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"La filosofia 6 scritta in questo grandissimo libro the continuamente ci sta aperto
innanzi a gli occhi (io dico l'universo), ma non si pud intendere se prima non
s'impara a intender la lingua, e conoscer i caratteri, ne' quali a scritto. Egli 6 scritto
in lingua matematica, e i caratteri son triangoli, cerchi, ed altre figure geometriche,
senza i quali mezi a impossibile a intenderne umanamente parola; senza questi b
un aggirarsi vanamente per un oscuro laberinto."

Galileo Galilei, p. 38 in Il Saggiatore, Ed. L. Sosio, Feltrinelli, Milano (1965)

"Philosophy is written in this grand book-I mean the universe-which stands
continually open to our gaze, but it cannot be understood unless one first learns
to comprehend the language and to interpret the characters in which it is written.
It is written in the language of mathematics, and its characters are triangles,
circles, and other geometrical figures, without which it is humanly impossible
to understand a single word of it; without these, one is wandering about in a dark
labyrinth."

Galileo Galilei, in The Assayer (transl. from Italian by S. Drake, pp. 106-107
in L. Geymonat, Galileo Galilei, McGraw-Hill, New York (1965))





Preface to the Second Edition
The original edition of this monograph generated continued interest as evidenced
by a steady number of citations since its publication by Springer-Verlag in 1988.
Hence, we were particularly pleased that the American Mathematical Society
offered to publish a second edition in its Chelsea series, and we hope this slightly
expanded and corrected reprint of our book will continue to be a useful resource
for researchers in the area of exactly solvable models in quantum mechanics.

The Springer edition was translated into Russian by V. A. Geiler, Yu. A. Ku-
perin, and K. A. Makarov, and published by Mir, Moscow, in 1991. The Russian
edition contains an additional appendix by K. A. Makarov as well as further ref-
erences.

The field of point interactions and their applications to quantum mechanical
systems has undergone considerable development since 1988. We were partic-
ularly fortunate to attract Pavel Exner, one of the most prolific and energetic
representatives of this area, to prepare a summary of the progress made in this
field since 1988. His summary, which centers around two-body point interaction
problems, now appears as the new Appendix K in this edition; it is followed by
a bibliography which focuses on some of the essential developments since 1988.

A list of errata and addenda for the first Springer-Verlag edition appears at
the end of this edition. We are particularly grateful to G. F. Dell'Antonio, P.
Exner, W. Karwowski, P. Kurasov, K. A. Makarov, K. Nemcova, and G. Panati
for generously supplying us with lists of corrections.

Apart from the new Appendix K, its bibliography, and the list of errata, this
second AMS-Chelsea edition is a reprint of the original 1988 Springer-Verlag
edition.

We thank Sergei Gelfand and the staff at AMS for their help in preparing
this second edition.

Due to Raphael Hoegh-Krohn's unexpected passing on January 24, 1988, he
never witnessed the publication of this monograph. He was one of the principal
creators of this field, and we take the opportunity to dedicate this second edition
to his dear memory.

July 2004

S. Albeverio

F. Gesztesy

H. Holden





Preface

Solvable models play an important role in the mathematical modeling of
natural phenomena. They make it possible to grasp essential features of the
phenomena and to guide the search for suitable methods of handling more
complicated and realistic situations.

In this monograph we present a detailed study of a class of solvable models
in quantum mechanics. These models describe the motion of a particle in a
potential having support at the positions of a discrete (finite or infinite) set of
point sources. We discuss both situations in which the strengths of the sources
and their locations are precisely known and the cases where these are only
known with a given probability distribution. The models are solvable in
the sense that their resolvents and associated mathematical and physical
quantities like the spectrum, the corresponding eigenfunctions, resonances,
and scattering quantities can be determined explicitly.

There is a large literature on such models which are called, because of the
interactions involved, by various names such as, e.g., "point interactions,"
"zero-range potentials," "delta interactions," "Fermi pseudopotentials,"
"contact interactions." Their main uses are in solid state physics (e.g., the
Kronig-Penney model of a crystal), atomic and nuclear physics (describing
short-range nuclear forces or low-energy phenomena), and electromagnetism
(propagation in dielectric media).

The main purpose of this monograph is to present in a systematic way the
mathematical approach to these models, developed in recent years, and to
illustrate its connections with previous heuristic derivations and computa-
tions. Results obtained by different methods in disparate contexts are unified

vii



viii Preface

in this way and a systematic control on approximations to the models, in
which the point interactions are replaced by more regular ones, is provided.

There are a few happy cases in mathematical physics in which one can find
solvable models rich enough to contain essential features of the phenomena
to be studied, and to serve as a starting point for gaining control of general
situations by suitable approximations. We hope this monograph will convince
the reader that point interactions provide such basic models in quantum
mechanics which can be added to the standard ones of the harmonic oscillator
and the hydrogen atom.
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Introduction

In this monograph we present a detailed investigation of a class of solvable
models of quantum mechanics; namely, models given by a Schrodinger
Hamiltonian with potential supported on a discrete (finite or infinite) set of
points ("sources"). Such point interaction models are "solvable" in the sense
that their resolvents can be given explicitly in terms of the interaction strengths
and the location of the sources. As a consequence the spectrum, the eigen-
functions, as well as resonances and scattering quantities, can also be deter-
mined explicitly. Models of this type have already been discussed extensively,
particularly in the physical literature concerned with problems in atomic,
nuclear, and solid state physics. Our main purpose with this monograph is to
provide a unifying mathematical framework for a large body of knowledge
which has been accumulated over decades in different fields, often by heuristic
considerations and numerical computations, and often without knowledge of
detailed results in other fields. Moreover, we systematically expose advances
in the study of point interaction models obtained in recent years by a more
mathematically minded approach. In this introduction we would briefly like
to introduce the subject and its history, as well as to illustrate the content
of our monograph. Furthermore, a few related topics not treated in this
monograph will be mentioned with appropriate references.

The main basic quantum mechanical systems we discuss are heuristically
given (in suitable units and coordinates) by "one particle, many center Hamil-
tonians" of the form

H = -A + Y- My('),
y@Y

(1)
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2 Introduction

where A denotes the self-adjoint Laplacian in L2(Rd) with domain H2.2(Rd).
Here d = 1, 2, 3 is the dimension of the underlying configuration space, Y is
a discrete (finite or countably infinite) subset of R", A. is a coupling constant
attached to the point source located at y, and 3,, is the Dirac 6-function at y
(i.e., the unit measure concentrated at y). The quantum mechanical particle
thus moves under the influence of a "contact potential" created by "point
sources" of strengths A. located at y. The basic idea behind the study of
such models is that, once their Hamiltonians have been well defined and
understood, they can serve as corner stones for more complicated and more
realistic interactions, obtained by various perturbations, approximations, and
extensions of (1). Models with interactions of type (1) occur in the literature
under various names, like "point interaction models," "zero-range potential
models," "delta interaction models," "Fermi pseudopotential models," and
"contact interaction models."

Historically, the first influential paper on models of type (1) was that by
Kronig and Penney [307], in 1931, who treated the case d = I and Y = 71
with A.. = A. independent of y. This "Kronig -Penney model" has become a
standard reference model in solid state physics, see, e.g., [290], [493]. It
provides a simple model for a nonrelativistic electron moving in a fixed crystal
lattice. A few years later, Bethe and Peierls [86] (1935) and Thomas [485]
(1935) started to discuss models of type (1) for d = 3 and Y = {0}, in order
to describe the interaction of a nonrelativistic quantum mechanical particle
interacting via a "very short range" (in fact zero range) potential with a fixed
source. By introducing the center of mass and relative coordinates this can
also be looked upon as a model of a deuteron with idealized zero-range
nuclear force between the nucleons. In particular, Thomas realized that a re-
normalization of the coupling constant is necessary (see below) and exhibited
an approximation of the Hamiltonian (1) in terms of local, scaled short-range
potentials. His paper was quite influential and was the starting point for
investigations into corresponding models in the case of a triton (three particles
interacting by two-body zero-range potentials). It soon turned out that in the
triton case the naively computed binding energy is actually infinite, so that
the heuristically defined Hamiltonian is unbounded from below and hence
physically not acceptable, see, e.g., [134], [135], [441], [485].

Subsequent studies aimed at the clarification of this state of affairs led in
particular to the first rigorous mathematical work by Berezin and Faddeev
[81] in 1961 on the definition of Hamiltonians of type (1) for d = 3 as self-
adjoint operators in L2(R3). Let us shortly describe the actual mathematical
problem involved in the case where Y consists of only one point y. Any possible
mathematical definition of a self-adjoint operator H of the heuristic form
-A + A6, in L2(R") should take into account the fact that, on the space
Co (Rd - { y}) of smooth functions which vanish outside a compact subset
of the complement of {y} in R", H should coincide with -A. For d >- 4
this already forces H to be equal to -A on H2.2(R") since -Ale, (Ra-(r!) is
essentially self-adjoint for d > 4 [389]. For d = 2, 3 it turns out that there is
a one-parameter family of self-adjoint operators, indexed by a "renormalized
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coupling constant" a, all realizing the heuristic expression -A + ),8,. In
physical terms, the coupling constant A in the heuristic expression -A + A,5,
has to be "renormalized" and turns out to be of the form A = q + aq2, with
q infinitesimal and a e (-oo, oo]. This was put on a mathematical basis in
[81] using Krein's theory of self-adjoint extensions (cf. Sect. 1.1.1). Several
other mathematical definitions of (1) appeared later in the literature, as will
be discussed briefly below, but perhaps the most intuitive mathematical
explanation nowadays is provided by nonstandard analysis. It should also be
remarked that the necessity of renormalization for d = 2, 3 mentioned above
is not tied to the interpretation of H as an operator, the same applies for
H interpreted as a quadratic form. In particular, it is not possible, without
renormalization, to decribe H as a perturbation of -A in the sense of qua-
dratic forms [188]. This is in sharp contrast to the one-dimensional case
which allows a straightforward description of 6-interactions by means of
quadratic forms. Actually, a new phenomenon occurs in one dimension: Since
(in contrast to d = 2, 3) -A1CV(n_l,)) exhibits a four-parameter family of
self-adjoint extensions in L2(I ), additional types of point interactions (e.g.,
d'-interactions, cf. Ch. 1.4) exist.

But let us close this short digression on the mathematical definition of (1)
and return to the historical development of the subject. The investigations
of Thomas and others in nuclear physics (starting in the 1930s), which we
mentioned above, were persued in different directions during the following
decades. In particular, Fermi [179] discussed by similar methods the motion
of neutrons in hydrogeneous substances, introducing the so-called Fermi
pseudopotential made explicit by Breit [110] 10 years later (the Fermi pseudo-
potentials can be identified with point interactions for d:5 3 [229]). Some
of this work has now been incorporated into standard reference books on
nuclear physics, see, e.g., [93].

Somewhat parallel to this work, models involving zero-range potentials
began to be studied in the 1950s in connection with many-body theories
and quantum statistical mechanics. Here, particular attention was paid to
obtaining results on certain statistical quantities by using explicit computa-
tions and various approximations, the point interactions being used as limit
cases around which one could reach more realistic models by perturbation
theory. For this work we shall give references below.

Let us mention yet another area of physics in which problems arise and
which are essentially equivalent to those of many-body Hamiltonians with
two-body point interactions. This is the theory of sound and electromagnetic
wave propagations in dielectric media, where the role of the point interactions
is replaced by boundary conditions at suitable geometric configurations. In
the one-dimensional case (d = 1), such relations have been pointed out and
exploited in the work by Heisenberg, Jost [275], Lieb and Koppe [323],
Nussenzveig [366], and others. The book by Gaudin [194] contains many
references to this subject. In the three-dimensional case (d = 3), the relation
between Hamiltonians of type (1) and problems of electromagnetism (and
acoustics) has not yet been exploited sufficiently; see, however, [228], [229],
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[503] for recent developments (which are particularly interesting in connection
with work on the construction of antennas).

We will now discuss the content of the monograph, and at the same time
take the opportunity to make some complementary remarks. In each of the
three parts, I to III, theorems and lemmas are numbered consecutively in the
form x y z where x refers to the chapter, y to the section and z to the number
within the section. Equations are numbered in the same way. When we refer
to equations, theorems, or lemmas from another part of the monograph, the
appropriate roman number is added.

In this monograph we have divided the subject into three parts corresponding
to point interactions with one center (Part I), finitely many centers (Part II)
resp. infinitely many centers (Part III), according to whether Y consists of
one, finitely many, or infinitely many points. Within the parts we separately
discuss the three-dimensional case (d = 3) and the cases d = 1, 2. In the
one-center problem (Part I) the first problem is to define the point interaction.
Historically, the first discussions in the three-dimensional case go back to
Bethe and Peierls [86] and Thomas [485], who used a characterization by
boundary conditions (cf. Theorem 1.1.1). We have already mentioned the
approach by Berezin and Faddeev [Si] using Krein's theory (for a similar
discussion in the three-particle case, see [342], [343]). The modern approach
by nonstandard analysis was developed in [12], [14], [37], [355]. Yet another
approach, particularly suited to probabilistic interpretations, is the one by
Dirichlet forms introduced by Albeverio, Hoegh-Krohn, and Streit [32],
[33]. Finally, let us mention various approaches based on constructing the
resolvent by suitable limits of "regularized" resolvents [17], [24], [226]. These
approaches also lead to results on convergence of eigenvalues, resonances, and
scattering quantities (as we will discuss in Ch. I.1). Perturbations of the
three-dimensional one-center problem by a Coulomb interaction is discussed
in Ch. 1.2. Here the historical origins may be found in the work of Rellich
[392] in the 1940s; however, most results are quite recent with main contri-
butions from Zorbas [512], Streit, and the authors (22].

Let us here mention some work we do not discuss in this monograph. It
concerns time-dependent point interactions -A + )t(t)b() and electromag-
netic systems of the type [-io - A(t)]2 + discussed in [111], [145],
[146], [151], [239], [348], [349], [362], [405], [406], [472], [505], [506].

The one-center problem for a particle moving in one dimension is discussed
in Ch. 1.3 in the case of b-interactions, and in Ch. 1.4 in the case of 5'-
interactions. In Ch. 1.5 the case of a particle moving in two dimensions
under the influence of a one-center point interaction is briefly discussed. The
problems are similar to the three-dimensional case, however most results are
based on recent work.

In Part II of this monograph we discuss Hamiltonians of type (1) with Y a
finite subset of P°. In Ch. 11.1 the three-dimensional case is treated. The
methods of defining the Hamiltonian are similar to the methods introduced
in Part I. In the physical literature, the model appears quite early and detailed
results are derived heuristically, e.g., in (151], [277]. Mathematical studies



Introduction 5

started in the late 1970s [129], [226], [482], [483], [512]. In recent years a
lot of work has gone into obtaining mathematical results concerning approxi-
mations, convergence of eigenvalues and resonances, and scattering theory
on which we report in this chapter. Chapter 11.2 (resp. II.3) report on detailed
corresponding studies carried out recently on the one-dimensional case with
6- (resp. 6'-) interactions. Chapter 11.4 reports on recent work on the two-
dimensional case.

At this point we would like to mention a major subject which has been
omitted from our monograph, namely, the case of multiparticle Hamiltonians,
i.e., the case where (1) is replaced by

N

-A + Y Aijb(xi - xj), (2)
i<j

where 2ij are coupling constants for the 6-interactions between particles i
and j at xi resp. xj a W. Such heuristic Hamiltonians describe a quantum
mechanical N-particle system interacting via two-body point interactions
(-A denotes the Nd-dimensional Laplacian). Our excuse for not including
a discussion of this case is twofold. In the one-dimensional case (i.e., d = 1)
the literature is very rich and a monograph by Gaudin [194] already exists
(see also [83], [326]). Multiparticle problems with point interactions in one
dimension have been studied extensively since the 1950s, particularly under
the influence of work by Heisenberg on the scattering matrix for nuclear
physics. Some early references are [9], [275], [323], [366], [498], [499], see
also [326], [346] for some illustrations. More recent references, in addition
to those given in [194], are [82], [113], [155], [156], [233], [310], [321],
[328], [335], [338], [339], [340], [433], [449a], [468], [507].

In the two- and three-dimensional cases very few mathematical results are
as yet available, despite considerable work carried out by physicists. We limit
ourselves here to giving some hints to some studies in this area and some
references. Flamand [184] gives a very good survey of work done on the
three-particle problem (N = 3) in three dimensions (d = 3), up to 1967. This
work was mainly carried out by physicists and mathematicians in the Soviet
Union in connection with models of nuclear physics (triton and related
models) [ 131], [134], [135], [150], [198], [224], [342], [343], [354], [364],
[429], [441], [484], [485]. The main conclusion of this work is that a class
of natural self-adjoint realizations of (2) are not bounded from below [342],
[343]. However, the spectrum can be computed quite easily. In [34] a relation
was observed between this problem and the so-called Efimov effect in three-
particle systems with short-range, two-body potentials (i.e., the formation
of infinitely many negative three-body bound states below zero, if at least two
two-particle subsystems have a zero-energy resonance). Heuristically, the rela-
tion is brought about by a scaling argument. Two-dimensional multiparticle
systems are discussed in [253], [327), [433].

Methodically related to the study of many-body systems is the study of
quantum statistical mechanical systems, for which we shall also mention
some references. Bose gases with hard-sphere interactions related to point
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interactions and Fermi pseudopotential models were discussed extensively in
the 1950s, particularly by Huang, Luttinger, Wu, and Yang, see, e.g., [264],
[265], [266], [320], [502]. Many-body systems of bosons with repulsive two-
body 6-interactions were discussed by Lieb, Liniger, Yang, and coworkers,
cf., e.g., [322], [324], [331], [508] and the references in [194], [326]. Fermions
with two-body 6-interactions were studied by Lieb and others, see, e.g., [325]
and the references in [194], [326].

Let us also mention that the heuristic nonrelativistic limit of quantum field
theoretical models with a4-interaction is described by Schrodinger multi-
particle Hamiltonians with two-particle 6-interactions in d - 1 dimensions.
This is rigorously discussed for d = 2 in [154].

Let us now proceed to the description of work discussed in Part III of
our monograph, treating point interactions with infinitely many centers. As
we have mentioned already, a very influential model in solid state physics,
discussed early in the literature, has been the Kronig-Penney model [307]
(1931) in one dimension. An early heuristic treatment of a three-dimensional
crystal with point interactions was given by Goldberger and Seitz [216] in
1947.

The systematic mathematical discussion of these and similar Hamiltonians
in three dimensions is, however, much more recent and was started by the
work of Grossmann, Mebkhout, and the present authors starting at the end
of the 1970s. In general, Hamiltonians with infinitely many point interactions
are defined as limits in the strong resolvent sense of Hamiltonians for N-point
interactions as N -+ oo. In the case where the centers are periodically arranged,
group-theoretical methods of reduction to simpler Hamiltonians, exploiting
the symmetry, permit a more direct definition of the Hamiltonians. This
leads to a particularly detailed treatment of spectral properties for the case
of crystals ("Kronig-Penney"-or rather "Goldberger-Seitz"-type models
in three dimensions) in Sect. 111.1.4, as well as of embedded one- or two-
dimensional lattices in R3, so-called "straight polymers" in Sect. 111. 1.5 resp.
"monomolecular layers" in Sect. 111.1.6. Some physical discussions of related
systems are given in [151]. Scattering from half-crystals (Bragg scattering) is
treated in Sect. 111. 1.7. This gives details on results announced earlier in [52].
The computation of Fermi surfaces for crystals is of basic importance in solid
state physics. It is usually obtained by various approximations. The point
interaction model gives the possibility of producing exact formulas for the
Fermi surfaces as shown in Sect. 111.1.8. This is based on work done by
Heegh-Krohn, Holden, Johannesen, and Wentzel-Larsen [242]. We also
discuss crystals with defects, as well as scattering from impurities in crystals
in Sect. 111.1.9.

In Ch. 111.2 models with infinitely many 6-interactions in one dimension
are discussed. Although the prototype of such models is the Kronig-Penney
model already introduced in 1931, most mathematical results in this chapter
have been obtained in recent years. The topics discussed in this chapter corre-
spond to those treated in the three-dimensional case, Ch. 111.1. In particular,
Sect. 111.2.3 treats the case of periodic 6-interactions, and Sect. 111.2.4. develops
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spectral and scattering theory in connection with half-crystals. Quasi-periodic
point interactions are briefly studied in Sect. 111.2.5. The discussion of crystals
with defects and impurity scattering in Sect. 111.2.6 goes back originally to
Saxon and Hutner [404].

In Ch. 111.3 all the basic results of Ch. 111.2 are extended to models with
infinitely many S'-interactions in one dimension. Let us remark at this point
that in one dimension, 8'-interactions are nontrivial, in higher dimensions,
d >_ 2, interactions supported on v-dimensional hypersurfaces 0:!5. v <- d - 1
are nontrivial. For a discussion of point interactions on manifolds, see, e.g.,
[42], [125], [180], [226], [299], [424] and the references therein.

In Ch. 111.4 we extend the results established for dimensions one and three
to the two-dimensional case.

In Ch. 111.5 we discuss random Hamiltonians with point interactions in one
and three dimensions. Schrodinger operators with stochastic potentials have
received a lot of attention in recent years, because of their importance as
models for amorphous solids. Actually, at the end of the 1940s-early 1950s
much work had already been done on one-dimensional models of disordered
solids with point interactions. The paper by Saxon and Hutner [404] was very
influential. It discussed, in particular, Schrodinger Hamiltonians with two
types of atoms (binary alloys) characterized by coupling constants A and B
conjecturing that gaps in the spectrum of both pure crystals (with pure atoms
of type A (resp. B)) should also be present in arbitrary alloys (with random
combination of A's and B's). It influenced other papers on the subject such as,
e.g., [ 189] (see the extensive bibliography in [326] and in the notes in Ch. 111.5)
which treated a stochastic Poisson distribution of sources as an "impurity
band" model or a "one-dimensional liquid metal" model. Incidentally, the
relation with the one-dimensional version of a scalar-meson pair theory
Hamiltonian, discussed by Montroll and Potts [344] in their study of inter-
actions of lattice defects, was pointed out. Anderson, Mott, and others started
in the 1950s to discuss, from the physical point of view, the phenomenon of
localization, by which a discretized random Hamiltonian in three dimensions
was conjectured to have a nonconducting phase at large disorder and a
conducting phase at low disorder, the two phases being separated by a
mobility edge. Mathematical work on the problem was originally started in
the Soviet Union, see, e.g., [222], [223], [368]. Random point interactions
were rigorously studied by Kirsch and Martinelli [286], [287], [288], [289]
and the present authors [20], [30], [206] (our presentation in Ch. 111.5 closely
follows these papers). There are connections with work on the Laplacian with
boundary conditions on small, randomly distributed spheres [181], [182],
[1831.

Let us also mention that random distributions of sources along Brownian
paths have also been considered, both in the physical literature, e.g., [162],
and in the mathematical literature [13], [14], as models for the motion of
a quantum mechanical particle in the potential created by a polymer. There
are applications, via a Feynman - Kac type formula, to the study of polymer
measures of Edward's type [ 14], [162] and quantum field theory [ 14].
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Appendices A-I give complements to the main text. Let us mention here
that Appendix J treats Dirac Hamiltonians with point interactions in one
dimension.

As a final note, we would like to mention that our monograph only discusses
the class of solvable quantum mechanical models characterized by point
interactions in d < 3 dimensions. Of course, there are many other solvable
models in quantum mechanics. Their treatment would have made the size of
this volume unmanageable, besides that the methods of solutions of these
models are quite different from the ones we discuss here. In fact, their solvability
relies on symmetries which allow a group-theoretical treatment (such models
are often related to classically completely integrable systems). For a discussion
of these topics, see, e.g., [10], [83], [185], [326], [367].

In the references we have tried to be as complete as possible; however, with
the enormous number of publications over a wide range of fields, including
mathematics, solid state physics, atomic and nuclear physics, and theoretical
chemistry, we make no claim to being complete. The notes at the end of each
chapter give some historical comments and references to the subject discussed.

For other presentations of some of the material discussed in this monograph
we refer to the book by Demkov and Ostrovskii [151], and the survey papers
[18], [20], [29], [454].



PART I

THE ONE-CENTER POINT
INTERACTION





CHAPTER 1.1

The One-Center Point Interaction in
Three Dimensions

1.1.1 Basic Properties

In this section we develop a precise formulation for the point interaction
(also called 6, or zero-range, or contact interaction or Fermi pseudopotential
in the physics literature) centered at a fixed point y in three dimensions.
Although our methods concentrate mainly on the concept of self-adjoint
operator extensions, an alternative approach based on local Dirichlet forms
is sketched at the end of the section.

Consider in L2(183) the nonnegative operator

-Alco(W-(y)), Y E I83, (1.1.1)

where A = a2/ax; + 02/0x2 + 492/ax3 is the Laplacian and denote by H, its
closure in L2(l83) (i.e., H,) = Ho 2(l83 - {y})). By [274] (cf. also [276]) its
adjoint can be characterized by

F!*=-A, ye113,
(1.1.2)

where H o,"(S2) denote the corresponding local Sobolev spaces (see, e.g., [389],
Ch. IX). A straightforward computation shows that

xe183-{y}, Imk>0, (1.1.3)

is the unique solution of

H*0(k) = k20(k), 4, (k) e _9(Ii*), k2 e C - R, Im k > 0. (1.1.4)

11
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Consequently, H, has deficiency indices (1, 1) and applying Theorem A.1 all
self-adjoint extensions HB,, of H, are given by the one-parameter family

-9(He.,) _ {g + ct/i+ + ceietP_Ig e 21(11,), c e C), (1.1.5)

H8,,(9 + ci/i+ + ce'Bt/i_) = H,g + ictb+ - ice" 41-, 0 e [0, 2n), y e Y8,

where

4i+(x) = e 6d' - {y}, lm J i > 0. (1.1.6)

Decomposing L2(R') with respect to angular momenta, or, in other words,
introducing spherical coordinates (with center y) we obtain (cf. [389], p. 160)

L2(R3) = L2((0, co); r2 dr) ® L2(S2), (1.1.7)

where S2 is the unit sphere in P3. The spherical harmonics { Y,,gll a No, m =
0, ± 1, ..., ±1} provide a basis for L2(S2). Using, in addition, the unitary
transformation

U: L2((0, co); r2 dr) - L2((0, oo); dr), (Uf)(r) = rf(r), (1.1.8)

we can write (1.1.7) as

00
L2(P3) = (I U-' L2((0, oo); dr) ®[Y._,, ..., Y,,..., Y.tj, (1.1.9)to

where [f1, ... , denotes the linear span of the vectors f,, ... , f, . With
respect to this decomposition H, equals the direct sum (cf. [389], p. 160)

FI,-Ty'{1&U-1h,U®1}T,, yeP3, (1.1.10)

where T, unitarily implements the translation x - x + y in L2(R') (i.e.,
(T,9)(x)=9(x+y),9EL2(R3),yeR')and

d2

dr
r>0, 1=0,1,2,...,

y+1(1x21)

_9(ho) = {c a L2((0, oo))Iq, 0'e AC,oJ(0, oo)); #(0+) = f(0+) = 0;

0" e L2((0, co))) = H02'2((0, 00)),

.9(ht) _ {q e L2((0, co)), I00'e ACioJ(0, co)),

-0" + 1(1 + 1)r-20 a L2((0, co))), I z 1.

Here AC,,,,((a, b)) denotes the set of locally absolutely continuous functions
on (a, b).

By standard results (e.g., [389], Ch. X) h,,1 >_ 1, are self adjoint whereas ho
has deficiency indices (1, 1). In particular, all self-adjoint extensions ho,Q of ho
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may be parametrized by (cf. Appendix D)

d2
ho.a = -dr2,

2 (ho Q) = {b e L2((0, oo))I0, 0'e AC1 ((0, co)); -4rcaq(0+) + q'(0+) = 0;

0" e L2((0, oo))), -oo < a 500. (1.1.12)

(In obvious notation the boundary condition a = oo denotes the Friedrichs
extension characterized by 0(y +) = 0.) From g"(r) = rg(r), g" a -9(h0) and

d it it
dr

[.q-(r) + c(4n)-'ef + e(4n)-1 I.=o+

= c(4n)-'(e3At/a - eieeiR'a)

= 4na[g(r) + e(4n)-'e0i' + c(4a)-'e`Be`f '']l.=o+, (1.1.13)

where

a = (4n)-' cos(n/4)[tan(0/2) - 1], (1.1.14)

we infer

Hey=Ty'{[U_'h0,mU EDU -'h1UJ®1} 7,. (1.1.15)
J

Obvious ly, a varies in 08 (a = +oo if 01 n) if 0 varies in [0, n) v (n, 2n). Thus
we have proved

Theorem l.1.1. All self-adjoint extensions of H,, are given by

-A",,=T'{LU-'h0.,U®QU-1h1UJ®1jTy,

111
=1 J J

-oo < a 500, y e 0t3. (1.1.16)

The special case a = co just leads to the kinetic energy Hamiltonian -A
(the Friedrichs extension of H,,) in L2(083)

-A00,y = -A on Q(- A) = H2.2(033). (1.1.17)

If laI < oo, -A.,y describes a point interaction centered at y e 183. It will
turn out in Sect. 1.4 that -(4na)-' represents the scattering length of -Am.,..
Denoting

Gk=(-A-k2)-', Imk>0 (1.1.18)

it is well known (see, e.g., [389], p. 58f) that in three dimensions Gk has an
integral kernel Gk(x - x') given by

Imk>0, x,x'E183, x#x'.
(1.1.19)
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In the following we characterize basic properties of -A.,.,, We start with

Theorem 1.1.2. The resolvent of -A,,, is given by

k2)-' = Gk + (a - ik/4n)-'(Gk(' - y), -)Gk(' - y),

k2 E p(- A,,,), Imk > 0, -oo < a < oo, y R3, (1.1.20)

with integral kernel

eiklx-x'I eiklx-r1 eikl'-'1
(- A>. - k2)-' (x, x') _ + (a - ik/4n)-, - -- -4nIx - x'I 4nlx - yl 4nly - x'J'

k2Ep(-A,,,), Imk>0, x,x'eR3, Xx', x#y, x'#y.
(1.1.21)

PROOF. Using eq. (1.1.19), eq. (1.1.20) (except for the factor ((x - ik/4n)-') follows
from (1.1.6) and Theorem A.2. To determine the missing factor it suffices to discuss
eq. (1.1.20) in the subspace of angular momentum zero. Let ii a L2((0, oc)) and define

W T
e'kr'q(r')etkrX,(r) = dr' go(k, r, r')?I(r') + (4na - ik)-i f

oJO

Imk > 0, a < or,, (1.1.22)

where

- k` sin(kr)eik'',

yolk, r, r') k-' sin(kr')e'k',
r<r',
r Z r',

(1.1.23)

is the Green's function corresponding to ho,,, (the Friedrichs extension of ho).
Clearly, X X. E AC,((0, oo)) and X. a L2((0, oo)). Moreover, a direct calculation
shows that

-4aaX,(0+) + X.(0+) = 0 (1.1.24)

and

x' (r) _ -O(r) - k2X,(r), r > 0, (1.1.25)

which proves (1.1.20).

Next we would like to collect some additional information on the domain
of - A,,, and to show that the one-center point interaction is in fact a local
interaction:

Theorem 1.1.3. The domain 9(- A,,,), -oo < a < oo, y e R3, consists of
all elements 41 of the type

4,(x) = qk(x) + (a - ik/4n)-'bk(y)Gk(x - y), x :A y, (1.1.26)

where ok E -9(- A) = H2.2(R3) and k2 E p(- A,,,), Im k > 0. The decomposi-
tion (1.1.26) is unique and with 0 E Q(- A.,,) of this form we obtain

(-A,,v - k2)c = (-A - k2)0k. (1.1.27)
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Next, let i/i a .9(- Aa, y) and assume that s/i = 0 in an open set U c R3. Then
-Aa.yo=OinU.

PROOF. We first note that functions in H2.2(R3) are Holder continuous of exponent
smaller than # ([283], p. 301) and hence it makes sense to write 4k(y). Next, we infer
that

(-A.,, - k2)-'(-A - k')-9(- A)

_ {Gk + (a - ik/4n)-'(Gk( - y), -)Gk(- - y)}(-A - k2).9(-A),

k2 e p(-A..,), Imk>0, (1.1.28)

which proves (1.1.26). To prove uniqueness of the above decomposition let fr = 0.
Then

4k(x) = -(a - ik/41r)-'0k(Y)Gk(x - y) (1.1.29)

and ok a C°(R3), in fact, implies 4 = 0. Relation (1.1.27) then simply follows from

(-Aa.y - k2)-'(-A - k2)0k

_ OA, + (a - ik/41r)-'(Gk(' - Y), (-A - k2)ok)Gk(. - Y) = kb,

k2 a p(-Am,y), Imk > 0. (1.1.30)

To prove locality (cf. also Lemma C.2) assume first y# U. Then

((-A - k2)Gk(- - Y))(x) = 0

implies that

(-Aa,,O)(x) = k24(x) + ((-A - k2)0k)(x)

_ -(a - ik/4a)-' A(Y)((-A - k2)Gk(- - Y))(x) = 0, x e U.
(1.1.31)

On the other hand, if y e U then i/i(y) = 0 and Ok a C°(R3) implies A = 0 and hence
again

(-Aa,yll/)(x) = k2s(x) = 0, x U. (1.1.32)

Finally, we turn to spectral properties of -A.,y:

Theorem 1.1.4. Let -oo < a < oo, y e 183. Then the essential spectrum
aC5$(-Aa,y) is purely absolutely continuous and covers the nonnegative real
axis

cress(-A.,y) = a..(- A.,,) = (0, oo), Qsc(-Aa.,) = 0. (1.1.33)

(Here aac and a,, denote the absolutely and singularly continuous spectrum,
respectively.) If a < 0, -A.,y has precisely one negative, simple eigenvalue,
i.e., its point spectrum ao(- Aa, y) is given by

a,(-Aa,y) = {-(41r(X)2}, -ao < at < 0, (1.1.34)

with

41r(-a)'12G-4xta(x - y) = (-a)'"2e4xalx-II/Ix - YI, x 0 y, (1.1.35)
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its strictly positive (normalized) eigenfunction. If a Z 0, -0,.,, has no
eigenvalues, i.e.,

a,(-A,,,)=0, 0<a5co. (1.1.36)

PROOF. Let lal < oo. Weyl's theorem ([391], p. 112) and (1.1.20) imply
Qess(-A..,) = orss(-A) = [0, oo) since (-A.., - k2)-' - (-A - k2)-', k2 e

-ou < a < oo, is of rank one. The absence of ap(-A,,,) follows, e.g.,
from Theorem XI11.20 of [391] together with (1.1.20). Assertion (1.1.34) and (1.1.35)
and the absence of negative eigenvalues of -A,,,, for a >- 0 then follow from the
explicit structure of the residuum at k = -4nia of (1.1.20). It remains to prove the
absence of nonnegative eigenvalues for all a e R. From the decomposition (1.1.16)
we infer that it is sufficient to consider s-waves (I = 0). But this trivially follows
from the fact that for r > 0 all solutions of

-i/r"(k, r) = k2,Ii(k, r), k -0, r>0, (1.1.37)

are given by

4r(k, r) = c1eth + c2e-'`% k > 0,

0(0,r)=c3+c4r, k=0,
(1.1.38)

which cannot be in L2((0, oo)).

So far, we have discussed the approach based on operator extensions.
Following [32], [33] we finally sketch another method using local Dirichlet
forms. In L2((0'83; q d3x) we define the energy form

E, ,(g, h) =
J

b,?,,(x) dIx(Og)(x)(Vh)(x), 91(E,,,) = Co(R3), y e R3,

k' (1.1.39)

where
(e4,[aix-yh/I x - YI,

{1,
ac-Q1, xeR3-{y),

(1.1.40)
a=oo.

It turns out that E,,, is closable and the unique self-adjoint operator associated
with its closure is precisely the operator O..y[-A,,, + y if a e P
(resp. -A if a = oo) (cf. Appendix F). For a construction of (-A,,, - k2)-1
by means of nonstandard analysis we refer to [12], [14) and Appendix H.

Obviously, the results of this section are not confined to self-adjoint exten-
sions (i.e., a e R) of H, but straightforwardly extend to accretive extensions
([389], Ch. X) of ill, if Im a < 0. In this way, complex point interactions are
obtained (cf. Theorem 2.1.4).

Since -Aico(n-_{y}), y e R", n e N, is essentially self-adjoint in L2(W') if
n > 4 ([389], Ch. X), there are no point interactions in more than three
dimensions. On the other hand, operators of the type

(-A + Al. - YI-2)Ic'(k"-{y}), -[(n - 2)/2]2 < 2 < I - [(n - 2)/2]2,
(1.1.41)

certainly admit self-adjoint extensions which correspond to an interaction
given by AIx - yI-2 plus point interaction centered at y as discussed in [209].
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1.1.2 Approximations by Means of Local as well as Nonlocal
Scaled Short-Range Interactions

The question as to under what circumstances -A4,, can be obtained as a
norm resolvent limit of scaled short-range Hamiltonians is answered in this
section. We first treat the case of local interactions. Recall that

Gk=(-A-k2)-', Imk>0, (1.2.1)

denotes the "free" resolvent with integral kernel

Gk(x-x')=e'k1"-`1/4nIx-x'I, Imk>0, x,x'eR3, x#x', (1.2.2)

and assume V: R3 - R to be measurable and belonging to the Rollnik class R,
i.e., II V IIR = fR6 d3x d3x' I V(x)I I V(x')I Ix - x'1'2 < oo. For the general theory
of Rollnik functions, see [434]. We also introduce

v(x) = I V(x)I'n, u(x) = I V(x)I112 sgn[V(x)] (1.2.3)

and note

Lemma 1.2.1. Let Ve R. Then V is form compact with respect to -A, i.e.,

I VI "2(-A + E)-112 e R,0(L2(R3)), E > 0, (1.2.4)

and

uGkv E g2(L2(R3)), Im k >- 0. (1.2.5)

PROOF. Equation (1.2.4) follows from (1.2.5) which in turn is a direct consequence
of V e R and dominated convergence.

In addition, we define

6(x)e-'Y), u(x)=u(x-e-'y), a>0, yeR3, (1.2.6)

and

D(s,k)=.1(e)uGkv, Imk>0, a>0, (1.2.7)

where .1() is real-analytic near the origin with 2(0) = 1. Because of (1.2.5),
f(e, k) extends to a Hilbert-Schmidt operator for Im k z 0. Moreover, by
eq. (1.2.4) and by Appendix B, the form sum

H,(e)= -A-+al(e)V(' -a-' y), s>0, YeP3, (1.2.8)

is well defined and by Theorem B.1(b) the resolvent equation

(Hy(e) - k2)-' = Gk - 2(e)Gki (l + B(c, k)]-'iiGk,

k2 e p(H,,(s)), Im k > 0, y e R3, (1.2.9)

holds. To obtain suitable scaled short-range Hamiltonians He,, we denote by
U, the unitary scaling group

(U g)(x) = e-312g(x/e), e > 0, g e L2(R3), (1.2.10)
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and define

Hey=L-2UrH,(E)Uc' = -A +V,.,,

L>0, yER.r.y(-x) = it(E)E 2V((x - .y)/i:),

3

In order to discuss the limit E J. 0 of Hg , we first introduce Hilbert- Schmidt
operators Ar(k), B,(k) = 7.(c)uGrkv, CE(k), E > 0, with integral kernels

A,(k,x,x')=Gk(x-y-Ex')v(x'), Imk>0, (1.2.12)

BB(k, x, x') = A(c)u(x)GEk(x - x')v(x'), Im k >- 0, (1.2.13)

C,(k,x,x')=u(x)Gk(Lx+y-x'), Im k > 0. (1.2.14)

Then, using

r.2 U, Gk U, ' = Gk,., r. > 0. (1.2.15)

we infer from (1.2.9) using translations x x + (y/&), r, > 0,

(H,.., - k22)-' = C2UC[H)(r) - (rk)2]-'U1 '

= Gk - ).(E)A,(k)E[I + BB(k)]-'Qk),

k2 E p(H,,,,), Im k > 0. (1.2.16)

Lemma 1.2.2. Let y e R3 and define rank-one operators A(k), C(k), and
the Hilbert -Schmidt operator uGov with kernels

A (k, x, x') = Gk(x - y)v(x'), lmk>0, x-Ay, (1.2.17)

(uGov)(x, x') = u(x)(4nlx - x'I)-'v(x'), x 0 x', (1.2.18)

C(k,x,x')=u(x)Gk(y-x'), lmk>0, x'#y. (1.2.19)

Then for .fixed k, Im k > 0, A,(k), BE(k), CE(k) converge in Hilbert-Schmidt
norm to A(k), uGov, C(k), respectively, as c 10.

PROOF. By dominated convergence

w-lim A,(k) = A(k), w-lim BB(k) = uGov, w-lim C,(k) = C(k). (1.2.20)
840 Coo c10

Since, obviously,

lim IIAg(k)112 = IIA(k)112, lim IIBe(k)112 = lluGovll2, lim IICt(k)II2 = IIC(k)112,
e4o Coo CIO

the assertion follows by Theorem 2.21 of [438].

So far the whole analysis did not use any particular spectral informations
about the underlying Hamiltonians. However, in order to determine the limit
E10 of e[1 + B,(k)] -' we have to take into account zero-energy spectral
properties of

17,(F) = -A ]- V(- - c ' y) (1.2.22)
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or by unitary equivalence (translations) zero-energy properties of

H=-A-+V. (1.2.23)

Therefore we introduce below, after Lemma 1.2.3, the notion of a zero-energy
resonance (resp. a zero-energy bound state) of H. Assume now, in addition,
V E L'(R3). If

we define

uGov# = -0 for some e L2(I83) (1.2.24)

Lemma 1.2.3. Suppose V E L'(R3) n R. Then 4 e L C(I83), Vqi E L2(R3),
and Hq, = 0 in the sense of distributions. If, in addition, V c- L'(R 3), then
i e L2(R3) is equivalent to

x 0. (1.2.26)(v, $) = - fR3 d3

O(x) = (Gov#)(x). (1.2.25)

If 0 e L2(R3), then tli e 2(H) and HO = 0.

PROOF. From

where

and the fact that

and

d'x(Ix - x'I-' - Ixl-1)2 5 crL s.
(1.2.29)

d3x(Ix - x'I-' - IxI-,)2
5 clx'I (1.2.30)

'R3

for appropriate constants c, c > 0, one infers that l', e Loe(113) if V e L'(R3), and
e L2(IIV) if l I V E L' (R3).' Moreover,

(VO(x) = - J d3x'(4n) -'Ix - x'1-3(x - x')v(x')#(x'), (1.2.31)

in the sense of distributions, and Fubini's theorem imply

d3xl(VO)(x)I
fill

O(x) = (4nlxl)-'(v, 0) + 4,1(x), (1.2.27)

- x'I-' - Ixl-`)v(x')O(x'), (1.2.28)iP,(x) _ (4n)-' f
R3JR3

2

(4n)-2

fR6

d3x v(x')v(x")I0(x')I10(x")1 fR3

- x'I-'Ix - x"l-2

J R° R3

d3x' d3x"Ix' - x"I-tv(x')v(x'")Ib(x')II

kb

<d(4n)-211VIIRII0112 < 00, (1.2.32)
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where

d=
J

d'zlz0-2jz - e31-2 < ar
R'

(e3 the unit vector in the z3-direction). Since v/, = -(sgn V)# a L2(R3), Vi defines
a distribution (cf. Corollary 11.8(a) in [434]) and -Aqi + ViJi = 0 in the sense of
distributions. If i/i a L2(R3) then e '(H) by Corollary 11. 8(a)) of [434].

If 0 e L2(R3), then is a zero-energy eigenstate of H and 0 e ap(H). If
e LI (083), but i/i 0 L2(083) we call 0 a zero-energy resonance function of H

and the spectral point 0 a resonance of H. Lemma 1.2.3 is a convenient tool
to decide whether 0 is a zero-energy bound state (resp. resonance) of H. We
thus distinguish the following cases:

Case 1: -1 is not an eigenvalue of uGov.

Case II: - I is a simple eigenvalue of uGov,

uGovb = -0, 0 e L2(R3)

and

fr =Go vq e L oC(R3),

but 0 0 L2(R3).

Case III: -1 is an eigenvalue of uGov,

uGovq, = -0,, 0, e L2(R3), 1 = 1, ..., N,
and

41
=GovoleL2(R3),

1= 1,...,N.
Case IV: -1 is an eigenvalue of uGov,

uGovb,= -0i, q eL2(R3), 1 1,...,N, N?2,
0i = GovqS e Li o(R3), I = 1, ..., N,

and at least one 411.0 L2(R3).

Observe that the functions ¢i, 01 can be chosen to be real-valued. Clearly,
case I is the generic one in the sense that if V is replaced by gV, g Z 0, then
cases II-IV only occur for discrete values of the coupling constant g. In
particular, if V >: 0 then only case I occurs. In case II, H has a simple zero-
energy resonance; in case III, H has a zero-energy eigenvalue of multiplicity N.
Since in case IV one can always choose a particular linear combination of the
#,'s such that (v, q,) # 0 but (v, q,) = 0,1= 2,..., N, H has a simple zero-energy
resonance and a zero-energy eigenvalue of multiplicity N - 1 in case IV if
V e R and (1 + I.1) V e L' (R3). If, in addition, V is spherically symmetric then
(v, 0) = 0 for all functions 0 belonging to angular momentum I > I. Thus case
II (i.e. a zero-energy resonance) only occurs in s-waves whereas p- and higher
waves only support zero-energy bound states. From now on we always assume
(1 + I-I)V e L'(083) in cases II-IV.
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Given the above case distinction we can formulate

Lemma 1.2.4. Let Ve R. In cases II-IV assume, in addition, (I + I I)V e
L1(R3) and A'(0) 96 0 in cases III and 1V. Then

0 in case 1,

C(4n)-'ikl(v, 0)I2 + A'(0)]-1(J, -)0 in case 11,

n-lim E[1 + Be(k)]-' = [A'(0)]-'

Y_ (r6r, .)0' in case III,
810 r=1

(¢, in case IV,

(1.2.33)

where k2 e C - R, Im k > 0, and (J, B1 (k)#)Tr' denotes the inverse of the
matrix (0r, B,

ji(x) = sgn[V(x)]gr(x), (fir, 01) _ -arr., 1, 1' = 1, ..., N,

B1(k) = A'(0)uGov + (4n)-'ik(v, )u.
(1.2.34)

PROOF. Case I: Since n-lim,40 BB(k) = uGov and (1 + uGov)-' exists the result
immediately follows.

In cases II-IV we first note the norm convergent expansion

(1 + uGov + z)-' = z-' P + (-z)mTm+', z e C - {O} small enough,
m=o

where

(1.2.35)

P (sgn V )O,, l = 1, ... , N, (1.2.36)
r='

is the projection onto the eigenspace of uGov to the eigenvalue -1 and

T = n-lim (1 + z + uGov)-'(1 - P) (1.2.37)
z-o

denotes the corresponding reduced resolvent. Moreover, the A can be chosen in
such a way that

fir) _ -8rr,, 1,1'= 1, .., N.4 (1.2.38)

In order to prove (1.2.35)-(1.2.38) we first show that the algebraic and geometric multi-
plicity of the eigenvalue -I of uGov coincide. For this purpose it suffices to prove
that (1 + uGov)2g = 0, g e L2(R3) implies (1 + uGov)g = 0: Assume (1 + uGov)2g =
0 and define f = (1 + uGov)g. Then (1 + uGov)f = 0 and, consequently,

((1 + vGou)g, (I + uGov)g) (I + uGov)2g) = 0, (1.2.39)

where

f = (1 + vGou)g", g' = (sgn V)9. (1.2.40)

But 0 = -(f, uGovf) = -(Gol2uf G "2vf) _ - IIG"vf III implies of = 0 and hence
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f = 0 (since f = -uGovf). By [283], Ch. 111.6.5 we get an expansion of the type
(1.2.35). It remains to show that the normalization (1.2.38) is indeed possible. This
actually follows from

0) = -(i, uGoub) IIG 12V0112 # 0,

uG
(1.2.41)

ovq = - q, q e L2(R3), q = (sgn V)O,

and the analog of the Gram-Schmidt orthogonalization process.
Next we remark that, due to the hypothesis Ve R n L' (R3), the expansion

Bjk) = uG0 v + &A'(0)uGov + e(4n)-'ik(v, )u + o(e)

Bo + eB,(k) + o(e) (1.2.42)

is valid in Hilbert-Schmidt norm for fixed k with Im k ;-> 0. Equation (1.2.42) is
shown as follows: By the mean-value theorem

A(e)G,k(x, x') = G0(x, x') - eJ.'(e6(e))Go(x, x') + e(4n) -'ikeu'('1 "-x'i, x 0 x',
(1.2.43)

for appropriate functions 0 < 0(e), 6(e) < 1. Thus

IIB,(k) - uGov - el'(0)uGov - e(4n)-'ik(u, )ulli

< 2e2l '(e6(e)) - A'(r0)I2IIuGovllz

+ 2e2(4x)-21k12 d 3 x d3x'l V(x)I I V(x')I le1te(c)klx-x'I - 112 = o(e2)
ab (1.2.44)

by dominated convergence. (A slightly more detailed estimate actually shows that
o(e) can be replaced by o(e312) in (1.2.42) since V e L'(R3).)

Case II: By eqs. (1.2.35) and (1.2.42)

e[1 + BB(k)]-'

=e[l +B0+eB, +o(e)]-'

_ [I + e(1 + e + Bo)-'(B, - I + o(e))]-'e(1 + e + Bo)-'

_ [1 + P(B1 - 1) + o(e)]-' [P + 0(e)], k2 E p(HH,,,), Im k > 0. (1.2.45)

Since [I + P(B1 - 1)] -' is easily seen to exist as a bounded operator in L2(R3)

[1 + P(B1 - l)]-' = I + [(ik/4x)I(v, 0)I2 + )1'(0)]-'[l + ')o

- (ik/4x)[(ik/4x)I(v, 0)12 + 2'(0)]-1(q, v)(v, ')q (1.2.46)

and from

[I + P(B1 - 1)]-'P = [(ik/4 r)I(v, 0)12 +.l'(0)]-'(J, ')q (1.2.47)

we get (1.2.33).

Case III: Observing again that [1 + P(B1 - 1)]-' exists,

[1 + P(B1 - 1)]-' = 1 + [1 + 2'(0)-']P, (1.2.48)

and that

[1 + P(B1 - 1)]-'P = -[J.'(0)]-'P, (1.2.49)

in case III we obtain the desired result directly from (1.2.45).
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Case IV: Here again [I + P(BI - 1)]-' is a bounded operator
N

[1 + P(BI - 1)]-' = 1 - Y (j, B10)111([Bi - (1.2.50)
i.r=1

and inserting

[1 + P(B, - 1)]-'P

into (1.2.45) completes the proof. (BY inspection

B, (k)q5r)] = [4Tr [x(o) + (4a)ik I(v, )I2].)
r=

From now on we always assume the normalization -1 in case II
and (jr, qr.) = -S,.,1,1' = 1, ..., N, in cases III and IV.

Lemmas 1.2.2 and 1.2.4 now enable us to present the main result of this
section.

Theorem 1.25. Let V E R be real-valued and y E R3. In cases II-IV assume,
in addition, (1 + E L1(R3) and A(0):00 in cases III and IV. Then, if
k2 a p(_ A.,,), we get k2 E p(He,,) for e > 0 small enough and that He,,
converges to -A.,, in norm resolvent sense as a 10, viz.

n-
m (He,, - k2)-1 k2)-', y e R3, (1.2.52)

140

where a is given by

N

_ 1-A'(0) I(v, 01)I2} in case IV.
r-r

In particular, He, converges in norm resolvent sense to - A in cases I and III
ase10.

a=

00 in case I,

-A'(0)I(v, #)I-2 in case II,

00 in case III, (1.2.53)

PROOF. Denoting the right-hand side of (1.2.33) by D(k) we obtain from the
resolvent equation (1.2.16), and from Lemmas 1.2.2 and 1.2.4 that

n-lim (He,, - k2)-1 = G,, - A(k)D(k)C(k), k2 e C - R, Im k > 0. (1.2.54)
e40

Inserting the explicit result (1.2.33) into (1.2.54), using the criterion (1.2.26) yields
(1.2.52) and (1.2.53) after comparison with (1.1.20).

As a consequence, if a < 0 (i.e., A'(0) > 0 in case II or IV), there exists a
sequence of eigenvalues EE of He,, that converges to -(4na)2 as a 10. More-
over, Theorem 1.2.5 implies strong convergence of the unitary (resp. semi-)
groups associated with He,, to that of - Au,,. Obviously, self-adjointness of
He,, or -A.,, was inessential in the above proof and thus one also obtains
strong convergence of the corresponding contraction semigroups e-"N',
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t>-0, if,e.g., V<0(V - 0)and lmA2t0(Im2<0)to e1t",t - 0,ase10
([389], Ch. X; [283], Ch. IX).

A look at (1.2.52) and (1.2.53) shows that, in general (i.e., in case I) H,,
converges to - A as E j 0. To illustrate this phenomenon we take, e.g.,

V(x) = (1 + Ixl)-5. (1.2.55)

Then

V,,,(x) = 2(E)E3(e + Ix - yly 5, y E 183, (1.2.56)

such that

HE,_ -A+[1 +EA'(0)+O(62)]E3(e+Ix-yl)-5'
57)(1 2

> 0.
. .

Thus for x # y

( 0 oi twis) (1 2 58)V px n e,r
. .

which indicates that in the limit e j 0 the resulting "potential" in limy .o He.,
should either vanish (like it does in cases I and III) or should be concentrated
at x = y (as in cases 11 and IV). It will become clear later on in Sect. 1.4 why
only a zero-energy resonance of H forces HH,,, to converge to a point interac-
tion Hamiltonian (centered at y) in the limit c j 0. Since HE,,, = e-2U,H,(E)Ua '
and, moreover, l,(E) = -A ]- V(- - e-'y) is unitarily equivalent (by transla-
tions) to H = - A -+ V it is intuitively clear that the limit of H,,, as e 10 depends
on the asymptotic behavior of H,,, in configuration space or equivalently,
on the low-energy behavior of 1R,(e) and hence of H.

Now we turn to the discussion of nonlocal interactions. Let W be a self-
adjoint trace class operator in L2(183), W E -41(L2(183)). In addition, assume
that W can be written as the product of two Hilbert-Schmidt operators
W1, W. a -42(L2(O3))

W = W1W2

such that the integral kernels W(x, x') of W, j = 1, 2, satisfy

(1.2.59)

u1, v2 e L'(113) n L2(183), (1.2.60)

where

ut() = (f d3x I W1(x, v1(x') _ (f d3xl W2(x,
R3 R3 /

(1.2.61)

Then the analog of Lemma 1.2.1 reads

Lemma 1.2.6. Let W, j = 1, 2, be as above. Then W is relatively compact
with respect to -A and

WZGkWI a _42(L2(183)), Im k 2t 0. (1.2.62)
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PROOF. Since We c1 (L2(R3)), it is obviously relatively compact with respect to
- A. In order to prove (1.2.62) we observe that

II W2Gr Wi lIi =
R

d3z d3z' d3x d3x' day day' W2(z, x)4alx - -W1(Y, Z,).

' W2(z', x')4a Ix,
-- Y'I

W1(Y', z')

< f d3x d3Yd3x' d3
'

&2(x)u1(Y) i2(x')ul(Y')

,1R12 4n Ix - yl 41r Ix' - y'I

day4&)X .(yl" <CII22=(fR- d3x

(1.2.63)

by Sobolev's inequality (cf. Lemma B.6).

The analog of the operator (1.2.23) (we again call it H) is then given by

H = -A + W on p1(H) = H2.2(683) (1.2.64)

and the scaled short-range Hamiltonian He,, now reads

Ht.,, = E-2UE7 ' [-A + .l(s)W]Ty Ue-1 = -A + W,,,
(1.2.65)

W.r(x,x')=e 51(e)W(e-1(x-y),e-1(x'-y)), c>0, yeR3,

where A(-) has been introduced in (1.2.7), U. denotes the unitary scaling
group (1.2.10), and T, unitarily implements translations x --' x + y in L2(R3)
(cf. (1.1.10)). Similar to (1.2.16), one obtains

(He.Y - k2)-' = Gk - A(E)Ae(k)e[1 + Be(k)7-1Ce(k),

k2ep(He,,), Im k > 0, s>0, ye183, (1.2.66)

where Ae(k), BB(k) = A(e) W2 Gk W1, Ce(k), a > 0, are Hilbert-Schmidt operators
with integral kernels

Ae(k,x,x')=J d3x"Gk(x-y-ex")W,(x",x'), Im k > 0, (1.2.67)
R3

d3x d3x," 11/2(x, x")Gk(x" _ x'")W1(x," xBt(k, x, x') _ /1(e) JR6 /

Imk - 0, (1.2.68)

Ce(k,x,x')= d3x" Wf 2(x,x")Gk(ex"+y-x'), Im k > 0. (1.2.69)
R

Similar to Lemma 1.2.2 we now have
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Lemma 1.2.7. Let y e 083 and define rank-one operators A(k), C(k), and
the Hilbert-Schmidt operator W2 Go W, with integral kernels

A(k,x,x')=Gk(x-y)v1(x'), Imk>0, x#y, (1.2.70)

(W2 GoWI)(x, x') = fR6
d3x d3xW2(x, x"l)-'Wi(x", x')

1.2.71)(

C(k,x,x')=u2(x)Gk(y-x'), Imk>0, x'0y, (1.2.72)

where

v1(x') = J d3x W, (x, x'), u2(x) _ I d'x' W2(x, x'). (1.2.73)
a3 R3

Then, for fixed k, Im k > 0, AE(k), B6(k), CE(k) converge in Hilbert-Schmidt
norm to A (k), W2 GoW1i C(k), respectively, as s 10.

PROOF. Analogous to that of Lemma 1.2.2.

Next we have to study zero-energy properties of H. If

W2Go W1q = -0 for some q E L2(R3) (1.2.74)

we define

0 G= W 0)( (1 2 75)(x) o( , x). . .

Then similar to Lemma 1.2.3 we obtain

Lemma 1.2.8. Suppose u1, v, E L'(R3)nL2(R3). Then 0 E L.(R3), Vii E
L2(R3), and Ho = 0 in the sense of distributions. If, in addition, 1.1U2U1 E
L'(R3), then q/ E L2(R3) is equivalent to

(v,, 0) = - f
R6

d3x' W(x, x')bi(x') = 0. (1.2.76)
(t6

If 0 E L2(R3), then 0 e H2'2(R3) and Ht/i = 0.

PROOF. As in Lemma 1.2.3, we decompose

i(x) = (4nlxl)-'(v1,

0) + 0,,(x), (1.2.77)

where

01(x) = (4n)-' f d3x, x'I-' - Ixl-') W1(x', x")qS(x" ). (1.2.78)
R6

Using (1.2.29) and (1.2.30) we get 41, e L,a(R3) if u, E L2(R3) and 1k, E L2(R3) if
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1.1112u, e L' (683). Similarly, one infers (cf. (1.2.32))

J d3XI(oqi)(x)12 <- (4n)-2 ( d3x' dax" d3Y day"IW,(x', x")I IW,(y', y")I
R3 R,:

IO(x")1I41(y")I

J
d3xlx - x'I-21X - y'I-2

< (4n)--2 d110112 JRb d3x' day'
u )u,(i) < x (1.2.79)

by Sobolev's inequality (cf. Lemma B.6). If 0 e L2(R3), then by (1.2.79), 0 a (p3 )
and hence ,(/ is in the form domain of H. The fact that Hp/i = 0 in the sense of
distributions then shows ,/i e fd(H) and Hip = 0.

Zero-energy resonances (resp. zero-energy bound states) of H are now
defined as before (i.e., one simply distinguishes whether ty e L2(R3) or not)
assuming u v2 a L'(183) n L2(183) and 1-11/2u , a L'(013). In particular, the
case distinctions on page 20 apply with the only change that uGov should be
replaced by W2 Go W,.

Lemma 1.2.4 then has to be replaced by

Lemma 1.2.9. Let u v2 a L'(183) n L2(((83). In cases II-IV assume, in
addition, 1.I,/2u, c- L'(683) and A'(0) 96 0 in cases III and IV. Then

10 in case I,

[(4n) '' ik l (v,, 41)I2 + .1'(0)]-' (j, .)o in case II,

n-lim e[1 + BL(k)]-' = [A'(0)]-' 41, )41, in case III,40
N

B, (j,., )#, in case IV,

(1.2.80)

where k2 e C - P. Im k > 0, and (J, denotes the inverse of the
matrix (4',, B,(k)41,)

W2GoW,41, = -01,

(Jr, 0,) = - S« , 1, 1' = 1, ..., N, (1.2.81)

B,(k) = A'(0) W2 Go W, + (4ir)-' ik(v,, )u2

PROOF. One can follow the analogous proof of Lemma 1.2.4 step by step.

Given Lemmas 1.2.7 and 1.2.9 we finally state

Theorem 1.2.10. Let u,, v'"2 a L' (R3) n L2(P3), and y e 183. In cases II-IV
assume, in addition, 11'/2u, e L' (1183) and X1'(0) 96 0 in cases III and IV. Then,
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if k2 e p(-A..,), we get k2 E p(H,,,) for z > 0 small enough and that He,,
converges to -AQ,y in norm resolvent sense as s 10, viz.

n-l o (He,, - k2)-' = (-A.,, - k2)-', y e R3, (1.2.82)

where a is given by

a=

00 in case 1,

-,V(0)I(vr, 0)I- 2 in case 11,

00 in case III, (1.2.83)

_ rL_1'0{tI(vi,)I2 } in case IV.- 1

In pa rticular, He,,, converges in norm resolvent sense to -A in cases I and III
asc10.

PROOF. Identical to that of Theorem 1.2.5.

Clearly, our comments before Lemma 1.2.4 and after Lemma 1.2.3 and
Theorem 1.2.5 apply as well for nonlocal interactions after a suitable reinter-
pretation. We omit the details.

To simplify the treatment in the following we assume from now on that

(v,q,) 0, (v,0,)=0, 1=2,...,N, in case IV. (1.2.84)

While assumption (1.2.84) considerably reduces the complexity of the fol-
lowing proofs we emphasize that all results in Sects. 1.3, 1.4, and Ch. 2
immediately extend to the general situation (v, q,) # 0, ..., (v, #M) # 0,
(v, OM,,) = 0, ..., (v, ON) = 0, 1 < M 5 N - 1. (If V is spherically symmetric,
then (1.2.84) automatically holds as explained before Lemma 1.2.4.)

1.1.3 Convergence of Eigenvalues and Resonances

Having proved norm resolvent convergence in Sect. 1.2, we now turn to the
spectrum and investigate eigenvalues and resonances of He,, as e 10. Regarding
the essential spectrum we note that Lemma 1.2.1 and Theorem B.1(b) imply

aess(Hc.y) = oess(Hy(e)) = Qess(-A) = (0, oo), c > 0, y e R3, (1.3.1)

and by Theorem 1.1.4 this result remains true in the limit c 10,

Qe.,(-A..,) = aces(-A) = [0, co), -co < a < oo, y c 983. (1.3.2)

A detailed discussion of the discrete spectrum is given in

Theorem 1.3.1. Let y e 983 and assume eha"V E R for some a> 0 is real-
valued.



1. 1.3 Convergence of Eigenvalues and Resonances 29

(a) In all cases I- IV any negative eigenvalue Lo = ko < 0 of H = -A -F- V
of multiplicity M gives rise to M (not necessarily distinct) negative
eigenvalues E,, = k2, < 0,1 = 1, ... , M, of Hf,, running to -oo as e 10
like

k,E=F-'ko+0(1), l= 1,...,M. (1.3.3)

In addition, ek,,E is analytic in a near e = 0.
(b) Assume case II. If n-lim1yo(H:,,, - k2)-' _ (-A.,r - k2)-', k2 e

P(- A. ,) with a < 0 (i.e., X1'(0) > 0), then - AQ , has the simple eigen-
value Eo = ko < 0, ko = -4aia = 4aiX(0)I(v, 0)I-2, and the zero-
energy resonance of H implies that for e > 0 small enough H,,,, has
precisely one simple eigenvalue E, = k' < 0 near Eo which is analytic in
snear s=0

k. = ko + 0(e). (1.3.4)

(c) Assume case III and 2'(0) > 0. If N = 1 then the zero-energy bound state
of H gives rise to a negative, simple eigenvalue E1,1= k;,1 < 0 of HE,,
running to -oo as e 10 like

(('('
k, , = e-'/2i' -8n i'(0)L J d3x d3x' O1(x)v(x)'

I. R6

1 1/2

Ix - x'Iv(x')#l(x') } + O(1). (1.3.5)

(Note that Ix - x'I is conditionally strictly negative [298].) In addition,
012k,,e is analytic in e'/2 near 0/2 = 0. Moreover, if N > 1, let c,,
I = 1, ... , N, denote the eigenvalues (counting multiplicity) of the matrix
(j,, C01.),1,1' = 1, ..., N, where C is the Hilbert-Schmidt operator with
kernel

C(x, x') _ -(8n)-'u(x)Ix - x'Iv(x') (1.3.6)

(necessarily, c, > 0, 1 = 1, ..., N). Then the zero-energy bound states of
H give rise to N negative (not necessarily distinct) eigenvalues E,,1 =
k, C < 0 of H1,, running to -oo ass 10 like

k,,, = e-'12i[A'(0)/c,]'12 + 0(1), I= 1, ..., N. (1.3.7)

In addition, 02k,,E, I = 1, ..., N, are analytic in 02 near 02 = 0 (we
choose e1/2 > 0 for e > 0) and the multiplicity of k,,, coincides with that
of the eigenvalue c,.

(d) Assume case IV and (1.2.84). If n-Iim,$O(H,,,, - k2)-' = (-A,,,, - k2)-1,

k2 e p(- A.,,) with a < 0 (i.e., .l'(0) > 0), then -A.,,, has the simple
eigenvalue Eo = ko < 0, ko = -4aia = 4niA'(0)I(v, #1)I-2, and the zero-
energy resonance of H implies that for E. > 0 small enough HE,, has
precisely one simple eigenvalue E1,1= k2., < 0 near Eo which is analytic
inenear s=0,

k1,1= ko + O(s). (1.3.8)

In addition, if N = 2, the zero-energy bound state of H gives rise to a
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negative, simple eigenvalue E2,e = 02, < 0 of He,, running to -oo as
t 10 like

k2,, = E-1/2i{-87rA'(0)[ d3x d3x' 02(x)v(x.6
1 1/2

ix - x'I v(x')02(x') } + 0(1), (1.3.9)

where s112k2,e is analytic in E1/2 near E1/2 = 0.
For N > 2, let again c1, I = 1, ..., N, denote the eigenvalues (counting

multiplicity) of the matrix (& Cq,.), 1, 1' = 2, ..., N (necessarily c, > 0,
1 = 2,..., N). Then the zero-energy bound states of H give rise to N - 1
negative (not necessarily distinct) eigenvalues E,,t = kit < 0 of H,,
running to -co ass, 10 like

kl.e = e- 112i[2'(0)/cj112 + 0(1), I = 2,..., N, (1.3.10)

such that E'/2k,,e, I = 2, ..., N, are analytic in 0/2 near 0/2 = 0 (again
E1/2 > 0 for F > 0) and the multiplicity of k,,t coincides with that of c,.

PROOF. By eq. (1.2.16) and Theorem B.1(c), Ht,,, has an eigenvalue E, = k,2 < 0
if and only if -1 is an eigenvalue of Be(ke).

(a) Let k = Fk and define

Bt,k = Be(5-'k) = A(5)uGkv, Im k >_ 0. (1.3.11)

By hypothesis, B0550 has an eigenvalue - I and following the proof of expansion
(1.2.42), Bej is easily seen to be analytic with respect to (s, k) around (0, ko) in
Hilbert-Schmidt norm. By the implicit function theorem and by Theorem B.2 the
equation det2(1 + BB,k) = 0 has M (not necessarily distinct) solutions k,,,, I = 1, ... ,
M, for lei small enough. Moreover, by scaling x -+ ex, F > 0, and an additional
translation x x + y/5, 5 > 0, k; , < 0, 1 = 1, ..., M, are the eigenvalues of H(5) =
-A -1- 2(F) V. An application of Rellich's theorem (cf. Lemma B.4) then proves
analyticity of k,,,, I = 1, ... , M, in r near s = 0.

Of course, the same result follows directly from (degenerate) perturbation theory
and the fact that due to the scaling property (1.2.11) the eigenvalues E, = k, < 0 of
He,y and E(5) = k(e)2 < 0 of Hr(5) obey kt = e-'k(5).

(b) As in the proof of (1.2.42) Bt(k) is analytic with respect to (e, k) in Hilbert-
Schmidt norm near 5 = 0 and any k with Im k > -a/eo, ItI < co, and

Be(k) _ [1 + sX (0)]uGov + (4n)-' iek(v, )u + 0(52). (1.3.12)

Thus using [435]

det2(l + A + B) = det2(1 + A) det[1 + (1 + A)-1B]e-T.1, (1.3.13)

if A e R2(ir), (1 + A)-' a l(W), B e .V,(,*') for some (separable) Hilbert space .lf',
we obtain that

det2[l + BB(k)] = det2[1 + Be(k) + P] det{l - [1 + Bt(k) + P]-1P}e, (1.3.14)

since

[I +uGov+P]-' =P+T P = -(J, )0 (1.3.15)
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exists. Consequently, for I I small enough,

det2[1 + BB(k)] = 0 if
det{1 - (1 + Bjk) + P]-'P} = I - (c, [1 + B,(k) + P]-'q) = 0.

From the expansion (1.3.12) we get

[1+BB(k)+P]-'=(1+uGov+P)''- e(1+uGov+P)-" -

- [(ik/4a)(v, )u +2'(0)uGov](1 + uGov + P)-' + O(e2),
(1.3.17)

and hence by (1.3.15)

P[l + Be(k) + P]-'P = -(J, ')ql - c(ik/4n)I(v, 0)I2(j, ')O - O(e2).
(1.3.18)

Insertion of (1.3.18) into (1.3.16) and the implicit function theorem immediately
yield all assertions of part (b) since (1.3.16) has a simple zero at (e, k) = (0, ko),
ko = 4nil'(0)I(v, $)1-2

(c) We introduce

µ=e its, k=i'2k. (1.3.19)

Then

1 + BB(k) = I + (k) = I + t(p2)uGty

= 1 + uGov + p(ik/4a)(v, )u + #2d'(0)uGov + p2k2C + O(µ3), (1.3.20)

where C is defined by (1.3.6), and 9.(k) is analytic in Hilbert-Schmidt norm with
respect to p and k for IpI small enough and Im k > -a/µo, IpI < µo. Consequently,

det2[1 + det2[1 + P) det2{1 - [1 + P]-'P} (1.3.21)

implies, for IpI small enough, that

det2{ 1 - [1 + B (k) + P] -'P} = 0 (1.3.22)

since

[t+uGov+P]-'=P+T (1.3.23)

exists. Moreover, the fact that

det2(1 + A) = det(1 + A) exp[-Tr(A)] (1.3.24)

for A e £, (.*') (.W a separable Hilbert space) shows that for IpI small enough (1.3.22)
is equivalent to

det{l - [1 + B (k) + P]-'P} = det{1 - P[1 + B, (k) + P]-'P} = 0. (1.3.25)

Since P is of finite rank, (1.3.25) is analytic with respect to p, k for IpI < µo small
enough and Im k > -a/po [261]. From the expansion (1.3.20) we infer that

[1 + P]-'

_ (1 + uGov + P)-' - p(ik/4n)(l + uGov + P)-'(v, )u(1 + uGov + P)-'

- µ2,l'(0)(1 + uGov + P)-' uGov(( + uGov + P)-'

- µ2k2(l + uGov + P)-'C(1 + uGov + P)''

- µ2(k/4x)2[(1 + uGov + P) -'(v, )u]2(1 + uGov + P)-' + O(µ3) (1.3.26)
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and hence using (1.3.23) and Pu = 0

P[I + P]-'P = [1 + µ2A'(0)]P - µ2k2PCP + 0(µ3). (1.3.27)

From (1.3.25) and (1.3.27) we obtain

det{1 - P[l + A'(0)µ2 - µ2k2C]P} = 0(µ) (1.3.28)

and thus

det{A'(0)k-26,,. + (#,.C#,.)} = O(µ). (1.3.29)

From the fact that [272]

(q,, Co,.) = J d3pl Pl -4(v0r)"(p) «r, fir), 1,1' = 1, ..., N, (1.3.30)
R3

which follows from (vm,)^ e C(R3) and (vQ><)^(0) = 0, 1 = 1, ..., N (since e°l'1vb, e
L' (R3) for some a > 0 and (v, 0,) = 0,1= 1, ... , N) one can show that the self-adjoint
matrix <01, 1, ..., N, is positive definite. In fact,

ZVI r, r)er = ` I > 0, e C'- {0}, (1.3.31)
r.r'=1 \1 1 r'=1

since {0,}, {(v,,)^} and hence the vectors 1= 1, ..., N, are linearly
independent. Denote by c,, 1= 1, ..., N, the eigenvalues of (4, Co,.) (counting
multiplicity). Then to zeroth order in µ, (1.3.29) has the solutions

o = I= 1, ..., N. (1.3.32)

If in (1.3.19) we use the principal branch for e'/2 (i.e., e1/2 > 0 fore > 0) then the plus
sign has to be chosen in (1.3.32). To prove that (1.3.29) has solutions k,,,, analytic
in p we argue as follows. By repeating the calculations leading to (1.3.29) but keeping
)(µ2) fixed and only expanding with respect to the variable fi

p = iµk, (1.3.33)

we obtain

f A(µ2) - 1
det 1 µ2k2 µ2k2bir - Col') + (I11 T F .u = 0. (1.3.34)

r=3

Introducing

V = [A(µ2) - 1]/µ2k2 (1.3.35)

as another new variable, (1.3.34) is equivalent to

det { vb,,. + (i,, CO,.) + 0. (1.3.36)

By inspection 1r,,,. is a self-adjoint matrix and /i e R for p e R and k e M. Con-
sequently, we can apply Rellich's theorem (cf. Lemma B.4) and obtain v, as- an
analytic function of /i

v,(fl) = -c, + 0(/i), I = 1, ... , N. (1.3.37)

Since c, # 0 we get
OD

kt (/l, µ) = -cl' (9l)-1A(41(0)µ24-2 + E xrflr E (ql)-1A(4)(0)µ24-2, (1.3.38)
4=1 r=1 4=1
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or

k, = -c, t ( (q!) 119)(0) 2q-2 + OL,(µik1)r y (q!)-tA(9)(0)µzq-z

9=1 r=1 9=1

Introducing

I=1,...,N. (1.3.39)

F,(x, p) = -xz - c' [ (q7 ',119)(0)l,zv-z + Y ar(Nixf

9=11 r=1 9=l

I=1,...,N, (1.3.40)

we infer that is analytic near (k, o, 0) with

F,(x, µ)I(;0.0) # 0. (1.3.41)F,(ki 0.0) = 0, ox

By the implicit function theorem one can solve for x as an analytic function of p.
(d) In order to determine the effect of the zero-energy bound state of H we define

= -(43t, ')43P' P.
t=z

and note that similar to (1.2.36)

W

(1.3.42)

(I + uGov + P + z)-' = z-'P, + E (-z)MTM+', z E C - {0} small enough
M=0

(1.3.43)

using that - I is a simple eigenvalue of uGov + P', where

T = n-lim (1 + uGov + P + z)-'[1 - P,] (1.3.44)

and

z-'O

P'T' =TP'=P'TP'=P, P, T, =0. (1.3.45)

Next we prove that [1 + B (k) + P']-' Pis analytic in g and k for Iul small enough
and Im k > -a/µo, (µI < yo. In fact, using the expansions (1.3.20) and (1.3.43) and
the relations (1.3.45) one obtains along the lines of (1.2.45) that

[I + B (k) + P]-'P'= (I - P, + (ik/4ic)P, (v, )u + 0(p))-'[F + O(p)]
(1.3.46)

is analytic in p near p = 0 since [1 - P, + (ik/4ic)P,(v, )u]-' is easily shown to
exist by a straightforward application of the formula

[I ++R]-t=[1+R]-'-{f-t+(,,[1+R]-tk&)} t.

([I + R*]-' 4,, )[l + R]-'#P (1.3.47)

assuming #e C, E Y, R, [1 + R]-' a R(. °), {/f-' + (i', [1 + R]-'t/i)} # O for
some separable Hilbert space Y. From now on one can follow the proof of part (c)
step by step after replacing P by P. Equation (1.3.27) then reads

P'[l + B (k) + P']-'P' _ [1 + µ22.'(0)]P' - pzk2P'CP' + O(µ3), (1.3.48)

which proves the assertions in connection with (1.3.9) and (1.3.10). It remains to
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determine the contribution of the zero-energy resonance of 11. First of all, we note
that

[I + B,(k) + P,] 'P, _ {1 - [I +.i'(0)]P +O(c)} '[P, +O(t;)] (1.3.49)

is analytic in c near r = 0 since

,1 - [I + A'(0)]P'; 1 -[:i(0)]-'[1 +.?'(0)]P' (1.3.50)

exists because of the assumption 1.'(0) # 0. Consequently, we get

I +Bjk)1 +B,(k)+P,]{1 -[I +BB(k)+P,] 'P, (1.3.51)

and since (cf. (1.3.18))

P, [1 + B,(k) + P,]-'P, ')q$, - t:(ik/4n)l(v. x,)I2(#,, ')4,

)0, + O(c2), (1.3.52)

one can follow the last part of the proof of (b) step by step.

Next we derive similar results for resonances. We first recall the one-to-
one correspondence between a negative bound state E0 = k2 < 0 of some
Hamiltonian H = -A + V, V e R real-valued, and a pole of (1 + uGk v)-'
at ko = i,/ E0 in the upper k-plane. In particular, the multiplicity of E
coincides with the (geometric) multiplicity of the eigenvalue - I of uGkOv and
also coincides with the multiplicity of the zero of the modified Fredholm
determinant det2(1 + uGkv) at k = ko (cf. Appendix B). If V e R, then uGkv
is holomorphic in Hilbert-Schmidt norm with respect to k in Im k > 0. In
order to define resonances we now assume that uGkv has an analytic continua-
tion into the region 0 > Im k > -a for some a > 0 such that uGv remains
Hilbert-Schmidt for 0 >- Im k > -a. In this case k, with 0 > Im k, > -a is
called a resonance of H if uGkv has an eigenvalue - 1. Similarly, the multi-
plicity of the resonance k, is defined to be the multiplicity of the zero of the
modified Fredholm determinant det2(I + uGkv) at k = k, (c.f. Appendix B).

Resonances for the point interaction Hamiltonian - A, are defined analo-
gously as poles of the resolvent kernel (-A.,, - k2)-'(x, x'), x # x', x # y,
x' # y in the lower k-plane. According to this definition -A.,, has a simple
resonance k, if and only if at >- 0 in which case

k, = -4nia, uk,(x) = e4Ralx-vl/Ix - yl, x # y, or > 0, (1.3.53)

with ok, being the corresponding resonance function. The origin k = 0 needs
a separate discussion: In fact, as discussed in detail in Sect. 1.2, k = 0 can be
resonance and/or a bound state of H = -A -+ V. For at = 0 the operator
-Aa,, has only a zero-energy resonance and no zero-energy bound state.

The analog of Theorem 1.3.1 for resonances now reads

Theorem 1.3.2. Let y e 083 and assume that e"'I'1V e R for all a > 0 is
real-valued.

(a) In all cases I -IV any resonance k0, Im ko < 0, of H = -A + V of
multiplicity M gives rise to M (not necessarily distinct) resonances kt,,,
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Im k,,, < 0, 1 = 1,..., m, of He,, running to infinity as E j 0 like

kl.E = E-lko + m, ? 1, 1 = 1, ..., m, (1.3.54)

where ek,,E have convergent Puiseux expansions near a = 0, i.e., there
exist functions h, analytic near the origin, h,(0) = 0, 1 = 1, ..., m, such
that

Ek,.E = ko + ko + E al.,Er/m1,
r=1

Eil

m,>-1, 1=1,...,m, Em,=M. (1.3.55)
l=1

(b) Assume case II. If n-1ime,o(He,, - k2)-1 = (-A.,, - k2)-', k2 E
P(- A.,,) with a > 0 (i.e., .1'(0) < 0), then - A., has the simple resonance
k0 = -4nia = 4ni.'(0)I(v, #)I-2 and the zero-energy resonance of H
implies that for e > 0 small enough He,, has precisely one simple re-
sonance ke, Im kE < 0, Re kE = 0, near ko which is analytic in a near
c = 0 and hence fulfills (1.3.4).

(c) Assume case III. If A'(0) > 0 and N = 1 the zero-energy bound state of
H gives rise to a simple resonance kl,e Im k1,e < 0, Re ki.E = 0, of He,,
running to infinity as s j 0 like

ki.E _8n,1'(0)[ fa6 d'x d'x' 01(x)v(x)'l
1 1/2

Ix -
)J1

+ O(1) (1.3.56)

such that 012k1,E is analytic in 0/2 near z1j2 = 0 (we choose 0/2 > 0 for
E > 0).

If .%'(0) < 0 and N = 1 the zero-energy bound state of H gives rise to
a resonance pair ki E of He,, (both resonances are simple) running to
infinity as e 10 like

k; e = ±E-1n {811'(0)[ f
R 6

d'x d'x' O1(x)v(x).l
1 1/2

Ix - x'Iv(x')#1(x') + 0(1) (1.3.57)

such that e'12kiE are analytic in e'12 near e'/2 = 0.
If A'(0) > 0 and N > 1 the zero-energy bound states of H give rise

to N (not necessarily distinct) resonances kl Im kl;e < 0, Re kl,e = 0,
1, ..., N, of He,, running to infinity as E 10 like

ki.E = -e-'/2i[A,(0)/c,.]1/2 + 0(1), I= 1, ..., N, (1.3.58)

with c, > 0 the eigenvalues of (j,, C/,.), 1, 1' = 1, ..., N. Again E'/2k.e,
I = 1, ..., N, are analytic in El/2 near e'/2 = 0 and the multiplicity of kl,e
coincides with that of the eigenvalue c,. If .1'(0) < 0 and N > 1 the
zero-energy bound states of H give rise to N (not necessarily distinct)
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resonance pairs k, ,, 1 = I , ..., N, of H,,, running to infinity as c [0 like

k,,= ±c "2[-A'(0)/cI]''z+0(I), 1= I,...,N. (1.3.59)

Each 02k,', l = 1, ..., N, is analytic in 02 near 0`2 = 0 and the
multiplicity of k, , coincides with that of c,.

(d) Assume case IV and (1.2.84). If n-Iim4 0(H,,), - k2) "' = (-A._, -- k2) ',
k2 e p(- A,,,) with a > 0 (i.e., A'(0) < 0) then - A.,,, has the simple reso-
nance k = -4nia = 41ri2'(0)j(v, q, )l-2 and the zero-energy resonance
of H implies that for t: > 0 small enough H,.,, has precisely one simple
resonance k, Im k,,,. < 0, Re 0 near k0 which is analytic in e
near c = 0 and hence satisfies (1.3.8).

If f A'(0) > 0 and N = 2 the zero-energy bound state q1 'H gives rise to
a simple resonance k2,,, Im k2,, < 0, Re k2,, = 0, of H,,, running to
infinity as c 10 like

k2.,= '/21-87rA'(0)LJ d'xd'x'4z(x)v(x)

Ix - x'Iv(x')02(x') + 0(1), (1.3.60)

such that e'12 is analytic in 012 near c',2 = 0 (again 012 > 0 for c > 0).
If i,'(0) < 0 and N = 2 the zero-energy hound state of H gives rise to

a resonance pair kz , of If,, (both resonances are simple) running to
infinity as c, 0 like

kZ , _ ±e-u2 {8it2'(0) 1
fR6

d'x d'x' 02(x)v(x)

-1 /z
I"

( Jl

(1.3.61)

where e'"2k?, are analytic in ch/2 near e'v2 = 0.
If If A'(0) > 0 and N > 2 the zero-energy hound state of H gives rise to

N - I (not necessarily distinct) resonances k, Im 0, Re 0,
l = 2, ..., N, of He., running to infinity as a 10 like

ki., _ -e- 112i[A,(0)/c,]'12 + 0(1), I= I,..., N. (1.3.62)

with c, > 0 the eigenvalues of (jr, 1, 1' = 2, ..., N. Again c'/2ki.1,
2, ... , N, are analytic in cU2 near 0/2 = 0 and the multiplicity of ki,,

coincides with that of c,.
If 2'(0) < 0 and N > 2 the zero-energy bound state of H gives rise to

N - I (not necessarily distinct) resonance pairs k I = 2, ..., N, of
H,.,.,, running to infinity as r. 10 like

,{, = ±c-'12[-A'(0)/c,7'n + 0(1), 1= 2,..., N. (1.3.63)

In addition, each r:'/2k , l = 2, ..., N, is analytic in 0"2 near e'12 = 0
and the multiplicity of k, , coincides with that of c,.
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PROoF. (a) Here one can follow the proof of Theorem 1.3.1(a) step by step. The
only difference concerns the fact that now, in general, there is no constraint m, = 1.

(h)- (d). All considerations about antibound states (i.e., resonances on the nega-
tive imaginary axis) follow directly from the proof of Theorem 1.3.1 (b)-(d) since one
can again apply Rellich's theorem. The conclusions about the resonance pairs are
obtained as follows: By (1.2.11) every (anti-) hound state k,., of fl, corresponds to
an (anti-) hound state k,(r.) = Pk,,, of Moreover, since k,., = Or ") as ,.10.
k,(r) = O(a'%2) runs to zero as a 10. In fact, at r = 0 the bound state and antibound
state collide. In other words, for r > 0, ,1'(0) > 0 the solutions k,(r.) of the equation
det2[1 + B(.-, k)] = 0 (cf. (1.3.7)) have a square root branch point at +: = 0,

k; (r) _ +iicrl,[)'(0)/e,]''2 + O(r). (1.3.64)

For ),'(0) < 0, or equivalently for r < 0, we then get the resonance pair

ki (r) = ± + O(r). (1.3.651

We note that if A'(0) = 0 in case 11 then the same analysis shows that
k, = O(r) as r.10. It then depends on the first nonvanishing coefficient in the
Taylor expansion of k, whether Im k, < 0 and hence whether H,,,, has a simple
bound state or a resonance.

1.1.4 Stationary Scattering Theory

In this section we discuss scattering theory in connection with point interac-
tions and prove that scattering quantities corresponding to H,.,,, converge in
a reasonable sense to that of the point interaction Hamiltonian -A,., as
r 10.

We first treat stationary scattering theory for the pair (-A,,,), -A). Since
- 0,,, is invariant under rotations in R3 with center y we first concentrate on
the partial wave decomposition (1.1.15). The fact that - A,,, actually describes
an s-wave interaction (since the partial wave decompositions of -A,,, and
the kinetic energy operator -A coincide for I > 1) considerably reduces the
problem. Henceforth, we mainly confine ourselves to the case I = 0.

Define

i/ie.,x(k,r)=k-'sin kr+(4itx-ik)"le", k>-0, - oc<aSa, r >_0.
(1.4.1)

Then by inspection

-41rxi/iO.,(k, 0+) + ii' ,,(k, 0+) = 0,

-io.Q(k, r) = k2i#a,(k, r), r > 0,

lim lim e-i(k+te)r'[h0., - (k + ir)2] (r, r') = ##o..(k, r), r > 0:
40 r'--x

(1.4.2)

k>0, -oo<a<oo.
Hence i/io,,(k) constitute a set of generalized eigenfunctions ([353], Ch. VI)
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associated with ho,Q. Similarly,

i/i,(k, r) = (nr/2k)112Jri,n(kr), k, r >_ 0, 1= 1, 2, ..., (1.4.3)

are generalized eigenfunctions of h,, I = 1, 2, ..., where denote Bessel
functions of order v [ 1 ]. By introducing the s-wave scattering phase shift 60_Q(k)
via

cos[80,,(k)] = 4na[(4na)2 + k2]-1n, sin[80..(k)] = k[(4na)2 + k2]-1n,

k>0, -00 <a5 oo, (1.4.4)

the expression (1.4.1) can be rewritten in the familiar form

00,a(k, r) = k > 0, -oo < a < oo, r> O.
(1.4.5)

In particular, from (1.4.3) and (1.4.4) one derives the (on-shell) partial wave
scattering matrix

Soo,Q(k) = (4na - ik)'1(41ta + ik), k a 0, -oo < at 500,

.9(k)= 1, 8,(k)=0, 1 = 1,2,.... (1.4.6)

At this point it is useful to compare with the effective range expansion for
real-valued spherically symmetric potentials V obeying

fo'o

dr re2ar I V (r)I < oo for some a> 0. (1.4.7)

This low-energy expansion reads (cf., e.g., [360], Ch. 12)

k21+1 cot 6,(g, k) [a,(g)]-1 + r,(g)k2/2 + 0(k4),

kZ0, gER, I=0,1,..., (1.4.8)

where the right-hand side of (1.4.8) is real-analytic in k2 near k2 = 0, and by
definition S,(g, k) represent the phase shifts associated with the Schrodinger
operators - d 2/dr2 + 1(I + 1)/r2 + gV(r). The coefficients al(g) and r,(g), I = 0,
1, ... , are called partial wave scattering lengths and effective range parameters,
respectively. The explicit expressions

k cot S0,a(k) = 4na, 8t(k) = 0, 1 = 1, 2,..., (1.4.9)

for the point interaction show that the effective range expansion for this
interaction is already exact in zeroth order with respect to k2, i.e., the s-wave
scattering parameters are given by

1

a0,,-0 etc., -00<a<00, a#0,
(1.4.10)

and all low-energy parameters vanish identically in higher partial waves
l = 1, 2, .... This shows in a nice way that the point interaction is in fact a
zero-range interaction which acts nontrivially only in the s-wave 1= 0. More-
over, it provides a physical interpretation of the boundary condition parameter
4na as the negative inverse scattering length.
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Next let

'a.y(kco, x) = eiko,x +
(4na -- ik) Ix - yI'

k>-0, coeS2, -oo<a<oo, x,ye183, x#y. (1.4.11)

Then obviously `Y',y(kco, x) is the scattering wave function corresponding to
-A,,y as can, e.g., be read off directly from (1.1.16), (1.4.1), and the Bessel
function expansion of e1 oi(x-y)

e-ik"y'F`a.y(kw, x) = 4nlx - yI-''0,a(klx - yI)Y00(w)Yo0(wx)
00 i

+ 4nlx - yl-' E i'1ii(klx - yl)Ym(Y,a(wx),

k>-0, co eS2, -oo<a5oo, x#y, wx=x/IxI. (1.4.12)

By inspection `NP,y(kw, x) fulfills

{-4nalx - yl'1'a.y(kw, x) + Ix - yl-'(x - y)VxPP,y(k(o, x))Ix=y = 0,

-(A'P,y)(kco, x) = k2`Ya,y(kw, x), x -A y, (1.4.13)

lim lim 4nIx'Ie-i(k+ie)lx'lC-A..y - (k + ie)2](x, x') = `YF,y(kco, x),
e40 lx'1-+m

-lx'l''x'=m

x#y; k>-0, coeS2, -oo<a5oo.
The on-shell scattering amplitude/., y(k, (o, w') associated with - Aa,y is then
given by

lim Ixle-'klxl[llla,v(kw', x) - eikm'x]
xl~0

J
lx 'x=w

_ (4na - ik)-'eik(°' -w)r

k>0, co, -oo<at 5oo, ye183. (1.4.14)

The corresponding off-shell extension fa,y(k, p, q) is then defined to be

1`'a,,(k, p, q) = (4na - ik)-i ei(n-q)v

k e C, k# -4nia, p,geC3, -oo <oe oo, ye183, (1.4.15)

and we get

ta.y(k, co, co') =fa,y(k, p, q)Ilpl=lal=k,

p, q e B3, co = Ipl-'p, Cti = IqI-'q (1.4.16)

The unitary on-shell scattering operator Y.,,(k) in L2(S2) finally reads

.5,y(k) = 1 - (k/2ni)(4na - ik)-'(e-ik(*)y,

k> 0, _00<0e:500' y e 183, (1.4.17)

(in particular, if we choose y = 0, (1.4.17) takes on the simple form .9 ,0(k) =

eika,y eiklx-yl
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I + 2ik(4na - ik)-' (Y(,o, ) Y00). We also note that in the low-energy limit
k 0

,, ,

'v(k) kk

1

1 - 2(Yoo, ) Yon,

-co<a<x, a#0,
(1.4.18)a=0; yeR',

and

-lim,/..,,(k, cu, (o') = -(4na)-' = act, -00 < a < oa, a 0 0, y E R3,

(1.4.19)

with a,, the scatterinng length obtained in (1.4.10).
As can be read off from (1.4.17), Yz.,,(k) has a meromorphic continuation in

k to all of C and the pole of ,5 . (k) obviously coincides with the bound state
or resonance of -A.,,, as long as a 0. The methods described above are
entirely stationary ones. For the connection of V, with time-dependent
scattering theory we refer to Appendix E.

Next, we briefly turn to stationary scattering theory associated with the
Schrodinger operator H,.... Assume V to be real-valued and

e2aI 'I V E R for some a > 0 (1.4.20)

for the rest of this section, and let u and v be as in Sect. 1.2. We introduce
in L2(R')

4)E.Y(p. x) =
u,(x)e'°",

'D (p, x)=v,(x)e'"", F>0, peC3, 11mp1<a,
(1.4.21)

where

uc(x) = u((x - y)MF), ve(x) = v((x - y)/E), c > 0, y e R'. (1.4.22)

The transition operator t,(k) then reads

t, (k) =

F < Fo, Im k > -a/co, k2 (1.4.23)

where has been introduced in Sect. 1.2 and the exceptional set 4 is
given by

8, = (k2 e C1a.(F)uGrkv4F = -0L for some 0, e L2(IR'), 0, 0, Im k > -a/F.0},

0<c<e,,. (1.4.24)

Due to condition (1.4.20), ofE is discrete and a compact set of Lebesgue measure
zero [434]. The on-shell scattering amplitude ff,,,(k, w, w) is then defined as

,,,(kw), t,(k)(E,,(ka)')),

F,k>0, k20de, m,w'eS2, yell' (1.4.25)
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and its off -shell extension f,,,(k, p, q) is given by

p, q) _ -(4n)-'(4 y(p), tF(k),DE.y(q)), 0 < c < co, Im k > -a/ro,
k20 f"Y, p,geC3, IImpl,IImgl <a/ro, yEll3, (1.4.26)

such that

fF,y(k, w, W) = f ,,(k, p, q)IIv1=Ivl=k,

c>0, y,p,gEUR3, w=Ipl-'P, w =Iql-'q. (1.4.27)

The unitary on-shell scattering operator S£(',y(k) in L2(S2) is defined by

(SF.y(k)#)(w) = #(w) - (k/2iti) J dw'./Ey(k, w, ui)b(w'),
s2

0eLZ(S2), c,k>0, k24e.., wES2, yER3. (1.4.28)

In order to determine the limit a 10 of ff,y and SE, , it essentially suffices to
consider t,(k) as e 10. Thus we state the following generalization of Lemma 1.2.4.

Lemma 1.4.1. Let e2al, I V E R for some a > O and A'(0) # 0 in cases III and
IV. Assume (1.2.84) and let 0 < I c i < so be small enough. Then e [ 1 + BE(k)]-',
Im k > -a/co, is analytic in a near s = 0 and the following expansion in
norm holds

r[1 + B,,(k)] r(1 + uGov)-' - e2(1 + uGov)-'B,(k)(1 + uGov)-' + 0(c3)

in case I, (1.4.29)

c[1 + B,.(k)]-' _ [(ik/4ir)I(v, 4')12 + ),'(0)]-'(J, .)0 + eT

- e(ik/41r) [(ik/4a)I(v, 4')12 + .i'(0)]-' (q$, v)(T * v, ).0

- e(ik/4it)[(ik/4ir)I(v, #)12 + .1'(0)]-'(v,

r(ik/4n)2[(ik/4ir)I(v, 4')12

+ A'(0)]-21(v, 0)I2(v, -)0

- e[(ik/4a)1(v, 4')I2 + A'(0)]-2(J, B2(k)4')(J, )0 + O(r2),

k 0 0 if A.'(0) = 0 in case II, (1.4.30)

e[I + BB(k)]-' _ -[A'(0)]-'P + sT - e[X'(0)]-2PB2(k)P

- r2TB,(k)T + e2[2'(0)]-'PB2(k)T - e2[A'(0)]-'

{ { 1 - [ 1 + (A'(0))-' ]P} [PB2(k) + TBl (k) - T]) 2P

[PB3(k) + TB2(k) - T2B,(k)]P + O(c3)

in case III, (1.4.31)
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s[1

N

+ B,(k)]-' _ Y (#, B1(k)t)V sT

N

- c(ik/4rc)(v, 01) (J, Br(k)0)11(jr, ')Tu

N

- c(ik/4rr) (q$ , v) Y (j, Br (k)#)u' (T *v, ' )0
1=1

N
+ 6(ik/41r)2(v, Tu)I(v,

01)I2

Y (4.,
1.r=1

B, (k).b)ii (fir, ' )4.

N

- s Y (14r, B2(k)4.r X j,

.)#1 + 0(e2)

in case IV. (1.4.32)

Here the analytic expansion valid in Hilbert-Schmidt norm (cf. (1.2.42))

B,(k) = B0 + snBn(k), (1.4.33)
n=1

B0 = uGp v,

B1(k) = 2'(0)uG0v + (ik/4ir)(v, )u, (1.4.34)

B2(k) = [2."(0)/2]uGov + (ik/4n)A.'(0)(v, )u + k2C,

(C defined in (1.3.6)), etc., has been used. In case IV

(J, B1(k)4.)n' = [(ik/4ir)I(v, 4.r)I2auar1 + A.'(0)]-'61' (1.4.35)

denotes the inverse of the matrix (A1, B1(k)4.1), 1, 1' = 1, ..., N.

PROOF. Case I: Since (1 + uGov)-' exists, (1.4.29) immediately results by inserting
expansion (1.4.33) for B,(k) into (I + B,(k)]-'.

