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In the Stern Gerlach experiment

• silver atoms are heated in an oven, from which they
escape through a narrow slit,

• the atoms pass through a collimator and enter an
inhomogenous magnetic field, we assume the field to
be uniform in the xy-plane and to vary in the
z-direction,

• a detector measures the intensity of the electrons
emerging from the magnetic field as a function of z.

We know that

• 46 of the 47 electrons of a silver atom form a
spherically symmetric shell and the angular
momentum of the electron outside the shell is zero,
so the magnetic moment due to the orbital motion of
the electrons is zero,

• the magnetic moment of an electron is cS, where S

is the spin of an electron,

• the spins of electrons cancel pairwise,

• thus the magnetic moment µ of an silver atom is
almost solely due to the spin of a single electron, i.e.
µ = cS,

• the potential energy of a magnetic moment in the
magnetic field B is −µ · B, so the force acting in the
z-direction on the silver atoms is

Fz = µz

∂Bz

∂z
.

So the measurement of the intensity tells how the
z-component the angular momentum of the silver atoms
passing through the magnetic field is distributed. Because
the atoms emerging from the oven are randomly oriented
we would expect the intensity to behave as shown below.
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c l a s s i c a l l y
In reality the beam is observed to split into two
components.

S G

i n  r e a l i t y
Based on the measurements one can evaluate the
z-components Sz of the angular momentum of the atoms
and find out that

• for the upper distribution Sz = h̄/2.

• for the lower distribution Sz = −h̄/2.

In quantum mechanics we say that the atoms are in the
angular momentum states h̄/2 and −h̄/2.
The state vector is a mathematical tool used to represent
the states. Atoms reaching the detector can be described,
for example, by the ket-vectors |Sz; ↑〉 and |Sz; ↓〉.
Associated with the ket-vectors there are dual bra-vectors
〈Sz; ↑ | and 〈Sz; ↓ |. State vectors are assumed

• to be a complete description of the described system,

• to form a linear (Hilbert) space, so the associated
mathematics is the theory of (infinite dimensional)
linear spaces.

When the atoms leave the oven there is no reason to
expect the angular momentum of each atom to be
oriented along the z-axis. Since the state vectors form a
linear space also the superposition

c↑|Sz; ↑〉 + c↓|Sz; ↓〉

is a state vector which obviously describes an atom with
angular momentum along both positive and negative
z-axis.
The magnet in the Stern Gerlach experiment can be
thought as an apparatus measuring the z-component of
the angular momentum. We saw that after the
measurement the atoms are in a definite angular
momentum state, i.e. in the measurement the state

c↑|Sz; ↑〉 + c↓|Sz; ↓〉

collapses either to the state |Sz ; ↑〉 or to the state |Sz ; ↓〉.
A generalization leads us to the measuring postulates of
quantum mechanics:
Postulate 1 Every measurable quantity is associated
with a Hermitean operator whose eigenvectors form a
complete basis (of a Hilbert space),
and
Postulate 2 In a measurement the system makes a
transition to an eigenstate of the corresponding operator
and the result is the eigenvalue associated with that
eigenvector.
If A is a measurable quantity and A the corresponding
Hermitean operator then an arbitrary state |α〉 can be
described as the superposition

|α〉 =
∑

a′

ca′ |a′〉,
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where the vectors |a′〉 satisfy

A|a′〉 = a′|a′〉.

The measuring event A can be depicted symbolically as

|α〉 A−→ |a′〉.

In the Stern Gerlach experiment the measurable quantity
is the z-component of the spin. We denote the measuring

event by SGẑ and the corresponding Hermitean
operator by Sz. We get

Sz|Sz ; ↑〉 =
h̄

2
|Sz ; ↑〉

Sz|Sz ; ↓〉 = − h̄

2
|Sz; ↓〉

|Sz; α〉 = c↑|Sz; ↑〉 + c↓|Sz; ↓〉

|Sz; α〉
SGẑ
−→ |Sz; ↑〉 or

|Sz; α〉
SGẑ
−→ |Sz; ↓〉.

Because the vectors |a′〉 in the relation

A|a′〉 = a′|a′〉

are eigenvectors of an Hermitean operator they are
orthognal with each other. We also suppose that they are
normalized, i.e.

〈a′|a′′〉 = δa′a′′ .

Due to the completeness of the vector set they satisfy

∑

a′

|a′〉〈a′| = 1,

where 1 stands for the identity operator. This property is
called the closure. Using the orthonormality the
coefficients in the superposition

|α〉 =
∑

a′

ca′ |a′〉

can be written as the scalar product

ca′ = 〈a′|α〉.

An arbitrary linear operator B can in turn be written
with the help of a complete basis {|a′〉} as

B =
∑

a′,a′′

|a′〉〈a′|B|a′′〉〈a′′|.

Abstract operators can be represented as matrices:

B 7→











|a1〉 |a2〉 |a3〉 . . .

〈a1| 〈a1|B|a1〉 〈a1|B|a2〉 〈a1|B|a3〉 . . .
〈a2| 〈a2|B|a1〉 〈a2|B|a2〉 〈a2|B|a3〉 . . .
〈a3| 〈a3|B|a1〉 〈a3|B|a2〉 〈a3|B|a3〉 . . .
...

...
...

...
...











.

Note The matrix representation is not unique, but
depends on the basis. In the case of our example we get
the 2 × 2-matrix representation

Sz 7→ h̄

2

(

1 0
0 −1

)

,

when we use the set {|Sz; ↑〉, |Sz; ↓〉} as the basis. The
base vectors map then to the unit vectors

|Sz; ↑〉 7→
(

1
0

)

|Sz; ↓〉 7→
(

0
1

)

of the two dimensional Euclidean space.
Although the matrix representations are not unique they
are related in a rather simple way. Namely, we know that
Theorem 1 If both of the basis {|a′〉} and {|b′〉} are
orthonormalized and complete then there exists a unitary
operator U so that

|b1〉 = U |a1〉, |b2〉 = U |a2〉, |b3〉 = U |a3〉, . . .

If now X is the representation of an operaor A in the
basis {|a′〉} the representation X ′ in the basis {|b′〉} is
obtained by the similarity transformation

X ′ = T †XT,

where T is the representation of the base transformation
operator U in the basis {|a′〉}. Due to the unitarity of the
operator U the matrix T is a unitary matrix.
Since

• an abstract state vector, excluding an arbitrary
phase factor, uniquely describes the physical system,

• the states can be written as superpositions of
different base sets, and so the abstract operators can
take different matrix forms,

the physics must be contained in the invariant propertices
of these matrices. We know that
Theorem 2 If T is a unitary matrix, then the matrices
X and T †XT have the same trace and the same
eigenvalues.
The same theorem is valid also for operators when the
trace is defined as

trA =
∑

a′

〈a′|A|a′〉.

Since

• quite obviously operators and matrices representing
them have the same trace and the same eigenvalues,

• due to the postulates 1 and 2 corresponding to a
measurable quantity there exists an Hermitean
operator and the measuring results are eigenvalues of
this operator,



the results of measurements are independent on the
particular representation and, in addition, every
measuring event corresponding to an operator reachable
by a similarity transformation, gives the same results.
Which one of the possible eigenvalues will be the result of
a measurement is clarified by
Postulate 3 If A is the Hermitean operator
corresponding to the measurement A, {|a′〉} the
eigenvectors of A associated with the eigenvalues {a′},
then the probability for the result a′ is |ca′ |2 when the
system to be measured is in the state

|α〉 =
∑

a′

ca′ |a′〉.

Only if the system already before the measurement is in a
definite eigenstate the result can be predicted exactly.

For example, in the Stern Gerlach experiment SGẑ we
can block the emerging lower beam so that the spins of
the remaining atoms are oriented along the positive
z-axis. We say that the system is prepared to the state
|Sz; ↑〉.

S G zÙ
S z

S z
S G zÙ

S z

If we now let the polarized beam to pass through a new

SGẑ experiment we see that the beam from the latter
experiment does not split any more. According to the
postulate this result can be predicted exactly.
We see that

• the postulate can also be interpreted so that the
quantities |ca′ |2 tell the probability for the system
being in the state |a′〉,

• the physical meaning of the matrix element 〈α|A|α〉
is then the expectation value (average) of the
measurement and

• the normalization condition 〈α|α〉 = 1 says that the
system is in one of the states |a′〉.

Instead of measuring the spin z-component of the atoms
with spin polarized along the z-axis we let this polarized

beam go through the SGx̂ experiment. The result is

exactly like in a single SGẑ experiment: the beam is
again splitted into two components of equal intensity, this
time, however, in the x-direction.
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So, we have performed the experiment

|Sz; ↑〉
SGx̂
−→ |Sx; ↑〉 or

|Sz ; ↑〉
SGx̂
−→ |Sx; ↓〉.

Again the analysis of the experiment gives Sx = h̄/2 and
Sx = −h̄/2 as the x-components of the angular momenta.
We can thus deduce that the state |Sz; ↑〉 is, in fact, the
superposition

|Sz; ↑〉 = c↑↑|Sx; ↑〉 + c↑↓|Sx; ↓〉.

For the other component we have correspondingly

|Sz; ↓〉 = c↓↑|Sx; ↑〉 + c↓↓|Sx; ↓〉.

When the intensities are equal the coeffiecients satisfy

|c↑↑| = |c↑↓| =
1√
2

|c↓↑| = |c↓↓| =
1√
2

according to the postulate 3. Excluding a phase factor,
our postulates determine the transformation coefficients.
When we also take into account the orthogonality of the
state vectors |Sz; ↑〉 and |Sz; ↓〉 we can write

|Sz ; ↑〉 =
1√
2
|Sx; ↑〉 +

1√
2
|Sx; ↓〉

|Sz ; ↓〉 = eiδ1

(

1√
2
|Sx; ↑〉 − 1√

2
|Sx; ↓〉

)

.

There is nothing special in the direction x̂, nor for that
matter, in any other direction. We could equally well let

the beam pass through a SGŷ experiment, from which

we could deduce the relations

|Sz; ↑〉 =
1√
2
|Sy; ↑〉 +

1√
2
|Sy; ↓〉

|Sz; ↓〉 = eiδ2

(

1√
2
|Sy; ↑〉 − 1√

2
|Sy; ↓〉

)

,

or we could first do the SGx̂ experiment and then the

SGŷ experiment which would give us

|Sx; ↑〉 =
eiδ3

√
2
|Sy; ↑〉 +

eiδ4

√
2
|Sy; ↓〉

|Sx; ↓〉 =
eiδ3

√
2
|Sy; ↑〉 −

eiδ4

√
2
|Sy; ↓〉.

In other words

|〈Sy; ↑ |Sx; ↑〉| = |〈Sy; ↓ |Sx; ↑〉| =
1√
2

|〈Sy; ↑ |Sx; ↓〉| = |〈Sy; ↓ |Sx; ↓〉| =
1√
2
.

We can now deduce that the unknown phase factors must
satisfy

δ2 − δ1 = π/2 or − π/2.

A common choice is δ1 = 0, so we get, for example,

|Sz; ↑〉 =
1√
2
|Sx; ↑〉 +

1√
2
|Sx; ↓〉

|Sz; ↓〉 =
1√
2
|Sx; ↑〉 − 1√

2
|Sx; ↓〉.
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Thinking like in classical mechanics, we would expect
both the z- and x-components of the spin of the atoms in

the upper beam passed through the SGẑ and SGx̂

experiments to be Sx,z = h̄/2. On the other hand, we can
reverse the relations above and get

|Sx; ↑〉 =
1√
2
|Sz; ↑〉 +

1√
2
|Sz; ↓〉,

so the spin state parallel to the positive x-axis is actually
a superposition of the spin states parallel to the positive
and negative z-axis. A Stern Gerlach experiment confirms
this.
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After the last SGẑ measurement we see the beam
splitting again into two equally intensive componenents.
The experiment tells us that there are quantitities which
cannot be measured simultaneously. In this case it is
impossible to determine simultaneously both the z- and
x-components of the spin. Measuring the one causes the
atom to go to a state where both possible results of the
other are present.
We know that
Theorem 3 Commuting operators have common
eigenvectors.
When we measure the quantity associated with an
operator A the system goes to an eigenstate |a′〉 of A. If
now B commutes with A, i.e.

[A, B] = 0,

then |a′〉 is also an eigenstate of B. When we measure the
quantity associated with the operator B while the system
is already in an eigenstate of B we get as the result the
corresponding eigenvalue of B. So, in this case we can
measure both quantities simultaneously.
On the other hand, Sx and Sz cannot be measured
simultaneously, so we can deduce that

[Sx, Sz] 6= 0.

So, in our example a single Stern Gerlach experiment
gives as much information as possible (as far as only the
spin is concerned), consecutive Stern Gerlach experiments
cannot reveal anything new.
In general, if we are interested in quantities associated
with commuting operators, the states must be
characterized by eigenvalues of all these operators. In
many cases quantum mechanical problems can be reduced
to the tasks to find the set of all possible commuting
operators (and their eigenvalues). Once this set is found
the states can be classified completely using the
eigenvalues of the operators.
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Translations
The previous discrete spectrum state vector formalism
can be generalized also to continuos cases, in practice, by
replacing

• summations with integrations

• Kronecker’s δ-function with Dirac’s δ-function.

A typical continuous case is the measurement of position:

• the operator x corresponding to the measurement of
the x-coordinate of the position is Hermitean,

• the eigenvalues {x′} of x are real,

• the eigenvectors {|x′〉} form a complete basis.

So, we have

x|x′〉 = x′|x′〉

1 =
∫ ∞

−∞
dx′ |x′〉〈x′|

|α〉 =
∫ ∞

−∞
dx′ |x′〉〈x′|α〉,

where |α〉 is an arbitrary state vector. The quantity
〈x′|α〉 is called a wave function and is usually written
down using the function notation

〈x′|α〉 = ψα(x′).

Obviously, looking at the expansion

|α〉 =
∫ ∞

−∞
dx′ |x′〉〈x′|α〉,

the quantity |ψα(x′)|2dx′ can be interpreted according to
the postulate 3 as the probability for the state being
localized in the neighborhood (x′, x′ + dx′) of the point x′.
The position can be generalized to three dimension. We
denote by |x′〉 the simultaneous eigenvector of the
operators x, y and z, i.e.

|x′〉 ≡ |x′, y′, z′〉
x|x′〉 = x′|x′〉, y|x′〉 = y′|x′〉, z|x′〉 = z′|x′〉.

The exsistence of the common eigenvector requires
commutativity of the corresponding operators:

[xi, xj ] = 0.

Let us suppose that the state of the system is localized at
the point x′. We consider an operation which transforms
this state to another state, this time localized at the point
x′ + dx′, all other observables keeping their values. This
operation is called an infinitesimal translation. The
corresponding operator is denoted by T (dx′):

T (dx′)|x′〉 = |x′ + dx′〉.

The state vector on the right hand side is again an
eigenstate of the position operator. Quite obviously, the
vector |x′〉 is not an eigenstate of the operator T (dx′).

The effect of an infinitesimal translation on an arbitrary
state can be seen by expanding it using position
eigenstates:

|α〉 −→ T (dx′′)|α〉 = T (dx′′)
∫
d3x′ |x′〉〈x′|α〉

=
∫
d3x′ |x′ + dx′′〉〈x′|α〉

=
∫
d3x′ |x′〉〈x′ − dx′′|α〉,

because x′ is an ordinary integration variable.
To construct T (dx′) explicitely we need extra constraints:

1. it is natural to require that it preserves the
normalization (i.e. the conservation of probability) of
the state vectors:

〈α|α〉 = 〈α|T †(dx′)T (dx′)|α〉.

This is satisfied if T (dx′)is unitary, i.e.

T †(dx′)T (dx′) = 1.

2. we require that two consecutive translations are
equivalent to a single combined transformation:

T (dx′)T (dx′′) = T (dx′ + dx′′).

3. the translation to the opposite direction is equivalent
to the inverse of the original translation:

T (−dx′) = T −1(dx′).

4. we end up with the identity operator when dx′ → 0:

lim
dx′→0

T (dx′) = 1.

It is easy to see that the operator

T (dx′) = 1− iK · dx′,

where the components Kx, Ky and Kz of the vector K
are Hermitean operators, satisfies all four conditions.
Using the definition

T (dx′)|x′〉 = |x′ + dx′〉

we can show that

[x, T (dx′)] = dx′.

Substituting the explicit reprersentation

T (dx′) = 1− iK · dx′

it is now easy to prove the commutation relation

[xi,Kj ] = iδij .

The equations

T (dx′) = 1− iK · dx′

T (dx′)|x′〉 = |x′ + dx′〉



can be considered as the definition of K.
One would expect the operator K to have something to
do with the momentum. It is, however, not quite the
momentum, because its dimension is 1/length. Writing

p = h̄K

we get an operator p, with dimension of momentum. We
take this as the definition of the momemtum. The
commutation relation

[xi,Kj ] = iδij

can now be written in a familiar form like

[xi, pj ] = ih̄δij .

Finite translations

Consider translation of the distance ∆x′ along the x-axis:

T (∆x′x̂)|x′〉 = |x′ + ∆x′x̂〉.

We construct this translation combining infinitesimal
translations of distance ∆x′/N letting N →∞:

T (∆x′x̂) = lim
N→∞

(
1− ipx∆x′

Nh̄

)N

= exp
(
− ipx∆x′

h̄

)
.

It is relatively easy to show that the translation operators
satisfy

[T (∆y′ŷ), T (∆x′x̂)] = 0,

so it follows that
[py, px] = 0.

Generally
[pi, pj ] = 0.

This commutation relation tells that it is possible to
construct a state vector which is a simultaneous
eigenvector of all components of the momentum operator,
i.e. there exists a vector

|p′〉 ≡ |p′x, p′y, p′z〉,

so that

px|p′〉 = p′x|p′〉, py|p′〉 = p′y|p′〉, pz|p′〉 = p′z|p′〉.

The effect of the translation T (dx′) on an eigenstate of
the momentum operator is

T (dx′)|p′〉 =
(

1− ip · dx′

h̄

)
|p′〉 =

(
1− ip′ · dx′

h̄

)
|p′〉.

The state |p′〉 is thus an eigenstate of T (dx′): a result,
which we could have predicted because

[p, T (dx′)] = 0.

Note The eigenvalues of T (dx′) are complex because it is
not Hermitean.

So, we have derived the canonical commutation relations
or fundamental commutation relations

[xi, xj ] = 0, [pi, pj ] = 0, [xi, pj ] = ih̄δij .

Recall, that the projection of the state |α〉 along the state
vector |x′〉 was called the wave function and was denoted
like ψα(x′). Since the vectors |x′〉 form a complete basis
the scalar product between the states |α〉 and |β〉 can be
written with the help of the wave functions as

〈β|α〉 =
∫
dx′ 〈β|x′〉〈x′|α〉 =

∫
dx′ ψ∗β(x′)ψα(x′),

i.e. 〈β|α〉 tells how much the wave functions overlap. If
|a′〉 is an eigenstate of A we define the corresponding
eigenfunction ua′(x′) like

ua′(x′) = 〈x′|a′〉.

An arbitrary wave function ψα(x′) can be expanded using
eigenfunctions as

ψα(x′) =
∑
a′

ca′ua′(x′).

The matrix element 〈β|A|α〉 of an operator A can also be
expressed with the help of eigenfunctions like

〈β|A|α〉 =
∫
dx′

∫
dx′′ 〈β|x′〉〈x′|A|x′′〉〈x′′|α〉

=
∫
dx′

∫
dx′′ ψ∗β(x′)〈x′|A|x′′〉ψα(x′′).

To apply this formula we have to evaluate the matrix
elements 〈x′|A|x′′〉, which in general are functions of the
two variables x′ and x′′. When A depends only on the
position operator x,

A = f(x),

the calculations are much simpler:

〈β|f(x)|α〉 =
∫
dx′ ψ∗β(x′)f(x′)ψα(x′).

Note f(x) on the left hand side is an operator while f(x′)
on the right hand side is an ordinary number.

Momentum operator p in position basis {|x′〉}
For simplicity we consider the one dimensional case.
According to the equation

T (dx′′)|α〉 = T (dx′′)
∫
d3x′ |x′〉〈x′|α〉

=
∫
d3x′ |x′ + dx′′〉〈x′|α〉

=
∫
d3x′ |x′〉〈x′ − dx′′|α〉

we can write(
1− ip dx′′

h̄

)
|α〉



=
∫
dx′ T (dx′′)|x′〉〈x′|α〉

=
∫
dx′ |x′〉〈x′ − dx′′|α〉

=
∫
dx′ |x′〉

(
〈x′|α〉 − dx′′

∂

∂x′
〈x′|α〉

)
.

In the last step we have expanded 〈x′ − dx′′|α〉 as Taylor
series. Comparing both sides of the equation we see that

p|α〉 =
∫
dx′ |x′〉

(
−ih̄ ∂

∂x′
〈x′|α〉

)
,

or, taking scalar product with a position eigenstate on
both sides,

〈x′|p|α〉 = −ih̄ ∂

∂x′
〈x′|α〉.

In particular, if we choose |α〉 = |x′〉 we get

〈x′|p|x′′〉 = −ih̄ ∂

∂x′
δ(x′ − x′′).

Taking scalar product with an arbitrary state vector |β〉
on both sides of

p|α〉 =
∫
dx′ |x′〉

(
−ih̄ ∂

∂x′
〈x′|α〉

)
we get the important relation

〈β|p|α〉 =
∫
dx′ψ∗β(x′)

(
−ih̄ ∂

∂x′

)
ψα(x′).

Just like the position eigenvalues also the momentum
eigenvalues p′ comprise a continuum. Analogically we can
define the momentum space wave function as

〈p′|α〉 = φα(p′).

We can move between the momentum and configuration
space representations with help of the relations

ψα(x′) = 〈x′|α〉 =
∫
dp′ 〈x′|p′〉〈p′|α〉

φα(p′) = 〈p′|α〉 =
∫
dx′ 〈p′|x′〉〈x′|α〉.

The transformation function 〈x′|p′〉 can be evaluated by
substituting a momentum eigenvector |p′〉 for |α〉 into

〈x′|p|α〉 = −ih̄ ∂

∂x′
〈x′|α〉.

Then
〈x′|p|p′〉 = p′〈x′|p′〉 = −ih̄ ∂

∂x′
〈x′|p′〉.

The solution of this differential equation is

〈x′|p′〉 = C exp
(
ip′x′

h̄

)
,

where the normalization factor C can be determined from
the identity

〈x′|x′′〉 =
∫
dp′ 〈x′|p′〉〈p′|x′′〉.

Here the left hand side is simply δ(x′ − x′′) and the
integration of the left hand side gives 2πh̄|C|2δ(x′ − x′′).
Thus the transformation function is

〈x′|p′〉 =
1√
2πh̄

exp
(
ip′x′

h̄

)
,

and the relations

ψα(x′) = 〈x′|α〉 =
∫
dp′ 〈x′|p′〉〈p′|α〉

φα(p′) = 〈p′|α〉 =
∫
dx′ 〈p′|x′〉〈x′|α〉.

can be written as familiar Fourier transforms

ψα(x′) =
[

1√
2πh̄

] ∫
dp′ exp

(
ip′x′

h̄

)
φα(p′)

φα(p′) =
[

1√
2πh̄

] ∫
dx′ exp

(
− ip

′x′

h̄

)
ψα(x′).



Time evolution operator
In quantum mechanics

• unlike position, time is not an observable.

• there is no Hermitean operator whose eigenvalues
were the time of the system.

• time appears only as a parameter, not as a
measurable quantity.

So, contradictory to teachings of the relativity theory,
time and position are not on equal standing. In
relativistic quantum field theories the equality is restored
by degrading also the position down to the parameter
level.
We consider a system which at the moment t0 is in the
state |α〉. When time goes on there is no reason to expect
it to remain in this state. We suppose that at a later
moment t the system is described by the state

|α, t0; t〉, (t > t0),

where the parameter t0 reminds us that exactly at that
moment the system was in the state |α〉. Since the time is
a continuous parameter we obviously have

lim
t→t0

|α, t0; t〉 = |α〉,

and can use the shorter notation

|α, t0; t0〉 = |α, t0〉.

Let’s see, how state vectors evolve when time goes on:

|α, t0〉
evolution−→ |α, t0; t〉.

We work like we did with translations. We define the
time evolution operator U(t, t0):

|α, t0; t〉 = U(t, t0)|α, t0〉,

which must satisfy physically relevant conditions.

1. Conservation of probability

We expand the state at the moment t0 with the help of
the eigenstates of an observable A:

|α, t0〉 =
∑
a′

ca′(t0)|a′〉.

At a later moment we get the expansion

|α, t0; t〉 =
∑
a′

ca′(t)|a′〉.

In general, we cannot expect the probability for the
system being in a specific state |a′〉 to remain constant,
i.e. in most cases

|ca′(t)| 6= |ca′(t0)|.

For example, when a spin 1
2 particle, which at the

moment t0 is in the state |Sx; ↑〉, is subjected to an

external constant magnetic field parallel to the z-axis, it
will precess in the xy-plane: the probability for the result
h̄/2 in the measurement SGx̂ oscillates between 0 and 1
as a function of time. In any case, the probability for the
result h̄/2 or −h̄/2 remains always as the constant 1.
Generalizing, it is natural to require that∑

a′

|ca′(t0)|2 =
∑
a′

|ca′(t)|2.

In other words, the normalization of the states does not
depend on time:

〈α, t0|α, t0〉 = 〈α, t0; t|α, t0; t〉
= 〈α, t0|U†(t, t0)U(t, t0)|α, t0〉.

This is satisfied if we require U(t, t0) to be unitary, i.e.

U†(t, t0)U(t, t0) = 1.

2. Composition property

The evolution from the time t0 to a later time t2 should
be equivalent to the evolution from the initial time t0 to
an intermediate time t1 followed by the evolution from t1
to the final time t2, i.e.

U(t2, t0) = U(t2, t1)U(t1, t0), (t2 > t1 > t0).

Like in the case of the translation operator we will first
look at the infinitesimal evolution

|α, t0; t0 + dt〉 = U(t0 + dt, t0)|α, t0〉.

Due to the continuity condition

lim
t→t0

|α, t0; t〉 = |α〉

we have
lim

dt→0
U(t0 + dt, t0) = 1.

So, we can assume the deviations of the operator
U(t0 + dt, t0) from the identity operator to be of the order
dt. When we now set

U(t0 + dt, t0) = 1− iΩdt,

where Ω is a Hermitean operator, we see that it satisfies
the composition condition

U(t2, t0) = U(t2, t1)U(t1, t0), (t2 > t1 > t0),

is unitary and deviates from the identity operator by the
term O(dt).
The physical meaning of Ω will be revealed when we
recall that in classical mechanics the Hamiltonian
generates the time evolution. From the definition

U(t0 + dt, t0) = 1− iΩdt

we see that the dimension of Ω is frequency, so it must be
multiplied by a factor before associating it with the
Hamiltonian operator H:

H = h̄Ω,



or
U(t0 + dt, t0) = 1− iH dt

h̄
.

The factor h̄ here is not necessarily the same as the factor
h̄ in the case of translations. It turns out, however, that
in order to recover Newton’s equations of motion in the
classical limit both coefficients must be equal.
Applying the composition property

U(t2, t0) = U(t2, t1)U(t1, t0), (t2 > t1 > t0)

we get

U(t + dt, t0) = U(t + dt, t)U(t, t0)

=
(

1− iH dt

h̄

)
U(t, t0),

where the time difference t− t0 does not need to be
infinitesimal. This can be written as

U(t + dt, t0)− U(t, t0) = −i

(
H

h̄

)
dtU(t, t0).

Expanding the left hand side as the Taylor series we end
up with

ih̄
∂

∂t
U(t, t0) = HU(t, t0).

This is the Schrödinger equation of the time evolution
operator. Multiplying both sides by the state vector
|α, t0〉 we get

ih̄
∂

∂t
U(t, t0)|α, t0〉 = HU(t, t0)|α, t0〉.

Since the state |α, t0〉 is independent on the time t we can
write the Schrödinger equation of the state vectors in the
form

ih̄
∂

∂t
|α, t0; t〉 = H|α, t0; t〉.

In fact, in most cases the state vector Schrödinger
equation is unnecessary because all information about the
dynamics of the system is contained in the time evolution
operator U(t, t0). When this operator is known the state
of the system at any moment is obtained by applying the
definition

|α, t0; t〉 = U(t, t0)|α, t0〉,
We consider three cases:
(i) The Hamiltonian does not depend on time. For example,
a spin 1

2 particle in a time independent magnetic field
belongs to this category. The solution of the equation

ih̄
∂

∂t
U(t, t0) = HU(t, t0)

is

U(t, t0) = exp
[
− iH(t− t0)

h̄

]
as can be shown by expanding the exponential function as
the Taylor series and differentiating term by term with
respect to the time. Another way to get the solution is to
compose the finite evolution from the infinitesimal ones:

lim
N→∞

[
1− (iH/h̄(t− t0)

N

]N

= exp
[
− iH(t− t0)

h̄

]
.

(ii) The Hamiltonain H depends on time but the operators
H corresponding to different moments of time commute.
For example, a spin 1

2 particle in the magnetic field whose
strength varies but direction remains constant as a
function of time. A formal solution of the equation

ih̄
∂

∂t
U(t, t0) = HU(t, t0)

is now

U(t, t0) = exp
[
−

(
i

h̄

) ∫ t

t0

dt′ H(t′)
]

,

which, again, can be proved by expanding the exponential
function as the series.
(iii) The operators H evaluated at different moments of
time do not commute For example, a spin 1

2 particle in a
magnetic field whose direction changes in the course of
time: H is proportional to the term S ·B and if now, at
the moment t = t1 the magnetic field is parallel to the
x-axis and, at the moment t = t2 parallel to the y-axis,
then H(t1) ∝ BSx and H(t2) ∝ BSy, or
[H(t1),H(t2)] ∝ B2[Sx, Sy] 6= 0. It can be shown that the
formal solution of the Schrödinger equation is now

U(t, t0) =

1 +
∞∑

n=1

(
−i

h̄

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·∫ tn−1

t0

dtn H(t1)H(t2) · · ·H(tn).

This expansion is called the Dyson series. We will assume
that our Hamiltonians are time independent until we
start working with the so called interaction picture.
Suppose that A is an Hermitean operator and

[A,H] = 0.

