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“Lafilosofia ¢é scritta in questo grandissimo libro che continuamente ci sta aperto
innanzi a gli occhi (io dico I'universo), ma non si puo intendere se prima non
s’impara a intender la lingua, e conoscer i caratteri, ne’ quali € scritto. Egli € scritto
in lingua matematica, e i caratteri son triangoli, cerchi, ed altre figure geometriche,
senza i quali mezi é impossibile a intenderne umanamente parola; senza questi é
un aggirarsi vanamente per un oscuro laberinto.”

Galileo Galilei, p. 38 in Il Saggiatore, Ed. L. Sosio, Feltrinelli, Milano (1965)

“Philosophy is written in this grand book—I mean the universe—which stands
continually open to our gaze, but it cannot be understood unless one first learns
to comprehend the language and to interpret the characters in which it is written.
It is written in the language of mathematics, and its characters are triangles,
circles, and other geometrical figures, without which it is humanly impossible
to understand a single word of it; without these, one is wandering about in a dark
labyrinth.”

Galileo Galilei, in The Assayer (transl. from Italian by S. Drake, pp. 106—107
in L. Geymonat, Galileo Galilei, McGraw-Hill, New York (1965))






Preface to the Second Edition

The original edition of this monograph generated continued interest as evidenced
by a steady number of citations since its publication by Springer-Verlag in 1988.
Hence, we were particularly pleased that the American Mathematical Society
offered to publish a second edition in its Chelsea series, and we hope this slightly
expanded and corrected reprint of our book will continue to be a useful resource
for researchers in the area of exactly solvable models in quantum mechanics.

The Springer edition was translated into Russian by V. A. Geiler, Yu. A. Ku-
perin, and K. A. Makarov, and published by Mir, Moscow, in 1991. The Russian
edition contains an additional appendix by K. A. Makarov as well as further ref-
erences.

The field of point interactions and their applications to quantum mechanical
systems has undergone considerable development since 1988. We were partic-
ularly fortunate to attract Pavel Exner, one of the most prolific and energetic
representatives of this area, to prepare a summary of the progress made in this
field since 1988. His summary, which centers around two-body point interaction
problems, now appears as the new Appendix K in this edition; it is followed by
a bibliography which focuses on some of the essential developments since 1988.

A list of errata and addenda for the first Springer-Verlag edition appears at
the end of this edition. We are particularly grateful to G. F. Dell’Antonio, P.
Exner, W. Karwowski, P. Kurasov, K. A. Makarov, K. Némcov4, and G. Panati
for generously supplying us with lists of corrections.

Apart from the new Appendix K, its bibliography, and the list of errata, this
second AMS-Chelsea edition is a reprint of the original 1988 Springer-Verlag
edition.

We thank Sergei Gelfand and the staff at AMS for their help in preparing
this second edition.

Due to Raphael Hgegh-Krohn’s unexpected passing on January 24, 1988, he
never witnessed the publication of this monograph. He was one of the principal
creators of this field, and we take the opportunity to dedicate this second edition
to his dear memory.

July 2004

S. Albeverio
F. Gesztesy
H. Holden






Preface

Solvable models play an important role in the mathematical modeling of
natural phenomena. They make it possible to grasp essential features of the
phenomena and to guide the search for suitable methods of handling more
complicated and realistic situations.

In this monograph we present a detailed study of a class of solvable models
in quantum mechanics. These models describe the motion of a particle in a
potential having support at the positions of a discrete (finite or infinite) set of
point sources. We discuss both situations in which the strengths of the sources
and their locations are precisely known and the cases where these are only
known with a given probability distribution. The models are solvable in
the sense that their resolvents and associated mathematical and physical
quantities like the spectrum, the corresponding eigenfunctions, resonances,
and scattering quantities can be determined explicitly.

There is a large literature on such models which are called, because of the
interactions involved, by various names such as, e.g., “point interactions,”
“zero-range potentials,” “delta interactions,” “Fermi pseudopotentials,”
“contact interactions.” Their main uses are in solid state physics (e.g., the
Kronig-Penney model of a crystal), atomic and nuclear physics (describing
short-range nuclear forces or low-energy phenomena), and electromagnetism
(propagation in dielectric media).

The main purpose of this monograph is to present in a systematic way the
mathematical approach to these models, developed in recent years, and to
illustrate its connections with previous heuristic derivations and computa-
tions. Results obtained by different methods in disparate contexts are unified

vii



viii  Preface

in this way and a systematic control on approximations to the models. in
which the point interactions are replaced by more regular ones, is provided.

There are a few happy cases in mathematical physics in which one can find
solvable models rich enough to contain essential features of the phenomena
to be studied, and to serve as a starting point for gaining control of general
situations by suitable approximations. We hope this monograph will convince
the reader that point interactions provide such basic models in quantum
mechanics which can be added to the standard ones of the harmonic oscillator
and thc hydrogen atom.
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Introduction

In this monograph we present a detailed investigation of a class of solvable
models of quantum mechanics; namely, models given by a Schrodinger
Hamiltonian with potential supported on a discrete (finite or infinite) set of
points (“sources”). Such point interaction models are “solvable” in the sense
that their resolvents can be given explicitly in terms of the interaction strengths
and the location of the sources. As a consequence the spectrum, the eigen-
functions, as well as resonances and scattering quantities, can also be deter-
mined explicitly. Models of this type have already been discussed extensively,
particularly in the physical literature concerned with problems in atomic,
nuclear, and solid state physics. Our main purpose with this monograph is to
provide a unifying mathematical framework for a large body of knowledge
which has been accumulated over decades in different fields, often by heuristic
considerations and numerical computations, and often without knowledge of
detailed results in other fields. Moreover, we systematically expose advances
in the study of point interaction models obtained in recent years by a more
mathematically minded approach. In this introduction we would briefly like
to introduce the subject and its history, as well as to illustrate the content
of our monograph. Furthermore, a few related topics not treated in this
monograph will be mentioned with appropriate references.

The main basic quantum mechanical systems we discuss are heuristically
given (in suitable units and coordinates) by “one particle, many center Hamil-
tonians” of the form

=—A+ Y 4,5,), (1)
yeY

1



2 Introduction

where A denotes the self-adjoint Laplacian in L*(R?) with domain H?2(RY).
Here d = 1, 2, 3 is the dimension of the underlying configuration space, Y is
a discrete (finite or countably infinite) subset of R? 4, is a coupling constant
attached to the point source located at y, and J, is the Dirac J-function at y
(i.e., the unit measure concentrated at y). The quantum mechanical particle
thus moves under the influence of a “contact potential” created by “point
sources” of strengths 1, located at y. The basic idea behind the study of
such models is that, once their Hamiltonians have been well defined and
understood, they can serve as corner stones for more complicated and more
realistic interactions, obtained by various perturbations, approximations, and
extensions of (1). Models with interactions of type (1) occur in the literaturc
under various names, like “point interaction models,” “zero-range potential
models,” “delta interaction models,” “Fermi pseudopotential models,” and
“contact interaction models.”

Historically, the first influential paper on models of typc (1) was that by
Kronig and Penney {307], in 1931, who treated the case d =1 and Y = Z
with A, = 1 independent of y. This “Kronig -Penney model™ has become a
standard reference model in solid state physics, see, e.g., [290], [493]. It
provides a simple model for a nonrelativistic electron moving in a fixed crystal
lattice. A few years later, Bethe and Peierls {86] (1935) and Thomas [485]
(1935) started to discuss models of type (1) for d = 3 and Y = {0}, in order
to describe the interaction of a nonrelativistic quantum mechanical particle
interacting via a “very short range” (in fact zero range) potential with a fixed
source. By introducing the center of mass and relative coordinates this can
also be looked upon as a model of a deuteron with idealized zero-range
nuclear force between the nucleons. In particular, Thomas realized that a re-
normalization of the coupling constant is nccessary (see below) and exhibited
an approximation of the Hamiltonian (1) in terms of local, scaled short-range
potentials. His paper was quite influential and was the starting point for
investigations into corresponding models in the case of a triton (three particles
interacting by two-body zero-range potentials). It soon turned out that in the
triton case the naively computed binding energy is actually infinite, so that
the heuristically defined Hamiltonian is unbounded from below and hence
physically not acceptabile, see, e.g., [134], [135], [441], [485].

Subsequent studies aimed at the clarification of this state of affairs led in
particular to the first rigorous mathematical work by Berezin and Faddeev
[81] in 1961 on the definition of Hamiltonians of type (1) for d = 3 as self-
adjoint operators in L2(R?). Let us shortly describe the actual mathematical
problem involved in the case where Y consists of only one point y. Any possible
mathematical definition of a self-adjoint operator H of the heuristic form
—A + 28, in L*(R*) should take into account the fact that, on the space
Cy(R? ~ {y}) of smooth functions which vanish outside a compact subset
of the complement of {y} in R, H should coincide with —A. For d > 4
this already forces H to be equal to —A on H>2(R?) since —Alczga-yyy) is
essentially self-adjoint for d > 4 [389]. For d = 2, 3 it turns out that there is
a one-parameter family of self-adjoint operators, indexed by a “rcnormalized
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coupling constant” a, all realizing the heuristic expression —A + 13,. In
physical terms, the coupling constant A in the heuristic expression —A + 19,
has to be “renormalized” and turns out to be of the form 1 =  + an?, with
n infinitesimal and « € (—o0, c0]. This was put on a mathematical basis in
[81] using Krein’s theory of self-adjoint extensions (cf. Sect. I.1.1). Several
other mathematical definitions of (1) appeared later in the literature, as will
be discussed briefly below, but perhaps the most intuitive mathematical
explanation nowadays is provided by nonstandard analysis. It should also be
remarked that the necessity of renormalization for d = 2, 3 mentioned above
is not tied to the interpretation of H as an operator, the same applies for
H interpreted as a quadratic form. In particular, it is not possible, without
renormalization, to decribe H as a perturbation of —A in the sense of qua-
dratic forms [188]. This is in sharp contrast to the one-dimensional case
which allows a straightforward description of d-interactions by means of
quadratic forms. Actually, a new phenomenon occurs in one dimension: Since
(in contrast to d =2, 3) —A|cgr-y,) exhibits a four-parameter family of
self-adjoint extensions in L2(R), additional types of point interactions (e.g.,
¢'-interactions, cf. Ch. [.4) exist.

But let us close this short digression on the mathematical definition of (1)
and return to the historical development of the subject. The investigations
of Thomas and others in nuclear physics (starting in the 1930s), which we
mentioned above, were persued in different directions during the following
decades. In particular, Fermi [179] discussed by similar methods the motion
of neutrons in hydrogeneous substances, introducing the so-called Fermi
pseudopotential made explicit by Breit [110] 10 years later (the Fermi pseudo-
potentials can be identified with point interactions for d < 3 [229]). Some
of this work has now been incorporated into standard reference books on
nuclear physics, see, e.g., [93].

Somewhat parallel to this work, models involving zero-range potentials
began to be studied in the 1950s in connection with many-body theories
and quantum statistical mechanics. Here, particular attention was paid to
obtaining results on certain statistical quantities by using explicit computa-
tions and various approximations, the point interactions being used as limit
cases around which one could reach more realistic models by perturbation
theory. For this work we shall give references below.

Let us mention yet another area of physics in which problems arise and
which are essentially equivalent to those of many-body Hamiltonians with
two-body point interactions. This is the theory of sound and electromagnetic
wave propagations in dielectric media, where the role of the point interactions
is replaced by boundary conditions at suitable geometric configurations. In
the one-dimensional case (d = 1), such relations have been pointed out and
exploited in the work by Heisenberg, Jost [275], Lieb and Koppe [323],
Nussenzveig [366], and others. The book by Gaudin [194] contains many
references to this subject. In the three-dimensional case (d = 3), the relation
between Hamiltonians of type (1) and problems of electromagnetism (and
acoustics) has not yet been exploited sufficiently; see, however, [228], [229],
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[503] for recent developments (which are particularly interesting in connection
with work on the construction of antennas).

We will now discuss the content of the monograph, and at the same time
take the opportunity to make some complementary remarks. In each of the
three parts, I to III, theorems and lemmas are numbered consecutively in the
form x - y- z where x refers to the chapter, y to the section and z to the number
within the section. Equations are numbered in the same way. When we refer
to equations, theorems, or lemmas from another part of the monograph, the
appropriate roman number is added.

In this monograph we have divided the subject into three parts corresponding
to point interactions with one center (Part I), finitely many centers (Part II)
resp. infinitely many centers (Part III), according to whether Y consists of
one, finitely many, or infinitely many points. Within the parts we separately
discuss the three-dimensional case (d = 3) and the cases d = 1, 2. In the
one-center problem (Part I) the first problem is to define the point interaction.
Historically, the first discussions in the three-dimensional case go back to
Bethe and Peierls [86] and Thomas [485], who used a characterization by
boundary conditions (cf. Theorem I.1.1). We have already mentioned the
approach by Berezin and Faddeev [81] using Krein’s theory (for a similar
discussion in the three-particle case, see [342], [343]). The modern approach
by nonstandard analysis was developed in [12], [14], [37], [355]. Yet another
approach, particularly suited to probabilistic interpretations, is the one by
Dirichlet forms introduced by Albeverio, Hoegh-Krohn, and Streit [32],
[33]. Finally, let us mention various approaches based on constructing the
resolvent by suitable limits of “regularized” resolvents [17], [24], [226]. These
approaches also lead to results on convergence of eigenvalues, resonances, and
scattering quantities (as we will discuss in Ch. 1.1). Perturbations of the
three-dimensional one-center problem by a Coulomb interaction is discussed
in Ch. 1.2. Here the historical origins may be found in the work of Rellich
[392] in the 1940s; however, most results are quite recent with main contri-
butions from Zorbas [512], Streit, and the authors [22].

Let us here mention some work we do not discuss in this monograph. It
concerns time-dependent point interactions —A + A()4(-) and electromag-
netic systems of the type [—iV — A4(£)]* + A8(-) discussed in [111], [145],
[146], [151], [239], [348], [349], [362], [405], [406], [472], [505], [506].

The one-center problem for a particle moving in one dimension is discussed
in Ch. L3 in the case of d-interactions, and in Ch. 1.4 in the case of &'-
interactions. In Ch. L5 the case of a particle moving in two dimensions
under the influence of a one-center point interaction is briefly discussed. The
problems are similar to the three-dimensional case, however most results are
based on recent work.

In Part II of this monograph we discuss Hamiltonians of type (1) with Y a
finite subset of R’ In Ch. IL1 the three-dimensional case is treated. The
methods of defining the Hamiltonian are similar to the methods introduced
in Part I. In the physical literature, the model appears quite early and detailed
results are derived heuristically, e.g., in [151], [277]. Mathematical studies
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started in the late 1970s [129], [226], [482], [483], [512]. In recent years a
lot of work has gone into obtaining mathematical results concerning approxi-
mations, convergence of eigenvalues and resonances, and scattering theory
on which we report in this chapter. Chapter I1.2 (resp. I1.3) report on detailed
corresponding studies carried out recently on the one-dimensional case with
d- (resp. &'-) interactions. Chapter I1.4 reports on recent work on the two-
dimensional case.

At this point we would like to mention a major subject which has been
omitted from our monograph, namely, the case of multiparticle Hamiltonians,
i.e, the case where (1) is replaced by

N
—A + z lija(xi - Xj), (2)
i<j

where 1; are coupling constants for the d-interactions between particles i
and j at x; resp. x; € R%. Such heuristic Hamiltonians describe a quantum
mechanical N-particle system interacting via two-body point interactions
(— A denotes the Nd-dimensional Laplacian). Our excuse for not including
a discussion of this case is twofold. In the one-dimensional case (i.e., d = 1)
the literature is very rich and a monograph by Gaudin [194] already exists
(see also [83], [326]). Multiparticle problems with point interactions in one
dimension have been studied extensively since the 1950s, particularly under
the influence of work by Heisenberg on the scattering matrix for nuclear
physics. Some early references are [9], [275], [323], [366], [498], [499], see
also [326], [346] for some illustrations. More recent references, in addition
to those given in [194], are [82], [113], [155], [156], [233], [310], [321],
(328], [335], [338], [339], [340], [433], [449a], [468], [507].

In the two- and three-dimensional cases very few mathematical results are
as yet available, despite considerable work carried out by physicists. We limit
ourselves here to giving some hints to some studies in this area and some
references. Flamand [184] gives a very good survey of work done on the
three-particle problem (N = 3) in three dimensions (d = 3), up to 1967. This
work was mainly carried out by physicists and mathematicians in the Soviet
Union in connection with models of nuclear physics (triton and related
models) [131], [134], [135], [150], [198], [224], [342], [343], [354], [364],
[429], [441], [484], [485]). The main conclusion of this work is that a class
of natural self-adjoint realizations of (2) are not bounded from below [342],
[343]. However, the spectrum can be computed quite easily. In [34] a relation
was observed between this problem and the so-called Efimov effect in three-
particle systems with short-range, two-body potentials (i.., the formation
of infinitely many negative three-body bound states below zero, if at least two
two-particle subsystems have a zero-energy resonance). Heuristically, the rela-
tion is brought about by a scaling argument. Two-dimensional multiparticle
systems are discussed in [253], [327], [433].

Methodically related to the study of many-body systems is the study of
quantum statistical mechanical systems, for which we shall also mention
some references. Bose gases with hard-sphere interactions related to point
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interactions and Fermi pseudopotential models were discussed extensively in
the 1950s, particularly by Huang, Luttinger, Wu, and Yang, see, e.g., [264],
[265], [266], [320], [502]. Many-body systems of bosons with repulsive two-
body J-interactions were discussed by Lieb, Liniger, Yang, and coworkers,
cf.,e.g., [322],[324], [331], [508] and the references in [194], [326]. Fermions
with two-body J-interactions were studied by Lieb and others, see, e.g., [325]
and the references in [194], [326].

Let us also mention that the heuristic nonrelativistic limit of quantum field
theoretical models with ¢7-interaction is described by Schrodinger multi-
particle Hamiltonians with two-particle d-interactions in d — 1 dimensions.
This is rigorously discussed for d = 2 in [154].

Let us now proceed to the description of work discussed in Part III of
our monograph, treating point interactions with infinitely many centers. As
we have mentioned already, a very influential model in solid state physics,
discussed early in the literature, has been the Kronig—Penney model [307]
(1931) in one dimension. An early heuristic treatment of a three-dimensional
crystal with point interactions was given by Goldberger and Seitz [216] in
1947.

The systematic mathematical discussion of these and similar Hamiltonians
in three dimensions is, however, much more recent and was started by the
work of Grossmann, Mebkhout, and the present authors starting at the end
of the 1970s. In general, Hamiltonians with infinitely many point interactions
are defined as limits in the strong resolvent sense of Hamiltonians for N-point
interactions as N — co. In the case where the centers are periodically arranged,
group-theoretical methods of reduction to simpler Hamiltonians, exploiting
the symmetry, permit a more direct definition of the Hamiltonians. This
leads to a particularly detailed treatment of spectral properties for the case
of crystals (“Kronig—Penney”—or rather “Goldberger—Seitz”—type models
in three dimensions) in Sect. II1.1.4, as well as of embedded one- or two-
dimensional lattices in R3, so-called “straight polymers” in Sect. IIL.1.5 resp.
“monomolecular layers” in Sect. II1.1.6. Some physical discussions of related
systems are given in [151]. Scattering from half-crystals (Bragg scattering) is
treated in Sect. II1.1.7. This gives details on results announced earlier in [52].
The computation of Fermi surfaces for crystals is of basic importance in solid
state physics. It is usually obtained by various approximations. The point
interaction model gives the possibility of producing exact formulas for the
Fermi surfaces as shown in Sect. IIL.1.8. This is based on work done by
Hoegh-Krohn, Holden, Johannesen, and Wentzel-Larsen [242]. We also
discuss crystals with defects, as well as scattering from impurities in crystals
in Sect. IT1.1.9.

In Ch. II1.2 models with infinitely many J-interactions in one dimension
are discussed. Although the prototype of such models is the Kronig—Penney
model already introduced in 1931, most mathematical results in this chapter
have been obtained in recent years. The topics discussed in this chapter corre-
spond to those treated in the three-dimensional case, Ch. IIL1. In particular,
Sect. II1.2.3 treats the case of periodic -interactions, and Sect. I11.2.4. develops
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spectral and scattering theory in connection with half-crystals. Quasi-periodic
point interactions are briefly studied in Sect. II1.2.5. The discussion of crystals
with defects and impurity scattering in Sect. II1.2.6 goes back originally to
Saxon and Hutner [404].

In Ch. II1.3 all the basic results of Ch. II1.2 are extended to models with
infinitely many ¢'-interactions in one dimension. Let us remark at this point
that in one dimension, &'-interactions are nontrivial, in higher dimensions,
d > 2, interactions supported on v-dimensional hypersurfaces 0 < v<d — 1
are nontrivial. For a discussion of point interactions on manifolds, see, e.g.,
[42], [125], (1801, [226], [299], [424] and the references therein.

In Ch. I11.4 we extend the results established for dimensions one and three
to the two-dimensional case.

In Ch. II1.5 we discuss random Hamiltonians with point interactions in one
and three dimensions. Schrodinger operators with stochastic potentials have
received a lot of attention in recent years, because of their importance as
models for amorphous solids. Actually, at the end of the 1940s—early 1950s
much work had already been done on one-dimensional models of disordered
solids with point interactions. The paper by Saxon and Hutner [404] was very
influential. It discussed, in particular, Schrodinger Hamiltonians with two
types of atoms (binary alloys) characterized by coupling constants A and B
conjecturing that gaps in the spectrum of both pure crystals (with pure atoms
of type A (resp. B)) should also be present in arbitrary alloys (with random
combination of 4’s and B’s). It influenced other papers on the subject such as,
e.g., [189] (see the extensive bibliography in [326] and in the notes in Ch. IIL.5)
which treated a stochastic Poisson distribution of sources as an “impurity
band” model or a “one-dimensional liquid metal” model. Incidentally, the
relation with the one-dimensional version of a scalar-meson pair theory
Hamiltonian, discussed by Montroll and Potts [344] in their study of inter-
actions of lattice defects, was pointed out. Anderson, Mott, and others started
in the 1950s to discuss, from the physical point of view, the phenomenon of
localization, by which a discretized random Hamiltonian in three dimensions
was conjectured to have a nonconducting phase at large disorder and a
conducting phase at low disorder, the two phases being separated by a
mobility edge. Mathematical work on the problem was originally started in
the Soviet Union, see, e.g., [222], [223], [368]. Random point interactions
were rigorously studied by Kirsch and Martinelli [286], [287], [288], [289]
and the present authors [20], [30], [206] (our presentation in Ch. IIL.5 closely
follows these papers). There are connections with work on the Laplacian with
boundary conditions on small, randomly distributed spheres [181], [182],
[183].

Let us also mention that random distributions of sources along Brownian
paths have also been considered, both in the physical literature, e.g., [162],
and in the mathematical literature [13], [14], as models for the motion of
a quantum mechanical particle in the potential created by a polymer. There
are applications, via a Feynman - Kac type formula, to the study of polymer
measures of Edward’s type [14], [162] and quantum field theory [14].
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Appendices A-I give complements to the main text. Let us mention here
that Appendix J treats Dirac Hamiltonians with point interactions in one
dimension.

As a final note, we would like to mention that our monograph only discusses
the class of solvable quantum mechanical models characterized by point
interactions in d < 3 dimensions. Of course, there are many other solvable
models in quantum mechanics. Their treatment would have made the size of
this volume unmanageable, besides that the methods of solutions of these
models are quite different from the ones we discuss here. In fact, their solvability
relies on symmetries which allow a group-theoretical treatment (such models
are often related to classically completely integrable systems). For a discussion
of these topics, see, e.g., [10], [83], [185], [326], [367].

In the references we have tried to be as complete as possible; however, with
the enormous number of publications over a wide range of fields, including
mathematics, solid state physics, atomic and nuclear physics, and theoretical
chemistry, we make no claim to being complete. The notes at the end of each
chapter give some historical comments and references to the subject discussed.

For other presentations of some of the material discussed in this monograph
we refer to the book by Demkov and Ostrovskii [151], and the survey papers
(181, (201, [29], [454].
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CHAPTER L1

The One-Center Point Interaction in
Three Dimensions

1.1.1 Basic Properties

In this section we develop a precise formulation for the point interaction
(also called 6, or zero-range, or contact interaction or Fermi pseudopotential
in the physics literature) centered at a fixed point y in three dimensions.
Although our methods concentrate mainly on the concept of self-adjoint
operator extensions, an alternative approach based on local Dirichlet forms
is sketched at the end of the section.

Consider in L2(R3) the nonnegative operator

~Algg@-pp)yy  VER, (1.1.1)

where A = 0%/0x? + 8%/0x% + 0%/dx3 is the Laplacian and denote by H, its
closure in L*(R?) (i.e., 2(H,) = H3'*(R® — {y})). By [274] (cf. also [276]) its
adjoint can be characterized by

H*=—A, 9H¥={geHXX(R*-{y})nL%(R®)|Age L*(R%)}, yeR>
(1.1.2)

where H[7:"(Q) denote the corresponding local Sobolev spaces (see, e.g., [389],
Ch. IX). A straightforward computation shows that

Yk, x) =e**MNjx -y, xeR*—{y}, Imk>0, (1.L3)
is the unique solution of

H*y(k) = k*y(k), (ke DHY), k*eC—R, Imk>0. (1.14)
11
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Consequently, H, has deficiency indices (1, 1) and applying Theorem A.1 all
self-adjoint extensnons H, , of H, are given by the one-parameter family

DH,,) = {g + c¥. + ce®Y_|ge D(H,), ceC}), (1.1.5)
Hy (g + c¥. + ce®y_) = H,g + icy, — ice®y_, 0e[0,2n), yeR3

where
Vox) = eVEEIdrix — y)),  xeR—{y}, Im/%+i>0. (116)

Decomposing L2(R?) with respect to angular momenta, or, in other words,
introducing spherical coordinates (with center y) we obtain (cf. [389], p. 160)

L?(R3) = L*((0, co); r* dr) ® L*(S?), (1.1.7)

where S2 is the unit sphere in R3. The spherical harmonics { Y] |l € No, m =
0, +1,..., +1} provide a basis for L%(S?). Using, in addition, the unitary
transformation

U: L*((0, ), r? dr)— L*((0, ), dr),  (Uf)()=1rf(r), (1.1.8)
we can write (1.1.7) as
LXR%) = D U LA(©, 0} d) ® [Y;pr-..» Yior-.r ¥y (1.19)
1=0

where [fy,...,/,] denotes the linear span of the vectors f;, ..., f,. With
respect to this decomposition H, equals the direct sum (cf. [389], p. 160)

H, =T, {(-B UThU® 1}1,, yeR>, (1.1.10)

=0

, unitarily implements the translation x —x + y in L*(R3) (ie.,
(T,9)(x) = g(x + y), g € L*(R), y e R*) and

a i+
dr? 2’
D(ho) = {$ € LX((0, 0))I4, ¢ € AC,oc((0, 0)); $(0+) = $'(0+) = 0;

¢" € L*((0, )} = H3*((0, 0)),
D(h) = {$ € L*((0, ®0))|¢, ¢’ € AC;oc((0, 0));
—¢" + (1 + )r~2¢ € L*((0, 0))}, 1>1.

where T,

h= -4 r>0, 1=0,1,2,...,

(1.1.11)

Here AC,,.((a, b)) denotes the set of locally absolutely continuous functions
on (a, b).

By standard results (.g., [389], Ch. X) A, | > 1, are self-adjoint whereas h,
has deficiency indices (1, 1). In particular, all self-adjoint extensions h, , of h,
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may be parametrized by (cf. Appendix D)

dz
hO.a = _Fa
D(ho.q) = {¢ € L*((0, ))|¢, ¢' € AC,o.((0, 0)); —4nad(0+) + ¢'(0+) = 0;
¢" € L*((0, 0))}, —00 <o < 0. (1.1.12)

(In obvious notation the boundary condition a = co denotes the Friedrichs
extension characterized by ¢(y +) = 0.) From §(r) = rg(r), § € 2(h,) and

2090) + cl4n)y eV + cldn) I e"e ]l o
= C(4ﬂ)-l(e3xi/4 - eweix/4)
= 4na[§(r) + cén) eV + c(dm)eeV "], c0r,  (1.1.13)
where

« = (4n)™! cos(n/4)[tan(6/2) — 1], (1.1.14)

we infer

H,, =T vn vePuhvul|eilr. @115
Wy y ' = y

Obviously, o varies in R (¢ = +o0 if 8 1 n) if 6 varies in [0, n) U (n, 27). Thus
we have proved

Theorem 1.1.1.  All self-adjoint extensions of H, are given by

A, =T vh veo@DuhU|ot1lT,
34 y » = y
—o<a<oo, yeR3:. (1.116)

The special case o = oo just leads to the kinetic energy Hamiltonian —A
(the Friedrichs extension of H,) in L*(R?)

~Apy=—A on P(-8)=H>*R). (1.1.17)
If |a| < 00, —A,,, describes a point interaction centered at y € R3. It will

turn out in Sect. 1.4 that —(4na) ™" represents the scattering length of — A, ,.
Denoting

G, =(—A—-k?, Imk>0 (1.1.18)

it is well known (see, e.g., [389], p. 58f) that in three dimensions G, has an
integral kernel G,(x — x') given by

Gx —x')=e™*4n|x — x'), Imk>0, x,x'€R3 x3#x.
(1.1.19)
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In the following we characterize basic properties of —A, ,. We start with

Theorem 1.1.2.  The resolvent of —A, , is given by
(=Asy = k3" = G + (¢ — ik/4m) " (G (- = ¥), )Gil- — ),
k*e p(—-A,,), Imk>0, —o<a<oo, yeR3 (1.1.20)

with integral kernel

iklx—x’| eiklx—yl eikly-—x'|

(A, — k) '(x,x") = + (@ — ik/4m)™!

4n|x — x'| an|x — ylanly — x|’
k*ep(-4,,), Imk>0, x,x'eR3 x#x, x#y, x #).
(1.1.21)

PROOF. Using eq. (1.1.19), eq. (1.1.20) (except for the factor (a — ik/4m)~") follows
from (1.1.6) and Theorem A.2. To determine the missing factor it suffices to discuss
€q.(1.1.20) in the subspace of angular momentum zero. Let n € L((0, oc)) and define

@

1a(r) = [ ar' go(k, r, r'yn(r') + (4na — ik)™! f ar e n(r')e’™,
Jo

o
Imk>0, —x<a<o, (1.1.22)

where

k7! sin(kr)e’™”, r<r,

k~'sin(kr)e®,  r>r, (1.1.23)

dolk,r,r') = {

is the Green’s function corresponding to h, ., (the Friedrichs extension of ho).
Clearly, x,, x. € AC,,.((0, c0)) and y, € L%((0, c0)). Moreover, a direct calculation
shows that

—4nox(0+) + x,(0+) =0 (1.1.24)

and
xa(r) = —n(r) = k2x (r), r>0, (1.1.25)
which proves (1.1.20). a

Next we would like to collect some additional information on the domain
of —A,,, and to show that the one-center point interaction is in fact a local
interaction:

Theorem 1.1.3. The domain 9(—A, ), —o0 < a < o, y € R?, consists of
all elements  of the type

¥(x) = g(x) + (@ — ik/An) ' 4 (NG(x — ),  x#y, (1.1.26)

where ¢, € D(—A) = H**(R?)and k? € p(— A, ,), 1m k > 0. The decomposi-
tion (1.1.26) is unique and with y € D(—A, ) of this form we obtain

(=4, — KW =(—A - k)¢, (1.1.27)
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Next, let y € 9(—A,,,) and assume that = 0 in an open set U = R>. Then
-A,,W=0inU.

PROOF. Wefirst note that functions in H2-2(R3) are Holder continuous of exponent
smaller than } ([283], p. 301) and hence it makes sense to write ¢,(y). Next, we infer
that

D-A,,) = (—A,, — k) H(—A - k)D(-A)
= {G, + (¢ — ik/4m) L (G,( =y}, ")Gu(* — N}(—A — k})D(-A),
k? e p(—A,,), Imk>0, (1.1.28)

which proves (1.1.26). To prove uniqueness of the above decomposition let y = 0.
Then

$u(x) = —(a — ik/Am)™" $(y)Gi(x — y) (1.1.29)

and ¢, € C°(R3), in fact, implies ¢, = 0. Relation (1.1.27) then simply follows from
(=4, = k) H(=A - k),
= ¢ + (@ = kAR (G =) (—A = k)B)G(- —y) =,
k? e p(—-A,,), Imk>0. (1.1.30)
To prove locality (cf. also Lemma C.2) assume first y¢ U. Then
((=A = K)G(- — y)(x) =0
implies that
(=8, W)(0) = KPY(x) + (= A = k*)$)(x)

= —(x — ik/Am) ' h(((—A - k)Gi(- —=y)(x)=0, xeU.
(1.1.31)

On the other hand, if y € U then y(y) = 0 and ¢, € C°(R>) implies ¢, = 0 and hence
again

(—A,,W)(x) =KY(x)=0, xeU. (1.1.32)
]

Finally, we turn to spectral properties of —A, ,:
Theorem 1.14. Let —o0 < a < 00, y € R3. Then the essential spectrum

Oess(— A,,,) is purely absolutely continuous and covers the nonnegative real
axis

aess(_Ac.y) = aac(_Aa.y) = [0, ), asc(_Aa,y) = . (l~l~33)
(Here o, and o, denote the absolutely and singularly continuous spectrum,
respectively.) If « < 0, —A, , has precisely one negative, simple eigenvalue,
i.e., its point spectrum 6,(— A, ) is given by
o,(—A,,) = {—(4nx)?}, -0 <a<0, (1.1.34)
with

4n(—0)' PG gaia(x — y) = (—)' et N|x —y|,  x#y, (1135
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its strictly positive (normalized) eigenfunction. If « >0, —A,, has no
eigenvalues, i.e.,

6,(-4,,) =, 0<acx< oo (1.1.36)

PROOF. Let |a] < 0. Weyl's theorem ([391], p. 112) and (1.1.20) imply
Ouss(—A,,,) = Ous(—A) = [0, 0) since (—4,, —k¥)' —(=A-k*)"', ke
p(—A4,,), —o0 < a < oo, is of rank one. The absence of g,.(—A4,,,) follows, e.g.,
from Theorem X111.20 of [391] together with (1.1.20). Assertion (1.1.34) and (1.1.35)
and the absence of negative eigenvalues of —A, , for « > O then follow from the
explicit structure of the residuum at k = —4nia of (1.1.20). It remains to prove the
absence of nonnegative eigenvalues for all « € R. From the decomposition (1.1.16)
we infer that it is sufficient to consider s-waves (I = 0). But this trivially follows
from the fact that for r > 0 all solutions of

—y'(k,r) = k2y(k, 1), k=0, r>0, (1.1.37)
are given by
Yk, r) =ce™ + c,e”*, k>0,
Y(O0,r) =c;3 + c,r, k=0,
which cannot be in L3((0, 0)). a

(1.1.38)

So far, we have discussed the approach based on operator extensions.
Following [32], [33] we finally sketch another method using local Dirichlet
forms. In L*(R3; ¢? d*x) we define the energy form

E,,(g. b) = J #2,(x) d*x(Vg)(x)(Vh)(x),  D(E,,) = CIR®), yeR?
R (1.1.39)

where
e Mx —y,  aeR, xeR®-{y},

(1.1.40)
1, o = 0.

$,y(x) = {

It turns out that Em, is closable and the unique self-adjoint operator associated
with its closure is precisely the operator ¢;1[—A, , + @nx)?}4, , if xR
(resp. —A if a = o) (cf. Appendix F). For a construction of (—A4,,, — k)™
by means of nonstandard analysis we refer to [12], [14] and Appendix H.

Obviously, the results of this section are not confined to self-adjoint exten-
sions (i.e., « € R) of H, but straightforwardly extend to accretive extensions
([389], Ch. X) of iH, if Im a < 0. In this way, complex point interactions are
obtained (cf. Theorem 2.1.4).

Since —Alczmn-(y)» ¥ € R", n€ N, is essentially self-adjoint in L*(R") if
n >4 ([389], Ch. X), there are no point interactions in more than three
dimensions. On the other hand, operators of the type

(=A+ A1 =Y gty —L[0 =221 <A< 1—[(n-2)2]%,
(1.1.41)

certainly admit self-adjoint extensions which correspond to an interaction
given by A)x — y|~2 plus point interaction centered at y as discussed in [209].
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L.1.2 Approximations by Means of Local as well as Nonlocal
Scaled Short-Range Interactions

The question as to under what circumstances —A, , can be obtained as a
norm resolvent limit of scaled short-range Hamiltonians is answered in this
section. We first treat the case of local interactions. Recall that

G, =(—A—-k¥»7, Imk>0, (1.2.1)
denotes the “free” resolvent with integral kernel
Gi(x — x') = e™* >4z |x — x|, Imk>0, x,xeR3 x#x', (122)

and assume V: R? - R to be measurable and belonging to the Rollnik class R,
ie, VI = fre d3x @3x'|V(X)||V(x')||x — x'|7% < co. For the general theory
of Rollnik functions, see [434]. We also introduce

o(x) = [V()I'2, ulx) =]V()I"* sgn[V(x)] (1.23)

and note

Lemma 1.2.1. Let Ve R. Then V is form compact with respect to —A, i.e.,
|[VIY2(—A + E)"'? € B,(LY(R?)), E>0, (1.24)

and
uGyve #,(L*(R%), Imk=0. (1.2.5)

PROOF. Equation (1.2.4) follows from (1.2.5) which in turn is a direct consequence
of ¥ € R and dominated convergence. a
In addition, we define
ix)=v(x—¢ely), d(x)=u(x—¢c'y, >0 yeR3 (1.26)
and
B, k)= Me)iG,5, Imk>0, £>0, 1.2.7)

where A(-) is real-analytic near the origin with 1(0) = 1. Because of (1.2.5),
Bi(e, k) extends to a Hilbert—Schmidt operator for Im k > 0. Moreover, by
eq. (1.2.4) and by Appendix B, the form sum

H@E)=-A+ V(- —¢c'y), &>0 yeR3, (1.2.8)
is well defined and by Theorem B.1(b) the resolvent equation
(H,(e) — k*)™* = G, — Me)G,B[1 + B, k)]G,
k*e p(H,(e), Imk>0, yeR? (1.29)

holds. To obtain suitable scaled short-range Hamiltonians H, , we denote by
U, the unitary scaling group

(Ug)(x) = e7%2g(x/e), €>0, geL*R%), (1.2.10)
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and define
H.,=¢UH@EU" = -A+V,,, 121
V. ,(x) = Ae)e” 2V ((x — y)/e), £e>0, yeR -

In order to discuss the limit £ | 0 of H, , we first introduce Hilbert- Schmidt
operators A,(k), B,(k) = 2(e)uG,v, C.(k), ¢ > 0, with integral kernels

Ak, x, x') = G(x — y — ex")o(x’), Imk>0, (1.2.12)
B.(k, x, x") = Ae)u(x)Gy(x — x")v(x"), Imk >0, (1.2.13)
C.(k, x, x') = u(x)G,(ex + y — x'), Imk>0. (1.2.14)
Then, using
eU,GU ' =G, £>0, (1.2.15)

we infer from (1.2.9) using translations x — x + (y/¢), ¢ > 0,
(H,, ~ k*)' = 2U,[H (c) — (ck)*]'U,!
= Gy, — Me)A,(k)e[1 + B(k)]~'C(k),
k*ep(H,,), Imk>0. (1.2.16)

Lemma 1.2.2. Let y € R? and define rank-one operators A(k), C(k), and
the Hilbert -Schmidt operator uGyv with kernels

Ak, x, x") = G(x — y)o(x'), Imk>0, x#y (1.217)

uGov)(x, x') = u(x)(@nix — x'[)" o(x’), x # X', (1.2.18)

C(k, x, x") = u(x)G(y — x'), Imk>0, x'#y (1.2.19)

Then for fixed k, Im k > 0, A(k), B,(k), C (k) converge in Hilbert—Schmidt
norm to A(k), uGyv, C(k), respectively, as ¢ | 0.

PROOF. By dominated convergence
w-lim A4,(k) = A(k), w-lim B,(k) = uG,v, w-lim C,(k) = C(k). (1.2.20)
edo edo edo

Since, obviously,
lim |A,(k)ll; = 14K,  lim | B,(K)I, = |luGovli,, lim [C(K)l; = IC(K)f5,
edo edo edo

(1.2.21)
the assertion follows by Theorem 2.21 of [438]. a

So far the whole analysis did not use any particular spectral informations
about the underlying Hamiltonians. However, in order to determine the limit
€10 of ¢[1 + B,(k)]™' we have to take into account zero-energy spectral
properties of

A= -A+ V(- —¢'y) (1.222)
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or by unitary equivalence (translations) zero-energy properties of
=-A+V. (1.2.23)

Therefore we introduce below, after Lemma 1.2.3, the notion of a zero-energy
resonance (resp. a zero-energy bound state) of H. Assume now, in addition,
VeLY(R.If

uGovp = —¢  forsome ¢ e L*(R?) (1.2.24)
we define

Y(x) = (Gove)(x). (1.2.25)

Lemma 1.2.3. Suppose V € L'(R*) " R. Then y € L3 (R®), V¢ € L*(R?),

loc

and HY = 0 in the sense of distributions. If, in addition, |-|V € L'(R3), then
¥ € L*(R®) is equivalent to

W, ¢) = —J d3*x V(x)y(x) = 0. (1.2.26)
%)

If ¥ € LA(R®), then € 9(H) and Hy = 0.

PROOF. From
Y(x) = (An|x]) "' (v, @) + ¥, (%), (1.2.27)

where

¥, (x) = @n)™! I d3x'(Ix — x| — |x]"Yo(x")d(x’), (1.2.28)
R3
and the fact that

j Bx(x — x| = x| <ecr (1.2.29)
Ixl<r
and

J d3x(jx — x|t = {x]™")? < €|x'| (1.2.30)
R3

for appropriate constants ¢, & > 0, one infers that ¥, € L2 (R?) if V € L'(R3), and
¥, € LAR3)if || V € L' (R?). Moreover,

(V) (x) = —[d’x’(41r)" x — x'}173(x — x")o(x")d(x’), (1.2.31)
in the sense of distributions, and Fubini’s theorem imply

Jm x|(V¢)(x)P
< @n)7? J d>x" d3x" v(x")o(x") | $(x ) |$(x")| I dx)x = x'|72x — x"|7?
Ré R3

= d(4n)”? f dx" d>x"x" — x"| " o(x")o(x") 14(x")] 1(x")|
R

< d(@r) 2|V ligligll® < oo, (1.2.32)
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where
d= J dz|z) 2z — e5]"% < 0
R‘l

(e3 the unit vector in the z,-direction). Since vy = —(sgn V)¢ € L*(R>), Vi defines
a distribution (cf. Corollary 11.8(a) in [434]) and — Ay + Vy§ = 0 in the sense of
distributions. If y € L%(R?) then y € 9(H) by Corollary II. 8(a)) of [434]. [ ]

If ¢ € L%(R?), then y is a zero-energy eigenstate of H and O € o,(H). If
Y € L1 (R3), but y ¢ L%(R3) we call y a zero-energy resonance function of H
and the spectral point O a resonance of H. Lemma 1.2.3 is a convenient tool
to decide whether 0 is a zero-energy bound state (resp. resonance) of H. We
thus distinguish the following cases:

Case I: —1 is not an eigenvalue of uG,v.
Case II: —1 is a simple eigenvalue of uG,v,
uGovp = —¢4, e L*R%)
and
!I/ = GOU¢ € leoc(Ra)a
but y ¢ L3(R3).
Case III: —1 is an eigenvalue of uG,v,
uGov¢, = —¢,, ¢’EL2(R3), I= l,..., N,
and
¥, = Gyvgy € L*(R?), l=1,...,N.
Case IV: —1 is an eigenvalue of uG,v,
uGOU¢l = _¢l9 ¢l € LZ(R3)’ I = la ceey N’ N 2 29
¥ = Govgy € Li, (R%), I=1,...,N,
and at least one ¥, ¢ L*(R3).

Observe that the functions ¢;, ¥, can be chosen to be real-valued. Clearly,
case I is the generic one in the sense that if V is replaced by gV, g = 0, then
cases II-IV only occur for discrete values of the coupling constant g. In
particular, if V' > 0 then only case I occurs. In case II, H has a simple zero-
energy resonance; in case III, H has a zero-energy eigenvalue of multiplicity N.
Since in case IV one can always choose a particular linear combination of the
#/’'ssuch that (v, ¢,) £ Obut (v, ¢) = 0,1 = 2,..., N, H has a simple zero-energy
resonance and a zero-energy eigenvalue of multiplicity N — 1 in case IV if
Ve Rand(l +|-|)V € LY(R3). If, in addition, V is spherically symmetric then
(v, ) = 0 for all functions ¢ belonging to angular momentum ! > 1. Thus case
II (i.e. a zero-energy resonance) only occurs in s-waves whereas p- and higher

waves only support zero-energy bound states. From now on we always assume
(1 +]:])V e L'(R*) in cases II-IV.
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Given the above case distinction we can formulate

Lemma 1.24. Let Ve R. In cases H-1V assume, in addition, (1 + |-|)V €
L'(R3) and 4'(0) # 0 in cases 11l and 1V. Then

(0 in case I,
((@m)ik|(v, @)I* + X'(0)]7(d, -)¢ incasell,

- . —l = 4 - N g : O,
nlimefl + BOI™ = 4 (1 O1™ 3 G ) in case 111,
N ~ ~
3 GBI Gr I in case 1V,
o (1.2.33)

where k2~ eC—-R, Imk>0, and (, B, (k)g);! denotes the inverse of the
matrix (¢, B,(k)¢r)

$(x) =sgn[V(0)14(x), @Bnd)= —bp, LI=1.. N (1234
B, (k) = X(0)uGyv + (4m) ' ik(v, -)u. -

PROOF. Case I: Since n-lim, o B,(k) = uGyv and (I + uGov)™! exists the result
immediately follows.
In cases II-1V we first note the norm convergent expansion

(1 +uGw+2)'=2z""P+ Y (—2"T™', zeC—{0} smallenough,
m=0

(1.2.35)
where
N o -
P= -'2 @) SH=@6gnV)g, l=1,...,N, (1.2.36)
=1
is the projection onto the eigenspace of uG,v to the eigenvalue —1 and
T =n-lim(1 + z + uGyv)"*(1 — P) (1.2.37)
z-0

denotes the corresponding reduced resolvent. Moreover, the ¢ can be chosen in
such a way that

@)= =8y, LIU=1,...,N. (1.2.38)

In order to prove (1.2.35)-(1.2.38) we first show that the algebraic and geometric multi-
plicity of the eigenvalue —1 of uG,v coincide. For this purpose it suffices to prove
that (1 + uG,v)®g = 0,9 € L*(R3)implies (1 + uGyv)g = 0: Assume (1 + uG,yv)’g =
0 and define f = (1 + uGyv)g. Then (1 + uG,v)f = 0 and, consequently,

(£1) = ((1 + vGou)g, (1 + uGov)g) = (3 (1 + uGor)'g) =0, (1.2.39)
where

=1 + vGyu)g, g = (sgn V)g. (1.2.40)
But 0 = —(f; uGotf) = —(G&*uf, G¥*vf) = — |G vf |* implies vf = 0 and hence
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S =0 (since f = —uGyvf). By [283], Ch. II1.6.5 we get an expansion of the type
(1.2.35). It remains to show that the normalization (1.2.38) is indeed possible. This
actually follows from

(4. 8) = —(8, uGovg) = — IGYvg)|* # 0, (1.241)
uGyvp = —9, $eL R, §=(sgn V), -

and the analog of the Gram-Schmidt orthogonalization process.
Next we remark that, due to the hypothesis V& R n L!(R3), the expansion

B,(k) = uGov + €X' (0)uGyv + £(4m) ™ ik(v, -)u + o(¢)
B, + ¢B, (k) + o(¢) (1.2.42)

is valid in Hilbert—Schmidt norm for fixed k with Im k > 0. Equation (1.2.42) is
shown as follows: By the mean-value theorem

AE)Galx, X') = Go(x, x) — X' (60(€)) Go(x, X') + £(4m) Vike'@Ox=x1  x & x',
(1.2.43)

for appropriate functions 0 < 8(¢), f(¢) < 1. Thus
(B.(K) — uGov — eX'(Q)uGov — e(dm) " ik(o, -)ull2
< 262|4(e0(e)) — X' (O)1* uGooll3

+ 2e2(4n)” 2 |k|? j d3x d3x | V(x)] | V(x')| e 0@kx=*1 _ 1|2 = o(¢?)
Re (1.2.44)

by dominated convergence. (A slightly more detailed estimate actually shows that
o(¢) can be replaced by o(¢¥?) in (1.2.42) since ||V € L} (R3).)

Case II: By eqs. (1.2.35) and (1.2.42)
e[1 + B,(k)]™!
=¢[1 + By + ¢B, + 0(¢)]7!
=[1+&(l +e+Bo) (B, — 1 +0(c)] el + ¢+ By)™"
=[1+PB, —1)+0E)] '[P+ 0], klep(H,,), Imk>0 (1.245)

Since [1 + P(B, — 1)]™! is easily seen to exist as a bounded operator in L3(R?)
(1 + P(B, — N]™! =1 + [(ik/4m)|(v, $)1*> + X(0)) ' [1 + X(0))(4, )¢
— (ik/am) [(ik/4m)|(v, B)I* + X'(0)] ' (4, V)(v, )4 (1.2.46)
and from
[1 + P(B, — 1)]7'P = [(ik/4m) (v, $)|* + X'(0)]"(4, - )¢ (1.247)
we get (1.2.33).
Case III: Observing again that [1 + P(B, — 1)]! exists,
[1+P@B, — )] =1+l + 2(0)']P, (1.2.48)
and that
[1+ P(B, — 1)]'P = —[X(©)]'P, (1.2.49)

in case III we obtain the desired result directly from (1.2.45).
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Case 1V: Here again [1 + P(B, — 1)]™! is a bounded operator

N -~ -~
(1+PB,-D]"'=1- ’Z; (@, By ([BY — 114p, )6 (1.2.50)

Lr=1

and inserting

N -
(1+PB,-1]'P= ‘ ’Z;l (8 B, ®)i' (4> ) (1.2.51)
into (1.2.45) completes the proof. (By inspection

~ N
det[(4,, B, (k)¢,)] = [4nX (0)/ik]""" [).’(0) + (@) ik ‘; I, ¢;)I’]-) .

Fro~m now on we always assume the normalization (4, ) = — 1 in case II
and (@, &)= — 0, LLI'=1,..., N,in cases Il and IV.

Lemmas 1.2.2 and 1.2.4 now enable us to present the main result of this
section.

Theorem 1.2.5. Let V € R bereal-valued and y € R3. In cases II-1V assume,
in addition, (1 + |-|)V € L*(R?) and 2'(0) # O in cases IIl and IV. Then, if
ke p(—A,,,), we get k* e p(H,,) for ¢ >0 small enough and that H,
converges to — A, , in norm resolvent sense as ¢ | 0, viz.

n-li‘m (H,,— k) ' =(—-A,,— k¥, yeR%, (1252
&40

where o is given by
.

00 in case 1,
=20)I(v, 9)I72 in case 11,
2=q in case 11, (1.2.53)
N -1
- 1'(0){2 (v, ¢:)|2} in case IV.
=1

"

In particular, H, , converges in norm resolvent sense to — A in cases I and 111
aselO.

PROOF. Denoting the right-hand side of (1.2.33) by D(k) we obtain from the
resolvent equation (1.2.16), and from Lemmas 1.2.2 and 1.2.4 that

n-lim (H,,, — k*)™' = G, — A(k)D(k)C(k), k*eC—R, Imk>0. (1.2.59)
edo

Inserting the explicit result (1.2.33) into (1.2.54), using the criterion (1.2.26) yields
(1.2.52) and (1.2.53) after comparison with (1.1.20). [ |

As a consequence, if « < 0 (i.e,, (0) > G in case II or IV), there exists a
sequence of eigenvalues E, of H, , that converges to ~(4n)? as ¢ | 0. More-
over, Theorem 1.2.5 implies strong convergence of the unitary (resp. semi-)
groups associated with H, , to that of —A, ,. Obviously, self-adjointness of
H,,or —A, , was inessential in the above proof and thus one also obtains
strong convergence of the corresponding contraction semigroups e Her,
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t>0,ifeg, V<0(¥V=>20andImA>0(ImA<0)toe",t>0,as¢l0
([389], Ch. X; [283], Ch. IX).

A look at (1.2.52) and (1.2.53) shows that, in general (ic., in case I) H, ,
converges to — A as ¢ | 0. To illustrate this phenomenon we take, e.g.,

Vix)=( + |x])"% (1.2.55)
Then
V,() =@+ 1x—yl) % yeR, (1.2.56)
such that
H,,=—A+[1+e20)+0@EH)]eE + Ix - y))735,
Y [ : ] ¢ (1.2.57)
DH,,)) = D-D), ¢>0.
Thus for x # y
Vix) 350 pointwise, (1.2.58)

which indicates that in the limit ¢ | O the resulting “potential” in lim,,, H, ,
should either vanish (like it does in cases I and III) or should be concentrated
at x = y (as in cases II and IV). It will become clear later on in Sect. 1.4 why
only a zero-energy resonance of H forces H, , to converge to a point interac-
tion Hamiltonian (centered at y) in the limit ¢ | 0. Since H, , = ¢ 2U,H,(¢e)U,™!
and, moreover, H,(s) = —A + V(- — ¢ 'y)is unitarily equivalent (by transla-
tions)to H = —A + Vitisintuitively clear that the limit of H, , as ¢ | 0 depends
on the asymptotic behavior of H, , in configuration space or equivalently,
on the low-energy behavior of H,(¢) and hence of H.

Now we turn to the discussion of nonlocal interactions. Let W be a self-
adjoint trace class operator in L?(R3), W € #,(L?*(R?)). In addition, assume
that W can be written as the product of two Hilbert-Schmidt operators
Wi, W, € 3,(L*(R?))

w=WwWW, (1.2.59)
such that the integral kernels W(x, x’) of W}, j = 1, 2, satisfy
,, 0, € L"(R*)n L%(R?), (1.2.60)
where
. 1/2 . 1/2
uy(x) = (f d>x'|W(x, x:)'z) s U,(x) = (‘[ d>x|Wy(x, XI)P)
»o RO
(1.2.61)

Then the analog of Lemma 1.2.1 reads

Lemma 1.2.6. Let W, j = 1, 2, be as above. Then W is relatively compact
with respect to — A and

W,GW, € #,(L*(R%), Imk2=0. (1.2.62)
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PROOF. Since W € @, (L*(R?)), it is obviously relatively compact with respect to
—A. In order to prove (1.2.62) we observe that

eiklx -y
W,GWi 3= | d%zd%z d>xd3x' d3y d3y’ W, (z, x)———W,(y. 2')
1W,G W12 L“ yay Wyl )41t|x—y| 1y
miklx-y
W, I’ ' —_— W I’ '
2(2 x)41r|x’—y'l 1y, 2°)

62(x)iy (y) 5,(x")ity ()
Bx dPy d3x' d° , 02(x)ity (y) 0,
< J;m xdyd’x dy 4n|x — y| 4n|x’ — y'|

=(I d*x dy ”-’(I"l‘l(lD < Cld,2shi, 125, Imk >0,
(1.2.63)
by Sobolev’s inequality (cf. Lemma B.6). [ ]
The analog of the operator (1.2.23) (we again call it H) is then given by
=—A+ W on 9(H)=H**R?) (1.2.64)
and the scaled short-range Hamiltonian H, , now reads
Ht y/cl[ A+ J.(s)W]TmU '=-A+ u/t.y’
(1.2.65)
W, (6 x')=e M)W (x —y), e (x" —y), e>0, yeR’,

where A(-) has been introduced in (1.2.7), U, dernotes the unitary scaling
group (1.2.10), and T, unitarily implements translations x — x + y in L?(R?)
(cf. (1.1.10)). Similar to (1.2.16), one obtains

(H,,, — k)™ = G, — Ae)A,(k)e[1 + B,(k)1'C,(k),
k*ep(H,,), Imk>0, ¢>0, yeR3 (1.2.66)

where A4,(k), B,(k) = i(e) W, G, W,,C,(k),¢ > 0, are Hilbert-Schmidt operators
with integral kernels

Ak, x,x") = J A3x" Gy(x — y — ex")W,(x", x), Imk >0, (1.2.67)
R3

B,(k, x, x') = Ae) j A3x” d3x" Wy(x, x")G(x" — x" )Wy (x", x),
Ré
Imk>0, (1.2.68)
C.k,x,x') = f d3x" Wy(x, x")G(ex” + y — x'), Imk>0. (1.2.69)
R?

Similar to Lemma 1.2.2 we now have
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Lemma 1.2.7. Let y € R® and define rank-one operators A(k), C(k), and
the Hilbert—Schmidt operator W, G, W, with integral kernels

Ak, x, x') = G(x — y)o,(x'),  Imk>0, x#y, (1.2.70)

(W,GoW))(x, x') = J d>x” d>x” Wy(x, x")(@dn|x" — x" ) Wy (x", x"),
Re
(1.2.71)
C(k, x, x") = u5(x)G(y — x’), Imk>0, x' #y, (1.2.72)

where
v,(x') = j d3x Wi(x, x'),  uy(x)= j d3x" Wy(x, x’). (1.2.73)
R3 R3

Then, for fixed k, Im k > 0, A,(k), B,(k), C,(k) converge in Hilbert—Schmidt
norm to A(k), W, Gy, W,, C(k), respectively, as ¢ | 0.

PROOF. Analogous to that of Lemma 1.2.2. [ |
Next we have to study zero-energy properties of H. If
W,G, W, = —$  forsome ¢e L*(R3) (1.2.74)
we define
Y(x) = (Go W, 9)(x). (1.2.75)

Then similar to Lemma 1.2.3 we obtain

Lemma 1.2.8. Suppose ii,, 5, € L'(R*) ~ L*(R3). Then y € L3.(R*), V¢ €

loc
L*(R®), and Hy = 0 in the sense of distributions. If, in addition, |-|V*i, €
LY(R3), then y € L*(R3) is equivalent to

(01, 9) = —J d3x d3x’ W(x, x')W(x') = 0. (1.2.76)
Re
If ¥ € LA(R?), then ¢ € H**(R®) and Hy = 0.

