = − − ˆ − ˆ = ˆ ˆ ˆ ˆC A B C B A B B B A( , ) ( , ) [ , [ , [ , ]]]/2413 31 .

With this, the term involving two Âs and two B̂ is

ˆ ˆ

= ˆ ˆ + ˆ ˆ ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ ˆ

+ ˆ ˆ − ˆ ˆ − ˆ ˆ ˆ ˆ − ˆ ˆ ˆ ˆ

− ˆ ˆ ˆ ˆ − ˆ ˆ

= − ˆ ˆ + ˆ ˆ ˆ ˆ − ˆ ˆ ˆ ˆ + ˆ ˆ

= ˆ ˆ ˆ ˆ

C A B

A B ABAB AB A BA B BABA

B A A B A B A B A A B B

A A B B B A

A B ABAB BABA B A

A B B A

( , )
1
24

1
24

1
24

1
24

1
24

1
24

1
4

1
2

[ , ]
1
6

[ , [ , ]]

1
6

[[ , ], ]
1
8

[ , ]

1
24

2
24

2
24

1
24

1
24

[[[ , ], ], ].

(9.16)

22

2 2 2 2

2 2 2 2

2

2 2 2 2

How can one resist this?
Hence the factorization =ˆ+ ˆ ˆ ˆ ˆ ˆe e e eA B A C A B B( , ) , to fourth order is

ˆ ˆ

= ˆ ˆ + ˆ ˆ + ˆ ˆ

= ˆ ˆ + ˆ ˆ ˆ + ˆ ˆ ˆ

+ ˆ ˆ ˆ ˆ + ˆ ˆ ˆ ˆ + ˆ ˆ ˆ ˆ

C A B

C A B C A B C A B

B A B A A B B A

B A A A B B B A B B A A

( , )

( , ) ( , ) ( , )
1
2

[ , ]
1
6

[[ , ], ]
1
6

[ , [ , ]]

1
24

[[[ , ], ], ]
1
24

[ , [ , [ , ]]]
1
24

[[ , [ , ]], ].

(9.17)

2 3 4

9.3 Maxwell–Boltzmann operator factorized
9.3.1 Formal and algorithmic expressions

The energy operator, H Kˆ = + ˆU , is the sum of the potential energy,U r( ), and the
kinetic energy K̂ = −ℏ ∇mr( ) ( /2 ) r

2 2, operators. Hence the Maxwell–Boltzmann
operator can be written in factored form,

H K=β β β− ˆ − ˆ − ˆe e e e . (9.18)U Wp

In the notation of the preceding section, the commutation function exponent
operator is Kβ βˆ = − − ˆW C U( , )p .

The motivation for choosing this factorization form is that setting ˆ =W 0p , gives
the classical Maxwell–Boltzmann operator when it acts on the momentum eigen-
functions. This can be seen from the definition of the commutation function,
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H H

K

H

=
〈 ∣ 〉

=
〈 ∣ 〉

=
〈 ∣ 〉

β β

β β

β

− − ˆ

− ˆ − ˆ

−
ˆ

e e e

e e e

e
e

q p
q p

q p
q p

q p
q p

1

1

,

(9.19)

W

U W

W

q p q p

q p

( , ) ( , )

( , )

p

p

p

or

=
〈 ∣ 〉

ˆe e
q p

q p
1

. (9.20)W Wq p( , )p p

It is likely to be of numerical benefit that the classical Maxwell–Boltzmann factor
has been canceled in this formulation, and that the leading term in the residual
exponent operator is of quadratic order in the inverse temperature.

The commutation function can be calculated from this in several ways. One way
is to expand in eigenstates of the commutation function operator,

ϕ ϕˆ =W Wr r r( ) ( ) ( )n n np p, . That is

∑ ϕ ϕ=
〈 ∣ 〉

ˇ *e e
q p

q p
1

( ) ( ) , (9.21)
n

W Wq p
n n

( , ) np p,

where what is essentially the Fourier transform of the eigenfunction is ϕ̌ = 〈 ∣ 〉p p n( )n .
The challenge with this approach is that presumably obtaining the eigenstates of

the commutation function operator is essentially a non-local computation that
involves all the particles of the system and the specification of the conditions at the
system boundaries. Possibly these hurdles could be ameliorated by an effective local
field approach (chapter 10).

An alternative way to calculate the commutation function is to expand the
exponential and to calculate the operation of the commutation function operator on
the momentum eigenfunction directly. That is

O

β β β

β
β

= 〈 ∣ ∣ 〉
〈 ∣ 〉

= +
〈 ∣ ˆ ∣ 〉

〈 ∣ 〉
+

〈 ∣ ˆ ∣ 〉
〈 ∣ 〉

+ ⋯

= +
〈 ∣ ˆ + ˆ + ˆ ∣ 〉

〈 ∣ 〉

+
〈 ∣ ˆ ∣ 〉

〈 ∣ 〉
+

ˆ

e
e

W W

W W W

W

q p
q p

q p

q p

q p

q p

q p

q p

q p

q p

1
1
2

1

1
2

( ).

(9.22)

W
W

q p( , )

p p
2

2
p,2

3
p,3

4
p,4

4
p, 2
2

5

p
p

Obviously this process can be continued to higher order. This gives a rather direct way
of obtaining the commutation function and the operators whose expectation value is
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taken lend themselves to analytic formulae. This is one advantage that they have over
the sum over eigenstates method. A second related advantage are that they are local
since they involve no more than gradients and products of the potential energy.

Either of the above computational expressions for the commutation function can be
combined with the expansion to a specified order in inverse temperature of the
commutation function operator. The second, third, and fourth order expansions were
obtained explicitly above for the general operators Â and B̂. Those formulae will now
be used to obtain the respective expansion for the commutation function operator.

9.3.2 Commutation function operators

The commutation function exponent operator may be written as a series in inverse
temperature,

∑ βˆ = ˆ
=

∞

W W . (9.23)
n 2

n
np p,

We can obtain the coefficients of this from the above nested commutator expansion.

9.3.2.1 Second order
With βˆ = −A U r( ) and Kβ βˆ = − ˆ = ℏ ∇B mr( ) ( /2 ) r

2 2, equation (9.7) gives the second
order term for the commutation function operator

Kˆ = − ˆ

= −ℏ ∇ + ∇ · ∇{ }

W U

m
U U

r

r r

( )
1

2
[ , ]

4
( ( )) 2( ( )) .

(9.24)

r r r

p,2

2
2

9.3.2.2 Third order
Equation (9.10) gives the third order term for the commutation function operator

K K Kˆ = − ˆ − ˆ ˆ

= ℏ ∇ · ∇

− ℏ ∇ ∇ + ∇ ∇ · ∇ + ∇∇ ∇∇{ }

W U U U

m
U U

m
U U U

r( )
1

6
[ , [ , ]]

1
6

[[ , ], ]

6
( ) ( )

24
( ) 4( ) 4( ): .

(9.25)

p,3

2

4

2
2 2 2

All of these terms are extensive.

9.3.2.3 Fourth order
The fourth order coefficient for the residual operator, equations (9.15) and (9.16), is

ˆ ˆ = − ˆ ˆ ˆ ˆ − ˆ ˆ ˆ ˆ + ˆ ˆ ˆ ˆC A B A A A B A B B B A B B A( , )
1

24
[ , [ , [ , ]]]

1
24

[[[ , ], ], ]
1
24

[[[ , ], ], ]. (9.26)4
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Writing the fourth order commutation function exponent operator as

ˆ = ˆ + ˆ + ˆW W W W , (9.27)p,4 p,31 p,13 p,22

the first of these is

ˆ = − −ℏ ∇

= −ℏ ∇ + ∇ · ∇

=

W
m

U U U

m
U U U U

1
24 2

[ , [ , [ , ]]]

48
[ , [ , (( ) 2( ) )]]

0.

(9.28)

p,31

2
2

2
2

This vanishes because ∇ U( )2 and ∇ · ∇ = − ∇ · ∇U U U U[ , (2( ) )] 2( ) ( ) both com-
mute with U.

This is in fact a generally useful result, since nested terms of this form occur at
each order. One such term is

Kˆ ≡ −
!

… ˆ … = ˆ− −W
n

U U U
n

U W
1

[ , [ , , [ , ] ]]
1

[ , ], (9.29)p;n 1, 1 p;n 2, 1

and one has

Kˆ = − ˆ = −ℏ ∇ − ∇ · ∇W U
m

U U
1

2
[ , ]

4
( ) ( ) , (9.30)p,11

2
2

Kˆ = −
!

ˆ = ℏ ∇ · ∇W U U
m

U U
1

3
[ , [ , ]]

6
( ) ( ), (9.31)p,21

2

and

ˆ = ⩾W n0, 3. (9.32)p,n1

This also means that any nest of commutators with an inner kernel of three U and
one K̂ that form Kˆ ˆW U( , )p,31 vanishes.

The second term in the fourth order commutation function exponent operator is

ˆ = − −ℏ ∇ ∇ ∇

= −ℏ ∇ ∇ ∇ + ∇ ∇ ∇ · ∇

+ ∇ ∇∇ ∇∇ + ∇∇∇ ⋮∇∇∇

W
m

U

m
U U

U U

1
24 8

[[[ , ], ], ]

192
(( ) 6( )

12( ): 8( ) ).

(9.33)

p,13

6

3
2 2 2

6

3
2 2 2 2 2

2

The third term is

ˆ = − ℏ ∇ ∇

= ℏ ∇ ∇ · ∇ + ∇∇ ∇∇

+ ∇∇ ∇ ∇

W
m

U U

m
U U U U

U U

1
24 4

[ , [[ , ], ]]

96
(4( ) ( ) 4( ): ( )

8( ): ( ) ).

(9.34)

p,22

4

2
2 2

4

2
2
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9.4 Temperature derivative of the commutation function operator
9.4.1 Nested commutator form

The nested commutator form for the commutation function exponent operator can
alternatively be obtained from the temperature derivative of the defining equation.
In view of the factorization (9.18), the commutation function exponent operator can
be written as

H K= β β βˆ − ˆ ˆe e e e . (9.35)W Up

Differentiation with respect to inverse temperature yields

H K

K

H K H K H K

H K

β
∂
∂

= − ˆ + ˆ

= ˆ

β β β β β β β β β

β β β

ˆ
− ˆ ˆ − ˆ ˆ − ˆ ˆ

− ˆ ˆ

e
e Ue e e e e e e e

e e e[ , ] .

(9.36)

W
U U U

U

p

The right-hand side can also be written H Kβ β β− ˆ ˆe U e e[ , ]U , but this is less convenient
for our purposes.

Using the temperature series for the commutation function exponent operator,
equation (9.23), to fifth order one has

O

β β β β

β β β β

= + ˆ + ˆ + ˆ + ˆ

+ ˆ + ˆ ˆ + ˆ ˆ +

ˆe W W W W

W W W W W

1

1
2

1
2

1
2

( ).
(9.37)

W 2
p,2

3
p,3

4
p,4

5
p,5

4
p, 2
2 5

p,2 p,3
5

p,3 p,2
6

p

The derivative is

O

β
β β β β

β β β β

∂
∂

= ˆ + ˆ + ˆ + ˆ

+ ˆ + ˆ ˆ + ˆ ˆ +

ˆe
W W W W

W W W W W

2 3 4 5

4
2

5
2

5
2

( ).

(9.38)

W

p,2
2

p,3
3

p,4
4

p,5

3
p, 2
2 4

p,2 p,3
4

p,3 p,2
5

p

The right-hand side to fourth order is

K

H H H H K

K K K O

H K
β

β β β

β β β β

β β β β

∂
∂

= ˆ

= + + +
!

× − ˆ + ˆ −
!

ˆ +
!

ˆ ˆ

× + ˆ + ˆ +
!

ˆ +

β β β
ˆ

− ˆ ˆ

{ }

{ }

e
e e e

U U U

[ , ]

1
1
2

1
3

1
2

1
3

1
4

,

1
1
2

1
3

( ).

(9.39)

W
U

2 2 3 3

2 2 3 3 4 4

2 2 3 3 5

p

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥
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Equating the coefficients of β gives

H K Kˆ = − ˆ ˆ = − ˆW U
1

2
[ , ]

1
2

[ , ]. (9.40)p,2

Equating the coefficients of β2 gives

H K H K K H K

K K K

ˆ = − ˆ ˆ − ˆ ˆ ˆ + ˆ ˆ

= − ˆ − ˆ ˆ

{ }W U

U U U

1
3

[ , ] [ , ]
1
2

[ , ]

1
6

[ , [ , ]]
1
6

[[ , ], ].

(9.41)
p,3

2

Equating the coefficients of β3 gives

K K K K K K K

K K K K K K K

K K K K K K K K

ˆ = − ˆ + − ˆ + ˆ ˆ − ˆ − ˆ ˆ

+ + ˆ + ˆ ˆ + + ˆ + ˆ ˆ ˆ

−
!

+ ˆ + ˆ + ˆ + ˆ + ˆ ˆ + ˆ ˆ

{

}( )

W U U U U U U U

U U U U U U U

U U U U U U U U

1
8

[ , ]
1
4

1
2

[ , ]
1
2

[ , ]

1
2

[( ), ]
1
2

[( ), ]

1
3

, .

(9.42)

p,4
2 2 2 2 2

2 2

3 2 2 2 2⎡
⎣⎢

⎤
⎦⎥

The term involving three U and one K̂ is Kˆ ≡ ˆW W U( , )p,31 31 , with

K K K K K K K

K

ˆ = − ˆ + ˆ + ˆ − ˆ − ˆ + ˆ

= −
!

ˆ

W U U U U U U U U U

U U U

( , )
1

8
1
8

1
8

1
8

1
24

1
24

1
4

[ , [ , [ , ]]].
(9.43)

31
3 2 3 2 3 3

As shown in equation (9.32), this vanishes. The term involving one U and three K̂
may be confirmed explicitly as obeying the general rule, equation (9.4),

K Kˆ = − − ˆ −W U W U( , ) ( , )13 31 . The term involving two U and two K̂ is

K K K K K K K K K

K K K K K K K K

K K K K K K

K K K K K K K

K K K K K K

K K

ˆ = − ˆ + ˆ ˆ − ˆ ˆ + ˆ + ˆ ˆ

− ˆ ˆ + ˆ − ˆ ˆ + ˆ ˆ − ˆ

+ ˆ − ˆ ˆ − ˆ + ˆ ˆ

− ˆ ˆ + ˆ ˆ − ˆ ˆ + ˆ

=
!

ˆ ˆ + −
!

ˆ ˆ + −
!

ˆ +
!

ˆ

=
!

ˆ ˆ

W U U U U U U U U U

U U U U U U U U U

U U U U

U U U U U U

U U U U U U

U U

( , )
1

4
1
4

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
24

1
24

1
24

1
24

1
24

1
24

2
4

2
4

1
4

1
4

1
4

[ , [[ , ], ]].

(9.44)

22
2 2 2 2

2 2 2

2 2 2 2 2 2

2 2 2

2 2 2 2
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Equating the coefficients of β4 gives

K K K K K K K

K K K K K K K K

K K K

K K K K K K K K K

K K K K K K K K

K K K K K

K K K K K K K K
K K K K K K K

ˆ = − ˆ ˆ − ˆ ˆ

+ − ˆ ˆ − ˆ ˆ − ˆ ˆ − ˆ

+ + ˆ + ˆ ˆ ˆ + + ˆ + ˆ ˆ ˆ

+ + ˆ + ˆ ˆ

− + ˆ + ˆ + ˆ + ˆ + ˆ ˆ + ˆ ˆ ˆ

− + ˆ + ˆ + ˆ + ˆ + ˆ ˆ + ˆ ˆ

+ + ˆ + ˆ + ˆ + ˆ + ˆ

+ ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ + ˆ

+ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ

{

}

W W W W W

U U U U U U U

U U U U U U U

U U U U

U U U U U U U U

U U U U U U U U U

U U U U U U U U

U U U U U U U U

U U U U

1
2

1
2

1
5

1
6

[ , ]
1
2

[ , ]
1
2

[ , ]
1
6

[ , ]

1
4

[( ), ]
1
2

[( ), ]

1
4

[( ), ]

1
6

[( ), ]

1
6

[( ), ]

1
24

[(

), ] .

(9.45)

p,5 p,2 p,3 p,3 p,2

3 2 2 3

2 2 2

2 2

3 2 2 2 2

3 2 2 2 2

4 3 2 2 3 2 2

2 2 2 2

3 2 2 3

Now

K K K Kˆ ˆ = ˆ ˆ ˆ + ˆ{ }W W U U U U
1

12
[ , ] [ , [ , ]] [ , [ , ]] . (9.46)p,2 p,3

The term involving four U and one K̂ is

K K K K K K

K

ˆ = −
!

ˆ +
!

ˆ −
!

ˆ +
!

ˆ −
!

ˆ

= −
!

ˆ

W U U U U U U U U U

U U U U

( , )
1

5
4
5

6
5

4
5

1
5

1
5

[ , [ , [ , [ , ]]]].
(9.47)

41
4 3 2 2 3 4

As shown in equation (9.32), this vanishes. Obviously

K K K K K Kˆ = − − ˆ − = −
!

ˆ ˆ ˆ ˆW U W U U( , ) ( , )
1

5
[ , [ , [ , [ , ]]]]. (9.48)14 41

It is tedious but straightforward to derive the term involving three U and two K̂,

K K K K K K K K

K K
K K K K K K K

K K K K

ˆ =
!

− ˆ − ˆ ˆ − ˆ ˆ + ˆ ˆ

+ ˆ ˆ

− ˆ − ˆ + ˆ ˆ − ˆ + ˆ ˆ

= −
!

ˆ ˆ −
!

ˆ ˆ

{

}

W U U U U U U U U U

U U

U U U U U U U U

U U U U U U

( , )
1
5

6 6 4

4

4 4

1
5

[ , [ , [[ , ], ]]]
2
5

[[[ , ], ], [ , ]].

(9.49)

32
2 2 2 2 2

2

2 2 3 2 3 2 3
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Note that the first term on the right-hand side of the final equality does not contain a
nest of three U and one K̂ in the sense of equation (9.32) (i.e., K̂W U( , )31 ), and so it
cannot be assumed to vanish. Obviously K K Kˆ = − − ˆ − = ˆW U W U W U( , ) ( , ) ( , )23 32 32 .

9.4.2 Expanded operator form

The above procedures are a little tedious in having to equate the same orders of the
two expansions, and then having to reduce the expanded result into nested
commutator form. Undoubtedly there is some virtue in the compact nature of the
latter, but manually obtaining the higher order terms seems unrealistic. Here a much
quicker way of obtaining the expanded higher order form is given.

We have

K K K=β β β β β− + ˆ − − − ˆ − ˆe e e e . (9.50)U U C U( ) ( , )

An abbreviated notation writes this in more compact form as

E K Kβ βˆ = − − ˆβ β− − ˆE e U e( , ) . (9.51)U

The commutation function exponent operator is of the form

K K∑β β β− − ˆ = − ˆ
=

∞

C U C U( , ) ( ) ( , ), (9.52)
n 2

n
n

and its exponential has expansion

E K E K∑β β β− − ˆ = + − ˆ
=

∞

U U( , ) 1 ( ) ( , ). (9.53)
n 2

n
n

The two sets of coefficients are related as

E ∑ ∑ ∑

∑ ∑ ∑

= + +
!

+
!

+ ⋯

=

−

=

−

=

− −

=

−

=

− −

=

− − −

− − −

− − −

C C C C C C

C C C C

1
2

1
3

1
4

(9.54)
j

n

j

n

k

n j

j

n

k

n j

ℓ

n j k

2

2

2

4

2

2

2

6

2

4

2

2

n n j n j j k n j k

j k ℓ n j k ℓ

This allows Cn to be obtained from En and the lower order commutation function
exponent coefficient operators. (In practice it seems more convenient to compute
directly with the En.)

Now the nth derivative of the commutation function operator is

E K Kβ β
β

∂ − − ˆ

∂ −
= ˆβ β ˆU

e f E e
( , )

( )
( ) . (9.55)

n

n
U

n

Here ˆf E( )n is a linear function of βˆ −E( ), which is its sole dependence on β. (It also

depends on U and K̂.) With this the nth coefficient of the expansion of the
commutation function operator is
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E E Kβ β
β

=
!

∂ − − ˆ

∂ −
=

!
β=

n
U

n
f

1 ( , )
( )

1
(1). (9.56)n

n

n n

0

One has

E K

K HK K K

β β
β

∂ − − ˆ

∂ −

= − ˆ − ˆ ˆ + ˆ ˆβ β β β β β

+

+

ˆ ˆ ˆ

U

e Uf E e e f E e e f E e

( , )
( )

( ) ( ) ( ) .

(9.57)

n

n

U
n

U
n

U
n

1

1

This gives the recursion relation

H Kˆ = ˆ ˆ − ˆ − ˆ ˆ
+f E f E Uf E f E( ) ( ) ( ) ( ) . (9.58)n n n n1

The initial functions are

Kˆ = ˆ ˆf E E( ) [ , ], (9.59)1

and

K H K K Kˆ = ˆ ˆ ˆ − ˆ ˆ − ˆ ˆ ˆf E E U E E( ) [ , ] [ , ] [ , ] . (9.60)2

At β = 0, ˆ =E 1, these give =f (1) 01 and K= ˆf U(1) [ , ]2 . The latter gives

K Kˆ = − ˆC U U( , ) [ , ]/22 , which is the same result as was obtained several times above.
The recursion relation allows higher order expanded expressions for the commu-

tator exponent operator to be generated in a mechanical fashion. Of course the
number of terms grows exponentially with the order.

9.5 Evaluation of the commutation function
9.5.1 Expectation values

Using the fact that ∇∣ 〉 = ℏ ∣ 〉p p p(i / ) , one has for the second order expectation value

〈 ∣ ˆ ∣ 〉
〈 ∣ 〉

= −ℏ ∇ +
ℏ

· ∇
W

m
U U

q p

q p
q p q

4
( ( ))

2i
( ( )) . (9.61)q q

p,2
2

2⎧⎨⎩
⎫⎬⎭

The parenthesis around the gradient operators are now redundant. Here and below
the potentialU q( ) and gradient ∇q are functions of the phase space position q.

The third order expectation value is

〈 ∣ ˆ ∣ 〉
〈 ∣ 〉

= ℏ ∇ · ∇ − ℏ ∇ ∇ +
ℏ

· ∇ ∇

−
ℏ

∇∇ }

W

m
U U

m
U U

U

q p

q p
p

pp

6
( ) ( )

24
( )

4i
( )

4
: ( ) .

(9.62)

p,3
2 4

2
2 2 2

2

⎧⎨⎩
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The fourth order expectation value is

〈 ∣ ˆ ∣ 〉
〈 ∣ 〉

=
〈 ∣ ˆ + ˆ + ˆ ∣ 〉

〈 ∣ 〉

= −ℏ ∇ ∇ ∇ +
ℏ

· ∇ ∇ ∇

−
ℏ

∇ ∇∇ −
ℏ

⋮ ∇∇∇

+ ℏ ∇ ∇ · ∇ + ∇∇ ∇∇

+
ℏ

∇∇ ∇

W W W W

m
U U

U U

m
U U U U

U U

q p

q p

q p

q p

p

pp ppp

p

192
( )

6i
( )

12
: ( )

8i
( )

96
(4( ) ( ) 4( ): ( )

8i
( ): ( ) .

(9.63)

p,4 p,31 p,13 p,22

6

3
2 2 2 2 2

2
2

3

4

2
2

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

These three expectation values are extensive.
The square of the second order commutation function operator is given by

ℏ
ˆ

= ∇ + ∇ · ∇

= ∇ + ∇ ∇ · ∇
+ ∇ · ∇ ∇ + ∇ · ∇ ∇
+ ∇ · ∇ ∇ · ∇ + ∇ ∇ ∇ ∇

{ }

m
W

U U

U U U

U U U U
U U U U

r r

r r r

r r r r
r r r r

16

( ( )) 2( ( ))

( ( )) 2( ( ))( ( ))

2( ( )) ( ( )) 2( ( )) ( ( ))
4( ( )) ( ( )) 4( ( ))( ( )): .

(9.64)
r r r

r r r r

r r r r r r

r r r r r r r r

2

4 p, 2
2

2 2

2 2 2

2 2

The expectation value is

〈 ∣ ˆ ∣ 〉
〈 ∣ 〉

= ℏ ∇ +
ℏ

∇ · ∇ + ∇ · ∇ ∇

+
ℏ

∇ ∇∇ −
ℏ

∇ ∇

W

m
U U U U U

U U U U

q p

q p
p

p pp

16
( )

4i
( ) ( ) 2( ) ( )

4i
( ): ( )

4
: ( )( ) .

(9.65)

p, 2
2

4

2
2 2 2 2

2

⎧⎨⎩
⎫⎬⎭

9.5.2 Gradients of the singlet and pair potential

Consider a system of N particles with potential energy comprising singlet and pair
potentials,

∑ ∑ ∑= + = +
= = =

≠U U U u uq q q q q q( ) ( ) ( ) ( )
1
2

( , ). (9.66)
j

N

j

N

k

N

1 1 1
j

k j
j k

(1) (2) (1) ( ) (2)

The pair potential is necessarily symmetric, =u uq q q q( , ) ( , )j k k j
(2) (2) , and it is often

central, =u u qq q( , ) ( )j k jk
(2) (2) , with = ∣ ∣q qjk jk and = −q q qjk j k. For brevity we may

write ≡u u q( )j j
(1) (1) and ≡u u q q( , )jk j k

(2) (2) . The gradient operator is ∇ = ∑ ˆ ∇= jj
N

j1 .
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For the second order expectation value one requires

∑ ∑ ∑∇ = ˆ ∇ + ˆ ∇
= = =

≠U u uq j q j q q( ) ( ) ( , ), (9.67)
j

N

j

N

k

N

1 1 1

j j
k j

j j k
(1) ( ) (2)

and

∑ ∑ ∑∇ = ∇ + ∇
= = =

≠U u uq q q q( ) ( ) ( , ). (9.68)
j

N

j

N

k

N

1 1 1
j j

k j
j j k

2 2 (1) ( ) 2 (2)

Here and below these are functions, not operators, which is to say that the gradients
do not operate beyond the function to their right.

For the third order expectation value one requires

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∇ · ∇

= ∇ + ∇ · ∇ + ∇

= ∇ · ∇ + ∇ · ∇

+ ∇ · ∇

= = ′=

= = =

= = ′=

≠ ′≠
′

≠

≠ ′≠
′

U U

u u u u

u u u u

u u

2

,

(9.69)

j

N

k

N

k

N

j

N

j

N

k

N

j

N

k

N

k

N

1 1 1

1 1 1

1 1 1

j j
k j

j jk j j
k j

j jk

j j j j
k j

j j j jk

k j k j
j jk j jk

(1) ( ) (2) (1) ( ) (2)

(1) (1) ( ) (1) (2)

( ) ( ) (2) (2)

⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

∑ ∑ ∑ ∑

∑ ∑ ∑

∇ ∇ = ∇ ∇ + ∇

= ∇ ∇ + ∇ ∇ + ∇ ∇

= = = =

= = =

≠

≠ { }

U u u

u u u ,

(9.70)ℓ

N

j

N

j

N

k

N

j

N

j

N

k

N

1 1 1 1

1 1 1

ℓ j j
k j

j jk

j j j
k j

j j jk j k jk

2 2 2 2 (1) ( ) 2 (2)

2 2 (1) ( ) 2 2 (2) 2 2 (2)

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

∑ ∑ ∑ ∑

∑ ∑ ∑ȷ ȷ ȷ

∇ ∇ = ˆ∇ ∇ + ∇

= ˆ ∇ ∇ + ˆ ∇ ∇ + ˆ ∇ ∇

= = = =

= = =

≠

≠ { }

ℓU u u

u u u ,

(9.71)ℓ

N

j

N

j

N

k

N

j

N

j

N

k

N

1 1 1 1

1 1 1

ℓ j j
k j

j jk

j j j
k j

j j jk j k jk

2 2 (1) ( ) 2 (2)

2 (1) ( ) 2 (2) 2 (2)

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

and

∑ ∑ ∑ȷȷ ȷȷ ȷ∇∇ = ˆˆ ∇ ∇ + ˆˆ ∇ ∇ + ˆ ˆ∇ ∇
= = =

≠ { }U u u uk . (9.72)
j

N

j

N

k

N

1 1 1

j j j
k j

j j jk j k jk
(1) ( ) (2) (2)
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For the fourth order expectation value one requires

∑

∑ ∑

∇ ∇ ∇ = ∇ ∇ ∇

+ ∇ ∇ ∇ + ∇ ∇ ∇

=

= =

≠ { }

U u

u u3 ,

(9.73)
j

N

j

N

k

N

1

1 1

j j j j

k j
j j j jk k j j jk

2 2 2 2 2 2 (1)

( ) 2 2 2 (2) 2 2 2 (2)

∑ ∑ ∑ȷ ȷ

ȷ

∇ ∇ ∇ = ˆ ∇ ∇ ∇ + ˆ ∇ ∇ ∇

+ ˆ ∇ ∇ ∇ + ˆ ∇ ∇ ∇
= = =

≠ {

}

U u u

u uk 2 ,

(9.74)j

N

j

N

k

N

1 1 1

j j j j
k j

j j j jk

k j j jk j j k jk

2 2 2 2 (1) ( ) 2 2 (2)

2 2 (2) 2 2 (2)

∑ ∑ ∑ȷȷ ȷȷ

ȷȷ ȷ

∇ ∇∇ = ˆˆ ∇ ∇ ∇ + ˆˆ ∇ ∇ ∇

+ ˆˆ ∇ ∇ ∇ + ˆ ˆ∇ ∇ ∇
= = =

≠ {

}

U u u

u uk2 ,

(9.75)j

N

j

N

k

N

1 1 1
j j j j

k j
j j j jk

k j j jk j j k jk

2 2 (1) ( ) 2 (2)

2 (2) 2 (2)

and

∑ ∑ ∑ȷȷȷ ȷȷȷ

ȷȷ ȷ ȷ ȷȷ

∇∇∇ = ˆˆˆ ∇ ∇ ∇ + ˆˆˆ ∇ ∇ ∇

+ ˆˆ ˆ∇ ∇ ∇ + ˆ ˆˆ ∇ ∇ ∇ + ˆˆˆ ∇ ∇ ∇
= = =

≠ {

}

U u u

u u uk k k .

(9.76)j

N

j

N

k

N

1 1 1

j j j j
k j

j j j jk

j j k jk j j k jk k j j jk

(1) ( ) (2)

(2) (2) (2)

9.5.3 Central pair potential

In d dimensions, = ∑ ˆα α α= qq xj
d

j1 , the separation squared is = · = ∑α α=q qq qjk jk jk
d

jk
2

1
2 ,

with = −q q qjk j k. A central pair potential is a function of the separation,

=u u qq q( , ) ( )j k jk
(2) . Note the superscript (2) on the central pair potential has been

dropped because in this section we shall only deal with the pair potential. Note that
because the pair potential is a function of separation, = ∣ − ∣q q qjk j k , one can always
make the replacement ∇ ⇒ −∇k j. Everywhere below, ≠j k.

For the second order expectation value one has

∇ = ′ ∇ = ′u q u q q
q

u q
q

( ) ( ) ( ), (9.77)j jk jk j jk
jk

jk
jk

and

∇ = ∇ · ′ = ″ + − ′u q u q
q

u q
d

q
u q

q
( ) ( ) ( )

1
( ). (9.78)j jk j jk

jk

jk
jk

jk
jk

2
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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For the third order expectation value one has

∇ ∇ = ∇ ∇

= + − ″′ + − + ″

− − + ′

u u

u q
d
q

u q
d d

q
u q

d d
q

u q

( )
2( 1)

( )
4 3

( )

4 3
( ),

(9.79)
iv

j j jk j k jk

jk
jk

jk
jk

jk

jk
jk

2 2 (2) 2 2 (2)

2

2

2

3

∇ ∇ = ∇ ∇

= ″′ +
−

″ −
−

′

u u

q
u q

d

q
u q

d

q
u q

q q q
( )

( 1)
( )

( 1)
( ),

(9.80)

j j jk j k jk

jk

jk
jk

jk

jk
jk

jk

jk
jk

2 (2) 2 (2)

2 3

and

∇ ∇ = −∇ ∇

= ″ − ′ + ′ ˆ

u u

q
u q

q
u q

q
u q

q q q q
( ) ( )

1
( )I.

(9.81)
j j jk k j jk

jk jk

jk
jk

jk jk

jk
jk

jk
jk

(2) (2)

2 3

For the fourth order expectation value one has

v

∇ ∇ ∇

= +
−

+
− +

′

−
− +

″ +
− +

′

″

u

q
u q

d

q
u q

d d

q
u q

d d

q
u q

d d

q
u q

q q q

q q

( )
2( 1)

( )
( 6 5)

( )

(3 12 9)
( )

(3 12 9)
( ) ,

(9.82)

j j j jk

jk

jk
jk

jk

jk
jk

jk

jk
jk

jk

jk
jk

jk

jk
jk

2 2 (2)

2
iv

2

3

2

4

2

5

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

v

∇ ∇ ∇

= + − + − +

+ − + − ′ − − + − ″

+ − + − ′

″

u

u q
d
q

u q
d d

q
u q

d d d
q

u q
d d d

q
u q

d d d
q

u q

( )
3 3

( )
(3 12 9)

( )

( 12 35 24)
( )

3 27 69 45
( )

(3 12 9)( 5)
( ),

(9.83)

j j j jk

jk
jk

jk
jk

jk

jk
jk

jk
jk

jk
jk

2 2 2 (2)

vi
2

2
iv

3 2

3

3 2

4

2

5
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∇ ∇ ∇

= +
ˆ −

+
−

+
− ˆ −

″

−
−

″ −
− ˆ −

′

‴

‴

u

q
u q

q

q
u q

d

q
u q

d q

q
u q

d

q
u q

d q

q
u q

q q q q

q q q q

q q q q

( )
I

( )

( 1)
( )

( 1)[ I 2 ]
( )

( 1)
( )

( 1)[ I 3 ]
( ),

(9.84)

j j j jk

jk jk

jk
jk

jk jk jk

jk
jk

jk jk

jk
jk

jk jk jk

jk
jk

jk jk

jk
jk

jk jk jk

jk
jk

2 (2)

2
iv

2

3

3

2

4

4

2

5

and

δ δ δ

δ δ δ

∇ ∇ ∇

= ′

+
+ + −

″

−
+ + −

′

α β γ

α β γ

αβ γ αγ β βγ α β γ α

αβ γ αγ β βγ α β γ α

″

u
q q q

q
u q

q q q q q q q

q
u q

q q q q q q q

q
u q

( )

[ ] 3
( )

[ ] 3
( ).