Then the eigenstates of A are also eigenstates of H, called
energy eigenstates. Denoting corresponding eigenvalues of
the Hamiltonian as Ea′ we have

H|a′〉 = Ea′ |a′〉.

The time evolution operator can now be written with the
help of these eigenstates. Choosing t0 = 0 we get

exp
(
− iHt

h̄

)
=

∑
a′

∑
a′′

|a′′〉〈a′′| exp
(
− iHt

h̄

)
|a′〉〈a′|

=
∑
a′

|a′〉 exp
(
− iEa′t

h̄

)
〈a′|.

Using this form for the time evolution operator we can
solve every intial value problem provided that we can
expand the initial state with the set {|a′〉}. If, for
example, the initial state can be expanded as

|α, t0 = 0〉 =
∑
a′

|a′〉〈a′|α〉 =
∑
a′

ca′ |a′〉,



we get

|α, t0 = 0; t〉 = exp
(
− iHt

h̄

)
|α, t0 = 0〉

=
∑
a′

|a′〉〈a′|α〉 exp
(
− iEa′t

h̄

)
.

In other words, the expansion coefficients evolve in the
course of time as

ca′(t = 0) −→ ca′(t) = ca′(t = 0) exp
(
− iEa′t

h̄

)
.

So, the absolute values of the coefficients remain
constant. The relative phase between different
components will, however, change in the course of time
because the oscillation frequencies of different
components differ from each other.
As a special case we consider an initial state consisting of
a single eigenstate:

|α, t0 = 0〉 = |a′〉.

At some later moment this state has evolved to the state

|α, t0 = 0; t〉 = |a′〉 exp
(
− iEa′t

h̄

)
.

Hence, if the system originally is in an eigenstate of the
Hamiltonian H and the operator A it stays there forever.
Only the phase factor exp(−iEa′t/h̄) can vary. In this
sense the observables whose corresponding operators
commute with the Hamiltonian, are constants of motion.
Observables (or operators) associated with mutually
commuting operators are called compatible. As mentioned
before, the treatment of a physical problem can in many
cases be reduced to the search for a maximal set of
compatible operators. If the operators A,B, C, . . . belong
to this set, i.e.

[A,B] = [B,C] = [A,C] = · · · = 0,

and if, furthermore,

[A,H] = [B,H] = [C,H] = · · · = 0,

that is, also the Hamiltonian is compatible with other
operators, then the time evolution operator can be
written as

exp
(
− iHt

h̄

)
=

∑
K′

|K ′〉 exp
(
− iEK′t

h̄

)
〈K ′|.

Here K ′ stands for the collective index:

A|K ′〉 = a′|K ′〉, B|K ′〉 = b′|K ′〉, C|K ′〉 = c′|K ′〉, . . .

Thus, the quantum dynamics is completely solved (when
H does not depend on time) if we only can find a
maximal set of compatible operators commuting also with
the Hamiltonian.
Let’s now look at the expectation value of an operator.
We first assume, that at the moment t = 0 the system is

in an eigenstate |a′〉 of an operator A commuting with the
Hamiltonian H. Suppose, we are interested in the
expectation value of an operator B which does not
necessarily commute either with A or with H. At the
moment t the system is in the state

|a′, t0 = 0; t〉 = U(t, 0)|a′〉.

In this special case we have

〈B〉 = 〈a′|U†(t, 0)BU(t, 0)|a′〉

= 〈a′| exp
(

iEa′t

h̄

)
B exp

(
− iEa′t

h̄

)
|a′〉

= 〈a′|B|a′〉,

that is, the expectation value does not depend on time.
For this reason the energy eigenstates are usually called
stationary states
We now look at the expectation value in a superposition
of energy eigenstates, in a non stationary state

|α, t0 = 0〉 =
∑
a′

ca′ |a′〉.

It is easy to see, that the expectation value of B is now

〈B〉 =
∑
a′

∑
a′′

c∗a′ca′′〈a′|B|a′′〉 exp
[
− i(Ea′′ − Ea′)t

h̄

]
.

This time the expectation value consists of terms which
oscillate with frequences determind by the Bohr
frequency condition

ωa′′a′ =
Ea′′ − Ea′

h̄
.

As an application we look at how spin 1
2 particles behave

in a constant magnetic field. When we assume the
magnetic moments of the particles to be eh̄/2mec (like
electrons), the Hamiltonian is

H = −
(

e

mec

)
S ·B.

If we choose B ‖ ẑ, we have

H = −
(

eB

mec

)
Sz.

The operators H and Sz differ only by a constant factor,
so they obviously commute and the eigenstates of Sz are
also energy eigenstates with energies

E↑ = − eh̄B

2mec
for state |Sz; ↑〉

E↓ = +
eh̄B

2mec
for state |Sz; ↓〉.

We define the cyclotron frequency ωc so that the energy
difference between the states is h̄ωc:

ωc ≡
|e|B
mec

.



The Hamiltonian H can now be written as

H = ωcSz,

when we assume that e < 0.
All information about the evolution of the system is
contained in the operator

U(t, 0) = exp
(
− iωcSzt

h̄

)
.

If at the moment t = 0 the system is in the state

|α〉 = c↑|Sz; ↑〉+ c↓|Sz; ↓〉,

it is easy to see that at the moment t it is in the state

|α, t0 = 0; t〉 = c↑ exp
(
− iωct

2

)
|Sz; ↑〉

+c↓ exp
(

+
iωct

2

)
|Sz; ↓〉.

If the initial state happens to be |Sz; ↑〉, meaning that in
the previous equation

c↑ = 1, c↓ = 0,

we see that the system will stay in this state at all times.
This was to be expected because the state is stationary.
We now assume that the initial state is |Sx; ↑〉. From the
relation

|Sx; ↑〉 =
1√
2
|Sz; ↑〉+

1√
2
|Sz; ↓〉

we see that
c↑ = c↓ =

1√
2
.

For the probabilities that at the moment t the system is
in eigenstates of Sx we get

|〈Sx; ↑ |α, t0 = 0; t〉|2 = cos2
ωct

2

|〈Sx; ↓ |α, t0 = 0; t〉|2 = sin2 ωct

2
.

Even if the spin originally were parallel to the positive
x-axis a magnetic field parallel to the z-axis makes the
direction of the spin to rotate. There is a finite
probability for finding the system at some later moment
in the state |Sx; ↓〉. The sum of probabilities
corresponding to different orientations is 1.
It is easy to see that the expectation values of the
operator S satisfy

〈Sx〉 =
(

h̄

2

)
cos ωct

〈Sy〉 =
(

h̄

2

)
sinωct

〈Sz〉 = 0.

Physically this means that the spin precesses in the
xy-plane.

Lastly we look at how the statevectors corresponding to
different times are correlated. Suppose that at the
moment t = 0 the system is described by the state vector
|α〉, which in the course of time evolves to the state
|α, t0 = 0; t〉. We define the correlation amplitude C(t) as

C(t) = 〈α|α, t0 = 0; t〉
= 〈α|U(t, 0)|α〉.

The absolute value of the correlation amplitude tells us
how much the states associated with different moments of
time resemble each other.
In particular, if the initial state is an energy eigenstate
|a′〉, then

C(t) = exp
(
− iEa′t

h̄

)
,

and the absolute value of the correlation amplitude is 1 at
all times. When the initial state is a superposition of
energy eigenstates we get

C(t) =
∑
a′

|ca′ |2 exp
(
− iEa′t

h̄

)
.

When t is relatively large the terms in the sum oscillate
rapidly with different frequencies and hence most
probably cancel each other. Thus we expect the
correlation amplitude decreasing rather rapidly from its
initial value 1 at the moment t = 0.
We can estimate the value of the expression

C(t) =
∑
a′

|ca′ |2 exp
(
− iEa′t

h̄

)
more concretely when we suppose that the statevectors of
the system comprise so many, nearly degenerate, energy
eigenvectors that we can think them almost to form a
continuum. Then the summation can be replaced by the
integration

∑
a′

−→
∫

dE ρ(E), ca′ −→ g(E)

∣∣∣∣∣
E≈Ea′

,

where ρ(E) is the density of the energy eigenstates. The
expression

C(t) =
∑
a′

|ca′ |2 exp
(
− iEa′t

h̄

)
can now be written as

C(t) =
∫

dE |g(E)|2ρ(E) exp
(
− iEt

h̄

)
,

which must satisfy the normalization condition∫
dE |g(E)|2ρ(E) = 1.

In many realistic physical cases |g(E)|2ρ(E) is
concentrated into a small neighborhood (size ∆E) of a



point E = E0. Rewriting the integral representation as

C(t) = exp
(
− iE0t

h̄

)
×

∫
dE |g(E)|2ρ(E) exp

[
− i(E − E0)t

h̄

]
,

we see that when t increases the integrand oscillates very
rapidly except when the energy interval |E − E0| is small
as compared with h̄/t. If the interval, which satisfies
|E − E0| ≈ h̄/t, is much shorter than ∆E —the interval
from which the integral picks up its contribution—, the
correlation amplitudes practically vanishes. The
characteristic time, after which the absolute value of the
correlation amplitude deviates significantly from its initial
value 1, is

t ≈ h̄

∆E
.

Although this equation was derived for a quasi continuous
energy spectrum it is also valid for the two state system
in our spin precession example: the initial state |Sx; ↑〉
starts to lose its identity after the time
≈ 1/ωc = h̄/(E↑ − E↓) as we can see from the equation

|〈Sx; ↑ |α, t0 = 0; t〉|2 = cos2
ωct

2
.

As a summary we can say that due to the evolution the
state vector describing the initial state of the system will
not any more describe it after a time interval of order
h̄/∆E. This property is often called the time and energy
uncertainty relation. Note, however, that this relation is
of completely different character than the uncertainty
relation concerning position and momentum because time
is not a quantum mechanical observable.



Quantum statistics
Density operator:

ρ ≡
∑

i

wi|αi〉〈αi|

is

• Hermitean:
ρ† = ρ

• normalized:
trρ = 1.

Density matrix:

〈b′′|ρ|b′〉 =
∑

i

wi〈b′′|αi〉〈αi|b′〉.

Ensemble average:

[A] =
∑
b′

∑
b′′

〈b′′|ρ|b′〉〈b′|A|b′′〉

= tr(ρA).

Dynamics

|αi〉 = |αi; t0〉 −→ |αi, t0; t〉

We suppose that the occupation of states is conserved, i.e.

wi = constant.

Now
ρ(t) =

∑
i

wi|αi, t0; t〉〈αi, t0; t|,

so

ih̄
∂ρ

∂t
=

∑
i

wi

(
ih̄

∂

∂t
|αi, t0; t〉

)
〈αi, t0; t|

+
∑

i

wi|αi, t0; t〉
(
−ih̄ ∂

∂t
|αi, t0; t〉

)†

= Hρ− ρH = −[ρ,H].

Like Heisenberg’s equation of motion, but wrong sign!
OK, since ρ is not an observable.

Continuum

Example:

[A] =
∫
d3x′

∫
d3x′′ 〈x′′|ρ|x′〉〈x′|A|x′′〉.

Here the density matrix is

〈x′′|ρ|x′〉 = 〈x′′|

(∑
i

wi|αi〉〈αi|

)
|x′〉

=
∑

i

wiψi(x′′)ψ∗
i (x′).

Note

〈x′|ρ|x′〉 =
∑

i

wi|ψi(x′)|2.

Thermodynamics

We define
σ = −tr(ρ ln ρ).

One can show that

• for a completely stochastic ensemble

σ = lnN,

when N is the number of the independent states in
the system.

• for a pure ensemble

σ = 0.

Hence σ measures disorder =⇒ it has something to do
with the entropy.
The entropy is defined by

S = kσ.

In a thermodynamical equilibrium

∂ρ

∂t
= 0,

so
[ρ,H] = 0

and the operators ρ and H have common eigenstates |k〉:

H|k〉 = Ek|k〉
ρ|k〉 = wk|k〉.

Using these eigenstates the density matrix can be
represented as

ρ =
∑

k

wk|k〉〈k|

and
σ = −

∑
k

ρkk ln ρkk,

where the diagonal elements of the density matrix are

ρkk = wk.

In the equilibrium the entropy is at maximum.
We maximize σ under conditions

• U = [H] = trρH =
∑

k ρkkEk.

• trρ = 1.

Hence

δσ = −
∑

k

δρkk(ln ρkk + 1) = 0

δ[H] =
∑

k

δρkkEk = 0

δ(trρ) =
∑

k

δρkk = 0.



With the help of Lagrange multipliers we get∑
k

δρkk [(ln ρkk + 1) + βEk + γ] = 0,

so
ρkk = e−βEk−γ−1.

The normalization (trρ = 1) gives

ρkk =
e−βEk

N∑
l

e−βEl

(canonical ensemble).

It turns out that
β =

1
kBT

,

where T is the thermodynamical temperature and kB the
Boltzmann constant.
In statistical mechanics we define the canonical partition
function Z:

Z = tre−βH =
N∑
k

e−βEk .

Now

ρ =
e−βH

Z
.

The ensemble average can be written as

[A] = trρA =
tr
(
e−βHA

)
Z

=

[
N∑
k

〈k|A|k〉e−βEk

]
N∑
k

e−βEk

.

In particular we have

U = [H] =

N∑
k

Eke
−βEk

N∑
k

e−βEk

= − ∂

∂β
(lnZ).

Example Electrons in a magnetic field parallel to z axis.
In the basis {|Sz; ↑〉, |Sz; ↓〉} of the eigenstates of the
Hamiltonian

H = ωcSz

we have

ρ 7→

(
e−βh̄ωc/2 0

0 eβh̄ωc/2

)
Z

,

where
Z = e−βh̄ωc/2 + eβh̄ωc/2.

For example the ensemble averages are

[Sx] = [Sy] = 0,

[Sz] = −
(
h̄

2

)
tanh

(
βh̄ωc

2

)
.



Angular momentum

O(3)
We consider active rotations.
3× 3 orthogonal matrix R ⇐⇒ rotation inR3.

Number of parameters

1. RRT symmetric ⇒ RRT has 6 independent
parameters ⇒ orthogonality condition RRT = 1
gives 6 independent equations ⇒ R has 9− 6 = 3 free
parameters.

2. Rotation around n̂ (2 angles) by the angle φ ⇒ 3
parameters.

3. n̂φ vector ⇒ 3 parameters.

3× 3 orthogonal matrices form a group with respect to
the matrix multiplication:

1. R1R2 is orthogonal if R1 and R2 are orthogonnal.

2. R1(R2R3) = (R1R2)R3, associativity.

3. ∃ identity I = the unit matrix.

4. if R is orthogonal, then also the inverse matrix
R−1 = RT is orthogonal.

The group is called O(3).
Generally rotations do not commute,

R1R2 6= R2R1,

so the group is non-Abelian.
Rotations around a common axis commute.
Rotation around z-axis:

Rz(φ) =

 cos φ − sinφ 0
sinφ cos φ 0

0 0 1


Rz

 x
y
z

 =

 x cos φ− y sinφ
x sinφ + y cos φ

z

 .

Infinitesimal rotations up to the order O(ε2):

Rz(ε) =

 1− ε2

2 −ε 0

ε 1− ε2

2 0
0 0 1

 ,

Rx(ε) =

 1 0 0

0 1− ε2

2 −ε

0 ε 1− ε2

2

 ,

Ry(ε) =

 1− ε2

2 0 ε

0 1 0

−ε 0 1− ε2

2

 .

We see that

Rx(ε)Ry(ε)−Ry(ε)Rx(ε) =

 0 −ε2 0
ε2 0 0
0 0 0


= Rz(ε2)− 1.

In a Hilbert space we associate

R←→ D(R),

i.e.
|α〉R = D(R)|α〉.

We define the angular momentum (J) so that (we are not
employing properties of the classical angular momentum
x× p)

D(n̂, dφ) = 1− i

(
J · n̂

h̄

)
dφ

and require that the rotation operator D

• is unitary,

• is decomposable,

• D → 1, when dφ→ 0.

We see that J must be Hermitean, i.e.

J† = J .

Moreover, we require that D satisfies the same group
properties as R, i.e.

Dx(ε)Dy(ε)−Dy(ε)Dx(ε) = Dz(ε2)− 1.

Since rotations around a common axis commute a finite
rotation can be constructed as

D(n̂φ) = lim
N→∞

[
1− i

(
J · n̂

h̄

)(
φ

N

)]N

= exp
(
− iJ · n̂φ

h̄

)
= 1− i

J · n̂φ

h̄
− (J · n̂)2φ2

2h̄2 + · · · .

We apply this up to the order O(ε2):(
1− iJxε

h̄
− J2

xε2

2h̄2

)(
1− iJyε

h̄
−

J2
y ε2

2h̄2

)

−

(
1− iJyε

h̄
−

J2
y ε2

2h̄2

)(
1− iJxε

h̄
− J2

xε2

2h̄2

)
= − 1

h̄2 JxJyε2 +
1
h̄2 JyJx +O(ε3)

= 1− i
Jzε

2

h̄
− 1.

We see that
[Jx, Jy] = ih̄Jz.

Similarly for other components:

[Ji, Jj ] = ih̄εijkJk.



We consider:

〈Jx〉 ≡ 〈α|Jx|α〉 −→
R〈α|Jx|α〉R = 〈α|D†z(φ)JxDz(φ)|α〉.

We evaluate

D†z(φ)JxDz(φ) = exp
(

iJzφ

h̄

)
Jx exp

(
− iJzφ

h̄

)
applying the Baker-Hausdorff lemma

eiGλAe−iGλ =

A + iλ[G, A] +
(

i2λ2

2!

)
[G, [G, A]] + · · ·

+
(

inλn

n!

)
[G, [G, [G, . . . [G, A]]] . . .] + · · ·

where G is Hermitean. So we need the commutators

[Jz, Jx] = ih̄Jy

[Jz, [Jz, Jx]] = ih̄[Jz, Jy] = h̄2Jx

[Jz, [Jz, [Jz, Jx]]] = h̄2[Jz, Jx] = ih̄3Jy

...

Substituting into the Baker-Hausdorff lemma we get

D†z(φ)JxDz(φ) = Jx cos φ− Jy sinφ.

Thus the expectation value is

〈Jx〉 −→ R〈α|Jx|α〉R = 〈Jx〉 cos φ− 〈Jy〉 sinφ.

Correspondingly we get for the other components

〈Jy〉 −→ 〈Jy〉 cos φ + 〈Jx〉 sinφ

〈Jz〉 −→ 〈Jz〉.

We see that the components of the expectation value of
the angular momentum operator transform in rotations
like a vector in R3:

〈Jk〉 −→
∑

l

Rkl〈Jl〉.

Euler angles

1. Rotate the system counterclockwise by the angle α
around the z-axis. The y-axis of of the system
coordinates rotates then to a new position y′.

2. Rotate the system counterclockwise by the angle β
around the y′-axis. The system z-axis rotates now to
a new position z′.

3. Rotate the system counterclockwise by the angle γ
around the z′-axis.

Using matrices:

R(α, β, γ) ≡ Rz′(γ)Ry′(β)Rz(α).

Now

Ry′(β) = Rz(α)Ry(β)R−1
z (α)

Rz′(γ) = Ry′(β)Rz(γ)R−1
y′ (β),

so

R(α, β, γ) = Ry′(β)Rz(γ)R−1
y′ (β)Ry′(β)Rz(α)

= Ry′(β)Rz(α)Rz(γ)
= Rz(α)Ry(β)R−1

z (α)Rz(α)Rz(γ)
= Rz(α)Ry(β)Rz(γ).

Correspondingly

D(α, β, γ) = Dz(α)Dy(β)Dz(γ).



SU(2)
In the two dimensional space

{|Sz; ↑〉, |Sz; ↓〉}

the spin operators

Sx =
(

h̄

2

)
{(|Sz; ↑〉〈Sz; ↓ |) + (|Sz; ↓〉〈Sz; ↑ |)}

Sy =
(

ih̄

2

)
{−(|Sz; ↑〉〈Sz; ↓ |) + (|Sz; ↓〉〈Sz; ↑ |)}

Sz =
(

h̄

2

)
{(|Sz; ↑〉〈Sz; ↑ |)− (|Sz; ↓〉〈Sz; ↓ |)}

satisfy the angular momentum commutation relations

[Sx, Sy] = ih̄Sz + cyclic permutations.

Thus the smallest dimension where these commutation
relations can be realized is 2.
The state

|α〉 = |Sz; ↑〉〈Sz; ↑ |α〉+ |Sz; ↓〉〈Sz; ↓ |α〉

behaves in the rotation

Dz(φ) = exp
(
− iSzφ

h̄

)
like

Dz(φ)|α〉 = exp
(
− iSzφ

h̄

)
|α〉

= e−iφ/2|Sz; ↑〉〈Sz; ↑ |α〉
+eiφ/2|Sz; ↓〉〈Sz; ↓ |α〉.

In particular:
Dz(2π)|α〉 = −|α〉.

Spin precession

When the Hamiltonian is

H = ωcSz

the time evolution operator is

U(t, 0) = exp
(
− iSzωct

h̄

)
= Dz(ωct).

Looking at the equations

〈Jx〉 −→ R 〈Jx〉 cos φ− 〈Jy〉 sinφ

〈Jy〉 −→ R 〈Jy〉 cos φ + 〈Jx〉 sinφ

〈Jz〉 −→ R 〈Jz〉

one can read that

〈Sx〉t = 〈Sx〉t=0 cos ωct− 〈Sy〉t=0 sinωct

〈Sy〉t = 〈Sy〉t=0 cos ωct + 〈Sx〉t=0 sinωct

〈Sz〉t = 〈Sz〉t=0.

We see that

• the spin returns to its original direction after time
t = 2π/ωc.

• the wave vector returns to its original value after
time t = 4π/ωc.

Matrix representation

In the basis {|Sz; ↑〉, |Sz; ↓〉} the base vectors are
represented as

|Sz; ↑〉 7→
(

1
0

)
≡ χ↑ |Sz; ↓〉 7→

(
0
1

)
≡ χ↓

〈Sz; ↑ | 7→ (1, 0) ≡ χ†
↑ 〈Sz; ↓ | 7→ (0, 1) ≡ χ†

↓,

so an arbitrary state vector is represented as

|α〉 7→
(

〈Sz; ↑ |α〉
〈Sz; ↓ |α〉

)
〈α| 7→ (〈α|Sz; ↑〉, 〈α|Sz; ↓〉).

The column vector

χ =
(

〈Sz; ↑ |α〉
〈Sz; ↓ |α〉

)
≡

(
c↑
c↓

)
is called the two component spinor

Pauli’s spin matrices

Pauli’s spin matrices σi are defined via the relations

(Sk)ij ≡
(

h̄

2

)
(σk)ij ,

where the matrix elements are evaluated in the basis
{|Sz; ↑〉, |Sz; ↓〉}.
For example

S1 = Sx =
(

h̄

2

)
{(|Sz; ↑〉〈Sz; ↓ |) + (|Sz; ↓〉〈Sz; ↑ |)},

so

(S1)11 = (S1)22 = 0

(S1)12 = (S1)21 =
h̄

2
,

or

(S1) =
h̄

2

(
0 1
1 0

)
.

Thus we get

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The spin matrices satisfy the anticommutation relations

{σi, σj} ≡ σiσj + σjσi = 2δij

and the commutation relations

[σi, σj ] = 2iεijkσk.



Moreover, we see that

σ†
i = σi,

det(σi) = −1,

tr(σi) = 0.

Often the collective vector notation

σ ≡ σ1x̂ + σ2ŷ + σ3ẑ.

is used for spin matrices. For example we get

σ · a ≡
∑

k

akσk

=
(

+a3 a1 − ia2

a1 + ia2 −a3

)
.

and

(σ · a)(σ · b) =
∑
j,k

σjajσkbk

=
∑
j,k

1
2

({σj , σk}+ [σj , σk]) ajbk

=
∑
j,k

(δjk + iεjkiσi)ajbk

= a · b + iσ · (a× b).

A special case of the latter formula is

(σ · a)2 = |a|2.

Now

D(n̂, φ) = exp
(
− iS · n̂φ

h̄

)
7→ exp

(
− iσ · n̂φ

2

)
=

1 cos
(

φ

2

)
− iσ · n̂ sin

(
φ

2

)
= cos

(
φ
2

)
− inz sin

(
φ
2

)
(−inx − ny) sin

(
φ
2

)
(−inx + ny) sin

(
φ
2

)
cos

(
φ
2

)
+ inz sin

(
φ
2

) 
and the spinors behave in rotations like

χ −→ exp
(
− iσ · n̂φ

2

)
χ.

Note the notation σ does not mean that σ would behave
in rotations like a vector, σk −→ Rσk. Instead we have

χ†σkχ −→
∑

l

Rklχ
†σlχ.

For all directions n̂ one has

exp
(
− iσ · n̂φ

2

)∣∣∣∣
φ=2π

= −1, for any n̂.

Euler’s angles

The spinor rotation matrices corresponding to rotations
around z and y axes are

Dz(α) 7→
(

e−iα/2 0
0 eiα/2

)
Dy(β) 7→

(
cos β/2 − sinβ/2
sinβ/2 cos β/2

)
.

With the help of Euler’s angles α, β and γ the rotation
matrices can be written as

D(α, β, γ) 7→ D( 1
2 )(α, β, γ) = e−i(α+γ)/2 cos

(
β
2

)
−e−i(α−γ)/2 sin

(
β
2

)
ei(α−γ)/2 sin

(
β
2

)
ei(α+γ)/2 cos

(
β
2

)  .

We seek for the eigenspinor of the matrix σ · n̂:

σ · n̂χ = χ.

Now

n̂ =

 sinβ cos α
sinβ sinα

cos β

 ,

so

σ · n̂ =
(

cos β sinβe−iα

sinβeiα − cos β

)
.

The state where the spin is parallel to the unit vector n̂,
is obviously invariant under rotations

Dn̂(φ) = e−iS·n̂/h̄

and thus an eigenstate of the operator S · n̂.
This kind of state can be obtained by rotating the state
|Sz; ↑〉

1. angle β around y axis,

2. angle α around z axis,

i.e.

S · n̂|S · n̂; ↑〉 = S · n̂D(α, β, 0)|Sz; ↑〉

=
(

h̄

2

)
D(α, β, 0)|Sz; ↑〉

=
(

h̄

2

)
|S · n̂; ↑〉.

Correspondingly for spinors the vector

χ = D( 1
2 )(α, β, 0)|Sz; ↑〉 =

 cos
(

β
2

)
e−iα/2

sin
(

β
2

)
eiα/2


is an eigenstate of the matrix σ · n̂.

SU(2)

As a representation of rotations the 2× 2-matrices

D( 1
2 )(n̂, φ) = e−iσ·n̂φ/2

form obviously a group. These matrices have two
characteristic properties:



1. unitarity (
D( 1

2 )
)†

=
(
D( 1

2 )
)−1

,

2. unimodularity ∣∣∣D( 1
2 )

∣∣∣ = 1.

A unitary unimodular matrix can be written as

U(a, b) =
(

a b
−b∗ a∗

)
.

The unimodularity condition gives

1 = |U | = |a|2 + |b|2,

and we are left with 3 free parameters.
The unitarity condition is automatically satisfied because

U(a, b)†U(a, b) =
(

a∗ −b
b∗ a

) (
a b
−b∗ a∗

)
=

(
|a|2 + |b|2 0

0 |a|2 + |b|2
)

= 1.

Matrices U(a, b) form a group since

• the matrix

U(a1, b1)U(a2, b2) = U(a1a2 − b1b
∗
2, a1b2 + a∗2b1)

is unimodular because

|U(a1a2 − b1b
∗
2, a1b2 + a∗2b1)| =

|a1a2 − b1b
∗
2|2 + |a1b2 + a∗2b1|2 = 1,

and thus also unitary.

• as a unitary matrix U has the inverse matrix:

U−1(a, b) = U†(a, b) = U(a∗,−b).

• the unit matrix 1 is unitary and unimodular.

The group is called SU(2).
Comparing with the previous spinor representation

D( 1
2 )(n̂, φ) = cos

(
φ
2

)
− inz sin

(
φ
2

)
(−inx − ny) sin

(
φ
2

)
(−inx + ny) sin

(
φ
2

)
cos

(
φ
2

)
+ inz sin

(
φ
2

) 
we see that

Re(a) = cos
(

φ
2

)
Im(a) = −nz sin

(
φ

2

)
Re(b) = −ny sin

(
φ
2

)
Im(b) = −nx sin

(
φ

2

)
.

The complex numbers a and b are known as
Cayley-Klein’s parameters.
Note O(3) and SU(2) are not isomorphic.
Example

In O(3): 2π- and 4π-rotations 7→ 1
In SU(2): 2π-rotation 7→ −1 and 4π-rotation 7→ 1.
The operations U(a, b) and U(−a,−b) in SU(2)
correspond to a single matrix of O(3). The map SU(2) 7→
O(3) is thus 2 to 1. The groups are, however, locally
isomorphic.



Angular momentum algebra
It is easy to see that the operator

J2 = JxJx + JyJy + JzJz

commutes with the operators Jx, Jy and Jz,

[J2, Ji] = 0.

We choose the component Jz and denote the common
eigenstate of the operators J2 and Jz by |j, m〉. We know
(QM II) that

J2|j, m〉 = j(j + 1)h̄2|j, m〉, j = 0,
1
2
, 1,

3
2
, . . .

Jz|j,m〉 = mh̄|j, m〉, m = −j,−j + 1, . . . , j − 1, j.

We define the ladder operators J+ and J−:

J± ≡ Jx ± iJy.

They satisfy the commutation relations

[J+, J−] = 2h̄Jz

[Jz, J±] = ±h̄J±[
J2, J±

]
= 0.

We see that

JzJ+|j, m〉 = h̄J+Jz|j,m〉 = (m + 1)h̄J+|j, m〉

and

J2J+|j, m〉 = J+J2|j, m〉 = j(j + 1)h̄J+|j, m〉,

so we must have

J+|j, m〉 = c+|j,m + 1〉

The factor c+ can be deduced from the normalization
condition

〈j,m|j′,m′〉 = δjj′δmm′ .

We end up with

J±|j,m〉 =
√

(j ∓m)(j ±m + 1)h̄|j, m± 1〉.