PROOF. Asin Lemma 1.2.3, we decompose

¥(x) = @nlx))™ (01, 8) + ¥y (x), (1.2.77)

where

'I/n(X)=(47t)"j dx' d3x"(|x = x| = Ix|T) Wy (x', x")g(x"). (1.2.78)

Using (1.2.29) and (1.2.30) we get ¥, € L2 (R?) if i, € L*%(R®) and ¢, € L*(R®) if
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|-|"24, e L'(R?). Similarly, one infers (cf. (1.2.32))

j A x|(VY)(x)I? < (4m) 2 J
R3

Ex B &y Py W XN )
R'2

“1o(x")e(y") f x|x — x| |x — |72
7%}

R

s(4n)"2dn¢||’J ex dy S
ne -

(1.2.79)
by Sobolev’s inequality (cf. Lemma B.6). If y € L2(R?), then by (1.2.79), y € H* '(R?)
and hence ¢ is in the form domain of H. The fact that Hy = 0 in the sense of
distributions then shows y € 2(H) and Hy = 0. [ ]

Zero-energy resonances (resp. zero-energy bound states) of H are now
defined as before (i.e., one simply distinguishes whether ¥ € L%(R?) or not)
assuming i, 9, € L'(R®) n L%(R®) and |-|*?4, e L'(R®). In particular, the
case distinctions on page 20 apply with the only change that uG,v should be
replaced by W, G, W,.

Lemma 1.2.4 then has to be replaced by

Lemma 1.29. Let i,, b, € L'(R®)~ L3(R®). In cases II-IV assume, in
addition, |-|'24, € L'(R®) and X'(0) # 0 in cases I1I and IV. Then

[0 in case I,

[@n) Vik|(v,, $)12 + A'(0))(S, -)¢ in case L,

n-ii:r; el +B(0]™ = 1 (01 Ii @ o in case III,
N ~ -~

L ,,Zﬂ (8, B,())i* (Br» ) in case IV,

’ (1.2.80)

where ki eC—-R, Imk>0, and (¢, B, (k)@);* denotes the inverse of the
matrix (¢, B, (k)é,)

WzGo W1¢t = —¢, WI*GO Wz*‘I;r = —q;,,,
(s &) = — by, LI'=1,..,N, (1.2.81)
B(k) = X O)W,Go W, + (4n) ' ik(vy, “)u,.

PROOF. One can follow the analogous proof of Lemma 1.2.4 step by step. [ ]

Given Lemmas 1.2.7 and 1.2.9 we finally state

Theorem 1.2.10. Let ii,, 5, € L'(R*)  LX(R®), and y € R>. In cases II-IV
assume, in addition, |-|"*4, € L*(R>) and A'(0) # 0 in cases II1 and IV. Then,
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if k* € p(—A,,), we get k* € p(H, ) for ¢ > O small enough and that H, ,
converges to — A, , in norm resolvent sense as ¢ | 0, viz.

ndim (H,, — k)7 = (A, — k)", yeR®,  (1.282)
ed0

where o is given by

(0 in case 1,
—20)l(vy, $)" 2 in case 11,
*=4q in case 111, (1.2.83)

-1
— l’(O){i (v, ¢,)|z} in case IV.
<1

"

In particular, H, , converges in norm resolvent sense to — A in cases I and J11
asclO.

PROOF. Identical to that of Theorem 1.2.5. .

Clearly, our comments before Lemma 1.2.4 and after Lemma 1.2.3 and
Theorem 1.2.5 apply as well for nonlocal interactions after a suitable reinter-
pretation. We omit the details.

To simplify the treatment in the following we assume from now on that

(v, ¢,) #0, w, ¢)=0, l=2,...,N, incaselV. (1.2.84)

While assumption (1.2.84) considerably reduces the complexity of the fol-
lowing proofs we emphasize that all results in Sects. 1.3, 1.4, and Ch. 2
immediately extend to the general situation (v,¢;) #0, ..., (v,dy) #0,
0, r41)=0,...,(0,0y) =0,1 <M < N — 1. (If V is spherically symmetric,
then (1.2.84) automatically holds as explained before Lemma 1.2.4.)

L.1.3 Convergence of Eigenvalues and Resonances

Having proved norm resolvent convergence in Sect. 1.2, we now turn to the
spectrum and investigate eigenvalues and resonances of H, , as ¢ | 0. Regarding
the essential spectrum we note that Lemma 1.2.1 and Theorem B.1(b) imply

aess(Hz.y) = aess(Hy(e)) = aess(_A) = [0’ C.O), €> 0’ Y€ R3’ (1'31)
and by Theorem 1.1.4 this result remains true in the limit ¢ | 0,
Oeis(—Ay.y) = Gs(—A) = [0, ), —o<a<o, yeR:L (132

A detailed discussion of the discrete spectrum is given in

Theorem 1.3.1. Let y € R® and assume ¢*'V € R for some a > 0 is real-
valued.
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In all cases I-1V any negative eigenvalue E, = k3 <0of H= —A + V
of multiplicity M gives rise to M (not necessarily distinct) negative
eigenvalues E,, = ki, < 0,1 =1,..., M, of H, , running to —o0 ase | 0
like

ki.=¢'ko+0(1), I=1,..,M. (13.3)

In addition, €k, . is analytic in € near ¢ = 0.

Assume case 1L If n-lim,yo(H,, —k*)™" =(-A,,— k)™,
p(—A,,) with a <0 (ie., 2(0) > 0), then —A, , has the simple etqen-
value Eq=k3 <0, ko= —4nia = 41:1).’(0)|(v, ¢)|' , and the zero-
energy resonance of H implies that for ¢ > 0 small enough H, , has
precisely one simple eigenvalue E, = k? < 0 near E, which is analytlc in
eneare =0

k, = ko + O(e). (1.34)

Assume case Il and 2'(0) > 0. If N = 1 then the zero-energy bound state
of H gives rise to a negative, simple eigenvalue E, , = ki, <0 of H,,
running to —oo as €| 0 like

ky,= s"”i{—8nl’(0)[J‘ d3x d3x' ¢,(x)v(x)-
Ré

-1)1/2
~|x—x'|v(x')¢,(x')] } + 0(1). (13.5)

(Note that |x — x'| is conditionally strictly negative [298].) In addition,
ek, , is analytic in €V near &' = 0. Moreover, if N > 1, let c,,
l=1,...,N,denote the e:genvalues (counting multiplicity) of the matrix
(@ C¢, ), LI'=1,..., N, where C is the Hilbert—Schmidt operator with
kernel

C(x, x') = —(8m) tu(x))x — x'|v(x’) (1.3.6)

(necessarily,c, > 0,1 =1, ..., N). Then the zero-energy bound states of
H give rise to N negative (not necessarily distinct) eigenvalues E, , =
k. <0 of H, , running to —oo as ¢ |0 like

k.= e Ri[AO)c]+0(1), I=1..,N. (13D

In addition, £'?k, ., 1 = 1, ..., N, are analytic in £' near ¢'? = 0 (we
choose ' > 0 for ¢ > 0) and the multiplicity of k, , coincides wzth that
of the eigenvalue c,.

Assume case IV and (1.2.84). If n-lim,y(H, , — k?)™! = (—A4,,, — k»)7,
k* € p(=A,,,) with « <0 (i.e, 2'(0) > 0), ‘then —A,., has the s;mple
eigenvalue Ey = k3 < 0,ky = —4mia = 4nil' (0)|(v, ¢, )|' , and the zero-
energy resonance of H implies that for ¢ > 0 small enough H, , has
precisely one simple eigenvalue E, , = k} , < O near E, which is anal ytic
in¢near e =0,

ky. = ko + O(). (1.3.8)

In addition, if N = 2, the zero-energy bound state of H gives rise to a
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negative, simple eigenvalue E, , = k} . < 0 of H, , running to —oo as
el 0 like

ky,= e’”’i{— 31:1’(0)” d3x d3x’ ¢,(x)v(x)-
Re

-1)112
x — x'|v(x’)¢2(x’)] } + 0(1), (139

where "2k, . is analytic in £'? near £'* = 0.

For N > 2,let againc;, | = 1,..., N, denote the eigenvalues (counting
multiplicity) of the matrix (§,, C¢,) LI'=2,..., N (necessarily ¢, > 0,
1=2,..., N). Then the zero-energy bound states of H giveriseto N — 1
negative (not necessarily distinct) eigenvalues E,, = ki, <0 of H,,
running to —oo as ¢ | 0 like

k. = e V2i[X(0)/c, ] + 0(1), 1=2,...,N, (13.10)

such that ¢'*k, ., 1 =2, ..., N, are analytic in £' near ¢'? = 0 (again
' > 0 for & > 0) and the multiplicity of k, , coincides with that of c,.

PROOF. By eq. (1.2.16) and Theorem B.1(c), H, , has an eigenvalue E, = k2 <0
if and only if —1 is an eigenvalue of B,(k,).
(a) Let k = ¢k and define

B.i = B 'k) = A(e)uGy, Imk=0. (1.3.11)

By hypothesis, B, i, has an eigenvalue —1 and following the proof of expansion
(1.2.42), B, ; is casily seen to be analytic with respect to (g, k) around (0, ko) in
Hilbert-Schmidt norm. By the implicit function theorem and by Theorem B.2 the
equation det,(1 + B, ;) = 0 has M (not necessarily distinct) solutions k; ., [ = 1,.

M, for |e| small enough. Moreover, by scaling x — ¢x, £ > 0, and an addmonal
translation x — x + y/e, ¢ > 0, k, .<0,l=1,..., M, are the eigenvalues of H(¢) =
—A + i(e)V. An application of Rellich’s theorem (cf. Lemma B.4) then proves
analyticity of E,J, l=1,...,M,ingneare=0.

Of course, the same result follows directly from (degenerate) perturbation theory
and the fact that due to the scaling property (1.2.11) the eigenvalues E, = k? < 0 of
H, , and E(¢) = k(£)*> < 0 of H,(¢) obey k, = e~ k(z).

(b) As in the proof of (1.2.42) B,(k) is analytic with respect to (¢, k) in Hilbert—
Schmidt norm near ¢ = 0 and any k with Im k > —a/e,, |¢| < &, and

B,(k) = [1 + eX(0)JuGov + (4m) 'ick(v, *)u + O(c?). (1.3.12)
Thus using [435]
det,(1 + A + B) = det,(1 + A)det[1 + (1 + A)"'Ble” ™5, (1.3.13)

if A € B,(#), (1 + A)' € B(K), B € B,(5#) for some (separable) Hilbert space ,
we obtain that

det,[1 + B,(k)] = det,[1 + B,(k) + P]det{l — [1 + B,(k) + P]'P}e, (1.3.14)
since

[(1+uGeo+ P '=P+T, P=—(4 )¢ (1.3.15)
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exists. Consequently, for |¢| small enough,
det,[1 + B,(k)] =0 iff
det{l — [1 + B,(k) + P}'P} = 1 — (§,[1 + B,(k) + P]'¢) =
From the expansion (1.3.12) we get
(1 +B(k)+ P)™' =(1 + uGyv + P)™" — ¢(1 + uGyv + P)"*-

-[(ik/4m)(v, *)u + A'(Q)uGov](1 + uGyv + P)™! + O(e?),
(1.3.17)

(1.3.16)

and hence by (1.3.15)

P[1 + B(k) + P1"'P = —(4, ")¢ — c(ik/am)|(v, $)|*(B, - )¢ — eX'(0)(d, ) + O().
(1.3.18)

Insertion of (1.3.18) into (1.3.16) and the implicit function theorem immediately
yield all assertions of part (b) since (1.3.16) has a simple zero at (¢, k) = (0, ko),
ko = 4miZ' (0)l(v, #)I 2.

(c) We introduce

u=¢e"  k=s"k (1.3.19)
Then

1+ Bk) =1+ B,(k) = 1 + A(p*)uG g0
=1 + uGov + pu(ik/Am)(v, - )u + P2 X (O)uGyv + p2k*C + O(p®), (1.3.20)

where C is defined by (1.3.6), and B (k) is analytic in Hilbert-Schmidt norm with
respect to p and k for | u| small enough and Im k > —a/u,, |ul < po. Consequently,

det,[1 + B,(k)] = det,[1 + B,(K) + P det,{l — [1 + B,(k) + P'P} (1.321)

implies, for |u| small enough, that

det,{l —=[1+ B,(k)+ P} 'P} =0 (1.3.22)
since
(1+uGov+P)'=P+T (1.3.23)
exists. Moreover, the fact that
det,(1 + A) = det(1 + A) exp[—Tr(4)] (1.3.24)

for A € 9,(5#) (o a separable Hilbert space) shows that for |u| small enough (1.3.22)
is equivalent to

det{l — [1 + B,(k) + P]"'P} = det{l — P[1 + B,(K) + P}"'P} = 0. (1.3.25)

Since P is of finite rank, (1.3.25) is analytic with respect to u, k for |u| < po small
enough and Im k > —a/u, [261]. From the expansion (1.3.20) we infer that

(1 + B,(k) + P)™!
= (1 + uGov + P)™ — p(ik/am)(1 + uGyv + P)™'(v, -)u(l + uGov + P)!
— w2 X)(1 + uGyv + P)"'uGyv(1 + uGyv + P)!
— u*k*(1 + uGyv + P)'C(1 + uGqv + P)™!
— p2(k/am)2[(1 + uGyv + P) (v, -)Ju*(1 + uGov + P)™! + O(u3) (1.3.26)
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and hence nsing (1.3.23) and Pu =0
P[1 + B,(k) + PP =[1 + p2X'(0)]P — p*k*PCP + O(y®). (1.327)
From (1.3.25) and (1.3.27) we obtain

det{l — P[1 + X (0)u? — u*k*C]P} = O(y) (1.3.28)
and thus
det{A'(0)k 28, + (¢ Cé)} = O(p). (1.3.29)
From the fact that [272]

(@, Coy) = L) 4plpl~*(vh)"(p) W) (P) = <, &>, LI'=1,...,N, (13.30)

which follows from (vg,)" € C*(R?) and (v4)"(0) =0, ! =1, ..., N (since e®lvg, €
L'(R3)forsomea > 0and (v, ¢,) = 0,! = 1,..., N)one can show that the self-adjoint
matrix {¢y, §.), 1, I' = 1,..., N, is positive definite. In fact,

N N N
‘{Y;l P b DEE = <‘; &d, l;l Cl'¢l'> >0, eCV-{0}, (1331)

since {¢,}, {(v4,)"} and hence the vectors {[|-|"(v4))]"}, I = I, ..., N, are linearly
independent. Denote by ¢,, I =1, ..., N, the eigenvalues of (¢, Cg,.) (counting
multiplicity). Then to zeroth order in g, (1.3.29) has the solutions

ko = £i(A(0)c)"?, 1=1,...,N. (1.3.32)

If in (1.3.19) we use the principal branch for ¢'? (i.., e > 0 for ¢ > 0) then the plus
sign has to be chosen in (1.3.32). To prove that (1.3.29) has solutions I‘c',' , analytic
in u we argue as follows. By repeating the calculations leading to (1.3.29) but keeping
A(u?) fixed and only expanding with respect to the variable §

B = iuk, (1.3.33)
we obtain
S L Rl PP . - _
et {——”2E2 w2 k? 6y — (uik)* (¢, Coy) + '; (ﬂlk)'@,‘".} =0. (1334
Introducing
v =[A?) - 1)/p*k? (1335)
as another new variable, (1.3.34) is equivalent to

det {v&,,. + (8. Cé) + i B®,. z.n'} =0. (1.3.36)

By inspection ®, ;. is a self-adjoint matrix and f € R for y € R and keiR. Con-
sequently, we can apply Rellich’s theorem (cf. Lemma B.4) and obtain v as_an
analytic function of #

wf)=—c,+0(B), I=1,...,N. (1.3.37)
Since ¢; # 0 we get

BB )= ~ci' 3 @) A0 + T 0 S () A0O0W2, (13.38)
r=1

q=1 q=1
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or
k= —c* 3 @) A0 + T auik) Y @) A0,
q=1 r=1 q=1

I=1,...,N. (1.3.39)
Introducing

Fl, = —x*—¢! i (@) ' A9 + Y o, (uixy i (@) ' 19(0)p2472,
q=1 r=1 q9=1

I=1,...,N, (1.3.40)
we infer that Fy(-, -) is analytic near (k;' o, 0) with

~ 0
Fi(ki’o, 0) = 0, 7 Filx, Wl o.00 # 0. (1.341)

By the implicit function theorem one can solve for x as an analytic function of u.
(d) In order to determine the effect of the zero-energy bound state of H we define

N rd -~
P = —'_ZZ @, ), Pi= (4, ) (1.342)
and note that similar to (1.2.36)

(1 +uGw+ P +2)'=z"'Py+ Y (—2)"T"*!,  zeC — {0} small enough
m=0

(1.343)
using that — 1 is a simple eigenvalue of uG,v + P, where
T, = n-lim (1 + uGyv + P' + 2)7'[1 — P,] (1.3.44)
z—0
and
PT,=T,P=PT,P =P, P, T, =0. (1.345)

Next we prove that [1 + B,(l;) + P']7'P’ is analytic in g and k for || small enough
and Im k > —a/uq, || < po- In fact, using the expansions (1.3.20) and (1.3.43) and
the relations (1.3.45) one obtains along the lines of (1.2.45) that

[r+ B“(I;) + P']7'P = {1 — P, + (ik/4m)P,(v, ")u + O(w)} ' [P' + O(p)]
(1.3.46)

is analytic in u near u = 0 since [1 — P, + (ik/4n)P,(v, -)u] " is easily shown to
exist by a straightforward application of the formula

[1+B8W. W+RI"=[1+R" = {7 +@[1+RI"Y} "
“([1 + R*1™'Y, -)[1 + R]'y (1.3.47)

assuming f€ C, , Y € #, R, [1 + R]™" € B(F), {~" + ¥, [1 + R1™'¥)} # O for
some separable Hilbert space #. From now on one can follow the proof of part (c)
step by step after replacing P by P'. Equation (1.3.27) then reads

P[1+ B0+ P1'P =1 + p2X(0)1P — p?k*P'CP' + O(p), (1.3.48)

which proves the assertions in connection with (1.3.9) and (1.3.10). It remains to
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determine the contribution of the zero-energy resonance of H. First of all, we note
that
[1+Bk)+ P] 'Py={1~[1+XO]IP + 0()} '[P, + O()] (1.3.49)

is analytic in ¢ near ¢ = 0 since

M= +A00P}'=1-[XO0)]'[1 + X(O)]P (1.3.50)
exists because of the assumption 2'(0) # 0. Consequently, we get
1 + B,(k) =[1 + B,(k) + P,J{1 —[1 + B,(k) + P,] 'P,}. (1.3.51)

and since (cf. (1.3.18))
Pi[1+ B(k) + PO P = —(@y, )9y — elik/am)|( 6,178, )4,
— eX(0)(dy, )y + O(&?). (13.52)
one can follow the last part of the proof of (b) step by step. ]

Next we derive similar results for resonances. We first recall the one-to-
one correspondence between a negative bound state E, = k3 < 0 of some
Hamlltomdn H = —A +V, V&R real-valued, and a pole of (I + uG,v)™'
at ko =i/ — EO in the upper k-plane. In particular, the multiplicity of E,
coincides with the (geometric) multiplicity of the eigenvalue — I of uG, v and
also coincides with the multiplicity of the zero of the modified Fredholm
determinant det,(1 + uG,v) at k = k, (cf. Appendix B). If V € R, then uG, ¢
is holomorphic in Hilbert- Schmidt norm with respect to k in Im k > 0. In
order to define resonances we now assume that uG, v has an analytic continua-
tion into the region 0 > Im k > —a for some a > 0 such that uG,» remains
Hilbert-Schmidt for 0 > Im k > —a. In this case k, with0 > Im k, > —ais
called a resonance of H if uG, v has an eigenvalue — 1. Similarly, the multi-
plicity of the resonance k, is defined to be the multiplicity of the zero of the
modified Fredholm determinant det,(1 + uG,v) at k = k, (c.f. Appendix B).

Resonances for the point interaction Hamiltonian — A, , are defined analo-
gously as poles of the resolvent kernel (— A, , — k*)7'(x, x'), x # X', x # y,
x' # y in the lower k-plane. According to this definition —A, , has a simple
resonance k, if and only if « > 0 in which case

ky = —4mia, ¢ (x) =e*™=M|x —y|,  x#y, a>0, (1353

with ¢, being the corresponding resonance function. The origin k = 0 needs

a separate discussion: In fact, as discussed in detail in Sect. 1.2, k = 0 can be

resonance and/or a bound state of H = —A + V. For a = 0 the operator

—A,,, has only a zero-energy resonance and no zero-energy bound state.
The analog of Theorem 1.3.1 for resonances now reads

Theorem 1.3.2. Let y e R> and assume that ¢**'V e R for all a> 0 is
real-valued.

(@) In all cases 1-IV any resonance ko, Imky <0, of H= —A + V of
multiplicity M gives rise to M (not necessarily distinct) resonances k; ,,
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Imk,<0,l=1,...,m, of H,, running to infinity as ¢ | 0 like
ki, =&k + O@Er™"m),  my>1, I=1,...,m, (13.54)

where ek, , have convergent Puiseux expansions near € = 0, i.e., there
exist functions h, analytic near the origin, h)(0) = 0,1 =1, ..., m, such
that

-~ -~ 0
sk,', = ko + h,(el/"") = ko + z a,',s"'"‘,

r=1

m>1 I=1...m Y m=M. (1355
=1

Assume case II. If n-lim,yo(H, ,— k*)™" =(-A,, - k¥, ke
p(—A, ) witha > 0(i.e., '(0) < 0),then — A, , has the simple resonance
ko = —A4nia = 4niA'(0)|(v, #)|2 and the zero-energy resonance of H
implies that for ¢ > 0 small enough H, , has precisely one simple re-
sonance k,, Im k, < 0, Re k, = 0, near ko, which is analytic in ¢ near
¢ = 0 and hence fulfills (1.3.4).
Assume case I11. If A'(0) > 0 and N = 1 the zero-energy bound state of
H gives rise to a simple resonance ky , Imk; , <0,Re ki, =0,0f H,,,
running to infinity as ¢ | 0 like

ki, = -is“’z{—Snl’(O)[ J dx d>x’ §,(x)v(x):
Ré

-1)1/2
'Ix—x’lv(x’)¢1(x’)] } + 0(1) (1.3.56)

such that £'2k; , is analytic in €'? near ¢! = 0 (we choose ' > 0 for
e > 0).

If ¥(0) < 0and N = 1 the zero-energy bound state of H gives rise to
a resonance pair ki, of H,, (both resonances are simple) running to
infinity as ¢ | O like

ki, = e 12 {Sn,t'(O)U d3x d3x’ ¢, (x)v(x)-
Reé

-1) 12
-Ix—x’lv(x’)¢l(x’):| } + 0(1) (1.3.57)

such that "2k, are analytic in ' near ¢! = Q.

If 2(0) >0 and N > 1 the zero-energy bound states of H give rise
to N (not necessarily distinct) resonances k; ., Im k;, < 0, Re k;, =0,
I=1,...,N,of H,  running to infinity as ¢ | 0 like

ki, = —e il (O)c, ]2 +0(1), I=1,...,N, (13.58)

with ¢, > 0 the eigenvalues of (¢, Cé,), 1, I' =1, ..., N. Again e"?k;,,
I=1,..., N, are analytic in &' near ¢'? = 0 and the multiplicity of k;,
coincides with that of the eigenvalue ¢,. If A(0) <0 and N > 1 the
zero-energy bound states of H give rise to N (not necessarily distinct)
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(C))

resonance pairs k;',, 1 = 1,..., N, of H, , running to infinity as ¢ | 0 like

ki = £e72[—2(O0)c]"2 +0(1),  I=1,...,N. (1359

Each £k, 1= 1, ..., N, is analytic in £'? near ¢"* =0 and the
multiplicity of k', coincides with that of c,.
Assume case IV and (1.2.84). If n-lim,yo(H, , — k?) ' = (=4, , - k*) .
k? € p(—A,.,) witha > 0 (i.e., A'(0) < 0) then — A, , has the simple reso-
nance k, = —4nia = 4nid’'(0)|(v, #,)|"? and the zero-encrgy resonance
of H implies that for ¢ > 0 small enough H, , has precisely one simple
resonance k, ., Imk, , <0, Re k, , = 0 ncar k, which is analytic in ¢
near ¢ = 0 and hence satisfies (1.3.8).

If 2(0) > 0 and N = 2 the zero-energy bound state of H gives rise to
a simple resonance k3 ., Imk; <0, Rek;, =0, of H,, running to
infinity as ¢ | 0 like

k;,= —ic’? {—Snl'(O)I:J d3x d*x’ §,(x)(x)-
Rre

-ty12
'Ix—x’lv(x')¢2(x’)] } + 0(1), (1.3.60)

such that €2k , is analytic in ¢'? near £ = 0(again&'? > 0 for ¢ > 0).

If (0) < 0 and N = 2 the zero-energy bound state of H gives rise to
a resonance pair k3, of H, , (both resonances are simple) running to
infinity as ¢ | 0 like

kie= te™'? {Snl’(O)U d*x d>x’ ¢,(x)o(x):
Re

-1y122
x = x'|n(x’)¢2(x')] } + O(1), (1.3.61)

where ¢'2k3, are analytic in £'* near ¢'? = 0.
If 2(0) > 0 and N > 2 the zero-energy hound state of H gives rise to
N — 1 (not necessarily distinct) resonances k; ., Im k;, < 0,Re k;, = 0,
= 2,..., N, of H, , running to infinity as ¢ | 0 like

ki, = —¢2i[2(0)/c,]? + O(1), I=1,...,N, (1.3.62)

with ¢; > 0 the eigenvalues of (¢, Céy.), L, I' =2, ..., N. Again c'2k;,
I =2,...,N,are analytic in ¢ near £ = 0 and the multiplicity of k;,
coincides with that of «¢,.

If 2(0) < 0and N > 2 the zero-energy bound state of H gives rise to
N — 1 (not necessarily distinct) resonance pairs kit,, | =2, ..., N, of
H, , running to infinity as ¢ | 0 like

ki = £ P[—2(0)/c]" +0(1), [=2,....,N. (1.3.63)

1/2

In addition, each £k, 1 = 2, ..., N, is analytic in &'* near ' =0

and the multiplicity of ki, coincides with that of c,.
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PROOE.  (a) Here one can follow the proof of Theorem 1.3.1(a) step by step. The
only difference concerns the faci that now, in general, there is no constraint m, = 1.

(b)- (d). All considerations about antibound states (i.e., resonances on the nega-
tive imaginary axis) follow directly from the proof of Theorem 1.3.1(b)-(d) since one
can agam apply Rellich’s theorem. The conclusions about the resonance pairs are
obtained as follows: By (1.2.11) every (anti-) bound state k, , of H, , corrcsponds to
an (anti-) bound state k() = «k,, of H (z). Moreover, since k,, = O(¢ ") as £| 0.
k,() = O(z'2) runs to zero as ¢ | 0. In fact, at & = 0 the bound state and antibound
state collide. In other words, for £ > 0, 1'(0) > 0 the solutions k,(z) of the equation
det,[1 + B(e, k)] = 0 (cf. (1.3.7)) have a square root branch pomt at ©: = 0,

kit(e) = +ile]"2[2(0)/c;1"2 + O(). (1.3.64)

For #'(0) < 0, or equivalently for £ < 0, we then get the resonance pair
kit(e) = + el [ = X (0)/c,]'? + O(z). (1.3.65)
]

We note that if 2'(0) = 0 in casec II then the same analysis shows that
k. = O(e) as € | 0. Tt then depends on the first nonvanishing coefficient in the
Taylor expansion of k, whether Im k, 2 0 and hence whether H, , has a simple
bound state or a resonance.

I.1.4 Stationary Scattering Theory

In this section we discuss scattcring theory in connection with point interac-
tions and prove that scattering quantities corresponding to H, , converge in
a reasonablc sensc to that of the point interaction Hamiltonian —A, | as
elO.

We first treat stationary scattering thcory for the pair (—A, ,, —A). Since
—A,,, is invariant under rotations in R with center y we first concentrate on
the partial wave decomposition (1.1.15). The fact that — A, , actually describes
an s-wave interaction (since the partial wave decompositions of —A, , and
the kinetic energy operator — A coincide for | > 1) considerably reduces the
problem. Henceforth, we mainly confine ourselves to the case | = 0.

Define

Vo ok, r) = k7' sin kr + (4na — ik) e, k>0, —c<a<ow, r=0.

(1.4.1)
Then by inspection
—4nay (k. O+) + Yo, ,(k, 0+) =0,
—Vg.alk, 1) = kYo ok, 1), >0, (14.2)
lim lim e~#*@rfh, — (k +ie)?]7"(r.r') = Yook, 1), =0

ed0 r-a
k>0, —oo<ax< co.

Hence Y, (k) constitute a set of gencralized eigenfunctions ([353], Ch. VI)
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associated with h, ,. Similarly,
Witk 1) = (r/2k)' P dyypkr),  kr20, 1=12.., (143

are generalized eigenfunctions of k,, I =1, 2, ..., where J,(-) denote Bessel
functions of order v [1]. By introducing the s-wave scattering phase shift 8, (k)
via

cos[8, .(k)] = dna[(4na)® + k3]712, sin[8 .(k)] = k[(4na)® + k2]'72,
k>0, —o<a<oo, (144

the expression (1.4.1) can be rewritten in the familiar form
Vo.olk, 1) = k™' e®o«® sin[kr + 8, ,(k)], k>0, —o<a<oo, r>0.
(14.5)
In particular, from (1.4.3) and (1.4.4) one derives the (on-shell) partial wave

scattering matrix
Sy olk) = €200 = (Ang — ik) " (dno + ik), k=0, —o0 <a < 00,

S(k) =1, §(k)y=0, I=12,.... (1.4.6)

At this point it is useful to compare with the effective range expansion for
real-valued spherically symmetric potentials ¥ obeying

o
f drre®*|V(r)} < © for some a> 0. (14.7)
o

This low-energy expansion reads (cf., e.g., [360], Ch. 12)
k1 cot §y(g, k) = —[a(g)]™" + n(g)k?/2 + O(k*),
k=0, geR, 1=0,1,..., (14.38)

where the right-hand side of (1.4.8) is real-analytic in k2 near k? = 0, and by
definition (g, k) represent the phase shifts associated with the Schrodinger
operators —d?/dr? + I(l + 1)/r* + gV/(r). The coefficients a,(g) and r,(g), | = 0,
1,..., are called partial wave scattering lengths and effective range parameters,
respectively. The explicit expressions

kcot 8y (k) = dma, 8(k)=0, I=1,2,..., (1.4.9)

for the point interaction show that the effective range expansion for this
interaction is already exact in zeroth order with respect to k2, i.e., the s-wave
scattering parameters are given by
—_ -1

20 = —lm), (1.4.10)

20, =0 etc, —o<a<go, a#o,
and all low-energy parameters vanish identically in higher partial waves
I=1,2,.... This shows in a nice way that the point interaction is in fact a
zero-range interaction which acts nontrivially only in the s-wave | = 0. More-
over, it provides a physical interpretation of the boundary condition parameter
4na as the negative inverse scattering length.
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Next let
eikwy eiklx-yl
(4na - ik) |x — y|’

k>0, weS? —-ow<a<ow, x,yeR3, x#y (1411)

¥, ,(ko, x) = e*e* +

Then obviously ¥, ,(kw, x) is the scattering wave function corresponding to
—A,,, as can, e.g, be read off directly from (1.1.16), (1.4.1), and the Bessel
function expansion of e*¢>~»

e "M, (ka, x) = 4n|x — Y| tho,q(k|x — Y1} Yoo(e) Yoo(ey)
[}

tanx—yt S Y 9l = Y Tin@) Yo,

PRt
k>0, weS? —-ow<a<ow, x#y o,=x/|x. (14.12)

By inspection ¥, ,(kw, x) fulfills

{—dna|x — y|'¥, ,(ko, x) + |x — y|7'(x = )V, ¥, (ko, X)}|x=, = O,

—(AY, ) (ko, x) = k*¥, (ko,x), x#}, (1.4.13)

lim fim  dnlele SO A, , = (k + ] X) = W ke, )
ed0 x|~
-|x|"x'=w

x#y;, k=20, weS? - <a< oo

The on-shell scattering amplitude £, ,(k, o, w') associated with —A, , is then
given by

sk, o, )= lim |x|e”*¥[¥, (ko' x) — e**'*]

k=20, w,0'eS? —w<a<ow, yeRd (14.14)
The corresponding off-shell extension #, ,(k, p, q) is then defined to be
fay(k, p, @) = (4na — ik)™! "P7,
keC, k# —4nia, p,qeC3 -0 <a<oo, yeR? (14.15)
and we get
Fayks @, @) = £, (K, P, @\pi=gi=k>
p.qeR o=Ip|”'p, o' =Iq|™'q. (14.16)
The unitary on-shell scattering operator &, (k) in L*(S?) finally reads
S y(K) = 1 — (k/2mi)(4na — ik)"1 (e~ )ik
k>0, —o0o<a<oo, yeR3 (14.17)

(in particular, if we choose y = 0, (1.4.17) takes on the simple form .%, o(k)
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1 + 2ik(dno — ik) "' (Yo, ) Yo0). We also note that in the low-energy limit
k-0

Fryll) {:_ Yoy, Vo a_:)o;< “yi ;;’ 20 418)
and
—lim/, (k, 0, ') = —(4n0)”" = a,, —o<a<ow, a#0 yeR?
e (1.4.19)

with «, the scatterinng length obtained in (1.4.10).

As can be read off from (1.4.17), %, (k) has a meromorphic continuation in
k to all of C and the pole of %, ,(k) obviously coincides with the bound state
or resonance of —A, , as long as « # 0. The methods described above are
entirely stationary ones. For the connection of .%, , with time-dependent
scattering theory we refer to Appendix E.

Next, we briefly turn to stationary scattering theory associated with the
Schrodinger operator H, ,. Assume V to be real-valued and

e2'ly e R for some a >0 (1.4.20)

for the rest of this section, and let u and v be as in Sect. 1.2. We introduce
in L3(R?)
O, ,(p. x) = u,(x)e'™,
0;:(p, x) = v (x)e’P; >0, peC? |Imp|<a. (14.21)
where
u (x) = u((x — y)e), v,(x) = v((x — y)/e), e>0, yeR> (1422
The transition operator t (k) then reads
t.(k) = e 2 ) [1 + &2 A(e)u, G0, ] 7",
O<e<ey Imk> —afe,, k*¢é., (1423)

where A(-) has been introduced in Sect. 1.2 and the exceptional set &, is
given by

8, = {k* € C|Me)uG, vd, = — ¢, for some ¢, € L*(R?), , # 0, Im k > —a/e,},
O<ec<egy (1.424)

Duec to condition (1.4.20), &, is discrete and a compact sct of Lebesgue measure
zero [434]. The on-shell scattering amplitude f, (k, m, ') is then defined as

ek, w, ') = —(47‘[)-1((1)::,,(,((0), 1,,('()@;,,(1«1)')),
k>0, k®¢68, w,weS?, yeR® (1425
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and its off-shell extension f; (k, p, q) is given by

foyk, prq) = —(@m)7H (@] (p), t()D] (), O <z <ey Imk> —ale,
k2¢ &, p.qeC® |Impl,|Imgl <afe,, yecR® (1.426)
such that
Jeyk, 0, @) = £ (K, P, @)lipj=1g1=k>
£>0, y,p,qeR w=|pI"'p, o' =|q|7'q. (1.4.27)

The unitary on-shell scattering operator S, (k) in L*(S?) is defined by
(S..,(k)$)(w) = ¢(w) — (k/2mi) j do' f; (k, w, @' )$(w"),
S2

peL¥S?), &k>0, k*¢ &, weS? yeR. (1428)

In order to determine the limit ¢ | 0 of f, , and S, , it essentially suffices to
consider ¢,(k) as ¢ | 0. Thus we state the following generalization of Lemma 1.2.4.

Lemma 1.4.1. Let e?I''V € R for some a > 0 and A'(0) # O in cases 111 and
IV. Assume (1.2.84)and let 0 < |¢| < &, be small enough. Then e[ 1 + B,(k)] ™,
Im k > —a/e,, is analytic in ¢ near ¢ = 0 and the following expansion in
norm holds

e[1+ B(k)] ' = e(1 + uGov)™" —e%(1 + uGyv) ' B, (k)(1 + uGyv)™! + O(e)
incasel, (1.4.29)
e[1 + B,(k)]™" = [(ik/4m)|(v, )12 + X(0)]*(B, )¢ + ¢T
— e(ik/4m) [(ik/4m) (v, )12 + X'(0)] (8, v)(T*v, )¢
— &(ik/4m) [(ik/4m) (v, $)1> + X'(0)] (v, (&, ) T
+ e(ik/4m)2[(ik/4m)|(v, §)I2
+ 2(0)17%1(v, @)12(v, Tu)($, -)¢
—~ e[(ik/4m)|(v, $)I> + X(0)172(4, B,(K)9)(4, )¢ + O(€?),
k#0 if Y(0)=0 incasell, (1.4.30)
e[l + B,()]™' = —[F(©)]'P + ¢T — ¢[X'(0)]172PB,(k)P
— &2TB, (k)T + e2[X(0)] "' PB,(k) T — 2[X'(0)]"*
{{t =1 + ¥(0) ' 1P} [PB,(k) + TB,(k) — T1}*P
+2[A(0)] 7 {1 - [1 + (X(0)']1P}-
-[PBs(k) + TB,(k) — T?B,(k)]P + O(c®)
in case 111, (1.4.31)
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N ~ ~
e[1+ B = ’Z_ (8, By(K)@)u' (> ") + €T

1 1

N -~ -~

— &(ik/4m) (v, 41) ;Zl (@, B()¢)1} > ) Tu
N ~

— &(ik/4n) (8, v) IZI (@, B, (k)$)i' (T*v, )¢y

N ~
+ e(ik/an)* (v, Tu)l(v, ¢,)I? , z 8. By(gy!
(¢, B()9)1} Br, )

N

= X 6B G, B (KNG B(K))r

L
@y Yy + O(E?)
in caseIV. (1.4.32)
Here the analytic expansion valid in Hilbert—Schmidt norm (cf. (1.2.42))

B.(k) = By + i "B, (k), (1.4.33)
n=1
BO = ucol),
B, (k) = 2'(0)uGyv + (ik/4m)(v, -)u, (1.4.34)

B, (k) = [2"(0)/2]uG,v + (ik/4m)A'(0)(v, -)u + k*C,
(C defined in (1.3.6)), etc., has been used. In case IV
@, By(k)p)i" = L(ik/4m)|(v, $,)128,, 8, + X (O]7'6,  (14.35)
denotes the inverse of the matrix (¢, B,(k)¢), |, I’ =1, ..., N.
PROOF. Casel: Since (1 + uG,v)~! exists, (1.4.29) immediately results by inserting
expansion (1.4.33) for B,(k) into [1 + B,(k)]™'.
Case II: We partly follow the proof of Theorem 1.3.1(b) and expand (cf. (1.3.17))
e[l + B(k)]™! = e{t —[1 + B,(k) + P]"'P}"'[1 + B,(k) + P1™!
=¢{l — P+ ¢[P + TI[B,(k) + O()]P} '[P + T + 0()],
|e] small enough. (1.4.36)

Formula (1.3.47) then shows that e[ 1 + B,(k)]™! is analytic in ¢ near ¢ = O since after
identifying # = L*(R®), 8 = 1,§ = 4, = ¢, R = [P + T]B, (k)P one infers that

e{l + (4, {1 + e[P + T1B, ()P} ' 9)} ! = —[(ik/4m)|(v, $)I* + X'(O)]" + O()
(1.4.37)

is analytic in ¢ near ¢ = 0. The right-hand side of (1.4.30) then results after an explicit
expansion of (1.4.36) in terms of &.
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Case 11I: We again expand as in (1.4.36). Since now P is, in general, of rank N
we use the formula (cf. Lemma B.5)

N -1 N -
[l +ﬁlZI W, Wy + R] =[1+R]! —13“12_l {1 +BW.[1 +RI"'V)}a"-

“([1 + R*1 ., )[1 + R] 'y, (1.4.38)

where e C, Y, Y, € #, R, [1 + R]™" € #(#) for some separable Hilbert space
# and the cxistence of the inverse matrix of {5, + B, [1 + R]™ ')} denoted
by {1 + B, [1 + R} 'v)}:L LI =1,..., N, is assumed. Using Pu = 0 and identi-
fying f = 1,4, = . ¥ = ¢, R = [P + T]B,(k)P = —v:X'(0)P we again infer that
¢[1 + B,(k)]7! is analytic in ¢ near ¢ = 0 since

e{1 + (3, [1 — X OP1 ' $)}it = [X(0)] 10y + O(e) (1.4.39)

is analytic in ¢ near & = 0. The expansion coefficients on the right-hand side of
(1.4.31) now follow by a straightforward calculation.

Case I'V: The proof is identical to that of case I1I up to the point that now, similar
to case II, R = ¢[P + T]B, (k)P has to be used. Analyticity of ¢[1 + B,(k)]™' in ¢
ncar ¢ = 0 now follows from that of

ell + (4, [1 + &P + T)B,(k)P] ' $)}ii

= —[(ik/4m)|(v, §,)|*8y, 8y + A(0)] '8y + O(r). (1.4.40)
]

Given Lemma 1.4.1 we are able to expand the off-shell scattering amplitude
Je.y(k, p, g) with respect to ¢ near ¢ = 0:

Theorem 1.4.2. Let ¢!V € R for some a > 0 be real-valued and assume
A'(0) # 0in cases Il and IV. Assume (1.2.84) and let |¢| < ¢o be small enough.
Then f, [k, p,q), Imk > —a/e,, |Im p|, |Im q| < a/co. y € R?, is analytic
in ¢ near ¢ = 0 and

—4ne™P=9f (k, p, q) = &(v, (1 + uGov)™'u) — e*(ik/4m) (v, (1 + uGov)~'u)®
+ e2X(0)(v, (1 + uGyv)~2u)
—ic2(p(-)v, (1 + uGyv)™'u)
+ ie2((1 + vGyu)~ v, q(-)u) + O(e?)

. incasel, (1.4.41)

—4ne™ PO, (k, p, q) = —4ne™P"Df, (k, p, q)
+ eX () [(ik/4m) (v, §)1* + X' (0)]7" |(v, )
+ ¢[X(0)]*[(ik/4n)|(v, P)1* + X' (0)] 2
(0, (1 + uGov) ™ u) — e[(ik/4m)l(v, §)1* + X'(0)] >
|0, $)12(8, By(K)@) — ie[(ik/4m) (v, #)1> + X'(0)] " -
(8, v)(p()v, §) + ic[(ik/4m)|(v, $)I* + X'(0)] "
(v, 9)(4, 4(-)v) + O(e?),

a=—A0)|w. @)% k#0 if X0)=0 incasell, (1.4.42)
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—4ne®=9f (k, p, q) = &(v, Tu) — e2(ik/4m) (v, Tu)* + e2X'(0)(v, Tu)
N
+ 2 (X (0] IZ (p()v, ¢)(d, q(-)v)
=1

— ie2(p()v, Tu) + ie*(T*v, q(-)u) + O(c®)
in case 111, (1.4.43)
—4ne*79f, (k,p,q) = —4ne??"f (K, p, q)
+ &X' (0)[(ik/4m) (v, ¢,)I1* + X' (0)] ' I(z, 1)1
+ e[X(0)1*[(ik/4m) (v, $)1* + 2'(0)] (v, Tu)

N

— el(¢y, V) , ; (8, B,(k)$); ! (&1, B, (K)gy)-

(¢, B,()¢)r}
N ~
— ie(¢y, v) z (p(-)v, 4)(&, B, (K))iy"

N ~
+ ie(v, ¢,) :; (. B,(k)9)1i (41, 4(-)v) + O(c?),
a= —A0)|(v, ¢,)"% incaselV. (1.4.44)
PROOF. By a translation x — x + y and a scaling transformation x — ¢x using
(1.2.15) we obtain
Soylky p, q) = —(4m)~' e~ P~V () (ue™Px, e[1 + B,(k)] 've™™), (1.4.45)

where in obvious notation x, x’ € R? denote integration variables. The above results
now directly follow by inserting Lemma 1.4.1 into (1.4.45) and expanding A(e), e***,
e"?*" with respect to ¢. [ ]

It remains to derive the corresponding expansion for S, ,(k) near ¢ = 0:
Theorem 1.4.3. Let 2!V e R for some a > 0 be real-valued, 2'(0) # 0 in

cases 111 and IV and assume (1.2.84). Then S, ,(k), k = 0, y € R?, is analytic
in ¢ near ¢ = 0 and for |¢| small enough we get

S..,(k) = 1+ 2mi) ' ek(v, (1 + uGov) ' u)(e™* Yy, -)e™ VY,
— (87%) 7 (ek)* (v, (1 + uGov) ™ u)* (e P Yoo, *)e™* P ¥y
+ (2mi) 2k (0) (v, (1 + uGyv)~2u)(e~™ Yy, *)e~* Y,
— (k)* (e ™Yoo, )e VY, + (ek)P(e™MVYy, )e MW Yoo
+ 0(e3) in case 1, (1.4.46)
where

Y (w) = (4n¥?)™! f

d3x wxv(x)((1 + uGyv)'u)(x), weS2 (1.447)
R?
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S..y(k) = %, (k) + (2mi) " kA'(0) [(ik/4m) (v, #)I* + A'(0)] " -

|, B2 (e™™ 7 Yo, e~ P Yy

+ (27i) ek [A'(0)J2 [(ik/4m) (v, #)1* + A'(0)]2(v, (1 + uGov) ' u)-

.(e-ik(-)yyoo’ .)e-ik(')yyoo

— (i)' ek[(ik/4m) (v, B)I* + X'(0)]72I(v, #)I*(S, B,(k)g)-

(€™M Y50, )e ™Yoo — ek?[(ik/4m)|(v, $)I* + X(0)] 7

(¢, V) (e Y, )e P Y, 4 ek2[(ik/4m)|(v, #)I* + A(0)] -

(0, ™™V T,, )™M Yo, + O(E?),

a=—=A0)wd)"% k#0 if ¥©0)=0 incasell, (1.4.48)

where

() = @n3?)! J d3x wxv(x)p(x), weS> (1.4.49)
R3
S (k) = 1 + (2mi) " ek(v, Tu)(e™ ™7 Y,y, -)e ™ 7Yy,

— (87%) 71 (ek)*(v, Tu)?(e™™ 7Yoo, )™ Yy,

+ (2mi) 12 kA (0) (v, T?u)(e~™ 7Yy, *)e~™ WYy,
N

+ 2ne2k3[4(0)]! z (e_"‘('”?l,h ')e-“‘(.)le.l
I=1

— (k) (e ™M 7 Yoq, -Je* 7,

+ (ek)*(e" ™Y, )e MY, + O(?) in case 111, (1.4.50)
where

f, (w) = @n*?)! f d3x wxv(x)(Tu)(x), weS> (1.4.51)
R3

S..y(k) = &, (k) + 2mi) kX (O) [(ik/Am) [(v, 6,1 + X'(0)] (v, 4y)I3-
.(e-ik(-)y Yoo, .)e-ik(-)y Yoo
+ (2mi) "' ek [A'(0)] [(ik/4m) |(v, &,)1* + A'(0)]~*(v, Tu)-
.(e-ik(-)yyoo’ .)e-ik(')yyoo

N -~ ~ -~

— (2mi) ' ek(v, ,)1? ' 'Z;l (¢, B, (K))1/ (41, B:(K)¢) (¢, By (K)@);-, -
(€™M Yy, ")e" Y,

N -~ 2
— ek*(¢y, v) '; (@, B,(K)9)iy' (™™ 7 Yoo, -)e™ ™V,

+ ek*(v, 4y) 'i (@, Bi(K)g)it ™™ 7Y, 4, -)e ™Yo + O(?),
=1
a=—A0), ¢)I"2 incaselV, (1.4.52)
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where

Y, () = @n*?)™! f d3x oxv(x)g(x), weS:  (14.53)
R3

PROOF. Theorem 1.4.3 is animmediate consequence of (1.4.28) and Theorem 1.4.2.
[ ]

Finally, we would like to add some comments concerning the above results.
First of all, the expansion coefficients in Theorem 1.4.3 have been written
in such a way that the results are particularly simple for y = 0. Next, we
emphasize that only in cases Il and IV (i.e., if H = —A + V has a zero-energy
resonance) the limits of f, , and S, , as ¢ — 0 are nontrivial and coincide with
/..y and &, , with a given by (1.2.53). The coefficients (47) (v, (1 + uGov) ™" u)
and (4n)~'(v, Tw) in f, , in cases I and III just represent the scattering length
of H= —A + V [11]. In the special case where V is spherically symmetric
(cf. the discussion before Lemma 1.24) we have Y, = ¥, =0 and ¥,, 7, , are
nonzero only if ¢ (resp. ¢, [ = 1, ..., N) have angular momentum one (i.e.,
p-waves). The expansions in Theorems 1.4.2 and 1.4.3 clearly illustrate the fact
that scattering near threshold is largely independent of the detailed shape of
the interaction.

As in Sects. 1.1 and 1.2 the above results immediately extend to complex
point interactions with Im « < 0. In this case &, ,(k) and S, ,(k) become
contractions in L3(S2).

Notes

Section L.1.1

The one-center point interaction Hamiltonian in three dimensions seems first
to have been studied by Bethe and Peierls in 1935 [86] in the study of
the “diplon,” i.e., the system consisting of a proton and a neutron. (Wigner
[497] had shown that the interaction between a proton and a neutron is
of very short-range which makes it reasonable to try to define a zero-range
interaction, i.., a delta potential.) The manner in which they treat this singular
interaction resembles in some way the rigorous study we have given here.
First, they argue that it is only necessary to study s-waves, i.c., the subspace
corresponding to ! = 0in (1.1.9) because “the centrifugal force makes the wave
function very small for distances small compared with the wave length and
the potential at still small distances will not matter.” By physical arguments
they deduce that the logarithmic derivative at zero of the radius times the
wave function should be a constant which is directly related to the energy.
Inspecting the boundary condition (1.1.12) which we imposed for s-waves we
see that it is indeed equivalent to

d
(-h(ln(r‘l’))lmo y = 4na,



Notes 47

where ¢(r) = r'¥(r) € 2(h,_,). Thomas [485], also studying the neutron—proton
system, gave in addition the form V(r) ~ e 2f(r/e) with & ~ O for the point
interaction. This point of view is studied in detail in Sect. I.1.2.

Fermi, in 1936, used a similar procedure as Bethe and Peierls when he
studied the motion of neutrons in hydrogenous substances [179]. Indirectly,
he proposed to replace 4(r) by

—a"&(r)air R
r=0+

what has later been called the Fermi pseudopotential and was made more
explicit by Breit in 1947 [110]. The reasoning they used was essentially the
following (see [93]): The Schrédinger equation for the proton—neutron system
with the center of mass motion removed is

HY = —AY = EY,

where ¥ = W(x, y, z) and (x, y, z) are the relative coordinates. The interaction
is given by the boundary condition above. Integrating the boundary condition
yields

In(r¥) = 4nar
or

¥ - et _ 1+ dmor + $@nar)* + - _ [ (41ra) ] "
r r
where ¢ is regular at r = O (i.e., (0 +) is finite). This yields for small r

, c‘;‘l‘ — o) 6(r‘l-‘)

Integrating this over the surface of a small sphere we obtain that the left-hand

side is equal to
Ir’ dQ-a;- = JdS V¥:n= ~[dVA‘I‘
and the right-hand side equals

— (dna)™! I aQ a(;:v) = —alg f avs,

where we used
a(ry)
or

for r small enough. This implies that the integrands of the right- and left-hand
sides are equal in the limit when r tends to zero, i.e.,

AW = — "5()‘3(':P) ,

r=0+

~ ¢
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which is small except near the origin while H, is small near the origin. Adding
the two expressions for AW we finally obtain

= EVY.

r=0+

HY = —-AY — a"é(r)—a—r‘l’
or

For recent treatments of the Fermi pseudopotential see [62], [229], [427],
1428], [472], [490]. Following Grossmann and Wu [229] we can use the
above heuristic formula for H, to obtain its Green’s function. The Green’s
function G, , satisfies

(—A = k*)G, 4(x, x') — a“é(x)—i—lxl G, i(x, x')

] imo = 6(x — x').
Hence
(—A = k?)G, y(x, x") = 6(x — x') + Ay(x")8(x),
where
Au(x') = a7 —a—lle. k(x, x")
2lx| ' x=0
This implies

Ga.k(xa xl) = Gk(x - xl) + AC(XI)G,‘(X),
where G, is the free Green’s function, i.e.,

eiklxl
G,,(x) = 47Tx|
A, is now determined by inserting the expression for G, , into the definition
of A,, and we find (cf. (1.1.21))

e\ -1
Gou(x, x') = Gilx — x) + <°‘ - ;‘;) Gi(x)Gi(x").

Other studies of J-interactions appeared in [277], where the N-center
problem is also treated, and in [464], [509]. An extensive study of applications
to atomic physics appeared in the monograph by Demkov and Ostrovskii
(151]. Applications to hadron spectroscopy can be found in [87].

The rigorous study of point interactions was started in the early 1960s by
Berezin and Faddcev [81] in an attempt to study the three-body problem
rigorously. This work is reviewed in [184]. Berezin and Faddeev use both the
method of sclf-adjoint extensions of symmetric operators and a method which
uses a renormalization of the coupling constant in front of the J-function.
We will return to this technique in the N-center case, Ch. 1 of Part II.

The method using Dirichlet forms was introduced by Albeverio, Hoegh-
Krohn, and Streit [32], [33] (cf. Appendix F for an extensive discussion).

Methods of nonstandard analysis were started by Nelson [355] using
(standard) results by Friedman [187], [188] who showed how to obtain point
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interactions as strong resolvent limits of Schrodinger operators with charac-
teristic functions of decreasing support as the potential. This was subsequently
generalized by Alonso [37] and Albeverio, Fenstad, and Heegh-Krohn [12]
where the N-center case is also studied using nonstandard analysis. See also
[14] and Appendix H.

As the last method to define the point interaction Hamiltonian rigorously
we mention that we can simply start with the resolvent (1.1.18) and show
that this is the resolvent of a self-adjoint operator. This point of view was
advocated by Grossmann, Heegh-Krohn, and Mebkhout [226] using scales
of Hilbert spaces (cf. Appendix G). Complex point interactions were studied
in [226] and [114]. Generalized pointlike interactions appeared in [369],
[370], [400b], [427], [428], [430], [431], [446].

More general systems of the type —A + V + “Ad™ are discussed in [167],
[171], [209], [211], [269], [416], [420], [512].

Electric and magnetic fields in connection with —A, , are studied in [147],
[148], [472].

Section 1.1.2

In the special case of a square well potential V strong resolvent convergence
of H,to —A, , (resp. to —A) has been discussed by Friedman [187], [188] (cf.
also [37], [355]). The general local case where V € R and (1 + ||)V € LY(R®)
is due to Albeverio and Hoegh-Krohn [24]. Theorem 1.2.5 is a slightly
improved version of corresponding results in [16], [17] and [22] which yield
norm resolvent convergence of H, to —A, , (strong resolvent convergence if
A'(0) = Oincases IIl and IV is also discussed in [17]). For previous discussions
of Lemma 1.2.3 and of cases I-1V under different hypotheses on V we refer
to [272], [298], [357], [504]. Strong resolvent convergence in the context of
Dirichlet forms has been obtained in [33], [35].

Special approximations by means of separable interactions appeared in
[81], [112], [129], [512]. A detailed treatment of nonlocal interactions can
be found in [98] (cf. also [200], [358]). Theorem 1.2.10 appears to be new.

Various approximation results in connection with more general systems of
the type —A + V + “A6” can be found in [171], [414], [416], [420].

Section 1.1.3
Most of the results of this section are new (some of them have been announced
in [17]). Our definition of resonances of H = —A + V, 2*'lV ¢ R for some

a > 0, as poles of (1 + uG,v)™! in the strip 0 > Im k > —a follows the treat-
ment in [21], [26], [28] and [200] (these papers also contain an extensive
list of references on this subject). For references on perturbation theory
of resonances using similar techniques see [385], [386]. Since, by relation
(1.2.11), every bound state k, of H, , corresponds to a bound state k(e) = &k, of
H(e) = — A + A(e)V and vice versa, we recover the results of [298] concerning
the absorption of negative bound states into the continuous spectrum at
so-called critical potential strengths. In fact, Theorem 1.3.1 extends their
three-dimensional results insofar as our Fredholm determinant approach
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allows us to calculate the leading order coefficients explicitly (it suffices to
take A(s) = 1 + ¢4'(0), A'(0) # 0 and to replace all k, , in Theorem 1.3.1(b)-(d)
by ek, ,, I =1, ..., N). Theorem 1.3.2 finally extends the whole treatment to
resonances of H(¢) by using the same type of substitution k, — k(¢) = ¢k,.
A unified treatment of bound states and resonances of H(e) along these lines
appeared in [204].

The whole discussion of this section extends to nonlocal interactions in
a straightforward manner. The only changes needed in Theorem 1.3.1 are the
following:

eV e R —eli,, e15, € L'(R*) A LA(R?) for some a > 0,
(v. ) = (v,, §) incasell,
(v. ¢,) = (vy, 4,) incaselV,
C(x. x') = —(8n) tu(x)lx — x'|v(x’)

- C(x,x") = —(81:)"‘[ d3x" d3x"-
[1{3

. Wz(x, .x”)ix” — xml Wl(xm’ xl)'

In :Theore[n 1.3.2 one simply replaces ¢??'VeR for all a>0 by
e'li,, e, e LY(R*) n L%(R?) for all a > 0 in addition to the last three
substitutions stated above.

Section 1.1.4

Scattering theory for point interactions from various points of view have been
studied in [81], [87], [114], [184], [200], [252], [277], [369], [370], [483],
[509], [512]. Stationary scattering theory for Schrédinger operators of the
type H = —A + V, e**'lV ¢ R for some a > 0 can be found in [434], Ch. V,
[390], Ch. X1.6. For the general formalism of scattering theory we also refer
to [39], [360], [480]. Low-energy scattering for three-dimensional systems
has been discussed in [16], [17], [272], [357], [358] (see also [351]). A
systematic way of calculating the expansion coefficients for the transition
operator t(k), as k — 0 by the use of recursion relations, has been developed
in [101].

Low-energy parameters in connection with a detailed investigation of scat-
tering near threshold appeared in [11]. Theorem 4.1 is taken from [17] where
a slightly different proof can be found. In particular, this paper also contains
a complete discussion of the case 1'(0) = 0 in cases Il and IV without the
simplifying assumption (1.2.84).

If one is interested in asymptotic expansions for f,(k, w, w’) and S, ,(k) near
& = 0 instead of analytic expansions, the assumptions on V can be drastically
reduced. In fact, as long as 6, " (0, ¢,) = J for all 0 < ¢ < &, the conditions
VeR, (1+I|x[™)V e L'(R?) for suitable m e N yield asymptotic expansions
in Theorems 1.4.2 and 1.4.3, the order of which depends on m.