Case II: We partly follow the proof of Theorem 1.3.1(b) and expand (cf. (1.3.17))

e[1 + B,(k)]-' = s{1 - [I + BB(k) + P]-'P}-'[1 + BB(k) + P]-'

= e{1 - P + e[P + T][B1(k) + O(s)]P)-'[P + T + 0(e)],

lel small enough. (1.4.36)

Formula (1.3.47) then shows that e[ I + BB(k)]-' is analytic ins nears = 0 since after
identifying . = L2(I83), /t = 1, = q, 0 = 0, R = s[P + T]B1(k)P one infers that

e{1 + (q, (1 + s[P + T]B,(k)P}-'q))-' = -[(ik/4n)I(v, #)I2 + A'(O)} ' + 0(e)
(1.4.37)

is analytic in e nears = 0. The right-hand side of (1.4.30) then results after an explicit
expansion of (1.4.36) in terms of e.
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Case III: We again expand as in (1.4.36). Since now P is, in general, of rank N
we use the formula (cf. Lemma B.5)

LI+f +RJ'=[I+R]Y
([I + R*] )[l + R] (1.4.38)

where fl e C, 41, E A°, R, [1 + R] -' E (.W) for some separable Hilbert space
.X° and the existence of the inverse matrix of {1511. + /3(,,, [I + denoted
by {1 +/1(x,[1 +R]-'O)}i1',1,1'= 1..... N, is assumed. Using Pu = 0 and identi-
fying p = 1, , = ,, di,. = q,., R = e[P + T]B,(k)P = -:A'(0)P we again infer that

1 + BB(k)]-' is analytic in c near e = 0 since

e{ 1 + (VS, (1 - cd'(0)P] [.l'(0)]5,,. + 0(e) (1.4.39)

is analytic in f. near e = 0. The expansion coefficients on the right-hand side of
(1.4.31) now follow by a straightforward calculation.

Case IV: The proof is identical to that of case 111 up to the point that now, similar
to case II, R = e[P + T]B, (k)P has to be used. Analyticity of e[1 + BB(k)]-' in e
near e = 0 now follows from that of

e, l + [I + r.(P + T)B1(k)P] ' #)}n'

_ - [(ik/4ir) I(v, i + )'(O)] ' au + 0(1:). (1.4.40)

Given Lemma 1.4.1 we are able to expand the off-shell scattering amplitude
J ,,(k, p, q) with respect to a near e = 0:

Theorem 1.4.2. Let e2ul ' I V E R for some a > 0 be real-valued and assume
2'(0) 0 0 in cases III and IV. Assume (1.2.84) and let I eI < co be small enough.
Then fJ,Y(k, p, q), Im k > -a/co, I Im pl, IIm 9I < a/co, y e U83, is analytic
in anear a=0and
-4ne'Y(P-9)ff,,(k, p, q) = e(v, (1 + uGov)-'u) - e2(ik/4n)(v, (I + uGov)-'u)2

+ c2 2'(0)(v, (1 + uGov)-2u)

- (I + uGov)-'u)

+ ie2((1 + vGou)-'v, 0(c3)

in case I, (1.4.41)

- 4neiY(c a) k - 4ne'Y'P-y),/ (k p q)
+ cA'(0)[(ik/4n)I(v, S)12 + ,l'(0)]-' I(v, 0)12

+ c[1'(0)]2[(ik/4n)I(v, #)I2 + X(0)]-2

(v, (I + uGov)-'u) - c[(ik/4n)I(v, 0)I2 + ).'(0)]-2.

I(v, B2(k)O) - ic[(ik/4g) I(v, 0)I2 + ).'(0)]-'

. (q, v)(p(')v, O) + ic[(ik/4n)I(v, 4)I2 + A'(0)]-'

(v, 0)(0, 0(e2),

-2'(0)I(v, q)I-2, k 0 0 if A'(0) = 0 in case II, (1.4.42)
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-4ne'YiP-a) f, (k, p, q) = e(v, Tu) - a2(ik/4n)(v, Tu)2 + 822'(0)(v, T2u)
N

+ C2 [AI(0)1-1 01)(g1,

Tu) + ie2(T*v, 0(e3)

in case 111, (1.4.43)

-4ne'Y(P-a)f.Y(k, p,
aq) = -47te'Y(P-4) f,y(k, p, q)

c

+ eA'(0)[(ik/4n)I(v, 01)I2 + A'(0)J-1I(v, c1)I2

+ e[2'(0)]2[(ik/4n)I(v, #1)12 + ),(0)J-2(v, Tu)

N- v)I2 E (i, B1(k)i)li

B1(k)5)ri
N

- ie(51, v) Y 0i)(j, B1(k)$)111
1=1

N

+ ie(v, 01) (J, B1(k)O)1 (0i, v) + 0(c2 ),
1=1

a = -A'(0)I(v, 01)1-2 in case IV. (1.4.44)

PROOF. By a translation x x + y and a scaling transformation x ex using
(1.2.15) we obtain

le.Y(k, p, q) _
-(4n)-'e-`YlP-9)A(e)(Uei°P',

e[1 + By(k)J-1Ue,eq" ), (1.4.45)

where in obvious notation x, x' e R3 denote integration variables. The above results
now directly follow by inserting Lemma 1.4.1 into (1.4.45) and expanding A(s), e"Y,
eitQX" with respect to e.

It remains to derive the corresponding expansion for SS,y(k) near a = 0:

Theorem 1,4.3. Let e2a"V E R for some a> 0 be real-valued, X(0) :A 0 in
cases III and IV and assume (1.2.84). Then S,,(k), k z 0, y e P3, is analytic
in a near e = 0 and for IsI small enough we get

Se.v(k) = I + (2ni)-'sk(v, (I + uGov)-lu)(e 'k(-)YY00, )e-ik(-)Yyoo

- (8n2)-1(ak)2(v, (1 + uGov)-'u)2(e-"(')y
Yoo,

)e-ik(-)Yyoo

+ (2ni)-1e2k2'(0)(v, (I + uGov)-2u)(e-ik(-)YYoo, )e-ik(-)YYoo

- (ak)2(e-ik( )YYoo, -)e-'(.)y Y00

+ O(e3) in case I, (1.4.46)

where

f1t3
Y,(co) = (4n3/2)-1 d3x coxv(x)((1 + uGov)-1 u)(x), w e S2. (1.4.47)
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S ,,,(k) = /.Y(k) + (2ai)-, ek i'(0) [(ik/4n) I(v, #)12 + A.'(0)]-' '

I(v,

(2ni)-'ek[,.'(0)]2[(ik/4n)I(v, 4.)I2 + A'(0)]-2(v, (1 + uGov)-1u).

(2ni)-1 ek[(ik/4n) I(v, 0)I2 + x(0)]-2I(v, 0)I2(j, B2(k)O)
(e-ikOyyoo, sk2[(ik/4n)I(v, #)I2 +.i'(0)]-'
(0, .)e-ik( )Yp1 + ek2[(ik/4a)I(v, qi)I2 + t'(0)]-'

(v,

a = -A'(0)I(v, 0)I-2, k 0 0 if 2'(0) = 0 in case II, (1.4.48)

where

fl(o)) = (4n312)-' J I d3x wxv(x)O(x), w e S2. (1.4.49)
R3

SE.y(k) = 1 + (2ni)-'ek(v, .)e-,"( )1Voo

- (8n2)-1(ek)2(V,

(2ni)-'e2k,1'(0)(v,

N

+ 2ne2k3[2,(O)]-1 (e-k")Ypi,l, )e-ik(-)ypl.I1=1

- (ek)2(e-ik(*),y 00,

(ek)2(e-ik(,)yf1, 0(c3) in case III, (1.4.50)

where

11(cv) = (47[312)-' f d3x wxv(x)(Tu)(x), w e S2. (1.4.51)
R3

SS.y(k) = b ,y(k) + (2ai)-1ekA'(0)[(ik/47r)I(v, #1)12 + .I'(0)]-' I(v, 0,)I2.

')e-ikOYyoo

+ (2ni)-' ek[ t'(0)]2 [(ik/4n) J (v, #1)12 + .1'(0)]-2(v, Tu)

rN

(2ni)-1ckl(v,
01)I2

L (J' (ei, B2(k) B1(k)Y')r1'

N

(g,v) F
1=1

N j
+ 8k2(v, 01) B, (k)&' (e-,k(.)ypl.l, .)e-ik( )Yy00 + O(e2),

1=1

a = -k(0)I(v, 01)I-2 in case IV, (1.4.52)
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where

P,,,(w) = (41t3I2)-'
JR3

d3x wxv(x)qS1(x), w e S2. (1.4.53)

PROOF. Theorem 1.4.3 is an immediate consequence of (1.4.28) and Theorem 1.4.2.

Finally, we would like to add some comments concerning the above results.
First of all, the expansion coefficients in Theorem 1.4.3 have been written
in such a way that the results are particularly simple for y = 0. Next, we
emphasize that only in cases II and IV (i.e., if H = -A + V has a zero-energy
resonance) the limits of f,,,, and SE,, as a -+ 0 are nontrivial and coincide with
fa,,, and Soa,,, with a given by (1.2.53). The coefficients (4n)"' (v, (1 + uGov)-' u)
and (41t)-' (v, Tu) in fe,,, in cases I and III just represent the scattering length
of H = -A -1- V [11]. In the special case where V is spherically symmetric
(cf. the discussion before Lemma 1.2.4) we have Y, = ?, = 0 and p,, P,,, are
nonzero only if 0 (resp. 01, 1 = 1, ..., N) have angular momentum one (i.e.,
p-waves). The expansions in Theorems 1.4.2 and 1.4.3 clearly illustrate the fact
that scattering near threshold is largely independent of the detailed shape of
the interaction.

As in Sects. 1.1 and 1.2 the above results immediately extend to complex
point interactions with Iris a < 0. In this case ba,,,(k) and S,,(k) become
contractions in L2(S2).

Notes

Section 1.1.1
The one-center point interaction Hamiltonian in three dimensions seems first
to have been studied by Bethe and Peierls in 1935 [86] in the study of
the "diplon," i.e., the system consisting of a proton and a neutron. (Wigner
[497] had shown that the interaction between a proton and a neutron is
of very short-range which makes it reasonable to try to define a zero-range
interaction, i.e., a delta potential.) The manner in which they treat this singular
interaction resembles in some way the rigorous study we have given here.
First, they argue that it is only necessary to study s-waves, i.e., the subspace
corresponding to 1= 0 in (1.1.9) because "the centrifugal force makes the wave
function very small for distances small compared with the wave length and
the potential at still small distances will not matter." By physical arguments
they deduce that the logarithmic derivative at zero of the radius times the
wave function should be a constant which is directly related to the energy.
Inspecting the boundary condition (1.1.12) which we imposed for s-waves we
see that it is indeed equivalent to

4na,
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where b(r) = r'P(r) e l(ho,a). Thomas [485], also studying the neutron-proton
system, gave in addition the form V(r) x s-2f(r/s) with c x 0 for the point
interaction. This point of view is studied in detail in Sect. 1.1.2.

Fermi, in 1936, used a similar procedure as Bethe and Peierls when he
studied the motion of neutrons in hydrogenous substances [179]. Indirectly,
he proposed to replace S(r) by

8r .=o+

what has later been called the Fermi pseudopotential and was made more
explicit by Breit in 1947 [110]. The reasoning they used was essentially the
following (see (931): The Schrodinger equation for the proton-neutron system
with the center of mass motion removed is

Ha`P= -AT=EP,
where IF = `P(x, y, z) and (x, y, z) are the relative coordinates. The interaction
is given by the boundary condition above. Integrating the boundary condition
yields

ln(r'P) = 4nar
or

e4sar 1 + 4nar + j(4nar)2 + . r (4na)-'
'P = r - = 1 +

r r r

where 0 is regular at r = 0 (i.e., 0(0+) is finite). This yields for small r

r2
T x -(4na)-l

a(r'P)

Integrating this over the surface of a small sphere we obtain that the left-hand
side is equal to

$r2df1 alp = J dS V`P n = J dV A`P

and the right-hand side equals

-(4na)-'
Jdfl

a(r'P) _ -a-'# JdIIo(r).

where we used

a(r'P)
0

Or

for r small enough. This implies that the integrands of the right- and left-hand
sides are equal in the limit when r tends to zero, i.e.,

.=o+
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which is small except near the origin while H. is small near the origin. Adding
the two expressions for AT we finally obtain

HHP= -0`P-a-'b(r)a r`PI =E`P.
Or ,=0+

For recent treatments of the Fermi pseudopotential see [62], [229], [427],
[428], [472], [490]. Following Grossmann and Wu [229] we can use the
above heuristic formula for H. to obtain its Green's function. The Green's
function Ga,k satisfies

= b(x - x').(-A - k2)Ga.k(x, x') - a-'b(x)_-
-

IxIGa.k(x, x')11X1=0

Hence

(-A - k2)Ga.k(x, x') = b(x - x') + Aa(x')b(x),

where

Aa(x') = a- a
II

IxI Ga.k(x, x')I
x-0

This implies

G..k(x, x') = Gk(x - x') + Aa(x')Gk(x),

where Gk is the free Green's function, i.e.,

eiklxl
Gk(x)

4irIxl

A, is now determined by inserting the expression for Ga,k into the definition
of Aa, and we find (cf. (1.1.21))

GG,k(x, x') = Gk(x - x') + (oc - Gk(x)Gk(x').

Other studies of 6-interactions appeared in [277], where the N-center
problem is also treated, and in [464], [509]. An extensive study of applications
to atomic physics appeared in the monograph by Demkov and Ostrovskii
[151]. Applications to hadron spectroscopy can be found in [87].

The rigorous study of point interactions was started in the early 1960s by
Berezin and Faddcev [81] in an attempt to study the three-body problem
rigorously. This work is reviewed in [184]. Berezin and Faddeev use both the
method of self-adjoint extensions of symmetric operators and a method which
uses a renormalization of the coupling constant in front of the 6-function.
We will return to this technique in the N-center case, Ch. 1 of Part Il.

The method using Dirichlet forms was introduced by Albeverio, Hoegh-
Krohn, and Streit [32], [33] (cf. Appendix F for an extensive discussion).

Methods of nonstandard analysis were started by Nelson [355] using
(standard) results by Friedman [ 187], [188] who showed how to obtain point
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interactions as strong resolvent limits of Schrodinger operators with charac-
teristic functions of decreasing support as the potential. This was subsequently
generalized by Alonso [37] and Albeverio, Fenstad, and Heegh-Krohn [12]
where the N-center case is also studied using nonstandard analysis. See also
[14] and Appendix H.

As the last method to define the point interaction Hamiltonian rigorously
we mention that we can simply start with the resolvent (1.1.18) and show
that this is the resolvent of a self-adjoint operator. This point of view was
advocated by Grossmann, Heegh-Krohn, and Mebkhout [226] using scales
of Hilbert spaces (cf. Appendix G). Complex point interactions were studied
in [226] and [114]. Generalized pointlike interactions appeared in [369],
[370], [400b], [427], [428], [430], [431], [446].

More general systems of the type -A + V + "A8" are discussed in [167],
[ 171], [209], [211], [269], [416], [420], [512].

Electric and magnetic fields in connection with -A..,, are studied in [147],
[148], [472].

Section :.1.2
In the special case of a square well potential V strong resolvent convergence
of H, to - A,,,, (resp. to - A) has been discussed by Friedman [ 187], [188] (cf.
also [37], [355]). The general local case where V E R and (1 + I.I)V E L'(R3)
is due to Albeverio and Heegh-Krohn [24]. Theorem 1.2.5 is a slightly
improved version of corresponding results in [16], [17] and [22] which yield
norm resolvent convergence of H, to -A,,,, (strong resolvent convergence if
A'(0) = 0 in cases III and IV is also discussed in [17]). For previous discussions
of Lemma 1.2.3 and of cases I-IV under different hypotheses on V we refer
to [272], [298], [357], [504]. Strong resolvent convergence in the context of
Dirichlet forms has been obtained in [33], [35].

Special approximations by means of separable interactions appeared in
[81], [112], [129], [512]. A detailed treatment of nonlocal interactions can
be found in [98] (cf. also [200], [358]). Theorem 1.2.10 appears to be new.

Various approximation results in connection with more general systems of
the type -A + V + "28" can be found in [171], [414], [416], [420].

Section 1.1.3
Most of the results of this section are new (some of them have been announced
in [17]). Our definition of resonances of H = -A ]- V, e24 .1 V e R for some
a > 0, as poles of (1 + uG,kv)-' in the strip 0 > Im k > -a follows the treat-
ment in [21], [26], [28] and [200] (these papers also contain an extensive
list of references on this subject). For references on perturbation theory
of resonances using similar techniques see [385], [386]. Since, by relation
(1.2.11), every bound state k, of H,,,, corresponds to a bound state k(s) = sk, of
H(e) = - A -i- 2(6) V and vice versa, we recover the results of [298] concerning
the absorption of negative bound states into the continuous spectrum at
so-called critical potential strengths. In fact, Theorem 1.3.1 extends their
three-dimensional results insofar as our Fredholm determinant approach
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allows us to calculate the leading order coefficients explicitly (it suffices to
take A(e) = I + ri.'(0), )l'(0) # 0 and to replace all k,,, in Theorem 1.3.1(b)-(d)
by ek,,f, I = I, ..., N). Theorem 1.3.2 finally extends the whole treatment to
resonances of H(e) by using the same type of substitution kf - k(e) = ek,.
A unified treatment of bound states and resonances of H(e) along these lines
appeared in [204].

The whole discussion of this section extends to nonlocal interactions in
a straightforward manner. The only changes needed in Theorem 1.3.1 are the
following:

e2al l V e R-, E L'(IR3) n L2(IR3) for some a> 0,

(v. 0) - (v,, 0) in case II,

(v. 4l) -. (v 0,) in case IV,

C(x. x') _ -(81r)-'u(x)Ix - x'Iv(x')

C(r, x') _ _(8x) '
r
I d3 d3X-
R6

W2(x,
x )IX - xW,(x,,,,

X')

In Theorem 1.3.2 one simply replaces e2a1 l V e R for all a > 0 by
eal'1u,, eal'ju2eL'(IR3)nL2(ll 3) for all a>0 in addition to the last three
substitutions stated above.

Section I.1.4
Scattering theory for point interactions from various points of view have been
studied in [81], [87], [114], [184], [200], [252], [277], [369], [370], [483],
[509], [512]. Stationary scattering theory for Schrodinger operators of the
type H = _A + V, e2al' I V e R for some a > 0 can be found in [434], Ch. V,
[390], Ch. XI.6. For the general formalism of scattering theory we also refer
to [39], [360], [480]. Low-energy scattering for three-dimensional systems
has been discussed in [16], [17], [272], [357], [358] (see also [351]). A
systematic way of calculating the expansion coefficients for the transition
operator t(k), as k 0 by the use of recursion relations, has been developed
in [101].

Low-energy parameters in connection with a detailed investigation of scat-
tering near threshold appeared in [11]. Theorem 4.1 is taken from [17] where
a slightly different proof can be found. In particular, this paper also contains
a complete discussion of the case A'(0) = 0 in cases III and IV without the
simplifying assumption (1.2.84).

If one is interested in asymptotic expansions for ff(k, to, to') and S , (k) near
e = 0 instead of analytic expansions, the assumptions on V can be drastically
reduced. In fact, as long as e, n (0, eo) = 0 for all 0 < e < co, the conditions
V e R, (1 + IxI') V E L'(R3) for suitable m e N yield asymptotic expansions
in Theorems 1.4.2 and 1.4.3, the order of which depends on m.

Again Lemma 1.4.1-Theorem 1.4.3 extend to nonlocal interactions (cf. [98]
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for a detailed treatment of low-energy parameters and scattering near thresh-
old). Here it suffices to note that the on-shell scattering amplitude associated
with (1.2.65) reads

f,.Y(k, (o, w') _ -(4n)-'(,0.+ Y(kE), t

E,k>0, k2#Sf, co,w ES2, yERI

where now

d3x' W2,,(x, x')etpx,I (p, x) =
fRI

r'Y

fR3
Di.Y(p X) = d3x' W,,,(x , x)e'°" , E > 0, p E C3, Jim pl < a,

k) _ E-22(E)[1 + E-2A(E) W2,,Gk WI.c]-I,tF(

0<e<Ee, Imk> -a/ro, k2#ge,

{k2 E CI2(E) W2G" W1 = -0F for some F a L2(R3),

A0,Imk> -a/EO0<E<En,
Wt(x,x')_E-31V(r-1(x-Y),Y)), E>0, j=1, 2, YEQ83

using the assumption a°l'1u1, e' 1t 2 E L`(R3) n L2(R3) for some a > 0.



CHAPTER 1.2

Coulomb Plus One-Center Point Interaction
in Three Dimensions

1.2.1 Basic Properties

In this section we extend the analysis of Sect. 1.1 to include the Coulomb
potential in addition to the point interaction both centered at a fixed point
y e 98'. Following very closely the approach in Sect. 1.1 we again concentrate
on the methods of self-adjoint operator extensions.

In the Hilbert space L2(R3) we consider the operator

(-A+ yI - YI`1)IC (R3-{y}), Y E 983, y e 98, (2.1.1)

and denote by I1Y,,, its closure in L2(R3) (i.e., _9(Ii,,,,,) = Ho 2(983 - (y})). Then
its adjoint is given by [274], [276]

-A+yI - -YI-1,
{g a Hoc2(R3 - {Y}) r) L2(983)I(-Ag + yI' - YI-1g) a L2(083)},

yeP3, ye98. (2.1.2)

By inspection, one infers that

i/Y(k, x) = Ix - YI-1*'-iV/2x:1/2(-2ikIx - YI),

Imk>0, ye98, xe983-{y}, (2.1.3)

where denotes the Whittaker function [1], is the unique solution of

(ffY,,,)*qi(k) = k2qi(k), qi(k) e 21((I y)*), k2 e C - P. Im k > 0. (2.1.4)

52
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Thus Hy,r has deficiency indices (1, 1) and applying Theorem A.1 all self-
adjoint extensions H.A. of I!,,, are given by the one-parameter family

9(H,..e.,) = (g + aik,,. + ae`Bi/ir- I g e a e C),

H,,e,r(g + ao,+ + ae1Btbv-) = H,,rg + is f,,+ - iaei04,,_, (2.1.5)

O E [0, 2u), y e R3,

where

4/yt(x) = Ix - YI ' 1112(±i) 2.l/2(-21(±i)"Ix - YI),

Im(±i)'12>0, yeR, xER'-{y}. (2.1.6)

Next, we introduce spherical coordinates like those in Sect. 1.1 since ii,,r is
obviously spherically symmetric around y e R3. With respect to the decom-
position (1.1.9), li,,,, then equals the direct sum

Hy.r=T,- 1(DU-1hY,Iu11=o }!I

r'
yeR', yeR, (2.1.7)

where Tr implements translations x - x + y in L2(R3), (Trg)(x) = g(x + y),
g e L2(R3), y e R3, and

z

hy,1dr2+1(1121)+r yeR, 1=0,1,2,..., r>0,

E L2((0, oo))Ic, 0' E ACio.((0, oo)); W(#, 0,±)0+ = 0;

-q" + yr-'.b E L2((0, oo))}, (2.1.8)

{0 E L2((0, oo))IS, ¢' e AC1«((0, oo)); -¢" + 1(1 + 1)r-20

+ yr-' 4' E L2((0, oo))}, 1= 1, 2,...,

where

Oy±(r) = *'-1yn(tj),,2; 1/2(-2i(±i)1"2r) and W(f g)x = f(x)g'(x) - f'(x)g(x)

denotes the Wronskain of f and g. As in the case y = 0, h,,, are self-adjoint
for I >- 1 ([389], Ch. X) whereas h,,o has deficiency indices (1, 1). By the
discussion in Appendix D all self-adjoint extensions h,.0,a of 4,0 may be
parametrized by

d 2
-dr2+r, yeR, r>O,

.9(h),.o.a) _ {0 e L2((0, oo))I#, O' E AC,.((O, cc)); -4no1#o + #1 = 0; (2.1.9)

-0' + yr-'q E L2((0, co))}, -oo < OC < 00,

where 0o and 01 are defined as

0o = 1 0 #(r), 1 = Jim r-' {#(r) - #0[1 + yr ln(IYIr)]},

¢ E .9(1ty o), y E R. (2.1.10)
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By an analogous calculation to (1.1.13) one infers that

00Hy.e.y = 7v 1 LU-ihr.o.aU 6 Q U-1hr.tUJ ®I Ty, y e R3, y e R,
i-1

(2.1.11)

where

(4n)-1(1 + e'°)-' {[iy(('P(1 + (iy/2(i)'12)) - `P(t) - Y'(2))/2(i)'n) - z].

(-2i(i)1/2) + (iy/2(-i)112)) - `P(1)

- `I'(2))/2(-i)"2) - i](-2i(-i)'2)).
(±i)1/2=(±l+i)cosn/4, yeR, (2.1.12)

and again a varies in P (a = +oo if 0? n) if 0 varies in [0, n) v (n, 2g). Here
r'( denotes the digamma function and r(.) the gamma function

[1]. Thus we get

Theorem 2.1.1. All self-adjoint extensions of ii,,,, are given by

H,..' = Ty
1

{[u-'i.0.u 9 (@U-', .1UJ ©l I T"
=1

-00 <0(500, yeP', yeR. (2.1.13)

The special case a = oo leads to the ordinary Coulomb Hamiltonian Hy,y (the
Friedrichs extensions of H, 23)yin L(8

Hy.y = - A + y I . - yI-', 3(H,,,) = H2.2(R3), y E P3, y e R. (2.1.14)

If jai < oo, Hy.,,, describes the Coulomb interaction plus an additional
point interaction both centered at y e P3. In particular, Hy,.,, differs from the
Coulomb Hamiltonian Hy,, only in the subspace of angular momentum zero,
i.e., the point interaction in H,,..,y is again an s-wave (I = 0) interaction.

Next we introduce

G,,k.y = (Hy.y - k2)-1 Im k > 0, k#-iy/2n, n = 1,2,..., yE18,
(2.1.15)

with integral kernel [260]

Gy.k.y(x, x') = T(1 + (iy/2k))(4nlx - x'I)-1

[(f..
s ).iY_iizic;1/2(a)'-iy/2k; 1/2(N)1I

d= -ikx-'

Imk>0, k96 -iy/2n, n=1,2,..., yeR,
x±=lx-yl+Ix'-yl±Ix-x'I, x,x',yER3, x x' (2.1.16)

(here _10Vm; j ), YYu; () denote Whittaker functions [1].)
Basic properties of Hy,Q,y are described in
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Theorem 2.1.2. Let -oo < a Sao, y e R3, y E R. The resolvent of H,,,., is
given by

(Hy.a.v - k2)-' = GY.k.Y + [a - (YF(iy/2k)/4ir)]-1(W - Y), .)g,, (. - Y),

k2 E p(H,,,,,,), Im k > 0, (2.1.17)

where

9,,k(x) = r(1 + (iy/2k))(4nlxI)-' '-iy/2k;U2(-2iklxl), x 0 0, (2.1.18)

and

F(iy/2k) = `Y(1 + (iy/2k)) - In(iIYI/2k) + (ik/y) - `P(1) - `1'(2),

k > 0 or Im k > 0, k# -iy/2n, n = 1,2,.... (2.1.19)

The domain consists of all elements of the type

O(x) = Ok(x) + [a - (yF(iyl2k)/4n)]-'0k(Y)g, k(x - y), (2.1.20)

where ok a Q(H,,,,) = H2' 2(083) and k2 e p(H,,,,y), Im k > 0. The decomposi-
tion (2.1.20) is unique and with 41 a I(H,,,,y) of this form we obtain

(HY.a.Y - k2)1' = (Hr,, - k2)gk. (2.1.21)

Next, let 1i a and assume that b = 0 in an open set U c W. Then
H,,,,,,O = 0 in U.

PROOF. Equation (2.1.17) follows from Theorem A.2 except for the factor
[a - (yF(iy/2k)/4n)] '. In order to determine this factor one can follow the proof of
Theorem 1.1.2 by projecting to the subspace of angular momentum zero and
replacing g,(k, r, r'), k ' sin kr and e'k' by the corresponding s-wave Coulomb
quantities. The remaining assertions directly follow from Theorem 1.1.3 after
replacing Gk, -A, -A,.Y by GY.k.y> HY.Y+ HY.,.,, etc.

Spectral properties of H,,,,y are characterized by

Theorem 2.1.3. Let -oo < a 5 co, y e R3.
If y >- 0, then H,,,,y has precisely one negative bound state if a <

-y['P(I) + `I'(2)]/47r. The eigenvalue E0 < 0 is determined by the equation

4na = yF(y/2(-E0)'n), y ? 0, (2.1.22)

with

`!'(1 + l;) - lnIfl - `1'(l) -'P(2). (2.1.23)

The corresponding strictly positive (unnormalized) eigenfunction is given by
g,,i(_Eo)1,2(x - y). If a >- -y[`Y(1) +'P(2)]/4n the point spectrum of Hy,,,,
is empty.

If y < 0, then for all -oo < a < oo there are always infinitely many simple
negative eigenvalues associated with the s-wave (I = 0) given by solutions of
the equation

4ncc = yP(y/2(-E)"2), y < 0. (2.1.24)
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For angular momenta I 1 we get the usual Coulomb levels

E = - y2/4n2, n = 2,3,..., y < 0. (2.1.25)

For all y e P the essential spectrum of H7,a,,, is purely absolutely continuous
and covers the nonnegative real axis

Qess(Hr.a.r) = Qac(H,,a,y) = [0, co), sc(Hr,a.y) = Qf,

QE,(Hr,a,y) c (-oo, 0), -00 < a< 00.
(2.1.26)

PROOF. Given (2.1.17) the first part of assertions in (2.1.26) then immediately
follows from Weyl's theorem Q391], p. 112) and Theorem XIII.20 of [391]. To derive
the statements about aP(Hr a ,) n (-oo, 0) we note the integral representation ([1],
p. 259)

-2
f,

dt t(e21 t - 1)"'(t2 + 42)-I - v'(1) - P(2) (2.1.27)
0

implying

F(0+) _ -co, P(co) -'P(2), 0, 4 > 0. (2.1.28)

Together with (2.1.17) this proves the assertions for y 2- 0. For < 0, P(4) is strictly
increasing from -oo to +oo in each interval (-n - 1. -n), n = 0, 1, ... (cf. Figure
1) which proves the assertions in connection with (2.1.24) and (2.1.25) for y < 0. The
absence of nonegative eigenvalues follows exactly along the lines of the proof of
Theorem 1.1.4.

,N)

4

Figure 1 From Albeverio et al., 1983, [22].

Finally, we sketch some properties of complex point interactions. Let a e C
and define Hr,a,, by (2.1.13) (i.e., let a e C in (2.1.9)). Then, obviously, H.'..., is
continuous with respect to a in norm resolvent sense. In addition, we have

Theorem 2.1.4. For all y e P', y e P. iH,,a,, (resp. - iH,,a,,) generates a
contraction semigroup (resp. t Z 0, in L2(R3) if Im a S 0
(resp. Im a >- 0).
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PROOF. From

lHr.a.r) = (y + ao,. + a e C),
(2.1.29)

Hr.a,y(y + atp + + aei 0,-) = H,,,g + iao/i,+ - iae'B,ir_,

where a and 0 are related by (2.1.12), one infers by a straightforward computation

Im([g + ai/i,+ + ae'Bt/i,-], H,,.,,[g + aji,+ + ae'B,d,-])

= IaI211,k,+112(1 - e-2Im0). (2.1.30)

Consequently, Im(h, H,,,,,h) < 0 for all h e .9(H,...,) is equivalent to Im 0:9 0 and
hence to Im a < 0. Thus iH,,a,, is accretive ([389], p. 240) and hence maximal
accretive if Im a < 0.

1.2.2 Approximations by Means of Scaled Coulomb-Type
Interactions

A possible approximation scheme to obtain H,,,a,, as the norm resolvent limit
of scaled Coulomb-type Hamiltonians is derived in this section. We closely
follow the corresponding treatment in Sect. 1.2.

In the following

G,,k.y = (H,,, - k2)-', k2 a p(H,,,), Im k > 0, y e R3, y e R, (2.2.1)

will play the role of an unperturbed resolvent and V: R3 -- R is assumed to
be a measurable function belonging to the Rollnik class R. Let u and v be as
in Sect. 1.2 (cf. (1.2.3)). Then we have

Lemma 2.2.1. Let y e R3, y e R, and assume e2aH'HVe R for some a > 0.
Then V is form compact with respect to H,,,, i.e.,

I VI"2(IH,,,I + E)-u2 a 9.(L2(I83)), E > 0, (2.2.2)

and

uG,.k.yv e -42(L2 (R")), k e H,,,, (2.2.3)

where

II,,a = (k a ClIm k > -a, k :A -iy/2n, n = 1, 2,...). (2.2.4)

PROOF. It suffices to prove (2.2.3). For that purpose we recall the explicit
expression [99]

Gr.k,,(x, x') = (4xIx - x'I)-' {2(x+ - x _)-'(x+x-)-' FY,°o(k, x_/2)Gr°(-k, x+/2)

- 3-1(k2 + (y2/4))F,(°)(k> x-/2)Gr o(-k, x+/2)

+ 3F,(.°o(k, x-/2)Gr°i(-k, x+/2))

= (4xIx - x'1)-' {2(x+ - x_)(x+x_)-' F°o(k, x_/2)d,(?4(k, x+/2)

- 3-'(k2 + (y2/4))Fy.°i(k, x_/2)dr°o(k, x+/2)
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+ 3F,1 o(k, x /2)0r9(k, X+/2)}

+ (4n1x - x'I)-'y[`P(I + (iy/2k)) - ln(ilyl/2k) + (ik/y)]

{2(x, - x-)(x.x- )-F ,(,3(k, x- /2)h',( o(k, x+/2)

- 3 '(k2 + (y2/4))[F,10 (k, x-/2)F.°o(k, x,/2)

- FFo(k, x-/2)FY°i(k, x+/2)]),

ken,,- x#x', x+=Ix-yl+Ix'-yl±Ix-x'I, (2.2.5)

where

F;° '(k, r) = r'+' e'kri F1(1 + I +(iy/2k); 21 + 2; -2ikr),

G!0/(-k, r) = r(21 + 2)-' r(1 + I + (iy/2k))(2ie "`k)21 "r1+1 e,k..

U(1 + I + (iy/2k); 21 + 2; 2ie-'"kr), (2.2.6)

Cr( °/(k, r) = Gv°i(-k, r) - 22'r(21 + 2)-21x(1 + (iy/2k))I-21r(1 + I + (iy/2k))l2

-yk21[`1'(l + (iy/2k)) - ln(ilyl/2k) + (ik/y)]F,'01(k, r); 1 = 0, 1.

and 1 F, (a; ), (U(a; /3; )) denotes the (ir)regular confluent hypergeometric func-
tion [1]. In fact, the bound [96], [99]

l H°'(k, r)I < const(e, y, K0, RO) exp{(1 + e)K0(r - RO) + (lyi/2/c0) ln(r/RO)},

e>0, yell, 'c0>0, 1k21<wo, r>R0>0, 1=0,1, (2.2.7)

where HY°j denotes FY°', (010(k 2))F'(01' li;°/, or (cJ/a(k2))G;°j, 1= 0, 1, together with
the second equality in (2.2.5) proves that uG,,k,,v e -42(L2(I8')) for k e n,,a, lkl < a.
The asymptotic behavior [I]

0) Ik1>0 -,kr iY%2k 1 ,kr
17/2k

IFy,1(k, r) 11-M a {r e1(1, y, k) + O(r )} + e {r y, k) + O(r )},

G(Vo)(_k r) ire e,kY{r irl2kc3(1, y, k) + 0(r-')); k e n,.,, (2.2.8)

for appropriate coefficients c;, j = 1, 2, 3, together with the first equality in (2.2.5)
and with (2.2.7) then proves uG,,k,,v a 92(L2(R3)) for k e n,.,. For Im k > 0 this
also directly follows from the bound (4.1) of [231]

l GY.k.y(x, x')l < C>(k)lx - X' 1-1 e-(Imk)lx -x'I[I + Ix - X,I]-W-YIY1mk/2I I2,

ken,, 0, x # x'. (2.2.9)

Next we recall

v'(x) = v(x - e-' y), it(x) = u(x - e-' y), c > 0, y 183, (2.2.10)

and introduce

$(c,yeIn e,k)_2(c,yeIn e)uGeyk,ylty, c>0, kenr,o, (2.2.11)

where is real analytic near the origin with

A(e, ye In e) _ Am cm(ye In c)°, A00 = 1. (2.2.12)
m.n=0
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Because of (2.2.3), e"(e, yr, In e, k) extends to a Hilbert-Schmidt operator for
k e n,,Q. Moreover, by (2.2.2) and the discussion in Appendix B the form sum

HeY.YIe(e) = -A + eylx - c-1y1-1 + A(e, yr, In t) V(- - c-1y),

e>0, yER3, (2.2.13)

is well defined and the resolvent equation

(HeY,Yn(e) - k2)-1

A(e) ye In e)GeY,k.Y/ev[1 + R(c, ye In e, k)]-1 uGFr.k.Yn>

e> 0, k2 E p(H,,,Y(e)), k E rle,,o, y e P3, (2.2.14)

holds. Following Sect. 1.2 we define

HY,e,, = e-2 UeHeY,YIe(e)Ue 1 = HY,, _' Ve,Y,
(2.2.15)

Ve,Y(x) = 2(e, ye In e)c-2 V((x - Y)/e), e > 0, y e 133,

where Ue denotes the unitary scaling group (1.2. 10) in L2(133). Since we are in-
terested in the limit e 10 of HY,e,Y we first introduce Hilbert -Schmidt operators
A,,,(k), BY.e(k) = A(e, ye In c)uGGY,ekv, CY,e(k), 0 < c < co, with integral kernels

AY,,(k, x, x') = GY,k(x - y, ex')v(x'), k e 17,,,o, (2.2.16)

BY,e(k, x, x') = A(c, ye In e)u(x)Gey,ek(x, x')v(x'), k E n,,.,,., (2.2.17)

CY.e(k, x, x') = u(x)G.,,k(ex, x' - y), k e RY,o, (2.2.18)

where we abbreviate

G,,k,o(x, x') = GY,k(x, x'), x # x'. (2.2.19)

From the scaling behavior

e2 UUGY.k,YUU 1 = GYle,kle,sY, e > 0, k e n.,,o, y E 133, (2.2.20)

we infer from (2.2.14) after a translation x - x + (y/e), e > 0,

(HY,e,Y - k2)-1 = e2 Us[HeY.Y/e(e) -
(ek)2]-1 U. -I

= GY,k,Y - A(e, ye In c)A,,e(k)c[1 + BY,,(k)]-1CY,,(k),

e> 0, k2 e p(H),e,Y), k e n,.o, y e R3. (2.2.21)

Lemma 2.2.2. Let y e 133, y e R, and define rank-one operators A,(k), C,(k),
and the Hilbert-Schmidt operator uGov with integral kernels

AY(k, x, x') = GY,k(x - y, 0)v(x'), k e rl,,o, x 0 y, (2.2.22)

uGov(x, x') = u(x)(41rlx - x'l)-1v(x'), x $ x', (2.2.23)

C.,(k, x, x') = u(x)GY,k(0, x' - y), k e DY,o, x' $ y. (2.2.24)

Then, for fixed k e n,,o, A,,e(k), B, (k), C, (k) converge in Hilbert-Schmidt
norm to A,(k), uGov, C,(k), respectively, as a 10.
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PROOF. Using the bound (2.2.9) [231] one can follow the proof of Lemma 1.2.2
step by step.

As in the short-range case y = 0, it remains to determine the limit of
e[1 + B,,,t(k)]-' as e 10. Because of n-limElo [1 + B,,. (k)] = (1 + uGov) again
the zero-energy properties of H = -A + V enter at this point. We first
formulate

Lemma 2.2.3. Let y e P and e2°U'U Ve R for some a > 0. Then BE(k),
0 < e < eo, k e is (norm) analytic with respect to (e, ye In s) near the
origin

00

B,,(k) = Z k)em(ye In s)". (2.2.25)
m.n=0

The coefficients Bmn(y, k), m, n = 0, 1, ... , are Hilbert -Schmidt operators and
the first few of them explicitly read

Boo = uGov,

B10(y, k) = ttouGov + y(4x)-'F(iy/2k)(v, )u

(2.2.26)

+ y(4n)-'u ln(IYIx+/2)v, (2.2.27)

Bo1 = 201 uGov + (4n)-'(v, -)u, (2.2.28)

where u ln(lylx+/2)v has the integral kernel

u(x)ln[IYI(Ixl + Ix'I + Ix - x'I)/2]v(x'). (2.2.29)

PROOF. By the first equality in (2.2.5) and the series expansions [1]

1
F,(1 + I + (iy/2k); 21 + 2; -iekx_)

r(n + I + 1 + (iy/2k))r(21 + 2)(-iekx_Y'
- r(I + 1 + (iy/2k))r(n + 21 + 2)r(n + 1) 'n=O

U(1 + I + (iy/2k), 21 + 2; ie' ekx+)

= r(21+ 2)-' r(-1 + (iy/2k))-' { 1 FI (I + I + (iy/2k); 21 + 2; -iekx+) ln(ie-j"ekx+)

r(n + l + I + (iy/2k))r(21 + 2)(-iekx+)n
+ r(1 + I + (iy/2k))r(n + 21 + 2)r(n + 1)

[9'(n+l+ I +(iy/2k))-9'(n+21+2)-`P(n+ 1)])
17(21 + 1)

+ r(l + I +
(iy/2k))FI(-1 + (iy/2k); -2l; -iekx

one infers that the integral kernel of GLY,a

k e 11,,,,x, 1 = 0, 1, (2.2.30)

ID W

GLY."%(x, x') _ m 0.0(y, k, x, x')e' + (ye In e) E CY.,(y k, x, x')em,
M=0 M-0

k e rl,,. x # x', (2.2.31)



1.2.2 Approximations by Means of Scaled Coulomb-Type Interactions 61

is analytic in (e, ye in e) near (0, 0) and that Ix - x'j k, x, x'), m = 0,1, ... , n = 0
or 1, are polynomially bounded in lxi and Ix'l. Thus taking matrix elements with
C o'(111) functions we get analyticity of u4,,ekv and hence of B jk) in (e, ye In e) near
the origin.

Given the case distinction I-IV of Sect. 1.2 (and the ordering (v, 01) # 0,
(v,0,)=0,1=2,...,N,incase IV)wehave

Lemma 2.2.4. Let e2al'l Ve R for some a > 0, 0 < e < so small enough
and assume case I (i.e., P = 0). Then e[1 + B,,,,(k)]-', y e R, is analytic in
(e, ye In e) near the origin and we get the norm convergent expansion

e[1 + B,,,(k)]-' = s[(1 + uGov)-' - c(1 + uGov)-'B,o(y, k)(1 + uGov)-'

- (ye In e)(1 + uGov)-'Bol(1 + uGov)-' + O((e In e)2)],

k e II,,a,,O. (2.2.32)

PROOF. Since (I + uGov)-' a -4(L2(R3)), (2.2.32) immediately follows from

e[t + B,..(k)]-'

= e{1 + (1 + uGov)-' [eB,o + (ye In e)B0, + O((e In e)2)])-'(1 + uGov)-'. (2.2.33)

Lemma 2.2.5. Let e2aH Ve R for some a > 0, 0 < e < to small enough and
assume case II (i.e., P = -(c, )0, (v, 0) # 0).

(i) If Aoi = -I(v, 0)12/4n we get the norm convergent expansion

e[1 + B,,t(k)]-'

_ <Bio>-'(J, )0 + eT

- e<Bio>-' [(T*B o4', ')4' + (j, -)TB1o4']

- (ye In e)<Bio)-'[(T*Boij, .)0 + (J, ')TBo14']

<B1o)-2[e<B2o> + (ye In e)<BI1> + e(y In e)2<Bo2>](#, ')#

+ <Bo>-2{e<BioTBio> + (ye In e)[<BoTB0 > + <B01 TBo>]

+ e(y In e)2 <Bo1 TBo, >I (j, )4' + O(e2(in e)3),

k e IIr a to, y e R. (2.2.34)

(ii) If Ao i # - I (v, 4)12/4n we get the norm convergent expansion

e[1 + B,,,(k)]-' = (y In e)-'<Boi)-'(c, ')#

- (y In e)-2<Boi y-2<Bo>(j, -)0 + O((ln e)-3),

k e II, afo, y e R- {0}. (2.2.35)

Here we used the notation <B> = (j, BO) for bounded operators Be
R(L2(R3)) and suppressed the y and k dependence in Bm,,(y, k).
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PROOF. Define

B(y, s, k) = B,,,(k) - Boo, k e nl,otca, (2.2.36)

and let µ e C - {0}, 1µl small enough. Then (1.2.35) implies

F[ l + B(k)1 -' =.,(I + (1 + Boo + p)-'[B(e) - µ] } -' (l + Boo + µ)-'

= c{PB(E) + µ - µP + µTB(E) + O(µ2)}'[P + pT + 0(p2)]

'= E { 1 + µ(PB(E) + µ)-' [ - P + TB(S) + 0(p)])

[PB(E) + p] [P + µT + 0(p2)]. (2.2.37)

From P = -(ql, )o we get

p[PB(E) + <[B(E) + p])-'(B(E)*j, )o (2.2.38)

and thus

E[1 + B,.,(k)] ' = c{l + TB(c) - <B(c)) O(µ)}

[<B(E)) T - <B(E)> '(T*B(E)*#, )q + O(p)].
(2.2.39)

Since p 0 0 was arbitrary we get

c[1 + B,(k)]-' _ {I + TB(c) - <B(E))-`(B(E)*T*B(r)*j,

'}4[<B(e))-'(j, ')¢ + T- CB(E)) '(T*B(E)*m, -)0]

_ (I - TB(E) + <B(E)>-'(B(E)*T*B(E)*#, .)Qi + 0(s (ln 1:)3)}

'c[<B(c)) )4, + T - <B(E))-`(T*B(E)*4i, ')4,]. (2.2.40)

Now assume Ao, _ - I(v, 0)I2/4R which is equivalent to <B01 > = 0. Then

<B(c)>` =c-'<B,o)-'(I -<B10> ` [r<B20>+(yslnc)<B,I>

+ E(y In E)2<BU2)] + O(E2(In E)3)} (2.2.41)

and we obtain (2.2.34). If Ao, # -I(v, 0)12/48 (i.e., <Bo,> 0 0) then

<B(E))-' = (ys In r)-'<B0, >-'[1 - (y In z)-< Bo, <B,o> + 0((In c)-')] (2.2.42)

implies (2.2.35).

Lemma 2.2.6. Let e2aH' V E R for some a > 0, 0 < s < so small enough and
assume case III (i.e., P = Y_N , (it, )01, (v, q,) = 0, 1 = 1, ..., N).

(i) I f tot = 0 and the matrix (fit, B,o(y, k)4,t.),1,1' = 1, ..., N, is nonsingular
we get the expansion valid in norm

t:[1 + B,.,,(k)]-t

N

(<B,, ')0i + eT

N

- E (<Bto))ir'[(TBioit,, )q + (hr, -)TBiob,]
I'I'=I
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N

-(ye In e) (<Bto>)n'[(T*Bol01, -)q', + (0r, )TBo101]
I,1.=1

N

+ (<B10>)ll4e<810>11,11

+ (ye In c) < [B10 B01 + Bo 1 B10] >rl + c(y In e)2 <Bo 1 >1,1"].
N

')01 +

(ye In e) <BI I + e(y in...)2 <B02

O(c2(1n e)3), k e 11y.a/co, y e R.
(2.2.43)

(ii) If Ao, -A 0, we obtain the expansion valid in norm

c[1 + By.c(k)]-1

N

_ (y In e)-1 Y ')q1
1.r=1

N

- (y In C)-2 Y (<Bot>)ir ')0l
=1

+ O((In c)-3), k e Ily.a/ca, y E R - {0}. (2.2.44)

Here we used <B>11. = (gb,, Bo,.) and (<B>)11' the inverse matrix of <B>,,.
for some B E -V(L2(083)).

PR(X)F. Inserting

N

u[PB(e) + µ]-' = I - Y (<B(c) +

into (2.2.37) one arrives after some manipulations at

(2.2.45)

e[t + By.,(k)]-' = j I - TB(c) + Y (<B(e)>)nl(B(c)*T*B(e)*jr, -)0,
l 1.r=1

+0(82 (In e)3) -)4 + T1e

1.1k

- Y (2.2.46)
I.1-1

Now assume 1o, = 0 and <Bt0>,,, to be nonsingular. Then

N

c(<B(c)>)rr' = (<B10>),.' - Z (<B10>)n.' [e<B20>r.,... + (ye In e)<B11>1..,...

+ e(y In.,)2 (B02 (<B,0>)'-"", + O(c2(ln e)3) (2.2.47)

and (2.2.43) follows. On the other hand, if 101 0 0, then
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E(<B(E)))u' = (y In e)-'(<B01))u'
N

(y in F.)-2
(<B01 ))1 1 + O((In s)-3),

(2.2.48)
which proves (2.2.44).

Lemma 2.2.7. Let e2'4 VE R for some a > 0, 0 < e < e0 small enough and
assume case IV and (1.2.84) (i.e., P = -1 1=1 (i,, )g,, (v, 01) # 0, (v, 0,) = 0,
1=2,...,N).

(i) If 2ol = - I(v, 01)12/4tc we get the expansion valid in norm

e[1 + BB.F(k)]-'

_ <B10> (j1, ' )01 + (2o l Y In F)-1 )O
1-2

N

- (2o1Y In e)-'<B10> Y_ [<B1 ')01 + <B10>11(J1, ')6]
=2

N

+ holy In e)-1 <B,o>11 E I<B10>11I2(j1, ')01 + O((ln e)-2),
1=2

k e IIy y E P- {0). (2.2.49)

(ii) If 201 -A - I(v, g1)12/4n we get the expansion valid in norm

s[1 + By,e(k)]-1

= (Y In e)-1
')161

(y In e)-2 (<Bol))ul<Blo

O((ln e)-3), k E IIy,a,io, Y E P - {0). (2.2.50)

PROOF. From (2.2.46) we get

N

e[1 + By (k)] ' _ Y (<B,o + (y In e)Bo1_)0' + O(e(In e)2). (2.2.51)
1.r=1

If the matrix <B0t ),,, is singular, or equivalently if.1o, _ -I(v, 01)12 /4R, then

(<B10+yineB01>)s'

<B,0>1-1161161,1 +(A yIne)-'[brr-b,lbrl)

-(AolyIn e)-'<B10>11[bn<B1o>,.(1 -b,.l)+(I -ba)<B1o)ubrl]
N

- (2o1y In F_)-1 <B10>-2 E O((In e)-2) (2.2.52)
1=2
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and (2.2.49) follows. If <B01 >,,. is nonsingular, i.e., if do, # - I(v, 0, )I2/4n, then

(y In c)-2 (<B01 ))n ))i°,

+ O(;In e)-') (2.2.53)

and (2.2.50) results.

For an explicit determination of the first few of the coefficients <B..> see
the next section.

Given Lemmas 2.2.2 and 2.2.4-2.2.7 we are able to state the main result of
this section (cf. Theorem 1.2.5 for the corresponding statements if y = 0).

Theorem 2.2.8. Let y e R3, y e R - {0}, e2al'l V E R for some a > 0 be real-
valued and assume (1.2.84). Then, if k2 E p(H,,,a,),) we get k2 E p(Hy,c,,) for
e > 0 small enough and H,,,,,, converges to H,,,,,.r in norm resolvent sense

n-llrn (Hy.c,1 - k2)-1 = (HV.a,, - k2)-1,40
k2 a p(H,.a.,), y e 183, y c R - {O}, (2.2.54)

where a is given by

00 in case 1,

00 in case II if A01 0 - I (V, 0)12 /4x,

-(A10 + y(o, v ln(IYIx+/2)v#)/4n]/I(v, #)I2

in case II if .101 = -I(v, #)I2 /4n,

a = 00 in case III f A01 # 0 or x.01 = 0 and (2.2.55)

(q5,, B, 0(y, k)b,) is nonsingular,

00 in case IV f A01 # -I(v, 01)12 /4n,

-[Alo + y(01, v ln(IYIx+/2)v#)/4n]/I(v, #1)I2

in case IV f .101 = - I(v, 01)12 /4n.

PROOF. Denoting the limit e 10 of e[I + B1,(k)]-' by D,,(k) we obtain from the
resolvent equation (2.2.21) and from Lemmas 2.2.2 and 2.2.4-2.2.7 that

n-lim (H,.,,, - k2)-' = G,.k., - A1(k)D,(k)C,(k),40
k2 e p(H,,.,,,,), Im k > 0. (2.2.56)

The explicit form of D,(k) and a comparison with (2.1.17) then completes the proof.

At this point remarks similar to that after Theorem 1.2.5 apply. In addition,
we would like to mention that the convergence to point interactions can
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be viewed as a variant of Klauder's phenomenon [292]: In fact, assume
e2a"' V E R for some a> 0 and let V be continuous and monotonously
decreasing for 1x1 > R0 for some fixed R0 > 0. Then, in cases II and IV for
y = 0 and in case II with 101 = -I(v, 0)12/4n and in case IV with )01 =
-1(v, ¢, )12/4n for y 0, we obviously get

lim 1(e, ye In e)r:-2 V((x - y)/c) = 0 for all x 0 y (2.2.57)
40

but

n-lim (HY.C.Y - k2)-1 = (HY.a.Y - k2)-' 96 (HY.v - k2)-1, k2 e C - R.
40 (2.2.58)

1.2.3 Stationary Scattering Theory

In analogy to Sect. 1.4 we develop scattering theory for Coulomb-plus point
interactions and prove that scattering quantities corresponding to HY,t,y
converge to those of H,.,.), as r: 10.

We start with stationary scattering theory for the pair H1,Y). Again
we first exploit the rotational symmetry of the problem and mainly treat the
case 1 = 0 because of the s-wave nature of the point interaction in H,,,a,Y. The
analog of (1.4...11'') now reads (cf. (2.2.6))

W
/ J /Y.O.a(k, r) = e-aY/4'r(1 + (iy/2k)) {F O (k, r)10

+ [4na - yF(iy/2k)] G;°o(- k, r) },

k>0, -oo<a<oo, rZ0, yell', (2.3.1)

where F(iy/2k) has been defined in (2.1.19). The functions 0',,0,a(k, r) fulfill (cf.
(2.1.9) and (2.1.10))

-41ra(`I/y.0.a(k))o + (0,y.0.a(k)), = 0,

-q1;' 0.a(k, r) + yr`qi. 0 (k, r) = k20Y.0'.(k, r), r > 0,

Jim ltm e-i(k+it)r'+(iy/2k)Int2(k+it)r'1[hY.O.a - (k + ii)2]-'(r, r') = Y,O.a(k, r),
40 P-00

r>-0; k > 0, -oo<a:oo, y e R. (2.3.2)

Hence 41,0,(k, r) are generalized eigenfunctions of h,,O,a. For I >: I we obtain
(cf. (2.2.6))

41Y,,(k, r) = e-'Y/4k(F(21 + 2))-` r'(l + I + (iy/2k))(2k)`F,(01)(k, r),

k,r>0, y e R, I = 1, 2,..., (2.3.3)

as generalized eigenfunctions associated with hy,,, I = 1, 2, .... The asymptotic
behavior of 0,0,a(k, r) as r - oo then reads

k-1eia,.0.°() sin[kr - (y/2k) ln(2kr) + Sy,0,,(k)],OD

k > 0, -oo < a 5 oc, y e fJ , (2.3.4)
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where the total phase shift Sy,,o,,(k) splits up into

Sr.o,a(k) = 5 0(k) + SY`o,,(k), k > 0, -oo < a < oo, y e R. (2.3.5)

Here

by'O(k) = arg P (I + (iy/2k)), k > 0, y e 18, (2.3.6)

denotes the pure Coulomb s-wave phase shift and the Coulomb modified phase
shift SY.0,,(k) is given by

e2411 1 + 2rziy(e"Yik - 1) [4na - yF'(iy/2k)]-',

k > 0, -o0<oc<oo, yeP. (2.3.7)

For I >- 1, we obtain the ordinary Coulomb phase shifts

5,(k)=argI"(I+1+(iy/2k)), k>0, yeI8, I=1,2,...,
(2.3.8)

,1(k) 0, 1 = 1, 2, ... .6-','

At this point it is again instructive to compare with the Coulomb modified
effective range expansion for real-valued spherically symmetric potentials V
obeying

jO__

dr re2" I V(r) I < oo for some a > 0. (2.3.9)

This low-energy expansion reads (cf., e.g., [95], [96])
1

k2' II [1 + (y/2km)2] (ny(e"vik - 1)-1[cot 6Y°1(g, k) - i]
M=1

+ y[`P(1 + (iy/2k)) - ln(ilyl/2k) + (ik/y)]}

= -(ay`,(g))-' + 2-1r ,(g)k2 + 0(k`),
k>-0, y,geR, 1=0,1,..., (2.3.10)

where the right-hand side of (2.3.10) is real analytic in k2 near k2 = 0 and
SY`,(g, k) represents the Coulomb modified phase shift associated with the
Schrodinger operator -d2/dr2 + I(1 + 1)/r2 + y/r + gV(r). In analogy to the
short-range case y = 0, the coefficients d,,°,(g) and rr`,(g), I = 0,1, ..., are called
Coulomb modified partial wave scattering lengths and effective range param-
eters, respectively.

The fact that

1)' 1 [cot WY',0,.(k) - i] + y[`Y(1 + (iy/2k)) - ln(i IYI/2k) + (ik/y)]

= 47roc + y[`I'(1) + `I'(2)], (2.3.11)

SY`.,(k)-0, 1= 1,2,...

for the Coulomb-plus point interaction Hamiltonian H,,,,,y shows that the
Coulomb modified effective range expansion for this interaction is already
exact in zeroth order with respect to V. In particular, the s-wave Coulomb
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modified low-energy parameters read

av`o,a = - {4na + y['P(1) +'P(2)]}-',
(2.3.12)

a" = 0y.o.a ,

and all low-energy parameters vanish identically in higher partial waves l = 1,
2, .... This proves that the point interaction in H,,,Q,, is a zero-range as well
as s-wave (l = 0) interaction.

Next we introduce the scattering wave function associated with H,,,a,,,

'Pv,a,y(kw, x) = eik0 P,(k(o, x - y) + [4na - yF(iy/2k)]-' -

e-nv/4kr(1 + (iy/2k))2eik'-'Ix - yI-'#-iv12k;1/2(2ie--ixklx - yl),

k > 0, 0) eS2, -oo<a<oo, x,ye183, x0 y, (2.3.13)

where'Pv(kw, x) denotes the pure Coulomb scattering wave function

'Pv(kw, x) = e-x114kr(1 + (iy/2k))erka,x1F1((-iy/2k); 1; i(klxl - k(Ox)),

k > 0, (oeS2, yell. (2.3.14)

A comparison of (2.3.13) with (2.3.1) and (2.3.3) then shows that

x) = 4nIx - yI0,a(kIx - yI)Yo0(w)Y00(wx)
", 1

+ 4nlx - yl-' Y F. '14,v,,(kl x - yl)Yr,(w)Ym(wx),
1=1 m= -1

k>0, -oo<a500, yE18, x#y, wx=x/IxI, (2.3.15)

which follows from the well-known partial wave expansion
1 _

'P,(kw, x) = 4rzIxl-, i'iiv.r(k, r)Y,n(w)Ym(wx), k > 0, y E 18.
1=0 m= -1

(2.3.16)

The Coulomb modified on-shell scattering amplitude fr Q,,,(k, co, ai) correspond-
ing to the pair (H,,a,v, Hr,,,) is then defined by

fvs.a`.r(k (o, (,o') W= lim We-iklxl+(iv/2k)ln(2klxl).

IxI M
IxI-'x=(,

x) - eik ' r'I,v(kw', x - y)]

= e-xv/2kr(1 + (iy/2k))2[4na -

k> 0, co, w e S2, w 0 w, -oo < a 5 oo, y 183, y e P. (2.3.17)

The unitary on-shell scattering operator <Sov a,(k) in L2(S2) finally reads

Yv,a.v(k) = S).,,(k) + 2ike-Rv12kr(1 + (iy/2k))2[4na - yF(iy/2k)]-'

(e-iki-)'Yoo, -)e-'k(')' Y00,

k>0, -oo<a5oo, yell', yell, (2.3.18)
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where ([480], p.198)

S7.,(k) = TY '(k)[r(j + (L2 + 1)'12 - (iy/2k))]-'r(j + (L2 + 4)'/2

+ (iy/2k))Ty(k)

= Ty '(k) Q (Darg r(l + 1 + (iy/2k))Ty(k),
!=0 m= -1

k>0, yeP3, yeR, (2.3.19)

denotes the pure Coulomb on-shell scattering operator in L'(S2) (with L2 the
square of the angular momentum operator and (Ty(k)O)(w) = e-`kwyO(w),
0 e L2(S2)).

Next we briefly describe stationary scattering theory associated with the
Coulomb-type Hamiltonian H,,e,,,. Assume V to be real-valued and

e2aH'H Ve R for some a > 0 (2.3.20)

for the rest of this section and introduce in L2(R3)

v.e.y(kw, x) = ue(x)`Yy(kcv, x),

I c.y(kw,x)=ve(x)TY(-kw,x); E,k>0, wES2, YER 3, yeR,
(2.3.21)

where we recall that

ue(x) = u((x - Y)/E), ve(x) = v((x - Y)/E), c > 0, y e 983. (2.3.22)

The transition operator ty,e(k) then reads

ty,e(k) = E-22(6, yE In c)[I + E-2).(E, ye In E)UeGY,kve]-1,

0<e<Eo, Imk> -a/EO, k' #.9,, ye98, (2.3.23)

where A(-, ) has been introduced in (2.2.12) and the exceptional set 9°y,t is
given by

9, = {k2 >- 0I.(E, ye In e)uGey,ekvby,e = -0y,e for some

0y,eeL2(983)'0".'#0,k>0}, E>0, yeR. (2.3.24)

Due to condition (2.3.20) they,e is discrete and a compact subset of Lebesgue
measure zero [11]. The Coulomb modified on-shell scattering amplitude
f, ',',,(k, w, w') corresponding to (H7,,,,, H,,,) is then defined as

Y. Y.

e,k>0, k2 4'y,e, w, w'eS2, yeR3, yeR, (2.3.25)

and the unitary on-shell scattering operator S,,e,y(k) in L2(S2) associated with
H.,e,,, then reads

(S,.,(k)O)(w) - (k/2ni) L dw'fr e,,(k, co, ,

q eL2(S2), e,k>0, k'0e,,e, weS2, yeR3, yeR. (2.3.26)

Now we are in a position to derive the main results of this section.
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Theorem 2.3.1. Let e2°1'l Ve R for some a > 0 be real-valued and assume
case I. Then for e > 0 small enough

-41re" Y'2kr(I + (iy/2k))-2eik(°-w')Yfi,e,v(k, w w')

= i:(v, (I + uGov)-' u) + O(c2 In e),

k > 0, yeP3, yeP. (2.3.27)

PROOF. The expansion (2.3.27) immediately follows from Lemma 2.2.4 and

`Y Y(ekw, x) = e nY/4kr(1 ± (iy/2k)){1 + ickwx + [ey(IxI + wx)/2] + 0(c2)),

c>0, k > 0, (2.3.28)

since after a translation x -> x + y and a scaling transformation x -, ex, using
(2.2.20), (2.3.25) takes on the form

J$° (k w, w) _ -(4,r) e-ik(a-")YA(c, ye In c)
Y. e.Y

(u'V (ekw), e[1 + B,.,(k)]-'v`P (ekw')). (2.3.29)

Theorem 2.3.2. Let e2aI'lVe R for some a > 0 be real-valued and assume
case 11.

(i) If Ao, I(v, 0)12 /47r we get fore > 0 small enough

-4rre"Y)2*r(I + fr.ec
.r >

4ne"r12k r(I + (iy/2k)) -2eik(w-t*')r f, (k w to ).Q.r > >

+ (c.I,0 + (ye In c)n.0,)<B,0>-' I(v, q)I2 + e(v,Tu)

+ iek<B,o>-' [(v, 0)(0, w xv) - (wxv, 0)(0, v)]

+ cy<B1o>-' [(v, 0)(0, (Ixl - w'x)v) + ((I xl + wx)v, 0)(0, v)]/2

- c<B,o>-' [(v, 4')(i, B10Tu) + (v, TB,00)(0, v)]

- (ye In c) <B, o>-' [(v, #)(J, Bo, Tu) + (v, TB01 qS)(.b, v)]

- <B10>- 2I(v, 0)I2 [e<B2o> + (ye In c(y In e)2<B02>]

+ <B,0>-2I(v, 0)I2 {c<B,oTB,o>

+ (ye Ine)<[B,0TBo, + Bo, TB,o]>

+ e(y In c)2 <B01 TBo, >) + O(e2(In e)3),

k > 0, x= -A101(v,0)I-2, yeI3, YeR, (2.3.30)

where

<B, 0(y, k)> =A,,+ ["r F(iy/2k) I(v, c)I2/4r] + [y(4., v ln(IYI x+/2)v#)/4n],
(2.3.31)

<B20(y, k)> = A20 + [A, oyF(iy/2k) I(v, 4')(2/4R]
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+ [2loy(O, v In(Iylx+/2)vv)/4n]

+ [y2 1n(2k/iIYI)(0, v(x+ + x_)v40)/16n]

+ [y2(0, v ln(IYIx+/2)(x+ + x_)v0)/l6n]

- [k2{(1 + (iy/2k))(iy/2k)[1Y(3) - `Ni) - 2

- (I + (iy/2k))-1 ] - a} 0, v
x x+

vO/'27r

{k2

x+ - x_

- {[-(iy/2k)2[`Y(1+(iy/2k))-`P(I)-`Y(2)+2]/2]

+ } + (iy/2k)} 10, v-"? --v0)/2x}

- {k2{[(iy/2k)2[q'(2 + (iy/2k)) - `Y(2) - `Y(3)]/2]

+ (iy/4k)[Y'(1) - Y'(3) + (1 + (iy/2k))-'] +

1 0, v . vO I'2a (2.3.32)
\ x+ x_ JJJ 11

<Bl (y, k)> =All + [y(5, v(x+ + x-)vO)/16n] + [Ajo I(v, 0)IZ/4n]

+ v 1n(Iylx+/2)vt$)/4n]

+ [1oIyF(iy/2k)I(v, 0)I2/4n], (2.3.33)

<B02) = 202 + [2ol I(v, 0)I2/4n], (2.3.34)

and vH(x+, x_)v denotes a Hilbert-Schmidt operator with integral kernel

v(x)H(x+(x, x'), x_(x, x'))v(x'),

x+(x, x') = Ixl + lx'I ± Ix - x'I. (2.3.35)

(ii) If AoI A - I(v, 0)I2/4n we get for e > 0 small enough

-4neY'21T(l + (iy/2k))-2eik(a,-w')v fsee,Y(k, w, (d)
Y,

_ (y In e)-' <B01 >-' I(v, 0) 12 - (y In e)-2 <Bo1 >-2 <B1 0) I(v, 0)I2

+O((Inc)_3), k>0, yeR3, yeP-{0}, (2.3.36)

where

<B01> = AoI + [I(v, 0)12/4n]. (2.3.37)

PROOF. Follows directly from Lemma 2.2.5, (2.3.28), and (2.3.29).

Theorem 2.3.3. Let e2a'' I V e R for some a > 0 be real-valued and assume
case III. If .lo, 0 or A01 = 0 and (qi, B10(y, k)q,.), 1, 1' = 1, ..., N, is
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nonsingular we get for e > 0 small enough

-4ne"/2kF(1 + (iy/2k))-2elklw-W lyfv e.r(k, w, co')

= e(v, Tu) + O((e In e)2), k > 0, y e R1, y e R - {0}. (2.3.38)

PROOF. A straightforward consequence of Lemma 2.2.6, (2.3.28), (2.3.29), and
Pu=0.

Theorem 2.3.4. Let e241 'I Ve R for some a> 0 be real-valued and assume
case IV and (1.2.84).

(i) If Ao, = - I(v, cb1)12/4n we get fore > 0 small enough

-4nexr/2kr(1 + (iy/2k))-2elkcw-w r fg (k cv cv')

_ -4nexrnT(1 + fsa.r(k, co, a)r.a

N

+ (2oly In e)-1<B1o)11 I(v, g1)12 E I<B1o)1112 + O((In e)-2),
1=2

k>0, a= -A10I(v,g1)I-2, yeR3, yell8-{0}, (2.3.39)

where

<B10(y, k))11 = X10 + CyF(iy/2k)I(v, 01)12/4n]

+ Cy(g1, v In(IYIx+/2)v01)/4n7, (2.3.40)

<B10(y, k))1, = y(o1, v ln(JyIx+/2)v0j)/4ic, I = 2,..., N.

(ii) If A01 96 - I(v, q 1)I2/4n we get fore > 0 small enough

-41ex"i2kr(1 + to, &)

_ (y In e)-1(<Bo, ))11 I(v, #1)12
N

- (y In e)-2I(v, 1)I2 (<Bo1>), i
1.r=1

+ O((ln e)-3),

k>0, yeIF83, yell-{0}. (2.3.41)

PROOF. Again an immediate consequence of Lemma 2.2.7, (2.3.28), (2.3.29),
(v, 01)00,(v,01)=0,1=2,...,N.

By looking at Theorems 2.3.1-2.3.4 one observes that the co-dependent
terms are suppressed by a factor of e.

Finally, we summarize the corresponding expansion for the on-shell scatter-
ing operator Sy,e,y(k):

Theorem 2.35. Let e211'I Ve R for some a >0 be real-valued and assume
(1.2.84). Then, for e > 0 small enough, we obtain the norm convergent
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expansions

S,.,ay(k) = S , (k)

+ (sk/2ni)e-"Y12kr(1 + (iy/2k))2(v, (I + uGov)-'u)-

(e-"k(.)yyoo, O(s2 In e) in case f,

k>0, yeP3, yeR. (2.3.42)

5,,,,,,,(k) = Y,,,,Y(k) + O(s(ln s)2) in case II if A01 = -I(v, q)I2/4n,

k>0, a= -,1oI(v,#)I-2, yEP3, yei8, (2.3.43)

S,,,(k) = Sr.y(k)

+ (y In s)-'(k/2ni)e-"''"2kr(1 + (iy/2k))2<B01)-' I(v, b)I2

-)e-"')y yoo + O((ln e)--2)

in case II if A01 # -I(v, 4')12/4n,

k > 0, yeP3, yeP-{0}. (2.3.44)

S,.E,,(k) = S,,Y(k)

+ (ck/2ni)e-'*11'kr(1 + (iy/2k))2(v, '00,

O((s In s)2) in case III if O or A01 = 0 and

B10(y, k)qS,.), 1, I' = 1, ..., N, is nonsingular,

k>0, yeR3, yeR-{0}. (2.3.45)

S,,E.y(k) = b' , ,Y(k) + O((ln c)-') in case IV if 201 = - I(v, #1)12/4n,

k > 0, a=-,101(v,ye1R3, yeR-{0}. (2.3.46)
SY.E,Y(k) = S7,Y(k)

+ (y In s)-'(k/2ni)e-"'2kr(l + (iy/2k))2(<Bo1))-I I(v, 01)I2.11

O((ln c)-2)

in case IV if Io1 0 -I(v, 01)I2/4n,

k>0, y E 183, y e 13 - {0}. (2.3.47)

Again the expansion coefficients in Theorem 2.3.5 become particularly
simple by choosing y = 0. We also emphasize that only in cases II and IV
(i.e., if H = -A + V has a zero-energy resonance) if, in addition, X101 =
- I(v, q)I2/4n(resp..'cu = - I(v, 0,)11/4x) the limits c 10 of fy e y and S,.,., are
nontrivial and coincide with 1,,Q,y and , a y with at given by (2.2.55). The
coefficients (4n)-' (v, (1 + uG0 v)-' u) and (4x)-'(v, Tu) in f, 6 y in cases I and III
represent the scattering length of the short-range Hamiltonian H = - A + V
[11).
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As in Sects. 2.1 and 2.2 the above results extend to complex point inter-
actions with Im a < 0.

Notes

Section 1.2.1
Most of the material of this section is taken from Albeverio, Gesztesy, Hoegh-
Krohn, and Streit [22]. The operator h7,0,, has first been discussed by Rellich
[392] (cf. also Appendix D). In particular, the boundary values 0o, 0, in (2.1.10)
and the determination of a(h),,o,,,) for y < 0 are due to [392]. The resolvent
equation (2.1.17) first appeared in Zorbas [512].

Section 1.2.2
The estimates needed for the Coulomb Green's function can be found in [96],
[99], and [231 ]. The rest of this section is entirely taken from [22], Sect. 3.
Approximations for other long-range + '2t5"-systems appeared in [420].

Section 1.2.3
The first part of this section concerning stationary scattering theory for
Coulomb plus point interactions extends Sect. 2 in [22]. Stationary scattering
theory for Coulomb-type Hamiltonians can be found in [11], [99], and [199].
Theorems 2.3.1 --2.3.5 are again taken from [22]. For applications concerning
the relation between low-energy parameters for charged and neutral particles,
cf. [ 15], [22], [207], [350]. Applications concerning level shifts in mesic atoms
appeared in [22].



CHAPTER 1.3

The One-Center b-Interaction in
One Dimension

1.3.1 Basic Properties

There are several ways of introducing the quantum Hamiltonian describing
a 8-interaction in one dimension. Following our treatment in Sect. 1.1, we
mainly discuss the approach based on self-adjoint extensions of densely
defined symmetric operators.

For that purpose we define the closed and nonnegative operator H, in the
Hilbert space L2(R) as

aR, _ -dz2, 9' (H,,) = {g a H2,2(R)lg(y) = 0} for some y e R, (3.1.1)

and note that by the general theory of ordinary differential operators ([158],
Ch. XIII.2; [353], Ch. V.17) its adjoint is given by

H* _-dZ gd(H*)=H2.2(Q8-{y})nH2.1(R), yeR, (3.1.2)

where H"(1) denote corresponding Sobolev spaces. By inspection the
equation

FI* O (k) = k20(k), i/i(k) e k2 e C - Iii;, Im k > 0, (3.1.3)

has the unique solution

i/i(k, x) = e'*IX-''I, Im k > 0. (3.1.4)

75
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Thus Ii, has deficiency indices (1, 1) and by Theorem A.1 all self-adjoint
extensions He,, of 14, are given by the one-parameter family

2(He.0 ) _ {g + co, + ce1e4i-Ig a c e C},

He.,(g + cui+ + ceieo-) = 11,g + ici/i+ - ice'Bki_, 0 e (0, 2n), y e ER,

(3.1.5)

i iJ±ilx-YI0+(x)=- Im ±i > 0. (3.1.6)2f±i
Equations (3.1.5) and (3.1.6) imply Q(H9,,) s Moreover, a simple cal-
culation using (3.1.1) and (3.1.6) yields (we define S(y±) = lim,40 (y ± e))

(g + ci/i+ + eeiet/i_)'(y+) - (g + co+ + cei 0_)'(y-) = -c(1 + eie)

= a[g(y) + cu/i+(Y) + ceiet/i-(Y)], (3.1.7)

where we abbreviated

2

- 4 1. (3.1.8)a = - 2 cos 12)/cos
(11

If 0 varies in (0, 2n), a varies in P (\0 TJ2i corresponds to a T +oo) and from
now on we parametrize all self-adjoint extensions of H, with the help of a.
Thus we get

Theorem 3.1.1. All self-adjoint extensions of H, are given by

d2
-Aa,r = dx2'

{g e H2,'(R) n H2,2(R - {Y})Ig'(Y+) - g'(y-) = ag(Y)},

-oo < a < oo. (3.1.9)

The special case a = 0 just leads to the kinetic energy Hamiltonian - A in
L2(R), viz.

2

-A = -dx2, 2 (-A) = H222(18), (3.1.10)

whereas the case a = oo yields a Dirichlet boundary condition at y and hence
decouples (-oo, y) and (y, oo), viz.

{g e H2.'(P)nH2.2(Y8 - {y})Ig(y) = 0}

= H02'2((-00,y))6D H07'2((y, 00)), (3.1.11)

AID, = (- AD-) (- AD+), (3.1.12)

where -AD+ denotes the Dirichlet Laplacian on (y, ±oo) (see [391], p. 253)

9(-AD+) = Ho 2((Y, ±oo)). (3.1.13)
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PROOF. By the arguments sketched above one infers

He,, c -A.,, (3.1.14)

with a given by eq. (3.1.8). But -A.,, is easily seen to be symmetric, which completes
the proof.

By definition - Aa,Y describes a b-interaction of strength a centered at y e R.
In other words, eq. (3.1.9) is the precise formulation of the formal expression
-d2/dx2 + ab(x - y) used in the physics literature. This is seen as follows:
Let formally V(x) = ab(x - y) and "integrate" the Schrodinger equation
-*"(x) + ab(x - y)i/i(x) = E41(x) from x = y - e to x = y + e to obtain
- 0'(y + c) + 41'(y - e) + a4l (y) = E f r±Q dx &(x). Ifs tends to zero we obtain
,'(y +) - 0'(y -) = a4i(y) which is precisely the boundary condition in (3.1.9).

A careful physical interpretation of (3.1.9) exhibits characteristic differences
to the three-dimensional case (cf. Ch. 1) since now a represents the coupling
constant of the 6-interaction whereas in three dimensions -4na just describes
the inverse scattering length.

In the following we summarize basic properties of -A,,,,:

Theorem 3.1.2. The resolvent of - A.,,, is given by

(-A,.Y - k2)-' = Gk - 2ak(ia + 2k)-'(Gk(' - y), ')Gk(' - y),
k2Ep(-Aa,,), Imk>0, -oo<a5 , yeR, (3.1.15)

with integral kernel

(-Aa.Y - k2)-'(x, x') = (i/2k)e'k1"-`1 + a(2k)-'(ia + 2k)-te1ktl"-YI+IY-"'b,

k2Ep(-A,,,), Imk>0, x,x'eR, (3.1.16)

where

Gk(x - x') = (i/2k)e'`1X-"'1, Im k > 0, (3.1.17)

is the integral kernel of (- A - k2)-' in L2(R).

PROOF. From (3.1.17) we obtain the general structure of (3.1.15) by (3.1.6) and
Theorem A.2. To be more precise, we want to verify Krein's formula (A.4) with
B = -Aa,Y, C = -A, and 2(k2) = 2ka/(ia + 2k) (we already know that q(k2, x) _
(i/2k)e'k1"-Y1). To this end, let g E L2(R) and define

fha(x) = ((-A - k2)-'g)(x) + is + 2k(qS(k2), 9)O(k2, x) = 2k J dx' eiklx-x'lg(x')

R

+
a

dx' e'kly-"'lg(x')eR`1`-'t, Im k > 0, k # -ia/2.
2k(ia + 2k) fR

(3.1.18)

Clearly, ha E n H2'2(R - (y)) and by a straightforward computation

dx' e'ku'-"'1 9(x) = aha(y). (3.1.19)h.(Y+) - ha(Y-) _ (ia + 2k) ft
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Equation (3.1.19) then implies that ha e gd(-A.,y) and from

((-A.,y - k2)ha)(x) _ -h;(x) - k2ha(x) = g(x), x c- IR - {y), (3.1.20)

we obtain (3.1.15).

As in the three-dimensional case we add additional domain properties of
-A.,,, and point out the locality of the one-center 6-interaction:

Theorem 3.1.3. The domain )(- Aa,y), -oo < o c::5; Co, y e IFB, consists of all
elements 4, of the type

qi(x) = bk(x) - 2ka(ia + 2k)-'O(y)Gk(x - y), (3.1.21)

where Ok a Y(-A) = H2.2(08) and k2 e p(-&,,,), Im k > 0. The decomposi-
tion (3.1.21) is unique and with 0 e (-A.,,,) of this form we obtain

(- A., - k2)c = (-A - k2)#. (3.1.22)

Next, let a ao(- Aa,y) and suppose that q1 = 0 in an open set U c R. Then

PROOF. Since the proof is analogous to that of Theorem 1.1.3 we omit the details.

Finally, we discuss spectral properties of -A..
Y:

Theorem 3.1.4. Let -Co < a < oo, y e R. Then the essential spectrum of
-Aa,,, is purely absolutely continuous and covers the nonnegative real axis

Qua(-Aa.V) = aac(-Aa.y) = L0, oo), asc(-Aa.),) = 0. (3.1.23)

If -Co < a < 0, -Aa,y has precisely one negative, simple eigenvalue, i.e., its
point spectrum o (-Aa,,.) reads

ap(-Aa,y) _ (-a'/4), -oo <a< 0, (3.1.24)

with

(-a/2)112eals-yV2, -Co < at < 0, (3.1.25)

its strictly positive (normalized) eigenfunction. If at >_ 0 or at = +oo, -Aa y

has no eigenvalues,

av( -A.,,,) = 0, a 0 (- oo, 0). (3.1.26)

PROOF. Since one can follow the proof of Theorem 1.1.4 step by step we omit any
details.

The pole structure (ia + 2k)-' of (3.1.16) with respect to k not only deter-
mines the point spectrum but also gives the existence of resonances for the
6-interaction Hamiltonian - Aa, y: If at >- 0, then - Aa,, has a simple resonance
at k is/2 with corresponding resonance function 14iko(x) = ea""'V2, of >- 0
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(note that for a # 0 the apparent first-order pole at k = 0 actually cancels in
(3.1.16)).

An alternative way of introducing 5-interactions of strength a centered at
y can be obtained from the theory of quadratic forms. The form Q.,,, in L2(R)
defined as

Q.,(9, h) = (g', h') + a9(y)h(y), -9(Q.,,) = H2.'(R), a, y e R, (3.1.27)

is easily seen to be densely defined, semibounded, and closed. The unique
self-adjoint operator associated with Qa,, is just given by - A.,, (see, e.g., [389],
p. 168, [41], [188], [510], [511], [512]). Note that this approach does not
work in three dimensions since there is no appropriate closable form in this
case. Another possibility of defining 8-interactions is provided by the use of
local Dirichlet forms as developed in [32], [33] (cf. Appendix F): Consider in
L2(I8; 0.',, dx) the energy form

Ea.y(g, h) = fR dx Oa,(x)9,(x)h'(x), = Co(R), (3.1.28)

where

.y(x) = ealx-rV2, a, y e R. (3.1.29)

It follows that 8,,y is closable and that a'(-AQ, + (a2/4))O.'), is the unique
self-adjoint operator associated with its closure. As shown in Sect. 1.1 and
Appendix F this method is also applicable in the three- and two-dimensional
cases.

We finally note that the above results are not confined to self-adjoint
extensions (a a R) of Ii,, but easily generalize to accretive extensions of iii',
(lm a < 0) and thus to complex 6-interactions.

1.3.2 Approximations by Means of Local Scaled
Short-Range Interactions

In this section we show how to approximate - A.,, by means of scaled
short-range Hamiltonians in the norm resolvent sense. We first introduce
some notations. Let

Gk=(-A-k2)-', Imk>0, (3.2.1)

Gk(x, x') = 2eiklz-x'1, Imk > 0, x, x' a ld,
(3.2.2)

denote the "free" resolvent and its integral kernel. If V E V (R) is real-valued
(which we assume from now on) we define

v(x) = I V(x)I'12, u(x) = I V(x)I"2 sgn[V(x)] (3.2.3)

such that uv = V. Then we note



80 1.3 The One-Center 6-Interaction in One Dimension

Lemma 3.2.1. Let Ve L'(R). Then V is form compact with respect to -A,
i.e.,

I Vl'"2(-A + E)-'/2 e 1.(L2(R)), E > 0. (3.2.4)

In particular,

uGkv a .2(L2(R)), Im k > 0, k00, (3.2.5)

and

uGkv a 9,(L2(R)), Im k > 0. (3.2.6)

If, in addition, (1 + I-I)'+a Ve L'(R) for some 6 > 0, then

uGkv a R1(L2(R)), Im k z 0, k :A 0. (3.2.7)

PROOF. Equations (3.2.4) and (3.2.5) follow from

1 1 21m klx-x'I
2 dx dx' IV(x')I< oo, lm k Z 0, k # 0. (318)41k

a=

Equation (3.2.6) is discussed in [391], p. 384, and (3.2.7) is proved in [438], p. 72.

Next we introduce

0(X) = v(x - 8-'Y), a(X) = u(x - 8-'Y), E > 0, y E J8, (3.2.9)

and

b(e, k) = A(e)u'Gkv', Im k > 0, (3.2.10)

where A is real-analytic near the origin with 2(0) = 0. By the estimate (3.2.8),
B(e, k) extends to a Hilbert-Schmidt operator for Im k > 0, k:0 0, and due
to (3.2.4) the form sum

H,(e) = -A+2(e)V(- -e-'y), E>0, yeR, (3.2.11)

is well defined (cf. Appendix B). Moreover, from Theorem B.1(b) we infer the
resolvent equation

(H,(e) - k2)-' = Gk - A(e)Gkv"[t + 9(e, k)]-'uGk,

k2 a p(H),(e)), Im k > 0. (3.2.12)

In addition, we introduce the unitary scaling group

(Ue9)(x) = e-u2g(x/e), z>0, g E L2(R), (3.2.13)

and the family He,, of self-adjoint operators

He,, =
e-2 UeH,(e)UU ' = -A + f (e)e-2 V((' - y)/E),

e>0, (3.2.14)

In order to discuss the limit of He,, as e 10 it is convenient to define Hilbert-
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Schmidt operators Ae(k), BB(k), Ce(k), e > 0, with integral kernels

Ae(k, x, x') = Gk(x - y - ex')v(x'), Im k > 0, (3.2.15)

Be(k, x, x') = e-' A(e)u(x)Gk(e(x - x'))v(x'), Im k:2: 0, k # 0, (3.2.16)

CE(k, x, x') = u(x)Gk(ex + y - x'), Im k > 0. (3.2.17)

Then a translation x -+ x + (y/e), e > 0, together with

e2Ue.GkUr' = Gk1e (3.2.18)

leads to

(H,.y -
k2)-'

= e2 Uj[H,(e) - (ek)2]-' Ue '

= Gk - e-'2(e)Ae(k)[l + BB(k)]-'Ce(k),

e>0, k2ep(He,)), Imk>0, yeR. (3.2.19)

Convergence properties of A, Be, and Ce are summarized in

Lemma 3.2.2. Define rank-one operators A(k), B(k), C(k), through their
integral kernels

A(k, x, x') = Gk(x - y)v(x'), Im k > 0, (3.2.20)

B(k, x, x') = 1'(O)Gk(O)u(x)v(x'), Imk >- 0, k # 0, (3.2.21)

C(k, x, x') = u(x)Gk(y - x'), Im k > 0. (3.2.22)

Then, for fixed k, Im k > 0, Ae(k), Be(k), Ce(k) converge in Hilbert-Schmidt
norm to A(k), B(k), C(k), respectively, as e j 0.

PROOF. Clearly,

w-lim A,(k) = A(k), w-lim B1(k) = B(k), w-lim Ce(k) = C(k) (3.2.23)
e1o elo elo

by dominated convergence. By Theorem 2.21 of [438] it suffices to prove

lim i1Ae(k)II2 = IIA(k)112' lim IIBe(k)II2 = IIB(k)112, lim IIC1(k)II2 = IIC(k)II2,
40 e10 ej0

(3.2.24)

which is obviously true.

Now we are prepared for the main result of this section and state

Theorem 3.2.3. Suppose V e L'(R) is real-valued and y e R. Then, if k2 e
p(-A.,,), we get k2 e p(HH,,) for e > 0 small enough and He,, converges to
-Aa., in norm resolvent sense

n-lim (He,., - k2)-' = (-Aa.y - k2)-', y e 118, (3.2.25)
C40

where

of =1'(O) L dx V(x). (3.2.26)
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PROOF. From (3.2.19) and Lemma 3.2.2 we conclude

n-lim (He,, - k2)-' = Gk - d'(0)A(k)[I + 8(k)]-'C(k),
CIO

Now

implies

k2cC-R, Im k > 0. (3.2.27)

B(k) = A'(0)G,,(O)(v, )u (3.2.28)

[I + B(k)] I - 2'(0)Gk(0)[I + d'(0)(v, u)Gk(0)] '(c, )u, (3.2.29)

and insertion of (3.2.29) into (3.2.27) gives (3.1.15) with a = a'(0)f adx V(x).

In particular, HE,, converges to - A as e 10 if and only if A'(0) f R dx V (X) = 0,
i.e., if the d-interation at the point y has vanishing strength. We would like
to emphasize that this kind of approximation scheme automatically yields
interactions with finite strength, Jai < co. The case a = +oo, corresponding
to a Dirichlet boundary condition which completely separates f8 into (-oc, y)
and (y, oo), is thereby excluded.

In contrast to the three-dimensional case no zero-energy properties of
H = - A -I- V enter into the above discussion.

We now note that Theorem 3.2.3 has a simple interpretation in terms of
"6-sequences": For smooth functions V the potential term in HE,, may be
written as

[2'(0) + O(E)] E VI E(x - y)(3.2.30)
which converges to [R'(0) f ndx' V(x')]b(x - y) in the sense of distributions
([ 197], Ch. 1.2]) as & 10.

Of course, ..(e) need not be real-valued. The proof of Theorem 3.2.3 extends
in a straightforward manner to the case of complex b-interactions (cf. the end
of Sect. 3.1). We also remark that the above proof indicates another possibility
of defining bound states or resonances of -A., in terms of (simple) zeros of
the Fredholm determinant

det[1 + B(k)] = 1 + Tr[B(k)] = 1 + 2kA'(0)
J

dx V(x) = I + (ia/2k)
e

(3.2.31)

(note that by (3.2.28) B(k) is of rank one).
Consequences of Theorem 3.2.3 concerning convergence of eigenvalues

and resonances and convergence of the scattering matrix are discussed
in the following two sections. Here we only note that (3.2.25) implies
strong convergence of the evolution groups a-1' to e"(-4-0 uniformly
with respect to t for t varying in compact intervals ([283], p. 504) as
Ej0.
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1.3.3 Convergence of Eigenvalues and Resonances

In this section we go one step further and prove convergence of eigenvalues
and resonances of H,,,, towards that of -A., as a 10. First, we note that
Theorem B.1(b) applied to H,(s) and Ht,, immediately yields

oess(H,(e)) = a.,,(-A) = (0, oo), e > 0, y e R. (3.3.1)

By Theorem 3.1.4 the same results hold in the limit s 10,

a ss(- A.,.,) = a..(- A) = [0, oo ), -co < a < oo, y e R. (3.3.2)

Having located the essential spectrum we now turn to a discussion of the
discrete spectrum.

A detailed analysis of B,,(k) yields

Theorem 3.3.1. Assume e2' 1 Ve L' (R) for some a> 0 is real-valued and let
y e R.

(a) If n-1im41o(H,,,, - k2)-' = (-A.,, - k2)-1, k2 E p(- A.,.,) with a < 0,
- A,,, has the simple eigenvalue E0 = ko < 0, ko = - is/2 =
-(i/2)a.'(0) f ndx V(x) and for e > 0 small enough, a(H,,,) n (-ao, 0)
consists precisely of one simple eigenvalue E, = k, < 0 which is analytic
insnear e=0

k,, = if- E,, = ka - 4 A"(0)4' J dx V(x)

r
a

- i
A'(0)2C J dx dx' V(x)Ix - x'I V(x') + O(e2).

4 u=
(3.3.3)

(b) If n-Iim,40(H,,,, - k2)-1 = (-A.,, - k2)-1, k2 e p(- A.,,) with a =
2'(0) fK dx V(x) > 0, - A,,,, has no eigenvalues and for c > 0 small
enough H, ,y also has no negative eigenvalues.

(c) If n-lim,lo(H,,, - k2)-1 = Gk, k2 e p(-A), or equivalently, if at =
2'(0) IR dx V(x) = 0, then as e 10, H,,, has at most one negative eigen-
value E,, = k,, < 0 analytic in a near e = 0 which is absorbed into the
essential spectrum

k, a"(0)e dx V(x)4fR
-1A'(0)2edxdx'V(x)Ix-x'IV(x')+O(e2).

4 Ju:
(3.3.4)

PROOF. We first note that due to (3.2.19) and Theorem B.l (c), H,,, has an eigen-
value E,, = k,, < 0 if and only if B,(k) has an eigenvalue -1, i.e., if

B,,(k,)0, = -q,, q, E L2(R), 0, # 0, e > 0, (3.3.5)

and also the corresponding (geometric) multiplicity remains preserved.
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Next, following [435], we decompose

BB(k) = Le(k) + Me(k), k 960, Im k > -a/eo, 0< c < eo, (3.3.6)

with

Le(k, x, x') = Zkc-'A(c)u(x)v(x'), k e C - {0), (3.3.7)

MM(k, x, x') = 1]v(x'), Im k > -a/co. (3.3.8)

Obviously, M,(k) is analytic in (c, k) for iej small and Im k > -a/so, and one infers
the (norm convergent) expansion

Me(k) = eN + O(c2), Im k > -a/co, (3.3.9)

N(x, x') = -Zd'(0)u(x)ix - x'Iv(x') (3.3.10)

uniformly in k if k varies in compact subsets of Im k > -a/so. Equation (3.3.9) and
the formula ([438], p. 49)

det(l+A+B+AB)=det(1+A)det(1+B) (3.3.11)

imply

det[1 + BB(k)] = det[1 + Me(k)] det{1 + [1 + MM(k)]-' Le(k)}. (3.3.12)

One then concludes that k2 < 0 is an eigenvalue of H,., if and only if

det{l + [l + Me(k)]-'L,(k)} = l + Tr{[1 + Me(k)]-'Le(k)}

= I +
2k

c-'.1(c)(u, [1 + MM(k)]-'v) = 0. (3.3.13)

Since [1 + Me(k)]-' Le(k) has rank one and is analytic in c and k for lei small and
Im k > -a/eo, VA 0, det{ 1 + [1 + MM(k)]-' Le(k)} is analytic with respect to c and
k in the same domain [261]. The fact that ko is a simple zero of the Fredholm
determinant

det[l + Lo(k)] = I + i A'(0) J dx V(x) (3.3.14)
K

and

det[1 + L0(ko)] = 0, ak det[l + Lo(k)]i,t_,, # 0 (3.3.15)

proves by the implicit function theorem that in a neighborhood of (0, ko),
det { I + [I + MM(k)] -' Le(k) } has precisely one simple zero ke which is analytic in c
near c = 0

k, = ko + 0(e). (3.3.16)

By Theorems B.1(c) and B.2, Ee = k< < 0 is a simple eigenvalue of He,,. Inserting

[I + M,(k)]-' = 1 - eN - [M,(k) - eN] + Me(k)2[I + MM(k)]-' (3.3.17)

into (3.3.13), solving for k as a function of a yields (3.3.3). Since any solution ke of
(3.3.13) obeys (3.3.16) part (a) is proved.
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If a= ,.'(O) f R dx V(x) > 0 then, for a small enough, any solution k, of (3.3.13) has
Im k, < 0 which proves part (b).

To prove (c) we multiply det[l + L0(k)] and det{l + [1 + Mt(k)]-'LE(k)} by k.
Then

{k det[l + Lo(k)])Ik=o = 0, 8k{k det[l + L0(k)]) = 1 (3.3.18)

and analyticity of k det { l + [I + M`(k)]-' L,(k)) near a = k = 0 again proves
by the implicit function theorem that in a neighborhood of e = k = 0,
k det{(1 + [1 + M,(k)]-' Ljk)) has one simple zero k, which is analytic in a

k, = ak, + O(a2) (3.3.19)

and k, is a negative eigenvalue of H,,, iff Im k, > 0 for a > 0. The rest follows from
the proof of part (a).

If, e.g., in Theorem 3.3.1(c) 2'(0) 0 0, f Rdx V(x) = 0, or if ,%'(0) = 0,
f R dx V (x) # 0, A"(0) 96 0, then k 1 96 0 in (3.3.19) (fR2dx dx' V(x) I x - x' j V(x')
is strictly negative if 5Rdx V(x) = 0 [435]).

Theorem 3.3.1(a) and (c) describe the convergence of eigenvalues of HE,,. to
those of - A,,Y. For resonances (contained in Theorem 3.3.1(b)) the corre-
sponding result reads

Theorem 3.3.2. Let y e R and assume that e2"I i V e L' (18) for all a > 0
is real-valued. If n-limL, O(H,,Y - k2)-' = (-A,,, - k2)-' with a=
A'(0) J R dx V(x) > 0, then - A,,, has the simple resonance ko = - io /2 =
-(i/2),.'(0) f Rdx V(x) and, for a > 0 small enough, H,,, has precisely one
simple resonance k,, Im k, < 0, near ko which is analytic in a near a = 0 and
fulfills (3.3.3). Similarly, if a = .1'(0) f Rdx V(x) = 0, then, for e > 0 small
enough, H,,, has at most one simple resonance k, which is analytic in a near
a = 0 and fulfills (3.3.4).

PROOF. Starting with (3.3.6) the proof is identical to that of Theorem 3.3.1(a) and
(c) with the only exception that now Im k, < 0.

In sharp contrast to the corresponding three-dimensional results in
Sect. 1.3 zero-energy properties of H = -A -+ V played no role in Theorems
3.3.1-3.3.3. In addition, there are no eigenvalues of H,,, approaching infinity
ase10.

1.3.4 Stationary Scattering Theory

Finally, we develop scattering theory for 6-interactions and prove conver-
gence of the scattering matrix associated with H,,, to that of the 6-interaction
Hamiltonian -A,,Y as a 10.

We start with the scattering wave functions of -A,,Y. Define

'1',,,(k, a, x) = e"" - ia(2k + ia)-' eikoYeiklx-YI,

k>-0, o=±l, -oo<a<oo, x,yeR. (3.4.1)
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Then by inspection

y+) = wa,r(k, a, y-),

y+) - PP.v(k, or, Y-) = a`Ya.r(k> a> y),

a,x)=k?T.,y(k,a,x), xeR-{y},
lim lim (2k/i)e±i(k+ie)x'[_& - (k + ie)2]-'(x, x') x),
610 X'-T-00

(3.4.2)

xeR; k>O,
which shows that `I'Q,y(k, a) are generalized eigenfunctions ([353], Ch. VI)
associated with -O,,,v corresponding to left (a = + 1) and right (a = - 1)
incidence. The corresponding transmission and reflection coefficients from the
left and right are then defined by

9a',,(k) = lim a-ikx'P r(k, + 1, x),
x-,+00

.9 r(k) = lim a+iks'I' r(k, -1, x),

9Pa y(k) = lim e" [''Q,r(k, + 1, x) - eikx],

Ra,y(k) = lim e-ikx[`YQ.r(k, - 1, x) - e-ikx],
x-++00

(3.4.3)

where -,'v(k) equals Q y(k) because of time reversal invariance. Explicitly, we
get

;'v(k) = (2k + ia) 2k = ,T. r

y(k) = -(2k + ia)-' iae2'ky,

(3.4.4)

(3.4.5)

RQ,y(k) = -(2k + ia)-'iae-2iky; k >- 0, -ao < a < oo, y e R. (3.4.6)

The unitary on-shell scattering matrix Y..v(k) in C2 which is defined by

Y..v(k) _ y(k) .r,y(k)
k >- 0, -oo < a < oo, y e 118, (3.4.7)

then simply reads

a,r(k) = (2k + 'x)_' 2k -iae-MY],

- 2k

k>0, -oo<a<oo, yeR. (3.4.8)

We note that in the low-energy limit k - 0 (resp. in the high-energy limit
k -+oo)

0 1.9v(k) k~_o -1 01, y e ff8, -oo < a'S oo, a 0 0,

9' ,,(k) 1, a, y e R.
(3.4.9)
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Obviously, b° (k) has a meromorphic continuation to all of C such that the
pole of Y .,(k) coincides with the bound state (a < 0) or resonance (a > 0) of

For an illustration of I9Z?(k)12, cf. Figure 40(a) [397] in
Sect. 111.2.3, p. 275.