Matrix elements will be

〈j′,m′|J2|j,m〉 = j(j + 1)h̄2δj′jδm′m

〈j′,m′|Jz|j,m〉 = mh̄δj′jδm′m

〈j′,m′|J±|j,m〉 =
√

(j ∓m)(j ±m + 1)h̄δj′jδm′,m±1.

We define Wigner’s function:

D(j)
m′m(R) = 〈j, m′| exp

(
− iJ · n̂φ

h̄

)
|j, m〉.

Since

[J2,D(R)] = [J2, exp
(
− iJ · n̂φ

h̄

)
] = 0,

we see that D(R) does not chance the j-quantum number,
so it cannot have non zero matrix elements between
states with different j values.
The matrix with matrix elements D(j)

m′m(R) is the
(2j + 1)-dimensional irreducible representation of the
rotation operator D(R).
The matrices D(j)

m′m(R) form a group:

• The product of matrices belongs to the group:

D(j)
m′′m(R1R2) =

∑
m′

D(j)
m′′m′(R1)D(j)

m′m(R2),

where R1R2 is the combined rotation of the rotations
R1 and R2,

• the inverse operation belongs to the group:

D(j)
m′m(R−1) = D(j)∗

mm′(R).

The state vectors |j,m〉 transform in rotations like

D(R)|j, m〉 =
∑
m′

|j,m′〉〈j, m′|D(R)|j,m〉

=
∑
m′

|j,m′〉D(j)
m′m(R).

With the help of the Euler angles

D(j)
m′m(R) =

〈j, m′| exp
(
− iJzα

h̄

)
exp

(
− iJyβ

h̄

)
exp

(
− iJzγ

h̄

)
|j, m〉

= e−i(m′α+mγ)d
(j)
m′m(β),

where

d
(j)
m′m(β) ≡ 〈j,m′| exp

(
− iJyβ

h̄

)
|j,m〉.

Functions d
(j)
m′m can be evaluated using Wigner’s formula

d
(j)
m′m(β) =∑

k

(−1)k−m+m′

×
√

(j + m)!(j −m)!(j + m′)!(j −m′)!
(j + m− k)!k!(j − k −m′)!(k −m + m′)!

×
(

cos
β

2

)2j−2k+m−m′

×
(

sin
β

2

)2k−m+m′

.

Orbital angular momentum

The components of the classically analogous operator
L = x× p satisfy the commutation relations

[Li, Lj ] = iεijkh̄Lk.

Using the spherical coordinates to label the position
eigenstates,

|x′〉 = |r, θ, φ〉,
one can show that

〈x′|Lz|α〉 = −ih̄
∂

∂φ
〈x′|α〉

〈x′|Lx|α〉 = −ih̄

(
− sinφ

∂

∂θ
− cot θ cos φ

∂

∂φ

)
〈x′|α〉

〈x′|Ly|α〉 = −ih̄

(
cos φ

∂

∂θ
− cot θ sinφ

∂

∂φ

)
〈x′|α〉

〈x′|L±|α〉 = −ih̄e±iφ

(
±i

∂

∂θ
− cot θ

∂

∂φ

)
〈x′|α〉

〈x′|L2|α〉 = −h̄2

[
1

sin2 θ

∂2

∂φ2
+

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
×〈x′|α〉.



We denote the common eigenstate of the operators L2

and Lz by the ket-vector |l,m〉, i.e.

Lz|l,m〉 = mh̄|l,m〉
L2|l,m〉 = l(l + 1)h̄2|l,m〉.

Since R3 can be represented as the direct product

R3 = R× Ω,

where Ω is the surface of the unit sphere
(position=distance from the origin and direction) the
position eigenstates can be written correspondingly as

|x′〉 = |r〉|n̂〉.

Here the state vectors |n̂〉 form a complete basis on the
surface of the sphere, i.e.∫

dΩn̂ |n̂〉〈n̂| = 1.

We define the spherical harmonic function:

Y m
l (θ, φ) = Y m

l (n̂) = 〈n̂|l,m〉.

The scalar product of the vector 〈n̂| with the equations

Lz|l, m〉 = mh̄|l,m〉
L2|l, m〉 = l(l + 1)h̄2|l, m〉

gives

−ih̄
∂

∂φ
Y m

l (θ, φ) = mh̄Y m
l (θ, φ)

and[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 + l(l + 1)
]

Y m
l = 0.

Y m
l and D(l)

The state
|n̂〉 = |θ, φ〉

is obtained from the state |ẑ〉 rotating it first by the angle
θ around y-axis and then by the angle φ around z-axis:

|n̂〉 = D(R)|ẑ〉
= D(α = φ, β = θ, γ = 0)|ẑ〉
=

∑
l,m

D(φ, θ, 0)|l, m〉〈l,m|ẑ〉.

Furthermore

〈l,m|n̂〉 = Y m
l

∗(θ, φ) =
∑
m

D(l)
m′m(φ, θ, 0)〈l,m|ẑ〉.

Now

〈l,m|ẑ〉 = Y m
l

∗(0, φ) =

√
(2l + 1)

4π
δm0,

so

Y m
l

∗(θ, φ) =

√
(2l + 1)

4π
D(l)

m0(φ, θ, γ = 0)

or

D(l)
m0(α, β, 0) =

√
4π

(2l + 1)
Y m

l
∗(θ, φ)

∣∣∣∣∣
β,α

.

As a special case

D(l)
00 (θ, φ, 0) = d

(l)
00 (θ) = Pl(cos θ).

Coupling of angular momenta

We consider two Hilbert spaces H1 and H2. If now Ai is
an operator in the space Hi, the notation A1 ⊗A2 means
the operator

A1 ⊗A2|α〉1 ⊗ |β〉2 = (A1|α〉1)⊗ (A2|β〉2)

in the product space. Here |α〉i ∈ Hi. In particular,

A1 ⊗ 12|α〉1 ⊗ |β〉2 = (A1|α〉1)⊗ |β〉2,

where 1i is the identity operator of the space Hi.
Correspondingly 11 ⊗A2 operates only in the subspace
H2 of the product space. Usually the subspace of the
identity operators, or even the identity operator itself, is
not shown, for example

A1 ⊗ 12 = A1 ⊗ 1 = A1.

It is easy to verify that operators operating in different
subspace commute, i.e.

[A1 ⊗ 12, 11 ⊗A2] = [A1, A2] = 0.

In particular we consider two angular momenta J1 and J2

operating in two different Hilbert spaces. They commute:

[J1i, J2j ] = 0.

The infinitesimal rotation affecting both Hilbert spaces is(
1− iJ1 · n̂δφ

h̄

)
⊗

(
1− iJ2 · n̂δφ

h̄

)
=

1− i(J1 ⊗ 1 + 1⊗ J2) · n̂δφ

h̄
.

The components of the total angular momentum

J = J1 ⊗ 1 + 1⊗ J2 = J1 + J2

obey the commutation relations

[Ji, Jj ] = ih̄εijkJk,

i.e. J is angular momentum.
A finite rotation is constructed analogously:

D1(R)⊗D2(R) = exp
(
−J1 · n̂φ

h̄

)
⊗ exp

(
−J2 · n̂φ

h̄

)
.

Base vectors of the whole system
We seek in the product space {|j1m1〉 ⊗ |j2m2〉} for the
maximal set of commuting operators.
(i) J2

1, J2
2, J1z and J2z.



Their common eigenstates are simply direct products

|j1j2;m1m2〉 ≡ |j1,m1〉 ⊗ |j2,m2〉.

If j1 and j2 can be deduced from the context we often
denote

|m1m2〉 = |j1j2;m1m2〉.

The quantum numbers are obtained from the
(eigen)equations

J2
1|j1j2;m1m2〉 = j1(j1 + 1)h̄2|j1j2;m1m2〉

J1z|j1j2;m1m2〉 = m1h̄|j1j2;m1m2〉
J2

2|j1j2;m1m2〉 = j2(j2 + 1)h̄2|j1j2;m1m2〉
J2z|j1j2;m1m2〉 = m2h̄|j1j2;m1m2〉.

(ii) J2, J2
1, J2

2 and Jz.
Their common eigenstate is denoted as

|j1j2; jm〉

or shortly
|jm〉 = |j1j2; jm〉

if the quantum numbers j1 and j2 can be deduced from
the context. The quantum numbers are obtained from the
equations

J2
1|j1j2; jm〉 = j1(j1 + 1)h̄2|j1j2; jm〉

J2
2|j1j2; jm〉 = j2(j2 + 1)h̄2|j1j2; jm〉

J2|j1j2; jm〉 = j(j + 1)h̄2|j1j2; jm〉
Jz|j1j2; jm〉 = mh̄|j1j2; jm〉.

Now
[J2, J1z] 6= 0, [J2, J2z] 6= 0,

so we cannot add to the set (i) the operator J2, nor to
the set (ii) the operators J1z or J2z. Both sets are thus
maximal and the corresponding bases complete (and
orthonormal), i.e.∑

j1j2

∑
m1m2

|j1j2;m1m2〉〈j1j2;m1m2| = 1

∑
j1j2

∑
jm

|j1j2; jm〉〈j1j2; jm| = 1.

In the subspace where the quantum numbers j1 and j2
are fixed we have the completeness relations∑

m1m2

|j1j2;m1m2〉〈j1j2;m1m2| = 1∑
jm

|j1j2; jm〉〈j1j2; jm| = 1.

One can go from the basis (i) to the basis (ii) via the
unitary transformation

|j1j2; jm〉 =
∑

m1m2

|j1j2;m1m2〉〈j1j2;m1m2|j1j2; jm〉,

so also the transformation matrix

(C)jm,m1m2 = 〈j1j2;m1m2|j1j2; jm〉

is unitary. The elements 〈j1j2;m1m2|j1j2; jm〉 of the
transformation matrix are called Clebsch-Gordan’s
coefficients.
Since

Jz = J1z + J2z,

we must have
m = m1 + m2,

so the Clebsch-Gordan coefficients satisfy the condition

〈j1j2;m1m2|j1j2; jm〉 = 0, if m 6= m1 + m2.

Further, we must have (QM II)

|j1 − j2| ≤ j ≤ j1 + j2.

It turns out, that the C-G coefficients can be chosen to be
real, so the transformation matrix C is in fact orthogonal:∑
jm

〈j1j2;m1m2|j1j2; jm〉〈j1j2;m′
1m

′
2|j1j2; jm〉

= δm1m′
1
δm2m′

2∑
m1m2

〈j1j2;m1m2|j1j2; jm〉〈j1j2;m1m2|j1j2; j′m′〉

= δjj′δmm′ .

As a special case (j′ = j and m′ = m = m1 + m2) we get
the normalization condition∑

m1m2

|〈j1j2;m1m2|j1j2; jm〉|2 = 1.

Recursion formulas
Operating with the ladder operators to the state
|j1j2; jm〉 we get

J±|j1j2; jm〉 =

(J1± + J2±)
∑

m1m2

|j1j2;m1m2〉

×〈j1j2;m1m2|j1j2; jm〉,

or √
(j ∓m)(j ±m + 1)|j1j2; j, m± 1〉

=
∑
m′

1

∑
m′

2

(√
(j1 ∓m′

1)(j1 ±m′
1 + 1)

×|j1j2;m′
1 ± 1,m′

2〉

+
√

(j2 ±m′
2)(j2 ±m′

2 + 1)

×|j1j2;m′
1,m

′
2 ± 1〉

)
×〈j1j2;m′

1m
′
2|j1j2; jm〉.

Taking the scalar product on the both sides with the
vector 〈j1j2;m1m2| we get√

(j ∓m)(j ±m + 1)〈j1j2;m1m2|j1j2; j, m± 1〉
=

√
(j1 ∓m1 + 1)(j1 ±m1)
×〈j1j2;m1 ∓ 1,m2|j1j2; jm〉

+
√

(j2 ∓m2 + 1)(j2 ±m2)
×〈j1j2;m1,m2 ∓ 1|j1j2; jm〉.



The Clebsch-Gordan coefficients are determined uniquely
by

1. the recursion formulas.

2. the normalization condition∑
m1m2

|〈j1j2;m1m2|j1j2; jm〉|2 = 1.

3. the sign conventions, for example

〈j1j2; j′m′|J1z|j1j2; jm〉 ≥ 0.

Note Due to the sign conventions the order of the
coupling is essential:

|j1j2; jm〉 = ±|j2j1; jm〉.

Graphical representation of recursion formulas

( m 1 - 1 , m 2 ) ( m 1 , m 2 )

( m 1 , m 2 - 1 )

( m 1 , m 2 + 1 )

( m 1 , m 2 ) ( m 1 + 1 , m 2 )

J + J -

Recursion formula in m1m2-plane

We fix j1, j2 and j. Then

|m1| ≤ j1, |m2| ≤ j2, |m1 + m2| ≤ j.

A

m
1 + m

2 = j

m 2 = j 2
m

1 = - j1

m
1 + m

2 = - j m 2 = - j 2

m
1 =j1

forbidden

A

B
C

D

E

F

J +

J +
J -J -

J -

( a )

( b )
Using recursion formulas

We see that

1. every C-G coefficient depends on A,

2. the normalization condition determines the absolute
value of A,

3. the sign is obtained from the sign conventions.

Example L + S-coupling.
Now

j1 = l = 0, 1, 2, . . .

m1 = ml = −l,−l + 1, . . . , l − 1, l

j2 = s =
1
2

m2 = ms = ±1
2

j =

{
l ± 1

2 , when l > 0
1
2 , when l = 0.

m s

m ll

1 / 2

- 1 / 2

J -J -J -

Recursion when j1 = l and j2 = s = 1/2

Using the selection rule

m1 = ml = m− 1
2
, m2 = ms =

1
2

and the shorthand notation the J−-recursion gives√
(l + 1

2 + m + 1)(l + 1
2 −m)〈m− 1

2 , 1
2 |l + 1

2 ,m〉

=
√

(l + m + 1
2 )(l −m + 1

2 )

×〈m + 1
2 , 1

2 |l + 1
2 ,m + 1〉,

or

〈m− 1
2 , 1

2 |l + 1
2 ,m〉 =

√
l + m + 1

2

l + m + 3
2

〈m + 1
2 , 1

2 |l + 1
2 ,m + 1〉.

Applying the same recursion repeatedly we have

〈m− 1
2 , 1

2 |l + 1
2 ,m〉

=

√
l + m + 1

2

l + m + 3
2

√
l + m + 3

2

l + m + 5
2

〈m + 3
2 , 1

2 |l + 1
2 ,m + 2〉

=

√
l + m + 1

2

l + m + 3
2

√
l + m + 3

2

l + m + 5
2

√
l + m + 5

2

l + m + 7
2

〈m + 5
2 , 1

2 |l + 1
2 ,m + 3〉

=
...

=

√
l + m + 1

2

2l + 1
〈l, 1

2 |l + 1
2 , l + 1

2 〉.

If j = jmax = j1 + j2 and m = mmax = j1 + j2 one must
have

|j1j2; jm〉 =
〈j1j2;m1 = j1,m2 = j2|j1j2; jm〉|j1m1〉|j2m2〉.



Now the normalization condition

|〈j1j2;m1 = j1,m2 = j2|j1j2; jm〉|2 = 1

and the sign convention give

〈j1j2;m1 = j1,m2 = j2|j1j2; jm〉 = 1.

Thus, in the case of the spin-orbit coupling,

〈l, 1
2 |l + 1

2 , l + 1
2 〉 = 1,

or

〈m− 1
2 , 1

2 |l + 1
2 ,m〉 =

√
l + m + 1

2

2l + 1
.

With the help of the recursion relations, normalization
condition and sign convention the rest of the C-G
coefficients can be evaluated, too. We get

(
|j = l + 1

2 ,m〉
|j = l − 1

2 ,m〉

)
=


√

l + m + 1
2

2l + 1

√
l −m + 1

2
2l + 1

−
√

l −m + 1
2

2l + 1

√
l + m + 1

2
2l + 1


(
|ml = m− 1

2 ,ms = 1
2 〉

|ml = m + 1
2 ,ms = − 1

2 〉

)
.

Rotation matrices
If D(j1)(R) is a rotation matrix in the base
{|j1m1〉|m1 = −j1, . . . , j1} and D(j2)(R) a rotation matrix
in the base {|j2m2〉|m2 = −j2, . . . , j2}, then
D(j1)(R)⊗D(j2)(R) is a rotation matrix in the
(2j1 + 1)× (2j2 + 1)-dimensional base
{|j1,m1〉 ⊗ |j2,m2〉}. Selecting suitable superpositions of
the vectors |j1,m1〉 ⊗ |j2,m2〉 the matrix takes the form
like

D(j1)(R)⊗D(j2)(R) −→
D(j1+j2) 0

D(j1+j2−1)

. . .

0 D(|j1−j2|)

 .

One can thus write

D(j1) ⊗D(j2) = D(j1+j2) ⊕D(j1+j2−1) ⊕ · · · ⊕ D(|j1−j2|).

As a check we can calculate the dimensions:

(2j1 + 1)(2j2 + 1) =
2(j1 + j2) + 1 + 2(j1 + j2 − 1) + 1
+ · · ·+ 2|j1 − j2|+ 1.

The matrix elements of the rotation operator satisfy

〈j1j2;m1m2|D(R)|j1j2;m′
1m

′
2〉

= 〈j1m1|D(R)|j1m′
1〉〈j2m2|D(R)|j2m′

2〉
= D(j1)

m1m′
1
(R)D(j2)

m2m′
2
(R).

On the other hand we have

〈j1j2;m1m2|D(R)|j1j2;m′
1m

′
2〉

=
∑
jm

∑
j′m′

〈j1j2;m1m2|j1j2; jm〉

×〈j1j2; jm|D(R)|j1j2; j′m′〉
×〈j1j2; j′m′|j1j2;m′

1m
′
2〉

=
∑
jm

∑
j′m′

〈j1j2;m1m2|j1j2; jm〉D(j)
mm′(R)δjj′

×〈j1j2;m′
1m

′
2|j1j2; j′m′〉.

We end up with the Clebsch-Gordan series

D(j1)
m1m′

1
(R)D(j2)

m2m′
2
(R) =∑

j

∑
m

∑
m′

〈j1j2;m1m2|j1j2; jm〉

×〈j1j2;m′
1m

′
2|j1j2; jm′〉D(j)

mm′(R).

As an application we have∫
dΩY m

l
∗(θ, φ)Y m1

l1
(θ, φ)Y m2

l2
(θ, φ)

=

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)

×〈l1l2; 00|l1l2; l0〉〈l1l2;m1m2|l1l2; lm〉.



3j- 6j- and 9j-symbols
The Clebsch-Gordan coefficients obey certain symmetry
relations, like

〈j1j2;m1m2|j1j2; jm〉
= (−1)j1+j2−j〈j2j1;m2m1|j2j1; jm〉

〈j1j2;m1m2|j1j2; j3m3〉

= (−1)j2+m2

√
2j3 + 1
2j1 + 1

〈j2j3;−m2,m3|j2j3; j1m1〉

〈j1j2;m1m2|j1j2; j3m3〉

= (−1)j1−m1

√
2j3 + 1
2j2 + 1

〈j3j1;m3,−m1|j3j1; j2m2〉

〈j1j2;m1m2|j1j2; j3m3〉
= (−1)j1+j2−j3〈j1j2;−m1,−m2|j1j2; j3,−m3〉.

Note The first relation shows that the coupling order is
essential.
We define more symmetric 3j-symbols:(

j1 j2 j3
m1 m2 m3

)
≡

(−1)j1−j2−m2√
2j3 + 1

〈j1j2;m1m2|j1j2; j3,−m3〉.

They satisfy(
j1 j2 j3
m1 m2 m3

)
=

(
j2 j3 j1
m2 m3 m1

)
=

(
j3 j1 j2
m3 m1 m2

)
(−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
=

(
j2 j1 j3
m2 m1 m3

)
=

(
j1 j3 j2
m1 m3 m2

)
=

(
j3 j2 j1
m3 m2 m1

)
(

j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
−m1 −m2 −m3

)
.

As an application, we see that the coefficients(
3
2

3
2 2

1
2

1
2 −1

)
,

(
2 2 3
1 1 −2

)
.

vanish.
On the other hand, the orthogonality properties are
somewhat more complicated:∑
j3

∑
m3

(2j3 + 1)
(

j1 j2 j3
m1 m2 m3

) (
j1 j2 j3
m′

1 m′
2 m3

)
= δm1m′

1
δm2m′

2

and ∑
m1

∑
m2

(
j1 j2 j3
m1 m2 m3

) (
j1 j2 j′3
m1 m2 m′

3

)

=
δj3j′

3
δm3m′

3
δ(j1j2j3)√

2j3 + 1
,

where

δ(j1j2j3) =
{

1, when |j1 − j2| ≤ j3 ≤ j1 + j2
0, otherwise.

6j-symbols

Let us couple three angular momenta, j1, j2 and j3, to
the angular momentum J . There are two ways:

1. first j1, j2 −→ j12 and then j12, j3 −→ J .

2. first j2, j3 −→ j23 and then j23, j1 −→ J .

Let’s choose the first way. The quantum number j12 must
satisfy the selection rules

|j1 − j2| ≤ j12 ≤ j1 + j2

|j12 − j3| ≤ J ≤ j12 + j3.

The states belonging to different j12 are independent so
we must specify the intermediate state j12. We use the
notation

|(j1j2)j12j3; JM〉.
Explicitely one has

|(j1j2)j12j3; JM〉
=

∑
m12

∑
m3

|j1j2; j12m12〉|j3m3〉

×〈j12j3;m12m3|j12j3; JM〉
=

∑
m1m2m3m12

|j1m1〉|j2m2〉|j3m3〉

×〈j1j2;m1m2|j1j2; j12m12〉
×〈j12j3;m12m3|j12j3; JM〉.

Correspondingly the angular momenta coupled in way 2
satisfy

|j1(j2j3)j23; JM〉
=

∑
m23

∑
m1

|j1m1〉|j2j3; j23m23〉

×〈j1j23;m1m23|j1j23; JM〉
=

∑
m1m2m3m23

|j1m1〉|j2m2〉|j3m3〉

×〈j2j3;m2m3|j2j3; j23m23〉
×〈j1j23;m1m23|j1j23; JM〉.

Both bases are complete so there is a unitary transform
between them:

|j1(j2j3)j23; JM〉 =
∑
j12

|(j1j2)j12j3; JM〉

×〈(j1j2)j12j3; JM |j1(j2j3)j23; JM〉.

In the transformation coefficients, recoupling coefficients it
is not necessary to show the quantum number M , because
Theorem 1 In the transformation

|α; jm〉 =
∑

β

|β; jm〉〈β; jm|α; jm〉

the coefficients 〈β; jm|α; jm〉 do not depend on the
quantum number m.



Proof: Let us suppose that m < j. Now

|α; j, m + 1〉 =
∑

β

|β; j,m + 1〉〈β; j,m + 1|α; j, m + 1〉.

On the other hand

|α; j, m + 1〉 =
J+

h̄
√

(j + m + 1)(j −m)
|α; jm〉

=
∑

β

|β; j, m + 1〉〈β; jm|α; jm〉,

so

〈β; j,m + 1|α; j, m + 1〉 = 〈β; j,m|α; j,m〉

The explicit expression for the recoupling coefficients will
be

〈(j1j2)j12j3; J |j1(j2j3)j23; J〉
=

∑
m1m2m3
m12m23

〈j12j3; JM |j12j3;m12m3〉

×〈j1j2; j12m12|j1j2;m1m2〉
×〈j2j3;m2m3|j2j3; j23m23〉
×〈j1j23;m1m23|j1j23; JM〉.

We define the more symmetric 6j-symbols:{
j1 j2 j12
j3 J j23

}
≡ (−1)j1+j2+j3+J√

(2j12 + 1)(2j23 + 1)
×〈(j1j2)j12j3; J |j1(j2j3)j23; J〉

=
(−1)j1+j2+j3+J√

(2j12 + 1)(2j23 + 1)

×
∑

m1m2

〈j1j2;m1m2|j1j2; j12,m1 + m2〉

×〈j12j3;m1 + m2,M −m1 −m2|j12j3; JM〉
×〈j2j3;m2,M −m1 −m2|j2j3; j23,M −m1〉
×〈j1j23;m1,M −m1|j1j23; JM〉.

We can handle analogously the coupling of 4 angular
momenta. Transformations from a coupling scheme to
another are mediated by the 9j-symbols: j1 j2 j12

j3 j4 j34
j13 j24 j


≡ 〈(j1j2)j12(j3j4)j34; j|(j1j3)j13(j2j4)j24; j〉√

(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + 1
.



Tensor operators
We have used the vector notation for three component
operators for example to express the scalar product, like

p · x′ = pxx′ + pyy′ + pzz
′.

Classically a vector is a quantity that under rotations
transforms like V ∈ R3 (or ∈ C3), i.e. if R ∈ O(3), then

V ′
i =

3∑
j=1

RijVj .

In quantum mechanics V is a vector operator provided
that 〈V 〉 ∈ C3 is a vector:

R〈α|Vi|α〉R = 〈α|D†(R)ViD(R)|α〉

=
3∑

j=1

Rij〈α|Vj |α〉,

∀|α〉 ∈ H, R ∈ O(3).

Thus we must have

D†(R)ViD(R) =
∑

j

RijVj .

Thus the infinitesimal rotations

D(n̂ε) = 1− iεJ · n̂
h̄

satisfy (
1 +

iεJ · n̂
h̄

)
Vi

(
1 +

iεJ · n̂
h̄

)
= Vi +

iε

h̄
(J · n̂Vi − ViJ · n̂) +O(ε2)

=
∑

j

RijVj

or
Vi +

ε

ih̄
[Vi,J · n̂] =

∑
j

Rij(n̂ε)Vj .

Substituting the explicit expressions for infinitesimal
rotations, like

R(ẑε) =

 1− ε2

2 −ε 0

ε 1− ε2

2 0
0 0 1

 ,

we get
Vx +

ε

ih̄
[Vx, Jz] = Vx − εVy +O(ε3).

Handling similarly the other components we end up with

[Vi, Jj ] = ih̄εijkVk.

Finite rotation

A finite rotation specified by Euler angles is accomplished
by rotating around coordinate axises, so we have to
consider such expressions as

exp
(

iJjφ

h̄

)
Vi exp

(
− iJjφ

h̄

)
.

Applying the Baker-Hausdorff lemma

eiGλAe−iGλ =

A + iλ[G, A] +
(

i2λ2

2!

)
[G, [G, A]] + · · ·

+
(

inλn

n!

)
[G, [G, [G, . . . [G, A]]] . . .] + · · ·

we end up with the commutators

[Jj , [Jj , [· · · [Jj , Vi] · · ·]]].

These will be evaluated in turn into operators Vi and Vk

(k 6= i, j).
A vector operator (V ) is defined so that it satisfies the
commutation relation

[Vi, Jj ] = ih̄εijkVk.

We can easily see that for example p, x and J are vector
operators.
In classical mechanics a quantity which under rotations
transforms like

Tijk · · ·︸ ︷︷ ︸
n indeces

−→
∑
i′

∑
j′

∑
k′

· · ·Rii′Rjj′Rkk′ · · ·Ti′j′k′···,

is called a Cartesian tensor of the rank n.
Example The dyad product of the vectors U and V

Tij = UiVj

is a tensor of rank 2.
Cartesian tensors are reducible, for example the dyad
product can be written as

UiVj =
U · V

3
δij +

(UiVj − UjVi)
2

+
(

UiVj + UjVi

2
− U · V

3
δij

)
.

We see that the terms transform under rotations
differently:

• U · V
3 δij is invariant. There is 1 term.

• (UiVj − UjVi)
2 retains its antisymmetry. There are 3

terms.

•
(

UiVj + UjVi

2 − U · V
3 δij

)
retains its symmetry and

tracelessness. There are 5 terms.

We recognize that the number of terms checks and that
the partition might have something to do with the
angular momentum since the multiplicities correspond to
the multiplicities of the angular momenta l = 0, 1, 2.
We define the spherical tensor T

(k)
q of rank k so that the

argument n̂ of the spherical function

Y m
l (n̂) = 〈n̂|lm〉



is replaced by the vector V :

T (k)
q = Y m=q

l=k (V ).

Example The spherical function Y1:

Y 0
1 =

√
3
4π

cos θ =

√
3
4π

z

r
7→ T

(1)
0 =

√
3
4π

Vz

Y ±1
1 = ∓

√
3
4π

x± iy√
2r

7→ T
(1)
±1 =

√
3
4π

(
∓Vx ± iVy√

2

)
.

Similarly we could construct for example a spherical
tensor of rank 2:

Y ±2
2 =

√
15
32π

(x± iy)2

r2 7→ T
(2)
±2 =

√
15
32π

(Vx ± iVy)2.

The tensors T
(k)
q are irreducible, i.e. there does not exist

any proper subset

{T (k)
p1

, T (k)
p2

, . . .} ⊂ {T (k)
q |q = −k, . . . ,+k},

which would remain invariant under rotations.

Transformation of spherical tensors

Under the rotation R an eigenstate of the direction
transforms like

|n̂〉 −→ |n̂′〉 = D(R)|n̂〉.

The state vectors |lm〉, on the other hand, transform
under the rotation R−1 like

D(R−1)|l, m〉 =
∑
m′

|l,m′〉D(l)
m′m(R−1).

So we get

Y m
l (n̂′) = 〈n̂′|lm〉 = 〈n̂|D†(R)|lm〉

= 〈n̂|D(R−1)|lm〉 =
∑
m′

〈n̂||lm′〉D(l)
m′m(R−1)

=
∑
m′

Y m′

l (n̂)D(l)
m′m(R−1)

=
∑
m′

Y m′

l (n̂)D(l)
mm′

∗
(R).

We define a tensor operator Y m
l (V ) so that

D†(R)Y m
l (V )D(R) =

∑
m′

Y m′

l (V )D(l)∗

mm′(R).

Generalizing we define: T
(k)
q is a (2k + 1)-component

spherical tensor of rank k if and only if

D†(R)T (k)
q D(R) =

k∑
q′=−k

D(k)∗

qq′ (R)T (k)
q′

or equivalently

D(R)T (k)
q D†(R) =

∑k
q′=−k D

(k)
q′q(R)T (k)

q′ .