Again Lemma 1.4.1-Theorem 1.4.3 extend to nonlocal interactions (cf. [98]
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for a detailed treatment of low-energy parameters and scattering near thresh-
old). Here it suffices to note that the on-shell scattering amplitude associated
with (1.2.65) reads

felk, o, ) = —@n)~ (@] y(ke), L (KD, (ke)),

6k>0, k2¢68, w,weS? yeR?
where now

®;,(p. ) = j dPx’ Wy, (x, x')e,
R3

D (p.x) = j

N d3x' W (x', x)e?™, £>0, peC3 |Imp|/<a,
t(k) = e 2 A1 + e 2 U)W, .G W, 17,
O<e<egy, Imk> —aje,, k?¢6&,
&, = {k? € ClA(c)W, G, W, ¢, = — ¢, for some ¢, € L2(R?),
¢, #0,Im k > —afe,}, 0<é&<gg,
W6, x)=e W x—yhe'x'—y)  €>0, j=12, yeR’

using the assumption ¢ i, e?'15, € L'(R*) n L%(R?) for some a > 0.



CHAPTER 1.2

Coulomb Plus One-Center Point Interaction
in Three Dimensions

L.2.1 Basic Properties

In this section we extend the analysis of Sect. 1.1 to include the Coulomb
potential in addition to the point interaction both centered at a fixed point
y € R3. Following very closely the approach in Sect. 1.1 we again concentrate
on the methods of self-adjoint operator extensions.

In the Hilbert space L?(R*) we consider the operator

(=A+71 =y egmo-pyp»  VER, yeR, @Ln

and denote by H, , its closure in L2(R?) (i.e., 2(H,,,) = H3*(R® — {y})). Then
its adjoint is given by [274], [276)]

(H,,)* = =A+7y] =y,
(H,,)*) = {ge HEX(R® — {y}) n L2 (R%)|(—Ag + yI* — y|"'9) € L*(R*)},
yeR3 yeR. (212
By inspection, one infers that
Uylk, x) = |x — Y17 Wiy au,12(—2ik ] x — yl),
Imk>0, yeR, xeR>-{y}, (213)

where #,,.,(-) denotes the Whittaker function [1], is the unique solution of

(H,,)*¥(k) = k2y(k), k) e D(H,,)*), keC-R, Imk>0. (214)
52
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Thus H, , has deficiency indices (1, 1) and applying Theorem A.1 all self-
adjoint extensions H, o , of H, , are given by the one-parameter family
D(H,,,) = {g + ap,, +ae®y,_|ge D(H, ), aeC},
H,, (g + ay,, + ae®y, ) = H, ,g + iap,, — iae®y,_, (2.1.5)
0€[0,2n), yeR3,
where
Yy e (x) = 1% — Y| W _py2 2 g 1p(— 2(2) 2 |x — yl),
Im(+i)'?> >0, yeR, xeR>-~{y}. (21.6)

Next, we introduce spherical coordinates like those in Sect. 1.1 since H, , is
obviously spherically symmetric around y € R3. With respect to the decom-
position (1.1.9), H, , then equals the direct sum

H,, =T {@ Uh, U® 1} T, yeR® yeR, (217
1=0
where T, implements translations x — x + y in L3(R?), (T, 9)(x) = g(x + y),
g€ L*(R%), y e R? and

2
i d l(I+l)+'y

.l F T ;, )'GR, l=0,1,2,..., r>0,
D(h, o) = {$ € L¥((0, )|, ¢' € AC,oc((0, 0)); W(P, $,4)0+ = 0;
—¢" + yr ¢ e L3((0, 0))}, (2.1.8)
Dh,,) = {¢ € L0, 0))I4, ¢' € AC,oc((0, 0)); —¢" + Il + 1)r™2¢
+ yr~'¢ e L*((0, 0))}, =12..,

where

$,+(r) = Wiy pig o 12(—2i(20)¥2r) and W(J, g), = f(0)g'(x) — F(x)g(x)

denotes the Wronskain of f and g. As in the case y = 0, h, , are self-adjoint
for I > 1 ([389], Ch. X) whereas h, , has deficiency indices (1, 1). By the
discussion in Appendix D all self-adjoint extensions h, o, of }i,,o may be
parametrized by

a2 vy
1,'(~,,‘,=—d—r—2-+;:, 7eR, r>0,

h

Dh,.0.0) = {# € L*((0, 0))I4, ¢’ € AC;oc((0, 0)); —4nady + ¢, =0;  (2.1.9)
~¢" + 7 'pe L0, )}, ~0 <a< o,
where ¢, and ¢, are defined as

$o =1lim @(r), ¢ =limr~'{4(r) — go[1 + yr In(l7Ir)1},
rd0 ri0

¢ D), veR (21.10)
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By an analogous calculation to (1.1.13) one infers that

oy =T {[u-'hm‘au ) é U‘lii,,,u] ® 1} T, yeR3 yeR,
- (2.1.11)
where
a = (@m)7 (1 + ) {Liv((P( + (v/2G)'?) — (1) — P(2)/2()"?) - 3]
(=2i6)"?) + e Liy((P(1 + (iy/2(—=1)"?)) — (1)
— ¥(2))/2(-i)'?) — $3(=2i(-i)'?)},
(£i)2 =(+1+i)cosn/d, yeR, (2.1.12)

and again « varies in R (« = +o00 if 81 =) if 6 varies in [0, n) U (, 27). Here
Y(-) = I'(+)/T(-) denotes the digamma function and I'(-) the gamma function
[1]. Thus we get

Theorem 2.1.1.  All self-adjoint extensions of H, , are given by

H,,,= Ty-l {[U-lhv.o.au @ g‘? U—l};y.lu] ® l} T,
—o<a<ow, yeR3, yeR. (21.13)

The special case o = o0 lefzds to the ordinary Coulomb Hamiltonian H, , (the
Friedrichs extensions of H, ) in L*(R?)

H,,=-A+yl-—yl™', 2(H,,)=H**R?, yeR? yeR (21.14)

If |af < 00, H,,,, describes the Coulomb interaction plus an additional
point interaction both centered at y € R>. In particular, H, , , differs from the
Coulomb Hamiltonian H, , only in the subspace of angular momentum zero,
i.e, the point interaction in H, , , is again an s-wave (I = 0) interaction.

Next we introduce

G,y =(H,, -k}, Imk>0, k#—iy2n, n=1,2,..., yeR,

(2.1.15)
with integral kernel [260]
G, 1y(x, x') = T(1 + (iy/2k))(dn|x — x'))7* -
d d
. [(E& —‘JB> -/l{-iy/Zk; I/Z(a)w—iylﬂt; IIZ(Ij)] ;: :,.:_;:9

Imk>0, k# —iy/2n, n=1,2,..., y€eR,
xeg=Ix—yl+Ix'—yltix—x], xx,yeR, x#x' (2.1.16)

(here #,.,(*), #,..(-) denote Whittaker functions [1].)
Basic properties of H, , , are described in
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Theorem 2.1.2. Let —00 < a < 00, y € R,y € R. The resolvent of H, , , is

given by

(Hy.a.y - kZ)-l = Gy.k.y + [a - ()’F(lY/zk)/4n)]-l(Ey,k( - Yj, ‘)gy,k(. - _V),
k*epH,,,), Imk>0, (2.1.17)

where

gy.1(x) = T(1 + (iy/2k)) (47| x|)~* W _iys2ks1,2( — 2ik | x)), x#0, (2.1.18)
and
F(iy/2k) = Y(1 + (iy/2k)) — In(ilyl/2k) + (ik/y) — ¥(1) — ¥(2),
k>0 or Imk>0, k# —iy2n, n=1,2,.... (2.1.19)
The domain 9(H, , ) consists of all elements of the type
Y(x) = d(x) + [a — (F (iy/2k)/4m)] " B(y)gy.u(x — y),  (2.1.20)
where ¢, € 2(H, ) = H**(R®) and k* € p(H, , ), Im k > 0. The decomposi-
tion (2.1.20) is unique and with € 2(H, , ,) of this form we obtain
(H,,,, - k*)y = (H,,, — k*)é,. (2.1.21)

Next, let y € 9(H, ,.,) and assume that Y = 0 in an open set U < R3. Then
H,,¥=0inU.

PRrROOF. Equation (2.1.17) follows from Theorem A.2 except for the factor
[« — (yF(iy/2k)/47)] !. In order to determine this factor one can follow the proof of
Theorem 1.1.2 by projecting to the subspace of angular momentum zero and
replacing go(k,r,r’), k ! sinkr and e by the corresponding s-wave Coulomb
quantities. The remaining assertions directly follow from Theorem 1.1.3 after
replacing G, —A, ~A, by G,, . H, ,, H,, ,,etc. .

O A4

Spectral properties of H, , , are characterized by

Theorem 2.1.3. Let —0 < a < o0, y € R3,
If y=0, then H,, , has precisely one negative bound state if a <
—y[¥(1) + W(2)]/4n. The eigenvalue E, < 0 is determined by the equation

4no = yF(y/2(— Ep)'?),  y =20, (2.122)
with
F(&) =WY( + &) - In|&| — (1/28) — ¥(1) — Y(2). (2.1.23)
The corresponding strictly positive (unnormalized) eigenfunction is given by
Iy.i-ggn2(x — y). If o> —y[\¥(1) + ¥(2))/4n the point spectrum of H, , ,
is empty.
If y < 0,then for all —0 < a < o there are always infinitely many simple

negative eigenvalues associated with the s-wave (I = 0) given by solutions of
the equation

4na = yF(y/2(— E)'?), y <O. (2.1.24)
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For angular momenta | > 1 we get the usual Coulomb levels
E,= —y*4n’, n=23,..., y<O (2.1.25)

For all y € R the essential spectrum of H, , , is purely absolutely continuous
and covers the nonnegative real axis

aess(Hy,u.y) = aac(Hr.a.y) = [0, w)’ asc(Hy.a.y) =,

(2.1.26)
aP(HY.a.y) < (—wy O)s -0 <a S 0.

PROOF. Given (2.1.17) the first part of assertions in (2.1.26) then immediately
follows from Wey!’s theorem ([391], p. 112) and Theorem XII1.20 of [391]. To derive
the statements about g,(H,,,,,) N (—c0, 0) we note the integral representation ([1],
p- 259)

F©) = —ZI dt t(e®™ — 1)1 (2 + £2)"' —Y(1) - ¥(2) (2.1.27)
0
implying
FO+)= -0, Fo)=-¥Y1)-Y(2), F@E>0 >0 (21298
Together with (2.1.17) this proves the assertions for y > 0. For & < 0, F(¢) is strictly
increasing from —oo to +oo in each interval (—n— 1, —n),n =0, 1, ... (cf. Figure
1) which proves the assertions in connection with (2.1.24) and (2.1.25) for y < 0. The

absence of nonegative eigenvalues follows exactly along the lines of the proof of
Theorem 1.1.4. ]

F)

)]
/// |

Figure 1 From Albeverio et al., 1983, [22].

Finally, we sketch some properties of complex point interactions. Leta € C
and define H, , , by (2.1.13) (i.e., let « € C in (2.1.9)). Then, obviously, H, ,,, is
continuous with respect to a in norm resolvent sense. In addition, we have

Theorem 2.14. For all ye R? yeR, iH, .., (resp. —iH, , ) generates a
contraction semigroup e”*Hre> (resp. e*rev), t >0, in L*R®) if Inéa <0
(resp. Im a = 0).
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PROOF. From
DH,,,) ={g+ ap,, +aey,_|ge D(H, ), aeC}, 2129
H,,,(9 + ay,, + ae®y,.) = H, g + iay,, — iae®y,_, ’

where a and 8 are related by (2.1.12), one infers by a straightforward computation
Im([g + ay,., + ae®y,-], H, . ,[g + ay,. + ae”y,_])
=lal? Y, I12(1 — e72'™8).  (2.1.30)

Consequently, Im(h, H, , ,h) < O for all h e 9(H, , ,) is equivalent to Im 6 < 0 and

hence to Im « < 0. Thus iH,, , is accretive ([389], p. 240) and hence maximal

accretive iff Im a < 0. ]

1.2.2 Approximations by Means of Scaled Coulomb-Type
Interactions

A possible approximation scheme to obtain H, , , as the norm resolvent limit
of scaled Coulomb-type Hamiltonians is derived in this section. We closely
follow the corresponding treatment in Sect. 1.2.

In the following

Gyuy=(H,,— k)™, k*ep(H,,), Imk>0, yeR> yeR, (221)

will play the role of an unperturbed resolvent and V: R?® — R is assumed to
be a measurable function belonging to the Rollnik class R. Let u and v be as
in Sect. 1.2 (cf. (1.2.3)). Then we have

Lemma 2.2.1. Let ye R? ye R, and assume e**"''Ve R for some a > 0.
Then V is form compact with respect to H, ,, i.e.,
IVI*2(|H,,,| + E)™'? € #,(L*(R?)), E>0, 2.2.2)
and
uG,, ve B, (L*(R%), kell,,, 2.23)
where
={keCllmk> —a,k# —iy2n,n=1,2,...}. 2.24)
PROOF. It suffices to prove (2.2.3). For that purpose we recall the explicit
expression [99]
Gy 1y(x, X') = (@n)x — x'|)7 {20x, — x.)" (x4 x_)" FQ(k, x_/2)G(—k, x4/2)
=371 (k? + () F Kk, x- /)G (—k, x4/2)
+ 3FQ(k, x_/2)GO(—k, x,/2)}
=@n)x — x')"20x, — x_)(x, x_) FO(k, x-/2)G%(k, x. /2)
=372 + PRk, x-2)GR K, x,/2)
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+ 3F%k, x [2)G0k, x4 /2)}
+ (@rix — x')7 Y[ + (iy/2k)) — In(ilyl/2K) + (ik/y)]-
{20xy = x)(xox. )T FR(k, x. [2)F5B(k, x1/2)
=3 (k2 + GYAF Kk, x - /) F(k, x../2)
~ F%3(k, x_/2) K}k, x,/2)1},
keM, o, x#x, x;y=|x—=yl+|x —ylxlx—x1] (225)
where
FOk, r) = r'*te F (1 + 1 +(iy/2k), 2 + 2; —2ikr),
GOk, r)=TQl+2)7'T(1 + 1 + (iy/2k))(2ie “k)2'*!ri+iethr
“U(+ 1+ (iy/2k); 21 + 2; 2ie” "®kr), (2.2.6)
GOk, r) = GO =k, r) — 23T (2l + 2) 2|T(1 + (iy/2k)\ 7T + 1 + (iy/2k))|*-
pkH [P + (iy/2k)) - In(ily}/2k) + (ik/DIFQ(K, ry; 1=0, 1

and | F,(«; B; *), (U(x: B: -)) denotes the (ir)regular confluent hypergeometric func-
tion [1]. In fact, the bound [96], [99]

l"i'.’x’(k, r)| < const(e, 9, Kq, Ro) exp{(1 + &)xo(r — Ro) + (Iyl/2x,) In(r/Ry)},
e>0, yeR, k,>0, |[kK[<kKd, r=R,>0, I=0,1, (22.7)

where H'%) denotes F{9, (9/0(k?))F®, G, or (3/0(k*))G?, I = 0, 1, together with
the second equality in (2.2.5) proves that uG, , ,v € #,(L*(R*))for ke I1, ,, |k| < a.
The asymptotic behavior [1]

A1>0

FOUk, 1)~ e~  {riv2e,(ly, k) + O™ ")} + e*{r " e, (L, y, k) + O(r )},
GO =k, ) W3] e {rivtkey(l, 3, k) + O} keTl,,, 228)

for appropriate coefficients ¢;, j = 1, 2, 3, together with the first equality in (2.2.5)
and with (2.2.7) then proves uG, , ,v € B,(L*(R3)) for k e I, ,. For Im k > 0 this
also directly follows from the bound (4.1) of [231]

1Gyy 6, X < €y (k)1 — x'| 0B FILY 4 x — x[] U IR,

ke, x#x. (229
[

Next we recall
¥(x) = v(x — e7'y), d(x)=u(x—¢'y), >0 yeR3 (2210)
and introduce
Be,yelng k)= A(e,yeln e)iG,, . .0, e>0, kell,,, (22.11)

where A(-, *) is real analytic near the origin with

ieyelng= 3 Ame"elnel, oo =1l 22.12)

m,n=0
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Because of (2.2.3), B(e, y¢ In ¢, k) extends to a Hilbert—Schmidt operator for
ke I, ,. Moreover, by (2.2.2) and the discussion in Appendix B the form sum

H, (&)= —A+eylx —c'y|™ + Ae, ye In ) V(- — e7ty),
£>0, yeR3, (2213)
is well defined and the resolvent equation
(Hey,ye(e) — k?)7!
= Gy ppre — M& ¥EIN )G,y 4 . B[1 + B, ye In g, k)171aG,, 4 yrer
£>0, k*ep(H, (&), kell,, yeR, (2214)
holds. Following Sect. 1.2 we define

H,,,=¢2UH,, (U™ =H,, +V,

&y

(2.2.15)
V,,(x) = A& yelne)e™2V((x — y)fe), ¢>0, yeR’,

where U, denotes the unitary scaling group (1.2.10) in L2(R3). Since we are in-
terested in the limite | 0 of H, . , we first introduce Hilbert -Schmidt operators
A, (k), B, (k) = i(e, ye In e)uG,, 4v, C, .(k), 0 < & < &, With integral kernels

A, (k, x,x") = G, (x — y, ex")v(x'), kell,,, (2.2.16)

B, .(k, x, x') = A(¢, ¢ In e)u(x)G,,, 4(x, x")v(x’), kell, 4 (2.2.17)

C, .k, x, x") = u(x)G, i(ex, x" — y), kell, o, (2.2.18)
where we abbreviate

G, k0%, x") = G, \(x, x'), x # x'. (2.2.19)

From the scaling behavior
e2U,G, U ' =Gyeipeeys €>0, kell,o, yeR3 (2220)
we infer from (2.2.14) after a translation x — x + (y/¢), ¢ > 0,
(H,..,— k*)™" =& U,[H,, ,.(e) — (k)*1' U,
=G, ., — Ae, yeIn )4, (k)e[1 + B, (k)17 C, .(k),
e>0, k*ep(H,.,), kell,, yeR:. (2221)
Lemma 2.2.2. Letye R? y e R, and define rank-one operators A,(k), C,(k),
and the Hilbert—Schmidt operator uGyv with integral kernels
Ak, x, x') = G, i (x — y, 0)v(x"), kell,o, x#y, (2222
uGyv(x, x') = u(x)(dn|x — x'|)" o(x’), x # X', (2.2.23)
C,(k, x, x") = u(x)G, (0, x" — y), kell,o, x'#y (2224)

Then, for fixed k € I, o, A, .(k), B, .(k), C,,.(k) converge in Hilbert—Schmidt
norm to A,(k), uGyv, C,(k), respectively, as € | 0.
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PROOF. Using the bound (2.2.9) [231] one can follow the proof of Lemma 1.2.2
step by step. a

As in the short -range case y =0, it remains to determine the limit of
¢[1 + B, (k)] as £ | 0. Because of n- lnmc¢o[l + B, (k)] = (1 + uG,v) again
the zero-energy properties of H= —A + V enter at this point. We first
formulate

Lemma 2.2.3. Let yeR and e*''Ve R for some a>0. Then B, (k),
0 <& < &g, ke, ,,, is (norm) analytic with respect to (¢, ye In €) near the
origin

B, (k)= Y By k)e™(yeIn ey (2.2.25)

m,n=0

The coefficients B,,,(y, k),m,n =0, 1,..., are Hilbert - Schmidt operators and
the first few of them explicitly read

By = uG,v, (2.2.26)
Byo(y, k) = A,0uGov + y(4m) ™" F(iy/2k)(v, - Ju
+ y(4n) " 'u In(ly] x. /2)v, (2.2.27)
By, = Ao uGov + (4m) (v, )u, (2.2.28)
where u In(|y| x, /2)v has the integral kernel
u(x)In[lyl(Ix] + 1x’] + |x — x"[)/2Jv(x"). (22.29)

PROOF. By the first equality in (2.2.5) and the series expansions [1]
ol + 1+ (iy/2k); 21 + 2; —igkx_)

Fn+ 1+ 1 + (iy/2k))T (2l + 2)(—ickx_)"
o T+ 1+ (iy2k)T(n + 2l + 2)T(n + 1)’
Ul + 1 + (iy/2k), 2] + 2; ie”*"ekx,)
=T+ 2)7'T(— 1+ (iy/2K)) "' { | Fy (I + | + (iy/2k); 2 + 2; —igkx ) In(ie " *"ekx )
+ i F(n+ 1+ 1 + (iy/2k))T (2! + 2)(—iekx+)"'
o T(l+ 1+ (iy2k))I(n + 21 + )T (n + 1)
[P0+ L+ 1+ (iy/2k)) = Y(n + 21 + 2) — ¥(n + 1)]}

rei+1
Il + 1 + (iy/2k))

unMs

1Fo(—1+ (iy/2k); —21; —igkxy)yp4q;

ken,,, 1=0,1, (2230)
one infers that the integral kernel of G, ,,

a0 0
Gzr.:k(x’ xl) = Z G..o(‘)’, k9 X, x/)sm + ()’5 In E) Z Gm](% k, X, x’)smv
m=0 m=0

kell,, x#x', (2231
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is analyticin (¢, y¢ In ¢) near (0, 0) and that |x — x'| G,(3, k, x, x'),m = 0,1,...,n =0
or 1, are polynomially bounded in |x| and |x’|. Thus taking matrix elements with
C3(R*) functions we get analyticity of uG,, ,v and hence of B, (k) in (¢, e In ¢) near
the origin. ]

Given the case distinction I-IV of Sect. 1.2 (and the ordering (v, ¢,) # 0,
v ¢)=0,1=2,...,N,in case IV) we have

Lemma 224. Let ¢*''Ve R for some a >0, 0 <& < ¢, small enough
and assume case I (i.e, P = 0). Then ¢[1 + B, ,(k)]7", y € R, is analytic in
(¢, y€ In &) near the origin and we get the norm convergent expansion

e[1 + B, (k)17 = e[(1 + uGov)™! — e(1 + uGov)™" By o(y, k)(1 + uGov)™*
— (ye In &)(1 + uGyv) ™! By, (1 + uGyv)™! + O((¢ In ¢)?)],
kell, .. (22.32)

PROOF. Since (1 + uG,v)™! € B(L*(R?)), (2.2.32) immediately follows from

e[1 + B, (k]!

=&{l + (1 + uGyv) ' [cB,o + (v¢ In ) By, + O((e In )*)]} (1 + uGov)™'. (2.2.33)
||

Lemma 2.25. Let e“"'Ve~R Jor some a > 0,0 < & < g, small enough and
assume case Il (i.e., P = —(¢, *)9, (v, §) # 0).

(i) If 29, = —\(v, #)|*/4n we get the norm convergent expansion
e[1 + B, (k)]
=(Bio>™' (8, ) + €T
~ &CB10> "' [(T*Bo$, ) + (4, ) TB,o4]
— (veIn §)<Byo> ' [(T*B314, )¢ + (4, ) TBo,1 4]
—{By10> 2[e{B3o)> + (v In &){B,;> + &y In &)’ (Bo2>1(4, )¢
+ <Byo> 2{e{(By(TByo) + (v¢ In &)[{B,0oTBy,> + {Bo, TB,>]
+ &(y In )*(Boy TBoy D} (4, )¢ + O(e*(In ¢)),
kell yeR. (2.2.34)
(i) If Ao, # —|(v, #)|*/4n we get the norm convergent expansion
e[l + B,.()]™" = (r In &) (Boy >4, )8
— (@ 1n&)72(By; >3 (Byo) (4, )¢ + O((n &)™),
kel,,., veR—{0}. (2235

v.a/eo?

Here we used the notation (B) = (§, B§) for bounded operators Be
#(L*(R®)) and suppressed the y and k dependence in B,,,(, k).
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PROOF. Define
B(, &, k) = B, (k) — Boo, kel ., (2.2.36)
and let u € C — {0}, |u| small enough. Then (1.2.35) implies
e[l + B, (k)] = &{1 + (1 + Byo + 1) *[B(e) — 13} (1 + Boo + p)™*
e{PB(e) + u — uP + uTB(e) + O(u?)} '[P + uT + O(p?))
=¢&{l + u(PB(e) + ) '[—P + TB(s) + O(w)]} "~

‘[PB(e) + u] '[P + uT + O(?)}. (2.2.37)
From P = —(¢~, ‘)¢ we get
uIPB(e) + u) ™' = 1 — ([B() + u}> "' (B(e)*S. )¢ (2.2.38)

and thus
e[l + B, (k)]™" = e{1 + TB(e) — (B(c)> '(B(e)*T*B(e)*d. -)¢ + O(p)} '~

‘[(BE@>™'(4, )¢ + T — (Ble)> (T*B(e)*$, ') + O(p)).
(2.2.39)

Since u # 0 was arbitrary we get
e[1 + B, (k))"! = {1 + TB(s) — (B(¢)>™"(B(e}*T*B(e)*, - )¢} "
“e[<B)> (4, )¢ + T — (B(e))> (T*B(e)*$, )¢)
= {1 — TB() + (B(e))""(B()* T*B(e)*, ')¢ + O(*(In £)*)} -
“e[<B()>"(§, )¢ + T — (B(e))"(T*B(e)*$, -)4). (2.2.40)

Now assume 4y, = —|(v, ¢)|>/4n which is equivalent to (B,, ) = 0. Then
(B(e))™" = &7'(Byo) {1 = (Byo) ' [6{B2o) + (ye In &) (B,,)
+ &(y In £)2(By, ] + O(c*(In &)%)} (2.241)

and we obtain (2.2.34). If Ao, # —|(v, #)|*/4= (i.e., (By, > # 0) then
(B(e))™ = (yelne) ' (By, > '[1 — (7 In €)' (By, >"'(Byo) + O((In &)"2)] (2.2.42)
implies (2.2.35). |

Lemma 2.26. Let e*''Ve R for some a > 0,0 < & < &, small enough and
assume case Il (ie, P = =YX, (4, "), (v, ) =0,1=1,..., N).

() If 29, = Oand the matrix (4, B,o(y, K)¢), LI = 1,..., N, is nonsingular
we get the expansion valid in norm
¢[1+ B, (k]!

N -
({Bio))i* By, )y + €T

I'=

1

L

N ~ -~
~& ), (KBio))i' (TBlodr, )i + (v, ) TBiodi]

LU=t
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N -~ -~
—(yeln¢) Z ({Byo))i' [(T*B3, 4y, ")y + (&, ) TBo, ¢,]
=

Lr=1

N
+ z ({Byo)i' [e<BEo i1
L=t
+ (ye In €){[ByoByy + BoyB1o1)r1- + &(y In &)*(B§; )14+
. N
‘((Bio))ikBp, Y+ Y 1 ({Byo))u* [6<B20 D11

+ (e In &) (Byy Dy + &(y In €)*( By Dpp]
“((Byo))i (@, ) + OE(ne)®), kell,,,, yeR.

(2.243)
(i) If A9y # 0, we obtain the expansion valid in norm
e[t + B, (k]!
N ~
=(ylng! Z ({By,; >)1_i'l(¢1', )
LI'=1
N -
—(In C)—z z ({Bo: >)l_l'! {Byo o1+ ({Boy >)1_"'lr(¢z', )
L=
+0((ne)3%), kell,,,, ryeR- {0} 2244)

Here we used (B), = (45,, B¢,) and ((B));' the inverse matrix of (B),
for some B € B(L*(R3?)).

PROOF. Inserting

N -~
u[PBE) + p]™' = 1 — Y (<B(e) + p>)u' (B(&)*dy, )b (2.2.45)
LI'=1
into (2.2.37) one arrives after some manipulations at

N -
e[l + B, (k)] = { 1~ TBE) + Y (KB(E)))'(BE)*T*B(e)*¢r. )

Lr=1

N .
+ O(X(In 6)’)}6[ Y KB @ Y+ T

Lr=1

N -~
= Y (KB@E>)w'(T*BE)*4r. ')¢1]- (22.46)

Lrr=1
Now assume 4y, = 0 and (B, ), to be nonsingular. Then

N
eKBEDN = (Biodh' = 3 ({Biod)u* [e<Bro D + (ve In £)<Byy Dy

1 =1

+ &(y In £)*CBo; Dpr-1(<Byo )ity + O(e2(In ¢)?) (2.247)
and (2.2.43) follows. On the other hand, if 2y, # O, then
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e(<{B@E)>)' = (y In &) ({Bo, D)t

N
~(yIng? Y (KBou))it* {Byo D1 Boy D)i + O((In £)3),

o (2.248)
which proves (2.2.44). ]

Lemma 2.2.7. Let e*!''Ve R for some a > 0,0 < & < & small enough and
assume case 1V and (1.2.84) (ie, P = =Y X, (4, ), (v, 4,) #0,(v, ¢) = 0,
1=2,...,N).

(@) If 20, = —|(v, #)|*/4n we get the expansion valid in norm
¢[1 + B, (k)]

-~ N -~
= <Blo>l-ll(¢ls ‘)1 + (Aoy7 In ! ’;2 (@, )
N -~ -~
= (Aoyy In &)7'(Byo )1y ';2 [<{Bio>u(#, )1 + {Byoon(4y, )4]

N -~
+ (A017 In &)1 (Byo)i ';2 [{Bro>1l*(¢y, )¢y + O((In &)72),

kell, .., veR—{0}. (2249)
(i) If A9, # —I(v, #,)|* /47 we get the expansion valid in norm
e[1 + B, (k)]

N .
=@ne™ Y ((Bodh' (@, )

LI'=1

N .
~(yIng? z ({Bo, >)ﬁ" {Byo)11+({Bo, >)1-'"lr(¢:', ‘)4

LU, =1

+ O((In &)73), kell, .., 7€R-— {0} (2.2.50)
PROOF. From (2.2.46) we get

N ~
e[1+ B, (K] = Y ((Byo+(yIne)By, )i’ (@ ) + Ole(In )?). (2.2.51)

Lr=1

If the matrix { By, ), is singular, or equivalently if 15, = —|(v, ¢,)]?/4n, then
({(Byo + 7 IneBy, > )i
= (By0)i{ 18y + (RoyyIn &) [8y — 8,8,,)
= (Aoy 7 In &)™ <Byo >1{ [81 {Byodrr(l ~ 8py) + (1 = &14)<Byo )11 9r4]

N
= (o, yIng)™! <B|o>f12 '"2_:2 [<Byo 111?818y + O((In £)72) (2.2.52)
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and (2.2.49) follows. If ( By, ), is nonsingular, i.e., if 1y, # —|(v, $,)|>/4n, then
({Byo + (yIn&)By, > )i’ = (y In &) ({By, )it

N
—Ine? Y (<Boy D! {Brodrr({Boy )ity

b

+ O0{In¢)3) (2.2.53)

and (2.2.50) results. a

For an explicit determination of the first few of the coefficients {B,,,> see
the next section.

Given Lemmas 2.2.2 and 2.2.4-2.2.7 we are able to state the main result of
this section (cf. Theorem 1.2.5 for the corresponding statements if y = 0).

Theorem 2.28. Letye R3 ye R — {0}, e*'!V e R for some a > 0 be real-
valued and assume (1.2.84). Then, if k* € p(H, ,.,) we get k* € p(H, . ) for
€ > 0 small enough and H, , , converges to H, , , in norm resolvent sense

n-Ii¢m H,,,— k)" =H,,,— k)7,
e+ 0

ya.y
V&Y
k*ep(H,,,, yeR} yeR-— {0}, (22.54)
where a is given by
(0 incasel,
0 in case 1L if Ay, # —|(v, 9)|*/4n,
—[410 + y(¢, v In(ly| X, /2)v$)/4n]/I(v, $)I?
in case I if Ay, = —|(v, )|%/4n,
o= l o  incaselllif Ay, #0o0r Ay, =0and (2.2.55)
(81> Byo(y, k)4 is nonsingular,
00  incaseIVif 1, # —|(v, $,)1?/4n,
—[210 + 7(81, v In(ly| x, /2)vg, )/47]/|(v, $,)I?
in case IV if Ay, = —|(v, ¢,)1*/4n.

PROOF. Denoting the limit £ | 0 of e[1 + B, ,(k)]™' by D,(k) we obtain from the
resolvent equation (2.2.21) and from Lemmas 2.2.2 and 2.2.4-2.2.7 that

n-li:l;l (H,,,,— k?)! = Gy x.y — A, (k)D,(K)C,(K),
k*e p(H,,,), Imk>0. (22.56)

The explicit form of D,(k) and a comparison with (2.1.17) then completes the proof.
]

At this point remarks similar to that after Theorem 1.2.5 apply. In addition,
we would like to mention that the convergence to point interactions can
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be viewed as a variant of Klauder’s phenomenon [292]: In fact, assume
e2ye R for some ¢ >0 and let V be continuous and monotonously
decreasing for |x| > R, for some fixed R, > 0. Then, in cases II and IV for
y =0 and in case Il with 1y, = —|(v, #)|*/4n and in case IV with 2,, =
—1|(v, ¢,)1*/4n for y # 0, we obviously get

lifn AMe, yelng)e 2 V((x — y)/e) =0 forall x # y (2.2.57)
e+ 0
but

n-lim (H,,, — k*)™' =(H,,,— k¥ #(H,, — k?), k*eC - R.
edo (2.2.58)

1.2.3 Stationary Scattering Theory

In analogy to Sect. 1.4 we develop scattering theory for Coulomb-plus point
interactions and prove that scattering quantities corresponding to H, .,
converge to those of H, , ,as £ 0.

We start with stationary scattering theory for the pair (H, , ,, H, ,). Again
we first exploit the rotational symmetry of the problem and mainly treat the
case | = 0 because of the s-wave nature of the point interaction in H, , ,. The
analog of (1.4.1) now reads (cf. (2.2.6))

Uy.0.alk, 1) = €7D (1 + (iy/2k)) {F%(k, 1)
+ [4na — yF(iy/2k)] ' G0 (— k, )},
k>0, —o<a<goo, r>0 yeR, (23.1)

where F(iy/2k) has been defined in (2.1.19). The functions y, ¢ ,(k, r) fulfill (cf.
(2.1.9) and (2.1.10))

—47'50‘(%.0.,("))0 + (Wy.o,a(k))l =0,
_'/":'I.O,u(k’ r) + )"_l'pr.o,a(k’ I‘) = kz'pv.o.a(k’ r)a r> 0’

h:‘g lim e—i(k+ic)r'+(iy/2k)ln[2(k+ic)r'][hy'o'a — (k + is)z]_l(r, r:) = '//y.o.a(ka r)’
€ r'—=wo

r>0, k>0, —oo<a<oo, yeR (232

Hence ¥, o, q(k, r) are generalized eigenfunctions of h, 4 ,. For [ > 1 we obtain
(cf. (2.2.6))

Uik, 1) = e HHEL+ 2)) 7 T( + 1+ (iy/2K)) (2KY FQ(k, 1),
kr>0, yeR, I=12,., (23.3)

as generalized eigenfunctions associated with h, ;, | = 1, 2,... . The asymptotic
behavior of Y, . .(k, r) as r — co then reads

Vy.0.alks 1), 2, k™1 ei®r0e® sin[kr — (y/2k) In(2kr) + 8, ¢ 4(k)],
k>0, —o<a<ewc, yeR, (234)
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where the total phase shift 8, o (k) splits up into
8,.0.2(k) = 8, o(Kk) + 870 4(K), k>0, —oo<a<oo, yeR (23.9)
Here
d,0(k) = arg I'(1 + (iy/2k)), k>0, yeR, (2.3.6)

denotes the pure Coulomb s-wave phase shift and the Coulomb modified phase
shift 859 ,(k) is given by
€280 = | 4 2qiy(e™* — 1)"![4na — yF(iy/2k)] 7",
k>0, —o0o<a<oo, yeR (237
For | > 1, we obtain the ordinary Coulomb phase shifts
d,.(k) = arg C'(l + 1 + (iy/2k)), k>0, yeR, I1=12,..., 238)
k=0, I=1,2,....

At this point it is again instructive to compare with the Coulomb modified
effective range expansion for real-valued spherically symmetric potentials V
obeying

J drre?® |V(r)| < o for some a>0. 2.3.9)
[})

This low-energy expansion reads (cf., e.g., [95], [96])
!
k2 T [1 + (7/2km)* Y {my(e™"* — 1)~"[cot &}°g, k) — i]
m=1

+ y[¥P(1 + (iy/2K)) — InGily/2k) + (ik/y)1}

= — (&9 + 27 r(gk* + O(k*),

k=0, y,geR, 1=0,1,..., (23.10)

where the right-hand side of (2.3.10) is real analytic in k? near k* = 0 and
85%/(g, k) represents the Coulomb modified phase shift associated with the
Schrodinger operator —d?2/dr? + I(I 4+ 1)/r* + y/r + gV(r). In analogy to the
short-range case y = 0, the coefficients a;,(g) and r;%(g), | = 0, 1,.. ., are called
Coulomb modified partial wave scattering lengths and effective range param-

eters, respectively.
The fact that

my(e™™* — 1) '[cot 8559 o(k) — i1 + y[¥(1 + (iv/2k)) — In(ily|/2k) + (ik/y)]
= 4na + y[¥P(1) + ¥(2)], (2.3.11)
)=0, I=12,...

for the Coulomb-plus point interaction Hamiltonian H, , , shows that the
Coulomb modified effective range expansion for this interaction is already
exact in zeroth order with respect to k2. In particular, the s-wave Coulomb
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modified low-energy parameters read
ayo.. = —{4ma +y[¥(1) + ¥(2)1}7, (2.3.12)

sc =
2,00 = O’

and all low-energy parameters vanish identically in higher partial waves ! = 1,
2, .... This proves that the point interaction in H, , , is a zero-range as well
as s-wave (/ = 0) interaction.

Next we introduce the scattering wave function associated with H

y.ay
¥, o,y ko, x) = e**¥,(kw, x — y) + [4na — yF(iy/2k)] 7" -
e ML 4 (iy/2K))2 e | x — |7 W iyan 12200 k| x — ),
k>0, weS? -ow<a<ow, x,yeR%, x#y (2313
where ¥, (kw, x) denotes the pure Coulomb scattering wave function
W, (kw, x) = e T (1 + (iy/2k))e™ >, F,((—iy/2k); 1; i(k{x] — kewx)),
k>0, weS? yeR. (23.19
A comparison of (2.3.13) with (2.3.1) and (2.3.3) then shows that

e MY, (ko, x) = 4n]x = 171, o o(kIx — y) Yoo(@) Yoo(®,)

aO

l —
+4n|x — y|™! Y iyalklx = Y1) V(@) Vim(@,),

I=1 m= -1

-

k>0, —o0o<a<oo, yeR, x#y, w,=x/x, (2.3.15)

which follows from the well-known partial wave expansion

a 1

Y ko, x) =4n|x|t Y Y i,k NYin@) Yim(@,), k>0, yeR
=0m= -1
(2.3.16)

The Coulomb modified on-shell scattering amplitude ¢, ,(k, , ') correspond-
ing to the pair (H, , ,, H, ,) is then defined by

-

eyl 0, @)= lim |x]e

Ix} =
IxI"'x=w

[¥y.a ke, x) — e*7Y (ka', x — y)]
= ¢ (1 + (iy/2k))*[4n — yF(iy/2k)] " ™=,
k>0, w,0'eS? w#w, —o<a<on, yeR3, yeR (2317

—ik|x|+(iys2k) In(2kix]) .

The unitary on-shell scattering operator %, , ,(k) in L*(S?) finally reads
&, ay k) =S, (k) + 2ike™™2*[(1 + (iy/2k))*[4na — yF(iy/2k)] ™" -
. (e—u‘k(-)y Yoo’ .)e-ik(-)v Yoo’

k>0, —oo<a<oo, yeR, yeR, (23.18)
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where ([480], p.198)
S,y(k) = THRTG + (L2 + )" — (i9/2k)]17' TG + (L? + )
+ (iy/2k)) T, (k)

=0 D @ are T+ 1+ (2T,

k>0, yeR3 yeR, (23.19)

denotes the pure Coulomb on-shell scattering operator in L3(S?) (with L? the
square of the angular momentum operator and (T, (k)¢)(w) = e~**’¢(w),
¢ € L*(S?)).

Next we briefly describe stationary scattering theory associated with the
Coulomb-type Hamiltonian H, , ,. Assume V to be real-valued and

e2'lveR  forsome a>0 (2.3.20)
for the rest of this section and introduce in L%(R3)
@, .. (ko, x) = u,(x)¥,(kw, x),

@5, ,(ko, x) = v,(x)¥,(— ko, x); 6k>0, weS?, yeR3 yeR,
(2.3.21)
where we recall that

u(x) = u((x — y)/e), v/(x) =v((x - y)e), €>0, yeR3 (2322
The transition operator t, (k) then reads
t, (k) = e 2A(e, ye In )[1 + £ 2A(e, ye In €)u,G, 017",
O0<e<ég, Imk> —ale,, k*¢68,. veR, (2323)

where A(-, -) has been introduced in (2.2.12) and the exceptional set &, , is
given by

8, . = {k* = 0|4, y& In &)uG,, 404, , = —¢,, . for some
4, €L R, 4, #0,k>0}, £>0, yeR (2324)

Due to condition (2.3.20) &, . is discrete and a compact subset of Lebesgue
measure zero [11]. The Coulomb modified on-shell scattering amplitude
135k, , @') corresponding to (H, . ,, H, ) is then defined as

ook 0, @) = —(@dn) 1 (@, (kw), t, (k)D],..,(ko')),
6 k>0, k2¢8,,, o,weS?, yeR, yeR, (2325

and the unitary on-shell scattering operator S, , ,(k) in L*(S?) associated with
H, ., then reads

(Sy.ey(K)P) (@) = (S,,,(k)¢)(®) — (k/2mi) Lz do’ 75k, 0, ") (@),

peL*S?), k>0, k*¢&,,, weS?, yeR3 yeR (23.26)

Now we are in a position to derive the main results of this section.
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Theorem 2.3.1. Let ¢*!''Ve R for some a > 0 be real-valued and assume
case 1. Then for ¢ > 0 small enough

—4ne™ (1 + (iy/2k))~2e™Me-oV > (k, w, ')
=¢(v, (1 + uGyv)™'u) + O(c* In ¢),

k>0, yeR3 yeR (2327

PROOF. The expansion (2.3.27) immediately follows from Lemma 2.2.4 and
Wi(cko, x) = e REL(1 + (iy/2k) {1 + ickox + [ey(1x) F 0x)/2] + O@?)},
>0, k>0, yeR, (2.3.28)

since after a translation x — x + y and a scaling transformation x — &x, using
(2.2.20), (2.3.25) takes on the form

v k@, ) = —(4n) " e @ P (g, ye In g)-
(W) (ekw), e[1 + B, (k)] ‘oW (ekw)).  (2.3.29)
=

Theorem 2.3.2. Let e*?''Ve R for some a > 0 be real-valued and assume
case 11.

) If A9y = —|(v, #)|?/4n we get for ¢ > 0 small enough
—4ne™ 2k (1 + (iy/2k)) 2@ @V fsc (k, w, ')

Y&y
= —4me™*T (1 + (iy/2k)) 2e™e=e» re.ylk, 0, @)
+ (eAyo + (& In ©)Agy)<Byo) (v, B + £(v, Tu)
+ iek<{By0) ' [(¢v, $)(¢, @ xv) — (wxv, §)(d, V)]
+ ey(B1o) "' [(v, 9@, (] — @' x)v) + (x| + wx)v, $)(8, v)]/2
— e(By0) "' [(4, $)(@, B1oTu) + (v, TB,04)(4, v)]
~ (e In £)<By0) ' [(v, )($, Bo, Tw) + (v, TBy,4)(¢, v)]
— (Byo) " 2l(v, #)I*[e{B2o) + (y£ In £){(By,> + &(y In )*<(By, )]
+ {(By10) (v, $)1*{e{Byo TB, o>
+ (ye In &){[ByoTBy; + By TB,o]1)
+ &(y In €)2(By; TBy; >} + O(e*(In ¢)®),
k>0, a=—2,0l(v,¢)"% yeR3, yeR, (23.30)

where

{Byo(7, k)Y =210+ [7F(iy/2K) (v, $)1* /4] + [¥(#, v In(|y| x .. /2)vg)/4n],
(2.3.31)

{Bso(7, k)) =430+ [A10VF(iy/2k)|(v, §)|*/47]
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PROOF.
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+ [4107(¢, v In(ly]| x+/2)vé)/4n]
+ [v? In2k/i|y1)(@, (x4 + x_)vé)/167]
+ Y3, v In(lyl x4 /2)(x, + x_)vd)/167]

- [kz{(l + (i7/2k))(iy/2k) [¥(3) — (1) — }

— (1 + G@/2)™] - 4} (¢, e v¢) / 2n]

X_

- {"2{[—0}’/2’6)2 (¥ (1 +(y/2k) —P(1) - ¥(2) +1]/2]

2
+ 3 + (iy/2K)} <¢, p e v¢) / Zu}
- {kz{[(i)’ﬂk)z (Y2 + (iy/2K) — ¥(2) - ¥(3)]/2]

+ (iy/4) [P (1) — ¥3) + (1 + (iv/2k)7'] + &)} -

x3
'(¢, vx 5 v¢) / 2np, (2.3.32)

(Byi (1, K)> = A4y + [¥(d, v(xs + x_)vd)/167] + [A10|(v, $)I%/4n]

+ [A017(#, v In(|7| x./2)vé)/4n]
+ [A01YF(iv/2k) (v, $)|?/4n], (2.3.33)

(Bo2) = Aoz + [Ao: |(v, $)I*/47], (2339

and vH(x ., x_)v denotes a Hilbert—Schmidt operator with integral kernel

v(X)H (x4 (x, x'), x_(x, x"))v(x’),

x4 (6 %) = |x| + %' + |x — x'|. (23.35)

If 20, # — (v, #)|?/4n we get for & > 0 small enough
—4ne™X (1 + (iy/2k)) 2™ @V (k o, o)
=@ 1In &) (Bo, )7 (v, )I> — (v In &) 2B, > 2< By (v, 9)I?
+0((ne)?), k>0, yeR? yeR-{0}, (23.36)

{Bp1 ) = Ag1 + [I(v, $)1*/47]. (2.3.37)

Follows directly from Lemma 2.2.5, (2.3.28), and (2.3.29). [ ]

Theorem 2.3.3. Let e2*''Ve R for some a > 0 be real-valued and assume
case L. If X9, #0 or Ay, =0 and (&, B,o(y, K)¢), I, ' =1, ..., N, is
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nonsingular we get for ¢ > 0 small enough
—4ne™rL (1 + (iy/2k))"2e™M@=eWfse (k, w, ')
= ¢(v, Tu) + O((¢ In €)?), k>0, yeR3 yeR-—{0}. (2.3.38)

PROOF. A straightforward consequence of Lemma 2.2.6, (2.3.28), (2.3.29), and
Pu = 0. n

Theorem 2.34. Let e2*''Ve R for some a > 0 be real-valued and assume
case 1V and (1.2.84).
(W) If A9, = — (v, #,)|*/4n we get for ¢ > 0 small enough
—4me™RT(1 + (iy/2K)) 2eM@e e (k w, o)
= —4ne™?* (1 + (iy/2k))"2e™ @~V yse (k, w, @)

N
+ (Z0,7 In &)7'<Byo > 2 (v, 4y)1 ‘;2 [<Byo>ul® + O((In &)~2),

k>0, a=—2,l(v,4,)I"% yeR} yeR- {0}, (23.39)
where
(Byo(y: k)11 = 410 + [¥F(iv/2k)|(v, $1)1*/47]
+ [¥(41, v In([y]x. /2)vé,)/4n], (2340
{Byo(¥; k) )11 = y(#1, v In(lylx. /2)v¢,)/4m, I=2..N.
(1) If Aoy # —|(v, ¢,)I%/47 we get for ¢ > 0 small enough
—4ne™* (1 + (iy/2k))"2e* @~V fse (k, w, )
= (v In &)1 (<Boy D)1} (v, ¢

N

—(yIn ﬁ)_zl(l’, ¢1)|2 Z ({Boy >)l—ll {Byo u({By, >)Ff

LI'=1
+ O((In &)°3),
k>0, yeR3 yeR -~ {0}. (2.3.41)

PROOF. Again an immediate consequence of Lemma 2.2.7, (2.3.28), (2.3.29),
04)#0,(,4)=01=2,...,N. =

By looking at Theorems 2.3.1-2.3.4 one observes that the w-dependent
terms are suppressed by a factor of ¢.

Finally, we summarize the corresponding expansion for the on-shell scatter-
ing operator S, , ,(k):

Theorem 2.3.5. Let ¢2*''Ve R for some a > 0 be real-valued and assume
(1.2.84). Then, for ¢ > 0 small enough, we obtain the norm convergent
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expansions
Sy.ey(k) = S, (k)
+ (ek/2mi)e ™2kT"(1 + (iy/2k))*(v, (1 + uGyv) ™' u)-
(e * Yoo, e Yoo + O(e* In€) incasel,

k>0, yeR3 yeR (2342

Sy.ay (k) =, 4 (k) + O(e(ln &)?) incasellif Ay, = —|(v, #)|*/4m,
k>0, a=—A,l0d)"2 yeR®, yeR, (2343)

Sy.e.y(k) =S, (k)
+ (v In &)™ (k/2mi)e™™*T(1 + (iy/2k))*<Bo,>~" (v, $)I* -
(67" Yo, +)e™* P Yoo + O((In £)72)
incase ILif Ao, # —|(v, #)1?/4n,
k>0, yeR3 yeR-—{0}. (2344
Sye.y(k) =S, (k)
+ (ek/2mi)e X T (1 + (iy/2k))* (v, Tu)(e~ ™7 Yy, )™ Yoo
+ O((eIn¢)®) incaselllif Ay, # 0 or Ao, = 0 and
(@, Bio(y, K)), LI =1,..., N, is nonsingular,
k>0, yeR3 yeR-{0}. (2345
Syey k) =, . (k) + O((Ine)™") incaseIVif Ay =—|(v, $)*/4n,
k>0, a=—A,l0d)l"% yeR%, yeR—{0). (2346
Sy.e.y(k) = S, (k)
+ (v In &)™ (k/2mi)e™™2*T(1 + (iy/2k))* ({Bo1 D)1 (v, $1)1%
(€™ Yoo, *)e™ P Yoo + O((In £)™2)
incase IVif Aoy # —|(v, $,)1*/4n,

k>0, yeR® yeR—{0}. (2347

Again the expansion coefficients in Theorem 2.3.5 become particularly
simple by choosing y = 0. We also emphasize that only in cases II and IV
(e, if H= —A + V has a zero-energy resonance) if, in addition, iy, =
—|(v, #)1*/4n(resp. Aoy = —|(v, ¢,)1*/4n) the limits €} 0 of 5, and S, ., are
nontrivial and coincide with ¢, , , and &, , , with a given by (2.2.55). The
coefficients (47) ™' (v, (1 + uG,v)'u) and (4n)~' (v, Tu)in f, . , in cases I and III
represent the scattering length of the short-range Hamiltonian H = —A + V

(11
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As in Sects. 2.1 and 2.2 the above results extend to complex point inter-
actions with Im o < 0.

Notes

Section 1.2.1

Most of the material of this section is taken from Albeverio, Gesztesy, Hoegh-
Krohn, and Streit [22]. The operator h, , , has first been discussed by Rellich
[392] (cf. also Appendix D). In particular, the boundary values ¢y, ¢, in (2.1.10)
and the determination of a(h, , ,) for y < 0 are due to [392]. The resolvent
equation (2.1.17) first appeared in Zorbas [512].

Section 1.2.2

The estimates needed for the Coulomb Green’s function can be found in [96],
[99], and [231]. The rest of this section is entirely taken from [22], Sect. 3.
Approximations for other long-range + “15”-systems appeared in [420].

Section 1.2.3

The first part of this section concerning stationary scattering theory for
Coulomb plus point interactions extends Sect. 2 in [22]. Stationary scattering
theory for Coulomb-type Hamiltonians can be found in [11], [99], and [199].
Theorems 2.3.1--2.3.5 are again taken from [22]. For applications concerning
the relation between low-energy parameters for charged and neutral particles,
cf. [15], [22], [207], [350]. Applications concerning level shifts in mesic atoms
appeared in [22].



CHAPTER 1.3

The One-Center J-Interaction in
One Dimension

1.3.1 Basic Properties

There are several ways of introducing the quantum Hamiltonian describing
a Jd-interaction in one dimension. Following our treatment in Sect. 1.1, we
mainly discuss the approach based on self-adjoint extensions of densely
defined symmetric operators.
For that purpose we define the closed and nonnegative operator H,, in the
Hilbert space L%(R) as
2

H, = -

) et D(H,) = {ge H**(R)|g(y) =0} forsome yeR, (3.1.1)

and note that by the general theory of ordinary differential operators ([158],
Ch. XII1.2; [353], Ch. V.17) its adjoint is given by
. d? .
H}f = I 9H}) = H**(R - {y}) n H*(R), yeR, (3.1.2)

where H™"(Q) denote corresponding Sobolev spaces. By inspection the
equation

HXy(k) = k*yk), Yk eDHY), Kk eC-R, Imk>0, (3.13)
has the unique solution
Uik, x)=e* " Imk>0. 3.14)

75
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Thus H,. has deﬁcipncy indices (1, 1) and by Theorem A.1 all self-adjoint
extensions H, , of H, are given by the one-parameter family

D(H,,) = {g + c¥. + ce®Y_|lge 9(H,), ce C},

Hy (g + c¥, + ce®y_ )= H,g + icy, —ice®y_, 0€[0,2n), yeR,
(3.1.5)

Yilx)=

L i/ ilxyl -
— 2 Im i>0. 3.1.6
WET + (3.1.6)

Equations (3.1.5) and (3.1.6) imply 2(H,,,) = H*'(R). Moreover, a simple cal-
culation using (3.1.1) and (3.1.6) yields (we define ¢(y +) = lim,y o d(y * ¢€))

(g +c¥y +ce®Y Y(y+)— (g + s +ce®Y_)(y—)= —c(l +¢*)

=alg(y) + ¥, (y) + ce®Y_(»)], (3.1.7)
where we abbreviated

0 0 =
a= —2cos<§)/cos<§—z). (3.1.8)

If 6 varies in (0, 2%), « varies in R (8 7 2% corresponds to a T +00) and from

now on we parametrize all self-adjoint extensions of H, with the help of .

Thus we get

Theorem 3.1.1. Al self-adjoint extensions of H, are given by
d2
~her = g
A-A,,)={ge H' R nH**R — {y})lg'(y+) — g'(y=) = ag(y)},

—o<a<Loo. (319

The special case a = O just leads to the kinetic energy Hamiltonian —A in
L*(R), viz.

d?
Tdx?

whereas the case o = oo yields a Dirichlet boundary condition at y and hence
decouples (—o0, y) and (y, ), viz.

A-A.,) = {ge H*'(R)n H**([R - {y})lg(y) = 0}
= H3*((—0, y)) ® H3*((y, ), (.1.11)
—Ap,y =(=Ap-)®(—Ap.), (3.1.12)
where — A, denotes the Dirichlet Laplacian on (y, +oc) (see [391], p. 253)
D(—Ap.) = HE*((y, £0)). (3.1.13)

—-A= 2(—A) = H**(R), (3.1.10)
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PROOF. By the arguments sketched above one infers

Hy, s —A,, (3.1.19)
with a given by eq.(3.1.8). But —A, , is easily seen to be symmetric, which completes
the proof. a

By definition — A, , describes a d-interaction of strength o centered at y € R.
In other words, eq. (3.1.9) is the precise formulation of the formal expression
—d?/dx* + aé(x — y) used in the physics literature. This is seen as follows:
Let formally V(x) = ad(x — y) and “integrate” the Schrédinger equation
—y"(x) + ad(x — Y)W(x) = EY(x) from x =y —¢ to x =y + ¢ to obtain
—Y'(y++ ¢ (y— e +ap(y) = E [J*:dx y(x). If e tends to zero we obtain
V' (y+) — ¥'(y—) = ay(y) which is precisely the boundary condition in (3.1.9).
A careful physical interpretation of (3.1.9) exhibits characteristic differences
to the three-dimensional case (cf. Ch. 1) since now « represents the coupling
constant of the é-interaction whereas in three dimensions —4na just describes
the inverse scattering length.

In the following we summarize basic properties of — A, ,:

Theorem 3.1.2. The resolvent of — A, , is given by
(—A., — k)™ = G, — 2ak(iz + 207 G,(- — y), )Gi(- — ),
ke p(—A4,,), Imk>0, —w<a<o, yeR, (3.115)
with integral kernel
(= Ay, — k?) Y (x, x') = (i/2k)e™*>" 4 a(2k) ™! (ia + 2k)~" e™lIx=r1+=xD)
k*ep(-4,,), Imk>0, x,x'eR, (3.1.16)
where
Gi(x — x') = (i/2k)e™=*1 Im k>0, (3.1.17)
is the integral kernel of (—A — k?)™* in L*(R).
PROOF. From (3.1.17) we obtain the general structure of (3.1.15) by (3.1.6) and
Theorem A.2. To be more precise, we want to verify Krein’s formula (A.4) with

B= —A,,, C= —A, and A(k?) = 2ka/(ix + 2k) (we already know that ¢(k?, x) =
(i/2k)e™*""). To this end, let g € L2(R) and define

2ka 2 2 _L v ikix—x’| ’
" 2k(eﬁ(k ) 9)$(k?, x) = % L dx'e g(x’)

ho(x) = ((— A — k)71 g)(x) + ™

dx’ e™Mr=*lg(x')e™ 1 Imk>0, k% —ixf2.
(3.1.18)

Clearly, h, € H*'(R) n H>*(R — {y}) and by a straightforward computation

b
k(i + 2k) Jq

h(y+) = h(y-)= (Ta_:»a_zki L dx’' e™=*g(x') = ah,(y). (3.1.19)
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Equation (3.1.19) then implies that h, € #(—A4, ) and from
((_A«,y - kz)ha)(x) = —h:(x) - klha(x) = g(x), xeR - {y}’ (3‘l~20)
we obtain (3.1.15). [ ]

As in the three-dimensional case we add additional domain properties of
—A,,, and point out the locality of the one-center d-interaction:

Theorem 3.1.3. The domain 2(—-A, ), —0 < a < 0, y € R, consists of all
elements  of the type

Y(x) = ¢(x) — 2kafioc + 2k)7' 4 (y) Ge(x — ), (3.1.21

where ¢, € 9(—~A) = H**(R) and k* € p(—A,,,), Im k > 0. The decomposi-
tion (3.1.21) is unique and with € H(—A,,,) of this form we obtain

(-Aa.y—kz)w =(—A—kz)¢k (3122)
Next, let y € 9(—A,.,) and suppose that y = 0 in an open set U = R. Then
-A,,W=0inU.
PROOF.  Since the proof is analogous to that of Theorem 1.1.3 we omit the detauls.
o
Finally, we discuss spectral properties of —A, ,:
Theorem 3.14. Let —o0 < a < 00, y € R. Then the essential spectrum of
—A,,, is purely absolutely continuous and covers the nonnegative real axis
aes:(_Ac.v) = o.ac(—Aa.y) = [0, =), ase(_Aa,y) =¢. (3.123)

If —o0 <a <0, —A,,, has precisely one negative, simple eigenvalue, i.e., its
point spectrum a,(— A, ,) reads

o (—By,) = {—a?/4}), —w <a<0, (3.1.24)
with
(—o0/2)12eolx=v12, —0<a<0, (3.1.25)

its strictly positive (normalized) eigenfunction. If « > 0 or a = +00, —A
has no eigenvalues,

o(—A4,,)) =, a¢(—0,0). (3.1.26)

PROOF.  Since one can follow the proof of Theorem 1.1.4 step by step we omit any
details. [ ]

The pole structure (iax + 2k)™! of (3.1.16) with respect to k not only deter-
mines the point spectrum but also gives the existence of resonances for the
d-interaction Hamiltonian — A, ,: If« > 0, then — A, , has a simple resonance
at ko = —io/2 with corresponding resonance function y; (x) = e ™2, ¢ > 0
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(note that for a # O the apparent first-order pole at k = 0 actually cancels in
(3.1.16)).