The above approach is an entirely stationary one, the relation to time-
dependent scattering theory is described in Appendix E.

Next, we briefly discuss stationary scattering theory associated with HH,Y.
Let u and v be as in Sect. 3.2 and introduce in L2(I8) the states

(Dc,y(k, a, x) us(x)eikox>
(3.4.10)

e ,(k, a, x) =
vc(x)eikox; E > 0, k > 0,

where

u,(x) = u((x - y)/e), v,(x) = v((x - y)/E), c > 0, y c- R. (3.4.1 1)

The transition operator tE(k) is then defined as

t,(k) + E-2, (e)uGkve]-',

E>0, Imk>-0, k e0, k' #.f,, (3.4.12)

where , has been introduced in Sect. 3.2,

ef, = {k2 E C - {0}I)l(E)uGFkvOE = -0, for some 0. E L2(I8), 0,:A 0, Im k >- 0),

z > 0, (3.4.13)

and the on-shell scattering amplitude f,,,00.(k) reads

IF.v.,,,(k) = (2ik)-' (Nf Y(k, a), t,(k)4 r- (k> a'))>

E, k > 0, a, a = ± 1, y E R. (3.4.14)

(Using Jost function techniques one can show that tf, n (0, oo) = 0 (cf.,
e.g., [122], Ch. XVII).) The unitary on-shell scattering matrix Se,,(k) _
[SE,Y,QQ,(k)]Q,Q,= +, in C2/ associated with H,,., is then simply defined as

aoo. + fe,, .,(k), c, k > 0, Or, a = ± 1, y E R. (3.4.15)

In particular, the transmission and reflection coefficients ([122], Ch. XVII)
corresponding to H,,, are given by

TIY(k)
= SF.Y.++(k) = Se,,.--(k) = T`y(k)>

Re,v(k) = Sc.y.-+(k)> Rt,Y(k) = SF,Y,+-(k), c, k > 0, y E R.
(3.4.16)

After these preliminaries we are able to state our main result concerning
the expansion of the on-shell scattering matrix S ,,(k) around its limit .9 ,,(k)
as c-0:

Theorem 3.4.1. Assume V e L' (I8) to be real-valued and let a =
A'(0) I R dx V(x), Y E R. Then S ,,(k), k > 0, converges to .9°,(k) ass 10. If, in
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addition, e2al '' V e L' (R) for some a > 0, then SS,,,(k) is analytic in a near s = 0
and we obtain the expansion

eSy''(k) + O(82), a=A'(0)J dx V(x), k>0,
es

(3.4.17)

where

S,,,, ++(k) = Sr.] - - (k) = (2k + ia)-' {(2k + ia)-' 2ik i'(0)(v, Nu)

-(2k + ia)-'(a/2)2"(0)(v, u) - (i/2), "(0)(v, u)

+ kl'(0)[(v, ux') - (vx, u)]}, (3.4.18)

SE Y ++ (k) = (2k + ia)-1e±2`kr{(2k + ia)-'2ik2'(0)(v, Nu)

-(2k + ia)-'(a/2)A"(0)(v, u) - (i/2

± kA'(0) [(v, ux') + (vx, u)]}.

)A"(0)(v, u)

(3.4.19)

Here the kernel of the Hilbert-Schmidt operator N has been defined in
(3.3.10), and + or - on the right-hand side of (3.4.19) corresponds to the
reflection coefficient from the left or from the right, respectively.

PROOF. It suffices to treat the transmission coefficient Tty(k) = T',(k) = T Y(k).
By a translation x -+ x + y and a scaling transformation x - ex, using (3.2.18) we get

T,,,(k) = 1 + (2ik)-' (I ,,(k, + 1), tjk)(Df 7(k, + 1))

= I + (2iek)-' A(e)(ve"k", [1 + 2(e)uGekv]-'ue'E"'), e, k > 0, (3.4.20)

where in obvious notation x and x' denote integration variables. Assume that
e2oI'l Ve L'(R) for some a > 0. Then

2(e)uGekv = (i/2k)2'(0)(v, )u - eN + e(i/4k)(v, )u + 0(52), k > 0, (3.4.21)

is analytic in Hilbert-Schmidt norm around e = 0 (cf. the discussion following
(3.3.6)). Applying formula (1.3.47) we immediately infer that [1 + A(e)uGkv]-' and
hence the right-hand side of (3.4.20) is analytic in a near e = 0. The result (3.4.18)
then simply follows by a straightforward Taylor expansion of all quantities in
(3.4.20) with respect to a near e = 0. Similarly, if Ve L' (08), one proves by dominated
convergence that

lim II A(e)uGGkv - (i/2k)l'(0)(v, )uII2 = 0, k > 0. (3.4.22)
c10

Thus

n-lim [1 +2(e)uGkv]-' = [i - (i/2k)A'(0)(v, )u]-'
40

= I - [-i2k(A'(0))-' + (v, u)] -'(v, -)u (3.4.23)

by applying (1.3.47) again. Inserting (3.4.23) into (3.4.20) finally yields

lim T,* ,(k) = I + (2ik)-2'(0)(v, {1 - [-2ik(2'(0))-' + (v, u)] -'(v, -)u) u)
C40

= 5,,,,(k), k > 0, (3.4.24)

with a = 2'(0) f ndx V(x).
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We note that, in analogy to our considerations in Sect. 3.2, SE,,(k) converges
to I as z 10 if and only if at = ).'(0) J R dx V(x) = 0, i.e., if the 6-interaction at
the point y actually disappears.

As in Sects. 3.1 and 3.2 the above results directly extend to the case of
complex S-interactions with Im a < 0. In this case 9'.,,(k) and Se,,(k) become
contractions in C2.

Notes

Section I3.1
The one-center point interaction in one dimension has been studied, e.g., in
[211, [41], [47], [106], [107], [112], [133], [172], [177], p. 28, [187], [188],
[220], [371], [510], (5111, [512]. Self-adjoint extensions of symmetric opera-
tors, particularly in the context of point interactions, are treated in [184],
[512]. The quadratic form approach to defining Hamiltonians is extensively
discussed in [283], Ch. VI; [389], Ch. X; [434], Ch. II. The reformulation of
Schrodinger dynamics in terms of local Dirichlet forms has been reviewed in
[462] (see also [25], [106], [107], [495], [496] and Appendix F). We also
mention another possibility of introducing S-interactions in L2(R). Let

A, = dx + (a/2)E,, 1(A,) = Hz,' (R), a, y e R,

where

1,

-1,
x > y,
x<y.

Then

Adx vY+ (a/2)E,9)(A) = H2,' (R)

and by a simple computation

AvA, = -A,,,r + (a2/4), A,**A, _ -A-a,,, + (a2/4).

Finally, we note that an appropriate U, place transform of (3.1.16) explicitly
yields the semigroup integral kernel associated with -A.,,:
e ='-a.,)(x, x')

_ (a/2) exp{(a2z/4) + (a[Ix - YI + Ix' - YI3/2))

([1 - 1>(2-'z'/2[a + z-'(Ix - YI + Ix' - YI)])] + 6(-a)),
Re z > 0,

where denotes the error function [1] and

p(µ)= j1, µ>0,
l0, p <0.
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The corresponding unitary group is obtained after the substitution

z -+it,
( eg' 4

00" = ititn e-iR/4,
t>0,
t<0.

An integral representation for the above integral kernel has been derived in
[195] (cf. also [412]).

A Feynman path integral approach to -A.,, appeared in [218].
The Stark effect in connection with -A,,,,, is considered in [36].

Section 1.3.2
This section closely follows [21], where the first proof of norm resolvent
convergence towards point interactions in one dimension has been derived.
For earlier results on strong resolvent convergence using local interactions
we refer to [ 187], [188]. Separable interactions are discussed in [ 112], [129],
and [512]. For recent approximation results for more general systems of the
type -d2/dx2 + V(x) + aS(x), cf. [171], [415], [417].

Section 1.3.3
Here the whole treatment is taken from Albeverio, Gesztesy, Heegh-Krohn,
and Kirsch [21). Since by eq. (3.2.14) c2 H`,, is unitarily equivalent to H,,(e),
and the latter is unitarily equivalent to -A -+ 2(c) (just by translations),
and 2(c) = 0(c) as c - 0, the results on bound states of H`,, could have been
derived directly from the detailed analysis of Klaus [293] and Simon [435]
on weakly coupled Schrodinger operators in one dimension. In particular,
our main tool for using Fredholm determinants is taken from [435]. If the
potential is not exponentially decreasing at infinity, analyticity of ke around
c = 0 in (3.3.3) and (3.3.4) is lost. Instead, one obtains asymptotic expansions
(the order of which depends on the decrease of Vat infinity) as shown in [293],
[294], [296].

Section 1.3.4
Scattering theory in connection with 6-interactions has been discussed, e.g.,
in [47a], [156], [ 173], [200], [218], [314], [315], [347], [379], and [387]. Our
brief summary of stationary scattering theory for Schrodinger operators on
the line is taken from [ 100], [ 142], and [359]. The first part of Theorem 3.4.1
appeared in [379]. We also remark that the assumption (1 + lxIt)Ve L'(R)
for suitable m e N turns the analytic expansion for SS,,(k) around s = 0 into
an asymptotic one, the order of which depends on m.



CHAPTER 1.4

The One-Center 8'-Interaction in
One Dimension

While there is one kind of point interaction in two and three dimensions, we
will show in this chapter that there are more possibilities in one dimension.

First, we have the point interaction corresponding to a 8-function, i.e.,
similar to the two- and three-dimensional cases which we exhibited in Ch. 3.
In addition, we will now derive the existence of a four-parameter family of
self-adjoint extensions of a symmetric operator with boundary conditions at
a particular point in R. However, here we will treat only the one-parameter
family corresponding to a 8'-interaction.

We briefly describe basic properties of the b'-interaction in one dimension.
Since the technical tools needed in the proofs are identical to those in Sects.
3.1 and 3.4 we essentially skip the details.

In the Hilbert space L2(R) we define the closed and nonnegative operator
1-I as

-9(14,) = {g a H2.2(R)Ig(y) = g'(y) = 01 = Ho22(IR - {y})

for some y e P. (4.1)

whose adjoint is given by

d z
R, d--, Q(TY)=H22(IR-{y}), ye08. (4.2)

A straightforward calculation shows that the equation

(k) = k2i/i(k), fi(k) e i(RR ), k2 e C -R, Im k > 0, (4.3)

91
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has the solutions

4i,(k,x)=
,

k
x)- (0, x>y, Imk>0. (4.4)

x>y
02(< , eik(Y-x)x x <Y$ y,

teik(x-v),

0,

Thus flY has deficiency indices (2, 2) and hence it has a four-parameter family
of self-adjoint extensions. We are particularly interested in a special one-
parameter family of self-adjoint extensions E p, defined by

p.Y

d2

dx2'

{g E Hi.2(R - {y})I g'(y+) = g'(y-), g(y+) - g(y-) = Qg'(y)},
-oo < /3 5 oo. (4.5)

The special case Q = 0 leads to the kinetic energy Hamiltonian -0 in L2(R).
The case 13 = oo leads to a Neumann boundary condition at y and decouples
(-oo, y) and (y, oo), viz.

-9(Ebo.Y) = (g E H2.2(R - {y})I g'(y+) = .9'(y-) = 0)

oo.Y = (-AN-) +O (-AmA

where -AN+ denotes the Neumann Laplacian on (y, ±oo),

(4.6)

(4.7)

.9(-AN±) = {g E H2'2((y, ±oo))Ig'(y±) = 0). (4.8)

By definition, SO, describes a 6'-interaction centered at y e R. The resolvent
of Hp,Y is described in

Theorem 4.1. The resolvent of Bp,Y is given by

('-p.Y - k2)-' = Gk - 2/3k2(2 - ifk)-I(vk(' - Y), y),

k2 a p(Bp,Y), Imk > 0, -oo < fi 500, y e R, (4.9)

with integral kernel

(sp.Y - k2)-1(x, x')

= (i/2k)eiklx-x1

where

eik(x-Y), x > Y1
-

eQ(x.-v', x' > y
+ (fl/2)(2 - ilk)-i -eik(Y-x)'

x < y x' < y ,

k2 a p(B,,Y), Imk > 0, x, x' a R, (4.10)

eik(x-Y) X > y,
Gk(x

- y) =
(i/2k)

-eik(Y-x), x < y, Im k > 0.
(4.11)
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PROOF. Krein's formula (cf. Theorem A.3) implies

2

k2)-1 = Gk - (4k2)-1 -)'/i,(k). (4.12)

By taking the adjoint of (4.12) one infers

2,M(-k) = X.-(k).

Next, let g e L2(R) and define

hp(x) = ((-A - k2)-1g)(x) - 211(k)(4k2)-1e,k(x-v)

f dx e"(x'-,)g(x')

00

-.1.12(k)(4k2)-1eik(z-Y) f-OD dx' e,k()F-X,) g(x'), x > Y,

hp(x) = ((-A - k2)-1g)(x) - A22(k)(4k2)-1ea(v-x) I r dx' eu(r-x,)g(x')

(4.13)

-.21(k)(4k2)-'e (Y-x)

J
dx' x < Y. (4.14)

v

After imposing the boundary conditions

he(y+) = h;(y-), hp(y+) - hp(y-) _ /Jhe(Y) (4.15)

one obtains

2(k) = -2#k2(2 - iflk)-' (4.16)

Note that det[a.(k)] -_ 0 (cf. the discussion in the Notes). In fact, by inserting (4.16)
into (4.12) the expression (4.12) reduces to (4.9).

Further information about Sp,, is contained in

Theorem 4.2. The domain .9(!p,,), -oo < / 500, y e P. consists of all
elements of the type

,p(x) = 0k(x) - 2if3k(2 - iflk)-1A,i(y)tk(x - y), (4.17)

where bk e -9(-A) = H2.2(R) and k2 e p(Sp,,), Im k > 0. The decomposition
(4.17) is unique and with kb e -9(E,,y) of this form we obtain

('fl'y - k2)4, = (-A - k2)4k. (4.18)

Next, let .i e and suppose that li = 0 in an open set U G R. Then
Sp,,gi = 0 in U, i.e., S p,, describes a local interaction.

PROOF. Identical to that of Theorem 3.1.3.

Spectral properties of Ep,, are summarized in
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Theorem 4.3. Let -oo < /3 < oo, y e R. Then the essential spectrum or Ea.y
is purely absolutely continuous and covers the nonnegative real axis

[0, x), a5.("a.y) = 0. (4.19)

If -x < It < 0, 5a , has precisely one negative, simple eigenvalue, i.e., its
point spectrum vP(Ba ,) reads

= { - 4/#'), -oo < fi < 0, (4.20)

with

1/2
e(2/0)(x-y) x > y,

(-/t/8) e(2;a)(r -x) x< -x < /3 < 0, (4.21)_
Y,

its (normalized) eigenfunction. For It >- 0 or /3 = x, 'EV, has no eigenvalues

QP( =p. y) = 0, / fl (-cio, 0). (4.22)

PROOF. Analogous to that of Theorem 3.1.4.

Again the pole structure of (4.10) determines bound states and resonances
of , a,,: For /3 > 0, 5a,, has a simple resonance at ko = - 2i//t with resonance
function

e 21a)(x-y) x >
{_e(21Y,-x) x < y r' > 0.

,

For all -oo < /t < oo, E, has, in addition, a simple zero-energy resonance
(in contrast to the first-order pole in (4.10) at k = 0 does not cancel)
with resonance function 00(x) = 1. For /3 = oo, Eo,, has a zero-energy
resonance of multiplicity two with corresponding resonance functions

40 i(x) = 10,

1, x Y>

x < Y.

0, x>y,
4102W W ) = 11,

x < Y.

It remains to discuss stationary scattering theory associated with the pair
(tea ,, - A). The generalized eigenfunctions of a,, are given by

etk(x-y) x >
`Pa.),(k, c, x) = eikax + i f ka(2 - i/tk)-1 'key ,k x Y,-e (y- )' x < y,

k>-0, o = ±1, -oo </tS oo, x,yER. (4.23)

They fulfill

or, y+) _ `I'p.y(k> a> y-),

a, y+) - Y-) y),

-`Ps.,(k, a, x) = k2`Pa.,,(k, a, x), x e R - {y},

lim lim (2k/i)e±;(k+ic)x [ya (k + it: )2]-)(x, xr) x),
r10 x'--oo

(4.24)

xER; k>0.
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The corresponding transmission and reflection coefficients from the left and
right then read

Jj,,,(k) = lim e-ikxTo.Y(k, + 1, x) = 2(2 - ifk)-', (4.25)
x-++00

9-jY(k) = lim eik'T#.Y(k, -1, x) = 2(2 - ifk)-', (4.26)

Rp.Y(k) = lim e' [`Yp.Y(k, + 1, x) - e'kx] = -(2 - i/3k)-' ifke2i/ty, (4.27)
X_ -00

Ap.Y(k) = lim e-ikx[Tq,Y(k, - 1, x) - -"'x] = -(2 - ifk)-' i fke-z"k";

k >- 0, -co < f < co, y c- R. (4.28)

The unitary on-shell scattering matrix Sop,,,(k) in C2 is then given by

k) =
9y(k)

Yp Y(
.Y(k) ff.y(k)1

,Y(k) - y(k)
2 -i/3ke-2i"`y

= (2 - i/3k) ' - i/tke2iA`y 2 ],
k>-0, -co <13<oo, y e R. (4.29)

In the low-energy limit k - 0 we get

-oo<13<oo,
(4.30)

Obviously, $ ,y(k) has a meromorphic continuation in k to all of C such
that for k 0 0 the pole of Yp,y(k) coincides with the bound state (13 < 0) or
resonance (/3 > 0) of E5,Y.

Notes

The existence of b'-interactions and their local nature has been pointed out
by Grossmann, Heegh-Krohn, and Mebkhout [226]. The first extensive
treatment including infinitely many centers appeared in Gesztesy and Holden
[205]. The fact that det[, (k)] _- 0 in the proof of Theorem 4.1 indicates that
11 is not the maximal common part of E,,, and - A (cf. Theorem A.3). Indeed,
their maximal common part HY is a proper extension of R, with deficiency
indices (1, 1) given by

z

Hy = -dx2 on (Hr) _ {g e Hz-z(R)Ig'(y) = 0).
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The deficiency subspace of FIY corresponding to k2 e C - R is spanned by

x>Y,
l?ik(Y-x) X <y, Imk>0,

and thus E. Y, -oo < /3 S oo, are all self-adjoint extensions of HY. Self-adjoint
extensions of R. are considered in [418].

Complex b'-interaction can be treated in the same way.
Approximations of B., in the strong resolvent sense by means of scaled

rank-one interactions appeared in [419].
More general boundary conditions corresponding to powers of the 6-

interaction are studied in [398], [399].



CHAPTER 1.5

The One-Center Point Interaction in
Two Dimensions

Following Sects. 1.1, 1.4, 2.1, and 2.3 we briefly discuss the point interaction
in two dimensions.

Let y e 082 and consider in L2(082) the nonnegative operator

- A ICo (R2-(y)) (5.1)

with Hy its closure in L2(082) (i.e., i(ffy) = {y})). Then its adjoint
H,* reads

fl,* _ -A, -9(H*) _ {g a H; 2(182 - (y)) n L2(R2)IAg a L2(R2)},

y e 082. (5.2)

A direct calculation shows that the equation

,R,4i(k) = k2,i(k), 0 (k) e 9(11Y*), k2 e C - P. Im k > 0, (5.3)

has the unique solution

q(k,x)_(i/4)Ho')(kIx -yl), xe082-{y}, Imk>0, (5.4)

where HO(')(-) denotes the Hankel function of first kind and order zero [1].
As a consequence Hy has deficiency indices (1, 1). In order to determine all
self-adjoint extensions of Hy we decompose L2(082) with respect to angular
momenta

L2(082) = L2((0, oo); r dr) ® L2(S' ), (5.5)

where S' denotes the unit sphere in 082. Using the unitary transformation

0: L2((0, co); r dr) -+ L2([0, oo); dr), (0f)(r) = r"2f(r) (5.6)

97
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and the fact that (Ym(w) = (2n)"etmeIm c- 7f, 0 < 0 < 2n, co = (cos 0, sin 0)}
provides a basis for L2(S' ), we can rewrite (5.5) as

00

L2(R2) = 0 f7-'L2((0, co); dr) ® [Y.]. (5.7)
m=-x

With respect to this decomposition fl,, equals the direct sum

Nv=Tytj (@ U-1h&U®17T"
M= -00

where (Tj,g)(x) = g(x + y), g e L2(P2), and

d2 m2 -4-1

y

hm
dr2

+ -Y2-, r>0, m E Z,

_Q(ho) = {0 E L2((0, co))1qS, 4 E AC,o,((0, co)); W((b, 0,

J

- 0 - 4-'r-24' E L2((0, co))},

#0, oo));o(hm) {_ 0 E 12((0, co))10, 4" E AC,.,
-4" + (m2 - 4)r-',A E L2((0, oo))}, m E Z - {0}.

Here AC,.,,((a, b)) denotes the set of locally absolutely continuous functions
on (a, b), W(f, g), = f (x)g'(x) - ,f'(x)g(x) denotes the Wronskian off and g,
and 0+(r) = r'12Ho11((±i)''2r). As is well known (e.g., [389], Ch. X) hm,
m e 7f - {0}, are self-adjoint whereas h0 has deficiency indices (1, 1). All self-
adjoint extensions of h0 may be parametrized by (cf. Appendix D)

d2 I
ho.a = -dri - 4r2'

r > 0,

9(ho.a) _ {¢ E L2((0, 00))14', O' E AC1«((0, co)); 2na¢o + 41 = 0; (5.10)

-0" - 4-1 r-20 E L2((0, co))), -oo < a < co,

where 00 and 01 are defined as

0o = urn [r"2 In r]-14'(r), 41 = lim r 1f2[4'(r) - 00r1n In r],
r4,0

0 E m(ho). (5.11)
Thus we get

Theorem 5.1. All self-adjoint extensions of H., are given by

-Aa.v°Tv Q c-'hm0 I®1}Tv,
M. -00 J
m#0

-oo < a S co, y e R2. (5.12)

The special case a = oo leads to the kinetic energy Hamiltonian -A (the
Friedrichs extension of H,) in L2(182), viz.

-A00.r = -A, -9(-A) = H2.2(R2). (5.13)
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If I a I < co, -AQ,, describes a point interaction centered at y e P2. It will
turn out later that (- 2na) -' represents the scattering length of -

Next, we note that the integral kernel Gk(x - x') of the free resolvent in
L2(P2), i.e.,

Gk=(-A-k2)-', Imk>0, (5.14)

reads

Gk(x - x') _ (i/4)Ho'"(klx - x'I), Imk > 0, x, x' a 982, x # x'. (5.15)

We have

Theorem 5.2. The resolvent of - A.,, is given by

(-A.,y - k2)-'

= Gk + 2n[2na - `Y(1) + ln(k/2i)]-'(G& y), -)Gk(- - y),

k2ep(-A,.), Imk>0, -oo<at <oo, yeP2, (5.16)

with integral kernel

A.,y - k2)-'(x, x') = (i/4)Ho"(k Ix - x'l)

-(n/8)[2na - `I'(1) + ln(k/2i)]-'Ho')(klx - yl)Hol)(kly - x'l),
k2 a p(-A.,,), Imk > 0, x, x' a P2, x ;Ax', x q&y, x' # y. (5.17)

PROOF. By the decomposition (5.12) it suffices to consider the s-wave (m = 0). Let
q e L2((0, oo)) and define

X.0 =
J

dr' go(k, r, r')n(r')
0

- (n2/4)[2na -'Y(1) + ln(k/2i)]-' J dr' (r')'12Ho "(kr')q(r')r'"2Ho )(kr),
0

Imk>0, -oo<a5oo, (5.18)
where

9o(k, r, r') = (in/2)(rr')112
Jo(kr)HH"(kr'),

Jo(kr')Ho"(kr),

rSr',
r>-r', (5.19)

is the Green's function corresponding to ho,,, (the Friedrichs extension of ho).
Clearly, X., Xa e AC1 ((0, oo)) and X. a L2((0, oo)). A somewhat lengthy but straight-
forward calculation then shows that

2na(Xa)o + (X.), = 0, (5.20)

and

X' (r) +
(4r2)-'

X.(r) q(r) - k2Xa(r), r > 0, (5.21)

which proves (5.16).



100 1.5 The One-Center Point Interaction in Two Dimensions

Further information on -9(-A.,Y) and the fact that the one-center point
interaction is local is contained in

Theorem 5.3. The domain P?(- Aa,Y), -oo < a:9 co, y e p2, consists of all
elements of the type

l(x) _ Ok(x) + 2n[2na - `P(1) + ln(k/2i)]-'q(y)Gk(x - y), x y,
(5.22)

where a .9(-A) = H2.2(982) and k2 a p(-Aa,y), Im k > 0. The decom-
position (5.22) is unique and with ii e 9(-Aa.Y) of this form we obtain

(-Ad.Y - k2)O = (-A - k2)4. (5.23)

Next, let a A., Y) and assume that 0 in an open set U S R2. Then
-AQ,4=Oin U.

PROOF. Identical to that of Theorem 1.1.3.

Concerning spectral properties we have

Theorem 5.4. Let -oo < a < oo, y e 982. Then the essential spectrum of
-Aa,Y is purely absolutely continuous and covers the nonegative real axis

crss(-Aa.y) = Esc(-A.,Y) = [0, 00), q..(-Aa.Y) = 0. (5.24)

For all a E R, -A..Y has precisely one negative, simple eigenvalue, i.e., its
point spectrum is given by

a,(-A.,) {-4ea e 98, (5.25)

with

G2,cxp(-2xa+'Y(,))(x - y) = (i/4)Hp')(2iet-2xa+w(1)1IX - yIJ, x # y, (5.26)

is strictly positive (unnormalized) eigenfunction.

PROOF. Similar to that of Theorem 1.1.4.

The pole structure of (5.17) determines bound states and resonances of
-Aa Y: In fact, (-A,, - k2)-'(x, x'), x # x', has a meromorphic continua-
tion to the entire logarithmic Riemann surface. In the cut plane
{k e C - {0}1-rt < arg k < n}, -A,,,, has only the above-mentioned bound
state at ko = 2ie(-2i (1)J but no resonance.

Finally, we turn to stationary scattering theory for the pair (-A..,, -A).
Since - Aa,Y is invariant under rotations in P2 with center y we start with the
partial wave decomposition (5.12). Let

(/io,a(k, r) = r')2Jo(kr) + in [2na - Y'(1) + ln(k/2i)]-'r''2H0")(kr),

k>0, -oo<a5co, r>-0, (5.27)
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then

2na(Io.a(k))0 + (i0,a(k))1 = 0,

- qlo.a(k, r) - (4r2)-1 io,a(k, r) = k200.a(k, r), r > 0,

lim lim [2(k + (k + ie)2]-1(r, r')
C40 r'-co

= f'0.a(k, r), r >- 0; k > 0, -00 < a 500. (5.28)

Thus ili0,a(k) are generalized eigenfunctions of h0,a. For m # 0 the generalized
eigenfunctions of hm read

lm(k, r) = r112Jm(kr), k, r Z 0, m e Z - (0) (5.29)

(we recall that J_m(z) = (- I)mJm(z)). The asymptotic behavior of (1i0,a(k, r) as
r - oo is then given by

r),.(2/nk)1i2eiso..(k) sin[kr + (n/4) + &0.a(k)],

k > 0, -oo < a 5 00, (5.30)

and

.o.a(k) = e2iso..(k)

= [2na - `P(1) + ln(k/2) - (in/2)]'[2na - `V(1) + ln(k/2) + (in/2)],

k > 0, -oo < a 500, (5.31)

denotes the (on-shell) s-wave scattering matrix (and 60,a(k) the s-wave scatter-
ing phase shift). For m # 0, we obtain

.9 ,(k) = 1, 6m(k) = 0, m e Z - (0). (5.32)

Again it is useful to compare with the effective range expansion for spherically
symmetric real-valued potentials V satisfying

fooo

dr r[1 + Iln rI]2e2"I V(r)I < oo for some a > 0. (5.33)

If 6.(g, k) denote the phase shifts associated with the Schrodinger operators
-d2/dr2 + (m2 - 4)r-2 -i- gV(r) this low-energy expansion reads (cf., e.g.,
[95], [96] )

f(1 + ImI)-2(k/2)21m1[(n/2) cot t5m(g, k) - ln(k/2) + `1'(1)]

= -(am(g))-1 + rm(g)k2 + 0(0), k > 0, g e R, m e Z, (5.34)

where the right-hand side of (5.34) is real analytic in k2 near k2 = 0. The
coefficients am(g) and rm(g) are called partial wave scattering lengths and
effective range parameters, respectively.

The explicit relations

[(n/2) cot 60,a(k) - ln(k/2) + `I'(l)] = 2na,
(5.35)

bm(k) = 0, me Z - (0),
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for the point interaction then show that

.ao,a = (- 2na)-', -00 < a S 00, a # 0, -to.. - 0, (5.36)

and all low-energy parameters vanish identically in higher partial waves
m e 71 - {0}. We emphasize again that by (5.35) the effective range expansion
for m = 0 is already exact to zeroth order with respect to V. This illustrates
the fact that -A,,, describes an s-wave interaction of zero range.

Now we turn to the scattering wave function of -A.,Y

`P,,Y(kw, x) = eika,x + (in/2)[2zta -'P(1) + ln(k/2i)]-'eik0 yl),

k > 0, -oo<a5oo, x,yeP2, x y. (5.37)

A comparison of (5.37) with (5.27) and (5.29) yields

e-ikroYllla,Y(kw, x) = 21tlx - yl-'120o,a(klx - yI)Y0(w)Y0(wx)
as _

+ 2nlx - yl-U2 Y imgm(klx - yI)Y (o)Ym(tox),
m= -a:
MOO

k > 0, -oo<a<o0, x9y, (o,,=x/IxI, (5.38)

by using
OD

eik°,x = 2n Y imJm(klxl)Ym(W)Ym(wx), k > 0. (5.39)
m=-a)

The on-shell scattering amplitude/,,Y(k, (a, w') corresponding to -D,,Y is then
given by

fa,Y(k, w, w') = lim IxI1I2e-iklxl[1Fa,Y(kw,, x) - eiko,'x]

IxI-oc,
IxI-'x=w

= ei"/4(7C/2k)'"2[2ira - `P(1) + ln(k/2i)]-'eik(W )Y,

k > 0, w, (d eS', -oo <a500, yep2. (5.40)

The unitary on-shell scattering operator 9',,(k) in L2(S') finally reads

S;,Y(k) = I + in[21Ea - 1P(1) + ln(k/2i)]-'(e-Ik('IYY0, .)e-ik(.)Yyo,

k>0, -oo<a<oo, (5.41)

The explicit representation (5.41) shows that b',Y(k) has a meromorphic
continuation in k to the entire logarithmic Riemann surface such that its pole
in the cut plane {k e C - {0} I - n < arg k < rt} coincides with the bound state
of -O,,Y.

Finally, we emphasize that the e-expansion for the resolvent, eigenvalues,
resonances, scattering amplitude, and the on-shell scattering operator derived
in the three-dimensional case works as well in two dimensions. To illustrate
these facts its suffices to consider the resolvent.

Let V: P2 -+ R be measurable and

f d2x(1 + IxI2+d)I V(x)I < oo, J d2xI V(x)I'+a < co
R2 R2

for some 6 > 0. (5.42)
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Again we introduce

v(x) = I V(x)I'n, u(x) = I V(x)1'12 sgn[V(x)] (5.43)

and note that
uGkv a G82(L2(R2)), Imk > 0, k00. (5.44)

Let 2: (0, to) -+ R, co > 0 and

410) = 2, p + 2.2µZ + o(µ2). (5.45)
Then the form sum

H,,(c) = -A - A((ln E)-') V( - E`y), E > 0, y e 1R2, (5.46)

in L2(R2) is well defined (cf. Appendix B) and we define the scaled short-range
Hamiltonian He,,, as

He.Y = E-2UeH,.(c)UE ' _ -A F Vf.v+
(5.47)

VE.V(x) _ !((In V((x - y)/E), c > 0, y e R2,

where now
(Ue9)(x) = E > 0, g e L2(112). (5.48)

Then the resolvent of He,Y can be written as (cf. (1.2.16))

(H,.Y - k2)-' = Gk - A((In E)-1)Ae(k)[1 + B,.(k)]-'Ce(k), k2 e P(He.Y),

Im k > 0, (5.49)

where Ae(k), Be(k), Ce(k), c > 0, are Hilbert - Schmidt operators with integral
kernels

A,(k, x, x') = Gk(x - y - cx')v(x'), Im k > 0, (5.50)

BB(k, x, x') = A((In c)-')u(x)Gek(x - x')v(x'), Imk >- 0, k00, (5.51)

Ce(k, x, x') = u(x)Gk(ex + y - x'), Im k > 0. (5.52)

If we introduce rank-one operators A(k), C(k) with integral kernels

A(k, x, x') = Gk(x - y)v(x'), Im k > 0, (5.53)

C(k, x, x') = u(x)Gk(y - x'), Im k > 0, (5.54)

then as in Lemma 1.2.2

lim A(k)112 = 0, lim IICL(k) - C(k)112 = 0. (5.55)
clo 610

Up to now there is no difference to our three-dimensional treatment. Due to
the logarithmic singularity in Be(k) near k = 0, the analysis of BB(k) needs some
care. First, we note that by the mean-value theorem (cf. (1.2.43))

Be(k) _ -(27G)-' A, (v, )u

- (2n In c)`{[A,(-`I'(l) + ln(k/2i)) + 22](v, -)u + 21C} + o((ln
(5.56)

where C is a Hilbert-Schmidt operator in L2(R2) with integral kernel

C(x, x') = u(x) InIx - x'Iv(x'), x 96 x', (5.57)
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and the expansion (5.56) is valid in Hilbert-Schmidt norm (the coefficients
in (5.56) follow from (5.45) and the expansion of (i/4)H, "(ek)x - x'I) [1]).
Now we have to distinguish several cases. Applying formula (1.3.47) we
get:

(a) If A, = 0, then, as c 10,

[1 + BL(k)]-' = I + O((In e)-?). (5.58)

(b) If (v, u) = 0, then (v, )u is nilpotent and hence

[l + BE(k)]-' = 1 + (2a)-' A1(v, )u + O((ln e)-') (5.59)

as &10.

(c) If (v, u) # 0 and Al # 2n/(v, u), then, as a 10,

[I + B,(k)]-' = 1 + (A1/2R)[l - (A1(v, u)/2n)]-'(v, -)u + O((ln c)-1).

(5.60)

(d) If (v, u) 0 0 and A, = 2n/(v, u), then, as a 10,

[1 + B,(k)]-' -2n (In e){2n(v, u)[-W(1) + ln(k/2i)3 + A2(v, u)2

+ (2rz(v, Cu)/(v, u))}(v, -)u + 0(1). (5.61)

Thus we obtain

Theorem 5.5. Let y e I82 and assume that V is real-valued and (1 + I I2+b) V,
I VI1 +a a L' (082) for some 6 > 0. Then, if k2 e p(- AQ y), we get k2 E p(HB, y)
for e > 0 small enough and H,y converges to -A., in norm resolvent
sense

n-lim (H,,,, - k2)-' = (-A..v - k2)-1, k2 E p(-A.,,), y e 082, (5.62)

where a is given by

JLA2(v, u)/(2n)2] + [(v, Cu)/2it(v, u)2] if (v, u) # 0, A, = 2tc/(v, u),
oo, otherwise. (5.63)

In particular, He,y converges in norm resolvent sense to -A as &10 if
(v, u) = f p2d2x V(x) = 0 or if Al # 2n/(v, u).

PROOF. Equation (5.49) together with (5.55) and (5.58)-(5.60) proves that

{I(H,y - k2)-' - Gkll = 0((In s)-') (5.64)

as s 10 in cases (a)-(c). In case (d), (5.61) shows that

n-lio (H,.v - k2)-1

= Gk + 2n{ -`P(1) + ln(k/2i) + [(A2(v, u)/2n) + ((v, Cu)/(v, u)2)]}

(Gk(- -y), -)Gk(- - y), k2eC-II, Imk>0. (5.65)
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Notes

The point interaction in two dimensions is shortly discussed in Grossmann,
Heegh-Krohn, and Mebkhout [226] where its local nature has also been
pointed out (cf also [253] ). The treatment based on the boundary condition
in (5.10) and, in particular, the final part containing scattering theory is
taken from Albeverio, Gesztesy, Heegh-Krohn, and Holden [19] (for a short
summary, see also [200]). The e-expansion described at the end is also taken
from [19]. For properties of the Birman-Schwinger kernel uGkv in two
dimensions we refer to [248], [298], and [435]. Scattering theory near thresh-
old is studied in [97].

External electromagnetic fields in connection with -A., are discussed in
[381].





PART II

POINT INTERACTIONS WITH A FINITE
NUMBER OF CENTERS





CHAPTER 11.1

Finitely Many Point Interactions in
Three Dimensions

II.1.1 Basic Properties

The aim of this section is to give a rigorous meaning to the formal operator
N

H = -A - E µ;a(' - y;), (1.1.1)
j=1

where y,, ..., yN are N distinct points in R.
One possible way is to employ the techniques from Sect. I.1.1 using self-

adjoint extensions of symmetric operators. Here, however, we will advocate
another method which, in addition to providing new insight into why the
operator (I.1.1.16) is the rigorous formulation of (1.1.1) with N = 1, also has
a flavor of renormalization techniques used in quantum field theory.

To explain the basic idea, we start with a formal manipulation when
N = 1. Let, therefore, `

H= -A - µV, (1.1.2)

where for the moment V is an appropriate potential. Expanding the resolvent
we obtain

(H-k2)-' _(-A- pV-k2)-' =(I - uGkV)-'Gk

OD

= Gk + E (PGkVY'Gk, Im k > 0. (1.1.3)
n=1

If we now formally insert V(x) = 8(x) and consider the integral kernel, we

109
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obtain

(H - k2)-'(x, x') = Gk(x - x') +,uGk(x)LE (PGk(0))n]Gk(x')
n-0

= Gk(x - x') + pGk(x)[1 - 4uGk(0)]-'Gk(x') (1.1.4)

= Gk(x - x') + Gk(x)[µ-' - Gk(0)]-'Gk(x'), Im k > 0,

which easily follows by considering, e.g., the term (pGk V)2Gk:

((pGkb)2Gkf)(x) = p2 JJJ d3x1 d3x2 d3x' Gk(x - x1)b(x1)-
tt9

Gxl - x2)b(x2)Gk(x2 - x'f(x')

d3x' Gk(x)Gk(0)Gx')fx'). (1.1.5)_ p2 f.3

From the explicit expression Gk(x) = e' 1'1/4,rlxl (cf. (1.1.1.19)) we see that of
course (1.1.5), and therefore also (1.1.4), does not make sense because Gk(O)
does not exist. However, we still have the possibility of choosing p. In partic-
ular, we see that if we formally write

µ-' = G0(0) + a (1.1.6)

with a e R arbitrary and interpret G0(0) - Gk(O) as

N ik
lim [G0(x) - Gk(x)] = lim

II - e`k

X--0 X 0 4irIxl 4a

we obtain precisely the correct expression (1.1.1.20) from Part 1. We also
observe that the coupling constant p in front of the 6-function has to be zero
in a "suitable way" in order to make the final expression well defined.

One way to make the above rigorous is the following:
First we introduce a formal Fourier transform of the ill-defined operator

H, i.e., let

J F: L2(R3) - L,2(R3),
(`_T)(P)

-= (p) = s-lim (2,r)-3/2

fixi
d3x e -"Pf(x) (1.1.8)

sR

(see, e.g., [389], Sect. IX.2) and define

A = .F H.F `, (1.1.9)

where

(.F 'f)(x) = f(x) = s- lim
flpl:r.

d3P e' PXf(P). (1.1.10)
R~OD R

Now the Laplacian -A transforms into the multiplication operator with the
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function p2 (see, e.g., (389), Sect. IX.7) while we formally have

Y)_57-'r)(P) y)f)(p) = (2n)-3/2e-"f(Y)

_ (2n)-3e'" J d3q e"f(9) = (9),.f)9,(P), (1.1.11)
R3

where we abbreviated

0,(p) = (2n)-312e-'11. (1.1.12)

Thus R can be written formally as
N

R=p2- E µj(my,,
J=1

(1.1.13)

The idea is now to introduce a momentum cut-off and make the coupling
constant uj explicitly dependent on the cut-off. More precisely, let

1, IPI S w,
xW(P) = 0, IPI > w, by, = x00y,

and define
N

P2 - E µj(w)(#Y,, ')my,

(1.1.14)

1.1.15)
J=1

with an interaction given by a rank N perturbation.
It remains to choose µj((o) in such a way that R°' has a reasonable and

nontrivial limit as we remove the cut-off, i.e., as to tends to infinity. From
Theorem B.1 we obtain that

Nh
(Rw - k2)-1 = (p2 - k2)-1 + E [rm(k)]jjl(x0Fk,,,, ')x0Fk.,,

where

Imk>0, Rek#0, (1.1.16)

rw(k) = [µj 1(w)ajf - (0y,, (p2

and

e-,Pr
Fk.r(P) _ (2n)-312

P2
- k2,

lmk>0, (1.1.17)

pc-R3, lmk>O. (1.1.18)

While the quantity

eiP(Y;-r;
(p2 - (2n)-3

j IPI<_
d3p P2 - k2 , Im k > 0, (1.1.19)

diverges as co tends to infinity when j = j', the off-diagonal elements nicely
converge since

f1P1

eiPYeiklYl(2n)-3dP k4 Gk(Y), lmk>0, y-A0.
3« P (1.1.20)



112 11.1 Finitely Many Point Interactions in Three Dimensions

(See [389], p. 58f.) If we now choose

d3p
µ;'(W) =

(2n)"3 P + ai =
n2

+ a; (1.1.21)
IPISw P

with a; e R arbitrary, we have for o) - oo
1

µ;'(W) - (wY, (n2 - (2n)-3 f d3P 2 _ p2 - k2) + a;
IPI_ to

ik
01 -OD i ` 4n

(1.1.22)

A short computation shows that the rank-one operator (X,,F_k,,., -)XWFk,Y
converges in Hilbert-Schmidt norm to the operator (F_k,,., -)Fk.Y as W -+ Co
when 1m k > 0, i.e.,

lim II(X.F-k,Y', ')X.Fk,Y - (F-k,Y'' -)Fk,YlI2 = 0, Im k > 0. (1.1.23)
W-W

To conclude that, for Im k > 0 sufficiently large,

R(k2) = n- Jim (A(0 - k2)-'

N

_ (p2 - k2)-' + [l'a.Y(k)]j (F-k,r )Fk,, (1.1.24)

is the resolvent of a closed operator, it is now sufficient to prove that the limit
is injective ([283], Theorem VIII.1.3). Here

1k
ra.Y(k) = K'Xi - 4n)6ii, - 2ik(Y; - Yi') (1.1.25)

Ok() = 101
G&), x # 0,

(1.1.26)
x = 0,

a = (at, ... , UN), Y = (Y1, ..., YN). (1.1.27)

To this end assume R(k2)f = 0 for some f e L2(k3). Using the explicit ex-
pression for R(k2) we see that this is equivalent to

3q
eY'f(k92N

= (2n)-3 e-iPY,[]7a.Y(k)]71 (
d

q2
(1.1.28)f(p)

J R3

which cannot be in L2(R3) unless f = 0. We can thus write R(k2) _
(-Da,Y - k2)-1. From the explicit expression for R(k2) we see that R(k2)* _
R(k2) which implies that the domain is dense: Let g 19(-ea.r)
Then (g, R(k2)f) = 0 for all f e L2(R3), hence (R(k2)g, f) = 0 for all f, im-
plying that g = 0. Furthermore, -Aa,Y = R(k2)-' + k2 (which is indepen-
dent of k2 from the resolvent identity) is self-adjoint because

(-aar-k2)-' _ [(-&,r-k2)*]-1

k2)-', k2 E P(-ea.Y). (1.1.29)

We have thus proved the following theorem.
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Theorem 1.1.1. Let Rw be the self-adjoint operator in L2(R3) given by
(1.1.15) with

w '
µj(w) = (Xj +

2n
aj a IR, j = 1, ..., N. (1.1.30)

Then Rw converges in norm resolvent sense to a self-adjoint operator -A.,y,
i.e.,

(-Aa.r - k2)-' = n-lim (Rw - k2)-' (1.1.31)
W-.D

for Im k > 0 sufficiently large, where -Aa.i. has the resolvent
N

k2)-' = (p2 - k2)-1 + Y [Ia.r(k)]jj'(F-k.v, ')Fits,,
j.j'=1

k26p(-A.,r), Imk>0, ajeR, yjeY, j=1,...,N, (1.1.32)

and where 1"Q, 1(k), Fk,, and tk are defined by (1.1.25), (1.1.18), and (1.1.26),
respectively.

Taking now the inverse Fourier transform we finally obtain the resolvent
of the point interaction Hamiltonian -A.,r with N centers, viz.

N

(-A..r - k2)-' = Gk + E LI'a,r(k)]. jl(Gk(- - Yj'), ')Gk(' - Yj),

k2Ep(-Aa,r), Imk>0. (1.1.33)

We remark that when N = 1 (1.1.33) of course reduces to the operator
(1.]. 1.20) of Part I.

We allow ajo = oo for some jo in the sense that - Aa,r = -A j i where a and
equal or and Y, respectively, with the joth component removed.
For completeness we include a theorem showing how to construct the

Hamiltonian with a finite number of point interactions using self-adjoint
extensions of symmetric operators. However, in contrast to the one-center
case, Theorem 1.1.1.1, we meet a family of operators in which the centers y1,
..., yN are not necessarily independent although the operators are local (cf.
Appendix G).

Theorem 1.1.2. The closed symmetric operator

Hr = -AIo,, (1.1.34)

where Y = (y I , ... , yN } and

Or = {0 E H2.2(R3)I0(Yj) = 0, yj e Y, j = 1, ..., N) (1.1.35)

has deficiency indices (N, N) and the deficiency subspaces read

Ran(Hr ± i)1 = Y1), ..., GJ+,(' - YN)],

Im ±i > 0. (1.1.36)
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PROOF. Since, for 0 E Qr

(G,l ±i(' - y;), (Hr ± i)0) = #(yi) = 0 (1.1.37)

we immediately infer that [G,I-;,( - y , ), ..., G,j+;(' - YN)] c X . Let /i+ e
Ran(Hy ± i)1 and ¢ e Q(- A). Then there exist numbers c...... cN independent of
0 such that

In fact, let

N

(-A ± i)O) = Y, cj #(Y,)
=1

(1.1.38)

(1.1.39)
=1

where 7, a Co (l'), qj(y;) = 1, and supp qj fl supp q, = 0, j, j' = 1, ..., N. j # j'.
Then 0 e fir, and using /+ a Ran(Rr ± i)1 we infer that (1.1.38) is satisfied with
c = (0+, (-A ± i)q,). On the other hand, the constants c;. .It, cN are uniquely
determined by fi+ from the following computation: Assume also

N

(a'+,(-A± i)¢) _ Y- c,-' 0(Y;)
j=1

Then

(1.1.40)

(-A ± im = 0
for all 0 e Q(-A), which implies that 0+

Finally, we observe that

N

41± _ c;`'G,/+i(' - Y;) (1.1.42)
j=1

satisfies (1.1.38), thereby proving.7(+ c [GJ-+;( - y,),..., YN)] S

From the general theory of operator extensions it then follows that there
exists an N2-parameter family of self-adjoint extensions of -el9*. The re-
solvents of these operators are explicitly given by Krein's formula, Theorem
A.3. However, we will only study the N-parameter family with resolvent given
by (1.1.33).

As it is not possible to write -A., y. in the form -A + V for any function
V, we have to work with the resolvent (1.1.33). It is therefore worthwhile to
note some more properties of the operator -A,, ..

Operators of the type H = -A + V where V is a multiplication operator
are local in the sense that if 0 = 0 in some open domain of R3, then also
Hti = 0 in the same domain. From the nature of the point interaction it is
reasonable to expect locality of -A., r. This and an explicit characterization
of the domain and action of -A.,r is the content of the next theorem which
generalizes Theorem 1.1.1.3.

Theorem 1.1.3. The domain c(- e., r), y, a Y, -oo < a; < oo, j = 1, ... , N,
consists of all functions 41 of the type

N

li(x) = fi(x) + ajGk(x - yj), x e R3 - Y, (1.1.43)
J=1
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where
N

a; _ Y [ra,r(k)]V0(y,.), N, (1.1.44)

and 0k a -q(- A) = H2,2(R3) and k2 a p(-A.,r), Im k > 0. This decomposi-
tion is unique, and with Iii of this form we have

(-A.,r - k2)' = (-A - k2)gk. (1.1.45)

Furthermore, let 0 e o(- A., r) and assume 0 = 0 in an open set U S R3
Then -A.,rcli = 0 in U.

PROOF. Assume, without loss of generality, that jajI < oo, j = 1, ..., N. Then we
have

-9(-A.,r) = (-A..r - k2)-1 .2(113) = (-A..r - k2)-1(-A - k2)Pd(-A)

_ {i + vj)(G&(

k2 E p(-A.,r), Im k > 0, (1.1.46)

which proves (1.1.43) and (1.1.44). Let li = 0. Then

N eiklx- r,l
AW = -1 aj4;Ix -

,=1

But this function can only be continuous if a, aN = 0 which implies unique-
ness. Furthermore, we have

(-A=,r - k2) '(-A - k2)Wk
N

= Gk(-A - k2)0k + [ra.r(k)l,i (Gk( - (-A - k2)0&)Gk( - Yj)

N

J=1
(1.1.47)

which is equivalent to (1.1.45).
Finally, to prove locality, let 41 be of the form (1.1.43), and assume that , = 0 in

an open set U G 113. Then

N

A(x) Y ajGk(x - yj), x e U. (1.1.48)
j=,

If u fl (y,..... yN) = 0, then we have ((-A - k2)Gk( - y,))(x) = 0 for x e U and
for all j = 1, ..., N, which implies that

N

-A..ro=k20+(-A-k2)4= -Y a,(-A-k2)Gk( -Yj)=0 (1.1.49)
j=,

in U. If, however, say y, e U, we know from (1.1.48) that a, = 0 since % is continuous,
so again we can use the same argument on Gk( - y,) for j = 2, ..., N (for a more
general argument, see also Lemma C.2).

Observe that -9y s; .9(- A,,, r) and that

-Aa.rl2, = -AID,, (1.1.50)
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which proves that -Da.y is among the self-adjoint extensions of Theorem
1.1.2.

In general, one expects Schrodinger Hamiltonians H of the above type to
have no singular continuous spectrum, as,(H) = 0, and no positive embedded
eigenvalues, i.e., ap(H) c (-oo, 0). This is also correct for point interactions
as the next theorem shows. In addition, we show that eigenvalues and eigen-
functions can be determined explicitly up to the computation of the zeros of
the determinant of an N x N matrix.

Theorem 1.1.4. Let y; e Y, -oo < a; < oo, j = 1, ..., N. Then the essential
spectrum of the operator -A..y is purely absolutely continuous and equals

a..(-A..y) = a..(-A.,y) = (0, oo), asp(-Da.y) = 0. (1.1.51)

Moreover,

ap(-D.,Y) c (-c0,0) (1.1.52)

and -Aa.y has at most N (negative) eigenvalues counting multiplicity. Let
Im k > 0. Then

k2 a ap(-Aa.y) iff

K
ik l

det[F,,y(k)] = dct a; -
4>z

f 8; - y,) = 0 (1.1.53)

and the multiplicity o f the eigenvalue k' equals the multiplicity o f the eigen-
value zero o f the matrix I Q, r(k). Moreover, let E0 = ko < 0 be an eigenvalue
of - Da, y. Then the corresponding eigenfunctions 0o are of the form

N

'lio(x) = E y;), Im ko > 0, (1.1.54)

where (c 1 , ... , cN) are eigenvectors with eigenvalue zero of the matrix I'a, y(ko).
If -Da,y has a ground state it is nondegenerate and the corresponding
eigenrunction can be chosen to be strictly positive (i.e., the associated eigen-
vector (c,, ..., cN) fulfills cj > 0, j = 1, ..., N).

PROOF. Without loss of generality we may assume Ia;I < oo, j = 1, ..., N. The
statements concerning the essential, absolutely continuous, and singularly con-
tinuous spectrum all follow in the same way as in the one-center case, Theorem
I.1.1.4. It is evident from the explicit expression for the resolvent that poles of the
resolvent for k2 < 0 can only occur when the matrix 1,, (k) is noninvertible, i.e.,
when it has zero determinant. Let Re k = 0, Im k > 0, and define K = - ik > 0. Then
the matrix 17..,(k) has the derivative

dr.,y(i,c) _ 1_ _e-Klr, r,l N
(1.1.55)

which is strictly positive definite (one can follow [437], Lemma 4.4). Therefore the
N eigenvalues y, (K), ..., yN(K) of f r(iK) are all strictly increasing with respect to
K, and hence there can be at most N points K,, ..., KN such that one of the eigen-
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values yj(K), j = 1, ..., N, of r,,r(iu) is zero. This proves the statement about the
total number of negative eigenvalues. (This is also a consequence of the fact that
(-Aa r - k2)-' - G, Im k2 # 0, is of rank N.)

Now let Eo = ko be an eigenvalue of -A.. y with corresponding eigenfunction *0,
i.e.,

-A..rVo = E0 '0, 'o a -9(- A r). (1.1.56)

Then qio is of the form

N

1io(x) = A(x) + E aJGk(x - yj) (1.1.57)
j=1

for some k2 e p(- A...), Im k > 0, and ok a 21(-A) where aj is given by (1.1.44).
From the eigenvalue equation (1.1.56) and (1.1.45) it follows that

(-A - k2)4 = (-A., y - k2)'0 = (ko - k2)*o. (1.1.58)

Hence

_ (ko - k2)Gk'0. (1.1.59)

Inserting (1.1.57) into (1.1.59) we obtain

_ (ko - k2)LGk + ajG,Gk(- - yj)J. (1.1.60)
J=1

From this equation it follows that

N

(-A - ko)ck = (ko - k2) : ajGk(- - yj). (1.1.61)
j=1

If Eo = ko > 0, then this equation has no nontrivial solutions. This can be seen as
follows. By making a Fourier transform of eq. (1.1.61) we obtain

(p2 - 0)4(p) = (2n)-312(k02 - k2) aj 7:: k2 (1.1.62)
j=1

which proves that ok, and therefore Ok, cannot be in L2(RI) unless it is identically
zero. Hence 0o = 0 (recall that a 1 aN = 0 if ¢k = 0), which proves the absence
of nonnegative eigenvalues.

However, if E0 = ko < 0, we can apply Gko on each side of (1.1.61). Using the
resolvent equation we then obtain

N

= Y aj[Gko( - yj) - Gk(- - Yj)], (1.1.63)
j=t

which implies that 4so has the form

N

fo(x) = F ajGko(x - yj).
j-1

By evaluating (1.1.63) at x = yj we find that

N

0(Yj) =
47<

(iko - ik) + yj') - zk(Y, - Yj)],

(1.1.64)

N,

(1.1.65)
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(recall that tik(x) = Gk(x) if x 0 0 and zero if x = 0) which can be written as

N

0(Yj) = F [ra.r(k) - j = 1, ... , N. (1.1.66)
J-1

Equation (1.1.44) is equivalent to

N

[ra.r(k)],; a;, j = 1, ..., N, (1.1.67)
;=1

which implies by (1.1.66) that

N

[rr.r(ko)]j; a, = 0, j = 1, ..., N. (1.1.68)

Hence (al, ..., aN) is an eigenvector of r,,r(ko) with eigenvalue zero.
On the other hand, if

N

4io(x) _ Y ajGk,(x - yj), Im ko > 0, (1.1.69)
J=1

and (al , ... , aN) is an eigenvector of r,, r(ko) with eigenvalue zero, we can prove that
tpo satisfies

4,o c-!2-(- A., y), -&.4' = k24,0 (1.1.70)

as follows. First, we wish to establish that 4so c-.9(- A...). To this end, let

Wk = (ku - k2)Gko1/io (1.1.71)

for some k2 6 p(- A,,,. ), Im k > 0. Then S e Q(- A) and we have the following
computation

N N

Ok = (ko - k2) Z ajGkGkp(- - yj) _ aj[Gk,( - y,) - Gk(- - Yj)], (1.1.72)
!=1 j=1

which implies that

k N N,

Y'k + Y a,Gk(- - yj) = Y ajGk0(- - yj) _'o. (1.1.73)
,=1 j=1

To prove that a,, j = 1, ..., N, satisfy (1.1.44) we evaluate (1.1.72) at yj. Then

N

4(yj) = 4rz (iko - ik) + Y a,.[Cka(yj - y') - (;k(Yj - Yj,)]
=1

N

=Z [r,. r(k) - ra. r(ko)]jj.aj.
,=1

= E [r.,,(k)]j,a;, j =1, ..., N, (1.1.74)

which proves (1.1.44), and hence qio 6 9d(-A, Y). Finally, we observe that

(-A-k2)$k+k21fo=(k2-k2)41o+k21/,o=koro. (1.1.75)

The assertions about the ground state follow from the monotone increase of all
eigenvalues of r.,r(iK) for K > 0 and the fact that r,, ,(hc) generates a positivity
preserving semigroup a 'r t > 0, K 6 R, in CN since all off-diagonal elements in
r,, y(k) are negative Q391], p. 210). Thus the smallest eigenvalue of r,, r(iK) is nonde-
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generate and we may choose a corresponding nonnegative eigenvector (c, , ... , CN),
cj 0, j = 1, ..., N. Since cjo = 0 for some jo would imply ajo = oo we actually infer
cj > 0, j = 1, ..., N (cf. also the discussion in Appendix F).

Before we give an example to illustrate the results in a simple case, we note
the following elementary result.

Proposition 1.1.5. Let N(k2, al, ..., aN) denote the number of eigenvalues
(counting multiplicities) of -A.,r less than or equal to k2 < 0. Then

N(k2, a, ..., a) S N(k2, a1, ..., aN) S N(k2,a,..., a), (1.1.76)

where

max ((xj), min (aj).
15j5N I5j5N

(1.1.77)

PROOF. Observe from (1.1.25) that the eigenvalues of Fcr(k), Im k > 0, Re k = 0,
are increasing in each of the components aj of at, which proves (1.1.76).

One virtue of point interactions is, as we have already seen in the one-center
case, that eigenvalues and resonances can be treated on an equal footing. We
define resonances of -A, r as follows. ko e C, Im ko < 0, is a resonance of
-A,,r if

/ iko
det[I,.r(ko)] = del I aj - 4)8jj. - Z`iko(yj - yj.) = 0.

The multiplicity of the resonance ko equals the multiplicity of the zero of
det[F,,r(k)] at k = ko.

We end this section with an example illustrating some of the ideas in this
chapter, namely the study of the two-center problem with equal strength, i.e.,
N=2, a, =a2=a,in eq.(1.1.33).

The eigenvalue/resonance equation is (with L = IY, - Y21)

det

ik

4ir
Gk(L) 2

_ at - 4n) - Gk(L)2 = 0,

Gk(L) a
4n

(1.1.78)

4naL - ikL = ±e'kj'. (1.1.79)

Now let Lk = x + iy. Separating the real and imaginary part we obtain the
two equations

4naL + y = ±e- " cos x,
(1.1.80)

-x= +e_y sin x.

Eigenvalues correspond to x = 0 and y > 0, i.e.,

y = ±e-'' - 4naL. (1.1.81)
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From Figure 2 we see that if 4naL < -1 we have two simple eigenvalues, if
1 > 4naL >- -1 we have one simple eigenvalue, and finally, if 4naL Z 1 there
are no eigenvalues.

To study the resonances we have to look for solutions of (1.1.80) with y < 0
and x arbitrary. First, we observe that if (x, y) is a solution of (1.1.80) then
(-x, y) is also a solution, i.e., we have a reflection symmetry with respect to
the imaginary axis. So we only have to study what happens when x > 0. We
can rewrite (1.1.80) as

y=Inlsinxl

x

and

(1.1.82)

y = -x cot x - 4naL. (1.1.83)

Let 0 be the monotone decreasing function on ((2n - 1)n, 2nn)

O(x) = In
I sin x

+ x cot x + 4naL. (1.1.84)
X

As x j (2n - 1)n, c(x) -> +oo, and as x T 2nn, ¢(x) -+ -oo, n e N, which implies
that for each interval ((2n - 1)n, 2nn), n e N, there is precisely one simple
resonance k such that Re k a ((2n - 1)(n/L), 2n(ir/L)). Similarly, there is
exactly one simple resonance k such that Re k a (2n(n/L), (2n + 1)(n/L)). On
the interval [0, n) we have that as x 10, #(x) - I + 4naL, while as x T n,
O(x) - -oo. Thus if 4naL > - I we have, as before, exactly one simple re-
sonance k, with Re k, a (0, (7r/L)). If 4naL < -1 we have exactly one simple
resonance on the negative imaginary axis, which we have already encountered
in Figure 2. When a varies in R, we see that we can always satisfy eq. (1.1.83),
thus we have the resonance curves as shown in Figure 3.

1,

f4---

.f2

J4

(a) 4naL < -1 (b) -1 < 4naL < 1 (c) 4naL z I

Figure 2 f,(y) = e-y - 4naL;.f2(y) = Y; fs(Y) = -e'' - 4naL; f4(Y) = -4naL.
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Y

Figure 3 y =1n

by

sin x

X

Finally, we note that the asymptotic behavior of the resonances k is given

k z (n + L - In[(n + I)n] (1.1.85)

asn - oo.
We will return to this example in Sect. 1.4.

11.1.2 Approximations by Means of Local Scaled
Short-Range Interactions

Having defined the point interaction Hamiltonian -A., y, it is reasonable to
ask in what sense this Hamiltonian is approximated by Hamiltonians with
more realistic and less singular short-range interactions.

Let
N

H..r = A 4- c-2 Z Aj(E)Vj((- - y;)/s), a > 0, (1.2.1)
j=1

where V e R, j = 1, ... , N (recall that the Rollnik class R consists of functions
V: R3 C with fR3 d3x JR, day I V(x)I I V(y)I Ix - yl-2 < oo) are real-valued
and Aj(a) are assumed to be real-analytic in a neighborhood of zero with

Aj(0) = 1, j = 1, ..., N. (1.2.2)

The set Y = { y ... , yN} of N distinct points yj e R3, j = 1, ..., N, forms the
set where we want to localize the point interactions. (We will use Y to denote
both the set {y, ..., yN} (= 683 and the n-tuple (y,, ..., yN) a p8 3N when no
confusion can arise.) He,Y is well defined as a sum of quadratic forms by
Appendix B.

Recall from Sect. 1.1.1 the unitary scaling group U, in L2(R3) given by

(UMW = F'312g(x/e), F > 0, g e L2(I3), (1.2.3)

which connects HE,r to the self-adjoint operator H1(e) defined by
N

Hr(e) = c2UE 1HE rUE = -A + Aj(c)V(- - E-1yj), a > 0. (1.2.4)
j=1
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We will also need the operators

Hj= - A -I-Vj, j =1,...,N. (1.2.5)

Then we have the following theorem.

Theorem 1.2.1. Let V: 083 - R fulfill (1 + I O2V,,. e R fl L1(083), j = 1, ...,
N. Assume, in addition, that A;(0) 0 0 if Hj = -A + V is in case III or IV
for some j = 1, ..., N. Then the operator H,, y defined by (1.2.1) converges
in strong resolvent sense to the operator -A,,y defined by (1.1.33) where
a = (a ... , am) is given by

aJ =

00 in case 1,

-Aj'(0)I(vj, Oj)I-2 in case II,

00 in case Ill, (1.2.6)

- - 1A,(0) { Oil #jl)IZ} in case IV.

Here Oj (resp. 0j,, 1 = 1, ..., Nj) denote eigenvectors of ujGet, to the eigen-
value -// 1 with (ef Sect. 1.1.2)

f
(V'j, Wj) = -I , (Oil,

,,//
Vjl,) Sl1., 1, 1' = I, ... , N,, j = 1, ... , N.

(1.2.7)

Remark. As remarked earlier, ajo = oo for some jo means that the point
(ajo, yja) should be removed from the definition of -A,,y., i.e., we obtain -Aa,j
where a = (a,, ..., ajo_I, ajo+1, ..., aN) and F _ (Y1, Yjo-1, Yjo+1, YN),
etc.

PROOF. The proof of the theorem is divided into two lemmas.

Lemma 1.2.2. The resolvent of H,,r reads

N

(H,.r - k2)-' = Gk - s A,.,(k)[1 + B,(k)]JrCE.j-(k),

k2ep(H,r), Imk>0, a>0, (1.2.8)

where A,, j(k), B,(k) = [B j,.(k)] jN, j..1, and C,,,(k) are Hilbert-Schmidt operators with
integral kernels

A,,J(k)(x, x') = Aj(e)G,,(x - yj - ex')vj(x'),

Aj(e)uj(X)G,k(x - X)Vj(X'),
x') =

eij(e)uj(x)Gke(x - x') + y, - j # j', (1.2.9)
fC,,j(k)(x,x')=uj(x)Gk(ex+yj-x');

j,j'=1,...,N, Imk-0, eZ0.
PROOF OF LEMMA 1.2.2. Using Theorem B.1 we have

N

[Hy(e) - (ek)2] Gk - 7 2#)G,6,[1 + Guy,
,,; _,

(sk)2 E p(HH(e)), Imk > 0, (1.2.10)
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where

i,(x) = v,(x - e 1yi), iii(x) = Uj(X -.--'y,), e > 0, j = 1, ..., N, (1.2.11)

and

,9E(ek) = (1.2.12)

In addition to the scaling operator U, given by (1.2.3) we also need the unitary
translation operators

T: L2(183) -' L2(R3), (7,g)(x) = 9(x + y), g E L2(R3), y E P3. (1.2.13)

Recall that

r.2U,G,kU,' =Gk, c>0, lmk>O. (1.2.14)

With all this we can compute the resolvent of H,Y.

(Hc.Y k2)-'

= e2U,[HY(e) -
(ek)2]-1 U, 1

N

Gk - E 2 Y Aj(e)GkU,Vj[l + 9,(tk)1-!iij,U. 'Gk
j.,=1

N

=Gk-C' ,,u Li, 'Gk

N

= Gk - e F A,.;(k)[1 + k2 E PAIm k > 0.

As in the one-center case the problem is now reduced to the study of the limit of
the operators A,,,(k), [1 + Bjk)]jj', C,,j.(k) as e j 0. As in Lemma 1.1.2.2 we obtain
convergence of

A, j(k) ,40 Ao.,(k) ')Gk(' - y,),

C,, (k) o C0.j(k) = (Gk(' - yj), -)uj, j = I, ..., N, Im k > 0, (1.2.16)

in Hilbert-Schmidt norm where we observe that Ao,,(k) and Co,j(k), j = 1, ..., N,
are rank-one operators.

The limit of e[1 + B,(k)]-' is much more delicate. We split the operator B,
[B, ,; (k)],",. _, in the diagonal and off-diagonal elements, i.e.,

B,=D,+sE,, (1.2.17)

where D, = [D,, j.=1 and E, _ [E,,jj.]j,.=, have integral kernels

D,,j, (x, x') = bji'/t,(s)uj(x)GEk(x - x')Vj(x'),

x') = (I - Sjj.)A (e)u,(x)Gk(s(x - x') + yj - Y,)v,(x'), C Z 0.

From this decomposition it follows that

e[1 + Bt]"' = e[1 + D, + sEJ-' _ It + e[1 + D,]-', (1.2.19)

which implies that we have to find the limit of e[1 + D,]'' and E, as C. tends to zero.
Now the limit of the operator s[1 + D,] '' corresponds to the limit of the operator
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c[1 + BE(k)]-' in the one-center case which was computed in Lemma 1.1.2.4., i.e.,

10 in case 1,

x,)I2 + (O)] in case II,
N,

_ -[A(0)]' in case III,
F,j = n-hm e(1 + DE,») a=i

N,

Y [(4n)-'ik(j,, u,)(v,,
t0;,.)

+ in case IV,
(1.2.20)

where denotes the inverse matrix in case IV.
So far we only needed the conditions Ij e R and (I + I I) Vj e L' (R-'), A (0) # 0 in

cases III and IV, j = 1, ... , N, but to control the limit of E. we use (I + I I)21j e R fl
L'(R3).

Lemma 1.2.3. If V: 11 -.Ii satisfies (I + a RflL'(R3), j = 1, ..., N, then
IIF,Eu is uniformly bounded and

s-lim E, = E0 = [(I - hj,.)Gk(Y; )ui]j7,r_1 Im k > 0. (1.2.21)
E o

PROOF OF LEMMA 1.2.3. To simplify the notation we assume ;t,(e) - 1. First, we
show that 11E,)) is uniformly bounded by estimating IIEE.j;112,i 96j' (see [250]) as
follows

;I EE.,; - Eo.,i 112' :5 - _- -2 { 11(1 + 1-12)V
IIR4a{

IY, -

211 V 11,.'(R'111 lj (1.2.22)

Let J 'E Co'(U8'). Using the fact that J has compact support and that (1 + I I) V, e

(f8'), one can prove (see [250], Lemma 2.4) that

0 aseJO, j,j'=1,...,N, Imk>0. (1.2.23)
The uniform bound on II EE II then completes the proof.

Using the resolvent identity we now obtain

{I + c[1 + DE]-'E,} [1 + FE,]-' + {1 + e[1 + DE]"'EE}-'-

{e[I + D,] 'E, - FEo} [I + FE,]-' Eso [1 + FEo]-'
(1.2.24)

Together with (1.2.16) and (1.2.20) this implies that

e[1 +B,]-' Ego [l +FEo]-'F, Imk>0. (1.2.25)

We are now in possession of the limits of all operators involved in (H,,r - k2)-'.
By a tedious but straightforward calculation [247] we obtain the result stated in
the theorem, viz.

N

s-lim (H,.r - k2) 1 = Gk - Y ..4 ,(k)[[1 + FEo]-IF]j,i Co.j'(k)
40 j.j='

N

Gk+ Z
Cr=.r(k)]j)((Y(_

(1.2.26)
j.P='

where a = (a...... aN) is given in (1.2.6).
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We can also obtain norm resolvent convergence in the N-center case, but
then we need stronger decay on the potential.

Theorem 1.2.4. Let V e R be real-valued and supp V compact, j = 1, ...,
N. Assume, in addition, that Aj'(0) 96 0 if Hj is in case III or IV for some j =
1, ..., N. Then HE, r converges in norm resolvent sense to - A., r where a is
given by (1.2.6).

PROOF. As Rollnik functions with compact support are in L' (R3) ([434], Theorem
1.7) the only thing we have to prove, when compared with the preceding theorem,
is that

IIE,-E.110 ass 1.0. (1.2.27)

Since the potentials have bounded support we can assume that the variables x, x'
in the definition (1.2.18) of E, satisfy N. Ix'I < c, when we estimate the Hilbert-
Schmidt norm of E, - E0 which implies that (s(x - x') + yj - z IYj -
2sc > 0 for all s sufficiently small. Using the dominated convergence theorem (1.2.27)
readily follows.

II.1.3 Convergence of Eigenvalues and Resonances

Using the convergence results from the previous section we now deduce results
concerning the convergence of eigenvalues and resonances.

Theorem 1.3.1. Let V e R be real-valued, supp V; compact, j = 1, ..., N,
and suppose (1.1.2.84). Moreover, if H; = -A + V is in case III or IV for
some j we assume, in addition, Z;(0) # 0. Assume that ko, Im ko > 0, is a
negative eigenvalue of - A,, r (the norm resolvent limit of H, r as a 10) with
multiplicity M. Then there exist functions h,, I = 1, ..., m, analytic near the
origin, h,(0) = 0, and integers m, e { 1, 2), 1 = 1, ..., m, such that

k? , = ko + h,(elIm1)

00 m

= ko + E a,,,erlm', l = 1, ..., m, Y_ m, = M, (1.3.1)
r=1 1=1

are all the eigenvalues of H,, ,r near ko for c > 0 sufficiently small. If m, = 2
for some 1, both square roots should be used such that the total multiplicity
of all eigenvalues of H.,1. near ko is exactly M. Furthermore,

ko + e1lm"k, + o(&11'"'), (1.3.2)

where k1 = kl is a solution of (1.3.33) if m, = 1 and of (1.3.36) if m, = 2.

Remark. Since cases I and III do not give rise to any interaction in the limit
e 10, we have implicitly assumed in the above that H; = -A -+ V is in case
11 or IV for at least one j.
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PROOF. From the analysis of Appendix B we know that k, < 0 is an eigenvalue
of H,,r iff -1 is an eigenvalue of BB(kf), Im k, > 0, where BB(k,) is given by (1.2.9),
and hence iff

det2[l + B,(k,)] = 0. (1.3.3)

But since the operator B,(k) does not depend on k when c = 0, we cannot use the
implicit function theorem in (1.3.3) directly. Instead we expand the operator BB(k)
in norm in powers of c, viz.

B,(k) = B + J(k) + o(r), (1.3.4)

where

B = [dj; uj Govi]j y=1 ,
IN

R(k) _ {[2;(o)uJGov, + (v,, )uj ll,j. + 0.(Yj - )uj S .
4a

(1.3.5)

We know that Ker(1 + B) = {a e . ((l + B)4) = 0}, with.*' = ®,N=1 L2(RI), con-
sists of vectors of the form

where

(p = (41, ... , ON), (1.3.6)

0 if H, = -A + V. is in case I,

(DJ = a,Oj if H, = -A + V, is in case 11,

NJ

Y aj,O,, if Hj= -A lj is in case III or TV; j 1,...,N.
1 =1

(1.3.7)

We now want to decompose the Hilbert space.0' as follows. Let P _ [6jj.PP] be the
projection

0 in case I,

and let

in case 11,

in case IIlorIV; j= 1,...,N,

. = Ker(1 + B) = Ran P.

.11°2 = Ran(l + B).

Using

(1.3.8)

(1.3.9)

Ker P = Ker(1 + B*)1 (1.3.10)

and the Fredholm alternative ([494], p. 136) we infer that

°2 = Ker P. (1.3.11)

Thus )to can be written as a direct sum

'Y = Jr- - 3'Y . (1.3.12)

The space .; so far consists of all eigenvectors of B with eigenvalue -1, while the
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limit operator -A,,r is only affected by the eigenvector in case II and the one
eigenvector in case IV which gives rise to the zero-energy resonance (with our
convention this is .Sj, in case IV, cf. (1.1.2.84)). Because of this we put all these
eigenvectors in a space .jt°o and let Yl be the complement, thus

e=yr,4- ',. (1.3.13)

Define

Boo = PoBPo, B,0 = (I - P0)BP0,

Bo, = PoB(I - Po), B,, = (I - Po)B(1 - Po)
(1.3.14)

and similarly for B(k) and o(e). Here Po is the part of P projecting onto J. Then
Boo = - Po and Bo, = B,0 = 0 which implies that BB(k) can be written as

r - I + iBoo(k) + ooo(e) Jo, (k) + oo, (F)
B .(k) =

L J10(k) + o,o(c) B11
e>0, Imk>0,

(1.3.15)

where the decomposition is with respect to .*o and (,A", + Y2). Now let

-1 + Boo(k) + ooo(F)

B,o(k) + - o, o (e)
e 1

e>0, Imk>0. (1.3.16)

With these definitions we infer

[1 + BA)] C ZJ
= e[1 + B.(k)] L',]. (1.3.17)

By relabeling, if necessary, we can assume that H, = - A + l', j = 1, ... , no, no < N,
are all in case 11 or IV. In addition, we also write mj for Oj, if Hj is in case IV. With
all this at hand, a typical element TO and .X°o looks like

_ a,
T _ ano 18)(1 3_

o
(VIs (Vno, 0no)0no

. .

and hence

(Boo(k)`Po)j = (Oj, vj)O,
ikl

[(ui - ik I bjj. - I;k(Yi - Y )J (1.3.19)

Furthermore, we observe that

B,o(k)`Yo + (1 + 0 (1.3.20)

can always be solved with respect to IF, E All -i- '2 for any `Po a °o since Al o(k)TO e
02 and [1 + B]J,r.2 is bijective from (1.3.12).

Hence

eRol(k) + oo,(F)

Bll(k) + J,I(k) + o,l(e)

-1 e rr(Bo(k)) iff Ker Boo(k) a (0). (1.3.21)

What we have obtained so far is to replace the operator BB(k), which contains no
information on k when c = 0, by the operator &(k) which is directly related to the
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point interaction Hamiltonian -A., r at a = 0. Let

d(e, k) = det2[1 + a,(k)], (1.3.22)

which is analytic in a and k near e = 0 and in Im k > 0. Then

d(0, k) = det2
r1 + [Eoo(k) - 1] 0

LL A, o(k) 1 + Bj
= det2

[I + [boo(k) - 1] 01det2
L1 0

L a,o(k) lJ 0 1 + B

= det2[Eoo(k)] det2[1 +

det[fioo(k)]e-TtlBo0k)-'tdet2(1 + B1) (1.3.23)

using the relations (.)r being a separable Hilbert space)

det2{[1 + A] [1 + B]} = det2[1 + A] det2[l + B] exp(-Tr AB),

A, B e i42(.), (1.3.24)

det2[1 + A] = det[t + A]e-T`", A e-41(.*). (1.3.25)

None of the terms on the right-hand side of (1.3.23) can be zero except the first, and
we can conclude that the multiplicity of the eigenvalue ko of -A,,r equals the
multiplicity of the zero of d(0, k) at k = ko.

Using the implicit function theorem we obtain that Hs, r has exactly M eigenvalues
(counting multiplicities) kj converging to ko, and that kj . can be expanded in a
convergent Puiseux series. From Lemma B.4(a) we infer that this Puiseux series can
have at most square root branch points and hence we obtain the expansion (1.3.1).
To find the first coefficient in expansion (1.3.1) we proceed as follows. Let

k,, = k,,t..,,. (1.3.26)

Then k,, and hence B,.,,(kt) (we suppress the I dependence in the notation) are
analytic in a near e = 0. By first reducing the problem to a finite dimensional space
by standard means ([391], Sects. XII.1 and XII.2) and using a theorem by Baum-
giirtel (60],[61] we can find an eigenvector 4 nears = O for B0_(ke) such that e - 0t
is analytic and

[1 + B,,(k.)]40 = 0. (1.3.27)

Let 4 Using (1.3.17) we can choose Oj.o = 0, j = no + 1, ..., N,
and

(1.3.28)

where O j = 1, ..., no, are defined as in (1.3.18) and (c,..... c,,) is an eigenvector of
the matrix 1,,1(ko), i.e.,

no ik

R - 4a) b j j , - ?'0(yj - c j = 0 , j = 1, ..., no. (1.3.29)

(Recall that, by assumption, Hj belong to case I or III for j = no + 1, ..., N, and
therefore do not contribute to the limit, or equivalently, aj = oo for j = no + 1, ...,
N.) Because of the resonances (Theorems 1.3.3 and 1.3.4) we will not use that
m e (1, 2), but consider the general case in e N. By first taking the derivative m times
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with respect to a ate = 0 we obtain after a short computation denoting

A,
, _k

de

!L` r=2,...,m+1, j=1,...,N, (1.3.30)
Ue L=O,

j= 1,...,N,

that

(1
k

+ u)Govj)Oi"" + m! [_;(O)(t. +
i

. uic ,,

40+m! Y uidka(y j I....,no. (1.3.31)
j'=1

m=1:
By taking the inner product with sgn V we obtain of course (1.3.29).

From (1.3.31) we deduce that

0;=YajOj,-m!7; -2;(0)(u;>0;)'0i+4nu;c,+ u,Oko(y,-yik,.
I =1

N)

= aO, + Y ajOi, + Xi, j = 1, ..., n0, (1.3.32)
1=2

where T, denotes the reduced resolvent (cf. (1.1.2.37)) with V replaced by V,, j = 1, ... ,
n0, and where a 1, ..., a are constants to be determined later and a,,, ! = 2, ..., Nj,
j = 1, ... , n0, are constants which will drop out of the subsequent calculations. By
calculating the second derivative of (1.3.27) in e = 0 and taking the inner product
with j we finally obtain

ffA,(0)(Uj, b,)-1cj - k0 d3x d3x' V,(x)vi(x)Ix - x'I vj(x')4j(x')(vj, 4j) 'c,
4n R6

+ (0j, vj)A. (0)aic, + A;(0)aj - A;(0)(4,, X,)

+ 2 Y dk0(yj - v,)[(vj., 4j')al + Xj.)J
=1

ik0 1k0 ik 1 " ,k0ly, y,+
4n v. )12 a, - 4n (4, vj)(Vj, xi) +

471
(.0j, vi) e cj.

+ f
J

d3C d3x Vj(X)v,(x)V k0(y' - yi )
j2=1 n6

(x - 4'c,. = 0, j = 1, ..., n0. (1.3.33)

This is a system of no equations with no + 1 unknowns (k1 and a1, ..., a""). How-
ever, there is still one overall constant left undetermined, namely the normaliza-
tion of 4 (or the eigenvector (c1, ..., c")). This reduces the number of unknowns
to n0.
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m>1:
First, we observe that

and hence

(1 + u,Gov;)bj = 0 (1.3.34)

N)

0, = ajOj + Y aj,0,,, j = 1, ..., no (1.3.35)
1=2

for some constants (a ... , a,,) to be determined later (the constants aj,. I = 2, ...,
Nj, j = 1, ..., no, will cancel). By computing the (m + 1)th derivative of (1.3.27) in
s = 0 we obtain, after taking the inner product with g,, that

4n I(qj, vj)I Za, + Aj(0)aj + (0j, vj) 2 tko(yj- i, )aj
J-1

,
Y I .,+

/k(0,vi)
Y_ e cj.=0, j=1,...,no. (1.3.36)

4nn ;=1

Again this is a system of no equations with no + I unknowns (k a ... , which
is still solvable due to the one extra degree of freedom contained in the normalization
of 0'.

Turning the situation the other way around we can start with the negative
eigenvalues of H,. y which remain bounded and do not get absorbed in the
continuous part of the spectrum as c 10. This is the set-up for the next theorem.

Theorem 1.3.2. Let I' e R be real-valued, supp V; compact, j = 1, ..., N,
and suppose (1.1.2.84). Moreover, if H, = -A + V is in case III or IV for
some j we assume, in addition, A;(0) 96 0. Let E, be a negative eigenvalue of
HE, r such that

-oo < M, < EE < M2 < 0 (1.3.37)

for s > 0 small enough. Suppose {e } is a positive sequence decreasing to zero,
and denote by ko (Im ko > 0) any accumulation point for {E,ry}. Then ko is
an eigenvalue of -A., y. Let M be the multiplicity of the eigenvalue ko of
- A,, r. Then the conclusion of Theorem 1.3.1 holds, i.e., there exist m analytic

functions hi, l = 1, ... , m, with h,(0) = 0 such that form, e {1,2},l= 1, ... , m,

k, , = k+ h,(e m,)Q
00 m

= ko + Y_ a,..a'1m', I 1, ..., m, m, = M, (1.3.38)
.=1 1=1

are all the eigenvalues of H,.y near ko. k,,e can expanded as in (1.3.2). In
particular, 2-la,,, = k, is given by (1.3.33) if m, = 1 and by (1.3.36) if m, > 1.

PROOF. The proof is almost a direct consequence of the proof of Theorem 1.3.1.
In the notation of that proof the analytic function

d(e, k) = det2[1 + 10A)] (1.3.39)

is zero iff k2 is an eigenvalue of H,,y when e > 0, and of -A,,r if e = 0. From the
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assumptions we know that

;10, JE,.) = 0, Im EE > 0, (1.3.40)

and that Een k,;. Hence

d(0, ko) = 0, Im ko > 0, (1.3.41)

and we are in the situation covered by Theorem 1.3.1 for obtaining the stated form
of k,,e.

In the proofs of Theorems 1.3.1. and 1.3.2 we did not use in an essential way
that kL was an eigenvalue of He,y per se, but only the equivalent statement
that BB(ke) had -1 as an eigenvalue. But in the "unphysical half-plane" (i.e.,
in Im k < 0) this is by definition equivalent to k being a resonance of H,.y.
Thus we can immediately state the analogous results of Theorems 1.3.1 and
1.3.2 for resonances.

Theorem 1.3.3. Let Vj e R be real-valued, supp V compact, j = 1, ..., N,
and suppose (1.1.2.84). Moreover, if Hj = -A -I- Vj is in case III of IV for
some j we assume, in addition, A j'(0) # 0. Let ko, Im ko < 0, be a resonance
of -A, y of multiplicity M. Then He,y has exactly M resonances which are
branches of one or more multivalued analytic functions with at most an
algebraic branch point at c = 0, such that

k,.e = ko + h,(e1Im,)

w m

= ko + Y_ a,,,e'Im,, l = 1, ..., m, E m, = M, (1.3.42)
r=1 1=1

are all the resonances of He, y near ko fore > 0 sufficiently small. Furthermore,
a,,1 = k1 is given as a solution of (1.3.33) if in, = 1 and of (1.3.36) if m1 > 1.

Remark. We cannot infer that m, e 11, 21 in this case as we could for the
eigenvalues, because we no longer have the constraint that k, a iR for e > 0
small enough.

PROOF. As in the proof of Theorem 1.3.1 we define

d(e, k) = det2[1 + r3e(k)], (1.3.43)

and from the assumption we have

d(0,ko)=0, d(0, ) 0 (1.3.44)

which, using the implicit function theorem, implies (1.3.42). The expansion is ob-
tained as in Theorem 1.3.1.

Theorem 1.3.4. Let V, e R be real-valued, supp V compact, j = 1, ..., N,
and suppose (1.1.2.84). Moreover, if Hj = -A -+ Vj is in case III or IV for
some j we assume, in addition, A,;(0) 0. Let k, im ke < 0, be a resonance of
He, y such that

0<M15IImkeISIkeI5M2<01 (1.3.45)
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for e small enough. Suppose is a positive sequence decreasing to zero.
Then any accumulation point ko of {kj is a resonance of -A..y. Let M
denote the multiplicity of ko. Then there exist m analytic functions hi, l =
1, ..., m, with h,(0) = 0 such that

kj.E = ko + h,(e1/m')

b m
= ko + 1= 1, ... , m, Y-m,= M, (1.3.46)

r=1 1=1

are all the resonances of HE ,. near ko. a,,,= k, is given by (1.3.33) if m, = 1
and by (1.3.36) if m, > 1.

PROOF. The proof is essentially equal to that of Theorem 1.3.2.

11.1.4 Multiple Well Problems

By the multiple well problem we mean the asymptotic study of eigenvalues
and resonances of the operator

N

Hy(e)_ -0-- V( -e-'y;), a>0, (1.4.1)

as a 10. Assuming that the potentials V are localized around the origin, the
operator H1(e) corresponds to the situation where the centers Y,/c,..., yN/e,
around which the potentials V, ( - e-1 y, ), ..., VN( - e-' yN) are concen-
trated, move apart.

The reason why we can study this problem in the context of point interac-
tions is, of course, the scaling relation we have noted and employed earlier,
viz., if

N

HE.Y = -O + e'Z v(e-' ( - y,)), e > 0, (1.4.2)
1=1

then

Hr(r) = £2Ue 1HE.yUE, (1.4.3)

where UE is the unitary scaling group given by (1.2.3). We will begin with what
we would like to call the critical multiple well problem, i.e., where we, in
addition, assume that

j=1,...,N, (1.4.4)

is in case II, i.e., H; has a simple zero-energy resonance. In the preceding section
we treated the case when

k'-+k0--.ko <0 asaj.0, (1.4.5)

where k' is an eigenvalue of HE,,.. From the unitary equivalence (1.4.3) we infer
that if k2(e) (Im k(e) > 0) denotes an eigenvalue of HY(e), we have the relation

kE = e-'k(e) (1.4.6)
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which implies that we have studied eigenvalues of H1(e) approaching zero as
0(c2). For the critical double well (N = 2, y1 = 0, Y2 = y, in (1.4.1)) we can
immediately state the following theorem.

Theorem 1.4.1. Let

H,(e) = -A -+ V1 -1- V2( - c-'Y), (1.4.7)

where V; a R, j = 1, 2, are real-valued and of compact support. Moreover,
assume that H; = -A + V, j = 1, 2, are in case 11. Then Ho(e) has, fore > 0
sufficiently small, a simple eigenvalue k2(e), Im k(e) > 0, tending to zero as

k(s) = sko + elk, + o(e2),

where ko is the unique solution with Im ko > 0 of

iko lyl = -e'kolrl

(1.4.8)

(1.4.9)

In addition, H,(e) has an infinite sequence of simple resonances tending
to zero and

kn(e) = cko.n + e2k,,n + o(e2), (1.4.10)

where ko,,, is a solution with Im ko,n < 0 of

iko.nIYI = ±e'k-Ivl. (1.4.11)

k, and k1,n are solutions of (1.3.33). Asymptotically, we have

I

In [(n + 1)7r] as n - oo. (1.4.12)ko'n ;
1

IYI (n +
")7r

-
i

Remark. The numerical values of the solutions of

izn = +e"-

with Re zn >- 0, for the first few n, are given in Table 1.

(1.4.13)

PROOF. Since now, according to our notation, A (e) 1, which implies that a, =
a2 = 0, we combine the computations from the example in Sect. 1.1 with Theorems
1.3.1 and 1.3.2 to obtain the result.

For completeness we state a similar result in the N-center case.

Theorem 1.4.2. Let
N

Hy(s)_ -A4- V(- -e-1y,), s>0,
=1

where V e R are real-valued and have compact support for j = 1, ..., N. In
addition assume that Hf = -A 4- V is in case II for j = 1, ..., N. Then we
have:

(a) If H1(e) has a continuous eigenvalue k2(c) (resp. resonance k(s)) such that

0 < M1 5 Jim k(e)Ie-1 5 Ik(c)Ie-' S M2 < 00 (1.4.14)
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for s small enough, then k(e) is a multivalued analytic function and we
have the expansion

k(c) = ek0 + s(m+l)/mk, + O(5(m+1)/m), (1.4.15)

where k0, Im ka > 0 (resp. Im ko < 0), is a solution of

lko
det

4rz bii' + Ck0(Yi - 0 (1.4.16)

and k, is a solution of (1.3.33) if m = I and of (1.3.36) if m > 1. (If
Imko>0,then 1 <m<2.)

(b) If ko is a solution of (1.4.16), then there exists an eigenvalue k2(e) of
H,.(e) if Im ko > 0 (resp. a resonance k(s) if Im ko < 0) with the expan-
sion (1.4.15).

PROOF. The theorem is a direct consequence of Theorems 1.3.1-1.3.4 by noting
that (1.4.16) is equivalent to the statement that ko is an eigenvalue (resp. ko is a
resonance) of -A,.,.

Table I

n - Rez
n

Imz

0 0 0.567143
1 0.425655 -0.318132
2 1.392665 -1.533913
3 2.415536 -2.062278
4 3.430203 -2.401585
5 4.440171 -2.653192
6 5.447408 -2.853582
7 6.452924 -3.020240
8 7.457284 -3.162953
9 8.460827 - 3.287769
10 9.463770 -3.398692
11 10.466259 -3.498515
12 11.468394 -3.589263
13 12.470248 - 3.672450
14 13.471876 -3.749243
15 14.473317 -3.820554
16 15.474603 -3.887116
17 16.475759 -3.949523
18 17.476803 - 4.008262
19 18.477753 -4.063742
20 19.488621 -4.116305
21 20.479416 -4.166242

11.1.5 Stationary Scattering Theory

The topic of this section is the study of scattering quantities for the Schrodinger
operator with point interactions at a finite number of points in 083 and their
natural c-expansions. We start with stationary scattering theory for the pair
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(-A., y, -0). Let
N

a Y(kw, x) = eika,x + E
j.j'=I

[ra.Y(k)]jjle,kmYY41rx - 'I y,I

det[r"a.Y(k)] # 0, k > 0, aj E Ill;, yj c- Y, j = I, ..., N, X # Y, w E S2.
(1.5.1)

Then `Na,Y is formally of the form (1.1.43) with 4'k(x) = e`ka'x which is not in
L2(R') but satisfies

(-OOk)(x) = 00, (x) (1.5.2)

in the distributional sense. Furthermore,

(-A'1'a.r)(k(o, x) = k2Y'a.r(k(o, x), X4 Y, (1.5.3)

and

lim lim 41rjx'Ie-,(k+iv)Ix'I[-Aa.r - (k + if')2]-1(x, x') = wa,Y(kW, x),
e$o Ix'I-a,

-Ix'I 'x'=W

det [1-,. y(k)] 0, k>-0, ajaR, yjEY, j=1,...,N, x0 Y.
(1.5.4)

Hence the functions `Ya,Y constitute the generalized eigenfunctions of -Da,Y
or, in other words, the scattering wave functions. With this at hand the on-shell
scattering amplitude fa, ,(k, to, w') associated with - A., y equals

lim Ixle-iklxl['Y,.Y(k(v', x) - eika,'x]

IxI-.a,
IxI-'x=,u

N

_ (41r)-i

[ra.Y(k)]jj
teikir,`O*-r,..,

,
j.l =I

det[ra.Y(k)]:0, k-e0, a,ER, yjEY, j=1,...,N, w,w'ES2.
(1.5.5)

Hence the off-shell extension .(k, p, q) of/a,1(k, co, (o') reads

N

,a,Y(k, p, q) = (41[)-' Y [ra.Y(k)];jle'(Y,.q-Y,v),

j.! =1

det[ra.(k)] 0 0, k c- C, aj E ff8, y, E Y, j = 1, ..., N, p, q e C3,
(1.5.6)

so as to make

fa.Y(k, to, (o) Y(k, p, q)IIPI=IqI=k,

p,gER3, w=Ip1-'p, W'=IqI-'q. (1.5.7)

Thus the unitary on-shell scattering operator .P Y(k) in L2(S2) equals

k
d2w la,Y(k, co, $ E L2(S2),(``a.r(k)O)((o) = 4(W) - yji

Js=
(1.5.8)



136 11.1 Finitely Many Point Interactions in Three Dimensions

or after insertion of (1.5.5)
N

,9a.r(k) = I - (k/8a2i) ,)e-;kr,t-l

j.j'=1

det[r,,r(k)]96 0, k>>_0, ajER, yjeY, j=1,...,N. (1.5.9)

The low-energy limits of/,,r(k, w, w) and S..y(k) can easily be obtained from
(1.5.5) and (1.5.9), respectively. Namely, we have

n-lim Say(k) = 1,
k-S0

N

-lim ja,r(k, co, co') _ -(4n)-1 E [ra,(0)]-' =
k-0 j.j'=1

det[I,,r(0)] 0, aj c- R, y, E Y. j = 1, ..., N, (1.5.10)

where a,,r is the scattering length. Finally, we observe that Y., y has a mero-
morphic continuation in k to r with poles exactly at the eigenvalues and
resonances of -A.. r.

We now turn to the question of how the scattering amplitude/.. r and the
on-shell scattering operator .91.,y are approximated by the corresponding
quantities for the operator H,,r. First, let

CAP, X) = W", (p, x), ..., k "(p, x)), (1.5.11)

where

y,(P> x) = Ue.j(x)e'v", .r,(P, x) = ve.j(x)e",

il"O) = u;((x - y;)/f), ve.j(x) = O AX - YOM;

c>0, xeR', PEr3, j= 1,...,N, (1.5.12)

and uj and 6, are defined by (1.2.11) and I E R are real-valued with supp I
compact, j = 1, ..., N. The transition operator i, r(k) for He,r then reads

ie.r(k) = [IL.jJ (k)]'Y! =1:.e - .e, te,jj'(k) = & 2A c)[1 + B(e, k)]jjl

c>0, Imk - 0, k2#8e, j,j'= 1,...,N, (1.5.13)

where

B(s, k) = [Bjj'(e,
k)],N,j'=1:

Ye - .r,

Bjj'(c, k) = e s > 0, Im k > 0, j, j' = 1, ..., N,

and

(1.5.14)

8e = {k2 E C - {0} I -1 E uu(B(e, k)), Im k >- 0) (1.5.15)

which is a discrete, compact set of zero Lebesgue measure.
Then the on-shell scattering amplitude j'e,r(k, w, w') of He,r reads

fe.r(k, co, (o') = -(4n)-1( 0',(k(o), re.r(k)$o.e(kw'))
N

,,(keo), II.jj'(k)j, j.jl(1.5.16)

=1
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with its off-shell extension fe r(k, p, q) given by

fe,r(k, p, q) _ -(4Tt)-1($o.e(P te.r(k)-&o.(q))

such that

N __ -(4a)-1
(43e.yy(P), te,jj'(k)j7r (q))

j,j'=1
(1.5.17)

f,,r(k, (o, co') = f,r(k, q, P)IIv1=Ivl=k,

e>0, k2#9e, p,geR3, eo=IPI-'P, co'=lql-'q (1.5.18)

Finally, the unitary on-shell scattering operator Se,(k) for Hf,,. equals

(SS.r(k)O)(w) = qS((o) - tai ,f d2"' fer(k, co,
s:

0eL2(S2), c,k>0, k2 4e, COES2. (1.5.19)

With all these definitions at hand we will start studying their relations in
the e 10 limit. By performing the usual scaling, we transfer the difficult e
dependence from 4 a to the transition operator te,r(k), so that the a depen-
dence essentially enters the explicit function Gk(x).

Theorem 1.5.1. Let V e R he real-valued with compact support for j = 1,
..., N and suppose (I.1.2.84). If Hj = -A + V is in case III or IV for some
j, assume, in addition, that aj(0) 96 0. Then fe r(k, p, q) is analytic in a near
F = 0 and

fe, r(k, p, q) r(k, p, q) + 0(e), det[F., r(k)] 0 0, k> 0, P, q E
C3

(1.5.20)

with a given by (1.2.6).

PROOF. Using the unitary scaling group Ue defined by (1.2.3) and the unitary
group of translations Ty,n defined by (1.2.13) we see that fe, r(k, p, q) can be written as

ft, r(k, p, q)
N

U---T U,-' T,,j.i..,j.(k)T,-;j'.U.U,-'7' (q))

N

_ .(4a) 1 tc,A'(k)q yr(q))
j.l =1

0, 0.