(9.85)

j j j jk

jk jk jk

jk
jk

jk jk jk jk jk jk jk

jk
jk

jk jk jk jk jk jk jk

jk
jk

, , ,
(2)

, , ,
3

, , ,
2

, , ,

4

, , ,
2

, , ,

5

The Greek indices belong to …x y d{ , , , }.

9.6 Results for the one-dimensional harmonic crystal
9.6.1 Expectation value of high temperature expansion operators

The expectation values of the nested commutator operators in the high temperature
expansion of the commutation function were given in section 9.5.1.

The expectation value of the second order operator is

〈 ∣ ˆ ∣ 〉
〈 ∣ 〉

= −ℏ ∇ +
ℏ

· ∇
W

m
U U

q p

q p
q p q

4
( ( ))

2i
( ( )) . (9.86)q q

p,2
2

2⎧⎨⎩
⎫⎬⎭

The expectation value of the third order operator is

〈 ∣ ˆ ∣ 〉
〈 ∣ 〉

= ℏ ∇ · ∇ − ℏ ∇ ∇ +
ℏ

· ∇ ∇

−
ℏ

∇∇ }

W

m
U U

m
U U

U

q p

q p
p

pp

6
( ) ( )

24
( )

4i
( )

4
: ( ) .

(9.87)

p,3
2 4

2
2 2 2

2

⎧⎨⎩
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The expectation value of the fourth order operator is

〈 ∣ ˆ ∣ 〉
〈 ∣ 〉

=
〈 ∣ ˆ + ˆ + ˆ ∣ 〉

〈 ∣ 〉

= −ℏ ∇ ∇ ∇ +
ℏ

· ∇ ∇ ∇

−
ℏ

∇ ∇∇ −
ℏ

⋮ ∇∇∇

+ ℏ ∇ ∇ · ∇ + ∇∇ ∇∇

+
ℏ

∇∇ ∇

W W W W

m
U U

U U

m
U U U U

U U

q p

q p

q p

q p

p

pp ppp

p

192
( )

6i
( )

12
: ( )

8i
( )

96
(4( ) ( ) 4( ): ( )

8i
( ): ( ) .

(9.88)

p,4 p,4;31 p,4;13 p,4;22

6

3
2 2 2 2 2

2
2

3

4

2
2

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

These three expectation values are extensive.
The expectation value of the square of the second order operator is

〈 ∣ ˆ ∣ 〉
〈 ∣ 〉

= ℏ ∇ +
ℏ

∇ · ∇ + ∇ · ∇ ∇

+
ℏ

∇ ∇∇ −
ℏ

∇ ∇

W

m
U U U U U

U U U U

q p

q p
p

p pp

16
( )

4i
( ) ( ) 2( ) ( )

4i
( ): ( )

4
: ( )( ) .

(9.89)

p, 2
2

4

2
2 2 2 2

2

⎧⎨⎩
⎫⎬⎭

9.6.2 Harmonic crystal potential and gradients

Analytic expressions for the energy eigenvalues and eigenfunctions of a one-dimen-
sional harmonic crystal are derived in section 6.2, following earlier work (Attard
2002, 2019a). The model has particles attached by linear springs to each neighbor
and to lattice sites. Let the coordinate of the jth particle be qj. Let the jth lattice
position, the center of the external potential acting on particle j, be ¯ = Δq jj q, which
are evidently ordered along the line. The lattice spacing is also the relaxed inter-
particle spring length. There are fixed ‘wall’ particles at =q 00 and

= + Δ+q N( 1)N q1 . Let ≡ − ¯d q qj j j be the displacement from the lattice position;

for the wall particles, = =+d d 0N0 1 . The system has number density ρ = Δ−
q

1.
In this model, there is an external harmonic potential of spring constant κ acting

on each particle centered at its lattice site. The inter-particle spring has strength λ
and relaxed length Δq. With these the potential energy is

∑ ∑

∑ ∑

κ λ

κ λ

= − ¯ + − − Δ

= + −

= =

= =

+

+

U q q q q

d d d

q( )
2 2

2 2
,

(9.90)
j

N

j

N

j

N

j

N

1 0

1 0

j j j j q

j j j

2

1

2

2
1

2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

Obviously any derivative beyond the second is zero. Also, the gradients only involve
the particles, ∈ …j N{1, 2, , }. For the pair potential, = ±k j 1.
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As discussed in section 6.2, the potential is non-symmetric with respect to particle
permutations. Therefore the particles are not identical and the wave function for this
system does not obey any particular symmetrization rules; the particles cannot be
regarded as fermions or bosons.

One has for ∈ …j N{1, 2, , },

κ λ∇ = + − −+ −U d d d d(2 ), (9.91)j j j j j1 1

and for ∈ …k N{1, 2, , }

κδ λδ λδ λδ∇ ∇ = + − −+ −U 2 . (9.92)j k jk jk k j k j, 1 , 1

Here for the last atom, k = N for example, one of the neighbor derivatives is zero,
δ =+ 0k j, 1 . Higher derivatives vanish. Obviously κ λ∇ = +U N N22 ,

κ λ∇ · ∇ = ∑ + − −= + −U U d d d d{ [2 ]}j
N

j j j j1 1 1
2, and

∑ ∑

∑

κδ λδ λδ λδ

κ λ λδ λ λ

∇∇ = + − −

= + + − −

= =

=

+ −

+ −{ }

{ }U p p

p p p p p

pp: ( ) 2

[ 2 ] 2 .

(9.93)
j

N

k

N

j

N

1 1

1

j k jk jk k j k j

j jk j j j j

, 1 , 1

2
1 1

Also

∑ κδ λδ λδ λδ

κ λ λ

∇∇ ∇∇ = + − −

= + + −
=

+ −{ }U U

N N

( ): ( ) 2

( 2 ) 2( 1) ,

(9.94)j k

N

, 1

jk jk k j k j, 1 , 1
2

2 2

and

∑

∑

κδ λδ λδ λδ

κ λ

κ λ λ λ

κ λ λ

∇∇ ∇ = + − −

× + − −

= + − −

× + − +

=

=

+ −

+ −

+ −

+ −

{ }

{ }

{ }

U U

p d d d d

p p p

d d d

p( ): ( ) 2

(2 )

( 2 )

( 2 ) ( ) .

(9.95)

j k

N

j

N

, 1

1

jk jk k j k j

k j j j j

j j j

j j j

, 1 , 1

1 1

1 1

1 1
⎡⎣ ⎤⎦

Note that in these, = =+p p 0N 1 0 , and = =+d d 0N 1 0 .

9.6.3 Simulation results

A simulation of the one-dimensional quantum harmonic crystal in classical phase
space using the commutation function given by the above high temperature
expansion was performed with a simulation algorithm similar to that described in
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detail elsewhere (Attard 2018, 2019b). Briefly the Metropolis algorithm in position
and momentum space was used with the usual classical Maxwell–Boltzmann weight.
(The Gaussian integrals over the momenta were not performed analytically.)
Averages were evaluated by using each specific commutation function as weight
for each of the four averages that were collected (unity (i.e., classical),O β( )2 ,O β( )3 ,
O β( )4 ). Since the particles that comprise the harmonic crystal are not identical, the
symmetrization function was set to unity.

Typically enough configurations were generated to make the statistical error less
than 1%, sometimes much less. Interestingly enough, for an accuracy of about 1%,
the Monte Carlo algorithm was a factor of about 2000 times more efficient (in terms
of total computer time) than the quasi-analytic exact phonon method described in
section 6.2 (Attard 2019a). The main bottleneck in the latter was the crude numerical
quadrature method that was used to evaluate the density profile, and this was
exacerbated by the large number of energy levels that were required for accurate
results at higher temperatures. The phonon method is more efficient in one respect,
namely that it requires negligible computer time for each additional temperature
point; the simulations give results for only one temperature at a time.

The results that follow have been made dimensionless using parameters for a
realistic Lennard–Jones potential model of neon (van Sciver 2012). The mass is

= × −m 3.35 10 26 kg, the well-depth is ε = × −4.93 10 22 J, and the equilibrium
separation is = × −r 3.13 10e

10 m. These give the Lennard–Jones frequency as
ω = ×3.28 10LJ

12 Hz.
In table 9.1, results for the average energy given by the high temperature

expansion are compared with the exact results. These results invoke a symmetriza-
tion function equal to unity (i.e., unsymmetrized wave function; no difference
between bosons and fermions). Because of the limited number of energy levels used,

Table 9.1. Canonical equilibrium average energy, Hβ〈 〉, of the harmonic crystal for N = 4 unsymmetrized
particles, and λ κ ω= = m LJ

2 . Columns 2, 3 and 4 are the exact results using either the number of energy levels
at the top of each column, or else the analytic expression, equation (6.32). The final three columns are the high
temperature expansion taken to the order given at the top of the column. The statistical error (96% confidence
level, twice the standard deviation of block sub-averages) is shown in parentheses for the final two digits. The
classical result is Hβ〈 〉 = =N 4.

β ωℏ LJ 5000 10 000 analytic O β( )2 O β( )3 O β( )4

0.1 2.146 2.459 4.010 0 3.999 2(19) 4.038 8(19) 4.009 3(19)
0.2 3.440 3.695 4.040 0 3.999 8(15) 4.153 6(17) 4.040 4(15)
0.3 3.961 4.046 4.090 0 4.001 3(14) 4.331 8(16) 4.091 0(14)
0.4 4.140 4.155 4.159 0 3.999 8(14) 4.551 4(17) 4.147 9(15)
0.5 4.244 4.246 4.246 4 4.000 0(14) 4.799 8(18) 4.197 2(16)
0.6 4.353 4.353 4.352 7 4.000 0(13) 5.058 3(19) 4.221 3(16)
0.7 4.477 4.477 4.476 6 4.000 0(13) 5.316 1(19) 4.216 8(16)
0.8 4.618 4.617 4.617 4 4.000 8(12) 5.560 9(20) 4.198 8(15)
0.9 4.774 4.774 4.774 4 3.999 9(13) 5.789 3(21) 4.172 6(15)
1.0 4.947 4.947 4.946 5 3.999 3(13) 5.999 6(21) 4.147 8(14)
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those exact results become inaccurate as the temperature is increased. As mentioned
in the analysis of the normal modes of the harmonic crystal, section 6.2, the average
energy can be obtained most simply from the quantum harmonic oscillator analytic
expression using the mode frequencies, equation (6.32); this is the fourth column in
the table. Comparing the three columns, it can be seen that exact results obtained
with 10 000 energy eigenvalues are reliable for β ωℏ ≳ 0.4LJ . Conversely, the high
temperature expansions are reliable at high temperatures. One can see that there is
some overlap between the regimes of validity of the two approaches; the fourth order
results and the exact results for 10 000 levels agree to within about 1% for

β ω≲ ℏ ≲0.4 0.5LJ .
Note that for this harmonic crystal, W q pRe ( , )2 is a constant in phase space. This

means that it does not contribute to any average, and so the O β( )2 result should be
identical to the classical result, Hβ〈 〉 = =N 4. The variation in this column in the
table is statistical error.

It is worth emphasizing the large number of energy eigenvalues that are required
to obtain reliable exact results for even moderately high temperatures β ωℏ ≈ 0.5LJ .
This is just for N = 4 particles. By using Lennard–Jones parameters to make the
results dimensionless, the present calculations can be more or less directly compared
to calculations for Lennard–Jones systems with similar number of particles at
similar densities. Hernando and Vaníček (2013) for just such a similar system
obtained, heroically, the first 50 energy eigenvalues. (It should be noted that the
statistical averages that these authors presented for the density profiles were
effectively at temperatures an order of magnitude lower than this.)

The data from table 9.1 is presented in visual form in figure 9.1. One can see that
the average energy of the quantum harmonic crystal is higher than the classical
prediction. The exact calculations with 10 000 energy levels appears reliable for
β ωℏ ≳ 0.2LJ , and the calculations with the O β( )4 commutation function appear

Figure 9.1. Same data as table 9.1. The broken curves are the exact results for 2000 (dotted), 5000 (short
dashed), and 10 000 (long dashed) energy levels. The solid curve is the exact analytic result, equation (6.32).
The symbols are the high temperature expansions toO β( )2 (squares),O β( )3 (triangles), andO β( )4 (circles). The
straight line is the classical result.
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reliable for β ωℏ ≲ 0.6LJ . (This is quantitatively similar to the regime of applicability
of the high temperature expansion established for a Lennard–Jones system based on
data presented in table 8.2.) Evidently the departure from the classical prediction is
due to the non-commutativity of the momentum and position operators.

Figure 9.2 shows the density profiles for the harmonic crystal with equal inter-
particle and lattice spring constants, λ κ ω= = m LJ

2 . This is a relatively stiff system,
with the particles largely confined to their lattice sites, as signified by the sharp peaks
in the density profiles. At the higher temperature, β ωℏ = 0.2LJ , the peaks are
broader and the density is not quite zero between the lattice sites. As the temperature
decreases the particles are increasingly localized to the lattice positions. The high
temperature expansion tends to give broader peaks than the exact calculations at
each of the two temperatures shown. The classical results would be almost
indistinguishable from the high temperature expansions on the scale of the figure.
The reason for the lack of quantum effect on the density profile in the high
temperature expansion is unclear. It should be mentioned that results for the density
profile at temperatures intermediate between those shown in figure 9.2 show no
better agreement between the fourth order high temperature expansion and the exact
modal calculation, nor any great change in the former from the classical prediction.
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Chapter 10

Local state expansion for the
commutation function

The commutation function for the full system is approximated as the sum of
localized single-particle commutation functions composed from the singlet energy
eigenvalues and eigenfunctions. These are obtained for an effective singlet
Hamiltonian operator based on the effective local field for a fixed configuration of
neighbor particles. The singlet effective local field is similar to the mean field used in
the Gross–Pitaevskii non-linear Schrödinger equation. Temperature-dependent
corrections may be systematically added that extend the singlet Maxwell–
Boltzmann operator to higher order in inverse temperature. Pair, triplet, etc
approximations can be similarly developed. An harmonic approximation to the
effective local field enables the simple harmonic oscillator commutation function,
which is analytic, to be used. The approach is tested numerically against benchmarks
in the one-dimensional cases of a harmonic crystal and of Lennard–Jones particles.

10.1 Effective local field and operator
The aim of this chapter is to derive a practical algorithm for computing the
commutation function at all temperatures. The algorithm is localized as it writes
the commutation function as the sum over energy eigenfunctions for one variable
particle in the effective local field from fixed neighbor particles. This is a little like a
Born–Oppenheimer approach, except that the effective rather than the actual local
field is used. In the first instance the energy eigenfunctions of the total system are the
product of singlet energy eigenfunctions. These give a realistic singlet commutation
function, the sum of which gives the phase space weight of the full system.
Systematic improvements within the singlet ansatz are derived. Although the
commutation function is referred to as singlet, the presence of the fixed neighbors
really make it a many-body effective potential (Attard 2020).

This approach turns out to be almost identical to an earlier harmonic local field
(then called mean field) approach, with one improvement. The singlet commutation
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function is here calculated numerically for the exact effective local field. The earlier
approach used a harmonic approximation to the effective local field (Attard 2018a,
2018b). What the two approaches have in common is the way the effective local field
is defined (see section 10.1.2). Tests are made against the analytic expressions for a
one-dimensional harmonic crystal derived in section 6.2 following earlier work
(Attard 2002, 2019a).

10.1.1 Recapitulation of phase space formulation

The quantum probability density in classical phase space for the canonical
equilibrium system, as shown in chapter 7, is

H
ω η℘ =

!

β
±

−

±
±e

N h Z T
q p q p p q( , )

( )
( , ) ( , ). (10.1)

N

q p( , )

3

Here N is the number of particles, = …p p p p{ , , , }N1 2 are their momenta, with
= p p pp { , , }j jx jy jz , = …q q q q{ , , , }N1 2 are the positions, β = k T1/ B is the inverse

temperature, with T the temperature and kB Boltzmann’s constant, and h is
Planck’s constant. The classical Hamiltonian is H K= + Uq p p q( , ) ( ) ( ), with
K = p m/22 being the kinetic energy, and U being the potential energy.
The partition function ±Z T( ) normalizes the phase space probability density.
The quantum aspects are embodied in the symmetrization function η± and the
commutation function density ω.

The symmetrization and commutation functions are defined in terms of the
unsymmetrized position and momentum eigenfunctions, which in the position
representation r are respectively (Messiah 1961)

δ∣ 〉 = − ∣ 〉 = − · ℏ

V
eq r q p( ), and

1
. (10.2)

N
p r

2
i

where πℏ = h/2 , and V is the volume of the system. (The normalization of the
momentum eigenfunction is unimportant as only their ratio appears below.) The
distinction between the position representation coordinate r and the position
eigenvalue q is crucial for what follows.

The symmetrization function is formally (see chapter 7)

∑η ≡ ± 〈 ˆ ∣ 〉
ˆ

± p q
p q

p q( , )
1

( 1) P , (10.3)
P

p
q

with P̂ the permutation operator and p its parity. The upper sign is for bosons and
the lower sign is for fermions.

The commutation function density ω, which is related to similar functions
introduced by Wigner (1932) and analyzed by Kirkwood (1933), is defined by (see
chapter 7)

H
H

ω =β
β

−
− ˆ

e
e

q p
q p

q p
( , ) . (10.4)q p( , )

p
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Using the completeness of the energy eigenfunctions, Ĥ∣ 〉 = ∣ 〉En nn , equation (7.9)
writes this as

H ∑ω = 〈 ∣ 〉 〈 ∣ 〉β β− −e eq p
q p

q n n p( , )
1

. (10.5)
n

Eq p( , )
p

n

The importance of the non-commutativity of the position and momentum operators
in a particular configuration is reflected in the extent that the commutation function
departs from unity. Since the system is classical in the high temperature limit, one
must have that ω →q p( , ) 1, β → 0.

The commutation function is usefully cast as a temperature-dependent effective
potential, equation (8.6),

ω ≡ eq p( , ) . (10.6)W q p
p

( , )p

The rationale for this is thatW is extensive with system size, which is a useful property
that is widely exploited in thermodynamics. Obviously, →W q p( , ) 0p , β → 0.

10.1.2 Effective local field

In this section is derived the first order, singlet, effective local field. This will be used
as the first term in an expansion for the Maxwell–Boltzmann operator and
subsequently for the commutation function. The meaning, justification, and
motivation for the choice of local field will be clarified in the derivation of the
expansion for the Maxwell–Boltzmann operator, subsection 10.1.3. Higher order
extensions to second and third order singlet approximations, and also to the first
order pair commutation function will be given in section 10.2.

10.1.2.1 Definition
Consider a system of N particles subject to singlet and pair potentials,

∑ ∑= +
= <

U u u qq q( ) ( ) ( ). (10.7)
j

N

j k

N

1
j jk

(1) (2)

A central pair potential is assumed, = ∣ − ∣q q qjk j k . The addition of many-body
potentials is discussed below.

In view of the position eigenfunctions, equation (10.2), one can draw a distinction
between the eigenvalue q and the representation coordinate r. The Dirac δ-function
means that ultimately these are close to each other. Accordingly, the local potential
felt by particle j in configuration q can be written as

∑

∑

= + ∣ − ∣

≈ + ∣ − ∣

=

=

≠

≠

u u u

u u

r q r r r

r r q

( ) ( )
1
2

( )

( )
1
2

( ).

(10.8)k

N

k

N
1

1

j j j
k j

j k

j
k j

j k

(1) ( ) (2)

(1) ( ) (2)
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The factor of one half is essential, and it is what distinguishes this effective local field
from the actual local field. It accounts for the fact that summing over the effective
local fields counts each pair interaction twice in the total potential,

∑∣ = ∣
=

U ur q r q( ) ( ). (10.9)
j

N

1

j j

This is a sum of singlet potentials that are functions of the position representation
coordinates. The factor of one half in the definition of the effective local field means
that ∣ =U Uq q q( ) ( ), which is crucial for understanding the nature of the expansion to
be derived below and for its convergence properties.

The approximation in the second line of equation (10.8) makes particle j
effectively independent of all the other particles in the system since the representa-
tion coordinates of particles other than j do not appear. In turn this makes the total
system potential energy the sum of independent single-particle potentials. The
mathematical consequences of this, and the method for systematizing the approx-
imation as an expansion, are discussed in section 10.1.3.

10.1.2.2 Neighborhood and tail correction
In practice instead of all particles in the system, the effective local potential would be
limited to contributions from near neighbors of particle j, ∣u r q( )j j/ . The notation
= …q q q{ , , }j j j/ 1 2

signifies the set of positions of neighbors of particle j. For
example, ∈ ⇔ ⩽q qq qk j jk/ cut. Typically for a given configuration q p{ , }, the
position eigenvalue qj is known, and the representation coordinates rj are required
over a certain encompassing domain in order to calculate the commutation function
W q p( , ). The reason for limiting the effective local potential to near neighbors is that
it reduces the amount of calculation and memory required to obtain and to store the
subsequent eigenvalues and eigenfunctions. The justification for doing so is that in
general the pair potential decays with increasing separation, and so the total
potential is dominated by the singlet potentials and the nearest neighbor pair
potentials. It is this that makes the theory local. The remaining contributions can be
neglected or else perhaps included in a mean field fashion, for example,

∑∣ = + ∣ − ∣ +∈u u u ur q r r q( ) ( )
1
2

( ) , (10.10)
k

j j j j k
q q(1) ( ) (2)

tailk j

where the tail contribution is

∫πρ=
∞

u q q u q
4
2

d ( ). (10.11)
q

tail
2 (2)

cut

Here ρ is the number density and three-dimensional space is assumed. One could go
further and include the radial distribution function, either classical or self-consistent
quantum, in the integrand here. In fact since utail is a constant independent of the
configuration q or of the representation coordinate rj, it has no non-trivial effect on
the commutation function, and so it can be neglected.
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10.1.2.3 Effective local field for many-body potentials
In general the effective local field is determined by two principles:

• for a given configuration q, the total effective energy equals the actual energy,
∣ =U Uq q q( ) ( )

• identical particles share identically.

The first principle means that the fractional weights of the interaction potential in
each local field to which it contributes must add up to one. The second principle
means that the fractional weight must be the same for each identical particle that
shares an interaction potential. These two principles can only be satisfied with
weight one half for the pair potential contribution to the local field for identical
particles. Using instead the actual local field for each particle would violate the first
principle.

These principles can be applied as well for many-body potentials. For example,
the contribution from a three-body potential to the effective singlet local field for
particle j is

∑ ∑
= =

≠ ≠ u r q q
1
6

( , , ). (10.12)
k

N

ℓ

N

1 1

k j ℓ j k
j k ℓ

( ) ( , ) (3)

For particles with different masses, the share of the effective local field felt by a
particle is inversely proportional to its mass, (i.e., the field acting on particle j from
the pair potential with particle k has fraction +m m m/( )k j k ).

10.1.3 Expansion of the Maxwell–Boltzmann operator

The effective local field provides the basis for approximating the Maxwell–
Boltzmann operator and subsequently the commutation function. Whereas in
conventional direct quantum methods it is common to approximate the eigenvalue
and eigenfunctions of an operator, here we instead develop an approximation for the
operator that lends itself to systematic correction. We find the exact eigenvalues and
eigenfunctions, which turns out to be a local rather than a global process.

The singlet effective local field allows an effective Hamiltonian operator to be
defined that is the sum of independent singlet Hamiltonian operators,

H H H∑ˆ ∣ = ˆ ˆ ≡ −ℏ ∇ + ∣
m

ur q r r r q( ) ( ), ( )
2

( ). (10.13)
j

j j j j j jr
(1, 1) (1, 1) (1, 1) 2

2
j

The notation for the operator Ĥ n m( , ) signifies the n-particle operator (i.e., n variable
particles in the fixed effective field), and the m signifies that it is the mth term in the
mth order approximation (i.e., the mth order approximation to the n-particle
Hamiltonian operator isH H Hˆ + ˆ + ⋯ + ˆn n n m( , 1) ( , 2) ( , )); this will be detailed shortly.
Here Ĥ(1, 1) is the singlet operator in first order approximation. Typically,
∣ = ∣u ur q r q( ) ( )j j j j/ . The singlet Hamiltonian operators are independent of each other

because each only depends upon the representation coordinates of one particle.
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Let the eigenvalues and eigenfunctions of the effective Hamiltonian be

Ĥ ∣ Φ ∣ = Φ ∣Er q r q q r q( ) ( ) ( ) ( ), (10.14)n n n
(1, 1) (1, 1) (1, 1) (1, 1)

or

H ϕ ϕˆ ∣ = ∣Er r q q r q( ) ( ) ( ) ( ). (10.15)j j j j j j jn n n
(1, 1)

,
(1, 1)

,
(1, 1)

,
(1, 1)

j j j

Obviously ϕΦ ∣ = ∏ ∣=r q r q( ) ( )j
N

j jn n
(1, 1)

1 ,
(1, 1)

j
and = ∑ =E Eq q( ) ( )j

N
jn n

(1, 1)
1 ,

(1, 1)
j

.

Recall the essential requirement of the singlet effective local field, ∣ =U Uq q q( ) ( ).
Define ∣ ≡ − ∣ΔU U Ur q r r q( ) ( ) ( ), so that the exact energy operator is

H Hˆ = ˆ ∣ + ∣ΔUr r q r q( ) ( ) ( )
(1, 1) . The actual energy operator acting on the singlet, first

order eigenfunction yields

Ĥ Φ = + Φ
= Φ =

ΔE U

E

r r q q r q r q

q q q r q

( ) ( ) [ ( ) ( )] ( )

( ) ( ), .
(10.16)n n n

n n

(1, 1) (1, 1) (1, 1)

(1, 1) (1, 1)

In so far as ∣ =ΔU r q( ) 0 at =r q, one can see that the exact eigenfunction of the
singlet, first order energy operator is also an approximate eigenfunction of the actual
energy operator in the vicinity of =r q.

This conclusion is only valid at the linear level. At the quadratic level one has

H
H
H H H

H

H

H

ˆ ∣

= ˆ −
= ˆ − ˆ − ˆ +

= ˆ + ℏ ∇ ∣ + ℏ ∇ ∣ · ∇

− ˆ +

⎯ →⎯⎯ ˆ + ℏ ∇ ∣ + ℏ ∇ ∣ · ∇
→

Δ

Δ Δ Δ

Δ Δ

Δ Δ

Δ Δ

U

U U U

m
U

m
U

U U

m
U

m
U

r q

r r q

r r r q r q r r q

r r q r q

r q r r q

r r q r q

( )

[ ( ) ( )]

( ) ( ) ( ) ( ) ( ) ( )

( )
2

( ( )) 2
2

( ( ))

2 ( ) ( ) ( )

( )
2

( ( )) 2
2

( ( )) .

(10.17)

r q

r r r

r r r

(1, 1) 2

2

2 2

2
2

2
2

2

2
2

2
2

These excess terms do not vanish at =r q. Hence the singlet, first order eigenfunc-
tion is not an eigenfunction of the square of singlet, first order energy operator,
Ĥ ∣ Φ ∣ ≠ Φ ∣Er q r q q r q( ) ( ) ( ) ( )2 2

n n n
(1, 1) (1, 1) (1, 1) (1, 1) . In view of this, we may describe the

singlet, first order energy operator Ĥ ∣r q( )
(1, 1) as a linear approximation to the actual

energy operator of the system. We may similarly call its exact eigenfunctions
Φ ∣r q( )n

(1, 1) and eigenvalues E q( )n
(1, 1) as linear approximations to the energy eigen-

states of the actual system.
This linear interpretation of the meaning of the present effective local field opens

the door to a systematic expansion, the next two terms of which are given explicitly
in section 10.2. It is directly relevant to the derivation of the local field expansion of
the commutation function. Since the latter invokes the Maxwell–Boltzmann
operator, we may call on the linear interpretation of the local field to write
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H
H

H

H

β

β

≈ − ˆ

= − ˆ ∣

≈

β

β

− ˆ

− ˆ ∣

e

e

r

r q

1 ( )

1 ( )

.

(10.18)

r

r q

( )

(1, 1)

( )
(1, 1)

As has just been shown, the passage from the first to the second equality is exact at
=r qj j/ / . The subsequent re-exponentiation gives a singlet approximation for the

Maxwell–Boltzmann operator.
The reason for showing the linearization step is that it explains using the present

explicit formula for the approximation to the singlet Hamiltonian operator that
ultimately gives the singlet Maxwell–Boltzmann operator. In section 10.2, we shall
proceed directly from the singlet ansatz that is the final equality to develop a series
expansion for the singlet Hamiltonian operator of which the present approximation
is the first order term.

In evaluating the merits of the effective local field approach developed in this
chapter, the question isn’t whether the system energy eigenvalues and eigenfunctions
have been accurately obtained in general, but rather whether Ĥ r( ), is well-

approximated by Ĥ ∣r q( )
(1, 1) so that the subsequent E q( )n

(1, 1) and Φ ∣r q( )n
(1, 1) are

accurate enough for the purposes of calculating the commutation function.
Because the above derivation involves a linearization of the exponential, it is

strictly exact at high temperatures, β → 0. The subsequent re-exponentiation has the
virtue of making the procedure applicable at lower temperatures, because it
effectively creates an infinite series in powers of inverse temperature, albeit with
approximate coefficients. One should not underestimate the worth of this re-
exponentiation in going beyond a strictly linear approach and in extending its
applicability to lower temperatures. For example, amongst other contributions it
gives the exponential of the kinetic and potential energies to form the classical
Maxwell–Boltzmann factor, which is essential in the exact phase space formulation
at all temperatures. It is shown in the derivation of the cubic term in section 10.2 that
exponentiating the linear term contributes substantially to the exact higher order low
temperature terms.

The efficiency of the linear formulation and resummation can be seen quantita-
tively as follows. As above, the difference between the exact and the linear
Hamiltonian operator is

H H HΔ ˆ ≡ ˆ − ˆ ∣ = − ∣ ≡ ΔU U Ur r q r r q( ) ( ) ( ) ( ) . (10.19)(1, 1)

Obviously =ΔU 0 at =r q. One can write the exact Maxwell–Boltzmann operator as

H

H H

∑ β
=

= −
!

ˆ ∣ +
=

∞
β β− ˆ − ˆ ∣ +

Δ

Δe e

n
Ur q

( )
( ) .

(10.20)

n 0

U

n n

r r q( ) ( )

(1, 1)

(1, 1)

⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥
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A binomial expansion of the nth term in the series has first term in each case

Ĥ ∣r q( )n(1, 1) , which will resum to Hβ− ˆ ∣e r q( )
(1, 1)

, as if HΔ ˆ = ΔU had been neglected
entirely. The remaining terms in the binomial expansion are of the form
∣ ∇Δ ΔU U Ur q( ) j k l m, and more complicated. But because =ΔU 0 at =r q, one sees

that this is zero unless there are no factors of UΔ remaining after the various
gradients have been evaluated. So the only non-zero correction terms consist solely
of factors of powers of ∇ · ∇ΔU( ) , ∇ ΔU( )2 , ∇∇ · ∇ΔU( )2 , etc (and also U), and no
factor of the form ΔU k. Hence significantly many terms in the excess sum vanish; for
example only 14% of the possible corrections for the cubic term are non-zero. This,
as well as the fact that higher gradients of the potential vanish rapidly at large
separations, explains why the non-linear resummation of the linear formulation,

H H≈β β− ˆ − ˆ ∣e er r q( ) ( )
(1, 1)

, can be expected to be accurate even at low temperatures.

10.1.3.1 Harmonic local field
In section 10.3 an harmonic approximation to the effective local field will be derived
(Attard 2018a, 2018b, 2019b). Whereas for the actual effective local field discussed
here the energy eigenvalues, eigenfunctions and commutation function are obtained
numerically, in the harmonic approximation, which was originally called a mean
field approach (Attard 2018a, 2018b, 2019b), a quadratic expansion of the
instantaneous effective local field is made, and the corresponding analytic simple
harmonic oscillator energy eigenvalues, eigenfunctions, and commutation function
are used. Both approaches are linear resummed in the above sense.

Numerical results for this harmonic effective local field theory are presented
below for a one-dimensional harmonic crystal, Section 10.5.1 (Attard 2019b), and
for Lennard–Jones particles also in one-dimension, section 10.5.2 (Attard 2018a).
For the harmonic crystal the anharmonic contributions are limited, and so it mainly
tests the effective local field and linear level Hamiltonian themselves. (Actually,
whilst the singlet potential is purely harmonic, the pair interaction is technically of
the form of a double oscillator, W-shaped, potential, and so the results also test the
efficacy of the harmonic approximation for it.) Those results for the harmonic
crystal show that the singlet harmonic theory is accurate at both high and low
temperatures, even for temperatures where the ground state is dominant, and that
the pair theory is an improvement. For the Lennard–Jones system, the harmonic
effective local field is less successful at low temperatures.