An alternative way of introducing d-interactions of strength a centered at
y can be obtained from the theory of quadratic forms. The form Q, , in L*(R)
defined as

0uy(g. )= (g, 1) + ag(Ph(y), 2Q,,) = H*'(R), a,yeR, (3127

is easily seen to be densely defined, semibounded, and closed. The unique
self-adjoint operator associated with Q, , is just given by — A, , (see,e.g., [389],
p. 168, [41], [188], [510], [511], [512]). Note that this approach does not
work in three dimensions since there is no appropriate closable form in this
case. Another possibility of defining d-interactions is provided by the use of
local Dirichlet forms as developed in [32], [33] (cf. Appendix F): Consider in
L*(R; ¢2, dx) the energy form

E, (9. h) = L dx ¢2,(x)g’ () (x),  DE,,) = C4(R), (3.1.28)

where
Goy(x) =2 g yeR (3.1.29)

It follows that E, , is closable and that ¢;}(—A, , + («?/4))4, , is the unique
self-adjoint operator associated with its closure. As shown in Sect. 1.1 and
Appendix F this method is also applicable in the three- and two-dimensional
cases.

We finally note that the above results are not confined to self-adjoint
extensions (x € R) of Hy, but easily generalize to accretive extensions of iH,,
(Im a < 0) and thus to complex J-interactions.

1.3.2 Approximations by Means of Local Scaled
Short-Range Interactions

In this section we show how to approximate —A, , by means of scaled
short-range Hamiltonians in the norm resolvent sense. We first introduce
some notations. Let

G, =(—A—-k¥)", Imk>0, (3.2.1)
Gi(x, x') = 2Lke"*lx-='l, Imk>0, xxeR, (32.2)

denote the “free” resolvent and its integral kernel. If V € L!(R) is real-valued
(which we assume from now on) we define
v(x) = [VOII'?, ux) = |V(x)|'"? sgn[V(x)] (3:23)

such that uv = V. Then we note
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Lemma 3.2.1. Let Ve L'(R). Then V is form compact with respect to — A,
ie.,

|[VIY2(—A + E)™'2 € B,(L*(R)), E>0. (3.24)
In particular,
uGoe #,(L*(R)), Imk>0, k#0, (3.2.9)
and
uGv € #,(L*(R)), Imk>0. (3.2.6)

If, in addition, (1 + |-])***Ve L*(R) for some 6 > 0, then
uG,v € #,(L*(R)), Imk>0, k#0. 3.2

PROOF. Equations (3.2.4) and (3.2.5) follow from
—'—2 dx dx'|V(x)le 2Imke=x y(x')| < 00, Imk=0, k#0. (3.28)
41k)* Jg:
Equation (3.2.6) is discussed in [391], p. 384, and (3.2.7) is proved in [438], p. 72.
]
Next we introduce
b(x)=v(x—ety), d(x)=u(x-¢'y, >0, yeR, (3.29)

and
B, k) = Me)iaG,5, Imk>0, (3.2.10)

where 1 is real-analytic near the origin with 1(0) = 0. By the estimate (3.2.8),
By, k) extends to a Hilbert—Schmidt operator for Im k > 0, k # 0, and due
to (3.2.4) the form sum

Hyfe)= —A+ i(e)V(- —¢7'y), e>0, yeR, (3.2.11)

is well defined (cf. Appendix B). Moreover, from Theorem B.1(b) we infer the
resolvent equation
(H,(e) — k*)™! = G, — A(e)G,[1 + Bl(e, k))*aG,,
k*e p(H/(e)), Imk>0. (3.2.12)
In addition, we introduce the unitary scaling group
(U,9)(x) = £ 2 g(x/e), e>0, geL*R), 3.2.13)
and the family H, , of self-adjoint operators
H.,=¢e2UH(U! = —A + A 2V((- — y)/e)
e>0, yeR. (3.214)

In order to discuss the limit of H, , as ¢ ] 0 it is convenient to define Hilbert—
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Schmidt operators A,(k), B,(k), C,(k), ¢ > O, with integral kernels

A,(k, x, x') = Gi(x — y — ex")v(x'), Imk >0, (3.2.15)
B,(k, x, x') = e ' A(e)u(x) G (e(x — x"))v(x’), Imk>0, k#0, (32.16)
C,(k, x, x') = u(x)G(ex + y — x'), Imk>0. (3.2.17)
Then a translation x — x + (y/¢), ¢ > 0, together with
2U,G U = G, (3:2.18)
leads to

(H.., — k*)™ = e U,[H,(e) - 0?17 U,
=G, — & ' Ue)A,(k)[1 + B,(k)] ' C,(k),
e>0, k*ep(H,,), Imk>0, yeR. (3219
Convergence properties of A,, B,, and C, are summarized in

Lemma 3.2.2. Define rank-one operators A(k), B(k), C(k), through their
integral kernels

Ak, x, x') = Gy(x — y)v(x"), Imk >0, (3.2.20)
B(k, x, x') = X(0)G(0)u(x)v(x"), Imk>0, k#0, (3.221)
C(k, x, x') = u(x)Gy(y — x'), Imk>0. (3.2.22)

Then, for fixed k, Im k > 0, A,(k), B.(k), C,(k) converge in Hilbert—Schmidt
norm to A(k), B(k), C(k), respectively, as ¢ | 0.
PROOF. Clearly,
w-lim A,(k) = A(k), w-lim B,(k) = B(k), w-lim C,(k) = C(k) (3.2.23)
edo edo edo

by dominated convergence. By Theorem 2.21 of [438] it suffices to prove
li‘ﬂ; 1Al 2 = AR 2, li‘n; I B,(k) 2 = I B(K)Il 25 “P; [CB) 2 = ICKR)2,

(3.2.29)
which is obviously true. [ ]

Now we are prepared for the main result of this section and state
Theorem 3.2.3. Suppose V € L'(R) is real-valued and y € R. Then, if k* €

p(—A,,,), we get k* € p(H, ) for ¢ > 0 small enough and H, , converges to
—A,,, in norm resolvent sense

n-lim (H, , - k)t =(=A,,— kY)Y, yeR, (3229
40

where

o = A'(0) J dx V(x). (3.2.26)
R
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PROOF. From (3.2.19) and Lemma 3.2.2 we conclude
n-li{n (H,, — k*)™ = G, — 1(0)A(k)[1 + B(k)]™' C(k),
e+ 0

keC—-R, Imk>0. (3227
Now
B(k) = 2(0)G,(0)(v, -)u (3.2.28)
implies
(1 + Bk)] "' =1-2O)GO[1 + X(0)(v, WG (0)] *(r. Ju.  (3.2.29)

and insertion of (3.2.29) into (3.2.27) gives (3.1.15) with 2 = 2'(0) j adx V(x). [ ]

In particular, H, ,converges to —Aase | Oifand only if A'(0) g dx V(x) =
i.e, if the d-interation at the point y has vanishing strength. We would like
to emphasize that this kind of approximation scheme automatically yields
interactions with finite strength, {a| < oo. The case « = +oc, corresponding
to a Dirichlet boundary condition which completely separates R into (—oc, y)
and (y, o), is thereby excluded.

In contrast to the three-dimensional case no zero-energy properties of

= —A + V enter into the above discussion.

We now note that Theorem 3.2.3 has a simple interpretation in terms of
“d-sequences”: For smooth functions V the potential term in H, , may be
written as

1 /1
[X0) + O(e)]; V(; (x — y)), (3.2.30)

which converges to [l’(O)jR dx' V(x')]}é(x — y) in the sense of distributions
([197]),Ch.1.2))as ¢ 0.

Of course, A(¢) need not be real-valued. The proof of Theorem 3.2.3 extends
in a straightforward manner to the case of complex é-interactions (cf. the end
of Sect. 3.1). We also remark that the above proof indicates another possibility
of defining bound states or resonances of —A, , in terms of (simple) zeros of
the Fredholm determinant

det[t + B(k)] =1+ Tr[B(k)] =1 + —l’(O)j dx V(x) = 1 + (ia/2k)
(3.2.31)

(note that by (3.2.28) B(k) is of rank one).

Consequences of Theorem 3.2.3 concerning convergence of eigenvalues
and resonances and convergence of the scattering matrix are discussed
in the following two sections. Here we only note that (3.2.25) implies
strong convergence of the evolution groups e “#ey to ¢~ uniformly
with respect to ¢ for t varying in compact intervals ([283], p. 504) as
€lO.
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1.3.3 Convergence of Eigenvalues and Resonances

In this section we go one step further and prove convergence of eigenvalues
and resonances of H, , towards that of —A, , as ¢]0. First, we note that
Theorem B.1(b) applied to H,(¢) and H, , immediately yields

oess(Ht.y) = aess(Hy(a)) = aess(_'A) = [0’ CO), e>0, Y€ R. (331)
By Theorem 3.1.4 the same results hold in the limit ¢ | 0,
oess(—Ac.y) = Oess(—4) = [0, 0), —o<a<g oo, yeR. 3.32)

Having located the essential spectrum we now turn to a discussion of the
discrete spectrum.
A detailed analysis of B,(k) yields

Theorem 3.3.1.  Assume 2*''Ve L'(R) for some a > 0 is real-valued and let
yeR.

(@ If n-lim,o(H,,— k*)" =(-A,,— k¥, k? € p(—A,,,) witha <0,
—A,, has the simple eigenvalue E, =k} <0, ko= —ia/2 =
—(i/2)X(0) f wdx V(x) and for € > 0 small enough, o(H, ) N (—0,0)
consists precisely of one simple eigenvalue E, = k? < 0 which is analytic
ingneare =0

k,=iy/—E, =ko— -21"(0)8 L dx V(x)

—%l’(O)ZCJ‘ dx dx' V(x)|x — x'|V(x') + O(e).
" (3.3.3)

(®) If nlim,,(H,, —k*)"' =(—A,, — k)", k2 e p(—A,,) with a =
A(0) frdx V(x) >0, —A,, has no eigenvalues and for ¢ >0 small
enough H, , also has no negative eigenvalues.

(© If ndim,o(H,,, — k)" = G,, k* € p(—A), or equivalently, if a=
A'(0) frdx V(x) =0, then as ¢ | 0, H, , has at most one negative eigen-
value E, = k? < 0 analytic in ¢ near ¢ = 0 which is absorbed into the
essential spectrum

k,=i/—E, = — i).”(O)s L dx V(x)

—%l’(O)zs J dx dx’ V(x)|x — x'| V(x') + O(e?).
R2
(3.34)
PROOF. We first note that due t0 (3.2.19) and Theorem B.1(c), H, , has an eigen-
value E, = k? < 0 if and only if B,(k) has an eigenvalue — 1, i.e., if
Bt(kt)¢¢ = _¢¢’ ¢¢ € LZ(R), ¢c # 0’ &> 05 (3'3.5)

and also the corresponding (geometric) multiplicity remains preserved.
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Next, following [435], we decompose
B(k) = Lk) + M,k), k#0, Imk> —afe,, 0<e<e, (3.3.6)
with

L,(k, x, x') = 2iks“ A)u(x)v(x’), keC - {0}, 3.3.7)

M,(k, x, x) = E%s"i(s)u(x)[ei“‘""‘" —1Jo(x),  Imk> —a/ey. (3.38)
Obviously, M, (k) is analytic in (g, k) for |¢| small and Im k > —a/e,, and one infers
the (norm convergent) expansion

M, (k) = eN + O(¢?), Imk > —afs,, (3.39)
N(x, x') = =32 (0)u(x)|x — x’|v(x") (3.3.10)

uniformly in k if k varies in compact subsets of Im k > —a/e,. Equation (3.3.9) and
the formula ([438], p. 49)

det(1 + A + B + AB) = det(1 + A) det(1 + B) (3.3.11)
imply
det[1 + B,(k)] = det[1 + M,(k)] det{l + [1 + M,(k)] 'L (k)}. (3.3.12)
One then concludes that k* < 0 is an eigenvalue of H, , if and only if

det{l + [1 + M,(k)]"'L,(k)} = 1 + Tr{[1 + M, (k)] L.(k)}
=1+ i%s"l(c)(u, [1+MK]'v)=0. (33.13)

Since [1 + M,(k)]™ L.(k) has rank one and is analytic in ¢ and k for |¢| small and
Imk > —afey, k # 0,det{l + [1 + M,(k)] ' L,(k)} is analytic with respect to ¢ and
k in the same domain [261]. The fact that k, is a simple zero of the Fredholm
determinant
det[1 + Lo(k)] = 1 + 5',:,1'(0) 'f dx V(x) (3.3.14)
R

and

det[1 + Lo(ko)] =0, ;Edet[l + Lo(k)]lgms, # 0 (3.3.15)

proves by the implicit function theorem that in a neighborhood of (0, k),
det{l + [1 + M,(k)] " L,(k)} has precisely one simple zero k, which is analytic in ¢
neare =0

k, = ko + O(¢). (3.3.16)
By Theorems B.1(c) and B.2, E, = kZ < 0 is a simple eigenvalue of H, ,. Inserting
1+ Mk)] ™ =1—eN —[M,k) — eN] + M(k)*[1 + M,(k)]™' (3.3.17)

into (3.3.13), solving for k as a function of ¢ yields (3.3.3). Since any solution k, of
(3.3.13) obeys (3.3.16) part (a) is proved.
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Ifa = 4'(0) j rdx V(x) > 0 then, for ¢ small enough, any solution k, of (3.3.13) has
Im k, < 0 which proves part (b).

To prove (c) we multiply det[1 + Lq(k)] and det{l + [1 + M,(k)] ' L,(k)} by k.
Then

)
{k det[1 + Lo(k)]}lk=0 = O, a—k{k det[1 + Lo(k)]} =1 (3.3.18)
and analyticity of k det{l + [1 + M,(k)]J"'L.(k)} near ¢ = k =0 again proves

by the implicit function theorem that in a neighborhood of e=k =0,
k det{(1 + [1 + M,(k)]"'L,(k)} has one simple zero k, which is analytic in &

k, = ek, + O(?) (3.3.19)
and k? is a negative eigenvalue of H, , iff Im k, > 0 for & > 0. The rest follows from
the proof of part (a). |

If, e.g, in Theorem 3.3.1(c) A'(0) #0, frdx V(x) =0, or if 2'(0)=0,
frdx V(x) # 0,27(0) # 0, then k, # 0in (3.3.19)(fg2dx dx’ V(x)|x — x| V(x')
is strictly negative if {grdx V(x) = 0 [435]).

Theorem 3.3.1(a) and (c) describe the convergence of eigenvalues of H, , to
those of —A, ,. For resonances (contained in Theorem 3.3.1(b)) the corre-
sponding result reads

Theorem 3.3.2. Let ye R and assume that e*'Ve L'(R) for all a >0
is real-valued. If n-lim,o(H,, —k*)™"' =(—A,,—k*)' with a=
X0)fpdx V(x) > 0, then —A, , has the simple resonance ko = —io/2 =
—(i/2)A'(0) {rdx V(x) and, for ¢ >0 small enough, H, , has precisely one
simple resonance k., Im k, < 0, near ko which is analytic in ¢ near ¢ = 0 and
Sulfills (3.3.3). Similarly, if o = A'(0)[gdx V(x) =0, then, for ¢ >0 small
enough, H, , has at most one simple resonance k, which is analytic in ¢ near
¢ = 0 and fulfills (3.3.4).

PROOF. Starting with (3.3.6) the proof is identical to that of Theorem 3.3.1(a) and
(c) with the only exception that now Im k, < 0. s

In sharp contrast to the corresponding three-dimensional results in
Sect. 1.3 zero-energy properties of H = — A + V played no role in Theorems
3.3.1-3.3.3. In addition, there are no eigenvalues of H, , approaching infinity
ase|O.

1.3.4 Stationary Scattering Theory

Finally, we develop scattering theory for J-interactions and prove conver-
gence of the scattering matrix associated with H, , to that of the d-interaction
Hamiltonian —A, ,as¢|0.

We start with the scattering wave functions of —A, ,. Define

¥, ,(k, 0, x) = e™®* — ia(2k + ia)™' e

k>0, 6=+1, —o<a<o, x,yeR. (341)
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Then by inspection

Yok 0, y+) =¥,k 0,y-),

¥k, 0, y+) — Wi (ks 0, y =) = a¥, (k. G, y),

-,k 0, x) = K*¥, (ko,x), xeR-{y}, (3.4.2)

lim lim (2k/i)et®*®x[_A,  — (k +ie)]"\(x, x') = ¥, ,(k, 1, x),
ed0 x' = Fo

xeR, k=0,
which shows that ¥, /(k, o) are generalized eigenfunctions ([353], Ch. VI)
associated with —A, , corresponding to left (6 = +1) and right (6 = —1)

incidence. The corresponding transmission and reflection coefficients from the
left and right are then defined by

T} k) = xl_{l:lm e, (k, +1, x),

T (k)= lim e**¥, (k, —1,x),
T . (34.3)
R (k) = lim e*™*[¥, (k, +1, x) — e**],

X+ =0

R (k)= lim e ™[, (k, —1, x) — e~*],

X = +00

where 7} (k) equals 7 (k) because of time reversal invariance. Explicitly, we
get

T2 (K) = (2K + ia)' 2k = T (), (3.4.4)
R (k) = —(2k + ia)"tice®, (3.4.5)
R k) = —(2k + i) Viwe 2%, k>0, —o<a<o, yeR (3.4.6)

The unitary on-shell scattering matrix &, (k) in C* which is defined by

Ta k) R (k)
. (k) = [ Sy ol A k>0, —oo<a<o, yeR, (347
’ R (k) T (k)
then simply reads
L 2k — ioe™ 2k
S k) = (2k + ia) l[—iaez"‘" 2% ]

k>0, —oo<a<oo, yeR. (34.38)

We note that in the low-energy limit k — O (resp. in the high-energy limit
k — o0)

0 -1
‘%.y(k)m’[_l 0

S )==1, ayeR.

k-

], yeR, —oo<a<oo, az#0,
(3.4.9)
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Obviously, &, (k) has a meromorphic continuation to all of C such that the
pole of &, (k) coincides with the bound state (x < 0) or resonance (« > 0) of
-4,

For an illustration of |7, ,(k)|* = |7;P(k)|?, cf. Figure 40(a) [397] in
Sect. I11.2.3, p. 275.

The above approach is an entirely stationary one, the relation to time-
dependent scattering theory is described in Appendix E.

Next, we briefly discuss stationary scattering theory associated with H, ,.

Let u and v be as in Sect. 3.2 and introduce in L2(R) the states
‘Dc—' (k, o, x) = uc(x)etkax’
’ ; (3.4.10)
! (k, 0, x) = v(x)e**; >0, k=0,

where
u,(x) = u((x — y)/e), v,(x) = v((x — y)/e), e>0, yeR (34.11)
The transition operator t,(k) is then defined as
t.(k) = ¢ 2 ) [1 + e 2 Me)u,Gv, 17",
e>0, Imk>0, k#0, k?¢68, (3412
where A(+) has been introduced in Sect. 3.2,
&, = {k? € C — {0}{A(e)uG,vd, = — 4, for some §, € LE(R), ¢, # 0, Im k > 0},
£>0, (3.4.13)
and the on-shell scattering amplitude f, , ,, (k) reads
Jooy.aor k) = Qik) 1@ (K, 0), 1.(K)D7 (K, ")),
&k>0, 0,6 =1, yeR. (3414

(Using Jost function techniques one can show that & n (0, o0) = & (cf,
eg, [122], Ch. XVII)) The unitary on-shell scattering matrix S, (k) =
[S..,.00(K)1s.o= +; in C? associated with H, , is then simply defined as

Se.y.00'(K) = 0550 + fo.).00°(K), 6§k>0, o0,6)=+1, yeR (34.15)

In particular, the transmission and reflection coefficients ([122], Ch. XVII)
corresponding to H, , are given by

T (k) =S, ..(k) =S, -_(k) = T, k),
R, k) =S,, (), R ()=S,,.(k); k>0 yeR

After these preliminaries we are able to state our main result concerning
the expansion of the on-shell scattering matrix S, ,(k) around its limit %, (k)
as¢—> 0

(3.4.16)

Theorem 3.4.1. Assume Ve L'(R) to be real-valued and let o=
A'(0) fgdx V(x), y € R. Then S, ,(k), k > 0, converges to &, ,(k) as €| 0. If, in
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addition, e**"'Ve L' (R) for some a > 0, then S, (k) is analytic in ¢ near ¢ = 0
and we obtain the expansion
Sm,(k):o Sy (k) + eSIV(K) + O(?), a= ).’(0)] dx V(x), k>0,
R
(3.4.17)
where
S 4 (k) = S __(k) = (2k + ia) " {(2k + i)"* 2ikA'(0) (v, Nu)
—(Qk + i)™ (2/2) A" (0) (v, u) — (i/2)A"(0) (v, u)
+ kX' (O)[(v, ux') — (vx, #)]}, (3.4.18)
S 5 o (k) = 2k + i)' e* 2% {(2k + ia) " 2ikA'(0)(v, Nu)
— 2k + i)™ (2/2) A" (0) (v, u) — (i/2) A" (0)(v, u)
+ kA (0)[(v, ux’) + (vx, u)]}. (3.4.19)

Here the kernel of the Hilbert—Schmidt operator N has been defined in
(3.3.10), and + or — on the right-hand side of (3.4.19) corresponds to the
reflection coefficient from the left or from the right, respectively.

PROOF. 1t suffices to treat the transmission coeflicient T;",(k) = T}, (k) = T, (k).
By a translation x — x + y and a scaling transformation x — &x, using (3.2.18) we get

T.,(k)=1+ (2ik)_'(¢: J(k, +1), t(R)D. (k, +1))
=1 + (2iek) ' A(e) (ve™™*, [1 + A(e)uG,v] ' ue'™ ), &k>0 (3420

where in obvious notation x and x' denote integration variables. Assume that
e''Ve L' (R) for some a > 0. Then

Ae)uGuv = (i12k) X' (0)(v, -)u — eN + &(ifak)(v, -)u + O(e?), k>0, (3421)

is analytic in Hilbert-Schmidt norm around ¢ = O (cf. the discussion following
(3.3.6)). Applying formula (1.3.47) we immediately infer that [1 + A(e)uG,v] ™" and
hence the right-hand side of (3.4.20) is analytic in ¢ near ¢ = 0. The result (3.4.18)
then simply follows by a straightforward Taylor expansion of all quantities in
(3.4.20) with respect to ¢ near & = 0. Similarly, if Ve L' (R), one proves by dominated
convergence that

l(i:r; IAE)uGuv — (/22X O) (v, Jull, =0,  k>0. (3.4.22)
Thus
n-li:r; [1 + Ae)uG, 0]~ = [1 — (i/2k) X' (0) (v, -)u] !
=1~ [—i2k(XO)™" + (©u] '@ Ju (34.23)
by applying (1.3.47) again. Inserting (3.4.23) into (3.4.20) finally yields
illﬂg T, =1+ Qi)' XO)@, {1 = [-2ik(@O)" + (v, W] ™' (@, -Ju}u)

=7,,k), k>0, (3.4.29)
with a = 2'(0) fpdx V(x). u
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We note that, in analogy to our considerations in Sect. 3.2, §, (k) converges
to 1 as ¢} 0 if and only if « = 2'(0) [rdx V(x) = 0, i.e, if the J-interaction at
the point y actually disappears.

As in Sects. 3.1 and 3.2 the above results directly extend to the case of
complex d-interactions with Im a < 0. In this case %, ,(k) and S, (k) become
contractions in C2.

Notes

Section 1.3.1

The one-center point interaction in one dimension has been studied, e.g., in
[21], [41], [47], [106], [107], [112], [133], [172], [177], p. 28, [187], [188],
[220], [371], [510], [511], [512]. Self-adjoint extensions of symmetric opera-
tors, particularly in the context of point interactions, are treated in [184],
[512]. The quadratic form approach to defining Hamiltonians is extensively
discussed in [283], Ch. VI; [389], Ch. X; [434], Ch. II. The reformulation of
Schrodinger dynamics in terms of local Dirichlet forms has been reviewed in
[462] (see also [25], [106], [107], [495], [496] and Appendix F). We also
mention another possibility of introducing é-interactions in L3(R). Let

d
A==+ (2,  DA)=H"'R), oyeR

where

1, x>y,
&) = -1 x < y.

Then

Ar = —:—x +(@/e, DAY = H*'(R)

and by a simple computation
A AY = —A,, + (@%/8), AFA, = —A_,, + (a*/4).

Finally, we note that an appropriate Laplace transform of (3.1.16) explicitly
yields the semigroup integral kernel associated with —A, :

e~ %) (x, x')
= (4nz)" 27X T2 — (a/2) exp{(a®z/4) + (a[lx — yl + |x" — y11/2)}-
Al = @27 2" [ + 27 (Ix — yl + Ix" = y)D] + 6(—w)},
Rez >0,
where ®(-) denotes the error function [1] and

1, u>0,

8w = {0, p<0.
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The corresponding unitary group e™"4«» is obtained after the substitution

. . e‘“/4’ t> 0’
zoit, (i) = |r]? {e_.-m =0

An integral representation for the above integral kernel has been derived in
[195] (cf. also [412]).

A Feynman path integral approach to —A, , appeared in [218].

The Stark effect in connection with —A, , is considered in [36].

Section 1.3.2

This section closely follows [21], where the first proof of norm resolvent
convergence towards point interactions in one dimension has been derived.
For earlier results on strong resolvent convergence using local interactions
we refer to [187], [188]. Separable interactions are discussed in [112], [129],
and [512]. For recent approximation results for more general systems of the
type —d?/dx* + V(x) + ad(x), cf. [171], [415], [417].

Section 1.3.3

Here the whole treatment is taken from Albeverio, Gesztesy, Heegh-Krohn,
and Kirsch [21]. Since by eq. (3.2.14) ¢?H, , is unitarily equivalent to H,(e),
and the latter is unitarily equivalent to —A + A(¢) V() (just by translations),
and A(¢) = O(e) as € — 0, the results on bound states of H, , could have been
derived directly from the detailed analysis of Klaus [293] and Simon [435]
on weakly coupled Schrédinger operators in one dimension. In particular,
our main tool for using Fredholm determinants is taken from [435]. If the
potential is not exponentially decreasing at infinity, analyticity of k, around
€ = 0in (3.3.3) and (3.3.4) is lost. Instead, one obtains asymptotic expansions
(the order of which depends on the decrease of V at infinity) as shown in [293],
[294], [296].

Section 1.3.4

Scattering theory in connection with é-interactions has been discussed, e.g.,
in[47a], [156], [173], [200], [218], [314], [315], [347],[379], and [387]. Our
brief summary of stationary scattering theory for Schrodinger operators on
the line is taken from [100], [142], and [359]. The first part of Theorem 3.4.1
appeared in [379]. We also remark that the assumption (1 + |x|")Ve L}(R)
for suitable m € N turns the analytic cxpansion for S, ,(k) around ¢ = 0 into
an asymptotic one, the order of which depends on m.



CHAPTER 1.4

The One-Center J’-Interaction in
One Dimension

While there is one kind of point interaction in two and three dimensions, we
will show in this chapter that there are more possibilities in one dimension.

First, we have the point interaction corresponding to a d-function, i.e.,
similar to the two- and three-dimensional cases which we exhibited in Ch. 3.
In addition, we will now derive the existence of a four-parameter family of
self-adjoint extensions of a symmetric operator with boundary conditions at
a particular point in R. However, here we will treat only the one-parameter
family corresponding to a §'-interaction.

We briefly describe basic properties of the &'-interaction in one dimension.
Since the technical tools needed in the proofs are identical to those in Sects.
3.1 and 3.4 we essentially skip the details.

In the Hilbert space L?(R) we define the closed and nonnegative operator

H, as
d2
H, = o 2(H,) = {ge H**(R)lg(y) = ¢'(y) = 0} = H*(R — {y})

forsome yeR, (4.1)
whose adjoint is given by
d2
HY = — 2 DHY) = H**R-{y}), yeR @4.2)
A straightforward calculation shows that the equation
Hryk) = k2y(k), Yk)eDHY), k*eC—R, Imk>0, (43)
91
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has the solutions

ekx=N x>y,
0, x <y,

x>y,
x <y,

¥k, x) = { Imk>0. (44)

‘,’Z(k X) { lk(y-x)

Thus H, has deficiency indices (2, 2) and hence it has a four-parameter family
of self-adjoint extensions. We are particularly interested in a special one-
parameter family of self-adjoint extensions Z; , defined by

= d?

=6y T T2

DEy,) = {ge H >R~ {yDlg'(y+) =g'(y—). g(y+) — g(y—) = Bg'(»)},
—wo <ff<. (49)

The special case f = 0 leads to the kinetic energy Hamiltonian — A in L?(R).
The case f = oo leads to a Neumann boundary condition at y and decouples
(—o0, y) and (y, ), viz.

DE,.,)) ={ge H**R - {y}Ig'(y+)=9g'(y—) =0}

=D(—Ay-) @ D(—Ay.), (4.6)
Eoy = (AN ) D (- Ay 4.7

where — Ay, denotes the Neumann Laplacian on (y, +o),
D—Ays) = {ge H**((y, 20))lg'(y ) = 0}. 4.8)

By definition, E; , describes a "-interaction centered at y € R. The resolvent
of E;,, is described in

Theorem 4.1.  The resolvent of E; , is given by
Ep,y — k)" = G — 26K2Q2 — iB) Gl — 9), )Gl — )
k*epE5,), Imk>0, —0<pf<o0, yeR, (49)
with integral kernel
S,y — k)7 (x, x")
= (i/2k)e™>~x1
etk(x y) x>y eik(x‘~y), x> y
+(B/2)2 — ik { I, x<y}{—em”’h.f<y’
k?e p(Es,), Imk>0, x,x'eR, (4.10)

where

ik(x—y)

&u—w-wuﬁeu¢n

x>y,

x<y, Imk > 0. (@.11)
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PROOF. Krein’s formula (cf. Theorem A.3) implies

2
Epy — k) = G, — (@)™ ’ Y Am()W(=K), (k). 4.12)

m=1

By taking the adjoint of (4.12) one infers

Aim(—K) = A,4(K). 4.13)
Next, let g € L3(R) and define

hylx) = (=& = k2™ g)(x) — &, ()(@k?) e r dx’ e 7g(x')
y
y

-in(k)(4k’)"e“‘“”’j dx' e~ *g(x"), x>y,
-

y
hy(x) = (=4 = k)7 9)(x) = Az (9 4K?) 1 %0~ I dx’ Mo g(x)

~w

—22,(k)(4k3) "1 eikr== J dx’ e "Mg(x"), x<}y. 4.149)
y

After imposing the boundary conditions

hy(y+) = hg(y—),  he(y+) — hg(y—) = Bhy(y) 4.15)
one obtains
-1

Ak) = —2Bk*(2 — ipk)™ [_: l]’ (4.16)
Note that det[A(k)] = O (cf. the discussion in the Notes). In fact, by inserting (4.16)
into (4.12) the expression (4.12) reduces to (4.9). ]

Further information about Z; , is contained in

Theorem 4.2. The domain D(E, ), ~© < f < o, y € R, consists of all
elements  of the type

V() = $u(x) — 2ipk(2 — iBK) " $i(NCelx — y), 4.17)

where ¢, € 2(—A) = H**(R) and k? € p(E;,,), Im k > 0. The decomposition
(4.17) is unique and with y € D(E; ) of this form we obtain

Ep.y — KW = (—A - k). (4.18)

Next, let Y € D(E;,,) and suppose that Y = 0 in an open set U < R. Then
B, W =0inU,ie,E,, describes alocal interaction.

PROOF. Identical to that of Theorem 3.1.3. a

Spectral properties of £, , are summarized in
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Theoremd.3. Let —o0 < 8 < 00,y € R. Then the essential spectrumof Z; ,
is purely absolutely continuous and covers the nonnegative real axis

Jess(Eﬂ.y) = aac(Ep,y) = [Ov ), asc(Eﬂ.y) =J. (419)

If —o < p <0, Z;,, has precisely one negative, simple eigenvalue, i.e., its
point spectrum 6,(Z;.,) reads

0,(Z;,,) = {—4/B%}, - < <0, (4.20)
with
eI x>y,

(—B/8y" {_ o

its (normalized) eigenfunction. For f > 0 or B = o0, E; , has no eigenvalues

-0 \ 4.21
X<y, c<pf<O (4.21)

Jp(E'ﬂ,y) = Q$ ﬁ ¢ (—(D$ 0) (422)

PROOF. Analogous to that of Thecorem 3.1.4. a

Again the pole structure of (4.10) determines bound states and resonances

of E; ,: For f > 0, Z; , has a simple resonance at ko = — 2i/B with resonance
function

R LA I 1
ko —eUPo-n < ¥, )

For all —o0 < f# < 0, E;, has, in addition, a simple zero-energy resonance
(in contrast to — A, ,, the first-order pole in (4.10) at k = 0 does not cancel)
with resonance function Yo(x) = 1. For f = o0, E;, has a zero-energy
resonance of multiplicity two with corresponding resonance functions

1, x>y,
0, x<y

0, x>y,
I, x<y.

Yo, (x) = { Yo2(x) = {

It remains to discuss stationary scattering theory associated with the pair
(Ep,y» —A). The generalized eigenfunctions of E; , are given by

ik(x—y)
¥y, (k,0,x) = €% + ifka(2 — ifk) e {e_ S i z i
k>0, 6=+1, —0o<f<o, x,yeR (4.23)
They fulfill
¥,k 0,y +) = ¥, (k. 0,y =),
¥, (k, 0, y+) = ¥y, (k 0, y=) = B¥; (K, ),
—¥; k0, x) = k*¥y (k,0,x), xeR-—{y}, @2

lim lim (2k/i)et ™+ ox[E,  — (k + ig)2] 7 (x, x) = ¥, ,(k, £1, ),

40 x'= -0

xeR;, k>=0.
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The corresponding transmission and reflection coefficients from the left and
right then read

.T,,'_,(k) = lim e"k"l’p_,(k, +1,x) =22 —ipk)?, 4.25)
x=*+wm

Ty = lim e, (k —1,x) =22 — ifk)™", (4.26)

Ry (k)= lim e™[¥, (k, +1,x) — e**] = —(2 — ifk)"'ifke*™, (4.27)

5y (k)= lim e ™[, (k, —1,x) — e”*] = —(2 — ifk)"ifke™2*;

x=+aw

k>0, —o0o<pf<oo, yeR (428)

The unitary on-shell scattering matrix %, ,(k) in C? is then given by

RN RCR ARG
k) = [gg},_y(k) %‘.y(k)]

P 2 — ipke™2%y
=2 - [—iﬁke""‘” 2 |

k>0, —oo<f<o, yeR (429)

In the low-energy limit k — 0 we get

1o
‘%v(k)m[o 1

0 1
.f/;.y(k),,—w»[l 0].

Obviously, % ,(k) has a meromorphic continuation in k to all of C such
that for k s 0 the pole of ¥ ,(k) coincides with the bound state (8 < 0) or
resonance (f > 0) of E; ,.

], -0 < f < oo,
(4.30)

Notes

The existence of &'-interactions and their local nature has been pointed out
by Grossmann, Heegh-Krohn, and Mebkhout [226]. The first extensive
treatment including infinitely many centers appeared in Gesztesy and Holden
[205]. The fact that det[A(k)] = 0 in the proof of Theorem 4.1 indicates that
H,is not the maximal common part of ; , and — A (cf. Theorem A.3). Indeed,
their maximal common part Hj is a proper extension of H, with deficiency
indices (1, 1) given by
2

H;:-ii_

77 on D(H,) = {g e H*?*(R)|g'(y) = 0}.
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The deficiency subspace of H, corresponding to k? € C — R is spanned by

e x>y,
—e*0 x <y Imk>0,

and thus ; ,, —0 < f < 0, are all self-adjoint extensions of H;. Self-adjoint
extensions of H, are considered in [418].

Complex §'-interaction can be treated in the same way.

Approximations of Z; , in the strong resolvent sense by means of scaled
rank-one interactions appeared in [419].

More general boundary conditions corresponding to powers of the 6-
interaction are studied in [398], [399].



CHAPTER 1.5

The One-Center Point Interaction in
Two Dimensions

Following Sects. 1.1, 1.4, 2.1, and 2.3 we briefly discuss the point interaction
in two dimensions.
Let y € R? and consider in L?(R?) the nonnegative operator

—Alcg -y (5.1

with H, its closure in L2(R?) (i.e., 2(H,) = H3'*(R* — {y})). Then its adjoint
H} reads

Hy = —A,  9(H*) = (g e HEAR? — {y})n LAR?)|Ag € L*(R?)},
yeRZ (52)
A direct calculation shows that the equation
HXY(k)=k*y(k), yk)eDH), k*eC—-R, Imk>0, (53)
has the unique solution
vk, x) = (i/HP(klx — y]), xeR?*—{y}, Imk>0, (54)

where H{"(-) denotes the Hankel function of first kind and order zero [1].
As a consequence H, has deficiency indices (1, 1). In order to determine all
self-adjoint extensions of H, we decompose L?(R?) with respect to angular
momenta

L*(R?) = L*((0, co); r dr) ® L*(S"), (5:5)

where S! denotes the unit sphere in R2. Using the unitary transformation
0: L*((0, o) r dr) = LX([0, 0); dr),  (Of)(r) = r'f(r) (5.6)
97
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and the fact that {Y,,(w) = 2n) "2e"™\me Z,0 < 0 < 2, @ = (cos 6, sin )}
provides a basis for L2(S'), we can rewrite (5.5) as

@

L*(R?) = (-B 07'L*((0, ), dr) ® [ Y,,.). (5.7
With respect to this decomposition H, equals the direct sum
0 .
H, = T,“{ @ 0 0® 1} T,, yeR? (5.8)
m=-w

where (T,g)(x) = g(x + y), g € L*(R?), and
d2 m2 _ 4-1

}'1,,,=—F — r>0, mel2,
Dho) = {$ € L*((0, 0))|4, ¢’ € AC,((0, 0)); W($, $4)o+ =0;
—¢" - 4"r'2¢ e L*((0, 00))}, (5.9)

Dh,) = {$ € L}((0, 0))l¢, ¢’ € AC,,((0, 0));
—¢" + (m> - )r2¢eL¥(0, o))}, meZ-{0}.

Here AC, ((a, b)) denotes the set of locally absolutely continuous functions
on (a, b), W(f, 9), = f(x)g'(x) — " (x)g(x) denotes the Wronskian of f and g,
and ¢,(r) = r'"2H{"((+i)"?r). As is well known (e.g, [389], Ch. X) h,,
m € Z — {0}, are self-adjoint whereas h, has deficiency indices (1, 1). All self-
adjoint extensions of h, may be parametrized by (cf. Appendix D)

d? 1
hou——d—,j“m, r>9,
D(ho.q) = {$ € L*((0, ))|9, ¢' € AC,,o((0, 0)); 210 + ¢, = 0;  (5.10)
—¢" —47'r 2¢ e L*((0, 0))}, -0 <o < 0,

where ¢, and ¢, are defined as
$o = lilm [r'2Inr]'e(), ¢, = lilm r2Lg(r) ~ gor* Inr],
r+0 r40
¢ 2(h). (5.11)
Thus we get

Theorem 5.1. Al self-adjoint extensions of H, are given by

~t,=5{[ 0700 & 0700|017
"mEo
-0 <a<oo, yeRL (512

The special case a = oo leads to the kinetic energy Hamiltonian — A (the
Friedrichs extension of H,) in L*(R?), viz.

~Apy=—4,  D(—A)= H**(R?). (5.13)
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If |a] < 00, —A,,, describes a point interaction centered at y € R2. It will
turn out later that (—27a) ! represents the scattering length of —A, ,.

Next, we note that the integral kernel G,(x — x’) of the free resolvent in
L*(R?),ie.,

G=(-A-k?»"', Imk>0, (5.19)
reads
G(x — x') = (i/HHP (klx — x']), Imk>0, x,x'eR? x#x. (515
We have

Theorem 5.2.  The resolvent of —A, , is given by
(-4, —K)"
= G, + 2n[2n — ¥(1) + In(k/2))1 7 (G = ¥), )Gil- — ),
k*ep(-4,,), Imk>0, —oo<a<o, yeR? (516)
with integral kernel
(= Agy = k)71 (x, x') = (i/4)H (k| x — x'])
—(n/8)[2ma — ¥(1) + In(k/2i)J T HE" (k|x — y))HE (k|y — x']),
k*ep(—A,,), Imk>0, x,x'eR%, x#x', x#y, x'#y. (517

PROOF. By the decomposition (5.12) it suffices to consider the s-wave (m = 0). Let
n € L%((0, o)) and define

Xalr) = I dr’ go(k, r, r')n(r')

0
— (n*/4)[2na — ¥(1) + In(k/2i)] J‘w dr’ (r')"2 HM(kr')n(r')r'2 H (kr),
°

Imk>0, —oo<a<oo, (518)
where

Jo(kr)H{V (kr'), r<re,

5.19
BV HO K, r 7, (5.19)

golk, r,r') = (1'1!/2)("')”2{

is the Green's function corresponding to ho , (the Friedrichs extension of k).
Clearly, x,, xx € ACyo.((0, o0)) and x, € L%((0, 00)). A somewhat lengthy but straight-
forward calculation then shows that

2n9(Xe)o + (Xa)1 =0, (5:20)

and
X)) + @) () = —n() = K2,  r>0, (521
which proves (5.16). a
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Further information on 2(—A, ) and the fact that the one-center point
interaction is local is contained in

Theorem 5.3. The domain D(—A, ), —0 < a < 00, y € R, consists of all
elements  of the type

Y(x) = $(x) + 2n[2ra — W(1) + In(k/2)]17' 4 (PGelx — ), x #y,
(5.22)

where ¢, € D(—A) = H**(R?) and k* € p(—A,,), Im k > 0. The decom-
position (5.22) is unique and with y € 9(—A,,,) of this form we obtain

(_Aa,y - kz)!// = (-'A - k2)¢k (523)

Next, let y € D(—A,,,) and assume that y = 0 in an open set U < R%. Then
~A W =0inU.

PROOF. Identical to that of Theorem 1.1.3. [ ]

Concerning spectral properties we have

Theorem 54. Let —o0 < a < 0, y € R% Then the essential spectrum of
—A,,, is purely absolutely continuous and covers the nonegative real axis

ae:s(_Aa.y) = aac(_Aa.y) = [0, ), asc(_Aa.y) = (5.24)

For all a € R, — A, , has precisely one negative, simple eigenvalue, i.e., its
point spectrum is given by

0,(~Ay,) = {—4e22 D geR (5.25)
with
G expt-2naswy(X — ¥) = (/A HP[2iel "2 *¥Dx — y], x %y, (5.26)

is strictly positive (unnormalized) eigenfunction.

PROOF. Similar to that of Theorem 1.1.4. [ ]

The pole structure of (5.17) determines bound states and resonances of
—A,,,: In fact, (—A,,, — k*)7!(x, x), x # x’, has a meromorphic continua-
tion to the entire logarithmic Riemann surface. In the cut plane
{ke C — {0}| —n < arg k < n}, — A, , has only the above-mentioned bound
state at ko = 2iel~2**¥(1) byt no resonance.

Finally, we turn to stationary scattering theory for the pair (-4, ,, —A).
Since — A, , is invariant under rotations in R? with center y we start with the
partial wave decomposition (5.12). Let

Yo.alk, r) = r'2Jy(kr) + f; [2na — (1) + In(k/2i)] "' r'2 H§ (kr),

k>0, —o<a<oo, r=0, (527
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then

2na(o,q(k))o + Wo.o(k)y = 0,
- (,),.a(k’ r) - (4r2)~1'1’0.¢(k’ r) = kz"’o.a(k; r)a r> O;
lim lim [2(k + ig)/n])" e ik*iw g=inid [ — (k + ig)*] " (r, ')

ed0 r'—=o0
=Y.k 1), r=0 k>0, —o0<a<oo. (528)

Thus Y, (k) are generalized eigenfunctions of h, ,. For m # 0 the generalized
eigenfunctions of h,, read

Unk, ) =r2J (kr), kr>0, meZ—{0) (5.29)

(we recall that J_,(z) = (— 1)"J,,(2)). The asymptotic behavior of Y, ,(k, r) as
r — oo is then given by

Vo.alk, 1), 2, (2/mk)!2 e« sin[kr + (r/4) + 8 4(k)],
k>0, —o0 <ag oo, (530
and
Soalk) = e2i80..k)
= [2rna — ¥(1) + In(k/2) — (in/2)] ' [2na — (1) + In(k/2) + (in/2)],
k>0, —oo<a<oo, (531)

denotes the (on-shell) s-wave scattering matrix (and &, ,(k) the s-wave scatter-
ing phase shift). For m # 0, we obtain

Sk)=1, 8,k)=0 meZ—{0}. (532)

Again it is useful to compare with the effective range expansion for spherically
symmetric real-valued potentials V satisfying

J drr[1 + |Inr|]2e2*|V(r)] < o0 for some a > 0. (5.33)
V]

If 8,.(g, k) denote the phase shifts associated with the Schrédinger operators
—d?*/dr* + (m* — $)r~2 + gV(r) this low-energy expansion reads (cf, e.g.,

[95], [96])
T(1 + Im|)”2(k/2)*™[(r/2) cot 5,.(g, k) — In(k/2) + ¥(1)]
= —(an(g)! + r.(g)k? + O(K*), k>0, geR, meZ (534)

where the right-hand side of (5.34) is real analytic in k2 near k? = 0. The
coefficients a,,(g) and r,(g) are called partial wave scattering lengths and
effective range parameters, respectively.

The explicit relations

[(/2) cot 8¢ (k) — In(k/2) + ¥(1)] = 270,

(5.35)
8.(k)=0, meZ— {0},



102 1.5 The One-Center Point Interaction in Two Dimensions

for the point interaction then show that
ape=(=2na)"', —w<a<o, a#0, 2,=0 (536

and all low-energy parameters vanish identically in higher partial waves
m e Z — {0}. We emphasize again that by (5.35) the effective range expansion
for m = 0 is already exact to zeroth order with respect to k2. This illustrates
the fact that —A, , describes an s-wave interaction of zero range.

Now we turn to the scattering wave function of —A, ,

¥, ,(kw, x) = e*** + (in/2)[2rna — ¥(1) + In(k/2i)] "™ HP (k|x — yl),
k>0, weS!, —-o<a<ow, x,yeR:L x#y (537
A comparison of (5.37) with (5.27) and (5.29) yields
e " Y, (ko, x) = 21| x — y| "2, J(k|x — y]) Yo(w) Yo(w,)

F =y 3 (klx ~ YD V@) Yaw,),

m#0
k>0, —oo<a<oo, x#y, o,=x/x|, (538)

by using
e*ox =21 Y imJ(k|x]) Y (@) YVo(w,), k>o0. (5.39)
The on-shell scattering amplitude #, ,(k, @, ') corresponding to —A, , is then
given by
ok, @ 0) = lim |x]"2e *H[W, (ko' x) — @]

x| = oo

= e™*(n/2k)" 2 [2na — W(1) + In(k/2i)] ! e™*@ =P,
k>0, w,0'eS', —o<a<oo, yeR2 (540)
The unitary on-shell scattering operator &, (k) in L%(S') finally reads
Sy k) =1 + in[2no — (1) + In(k/2i)] 7 (e~*C7 Y, -)e* 7Y,
k>0, —oo<a<o, yeRL (541)

The explicit representation (5.41) shows that %, ,(k) has a meromorphic
continuation in k to the entire logarithmic Riemann surface such that its pole
inthecut plane {k € C — {0}] —n < arg k < =} coincides with the bound state
of —A,,.

Finally, we emphasize that the ¢-expansion for the resolvent, eigenvalues,
resonances, scattering amplitude, and the on-shell scattering operator derived
in the three-dimensional case works as well in two dimensions. To illustrate
these facts its suffices to consider the resolvent.

Let V: R?2 — R be measurable and

J d2x(1 + |x|**%)|V(x)| < oo, f d?x|V(x)|'*® < o0
R2 R2
forsome & >0. (542)
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Again we introduce
v(x) = [VXI)I'2,  u(x) = V()" sgn[V(x)] (5.43)
and note that

uG,v € B,(L*(R?)), Imk>0, k#O0. (5.44)
Let 1: (0, &0) = R, ¢ > 0 and
Ap) = A p+ A,u® + o(p?). (5.45)

Then the form sum
H) = —A+A(ne)™)V(- —¢'y), &£>0, yeR?, (546)

in L?(R?)is well defined (cf. Appendix B) and we define the scaled short-range
Hamiltonian H, , as

H,,=¢?2UH@U'=-A+V,,,

V@) = i((lng)™")e 2V ((x — y)fe), ¢>0, yeR?
where now

(5.47)

(Ug)(x) =¢""g(x/e), £>0, geL*R?). (5.48)
Then the resolvent of H, , can be written as (cf. (1.2.16))
(H,, — k*)™' = G, — M(In &)")A,(k)[1 + B(k)]'C,(k),  k*€ p(H,,),

Imk>0, (549)

where A,(k), B,(k), C,(k), ¢ > O, are Hilbert - Schmidt operators with integral
kernels

A, (k, x, x") = Gi(x — y — ex")v(x’), Imk >0, (5.50)

B.(k, x, x") = A((In &) )u(x)G,(x — x")v(x"), Imk>0, k#0, (551)

C,(k, x, x") = u(x)G(ex + y — x'), Imk > 0. (5.52)
If we introduce rank-one operators A(k), C(k) with integral kernels

Ak, x, x") = G(x — y)v(x'), Imk>0, (5.53)

C(k, x, x") = u(x)G(y — x'), Imk >0, (5.54)

then as in Lemma 1.2.2
liLm lA.(k) — A(K)[, = O, li:n IC.(k) — C(k)ll; = 0. (5.55)
v 0 40

Up to now there is no difference to our three-dimensional treatment. Due to
the logarithmic singularity in B,(k) near k = 0, the analysis of B,(k) needs some
care. First, we note that by the mean-value theorem (cf. (1.2.43))

B/(k) = —(2m)" 4,(v, *)u

— @2rln &)~ {[A, (= P(1) + In(k/2i)) + 2,](v, )u + 4, C} + o((In &)7"),
(5.56)
where C is a Hilbert—Schmidt operator in L2(R?) with integral kernel

C(x, x") = u(x) In}x — x'|v(x’'), x # x', (5.57)
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and the expansion (5.56) is valid in Hilbert—Schmidt norm (the coeflicients
in (5.56) follow from (5.45) and the expansion of (i/4)H{"(ek]x ~ x|} [1]).
Now we have to distinguish several cases. Applying formula (1.3.47) we
get:

(@) IfAd, =0,then,asc|O,
[1+B(k)]'=1+0(nge)?). (5.58)
(b) If(v, u) = 0, then (v, -)u is nilpotent and hence
1+ B(k)]1'=1+@2n)'A,(, )u+ O((lne)™") (5.59)
aselO.
(¢) If(v,u)# 0and A, # 2n/(v, u), then,as ¢ |0,

[1 4+ BRI "' =1+ @A,2n0)[1 — (A,(v, w)/2m)] ™" (v, -)u + O((In &)*).
(5.60)

(d) If(v,u) # 0and A, = 2n/(v, u), then,as ¢ | 0,
(1 + B,(k)]™* = —2xn (In &) {2n(v, w)[ = ¥(1) + In(k/2i)] + 2,(v, u)®
+ (2n(v, Cu)/(v, w))} (v, -)u + O(1). (5.61)

Thus we obtain

Theorem 5.5. Let y € R? and assume that V is real-valued and (1 + |-|2*%)V,
[V{1*% e L'(R?) for some § > 0. Then, if k* € p(—A4,,), we get k* € p(H, )
Jor € >0 small enough and H, , converges to —A, , in norm resolvent
sense

n-li:n (Hoy~ k) =(=4,,~ k),  Kep(—4,,), yeR? (562)
&40

where a is given by
o = J[A2(0, /271 + [, Cu)/2m(o, )] if (0, u) # 0, 4, = 2m/(v, u),
00, otherwise. (5.63)
In particular, H, , converges in norm resolvent sense to —A as €10 if
(v, w) = [rad?x V(x) = 0 or if A, # 27/(v, u).
PrOOF. Equation (5.49) together with (5.55) and (5.58)—(5.60) proves that
(H,.,, — k)" — Gl = O((ln &)™) (5.64)
as & | 0 in cases (a)—(c). In case (d), (5.61) shows that
nlim (H, , ~ k?)™!
elo
= G, + 2n{—¥(1) + In(k/2i) + [(1,(v, u)/27) + ((v, Cu)/(v, w)*)]}} !

~(Gk(. - }'), )Gk( - }’)» kz eC- R’ Imk>0. (5.65)
e
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Notes

The point interaction in two dimensions is shortly discussed in Grossmann,
Heegh-Krohn, and Mebkhout [226] where its local nature has also been
pointed out (cf. also [253]). The treatment based on the boundary condition
in (5.10) and, in particular, the final part containing scattering theory is
taken from Albeverio, Gesztesy, Hoegh-Krohn, and Holden [19] (for a short
summary, see also [200]). The ¢-expansion described at the end is also taken
from [19]. For properties of the Birman-Schwinger kernel uG,v in two
dimensions we refer to [248], [298], and [435]. Scattering theory near thresh-
old is studied in [97].

External electromagnetic fields in connection with —A, , are discussed in
[381].






PART I

POINT INTERACTIONS WITH A FINITE
NUMBER OF CENTERS







CHAPTER 1.1

Finitely Many Point Interactions in
Three Dimensions

IL.1.1 Basic Properties

The aim of this section is to give a rigorous meaning to the formal operator

N
H=—-A- Z; w6(- — y;) (1.1.1)
£

where y,, ..., yy are N distinct points in R3.

One possible way is to employ the techniques from Sect. 1.1.1 using self- -
adjoint extensions of symmetric operators. Here, however, we will advocate
another method which, in addition to providing new insight into why the
operator (1.1.1.16) is the rigorous formulation of (1.1.1) with N = 1, also has
a flavor of renormalization techniques used in quantum field theory.

To explain the basic idea, we start with a formal manipulation when
N = 1. Let, therefore, *

= —A-uV, (1.12)

where for the moment V is an appropriate potential. Expanding the resolvent
we obtain

H=k)"'=(-A-pV-k)"=(1-puGV)'G,
=G+ Y (uGVyG, Imk>0. (1.1.3)
n=1

If we now formally insert V(x) = &(x) and consider the integral kernel, we -
109
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obtain
(H — k*)™'(x, x') = Gy(x — x') + #Gk(X)[ 20 (qu(O))"] G (x')

= Gy(x — x') + pG(x)[1 — #G,(0)]17'Gy(x") (1.1.4)
= Gyx = x') + G 1! = GO)]'G(x'), Imk>0,

which easily follows by considering, e.g., the term (uG, V)*G,:

P
(4G 0)*G f)(x) = p? J‘J‘ d3x; dx, d°x’ Gy(x — x,)d(x,)
Y Re

“Gylxy = x3)8(x3)Gilx, — x')f(x)

=2 . d3x’ Gy(x)G(0)Gi(x')f(x"). (1.1.5)

o

From the explicit expression G,(x) = e*™/4n|x| (cf. (1.1.1.19)) we see that of
course (1.1.5), and therefore also (1.1.4), does not make sense because G,(0)
does not exist. However, we still have the possibility of choosing u. In partic-
ular, we see that if we formally write

't =Gy0) + «a (1.1.6)
with a € R arbitrary and interpret G,(0) — G,(0) as
1 — kil ik
i - =lim——— = —— 1.7
ll_!_ll [Go(x) — Gk(x)] lm(l) nin] yom (1.L7)

we obtain precisely the correct expression (1.1.1.20) from Part 1. We also
observe that the coupling constant g in front of the d-function has to be zero
in a “suitable way” in order to make the final expression well defined.

One way to make the above rigorous is the following:

First we introduce a formal Fourier transform of the ill-defined operator
H,ie., let

F. LZ(R3) - L}(R3),
(Ff)(p) = f(p) = s-lim (2m)~ > I d3x e”™*f(x) (1.1.8)
R-w IxI<SR
(see, e.g., [389], Sect. IX.2) and define
A=FHF, (1.1.9)

where

(F ) (%) = f(x) = s-lim (2n)~¥? I d3p e'P*f(p). (1.1.10)

R—o IPI<R

Now the Laplacian — A transforms into the multiplication operator with the
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function p? (see, e.g., [389], Sect. IX.7) while we formally have
(F8( — NF ) p) = (Fs(: — yS)(p) = 2m)~ e Pf(y)
= @n)7%e™? L, d*q ¢f(g) = (4, )4,(p), (1.1.11)
where we abbreviated
#,(p) = (2m)~ 7P, (1.1.12)
Thus H can be written formally as

N
B=p" =3 ), (1.1.13)
13

The idea is now to introduce a momentum cut-off and make the coupling
constant y; explicitly dependent on the cut-off. More precisely, let

L, |pl<o,
= © = 1.1.14
Xo(P) {0’ ol > o, = Xuy, (1.1.14)
and define
N
A =p* - T @)y, )4y, (1.1.15)
£

with an interaction given by a rank N perturbation.

It remains to choose u;(w) in such a way that A has a reasonable and
nontrivial limit as we remove the cut-off, i.e., as w tends to infinity. From
Theorem B.1 we obtain that

N
A=) = = k)" + Y [T (eF-ty, s MoFey,:

JvJ'=1

-

Imk>0, Rek#0, (1.1.16)
where

Fu(k) = [p (@), — (8 (P> — k*)7'4°) 1=y ImEk >0, (1.1.17)

and
F.,(p) = (21:)'3’2;-:__'_’:(2, peR3 Imk>0. (1.1.18)
While the quantity
62, (6 — K)142) = (2> fl @ S Imk>0, (LL19)

diverges as w tends to infinity when j = j’, the off-diagonal elements nicely
converge since
epy etk
(27[)—3 j dap T——ki prowond Z’ﬂ = Gy(y) Imk>0, y#0.
ise P it (1.1.20)
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(See [389], p. 58f.) If we now choose

d3
# (@) = (2n)73 I _z_p +o;=
<o P

with o; € R arbitrary, we have for w — oo
_ ° e _ 1 1

B@) = @5 (0 — K)74) = 2my f dp (—, - —z—;z') Y
lri<w p P —

o ik

—_— Y — —.

w—=w J 41[
A short computation shows that the rank-one operator (x,F-z ,» *)XoFx.y

converges in Hilbert-Schmidt norm to the operator (F_g ., )F; , as @ = ©
whenImk > 0, i.e,

im §(toF-tys WoFry = Foiys Wiyl =0, Imk>0. (11.23)

@~

R (1.1.21)

(1.1.22)

To conclude that, for Im k > 0 sufficiently large,
R(k?) = n-lim (A® — k?)™!