Here

lbo.s(P) = (4+71'(p), ...,

and

X) = uj(X)e
iP(cx+y,). E>0, xeR3, peC3, j=1,...,N,

(1.5.21)

(1.5.22)

(1.5.23)
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and, finally,

4(k) = [t,,;i Aj(e)[1 + (1.5.24)

where BB(k) is defined in (1.2.9). Hence f,. r(k, p, q) is analytic in a near f: = 0, and
using (1.2.25) we obtain the limit (1.5.20).

Remark. The next order in (1.5.20) can be computed explicitly (cf. [252]).
We also emphasize our convention that the ja th line and row should be deleted
in the matrix I",x, r(k) if a;,, = oo for some jo.

Applying this theorem to the scattering operator, we immediately infer the
following result.

Theorem 1.5.2. Let V, e R be real-valued with compact support fcrr j = 1,
..., N and suppose (1.2.84). If H; = -A -+ l; is in case III or IV for some j,
assume, in addition, that .l,(0) # 0. Then S,7(k) is analytic in v near f = 0 and

S,1(k) = JQ,r(k) + 0(a), det[la,r(k)] 0 0, k > 0, (1.5.25)

with a given by (1.2.6).

PROOF. Applying the definition (1.5.19) and Theorem 1.5.1 the result immediately
follows.

Notes

Section 11.1.1
The N-center point interaction appears in the physics literature in [80], [132],
[149], [151], [277], [363], [380]. In the mathematics literature the operator
(1.1.33) was first studied by Albeverio, Fenstad, and Heegh-Krohn [12] using
nonstandard analysis. Nonstandard analysis provides a justification of the
heuristic computations made at the beginning of this chapter, see Appendix
H. Our proof of Theorem 1.1.1 is essentially taken from Grossmann, Hoegh-
Krohn, and Mebkhout [226], see also [227]. Theorem 1.1.2 is due to Zorbas
[512], see also [129], while Theorem 1.1.3 is contained in [227] and Theorem
1.1.4 is an extension of some of the corresponding results in [227] (cf. also
[363]). Proposition 1.1.5 is taken from Thomas [482], [483], where one can
also find more detailed estimates on N(k2, a ..., aN). The final example, the
two-center problem, has been studied by [62], [146], [445], [463], [464],
while our presentation closely follows Albeverio and Heegh-Krohn [26]
where the regular three-center problem is also solved (cf. also [380]). Reson-
ances in the N-center problem are also discussed in [432].

Apart from the proof in nonstandard analysis and the proof used here in
order to define the Schri dinger operator with a finite number of point interac-
tions, there are also other possibilities: One can simply start with the explicit
expression (1.1.33) for the resolvent, and prove that this is the resolvent of a
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self-adjoint operator. This point of view has been used in Grossmann, Heegh-
Krohn, and Mebkhout [227].

Another possibility is to use Theorem 1.1.2 as a starting point. This has
been discussed by Zorbas [512] and, in particular, by [129]. In the latter,
point interactions corresponding to other self-adjoint extensions are studied.

Finally, one can obtain the Schrodinger operator with point interactions
as limits of Schrodinger operators with less singular short-range interactions.
This is the content of Sect. 1I.1.2.

For generalized pointlike interactions, cf. [369], [370], and [430].
External electric fields in connection with -A..y are studied in [2].
Resonances in arrays as N -+ co are discussed in [228], [503].

Section 11.1.2
The first result on the approximations of point interactions by local scaled
short-range interactions in the N-center case was given by Albeverio and
He egh-Krohn [24]. Their result has been improved by Holden, H, egh-
Krohn, and Johannesen [250] and the presentation here is a slight improve-
ment on the latter.

Section 11.1.3
The first results on the short-range expansion of eigenvalues and resonances
in the N-center case appeared in Holden, Heegh-Krohn, and Johannesen
[250]. The presentation here is an improvement on [250]. The location of
resonances is also studied in [380].

Section II.1.4
The multiple well, and in particular the double well, has been studied for a
long time in mathematical physics. Theorem 1.4.1 is due to Heegh-Krohn and
Mebkhout [244], [245]. But the eigenvalue part was noted earlier by Klaus
and Simon [297]. Klaus [295] obtained stronger results for the ground state
of the symmetric double well, H = -A + V + V(- - y). In [245] the asymp-
totic behavior of eigenvalues, resonances, and eigenvectors of the operator
H3,(s) is studied.

Section 11.1.5
The short-range expansion for the scattering amplitude and scattering opera-
tor was first discussed by Holden, Hoegh-Krohn, and Mebkhout [252] where
the next order terms are also explicitly computed. Furthermore, in the generic
case, i.e., in case I, the third-order term is also calculated. Scattering from point
interactions has been treated in [483].



CHAPTER 11.2

Finitely Many 8-Interactions in
One Dimension

11.2.1 Basic Properties

The purpose of this section is to generalize Sect. 1.3.1 to the case of finitely
many 6-interactions on the real line.

Let N e N and introduce the set Y = {yl,..., yN} c R. The minimal oper-
ator Hr in L2(F) is then defined by

HY
d

§(Hr) = {g e H2.2(R)I g(yj) = 0, yj e Y, j = 1, ..., N).
dx2'

(2.1.1)

Hy is closed and nonnegative and its adjoint reads

_ d2
HY

dx2
91(I') = Hz l(Id) fl H2.2(R - Y). (2.1.2)

By an explicit computation the equation

Hy*.qi(k) = k2 k > 0, (2.1.3)

has the solutions

i/i,(k, x) = e'I X-YiI, Im k > 0, yj a Y, j = 1, ..., N, (2.1.4)

which therefore span the deficiency subspace of Hr. Thus Iir has deficiency
indices (N, N), and hence all self-adjoint extensions of Hr are given by an
N2-parameter family of self-adjoint operators. Here we restrict ourselves to

140
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the case of so-called separated boundary conditions at each point yj, j = 1,
.... N. Thus we introduce the following N-parameter family of closed exten-
sions of fir

d2
-Az,Y = -dx2,

-9(-A.,Y) = {g e H2.1(R)f1H2.2(R - Y)Ig'(yj+)-g'fyj-) = ajg(yj),
j=1,...,N},

Of = (a1,...,aN), -oo < aj 5 00, j = 1, ..., N. (2.1.5)

A simple integration by parts proves that -A., . is symmetric. Moreover, since
fly has deficiency indices (N, N) and the N boundary conditions in (2.1.5) are
symmetric and linearly independent, -A., . is self-adjoint ([158], Theorem
X11. 4.30). The special case a = 0 (i.e., aj = 0, j = 1, ... , N) again leads to the
kinetic energy operator -A on H2'2(R). The case ajo = oo for some jo leads
to a Dirichiet boundary condition at the point yjo (i.e., g(yjo +) = g(yja -) = 0).
By definition -A.,y describes N b-interactions of strength aj centered at the
points yj e Y, j = 1, ..., N.

We now summarize some of the basic properties of -A., y:

Theorem 2.1.1. Let aj # 0, j = 1, ..., N. Then the resolvent of -A,, . is
given by

N(-Aa,y - k2)-1 = Gk + L [ra.Y(k)]jj (Gk(' - y1.). ')Gk(' - yj),
j,! =1

k2ep(-Ay), Im k > 0, -oo<aj5oo, y,eY, j=1,...,N, (2.1.6)

where

ra,Y(k) = -[aj'SJJ. + Gk(yj - (2.1.7)

PROOF. One can follow the corresponding proof of Theorem 1.3.1.2. Let g e L2(R)
and define

x' e"Ig(x')ha(x) = (i/2k) JR d

N

- (1/4k2) Y_ [ra.y(k)]jj dx' eIIx"-0Ag(x')e'klx-''I, Im k > 0, (2.1.8)
jJ=, Jil

where k is chosen such that det[r.,(k)] # 0. Then, obviously, h. a
H2.2(R - Y) and by inspection

ha(yj+) - hjyj-) = ajh.(yj j = 1, ..., N. (2.1.9)

Thus h. e .9(- A.. y) and

((-Aa.y - k2)ha)(x) = -ha(x) - k2ha(x) = g(x), x e R - Y, (2.1.10)

which proves (2.1.6). The explicit structure of (2.1.6) then shows that (-As,,. - k2)-1

has a first-order pole in Im k > 0 iff det[i'y(k)] = 0.
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If some of the aj equal zero, one extends the definition of - Aa, Y as usual by
deleting the corresponding lines and rows in f,,, (k).

Locality and additional domain properties of - Aa, y are described in

Theorem 2.1.2. Let -oo < aj 5 Co. aj # 0, yj a Y, j = 1, ..., N. Then the
domain _Q(-A.,Y) consists of all elements i/i of the type

rN

(x) _
Ok(x)

+ L [ra,Y(k)]jjlOk(YJ.)Gk(x - yj), (2.1.11)
j.j'-L

where qk e Q(-A) = H2'2(R) and k2 e p(-A,, .), Im k > 0. The decomposi-
tion (2.1.11) is unique and with 0 e 2(-A.,Y) of this form we obtain

(-A,.. - k2)0 = (-A - k2)A. (2.1.12)

Next let 0 E .9(- A., y) and suppose that 41 = 0 in an open set U S P. Then
-A.,Ygi=0inU.

PROOF. Since one can follow the proof of Theorem 1.1.3 step by step, we omit the
details.

It remains to discuss spectral properties of -A.,Y:

Theorem 2.1.3. Let a, # 0, yj c- Y, j = 1, ..., N. Assume that at most one
ajo = oo. Then -A,,1 has at most N eigenvalues which are all negative and
simple. If aj = oo for at least two different values j e { 1, ..., N), then -A.,y
has at most N negative eigenvalues (counting multiplicity) and infinitely
many eigenvalues embedded in [0, oo) accumulating at oo. In particular,

k2 e c (-Aa,Y)fl(-oo, 0) iff det[ra,Y(k)] = 0, Im k > 0, (2.1.13)

and the multiplicity of the eigenvalue k2 < 0 equals the multiplicity of the
eigenvalue zero of the matrix r., (k). Moreover, if E0 = ko < 0 is an eigen-
value of - A., y, the corresponding eigenfunctions are of the form

N

0o(x) = Y cjGk,,(x - yj), Im ko > 0, (2.1.14)
j=1

where (c1, ..., cN) are eigenvectors of the matrix 17,Y(ko) to the eigenvalue
zero. If - Aa, Y has a ground state it is nondegenerate and the corresponding
eigenfunction can be chosen to be strictly positive (i.e., the associated eigen-
vector (e .... cN) fulfills cj > 0, j = 1, ..., N).

The remaining part of the spectrum is absolutely continuous and covers the
nonnegative real line

Qess(-Aa.Y) = aac(-A.,Y) _ (0, oo), a,.(-A.,Y) = 0,
-Co < aj 5 oo, j = 1, ..., N. (2.1.15)

PROOF. Since H, 0 and HY has deficiency indices (N, N), -A.,1 has at most N
negative eigenvalues counting multiplicity ([494], p. 246). Relations (2.1.13) and
(2.1.14) then follow as in Theorem 1.1.4 and all statements in (2.1.15) can be proved
as in Theorem 1.3.1.4. The remaining facts about the point spectrum are proved as
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follows: Without loss of generality assume

Y1
<Y2<...<YN

If all jajI < co, j = 1, ..., N, one can follow [106] and define

a,eikx + ble-ikx, x 5 YL,

(2.1.16)

lkk(x) = am+Leikx + bm+,e-,kx, yn, 5 x 5 ym+i, 1 5 m:5 N - 1, (2.1.17)
LaN+, eikx + bN+L a kx, x Z yN; Im k ;-- 0, k:0 0,

where am+, and bm+, are unique (nontrivial) solutions of

am+L e'kYM + bm+L a
ikrm = ae'kym + bme-ikym,

am+iei11m[1 - (am/ik)] - bm+Le-ikYm[1 + (am/ik)]

= ame' '" - bme-A`y"', 1 5 m:5. N,

a, = a, b, = b, a, b e R.

(2.1.18)

Then gik(x) obeys

cGk(Yj+) ='k(Yj-), qlk(yj+) - 4fk(Yj-) = aj4,k(Yj), j = 1, ..., N. (2.1.19)

In addition, by the uniqueness of the coefficients am+ bm+ 1 5 m 5 N, Wk is the
unique solution (up to multiplicative constants) of

-Uik(x) = k24,k(x), x e R - Y. (2.1.20)

obeying the boundary conditions (2.1.19). If k2 > 0, then *k e L2(R) if a = b = 0,
implying k = 0. Since the same argument (replace e-ikx by 1, x) applies for k = 0
we obtain a,(-A,,y) c (-co, 0) in this case. For k2 < 0, we get a = 0 and the
above-mentioned uniqueness proves the simplicity of the eigenvalue. (Actually
k2 < 0 corresponds to an eigenvalue of -A..y if bN+, = 0.)

Next, consider the case where precisely one of the aj say ajo = co and N > 2 (for
N = 1, cf. Theorem 1.3.1.4). Then the boundary condition at yjo reduces to g(y1o±) =
0 (with no conditions on g'(yjo±)), i.e., it becomes a Dirichlet boundary condition
and hence divides R into two independent intervals (-co, y,0) and (yjo, oo). It suffices
to consider (y,o, oo). If necessary, we renumber yjo < yj.+, < . < yN to get y", <
Y2 < < $ , for some M 5 N. Then we introduce

ak` sin[k(x - Y,)],
Ok(x) = am+Leikx

+ &+1e
-ikx

,

aM+Leikx + &+, e -ikx,

YL <x <y"2,
Ym<x5yYm+ 25m<M- 1, (2.1.21)

x>-YM; Imk>-0, k#0,

where now a,,,. and 6m+L are unique (nontrivial) solutions of

am+, eikY." + bm+i e-'kYm = ame`kym + b'me ikym,

a e`kym ik - a ] - b eikym[ik + a ] = ika" eikvm - ikb a ikr"m 3 5 m <- M,m+i [ m m+, m m m ,

a3em + 93e-ki': = a"k-` sin[k(Y2

a'3e,kY=(ik - a2) - b3e-ikY2(ik + a2) = a cos[k(Y2 - YL)]. (2.1.22)

Then Ok e ACia((YL, oo)), 0,k e ACi,0((YL, cc) - U21 ..., YM)),

hk(YI +) =O,

)kYj- = J = 2, ..., M, (2.1.23)WkYL +) = W'(YL -), OkYj+) - W''
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and (up to multiplicative constants) Ik uniquely solves

- Vk (x) = k2/k(x), P1 < x < oo, x # yY2' ... , YM, (2.1.24)

and the boundary conditions (2.1.23). If k2 > 0, then Ik e L2((y"1, oo)) would imply
aM+1 = bM+1 = 0 and hence Il/k = 0. The same argument works for k = 0. Since an
analogous construction works in the interval (-oo, yjo) and -A..y is the direct sum
of the corresponding operators in L2((-o0, yjo)) and L2((yjo, oo)), we also obtain

- (-oo, 0) in this case. Simplicity of negative eigenvalues then follows
from the above-mentioned uniqueness of lk

It remains to show that if aj = oo for at least two different values of j e ( 1, ..., N),
then -A..y has infinitely many eigenvalues embedded in [0, oo) accumulating at
co. Let, e.g., a,o = aj, = oo, yjo < yj,. Then by the arguments above, -b.. . can be
written as a direct sum of the corresponding operators in L2((-oo, yjo)), L2((y 0, yj, )),
and L2((yj,, oo)) with Dirichlet boundary conditions at yjo and yj,, respectively. But
since (yjo, yjo) is a bounded interval, the essential spectrum of the corresponding
operator in L2((yjo, yj,)) is empty implying that its discrete spectrum accumulates
at oo. All properties of the ground state are shown as in Theorem 1.1.4 (ef. Appendix
F for a detailed treatment).

As in the one-center case the pole structure in (2.1.6) determines bound
states as well as resonances of -A.,y. In particular, any solution k1 of
det[ra,y(k1)] = 0 with Im kl < 0 defines a resonance of -A,,y whose multi-
plicity by definition coincides with the multiplicity of the zero of det[t",, y(k)]
at k = k1. At k = 0 one has to investigate directly [F ,y.(k)]-' as k -+0 since
r.. y(0) does not exist.

Similar to Sect. 1.3.1 we remark that for ocj e I8, j = 1, ..., N, -A.,y. can be
obtained from the theory of quadratic forms as follows: The form

N

Q..y(g, h) = (g', h') + E aj9(Yj)h(Yj),
(2.1.25)

91(Qa,y) = aj a 08, yj a Y, j = 1, ..., N,

is densely defined, semi bounded, and closed and the unique self-adjoint opera-
tor associated with Qa,y is given by -A., y. (cf. [512]).

Finally, we present a more detailed discussion of the two-center 6-interaction:
Fix al,a2el8-(0),y1,y2eR.Then

ra.y(k)
all + (i/2k) (i/2k)e'kly2-yhl

1012k)e1kly2-yhl X2 1 + (i/2k)
k e C - {0}, (2.1.26)]

and hence

[ra.y(k)]-' (Cal' + (i/2k)] [a2' + (i/2k)]

+ (e2ikly2-y1l/4k2)}-1
o+

(
2k) e:-y/2ik

(2.1.27)
[eik1Y2Yhh/21k eel' + (i/2k)]

as long as det[I,a,y(k)] 0 0. For k -+ 0 we obtain

[r=.r(k)]-1 k - [ai 1 + as 1 + IY2 - Y1I + OM]-' + 0(k)11

a' + a2' + IY2 - Yt 1 , 0. (2.1.28)
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In fact, for ai 1 + a2' + I Y2 - Y1 I 0 one can easily show that the first-order
pole i/2k in Gk actually cancels in the resolvent (2.1.6) of -A.,,.

The case a, ' + a2' + IY2 - Y1I = 0 implies a zero-energy resonance of
-A.,r as can be seen as follows. Let c, # 0 and assume without loss of
generality Ia, I < oo and y, < Y2. Define

Ic,, x 5 y1,
fo(x) = C2 + C3X, Y1 S X _< Y2, (2.1.29)

c4, x ? Y2,

for appropriate constants c. e C, m = 1, ... , 4. Then AGO fulfills

0,0(Yj+) = oko(Yj-), ' (yj+) - 1o(Yj-) = ajoo(Yj), j = 1, 2,

if and only if

(2.1.30)

al' + a2' + IY2 - Y11 = 0 (2.1.31)

in which case

c2 = (1 - x1y1)c1, c3 = a1c1, c4 = -(a1/a2)c1 (2.1.32)

(the case a2 = oo, i.e., C4 = 0, is included).
In general, the eigenvalues and resonances of -AQ,r are given by the

equation

detCr,.r(k)] _ -[a p' + (i/2k)] [«21 + (i/2k)] - (e2ikly2-r,l/4k2) = 0.
(2.1.33)

In the Dirichlet case a, = a2 = oo we get, in particular,
(e2ikir2-r,l - 1)/4k2 = 0 (2.1.34)

and hence infinitely many positive eigenvalues E,,, n = 1, 2,..., accumulating
at oo (cf. Theorem 2.1.3)

E. = k.2 = [in/I Y2 - Yi 1]2, n = 1, 2, .... (2.1.35)

11.2.2 Approximations by Means of Local Scaled
Short-Range Interactions

We now intend to generalize Sect. 1.3.2 to finitely many 5-interactions. For
this purpose we introduce real-valued potentials V e L1(R), j = 1, ..., N, and
define

vj(x) = I V(x)I'12', uj(x) = I V(x)I" sgnCV(x)], j = 1, ..., N. (2.2.1)

In addition, we consider

a,(k): L2(R)N -- L2(R)N,

N (2.2.2)
[ (k)(g1, ..., gN)]j = Y B,,.jj (k)9; , g; e LZ(R),

=1
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where

,9e.jj,(k) = 2J(e)UjGkv;., e > 0, Im k > 0, j,j' = 1, ..., N, (2.2.3)

and ,% are real-analytic near the origin with A (0) = 0, and

uj(x) = uj(x - c-' yj), ej(x) = vj(x - e-' yj), a> 0, yj E Y,

j = 1,...,N. (2.2.4)

By Lemma 1.3.2.1, $e,jj,(k), j, j' = 1, ..., N, extend to Hilbert-Schmidt opera-
torsforlmk -0,k 0.

Using the theory of quadratic forms (cf. Appendix B) we then define the
Hamiltonian H1(e) in L2(l8)

H1(e) = -A ).()V( - e-' yj), c > 0, Y c R, (2.2.5)
j=1

with resolvent given by
N

[Hr(s) - k2]-' = Gk - Y (Gk6j)[1 + 9,(k)]iit(4j, Gk),
j.j,=1

e > 0, k2 e p(Hr(e)), Im k > 0. (2.2.6)

Next we use the unitary scaling group Ue of (1.3.2.13) to define the Hamiltonian
He.Y in L2(I8)

N

He.r = e-2UHr(e)Ue-' = -A + e-2 E A1(e)V((' - yj)/c),
j=1

e>0, Y= R. (2.2.7)

Since we are interested in the limit a 10 of He, y we introduce Hilbert-Schmidt
operators Ae, j(k), Be, jj,(k), Ce, j(k), e > 0, with integral kernels

Ae, j(k, x, x') = Gk(x - yj - cx')vj(x'), Im k > 0, (2.2.8)

B,,jj'(k, x, x') = e-12j(e)uj(x)Gk(e(x - x') + yj - yj.)vj,(x'),

Imk>-0, (2.2.9)

Ce, j(k, x, x') = uj(x)Gk(cx + yj - x'), Im k > 0. (2.2.10)

Then (1.3.2.18) and suitable translations imply

(HH.Y - k2)-1 = e2Ue[Hr(e) - (ek)2]-IU. 1

N

= Gk - c-' Y Ae,j(k)[1 + Be(k)1-j A, (e)Ce.j'(k),
j.j'=1

e>0, k2ep(Her), Imk>0, YCIt (2.2.11)
Again we have
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Lemma 2.2.1. Define rank-one operators A;(k), BB;.(k), C;(k), j, j' = 1, ..., N,
through their integral kernels

Aj(k, x, x') = Gk(x - yj)v;(x'), Im k > 0, (2.2.12)

B;;.(k, x, x') = Aj'(0)Gk(y; - y;.)u;(x)v,.(x'), Im k Z 0, k # 0, (2.1.13)

C;(k, x, x') = u;(x)Gk(y; - x'), Im k > 0. (2.2.14)

Then, for fixed k, Im k > 0, A, j(k), B,, jj,(k), C,,;(k) converge in Hilbert-
Schmidt norm to Aj(k), B;j.(k), C;(k), j, j' = 1, ..., N, respectively, as a 10.

PROOF. Identical to that of Lemma 1.3.2.2.

Thus we get our main result

Theorem 2.2.2. Suppose V E L'(R), j = 1, ..., N, are real-valued and
Y c R. Then, as a 10, HE, y converges to - A, y in norm resolvent sense, i.e.,
if k2 E p(-A.,y), then

n-1
0 (H,.r - k2)-' = (-i.,r - k2)'', Y c R, (2.2.15)

where

a; = Aj'(0)
J

dx 1;(x), j = 1, ..., N. (2.2.16)
L

PROOF. From (2.2.11) and Lemma 2.2.1 we obtain

N

n-lim (H,.y - k2)-' = Gk - Y A,(k)[1 +
cio ;.;'=1

k2eC-R, Imk>0, (2.2.17)
where B(k) is defined by

B(k): L2(R)N - L2(R)', Im k - 0, k # 0,

But

[B(k)(9i,..., 9N)]; _ Bjj.(k)g;., g, e L2(R), J = 1, ..., N.
(2.2.18)

.'(O)Gk(Y; - y,.)(v;., ')uj (2.2.19)

implies

where

N

[1 + B(k)]i;` = 1b,, - z;(0) Gk(yj -Y.)[ra,y(k)]Ji -)uj, (2.2.20)

r'."(k) = [a;;' + Aj,(O)(v;, u;)GG(Y; - Y")Ii;'=i, Im k > 0. (2.2.21)

If 2;(0)(vj, uj) # 0 for all j = 1, ..., N, then a comparison with (2.1.7) shows that

[t,.y(k)]A1)1 uj.) = o; = A;(O)(v;, u;), j,j' = I__ N, (2.2.22)
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which by (2.1.6) completes the proof after inserting (2.2.22), (2.2.12), and (2.2.14) into
(2.2.17). If, e.g., A p(0)(vjo, ujo) = 0 for some j0, then insertion of (2.2.22), (2.2.12), and
(2.2.14) into (2.2.17) shows that all terms with j = jo or j' = jo in (2.2.17) are zero and
hence disappear on the right-hand side of (2.2.17).

Again He, y converges to - A as c 10 if and only if A;(0) J R dx V(x) = 0 for all
j = 1, ..., N and similarly to the one-center case the above approximation
scheme automatically yields 6-interactions at the points y1, ..., yN with finite
strengths al, ..., aN. Moreover, the above proof immediately extends to the
case of nonreal A#) to yield complex point interactions.

Formulas (2.2.17), (2.2.20), and (2.2.22) also show that bound states (resp.
resonances) of - A., Y are given by the zeros of the Fredholm determinant
det[1 + B(k)] in the upper (resp. lower) k half-plane.

1I.2.3 Convergence of Eigenvalues and Resonances

Having proved norm resolvent convergence of HF,Y to -A.,r as a 10 in the
preceding section, we now extend this analysis to include a detailed description
of how the corresponding eigenvalues and resonances of HL,Y converge to
those of - A. Y in the same limit. On the basis of Theorem B.1(b) we first state
that

Qess(He.Y) = 6ess(HY(e)) = 6ess(-0) = (0, 00), e > 0, Y P. (2.3.1)

By Theorem 2.1.3 this continues to hold at e = 0

6ess(-A..Y) = 6ess(-A) = [0, co), -oo < aj S oo, yj E Y, j = 1, ..., N.
(2.3.2)

For the discrete spectrum of H,,1 a detailed study of B,(k) yields

Theorem 2.3.1. Let Y c P. yj e Y, and suppose that It a L'(18), j = 1, ...,
N, are real-valued and have compact support.

(a) If n-limtto(H,.Y - k2)-1 = (-A«.r - k2)-1, k2 e p(-A..Y), such that
-A., r has I < M < N (necessarily simple) negative eigenvalues E. =
k,2 < 0, m = 1, ... , M, then, fore > 0 small enough, H,,1 has M simple
eigenvalues k' m < 0 which are analytic in a near e = 0, and

kt,, = i1Et.m = k, + O(e), m = 1, ..., M. (2.3.3)

Moreover, E,,m are the only eigenvalues of He_r near E., m = It ..., M.
(b) If n-limt1o(Ht.Y - k2)*-1 = (-Aa.Y - k2)-', k2 a p(-A.,, r), such that

- A.. y has no negative eigenvalues, then all negative eigenvalues of H,,1
tend to zero, i.e., are absorbed into the essential spectrum as a 10.

PRooF. By Theorem B.1(c) any negative eigenvalue E, = kf < 0 of H,, . is deter-
mined through solutions of

B,(k)O, = -0s, 1, a L'(R)N, a > 0, (2.3.4)
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and the corresponding (geometric) multiplicities are preserved. In order to isolate
the dominant term in B,(k) we define the operator E,(k) in L2(R)N with entries

.jr(k) = e-').
e>-0, kEC-{0}, j,j'=1,...,N. (2.3.5)

In particular, E0(k) = B(k) (cf. (2.2.13) and (2.2.18)). Since j = 1, ..., N, have
compact support, B,(k) is analytic in (e, k) for lei small enough and k e C - {0}.
Expanding B,(k) with respect to a yields

Bt, j; (k, x, x') = Bj.(k, x, x') + s2, (e6(s))Bjj.(k, x, x')

- (e/2)A (0)uj(x)[(x - x') sgn(y, - yj,)e''`l',-,.,.+IAIIX.-.'M]vp(x'),

keC-{0}, j,j'=I,...,N, (2.3.6)

for appropriate 0 5 9(e), 0(e) < 1, where we define sgn(O) = 1. Thus

IIBB(k) - ae(k)II = 0(e) (2.3.7)

uniformly in k if k varies in compact subsets of C and

IIB,(k)II = 0(Ikl-') as Ikl oo, Im k ;! 0, (2.3.8)

uniformly in e, lel small enough. Applying formula (1.3.3.11) then shows that for lel
small enough

det[l + B,(k)] = det[1 + B,(k) - fi,(k)] det(1 + [1 + B,(k) - ,(k)]-`B,(k)}
(2.3.9)

vanishes for some k e C - {0} if and only if

det{1 + [1 + B,(k) - E,(k)]-',G,(k)} (2.3.10)

vanishes. Now assume that det[I + B(k )] = 0 for some k,,, Im k > 0, or equiva-
lently, suppose that E. = k "'I < 0 is an eigenvalue of -A.,.. Then by the simplicity
of E. (cf. Theorem 2.1.3) and the analyticity of B,(k), R,(k) in (e, k) for lei small enough
and k e C - {0}, we infer by the implicit function theorem that in a neighborhood
of k (2.3.10) has a unique and simple zero k,,m analytic in a near a = 0 such that
(2.3.3) holds. By Theorem B.1(c), E,,,, = k$ m < 0 corresponds to a simple eigenvalue
of H,, y. Since H,, r converges to -A,, r in norm resolvent sense as a1 0, remaining
eigenvalues of H,. y are f o r c e d to converge to zero or to -oo as c1 0 . By (2.3.8)
eigenvalues running to -oo are excluded. N

The fact that no eigenvalues of H,,r run off to -oo as a 10 (due to the fact
that A(s) = 0(e) as s 10) is in sharp contrast to the corresponding case in three
dimensions.

Concerning resonances we state

Theorem 2.3.2. Let Y e R, yj e Y, and assume that V e L1(R), j = 1, ...,
N, are real-valued and have compact support. Suppose that

n-1t
m

(He.r - k2)-' = (-Oa.r - k2)-1, k2 a P(-A., r),
eto

and that ko, Im ko < 0, is a resonance of -A,,r with multiplicity M. Then,
for s > 0 small enough, there exist M (not necessarily distinct) resonances
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lm ki,e < 0, 1 = 1, ..., m, of He,y such that ki,e have convergent Puiseux
expansions in a near s = 0, i.e.,

co m

k,,, = kp + hi(elim') = k0 + Z al,re'lm", I = 1, ..., m, Y- ml = M,
r=1 1=1

(2.3.11)

where h, are analytic near the origin, hl(0) = 0, l = 1, ..., in. In particular, k,,,
are the only resonances of 11, y near k,,.

PROOF. The only difference to the preceding proof concerns the fact that now the
multiplicity of the zero of det[1 + 8(k)] at k = kl is not necessarily one and hence
yields Puiseux expansions for ke.

11.2.4 Stationary Scattering Theory

In analogy to Sect. 1.3.4 we first develop stationary scattering theory for
6-interactions and then show convergence of the scattering matrix corre-
sponding to H, y to that of - Aa, y as e j 0. We start discussing stationary
scattering theory for the pair (-A., y, -A). Let

N

Ta. y(k, a, x) = eikax - (2ik)-1 Y

detLfa,y(k)J#0, k>0, a=±1, -oo<aj<oo, aj960, yjeY,

j= 1,...,N, xe1R, (2.4.1)

with T.,y(k) defined in (2.1.7). Then, fork > 0,

`I'a,1(k,a,yj+)=`i'a,1(k,a,yj-), j 1,...,N,

'I' ,y(k, a, yj+) - T., y(k, or, yj-) = aj'Pa,y(k, a, yj), j = 1, ..., N,

-`PP,r(k,a,x)=k2'Pa,r(k,a,x), xER - Y,

lim lim Aa, r - (k + ie)2]-1(x, x')
e1o

(2.4.2)

= `1'a,y(k, ±1,x), xeR,

and hence IF.. y(k, a) are generalized eigenfunctions associated with -A., y
corresponding to left (a = + 1) and right incidence (a = - 1). The corre-
sponding transmission and reflection coefficients from the left and right are
defined by

.Ta', y(k) = 11n1 a-ikx,l a, y(k, + 1, x)
x- +OD

= tlm eikxPa,y(k, - 1, x) _ a,Y(k)>

gea.r(k) = lim elkx['1'a,r(k, +1, x) - e'kx],
(2.4.3)

.Q',,. i(k) = lim e1kx ['Pa. i(k, -1, x) - e-RA],
x- +Go
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and thus
N 7

.%.'.r(k) = I - (2ik)-r e-ikyj[1Q,r(k)1jj)e'*YJ,
= -. r(k), (2.4.4)

9P; y(k) = -(2ik)-1

eik"[la.r(k)]ij)e`ky,., (2.4.5)
j,j'=1

N

9ta.r(k) = -(2ik)-1 e-v`y,[1a.r(k)]jj`e-,kyj.;
j,j'=1

det[F,.y(k)]#0, k>0, -00<aj<00, aj#0, yjaY, N.
(2.4.6)

The unitary on-shell scattering operator bar(k) in C2 is then defined as usual
by

Y., r(k) =
9 r(k) `. v(k)1,

Via. r(k) r(k)J

det[f«,r(k)]00, k>0, -00<ajS«o, aj960, yjeY, j= 1--N.
(2.4.7)

Again Y«, r(k) has a meromorphic continuation in k to all of C such that poles
of .5'' 1(k) in c-{0} coincide with bound states or resonances of -A., y.

For illustrations of transmission probabilities in the N = 2, 4, 8, and 20
center case with equally spaced 8-interactions (of mutual distance it), see
Figure 40(b)-(e) [397] in Sect. 111.2.3, p. 275.

Next we summarize stationary scattering theory associated with H.r. Let
u,, vj be as in Sect. 2.2. We introduce in L2(R)N

(l r(k, or, x) = (OE yjk, or, x), ..., OE:yN(k, a, x)), (2.4.8)
where

and

0.1',,(k, a, x) = v,,j(x)elkox, E>0, k>-0, o=±1,
(2.4.9)

uE.j(x) = uj((x - y)/E), vc.j(x) = vj((x - Yj)1C),

E>0, yje Y, j = 1,...,N. (2.4.10)

The elements tE,,j.(k), j, j' = 1, ..., N, in L2(18) of the transition operator t,(k)
in L2(R)N are then defined by

tc,jj,(k) = E-22j.(E)[1 + Ac(k)]jj),

E>0, lmk - 0, k96 0, k2#4't, j, j' = 1, ..., N, (2.4.11)
where

B (k): L2(R)N L2(R)N,

N

[BB(k)(gr,..., gN)]j = gj c- L2(R),
j'=1 (2.4.12)

A.,jj.(k) = E-2A'j(E)uc,jGkvr.,',

e>0, Irnk-0, k00, j,j'=1,...,N,
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and

of = (k2 e C - {0) I Bjk)o, (bE for some a L2(R)N, Im k >- 0). (2.4.13)

Here BB(k) is defined as

BB(k): L2(R)N - L2(R)N,

N (2.4.14)
[B.(k)(g1,..., gN)]j = E BB,jj'(k)gj', gj a L2(R), j = 1, ..., N,

j'.1
with BB. jy(k) given in (2.2.9). Again e, fl (0, oo) =0 by Jost function techniques.
The on-shell scattering amplitude fa,Y,.,.(k) is then given by

f r,, , (k) _ ,r(k, a), te(k)4bt,r(k, a'))
N

_ (2ik)-1 ,,(k, a), t:,ji (k)4.
j

r,.(k, o')),
.j'=1

a, k > 0, or, a' = ±1, YcR. (2.4.15)

The unitary on-shell scattering matrix Sar(k) = [Se,1,,,.(k)],,Q =±1 in C2 then
reads

St, r,,,. (k) = b + f., r.,, (k), e, k > 0, 1, Y c R, (2.4.16)

and the transmission and reflection coefficients corresponding to Hr are
defined by

T'.r(k) = S,,y,++(k) = St.r.--(k) = T,r(k),

RC, Y(k) = S,, r, -+(k), R', r(k) = Se.r. +- (k), e, k > 0, Y c R.
(2.4.17)

Given the above notions we are in a position to describe in what sense S, r(k)
approaches Y.. r(k) as s 10:

Theorem 2.4.1. Let V e L' (R) be real-valued and let aj = Aj'(0) JR dx V(x)
and yj a Y, j = 1, ... , N. Then Se, r(k), k > 0, det [F r(k)] # 0 converges to
.5 r(k) as s 10. If, in addition, Vj, j = 1, ..., N, have compact support then
Sar(k) is analytic in a near e = 0 and we obtain the expansion

S y(k)f=0b.r(kk) + 0(e), k > 0,

0cj=Ai'(0)J dxV(x), yjeY, j=1,...,N.
R

PROOF. Let V, a L' (R), j = 1, ..., N. We first rewrite (2.4.15) to get

(2.4.18)

N
Y -1Aj,(e)(vje1kel8s+y,lUs'Ty, [1+,de(k)]jj`T

j.j'=1
(2.4.19)

where x, x' are just integration variables and Ty, y e R, denotes the unitary transla-
tion group in L2(R), viz.

(Tyg)(x) = g(x + y), y e R, g e L2(R). (2.4.20)
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Using

U.-'T,, [1 + A,k)]-!T-r, UU _ [I + BB(k)]tj!, j,j' = I..... N. (2.4.21)

we end up with

N

Y,°o'(k) = (2ik)-'

Y_ F ',1,; (F)(vje'k°ccX+r,i, [1 +
B,(k)]jj'uJ,e,k°'«X'+Y>>). (2.4.22)fe,

J.j.='

Since by dominated convergence vje'k°", uje'k°`(') are strongly continuous in z,
Lemma 2.2.1 immediately implies

N

lim (2ik)-l 2y(0)e- ,k°Y,(vj, [I + B(k)],) u; )e,k°'Y,. (2.4.23)
clo

Assuming A (0)(v,, u,) # 0, j = 1, ..., N, an application of (2.2.20) and (2.2.22) then
shows

N
lim-(2ik)-' Y (2.4.24)

40 M-1

where r'°.r(k) is given by (2.1.7) with

aj = ,i;(0)(v,, uj), j = 1, ..., N. (2.4.25)

If A,.(0)(vja, uj°) = 0 for some jo, then all terms with j = jo or j' = jo in (2.4.23) vanish
and hence do not appear in (2.4.24). Thus r'.r(k) contains precisely those a, which
are nonvanishing. If V, j = I, ... , N, have compact support, then analyticity of BB(k)
in e for IFI small enough and fixed k E C, k # 0 (cf. Sect. 2.3), proves analyticity of
S, r(k),k>0,near a=0.

Again S,(k) converges to I as a 10 if and only if aj = 223(0) fRdx V(x) = 0,
j = 1, ..., N, i.e., if all 6-interactions have vanishing strength and hence
disappear.

Notes

Section 11.2.1
This section represents an extended version of some of the results in [21].
Further theoretical background for the one-dimensional N-center case can be
found in [106], [107], [226], [512]. For the two-center case, cf. [7], [121],
[123], [190], [191], [395]. The relation between point interactions and self-
adjoint extensions of Hr different from -AQ,,. (i.e., a choice of boundary
conditions which connect different points in Y) has been considered in [129].

Sections 11.2.2 and 11.2.3
All results are taken from [21].

Section 11.2.4
Scattering theory for N-center 5-interactions has been treated in [285] (see
also [176]), [308], [316], [317], [379], [387], [397]. The first half of Theorem
2.4.1 has been derived in [379].



CHAPTER 11.3

Finitely Many 8'-Interactions in
One Dimension

In this chapter we extend the concepts of Ch. 1.4 to finitely many
b'-interactions on the real line.

Let N E N and introduce the set Y = {yl, ..., yN} c R. We first introduce
the closed and nonnegative minimal operator 1y in L2(R)

z

11
dx2' -9(flr) = {g a H2'2(R)Ig(yj) = g'(yj) = O,j = 1, ..., N)

= Y) (3.1)

h i t i i bdose a n venw jo s g y

d2
11 = H2 2(R - Y9(f (3 2)

dx2'
).- r) .

Since the equation

Rr 41(k) = k2 e k > 0, (3.3)

has the solutions

to,
ij t (k, x)

- 0, x>yj,
fj2(k, x) = 'k(,V,-X)

(e

, x < y ,j
Imk>0, j=1,...,N, (3.4)

the operator 11 has deficiency indices (2N, 2N). As in Ch. 1.4 there exists
an intermediate minimal operator !I'r in L2(R) which is a proper symme-
tric extension of Er (cff, the Notes to Ch. 1.4). In fact, the closed operator AY

154
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defined by
2

Hy
dx2'

Y(Hr) = {g e H2'2(R)lg,(yj) = 0, yj E Y, j = 1, ..., N}

(3.5)

has deficiency indices (N, N) and hence is more convenient for the following
treatment. We note that the adjoint of Hr is given by

d2
1Y'*= -Y dx2,

_9(Hr*)_ {gaH2.2(R- Y)Ig'(Yj+)=g'(Yj-),yjeY,j= 1,...,N}
and that

(3.6)

R'*b(k) = k2q$(k), b(k) e I(R'*), k2 e C - R, Im k > 0, (3.7)

has the solutions

bj(k, x)
eikl

-y, x)

X

> Yj' Im k > 0, yj e Y, j = 1, ..., N. (3.8)-e , x<y;,
As a consequence all self-adjoint extensions of Hr are given by an N2-
parameter family of self-adjoint operators. Similar to Ch. 11.2 we restrict our-
selves to separated boundary conditions at each point y,, j = 1, ... , N. Hence
we introduce the following N-parameter family of closed extensions of Hr:

d2
afl.y = Wx2,

{g a H2.2(R - Y)Ig'(Yj+) = g,(Yj-),

g(Y;+) - g(Yj-) _ Tjgj(Yj),! = 1, ..., N},

>NN), -oo<fl;<oo, j=1,...,N. (3.9)

The special case Q = 0 (i.e., lj = 0, j = 1, ..., N) leads to the kinetic energy
Hamiltonian - A on H2.2(R). The case f3;o = oo for some jo leads to a Neumann
boundary condition at the point y;o (i.e., g'(yjo+) = g'(y;o-) = 0). Clearly,
5p,y is symmetric by a simple integration by parts. In addition, =-a,y is
self-adjoint sinceHr has deficiency indices (N, N) and the N boundary condi-
tions in (3.9) are symmetric and linearly independent ([158], Theorem
XIII.4.30). By definition Ea,y describes N b'-interactions centered at yj e Y,
j = 1, ... , N.

In the following we summarize basic properties of 8,#, y. We start with
describing its resolvent.

Theorem 3.1. Let f3j 96 0, j = 1, ... , N. Then the resolvent of =-P, y is given by

("Q.r - k2)-1 = Gk + Lr [r 6,r(k)7;;10k(' - Y; Y;),
j.j'-1

k2ap(E,r), Imk>0, -oo < fij:5 oo, fj, 0, yjeY, j= 1,...,N,
(3.10)
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where

r,,r(k) = [-(/I;k2)-la;; + Gk(Yj - Yj )]", =i (3.11)

and

eik(x-Y) x > y,
ik(x - y) = (i/2k) -e+k(Y-s)' x < y, Gk(x - y) = (t/2k)eiklx-Yl,

Im k > 0. (3.12)

PROOF. One can follow the analogous proof of Theorem 2.1.1 step by step.

Clearly, the above characterization of,p,r extends to the case where some
of the /3j equal zero. For example, if fljo = 0 then one simply omits the joth line
and joth row in the definition of r#,y(k).

Additional domain properties and locality of Ep,y are discussed in

Theorem 3.2. Let -oo < jj < oo, #j s 0, yj E Y, j = 1, ..., N. Then the
domain (Ep .) consists of all elements 41 of the type

41(x) = Ok(x) + (ilk) (Yj) k(x - y.), (3.13)

where A e -9(-A) = H2.2(18) and k2 E p(Ep, y), Im k > 0. The decomposition
(3.13) is unique and with ' e '9(Ep,Y) of this form we obtain

("p,r - k2)tJi = (-A - k2)4k. (3.14)

Next let 4 e (Ep,y) and suppose that /i = 0 in an open set U S R. Then
Ep,yo = 0 in U.

PROOF. Identical to that of Theorem 2.1.2 since

(&k(' - y), (-A - k2)0) = (i/k)#'(y), #.E H2.2(R), Y E R.

Spectral properties of Ep,y are given in

Theorem 3.3. Let fj 0 0, yj e Y, j = 1, ..., N. Assume that at most one
Pj. = oo. Then E p, y has at most N eigenvalues which are all negative and
simple. If /3j = oo for at least two different values j e (1, ..., N), then Ep.y
has at most N negative eigenvalues (counting multiplicity) and infinitely many
eigenvalues embedded in [0, oo) accumulating at oo. In particular,

k2 e Up(,,:., p y) fl (-oo, 0) iff det[1`p,Y(k)] = 0, Im k > 0, (3.16)

and the multiplicity of the eigenvalue k2 < 0 equals the multiplicity of the
eigenvalue zero of the matrix T' .(k). Moreover, if Eo = ko < 0 is an eigen-
value of Ep,y, the corresponding eigenfunctions are of the form

fo(x) _ c"jCko(x - yj), Im ko > 0, (3.17)
;=i
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where (E1, ..., CN) are eigenvectors of the matrix rg.y(ko) to the eigenvalue
zero.

The remaining part of the spectrum is absolutely continuous and covers the
nonnegative real line

6saY) = 6ac(!0,Y) = [0, 00), a..(' ,Y) = 0,
-00 <flj<oo, j= 1,...,N. (3.18)

PROOF. Since Hr 0 and Hr has deficiency indices (N, N), B,,,Y has at most N
negative eigenvalues counting multiplicity ([494], p. 246). Moreover, (3.16) and
(3.17) then follow as in Theorem 1.1.4 and all assertions in (3.18) follow as in
Theorem 1.3.1.4. It remains to prove the statements concerning the point spectrum.
We closely follow the analogous treatment in Theorem 2.1.3. Without loss of
generality assume

Y1 < Y2 < " < YN (3.19)

If ally/jI <oo,j= I__ N, we define

,,II''/

aleikx + b,2 'Ax, x<Yl,

Wk(x) = am+,eikx + bm+1 a ikx, ym < x < Ym+l, I m 5 N - 1, (3.20)

LaN+,eikx+bN+leikx, x>yN; Imk>0, k#0,
where am+, and bm+l are unique (nontrivial) solutions of

'kYm - -ik'm = 1 kV_ - -ikY.,

Q

am+te bm+lep - time bme ,

am+leikY^'[1 - ikflm] + bm+ie ,kY,,,[1 + ikflm] = amelkYm + bme-i -, m = L..., N,

al = a, b,=b, a,bef8. (3.21)

Then' 0,(x) obeys

I
Wk(YJ+) = Wr(YJ-), 'k(yj+) - Y'k(YJ-) = j = 1,...,N. (3.22)

In addition, by the uniqueness of the coefficients am+,, bm+1, 1 5 m 5 N, *k is the
unique solution (up to multiplicative constants) of

-4'k(x) = k2skk(x), x e 0I - Y, (3.23)

obeying ok a Hi 2(08 - Y) and the boundary conditions (3.22). If k2 > 0, then oik e
L2(f) iff a = b = 0 implying ik = 0. Since the same argument applies for k = 0
(replace e±'kx by 1, x in (3.20)) we obtain irP( p,r) c (-oo, 0) in this case. For k2 < 0
we get a = 0 and the above-mentioned uniqueness proves the simplicity of the
eigenvalue. (In fact, k2 < 0 corresponds to an eigenvalue of p,r if bN+, = 0.)

Next consider the case where precisely one of the 6j, say $Jo = oo and N 2 2 (for
N = 1, cf. Theorem 1.4.3). Then the boundary condition at yjo reduces to g'(yjo±) =
0 (with no condition on g(yjo±)), i.e., it becomes a Neumann boundary condition
and hence decouples R into (-oo, yjo) and (yjo, oo). It suffices to consider (y,0, oo).
If necessary we renumber yjo < yjo+1 < < yN to get Y1 < Y2 < < Y. for some
M < N. Then we introduce

Wk(x) = am+1 eikx + bm+1 a ikx, Ym < x < Ym+1, 25 m 5 M - 1, (3.24)..II,,

{acos[k(x_j1)],

Yl < x < Y2,

aM+leikx + bM+le-ikx, x > Ykr+ Im k Z 0, k 0 0,



159 11.3 Finitely Many h'-interactions in One Dimension

where now am+, and bm+, are unique (nontrivial) solutions of

am+l e
bm+1e-skr,,, = a,,,e ,kv,,, - b me-ikvm

e'"'''" + be iki%'mtlam+1 ne"'^'[I - ik(f ;] + h e ik/3m] = itm m

3:5 m 5 M, (3.25)

a1e' _ b,e-ikf, = is sinrk(v2 - Yi)],

ik/32] + h,e-i`h[1 + ik132] = a eos[k(y"2 - Y )]

Then qk fulfills ipk e AC,0,((Y,, oo) - {Y21 ..., YM}), i/ik a oo)) and

kik(v,+)=0,
,' .I' / _ QQOk(Y,+) _ O" (Y,-), (Yj) - WklYj-) = 2, ..., M.

(3.26)

Hence kG" uniquely solves (up to multiplicative constants)

-(x) = k2kL,(x), Y, < x < oo, x # Y2, ... , YM (3.27)

and the boundary conditions (3.26). If k2 > 0. then k&k a L2((yp oo)) implies a"M+i =
hM+, = 0 and hence 1ik = 0. The same argument works for k = 0. Since the ana-
logous construction applies for the interval (-oo, PO), and -, y is the direct sum of
the corresponding operators in L2((-o0, yj0)) and L2((y0, c)) we obtain again
a,,(27p, y) c (-oo. 0). Simplicity of negative eigenvalues then follows by the unique-
ness of ik".

That 3,,.y has infinitely many eigenvalues embedded in (0, oo) accumulating at
oo if /3, = oo. for at least two different values of j e { I, ..., N}, follows exactly by the
arguments in the proof of Theorem 2.1.3.

As in the one-center case the pole structure in (3.10) determines hound states
as well as resonances of -=R, y. In particular, any solution k, of det [f p.1(kl )] =
Cl with Im k, < 0 defines a resonance of Sp,y whose multiplicity by definition
coincides with the multiplicity of the zero of det[T`,.y(k)] at k = k,. At k = 0,
ra. y(0) does not exist and hence one is forced to consider [T`e. y(k)]-' as k -+ 0.

It remains to discuss stationary scattering theory for the pair (ca,y, -A).
The generalized eigenfunctions of 8p, y are given by

N

To.y(k, (T, x) = eikox Y(k)]i;)e ""A-.(x - yl)

a=±1, -0c</3;Scc, /3,96 0, yjeY, j=1,...,N, xeR. (3.28)

By inspection they fulfill

`I''.v(k, a, y,+) = `I's.r(k, a, yj-),

`PR.,.(k, (T, yi+) - y(k, a, yj-) = /3j`PR.r(k, (T, y,),

-`f'' (k,a,x)=k2PRy(k,a,x), Y,

lim lim (2k/i)e±i,k+i.ix [Ep,y - (k + ie)2]-'(x, x') = `PF_y(k, ± 1, x),
4o x - T,

x eR; k>0. (3.29)

The corresponding transmission and reflection coefficients from the left and
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right then read

6T,6, r(k) = Jim e-ikxtll y(k, + 1, x)

N

= 1
+(2ik)-1 e-iky;[fia.r(k)lrjleikv'

F. r(k) = Jim e'kxW,, (k, - 1, x)
-CO

N
= l + (2ik)-1 e"kr,[rf.r(k)ljj'e-ikv, _ <°lB y(k),

n.r(kl = lim elk, pp'o.r(k, + 1, x) - e kx]
X_ _M

N

_ - (2ik)-1 ` eikv, [rfl. r(k)1 jp eikr'',
j. i'-1

.°A.n.r(k) = Jim e-ikx[`pa.r(k, - I, x) - e-k']

N

_ -(2ik)-1 ( k ) ] , ? ,?e krr;

(3.30)

k>0, -oo<lj<oo, fl;* 0, y, eY, j=1,...,N.
The unitary on-shell scattering operator YO.y(k) in C2 is then defined as

5j.r(k) R`e.r(k)

IRIO'y(k) r,' r(k)
,

k>0, -oo <fj<oo, ffj#0, yjEY, j= 1,...,N, (3.31)

and obviously .9oo.r(k) has a meromorphic continuation in k to all of C such
that poles of % ,r(k) in C - {0} coincide with bound states or resonances of
`--8. r

We end up with a few remarks concerning the definition of a mixture of b-
and b'-interactions in the N-center case (N > 2). The self-adjoint extension
H,.a.r of H.

d2
H,.N.r =

.9(H,,#.r) = {q e H2.2(f - Y)I q(yi+) = .g(yj-), g'(yj+) - g'(yj-) = ajq(Y;),
-Co <aj5
g(yi+) - .9(y,-) = flg'(yt), -oo < #1 5 oo, I E N,), (3.32)

where N, U NN = { l , ... , N), N, n NR = 0, N >- 2, represents b-interactions at
the points yj, j e NQ, and b'-interactions at y,i I E Na. Clearly, one can analyze
H,.B,r along the lines of Ch. 2 and the present one.

Notes

The results of this chapter are taken from [205].



CHAPTER 11.4

Finitely Many Point Interactions in
Two Dimensions

Finally, we generalize the content of Ch. 1.5 to finitely many point interac-
tions in two dimensions.

Let N e N and introduce the set Y = {y1, ..., yN) c R2. We consider in
L2(R2) the nonnegative operator

-OIc;(R2-r) (4.1)

with HH1 its closure in L2(R2) (i.e., 21(1ir) = H02-2(R2 - Y)). The adjoint oper-
ator of Hr then reads

IiY = -0, 9(,q*) = {g e H1 C2(R2 - Y)f1L2(182)IOg e L2(R2)). (4.2)

Since the equation

HYpi(k)=k2fi(k), fi(k)e21(11Y), k2eC-R, Imk>0, (4.3)

has the solutions

1Gj(k, x) = y 1), x e R2 - {yj),

Imk>0, yjeY, j=1,...,N (4.4)

(we recall that Hb1)(-) denotes the Hankel function of first kind and order zero
[1]), Hr has deficiency indices (N, N). Thus all self adjoint extensions of Hr
are given by an N2-parameter family of self-adjoint operators. In order to
find the two-dimensional analog of our N-center 8-interactions in one and

160
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three dimensions we proceed as follows: In general, self-adjoint extensions
Hu, r of Hr are given by

I(
N N

11

(Hu,r) = 19 + E ci oi+ +;Y1 Uii'o1'-J ger'(Hy),ccEC,j= I,...,N},

Hu,r{ +; C;[*i+ +j Uij'*r'-]jg Y-=j -1

i=1
141j+ -

i,i'=1

where U,;., j, j' = 1, ..., N, denotes a unitary matrix in CN and

O;±(x) = O;( ±i, x) = (i/4)H0" ±i Ix - y;l),

xeI82-{yi}, Im ±i>0, (4.6)

provide a basis for Ker[HY + i], respectively. Obviously, the special case
U = -1 leads to the kinetic energy operator in L2(R2)

H-1.r = -A, .9(-A) = H2.2(R2) (4.7)

(since 4i,+ - fl;_ e H2.2(R2), j = 1, ..., N). Applying now Krein's formula
(cf. Theorem A.3) we get

N

(Hu,, - k2)-' = (-A - k2)-1 + A(k).ij,(1/ij,(-k), -)Oi(k),

where

k2 e p(Hu, r), U # -1, (4.8)

qi;(k, x) _ ;(k', x) + (k2 - k'2)((-A - k2)-' /ii(k'))(x)

(i/4)H0""(klx-y;I), Imk>0, Imk'>0, (4.9)

and

[A(k')];;'1

_ -(k2 - k'2)(i/i.(-k), 4/ii(k'))

= 1Gi(k', 41j, (k, y;)

J(21r)-' ln(k/k'), j =j',
(i14)[H0")(k'Iy; - yi'I) - Ho)(klyi - j #j',

k2,k'2ep(Hu,r), Imk>0, Imk'>0. (4.10)

The second equalities in (4.9) and (4.10) follow from the first resolvent
formula

(k2-k'2)GkGk.=Gk-Gk., Imk>0, Imk'>0, (4.11)
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where

Gk=(-0-k2)-', Imk>0, (4.12)

denotes the free resolvent with integral kernel

Gk(x-x')=(i/4)Ho')(kIx-x'I), Im k > 0, x,x'eII82, x# x'. (4.13)

From

N(Hu.r-k2)L4/;++ EN Ujj'Ti'-J=(i-k2)4;+-(i+k2) E Uji4/;
j'=1 j'=1

j = 1, ..., N, (4.14)

we infer

(Hu.Y + i)-'qlj+ = (2i)-' lqlj+ +
YNU014/5-

'YY' j_1

_ (-0 + i)-'4;+ +
°=1

(2i)-1(4;+ _ lpj_) + ,c,` 7);.;..W'j,",E

N, (4.15)

implying

N

U;j. + 5;;, = 2i Z (1j+, l/; + )T i )];T., .., j, j' = 1, ... , N, (4.16)
j =1

since fl;,-,j' = 1, ..., N, are linearly independent. (Here M = j, j' = 1,
..., N, denotes the transposed matrix in CN.) Clearly, relation (4.16) is valid
in general since in deriving it we only used (4.5) and Krein's formula for the
pair (Hu, r, H_ 1, p). Now we utilize the symmetry of (0;+, qi;.+) with respect to
j and j (i.e., ('Yj+,'/i;..+) _ (ikj..+,1G;+), j, j" = 1, ..., N) to get

Ujj, = -6jj + G. ..}i)] ,
j,

ji
=

_ - i)]
j"=1

or equivalently,

(4.17)

U = (4.18)

Since Krein's formula (4.8) implies

.1(k)* = A(-k), k2 e p(Hu,r), Im k > 0, (4.19)

unitarity of U is equivalent to the fact that a.(. f) (resp. 2( )) is normal.
In analogy to one and three dimensions we now define (cf. also the discussion
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in the Notes)

[2(k)]; _ [ra,r(k)]jj
_ (2n)-' [2naj - `P(1) + ln(k/2i)]bjj. - Ck(IYj -

aj e I8, j, j' = 1, ... , N, (4.20)

where

=
Gk(x), x s& 0,

'k(x) 0, x=0, Im k > 0, (4.21)

and denotes the digamma function [1]. (Actually it would have been
sufficient to define ).(.,1_0-1 since then A(k)-' follows from (4.10).) The N-
center point interaction Hamiltonian -AQ,r in two dimensions is thus de-
fined by

N

(-Ou,r - k2)-' = Gk + E [r.,r(k)];jl(G&(- -Yj),

k2 a p(-A.,r), Im k > 0, aj a R, yj a Y, j = 1, ..., N. (4.22)

As usual, we may extend the above definition to the case where some of the
aj equal oo. For example, if ajo = oo one simply deletes the joth line and joth
row in the definition of the matrix 17.,,(k).

Next we describe further domain properties of -A.,r and point out its
locality:

Theorem 4.1. Let aj a R, yj e Y, j = 1, ..., N. Then the domain .9(- A,, y)
consists of all elements ' of the type

N

fi(x)
= Ok(x)

+ [ra,r(k)],j`(Yj.)Gk(x - yj), (4.23)

where Ok c- -9(-A) = H2.2(182) and k2 a p(-A.,r), Im k > 0. The decom-
position (4.23) is unique and with q/ a.9(-4, r) of this form we get

(-A«,r - k2)t = (-A - k2)fk. (4.24)

Next let ' c-.9(- Aa, r) and assume 0 = 0 in an open set U S 182. Then
-A,ro=0inU.

PROOF. Identical to that of Theorem 1.1.3.

Spectral properties of -A., r are summarized in

Theorem 4.2. Let aj a R, yj a Y, j = 1, ..., N. Then the essential spectrum
of - A.,1. is purely absolutely continuous and equals

XQess(-A.,r) = aac(-A.,r) = [0, oo), Esc(-A.,r) = 0. (4.25)
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In addition,
°v(-A,.y) c (-Go, 0) (4.26)

and -A,,,. has at least one and at most N (negative) eigenvalues counting
multiplicity. In particular,

k2 a a,(-A,,r) iff det[r,,r(k)] = 0, Im k > 0. (4.27)

and the multiplicity of the eigenvalue k2 equals the multiplicity of the eigen-
value zero of the matrix r,,l.(k). If Eo = ko is an eigenvalue of -A, r, the
corresponding eigenfunctions are of the form

N

fo(x) c JGk,(x - yj), Im ko > 0,
j=1

(4.28)

where (c1, ..., cN) are eigenvectors of the matrix r,,y(ko) to the eigenvalue
zero. The ground state of - A.,y is nondegenerate and the corresponding
eigenfunction can be chosen to be strictly positive (i.e., the associated eigen-
vector (c1, ..., cN) fulfills cj > 0, j = 1, ..., N).

PROOF. That -A,, r has at most N negative eigenvalues follows from the fact that
Hr >- 0 and def(Hl.) = (N, N) ([494], p. 246). To prove the existence of a ground
state of -A ,, r for all aj a R, j = 1, ... , N, we observe that

r,, r(iK) K=. (2a)-' ln(K/2)1 + O((ln K)-') (4.29)

and

r,,1(iK)Kio (2a)-'N ln(K/2)P + O((ln K)-1). (4.30)

where P is a self-adjoint projection in r"

P=[b».N'']"J_, (4.31)

with simple eigenvalue 1 and eigenvector (1,..., 1). Expansions (4.29) and (4.30)
show that all eigenvalues of r,, r(iK) tend to +co like (2a)'' ln(K/2) as K oo and
that r,,r(iK) has a simple eigenvalue converging to -oo like (2a)-' N ln(K/2) as
K 10. By the monotone increase of all eigenvalues of r,,1.(iK) with respect to K > 0
(cf. Appendix F) we obtain at least one K. > 0 such that r,, r(iK,) has the eigenvalue
zero. The rest of the proof is analogous to that of Theorem 1.1.4.

As in all cases discussed before, the pole structure in (4.22) determines
bound states as well as resonances of Similarly to the one-center case,
the discussion of resonances is more involved than in one or three dimensions
since (-A,,1. - k2)-'(x, x'), x # x', has a meromorphic continuation to the
entire logarithmic Riemann surface.

Finally, we turn to stationary scattering theory associated with the pair
(-A, y, -A). Let

N

,,1(kw, x) = erkwx +. (i/4) Z [ra,r(k)];jlerk0)r;,H"I(kIx - yjI),

det[r,,r(k)] 5 0, k>0, w e S', aj a IR, x e IR2 - Y, j = I, ..., N,
(4.32)
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then T.. y(kw, x) are the scattering wave functions of -A., y and

-(A`1',.r)(kw, x) = k2`l',,r(kcu, x), x e R2 - Y

lim lim ei"4[8rt(k + is)]u2lx,lu2e-i(k+s )Ix I[_Aa.r - (k + ie)2]-1(x, x')
$40 Ix'I-OD-Ix'I-'x'=

=`PQ,Y(kw,x); xeR2- Y, k > 0, we S'. (4.33)

The on-shell scattering amplitude/ .(k, w, w') corresponding to -A.,1 then
reads

f,.r(k, w, w') = Jim IxI1ne-'klxl[%P.,r(kw', x) - eik' ]
IxI -ao

Ixl-' x=w

N
= ei'r14(8nk)-1/2 E

l 3.i'-1

det[l"a,Y(k)] # 0, k > 0, w, w' a S', aj E R, yj a Y, j = 1, ..., N. (4.34)

The unitary on-shell scattering operator ,., r(k) in L2(S') is finally given by
N

.V,.r(k) = 1 - (47ti)-1 .)e-iki')Y,,
bj'=1

/

det[1',1(k)]00, k>0, ajeR, yjeY, j=1,...,N. (4.35)

Formula (4.35) shows that .tea, r(k) has a meromorphic continuation in k to
the entire logarithmic Riemann surface.

Notes

The derivation of formula (4.16) has been taken from [129] where particular
attention has been paid to introducing point interactions in L2(R"), 1 S n 5
3, with general boundary conditions connecting different points in Y. The rest
of this chapter appeared in [19]. We emphasize that the approach used to
define the two-dimensional, N-center, 6-interaction presented there works as
well in one and three dimensions. To illustrate this fact it suffices to note that

[r,.r(k)]jj' = -aj'6jj' - Gk(Yj - yj') = -[aj' + (i/2k)] bjj, - dk(Yj - yj')

-aj' + lira [Go(x) - Gk(x)],
IxI40

- Gk(I Yj - Yj' 1),

j =j',

j # j', j, j' = 1, ..., N,

in one dimension (where G0(x) = -Ix1/2, x e R),

[F,.r(k)]jj' = [aj - (2R)-'`Y(1) + (2R)-' ln(k/2i)]8jj - T,k(yj - yj.)

ocj + lim [G0(x) - Gk(x)], j = j',
Ixl10

- Gk(I Yj - Yj'I ), j # j', j, j' = 1, ..., N,
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in two dimensions (where G0(x) = -(2ic)-' lnlxl, x e 182 - {0}) and

[r..r(k)]» = [a; - (ik/4a)]oil - 19k(IY; -

a; + lim [GO(x) - Gk(x)],
Irl1o

-Gk(IY; - Y,, I),

j =j',
j 91f, j,j' = 1, ..., N,

in three dimensions (where G0(x) = (4nlxl)-', x e 983 - {0)) and

k(x) =

to,

x # 0
V 0, x = 0.



PART III

POINT INTERACTIONS WITH
INFINITELY MANY CENTERS





CHAPTER 111.1

Infinitely Many Point Interactions in
Three Dimensions

III.1.1 Basic Properties

Our starting point will be the point interaction Hamiltonian with a finite
number of centers, and then the use of a limiting argument to show that the
analogous expression is still valid when Y is infinite.

For use in later sections we will discuss the operator both in x- and p-space.
Consider

Y={yjeR'IjeN)aR3 (1.1.1)

such that

inf Iyj-y,1 =d>0 (1.1.2)

and let

jyljlj,feN

a: Y - R. (1.1.3)

For convenience, we shall write aj instead of a,,, to simplify the notation. Then
we can define - A., r as a strong resolvent limit of restrictions - A;,, F of - A..
to finite subsets -7 of Y. This is the content of the following

Theorem 1.1.1. Let Y = (yj e R'I j E N) be discrete in the sense that

inf Iyj-yj.I=d>0 (1.1.4)
j'

j.j'j#eN

169
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and let a: Y -+ R. Then the strong limit in L2(R3)

s-lim (-Oj,Y - k2)-', k2 E C - R, (1.1.5)
YcY

jYYI<w

over the filter of all finite subsets F of Y exists where a = alY and
(-Aa,Y - k2)-' is given by (11.1.1.33). This limit equals the resolvent of a
self-adjoint operator denoted by -A.,Y which has the resolvent

00

(-A.,r - k2)-' = Gk + Z Cra,Y(k)] . (Gk(- - y;),
=1

k2Ep(-A,r), Imk>0, y1eY, Iy,-y;'I >-d, j96 j', j,j'eNI,
(1.1.6)

where r ,r(k) is the closed operator in 12(Y) given by

r«,r(k)= a;- ik
4n Imk>0 (1.1.7)

I J,J e N

on 10(Y) where

10(Y) = {g E l2(Y)IsUpp g finite}. (1.1.8)

We have

[ra,r(k)]-' E "(12(1')), k2 e p(-A.,Y),

Im k > 0 large enough. (1.1.9)

If a is bounded, then r., (k) is analytic in k for Im k > 0.
Let

Then

(9, (-&.r - k2)-1J) = (9, (p2 - k2)-1./ )
w

+ [ra.Y(k)]
1,1'=1

k2Ep(_Ae,Y), Imk>0, a;eR, y;EY,

joj', j,j'eNI, f,OeL2(R3), (1.1.11)

where

e ,PY,
(2n)-3np2 _ k2, p e R3, j c- N. (1.1.12)

PROOF. For each finite subset V of Y we have that -OQ, r, a = aIi, has the resolvent

m

(-Daj - k')"" = Gk + -)Gk(' - y1),
;.1=1

k2 a p(-0;j), Imk > 0, (1.1.13)
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where the matrix inverse is an operator in 12(V), i.e., a I VI x I fl-matrix. First, we
observe that there exists a ka < 0, Im ko > 0, such that the resolvent (-AQ, p - k2)-'
exists for all k2 > ko and is increasing in V, i.e.,

S Y implies (-A;,,c - k2)-' < (-Ai,p - k2)-', k2 < ko, (1.1.14)

for all 2', Y c Y, I LI, I YI < oo, where ko is independent of the subsets V and V. This
can be seen as follows: We showed in the proof of Theorem 1I.1.1.1 that the operator
-A,,p is approximated in norm resolvent sense by the operators

R4 = P2 , µj(uj)(O')Oy µ,(w) = I ax + 22 j E N, (1.1.15)

1',.1
\ /

as a) oo. For of > 0 large enough, µ,((D) is positive, thus making the operators Ry
monotone decreasing in V. Hence the resolvents of RV are monotone increasing in
V whenever they exist. By letting of oo we obtain the same property for the
resolvents of - AQ, p and thus for the resolvents of - AQ. p whenever they exist. To
prove the existence of such a 0 it is then sufficient to prove that the matrix
r,, p(k) is invertible for all subsets V of Y and all k with Im k > 0 sufficiently large.
To this end, consider the bounded operator a,, on 12(Y) with kernel tk(yj - y,.), i.e.,

AMY,) _ E 6k(Yj - Yj,)9(Yj.), Im k > 0, 9 = {9(Yj)}jEN E 12(Y). (1.1.16)
-1

Using Lemma C.3 we infer that in order to control the norm of 0k it suffices to
bound the quantity

1 W.

sup Y_ I Vk(Yy - -sup Y_ e-Imk1Y,-Y,1
JEN J'=1 47td ,EN j'=1

J, #J

(1.1.17)

Since there is at most one point y1 E Y inside each cube of size d/2 centered at

Yj+2Z

we obtain that the right-hand side of (1.1.17) can be estimated by

I Y_ e-Imkljld/2

41td ,Ec3 lo}

(1.1.18)

(1.1.19)

which can be made arbitrarily small by choosing Im k > 0 sufficiently large. Thus
0, tends to zero in norm as Im k -+ oo, and hence T,,Y(k) is invertible for all k with
Im k > 0 sufficiently large and ik 0 (4Ttajl j e N). But then the restrictions of the
matrix 1-,, .(k) to arbitrary subsets of Y are also invertible. Using

II(S - z)-1 II = d(z, a(S))-' (1.1.20)

for self-adjoint operators S, where denotes the distance, we have proved
that the increasing filter of operators (-A;,p - k2)-', V S V. II < oo, a' = alp, is
uniformly bounded, viz.

II(-Aa.p - k2)-' II < 1k2 - kol '. (1.1.21)

From Vigier's theorem ([480], p. 51) we obtain that

p - k2)-tR(k2) = s-lim (-A& (1.1.22),

YcY
lpl<
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exists and equals the unique supremum of the strong closure of the filter. By the
explicit characterization of the resolvent of -A.-,r we see that R(k2) reads

W

(R(k2)f)(x) = (Gkf)(x) + [rK.r(k)]j,'(Gk(' - y;),
;.P=1

Rek*0, Imk>0, xe183-Y, feL2(R3), (1.1.23)

whenever the right-hand side exists and defines an element in L2(183). The following
argument implies that (1.1.23) is well defined for all f e L2(R3). Let

a(f) = {aj(f)};KN aj(f) = (Gk(' - y;),f), j E N, f e L2(R3). (1.1.24)

Then
W

(g, R(k2)f) = (g, Gkf) + [rK.r(k)]jr
,,J=1

_ (g, Gkf) + (a(g), [rr.r(k)]-'a(f))1=(r), f, g e L2(R3), (1.1.25)

provided a(f ), a(g) e 12(Y). Hence, it is sufficient to prove that {h(yj)};eN a 12(Y)
for all h e .9(- A) = H2.2(G83 ). Assume that h e.9(- A). Then his continuous Q283],
p. 301) and equals

h(x) = ,d3x' G,K(x - x')f(x'), K e (0, co), (1.1.26)

for some f e L2(R3). It is sufficient to consider the case where y = Z3 since Y is
discrete. Writing

R3 = U (f + Q), (1.1.27)

where Q = [0, 1)3 c R3, we see that

e -KI"I
Ih(x)1 :; c13" 4nlx - x'I Jf(x')1

3

If e-2Klx-x'I
1/2[f d 3x'

f(x')IZ112.

(1.1.28)
Y_ LJ

2 , 2]j 71 d3x16n lx - x I

1= { f.}l.EZ,, a 12(Z3),

it suffices to prove that the matrix

M=[Mn];.rKz,,

is bounded. We have

1/2

f' = d3x'If(x')I2

-x9e-2K1J

j d3x' (1.1.30)
» .+Q 16n2Ij - x'IZ

(1.1.29)

M . = d3x' S
ce-2KI;-J'l

(1.1.31)
» Q 16n21j _j, - x'12

which proves (by Lemma C.3) that the Holmgren bound of M exists.

We end this section with a characterization of the domain .9(-AQ,r) of
- AK, r and with the proof that - A.. r is still local when Y is infinite.
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Theorem 1.1.2. Let yj a Y, lyj - d > O, j , j', and let aj a f, j, j' E N.
Then the domain 2(- A,, r) of -A,,r is the set of all * such that

i/i(x) = q(x) + > aj(k)GR(x - yj), x e la3 - Y, (1.1.32)
j=1

for some k with Im k > 0, where

00e -9(-A), a;(k) _ [rQ.r(k)];;'(y; ). (1.1.33)
i'=1

Furthermore, this decomposition is unique and

(-Aa.r - k2)Y' = (-A - k2)4, (1.1.34)

and if 0 = 0 in an open set U 9 P3, then also - A,,r = 0 in U.

PROOF. Using that 0 e.9(-A) implies that a 12(Y) (cf. the proof of
Theorem 1.1.1) we infer that the proof of Theorem 11.1.1.2 still applies.

As in Part 11, we extend our definition of -A,,r to allow a,, = oo for some
jo a N in the sense that - A,, r = - Aa, i where a and V equal a and Y,
respectively, with the joth component removed.

111.1.2 Approximations by Means of Local Scaled
Short-Range Interactions

The operator - A,, r of Sect 1.1 represents an idealization in the sense that the
interaction at each center has zero-range. It is therefore natural to ask in what
sense this idealization represents the asymptotic behavior when the range of
the interaction diminishes.

We will prove in Theorem 1.2.1 that -A,,r is approximated in norm
resolvent sense by operators with short-range interactions. Since our ultimate
goal in this chapter is to model regular structures, e.g., crystals, we shall
assume that the approximating operator has only a finite number of different
potentials, viz.

He.r= _A +C-2 .ij(E) .((. -yj)/E), E>0, (1.2.1)
j=1

where

V C_ {W1, ..., WN}, xj(E) a (ill (E), ..., PN(E)), j c- N. (1.2.2)

First, we derive an explicit expression for the resolvent of Herr. To this end,
we need some definitions. Let

GO

= 0 L2(I83) (1.2.3)
j=1
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and

AE(k): A'- L2(P3),

B£(k):.at" -+ .Y, (1.2.4)

Q k): L2(k3) -, `',

be bounded operators with integral kernels

A,.j(k, x, x') = Gk(x - cx' - yj)vj(x'),

x, x') 'j(e)u,(x)Gk(c(x - x') + Yj - y .)v,.(x'), j J (1.2.x)
lAj(E)Uj(X)G,.k(X - X')vj(x'), J = J ,

C,.i(k, Imk>U. t, 0, J,j'EN.

Theorem 1.2.1. Let W, e R, supp W compact, be real-valued and let
µj(c) = 1 + t 4(0) + o(c) as e 10, j = 1, ..., N. Assume, ,)furthermore, that
Y = {yjeU331jEN( satisfies lyj-y,I>-d>0,j0J',j,j'a N. Then the
seal/=adjoint operator in L2(R3)

where

H, r = - A + s-2 ; n j(c) V ((' - yj)ls), (1.2.6)
j=1

n,/C- 11111,.. .AN

has the resolvent

VE{Wl,..., WN), .)eN, (1.2.7)

(HE.r - k2)'' = Gk - cA,.(k)[1 + BB(k)]--'C,(k),

k2 E p(H,,y), Im k > 0. (1.2.8)

Assume that (0) 0
if.

H, = -A + V, is in case 111 or IV. Then HE.r
converges in norm resolvent sense to the operator -A.,r defined by (1.1.6),
i.e.,

n-lim (H,.r - kz)` = (- A..r - k2)-', k2 E C - U3, (1.2.9)
r.4O

where a = {aj;,EN and aj equals

W in case 1,

-%.;(0)I(v;, Oj)I-2 in case 11,

in case III,

Iv l

I(v,, tbjl)I2 j 1 in case IV; J E N.
=1 1

(1.2.10)

PROOF. Using Theorem C.4 we know that the self-adjoint operator

H1(t:) = -t1 4- Y- ME) V( - E--'yj) (1.2.11)
j-1
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has the resolvent

(Hr(e) - k2)-' = Gk - A,(k)[1 + ,Ae(k)]-1Ck(k), k2 a p(H,(e)), Im k > 0,
(1.2.12)

where

AA(k): ato L2(l8'), Ae(k) = [Gkij]jEN,

0,(k): dl° -+Y, 4e(k) = [-ij(e)ujGkvj'],.j'EN

CC(k): L2(R3) -+.W', C,(k) = [ij(e)ujGk]jeN; e > 0, lm k > 0,

(1.2.13)

are bounded operators with u,, v-; defined by (11.1.2.11). Introducing the scaling
operator Ue (cf. (11.1.2.3)) and the translation operator T, (cf. (11.1.2.13)) as in the
proof of Lemma 11.1.2.2 we obtain (1.2.8). Next we need the limits of the operators
Ae(k), CL(k), and e[1 + Be(k)]-' as e 10. As in Theorem 11.1.2.1, A,(k) and Ce(k) have
natural candidates for their limits, while the limit of s[1 + BB(k)]-' is more involved.
Starting with the operator Ce(k) (taking 2;(e) = 1 for simplicity) we have that
Vi

II[CC.j(k) - Co.j(k)]f 112
j=1

d 'xI I(x)I
eikkx4q,-x'I eiklY3-x'I l 2

JR3

d 3 x'
=1 a3 4alex + y; - x'I

-
4nly; X'I

f(x')

(' ikkx+qY-x iklY,-x 12

<
J

d3x W(x) J dsx'I_ e - e elmkLv,-x'I.

(R3 J=1 R3 4alex + yj - x'I 4nl y, - x'I

. 1 d3x" e-Imkl,,-..I lf(x")12

R3

r (' (' e,klex-x'I e,kix'I 2

5 cLJ d'x W(x) J d3x'I - e1"klx'l
111112,

R3 R3 4alex - I 4nlx'I

f e L2(R3), (1.2.14)

where

m N

c = sup Y_ e- Imklp, - xl and W(x) = Z I W;(x)I.
xER3j=1 j=1

Using the dominated convergence theorem we see that the right-hand side is bounded
by c(e)111112 where c(e) -, 0 as e j 0, proving the assertion for Ce(k). Similarly, one
shows that A,(k)* A0(k)* in norm as e 10. Writing

I + BB(k) = 1 + DD(k) + sEe(k), (1.2.15)

where

D1(k) = [aj,Aj(e)ujGkvj],.j'.N,
(1.2.16)

we infer from

E,(k) = [(I - Sjj')s 1Be.jj'(k)]j.j'EN,

e[1 + BB(k)]-' = it + e[1 + DD(k)]-'E,(k)}-1e[1 + De(k)]-' (1.2.17)

that it suffices to determine the limits of e[1 + DL(k)]-' and E,(k) as e 10. Estimating
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IIE,(k) - E0(k)II using Lemma C.3 we only need to prove that

e1' I`'x-> >+y,-Y, I e &IY,-Y, I 2

sup d3x d3x' W(x)W(x') - -,-4-0+0.
jeN,'=1 a6 Ie(x-x')+Yj-Y1I

J, #j
(1.2.18)

This, however, follows using the dominated convergence theorem. The matrix
e[1 + DD(k)]-' is diagonal, and for each entry on the diagonal we know the limit
from the one-center case, Lemma 1.1.2.4. Since we only have a finite number of
different potentials, the limit is uniform on the diagonal and hence also exists in Jr..
Thus

n-lim e[1 + D,(k)]-' = [8jj.6(k)j3j.j.eN, (1.2.19)
40

where

10 in case I,

[(4n)-1ikI(vj, 0,)I2 +.1;(0)]-`(t,, .)#j in case II,

B(k)j = [2 (0)]-' E .)Y'j1 in case III, (1.2.20)
1=1

N,'`

- 11

L (Wj, Bj1(k)0j)11'('/j,, -)Ojl
1.1'=1

in case IV,

with (ij, Bjl(k)bj)-.' defined as in Lemma I.1.2.4 with V replaced by Y and with
aj defined according to (1.2.10). Having found all the necessary limits, a similar
computation as in the proof of Theorem 11.1.2.1 yields the assertions claimed.

111.1.3 Periodic Point Interactions

One of the most interesting special cases of the model constructed in Sect. 1.1
occurs when Y and a are periodic. We then obtain the so-called one-electron
model of a solid which is based on the following assumptions (A)-(E):

(A) The solid is supposed to consist of a fixed number of heavy nuclei
arranged in a regular lattice surrounded by core electrons. Each nucleus
has the same number of core electrons such that the whole system is
neutral.

Although it is not proved from first principles that a neutral system con-
sisting of heavy nuclei and electrons, interacting via the Coulomb interaction,
forms a regular or approximately regular lattice as the ground state, it is
nevertheless an observed fact in nature that solids consist of nuclei arranged
in regular structures. This makes assumption (A) a reasonable starting point
to investigate properties of solids. Hence the solid is assumed to consist of an
electron gas immersed in a background of positive ions arranged in a regular
lattice.

(B) The electron-electron interactions are neglected, only interactions be-
tween the electrons and the heavy nuclei are taken into account.
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From an ideal point of view one would, of course, like to solve the many-
body problem using only assumption (A). However, many-body problems of
the above type are presently beyond the scope of an analytical treatment. The
validity of assumption (B) can be further enhanced by replacing the atomic
potential by an averaged potential, and the electron mass by an effective mass.
In addition, it is experimentally verified that the electrons move nearly free in
a metal thus making assumption (B) a reasonable one.

(C) The solid is assumed to be infinitely extended, and each nucleus gives
rise to the same potential.

Assumption (C) is a mathematical device to obtain a strictly periodic, not
only approximately periodic, interaction, and it is reasonable because the solid
consists of the order of 1023 nuclei. Clearly, this assumption disregards surface
effects. Furthermore, the complete periodicity does not allow one to study
various defects, dislocations, and impurities. Nevertheless, by perturbing the
periodic Hamiltonian we will be able to study various kinds of impurities, see
Sects. 1.9 and 2.6 and Ch. 5.

(D) All "higher-order" effects are neglected, e.g., relativistic effects, lattice
vibrations, spin-orbit coupling, electron-phonon interactions ([332]).

Clearly, all these effects play a role in realistic systems. Hypothesis (D) is
the price one pays for a rigorous analytical treatment.

From assumptions (A)-(D) it follows that we have to study the "usual"
Schrodinger operator which reads, in appropriate units,

H = -A+ V, (1.3.1)

where the potential V is periodic, viz.

V(x + %) = V(x), x e R', 2 E A, (1.3.2)

A being the underlying lattice. By definition (1.3.1) and (1.3.2) constitute the
one-electron model of an infinite, perfect solid.

To obtain a solvable model we will introduce our last assumption, namely:

(E) Assume that formally

V(x) = - Y_ µd(x - 2). (1.3.3)
cA

The atomic potential is of Coulomb type and thus has a singularity at
each point of the lattice and in particular is of long range. However, as we
mentioned in the comments to assumption (B), the actual potential has to be
replaced by an averaged potential which qualitatively looks like the one in
Figure 4 in one dimension. Thus it has a singularity at each lattice point
and is approximately constant in between. By replacing the singularity with
a 5-function and the constant value by zero we obtain (1.3.3) which is a
particular example of a so-called muffin-tin potential.

We will also be able to solve the problem where we allow a finite number
of different nuclei in each primitive cell P' (for the definition off , see the next
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section), i.e.,
N

V(x) Y_ E µj6(x - 2 - y;), (1.3.4)
J=1 . A

where { y, , ... , YN } c P. This provides a model of a multiatomic crystal or
an ordered alloy.

Figure 4

Finally, by allowing A to be one- or two-dimensional lattices embedded in
R' we obtain the one-electron models of an infinite straight polymer and an
infinite monomolecular layer, respectively.

111.1.4 Crystals

The first regular structure to be considered is the full infinite crystal in three
dimensions. Before we start with explicit computations for the point inter-
action Hamiltonian, it will be instructive to study on a formal level what sort
of properties one should expect in general with a Schrodinger operator

H= -A+V (1.4.1)

in L2(R3) where the real-valued potential V is a smooth periodic function, i.e.,

V(x+A)=V(x), xeR3, 2EA, (1.4.2)

and where A is a Bravais lattice,

A = {n,al + n2a2 + n3a3 e I831(n n2, n3) e 7L'} (1.4.3)

and a a2, a3 is a basis in 1183. This will also allow us to introduce the basic
nomenclature. The basic periodic cell or primitive cell r is mathematically

f' = R3/A (1.4.4)

and can be identified with the Wigner-Seitz cell

r _ {s,a, + S2a2 + S3a3 e 083ISj E [-2, J)'.1 = 1, 2, 3}. (1.4.5)

Since V is periodic, it can be expanded in a Fourier series, i.e.,

V(x) _ Vye`Y", (1.4.6)
yer

where

Vy = IP'I-' Jd3v V(v)e-'Y" (1.4.7)
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and r equals the dual lattice (or orthogonal lattice or reciprocal lattice),

r = {n1b1 + n2b2 + n3b3 E 1831(nj, n2, n3) E Z3}, (1.4.8)

where the dual basis b1, b2, b3 satisfies

ajbj. = 2nbjj., j, j' = 1, 2, 3. (1.4.9)

It will be useful to consider H in p-space, thus we make a Fourier transform
of H. We then obtain

A = #'H.S-' = p2 + (2n)-312()?(p - ), .) (1.4.10)

which is a formal way of writing the operator

(Af)(p) = p2f(p) + (2n)-312 fR3 d39 17(p - 9)f(9). (1.4.11)
J

Using the Fourier inversion formula

V(x) = (27&)-3/2 f dap V(p)e'"" (1.4.12)
1 3

one formally would expect

P(p) = (2n)312 E Vra(p - y
yer

since then

(1.4.13)

:(2n)-3/2 d 3p P(p)e'"" _ E V J dap a(p - Y)e1n:

R3 yer r R3

_ E Ve`r" = V(x) (1.4.14)
rer

which is (1.4.6).
Inserting (1.4.13) into (1.4.10) we see that A formally can be written

A=p2+ Vr(a(p-y- ), ). (1.4.15)
rer

This makes it natural to decompose the Hilbertilbert space L2(R3) according to

/: L2(R3) -, L2(A' 12(r)) = J d3012(r),®
(1.4.16)

(WJ)(e,y)=.'(y+9), ©eA, yEr,
where A is the dual group of A (or basic periodic cell or primitive cell of the
dual lattice f'), i.e.,

A = R3/r. (1.4.17)

By identifying A with the Wigner-Seitz cell of the dual lattice r (defined
correspondingly to (1.4.5)) we obtain the important concept of the Brillouin
zone, namely

A=(slb1+S2b2+S3b3eR31SjE(-I,J),j=1,2,3). (1.4.18)
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Thus the decomposition simply corresponds to writing a vector p e 083 uniquely
in the form

p=0+y, Be A, yer. (1.4.19)

This decomposition of L2(083) will, of course, also decompose the Schrodinger
operator R which we now write as

*,R*-' =
J

d30 R(0), (1.4.20)
E

where R(O) acts on 12(r) according to

"g(y - y'), 0 e A, y e r, g e 12(r).(R(e)g)(y) = h' + el eg(y) + V

Y,er
(1.4.21)

Thus (1.4.20) simply means

(cWRcr'f)(e, y) _ (R(o)f(e, '))(y), 0 e A, y e r, f e L2(A,12(r)).
(1.4.22)

In order to study the spectrum of ft, and hence of H, we have to study the
spectrum of R(O). Since the free decomposed Hamiltonian -A(0) (i.e., V,, = 0
for all y e r) has a purely discrete spectrum, namely

a(-A(e)) = ad(-A(0)) = Ir + 012, (1.4.23)

where

Ir+0i2 = {Iy+012e08Iyer}, OeA; (1.4.24)

R(O) will also have a purely discrete spectrum consisting of isolated eigenvalues
of finite multiplicity. As 0 varies in A, the Brillouin zone, the eigenvalues will
broaden to form bands if the dependence in 0 is smooth. Hence

a(H) = a(R) = U a(R(0)) (1.4.25)
OeA

which means that the spectrum of Schrodinger operators with periodic
potentials consists of bands, which may or may not be separated by gaps.

We will now implement the point interaction Hamiltonian into this frame-
work. There are essentially two ways of doing this. First, we could take the
operator -,&.. r from Sect. 1.1, make a and Y periodic and perform the direct
integral decomposition (1.4.20). Second, we could start with the unperturbed
decomposed Hamiltonian -A(0) given by (1.4.21) with Vy = 0 for all y e r
and then perturb it with point interactions in the spirit of Theorem II.1.1.1.
This makes the approach independent of the technical Theorem 1.1.1, but
raises the consistency problem (since we have to make a renormalization to
pass from u's to a's): Do the two approaches yield the same operator? We
will follow the latter approach as this makes the presentation independent of
Part II, but for completeness we will also prove that the two approaches lead
to the same operator.
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Our potential will then be, formally
N

V(x)=-Y Y µ8(x-yj-A), pjeR, j=1,...,N, (1.4.26)
J=1 AGA

when we allow interactions at a finite number of points y,, ... , yN in the basic
periodic cell f,

Y = (YI, ..., YN) a r. (1.4.27)

Then

N

VY = Irl-1 d3v V(v)e-'Y' = -ItI-1 F uje-"'Y,, y e r. (1.4.28)
fx l J=1

Inserting this into (1.4.21) we formally obtain
N

(A(0)9)(y) = IY + 0129(y) - Irl-1 E Y_ Aje-'Y'r,9(Y - Y')
Y'er j=1

= Iy + 0129(1) - irl-1
E [ie_'m E eu1 r,9(Y')Jj1

Y'er

0EA, yeF, ge10(1). (1.4.29)

As this of course does not define a self-adjoint operator in 12(f) we introduce
the operators

N
(fj°'(O)g)(y) = ly + 0129(x) - Irl-' '00)(0y,(0), g)# (0),

j=1

9eA, yer, 9e10(f, w>0, (1.4.30)
where (, ) is the inner-product in 12(f) and 0,'(0) equals the function

0e A, yeI', j=1,...,N, (1.4.31)

and x°" as usual, denotes the characteristic function of the closed ball in R3
with radius co > 0 and center at the origin.

With this operator we can state the following

Theorem 1.4.1. Let A`°(0) be the self-adjoint operator in 12(r) given by
(1.4.30) with domain

rr 11

(-A(9)) _ {g a 12(fl Z Iv + 01`19(1)12 < 00 }, 9eA.
(((( lyer J

(1.4.32)

If

+ 2n2)- , aj a R, j = 1, ..., N, w > 0, (1.4.33)

then 1?1(9) converges for all 9 e A in norm resolvent sense as w -, oo to a self-
adjoint operator which we denote by - A.,A. r(9). The resolvent of - A°.A. r(9)
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reads

(-Da,n,r(0) - k2)-1

N

= Gk(0) + It'I-' E [fa,A,y(k, -)Fk., (0),
j.j'=1

k2 0 I F + 012, Im k >- 0, det[r..n, r(k. 0)] # 0.

OeA, ajE98, yjeY, j=1,...,N, (1.4.34)

where

a=(at,...,(XN), Y=(y1,...,yN)C- l

and

(1.4.35)

ra.n.r(k, 0) = [ajbij - 9k(yj -

k20Ir+012, Imk>-0, OeA, (1.4.36)

and

9k(x, 0)

e t(v+9)x

Ir'I-1 lim E l x e R3 - A,
(O-uo ver Y + 01- k2,

Iv+elsw

(2n)-3e-iOx lint Y IAI - 4nco , x E A,
0)-UD ver Iy+012-k2

Iy+BI S w

k201r+012, Imk>0, OeA. (1.4.37)

If Im k > 0, then gk(x, 0) also equals

Y Gk(x + A)e-'OA, x e 983 - A,
I .teA

9k(x, 0) = ik (1.4.38)

Y
0 e

x

(cf. (11.1.1.26)). Furthermore,

e-i(y+e)yf
Y)ly+e12 _k2,

k2#IF +012, Imk - 0, OeA, j= 1,...,N, (1.4.39)

and Gk(O) is the multiplication operator in 12(r) with the function
(Iv + 012 - k2)-1, i.e.,

Gk(0). 12(r) 12(r),
(1.4.40)

Gk(0)9)(y) _ (Iv + 012 - k2)-'9(v),

k20If +012, Imk>-0, yer, gEl2(r).
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PROOF. From Lemma B.5 we know that

(N-(0) - k2)-' = Gk(0) + Y [In.y(k, O)]jjl(G-k(0)0Y(0)>

det[f'r(k,0)] #0, k2t If'+0I2, Imk>0, OEA,

In r(k, 0) = [I rl µ;(w)-'a;; - (0,(0), (1.4.41)

The jth diagonal entry of the matrix f n r(k, 0) equals

It'I (w)-' - (A" (0) Irl tw)-' -
1

' k ,Jµ; f rer IY + OIZ -
k2,

Iv+OI So

k2#lf,+012, Imk;?: O. (1.4.42)

To estimate the divergence of this series as w - co is more difficult than to isolate
the corresponding divergence in the finite center case, Theorem 11.1.1.1, since we
are not able to obtain the partial sum of this series in a closed form. However,
by applying the Poisson summation formula this sum can be controlled. Using
Lemma 1.4.2, proved after this theorem, we infer that

1

y 1v e12 _ k2
+els-

=1r1 aj-(2n)-3 r lY+01l-k2-4nw) ,

+oI ro

k20II'+012, Imkz0, (1.4.43)

converges as co -, oc; to I rl [aj - gk(O, 0)] where g,(0, 0) is given by (1.4.37). The
off-diagonal elements of the matrix converge, viz.

ei(y+e)(r,-rj )

(q;,(0), Gk(0)0, (0)) =
rL IY + 012 - ks IPI9k(Y, - Y; , 0),

I r+OI s w

j#j', k2#II'+012, Imk - 0, (1.4.44)

using Lemma 1.4.2 again. A straightforward computation shows that

(F k.r,.(O), -)Fk.r,(0)I12 0. (1.4.45)W-W

Hence we conclude

N

n-lim (R'(0) - k2)-' = Gk(0) + IrI-' E [r..n.y(k, E.r,.(0), ')Fk,,,(0)
m-m

(1.4.46)

for k2 sufficiently negative. To conclude that the right-hand side of (1.4.46) is the
resolvent of a self-adjoint operator -&. A, .(0) is similar to that of Theorem 11.1.1.1
and hence will be omitted. The equivalence of (1.4.37) and (1.4.38) when Im k > 0
is precisely the content of Lemma 1.4.2.
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We did not use the full content of Lemma 1.4.2, but only the fact that (1.4.44)
converges conditionally and that

IY + 012 k2
=4nw+0(1) asw -+oo,

Ir+81 s w

which also can be proved directly. However, for the consistency result in
Theorem 1.4.3, we also need the alternative expressions for the sums which
are contained in Lemma 1.4.2.

Lemma 1.4.2 (Poisson Summation Formula). Let k2 E C, Im k > 0, a e R3,
and 9 e A. Then

eiklx+al
-iexe

A IA 4nl,l+al
A#-a

Itl-i Jim 7 ei(r+e)a

w-OD rer IY + 012 - k2'
I r+el s w (1.4.47)

(211)-3elea lim 2 - 2 - 4nm a e A.
0-00 y e r I Y+ 9I k 4a

Ir+elsw

-

PROOF. Formally eq. (1.4.47) is essentially the Poisson summation formula for
the function Gk(x). However, due to the poor convergence (or actually divergence
without renormalization when a e A), special care is needed. First, we treat the most
singular case, i.e., when a e A. Due to the invariance modulo A it suffices to consider
a =0. Let

f(w) -
I

r.r Iy + 612 - kx
Ir+e1 sw

aER3-A,

wZO, (1.4.48)

(k2 a C, Im k > 0, and 0 e A will be fixed during the calculations and are therefore
omitted in the notation). Then f is a step function, f(w) -+ oo as w - oo, f(0) = 0.
Define

F(q) =Joe °°' df(w) = r 1r +
e12+-

k2 ' 11 > 0. (1.4.49)

Applying now the Poisson summation formula ([94], Theorem 67 and eq. (19),
p. 260) we obtain

JF(11) = IA1- $ d3x Gk(x)(x28+112)2 + 2F, a-`°" R' d3x Gk(A - x)(x28+ 112)2

-qld
= IA1'1 fR., VP Pe- k2 + (2a)3 xE erax

R.
d3x,t2(x2

+ 1)2GA fx#0

=IAI -i
hn

+ 2a2 ik + (211)3 x Gk.i)e-rex + 0(1) as 11-+ 0. (1.4.50)

AOO
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Hence

4nw 2n2 ik (2n)3 ux47) = e-"°' d f(w) - + E Ok(A)e + 0(1) (1.4.51)
IAI JAI JAI I.Af,

implying

lim Y_ JAI - 4nw = IAI lim 11(w) - IAI
Id..OD ,Gr Iv + 012 - k2

Iv+elsd

= Al Ilim P(n)
pro

tk
_ (2)r)3 471 + xA

Ck(A)e-'ea (1.4.52)
@A I

which equals (1.4.47) when a = 0. Equation (1.4.47) for a e RI - A follows in the
same way except that now the term for A = 0 needs no special treatment and the
resulting series (over r) converges conditionally.

We now turn to the consistency problem mentioned at the beginning of
this section, i.e., the proof that the operators - AQ, r+A defined by (1.1.10)
(with Y in (1.1.1) replaced by Y + A, where now Y is given by (1.4.27)) and
f®d39[-A,,A,,.(O)] are unitarily equivalent.

For completeness we will also prove the decomposition of the x-space
version of -A,,Y+A, i.e., the operator -Aa,r+A Let

('Vf)(0, v) = E f(v + A)e rex, BE A, vet, f e.(H3),
GA

and extend 'l to all of L2(R3) by continuity (denoting the closure by the same
symbol 'l).