10.1.3.2 Boundary conditions
Penultimately, one has to obtain the singlet energy eigenvalues and eigenfunctions
for the particle in the effective local field. This means that boundary conditions have
to be specified. In one-dimension it is relatively easy: because of the repulsive
potential between particles at close separations, one can simply specify the nearest
neighbors at ±qj 1 as the fixed particles, and demand that ψ ∣ →+ −r q q( , ) 0j j j1 1 , as
→ ±r qj j 1.
In two- or three-dimensions it is more difficult. One might imagine selecting fixed

neighbors that surround the nominated particle and creating a closed polyhedron
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with these at the vertices. It might be sufficient to demand that the wave function and
perhaps its derivatives vanish in the vicinity of each vertex, but this is by no means
clear. Or one might instead demand that the wave function or its derivative vanish
on the faces of the polyhedron, but again it is unclear whether this is sufficient to
provide reliable results. In view of the localization property of the commutation
function, perhaps it is only necessary to impose the condition that ψ ∣ →r q( ) 0j j/ ,
∣ − ∣ → ∞r qj j0 , where q j0 is, for example, the centroid of the neighbors located at q j/ .
In any case one has to establish the sensitivity of the resultant commutation function
to the type and location of the boundary conditions that are applied. One argument
in favor of these various suggestions is that the commutation function must be a
local property of the fluid, and therefore obtaining it as a temperature-weighted sum
over localized energy eigenstates cannot be overly sensitive to the conditions
imposed on the energy eigenfunctions at the boundaries of the local region.

10.1.3.3 Relationship to the Born–Oppenheimer method
The present effective local field approach is a little like the Born–Oppenheimer
method of quantum chemistry, in that certain coordinates are fixed in the calculation
of the wave function for the remainder. One difference is that the Born–
Oppenheimer method uses the actual local field for the electrons, whereas the
present method uses an effective local field. A second difference is that in the Born–
Oppenheimer method the electron energy eigenvalues are fed into the nuclear
Schrödinger equation as an effective potential, whereas here the singlet wave
functions and singlet states for any one particle are fully independent of the states
of the other particles. But perhaps the major difference between the two is that the
Born–Oppenheimer method seeks the energy eigenfunction of the total system,
whereas the present method at the singlet level only aspires to the single particle
energy eigenfunction. This is used in a one-particle quantum average to obtain the
commutation function that will subsequently be used for classical many-body
averages; the combined singlet energy eigenfunctions don’t approximate the total
system energy eigenfunction (not least because they have a parametric dependence
on q that the actual eigenfunctions don’t have).

10.1.4 Singlet, first order commutation function

The linear approximation using the effective local field just explained can be called
the first order approximation, because the corresponding exponent of the Maxwell–
Boltzmann operator is linear in inverse temperature. Also it gives the primary
quantum correction for non-commutativity. To recapitulate, the Hamiltonian
operator of the system for a particular configuration is the sum of first order
single-particle Hamiltonian operators,

Ĥ = −ℏ ∂ + ∣
m

ur r q( )
2

( ), (10.21)j j j jr
(1, 1) 2

2
j
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the energy eigenfunctions of the full system are simply products of single particle
energy eigenfunctions,

∏ ϕ ϕ ϕΦ ∣ = ≡ ∣
=

r q r r r q( ) ( ), ( ) ( ), (10.22)
j

N

1
j j j j j jn n n n

(1, 1)
,
(1, 1)

,
(1, 1) (1, 1)

j j j

and the eigenvalue equation is

H ϕ ϕˆ = Er r r( ) ( ) ( ). (10.23)j j j j j j jn n n
(1, 1)

,
(1, 1)

,
(1, 1)

,
(1, 1)

j j j

The subscript j on the energy operator, eigenfunction, and eigenvalue signifies the
dependence on the neighbor configuration, e.g., ≡E E q( )j jn n,

(1, 1) (1, 1)
/j j
. It is straightfor-

ward to solve this single particle eigenvalue equation numerically, at least in one-
dimension (Attard 2020).

This definition of the one-particle energy eigenfunctions means that the commu-
tation function of the total system can be written as the sum of singlet commutation
functions,

∑= ∣
=

W wq p q p q( , ) ( , ). (10.24)
j

N

1
j j jp

(1, 1)
p
(1, 1)

This would be exact if the singlet potential were the only potential in the system; it is
an approximation for the present case of singlet and pair potentials.

From the definition, the singlet commutation function for particle j is given by

H

H

∑ ϕ ϕ

=
〈 ∣ 〉

=
〈 〉

∣ ˇ ∣

β

β

β

− ∣ ∣

− ˆ

−

e e

e

e

q p
q p

q p
q q p q

1

1
( ) ( ).

(10.25)

n

w

j j
j

r
j

j j

E
j j j j

q p q q p q

q
n n

( , ) ( , )

( )

( ) (1, 1) (1, 1)

j j j j j j

j j

j

j j
j j

n

(1, 1)
p
(1,1)

(1,1)

(1,1)

Here ϕ ∣ = 〈 ∣ 〉r q r n q( ) ,j j j j jn
(1, 1)

/ /j
, is the nj th energy eigenfunction for the effective

singlet local Hamiltonian operator with the potential ∣u r q( )j j/ , and

∫ϕ ϕˇ ∣ ≡ 〈 ∣ 〉 = ∣− − · ℏ *V ep q n q p r r q( ) , d ( )j j j j j j j jn
r p

n
(1, 1)

/ /
1/2 /i (1, 1)

/j
j j

j
is essentially its Fourier

transform. The eigenfunctions of the effective singlet local Hamiltonian operator are
also eigenfunctions of the effective singlet local Maxwell–Boltzmann operator. This
expression for the commutation function as a sum over a complete set of singlet
energy states shows the necessity of the re-exponentiation step above, equation
(10.18).

The structure of equation (10.25)makes it convenient to define the combined singlet
commutation function as Hβ˜ ∣ ≡ ∣ − ∣w wq p q q p q q p q( , ) ( , ) ( , )j j j j j j j j jp

(1, 1)
/ p

(1, 1)
/

(1, 1)
/ . The

classical singlet Hamiltonian that appears here and in the preceding equation is
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H ∣ = + ∣
p

m
uq p q q q( , )

2
( ). (10.26)

j j j
j

j j
(1, 1)

2

The weighting of one half for the pair potentials ensures that the classical
Hamiltonian of the full system is exactly

H H∑= ∣
=

q p q p q( , ) ( , ). (10.27)
j

N

1
j j j

(1, 1)

The total commutation function exponent is similarly given by

∑= ∣
=

W wq p q p q( , ) ( , ). (10.28)
j

N

1
j j jp

(1, 1)
p
(1, 1)

With these results and suppressing for the moment the symmetrization function, the
phase space weight is proportional to

H H∏=
=

β β− −e e e e . (10.29)
j

N

1

W wq p q p q p q q p q( , ) ( , ) ( , ) ( , )j j j j j jp
(1,1) (1, 1)

p
(1,1)

10.2 Higher order local fields
10.2.1 Singlet, second order

In the preceding section it was shown that the effective local field gave a singlet
Hamiltonian operator that coincided with the actual Hamiltonian operator exactly
to linear order. In this subsection the next correction in inverse temperature to this
singlet operator that makes it exact to quadratic order in the expression for the
commutation function. Here and throughout the gradient operator means a
derivative with respect to r, and these are all performed before setting r j/ equal to q j/ .

One expands the singlet energy operator in powers of inverse temperature
expansion

H H∑ βˆ ∣ = ˆ ∣
α

α α
=

∞ −r q r q( ) ( ). (10.30)j j j j
(1)

1
1 (1, )

The leading term is the first order term derived above,

Ĥ ∣ = −ℏ ∇ + ∣
m

ur q r q( )
2

( ). (10.31)j j j jr
(1, 1)

2
2

j

The first order total energy operator, H Hˆ ∣ = ∑ ˆ ∣=r q r q( ) ( )j
N

j j
(1, 1)

1
(1, 1)

/ , is the leading

approximation to the total energy operator, Ĥ r( ).
The corresponding eigenfunctions, ϕΦ ∣ = ∏ ∣=r q r q( ) ( )j

N
j jn n

(1, 1)
1

(1, 1)
/ , satisfy

Ĥ ∣ Φ ∣ = Φ ∣Er q r q q r q( ) ( ) ( ) ( ), (10.32)n n n
(1, 1) (1, 1) (1, 1) (1, 1)
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or

H ϕ ϕˆ ∣ ∣ = ∣Er q r q q r q( ) ( ) ( ) ( ). (10.33)j j j j j j jn n n
(1, 1) (1, 1) (1, 1) (1, 1)

These first order energy eigenvalues and eigenfunctions give the zeroth order
commutation function, = ∑ ∣=W wq p q p q( , ) ( , )j

N
j j j

(1, 1)
1

(1, 1)
/ or more precisely its

exponent. The aim in this subsection is to make corrections to the eigenvalues
and eigenfunctions so that they give a better approximation to the commutation
function within the singlet ansatz.

To this end we now obtain a correction to the singlet, first order eigenfunctions
that reduces the error in them as eigenfunctions of the exact Maxwell–Boltzmann
operator. (In section 10.2.2, an alternative approach reduces the second order error
in the singlet energy operator itself, which can be combined with the present
correction.) We require that they be accurate at =r q, after the gradient operator
has been applied.

One has to quadratic order

H H

H

H

H

β β

β β

Φ ∣

= Φ ∣

= − ˆ + + ˆ + Φ ∣

= − + + + ˆ + +

× Φ ∣

β

β

− ˆ

− ˆ ∣ + − ∣

Δ Δ

Δ Δ Δ Δ

e

e

U U

E U E U U E U

r q

r q

r q

r q

( )

( )

1
2

( )

1
2

( ).

(10.34)

U U

r
n

r q r r q
n

n

n n n

n

( ) (1, 1)

( ) ( ) ( ) (1, 1)

(1, 1)
2

(1, 1) 2 (1, 1)

2
2 (1, 1) 2

(1, 1)

(1, 1)

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
⎫⎬⎭

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
⎫⎬⎭

⎡
⎣⎢

⎤
⎦⎥

All instances of = − ∣ΔU U Ur r q( ) ( ) vanish at =r q except where its gradient is
taken. For example

= −ℏ ∇ + ∣ ∣ Φ ∣

= −ℏ ∇ + Φ − ℏ ∇ · ∇Φ − ℏ Φ ∇

Δ

Δ Δ Δ

m
U U

U
m

U
m

U
m

U

r q r q r q
2

( ) ( ) ( )

2
( ) ( )

2
.

(10.35)
r n

r n n n

2
2 (1, 1)

2
2 (1, 1)

2
(1, 1)

2
(1, 1) 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

The second and third terms are non-zero at =r q.
The potential difference ∣ = − ∣ = − ∣ΔU U U U Ur q r r q r r q( ) ( ) ( ) ( ) ( )(2) (2) only

depends upon the pair potential. For the pair potential one has

∑ ∑

∑

∇ = ∇

= ∇
<

≠

U u

u

r r r

r r

( ) ( , )

( , ).
(10.36)

j k l

j k,

j k l

j k
j j k

2 (2) 2 (2)

( ) 2 (2)
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Similarly, ∇ = ∑ ∇≠U ur r r( ) ( , )j k
k j

j j k
(2) ( ) . For the pair part of the effective local

potential one has

∑ ∑ ∑

∑∑

∇ = ∇

= ∇

=

≠

≠

U u

u

r q r q

r q

( )
1
2

( , )

1
2

( , ).

(10.37)j k

N

l

j k

1
j

l k
k l

k j
j j k

2 (2) 2 ( ) (2)

( ) 2 (2)

One similarly has ∇ = ∑ ∇≠U ur q r q( , ) ( , )/2j l
l j

j j l
(2) ( ) (2) . For each particle j, at =r qk k,

≠k j , these are half the respective previous expressions. Therefore at =r qj j/ / they
take the form of singlet results

∑∇ ∣ = ∇ ∣
=

ΔU ur q r q( ) ( ) (10.38)
j

N

1

j jr
2 2 (2)

j

and

∑∇ ∣ · ∇ = ∇ ∣ · ∇
=

ΔU ur q r q( ( )) ( ( )) . (10.39)
j

N

1

j jr r
(2)

j j

Neglecting UΔ, which vanishes at =r q, but keeping its gradients as functions of r
as just derived, to quadratic order one has

H β β

β

Φ ∣ = − + Φ ∣

− ℏ ∇ ∣ + ∇ ∣ · ∇ Φ ∣

β− ˆ

Δ Δ{ }

e E E

m
U U

r q r q

r q r q r q

( ) 1
2

( )

4
( ( )) 2( ( )) ( ).

(10.40)

r
n n n n

n

( ) (1, 1)
2

2 (1, 1)

2 2
2 (1, 1)

⎧⎨⎩
⎫⎬⎭

From this one sees that the second order term (or correction) to the singlet
Hamiltonian operator is

Ĥ ∣ = ℏ ∇ ∣ + ∇ ∣ · ∇Δ Δ{ }( ) ( )
m

U Ur q r q r q( )
4

( ) 2 ( ) . (10.41)r r r
(1, 2)

2
2

The corresponding eigenvalue equation is

H Hβˆ ∣ + ˆ ∣ Φ ∣ = Φ ∣Er q r q r q q r q( ) ( ) ( ) ( ) ( ). (10.42)n n n
(1, 1) (1, 2) (1, 2) (1, 2) (1, 2)⎡⎣ ⎤⎦

With this solved one can obtain the singlet, second order commutation function
W q p( , )(1, 2) .

The notation used here is not entirely consistent. For the n-particle operator
Ĥ n m( , ), them signifies themth term in themth order approximation. However for the
n-let eigenfunctions and eigenvalues, Φℓ

n m( , ) and Eℓ
n m( , ), the m signifies the mth order

approximation itself.
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10.2.2 Singlet, modified second order

Above the effective local field for the pair part of the potential is

∑ ∑∣ = = ∣
=

≠U u ur q r q r q( )
1
2

( , ) ( ). (10.43)
j k j

N

, 1

k j
j k j j

(2) ( ) (2) (2)

This has the properties

=

∇ = ∇

∇ = ∇

=

=

U U

U U

U U

q q q

r q q

r q q

( ) ( ),

( )
1
2

( ) and

( )
1
2

( ).

(10.44)r r q q

r r q q

(2) (2)

(2) (2)

2 (2) 2 (2)

The aim of this section is to modify the pair part of the singlet effective potential so
that its gradients equal those of the original pair part of the potential. (There is no
need to modify the one-body contribution to the effective potential because it is
identical to the actual one-body potential.)

To this end define the modified effective local pair potential for particle j,

∑

˜ ∣ ≡ ∣ + − · ∇ ∣

+ − ∇ ∣
α=

α α α

u u u

r q u

r q r q r q q q

q q

( ) ( )
1
2

( ) ( )

1
4

( ) ( ).
(10.45)

x

d

j j j j j j j j j j j

j j q j j j

q
(2) (2) (2)

2 2 (2)

j

j

This gives

˜ =

∇ ˜ = ∇

∇ ˜ = ∇
=

=

U U

U U

U U

q q q

r q q

r q q

( ) ( ),

( ) ( )

( ) ( ).

(10.46)r r q q

r r q q

(2) (2)

(2) (2)

2 (2) 2 (2)

One could continue this to higher order.
The modified effective local field that this gives, ˜ ∣U r q( ), can be used to defined a

modified singlet first order energy operator Ĥ̃ ∣r q( )(1, 1) . As in equation (10.17), the
square of this is

H H

H

H

˜̂ ∣ = ˆ + ℏ ∇ ˜ ∣ + ℏ ∇ ˜ ∣ · ∇

− ˜ ∣ ˆ + ˜ ∣

⎯ →⎯⎯ ˆ + ℏ ∇ ˜ ∣ + ℏ ∇ ˜ ∣ · ∇
→

Δ Δ

Δ Δ

Δ Δ

m
U

m
U

U U

m
U

m
U

r q r r q r q

r q r r q

r r q r q

( ) ( )
2

( ( )) 2
2

( ( ))

2 ( ) ( ) ( )

( )
2

( ( )) 2
2

( ( )) .

(10.47)

r q

(1,1)
r r r

r r r

2 2
2

2
2

2

2
2

2
2
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One could argue that the two final terms here can be neglected because by design
they vanish at =r q, and therefore they must be small in the vicinity ≈r q. In this

case one can simply use the singlet first order modified eigenvalues, Ẽ q( )n
(1, 1)

, and

eigenfunctions, Φ̃ ∣r q( )n
(1, 1) , to obtain the commutation function. Alternatively, one

can keep these two terms and define the singlet second order energy operator as in
equation (10.41), with tildes everywhere.

10.2.3 Singlet, third order

The exact Maxwell–Boltzmann operator to cubic order in inverse temperature is

H β β β

β β

β

= − −ℏ ∇ + + −ℏ ∇ + −
!
−ℏ ∇ +

= − −ℏ ∇ + + ℏ ∇ ∇ − ℏ ∇ − ℏ ∇

+ −
!
−ℏ ∇ + ℏ ∇ ∇ + ℏ ∇ ∇

+ ℏ ∇ ∇ − ℏ ∇ − ℏ ∇ − ℏ ∇ +

β− ˆe
m

U
m

U
m

U

m
U

m m
U

m
U

U
m m

U
m

U

m
U

m
U

m
U U

m
U U

1
2 2 2 3 2

1
2 2 4 2 2

3 8 4 4

4 2 2 2
.

(10.48)

r
r r r

r r r r r

r r r r r

r r r r r

( )
2

2
2 2

2
2 3 2

2
3

2
2

2 4

2
2 2

2
2

2
2

2
3 6

3
6

4

2
2 2

4

2
2 2

4

2
2 2

2
2 2

2
2

2
2 2 3

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Here ≡U U r( ). The gradient operator is ‘open’, which is to say that it acts on
everything to its right, including any wave function subsequently inserted. For
example, ∇ ≡ ∇ + ∇ · ∇ + ∇U U U U( ) 2( )r r r r r

2 2 2.
Everything here has to be (eventually) written in singlet effective potential form,

such as ⇒ ∣U Ur r q( ) ( ),

∑∇ ⇒ ∇ + ∣
=

U u ur r r q( ) ( ) 2 ( ) , (10.49)
j

N

1

j j jr
2 2 (1) (2)

j
⎡⎣ ⎤⎦

and

∑∇ · ∇ ⇒ ∇ + ∣ · ∇
=

U u ur r r q( ( )) ( ) 2 ( ) . (10.50)
j

N

1

j j jr r
(1) (2)

j j

⎛
⎝
⎜⎜ ⎡⎣ ⎤⎦

⎞
⎠
⎟⎟

As above, the singlet Hamiltonian operator has inverse temperature expansion of
the form

H H∑ βˆ ∣ = ˆ ∣
α

α α
=

∞ −r q r q( ) ( ). (10.51)j j j j
(1)

1
1 (1, )
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The inverse temperature expansion of the singlet Maxwell–Boltzmann operator to
cubic order is

H H H H H

H H H H

H H H H H H

H β β β β β

β β β

β

= − ˆ + ˆ + ˆ + ˆ + ˆ

−
!
ˆ = − ˆ − ˆ − ˆ

− ˆ − ˆ ˆ − ˆ ˆ +
!
ˆ

β− ˆ
e 1

2

3
1

1
2

1
2

1
2

1
3

.

(10.52)

r q( ) (1, 1) (1, 2) 2 (1, 3)
2

(1, 1) (1, 2) 2

3
(1, 1)3 (1, 1) 2 (1, 2) (1, 1)2

3 (1, 3) (1, 1) (1, 2) (1, 2) (1, 1) (1, 1)3

(1) ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Equating each order of inverse temperature, one obtains for β,

Ĥ = −ℏ ∇ + ∣
m

U r q
2

( ), (10.53)r
(1, 1)

2
2

which agrees with the above first order result. For β2 one has

Ĥ = ℏ ∇ ∇ − ℏ ∇ ∣ − ℏ ∣ ∇ + ∣

− ℏ ∇ ∇ − ℏ ∇ − ℏ ∇ +

= ℏ ∇ −

= ℏ ∇ + ℏ ∇ · ∇Δ Δ

m m
U

m
U U

m m
U

m
U U

m
U U

m
U

m
U

r q r q r q

r r r

r r q

1
2 4 2

( )
2

( ) ( )

1
2 4 2

( )
2

( ) ( )

4
[ ( ) ( )]

4
( )

2
( ) .

(10.54)

r r r r

r r r r

r

r r r

(1, 2)
4

2
2 2

2
2

2
2 2

4

2
2 2

2
2

2
2 2

2
2

2
2

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

The final equality follows because = ∣U Ur r q( ) ( ) at =r qj j/ / . This agrees with the
second order result obtained in the preceding subsection.

For β3 one has

H H H H H H Hˆ = ˆ ˆ + ˆ ˆ −
!
ˆ +

!
ˆ1

2
1
2

1
3

1
3

. (10.55)(1, 3) (1, 1) (1, 2) (1, 2) (1, 1) (1, 1)3 3

With ≡U U r( )r , ≡ ∣U U r q( )q , and ≡ − ∣ΔU U Ur r q( ) ( ), one has

Ĥ = −ℏ ∇ + ℏ ∇ ∇ + ℏ ∇ ∇ + ℏ ∇ ∇

− ℏ ∇ − ℏ ∇ − ℏ ∇ +

m m
U

m
U

m
U

m
U

m
U U

m
U U

8 4 4 4

2 2 2
.

(10.56)
r r r r r r r r r r

r r r r r r r r

3
6

3
6

4

2
2 2

4

2
2 2

4

2
2 2

2
2 2

2
2

2
2 2 3

⎡
⎣⎢

⎤
⎦⎥

The cube of the first order operator, Ĥ( )(1, 1) 3
, is the same as this with ⇒U Ur q.

Subtracting these two and canceling any term that does not contain a gradient of the
potential one obtains
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H Hˆ − ˆ = ℏ ∇ ∇ − + ℏ ∇ − ∇

− ℏ ∇ − − ℏ ∇ + ℏ ∇

( ) m
U U

m
U U

m
U U

m
U U

m
U U

4
[ ]

4
[ ]

2
[ ]

2 2
.

(10.57)
r r r q r r q r

r r q r r r q r q

3 (1, 1) 3 4

2
2 2

4

2
2 2

2
2 2 2

2
2

2
2

Notice the substantial cancelation that occurs here. For the remaining terms one has

H H H Hˆ ˆ + ˆ ˆ

= −ℏ ∇ + ℏ ∇ + ℏ ∇ −ℏ ∇ +

= −ℏ ∇ ∇ + ℏ ∇ − ℏ ∇ ∇ + ℏ ∇

Δ Δ

Δ Δ Δ Δ

m
U

m
U

m
U

m
U

m
U

m
U U

m
U

m
U U

2 4 4 2

8 4 8 4
.

(10.58)r q r r r q

r r q r r r r q

(1, 1) (1, 2) (1, 2) (1, 1)

2
2

2
2

2
2

2
2

4

2
2 2

2
2

4

2
2 2

2
2

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

With these for the third order singlet Hamiltonian operator one has

H H H H H H Hˆ = ˆ ˆ + ˆ ˆ −
!
ˆ +

!
ˆ

= −ℏ ∇ ∇ + ℏ ∇ − ℏ ∇ ∇ + ℏ ∇

+
!
ℏ ∇ ∇ + ℏ ∇ ∇

− ℏ ∇ − − ℏ ∇

= −ℏ ∇ ∇ + ℏ ∇ − ℏ ∇ ∇ + ℏ ∇

− ℏ ∇ −

Δ Δ Δ Δ

Δ Δ

Δ

Δ Δ Δ Δ

m
U

m
U U

m
U

m
U U

m
U

m
U

m
U U

m
U U

m
U

m
U U

m
U

m
U U

m
U U

1
2

1
2

1
3

( )
1
3

1
2 8 4 8 4

1
3 4 4

2 2

48 24 48 8

12
.

(10.59)

r r q r r r r q

r r r r

r r q q r

r r q r r r r q

r r q

(1, 3) (1, 1) (1, 2) (1, 2) (1, 1) (1, 1) 3 3

4

2
2 2

2
2

4

2
2 2

2
2

4

2
2 2

4

2
2 2

2
2 2 2

2
2

4

2
2 2

2
2

4

2
2 2

2
2

2
2 2 2

⎧⎨⎩
⎫⎬⎭

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Recall that ≡U U r( )r , ≡ ∣U U r q( )q , and ≡ − ∣ΔU U Ur r q( ) ( ). The gradient operators
act on everything to the right, including any wave functions later added. After the
gradients are evaluated one has to turn this into a singlet operator by making the
replacement ⇒r qj j/ / for each particle j. For example

∑ ∑

∑∑

∑

∑ ∑

∇ ∇ = ∇ ∇ −

= ∇ ∇ + −

+ ∇ ∇ +

= ∇ ∇ + ∇ ∇

Δ
≠

≠

≠

≠ ≠

U u u

u u u

u u

u u

r r r q

r r r r r q

r r r r

r q r q

( )
1
2

( , ) ( , )

1
2

( , ) ( , ) ( , )

1
2

( , ) ( , )

1
2

( , ) ( , ).

(10.60)

j k m n

j n

j k

j k j k

, ,

,

, ,

j k
m n

m n m n

n j
j j j n n j j n

j k
j k j k k j

k j
j k

j k
j k

r r

r r r q

2 2 2 2 ( ) (2) (2)

( ) 2 2 (2) (2) (2)

( ) 2 2 (2) (2)

( ) 2 2 (2) ( ) 2 2 (2)
j j j k

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
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The final equality is in singlet form.
There are some terms in the expression for Ĥ(1, 3) that are difficult to cast in singlet

form. In view of this, perhaps it is better to pursue a modified approach, as in section
10.2.2, where the gradients of the difference between the actual potential and the
modified effective potential vanish at =r q.

10.2.4 Pair, first order

Consider a system with singlet and pair potentials

∑ ∑= + −
=

≠U u ur r r r( ) ( )
1
2

( ). (10.61)
j

N

j k1 ,

j
j k

j k
(1) ( ) (2)

Assume three-dimensional space.
For any configuration q, one can relabel the particles and group them into disjoint

pairs, −j j{2 , 2 1}. The particles assigned to a pair may vary from configuration to
configuration. Define the six-dimensional pair configuration as ≡ −Q q q{ , }j j j2 2 1 , and
similarly for the representation coordinate, ≡ −R r r{ , }j j j2 2 1 .

Define the pair-pair interaction potential as

≡ +
+ +

−

− − −

u u u

u u

R R r r r r

r r r r

( , ) ( , ) ( , )

( , ) ( , ).
(10.62)

j k j k j k

j k j k

(4) (2)
2 2

(2)
2 1 2

(2)
2 2 1

(2)
2 1 2 1

The singlet energies and the internal pair energies can be included in the total energy
by defining

≡ + +− −u u u uR r r r r( ) ( ) ( ) ( , ). (10.63)j j j j j
(2) (1)

2
(1)

2 1
(2)

2 2 1

The total energy may now be written as

∑ ∑= +
= <

U u uR R R R( ) ( ) ( , ). (10.64)
j

N

j k

N

1

2 2

j j k
(2) (4)

This has exactly the same functional form as the singlet theory, with u(2) playing the
role of the singlet potential and u(4) that of the pair potential, now in six- rather than
three-dimensional space.

By analogy with the singlet formulation, define the effective pair local potential as

∑

≡

= +
=

≠

u u

u u

R R Q

R R Q

( ) ( )

( )
1
2

( , ).
(10.65)

k

N

1

2

j j j j

j
k j

j k

(2) (2)

(2) ( ) (4)
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With this the total effective local pair energy is

∑

∑ ∑∑

≡

= +

=

= = =

≠

U u

u u

R Q R

R R Q

( ) ( )

( )
1
2

( , ).

(10.66)
j

N

j

N

j

N

k

N

1

2

1

2

1

2

1

2

j j

j
k j

j k

(2) (2)

(2) ( ) (4)

Clearly, ∣ =U UQ Q Q( ) ( )(2) .
The effective pair Hamiltonian operator for pair j is

Ĥ = −ℏ ∇ + ∣
m

uR R Q( )
2

( ). (10.67)j j j j j
(2) 2

2 (2)

The gradient operator is of course six-dimensional. With this Schrödinger’s equation
can be solved to obtain the eigenvalues E Q( )n j

(2)
/j

and eigenfunctions ϕ ∣R Q( )n j j
(2)

/j
.

The total effective Hamiltonian operator is

H H∑ˆ ∣ = ˆ
=

R Q R( ) ( ), (10.68)
j

N

1

2

j j
(2) (2)

with eigenfunction ϕΦ ∣ = ∏ ∣=R Q R Q( ) ( )j
N

n j j
(2)

1
/2 (2)

/j
and eigenvalue

= ∑ =E EQ Q( ) ( )j
N

n jn
(2)

1
/2 (2)

/j
.

The effective pair eigenvalues, E Q( )n j
(2)

/j
, and eigenfunctions, ϕ ∣Q Q( )n j j

(2)
/j
, allow

the pair commutation function to be obtained, ∣w Q P Q( , )j j j
(2)

/ . These give the total
commutation function as a sum over two-body commutation functions.

One suspects that the pair theory will be more accurate than the singlet theory.
This indeed turned out to be the case for the first order, pair numerical results
already obtained for the harmonic crystal (Attard 2019b).

10.3 Harmonic local field
10.3.1 Singlet harmonic field approximation

The singlet local field approximation described above requires the singlet energy
eigenvalues and eigenfunctions to be obtained, from which the singlet commutation
function can be calculated. One can simplify this procedure somewhat by making a
quadratic expansion of the effective local field, which effectively models the system
in any configuration as a set of independent harmonic oscillators. Since the energy
eigenvalues and eigenfunctions of the simple harmonic oscillator is known analyti-
cally, it is a relatively trivial matter to obtain their commutation function (Attard
2018a), and hence the commutation function of the full system in this singlet,
harmonic approximation.

This method has previously been tested for the simulation of a Lennard–Jones
system. (Attard 2018b) and of a harmonic crystal (Attard 2019b).

Quantum Statistical Mechanics in Classical Phase Space

10-19



In general, the particles of the sub-system interact via the potential energy, which
is the sum of one-body, two-body, three-body terms, etc,

∑ ∑ ∑= + + + ⋯
= < < <

U u u uq q q q q q q( ) ( ) ( , ) ( , , ) (10.69)
j

N

j k

N

j k l

N

1
j j k j k l

(1) (2) (3)

Here we assume N particles in d-dimensional space. Distributing the energy equally
as above, the effective local field of particle j in configuration q is defined as

∑

∑

∣ = +

+ + ⋯

=

<

≠

≠

U u u

u

q q q q q

q q q

( ) ( )
1
2

( , )

1
3

( , , )

(10.70)k

N

k l

N
1

j j j
k j

j k

k l j
j k l

(1) ( ) (2)

( , ) (3)

with = ∑ ∣=U Uq q q( ) ( )j
N

j j1 . We do not need to replace qj by rj in the harmonic field
approach because we do not need to solve numerically for the energy eigenfunctions.

The potential energy of particle j in configuration q may be expanded to second
order about its local minimum at q̄ q( )j ,

∣ = ¯ + − ¯ − ¯ ″U U Uq q q q q q q( ) ( )
1
2

[ ][ ]: , (10.71)j j j j j j j j

where the minimum value of the potential is ¯ ≡ ¯ ∣U Uq q q( ) ( )j j j . The d × d second

derivative matrix for particle j at the minimum, ″ = ∇ ∇ ∣
=¯

U U r q( )j j jr r r qj j
j j

, is assumed

positive definite.
For configurations q that have no local minimum in the potential, or that have

too large a displacement ∣ − ¯ ∣q qj j , the corresponding single particle commutation
function can be set to unity, Γ =W ( ) 1j , (or, in the multi-dimensional case, the
commutation function of the corresponding mode). This is justified by analytic
results for the simple harmonic oscillator (Attard 2018a).

The positive definite second derivative matrix has d eigenvalues λ >α q( ) 0j , and
orthonormal eigenvectors, λ″ =α α αU X Xj j j j , α = …x y d, , , . For particle j in con-
figuration q the eigenvalues define the frequencies

ω λ α= = …α α m x y dq q( ) ( ) , , , , . (10.72)j j

With this the potential energy is

∑ ∑

∑ ∑ ω

= ¯ + − ¯ − ¯ ″

= ¯ + ℏ
α

= =

=
α α

U U U

U Q

r q q q q q( )
1
2

( )( ):

1
2

.

(10.73)
j

N

j

N

j

N

j

1 1

1 ,

j j j j j j

j j j
2
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Here ′ω≡ ℏα α αQ m Q/j j j , and ′ = − ¯XQ q q[ ]j j j j
T .

The harmonic field approximation combined with the second order expansion
about the local minima maps each configuration Γ to a system of dN independent
harmonic oscillators with frequencies ω αj displacements αQj , and momenta

ω= ℏα
α

α{ }P X mpj j j j
T .

With this harmonic approximation for the potential energy, the effective
Hamiltonian in a particular configuration can be written

H ∑ ∑ ω− ¯ = ¯ + ℏ +
α=

α α αU P Qp q q( , )
1
2

. (10.74)
j

N

j1 ,

j j j j
SHO 2 2⎡⎣ ⎤⎦

The commutation function for the interacting system for a particular configuration
can be approximated as the product of commutation functions for effective non-
interacting harmonic oscillators which have the local displacement as their argu-
ment. With this the harmonic approximation to the commutation function is

H
H

∏

Γ ≈ − ¯

=
− ¯

− ¯
=

α

β

β

α α α

−¯

− ˆ

W W

e
e

W P Q

p q q

q q p

q q p

( ) ( , )

( , ).