Under the infinitesimal rotations

D(n̂ε) =
(

1− iJ · n̂ε

h̄

)
a spherical tensor behaves thus like(

1 +
iJ · n̂ε

h̄

)
T (k)

q

(
1− iJ · n̂ε

h̄

)
=

k∑
q′=−k

T
(k)
q′ 〈kq′|

(
1 +

iJ · n̂ε

h̄

)
|kq〉

=
k∑

q′=−k

T
(k)
q′ 〈kq′|kq〉+

k∑
q′=−k

iεT
(k)
q′ 〈kq′|J · n̂|kq〉,

or
[J · n̂, T (k)

q ] =
∑
q′

T
(k)
q′ 〈kq′|J · n̂|kq〉.

Choosing n̂ = ẑ and x̂± iŷ we get

[Jz, T
(k)
q ] = h̄qT

(k)
q

and

[J±, T
(k)
q ] = h̄

√
(k ∓ q)(k ± q + 1)T (k)

q±1.

Example Decomposition of the dyad product.
We form spherical tensors of rank 1 from the vector
operators U and V :

U0 = Uz, V0 = Vz,

U±1 = ∓Ux ± iUy√
2

, V±1 = ∓Vx ± iVy√
2

.

Now

T
(0)
0 = −U · V

3
=

U+1V−1 + U−1V+1 − U0V0

3
,

T (1)
q =

(U × V )q

i
√

2
,

T
(2)
±2 = U±1V±1,

T
(2)
±1 =

U±1V0 + U0V±1√
2

,

T
(2)
0 =

U+1V−1 + 2U0V0 + U−1V+1√
6

.

In general we have
Theorem 1 Let X

(k1)
q1 and Z

(k2)
q2 be irreducible spherical

tensors of rank k1 and k2. Then

T (k)
q =

∑
q1

∑
q2

〈k1k2; q1q2|k1k2; kq〉X(k1)
q1

Z(k2)
qq

is a (irreducible) spherical tensor of rank k.
Proof: We show that T

(k)
q transforms like

D†(R)T (k)
q D(R) =

k∑
q′=−k

D(k)∗

qq′ (R)T (k)
q′ .



Now

D†(R)T (k)
q D(R)

=
∑
q1

∑
q2

〈k1k2; q1q2|k1k2; kq〉

×D†(R)X(k1)
q1

D(R)D†(R)Z(k2)
q2

D(R)

=
∑
q1

∑
q2

∑
q′1

∑
q′2

〈k1k2; q1q2|k1k2; kq〉

×X
(k1)
q′1

D(k1)
q′1q1

(R−1)Z(k2)
q′2

D(k2)
q′2q2

(R−1)

=
∑
k′′

∑
q1

∑
q2

∑
q′1

∑
q′2

∑
q′′

∑
q′

〈k1k2; q1q2|k1k2; kq〉

×〈k1k2; q′1q
′
2|k1k2; k′′q′〉

×〈k1k2; q1q2|k1k2; k′′q′′〉D(k′′)
q′q′′(R

−1)X(k1)
q′1

Z
(k2)
q′2

,

where we have substituted the Clebsch-Gordan series
expansion

D(j1)
m1m′

1
(R)D(j2)

m2m′
2
(R) =∑

j

∑
m

∑
m′

〈j1j2;m1m2|j1j2; jm〉

×〈j1j2;m′
1m

′
2|j1j2; jm′〉D(j)

mm′(R)

Taking into account the orthogonality of the
Clebsch-Gordan coefficients∑

m1m2

〈j1j2;m1m2|j1j2; jm〉〈j1j2;m1m2|j1j2; j′m′〉

= δjj′δmm′

we get

D†(R)T (k)
q D(R)

=
∑
k′′

∑
q′1

∑
q′2

∑
q′′

∑
q′

δkk′′δqq′′〈k1k2; q′1q
′
2|k1k2; k′′q′〉

×D(k′′)
q′q′′(R

−1)X(k1)
q′1

Z
(k2)
q′2

,

which can be rewritten as

D†(R)T (k)
q D(R)

=
∑
q′

∑
q′1q′2

〈k1k2; q′1q
′
2|k1k2; kq′〉X(k1)

q′1
Z

(k2)
q′2


×D(k)

q′q(R
−1)

=
∑
q′

T
(k)
q′ D

(k)
q′q(R

−1) =
∑
q′

D(k)∗

qq′ (R)T (k)
q′

Matrix elements of tensor operators

Theorem 2 The matrix elements of the tensor operator
T

(k)
q satisfy

〈α′, j′m′|T (k)
q |α, jm〉 = 0,

unless m′ = q + m.

Proof: Due to the property

[Jz, T
(k)
q ] = h̄qT (k)

q

we have

〈α′, j′m′|[Jz, T
(k)
q ]− h̄qT (k)

q |α, jm〉

= [(m′ −m)h̄− qh̄]× 〈α′, j′m′|T (k)
q |α, jm〉 = 0,

so
〈α′, j′m′|T (k)

q |α, jm〉 = 0,

if m′ 6= q + m

Theorem 3 (Wigner-Eckardt’s theorem) The matrix
elements of a tensor operator between eigenstates of the
angular momentum satisfy the relation

〈α′, j′m′|T (k)
q |α, jm〉 = 〈jk;mq|jk; j′m′〉 〈α

′j′‖T (k)‖αj〉√
2j + 1

,

where the reduced matrix element 〈α′j′‖T (k)‖αj〉 depends
neither on the quantum numbers m, m′ nor on q.
Proof: Since T

(k)
q is a tensor operator it satisfies the

condition

[J±, T (k)
q ] = h̄

√
(k ∓ q)(k ± q + 1)T (k)

q±1,

so

〈α′, j′m′|[J±, T (k)
q ]|α, jm〉

= h̄
√

(k ∓ q)(k ± q + 1)〈α′, j′m′|T (k)
q±1|α, jm〉.

Substituting the matrix elements of the ladder operators
we get√

(j′ ±m′)(j′ ∓m′ + 1)〈α′, j′,m′ ∓ 1|T (k)
q |α, jm〉

=
√

(j ∓m)(j ±m + 1)〈α′, j′,m′|T (k)
q |α, j, m± 1〉

+
√

(k ∓ q)(k ± q + 1)〈α′, j′,m′|T (k)
q±1|α, jm〉.

If we now substituted j′ → j, m′ → m, j → j1, m → m1,
k → j2 and q → m2, we would note that the recursion
formula above is exactly like the recursion formula for the
Clebsch-Gordan coefficients,√

(j ∓m)(j ±m + 1)〈j1j2;m1m2|j1j2; j, m± 1〉
=

√
(j1 ∓m1 + 1)(j1 ±m1)
×〈j1j2;m1 ∓ 1,m2|j1j2; jm〉

+
√

(j2 ∓m2 + 1)(j2 ±m2)
×〈j1j2;m1,m2 ∓ 1|j1j2; jm〉.

Both recursions are of the form
∑

j aijxj = 0, or sets of
linear homogenous simultaneous equations with the same
coefficients aij . So we have two sets of equations∑

j

aijxj = 0,
∑

j

aijyj = 0,

one for the matrix elements (xi) of the tensor operator
and the other for the Clebsch-Gordan coefficients (yi).
These sets of equations tell that

xj

xk
=

yj

yk
∀j and k fixed,



so xj = cyj while c is a proportionality coefficient
independent of the indeces j. Thus we see that

〈α′, j′m′|T (k)
q |α, jm〉

= ( constant independent on m, q and m′)
×〈jk;mq|jk; j′m′〉.

If we write the proportionality coefficient like

〈α′j′‖T (k)‖αj〉√
2j + 1

we are through.
According to the Wigner-Eckart theorem a matrix
element of a tensor operator is a product of two factors,
of which

• 〈jk;mq|jk; j′m′〉 depends only on the geometry, i.e.
on the orientation of the system with respect to the
z-axis.

• 〈α′j′‖T (k)‖αj〉√
2j + 1

depends on the dynamics of the

system.

As a special case we have the projection theorem:
Theorem 4 Let

J±1 = ∓ 1√
2
(Jx ± iJy) = ∓ 1√

2
J±, J0 = Jz

be the components of the tensor operator corresponding to
the angular momentum. Then

〈α′, jm′|Vq|α, jm〉 =
〈α′, jm|J · V |α, jm〉

h̄2j(j + 1)
〈jm′|Jq|jm〉.

Proof: Due to the expansions

T
(0)
0 = −U · V

3
=

U+1V−1 + U−1V+1 − U0V0

3
,

T (1)
q =

(U × V )q

i
√

2
,

T
(2)
±2 = U±1V±1,

T
(2)
±1 =

U±1V0 + U0V±1√
2

,

T
(2)
0 =

U+1V−1 + 2U0V0 + U−1V+1√
6

we can write

〈α′, jm|J · V |α, jm〉
= 〈α′, jm|(J0V0 − J+1V−1 − J−1V+1)α, jm〉
= mh̄〈α′, jm|V0|α, jm〉

+
h̄√
2

√
(j + m)(j −m + 1)〈α′, j,m− 1|V−1|α, jm〉

− h̄√
2

√
(j −m)(j + m + 1)〈α′, j,m + 1|V+1|α, jm〉

= cjm〈α′j‖V ‖αj〉,

where, according to the Wigner-Eckart theorem the
coefficient cjm does not depend on α, α′ or V .

The coefficient cjm does not depend either on the
quantum number m, because J · V is a scalar operator,
so we can write it briefly as cj . Because cj does not
depend on the operator V the above equation is valid
also when V → J and α′ → α, or

〈α, jm|J2|α, jm〉 = h̄2j(j + 1) = cj〈αj‖J‖αj〉.

If we now apply the Wigner-Eckart theorem to the
operators Vq and Jq we get

〈α′, jm′|Vq|α, jm〉
〈α, jm′|Jq|α, jm〉

=
〈α′j‖V ‖αj〉
〈αj‖J‖αj〉

.

for the ratios of the matrix elements. On the other hand,
the right hand side of this equation is

〈α′, jm|J · V |α, jm〉
〈α, jm|J2|α, jm〉

,

so

〈α′, jm′|Vq|α, jm〉 =
〈α′, jm|J · V |α, jm〉

h̄2j(j + 1)
〈jm′|Jq|jm〉

Generalizing one can show that the reduced matrix
elements of the irreducible product T

(k)
q of two tensor

operators, X
(k1)
q1 and Z

(k2)
q2 , satisfy

〈α′j′||T (k)‖αj〉

=
√

2k + 1(−1)k+j+j′
∑
α′′

∑
j′′

{
k1 k2 k
j j′ j′′

}
×〈α′j′‖X(k1)‖α′′j′′〉〈α′′j′′|Z(k2)‖αj〉.



Symmetry

Symmetries, constants of motion and
degeneracies
Looking at the Lagrange equation of motion

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0

of classical mechanics one can see that if the Lagrangian
L(qi, q̇i) is invariant under translations, i.e.

L(qi, q̇i) −→ L(qi + δqi, q̇i) = L(qi, q̇i),

the momentum
pi =

∂L
∂q̇i

is a conserved quantity, i.e.

dpi

dt
=

d

dt

(
∂L
∂q̇i

)
= 0.

Formulating classical mechanics using the Hamiltonian
function H(qi, pi) the equations of motion take the forms

ṗi = −∂H
∂qi

q̇i =
∂H
∂pi

.

Also looking at these one can see that if H is symmetric
under the operation

qi −→ qi + δqi

there exists a conserved quantity:

ṗi = 0.

In quantum mechanics operations of that kind
(translations, rotations, . . .) are associated with a unitary
symmetry operator.
Let S be an arbitrary symmetry operator. We say that
the Hamiltonian H is symmetric, if

[S,H] = 0,

or due to the unitarity of the operator S equivalently

S†HS = H.

The matrix elements of the Hamiltonian are then
invariant under that operation.
In the case of a continuum symmetry we can look at
infinitesimal operations

S = 1− iε

h̄
G,

where the Hermitean operator G is the generator of that
symmetry. From the condition

S†HS = H

it follows now
[G, H] = 0,

so according to the Heisenberg equation of motion

dA

dt
=

1
ih̄

[A,H]

we have
dG

dt
= 0.

In the Heisenberg formalism the observable G is thus a
constant of motion. if H is invariant for example under

• translations then the momentum is constant of
motion.

• rotations then the angular momentum is a constant
motion.

Let us suppose now that the Hamiltonian is symmetric
under the operations S generated by G:

S†HS = H

[S,H] = 0
[G, H] = 0.

Let |g′〉 be the eigenstates of G, i.e.

G|g′〉 = g′|g′〉

and let the system at the moment t0 be in the eigenstate
|g′〉 of G. Since the time evolution operator is a
functional of the Hamiltonian only,

U = U [H],

so
[G, U ] = 0.

At the moment t we then have

G|g′, t0; t〉 = GU(t0, t)|g′〉 = U(t0, t)G|g′〉
= g′|g′, t0; t〉,

or an eigenstate associated with a particular eigenvalue of
G remains always an eigenstate belonging to the same
eigenvalue.
Let us consider now the energy eigenstates |n〉, i.e.

H|n〉 = En|n〉.

When the Hamiltonian is symmetric under the operations
S we have

H(S|n〉 = SH|n〉 = EnS|n〉.

If now
|n〉 6= S|n〉,

then the energy states En are degenerate. Thus a
symmetry is also usually associated with a degeneracy.
Let us suppose now that the symmetry operation S can
be parametrized with a continuous quantity, say λ:

S = S(λ).



When the Hamiltonian is symmetric under these
operations all states S(λ)|n〉 have the same energy.
Example Rotations D(R).
If

[D(R),H] = 0,

then
[J ,H] = 0, [J2,H] = 0.

So there exist simultaneous eigenvectors |n; jm〉 of the
operators H, J2 ja Jz. Now all rotated states

D(R)|n; jm〉

belong to the same energy eigenvalue. We know that

D(R)|n; jm〉 =
∑
m′

|n; jm′〉D(j)
m′m(R),

that is, every rotated state is a superposition of (2j + 1)
linearly independent states. The degeneracy is thus
(2j + 1)-fold.
Example Atomic electron.
The potential acting on an electron is of form

U = V (r) + VLSL · S.

Now
[J ,H] = 0, [J2,H] = 0,

where
J = L + S.

The energy levels are thus (2j + 1)-foldly degenerated.
Let’s set the atom in magnetic field parallel to the z-axis.
The Hamiltonian is then appended by the term

Z = cSz.

Now
[J2, Sz] 6= 0,

so the rotation symmetry is broken and the (2j + 1)-fold
degeneracy lifted.



Parity
The parity or space inversion operation converts a right
handed coordinate system to left handed:

x −→ −x, y −→ −y, z −→ −z.

This is a case of a non continuous operation, i.e. the
operation cannot be composed of infinitesimal operations.
Thus the non continuous operations have no generator.
We consider the parity operation, i.e. we let the parity
operator π to act on vectors of a Hilbert space and keep
the coordinate system fixed:

|α〉 −→ π|α〉.

Like in all symmetry operations we require that π is
unitary, i.e.

π†π = 1.

Furthermore we require:

〈α|π†xπ|α〉 = −〈α|x|α〉 ∀|α〉.

So we must have
π†xπ = −x,

or
πx = −xπ.

The operators x ja π anticommute.
Let |x′〉 be a position eigenstate, i.e.

x|x′〉 = x′|x′〉.

Then
xπ|x′〉 = −πx|x′〉 = (−x′)π|x′〉,

and we must have

π|x′〉 = eiϕ| − x′〉.

The phase is usually taken to be ϕ = 0, so

π|x′〉 = | − x′〉.

Applying the parity operator again we get

π2|x′〉 = |x′〉

or
π2 = 1.

We see that

• the eigenvalues of the operator π can be only ±1,

• π−1 = π† = π.

Momentum and parity

We require that operations

• translation followed by space inversion

• space inversion followed by translation to the
opposite direction

are equivalent:

πT (dx′) = T (−dx′)π.

Substituting

T (dx′) = 1− i

h̄
dx′ · p,

we get the condition

{π,p} = 0 or π†pπ = −p,

or the momentum changes its sign under the parity
operation.

Angular momentum and parity

In the case of the orbital angular momentum

L = x× p

one can easily evaluate

π†Lπ = π†x× pπ = π†xπ × π†pπ = (−x)× (−p)
= L,

so the parity and the angular momentum commute:

[π,L] = 0.

In R3 the parity operator is the matrix

P =

 −1 0 0
0 −1 0
0 0 −1

 ,

so quite obviously

PR = RP, ∀R ∈ O(3).

We require that the corresponding operators of the
Hilbert space satisfy the same condition, i.e.

πD(R) = D(R)π.

Looking at the infinitesimal rotation

D(εn̂) = 1− iJ · n̂ε/h̄,

we see that
[π,J ] = 0 or π†Jπ = J ,

which is equivalent to the transformation of the orbital
angular momentum.
We see that under

• rotations x and J transform similarly, that is, like
vectors or tensors of rank 1.

• space inversions x is odd and J even.

We say that under the parity operation

• odd vectors are polar,

• even vectors are axial or pseudovectors.



Let us consider such scalar products as p · x and S · x.
One can easily see that under rotation these are invariant,
scalars. Under the parity operation they transform like

π†p · xπ = (−p) · (−x) = p · x
π†S · xπ = S · (−x) = −S · x.

We say that quantities behaving under rotations like
scalars, spherical tensors of rank 0, which under the
parity operation are

• even, are (ordinary) scalars,

• odd, are pseudoscalars.

Wave functions and parity

Let ψ be the wave function of a spinles particle in the
state |α〉, i.e.

ψ(x′) = 〈x′|α〉.

Since the position eigenstates satisfy

π|x′〉 = | − x′〉,

the wave function of the space inverted state is

〈x′|π|α〉 = 〈−x′|α〉 = ψ(−x′).

Suppose that |α〉 is a parity eigenstate, i.e.

π|α〉 = ±|α〉.

The corresponding wave function obeys the the relation

ψ(−x′) = 〈x′|π|α〉 = ±〈x′|α〉 = ±ψ(x′),

i.e. it is an even or odd function of its argument.
Note Not all physically relevant wave function have
parity. For example,

[p, π] 6= 0,

so a momentum eigenstate is not an eigenstate of the
parity. The wave function corresponding to an eigenstate
of the momentum is the plane wave

ψp′(x′) = eip′·x′/h̄,

which is neither even nor odd.
Because

[π,L] = 0,

the eigenstate |α, lm〉 of the orbital angular momentum
(L2, Lz) is also an eigenstate of the parity. Now

Rα(r)Y m
l (θ, φ) = 〈x′|α, lm〉.

In spherical coordinates the transformation x′ −→ −x′

maps to

r −→ r

θ −→ π − θ (cos θ −→ − cos θ)
φ −→ φ+ π (eimφ −→ (−1)meimφ).

The explicit expression for spherical functions is

Y m
l (θ, φ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pm

l (θ)eimφ,

from which as a special case, m = 0, we obtain

Y 0
l (θ, φ) =

√
2l + 1

4π
Pl(cos θ).

Depending on the degree l of the Legendre polynomial it
is either even or odd:

Pl(−z) = (−1)lPl(z).

We see that

〈x′|π|α, l0〉 = (−1)l〈x′|α, l0〉,

so the state vectors obey

π|α, l0〉 = (−1)l|α, l0〉.

Now
[π, L±] = 0

and
Lr
±|α, l0〉 ∝ |α, l,±r〉,

so the orbital angular momentum states satisfy the
relation

π|α, lm〉 = (−1)l|α, lm〉.

Theorem 1 If
[H,π] = 0,

and |n〉 is an eigenstate of the Hamiltonian H belonging
to the nondegenerate eigenvalue En, i.e.

H|n〉 = En|n〉,

then |n〉 is also an eigenstate of the parity.
Proof: Using the property π2 = 1 one can easily see that
the state

1
2
(1± π)|n〉

is a parity eigenstate belonging to the eigenvalue ±1. On
the other hand, this is also an eigenstate of the
Hamiltonia H with the energy En:

H(
1
2
(1± π)|n〉) = En

1
2
(1± π)|n〉.

Since we supposed the state |n〉 to be non degenerate the
states |n〉 and 1

2 (1± π)|n〉 must be the same excluding a
phase factor,

1
2
(1± π)|n〉 = eiϕ|n〉,

so the state |n〉 is a parity eigen state belonging to the
eigenvalue ±1
Example The energy states of a one dimensional
harmonic oscillator are non degenerate and the
Hamiltonian even, so the wave functions are either even
or odd.



Note The nondegeneracy condition is essential. For

example, the Hamiltonian of a free particle, H = p2

2m, is
even but the energy states

H|p′〉 =
p′

2

2m
|p′〉

are not eigenstates of the parity because

π|p′〉 = | − p′〉.

The condition of the theorem is not valid because the
states |p′〉 and | − p′〉 are degenerate. We can form parity
eigenstates

1/
√

2(|p′〉 ± | − p′〉),

which are also degenerate energy (but not momentum)
eigenstates. The corresponding wave functions

ψ±p′(x′) = 〈x′| ± p′〉 = e±ip′·x′/h̄

are neither even nor odd, whereas

〈x′|(|p′〉+ | − p′〉) ∝ cos p′ · x′/h̄
〈x′|(|p′〉 − | − p′〉) ∝ sinp′ · x′/h̄

are.
Example One dimensional symmetric double well

S y m m e t r i c  ( S ) A n t i s y m m e t r i c  ( A )
The ground state is the symmetric state |S〉 and the first
excited state the antisymmetric state |A〉:

H|S〉 = ES |S〉
π|S〉 = |S〉
H|A〉 = EA|S〉
π|A〉 = −|A〉,

where ES < EA. When the potential barrier V between
the wells increases the energy difference between the
states decreases:

lim
V→∞

(EA − ES) → 0.

We form the superpositions

|L〉 =
1√
2
(|S〉+ |A〉)

|R〉 =
1√
2
(|S〉 − |A〉),

which are neither energy nor parity eigenstates.

Let us suppose that at the moment t0 = 0 the state of the
system is |L〉. At a later moment, t, the system is
descibed by the state vector

|L, t0 = 0; t〉

=
1√
2
(e−iESt/h̄|S〉+ e−iEAt/h̄|A〉)

=
1√
2
e−iESt/h̄(|S〉+ e−i(EA−ES)t/h̄|A〉),

because now the time evolution operator is simply

U(t, t0 = 0) = e−iHt/h̄.

At the moment t = T/2 = 2πh̄/2(EA − ES) the system is
in the pure |R〉 state and at the moment t = T again in
its pure initial state |L〉. The system oscillates between
the states |L〉 and |R〉 at the angular velocity

ω =
EA − ES

h̄
.

When V →∞, then EA → ES . Then the states |L〉 and
|R〉 are degenerate energy eigenstates but not parity
eigenstates. A particle which is localized in one of the
wells will remain there forever. Its wave function does
not, however, obey the same symmetry as the
Hamiltonian: we are dealing with a broken symmetry.

Selection rules

Suppose that the states |α〉 and |β〉 are parity eigenstates:

π|α〉 = εα|α〉
π|β〉 = εβ |β〉,

where εα and εβ are the parities (±1) of the states. Now

〈β|x|α〉 = 〈β|π†πxπ†π|α〉 = −εαεβ〈β|x|α〉,

so
〈β|x|α〉 = 0 unless εα = −εβ .

Example The intensity of the dipole transition is
proportional to the matrix element of the operator x
between the initial and final states. Dipole transitions are
thus possible between states which have opposite parity.
Example Dipole moment.
If

[H,π] = 0,

then no non degenerate state has dipole moment:

〈n|x|n〉 = 0.

The same holds for any quantity if the corresponding
operator o is odd:

π†oπ = −o.



Lattice translations
We consider a particle in the one dimensional periodic
potential

V (x± a) = V (x).

a a a

a a a

( a )

( b )
The Hamiltonian of the system is not in general invariant
under translations

τ †(l)xτ(l) = x + l, τ(l)|x′〉 = |x′ + l〉.

However, when l is exactly equal to the period of the
lattice a we have

τ †(a)V (x)τ(a) = V (x + a) = V (x).

Because the operator corresponding to the kinetic energy
in the Hamiltonian is translationally invariant the whole
Hamiltonian H satisfies the condition

τ †(a)Hτ(a) = H,

which, due to the unitarity of the translation operator
can be written as

[H, τ(a)] = 0.

The operators H and τ(a) have thus common eigenstates.
Note The operator τ(a) is unitary and hence its
eigenvalues need not be real.
Let us suppose that the potential barrier between the
lattice points is infinitely high. Let |n〉 be the state
localized in the lattice cell n, i.e.

〈x′|n〉 6= 0 only if x′ ≈ na.

Obviously |n〉 is a stationary state. Because all lattice
cells are exactly alike we must have

H|n〉 = E0|n〉, ∀n.

Thus the system has countably infinite number of ground
states |n〉, n = −∞, . . . ,∞.
Now

τ(a)|n〉 = |n + 1〉,

so the state |n〉 is not an eigenstate of the translation
τ(a).
Let’s try

|θ〉 ≡
∞∑
−∞

einθ|n〉,

where θ is a real parameter and

−π ≤ θ ≤ π.

Obviously we have

H|θ〉 = E0|θ〉.

Furthermore we get

τ(a)|θ〉 =
∞∑

n=−∞
einθ|n + 1〉 =

∞∑
n=−∞

ei(n−1)θ|n〉

= e−iθ|θ〉.

Thus every state corresponding to a value of the
continuous parameter θ has the same energy, i.e. the
ground state of the system infinitely degenerate.
Let us suppose further that

• |n〉 is a state localized at the point n so that

τ(a)|n〉 = |n + 1〉,

• 〈x′|n〉 6= 0 (but small), when |x′ − na| > a.

Due to the translation symmetry the diagonal elements of
the Hamiltonian H in the base {|n〉} are all equal to
eachother:

〈n|H|n〉 = E0.

Let us suppose now that

〈n′|H|n〉 6= 0 only if n′ = n or n′ = n± 1.

We are dealing with the so called tight binding
approximation.
When we define

∆ = −〈n± 1|H|n〉,

we can write

H|n〉 = E0|n〉 −∆|n + 1〉 −∆|n− 1〉,

where we have exploited the orthonormality of the basis
{|n〉}. Thus the state |n〉 is not an energy eigen state.
Let us look again at the trial

|θ〉 =
∞∑

n=−∞
einθ|n〉.

Like before we have

τ(a)|θ〉 = e−iθ|θ〉.

Furthermore

H
∑

einθ|n〉

= E0

∑
einθ|n〉 −∆

∑
einθ|n + 1〉

−∆
∑

einθ|n− 1〉

= E0

∑
einθ|n〉 −∆

∑
(einθ−iθ + einθ+iθ)|n〉

= (E0 − 2∆ cos θ)
∑

einθ|n〉.

The earlier degeneracy will be lifted if ∆ 6= 0 and

E0 − 2∆ ≤ E ≤ E0 + 2∆.



Bloch’s theorem

Let us consider the wave function 〈x′|θ〉. In the
translated state τ(a)|θ〉 the wave function is

〈x′|τ(a)|θ〉 = 〈x′ − a|θ〉

when the operator τ(a) acts on left. When it acts on
right we get

〈x′|τ(a)|θ〉 = e−iθ〈x′|θ〉,

so we have
〈x′ − a|θ〉 = 〈x′|θ〉e−iθ.

This equation can be solved by substituting

〈x′|θ〉 = eikx′
uk(x′),

when θ = ka and uk(x′) is a periodic function with the
period a.
We have derived a theorem known as the Bloch theorem:
Theorem 1 The wave function of the eigenstate |θ〉 of
the translation operator τ(a) can be written as the procuct
of the plane wave eikx′

and a function with the period a.
Note When deriving the theorem we exploited only the
fact that |θ〉 an eigenstate of the operator τ(a) belonging
to the eigenvalue eiθ. Thus it is valid for all periodic
systems (whether the tight binding approximation holds
or not)
With the help of the Bloch theorem the dispersion
relation of the energy in the tight binding model can be
written as

E(k) = E0 − 2∆ cos ka, −π

a
≤ k ≤ π

a
.

This continuum of the energies is known as the Brillouin
zone.



Time reversal (reversal of motion)
The Newton equations of motion are invariant under the
transformation t −→ −t: if x(t) is a solution of the
equation

mẍ = −∇V (x)

then also x(−t) is a solution.
At the moment t = 0 let there be a particle at the point
x(t = 0) with the momentum p(t = 0). Then a particle at
the same point but with the momentum −p(t = 0)
follows the trajectory x(−t).
In the quantum mechanical Schrödinger equation

ih̄
∂ψ

∂t
=

(
− h̄2

2m
∇2 + V

)
ψ,

due to the first derivative with respect to the time,
ψ(x,−t) is not a solution eventhough ψ(x, t) were, but
ψ∗(x,−t) is. In quantum mechanics the time reversal has
obviously something to do with the complex conjugation.
Let us consider the symmetry operation

|α〉 −→ |α̃〉, |β〉 −→ |β̃〉.

We require that the absolute value of the scalar product
is invariant under that operation:

|〈β̃|α̃〉| = |〈β|α〉|.

There are two possibilities to satisfy this condition:

1. 〈β̃|α̃〉 = 〈β|α〉, so the corresponding symmetry
operator is unitary, that is

〈β|α〉 −→ 〈β|U†U |α〉 = 〈β|α〉.

The symmetries treated earlier have obeyed this
condition.

2. 〈β̃|α̃〉 = 〈β|α〉∗ = 〈α|β〉, so the symmetry operator
cannot be unitary.

We define the antiunitary operator θ so that

〈β̃|α̃〉 = 〈α|β〉∗

θ(c1|α〉+ c2|β〉) = c∗1θ|α〉+ c∗2θ|β〉,

where

|α〉 −→ |α̃〉 = θ|α〉, |β〉 −→ |β̃〉 = θ|β〉

If the operator satisfies only the last condition it is called
antilinear.
We define the complex conjugation operator K so that

Kc|α〉 = c∗K|α〉.

We present the state |α〉 in the base {|a′〉}. The effect of
the operator K is then

|α〉 =
∑
a′

|a′〉〈a′|α〉 K−→ |α̃〉 =
∑
a′

〈a′|α〉∗K|a′〉

=
∑
a′

〈a′|α〉∗|a′〉.