Theorem 1.4.3. Let -AQ,Y+A be a self-adjoint operator defined by (1.1.11)
Where Y = {yl, ..., yN} c f and

aj = ayf+x e ll, j=1,...,N, AeA, (1.4.54)

represents the strength of the 6-interaction at the point yj + A E Y + A. Then

Il[-Aa.r+n] -l = f d38[-A,.ArO)], (1.4.55)

where -Aa.A.r(O) is given by (1.4.34) and 'W is given by (1.4.16).
Furthermore, let - AQ,Y+A be defined by (1.1.6) with Y and a as above. Then

*1_Aa.r+A]*-l = JAI-'

JA
I d30[-A,.A.r(O)], (1.4.56)
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where -Aa,A.r(O) is the self-adjoint operator in L2(f) with the resolvent

(-Aa.A,r(0) - k2)-'

N

= 9k(8) + IAI E [ra,A.r(k, 8)]jj1(gk(' - Yj', 0), ')gk(' - yj, 0),
j.j,=1

det[ra,A,r(k,9)]5e0, k2#Ir+0I2, Imk20, 0eA,
ajeR, yjeYcf'', j=1,...,N, (1.4.57)

where

gk(0): L2(t) -+ L2(r),

(90)f)(v) = J d3v' 9k(v - v', 0)f(v'),
(1.4.58)

r

k20Ir+0I2, Imk>t0, OEA, feL2(P),

and gk(v, 0) is given by (1.4.37) (or alternatively by (1.4.38)).

PROOF. Using Theorem XIII.87 in [391] it is sufficient, for (1.4.5), to prove that

19

*(-Aa.r+A - k2)-11-1 =
n

d30(-Aa.A.r(0) - k2)-' (1.4.59)

for some k2 E C - 12, Im k > 0. By introducing the bounded operators

N

IA. r(k): L2(,&, 12(r)) _ Q 12(A),
j=1

N N

rr,A.r(k). $12(A) - $12(A),
j=1 j=1

N

RA, ,(k): QQ 12(A) - L2(A,12(r)),
j=1

with

(1.4.60)

I(AA.r(k)If)j(l) = (2n)-3/2

A

d30
rZ IY + 012 - k2f(Y + 0),

(ra. A,r(k)a)i(l) = iF1 [(ai 4a)Sij bnz -
0r(Yj

- yp + A - A')-'e Jaj.(Z%

N

(AA. r(k)a)(0, y) = (2n)-312 a (A),
=1a6nIY+or_k2 j

N
k20I1 +012, Im k > 0, 0e A, feL2(Ut3), (1.4.61)

J=1

we observe after identifying j=112(A) and 12(Y + A) that

k2)-'f) (p2 - k2)-'f) + ('9, "A.r(k)[ra.A.r(k)]-'AA,r(k)`WJ),

k2 EP(-A,.A.r), Imk>0, f,9eL2(R3), (1.4.62)
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where, in obvious notation, p denotes an integration variable. Furthermore, let
denote the Fourier transform, viz.

12(A)-'(D L2(A,IAI-' d30),
;_'

(Ana);(0) _ Y aj(A.)e-'AO, 0 e A, N,
xen

AV, its inverse, reads

N N

-A W : l L2(A, IAI-' die)-+Q+ 12(A),
1=i ;_j

(1.4.63)

(1 4 64). .

(n'f);(A.) = IAI-' fX d30f(0)eixe, A e A, j = 1, ..., N.

Define

AA,r(k) = Anfln.r(k),

RA.r(k) n '

(1.4.65)

r.,n.,.(k), being a convolution operator in &j 12(A), transforms into a multiplica-
tion operator f a,n,y(k, 0). In fact, we have

ik

Llfa.n.r(k, 0) = 1 a, - 4n)AOk(Y; - yj + .i)eImk>0,

(1.4.66)

which can be seen as follows:

(An I'Q.n. r(k)a)j(0)

N

= (a; - ik 6jj bax - l k(Yj - Yj + A. - ,i)e-j-' a. n 47r J

= ( a,A.r(k, 0))(.na)(0))j,

Im k > 0, 96 A, j=1,...,N, aeV=.12(A), (1.4.67)

where fa,n,Y(k, 0) is defined as above. Furthermore, we get by explicit computation
that

N 2 (r+elrj
(fin, r(k)J) (0, y) = fin. r(k, 0, Y) f(0) = (2n)-3n E

Iv + 812 -
k2 f (e),

k2#Ir+0I2, Imk>0, f=(.f,,...,fN)E(Bj=,L2(A), (1.4.68)

and

eilY+BIYi

(An.r(k)If)j(0) = (AA.r(k, 9)f(0 + '))j = (21r)-312IAI

rY IY + 012 - k2
AY + 0),

k2tfIr+012, Imk>0, feL2(R3). (1.4.69)
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Hence, using (1.4.62),

0
k2)-'f) =

x
die{((d4)(O), GG(e)('f)(e))12(n

+ e)[r:.n.r(k, e)]-'An.r(k,

k2eC-R, Imk>0, f,4EL2(R3). (1.4.70)

But (1.4.70) is equivalent to

® _
V(-aa.r+n - k2)-1'P1'` =

n
d39[Gk(9) + #A.r(k> 0)[ra.n.r(k, 0)J-'AA.r(k, 0)],

k2eC-R, Imk>0, (1.4.71)

and by appealing to Lemma 1.4.2 we see that the integrand on the right-hand side
exactly equals (-aa.n,r(9) - k2)'1, proving (1.4.55). To prove (1.4.56) we could
decompose the resolvent directly as in the proof of (1.4.54), or alternatively combine
(1.4.54) and the unitary equivalence of -A,,r+n and -aa.r+n Here we will follow
the latter approach. Thus

(g, (-A,.r+n - k2)-'f)

= (F9, (-aa.r+n - k2

_ Plirg, d30(-a,,n,r(0)-k2)-'1Fff
n

_(w.zg,
n

d30G,(8),& Ff)
N

+ E d3e[ra.n.r(k, 0)]j;'(4fFg, Fk,,,(0))(F_k.r,(0), eltff)
J.J'=1 A

= f_ d301(. .-(0)G,' (e) ,=1(e). r(0)('.Wf)(e))
n

N

+ E [r,.n.r(k,

=1AI-' fA d301(( 9)(e), g'(0)(47f)(0))

F, [ra,n.r(k, O)]J,'' ((' g)(0), gk(- - yrO))(9R(- - yy., 0), (&f)(0))}+
J.J'

(49, IAI-' k2)-'flf
x

f, g e L2(R3), (1.4.72)
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where #r(9) is the Fourier transform

..(O): 12(r) - L2(i ),

($r(O)a)(v) = I t I '2e;e' E a,ei", 0 e A,
vEr

vef, ae12(1). (1.4.73)

a

Remark. gk(0) is, of course, the resolvent of the decomposed Laplacian
-A(0), i.e.,

gk(0) = (-A(0) - k2)-', k2 a p(-A(0)), Im k >- 0, 0 A, (1.4.74)

where -A(0) is the self-adjoint operator -(82/ax; + 82/ex? + 82/8x3) on
L2(f) with boundary conditions

f(v+a;)=eiea;f(v), ax (v+a;)=eie.''.
(v),

1 1

0=(01,02,03)eA, v,v+ajeOf', j=1,2,3. (1.4.75)

Having settled the consistency question we now turn to the detailed study
of spectral properties of the operators - Aa r+^ and - Aa,r,^(0). First, we
consider the case where Y consists of one point which, by translation invariance,
can be assumed to be zero, i.e., Y = (0). We then write and -&,^(0)
for -A,,(o)+^ and respectively, and we use a instead of mo.
We can now state the following

Theorem 1.4.4. The spectrum of -A..A.(o)(0)1 a e R, is purely
discrete and consists of isolated eigenvalues of finite multiplicity for all
0 e A, i.e.,

d'..(-'&.,A(0)) = 0, 0 e A. (1.4.76)

More precisely, it can be characterized as follows: R - IF + 012 consists of
an infinite union of disjoint open intervals 1.(0), i.e.,

OD

R-IF+012= U (1.4.77)
=o

Here Io = (-oo, 02) and Ip(0), n e N, are bounded intervals. In each interval,
-Aa ^(0) has exactly one simple eigenvalue with eigenfunction

o,;"(8)(Y) = [IY + 012 - 0 e A, yet. (1.4.78)

Furthermore, E ^(0) is strictly increasing in at for n e N, 0 e A. In addition,
E^(0) e IF + 012 is an eigenvalue of - of multiplicity m z 1 iff there
exist m + 1 points y,,..., y, e t such that

E^(0)=IYo+012=...=1Y.+012. (1.4.79)

The corresponding eigenspace is spanned by the eigenfunctions

'E^(e)(Y) = avvJ - avvo, 0 e A, y, YI e I', j = 1, ..., m, (1.4.80)

- Aa ^(0) has no other eigenvalues.
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PROOF. Recall that the unperturbed operator -A(0) has a purely discrete spectrum
with eigenvalues iv + 012, y c- r (cf. (1.4.23)), i.e., a(-A(0)) = IF + 012. From the
explicit expression (1.4.34) we see that there are two possibilities for eigenvalues of

namely

(a) a = gF,::(0, 0),
(b) E(0) = Iy + 012.

For case (a) we observe the following properties of the function gk(0, 0) as a
function of k2:

(i) The poles of g,(0, 0) are exactly the elements of Ir + 012.

(ii) rJ(k2)) = ItI-' Y t > 0, k2 0 IF + 012, Im k 0.
ver (1y +

012 - k2)2 2

(iii) gk(0, 0) -oo as k2 -' -oo.

Thus we obtain the graph of g,(0, 0) as in Figure 5, and writing

08-Ir+012= U 0e A, (1.4.81)
"=o

where 10(0) (-oo, 1012) is the unique unbounded interval, we see that there is
exactly one eigenvalue of -AQ,,(0) in each interval 1.(0), and this eigenvalue
is in case (a). To find the corresponding eigenfunction and multiplicity we use
([283, p. 180)

n-lim (E - z)(H - z)-' = P (1.4.82)

for self-adjoint operators H, when E is an isolated point of the spectrum of H,

gk(0, 0)

a

-' k2

N

Figure 5 Qualitative behavior of gk(0, 0) as a function of V.
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and P is the projection onto the eigenspace belonging to the eigenvalue E. Using
the explicit form of the resolvent we get

P.-'(0) = n-lim (E "(O) - z)(-&.A(0) - z)-'

= n e No, (1.4.83)

where Iii."(B) is given by (1.4.78) and II' II denotes the norm in 12(r).
In case (b) a more detailed analysis is required since E"(0) = IV + 012 is a singularity

in all terms of the resolvent. Assume that there are m + 1 points yo, ..., y,,, e r
such that

E"(O)=1Yo+012=...=IY,+012. (1.4.84)

First, we observe that, as k2 E"(0),

If'I [a - gk(0, 0)J-' _ -(m + 1)-1(E"(0) - k2) + o(k2 - E"(0))

because there are exactly m + 1 points, each of which gives rise to a simple pole
of gk(0, 0) with residuum Furthermore, we decompose the function
fly + 012 - k2)-1 as follows

(IY+012-k2)-1=P1.k(Y)+I2.k(Y), yer, OeA, (1.4.85)

where

11,k(Y) = X;ro.....rm}(Y)(IY + 012 - k2)-',
(1.4.86)

(D2.k(Y)=(1 -X(ro..... .-)(Y))(IY+012-k2)-', yer, OeA.
Here XA denotes the characteristic function of a subset A s r. Then (-,&..,(0) - k2)-1

takes the form

k2)-1 = 01.k + (b2.k - (m + 1)-'(E"(0) - k2)(<pl.k, '140 1.«

+ [-(m + 1)-'(E"(O) - k2) + o(E"(O) - k2)].

' [(b1.k, ')I'2.k + (12.k, ')4bl.k + (D2.k, ')02.k]

+ o(E"(0) - k2)(4til.k, ')4bl.k, (1.4.87)

and hence

P"(O) = n-lim (E"(0) - k2)(-aa."(0) - k2)-l
k2-FA(g)

since

1XI'o..... . -) - (m + 1)-1(X{ro.....r.,)>
')X{ro.....rm!>

0, m = 0,
m > 1,

(1.4.88)

(E"(0) - k2)<D1.k - X(ro...... ..,) k2.E^(e) 0 (1.4.89)

as a multiplication operator, and

(E"(0) - k2)((E"(0) - k2) 11.k, ')VIA k2E"(e)' (X{ro.....rm)> ')Xtro.....r.,) (1.4.90)

In particular, if m = 0, then P"(0) = 0, i.e., there is no eigenvalue. Now, assume that
m > 1, and define

/j(Y)-brrr-srro> j=1,
4j(Y) = brr, - (m + 1)-' E arr,., i=0'---'M-.-0

(1.4.91)
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Then

0o = - tdj
j=1

and hence P"(8) can be written
m m

(P"(O)f)(Y) _ E b,,,f(Yj) - (m + 0' [f(Yo) + ... + f(Ym)] E by"
j=o j=o

Eil

= E b,Y,{f(Yj)-(m+ 1)-'[f(Yo)+... +f(Ym)])

j=o

= E 61"(#.f)=,E (by,-311)(4j,f)
J=O =0

(1.4.92)

F, (O,,AGj(Y), Y E 17, fE 12(17). (1.4.93)
j=1

which proves that dim P" = m and that iii,... , dim span the corresponding eigenspace.

Remarks. 1. The above proof shows that there is a natural one-to-one
correspondence r - a(-A..A(0)) in the following sense, when a(-&,A(0)) is
considered with multiplicities: Namely, let y e r. If ly + 012 is no eigenvalue,
we define to be the largest eigenvalue of - &.A(0) smaller than
Iy + 012. (This will necessarily be an eigenvalue in case (a), i.e., a solution of
a = 9E -'-(O, 0).) If ly + 012 is an eigenvalue with multiplicity in, then there exist
m+ 1 points such that and
we let E'.A(0) be as above for onejo E {0,..., m}, and EA(0) = ly + 0I2 for all
j # jo. Henceforth we will use this correspondence.

2. We remark that for the lowest eigenvalue one is always in case (a).

Using the properties of the spectrum of -&..A(O) we will now study the
spectrum of the full Hamiltonian -a,.A.

Theorem 1.4.5. Let A be a lattice in the sense of (1.4.3) and let a e R. Then
the spectrum of the operator

d30 [-aa.A(0)](1.4.94)
l n

is purely absolutely continuous and equals

a(-Oa.n) = ae.(-O..A) = [1 0 "(0), "(eo)] u [EI.n, co),

aw(-D..A) = 0. a e R, (1.4.95)

where

00 = -Z (b1 + b2 + b3) (1.4.96)

and

EI " = min{En."(0), alb-I2} =min [En:"(0)], (1.4.97)
SeA
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where b_ e {bl, b2, b3) is such that

Ib-I5Ibbl, j= 1,2,3. (1.4.98)

We have that

E,A>0, aeR, (1.4.99)

and

Eo A(00) < 0 if a < ao.A (1.4.100)

with

a0,A = g0(0, 00) (1.4.101)

Furthermore, the spectrum is monotone increasing in a in the sense that

aEa.A(O)
> 0,

as
yer, 06A, aEl,n

DOE

>
0. (1.4.102)

In addition,

0, a - 00,

1-00, a-+ -00,

E,, A 14-lb- 12, a -, 00,
0, a - -00,

n(0) I00I2, a_ co,0

-00, a-+ -00,
(1.4.103)

and hence there exists an al,A e R such that

Q(-A, A) = [Eo A(0), 00), a >- al,n- (1.4.104)

PROOF. We now have to study in detail the behavior in 0 e A of the eigenvalues
Ea.A(0) of -A., AM' (We use the labeling of the eigenvalues introduced in the first
remark after the preceding theorem.) The lowest band comes from the eigenvalue
E& A(0)' i.e., with y = 0. As remarked earlier, this eigenvalue is in case (a), i.e., a
solution of

a = 0), Im E'n 2 0. (1.4.105)

To simplify the notation in this part of the proof we assume that A = Z3, thus
r = 2,Z3 and A = [-a, 9G)3. From (1.4.105) we infer (where V denotes the gradient
with respect to 0)

Vg°"(e)(0, 0) +
8gE11:(0, 0)

aE
VEo "(0) = 0, (1.4.106)

E=IEgtip

which implies that the stationary points of 0) and El A(0) (with respect to 0)
coincide. We have

0) _ -(2a)-3 lim
2(y + 0)

d Yer (ly+012-E)
17+115w

(1.4.107)

and by considering the first component 0) of 0) and summing
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the series (1.4.107) in this component we find

(0.9e")'(0, 0)
1 sin[2nBc(E, 6)] sin 01

64n° y62-W B;(E, 6){cos[2iBy(E, 6)] - cos 0, }2'

0=(01,02,03), 0=(0,02,03), By(E,0)= E-(Y+0)2,

Im B,(E, 0) 0, q e 2nZ2. (1.4.108)

Since

sin[2nBy(E, 6)]
> 0 (1.4.109)

as long as E < 1612 + 4, we see that

0) = 0 i(If 0 e {0, -2(b1 + b2 + b3)). (1.4.110)

Furthermore, we have that 0 = 0 gives a minimum and 0 = O0 gives a maximum,
thus

Eau^(0) < Eau A(O) < Eo ^(O0)

Let Ei ^ denote the bottom of the second band, i.e.,

V1.A = min [Eb ^(0)].
0EA

From Theorem 1.4.4 we have

(1.4.111)

(1.4.112)

1012 < Eb ^(0) < (b_ + 0)2 (1.4.113)

and hence

Eb (-2b-) = alb-12. (1.4.114)

If Ei A < 41b-12, then the above argument shows that E, ^ = AP b ^(0). To prove that
there are no gaps in the spectrum of -&..A above we first extend -&..A(O)
to all 0 a R3 by using the same expression (1.4.34) (with N = 1, y1 = 0, at = a) for
the resolvent. Due to the periodicity we have

U Q(-&.A(0)) = U O(-A, (0))
06A 06113

(1.4.115)

The definition of for 0 e A, y e r, can be extended continuously to all 0 e R3
by the same procedure. Using (1.4.102), and the continuity of Ell ^(0) for 0 e R3,
we infer ([391], Theorem XIII.85)

v(-Da n) = U a(-G1a 11(0)) = a R3, y e r). (1.4.116)
BGA

Assume now that there is a gap in the positive part of the spectrum, say [a, b] s
b > a > E; ^. Then we can find y, y', y" a r, not on a line, and 9e R3

such that

IY"+912 <Ell ^(9)<a<b<ER.A(9)<ly'+912. (1.4.117)

We may assume that

IY"+012 <E;^(0)<_IY+0125 .A(0)<ly'+oil, 0e R3, (1.4.118)
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as long as

1y"+012<-Iy+012<ly +012, OcR3. (1.4.119)

However, we can always find a 0 e R3 such that

Iy"+01=Iv'+OI=1y+01. (1.4.120)

For this 0 we have

E'Y ^(0) = E.A(0) (1.4.121)

and hence, E; ^(O) being continuous,

[a, b] c [E; ^(4), E,.:^(9)] (1.4.122)

which yields a contradiction to the assumption that there was a gap in the posi-
tive part of the spectrum. The absolute continuity of the spectrum follows from
Lemmas 10.14 and 10.15 in [85]. The monotonicity in a of follows by
differentiating (1.4.105) with respect to a.

In the general case, where Y consists of N points, we do not have that
detailed information on the spectrum of -A,,r+A, except for the fact that the
negative part of the spectrum consists of at most N bands, which is the content
of the next theorem.

Theorem 1.4.6. Let a; a R;, yja Y, j = 1,...,N. Then Q(- A,, r+A) n (- co, 0)
consists of at most N disjoint, closed intervals where

®q![-Aa.r+A]°u-' _= f
A

d30[-AQ.A.r(0)]. (1.4.123)

PROOF. As in the proof of Theorem 11.1.1.4 we will first prove that f .A.y(k, 0) is
monotone decreasing in k2 for k2 < 0. It is equivalent to proving the same property
for'll4l',.A.r(k, O)*e' where *, is the unitary operator

CN-.CN, ('xa),=e-,xya3, j=I,...,N, a=(a1....,aN)eCN,
x e R3. (1.4.124)

We have

(a,WOI',.A.r(k,O)1& ta)

N

_ a,Ia,I2 - (2n)-3 lim
IAIIE Nf=i

- 47gw E IajI2
22

(1.4.125)
i=i turn - kIy + 01 J=t

Ir+0Isw

which proves the monotonicity in k2, k2 < 0. Hence [,,A,r(k, 0) has at most N
eigenvalues which are all strictly decreasing and each of which can give rise to at
most one band in the negative part of the spectrum of -&r+A.

We will now study how - 0,,r+A can be approximated by scaled short-range
Hamiltonians. The general Theorem 1.2.1 covers this situation. However, to
obtain detailed properties of the behavior of the spectrum, we have to study
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the decomposed operator -A.,A, .(O). We start by decomposing the operator
H.,Y+A-

Theorem 1.4.7. Let Y e R, supp Y compact, be real-valued and let Aj(e) _
1 + e2 (0) + o(e) as c j 0, j = 1, ..., N. Then the self-adjoint operator

N

He,r+A = -A + e-2 Y E Aj(e)V((' - yj (1.4.126)
j=1 .ieA

in L2(R3) can be decomposed

*H,.Y+A*-' = IAI-' I. d30 He.A.r(0), (1.4.127)

where He,A.Y(0) is the self-adjoint operator in L2(f) with the resolvent

N

(He,A,Y(0) - k2)-' = gk(0) - e Y A,,j(k, 0)[1 + Be(k, 0)],,j1Ce,j'(k, 0),
j,j'=1

k2 a p(He,A,Y(0))1 Im k >- 0, 0 A. (1.4.128)

Here gk(0) is given by (1.4.58), while the Hilbert-Schmidt operators Ae, j(k, 0),
BB(k, 0), and Ce, j(k, 0) are defined by

Ae.j(k, 0): L2(R3) _+ L2(f),

Be(k, 0) = [Be.j,.(k, 0)]Ij'=1+ Be. jj'(k, 0): L2(H3) -' L2(83),

Ce,j'(k, 0): L2(f) - L2(R3); e > 0, k2 0 Ir + 012, Im k z 0,

j, j' = 1, ... , N, (1.4.129)

with integral kernels

A,,j(k, 0, v, x) = gk(v - ex - Yj, 0)Vj(x),

0, x, x') = CAj(e)uj(x)gk(e(x - x') + Yj -

C,,j,(k, 0, x, v) = Aj,(e)uj.(x)gk(ex + y, - v, 0),

e>-0, k20Ir+0I2, Imk>O, x,x'eR3,
vet, 0e A, j,j'=1,...,N. (1.4.130)

PROOF. It suffices to prove

f(H,.r+A - k2)-14!-' = IAI-' J d30(He.A.r(0) - k2)-',
n

k2EC-it (1.4.131)

where H,,A,,.(O) is introduced above. Having defined all necessary operators, one
easily verifies that

,#Gk = [IAI-' J ® d30 gk(0)J 4!, Im k > 0, (1.4.132)
n
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and furthermore that

41A6.j(k) = [IA_i
J

®

die A,,j(k,
x

A [IA I-' PO B,.jj.(k, 0.`

l
AAC..j(k) = [JAI-' f

®
d30 CQ.j(k, 0)]4;

e>0, k20Ir+0I2, Imk>0, 6eA, j,j'=1,...,N, (1.4.133)

where L?`A is defined by (1.4.63) with N = 1, and A1, j(k), B., jj.ft and CC, j.(k) are given
by (1.2.4). Using (1.2.8) this proves the decomposition.

As one would expect the operator (He,A.r(0) - k2)-' converges to
(-A.,A.r(0) - k2)-', the decomposition of (-A=.r+A - k2)-1, as e 10:

Theorem 1.4.& Let V e R, supp V compact, be real-valued and let .j(e) =
1 + e (0) + o(e) as e j 0, j = 1, ... , N. Assume that Aj'(0) # 0 if Hj = - A + Vj
is in case III or IV. Then H,,A,Y(O) converges in norm resolvent sense to

A..A.Y(0), viz.

n-1

0
A.A.r(0) - k2)-1 = (-Aa.A.r(0) - k2)-1,

k2eC-R, Imk>0, 0e A, (1.4.134)

where

aj =

00 in case I,

-'1;(0)I(vj, cj)I in case II,

00 in case III,

E I (vj,
gj1)I2}_1

in case IV.-A;(0) it -1

(1.4.135)

Remark. If ajo = co for some jo a (1, ..., N), then the joth row and line
should be removed in Ia,A,y(k, 0), i.e., there is no point interaction at yjo.

PROOF. Again our basic tool in proving (1.4.134) is to study the explicit expressions
(1.4.128) and (1.4.57) for the resolvents of Ha,A.y(6) and -A,,A,r(6), respectively.
We have the asymptotic expansions

Be, jj,(k, 0) = D. + eEjj.(k, 0) + o(e) (1.4.136)

valid in Hilbert-Schmidt norm as e 10 where

Djj. = bjj.ujGovj,

Ejj,(k, 0) = gk(Yj - 0)(v,., -)uj; j,j' = 1, ..., N.
(1.4.137)

The rest of the proof is identical to that of Theorem 11.1.2.4.
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This result will be applied to the analysis of the behavior of the spectrum
of H,,A.y(O) in the limit c 10. The first result treats the case Y = {0}.

Theorem 1.4.9. Let V E R, supp V compact, be real-valued and let 2(e),
a(0) = 1, be analytic in a neighborhood of zero. Assume H = -A + V to he
in case It or IV and suppose (1.1.2.84) and 2'(0) # 0 in case IV. Assume that
E,(0), 0 e A, is an eigenvalue of He,A(0) = H,,A,(0)(0), chosen to he continuous
in e, c > 0, which remains bounded ,for e > O small. Then

E0(9) = lim EJ0), 0 e A, (1.4.138)
Z4-0

exists and is an eigenvalue of -A., AM' -A.,,,(6) being the norm resolvent
limit of H k(0) as c j 0. Assume this eigenvalue to be in case (a) of the proof
of Theorem 1.4.4. Then

1 r(0) = Eo(0) + eE 1 (0) + o(c), (1.4.139)

where

E1(0) = hA(Eo(0), 0)[A + Eo(0)B], 0 e A. (1.4.140)

In case 11
A = i2 (0) + 2(0)2 + A'(0)(j, X),

B = (8n)-
J
ffU6Jab

d3x' O(X)V(X)IX - x'Iq(x')v(x'),
(1.4.141)

1 1

h,,(Eo(0), 0) = IPI Ir
[IY + 012 - Eo(0)]2

where X is given by (1.4.146). In case.IV, m (resp. m) should be replaced by 01
(resp. , ). E,(0) is analytic in a near c = 0 if Eo(0) < 0.

PROOF. If E0(0) = lim,l E,(0) (which exists due to the norm resolvent conver-
gence and the discrete spectrum of the limit operator) is negative, we can follow the
proof of Theorem 11.1.3.1 to obtain the stated expansion. In fact, using (1.4.38) we
see that B,(k, 0) is analytic in a and k and we can follow the analysis in the proof
of Theorem it.1.3.1 with Gk(x) replaced by gk(x, 0). Recall that by Theorem 1.4.4
E0(0) is a simple eigenvalue and N = 1 in the notation of Theorem 11.1.3.1. (Hence
the analysis from Part I would also apply here.) If, however, E0(0) > 0 (which by
assumption is still simple), we are not able to conclude that B,(k, 0) is analytic in s
in a neighborhood of zero. But B,(k, 0) remains a Hilbert-Schmidt operator when
k2>0,k2#1r+012because

B (k, 0, x, x') = e(k2 - k2)I1'I-' u(x) 7r
(IY + 012 - k 2)(ly + 012 - k2)

v(x)
r

+ cu(x) G1(e(x - x') + ))e-c" t'(x') (1.4.142)
AeA

for any k e C, Im k > 0, cf. Lemma 1.4.2, and in a similar way B,(k, 0) is easily seen
to be two times continuously differentiable in Hilbert-Schmidt norm in a and k.
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Hence E,(0) has the form

Et(0) = Eo(0) + EE,(0) + o(c). (1.4.143)

The projection P,(0) onto the eigenspace of the operator B,((E,(0))'n, 0) to the
eigenvalue -1 can be chosen to be two times differentiable in norm with respect
to s [251]. Defining

01(0) = P01q, (1.4.144)

where p is an eigenvector of B0((E0(0))'n, 0) = with eigenvalue - 1, we expand
the equation

[l + B,((E,(0))112, 0)]0.(0) = 0 (1.4.145)

with respect to s to obtain the stated form of E1(0) with

x = T(A'(0)q - a(v, #)u], (1.4.146)

T being the reduced resolvent of l + uGov, cf. (I.1.2.37).

Recall from Theorems 1.4.4 and 1.4.5 that each eigenvalue in case (a) gives
rise to a band when 0 varies in A. The bands are connected at points E(6)
where there exist at least three points y,, Y2+ y3 e r with E(0) = hy, + 612 =
I Y2 +

012 = I Y3 + 012. From (1.4.140) we see that E, (0) -+ 0 when 0 --+ 6. Thus
we see that in this sense the bands do not open up to first order in c.

Our last result in this section concerns the behavior of the negative part of
the spectrum in the case where Y consists of N points.

Theorem 1.4.10. Let lj a R, supp i compact, be real-valued and let .1;(c)
be real analytic in a neighborhood of zero, .1;(0) = 1, j = 1, ..., N. Fix 0 e A
and assume EL(0) to be an eigenvalue of HE,A..(0) such that

-oo < .M, 5 Er(0) < M2 < 0 (1.4.147)

for e > 0 small enough. Let be a positive sequence decreasing to zero,
and let E0(0) be an accumulation point of {EJ0)}. Then E0(0) is an eigenvalue
of -A..4.Y(0), -A..,A.Y(0) being the limit of HH,A,r(0) in norm resolvent
sense as c.j0. Let M(0) he the multiplicity of the eigenvalue E,,(0). Then
there exist functions h,(0), analytic near the origin, h,(0, 0) = 0, and integers
m,(0) e { 1, 2},1 = 1, ..., m(0), such that

E,(0) = E0(0) + h,(0, 0m0))
GO m(6)

= E0(0) + a(.r(0)cr/m,(e), I= 1, ..., m(0), m,(0) = M(0),
r=1 t=(

(1.4.148)

are all the eigenvalues of HI.A.Y(0) near Eo(0) fore > 0 sufficiently small. If
m1(0) = 2 for some 1, both square roots should be used such that the total
multiplicity of all eigenvalues equals M(0).

PROOF. The proof is similar to that of Theorem 11.1.3.1 except that Gk(x) has to
be replaced by g,,(x, 0).
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111.1.5 Straight Polymers

Replacing the three-dimensional lattice A from the preceding section by a
one-dimensional lattice A,, viz.

A, a>0, (1.5.1)

we obtain a one-electron model of an infinitely long straight polymer as
explained in Sect. 1.3.

Our basic tools in studying this operator will again be Fourier analysis and
the direct integral decomposition. In contrast to the discussion of the crystal
we will use Theorem 1.1.1 to define the operator, and then make the integral
decomposition directly.

The point interactions will be located at

Y,=Y+A,, (1.5.2)

where

Y = {yt,.. , YN) c R3

is such that the third component of each yj e Y belongs to t1, i.e.,

yj=(yi,yi,y;)eY, y, EP,, J= 1,...,N,
where

(1.5.3)

(1.5.4)

-2, 2). (1.5.5)

The dual lattice,

{(o

I',, and the dual group, lA,, read, respectively,

r, = 0, a e z }, A, = [-it/a, it/a). (1.5.6)
a JJJ

Whenever convenient we shall identify A, and (na e Rin E Z) and similarly
for r,. Furthermore, we will often write

(p, y)=(p1,p2,y)ER3, p=(p',p2)eR2, yEI1. (1.5.7)

The proper decomposition of L2(R3) for the polymer (cf. the operator ' given
by (1.4.16) in the crystal case), is now given by

L2(R3) .. L2(A,, L2(R2 x r1)) =
`'1

d9 L2(R2 x r1),

(*1Jp/ )(8,p,y)=f(p,y+0), 0EA1, PER 2, yEr1,
p
JEL2(R3).

(1.5.8)

Decomposing the free Hamiltonian -A in p-space with respect to this decom-
position we obtain for its resolvent the operator

Gk(O): L2(R2 x r,) L2(R2 x r1),

(Gk(9)9)(p, y) _ [I(p, y + 9)IZ - k2]-19(P, y), (1.5.9)

0 EA,, k20[02, 0o), Imk - 0.
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We will also need the function

ik 1ik - eiex I ik

+ 4na
ln[2(cos(ka) - cos(Oa))] , x e A1,

47c 47c 1

4na
L2 (a) cos l na3 / + 2 f desin(t/2)

k-B>o

gk(x, e) = 1
f x

e-t(x3+lk/2

+ 2 J(k+O)a sin(t/2) ] x = (0, 0, x3) A1,

2na Ko( (y + 9)2 - k2 I xI )e(r+a>x3,
rer,

x=(X,x3)ER3, x"#0; OeA1, (1.5.10)

(#(-) and KO(-) being the beta function and modified Bessel function, respec-
tively, [1]). The domain of definition of gk(x, 0) as a function of the complex
variable k is illustrated in Figure 6.

m m m
+ + +

I I I I

Im k m m m
+ + +

M wl

Re k

m T p. T

(a) I I I T cuts T T T T

Im k

N
m

I
m

m I M I

K
I N

+
m N m Vk

Re k

(b) t I I
I cuts Li

Figure 6 The domain of definition of the function gk(x, 6), 0 e A,, as a function of k
in the complex k-plane: (a) when x e A,; (b) when x e R3 - A1.
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Furthermore, we will use, for the decomposition in x-space, the analog of
xl (cf. (1.4.53))

1
9-(R 3) -+ L2I A1, a d4; L2(R2 x t1) J = 2n f

0
dO L2(F2 x rl

/ n,

(*1f)(0, p, v) _ (2n)-1 Y fR d2xf(x, . + v)e-iPxe-iOA,

.LEA, t

OEA1, pER2, vEl1, fEY(K3), (1.5.11)

and then extend 4 to L2(183) by continuity. The extension is still denoted
by 9'.11.

Theorem 1.5.1. Let yj e Y, yj E f 'j, and aj e 1B, j = 1, ..., N. Then the
self-adjoint operator -Aa,Y+n, in L2(113) defined in Theorem 1.1.1, with
Y = (Y1, ..., YN) and

j = I_-, N, a = {aj}, A E A1, (1.5.12)

satisfies

fXdO[-Aa.A,.r(O)], (1.5.13)
,

where -'&.,A,, Y(O) is the self-adjoint operator in L2(O x rl) with resolvent

N

(- Aa.A,,Y(O) - k2)-' = Gk(O) + Y- [ra.A,.Y(k, O)]jj'(F ,, ,.(O), -)Fk.,,(O),
j.j'=1

k2 E P(A,.Y(O)), Im k > 0, O E A1, yj a t1, a, a R, j = 1, ..., N,
(1.5.14)

where

O) = [ajSjj - 9k(Yj - Yj, O E A1, (1.5.15)
and

)-3/2_e) = (2np, y I(p, y + O)I2 -
k2,

k2#[O2,00), Imkz0, OEA1, peR2, yer1, j=1,...,N. (1.5.16)

If we introduce
(1.5.17)

then

dO[-A Y(O)],r+A 1' ' = a- f°llL[-A A (1.5.18)_ .., ,.a. 2n n,

where -Aa,A , .(O) is the self-adjoint operator in L2(132 x t1) with resolvent

(-Aa.A,,Y(O) - k2)-1

N
= 9k(O) + [r,.A,,Y(k, O)]jjl(9k(- - O), .)gk(. - Yj, 0),

j,j'=1

k2 E Im k > 0, 0 A1, (1.5.19)
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where
p p

gk(O):
L2(R2 x L t) -' L2(R2 x

(gk(O)f)(p, v) =
J

d2p' J d2v' gk((p - p', v - v'), 0).f(p', v'),
RZ r,

k2 0 [02, oo), Im k> 0, 0 E A 1, p E R2, v c- p'1, f e L2(R2 X P'1),

(1.5.20)

and gk(x, 0) is given by (1.5.10).

PROOF. Following the proof of Theorem 1.4.3 we get (1.5.13) where
(-:.n,.r(0) - k2)-' equals (1.5.14) with

ik - N
I'a.n,.r(k, 0) =

Rocj

- 41cb z ,
(`'k(Yi - y,,, + A.)e (1.5.21)

Next we observe that the infinite sUm on the diagonal actually can be summed to
yield (1.5.15) while the off-diagonal sum can be summed ([237], eq. (14.3.1) and
(17.3.1)) when yj - y, = (0, 0, yj3 - y,'.) # Al and can be expressed in terms of
when yj - yj. = (yj - y; - y ), yj - j,. # 0 ([333], p. 62). The rest of the proof
is similar to that of Theorem 1.4.3.

Since we will use later on detailed properties of the domain r(e))
of we give the following

Theorem 1.5.2. Let yj c- Y, yj E t1, aj E 18, j = 1, ..., N, and 0 E A1. Then
the domain -9(- A,,, of -'&.,A,. Y(O) consists of all functions,i(0) such
that

N

'(0, p, Y) = ok(B, p, Y) + Y aj(k, O)Fk.,,,(O, p, y),
j=1

pe182, yeI'1, (1.5.22)

where

N

aj(k, 0) _ [I'a,n,.r(k, 0)]jj'' d2p e`(r.r+e)v,' (e, p, Y)
j'=1 r e r, R2

(1.5.23)

Here k2 E Im k Z 0, and

0k(0) E 1=(I(p, y + 0)12)

Ig e L2 (R 2 x rl)I
ry

d2pl(p,y+O)I4lg(p,Y)I2<00
er,

J
2 )))

(1.5.24)

This decomposition is unique, and with ,/i(8) of this form we have

[(-D&.n,.r(e) - k2)q/(0)](p, y) = [I(p, y + 8)12 - k2]4k(p, y). (1.5.25)

PROOF. Similar to that of Theorem 11.1.1.3.
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We now turn to the analysis of spectral properties, starting with the operator
For this operator we encounter resonances and, in particular,

real resonances. Here resonances are defined in the following way: ko e C,
Im ko 5 0, is a resonance of iff 0)] = 0 and, if
ko a (0, oo), then ko 0 The multiplicity of ko by definition
equals the multiplicity of the zero of 0)] at k = ko.

From now on we will assume that Y consists of only one point which by
translation can be taken to be zero.

Theorem 1.5.3. Let at e 18, and -AQ,A,(0) -A°,A,, {o}(0), 0 e A,. Then the
essential spectrum of -A°,A,(0) is purely absolutely continuous and equals

Qesa(-Aa.A,(e)) _ sac(-Aa, ,(9)) _ [02, 00), o8C(-&,,A,(9)) = 01

0 e A,. (1.5.26)

Writing

cos(Oa) + je-41, (1.5.27)

we have
{-a-2 1112 [Z°'"'(e) + [(0)]2 - 1]),

1,

{a-2 arccos2[z","'(0)]}, z°.A,(9). 1 and

(a9)2,

0, 5 I and (a9)2.
(1.5.28)

If E,",(0) is an eigenvalue of -A°.A,(0), i.e.,
then is simple 02) and the corresponding eigenfunction
equals

R Y) = [I(p, y + 0)12 - E°`.A,(0)]-1, 0 A,, p e R2, y e I;.
(1.5.29)

E°,", (0) is strictly increasing in a for 0 e A,. In addition, -A°,A,(0) has the
following resonances, all of which are simple.

If 5 1, then

2nn]}/a, n e Z - {0}, (1.5.30)

are simple resonances of If ko "'(0)2 02 allowing n = 0 in
(1.5.30), then also k0",(0) is a simple resonance.

If 1, then

k:.11(9) -i ln[z°."'(g) + [z°` "'(9)]2 - 1] + 2nn}/a, n e 7L,

(1.5.31)

are simple resonances of -A°,A,(9). -&A,(0) has no other eigenvalues or
resonances.
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Remark. Observe that we have an infinite sequence of real resonances
provided (0) S 1, while all the resonances are complex when (0) > 1.

PROOF. a,,,(-A, ",(9)) = [02, oo) follows from Weyl's theorem ([391], Theorem
X1II.14). Using Theorem XIII.20, [391], we see that a,,(-A°,A1(0)) = 0. The reso-
nances and/or eigenvalues are solutions of

a = gk(0, 0), (1.5.32)

or equivalently, of

cos(ka) = (1.5.33)

where is defined by (1.5.27). If 5 1, the solutions of (1.5.27) are

2nn}/a, n e Z, (1.5.34)

and by considering the residuum of the resolvent at [k0AI(9)]2 we find that
[ko "x(0)]2 is a simple eigenvalue with the stated eigenfunction (1.5.29) provided
[ko "x(0)]2 < 02, i.e., if [ko "x(0)]2 stays away from the essential spectrum. All

for n e Z - {0} (and also [k06.o "x(9)]2 if [ko"x(9)]2 z 02) are embedded
in the essential spectrum, and we will show that -AQ,A,(9) has no embedded
eigenvalues. Assume that Oi(0) is an eigenvector to the eigenvalue E(0), E(0) _
[k(9)]2 > 92, i.e.,

-Aa,A,(0)*(0) = E(0)0,(0). (1.5.35)

Applying Theorem 1.5.2, #P(0) can be written as

('
i/'(0, p, y) = ok(0, p, y) + (2n)-2a-1 [a - gk(0, 9)]-` J d2 p' 0k(0, p', y')

R2

[I(p, y, 9)12 - k2]-', p e 132, y e r1, (1.5.36)

for some k2 a P(-A,,A,(0)), Im k > 0, where

[E(0) - k27i(0, p, y) = [(-A,.A,(0) - k2)*(0)](P, y)

= [I(P, Y + 9)12 - k2]4(0, P, y). (1.5.37)

Hence

Ok(0, p, y) = [E(9) - k2] [I(P, y + 9)12 - V] -'*(0, p, y). (1.5.38)

Inserting (1.5.36) into (1.5.38) we find

k(0, p, y) = (2a)-2a`[a - 9k(0, 0)]-'
J

d2 p' 4k(9, P', Y')'
?,a r, N2

{[I(P, y + 0)12 - E(0)]-' - [1(p, y + 9)12 - k2]-' } (1.5.39)

which cannot be in 2(1(p, y + 9)12) unless A(9) = 0 implying v(0) = 0.
If 1, we have to look for complex solutions of (1.5.33). Writing

ry = e'°", (1.5.40)

we see that n satisfies

rye - 1 = 0, (1.5.41)
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implying that

n± = z°."(0) + J[f.n,(e)]2 - 1. (1.5.42)

Hence

k ^'(t)) _ {-i In[za ^'(0) + J[z' ^1(0)]2 - 1] + 2nn)/a, n e Z, (1.5.43)

and, in addition,
(za.n,!©)]z _ 1 } (1.5.44)

provide all solutions of (1.5.33). All k*'^'(0), n e Z,

arelcomplex

resonances, while
is a simple negative eigenvalue with eigenfunction (1.5.29).

We now apply this theorem to analyze the spectrum of

J
d0[-Da.^,(d)]

Theorem 1.5.4. Let x e f , and consider

d0[-Aa.A,(0)] . (1.5.45)
A,

Then the essential spectrum of -A.,A, is purely absolutely continuous and
equals

_ _ [La.A', c), a >_ -(In 2)/2na,
a ,(-Da.A,) _ [L='A', E+A'] V [0, a < -(In 2)/2na,

-Aa.A,) _ 0, (1.5.46)

where
a.A, = -2 ( 1 -4xua -2AOa -4AOa - 2E } = -a tln[+ 1 + 2e + e foe + 1]} . (1.5.47)

The spectrum of -Aa ^, is monotone increasing in a in the sense that
c?h,°i A./i?a > 0.

Yutx1F. if a < -(In 2)/2na, then 1 for all 0 e A,. Hence the unique
negative band is obtained by varying 0 in A, in t`he lowest eigenvalue

E2.A,(t0) _ -a--2(ln[za.n,(0) + d i z= 1]}2 (1.5.48)

of - Da n, (U f. Together with Theorem X111.87 in [391] and [85], Ch. 10, this proves
the staieuients when a < -(In 2)/2na. If a >- -(In 2)/2na, we can still find a non-
empty open subset A of A, such that 1 for 0 e A. As j 1, the
eigenvalue (1.5.48) increases to zero, which proves that there is no gap in the
spectrum when a >- -(In 2)/2na.

Our last topic in this section will be the c-approximation in connection
with - Aa,A,(0). For simplicity, we will only discuss the case Y = {0}, and start
by introducing some notations. Let

Ar(k, 0): L2(f'13) L2(R2 x f', ),

B,(k, 0): L2(P 3) -, L2(Q83), (1.5.49)

Crlk, 0): L2(R2 x t') _+ L2(F13),
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be Hilbert-Schmidt operators with integral kernels

AE(k, 0, x, v, x) = gk((x, v) - Ex, 0)v(x),

BB(k, 0, x, x') = E2(e)u(x)gr(E(x - x'), 0)v(x'),

Ce(k. 0, x, A, v) = %(E)u(x)gk(ex - (x, v), 0);

E?0, k20[02,co), Imk>-0, OeA1, x,x'eR3, JGeR2, vet1.
(1.5.50)

Theorem 1.5.5. Let V e R, supp V compact, A(E) = 1 + ei'(0) + 0(62) as
c 10 both be real-valued. Then the sell-adjoint operator

III, A, _ -A + E 2A(E) V(( - 2)/E), E > 0, (1.5.51)
AeA,

in L2(R3) can be decomposed as

°lli Hc,A,*1' = a-- J d6 HE.A,(0), E > 0, (1.5.52)
2n A,

where HE, A, (0) is the self-adjoint operator on L2(R2 x P1) with resolvent

(HE.A,(0) - k2)-' = gk(0) - EA.(k, 0)[1 + BE(k, 0)]-1CC(k, 0),

s>0, k2ep(kA,(0)), Imk>0, OEA1. (1.5.53)

Assume that 2'(0) 0 0 if H = -A + V is in case III or IV. Then He A,(0)
converges in norm resolvent sense to the operator -A.,A,(0) as E 10, i.e.,

n-lim (H,.A,(0) - k2)-' = (-Aa.A,(0) - k2)"', k2 e C - R, o e A1,

where

a=

00

-2'(O)I(v, 0)I-2

00

- 2'(O)
1j=

E I(v, 001, I in case IV.
1

in case 1,

in case 11,

in case 111,

(1.5.54)

(1.5.55)

PROOF. The proof is similar to that of Theorems 1.4.9 and 1.4.9. i
Remark. If H = -A -I- V is in case I or 111, then

n-lim (Ha,A1(0) - k2)-' = gk(0), 0 e A1, k2 e p(-A(0)), Im k >- 0,
C'W

(1.5.56)

where gk(0) is the resolvent of the free decomposed Laplacian -A(0).

Applying the techniques from Sect. 1.4 and Sect. 11.1.3, one can analyze
the behavior of the at most one simple discrete eigenvalue and the complex
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resonances in the short-range approximation. However, the infinite straight
polymer exhibits one very special feature, namely the existence of real reso-
nances, i.e., poles of the resolvent (-4 ,,,,(9) - k2)-' on the real k-axis in
the limit e 10, In this context we define resonances of H,,A,(0) as follows:
ko a C, Im ko 5 0, is a resonance of HH,A,(0) iff det2[1 + B,(ko, 0)] = 0 and,
if ko e [0, oo), then ko 0 ap(H, A,(0)). By definition the multiplicity of ko equals
the multiplicity of the zero of det2[1 + BB(k, 0)] at k = ko. We will show
that, in general, the real resonances of - A, 1(9) also remain resonances for
HQ, A, (0) but to second order in a they move into the "unphysical half-plane",
i.e., they get a nonvanishing imaginary part. This is described in the following
theorem, where for simplicity we assume H = - A + V to be in case II:

Theorem 1.5.6. Let V e R, supp V compact, be real-valued, and let A(e) be
real-analytic in e for a small, 1(0) = 1. Assume that H = -A ]- V is in
case II. Let Eo(9) = [ko(0)]2, 0 e A be any eigenvalue (Im ko(0) > 0 or
ko(0) < 101) or resonance (Im ko(9) < 0 or ko(0) >- 101) of (0) as
described in Theorem 1.5.3 (we omit the a and A, dependence in the notation),
- A.,,, (O) being the norm resolvent limit of H,,,, (O) as a 10. Then there exists
a function k,(0) for e > 0 small enough with

kt(0) = ko(9) + ek,(9) + c2k2(0) + 0(e3) (1.5.57)

such that

where

and

det2 [ 1 + B,(k,(9), 0)] = 0, [Im ke(0)] . [Im ko(0)] Z 0, (1.5.58)

k,(0) =
4ncos[ko(9)a] - cos(Oa)

{A, + [ko(0)]2B,}, (1.5.59)
sin[ko(0)a]

cos[ko(0)a] - cos(Oa)
k2(0) = 4n

sin[ko(0)a]

_ i[k0(0)]3 d3x d3x' (x)v(x)Ix - x'I2v(x')O(x')
241(v, 0) 12 J I

R6

+ 2ko(9)k,(9)B1 + [ki(O)]2C1(ko(0)) + A'(0)[k0(0)]2B,

+ {A, + [ko(0)]2Bi } [A'(0) + (vv X)J(v,

x d3x' O(x)v(x)E1(ko(9), x - x')v(x')x(x')+ I(v, q')1-2 f fR6 d3

+ I(v, q)1-2 f fR6 d3x d3x' O(x)v(x)Fi(ko(0), x - x')v(x')*(x')

l
+D,}. (1.5.60)
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Here

Al -a
(v, X) +

A"(0)I(v*#)I2 - .'(0)

B'
I x)12

JJR6 d3x d3x' O(x)v(x) Ix - x'Iv(x')#(x'),8n 1(v,

_ a[1 - cos(ka) + sin(ka)] cos(Oa)
C, (k)

4n[cos(ka) - cos(Oa)]2 '

+ ja(v,
(v,

i
k

s ink - 0)2
1 dtE1(k, x) = - In - k0 +

felfk-fta
ln(1 - t) x3,

ia
sink + 0)

a 4na 2 .,.+"a t
JJJ

( 2 (1.5.61)

F1 (k, x) _ -{8
a

ln[2(cos(ka) - cos(Oa))]

ik era-e" dt dt
In(1 - t)

4na2 fo
t ln(1 - t)] + Jo t

I
1 euk-eon dt

('eak+na dt
4na+ 3 In(t) ln(1 - t) + Jo - ln(t) In(1 - t)

0 t
e a eja dt

- i(k - O)a ,ln(1-t)
oo

('et4k*sm dt l
n(1 - t+i(k + 0)a Jo I

t

x=(9,x3)ER3, XER2, x3E[R.
Furthermore, 0 denotes, as usual, any nontrivial solution of

(1 + uGov)z = 0, j = (sgn V)#. (1.5.62)

Finally, X and q are given by (1.5.65) and (1.5.66), respectively. Hence we
obtain

(a) If Eo(0) = [ko(0)]2 is an eigenvalue of -'&.,A, (0), then E,(0) = [ke(0)]2
is an eigenvalue of He,A,(0) which is analytic in c provided Eo(0) < 0.

(b) If k0(0) is a complex resonance of -A X1(0), i.e., if Im ko(0) < 0, then
ke(0) is a complex resonance of Ht,A,(0).

(c) If ko(0) is a real resonance of -AQ,A,(0), i.e., if ko(0) > 101, then ke(0)
is a complex resonance of He,A,(0) if Im k3(0) # 0. We always have
Im k1 (0) = 0, while Im k3(0) = 0 for at most a finite number of the real
resonances ko(0) of -AQ,A,(0).
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PROOF. The general strategy is the same as in the proofs of Theorems 1.4.9,
11.1.3.1, and 11.1.3.3. Again one expands the equation

(1 + Bc(ke(0), 0)30 JO) = 0 (1.5.63)

in powers of a where

E(0) _ + 2 "(0) +
O#(c3)

(1.5.64)

and 0 satisfies (1.5.62). We then find

010) = X + c(0)0,

X = T[).'(0)0 - a(v,.b)u],

where T denotes the reduced resolvent (d 1. 1.2.37), and

0"(0) = n + d(0)0,

T {a"(0)0 - 2[A. + [ko(O)]2B. ] (v, O)u +
[k0(0)]2

8a

(1.5.65)

[ f d'x'I - x'Iv(x')#(x')]u + [ f dx' F.(ko(O), - x')v(x')O(x')]u
R3

l
- 2d'(0)uGovX - 2a(v, X)u}. (1.5.66)

The constants e(0) and d(O) do not))) enter into the formulas for k,(0) and k2(0) and
their value is therefore immaterial for (1.5.57). A subtle point occurs when ko(0) is
a real resonance of -A,,,(0). if Im k,(0) < 0, then [k,(0)]2 cannot be an eigenvalue
of the self-adjoint operator HE ,,,(0). From (1.5.59) and (1.5.60) we see that k,(0) is
real, while in general Im k2(0) # 0, and hence in general the real resonance ko(0)
turns into a complex resonance of HE,,,, (0.). By analyzing the purely imaginary terms
in (1.5.60), we find that this can be zero for at most a finite number of ko(0).

III.1.6 Monomolecular Layer

The last regular structure to be discussed in this chapter is that of an
infinite plane monomolecular layer, which we obtain by replacing the three-
dimensional lattice of Sect. 1.4 with a two-dimensional lattice A2, viz.

A2 = {nla, + n2a2 E I83I(nl, n2)E Z2}, (1.6.1)

where

a;=(0,a;,a;)ER3, J=1,2, (1.6.2)

are two independent vectors in R. In this way we obtain, as explained in Sect.
1.3, a one-electron model of a monomolecular layer with point interactions.
The discussion will proceed very much along the lines of the preceding section.
Let Y2 be the set where we locate the point interaction, i.e.,

3Y2=Y+A2c98, (1.6.3)
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where

Y={y,,...,yN}c083 (1.6.4)

is such that

Yj=(Yj,Y;,Yj)eY, (yy,yi)erz, j= 1,...,N. (1.6.5)

Here £2 denotes as usual the dual group defined by

£2=082/A2 (1.6.6)

when A2 is considered as a subset of R2 by ignoring the first component. P'2
can be identified with

f2 = {s, a, + S2a2 E 083Is, e i),./ = 1, 2}. (1.6.7)

Similarly, the Brillouin zone A2 can be identified with

A2 = {s, b, + s2b2 e 083Is; e [-i, i)}, (1.6.8)

where b b2 provide a basis of the dual lattice 1'2, i.e.,

172 = (n, b, + n2b2 e R31(n1, n2) a Z2},
(1.6.9)

bj=(0,b2,b;)a083, b,-a;.=2rzb;,, 1,/I=1, 2.

Whenever convenient, cf. (1.6.5) and (1.6.6), we shall consider A2 and r'2 as
subsets of R2 by simply ignoring the first component. Hence we will write, e.g.,

(p,y)e0R3, peR, yer'2. (1.6.10)

The first goal is to decompose the operators -Aa,r+A, and -A ,r+A2, and
for this we first have to decompose the resolvent of the free Hamiltonian, i.e.,
the resolvent of the Laplacian, in p-space. Let

Gk(O): L2(R x I'2) -+ L2(R x r2)

(Gk(0)g)(p, y) _ (I (p, y + 0)12 - k2)-' 9(p, y);

k20[1012, x), Imk>0, x 1'2), 0EA2, peP, yEr'2.
(1.6.11)

We also need

ik

4rz
+ eiex

ik + 1
lim Y-

IA21 - 2rzw
4rz 8rzz 'rEr2 IY + W - k2

Ir+el <w

x e A2,

(4rz)-1 I p'21-1

9k(x, 0) _

g-Jlr+el2-k9x'I

yEr= IY+012-k2

x=(0,9)0A2,

x=(x1,.)eR3, x1#0;

>0, 0 e A2, (1.6.12)k201r'2+012, Imk

(IY + 011
lim Z arctan

w-»co rEr2 IY + 01 ik
Ir+elsw
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where

Ire+012= fly (1.6.13)

The analogs of the unitary operators 9l, cf. (1.4.16), and fl, cf. (1.4.53), which
we denote by 912 and 'Pl2i respectively, are now defined by

912: L2(R3) -, L2(A2, L2(R x r2)) =
n

d20 L2(R x r2
2

('2f)(0, p, y) = f((p, y + 0)), 0 e A2, p e R, y e r2, f e L2(R3),
(1.6.14)

and

*2:.9'(R3) -' L2(A2, IA21-' d20; L2(R x f2))

19

= IA21-' d20 L2(R x t2),
A2

(42f)(0, p, v) = 2n 7 J dxf(x, d + v)e-'0e-'",
AeA2 R

(1.6.15)

0eA2, peR, Vet2, fe9(R3).

As usual $l2 is extended to L2(R3) by continuity, and the extension is still
denoted by q2 .

Theorem 1.6.1. Let yj a Y, (yj , yj) a t2, and aj a R, j = 1, ... , N. Then the
operator -AQ,Y+A2 in L2(R3) of Theorem 1.1.1 with

aYj+a=aj, j=1,...,N, a={aj}, AaA2i (1.6.16)

satisfies

r®ql2[-&,Y+A2]*2' = f d20[-AQ.A:.Y(0)],
A2

(1.6.17)

where -&,A2, .(0) is the self-adjoint operator in L2(R x1,2) with resolvent

N

(-Aa,A2.Y(0) - k2)-' =
Gk(O)

+ E [ra.A2,Y(k, 0)];j'(F-k,Yi.(0), -)Fk,Yj(0),

k2 a P(-' ,A2,Y(0)), Im k Z 0, 0 E A2, (yj, y3) a r2,

ajER, j= 1,...,N, (1.6.18)

where

ra.A2,Y(k, 0) = [ajajj' - 9k(yj - yj., e)]"j'=l (1.6.19)
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and

Fkr sn,(0, p, Y) = (2i)-

j (p, y + 0)12 -
k2,

keep(-0(O)), Imk>0, 0EA2, PER, yeI'2, j=1,...,N.
(1.6.20)

If

-Aa.Y+A2 = (1.6.21)

` 2[-Aa.Y+AZ]U2' = 1A21-' Jd28[-Aa.A2.Y(0)], (1.6.22)
A2

where -Aa,A2,,(O) is the self-adjoint operator in L2(R x P2) with resolvent

(-A..A,.Y(O) - k2)-1
N

= gk(8) + E [ra. A2. Y(k, ©)1 1(gk(' - Y, , 8), ')gk(' - yj, 8),

k2 E P(-ea.A,,Y(8)), Imk > 0, O E A2, (Yj, Yi) E r2,

aj E R, 1= 1, ..., N. (1.6.23)

Here

gk(e): L2(R x 1 2) -- L2(R x P2),

(gk(A)f)(x,v)=J dx' f d2v'gk((x-x',v-v'% ,O)f(x',v'%,
ez r2

k2t[I012,o0), Imk>-0, 9EA2, vEf''2, fEL2(R x12),
(1.6.24)

and gk(x, v) is given by (1.6.12).

PROOF. Following the proof of Theorem 1.4.3 we get (1.6.17) where
(-Aa.A2.Y(0) - k2)-' equals (1.6.18) with

ik + N
ra.A2.Y(k, 0) = aj - 4naj', AZ 0k(Yj - Yp + ,i)e(1.6.25)

p=1

By appealing to Lemma 1.6.2, proved after this theorem, we obtain the stated form
(1.6.19) of f ,A2,r(k, 0). Similarly, the proof of (1.6.22) follows the corresponding
proof of Theorem 1.4.3.

The next result is the analog of Lemma 1.4.2.



214 111.1 Infinitely Many Point Interactions in Three Dimensions

Lemma 1.6.2 (Poisson Summation Formula). Let k2 E C, Im k > 0, a e (F83,
and 0 E A2. Then

e ikl z+al
-tzB

XK,4nl2+ale

io-a

11 21-' Y
Ye r2 IY +012-k2

a=(a',a)eR3, a' 00,
eity+e>a (I',' +

e1

/(4n)-' It l-` lim
y Jr. IY + e1

arctan `
ik ,

ly+elsw

tua ik 1
e {-4- + i lira

n 8n u,,

a=(0,a) A2,

1A I2 - 2nco I ,
172 y+012-k2 JIy+elSw

aEA2.
(1.6.26)

PROOF. Consider first a = 0. Writing

e'pz _Z%k(2)e-rzo = (2n)-' Y dp(21t)-2 d2p - s
2 2 e

ize (1.6.27)
zeA2 zeA= R R: p' + p - k

we see that we can exploit the fact that

eipz

(2R) 2 R=d2P p2 + p2 - k2 (1.6.28)

is the Green's function of the two-dimensional Laplacian at the point a with energy
p2 - V. Hence by applying (4.36) we find

(2R)-` lim
JR dp

LIY
l

2;_p2A2I - 2
zeA, Yer: + 0I k

17+01:5,w

- n ln(c) 2 + p2 - k2) + it ln(p2 - k2)]

= 8n2 lim IA21 - 2,ra, -

4
(1.6.29)

IY + 0I-k z
IY+BI su'

after a short computation. The general case a e A2 follows by translation. Assume
now that a = (0, a) 4 A2. By defining

arctan

1(w) = E -- e,47+0)a,

Yer= Iv+01
1Y+81 SW

e- r+912-k2b'I

to > 0, (1.6.30)
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and

F(U) = f. edf(w), P1 > 0, (1.6.31)
0

we can follow the analysis used in the proof of Lemma 1.4.2 to obtain the conditional
convergence of (1.6.30) as w -, oo and the equality (1.6.26). The last case, when
a = (a', a) e IV, al # 0, follows directly from [94], Theorem 67 and eq. (19), p. 260.

We now turn to the study of spectral properties of -Aa.A2,Y(0) and specialize
to the case Y = {0} from now on.

Theorem 1.6.3. Let a E P. 0 e A2, and define -Aa,A2(0) = -Aa.A2.;o)(0)
Then the essential spectrum of -A,,A2(0) is purely absolutely continuous
and equals

6ac(-ea.A2(0)) _ [1012, 00), 6sc(-Aa.A2(0)) = 01

0"2- (1.6.32)
In addition, -Aa,A2(O) has exactly one simple eigenvalue Me A2(0)
[k0 ^2(0)]2 < 1012 which is the unique solution of

a = gk..^,(O)(0, 0), Im k,.A2(o) 2: 0, [k,.A2(0)]2 < 1012. (1.6.33)

The corresponding eigenfunction reads

p,
j) = [I(p, y + 0)12 - Eo "2(0)]-1, 0 E A2, p a R, y e r2

(1.6.34)

E*6A,(0) is strictly increasing in a for 0 e A2.

PROOF. Equation (1.6.32) follows as in Theorem 1.5.3. Eigenvalues E are given
as solutions of

a=gk(0,0), E=k2, Imk>0. (1.6.35)

From the explicit form of gk(O, 0) we see that gk(0, 0) -Co as k2 - -00 and
gk(O, 0) --> oo as k211012, and that g,(0, 0) is strictly increasing in V.

Before we turn to the e-approximation, we give the spectrum of the full
Hamiltonian.

Theorem 1.6.4. Let a E P and consider

'u2C-Da.n2]°1l2' = d20[-Aa.A2(0)] (1.6.36)
J A2

Then the spectrum of -Aa,A, is absolutely continuous and equals

[Eo A2(0), OC)), a > aA2,
04 A) = 68C(-Aa,A2) = l[E26"2(0), Eao"2(00)] u [0, 00), a < aA2,

(1.6.37)
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with Ea 12(0) < 0 and E$'A2(0) < Eo 12(00) < 0 provided a < aA2 where aA2
equals

aA2 =
12

lim E
IA21 - 2xw (1.6.38)

8zt re r2 IY + 001
11r+001 !5W

and

00 = -(b1 + b2)/2. (1.6.39)

PROOF. Again the proof is similar to that of Theorem 1.4.5.

Finally, we analyze approximations of -AA,A2(0) by Hamiltonians with
local scaled, short-range interactions. Let

A,(k, 0): L2(R3) - L2(R x P2),

B1(k, 0): L2(R3) --> L2(R3), (1.6.40)

C2(k, 0): L2(R x f2) L2(R3),

be Hilbert-Schmidt operators with integral kernels

A,(k, 0, x, v, x) = gk((x", v) - ex, 0)v(x'),

BF(k, 0, x, x') = eA(e)u(x)9k(s(x - x'), 0)v(x'),

Ce(k, 0, x, x, v) = 2(s)u(x)9k(sx - (x", v), 0);

e>-0, k2#1r2+012, Imk20, 0eA2, x,x'ER3, xER, vet2.
(1.6.41)

Theorem 1.6.5. Let V e R, supp V compact, and A(s) = I + e2'(0) + o(e) as
c 10 both be real-valued. Then the self-adjoint operator in L2(R3)

satisfies

HH,A2 = -A + e'2 2(e) Y V((- - 2)/e)
AeA2

(1.6.42)

f'2He,A,*2' = IA21-' d20 He,A2(0), (1.6.43)
J A2"

where HH,A2(0) is the self-adjoint operator in L2(R x f'2) with resolvent

(Hc,A2(0) - k2)-' = gk(0) - cA.(k, 0)[1 + B6(k, 0)]-'Ce(k, 0),

e>0, k2ep(Ht,A2(0)), Imkz0, 0e A2. (1.6.44)

Assume that 2'(0) # 0 if H = -A + V is in case III or IV. Then He,A2(0)
converges in norm resolvent sense to -Aa,A2(0) as a 10, i.e.,

n-10 (HL,A2(0) - k2)-' = (-Aa,A2(0) - k2k2 E C - It 0 E A2,

(1.6.45)
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where

a=

00 in case I,

-.i'(0)1(v, #)1-2 in case II,

00 in case III,

N

-1-1'(0) 1j=1 E 10, c;)I2 } in case IV.
1

(1.6.46)

PROOF. The proof is similar to that of Theorem 1.4.8.

If a = oo, then n-limeio(H,,n,(0) - k2)-1 = gk(0), the resolvent of the free
decomposed Laplacian.

Studying only the unique, simple eigenvalue Eo 12(0) of -Aa,n,(0) below
the essential spectrum we get

Theorem 1.6.6. Let V e R, supp V compact, be real-valued, and let A(e),
2(0) = 1, be real analytic in a neighborhood of zero. Assume H = -A -i- V
to be in case II and let 0 e A2. Then H,,n,(0) has a unique simple eigenvalue
Et. ^2(0) < 1012 behaving as

E ^2(0) = Eo ^2(0) + O(s2), (1.6.47)

where o^2(0) is the unique eigenvalue of -A,,,^,(0), -AQ,n,(0) being the
norm resolvent limit of He,n,(0) as s 10, and Ei ^2(0) satisfies

'"2(0) = hn2(ko "2(0), 0)[A2 + E6^2(0)62], (1.6.48)

where

hn2(k, 0) = 21x'21 [k E (IY + e12 - k2)-3/2
re r2 J

A2 = A"(0)I(01
)12

+
A'(0)I(01 )I2

- a(v,16) - .'(0)«, (1.6.49)

B2 =
8R1 (v 0)I2 J JR6

d3x d'x' O(x)v(x)Ix - x'I v(x')O(x'),

and X satisfies (1.5.65).

PROOF. Similar to the proof of Theorem 1.5.6.

111.1.7 Bragg Scattering

By Bragg scattering we mean the scattering from an infinite half-crystal in
three dimensions, more precisely we study the operator -A.,A. where

A+ _ {n1 a1 + n2a2 + n3a3 e R31(n1, n2, n3) e Z2 x No} (1.7.1)
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with No = t\! a {0} and a,, a2, a3 is a basis in 683 and

a,=oieR, AEA+. (1.7.2)

While our basic technique in the discussion of the crystal, straight polymer,
and monomolecular layer has been the Fourier transform of the full matrix
r'Q,,...(k) in the directions of symmetry, here we will combine this technique
with the Wiener Hopf method for inverting a Toeplitz matrix in the direction
with "half" symmetry.

Consider a particle coming towards the half-crystal A+ with momentum
p', viz.

p'b3 > 0 (1.7.3)

where b,, b2, b3 a R3 satisfy (cf. Sect. 1.4)

ajbj, = 2nbjj., j # j', j. j' = 1, 2, 3. (1.7.4)

Thus b3 is orthogonal to the surface of A+, pointing into the half-crystal. After
being scattered off the half-crystal the particle has momentum p with

pb3 < 0. (1.7.5)

Conservation of energy gives

p2=p'2=E=k2. (1.7.6)

Furthermore, Bragg scattering imposes that

(p - p')A = 0 (mod 2n), A E A2, (1.7.7)

hw ere

A2 = In, a1 + n2a2 a R3I(n,, n2) E Z2}. (1.7.8)

As the next result shows there is only a finite number of reflected momenta p
for any given p' satisfying (1.7.5)-(1.7.7).

First, we introduce the necessary new notation. Let

172 = {n,b, + n2b2 E 683I(n n2) E Z2},

A2={s,b,+S2b2eP3IsjEL-2,2),j=1,2}, (1.7.9)

A=(na3e683In aNO), (1.7.10)

and for any q E 683 we let q11 denote the (not necessarily orthogonal) projection
onto the plane orthogonal to a3, viz.

1 3 2

q11

2n [(q, a1)b1 + (q, a202], q = q;b;, q1 = q;bj. (1.7.11)
=1 i=1

Theorem 1.7.1. Let p' a 683 and assume (1.7.3). Then there is a finite number
of p E R3 satisfying (1.7.5)-(1.7.7). The allowed p can be written in the form

p = p1,(p') = ply + 72 + {-Ib31-2(pj + 12)

- Ib31-' E - (pig + 12)2 + [Ib31-'(p'1 + Y2)b3]2 }b3,

Y2ef'2, E-(pp+12)2+CIb31-'(ph+Y2)b3]2>>-0. (1.7.12)
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Furthermore,

02 pi (mod r2) = p1 (mod TZ) E A2. (1.7.13)

Remark. Observe that po(p'), i.e., y2 = 0, always satisfies (1.7.5)-(1.7.7)
(specular reflection).

PROOF. Starting with condition (1.7.7) we write

3

p - p'=YQjbj
j=I

which inserted into (1.7.7) yields

(1.7.14)

(1.7.15)

which proves (1.7.13). Thus

/P=P'+Y2+f3b3, Y2Er2

Squaring we find

(1.7.16)

P'2=E=p2=(Po+Y2)2+2(p:+Y2)b3(q+Y3)+(q+f3)b32,

where

(1.7.17)

p' - ph = qb3. (1.7.18)

Solving (1.7.17) with respect to q + /f3 we find (1.7.12) using (1.7.5).

Recall from (11.1.5.6) that the off-shell scattering amplitude fa.AN(k, p, p')
for (-A, -A&,nN) with

AN = [ - N, N]3 n A+ (1.7.19)

reads

fa.nN(k, p, p') = i-.-

det[1.A(k)] # 0, Im k >- 0, p, p' a C3. (1.7.20)

The scattering amplitude fa,A.(k, p, p') associated with -A4.n. will be defined
as the weak limit of fa,AN(k, p, p') as N -+ oo, and our main result will be the
computation of its on-shell limit.

Theorem 1.7.2. Let fa,AN(k, p, p'), Im k >- 0, Re k >- 0, p, p' a C3, be the oJf-
shell scattering amplitude, given by (1.7.20), associated with (-A, -A.,A)
with AN = [-N, N]3 n A+. Then

lira (9,fa,A,(k)f) = (9,fa.n,(k)f)
N-ao

= [ra,A.(k)]-1(e-'t.)Z,f)(9, e'"),
47C A, Ve n

f, g e .9'(R3), det[I'a,n.(k)] # 0, Im k > 0. (1.7.21)
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Let P' e R3 and assume that p = py2(p') satisfies (1.7.12) for some y2 e 172.
Then the on-shell scattering amplitude reads

f.,A.(IPI, PIP') _
-( p' a3) I63lexi(P3-Pi).

IAI

tt
l1

sin 4[fiPI(02, Y2) + 2nP3] sin 1[#I,,(O2, Y2) + 21rp3]

12Gl2 sin J[/3Ips(02, Y2) + 2icp3] sin 1101,1(02, 12) + 21CP3]'
Y2 #Y2

where
(1.7.22)

02 = p1 (mod 172) = pN (mod I72) (1.7.23)

and

Yk(02,Y2) =
1

2a
k2

- (02 + Y2)2 + [lb3l-1(02 + y2)b3]2,

and {Qk(92, 92)I72 E I'2} solves

I'a,A k, 02
+ 4(2, Yx) 631

= 0,

Im 1JkM02, Y2) 1 0, (1.7.24)

Im gk(O2, y2) 0. (1.7.25)

PROOF. We have

1

(9,ff.n (k)f) =
4n A.

Yn [I'a.n,(k)]xx (e-ii )x >f)(9> a i u)

N-ao 4ir x EA' (e
u.)2.>f)(9> a il')z),

det[I'a,A.(k)] # 0, Im k > 0, f, g e g(R3), (1.7.26)

since ((e-i(')A, f )} e 12(A+) when f e Y(R3). Following the proof of Theorem 1.6.1
we infer

47C x.En.

1 2 1 ip3b3A 1Pib3x.= 4n
X

A JA2 d Oz)]AA e e (1, M29)(02), 1),

det[F.A,(k)]*0, Imk>0, f,ge.(R3), (1.7.27)

with

fa.A(k, 02) = R- 4) axa - x

41

2 t(.1- .1' + .12)e-i22e=Jx.x
.x'

Im k > 0, (1.7.28)

and *2 given by (1.6.14). We use q3 for the component of a vector q e R3 with respect
to b3, cf. (1.7.11). Here the inner products in the first line are in L2(R3), in the second



111. 1.7 Bragg Scattering 221

line in L2(II x '2). To study the on-shell limit we assume

P3, P3 - C, Im p3 < 0, Imp 3 > 0, (1.7.29)

and consider

r".x(k, 02) [r.x(k. 02)) e tvj632e+r3s3x
AA,

Applying the formula [117]

Ni-1sOt"'=(l-st)-1expx
('" (1 - st)1n [C(x)]

".n'.No
[Q= J ; dx(s - e`")(t - e_fx)> (1.7.31)

where

and

C = N., C._.., 11, WE 101o,

S,tEC, ISI,ItI<1

and

1C(x) = Y c" = - dx C(x)e'mx
n.Z 2a ,

to (1.7.30) we find

r..x(k, 02) = [I -

jRP3-Pa) r
1 " [1-e-2x ]In[r.A(k,02+ x

2a b3 ]
exp 2a f

n
dx (e-2x43 - erx)(e2WP3 - e -x)J

(1.7.35)

since

Z`
ik

Y_ Y_
-11h(x) =a--- G(na3+a.)e e-Gx

4a n.z x3.A3

(1.7.30)

(1.7.32)

(1.7.33)

(1.7.34)

(x -
ik - 7
in 1.A

x
r'..A k, 02 + 2a

b3 , Imk>0. (1.7.36)

Let (cf. the following Lemma 1.7.3)

r.(k, 02, z)

_ JAI , sin[&(02, y2)] 1 + Ib31 + a
X 1b312 ",.r2 P(02, y2) z + z-' - 2 cos[$(02, y2)] 4aly21

I1315w

(1.7.37)

and

1-(k, 02, z) = lim I' (k, 02, z), z 6 C - {0}, (1.7.38)
W-OD
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where Nk(02, y2) is given by (1.7.24). Then

r..n(k, 02)

-e - zx,lv, -r>>] -3 exp
1

dz--
[1 - e-zxi(p3-p;)] In[r(k, 02, z)]

_ [1 - - -- -}
2i6

1.1=1

(e-2xep3 - Z)(e2xip; - Z-1 )z

[1 - e-2xi(p3 -pi)]-I .

(e-2xip3 - e-2,P;) In []-.(k, 02, z)]lim exp dz-- - - l
1.7.39

W a, 21ri (e "'P3 - z)(z - e-2a,Pi) I ( )

Consider now the integral

I

S

(e- 2auP3 - e-2xipj) ln[ra,(k, 02, z)]

2Iri s l _3
(e-2x,p3 - z)(z - e-2x,p;)

(1.7.40)

Since irk, 02, z) is a meromorphic function on the Riemann sphere C v { oo }, it has
an equal number of poles and zeros. Thus In[rw(k, 02, z)] has cuts connecting every
pair of poles and zeros. The poles of f'(k, 02, z) are given as solutions zY(k, 02) of

zY(k, 02) + [z7 (k, 02)]-' = 2 cos[llk(02, Y2)]. (1.7.41)

Define z (k, 02, p) as the solutions of

z (k, 02, p) + [z (k, 02, p)]-' = qW(k, 02, p), (1.7.42)

where qw(k, 02, p) solves

Fw(k, 02, (k, 02, p)) = p (1.7.43)

with

F (k, 02, S)
xx =

lnl Z 1`sm[!4k(0z, Yz)]
xx

/1__ _ _
+

1b3 +w
1.3 2 I. ilk(02, Y2) COS[/Ik(02, Y2)] 27r 1,/217rIb

1 Y2E)2
1721'-w (1.7.44)

F(k, 02, 5) = lim FW(k, 02, 0-

Hence

(1.7.45)rw(k, 02, z) = Fc(k, 02, z(z + z i A

F(k, 02, ) is a meromorphic function on C with poles at 12 cos[/k(02, Y2)]1Y2 E r2).
If 1(02, y2) E It, then cOS ik(02, Y2)] E [-1, 1], and if i$k(02, y2) < 0, then
cos[fk(02, y2)] > I. Let q(k, 02, p) be the solution of

F(k, 02, tj(k, 02, p)) = p. (1.7.46)

Asp oo,, (k, 02, p) - cos[/lk(02, y2)] for some y2 a r2, and we denote this solution
of (1.7.46) by qv,(k, 02, p). Similarly, we denote by go, Y2(k, 02, p) the solution of
F0,(k, 02, iw,Y2(k, 02, p)) = p such that gW,Y2(k, 02, p) -, cos[$k(02, y2)] as p - oo.
With q,,,,.,2(k, 02, p) we can then associate za, y2(k, 02, p) using (1.7.42), and
Z"12 (k, 02) -, z Y(k, 02) as w - cc. Ordering the set {cos[/1k(02, 72)]1Y2 E 1'2), i.e.,

- t < cos[Pk(t)2, Y21)1 <_ ... < cos[/Ik(02, 71--t)] <- 1 < cos[/lk(02, Y2 m)] <-
(1.7.47)
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we have

cos[!lk(O2, Yc (1] 5 ry,, ,(k, 02, p) < cos[A(02, yi)], .l > m. (1.7.48)

From the above analysis we infer that we can parametrize the cuts of ln[r.(k, 02, z)]
by

02) = {z±.2(k, 02, p)I p e CO, co)). (1.7.49)

r(k, 02 + (x/2E)b3) has no zeros or poles in a uniform strip around the real axis,
the width of which depends on Im k. This implies that for to sufficiently large
IZZ*.YZ(p)I # 1, y2 E r2. Since

Zo,.Y2(p)
a±RPk(e2.rz) (1.7.50)

we have

C..Y2 c (z E CI IzI < 1), C-, 12 c (Z E CI IZI > 1),

Hence

y2 E r2. (1.7.51)

(e-z"3 - e 2A,pj

Y dz ln[r (k, 02, e 2Z1P3)]
Y2Er2 Cm '2

(e-2" - Z)(Z a

IY215W

J z + Z - e
In[rm(k, 02,

Y2r2 c-2
1)215 W

_
In

{sin i[llr(02, Y2) + 27rP3] sin j[zZ*,r2(k, 02i 0) + 2npa]

r2 2
sin I[fk(02, y2) + 2np3] sin I[zmY2(k, 02,0) + 271P3]

Ir215w

- ln[r, (k, 02, e-211113)] (1.7.52)

which implies that

ra.n(k, 02) _ [1 - e 2,,,(p,-p,)]-2 [r(k 02 e 2ReP3)]-(.

lim
sin i[r'lk(02, Y2) + 2np3] sin z[za r2(k, 02i 0) + 2npil

]1 1 / (1.7.53)
w-a Y2Er2 sin Z[Yk(O2, Y2) + 2npsl sin [z ;.r:(k> 02, 0) + 27 113]

1Y215W

Furthermore, we have

zN.r:(k, 0z, 0) m A(02, Y2), (1.7.54)

where {Ok(02, Y2)I72 E r2} solves

1Y2)b3)=0, (1.7.55)

From the proof of Lemma 1.7.3 we inferr that

uQk(02, Y2)Iv21- CIY2I + O(1), c > 0,
(1.7.56)

c IY21 + O(1), c > 0, Y2 E 1 z,- iza.r2(k, Oz> 0)
1121-11

implying that the product converges uniformly as to - oo and that the convergence
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is uniform in p3, Taking first the limit w - oo term-by-term in (1.7.53) we find

r:.n(k, 02) = [I - 02

lim 171
sin 1[P (021 Y2) + 2tP3] sin 1[4i (02, Y2) + 2xPg]

(1.7.57)
W-00 126 r2 sin -2'1#k(021 Y2) + 21rp'3] sin 1[4(02, Y2) + 2np3]

Ir21sw

AsImp3,lmp3-+0,weget

[r(k, 02 e-2xip3)]-1 .y 0

and

(1.7.58)

sin 1[#k(02, Y2) + 2np3] -+ 0, (1.7.59)

where p = p;2(p') for some Y2 a r72. However, their ratio has a nontrivial limit.
A short computation then gives (1.7.22).

We see that formula (1.7.22) expresses the on-shell scattering amplitude as
an infinite product of terms depending on the incoming and reflected momenta,
respectively. The term depending on the incoming momentum (which equals
the inverse of the corresponding term of the reflected momentum) coincides
with the ratio of two terms, one as if the crystal filled all of R3 and one as if
there was no crystal.

It remains to state

Lemma 1.7.3. Let k e C, Im k > 0. Then

1AI
rr.A(k, p) = 2n b312

lim
)'''+++ sin[Yk(02, Y2)]

W-"00 72 6 r2 I3k(02, y2) {cos 2n [x + I y2%] - cos[pk(02, Y2)]}
Ir2I5 W

j b31 + (1.7.60)
+2iIY21

t
where

p=Y2+02+(x+n)b3,

Y2e172, nc- Z, 02=p1(mod r'2)6A2, xeC, (1.7.61)

and & is independent of k, 02, and x.

PROOF. Let G(x) denote the left-hand side of (1.7.60) considered as a function of
x alone, and let

p' = Y2 + 02 + (x' + n)b3. (1.7.62)
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Then

G(x) - G(x')

1 1

_ (2a)-3IAI YY C(Y + P)2 - k2 (Y + P,)2 - k2

1= Zy[)_3

( I I

Y=Y2+nb3

1

[02,

+ y2 + (x' + n)b3]2 - k2

= (2a)-3Ib31-21AI.

1

72 r2 n (x + n)2 + 21b31-2(92 + Y2)b3(x + n) + Ib3I-2C(02 + 12)2 - k2]

1

(x' + n)2 + 21b31-2(02 + Y2)b3(x' + n) + Ib3I-2[(02 + Y2)2 - k2]

= (2n)-t Ib3I-2JAI Y sin[Rk(02, y2))

Yzfr2 A(021 Y2)

1

cos(flk(02, y2)] - cos 2a[x + Ib3I-2(02 + 72)b3]

I

cos[Rk(02, y2)] - cos 2a[x' + Ib3I-2(02 + Y2)b3]

where I(O2, y2) is given by (1.7.24). Define now

(1.7.63)

Sin[/tk(O2, 72)] 1 Ib3I

dY2(x) Yk(O21 Y2) cos 2a[x + Ib3I-2(02 + Y2)b3] - cos[Bk(O2, Y2)] + 2a1Y21
(1.7.64)

Then

d,,(x) = [A(02,
Y2)]_ Sin[Rk(O21 Y2)] + i

cos 2a[x + Ib3I-2(02 + Y2)b3] - cosCA(O2, Y2)]

- 0402,
Y2)-'

+
b

2a1Y I

= [Pk(02, Y2)1-''

i cos 2a[x + 1b31-2(O2 + Y2)b3] + sin[p(O2, y2)] - i cos[ k(O2, y2)]

cos 2a[x + Ib3I-2(02 + y2)b3] - cos(Ak(02, y2)]

_ iIY21- (2n)-' 1b3IQk(02, Y2)

Pk(02, Y2) IY21

2 cos 2a[x + Ib3I-2(02 + y2)b3] - ei$k(ea.Y:)
= i[fk(02, Y2)] 2 cos 2n[x + Ib3I-2(02 + y2%] - cos[flk(02, y2)]

+ i 202Y2 - Ib3I-2Y2b3 +
o(IY21-3) (1.7.65)

2Rk(O2, Y2)IY212
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since

tai Yz (02b3)(Y2b3) ,
Pk(02 Y2) =

1631
[h21 -

1721 + 21b3121721 + 0(1721 ) (1.7.66)

Let B,, be the circle in the plane spanned by b, and b2 with radius uw centered at
the origin. Then

Y dr2(x) = Yz) -1.
y2E r2nB,, I.

2 cos 2n[x + 1b31-2(02 +'12)b3 -

2 cos 2n[x + 1h31-2(02 +,,2)h3] - COS[ fl (02, Y2)]

+ 0(1721 - 3)} (1.7.67)

since r2 n B. is invariant with respect to y2 -y2, and ()2Y2 and y2b, are uneven
with respect to this transformation. Hence we infer that

lim Y dY2(x) (1.7.68)

exists, and finally that

y2 E I'2rB

G(x) _ (2a)-1
Ib3I-2

InI
sin [#k(02 Y2)]lim

A(021 Y2)
IY215 W

I _ Ib3I +Of-IX,
cos 2a[x + Ib3I-2(02 + 72)b3] - cos[fk(02, 72)] 2a1Y21

(1.7.69)

where a is independent of k, 02, and x.

III.1.8 Fermi Surfaces

The concept of the Fermi surface, which is of vital importance in solid state
physics, allows us to relate several of the topics so far discussed in this chapter.

Consider an infinite, perfect crystal and assume that we remove all the
electrons from the crystal, and that we intend to put them back one by one.
In addition, suppose that we have absolute temperature T = 0 so that the
electrons go into states with as low energy as possible. The electrons, obeying
Fermi-Dirac statistics, satisfy the Pauli principle. By taking into considera-
tion the spin, this means that at most two electrons can have the same energy.
Hence the first two electrons occupy a state which corresponds to the bottom
of the ground state band, while the next two electrons go into a state with
a slightly higher energy and so on. When all the electrons are put back, we
have reached some energy EF, the Fermi energy.

To model this we consider, as explained in Sect. 1.3, the one electron model
with point interactions, i.e., the operator -A.,, where A is the Bravais lattice.
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Recall from Theorem 1.4.4 that

a(-Aa.n) _ [E o A(0), Eo "(()o)] [Ein, oo) (1.8.1)

with E0'(00) < 0 as long as a < a0,A.
In terms of the density of states, formally defined by, e.g., ([161], p. 7)

Pa.n(E) = Zn Tr[(-A.,A - E - i0)-' - (-Aa., - E + i0)-l] (1.8.2)

the Fermi energy can then be defined by
Pcc,A(EF) = N/2 (1.8.3)

where N is the number of electrons per nucleus. (The factor 2 comes from
the Pauli principle.)

However, the three-dimensional crystal does not seem to allow a simple
expression for the density of states, so we will not give any explicit formula
for (1.8.2) (see, however, [215]). (In one dimension one can compute (1.8.2)
explicitly, see Sect. 2.3.) The Fermi surface is then defined to be the set

FF,n(EF)={0eAI3yeT:P7).n(0)=Et}. (1.8.4)

Within the framework of the one-electron model of a solid, we can explain
some of the corresponding conductivity properties. Namely, if EF is at the
bottom of a gap between the valence (filled) band and the conduction (empty)
band, then there is a certain amount of energy needed to excite some electrons.
Hence we have an insulator. If EF is sufficiently far away from the upper end
of the valence band, one has a metal. Similarly, in the intermediate cases where
either the gap is small or EF is fairly close to the end of the valence band, the
metal/insulator distinction becomes less sharp and one gets semiconductors
or semimetals.

Returning to the Fermi surface we can state the following

Theorem 1.8.1. Let a e 08 and A be a Bravais lattice. Then the Fermi surface
for the operator -A.,, is the set

e-a.IAI

x
>Fa.n(EF) = 'CF + Y COW))

#o

where EF = - 4F, KF > 0, is the Fermi energy.

(1.8.5)

PROOF. Equation (1.8.5) follows immediately from (1.8.4) and formula (1.4.38)
used in Theorem 1.4.1.

The actual computation of a Fermi surface in solid state physics is usually
done by combining theory and experiment (see, e.g., [126]). By performing
various experiments one can measure, e.g., the diameters for different cross-
sections of the Fermi surface. In combination with a parameter-fitting ap-
proach, the Fermi surface for most of the simpler metals has been determined
to a high degree of accuracy. What we do here is a somewhat different
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approach: After having chosen the potential, we do not introduce any other
approximations.

With the aid of a computer we have illustrated the Fermi surface for various
values of EF, a, and A, see Figures 7-33.

A few words are appropriate to explain the illustrations: The Fermi surface
as defined by (1.8.4) is a multivalued surface, or if one extends it periodically
to 98' (i.e., replace A by 983) an infinitely many-valued surface, in the following
sense. By solving for one of the components 0, of 0 = (01, 02, 03) in terms of
the remaining components, we obtain a multivalued (infinitely many-valued)
function. In the figures we have only illustrated a single-valued function,
more precisely we have illustrated the part of the surface nearest to the origin
with 03>_0.

The edges of the surface of the Brillouin zone are also included in the
illustrations.

Strictly horizontal or vertical parts of the illustrations are not part of the
Fermi surface.

Finally, contour plots are also provided for some of the illustrations.





230 111.1 Infinitely Many Point Interactions in Three Dimensions

Figure 10 (a) and (b) The Fermi surface of Figure 8 (a) and (b) extended periodically.
Again it is difficult to vizualize the total surface in the sense that the total Fermi surface
is the union of the two surfaces above extended periodically in the positive and negative
z-direction.

(a) (b)

Figure 11 (a) and (b) A contour plot of Figure 10 (a) and (b).
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E

(b)

Figure 14 (a) and (b) The Fermi surface of a face centered cubic (FCC or cubic F)
crystal with E = -1, a = -0.17 inside the upper half of the Brillouin zone.

(b)

Figure 15 (a) and (b) A contour plot of Figure 14 (a) and (b).

Figure 16 (a) and (b) The Fermi surface of Figure 14 extended periodically.
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111.1.9 Crystals with Defects and Impurities

Having studied in detail the spectral properties of a perfect, infinite crystal
in three dimensions with point interactions, we now turn to the question of
how various defects may change the spectrum in this model. As will turn out
below, the point interaction Hamiltonian, in fact, allows one to make explicit
computations of the consequences of certain defects.

Consider first the general situation where we have given

Y={y,E083IjEJ}, JcN, inf IyJ-y.I=d>0. a:Y-+R,
J#J'

(1.9.1)

with a bounded. We will study how the resolvent of the operator -A.,y
(given by (II.1.1.33) if I YI < oo and by (1.1.6) if I YI = oo) is related to the
resolvent of the operator - AQ, g where a" and P are certain modifications of
a and Y, respectively. More precisely let

Z = {z1, ..., zM} c 083, M E N. (1.9.2)

Then we distinguish the following three modifications:

(a) Assume that

?= YUZ, YnZ=O, Zoo,
dly=a, a"._PzER, zEZ. (1.9.3)

We then say that - Aa, y represents the Hamiltonian with interstitial
impurities located at Z c 083 relative to -Aa_r, and write -A,,,r,#,z for
-A&.Y.

(b) Assume that

Y=1LZ, i1nZ=Q, Z Q,

alr=a, a.c- R, z Z. (1.9.4)

We then say that -Aa,j is the Hamiltonian with defect impurities or
vacancies located at Z relative to -AQ,r, and we write -A«,r.(,,,).z for
-A&.r'.

(c) If

Y= t=Z.Z, Zn2=0, Z'2:00'
ot,,=a,, iff yet, aZ=P c-R, ZEZ, (1.9.5)

we say that -Aj,j is the Hamiltonian representing substitutional impu-
rities relative to -A.,r and again we write -A.,r,B,z for -AQ,F.

For simplicity we will not consider a mixture of the above three cases.
For the relation between the resolvents of -A.,y and -A.,r,B,z we have the
following
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Theorem 1.9.1. Let 1' = (y"j e R31 j e 7), Y = (y, a R31 j e J), 7, J c N,
satisfy

inf_IYj - yj.I = d>0, inf Iyj-yj.I=d>0 (1.9.6)
j,j'EJ j.j'EJj,'f j#j'

and assume that a: i - R and a: Y - R are bounded. Moreover, let

Z=(Z1,...,zM)cR3, MeN. (1.9.7)

(a) Suppose that

YuZ, YnZ=0, a"Iy=a, a"Z=I=ef, zeZ,
(1.9.8)

and let

-A., r,P.z = - A&,i

Then

(-Aa,Y,P,Z-k2)-' k2)-1

M

(1.9.9)

+ E Zj),
j,j'=1

k2 E p(-Aa,r)r p(-At,r,P,z), Imk > 0, (1.9.10)

where

Gk.a,Y(X, x') = (-A.,Y - k2)-1(x, X')

= dk(X - x') + E YAW - Y'),
r.r'C, Y

k2 a p(-AY), Imk > 0, (1.9.11)

and

Ir..Y.P.Z(k) =
pp., - i-7r) bjj, - Gk,a.Y(zj, zr) (1.9.12)

, =1

(b) Assume that

Y=VU Z, VnZ=0, alY=a, a.eR, zeZ,
(1.9.13)

and let

- Aa. Y, (oo). Z = -AF.
Then

(--A.,r,{oo).Z - k2)-' = (-Aa,r - k2)-1

M

(1.9.14)

- E ')Gk,&,r'(', zj),

k2eP(-A&,Y)nP(-Aa,r.(a),z), Imk>0. (1.9.15)
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(c) Suppose that

Y= 1?=Zu2, Zn2=Q,
&,=a, iff yet, a"==fl eR, zeZ, (1.9.16)

and let

-ea,r,p,z = -e&,r`-
Then

(1.9.17)

(-Aa,r,6,z - k2)-1
k2)-'

M

+ {[I'a..s.z(k)]-1D«,e[r' , .a,z(k)]-1 }3j .

'(Gk,z'(', z.), ')Gz,),
k2 a p(-D2,r)np(-D&,r,e,z), Im k > 0. (1.9.18)

with

a,P M Djall _(a= -P=
)a;;', j,j'= 1,...,M.,

,
(1.9.19)

PROOF. (a) Write

ra,p(k) = I'®(k) - I',(k), (1.9.20)

hw ere

r®(k) = rre.z(k) 1
'

(1.9.21)

and r,(k) couples the points in Z to

L

Y, i.e

0 I a.r(k)J

.,

r,(k) = 0I
Gk(Z,

Y) (1.9.22)
GA,(Y

with

l Z) 0

Gk(Z, y): 12(y) --, 12(Z), Gk(Z, Y) = (Gk(Z - y))X*Z.rcr,
(1.9.23)

Then

Gk(Y, Z): 12(Z) -,12(Y), Gk(Y, Z) = (Gk(y - z)),.r.:Ez

[ra.P(k)]-' _ [r®(k)7-' +
(1.9.24)

for Im k sufficiently large. The inverse {1 - [r'®(k)]-1r,(k))-1 can be expressed
explicitly in terms of [r..r,B,z(k)]-1, namely

{1 - [r®(k)]-'r,(k)}-1

r'-1r,,z(k) r-1Gk(Z, Y)

C[ra.r(k)]-'G(Y, Z)r-' 1 r + [tas(k)]-'GG(Y, Z)r-'Gk(Z, Y)
(1.9.25)

where for convenience we have abbreviated

r = ra.r.,.z(k)
(1.9.26)
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and 1y. denotes the identity matrix on !2(Y). A tedious but straightforward
computation then gives (1.9.10).

(b) follows from (a) since an interchange of -Aa,, and -A.,r yields case (a).
(c) Observe first that

(-Da.r.p.z kZ)-' - (-Aa.r - kzW

i[ra.r(k)],` -Y; ),')Gk(' -Y,),
1.1' C j

(1.9.27)

and the problem now consists of reducing the right-hand side to a rank M = IZI
operator. To this end, we write

L

ra.z(k) -G(!., 2) ra.z(k) -G(Z, 2)1
rr.v(k) =

-G(2. Z) ra.2(k)
ra.r(k) [-G(2, Z) r,.2(k) J

(1.9.28)

with inverses

[Lr..2(k)]-' G(2, Z) Cf ..z. ( k ) ]

Lra.z.e.z(k)J 'G(Z.2)[r a(k)] -'
[r,2(k)] '+Ll ;(k)] 1G(2,Z)[r..2.a.z(k)] '

[r,,r(k)] '

_ (k)] ' fra.2.a.zlk)] 'GII.Z)[r:.z(k)J
[r.2(k)]-' +[ra.2(k)l

(1.9.29)

Hence

[ra.9(k)]-' - [tas(k)]-' =
H HG(Z, 2)[r, 2(k)]-`

C[fa.7(k)] `G( , Z)H [ra.t.(k)]-'G(2, Z)HG(Z, 2j
(1.9.30)

where

H = [ra.2.a.zlk)] ' - (k)] ` = [r,2p.z(k)] ypa.eLra.2.a.z(k)] (1.9.31)

with

pa.u = p; ali piY = (a;, - j,j' = 1, ..., M. (1.9.32)

Recalling that

Gk.s.Z(x, x') = Vk(x - x') + F [ra.2(k)]YY Gk(x - y)Gk(x' - y'),
Y. y'eZ

k2ep(-Aa,2), Imk>0, x,x'e18'-Z, x#x', (1.9.33)

a straightforward calculation, combining (1.9.27), (1.9.30), and (1.9.31), gives (1.9.18).

Remark. The theorem is still valid, with obvious modifications if Z =
{z;IjeNl}(i.e.,ifM=co)provided Iz-z'I _ d>0,z,z'eZ,z#z'.

Observe the strong resemblance between (1.9.10) and say (11.1.1.31). This
suggests that (1.9.10) could be proved along the lines of the proof of Theorem
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with -A replaced by -A., y [31]. Furthermore, we infer that adding
another point interaction amounts to a change by a rank-one operator for
the corresponding resolvents.

By using the above explicit formulas for the resolvents we can deduce the
following general spectral properties.

Theorem 1.9.2. Let {yja083IjeT}, Y= {yje0831jEJ}, J, Jc N,
satisfy

inf_I$,-Y;I=d>0, inf ly;-yj.l=d>0 (1.9.34)
j,j'EJ
j Of

and assume a: Y -+

j,j'eJ
j#j'

R, Y -- III to he bounded. Let

Z = {z1, ..., zM} c 083, M e N, (1.9.35)

and suppose one of the following three cases:

(a) Y= YuZ, YnZ=0,61y=a, a=Ae08,zeZ.
(b) Y= V VZ, V nZ=0,alr=a`,a,E08,/3z=oo,zeZ.
(c) Y= Y=Z i2,Zn2=Q,a,,=a7iffye2,6..= f;,zeZ.

Then

a ss(-A.,Y.P,Z) = ae5(-Aa,Y) (1.9.36)

and if (a, b) c p(-A..y), -o0 5 a < b < oo, then (a, b) n a(-A.. y,0,z)
consists of at most M = I Z I eigenvalues counting multiplicity.