(10.75)

j,

p p

p j j j

p r q

SHO

( , )

,
SHO

SHO

SHO

The harmonic oscillator commutation function for a single mode is (Attard 2018b)

∑

=

×
!=

∞
α α α

β ω

β ω

α
α α

− ℏ + − +

− ℏ +

α α α α α α α

α

α α α

α α α

W P Q e e e

e
n

P Q

( , ) 2

i
2

H ( )H ( ).
(10.76)

n 0

p j j j
P Q P Q P Q

n n

n
j

n j n j

,
SHO i 2 2

( 1 2)

j j j j j j j

j

j j j

j j j

2 2 2 2⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Here zH ( )n is the Hermite polynomial of degree n. The imaginary terms here are odd
in momentum. As justified by analytic results for the simple harmonic oscillator
(Attard 2018b) for configurations such that ″U q( )j

is not positive definite (i.e., a
particular eigenvalue is not positive, λ ⩽α 0j ), or that the displacement αQj exceeds a
predetermined cut-off, the corresponding commutation function can be set to unity,

=αW 1p j,
SHO .
For the averages, the momentum integrals can be performed analytically, both

here and in combination with the symmetrization function. This considerably
reduces computer time and substantially increases accuracy.

10.3.2 Cluster harmonic field approximation

Any configuration q can be decomposed into disjoint clusters labeled α = …1, 2, .
Of the different criteria that can be used to define a cluster, perhaps the simplest is
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that two particles belong to the same cluster if, and only if, they are connected by at
least one path of bonds. Two particles are bonded if their separation is less than a
nominated length. Some clusters, perhaps the great majority, will consist of a single
particle.

An even simpler definition can be made in one dimension. In this case define the
pair cluster α, α = … N1, 2, , /2, as the nearest neighbors α α−{2 1, 2 }, irrespective
of their actual separation. This criteria is used in the results presented below.

Using a separation-based criterion for the definition of a cluster is useful not only
for the harmonic field approximation to the commutation function, but also for the
calculation of the symmetrization function. Depending on the chosen bond length,
only permutations of particles within the same cluster need to be considered. (This
idea is not used in the results presented below.)

The cluster energy is the internal energy plus the relevant proportion of the
interaction energy with other clusters: half for pair interactions, one third for triplet
interactions, etc. The total potential energy is

∑ ∑ ∑= + + ⋯=
α= <

α αU u u Uq q q q q q( ) ( ) ( , ) ( ; ), (10.77)
j

N

j k1
j j k

(1) (2)

where the energy of cluster α is

∑ ∑ ∑∑ ∑∣ = + + + ⋯α α
α β α∈ ≠

α α β β∈ < ∈ ∈

U u u uq q q q q q q( ) ( ) ( , )
1
2

( , ) . (10.78)j
j k

j k j k
(1) ( , ) (2) ( ) (2)

j j k j k

There are Nα particles in cluster α, with positions = …α α α α α
q q q q{ , , , }N,1 ,2 , , where

=αq qj k, for one of the α∈k . This is a αdN( )-dimensional vector.
The second order expansion about the minimum energy cluster configuration, ¯ αq ,

is

∣ = ¯ + ″ − ¯ − ¯α α α α α α α αU U Uq q q q q q q( ) ( )
1
2

: [ ][ ]. (10.79)

The second derivative matrix is ″ ≡ ∇ ∇ ∣α α α =¯α α α α
U U r q( )r r r q

, which is ×α αdN dN( ) ( ).

One has to find the eigenvalues, assumed positive, and eigenvectors of this. These
give the cluster phonon mode frequencies ωα b, , = … αb dN1, 2, , , and mode
amplitudes, ω= − ¯α α α α αXQ q q[ ]T . The frequency matrix is diagonal with elements

ω ω δ= ℏα αm /bc b bc; , . As before, the momentum of mode b in cluster α is

ω= ℏα α α α{ }P X mp /b
b

b,
T

, .

This formulation is essentially the same as the singlet harmonic field theory, and
one may similarly define the cluster harmonic field commutation function as the
product of simple harmonic oscillator commutation functions, one for each phonon
mode of each cluster. The cluster harmonic field commutation function of the
configuration is
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∏ ∏Γ = =
α α

α α α α α αW W W P QP Q( ) ( , ) ( , ). (10.80)
b,

b b b
SHO

,
SHO

, ,

From the computational point of view, a felicitous aspect of the cluster harmonic
field approximation is that there are exactly as many modes as in the singlet
harmonic field approximation. This means that all of the sub-routines called to
obtain the various statistical averages in the singlet approximation can be called
without change in the cluster harmonic field approximation.

10.4 Gross–Pitaevskii mean field Schrödinger equation
In this section is developed a mean field singlet non-linear Schrödinger equation.
This is closely related to the Gross–Pitaevskii equation (Gross 1961, Pitaevskii
1961). The way that the singlet mean field is formulated from the pair potential in
the most general case is similar to the singlet effective local field derived earlier in
this chapter.

Consider an isolated systemcontainingNparticles. Letψ r( ) be thewave function,with
the position vector being = …r r r r{ , , , }N1 2 . This is taken to be normalized, ψ ψ〈 ∣ 〉 = 1,
butunsymmetrized.Theprobabilitydensity forparticlesbeingat thosepositions is just the
square of the amplitude, ψ ψ℘ = *r r r( ) ( ) ( ). As usual integrating over the remaining
positions gives the pair probability, ∫ ψ ψ℘ = … *r r r r r r r( , ) d d d ( ) ( )N

(2)
1 2 3 4 .

We now invoke the singlet approximation for the wave function,

∏ψ ψ=
=

r r( ) ( ). (10.81)
j

N

1

jn n
(1)
j

Here particle j is in the single particle state nj. This is obviously not symmetrized.
The pair probability is ψ ψ℘ = ∣ ∣ ∣ ∣r r r r( , ) ( ) ( )n n

(2)
1 2

(1)
1

2 (1)
2

2
1 2

.
We suppose that the potential energy is the sum of a singlet potential and a pair

potential. The latter is subsumed into an effective singlet potential,

∫∑ψ ψ ψ˜ =
=

≠ *( )u ur r r r r r;
1
2

d ( ) ( ) ( , ). (10.82)
k

N

1
j j

k j
k k k j kn n

(1) (1) ( ) (1) (1) (2)
k k

⎡⎣ ⎤⎦

Apart from the factor of one half, this is the mean field experienced by particle j. It is
usually the case that the pair potential depends only upon the separation,

=u u rr r( , ) ( )j k jk . For this to be meaningful it is essential that the singlet wave
function be normalized to unity, ψ ψ〈 ∣ 〉 = 1n n

(1) (1)
k k

. Because we are dealing with
unsymmetrized wave functions (i.e., the nk may be different for different k), this
singlet potential depends upon j, which may pose problems for the Hamiltonian
operator, which must be symmetric with respect to the particle labels.

Gross (1961) and Pitaevskii (1961) replace the full pair potential by a contact
form (Pathria 1972, chapter 10),
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δ π= − ≡ ℏ
u g g

a
m

r r r r( , ) ( ),
4

. (10.83)j k j k
(2)

2

Here a is the scattering length, which is a gross measure of the strength and range of
the pair potential. For a hard-sphere potential it is equal to the diameter. It can be
negative for attractive potentials. The contact form is valid at low densities,
ρ ≪a 11/3 , and low temperatures when the thermal wavelength is large, Λ ≫a 1, in
which regime the pair potential is subordinate to wave function symmetrization
effects. With this the effective singlet potential becomes

∑ψ ψ ψ˜ =
=

≠ *( )u
g

r r r;
2

( ) ( ). (10.84)
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With this effective singlet potential, the total Hamiltonian operator is

H ∑

∑ ∑
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The second equality uses the Gross–Pitaevskii contact form of the pair potential.
The factor of one half used in the definition of the effective mean field potential
ensures that the total contribution from this term equals the average total pair
contribution. Unless all the single-particle states are the same, =n nk 1, this is not
symmetric with respect to particle permutations.

Using the jth term, the time-dependent Schrödinger equation for the singlet wave
function is

∑

ψ
ψ ψ

ψ ψ ψ

ℏ
∂

∂
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This is a coupled set of non-linear partial differential equations for the time
evolution of the effective singlet wave function. It depends upon the cube of the
wave function.

10.5 Numerical results in one-dimension
10.5.1 Harmonic crystal

Analytic expressions for the energy eigenvalues and eigenfunctions of a one-dimen-
sional harmonic crystal are derived in section 6.2, following earlier work (Attard
2002, 2019a). The exact results for the average energy were compared with Monte
Carlo simulations in classical phase space using the high temperature expansion in
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section 5.4. The numerical results in this section for the harmonic effective local field
are taken from Attard (2019b).

10.5.1.1 Model
In summary, the model has particles attached by linear springs to each neighbor and
to lattice sites. Let the coordinate of the jth particle be qj. Here for simplicity the
particles are ordered along the line, < +q qj j 1. Let the jth lattice position, where the
particle would sit in the lowest energy state, be ¯ = Δq jj q. The lattice spacing is also
the relaxed inter-particle spring length. There are fixed ‘wall’ particles at =q 00 and

= + Δ+q N( 1)N q1 . Let ≡ − ¯d q qj j j be the displacement from the lattice position; for

the wall particles, = =+d d 0N0 1 . The system has number density ρ = Δ−q 1.
In this model, there is an external harmonic potential of spring constant κ acting

on each particle centered at its lattice site. The inter-particle spring has strength λ
and relaxed length Δq. With these the potential energy is

∑ ∑

∑ ∑

κ λ

κ λ

= − ¯ + − − Δ

= + −

= =

= =

+

+

U q q q q

d d d

q( )
2 2

2 2
.
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10.5.1.2 Simulation algorithm
The simulation algorithm was as described by Attard (2018b). The Metropolis
algorithm in position space was used with the usual classical Maxwell–Boltzmann
weight. The various momentum integrals were performed analytically. Averages
were evaluated by umbrella sampling using the commutation function as weight.
Three versions of the commutation function (unity (i.e., classical), singlet mean field,
pair mean field) were tested. The particles in the model harmonic crystal are non-
identical and so the symmetrization function was set to unity.

Typically enough configurations were generated to make the statistical error less
than 1%, sometimes much less. The total simulation time depends on how many
Hermite polynomials are used for the commutation function (M = 8 in the results
reported below; tests withM = 6 andM = 12 showed no great effect), and the cut-off
for the mode amplitude beyond which the commutation function was set to unity
( =Q 1cut in the results below; tests with =Q 2cut showed no great effect). The
number of polynomials used equates to the number of energy levels per particle.
However the number of energy levels effectively used to characterize the system is
much greater than NM because this is the number per phase space point, and
effectively a continuum of such points is accessible in the simulations.

Interestingly enough, for an accuracy of about 1%, the Monte Carlo algorithm
was a factor of about 2000 times more efficient (in terms of total computer time)
than the quasi-analytic exact phonon method (Attard 2019a). The main bottleneck
in the latter was the crude numerical quadrature method that was used to evaluate
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the density profile, and this was exacerbated by the large number of energy levels
that were required for accurate results at higher temperatures. For this particular
comparison at β ωℏ = 2LJ , =l 20 000max energy levels were necessary; grid param-
eters Δ = 0.15Q and =Q 6max gave a quadrature error of about 0.8%. The phonon
method is more efficient in one respect, namely that it requires negligible computer
time for each additional temperature point; the simulations give results for only one
temperature at a time.

The Lennard–Jones frequency used to scale the results below is
ω = ×3.28 10LJ

12Hz, the mass is = × −m 3.35 10 26kg, the well-depth is
ε = × −4.93 10 22J, and the equilibrium separation is = × −r 3.13 10e

10m. These
parameters are appropriate for neon (van Sciver 2012).

10.5.1.3 Results
Figure 10.1 shows the average energy for a canonical equilibrium system as a
function of inverse temperature using exact calculations and classical phase space
simulations. At low temperatures the phonon modes are in the ground state,

ω= ∑ ℏ=E /2n
N

n1 1 , and at high temperatures the system approaches the classical
result, H β〈 〉 = N /cl . It can be seen that both the singlet and pair harmonic effective
local field approximations are in relatively good agreement with these limiting
results and with the exact calculations over the whole temperature regime shown.
The commutation function provides a significant correction to the classical results at
low temperatures.

The exact calculations in figure 10.1 use a finite number of energy levels, namely
10 000. (See table 9.1 for the effects of the number of energy levels on the average
energy at various temperatures.) A numerical quadrature is required for the density
profiles, and this is affected by the chosen grid spacing and number of points.

Figure 10.1. Average energy versus inverse temperature of the harmonic crystal (N = 4, Δ = rq e,
λ κ ω= = m LJ

2 , and no symmetrization). The solid curve is the exact result using =l 10 000max energy levels.
The triangles are the singlet and the circles are the pair harmonic effective local field Monte Carlo simulation
results. The statistical error is less than the size of the symbols. The dotted curve is the classical result,

β〈 〉 =E N /cl . The dashed line is the ground state, ω= ∑ ℏ=E /2n
N

n1 1 .
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Despite these limitations, it is appropriate to designate the phonon mode calcu-
lations as exact because they use explicit analytic expressions for the energy
eigenvalues and eigenfunctions.

According to the data in table 9.1, the exact calculations of the average energy,
using 10 000 energy levels, as in figure 10.1, are reliable for β ωℏ ≳ 0.4LJ . The exact
data begins to underestimate the classical result for higher temperatures than this.
One might speculate that the exact quantum result for the average energy of the
harmonic crystal should approach the classical limit from above. Using fewer energy
levels reduces the domain of inverse temperatures in which the exact calculations are
reliable.

Both the singlet and pair harmonic effective local field simulations are practically
exact at higher temperatures, β ωℏ ≲ 0.5LJ in this case. As the temperature is
decreased, the singlet harmonic effective local field energy lies between the exact
energy and the classical energy. The pair harmonic effective local field result lies
between the singlet energy and the exact energy. It can be seen that at low
temperatures the classical energy is substantially less than the exact ground state
energy, but the pair harmonic effective local field energy is only slightly less than the
exact ground state energy. It may be concluded that the harmonic effective local field
approach is better than a high temperature expansion in that it yields the dominant
quantum correction to the classical result over the entire range of temperatures.

In figure 10.2, the average energy is scaled by the inverse temperature, which
focuses attention on the low temperature regime. For inverse temperatures
β ωℏ ≳ 3LJ , the exact results with 10 000 energy levels are practically indistinguish-
able from the ground state energy. At low temperatures, both harmonic effective
local field classical phase space approximations give a lower energy than the ground
state. For example, in the case treated in the figure, the ground state energy is

ωℏ =E / 3.3851 LJ . At β ωℏ = 10LJ , the singlet harmonic effective local field theory
gives H ω〈 ˆ 〉 ℏ = ±/ 3.116 .002LJ , and the pair harmonic effective local field theory
gives ±3.305 .001. At this temperature the classical result given by the simulation

Figure 10.2. Same as the preceding figure, but with the average energy normalized by the inverse temperature
and extending to lower temperatures.
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was ±0.400 2 .0002, which is rather close to the exact classical result of 0.4. Here
and throughout, the statistical error quoted for the simulations is twice the standard
error on the mean, which is the 96% confidence level.

One can conclude from the data that at low temperatures such that the system is
close to the ground state, the harmonic effective local field approximations remain
viable. The pair harmonic effective local field approach substantially reduces the
error in the singlet harmonic effective local field approach. In the absence of exact
data, the difference between the pair and singlet harmonic effective local field results
would give a guide to the quantitative accuracy of the former.

It is worth mentioning that at each temperature the classical phase space
simulations took about five minutes on a desktop personal computer to obtain the
quoted accuracy. In comparison, it took about two days to obtain the exact results
with these energy levels and quadrature grid, the latter being the time limiting part of
the computations. (Once the exact results are obtained and saved, they can be
applied at any temperature with negligible additional computing time.)

Figure 10.3 shows the average energy for a weakly coupled crystal. There is no
singlet potential, κ = 0, and the nearest neighbor spring constant has been decreased
by a factor of 50, λ ω =m/ 0.02LJ

2 . The lattice spacing and spring length is unchanged.
The ground state energy is =E 0.375 71 , which is approximately one tenth of that for
the parameters of figure 10.1.

In the main body of figure 10.3, the results of both harmonic effective local field
approximations appear indistinguishable from the exact results. At β ωℏ = 3LJ , the
exact energy is 1.373 0 (1.370 7 for =l 20 000;max 1.362 7 for 10 000), the singlet
harmonic effective local field gives ±1.332 2 0.0009 and the pair harmonic effective
local field gives ±1.344 3 0.0008. The exact classical result here is 4/3, compared to

Figure 10.3. Average energy versus inverse temperature (N = 4, Δ = rq e, κ = 0, λ ω =m/ 0.02LJ
2 ). The solid

curve is the exact analytic result, equation (6.32). The triangles are the singlet and the circles are the pair
harmonic effective local field Monte Carlo simulations, respectively. The dotted curve is the classical result,

β〈 〉 =E N /cl , and the dashed line is the ground state energy. Inset: Average energy scaled by the inverse
temperature.
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±1.332 9 0.0007 given by the classical simulations (i.e., commutation function set to
unity). For inverse temperatures β ωℏ ≲ 1.8LJ , the harmonic effective local field
algorithms are more reliable than the exact results with =l 20 000max (not shown).

The inset of figure 10.3 shows the average energy scaled by the inverse temper-
ature. This emphasizes the departure from the classical result, which is constant with
this scaling. The exact calculations with 20 000 energy levels would approach the
classical results from the low temperature side, but begin to fail for temperature
higher than β ωℏ ≲ 3LJ (not shown). Interestingly enough the harmonic effective
local field results show a small departure from the classical result at the highest
temperatures. It is apparent from the data in the inset that the pair harmonic
approximation about halves the error of the singlet harmonic approximation at the
lowest temperatures shown.

Figure 10.4 shows the density profile for this weak coupling case at β ωℏ = 2LJ .
The density peaks are rather broad, with the central two particles merging into a
single peak. Interestingly enough, the density profile spills over beyond the wall
particles at =q 00 and =q r55 e. There is good agreement between all four methods,
although the harmonic effective local field methods tend to underestimate the
density at the shoulders of the density profile.

10.5.2 Lennard–Jones fluid

The results in this subsection are taken from Attard (2020). They are for a one-
dimensional Lennard–Jones fluid. Singlet effective local field results are given, both
directly and in harmonic approximation (Attard 2018a). The algorithm for the
former is now briefly outlined.

Figure 10.4. Density profile at β ωℏ = 2LJ (N = 4, Δ = rq e, κ = 0, λ ω =m/ 0.02LJ
2 , no symmetrization). The

solid curve is the exact result using =l 20 000max energy levels, and the symbols are the classical phase space
Monte Carlo simulations, with the crosses using W = 1 (i.e., classical, no commutation function), the triangles
using the singlet and the circles using the pair harmonic effective local field commutation function.
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10.5.2.1 Energy eigenstates
The particles of the one-dimensional system experience one-body and two-body
potentials. The effective local singlet potential is taken to be

∣ ′ ″ = + − ′ + ″ −U r q q u r u r q u q r( , ) ( )
1
2

[ ( ) ( )]. (10.88)(1) (2) (2)

Here only nearest neighbor pair interactions are included; r is the representation
position of the particle of interest, and ′q and ″q are the position coordinates
(eigenvalues) of the nearest neighbors on either side. (If the particle of interest is a
terminal one, then one of the pair potentials is absent.) The singlet potential is that of
a simple harmonic oscillator,

ω=u r m r( )
1
2

, (10.89)(1) 2 2

and the pair potential is Lennard–Jones,
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The singlet wave function is obtained on a three-dimensional grid for q, ′q , and ″q ,
with a fourth dimension for the energy level n. One has ′ + ⩽ ⩽ ″ −q r r q rmin min ,
with the fixed particles in the range − ⩽ ′ ⩽ −L q L r/2 /2 e, and
− + ⩽ ″ ⩽L r q L/2 /2e . Typically, =r r0.75min e and =L r10 e.

The nth energy eigenvalue ′ ″E q q( , )n and eigenfunction ψ ∣ ′ ″r q q( , )n are obtained
by minimizing the energy expectation value H〈 ∣ ˆ ∣ 〉n n using a Gram–Schmidt
procedure to ensure that 〈 ∣ 〉 =n k 0, = … −k n1, 2, , 1. An iterative procedure is
used where the change in wave function is proportional to the force at each grid
point. A three-point finite difference formula is used for the Laplacian for the kinetic
energy, with the gradient of the wave function at the terminal grid points being used
as part of the minimization procedures. The first fifty singlet energy states are
obtained in each case. Roughly speaking, this equates to on the order of N50 energy
levels for the full system for each configuration in phase space; there is a continuum
of such configurations.

The interior wave function is saved as a matrix ϕ ′ ″j n j j( , , , ) on a
× × ×100 50 50 50 grid. To obtain the entire set of energy eigenfunctions takes

about 18 hours on an elderly personal computer. No effort was made to optimize the
process because this is a once only computation as the wave functions are
independent of temperature and of the size of the ultimate system.

10.5.2.2 Commutation functions
The singlet commutation function is constructed according to equation (10.25). The
Fourier integral is evaluated directly rather than by fast techniques. Typically 100
momentum points are used on a uniform grid up to a maximum kinetic energy
Kβ = 50. The singlet commutation function has to be calculated once for each
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temperature explored. This computation is straightforward, taking less time than the
several minutes spent writing the 412MB output file to disc.

10.5.2.3 Monte Carlo simulations
The standard Metropolis algorithm is used, with the umbrella weight being the real
part of the total combined commutation function, including the beyond nearest
neighbor potential contributions. The imaginary contribution is added for taking
quantum averages, and the commutation part is subtracted for taking classical
averages. This differs from the algorithm described above for the harmonic crystal,
where the Metropolis algorithm was used in conjunction with the Maxwell–
Boltzmann umbrella weight, and the entire commutation function was added for
the quantum averages.

It is found that at lower temperatures it is more statistically efficient to use umbrella
sampling with the real part of the commutation function and the Maxwell–Boltzmann
weight, than umbrella sampling using the classical Maxwell–Boltzmann weight alone,
or broader variant thereof.

The commutation functions for a configuration are obtained by linear interpo-
lation of the combined singlet commutation function exponent that are stored on the
3- or 4-dimensional grids. Recall that the combined commutation function exponent
is Hβ˜ = −W W . This is more accurate and reliable than interpolation of the
commutation functions directly, as a delicate cancelation has to occur between some
rather large numbers in the core region

Each simulation for a given temperature and system size produces 6 averages of
any given quantity: either classical or quantum, combined with either distinguish-
able particles, or bosons, or fermions. A typical simulation for N = 4 particles takes
about 35 minutes on the aforementioned personal computer, for about a 1%
statistical error at the 96% confidence level of the average total energy for
distinguishable particles. The same set of energy eigenfunctions are used for
simulations for a dozen different temperatures and for N = 4 and N = 5, with
several repeated with different simulation parameters.

10.5.2.4 Results
The numerical result reported here are for a one dimensional system with the simple
harmonic oscillator singlet potential and Lennard–Jones pair potential given above.
Quantitative comparison is made with the benchmark results obtained by Hernando
and Vaníček (2013), and following them the so-called de Broglie wavelength is fixed
at εΛ ≡ ℏ =r m2 / 0.16dB

1/6
e , and the frequency is fixed by ω ε =r m/ 1/2e . These

mean that ε ωℏ =/ 14.03. The energy and temperature are normalized by the
Lennard–Jones frequency, ω ω= ″ =u r m( )/ 16.97LJ LJ e for the present parameters.

Figure 10.5 compares the present prediction for the average energy for a system of
N = 4 distinguishable particles with the benchmark results derived from Hernando
and Vaníček (2013). Unfortunately there is an unknown shift in the energy
eigenvalues published by Hernando and Vaníček (2013). To make the comparison
in the figure, the average energy derived from the published energy eigenvalues has
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been shifted vertically to coincide with the effective local field theory at intermediate
temperatures, where it is believed to be the most reliable. This of course limits the
utility of the benchmarks in absolute terms. Nevertheless the slope and curvature of
the effective local field results agree with those of the benchmark results at
intermediate temperatures, β ω≲ ℏ ≲5 40LJ (inset), which tends to confirm their
quantitative validity.

Following a relatively flat regime at intermediate temperatures, the data in
figure 10.5 show that the effective local field results start to decrease below the
benchmark ground state energy. This is possibly an artifact of the singlet, linear
approximation. In any case one can see that including quantum effects makes a very
great difference to the average energy at low temperatures; the data in the
figure show that the ground state energy is significantly greater than the classical
prediction at absolute zero.

At high temperatures the effective local field method is exact, as can be seen by
the agreement with the classical results in figure 10.5. The failure of the data derived
from Hernando and Vaníček (2013) in this regime is due to the fact that they are
based on only 50 energy eigenvalues for the full system. The present calculations
used 50 energy eigenvalues for each particle for each configuration, and they were
used to construct the singlet commutation function. Since the total commutation
function is the sum of the latter, (equivalently, the total wave function is the product
of singlet wave functions) the present method effectively characterizes the full system
with 450 energy levels for each configuration in phase space.

It can be seen in figure 10.5 that the local field theory in harmonic approx-
imation, correctly gives the high temperature classical limit, but at intermediate

Figure 10.5. Average energy for the Lennard–Jones system (N=4, no symmetrization). The circles result from
classical phase space Monte Carlo simulations with the effective local field singlet commutation function. The
triangles use the harmonic effective local field singlet commutation function (Attard 2018a), the crosses use a
high temperature expansion (Attard 2019b), the dotted curve is the classical result, and the solid curve are
benchmark results derived from the 50 energy eigenvalues given by Hernando and Vaníček (2013), shifted
vertically to coincide with the singlet results at intermediate temperatures. The statistical error is less than the
symbol size.
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and low temperatures it disagrees with the local field approach based on the
actual potential. This, presumably, indicates that the anharmonic contributions
to the local potential field experienced by a Lennard–Jones particle becomes
increasingly significant as the temperature is decreased. In this case it is better to
obtain the exact energy eigenfunctions for the actual local field rather than to use
the simple harmonic oscillator energy eigenfunctions for the quadratic expansion
of the local field. Figure 10.5 also includes the result of a high temperature
expansion for the commutation function (Attard 2019b). Although the terms in
this expansion are formally exact, it can be seen that the result is practically
indistinguishable from the classical result on the scale of the figure. The negligible
size of the high temperature quantum corrections to the classical result for the
energy observed here is reminiscent of a similar negligibility for the density profile
of the harmonic crystal obtained in figure 9.2. Given the complexity of the terms
and the brute force nature of the expansion, this does not appear to be a
promising approach for the quantitative description of quantum effects in
terrestrial condensed matter.

Figure 10.6 shows the average energy for N = 5 particles (no symmetrization).
Again it can be seen (inset) that the slope and curvature of the energy curve given
by the present theory agree with that derived from the eigenvalue data of
Hernando and Vaníček (2013) in the intermediate temperature regime,

β ω≲ ℏ ≲6 30LJ . The singlet effective local field approach (between two fixed
neighbors), the harmonic local field approach, and the high temperature expan-
sion, all go over to the classical limit at high temperatures. The quadratic
approximation to the local field again appears inadequate at lower temperatures.
For the ground state energy, the singlet effective local field result again appears to
underestimate the shifted benchmark result.

Figure 10.6. Same as the preceding figure but for N = 5.
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Density profiles at β ωℏ = 11.9LJ are shown in figure 10.7. All approaches predict
molecular-sized oscillations in the density profile. The structure is much more
well-defined at this low temperature than at a temperature twice as high (Hernando
and Vaníček 2013, Attard 2020), and the departure from classical close-packing is
relatively small. It is remarkable just how much of the density structure is due to
purely classical considerations even at this low temperature.

Symmetrization effects due to nearest neighbor transpositions have been calcu-
lated but are not included in figure 10.7. On the scale of the figure no difference
would be seen between this density profile and that of bosons or fermions.

The high frequency oscillatory fine structure evident in the profile given by the
singlet effective local field theory is statistically significant. It is not an artifact of the
grids used to collect the density profile or to store the singlet commutation function.
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Chapter 11

Many-body expansion for the
commutation function

The commutation function exponent is formally written as a sum of one-body, two-
body, three-body, etc temperature-dependent effective potentials, which allow the
phase space weight to be expressed in terms of generalizedMayer f-functions. There are
stability issues with the temperature quadrature of the pair commutation function for
the Lennard–Jones potential, whereas a sum over the energy eigenstates is feasible.
Numerical results suggest that termination of the series at the pair term is unreliable.
An exponential series expansion for the phase space weight of a quantum system can be
cast in terms of the Lee–Yang binary kernel and Ursell connected clusters.

11.1 Commutation function
This chapter presents a many-body expansion of the commutation function
exponent. The original rationale for expanding the commutation function as a
series of singlet, pair, triplet, etc terms is that these take the form of temperature- and
momentum-dependent effective potentials with which phase space has the appear-
ance of a Maxwell–Boltzmann classical weight. As an effective potential the
commutation function is by definition localized. Depending on the reliability of
the many-body expansion with the effective potentials, one can take over all of the
theorems, expansions, integral equations, asymptotes, algorithms, etc that have been
invented for classical statistical mechanics and apply them directly to quantum
systems. Although perhaps not as quickly converging as originally hoped, to a
limited extent the many-body expansion appears feasible.

In what follows the formal analysis is spelled out, along with the details by which
the singlet and pair commutation functions are calculated. In section 11.4, these are
applied to the one-dimensional Lennard–Jones and compared with the singlet
commutation function given by the local state expansion from chapter 10. In the
final section 11.5 of the chapter, the Ursell cluster expansion and the Lee–Yang
binary kernel are applied to classical phase space.
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11.1.1 Background

The commutation function ω, which is related to similar functions introduced by
Wigner (1932) and analyzed by Kirkwood (1933), is defined in equation (7.7),

ω = 〈 ∣ ∣ 〉
〈 ∣ 〉

β
β

−
− ˆ

e
e

q p
q p

q p
( , ) . (11.1)q p( , )

p
H

H

In this chapter this is the only form of the commutation function that will be
considered, and henceforth the subscript p will be dropped.

Quantum effects, specifically the non-commutativity of the position and momen-
tum operators, are reflected in the extent to which ω departs from unity. To see this
simply note that if position and momentum commuted, then the Maxwell–
Boltzmann operator would factorize, =β β β− ˆ − − ˆe e eUr r r( ) ( ) ( )H K . Then since

∣ 〉 = ∣ 〉β β− ˆ −e ep pp( )K K , the right-hand side would reduce to the classical Maxwell–
Boltzmann factor β−e p q( , )H , in which case ω =q p( , ) 1.

Classical behavior dominates in the high temperature limit, ω →q p( , ) 1, β → 0.
This limit and the quantum corrections to it were discussed in chapters 8 and 9.

Further, the potential energy decays to zero at large separation (at least the inter-
particle part does), and the gradients of the potential are negligible compared to the
potential itself. This means that at large separations the potential energy and the
kinetic energy operator effectively commute, and so one similarly must have
ω →q p( , ) 1, all → ∞qjk .

Following Kirkwood (1933), differentiation of the defining equation with respect
to inverse temperature gives equation (8.9),

ω
β

β ω β ω β ω

ω ω β ω

∂
∂

= − ℏ ∇ − ℏ ∇ · ∇ + ℏ ∇ · ∇

+ ℏ ∇ + ℏ · ∇ − ℏ · ∇

m
U

m
U

m
U U

m m m
Up p

2
( ) ( ) ( )

2
( ) ( )

2
i

( )
i

( ) .

(11.2)

2
2

2 2 2

2
2

One can see from this that since ∇ →U 0 at large separations, the putative
asymptote, ω →q p( , ) 1, makes the right-hand side vanish, which is consistent
with the asymptote being a temperature-independent constant. This partial differ-
ential equation provides the basis for the high temperature expansions that were
derived in chapter 8 (Wigner 1932, Kirkwood 1933, Attard 2018a, 2018b). The
multiplicity of gradients on the right-hand side is the origin for the rapid increase of
number and complexity of the contributions to each order of the expansions.

In section 8.1.4, it was argued that it is more useful to cast the commutation
function as an effective potential (Attard 2018a),

ω ω≡ ≡W eq p p q q p( , ) ln ( , ), or ( , ) . (11.3)W q p( , )

In this form W is a temperature- and momentum-dependent effective potential. The
original rationale for this was that W is extensive with system size, which is an
exceedingly useful property in thermodynamics. It was also hoped that the
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expansion of W in powers of Planck’s constant or inverse temperature might have
better convergence properties than those of ω itself, a hope more happy in prospect
than in actual experience.

11.1.2 Many-body expansion

Defining the combined commutation function exponent as β˜ ≡ −W W H, the
temperature derivative of the definition leads to equation (8.7),

β
∂ ˜
∂

= − + ℏ · ∇ ˜ + ℏ ∇ ˜ + ℏ ∇ ˜ ·∇ ˜W
m

W
m

W
m

W Wp
i

2 2
, (11.4)

2
2

2

H

with β β˜ ∼− +W ( )2H O , β → 0. The right-hand side contains two terms linear inW̃
and one non-linear, quadratic term.