The fact that the operator K does not change the base
states can be justified like:
The state |a′〉 represented in the base {|a′〉} maps to the
column vector

|a′〉 7→



0
0
...
0
1
0
...
0


,

which is unaffected by the complex conjugation.
Note The effect of the operator K depends thus on the
choice of the basis states.
If U is a unitary operator then the operator θ = UK is
antiunitary.
Proof: Firstly

θ(c1|α〉+ c2|β〉) = UK(c1|α〉+ c2|β〉)
= (c∗1UK|α〉+ c∗2UK|β〉)
= (c∗1θ|α〉+ c∗2θ|β〉),

so θ is antiliniear. Secondly, expanding the states |α〉 and
|β〉 in a complete basis {|a′〉} we get

|α〉 θ−→ |α̃〉 =
∑
a′

〈a′|α〉∗UK|a′〉

=
∑
a′

〈a′|α〉∗U |a′〉

=
∑
a′

〈α|a′〉U |a′〉

and

|β̃〉 =
∑
a′

〈a′|β〉∗U |a′〉 ↔ 〈β̃| =
∑
a′

〈a′|β〉〈a′|U†.

Thus the scalar product is

〈β̃|α̃〉 =
∑
a′′

∑
a′

〈a′′|β〉〈a′′|U†U |a′〉〈α|a′〉

=
∑
a′

〈α|a′〉〈a′|β〉 = 〈α|β〉

= 〈β|α〉∗.

The operator θ is thus indeed antiunitary.
Let Θ be the time reversal operator. We consider the
transformation

|α〉 −→ Θ|α〉,
where Θ|α〉 is the time reversed (motion reversed) state.
If |α〉 is the momentum eigenstate |p′〉, we should have

Θ|p′〉 = eiϕ| − p′〉.

Let the system be at the moment t = 0 in the state |α〉.
At a slightly later moment t = δt it is in the state

|α, t0 = 0; t = δt〉 =
(

1− iH

h̄
δt

)
|α〉.



We apply now, at the moment t = 0, the time reversal
operator Θ and let the system evolve under the
Hamiltonian H. Then at the moment δt the system is in
the state (

1− iH

h̄
δt

)
Θ|α〉.

If the motion of the system is invariant under time
reversal this state should be the same as

Θ|α, t0 = 0;−δt〉,

i.e. we first look at the state at the earlier moment −δt
and then reverse the direction of the momentum p.
Mathematically this condition can be expressed as(

1− iH

h̄
δt

)
Θ|α〉 = Θ

(
1− iH

h̄
(−δt)

)
|α〉.

Thus we must have

−iHΘ|〉 = ΘiH|〉,

where |〉 stands for an arbitrary state vector.
If Θ were linear we would obtain the anticommutator
relation

HΘ = −ΘH.

If now |n〉 is an energy eigenstate corresponding to the
eigenvalue En then, according to the anticommutation
rule

HΘ|n〉 = −ΘH|n〉 = (−En)Θ|n〉,

and the state Θ|n〉 is an energy eigenstate corresponding
to the eigenvalue −En. Thus most systems (those, whose
energy spectrum is not bounded) would not have any
ground state.
Thus the operator Θ must be antilinear, and, in order to
be a symmetry operator, it must be antiunitary. Using
the antilinearity for the right hand side of the condition

−iHΘ|〉 = ΘiH|〉

we can write it as

ΘiH|〉 = −iΘH|〉.

So, we see that the operators commute:

ΘH = HΘ.

Note We have not defined the Hermitean conjugate of
the antiunitary operator θ nor have we defined the
meaning of the expression 〈β|θ. That being, we let the
time reversal operator Θ to operate always on the right
and with the matrix element 〈β|Θ|α〉 we mean the
expression (〈β|) · (Θ|α〉).
Let ⊗ be an arbitrary linear operator. We define

|γ〉 ≡ ⊗†|β〉,

so that
〈β|⊗ = 〈γ|

and

〈β| ⊗ |α〉 = 〈γ|α〉 = 〈α̃|γ̃〉
= 〈α̃|Θ⊗† |β〉 = 〈α̃|Θ⊗† Θ−1Θ|β〉
= 〈α̃|Θ⊗† Θ−1|β̃〉.

In partcular, for a Hermitean observable A we have

〈β|A|α〉 = 〈α̃|ΘAΘ−1|β̃〉.

We say that the observable A is even or odd under time
reversal depending on wheter in the equation

ΘAΘ−1 = ±A

the upper or the lower sign holds. This together with the
equation

〈β|A|α〉 = 〈α̃|ΘAΘ−1|β̃〉

imposes certain conditions on the phases of the matrix
elements of the operator A between the time reversed
states. Namely, they has to satisfy

〈β|A|α〉 = ±〈β̃|A|α̃〉∗.

In particular, the expectation value satisfies the condition

〈α|A|α〉 = ±〈α̃|A|α̃〉.

Example The expectation value of the momentum
operator p.
We require that

〈α|p|α〉 = −〈α̃|p|α̃〉,

so p is odd, or
ΘpΘ−1 = −p.

The momentum eigenstates satisfy

pΘ|p′〉 = −ΘpΘ−1Θ|p′〉
= (−p′)Θ|p′〉,

i.e. Θ|p′〉 is the momentum eigenstates correponding to
the eigenvalue −p′:

Θ|p′〉 = eiϕ| − p′〉.

Similarly we can derive for the position operator x the
expressions

ΘxΘ−1 = x

Θ|x′〉 = |x′〉

when we impose the physically sensible condition

〈α|x|α〉 = 〈α̃|x|α̃〉.

We consider the basic commutation relations

[xi, pj ]|〉 = ih̄δij |〉.

Now
Θ[xi, pj ]Θ−1Θ|〉 = Θih̄δij |〉,



from which, using the antilinearity and the time reversal
properties of the operators x and p we get

[xi, (−pj)]Θ|〉 = −ih̄δijΘ|〉.

We see thus that the commutation rule

[xi, pj ]|〉 = ih̄δij |〉

remains invariant under the time reversal.
Correspondingly, the requirement of the invariance of the
commutation rule

[Ji, Jj ] = ih̄εijkJk

leads to the condition

ΘJΘ−1 = −J .

This agrees with transformation properties of the orbital
angular momentum x× p.

Wave functions

We expand the state |α〉 with the help of position
eigenstates:

|α〉 =
∫
d3x′ |x′〉〈x′|α〉.

Now

Θ|α〉 =
∫
d3x′ Θ|x′〉〈x′|α〉∗

=
∫
d3x′ |x′〉〈x′|α〉∗,

so under the time reversal the wave function

ψ(x′) = 〈x′|α〉

transforms like
ψ(x′) −→ ψ∗(x′).

If in particular we have

ψ(x′) = R(r)Y m
l (θ, φ),

we see that

Y m
l (θ, φ) −→ Y m

l
∗(θ, φ) = (−1)mY −m

l (θ, φ).

Because Y m
l is the wave function belonging to the state

|lm〉 we must have

Θ|lm〉 = (−1)m|l,−m〉.

The probability current corresponding to the wave
function R(r)Y m

l seems to turn clockwise when looked at
from the direction of the positive z-axis and m > 0. The
probability current of the corresponding time reversed
state on the other hand turns counterclockwise because m
changes its sign under the operation.
The spinles particles obey
Theorem 1 If the Hamiltonian H is invariant under the
time reversal and the energy eigenstate |n〉 nondegenerate
then the corresponding energy eigenfunction is real (or
more generally a real function times a phase factor
independent on the coordinate x′).

HΘ|n〉 = ΘH|n〉 = EnΘ|n〉,

so the states |n〉 and Θ|n〉 have the same energy. Because
the state |n〉 was supposed to be nondegenerate they
must represent the same state. The wave function of the
state |n〉 is 〈x′|n〉 and the one of the state Θ|n〉
correspondingly 〈x′|n〉∗. These must be same (or more
accurately, they can differ only by a phase factor which
does not depend on the coordinate x′), i.e.

〈x′|n〉 = 〈x′|n〉∗

For example the wave function of a nondegenerate
groundstate is always real.
For a spinles particle in the state |α〉 we get

Θ|α〉 = Θ
∫
dx′ 〈x′|α〉|x′〉

=
∫
dx′ 〈x′|α〉∗|x′〉 = K|α〉,

i.e. the time reversal is equivalent to the complex
conjugation.
On the other hand, in the momentum space we have

Θ|α〉 =
∫
d3p′ | − p′〉〈p′|α〉∗

=
∫
d3p′ |p′〉〈−p′|α〉∗,

because
Θ|p′〉 = | − p′〉.

The momentum space wave function transform thus
under time reversal like

φ(p′) −→ φ∗(−p′).

We consider a spin 1
2 particle the spin of which is oriented

along n̂. The corresponding state is obtained by rotating
the state |Sz; ↑〉:

|n; ↑〉 = e−iSzα/h̄e−iSyβ/h̄|Sz; ↑〉,

where α and β are the direction angles of the vector n̂.
Because

ΘJΘ−1 = −J .

we see that

Θ|n; ↑〉 = e−iSzα/h̄e−iSyβ/h̄Θ|Sz; ↑〉.

Furthermore, due to the oddity of the angular
momentum, it follows that

JzΘ|Sz; ↑〉 = − h̄
2
Θ|Sz; ↑〉,

so we must have

Θ|Sz; ↑〉 = η|Sz; ↓〉,

where η is an arbitrary phase factor. So we get

Θ|n; ↑〉 = η|n; ↓〉.



On the other hand we have

|n; ↓〉 = e−iαSz/h̄e−i(π+β)Sy/h̄|Sz; ↑〉,

so

η|n; ↓〉 = Θ|n; ↑〉 = e−iSzα/h̄e−iSyβ/h̄Θ|Sz; ↑〉
= ηe−iαSz/h̄e−i(π+β)Sy/h̄|Sz; ↑〉.

Writing
Θ = UK, U unitary

and recalling that the complex conjugation K has no
effect on the base states we see that

Θ = ηe−iπSy/h̄K = −iη
(

2Sy

h̄

)
K.

Now

e−iπSy/h̄|Sz; ↑〉 = +|Sz; ↓〉
e−iπSy/h̄|Sz; ↓〉 = −|Sz; ↑〉,

so the effect of the time reversal on a general spin 1
2 state

is

Θ(c↑|Sz; ↑〉+ c↓|Sz; ↓〉) = +ηc∗↑|Sz; ↓〉 − ηc∗↓|Sz; ↑〉.

Applying the operator Θ once again we get

Θ2(c↑|Sz; ↑〉+ c↓|Sz; ↓〉)
= −|η|2c↑|Sz; ↑〉 − |η|2c↓|Sz; ↓〉
= −(c↑|Sz; ↑〉+ c↓|Sz; ↓〉),

i.e. for an arbitrary spin orientation we have

Θ2 = −1.

From the relation

Θ|lm〉 = (−1)m|l,−m〉

we see that for spinles particles we have

Θ2 = 1.

In general, one can show that

Θ2|j half integer〉 = −|j half integer〉
Θ2|j integer〉 = +|j integer〉.

Generally we can write

Θ = ηe−iπJy/h̄K.

Now
e−2iπJy/h̄|jm〉 = (−1)2j |jm〉,

so

Θ2|jm〉 = Θ
(
ηe−iπJy/h̄|jm〉

)
= |η|2e−2iπJy/h̄|jm〉
= (−1)2j |jm〉.

Thus we must have

Θ2 = (−1)2j .

Often one chooses

Θ|jm〉 = i2m|j,−m〉.

Spherical tensors

Let us suppose that the operator A is either even or odd,
i.e.

ΘAΘ(−1) = ±A.

We saw that then we have

〈α|A|α〉 = ±〈α̃|A|α̃〉.

In an eigenstate of the angular momentum we have thus

〈α, jm|A|α, jm〉 = ±〈α, j,−m|A|α, j,−m〉.

Let now A be a component of a Hermitian spherical
tensor:

A = T (k)
q .

According to the Wigner-Eckart theorem it is sufficient to
consider only the component q = 0.
We define T (k) to be even/odd under the time reversal if

ΘT (k)
q=0Θ

−1 = ±T (k)
q=0.

Then we have

〈α, jm|T (k)
0 |α, jm〉 = ±〈α, j,−m|T (k)

0 |α, j,−m〉.

The state |α, j,−m〉 is obtained by rotating the state
|α, jm〉:

D(0, π, 0)|α, jm〉 = eiϕ|α, j,−m〉.

On the other hand, due to the definition of the spherical
tensor

D†(R)T (k)
q D(R) =

k∑
q′=−k

D(k)∗

qq′ (R)T (k)
q′ ,

we get

D†(0, π, 0)T (k)
0 D(0, π, 0) =

∑
q

D(k)
0q (0, π, 0)T (k)

q .

Now
D(k)

00 (0, π, 0) = Pk(cosπ) = (−1)k,

so we have

D†(0, π, 0)T (k)
0 D(0, π, 0)

= (−1)kT
(k)
0 + (q 6= 0 components).

Furthermore
〈α, jm|T (k)

q 6=0|α, jm〉 = 0,



since the m selection rule would require m = m+ q. So
we get

〈α, jm|T (k)
0 |α, jm〉

= ±〈α, jm|D†(0, π, 0)T (k)
0 D(0, π, 0)|α, jm〉

= ±(−1)k〈α, jm|T (k)
0 |α, jm〉.

Note Unlike under other symmetries the invariance of
the Hamiltonian under the time reversal

[Θ,H] = 0,

does not lead to any conservation laws. This is due to the
fact that the time evolution operator is not invariant:

ΘU(t, t0) 6= U(t, t0)Θ.

Time reversal and degeneracy

Let us suppose that

[Θ,H] = 0.

Then the energy eigenstates obey

H|n〉 = En|n〉
HΘ|n〉 = EnΘ|n〉.

If we now had
Θ|n〉 = eiδ|n〉,

then, reapplying the time reversal we would obtain

Θ2|n〉 = e−iδΘ|n〉 = |n〉,

or
Θ2 = 1.

This is, however, impossible if the system j is half integer,
because then Θ2 = −1. In systems of this kind |n〉 and
Θ|n〉 are degenerate.
Example Electon in electromagnetic field
If a particle is influenced by an external static electric
field

V (x) = eφ(x),

then clearly the Hamiltonian

H =
p2

2m
+ V (x)

is invariant under the time reversal:

[Θ,H] = 0.

If now there are odd number of electrons in the system
the total j is half integer. Thus, in a system of this kind
there is at least twofold degeneracy, so called Kramers’
degeneracy.
In the magnetic field

B = ∇×A

the Hamiltonian of an electron contains such terms as

S ·B, p ·A + A · p.

The magnetic field B is external, independent on the
system, so

[Θ,B] = 0 ja [Θ,A] = 0.

On the other hand, S and p are odd, or

ΘSΘ−1 = −S ja ΘpΘ−1 = −p,

so
[Θ,H] 6= 0.

We say that magnetic field breaks the time reversal
symmetry and lifts the Kramers degeneracy.



Perturbation theory

Stationary perturbation methods
Let us suppose that

• we have solved completely the problem

H0|n(0)〉 = E(0)
n |n(0)〉.

The basis {|n(0)〉} is now complete.

• the states |n(0)〉 are non degenerate.

• we want to solve the problem

(H0 + λV )|n〉λ = E(λ)
n |n〉λ.

Usualy the index λ is dropped off.

When we denote

∆n ≡ En − E(0)
n ,

the eigenvalue equation to be solved takes the form

(E(0)
n −H0)|n〉 = (λV −∆n)|n〉.

Note Because the expression (E(0)
n −H0)−1|n(0)〉 is

undefined the operator (E(0)
n −H0)−1 is not well defined.

So, in the equation above we cannot invert the operator
(E(0)

n −H0).
Now

〈n(0)|λV −∆n|n〉 = 〈n(0)|E(0)
n −H0|n〉,

so in the state (λV −∆n)|n〉 there is no component along
the state |n(0)〉.
We define a projection operator as

φn = 1− |n(0)〉〈n(0)| =
∑
k 6=n

|k(0)〉〈k(0)|.

Now

1
E(0)

n −H0

φn =
∑
k 6=n

1

E(0)
n − E

(0)
k

|k(0)〉〈k(0)|

and
(λV −∆n)|n〉 = φn(λV −∆n)|n〉.

Since in the limit λ→ 0 we must have

|n〉 → |n(0)〉,

the formal solution is of the form

|n〉 = cn(λ)|n(0)〉+
1

E(0)
n −H0

φn(λV −∆n)|n〉,

where
lim
λ→0

cn(λ) = 1

and
cn(λ) = 〈n(0)|n〉.

Diverting from the normal procedure we normalize

〈n(0)|n〉 = cn(λ) = 1.

We write

|n〉 = |n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ · · ·
∆n = λ∆(1)

n + λ2∆(2)
n + · · · .

Because
〈n(0)|λV −∆n|n〉 = 0,

we have, on the other hand

∆n = λ〈n(0)|V |n〉.

Thus we get

λ∆(1)
n + λ2∆(2)

n + · · ·
= λ〈n(0)|V |n(0)〉+ λ2〈n(0)|V |n(1)〉+ · · · .

Equalizing the coefficients of the powers of the parameter
λ we get

O(λ1) : ∆(1)
n = 〈n(0)|V |n(0)〉

O(λ2) : ∆(2)
n = 〈n(0)|V |n(1)〉

...
...

O(λN ) : ∆(N)
n = 〈n(0)|V |n(N−1)〉

...
...

.

We substitute into the expression

|n〉 = |n(0)〉+
φn

E(0)
n −H0

(λV −∆n)|n〉

for the state vector the power series of the state vector
and the energy correction and we get

|n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ · · ·

= |n(0)〉+
φn

E(0)
n −H0

(λV − λ∆(1)
n − λ2∆(2)

n − · · ·)

×(|n(0)〉+ λ|n(1)〉+ · · ·).

Equalizing the coefficients of the linear λ-terms we get in
the first order

O(λ) : |n(1)〉

=
φn

E(0)
n −H0

V |n(0)〉 − ∆(1)
n

E(0)
n −H0

φn|n(0)〉

=
φn

E(0)
n −H0

V |n(0)〉,

because
φn∆(1)

n |n(0)〉 = 0.

We substitute |n(1)〉 into the expression

∆(2)
n = 〈n(0)|V |n(1)〉,

so

∆(2)
n = 〈n(0)|V φn

E(0)
n −H0

V |n(0)〉.



We substitute this further into the power series of the
state vectors and we get for the coeffients of λ2 the
condition

O(λ2) : |n(2)〉 =
φn

E(0)
n −H0

V
φn

E(0)
n −H0

V |n(0)〉

− φn

E(0)
n −H0

〈n(0)|V |n(0)〉 φn

E(0)
n −H0

V |n(0)〉.

Likewise we could continue to higher powers of the
parameter λ. This method is known as the
Rayleigh-Schrödinger perturbation theory.
The explicit expression for the second order energy
correction will be

∆(2)
n = 〈n(0)|V φn

E(0)
n −H0

V |n(0)〉

=
∑
k,l

〈n(0)|V |k(0)〉〈k(0)| φn

E(0)
n −H0

|l(0)〉〈l(0)|V |n(0)〉

=
∑

k,l 6=n

Vnk
〈k(0)|l(0)〉
E(0)

n − E
(0)
l

Vln

=
∑
k 6=n

|Vnk|2

E(0)
n − E

(0)
k

.

Thus, up to the second order we have

∆n ≡ En − E(0)
n

= λVnn + λ2
∑
k 6=n

|Vnk|2

E(0)
n − E

(0)
k

+ · · · .

Correspondingly, up to the second order the state vector
is

|n〉 = |n(0)〉+ λ
∑
k 6=n

|k(0)〉 Vkn

E(0)
n − E

(0)
k

+λ2
∑
k 6=n

|k(0)〉

∑
l 6=n

VklVln

(E(0)
n − E

(0)
k )(E(0)

n − E
(0)
l )

− VnnVkn

(E(0)
n − E

(0)
k )2

)
+ · · · .

We see that the perturbation mixes in also other states
(than |n(0)〉).
We see that

• in the 1st order we need only the matrix element Vnn.

• in the 2nd order the energy levels i and j repel each
other. Namely, if E(0)

i < E
(0)
j , then the contributions

of one of these states to the energy corrections of the
other are

∆(2)
i =

|Vij |2

E
(0)
i − E

(0)
j

< 0

∆(2)
j =

|Vij |2

E
(0)
j − E

(0)
i

> 0

and the energy levels move apart from each other.

Perturbation expansions converge if |Vij/(E
(0)
i − E

(0)
j )| is

”small”. In general, no exact convergence criterion is
known.
The state |n〉 is not normalized. We define the normalized
state

|n〉N = Z1/2
n |n〉,

so that
〈n(0)|n〉N = Z1/2

n 〈n(0)|n〉 = Z1/2
n .

Thus the normalization factor Zn is the probablility for
the perturbed state to be in the unperturbed state.
The normalization condition

N 〈n|n〉N = Zn〈n|n〉 = 1

gives us

Z−1
n = 〈n|n〉 = (〈n(0)|+ λ〈n(1)|+ λ2〈n(2)|+ · · ·)

×(|n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ · · ·)
= 1 + λ2〈n(1)|n(1)〉+O(λ3)

= 1 + λ2
∑
k 6=n

|Vkn|2

(E(0)
n − E

(0)
k )2

+O(λ3).

Up to the order λ2 the probability for the perturbed state
to lie in the unperturbed state is thus

Zn ≈ 1− λ2
∑
k 6=n

|Vkn|2

(E(0)
n − E

(0)
k )2

.

The latter term can be interpreted as the probability for
the ”leakage” of the system from the state |n(0)〉 to other
states.
Example The quadratic Stark effect.
We consider hydrogen like atoms, i.e. atoms with one
electron outside a closed shell, under external uniform
electric field parallel to the positive z-axis. Now

H0 =
p2

2m
+ V0(r) and V = −e|E|z.

We suppose that the eigenstates of H0 are non degenerate
(not valid for hydrogen). The energy shift due to the
external field is

∆k = −e|E|zkk + e2|E|2
∑
j 6=k

|zkj |2

E
(0)
k − E

(0)
j

+ · · · ,

where
zkj = 〈k(0)|z|j(0)〉.

Since we assumed the states |k(0)〉 to be non degenerate
they are eigenstates of the parity. So, according to the
parity selection rule the matrix element of zkk vanishes.
Indeces k and j are collective indeces standing for the
quantum number triplet (n, l,m). According to the
Wigner-Eckart theorem we have

zkj = 〈n′, l′m′|z|n, lm〉

= 〈l1;m0|l1; l′m′〉 〈n
′l′‖T (1)‖nl〉√

2l + 1
,



where we have written the operator z as the spherical
tensor

T
(1)
0 = z.

In order to satisfy zkj 6= 0 we must have

• m′ = m and

• l′ = l − 1, l, l + 1. From these l′ = l is not suitable
due to the parity selection rule.

So we get

〈n′, l′m′|z|n, lm〉 = 0 unless
{
l′ = l ± 1
m′ = m

.

We define the polarizability α so that

∆ = −1
2
α|E|2.

As a special case we consider the ground state
|0(0)〉 = |1, 00〉 of hydrogen atom which is non degenerate
when we ignore the spin. The perturbation expansion
gives

α = −2e2
∞∑

k 6=0

|〈k(0)|z|1, 00〉|2

E
(0)
0 − E

(0)
k

,

where the summing must be extended also over the
continuum states.
Let us suppose that

E
(0)
0 − E

(0)
k ≈ constant,

so that∑
k 6=0

|〈k(0)|z|1, 00〉|2 =
∑

all k’s

|〈k(0)|z|1, 00〉|2

= 〈1, 00|z2|1, 00〉.

In the spherically symmetric ground state we obviously
have

〈z2〉 = 〈x2〉 = 〈y2〉 =
1
3
〈r2〉.

Using the explicit wave functions we get

〈z2〉 = a2
0.

Now

−E(0)
0 + E

(0)
k ≥ −E(0)

0 + E
(0)
1 =

e2

2a0

[
1− 1

4

]
,

so

α < 2e2a2
0

8a0

3e2
=

16a3
0

3
≈ 5.3a3

0.

The exact summation gives

α =
9a3

0

2
= 4.5a3

0.

Degeneracy

Let’s suppose that the energy state E(0)
D is g-foldly

degenerated:

H0|m(0)〉 = E
(0)
D |m(0)〉, ∀|m(0)〉 ∈ D, dimD = g.

We want to solve the problem

(H0 + λV )|l〉 = El|l〉

with the boundary condition

lim
λ→0

|l〉 →
∑

m∈D

〈m(0)|l(0)〉|m(0)〉,

i.e. we are looking for corrections to the degenerated
states. With the help of the energy correction we have to
solve

(E(0)
D −H0)|l〉 = (λV −∆l)|l〉.

We write again

|l〉 = |l(0)〉+ λ|l(1)〉+ λ2|l(2)〉+ · · ·
∆l = λ∆(1)

l + λ2∆(2)
l + · · · ,

so we get

(E(0)
D −H0)(|l(0)〉+ λ|l(1)〉+ λ2|l(2)〉+ · · ·)

= (λV − λ∆(1)
l − λ2∆(2)

l − · · ·)
×(|l(0)〉+ λ|l(1)〉+ λ2|l(2)〉+ · · ·).

Equalizing the coefficients of the powers of λ we get in
the first order

(E(0)
D −H0)|l(1)〉

= (V −∆(1)
l )|l(0)〉

= (V −∆(1)
l )

[∑
m∈D

|m(0)〉〈m(0)|l(0)〉

]
.

Taking the scalar product with the vector 〈m′(0)| and
recalling that

〈m′(0)|(E(0)
D −H0) = 0,

we end up with the simultaneous eigenvalue equations∑
m

Vm′m〈m(0)|l(0)〉 = ∆(1)
l 〈m′(0)|l(0)〉.

The energy corrections ∆(1)
l are obtained as eigenvalues.

From the equation

(E(0)
D −H0)|l(1)〉 = (λV −∆l)|l(0)〉

we also see that

〈m(0)|V −∆(1)
l |l(0)〉 = 0 ∀|m(0)〉 ∈ D.

Thus the vector (V −∆(1)
l )|l(0)〉 has no components in the

subspace D. Defining a projection operator as

φD = 1−
g∑

m∈D

|m(0)〉〈m(0)| =
∑
k 6∈D

|k(0)〉〈k(0)|



we can write

(V −∆(1)
l )|l(0)〉 = φD(V −∆(1)

l )|l(0)〉 = φDV |l(0)〉.

We get the equation

(E(0)
D −H0)|l(1)〉 = φD(λV −∆l)|l(0)〉,

where now the operator (E(0)
D −H0) can be inverted:

|l(1)〉 =
φD

E
(0)
D −H0

V |l(0)〉

=
∑
k 6∈D

|k(0)〉Vkl

E
(0)
D − E

(0)
k

.

When we again normalize

〈l(0)|l〉 = 1,

we get from the equation

(E(0)
D −H0)|l〉 = (λV −∆l)|l〉

for the energy shift

∆l = λ〈l(0)|V |l〉.

We substitute the power series and get

λ〈l(0)|V (|l(0)〉+ λ|l(1)〉+ λ2|l(2)〉+ · · ·)
= λ∆(1)

l + λ2∆(2)
l + · · · .

The second order energy correction is now

∆(2)
l = 〈l(0)|V |l(1)〉 = 〈l(0)|V φD

E
(0)
D −H0

V |l(0)〉

=
∑
k 6∈D

|Vkl|2

E
(0)
D − E

(0)
k

.

Thus the perturbation calculation in a degenerate system
proceeds as follows:

1◦ Identify the degenerated eigenstates. We suppose
that their count is g. Construct the
g × g-perturbation matrix V .

2◦ Diagonalize the perturbation matrix.

3◦ The resulting eigenvalues are first order corrections
for the energy shifts. The corresponding eigenvectors
are those zeroth order eigenvectors to which the
corrected eigenvectors approach when λ→ 0.

4◦ Evaluate higher order corrections using non
degenerate perturbation methods but omit in the
summations all contributions coming from the
degenerated state vectors of the space D.

Example The Stark efect in the hydrogen atom.
The hydrogen 2s (n = 2, l = 0,m = 0) and 2p
(n = 2, l = 1,m = −1, 0, 1) states are degenerate. Their
energy is

E
(0)
D = −e2/8a0.

We put the atom in external electric field parallel to the
z-axis:

V = −ez|E|.

Now z is the q = 0 component of a spherical tensor:

z = T
(1)
0 .

According to the parity selection rule the operator V now
has nonzero matrix elements only between states with
l = 0 and l = 1, and due to the m-selection rule all states
must have the same m:

V =


2s 2p, 0 2p, 1 2p,−1

2s 0 × 0 0
2p, 0 × 0 0 0
2p, 1 0 0 0 0
2p,−1 0 0 0 0

.
The nonzero matrix elements are

〈2s|V |2p,m = 0〉 = 〈2p,m = 0|V |2s〉 = 3ea0|E|.

The eigenvalues of the perturbation matrix are

∆(1)
± = ±3ea0|E|

and the eigenvectors

|±〉 =
1√
2
(|2s,m = 0〉 ± |2p,m = 0〉).

Note The energy shift is a linear function of the electric
field. The states |±〉 are not parity eigenstates so it is
perfectly possible that they have permanent electric
dipole moment 〈z〉 6= 0.

Nearly degenerated states

Let the states m ∈ D to be almost degenerate. We write

V = V1 + V2,

where

V1 =
∑

m∈D

∑
m′∈D

|m(0)〉〈m(0)|V |m′(0)〉〈m′(0)|

V2 = V − V1.

We proceed so that

1. we diagonalize the Hamiltonian H0 + V1 exactly in
the basis {|m(0)〉} and

2. handle the term V2 like in an ordinary non
degenerate perturbation theory. This is possible since

〈m′(0)|V2|m(0)〉 = 0 ∀m,m′ ∈ D.

Example Weak periodic potential.
Now

H0 =
p2

2m
and for the perturbation

V (x) = V (x+ a).



We denote the unperturbed eigenstates by the wave
vector:

H0|k〉 =
h̄2k2

2m
|k〉,

so that

E
(0)
k =

h̄2k2

2m
.

We impose the periodic boundary conditions

〈x′|k〉 = ψk(x′) = 〈x′ + L|k〉 = ψk(x′ + L),

for the wave function and get

ψk(x′) =
1√
L
eikx′

, k =
2π
L
n, n ∈ I.