PROOF. Weyl's theorem ([391], p. 112) proves (1.9.36). The statement about the
multiplicity of eigenvalues follows from [494], p. 246.

In short, Theorem 1.9.2 proves that defects of the kinds (a), (b), (c) do not
change the essential spectrum, but may add eigenvalues in all gaps in the
spectrum, the total number of which cannot exceed the number of defects. To
obtain more precise information about these eigenvalues, one has to analyze
the pole structure of the coefficients of the rank M operator. Assuming that
one has only detailed spectral information on the "perfect" Hamiltonian
- A..., this requires that the rank M operator is expressed exclusively in terms
of -A. By examining the formulas in Theorem 1.9.1, we see that these
requirements make the formulas for case (b) and (c) less suitable.

Next we turn to more detailed statements concerning changes in the spectrum
when Y = A, A being a Bravais lattice in the sense of (1.4.3). For the notation
we refer to Sect. 1.4.

Corollary 1.9.3. Let Z = {z!, ..., zM} c 083, Me NI, a e 08, and fJ: Z -1 08.
Assume that either Z n A = 0, i.e., that Z is the location of the interstitial
impurities (case (a)), or that Z e A, i.e., Z is the location of the substitutional
impurities (case (c)). Then a(-A,,,A,,6,Z) n (-oo, E,6^(0)) contains at most M
eigenvalues counting multiplicity.
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If a < ao,^, then also a(-A.,^,P,z) n (Eo ^(9a), 0) contains at most M
eigenvalues counting multiplicity.

Although case (b), i.e., the case of vacancies, could easily have been included
here, it is omitted since in this case we can prove stronger results, using other
techniques (cf. Corollary 1.9.6). In the case of a single interstitial impurity our
information is more detailed.

Theorem 1.9.4. Let z e 683 - A be the location of the interstitial impurity
and let a, # e R. Define

('
A"'^(k, z) = 4 + IAI-'

J
d39[a - gg(0, 0)]-1 Igk(z, 0)12. (1.9.37)

Then -A" ^ z has exactly one simple eigenvalue EE;s a (-co, Eo ^(0)) iff

> A".^(ko ^(0), z), k^(0) = i - Eo ^(0). (1.9.38)

If at < aO.A, then -A. ^ B Z has, in addition, one simple eigenvalue E*;^ C
(E,^(00), 0) iff

A..^(ko ^(00), z) > f3 > A"'^(0, z), ko^(00) = i -Eo'^(90). (1.9.39)

If E0; z = (k;;
z

)2, Im ka; z > 0, is an eigenvalue of -A.. ^,8,: as above, then
k = kpa' solves

p 'z= A,A(k ' ' z) (1.9.40)

and the corresponding eigenfunction 0 reads

ili(x) = GkE:z ^(x, z), x e 683 - (A u {z}). (1.9.41)

PROOF. From Theorem 1.9.1 we know that the equation which determines possible
eigenvalues E = k2 < 0, Im k > 0, in the gaps of the spectrum of the perfect crystal
reads

ik
+ Gk...^(z, z). (1.9.42)P =

41r

Furthermore, we have

lGk..,A(x, X') = Vk(x - x') + (Gk(x - ), [r..^(k)]-1Gk(x' - ))e=(^)

= Vk(x - x') + (gk(x, '), [a - gk(0, ')]_1gk(x', d'e)
(1.9.43)

using the Fourier transform (cf. the proof of Theorem 1.4.3). Since Gk,",^(z, z) is
monotone increasing in K, K = - ik > 0, the result follows.

We now turn to the detailed analysis of defects in ordered alloys. More
precisely, we consider the operator - A., Y+^, as given in Theorem 1.4.3, where
a satisfies (1.4.54)

Y= {YI,...,YN} c P' (1.9.44)
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and "turn off" the point interactions at some points Z in order to introduce
vacancies in the ordered alloy.

Theorem 1.9.5. Consider the operator - Aa, Y+A where a e R', A is a Bravais
lattice and Y satisfies (1.9.44). Let B3 denote the jth negative energy band

B; = {E E (-co, 0)I38 E A: y; 0) = 0}, j = 1, ..., N, (1.9.45)

where Y(E, 8) < 5 yN'A.1(E, 8) are the eigenvalues of the matrix
ra.A.Y(k, 8), E = k2, Im k > 0. Define

EI.A.Y = inf[a(-A.,Y+A)], Ea+A.Y = sup {or(- A., Y11A) r) (_ 00, 0))
(1.9.46)

and assume that

B;#0, j=1,...,N, (1.9.47)

and
E+A.Y < 0. (1.9.48)

Then
Q.(-Aa`.1') C [Ea.A.Y, Ea+A. '] U [0, 00)

for any set V such that J

(1.9.49)

?S Y+A, &If=a. (1.9.50)

Furthermore, -A&,Y has exactly M = I Li eigenvalues counting multiplicity
provided M < oo.

Remark. Conditions (1.9.47) are satisfied if, e.g., o(-AQ,Y+A) consists of
exactly N negative bands.

PROOF. Observe first that the matrix ra,A.Y(E) = I,.Y+A(k), E = k2, Im k > 0, is
strictly positive definite for E < Y and strictly negative definite for E e (E1.;1- 11, 0).
This can be seen as follows. Assume that there is an E <
E e (E°;^ Y, 0)) such that r,,Y,A(E) is negative. Applying

09

r(E) =
a

d38 r(E, 0), r(E, 0) = ra.A,Y(k, 8), (1.9.51)

which was proved in Theorem 1.4.3, we infer that there is a 9 e A such that r(E, 80)
has at least one negative eigenvalue y, 0). y;; A.Y(E, 9), being monotone
decreasing in E, remains negative for E e (E, 0). Let f E Bj (implying S < E). Then
there exists a B e A such that yj; B) = 0, and hence y;; 6) > 0 for all
E < E. Using now the continuity in 0 of yZ A.T (E, 0) we conclude that there exists
a 8 e A such that yi; 3) = 0 which contradicts the definition of Y. To
prove (1.9.49) it suffices to prove that the matrix r.,r(k), E = k2, Im k > 0, is
strictly positive definite for k2 < and strictly negative definite for
k2 e (El,!A.11, 0). From the min-max theorem ([391], Theorem XIII.1) we have

inf[o(rQ,r(k))] z inf[a(r(k2))] > 0 (1.9.52)
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when k2 < and

sup[a(1,;,Q(k))] < sup[a(f;.r(k2))] < 0 (1.9.53)

when k2 e 0). The strict monotonicity in E = k2 (for E < 0) of r1(k)
proves the statement about the multiplicity.

Corollary 1.9.6. Let a E P and assume Y 5 A to be an arbitrary subset of
the lattice A c P3. Then

a(-A.,,r) [Eo A(O), Eo `'(Bo)b [0, oo). (1.9.54)

If A - Y is finite, i.e., if

JA - YI < ox, (1.9.55)

then

a(- 0,,, r) n (-oo, 0) = [E0 n(0), Eo'(O0)] (1.9.56)

provided a < ao, A.

PROOF. Theorem 1.4.5 ensures that the conditions (1.9.47) and (1.9.48) are satisfied.
From Theorem 1.9.1 we know that under assumption (1.9.55) (-A..A - k2)-' -
(-A,,,r - k2)-` has rank IA - Yl < oo, and hence the two operators have the same
essential spectrum.

Before we study defects in binary ordered alloys, i.e., when Y = (y,, y2),
we will describe the spectrum of - A in more detail.

Theorem 1.9.7. Let (a,, a2) e 082, al < a2, and let A c P3 be a Bravais
lattice. If y,, y2 E t and

a(- {Y,+Yzl+A) n (EO .A(B0), Eo2,A(O)) = 0. (1.9.58)

PROOF. Observe first that

a(-A..^) ye R3, (1.9.59)

by translation invariance. Let 0 a A. By explicit computation

y, (k, 0) S a, - g0, 0) < a2 - gk(0, 0) S y2(k, 0), (1.9.60)

where y, (k, 0) < y2(k, 0) are the eigenvalues of (k, 0). Furthermore,
for k2 a (E0 ^(0a), we have

a, - gk(0, 0) < 0 < a2 - gk(0, 0) (1.9.61)

implying

y, (k, 0) < 0 < y2(k. 0) (1.9.62)

and hence (1.9.58).
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Turning now to defect impurities in ordered alloys we can state the following

Theorem 1.9.8. Let a = (al, a2) a R2, and let A he a Bravais lattice.
Furthermore, let Y = { yl, y2} e P' and assume that

E+n,r < 0 (1.9.63)

and
E,"n(80) < Eo:,n(0). (1.9.64)

Let Y be an arbitrary finite subset of Y + A, i.e.,

Y= {y1 +All, .... Yt +AN,1}U(y2+212,...,Y2+)N,2) C Y+A
(1.9.65)

and d = aI Y. Then

la(-A&,V)n[Ea.n,', N1,

r') n [E202,n(0), Ea+n.l']I = N2,

counting multiplicity.

(1.9.66)

PROOF. From Theorems 1.9.5 and 1.9.7 it follows that the negative part of a(- Aa,y)
consists of exactly N, + N2 points within the two intervals
(E2& ^(80), Eo ^(0))-so what remains to be proven is that they distribute in the
stated way. This is shown using induction and Rayleigh's theorem. Assume that for
given N, and N2

a(-Aa.y)r [E_n.r,

O
E7,.n(80

1)] = Er }, ,

a(-Aa.y)r [E,2.n(0) E+n.r] = {END+,,..., EN},

with N=N1+N2=IYJand

(1.9.67)

E; 5 < E. (1.9.68)

(In this and in the remaining part of the proof, all statements include possible
degeneracies.) Let now

Y, Vu {y, +d), y,+Ae7 AeA. (1.9.69)

Rayleigh's theorem ([391], Problem 11, p. 364) implies

E;, 5 5 EN < EN-+1. (1.9.70)

Suppose EN,+, > E, ^(80). Then there are N2 + I eigenvalues of -AQ.r, greater
than which is impossible by the following argument. Consider Y2 =
Y, - (Y2 + A), Y2 + A E Y1. Applying again Rayleigh's theorem we know that
-AQ,r2 has at least N2 + I eigenvalues greater than E;; ^(80). By repeating this
argument another N2 - 1 times we obtain the operator -A,,,y with
Y = { y + A, y, + A, , , ... , y, + AN. 1) with at least one eigenvalue greater than

which contradicts Corollary 1.9.6. Hence

Ia(-A., ,)r [El.A.r, Ea,.n(O0)]I = N1 + 1,
la(-A,.r,) [ 2,n(0), E°+n.r]I = N2.

(1.9.71)
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Similarly, one proves the analogous result when one adds a point y2 + A to the set
Y1. Finally, we observe in the case N, = 1 and N2 = 0 that

a(-e&.r) _ [Eo'."(0), E12.A(9o)] u (0, 00)

[Ea.n,r, Ea+n. r] v [0, oo). (1.9.72)

using Theorem 1.9.5 and Corollary 1.9.6. The case N, = 0, N2 = I follows
analogously.

For binary ordered alloys we can improve Theorem 1.9.5.

Theorem 1.9.9. Let a = (a1, a2) e R2, let A be a Bravais lattice, and let
Y = (Y1, Y21 c t'. Assume that

(1.9.73)

Then for any set f such that

PS Y+A (1.9.74)

we obtain
[ 2.A(0), Ea+A.r] U [0, oo)a(-Aa.r-) S [Ea,A,Y, Eo'.A(eo)] U ,P (1.9.75)

where & = at I r`

PROOF. Consider the operator -A&.f where

= ? n B. (1.9.76)

with B. being a ball of radius n with center at the origin. Following the proof of
Theorem 1.1.1 we infer that

s-lim(-A&,p -k2)-1=(-A&p-k2)-', k2EC-R. (1.9.77)
a-OD

Using Theorem 1.9.8 and the fact that the spectrum cannot expand under limits
in the strong resolvent sense ([388], Theorem VIII.24) we conclude that (1.9.75) is
valid.

One can also make similar statements for ternary ordered alloys, i.e.,
IYI=3.

Let (a,, a2, 0(3) e R3, {y1, Y2, Y3} a r', and assume that the spectrum of all
the binary ordered alloys which one can construct consists of two nonover-
lapping negative bands bounded away from zero, i.e.,

_ [E0Ai(.1,.l'), EA,(.l,J')] u [Eo2(.1,.1'), EA (l,j')),1 12

E11(l,j') < Eo2(!,') < Ei2(l, p < 0, I # l,Jl = 1, 2, 3. (1.9.78)

Then we can prove the following

Theorem 1.9.10. Let a = (a,, a2, a3) e R3, Y = {yl, y2, y3} a P, and
assume (1.9.78). Let

Ei, = min{EA,(J,J')Ij 1, 2, 3,),
(1.9.79)

Eo, = max(EA(J,.1')Ij 0I',J,.1' = 1, 2, 3,), 1= 1, 2,
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and assume

E12 < E02, Ell < Eo1.

Then

(1.9.80)

(E2, Eo2)n r(-Aa.n.r) _ 0> (Eil, Eol)nQ(-Am.A,Y) = 0-l
(1.9.81)

Remark. See Figure 34 for a possible situation.

PROOF. Let 0 e A, E = k2 < 0, Im k > 0. Consider the six distinct 2 x 2 matrices

1'jj,(k, 0) = 0), j Of, I'J' = 1, 2, 3, (1.9.82)

and let

(k, 0) 5 Y#ij j'Y (k, 0), .l 96 .1', !>.l' = 1, 2, 3, (1.9.83)

denote their eigenvalues. From Rayleigh's theorem we infer

Yi.n.r(k, 0) 5 Yij (k, 0) 5 YLA.Y(k> 0) 5 0) 5 y3.A.r(k, 0), (1.9.84)

where (cf. (1.9.60))

Yi A r(k. 0):5 Y:'"(k, 0) 5 y, "(k, 0) (1.9.85)

denote the eigenvalues of I,,A. Y(k, 0). Now we can follow the arguments in the proof
of Theorem 1.9.7.

Eo,A(p) Eo,.A(00) Ey,A(0) E,.A(00) Eae.A(0) E A(0o) 0

E01(1, 3) E1 (1,3) Eo2(1, 3) EA12(1, 3)

Eo1(1, 2) E11(1, 2) Eo2(1, 2) Eo2(1, 2)

E$1(2, 3) E1 (2,3) Eo2(2, 3) Ei2(2, 3)

i i 0

ER.A.Y
EAi2 E02

Figure 34

The analog of Theorem 1.9.8 now reads

E11 E
OAl E..A.Y

Theorem 1.9.11. Get a = (a1, a2, a3) a 683, al < a2 < a3i let A be a Bravais
lattice, and let Y = {yl, Y2, y3} e P. Furthermore, let P` be an arbitrary
finite subset of Y + A, i.e.,

f = {y1 +x,11,..., Y1 +ANI1}U{Y2+A12,...>Y2+AN22}

U {Y3 + Y3 + 2N33} c Y + A (1.9.86)

and assume that

Eo,.n(0o) < Eot, Eg3 "(0) > E12, E"+n.r < 0. (1.9.87)
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Then

c(-Aa.n.r)n [F.°.n.Y, Eo"n(O0)]I = N
l,EA ]I=N2,6(-A.,n,Y)nLEA0 12

Io(-AQ,n.r)n [E2 A(0), E+n'r]) = N3,

counting multiplicities.

(1.9.88)

PROOF. Similar to that of Theorem 1.9.8.

Our last result concerning defects in ternary ordered alloys is the following
analog of Theorem 1.9.9.

Theorem 1.9.12. Let a = (a,, a2, a3) E P3, a, < x2 < 0(3, let A he a Bravais
lattice, and let Y = i y, , Y2' Y31 c t. Furthermore, let V be an arbitrary
subset of Y + A,

l£c Y+A (1.9.89)

and assume (1.9.87). Then

n(- 4, .) c [E°.n,r E .n(0)]. [E4,.n(9), E+n,Y] v [0, x). (1.9.90)

PROOF. Similar to that of Theorem 1.9.9.

Notes

Section 111.1.1

The presentation here is taken from Grossmann, Haegh-Krohn, and Mebkhout
[227] which contains the first existence theorem in the general case of infinitely
many centers.

Section 111.1.2
The first approximation theorem in terms of local scaled short-range Hamil-
tonians in the infinite center case appeared in Albeverio and Heegh-Krohn
[24]. They proved convergence in strong resolvent sense. This was later
improved by [251], and we follow the latter approach although here for
simplicity we only consider the case with a finite number of different potentials.
The general case where all the potentials are allowed to be different is treated
in [251] with additional assumptions on the potentials.

Section 111.1.3
The one-electron model of an infinitely extended regular structure, e.g., a
crystal, is one of the oldest models in quantum mechanics [290], [332], [391],
[493]. The model, leading to a one-body Schrodinger operator with a periodic
interaction, has been studied under the name of Floquet theory in mathe-
matics and Bloch theory in physics. See also the notes to Sects 1.4 and 1.8.
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Section III.1.4
The basic manipulations at the beginning of this section, due to [53], [54],
are taken from Reed and Simon ([391], Sect. XIII.16), see also [85], [160],
[443], [444]. The formula for the energy of the three-dimensional crystal with
point interactions was first derived heuristically by Goldberger and Seitz
in 1947 [216] (see also [479]), and was rediscovered by Grossmann, Heegh-
Krohn, and Mebkhout [227]. A recent treatment appeared in [279]. Prior
to [227] there had been some work on higher dimensional analogs of the
Kronig-Penney model, which led to solvable models with certain nonsepa-
rable interactions [467]. The basic theorems, Theorems 1.4.4 and 1.4.5, are
essentially taken from [227]. Theorem 1.4.1 and the consistency part of
Theorem 1.4.3 are due to [249], while (1.4.47) is contained in [227]. Theorem
1.4.6 was proved in [243]. The approximation of -A., AM in terms of local
short-range Hamiltonians H, AM first appeared in [251], see also [178], and
essentially we follow the former approach.

Section 111.1.5
The formula for the energy bands was first derived heuristically by Demkov
and Subramanian in 1970 [153], see also [88], [132], [151], [152], and later
proved rigorously by Grossmann, Heegh-Krohn, and Mebkhout [227] (see
also [281]). Here we essentially follow (227) while the approximation in terms
of local scaled short-range Hamiltonians is taken from [251]. In [152] the
problem is studied when the infinite straight polymer is replaced by a finite
but long chain.

Section 111.1.6
The model of an infinite monomolecular layer was first studied by Grossmann,
Hoegh-Krohn, and Mebkhout [227], from which its basic properties are
taken. A recent treatment appeared in [280]. Theorem 1.6 appears to be new.
The short-range expansion is taken from [251].

Section 111.1.7
The results in this section were announced in [50], [52], but the detailed proof
appears here for the first time. For general scattering theory off objects with
different left and right space asymptotics, e.g., half-crystals, we refer to [136].
For Bragg scattering in the context of neutron scattering we refer to [141],
[413].

Section 111.1.8
The discussion in the first part of the section is essentially taken from [391),
Ch. XIII. For the density of states for three-dimensional point interactions
we refer to [215]. The illustrations of the Fermi surface are all taken from
Hoegh-Krohn, Holden, Johannesen, and Wentzel-Larsen [242]. For a com-
prehensive discussion of Fermi surfaces we refer to [1261.
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Section 111.1.9
Theorem 1.9.1 is new, except for part (a) which is taken from Albeverio,
Hoegh-Krohn, and Mebkhout [31]. Their proof, however, is based on an
analog of the proof of Theorem 11.1.1.1, in which -A is replaced by - A.,A,

and which in turn is perturbed by a sum of point interactions located at Z.
Theorem 1.9.2, Corollary 1.9.3, and Theorem 1.9.4 appear to be new,

while Theorems 1.9.5-1.9.12 are all taken from Hoegh-Krohn, Holden, and
Martinelli [243]. We also refer to [72], [391], and [481] for general results
on impurity scattering.



CHAPTER 111.2

Infinitely Many 6-Interactions in
One Dimension

111.2.1 Basic Properties

In Sect. 11.2.1 we studied 6-interactions centered at a finite set Y =
{ y 1, ... , YN } a R. The purpose of this section is to study the case N - oo and
hence treat the corresponding model with infinitely many centers.

Let J c Z be an infinite index set and let Y = {yj e RI j e J} be a discrete
subset of R such that for some d > 0

inf lyj - yj'I = d>0, yj,yj,eY, j,j'eJ. (2.1.1)
I,)'eJ
j &j'

For notational convenience we assume that j e J implies j + 1 e J and
yj < yj+1. We also define Ij = [yj-1, yjl,j - 1, j e J, and (with ji f = infj.j(j))
Ij,., = (-oo, yj.] in the case where inf Y = yj. > -oo such that U j. jlj = R.

In analogy to Sect. 11.2.1, we introduce the minimal operator ii in L2(R)

d2
HY

dx2
-Q(IIY)_ {g a H2.2(R)Ig(yj)=0,yjaY,jeJ} (2.1.2)

and note that i4 is closed and nonnegative. Its adjoint operator reads

=
d2

HY dx2'
9(Hr) = H2,1(R) n H2.2(R - Y). (2.1.3)

The equation

liYii(k) = k2'/(k), q,(k) a 9'(Ii1*.), k2 e C - P, Im k > 0, (2.1.4)

253
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has the solutions

Oj(k, x) = eikl"-YJI, Imk > 0, yj a Y, jEJ, (2.1.5)

which span the deficiency subspace of Hr. As a consequence H). has deficiency
indices (oo, oo). By the discussion in Appendix C a particular class of self-
adjoint extensions of H. is of the type

d2
-ea.Y = axe

A., y) _ {g E H2.1(18) n H2.2(R - Y)I g'(yj+) - g'(yj-) = ajg(yj),j c- J),

a = {aj}jEJ, -oo < aj < oo, jEJ. (2.1.6)

By definition -A. describes 8-interactions of strength ccj centered at yj e Y,
j e J. The special case aj = 0, j e J, represents the kinetic energy operator - A
on H2.2(18), whereas a., = oo for some jo c- J leads to a Dirichlet boundary
condition at yja (i.e., g(yja+) = g(yja-) = 0).

We start with an approximation of -A,,y by means of finitely many
a-interactions.

Theorem 2.1.1. Let aj e R, j e J, and assume (2.1.1). Let M, N e N,
YM. N C Y, aM. N c a, where

YM.N = {yj a YI -M 5 j < N), aM.N = {aj}j -M. (2.1.7)

Then

where

2-1 S
0

2-1k) M.1V-ao(-AE.r - k) ,

Imk > 0, k2 a

pb = {z e CIz E p(-ASM N.YM.N) for M, N ;-> N0(z), N0(z) a N and

3C: II(-AQM.N.YM.N - z)-111 :5 C for M, N Z No(z)}. (2.1.9)

PROOF. Let

E-9(-A,.y)Isupp(f)compact}. (2.1.10)

Then 0o is a core of -A., .. For a proof of this fact let f e 2(- A,, .) and truncate
f by introducing

fN=#Nf, NeN, (2.1.11)

where

ONECo(R), 0<ON<1,

ON(x) =

Y-N+l + Y-N d YN + YN-1
X e

2 + 4' 2 4]'
(2.1.12)

d dx5y-N+4or xZyN-4'

II'YNIIao + II0NIIav 5 COnSt.
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Then IN f and
// y /-Aa.YfN = N(-Aa,YJ) - 2Y'Nf - 1 J H -A.,yf

H

by dominated convergence and the fact that f e L2(R). Next, let go a 20. Then

go a .9(-Aaw N N sufficiently large and

-Aa.rgo (2.1.14)

completes the proof using Theorem VIII.1.5 of [283].

By Theorem VIII.5.1 of [283] the above result implies

Theorem 2.1.2. Let a; a R, j e J, and assume (2.1.1). Let !Q c R be any open
set such that a(- Aa, r) c Q. Then the spectrum of - AaM.N.1

M.N
is asymptoti-

cally concentrated on 0, i.e.,

M N- co
1, (2.1.15)

P'aw.N rM.N(a)
s

where P
N rw

N() denotes the spectral projection associated with
- Aaw N, rM N Furthermore,

P b)) M.N-ao P4.r((a, b)), a, b ll i, (-Aa,Y), (2.1.16)

with P_s, r
Clearly, norm resolvent convergence cannot hold in (2.1.8) since, in

general, -A., r has gaps in its essential spectrum (cf., e.g., Sect. 2.3) whereas
or ..(- A...N, 1'M,) = [0, co) for all M, N e N.

Next we describe the resolvent of -A.,r
Theorem 2.1.3. Let a j e - {0}, j e J, and assume (2.1.1). Then

(2.1.13)

(-Aa,r - k2)-1 = Gk + E [ra,r(k)]Jjl(Gk(' - Yy'), ')Gk(' - Yj),
j,j,eJ

k2ap(-Aa,r), ImkZ0, (2.1.17)
where

tas(k) = [-c 1aij' - Gk(Yj - Yj')]j.. Im k > 0, (2.1.18)

is a closed operator in I2(Y) with

[I'a,r(k)]-1 a _q(12( Y)), k2 a p(-Aa,r), Im k > 0large enough. (2.1.19)

PROOF. We first prove that

f(k) _ {(Gk(' - Yj),f)LE a 12(Y), Im k > 0,

g(k) = {(g, Gk(' - Yj))}je a 12(Y), Im k > 0,

are analytic in k2 e C - [0, oo). We estimate

If(k)jI = I E
J .

dx(i/2k)e'klx-rif(x)

aE

(2.1.20)

1/2

< (21ki)-1 dx e -2 tmkIx-r l aN, (2.1.21)
NeJm t.
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where
1/2

an = dxl f(x)12) , n E J, a = {an}nej E 12(J) (2.1.22)(f,.

and 1n has been defined after (2.1.1). Introducing
/ k/2

M(k) = {l M(k)jn}j M(k)j. = I dx e-2'mklx',,I , Im k > 0, (2.1.23)1.eJ, l r
we want to prove that M(k) E A12(J)). By explicit integration we get

1/2 a-Im klv.,-r,l
dx e-2lmklx-r, < (2 Im k)-1/2

nef f n*J

(2 Im k)-1n2 Y e-lmkNd,
mez

and hence

n<j,
nZj+1,

(2.1.24)

ln
IIM(k)IIH = (sup E IM(k)Jnll(sup E

IM(k),,Illn

jeJ neJ J n.J JEJ

5 (2 Im k)-'n C < co, (2.1.25)

where II' IIH denotes the Holmgren bound. Consequently, M(k) is bounded in 12(J)
and thus f(k) e 12(Y). By the same estimates one proves analyticity of f(k) in
k 2 6 C - [0, oo), Im k > 0. Next let

gk = [Gk(yy - Im k > 0. (2.1.26)

Then gk 6.4(12(y)) since

119k11H = sup E IGk(yj - (2IkI)-' sup E e-lmkb,-r,.l

J. JeJ re!
< (2IkI)-' sup Y e-1mkjj-j'Id = (2IkI)-'C < co, Im k > 0. 2.1.27)

JeJ J'ez

Thus 119k11 = O(IIm kl-') as Im k - co and re,y(k) is closed in 12(Y) (self-adjoint for
k = iK, K > 0). Decomposing gk into its diagonal part gk = (i/2k)1 and off-diagonal
part g°D = 9k - g°, the proof of (2.1.27) shows that

119°DIIH _< (2IkI)-'e 1mkdC", Im k > 0. (2.1.28)

But the matrix

{[-al' -(i/2k)]bjl'}
Im k > 0, k # - iaJ/2, j e J, (2.1.29)

is certainly bounded in 12(Y) implying [r.,r(k)]-' e. (12(Y)) for Im k > 0 large
enough, k # -iaJ/2, j e J. Moreover, gk, Im k > 0, is analytic in k2 e C - [0, 00)
and hence [1, r(k)]-' is analytic in k2 e C - [0, co) for Im k > 0 large enough,
k # -iaJ/2, j E.J. Next we define in 12(Y)

IN(k) = {fN(k)j}JeJ, 9N(k) = {9N(k)J}J.J,

fN(k)J =
1(k)J, ljl S N,

9N(k)J =
J9(k)j, I jl <- N,

10, IjIZN+1, 0, III - N+1,
jeJ, NEN, (2.1.30)
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and

ra.r.N(k) = [ra.Y.N(k)J! ]i.PEJ

ra.r.N(k)u =
I.ll, Ij'I 5 N,

110,
III - N+1 orljizN+l;j,j'eJ'NeN. (2.1.31)

Obviously, fN(k) f(k), gN(k) g(k), Im k > 0, in 12(Y). Take k = iK, K > 0.
Then f,,r.N(iK), N 'A, is bounded and self-adjoint with

IIra.Y.N(UK)II s sup laj'I +(2K)-'C' (2.1.32)
IASN

and ra,y(iK) is self-adjoint. Let a = {aj}j.J a -9(r r(iK)). Then limN- II[ra.Y.N(iK) -
ra.r(iK)]all = 0 since by splitting

ra.Y.N(iK) = raY.N(ilc) + IOY.N(iic) and ra.Y(iK) = ray(1K) + r.0 °(!K)

into its diagonal and off-diagonal parts, respectively, the diagonal parts obviously
fulfill limN- II(r°r.N(iK) - r°Y(iK)]all = 0 and the off-diagonal terms are uni-
formly bounded and

2

II[r D,.N(iK) - r°D(iK)]bll2 = rOD(iK)jJ bf
Ulj f+I

12 -y
IJE!

U+1

J'ej

b = {bJ}JE J e l2(Y),

since r,r(iK)j,. = O,j #j',j,j' a J, and hence

L
Ir'y(iK)JJ'Ilbj I,2 < 00.

jeJ

By Theorem VIII.1.5 in [283] we infer

(2.1.33)

[ra.Y.N(iK)]-' N [ra.Y(iK)] for K > 0 large enough, K # -a;/2, j e I.
(2.1.34)

Finally, we use (cf. (11.2.1.6))

(f k2)-'9) = (f, Gkg) + (fx(k), [ra.r.N(k)]-'9N(k)),

Im k > 0, k2 a p(-AaN.N,rN.N), (2.1.35)

where (,) in the second term on the right-hand side of (2.1.35) denotes the scalar
product in 12(Y). Taking N -+ oo in (2.1.35), observing Theorem 2.1.1, (2.1.34), we
obtain (2.1.17) in the weak sense for k = iK, K > 0, large enough, K # -aj/2, j e J.
Using {Gk(- - yJ)}Ja J e 12(Y), Im k > 0, we infer (2.1.17) for k = W, K > 0, large
enough, K # - iaj/2, j e J. Analytic continuation with respect to k2 e p(- Aa, y) then
completes the proof.

Additional properties of -A,,, . are described in

Theorem 2.1.4. Let aj a 08 - (0), j e J, and assume (2.1.1). Then the domain
2(- A., .) consists of all elements of the type

Yi(x) _ A(x) + E [ra.Y(k)]jj Ok(yj.)Gk(x - yj), (2.1.36)
j.j e J
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where k e -9(-A) = and k2 E Im k >- 0. The decomposi-
tion (2.1.36) is unique and with 4 E 2(- A., r) of this form we obtain

(-A&.r - k2) ' = (-A - k2)djk. (2.1.37)

Next let /i E -9(-A., .) and suppose that l/i = 0 in an open set U S R. Then
-Aa,y¢ = 0 in U.

PROOF. One can follow the corresponding proof of Theorem 1.1.2.

Finally, we describe an important one-to-one correspondence between
-A,, Yin L2(R) and a certain discrete operator in 12(Z). Let J = 7L and assume
without loss of generality that ±oo are accumulation points of Y implying
08 = U jc a 1; (otherwise, one could always take a, = 0 for all j < j;,,,). Then the
general solution of

(-A.,Y - k2)>Ji(k, x) = 0, Im k >- 0, x e Ij+1 = (y;, y;+1) (2.1.38)

is given by

4i(k, x) = 4i(k, yj) cos[k(x - yj)] + Vi'(k, yj+)k-' sin[k(x - yj)],

0,'(k, x) = -qi(k, yj)k sin[k(x - yj)] + Vi'(k, yj+) cos[k(x - yj)],
Im k Z 0, x e lj+ (2.1.39)

with

1(k, Yj+) = 1i(k, y;-), 41'(k, y;+) - ok'(k, yj-) = y;),

Introducing in C2

'P(k)= I ii(k,Y;)
' (k, Y;-)J

Tj(k)

Fcos[k(yj+, - y;)] + ajk-' sin[k(Y;+1 - y1)]
L-k sin[k(yy+, - y;)] + a; cos[k(yj+l - Y;)]

jEZ.
(2.1.40)

k-' sin[k(y;+1 - Y;)7
cos[k(Y;+1 - Y;)] J'

Imk>-0, (2.1.41)

one infers from (2.1.40) that

Tj(k)`Pj(k) = `Y;+,(k), Imk >- 0, j E Z. (2.1.42)

Next we introduce in C2

W(k)=[COS[k(YL,

- y;)]
0

-k-' sin[k(Y;+1 - y;)]
Imk>-0, jeZ,

(2.1.43)

(b;(k)
__C0(k,Y;)j

(k,
Y;-1Imk>_ 0, j E 7L, (2.1.44)
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and obtain

W_ 1(k)`I'j(k) = (Dj(k), Im k > 0, j e 7L, (2.1.45)

and

[W'-1(k)]-' = -(k/sin[k(yj - yj-1)])
k-1 sin[k(yj -Y;-1)] 0ll

-cos[k(yj - y;-1 )7 1J'
Im k - 0, k#nm(yj-yj-1)-', j,meZ. (2.1.46)

Defining

Mj(k)

= W (k)T (k)[W
-1(k)]-1

ajk-' sin [k(Y;+1 - Y;)] +
sin[k(yj+1 - yj-1)]
sin[k(y, - Y;-1)]

1

sin[k(Y;+1 - Y;)]
sin[k(y, - y;_1)]

1,

0

Imk>0, k0nm(yj-yj_1)-', j, me 7L, (2.1.47)

we get

M;(k)(D;(k) _ (DJ+1(k), Imk >- 0, k # nm(Y; - Y;-1)-', j, m e 7L, (2.1.48)

or equivalently

sin[k(yj - Y;-1)]Vl;+1(k) + sin[k(yj+1 - Y;)]v;-1(k)

_ {ajk-' sin[k(Y;+1 - y;)] sin[k(y - Y;-1)] + sin[k(yj+l - Y;-1)1}41;(k),

Im k > 0, k o nm(yj - yjj, m e Z, 1/ij(k) 4i(k, y,),

Imk - 0, je7L. (2.1.49)

Of course, (2.1.48) and (2.1.49) could have been derived directly (as we will do
in Ch. 3) without introducing the second type of transfer matrices 7 (k), j e Z.

We summarize this calculation in

Theorem 2.1.5. Let aj a P. j e J, and assume (2.1.1). Then any solution
qi(k, x), k2 a P. Im k > 0, k # nm(yj - yj_1)-', j, m e Z, of (2.1.38) (given by
(2.1.39) and (2.1.40)) satisfies (2.1.49). Conversely, any solution of (2.1.49)
defines via

ji(k, x) = 1/ij(k) cos[k(x - yj)]

+ {0j+,(k) - O;(k) cos[k(Y;+1 - Y;)]}sin[k(yj+1
- Y;)]'

xelj+l, k2eR, ImkZ0, K96 nm(yj-y;_1)-', j,In eZ, (2.1.50)

a solution of (2.1.38) (with (2.1.39) and (2.1.40) being valid). In addition,
1/i(k) a L°(R) implies {1lij(k) = fi(k, yj))j.z a l"(Z) for p = oo or p = 2. More-
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over, exponential growth (resp. decay) of 0(k, x) (i.e., ele+dl"I < I'(k, x)I 5
c2e±al=I) implies that of and at the same rate (i.e., c'1e±61yjl :!5.:
I0j(k)l < c2e±alr,l). In the special case of a lattice structure of Y, i.e.,

yj+i - yj = a > 0, j e Z, the last two statements may be reversed, i.e.,
{4ij(k)}jEz E l'(Z) implies i/j(k) E LP(R) for p = oo or p = 2 and similarly for
the exponential growth (resp. decay) rate.

PROOF. It remains to prove the last statements. Let k2 a P. Im k -> 0, k #
nm(yj - y,_1)-', j, m e 77, and assume all solutions tli(k, x) and #;(k) to be real. If
J.i(k) a L'(P) and thus Vi"(k) E LP(R) we infer *'(k) a LP(R) ([283], p. 192) for all
1 S p S oo. Then {iljj(k) = I'(k, yj))jE7 a l'(Z) follows from

,,(k, yj) = iIi(k. x) cos[k(x - yj)] - ji'(k, x)k-' sin[k(x - y)], x E Ij+1, (2.1.51)

for p = oo and from

[u(k, yj)]2 + k-2[&i'(k, yj+)]2 = [O,(k, x)]2 + k-2[0'(k, x)]2, x E Ij+i, (2.1.52)

and (2.1.1) for p = 2. The assertions for the growth (resp. decay) rate are obtained
as follows. From the Schrodinger equation we see that "(k, x) obeys the same
inequalities as /i(k, x). The corresponding inequalities for k&'(k, x) now simply result
after integration with respect to x. Conversely, assume (*j(k)),E1 a P'(Z) for p = oo
or p = 2. The case p = oo directly results from (2.1.50) and the case p = 2 follows
from (2.1.50) and

[i(k, x)]2 + k-2[4,'(k, x)]2

_ [qij(k)]2 + sin-2[k(yj+1 - yj)] {bij+1(k) - qi,(k) cos[k(y,+1 - y,)])2, x e I,+1.
(2.1.53)

For later purposes we rewrite the basic formulas in the special case of a
periodic lattice Y where yj+1 - yj = a > 0, yj e Y, j e Z. Then the matrix Mj(k)
becomes

Mj(k) =
rajk-' sin(ka) + 2 cos(ka) -1],
LL

1 0

and (2.1.49) simply reads

Imk>-0, (2.1.54)

fj+1(k) + tyj_1(k) = {ak-' sin(ka) + 2 cos(ka)}kij(k),

Im k >- 0, k s nm/a, j, m e Z. (2.1.55)

We emphasize that (2.1.38)-(2.1.40) lead directly to (2.1.55) implying the
irrelevance of the exceptional points km = nm/a, in e Z, in this case. However,
when starting from (2.1.55), to get back (2.1.38)-(2.1.40) one still encounters a
8-term in (2.1.50) at the exceptional values km = nm/a, m e Z. It then depends
on the sequence a = (aj)jc7 whether ii(k, x) is well defined at such values
km and hence whether there is a one-to-one correspondence between solu-
tions of (2.1.38) (fulfilling (2.1.39) and (2.1.40)) and (2.1.55). In any case these
exceptional points are irrelevant for determining the continuous spectrum of
-A.,y



111.2.2 Approximations by Means of Local Scaled Short-Range Interactions 261

111.2.2 Approximations by Means of Local Scaled
Short-Range Interactions

The purpose of this section is to extend the approximation result of Sect. 11.2.2
to the case of infinitely many centers. In addition to assumption (2.1.1) we
introduce real-valued potentials V e L'(18), j e J, and We L1(R) such that
almost everywhere

I VI 5 W, j e J. (2.2.1)

Define the quadratic forms in L2(R)

q,.vf(f, g) = AM)
Jut

dx e-2Vj((x - y;)/c)./(x)g(x), 2(q.,,) = H2.1(R),

0<e<so, j aJ, (2.2.2)

and

q.""(f, g) = ajf(yj)g(yj),

with

= H2'' (1l), yj a Y, j e J, (2.2.3)

aj a R, I ajI S Co < oo, j e J, (2.2.4)

and Aj e C°((0, so)) real-valued for some so > 0 with

Aj(e).= eaj + o(e), j e J. (2.2.5)

By Lemma C.5
//Q.,y(f, g) = (f', g') + F la,,y,(f,g), .9(Q., 1) = 112,1(R),

jeJ

0<e<so, Y={yjIjeJ}, (2.2.6)

and

Q.,Y(f, g) = (f', g') + Y_ ga,,v,(f,9), -9(Q..Y) = H2-'(R),
jeJ

0C =(a1,a2,...), (2.2.7)

are closed forms in L2(R) bounded from below. The unique self-adjoint and
semibounded operator associated with Q, . is denoted by H6, . and, as shown
in Appendix C, the operator associated with Q.,r is precisely -A.,Y as defined
in (2.1.6).

Our main result then reads

Theorem 2.2.1. Assume (2.1.1), Vj, We L'(R) real-valued, I VjI 5 W,
0 < e < to, .l j(e) = s,;(0) + o(e) as e j O, j e J, and let H, y be defined asabove.
Then, as a 10, HE,Y converges to -A.,Y in norm resolvent sense, i.e., if
k2 e p(-A.,Y) then k2 a p(HE,Y) fore > 0 small enough and

n-lim (H,,y - k2)-1 = (-A,,.Y - k2)-', Y c R, (2.2.8)
10
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where

aj = 2(0)
Ja
I dx 1(x), j E J. (2.2.9)

PROOF. Let f, g E C, *(R) and

njECo(R)> 0 5nj51, n,(x)=
10,, IIx

x
-
-

yy1,1

I

5 Sz26',,

Then, fore small enough, j e J,

I q,,,,(f g) - q .,,,,(f, g)I

for some 0 < b < d/4.

(2.2.10)

y,+a

5 12;(0) + 0(1)1 dx C' I V((x - y,)/e)I I g(x) - (yj)9(yj)I
y,-a

+ 212(0) + o(1)I Of ll.llgll. J dx s-' IV((x - yj)le)I

:5C sup Ij(x)g(x) - g(yj)I + C'IIf II,IIgII, f dx W(x)
Ix-Y'1:5 a

y,+2a
5 C dx n,(x)[If'(x)I Ig(x)I + If(x)I Ig'(x)I]

y,-2a

+C'IIfII.llgll0 f dxW(x)
r0D, -a/olv(ak, E)

5 C(f
y'+2adxln(x)12)IIgN,

+
Of 11.11g,11]

\ y,-26

+ C'Ilfll,,llgll. f dx W(x)
(-co, -a/e)v(a/e,.,)

5 C" {S'n + J dx W(x)} Of II+1 II9II+1> (2.2.11)

where

Ilhll+1 = Ilh'112 + 11h112, h e H2 1(R), (2.2.12)

and ([389], p. 168)

Ilhlla, 5 cllhll+li h E (2.2.13)

have been used. Since CIO(R) is a form core for -A on H2.2(R) and q,,, , q, are
infinitesimally bounded with respect to the kinetic energy form on j41.1 (R), the

estimate (2.2.11) extends to all f, g e H2-1(R). Next, let,, *1 E and

supp(q)), supp(*,) [d1- 2, dl + YJ, I E Z.

Choose a dlj,1, E Z, which is closest to yj e Y. Then for l = l j, l j ± 1,1j ± 2, the above
method shows that for any v > 0 there exists an 0 < e1 < eo such that for all
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(D,) - vII#,II+, I = lj, Ij ± 1, Ij ± 2. (2.2.14)

For 1EZ-{l,1j±1,1j±2} we get from 0,(yj)=If,(yj)=O,jeJ,

19,.y,(o,, 1) - 9a,.y,(4, G,)I =19t.y,(0,, *JI
(d1+(3d/2)-y,),e

512(0) + 0(1)1110,11.114,IL0 dx W(x)

< c dx W(x)110,II+,
II0,II+11

(d1-(3d12)-y,)/.

IEZ - {lj,I± 1,Ij±2). (2.2.15)

From (2.2.14) and

or(d,+(3d/2)-y,)/e f-1/2e

f"/,c
I dx W(x) < 3

I

dx W(x) + 3 dx W(x)
(d,-(3d/2)-y.)/e o0

(2.2.16)

we actually infer that for any v > 0 there exists an 0 < s, < eo such that for
0<e<e,,jeJ,

Iq,,y,(0, d/) - 4a,.y,(O,'I')l < a,11#11.1 11011+1, j e J, (2.2.17)

for all e H2.1(l ), supp(q), supp(o) c [dl - (3d/2), dl + (3d/2)] with

E a,< v. (2.2.18)
IEZ

Thus Lemma C.5 applies and yields for all v > 0

Qa.r(f.f)I <- V11f 11+1, fe (2.2.19)

implying

IQ,.r(f,9)-Q1.r(fg)I :5 v11f11+111911+,, f,9EH2.1(R). (2.2.20)

But (2.2.20) implies norm resolvent convergence of H,,y to -AQ,r by Theorem
VIII.25c of [388].

We observe again that if Ay'0(0) I R dx I j0(x) = 0 for some jo e J, the b-
interaction at yj0 disappears in - A,, t.. In particular, Ht, t. converges to -A as
sj0if and Only if .lj(0)JRdx V(x)=0forallj6J.

Obviously, our proof of Theorem 2.2.1 represents an alternative to the
corresponding proofs of Theorems 1.3.2.3 and 11.2.2.2.

111.2.3 Periodic 6-Interactions

In this section we treat the case of periodic 6-interactions on the real line. We
start with the simplest case of the Kronig-Penney model and subsequently
discuss generalizations of it.

In the Kronig-Penney model the Bravais lattice A simply reads

A = {naln a Z}, a > 0, (2.3.1)
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such that the Wigner-Seitz cell r is given by

r = [ - a/2, a/2). (2.3.2)

The dual lattice r is then defined by

r = {nbin e l}, b = 2n/a, (2.3.3)

and the Brillouin zone A equals

A = [ - b/2, b/2). (2.3.4)

Then the Hilbert space L2(I8) can be decomposed as

where

or as

®r
L2(R) = ql-'L2(A; 12(r)) _'-'

J
dO 12(r), (2.3.5)

t-bn.bn)

*: L2(I8) -. L2(A;12(r)),

(91f)(0,n)=f(9+nb), 9e[-b/2,b/2), neZ, feL2(R), (2.3.6)

L2(R) ='1-'L2(A, b-' do; L2([-a/2, a/2)))

_='1-'
® Lz([_a/2, a/2)), (2.3.7)

t-b/2.b/2)

611:.f'(R) - L2(A, b-' de; L2([-a/2, a/2))),
00

(42f)(0, v) = Y f(v + na),
n- -oD

v c-[ -a/2, a/2), 0 E [- b/2, b/2), f e .9'(R),

61'1-': L2(A, b-' d9; L2([-a/2, a/2))) -> L2(R), (2.3.8)

b/2
(q~1 ig)(v + na) = b-' d9 a 'nea9(e, v),

-b/2

geL2(A,b-'dg;L2([-a/2, a/2))), ve[-a/2, a/2), neZ,
where the closure of 4 is denoted by the same symbol.

Next we unitarily implement translations x - x + a in L2(R), i.e., we
introduce the operator

(Ta f)(x) = f(x + a), f e L2(I8), (2.3.9)

implying

T. = exp[ia
\l

i-i xl (i-Idx) = (2.3.10)

Obviously, T. is diagonal with respect to the decomposition (2.3.7), i.e.,

d6 e_teacTa11' =
bJ t-b/2.b/2)
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(Note that 0 is the so-called quasi momentum or Bloch's vector.) Now we are
in a position to study the Kronig-Penney Hamiltonian - Aa,A in L2(18) which
according to (2.1.6) is defined as

d2
-A«.n = -dx2,

-9(-A«.n) = {g a H2.'(R)n H2,2(R - A)Ig'(na+) - g'(na-)

=ag(na),neZ),
-oo < a 5 00. (2.3.12)

In addition, we introduce the family of self-adjoint operators in L2((-a/2, a/2))

d2

2(-Aa n(0)) _ {g(0) a H2.1((-a/2, a/2))n H2.2((_ a/2, a/2) - {0})I

g(0, -a/2+) = eieag(0, a/2-),

g'(0, -a/2+) = eieag'(0, a/2-), g'(0, 0+) - g'(0, 0-) = ag(0, 0)),

-oo < a 500, 0 e [-b/2, b/2), (2.3.13)

(self-adjointness of -Aa,A(0) immediately follows from the fact that the
boundary conditions in (2.3.13) are linearly independent and symmetric,
[158], Theorem XII.4.30). The spectrum of - Aa,n(0) (cf. Figure 37) is described
in

Theorem 2.3.1. Let -co < a < oo, 0 e [-b/2, b/2). Then the essential
spectrum of -Aa,A(0) is empty,

Qeg,(-A«,n(e)) _ 0 (2.3.14)

and thus the spectrum of -Aa,n(0) is purely discrete. In particular, its eigen-
values Emn(0), m e N (ordered in magnitude) are given by

E,;A(0) = [kM n(0)]2, m e N, (2.3.15)

where ka n(0), m e N, are the solutions of the Kronig-Penney relation

cos(Oa) = cos(ka) + (a/2k) sin(ka), Im k >- 0. (2.3.16)

For a e R - {0} the corresponding eigenfunctions read

gMn(0, v) = C

iBa -ikp,^(B)a -tk; "(B)v
m +e a e

1

e e

e e [ - b/2, b/2). (2.3.17)
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In addition, Em ^(0), a e R - {0}, 9 e [ - b/2, b/2), are nondegenerate and

0 < Ei ^(0) < Ei ^(-b/2) = n2/a2 < EZ,^(-b/2) < EZn(0) = 4n2/a2

< E3 ^(0) <E''(-b/2) = 9,r2/a2 < E2 ^(-b/2) < E4 ^(0) = 161r2/a2

< q^(0) < , a > 0, (2.3.18)

Ei ^(0) < E1>n(- b/2) < EZ"(-b/2) =rte/a2 < ^(0) < E3 n(0) = 4n2/a2

< E3,n(-b/2)< E4.^(- b/2) = 9X2/a2 < E"4 ^(0) < Eas ^(0) = 16n2/a2

< qA(-b/2) < ,
1<0 if -a > 4/a,

E'(0) < 0, E"(-b/2) = 0 if - a = 4/a, a< 0. (2.3.19)

>0 if -a < 4/a,

All nonconstant eigenvalues 0 e [-b/2, b/2), me N, are strictly
increasing in a e P.

For a = 0 the eigenvalues and eigenfunctions explicitly read

t 0 + [2(m - 1)n/a]}2, OE(-b/2,0), m e NI,
Emn(0) = [2(m - 1)X/a]2, E.n(-b/2) = [(2m - 1)n/a]2, m E N,

gm'+(0, v) = Ce'{±8+t2(m-1)a/a])v, 0 E (-b/2, 0), m e N,

v) = Ccos[2(m - 1)rrv/a], me N,
sin[2(m - 1)rty/a], m = 2, 3, ...,

v) = C
cos[(2m - 1),rv/a],

sin[(2m - 1)nv/a], me N,

(2.3.20)

(note that they are only degenerate for 0 = -b/2, m e N, and 0 = 0, m >- 2).
For a = oo the Dirichlet boundary condition at zero implies simple eigenvalues
(independent of 0)

EQ0.n = m2n2/a2e
M

v
v) = C sin(mrty/a)

1(-1)ma` O

-aSv/v

<
a</2 2, 0, me N. (2.3.21)

,

PROOF. Since a is finite, has a compact resolvent which proves (2.3.14).
The results (2.3.15)-(2.3.17) and (2.3.20), (2.3.21) follow from straightforward com-
putations such that it suffices to discuss the nondegeneracy statement and (2.3.18)
and (2.3.19). For 8 E (-b/2, 0) u (0, b/2) and a e R, Ea"; ^(8) is nondegenerate since if
Vi,(8) solves -Vi" = Eqi for some E e P and satisfies the boundary condition in
(2.3.13), then 02(-0) = 0 solves the same equation but different boundary
conditions with 0 replaced by - 0 (this is also connected with the fact that - A.. (0)
and -A..A(-0) are antiunitarily equivalent under complex conjugation). Since
there are at most two linearly independent solutions of - Vi" = Eqi, El. ;'(O) is simple.
The cases 0 = 0, - b/2 are more involved. Thus we consider solutions of

± 1 = cos(ka) + (a/2k) sin(ka), Im k 0. (2.3.22)
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We start with a>0:Letk=ix,/c2- 0. Then

± 1 = (a/2u) sinh(xa) (2.3.23)

has obviously no solutions implying that all solutions k of (2.3.22) obey k2 > 0. But
for k > 0 solutions of (2.3.22) are equivalent to solutions of

sin(ka/2) = 0 or cot(ka/2) = 2k/a for 8 = 0,
(2.3.24)

sin[(ka + a)/2] = 0 or cot[(ka + i)/2] = 2k/a for 0 = -b/2,

which now are simple to realize graphically (cf. Figure 35(a)) since cot(ka/2)
(resp. cot[(ka + n)/2]) decreases monotonically from +oo to 0 for k in the

(a) a>0 (b) al < -4/a, -4/a < a2 < 0

(c) a < -4/a (d) -4/a < a < 0

Figure 35
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intervals (mn/a, (m + 1)n/a) (resp. ((m + 1)n/a, (m + 2)n/a)), m = 0, 2, 4, .... Thus
cot(ka/2) = 2k/a has precisely one solution in each interval (mn/a, (m + 1)n/a),
m = 0, 2, 4, ..., and mn/a, (m/2)n/a, m = 2, 4, ..., are solutions of sin(ka/2) = 0.
Applying the same argument to the second line in eq. (2.3.24) we obtain (2.3.18). For
a < 0 we again take k = iK, K > 0, and note that (2.3.23) has solutions K if and only
if

coth(Ka/2) = 2K/jal for 0 = 0,

(Ian/2K) tanh(Ka/2) = 1 for 8 = -b/2,
(2.3.25)

has solutions. Since coth(Ka/2) strictly decreases from +oo to + 1 if K varies in (0, oo),
the equation for 8 = 0 has precisely one solution for all a < 0 (cf. Figure 35(b)). On
the other hand, since tanh(Ka/2) is monotonically increasing from 0 to + 1 for
K E [0, oc), the equation for 0 = -b/2 has precisely one solution if and only if

fiat>-4/a, a<0. (2.3.26)

The rest of (2.3.19) now follows from (2.3.24) as described earlier (cf. Figure 35(c), (d)).
Simplicity of the eigenvalues for 8 = 0, -b/2 follows from the calculation leading
to (2.3.17). The monotonicity statement after (2.3.19) immediately follows from
(2.3.16) and the fact that fork Z 0, sin(ka) has constant sign whenever the right-hand
side of (2.3.16) is strictly decreasing from + I to - I or strictly increasing from -1
to +1.

(a) a=0 (b) a=20

(c) a = -16

Figure 36 F(E) = cos(JE) + (a/2v) sin(JE), Im JE 2 0.
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In Figure 36 the right-hand side of the Kronig-Penney relation (2.3.16) is
plotted as a function of E = k2 (a = 1), i.e., F(E) = cos(f) + ((x/2 f)
sin(f ). Whenever F(E) a [-1, 1] for some E we can find a 8 e A such that
the Kronig-Penney relation F(E) = cos(O) is satisfied, and we observe the
familar band structure with infinitely many gaps. For a plot of a > 0,
cf. Figures 37 and 38.

nz(9)

-n it
9 0

-n n -n n

(a) a=0 (b) a = 2.8 (c) a = -2.8

Figure 37 The eigenvalues E'.Z(0) = m = 1, ..., 4, of -Aa,Z(9) as a
function of 8, - n S 0 < n.

E E E

0

(a) a=0 (b) a = 2.8 (c) a= -2.8

Figure 38 The energy E = k2 as a function of 0 Z 0.
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Since -A,,A commutes with translations implemented by T. we obtain

Theorem 2.3.2. Let -oo < a < oo and A = aZ, a > 0. Then

f/1-A,,A]'t-i =
® d9L-&.A(0)].

(2.3.27)
fl-b/2

,

b/2) b

PROOF. Let gM; A(8, v), m e N, be the eigenvectors of -A,,A(O) (cf. Theorem 2.3.1)
and let

_016.A(8) = [9: "(81+ m e N] (2.3.28)

be the linear span of all eigenvectors of -A",A(8). Then is a core for - Aa,A(8).
Next we note that (suppressing the a, A dependence of g for notational convenience)

b/2

(*-'9°.)(na+) = b-' d8 e-1`9".(8, 0+)
J -b/2

b/2

= b-1 dO e-'"°°9".(8, 0-) _ (` -'9°)(na-),
J-b/2

neZ, meN, (2.3.29)
and by dominated convergence

b/2

(`'-'9".Y(na+) = b-1 d8 e-/.reag,,(8, 0+)
J -b/2

b/2

= b-' d8 e-' [g.(0, 0-) + agA,(8, 0)]
J -b/2

= (`-'9".)'(na-) + a('-'g.)(na), neZ, m e N. (2.3.30)

Thus 'l-'g,", m c- N, fulfill the boundary conditions in £(-A&,A). Using dominated
convergence once again one infers

b/2

-A,.A` -'9".)(v + na) = b-' d8 v))
J -b/2

b/2

= b-i d8 a '1-A,.A(8)9°.(8)](v)
J -b/2

b/2

= b-' d8 e-'"eaE°"i"(8)9".(8, v),
J -b/2

neZ, meN, ve[-a/2,a/2), (2.3.31)

and thus

411-Aa.A]° -'9".)(e1 v) = v) = [-1&a.A(8)9m(8)](v)1

neZ, meN, vE[-a/2, a/2). (2.3.32)

Since is a core for - A,,A(8) the proof is finished.
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E

'a

Figure 39 The band spectrum of -A4,Z as a function of at (cf. also Figures 37 and 38)

The spectrum of -A4,A (cf. Figure 39) is described in

Theorem 2.3.3. Let a e R and A = aZ, a > 0. Then -AA,A has a purely
absolutely continuous spectrum

0
Q(-A Q (-A ) = U (aaA ba.nl,A < b A S 4,A m e N,

m=1

Qs.(-Aa.A) = 01
a,(-A,.A) = 0, (2.3.33)

where for a > 0

1Ea
a1

"(0), m odd,aA > 0, a as.A- m-
m even,

ba.A = f m2n2/a2, m odd,
m lEaai"(0) = m2n2/a2, m even,

and for a < 0

a /' > (m - 1)2n2/a2,

(2.3.34)

m e N,

<0, Joel > 4/a,

ai,n = Ei.n(0) < 0, biA = Ei'^(-b/2) =0, Joel = 4/a,

>0, lal < 4/a,

a A = IEaA(0) = (m - 1)2n2/a2,
as,

EamA(-b/2) = (m - 1)2n2/a2,

ba,A =
IE.I;"(-b/2), M odd,

Ea.;"(0), m even,

in odd,
m even,

m=2,3,4,...,
(2.3.35)

bh'A < m27t2/a2, m e N,



272 111.2 Infinitely Many b-Interactions in One Dimension

with E' ;'(0) the eigenvalues of - AQ,A(9) described in Theorem 2.3.1. As
m -+ oo, the length of the mth gap a ; - b." resp. the width of the mth
band an" asymptotically fulfills

am ; _ bm," = 21aIa-' + O(m-'),
(2.3.36)sA_ at, 2 x_ x x ,b, a, °.0 2mn a- [2IaIa + n ]a- + O(m- ), a e R.

For a e R - {0), -A.,, has infinitely many gaps in its spectrum (since E° ^(0),
E N, are simple, all possible gaps in a(- Aa,A) occur). For

a = 0, -A0,A equals the kinetic energy operator -A on H' .2 (R), and due to
the degeneracy of m >- 2, m e N, all gaps close, i.e.,

a gs(-A0,A) = aec(-A0,A) = [0, oo)- (2.3.37)

For a = oo, -A,,,A equals the Dirichlet Laplacian on R - A and hence
reduces to an infinite direct sum of Dirichlet Laplacians on (ma, (m + 1)a),
m e Z. As a consequence its spectrum is pure point with each eigenvalue of
infinite multiplicity

aj-A.,A) = 0,
aa..(-A.,A) = aP(-A,,,A) = (m2 n2/a2Im a N).

(2.3.38)

Furthermore, we note a strict monotonicity of a(-Aa,A) with respect to
a(being a consequence of the monotonicity of p'; ^(0), b/2), m e N, with
respect to a e R as mentioned in Theorem 2.3.1)

a(-AQ,A) c a(-AQ n), 0:9 a' < a,
(2.3.39)

(a(-A,,A)n[0,00)) (a(-AQ,,A)n10,00)), a'<a50.
The band edges am ^, b, ", m e N, are continuous with respect to a e R.

PROOF. Let a e R. In order to prove the absence of eigenvalues we note that the
solutions ka; "(B) of (2.3.16) are certainly continuously differentiable with respect to
0. Taking the derivative with respect to 0 in (2.3.16) then yields

-a sin(9a) = -a[ka,"(9)]'sin[ka;"(O)a]

- (a/2) [ka; "(0)]-x [k "(0)]' sin[ka; "(0)a]

+ (a/2) [ka; "(0)]-' [k "(0)]' cos[ka; ^(0)a], m e N. (2.3.40)

Assuming [ka; "(00)]' = 0 for some 00 e (-b/2, 0) then yields the contradiction
sin(00a) = 0. Hence ka;"(0) is strictly monotone increasing or decreasing as 0
varies in (- b/2, 0). Thus the set {0 e (- b/2, 0)IE°m"(9) = E0), E0 e R, has vanishing
Lebesgue measure implying (2.3.33) by Theorem XIII.85 of [391]. Absolute conti-
nuity of the spectrum follows from [85], Lemmas 10.12-10.1 S. The general structure
of the spectrum in (2.3.33)-(2.3.36) now follows from Theorems 2.3.1 and 2.3.2 and
the theory of direct integral decompositions (cf., e.g., [391], Ch. XIII. 16). The result
(2.3.38) for a = co is a direct consequence of (2.3.21).

The asymptotic relation (2.3.36) is obtained as follows. Let, e.g., a > 0 and
tan [w(k)] = a/2k, k > 0. Then the band edges are obtained from (2.3.22) by solving

(-1)' cos[co(k)] = cos[ka - w(k)], k > 0. (2.3.41)
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The solutions k > 0 (ordered in magnitude) from n >- 2 on are given by

k2ma = m7t, k2,.+1a = mn + 2w(k2ni), m e N, (2.3.42)

such that the mth gap reads

(bm A, a*A _ (m2 n2/a2, (mn + 2(o(k2m+i ))2/a2). (2.3.43)

Since

mn < k2rn+1a = mn + 2w(k2m) < (m + 1)n (2.3.44)

and

w(k) = arctan(a/2k)k=(a/2k) + O(k-3) (2.3.45)

one infers (2.3.36). Analogously for a < 0.

Given the above result it is simple to compute the density of states of - Aa, A

explicitly. In fact, from (2.3.16) we infer

Corollary 2.3.4. Let a e P and A = aZ, a > 0. Then the density of states
dpa,A/dE of -A.,A at a point E = k2 with E,;A(9) = E, m e N, is given by

I d9 _ I Isin(ka)I ka cot(ka) - 1
dE 2nk dk 2n(kI Isin(9a)I 1 - a 2ak2 I I

Rek>0, Imkz0, k2ed(-Aa,A), me N, (2.3.46)

where 0 = 9(k) satisfies the Kronig-Penney relation (2.3.16). (Here A denotes
the interior of a set A c R.) Furthermore, O(IE - EmI-''2) near
the band edges Ea {a."-", b,;'A }m N. As a - 0, converges pointwise
to the density of states associated with the kinetic energy operator -A on
H2.2(R), viz.

aA OA
ddE o dp- = (2ak)', k > 0, E = k2 a d(-Aao.A). (2.3.47)

PROOF. Follows from (2.3.16) since

0(k, a) _ (-1)" a' arccos [cos(ka) + (a/2k) sin(ka)] +
((m - 1)n/a. m odd,

1ima/a, m even,

k2a(ate^,b, A), RekZ0, Imk-0, me N, (2.3.48)

where denotes the principle value.

Bloch waves associated with -A.,A are derived in Sect. 2.6.
The reader will observe that in contrast to three dimensions (cf. Sect. 1.4)

where we gave the whole presentation in p-space, the analysis in one dimen-
sion is done completely in x-space. For completeness we will now indicate
how one could employ the p-space analysis of Sect. 1.4 in one dimension also.
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Consider first the operator in 12(r)

(R"(0)g)(y) = (y + 0)2g(y) + a-'A'O(X°,(. + 8), g)X°,(Y + 0), y c- r, w > 0,

g e PY(Rw(8)) _ {g E
i2(r)

Z (y + 0)41g(y)I2 < oo 8 e A, (2.3.49)
It y e r J)

where

X°,(P) =
{01, 1PI :5
, IPI > w,

(2.3.50)

which is the analog of (1.4.30) in one dimension with N = 1, y, = 0. By Lemma
B.5 the resolvent of R°'(O) reads

(R'0(0) - k2)-' = Gk(0) - Cµ`" + (X.(- + 0), Gk(8)X.(' +
0))J-

-(Gk(0)Xw(- + 0), -)Gk(0)X°,(. + 0), J (2.3.51)

where

(Gk(0)g)(y) = ((y + 0)2 - k2)-1g(y),

k2 1r+012, Imk-0, ge12(r), 0eX, yEr. (2.3.52)

The subtle point in the three-dimensional case was the computation of the
limit of the factor in front of the rank-one part in (2.3.51) as co -+ oo. In one
dimension this term can easily be computed, viz. ([221], p. 23)

(X.(- + 0), Gk(0)X°,(- + 0))

1 1

yt + 0)2 - k2 m +°° yL (y + e)2 - k2
17+01 5'.W

a sin(ka)
(2.3.53)

2k[cos(ka) - cos(Oa)]'

and hence there is no need to renormalize the coupling constant z'°, i.e., we
simply choose µ°' = a for all co. Thus

n- lim (R°'(0) - k2)-'

(-D&.n(-0) - k2)-t

cos(ka) - cos(Oa)
- Gk(0) + (a/a)cos(Oa)

- cos(ka) - (a/2k) sin(ka)(Fk(0)'

k2Ep(-A..n(-0)), Imk>0, 0e A, -oo <a5oo, (2.3.54)

where

Fk(0)(y) = ((Y + 0)2 - k2)-', k2*1r+012, BEA, yer.
(2.3.55)

As a byproduct we obtain explicitly the resolvent of - &..A(0).
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Finally, we would like to illustrate the phenomenon of spectral concentration
in connection with transmission probabilities when approximating -A_.n,+rZ
by N-center Hamiltonians with 3-interactions of strength - x/2 centered at
N equally spaced points of mutual distance it. Figure 40(a)-(e) taken from
[397] clearly indicates the formation of gaps in the spectrum of the limiting
Hamiltonian -A_,rI2,RZ associated with vanishing transmission probabilities
(cf. also (127]).
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a,1(k)I2, k > 0, for a = -n/2, Y= {yl, ..., yN},Figure 40 Transmission probability I9'
I Yj - Yj I = x, j # j', j, j' = 1, ... , N [397]. Reprinted with the permission of the Society
for Industrial and Applied Mathematics from C. Rorres, "Transmission coefficients
and eigenvalues of a finite one-dimensional crystal," SIAM Journal on Applied Mathe-
matics, Volume 27, Number 2,1974. All rights reserved. Copyright 1974 by the Society
for Industrial and Applied Mathematics.
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So far we have discussed the standard approach to the Kronig-Penney
model based on direct integral decompositions of the type (2.3.27). For
subsequent generalizations of this model spectral results are much quicker
obtained by using the discrete operator (2.1.55) mentioned at the end of
Sect. 2.1. In particular, for the Kronig-Penney model, (2.1.55) reads

0j+1(k) + j-1(k) + µ(k))Gj(k) = E(k))Gj(k),

µ(k) _ -ak-' sin(ka), e(k) = 2 cos(ka), lm k > 0, j E Z. (2.3.56)

This difference equation is solved by the ansatz

4ij=e1 1°", Im020, jE7L, (2.3.57)

immediately implying the Kronig-Penney relation (2.3.16). We thus get
k2 E o(-Da,A), lm k > 0, k 0 nm/a, iff a 0 E [0, b/2] exists such that (2.3.16) is
fulfilled. Near the exceptional values km = am/a, m e 7L - {0}, the expression
(2.1.50) blows up since the energies n2m2/a2, m E 7L - {0}, lie at the band edges
(cf. (2.3.34) and (2.3.35)). At k = 0, formula (2.1.50) ceases to make sense for
a Z 0 and for a < -4/a.

Next we turn to a generalization describing ordered alloys. Let a(P) be a
sequence with period p e N, i.e.,

alp) = {09(p)
)j-Z9 ai+v = app), E Z. (2.3.58)

Then (2.1.55) becomes

ij+1(k) + )Gj-1(k) +µj(k)4,j(k) = E(k)oj(k),

pj(k) ajp)k-' sin(ka), t(k) = 2 cos(ka),

Im k > 0, k 0 nm/a, j, m e 7L, (2.3.59)

which can be written as
p-1

n Mj(k)(o(k) = (bp(k), Im k >- 0, k # nm/a, m e 7L, (2.3.60)
j=o

where Mj(k) and I (k) have been defined by (2.1.54) and (2.1.44), respectively.
Since det [Mj(k)] = 1, j E 7L, [;=o Mj(k) has eigenvalues 2,1 E C. By Bloch's
theorem or Floquet theory ([160], [334]) 1p(k) = eip°M'0(k) and the eigen-
values are given by e±`Bp" implying

p-1

2-' Tr d Mj(k) = cos(Opa), Im k >t 0, Im 0 2 0. (2.3.61)
j=o

The energy bands are of course obtained from (2.3.61) by checking for which
k, Im k > 0, k 0 nm/a, m e Z, 2-1 Tr[fl a Mj(k)] lies in the interval [-1, 1]
(or equivalently for which k a corresponding 0(k) e [0, n/pa] exists).

It turns out that the product
m-1

4Ym(k) _ [I Mj(k), me N, (2.3.62)
j=o
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can be recursively computed in terms of certain Sturm-Liouville polynomials
Pm(E,uo...... m),Qm(E,Pt) .... Am),m= - 1, 0, 1, 2, ... . In fact,

rrPm-1 -Q.-1
Pm-2 -Qm-2

where

P-1=1, Po=E -po,

Pm=(E-pm)Pm-1-Pm-2,

Q-1 = 0, Qo = 1,

Q. = (E - pm)Qm-1 - Qm-2,

m e IN, (2.3.63)

(2.3.64)

me N. (2.3.65)

In particular, the density of states of at a point E = k2 in
the mth band &°' ^(9) = E, m e N, of such models is given by the simple
expression

d 1

arccos { Tr 117 M;(k) ,
dE 2nk dk dk l L;=0

Re k > 0, Im k > 0, k2 E m e N. (2.3.66)

We discuss some special cases. First, let

p = 2, a121=(-1)1a, aeR, JEZ. (2.3.67)

Then (2.3.61) yields the spectral condition

cos2(6a) = cos2(ka) - (a/2k)2 sin2(ka), Im k >- 0, 0 E [-b/2, b/2). (2.3.68)

More generally, taking

p=2, ao)=a, ail)a,fieR, (2.3.69)

(2.3.61) implies for the spectrum

cos2(9a) = [cos(ka) + (a/2k) sin(ka)] [cos(ka) + (fl/2k) sin(ka)],

Im k 2t 0, 0 e[- b/2, b/2). (2.3.70)

Next we consider a case which models a certain superlattice structure

Yl,

Y2,

a(v) = a(n)

05jSp1-1,
P1 :5j:5 P1 + P2 - 1, Y1 96 Y2, Y1, Y2 a R, (2.3.71)

P=P1 +P2, P1,P2EN, jE7L.

Then the matrix Al,, splits into a product of two matrices Al,,, and Al,,2 which
are associated with the constant sequence yl and Y2 and with Chebyshev poly-
nomials, respectively. Abbreviating

2 cos 01= 2 cos(ka) + y,k-1 sin(ka), Im k Z 0, Im 0, 1 = 1, 2,
(2.3.72)
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one gets from (2.3.64) and (2.3.65) (cf. [1], p. 782)

tS

P(Pi) = Ql(P.) = U,n(cos01) =
sin[(m

in e No, 1= 1, 2, (2.3.73)

that

-#P = 'P2 Pt
sin [(P2 + 1)021 sin(p202) sin [(p, + 1)#11 sin(P1O1)

sin 02 sin 02 sin 0, sin 0,

sin(P202) sin[(P2-1)q2] sin(Pt4t) sin [(P, -1)#11
sin 02 sin 02 sin q, sin 0,

(2.3.74)

which implies by (2.3.61)

2 sin ¢, sin 02 cos(Opa) = sin[(p, + 1)g,] sin[(p2 + 1)¢2]

- 2 sin(p,01) sin(P202)

+ sin[(p, - I)011 sin[(P2 - 1)021,

0 E [ - b/2, b/2). (2.3.75)

Other examples, taking, e.g., different periods a, b, c, ..., a # b, a # c,
b # c,. .. ,and different strengths a, /J, y.... of the interactions are now obtained
in a straightforward manner from (2.1.55).

We conclude this series of examples with an interesting generalization of
the Saxon and Hutner conjecture concerning gaps in certain "substitutional
alloys" described by 6-interactions. The alloy is assumed to consist of N e N
different sorts of "atoms" represented by equally spaced 6-interactions (with
fixed distance a > 0 between each other) of strength yn a R, yn # yn., n # n', n,
n' = 1, ... , N, arranged in the following way: The primitive cell t of the model
consists of p, points supporting 6-interactions of strength yn,, followed by P2
points supporting 6-interactions of strength y,,2, up to pM points supporting
6-interactions of strength y,,,, M >- N, M E N. In particular, each yn, n =
1, ..., N, occurs at least once and a finite number of repetitions of blocks
with b-interactions of strength yn are allowed. The corresponding model
Hamiltonian is then denoted by - Aap,yp+n, ( Sect. 1.4) where

aP=(Yn,,...,Yn1,Yn2,...,Yn2,...,YnM) ...,Ynw),

P,-times P2-times PM-times

YneP, n#n', n,n'=l,...,N, p,EN,
f=1,...,M, M,NEN,

M

Y,={naJ05n<p-1}, AP=paZ={npalna7L}, p= p,. (2.3.76)
1=1

Our main result concerning gaps in the spectrum of then reads
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Theorem 2.3.5. Assume (2.3.76) and define -A.,,Yp+A, as described above.
Let

N

PN = (l p(-A,a,az)' a > 0, N e N, (2.3.77)
n=1

be the intersection of all spectral gaps of the Hamiltonians of the pure
Kronig-Penney crystals with potential strength ya e R and fixed Bravais
lattice a71, a > 0, modeled by -Aya,oz, n = 1, ..., N (cf. (2.3.12)). Then

PN C- P(-Aa,,Y,+A,) for all p e ICI, (2.3.78)

i.e., common spectral gaps of all pure crystals described by -A,,,,,az,
n= 1, ..., N remain spectral gaps for all alloys represented by -An,,Yp+Ap'
p e N, consisting of N sorts of atoms.

PROOF. According to our example discussed in (2.3.71)-(2.3.75) we get

r sin[(p, + 1) ,(k)]
p(k) =

1=1
v,(k) _ f sin[p,o1(k)]

where

-sin[p,0,(k)] I

-sin[(p, - sin[ol(k)]'
(2.3.79)

2 cos[#,(k)] = 2 cos(ka) + ya,k-1 sin(ka), lm k 0, Im g, 0, 1 1, ..., N,
(2.3.80)

and entries in .,Kt,(k) are the Chebyshev polynomials (2.3.73). Energies k2 e R in the
spectral gap of all pure crystal Hamiltonians -A,a,oz are now simply characterized
by

12 cos(ka) + yak-1 sin(ka)I > 2, Im k i? 0 for all n = 1, ..., N, (2.3.81)

or equivalently by

1i,(k) > 0, Im k z 0, 1= 1, ..., N. (2.3.82)
O`(k) = i4i,(k) + it,

Thus in order to prove (2.3.78) it suffices to show that (2.3.82) for some fixed k,
Im k >- 0, implies for all p e N

N

ITr[ ,(k)]I = ITrLf ,,(k)JI > 2. (2.3.83)

It suffices to delete the absolute values in (2.3.81) and (2.3.83) (i.e., to choose
m,(k) = i li,(k)). This case is now proved as follows. Let

Ca,+c,
b; -a, +, cj,' a,>Ibjlz0. c, z0, jeN, (2.3.84)

and

M(aj, b,) = M(a,, bj, 0), a, > IbjI Z 0, j e N. (2.3.85)
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In a first step we show that

N ll

Tr [I M(aj, bj)J z- 0, N e N. (2.3.86)VFor
this purpose we note that

M(al, bl)M(a2, b2) =
ra1a2 - 6162 a2b1 - a1b2 _ A B

(2.3.87)
Lazbi - a1b2 a1a2 - b1b2] B A]

with the properties

A >0,
(2.3.88)

A ±B =(a1 ±bi)(a2 +b2)> 0.

Next, we prove by induction that Aj > 0, Aj ± Bj > 0, j = 1, ..., N, implies

'
C,, > 0, CN ± DN > 0, N e N. (2.3.89)f,

[ABj
A1] - [DN

CN1

Obviously, (2.3.89) is valid for N = 1. Assuming (2.3.89) to be correct for N e N we
infer

Aj, -
[DN CN1 [BN+i AN+11

j N NJ N+1 N+1

= [CNAN+1 + DNBN+1 CNBN+1 + DNAN+11

CNBN+j + DNAN+1 CNAN+1 + DNBN+1

Since

CN+1 DN+1

DN+i CN+1

CN+j ± DN+j = (AN+1 ± BN+i)(CN ± DN) > 0,

CN+1 = [(CN+i + DN+1)127 + [(CN+1 - DN+1)12] > 0,

we get (2.3.89). Taking N even, N = 2n, n e N, we infer

(2.3.90)

(2.3.91)

N
Tr[[I M(ai, bj)J = Tr([M(al, bl)M(a2, 62)]'... [M(a2R-1, b2R-1)M(a2R, b2a)]}

j=1

=Tr{ir[[Bi Aj]}=Trj[D CR]J=2Ca>0, (2.3.92)

whereas for N odd, N = 2n + 1, n e N, we get

Tr [[I
N

M(aj,1) I = Tr
{[CDC

J
[b2+ -a2+i 11 _ 0. (2.3.93)

1 a aJ

2a+,

1 - 2a+1JJ

This proves (2.3.86). In the second step we now show that

Tr 1 M(aj, bj, cj)] z 2 [I cj, N e N. (2.3.94)
j=1 J-1
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Define

fN(C1, ..., CN) = Tr M(aj, bj, cj) IV , N e N, (2.3.95)
1 JJJ

then

afN
=fN-1(Cl,...,Cj-I.C)+I,---,CN)- (2.3.96)

Hence

fN(Cl>...>CN)=fN(O>C2>...,CN)+ dtaar (t, C2,...,CN)
O

= fN(O, CZ, ..., CN) +
rh

dtfN-1(C2, ..., CN)
J0

+C3fN-1(O,O,C4,...,CN)+... +CNIN-1(O,O,...,0). (2.3.97)

Iterating the above procedure, observing (2.3.86) (i.e., fN(O,..., 0) 2t 0 for all Ne N)
we obtain

N-1 CN O l N

fN(c1,...,cN)>_ n cjTr J=2fIci (2.3.98)
J=1 0 CN j=1

and hence (2.3.94). Finally, identifying

a, = sinh[p,I)i1(k)] cosh[*,(k)]/sinh[#,(k)],

b, = sinh[p,4,,(k)]/sinh[Ili,(k)],

c, = cosh[p,ii,(k)], I = 1, ..., N,

inequality (2.3.94) and (2.3.82) imply

Tr[.,Ki(k)] = Tr Lrn Ji 1(k)] > 2 `n cosh[p,/I(k)] > 2.

(2.3.99)

(2.3.100)

For an illustration of Theorem 2.3.5 in the diatomic case, see Figure 41
[404].

Using a simple limiting argument we can now extend Theorem 2.3.5 to an
arbitrary bounded sequence a (not necessarily periodic) as follows.

Theorem 2.3.6. Let a = (aj)j.z be a bounded sequence of real numbers,
A=aZ,a>O,andassume Uc08tobeopen. if

U c f P(-Aaj.n) then U S p(-A.,n). (2.3.101)
j

PROOF. Define a periodic sequence a4l"1 by setting

aj = aj, IJI 5 m, (2.3.102)
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and extending periodically. Then a4"1 has period 2m + I and we next prove that

-A",,,A' -AQ.A

in strong resolvent sense. For this purpose, let

0 e'9o(-A..A) = {9 a 2 (-A,,)IsuPp(9) compact}.

(2.3.103)

(2.3.104)

If m is large enough we have supp(o) c (-m, m). Thus Next set

4/_L =(-A",n±i)#=(-A",m,.A±i)qS. (2.3.105)

Then

i)-i _ (-A.,n ± i)-`]f±

(2.3.106)

Since -90(-A.,x) is a core for -A..A (cf the discussion following (2.1.10)) (2.3.103)
results (cf. [388], Theorem VII1.25). Since the spectrum cannot suddenly expand
under strong resolvent convergence ([388], Theorem VIII.24) we infer that any open
interval (c, d) s U with (c, d) n o(- 0 for all m e N in fact satisfies
(c, d) n o(-A.,x) = 0. Since by hypothesis (c, d) n o(-AQ,,x) = 0 for all j e Z,
Theorem 2.3.5 implies (c, d) n o(- 0 for all m e N which completes the
proof.

Ea2/ic2 T

ft atomic Diatonic Mawtomic
A A-D-A-9 B

lattice lattice lattice

Figure 41 Comparison of energy bands (cross-hatched regions) of a pure A crystal
-AA,A, a pure B crystal -AB,A and the diatomic ... ABAB ... crystal. From Saxon
and Hutner, 1949, [404].
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Next we derive the analog of Theorem 1.4.6 in the one-dimensional context.
Let

Y = {yl,..., yN} c i, f' = [-a/2, a/2) (2.3.107)

and denote by - Aa. Y+A the analog of (1.4.56), i.e.,

d2
rFA -dx2>

-9(-A.,Y+A) _ {gE H2,1(R)nH2.2(I - (Y + A))I

g'((y + na)+) - g'((yi + na)-) = a g(yj + na),

j= 1,...,N,nel},
aj is R, j = 1, ..., N. (2.3.108)

Then we have

Theorem 2.3.7. Let a, e R, y, e f', j = 1, ..., N. Then a(-Aa,Y+A) n
(-oo, 0) consists of at most N disjoint, closed intervals.

PROOF. Although one could follow the proof of Theorem 1.4.6 step by step
we prefer to present another argument which in turn would also apply in the
three-dimensional context. Following our earlier arguments in this section (cf. also
(1.4.56)) one easily infers that

?l[-Da,YkAI' -' _ ® h0[-ea.A.r(O)), (2.3.109)E

d2
-Aa.r.A(0) _ dv2

_9(-A..r.A(9)) _ {g(0) a H2."((-a/2, a/2))n H2'2((-a/2, a/2) - Y)I

9(0, -a/2+) = e;eag(0, a/2-), g'(0, -a/2+) = e'eag,(0, a/2-),

9'(O,Yj+)-9'(O,Yj-)=aj9(O,Yj),j= 1,...,N},

a, a R, j = 1, ... , N, 0 e [ - b/2, b/2). (2.3.110)

Clearly, -Da,A,r(0) and -Ao,A,r(0) (i.e., a,= 0, j = 1, ..., N) are self-adjoint
extensions of

d2
dv2,

(Hr(O)) = {9(0) a H2'2((-a/2, a/2))Ig(O, y,) = O,j = 1, ..., N,

g(0, -a/2+) = eieog(O, a/2-), g'(0, -a/2+) =

e [ - b/2, b/2). (2.3.111)

A simple computation proves that F/r(0), 0 e [-b/2, b/2), has deficiency indices
(N, N). Since -AO.A,r(O), 0 e [-b/2, b/2) (the free decomposed operator) is obvi-
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ously nonnegative, - A,.A. Y(O), 0 e [ - b/2, b/2), a E R, can have at most N negative
eigenvalues by Corollary 1 of [494], p. 246. By (2.3.109), -A,.r+A has at most N
disjoint negative energy bands (cf. (1.4.25)).

Finally, we recall the absence of eigenvalues for periodic systems of the type
(2.3.59) and (2.3.60). This implies the irrelevance of the exceptional points
km = irm/a, m e 7L, when calculating the spectrum of -A,,,,,az: Denoting by
hw,,, the bounded, self-adjoint operator in 12(Z)

(h(,fP,q,)j = tkj+1 + q1j-1 + p e N, 1 e Z, {qki}jez E 12(Z), (2.3.112)

where o(P) is a sequence of real numbers with period p

wJ!+>P = co(P)!, j e Z, (2.3.113)

we get the standard result

Lemma 2.3.8. The spectra of -A,,,,,az and h,,,,,, are purely continuous, i.e.,

6p(- Aep,,az) = 0, a (haP)) = 0. (2.3.114)

PROOF. If suffices to discuss h,,. Let Ti,,, p e N, denote the unitary shift
operators in 12(Z)

(T±,l')j = 41j±,, p e N, {'),j}J,Z E 12(Z). (2.3.115)

Then obviously T+P commutes with ham,,,. Assume that eo is an eigenvalue of h,,,,,
with corresponding eigenspace. °o. By inspection TTp.$f1 s . °o implying

Ttp.7too = Jfo, p e N, (2.3.116)

since T_,, = (Tp)-'. Thus Tp is reduced by 00 and Tpl .o is unitary. Since dim .7t°o <
2, Tplra has an eigenvalue, i.e.,

T, g = ei oog, SB E R, qg E .lro. (2.3.117)

Thus I0opl = is a periodic sequence of period p in 12(Z) contradicting
I0gl E 12(Z).

Applying Lemmas 10.12-10.14 of [85] one can actually prove that
Q(-A,,,, az) and o(h,,,,)) are purely absolutely continuous.

11I.2.4 Half-Crystals

The purpose of this section is to discuss spectral and scattering properties of
half-crystals, i.e., models of the type -A,',A+ Where

A+ = { jal j e No}, a+ _ (aj)jENo, aj = a, a e R, j e No. (2.4.1)

Although this model could be analyzed directly, we again prefer the much
shorter approach based on the difference equation (2.1.55). Actually, we will
treat a more general situation having different half-crystals on the left and
right since this problem requires the same amount of work as studying (2.4.1).
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Thus we introduce the operator -A.- +,A where

A=aZ a>0 a-+ - l 1ajJ1.JEZ) aj
=fa+' =0,1.2,...'a_,, j= -1, -2,..,

a±EP. (2.4.2)

(By translations the endpoints -1, 0 of the two half-crystals can be shifted to
any points m - 1, m, m e Z.) The true half-crystal then corresponds to a- = 0.
Concerning spectral properties of - A°-+,,, we state

Theorem 2.4.1. The spectrum of -A.--,A is purely absolutely continuous
and given by

o(-A°-.,n) =
(2.4.3)

age(-A°-+,,,) = 0, o,(-A -+,A) = 01

where -A:,A denote the infinite crystals (i.e., Kronig-Penney models) of
strength at and Bravais lattice A = aZ (cf. (2.3.12)). On the interior of the
set o( - Aa-, A) n o(- A°+, A) the spectral multiplicity of -A,-',A equals 2
whereas on o(-A.-+,A) - (y( -Aa-,A) n o(-AQ+,A)} the multiplicity is 1.

PROOF. We have to solve (suppressing the k-dependence)

*/+1 +1'j-t+N'!*i=60j, *jeC, jeZ,

e = 2 cos(ka), IL = µ+' J--U'1, Z ..., At = -ark-1 sin(ka),

k * ma/a, m e Z. (2.4.4)

The ansatz

N_ [e+e_°j + e-'0`413, j, -1, -2,...,
j=0,1,2,..., Im6t20,

in (2.4.4) yields

(2.4.5)

cos(6;a) = (s - p T)/2, Im 0t Z 0, (2.4.6)

for j 5 -2 and j >- 1, respectively. Here N:, # 0 are (k-dependent) normalization
constants to be determined later on. At j = -1 one obtains

N+'`D + N_ [e2111- - (e - p-)e`_°]21= N_[(z - p-)erep - e-210 '] (2.4.7)

and atf = Owe get
N+[eie,a - (s - µ+)]T' + N_0-.1 = -N_e-te_°. (2.4.8)

Similarly, the ansatz

M+[e-'e.v + ete'' '], j = 0, 1, 2,...,
M_e-ie-^'D', f = -1, -2,..., Im9t Z0,

yields again (2.4.6) for j 5 - 2 and j >- 1, respectively. For j = - I one infers

(2.4.9)

M_[e2re_a - (s -,u-)eie-°] I " + M+SB' = -M+ (2.4.10)
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andforj=0
M e'e_a1' + M+[eo,a _ ( - µ+)]` ` = ML [(e - µ+) - e_ie a] (2.4.11)

results. Here M+ are again (k-dependent) normalization factors. Checking the
determinant of the system (2.4.7), (2.4.8) shows that there exists a unique solution
for T', 0(0 ' # 0) if

0_ # -0,. (2.4.12)

Similarly, (2.4.10) and (2.4.11) yield a unique solution for (9t` # 0) iff (2.4.12)
holds. Next, let ho and h denote the bounded and self-adjoint operators in 12(Z)

Then the fact that

(htr), _ (hoi/i)j + ujgi,, {i/ij},Es e 12(Z)
(2.4.13)

i li

a(ho) = ajho) = [-2,2], a,(ho) = 0 (2.4.14)

mp es

- 2 + min(µ , µ+) < h < 2 + max(µ , µ+). (2.4.15)

Consequently, (2.4.6) determines the values of.- in the spectrum of h for real values
of 0+. Actually, we may restrict ourselves to

0+ e [0, n/a] (2.4.16)

implying

r: e [ -2 + min(µ-, µ+), 2 + max(µ- , y')] = a(h), (2.4.17)

since then (2.4.12) is obviously fulfilled for all 0+ e (0, n/a]. Rewritten in terms of k
this means (cf. Theorems 2.1.5 and 2.3.1)

k2 a a(-A,A)v a(-A..A), Im k >t 0, (2.4.18)

and hence the first part of (2.4.3) holds. The statements about the multiplicity of the
spectrum now simply follow from the linear independence of the two solutions

0± = {vG;+},E,. E 1"(Z) (2.4.19)

defined in (2.4.5) and (2.4.9) and the fact that

e e (- 2 + max(µ-, µ+), 2 + min(µ-, µ+)) (2.4.20)

is equivalent to

k2 a {a(-A. ,A) n a(-AX,,A)}o, Im k Z 0, (2.4.21)

(where A denotes the interior of a set A c I8). The absence of the singular continuous
spectrum now follows by mimicking the standard construction of the (absolutely
continuous) spectral measure associated with second-order finite difference
operators (cf., e.g., [46], [120], [122], [214]). It remains to prove the absence of
eigenvalues of -A, .,. According to (2.1.52) and the remarks after (2.1.55) we only
need to show

a,(h) = 0. (2.4.22)

Since -`, .4' # 0, 0 * in (2.4.19) is a fundamental set of solutions of hip = eri,
0 e 1'(71), if Im 0,. = 0. But then 0 10 1 '(Z) completes the proof.
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In the special case where a - = 0, (2.4.3) and (2.3.33) imply that the spectrum
of the true half-crystal is simply given by u [0, co).

The multiplicity statements in Theorem 2.4.1 confirm the intuitive ideas
that a particle in the left half-crystal moving to the right can only penetrate
into the right half-crystal if its energy lies in an allowed band for both infinite
crystals (represented by -Aa+,A). In that case a particle moving to the left in
the right half-crystal with the same energy penetrates into the left half-crystal
implying spectral multiplicity two. In the remaining case, where a particle in
the left (right) half-crystal runs to the right (left) with an energy lying in a
gap of the infinite crystal described by -Aa.,A(-Aa-,A) one expects total
reflection. Thus the transmission coefficient from the left (right) should be
zero and hence the reflection coefficient from the left (right) of modulus one
implying spectral multiplicity one in this case. These results are actually
contained in the following.

Theorem 2.4.2. Let k2 a {a(-Aa-,A)r'a(-Aa.,A)}°, Im k >_ 0. Then the
transmission and reflection coefficients from the left and right associated with
-Aa .,A are given by

2i sin"2[0_(k)a] sin!j2[0+(k)a]
.5ra'-. A(k) i0_(kla - e-iB+(k" - -1ra ,A(k),

e-ie,(k)a - e-i0-(k)a

ei0,(k)a - ei0 (k)a

'Ra .A(k) = ;0_(k)-a- e-i0+(&)a

(2.4.23)

(2.4.24)

where (cf. 2.3.16))

cos[0,(k)a] = cos(ka) + (a±/2k) sin(ka), O+(k) e (0, n/a). (2.4.25)

In particular, the on-shell scattering matrix in C2

5Q .,A(k) =
rJa'+,A(k) a .A(k)1 (2.4.26)

a +,A(k) Ja.+.A(k)J

is unitary in this case.
If k2 e {a(-Aa-.,A) - a(-Aa.,A)}°, Im k >- 0, then

'-+,A(k) = 0, (2.4.27)

eK+(k 2 _ e-'0 (k)a

-q;, A (k) eK+(kM =eie-aw , (2.4.28)

where

cos[O_(k)a] = cos(ka) + (a-/2k) sin(ka), 9_(k) e (0, ir/a)

cosh[)c+(k)a] = cos(ka) + (a+/2k) sin(ka), K+(k) = -iO+(k) > 0.
(2'4.29)
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Similarly, if k2 e {a(-A. .,n) - a(-A«-,n)}°, Im k >- 0, then

Ja +,n(k) = 0, (2.4.30)

e-K-(k)a - e'°-(k"

e-K am - e_10+(k)a'9 'r

where

(2.4.31)

cos[O+(k)a] = cos(ka) + (a+/2k) sin(ka), 0+(k) e (0, it/a),
(2.4.32)

cosh[K_(k)a] = cos(ka) + (a-/2k) sin(ka), K_(k) = -iO_(k) > 0.

PROOF. For simplicity we suppress the a"+, A dependence in all quantities
involved. Because of ap(k, aj) = Oj(k) (cf. (2.1.49)) we only need to solve (2.4.7), (2.4.8)
and (2.4.10), (2.4.11). Let k2 e (a(-A., A)n(-Aa,.A)}°, Im k 0. Then (2.4.24)
and

I(k) N_(k) et°-(k ' - e-f0_(k)a

N+(k) eie_(k)a - e"ie.(ka

M+(k) et°'(k" - e-'O,(k)'
(2.4.33)

Tr(k) = M_(k) e,e.(k)a - e-,°.(k)' et(k) a (0, a/a),

result. Since the "plane waves" a±'°t(kM1 in (2.4.5) and (2.4.9) have to be normalized
identically we actually infer

N_(k) = M_(k), N+(k) = M+(k). (2.4.34)

Finally, time reversal invariance implies equal transmission coefficients and hence

FN+(k)12 - sin[B_(k)a]
0(k) e 0

N_(k)J sin[0+(k)a]' t(' "/a) (2.4.35)

Insertion of (2.4.35) into (2.4.33) implies (2.4.23) (since .I''(k) _- D'(k), f-'(k) _ ?`'(k)
in this case). If k2 a {a(-A,_, n) - a(-AQ' n)}°, Im k Z 0 the wave 0+ in (2.4.5)
decays exponentially for j z 1. Thus we get .°I'(k) _- 0 in this case. The results (2.4.30)
and (2.4.31) are obtained analogously.

Clearly, the above results immediately generalize to more complex situa-
tions. For example, one could think of gluing together two half-crystals which
stem from pure crystal models of the type - At,, rp+nol - Aaq' where
Ao = paZ, Aq = qdZ, a > 0, a" > 0, and a,, (resp. aq) have periods p, q e N (cf.
(2.3.76)). Then Theorem 2.4.1 directly extends to this case and Theorem 2.3.5
can be used to locate gaps in the spectrum of the composed half-crystals.

III.2.5 Quasi-Periodic 8-Interactions

This section is devoted to a brief study of quasi-periodic 5-interactions. Again
we rely heavily on the corresponding difference equation approach.

Let h(2, 0, 0) denote the following bounded, self-adjoint operator in 12(Z)

(h(A, 0, 00i = lj+, + 1kj_, + A cos(2njO + 0)4,j,

jeZ, {4/j}jezel2(Z), A.eR, 9>_0, #e[O,2n). (2.5.1)
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By Theorem 2.1.5 the associated operator in L2(R) reads where
A=a71,a>0,andy(0,0)isnowofthetype

y(0, 0) = {yj(9, c)}jZ, yj(0, 0) = y cos(2nj0 + 0), j e 7, y e R. (2.5.2)

Moreover, if e (resp. k2), Im k >- 0, denote the energy of h(.1, 0, 0) (resp. of
-AAO,O),A), then

e = 2 cos(ka), A _ -(y/k) sin(ka), Im k >- 0. (2.5.3)

In order to analyze we first describe some basic spectral properties
of h(A, 0, 0). For this purpose we need to recall certan notions in number
theory: We call 0 a Liouville number if 0 is irrational and there are integers
p", q" oo with

I0-(p"lq")I <qp", nEN. (2.5.4)

We will also need a subset of Liouville numbers characterized by the fact that
there is a C > 0 such that

10 - Cn-9^, n e N, (2.5.5)

holds. Next, 0 is called a Roth number if 9 is irrational and for all e > 0 there
is a CE > 0 such that for all p,qe N

10 - (p/q)I > CEq-2-E. (2.5.6)

In contrast to Liouville numbers which are of Lebesgue measure zero (but
they are dense in R and uncountable) the set of Roth numbers is of full
Lebesgue measure. We also need approximating functions 0: [0, oo) -+ (0, oo)
of the type

(i) Q is continuous, decreasing and lim, 0(s) = 0.
(ii) -s-' ln(KI(s)) is decreasing in s e (0, oo).

(iii) -f o ds s-2 ln(0(s)) < +oo for any so > 0.

A typical example is given by

a(s)
50(so), O :g s.-5 so = e",

Ce-s/(I )' s > so, 0 < a 5 Z.
(2.5.7)

Theorem 2.5.1.

(a) Aubry duality: Fix 0 irrational. Then

a(h(A, 0, qS)) = (A/2)a(h(4/A, 0, q)), A # 0, 0 e CO. 2n). (2.5.8)

(b) Fix I A l > 2 and 0 irrational. Then, for a.e. 0 e [0, 2n),

Qae(h(R, 0, q$)) = 0. (2.5.9)

If, in addition, 0 is a Liouville number obeying (2.5.5) then, for a.e.
S e [0, 2x), the spectrum of h(A, 0, 0) is purely singular continuous.