N
=(p* - k)7 + -Z. ()15 (Fogy,, )F,,,  (1.1.24)
b=

is the resolvent of a closed operator, it is now sufficient to prove that the limit
is injective ([283], Theorem VIII.1.3). Here

T (k)—[(a—ik->6 - G(y; — )]N (1.1.25)
av\K) = i~ am ) O Y — Yy j,j'=l’ -1
Gu(x) = {g*(")’ i :g’ (1.1.26)

o= (0, ..., 0n), Y=(y15.-» ¥n) (1.1.27)

To this end assume R(k2)f = O for some f € L?(R*). Using the explicit ex-
pression for R(k?) we see that this is equivalent to

N
S =00 S e, 0]} f P

=1

e *7f(q)
—k*’

which cannot be in L2(R®) unless f =0. We can thus write R(k?) =
(—A,.y — k*)™. From the explicit expression for R(k?) we see that R(kz)“‘ =
R(kz) which implies that the domain 2(— A, y) is dense: Let g L 9(— A,y
Then (g, R(k?)f) = 0 for all f € L*(R?), hence (R(k?)g, f) = O for all f, im-
plying that g = 0. Furthermore, —A, y = R(k?)™* + k? (which is indepen-
dent of k2 from the resolvent identity) is self-adjoint because
(—A:v - EZ)_l = [(‘Ba.v = kz)*]_l
=[(-4,y = K)']*
=(-A,y -k,  Kep(-B,y (1129
We have thus proved the following theorem.

(1.1.28)
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Theorem 1.1.1. Let A® be the self-adjoint operator in L*(R®) given by
(1.1.15) with

)
2n?

Then A® converges in norm resolvent sense to a self-adjoint operator — B,J,
ie.,

-1
pi(w) = (aj + ) R eR, j=1,...,N. (1.1.30)

(=4, y — k*)™' = n-lim (A* — k?)"! (1.1.31)
Jor Im k > O sufficiently large, where — A, y has the resolvent

N
(=B, y = 1) =(p* — k) + Zl (Fev(K15' (F=z,y, )Fsy,s

5=

k*e p(—4,y), Imk>0, oeR, yeY, j=1,...,N, (1.1.32)

and where T, y(k), F, ,, and G, are defined by (1.1.25), (1.1.18), and (1.1.26),
respectively.

Taking now the inverse Fourier transform we finally obtain the resolvent
of the point interaction Hamiltonian — A, y with N centers, viz.

N
(mAey = k) =G+ Y [F (017 G- = yy) G- = y))

JJ'=1

ke p(—A,y), Imk>0. (1.133)

We remark that when N =1 (1.1.33) of course reduces to the operator
(1.1.1.20) of Part 1.

We allow a; = oo for some j, in the sense that —A, y = —A; y where & and
¥ equal o and Y, respectively, with the j,th component removed.

For completeness we include a theorem showing how to construct the
Hamiltonian with a finite number of point interactions using self-adjoint
extensions of symmetric operators. However, in contrast to the one-center
case, Theorem I.1.1.1, we meet a family of operators in which the centers y,,
..., Yy are not necessarily independent although the operators are local (cf.
Appendix G).

Theorem 1.1.2. The closed symmetric operator
Hy= ~Alg,, (1.1.34)
where Y = {y,,..., yy} and
Py = {pe HXX®)I(y) =0,y V,j=1,...,N}  (11.39)
has deficiency indices (N, N) and the deficiency subspaces read
» =Ran(Hy £ i)* =[G /(- = y1)h-..» Gy — W],
Im./+i>0. (1.1.36)
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PROOF. Since, for ¢ € 9y
Gyt — y), (Hy £ i)g) = (y;) =0 (1.1.37)

we immediately infer that [G /3:(- —y) ..., G/l - y,,)] cA,. Let Y, €
Ran(Hy + i)* and ¢ € 9(—A). Then there exist numbers ¢ 1r+ -2 CN mdependent of
¢ such that

N
W (A Li)g) = Z F o). (1.1.38)

In fact, let
- N
=0~ Z oy, (1.1.39)

where 7, € C3(R3), r,,(y,) =1, and supp n;Nsuppn, =&, j,j'=1,..., N j#j".
Then ¢ € 9y, and using ¥, € Ran(Hy + i)* we infer that (l 1.38) i is satlsﬁed with
¢t = (1, (—A £ i)n). On the other hand, the constants cj, ..., c§ are uniquely
determined by ¢, from the following computation: Assume also

('I"M( A+i)g)= z (o ¢(_Vj) (1.1.40)
Then
(e = 1), (~A £ i)p) =0 (1.141)

for all ¢ € %(— A), which implies that Y, = .
Finally, we observe that

N
Ve = LG/l —y) (1.1.42)

satisfies (1.1.38), thereby proving % < [G /zi(- — y4), ..., G 3i(* — yn)} [ ]

From the general theory of operator extensions it then follows that there
exists an N2-parameter family of self-adjoint extensions of —Alg, . The re-
solvents of these operators are explicitly given by Krein’s formula, Theorem
A.3. However, we will only study the N-parameter family with resolvent given
by (1.1.33).

As it is not possible to write —A, y in the form —A + V for any function
V, we have to work with the resolvent (1.1.33). It is therefore worthwhile to
note some more properties of the operator —A, y.

Operators of the type H = —A + V where V is a multiplication operator
are local in the sense that if Y = 0 in some open domain of R?, then also
Hy =0 in the same domain. From the nature of the point interaction it is
reasonable to expect locality of —A, y. This and an explicit characterization
of the domain and action of —A, y is the content of the next theorem which
generalizes Theorem 1.1.1.3.

Theorem 1.1.3. Thedomain 9(—A, y),yj€ Y, —0 <a; < 0,j=1,...,N,
consists of all functions y of the type

Y(x) = di(x) + i a,G(x—y) xeR*-Y, (1.1.43)
j=1
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where
N
= "Z: (L. (K15 8(y;), j=1,...,N, (1.1.44)
j=
and ¢, € 9(—A) = H**(R®) and k* € p(— A, y), Im k > 0. This decomposi-
tion is unique, and with  of this form we have
(=4, y — KW = (—=A - k)4, (1.1.45)
Furthermore, let ¢ € 9(— A, y) and assume Y = 0 in an open set U < R3.
Then —A, y¢ =0in U.
PROOF.  Assume, without loss of generality, that Jo;| < 00, j =1, ..., N. Then we
have

D—ABey) = (=B, y = k) 'LAR?) = (= Ay — k)7 (= A — k)D(-A)

{l + Zl [y ()15 G- = ) (G- = yp) (—A — K?)- )}9( —4),
J
k*ep(—A,y), Imk>0, (1.146)

which proves (1.1.43) and (1.1.44). Let ¢ = 0. Then

eiklx- vl

¢k(x) Z "47[|X — -l

But this function can only be continuous if a, = - -+ = ay = 0 which implies unique-
ness. Furthermore, we have

(=Apy = k) (=4 = k)¢,

=G(-A - k)¢ + Z [Fr (01 (G- = y,), (=8 =~ k)$)Gi(- ~ )

2.5 =1
N
=¢ + ]Zl aG(- - y) =V, (1.1.47)

which is equivalent to (1.1.45).
Finally, to prove locality, let § be of the form (1.1.43), and assume that y =0 in
an open set U < R>. Then

N
#x)=~-Y aGx—y) xeU. (1.1.48)
=

fUN{y,,...,yv} = &, then we have ((— A — k?)G,(- — y;))(x) = Ofor x € U and
forallj = 1,..., N, which implies that

=¥ = kY + (A= k) = — i a(—A - k)G(- —y)=0 (1.149)
ji=1

in U.If, however, say y, € U, we know from (1.1.48) that a, = Osince ¢ is continuous,
so again we can use the same argument on G,(- — y;) for j = 2, ..., N (for a more
general argument, see also Lemma C.2). a

Observe that 2y = 2(—A, y) and that
—Auyle, = —Alg,, (1.1.50)
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which proves that —A, y is among the self-adjoint extensions of Theorem
1.1.2.

In general, one expects Schrodinger Hamiltonians H of the above type to
have no singular continuous spectrum, g, .(H) = (¥, and no positive embedded
eigenvalues, i.e., op(H) < (—00, 0). This is also correct for point interactions
as the next theorem shows. In addition, we show that eigenvalues and eigen-
functions can be determined explicitly up to the computation of the zeros of
the determinant of an N x N matrix.

Theorem 1.14. Let y;e Y, —0 < a; < 00, j = 1,..., N. Then the essential
spectrum of the operator — A, y is purely absolutely continuous and equals

aes»(—Ac.Y) = ac(—Aa.Y) = [01 w), %.-("Aa_y) = Q “151)
Moreover,
6,(—A, y) © (—00,0) (1.1.52)

and —A, y has at most N (negative) eigenvalues counting multiplicity. Let
Imk > 0. Then

k*e op(—A,y) if
ik
det[I, y(k)] = det [(aj - in) 0 — G,,(y,- - y,-.)] =0 (1.1.53)

and the multiplicity of the eigenvalue k* equals the multiplicity of the eigen-
value zero of the matrix T, y(k). Moreover, let E, = k3 < 0 be an eigenvalue
of — A, y. Then the corresponding eigenfunctions , are of the form
N
Yo(x) = Zi ¢;iG,(x = y;) Im k, > 0, (1.1.54)
=
where(cy, ..., cy) are eigenvectors with eigenvalue zero of the matrix I', y(k).
If —A,y has a ground state it is nondegenerate and the corresponding
eigenfunction can be chosen to be strictly positive (i.e., the associated eigen-
vector (cy, ..., cy) fulfillsc; > 0,j=1,..., N).

PROOF. Without loss of generality we may assume |o,| < o0, j=1, ..., N. The
statements concerning the essential, absolutely continuous, and singularly con-
tinuous spectrum all follow in the same way as in the one-center case, Theorem
I.1.1.4. It is evident from the explicit expression for the resolvent that poles of the
resolvent for k? < 0 can only occur when the matrix T, ,(k) is noninvertible, i.e.,

when it has zero determinant. Let Re k = 0,Im k > 0,and define xk = —ik > 0. Then
the matrix I, y(ix) has the derivative
AT,y (ix) g 1v,=y,| i
. =] — xly,=y, N 1.1.55
dx e et (1.153)

which is strictly positive definite (one can follow [437], Lemma 4.4). Therefore the
N eigenvalues ,(x), ..., yv(k) of I, y(ix) are all strictly increasing with respect to
k, and hence there can be at most N points «,, ..., ky such that one of the eigen-
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values y,(k), j =1, ..., N, of T, y(ix) is zero. This proves the statement about the
total number of negative eigenvalues. (This is also a consequence of the fact that
(=A,y — k*)!' — G,,Im k? # 0, is of rank N.)

Now let E, = k3 be an eigenvalue of — A, y with corresponding eigenfunction y,,
ie,

—A, y¥o = Eo¥o, Vo€ D(—A,y) (1.1.56)
Then ¢, is of the form

N
Vo(x) = du(x) + ; a,Gy(x — y)) (1.1.57)

for some k*€ p(—A,y), Im k >0, and ¢, € D(— A) where g is given by (1.1.44).
From the eigenvalue equation (1.1.56) and (1.1.45) it follows that
(—A — k) = (—A,y — kK)o = (k3 — ko (1.1.58)
Hence
& = (k3 — k?)G . (1.1.59)
Inserting (1.1.57) into (1.1.59) we obtain

N
o= (ktz) - kz)[Gk¢h + Z' aijGk(‘ - .Vj)]' (1.1.60)
I=
From this equation it follows that
(=4 = k)¢ = (ki — Kk?) Z a;G (- — y;). (1.1.61)

If E, = k3 > 0, then this equation has no nontrivial solutions. This can be seen as
follows. By making a Fourier transform of eq. (1.1.61) we obtain

e Py

(p? — k2)du(p) = (2m) (k2 — k’)z sy (1.1.62)

which proves that 45,0 and therefore ¢, cannot be in L%(R®) unless it is identically
zero. Hence y, = O(recallthata, = - = ay = 0if ¢, = 0), which proves the absence
of nonnegative eigenvalues.

However, if E, = kj <0, we can apply G,, on each side of (1.1.61). Using the
resolvent equation we then obtain

4= Zvll &[G (- — y) — G- — )], (1.1.63)
which implies that ¥, has the form
Yo(x) = i a;Gy, (x — (1.1.64)
By evaluating (1.1.63) at x = y; we find that

1 N
¢(y;) = 4_1;("‘0 - lk) + ng a]'[cko(yj - yj') - Gk(yj - yj')]v .’ = ly ey Ns
(1.1.65)
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(recall that G, (x) = G,(x) if x # 0 and zero if x = 0) which can be written as
#(y;) = ,ﬁ, [T y(k) = T, y(ko))jia;,  j=1,...,N. (1.1.66)
Equation (1.1.44) is equivalent to
4y, = ,i (N.y®)],a, j=1..,N, (1.1.67)
which implies by (1.1.66) that
,ﬁ:l [Ta.v(ko)l;ya; =0, j=1,...,N. (1.1.68)

Hence (ay, ..., ay) is an eigenvector of I, y(k,) with eigenvalue zero.
On the other hand, if
N
Yo(x) = Y 4G, (x — y)), Im k, > 0, (1.1.69)
j=1
and (a,, ..., ay) is an eigenvector of I, ,(k,) with eigenvalue zero, we can prove that
¥, satisfies

.l’oefz(—Aa.V), - ¢'y¢o = kéWo (1170)
as follows. First, we wish to establish that y, € 2(—A, y). To this end, let
¢ = (k§ — k*)G, Yo (1.1.71)

for some k*>e p(—A, y), Im k > 0. Then ¢ € 2(—A) and we have the following
computation

N N
&= (ké —k?) Z, aijGko(' - }'j) = Zt aj[Gk,,(' - y,) -G — .Vj)], (1.1.72)
7= Jj=
which implies that
N N
& + Zl a,G( —y) = Zl 4G, (- — ¥)) = Yo. (1.1.73)
= i=

To prove that a,, j = 1,..., N, satisfy (1.1.44) we evaluate (1.1.72) at y;. Then

1 N
¢k(y,' = G(iko — ik) + j§| a]'[Gko(yj - .Vj') - Gk(,Vj _ _Vj')]
N
= X [T = Lytko)lya

N
= .Zl (Fy(®)1jya,  j=1,...,N, (1.1.74)
J=

which proves (1.1.44), and hence ¥, € 9(—A, ;). Finally, we observe that
=B y¥o = (—A = k)@ + ko = (k§ — kK)o + ko = k3. (1.1.75)

The assertions about the ground state follow from the monotone increase of all
eigenvalues of T, (i) for k > 0 and the fact that T ,(ix) generates a positivity
preserving semigroup e~ ¢ > 0, x € R, in C" since all off-diagonal elements in
I, y(ix) are negative ([391], p. 210). Thus the smallest eigenvalue of T, (ik) is nonde-
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generate and we may choose a corresponding nonnegative eigenvector (c,, ..., cy),
¢;20,j=1,..., N.Since c;, = 0 for some j, would imply a; = oo we actually infer
¢;>0,j=1,..., N (cf also the discussion in Appendix F). a

Before we give an example to illustrate the results in a simple case, we note
the following elementary result.

Proposition 1.1.5. Let N(k?, a,, ..., ay) denote the number of eigenvalues
(counting multiplicities) of — A, y less than or equal to k* < 0. Then

Nk, a,...,a) < N(k?, ay,...,ay) < N(k%,a....,a), (1.1.76)
where

&= max (x), a= min (a) (1.1.77)
1<j<N 1<j<N

PROOF. Observe from (1.1.25) that the eigenvalues of I, y(k), Im k > 0, Re k = 0,
are increasing in each of the components a; of a, which proves (1.1.76). [ ]

One virtue of point interactions is, as we have already seen in the one-center
case, that eigenvalues and resonances can be treated on an equal footing. We
define resonances of —A, y as follows. k, € C, Im ky < 0, is a resonance of
- Aa Y lff

ik
det[T, y(ko)] = det [(a,- - %3) S — Gko( yi— yjl):l =0.

The multiplicity of the resonance k, equals the multiplicity of the zero of
det[I, y(k)] at k = k.

We end this section with an example illustrating some of the ideas in this
chapter, namely the study of the two-center problem with equal strength, i.e.,
N=2a, =a, =a,ineq.(1.1.33).

The eigenvalue/resonance equation is (with L = |y, — y,])

a— 2 G
4rn ik \2
det . 1= (a - E) - G(L)* =0, (1.1.78)
G(L) a—
ie.,
4nal — ikL = +e™*t. (1.1.79)

Now let Lk = x + iy. Separating the real and imaginary part we obtain the
two equations

4nal + y = te ? cos x,
) (1.1.80)
—x= +e”’sinx.
Eigenvalues correspond to x = 0 and y > 0, i.e.,

y= +e? —4nal. (1.1.81)
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From Figure 2 we see that if 4naL < — 1 we have two simple eigenvalues, if
1 > 4naL > — 1 we have one simple eigenvalue, and finally, if 4naL > 1 there
are no eigenvalues.

To study the resonances we have to look for solutions of (1.1.80) with y < 0
and x arbitrary. First, we observe that if (x, y) is a solution of (1.1.80) then
(—x, y) is also a solution, i.e., we have a reflection symmetry with respect to
the imaginary axis. So we only have to study what happens when x > 0. We
can rewrite (1.1.80) as

y=In|22X (1.1.82)
and
y = —xcotx — 4nalL. (1.1.83)
Let ¢ be the monotone decreasing function on ((2n — 1)z, 2nn)
$(0) =1In s'—';-’i + x cot x + dnalL. (1.1.84)

Asx | (2n — 1)m, ¢(x) = +00,and as x | 2n=, §(x) = —oo, n € N, which implies
that for each interval ((2n — 1)z, 2nn), n € N, there is precisely one simple
resonance k, such that Re k, € ((2n — 1)(n/L), 2n(n/L)). Similarly, there is
exactly one simple resonance k, such that Re k, € (2n(n/L), (2n + 1)(n/L)). On
the interval [0, ) we have that as x |0, ¢(x) = 1 + 4naL, while as x | =,
#(x) » —oo. Thus if 4naL > — 1 we have, as before, exactly one simple re-
sonance k, with Re k, € (0, (n/L)). If 4naL < — 1 we have exactly one simple
resonance on the negative imaginary axis, which we have already encountered
in Figure 2. When « varies in R, we see that we can always satisfy eq. (1.1.83),
thus we have the resonance curves as shown in Figure 3.

e
N
!

—. — /"L-_'—_"_ e y ~
fl'—' — // f‘ T
o, /
Js Sy 13
(@) 4mnal < —1 (b) -1 <4nal < 1 (©) 4nal > 1

Figure 2 fi(y) =e™ —dnaL; [(y) = y; [3(y) = —e™” — 4naL; f,(y) = —4naL.
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Finally, we note that the asymptotic behavior of the resonances k, is given
by

k, = (n + %)% - 11? In[(n + )] (1.1.85)

asn— oo.
We will return to this example in Sect. 1.4.

I1.1.2 Approximations by Means of Local Scaled
Short-Range Interactions

Having defined the point interaction Hamiltonian —A, y, it is reasonable to
ask in what sense this Hamiltonian is approximated by Hamiltonians with
more realistic and less singular short-range interactions.

Let

Hy=A+¢?2 i LV —y)en  e>0, (1.2.1)
j=1

where Ve R,j = 1, ..., N (recall that the Rollnik class R consists of functions
V:R?® > C with [psd>x [g:d3y IV(X)||V(y)lIx — y|™2 < o0) are real-valued
and 4;(¢) are assumed to be real-analytic in a neighborhood of zero with

40 =1, j=1,..,N. (1.2.2)

Theset Y = {y,,..., yn} of N distinct points y;e R3,j =1, ..., N, forms the
set where we want to localize the point interactions. (We will use Y to denote
both the set {y,,..., yv} = R® and the n-tuple (y,, ..., yy) € R*" when no
confusion can arise.) H, y is well defined as a sum of quadratic forms by
Appendix B.

Recall from Sect. L.1.1 the unitary scaling group U, in L?(R?) given by

(Ug)(x) = e7%g(x/e), &>0, geL*R%), (1.2.3)
which connects H, y to the self-adjoint operator Hy(e) defined by

N
Hy(e) = U 'H, yU,= —A + Y 4V(- —¢7'y), &>0. (1.24)
Jj=1
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We will also need the operators
Hi=-A+V, j=1..,N. (1.2.5)

J

Then we have the following theorem.

Theorem 1.2.1. Let Vi R* >R fulfill (1 + |')*V;e ROL'(R?),j=1, ...,
N. Assume, in addition, that A(0) # 0 if H;= —A + V, is in case IIT or IV
Jor some j =1, ..., N. Then the operator H, y defined by (1.2.1) converges
in strong resolvent sense to the operator —A, y defined by (1.1.33) where
o = (ay, ..., ay) is given by

(o0 in case I,
—40)|(v;, 812 in case 11,
% =9 in case III, (1.2.6)

N, -1
L - )‘;'(0) {l; 1(v;, ¢jl)|2} in case 1V.

Here ¢; (resp. ¢y, | = 1, ..., N,) denote eigenvectors of u;Gyv; to the eigen-
value — 1 with (cf. Sect. 1.1.2)

@ d)=-1. @pdp)=—6w, LI=1,.,N, j=1,..,N.
(127

Remark. As remarked earlier, a;, = co for some j, means that the point
(,» ¥j,) should be removed from the definition of — A, y, i.e., we obtain —A; 7
Whel'e & = (al, ceey ajo_l, ajo.'.l, ey aN) and 7 = (yl7 ceey yjo'l’ yioﬂ’ ooy yN),
etc.

PROOF. The proof of the theorem is divided into two lemmas.

Lemma 1.2.2. The resolvent of H, y reads
N
(Hoy—k)'=G—¢ ) A, [+ B(];,;C, (k)
Jy=1

k*ep(H,y), Imk>0, €>0, (1.28)
where A, j(k), B(k) = [B,,;;(k)]} y =, and C, (k) are Hilbert—Schmidt operators with
integral kernels

A, j(K)(x, x") = A(€)Gilx — y; ~ ex)vi(x’),

A(e)ui(x)Gop(x — x")vy(x"), i=J,

1.29
L EUIGE(x — X') + 3, — Yoy (), ) # (129)

Bc.j]’(k)(x’ x') = {

C.j(K)(x, x') = ui(x)Gy(ex + y; — x'); j,j=1,....,N, Imk=0, £¢=0.
PROOF OF LEMMA 1.2.2.  Using Theorem B.1 we have

N
[Hy(e) — (€k)*1 ' = G — Y. A)Gud[1 + B(eh)];}d, Gy,

»y=t

(¢k)? € p(Hy(e)), Imk >0, (1.2.10)
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where
jx)y=v(x—e'y) GXI=ux—-¢ly) >0 j=1,...,N, (1.211)
and
B,(ek) = [B(ek); 1Y =y = [A(©)#,G 571 j oy - (1.2.12)

In addition to the scaling operator U, given by (1.2.3) we also need the unitary
translation operators

T,: L2(R*) —» L3(R%), (T9)(x)=g(x+y), geL}R?, yeR>:. (1.2.13)
Recall that
e2U,G, U = G,, e>0, Imk>0. (1.2.19)
With all this we can compute the resolvent of H, .
(H,.y — k¥
= ?U,[Hy(e) — (sb)* 1" U;!

N
=G, ~-¢? Y ALOGUd[ + B,(ek)1; 5, UG,

Jhi'=1

N

=G~ ¢ 2 Z Aj(e)ck Utﬁj 7;:;/1 7;,/:[1 + Bg(ek)]jj'l 7};}: 7-;.,/zaj' U, 'G,
2i'"1
N
=G, —¢ z A, k)1 + B,(k)]u,‘CM,(k), k*ep(H,y), Imk>0. (1.2.15)

»n 1

<,

As in the one-center case the problem is now reduced to the study of the limit of
the operators A, ,(k), [1 + B,(k)];;', C..;(k) as €| 0. As in Lemma 1.1.2.2 we obtain
convergence of

A, J(K) =5 Ao, (k) = (v), )Gi(* — y)),

C. ) =5 Co ) = (G =), Ny, j=1,....,N, Tmk>0, (1.2.16)

in Hilbert-Schmidt norm where we observe that 4, (k) and Cy k), j=1,..., N,
are rank-one operators.

The limit of e[1 + B,(k)]™! is much more delicate. We split the operator B, =
[B..,,(k)1} -, in the diagonal and off-diagonal elements, i.e.,

B, =D, + ¢E,, (1.2.17)
where D, = [D, ;;1);-, and E, = [E, ;;]¥ -, have integral kernels
D, ;i (x, x') = &; A,()u;(x) Gu(x — x")v;(x"), (1.2.18)
E, jj(x, x) = (1 — §;;)A;(e)uy(x)Gy(e(x — x') + y; — y;)vp(x’),  €=0.

From this decomposition it follows that

e[1+B)'=¢[1+D,+¢E]"'={1+¢[l + D] 'E}'e[1 +D,]", (1.2.19)

which implies that we have to find the limit of ¢[1 + D,]~! and E, as ¢ tends to zero.
Now the limit of the operator ¢[1 + D,]™* corresponds to the limit of the operator
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¢[1 + B,(k)]™! in the one-center case which was computed in Lemma 1.1.24,, i.e.,
[0 in case I,
[(ik/4m)|(v;, 8)I* + A10)) (4, -)4, incasell,

F;=nlime(l + D, )" =
40

N,
% _[’1}(0)]_1 ’; (Bt Vo in case I1I,

N, .
, I’Z=l [(@n) tik(By, u)(v;, $r))

t + A}(O)éu']-'(@m )i in case IV,
(1.2.20)

where [-] ! denotes the inverse matrix in case IV.

So far we only needed the conditions Ve R and (1 + |-|)¥;€ L'(R?), 4,(0) # O in
cases Illand IV, j = 1,..., N, but to control the limit of E, we use (1 + |-])2¥;e RN
L'(R3).

Lemma 1.23. [f V;: R? — R satisfies (1 + ||)*V,e RNL'(R*),j =1, ..., N, then
|E,y is uniformly hounded and
S'lin; Et = Eo = [(l - 6”4)0‘(}11 - yjl)(Uj', ')uj];{j'SI Im k> 0‘ (1.2.21)
o
PROOF OF LEMMA 1.2.3.  To simplify the notation we assume 4;(¢) = 1. First, we

show that ||E,jj is uniformly bounded by estimating ||E, ;1. j # j’ (see [250]) as
follows

IE,.,; — Eq.,y I3 < :v_ji {na + |'|2)V,"R"(l + l'lz)Vr"R
»

1
an’ly, -
+ 2|V @1V Ly }- (1.2.22)

Let f e C3(R?). Using the fact that f has compact support and that (1 + |-))V, €
L'(R?), one can prove (see [250], Lemma 2.4) that

i(Ee.jjy — Eo.j)f Il =0 asel0, j,j=1,..N, Imk>0 (1223
The uniform bound on ||E, || then completes the proof. ]
Using the resolvent identity we now obtain

{t+¢(1+D]'E}'=[1+FE,]"'"+{1+¢[1+D]J'E)}"
{e[1+ D] 'E, - FEo}[1 + FEo) ' -5 [1 + FE]7".

(1.2.29)
Together with (1.2.16) and (1.2.20) this implies that
e[1 + B] "' 55 [1 + FE,]'F, Imk>0. (1.2.25)

We are now in possession of the limits of all operators involved in (H, y ~ k).
By a tedious but straightforward calculation [247] we obtain the result stated in
the theorem, viz.

N
slim (H,y k) ' = G~ 3 Ao, (WI[1 + FE)"'F1;, Co )
224 j

N e

wherca=(a,,...,a~)isgivenm(l 6). a
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We can also obtain norm resolvent convergence in the N-center case, but
then we need stronger decay on the potential.

Theorem 1.24. Let Ve R be real-valued and supp V; compact, j =1, ...,
N. Assume, in addition, that 2(0) # O if H; is in case Il or IV for some j =
1,..., N. Then H, y converges in norm resolvent sense to — A, y where o is
given by (1.2.6).

PROOF. As Rollnik functions with compact support are in L'(R?) ([434], Theorem
1.7) the only thing we have to prove, when compared with the preceding theorem,
is that

IE, — Eoll >0 asel0. (1.227)

Since the potentials have bounded support we can assume that the variables x, x’
in the definition (1.2.18) of E, satisfy |x|, |x'] < ¢, when we estimate the Hilbert—
Schmidt norm of E, — E, which implies that le(x — x') + y; — y,| 2 ly; — y;| —
2¢c > Ofor all e sufficiently small. Using the dominated convergence theorem (1.2.27)
readily follows. [ ]

I1.1.3 Convergence of Eigenvalues and Resonances

Using the convergence results from the previous section we now deduce results
concerning the convergence of eigenvalues and resonances.

Theorem 1.3.1. Let V€ R be real-valued, supp V; compact, j =1, ..., N,
and suppose (1.1.2.84). Moreover, if H;= —A + V; is in case 11l or IV for
some j we assume, in addition, 2(0) # 0. Assume that k3, Im ko > 0, is a
negative eigenvalue of — A, y (the norm resolvent limit of H, y as €| 0) with
multiplicity M. Then there exist functions h, | = 1, ..., m, analytic near the
origin, hy(0) = 0, and integers m; € {1,2},1 =1, ..., m, such that

k?, = k% + hy(e"'™)
=k2+ Y a,e™ I=1,..,m Ym=M (131
r=1 =1

are all the eigenvalues of H, y near ki for ¢ > 0 sufficiently small. If m; = 2
Jor some |, both square roots should be used such that the total multiplicity
of all eigenvalues of H, y near k} is exactly M. Furthermore,

k. = ko + €™k} + o(c"™), (1.3.2)
where k! = k, is a solution of (1.3.33) if m; = 1 and of (1.3.36) if m; = 2.
Remark. Since cases I and III do not give rise o any interaction in the limit

€10, we have implicitly assumed in the above that H; = —A + V; is in case
IT or IV for at least one j.
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PrOOF. From the analysis of Appendix B we know that k2 < 0 is an eigenvalue
of H, , iff —1 is an eigenvalue of B,(k,), Im k, > 0, where B,(k,) is given by (1.2.9),
and hence iff

det,[1 + B,(k,)] = 0. (1.3.3)

But since the operator B,(k) does not depend on k when ¢ = 0, we cannot use the
implicit function theorem in (1.3.3) directly. Instead we expand the operator B,(k)
in norm in powers of ¢, viz.

B.(k) = B + £B(k) + o(z), (1.3.4)
where

B = [9;;4;Gov;1} ;- =y (1.3.5)

ik N
B(k) = {[l;(O)ujGov, + ‘—‘;(v,, ~)u{| 5 + Guly; — y,)vy, ~)uj}
Jr=1
We know that Ker(l + B) = {® € »#|(1 + B)® = 0}, with # = @, L*(R?), con-
sists of vectors of the form

D =(D,,...,0y), (1.3.6)
where
0 if H=—-A+V, isincasel,
o, = aé; if H=—-A+V, isincasell, (137)

Y .
Y ayéy if Hj=—A+V, isincaselllorIV; j=1,...,N.
=1
We now want to decompose the Hilbert space # as follows. Let P = [4;; ;] be the
projection
0 in case I,

p= (@ )9 in case I1, (1.3.8)

N, -
—'Zl (@p, )¢y incaselllorIV; j=1,...,N,

and let
# = Ker(l + B)=Ran P,
), = Ran(l + B). (139)
Using
Ker P = Ker(l + B*)* (1.3.10)
and the Fredholm alternative ([494], p. 136) we infer that
s, = Ker P. (1.3.11)
Thus 5 can be written as a direct sum
H =K+ A, (1.3.12)

The space J# so far consists of all eigenvectors of B with eigenvalue — 1, while the
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limit operator —A, y is only affected by the eigenvector in case II and the one
eigenvector in case IV which gives rise to the zero-energy resonance (with our
convention this is ¢;, in case IV, cf. (I.1.2.84)). Because of this we put all these
eigenvectors in a space ¢, and let ¢, be the complement, thus
H = Hy + A, (1.3.13)
Define
Boo = PoBP,, B,o = (1 — P,)BP,,
00 (1] 4] 10 0) 1] (l3l4)
By, = PoB(1 - Py), By, = (1 — F)B(1 — P)

and similarly for B(k) and o(¢). Here P, is the part of P projecting onto . Then
Byo = — Py and By, = B,, = 0 which implies that B,(k) can be written as

Bk) = I:—l + &Boolk) + 090(2) €By, (k) + 00, (¢)

eBiok) + 010l) By, ++:B..(k)+o..(e)]’ ¢>0 Imk>0.

(1.3.15)
where the decomposition is with respect to ., and (3, + J¢;). Now let

1
=1+ Byolk) + ;000(5) eBy, (k) + 04, (€)
Bc(k) = 1 ’
B,o(k) + coi0le)  Bu(k)+ £B,, (k) + 0,,(¢)

e>0, Imk>0. (13.16)

With these definitions we infer

[+ B(k)][ ] =¢&[1 + B,(k)] [%] (1.3.17)
Y2 v
By relabeling, if necessary, we can assume that H; = —A + V,j = 1,...,n5,n5 < N,

are all in case II or IV. In addition, we also write ¢, for ¢, if H; is in case IV. With
all this at hand, a typical element ¥, and 5 looks like

b 1 yeo n 1.3.18
o ((ul' ¢l ) ¢l (vno? ¢no) ¢ 0) ( )

and hence

n k
(Buolld¥a), = 6 0)4, 3, [(a, ~ ;7)5”' -Gy - y,-.)] a. (1319
E=
Furthermore, we observe that
B,o(k)¥y + (1 + B,,)¥, =0 (1.3.20)

can always be solved with respect to ¥, € 5, + J#, for any ¥, € 5, since B, o(k)¥, €
X, and [1 + B]|,, is bijective from (1.3.12).
Hence

—1ea(By(k)) iff Ker Byy(k) # {0}. (1.3.21)

What we have obtained so far is to replace the operator B,(k), which contains no
information on k when ¢ = 0, by the operator B,(k) which is directly related to the
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point interaction Hamiltonian —A, y at ¢ = 0. Let
d(e, k) = det,[1 + B,(k)], (1.3.22)
which is analytic in ¢ and k near ¢ = 0 and in Im k > 0. Then

1 + [Byo(k) — 1] 0 ]
Byo(k) 1+ By,

_ 14 [Byok)—1] © 1 0
'd“‘[ B,o(k) 1]"“’"[0 1+B,,]

= det;[Byo(k)] det,[1 + By, ]
= det[Byo(k)]e TrlBeo®1) det, (1 + B,,) (1.3.23)

d(0, k) = detz[

using the relations ()¢ being a separable Hilbert space)
det, {[1 + AJ[1 + B]} = det,[1 + A] det,[1 + B] exp(—Tr AB),
A, Be #,(#), (1.3.29)
det,[1 + A) = det[1 + A)e ™4, A € B, (). (1.3.25)

None of the terms on the right-hand side of (1.3.23) can be zero except the first, and
we can conclude that the multiplicity of the eigenvalue k3 of —A, y equals the
multiplicity of the zero of d(0, k) at k = k.

Using the implicit function theorem we obtain that H, , has exactly M eigenvalues
(counting multiplicities) k7, converging to k3, and that k?, can be expanded in a
convergent Puiseux series. From Lemma B.4(a) we infer that this Puiseux series can
have at most square root branch points and hence we obtain the expansion (1.3.1).
To find the first coefficient in expansion (1.3.1) we proceed as follows. Let

ki = ki m,. (1.3.26)

Then IZ,‘, and hence B,...(Izt) (we suppress the ! dependence in the notation) are
analytic in ¢ near ¢ = 0. By first reducing the problem to a finite dimensional space
by standard means ([391], Sects. XIL.1 and XIL.2) and using a theorem by Baum-
girtel [60], [61] we can find an eigenvector ®, near ¢ = O for B,.(k,) such that e - ®,
is analytic and

[1 + B.m(k,)]®, = 0. (1.3.27)

Let &, = (4., ..., dv.)- Using (1.3.17) we can choose ¢, =0,j=no + 1, ..., N,
and

Go=0p8)"cdy  i=1,....n (1.3.28)

where ¢;,j = 1,..., ny, are defined as in (1.3.18) and (¢,, . .., ¢,,) is an eigenvector of
the matrix I, y(k,), ie.,

no ik .
Z [(al - In>6”' - Gko(yl - yl')] i = 0, ]= l, ey N (1.3.29)
=1

(Recall that, by assumption, H; belong to case I or Il for j=ny + 1, ..., N, and
therefore do not contribute to the limit, or equivalently, a; = oo forj=no + 1, ...,
N.) Because of the resonances (Theorems 1.3.3 and 1.3.4) we will not use that
m e {1, 2}, but consider the general case m € N. By first taking the derivative m times
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with respect to ¢ at ¢ = 0 we obtain after a short computation denoting

dk
ky=—2|
d& =0
o = 'ﬁ“ , r=2..m+1, j=1,... N, (1.3.30)
e=0
a¢;
¢f=_f"[ , j=1...,N,
T 0 e

that
1 (m) 1 ' -1 iko . .
(1 + u,Govj)y™ + m!| —2(0)(v,, 8,79, + 49

+m S G-y =0, =1, (1331)
i=

m=1l:
By taking the inner product with ¢J ¢, sgn V; we obtain of course (1.3.29).
From (1.3.31) we deduce that

N, 1 n
4= Z G — m! {[ 40)(u;, ¢) ¢y + u]c, 2 ;G (3, — )’i')‘r}
NI
= a9, + ‘;2 G+ i J=1...,n, (1.3.32)

where T, denotes the reduced resolvent (cf. (1.1.2.37)) with V replaced by V,,j = 1,...,

ny, and where a,, ..., a,, are constants to be determined later and g, ! = 2,..., N;,

Jj=1,..., ngy, are constants which will drop out of the subsequent calculations. By
calculating the second derivative of (1.3.27) in ¢ = 0 and taking the inner product
with ¢; we finally obtain

k2 _
2 0)(v;, ¢)'c; — ﬁ Jf d®x d3x’ @,(x)y(x)|x — x'|v;(x")g(x") (v, 8)) "¢,
R
+ (8, 1) XO)ayc, + X(0)a; — 2(0)(4, x,)

+2 5 Gyl = 16 1) ey + (07, 2,)]
p
+ 2010, opita,— 224, )0 )+ 52,0 i el »le,
4“ P J 41t A ] XJ (M

+ j"il J“[ d3X dax' @Tx)vj(x)vc,‘o(yj - yl-')'
=~ ne
(% = XYW ()X )0 ) ey =0, =1, mg.  (1.333)

This is a system of n, equations with ny, + 1 unknowns (k, and a,, ..., a,,). How-
ever, there is still one overall constant left undetermined, namely the normaliza-
tion of @, (or the eigenvector (c,, ..., c,)). This reduces the number of unknowns
to ng.
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m>1:
First, we observe that

(1 + u,Gov))¢; =0 (1.3.34)
and hence
NJ
¢ =ap + ,Z, Giby,  J=1,...,n4 (1.3.35)

for some constants (a,, ..., a,,) to be determined later (the constants a,. [ = 2, ...,
N;, j =1, ..., no, will cancel). By computing the (m + 1)th derivative of (1.3.27) in
& = 0 we obtain, after taking the inner product with ¢, that

y ,
2200+ 50+ 6,0) 3 Gulyy =)0y dy)ay

ik o
+'Zl(¢,., v) Y el =0, j=1,...,n (13.36)
T =1

Again this is a system of n, equations with n, + 1 unknowns (k,, a,, ..., a,,) which
is still solvable due to the one extra degree of freedom contained in the normalization
of @,. [ ]

Turning the situation the other way around we can start with the negative
eigenvalues of H, y which remain bounded and do not get absorbed in the
continuous part of the spectrum as ¢ | 0. This is the set-up for the next theorem.

Theorem 1.3.2. Let Ve R be real-valued, supp V; compact,j=1, ..., N,
and suppose (1.1.2.84). Moreover, if H;= —A + V; is in case 11l or IV for
some j we assume, in addition, A(0) # 0. Let E, be a negative eigenvalue of
H, y such that

~0 <M, <E,<M,<0 (1.3.37)

for € > 0 small enough. Suppose {¢,} is a positive sequence decreasing to zero,
and denote by ki (Im ko > 0) any accumulation point for {E, }. Then k} is
an eigenvalue of —A, y. Let M be the multiplicity of the eigenvalue k3 of
—~ A, y. Then the conclusion of Theorem 1.3.1 holds, i.e., there exist m analytic
Junctions hy, 1 = 1,...,m,with h(0) = O suchthat form,e {1,2},1=1,...,m,

K2, = k2 + hy(s"™)
=K+ Y a,e™  I=1,..m Y m=M, (1338)
r=1 =

are all the eigenvalues of H, y near k3. k,, can expanded as in (1.3.2). In
particular,27'a, , = k, is given by (1.3.33)if m; = 1 and by (1.3.36) if m; > 1.

PROOF. The proof is almost a dircct consequence of the proof of Theorem 1.3.1.
In the notation of that proof the analytic function
d(e, k) = det,[1 + B,(k)] (1.3.39)

is zero iff k2 is an eigenvalue of H, y when ¢ > 0, and of —A, y if ¢ = 0. From the
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assumptions we know that

610,  de,/E)=0, 1m. /E_ >0, (1.3.40)
and that E, — k3. Hence

d(0, ko) =0, Imky >0, (1.341)
and we are in the situation covered by Theorem 1.3.1 for obtaining the stated form
of k, . a

In the proofs of Theorems 1.3.1. and 1.3.2 we did not use in an essential way
that k? was an eigenvalue of H, y per se, but only the equivalent statement
that B,(k,) had —1 as an eigenvalue. But in the “unphysical half-plane” (i.e.,
in Im k < 0) this is by definition equivalent to k, being a resonance of H, .
Thus we can immediately state the analogous results of Theorems 1.3.1 and
1.3.2 for resonances.

Theorem 1.3.3. Let V,e R be real-valued, supp . compact,j=1, ..., N,
and suppose (1.1.2.84). Moreover, if Hj= —A+ V is in case III of IV for
some j we assume, in addition, 2(0) # 0. Let k,, Im ko < 0, be a resonance
of —A, y of multiplicity M. Then H, y has exactly M resonances which are
branches of one or more multivalued analytic functions with at most an
algebraic branch point at ¢ = 0, such that

ki = ko + hy(e'’™)
kot Y ae™  I=1,..,m Y m=M, (1342)
r=1 1=1

are all the resonances of H, y near kq for ¢ > 0 sufficiently small. Furthermore,
a,, = k, is given as a solution of (1.3.33) if m; = 1 and of (1.3.36) if m; > 1.

Remark. We cannot infer that m, € {1, 2} in this case as we could for the
eigenvalues, because we no longer have the constraint that k, € iR for ¢ > 0
small enough.

PROOF. As in the proof of Theorem 1.3.1 we define

d(g, k) = det,[1 + B,(k)], (1.343)
and from the assumption we have
d(0, k) = 0, d0,-)#0 (1.3.44)

which, using the implicit function theorem, implies (1.3.42). The expansion is ob-
tained as in Theorem 1.3.1. [ ]

Theorem 1.34. Let Ve R be real-valued, supp ; compact, j=1, ..., N,
and suppose (1.1.2.84). Moreover, if H;= —A + V is in case 1II or IV Jor
some j we assume, in addition, A;(0) # 0. Let k,, Im kc < 0, be a resonance of
H, y such that

0<M,<|Imk,| < |k|<M, <00 (1.3.45)
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for ¢ small enough. Suppose {¢,} is a positive sequence decreasing to zero.
Then any accumulation point k, of {k, } is a resonance of —A, y. Let M
denote the multiplicity of ko. Then there exist m analytic functions h,, | =
1,..., m, with h)(0) = O such that

kl.e = ko + hl(cl/m')

[ng k!

0
= ko + Z a,',t:’/'"’, l= l, ceeymy m, = M, (1.3.46)
r=1

!

are all the resonances of H, y near kq. a, , = k, is given by (1.3.33) if m; = 1
and by (1.3.36) if m, > 1.

PrROOF. The proof is essentially equal to that of Theorem 1.3.2. [ ]

IL.1.4 Multiple Well Problems

By the multiple well problem we mean the asymptotic study of eigenvalues
and resonances of the operator

N
Hy(e) = —A + Zl V(- —¢7ly), >0, (1.4.1)
f=
as ¢} 0. Assuming that the potentials V; are localized around the origin, the
operator Hy(€) corresponds to the situation where the centers y, /e, ..., yy/e,
around which the potentials V,(- — ¢~ 'y,), ..., Vy(- — & 'yy) are concen-
trated, move apart.
The reason why we can study this problem in the context of point interac-
tions is, of course, the scaling relation we have noted and employed earlier,
viz,, if

N
Hy=-A+¢? jZ Ve (- —y)), €>0, (14.2)

—

then
Hy(e) = €U, 'H, 4 U,, (1.4.3)

where U, is the unitary scaling group given by (1.2.3). We will begin with what
we would like to call the critical multiple well problem, i.e., where we, in
addition, assume that

H=-A4+V, j=1,..,N, (1.4.4)

isin case Il, i.e., H;has a simple zero-energy resonance. In the preceding section
we treated the case when

k2 >k2<0 asel0, (14.5)

where kZis an eigenvalue of H, y. From the unitary equivalence (1.4.3) we infer
that if k%(¢) (Im k(¢) > 0) denotes an eigenvalue of Hy(¢), we have the relation

k, = £ 'k(e) (1.4.6)
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which implies that we have studied eigenvalues of Hy(¢) approaching zero as
O(e?). For the critical double well (N =2, y, =0, y, = y, in (1.4.1)) we can
immediately state the following theorem.

Theorem 14.1. Let
H) = —-A+ V, + Vo(- —¢7y), (1.4.7)

where Ve R, j = 1, 2, are real-valued and of compact support. Moreover,
assume that H; = —A + Vi,j = 1,2, are in case II. Then H,(¢) has, for ¢ > 0
sufficiently small, a simple eigenvalue k?(¢), Im k(c) > 0, tending to zero as

k(e) = eko + €2k, + o(e?), (1.4.8)
where kg is the unique solution with Im ko > 0 of
iko|y) = —e*ol, (14.9)

In addition, H,(¢) has an infinite sequence of simple resonances k,(¢) tending
to zero and

ka(€) = cko » + €2k » + 0(€2), (1.4.10)
where k, , is a solution with Im k, , < 0 of
ikoalyl = £eon (1.4.11)

k, and k, , are solutions of (1.3.33). Asymptotically, we have

1 .
koo~—(n+4¥Hn - L

In[(n + 4)n] asn— oo. (1.4.12)
Il Iyl

Remark. The numerical values of the solutions of
iz, = +e' (1.4.13)

with Re z, > 0, for the first few n, are given in Table 1.

PROOF. Since now, according to our notation, Ae) =1, which implies that a, =
a, = 0, we combine the computations from the example in Sect. 1.1 with Theorems
1.3.1 and 1.3.2 to obtain the result. a

For completeness we state a similar result in the N-center case.

Theorem 14.2. Let
N
Hy(e)= —A+ Y V(- —¢'y), &>0,
j=1

where V; € R are real-valued and have compact support forj=1,...,N. In
addition assume that Hj= —A + V;is in case Il forj=1, ..., N. Then we
have:

(@) If Hy() has a continuous eigenvalue k*(c) (resp. resonance k(g)) such that
0< M, <|Imk(e)le™ <|k(e)le™ < M, < o0 (1.4.14)
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for € small enough, then k(e) is a multivalued analytic function and we
have the expansion

k(e) = eky + em*Vimk, 4 o(gtm*1im), (1.4.15)

where ko, Im ko > O (resp. Im ky < 0), is a solution of

ik
det [1_4;;1 6Ji' + Gk,,(yi — y])] =0 (1.4.16)

and k, is a solution of (1.3.33) if m=1 and of (1.3.36) if m > 1. (If
Imky>0,thenl <m<?2)

(b) If ko is a solution of (1.4.16), then there exists an eigentalue k*(¢) of
Hy(e) if Im ko > O (resp. a resonance k(e) if Im ko < 0) with the expan-
sion (1.4.15).

PROOF. The theorem is a direct consequence of Theorems 1.3.1-1.3.4 by noting
that (1.4.16) is equivalent to the statement that k3 is an eigenvalue (resp. k, is a

resonance) of —A, y. [ ]
Table 1
1
n —Rez, Imz,
n

0 0 0.567143
1 0.425655 —0.318132
2 1.392665 —1.533913
3 2.415536 —2.062278
4 3.430203 —2.401585
5 4440171 —2.653192
6 5.447408 —2.853582
7 6.452924 —3.020240
8 7.457284 —3.162953
9 8.460827 —3.287769
10 9.463770 —3.398692
11 10.466259 —-3.498515
12 11.468394 —3.589263
13 12.470248 —-3.672450
14 13.471876 —3.749243
15 14.473317 —3.820554
16 15.474603 —-3.887116
17 16.475759 —3.949523
18 17.476803 —4.008262
19 18.477753 —4.063742
20 19.488621 —4.116305
21 20.479416 —4.166242

IL.1.5 Stationary Scattering Theory

The topic of this section is the study of scattering quantities for the Schrodinger
operator with point interactions at a finite number of points in R* and their
natural ¢c-expansions. We start with stationary scattering theory for the pair
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(=Awy, —A). Let

N iklx—y,|
¥, y(kw, x) = e*** 4+ T, y(k)];; e™err ——
.Y( ) j.j’z=l [ .Y( )]” 47[|X _ y'|
det[T, ,()] #0, k>0, o;eR, yeY, j=1,...,N, x¢Y, weS”

(1.5.1)

Then ¥, y is formally of the form (1.1.43) with ¢,(x) = e*** which is not in
L?(R3) but satisfies

(—Ad)(x) = k24 (x) (1.5.2)
in the distributional sense. Furthermore,
(—AY, y)(ko, x) = K*¥, y(ko,x), x¢Y, (1.5.3)

and

lim  lim dn|x'|e W+ _ A\ — (k + ig)?] 7 (x, x') = ¥, y(ko, X),
A 2N

det[T, (k)] #0, k>0, oeR, yeY, j=1,...,N, x¢VY.
(1.5.4)
Hence the functions ¥, y constitute the generalized eigenfunctions of —A, y

or, in other words, the scattering wave functions. With this at hand the on-shell
scattering amplitude f, y(k, w, w') associated with — A, , equals

foylk, 0, w)= lim |x]e *™¥[¥, (ko' x) — e™**'*]

X" 'x=w
N
= (@n™ Z [ra.Y(k)];j'le"""'f“""l“”,
ig=
det[[, y(K)] #0, k=0, 4€eR, ye¥, j=1,..,N, oweS
(1.5.5)
Hence the off-shell extension £, y(k, p, q) of £, y(k, w, ®') reads
N .
A'Y(k’ P9 = (4n)™! Z [r,'y(k)],-'j,le‘(}',»q-y,n),
J.d'=1
det[[, (k)] #0, keC, weR, yeY, j=1..,N, pqeC’
(1.5.6)

so as to make
favlk, @, @) = £ y(k, P, @)pj<iq1=xs
p.geR3, w=|p|'p, o =|q|7'q. (1.5.7)

Thus the unitary on-shell scattering operator ¥, y(k) in L*(S?) equals

k
(v ()P (@) = $lw) ~ 5~ Lz ' £, vk, 0, )P(@), ¢ L*S?),
(1.5.8)
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or after insertion of (1.5.5)
N

Far®) =1 = (fBe%D) 3, a0 ™0, )e 0

ji=
det[I}, y(k)] #0, k>0, a;eR, yeY, j=1,...,N. (159)

The low-energy limits of £, y(k, w, ') and ¥, y(k) can easily be obtained from
(1.5.5) and (1.5.9), respectively. Namely, we have

n-lim &, y(k) = 1,
k=0

N

-'l‘i_l.‘;/;,}'(k! w, w') = "(47':)-' Z [ra, Y(O)]J-,l = @4,y

Bi=t
det[I, y(0)] #0, «;eR, yeY j=1,...,N, (15.10)
where a,,y is the scattering length. Finally, we observe that %, y has a mero-
morphic continuation in k to C with poles exactly at the eigenvalues and
resonances of — A, y.
We now turn to the question of how the scattering amplitude Z y and the

on-shell scattering operator %, y are approximated by the corresponding
quantities for the operator H, y. First, let

&P, %) = (B2,,(p, %), ..., B2, (P, X)), (1.5.11)
where

&, (0, X) = i, (e, g, (p,x) =D, [(x)e”*,
i, j(x) = aj((x -y €), o,, ,'(x) = .j((x - .Vj)/s)§
e>0, xeR?} peC3 j=1,...,N, (1512

and i; and o; are defined by (1.2.11) and ¥ € R are real-valued with supp V;
compact, j = 1,..., N. The transition operator Z, y(k) for H, y then reads

Ez.y(k) = [i't.jj’(k)]?fj’SI: H - H, Ec,jj’(k) = 3—2’1,'(3)[1 + B(e, k)]j-j’l
e>0, Imk>0, k*¢68, jj=1,..,N, (1.513)

where
B(e, k) = [Bjj (&, k)1 j=y: # - H#,
e (1.5.14)
B(s, k) = ¢~ %Ay}, ;G\ D,.;, €>0, Imk=>0, jj'=1,...,N,
and
8, = {k* e C — {0}| — 1 € 6,(B(¢, k)), Im k = 0} (1.5.15)

which is a discrete, compact set of zero Lebesgue measure.
Then the on-shell scattering amplitude f; y(k, w, ') of H, y reads

ft' Y(ky , (D,) = —(47!)-1(66.5(’“‘0)’ Eb:,y(k)&;.e(kw’))

N ~ -~ -~
= —@n Y (G, ko)L (0F,,)  (15.16)

pi=



I1.1.5 Stationary Scattering Theory 137

with its off-shell extension £, y(k, p, q) given by
forlk, p, g) = —(@4m) "' ®5..(p), i,y () DS, .(q))

J

N -~ -~ -~
= —(@4n)™ Z . (@c.,,(p) L., ;7 (K)Bc., (9)) (1.5.17)
J=
such that

./;'.,Y(k9 w, wl) = f;.Y(k’ q’ p)l|p|=lql=k’
£>0, k*¢8, p,qeR® w=[p|™'p, o =|q"'q. (1.5.18)

Finally, the unitary on-shell scattering operator S, ,(k) for H, y equals
k
(Se,y(K)4) (@) = $(w) — i I a*w’ f, y(k, », 0')$(0'),
T Js2

peL¥S?), k>0, k2¢68, weS: (1519

With all these definitions at hand we will start studying their relations in
the ¢ 0 limit. By performing the usual scaling, we transfer the difficult ¢
dependence from ®F , to the transition operator ¢, y(k), so that the & depen-
dence essentially enters the explicit function G,(x).

Theorem 1.5.1. Let V; € R be real-valued with compact support for j =1,
..., N and suppose (1.1.2.84). If H;= —A + V; is in case Il or IV for some
Js assume, in addition, that 2)(0) # 0. Then f, y(k, p, q) is analytic in & near
£¢=0and

.’;.Y(k9 P, q) =/:I.Y(k, D, q) + 0(8)9 det[ra.Y(k)] #* 0’ k 2 09 P,q€ C3
(1.5.20)

with o given by (1.2.6).

PROOF. Using the unitary scaling group U, defined by (1.2.3) and the unitary
group of translations T, ,, defined by (1.2.13) we see that f, y(k, p, g) can be written as

Sexlk, p, @)

N ~ -~ -~
= —'(47':)-' ; Zl (Ua_lT;',/c¢¢..y,(p)? Ut"ln,/ttt.Jj'(k)T;;';tvtvc_l1;',I¢¢::y,(q»
W J =
N
= —(47‘)-1 e (¢¢_.y,(P), tt.j]'(k)¢:y,.(q))
JJ=
= —(@4n)'e(®s..(p), t.() D3 .(9))- (1.5.21)
Here
05:(1’) = (¢Ey1(p)’ ) ¢Ey,,(p))y (1522)
and

¢¢’.’J(p, x) = ui(x)e"“" ),

. (1.5.23)
By, (P, X) = v(x)eP= £>0, xeR?, peC?, j=1,...,N,
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and, finally,
t k) = [t, ;U)o my: H = A, t..,r = A)[1 + B,(k)],}, (1.5.24)

where B,(k) is defined in (1.2.9). Hence f, (k. p, q) is analytic in ¢ near ¢ = 0, and
using (1.2.25) we obtain the limit (1.5.20). [ ]

Remark. The next order in (1.5.20) can be computed explicitly (cf. [252]).
We also emphasize our convention that the j, th line and row should be deleted
in the matrix I, ,(k) if o, = oo for some jj,.

Applying this theorem to the scattering operator, we immediately infer the
following result.

Theorem 1.5.2. Let Ve R be real-valued with compact support for j =1,
..., N and suppose (1.2.84). If Hj= —A + V; is in case 11l or IV for some j,
assume, in addition, that 2)(0) # 0. Then S, y(k) is analytic in ¢ near & = 0 and

S,.v(k) = S y(k) + O(e), det[I, y(k)] # O, k>0, (1.5.25)
with a given by (1.2.6).

PROOF. Applying the definition (1.5.19) and Theorem 1.5.1 the result immediately
follows. L ]

Notes

Section I1.1.1

The N-center point interaction appears in the physics literature in [80], [132],
[149], [151], [277], [363], [380]. In the mathematics literature the operator
(1.1.33) was first studied by Albeverio, Fenstad, and Heegh-Krohn [12] using
nonstandard analysis. Nonstandard analysis provides a justification of the
heuristic computations made at the beginning of this chapter, see Appendix
H. Our proof of Theorem 1.1.1 is essentially taken from Grossmann, Hoegh-
Krohn, and Mebkhout [226], see also [227]. Theorem 1.1.2 is due to Zorbas
[512], see also [129], while Theorem 1.1.3 is contained in [227] and Theorem
1.1.4 is an extension of some of the corresponding results in [227] (cf. also
[363]). Proposition 1.1.5 is taken from Thomas [482], [483], where one can
also find more detailed estimates on N(k?, «,, ..., ay). The final example, the
two-center problem, has been studied by [62], [146], [445], [463], [464],
while our presentation closely follows Albeverio and Heegh-Krohn [26]
where the regular three-center problem is also solved (cf. also [380]). Reson-
ances in the N-center problem are also discussed in [432].

Apart from the proof in nonstandard analysis and the proof used here in
order to define the Schrodinger operator with a finite number of point interac-
tions, there are also other possibilities: One can simply start with the explicit
expression (1.1.33) for the resolvent, and prove that this is the resolvent of a
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self-adjoint operator. This point of view has been used in Grossmann, Hoegh-
Krohn, and Mebkhout [227].