Because the potential V is periodic it can be represented
as the Fourier series

V (x) =
∞∑

n=−∞
einKxVn,

where
K = 2π/a

is the reciprocal lattice vector. The only nonzero matrix
elements are now

〈k + nK|V |k〉 = Vn,

because

〈k′|V |k〉 =
1
L

∑
n

Vn

∫
dx′e−ik′x′

einKx′
einkx′

=
∑

n

Vnδk+nK,k′ .

So the potential couples states

|k〉, |k +K〉, . . . , |k + nK〉, . . . .

The corresponding energy denominators are

E
(0)
k − E

(0)
k+nK .

In general
E

(0)
k 6= E

(0)
k+nK

except when

k ≈ −nK
2
.

We suppose that the condition

k 6= −nK
2

holds safely. The first order state vectors are then

|k(1)〉 = |k〉+
∑
n 6=0

|k + nK〉 Vn

E
(0)
k − E

(0)
k+nK

,

and the wave functions

ψ
(1)
k (x′) =

1√
L
eikx′

+
∑
n 6=0

1√
L
ei(k+nK)x′ Vn

E
(0)
k − E

(0)
k+nK

.

Correspondingly the energy up to the second order is

E
(2)
k = E

(0)
k + V0 +

∑
n 6=0

|Vn|2

E
(0)
k − E

(0)
k+nK

.

Let us suppose now that

k ≈ −nK
2
.

We diagonalize the Hamiltonian in the basis

{|k〉, |k + nK〉},

i.e. we diagonalize the matrix

( |k〉 |k + nK〉
|k〉 E

(0)
k + V0 V ∗n

|k + nK〉 Vn E
(0)
k + V0

)
.

Its eigenvalues are

Ek± = V0 +
E

(0)
k + E

(0)
k+nK

2

±

√√√√(E(0)
k − E

(0)
k+nK

2

)2

+ |Vn|2.

When |E(0)
k − E

(0)
k+nK | � |Vn|, it reduces to two solutions

Ek+ = E
(0)
k + V0

Ek− = E
(0)
k+nK + V0,

which are first order corrected energies. In the limiting
case we get

lim
k→−nK/2

Ek± = E
(0)
nK/2 + V0 ± |Vn|.

Brillouin-Wigner perturbation theory

We start with the Schrödinger equation

(En −H0)|n〉 = λV |n〉,

and take on both sides the scalar product with the state
|m(0)〉, and get

(En − E(0)
m )〈m(0)|n〉 = λ〈m(0)|V |n〉.

We correct the state |n(0)〉. We write the corrected state
|n〉 in the form

|n〉 =
∑
m

|m(0)〉〈m(0)|n〉 = |n(0)〉〈n(0)|n〉+ φn|n〉

= |n(0)〉+
∑
m6=n

|m(0)〉〈m(0)|n〉,

which has been normalized, like before,

〈n(0)|n〉 = 1.



We substitute into this the scalar products

〈m(0)|n〉 =
λ〈m(0)|V |n〉
En − E(0)

m

,

and end up with the fundamental equation of the
Brillouin-Wigner method

|n〉 = |n(0)〉+
∑
m6=n

|m(0)〉 λ

En − E(0)
m

〈m(0)|V |n〉.

Iteration gives us the series

|n〉 = |n(0)〉+ λ
∑
m6=n

|m(0)〉 1
En − E(0)

m

〈m(0)|V |n(0)〉

+ λ2
∑
m6=n

∑
l 6=n

|l(0)〉 1

En − E
(0)
l

〈l(0)|V |m(0)〉

× 1
En − E(0)

m

〈m(0)|V |n(0)〉

+ λ3
∑
m6=n

∑
l 6=n

∑
k 6=n

|k(0)〉 1

En − E
(0)
k

〈k(0)|V |l(0)〉

× 1

En − E
(0)
l

〈l(0)|V |m(0)〉 1
En − E(0)

m

〈m(0)|V |n(0)〉

+ · · · .

Note This is not a power series of the parameter λ
because the energy denominators

En − E(0)
m = E(0)

n − E(0)
m + ∆n

depend also on the parameter λ according to the equation

∆n = λ∆(1)
n + λ2∆(2)

n + · · ·



Time dependent potentials
We have solved the problem

H0|n〉 = En|n〉

completely and want to solve the eigenstates of the
Hamiltonian

H = H0 + V (t).

Since the Hamiltonian depends on time we have

U 6= e−iHt/h̄,

so a system in a stationary state |i〉 can in the course of
time get components also in other stationary states.

Pictures of the time evolution

At the moment t = 0 let the system be in the state

|α〉 =
∑

n

cn(0)|n〉

and at the moment t in the state

|α, t0 = 0; t〉 =
∑

n

cn(t)e−iEnt/h̄|n〉.

Note The time dependence of the coefficients cn(t) is due
only to the potential V (t). The effect of the Hamiltonian
H0 is in the phase factors e−iEnt/h̄.
Schrödinger’s picture
The evolution of the state vectors is governed by the time
evolution operator:

|α, t0 = 0; t〉S = U(t)|α, t0 = 0〉.

Heisenberg’s picture
The state vectors remain constant, i.e.

|α, t0 = 0, t〉H = |α, t0 = 0〉.

On the other hand, the operators depend on time. We
can go from the time independent operators of the
Schrödinger picture to the operators of the Heisenberg
picture via the transformation

AH(t) = U†(t)ASU(t).

If the Hamiltonian does not depend on time then

HH(t) = U†(t)HU(t) = H

and
dAH

dt
=

1
ih̄

[AH ,HH ] =
1
ih̄

[AH ,H].

Interaction picture
The state vectors depend on time as

|α, t0; t〉I ≡ eiH0t/h̄|α, t0; t〉S .

At the moment t = 0 we have obviously

|〉S = |〉I = |〉H .

The interaction picture observables AI are defined so that

AI ≡ eiH0t/h̄ASe−iH0t/h̄.

In particular we have

VI = eiH0t/h̄V e−iH0t/h̄.

We see that the equation governing the time dpendence
of the interaction picture state vectors is

ih̄
∂

∂t
|α, t0; t〉I

= ih̄
∂

∂t

(
eiH0t/h̄|α, t0; t〉S

)
= −H0e

iH0t/h̄|α, t0; t〉S
+eiH0t/h̄(H0 + V )|α, t0; t〉S

= eiH0t/h̄V e−iH0t/h̄eiH0t/h̄|α, t0; t〉S ,

so
ih̄

∂

∂t
|α, t0; t〉I = VI |α, t0; t〉I .

If now AS does not depend on time we can derive

dAI

dt
=

1
ih̄

[AI ,H0],

which in turn resembles the Heisenberg equation of
motion provided that in the latter we substitute for the
total Hamiltonian H the stationary operator H0.
We expand state vectors in the base {|n〉}:

|α, t0; t〉I =
∑

n

cn(t)|n〉.

If now t0 = 0 so multiplying the previous expansion

|α, t0 = 0; t〉 =
∑

n

cn(t)e−iEnt/h̄|n〉

on both sides by the operator e−iH0t/h̄ we get

|α, t0 = 0; t〉I =
∑

n

cn(t)|n〉,

i.e. the coefficients cn are equal. We just derived the
equation

ih̄
∂

∂t
|α, t0; t〉I = VI |α, t0; t〉I .

From this we get

ih̄
∂

∂t
〈n|α, t0; t〉I = 〈n|VI |α, t0; t〉I

=
∑
m

〈n|VI |m〉〈m|α, t0; t〉I .

The matrix elements of the operator VI are

〈n|VI |m〉 = 〈n|eiH0t/h̄V e−iH0t/h̄|m〉
= Vnm(t)ei(En−Em)t/h̄

.



Because we furthermore have

cn(t) = 〈n|α, t0; t〉I ,

we can write the equation governing the time dependence
of the superposition coefficients as

ih̄
d

dt
cn(t) =

∑
m

Vnmeiωnmtcm(t),

where
ωnm ≡

En − Em

h̄
= −ωmn.

This system of differential equations can be written
explicitely in the matrix form

ih̄


ċ1

ċ2

ċ3

...



=


V11 V12e

iω12t · · ·
V21e

iω21t V22 · · ·
V33 · · ·

...
...

. . .




c1

c2

c3

...

 .

Example Two state systems.
Suppose that

H0 = E1|1〉〈1|+ E2|2〉〈2| (E1 < E2)

and that the time dependent potential is like

V (t) = γeiωt|1〉〈2|+ γe−iωt|2〉〈1|.

The matrix elements Vnm are now

V12 = V ∗
21 = γeiωt

V11 = V22 = 0,

so transitions between the states |1〉 and |2〉 are possible.
The system of differential equations to be solved is

ih̄ċ1 = γeiωteiω12tc2

ih̄ċ2 = γe−iωteiω21tc1,

where
ω21 = −ω12 =

E2 − E1

h̄
.

We can see that the solution satisfying the initial
conditions

c1(0) = 1, c2(0) = 0

is

|c2(t)|2 =
γ2/h̄2

γ2/h̄2 + (ω − ω21)2/4

× sin2

{[
γ2

h̄2 +
(ω − ω21)2

4

]1/2

t

}
|c1(t)|2 = 1− |c2(t)|2.

The system oscillates between the states |1〉 and |2〉 with
the angular velocity

Ω =

√(
γ2

h̄2

)
+

(ω − ω21)2

4
.

The amplitude of the oscillations is at its maximum, i.e.
we are in a resonance, when

ω ≈ ω21 =
E2 − E1

h̄
.

Example Spin magnetic resonance.
We put a spin 1

2 particle into

• time independent magnetic field parallel to the z
axis,

• time dependent magnetic field rotating in the xy
plane,

i.e.
B = B0ẑ + B1(x̂ cos ωt + ŷ sinωt)

when the fields B0 and B1 are constant. Since the
magnetic moment of the electron is

µ =
e

mec
S,

the Hamiltonian is the sum of the terms

H0 = −
(

eh̄B0

2mec

)
(|Sz; ↑〉〈Sz; ↑ | − |Sz; ↓〉〈Sz; ↓ |)

V (t) = −
(

eh̄B1

2mec

)
×

[
cos ωt(|Sz; ↑〉〈Sz; ↓ |+ |Sz; ↓〉〈Sz; ↑ |)

+ sinωt(−i|Sz; ↑〉〈Sz; ↓ |+ i|Sz; ↓〉〈Sz; ↑ |)
]
.

If e < 0, then

E2 = E↑ =
|e|h̄B0

2mec
> E1 = E↓ = −|e|h̄B0

2mec
.

We can thus identify in the above treated two stated
system the quantities:

|Sz; ↑〉 7→ |2〉 (higher state)
|Sz; ↓〉 7→ |1〉 (lower state)
|e|B0

mec
7→ ω21

−eh̄B1

2mec
7→ γ, ω 7→ ω.

Comparing with our earlier discussion on the spin
precession we see that

• if B1 = 0 and B0 6= 0, the the expectation value
〈Sx,y〉 rotates in the course of time counterclockwise
but the probabilities |c1|2 and |c2|2 remain still
constant.

• if B1 6= 0, the the coefficients |c1|2 and |c2|2 are
functions of time.



When the resonance condition

ω ≈ ω21

holds the probability for the spin flips

|Sz; ↑〉 ←→ |Sz; ↓〉

is very high.
Because experimental production of rotating magnetic
fields is difficult it is common to use a field oscillating for
example along the x axis. This can be divided into
components rotating counterclockwise and clockwise:

2B1x̂ cos ωt

= B1(x̂ cos ωt + ŷ sinωt)
+B1(x̂ cos ωt− ŷ sinωt).

In experiments one usually has

B1

B0
� 1,

so
γ

h̄
=
|e|B1

4mec
=
|e|B0

mec

B1

4B0
= ω21

B1

4B0
� ω21.

If now the component rotating counterclockwise triggers
the resonance condition

ω ≈ ω21,

the the transition probability due to this component is

|cR(t)|2 =
γ2/h̄2

γ2/h̄2 + (ω − ω21)2/4

× sin2

{[
γ2

h̄2 +
(ω − ω21)2

4

]1/2

t

}
≈ sin2

(γ

h̄
t
)

.

The clockwise rotating component,

ω = −ω21,

contributes

|cL(t)|2 ≈ γ2/h̄2

γ2/h̄2 + ω2
21

× sin2

{[
γ2

h̄2 + ω2
21

]1/2

t

}
� |cR(t)|2.



Time dependent perturbation theory
In the interaction picture the time evolution operator is
determined by the equation

|α, t0; t〉I = UI(t, t0)|α, t0; t0〉I .

Since the time evolution of the state vectors is governed
by the equation

ih̄
∂

∂t
|α, t0; t〉I = VI |α, t0; t〉I

= VIUI(t, t0)|α, t0; t0〉I ,

we see that

ih̄
∂UI(t, t0)

∂t
|α, t0; t0〉I = VIUI(t, t0)|α, t0; t0〉I .

The interaction picture time evolution operator satisfies
thus the equation

ih̄
d

dt
UI(t, t0) = VI(t)UI(t, t0).

As the initial condition we have obviously

UI(t, t0)
∣∣
t=t0

= 1.

Integration gives

UI(t, t0) = 1− i

h̄

∫ t

t0

VI(t′)UI(t′, t0) dt′.

By iteration we end up with Dyson’s series

UI(t, t0)

= 1− i

h̄

∫ t

t0

VI(t′)

[
1− i

h̄

∫ t′

t0

VI(t′′)UI(t′′) dt′′

]
dt′

= 1− i

h̄

∫ t

t0

dt′ VI(t′)

+
(
− i

h̄

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′ VI(t′)VI(t′′)

+ · · ·+
(
− i

h̄

)n ∫ t

t0

dt′
∫ t′

t0

dt′′ · · ·

×
∫ t(n−1)

t0

dt(n)VI(t′)VI(t′′) · · ·VI(t(n))

+ · · · .

Let us suppose again that we have solved the problem

H0|n〉 = En|n〉

completely. Let the initial state of the system be |i〉 at
the moment t = t0 = 0, i.e.

|α, t0 = 0; t = 0〉I = |i〉.

At the moment t this has evolved to the state

|i, t0 = 0; t〉I = UI(t, 0)|i〉
=

∑
n

|n〉〈n|UI(t, 0)|i〉.

Here
〈n|UI(t, 0)|i〉 = cn(t)

is the same as the superposition coefficient we used before.
From the relation binding the interaction and Schrödinger
picture state vectors we get

|α, t0; t〉I = eiH0t/h̄|α, t0; t〉S
= eiH0t/h̄U(t, t0)|α, t0; t0〉S
= eiH0t/h̄U(t, t0)e−iH0t0/h̄|α, t0; t0〉I ,

so the time evolution operators of these pictures are
obtained with the help of the formula

UI(t, t0) = eiH0t/h̄U(t, t0)e−iH0t0/h̄.

The matrix elements of the operator UI(t, t0) can now be
calculated from the relation

〈n|UI(t, t0)|i〉 = ei(Ent−Eit0)/h̄〈n|U(t, t0)|i〉.

We see that

• the matrix element 〈n|UI(t, t0)|i〉 is not quite the
transition amplitude 〈n|U(t, t0)|i〉,

• the transition probabilities satisfy

|〈n|UI(t, t0)|i〉|2 = |〈n|U(t, t0)|i〉|2.

Note If the states |a′〉 and |b′〉 are not eigenstates of H0

then
|〈b′|UI(t, t0)|a′〉|2 6= |〈b′|U(t, t0)|a′〉|2.

In this case the matrix elements are evaluated by
expanding the states |a′〉 and |b′〉 in the base {|n〉}
formed by the eigenstates of H0.
Let us suppose now that at the moment t = t0 the system
is in the eigenstate |i〉 of H0. This state vector can always
be multiplied by an arbitrary phase factor, so the
Schrödinger picture state vector |i, t0; t0〉S can be chosen
as

|i, t0; t0〉S = e−iEit0/h̄|i〉.

Then in the interaction picture we have

|i, t0; t0〉I = |i〉.

At the moment t this has evolved to the state

|i, t0; t〉I = UI(t, t0)|i〉 =
∑

n

cn(t)|n〉,

so
cn(t) = 〈n|UI(t, t0)|i〉,

as we already noted.
Now

1. substitute the Dyson series into this

2. expand the coefficient as a power series of the
perturbation

cn(t) = c(0)
n (t) + c(1)

n (t) + c(2)
n (t) + · · · ,



3. equalize the terms c
(k)
n with the perturbation terms

of the order k,

4. denote
ei(En−Ei)t/h̄ = eiωnit.

We get

c(0)
n (t) = δni

c(1)
n (t) = − i

h̄

∫ t

t0

〈n|VI(t′)|i〉 dt′

= − i

h̄

∫ t

t0

eiωnit
′
Vni(t′) dt′

c(2)
n (t) =

(
− i

h̄

)2∑
m

∫ t

t0

dt′
∫ t′

t0

dt′′ eiωnmt′Vnm(t′)

×eiωmit
′′
Vmi(t′′).

The probability for the transition from the state |i〉 to the
state |n〉 can be written as

Pr(i → n) = |cn(t)|2 = |c(1)
n (t) + c(2)

n (t) + · · · |2.

Fermi’s golden rule

Consider the constant perturbation

V (t) =
{

0, when t < 0
V (time independent) when t ≥ 0.

switched on at the moment t = 0. At the moment t = 0
let the system be in the pure state |i〉. Now

c(0)
n = c(0)

n (0) = δin

c(1)
n = − i

h̄
Vni

∫ t

0

eiωnit
′
dt′

=
Vni

En − Ei
(1− eiωnit).

The transition probability to the state |n〉 is thus

|c(1)
n |2 =

|Vni|2

|En − Ei|2
(2− 2 cos ωnit)

=
4|Vni|2

|En − Ei|2
sin2

[
(En − Ei)t

2h̄

]
.

The quantity

ω ≡ En − Ei

h̄

is almost continuous because usually the En states form
almost a continuum. The transition probability is now

|c(1)
n |2 =

|Vni|2

h̄2 f(ω),

where

f(ω) =
4 sin2 ωt/2

ω2 .
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When t is large then |cn(t)|2 6= 0 only if

t ≈ 2π

ω
=

2πh̄

|En − Ei|
.

If now ∆t is the time the perturbation has been on then
transitions are possible only if

∆t∆E ≈ h̄.

Note If the energy is conserved exactly, i.e.

En = Ei,

then
|c(1)

n (t)|2 =
1
h̄2 |Vni|2t2.

The transition probability is proportional to the square of
the on-time of the perturbation (and not linearly
proportional to the time).
In general we are interested in transitions in which the
initial state |i〉 is fixed but the final state |n〉 can be any
state satisfying the energy conservation rule

En ≈ Ei

The total probability for such a transition is now

Pr(i → f)

=
∑

n
En≈Ei

|c(1)
n (t)|2

=
∫

dEn ρ(En)|c(1)
n |2

= 4
∫

sin2

[
(En − Ei)t

2h̄

]
|Vni|2

|En − Ei|2
ρ(En) dEn.



Here ρ(E) is the density of states, i.e.

ρ(E)dE = the number of states between(E,E + dE).

Because

lim
t→∞

1
π

sin2 xt

tx2 = δ(x),

we get

lim
t→∞

1
(En − Ei)2

sin2 En − Ei

2h̄
t =

πt

4h̄2 δ

(
En − Ei

2h̄

)
=

πt

2h̄
δ(En − Ei).

The transition probability is thus

lim
t→∞

Pr(i → f) =
(

2π

h̄

)
|Vni|2ρ(En)t

∣∣∣
En≈Ei

,

where |Vni|2 is the average of the term |Vni|2.
Note The total transition probability depends linearly
on time t.
The transition rate w is defined to be the transition
probability per unit time. We end up with the Fermi
golden rule

wi→f =
d

dt

(∑
n

|c(1)
n (t)|2

)

=
(

2π

h̄

)
|Vni|2ρ(En)

∣∣∣
En≈Ei

.

Quite often this is also written as

wi→n =
(

2π

h̄

)
|Vni|2δ(En − Ei),

but then one implicitely assumes that it will be integrated
in the expression

∫
dEn ρ(En)wi→n · · ·.

Second order corrections

In the second order we got

c(2)
n (t) =

(
− i

h̄

)2∑
m

∫ t

t0

dt′
∫ t′

t0

dt′′ eiωnmt′Vnm(t′)

×eiωmit
′′
Vmi(t′′),

so in the case of the potential

V (t) =
{

0, when t < 0
V (time independent) when t ≥ 0.

we have

c(2)
n =

(
− i

h̄

)2∑
m

VnmVmi

∫ t

0

dt′ eiωnmt′
∫ t′

0

dt′′ eiωmit
′′

=
i

h̄

∑
m

VnmVmi

Em − Ei

∫ t

0

(eiωnit
′
− eiωnmt′)dt′.

Above

• the term eiωnit
′
is same as in the coefficient c

(1)
n , so it

contributes only if En ≈ Ei when t →∞.

• if Em in the term eiωnmt′ differs from En and at the
same time from Ei it oscillates rapidly and
contributes nothing.

So we can write

wi→f =
2π

h̄

∣∣∣∣∣Vni +
∑
m

VnmVmi

Ei − Em

∣∣∣∣∣
2

ρ(En)

∣∣∣∣∣∣
En≈Ei

.

In the second order the term VnmVmi can be thougth to
describe virtual transitions

|i〉 −→ |m〉 −→ |n〉.

Harmonic perturbations

Consider the potential

V (t) = Veiωt + V†e−iωt,

which is again assumed to be switched on at the moment
t = 0. When t < 0, the system is supposed to be in the
state |i〉. The first order term is now

c(1)
n = − i

h̄

∫ t

0

(
Vnie

iωt′ + V†nie
−iωt′

)
eiωnit

′
dt′

=
1
h̄

[
1− ei(ω+ωni)t

ω + ωni
Vni +

1− ei(ω−ωni)t

−ω + ωni
V†ni

]
.

This is of the same form as in the case of our earlier step
potential, provided that we substitute

ωni =
En − Ei

h̄
−→ ωni ± ω.

When t →∞, |c(1)
n |2 is thus non zero only if

ωni + ω ≈ 0 or En ≈ Ei − h̄ω

ωni − ω ≈ 0 or En ≈ Ei + h̄ω.

Obviously, if the first term is important the second one
does not contribute and vice versa. The energy of a
quantum mechanical system is not conserved in these
transitions but the ”external” potential either gives
(absorption) or takes (stimulated emission) energy
to/from the system. Analogically to the constant
potential the transition rate will be

wi→n =
2π

h̄
|Vni|2δ(En − Ei ± h̄ω).



Energgy shifts and line widths

Evolution of the initial state

We consider the case where the initial and final states are
the same. We switch the interaction on slowly:

V (t) = eηtV.

Here η → 0 at the end.
We suppose that in the far past, t = −∞, the system has
been in the state |i〉.
Check
If n 6= i, then the perturbation theory gives

c(0)
n (t) = 0

c(1)
n (t) = − i

h̄
Vni lim

t0→−∞

∫ t

t0

eηt′eiωnit
′
dt′

= − i

h̄
Vni

eηt+iωnit

η + iωni
.

Up to the lowest non vanishing order the transition
probability is

|cn(t)|2 ≈ |Vni|2

h̄2

(
e2ηt

η2 + ω2
ni

)
and the transition rate correspondingly

d

dt
|cn(t)|2 ≈ 2|Vni|2

h̄2

(
ηe2ηt

η2 + ω2
ni

)
.

Now

lim
η→0

η

η2 + ω2
ni

= πδ(ωni) = πh̄δ(En − Ei),

so in the limit η → 0 we get the Fermi golden rule

wi→n ≈
(

2π

h̄

)
|Vni|2δ(En − Ei).

This is equivalent with our previous result.
Let now n = i. We get

c
(0)
i = 1

c
(1)
i = − i

h̄
Vii lim

t0→−∞

∫ t

t0

eηt′ dt′ = − i

h̄η
Viie

ηt

c
(2)
i =

(
− i

h̄

)2 ∑
m

|Vmi|2

× lim
t0→−∞

∫ t

t0

dt′ eiωimt′+ηt′
∫ t′

t0

dt′′eiωmit
′′+ηt′′

=
(
− i

h̄

)2 ∑
m

|Vmi|2

× lim
t0→−∞

∫ t

t0

dt′ eiωimt′+ηt′ eiωmit
′+ηt′

i(ωmi − iη)

=
(
− i

h̄

)2

|Vii|2
e2ηt

2η2

+
(
− i

h̄

) ∑
m6=i

|Vmi|2e2ηt

2η(Ei − Em + ih̄η)
.

Thus, up to the second order the coefficient ci is

ci(t) ≈ 1− i

h̄η
Viie

ηt +
(
− i

h̄

)2

|Vii|2
e2ηt

2η2

+
(
− i

h̄

) ∑
m6=i

|Vmi|2e2ηt

2η(Ei − Em + ih̄η)
.

For the logarithmic time derivative of the coefficient ci up
to the second order in the perturbation V we get

ċi

ci
≈ − i

h̄

Vii −
i

h̄

|Vii|2

η
+

∑
m6=i

|Vmi|2

(Ei − Em + ih̄η)

1− i

h̄

Vii

η

≈ −i

h̄
Vii +

(
−i

h̄

) ∑
m6=i

|Vmi|2

Ei − Em + ih̄η
,

where we have already set eηt → 1.
Note We cannot set in the denominator η = 0, because
the states Em can form nearly a continuum in the vicinity
of Ei.
The logarithmic derivative is thus time independent, i.e.
of form

ċi(t)
ci(t)

= − i

h̄
∆i.

The solution satisfying the initial condition ci(0) = 1 is

ci(t) = e−i∆it/h̄.

Note ∆i is not necessarily real.
We interprete this so that the state |i〉 evolves gradually
like

|i〉 −→ ci(t)|i〉 = e−i∆it/h̄|i〉.

In the Schrödinger picture the latter contains also a phase
factor, or

e−i∆it/h̄|i〉 7→ e−i∆it/h̄−iEit/h̄|i〉.

Due to the perturbation the energy levels shift like

Ei −→ Ei + ∆i.

We expand now ∆i as the power series in the
perturbation:

∆i = ∆(1)
i + ∆(2)

i + · · · .

Comparing with our previous expression

∆i = Vii +
∑
m6=i

|Vmi|2

Ei − Em + ih̄η
,

we see that in the first order we have

∆(1)
i = Vii.

This is equivalent with the time independent perturbation
theory.



Because the energies Em for almost a continuum we can
in the second order term∑

m6=i

|Vmi|2

Ei − Em + ih̄η

replace the summation with the integration. To handle
the limit η → 0 we recall from the function theory that

lim
ε→0+

∫ ∞

−∞

f(z)
z + iε

dz = ℘

∫ ∞

−∞

f(z)
z

dz − iπf(0),

where ℘ stands for the principal value integral. A
common shorthand notation for this is

lim
ε→0

1
x + iε

= ℘
1
x
− iπδ(x).

Thus we get

Re(∆(2)
i ) = ℘

∑
m6=i

|Vmi|2

Ei − Em

Im(∆(2)
i ) = −π

∑
m6=i

|Vmi|2δ(Ei − Em).

The right hand side of the latter equation is familiar from
the Fermi golden rule, so we can write∑

m6=i

wi→m =
2π

h̄

∑
m6=i

|Vmi|2δ(Ei − Em) = − 2
h̄

Im
[
∆(2)

i

]
.

The coefficient ci(t) can be written with the help of the
energy shift as

ci(t) = e−(i/h̄)[Re(∆i)t]+(1/h̄)[Im(∆i)t].

We define
Γi

h̄
≡ − 2

h̄
Im(∆i).

Then
|ci(t)|2 = e2Im(∆i)t/h̄ = e−Γit/h̄.

Thus the quantity Γi tells us at which rate the state |i〉
disappears. The quantity

τi =
h̄

Γi

is thus the average life time of the state |i〉.
In the Schrödinger picture the time evolution is

ci(t)e−iEit/h̄ =
h̄

2π

∫
f(E)e−iEt/h̄dE,

where the energy spectrum

f(E) =
∫

e−i[Ei+Re(∆i)]t/h̄−Γit/2h̄eiEt/h̄ dt

is the Fourier transform of the coefficient ci(t)e−iEit/h̄.
Now

|f(E)|2 ∝ 1
{E − [Ei + Re(∆i)]}2 + Γ2

i /4
,

so Γi —or excluding the factor -2, the imaginary part of
the energy shift— is the width of the decay line and the
real part of the energy shift what is usually called the
energy shift.
In the case of harmonic perturbations we can repeat the
same derivation provided that we substitute

Em − Ei 7→ Em − Ei ± h̄ω.



Radiation and matter
We handle the interaction of radiation and matter
semiclassically:

• the radiation field classically,

• the matter quantum mechanically,

• OK, if there is large number of photons in the
volume ≈ λ3,

• in the case of the spontaneous emission we impose a
fictive field equivalent with the quantum theory.

The vector potential A of the classical radiation field can
always be chosen to satisfy the transverse condition:
∇ ·A = 0. The electric and magnetic field are obtained
from the vector potential as

E = −1
c

∂

∂t
A

B = ∇×A.

The energy flux —energy/unit area/unit time— is

cU =
c

2

(
E2

max

8π
+
B2

max

8π

)
.

For a monochromatic plane wave we have

A = A0ε̂
[
ei(ω/c)n̂·x−iωt + e−i(ω/c)n̂·x+iωt

]
,

where n̂ and ε̂ are the directions of the propagation and
polarization of the plane wave. Due to the transverse
condition

∇ ·A = 0

we have ε̂⊥n̂. The energy flux is then

cU =
1
2π

ω2

c
|A0|2.

A particle in the radiation field has the mechanical
momentum(

p− e

c
A

)2

= p2 − e

c
p ·A− e

c
A · p +

e2

c2
A2

= p2 − 2
e

c
A · p +

e2

c2
A2,

since due to the transvers condition

p ·A = A · p.

The Hamiltonian of an electron in the field is now

H =
1

2me

(
p− e

c
A

)2

+ eφ(x)

≈ p2

2me
+ eφ(x)− e

mec
A · p,

when we drop off the term |A|2. Now

−
(

e

mec

)
A · p

= −
(

e

mec

)
A0ε̂ · p

×
[
ei(ω/c)n̂·x−iωt + e−i(ω/c)n̂·x+iωt

]
.