In general the potential energy is the sum of one-body, two-body, three-body, etc
potentials,

∑ ∑ ∑= + + + ⋯
= < < <

U u u uq q q q q q q( ) ( ) ( , ) ( , , ) (11.5)
j

N

j k

N

j k ℓ

N

1
j j k j k ℓ

The different potentials are distinguished by the number of their arguments. In this
chapter three-body and higher potentials will be neglected. Initially it will also be
assumed that there is no one-body potential, that the system is homogeneous, and
that the pair potential is a function only of separation,

∑ ∑= =
<

≠U u q u qq( ) ( )
1
2

( ), (11.6)
j k

N

j k,
jk

k j
jk

( )

where the particle separation is = ∣ − ∣q q qjk j k .
For the effective potential form of the commutation function, a similar many-

body decomposition can be formally made, with momentum now being included

∑ ∑

∑

= +

+ + ⋯

= <

< <

W w w

w

q p q p q p q p

q p q p q p

( , ) ( , ) ( , ; , )

( , ; , ; , )

j

N

j k

N

j k ℓ

N

1
j j j j k k

j j k k ℓ ℓ

Again the different many-body commutation functions are distinguished by the
number of their arguments.

11.1.3 Pair term

For the homogeneous case (i.e., no singlet potential), the singlet contribution
vanishes ( =W 0(1) , β˜ = −W p( )(1) K , and ∇ ˜ =W 0(1) ). At this stage the three-body
and higher contributions, will be neglected. Assuming homogeneity, the pair
commutation function for particles j and k is a function of the magnitudes of the
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relative momentum and separation, and the angle between them, θw q p( , , )jk jk jk
(2) .

Alternatively, the relative momentum can be aligned with the z axis, = ˆpp zjk jk , and

the separation can be rotated to the xz-plane, w q q p( , , )jk x jk z jk
(2)

, , , or ⊥w q q p( , , )(2) . In
any case the commutation function that will be considered here is

∑ ∑= =
<

≠W w wq p q p( , ) ( , )
1
2

. (11.7)
j k

N

j k,
jk jk

k j
jk

(2) ( )

Inserting this pair ansatz into the temperature derivative equation, one sees that
the left-hand side, and the constant and linear terms on the right-hand side, are all
the sum of pair functions. However the non-linear quadratic term on the right-hand
side is

∑

∑ ∑ ∑

∑ ∑

∑ ∑

∑

∇ ˜ ·∇ ˜ = ∇ ˜ ·∇ ˜

= ∇ ˜ · ∇ ˜

= ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜

+ ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜

= ∇ ˜ · ∇ ˜

′ ′

′ ′

′ ′

′

≠ ′≠ ′
′ ′

′≠
′

′≠
′

′≠
′

′≠
′

′≠
′

W W W W

w w

w w w w

w w w w

w w

1
4

1
4

1
4

1
4

1
4

.

(11.8)

ℓ

ℓ j k j k

ℓ k k j ℓ k

ℓ k j ℓ j j

j k k

, ,

, , , ,

, , , ,

, ,

ℓ ℓ

k j k j
ℓ jk ℓ j k

k k ℓ
ℓ ℓk ℓ ℓk

j k ℓ
ℓ jℓ ℓ ℓk

k j ℓ
ℓ ℓk ℓ j ℓ

j j ℓ
ℓ jℓ ℓ j ℓ

k k j
j jk j jk

( ) ( )

( , ) ( , )

( , ) ( , )

( , )

This is in essence a three-body term. However, to the extent that the ‘force’ on
particle j due to particle k is uncorrelated with that due to ′k , ′ ≠k k, the sum of
forces over ′k may be argued to be small, perhaps averaging to zero. In this case the

′ =k k terms dominate, and this becomes

∑

∑

∇ ˜ ·∇ ˜ ≈ ∇ ˜ · ∇ ˜

= ∇ ˜ · ∇ ˜
<

≠W W w w

w w2 .
(11.9)

j k

j k

,

k j
j jk j jk

j jk j jk

( )

This is now a two-body term, which is expected to be accurate at low densities and
high temperatures where correlations are reduced. The two-body solution can test
the magnitude of the neglected three-body terms, and successively improve the
pairwise additive approximation.

Applying the pair ansatz to the temperature derivative and equating both sides
term by term one obtains

β
∂ ˜
∂

= − + ℏ · ∇ ˜ + ℏ ∇ ˜ + ℏ ∇ ˜ · ∇ ˜
w

u
m

w
m

w
m

w wp
i

. (11.10)
jk

jk jk j jk j jk j jk j jk

2
2

2
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Here and above the symmetry ˜ = ˜w wjk kj has been exploited. Note that β˜ ∼ −w ujk jk,
β → 0.

Write = ˆpp zjk z , and = ˆ + ˆq qq x zjk x z , and = +q q qjk x z
2 2 . This then becomes

β
∂ ˜

∂
= − + ℏ ˜ + ℏ ˜ + ˜ + ℏ ˜ + ˜{ }w q q p

u q
m

p w
m

w w
m

w w
( , , )

( )
i

{ } . (11.11)x z z
z z xx zz x z

2 2
2 2

The subscripts on w̃ signify spatial derivatives.
Define the two-dimensional Fourier transform pair

∫
∫π

˜̂ = ˜

˜ = ˜̂

− ·

·

w k k p e w q q p

w q q p e w k k p

q

k

( , , ) d ( , , )

( , , )
1

(2 )
d ( , , ).

(11.12)
x y z x z z

x z z x y z

k q

k q

i

2
i

The Fourier transform of a gradient such as w̃ q( )x is just ˜̂k w qi ( )x . Note that here q is a
two-dimensional vector.

The Fourier transform of the temperature derivative is

∫
β

π

∂ ˜̂
∂

= − ˆ − ℏ + ℏ ˜̂

− ℏ ′ ′ · − ′ ˜̂ ′ ˜̂ − ′

w k k p
u k

m
p k

m
k w

m
w w

k p

k k k k k p k k p

( , , )
( ) ( , )

(2 )
d ( ) ( , ) ( , ).

(11.13)

x y z
z z

2
2

2

2

⎡
⎣⎢

⎤
⎦⎥

Here = +k k kx z
2 2 2. Write ≡ −ℏ − ℏb p k m k mk( ) / /z z

2 2 , which is negative for large k.
Of course these expressions implicitly assume that the Fourier transform exists.

For the case of a Lennard–Jones pair potential, which at short range goes like
∼ −u r r( ) 12, →r 0, this assumption is problematic.

11.1.4 Linear solution

In the case that w is small, as occurs at high temperatures or at large separations, one
can simply neglect the quadratic term, so that the differential equation is linear,

β∂ ˜̂ ∂ = − ˆ + ˜̂w u bw/lin lin. This has the solution

˜̂ = − ˆ −βw
u k

b
ek

k
( )

( )
( )

[ 1]. (11.14)b k
lin
(2) ( )

The linear approximation is valid at high temperatures, or at large separations. The
pair ansatz is exact in the linear regime.

In the limit of large k, this gives ˜̂ ∼ ˆ ∼ ˆ−w u k b k k u k( )/ ( ) ( )lin
2 , → ∞k . This says

that at small separationsw q( )(2) to leading order cancels the classical β− u q( )(2) , which
is essential because the quantum effects of non-commutativity have to dominate on
small length scales. (For example, for an atom quantum effects have to dominate at
short range the electron–nucleus interaction; the classical Maxwell–Boltzmann
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weight alone would lead to catastrophe.) The asymptotic behavior in the core region
is derived in section 11.4.2.

For small k, →b k( ) 0, and β˜̂ ∼ − ˆw k u k( ) ( )lin . This confirms thatw q( ) decays more
quickly at large separations than the pair potential itself. (This can be shown to be
true in the non-linear case as well.)

The linear solution can be inserted into the convolution integral and the temper-
ature integration performed explicitly. This gives the first non-linear correction and
tells how reliable the linear solution is.

For any value of =p pjk jk z, , using the two-dimensional fast Fourier transform,

one can numerically invert ˜̂w k k p( , , )x z jklin
(2)

giving w̃ q q p( , , )jk x jk z jk zlin
(2)

, , , . Summing
over pairs gives the full commutation function for any phase space point,W q p( , )lin .
Obviously if many phase space points are required, it would be most efficient to
evaluate ˜ ⊥w q q p( , , )lin

(2) once only, storing this on a three-dimensional grid. The full
commutation function can be evaluated for any phase space point by summing over
all pairs each interpolated value of the stored function.

11.1.5 Non-linear solution

The non-linear partial differential equation can be attempted to be solved by
stepping forward in inverse temperature, starting from a high temperature with the
linear solution,

β β β β
β

˜̂ = ˜̂ + Δ ∂ ˜̂
∂α α

β β
+

= α

w w
w

k k
k

( ; ) ( ; )
( ; )

, (11.15)
(2)

1
(2)

(2)

Runge–Kutta procedures might be used to accelerate and to stabilize the
temperature integration. Either evaluate the convolution integral with the two-
dimensional fast Fourier transform, or else use finite differences in real space. As in
the linear case, precalculate the non-linear ⊥w q q p( , , )(2) and store it on a three-
dimensional grid.

It must be mentioned that the author has spent a great deal of time exploring the
numerical temperature integration of the two-body term for the case of a Lennard–
Jones potential. Although the procedures converge at large and intermediate
separations, numerical instabilities always occurred approaching the core region
at lower temperatures that precluded a reliable solution. The author has never found
an algorithm that resolved these problems for the direct temperature quadrature for
the two-body commutation function. In the numerical results, section 11.4, the two-
body commutation function is instead obtained by summing over the energy states
of two particles interacting with the Lennard–Jones pair potential.

11.1.6 Singlet plus pair potential

When the potential contains singlet and pair terms, the differential equations for the
singlet and pair commutation functions are
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β
∂ ˜
∂

=
−

− + ℏ · ∇ ˜ + ℏ ∇ ˜

+ ℏ ∇ ˜ · ∇ ˜

w p

m
u

m
w

m
w

m
w w

p
2

i
2

2
,

(11.16)

j j
j j j j j j

j j j j

(1) 2
(1) (1)

2
2 (1)

2
(1) (1)
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β
∂ ˜
∂

= − + ℏ · ∇ ˜ + · ∇ ˜

+ ℏ ∇ ˜ + ∇ ˜

+ ℏ ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜

+ ℏ ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜

{ }

{ }

{ }

{ }

w
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m
w w

m
w w

m
w w w w

m
w w w w

p p
i
2

2

2

,

(11.17)

jk
jk j j jk k k jk

j jk k jk

j jk j jk k jk k jk

j j j jk k k k jk

(2)
(2) (2) (2)

2
2 (2) 2 (2)

2
(2) (2) (2) (2)

2
(1) (2) (1) (2)

where = =w w wq p q p( , ; , )jk j j k k kj
(2) (2) (2). This neglects the three-body contribution, as

in equation (11.9).
In section 11.4.1, the singlet and pair commutation functions are expressed as a

sum over energy states, and the resultant functions are tested for a Lennard–Jones
system.

11.1.7 Three-body term

For the preceding case (i.e., only singlet and pair potentials), the neglected term
contributes to the temperature derivative of the three-body commutation function.
The three-body contributions to the latter are

β
∂ ˜

∂
≈ ℏ · ∇ ˜ + · ∇ ˜ + · ∇ ˜

+ ℏ ∇ ˜ + ∇ ˜ + ∇ ˜

+ ℏ ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜

+ ℏ ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜

+ ℏ ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜

+ ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜

+ ℏ ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜

{ }

{ }

{ }

{ }

{
}

{ }

w

m
w w w

m
w w w

m
w w w w w w

m
w w w w w w

m
w w w w w w

w w w w w w

m
w w w w w w

p p p
i
2

2

2

.

(11.18)

jkℓ
j j jkℓ k k jkℓ ℓ ℓ jkℓ

j jkℓ k jkℓ ℓ jkℓ

j jkℓ j jkℓ k jkℓ k jkℓ ℓ jkℓ ℓ jkℓ

j j j jkℓ k k k jkℓ ℓ ℓ ℓ jkℓ

j jk j jkℓ j jℓ j jkℓ k jk k jkℓ

k kℓ k jkℓ ℓ jℓ ℓ jkℓ ℓ kℓ ℓ jkℓ

j jk j jℓ k jk k kℓ ℓ jℓ ℓ kℓ

(3)
(3) (3) (3)

2
2 (3) 2 (3) 2 (3)

2
(3) (3) (3) (3) (3) (3)

2
(1) (3) (1) (3) (1) (3)

2
(2) (3) (2) (3) (2) (3)

(2) (3) (2) (3) (2) (3)

2
(2) (2) (2) (2) (2) (2)
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The four-body and higher terms on the right-hand side have obviously been
neglected here.

Alternatively, and likely better, for N = 3 the effective triplet potential is given by

=˜
˜

˜ ˜ ˜ ˜ ˜ ˜
e

e

e e e e e e
, (11.19)w

W

w w w w w w
123
(3) 123

(3)

1
(1)

2
(1)

3
(1)

12
(2)

23
(2)

31
(2)

where = q p q p q p{123} { , ; , ; , }1 1 2 2 3 3 . The total phase space weight for three particles
can be obtained from the sum over their energy states,

∑

=
〈 ∣ 〉

〈 ∣ 〉

=
〈 ∣ 〉

〈 ∣ 〉 〈 ∣ 〉

β

β

˜ − ˆ

− ℓ ℓ

e e

e

q p
q p

q p
q p

1

1
.

(11.20)

ℓ

W q

E

1,2,3 1,2,3

( )
1,2,3 1,2,3

1,2,3 1,2,3
1,2,3 1,2,3

ℓ

123
(3) (3)

1,2,3

(3)

H

See section 11.4.3 for a discussion of a numerical approach to evaluating this.

11.1.8 Effective Mayer f-functions

The above many-body expansion casts the commutation function as a series of n-
body temperature- and momentum-dependent effective potentials. The latter goes to
zero if any of the n particles is separated far from the rest. This makes the
formulation suitable for a many-body Mayer f-function cluster expansion, originally
introduced for classical statistical mechanics by Mayer et al (1937a, 1937b, 1938,
Harrison and Mayer 1938). The Mayer f-function expansions have provided the
basis for many powerful exact and approximate approaches to classical statistical
mechanics (Morita and Hiroike 1961, Stell 1964, Hansen and McDonald 1986).

For a quantum system, the present many-body effective potential expansion of the
commutation function directly leads to a many-body effective Mayer f-function cluster
expansion. For N particles the total (unsymmetrized) phase space weight is formally

∏ ∏ ∏

∏ ∏ ∏

Ω = …

= + ˜ + ˜ …

= < < <

= < < <

˜ ˜ ˜

˜

e e e

e f f

q p( , )

1 1

(11.21)
j

N

j k

N

j k ℓ

N

j

N

j k

N

j k ℓ

N

1

1

N w w w

w
jk jkℓ

( ) j jk jkℓ

j ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Hopefully use of the symbol Ω for the phase space weight, as here, and for the grand
potential, as in chapters 3 and 7, will not cause confusion. Here and below the
superscript denotes the total number of particles in the system and a subscript
denotes the position and momentum of a particle: ≡j q p{ , }j j . Here the pair

effective Mayer f-function is ˜ ≡ −˜f e 1jk
wjk , the triplet is ˜ ≡ −˜f e 1jkℓ

wjkℓ , etc. Recall
that β˜ ≡ −w wj j jH , β˜ ≡ −w w ujk jk jk, etc. The effective many-body potentials go to
zero if any member of the cluster is far separated from the rest (in general at and
beyond the pair level they go to zero faster than the pair potential does), and
therefore the many-body effective Mayer f-functions go to zero at the same rate.
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In order to see the similarities and differences with the Ursell cluster expansion
discussed in the following subsection, one can write out explicitly the effective Mayer
f-function for the first several many-body effective potentials. For the phase space
total weight, for N = 1,

Ω = ˜e . (11.22)w
1
(1) 1

Here and below the superscript denotes the total number of particles in the system
and a subscript denotes the position and momentum of a particle: ≡j q p{ , }j j . For
N = 2 the (unsymmetrized) phase space total weight is

Ω = = Ω Ω + ˜˜ ˜ ˜e e e f[1 ]. (11.23)w w w
12
(2)

1
(1)

2
(1)

12
1 2 12

Therefore one can identify a connected pair weight as

Ω = Ω − Ω Ω = Ω Ω f̃ . (11.24)c, 12
(2)

12
(2)

1
(1)

2
(1)

1
(1)

2
(1)

12

This turns out to be the same as the Ursell pair cluster (see section 11.5).
For N = 3 the (unsymmetrized) phase space total weight is

Ω =
= Ω Ω Ω + ˜ + ˜ + ˜ + ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜e e e e e e e

f f f f[1 ][1 ][1 ][1 ].
(11.25)

w w w w w w w
123
(3)

1
(1)

2
(1)

3
(1)

12 23 31 123

1 2 3 12 23 31 123

The triplet effective Mayer f-function, ˜ ≡ −˜f e 1w
123

123 , has the same form as that
given for a triplet potential (Attard 2002, equation (8.66)). This goes to zero if any
particle is separated from the other two, and so one can identify a connected triplet
weight as

Ω = Ω Ω Ω ˜

= Ω Ω Ω
Ω

Ω Ω Ω
Ω Ω Ω
Ω Ω Ω

−

f

( )
1 .

(11.26)
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⎡
⎣⎢

⎤
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In contrast, the Ursell cluster for N = 3 is

Ω = Ω − Ω Ω − Ω Ω − Ω Ω + Ω Ω Ω

= Ω Ω Ω + ˜ + ˜ + ˜ + ˜

− ˜ − ˜ − ˜ −

= Ω Ω Ω + ˜ + ˜ + ˜ ˜
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{
}

{
}

( )
( )

f f f f

f f f

f f f f

f f f f f f f f f f

2

[1 ][1 ][1 ][1 ]

1

1

[1 ] .

(11.27)

U, 123
(3)

123
(3)

12
(2)

3
(1)

23
(2)

1
(1)

31
(2)

2
(1)

1
(1)

2
(1)

3
(1)

1
(1)

2
(1)

3
(1)

12 23 31 123

12 23 31

1
(1)

2
(1)

3
(1)

12 23 31 123

12 23 12 31 23 31 12 23 31 123

Although both the Ursell triplet cluster and the triplet effective Mayer f-function go
to zero if any one particle is separated far from the rest, it can be seen that the
respective definitions of the connected part of the total phase space weight are
different.
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11.1.9 Ursell clusters and Mayer f-functions

Historically, the Mayer f-functions of classical statistical mechanics did not prove
suitable for quantum statistical mechanics. Instead, Kahn and Uhlenbeck (1938)
introduced the classical cluster functions of Ursell (1927) into quantum statistical
mechanics. Loosely speaking, the Mayer f-functions provide a route to the statistical
properties of a system at the molecular level, whereas the Ursell cluster functions are
useful for the macroscopic, thermodynamic properties of a system. Nevertheless, as
Pathria (1972 chapter 9) explains, there is a direct connection between the
coefficients of the density expansion of the pressure of a classical system in terms
of integrals over Mayer f-functions, and the coefficients in the fugacity expansion,
which are proportional to the Ursell cluster integrals. Kahn and Uhlenbeck (1938)
based their approach to quantum systems on the latter. Lee and Yang (1959a,
1959b, 1960a, 1960b, 1960c) developed the diagrammatic form, including the binary
kernel resummation. A brief mathematical presentation of the Lee–Yang approach
together with an application to the present classical phase space formulation of
quantum statistical mechanics is given in section 11.5.

The expansions of Lee and Yang require nested temperature integrations over the
binary kernel (section 11.5.3). Each integration is reminiscent of the quadrature
required for the temperature derivative of the formal definition of the commutation
function, equation (11.2). The present author’s experience is that such temperature
quadratures are inefficient, unwieldy, and numerically unstable. It is possible that
resummation of the pair potential as the binary kernel, which has the advantage of
going to zero at both large and small separations, may ameliorate the numerical
challenges. This possibility notwithstanding, the author’s conclusion is that obtain-
ing the n-body effective potential via the sum over n-body energy states (e.g., section
11.4.1) rather than by temperature integration is the best way to proceed.

However the n-body energy states require the specification of boundary con-
ditions. This is problematic for reasons connected with the non-local nature of
quantum mechanics. In the preface, the point is made that quantum mechanics is
inherently global in nature, as exemplified by the instantaneous collapse of an
entangled wave function over macroscopic distances, or the quantization of an N-
particle system due to the boundary conditions applied to the wave function. The
contrast with classical systems is stark, since it is an empirical axiom born out of
historical experience and measurement that individual particle dynamics are not
directly influenced by particles beyond the range of the interaction potential. In this
sense classical systems are localized.

The treatment of classical systems is often facilitated by breaking them up into
subsystems, with interactions across the boundaries treated in a gross or mean-field
or thermodynamic fashion. Such an approach relies upon the inherently local nature
of classical systems. One can in fact develop formally exact expansions for classical
systems based on such dominant local interactions, an example being the cluster
expansion just mentioned.

The application of such local concepts to quantum systems is highly problematic.
On the one hand there is no formal basis, or attempt to provide a formal basis, for
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the break up of a quantum system to one or more independent subsystems that at the
same time addresses the problem of the non-local nature of quantum mechanics. On
the other hand such a break up, as detailed in the Lee–Yang cluster expansions just
mentioned, has been used with success, albeit limited, in the analysis of quantum
many-particle systems.

One cannot but conclude that what motivates the factorization of quantum
systems into quasi-independent subsystems is the success of such factorizations for
classical systems, together with the realization that at high enough temperatures or
low enough densities quantum systems must be dominated by their classical aspects.
The answer to the more fundamental question—how precisely do quantum many-
body systems become localized—seems likely to be found in the reasons for the
formulation of quantum statistical mechanics itself: the total wave function is
decoherent due to its projection onto a sub-space (see chapter 12).

11.2 Symmetrization function
The symmetrization function was treated in chapters 3 and 7. Here a brief summary
of the permutation loop expansion is given because it is directly relevant to the
application of the many-body expansion of the commutation function. Note that
what follows is the symmetrization function η Γ±( )q , which is to be combined with

ω Γ( )p .
Decomposing the permutations into loops, the symmetrization function is

∑

∑ ∑

∑

∑ ∑ ∑

η

η η η η

≡
〈 ∣ 〉

± 〈 ˆ ∣ 〉

=
〈 ∣ 〉

〈 ∣ 〉 ± ′〈 ˆ ∣ 〉 + ′〈 ˆ ˆ ∣ 〉

+ ′ 〈 ˆ ˆ ∣ 〉 ± …

= + + + ′ ± …

ˆ

< < <

±

± ± ± ±

p q
p q

p q

p q
p q p q p q

p q

( , )
1

( 1) P

1
P P P

P P

1

(11.28)
j k j k ℓ

j k ℓ m

j k j k ℓ j k ℓ m

P

, , ,

, , ,

, , ,

p

jk jk kℓ

jk ℓm

jk jkℓ jk ℓm

q

q,
(2)

q,
(3)

q,
(2)

q,
(2)

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

The prime on the summations indicates that all the labels are different and that each
permutation is counted once only. Here P̂jk is the transposition of particles j and k,
which has odd parity. (Actually, it is the transposition of the respective elements in
the vectors of the particles’ characteristics, which makes up with precision what it
lacks in concision.) The loops are successive transpositions. For example, a three-
loop or trimer is ˆ ˆ … … … … = … … … …x x x x x xP P { } { }jk kℓ j k ℓ ℓ j k . For N objects, the

number of distinct permutations consisting of mℓ ℓ-loops (i.e., ∑ == ℓm Nℓ
N

ℓ1 ) is
! ∏ !N ℓ m/ ℓ

m
ℓ

ℓ .

With 〈 ∣ 〉 = ∏−
=

− · ℏV eq p N
j
N p q/2

1
/ij j , the dimer symmetrization loop for two specific

particles is
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η ≡
±〈 ˆ ∣ 〉

〈 ∣ 〉

= ±

= ±
= ±

±

· ℏ · ℏ

· ℏ · ℏ

− · ℏ − · ℏ

− · ℏ

e e
e e
e e
e

p q

p q

P

.

(11.29)
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jk

p q p q

p q p q

p p q p p q

p q

q,
(2)

/i /i

/i /i

[ ] /i [ ] /i

/i

k j j k

j j k k

k j j j k k

jk jk

Similarly the trimer loop for three specific particles is

η ≡
〈 ˆ ˆ ∣ 〉

〈 ∣ 〉

=

=
=

±

· ℏ · ℏ · ℏ

· ℏ · ℏ · ℏ

· ℏ · ℏ · ℏ

· ℏ · ℏ · ℏ

e e e
e e e
e e e
e e e

p q

p q

P P

.

(11.30)

jkℓ
jk kℓ

p q p q p q

p q p q p q

p q p q p q

q p q p q p

q,
(3)

/i /i /i

/i /i /i

/i /i /i

/i /i /i

ℓ j j k k ℓ

j j k k ℓ ℓ

ℓj j jk k kℓ ℓ

ℓj j jk k kℓ ℓ

In general a specific l-loop is

∏η =
=

−

…
± · ℏ · ℏ

+e e . (11.31)
k

ℓ

1

1

j j j
ℓ p q p q

q, , , ,
( ) /i /i

ℓ
j jℓ jℓ jk jk jk

1 2
1 1

The sums of these specific loops are phase functions, such as
η η≡ ∑±

<
±p q( , ) j k jkq

(2)
q,

(2), η η≡ ∑±
< <

±p q( , ) j k ℓ jkℓq
(3)

q,
(3) , etc.

Because the complex exponentials are highly oscillatory, they average to zero
unless the exponents are small. Hence the loops are compact in phase space, and the
phase functions are extensive, η =± Np q( , ) ( )ℓ

q
( ) O .

The fourth term in the expansion written out explicitly above contains the
products of two dimer loops. They are not actually independent because all labels
must be different. Since each permutation appears once only, it can be written as half
the product of independent dimer functions plus a lower order correction,

∑

∑

∑ ∑ ∑

η η

η η δ δ δ δ

η η η η η

η

′

= ¯ ¯ ¯ ¯ ¯ ¯

= ¯ ¯ − ¯ ¯ + ¯

= +

± ±

± ±

± ± ± ± ±

± Np q

1
8

1
8

4
8

2
8

( )

1
2

( , ) ( ),

(11.32)

j k ℓ m

j k ℓ m

j k ℓ m j k ℓ j k

, , ,

, , ,

, , , , , ,

jk ℓm

jk ℓm jℓ jm kℓ km

jk ℓm jk jℓ jk

q,
(2)

q,
(2)

q,
(2)

q,
(2)

q,
(2)

q,
(2)

q,
(2)

q,
(2)

q,
(2) 2

q
(2) 2 O

where δ δ¯ ≡ −1jk jk and η δ η¯ ≡ ¯± ±
jk jk jkq,

(2)
q,

(2). Analogous results hold for all the products
of loops that appear in the loop permutation expansion. Keeping only the leading
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order of independent products in each case, the symmetrization function can be
written

∏

η

η η η

η η η

≈ + + + + ⋯

= + + + ⋯

=
=

∞
η

±

± ± ±

± ± ±

±

{ }
e

p q

p q p q p q

p q p q p q

( , )

1 ( , ) ( , )
1
2

( , )

exp ( , ) ( , ) ( , )

.

(11.33)

ℓ 2

p q

q

q
(2)

q
(3)

q
(2) 2

q
(2)

q
(3)

q
(4)

( , )ℓ
q

( )

The symmetrization loop functions that are retained in the exponent are extensive,
N( )O .
This loop expansion and exponential form for the symmetrization function has

the same character as in chapters 3 and 7, in which the quantum grand potential was
expressed as a series of loop potentials. The main difference is that here the
exponentiation of the series of extensive single loops is done for the phase function
itself rather than after statistical averaging.

11.3 Generalized Mayer f-function
The symmetrization loop phase functions are related to the many-body formulation
of the commutation function. Retaining only the pair term for the latter is valid at
high temperatures or low densities. Retaining only the dimer term in the symmet-
rization function is valid at low densities. The quantitative meaning of ‘high’ and
‘low’ obviously depends on the particular system, but it seems likely to encompass
most of condensed matter at terrestrial densities and temperatures.

Assuming a pairwise additive potential (and no singlet potential), and keeping
only the pair terms in both the commutation and symmetrization functions, the
grand canonical partition function is (see chapter 7)

∫

∫

∫

∑ ∏

∑ ∏ ∏

∑ ∏ ∏

Γ

Γ

Γ

Ξ =
!

≈
!

≡
!

+

=

∞

=

∞

=

∞

= <

=

∞

= <

βμ
β η

βμ β β η

Γ Γ Γ−

− −

±

±

e
N h

e e e

N h
e e e e e

N h
z f

d

1
d [ ] [ ]

1
d 1 .

(11.34)

N ℓ

N j

N

j k

N

N j

N

j k

N

0 2

0 1

0 1

N

N
W

N
p m u w

N j jk

3
( ) ( ) ( )

3
/2

3
(2)

ℓ

j jk jk jk

p q
( )

2 (2)
p,
(2)

q,
(2)

⎡⎣ ⎤⎦

H

Here Γ = p q{ , } is a point in classical phase space, and ≡ βμ β−z e ej
p m/2j

2
is a

generalized fugacity. The quantity ≡ = −β η− ±
f f e e ep q( , ) 1jk jk jk

u w(2) (2) jk jk jk
(2)

p,
(2)

q,
(2)

is a
generalized pair Mayer f-function that depends upon the relative position and
momentum of the two particles (see also subsection 11.1.7). It has the desirable
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property that →f p q( , ) 0jk jk
(2) , → ∞qjk . (If there is a singlet potential, then its

Maxwell–Boltzmann factor would be included in the fugacity, along with the singlet
part of the commutation function. The pair part of the commutation function would
need to be modified.)

This generalized Mayer f-function allows quantum systems to be treated with the
powerful techniques that have advanced the field of classical statistical mechanics.
Examples include cluster diagrams, density functional theory, integral equation
methods, and asymptotic analysis (Pathria 1972, Hansen and McDonald 1986,
Attard 2002). The Mayer f-function and cluster diagrams are not restricted to
pairwise additive potentials (Morita and Hiroike 1961, Stell 1964, Attard 1992),
although this is certainly the most common case.

For example, the quantum pair Ornstein–Zernike equation can just be written
down,

∫ ρΓ Γ Γ Γ Γ Γ Γ Γ Γ Γ= +h c c h( , ) ( , ) d ( ) ( , ) ( , ), (11.35)1 2 1 2 3 3 1 3 3 2

where Γ = p q{ , }j j j , the singlet density is ρ π β= β−Ne m V/(2 / )j
p m(1) /2 3/2j

2
, = −h g 112 12

is the total correlation function, c12 is the direct correlation function, and the pair
distribution function is related to the pair density as ρ ρ ρ= g12

(2)
1
(1)

2
(1)

12. This may be
combined with, for example, the hypernetted chain approximation,

= − + β η− − + + ±
h e1 , (11.36)h c u w

12
12 12 12

(2)
p,12
(2)

q,12
(2)

to give a closed system of equations. The asymptote is

β η∼ − + + → ∞±c u w q, . (11.37)12 12
(2)

p, 12
(2)

q, 12
(2)

12

Of course the various quantities are complex. (Recall that these are quantum
probabilities, albeit in classical phase space.) Because of the oscillations at large
separations, it may be worth adding numerically a damping or cut-off factor, and
checking that the final results are independent of its precise value or form. One
should also be aware that the requisite commutation function can vary with the
quantity being averaged (chapter 7).

11.4 Numerical analysis
11.4.1 Two-body commutation function

Integrating the temperature derivative of the commutation function from the high
temperature limit can be unstable. This is the method suggested in subsection 11.1.4
for extending the linear solution. (The instability in the quadrature is not limited to
the many-body expansion.) Although it works for the simple harmonic oscillator, it
does not, for example, give reliable results for the Lennard–Jones pair potential.
Experience in a variety of cases has shown that obtaining the energy eigenstates and
summing over them is by far the most efficient and reliable way to obtain the
commutation function. Here this alternative method to obtain the singlet and pair
commutation functions is outlined.
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The singlet combined commutation function, given above as the partial differ-
ential equation for the temperature derivative, equation (11.16), can be obtained for
a one-particle system, N = 1, from the fundamental definition

∑

=
〈 ∣ 〉

〈 ∣ 〉

=
〈 ∣ 〉

〈 ∣ 〉 〈 ∣ 〉

β

β

˜ − ˆ

−

e
q p

e q p

q p
e q ℓ ℓ p

1

1
.

(11.38)
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H

Here the singlet Hamiltonian operator is ˆ = −ℏ ∇ +q m u q( ) ( /2 ) ( )
(1) 2 2 (1)H , and the

singlet energy eigenfunctions satisfy ˆ ∣ 〉 = ∣ 〉ℓ E ℓℓ
(1) (1)H . For the simple harmonic

oscillator potential these are known analytically.
For the case of two particles, the total combined commutation function is

˜ = ˜ + ˜ + ˜W q p q p w q p w q p w q p q p( , ; , ) ( , ) ( , ) ( , ; , )(2)
1 1 2 2

(1)
1 1

(1)
2 2

(2)
1 1 2 2 . Hence the pair

combined commutation function given above as the partial differential equation
for the temperature derivative, equation (11.17), can instead be obtained for a two-
particle system, N = 2, from the fundamental definition
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Here the pair Hamiltonian operator is
ˆ = −ℏ ∇ + ∇ + + +q q m u q u q u q q( , ) ( /2 )[ ] ( ) ( ) ( , )

(2)
1 2

2
1
2

2
2 (1)

1
(1)

2
(2)

1 2H . Again trial and
much error has shown that it is most efficient to obtain the pair combined
commutation function from the sum over energy states. The latter were obtained
by standard minimization and orthogonalization techniques. The Fourier trans-
form methods proposed above do not work for the Lennard–Jones potential.