Another possibility is to use Theorem 1.1.2 as a starting point. This has
been discussed by Zorbas [512] and, in particular, by [129]. In the latter,
point interactions corresponding to other self-adjoint extensions are studied.

Finally, one can obtain the Schrédinger operator with point interactions
as limits of Schrodinger operators with less singular short-range interactions.
This is the content of Sect. I1.1.2.

For generalized pointlike interactions, cf. [369], [370], and [430].

External electric fields in connection with — A, , are studied in [2].

Resonances in arrays as N — oo are discussed in [228], [503].

Section I1.1.2

The first result on the approximations of point interactions by local scaled
short-range interactions in the N-center case was given by Albeverio and
Hoegh-Krohn [24]. Their result has been improved by Holden, Hoegh-
Krohn, and Johannesen [250] and the presentation here is a slight improve-
ment on the latter.

Section I1.1.3

The first results on the short-range expansion of eigenvalues and resonances
in the N-center case appeared in Holden, Heegh-Krohn, and Johannesen
[250]. The presentation here is an improvement on [250]. The location of
resonances is also studied in [380].

Section IL.1.4

The multiple well, and in particular the double well, has been studied for a
long time in mathematical physics. Theorem 1.4.1 is due to Heegh-Krohn and
Mebkhout [244], [245]. But the eigenvalue part was noted earlier by Klaus
and Simon [297]. Klaus [295] obtained stronger results for the ground state
of the symmetric double well, H = —A + V + V(- — y). In [245] the asymp-
totic behavior of eigenvalues, resonances, and eigenvectors of the operator
H(¢) is studied.

Section IL.1.5

The short-range expansion for the scattering amplitude and scattering opera-
tor was first discussed by Holden, Hoegh-Krohn, and Mebkhout [252] where
the next order terms are also explicitly computed. Furthermore, in the generic
case, i.e., in case I, the third-order term is also calculated. Scattering from point
interactions has been treated in [483].



CHAPTER 11.2

Finitely Many J-Interactions in
One Dimension

I1.2.1 Basic Properties

The purpose of this section is to generalize Sect. 1.3.1 to the case of finitely
many d-interactions on the real line.

Let N € N and introduce theset Y = {y,, ..., yv} = R. The minimal oper-
ator Hy in L(R) is then defined by

. a? .
Hy = —a-x—z, D(Hy) = {g € HZ'Z(RNQ()’J‘) =0, yieYj= L., N}
(2.1.1)
Hy is closed and nonnegative and its adjoint reads
; d? .
HY = — 5 D(H}) = H*'(R)NH*}(R - Y). 21.2)

By an explicit computation the equation
Iryk) = k2Y(k), Y(k)eDH}), k*eC—-R, Imk>0, (21.3)
has the solutions
Yk, x) = e**l Imk>0, yeY, j=1,...,N, (214

which therefore span the deficiency subspace of Hy. Thus Hy has deficiency
indices (N, N), and hence all self-adjoint extensions of H, are given by an
NZ2-parameter family of self-adjoint operators. Here we restrict ourselves to

140



I1.2.1 Basic Properties 141

the case of so-called separated boundary conditions at each point y;, j = 1,
..., N. Thus we introduce the following N-parameter family of closed exten-
sions of Hy

d2
Ther= g
DA—A,y)={ge H'®)NH*XR - V)lg'(y;+)—g'ty;—) = %9(y;),

j=1,...,N},

a=(a,...,ay), —00<e<o0, j=1,...,N. (215
A simple integration by parts proves that — A_ y is symmetric. Moreover, since
Hy has deficiency indices (N, N) and the N boundary conditions in (2.1.5) are
symmetric and linearly independent, — A, y is self-adjoint ([158], Theorem
XII. 4.30). The special case & = 0 (i.e., o, = 0, j = 1,..., N) again leads to the
kinetic energy operator —A on H*%(R). The case a;, = oo for some j, leads
to a Dirichlet boundary condition at the point y;_ (i.e., g(y;, +) = 9(y;,—) = 0).
By definition —A, y describes N d-interactions of strength o; centered at the
points y;e Y,j=1,...,N.

We now summarize some of the basic properties of —A, y:

Theorem 2.1.1. Let a; #0,j= 1, ..., N. Then the resolvent of —A, y is
given by

N
(=A.y — kz)-l =G, + z;l [ra.y(k)]ﬁ'l(ak(‘ - ,Vj'), )G(- — Yj),

k*ep(—=A,y), Imk>0, —0<o;<00, y;eY, j=1,...,N, (2.16)

where
Ly(k) = =[98 + G(y; — yp) ) =1 217

PROOF. One can follow the corresponding proof of Theorem 1.3.1.2. Let g € L*(R)
and define

ha(x) = (i/2k) I dx’ e*~g(x")
R

N
~(1/4k?) ¥ [Ty [ dx’ e®x1lg(x)e®=r)  Imk>0, (2.1.8)
3 JR

where k is chosen such that det[T, y(k)] # 0. Then, obviously, h, € H*'(R)N
H*%(R — Y) and by inspection

ho(y;+) — ha(y;=) = ayho(y),  j=1,...,N. 2.19)
Thus h, € 2(—A, y) and
((—Aey — K)h)(x) = —h(x) — k*h(x) = g(x)y xeR-Y, (2.1.10)

which proves (2.1.6). The explicit structure of (2.1.6) then shows that (— 4, y — k?)™!
has a first-order pole in Im k > 0 iff det[T, (k)] = O. ]
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If some of the a; equal zero, one extends the definition of — A, y as usual by
deleting the corresponding lines and rows in I, ,(k).
Locality and additional domain properties of —A, y are described in

Theorem 2.1.2. Let —0 <o; < 0, ;#0, y,€ Y, j=1,..., N. Then the
domain 9(— A, y) consists of all elements  of the type
N

Y(x) = (x) + Zl (L. r(K)157 (75 )Gi(x — yy), (2.1.11)
5J'=
where ¢, € D(—A) = H*%(R) and k? € p(— A, y), Im k > 0. The decomposi-
tion (2.1.11) is unique and with Y € D(— A, y) of this form we obtain

(=Apy — kW = (—A — k)¢, 2.1.12)

Next let y € 9(— A, y) and suppose that y = 0 in an open set U = R. Then
“’Aa'ylp =0inU.

PRrOOF. Since one can follow the proof of Theorem 1.1.3 step by step, we omit the
details. [

It remains to discuss spectral properties of —A, y:

Theorem 2.1.3. Let a;# 0, y;e Y,j=1, ..., N. Assume that at most one
a;, = 00. Then —A, y has at most N eigenvalues which are all negative and
simple. If o; = oo for at least two different valuesje {1,..., N}, then —A,
has at most N negative eigenvalues (counting multiplicity) and infinitely
many eigenvalues embedded in [0, c0) accumulating at co. In particular,

k*ea,(—A,y)N(—0,0) iff det[T, (k)] =0, Imk>0, (21.13)

and the multiplicity of the eigenvalue k* < 0 equals the multiplicity of the
eigenvalue zero of the matrix T, y(k). Moreover, if E, = k} < 0 is an eigen-
value of — A, y, the corresponding eigenfunctions are of the form

N
Yolx) = Z. ¢;Gi(x — y)  Imky>0, (2.1.14)
J.

where (c,, ..., cy) are eigenvectors of the matrix T, y(ko) to the eigenvalue
zero. If —A, y has a ground state it is nondegenerate and the corresponding
eigenfunction can be chosen to be strictly positive (i.e., the associated eigen-
vector (cy, ..., cy) fulfillsc;>0,j=1,...,N).

The remaining part of the spectrum is absolutely continuous and covers the
nonnegative real line

aess(—Aa,Y) = ac(_Ac,}’) = [0, o0), asc(—A;.Y) = J,
-0 <w<o, j=1,...,N. (21.15)
PROOF. Since Hy > 0 and Hy has deficiency indices (N, N), — A, y has at most N
negative eigenvalues counting multiplicity ([494], p. 246). Relations (2.1.13) and

(2.1.14) then follow as in Theorem 1.1.4 and all statements in (2.1.15) can be proved
as in Theorem 1.3.1.4. The remaining facts about the point spectrum are proved as
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follows: Without loss of generality assume
Yy <Yy <t <Yn. (2.1.16)
If all |oj| < 00,j = 1,..., N, one can follow [106] and define
a,e** + be”** x <y

U(x) = < aper €™ + bpiye™™, Yo S X< Ppyy, 1<Sm<N-1 (2117
ay+ €™ + by, e, x=>yy; Imk>0, k#0,
where a,,., and b,,,, are unique (nontrivial) solutions of
am+lelk7m + bm_ﬂe-l'hy,,, = ameiky,n + b,,,e'"""",
1™ [1 — (0/ik)] — bpiye ™1 + (tp/ik
= amedwm — b,,e“"’--, l <m< N,
a,=a, by=b abeR
Then y,(x) obeys
'I’u(}’,‘*‘) = 'l’k(y}_)’ 'I,‘I((yj+) - '/’llz(}’j-) = “j'l’u()’j)’ j=1,...,N. (2.1.19)

In addition, by the uniqueness of the coefficients a,,,, bu+y, 1 < m < N, Y, is the
unique solution (up to multiplicative constants) of

—W(x) =k¥Wy(x), xeR-Y, (2.1.20)

obeying the boundary conditions (2.1.19). If k2 > 0, then Y, € L2 (R) iffa=b =0,
implying y, = 0. Since the same argument (replace e*** by 1, x) applies for k = 0
we obtain a,(—A, y) = (—0,0) in this case. For k? <0, we get a =0 and the
above-mentioned uniqueness proves the simplicity of the eigenvalue. (Actually
k? < 0 corresponds to an eigenvalue of —A, y iff by,, = 0.)

Next, consider the case where precisely one of the a; say a;, = 0 and N = 2 (for
N = 1,cf Theorem1.3.1.4). Then the boundary condition at y, reduces to g(y;, +) =

0 (with no conditions on g’(y;, %)), i.e., it becomes a Dirichlet boundary condition
and hence divides R into two independent intervals (—oo, y, ) and (y;,, o). It suffices
to consider (y,,, ). If necessary, we renumber y; < yjo+y < - < yy to get J, <
J2 < *** < Jy for some M < N. Then we introduce

aktsin(k(x - §)) i <x<Ja,
Ui(x) = { Gpyre™ + b.,,.ﬂe""“, Im X Pmerr 2Sm<M-—1, (2121)
g™ +bye™, x>y Imk2>20, k#0,
where now 4,,,, and 5,,,,,, are unique (nontrivial) solutions of
dpsr ™ + by, 6" = G, e"m 4 b, e™im,
ey ™m[ik = 0p] = Doy Pm[ik + a,) = ikdne™m — ikb,e *m 3 <m< M,
dye™2 4 bye~ ™2 = Gk™! sin[k(F, — 7)),
dye™(ik — o) — bye *2(ik + a,) = @ cos[k(j, — 7,))- (2.1.22)
Then Y € ACie((71> ), Yi € ACioc((F1, ©) = {F2, .-, Fu})
(¥, +) =0,
(i H) =G, - W) - wE-) =) J=2.... M, (2123
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and (up to multiplicative constants) y, uniquely solves
— i (x) = kXY(x), Jr <X <0, X#Pas.ee Ius (2.1.29)

and the Igoundary conditions (2.1.23). If k2 > 0, then ¥, € L%((7,, o)) would imply
841 = b4y = 0 and hence i, = 0. The same argument works for k = 0. Since an
analogous construction works in the interval (—oo, y; ) and —A, y is the direct sum
of the corresponding operators in L?((—oo, y;,)) and L?((y;,, )), we also obtain
dp(—A, y) = (—00,0) in this case. Simplicity of negative eigenvalues then follows
from the above-mentioned uniqueness of y,.

It remains to show that if a; = oo for at least two different values of j € {1, ..., N},
then —A, y has infinitely many eigenvalues embedded in [0, c0) accumulating at
0. Let, e.g, a;, = &;, = 00, y;, < yj,- Then by the arguments above, —A, y can be
written as a direct sum of the corresponding operators in L2((—<0, y;,)), L*((¥;,» ¥;,)
and L?((y;,, o0)) with Dirichlet boundary conditions at y;, and y; , respectively. But
since (;,, y;,) is a bounded interval, the essential spectrum of the corresponding
operator in L2(( Vie» ¥,)) is empty implying that its discrete spectrum accumulates
at 0o. All properties of the ground state are shown as in Theorem 1.1.4 (cf. Appendix
F for a detailed treatment). [ ]

As in the one-center case the pole structure in (2.1.6) determines bound
states as well as resonances of —A, y. In particular, any solution k, of
det[I, y(k,)] = O with Im k, < O defines a resonance of —A, y whose multi-
plicity by definition coincides with the multiplicity of the zero of det[T, y(k)]
at k = k,. At k = 0 one has to investigate directly [T, y(k)]™* as k — 0 since
I,.y(0) does not exist.

Similar to Sect. 1.3.1 we remark that fora;e R,j=1,..., N, —A, y can be
obtained from the theory of quadratic forms as follows: The form

N ——
Quv(g. )= (9", W) + ; a;g(y;)h(y;),

Q(Qa,}'):Hz'l(R)’ ajeR. ijY, j=1,...,N,

is densely defined, semibounded, and closed and the unique self-adjoint opera-
tor associated with Q, y is given by —A, y (cf. [512]).
Finally, we present a more detailed discussion of the two-center é-interaction:
Fix a;, a, € R — {0}, y,, y, € R. Then

_ [t + G2k (i/2kpe el
ra.)’(k) = -[(i/zk)eiklyrnl a;' + (i/2k)
and hence

(Ly(0]7" = —{la7" + (/2k)] [a3" + (i/2K)]

azl + (i/2k) e nilp2ik
e*2nlpik  apt + (i/2k)
as long as det[T, y(k)] # 0. For k — 0 we obtain

1 -1
(Cy(®]7? =, —lor! + a3 +1y: = yil + O] {[_ ] + O(k)},

(2.1.25)

], keC — {0}, (2.1.26)

+ (ezill}'z‘}'ll/4k2)}‘l [ ] (2.1.27)

1 1
aft +az' + |y, =yl #0. (21.28)



11.2.2 Approximations by Means of Local Scaled Short-Range Interactions 145

In fact, for a7 + a3 + |y, — y,| # 0 one can easily show that the first-order
pole i/2k in G, actually cancels in the resolvent (2.1.6) of —A, y.

The case a;! + a;' + |y, — y,| = 0 implies a zero-energy resonance of
—A, y as can be seen as follows. Let ¢, # 0 and assume without loss of
generality |a,| < o0 and y, < y,. Define

Cl, X Syl’
Yo(x) = < ¢, + ¢3x, Y1 £x<y,, (2.1.29)
C4, X 2}’2,

for appropriate constants c,, € C,m = 1, ..., 4. Then y, fulfills
Yoy +) =Woly;—),  Wo(y;+) — ¥o(y;—) = ¥o(y),  j=12 (21.30)
if and only if
ar' + a5t + 1y, =yl =0 (2.1.31)
in which case
c; =1 —ayy)cy, Cy=a,cy, s = —(0y/ay)c,  (21.32)

(the case a, = 0, i.e., ¢4 = 0, is included).
In general, the eigenvalues and resonances of —A, y are given by the
equation

det[[, y(k)] = —[o7! + (i/2k)] [a5* + (i/2k)] — (e2*7=771l/4k2) = 0.
(2.1.33)

In the Dirichlet case a; = a, = 00 we get, in particular,
(e¥*r2nl — 1)/4k% = 0 (2.1.34)

and hence infinitely many positive eigenvalues E,, n = 1, 2, ..., accumulating
at oo (cf. Theorem 2.1.3)

E,=k={[nmn/ly,—y1)., n=12.... (2.1.35)

I1.2.2 Approximations by Means of Local Scaled
Short-Range Interactions

We now intend to generalize Sect. 1.3.2 to finitely many Jé-interactions. For
this purpose we introduce real-valued potentials V,e L'(R),j =1, ..., N, and
define
00 = VI, u(x)= V()" sgn[V(x)], Jj=1...,N. (221)
In addition, we consider
B(l): L* (R - L*(R)",

N 222)
[B:(k)(gl, o gn))ji= "Zl Be.jj’(k)gj" g; € L3 (R),
j=
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where
B, ;;(k) = A(e)i,G,iy, €>0, Imk>0, j,j'=1,...,N, (223)
and A;(-) are real-analytic near the origin with 1;(0) = 0, and
i(x) = uy(x — ey Bi(x) = v(x — &'y, e>0, yey,
j=1L...,N. (224

By Lemma 1.3.2.1, B, ;;(k),j,j' = 1, ..., N, extend to Hilbert—Schmidt opera-
torsforIm k >0,k # 0.

Using the theory of quadratic forms (cf. Appendix B) we then define the
Hamiltonian Hy(¢) in L*(R)

N
Hy@© = -A+ Y 4@V —¢'y), ¢>0, YcR, (225
Jj=1

with resolvent given by
N
[Hy(e) = k)" =G, — Zl (Gi)[1 + B,(k)1; @, G),
JJi=
e>0, k?ep(Hy(e)), Imk>0. (2.2.6)

Next we use the unitary scaling group U, of (1.3.2.13) to define the Hamiltonian
H,,in L3 (R)

N
H,y=¢?UHy(U ™' = -A+¢7? z; AV —~ y)e),
=

e>0, YcR (227

Since we are interested in the limit ¢ | 0 of H, , we introduce Hilbert—Schmidt
operators A, ;(k), B, ;;(k), C, ;(k), ¢ > 0, with integral kernels
A, ik, x, x") = Gy(x — y; — ex")vj(x"), Imk>0, (2.2.8)
B, ik, x, x") = 7' A()u(x)Gy(e(x — x') + y; — y;)v;(x'),
Imk=>0, (229)
C..jk, x, x") = uj(x)Gy(ex + y; — x'), Imk>0. (2.2.10)

Then (I.3.2.18) and suitable translations imply
(H..y — k*)™! = e?U,[Hy(e) — (ek)* 7' U™

N
=G, —¢"' Zl A () [1 + B(K)j; 4, C,, ;(k),

JiJj'=
£>0, kep(H,y), Imk>0, YcR. (2211

Again we have
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Lemma 2.2.1.  Define rank-one operators Aj(k), B;;(k), Cj(k),j,j’ = 1,..., N,
through their integral kernels

Aj(k, x, x') = Gy(x — y;)v,(x"), Imk >0, (2.2.12)
B (k, x, x') = K(0)G(y; — yp)ujx)v(x'), Imk=20, k#0, (2113
Ci(k, x, x’) = uj(x)Ge(y; — x’), Imk>0. 22149

Then, for fixed k, Imk >0, A, i(k), B, ;;(k), C, j(k) converge in Hilbert-
Schmidt norm to Ay(k), B;;(k), Ci(k), j,j’ = 1, ..., N, respectively, as ¢ | 0.

PROOF. Identical to that of Lemma 1.3.2.2. [ ]

Thus we get our main result

Theorem 2.2.2. Suppose V,e L'(R), j=1, ..., N, are real-valued and
Y c R. Then, as ¢| 0, H, y converges to — A, y in norm resolvent sense, i.e.,
if k* € p(—A,.y), then

n-liim (H,y — k¥ ' = (=Ay — k¥, YcR, (2.2.15)
ed 0
where

;= /1;.(0)f dx V¥, j=1,...,N. (2.2.16)
R

PROOF. From (2.2.11) and Lemma 2.2.1 we obtain

N
wlim (H,y = k97 = Gy = 3 AW + BRI EOCK)
€40 j

Jj'=1

keC—-R, Imk>0, (2217

where B(k) is defined by
B(k): L3(R)" - L*(R)", Imk>0, k#0,
N (2.2.18)
[B(k)(gl, ceey gN)]j = j'zl Bjj'(k)gj’, gj € LZ(R)s J = l» seey N.
But
By(k) = X©O)G(y; — ) vy, )y (2219)
implies
N
[1 + B(k)];} = 18 — 4(0) zl Gy — ym) (Lo v(R) 15} 0, Yy, (2.2.20)
where

Foy(®) = [3; + 4OV @), w)G(y; — ¥, ) y=1»  Imk>0. (2221)
If 4{(0)(vj, u;) # Ofor allj = 1,..., N, then a comparison with (2.1.7) shows that
(£ x (01 4Oy, wp) = = [Ty (R o = KOV @y ), jiJ'=1,..., N, (2.222)
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which by (2.1.6) completes the proof after inserting (2.2.22), (2.2.12), and (2.2.14) into
(2.2.17). If. e.g., 4,(0)(v),, 4;,) = O for some j,, then insertion of (2.2.22), (2.2.12), and
(2.2.14) into (2.2.17) shows that all terms with j = j, or j' = j, in (2.2.17) are zero and
hence disappear on the right-hand side of (2.2.17). [ |

Again H, y converges to —A as ¢ | 0if and only if 2;(0) fgdx V(x) = Ofor all
j=1,..., N and similarly to the one-center case the above approximation
scheme automatically yields é-interactions at the points y,, ..., yy with finite
strengths a,, ..., ay. Moreover, the above proof immediately extends to the
case of nonreal 4;(¢) to yield complex point interactions.

Formulas (2.2.17), (2.2.20), and (2.2.22) also show that bound states (resp.
resonances) of —A, y are given by the zeros of the Fredholm determinant
det[1 + B(k)] in the upper (resp. lower) k half-plane.

I1.2.3 Convergence of Eigenvalues and Resonances

Having proved norm resolvent convergence of H, y to —A_y as ¢ |0 in the
preceding section, we now extend this analysis to include a detailed description
of how the corresponding eigenvalues and resonances of H, , converge to
those of — A, y in the same limit. On the basis of Theorem B.1(b) we first state
that

aess(Hc.Y) = aess(HY(e)) = aess("A) = [O, o0), e>0, YcR (23.1)
By Theorem 2.1.3 this continues to hold at ¢ = 0

Oess( — Ay y) = Os(— A) = [0, 0), —o<a<o0, yel, j=1...,N.
23.2)

For the discrete spectrum of H, y a detailed study of B,(k) yields

Theorem 2.3.1. Let Y c R, y;€ Y, and suppose that V,e L'(R),j =1, ...,
N, are real-valued and have compact support.

@ If nlimo(H,y — k*)™' =(—A,y — k?)7", k* € p(—A,.y), such that
—A,yhas1 <M <N (necessarxly simple) negative eigenvalues E,, =
ki <0,m=1,..., M, then, for ¢ > 0 small enough, H, y has M stmple
eigenvalues E,,,,, = ki m < 0 which are analytic in € near ¢ = 0, and

Kom=i/—Em=kn+0@), m=1,.,M (233

Moreover, E, ,, are the only eigenvalues of H, y near E,,m=1,..., M.
(b) If nlim,yo(H, y — k*)™" = (= Ay — k2)™Y, k2 € p(— A, y), such that
— A,y has no negative engenvalues, then all negative eigenvalues of H, y

tend to zero, i.e., are absorbed into the essential spectrum as ¢ | 0.

PROOF. By Theorem B.1(c) any negative eigenvalue E, = k2 < 0 of H, y is deter-
mined through solutions of

B()®, = -0, &,eL}R), ¢>0, (2.34)
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and the corresponding (geometric) multiplicities are preserved. In order to isolate
the dominant term in B,(k) we define the operator B,(k) in L%(R)" with entries

B, ;; (k) = £ A(e)(i/2k)e™7 (., - )uy,
e20, keC-{0}, jj'=1,....,N. (239

In particular, By(k) = B(k) (cf. (2.2.13) and (2.2.18)). Since ¥, j=1, ..., N, have
compact support, B,(k) is analytic in (¢, k) for {¢| small enough and k € C — {0}.
Expanding B,(k) with respect to ¢ yields

B, ;,(k, x, x') = B (k, x, x') + €A (e8()) By (k, x, x")
— (/240)ui(x)[(x — x") sgn(y; — y;)e™s™rs+HN=3NTy, (x7),
€20, keC-{0}, j,j’=1,....,N, (23.6)
for appropriate 0 < 0(e), () < 1, where we define sgn(0) = 1. Thus

IB,(k) — B,(k)ll = O(e) 2.3.7)
uniformly in k if k varies in compact subsets of C and
1Bl = O(Ik|™!) as|k] >0, Imk=0, (2.3.8)

uniformly in ¢, |¢| small enough. Applying formula (1.3.3.11) then shows that for |¢|
small enough

det[1 + B,(k)] = det[1 + B,(k) — B,(k)] det{1 + [1 + B,(k) — B,(k)]™B,(k)}
(2.39)

vanishes for some k € C — {0} if and only if
det{1 + [1 + B,(k) — B,(k)]'B,(k)} (2.3.10)

vanishes. Now assume that det[1 + B(k,,)] = O for some k,,, Im k,, > 0, or equiva-
lently, suppose that E,, = k2 < 0 is an eigenvalue of —A, y. Then by the simplicity
of E,, (cf. Theorem 2.1.3) and the analyticity of B,(k), B,(k)in (e, k) for |¢} small enough
and k € C — {0}, we infer by the implicit function theorem that in a neighborhood
of k,, (2.3.10) has a unique and simple zero k,,,, analytic in ¢ near ¢ = 0 such that
(2.3.3) holds. By Theorem B.1(c), E, ,, = kZ,, < 0 corresponds to a simple eigenvalue
of H, y. Since H, y converges to —A, y in norm resolvent sense as ¢ | 0, remaining
eigenvalues of H, y are forced to converge to zero or to —oo as ¢} 0. By (2.3.8)
eigenvalues running to —co are excluded. o

The fact that no eigenvalues of H, y run off to —oo as ¢ | 0 (due to the fact
that A(¢) = O(e) as ¢ | 0) is in sharp contrast to the corresponding case in three
dimensions.

Concerning resonances we state

Theoremn 2.3.2. Let Y = R, y;€ Y, and assume that V;e L'(R), j =1, ...,
N, are real-valued and have compact support. Suppose that
n-lim (H,,, ~ )= (=4, — k)Y, kep(=A4,y),
ed0

and that ko, Im ko < 0, is a resonance of —A, y with multiplicity M. Then,
Jor € > 0 small enough, there exist M (not necessarily distinct) resonances
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ke lmk,, <0,1=1,...,m,0of H,ysuch that k, . have convergent Puiseux
expansions in € near ¢ = 0, i.e.,

™M=

k,_, = ko + h[(sllm') = ko + Zl a,',.e'l'"', l = 1, I S m = M,
@3.11)

where hy are analytic neur the ongin, hy(0) = 0,1 = 1,..., m. In particular, k, ,
are the only resonunces of H, y neur k.

i

PROOF.  The only difference to the preceding proof concerns the fact that now the
multiplicity of the zero of det[1 + B(k)] at k = k, is not necessarily one and hence
yields Puiseux expansious for k.. [ ]

11.2.4 Stationary Scattering Theory

In analogy to Sect. 1.3.4 we first develop stationary scattering theory for
d-interactions and then show convergence of the scattering matrix corre-
sponding to H, y to that of —A, y as ¢ | 0. We start discussing stationary
scattering theory for the pair (— A, y, —A). Let

N

¥, rk, 0, x) = e — i)™ Y (L, r(k)]je™ e,

JiJ'=1
det{[, y(k)]1#0, k>0, 6=%1, —0<a <00, o#0, yeV¥,
j=1,...,N, xeR, (241)
with I, y(k) defined in (2.1.7). Then, for k > 0,
Y. rlk, 0, y;+) =¥ ylko,y,-) j=1L,..,N,
Vo yk,0,yi+) — Yoylk,0,y;i—) =¥, y(k,0,y), j=1,...,N,
—W.,(k 0, x) = k*¥, y(k,0,x), xeR-Y, (242

lim lim (k/)eX v [—A, , — (k + ig)*] " (x, x')
ed0 x' -+ Fa0

= a.Y(k’ +1, x), xeR,

and hence W, y(k, ) are generalized eigenfunctions associated with —A,
corresponding to left (6 = +1) and right incidence (6 = —1). The corre-
sponding transmission and reflection coefficients from the left and right are
defined by
Tly(k) = lim e ™, ,(k, +1, x)
x= +00
= lim e**¥, y(k, — 1, x) = T y(k),
xo o (24.3)
a (k) = lim ™[, y(k, +1, x) — e**],

x= -0

R y(k) = lim e ™[, y(k, —1, x) — e~*],

x= +00



11.2.4 Stationary Scattering Thcory 1351

and thus
N
Tayk)=1—Qik)" Y e ™[, y(k)]jie™” = Tiyk), (244)
3=t
N
YKo,y (k) = —(2ik)7! e[, y (k)5 e, (24.5)
Jj'=1

N
Ko v(k) = —(2ik)™! e~ L, y(k));ie ™,
. 3 ji

)
0=
det[I, y(k)] #0, k>0, —w<o;<0, o0, yeV, j=1,...,N.
(24.6)

The unitary on-shell scattering operator &, y(k) in C? is then defined as usual

by
T y(k) @L.y(k)}
By (k) To k)]

det[[, y(k)] #0, k>0, —0<a; <0, o#0, yeY, j=1,...,N.
24.7)

Again ¥, y(k) has a meromorphic continuation in & 1o all of C such that poles
of &, y(k) in C-{0} coincide with bound statcs or resonances of —A, ;.

For illustrations of transmission probabilities in the N =2, 4, 8, and 20
center case with equally spaced d-interactions (of mutual distance =), see
Figure 40(b)-(e) [397] in Sect. 111.2.3, p. 275.

Next we summarize stationary scattering theory associated with H, y. Let
uj, v; be as in Sect. 2.2. We introduce in L2(R)"

S rlk) = [

Ok, 0, x) = (82,,(k, 0, X), ..., 8%,,(k, 6, X)), (24.8)
where
90y, (k, 0, x) = u, (x)e™%, (2.4.9)
¢::y1(k; g, x’ = vt'j(x)e“‘", &> 0, k 2 0, g = j: 1, o
and

u, j(x) = u((x — y;)/e), v, j1x) = villx — y;)/e)
£>0, y;e¥Y, j=1,...,N. (24.10)

The elements ¢, ,;.(k), j,j' = 1,..., N, in L2(R) of the transition operator t,(k)
in L(R)" are then defined by

t.;;(k) = e 2,(e)[1 + B,(k)]7;},
£¢>0, Imk>0, k#0, k’¢é, jj=1..,N, (2411
where
B(k): LA(R) > LA(R)",
(B, 0] = X Buyylkigy, 4 L2® (54 1)

Bc.ij'(k) = ¢ 2(e)u,, ;Gev,, s
e>0, Imk>0, k#0, j,j/=1,...,N,
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and
& = {k* € C — {0}|B,(k)®, = —®,forsome ®, € LXR)",Im k > 0}. (2.4.13)
Here B, (k) is defined as
B,(k): L*(R)" — L*(R)",
N (24.14)
[Bc(k)(gl’ ARRR gN)]j = jzl Be,jj’(k)gj" gj € LZ(R)’ ] = l, ey N;

with B, ;;(k) given in (2.2.9). Again &,N (0, o) = J by Jost function techniques.
The on-shell scattering amplitude f, y ,,-(k) is then given by

j;. Y.ca"(k) = (2lk)-l(®zy(k, d)’ tc(k)d)t.:)'(k’ al))
N
= (2'k)-l . Z (¢:y_,(k’ d), tc,jj'(k)¢¢—.y,~(k’ 61))’

Jnj'=1
§k>0, o0,6/=+1, YcR (2415

The unitary on-shell scattering matrix S, y(k) = [S,.y.56(k))s.o-=+1 in C? then
reads

S v0elk) =00 + fiyoek) &k>0, 0,0=+1, YR, (2416)

and the transmission and reflection coefficients corresponding to H, y are
defined by

Ty(k) = S.y,++(K) = S, y,--(k) = T y(k),
R:, r(k) = Sc,l’,-+(k), R;.Y(k) = Sc.Y.+—(k); k>0, YcR

Given the above notions we are in a position to describe in what sense S, y(k)
approaches %, y(k) as ¢ ] O:

(24.17)

Theorem 24.1. Let V; e L'(R) be real-valued and let «; = A;(0) frdx V)(x)
and yie Y,j=1,..., N. Then S, y(k), k > 0, det[I, y(k)] # O converges to
S.v(k) as €1 0. If, in addition, V, j =1, ..., N, have compact support then
S..y(k) is analytic in & near ¢ = 0 and we obtain the expansion

St,Y(k)¢f° ‘ZY(k) + 0(8)’ k> 0,
(24.18)
a,=l,’~(0)de V), yeY, j=1,..,N.

PROOF. LetV, e L'(R),j=1,..., N. We first rewrite (2.4.15) to get

N
furar®)=QE0™ 3, 74y @) (0 U T, [14 B Ty, Ustyehe 2,
(24.19)

where x, x’ are just integration variables and T,, y € R, denotes the unitary transla-
tion group in L%(R), viz.

(To)(x)=g(x+y), yeR, gelL*R) (24.20)



Notes 153

Using
US'T I+ BT, U = [ + B, Jij'=1,...,N. (2421)

we end up with

N
Jevioa(k) = Qi)"Y & ' A (e)v;e™ ), [1 + B,(K)]j uj e *00). (2.4.22)
2’ =1
Since by dominated convergence v,e™**”, u;e™ " are strongly continuous in &,
Lemma 2.2.1 immediately implies

N

lim f, y ., (k) = Qik)™" Y 2;:(0)e™*”(v;, [1 + B(K)] ”,‘uj.)e"“"". (2.4.23)
edo INEE!

Assuming 2)(0)(v, u)) #0,j = 1, ..., N, an application of (2.2.20) and (2.2.22) then

shows

lim f, y ., = —(Qik)™" Y e ™[I, y(k)];; e, (24.29)
elo

J.J'=1

<,

where I, (k) is given by (2.1.7) with
o =A40)@w,u), j=1..,N. (2.4.25)

If 2;,(0) (v}, u;,) = O for some jigy, then all terms with j = j, or j' = j, in (2.4.23) vanish
and hence do not appear in (2.4.24). Thus I, (k) contains precisely those «; which
are nonvanishing. If ¥,,j = 1,..., N, have compact support, then analyticity of B,(k)
in ¢ for |¢| small enough and fixed k € C, k # O (cf. Sect. 2.3), proves analyticity of

S..y(k), k > 0, near ¢ = 0. [ ]

Again S,(k) converges to 1 as ¢} 0 if and only if &; = 2;(0) j'a dx Vj(x) = 0,
j=1, ..., N, ie, if all é-interactions have vanishing strength and hence
disappear.

Notes

Section I1.2.1

This section represents an extended version of some of the results in [21].
Further theoretical background for the one-dimensional N-center case can be
found in [106], [107], [226], [512]. For the two-center case, cf. [7], [121],
[123], [190], [191], [395]. The relation between point interactions and self-
adjoint extensions of H, different from —A, , (ie., a choice of boundary
conditions which connect different points in Y) has been considered in [129].

Sections 11.2.2 and 11.2.3
All results are taken from [21].

Section 1124

Scattering theory for N-center d-interactions has been treated in [285] (see
also [176]), [308], [316], [317], [379], [387], [397]. The first half of Theorem
2.4.1 has been derived in [379].



CHAPTER 1i.3

Finitely Many J’-Interactions in
One Dimension

In this chapter we extend the concepts of Ch. 1.4 to finitely many
¢'-interactions on the real line.

Let N € N and introduce the set Y = {y,, ..., yy} = R. We first introduce
the closed and nonnegative minimal operator H, in L(R)

d2

Hy= -2, 9H)={gcH*RIg(y) =g'() =0,j=1,..., N}
=H}*(R-Y) 3.1)
whose adjoint is given by
d2
Hy = -7 D(HF) = H**R - Y). 3.2)

Since the equation
ruk) =k¥(k), YkeDH}), k*eC—-R, Imk>0, (33)
has the solutions

eik(x-y,)’ x> yj’
0, x <y

0, x> yp
Viall x) = {e"“":”", x <y

Imk>0, yeV, j=1,..,N, (34)

le(k, x) = {

the operator H, has deficiency indices (2N, 2N). As in Ch. 1.4 there exists
an intermediate minimal operator Hy in L?(R) which is a proper symme-
tric extension of Hy (cf. the Notes to Ch. 1.4). In fact, the closed operator Hy

154
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defined by

. d? . , .
r=-73 DH)= {ge H>(R)g'(y;) =0,y;€ ¥,j=1,...,N}

(3.5)

has deficiency indices (N, N) and hence is more convenient for the following
treatment. We note that the adjoint of Hy is given by

42
Hif = -,
DH?) = {ge H*R~ V)lg'(yy+) =g'(yj=) yje Y,j=1,...,N}
and that
H¢(k) = k*¢p(k), dk)e DHY*), k*eC—-R, Imk>0, (3.7)

has the solutions

(3.6)

ik(x=y,)
¢j(k,x)= e ik(llx) x> Yj
=™ x <y,

As a consequence all self-adjoint extensions of Hj are given by an N2-
parameter family of self-adjoint operators. Similar to Ch. I1.2 we restrict our-
selves to separated boundary conditions at each point y;,j = 1,..., N. Hence
we introduce the following N-parameter family of closed extensnons of Hy:
dz
oy = Tdx?

D(Epy) = {ge H2R - Y)lg'(y;+) = 9'(y;—),
g(}’)"‘) - g(}’,‘) = ﬂjgjl(yj)’j = l’ ceey N},
B=By,....By), —0<B<o0, j=1,...,N. (39)

The special case f =0 (ie, §;=0,j=1,..., N) leads to the kinetic energy
Hamiltonian —A on H* 2(IR) The case ;, = oo for some j, leads to a Neumann
boundary condition at the point y; (i.e., g'(y;,+) = g'(y;,—) = 0). Clearly,
S,y is symmetric by a simple integration by parts. In addition, E, , is
self-adjoint since Hy has deficiency indices (N, N) and the N boundary condi-
tions in (3.9) are symmetric and linearly independent ([158], Theorem
XI11.4.30). By definition E, , describes N &'-interactions centered at y; € Y,
j=1,...,N.

In the following we summarize basic properties of E; ,. We start with
describing its resolvent.

Imk>0, yeY, j=1,...,N. (3.8)

Theorem 3.1. Letf; #0,j = 1,..., N. Then the resolvent of Z;  is given by
N

Epy — k) ' =G, + z 5.y 017 G =y, I8 = )
k*epEpy), Imk>0, —0<p<o, B#0, yeVY, j=1,..,N,
(3.10)
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where

rﬂ,Y(k) = [—(ﬁjkz)_l i+ Gy — yj')];v,f=l (3.11)
and

etk==n, x>y,

Gulx — y) = (i/2k){ Gi(x — y) = (i/2k)e™*,

—eH 0T x <y,

Imk>0. (3.12)

PROOF. One can follow the analogous proof of Theorem 2.1.1 step by step. ®

Clearly, the above characterization of £, y extends to the case where some
of the B; equal zero. For example, if ;| = 0 then one simply omits the j,th line
and joth row in the definition of T (k).

Additional domain properties and locality of Z; y are discussed in

Theorem 3.2. Let —o0 < f;< o0, ;#0, y;eY,j=1, ..., N. Then the
domain D(E, y) consists of all elements Y of the type

N

Y(x) = d(x) + (k) Z: [T (017 ) Clx — y),  (3.13)

JJ=

where ¢, € D(—A) = H**(R) and k* € p(Z; y), Im k > 0. The decomposition
(3.13) is unique and with § € D(E,,y) of this form we obtain

Epy — kW = (—A = k). (.19

Next let Y € D(E;,y) and suppose that Y = 0 in an open set U = R. Then
E:p'yill = 0 in U

PROOF. Identical to that of Theorem 2.1.2 since

G- =y (A — k)9 = (/F'(), P H*R), yeR  (3.15)
[ ]

Spectral properties of Z; y are given in

Theorem 33. Let f;#0, yje Y, j=1, ..., N. Assume that at most one
B;, = 0. Then Z4 y has at most N eigenvalues which are all negative and
simple. If ;= oo for at least two different values j € {1, ..., N}, then S5 y
has at most N negative eigenvalues (counting multiplicity) and infinitely many
eigenvalues embedded in [0, c0) accumulating at oo. In particular,

k2 € 0,(Ep.y)N(—00,0) iff det[ly,()1=0, Imk>0, (3.16)

and the multiplicity of the eigenvalue k* < 0 equals the multiplicity of the
eigenvalue zero of the matrix f,_y(k). Moreover, if Eq = k3 < 0 is an eigen-
value of Z; y, the corresponding eigenfunctions are of the form

N

Yolx) = z. &6 (x —y)  Imky>0, (3.17)
£
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where (¢,, ..., y) are eigenvectors of the matrix f‘,,y(ko) to the eigenvalue
zero.
The remaining part of the spectrum is absolutely continuous and covers the
nonnegative real line
aess(Eﬁ.Y) = alc(Eﬂ,Y) = [0: CD), asc(Eﬂ.Y) = Qr

—0o<f<o, j=1,...,N (3.18)
PROOF. Since Hy > 0 and Hy has deficiency indices (N, N), E, , has at most N
negative eigenvalues counting multiplicity ([494], p. 246). Moreover, (3.16) and
(3.17) then follow as in Theorem 1.1.4 and all assertions in (3.18) follow as in
Theorem 1.3.1.4. It remains to prove the statements concerning the point spectrum.
We closely follow the analogous treatment in Theorem 2.1.3. Without loss of
generality assume
Vi <Yy < <Yy 3.19)

Ifall|g] < o0,j=1,..., N, we define
a,e™ + be”*x, X<y,
W) =< ape™ + bprie™™, Yu <X <Yui, 1Sm<N-1, (320
aye €™ + by, e” ™, x>yy; Imk>0, k#0,
where a,,., and b,,,, are unique (nontrivial) solutions of
Opi1€™™ = by ®m = a,e™m — b,e”™m
apire®m[1 — ikB,] + bpire”™"[1 + ikB,] = ane™ + bpe ™=, m=1,...,N,
a, =a, b, =b, abeR 3.21)
Then y,(x) obeys
U+ =n;-) W+ - w-)=8%y),  j=1...,N. (322

In addition, by the uniqueness of the coefficients a,,,,, b,+1, 1 < m < N, ¥, is the
unique solution (up to multiplicative constants) of

—Wx) =k*(x), xeR-Y, (3.23)

obeying ¥, € H22(R — Y) and the boundary conditions (3.22). If k2 > 0, then y, €
L*(R) iff a = b = 0 implying ¥, = 0. Since the same argument applies for k = 0
(replace e**** by 1, x in (3.20)) we obtain 6,(E4,y) < (—0, 0) in this case. For k* < 0
we get a =0 and the above-mentioned uniqueness proves the simplicity of the
eigenvalue. (In fact, k? < 0 corresponds to an eigenvalue of E; , iff by,, = 0.)

Next consider the case where precisely one of the §;, say f;,, = co and N > 2 (for
N = 1, cf. Theorem 1.4.3). Then the boundary condition at y; reduces to g'(y;, ) =
0 (with no condition on g(y;, t)), i.e, it becomes a Neumann boundary condition
and hence decouples R into (—oo0, y;) and (y,,, o). It suffices to consider (y,,, o).
If necessary we renumber y; < yj 41 <'* < Yy to get §; < j, <+ < ji for some
M < N. Then we introduce

acosfk(x — 1)), Fr<x<J,
'/’h(x) = &m+le“x + 5,,,.”2-“", j;m <x< ynﬂ'l’ 2 sms< M - l’ (3‘24)

Ayer€™ + bpyre™, x> Imk>0, k#0,
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where now d,,,, and 5,,,,,1 are unique (nontrivial) solutions of
dppre™m — b, e = G, o™ — b o™ Hm
dper e[l = ikB,] + Py ™ m[1 + ikB,] = d,e* + b, e,
I<m< M, (325)
dre™2 — bre~* = g sin[k(7, — 7,)),
dre"2[1 — ikB,] + bye ™2[1 + ikp,] = a cos[k(¥, — §,)].
Then y, fulfills y, € AC,,((¥,, ) — {§,,..., Im}) ¥i € AC\.((¥,, ®0)) and
ViV, +) =0,

. . . - L ) (3.26)
'/’;(Y,"'):'/’n’x(}’,"), Wk(yi-")—wh(.‘/j—):ﬁ]d’k(ij J =2a~”yM
Hence ¥, uniquely solves (up to multiplicative constants)
— Y (x) = k2 (x), Jr<x<00, X# Vg, Pp 3.27)

and the boundary conditions (3.26). If k2 > 0. then ¢, € L%((J,, 00)) implies dp 4, =
5M+, = 0 and hence y, = 0. The same argument works for k = 0. Since the ana-
logous construction applies for the interval (—co, j, ), and E, y is the direct sum of
the corresponding operators in L((—c0, y;)) and L*((y;,, o)) we obtain again
6,(Ep.y) < (—o0. O). Simplicity of negative eigenvalues then follows by the unique-
ness of 1.

That &, y has infinitely many eigenvalues embedded in [0, c0) accumulating at
o if B, = co. for at least two different values of j € {1, ..., N}, follows exactly by the
arguments in the proof of Theorem 2.1.3. e

As in the one-center case the pole structure in (3.10) determines bound states
as well as resonances of Z, . In particular, any solution k, of det[T} y(k,)] =
0 with Im k, < 0 defines a resonance of Z; , whose multiplicity by definition
coincides with the multiplicity of the zero of det[[}, y(k)] at k = k,. At k = 0,
T,,‘ y(0) does not exist and hence one is forced to consider [T, y(k)] ™" as k — 0.

Tt remains to discuss stationary scattering theory for the pair (£ y, —A).
The generalized eigenfunctions of Z; y are given by

N
Wk, 0. x) = e — Y o[F, ()] e Gy(x — y)
j 1

Ji'=

o=1%1, —n<p<oo, B#0, yeV, j=1,..,N, xeR (328
By inspection they fulfill
Wovlk, a0, y;+) = VY y(k, 0, y;—),
Wo.v(k, 0, y;+) — Vo ylk, 0, y;—) = B¥s.y(k, 0, y),
=W} vk, 0, x) = k2W, y(k, 6, x), xeR-Y,
lim lim (2k/i)e* ™[5, |, — (k + ie)*] 7' (x, x') = W,y (k, 1, x),

£d0 x> T0

xeR;, k>0. (3.29)

The corresponding transmission and reflection coefficients from the left and
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right then read
T)yk) = lim e™*W, (k, +1,x)

x— too
N
=1+Qik)y™" Y e ™[l (k] e™,
J =t

q.‘y—’;: y(k) = lim e"‘x\Pﬂ‘y(k, - l, X)

N
L+ Qik)™t Y o™ [Ty y(jle ™ = 74y (h),
jg=

Ay (k) = lim ™[, ((k, +]1,x) — ] (3.30)

X=>—m

N
= —Qik) Y [T, (k))5ler,

J.i'=1
grﬂl’(k) = lim e-ikx[\pﬂ.y(k, _ ]’ X) _ e-lkx]
N
= —(2ik)™? z e-iky,[f‘”. Y‘k)]j_j! ey
J.j'=1

k>0, —oo<fi<oo, B;#0, yeY, j=1,...,N.

The unitary on-shell scattering operator % y(k) in C? is then defined as

_[Zrt0 a5tk
g%.y(k)_[gt},_y(k) TinJ

k>0, —o<f<o, B;#0, yeV, j=1,...,N, (331)

and obviously % y(k) has a meromorphic continuation in k to all of C such
that poles of . y(k) in C — {0} coincide with bound states or resonances of
Sgv-

We end up with a few remarks concerning the definition of a mixture of J-
and d’-interactions in the N-center case (N > 2). The self-adjoint extension
H, 4.y of Hy

d2

Ha.ﬂ.Y = —dxzs

DH,py)={ge H*2R = Y)lg(y;+) = g(y;—), 4'(y;+) — g'(y;—) = a;9(y;),
—00 <o; < 00,j€N,; g'(y+) =9 (y—),
av+) = g(y,—) = Ba'(v), —o0 < By < o0, 1€ Ng}, (3.32)

where N,UN; = {1,..., N}, N,n Ny = &, N > 2. represents d-interactions at
the points y;, j € N,, and &'-interactions at y,, | € N,. Clearly, one can analyze
H, 5.y along the lines of Ch. 2 and the present one.

Notes

The results of this chapter are taken from [205].



CHAPTER 11.4

Finitely Many Point Interactions in
Two Dimensions

Finally, we generalize the content of Ch. L5 to finitely many point interac-
tions in two dimensions.

Let N € N and introduce the set Y = {y,, ..., yy} = R% We consider in
L?(R?) the nonnegative operator

—Alcpge-v) 4.1)

with Hy its closure in L*(R?) (i.e, 2(Hy) = H}**(R? — Y)). The adjoint oper-
ator of Hy then reads

Hf = —A,  9(H}) = {g € HL2(R? — Y)NL}(R?)|Ag € L2 (R?)}. (4.2)
Since the equation
Hy(k) = k*y(k), Y(k)eDHE), k*eC—R, Imk>0, (4.3)
has the solutions
ik, x) = (/AHO (k)X — y)l),  xeR®—{y},
Imk>0, yjeY, j=1,....N (44)

(we recall that H§"(-) denotes the Hankel function of first kind and order zero
[1]), H, has deficiency indices (N, N). Thus all self-adjoint extensions of Hy
are given by an N2-parameter family of self-adjoint operators. In order to
find the two-dimensional analog of our N-center J-interactions in one and

160
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three dimensions we proceed as follows: In general, self-adjoint extensions
Hy y of Hy are given by

N N
DHy,y) = {9 + j; Cj['/’j+ + j; Uii"/’j'—]
N N
Hy y {g + j; CJ['/’1+ + ,-Z’n U,-,-.w,-._]}

. N N
=Hyg+i 3 c,[¢j+ -3 U,.,...pj._], @.5)
J= »)=

J=

g€ DHy), c;eC,j= I,...,N},

where U, j,j’ = 1,..., N, denotes a unitary matrix in CV and
Y2 () = ¥/ £i, %) = (/HH(/ £ilx — y)l),
xeR*—{y}, Im,/+i>0, (4.6)

provide a basis for Ker[H¥ F i], respectively. Obviously, the special case
= —1 leads to the kinetic energy operator in L2(R?)

H,,y=-A,  2(-A)= H**R?) 4.7)
(since ¥, — ¥;- € H**(R?), j=1, ..., N). Applying now Krein’s formula
(cf. Theorem A.3) we get

N —_
(Hyy — k) = (A=) 4 Y 200 005(= B, )y

Jrj'=1

k2 € p(HU,Y)9 U # - l’ (4'8)

where
Wik, x) = g(k’, x) + (kK2 = k2)((— A — k?)7'yy(k"))(x)
= (i{/4HPklx — yj1), Imk>0, Imk’' >0, 4.9)
and

(A5 — [Ak)]5
= —(k* — k'2)(Y;(— k), Y;(k"))
=¥k, y;) — ¥k, y))
_ fj@m)~! In(k/k), i=Js
- {(i/4)[H3l)(k/|}’j - yil) - Hé)”(khlj - y;:D], Jj#J,
k>, ke p(Hyy), Imk>0, Imk’'>0. (4.10)

The second equalities in (4.9) and (4.10) follow from the first resolvent
formula

(k* — k'*)G, G, = G, — Gy, Imk>0, Imk'>0, (4.11)
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where

G, =(-A-Kk*)", Im k > 0, 4.12)
denotes the free resolvent with integral kernel
G (x — x') = (i/HHP(k|x — x'|), Imk>0, x,xeR?, x#x'. (413)

From
N N
(Hy,y — kz)['ﬁ,w + "21 Ujj"/’j'-] = (i — k)W — (i + k) _z,l Ui -,
i= i=
j=1,...,N, 414

we infer

N
(Hy,y + )70 = (20)7 ['/’j+ + ) Uff"l’f'-]

i=1

N R
= (_A + i)-lll/j+ + ) z l(\/—i)j'j"('l’_,"h '/’j+)'l’i"

J7=1

= @)W — )+ Y A D) W U W

JhJT=1

.

j=1,...,N, (415
implying
N —
Uj + 0y =2i j"Zl Wi ¥ TG/ = D)1, GiJ' =1,...,N, (4.16)

since Y;_, j' = 1,..., N, are linearly independent. (Here M. =M, phd =1
..., N, denotes the transposed matrix in C¥.) Clearly, relation (4.16) is valid
in general since in deriving it we only used (4.5) and Krein’s formula for the
pair (Hy y, H_, y). Now we utilize the symmetry of (¥;., ¥;-.) with respect to
jandj” (i'e" ('l’j+’ 'l’j”+) = ('l’j"+’ 'l’j+)9j’j” = 1’ et N) to get

N
Uy = =8 + L OG0T - WD T /=0T

N
e ML VORICVED) 7 @.17)
#

or equivalently,

U= —[A/)T 1A/ =i 4.18)
Since Krein’s formula (4.8) implies
Aky* = A(=k), Kk?’ep(Hyy), Imk>0, 4.19)

unitarity of U is equivalent to the fact that ,l(\/tT ) (resp. A(\/ —i)) is normal.
In analogy to one and three dimensions we now define (cf. also the discussion
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in the Notes)
(A1 = [Ty ()]
= (2n) ' [2moy; — (1) + In(k/2)18;. — Gilly; — yy1)s
yeR, j,j=1,...,N, (420

where

Gilx) = {G"(x)’ x#0, @.21)

0, x =0, Imk>0,

and ¥(-) denotes the digamma function [1]. (Actually it would have been

sufficient to define ,1(\/1T )~! since then A(k)™! follows from (4.10).) The N-
center point interaction Hamiltonian —A, y in two dimensions is thus de-
fined by

(_Aa.l’ - k2)—l = Z [r Y(k)]ul(Gk( _V, )a )Gk( )

Ji'=1
k*ep(—A,y), Imk>0, o;eR, yeY, j=1,...,N. (422)
As usual, we may extend the above definition to the case where some of the
a; equal co. For example, if a;, = co one simply deletes the joth line and j,th
row in the definition of the matrix T, y(k).

Next we describe further domain properties of —A, y and point out its
locality:

Theorem 4.1. Let ;€ R, y;e Y,j=1,..., N. Then the domain D(—A, y)
consists of all elements \ of the type

Y(x) = $(x) + Z L.y (K)177 8y ) Gi(x = yy), 4.23)

Jq'=1

where ¢, € D(—A) = H**(R?) and k* € p(~A, y), Im k > 0. The decom-
position (4.23) is unique and with Y € D(— A, y) of this form we get

(=Agy — KW = (—A - k)¢ .29
Next let Y € D(—A, y) and assume § =0 in an open set U < R2. Then
"‘Aa'yw = 0 in U.

PROOF. Identical to that of Theorem 1.1.3. [ ]

Spectral properties of — A, y are summarized in

Theorem 4.2. Let ;€ R, y;e Y,j =1, ..., N. Then the essential spectrum
of — A,y is purely absolutely continuous and equals

Gess(-Aa.l’) = ctat:("_'Aa,}') = [Oa w)a asc(-Aa.l’) = Q (425)
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In addition,
ap(_Aa,Y) < ('—(X), 0) (426)

and — A, y has at least one and at most N (negative) eigenvalues counting
multiplicity. In particular,

k2ea(—Ay) iff det[l,,()]=0, Imk>0. (427)

and the multiplicity of the eigenvalue k? equals the multiplicity of the eigen-
value zero of the matrix T, y(k). If E, = k3 is an eigenvalue of —A, y, the
corresponding eigenfunctions are of the form

N

Yo(x) = zl ;G (x = ;) Im kg > 0, (4.28)
J=
where (c,, ..., cy) are eigenvectors of the matrix T, y (ko) to the eigenvalue
zero. The ground state of —A, y is nondegenerate and the corresponding
eigenfunction can be chosen to be strictly positive (i.e., the associated eigen-
vector (cy, ..., cy) fulfillsc; > 0,j = 1,..., N).

PROOF. That —A, y has at most N negative eigenvalues follows from the fact that
H, > 0 and def(H,) = (N, N) ([494], p. 246). To prove the existence of a ground
state of —A, yforalloq;e R, j = 1, ..., N, we observe that

L, y(iK) = (27)7" In(x/2)1 + O((In x)™") 4.29)
and
I',,',,(ix)':o (2m)"'N In(x/2)P + O((In )7*), (4.30)
where P is a self-adjoint projection in C"
P=[5;,N'],, 4.31)

with simple eigenvalue 1 and eigenvector (1, ..., 1). Expansions (4.29) and (4.30)
show that all eigenvalues of T, y(ix) tend to +co like (21)™! In(k/2) as ¥ — o0 and
that T, ,(ix) has a simple eigenvalue converging to —oo like (27)™' N In(k/2) as
k | 0. By the monotone increase of all eigenvalues of T, y(ix) with respect to k > 0
(cf. Appendix F) we obtain at least one x, > 0 such that I, ,(ix,) has the eigenvalue
zero. The rest of the proof is analogous to that of Theorem 1.1.4. ]

As in all cases discussed before, the pole structure in (4.22) determines
bound states as well as resonances of — A, y. Similarly to the one-center case,
the discussion of resonances is more involved than in one or three dimensions
since (—A, y — k%)7!(x, x), x # x', has a meromorphic continuation to the
entire logarithmic Riemann surface.

Finally, we turn to stationary scattering theory associated with the pair
(—A.y, —A) Let

N
¥, y(ko, x) = e** + (i/4) Y, [T, y(k)]5 ™ H  (k|x — y))),

J.Jj' =1

-~

det[T, ,(k)1#0, k>0, weS', oeR, xeR*—Y, j=1,...,N,
4.32)
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then ¥, y(kw, x) are the scattering wave functions of —A, y and
—(AY, y) ko, x) = k*¥Y, y(ko,x), xeR?-Y,
liIn lim ™ [8n(k + ig)]'3|x’| e ikl _A, , — (k + ig)?]"'(x, x')
ed0 x|~
-|x|"'x'=w

=Y, ko,x); xeR’—-Y, k>0, weS'. (433)

The on-shell scattering amplitude £, y(k, w, ®') corresponding to —A, y then
reads

forlk, o, @) = lim |x|2e* [, (ko' x) — e™@'*]

N
=ei:/4(8nk)-l/2 Z e-lkwy,[ra‘y(k)]j—j}eikw’y‘,,,

J.j'=1
det[l, y(k)] #0, k>0, 0,0’ €S, ¢;eR, y;e Y, j=1,...,N. (434)

The unitary on-shell scattering operator &, y(k) in L%(S!) is finally given by

N
Sy(k) =1 — (@dni)™? Z [ra’y(k)]j-jll(e—ik(-)y‘,.’ e~ kO,
g

-,
det[T, y(k)]#0, k>0, o;eR, yeY, j=1,...,N. (435)

Formula (4.35) shows that %, (k) has a meromorphic continuation in k to
the entire logarithmic Riemann surface.