Earlier we saw that in the case of the harmonic potential

V (t) = Veiωt + V†e−iωt

transitions are possible if

ωni + ω ≈ 0 or En ≈ Ei − h̄ω
ωni − ω ≈ 0 or En ≈ Ei + h̄ω,

or

eiωt ←→ stimulated emission
e−iωt ←→ absorption.

Absorption

In the case of the radiation field,

V†ni = − eA0

mec

(
ei(ω/c)n̂·xε̂ · p

)
ni

is the matrix element corresponding to the absorption.
The transition rate is then

wi→n =
2π
h̄

e2

m2
ec

2 |A0|2|〈n|ei(ω/c)n̂·xε̂ · p|i〉|2

×δ(En − Ei − h̄ω).

We should note that

• if the final states |n〉 form a continuum we integrate
weighing with the state density ρ(En).

• if the final states |n〉 are discrete they, nevertheless,
are not ground states so that their energy cannot be
extremely accurate.

• collisions can broaden the energy levels.

• the incoming radiation is not usually completely
monochromatic.

So we write the δ-function as

δ(ω − ωni) = lim
γ→0

( γ

2π

) 1[
(ω − ωni)2 + γ2/4

] .
We define the absorption cross section:

σabs =
(energy/unit time) absorbed by the atom (i → n)

energy flux of the radiation field
.

Since in every absorption process the atom absorbs the
energy h̄ω, we have

σabs =
h̄ωwi→n

1
2π

ω2

c
A2

0

=
h̄ω

2π
h̄

e2

m2
ec

2
|A0|2|〈n|ei(ω/c)n̂·xε̂ · p|i〉|2

1
2π

ω2

c
|A0|2

×δ(En − Ei − h̄ω)

=
4π2h̄

m2
eω

(
e2

h̄c

)
|〈n|ei(ω/c)n̂·xε̂ · p|i〉|2

×δ(En − Ei − h̄ω).



Here e2/h̄c is the fine structure constant α ≈ 1/137.
In order the absorption to be possible the energy
quantum h̄ω of the radiation must be of the order of the
energy level spacing:

h̄ω ≈ Ze2

(a0/Z)
≈ Ze2

Ratom
,

when Z is the atomic number. Now

c

ω
=

λ

2π
≈ ch̄Ratom

Ze2
≈ 137Ratom

Z

or
Ratom

λ
≈ Z

2π137
� 1.

We expand the exponential function in the expression for
the cross section as the power series

ei(ω/c)n̂·x = 1 + i
ω

c
n̂ · x + · · · .

Now

ω

c
〈n̂ · x〉 ≈ ω

c
Ratom ≈

Z

137Ratom
Ratom =

Z

137
,

so it is usually enough if we keep only the term 1. We
have then the so called electric dipole approximation.
Thus in the electric dipole approximation

〈n|ei(ω/c)n̂·xε̂ · p|i〉 −→ ε̂ · 〈n|p|i〉.

We choose
ε̂ ‖ x̂ and n̂ ‖ ẑ.

Let the states |n〉 be the solutions of the problem

H0|n〉 = En|n〉, H0 =
p2

2me
+ eφ(x)

Because
[x,H0] =

ih̄px

me
,

we have

〈n|px|i〉 =
me

ih̄
〈n|[x,H0]|i〉

= imeωni〈n|x|i〉.

Since x is a superposition of the spherical tensors T (1)
±1 we

get the selection rules

m′ −m = ±1
|j′ − j| = 0, 1.

If we had

• ε̂ ‖ ŷ, the same selection rules were valid.

• ε̂ ‖ ẑ, we should have m′ = m, because z = T
(1)
0 .

In the dipole approximation the absorption cross section
is

σabs = 4π2αωni|〈n|x|i〉|2δ(ω − ωni).

Integration gives∫
σabs(ω) dω =

∑
n

4π2αωni|〈n|x|i〉|2.

The oscillator strength is defined as follows:

fni ≡
2meωni

h̄
|〈n|x|i〉|2.

One can show that it satisfies so called
Thomas-Reiche-Kuhn’s sum rule:∑

n

fni = 1.

We see that∫
σabs(ω) dω =

4π2αh̄

2me
= 2π2c

(
e2

mec
2

)
.

This is known as the oscillator sum rule of classical
electrodynamics.

Photoelectric effect

The initial state |i〉 is atomic but the final state |n〉 is in
the continuum formed by the plane waves |kf 〉. In the
absorption cross section we have now to weigh the
function δ(ωni − ω) with the final state density ρ(En):

σabs =
4π2h̄

m2
eω
α|〈n|ei(ω/c)n̂·xε̂ · p|i〉|2

×ρ(En)δ(En − Ei − h̄ω).

Under the periodic boundary conditions in the L-sided
cube we have

〈x′|kf 〉 =
eikf ·x′

L3/2
,

where
ki =

2πni

L
, ni = 0,±1,±2, . . . .

When L→∞, the variable n, defined via the relation

n2 = n2
x + n2

y + n2
z,

can be considered continuous. Then the volume in the
solid angle dΩ bounded by the surfaces n′ = n and
n′ = n+ dn is n2 dn dΩ.
The final state energy is

E =
h̄2k2

f

2me
=

h̄2

2me

n2(2π)2

L2 .

The number of states with the wave vector kf in the
interval (E,E + dE) and in the solid angle is

n2 dΩ
dn

dE
dE =

(
L

2π

)3 (
k2

f

) dkf

dE
dΩ dE

=
(
L

2π

)3
me

h̄2 kf dE dΩ.

The differential cross section is now

dσ

dΩ
=

4π2αh̄

m2
eω
|〈kf |ei(ω/c)n̂·xε̂ · p|i〉|2mekfL

3

h̄2(2π)3
.



Example Emission of an electron from the innermost
shell.
The wave function of the initial state is approximately
like the one of the hydrogen ground state provided we
substitute a0 −→ a0/Z:

〈x′|i〉 ≈
(
Z

a0

)3/2

e−iZr/a0 .

The matrix element is now

〈kf |ei(ω/c)n̂·xε̂ · p|i〉

= ε̂ ·
∫
d3x′

e−ikf ·x′

L3/2
ei(ω/c)n̂·x′

×(−ih̄∇)

[
e−Zr/a0

(
Z

a0

)3/2
]
.

Integrating by parts and noting that due to the
transversal condition ε̂ · n̂ = 0 we have

ε̂ ·
[
∇ei(ω/c)n̂·x′

]
= 0.

We get

〈kf |ei(ω/c)n̂·xε̂ · p|i〉

=
h̄ε̂ · kf

L3/2

∫
d3x′ei(kf−ω

c n̂)·x′
ψatom(x′).

Thus the matrix element is proportional to the Fourier
transform of the atomic wave function with the respect of
the variable

q = kf −
(ω
c

)
n̂.

As the final result we can write the differential cross
section as

dσ

dΩ
= 32e2kf

(ε̂ · kf )2

mecω

Z5

a5
0

1[
(Z/a0)2 + q2

]4 .
If now ε̂ ‖ x̂ and n̂ ‖ ẑ, the differential cross section can
be written using the polar angle θ, the azimuthal angle φ
and the relations

kf = kf (sin θ cosφ, sin θ sinφ, cos θ)

(ε̂ · kf )2 = k2
f sin2 θ cos2 φ

q2 = k2
f − 2kf

ω

c
cos θ +

(ω
c

)2

.



Relativistic quantum mechanics

Classical fields
We suppose that the Lagrange function

L = L(qi, q̇i) = T − V

of classical mechanics does not depend explicitely on
time. From the Hamilton variation principle

δ

∫ t2

t1

L(qi, q̇i) dt = 0, δqi(t)
∣∣
t=t1,2

= 0

one can derive the equations of motion

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0.

The Hamiltonian function of the Hamiltonian mechanics
is

H =
∑

i

piq̇i − L,

where the canonically conjugated momentum pi of qi is

pi =
∂L

∂q̇i
.

The equations of motion are now

q̇i =
∂H

∂pi

ṗi = −∂H

∂qi
.

Many body system

( i - 1 ) a i a ( i + 1 ) a

h i - 1 h i h i + 1

k ( h i - h i + 1 )-k ( h i - h i - 1 )-

We consider N identical particles coupled to eachother by
identical parallel springs. The Lagrangian of the system is

L = T − V

=
1
2

N∑
i

[
mη̇2

i − k(ηi+1 − ηi)2
]
,

when ηi is the deviation of the particle i from its
equilibrium position ia.
We write this as

L =
1
2

N∑
i

[
mη̇2

i − k(ηi+1 − ηi)2
]

=
N∑
i

a
1
2

[
m

a
η̇2

i − ka

(
ηi+1 − ηi

a

)2
]

=
N∑
i

aLi.

Here Li is the linear Lagrangian density.
We go to continuum by substituting the limits

a → dx
m

a
→ µ = linear mass density

ηi+1 − ηi

a
→ ∂η

∂x
ka → Y = Young’s modulus.

Now
L =

∫
L dx,

where

L =
1
2

[
µη̇2 − Y

(
∂η

∂x

)2
]

.

In the continuous case the Hamiltonian variation
principle takes the form

δ

∫ t2

t1

Ldt

= δ

∫ t2

t1

dt

∫
dxL

(
η, η̇,

∂η

∂x

)
=

∫
dt

∫
dx

{
∂L
∂η

δη +
∂L

∂(∂η/∂x)
δ

(
∂η

∂x

)
+

∂L
∂(∂η/∂t)

δ

(
∂η

∂t

)}
=

∫
dt

∫
dx

{
∂L
∂η

+
∂L

∂(∂η/∂x)
∂

∂x
(δη)

+
∂L

∂(∂η/∂t)
∂

∂t
(δη)

}
=

∫
dt

∫
dx

{
∂L
∂η

− ∂

∂x

(
∂L

∂(∂η/∂x)

)
− ∂

∂t

(
∂L

∂(∂η/∂t)

)}
δη.

To get the variation to vanish for all δη one must satisfy
the Euler-Lagrange equation

∂

∂x

∂L
∂(∂η/∂x)

+
∂

∂t

∂L
∂(∂η/∂t)

− ∂L
∂η

= 0.

When

L =
1
2

[
µη̇2 − Y

(
∂η

∂x

)2
]

,

then

∂L
∂η

= 0

∂

∂x

∂L
∂(∂η/∂x)

= −Y
∂

∂x

∂η

∂x
= −Y

∂2η

∂x2

∂

∂t

∂L
∂(∂η/∂t)

= µ
∂2η

∂t2
.

Substituting into the Euler-Lagrange equation we get

Y
∂2η

∂x2 − µ
∂2η

∂t2
= 0,



which describes a wave progating in one dimension with
the velocity

√
Y/µ.

We define the canonically conjugated momentum

π =
∂L
∂η̇

and the Hamiltonian density

H = η̇π − L.

Now
π = µη̇,

so

H = µη̇2 − 1
2

[
µη̇2 − Y

(
∂η

∂x

)2
]

=
1
2
µη̇2 +

1
2
Y

(
∂η

∂x

)2

.

The Lagrangian formalism generalizes easily to three
dimensions. The Euler-Lagrange equation takes then the
form

3∑
k=1

∂

∂xk

∂L
∂(∂φ/∂xk)

+
∂

∂t

∂L
∂(∂φ/∂t)

− ∂L
∂φ

= 0.

Covariant formulation

We employ the metrics where the components of a
four-vector bµ are

bµ = (b1, b2, b3, b4) = (b, ib0).

In particular the coordinate four-vector is

xµ = (x1, x2, x3, x4) = (x, ict).

Under Lorentz transformations the coordinate vector
transforms according to the equation

x′µ = aµνxν .

The coefficients of the Lorentz transformation satisfy the
orthogonality condition

aµνaµλ = δνλ, (a−1)µν = aνµ,

so that
xµ = (a−1)µνx′ν = aνµx′ν .

We define the four-vector so that under Lorentz
transformations it transforms like xµ.
Now

∂

∂x′µ
=

∂xν

∂x′µ

∂

∂xν
= aµν

∂

∂xν
,

so the four-gradient ∂/∂xµ is a four-vector.
The scalar product of the four-vectors b and c,

b · c = bµcµ =
3∑

j=1

bjcj + b4c4

= b · c− b0c0,

is invariant under Lorentz transformations.
Using the four-vector notation the Euler-Lagrange
equation can be written into the compact form

∂

∂xµ

[
∂L

∂(∂φ/∂xµ)

]
− ∂L

∂φ
= 0.

We see that the field equation derived from the
Lagrangian density L is covariant provided that the
Lagrangian density L itself is relativistically scalar
(invariant under Lorentz transformations).



Klein-Gordon’s equation
We consider the scalar field φ(x) which, according to its
definition, behaves under Lorentz transformation like

φ′(x′) = φ(x).

Now
L = L(φ, ∂φ/∂xµ).

Since we want

• the Lagrangian density to be invariant under Lorentz
transformations

• a linear wave equation,

the Lagrangian density can contain only the terms

φ2 and
∂φ

∂xµ

∂φ

∂xµ
.

One possible form for the Lagrangian density is

L = −1
2

(
∂φ

∂xµ

∂φ

∂xµ
+ µ2φ2

)
.

Substituting this into the Euler-Lagrange equation

∂

∂xµ

[
∂L

∂(∂φ/∂xµ)

]
− ∂L

∂φ
= 0,

we get

− ∂

∂xµ

(
∂φ

∂xµ

)
+ µ2φ = 0.

If we employ the notation

= ∇2 − 1
c2

∂2

∂t2
,

we end up with the Klein-Gordon equation

φ− µ2φ = 0.

Heuristic derivation

We substitute into the relativistic energy-momentum
relation

E2 − |p|2c2 = m2c4

the operators

E 7→ ih̄
∂

∂t
, pk 7→ −ih̄

∂

∂xk
,

and get (
− ∂2

c2∂t2
+∇2 − m2c2

h̄2

)
φ = 0.

When we set
µ =

mc

h̄
, [µ] =

1
length

,

we end up with the Klein-Gordon equation.
There are no sources in the Lagrangian density

L = −1
2

(
∂φ

∂xµ

∂φ

∂xµ
+ µ2φ2

)

so the solution describes a free field. We include the term

Lint = −φρ,

where ρ is the (usually position dependent) density of the
source. The field equation is now

φ− µ2φ = ρ.

When we choose
ρ = Gδ(x)

and seek for a stationary solution we end up with the
equation

(∇2 − µ2)φ = Gδ(x).

We substitute φ using its Fourier transform

φ(x) =
1

(2π)2/3

∫
d3keik·xφ̃(k),

where
φ̃(k) =

1
(2π)3/2

∫
d3x e−ik·xφ(x).

We end up with the algebraic equation

(−k2 − µ2)φ̃(k) =
G

(2π)3/2

of the Fourier components. Its solution is

φ̃(k) = − G

(2π)2/3

1
k2 + µ2 .

Taking the Fourier transform we get the solution

φ(x) = − G

4π

e−µr

r
,

known as the Yukawa potential. Let’s suppose that the
meson field of a nucleon at the point x1 satisfies the
equations

(∇2
2 − µ2)φ = Gδ(x1 − x2).

Its solution is thus the Yukawa potential.

φ(x2) = − G

4π

e−µ|x2−x1|

|x2 − x1|
.

Because the Hamiltonian density was

H = η̇π − L,

the Hamiltonian density of the interaction is

Hint = −Lint

and the total interaction Hamiltonian

Hint =
∫
Hint d3x =

∫
φρ d3x.

We see that the interaction energy of nucleons located at
the points x1 and x2 is

H
(1,2)
int = − G

4π

e−µ|x2−x1|

|x2 − x1|
.



Note Unlike in the Coulomb case, this interaction is
atractive and short ranged.
In the reality there are 3 mesons (π+, π0, π−), with
different charges but with (almost) equal masses,
consistent with the thory. We expand our theory so that
we consider two real fields, φ1 and φ2, for two particles
with equal masses. From these we construct the complex
fields

φ =
φ1 + iφ2√

2

φ∗ =
φ1 − iφ2√

2
.

The Lagrangian density for the free fields can be written
using either the complex or real fields:

L = −1
2

(
∂φ1

∂xµ

∂φ1

∂xµ
+ µ2φ2

1

)
− 1

2

(
∂φ2

∂xµ

∂φ2

∂xµ
+ µ2φ2

2

)
= −

(
∂φ∗

∂xµ

∂φ

∂xµ
+ µ2φ∗φ

)
.

Considering the fields φ and φ∗ independent we get two
Euler-Lagrange equations

∂

∂xµ

∂L
∂(∂φ/∂xµ)

− ∂L
∂φ

= 0

∂

∂xµ

∂L
∂(∂φ∗/∂xµ)

− ∂L
∂φ∗ = 0,

which can be further written as two Klein-Gordon
equations

φ∗ − µ2φ∗ = 0
φ− µ2φ = 0.

We define the first order gauge transformation so that the
fields transform under it like

φ′ = eiλφ

φ∗′ = e−iλφ∗,

when λ is a real parameter. Let λ be now an arbitrary,
infinitesimally small, number. Then

δφ = iλφ

δφ∗ = −iλφ∗.

The Lagrangian density transforms then as

δL =
[
∂L
∂φ

δφ +
∂L

∂(∂φ/∂xµ)
δ

(
∂φ

∂xµ

)]
+

[
∂L
∂φ∗ δφ∗ +

∂L
∂(∂φ∗/∂xµ)

δ

(
∂φ∗

∂xµ

)]
=

[
∂L
∂φ
− ∂

∂xµ

(
∂L

∂(∂φ/∂xµ)

)]
δφ

+
[

∂L
∂φ∗ −

∂

∂xµ

(
∂L

∂(∂φ∗/∂xµ)

)]
δφ∗

+
∂

∂xµ

[
∂L

∂(∂φ/∂xµ)
δφ +

∂L
∂(∂φ∗/∂xµ)

δφ∗
]

= −iλ
∂

∂xµ

(
∂φ∗

∂xµ
φ− φ∗ ∂φ

∂xµ

)
.

In a small neighborhood of the solutions φ and φ∗ the
Lagrangian density is invarinat so we must have

δL = 0.

Thus we get
∂sµ

∂xµ
= 0,

where

sµ = i

(
∂φ∗

∂xµ
φ− φ∗ ∂φ

∂xµ

)
.

We see that

• a complex field φ is associated with a conserved
four-vector density sµ,

• if we exchange φ←→ φ∗, then sµ ←→ −sµ.

We interpret this so that

• sµ is the charge current density,

• φ carries the charge e,

• φ∗ carries the charge −e,

• the previous real field corresponds to neutral mesons.



Photons
We consider a radiation field whose vector potential A
satisfies the transversality condition

∇ ·A = 0.

Because the electric and magnetic fields

E = −1
c

∂

∂t
A

B = ∇×A

satisfy the free space Maxwell equations

∇ ·E = 0

∇×E = −∂B

∂t
∇ ·B = 0

∇×B =
1
c

∂E

∂t
,

the vector potential satisfies the wave equation

∇2A− 1
c2

∂2A

∂t2
= 0.

We write the vector potential at the moment t = 0 as a
superposition of the periodically normalized plane waves
in an L-sided cube,

uk,α(x) = ε̂(α)eik·x,

like:

A(x, t)|t=0 =
1√
V

∑
k

∑
α=1,2

(ck,α(0)uk,α(x)

+c∗k,α
(0)u∗k,α

(x)).

Here V = L3 and ε̂(α), α = 1, 2 are real polarization
vectors.
Due to the transversality condition we have

ε̂(α) · k = 0,

so the polarization can chosen so that the vectors
(ε̂(1), ε̂(2),k/|k|) form a righthanded rectangular
coordinate system. The Fourier components uk,α satisfy
the orthogonality conditions

1
V

∫
d3xuk,α

· u∗k′
,α′ = δkk′δαα′ .

Due to the periodicity conditions the wave vectors can
take the values

kx, ky, kz = 2nπ/L, n = ±1,±2, . . . .

At the moment t 6= 0 the vector potential is obtained
simply by setting

ck,α(t) = ck,α(0)e−iωt

c∗k,α
(t) = c∗k,α

(0)eiωt,

where
ω = |k|c.

Now

A(x, t)

=
1√
V

∑
k

∑
α

(ck,α(t)ε̂(α)eik·x + c∗k,α
(t)ε̂(α)e−ik·x)

=
1√
V

∑
k

∑
α

(ck,α(0)ε̂(α)eik·x + c∗k,α
(0)ε̂(α)e−ik·x),

where we have employed the four-vector notation

k · x = k · x− ωt = k · x− |k|ct.

The Hamiltonian function of the classical radiation field is

H =
1
2

∫
(|B|2 + |E|2) d3x

=
1
2

∫ [
|∇ ×A|2 + |(1/c)(∂A/∂t)|2

]
d3x.

A straightforward calculation shows that

H =
∑
k

∑
α

2(ω/c)2c∗k,α
ck,α.

Because the coefficients

ck,α(t) = ck,α(0)e−iωt

satisfy the equation of motion

c̈k,α = −ω2ck,α,

it would look like the classical radiation field were
composed of independent harmonic oscillators.
We define the variables

Qk,α
=

1
c
(ck,α + c∗k,α

)

Pk,α = − iω

c
(ck,α − c∗k,α

).

With the help of these the Hamiltonian function can be
written as

H =
∑
k

∑
α

1
2
(P 2

k,α
+ ω2Q2

k,α
).

Since

∂H

∂Qk,α

= −Ṗk,α

∂H

∂Pk,α

= +Q̇k,α,

the variables Pk,α
and Qk,α

are canonically conjugated
and the Hamiltonian function the sum of the total
energies of the corresponding harmonic oscillators.
Thus the classical radiation field can be thought to be a
collection of independent harmonic oscillators. There



• every oscillator is characterized by the wave vector k
and the polarization ε̂(α),

• the dynamic variables of every oscillator are
combinations of Fourier coefficients.

We quantize these oscillators by postulating that Pk,α
and Qk,α are not any more pure numbers but operators
which satisfy the canonical commutation rules

[Qk,α, Pk′
,α′ ] = ih̄δkk′δαα′

[Qk,α, Qk′
,α′ ] = 0

[Pk,α, Pk′
,α′ ] = 0.

We define dimensionless combinations ak,α and a†
k,α

of
the operators Pk,α and Qk,α as

ak,α =
1√
2h̄ω

(ωQk,α + iPk,α)

a†
k,α

=
1√
2h̄ω

(ωQk,α − iPk,α).

It is easy to see that they satisfy the commutation
relations

[ak,α, a†
k′

,α′ ] = δkk′δαα′

[ak,α, ak′
,α′ ] = [a†

k,α
, a†

k′
,α′ ] = 0.

Note In these relations the operators must be evaluated
at the same moment, i.e. [ak,α, a†

k′
,α′ ] stands in fact for

the commutator [ak,α(t), a†
k′

,α′(t)].
We further define the Hermitean operator

Nk,α = a†
k,α

ak,α.

It is easy to see that

[ak,α
, Nk′

,α′ ] = δkk′δαα′ak,α

[a†
k,α

, Nk′
,α′ ] = −δkk′δαα′a†

k,α
.

Due to the Hermiticity the eigenvalues nk,α of the
operator Nk,α are real and the eigenvectors

Nk,α|nk,α〉 = nk,α |nk,α〉

form an orthonormal complete basis.
With the help of the commutation rule

[a†
k,α

, Nk′
,α′ ] = −δkk′δαα′a†

k,α

we see that

Nk,αa†
k,α

|nk,α〉 = (a†
k,α

Nk,α + a†
k,α

)|nk,α〉

= (nk,α + 1)a†
k,α

|nk,α〉.

Similarly we can show that

Nk,αak,α|nk,α〉 = (nk,α − 1)ak,α|nk,α〉.

Thus we can write

a†
k,α

|nk,α〉 = c+|nk,α + 1〉

ak,α|nk,α〉 = c−|nk,α − 1〉.

Because the states |nk,α〉 are normalized we can calculate
the coefficients as

|c+|2 = |c+|2〈nk,α + 1|nk,α + 1〉

= 〈nk,α |ak,αa†
k,α

|nk,α〉

= 〈nk,α |Nk,α + [ak,α, a†
k,α

]|nk,α〉
= nk,α + 1,

|c−|2 = 〈nk,α |a
†
k,α

ak,α|nk,α〉 = nk,α .

We choose the phase of the coefficients so that at the
moment t = 0 we have

a†
k,α

|nk,α〉 =
√

nk,α + 1|nk,α + 1〉

ak,α|nk,α〉 =
√

nk,α |nk,α − 1〉.

Because

nk,α = 〈nk,α |Nk,α|nk,α〉 = 〈nk,α |a
†
k,α

ak,α|nk,α〉

and because the norm of a vectors is always non-negative
we must have

nk,α ≥ 0.

From this we can deduce that the only possible
eigenvalues are

nk,α = 0, 1, 2, . . . .

We interprete

• the state |nk,α〉 to contain exactly nk,α photons,
each of which is characterized by a wave vector k and
a polarization ε̂(α).

• the operator a†
k,α

to create a photon with the wave

vector k and the polarization ε̂(α).

• the operator ak,α to destroy a photon with the wave

vector k and the polarizartion ε̂(α).

• the operator Nk,α to count the number of photons

with the wave vector k and the polarization ε̂(α) in
the state

The state composed of various kind of photons is a direct
product of individual vectors |nki,αi

〉:

|nk1,α1
, nk2,α2

, . . . , nki,αi
, . . .〉

= |nk1,α1
〉 ⊗ |nk2,α2

〉 ⊗ · · · ⊗ |nki,αi
〉 ⊗ · · · .

The vector |0〉 stands for the state that has no kind of
photons, i.e.

|0〉 = |0k1,α1
〉 ⊗ |0k2,α2

〉 ⊗ · · · .



Application of any operator ak,α onto this results always
zero. We say that |0〉 represents the vacuum.
It is easy to see that a general normalized photon state
can be constructed applying operations a†

k,α

consecutively:

|nk1,α1
, nk2,α2

, . . .〉 =
∏

ki,αi

(a†
ki,αi

)
nki,αi√

nki,αi
!

|0〉.

Note Since the operators a†
k,α

and a†
k′

,α′ commute the
order of operators does not matter. The many photon
states are symmetric with respect to the exchange of
photons. We say that the photons obey the Bose-Einstein
statistics or that they are bosons.
Since the numbers nk,α tell us the number of photons of
type (k, α) in the volume under consideration we call
them the occupation numbers of the state.
Correspondingly the space spanned by the state vectors is
called the occupation number space.
In the quantum theory the Fourier coefficients of a
classical radiation field must be replaced by the
corresponding non-commuting creation and annihilation
operators. Substituting

ck,α 7→ c
√

h̄/2ω ak,α(t)

c∗k,α
7→ c

√
h̄/2ω a†

k,α
(t)

we get

A(x, t) =
1√
V

∑
k,α

c

√
h̄

2ω

[
ak,α(t)ε̂(α)eik·x

+a†
k,α

(t)ε̂(α)e−ik·x
]
.

Note Here A is an operator defined at every point of the
space whereas A of the classical theory is a three
component field defined at every point. The variables x
and t are both in classical and quantum mechanical cases
variables parametrizing the fields. Fields like the operator
A are called field operators or quantized fields.
Also in the quantum theory the Hamiltonian is of the
form

H =
1
2

∫
(B ·B + E ·E) d3x.

Substituting the field operator A into the equations

E = −1
c

∂

∂t
A

B = ∇×A

and noting that this time the Fourier coefficients do not
commute we get

H =
1
2

∑
k

∑
α

h̄ω(a†
k,α

ak,α + ak,αa†
k,α

)

=
∑
k

∑
α

(Nk,α +
1
2
)h̄ω,

where
ω = |k|c.

When we choose the energy scale so that

H|0〉 = 0,

the Hamiltonian takes the form

H =
∑
k

∑
α

h̄ωNk,α.

When it acts on a many photon state the result is

H|nk1,α1
, nk2,α2

, . . .〉

=
∑

i

nki,αi
h̄ωi|nk1,α1

, nk2,α2
, . . .〉.

The quantum mechanical momentum operator is exactly
of the same form as the classical function (the Poynting
vector):

P =
1
c

∫
(E ×B) d3x

=
∑
k

∑
α

1
2
h̄k(a†

k,α
ak,α + ak,αa†

k,α
)

=
∑
k

∑
α

h̄k(Nk,α +
1
2
).

Since here the summation goes over all wave vectors the
term associated with the factor 1/2 will not appear in the
final result the terms h̄k and −h̄k cancelling each other.
For the momentum operator we get thus

P =
∑
k

∑
α

h̄kNk,α.

For one photon states we have

Ha†
k,α

|0〉 = h̄ωa†
k,α

|0〉

P a†
k,α

|0〉 = h̄ka†
k,α

|0〉,

so

h̄ω = h̄|k|c = photon energy
h̄k = photon momentum.

The photon mass will be

(mass)2 =
1
c4 (E2 − |p|2c2)

=
1
c4 [(h̄ω)2 − (h̄|k|c)2]

= 0.

The photon state is also characterized by its polarization
ε̂(α). Since ε̂(α) transforms under rotations like a vector
the photon is associated with one unit of angular
momentum, i.e. the spin angular momentum of the



photon is one. We define the circularly polarized
combinations

ε̂(±) = ∓ 1√
2
(ε̂(1) ± iε̂(2)).

We rotate these vectors by an infinitesimal angle δφ
around the progation direction k. Their changes are

δε̂(±) = ∓ δφ√
2
(ε̂(2) ∓ iε̂(1))

= ∓iδφ ε̂(±).

We select the propagation direction k as the quantization
axis and compare this expression with the transformation
properties of angular momentum eigenstates

|jm〉R =
(

1− i

h̄
Jzδφ

)
|jm〉 = (1− im δφ)|jm〉.

We see that

• the spin components of the polarizations ε̂(±) are
m = ±1.

• the state m = 0 is missing due to the transversality
condition.

• our original linear polarization states are 50/50
mixtures of m = 1 and m = −1 states.

Hence the photon spin is always either parallel or
antiparallel to the direction of the propagation.
The operators ak,α and a†

k,α
are time dependent and so

they satisfy the Heisenberg equations of motion

ȧk,α =
i

h̄
[H, ak,α]

=
i

h̄

∑
k′

∑
α′

[h̄ω′Nk′
,α′ , ak,α]

= −iωak,α

like also
ȧ†
k,α

= iωa†
k,α

.