Two points: the system these were applied to consists of a singlet simple harmonic
oscillator potential and a Lennard–Jones pair potential in one dimension. For the
two-particle eigenfunctions in this system the factorization into center of mass and
interaction coordinates is exact (Messiah 1961, Merzbacher 1970, Pathria 1972).
This means that one has to solve two one-dimensional systems (one of which is the
already solved simple harmonic oscillator case), rather than a two-dimensional
system. Second, for the interaction coordinate, the Lennard–Jones core repulsion
makes the energy eigenfunction vanish at q = 0, and the simple harmonic oscillator
potential makes it vanish at large q. Hence one can choose a system size qmax, with

∈q q[0, ]max and set ϕ ϕ= ′ =q q( ) ( ) 0ℓ ℓint, max int, max . (This is done by setting the values
beyond the boundary to zero in the central difference formulae for the Laplacian.)
Then one can impose periodic boundary conditions, and extend the eigenfunctions
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found on ∈q q[0, ]max to negative values, taking them to have the same energy for
the even and odd extensions.

There is a further conceptual point that can be made that is connected with the
non-local nature of quantum mechanics that was discussed in the preface. The
energy states that are referred to above are for a two-particle system. The
quantization of the states is dependent upon the boundary conditions that are
applied. On the one hand it seems natural to apply the same boundary conditions as
for the full N-particle system that the singlet and pair commutation functions will be
used for. (As just mentioned, in the present specific case of a simple harmonic
oscillator singlet potential, the wave function was taken to be periodic, and it and its
derivative were taken to vanish at some large L.) On the other hand it seems
unnatural that the pair commutation function, which is local in nature, should
depend upon boundaries that in the general case may be at macroscopic distances.
Possibly in general the sum over energy states is insensitive to the actual spectrum of
states. (The sensitivity of the results below to the boundary conditions was not
checked.) Alternatively, it might prove best practice to implement mean-field or
effective local field (chapter 10) boundary conditions.

11.4.2 Core asymptote

In this subsection the behavior of the energy eigenfunction in the Lennard–Jones
core region is derived. The full potential is ε= −u r r r r r( ) [( / ) 2( / ) ]e

12
e

6 , >r 0, and the
particle mass is m. (For the effective local field, chapter 10, replace ε by ε/2, and for
the interaction coordinate, replace m by m/2.)

Take the energy eigenfunction function to be of the form

ψ = { }r g r a r r( ) ( )exp ( / ) , (11.40)e
5

with ε= − ℏa m r2 /25e
2 2 . The energy eigenvalue equation is then

ψ ε ψ= − − ℏ
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− −

E r r r r r r
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2

[25 ( )
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ℏ
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ℏ
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n
3 e , equate coefficients of r r( / )n

e , and rearrange to obtain for
⩾ −n 3,
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10 ( 4)
4
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2

, (11.43)n n n n7
e
2

2 6 2
e
2

2

⎧⎨⎩
⎫⎬⎭

with =g 0n , <n 3. This is homogeneous in g3, which can be used as a scale factor to
match the asymptote to the actual eigenfunction at a boundary.
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For the case of the interaction commutation function, one has

∑ω ∼ = →
=

∞
β + −q p f q e f q f r q q( , ) ( ) , ( ) , 0. (11.44)
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with =f 0n , <n 3, the over-dot signifying the derivative with respect to β, the
interaction mass being μ = +m m m m/( )1 2 1 2 , the interaction momentum being

= − +p m p m p m m( )/( )2 1 1 2 1 2 , and the separation being = −q q q1 2. The interaction
potential used here is ε κ= − +U q r q r q q( ) [( / ) 2( / ) ] /2int e

12
e

6 2 , with κ μω= 2. (The
corresponding center of mass potential is ω=U Q M Q( ) /2cm

2 2 , with the center of
mass being = + +Q m q m q m m( )/( )1 1 2 2 1 2 , and the total mass being = +M m m1 2.)
The coefficients fn, ⩽ ⩽n4 9, are proportional to f3, and, apart from that,
independent of temperature.

This gives a phase space weight that vanishes in the core much more slowly than
that due to the Lennard–Jones potential itself. This is qualitatively in agreement
with the results now shown.

11.4.3 Three-body commutation function

The total three-body commutation function, β˜ ≡ − +W Wp, 123
(3)

123
(3)

p, 123
(3)H , is expressed

in equation (11.20) as a sum over energy states of the energy eigenfunctions weighted
by the Maxwell–Boltzmann factor. In this section is briefly discussed an efficient way
to organize the computation and storage of the three-body eigenfunctions and
commutation function by invoking center of mass and interaction coordinates.

Messiah (1961, chapter 9, section 13) gives a procedure for constructing the center
of mass and relative coordinate transformation in general for an +N( 1)-particle
system. The center of mass and interaction or relative coordinates for two particles
of arbitrary mass are well known (Messiah 1961, Merzbacher 1970, Pathria 1972).
Messiah (1961) successively applies this two-particle result, creating the jth relative
particle from the center of mass variables of the first j particles relative to the actual
variables of the +j 1 st particle.

For +N 1particles define the center of mass positionQ, momentumP, andmassM by

∑ ∑ ∑= = =
=

+

=

+

=

+

M
m M mQ q P p

1
, , and . (11.46)

j

N

j

N

j

N

1

1

1

1

1

1

j j j j
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Let ρj, πj, and μj be the corresponding quantities for the jth relative particle. These
satisfy

∏ ∏

∑ ∑

∑ ∑

∑ ∑

ρ π

ρ π

μ

μ
π

=

= +

· = · + ·

× = × + ×

=

+

=

=

+

=

=

+

=

=

+

=

m M

m
p

M
P

q p Q P

q p Q P

,

1
2

1
2

1
2

.

(11.47)
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j

N

j

N

j

N

j

N

j

N

j

N

1

1

1

1

1

1

1

1

1

1

1

1

j j

j
j

j
j

j j j j

j j j j

2 2 2

These invariants are readily shown to hold for two particles. Messiah (1961) asserts
that they must also hold for +N 1 particles because of the method by which the
relative coordinates are successively constructed in a pairwise fashion.

Applying this method to three particles, one first selects particles 1 and 2 and
creates their center of mass variables

′ = + ′ =
+
+

′ = +M m m
m m

m m
Q

q q
P p p, , and , (11.48)1 2

1 1 2 2

1 2
1 2

and their interaction variables

ρ πμ =
+

= − =
−
+

m m
m m

m m

m m
q q

p p
, , and . (11.49)1

1 2

1 2
1 1 2 1

2 1 1 2

1 2

This is the first relative particle.
The second relative particle is created from the first center of mass particle and the

third particle. It has center of mass variables

″ = + +

″ =
′ ′ +

′ +
=

+ +
+ +

″ = ′ + = + +

M m m m
M m

M m

m m m

m m m
Q

Q q q q q

P P p p p p

,

, and

,

(11.50)

1 2 3

3 3

3

1 1 2 2 3 3

1 2 3

3 1 2 3

and interaction variables

ρ

π

μ = ′
′ +

= +
+ +

= ′ − =
− + −

+

=
′ − ′
′ +

=
+ − −

+ +

M m
M m

m m m m
m m m

m m

m m
m M

M m

m m m m

m m m

Q q
q q q q

P p p p p p

,

[ ] [ ]
, and

.

(11.51)
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3

3

1 3 2 3

1 2 3

2 3
1 1 3 2 2 3

1 2

2
3 3

3

3 1 3 2 1 3 2 3

1 2 3
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This is the second relative particle. Notice that there is an asymmetry between the
relative particles. The double prime on the center of mass variables may be dropped.

We now apply the transformation to a system of three identical particles with a
singlet potential that is harmonic (i.e., the third and higher derivatives vanish) and
with a pair potential that is a function of separation.

For three particles with the same mass, ′ = +Q q q[ ]/21 2 and
″ = + +Q q q q[ ]/31 2 3 . In this case the total singlet potential to quadratic order is

ρ ρ

+ +

= ′ + − ′ − ′ ″ ′ + − ′ − ′ ″ ′

+ ″ + − ″ ′ ″ + − ″ − ″ ″ ″

= ″ + ″ ″

+ ′ − ″ · ′ ″ + ′ − ″ ′ − ″ ″ ″

+ − ″ ′ ″ + − ″ − ″ ″ ″

u u u

u u u

u u u

u u

u u

u u

q q q

Q q Q q Q Q q Q q Q Q

Q q Q Q q Q q Q Q

Q Q

Q Q Q Q Q Q Q Q

q Q Q q Q q Q Q

( ) ( ) ( )

2 ( )
1
2

[ ][ ]: ( )
1
2

[ ][ ]: ( )

( ) [ ]: ( )
1
2

[ ][ ]: ( )

3 ( )
1
4

: ( )

2[ ] ( )
1
2

2[ ][ ]: ( )

[ ]: ( )
1
2

[ ][ ]: ( ).

(11.52)

1 2 3

1 1 2 2

3 3 3

1 1

3 3 3

Now ρ′ − ″ =Q Q /32 , and ρ− ″ = −q Q 2 /33 2 . Also, for a harmonic potential the
second derivative is constant, ″ ″ = ″u uQ( ) . Hence

ρ ρ ρ ρ+ + = ″ + ″ + ″u u u u u uq q q Q( ) ( ) ( ) 3 ( )
1
4

:
1
3

: . (11.53)1 2 3 1 1 2 2

Hence for a harmonic singlet potential, the transformation to center of mass and
relative coordinates is exact.

The total separation-dependent pair potential for three identical particles is

ρ ρ ρ ρ ρ
− + − + −

= + − + −
u u u

u u u

q q q q q q( ) ( ) ( )

( ) ( ) ( ).
(11.54)

(2)
1 2

(2)
2 3

(2)
3 1

(2)
1

(2)
2 1

(2)
1 2

This is a function solely of the interaction coordinates, as required.
For three particles in one dimension, the interaction energy eigenfunctions are

ϕ ρ ρ( , )n n,
int

1 21 2
, which have to be stored on a four-dimensional grid. The symmetry

ρ ρ ρ ρ= − −U U( , ) ( , )int
1 2

int
1 2 can be used to reduce the computational burden. The

interaction part of the three-particle commutation function is ω ρ π ρ π( , ; , )int
1 1 2 2 ,

which is also four-dimensional. The center of mass parts are the usual simple
harmonic oscillator functions, which are two-dimensional.

11.4.4 Results

Figure 11.1 shows the real part of the exponent for the phase space weight for three
particles, W̃ q p q p q pRe ( , ; , ; , )(3)

1 1 2 2 3 3 , with the two exterior particles fixed at ±re
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with zero momentum. Three approaches are compared: the present many-body
expansion (pair level), the local state expansion given in chapter 10 (singlet, first
order; one variable and two fixed particles), and the classical Maxwell–Boltzmann
exponent. (The imaginary part of the exponent, which also contributes to the real
part of the phase space weight, is not shown.) Overall, the data in figure 11.1 reveal
that the two quantum approaches qualitatively agree in that there is substantial
cancelation of the classical core repulsion between the Lennard–Jones particles. This
means that the quantum particles will approach each other and interpenetrate much
more deeply than their classical counterparts. The pair many-body expansion shows
more cancelation than the local state expansion. The two approaches also agree in
predicting that higher values of momentum are more accessible in the quantum case
than is classically predicted. However, for this, the real part of the exponent, the
many-body expansion shows greater variation with momentum than does the local
state expansion. Since the Monte Carlo simulation results for the average energy
given by the local state expansion appear to be in good agreement with benchmark
results for this system, section 10.5.2, the quantitative disagreement with that
approach evident in figure 11.1 might give one pause before further pursuing the
many-body expansion.

It should be stressed that the data in figure 11.1 are for a relatively low temperature,
β ωℏ = 8.5LJ , and a relatively high density, ρ =r 1e . The many-body expansion can be
expected to converge most rapidly at high temperatures and low densities.

Figure 11.2 shows the real part of the phase space weight,
Ω = W̃q p q pRe ( , ) Re exp ( , )(3) (3) , when the neighboring particles have non-zero

momentum. The results seem unphysical. In particular, the increase in magnitude of

Figure 11.1. Real part of the combined total commutation function, β˜ = −W W H, for three particles, with
= − = −q q r1 3 e and = =p p 01 3 , at β ωℏ = 8.5LJ (Lennard–Jones pair interaction, simple harmonic oscillator

singlet potential, one dimension). The solid curves are the many-body expansion (pair), the dashed curves are
the local state expansion (triplet), and the dotted curves are the classical Maxwell–Boltzmann exponent,

β− q p( , )H . From top to bottom in each series, the classical kinetic energy for the middle particle is β =p m/22
2 0,

2 and 8. An arbitrary normalization constant has been added to each surface so that they coincide at
=q p{ , } {0, 0}2 2 .
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the density with increase in momentum does not seem to be correct. It appears to be
the source of an unrealistically high average kinetic energy when the pair many-body
expansion commutation function is used in the Monte Carlo simulations (not
shown). The dramatic oscillations with position and with momentum, and large
negative values, also seem unphysical, particularly considering their relatively large
magnitude. Although the local state expansion also gives region of phase space with
negative weight (Attard 2020), the magnitude of the density in such regions is quite
small relative to the maximum magnitude, and so for that approach they either
cancel or contribute negligibly to any phase space average.

One can obtain a feeling for the limitations of the pair-terminated many-body
expansion by writing out the N = 3, one-dimensional case explicitly. In this case
equation (11.8), in which the singlet terms are absent, yields

∇ ˜ · ∇ ˜ = ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜
+ ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜
+ ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜

≈ ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜
+ ∇ ˜ · ∇ ˜ + ∇ ˜ · ∇ ˜

W W w w w w w w

w w w w w w

w w w w w w

w w w w w w

w w w w

2

2

2

2 .

(11.55)
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1 13
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1 13

(2)

2 21
(2)

2 21
(2)

2 21
(2)

2 23
(2)

2 23
(2)

2 23
(2)

3 31
(2)

3 31
(2)

3 31
(2)

3 32
(2)

3 32
(2)

3 32
(2)

1 12
(2)

1 12
(2)

2 21
(2)

2 21
(2)

2 23
(2)

2 23
(2)

3 32
(2)

3 32
(2)

2 21
(2)

2 23
(2)

The second approximation retains only the nearest neighbor contributions. The final
term here, ∇ ˜ · ∇ ˜w w2 2 21

(2)
2 23

(2), which is a three-body term, is neglected in equation (11.9).
There is no reason to suppose that this term is smaller in magnitude than those that
are retained. (The commutation function is complex; the retained terms are not in
general positive.)

One can conclude from this that for more than two particles, the many-body
expansion of the total commutation function terminated at the pair level is

Figure 11.2. The real part of the phase space weight given by the many-body expansion (pair level) for three
particles, with = −q r1 e, ℏ =p r / 8.381 e (β =p m/2 51

2 ), and =q r3 e, ℏ = −p r / 11.853 e (β =p m/2 103
2 ) at

β ωℏ = 8.5LJ (Lennard–Jones pair interaction, simple harmonic oscillator singlet potential, one dimension).
The solid curve is ℏ =p r / 02 e , the dotted curve is ℏ =p r / 5.242 e , the dashed curve is ℏ =p r / 10.52 e , and the
dash-dotted curve is ℏ =p r / 18.72 e .
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inconsistent with its temperature derivative based on the above approximation to the
non-linear term. It would mean, for example, that the commutation function at one
temperature, βW q p( , ; )N( ) , formed using the series of singlet and pair commutation
functions obtained by summing over energy states at that temperature, would not be
equal to that obtained by integrating the total commutation function from a higher
temperature, βW q p( , ; )N( )

0 , using the approximation for the temperature derivative.
Alternatively, the correct temperature derivative implies the existence of three-body
terms, which contradicts the termination of the many-body expansion at the pair
level. This inconsistency does not appear to be negligible, and is no doubt
responsible for the unphysical results exhibited in the figures above.

This result, together with those in the figures and the unpublished simulations,
suggest that the many-body expansion advocated in the text is not viable at the pair
level. Perhaps the local state expansion, chapter 10, represents the most viable path
forward for quantum statistical mechanics in classical phase space.

11.5 Ursell clusters, Lee–Yang theory, classical phase space
In this section the Ursell cluster functions of classical statistical mechanics are
reviewed, subsection 11.5.1. An identity for the Maxwell–Boltzmann operator is
given in subsection 11.5.2. This is used to obtain an exponential series expansion,
subsection 11.5.3, which is subsequently resummed in terms of the binary collision
kernel. These sections more or less follow Pathria (1972, sections 9.6 and 9.7). The
exponential series is transformed to classical phase space in subsection 11.5.4.

11.5.1 Ursell cluster theory

Consider a general classical many-particle system. It is often the case that one has or
desires the particle probability densities. For example, for an N particle system, the
singlet probability density, ℘ q( )1 , is the probability of finding a particle at q1, (more
precisely, within qd of q1). The pair probability density, ℘ q q( , )1 2 , is the probability of
finding a particle at q1 and a particle at q2. And the n-probability density, ℘ q( )n , is the
probability of finding n particles at the respective positions. In general the various
particle probability densities are distinguished by the number of their arguments.

For the case of the pair probability density, the particles become uncorrelated at
large separations, so that the pair probability is just the product of the singlet
probabilities,

℘ → ℘ ℘ ∣ − ∣ → ∞q q q q q q( , ) ( ) ( ), . (11.56)1 2 1 2 1 2

In practical terms large separations means beyond the range of the interaction
potential, or distances at which the interaction potential is negligible compared to
the temperature. Under such circumstances it is useful to extract the short-ranged,
non-trivial part of the pair density, by defining

℘ = ℘ − ℘ ℘q q q q q q( , ) ( , ) ( ) ( ). (11.57)U 1 2 1 2 1 2

This obviously has about the same range as the pair potential and goes to zero at
large separations. (Actually at large separations it is linearly proportional to the pair
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potential if in three dimensions the latter decays at least as fast as the separation
cubed (Attard et al 1991, 1993).)

This basic idea underlies the cluster expansion developed by Ursell (1927). In this
generalized approach the uncorrelated part of the multi-particle probability is
subtracted, leaving the ‘connected’ part that manifests the direct correlations
between particles. For the singlet case the two are the same,

℘ = ℘q q( ) ( ). (11.58)U 1 1

For the pair case one has

℘ = ℘ − ℘ ℘q q q q q q( , ) ( , ) ( ) ( ), (11.59)U 1 2 1 2 1 2

and for the triplet case one has

℘ = ℘ − ℘ ℘
− ℘ ℘ − ℘ ℘
+ ℘ ℘ ℘

q q q q q q q q q
q q q q q q
q q q

( , , ) ( , , ) ( , ) ( )

( , ) ( ) ( , ) ( )

2 ( ) ( ) ( ).
(11.60)

U 1 2 3 1 2 3 1 2 3

2 3 1 3 1 2

1 2 3

Notice how the coefficients of the terms on the right-hand side add to zero.
Consider a system where the N particles experience just singlet and pair potentials

= ∑ + ∑= <U u uq q q q( ) ( ) ( , )N j
N

j j k
N

j k1 . The singlet and pair potentials are distinguished
by the number of their arguments. The phase space weight is just the Maxwell–
Boltzmann factor of the classical Hamiltonian,

∏ ∏Ω = =
= <

β β β− − + −e e eq p( , ) , (11.61)
j

N

k ℓ

N

1

N u uq p p q q q( ), cl ( , ) ( ) ( ) ( , )j j k ℓH K

normalizing factors being ignored. The superscript N has been added here so that
systems with different numbers of particles can be treated next. Hopefully use of the
same symbol Ω for the phase space weight, as here, and for the grand potential, as in
chapters 3 and 7, will not cause confusion.

In the pair case in a system with N = 2 one has

Ω =

→ ∣ − ∣ → ∞
= Ω Ω

β β β

β β

− + − + −

− + − +

e e e

e e

q p

q q

q p q p

( , )

,

( , ) ( , ),

(11.62)

u u u

u u

p q p q q q

p q p q

(2), cl
1,2 1,2

( ) ( ) ( ) ( ) ( , )

( ) ( ) ( ) ( )
1 2

(1), cl
1 1

(1), cl
2 2

1 1 2 2 1 2

1 1 2 2

K K

K K

since →u q q( , ) 01 2 in the large-separation limit. From this one sees that the
connected part is explicitly

Ω = Ω Ω −β−eq p q p q p( , ) ( , ) ( , ){ 1}. (11.63)u q q
U
(2),cl

1,2 1,2
(1), cl

1 1
(1), cl

2 2
( , )1 2

The quantity in braces is the pair Mayer f-function. This explicit pair result for a
system of N = 2 particles is obviously analogous to the pair result given above for
general N.
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For a quantum system of N particles experiencing singlet and pair potentials, the
position matrix of the probability operator is

∑ ϕ ϕ
Ω ′ = 〈 ′∣ ∣ 〉

= ′

β

β

− ˆ

− *

e

e

q q q q

q q

( , )

( ) ( ) . (11.64)

n

N

E N N

r

n n

( ) ( )

( ) ( )

N

N
n

( )

( )

H

This invokes unsymmetrized wave functions, so that the effects of particle statistics
have to be added later. The diagonal elements of this, which may be denoted Ω q( )N( ) ,
give the probability of a position configuration of the N particles.

In the pair case, N = 2, one has

ˆ = ˆ + ˆ + + +

→ ˆ + ˆ ∣ − ∣ → ∞

u u ur r r r r r r

r r r r

( ) ( ) ( ) ( ) ( ) ( , )

( ) ( ), .
(11.65)

(2)
1,2 1 2 1 2 1 2

(1)
1

(1)
2 1 2

H K K
H H

This means that in the large-separation limit the Maxwell–Boltzmann operator
factorizes

→ ∣ − ∣ → ∞β β β− ˆ − ˆ − ˆe e e r r, . (11.66)r r r( ) ( ) ( )
1 2

(2)
1,2

(1)
1

(1)
2H H H

One can argue that the same holds for the probability matrix,

Ω → Ω Ω ∣ − ∣ → ∞q q q q q( ) ( ) ( ), . (11.67)(2)
1,2

(1)
1

(1)
2 1 2

The validity of this is clearest in the form Ω = 〈 ∣ ∣ 〉β− ˆeq q q( ) r(2)
1,2 1,2

( )
1,2

(2)
1,2H , because

here the position eigenfunctions concentrate the scalar product integral,
δ δ− −r q r q( ) ( )1 1 2 2 , and the above factorization of the Maxwell–Boltzmann operator
holds. In the form of the sum over energy states, the asymptotic limit is less clear.
Nevertheless, one can argue that ϕ ϕ ϕ→q q q( ) ( ) ( )n n n

(2)
1,2

(1)
1

(1)
21 2
, ∣ − ∣ → ∞q q1 2 , and also

that the quantized energy levels must be restricted to = +E E En n n
(2) (1) (1)

1 2
.

From this asymptotic limit the connected part of the position probability for two
quantum particles is

Ω = Ω − Ω Ω

= 〈 ∣ ∣ 〉 − 〈 ∣ ∣ 〉〈 ∣ ∣ 〉β β β− ˆ − ˆ − ˆe e e

q q q q

q q q q q q

( ) ( ) ( ) ( )

.
(11.68)

U
(2)

1,2
(2)

1,2
(1)

1
(1)

2

1,2 1,2 1 1 2 2

(2) (1) (1)H H H

Finally, the classical phase space formulation of quantum statistical mechanics
that is the subject of this book gives the phase space weight for a quantum system as

Ω = 〈 ∣ ∣ 〉
〈 ∣ 〉

β− ˆe
q p

q p
q p

( , ) . (11.69)N( )

N( )H

We have also denoted this ωβ−e q p( , )q p( , )
p

N( )H , as β−e eWq p q p( , ) ( , )N( )
pH , and as ˜eW q p( , )p .

Again these are for unsymmetrized wave functions, leaving the symmetrization
function to be included later.
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The subject of this chapter is a many-body expansion of the commutation
function. Terminated at the pair level it reads

∑ ∑= +
= <

W w wq p q p q p q p( , ) ( , ) ( , ; , ). (11.70)
j

N

k ℓ

N

1
j j k k ℓ ℓp

Again the singlet and pair commutation functions may be distinguished by the
number of their arguments. It is implicitly assumed that these are independent of N.
As discussed in connection with equation (11.2), at large separations the gradient of
the potential goes to zero faster than the potential itself, which means that

→w uq p q( , ) ( ) 0k ℓ k ℓ k ℓ, , , , ∣ − ∣ → ∞q qk ℓ . Hence for N = 2 particles one has
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This can also be seen directly from the fundamental definition
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Again then the connected part of the pair weight is
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As before, one expects that these pair results that have been derived for an N = 2
system will also hold for the pair probability for general N.

11.5.2 Identities for the Maxwell–Boltzmann operator

With the energy operator being the sum of the kinetic energy operator K̂ and the
potential energy U, ˆ = ˆ + Ur r r( ) ( ) ( )H K , the Maxwell–Boltzmann operator may be
expanded in what is called an exponential series (Pathria 1972, section 9.7). One
begins with the identity,

∫ β= − ′β β
β

β β β− ˆ − ˆ − − ′ ˆ − ′ ˆ
e e e Ued . (11.74)

0

( )H K K H
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This can be proven by induction: assume that it is true at β. Then at β + Δβ the left-
hand side is

= − Δ ˆβ β
β

β− +Δ ˆ − ˆ − ˆβe e e , (11.75)[ ] HH H H

and the right-hand side is

∫
β

β

+ Δ ∂
∂

= − Δ ˆ − Δ + Δ ˆ ′
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= − Δ ˆ
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β
β

β
β
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β

β
β β β

β
β
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β
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− ˆ − ˆ − ˆ − − ′ ˆ − ′ ˆ

− ˆ − ˆ − ˆ

− ˆ − ˆ

e e Ue e Ue

e Ue e

e e

RHS
RHS

d

.

(11.76)
0

( )K K

K
H

H K H K H

H H H

H H

The putative identity is obviously true as β → 0, where both sides go like
β β− ˆ +1 ( )2H O . Hence the identity must be true for all β.

Incidently, since the kinetic and potential energies play equivalent roles in the
Hamiltonian operator, an alternative identity is

∫ β= − ′ ˆβ β
β

β β β− ˆ − − − ′ − ′ ˆ
e e e ed . (11.77)U U

0

( ) KH H

We shall mainly focus on systems where the particles experience just singlet and
pair potentials,

∑ ∑≡ + = +
= <

U U U u uq q q q q q( ) ( ) ( ) ( ) ( , ). (11.78)
j

N

j k

N

1

N N N
j j k

( ) (1; ) (2; )

In this case it appears convenient to associate the two singlet operators (the kinetic
energy and the singlet potential) and to write their exponential as

∏β βˆ ≡ = ˆ
=

β− ˆ +e( ) ( ). (11.79)
j

N

1

U
j

[ ]N(1; )Kv v

With this the first identity may be refashioned as

∫β β β β= ˆ − ′ ˆ − ′β
β

β− ˆ − ′ ˆ
e U e( ) d ( ) . (11.80)N

0

(2; )H Hv v

We have not shown the N-dependence of Ĥ or of βˆ( )v because it is relatively trivial
and it is clear from the context.

11.5.3 Exponential series expansion

Modifying slightly Pathria (1972, section 9.7) for the case that the singlet potential
is included with the kinetic energy operator, the exponential series for the
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Maxwell–Boltzmann operator can be extracted from equation (11.80) by successive
substitution.

∫
∫ ∫

β β β β β

β β β β β β β

= ˆ − ′ ˆ − ′ ˆ ′

+ ′ ˆ − ′ ″ ˆ ′ − ″ ˆ ″ − …

β
β

β β

− ˆ

′

e U

U U

( ) d ( ) ( )

d ( ) d ( ) ( )
(11.81)

N

N N

0

(2; )

0

(2; )

0

(2; )

H v v v

v v v

Each additional term in this series carries an additional factor ofU N(2; ). Hence a few
or several terms of the expansion suffice in the weak potential regime.
Unfortunately, in the core region the interaction potential becomes large or infinite,
which poses difficulties for the application of the series expansion.

It is convenient to represent these and the following results by diagrams. As
mentioned, Kahn and Uhlenbeck (1938) introduced the classical cluster functions of
Ursell (1927) into quantum mechanics. Lee and Yang (1959a, 1959b, 1960a, 1960b,
1960c) developed the diagrammatic form, including the binary kernel resummation.
The following treatment modifies slightly that of Pathria (1972, section 9.7).

For just one particle, N = 1, the pair potential is absent, =U 0(2;1) and one has

β= ˆ =β β− ˆ − ℏ ∇ +e e( ) , (11.82)m u
1

[( /2 ) ]1
2

1
2

1H v

where the subscript is the label of the particle, β βˆ ≡ ˆ r( ) ( ; )1 1v v . This may be denoted
by a single vertical line,

(This is a little loose as we intend to signify the temperature β′ by a vertical position
on the line.) The attached label 1 makes the identity of the particle clear.

For two particles, N = 2, the total pair potential is =U u(2;2)
12, and the

exponential series yields

One can identify the horizontal bar with the negative of the pair potential between
the labeled particles. The height at which it is placed loosely represents the tem-
perature dependence of the operator that acts upon it.

For N = 3, the total pair potential is = + +U u u u(2;3)
12 23 31, and the exponential

series is
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The disconnected diagrams commute. The pair potential plays the same role
in this regard as it does in the above discussion of Ursell clusters. Therefore one
can say that the Maxwell–Boltzmann operator β− ˆe

N( )H is the sum of all diagrams with
N particles and temperature β. And that the connected part of the Maxwell–
Boltzmann operator is the sum of all connected diagrams with N particles and
temperature β.

In section 11.5.1, the connected part of the Maxwell–Boltzmann operator for two
particles was identified using the fact that the pair potential goes to zero at large

separations. The full pair operator may be denoted βΩ̂ = β− ˆe( ) r r
12
(2) ( , )

(2)
1 2H . The

connected part is

β β β βΩ̂ = Ω̂ − ˆ ˆ( ) ( ) ( ) ( ). (11.86)c, 12
(2)

12
(2)

1 2v v

The binary kernel operator is defined as

β βˆ = − Ω̂B u( ) ( ). (11.87)12 12 12
(2)

(Results analogous to those now derived follow from the commutated version of
this, with the order of the two operators on the right-hand side swapped.) The two
important points about the binary kernel are that it is connected (i.e., it has the same
range as the pair potential), and that it is well-behaved in the core region (i.e., the
pair Maxwell–Boltzmann operator can be expected to go to zero exponentially fast
in the core, which swamps the power law divergence of the pair potential). This
second point, amongst other things, means that the Fourier transform of the binary
kernel phase function should exist.

Since the binary kernel operator goes to zero in the limit of large separations, it
must be related to the connected part of the pair operator. In fact one has

β
β

β
βˆ =

∂Ω̂
∂

+ ˆ + ˆ Ω̂B ( )
( )

( ). (11.88)12
c, 12
(2)

1
(1)

2
(1)

c, 12
(2)⎡⎣ ⎤⎦H H

Quantum Statistical Mechanics in Classical Phase Space

11-28



In diagrammatic form the binary kernel operator is

The top horizontal bond represents the common factor u12, and the X-bond
represents the totality of diagrams with horizontal bonds at any height between 0
and β. Similarly we can write

The two-particle connected Maxwell–Boltzmann operator can be expressed as a
temperature integral of the binary kernel,

This can be confirmed by differentiating with respect β and comparing the result
with the second expression above for the binary kernel.

The three-particle connected Maxwell–Boltzmann operator with two bonds is
given by the six connected terms of the nine terms in the total operator,

the particle labels being understood. The horizontal u(2)-bonds may be resummed
and replaced by B̂-bonds: to leading order, β β βˆ = − ˆ ˆB u( ) ( ) ( )12 12 1 2v v . The first term
given explicitly here, for example, transforms to
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Notice that the explicit temperature arguments for each particle add up to β. The six
connected two-bond terms given above can be obtained from this by the !3 per-
mutations of the labels. It is important that no uninterrupted (isolated) horizontal
bonds between the same pair of particles remain, because these have already been
counted in βˆ ″B ( )jk : a diagram involving β β β β βˆ ′ − ″ ˆ ″ − ‴ ˆ ‴B B B( ) ( ) ( )jk ℓn jk is allowed
only if =ℓ n j kor or and ≠ℓ n j k{ , } { , }.

11.5.4 Exponential expansion for the phase space weight

For a quantum system, the unsymmetrized part of the phase space weight is defined
as

ωΩ ≡ = 〈 ∣ ∣ 〉
〈 ∣ 〉

=β
β

β−
− ˆ

· ℏ − ˆ − · ℏe
e

e e eq p q p
q p

q p
( , ) ( , ) . (11.94)q p q p q p

p
( , )

p
/i /iH

H
H

The momentum eigenfunction appears here, ˆ =− · ℏ − · ℏe ep pq p q p/i /i .
Using the identity (11.80) this is

∫
∫
∫

∫ ∫

β

β β β β

β β β β β

β β β β β

β β β β β β β

Ω

= ˆ − ′ ˆ − ′

= ˆ − ′ ˆ − ′ Ω ′

= ˆ − ′ ˆ − ′ ˆ ′

+ ′ ˆ − ′ ″ ˆ ′ − ″ ˆ ″
− …

β
β

β

β

β β

· ℏ − · ℏ · ℏ − ′ ˆ − · ℏ

· ℏ − · ℏ · ℏ − · ℏ

· ℏ − · ℏ · ℏ − · ℏ

· ℏ
′

− · ℏ

e e e U e e

e e e U e

e e e U e

e U U e

q p( , ; )

( ) d ( )

( ) d ( ) ( )

( ) d ( ) ( )

d ( ) d ( ) ( )

(11.95)

N

N

N

N

N N

q p q p q p q p

q p q p q p q p

q p q p q p q p

q p q p

p
( )

/i /i /i

0

(2; ) /i

/i /i /i

0

(2; ) /i
p

/i /i /i

0

(2; ) /i

/i

0 0

(2; ) (2; ) /i

Hv v

v v

v v v

v v v

Recall that = ∑ <U uq( )N
j k
N

jk
(2; ) , where the pair potential is =u u q q( , )jk j k .