Notes

The derivation of formula (4.16) has been taken from [129] where particular
attention has been paid to introducing point interactions in L2(R"), 1 <n <
3, with general boundary conditions connecting different points in Y. The rest
of this chapter appeared in [19]. We emphasize that the approach used to
define the two-dimensional, N-center, d-interaction presented there works as
well in one and three dimensions. To illustrate this fact it suffices to note that

(Far(®)] = =718, — GuUy; — yp) = —[of* + (/2k)10; — Gily; — y)
{ —&! + lim [Go(x) — G(¥)),  j=],
= Ixl40

—G(ly; — yi ), j#j, jhi'=1..,N,
in one dimension (where G,(x) = —|x|/2, x € R),

[ra.)'(k)]jj' = [“j - (271)-“”1) + (2n)7! ln(k/zi)]éjj' - Gk(yj - Yj')
{a,- + lim [Gox) — G(¥),  j =1,
= Ix|4 0

—G(ly; = ;i) j#j, jj'=1...,N,
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in two dimensions (where Gy(x) = —(27)~* In|x|, x € R? — {0}) and
(N0 = [o; — (ik/4m)15;; — Gilly; — ;)

{a,- + lim [Go(x) — Gu(®)],  j=J’
= IxId0

i#j' j,j’=1,....N,
—Gk(|}’j_)’j'|), A

in three dimensions (where Gy(x) = (4n|x|)™", x € R® — {0}) and

Gy(x),
Gk(x) == {0 k(x) i : g
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POINT INTERACTIONS WITH
INFINITELY MANY CENTERS






CHAPTER 1.1

Infinitely Many Point Interactions in
Three Dimensions

IIL.1.1 Basic Properties

Our starting point will be the point interaction Hamiltonian with a finite
number of centers, and then the use of a limiting argument to show that the
analogous expression is still valid when Y is infinite.

For use in later sections we will discuss the operator both in x- and p-space.
Consider

Y={yeR*jeN}cR? (1.1.1)
such that
ii
JJ €N
and let
aY-R. (1.1.3)

For convenience, we shall write a; instead of «,, to simplify the notation. Then
we can define — A, y as a strong resolvent limit of restrictions —A; yof —A, y
to finite subsets ¥ of Y. This is the content of the following

Theorem 1.1.1. Let Y = {y; € R?|j € N} be discrete in the sense that

i#J
J.j'eN

169
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and let «: Y — R. Then the strong limit in L*(R3)
slim (—As7— k',  K*eC—R, (1.1.5)

YcvY

IY|<w
over the filter of all finite subsets ¥ of Y exists where & = al; and
(—Az 7 — k?)7" is given by (11.1.1.33). This limit equals the resolvent of a
self-adjoint operator denoted by — A, y which has the resolvent

(—Aa.)’ - k2)-—l = Gk + ) Zl [ra.Y(k)];Jl(Gk( _m’ )Gk( - .Vj)’
J.Jj'=
k*ep(—A,y), Imk>0, yeY, |yj—yl=d, j#j, jjeN,

(1.1.6)
where T, (k) is the closed operator in 1*(Y) given by
T, y(k) = [(aj - %)5,.,, -Gy - y"')],-,,-lew’ Imk>0 (1.1.7)
on lo(Y) where
1o(Y) = {g € I*(Y)|supp g finite}. (1.1.8)
We have
[(Foy()] ' e BUX(Y)),  k*ep(—A,y),
Im k > 0 large enough. (1.1.9)

If a is bounded, then T, (k) is analytic in k for Im k > 0.
Let

~Ay=F[~A )F L (1.1.10)

Then
(9, (=B,y = k*)Hf) = (4, (P* — K¥)7Y)
+ IZ . (. y(0)155 (9 Foy ) (F_., 1),
I, =
ke P("'Aa,y), Imk>0, o€ R, V€ Y,

ly—yl=d, j#j, j.jeN, figeL*R%, (1.1.11)

where

—=ipy,

Fe, (p) = (2n)"”pi-—— peR? jeN. (1.1.12)

T

PROOF. Foreach finite subset ¥ of Y we have that — A; 7, = |y has the resolvent
(=87~ K)!'=G, + , ;_l [FCev(01 G =), )G = ),

k*ep(—Agg), Imk>0, (1.1.13)
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where the matrix inverse is an operator in 1*(?), i, a | ¥| x | P|-matrix. First, we
observe that there exists a k2 < 0, Im ko > 0, such that the resolvent (—4; y — k2)7!
exists for all k2 > k2 and is increasing in ¥, ie.,

Y=V implies (—A;7— k) ' <s(=Az7—Kk)', k*<kd, (1.1.14)

forall ¥, ¥ < Y,|¥},|Y| < o0, where k3 is independent of the subsets ¥ and Y. This
can be seen as follows: We showed in the proof of Theorem I1.1.1.1 that the operator
—A,; 7 is approximated in norm resolvent sense by the operators

-1
Ay =p* = T wlo)ee. e, mlw) =<a,+-25:—2) . JeN, (LL15)
Yot
as w — os. For @ > 0 large enough, u,(w) is positive, thus making the operators Ay
monotone decreasing in ¥. Hence the resolvents of H§ are monotone increasing in
¥ whenever they exist. By letting @ — co we obtain the same property for the
resolvents of —A; 7 and thus for the resolvents of —A; y whenever they exist. To
prove the existence of such a k3 < 0 it is then sufficient to prove that the matrix
T; 7(k) is invertible for all subsets ¥ of Y and all k with Im k > 0 sufficiently large.
To this end, consider the bounded operator G, on [3(Y) with kernel G,( Vi = yphie,

@an) = 3 Gy =ylaly) Imk>0. g ={gly)lene PY). (111G

Using Lemma C.3 we infer that in order to control the norm of G, it suffices to
bound the quantity

g l o
sup 3. [Gy(y; — )yl S g —sup 3 eTmi L (1.1.17)
JEN j'=1 Nd jeN j::’
J

Since there is at most one point y, € Y inside each cube of size d/2 centered at

y;i+ gl’, (1.1.18)

we obtain that the right-hand side of (1.1.17) can be estimated by
1

—_— e~ ImKjk/2 (1.1.19)
4nd 1% |0}

which can be made arbitrarily small by choosing Im k > 0 sufficiently large. Thus
G, tends to zero in norm as Im k — oo, and hence I, y(k) is invertible for all k with
Im k > 0 sufficiently large and ik ¢ {4no;| j € N}. But then the restrictions of the
matrix I, ,(k) to arbitrary subsets of Y are also invertible. Using

IS = 27" = d(z, o(S))"* (1.1.20)

for self-adjoint operators S, where d(-, -) denotes the distance, we have proved
that the increasing filter of operators (—A; 7 — k?)™!, Y = Y, | ¥| < 0, & = ay, is
uniformly bounded, viz.

(= A7 — k)"l < k* = k3|7 (1.1.21)
From Vigier’s theorem ([480], p. 51) we obtain that
R(k?) = s-lim (—4;7— k)" (1.1.22)
YcY

=
iFj<o
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exists and equals the unique supremum of the strong closure of the filter. By the
explicit characterization of the resolvent of — A; y we see that R(k?) reads

REDNE) = G ) + j}f TG =) 0)Gulx = 3,

Rek#0, Imk>0, xeR*-Y, feL?*@R3), (1.1.23)

whenever the right-hand side exists and defines an element in L2(R3). The following
argument implies that (1.1.23) is well defined for all fe L2(R3). Let

a(f) ={a(Nlen (N =G =y).f) jeN, feL}R%. (1.1.24)
Then
(9. R(K¥)f) = (9, G.f) + Z [T..v(0)];; ai(g)a;(f)

»i'=
=(9, Gf) + @(g), [Toy(®W] ' a(Ne,  fr9€ LAR?), (1.1.25)

provided a(f), a(g) € I*(Y). Hence, it is sufficient to prove that {h(y;)};cn € 12(Y)
forall h € 2(~A) = H*%(R3?). Assume that h € 2(— A). Then h is continuous ([283],
p. 301) and equals

h(x) = J‘d:’x’ G(x — x)f(x'), x € (0, ), (1.1.26)

for some fe L*(R3). It is sufficient to consider the case where Y = Z3 since Y is
discrete. Writing

R*= | (j/+0Q) (1.1.27)

j'e2?
where @ = [0, 1) = R3, we see that

-x)x-x'|
3 e ’
he)l < 3, L B = e ]

je2’

3 e~ x—x1 112 , e
= A Sy e x| . (28
r:z'zs I:J‘, ro 1672 |x — x,lz] [L'+q 1) :I ( )

F=hlenel@) f= [ j
J

it suffices to prove that the matrix

Since

1/2
d3x'| f(x’)l’] , (1.1.29)
o

= 2x|y=x’|
M=[M;) e My = f, W F:?Ub—_xl'ﬁ (1.1.30)
is bounded. We have
-2x|1—1 ~x)
M, = J d3x '76“—]_} s ~2eli-i1 (1.1.31)
which proves (by Lemma C.3) that the Holmgren bound of M exists. =

We end this section with a characterization of the domain 2(—A, y) of
— A, y and with the proof that —A, y is still local when Y is infinite.



I11.1.2 Approximations by Means of Local Scaled Short-Range Interactions 173

Theorem 1.1.2. Lety;e Y,|y;— yi:|>2d>0,j#j,and let ;e R, j,j' € N.
Then the domain D(—A, y) of —A, y is the set of all Y such that

V(%) = d(x) + ilaj(k)G,‘(x —y) xeR—Y, (1132

Jor some k with Im k > 0, where

hed-8),  a®= 5 [LOFAG) (1139
Furthermore, this decomposition is unique and
(=Apy — KW = (—A - k%4, (1.1.34)
and if ¢ = 0in an open set U < R, then also —A, y¢ = 0in U.

PROOF. Using that ¢ € 9(—A) implies that {¢(y;)};en € I2(Y) (cf. the proof of
Theorem 1.1.1) we infer that the proof of Theorem II.1.1.2 still applies. ]

As in Part I, we extend our definition of — A, y to allow a, = for some
jo€N in the sense that —A, y = —A; ;7 where @ and ¥ equal « and Y,
respectively, with the j,th component removed.

I11.1.2 Approximations by Means of Local Scaled
Short-Range Interactions

The operator — A, y of Sect 1.1 represents an idealization in the sense that the
interaction at each center has zero-range. It is therefore natural to ask in what
sense this idealization represents the asymptotic behavior when the range of
the interaction diminishes.

We will prove in Theorem 1.2.1 that —A, y is approximated in norm
resolvent sense by operators with short-range interactions. Since our ultimate
goal in this chapter is to model regular structures, e.g., crystals, we shall
assume that the approximating operator has only a finite number of different
potentials, viz.

H,y=-A+¢2 i AE© V(- — y)/e), £>0, (1.2.1)
=1

where
Ve {Wy,..., Wy}, Ae) € {py(e), ..., uy(e)}, jeN. (1.22)

First, we derive an explicit expression for the resolvent of H, y. To this end,
we need some definitions. Let

# =@ L®) (1.2.3)
j=1
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and
A,(k): o = LY(R?),
B,k): # = A, (1.24)
C.(k): LA(R®) - 2,
be bounded opcralors with integral kernels
A, jtk, x, x') = Gelx — ex’ — y;)v(x”),

A EUX)Gylelx — X') + v; — yp)oplx'),  j#),

. ) S0 o (1.23)
) UAX)Gp(x — x")v;(x), 1=7J

Bc.il'(k’ x, x')= {
C..ilk, x, x') = 4/e)uj(x)Gy(ex + y; — x'); Imk>0, ¢=0, 5,j eN.

Theorem 1.2.1. Let W, e R, supp W, compuct, be real-valued and let
uile) =1+ ei0) + o(e) as €10, j=1, ..., N. Assume, furthermore, that
Y = {y;€ R* je N} sausfies |y;— y;| =2d >0, j#J, j, j'€ N. Then the
self-adjoint operator in L*(R3)

Hoy=—-A+e 2y V(- = y)eh (1.2.0)
=1
where

A€, By, Vie{W,,....Wy}, jeN, (1.2.7)

has the resolvent
(Hey = k)" = Gy, — cALK)[1 + B,(k)) ™ CK),
k*e p\H, y), Imk>0. (1.238)
Assume that 4(0)# 0 if H = —A+ V, is in case 11l or IV. Then H,,

converges in norm resolvent sense to the operator — A, y defined by (1.1.6),
ie.,

n-im(H, y — k) ' =(=A,y —k¥)™', k*eC-R, (129

elo

where a = {o;}, . n and a; equals

(o0 in case 1,
— 40) (), $)1 72 in case 11,
% =4 in case 111, (1.2.10)

N, -1
- ','-(0){2 (v, ¢,~,)|2} incase IV;  jeN.
=1

L

PROOF.  Using Theorem C.4 we know that the self-adjoint operator

Hye)= —A+ Y AoV — &ty (1.2.11)
Jj=l
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has the resolvent

(Hy(e) = k)" = G, — AW[1 + BW]'Ck),  k*ep(H,(e), Imk>0,

(1.2.12)
where

A(k): # - L2R®),  A(k) = [G,})jen

B,(k): o — 5#, B,(k) = [A(&)#,G.;],.j eno (1.2.13)

C.k): L2 R)» #,  Cuk) = [i(0)#GJjens £>0, Imk>0,

are bounded operators with #,, 3; defined by (11.1.2.11). Introducing the scaling
operator U, (cf. (11.1.2.3)) and the translation operator T, (cf. (11.1.2.13)) as in the
proof of Lemma 11.1.2.2 we obtain (1.2.8). Next we need the limits of the operators
A,(k), C,(k),and e[1 + B,(k)]"! as& | 0. As in Theorem 11.1.2.1, 4,(k) and C,(k) have
natural candidates for their limits, while the limit of ¢[1 + B,(k)]™! is more involved.
Starting with the operator C,(k) (taking ;(¢) = 1 for simplicity) we have that

}_ MG, k) — Co OIS 112

s J’ s [ eiklt.ﬂ § 752N uk|y,-.<| ] )
d>x|Vi(x d>x’ — — (x
= 3 J | | = iy
ikjex+y,~x’| ikly, = x’| 2
SI d3x W(x) z [J‘ 3| — € e elmky,-x1.
J_

41t|ex +y;— X' 41t|y, - x'|

. J;v d3xu e—lmkly,-x"llf(x::)'2

SC[f d3x W(x)J d3x’
R R

enklex—x'l enklx’l 2

dnjex — x'| B 4r|x’|

e"“""‘"] i,

fe L3(R3), (1.2.14)
where
® N
c=sup ¥ ™ d and W(x)= ) |Wx)
xeR3 = j=1

Using the dominated convergence theorem we see that the right-hand side is bounded
by c(e)|f11> where c(e) = 0 as ¢ | 0, proving the assertion for C,(k). Similarly, one
shows that A,(k)* — Ay(k)* in norm as ¢ | 0. Writing

1 + B,(k) = 1 + D,(k) + ¢E,(k), (1.2.15)
where
D (k) = [ 2/e)u;G,;],. 5 < ns

E (k)= [(1 - 5}; )e™'B

(1.2.16)
(N7 (k)]i.i'eN'

we infer from
e[1 + B,(k)] " = {L + e[l + D(k)]'E ()} 'e[1 + D(K)]™' (1.2.17)

that it suffices to determine the limits of e[1 + D,(k)] ! and E,(k) as ¢ | 0. Estimating
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llE,(k) — Eo(k)|l using Lemma C.3 we only need to prove that
© e dd eiMetx=x)+y,=y, et =yi |2
su d>xd>x’ W(x)W(x') - - —
zegé Ré leGe = x)+y; =yl |y —ypll +¥©

(1.2.18)

This, however, follows using the dominated convergence theorem. The matrix
e[1 + D,(k)]™! is diagonal, and for each entry on the diagonal we know the limit
from the one-center case, Lemma 1.1.2.4. Since we only have a finite number of
different potentials, the limit is uniform on the diagonal and hence also exists in J¢.
Thus

n-li*m e[1 + D, (k)] = [6,, D(k),); 5 en» (1.2.19)
e+v0

where

(0 in case I,

[(@m)tik)(v), G)° + 2(0)1 (4}, -)¢; in casell,

N,
Dy = 1 1™ ¥, G 4 incase 1, (1:2:20)
1=1
N, - -
Y. @ By ()i s )y in case IV,

LiLi™=1

with (J,, B;,(k)¢;)ii* defined as in Lemma 1.1.2.4 with V replaced by ¥; and with
o; defined according to (1.2.10). Having found all the necessary limits, a similar
computation as in the proof of Theorem I1.1.2.1 yields the assertions claimed. ®

111.1.3 Periodic Point Interactions

One of the most interesting special cases of the model constructed in Sect. 1.1
occurs when Y and a are periodic. We then obtain the so-called one-electron
model of a solid which is based on the following assumptions (A)—(E):

(A) The solid is supposed to consist of a fixed number of heavy nuclei
arranged in a regular lattice surrounded by core electrons. Each nucleus
has the same number of core electrons such that the whole system is
neutral.

Although it is not proved from first principles that a neutral system con-
sisting of heavy nuclei and electrons, interacting via the Coulomb interaction,
forms a regular or approximately regular lattice as the ground state, it is
nevertheless an observed fact in nature that solids consist of nuclei arranged
in regular structures. This makes assumption (A) a reasonable starting point
to investigate properties of solids. Hence the solid is assumed to consist of an
electron gas immersed in a background of positive ions arranged in a regular
lattice.

(B) The electron—electron interactions are neglected, only interactions be-
tween the electrons and the heavy nuclei are taken into account.
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From an ideal point of view one would, of course, like to solve the many-
body problem using only assumption (A). However, many-body problems of
the above type are presently beyond the scope of an analytical treatment. The
validity of assumption (B) can be further enhanced by replacing the atomic
potential by an averaged potential, and the electron mass by an effective mass.
In addition, it is experimentally verified that the electrons move nearly free in
a metal thus making assumption (B) a reasonable one.

(C) The solid is assumed to be infinitely extended, and each nucleus gives
rise to the same potential.

Assumption (C) is a mathematical device to obtain a strictly periodic, not
only approximately periodic, interaction, and it is reasonable because the solid
consists of the order of 10?3 nuclei. Clearly, this assumption disregards surface
effects. Furthermore, the complete periodicity does not allow one to study
various defects, dislocations, and impurities. Nevertheless, by perturbing the
periodic Hamiltonian we will be able to study various kinds of impurities, see
Sects. 1.9 and 2.6 and Ch. 5.

(D) All “higher-order” effects are neglected, e.g., relativistic effects, lattice
vibrations, spin—orbit coupling, electron—phonon interactions ([332]).

Clearly, all these effects play a role in realistic systems. Hypothesis (D) is
the price one pays for a rigorous analytical treatment.

From assumptions (A)—(D) it follows that we have to study the “usual”
Schrédinger operator which reads, in appropriate units,

H=-A+V, (1.3.1)
where the potential V is periodic, viz.
Vix+2)=V(x), xeR3 1leA, 13.2)

A being the underlying lattice. By definition (1.3.1) and (1.3.2) constitute the
one-electron model of an infinite, perfect solid.
To obtain a solvable model we will introduce our last assumption, namely:

(E) Assume that formally
V(x)= =Y pd(x —2). (1.3.3)
AeA

The atomic potential is of Coulomb type and thus has a singularity at
each point of the lattice and in particular is of long range. However, as we
mentioned in the comments to assumption (B), the actual potential has to be
replaced by an averaged potential which qualitatively looks like the one in
Figure 4 in one dimension. Thus it has a singularity at each lattice point
and is approximately constant in between. By replacing the singularity with
a d-function and the constant value by zero we obtain (1.3.3) which is a
particular example of a so-called muffin-tin potential.

We will also be able to solve the problem where we allow a finite number
of different nuclei in each primitive cell I (for the definition of [, see the next
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section), i.e.,

N

V)= =Y Y wo(x—21—y), (1.3.4)
J=1 AeA

where {y,, ..., yy} = [". This provides a model of a multiatomic crystal or

an ordered alloy.

Finally, by allowing A to be one- or two-dimensional lattices embedded in
R3 we obtain the one-electron models of an infinite straight polymer and an
infinite monomolecular layer, respectively.

IIL.1.4 Crystals

The first regular structure to be considered is the full infinite crystal in three
dimensions. Before we start with explicit computations for the point inter-
action Hamiltonian, it will be instructive to study on a formal level what sort
of properties one should expect in general with a Schrédinger operator

H=-A+V (1.4.1)
in L2(R3) where the real-valued potential V is a smooth periodic function, i.e.,
Vix + A) = V(x), xeR3, JleA, (14.2)

and where A is a Bravais lattice,
A = {n,a, + n,a, + nya, € R*(n,, n,, ny) e 73} (1.4.3)

and a,, a,, a, is a basis in R3. This will also allow us to introduce the basic
nomenclature. The basic periodic cell or primitive cell [ is mathematically

=R3A (14.4)
and can be identified with the Wigner—Seitz cell
[={s,a, + 5,0, + 530, e R|s;e [-4,4),j=1,2,3}.  (145)
Since V is periodic, it can be expanded in a Fourier series, i.e.,
V(x)= Y Ve, (1.4.6)

yell
where

Vv, = J d3v V(v)e (1.4.7)
r
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and I' equals the dual lattice (or orthogonal lattice or reciprocal lattice),
[ = {n,b, + n,b, + nyb; € R*|(n,, n,, ny) € 7%}, (14.8)
where the dual basis by, b,, b, satisfies
aib, = 2md;;,  j,j'=1,2,3. (1.49)

It will be useful to consider H in p-space, thus we make a Fourier transform
of H. We then obtain

A=FHF ' =p*+ Q) 2Pp- ), ") (1.4.10)
which is a formal way of writing the operator
(Bf)(p) = p*f(p) + (2m)™" L d*q V(p — 9)f @) (14.11)
Using the Fourier inversion formula
V(x) = (2r)~3? L d3p V(p)e'>* (1.4.12)

one formally would expect
V(p) = 2n)*? Zr V,8(p — 7). (14.13)
Y€

since then

@n L @p P(p)e™ = T L dp 5(p ~ Y)e'

Y€

=Y Ve"™=V(x (1.4.14)
vel
which is (1.4.6).
Inserting (1.4.13) into (1.4.10) we see that A formally can be written
A=p*+ Y V@é(p—y-")") (1.4.15)

yerll
This makes it natural to decompose the Hilbert space L2(R?) according to
®
@: LA(R%) - L2(A, 1X(N) = j de 1),
R~ LA = ( (1.4.16)
@)@, n=1fr+0), 0eA, yel, feL>R?),

where A is the dual group of A (or basic periodic cell or primitive cell of the
dual lattice I), i.e.,

A =R3T. (14.17)
By identifying A with the Wigner-Seitz cell of the dual lattice I (defined

correspondingly to (1.4.5)) we obtain the important concept of the Brillouin
zone, namely

A = {s,b, + 5,0, + s3b; e R¥5;€ [—4,4),j=1,2,3}. (14.18)
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Thus the decomposition simply corresponds to writing a vector p € R® uniquely
in the form

p=0+y, 0O¢eA, yerl. (1.4.19)

This decomposition of L2(R?) will, of course, also decompose the Schrodinger
operator B which we now write as

®
AU = f d*0 H(9), (1.4.20)
A

where A() acts on [*(T") according to

(HO))M) = |y + 01g(») + Zr V90 —v), 0eA, yel, gel*().
Ye
(1.4.21)
Thus (1.4.20) simply means

@Bu~'f)6,7) = (AO)fO, )N, 0eA, yel, feL*A,I¥I)).
(14.22)

In order to study the spectrum of A, and hence of H, we have to study the
spectrum of A(6). Since the free decomposed Hamiltonian —A(0) (i.e., V,=0
for all y € T') has a purely discrete spectrum, namely

a(—A(0)) = a,(—A@6) =T + 62, (1.4.23)
where
IT+0={ly+0*cRlyel}, 0O€A; (1.4.24)

A(6) will also have a purely discrete spectrum consisting of isolated eigenvalues
of finite multiplicity. As @ varies in A, the Brillouin zone, the eigenvalues will
broaden to form bands if the dependence in 0 is smooth. Hence

o(H)=o(A) = U a(A(9) (1.4.25)
feA
which means that the spectrum of Schrodinger operators with periodic
potentials consists of bands, which may or may not be separated by gaps.
We will now implement the point interaction Hamiltonian into this frame-
work. There are essentially two ways of doing this. First, we could take the
operator —A, y from Sect. 1.1, make a and Y periodic and perform the direct
integral decomposition (1.4.20). Second, we could start with the unperturbed
decomposed Hamiltonian —A(6) given by (1.4.21) with ¥, =0 for all ye I’
and then perturb it with point interactions in the spirit of Theorem II.1.1.1.
This makes the approach independent of the technical Theorem 1.1.1, but
raises the consistency problem (since we have to make a renormalization to
pass from y’s to a’s): Do the two approaches yield the same operator? We
will follow the latter approach as this makes the presentation independent of
Part II, but for completeness we will also prove that the two approaches lead
to the same operator.
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Our potential will then be, formally

N
V= =3 3 udx=y=4,  weR j=1..N. (1426

Ae

when we allow interactions at a finite number of points y,, ..., yy in the basic
periodic cell [,

Y={yy,.... ¥n} =3 M (14.27)
Then

N
Vv, =|f I dBvvme ™= —|F|It Y ye '™, yeTl. (14.28)
A j=1

Inserting this into (1.4.21) we formally obtain

N

BOPE) =1y + 01290 =TI Y Y we gy —y)
1

y'erl j=

N
=ly + 01290~ ITI™ ), [uje“”’ Zl_ e""‘g(?')],

j=1 ye
0eA, yeTl, gely(). (1429

As this of course does not define a self-adjoint operator in /?(I') we introduce
the operators

N
(A°©@)g)¥) =1y + 61*9() — ITI™" Y. p()(452(0), 9)43,(6),
Jj=1

0eA, yel, gely(), 0>0 (1430
where (-, -) is the inner-product in /(') and #,,(6) equals the function
$20,7) = xoly + 0)e™*,  6el, yel, j=1,..,N, (1431)

and y,, as usual, denotes the characteristic function of the closed ball in R*
with radius @ > 0 and center at the origin.
With this operator we can state the following

Theorem 1.4.1. Let A“(0) be the self-adjoint operator in 1*(T') given by
(1.4.30) with domain

2(A°6)) = 2(—A(0)) = {g eI

Zr ly + 61*1g()1* < 00}, BeA.
Y€

(1.4.32)
If

-1

pilw) = (a,. + 5%) ,  %eR j=1,...,N, ©>0, (1433)
then A°(6) converges for all € A in norm resolvent sense as w — oo toa self-
adjoint operator which we denote by — A, , ((6). Theresolvent of — A, 5, y(6)
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reads

(=8, 4.v(0) — k)
N

=GO + ™ Y, nx(h 0015 (F-,,(0), *)F, (0),
J.Jj'=

k*¢|I'+ 01>, Imk>0, det[T, , y(k.0)]#0.
0eA, oeR, yeY, j=1,...,N, (1434

where
a=0y,....,0n), Y=,..,yesl (1.4.35)
and
oa vk, 0) = [0, — gi(y; — yjr» 0)]}\.’j'81’
kK2¢|I'+0)2, Imk>0, 0eA, (1.4.36)
and
gk(x» 0)
B Y k- A
im —_——— xeR®— A,
w-o yer |y + elz —k?
= ly+6lsw@
3 —iox v IA|
2n) 3e”%* lim — — — 47w |, x €A,
(2n) w[ 5 Fror-R ]
ly+0l<ow

K¢Il'+03 Imk>0, 6eA. (1437
If Im k > 0, then g,(x, 6) also equals

Y Gelx + A)e™4, xeR3 — A,
g% 0 =4"" . (1.4.38)
Y Gix+ e+ X xen 0eh,
AeA 47’:
(¢f. (11.1.1.26)). Furthermore,
Foy 0 = —o
> ly + 61> — k?

K¢l +0% Imk>0, 8eA, j=1,...,N, (14.39)

and G,(0) is the multiplication operator in 1*(I') with the function
(ly + 012 — k*)7L i,

G(8): IX(N) - IX(D),
G®)9) () = (Iy + 01> — k)7 g(y),
k*¢|IC+61%2, Imk>0, 0eA, yel, gel*()

(1.4.40)
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PROOF. From Lemma B.5 we know that

N
(H*(0) - k*)™' = G(6) + , ,Z=1 I vk, 6)1;}(G-i(6)¢5, (6), -)Gi(6)4y;,

det[I} y(k, )] 5 O, kK¢|I'+0)2, Imk>0, f¢ A,
2 ok, 8) = [IF|1(@) 15 ~ (62(6), Gy (O)d2 (O]} )=y (1.4.41)

The jth diagonal entry of the matrix I'? y(k, 0) equals

- _ - 1
IFlk@) " — 650). OO = Ilwe)™ ~ ¥ o
Ir+blsw

K¢|II'+0?, Imk=>0. (1442

To estimate the divergence of this series as w — oo is more difficult than to isolate
the corresponding divergence in the finite center case, Theorem 1L.1.1.1, since we
are not able to obtain the partial sum of this series in a closed form. However,
by applying the Poisson sumniation formula this sum can be controlled. Using
Lemma 1.4.2, proved after this theorem, we infer that

1
r' (a) -1 _ y
W™ = 2 frer—ie
DAL ELY

. IA|
= — (27 3 PRSI A S——; | y
If“l[z, ¢ ( y;r Iy + 6F — k2 M’)]
n+6sw J

k*¢|l'+ 01>, Imk=>0, (1.443)
converges as @ — oo to |['|[o; — g,(0, §)] where g,(0, 6) is given by (1.4.37). The
off-diagonal elements of the matrix converge, viz.

. i+ 0,=yy)
@20), GO 0) = ¥ —z == 1019y, = 3 0),

yer |y + 0|2
r+0lsow

J#i, K ¢IT+061% Imk20, (1444)
using Lemma 1.4.2 again. A straightforward computation shows that
G_i(0)82(0), )G0)42(@) = (F 1, (0), )Fe,, )iz 5= 0. (1.4.49)
Hence we conclude
nlim (8°0) = k)™ = G,(0) + " ,i e sl O -5, 0), o 0
(1.4.46)

<,

for k? sufficiently negative. To conclude that the right-hand side of (1.4.46) is the
resolvent of a self-adjoint operator —A, , y(6) is similar to that of Theorem I1.1.1.1
and hence will be omitted. The equivalence of (1.4.37) and (1.4.38) when Im k > 0
is precisely the content of Lemma 1.4.2. [ ]
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We did not use the full content of Lemma 1.4.2, but only the fact that (1.4.44)
converges conditionally and that

IA]
—————— =470 + O(1) asw— o0,
yel h’"‘elz-kz ()
Ir+ol<so
which also can be proved directly. However, for the consistency result in
Theorem 1.4.3, we also need the alternative expressions for the sums which
are contained in Lemma 1.4.2.

Lemma 1.4.2 (Poisson Summation Formula). Letk*e C,Imk > 0,a¢e R?,
and @ € A. Then

eiklA+al

-ifA
& i al
A#-a
17 lim Y —ei(—y:m— aeR® - A
w=o yer Iy + 0'2 -k’ ’
= redlse A . (14.47)
-3 i0a 1; A4 _ ]
e ..','11‘,,[ X ror = "“’] w N
ly+0l<o

PROOF. Formally eq. (1.4.47) is essentially the Poisson summation formula for
the function G,(x). However, due to the poor convergence (or actually divergence
without renormalization when a € A), special care is needed. First, we treat the most
singular case, i.e., when a € A. Due to the invariance modulo A it suffices to consider
a=0.Let

1
w) = —_—
fo= ¥ rer-e
r+bisw

=0, (1.4.48)

(k*e C,Im k > 0, and 9 € A will be fixed during the calculations and are therefore
omitted in the notation). Then f is a step function, f(w) = o0 as @ — oo, f(0) = 0.
Define

e Mr+él

For) = f e @) = ¥,

—_— >0. 1.4.49
1¢l‘|')'+0|2 - k? " ( )

Applying now the Poisson summation formula ([94], Theorem 67 and eq. (19),
p- 260) we obtain

| 8mn - 8nn
F(n) = Al 3x G () 5——= 01 B3x G - x)—5——
(") l | J.R’ X k(x)(xz + "2)2 + :§3e J;v X k( x)(xz + "2)2]

L

Pl Gy(A — nx)
— A 3, ¢ 3 i 3, 9t —n
Al .Ls 4 Pt (n? 2 J:v 4x n3(x® + l)z]

A€A
AgO

AeA
AgO

=A™ “Tn +2n%ik + (2n)* Y Gy(h)e ™ + o(l)] asn—0. (1.4.50)

-
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Hence

2
Fo) = J "'“d[f(w)—“ﬂ] kL OV o s e ® 4 o(t) (L451)

IA) Al JAl
implying
. IA| [ 4nw]
lim ————— — 47w Al lim | f(w) = —
M[ PO = Al lim | J0) =7
ly+6i<o

=1A| lim Fa)

(21:)3[ + Z G(l)e“"‘] (1.4.52)

which equals (1.4.47) when a = 0. Equation (1.4.47) for a € R? — A follows in the
same way except that now the term for 4 = 0 needs no special treatment and the
resulting series (over I') converges conditionally. [ ]

We now turn to the consistency problem mentioned at the beginning of
this section, i.., the proof that the operators —A, y,, defined by (1.1.10)
(with Y in (1.1.1) replaced by Y + A, where now Y is given by (1.4.27)) and
{2 a26[ - A, 4,y(0)] are unitarily equivalent.

For completeness we will also prove the decomposition of the x-space
version of —A, y, 4, i.c., the operator —A, y,,. Let

®
¥ #(R®) - LA, |A|! d%6; L3([)) = |A|™! Ji d*e L3 (D),
A

14.53
@O, v)= Y f(v+ e ™, 0el, vel, fesR?), (1439
AeA

and extend # to all of L2(R?) by continuity (denoting the closure by the same
symbol %).

Theorem 1.4.3. Let —A, y,, be a self-adjoint operator defined by (1.1.11)
where Y = {y,,...,yy} =T and

aan,jHeR, j=1,...,N, Ae€A, (1.4.59)
represents the strength of the é-interaction at the point y; + A€ Y + A. Then

@
%[_AG.Y-O-A]%-I = J“ dso[-aa.l\.}'(o)]s (1'455)
A

where —A, , y(0) is given by (1.4.34) and % is given by (1.4.16).
Furthermore, let — A, y ., be defined by (1.1.6) with Y and o as above. Then

®
@[_AG.Y-O-A]%-I = |A|_l J‘A dso[_Aa.A.Y(o)]s (14'56)
A
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where — A, ,.y(0) is the self-adjoint operator in L2([") with the resolvent

(=g, a,x(0) — k)7

N
= gk(e) + Iﬂl_l jz [ra,A.Y(k’ 0)]1-j’l (gk( - .ij 0)’ )gk( - ij 0)’
Je

=1

det[T, A y(k,0)]1 %0, k*¢|T+6)>, Imk>0, 6¢A,
wueR, yeYcl, j=1,...,N, (1457
where
gx(0): L*(F) - L(D),

(1.4.58)
(9:0)))v) = L d>v guv — v, 0)f(v'),

k*¢IT +0P?, Imk>0, e, feL*D),
and g,(v, 8) is given by (1.4.37) (or alterndtively by (1.4.38)).
PROOF. Using Theorem XII1.87 in [391] it is sufficient, for (1.4.5), to prove that
U(~Ayyon—k2)'U = J:e d20(—-A4, 5 4(6) — k?)™ (1.4.59)
for some k? € C — R, Im k > 0. By introducing the bounded operators

A, y(k): L2, 13(D)) » é-) 12(A),
i=1

N N
Fax(k): ®1 (A > @ (M), (1.4.60)
j=

Jj=1
By (0): D *(A) » L2A, I*(T)),
=

with
2 0Ny, +2)

R g Rt

N ‘k
(ra.A.Y(k)a)}('l) = z Z [(aj -~ ‘;'—) 6]]'6“' - k(yj =y + A- '1')] a,"('l'),
=12 T

‘eA

e iy +OXy,+2)

N
(Br.y(k)a) (6, y) = (2m)™*2 J; ‘;A maj(l),

a N
kK*¢IT + 01>, Imk>0, 6eA, feL*R%, ae@I*A), (1.461)
=
we observe after identifying @)L, 12(A) and I3(Y + A) that

(9 (=B, yon — K37 = (9, (97 — k2)71f) + (@4, By y (W)L, a ()] A, (k)2f),
k*e p(—A, Ay, Imk>0, f,geL*R%, (14.62)
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where, in obvious notation, p denotes an integration variable. Furthermore, let &,
denote the Fourier transform, viz.

N N
Z\: DN - P L} A, 1A d6),
= = (1.4.63)
(#ra)0)= Y aj(A)e™, 0el, j=1,...,N,
Ae€A
&1, its inverse, reads
N . N
F D LA A d20) > D 1),
Jj=1 Jj=1

(1.4.64)
(FD = A1 L POfO)®, A, j=1,...,N.
Define
IA.Y(k) = f/\AAA.Y(k),
Fonr(d) = T A O, (1.4.65)
By 1) = By y() Z, "

I, A.r(k), being a convolution operator in (B)%., I(A), transforms into a multiplica-
tion operator [, , y(k, 6). In fact, we have

ik e IV
r.a.A.Y(k’ )=\, = =)o - z Gx(}’; =y + e 140
4n AeA ,j'=1
Imk>0, (14.66)
which can be seen as follows:
(f Alaa, v(k)a)J(o)
N ik . )
- I'Zl 2 AZ A [(a, - ‘:—7‘) 6”'5“' B G,,(y, T A ll)] e e ‘a,.(l’)
=1 2,2'e¢

= (Fark, 0)(F,0)(0));,
Imk>0, 6eA, j=1,...,N, ae @@L, >N, (1.4.67)
where I, 5 y(k, 0) is defined as above. Furthermore, we get by explicit computation
that
N omir+oy,
(Ba.x(k)1)(8,7) = By, y(k, 6,7)1(0) = (2m)~ " ;Z:l mf;(e),
K¢Ir +01%, Imk>0, f=(f,,.... x)e DL, L}A), (1.4.68)
and
. - R 2ir+0),
(A 1 (0%f),(0) = (A v(k, )1 (0 + ) = 2m) A gr mf »+0),

k2¢|T + 02, Imk>0, feL*R?. (1.4.69)
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Hence, using (1.4.62),

. ®
(@ (=B psy = K)Y) = L a*0{((%9)(0), Gu(O) () (0))qry

+ (9)(60), By y(k, O)[F, 4.y (k, )1 A, y(k, 0)(])(0))iiry )},
keC—-R, Imk>0, f,§eL*R?). (14.70)

But (1.4.70) is equivalent to

®
U(~B,yin~K) U = L d*0[Gy(6) + By y(k, O)[F, A.y(k, )] A, y(K, 0)],
k*eC—-R, Imk>0, (14.71)

and by appealing to Lemma 1.4.2 we see that the integrand on the right-hand side
exactly equals (—A, 4 y(0) — k2)!, proving (1.4.55). To prove (1.4.56) we could
decompose the resolvent directly as in the proof of (1.4.54), or alternatively combine
(1.4.54) and the unitary equivalence of ~A, y,, and —A, y, . Here we will follow
the latter approach. Thus

(9, (=, yea — K2)7Yf)
= (#9,(—A,.yin ~ k) FS)
D
= (Wg, d30(—A, ,.4(6) — k’)-'Wf)
A

LY

D
= (awg, a0 c.(owsvf)
JA

N
+ z A dso[ra.A.Y(kv 0)]”-'1(%‘gg’ Fk.yl(e))(F—l.y](e)’ %ff)

hi=1J

- I @0 {(frw)(Wg)(o), FOG OF OFO@FT)(O)
+ 3 e 017 GO YO)
FiOF, , OV OF -1,,,6), FO@F) (e»}
=A™ L &0 {«%)(e), 0O )(6)
+ 3 [k 015 (F0O) 6 = 3 ONGT =577, (%f)(e»}

@
= (‘fly, A j d>0(— A, 2.10) - k’)"‘?'lf),
A

f,ge L3R, (14.72)
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where #(9) is the Fourier transform
F(0): 13(1) - L¥(D),
(FLODO) =11 2e® T ae™,  geh, vel, acim). 147
yel -
Remark. g,(0) is, of course, the resolvent of the decomposed Laplacian
—A(6),ie,
9:(0) = (—A@0)—k*)', k?ep(—A@), Imk=>0, 6eA, (14.74)

where —A(6) is the self-adjoint operator —(92/0x? + 8%/0x3 + 8*/9x3) on
L*(f") with boundary conditions
o

SO+ a)=eosfo) S +a)=e

i0a; ai
0x;

0=(6,,0,,6,)eA, vv+aedf, j=1,23 (1475

),

Having settled the consistency question we now turn to the detailed study
of spectral properties of the operators —A, y,, and —A, y A(9). First, we
consider the case where Y consists of one point which, by translation invariance,
can be assumed to be zero, i.c., Y = {0}. We then write —A, , and —A, ,(6)
for —3,.{0“ A and -4, a.{0}(0), respectively, and we use « instead of «,.
We can now state the following

Theorem 1.44. The spectrum of —A, ,(0) = — A, 4 (0}(6), « € R, is purely
discrete and consists of isolated eigenvalues of finite multiplicity for all
0el,ie.,

Ous(—8,A0) =T, 0O€A. (1.4.76)
More precisely, it can be characterized as follows: R — |T" + 6)? consists of
an infinite union of disjoint open intervals 1,(0), i.e.,
(-]
R—|T+ 6= ) 10) (1.4.77)
n=0
Here I, = (—00, 8%) and I,(0), n € N, are bounded intervals. In each interval,
1,(8), — A, A(8) has exactly one simple eigenvalue E%*(0) with eigenfunction
Yero@ = [y + 01> — Ez*(0)]™', 0eA, yel. (14.78)

Furthermore, E&A(0) is strictly increasing in « for ne N, 0 € A. In addition,
E6) € IT + 0)? is an eigenvalue of — A, A(0) of multiplicity m > 1 iff there
exist m + 1 points y,, ..., ¥, € I such that

ErO) = lyo + 01> =" = |y + 0% (1.4.79)
The corresponding eigenspace is spanned by the eigenfunctions
'l/g)‘(O)(y) = 617, - 67709 0 € Aa Y ‘Yj € r’ j = la ooy m, (14'80)

— A, A(6) has no other eigenvalues.
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PROOF.  Recall that the unperturbed operator —A(0) has a purely discrete spectrum
with eigenvalues |y + 0|2, y e T (cf. (1.4.23)), ie., 6(—A(0)) = [T + 6{%. From the
explicit expression (1.4.34) we see that there are two possibilities for eigenvalues of
—A, A(0), namely

(a) a= g,;.,.z(O, 0),
(b) E©O)={y+ 0P

For case (a) we observe the following properties of the function g,(0, 0) as a
function of k2:

(i) The poles of g,(0, 8) are exactly the elements of |T" + 6}2.

.. 0g,(0, 0) -

i) ——— = —
(i) a(k?) I o (ly + 012 — k?)?
(iii)) ,(0,0) > —00 as k? - —o0.

>0, K¢\l +0? Imk=>0.

Thus we obtain the graph of g,(0, 0) as in Figure S, and writing
R—T+0?2=J10), 0¢eA, (1.4.81)
n=0

where 1,(0) == (-0, |0|?) is the unique unbounded interval, we see that there is
exactly onc eigenvalue E&A(9) of — A, ,(0) in each interval [,(0), and this eigenvalue

is in case (a). To find the corresponding eigenfunction and multiplicity we use
([283], p- 180)

n-lim(E—2)(H —-2)'=P (1.4.82)

z=E

for self-adjoint operators H, when E is an isolated point of the spectrum of H,

9:(0, 0)

7

101
71 + 0)?
172 + 6)?
ks + 612
I7a + 60)?

Figure 5 Qualitative behavior of g,(0, 0) as a function of k2.
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and P is the projection onto the eigenspace belonging to the eigenvalue E. Using
the explicit form of the resolvent we get

PEM0)= n-lim (E*A8) — 2)(— A, A(0) — 2)!

z—E%M0)
= ||¢£:,-A(0)||'z(ll’£:.'~(o), *)Wes o) neN,, (1.4.83)

where Y., is given by (1.4.78) and || - || denotes the norm in ().

In case (b) a more detailed analysis is required since EA(0) = |y + 6)? is a singularity
in all terms of the resolvent. Assume that there are m + 1 points y,, ..., Y €T
such that

ErNO) =1y + 0P == |y, + 0% (1.4.84)
First, we observe that, as k2 — E*(0),
IFI (o — g0, 0)1™! = —(m + 1) (EX(6) — k?) + o(k? — E*0))

because there are exactly m + 1 points, each of which gives rise to a simple pole
of g,(0,0) with residuum |[|™!. Furthermore, we decompose the function
(Iy + 61> — k?)™! as follows
(y +612 = k) ' =@,,(0) + D,.(y), 7yel, O€eA, (1.4.85)
where
D, .4 = Xprou...ry My + 01 — k)71,

D40 = (1 = Xpyouor @y + 02 — k)7, yeTl, OeA.

(1.4.86)
Here x, denotes the characteristic function of a subset A < I'. Then (— 3,_ A0 — k)™
takes the form
(—A,'A(G) — k)t = D, +Dy—(m+ 1)"Y(EM0) - kz)(d)l.h )Py
+ [—(m + 1)"Y(EA@) — k?) + o(E*9) — k?)].
@00 P2k + (@245 )Py i + (P4, *)D24]
+ o(EMNO) — k) (D, 4, )Dy 4 (1.4.87)
and hence
PA@) = n-lim (EM) — k2)(—A, A(0) — k*)!
k2—=FA0)

- (1.4.88)
= Xiro....vm) ~ (m+1) (X{TO-----Ym)’ ‘)X(TO----Jm)’ m21,
0, m=0,
since
(E*O) = K)®1 & = Xpron....r) Timgrgy” (1.4.89)

as a multiplication operator, and

In particular, if m = 0, then PA(0) = 0, i.e, there is no eigenvalue. Now, assume that
m > 1, and define
Yy) = 67?, = Sy ji=LlL...,m,

. (1.491)
#() = 6, —(m + 1)”! 'Zo 8pr  J=0,..,m.
=
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Then
bo=-Y ¢ (1.492)

and hence P*(0) can be written

(PO = z: 8 J5) = O + 1) [ S0+ + fa)] f.:o 8,
= ,§o S SO) — (m + V' [fGro) + -+ + fOm)]}
=5 880 = T Gy, — 5)8.)
j=0 j=o

- ,i. @O0, vel, fel(T), (14.93)

which proves that dim P* = mand thaty,, ..., ,, span the corresponding eigenspace.
a

Remarks. 1. The above proof shows that there is a natural one-to-one
correspondence I' — o(— A, _A(0)) in the following sense, when o(— A, A()) is
considered with multiplicities: Namely, let y € I". If |y + 6|2 is no eigenvalue,
we define E3*(6) to be the largest eigenvalue of —3,, A(0) smaller than
|y + 6J%. (This will necessarily be an eigenvalue in case (a), i.e., a solution of
o = ggi2(0, 8).) If |y + )2 is an eigenvalue with multiplicity m, then there exist
m + 1 points y = ¥, 71, - .-, ¥m € I' such that |y, + 0|> =+ = |y,, + 0> and
we let E% A(0) be as above for onej, € {0,...,m},and E"(B) ly + 6)2 for all
Jj #Jo- Henceforth we will use this correspondence
2. We remark that for the lowest eigenvalue one is always in case (a).

Using the properties of the spectrum of —A4, ,(0) we will now study the
spectrum of the full Hamiltonian —A4, ,.

Theorem 1.4.5. Let A be a lattice in the sense of (1.4.3) and let « € R. Then
the spectrum of the operator

®
—Aa=u { f d30[-3,_A(0)]}qz (1.4.99)
A

is purely absolutely continuous and equals
a(—A,.4) = 0,(=2, 4) = [EE™0), E5"(60)] v [ES*, ),
0(-B,A)=Q, aceR (1.4.95)
where
0o = —4(b, + b, + b,) (1.4.96)
and
E}* = min{E3:*(0), 41b_*} = 'am,? [E::"6)], (1.4.97)
e
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where b_ € {b,, b,, by} is such that

b_I<1bl, Jj=123. (1.4.98)
We have that
E**>0, acR, (1.4.99)
and
E5™6,) <0 iff a<ag, (1.4.100)
with
o,a = 9o(0, 6). (1.4.101)
Furthermore, the spectrum is monotone increasing in « in the sense that
aﬂ%@ >0, yel, 0eh,  Els0 (410
In addition,
mo-{>, i1%, {17
Lol oo co, (1.4.103)
Byt - {0, a— —00,
and hence there exists an a, 5 € R such that
0(=4,) = [E§™0), 0), a2a,. (1.4.104)

PROOF. We now have to study in detail the behavior in 6 € A of the eigenvalues
E;"‘(O) of —A,‘ A(0). (We use the labeling of the eigenvalues introduced in the first
remark after the preceding theorem.) The lowest band comes from the eigenvalue
E%A(9), ie., with y = 0. As remarked earlier, this eigenvalue is in case (a), i.c., a
solution of

o = gg12(0, 9), Im EV2 > 0. (1.4.105)

To simplify the notation in this part of the proof we assume that A = Z3, thus
I' = 2rZ% and A = [ —n, n)®. From (1.4.105) we infer (where V denotes the gradient
with respect to 6)

2(0, @
V4 /a0, 0) + M_). VEZA(0) =0, (1.4.106)

which implies that the stationary points of gg..2(0, 8) and E5*(6) (with respect to 6)
coincide. We have

31 2(y + 6)
V110,0=—2 3lm —_—
95:(0,0) = —@n > lim 3 By
ly+0lsw

(1.4.107)

and by considering the first component (Vgg12)'(0, 8) of Vgg12(0, 8) and summing



194 1111 Infinitely Many Point Interactions in Three Dimensions

the series (1.4.107) in this component we find
1 5 _sin[2nB,(E, é)]~ sin,
64n* ;c%2z2: B,(E, ) {cos[2nBy(E, 8)] — cos 0,}*’
0 = (olv 020 03)’ 6 = (Oy 02, 03), Bf(Ey 6) =V E - (f + é)z,
Im By(E,8) 2 0, §e€2rZ> (1.4.108)

(Vgg1:)' 0, 8) =

Since
. 3 E -t
sin(27B,(E,0)) _ (1.4.109)
By(E, 0)
aslongas E < |0]? + 1, we see that
Vg,,;uz(o, 0) = 0 W 0 € {0, —%(bl + bz + b;)} (1.4.110)

Furthermore, we have that 6 = 0 gives a minimum and 6 = 6, gives a maximum,
thus

E&M0) < ESM0) < ESM6,). (1.4.111)
Let E%2 denote the bottom of the second band, i.e.,
EpA = l':li}\l LE;*(0)). (1.4.112)
From Theorem 1.4.4 we have
1601 < Eg*(0) < (b~ + 0)? (1.4.113)
and hence
Ey (—4b.) = 4Ib_|2. (14.114)

If E?* < |b_}%, then the above argument shows that E}* = Ej:4(0). To prove that
there are no gaps in the spectrum of —A, , above E%* we first extend —A, ,(6)
to all @ € R3 by using the same expression (1.4.34) (with N =1, y, =0, a, = &) for
the resolvent. Due to the periodicity we have

U a(=3.40) = ) o(-8,.0)). (1.4.115)

0cA 0cR?

The definition of E*A(0) for 0 € A, y € T, can be extended continuously to all § € R*
by the same procedure. Using (1.4.102), and the continuity of E~*(9) for 0 € R,
we infer ([391], Theorem XIIL.85)

o(—A,2) = | o(=8,A(0) = {ExM0)10€ R yeT}.  (14.116)

fecA

Assume now that there is a gap in the positive part of the spectrum, say [a, b]
p(—A, ), b>a> E}* Then we can find 7, ¥, 7" €T, not on a line, and 9 € R®
such that

[y + 61> < E=A@) <a < b < E&"0) < |y + 6. (1.4.117)
We may assume that

P+ 0P < ESMO) <y + 0P < EZM0)< |y + 6|2, 0eR3 (14.118)
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as long as
Iy +0P2<ly+012<ly +6]>, 0eR3. (1.4.119)
However, we can always find a 0 € R? such that
Iy + 01 =1y + 0 =1y + 4. (1.4.120)
For this 0 we have
E3AD) = E=A0) (1.4.121)

and hence, E%*(0) being continuous,
[a, b] = [E*A(0), Ex*(0)] < 6(—A, 4), (1.4.122)

which yields a contradiction to the assumption that there was a gap in the posi-
tive part of the spectrum. The absolute continuity of the spectrum follows from
Lemmas 10.14 and 10.15 in [85]. The monotonicity in & of E*(0) follows by
differentiating (1.4.105) with respect to a. ]

In the general case, where Y consists of N points, we do not have that
detailed information on the spectrum of ~A, y, A, except for the fact that the
negative part of the spectrum consists of at most N bands, which is the content
of the next theorem.

Theorem1.46. Letoa;eR,y;e Y,j=1,...,N.Theno(—A, y,,) " (-0, 0)
consists of at most N disjoint, closed intervals where

®
UL—B, yadU ' = f d*0[—A, A.y(0)]. (1.4.123)
A

PROOF.  As in the proof of Theorem I1.1.1.4 we will first prove that T, 4 ,(k, 0) is
monotone decreasing in k2 for k2 < 0. It is equivalent to proving the same property
for ,T, A.y(k, 0%y where %, is the unitary operator

#:C">cCV,  (WUay=ena, j=1,....N, a=(a,,...,ay)eC",

xeR3 (14.129)

We have
(a, UV, ay(k, 0VUs 'a)
y IAI| Y, (@a) y
=Y a;la)? — 2n)73 lim A 4w aj|? 1.4.125
);l ’I J| ( ) W~ y;l‘ l'l' + olz - kz j;l l JI ( )

ly+0lsw
which proves the monotonicity in k2, k2 < 0. Hence T, , y(k, ) has at most N
eigenvalues which are all strictly decreasing and each of which can give rise to at
most one band in the negative part of the spectrum of —A, y. 4. [ ]

We will now study how — A, y, , can be approximated by scaled short-range
Hamiltonians. The general Theorem 1.2.1 covers this situation. However, to
obtain detailed properties of the behavior of the spectrum, we have to study
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the decomposed operator —A, , (8). We start by decomposing the operator
H e Y+A-

Theorem 1.4.7. Let V; € R, supp V; compact, be real-valued and let A(c) =
1+ 64;(0) + o(e)as €1 0,j = 1, ..., N. Then the self-adjoint operator

N
Hoyin=—-A+e2Y Y 4OV —y— Ve (14.126)

j=1 AeA

in L*(R3) can be decomposed

®
WH, y U = |AI! I d30 H,  y(6), (1.4.127)

A

where H, , y(0) is the self-adjoint operator in L*([") with the resolvent

N
(Hoay(0) — k) = gu(0) — & ). A,k 6)[1 + Bk, 0)];;'C, ;(k, 6),

JJj'=1

k*ep(H,oy(6), Imk>0, 6eA. (14128)

Here g,(0) is given by (1.4.58), while the Hilbert—Schmidt operators A, j(k, 6),
B,(k, 6), and C, j(k, 0) are defined by

A, j(k, 0): L3(R%) - L),
Bk, 0) = [B, ;;(k,0)1";,, B,k 6): L3 (R?) — L*(R?),
C.ik 0): L3 () > L2 (R%); £>0, k*¢ |l +6%, Imk=>0,
0eA, jj'=1,...,N, (14.129)
with integral kernels
4, ik, 6,v, x) = g (v — ex — y;, O)vj(x),
B, j;(k, 6, x, x") = eA(e)uj(x)gi(e(x — x’) + y; — yy, Nv;(x’),
C..j(k, 6, x,v) = Ap(e)u;(x)glex + y; — v, 6),
e>0, kK2¢IT+0)> Imk=>0, x,x' e€R3
vel, 0€A, jj=1,...,N. (14.130)

PROOF. It suffices to prove

®
UH, yon— k)2 =A™ f d30(H, 5.y(6) — k*)7,

A
k*eC-R, (14.131)

where H, , y(0) is introduced above. Having defined all necessary operators, one
easily verifies that

®
4G, = [I/\l" f % g,(o)]q?, Imk >0, (14.132)
A
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and furthermore that

(D
XA, fk) = [If\l" R d%0 A, ik, 0)]9',

r

®
#.B, (k) = [Mr' . d*0 B, ;;(k, a)]éa,

(©
FrC. ) = [If\l'l < d*0 C, (k, 0)]‘?7;

o

e>0, k*¢|lF+0)?, Imk>0, 0eA, jj=1,..,N, (14133

where F, is defined by (1.4.63) with N = 1,and A, ;(k), B, ;;(k), and C, ; (k) are given
by (1.2.4). Using (1.2.8) this proves the decomposition. [ ]

As one would expect the operator (H, , y(0) — k?)™! converges to
(— A, A.v(0) — k?)7!, the decomposition of (—A, y4s — k2)!,as¢ | 0:

Theorem 1.48. Let V;€ R, supp V; compact, be real-valued and let A,(c) =
1 + €4j(0) + o(e)ase | 0,j = 1,...,N. Assume that 4(0) # Oif H;= —A + V;
is in case III or IV. Then H, , y(0) converges in norm resolvent sense to
— A, A.v(0), viz.

n-lifn (Heay(0) — k2)7! = (= A, 5.¢(6) — k*)7!,
e40

k2eC—-R, Imk>0, 6eA, (1.4.139)

where
(o0 in case I,
—240)1(v;, )12 in case II,
% =3 o0 in case I1I, (1.4.135)

N; -1
—40) {;‘i (v, ¢jl)|2} in case IV.

.

Remark. If o, = oo for some j, € {1,..., N}, then the joth row and line
should be removed in I, 4 y(k, ), i.c., there is no point interaction at y; .

PROOF. Again our basic tool in proving (1.4.134) is to study the explicit expressions
(1.4.128) and (1.4.57) for the resolvents of H, , y(6) and —A, , y(0), respectively.
We have the asymptotic expansions

B, ;y(k, 6) = D;; + eE;;(k, 6) + o(e) (1.4.136)
valid in Hilbert—Schmidt norm as ¢ | 0 where
D,;. = §;,u;Gyv;,
T N (1.4.137)
Ejj'(kv 0)= gk(}’j = Vs 0)(0,,", ')“j; bhj'=1...,N.
The rest of the proof is identical to that of Theorem 11.1.2.4. [ ]
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This result will be applied to the analysis of the behavior of the spectrum
of H, , y(8) in the limit ¢ | 0. The first result treats the case Y = {0}.