(c) Let i2 satisfy (i)-(iii) above, Z400=00(n) < a and fix 0 to be irrational
with inf. z IsO + il >- Q(s) for all s > 0. Then, for 121 small enough and
for all 0 e CO, 2n), h(A, 0, 0) has some absolutely continuous spectrum
which contains a closed set of positive Lebesgue measure.
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(d) Let S2 satisfy properties (i)-(iii) above and fix 0 to he irrational with
inf; E z IsO + j J >- Q(s) for all s > 0. Assume, in addition, that 0 is a Roth
number with continued fraction expansion 0 = [a,, a2, ..., a,,... I for
which lim a > 10. Then, for IAI large enough, h(A, 0, S) has for
a.e. 0 e [0, 2n) an infinite set of eigenvalues (with exponentially decaying
eigenvectors) whose closure has positive Lebesgue measure. If, in addi-
tion, lim sup.-,, a = oo (which happens for a set of 0's with full
Lebesgue measure) then, for any e > 0 there is a ).o > 0 such that
for a.e. 0 E [0, 2n) and all IAI 5 Ao (resp. JAI ? Ao') the absolutely
continuous part of the spectrum (resp. the closure of the set of eigen-
values) of h(A, 0, b) has Lebesgue measure greater than 4 - e (resp.
greater than (4 - e)A/2). (Obviously, IQ(h(0, 0, 0)I = 4, Ia(h(A, 0, q))I <
4 + 21A1.)

Given these results and the correspondence (2.5.3) between h(A, 0, ¢) and
-4e,0,,A' one can derive corresponding results for We state

Theorem 2.5.2.

(a) Fix 0 irrational. Then, for a.e. 0 c [0, 2n), -A,(o #) A has no absolutely
continuous spectrum in the region {E = k2IIm k >- 0, I(y/k) sin(ka)I > 2).
If, in addition, 0 is a Liouville number obeying (2.5.5) then, for a.e.
¢ e [0, 2n), a(-Ay(0,0),A) is purely singular continuous in that region
(provided this region is nonempty).

(b) Assume that 0 obeys the conditions of Theorem 2.5.1(c). Then, for all
¢ e [0, 2n), -Ay(0,0),A has some absolutely continuous spectrum in the
region {E = k211m k 2-- 0, 1(y/k) sin(ka)I small enough).

(c) Assume that 0 obeys the conditions of Theorem 2.5.1(d). Then, for a.e.
0 e [0, 2n), -Ay(8,0),A has an infinite set of eigenvalues in the region
{E =k2IIm k >- 0, 1(y/k) sin(ka)I. large enough) nQ(-AYte.4t,A) (pro-
vided the intersection is nonempty).

The difficulty with Theorem 2.5.2(a) and (c) is that it is not clear whether
there exists some spectrum of - Ay(O,#).A in these regions at all.

111.2.6 Crystals with Defects and Impurity Scattering

We now discuss how to incorporate impurities represented by 6-interactions
in the model Hamiltonian - A., r. In the particular case of the Kronig-Penney
Hamiltonian we also discuss scattering on such impurities.

Let -A,,,, r be defined as in (2.1.6) and abbreviate by

Gk.a.r=(-&,,y-k2)-', k2Ep(-Aa.r), Imk>0, (2.6.1)

its resolvent given in (2.1.17). Let Z c R denote the finite set of impurity points

Z={z,eRI1=1,...,M), MeN, (2.6.2)

which support 5-interactions of strength y, c R - (0),1 = 1, ..., M. The total
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Hamiltonian representing 6-interactions of strength ai at the points yj a Y,
j e J, and additional 6-interactions of strength y, at the impurity points z, e Z,
l = 1, ..., M, is then denoted by -Aa,y,Y,z where the sequence y is defined as

y={y,eR-{O}Il<l:M}. (2.6.3)

If z, e Z equals some yj e Y then, depending on whether y, equals -aj or not
we get a defect impurity (i.e., the vanishing of the 6-interaction at z, = yj) or a
substitutional impurity at z, = yj when compared to -A., y. The situation
z, 0 Y describes an interstitial impurity at z, in addition to the system described
by -A.,y-

Clearly, - A., y,Y,z subordinates to the discussion in Sect. 2.1.Our goal here
is to relate spectral properties of -Aa,Y,y,z and -Aa, .. As a first result we
compare their resolvents:

Theorem 2.6.1. Let aj, y, a P - {O}, j e J, 1= 1, ..., M, and assume (2.1.1).
Suppose that -A,,,Y,Y, and Gk,a,Y are defined as above. Then

Y,y,L - )

M`

= Gk,a>y + L )Gk.a,Y( >

where

k2 a P(-Aa,Y,y,z), Im k >- 0, (2.6.4)

ra,Y.Y.z(k) _ [-y 18,,. - z,.)]"'=1, k2 E P(-Ay), Im k Z 0.
(2.6.5)

PROOF. We first note that both operators -A,,y,,,z and -A,,r are self-adjoint
extensions of the closed, symmetric operator in L2(R)

d2
Ha, Y. Y.Z = -aX2

G(Ha.r.Y.z)= {ge9(-Aa.Y)Ig(z1)=0,z,eZ,1= 1,...,M) (2.6.6)

with deficiency indices (M, M). The adjoint of Ha, r,y.z then reads

d2
Ha.Y.Y.L - -dX2>

r (Ha r.Y.z) _ {g a H2.1(P) n H2'2(R - (Y u Z})I

(2.6.7)

Since the solutions of the equation

Fi',' r.r.z0(k) = k2 4,(k), V, (k) e (Ha Y,y,z), k2 e C -R, Im k > 0, (2.6.8)

are given by

01(k,x)=Gk,a.Y(X,z,), Imk>0, z1eZ, I=1,...,M, (2.6.9)
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the general structure of (2.6.4) follows from Krein's formula (cf. Theorem A.3). The
remaining calculations are analogous to that in the proof of Theorem 11.2.1.1.

Concerning spectral properties we state

Theorem 2.6.2. Let a,, y, e P - {0}, j e J,1 = 1, ..., M, and assume (2.1.1).
Then

ae$$(-Aa.r.r.z) = aa$$(-A..r). (2.6.10)

Moreover, let (a, b) a p(- A.. r), -oo S a < b < oo. Then a(- Aa, r,,,,z) r
(a, b) consists of at most M eigenvalues counting multiplicity.

PROOF. The invariance of the essential spectrum in (2.6.10) is due to Weyl's
theorem ([391 ], p. 112) and (2.6.4). The rest follows from Corollary I in [494], p. 246.

Since a more detailed spectral analysis of -A..r,y,z seems too difficult in
general we now specialize to the periodic case and choose Y equal to the lattice
A = aZ, a > 0. In addition, we first assume the sequence a to be periodic
with period one, i.e., we first investigate impurities in the Kronig-Penney
Hamiltonian -A..A, a e P - {0} (cf. (2.3.12)).

The following two linearly independent functions

`I'a.A(k, a, x)

teux tBox' {e0oa sin(kx') - sin[k(x' - a)]
= Y'a A(k, a, 0)(a/2k)e e-

cos(6a) - cos(ka) -}'
x'=x-a[[x/a]], Imk>-0, a=±1, Im6 - 0, Re 9L- 0, (2.6.11)

where [[y]] denotes the integer part of y (i.e., the largest integer less than or
equal to y) and 0 = 0(k) satisfies the Kronig-Penney relation (2.3.16), solve

-'PP,A(k,a,x)=k2`Pa,A(k,a,x), Imk>-0, o= ±1, xeP - A, (2.6.12)

and fulfill the boundary conditions

tea. A(k, a, na +) = tea. A(k, a, na - ),

`PQ A(k, a, na+) - `P..A(k, a, na-) = a`P.,A(k, or, na),

Imk>0, a=±1, neN. (2.6.13)

The result (2.6.11) can be quickly derived as follows. Equations (2.6.12) and
(2.6.13) yield the homogeneous Lippmann-Schwinger equation

`P(k, x) = a Z G,k(x - na)`P(k, na) = a Y Gk(x - na)e',""`P(k, 0), (2.6.14)
nEz "Ez

where Bloch's theorem, i.e.,

`P(k,x+na)=e""'T(k,x), Imp >0, x e R, n e Z, (2.6.15)
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has been used. It remains to evaluate the sum in (2.6.14):

x 00uY»
'l'(k, x) = (ia/2k)1P(k, 0) eikxeup-k)- +

L.
e-ikxei(a+k),n

IN= -OD n-[[x/8]]+1

I
ei(P-k)a[[x1a))+tkx ei(F+k)aQ[x/o11+1)-ikx

= (ia/2k)1P(k, 0) 1 - e-0-0a + 1 -
:'::

= (ia/2k)'I'(k,
0)e4"1kx'- in- a)]

cos(ka) - cos(ka)

x'=x-a[[x/a]], ImkzO, Imµ - 0. (2.6.16)

If a = + 1(-1) which corresponds to p > 0 (p < 0) in (2.6.16), (2.6.11) repre-
sents a wave traveling to the right (left) in the lattice. Moreover, (2.6.11) clearly
exhibits Bloch's theorem since x' = x - a[[x/a]] is periodic with the period
a of the lattice A = aZ. We also remark that taking x = 0 (i.e., x' = 0) in
(2.6.11) immediately yields the Kronig-Penney relation (2.3.16).

Now we are prepared to discuss impurities. To avoid too lengthy computa-
tions we restrict ourselves to a single impurity at the point z e R described by
a 6-interaction of strength y e R - {0}. The corresponding Hamiltonian is
then denoted by -A.,A,,,Z. We start by solving the bound state problem

-Aa,A,Y.zll'a,A,Y,z(k) = k2q`a.A.,, (k),'1 z.A.Y.z(k) E !P(-A..A,v.z),

k2ER, Imkz0. (2.6.17)

Consequently, `P ,A,,,Z(k, x) solves

- "(k, x) = k2(/i(k, x), x e R - {A u {z}), (2.6.18)

with the boundary conditions

4i(k,na+)=Vi(k,na-),

1/i'(k, na+) - 0'(k, na-) = ao(k, na), na e A - (z), n e Z, (2.6.19)

4(k, z+) _ 0(k, z-1,

//(k, z+) - 0'(k, z-) = [y + aaZ.A]l(k, z), (2.6.20)

, z e A
For x e R - {z), qk(k, x) also solves -A1,AI//(k) _where az,A =

z

{4l'

k20(k). The solutions of (2.6.17) are thus certain linear combinations of
'P .A(k, ± 1, x). Since `PQ,A(k, ± 1, x) are oscillating for 0 e R we need Im 0 > 0
in order to guarantee square integrable solutions. Thus we are led to the ansatz

Y',A(k, -1, x)
Cl

`I A(k, -1, z)'
x < z,

`PQ.A.,.Z(k, x) = { (2.6.21)
"a.AIK, + t, x)c2 x > z, Im 8(k) > 0.
`Y.,A(k, + 1, z)
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Insertion of (2.6.21) into (2.6.20) yields

and

Cl = C2

`Y,.n(k, + 1, z+) Q.n(k, -1, z-)
`.,A(k, + 1, z)

-c1
`I'..n(k, -1, z)

(2.6.22)

(2.6.23)

Observing

'',.n(k, ± 1, z+) -'Ya n(k, ± 1, z-) = ab:.n'I'a.n(k, ± 1, z) (2.6.24)

(cf. (2.6.12), (2.6.13)) in (2.6.23) we infer

'P,n(k,+1,z±)
C2 - c. 2.6.25

`I'a,n(k, + 1, z) 1 T., A(k, -1, z)
Y ( )

Together with (2.6.22) this leads to

W(`I'..n(k, + 1), %.n(k, -1))Z±

+ Y`I'a.n(k, + 1, z)PQ.n(k, -1, z) = 0, (2.6.26)

where W(f, g)x = f(x),q'(x) - f'(x)g(x) denotes the Wronskian of f and g.
With the help of (2.6.11), (2.6.26) simplifies to

-2ik sin(Oa) sin(ka) + y{sin2(kz') + sin2[k(z' - a)]

- 2 sin(kz') sin[k(z' - a)] cos(Oa)) = 0,

z' = z - a[[z/a]], Im k >- 0, Im 6(k) > 0. (2.6.27)

Thus (2.6.27) together with the Kronig-Penney relation (2.3.16) represents the
bound state condition. Before we separately discuss the case of substitutional,
defect, and interstitial impurities we derive a technical result that enables one
to decide in which energy gaps of -Da,n impurity states associated with

0di, A.Y. Z do actually occur:

Lemma 2.6.3. Let k2 a (bm n, a'1), Im k >- 0, bon = -ao, and suppose
that K = e'B° where 0 = (ma/a) + i8, 6 > 0, m e No, is a solution of
the Kronig-Penney relation (2.3.16) such that (K + K-1)/2 = cos(ka) +
(a/2k) sin(ka). Assume that i/i(k, x) is a real-valued solution of

-#"(k, x) = k2>/i(k, x), x e (-a/2, a/2) - (0) (2.6.28)

satisfying the boundary conditions

>'(k, a-) = K/i(k, 0+)>

*'(k, a-) = K[,G'(k, 0+) - (k, 0)].
(2.6.29)

(a) Define

= (Y + aaz.n)C1

r(k)
_.#'(k, a/2 +)

(2.6.30)
/,(k, a/2)
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Then, as k2 varies from the lower end of a gap in a(-AQ,A) to the upper
end, r(k) is continuous with respect to k and strictly increasing in k2. In
particular, for a > 0, r(k) alternately increases from -eo to 0 or from
0 to +oo starting with -oo to 0 in the zeroth gap (i.e., the one starting
at -co). For a < 0, r(k) increases from -oo to 0 in the zeroth gap and
then alternately from -oo to 0 or from 0 to +oo starting with -co to
0 in the first gap (cf. Figure 42).

(b) Define

F(k) = 4,'(k, 0+)
- (a/2). (2.6.31)

4,(k, 0+)

Then, as k2 varies from the lower end of a gap in a(-A-,A) to the upper
end, F(k) is continuous with respect to k and strictly increasing in V. In
particular, for a > 0, F(k) increases from -oo to 0 in all gaps (including
the zeroth one), whereas for a < 0, F(k) increases from -oo to 0 in the
zeroth gap and from 0 to +eo in all the remaining ones (cf. Figure 43).

PROOF. Inserting the ansatz

l/i(k, x) = cos(kx) + A sin(kx)

into (2.6.29) immediately yields for k2 >- 0

r(k) = - [k/2 sin(ka/2)][f(k)2 -

F(k) = (k)2 - 1]1/2,

where

(k) = cos(ka) + (a/2k) sin(ka),

r1(k) = cos(ka/2) + (a/2k) sin(ka/2), k2 > 0.

Similarly, for k = irc, K > 0. one infers

r(k) = -sgn(i;(ik))[K/2 sinh(ka/2)][f(ik)2 - 1]U2q(ik)-',

F(k) = 1]1/2,

where

(ik) = cosh(ka) + (a/2k)sinh(ka),

1t(ik) = cosh(ka/2) + (a/2K) sinh(ka/2), k = ik, k > 0.

(2.6.32)

(2.6.33)

(2.6.34)

(2.6.35)

(2.6.36)

Monotonicity of r(k) and F(k) now follows by checking dr/dk and dF/dk. The rest of
the assertions concerning the range of r and F in gaps follows from the explicit
formulas above.

We note that in part (a) of the above lemma the b-interaction of strength a
is placed in the center of the primitive cell as has been done in the definition
of -A.,A(O) (cf. (2.3.13)). This case will be applied to interstitial impurities. On
the other hand, part (b) describes a primitive cell shifted to the right by a/2
with respect to the one in part (a). Consequently, there are 6-interactions of
strength a/2 placed at 0 + and a-. This case will be used for substitutional
and defect impurities.
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Figure 42 The range of r in the energy gaps. From Shrum and Peat, 1968, [411].

Figure 43 The range of F in the energy gaps. From Shrum and Peat, 1968, [411].
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Figure 44 Cross-hatched regions denote the energy bands of Dotted lines
indicate the extra energy levels due to a single substitutional impurity for varying
impurity strength y. From Saxon and Hutner, 1949, [404].

We have (cf. Figure 44).

Theorem 2.6.4. Let the substitutional 6-interaction be concentrated at
z e A with coupling constant y e R - {0}, y # -a. Then the essential spec-
trum of - A. A. is purely absolutely continuous and coincides with the band
spectrum of' Sa,A

(2.6.37)
asc(-Aa.A.Y.z) _

(i) For a > 0, y > 0, - A.. A.,,, has no eigenvalues.
(ii) For a > 0, y < 0, -Aa,A,,,,= has precisely one simple impurity state in

every gap of its essential spectrum (including the zeroth one).
(iii) For a < 0, y > 0 there is precisely one simple impurity state in every

gap except the zeroth one.
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(iv) For a< 0, y < 0 there is precisely one simple eigenvalue below the first
band and -A«,n,,,,, has no other eigenvalues.

The equation for impurity states of energy E = k2 of -AQ,A,Y.I in
R - cress(-A«,n.v,z) reads

cot(ka) = (k/a)[I + (2k)-2(),2 - a2)],

k2 E R Im k >- 0, (2.6.38)

with Im 0(k) > 0, Re 0(k) E (a/a)N0, where 0 obeys the Kronig-Penney
relation (2.3.16).

PROOF. The absence of embedded eigenvalues of -A.,A,,.= in its essential spec-
trum follows from the condition Im 0(k) > 0 (cf. (2.6.21)) since only 0(k) e R gives
rise to the band spectrum of -Aa,n. Relations (2.6.37) then follow from (2.6.10),
(2.6.4), and Theorem XIII.20 in [391]. That there exists at most one simple impurity
state in each gap is a consequence of Theorem 2.6.2 (or of the strict monotonicity
of F(k) in Lemma 2.6.3(b)). Observing z = noa for some no E Z and hence z' = 0,
(2.6.27) simplifies to

- 2ik sin(Oa) + y sin(ka) = 0, Imk-0, Im0>0. (2.6.39)

Eliminating 0 in (2.6.39) and in (2.3.16) yields (2.6.38). Clearly, Re 0 E (n/a)IN0 to
guarantee k2 E R. The rest of the assertions now follow from Lemma 2.6.3(b) since
the solutions ` ..A(k, ± 1, x) can only match at z to give there a 5-interaction of
strength y if F(k) = y/2 (i.e., in particular, if their signs coincide) due to reflection
symmetry of the bound state wave function near z.

For the defect impurity we obtain (cf. Figure 45)

Theorem 2.6.5. Let the defect 6-interaction be concentrated at z e A with
coupling strength -a. Then

Qscl-A«, A.-a.z) = 0-
(2.6.40)

(i) For a > 0, -A.,n.-«,: has precisely one simple eigenvalue in all gaps of
its essential spectrum (including the zeroth one).

(ii) For a< 0, has precisely one simple eigenvalue in all gaps of
its essential spectrum except the zeroth one.

The corresponding equation for defect levels E = k2 of in
R - Qessl-A«.n.-«.:) reads

cot(ka) = k/a, k2 E R - aessIm k >- 0, (2.6.41)

with Im 0(k) > 0, Re 0(k) e (n/a)INo, where 0 solves (2.3.16).

PROOF. Taking y = -a in (2.6.38) implies (2.6.41). The rest is analogous to the
proof of Theorem 2.6.4
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Figure 45 Cross-hatched regions denote the energy bands of -A..A,_a,s by varying a.
Dashed lines show the extra energy levels due to a single defect point interaction of
strength -a. From Saxon and Hutner, 1949, [404].

Finally, we discuss an interstitial impurity (cf. Figure 46) in

Theorem 2.6.6. Let the interstitial 6-interaction be placed at i in the middle
of two consecutive lattice points in A with a coupling constant y e 03 - (0).
Then

6ess(-Aa,A,y,0 = 6ac(-Aa,A,Y.i) = 6(-Aa,A),

q..(-A.,A,Y.i) = 0.
(2.6.42)

(i) For a > 0, y > 0, - Aa, A,Y,Z has a simple impurity level in every odd gap,
whereas for a > 0, y < 0 there is a simple impurity level in all even gaps
(including the zeroth one).

(ii) For a < 0, y > 0 there exists a simple impurity state in every even gap
of a,,S(-Am.A,Y,=) except the zeroth one.

(iii) For a < 0, y < 0 there exists a simple bound state of -A,,A,Y.s in the
zeroth gap and in all odd gaps of its essential spectrum.

-A.,A,,,2 has no other eigenvalues.
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The corresponding equation for impurity states E = k2 of -A&.A,,,i in
lI - a (-A-.A.Y,i) reads

(Y/2k)2 = (a/2k)[tan(ka/2)]-' - 1
k2 a R - Q (-A ) Im k > 0ess

(a/2k) tan(ka/2) + 1 '
(2.6.43)

with Im 0(k) > 0, Re 6(k) a (n/a)NIO, where 0 solves (2.3.16).

PROOF. Since 1= (no + 2)a for some no E Z we get i' = a/2 and thus (2.6.27)
becomes

i tan(Oa/2) _ (y/2k) tan(ka/2), Im k >_ 0, Im 4 > 0. (2.6.44)

Eliminating 0 from (2.6.44) and (2.3.16) yields (2.6.43). The rest of the proof parallels
that of Theorem 2.6.4 except that now Lemma 2.6.3(a) has to be applied in order
to get solutions of r(k) = y/2.

a

-2
Y Eat/n2

-3

i
-1 f

,,a/2n

Figure 46 Cross-hatched regions denote the energy bands of - Dotted lines
show the extra energy levels due to a single interstitial impurity symmetrically located
between two lattice points of varying strength y. From Saxon and Hutner, 1949, [404].
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Next we turn to impurity scattering. We are looking for scattering solutions
'1'a.A,r,z(k, a, x) of -Aa A,v z fulfilling (2.6.18) and the boundary conditions
(2.6.19) and (2.6.20) for a = + I and a = -1 separately. Again for x e R - {z}
solutions /i(k) of -A.,A,v,z/i(k) = k2 fi(k) also solve -Aa,A*(k) = k2 v(k).
Thus we are led to the ansatz

+ 1, x)
Ta!A,r.:(k)`1'«.A(k, + 1, x), x > z,

IT..A(k, + 1, x) + A ,A.v,z(k)Pa,A(k, -1, x), x < z,

x) =
('tn(k, -1, x) + ga.n,r.Z(k)`'a.A(k, + 1, x), x > z,

`-an.r.z(k)tl'a.n(k, -1, x), x < Z.
(2.6.45)

Insertion of (2.6.45) into (2.6.20) yields (suppressing a, A, y, z in a!(A,v,z(k) for
a moment)

" '(k)`I''.A(k, + 1, z) 1, z) -1, z),
(2.6.46)

`(k)'1'a.A(k, -1, z) ='1'a.A(k, -1, z) + '(k)PP.n(k, + 1, z),

and

9-'(k)'I'Q.n(k, + 1, z+) -'1',.A(k, + 1, z-) - gt'(k)'P (k, -1, z-)
_ (Y + aaz,n)P(k)`1'a,n(k, + 1, z),

'1'a.n(k, -1, z+) + 9t`(k)`1 «,A(k, + 1, z+) - 9r`(k)`1'',A(k, -1, z-)

= (Y + 0bz.A)8f'(k)'I'a.A(k, - 1, z).

Employing again (2.6.24) we obtain

[.%'(k) - 1]`I'.,A(k, + 1, z+) -.'(k)`P'(k, -1, z+)

- Yf'(k)`I'a.A(k, + 1, z) = 0,

[1 - J'(k)]`P',A(k, -1, z+) + 9`(k)T.,A(k, + 1, z+)

- YS`(k)'1`a,n(k, - 1, z) = 0.

Solving (2.6.46) and (2.6.48) finally leads to

(2.6.47)

(2.6.48)

Theorem 2.6.7. Let a, y e 18 - {0}, z e R. Then the unitary on-shell scatter-
ing matrix Ya,A,v,2(k) in C2 associated with the pair (-Aa,A,v,z, -A&,A) reads

5a.n.v.z(k) =
rn.r.z(k) k2 a a(-A.,A), Im k > 0, (2.6.49)
LL9taI!.n.v.z(k) 9aA.r.z(k)

where

W('1'a.n(k, + 1), P, A(k, -1))z+

W('1'a.A(k, + 1),4'a.A(k, - 1))z+ + Ytl'a.A(k, + 1, Z)'Ya,A(k, - 1,z)

(2.6.50)
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+ I, Z))2

W(Ta.A(k, + 1), `Na.A(k, -1))z+ + Y`l'a.A(k, + 1,z)`I'a.A(k, -
I,z),

(2.6.51)

Y['l'a.A(k,-1,z)]2
1'1'(`1'a.A(k, + 1),`Ya.A(k, -1))=+ + Y't'a.A(k, + 1,z)`YP.A(k, -1,z)

(2.6.52)

We emphasize that the vanishing of the denominator in (2.6.50)-(2.6.52)
yields precisely the bound state condition (2.6.26). Using (2.6.27) and (2.6.11),
the results (2.6.50)-(2.6.52) can be rewritten in terms of 0 and k. We omit the
details.

As y -> oo, the Dirichlet boundary condition at z implies

.y(k) - 0 -'Pa,A(k, -1, z)/y'a.A(k, + 1, z)

[-'P.,A(k, + 1, zPI'a.A(k, -1, z) 0 ]
(2.6.53)

Obviously, the result of Theorems 2.6.4-2.6.6 and Theorem 2.6.7 can be
derived using the finite difference approach described in Theorem 2.1.5. To
illustrate this fact we consider the case of two half-crystals as in Sect. 2.4 with
an impurity added at the beginning of one of the half-crystals. More precisely,
let - Aa- ',A describe the two half-crystals in (2.4.2) and add a 5-interaction of
strength y e R - {0} at the origin (i.e., at the beginning of the right half-
crystal). The resulting Hamiltonian in L2(R) is denoted by -Aa-',A.Y Then
we obtain

Theorem 2.6.8. Let the 5-type impurity be concentrated at zero with coupl-
ing constant y e R - {0}. Then the essential spectrum of is purely
absolutely continuous and coincides with the spectrum of -Aa-',A

6138(-Aa-',A.Y) = 6nc(-Aa ',A,Y)
(2.6.54)

6sc(-Aa-',A,,) = 0.

Moreover, there is at most one simple surface state in each gap of
633(-A"-'.A,),)'

The corresponding bound state equation reads

(-1)"' { [(a+/2k)2 - 1] sin2(ka) + (a+/k) sin(ka) cos(ka)}"2

+ (-1)"`-{ [(,x- /2k)2 - 1] sin2(ka) + (a-/k) sin(ka) cos(ka)}'"2

_ [(a- - a+ - 2y)/2k] sin(ka), Im k >- 0, (2.6.55)

where 0+ satisfy (cf. (2.4.25))

cos(0+a) = cos(ka) + (a±/2k) sin(ka),

Im 0+ > 0, Re 0+ = m+n/a, m+ e No. (2.6.56)
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PROOF. In order to obtain (2.6.55) we have to solve (suppressing the k-dependence
for a moment)

Wj+l + II/j-l + IIA, = Eoj, 1!/j E `L, j e lL,

1p+, j=1,2,...,
z = 2 cos(ka), pj = po, j = 0, (2.6.57)

p , J=-1,-2,...,
pt = -atk-' sin(ka), po = -(a+ + y)k-' sin(ka), k # ma/a, m e Z.

For the surface state we make the ansatz

c,e ie.
j Im 0t > 0, Re 0t a (n/a)Z. (2.6.58)°

Insertion of (2.6.58) into (2.6.57) yields

2 cos(0+a) = (E - p+) for j 1, (2.6.59)

c+ere,° + c_e,e.° = (e - po)c+ for j = 0,
(2.6.60)

C+ + c_e21e_° = (c - p-)c_eie-a for j = -1,
2 cos(O_a) = (E - p-) for j < -2. (2.6.61)

Calculating the determinant associated with c+ in (2.6.60) we get

[ezre_° - (E - p-)ere-°] [ere.° - (e - po)] - ee-0 = (E - PO) - ere-a -

(2.6.62)

Taking (2.6.62) equal to zero and eliminating 0t with the help of (2.6.59) and (2.6.61)
yields (2.6.55). Since necessarily Im 0t > 0, to get an l2-falloff as j - ±oo we infer
from (2.4.6) that -A° .,,, has no eigenvalues embedded in its essential spectrum.
This together with Theorem 2.6.2 and the remark about the absolutely continuous
spectrum in the proof of Theorem 2.4.1 yields the result.

In the "true" half-crystal situation where a- = 0, (2.6.55) simplifies to

cot(ka) = -i[l + 2(y/a+)] + (y/k)[1 + (y/a+)]. (2.6.63)

Generalizations placing the impurity in the interior of one of the half-
crystals can now be obtained in an analogous manner (although quite tedious
from a calculational point of view).

Notes

Section 111.2.1

Self-adjointness of the operator -A°,r defined in (2.1.6) follows, e.g., from
[208], [345] (cf. also Appendix Q. A numerical study of spectral concentration
in the case where the points in YM,N are equally spaced appeared in [397] (cf.
Figure 40 in Sect. 2.3). The connection between -A°,r in L2(R) and the
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discrete operator (2.1.49) goes back to Phariseau [373] (cf. also [400]) and
Bellissard, Formoso, Lima, and Testard [70] (see also [478]). Our version of
Theorem 2.1.5 is taken from [439].

Finite difference operators are discussed, e.g., in [46], [120], [122], [214].
The Kronig-Penney model on a Fibonacci lattice has been studied in

[301].

Section 111.2.2
Theorem 2.2.1 is taken from Albeverio, Gesztesy, Heegh-Krohn, and Kirsch
[21]. Its proof is based on results of Morgan (345] and subsequent generaliza-
tions due to Kirsch [286] (cf. also Appendix Q.

Section 111.2.3
Direct integral decompositions and basic material in connection with periodic
one-dimensional systems are treated in [54], [55], [160], (300), [326], [334],
[391]. General periodic Schrodinger operators H = -A + V in LZ(R°) are
usually treated in p-space when d >- 2, while x-space analysis is best adapted
when d = 1, cf. [391], Sect. XIII.16.

Some generalizations of the Kronig-Penney model [307] (see also [185],
[219], [449], [450], [486]) are studied, e.g., in [313], [384], [500], [501].
(For additional references in connection with surface states of half-crystals
and random Kronig-Penney models we refer to the notes of the following
sections.) The density of states (2.3.46) has been discussed in [215] using
a different approach. (The sum (2.3.53) has been evaluated in [440].) The
recursion scheme (2.3.64) and (2.3.65) appeared in [478]. A detailed treatment
of mono- and diatomic lattices together with extensive illustrations can be
found in [404]. In this paper the conjecture about the validity of Theorem
2.3.5 for binary alloys was also formulated. The proof of Theorem 2.3.5 in the
special case of binary alloys actually appeared in [329] (cf. also [159]). That
this result need not hold in general has been shown in [284] (cf. also [402])
using alloys consisting of certain square well interactions. The actual extension
to general interactions taking into account the labeling of gaps involved
appeared in [286]. Theorem 2.3.5 in the case of general alloys (consisting of
equally spaced 6-interactions) is taken from [206] where a slightly different
proof has been given. Theorem 2.3.6 is also taken from [206]. Other generali-
zations of Luttinger's theorem to general alloys of equally spaced 6-functions
of definite sign of the coupling strengths (i.e., all y >- 0 or y 5 0, n = 1, ...,
N) appeared in [286], [288], and [408]. Related, although not equivalent
theorems on gaps in such alloys are treated in [254], [255], [256], [257],
[259], [488], [489]. For the impossibility of the so-called inverse Saxon-
Hutner conjecture, see, e.g., [166], [168], [169]. Lemma 2.3.8 is a standard
result (see, e.g., [158], p. 1486).

In contrast to the three-dimensional treatment in Sect. 111.1.4 we did not
discuss the e-expansion around the Kronig-Penney model. It is the purpose
of the following to indicate how to fill in this gap. First of all, one easily
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computes that

9k(ex, 0) = Y Gk(ex + an)e-Joan

neZ

_ (i/2k){[l - e'(k-)a]-lekcx + [1 - ei(k+Bp]-le-ikcx - ekclxl}

1o
{sin(ka)/2k[cos(ka) - cos(Oa)]}

- (e/2){[1 - ei(k-e)a]-'x - [1 - e(k+e)O]-lx + IxI) + 0(s2),

exe(-a,a), k2oir+912, Imk>0, OeA=[-b/2,b/2].
Moreover, in analogy to (1.4.126)-(1.4.130) with Y = {0} we introduce in
L2(R)

H,,A = -A + A(C)E-2 E V(( - A)/e), e > 0,
AeA

with VE L'(R) being real-valued, supp(V) compact, and A(e) analytic near
e = 0 with A(0) = 0. Then obviously

f
® dO

1lHI,A9l-1 =
fib/2.b/2) b HL.A'.

where (cf. (1.3.2.19))

(H=,A(-0) - k2)-' = 9k(O) - e-'A(E)AE(k, 0)[l + BB(k, 0)]-1CE(k, 0),

e>0, k2ap(HE,A(-0)), Imk-O, Oe[-b/2,b/2].
Here

9k(O): L2(r) L2(r), 9k(O) _ (-A(-0) - k2)-',
A,(k, 0): L2(R) -+ L2(r),

BE(k, 0): L2(R) --, L2(R),

CE(k, 0): L2(r) L2(R);

0, k20II'+0l2, Imk>0, 0 c- b/2, b/2]

are operators with integral kernels

9k(v - v', 0),

AE(k, 0, v, x) = gk(v - ex, 0)v(x),

BE(k, 0, x, x') = e-'A(e)u(x)gk(e(x - x'), 0)v(x'),

CE(k, 0, x, v) = u(x)gk(Ex - v, 0);

e>_0, k20Ir+012, Imk - 0, x,x'ER, v,v'et', 0e[-b/2,b/2].
Thus B1(k, 0) is analytic with respect toe near s = 0 in Hilbert-Schmidt norm.
Consequently, one can follow the proof of Theorem 1.3.3.1 in order to infer
that for e > 0 small enough and a = A'(0) JR dx V(x) E R - {0}, all eigenvalues
E,,A,m(O), m e N, of HE,A(0) are simple and analytic in c near e = 0

E,,A,.(0) = 0(e), 0 e [-b/2, b/2), m e N.
The first-order term in a can be computed similarly to that in Theorem 1.3.3.1.
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The Stark effect in connection with the Kronig-Penney model is studied
in [79], [352].

Section 111.2.4

Scattering theory for general systems with different spatial asymptotics as
lxi -+ ±oo has been considered in [118], [124], [136], [201], [401]. Spectral
properties of one-dimensional half-crystals of 6-interactions are extensively
treated in [3], [4], [5], [140], [212], [225], [304], [305], [340a], [343a],
[356a], [372], [374], [376], [377], [422], [452], [453], [454], [458a], [458c],
[460], [473], [474], [475], [478a], [487]. Theorem 2.4.2 appears to be new.

The Stark effect in connection with half-crystals of 6-interactions is studied
in [58], [73], [76], [77], [455], [458], [458b].

Section 111.2.5

The idea of exploiting the condition between h(.1, 0, 0) and -Ar1e.Opn in the
quasi-periodic case is due to Bellissard, Formoso, Lima, and Testard [70].
Theorem 2.5.1(a) has been suggested by Aubry [48] and was proven by Avron
and Simon [56]. Theorem 2.5.1(b) is also due to [56] (cf. also [439]). Theorem
2.5.1(c), (d) is taken from Bellissard, Lima, and Testard [71]. For discussions
in the physics literature, cf. [48], [49], [57], [238], [246], [263], [447], and
[448].

Section 111.2.6
Theorem 2.6.1 in the context of three-dimensional point interactions appeared
in Albeverio, Heegh-Krohn, and Mebkhout [31]. Depending on the decay
properties of Gk, r(x, z,), k2 e p(-A,, r), Im k > 0, as ixi -+ oo, formula (2.6.4)
extends to infinitely many impurities in a discrete set Z with Iz, - z,.1 >- d > 0
for all z, 0 z,, z,. E Z, along the lines of Theorem 2.1.3.

The number of impurity levels in gaps of the essential spectrum is discussed
in [ 137], [258], [296], [404], [411], [423], and [459].

Tunneling phenomena are treated in [409], [410], and [461 ].
The Kronig- Penney Bloch wave functions (2.6.11) and their derivation has

been taken from Saxon and Hutner [404]. In this paper the corresponding
Bloch wave function of a diatomic lattice (i.e., the sequence a is periodic with
period two, a;, 2 = a;, j e 71, ao = a, al = (1, a # fi, a, (i a R) is also given.
Lemma 2.6.3 is taken from Schrum and Peat [411]. The results of Theorems
2.6.4-2.6.6 together with numerical illustrations can be found in [404] and
[411]. See also [281 a] for a discussion on impurity levels. Substitutional
impurities in a diatomic lattice are also discussed in [404]. We note that
S'-type interstitial impurities can be treated in analogy to Theorem 2.6.6.

The explicit results on impurity scattering in the Kronig-Penney model in
Theorem 2.6.7 appear to be new. Again an interstitial S-interaction could be
replaced by an interstitial b'-interaction. The result (2.6.54) (for a- = 0) and
other generalizations together with numerical illustrations are contained in
papers by Aerts [3], [4], [5].



CHAPTER 111.3

Infinitely Many b'-Interactions in
One Dimension

Now we derive the main results of Ch. 2 for b'- instead of b-interactions. We
shall closely follow the strategy for b-interactions and only present detailed
proofs if the arguments differ substantially from those in Ch. 2.

Let J c Z be the index set of Sect. 2.1 and Y = (yj e RI j e J) be a discrete
subset of R satisfying (2.1.1) and the remarks after (2.1.1). In analogy to Ch.
11.3 we introduce the minimal operator Hr in L2(R)

2

Hr = --dx2, 2(,%) _ {g a H2.2(R)jg'(yj) = 0, yj E Y, j E J}. (3.1)

Then H. is closed and nonnegative and its adjoint operator reads
2

Hy* _ dz,
dx (3.2)

(Hr = {g e H2.2(R - Y)l g'(yj+) = g'(yj-), yj e Y, j e J}.

The equation

11r*q5(k) = k2q(k), q(k) e k2 E C - 18, Im k > 0, (3.3)

then has the solutions

Oj(k, x) _
{e,

x) x < yj,
Im k > 0, yj e Y, j e J, (3.4)etk(y,

which span the deficiency subspace of R.. Thus Hr has deficiency indices
(oo, oo). According to Appendix C a particular type of self-adjoint extensions

307
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of HY is of the type
2

"a.Y = -7- '(E ) _ {g a H2.2 (R - Y)Ig'(yj+) = g'(yj-),

g(yj+) - g(yj-) = ffjg'(yj),j e J},
f f = { f3j} je j, -oo < /j < oo, j e J. (3.5)

By definition np, . describes 8'-interactions of strength fj centered at yj e Y,
j e J. The special case ftj = 0, j e J, leads to the kinetic energy operator -A
on H2.2(18) whereas the case Qjo = oo for some jo e J leads to a Neumann
boundary condition at the point yjo (i.e., g'(yjo+) = g'(& -) = 0).

Since Theorems 2.1.1 and 2.1.2 immediately go through with - A, Y,
-AaM.N.YM.N replaced by their respective analogs, we directly proceed to a
description of the resolvent of E ,Y.

Theorem 3.1. Let /3j a R - {0}, jecJ, and assume (2.1.1). Then

k2)_1 = Gk + [i,.Y(k)]jjl(tk( - yj'), ') k( - yj),
j.J'EJ

k2Ep(Ep,y), Imk>0. (3.6)

Here

P.Y(k) = L-(Pik2)-laji' + Gk(yj - yj')]j.peJ, Im k > 0, (3.7)

is a closed operator in 12(Y) with

Et'#.Y(k)]-` a .91(12(Y)), k2 a p(? Y), Im k > 0 large enough, (3.8)

and

x-Y)
Gk(x

- y) =
(i/2k)

eik(

-em(y-x),

x > y,
x < y,

Gk(x - y) = (i/2k)e'kIx-'1, Urn k > 0.

PROOF. One can follow the proof of Theorem 2.1.3 step by step since obviously
A W1 = IGG(x)I

The analog of Theorem 2.1.4 then reads

Theorem 3.2. Let fij e 18 - {0}, j e J, and assume (2.1.1). Then the domain
d(8a y) consists of all elements 0 of the type

O(x) = bk(x) + (i/k) Y yj), (3.10)
j.j'eJ

where Ok e 2e(- A) = H2'2(18) and k2 e p( p.y), Urn k > 0. The decomposi-
tion (3.10) is unique and with 1i e _9(Sp.y) of this form we obtain

(Ep. - k2)i/i = (-A - k2)0k. (3.11)

Next let qt e (=0 .) and suppose that (ii = 0 in an open set U e R. Then
aa, Y qi = 0 in U.
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Having established some of the basic properties of S.,r we now turn to a
one-to-one correspondence between 3B,r and a certain discrete operator in
12(Y). Actually, it will turn out that this discrete operator is almost identical
to the one we discussed in connection with -A.,rat the end of Sect. 2.1.Our
strategy now will be somewhat different to that in Sect. 2.1 since we shall
directly derive the corresponding difference equation without intermediate
matrix transformations. As in Sect. 2.1 we assume without loss of generality
J = Z and suppose ±oo to be the only accumulation points of Y such that
08 = Ups 7 I. We intend to solve

(30,1-k2)/i(k,x)=0, Imk-0, xeR-Y, (3.12)

with boundary conditions

i'(k, y;+) = O'(k, y;-), >/i(k, y;+) - */i(k, y;-) = /3;'J'(k, y;), /J a R, j e Z.
(3.13)

On every interval we obtain

ii(k, x) _ >,(k, y;+) cos[k(x - y;)] + 41'(k, y;)k-' sin[k(x - y;)],

0i'(k, x) 0(k, y;+)k sin[k(x - y;)] + 1/i'(k, y;) cos[k(x - y;)],

Imk - 0, xe/;+,. (3.14)

Thus we infer

>l/'(k, Y;+1) = - i/i(k, y;+)k sin[k(y;+1 - y;)] + i'(k, Y;) cos[k(Y;+1 - Y;)],

i'(k, y;) = -'l(k, Y;--, +)k sin[k(yj - Y;-i)]
+ iji'(k, y;-,) cos k

(3.15)

0,(k, y;-) = ti(k, y;-, +) cos[k(y; - y;-,)] + iP'(k, Y;-1)k-1 sin[k(yj - Y;-,)]
Using (3.15), a simple calculation then yields

fr'(k, y;+1) _ -[ '(k, y;-) + /;i'(k, Y,)]k sin[k(Y;+1 - Y;)]

I

+ iJi'(k, y;) cos[k(Y;+1 - Y;)]

_ fk sin[k(y,+1 - Y;)] +
sin[k(Y;+1 - Y;-1)]

y;)
sin[k(yj - y _1)J J

sin[k(yj+1 - y,)]
- '(Y;-1)sin[k(y; - Y;-1)]'

Imk>0, k0xm(y;-y;-,)-', j,meZ, (3.16)

or equivalently,

sin[k(yj - y;-1)Ji;+1(k) + sin[k(y;+1 - Y;)]4;-1(k)

_ {-/;k sin[k(Y;+1 - y,)] sin[k(yj - Y;-1)] + sin[k(Y;+1 - y _1)]}qi;(k),

Imk>0, k#xm(y;-y;_,)-', j,meZ, (3.17)

41j(k)=_4Y(k,y;), Imk_0, jeZ.
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We emphasize the great similarity of (3.17) and (2.1.49): The only difference
concerns the term a;/k which goes into - fk. Defining

0,'(k, yj_j J L i-Ad1 010,

Imk-0, je7L, (3.18)

and

flak sin[k(yj,,
-Y;)]+sin[k(yj.1-y;-,)] sin[k(y;+, -y;)]

Mj(k) = sin[k(yj-y;-,)] sin[k(y,-yt-,)] ,

L 1
0 J

Im k > 0, k # icm(yj - yj-1)-', j, m e Z, (3.19)

then (3.17) can be rewritten in matrix form

M;(k)O j(k) = 4D;+, (k), Imk > 0, k 0 nm(y; - y;-, )-', j, m e 7L. (3.20)

Moreover, we get

Theorem 3.3. Let #j e P, j e Z. Then any solution */i(k, x), k2 e R, Im k > 0,
k # icm(yj - yj-, )-', j, m e Z, of (3.12) and (3.13) satisfies (3.17). Conversely,
any solution of (3.17) defines via

,/i(k, x) = 4ij(k)k-' sin[k(x - y;)]

+ { -q/j+, (k) + 0j(k) cos[k(y;+l - y;)] }
cos[k(x - yj)]

k sin [k(Y;+, - Y;)] '

xeI;+ k2aR, Imk_0, k nm(yj-Y;-,)`, j,me7L, (3.21)

a solution of (3.12) and (3.13). In addition, ,k(k) e L"(Ii1) implies {iij(k) =
4i'(k, y1)};E1 e l"(7L) for p = oo or p = 2. Moreover, exponential growth
(resp. decay) of 0(k, x) implies that of {sij(k)}jE1 and at the same rate
(cf. Theorem 2.1.5). In the special case of a lattice structure of Y, i.e.,
Y;+, - y; = a > 0, j e 7L, the last two statements may be reversed, i.e., (./i,{k) =
/i'(k, yj)} jEa e l"(7L) implies ,p(k) a L"(R) for p = co or p = 2, and similarly
for the exponential growth rate.

PROOF. Using (2.1.51)-(2.1.53) and

ql'(k, yj) = ,fr'(k, x) cos[k(x - yj)] + 1'(k, x)k sin[k(x - y,)], x e /;+

[&(k. x)]2 + k-2[i'(k, x)]2 = k-2[t1'(k)]2 (3.22)

+ k-2 sin-2[k(y;,, - yj)] { -J#,+,(k) + /r;(k) cos[k(yj+, - yj)]}2, x e 1

(taking (i real-valued) one can follow the corresponding proof of Theorem 2.1.5
step by step.
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Next, we consider a periodic lattice and assume Y = A aZ, a > 0. In this
case M;(k) simplifies to

P;k sin(ka) + 2 cos(ka) 1
M,(k) = 1 01, Im k >- 0, j c Z, (3.23)

and (3.17) becomes

V/;+1(k) + at;-1(k) {-/3;k sin(ka) + 2 cos(ka)}q'1(k),

Imk - 0, k#nm/a, j,me7L. (3.24)

Of course, the remarks after (2.1.55) apply as well in the present case. As
our first concrete example we discuss the analog of the Kronig-Penney
model for 8'-interactions. The corresponding Hamiltonian in L2(R) reads

d2
"p.n = ax

-9(:-:p.n) _ (g e H2.2(R - A)I g'(na+) = g'(na-),

g(na+) - g(na-) _ fg'(na), n e 7L

-oo < fl 5 oo (3.25)

and we adopt the notation of Sect. 2.3. In analogy to (2.3.13) we also intro-
duce in L2((-a/2, a/2)) the family of self-adjoint operators

d2
EP,

A(0) _ -d2'-
-9(~p.n(0)) _ {g(0) a H2.2((-a/2, a/2) - (0})Ig(0, -a/2+) = eleag(0, a/2-),

g'(0, -a/2+) = eieag'(0, a/2-),

g'(0, 0+) = g'(0, 0-), g(0, 0+) - g(0, 0-) = l3g'(0, 0)),

-oo < P 5 oo, 0 e[-b/2, b/2). (3.26)

Then we have

Theorem 3.4. Let -oo < co, 0 e [-b/2, b/2). Then the essential spec-
trum of-0 , AM is empty,

6ess("p.n(0)) = ¢ (3.27)

and thus the spectrum of =p n(0) is purely discrete. In particular, its eigen-
values E A(O), m e N, ordered in magnitude are given by

Em n(0) = '(0)]2, m e N, (3.28)

where k. n(0), m e N, are solutions of

cos(Oa) = cos(ka) - (/ik/2) sin(ka), Im k >- 0. (3.29)

For / e P - {0}, except for /3 = -a, m = 1, and 0 = 0, the eigenvalues
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^(0) are simple with corresponding eigenfunctions

eik0^(B)v + e e -ikP;^(B)v

-a/2<v<0,
g9

m
.n(0 v) = C I - e-ieae-ikm^(9)a

> e-iOae-ikP;^(B)aeik#^(9)v + e-ikj;^)v

0<v<a/2,
m e N, O e [- b/2, b/2) and m >- 2 for /3 = - a and 0 = 0.

(3.30)

If /3 = -a, then E, I.A(0) = 0 is a twice degenerate eigenvalue with corre-
sponding eigenfunctions

9i jA(O,v)= 1, 9ii`'(O,v) = 11 + v, -a/2 < v < 0,
1 - a + v, 0<v<a/2. (3.31)

We have

Ee,n(0) = 0 < EOn(-b/2) < EZ.n(-b/2) = R2/a2 <E"'(0) < E3.n(0)

= 4n2/a2 < E3,n(-b/2) < E4.n(-b/2) = 9tt2/a2

< E4.n(0) < Es,n(0) = 16n2/a2

/3>0, (3.32)

E'(-b/2) < E',n(0) < E2.n(0) < EZ.n(-b/2) = n2/a2

< E3,n(-b/2) < E3.n(0) = 4n2/a2

< E4,n(0) < E4,n(-b/2) = 9n2/a2

< Es,n(-b/2) <.-.,

EO,n(-b/2) < 0,

0, 1PI <a, 0 1#1 5a,Ea,n(0)
<O, IQI >_ a,

EZ.n(0) {>O,
Ifl1 > a,

< 0. (3.33)

All nonconstant eigenvalues Em ^(0), 0 e [ - b/2, b/2), m e N, are strictly de-
creasing with respect to /3 e R.

For /3 = 0 the eigenvalues and eigenfunctions are identical to those given
in (2.3.20). For i6 = oo the Neumann boundary condition at zero implies
simple eigenvalues Em" for m >- 2 and a twice degenerate ground state Ell, ^

EW,n = 0

n {1. -a/2<v<0, oon -a/2<v<0,9(v)- 0, 0<v<a/2,
9(v)={0.

1, 0<v<a/2
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Ein = (m - 1)2n2/a2,

9 , (0, v) = C cos((m - 1)nv/a) {(' 1)a,_ie_ioa,
-a/2 < v < 0
0<v<a/2,

m = 2, 3,.... (3.34)

PROOF. Since =,,,,(0) obviously has compact resolvent we infer (3.27). Since the
results (3.30), (3.31), and (3.34) follow again from straightforward computations we
concentrate on (3.29), (3.32), and (3.33). Nondegeneracy of the eigenvalues E0. ^(0)
for 0 e (- b/2, 0) v (0, b/2) follows as in the proof of Theorem 2.3.1. In order to
derive (3.29) one can either use an approach based on (3.26) or our difference
equation approach. Since the latter works more quickly we use the ansatz

0j(k) = e±temajI Im 0(k) 0, j E Z, (3.35)

in (3.24) and (3.29) immediately results. As in the proof of Theorem 2.3.1 we now
concentrate on the cases 0 = 0, -b/2. Thus we look for solutions of

± 1 = cos(ka) - (/tk/2) sin(ka), k 0,

± I = cosh(Ka) + (/3K/2) sinh(Ka), k = 1K, K z 0.

This in turn is equivalent to solving

(3.36)

sin(ka/2) = 0 or cot(ka/2) = -2/pk for 0 = 0, (3.37)

sin[(ka + a)/2] = 0 or cot[(ka + ic)/2] = -2/$k for 0= -b/2; k Z 0,
(3.38)

and for nonpositive energies to

sinh(Ka/2) = 0 or 1 = (- flK/2)coth(Ka/2) for 0 = 0, (3.39)

1 = (-/tK/2) tanh(Ka/2) for 0=-b/2; k = 1K, K > 0. (3.40)

We study the case with nonpositive energy first. Obviously, (3.39) and (3.40) have
no solutions for /f >- 0 except K = 0. For fi < 0 we use

x coth(x) 1, x coth(x) Z x,

x tanh(x) x, x tanh(x) 5 x coth(x), x z 0,
(3.41)

to infer that (cf. Figure 47(a)) (3.40) has precisely one solution K, (Ii) > 0, $ < 0, and
(3.39) has as only solutions

p 10, 0 < K3(/f) < K1(/)) for 0 < I#I < a,

a.
(3.42)

K,(f) = 0 for Ii +i >-
(If 13 = -a then both equations in (3.39) yield precisely zero as solutions.) Next we
turn to nonnegative energies. We start with the simpler case >? > 0. Then (3.37) and
(3.38) yield solutions k = nn/a, n e No, and, since cot(ka/2) is strictly decreasing
from +w to -oo in (2nn/a, 2(n 1)n/a), n e tN0, and cot[(ka -r n)/2] is strictly
decreasing from 0 to -oo in (0, n/a) and from +oo to -oc in ((2n + 1)n/a,
(2n + 3)n/a), n E F,;0, one has precisely one additional solution in every interval
(nn/a, (n + 1)n/a), n e No (cf Figure 47(b)). This proves (3.32). Now we discuss
/f < 0. We start with 0 < I/ti < a. Then (3.42) exhibits two solutions K2(#) = 0,
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0 < K3(/3) < ,c1 (P). Concerning nonnegative energies we first note that due to 0 <
I#I < a, cot(ka/2) = -2//3k has no solutions in (0, n/a) since tan(x) > x for x E-
(0, n/2). All solutions of (3.37) and (3.38) are now given by k = nn/a, n e No, and,
due to the strict monotonicity of cot(ka/2) and cot[(ka + n)/2] mentioned above,
by precisely one additional solution in every interval (nr/a, (n + 1)a/a), n e N (cf.
Figure 47(c)). This proves (3.33) for 0 < IftI < a. At $ = -a, _.,n(0) has a zero-
energy eigenvalue of multiplicity two (cf. the remark after (3.42)). The remaining
eigenvalues are obtained identically as in the case 0 < 1#1 < a. For I/fl > a, (3.42)
implies one solution x20) = 0. The only change compared to the qualitative dis-
cussion of the nonnegative eigenvalues in the case $ _ -a now concerns the
degeneracy mentioned above. Since 1/31 > a, cot(ka/2) _ -2/,k now has precisely
one solution in (0, n/a) and hence this degeneracy is removed (cf. Figure 47(d)).
Thus (3.33) is proved.

(x1/321/2) coth(Ka/2)

1

0

ti lr

-- -- Ka/2

(a) -a < /3, < 0, #2 < -a

0

NI

(b) fi>0

1 11 ;1

11' I

k

Figure 47
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+1

-4 E

(a) /3=0

(c) /3=-0.8

(b) 1 2.8

(d) /3= -1

(e) /3 = -1.4

Figure 48 F(E) = cos(,/E-) - (ffE-/2) sin( ), Im f -- 0.

In Figure 48 the right-hand side of (3.29) is plotted as a function of E = k2
(a = 1). Whenever F(E) lies in [ -1, 1] for some E one can find a 0 E A such
that cos(0) = F(E) and we observe the familiar band structure with infinitely
many gaps.

For a plot of ^(0) cf. Figures 49 and 50.
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EP.;Z(0)

- 7f
(b) Q = 1.2

'0

(c) I_ -0.8

EM Z(0)III

-n n0 -a- I- 0
(d)(3=-1 (e) 1-2

Figure 49 The eigenvalues E,,;(0) = [k,O-z(0)]Z, m = 1, ..., 5, of E, z(0) as a function
of0, -n<0<n.
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E E E

- ' - -- - -- 0 `- - D

(a) = 0 (b) /3 = 1.2 (c) /3 = -0.8

E E

.0

(d) /3= -1 (e) /3_ -1.2

Figure 50 The energy E = k2 as a function of 9 0 for /3 = 0, 1.2 and of 9 >_ -n for
/3=-0.8,-1,-1.2.

In complete analogy to Theorem 2.3.2 we now get

Theorem 3.5. Let -oo < Q 5 oo and A = a7L, a > 0. Then

(3.43)

The analog of Theorem 2.3.3 now reads

Theorem 3.6. Let /3 a R and A = a7L, a > 0. The #,A has purely absolutely
continuous spectrum

OD

/ 1.A B.n B.n B.A 5 ap na(EXA) = a m bm m+,
m=1

asc(=B.A) = 0, ap(2 A) = 0.

m e N,

(3.44)
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Here, for /3 > 0

am .n = fEm'"(0) = (m - 1)2n2/a2, m odd,
Em '(-b/2) = (m - 1)2n2/a2, m even,

bm,n = JEm.^(-b/2), m odd
b! ^ < m2n2/a2,

m even,
m e N,

and for /3 < 0

0,a, =El (-b/2)<0, a2.n=EZ,n(0)
1:0,

5 a,

(Em'^(-b/2), in odd,
am' ^ m E N,

Em "(0), m even,

am .n > (m - 2)2n2/a2, m > 2,

b#.n = E0,n(0) <0, 1/l1 < a,

=0, I#I

(3.45)

(3.46)

Em ,n(0) = (m - 1)2n2/a2, m odd,ba.n= m=2 3...'" (m - 1)2n2/a2, m even,
'

with Em ^(g) the eigenvalues of described in Theorem 3.4. As m -+ oo
the length of the mth gap bm ^ resp. the width of the mth band

am ^ asymptotically fulfill

am - bm.n 2mn2a-2 - [(8a/IfI) + n2]a-2 + (8/a/3m) + O(m-2),

(3.47)
bm.n _ am.nm°'(8/aIQI) - (8/allm) + O(m

For /3 e R - {0}, -=#,A has infinitely many gaps in its spectrum. Since
Em ^(0), Em ^( - b/2), m e N, are simple for #:A - a, all possible gaps in
a(Eu,n) occur in this case. For /3 = -a, has a degenerate zero-
energy eigenvalue and thus the first gap closes at zero. Due to the simplicity
of m >- 2, and me N, all other possible gaps do
actually occur. For /t = 0, equals -A on H2. 2(l) and due to the
degeneracy of E,° ^(0), m >- 2, and ^(-b/2), ME N, all gaps close (c/.
(2.3.37)). For l3 = oo, equals the Neumann Laplacian on ft - A and
hence reduces to an infinite direct sum of Neumann Laplacians on (ma,
(m + 1)a), m e 7. Thus its spectrum is pure point with each eigenvalue of
infinite multiplicity

a.(E..n) = 0,
Ex.n) = a ,(-"!"-00,A) = {m2n2/a2lm a No}.

(3.48)

Furthermore, we note a strict monotonicity of a( P.n) with respect to /3
(being a consequence of the monotonicity of Em "(-b/2), m e N,
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with respect to fi e R as mentioned in Theorem 3.4)

6(3p ") a('p'.A), 0:5 /3' < /3,.

(3.49)
Q(Ep.") Q(=p'."), -oo</3'</35-a.

The band edges m e N, are continuous with respect to J3 a R.

PROOF. Since one can follow the proof of Theorem 2.3.3 step by step we omit any
details.

The spectrum of Ep," as a function of the coupling constant /3 e R is
illustrated in Figure 51.

N_

Figure 51 The band spectrum of Ep,z as a function of /3 (cf. also Figures 49 and
50).

We would like to stress the curious fact that for i3 < 0 the lower band edges
of Ep are given by b/2), i.e., by the antiperiodic eigenvalues and not
by the periodic eigenvalues EOM "(0). The reason for this is clear from (3.36)
since the discriminant behaves atypical as E = -K2 -oo for $ < 0, viz.

lim [cosh(Ka) + (/3K/2) sinh(rca)] _
+00,

K-a0 -00,
>-0,

<0.
(3.50)

This phenomenon is connected with the fact that Ep,"(0) has a ground state
which changes sign for v > 0. Hence the usual positivity preserving argu-
ments (cf. the proof of Theorem XIII.89e in [391]) break down.

The density of states dpp'"/dE of Ep," at a point E = k2 with E,
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m e NI, is then given by

I d0 _ sgn(/3) Isin(ka)I

dE 2ttk dk 2xIkI Isin(Oa)I
{I + (/3/2a)[I + ka cot(ka)]},

Rek-0, Imk-0, (3.51)

Here 0 = 0(k) is extended from 0 to oo for fi >- 0 and from -it/a to 0o for
/3<0:

0(k) = (-1)'"+la-' arccos[cos(ka) - (fJk/2) sin(ka)] +
ma/a{'I)it/a m odd,

1(m - ,m even,

0, k2 e Rek >- 0, Im1(m k >- 0, m e N, (3.52)

0(k) = (-1)"'a-' arccos [cos(ka) - (fJk/2) sin(ka)] +
(m - I )n/a, m odd,

- 2)n/a, m even,

/3<0, k2e(am",bm"), Rek;?:O, Imk;?!O, meN. (3.53)

Again the density of states behaves like dp13 /dE = O(IE - E,"1-112) near the
band edges E. a

Next we briefly indicate how to construct the resolvent of 3s,"(0) in mo-
mentum space. Similar to the corresponding two- and three-dimensional
problem (and in contrast to the Kronig-Penney situation in (2.3.49)-(2.3.56))
this approach requires a certain renormalization procedure. We start with
the operator in 12(f) (cf. also the end of Appendix G)

(R`"(O)9)(y) = (y + O)29(y) + !i`"(X.( + 0)( + 0), 9)X.(y + O)(y + 0),

(( l

yeI', w>0,

g e = {g e l2(I')I E (y + 0)4jg(y)I2 < Co }, 0 e A, (3.54)
(( yEr ))

and has been defined in (2.3.50). From Lemma B.5 we infer that

()70'(0) - k2)-'

= Gk(O) - + (X.(' + 0)( + 0), Gk(O)xw(' + 0)( + O))]-1'

(Gk(O) X.(. + 0)( + 0), )Gk(O)x((' + O)( + 0), 0 e A, (3.55)

where Gk(O) has been defined in (2.3.52). Since

(x.(' + 0)( + 0), Gk(0)x,(' + 0)( + 0)) _ Y_
(y + 0)2

Yer (y + 0)2 - k2
IY+eI s

CL2a11, 0eA-{0}

LL2i+ 1, 0 = 0

1+ k 2 Y; (y + 0)2 - k2 (3.56)

17+01:5w
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we choose the renormalized coupling constant to be

(,u')-' = - E
0 e A - {0}

[[2n]] + 1, 0 = 0
- a#-', -oo < P 500.

(3.57)

(Here [[x]] denotes the integer part of x, cf. Sect. 2.6.) Thus we get the final
result

n-lim (A'(0) - k2)-' _ M9.n(-0) - k2)-'

= Gk(O) - (P/a)
cos(ka) - cos(Oa)

(PAP),cos(Oa) - cos(ka) + (IJk/2) sin(ka)

keep(*p,n(-0)), Imk - 0, 0eA, -00<fl500, (3.58)

where

Ak(0)(y) = ((y + 0)2 - k2)-1(y + 0),

k2oir+012, Im k - 0, OeA, yer. (3.59)

The rest of Sect. 2.3 now goes through in the 5'-case as in the 6-case, since
due to the similarity of (3.17) (resp. (3.24)) and (2.1.49) (resp. (2.1.55)) one model
can be transformed into the other by the substitution

(aj/k) E--. - /ijk, j e 7L, (3.60)

keeping Y fixed. As an example of this substitution we mention, e.g., the analog
of Theorem 2.3.6.

Theorem 3.7. Let fi = { Qj } j E z be a bounded sequence of real numbers,
A = aZ, a > 0, and assume U to be open. If

U S (l P("e,.n) then U c p( e,n). (3.61)
jEZ

Since the analog of Lemma 2.3.6 for b'-interactions also trivially holds we
omit further details and turn directly to half-crystals. We assume the notations
(2.4.1) and (2.4.2) except that we replace the symbol a by fi to obtain consis-
tency with our earlier treatment in this chapter. Then the analog of Theorem
2.4.1 f o r the spectrum of E -.,A is obviously true and hence we pass immedi-
ately to the analog of Theorem 2.4.2. Again we rely on the difference equation
(3.24). Since now i/ij(k) = 0'(k, ja) (in contrast to Sect. 2.4 where 4ij(k) _
0(k, ja)) the analog of the ansatz (2.4.5) and (2.4.9) now reads

4/+ _
N_[e`e_aj - e_ie_ajg9i], j = -1, -2,...,

(3.62)j N+eie.aj1`', j = 0, 1, 2,..., Im 0+ > 0,
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- jM+[e-i0.aj - eie.aj°?'], j 0, 1, 2, ...,
M_e-ie ajT', j = -1, -2, ..., Im O+ > 0. (3.63)

As in Sect. 2.4, (3.24), (3.62), and (3.63) in the cases j < -2 and j > 1 immedi-
ately lead to

where now

e = 2 cos(ka),

cos(O+a) = (c - µ+)/2, Im B+ >- 0, (3.64)

µ+, j=0,1,2,...,
µj = -

µ j=-1,-2,...,
µ± = R±k sin(ka),

k 0 mn/a, m e Z. (3.65)

The rest of the calculation is thus identical to that in Sect. 2.4: In fact, formulas
(2.4.23)-(2.4.32) directly apply in the present 6'-case if R'(') are replaced by
-.R'(') in (2.4.24), (2.4.28), and (2.4.31) (cf. (3.62) and (3.63)) and a± by - /3±k2
in (2.4.25), (2.4.29), and (2.4.32). (Actually, the replacement Or) . -R'(" and
a -f3k2 in the N-center scattering matrix (11.2.4.7) of -A.,, immediately
yields the N-center scattering matrix (1I.3.31) of The reason behind the
substitution a - - f3k2 is of course the fact that

I--pk2, r(k) _ - r p. r(k), Imk > 0, (3.66)

where ra,1(k) (resp. %. r(k)) are defined in (2.1.18) (resp. (3.7)).
Finally, we turn to the analog of Sect. 2.6, i.e., to defects and impurity

scattering in the context of 8'-crystals. We replace -Aa,y. in (2.6.1) by 3'e, . and
at the same time - A,, y, ,.z in obvious notation by 2P, y,,.z (in particular, all
additional interactions of strength yi at the impurity points z, a Z, I = 1, ...,
M, are represented by S'-boundary conditions so that no mixture of 6- and
d'-interactions occurs). Then Theorems 2.6.1 and 2.6.2 immediately extend
to the b'-case. In fact, using again the above trick that the first derivative of
a wave function corresponding to a system of 6-interactions described, e.g.,
by -A,,,y is proportional to the corresponding wave function of 8,,, if
after differentiation a is replaced by -/3k2 (i.e., aj -Pjk2 for all j e J)
reproduces all results of Sect. 2.6 for the present 6'-case. As a simple example
we give the Bloch wave function associated with Ep,,, (i.e., the analog of
(2.6.11)). In fact,

`PP, n(k, a,, x)

_ `F, A(k, or, 0)(/3/2)eieaxe-ieox

eleaa cos(kx') - cos[k(x' - a)]
cos(Oa) - cos(ka)

x'=x-a[[x/a]], xeR, Imk>0, 0=±1, 0, Re02:0,
(3.67)

satisfies

-`I';,n(k, a, x) = k2`I'6,n(k, a, X),

Imk>-0, 6= ±1, xeR-A, (3.68)
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and the boundary conditions

'l'6,n(k, a, na+) = `I'B.n(k, or, na-),

`I'v,n(k, a, na+) - `I'p,n(k, a, na-) = P`l'B.n(k, a, na),

Imk>-0, a= ±1, neN. (3.69)

Taking the left (or right) derivative at x = 0 in (3.67) immediately yields (3.2.9).
Since x' is periodic with period a, (3.67) indeed represents a Bloch wave. The
analogs of the remaining results in Sect. 2.6 are now a simple exercise of the
above-mentioned substitution a-+ -/3k2 (bearing in mind that reflection
coefficients in (2.6.51) and (2.6.52) pick up an additional minus sign, as is clear
from the discussion after (3.65)).

Notes

The results of this chapter are taken from Gesztesy, Holden, and Kirsch [205],
[206].



CHAPTER 111.4

Infinitely Many Point Interactions in
Two Dimensions

The presentation in this chapter is modeled after the three-dimensional case,
Ch. 1. In order to make the presentation short, we will concentrate on the
existence of -A., r when

Y={yyljeNl)cR2 (4.1)

with

inf ly;-y,..I=d>0
i#3'

1.1 EM

and on the crystal and the polymer where we explicitly compute the spectrum.
The existence theorem now reads

Theorem 4.1. Let Y = { y;) j e N) c R2 be discrete in the sense of (4.2) and
let a: Y -+ R. Then the strong limit

s-lim (- OQ, r - k2)-', k2 e C - P. (4.3)
Ycr

I F1 'x

over the filter of all finite subsets f of Y exists, where a = alY and
(-O;j.Y - k2)-1 is given by (11.4.22). The limit equals the resolvent of a
self-adjoint operator -Aa,r which has the resolvent

(-A«.r - k2)-" = Gk + Y [1'a.r(k)];,''(Gk(' - yj,), ')Gk(' - yj),
i>i'=1

k2ep(-Aa,r), Imk>0, a;eR, y;eY, jEN, (4.4)

324



III.4 Infinitely Many Point Interactions in Two Dimensions 325

where r,,,Y(k) is the closed operator in II(Y) given by

ra.Y(k) = [(05
2n

(`I'(1) - 1n(k/2i)) I by - Ck(Yj - Yj')eN

Im k - 0, (4.5)

and

Gk(x), x # 0, 'Ck(x)= to, x=0, Gk(x)=(i/4)H (kixl), x#0, Imk2:0.
(4.6)

We have

[Ia Y(k)]-1 a p1(12(Y)), k2 a p(-A. 1), Imk > 0 large enough.
(4.7)

If a is bounded, then I'Q,Y(k)is analytic in k for Im k > 0. Let

where F is the Fourier transform,

F: L2(R2) - L2(R2),

(Ff)(p) = s-lim (2n)-1 f d2x f(x)e-iP, f e L2(R2). (4.9)
R-au J1xISR

Then - Aa Y has the resolvent

(9, A..Y - k2)-1f) = (0, (p2 - k2)-1f)
OD j+

, Fk.Y,)(F-ft.yj., J ),
j.j'=1

k2 a p(-AQ.Y), Imk > 0, cc j a R, yj a Y,, j e N1, f, 4 e L2(R2), (4.10)

where

e-i°y'
Fk,Y,(p) = (27t)-1 p2 - k2, peR2, yjeY, jeN. (4.11)

PROOF. The proof is similar to that of Theorem 1.1.1 since we still have the
estimate

lGk(x)l< ce "'14, Im k > 0, (4.12)

for large lxi and some constant c > 0 ([1], p. 378).

The explicit characterization of the domain and the locality
property still carries over to the case of infinitely many centers, as the next
theorem shows.

Theorem 4.2. Let yj a Y, I yj - yj. j >- d > 0, aj a Id, j # j', j, j' a N. Then the
domain fI(-A,, .) of -A.,Y consists of all functions ifi such that

00

i/i(x) = ok(x) + Y aj(k)Gk(x - yj), x e R2 - Y, (4.13)
j=1
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for some k with Im k > 0 where

4 e f0(- A) = H2' 2(R2), aj(k) _ Y [r'«. j e N.

(4.14)

Furthermore, this decomposition is unique,

(-Aa.r - k2)sj1 = (-A - k2)4, (4.15)

and if i = 0 in some open domain U c R', then also -A..rI, = 0 in U.

PROOF. Similar to that of Theorem 1.1.2.

We now turn directly to the periodic case, i.e., we will analyze the one-
electron model of a two-dimensional crystal with point interactions. The
general discussion of Sect. 1.3 is, except for normalization constants, still valid,
and our presentation will follow the first part of Sect. 1.4. First, we have to
introduce the basic quantities. Let A be a Bravais lattice, i.e.,

A = {n, a1 + n2a2 a R2I(n,, n2) a 712}, (4.16)

a, and a2 being two linearly independent vectors in R2. The dual lattice T
is given by

r = {n, b, + n2 b2 a R2I(n1, n2) E 712}, (4.17)

where

ajby = 2nbj,., j, j' = 1, 2. (4.18)

The dual groups A, the Brillouin zone, and f' equal

A = R2/r = (s, b, + s2b2 a R2Isj a [-?, J)' j = 1, 2}, (4.19)

f' = R2/A = {s, a, + n2a2 e RZIsj e [-4, 4),j = 1, 2}, (4.20)

respectively. For simplicity, we specialize to Y = {0}. Then the analog of
(1.4.30) reads

(Ar(O)g)(Y) = IY + 012g(y) - I tI-'µ(w)(d"(o), g)0W(0),

0eA, 7Er, g E 10(r), w > 0, (4.21)

where

4'"(0, y)=x,,,(0+y), 0c-A, yer (4.22)

Q. being the characteristic function of a closed ball in R2 with radius (o and
center at the origin). The problem is now to choose p(w) such as to obtain a
nontrivial self-adjoint operator in 12(r) in the limit to -> oo. This is the content
of the next
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Theorem 4.3. Let R'6(0) be the self-adjoint operator (4.21) in l2(r) with
domain

a (Aw(e)) _ (-A(0)) _ {g e 12(f) Ely + 01419(y)I2 < oo 6 e A.

(4.23)

if
1 'µ(w)= a-2n[T(1)+in2-lnw]} aelj, w>0, (4.24)

then f7w(0) converges in norm resolvent sen)))se for all 0 e A as w -+ oo to a
self-adjoint operator -&,A(0) with resolvent

(-A..n(e) - ki)-1

where

and

= Gk(9) + lf''I`' [cc - Z-q'(1) - ')Gk(0,

k2 e p(- AQ, A(0)), Imk >- 0, 9 e A, a e 08, (4.25)

Gk(9): 12(r) -' 12(r),

(Gk(e)9)(y) = Gk(e, y)9(y) = (ly + e12 - k2)-'9(y),

k2o1r+912, Imk20, 9eA, yer, ge12(r), (4.26)

9k(0) = (2n)'2 lim r Iy

+ IAI I -
k2

- 2n In w
I r+0I s

k2t 1r+012, ImkzO, (4.27)

PROOF. Applying Lemma B.5 we have

(A"(0) - k2)-' = Gk(0)

- [If'lu(w)-' + (0°'(e), Gk(0)00(0))]-`(c)#°'(e), )Gk(0)0W(e),

k2 a p(A°'(0)), Im k > 0, 0 e A. (4.28)

Since

= 1P I a -1 [Y'(1) + In 2] + 1 In w - (2n)-2 V

I'll
2n Y r-

Iy+012-k2

1

ll Iy+8I5o

`I'(1) - 9k(0)] (4.29)Irl [« -
2a

exists due to Lemma 4.4, the rest of the proof is similar to that of Theorem 1.4.1.

Also in two dimensions we shall make use of the Poisson summation
formula.
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Lemma 4.4 (Poisson Summation Formula). Let k2 a C, Im k > 0, and
0 e A. Then

(2n)-2 lim Il 2 2a In w
w-.a ref IY +

012 - k
I)+BI<_w

PROOF. Let

= E Gk(2)e-iA2 +
Zn

ln(k/i). (4.30)
a n
x#0

1

f(w)= r IY+012_k21

wZ0, (4.31)

Ir+elsw

(k e C, Im k > 0, and 0 e A will be fixed), and define

I

co -Ir+81µo

F(q) = e-w2/4" df(w) = E z q > 0. (4.32)
o r.rIV+0I- k'

The Poisson summation formula ([94], Theorem 67, and eq. (19), p. 260) then gives

d2x GG(x)e-"=2

+ 2a A.A
2q JR=d2x G& - A)e-"x=e .2sF(n) = ZI 2q

fR :

Define

Then

and hence

(" 1 °° 1

=
Ir'1 L- I dt 2

+ dk(2)e-"s + o(I) as ry - oo. (4.33)
4lt o t-k 2n2en

,F(q) =
Jo

e-a2i4"d[f(w) - IAI ln(w2 - k2)]. (4.34)-

e-02/44k

2 2
= F(q) - I K fo dt

t -r k2
r`(q) = F(q) -

I R fo dw c

= Iti Y 0k(A)e-iae + o(1)

aen
asq -+oo,

(2n)-2 lim IA) - 2a In w
2rer IY + e12 -k

Ir+e1Sw

= (2R)-2 lim
IA I- 2 - it In(w2 - k2)

w-W rEr IY + 012 k
Ir+Ol W

= Ir I-' lim [f( w) -
I

r ln(w2 - k2)]
W--00

= If I-' lim P(q) + ln(k/i)
"-w 2R

(4.35)

= AY
G,(A)e-iA* +

27t
ln(k/i). (4.36)
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Theorems 4.1 and 4.3 give rise to two self-adjoint operators, namely -
and f ®d 20 [ - A,, ^(0)], respectively, which are expected to be unitarily equiv-
alent. However, since they are obtained via different nontrivial limit proce-
dures, this has to be verified.

Theorem 4.5. Define 'l to be the unitary operator

1: L2(l 2) -, LZ(A,12(r)) =
n

d2012(r),

(If)(0,y)=f(Y+0), yer, OEA, feL2(R2).

Let a e R. Then

(4.37)

= f d20 "(0)], (4.38)

where -AQ,^ and -Aa,"(0) are given by (4.10) and (4.25), respectively.

PROOF. Similar to that of Theorem 1.4.3.

We will now compute the spectrum of - AQ,". In order to analyze a(-
we first study in detail the spectrum of -AQ.^(0).

Theorem 4.6. Let a E l and 0 e A. Then the spectrum of -Aa."(0) is purely
discrete, i.e.,

Aa ^(0)) = 0, 0 E A, (4.39)

and can be characterized as follows: Let

08 - 1 r + 012 = U (4.40)
n=o

where n e Nlo, are open intervals, and 1r + 012 is defined in analogy to
(1.4.24). In each interval -&."(0) has exactly one simple eigenvalue
En ^(0) = with eigenfunction

y) = [ly + 012 - E "(0)]-', 0 A, y c r. (4.41)

is the unique solution of

a - I `1'(1) = gkvjo)(0),
271

Im k ^(0) >_ 0, EO "(0) = [k "(0)]2 a (4.42)

0 e A, n e N, is strictly increasing in a E P. In addition, E^(0) E
ir + 012 is an eigenvalue of -Aa,^(0) of multiplicity m >t 1 iff there exist
m + I points yo,..., e r such that

E"(0)=lyo+012=...=lym+012. (4.43)
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The corresponding eigenspace is spanned by the eigenfunctions

404e>('1)=6",-a , yET, j=l,...,m.
-Aa.n(O) has no other eigenvalues.

(4.44)

PROOF. Similar to that of Theorem 1.4.4.

Remark. The proof of Theorem 4.6 actually provides a natural numbering
of the eigenvalues of -A.. A(O), cf. the remark after Theorem 1.4.4, p. 192.

Our next result is the computation of the spectrum of -Aa,^.

Theorem 4.7. Let A be a lattice in the sense of (4.16) and let a e R. Then the
spectrum of the operator -A.,A is purely absolutely continuous and equals

a(-Aa.n) = aae(-ea.n) = [Eo'n(0), Eo ^(O0)] U
[Ei'n, 00),

a e R, (4.45)

where

Oo = -2(b, + b2) (4.46)

and

E; ^ = min{Eb.^(0), 416-I2} =min Eb "(O), (4.47)
OEn

where b_ e {b,, b2 } is such that

Ib_ 15 Ibjl, j = 1, 2. (4.48)

ocEP (4.49)

Eo ^(9°) < 0 iff a 5 ao,A (4.50)

ao.n = g0(00). (4.51)

Furthermore, the spectrum is monotone increasing in a in the sense that

BEaaa(B)>0, yeT, 9e A,

a

a - -00,

Ea. n -+) 41 b- 12, a -' oo,
ll

0, a - -00,

10012, a - 00,
EO °) -00, a -+ -00,

(4.53)
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and hence there exists an al,A e I8 such that

a(-Da,n) = [Eo,n(0), ao), a > a1,n. (4.54)

PROOF. Similar to that of Theorem 1.4.5 except for the fact that in three dimen-
sions there are infinitely many 0's satisfying (1.4.120) (all lying on a line), while in
two dimensions we can find exactly one 06 such that (1.4.120) is fulfilled.

The difference in the computation of a(-A..A) in two and three dimensions
sheds some light one the Bethe-Sommerfeld conjecture [450]. This conjecture
states that Schrodinger operators with periodic interactions have infinitely
many gaps in their spectrum in one dimension, while they only have finitely
many gaps in their spectrum in higher dimensions. We have now seen that
the Schrodinger operator with periodic point interactions fulfills the Bethe-
Sommerfeld conjecture. However, as we have observed it was more difficult
to "close the gaps" in two dimensions than in three dimensions, and it is not
possible at all in one dimension for the Kronig-Penney model. In this sense
the periodic S'-model of Ch. 3 also fulfills the Bethe-Sommerfeld conjecture
since there are always infinitely many open gaps (although the first gap might
close).

Finally, we discuss the infinite straight polymer in two dimensions, i.e., the
analysis of where

A, ={(0,na)eR2InEZ}, a>0. (4.55)

To decompose -&.A, we introduce the unitary operators

0111: L2(R2) - L2(A,, L2(R x r1)) =
J

d9 L2(R x ll l),K
(1&1.t)(0,p,y)=f(p,y+0), OeA1, yer1, pER, fc-L2(R2),

(4.56)

where

Al =
-rz

a, a), r1= 0,---n eR 2 in e Z }.
a

The fiber of the resolvent of the free Hamiltonian -A with respect to the
decomposition defined by (4.49) then reads

Gk(0):L2(R x x f'1)

(Gk(O)g)(p, y) _ [I(p, y + 0)12 - k2]-'g(p, y),

OeA1, Of [O2,ao), Imk>:0. (4.57)

We can then state the following

Theorem 4.8. Let A, be given by (4.55). Then we have

*1 [-Aa.n,]°W = `® dO [-AQ.n,(0)] (4.58)
.l n,
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where is the self-adjoint operator in L2(R x I',) with resolvent

(-Da,A,(0) - k2)-1

= Gk(O) + j a - 2 [`Y(1) + In 2] - .qk(0)} (Gk(e), -)GG(0),

O e A, k2 a p(-Aa,A1(0)), Im k > 0, (4.59)

where

a
gk(O) = (21t)-2 lim E - 2n In Im k >- 0.

to-00 -,e r. lY + 0I2 - k2
Cu].

ly+es
11

PROOF. Following the proof of Theorem 1.4.8 we find (4.59) with

(4.60)

gk(o) _ Y- 2`,k(A)e-""B - 2 ln(k/i), Im k > 0. (4.61)
c A,

Using the Poisson summation formula, Lemma 4.9, the result follows.

Lemma 4.9 (Poisson Summation Formula). Let k2 a C, Im k > 0, and
0eA,.Then

(ik(A)e-'Ie = (2n) -2 Jim E a - 2n In w . (4.62)
AeA, W-00 yer, l k2

ly+ejsw

PROOF. Similar to that of Lemma 4.4.

From (4.59) we read off the spectral properties of -Aa,A,(0).

Theorem 4.10. Let at E R, 0 e A,. Then the essential spectrum of -AI,A,(O)
is purely absolutely continuous and equals

Qess(-Aa.A,(0)) = 6ac(-Aa,A,(9)) = [02, 00), Qsc(-Aa.A,(d)) = 0
(4.63)

In addition, -Aa,A,(©) has one simple eigenvalue E"^'(O) = [ka"^'(O)]2 < 02
which is the unique solution of

a Zn [P(1) + In 2] +

Im 0, Re k°"'(0) z 0. (4.64)

The corresponding eigenfunction reads

0E..AJ(8)(0, p, y) = [I(p, y + 0)II - Ea.A,(0)]-', 0 A,, p e R, '1 T,.
(4.65)

0 e A is strictly increasing in a e R.
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PROOF. Similar to that of Theorem 1.6.3.

As the final result in this chapter we compute the spectrum of

Theorem 4.11. Let a E R and A, be given by (4.55) Then the spectrum of
-Da A is purely absolutely continuous and equals

1[p.A,(O), 00),
L1( = (

0CA1,
Q - a.Ai) -6ac a.A1) [Ea.AI(O), Ea. A,(-n/a)] U [0, 00), of < aA,,

(4.66)

with E. A. (0) < 0, at e R, and Ea. A 1(0) < E2, A,(_ n/a) < 0 provided of < aA,
where aA, equals

aA = 1 [`['(1) + In 2] + (2n)-2 lim
-a-,_l

- 2n In w
2n (0-0c, re r,

a
(4.67)

Furthermore, the spectrum of -ea.A, is monotone increasing in a e 01 in the
sense that

aEa.A,(g) >
0,

clot
0 e A,. (4.68)

PROOF. Similar to that of Theorem 1.4.5.

Notes

The presentation is taken from Albeverio, Gesztesy, Hoegh-Krohn, and Holden
[19]. The discussion of the infinite straight polymer can partly be found in
[227]. The Bethe-Sommerfeld conjecture has been proved for a general class
of potentials in two and three dimensions by Skriganov [442], [443], [444], a
generalization in two dimensions also appeared in [130].

The two-dimensional crystal in a homogeneous magnetic field has been
studied in [196].



CHAPTER 111.5

Random Hamiltonians with Point
Interactions

111.5.1 Preliminaries

In this section we recall general properties of the spectrum of ergodic random
Hamiltonians.

Let P) be a complete probability space. Furthermore, let lt1 be a
separable, complex Hilbert space and let {Hw}0Elz be a family of P-a.s. self-
adjoint operators in W. The family {H0}0En is called measurable if w -

z)-' is weakly measurable for all z e C - R, i.e., iff
co-'(0,(H.-z)-1,), ¢,41E.', zEC-118, (5.1.1)

is measurable. Quite generally, we call a family of bounded operators {A(,),E,
weakly measurable if w -+ (0, A04'), 0,' E .Yf is measurable. It is straight-
forward to prove that w -+ (H0 - z)-' is weakly measurable for all z e C - R
if w -> (H. - zo)-' is weakly measurable for some z0 E C and for P-a.e. to e 0
the distance d(zo, a(H0)) >- t (independent of w). We start with

Lemma 5.1.1. Let { Iiw } W E si be a family of P-a.s. self-adjoint operators in
'. Then the following assertions (i)-(iv) are equivalent.

(1) to -* (II. - z)-' is weakly measurable for all z e C - P.
(ii) co E0(A) (the spectral projections associated with H.) is weakly meas-

urable fur all A E P.
(iii) to - a"NW is weakly measurable for all t e P.
(iv) co - f(H.,) is weakly measurable for any bounded, measurable function

f: P - P.
334
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PROOF. It suffices to recall that

(0,
a"B-0) =

J
d(I, E0(2)4,)e"x, t e R, (5.1.2)

s

(0, (He,, - dt eh,:t(16, e+'-O), Im z < 0, (5.1.3)

(QS, E,,(A)Ji)

x+a

= lim lim (2ni)-) dt(#, [(HW - t - ic)-' - (H. - t + 0-110),
aso c1o .-

neIR; m, JiaJr°, (5.1.4)

and the fact that f+ = (I f I ± f)/2 is a uniform limit of appropriate step functions
/;,)±) with 0 5 5 .f+.

Remark. Here co - (0, (HE, - z)-'t/i), w (0, E.(d)1i), etc. are only defined
in the complement of a set of P-measure zero. On this set we may simply
define these functions to be zero. This convention will always be used from
now on.

Lemma 5.1.2.

(i) Assume that w - A. w -> B. are weakly measurable, bounded operators
in Jr. Then w A.B. is also weakly measurable.

(ii) Assume the family {HE,},,Et2 of bounded, P-a.s. self-adjoint operators
in Jr to be weakly measurable. Then the family {H.}NES? is in fact
measurable in the sense defined in (5.1.1).

PROOF. Let bean orthonormal basis in.*. Then

(0,Am0n)(Oa,B.4,), 0, 4, eJ°,.EN (5.1.5)

proves (i).
In order to prove part (ii), we note that (i) implies that {H)0,, m c- N, and

hence polynomials

M

{P(H,,,)}0En, P(x) _ amxm, am a C, m = 1, ..., M, x e lt, (5.1.6)
m-0

are weakly measurable. Applying the Stone-Weierstrass approximation argument,
we infer that for bounded, continuous functions f: R C, { f(H0)}wEn is weakly
measurable. In particular, by choosing f(x) = e"'°, t e IR, we see that(ii)follows using
Lemma 5.1.1(iii).

Another useful result for the final applications we have in mind is

Lemma 5.1.3. For each n e N, let (H.("t}E,Et2 be a family of P-a.s. self-
adjoint operators in Jr which is measurable. Assume that for P-a.e. w c -Q,
Hw' converges in weak (and hence also in strong) resolvent sense to a self-
adjoint operator H. in Jr. Then the family {H. I..,, is measurable.
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PROOF. Since P-a.e. limits of measurable functions are again measurable, the
result follows from

(0, (H.n' - z)-1./.) n.a (W, (Hw - Z)-1.1,), 0,' e Jr, zEC - R. (5.1.7)

U

Without further assumptions, the various types of spectra associated with
H. in general will strongly depend on w. In order to get spectra which are
nonrandom sets we introduce the notion of ergodicity: Let I be some index
set and suppose that {T1}1E, is a family of measure preserving, ergodic trans-
formations on (0, .,F, P) in the sense that

P(T-'B) =P(B), BE.57, jE1, (5.1.8)

and that

A e .F, T-'A = A, j e I implies P(A) = 0 or P(A) = 1. (5.1.9)

In addition, we assume the existence of unitary operators U1, j E 1, in J '
which are related to j E 1, by the equation

UJH0,U;' =HrJ.' jet. (5.1.10)

If these assumptions are satisfied and if {Hu,}0E0 is measurable, we call
an ergodic family of P-a.s. self-adjoint operators in .W'.

We state

Lemma 5.1.4. Let {H.},E0 be an ergodic family of P-a.s. self-adjoins
operators in fit,' and let {E.(A)}.En, A e R, be the corresponding spectral
projections. Then there is a subset Qo a Q with P(00) = 1 such that for all
w e S2o and all A,,u e Q, a > µ, dim{Ran[E.(A) - E,,(p)]} equals a constant
CA,,, (possibly infinite) on S2o.

PROOF. Denote by

f, ,,(w) = dim{Ran[E.(A) - E.(p)]) = Tr[E.(A) - E0(µ)],

A, p e R, A> p, (5.1.11)

where abbreviates the trace. Clearly,

fA.,(Tw) = ft"(w), j E 1, (5.1.12)

since (5.1.10) implies

UjE.(2)U1 1= ET,,,,(A), A e R, j e 1. (5.1.13)

Moreover, fx ,, is measurable since

fx.u(w) _ [, [Ero(A) - Em(Ij)]tbn), (5.1.14)
n

where N is any orthonormal basis in jr, because w - (0n, E.,(A)A,), A e R, is
measurable by assumption. Since (T,)j., is ergodic, (5.1.12) implies that f,.,. is
P-a.s. constant (cf., e.g., [388], Sect. 11.5). Thus there exists a subset %,,, a 0 with



111.5.1 Preliminaries 337

P(K)A,,,) = 1 such that fx,,,(w) = Ca,,, for all co e flx,,,. Introducing 0o = nx.aEoHx.,,
we finally get

P(no) = 1, fx.N(w) = CA.., w e f10, A, P E 0. (5.1.15)

Given Lemma 5.1.4 we are able to formulate the first main result

Theorem 5.1.5. Let {H.}.E0 be an ergodic family of P-a.s. self-adjoint
operators in 0. Then there are sets E, E.SS, Ed S 18 such that

v(Hw) = E, (5.1.16)

E, (5.1.17)

ad(HW)= Ed, (5.1.18)

for P-a.e. CO E Q. (Here ad(-) = Qom() denotes the discrete spectrum.)

PROOF. Using the strong right continuity of spectral projections we have

Aea(H,,) =.VE>0: E,"(A+e)-E,,,(2-e)#0

pVA' A"E0, A"<A<A':E.(A')-E.(A")#0

VA', A" e 0, A" < A < A': fx'.x" (°)) # 0. (5.1.19)

But fx. x.. is P-a.s. constant by Lemma 5.1.4. Hence A e a(H.) is P-a.s. independent
of to e Q. Similarly, we obtain

A e e q Vc > 0: dim (Ran [E.(A + r.) - Ea(A - e)]) = oo

..VA,A"E0, A"<A<A':fx'x"(w)=oo. (5.1.20)

Hence, again by Lemma 5.1.4, A e a ..(H.) is P-a.s. independent of w e f2. Since
ad(H.) = (H0,) - (5.1.18) follows from the above.

In order to extend this result to the continuous, absolutely continuous, and
singularly continuous spectrum of H. we need the concept of analytic sets as
introduced, e.g., in [341], Ch. Ill. For a proof of the following result see, e.g.,
[286], [287], [341].

Lemma 5.1.6.

(i) Let d' be a complete, separable metric space, (a ,F) a measurable space,
and let (resp..sd(.(I) x . )) denote the F- (resp. 9(I) x ,F-)
analytic sets in 0 (resp. I x S2) where 9(I) denotes the Bore! a-algebra
of B. Then for A e .sd(?(I) x F) we have

prn(A) = {w a QI3x a 1I: (x, w) E A} E

(ii) If (11, .F, P) is a complete probability space, then W(f = F.
(iii) Assume, in addition, that d' is a complex Hilbert space and 9. is

a closed subspace of I. Suppose that {(0, (o) E 9 x nlt3 a I,,,} is
-4(9) x .917 analytic. Then Pem, the projection onto I, , is weakly
measurable.
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Remark. One can show under the hypotheses of Lemma 5.1.6(i) that .W G
.c'(.y) and also .4(f) O . s ,Q1(4O x .5F) [341] where _4(cy) (&,!F denotes
the a-algebra generated by :3(f) x. Hence, in order to satisfy the hypo-
theses of Lemma 5.1.6(iii), we only need to show that (0, w) E f x 010 E if. }
is measurable in the sense that it belongs to

Lemma 5.1.6 implies

Lemma 5.1.7. Let {H.}cEf2 be a measurable family of P-a.s. self-adjoint
operators in ,V°. Moreover, denote by P0, Pte`, P, P"a" the projections onto
the continuous, absolutely continuous, singularly continuous, and pure point
spectral subspace associated with H.. Then {PS`}aEf2
and {P°1}(.E12 are weakly measurable.

PROOF. Since a bounded, continuous and monotone function on R is uniformly
continuous and spectral projections are strongly right continuous we get

a)) E .W x 5210 e P'C.Al

{(0, co) c -C x 521.1 (0, EW(A)qS) is continuous on 08}

((4i,(0)E.;'(' x 52IemEN,3neN,s.t.d).,A'E18:

IA-A'I<n-'-1(i,[E (A)-EJA')]0)I<m-'}

_{(#,w)E.Yf x52IVniEN,3nEIN,s.t.VA,A e0:

IA - A'I < n' I ((6, [E,,,(A) - < m -' )

' }.n u n { (0, (o) c-.0 x 5211(0, [E..(A) - EU()')]O)I < in
n''. neN Z.).'E'QJA iln`

(5.1.22)

Since {H,,},,,En is measurable, the function f(b, w) = (¢, [E,(A) - Ew(A')]¢) is meas-
urable for fixed 0 E _W', A, X E R. Moreover, f is continuous with respect to 0 E A'
and hence f is (simultaneously) measurable with respect to (0, w) E.fY' x Q. Con-
sequently, the set

co) E .3Y' x 011(0, [E,(A) - E.(A')]d11 < m'' } (5.1.23)

and hence also the set

{ (01 (t)) C-4, x 010 E P."'W) (5.1.24)

is .9(.)r) O measurable. Now we only need to apply Lemma 5.1.6(iii) and the
remark following it in order to infer the weak measurability of (P;).E0. Next we
note that

{ (0, (.0) E 3'% X 5210 E }

(0) E .yf x 52138 E L' s.t. VA e 18: (0, E.(A)#) = J) dt g(t)l

_ { w) E W' x 5213g c- L' (R), s.t. VA E 0: (q , E.(A)¢) = J dt g(t) }
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= prw .,, 119, m, (u) e L`(U3) x j r x IQjVA e 0: (0, E,(2)q) = J dt g(t) )

pr,, x s) l Af {(g, 9, c,)) E L' (l) x .)f x cI(o, E..,(A)O) dt g(t)}).\
(5.1.25)

The function f(g, ¢, (,u) = (0, E,,,(1)S) - f za dt g(t) is measurable in w and con-
tinuous in (g, 0). Hence the set

{(,g, 0, <u) E 1,'(08) x ,' x QI f(g, 0. (o) = 0) (5.1.26)

is R(L' (R)) O ( ) O .`F measurable and thus analytic. Consequently, { (0, (0) C-
A' x QIq E P,,,`.YF} is (Jr)aO.F analytic by Lemma 5.1.6(i). Lemma 5.1.6(ii) then
proves that { P0,` }wES, is weakly measurable. Since P°" = I - Pa, and Pv` = Pw - PW`,
the proof is complete.

For an alternative approach to Lemma 5.1.7, cf. [119], [128].
Now we are able to extend Theorem 5.1.5 and state

Theorem 5.1.8. Let {HW}WEl2 be an ergodic family of P-a.s. self-adjoint
operators in h. Then there are sets E ,Ear, E, EF, S 08 such that

QjH.) = E,

aac(Hw) = Eac,

as.(H..) = ESQ,

ar,(H.) = EP,

for P-a.e. u) E Q.

PROOF. Define in analogy 10(5.1.11)

.fi ((o) = Tr[E (A) - F'.` (p)],

1 (w) = Tr[Ew ().) - El (u)], 2, µ e R.

where

(5.1.27)

(5.1.28)

(5.1.29)

(5.1.30)

(5.1.31)
1 w e Q,

A E I8, w e !Q. (5.1.32)

By Lemma 5.1 2(i), and {E, (d)}.aes), 2 E I8, are measurable, implying
measurability of J".,, and Moreover, (5.1.10) implies

Pr,a' 'j wPaCU-I = PT,;,,

and hence

j e 1, (5.1.33)

ft" ,,(T w) = fx (w), R..N(T(o) = A "'(w), j e 1. (5.1.34)

Since { 1}, is ergodic, we can follow the last part in the proof of Lemma 5.1.4 and
the proof of (5.1.16) to infer that H,,,P.c and HWP,` have P-a.s. constant spectrum.
The fact that c (HW) = a(HW[1 - P]) and a,,,(HW) = ajHW[Pw - P.']) then com-
pletes the proof.

EW(A)P.', Ear (A) = E,.,(A)PW`,
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Finally, we study the discrete spectrum in more detail. Let {U}, be a
family of unitary operators in %'. We call {Uj}jE, complete if there exists an
infinite subset to s I such that/

.V/lo = {0 E . e (U,*q$, U70) = 0,f i"i,Y E Ip} (5.1.35)

is total in A. Since .) is separable, !o is necessarily countable.
We have

Lemma 5.1.9. Let {P.}.,,2 be an ergodic family of (orthogonal) projec-
tions in Ye and assume the associated family of unitary operators {Uj};Er to
be complete. Then either dim[Ran(PP)] = 0 P-a.s. or dim[Ran(PP )] = oo
P-a.s.

PROOF. Since Tr(P.) is measurable and invariant under { T} jE,,dim [Ran(P.)] _
Tr(PP) is P-a.s. constant. Hence

Tr(PP) = E(Tr(Pa,)) P-a.s., (5.1.36)

where denotes expectation with respect to P. Let to = { j }nE A be such that

41={0 ef°I(U,*0,U7i)=0,n#m,n,mEN} (5.1.37)

is total in r. Choose 0 c -.W,,, with 11011 = 1. Then {qn = Uj*is an orthonormal
basis in YK Hence

N /
Tr(P.) P.O.), N e N, (5.1.38)

n=1

and thus

Tr(P.) = E(Tr(P0,)) > Y E((qn, P.O.)) P-a.s. (5.1.39)
n=1

Since T, j E 1, are measure preserving we infer

E((qn, P.O.)) = E((qS,

E((#, PT,. W#)) = E((O, P.O)), n E N. (5.1.40)

Hence either E((o, P 0)) = 0 for all 0 E.qfl. or Tr(PW) = oo P-a.s. In the first case
we conclude that (0, PW q) = 0 P-a.s. for all 0 E41.. Since .at,,, is total in.lto we finally
get P = 0 P-a.s.