If one defines

β β˜ ≡ ˜̂ ≡ ˆ· ℏ − · ℏ · ℏ − · ℏU e U e e e, and ( ) ( ) , (11.96)N Nq p q p q p q p(2; ) /i (2; ) /i /i /iv v
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then this is more simply written as

∫
∫

∫ ∫

β

β β β β β

β β β β β

β β β β β β β

Ω

= ˜ − ′ ˜̂ − ′ ˜ Ω ′

= ˜ − ′ ˜̂ − ′ ˜ ˜ ′

+ ′ ˜̂ − ′ ″ ˜ ˜̂ ′ − ″ ˜ ˜ ″
− …

β

β

β β′

U

U

U U

q p( , ; )

( ) d ( ) ( )

( ) d ( ) ( )

d ( ) d ( ) ( )

(11.97)

N

N

N

N N

p
( )

0

(2; )
p

0

(2; )

0 0

(2; ) (2; )

v v

v v v

v v v

Note that β β˜ ≡ ˆ· ℏ − · ℏe e( ) ( ( ) )q p q p/i /iv v denotes the phase space function rather than the
operator.

From the binary kernel operator, equation (11.87), β βˆ = − Ω̂B u( ) ( )12 12 12
(2)

, the
binary kernel operator in phase space may be defined as

β β˜̂ ≡ ˆ· ℏ − · ℏB e B e( ) ( ) . (11.98)q p q p
12

/i
12

/i1,2 1,2 1,2 1,2

In general this is an operator. However in the event that it trails in an equation for a
phase space function, it is to be understood to be a function. This is signified by the
removal of the circumflex. To leading order this is

β β
β

˜̂ ∼ − ˆ + ⋯
= − ˜̂

· ℏ − · ℏB e u e

u

( ) ( )

( ).
(11.99)

q p q p
12

/i
12 1,2

/i

12 1,2

1,2 1,2 1,2 1,2v

v

Hence we can carry out the same resummation as above to rewrite the unsymme-
trized phase space weight as

∫

∫ ∫

∑

∑ ∑

β

β β β β β

β β β β β β β

Ω

= ˜ + ′ ˜̂ − ′ ˜ ′

+ ′ ′ ˜̂ − ′ ″ ˜̂ ′ − ″ ˜ ″

+ ⋯

<

< <

β

β β′

B

B B

q p( , ; )

( ) d ( ) ( )

d ( ) d ( ) ( )

(11.100)j k

N

j k

N

ℓ n

N

N

jk

jk ℓn

p
( )

0

(2)

0 0

(2) (2)

v v

v

The prime signifies that the term =ℓ n j k{ , } { , } is excluded because this has already
been counted in the binary kernel resummation.

The utility of this formulation in terms of the binary kernel, the exponential
expansion, and also possibly Ursell clusters, is unclear.
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Chapter 12

Density matrix and partition function

A first principles derivation of the density matrix is given. It is proven that the space
of wave functions of an isolated system has uniform weight density, and that the
states of a complete operator of an isolated system have equal weight. It is shown
that conservation laws entangle otherwise independent wave functions, which leads
to the collapse of the subsystem principle quantum states. Summing over the
uniformly random phases of the subsystem degenerate states causes them to also
collapse. The collapsed wave function represents the subsystem as a mixture of pure
states and gives the von Neumann trace form for the partition function and for
statistical averages. The Maxwell–Boltzmann form for the density operator results
from the reservoir entropy. Accounting for wave function symmetrization constrains
the trace to allowed unique subsystem states.

12.1 Introduction
This chapter derives the partition function of quantum statistical mechanics from first
principles. Whereas previous chapters of the book have focused on the transformation
of the partition function to classical phase space, the development of algorithms for
computing the consequent phase functions, and the application to specific systems, the
present chapter deals with the foundations of quantum statistical mechanics itself.

The von Neumann (1932) trace form for the partition function (and statistical
averages) is arguably the central equation of quantum statistical mechanics. It gives
the canonical equilibrium partition function as the trace of the density operator,

∑ρ= ′ ˆ = ′ β−Z eTR . (12.1)
n

nH

Two conceptual issues are raised by this expression: first, the trace treats the
quantum system as a mixture of pure states, suppressing the superposition and
interference effects that normally occur in an expectation value. And second, the
density operator is identified with the Maxwell–Boltzmann operator, at least for a
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canonical equilibrium system. Starting from the postulates of quantum mechanics,
this chapter derives both of these results. The presentation closely follows that of
Attard (2018, chapter 7).

12.2 Quantum statistical average
In this section the basic notation is established, and the fundamental results of
quantum statistical mechanics are set out, preparatory to their subsequent first
principles derivation.

12.2.1 Expectation value

The state of a quantum system may be specified by a particular wave function ψ. We
do not address symmetrization explicitly in this chapter, except for a brief discussion
in section 12.4.6. A wave function will usually be denoted in the position
representation, ψ r( ), or else in the bra–ket notation, ψ∣ 〉 and ψ〈 ∣. The squared
norm (or squared modulus) of the wave function is

∫ψ ψ ψ ψ ψ≡ 〈 ∣ 〉 = *N r r r( ) d ( ) ( ), (12.2)

where the asterisk denotes the complex conjugate. It is usually the case that the wave
function is normalized, ψ =N( ) 1.

The expectation value of an operator Ô when the system is in the wave state ψ is
(Messiah 1961, Merzbacher 1970)

∫ψ
ψ

ψ ψ
ψ

ψ ψ= 〈 ∣ ˆ∣ 〉 = ˆ*O
N

O
N

Or r r r( )
1
( )

1
( )

d ( ) ( ) ( ). (12.3)

The system can also be described as being in a particular quantum state
= …n 0, 1, 2, , which are the eigenstates of some operator. The corresponding

eigenfunctions ζn are orthonormal, ζ ζ δ〈 ∣ 〉 =n m n m, , and they form a complete basis for
the Hilbert space. Hence the wave function can be written

∑ψ ψ ζ ψ ζ ψ= = 〈 ∣ 〉r r( ) ( ), . (12.4)
n

n n n n

An arbitrary operator can also be represented in this basis, ζ ζ= 〈 ∣ ˆ∣ 〉O Omn m n , and its
expectation value then takes the form (Messiah 1961, Merzbacher 1970)

∑ψ
ψ

ψ ψ= *O
N

O( )
1
( )

. (12.5)
m n,

m mn n

Suppose ζ r( )n
O is a normalized eigenfunction of the operator with eigenvalue On,

ζ ζˆ =O On n n
O O. The eigenstates may possibly be degenerate, but nevertheless the

eigenfunctions can be organized to form a complete set, ψ ψ ζ= ∑n n n
O O. In the

eigenfunction basis the operator is diagonal, δ=O Omn n mn
O , and the expectation value

in the wave state ψ is
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∑ψ
ψ

ψ ψ= *O
N

O( )
1
( )

. (12.6)
n

n n n
O O

The quantity ψ ψ ψ* N/ ( )n n
O O has the interpretation as the probability of the system

being in the quantum state n (given that it is in the wave state ψ).
In this form, the eigenvalues On are the possible outcomes of a measurement with

the operator Ô, and the square of the amplitude ψ ψ*
n n
O O is proportional to the

probability that that particular outcome will occur. In the more general form for the
expectation value as the double sum in an arbitrary basis, equation (12.5), the
complex numbers ψ ψ*

m n cannot be interpreted in terms of classical probability theory
because the latter is predicated upon real, non-negative weights (Attard 2002). The
general form exhibits the phenomenon of quantum superposition and interference:
the quantum system can be in more than one state at a time, and the different states
effect each other.

The wave function collapses upon measurement, ψ ζ⇒ n
O, which is to say that the

system no longer exists in a superposition of states but rather becomes a pure state.
The wave function could be said to be decoherent in that there is no interference
between states. In general a decoherent system is a mixture of pure states, and its
expectation value is formally identical to a classical average, equation (12.6). The
specifically quantum aspects of the system (interference, superposition) are no longer
present.

One may use the bra–ket notation for the wave function to construct the (single-
wave function) density operator,

ρ
ψ

ψ ψˆ ≡ ∣ 〉 〈 ∣
N

1
( )

. (12.7)

With this the expectation value may be written in the form of the trace of the
operator product,

∑ψ ρ
ψ

ψ ψ= ˆ ˆ = *O O
N

O( ) TR
1
( )

. (12.8)
m n,

n m mn

The single-wave function density operator is not like other quantum operators;
due to its dyadic form, it cannot be diagonalized. The proof is by contradiction.
Consider some representation in which it is diagonal. If ρ ψ= ∣ ∣n n n

2
1 1 1

and ρ ψ= ∣ ∣n n n
2

2 2 2

are two distinct non-zero diagonal elements, then the corresponding off-diagonal
elements, ρ ρ ψ ψ= =* *

n n n n n n1 2 2 1 1 2
, would also be non-zero. This contradiction proves

that the single-wave function density operator cannot be diagonal in any represen-
tation. The exception to this is if it has precisely one non-zero element, as only occurs
upon collapse due to measurement.

12.2.2 Statistical average

In the context of the statistical average in quantum statistical mechanics, the non-
diagonal nature of the single-wave function density operator is directly relevant.
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This is because conventionally the statistical average is expressed as a trace over the
density operator (von Neumann 1932). We shall return to this matter shortly, but for
the present let us assume the existence of a probability operator, ℘̂. Let us further
assume that the statistical average can be expressed as the trace of it and the
observable operator

∑

∑

∑

ˆ = ℘̂ ˆ

= ℘

= ℘

= ℘

O O

O

O

O

TR

.

(12.9)
m n

n

n

,

mn nm

nn nn

nn nn

stat

O O

S S

In the second last equality the eigenstates of the observable operator have been used.
This form only requires the diagonal elements of the probability operator, whether
or not the latter is diagonalizable. This is identical to the classical probability form
for a statistical average, namely the sum over states of the operator eigenvalue,

=O Onn n
O , times the probability of the state, ℘nn

O . From the point of view of classical
probability this is rather appealing, but it does raise the question of how it arises
from the quantum expectation value form that reflects a superposition of states and
interference between states.

The final equality for the statistical average is also problematic. Here the
eigenstates of the probability operator are invoked. Although not essential for the
present discussion, and anticipating somewhat results to come, these can be assumed
to be entropy eigenstates and denoted by the superscript S, ζ ζ℘̂∣ 〉 = ℘ ∣ 〉n n n

S S , and
δ℘ = ℘mn n m n

S
, . Again this is apparently dissonant with the expectation value for a

wave state, where the density operator cannot be diagonalized. This demands a more
careful examination of the origin of the trace form for the statistical average and of
the properties of the probability operator. One can already see that any such
diagonalizable probability operator cannot be a single-wave function density
operator.

The challenge is to get from the expectation value form to the statistical average
form. In the former, the density operator always includes off-diagonal contributions
(except in the observable operator representation itself). In the latter the off-diagonal
contributions vanish in both the entropy and the observable operator representa-
tions. The qualitative difference between these two expressions can be seen in
figure 12.1.

12.2.2.1 Ensemble image
The conventional view of quantum statistical mechanics is in terms of the density
operator rather than the probability operator (von Neumann 1932, Messiah 1961,
Merzbacher 1970). Because the density operator of a single-wave function cannot be
diagonalized, most workers instead imagine an ensemble of systems, labeled
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= …a M1, 2, , , each with its own wave function ψa. The ensemble average of the
single-wave function density operators defines the many-wave function density
operator,

∑ρ
ψ ψ
ψ ψ

¯̂ ≡
=M

1
. (12.10)

a

M

1

a a

a a

(Usually the wave functions are normalized, ψ ψ〈 ∣ 〉 = 1a a , and the denominator is
redundant.) This can also be called the averaged density operator. This does not
factorize into a dyadic product, which is the crucial difference from the single-wave
function density operator.

There is no reason to suppose that this cannot be diagonalized. Hence the many-
wave function density operator can be equated to the probability operator
introduced above. In the representation in which it is diagonal (presumably the
entropy representation), the entries equal the state probabilities,

∑ρ
ψ ψ

ψ ψ
δ¯ = = ℘

=

*

M
1

. (12.11)
a

M

1
mn

a m a n

a a
n m n

S ,
S

,
S

,

One can see that the off-diagonal terms average to zero if the phase angles of the
coefficients are uncorrelated (decoherent). The diagonal terms all have zero phase
angle exactly and so they cannot cancel with each other. This shows that the crucial
difference between the one- and many-wave function density operators is this
averaging process.

In view of this, in so far as one or other exists, the averaged density operator is
equal to the probability operator, ρ̄̂ = ℘̂. This operator relationship holds in any
representation, not just the entropy representation in which both were said to be
diagonal. If the probability operator is an ordinary operator, then it can only be
diagonal in the basis formed from the eigenfunctions of the entropy operator (or of
any operator that commutes with the entropy operator). This would mean that the

Figure 12.1. Density operator for a superposition of states (left) and for a mixture of pure states (right). The
amplitude and phase of the wave function is represented on the axes. Reproduced from Attard (2018). © IOP
Publishing Ltd. All rights reserved.
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off-diagonal phase cancelation just discussed for the averaged density operator only
occurred in the entropy basis and not in any other basis. It remains to prove this,
either for the averaged density operator in the ensemble picture, or else for the
probability operator directly.

With this definition of the many-wave function density operator, and its equality
with the probability operator, the statistical average can be written as the trace of it
and the observable operator,

∑ρ
ψ ψ

ψ ψ
ˆ = ¯̂ ˆ =

ˆ

=

O O
M

O
TR

1
. (12.12)

a

M

1

a a

a a
stat

The conventional presentation of the ensemble picture is that the wave functions
ψa are each a pure quantum state, in which case the ensemble comprises a mixture of
pure quantum states. This means that each system in the ensemble has a fully
collapsed wave function. The above discussion departs slightly from this in that it is
sufficient for equation (12.11) to hold, which is to say that the phases of the entropy
states are decoherent. In other words we need not insist that each member of the
ensemble be in a pure quantum state.

12.2.2.2 Imaginary ensemble
The ensemble picture has been criticized in classical statistical mechanics and more
generally (Attard 2018, section 1.4). The problem is that an ensemble of systems is
nothing but a mental image that has no physical realization. As such ensembles
cannot provide the mathematical or physical basis for the development of statistical
mechanics, whether classical or quantum. In the real world the application of
statistical mechanics is to a single system in each case, and any justification for the
equations of statistical mechanics must therefore be based on the properties of such
single systems.

Since the many-wave particle density operator is a direct manifestation of the
ensemble, it is similarly unsatisfactory. The problem is that such a collection of
independent replica systems has no physical reality. The fact of the matter is that an
actual measurement is made on a single system. This is not to say that the trace form
of the quantum statistical average (with a probability operator equivalent to an
averaged density operator) is incorrect; in fact this trace form has long been
successfully used. Rather it says that the explanation and justification for it does
not lie in the ensemble picture. And of course, without the ensemble picture there is
no need or basis for the many-wave function density operator.

Instead of an ensemble average one might consider that the decoherent system
arises from a time average for the density operator. Let us imagine that a measure-
ment extends over a brief time interval, τ. In this period the wave function evolves,
ψ t( ), and one can define the averaged density operator as

∫ρ
τ

ψ ψ¯̂ ≡ ∣ 〉 〈 ∣
τ

N
t t t

1
d ( ) ( ) , (12.13)

0 0
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assuming unitary evolution of the wave function, ψ ψ ψ≡ 〈 ∣ 〉 =N t t t N( ( )) ( ) ( ) 0. Again
assuming that this is the same as the probability operator, ρ̄̂ = ℘̂, it must be
diagonal in the entropy representation,

∫ρ
τ

ψ ψ δ¯ = = ℘
τ

*
N

t t t
1

d ( ) ( ) . (12.14)ln l n n l n
S

0 0

S S
,

Presumably, the phase factors of the entropy modes evolve independently, which
makes them effectively random. This means that the off-diagonal elements average
to zero over the measurement time.

It is not clear that this putative temporal averaging over the measurement time is
any more realistic than the ensemble averaging. Both explanations have the
appearance of post facto rationalization. Under the circumstances it would perhaps
be more honest not to pretend to justify equation (12.9), but rather simply to assert it
as the definition of the statistical average, taking the existence of the probability
operator as a given. In my opinion it is better not to introduce or to invoke the
averaged density operator as it has no physical reality.

In the following two sections, a derivation from first principles is given of the von
Neumann trace form for the statistical average equation (12.9). The derivation gives
the explicit form for the probability operator and shows that it is diagonal in the
entropy representation. It also demonstrates the passage from the wave function and
expectation value formulation of quantum mechanics to the statistical average
formulation as a weighted sum over quantum states.

12.3 Uniform weight density of wave space
In classical statistical mechanics the weight density of points in phase space of an
isolated system is uniform. That the weight density is uniform is essential to the
derivation of, for example, the Maxwell–Boltzmann probability distribution for the
canonical equilibrium system. The proof of uniformity is based on the incompres-
sibility of a classical Hamiltonian trajectory, and the equivalence of phase space
averages and time averages (Attard 2002, section 5.1).

For the present quantum problem one needs to prove a similar fundamental
uniformity for an isolated system, which may be achieved in an analogous fashion to
the classical case. In section 12.3.1, it is simply asserted that the quantum states of an
isolated system are equally probable. In section 12.3.2, it is shown that the
probability density is constant on a trajectory. And in section 12.3.3, it is proven
that the probability density is uniform in wave space based on time uniformity and
energy and norm hypersurface density.

12.3.1 Equal state probability hypothesis

The simplest presentation of the probability operator focuses on the quantum states,
and, as in the classical case, it begins with the microstates of an isolated system.
From their weight the required quantum state probabilities follow, first for an
isolated system, and thence for a subsystem interacting with a reservoir. By analogy
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with the ergodic hypothesis of classical statistical mechanics, one can take it as an
axiom that

all quantum states of an isolated system have equal weight. (12.15)

As will be seen, the quantum states are the eigenstates of any complete operator.
These are the diagonal elements in any representation.

This hypothesis is justified by mathematical derivation from more formal
considerations in the two following subsections; it appears as equation (12.40)
below. That analysis is more fundamental than the above assertion regarding the
equality of the weights of quantum states. The analysis that follows in sections 12.3.2
and 12.3.3 is based on the Hilbert space of the wave functions of an isolated system.
The aim is to show that the wave space probability density for an isolated system is
uniform.

12.3.2 Trajectory uniformity

Consider an isolated system with wave function ψ. Schrödinger’s equation for the
time rate of change of the latter is

ψ ψℏ ̇ = ˆi . (12.16)0 H

Here Ĥ is the Hamiltonian or energy operator. This is here taken to be independent
of time. The superscript 0 is used for adiabatic quantities, which are those of the
isolated system. In this section only the total isolated system appears.

One can construct a trajectory by integrating this

ψ ψ ψ ψ≡ ∣ = ˆ −t t t U t t( ) ( , ) ( ) . (12.17)0
0 0

0
0 0

Here the adiabatic time propagator is ˆ = ˆ ℏU t e( ) t0 /iH . For a time-dependent

Hamiltonian, this is ˆ − = ∫ ′ ˆ ′ ℏU t t e( ) t t0
0

d ( )/i
t

t

0
H , with time-ordering assumed

(Merzbacher 1970 section 18.7).
Each point ψ in wave space has a real, non-negative weight density ω ψ t( , ). As

usual, the normalized form of this is the probability density ψ℘ t( , ). In section 12.4,
these will be related to the probability operator and to the statistical average.

As for any density, ψ ψ℘ td ( , ) is the probability of the system being within ψ∣ ∣d of
ψ. This is a real non-negative number: ψ ψ ψ ψ ψ ψ℘ = ℘ = ℘t t td ( , ) d ( , ) d ( , ) .
Since it is always the product that occurs, without loss of generality one may take
each to be individually real.

The probability density is normalized

∫ ∫ψ ψ ψ ψ℘ = ℘ =t td ( , ) d ( , ) 1. (12.18)

Here has been invoked an arbitrary representation, ψ ψ= { }n , = …n 1, 2, The

coefficients are complex, ψ ψ ψ= + in n n
r i, and the infinitesimal volume element can be

written as
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ψ ψ ψ ψ ψ ψ ψ= ≡ …d d d d d d d (12.19)r i
1
r

1
i

2
r

2
i

With this all the integrations are over the real line, ψ ∈ −∞ ∞[ , ]n
r , and

ψ ∈ −∞ ∞[ , ]n
i , = …n 1, 2, .
As is the case for Hamilton’s classical equations of motion, Schrödinger’s

equation gives an incompressible trajectory,

ψ
ψ

ψ ψ

ψ ψ

̇ = ∂ · ̇ + ∂ · ̇

= ∂ · ̇ + ∂ · ̇

=
ℏ

−
ℏ

=

ψ ψ

ψ ψ **

d
d

1
i

TR
1
i

TR

0.

(12.20)

0
0, r 0, i

0 0

r i

H H

The first two equalities are in fact the general expression for the trajectory
compressibility. They hold as well for the total time derivative (for the subsystem
wave function, with the subscript 0 dropped) when the subsystem is open to a
reservoir, heat bath, or environment. The final two equalities only hold when the
evolution is given by Schrödinger’s equation.

As in classical phase space, the compressibility gives the logarithmic rate of
change of the volume element. Since the compressibility vanishes, the volume
element is a constant of the motion of the isolated system,

ψ ψ=td ( ) d . (12.21)0
0

The total time derivative of the probability density on the adiabatic trajectory is

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

℘ = ∂℘
∂

+ ̇ · ∂ ℘ + ̇ · ∂ ℘

= ∂℘
∂

+ ̇ · ∂ ℘ + ̇ ·∂ ℘

= ∂℘
∂

+ ∂ · ̇ ℘ + ∂ · ̇ ℘

ψ ψ

ψ ψ

ψ ψ

*

*

*

*( ) ( )

t
t

t
t

t t

t
t

t t

t
t

t t

d ( , )
d

( , )
( , ) ( , )

( , )
( , ) ( , )

( , )
, , .

(12.22)

0
0, r 0, i

0 0

0 0

r i

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

The first and second equalities are just the general definition of the total derivative.
The final equality is valid on an adiabatic trajectory, upon which the compressibility
vanishes. The probability flux can be seen to be ψ ψ ψ≡ ̇℘℘J t t( , ) ( , ).

For the isolated system, the probability density evolves adiabatically,

∫ψ ψ ψ δ ψ ψ ψ℘ = ℘ −t t t t( , ) d ( , ) ( ( , )). (12.23)1 1 0 0 0 1
0

1 0 0

This invokes Bayes’ theorem for the transition probability,
ψ ψ ψ ψ ψ℘ = ℘ ∣ ℘t t t t t( , ; , ) ( , , ) ( , )1 1 0 0 1 1 0 0 0 0 , together with the type 1 reduction con-

dition (Attard 2018, equations (3.14) and (3.17)). The conditional transition
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probability in the present adiabatic case is ψ ψ δ ψ ψ ψ℘ ∣ = − ∣t t t t( , , ) ( ( , ))1 1 0 0 1
0

1 0 0 ,
which reflects the deterministic nature of Schrödinger’s equation.

From the incompressibility of wave space under Schrödinger’s equation, one has
that ψ ψ=d d0 1. With = + Δt t t1 0 , expanding to linear order in the time step yields

∫ψ ψ ψ δ ψ ψ ψ

ψ ψ

ψ ψ ψ ψ ψ

℘ = ℘ −

= ℘ − Δ ̇
= ℘ − Δ ̇ · ∂ ℘ − Δ ̇ ·∂ ℘ψ ψ* *( ) ( ) ( )

t t t t

t

t t t

( , ) d ( , ) ( ( , ))

( , )

, , , .

(12.24)
t

t t

1 1 0 0 0 1
0

1 0 0

1
0

0

1 0
0

0
0

0

Rearranging, this gives the partial time derivative as

ψ ψ ψ ψ ψ∂℘
∂

= − ̇ · ∂ ℘ − ̇ ·∂ ℘ψ ψ* *
t

t
t t

( , )
( , ) ( , ). (12.25)0 0

This holds for an isolated system evolving under Schrödinger’s equation.
Combining this with the second equality of equation (12.22), the total adiabatic

time derivative of the probability density vanishes, ψ℘ =t td ( , )/d 00 . Hence for an
isolated system, the probability density is a constant of the motion,

ψ ψ℘ = ℘t t t( ( ), ) ( , ), (12.26)0 0

where ψ ψ ψ≡ ∣t t t( ) ( , )0
0 0 .

This is the quantum analog of the classical result that the total time derivative of
the probability density in the classical phase space of an isolated system vanishes
under Hamilton’s equations of motion (Attard 2018, equation (5.20)). This is not
surprising as the physical picture underlying the original classical result is the same
as that which holds for the present quantum result. Like Hamilton’s equations,
Schrödinger’s equation is deterministic, which means that trajectories do not cross,
and they are neither created nor destroyed. In both cases trajectories within a given
volume remain inside throughout its evolution. In so far as the probability of the
volume is proportional to the number of trajectories it contains, this is conserved by
both Hamilton’s and Schrödinger’s equations. What the two equations additionally
have in common is that they are incompressible, which means that the volume is also
a constant of the motion. These two facts mean that the probability density must be
conserved moving along the trajectory.

For the present equilibrium system, the Hamiltonian operator does not depend
upon time. In this case the probability density must be independent of time, ψ℘( ).
One therefore has the stronger result

ψ ψ ψ℘ = ℘t t( ( , )) ( ). (12.27)0
0 0 0

This says that the probability density is the same everywhere on a trajectory.
Finally, by analogy with the classical ergodic hypothesis, one may suppose that a

single trajectory passes sufficiently close to all relevant points of the state space. The
hypothesis says that one can take any two points in state space, ψ1 and ψ2 with the
same norm and energy expectation, to lie on a single trajectory. (It is well-known
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that Schrödinger’s equation conserves the norm and energy of the wave function
during its evolution—see below.) By the above, they therefore have the same
probability density

ψ ψ ψ ψ ψ ψ℘ = ℘ = =E E N N( ) ( ), if ( ) ( ) and ( ) ( ). (12.28)2 1 2 1 2 1

Hence the wave space probability density must be of the form

ψ δ ψ δ ψ℘ ∣ = − −
E N

E E N N
W E N

( , )
( ( ) ) ( ( ) )

( , )
, (12.29)

with the normalizing factor being

∫ ψ δ ψ δ ψ= − −( ) ( )W E N E E N N( , ) d ( ) ( ) . (12.30)

The problem now is to transform from the conditional wave space probability,
ψ℘ ∣E N( , ), to the unconditional wave space probability, ψ℘( ). To do this one has to

make some hypothesis about the dependence of the wave space weight density on the
hypersurface, W E N( , ). If one assumes that this is constant, or at worse has
negligible variation with energy and norm, then one can conclude that an isolated
system has uniform weight in wave space,

∫ψ ψ℘ = =
W

W( )
1

, d . (12.31)

Obviously it is a little unsatisfactory to simply assume this. It is also unsatisfactory to
assume that a single trajectory completely fills each hypersurface. Now an
alternative derivation of the result is given, which avoids these assumptions. The
approach is the direct analog of the classical derivations (Attard 2002, section 5.1.3,
Attard 2018, section 5.2.3).

12.3.3 Time average and hypersurface density

Schrödinger’s equations conserves energy and norm. These are well-known results,
which are straightforward to prove directly.

The norm squared of the wave function is ψ ψ ψ≡ ∣N( ) . Its adiabatic rate of
change is

ψ ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

̇ = ̇ + ̇

=
ℏ

ˆ +
ℏ

ˆ

= −
ℏ

〈 ∣ ˆ ∣ 〉 +
ℏ

〈 ∣ ˆ ∣ 〉

=

†

N ( )

1
i

1
i

1
i

1
i

0.

(12.32)

0 0 0

H H

H H
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The final equality follows because the Hamiltonian operator, like all physical
operators, is Hermitian conjugate, ˆ = ˆ†H H. In fact the Hamiltonian operator obeys
a stronger symmetry: it is both real, ˆ = ˆ*H H, and symmetric, ˆ = ˆTH H.

The energy of the wave state ψ is ψ ψ ψ ψ≡ 〈 ∣ ˆ ∣ 〉E N( ) / ( )H . Hence by a similar
argument it is also a constant of the adiabatic motion,

ψ
ψ

ψ ψ
ψ

ψ ψ

ψ
ψ ψ

ψ
ψ ψ

ψ
ψ ψ

ψ
ψ ψ

̇ = 〈 ̇ ∣ ˆ ∣ 〉 + 〈 ∣ ˆ ∣ ̇ 〉

= 〈
ℏ

ˆ ∣ ˆ ∣ 〉 + 〈 ∣ ˆ ∣
ℏ

ˆ 〉

= −
ℏ

〈 ∣ ˆ ˆ ∣ 〉 +
ℏ

〈 ∣ ˆ ˆ ∣ 〉

=

†

E
N N

N N

N N

( )
1
( )

1
( )

1
( )

1
i

1
( )

1
i

1
i ( )

1
i ( )

0.

(12.33)

0 0 0H H

H H H H

H H HH

These results show that the trajectory of an isolated system, ψ t( ), is confined to a
hypersurface of constant norm and energy. In view of this let ψ̃ denote a normalized
wave function. Let χ denote a wave function on a hypersurface of constant energy E
and norm squared N. This hypersurface can be labeled N E{ , }, and it is obviously a
subspace of the Hilbert space of all wave functions. In this notation the normalized
wave function is ψ ψ χ˜ = ˜ E( , ), and the full wave function is
ψ ψ ψ ψ χ= ˜ =N E N( , ) ( , , ).

Ultimately what is required is the weight density of the full wave space of the
isolated system, ω ψ( ). Initially the weight density on the hypersurface, ω χ∣N E( , ), is
derived. This is then combined with the density of the N E{ , }-hypersurface in the
wave space to obtain the full weight density.

It is taken as axiomatic that time is homogeneous, which means that a statistical
average is a simple time average over a trajectory. This implies that the weight
density on the N E{ , }-hypersurface must be inversely proportional to the speed of
the trajectory,

ω χ ψ
ψ ψ

∝ ̇
= ˆ ˆ

−

−

N E( , )

,
(12.34)

0 1

1 2HH

since the Hamiltonian operator is Hermitian. Notice that this depends upon ψ. This
is just the time that the system spends in a volume element χ∣ ∣d , which is the same as
the time spent in the volume element of the full wave space ψ∣ ∣d . The proportionality
factor is an immaterial constant on the hypersurface. This constant cannot vary with
energy E or with norm squared N because this would violate the axiom that a
statistical average is a simple time average over the trajectory irrespective of energy
or norm squared.

Now we transform this hypersurface weight density to the full wave space. The
Jacobean for the transformation χ ψ⇒ ˜ is
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ψ
ψ

ψ
ψ

ψ ψ∇̃ = ∂
∂ ˜

∂
∂ ˜

= ˜ ∣ ˆ ˆ ∣ ˜E
E E( ) ( )

, (12.35)
1 2

1 2
⎡
⎣⎢

⎤
⎦⎥ HH

and that for the transformation ψ ψ˜ ⇒ ,

ψ
ψ

ψ
ψ

ψ ψ∇ = ∂
∂

∂
∂

=N
N N( ) ( )

. (12.36)
1 2

1 2
⎡
⎣⎢

⎤
⎦⎥

With these the full weight density is

ω ψ ω χ ψ ψ

ψ ψ ψ ψ
ψ ψ

δ ψ δ ψ

δ ψ δ ψ

∣ = ∣ ∣∇̃
Δ

∇
Δ

∣ − ∣ < Δ ∣ − ∣ < Δ

∝ ˜ ˆ ˆ ˜
ˆ ˆ − −

= − −

N E N E
E N

N N E E

N N E E

N N E E

( , ) ( , ) , ( ) , ( )

( ( ) ) ( ( ) )

( ( ) ) ( ( ) ).

(12.37)

E N
N E

1 2 1 2

1 2

HH
HH

Integrating this over all energies and norm squared yields the unconditional weight
density for the wave space of the isolated system,

ω ψ =( ) 1. (12.38)

The interpretation of the origin of this result is essentially the same as that for
classical phase space (Attard 2002, section 5.1.3, Attard 2018, section 5.2.3). The
weight density is inversely proportional to the speed of the trajectory (i.e., low speed
equates to more time in a volume element), and proportional to the hypersurface
density, (i.e., for fixed spacing between discrete hypersurfaces, ΔE and ΔN , large
gradients correspond to more hypersurfaces per unit wave space volume). These
ideas are depicted in in figure 12.2.

Just as in the classical case for Hamilton’s equations of motion, it is a
remarkable consequence of Schrödinger’s equation that the speed is identical to
the magnitude of the gradient of the hypersurface, so that these two cancel to give a

Figure 12.2. (Left) An adiabatic trajectory in wave space marked in equal time increments. (Right) Contours
of the energy hypersurface. The boxes signify regions of wave space, with the dashed region having greater
weight than the dotted region in each case, all other things being equal. Reproduced from Attard (2018).
© IOP Publishing Ltd. All rights reserved.

Quantum Statistical Mechanics in Classical Phase Space

12-13



weight density that is uniform in wave space. This result is the same as that given
above as equation (12.31). It has a more satisfactory basis in that the derivation
proves rather than assumes that the hypersurface weight w E N( , ) is independent of
energy or norm.