Theorem 1.49. Let V € R, supp V compact, be real-valued and let A(e),
A(0) = 1, be analytic in a neighborhood of zero. Assume H = —A + V to he
in case Il or 1V and suppose (1.1.2.84) and 2'(0) # 0 in case IV. Assume that
E,(0),0 € A, is an eigenvalue of H, ,(0) = H,, a.{0}(0), chosen to be continuous
in ¢, ¢ > 0, which remains bounded for ¢ > 0 small. Then

Eo(6) = lilm E(0), 0O€A, (1.4.138)
£40
exists and is an eigenvalue of — A, A(0), — A, A(@) being the norm resolvent

limit of H, A(0) as £ ] 0. Assume this eigenvalue to be in case (a) of the proof
of Theorem 1.4.4. Then

E.(0) = Eo(0) + ¢E,(8) + o(e), (1.4.139)
where
E (8) = hy(Eo(0), 0)[A + Eo(0)B], 0€A. (1.4.140)
In case 1
A =12"(0) + X0 + X (0)(4, ),
B =8n)"" an6 d3x d3x’ p(x)v(x)|x — x'|$(x")o(x’), (1.4.141)
1 -1
h E 0 y 0) = r 37 ’
ES0.0) =P 5 o

where x is given by (1.4.146). In case.1V, ¢ (resp. #) should be replaced by ¢,
(resp. ¢,). E/(8) is analytic in g near ¢ = 0 if E,(0) <O.

PRrROOF. If Ey(0) = lim, 4 E,(8) (Which exists due to the norm resolvent conver-
gence and the discrete spectrum of the limit operator) is negative, we can follow the
proof of Theorem 11.1.3.1 to obtain the stated expansion. In fact, using (1.4.38) we
see that B.(k, 0) is analytic in ¢ and k and we can follow the analysis in the proof
of Theorem I1.1.3.1 with G,(x) replaced by g,(x, 0). Recall that by Theorem 1.4.4
E,(0) is a simple eigenvalue and N = 1 in the notation of Theorem II.1.3.1. (Hence
the analysis from Part 1 would also apply here.) If, however, Ey(6) > 0 (which by
assumption is still simple), we are not able to conclude that B.(k, 0) is analytic in ¢
in a neighborhood of zero. But B(k, §) remains a Hilbert—Schmidt operator when
k% >0,k ¢ |l + 0)* because

ei(y+ 0)e(x~-x")

L o T Py

+cu(x) Y Gle(x — x') + e o(x’) (1.4.142)
AeA

(x)

for any k € C, Im k > 0, cf. Lemma 1.4.2, and in a similar way B,(k, ) is easily seen
to be two times continuously differentiable in Hilbert-Schmidt norm in ¢ and k.
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Hence E,(0) has the form
E.(0) = E,(8) + €E,(8) + of¢). (1.4.143)

The projection P,(0) onto the eigenspace of the operator B,((E,(6))'?, 6) to the
eigenvalue —1 can be chosen to be two times differentiable in norm with respect
to € (251]. Defining

#.(6) = P(0)g, (1.4.144)

where ¢ is an eigenvector of By((ko(0))'?, 8) = uG,v with eigenvalue — 1, we expand
the equation

(1 + B.((E,(0)"2,0)1¢,(0) =0 (1.4.145)

with respect to ¢ to obtain the stated form of E, () with
x = T[X(0)¢ — a(v, g)u], (1.4.146)
T being the reduced resolvent of 1 + uG,v, cf. (1.1.2.37). ]

Recall from Theorems 1.4.4 and 1.4.5 that each eigenvalue in case (a) gives
rise to a band when 8 varies in A. The bands are connected at points E@)
where there exist at least three points y,, 5, y; € I’ with E(0) = |y, + 82 =
192 + 0]2 = |5 + 8)% From (1.4.140) we see that E, () — 0 when 6 — 8. Thus
we see that in this sense the bands do not open up to first order in &.

Our last result in this section concerns the behavior of the negative part of
the spectrum in the case where Y consists of N points.

Theorem 1.4.10. Let V; € R, supp V; compact, be real-valued and let A;(¢)
be real analytic in a neighborhood of zero, 4(0) = 1,j=1,...,N. Fix0e A
and assume E_ (0) to be an eigenvalue of H, , y(0) such that

—0o <M, <E@)<M,<0 (1.4.147)

for € > 0 small enough. Let {¢,} be a positive sequence decreasing to zero,
and let E (0) be an accumulation point of {E, (0)}. Then Ey(8) is an eigenvalue
of —A,ay(0), —A, A.v(0) being the limit of H, 4 y(6) in norm resolvent
sense as €| 0. Let M(0) be the multiplicity of the eigenvalue E(0). Then
there exist functions h/(0), analytic near the origin, h/(0, 0) = 0, and integers
my0) € {1,2},1=1,..., m(B), such that

E,(0) = Eo(0) + hy(8, c'™®)

0 m(0)
= Eqo(0) + z a; (0)"™®, I=1,...,m@0), Y m(6)=M(@),
r=1 =1
(1.4.148)

are all the eigenvalues of H, , y(0) near Ey(0) for ¢ > O sufficiently small. If
my(0) = 2 for some 1, both square roots should be used such that the total
multiplicity of all eigenvalues equals M(0).

PROOF. The proof is similar to that of Theorem I1.1.3.1 except that G,(x) has to
be replaced by g,(x, 0). a



200 IIL1 Infinitely Many Point Interactions in Three Dimensions
IIL.1.5 Straight Polymers

Replacing the three-dimensional lattice A from the preceding section by a
one-dimensional lattice A,, viz.

A, ={(0,0,na)eR3*nez}, a>0, (1.5.1)

we obtain a one-electron model of an infinitely long straight polymer as
explained in Sect. 1.3.

Our basic tools in studying this operator will again be Fourier analysis and
the direct integral decomposition. In contrast to the discussion of the crystal
we will use Theorem 1.1.1 to define the operator, and then make the integral
decomposition directly.

The point interactions will be located at

Y,=Y+A, (15.2)
where
Y={y,....,yn} € R® (1.5.3)
is such that the third component of each y; € Y belongs to [, i.e.,
yi=0hLyhy)eY, yef, j=1,.. N, (1.54)
where
£, = [-g ;) (1.5.5)

The dual lattice, I',, and the dual group, A,, read, respectively,

T, = {(o, 0, 2a—"n) e R?

Whenever convenient we shall identify A, and {na € R|n € Z} and similarly
for I',. Furthermore, we will often write

P.N=0p"pLeR, p=(p',p)eR? yel,. (15.7)

The proper decomposition of L2(R?) for the polymer (cf. the operator % given
by (1.4.16) in the crystal case), is now given by

ne Z}, A, = [—n/a, n/a). (1.5.6)

@
U, LZ(IR:“)—»L’(/\I, L’(ll'x!z xI)= f_ do LZ(RZ x I),
A
(1.5.8)
@, )0, p,7) = f(p.y+06), 0eA,, peR? yel,, feL*R.

Decomposing the free Hamiltonian — A in p-space with respect to this decom-
position we obtain for its resolvent the operator

G(0): L*(R* x I}) = L¥(R? x I}),
(G(0)9)(p, V) = [I(p» ¥ + OI* — k*]'g(p, 7). (1.5.9)
OeA,, k*¢[6% ), Imk=>0.
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We will also need the function

(ik . fik 1
o e {E + o In[2(cos(ka) cos(0a))]}, xeA,,

e(Ox’ x3 nx’ 10" ei(x’-l)tlz
4na [zﬁ (7) cos (T) +3 L-,,a A=)
gi(x, 0) = < 1(" e~ i3+1n12
+ = dt————— |, x=(0,0,x3)¢A,,
2 J‘(R'O'O)a Sm(t/2) ] ( )¢ 1

2ma Y, Ko(\/(y + 0)* — k*|%])e'+0=,

rel,

| x=Ex)eR, ££0, 0el,, (1.5.10)

(B(-) and K(-) being the beta function and modified Bessel function, respec-
tively, [1]). The domain of definition of g,(x, 8) as a function of the complex
variable k is illustrated in Figure 6.

I T =y

+ o+ o+ mk s s =

L2 & =2 T + + 4

TOT T |l £ & =
Rek

(a) T 1 1 TcutsT | 1 I

Imk
[

g O & £ ®
<+ | a | a8
S [ " + &
o | > | o & ® <

Rek

o 1 {0 I I | 11

Figure 6 The domain of definition of the function g,(x, 8), 8 € A, as a function of k
in the complex k-plane: (a) when x € A,; (b) when x € R® — A,.
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Furthermore, we will use, for the decomposition in x-space, the analog of
9 (cf. (1.4.53))

®
@, S(R?) - L? (7\[, ;—nde; L*(R? x f.)) = %{ I _dOLAR* x I)),

Ay

@, f)0,p,v)=2m)" ¥ J. d2x f(x, A + v)e Pxe=ieA
R2

A€,
6eA,, peR? vel,, feZR?, (1.5.11)
and then extend %, to L%(R?) by continuity. The extension is still denoted

by %,.

Theorem 1.5.1. Let y,e Y, y?el,, and ;e R, j=1, ..., N. Then the
self-adjoint operator —A, y,,, in L*(R®) defined in Theorem 1.1.1, with
Y={y,,...,yn} and

=0, j=1L.. N, a={g}, 1eA, (1512

satisfies
®
Uy [~Byyen U = f do[ A, 4, 1(6)], (1.5.13)
Ay

where —A, 4, y(0) is the self-adjoint operator in L*(R x I,) with resolvent

N N
(=B,4,.v(0) = k)7 = G(O) + _jZl (Fe.a,.r(k 0)15 (Fz,,(0), )Fy.,,(0),
hi'=

k*ep(—A, 5,.v0)), Imk>0,0eA,, yPel|, 4;eR, j=1,...,N,
(1.5.14)
where

rﬂ-Al-Y(k’ e) [ .I it gk(.Vj - yj" 0)]ﬁj'=|, 0 € 7\1, (1-515)

and
e—l'(p. y+0)y,

I(p,y + 0)1* — k*’
k*¢[6% ©), Imk>0, 0eA,, peR? yel,, j=1,...,N. (1.5.16)

If we introduce

F, (0, p,y) = 2m)~%*

—BDyyin, = F =B, y:1,)7, (1.5.17)
then

®
- - a
%l [-Aa.)'+A,]%l-l = '2_' J: de[—Aa.A,.Y(e)l (1518)
m J&,
where — A, 4, y(0) is the self-adjoint operator in L*(R? x T',) with resolvent
(—=Aga,.y(0) — k)

N
= gk(e) + Z [ra Ay, Y(k 0)]_”1(9,‘( .V, s O)a )gk( - }p 0)

J.J'=1

-

ke p(—=A,a . v0), Imk>0, 6eA,, (15.19)
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where

gu(0): L*(R* x ') > L*(R* x I),

(9:0))(p, v) = L d*p’ j d*v gi((p - p',v— V), 0)f(p', V),
2 rl
k> ¢[0% ©), Imk=0, 6eA,, peR? vel,, feL*R?xTl)),
(1.5.20)
and g,(x, 0) is given by (1.5.10).

PROOF. Following the proof of Theorem 14.3 we get (1.5.13) where
(=4, 4, v(0) — k?)"! equals (1.5.14) with

ik o IV
Lok, 0)=[<a,.-‘%t-)a,.,.— Y G,(yj-y,.+l)e"“:| . (1521

AeA, j.y' =1

Next we observe that the infinite sum on the diagonal actually can be summed to
yield (1.5.15) while the off-diagonal sum can be summed ([237], eq. (14.3.1) and
(17.3.1)) when y; — y; = (0,0, y} — y?) ¢ A, and can be expressed in terms of K (")
when y; — y; = (5 — 5, ¥ — ¥?) J; — §; # 0([333), p. 62). The rest of the proof
is similar to that of Theorem 1.4.3. a

Since we will use later on detailed properties of the domain 2(—A, ,, y(0))
of —A, 4, .y(8) we give the following

Theorem 1.52. Let y;e Y,yPel), ;e R j=1,...,N,and € A,. Then
the domain 9(—A, anr(0)) of -A, . 1(0) consists of all functions () such
that

N
¥, p,7) = 46, p,7) + Zl aj(k, O)F,., 6, p, ),
-
peR? yel,, (1522

where

aj(k, 0) = ;i:l [T, vk 6)15 Yezl:_l Lz d2p e’ ®r*r (0, p, ).
(1.5.23)
Here k* € p(—A, 5,.y(0)), Im k > 0, and
$(0) € A(I(p, v + 0)?)

= {g e LXR? x T))

2; L dpl(p,y + OI*1g(p, )I* < 00}-
yel, 2
(1.5.24)

This decomposition is unique, and with y(0) of this form we have
[(—4,.A,.v(0) — KW (O)1(p,v) = [I(p, ¥ + 0)1* — k*1di(p, 7). (1.5.25)

PROOF. Similar to that of Theorem 11.1.1.3. [ ]
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We now turn to the analysis of spectral properties, starting with the operator
-A,, A,.x(0). For this operator we encounter resonances and, in particular,
real resonances. Here resonances are defined in the following way: k, € C,
Im ko, <0, is a resonance of —A, 4, y(0) iff det[T; 5, y(ko, 6)] =0 and, if
ko € (0, ), then k3 ¢ g,(— A, A ,(0)) The multnphcnty of ko by definition
equals the multiplicity of the zero of det[T, 5, y(k, )] at k = k,.

From now on we will assume that Y consists of only one point which by
translation can be taken to be zero.

Theorem 1.5.3. Leta € R,and —A, A0) = -A, Anfoy(0),0 € A,. Thenthe
essential spectrum of —A, A,(0) is purely absolutely continuous and equals
Oess( =B, 4,0) = 6,(—B,4,00) = [0%, ®),  6,.(—A, 4,0) =D,
6el,. (1.526)
Writing
z%M(0) = cos(0a) + 3e 4™, (1.5.27)
we have

[({—a"2 In2[2*M(6) + /[z5%(0))2 - 11},

z%M@) > 1,
0)(—=A,A,0) = < {a~? arccos?[z*M(0)]}, z~M(@) <! and
arccos2[z2**1(0)] < (ab)?,

(&, z%%(0) < 1 and arccos?[z**1(0)] = (ab)>.
(1.5.28)

If E~M(0) is an eigenvalue of —A,, A, 0), ie, E**(0) € 0, (— A, A0),
then E**1(0) is simple (E**1(0) < 62) and the corresponding eigenfunction
equals

'I/E'-A-(O)(ea P, 7) = [l(P, 7 + 0)|2 - EG'A‘(O)]-l9 0 € Ala P € IRZ, y € rl'
(1.5.29)
E*(0) is strictly increasing in a for 0 € A,. In addition, — A, A,(0) has the
following resonances, all of which are simple.
If z227(0) < 1, then

k&A1 (0) = { £ arccos[z**1(0)] + 2rn]}/a, neZ - {0}, (1.5.30)

are simple resonances of —A, , (0). If k&*'(6)* > 62 allowing n =0 in
(1.5.30), then also k3 *1(0) is a simple resonance.
If z%7(@0) > 1, then

keM(0) = {—iIn[z2"(0) + /()] — 1] + 2an}/a, neZ,
(1.5.31)

are simple resonances of —A,, A,(0). —A, 4,(0) has no other eigenvalues or
resonances.
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Remark. Observe that we have an infinite sequence of real resonances
provided z*41(6) < 1, while all the resonances are complex when z**1(8) > 1.

PROOF. o, —Z,' a,(0)) = [62, o) follows from Weyl’s theorem ([391], Theorem
XII1.14). Using Theorem XIIL.20, [391], we see that ¢,.(— A, A(0)) = &. The reso-
nances and/or eigenvalues are solutions of

o = g,(0, 6), (1.5.32)
or equivalently, of
cos(ka) = z*7(0), (1.5.33)
where z**1(0) is defined by (1.5.27). If z%41(0) < 1, the solutions of (1.5.27) are

k32(0) = { +arccos[z%41(6)] + 2nn}/a, neZz, (1.5.34)

and by considering the residuum of the resolvent at [k§*'(6)]> we find that
[k&*1(8)]? is a simple eigenvalue with the stated eigenfunction (1.5.29) provided
[k&*1(6)]% < 82, ie, if [k&*1(6))* stays away from the essential spectrum. All
[k&21(0)]? for n e Z — {0} (and also [k&*1(8)]? if [k&*1(6)]* = 6%) are embedded
in the essential spectrum, and we will show that —A, ,(6) has no embedded
eigenvalues. Assume that /(@) is an eigenvector to the eigenvalue E(6), E(0) =
[k(0)]? = 6%, i,

—A, ,,(0)4(6) = E©O)¥(0). (1.5.35)
Applying Theorem 1.5.2, §(6) can be written as
¥(0,p,7) = 66, p, M) + 2n) 2a7 [ — 94(0,0)]" Y, J.m d’p’ 46, p’7)

yel,
‘U2 - k1", peR? yel,, (1.5.36)
for some k? € p(—A, 5,(0)), Im k > 0, where
[E@©) — k22¥(0, p, V) = [(—A,.4,(0) — k)¢ (0)](p, 1)
= [lp, y + 0)1> — k14,6, p, ). (1.537)
Hence
$(0,p,7) = [E©6) - K*1[I(p, y + 0)* — k*17¥(8, p, 7). (1.5.38)
Inserting (1.5.36) into (1.5.38) we find
#0.p,7) =20 %a' [ — g:(0,0)]7" I L a*p’ 4.6, p.v)

ren

{lip,y + 0)1> — E@)] —[I(p, y + 6)I> — k2]"'} (1.5.39)

which cannot be in 2(|(p, y + 6)|?) unless ¢,(6) = 0 implying y(6) = 0.
If z+A1(0) > 1, we have to look for complex solutions of (1.5.33). Writing

n = e (1.5.40)
we see that 7 satisfies
n?—2M@0)n +1=0, (1.5.41)
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impiying that
n, =2%M(0) £ /[z*%(0)]7 — 1. (1.5.42)
Hence
kxM(0) = {—iln[z2™M(@0) + /[z*M(0))2 — 1] + 2nn}/a, neZ, (1.543)
and, in addition,
k=81(0) = (Va) In{z™(8) + /[ (0)) - 1} (1.5.44)

provide all solutions of (1.5.33). All k3*+(#), n € Z, are complex resonances, while
E*M(0) = [k*™(#)]? is a simple negative eigenvalue with eigenfunction (1.5.29).

We now apply this theorem to analyze the spectrum of .
U\ (=B 21U = ﬂa do[— A, 4,(0)).
Theorem 1.5.4. Let x € R, and consider
U [=App )2 = L@ do[ -4, A,0)]. (1.5.45)

Then the essential spectrum of —A,, A, is purely absolutely continuous and
equals

- - [E=M, o0), a > —(In 2)/2na,
-A =0. (— =
ae»( a.Al) Oag( Aa.Al) {[E!_'A', E:.'A'] v [0’ QJ), oa < —(ln 2)/21[0,
osc( '—&a..‘\,) = Qy (1546)
where
EfM = —a2{In[F 1 + Jem4me 4 ¢72me [le~dmam T 1112 (1.5.47)

The spectrum of —A, A, is monotone increasing in o in the sense that
QRN oo > 0.

PROUE. If « < —(In 2)/27a, then z*A1(#) > 1 for all 0 € A,. Hence the unique
negative band is obtained by varying 0 in A, in the lowest eigenvalue

E*M(0) = —a 2{In[z*M(0) + /[z%"(0)]? - 1]}? (1.5.48)

of —A, 4, (V). Together with Theorem X111.87 in [391] and [85], Ch. 10, this proves
the staiements when a < —(In 2)/2na. If « > —(In 2)/2na, we can still find a non-
empty open subset A of A, such that z**(6) > 1 for 0 € A. As z=*(0)| 1, the
eigenvalue (1.5.48) increases to zero, which proves that there is no gap in the
spectrum when a > —(In 2)/2na. [ ]

Our last topic in this section will be the ¢-approximation in connection
with — A, 4 (0). For simplicity, we will only discuss the case Y = {0}, and start
by introducing some notations. Let

Ac(k’ 0) Lz(Rs) - LZ(RZ X r‘l )1
B,(k, 0): L?>(R3) - L*(R3), (1.5.49)
C.(k, 0): L3(R? x [,) - L*(R>),
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be Hilbert—Schmidt operators with integral kernels
A,(k, 0, X, v, x) = gi((%, V) — £x, O)v(x),
B,(k, 0, x, x') = eA(e)u(x)g,(e(x — x'), O)v(x’),
C.(k. 0, x, %, v) = A(e)u(x)g,(ex — (%, v), 9);
e20, k®¢[6% ), Imk>0, feA,, x,x’eR’, %eR? vefl,.
(1.5.50)

Theorem 1.5.5. Let V &R, supp V compact, Ae) = 1 + €X' (0) + O(e?) as
€ 1 0 both be real-valued. Then the self-adjoint operator

Hopo=—A+e226) Y V(- —de), e>0, {1551)
A

€A,
in L*(R?) can be decomposed as
~ ~ a (®
U H, p U = = do H, , (0), £>0, (1.5.52)
1 zn 7\1 TN
where H, , (0) is the self-adjoint operator on L*(R* x 1) with resolvent
(He.m(o) - kz)-l = gk(o) - 8A¢(k, 0)[1 + Bc(ka G)J-ICc(k, 0)»
>0, k*ep(H,(0), Imk>0, 6eA,. (1553

Assume that X(0) #0 if H= —A + V is in case Ill or IV. Then H, , (9)
converges in norm resolvent sense to the operator —A, 5 (0) as€ |0, i.e.,

n-li¢m (H, 2, (0) — k?)' = (—4,4,0)— k), Kk*eC-R, 6eA,,
€40

(1.5.54)
where
( .
0 in case |,
-2 0)|(v, ¢)I72 in case ll,
*= j © in case 11, (1.5.55)
N -1
- /1'(0)[ Y @, ¢,-)|2] in case 1V.
“ J=1
PROOF. The proof is similar to that of Theorems 1.4.8 and 1.4.9. 3

Remark. If H = —A + Visincasel or 11, then
n-li¢m (Hya(0)— k) ' =g,0), 0el,, k*ep(—A@), Imk=>0,
€40

(1.5.56)
where g,(0) is the resolvent of the free decomposed Laplacian —A(#).

Applying the techniques from Sect. 1.4 and Sect. 11.1.3, one can analyze
the behavior of the at most one simple discrete eigenvalue and the complex
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resonances in the short-range approximation. However, the infinite straight
polymer exhibits one very special feature, namely the existence of real reso-
nances, i.., poles of the resolvent (-4, ,(0) — k*)™ on the real k-axis in
the limit £} 0. In this context we define resonances of H, 5 (6) as follows:
ko€ C,Im ko < 0, is a resonance of H, 4, (6) iff det,[1 + B,(ko, 6)] = 0 and,
if ko € [0, ), then k3 ¢ a,(H,,4,(6)). By definition the multiplicity of k, equals
the multiplicity of the zero of det,[1 + B,(k, 6)] at k = ky. We will show
that, in general, the real resonances of — A, A,(0) also remain resonances for
H, A,(6) but to second order in & they move into the “unphysical half-plane”,
i.e.,, they get a nonvanishing imaginary part. This is described in the following
theorem, where for simplicity we assume H = —A + V to be in case II:

Theorem 1.5.6. Let V € R, supp V compact, be real-valued, and let A(c) be
real-analytic in ¢ for ¢ small, A(0) = 1. Assume that H= —A + V is in
case I1. Let E(0) = [ko(0))?, 6 € A,, be any eigenvalue (Im ko(0) > O or
ko(6) < 161) or resonance (Im ko(6) <O or ko(6) = 10]) of —A, 4,(0) as
described in Theorem 1.5.3 (we omit the a« and A, dependence in the notation),
— A, A,(0) being the norm resolvent limit of H, 4 (0) as ¢ | 0. Then there exists
a function k,(0) for ¢ > 0 small enough with

k(6) = ko(8) + ek, (0) + €2k,(0) + O(e®) (1.5.57)
such that
det,[1 + B,(k.(6),0)] =0, [(Im k,(6)] - [Im ky(0)] = 0, (1.5.58)

where
cos[ky(8)a] — cos(fa)

k,(6) = 4 ST @)a] {A, + [ko(0)1*B,}, (1.5.59)
and
__,_cos[ke(B)a] — cos(Oa)‘
ka(0) = 4 sin[ko(0)a)
{ éﬁ'l‘zf";}: f f d2x &' FEI()|x — x'Po(x')p(x’)

+ 2ko(8)k1(6)B, + [k1(8)1°Cy(ko(6)) + A'(0)[ko(6))*B,

+{A; + [ko(G)]’Bl}[l’(O) + f%’)-]
+ 10, B2 f L d3x d2x’ FEV)E, (ke(6), x — x')0(x')1(x')
+ i, B j fm d*x d2x’ FRF, (ko(0), x — X'o(x)p(x’)

" Dt}. (1560
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Here
CY BN (| Iy (Y N
A= oy, ¢)”‘°’l(,¢)|2”‘o’l(v,ml' 1O,

B, = —gml—z IIR° d3x d*x’ $(X)o(x)|x — x'|v(x")$(x’),
a[l1 — cos(ka) + sin(ka)] cos(fa)

Gl = 4n[cos(ka) — cos(6a)]? ’
8, 9) @ n ©x
_1 "m 1 ’ lm
A O, o T H O g ~ 1O — 1O
(v,m)
Mk
a
sin(k — )= ertk-ia
E,(k, x) = {5 | —— 2| ko + 4—1—4 &0 - z)}
sin(k + o)g A" Jensna
(1.5.61)

F,(k,x) = — {él—::; In[2(cos(ka) — cos(fa))]

ik etk-oa 4, eitk+0)a dt
= i [L ln(l - t)] J.o n In(1 - t)]

_1_3[ J - ‘i—‘ln(t)ln(l—z)+r d—;ln(t)ln(l—t)

4na 0 °

ettk-0la
— ik — O)aj di In(1 —¢)
0 t

+i(k + 6)a J" + ?ln(l —t )]}(x3)2;

o
x=(%x)eR?, xeR? x%eR.
Furthermore, ¢ denotes, as usual, any nontrivial solution of
(1 +uGov)p =0, 4 =(sgn V)g. (1.5.62)

Finally, x and n are given by (1.5.65) and (1.5.66), respectively. Hence we
obtain

@) If Eo(6) = [ko(0)]? is an eigenvalue of — A, , (8), then E (0) = [k,(6)]*
is an eigenvalue of H, 5 (0) which is analytic in & provided E4(6) < 0.

(b) If ko(6) is a complex resonance of — A, 4,(0), i.e., if Im ko(6) < O, then

k.(0) is a complex resonance of H, , (6).

(©)  If ko(0) is a real resonance of — A, 5 (0), i.e., if ko(6) > |6}, then k()
is a complex resonance of H, 5, (0) gf Im k3(0) # 0. We always have
Im k,(0) = 0, while Im k,(0) = 0 Jor at most a finite number of the real
resonances ky(0) of — A, ().
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PROOF. The general strategy is the same as in the proofs of Theorems 1.4.9,
I1.1.3.1, and 11.1.3.3. Again one expands the equation
[1 + B.(k(9), 0)]4.(6) = 0 (1.5.63)
in powers of ¢ where

2
6,0)=¢ + c4'(0) + ’;2-¢"(0) + 0)(e?) (1.5.64)

and ¢ satisfies (1.5.62). We then find
#©0) = x + c(0)g,
x = T[A0)¢ — a(v, P)u],
where T denotes the reduced resolvent (cf. 1.1.2.37), and
$"(0) = n + d(6)¢,

(1.5.65)

N2
n= T{l”(0)¢ — 2[4, + [kO(o)]zBl](v, Hu+ [Iioé(_(_)]—

[f d3x'|- - x’lv(x’)¢(x’)]u + [J dx’ E (ko(0), - — x’)v(x’)¢(x’)]u
RS e

— 22(0)uGyvy — 2a(v, x)u}. (1.5.66)

The constants ¢(€) and d(0) do not enter into the formulas for k,(0) and k,(6) and
their value is therefore immaterial for (1.5.57). A subtle point occurs when kqy(0) is
areal resonance of —A, , (0). IfIm k,(0) < 0, then (k.(6)]? cannot be an eigenvalue
of the self-adjoint operator H, ,,(0). From (1.5.59) and (1.5.60) we see that k,(0) is
real, while in general Im k,(@) # 0, and hence in general the real resonance ky(0)
turns into a complex resonance of H, , (0). By analyzing the purely imaginary terms
in (1.5.60), we find that this can be zero for at most a finite number of k(0). [ ]

II1.1.6 Monomolecular Layer

The last regular structure to be discussed in this chapter is that of an
infinite plane monomolecular layer, which we obtain by replacing the three-
dimensional lattice of Sect. 1.4 with a two-dimensional lattice A,, viz.

Az = {nla, + nzazeRsl(n,,nz)GZZ}, (1.6-1)
where
4=0aa)eR, j=1,2 (16.2)

are two independent vectors in R3. In this way we obtain, as explained in Sect.
1.3, a one-electron model of a monomolecular layer with point interactions.
The discussion will proceed very much along the lines of the preceding section.
Let Y, be the set where we locate the point interaction, i.e.,

Y, =Y+A,cR? (1.6.3)
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where
Y={y;,....,yn} = R? (1.6.4)
is such that
yi=0hyhy)eY,  Ohy)el, j=1..,N (169
Here [, denotes as usual the dual group defined by
I, = RY/A, (1.6.6)

when A, is considered as a subset of R? by ignoring the first component. [,
can be identified with

£, ={s,a, +5,0,eR3s e[—4,%).j=1,2}. (1.6.7)
Similarly, the Brillouin zone A, can be identified with
Ay ={s,b, + s;b, € R3s;e (-3, 1)}, (1.6.8)

where b,, b, provide a basis of the dual lattice I, i.e.,
rz = {nlbl + nzbz € R3|(nl. nz) € ZZ}
=(0,b% b)) e R bi-a, =2md;, j,j =12

A I

(1.6.9)

Whenever convenient, cf. (1.6.5) and (1.6.6), we shall consider A, and T, as
subsets of R2 by simply ignoring the first component. Hence we will write, e.g.,

(p,PeR3, peR, yel,. (1.6.10)

The first goal is to decompose the operators —A, y, A, and —A, y.4,, and
for this we first have to decompose the resolvent of the free Hamiltonian, i.e.,
the resolvent of the Laplacian, in p-space. Let

G(0): L2(R x I)=» L3R x I,)
(G(0)g)(p.7) = (I(p, ¥ + O)1% — K2) ' g(p, ¥);

k2 ¢[101%, ), Imk>0, geL*RxT;), 6eA,, peR, yel,.
(1.6.11)
We also need

[ Y + L lim Al 2nw
41! 41: 8 2 W= Verz N/ |‘y + 0'2 T ’

lr+8l<w
X € Az,
. ei(y+0)x 0
@m)7 I lim Y T arctan (ly; '),
gk(x’ 0) = T @ |yr-§|r524n Y

X = (0’ i)¢A29

oV +or=K3ixi)

1
=|f! —_——
22 yezr,./wwv—kz

k*¢|I,+0)%, Imk>0, 6eA,, (1.6.12)

% x=(x!, %) e R, x!£0;

-
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where
T+ 602 ={ly+0>cR|yel;,}. (1.6.13)

The analogs of the unitary operators %, cf. (1.4.16), and %, cf. (1.4.53), which
we denote by %, and 4,, respectively, are now defined by

()
Uy: LAR?) - L*A,, L*(R x T)) = I _d20LAR x Ty),

A2

@N6.p.N=/(r.7+6)., 6eA; peR, yel, feL®),

(1.6.14)
and
#,: #(R?) = L¥(A,, |A,| 7' d26; L3R x I3,))
®
= |A2I_l Ji dzo LZ(R X rz),
A2 (1.6.15)

@, f)0.pv)=2n Y J dx f(x, A + v)e iPxe=i40
R

A€A;
0el,, peR, vel,, feZL (R
As usual %, is extended to L?(R>) by continuity, and the extension is still
denoted by %,.
Theorem 1.6.1. Let y;e Y, ()}, ))) e, andaye R, j=1,..., N. Then the
operator —A, y.,, in L*(R®) of Theorem 1.1.1 with
a,ﬂ.A = aj, j = 1, ceey N, o= {a,}, l € Az, (1.6.16)

satisfies

@
%2[—A¢.Y+A;]q12-l = J‘_‘ dzo[—Aa.Az,Y(o)l (1617)

Az
where —A, A, v(0) is the self-adjoint operator in L*(R x T,) with resolvent

ihi'=

N
(=B, 4,.v(0) — K*)™" = Gy(0) + zl [T..ar(k, )14 (F_z,,,(0), )Fy , (6),

k*€ p(—Aua,x0), Imk>0, 6el,, (3,y))els,
%€eR, j=1,...,N, (16.18)

where

ra,A,.Y(k’ 0)= [aj5jj' - oy — Yjs 0)]ﬁj'=l (1.6.19)
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and
e~ ip y+0)y,
I(p,y + 0)I> — k*’

k*e p(—A@)), Imk>0, 6eA,, peR, yel, j=1,...,N.
(1.6.20)

Fk.’j(as P, )') = (2”)-3/2

If
—ADpyin, = F -4, yia, 17, (1.6.21)

then

®
Ur[=DBey+a, 107" = 1Ry17! I d20[—~A, 4,v(0)),  (16.22)

Az

where — A, 4, y(0) is the self-adjoint operator in LR x [,) with resolvent
(= A p,r(0) — K?)7!

N

=g,(0) + ) Zl [ra.Az,Y(k’ 0)]17"(9;‘(' = Vi 0), )gi(- — Yjs 0),

0=
kzep(_Ac.A,,Y(a))o Imk >0, 057\2, (.ij, y})efz,
ueR, j=1,...,N. (16.23)

Here

g9:(0): L*R x ) » L*(R x 1),

(9:0)f)(x,v) = L dx’ L d%v gi((x — x', v = V), )f(x', V'),

k2 ¢[16]%, ), Imk=0, 8eA,, xeR, vel,, feL}R xT}),
(1.6.29)

and g,(x, v) is given by (1.6.12).

PROOF. Following the proof of Theorem 1.4.3 we get (1.6.17) where
(~Ag a,.v(0) — k*)7! equals (1.6.18) with

ik e I
r"Az,y(k, 0) = [(a] - E)éjjr - ‘.ZA: Gk(y] hand y]' + l)e 120]‘ j"l- (1.6.25)

By appealing to Lemma 1.6.2, proved after this theorem, we obtain the stated form
(1.6.19) of I, 4, y(k, 6). Similarly, the proof of (1.6.22) follows the corresponding
proof of Theorem 1.4.3. ]

The next result is the analog of Lemma 1.4.2.
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Lemma 1.6.2 (Poisson Summation Formula). Let k2e C,Imk > 0,a€e R?,
and 0 € A,. Then

iklA+a)
e -ia0
A€A, 47!'/1 + al
A# -a
. oI+ K )
"Hrzl—l Z __ Liytma

vela /1y + 0P — k2 ’

a=(@'deR? a'#0,

i(y+0a v+ 0
@m0 tim Y ¢ —arctan(|'+ l),

= w-o yel, |7+ 0] ik
T ly+0l<o
a=(0,a)¢A,,
) ik | B 1A, |
ewa - -+ — lim |: z _— 27w N
4n 812 o | Z_ 12
L ael,.
(1.6.26)
PROOF. Consider first a = 0. Writing
d ip)
Y Ghe=0mt ¥ @mﬁfﬁhr%—ywwmm
Ae€n, A€A; Jn R? PP+p—k
A0
we see that we can exploit the fact that
o e'?
2 d*p —-——— 1.6.28
(@n) | e (1.6.28)

is the Green’s function of the two-dimensional Laplacian at the point A with energy
p? — k2. Hence by applying (4.36) we find

. A,l
G(De ™ = 2m)~! lim J d [__|__z__
)g\g k( ) ( ) @=w r;‘z R P h' + elz + pZ - k2
lr+0l<w

— nlin(w? + p? — k?) + nIn(p? — kz)]

1 1A, ik
=— lim —_— 27w | - — (1.6.29
812 oo [| ,:ZI.-z \/i'}’ + 0 — k2 ] 4n )
ytllsw

after a short computation. The general case a € A, follows by translation. Assume
now that a = (0, d) ¢ A,. By defining

<lv + Ol)
arctan —k——
flwy= ¥ — AN —ZLertd 5, (1.6.30)
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and

Fn) = fw e dfw), >0, (1.6.31)

[\]

we can follow the analysis used in the proof of Lemma 1.4.2 to obtain the conditional
convergence of (1.6.30) as w — oo and the equality (1.6.26). The last case, when
a = (a', @ e R3 a' # 0, follows directly from [94], Theorem 67 and eq. (19), p. 260.

]

We now turn to the study of spectral properties of —A, 4, y(6) and specialize
to the case Y = {0} from now on.

Theorem 1.6.3. Let ae R, 0 € A,, and define —A, 5,(0) = ~A, 4,.10)(0).
Then the essential spectrum of —A, a,(0) is purely absolutely continuous
and equals

Oess(— By 7,(0) = 6,.(— B, ,(0) = [101%, ),  0,(—As4,0) = D,
fe f\z. (1.6.32)

In addition, —A, a,(0) has exactly one simple eigenvalue EG"*(0) =
[k&™2(6))* < |6|* which is the unique solution of

% = Grenie)(0, 0), Im k*220) > 0, [k**2(0)])* <16)>. (1.6.33)
The corresponding eigenfunction reads
Yeyn00. 2. 7) = [I(p,y + 0)1> — E§*(0)]™', 0€A,, peR, yel,.
(1.6.34)
E%72(0) is strictly increasing in a for 0 € A,.

PROOF. Equation (1.6.32) follows as in Theorem 1.5.3. Eigenvalues E are given
as solutions of

xa=g(0,0), E=k% Imk>0. (1.6.35)

From the explicit form of g,(0, 6) we see that g,(0, ) » —o0 as k2 - —oo and
9x(0, 6) = oo as k2 1102, and that g,(0, 9) is strictly increasing in k2. ]

Before we turn to the ¢-approximation, we give the spectrum of the full
Hamiltonian.

Theorem 1.64. Let a € R and consider
®
U [ =D 2 )U5 = J: dzf)[—ﬁ,'Az(O)]. (1.6.36)
A
Then the spectrum of — 3,, A, is absolutely continuous and equals
LE§**(0), c0), o= Ay,

[E5*(0), E5*(8,)1 U [0, ),  a <ay,,
(1.6.37)

a(-aa.l\z) = O-ac(_Aa,Az) = {
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with Eg**(0) < 0 and E§**(0) < E§**(8,) < O provided o < a,, where a,,
equals

1 1A,
a5, = -3 lim - 21w 1.6.38
"2 7812 o [ Yg'z [y + 6ol ] ( )
Ir+6gl <
and
0, = —(b, + by)/2. (1.6.39)
PROOF. Again the proof is similar to that of Theorem 1.4.5. s

Finally, we analyze approximations of —3,' a,(60) by Hamiltonians with
local scaled, short-range interactions. Let

Ak, 0): L*(R*) » L*(R x [3;),
B,(k, 0): L*(R%) - L*(R3), (1.6.40)
C,(k, 0): L*(R x ) » L¥(R3),
be Hilbert—Schmidt operators with integral kernels
Ak, 6, %, v, x) = gi((%, v) — &x, O)v(x’),
B.(k, 6, x, x') = eA(e)u(x)gy(e(x — x'), O)v(x’),
C,(k, 6, x, %, v) = A()u(x)g,(ex — (%, v), 6);
£20, k*¢[I,+60>2, Imk>0, 0eA,, x,xeR? %eR, vefl,.
(1.6.41)

Theorem 1.6.5. Let V € R, supp V compact, and A(€) = 1 + ¢A'(0) + o(¢) as
€ 1 0 both be real-valued. Then the self-adjoint operator in L*(R3)

H. o, = —A+€20e) Y, V(- — ) (1.6.42)
A€Ay
satisfies
o . @
@2H¢'A2%z-l = lAzI—l j’“ dzo H,'Az(e), (l¢6o43)
Az

where H, ,,(0) is the self-adjoint operator in L*(R x T,) with resolvent
(H, 7, (0) — k*)™" = g,(6) — eA,(k, 0)[1 + B,(k, 0)]'C,(k, 0),
>0, kep(H,,,00), Imk>0, 6eA, (1.644)

Assume that 2'(0) #0 if H= —A + V is in case III or IV. Then H, ,,(6)
converges in norm resolvent sense to —A, 5,(0) as €0, ie.,

n-lifn (Hea,(0) = k2)7 = (=4, 4,00 —K*)', Kk*eC—R, feA,,
e40
(1.6.45)
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where
[0 in case 1,
—X0)(v, )72 in case 11,
=19 © in case III, (1.6.46)
N -1
"A'(O){ Y o, ¢j)|2} in case IV.
L Jj=1
PROOF. The proof is similar to that of Theorem 1.4.8. e

If @ = oo, then n-lim, o (H,,4,(0) — k*)™" = g,(6), the resolvent of the free
decomposed Laplacian.

Studying only the unique, simple eigenvalue Eg*2(9) of —A, ,,(6) below
the essential spectrum we get

Theorem 1.6.6. Let V e R, supp V compact, be real-valued, and let A(g),
A(0) = 1, be real analytic in a neighborhood of zero. Assume H = —A + V
tobeincasell andlet 0 € A,. Then H,, A,(0) has a unique simple eigenvalue
E*A2(0) < |0)? behaving as

E=A(0) = E%M(0) + eEXM(0) + O(c?), (1.6.47)

where E§*2(0) is the unique eigenvalue of — A, 5,(0), — A, A,(60) being the
norm resolvent limit of H,  (0) as ¢ | 0, and E%-*2(0) satisfies

E$%2(6) = 4h, (k32(6), 0)[A, + E§*2(6)B,), (1.6.48)
where
-1
(k. 6) = 211:1[ 5, (i + 0 - k2r°ﬂ] ,
(X)) @ X
A, = "0 ' - X 6.4
2= 4 )I( o T A O GE g~ YO (1649)
—_ 3 3 _ '
B, = 81t|(v, 0. I jj d>x d3x’ (x)o(x)|x — x'| v(x")$(x"),
and y satisfies (1.5.65).
PROOF. Similar to the proof of Theorem 1.5.6. a

IIL1.7 Bragg Scattering

By Bragg scattering we mean the scattering from an infinite half-crystal in
three dimensions, more precisely we study the operator —A, ,, where

+ = {na, + nya, + nya; e R3|(ny, ny, ny) € 22 x Ny} (1.7.1)
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with Ny = N U {0} and a,, a,, a, is a basis in R* and
a,=a€eR, A€EA,. 1.7.2)

While our basic technique in the discussion of the crystal, straight polymer,
and monomolecular layer has been the Fourier transform of the full matrix
I, A, (k) in the directions of symmetry, here we will combine this technique
with the Wiener Hopf method for inverting a Toeplitz matrix in the direction
with “half” symmetry.

Consider a particle coming towards the half-crystal A, with momentum
p’s viz.

p'by >0 (1.7.3)
where b, b,, b, € R? satisfy (cf. Sect. 1.4)
aby =218,  j#Jj, gj=123 (1.7.4)

Thus b, is orthogonal to the surface of A ,, pointing into the half-crystal. After
being scattered off the half-crystal the particle has momentum p with

pby < 0. (1.7.5)
Conservation of energy gives
pP=p?=E=k. (1.7.6)
Furthermore, Bragg scattering imposes that
(p — p)A = 0(mod 2n), A€ A,, 1.7.7)
where
A, = {n,a, + n,a, € R?|(ny, n,) € Z%}. (1.7.8)

As the next result shows there is only a finite number of reflected momenta p
for any given p’ satisfying (1.7.5)—(1.7.7).
First, we introduce the necessary new notation. Let

I, = {n,b, + nyb, € R®|(n,, n,) € 2%},
/A\z = {s;b, +s,b,€ R3|5j€ [—4H.i=12}, (1.7.9)
A = {nay e R®ne Ny}, (1.7.10)

and for any q € R? we let q; denote the (not necessarily orthogonal) projection
onto the plane orthogonal to a;, viz.

1 3 2
W =5:1@a)b +@a)b:)  q=3 b, o= qib (1711
J= J=

Theorem 1.7.1. Let p’ € R? and assume (1.7.3). Then there is a finite number
of p € R3? satisfying (1.7.5)—(1.7.7). The allowed p can be written in the form

P =Py, (p') = pj + 72 + {—1b3|72(py + 72)
- Ibal_l\/E —(py + 72)* + [|b3|_1(l’|'| + 1200312 }bs,
1260, E—(pp+7.)%+ bl (p} + 12)b3]2 2 0. (1.7.12)
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Furthermore,

0, = pj (mod I,) = p; (mod ) € A,. (1.7.13)

Remark. Observe that py(p’), ie., y, =0, always satisfies (1.7.5)-(1.7.7)
(specular reflection).

PROOF. Starting with condition (1.7.7) we write

p—p = ; Bib; (1.7.14)
which inserted into (1.7.7) yields
B, BreZ (1.7.15)
which proves (1.7.13). Thus
p=p +7y,+ P3by, 7yl (1.7.16)
Squaring we find
p?=E=p*=(p+712)" + 2pi + 12)bs(n + By) + (n + B3)b3, (1.7.17)
where
P’ = pj = nbs. (1.7.18)
Solving (1.7.17) with respect to n + B, we find (1.7.12) using (1.7.5). [ ]

Recall from (I1.1.5.6) that the off-shell scattering amplitude f, 5 (k, p, p')
for (-4, =4, 4,) with

Ay=[-N,NPnA, (1.7.19)
reads

Nl i
Jondbo P P) =22 3 [T @it e,
T An

A, A€
det[T, o (K] #0, Imk>0, p,p eC? (1.7.20)

The scattering amplitude f, 4, (k, p, p’) associated with — A, 5, will be defined
as the weak limit of f, ,,(k, p, p') as N — o0, and our main result will be the
computation of its on-shell limit.

Theorem 1.7.2. Let f, 5 (k, p, p'), Imk > 0,Re k = 0, p, p’ € C>, be the off-
shell scattering amplitude, given by (1.7.20), associated with (— A, —A, 4,)
with Ay = [—N,N P nA,. Then
:,im (9, fe.au)f) = (9, fo. 2, (K)S)
1 - .
== ¥ _[Fa. 0l g e,
4n 5 i7eA

f,9e F(R?), det[l, (k)] #0, Imk>0. (1.7.21)
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Let p' € R* and assume that p = p; (p’) satisfies (1.7.12) for some §, € T,.
Then the on-shell scattering amplitude reads

9’3—)”’3| Ri(p3—p3).
IA]

) sin $[ B,4(6,, v2) + 27p;] sin $(9,,4(6., y;) + 27p}]
72;1:2 sin $[8(6, 2) + 27p3] sin i‘[¢|p|(ozs 72) + 27p,]°

Y2772
(1.7.22)

Sun(pL P p) =

where
0, = py (mod I';) = py (mod I';) (1.7.23)
and

B(6,, v,) = lb I\/ k% — (0, + v,)* + [1b3171(6; + 7,)b51%,

Im B,(6;,v,) =0, (1.7.29)
and {¢k(02’ g2)ly: € rz} solves

T, (k, 0, + 1’-"‘%’1[’—7’—)173) =0, Im¢(,1)20 (1725

PROOF. We have

(9 fen,(K)f) = Il’; Y [I", A D1 O%, f)(g, €M)

AA' €A

NTQ. 4Ln A ).Z [ra‘A'(k)];‘l'(e-i(.n'yf)(g’ e‘i(')‘)’

JA'6A,

det[T, . ()] #0, Imk>0, fge LR, (1.7.26)

since {(e™“)% f)} € I*(A,) when fe ¥(R®). Following the proof of Theorem 1.6.1
we infer

1

i “§ [Teon ™%, 1)(g, %)

4 J. d20, [T, x(k, 6,)]7} e 722?303 (1, (@, £)(6,)) (%29) 60:), 1),
T A, A €A JA?

det[T, A, (W] #0, Imk>0, f,ge LR, (1.7.27)
with
£, x(k, 6;) = [(a - ji) bw— T G—1+ ).z)e“‘z’zl ,
™ haeA; WY
Imk>0, (1.7.28)

and %, given by (1.6.14). We use ¢, for the component of a vector g € R? with respect
to by, cf. (1.7.11). Here the inner products in the first line are in L2(R?), in the second
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line in L%(R x ). To study the on-shell limit we assume
P3, P3€C, Imp,; <0, Imp3>0, (1.7.29)
and consider
Tk, 0;) = , ;;K [T x(k, 6,)]k 67705 eP3bs%, (1.7.30)

Applying the formula [117]

-.-;m, [Clats"t™ = (1 —st)™" exp [51; j _ d g—:% (1.7.31)
where
C=[Cwdwenys Cuw=Chn, nn'eNg, (1.7.32)
and
s,teC, Isl, el < 1 (1.7.33)
and
Cx) = .gz e ™, = ZLn I ; dx C(x)e™* (1.7.39)
to (1.7.30) we find

r;./'i(k, 0,)=[1- e’z“‘(n'r'g)]-l .

[ (o[- [r,_,\ (k, 0, + E";b,)]
-exp {2— I dx '

(e-Zm'p, - eix)(ezslp’, - e-ix)

1.7.35)
since
ik .
Cx)=a- z_ Y Y Giunay + e if2e7in
4n .7 2eh,;
ik
= = — — G.(D) e~ 1O+ (x12m)b3)2
4n A;A w8
= rm<k, 9, + %b,), Imk>0. (1.7.36)
Let (cf. the following Lemma 1.7.3)
rm(k’ 02a 2)
- IM sin[£(6,, 2)] 1 + 1bsl +d
n|by|? lrz'esl‘z Bu(6,,72) z+27' —2cos[Bi(6,72)]  4mlyal
r2isw
(1.7.37)
and

Tk, 6,,2) = lim Tu(k, 0,2, zeC — {0}, (1.7.38)
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where £,(0,, v,) is given by (1.7.24). Then
’a.ﬂ(k' 02)

e 1 [1 — e 2%\=P0] In[T(k, 6,, 2)]
=1 - 2r(p3—p3))-1 - dz=—— - — » U2
[i-e 17 exp {Zm' LH (€995 — )75 — 7 1),

= [1 — e~ 2milps 'P'a)]'l .

1 J‘ i (e™2mPs — ¢727P3) In[T,(k, 0,, z)]
fz1—1

. I —_— :
wl[l:) CXP{ i (e—Zmpg —2)(z — e~2mp',)

}. (1.7.39)

Consider now the integral

lz=-1

I= —=-
@ 2mi (e™2™P3 — z)(z — e 2™P3)

(1.7.40)

Since I, (k, 0, z) is a meromorphic function on the Riemann sphere C U {0}, it has
an equal number of poles and zeros. Thus In[T,(k, 0,, z)] has cuts connecting every
pair of poles and zeros. The poles of I'(k, 6,, ) are given as solutions z3(k, 0,) of

zf(k, 05) + [zE(k, 6,)17" = 2 cos[fi(02, 72))- (1.7.41)
Define 22 (k, 0,, p) as the solutions of

23 (k’ 02’ P) + [za%(k’ 02? P)]—l = na)(k’ 02’ p)1 (17'42)

where n,,(k, 6,, p) solves

Fm(ks 02! "w(k1 02, P)) =p (1.7.43)
with
X |A| {Sin[ﬂk(()z,’)'z)] 1 1bs| } o
Fo(k, 0, &) = — 0L + +4,
020 = 5 5 U O 1) &= cosCGn 7] 2inal) *
<o (1.7.44)
F(k, 0,, &) = lim F(k, 6,, ).
Hence
Ik, 0,,2) = F(k, 05,3z + z ")) (1.7.45)

F(k, 0,, -) is a meromorphic function on C with poles at {2 cos[f(0,, y,)]l7, € I, }.
If B0y, 7)€ R, then cos[fi(0,,7,)1e[—1,1], and if iB,(0,,y,) <O, then
cos[ B(6,, y2)] > 1. Let n(k, 0,, p) be the solution of

F(k, 0,, n(k, 0,, p)) = p. (1.7.46)

As p — oo, n(k, 0,, p) = cos[ f(0,, y,)] for some y, € I',, and we denote this solution
of (1.7.46) by n,,(k, 8,, p). Similarly, we denote by 7, ,.(k, 8,, p) the solution of
E,(k, 02, n,,,,(k, 85, p)) = p such that n,,,,(k, 6, p) = cos[fi(0,, ;)] as p — co.
With 1,k 0,,p) we can then associate z}, (k,6,,p) using (1.7.42), and

23 ,,(k, 0,) = z%(k, 6,) as w — c0. Ordering the set {cos[f,(0;, .)]ly, € T}, ie.,

—1 < cos[ (0, 71)] < -+ < cos[B(0, y57")]) < 1 < cos[ B0z, ¥5)] < -+,
(1.7.47)
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we have
cos[ B0z, ¥4 ")} < yy 1(k. 05, p) < cOS[B(65, 7)), j>m.  (1.748)

From the above analysis we infer that we can parametrize the cuts of In[T(k, 0, z)]
by

Ci,,(k, 8,) = {22 ,,(k, 05, p)lp € [0, c0)}. (1.7.49)

I'(k, 0, + (x/2m)b,) has no zeros or poles in a uniform strip around the real axis,
the width of which depends on Im k. This implies that for w sufficiently large
|22 ,,(P) # 1,7y, € T,. Since

21, (P) 5 €F 0T (1.7.50)
we have
ConnclzeCllzl <1}, Coy, ©{zeCllz| > 1}, y, e, (1.7.51)

Hence

I _ z dz (e-leps — e an,) ln[r (k 0 2'“’3)]
e neh Jeo (e™2™P3 — z)(z — e~ 2mP3) wlK, 03, €
Irlsw K

1 1
—7 zr f(" dz I:e-Zuw; —~z + _Zt e'z"l’i] — In[T,(k, 0, e"Zle,)]
2€l;

w)
lr2lsew 2

{Si“ 1802, v,) + 27p,] sin §[z2 yz(k{ 0,,0) + 27‘P3]}
Ivzlel‘z sin 4[B.(0;, v;) + 27p3] sin %[Z«t..y,(k, 0,,0) + 2np,]
vlsw

- ln[rax(k’ 02’ e—anpg)]’ (1.7.52)

which implies that
ra,ilk, 05) = [1 — e 2¥&"P)I[T(k, 0,, e 2%73)]7!-
sin 3[ Bu(6:, v2) + 2mp;] sin 3z y(ks 03, 0) + 27p3 ]

- lim . (1.7.53
w—ee I,,IE., sin 4[8(8;, v,) + 27p3] sin 3z ,.(k, 6,, 0) + 27p, ] ( )
r2lsw
Furthermore, we have
z(t.h(k, 0,,0) — (03, 75), (1.7.54)
where {#,(6,, y,)|y, € I, } solves
0 »
l*,,A(k, 0, + %;n—”)b,) =0, Im¢(0, 7,) > 0. (1.7.55)
From the proof of Lemma 1.7.3 we infer that
—iB(0,,7,) |=__ cly2l + 0(1), c>0,
® (1.7.56)

Ze, “(k 92, 0) Clyzl + O(I)y c> 0, Y2 € rz,

implying that the product converges uniformly as @ — co and that the convergence
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is uniform in p;, p3. Taking first the limit @ — oo term-by-term in (1.7.53) we find
’a.ﬁ(k’ 92) = [1 - e-hi(ps-p'a)]-l [r(k’ 92’ e-zmu)]-l .
- lim sin $[4u(6;, 12) + 27p;] sin $[64(62, 7,) + 27p3)

: o . (1.1.57)
W= Inlﬁsrz sin $[ (6, v,) + 27p3] sin 4[4(6;, v,) + 27p,]
y2lS @
As Im p,, Im p3 — 0, we get
[Tk, 0, e™2%P)]"! >0 (1.7.58)
and
sin ${4,(6,, 7,) + 27p3] = 0, (1.7.59)

where p = p;,(p’) for some 7, € T',. However, their ratio has a nontrivial limit.
A short computation then gives (1.7.22). s

We see that formula (1.7.22) expresses the on-shell scattering amplitude as
an infinite product of terms depending on the incoming and reflected momenta,
respectively. The term depending on the incoming momentum (which equals
the inverse of the corresponding term of the reflected momentum) coincides
with the ratio of two terms, one as if the crystal filled all of R? and one as if
there was no crystal.

It remains to state

Lemma 1.7.3. LetkeC,Imk > 0. Then

__AL
ra.A(k’ P) = 27!”)3!2
lim T { sin[$(0;, 72)]
@-o l;zrs l“:, Bi(6:, ;) {cos 2n[x + |b3|-2(92 + 72)b3] — cos[Bi(6,, v2)1}
1bs| -
+ 27['),2'} + a, (1.760)
where

p=7+ 65+ (x + n)b,,
7€, neZ 6,=p(modTl;)eA,, xeC, (1.7.61)

and G is independent of k, 6,, and x.

PROOF. Let G(x) denote the left-hand side of (1.7.60) considered as a function of
x alone, and let

P'=7+ 0, +(x" + n)b,. (1.7.62)
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Then
G(x) — G(x')

=(2nr’wz[ ! ! ]

o+ -k G+pP -k
1
[0+ 7y, +(x+ n)b;J? — k?

=2nAl Y [

yel
y=y2+nby

1
T 0+ 7+ + Wb T - k’]
= (2m)73|byI Al
. 1
71§rz ug’z [(x + n)2 + 2|by)72(8, + 72)bs(x + n) + |bs|"2[(6; + 12)* — K*]

1
T (" + n) + 2155120, + 72)bs(x’ + m) + |by|2[(0; + 72) — kz]]

@b 2A) 3 SRLAG:, 1)),
@07l 3I ! legrz ﬁk(oz»')'z)

1
{cos[ﬁ.(oz, 72)] — cos 2n[x + |b3|72(6, + 72)b3]

1
- , 1.7.63
cos[B(0,, y2)] — cos 2n[x’ + |bs|"%(6, + )'z)bal} ( )

where B,(0,, y,) is given by (1.7.24). Define now
d, (x) = sin[:(6,, v,)] 1 + LA} .

” Bu(62,72)  cos 2n[x + |by|"2(6; + v2)by] — cos[ (6, 72)] 2(7; I‘;26I4)
Then

_ - sin[5(6;, 7)) .
9 = LAy 72)] '{cos 220 + 1B 26, + 72)b5] — cosLAEr 7] '}
b
— iB(02,72)" + ZITaylzl

= [0, 7)1
icos2n[x + 1b31~2(8, + 72)b3] + sin[By(6;, v.)] — i cos[Bi(6;; 12)]
cos 2n[x + |b3|7%(0; + 72)b3] — cos[ B0z, 12)]
_ i|y2] — Q7)™ |3} i (6, 72)
B(63, 2) 1721
. o 2cos2n[x + |b3|72(6; + 72)by] — e#rCr7D
= A ) 3 o 2at + 103 2(0; + 72)b5] — cosLAiBr, 7)1

20,7, — lbal—z')'zbs -
—_—— 30 3 1.7.65
24(65, 2)1721 (=" ( )
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since

0,7, (ozbs)(rzbs)] -
a,, == Oo(ly,1™"). 1.7.66
Bi(0,,71,) = b, I[l 2l — 7] 216321y, ] + O(ly.1") ( )

Let B, be the circle in the plane spanned by b, and b, with radius w centered at
the origin. Then

Z dyz(x) Z {i[ﬁsz, 72)]17

26208, v2€¥2nB,

_ 2cos 2n[x + |bs|” 2(0, + 72)by] — ettty
2.cos 2n[x + |bs|"2(6, + y;)b3] — cos[fi (6, 72)]
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