These equations have solutions

ak,α
= ak,α

(0)e−iωt

a†
k,α

= a†
k,α

(0)eiωt.

The final form of the field operator is then

A(x, t) =
1√
V

∑
k,α

c

√
h̄

2ω

[
ak,α(0)ε̂(α)eik·x−iωt

+ a†
k,α

(0)ε̂(α)e−ik·x+iωt
]
.

We should note that

• the operator A is Hermitean.

• x and t in the expression for the field operator A are
not quantum mechanical variables but simply
parameters which the operator A depends on. For
example, it is not allowed to interprete the variables
x and t as the space-time coordinates of a photon.

• the quantized field A operates at every point (x, t) of
the space where it with a certain probability creates
and annihilates excitation states called photons.
Thus photons can be interpreted as the quantum
mechanical excitations of the radiation field.

We consider photon emission and and absorption of non
relativistic atomic electrons. The relevant interaction
Hamiltonian is of the form

Hint =
∑

i

[
− e

mec
A(xi, t) · pi

+
e2

2m2
ec

2 A(xi, t) ·A(xi, t)
]

,

where the transversality condition is taken into account
by replacing the operator pi ·A with the operator A · pi.
The summation goes over all electrons participating in
the process. The symbols xi stand for their position
coordinates.
Note If we had to consider the interaction of spin and
radiation we should also include the term

H
(spin)
int = −

∑
i

eh̄

2mec
σi · [∇×A(x, t)]|x=xi

.

This time the Hamiltonian operator Hint operates not
only on the atomic states but also on the photon states.
In the quantum theory of radiation

• the vector describing the initial state |i〉 is the direct
product of an atomic state A and a (many) photon
state characterized by the occupation numbers nk,α :

|i〉 = |A〉 ⊗ |nk,α〉 = |A;nk,α〉.

• the vector describing the final state |f〉 is the direct
product of an atomic state B and a (many) photon
state characterized by the occupation numbers nk′

,α′ :

|f〉 = |A〉 ⊗ |nk′
,α′〉 = |A;nk′

,α′〉.

Absorption

Now

|i〉 = |A;nk,α〉
|f〉 = |B;nk,α − 1〉.

In the first order perturbation theory the amplitude of
the process

|i〉 −→ |f〉

is the matrix element of the interaction operator HI

between the states |i〉 and |f〉. Up to this order



• only ak,α leads to a nonzero matrix element,
eventhough the field operator A is a linear
superposition of creation and annihilation operators
a†
k,α

and ak,α, respectively.

• the term A ·A is out of the question in this process
because it either changes the number of photons by
two or does not change it at all.

The first order transition matrix element is now

〈B;nk,α − 1|Hint|A;nk,α〉

= − e

mec
〈B;nk,α − 1|

∑
i

c

√
h̄

2ωV
ak,α(0)eik·xi−iωtpi · ε̂

(α)|A;nk,α〉

= − e

me

√
nk,α h̄

2ωV

∑
i

〈B|eik·xipi · ε̂
(α)|A〉e−iωt.

Comparing this with the matrix element of the
semiclassical perturbation potential

V†ni = − eA0

mec

(
ei(ω/c)n̂·xε̂ · p

)
ni

we see that they both give exactly the same result
provided we use in the semiclassical theory the equivalent
radiation field

A(abs) = A
(abs)
0 eik·x−iωt,

where the amplitude is

A
(abs)
0 = c

√
nk,α h̄

2ωV
ε̂(α).

Because the transition probability is

• according to the semiclassical theory directly
proportional to the intensity of the radiation,

|A0|2 ∝ nk,α ,

• according to the quantum theory directly
proportional to the occupation number nk,α ,

both the semiclassical and quantum mechanical results
give equivalent results also at low intensities, i.e. when
nk,α is small.

Emission

Now

|i〉 = |A;nk,α〉
|f〉 = |B;nk,α + 1〉

and in the first order the only potential term of the field

A(x, t) =
1√
V

∑
k,α

c

√
h̄

2ω

[
ak,α(0)ε̂(α)eik·x−iωt

+ a†
k,α

(0)ε̂(α)e−ik·x+iωt
]

is a†
k,α

which adds one photon to the final state. The
relevant matrix element is now

〈B;nk,α + 1|Hint|A;nk,α〉

= − e

me

√
(nk,α + 1)h̄

2ωV

∑
i

〈B|e−ik·xipi · ε̂
(α)|A〉eiωt.

If nk,α is very large then√
nk,α + 1 ≈√nk,α ,

and the semiclassical and quantum mechanical treatment
coincide.
If nk,α is small the semiclassical method fails completely.
In particular, the semicalssical treatment of the
spontaneous emission, nk,α = 0, is impossible. The
semiclassical method can be applied if we insert the atom
into the fictitious radiation field

A(emis) = A
(emis)
0 e−ik·x+iωt,

where

A
(emis)
0 = c

√
(nk,α + 1)h̄

2ωV
ε̂(α).

The field A(emis) is not

• directly proportional to the number of photons nk,α ,

• the complex conjugate of the field A(abs).

Example Spontaneous emission from the state A to the
state B.
In the first order the transition rate is

wA→B

=
2π

h̄
|〈B; 1k,α|Hint|A; 0〉|2δ(EB − EA + h̄ω)

=
2π

h̄

e2h̄

2m2
eωV

∣∣∣∣∣∑
i

〈B|e−ik·xi ε̂(α) · pi|A〉

∣∣∣∣∣
2

×δ(EB − EA + h̄ω).

Like in the photoelectric efect we can deduce that the
number of the allowed photon states ρ(E, dΩ) in the
energy interval (h̄ω, h̄ω + d(h̄ω)) and in the solid angle dΩ
is

ρ(E, dΩ) = n2 dn dΩ =
V

(2π)3
ω2

h̄c3 d(h̄ω) dΩ.

The transition rate of photons emitting into a certain
solid angle is thus

wdΩ =
2π

h̄

e2h̄

2m2
eωV

∣∣∣∣∣∑
i

〈B|e−ik·xi ε̂(α) · pi|A〉

∣∣∣∣∣
2

V ω2 dΩ
(2π)3h̄c3 ,

where h̄ω = EA − EB .
We consider only hydrogen like atoms so that only one
electron participates in the process and we restrict to the
dipole approximation. Then

wdΩ =
e2ω

8π2m2
eh̄c3 |〈B|p|A〉 · ε̂

(α)|2dΩ.



Earlier we saw that

〈B|p|A〉 =
ime(EB − EA)

h̄
〈B|x|A〉

= −imeωxBA.

We let the symbol Θ(α) stand for the angle between the
vector xBA and the polarization direction ε̂(α), i.e.

cos Θ(1) = sin θ cos φ

cos Θ(2) = sin θ sinφ,

when θ and φ are the direction angles of the vector x.
Then

wdΩ =
e2ω3

8π2h̄c3 |xBA|2 cos2 Θ(α)dΩ.

The total transition rate is obtained by integrating over
all propagation directions k/|k| and summing over both
polarizations:

w =
e2ω3

3πh̄c3 |xBA|2.

The life time of a state was obtained from the formula

1
τA

=
∑

i

wA→Bi
,

where we have to sum also over the magnetic quantum
numbers m. For example the life time of the hydrogen 2p
state is

τ(2p −→ 1s) = 1.6× 10−9s.

Electron photon scattering

We consider the process

|1k,α〉 −→ |1k′
,α′〉,

i.e.

• before the scattering the atom is in the state A, and
k and ε̂(α) are the wave vector and polarization of
the incoming photon.

• after the scattering the atom is in the state B, k′ is
the wave vector and ε̂(α′) the polarization vector of
the outgoing photon.

The Hamiltonian of the interaction is

Hint = − e

mec
A(x, t) · p +

e2

2m2
ec

2 A(x, t) ·A(x, t).

Because

• the number of photons does not change in the
scattering,

• in order to be non zero the matrix element of the
interaction must contain products of photon creation
and annihilation operators,

• in the term A · p creation and annihilation operators
appear as linear,

• in the term A ·A creation and annihilation operators
appear as quadratic,

only the quadratic term A ·A contributes in the first
order perturbation theory.
Only two of the terms of the form

aa†, a†a, aa, a†a†

in the operator A ·A have non zero matrix elements
provided that

• a† creates a photon of the type (k′, ε̂(α′)),

• a annihilates a photon of the type (k, ε̂(α),

and then
〈1k′

,α′ |ak,αa†
k′

,α′ |1k,α〉 = 1.

Now

〈B; 1k′
,α′ |Hint|A; 1k,α〉

= 〈B; 1k′
,α′

∣∣∣∣ e2

2mec
2 A(x, t) ·A(x, t)

∣∣∣∣A; 1k,α〉

= 〈B; 1k′
,α′

∣∣∣∣ e2

2mec
2 (ak,αa†

k′
,α′ + a†

k′
,α′ak,α)

× c2h̄

2V
√

ωω′
ε̂(α) · ε̂(α′)ei(k−k′

)·x−i(ω−ω′)t

∣∣∣∣A; 1k,α〉

=
e2

2mec
2

c2h̄

2V
√

ωω′
2ε̂(α) · ε̂(α′)e−i(ω−ω′)t〈B|A〉,

where again the exponential functions e±k·x are replaced
by the constant 1 (the long wave length approximation).
In the first order we have thus

c(1)(t) = − i

h̄

∫ t

t0

eiωfit
′
Vfi(t′) dt′

=
1
ih̄

e2

2mec
2

c2h̄

2V
√

ωω′
2δAB ε̂(α) · ε̂(α′)

×
∫ t

0

ei(h̄ω′+EB−h̄ω−EA)t′/h̄ dt′,

where ω = |k|c and ω′ = |k′|c. Now

• in the transition amplitude c(1)(t) the interaction is
in fact of second order: A ·A.

• in the second order correction c(2)(t) the term A · p
is also of second order.

To collect all contributions up to the second order in the
interaction we have to consider also the correction c(2)(t),
into which we take all double actions of the operator
A · p. Now

c(2)(t) =
(
− i

h̄

)2∑
m

∫ t

t0

dt′
∫ t′

t0

dt′′ eiωfmt′Vfm(t′)

×eiωmit
′′
Vmi(t′′).

Thus there are two possibilities: the interaction A · p can



• at the moment t1 annihilate the incoming photon
(k, ε̂(α)) and at some later time t2 create the
outgoing photon (k′, ε̂(α′)) or

• at the moment t1 create the outgoing photon
(k′, ε̂(α′)) and at some later time t2 annihilate the
incoming photon (k, ε̂(α)).

Between the moments t1 and t2 the atom is in the state I,
which normally is neither of the states A and B.
In the intermediate state I there are thus two
possibilities: either there are no photons present or both
incoming and outgoing photons are present. We get thus
(in the dipole approximation)

c(2)(t) =
1

(ih̄)2
c2h̄

2V
√

ωω′

(
− e

mec

)2 ∫ t

0

dt2

∫ t2

0

dt1

×
[∑

I

〈B|p · ε̂(α′)|I〉ei(EB−EI+h̄ω′)t2/h̄

×〈I|p · ε̂(α)|A〉ei(EI−EA−h̄ω)t1/h̄

+
∑

I

〈B|p · ε̂(α)|I〉ei(EB−EI+h̄ω)t2/h̄

×〈I|p · ε̂(α′)|A〉ei(EI−EA−h̄ω′)t1/h̄

]
= − c2h̄

ih̄2V
√

ωω′

(
e

mec

)2

×
∑

i

(
(p · ε̂(α′))BI(p · ε̂(α))IA

EI − EA − h̄ω

+
(p · ε̂(α))BI(p · ε̂(α′))IA

EI − EA + h̄ω′

)

×
∫ t

0

dt2 ei(EB−EA+h̄ω′−h̄ω)t2/h̄.

For the transition rate we get combining the terms c(1)(t)
and c(2)(t) and taking into account the relation

lim
t→∞

∣∣∣∣∫ t

0

eixt′ dt′
∣∣∣∣2 = 2πtδ(x)

the expression

wdΩ =
∫

(|c(1) + c(2)|2/t)ρ(E, dΩ) dE

=
2π

h̄

(
c2h̄

2V
√

ωω′

)2(
e2

mec
2

)2
V

(2π)3
ω′

2

h̄c3 dΩ

×
∣∣∣∣δAB ε̂(α) · ε̂(α′)

− 1
me

∑
I

(
(p · ε̂(α′))BI(p · ε̂(α))IA

EI − EA − h̄ω

+
(p · ε̂(α))BI(p · ε̂(α′))IA

EI − EA + h̄ω′

)∣∣∣∣2.
Because in the initial state there was exactly one photon
in the volume V and the flux density of the incoming

photons c/V , so the differential cross section is

dσ

dΩ
= r2

0

(
ω′

ω

) ∣∣∣∣δAB ε̂(α) · ε̂(α′)

− 1
me

∑
I

(
(p · ε̂(α′))BI(p · ε̂(α))IA

EI − EA − h̄ω

+
(p · ε̂(α))BI(p · ε̂(α′))IA

EI − EA + h̄ω′

)∣∣∣∣2,
where r0 ≈ 2.82× 10−13cm is the classical radius of
electron. This expression is known as the
Kramers-Heisenberg formula.
Example Elastic scattering.
Now A = B ja h̄ω = h̄ω′. Using the commutation
relations of the operators x and p, the completeness of
the intermediate states and the relation

pAB = imeωABxAB

we can write

ε̂(α) · ε̂(α′) =
1
ih̄

∑
I

[
(x · ε̂(α))AI(p · ε̂(α′))IA

−(p · ε̂(α))AI(x · ε̂(α′))IA

]
=

1
meh̄

∑
I

2
ωIA

(p · ε̂(α))AI(p · ε̂(α′))IA,

where ωIA = (EI − EA)/h̄.
We see that

δAAε̂(α) · ε̂(α′)

− 1
meh̄

∑
I

[
(p · ε̂(α′))AI(p · ε̂(α))IA

ωIA − ω

+
(p · ε̂(α))AI(p · ε̂(α′))IA

ωIA + ω

]

= − 1
meh̄

∑
I

[
ω(p · ε̂(α′))AI(p · ε̂(α))IA

ωIA(ωIA − ω)

−ω(p · ε̂(α))AI(p · ε̂(α′))IA

ωIA(ωIA + ω)

]
.

If ω is small then

1
ωIA ∓ ω

≈ 1± (ω/ωIA)
ωIA

.

Then ∑
I

1
ω2

IA

[
(p · ε̂(α′))AI(p · ε̂(α))IA

−(p · ε̂(α))AI(p · ε̂(α′))IA

]
= m2

e

∑
I

[
(x · ε̂(α′))AI(x · ε̂(α))IA

−(x · ε̂(α))AI(x · ε̂(α′))IA

]
= m2

e([x · ε̂
(α′),x · ε̂(α)])AA

= 0.



The differential cross section is now

dσ

dΩ
=

(
r0

meh̄

)2

ω4

∣∣∣∣∑
I

(
1

ωIA

)3

×[(p · ε̂(α′))AI(p · ε̂(α))IA

+ (p · ε̂(α))AI(p · ε̂(α′))IA]
∣∣∣∣2

=
(r0me

h̄

)2

ω4

∣∣∣∣∑
I

1
ωIA

×[(x · ε̂(α′))AI(x · ε̂(α))IA

+(x · ε̂(α))AI(x · ε̂(α′))IA]
∣∣∣∣2.

At long wave lengths the differential cross section obeys
the Rayleigh law or

dσ

dΩ
∝ 1

λ4 .

Now

• for ordinary colourless gases ωIA corresponds to wave
lengths in the ultraviolet,

• for the visible light we have then ω � ωIA,

so our approximations are valid in the atmossphere. The
theory explains why the sky is blue and the sunset red.



Dirac’s equation
We construct relativistically covariant equation that takes
into account also the spin.
The kinetic energy operator is

H(KE) =
p2

2m
.

Previously we derived for Pauli spin matrices the relation

(σ · a)2 = |a|2,

so we can also write

H(KE) =
(σ · p)(σ · p)

2m
.

However, when the particle moves under the influence of
a vector potential these expressions differ. Substituting

p 7→ p− eA/c

the latter takes the form

1
2m

σ ·
(

p− eA

c

)
σ ·
(

p− eA

c

)
=

1
2m

(
p− eA

c

)2

+
i

2m
σ ·
[(

p− eA

c

)
×
(

p− eA

c

)]
=

1
2m

(
p− eA

c

)2

− eh̄

2mc
σ ·B,

where we have used the identities

(σ · a)(σ · b) = a · b + iσ · (a× b)

and
p×A = −ih̄(∇×A)−A× p.

Let us suppose that for the relativistically invariant
expression

(E2/c2)− p2 = (mc)2

the operator analogy

1
c2
E(op)2 − p2 = (mc)2

holds. Here
E(op) = ih̄

∂

∂t
= ih̄c

∂

∂x0

and
p = −ih̄∇.

We write the operator equation into the form(
E(op)

c
− σ · p

)(
E(op)

c
+ σ · p

)
= (mc)2

or (
ih̄

∂

∂x0
+ σ · ih̄∇

)(
ih̄

∂

∂x0
− σ · ih̄∇

)
φ = (mc)2φ.

Here φ is a two component wave function (spinor).
We define new two component wave functions

φ(R) =
1
mc

(
ih̄

∂

∂x0
− ih̄σ · ∇

)
φ

φ(L) = φ.

It is easy to see that these satisfy the set of simultaneous
equations [

ih̄σ · ∇ − ih̄
∂

∂x0

]
φ(L) = −mcφ(R)[

−ih̄σ · ∇ − ih̄
∂

∂x0

]
φ(R) = −mcφ(L).

We define yet new two component wave functions

ψA = φ(R) + φ(L)

ψB = φ(R) − φ(L).

These in turn satisfy the matrix equation −ih̄ ∂
∂x0

−ih̄σ · ∇

ih̄σ · ∇ ih̄ ∂
∂x0

( ψA

ψB

)
= −mc

(
ψA

ψB

)
.

We now define the four component wave function

ψ =
(
ψA

ψB

)
=
(
φ(R) + φ(L)

φ(R) − φ(L)

)
and the 4× 4-matrices

γk =
(

0 −iσk

iσk 0

)
γ4 =

(
1 0
0 −1

)
.

We end up with the Dirac’s equation(
γ · ∇+ γ4

∂

∂(ix0)

)
ψ +

mc

h̄
ψ = 0

for free spin- 1
2 particles. Employing the four vector

notation the equation takes the form(
γµ

∂

∂xµ
+
mc

h̄

)
ψ = 0.

Note The Dirac equation is in fact a set of four coupled
linear differential equations. The wave function ψ is the
four component vector

ψ =


ψ1

ψ2

ψ3

ψ4

 .

This kind of a four component object is called bispinor or
Dirac’s spinor. Explicitely written down the Dirac
equation is

4∑
µ=1

4∑
β=1

[
(γµ)αβ

∂

∂xµ
+
(mc
h̄

)
δαβ

]
ψβ = 0.



Note The fact that the Dirac spinor happens to have
four components has nothing to do with our four
dimensional space-time; ψβ does not transform like a four
vector under Lorentz transformations.
It is easy to verify that the gamma-matrices (Dirac
matrices) γµ satisfy the anticommutation rule

{γµ, γν} = γµγν + γνγµ = 2δµν .

Furthermore, every γµ is Hermitian,

γ†µ = γµ,

and traceless, i.e.
Tr γµ = 0.

Let’s multiply the equation(
γ · ∇+ γ4

∂

∂(ix0)

)
ψ +

mc

h̄
ψ = 0

on both sides by the matrix γ4 and we get(
ch̄γ4γ · ∇ − ih̄

∂

∂t

)
ψ + γ4mc

2ψ = 0.

Denote

β = γ4 =
(

1 0
0 −1

)
αk = iγ4γk =

(
0 σk

σk 0

)
,

which satisfy the relations

{αk, β} = 0
β2 = 1

{αk, αl} = 2δkl.

When we now write

H = −ich̄α · ∇+ βmc2,

the Dirac equation takes the familiar form

Hψ = ih̄
∂ψ

∂t
.

We define the adjungated spinor ψ̄ like:

ψ̄ = ψ†γ4.

Explicitely, if ψ is a column vector

ψ =


ψ1

ψ2

ψ3

ψ4

 ,

then ψ† and ψ̄ are row vectors

ψ† = (ψ∗
1 , ψ

∗
2 , ψ

∗
3 , ψ

∗
4)

ψ̄ = (ψ∗
1 , ψ

∗
2 ,−ψ∗

3 ,−ψ∗
4).

Forming the Hermitean conjugate of the Dirac equation(
γµ

∂

∂xµ
+
mc

h̄

)
ψ = 0

we get
∂

∂xk
ψ†γk +

∂

∂x∗4
ψ†γ4 +

mc

h̄
ψ† = 0.

We multiply this from right by the matrix γ4 and end up
with the adjungated equation

− ∂

∂xµ
ψ̄γµ +

mc

h̄
ψ̄ = 0.

Here we have used the relations

∂

∂x∗4
=

∂

∂(ict)∗
= − ∂

∂x4

γkγ4 = −γ4γk.

Let’s multiply the original Dirac equation(
γµ

∂

∂xµ
+
mc

h̄

)
ψ = 0

from left with the adjungated spinor ψ̄ and the
adjungated equation

− ∂

∂xµ
ψ̄γµ +

mc

h̄
ψ̄ = 0

from right with the spinor ψ and subtract the resulting
equations. We then get

∂

∂xµ
(ψ̄γµψ) = 0.

The quantity

sµ = icψ̄γµψ = (cψ†αψ, icψ†ψ)

thus satisfies a continuity equation. According to Green’s
theorem we have∫

ψ̄γ4ψ d
3x =

∫
ψ†ψ d3x = constant,

where the constant can be taken to be 1 with a suitable
normalization of ψ. Because ψ̄γ4ψ = ψ†ψ is positively
definite it can be interpreted as a probability density.
Then

sk = icψ̄γkψ = cψ†αkψ

can be identified as the density of the probability current.
Note It can be shown that sµ transforms like a four
vector, so the continuity equation is relativistically
covariant.
It can be proved that any sets of four matrices γµ and γ′µ
satisfying the anticommutation relations

{γµ, γν} = 2δµν

{γ′µ, γ′ν} = 2δµν ,



are related to eachother through a similarity
transformation with a non-singular 4× 4-matrix S:

SγµS
−1 = γ′µ.

With the help of the matrices γ′µ the original Dirac
equation can be written as(

S−1γ′µS
∂

∂xµ
+
mc

h̄

)
S−1Sψ = 0.

Multiplying this from left with the matrix S we get(
γ′µ

∂

∂xµ
+
mc

h̄

)
ψ′ = 0,

where
ψ′ = Sψ.

Thus Dirac’s equation is independent on the explicit form
of the matrices γµ; only the anticommutation of the
matrices is relevant. If the matrices γ′µ are Hermitean the
transformation matrix S can be taken to be unitary. It is
easy to show that then the probability density and
current, for example, are independent on the
representation:

ψ̄′γ′µψ
′ = ψ̄γµψ.

Vector potential

When the system is subjected to a vector potential

Aµ = (A, iA0),

we make the ordinary substitutions

−ih̄(∂/∂xµ) 7→ −ih̄(∂/∂xµ)− eAµ/c.

The Dirac equation takes now the form(
∂

∂xµ
− ie

h̄c
Aµ

)
γµψ +

mc

h̄
ψ = 0.

Assuming that Aµ does not depend on time the time
dependence of the spinor ψ can be written as

ψ = ψ(x, t)|t=0 e
−iEt/h̄.

Let us write now the Dirac equation for the components
ψA and ψB :[

σ ·
(

p− eA

c

)]
ψB =

1
c
(E − eA0 −mc2)ψA

−
[
σ ·
(

p− eA

c

)]
ψA = −1

c
(E − eA0 +mc2)ψB .

With the help of the latter equation we eliminate ψB

from the upper equation and get[
σ ·
(

p− eA

c

)][
c2

E − eA0 +mc2

] [
σ ·
(

p− eA

c

)]
ψA

= (E − eA0 −mc2)ψA.

Suppose now that

E ≈ mc2, |eA0| � mc2

and measure the energy starting from the rest energy:

E(NR) = E −mc2.

We expand

c2

E − eA0 +mc2
=

1
2m

[
2mc2

2mc2 + E(NR) − eA0

]
=

1
2m

[
1− E(NR) − eA0

2mc2
+ · · ·

]
.

This can be taken to be the power series in (v/c)2 since

E(NR) − eA0 ≈ [p− (eA/c)]2/2m ≈ mv2/2.

Taking into account only the leading term we get

1
2m

σ ·
(

p− eA

c

)
σ ·
(

p− eA

c

)
ψA = (E(NR) − eA0)ψA.

This can be written as[
1

2m

(
p− eA

c

)2

− eh̄

2mc
σ ·B + eA0

]
ψA = E(NR)ψA.

Up to the zeroth order of (v/c)2 the component ψA is
thus the two component Schrödinger-Pauli wave function
(multiplied with the factor e−imc2t) familiar from the
non-relativistic quantum mechanics. The equation

−
[
σ ·
(

p− eA

c

)]
ψA = −1

c
(E − eA0 +mc2)ψB

tells us that the component ψB is roughly by the factor

|p− (eA/c)|/2mc ≈ v/2c

”less” than ψA. Due to this, provided that E ≈ mc2, ψA

is known as the big and ψB as the small component of the
Dirac wave function ψ.
We obtain relativistic corrections only when we consider
the second or higher order terms of the expansion

c2

E − eA0 +mc2
=

1
2m

[
2mc2

2mc2 + E(NR) − eA0

]
=

1
2m

[
1− E(NR) − eA0

2mc2
+ · · ·

]
.

Let us suppose now that

A = 0.

The wave equation is then

HAψA = E(NR)ψA,

where

HA = (σ · p)
1

2m

(
1− E(NR) − eA0

2mc2

)
(σ · p) + eA0.

This wave equation looks like a time independent
Schrödinger equation for the wave function ψA.
However,



• evaluating corrections up to the order (v/c)2 the
wave function ψA is not normalized because the
probability interpretation of Dirac’s theory requires
that ∫

(ψ†
AψA + ψ†

BψB) d3x = 1,

where ψB already of the order v/c.

• explicitely writing down the expression for the
operator HA we see that it contains the
non-Hermitian term ih̄E · p.

• the equation is not an eigenvalue equation since HA

itself contains the term E(NR).

Up to the order (v/c)2 the normalization condition can
now be written as∫

ψ†
A

(
1 +

p2

4m2c2

)
ψA d

3x ≈ 1,

because according to the equation

−
[
σ ·
(

p− eA

c

)]
ψA = −1

c
(E − eA0 +mc2)ψB

we have
ψB ≈ σ · p

2mc
ψA.

It is worthwhile to define the new two component wave
function Ψ:

Ψ = ΩψA,

where

Ω = 1 +
p2

8m2c2
.

Now Ψ is up to the order (v/c)2 normalized correctly
because∫

Ψ†Ψ d3x ≈
∫
ψ†

A

(
1 +

p2

4m2c2

)
ψA d

3x.

We multiply the equation

HAψA = E(NR)ψA,

on both sides with the operator

Ω−1 = 1− (p2/8m2c2),

and get
Ω−1HAΩ−1Ψ = E(NR)Ω−2Ψ.

Explicitely, up to the order (v/c)2 this can be written as[
p2

2m
+ eA0 −

{
p2

8m2c2
,

(
p2

2m
+ eA0

)}
− (σ · p)

2m

(
E(NR) − eA0

2mc2

)
(σ · p)

]
Ψ

= E(NR)

(
1− p2

4m2c2

)
Ψ.

Writing E(NR)p2 in the form 1
2{E

(NR),p2} we get[
p2

2m
+ eA0 −

p4

8m3c2

+
1

8m2c2

(
{p2, (E(NR) − eA0)}

−2(σ · p)(E(NR) − eA0)(σ · p)
)]

Ψ

= E(NR)Ψ.

Because for arbitrary operators A and B

{A2, B} − 2ABA = [A, [A,B]]

holds we can, by setting

σ · p = A

E(NR) − eA0 = B,

reduce the equation into the form[
p2

2m
+ eA0 −

p4

8m3c2

−eh̄σ · (E × p)
4m2c2

− eh̄2

8m2c2
∇ ·E

]
Ψ

= E(NR)Ψ.

In the derivation of the equation we have employed the
relations

[σ · p, (E(NR) − eA0)] = −ieh̄σ ·E
[σ · p,−ieh̄σ ·E] = −eh̄2∇ ·E

−2eh̄σ · (E × p),

the validity of which can be verified by noting that

∇A0 = −E

∇×E = 0.

The resulting equation is a proper Schrödinger equation
for a two component wave function.
Physical interpretation
We look at the meaning of the terms in the equation[

p2

2m
+ eA0 −

p4

8m3c2

−eh̄σ · (E × p)
4m2c2

− eh̄2

8m2c2
∇ ·E

]
Ψ

= E(NR)Ψ.

1. The term p2

2m + eA0 gives the non-realtivistic
Schrödinger equation.

2. The term − p4

8m3c2
is a relativistic correction to the

kinetic energy as can be seen from the expansion

√
(mc2)2 + |p|2c2 −mc2 =

|p|2

2m
− |p|4

8m3c2
+ · · · .



3. The term −eh̄σ · (E × p)
4m2c2

describes the interaction
between the spin of a moving electron and electric field.
Intuitively this, so called Thomas term, is due to the fact
that the moving electron experiences an apparent
magnetic field E × (v/c). If the electric field is a central
field,

eA0 = V (r),

it can be written in the form

− eh̄

4m2c2
σ · (E × p) = − h̄

4m2c2

(
−1
r

dV

dr

)
σ · (x× p)

=
1

2m2c2
1
r

dV

dr
S ·L,

where we have substituted

S = h̄σ/2.

So we actually have a spin orbit interaction.

4. The term − eh̄2

8m2c2
∇ ·E is known as the Darwin term.

Its meaning can be deduced when we note that ∇ ·E is
the charge density. For example, in the hydrogen atom
where ∇ ·E = −eδ(x) it causes the energy shift∫

e2h̄2

8m2c2
δ(x)|ψ(Schrö)|2 d3x =

e2h̄2

8m2c2
|ψ(Schrö)|2

∣∣∣∣
x=0

,

which differs from zero only in the s-state.
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