This weight density is a physical observable, and as such there must be a
corresponding weight operator whose expectation value it is. Hence one must
have

ω ψ ψ ω ψ
ψ ψ

≡ ˆ =( ) 1. (12.39)

Since this must hold for all wave states, the weight operator for the isolated system
must be the identity operator, and one must have

ω ω δˆ = ˆ =I, or . (12.40)mn m n,

The result holds in any representation.
One conclusion that follows from this is that the quantum microstates of the

system are not unique. Rather any complete operator gives a collective of micro-
states. Also a particular set of microstates is the set of diagonal elements of a
particular representation. Equivalently, they are the eigenstates of any complete
operator. This result implies that these microstates all have equal weight, which is
the axiom given as equation (12.15) at the start of this section.

A second conclusion is that the off-diagonal elements in any representation have
zero weight. It should be clear from this that the weight operator is of no use for the
expectation value, since the off-diagonal elements of the single-wave function
density matrix, the dyadic ψ ψ*

m n, ≠m n, certainly contribute to the expectation
value. Nevertheless, it will be shown that for two interacting systems, the expectation
value of an operator on one system has to be weighted by the states of the other
system, and for this a weight operator is required (albeit one derived from the weight
operator of the present isolated system).

12.4 Canonical equilibrium system
Now the canonical equilibrium system is analyzed in detail. As usual, the total
isolated system consists of a subsystem and a thermal reservoir that can exchange
energy with each other. In the literature the reservoir is often called the bath, or,
particularly in the quantum field, the environment. Also the phrase ‘the system’ is
often used to mean what is here called ‘the subsystem’. Here, and less pedantically
throughout the book, the terms used are total system, subsystem, and reservoir.
These are denoted by superscripts or subscripts tot, s, and r where any ambiguity
exists.

12.4.1 Entropy of energy states

As described by Attard (2002, section 1.3, 2018, section 1.1.2), the classical theory of
probability is formulated in terms of microstates and macrostates, and these now
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need to be defined for a quantum system. A microstate, which is labeled by a single
lower case Roman letter, usually corresponds to an eigenstate of a complete set of
commuting operators. In this case the eigenvalue is unique. However, it can also
correspond to an eigenstate of an incomplete operator. In such a case the microstates
are degenerate and microstates with different labels can share the same eigenvalue of
the incomplete operator. A macrostate, which is labeled by a lower case Greek letter,
corresponds to the principal quantum number of an operator. Each macrostate has a
unique label and corresponds to a unique eigenvalue of the operator. A Greek and
Roman letter paired together is used to signify a microstate, with the Greek letter
labeling the principal quantum number, and the Roman letter labeling the
degenerate quantum states.

For example, writing the eigenfunctions with a single microstate label, one has
ζ ζˆ∣ 〉 = ∣ 〉O On n n

O O . In this case different values of n may yield the same eigenvalue
(assuming that Ô is incomplete operator). Alternatively, the eigenfunctions may be
written as the combination of principal and degenerate state labels, ζ ζˆ∣ 〉 = ∣ 〉α α αO Og g

O O .
In this case different values of α necessarily yield different eigenvalues.

For the present canonical equilibrium system, it is energy that is exchanged
between the subsystem and the reservoir. Hence the focus is here on energy states.
Since the microstates of an isolated system must have equal weight, equation (12.40),
the weight of the energy microstates is =αw 1g

E , since without loss of generality this
can be set to unity. This means that the energy microstates of the total system have
no internal entropy, = =α αS k wln 0g g

E
B

E . (This does not take into account wave
function symmetrization, which gives an internal entropy for the microstates, e.g.,
equations (2.25), (3.6), and (5.57).)

In the general formulation of classical probability (Attard 2002, section 1.3,
Attard 2018, section 1.1.2), the weight of a macrostate is the sum of the weights of
the microstates contained within it. In the present case the energy macrostate weight
is

∑= ≡α
α

α αw w N . (12.41)
g

g
E (E, ) E E

This is just the number of degenerate states with energy Eα. Hence the entropy of an
energy macrostate is the logarithm of the degeneracy,

=α αS k Nln . (12.42)E
B

E

Analogous to the analysis for classical thermodynamics (Attard 2002, sec-
tion 2.2.1, 2018, section 2.2.1), the entropy of the reservoir when the subsystem is
in a particular energy microstate will be required. Since energy is conserved one must
have

= +E E E . (12.43)tot s r

As mentioned, tot means the total system, s means the subsystem, and r means the
reservoir. The interaction energy between the subsystem and the reservoir is included
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in the reservoir energy. In the thermodynamic limit (i.e., macroscopic systems) the
interaction energy is relatively negligible.

Now the reservoir entropy can be written in two different ways, which will be
equated to each other below. The first expression directly invokes the energy
degeneracy discussed above,

∑= ≡
α∈

α α αS E k N N( ) ln , with . (12.44)
g

r r
B

Er Er (Er)

This is the entropy of the isolated reservoir in this energy macrostate.
The second expression for the reservoir entropy invokes the definition of the

thermodynamic temperature, ≡ ∂ ∂−T S E E( )/1 . By definition the reservoir is much
larger than the subsystem, and so the subsystem energy may be used as an expansion
variable. The Taylor expansion yields

= − = −S E S E E
E
T

( ) ( ) const. . (12.45)r r r tot s
s

r

The higher order terms are negligible in the thermodynamic limit. This gives the
reservoir entropy as a function of the subsystem energy. Henceforth the superscript
on the reservoir temperature will be dropped as it is the only temperature that will
appear.

12.4.2 Wave function entanglement

For the total system, the wave function lies in the Hilbert space that comprises that
of the subsystem and the reservoir. It is assumed that the subsystem and the reservoir
interact so weakly that they may be treated as quasi-independent. This means that
for any state of one all permitted states of the other are available. The total number
of states is essentially the product of the two individual totals, subject to the
conservation laws. Also the basis functions for the total system are the product of the
basis functions of the subsystem and of the reservoir, each considered as isolated.

With ζ∣ 〉{ }n
s an orthonormal basis for the subsystem and ζ∣ 〉{ }m

r an orthonormal
basis for the reservoir, the most general wave state of the total system can be
expanded in terms of these basis functions,

∑ψ ζ ζ∣ 〉 = ∣ 〉c , . (12.46)
n m,

nm n mtot
s r

If the coefficient matrix is dyadic, =c c cnm n m
s r , then the wave state is separable,

ψ ψ ψ∣ 〉 = ∣ 〉,tot s r with ψ ζ∣ 〉 = ∑ ∣ 〉cn n ns
(s) s s , and ψ ζ∣ 〉 = ∑ ∣ 〉cm m mr

(r) r r . Alternatively, if the
coefficients are not dyadic, then the wave state is inseparable, which is called an
entangled state (Messiah 1961, Merzbacher 1970).

In general entangled states arise from the conservation laws. This can be seen
explicitly for the present case of energy exchange, in which the total energy is fixed,

= +E E Etot s r. (Recall that the interaction energy is included in the reservoir
energy.) Using the respective energy eigenfunctions as a basis for the subsystem and
the reservoir, the most general expansion of the total wave function is
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∑ψ ζ ζ∣ 〉 = ∣ 〉
α β

α β α βc , . (12.47)
g h,

g h g htot ,
Es Er

From energy conservation one must have that

= + ≠α β α βc E E E0 if . (12.48)g h,
s r

tot

This condition cannot be satisfied for a system able to exchange energy if the
coefficient is in dyadic from. To see this, suppose the contrary, that =α β α βc c cg h g h,

s r .
Denote one of the occupied subsystem energy macrostates by, α1, so that ≠αc 0g

s
1

.
Because the macrostate labels are distinct, there can be only one non-zero reservoir
macrostate, say β1, that conserves energy, + =α βE E Es r

tot1 1
. Hence one must have

that =βc 0h
r , β β≠ 1. But a unique occupied reservoir energy macrostate implies that

α1 must also be unique, which is to say that there can be no other occupied subsystem
energy macrostate.

This shows that if the total wave function is in product form, then the subsystem
and reservoir each can only have a single fixed energy. This in turn means that neither
wave function, ψs or ψr, can contain a superposition of principal energy states (because
these are non-degenerate). It follows from this that the subsystem is unable to change
energy by exchange with the reservoir, because during such an exchange it would be in
a superposition of the initial and final energy states. Therefore a dyadic form for the
expansion coefficient corresponds to the subsystem and the reservoir being isolated
from each other. But this contradicts the basis of a canonical equilibrium system,
namely that the energy of the subsystem fluctuates over time as it exchanges energy
with the reservoir. One concludes from this contradiction that if the subsystem and the
reservoir can exchange energy, then the total wave function must be entangled.

Accordingly, for the present canonical equilibrium system, the total wave
function cannot be factorized. Instead it must have a representation of the form

∑ψ ζ ζ∣ 〉 = ∣ 〉
α

α α βα
c , . (12.49)

g h, ,

g h g htot ,
Es Er

Here the reservoir principal energy label βα depends upon the subsystem principal
energy α and is defined implicitly by + =α βα

E E Es r
tot. For brevity, the coefficients are

written, ≡α α βα
c c cg h g h,

s r . Because βα depends upon α, this is entangled (i.e., the sum of
the products is not equal to the product of the sums).

The most well-known case of entanglement is that of particles with spin that result
from radioactive decay (figure 12.3). It is the conservation of spin that is responsible
for the entanglement. Measurement of the spin of either daughter particle collapses
the superposed wave function into one or other of the two wave functions that form
it. If it were not for spin conservation, the daughter wave function would be the
superposition of four possible wave functions, which are the independent (i.e.,
unentangled) product of two spinors for each particle (figure 12.4). It is spin
conservation that entangles the two daughter particles and that reduces the super-
position basis set from four to two possibilities.
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It should be clear in this example that the entangled and unentangled wave
functions are very different. For the entangled case, a measurement of the product of
the spins of the two daughter particles yields ψ σ σ ψ〈 ∣ ˆ ˆ ∣ 〉 = −1l r . The same measure-
ment on the unentangled wave function yields ψ σ σ ψ〈 ∣ ˆ ˆ ∣ 〉 = 0l r . This example is but
one of many that could be offered, since quite generally entanglement has far-
reaching consequences.

12.4.3 Expectation values and wave function collapse

For the present canonical equilibrium system, conservation of energy causes the
entanglement of the subsystem and reservoir wave functions. It will now be shown
that this causes the principal energy states of the subsystem to collapse, which is to
say that a subsystem expectation value is diagonal in these. This is quite significant
for quantum statistical mechanics in view of the discussion in section 12.2 that the
single-wave function density operator cannot be diagonalized. In contrast, if a
probability operator existed in the usual sense of an observable operator, then it can
be diagonalized. Therefore the collapse of the principal energy states due to
entanglement that will now be established already goes a long way to proving the
existence of the probability operator.

In view of the expansion for the wave function of the total system, equation
(12.49), and assuming a normalized wave function, ψ ψ〈 ∣ 〉 = 1tot tot , the expectation
value of an operator on the subsystem is

Figure 12.3. The two possible decays (left, upper and lower) of a spin 0 particle (left, center) into two spin half
particles. The two wave functions (right) that are superposed for the final state each represents the
entanglement of two single particle wave functions. Reproduced from Attard (2018). © IOP Publishing Ltd.
All rights reserved.

Figure 12.4. The dyadic product of two spin half particle wave functions (left), and the four wave functions
this gives for superposition, each representing two unentangled single particle wave functions (right).
Reproduced from Attard (2018). © IOP Publishing Ltd. All rights reserved.
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g h g h

g h g h

g g h

g g h
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, ,

, ,

g h g h g h g h

g h g h g g h h

g h g h g g

g h g h g g

tot
s

tot , ,
Es Er s Es Er

, ,
Es s Es Er Er

(Er)
, ,

Es s Es

(Er)
, , ,

s,E

The third equality follows because the relationship between α and βα is bijective (the
macrostates are non-degenerate), ζ ζ δ δ〈 ∣ 〉 =β β α α′ ′ ′α α′h h h h

Er Er
, , . Only the principal diagonal

elements of the subsystem matrix operator in the energy representation contribute to
this. Equivalently, the principal diagonal elements of the density matrix. The
projection onto the subsystem in this case has the effect of converting a super-
position of the subsystem basis states into a mixture of pure subsystem basis states,
as arises from a collapsed wave function.

In this result energy conservation and entanglement have reduced and collapsed
the original four sums over independent principal energy states into a single sum
over principal energy states, from α α β β′ ′, , , then to two sums, α α′, , and then to a
single sum, α. The degenerate energy states of the reservoir have also collapsed, since
the orthogonality of the reservoir basis functions have reduced the sums over h and
′h to a single sum over h. Specifically, whereas for an isolated system the non-
diagonal entries of the operator matrix in the energy representation would contrib-
ute to the expectation value, when energy exchange with a reservoir occurs,
orthogonality of the reservoir energy basis functions together with energy con-
servation eliminate the off-diagonal subsystem energy terms. The principal energy
states have at this stage collapsed, whilst the degenerate energy states of the
subsystem remain in superposition form.

Here collapse refers to the collapse of the wave function and to the collapse into
principal energy states. Collapse means that the number of possible states has been
reduced, and also that the interference between superposition states has been
reduced by the elimination of off-diagonal energy terms.

12.4.3.1 Random phase approach
The microstates of the total isolated system have equal weight. This can be taken as an
hypothesis, equation (12.15), or as a theorem that follows from the uniform density of
wave space, equation (12.40). In view of this, the coefficients in the representation of
the total wave function all have the same magnitude, which can be set to unity,
∣ ∣ =αc 1g h, . (With this choice, the expectation value, which is actually the statistical
average, has to be explicitly normalized.) The coefficients therefore are of the form

=α
θαc e , (12.51)g h,

i g h,

with the phase θ being real and ≡ −i 1 .

Quantum Statistical Mechanics in Classical Phase Space

12-19



This form is reminiscent of the so-called EPR (Einstein–Podolsky–Rosen) state in
which entangled qubits are often described in similar terms (cf figure 12.3).

A given total wave functions correspond to a specific sets of phases, θα{ }g h, .
Therefore averaging over the phases makes the product of coefficients that appears
in equation (12.50), zero unless ′ =g g,

δ= =α α
θ θ

′
* −

′
α α ′c c e . (12.52)g h g h

i
g g, ,

stat stat
,

g h g h, ,⎡⎣ ⎤⎦

This will be explicitly shown in the next section by averaging over the total wave
space. With this, the reservoir sum in the expectation value becomes

∑ ∑δ

δ

δ
δ

=

=

=
=

β β∈ ∈
α α

β

′
* ′

′

′

′
−

α α

α

βα

α

c c

N

e

e .

(12.53)
h h

g h g h g g

g g

g g
S k

g g
E k T

(Er)
, ,

stat

,
(Er)

,
Er

,

,

r
B

s
B

The statistical average on the left-hand side means the average over total wave
functions, which means the average over randomly and uniformly distributed
phases. The penultimate equality gives the entropy of the reservoir macrostate βα
as the logarithm of the number of microstates it contains, equation (12.44), and the
final equality uses the thermodynamic relationship, equation (12.45), with the
constant part effectively incorporated into the normalization factor.

The effect of averaging the expectation value over the wave function is to collapse
the degenerate subsystem energy states, = ′g g . This both reduces the number of
elements contributing to the expectation value and removes the interference between
the degenerate energy states (i.e., they are no longer in superposition). Hence both
the principal and degenerate states in the energy representation of an operator on the
subsystem are in diagonal form. It will be recalled that this result had to be
established in order to derive the mixture form for the statistical average, equation
(12.9). Equivalently, the probability operator is fully diagonal in the energy
representation. Since in the canonical equilibrium system, the entropy operator is
proportional to the energy operator, ˆ = − ˆS T/H , this means that the probability
operator is fully diagonal in the entropy representation. (In general the entropy
operator is derived from the variables that are exchangeable between the subsystem
and the reservoir, and so in all equilibrium and non-equilibrium systems the
probability operator will be diagonal in the entropy representation.)

The diagonal nature of the probability operator signifies the elimination of the
interference between energy states, both principal and degenerate. This transforms
the subsystem from a superposition of states to a mixture of states.

The statistical average also counts the degenerate reservoir energy states. Summing
over these weights each subsystem energy state by the number of degenerate reservoir
microstates. But by equation (12.44), this is just the exponential of the corresponding
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reservoir entropy. It is this second effect, combined with equation (12.45), that gives
the Maxwell–Boltzmann form for the probability operator.

The average over the phases of the expectation value, equation (12.50), is the
statistical average of the operator. With the above result it is

∑ˆ =
α

α α
− αO

Z
e O

1
. (12.54)

g,

E k T
g g

s
stat ,

s,EB

Here Z is just the normalization constant (actually partition function), and the sum
is over the primary and degenerate energy states of the subsystem. This has the same
functional form as the final equality in equation (12.9), which is the von Neumann
trace form for the statistical average. This gives explicitly the probability matrix as
the Maxwell–Boltzmann form, ℘ =α α

− − αZ eg g
E k T

,
S 1 / B .

12.4.3.2 Wave space approach
The statistical average of an operator on the subsystem can also be expressed as an
integral over the total wave space of the expectation value with respect to the
entangled wave function. The weight density of the total wave space is uniform,
section 12.3. The integral over wave space is carried out by integrating the
coefficients in the energy basis state expansion. The allowed coefficients respect
energy conservation, equation (12.49), which means that

ψ ≡ ≡ ∏α α αc c cd d d dg h g h g htot , ,
r

,
i . The real and imaginary parts of the coefficient

each belong to the real line, ∈ −∞ ∞( , ). Entanglement has reduced the number of
indices from four to three. With the expectation value given by equation (12.50),

ψ ψ ψ ψ ψ≡ 〈 ∣ ˆ ∣ 〉 〈 ∣ 〉O O( ) /s
tot tot

s
tot tot tot , the statistical average is
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Here the norm squared is ψ = ∑ ∣ ∣α αN c( ) g h g htot , ,
2. The third equality follows since the

terms in which the integrand is odd with respect to any coefficient vanish, and so the
only non-vanishing terms have = ′g g . The fourth equality follows because all the
integrations are identical and give a constant that is independent of α, g, and h,
which can be incorporated into the normalizing partition function. The fourth and
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fifth equalities use the two forms for the reservoir entropy, equations (12.44) and
(12.45). The partition function ensures that 〈 ˆ 〉 =I 1

s
stat .

This agrees with the random phase approach, equation (12.54), which should not
be surprising since the uniformity of wave space of an isolated system implies the
equal weight of isolated system microstates. Both methods show that the reduction
and collapse of the energy macrostates is due to energy conservation and the
consequent entanglement of the total wave function. They both also show that the
collapse of the subsystem degenerate energy states is due to the fact that the off-
diagonal contributions average to zero.

This equivalence demonstrates that quantum statistical mechanics can be as well
formulated in terms of the wave function as in terms of quantum states.

12.4.4 Maxwell–Boltzmann probability operator

The statistical average given by both approaches agree with the von Neumann
trace form, specifically the final equality in equation (12.9). This is in the form
of a classical average: it is the sum over states of the probability of a state
times the value of the observable in the state. It is essential to the result that
the off-diagonal elements in the entropy representation of the probability
(density) matrix vanish, which is to say that the wave function in this basis is
decoherent.

One can easily convert the present result for the average to the generic von
Neumann trace form, the first equality in equation (12.9). Of course, the probability
operator replaces the conventional many-wave function density operator. In the
energy basis, the representation of any function of the Hamiltonian operator is
diagonal, and the diagonal entries are just the function of the eigenvalues,

δ δ =α α
α α

−
′ ′

− ˆ

′ ′
α { }e e , (12.56)E k T

g g
k T

g g
, ,

,

Es
B BH

with Ĥ being the subsystem Hamiltonian operator. For the canonical equilibrium
system, the reservoir entropy operator is ˆ = − ˆS T/H , a consequence of equation
(12.45). This means that in the present canonical equilibrium system entropy
eigenfunctions are identical to the energy eigenfunctions. More generally, the
entropy representation is always the representation in which an open quantum
system is diagonal. With this the quantum statistical average of a subsystem
operator can be written

∑

∑
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=
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The final form is independent of any specific representation or basis. One can
conclude that the probability operator for the canonical equilibrium system is just
the Maxwell–Boltzmann operator,

℘̂ ≡ ≡ˆ − ˆ

Z
e

Z
e

1 1
. (12.58)S k k TB BH

The normalizing partition function is = − ˆZ eTR k T/ BH . The first equality holds in
general, whereas the second equality is specific for the canonical equilibrium
system. This result for the canonical equilibrium probability operator (or many-
wave function density operator) is directly analogous to the classical result that
is so well known that it is usually invoked directly without derivation (e.g., Pathria
1972).

The Maxwell–Boltzmann probability operator is the direct quantitative conse-
quence of the sum over the degenerate energy microstates of the reservoir. This gives
the exponential of the reservoir entropy for each particular subsystem energy
macrostate. This is just the matrix representation of the Maxwell–Boltzmann
probability operator in the energy basis. Although the energy representation was
used to derive this result, the final expression as a trace of the product of the two
operators is invariant with respect to the representation.

One sees in this derivation that it is the statistical average that causes the
superposition of the degenerate energy microstates of the subsystem to collapse into
a mixture. The reduction and collapse of the energy macrostates occurred at the level
of the expectation value due to the energy conservation law and the entanglement of
the reservoir and the subsystem. As has been mentioned above, both collapses are
necessary for the mixture form for the statistical average, equation (12.9). The
superposition entropy states, both principle and degenerate, had to collapse so that
the probability operator was diagonal in the entropy representation. Although we do
not work with a density operator, if we were to, the result (i.e., equating it to the
probability operator) would imply that the density operator is an average over
multiple wave functions.

For the present formulation, the statistical average can be written as an integral of
the expectation value over the subsystem wave space

∫ ψ ψ ψ
ψ ψ

ˆ = ℘̂ ˆ
O

O
d . (12.59)stat

It is no longer necessary to show that these belong to the subsystem, the superscript
s, because the reservoir has been integrated out. This is a continuum version of the
trace. The equivalence of this with the above discrete expression for the trace can be
shown by expanding the subsystem wave function in any basis, ψ ψ ζ∣ 〉 = ∑ ∣ 〉n n n , and
integrating,
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In the second equality l = m because odd powers of ψl vanish. Since the integration is
the same for all m, it is a constant that can be taken outside of the sums and
incorporated into the partition function, as in the third equality.

In section 12.3, the probability density in wave space for an isolated total system
was shown to be uniform in wave space. In contrast, the probability density in the
wave space of a subsystem of a total system is non-uniform. For the present
canonical equilibrium subsystem that can exchange energy with a reservoir, it is
given by the expectation value of the Maxwell–Boltzmann probability operator. The
probability density is the expectation value of the probability operator,

ψ ψ ψ
ψ ψ

℘ = ℘̂
( ) , (12.61)

where ψ is the wave function of the subsystem. It should be clear that the statistical
average is not the integral over the subsystem wave space of the probability density
and the expectation value of the operator,

∫ ψ ψ ψˆ ≠ ℘O Od ( ) ( ). (12.62)stat

The physical reason that this does not hold is that in general statistical averages are
the value of a variable in a state times the probability of the state, summed over the
states. The problem with this expression, is that both ψ℘( ) and ψO( ) are expectation
values, which include the superposition of states.

12.4.5 Environmental selection

In the quantum literature, the present subsystem that can exchange energy with a
thermal reservoir is generally called an open quantum system. These have been
treated in detail from a number of different perspectives (Davies 1976, Breuer and
Petruccione 2002, Weiss 2008). The present technique of exchange of a conserved
quantity with a reservoir and wave function collapse due to entanglement has some
similarity to the theory of quantum measurement that is known as environmental
selection or einselection (Zeh 2001, Zurek 2003, Schlosshauer 2005). Einselection
explicitly includes the influence of the environment on the system of interest, which is
an obvious point in common with the above analysis of the subsystem and reservoir.
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The specific goal of einselection is to explain the apparent collapse of the wave
function upon measurement, which is collapse is another point of similarity with the
present derivation of equilibrium quantum statistical mechanics.

In view of these two points of similarity, it seems worthwhile to summarize the
einselection approach in a way that links it to the approach used above based on the
entropy representation, entanglement, and conservation laws. Although this departs
from the presentations of the advocates of einselection in the theory of quantum
measurement, it does convey the spirit of the approach particularly in invoking the
quasi-orthogonality of the reservoir, as is briefly explained below.

As above the total system labeled tot consists of a subsystem s and a reservoir r
that interact with each other. More conventionally, the reservoir is usually called
the environment, and the subsystem is usually called the system. Let ζ{ }n

Ss and ζ{ }n
Sr

be the entropy eigenfunctions that form a basis for the subsystem and for the
reservoir, respectively. For the most common case, the canonical equilibrium
system, energy is the exchanged conserved variable, and entropy eigenfunctions
are just energy eigenfunctions. In the general case, the entropy eigenfunctions
account for all conserved quantities that are exchanged between the subsystem and
reservoir.

The subsystem and the reservoir may be regarded as quasi-independent since the
volume of the boundary region over which they interact is much smaller than the
volume of either. Quasi-independent means that for each state of the subsystem
with a given energy, all the states of the reservoir permitted by the remaining
energy can occur. This implies that the total number of states of the total system is
the product of the allowed number of states of each considered as isolated. In view
of this, the Hilbert space of the total system is the direct product of that of the
subsystem and that of the reservoir. Therefore the wave function of the total
system may be written as

∑ ∑ψ ζ ζ ζ ζ∣ 〉 = ∣ 〉 ⊗ ∣ 〉 = ∣ 〉c c , . (12.63)
n m n m, ,

nm n m nm n mtot
Ss Sr Ss Sr

In section 12.4.2, it was shown that the conservation law created an entangled total
wave function that cannot be the product of a subsystem wave function and a
reservoir wave function. However, since the entropy basis directly accounts for the
conservation laws, which is its main virtue, the total wave function can be written

∑ ∑ψ ζ ζ ζ ζ∣ 〉 = ∣ 〉 ⊗ ∣ 〉 ≡ ∣ 〉
α α

α β α β α α βα α α
c c c , . (12.64)

g h g h, , , ,
g h g h g h g htot

s r Ss Sr
,

Ss Sr

The sum over the common label precludes factorization into subsystem and
reservoir wave functions, and so this is the proper form for an entangled wave
function.

We now analyze the time evolution of two wave functions of the total system that
have the same starting reservoir wave function but differ in the starting wave
function of the subsystem. At time t = 0 let the normalized wave function of the total
system be ψ ζ ψ∣ 〉 = ∣ 〉α ,gtot

Ss
0
r . This is not entangled; the subsystem has wave function
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ζαg
Ss (i.e., it is in the entropy state αg), and the reservoir has wave function ψ0

r. These
are arbitrary except for the fact that the respective expectation values of the energy
(or other relevant conserved transferable quantities) must add up to the total
conserved value. After time τ this evolves to

∑ψ ζ ψ∣ 〉 → ∣ 〉
τ

β
β

α
β β

αc , . (12.65)
h,

h
g

h h
g

tot
s( ) Ss r( )

The dependence on the initial αg and the final βh subsystem states of the subsystem
expansion coefficients and of the evolved reservoir wave function, is shown. The
dependence on the initial reservoir wave function ψ0

r and the time interval τ is not
shown. These dependencies arise from the interactions between the reservoir and the
subsystem during the evolution of the total wave function.

Now for the second initial normalized total wave function. This has a
different subsystem basis function but the same reservoir initial wave function,
ζ ψ∣ 〉γ ,l

Ss
0
r . The evolution of the inner product of this and the first wave function is

given by

∑ ∑

∑

ψ ζ ζ ψ ψ ζ ζ ψ

ψ ψ δ δ

δ δ

→ 〈 ∣ 〉

= 〈 ∣ 〉

≡

τ

β η

β

γ α η
γ

β
α

η
γ

η β β
α

β
γ

β
α

β
α

β
α

α γ

α α γ

*

*

c c

c c

C

, , , ,

.

(12.66)
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p h h
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h
l

h
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h
g

h
g

l g

g l g

0
r s s

0
r s( ) s( ) r( ) Ss Ss r( )

s( ) s( ) r( ) r( )
, ,

, ,

The second equality arises from the orthonormality of the subsystem basis functions,
and the quasi-orthogonality of the reservoir wave functions. Quasi-orthogonality
arises from the fact that in a d-dimensional space, the amount of overlap between
two random unit vectors decreases with increasing dimensionality. The idea is
illustrated in figure 12.5. Since a typical reservoir or environment comprises on the
order of Avogadro’s number of particles, the overlap between any two random wave
functions is effectively a delta function. In the present case the different subsystem
starting wave functions mean that the two reservoir wave functions rapidly become
uncorrelated.

The isolated total system has unitary time propagator, namely the adiabatic time
propagator, which preserves the scalar product of two total wave functions during
their evolution. Since the left-hand side is unity for the case that γ α= and l = g, one
sees that =αC 1g .

Now we turn to the evolution of the expectation value of a subsystem operator Â.
Suppose that the initial total wave function is in a superposition of entropy states,
ψ ζ ψ∣ 〉 = ∑ ∣ 〉α α αa ,g g gtot ,

Ss
0
r . After time τ, which may be interpreted as the time over

which the measurement is performed or, equivalently, the operator is applied, the
expectation value evolves to

Quantum Statistical Mechanics in Classical Phase Space

12-26



∑ ∑

∑ ∑ ∑ ∑

∑ ∑

∑

ψ ψ ζ ζ
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with ψ ψ≡ ∑ 〈 ∣ 〉γ α α γ
α

γ
α

γ
αA a cl g g l

g
l

g
l

gS
,

s( ) r( ) r( ) . The third equality follows from the quasi-

orthogonality of the reservoir wave functions. By setting ˆ = ˆO I, which shows that
∑ =γ γ γ

*A A 1l l l,
S S , one can see that the wave functions are correctly normalized.

This result is more akin to a statistical average than to a quantum expectation
value. The present result involves only the diagonal elements of the operator matrix
in the entropy representation. The expectation value derived above taking into
account wave function entanglement due to the conservation of transferable
quantities, equation (12.50), has off-diagonal, degenerate state contributions. The
statistical average of the expectation value, equation (12.55), consists solely of
diagonal elements, as here. The decoherent averaging used in the earlier analysis is
the analog of the time evolution in the present case. Taking the results of the two
approaches to be the same, the statistical mechanical analysis may be used to
quantify the einselection result, namely =γ γ

β* − − γA A Z el l
ES S 1 .

Figure 12.5. The magnitude of overlap between a unit vector symmetrically oriented and a random axis. In
two dimensions (left) the projection has length √1/ 2, and in three dimensions (right) the projection has length

√1/ 3. The average overlap magnitudes over all orientations are π2/ and 1/2, respectively. Reproduced from
Attard (2015). © IOP Publishing Ltd. All rights reserved.
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The physical interpretation of this einselection result for the expectation value of
a subsystem operator is the same as that given above for a statistical average. The
evolved expectation value appears as that of a mixture of entropy states of the
subsystem, with the γA l

S being the coefficients of the wave functions. The entropy
states are the eigenstates of the operators corresponding to the exchangeable
variables. The mixture of decoherent wave functions is signified by the fact that
only diagonal terms appear in the evolved expectation value. In contrast, a coherent
wave function that corresponds to a superposition of states contributes off-diagonal
terms to the expectation value in all representations other than that of the operator
itself. The coherent case is the usual form of an expectation value in quantum
mechanics; for a subsystem wave function in the entropy representation, it would be

ψ ψ ψ ψ ψ≡ 〈 ∣ ˆ∣ 〉 = ∑ *O O O( ) m n m n mn,
S S S , assuming normalization. Here the off-diagonal

terms clearly contribute, whereas they don’t in the case of environmental selection
where time evolution, decorrelation, and quasi-orthogonality create a mixture of
pure entropy eigenstates.

As has been mentioned, environmental selection and the reservoir analysis above
are closely related. Both show that in the expectation value of a subsystem operator
averaged over the total wave function the off-diagonal terms are suppressed (in the
entropy representation). This is variously called wave function collapse, or decoher-
ence, or a mixture of pure quantum states, and is thought to be relevant to the so-
called measurement problem. Both show that this occurs due to the interactions with
the reservoir or environment. Arguably, the reservoir formalism has the advantage
of being exact, since it does not invoke quasi-orthogonality. And also, the reservoir
formalism yields an explicit formula for the probability operator and for the
statistical average.

12.4.6 Symmetrization

The above analysis neglects the symmetrization of the wave function. In fact little
changes when this is taken into account. The proof of the uniform density of wave
space remains unchanged with the replacement ψ ψ⇒ ±. The number of degenerate
energy states becomes α

±N E, , which is much smaller than the unsymmetrized case, but
in any case is just a number. The thermodynamic expression for the reservoir
entropy is formally unchanged.

For the canonical equilibrium system particles are not permitted to exchange
between the subsystem and the reservoir. Therefore the energy eigenfunction of the
total system is the product of the individually symmetrized energy eigenfunctions,
ζ ζ∣ 〉α β

± ±,g h
Es, Er, . The collapse of the wave function due to entanglement from energy

conservation follows as in the text. The subsystem energy states that are summed
over for the partition function and for the statistical average, are weighted by the
same Maxwell–Boltzmann factor that derives from the thermodynamic expression
for the reservoir entropy, and are those allowed by the symmetrization rule for the
subsystem alone. This is signified by attaching a prime to the trace, as was used
throughout the preceding chapters.

Quantum Statistical Mechanics in Classical Phase Space

12-28



As mentioned, summing over the allowed symmetrization states for the subsystem
means that the energy microstates have an internal entropy, e.g., equations (2.25),
(3.6), and (5.57).
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