Thus we obtain

Theorem 5.1.10. Let be an ergodic family of P-u.s. self-adjoint
operators in . ' and assume the associated unitary family {Uj}jE, to be
complete. Then

Ed = 01 (5.1.41)

i.e., ad(HW) = 0 for P-a.e. w E 0.

PROOF. Assume A E Ed. Then there exists an a > 0 such that a, A+ e] fl E _
0 and

Pw((A}) = EW(A + 0 - Ew(1- s) (5.1.42)
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is the projection onto the eigenspace of H. associated with A. Since {PW({A}))WEn
is ergodic, Lemma 5.1.9 applies. Moreover, since A is an eigenvalue of H,,,
dim{Ran[PW({A})]} -A 0 P-a.s. Thus dim{Ran[P.({A})]} = co P-a.s. which con-
tradicts the assumption that A e Ed. Thus Ed = 0.

Theorem 5.1.11. Let {H0}.En be an ergodic family of P-a.s. self-adjoint
operators in *. Fix A e R. Then A is an eigenvalue of H. either with probabi-
lity zero or probability one and the dimension of the corresponding eigenspace
is P-a.s. constant. If, in addition, the associated family of unitary operators
{Uj} jcI is complete, then the dimension of the eigenspace corresponding to A
is P-a.s. zero or infinite.

PROOF. Let

PW({A}) = s-lim [EJA + s) - EJA - e)]. (5.1.43)
£40

Then

dim{Ran[PW({A})]} = (5.1.44)

Since {EW(p))o,Esl is ergodic for all p E R, is also ergodic. Thus

dim{Ran[PT,W({A})]} = Tr[P,,((A))] =Tr[U,P.((A))Uj `]

= Tr[P,,({A})] = (5.1.45)

is a measurable function invariant under { T1),. Consequently, dim {Ran[PP((A))])
is P-a.s. constant. If, in addition, {Uj}jE, is complete, then Lemma 5.1.9 proves the
last assertion in the theorem.

Theorem 5.1.10 shows that P-a.s. there are no isolated eigenvalues of H. of
finite multiplicity. Theorem 5.1.11, on the other hand, shows that each A e R
is P-a.s. no eigenvalue of H. with finite multiplicity. Clearly, this does not
imply that there are no eigenvalues of finite multiplicity P-a.s. In fact, Theorem
5.1.11 asserts, for any A e R, the existence of a subset f2x s 0 with P( a) = I
such that A is no eigenvalue of finite multiplicity of H., co e Qx. Thus for all
W E ()A E R "A, provided (1 x E R fl:x 0, H. has no eigenvalues of finite multi-
plicity. But in general P((1x E R L)x) < 1. (In fact, in certain one-dimensional
systems it is known that P(()xER(lx) = 0 [217].)

We also emphasize that in general a (H.) strongly varies in (0 c- il Only its
closure ap(H.) equals a nonrandom set Ep P-a.s.

111.5.2 Random Point Interactions in Three Dimensions

The main purpose of this section is to construct random point interactions in
three dimensions, to show that the results of Sect. 5.1 apply and to investigate
the spectrum of this model.

Let (f2, .F, P) be a complete probability space. Assume { Y(ap)},,,En to be a
countable random subset of R3 of the form Y((o) = {yj(uo) a R31 j e N) where
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the y,, j e N, are R'-valued random variables such that

inf I y,(w) - y;.(w)I = d > 0, cv e 12. (5.2.1)
J.1 ER1

J#J

Moreover, let a(w) = {xy,(w) a RI J e N} be an Y-indexed family of real-valued
random variables. Then

Hw = - Aa(w). y(w1> w E S2, (5.2.2)

is a well-defined self-adjoint operator in LZ(ll 3) whose resolvent is given by
(1.1.6) with (a, Y) replaced by (a((o), Y(co)). In fact, at this point, Hw is just the
usual Hamiltonian of Sect. 1.1 depending on an additional parameter w. Since
we are particularly interested in the case where {HW }WEsa is an ergodic family,
we have to strengthen our hypotheses considerably. In fact, we shall consider
a particularly simple case where Y(w) is the level one stochastic set A((O) of a
countable family of independent, identically distributed (i.i.d.) 10, 1}-valued
random variables {X;,}afA' A the Bravais lattice (1.4.3). In other words,

A((9) = {A, e AIX,A(w) = 1 }, (0 e S2, (5.2.3)

represents the occupied sites in A. We also assume {aa}aen to be i.i.d. random
variables with supp(Pao) compact (Pao the distribution of ao, i.e., Pao(A) _
P(ao'(A)), A E.f). From now on the random point interaction Hamiltonian
H. is always given by

H. = - to e 12, (5.2.4)

with x(w) as just defined above and A(to) described in (5.2.3). This means that
in the notation of Theorem 1.4.4 we have restricted ourselves to the simplest
case where Y = {0}. In the special case where A(w) = A, (1) E Cl, H. models
point interaction alloys with randomly distributed coupling constants over
the lattice A in the one-body approximation. In the general case, H. describes
in addition random point defects.

Since { as } 1F A, { X a } a E A are i.i.d. random variables we can think of (a .F, P)
as the canonical space for the joint field {a.,, i.e., ( C I, , P) =
FL. A ("Al .F)L, Pa) where (!a;,, Pa), A. e A, are identical copies of the same
probability space. Then the points (o e Cl can be looked upon as points in a
discrete Cartesian product (v = n Ae Au)a and we call cwa the J,th component
of (D. In this representation tot = (sa(w), XA(w)).

Next let { Ta } a E A be the shift operator on S2 defined by

(TA.w)A = (vA w E Cl, A, A' e A. (5.2.5)

We remark that

sa(Ta.w) = XA(Tj.(JJ) = XA-A'((10)1 w E Cl, )., A' e A. (5.2.6)

Then TA is a measurable transformation which preserves P. Moreover, let
A E .F be a { Ta } A. A invariant set, i.e., T;-'(A) = A, A. e A. Then A is in the tail
a-algebra (cf. Appendix 1) of the random variables {aa, Xa},EA. Since aA, Xa,

e A, are independent, we get P(A) = 0 or P(A) = 1 be Kolmogorov's 0-1
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law (cf. Appendix 1). Thus {T,},,EA is a family of measure preserving, ergodic
transformations. Let {UA}.EA denote the family of unitary translation opera-
tors in LZ(R3)

(Uag)(x) = g(x - .l), g e LZ(R3), i, e A. (5.2.7)

Clearly, {Ux}xeA is complete in the sense of Sect. 5.1. We get

Lemma 5.2.1. Let {HW}WE0 be defined as in (5.2.4). Then (HW)WEn is an
ergodie family co/f set'-adjoin( operators in L2(R3) and

UZ HW U;- ' = Hl.,., co a 12, A E A. (5.2.8)

PROOF. Measurability of {HW},,,Es, simply follows from Theorem 1.1.1 and
Lemma 5.1.3. Moreover, approximating H. by scaled, short-range interactions
HH.A((,) with

2 (s, TA'()) = AZ .A'(f., w), w e 12, A, X E A, (5.2.9)

in norm resolvent sense (cf. Theorem 1.2.1), observing (5.2.6), we infer

Ua(H,.A w) - k2)-l U; I = (Hc.n(P,W) - k 2
Y '. k2EC-l. (UEa, AE A,

(5.2.10)

and hence

Ua(HW-k2)-Ux'=(1/7,W-k2)-', k2EC-R, wE11, AE A. (5.2.11)

Thus Theorems 5.1.5, 5.1.8, 5.1.10, and 5.1. 11 immediately apply and we get

Theorem 5.2.2. Let {HW } W E tt be_def ined as in (5.2.4). Then a(HW),
(H, ), aa.(HW), a,, (HW), and aP(HW) all equal certain nonrandom sets E, Ee

71c, E;,c) E, and EP S P./or P-a.e. w E Q. Moreover, ad(HW) _ 0 for P-a.e.
(o a Q. In addition, for any t e P there exists a subset UT a (I with P(f t) = 1
such that r is no eigenvalue of finite multiplicity of HW, (a E 12t.

In the rest of this section we shall investigate E = a(HW) for P-a.e. CO E S2 in
more detail. For this purpose we introduce some more notations. Let us
denote O(to) = (a,(w), X,,((o) }AE A, co e S2. Then 0((o) determines the positions
and strengths of the random potential sources, hence we call 0(w) the stochas-
tic potential. By H(4 )((j))) we denote the operator -A,(W).A(W) with positions
and strengths given by 0((o), i.e., a(co) = (0(140)h , A, A(w) = (A E AIXA(w) =
1). A sequence q' = {(sx, qx) E supp(Pao) x {0, 1} } is called an admissible
potential. The set of all admissible potentials is denoted by a. For each 0 E
.4 we denote by H(4) the operator -A,.A(m) with a = {;,}..A, A(O) =
{a E Ajgx = 11. Next we call O e .& periodic (with periods L,, L2, L3) if there
exist linearly independent L. E A - (0), m = 1, 2, 3, such that

Sx+L, = 4 j, na+L, = nz, A E A, m = 1, 2, 3. (5.2.12)

Finally, let o% denote the set of all periodic, admissible potentials.
Given these preliminaries we are able to formulate
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Theorem 5.2.3. Let I(w) be the stochastic potential defined above. Then

(i) a(H(0)) c E, 0 E d. (5.2.13)

(ii) = U a(H(b)) = U a(H(tti)), (5.2.14)
Oe O/ 0e:9

where E = a(H('(w))) for P-a.e. w E Q.

PROOF. Let (D(w) be the given stochastic potential and let 0 = {(l:a, ryy))I.l E .lad.
Then (1.1.6) and (1.1.7) imply

(H(q$) - k2)-' = Gk + ([Tk(d)] ' - 1tA(du }a. a (Gk(' - y1'), ')Gk(' - Ya),
A'eA

k2 E p(H(c)), Im k > 0. (5.2.15)

Here 1 M denotes the identity on a set M S A, [A(q)Jc = A - A(#), and

TI(ty) = r,.A(#)(k) + 1(A(O.,

[r,.A(m)(k)J.= (&A
-4n)6,.'-0k(A-A). A,A'EA(#), Im k > 0. (5.2.16)

Next let

12' = {w e QIo(H(1(w))) - E}. (5.2.17)

By Theorem 5.2.2, 0' has probability one, i.e., P(W) = 1. Define

12.* = {w E .QI Iax(w) - xl < n'', JAI < n}, n e N. (5.2.18)

Since ax are i.i.d. random variables we get

PM.*) = n P({w a S21l01x(w) - xl < n 'I)
Al --In

= jI P({wEi2llao(w)-txI<n-')), nENl. (5.2.19)
IRIS"

By assumption a;x E supp(P,,), A E A. If we assume that

P({wECAI Iao(('0)- xl <n-'})=0 for some neNlthen

Pao(( x - n-, z + n-')) = 0

would imply the contradiction , 0 supp(Pna). Hence P({w e 0Ilao(w) - xl <
n-')) > 0 implying P(121.) > 0. In particular, Q' fl 0 (since otherwise P(11' U

1 yields a contradiction). Pick wn E 6' 60 .0. Then

6(H((l>(wn))) = E. (5.2.20)

Using the definition of i2., one then proves that

{[T,.(1>(wn))]-' - 1 S T ,k)new [ ,n(W - 1 tA($)r,

K > 0 large enough, (5.2.21)

in 12(A). Here Tk(4)(wn)) (which is defined in analogy to (5.2.16)) is associated with
H(4D((on)) like T,(¢) is associated with H(0) (cf. (5.2.15)). Similarly. A(I (w )) =
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(,l e 1). Assertion (5.2.21) is shown by first proving
on vectors of 12(A) of compact support (i.e., on 102(A)). Since 1 (9S),

is > 0, are bounded and self-adjoint, this finally proves (5.2.21). Using (5.2.21) and
the fact that {(Gk( - A), f)fIEAE 12(A), f e L2(113) (cf. (1.1.24) and the following
arguments) one proves that H(4(co )) converges in weak (and hence in strong)
resolvent sense to H(q) as n -+ oo. This finally implies, using Theorem VIII.24 of
[388], that

a(H(O)) c U a(H(0(a).))) = E. (5.2.22)
116N

In particular, (5.2.22) implies

Next let co ' E i2' and let

U E. (5.2.23)
4 60

0' = {( z,rya)EsupM(P:o) x {0, 1}}aEA= 1(w') (5.2.24)

with

7a = Xa(uw' ), a = aa(w' ), A E A. (5.2.25)

Then 0' E .ri and thus

ttU a(H(#)) 2 a(H(O' )) = a(H('(& ))) = E. (5.2.26)
*E.d

Together with (5.2.23) this proves the first assertion in (ii). To prove the second
assertion in (ii) we first prove that for any q$ e d we can find a sequence N e 9
such that converges to H(q$) in strong resolvent sense as n - oo. For that
purpose we define

(O.)a = rlx) = ( a, 1a), A E

nEN,
(5.2.27)

and continue periodically outside A. Take 0, e 12(A) = {g E I2(A)I supp(g) com-
pact}.Then

- a1214,(2)IZ 0, (5.2.28)Fc.A( )(k)]4,IIZ = E g"
aEA

since x = a for A E A. and 0 has compact support. Hence TakeM-W

k = 1K, K > 0. Then and are bounded and self-adjoint, implying
convergence of to T,,,(q) in the strong resolvent sense as n co. As in the
argument following (5.2.21) this proves that H(q$) converges to H(46) in strong
resolvent sense as n -. oo. The result together with Theorem VIII.24 of [388] shows

Using (5.2.26) this implies

a(H(O)) c U r(H(q )). (5.2.29)

E Z- U a(H(On))
nEa

(5.2.30)
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On the other hand, 41 c .at and (5.2.23) then shows

Y. -2 U a(tfM). (5.2.31)

E.#

Taking closures, this and (5.2.30) complete the proof.

Theorem 5.2.3(ii) shows, in particular, that E only depends on supp(P,0) and
not on other properties of P,o. In addition, it shows that E has a band structure
of the type E = Um/e it [am, bm], am < bm, m c- N, and hence E is the closure of
the open set Um e Fb (am, bm)

Next we turn to a detailed study of the negative part of the spectrum of
H(1(a))) as one removes point interactions.

Lemma 5.2.4. Let p = inf[supp(P,0)], v = sup[supp(PP0)], and let An,
n e N!, be defined as in (5.2.27). Let 0, E ruff be the admissible potential

n= {( X {0, I}}AE A,

n,=I, A E A,,, qa=0, AEA - An, n EN. (5.2.32)

Then

n (-x, 0) c [E"o'" (0), Eo A(O0)] fl (-o0, 0), n e N, (5.2.33)

where we used the terminology of Theorem 1.4.5 on the right-hand side of
(5.2.33).

PROOF. By Sect. 11.1.1, the negative eigenvalues k; n < 0, 1 = 1, ..., Nn, of
H(#,,) are in one-to-one correspondence with zero eigenvalues of 1y (k, n), I _
1, ..., Nn. Denote by Emax.n(S) (resp. Em,n,n(S)) the largest (resp. smallest) of these
eigenvalues I = 1, ..., Nn. Because all eigenvalues of are strictly
increasing in K, K > 0, we get that Ema%,n(t;) (resp. Emirs is the unique eigenvalue
such that

0 (resp. 0), K > 0, (5.2.34)

for k2 = -K2. Moreover, by the monotonicity of K > 0, with respect to
and by Rayleigh's theorem ([391], p. 364) we infer

SUP[a(r,.n(IK))] ? SUP 10r,, A(,.,(iK))],

inf[a(F,,,A(h ))] < K > 0. (5.2.35)

.A((),) (resp. Eo ^(0)) is the value of k2 = - K2 for which sup[a(F.A(iK))] _Clearly, E0
0 (resp. inf[a(F _A(iK))] = 0) (cf. Theorem 1.4.5). Thus

Ep ^(O) 5 Eo a supp(Pan), n E N, (5.2.36)

and hence Theorem 1.4.5 implies (5.2.33).

Next we state

Lemma 5.2.5. Assume the hypotheses of Lemma 5.2.4. Let A e A and define
0n^ a W to be the admissible potential

On = {( Al q2) E supp(P,a) x {0,1}} l,A,

qA=1, .?eA.-A, qA=0, d#A,,-A, neN. (5.2.37)
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Then

o(H(¢q)), n e N. (5.2.38)

PROOF. Since r is the restriction of to a subspace, it follows
from Rayleigh's theorem ([391], p. 364) that

sup[6(rr,A( l)(iK))] < sup16(r,, A(0.)401

inf[a(rr.A( )(iK))] K > 0.
(5.2.39)

Define E,^naa () in analogy to Emin,n(S), Ema:,a in the proof of Lemma
5.2.4 (replacing 0. by ^). The fact that all eigenvalues of r A( are
strictly increasing in K, K > 0, together with (5.2.39) then yields

Emin,n(S) 5 Emin,n(b) Ema:,n( ) Emaa,n( )> a supp(Pao), n e N. (5.2.40)

This proves

c {6(H(#n))fl(-ao,0)), ne N. (5.2.41)

But since both and H(On) only describe a finite number of point interactions

[0, oo) s {a(H(gp )).fl a(H(qSn))}, n e N, (5.2.42)

and the proof is complete.

Lemma 5.2.6. Let t = inf[supp(Pao)], v = sup[supp(P,J]. Then

z fl (-oo, 0) S [E"o'"(0), Eo "(90)] fl (-oo, 0). (5.2.43)

In particular, if v < ao, A (cf. (1.4.101)) then

E n [E'0 "(e0), 0) = 0. (5.2.44)

PROOF. Let in 0n, O,^ of Lemmas 5.2.4 and 5.2.5 be periodic with periods L1, L2,
L3 e A - {0). Arguing as in the proof of Theorem 5.2.3 we infer that H(en) -, H(q)
and H(#,) -. H(0A) in strong resolvent sense as n -+ co. Here

0 = {(fix, q2) a supp(Pao) x (0, 1)I", = 1, A e A),

OA= {(fix,gx)asupp(Pao) x {0,1)Igx= 1,AeA-X01A=0,A0A-A},

a+Lm = ,1, A e A, m=1,2,3, (5.2.45)

(i.e., A(q) = A, A(0^) = A - A). By Lemmas 5.2.4 and 5.2.5 we get

(H(oA)) f l (-oo, 0) c 6(H(o)) n (-co, 0)

S [E"o'A(0), E0 ,A wo)i fl (-oo, 0). (5.2.46)

Next let (w) = {ax(w), X2(w))xEA be a stochastic potential and A((O) = (A e
AjXx(w) = 1). By Theorem 5.2.2 we have a(H(41((o'))) = E for some w' a n, Let us
now choose

A = [A(wl)]`, is = (a(w'))A,

Then 4 (w') and hence (5.2.46) implies (5.2.43).

Next we state

A e A. (5.2.47)
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Lemma 5.2.7. Let - Aa,r+" be the operator defined in Theorem 1.4.3 and
assume at- < a j < a+, a+ a U8, j = 1, ... , N. Let E E o(- Aa, r+") Then there
exists an &E [a_, a+] such that E e a(-Ai,") (where -Ai,A is defined in
Theorem 1.4.4).

PROOF. Let V = Ve Col(W) be real-valued, j = 1, ..., N, and Y:5 0. Denote by
H, r+n (resp. by H,,A) the operators in (1.4.116) which by Theorem 1.2.1 approximate
-Aa,r+A (resp. -AY,,,), ye R, in norm resolvent sense as s JO. In addition, we
assume H = -A + V to be in case If with 0 the corresponding zero-energy reson-
ance function and choose

2j(c) = I - I(v, tb)I2aje, c > 0, j = I__ N, (5.2.48)

in HE,r+A and

n(c) = 1 - 1(v, 0)I2yc, c > 0, y R, (5.2.49)

in H,.n. Because of the above-mentioned norm resolvent convergence of H,,r+n to
- Aa, r+n as c 10, we can choose c > 0 small enough such that for given b > 0, the
distance d(E, a(H,, r+n)) 5 S. Next we vary a, in such a way that either all r j j a_ or
all aj j a+, j = 1, ... , N. Using the min-max principle and the fact that the spectrum
of H,, r+n depends continuously on a , ... , a,,, we infer that in the first case a(H,, r+n)
moves to the left whereas in the second case it moves to the right. Taking into
account that a(H, ,,) also depends continuously on y and moves to the left or right
if y is decreased or increased (and that HA = H:.r+n 'f Y = al = = a,,), we get
the existence of an a e [a_, a+] such that d(E, a(R,,")) < S where A ,A equals H,,A
with y = a. Since 6 > 0 was arbitrary we obtain d(f, a(-ACA = 0. Since
is closed we finally get 2 e a(- Aa,") as desired.

Now we are ready to give a precise description of E. We start with the case
where all lattice sites are occupied, i.e., where P(X0 = 0) = 0.

Theorem 5.2.8. Let p = inf[supp(Pao)], v = sup[supp(P,0)], and suppose
that P(X0 = 0) = 0. Moreover, assume that either Eo "(0) 5 Eo "(90) or that
supp(Pao) _ [p, v]. Then

E = [E"0'"(0), E,,A(00)] U [Ei'", oo) = a(-AM.")U.(-A,,A). (5.2.50)

If, in addition, v < a0," then

in (-oo, 0) =[E0 "(0), E0 ,,A(00)1, E0 ,,A(00) < 0. (5.2.51)

If, in addition, p z al," then
E = a(- A,,,"). (5.2.52)

PROOF. Since (5.2.51) and (5.2.52) are easy consequences of (5.2.50) and the mono-
tonicity of Eo ^(0), Eo "(Bo) with respect to a e R, we concentrate on (5.2.50). By
(5.2.14) we obviously have

E ? a(-A,,.n)Ua(-A..n). (5.2.53)

On the other hand, by Lemma 5.2.7 we get

a(H(#)) c U a(-Aa,n) = a(-AP,n)Ua(-A,,A), 0 e 9. (5.2.54)
ae(Y,"1

By taking the union over all 0 e :P and the closure the proof is complete.
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Finally, we treat the case where 0 < P(X0 = 0) < 1(the case P(X0 = 0) = I
corresponds to the free Hamiltonian -A).

Theorem 5.2.9. Let p = inf[supp(Pw,)], v = sup[supp(P,o)], and suppose
that 0 < P(X0 = 0) < 1. Moreover, assume that either Eo A(0) S Eo A(90) or
that supp(Pao) = [p, v]. Then

E = [Eo'A(0), Eo A(00)] U [0, oo) = o (-Au,A) U o(-A,,,A) U [0, co).
(5.2.55)

If, in addition, v < aO,A then (5.2.51) holds If, in addition, it z al,A then
(5.2.52) also holds.

PROOF. For E n (-co, 0) we only need to combine Lemma 5.2.6 and (5.2.14). For
E fl [0, oo) we argue as follows. Since P(XO = 0) > 0 by hypothesis, the event that
XA = 0 for A E n e N (cf. 5.2.27)) has positive probability no matter how large n
is. Thus

OR={c) e12I3A0e A,s.t.VA A0+A,,:Xx=0). (5.2.56)

has probability one, 1, since it is invariant with respect to shifts Tx, A e A.
Thus the set

0. = f OR (5.2.57)
Rely

has probability one, P(f!m) = 1. But for co e Q,, we find subsets .l0 + Am, A0 e A,
m e N (perhaps far away) of arbitrary large size without point interactions contained
in them. Hence a standard argument based on Weyl trial functions (cf., e.g., [391],
Ch. XIII) shows that [0, oo) z o(Hj, w e f?m. Let f2' be defined as in (5.2.17). Then
a, n a # 0 since both sets have probability one. Consequently, for w0 a Cl' n Cl,,
we obtain

(0, oo) S a(H 0) = E. (5.2.58)

For µ "2! a1,A, we get the surprising result that the spectrum of Hm in
Theorems 5.2.8 (where P(X0 = 0) = 0) and 5.2.9 (where 0 < P(X0 = 0) < 1)
coincides and equals o(-A,,,A) for P-a.e. w e Q. In other words, starting from
the random Hamiltonian H,, with centers at the points of the lattice A creating
point interactions of random strengths and switching off some of the centers
in a random way does not change the spectrum in the case where p 2 al,A.

Both Theorems 5.2.8 and 5.2.9 can be viewed as generalizations of the
Saxon-Hutner conjecture (cf. Sect. 2.3 and the following one).

111.5.3 Random Point Interactions in One Dimension

Here we derive the analogous results of the foregoing section for random b-
and S'-interactions in one dimension.

Let A = aZ, a > 0, and consider -Ao.t,A and 46tdt.A in LZ(R) where
a(w) = {aj((o) a R} j. z' 13(w) = { f j(w) a R} j,z, and a,, f j, j e Z are i.i.d. real-
valued random variables on the canonical probability space (Cl, .F, P). As-
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sume supp(PP) and supp(P0o) to be compact. Then l is chosen to be i2 =
[supp(P.,,)]a (resp. f? = [supp(Pp0)]a) and hence S2 is a compact topological
space with respect to the product topology. Thus we may speak of the support
of the probability measure P.

Since in almost all of the following results, -A.,.),, and can be
treated on exactly the same footing, we now introduce the following unifying
notation: First of all, we replace a(w) and fl(w) by y(w) = {yj(w) E R}jcz with
/J, j e Z. i.i.d. random variables with compact support. Moreover, because of
the above identification 0 = any to c- f is given by w = n jEa wj
and co, = yj(w), j e Z, in this representation. The operator H. in L2(R) then
represents -A.,,, or =u,,,, (i.e., w; = yj(w) now plays the role of aj(w) or Pj((O),
j E 1L). The corresponding deterministic operators - Aa,,, and 5P,,, are in
general represented by the symbol H.

Next let {T;}jz be the shift operator in Cl defined by

(T(O)j=wj-t. oeC, j,IE1, (5.3.1)

such that

yj(Tw) = yj-,(w) = wj-,, w E i2, j, I E 7L. (5.3.2)

As in Sect. 5.2, { 7} jE z is a family of measure preserving, ergodic transforma-
tions. Moreover, let { U, } ;E a denote the family of unitary translation operators
in L2(P)

(U,g)(x) = g(x - ja), g E L2(R), j E Z. (5.3.3)

As in Sect. 5.2, {U;},Ez is complete in the sense of Sect. 5.1 and

U; HN U; I = HTTW, w E S2, j E z. (5.3.4)

Since the proof of these statements and of the analogs of Theorems 5.2.2 and
5.2.3 can be translated into the present situation word by word (some techni-
calities even become simpler since Gk(0) is bounded in one dimension) we have

Theorem 5.3.1. Let {H,,,}w0S2 he defined as above. Then a(H.), a..(H.),
ac(H,,,), aac(H,,,), a5i;(H 0), and a9(H,a) all equal certain nonrandom sets E,
Et54, EC, Ear, E«, and E, for P-a.e. w e Q. Moreover, ad(H.) = 0 for P-a.e.
co E Cl. For any t e I there exists a subset Sgt c C1 with P(S!t) = 1 such that
r is no eigenvalue of H,,,, w E Sgt.

PR(x)F. As mentioned above only the last assertion concerning the fact that any
T e R is P-a.s. no eigenvalue of H0, needs a proof. But this holds since any eigenvalue
of H,., has multiplicity less than or equal to two.

In order to state the analog of Theorem 5.2.2 we again introduce the concept
of stochastic (resp. admissible) potentials. A sequence cle((O) = {yj(w) E U8};EZ,
w e Cl, with yj, j E Z, i.i.d. random variables and supp(P,,o) compact is called
a stochastic potential. In contrast to Sect. 5.2 there is now no need to intro-
duce the stochastic variables Xj, j e 7L, since yj((.o) = 0 is possible whenever
P(yj = 0) > 0. The class , f of admissible potentials then consists of elements
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0 = E supp(P,0)}jEz. The class 9 of all periodic admissible potentials is
then given by all 0 e .4 such that the corresponding sequence z satisfies

j+L = i, J E Z, (5.3.5)

for some L e Z - {0}. For o e .sad, H(O)denotes the Hamiltonian HH with yi(ru)
replaced by j, j e 7L (i.e., H(0) = H4, A). Then we get

Theorem 5.3.2. Let (1)(w) be the stochastic potential as defined above. Then

(i) r(H(qS)) c E, 0 e d, (5.3.6)

(ii) E = U a(H(6)) = 1U r(H(6)), (5.3.7)
oedd de

where E= a(H(t(w))) for P-a.e. w e Q.

As remarked before, one can follow the proof of Theorem 5.2.3 step by step.
We also note that Theorem 5.3.2(i) above simply means

a(H,D) c E, . co e supp(P)

lies that 0 defineded assince co e supp(P) imp

WN = {wj}led
E.SGfl,

is an admissible potential.
Next we state

(5.3.8)

u) = n w1, (5.3.9)
jeZ

Theorem 5.3.3. Under the assumptions of Theorem 5.3.2 we get

E = U o(HH,n)
e suPP(P,o)

(5.3.10)

PROOF. Since Hc,A = H(0) with 0 E supp(P,o)} jEz Theorem 5.3.2(ii)
implies

T., C- E, (5.3.11)

where

Eo = U a(HH.n). (5.3.12)
S E suPP(P,p)

Conversely, there is a 0 = E supp(P,o)} jE, a d such that a(H(m)) = E (this is
even true for P-a.e. co z c- S2). By Theorem 2.3.6 we know that if (c, d) fl £o =
0 then also

(c, d) fl E _ (c, d) fl a(H(q)) = 0. (5.3.13)

Thus

E C Eo. (5.3.14)

In the rest of the proof we show that Eo is closed implying E = Eo. By Theorems
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2.3.3 and 3.6 we have

y.A y.A

M=1

Thus

yeR, me N. (5.3.15)

B. = U [am ", b.1-A] c [al -.A, bm..A] (5.3.16)
4 e suPP(P,0)

for some ± e supp(Pyo). Here we used the compactness of supp(PYe) and the con-
tinuity of b, ^, m e N, with respect to e R. Let {xp},EN C B. be a Cauchy
sequence. Then there is a xo a such that xp = x0 and xp e
[aM ", for some c supp(Pyo). By the compactness of supp(Pyo) there
is a subsequence { of such that Z = o E supp(Pyo). Because
of X. < b.4-, A, and the above-mentioned continuity with respect to 4, we
infer xo < b.10 A. Thus xo e B. and hence Bm, m e N, are closed. Taking into
account the constraints on am ^, m e N, as described in Theorems 2.3.3 and 3.6
we finally infer that Eo = UM=, B. is closed.

Corollary 5.3.4. Assume the hypotheses of Theorem 5.3.2 and denote by
p = inf[supp(P,)], v = sup[supp(P,,o)]. Then we have

OD

(i) = U [am, bm], am < bm 5 am+1, am, bm m oo. (5.3.17)-co
m=1

(ii) If p >_ 0, then

E = a(HH,,A). (5.3.18)

(iii) a(H.) has infinitely many open gaps for P-a.e. toe 0 unless 0 e
supp(P,,, ). If 0 e supp(Py0) then

[0;0o)cE (5.3.19)

and there are at most finitely many gaps in (-oo, 0).
(iv) Assume supp(Py) = [p, v] (or bl A >- If v < 0 then

_ [a "\ai.A]Ud(-A,,,A) (5.3.20)

in the case where H. _ -A..A represents 5-interactions. If v < -a

E = OF-,, A) (5.3.21)

in the case where H. = 8r,,,A represents 8'-interactions.

PROOF. (i) follows from the fact that

E = U U [al.A,
(esuPP(P,u) m=1

(5.3.22)

with am.A, b,4.n --+ ao.

(ii)-(iv) follows from (5.3.10) and the monotonicity statements in (2.3.39) and
(3.49).

Finally, we prove the Saxon and Hutner conjecture for random systems.
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Theorem 5.3.5. Assume the hypotheses of Theorem 5.3.2. Let r c R be open
and r c nxE%UPP(P,o)P(HA.A). Then

t fl E = 0. (5.3.23)

PR(x)F. We only need to combine Theorems 2.3.6 and 5.3.3.

Notes

Section 111.5.1
The entire material is taken from work of Kirsch and Martinelli [286], [287].
Their results extend earlier results by Pastur [368] and Kunz and Souillard
[309] for the discrete Schrodinger operator. Another approach for the non-
randomness of the spectrum of ergodic Schrodinger operators appeared in
[ 170], [311 ]. For an extensive survey on random Schrodinger operators, cf.
[119] and [128], Ch. 9.

Section 111.5.2
This section is based on work of Albeverio, Hoegh-Krohn, Kirsch, and Mar-
tinelli [30], [287], [288], [289]. Our presentation closely follows [20]. We also
emphasize the fact that every result in this section stated for the three-
dimensional model has a word-by-word translation into the corresponding
two-dimensional system.

A discussion of point interactions on random manifolds is given in [14].
Applications to statistical mechanics of polymers and quantum field theory
appeared in [13], [14].

For a general study of the Laplacian with boundary conditions on small,
randomly distributed spheres, cf. [181], [182], [183] and the literature therein.
Multiple scattering of waves by randomly distributed point scatterers has been
discussed in [186].

Some applications in quantum chemistry appeared in [80].

Section 111.5.3
In the case of 6-interactions the material is based on work of Kirsch and
Martinelli [286], [287], [288], [289], in the case of b'-interactions it is based
on [205] and [206]. Our presentation closely follows [206] (cf. also [20]). The
general formulation of the Saxon and Hutner conjecture in Theorem 5.3.5 is
due to [206]. Earlier results in the case of b-interactions in [286], [287], [288],
[289] used additional restrictions on the sign of the coupling constants (i.e.,
), >_ 0 or A., S 0, j E 7L). A result essentially implying Theorem 3.5.3 in the case
of b-interactions was given in [165], [168]. As shown in [206], the results of
this section can be extended to the case where is an ergodic (i.e.,
metrically transitive) stochastic process with ly3(w)I 5 C, j e Z, w e 0. Theorem
5.3.1 immediately extends to this situation. The rest of this section also extends
to this situation provided supp(P) = i2 = [supp(P 0)]' (assuming supp(P 0) to
be compact). The last hypothesis is, e.g., satisfied by a stationary Markov
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process {y,,1,,,g with transition function p(x, A) > 0 for all x e supp(P7O), A c
supp(P.,,)), A open. Another extension we would like to mention is the possibi-
lity of including random deviations from lattice positions as discussed in
[289].

There has been considerable interest in the problem of determining the
nature of the spectrum of H.. In the case of (-interactions, P-a.s. exponential
localization of the spectrum (i.e., the existence of a complete set of exponen-
tially decaying eigenfunctions in L2(I8)) has been proven [143], [144] under
the assumptions that {a,);,.Ez are i.i.d. random variables with a density r
satisfying Ilrll«, < co and that

For earlier results in this direction cf., e.g., [217]. Applying the methods of
[ 144] these results are expected to extend to the S'-case.

Another problem that has been studied intensively was the nature of the
spectrum of random 6-interactions in the presence of an external electric field
as a function of the field strength F. Then the Hamiltonian in L2(R) is given by

H0(F) = -A&4),A + Fx, F 5 0.

As proven in [143], [144] under the assumptions of the preceding paragraph,
for F, < F < 0, H((F) has P-a.s. a pure point spectrum with power decaying
eigenfunctions. For sufficiently strong fields, F < F2 < F, and p > 2, H.(F)
has P-a.s. a purely continuous spectrum. This transition from a pure point
spectrum (for sufficiently weak electric fields) to a purely continuous spectrum
(for sufficiently strong electric fields) is quite remarkable, since for one-
dimensional Schrodinger operators with Y-;Ez a;(ai)b(x - ja) replaced by a
sufficiently smooth VV(x), the system does not exhibit localization at all. In
fact, in this case the spectrum turns out to be purely absolutely continuous
[75], [118], [119]. Numerical studies of this transition mentioned above have
been reported in [78], [382], and [451). A numerical study of resonances in
such systems appeared in [73], [74], [78].

Finally, we note that there exists a vast number of papers in the physics
literature dealing with random 6-interactions. Mainly two cases have been
studied in great detail: Random alloys (i.e., the systems described in this section
where the positions form a deterministic lattice A and the coupling constants
are random variables) or liquid metals (i.e., deterministic coupling constants
but random positions). Random alloys are treated, e.g., in [6], [116a], [230],
[236], [241], [254], [255], [256], [257], [258], [259], [282], [303], [361],
[408], [476] [492] and liquids in [66], (911, [92], [102], [103], (104), (105],
[163], [189], [236], [240], [273], [291], [319], [330], [336], [361], [373],
[375], [393], [476], [477], [491]. For a critical survey of some of these results,
cf. [ 174] (see also [ 164], [173]). Mathematical results on the density of states
associated with these two types of systems can be found in [163], [164], [222],
[223], and [268].

Multiple scattering of waves by randomly distributed point scatterers ap-
peared, e.g., in [40], [63], [64], [65], [234], [235], [337], [337a], and [403].
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APPENDIX A

Self-Adjoint Extensions of
Symmetric Operators

Assume A to be a densely defined, closed, symmetric operator in some Hilbert
space A' with deficiency indices (1, 1). If

A*b(z) = zO(z), q(z) E 1(A*), z e C - R, (A.1)

we have

Theorem A.1. All self-adjoint extensions As of A may be parametrized by
a real parameter 8 e [0, 2n) where

.2(A0) = {g + co,. + celo-I g e.9(4), c e C},
(A.2)

AB(g + co. + ce1B0-) = Ag + icb+ - ice'o-, 0:5 0 < 2n,

and

0+ =-O(±i), II0+II = III-II (A.3)

Concerning resolvents of self-adjoint extensions of A we state

Theorem A.2 (Krein's Formula). Let B and C denote any self-adjoint
extensions of A. Then we have that

(B - z)-' - (C - z)-' = 2(z)(#(z), -)#(z), z e p(B) n p(C), (A.4)

where A(z) # 0 for z e p(B) n p(C) and A and 0 may be chosen to be analytic
in z e p(B) n p(A). In fact, .b(z) may be defined as

.b(z) = #(zo) + (z - zo)(C - z)-1-O(zo), z E p(C), (A.5)

357
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where .b(zo), zo e C - 08, is a solution of (A.l)./or z = zo and 2(z) satisfies

;t(z)-1 = 2(z')-t - (z - z')(Of2), O(z')), z, z' e p(B) n p(C), (A.6)

if 0(z) is chosen according to (A.5).

Next we turn to the general case and assume that A is a densely defined.
closed symmetric operator in .,Y with deficiency indices (N, N), N E N. Let B
and C be two self-adjoint extensions of A and denote by A the maximal
common part of B and C (i.e., A obeys .4!9 B, A c C and A extends any
operator A' that fulfills A' s B, A' c Q. Let M, 0 < M < N, be the deficiency
indices of A and let { $ (z), ..., M(z)} span the corresponding deficiency
subspace of A, i.e.,,(

A*$m(z) = z0m(z), bm(z) E f(A*), m = , ..., M, z e C - I8, (A.7)

and {01(z), ... , /,t,. (z)} are linearly independent. Then the analog of Theorem
A.2 reads

Theorem A.3 (Krein's Formula for Deficiency Indices N > 1). Let B, C,
A, and A be as above. Then

M
(B - z)-1 - (C - z)-1 = Y- 2.n(Z)A(Z), -)Om(z), z c- p(B) n p(C),

m,r,=1

(A.8)

where the matrix 2(z) is nonsingular for z E p(B) n p(C) and 2mn(z) and qm(z),
m, n = 1, ..., M, may he chosen to be analytic in z e p(B) n p(C). In fact,
im(z) may be defined as

0m(z) = cbm(zo) + (z - zo)(C - z)-1bm(Z0), m = 1, ..., M, z e p(C),
(A.9)

where #m(zo), m = 1, ..., M, zo e C - R, are linearly independent solutions
of (A.7) for z = zo and the matrix 2(z) satisfies

[2(z'))-' - (z - z')(0 (Z), 0.(z')), m, n = 1, ..., M,

z, z' E p(B) n p(C), (A.10)

if the Om(z), m = 1, ..., M, are defined according to (A.9).

In general, we have

N

(B - z)-1 (C - z)-t = z e p(B) n p(C), (A.11)
m.n=1

where now qm(z), m = 1, ... , N, are linearly independent solutions of

A *&(Z) = zJm(z), 0m(z) a -Q(4 *), m = 1, ... , N, z e C - R, (A.12)

and, in general, det A(z) - 0.
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Notes

Self-adjoint extensions of densely defined, symmetric operators are discussed
in various monographs ([8], Ch. VII, [158], Ch. XII.4, [353], Ch. IV.14, [389],
Ch. X.1, [494], Ch. 8; sec also [38], [267], [267a], [299], [356], [398], [399],
[470], [471 ].



APPENDIX B

Spectral Properties of Hamiltonians Defined
as Quadratic Forms

Let Ho be a self-adjoint, semibounded operator in some separable (complex)
Hilbert space,*'. We denote by R(.a(') and.,J.r) the spaces of bounded and
compact operators in .-Lo, respectively, and by Rp(.,Y), p a 1, the set of compact
operators whose singular values are in I". Assume the condition

(I) Ej, Fj, j = 1, ..., N, N e N, are closed operators in ,Y which are
infinitesimally bounded with respect to 1H011/2.

We then define in .

N

H=Ho I E;Fj (B.1)
J-1

by the method of forms ([283], Ch. VI, [434], Ch. II) (in general H is not
self-adjoint) and introduce in pN = EJ 1.a ° the family of bounded operators
K(k) e R(YeN)

N

K(k): 0' -' 0', (K(k)(91, ..., 9N))j = E
p=1

gj a ..Y, j = 1, ... , N, (B.2)

here

Fj(H0 - k2)-' Ej*., k2 e p(H0), Imk > 0, j,j' = 1, ..., N. (B.3)

(If no confusion arises we always identify operators of the type (Ho - k2)-1 Ej
and [Ej(H0 - k2)-']*, etc.) Next we assume

(II) Kjj.(k) a R.(.Yf), j, j' = I, ..., N, for all Imk > 0, k2 e p(H0).

360
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Then we have

Theorem B.I.

(a) Suppose condition (I) holds. Then
N

(H - k2)-1 = (H0 - k2)-1 - (H0 - k2)-1 E; Fj(Ho - k2)-1,
J.1

k2 a p(H) n p(H0). (B.4)

(b) Assume hypothesis (I) and (II). Then

(H - k2)-1 = (Ho - k2)-1

N- (Ho - k2)-1 E*[l + K(k)];1 Fj.(Ho - k2)-1,

Im k > 0, k2 E p(H) n p(H0). (B.5)

(c)

and

6.s8(H) = oeu(Ho). (B.6)

Assume conditions (1) and (II) and let E0 = ko e p(Ho), Im ko > 0. Then
H has the eigenvalue Eo with geometric multiplicity M if and only
if K(ko) has the eigenvalue -1 with the same geometric multiplicity
M. In particular, if K(ko)(o = 0o, 4io = (#o1, , #oN) a DN then
oo = 1(H0 - ko)-1 E*bot fulfills 0io a Q(H), H/o = E0 fi0. Con-
versely, if Eo,o, 0o e 9(H), then 401, ..., iON) a .N
00i = - Fjoo, j = 1, ..., N, fulfills K(k0)60 = -So and

)-1 E*'Poi.J 1(Ho - k20

In order to treat resonances of H we need, in addition, hypothesis

(III) Let S2 c C be open and connected, Q;2 {k a ClIm k > 0, k2 E p(Ho)},
ko e S2 for some ko with Im ko < 0. Assume that K: i2 -+ Rap(. N).

By Theorem B.1(c) there exists a one-to-one correspondence between
eigenvalues E1 = k;, Im k1 > 0, k1 e Q, of H and the eigenvalue -1 of K(k1).
For resonances we introduce the following definition:

Assume hypotheses (I) and (II). Then k2 E R Im k2 < 0, is called a resonance
of H if and only if K (k2) has the eigenvalue -1.

For a discussion of multiplicities of eigenvalues and resonances we add
assumption

(IV) In addition to condition (III) assume that K is (norm) analytic in i2
and that K: 0 -, for some p e N.

Theorem B.2. Assume hypotheses (I) and (IV). Then, if for some ko a f2,
K(k0) has an eigenvalue -1, [1 + K(k)]-1 has a norm convergent Laurent
expansion around k = k0, viz.

[1 + K(k)]-1 = Km(k - k0)'° for some m0 e N u {0}. (B.7)
M. -mn
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Here K, e . 9(j N) ,for each m >- -mo and for -mo < m < -1, K,,, is
of finite rank. Moreover, - I e i(K(ko)) if and only if det,[I + K(ko)] = 0
and the geometric multiplicity of the eigenvalue - I of K(ko) coincides
with the multiplicity of the zero of the (modified) Fredholm determinant
detp[1 + K(k)] at k = ko if and only if mo = 1. In particular, if H is self-
adjoint and ko a S2, Im ko > 0, then mo = 1.

That mo need not be one (e.g., if resonances collide) has been discussed in
[365] and [385]. In fact, if mo > I then v(ko), the order of the zero of
detp[l + K(k)] at k = ko, strictly dominates the geometric multiplicity of the
eigenvalue -1 of K(ko). (In general, v(ko) > mo) [262]. On the other hand,
[1 + K(k)]` has a simple pole at k = ko if and only if [1 + K(ko) +
(k - ko)K'(ko)]-' has a simple pole at k = ko. In addition, if the geometric
and algebraic multiplicity of the eigenvalue - I of K(ko) coincide, then
[I + K(k)]-' has a simple pole at k = ko if and only if P(ko)K'(ko) (or
equivalently if K'(ko)) is injective on Ker[l + K(ko)] [262]. (Here P(ko) =
-(2ni)-'§1Z+11=,dz[K(ko) - z]-', s > 0 small enough, denotes the projec-
tion onto the algebraic eigenspace of K(ko) to the eigenvalue -1 and Ker[T]
denotes the kernel of some Te8(A").)

Given hypotheses (I) and (IV) we therefore define the multiplicity of a
resonance ko e a Im ko < 0, of H to be the multiplicity of the zero of the
(modified) Fredholm determinant detp[1 + K(k)] at k = ko.

Finally, we discuss perturbations of eigenvalues and resonances and
introduce condition

(V) Let A F= C be open and connected and suppose E;,,,, F;,A, j = 1, ... ,
N, fulfill hypothesis (I) for all A e A. Moreover, assume K;;.,A(k) =
Fj.A(Ho - kz)-'E;'A, j, j' = 1, ..., N, to be (norm) analytic in S2 x A,
and for some p e N, e R,(.$f), j, j' = 1, ..., N, for all (k, ).) e
C x A.

In analogy td (B.1) we then define

N

Hx = Ho + E; AF;,x, A a A. (B.8)
J=1

It turns out that if ko a f2 corresponds to a bound state (Im ko > 0) or
to a resonance (Im ko < 0) of H,40 for some fixed A0 e A then, for IA - Aol
small enough, Hx has bound states (resp. resonances) k(2) e 0 with k(A) =
ko + o(A - AO). The functions k(2) are given by solutions of detp[I + KA(k)] =
0 near (ko, AO). More precisely, we have

Theorem B.3. Assume hypothesis (V). If for some (ko, :to) e S2 x A, KA0(ko)
has an eigenvalue -1 such that the multiplicity of the zero of det9[1 + KAO(k)]
at k = ko equals M then, for IA - .lol small enough, there exist M (not
necessarily distinct) functions k,(A) a S2, I = 1, ..., m, which are all the
solutions of detp[l + K2(k)] = 0 for (k, A) near (ko, AO). They are given
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by convergent Puiseux expansions near A = 20, i.e., there are functions h,
analytic near 2 = 20, h,(0) = 0, 1 = 1, ..., m, such that

k,(A) = ko + hj((), - Ao)''m')

m,>_1, l=1,...,m, >m,=M. (B.9)
1=1

If, e.g., ko corresponds to a simple bound state or resonance of Hxo (i.e., if
M = 1), then k(2) is analytic in A near 2 = )0, viz.

k(2).I=zok0 + k,(2 - 20) + O((2 - )0)2),

[KA(ko)](i)o)
/$o'

[;KA0(k)]
Ik= k^0\ ,

where

(B. 10)

Kao(ko)Oo = -'h0, Kxo(ko)*4)o = -$o, (bo, $ e irs. (B.11)

If Im k0 > 0, 20 E A n R, and Hx is self-adjoint for A in a real neighborhood
of 20, the additional constraint R,(2) = k,(2)2 < 0, 1 = 1, ..., m, for 2 e R.
I2 - 201 small enough, in fact leads to m, = 1, i.e., k,(2), l = 1, ... , m, are
analytic near A = A0 (Rellich's theorem).

We note that (dio, (Do) # 0 and ($o, [(d/ok)K., jk))lk=ko4)o) # 0 by the
remarks following Theorem B.2 since M = 1.

Finally, we note a general theorem concerning Puiseux series, part (b) of
which is a part of Rellich's theorem.

Lemma B.4. Let h: U -> C, U c C, a complex neighborhood of zero, be an
analytic function, let r e N and consider the multivalued function

g(z) = h(z'lr). (B.12)

(a) If g(z) e R for all z > 0 sufficiently small for all the r branches of g (i.e.,
by taking all the r rth roots z'lr in the definition of g), then r =I or r = 2.

(b) If g(z) e P for all z E P sufficiently small for all the r branches of g, then
r = I and g is analytic in U.

Remark. The constraint ,q(z) e P for z > 0 or z e R can be replaced by
g(z)eaPforzE{$xeClx>0}orzefRforarbitrary a,fcC-{0}.

We have frequently been using a formula which is related to the so-called
Weinstein-Aronszajn determinant
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Lemma B.5. Let Y e be a separable (complex) Hilbert space, let A be a closed
operator in 0 and ¢;, qi; E 0, j = 1, ..., N. Then

N

(0j, -)Oj -
zJ-

CA + Y_
=1

N

_ (A - Zr' - Z [M(z)];;1([(A -
z E p(A), det[M(z)] # 0, (B.13)

where

M(z)jj' = by + (0j, (A - z)-1 ijij.). (B.14)

Finally, we recall Sobolev's inequality.

Lemma B.6. Let 0 < ,% < n, n e N, and suppose that g e L°(R"), It E L4(118")
with p-1 + q-1 + An-1 = 2 and 1 < p, q < oo. Then

d"x d"x'lg(x)I Ih(x')I Ix -
x'I-x

<C(p, q, 2, n)Ilgllollhll9. (B.15)
Jt2n

Notes

The entire material is taken from [21] and [200]. Theorem B.l in the case
N = I appeared in [302] (note that Ho need not be semibounded) and has
been widely used in quantum mechanics [391], [434]. For N = 2 it first
appeared in [295] and [297] and for general N e N in [245] and [250] in the
context of the multiple well problem.

Theorem B.2 is based on [262] and extends results in [357].
Theorem B.3 for N = I first appeared in [26] and has been abstracted in

[200]. The proof given in [200] directly extends to the case N > 1.
For a discussion of resonances in the context of abstract analytic scattering

theory see also [271].
Fredholm determinants are reviewed in [436], [438].
The first part of Theorem B.4 has been used in [386], while the second part

enters in a crucial way in the proof of Rellich's theorem (see, e.g., [391],
Theorem XII.3).

Lemma B.6 can be found, e.g., in [434], p. 12 and [389], p. 31.



APPENDIX C

Schrodinger Operators with Interactions
Concentrated Around Infinitely Many
Centers

We first consider Schrodinger operators H in LZ(R ), n e N, with count-
ably infinitely many local singularities of the potential which are uniformly
separated from each other by a positive distance. Due to the local character
of the interaction each singularity separately contributes to the total deficiency
index of H:

Theorem C.1. Let J S Z - {0} be a finite or countably infinite index set
and J0 = J u {0}. Assume

(i) Ej c 08", n e N is a compact set of Lebesgue measure zero for all j e J
and suppose E0 = 0.

(ii) V e L'x(08" - E;) are real-valued, j e J0, and
(a)
(b)

supp V compact for all j e J, or
V are bounded from below on every compact subset of R" - Ej for
all j e J0.

(iii) For some e > 0: dist((supp V v E,}, isupp V. v Ej.}) >- e for all j, j' e
J0,j#j'

(iv) We L°"(R") is real-valued.

Define the minimal Schrodinger operators H, and H in Lz(18") by

Hj = -A + V, (Hj) = C0 -(RR - Ej), j a J0, (C.1)

H= -A + V + W, Q(11) =C((R"

where

(C.2)

V(x) _ V(x), E = U Ej. (C.3)
jEJ"

365
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If H, (resp. H) denotes the closure of 1Ij (resp. f) then

def(H) = Y def(Hj). (C.4)
)CJ

Since V, V, W are real-valued, H and H;, j E J0, commute with complex
conjugation and hence have equal deficiency indices.

In the text, we mainly use the above result with V = V = W =- 0, Y-j = { };},
E = Y, j E .10 c Z (except in Ch. 1.2 where Vo = W = 0, J = { 11, E,
V,(x)=ylx-yl-',yell,x,yEP3,xAy).

We now turn to the locality properties of certain self-adjoint extensions of
symmetric operators.

Lemma C.2. Let N e R" he a closed set with zero Lebesgue measure, and
let H be any self-adjoint extension of -Alc;;(R" -N) Then H is local in the
following sense: If U c P" is open and.f a 1(H) satisfies f = 0 in U, then
also H f = 0 in U.

Suppose first that U n N = 0. Then

(Hhg)=(f, --Ay)=0
for any g E with supp(y) c U. Hence

Hfl(; 1 Co(U)

(C.5)

(C.6)

which implies that Hf = 0 in U. If U n N 0, we consider the open set U - N.
By the above argument Hf = 0 in U - N, but N being of zero Lebesgue measure
implies that Hf = 0 in U.

To estimate the norm of countably infinite matrices, the following estimate
is often useful.

Lemma C.3. Let -W' = e", .%, X j' being separable (complex) Hilbert
spaces and consider the bounded operator A = [Ajj.]j.j.EN. Then

IIAII < IIAIIH, (C.7)

where the Holmgren hound II AllH is defined by
,. w tut

IIAIII H = I sup IIAjj.Ii sup IIAjj'II (C.8)
j'eN i=1 j.N j'=1

Note that II A it H does not provide a norm as can be seen from the following
counterexample. Let

r 1 ........ 1

A,, =

2-' ...... 2-,

2-t"-')... 2-In')
0

(C.9)

0
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Then

IIA + n + 2[1 - 2-"], 11A.1111 = IIA IIH = [2n(1 - 2-°)]'i2 (C.10)

and hence the triangle inequality is violated for n sufficiently large. (Here A
denotes the transposed matrix of An.)

Our next result generalizes (B.5) to the case where the total interaction is
an infinite sum of potentials with nonoverlapping support. First, we introduce
some notation: Let

jr = QQ L2(R3) (C.11)
j=1

and define bounded operators

Ak: Jr --, L2(R3), Ak = Y_ (uj, ')Gk,pi
Bk:.)r Jr. Bk = [ujGkUj']JJ' e (C. 12)

Ck: L2(I83) Jr. Ck = [(Gk, ') jj]j.N, Im k > 0,

where the potentials satisfy

V e R, supp V compact, supp V n supp V. = 0,

I V I< V, V E R, j 96j', j, j' e N. (C.13)

Then we state

Theorem C.4. Let V, j e N, he real-valued and satisfy (C. 13). Then the
sel` adjoint operator

00H=--A+Y_ V
J=1

(C. 14)

has the resolvent

(H - k2)-' = Gk - Ak[I + Bk]-'Ck, k2 a p(H), Im k > 0. (C.15)

Next we study form perturbations of - A on H2.2(R"), n e N, in more detail.
Let Y = { y, } JE j, J c 7L", denote a discrete subset of R" such that

inf I yJ - yy,l = d > 0, yj, yj, e Y, j, j' e J. (C.16)
J.j e J
J#J'

Let Co = {x = (x1, ..., x") a IFI"12x` a (-1, 1], I = 1, ..., n} denote the corre-
sponding unit cell and define C; = Co + j, j e Z. Assume q to be a symmetric
form bounded with respect to the form of -A on The form q is
called summably form bounded with respect to -A if, in addition, there are
constants aj >- 0, bJ > 0 such that

E (aj + bj) < ao (C.17)
jEZ"

and

Iq(0, q$)I < a3IIv0II2 + bjI1c112, j e J, (C.18)
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for all 0 e (III;") with supp(q) c Ulj-q<-, C,. Introducing the notation

fy,(x) = j(x + yj), Ny,(.f, g) = N(.fy,, gy,),

we obtain

j e J, f, g e H2'' (R"), (C.19)

Lemma C.S. Let q he summahly form bounded with respect to -0 on
H2.2(R") (with constants a;, h;, j E 1") and assume that q satisfies

N(Xj. g) = N(j; X.N) (C.20)

,for all J; g E (III;") and all X E C;; (R"). Then

Q(j, g) _ Nv,(j..N), I3(Q) = H2"'(R") (C.21)
jEJ

is well definedand

\ r
IQ(f,f)ISD a;III0fII2+[E a;+ b]IIf112, fEH21(08"),

\\JEZ" / jE7" jEZ"
(C.22)

where D and E are constants only depending on the set Y.

Next we specialize to one dimension and show that (111.2.1.6) and (111.3.5)
define self-adjoint operators in L2(R). For this purpose we adopt the conven-
tions chosen after (II1.2.1.1) and define in L2(R)

jar = - a2, gd(fl1) = {g E H2,2(R)I g(yj) = g'(yj) = 0, j e J}. (C.23)

Clearly, Ry as a closed restriction of ft, in (111.2.1.2) and of HY in (111.3.1) is
nonnegative and has deficiency indices (oo, oo). We have

Lemma C.6. Let Jo c J and let a;, b;, cj, d;, j E Jo, be complex numbers
satisfying

a;c;-bd;=1,
Im(a,b;) = Im(a;cj) = Im(u;d;) = Im(b,c,) = Im(c;d,) = 0, j e Jo.

(C.24)

Moreover, let

fi(x)= 1, fi(x)=x-y;+
Then the operator H, in L2(R) defined by

_ d2
H,

dx2'

5,(H4) = {g e H2.2(R - Y)I

xE(y;,y,+,), jeJ. (C.25)

Vj e JO: W(g, + a;W(g, b,W(g,

11'(g, i)y, + c;W(g, 2 ')y,- = ddW(.9, 411-')y, ;

Vj E J - JO: either g(y;+) = 0 or g'(y;+) = 0) (C.26)
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(W being the Wronskian) is a self-adjoint extension of fly. (In obvious notation
the last boundary conditions in (C.26) should be omitted in case J0 = J.)

It remains to apply Lemma C.6 to -A,,,y and :.a,y. Without loss of generality
we may assume J0 = J (implying a,, f, e R for all j E J). In the case of - A,,, y
we choose

a,= -1, b,= -aj, c, = (Y, - Y,+1)a, - 1, dj = yj - yj+,,

aj e R, j e J, (C.27)

and for Ep, y we choose

a,= -1, bj=0, cj= -1, dj=(yj-y,+i)-iij,
flj e l8, jEJ. (C.28)

Taking into account that

W(g, -9,(Y,+), W(.N, -9'(Yj ),

W(9, Sz-' )y,+ = 9(Y,+) - Yj+j), (C.29)

W(9,z')y, =9(Y,-), PE J,

one immediately verifies that the boundary conditions in (C.26) are equivalent
to those in (111.2.1.6) and (111.3.5).

Finally, we show that -A., y is the operator uniquely associated with the
form in L2(l8)

Q., y(.I, g) _ (f g') + «,f(Yj)9(yj), aj e R,

2(Q«. y) = H2,'(l8).

jEJ
(C.30)

For this purpose we recall that

.9e(-A,,,y) = {g e .9(-AQ.y)Isupp(g) compact) (C.31)

is a core for - As, y (cf. the discussion following (111.2.1.10)). On the other hand,
since by Lemma C.5 C0 '(R - Y) is a core for Q.. y, we infer that is
also a core for Q., y. But for 0, 4 E fdo(- A,,, y) the equality

Qa.r(o, 0) _ (0, [-A&.rN') (C.32)

is easily shown by integration by parts. This proves the above claim concerning
--A.. y and Q., y.

Notes

Theorem C.1 appeared in [ 115] and is based on corresponding results of [67]
for the Dirac operator (see also [278]). We also refer to [345] for the stability
of operator- and form-bounds in connection with Schrodinger operators with
separated singularities of the potential. For general stability results of the
deficiency index, cf. [68]. The explicit determination of deficiency indices of
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singular Schrodinger operators is discussed in [69], [378], [470], [471], and
[512]. In the special case of spherically symmetric interactions, see, e.g., [158],
[353], and [389]. General self-adjoint extensions of elliptic operators with
boundary conditions on a closed set of measure zero are treated in [299],
[470], [47 1 ].

Lemma C.2 is due to J. Brasche (private communication).
The proof of (C.7) can be found in [251].
We are indebted to P. Deift for the counterexample following Lemma C.3.
Theorem C.4 is due to [251 ].
Lemma C.5 follows from Satz 4 in [286] which extends previous results of

Morgan [345].
Lemma C.6 is a special case of a much more general result (including

potentials strongly singular on a discrete subset of R) proven in [208].



APPENDIX D

Boundary Conditions for Schrodinger
Operators on (0, oo)

In L2((0, oo)) we consider the minimal Schrodinger operator

d2
+n.(7.- 1)r-2+yr-' +ar-°+W, _9(h)=C01((0, x)),

We L'((O. (x,)) real-valued, a, y e R, 0 < a < 2, 2 < A < 1. (D.1)

Due to our conditions on 2, the closure of h, denoted by h, has deficiency
indices (1, 1). In order to determine all self-adjoint extensions of h we study
solutions of the equation

-0"(r) + [2(.1 - 1)r"" 2 + V(r)]kb (r) = 0, r > 0, (D.2)

where

l'(r) = yr-' + ar ° + W(r). (D.3)

the regular solution FA(r) associated with (D.2) satisfies

FA(r) _ F,(°)(r) - for dr' gx01(r, )V(r')FA(r'), (D.4)

where

_ r'/2 In r, .1 = z,
rz, G (0)(r) =

1(2.1 - 1)-'r'-A, f < .1 < 2,
(D.5)

and

(0)9A g(r, r') = (D.6)

371
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By iterating (D.4) one proves

ci(ro)rA 5 IFA(r)I c2(ro)r2, i < A < 2, r < r°, (D.7)

for appropriate constants ro > 0, c;(ro) > 0, j = 1, 2. The irregular solution
GA(r) corresponding to (D.2) is then given by

GA(r) = FA(r) I r dr'[FA(r')]-2, 1:5A< Z, r < ro, (D.8)
r

implying

IGA(r)I s c3(r0)Gx°)(r), 2 < A < 1, r < ro. (D.9)

Iteration and explicit integration in (D.4) (using (D.3)) yields an asymptotic
expansion for FA(r) as r 10 which in turn after insertion into (D.8) gives a
corresponding asymptotic expansion of GA(r) as r JO. Let GR(r) denote the
asymptotic expansion of GA(r) up to the order r`, t 5 2A - 1. Then we have

Theorem D.1. Assume conditions (D.1). Then all self-adjoint extensions h,
of h can be characterized by

d2
h _ -dr2 + A(2 - 1)r-2 + yr-' + ar"° + W,

9(hj = {g e L2((0, ox))Ig, g' e ACIOC((0, 'x)); vgo,A = gi.A;

-g" + 2(2 - 1)r-2y + yr-'g + ar-°g e L2((0, oo))},

-oo<v<oo, '--<A<z, a,ye08, 0<a<2. (D.10)
Here the boundary values 90. A and g 1.,A are defined as

go,A = lim g(r)/Gx°1(r),
40

(D.11)
gi,A = lim [g(r) - g0.AGx(r)]/Fx'(r), g c- 2I(h*).

40

The boundary condition go,A = 0 (i.e., v = oo) represents the Friedrichs
extension of h.

We end up with two special cases in which the computation of GB(r) is
particularly simple. These cases are sufficient for our purposes in the text (for
the general case, cf. [115]):

(A) A = i (the s-wave Schrodinger operator in two dimensions, cf.
Ch. 1.5)

Then

G1!'2(r) = -r'12 In r, r > 0. (D.12)

(B) A = 1, a e (0, 2) - { 1 } (the s-wave Schrodinger operator in three
dimensions, cf. Sect. 1.2.1)



Notes 373

Then

GB(r) = I + a[(2 - a)(3 - a)]-' [1 + 2(1 - a)-']r2'° + yr In r + (y/2)r,

r>0, a,yeR, ae(0,2)-(1). (D.13)

In particular, if A = 1 and a = y = 0 (cf. Sect. 1.1.1) then the boundary values
for g e 2(h*) take on the familiar form

go, i = g(0+), gi. i = g'(0+). (D.14)

Notes

The results in Appendix D are based on [115]. The special case a = 0 has
been treated earlier in [392], using different techniques.



APPENDIX E

Time-Dependent Scattering Theory for
Point Interactions

By a simple trick we reduce the problem of existence and asymptotic com-
pleteness of wave operators and the connection between time-dependent and
time-independent (stationary) scattering theory for point interactions to the
corresponding problem of trace class (in fact, finite rank) perturbations of
certain self-adjoint operators.

We rely on

Theorem E.1. Let A, >_ 1, l = 1, 2, he self-adjoint operators in a complex
separable Hilbert space .,Y'. Assume that

AI" - Az" e.4, (,Xe) (E.1)

for some n e N. Then the strong limits

s- Ilm eutAte-itA ,Pp`(Am) = s- lim ei'A'
l

S- Jim eitA, "e-itA. PPc(Am),
t-+w

1 # m, 1, m = 1, 2, (E.2)

exist and equal each other (invariance principle). Here P,JA,) denotes the
projection onto the absolutely continuous subspace corresponding to A,, 1 =
1, 2. In addition, the wave operators defined as

Q2 (A,, Am) = s- lim e'u,e-irA,,,PP,,(Am), 10 m, 1, m = 1, 2, (E.3)
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are asymptotically complete, i.e.,

Ran i2+(Al, =Ran !U-(A,, P,c,(Ai).a*o, 1:0 m, 1, m = 1, 2.
(E.4)

Since (-A., r + E)-' - (-A + E)-', for E > 0 large enough, is of rank N
in the N-center case (in n = 1, 2, 3 dimensions), Theorem E.1 (with m = 1)
immediately applies (analogously for Ep,1.). Replacing (-Aa.r -A) by
((- Aa, y + E)-', (- A + fl-'), E > 0, sufficiently large, one can use the known
eigenfunction expansions of -A,,, i. (resp. Ep,y) together with Abelian limits
to establish

(Q+(-A.,r, -A)g)(x) = (S2+((-A., , + E)-', (-A + E)-')9)(x)

= s- lim (2n)-"/2 J k"-' dk dco `I'Q r(kw, x)&),
R-.a IkI4RJs'n-3'

where
n = 2, 3, (E.5)

`l'a, r(kw, x) = `Ya, r(kw, x), `l'a r(kw, x) = T., r(- k(o, x) (E.6)

(cf. (1I.1.5.1) and (11.4.32)). The fact that

dt
(E.7)

is of finite rank considerably simplifies the analysis. The associated unitary
scattering operator .50(- A., r, -A) in L2(R"), it = 2, 3, is then given by

.Se(-A.,y, -A) = i2+(-A..r, -A)*f-(-A".r, -A), n = 2, 3. (E.8)

Using (E.5), the invariance principle, and (E.7) one then shows by a standard
procedure that .(-A.,y, -A) is unitarily equivalent to the direct integral of
the on-shell scattering operator £,r(k), k > 0 in L2(S'n-2'). Of course the
analogous construction works for -A., r and E,,, y. in one dimension.

Notes

Theorem E. I is due to Birman [90], for extensive discussions see [390], Ch.
XI.3.

The standard way to derive (E.5) for three-dimensional potential scattering
is described in [434], Ch. V.4 (cf. also [39], Ch. 10 and [390], Ch. X1.6). The
corresponding connection between .5o(- Aa, y, - A) and Y, y(k) using (E.5) is
discussed in great detail in [434], Ch. V.S. Since in our case one can utilize
(E.7), all arguments parallel the case where -A is perturbed by a finite rank
interaction also called a separable potential (one only needs to exchange - A
and (-A + E)-', E > 0 large enough).

Eigenfunction expansions and scattering theory for general nonlocal inter-
actions have been treated in [39], Ch. 8.3, [84], [270], and in [480], Chs. 3.4
and 3.6.

One-dimensional scattering theory is extensively discussed in [407].



APPENDIX F

Dirichlet Forms for Point Interactions

In this appendix we sketch how to obtain point interactions by the use of local
Dirichlet forms in n = 1, 2, 3 dimensions.

Let 0 e L c(R"), n e N, be real-valued and define the minimal energy form
EoinL2(l ";02d"xJ )by

Eo(g, h) = u^02(x) d"x (Vg)(x)(Vh)(x), 9,0(E#) = Co(R"). (F.1)

If to is closable, we denote its closure by E` and the unique self-adjoint,
nonnegative operator in L2(18", 02 d"x) associated with E# by H`. Obviously,
Ho = V*V where V denotes the closure of VIco(W) in L2(R"; 02 d"x). A
sufficient condition for closability of to can be obtained as follows. Let
T. c R" be a closed set of Lebesgue measure zero and assume in addi-
tion Vq E L; (R" - E) (V the distributional gradient in Co (18" - E)' the
dual space of Co (lB" - E)). Then a careful investigation shows that
[ - V - 2#-1(V#)l Icg(ta^-T) is a formal adjoint of Vlca(R") in L2(R ; #2 d"x).
Since Col (R" - E) is dense in L2(R"; 02 d"x), to is closable. More precisely, we
have

Theorem F.I. Let E c R", n e N, be a closed set of Lebesgue measure zero,
let 0 e L C(P") be real-valued, and let Vq$ e L L(R" - E). Then to is closable
in L2(W "; 02 d"x) and

Ho f = - Af - 2q-1(Vo)Vf, f e C01(08" - E). (F.2)

If, in addition, 02 > 0 almost everywhere with respect to d"x (i.e., if 02 d"x
and d"x are equivalent) then the isometry between L2(W) and

376
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L2(0I"; ¢2 d"x) takes HO into a self-adjoint, nonnegative operator H in L2(R")

H = OHOO-` _ OV*Vq-'

In particular, if 0 e L2(U "), then Hml = 0 implies

HO 0.

(F.3)

(F.4)

Next we apply this result to the one-center point interaction. Let

ealx-vI/2, X, y e R, a c R, n= 1,
(Ho')[2ie[-2"a+'P(I))Ix - ye], x e O 2- {y}, a E R,

001,,(x) = 11, a = oo, n = 2, (F.5)

t
yl,

1,

xeR3-{y}, aeR,
a=oo,n=3.

Then 001., > 0 and 001,,, fulfills the hypotheses of Theorem F.1 with

E-$(y) if cc 96 0forn=1resp.ifaeII for n = 2, 3,
(F 6)

Qf ifa=0forn= 1 resp. if a = oo for n = 2, 3.

Hence E0 , is closable. In the following we exclude the trivial case Oa,,,(x) = 1.
Let g e Ca(Q8") with g(y) = 0, n = 1, 2, 3, then (Q,,',g e Col (R") c -9(V) and a
computation shows

E0...(0a.yg, 0.- Y1

012/4, n = 1

_ S[a^
d"x I(Vg)W12 + 4e2t-2za+'"1, n = 2 Ig(x)I2 . (F.7)

(4na)2, n = 3

For g e Co(R") with g(y) = 0 this implies ba,,g a.Q(H0,,) and

012/4, n = 1
A + n = 2 1g. (F.8)

(4na)2, n = 3

As a consequence,

01 2/4, n = 1

Ha,, = &., HO.., - 4e2[-2"a+%V(1)1, n = 2

(4na)2, n = 3

is a self-adjoint extension of -A defined on g e Co(R") with g(y) = 0. For
a < 0 if n = 1, 3 and for all a e I if n = 2 we have ¢a,, e L2(Q8") and hence 001,,

is the ground state of Ha,,, i.e., Ha,,ga,, = 0. Thus Ha,, = -A.,, in these cases.
Actually, since 0 , satisfies the boundary condition for elements in .9(- A..))
in a neighborhood of the point y we obtain Ha,, = - A.,, for all a e Id, n = 1,
2, 3. In the case a >- 0 for n = 1, 3 (i.e., in the case where ma., # L2(R")) 0..,
represents a resonance function of -A,,,. If a > 0, n = 1, 3, then 0.,, can as
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well be replaced by the corresponding zero-energy scattering wave function
(cf., e.g., (1.1.4.11))

x'+Ix-yl/2, n = 1,
x) = if

+ (4na l x - yl) -', n=3; (F.9)

The N-center case is more involved as shown below. Let us first concentrate
on the case n = 3 and without loss of generality assume that lx,l < x, j =
1, ..., N. Take k = iK, K e R, and consider r',,r(iK). Since

a r i ' KIY,-Y,,j N' =

OK
K) = (4Tr)-- [e ]j., _OK

, > 0, K > 0. (F.10)

is positive definite (this follows from c JR,d3k K(k2 + K2) -Zerk°,

C, K > 0, cf., e.g., [437], p. 35) all eigenvalues of fQ.r(iK) are strictly increasing
with respect to K > 0. Moreover, since the off-diagonal elements of f,.Y(iK),
K e R, are all negative, r,,r(iK) generates a positivity preserving semigroup
e-er""K), t > 0, K e R, in CN ([391 ], p. 210). Consequently, the smallest eigcn-
value of r,.Y(iK) is nondegenerate and we may choose a corresponding non-
negative eigenvector. Assume that there exists a Ko E P such that T,_Y(iK0) has
zero as its smallest eigenvaluc. Call (c1, ..., cN), c., > 0, j = 1, ..., N, the
associated nonnegative eigenvector of r,,r(iKo). Then.,., defined as

1

N

0a.Y(X) = yjl, x e P3 - Y, (F.11)
j=1

fulfills all the assertions of Theorem F.1 with E = Y. (Actually we even have
cj > 0, j = I, ... , N, since c, = 0 for some jo would imply the vanishing of the
point interaction at y 0, a fact which contradicts Iajal < or-..) Consequently, the
form is closable and its closure gives rise to a uniquely associated operator
H,j,, in L2(R3; 0a Y d 3x). Again we have

Oa.Y[H&,, - KO]0a.Y (F.12)

In case Ko > 0, e L2(P3) and hence it represents the ground state of - A,,
If Ko < 0 (i.e., if a.Y 0 L2(18')), then &a.Y is a resonance function of -A,,r. If
no K() >- 0 exists, then ¢,, y can always be replaced by the zero-energy scattering
wave function (cf. (11.1.5.1))

NT.. Y(0'
x) = I + [ra.Y(0)]jj`(4,rlx - yjl)-', x e P' - Y. (F.13)

Since by hypothesis all eigenvalues of r_a,r(iK), K >- 0, are strictly positive
(i.e., inf cs(r,.r(iK)) > 0, K >- 0), [r,.Y(0)]-' is positivity preserving implying
T..Y(0,X) > I.

For n = 1, 2 one can use similar arguments. Assume for simplicity that
aj 96 0 if n = I and aj E R if n = 2, j = I, ..., N. First of all, the eigenvalues of
f",, y(iK), K > 0, are again strictly monotonously increasing for increasing K > 0
since

01
('

J d"kK(k2+K')-2erkY, c,K>0, yeR"-{0}, n = 1,2.
n^

0<a<uo.

(F.14)
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Second, r,.,(ik), K > 0, again generates a positivity preserving semigroup
e-11--l'"KI, t >- 0, in C' since all off-diagonal elements of f y(W), K > 0, are
negative. Hence one can construct a positive ground state (resp. a positive
resonance function) of - A,,Y along the lines of (F.11) in case a suitable ko a R
exists. One can also look for positive zero-energy scattering solutions. For
example, if n = 1 the corresponding zero-energy solution (if it exists) reads

T.. y(O. x) = c 11 + j Ix - yjl/2 , c e R, (F.15)
l.A'=1

where

ia.Y = [xl 1Vll - Iyj - l 1/21;".r.
(F.16)

generates a positivity preserving semigroup e-'Y-t, t > 0, in CN (since its
off-diagonal terms are negative). A careful check in the two-center case if
-A,,Y has no bound states explicitly shows that T.. Y(0, x) can be chosen to
be strictly positive if [y Y]-' exists. A case distinction in the special case where
det(y,, 0 shows that in this case too one can always find a strictly positive,
locally absolutely continuous solution of -A,, 4i = 0 which generates an
appropriate local Dirichlet form for -A,,, y.

If n = 2 no positive zero-energy scattering solution exists since In Ix - };I
has no definite sign. In this case one always finds a strictly positive ground
state of -A,,Y as discussed in Theorem 11.4.2.

Notes

Theorem F. I and the one-center treatment for n = 3 are taken from [32]. For
further literature we refer, e.g., to [23], [25], [27], [33], [35], [192], [193],
[396], [462], [495]. The possibility of constructing Dirichlet forms with
zero-energy resonance (resp. zero-energy scattering wave functions) (cf. (F.9)
and (F. 13)) has been studied extensively in [23]. In the case of more general
boundary conditions as discussed in [129], associated Dirichlet forms were
constructed in [108].



APPENDIX G

Point Interactions and Scales of
Hilbert Spaces

Let Hm(08"), n e N, m c- Z, denote the Sobolev spaces in momentum repre-
sentation

Hm(R) = L2(R"; (p2 + 1)m d"p), n E N, m E 7L, (G.1)

yielding the scale of Hilbert spaces

c H2(R") c H1(I8") c HO(R) c H_1(R") c H_2(I8") c - . (G.2)

Since we are interested in "8"( - y)-interactions" which correspond to plane
waves in p-space

e (p) = (2rr)-"I2e-ivv, p, y e I8", n e N, (G.3)

we note

e; E H_1(R) c H_2(R),

e H_ i (R"), e) 'e H-2(08"), n = 2, 3, (G.4)

e"0H-2(I8"), n>4.

In one dimension one can, in addition, study "b'(- - y)-interactions" (i.e.,
"dipoles") since

d(p) = (2n)-u2 pe ivr, p, y e R, (G.5)

fulfills

di 0 H-1(R), di e H-2(R). (G.6)

380
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We incidentally note that e 0 H -,(R") for n > 4 is intimately connected with
the fact that - A'<. (J 1,.:) is essentially self-adjoint in L2(P"), n > 4, and hence
ordinary point interactions are confined to dimensions 1, 2, and 3. Similarly,
the exceptional case e; a H_,(R) is the reason that quadratic form methods
are sufficient to discuss (5-interactions in one dimension. To simplify the
notation we suppress the n-dependence in Hm(R") and simply write H. from
now on.

Let

R(E) = (p2 -- E)-' R(I )u2 = (p2 - E)-112, E e C - CO, oo), (G.7)

with R(E)' 2 the positive square root for E < 0. We note

Lemma G.1. Let E, E' < 0. Then

(i) R(E) satisfies the identities

R(E) - R(E') = (E - E')R(E)R(E'),
F

R(E) = R(E)2. (G.8)

(ii) R(E): H. - H",' 2, m E 7L, is a topological isomorphism (i.e., a hounded
onto Wrap with hounded inverse).

(iii) R(E)''2: H,,, H.+,, in a L, is a topological isomorphism.

In the usual way the scalar product in Ho can be extended to some pairs of
vectors in H_2 making H_2 a partial inner product space: Let qS, 4 e H_2 such
that 0e H, and 0eH_,with -2<r<2.Then

J
d"p O(p)4i(p) = J d"p (p2 +

,t., t"

is absolutely convergent and defines the partial inner product

«10) = I d"p j(p)4'(p)
x

We observe that

while

(G.9)

(G.10)

<I R(E)4'> exists for all 0, 4 e H_1, E e C - [0, oo), (G.11)

<'I R(E)24i'> exists for all 0', 0' a H_2, E e C - [0, oo). (G.12)

Next we define the notation of a dyadic operator I4Y> <qi"I, 4i', 4i" e H_2 as
follows: Let H; (resp. H, that contains 4i' (resp. 41").
Then I'I"> <0"I denotes the bounded map

Ii'> <4"I: H_,.. -. H,,, (14,'> <4"I)(0) = <4"1l>4". (G.13)

Consequently, for any 0', 41" a H-2 the symbol R(E)I0'> <1li"IR(E) is a
bounded operator in H because its action on g e Ho by definition yields for
EEC-[0,x)

(R(E)I4'> <"I R(E))(g) = <y"I R(E)g>R(E)tf' a HO, (G.14)
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since R(E)g a H, and R(E)ii' e Hr,. Obviously, sums of dyadics and products
with scalars can be defined in a straightforward way. The following shorthand
notation turns out to be useful: LetT'aHy,, 'P"=( c- H_'2 (G.15)

ik;' e H_,, j = 1, ..., N) and B = [Bj; ]"j,_, be any N x N matrix in
CN. Then I`P'>B<`l'"I is defined by

N

I';>B,j'<' I (0.16)I`Y'>B<y,"I = Y j,
j.r=I

and analogously R(E)I`P'>B<`P"I R(E) denotcs the hounded operator in H.
N

RU
)I'1''>B<'P"IR(E) _ I R(E), l e C - [0, ox,).

j.r -'
(G.17)

If AT,, denotes a bounded map from H, s Ho to HS ? Ho its natural restric-
tion A is defined as the restriction of A,., to the domain

'Y!(A)_ {rpeH,1A/aHo i SH,,. (G.18)

For instance, let

T.,12: H,. , H,, (T,.,+21)(P) = P20(p), r E Z. (G.19)

Then the natural restriction T of T_,., (mapping H, into H_,) equals the
kinetic energy operator with !'(T) = H2 its operator domain (i.e., T = T0.2)-
In general, we note

Theorem G.2. Let 4) = (01, ... , O.,v) e HN-, and B = [ B, ,[ B, , ] , = 1_, he an in-
vertihle matrix in C'. Then the natural restriction of T_,_t + IO>B<OI

H, into 11 ) denoted by S is 'a closed operator in Ho. The resolvent
(?I'S is given by

(S -- E)-' = R(E) - R(E)IQ>>[Q(E)]-'<DIR(E),

E a C - [0, oo), det[a(E)] # 0, (G.20)

where

Q(E),r = <,IR(E)0, > + Bi-f', j. j' = 1, .... N. (G.21)

Moreover, S is self-ad joint in Ho if B is Hermitian in CN.

In the case `P e H_-12 but `P H"_, we get

Theorem G.3. Let'/j a H_2, 0; 0 H_,,,j = I__ N, be linearly independent
over Ho (i.e., no nontrivial linear combination F-, N 4,i/ij lies in Ho), IF =
(Iji ,...., I//N). If B is any invertible matrix in CN, the natural restriction of
T,,,2 + I`P>B<PPI (mapping H2 into H_2) is given by the restriction of
To_, - T to the domain

{ c/ a H2I <I/ijl g> = 0, j = 1, ... , NJ. (G.22)
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Next let 1Jij a H_2, j = I, ..., N, be linearly independent over Ho and define
y,;,;.(E) to be any solution of

dEy(E)jj- _ -<VIjI R(E)2t/ij.>, EeC - [0, oo), j,j' = 1, ..., N. (G.23)

Clearly, the most general solution of (G.23) is of the type

y(E) + A, (G.24)

where A is an arbitrary complex N x N matrix. In the special case where also
O; a H_.,, j = 1, ..., N, eq. (G.23) has the particular solution -(qij, R(E)>lij.),
j,j'=1,...,N.

Theorem G.4. Let iii a H-21 j = 1, ..., N, be linearly independent over Ho,
`N = (ti,, ..., VIN) and let y(E), E e C - [0, oo), be a solution of (G.23). Define
the bounded operator Ry' in Ho by

R'(E) = R(E) + R(E)IP>[y(E)]-'<4'IR(E),

E e C - [0, oo), det[y(E)] # 0. (G.25)

Then RY'(E) is the resolvent of a closed densely defined operator T"' in Ho

Ry'(E) = (T,p - E)-', E eC - [0, oo), det[y(E)] # 0. (G.26)

If' ),(E) is Hermitian for E < 0, then T"' is self-adjoint. Define y*(E) = yT(E),
then (T")* = T:. Moreover, let Ea e C - [0, oo), det(1 s'n)] # 0. Then the
domain of Ti" consists of all elements g of the type

g = gso + R(Eo)I`l'>[y(Eo)]-'<PIR(E0), (G.27)

where g, e H2. The decomposition (G.27) is unique and with g e O(T") of
this form we obtain

(T" - Eo)g = (T - Eo)ge,,. (G.28)

Finally, let

Ydo={geH2I<ijlg>=0,j=1,...,N}.
Then

9(T") n H2 = moo, TPI.W,) = T190.

(G.29)

(G.30)

Next we discuss approximations for T"'. Let 0j e H_2, j = 1, ..., N, be
linearly independent over H. and assume that Oj a H_ w > 0, j = 1, ..., N,
converge to 4/j in H_2-topology as w -+ oo, i.e., limy,-. II0j - Oj II -2 = 01i = 1,
..., N. A family M" of complex N x N matrices is called a counterterm for

lim [«; I R(E)Q,f + M ],"j.=, (G.31)
W- OD

exists for some (and hence for all) E E C - [0, oo).
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Theorem G.S. Let q i ; a H_2, j = I , ..., N, be linearly independent over H0,
(01,...ION)and I__ N. with

lim IIU7-q;II-z=0, j = I....,N. (G.32)
m - 0r

Moreover, let the complex N x N matrix M° he a counterterm for (V _
(01" ... , Oiv) such that M'° is invertible for u, > 0 large enough. Define

y(E),i = - I i m [<j I R(E)Q5J" > + M;j.), j,j' = I...., N. (G.33)

Then y(E) satisfies (G.23) and hence dunes an operator T,Y' and

(T7 - E)' = n- Iim (T+ [M.°]-1
<(I - E)-1, E e C - I8,

t o-%,

(G.34)

where + denotes the ,form sum (i.e., the natural restriction of T_1.1 +
IW'> [M`°]-1 <I°'I mapping H, into H_1).

Finally, we turn to concrete examples:

(a) 6-interactions in one dimension:

q1;(p) = ei'(p), p, y, a R,

Y(E)j; = -( K)- e- + As, , j,.l' = 1, ..., N.

(b) 6'-interactions in one dimension:

ep;(p) = d i'(p), p, y; a R,
in-K1(G.36)

y(E)j; = (i /2)e-K + A;j', j,.l' = 1, ... , N.

(c) 6-interactions in two dimensions:

1G;(p)=ez'(p), p,y;aR2,

(2n)-1 In K + A;,, (G.37)
y(E)j; _ - (2n)- 1 K k ' =

the modified irregular Bessel function of order zero [11).
(d) 6-interactions in three dimensions:

ql;(p) = e3'(p), p, Y; a 68',

(4n)' 1 K + A;;, j = j' (G.38)
Y(E);; _ -(4nIy; - A,j,, j #j', j,.l' = I,..., N,

where A is any complex N x N matrix and E = -K', Re K > 0.

We note that in this context the condition « ;Ig> = 0 in (G.29) simply
means that the inverse Fourier transform of g vanishes at the points y;,
j= 1,.. ,N.

If A is not a diagonal matrix, then different points y; are connected by the
boundary conditions. On the other hand, if A is diagonal the point interactions
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are independent (i.e., one has separated boundary conditions at each point yi)
and T" coincides with -A,, by identifying

-(1/ai)bii., n = 1,

Aii = [2nai - In(2) - `P(1)]bii., n = 2, (G.39)

n = 3, j,j' = 1, ..., N,

y(E) = r(iK), n = 1, 2, 3, E = -K2, Re K > 0. (G.40)

Similarly, T7 coincides with 8p,r identifying

Ai, _ (1 /fl )bii', j, j' = 1, ... , N, (G.41)

y(E) = K2r(ik), E = -K2, Re K > 0. (G.42)

In the three-dimensional case (G.38), approximations according to Theorem
G.5 may be constructed as follows: Define the cut-off functions

o; (P) =

X, (P) =

Then

IPI - cv, (G.43)1,

0, IPI>w, w>0, P,yyER3, j= 1,...,N.

M" -[JR3
d3pIPl-210; (p)I2 + ai]bii = -[(Zn2)-1co + ai]bip,

ai e R, j, j' = 1, ..., N, (G.44)

represents a counterterm for r _ (0; ..., Thus
N

T+ IO; >[-ai-(2n2)-lW]-'; (G.45)
i=t

converges to ff A., r in norm resolvent sense as aw -> oo.
Locality of point interactions in the general case where the matrix A in

(G.24) is not necessarily diagonal is described in

Theorem G.6. Let !ii(p) = en4(p), n = 1, 2, 3, or i' (p) = d 1'(p), j = 1,..., N,
`P = (01, ..., ON) and let y(E) be any solution of (G.23). Then T"' is local, i.e.,
if g e Q(T") vanishes in an open set U S Id", then T'g vanishes in U.

The constructions in this appendix generalize to the infinite center case (the
Kronig-Penney model and its two- and three-dimensional generalizations)
[227]. We also emphasize that T can be replaced by any semibounded
self-adjoint operator in Ho.

Notes

Appendix G is taken entirely from [226].
Partial inner product space are discussed, e.g., in [43], [44] and in [45].



APPENDIX H

Nonstandard Analysis and Point Interactions

H.1 A Very Short Introduction to Nonstandard Analysis

Nonstandard analysis is essentially analysis over a larger field of numbers
than R (or C), namely a field *R (or *C) containing, in addition, infinitesimals
and infinitely large numbers. We can construct a model for *R as follows. Let
m be a finitely additive measure on N such that

m(A) a {0, It, A S N, (H.1)

and

JAI<x=:-m(A)=0; m(NI)=1. (H.2)

The existence of measures of this type follows from, e.g., Zorn's lemma. In fact,
the existence of m is equivalent to the so-called ultrafilter theorem which is
weaker than Zorn's lemma. We denote sets A s N with m(A) = I as "big" and
with m(A) = 0 as "small". Consider now sequences a = N, b = N,

b e R, and define the equivalence relation as follows

a - h iff m({n a Nja = I (H.3)

and we write a = h nz-a.e. With these definitions we have

*UB = (f8fy/,. (H.4)

We call *R the set of all hyperreals. For any sequence a = we let <a>
denote its equivalence class with respect to -. One easily verifies

<a> + <b> _ <a + b>, <a> <b> _ <ab> (H.5)

386
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if we define addition and multiplication pointwise in *18. The zero for addition,
denoted by 0, is the sequence with only zeros, while the unit of multiplication,
denoted by 1, is the sequence with only ones. If <a> 0 0 we can define the its
inverse <a>-' by (a-'). = whenever a 0 0. The above definitions make
*p into a field of numbers. *R can be linearly ordered by defining

<a) < <b) iff m({n a Nla < 1. (H.6)

We can consider P as embedded in *R by identifying any r e R with the
sequence *r a *08 where all the elements equal r. This embedding is an order
preserving homomorphism. From now on we will write r for the element
*r a *R. It is easily seen that P is a proper subset of *R. For instance, we have

(In'LN)a*P-a8, (H.7)

with

{n}.EN) 1. (H.8)

It is natural to call the number "positive infinite" since it is strictly
larger than any real number r e P. while it is natural to call the number

a "positive infinitesimal" since it is a positive number smaller
than any positive real number r e R. More generally, we define x e *aB as
infinitesimal if for all r e P

- r < x < r. (H.9)

(Note that 0 is an infinitesimal by this definition.) Furthermore, x e *R is called
infinite if for all r e P

ixl > r, (H.10)

where Ixl = for x = and x e *08 is called finite (or
near standard) if there exists an r e P such that

lxl < r. (H.11)

It is easily seen that any finite x e *R can be written uniquely as

x = r + r. (H.12)

with r e P and F infinitesimal. r is then called the standard part of x and is
denoted by

r = st(x). (H.13)

In fact, consider the set

Sx = Is a Rls < x}. (H.14)

Then Sx is nonempty since -s e Sx with s > lx i exists by assumption of x being
finite. By Dedekind's completeness of P. Sx has a supremum r in R. We will
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show that r = st(x). In fact,

r-t<x<r+t, te(0,CO). (H.15)

From this we infer that x --- r is infinitesimal and thus r = st(x). To prove
uniqueness we write

x=r, +C, =r2+1:2.
Then

1;, -- t:2 = r, - r2

(H. 16)

(H.17)

is both infinitesimal and real, and hence it has to be equal to zero. We write

xtiy (H. 18)

if x - y is infinitesimal.
To do analysis on *R, one has to show how to extend (in a natural way)

sets, functions, etc. from R to *R. The simplest objects with respect to this
extension are called internal objects. We call any subset A s *R internal if
there are sets A L- R, n E f\!, such that

A = a *RIm({ne 1}. (H.19)

We write

A = (H.20)

Similarly, an internal function is a function F such that

F: *R .. 8, F(<Ian}nc.J>) = <{anlnefid> a *R, (H.21)

for some sequence { F of functions on R. We write

F = <I l'n (H.22)

As examples of internal sets and functions we may take, e.g.,

[a, h] =ix e*RIa<x<b}, a,be*R, (H.23)

and

(H.24)

for any sequence {h N. However, e.g., the set of all infinite numbers and its
characteristic function are not internal, and hence they are called external
objects.

For internal objects one can roughly transfer the elementary properties
which can be formulated within first-order logic (allowing quantifiers only on
numbers, not on sets). This is a special case of the so-called transfer principle,
see, e.g., [14]. In particular, internal sets form an algebra under Boolean
operations. Special types of internal sets and functions are the so-called
standard ones. A set A *R is called standard iff there exist sets A. s P.
n e No, such that

A = e NIA = 1. (H.25)
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We then write

A = *Ao. (H.26)

A function F: *R - *R is called standard if there exists functions R - R,
n E No, such that

F = a NIF = FO)) = I (H.27)

and we write
F = *FO. (H.28)

With these notions at hand we can do most of classical elementary analysis,
e.g.,

(i) Limit of sequences.
Let s = and consider s as the function s: N - R. Then it
has a nonstandard extension *s: *N -+ *R, and the limit points of

are exactly the points st(*s.) for some infinite w E *N. Hence
s = a iff st(*sw) = o for all infinite w E *Nl.

(ii) Continuity of functions.
Let f : I R, I s R. Then ,f is continuous at x e I iff *f(x) = *f(y) for
all y E *I, y x. f is uniformly continuous on I iff *f(x) *f(y) for all
X,yE*I.

(iii) Derivative of a function.
Let f: 1 -i R, I c R. Then (df/dx)(x) exists at a point x e I if

A*f (x) *f (x + Ax) - *f (x) (H.29)
Ax Ax

is finite for all infinitesimals Ax # 0 and st(A*f(x)/Ax) is independent
of Ax. In this case

d (x) = st (A* AX)

(iv) Riemann integral.
Let f : [a, b] - R be a continuous function on [a, b] c R. Then

Ja A dx f(x) = st**f(x)Ax Ax 0, Ax 0. (H.31)
a //

However, to do more advanced analysis a more sophisticated construction
is required. We define the so-called superstructure V(R) over R recursively as
follows. Let

VO(R) = R, V . ( R ) = V . (R) u n e N, (H.32)

where 9(B) means the power set of a set B. i.e., the set of all subsets of B. Then

V(R) = U (H.33)
ne Np

Since ordered pairs (x, y), x, y e P. can be looked upon as ((x), {x, y} } and
as such they are elements of .-?(9(R)), we see that, e.g., the set of all functions
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on P is in V(R). Let

W. = { f e V(P)NIm(;n e F llj'(n) a 1) (H.34)

and

W = U W,. (H.35)
neN

We define an equivalence relation - on W by

,j' g if m(ln e NI f(n) = y(n))) = 1, (H.36)

and as before we let < f > denote the equivalence class with representative f. Let

n_ V(P) = W/-. (H.37)

We call n - V(R) the bounded ultrapower associated with V(P), and we have

< r> = <q> if .' g,
(H.38)

<.f> a <9> if m({n e NIf(n) a y(n)}) = 1.

Observe that

n. V(R) = U (Wn%*IR = Wo (H.39)
n-0

One can embed V(R) in ft - V(P) in a natural way. Namely, let x e V(P), hence
x e Vn(R) for some n E No and consider the sequence ix)nEN with all elements
equal to x. Then ;x;ne w e W. and we define

is V(R) -+ n. V(P), i(x) _ < {x;ne >- (H.40)

The mapping i coincides with the *-mapping *: R -+ *IR previously defined on
Vo(P). Furthermore, we will now embed n^ V(R) into V(*IR) where V(*R) is
defined as V(R) but with P replaced by'*IIR. The mapping.j is the identity on
W,),'- = *R. and if j is defined on we define j on (W.,!- - W.1-) by

j(<.I'>) = ij(<9>)I<.N>E<I>).

In this way we obtain a mapping

j: n ,. V(R) - V(* R), c Vn(*IR).

Define now

*: V(R) -e V(*R), * =.j ° i.

(H.41)

(H.42)

(H.43)

Then * is an embedding of V(R) in V(*R) which coincides with the usual
*-operation on numbers r e R, subsets A c P. and functions f: IR - R.
Observe that

*(V(R)) _ *V(R) # V(*IR). (H.44)

We call elements in *V(R) standard, and elements of standard sets are called
internal, i.e., B is internal if there exists an A e V(P) such that B e *A. External
elements are elements of V(*IR) which are not internal. For internal entities
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there is a natural "transfer of properties". Consider, e.g., the statement: Every
upper bounded subset of Il8 has a least upper bound. This statement transfers
into: Every internal upper bounded subset of *08 has a least upper bound. This
statement would be false without the restriction to internal subsets. Consider,
e.g., the upper bounded subset of *I8 consisting of all infinitesimals. This set
has obviously no least upper bound in *I8. Actually, one can prove that

A c R, A internal if A finite. (H.45)

Moreover, one has "overflow" in the sense that if A is internal and contains
all positive infinitesimals, then A also contains some real positive number.
Furthermore, one also has "undertow" in the sense that if A is internal and
(0, x) c A, then A contains some positive infinitesimals. One also has

A, B internal A n B, A u B, A x B internal. (H.46)

This ends our brief account of the basic principles of nonstandard analysis.
In the next section we will show how this can be used to give a natural
realization of the Hamiltonian with point interactions.

H.2 Point Interactions Using Nonstandard Analysis

In this section we will show how to construct the self-adjoint Hamiltonian
with one point interaction located at the origin with strength a using

nonstandard analysis.
Heuristically, we want to give a meaning to the operator

-A + db, (H.47)

8 being Dirac's delta function, and A infinitesimal. It is natural to attempt a
standard realization of this operator in the internal version of L2(R'), namely
*L2(183), which is well defined as an element of *V(R). The Laplacian -A
naturally extends by transfer to a self-adjoint operator in *L2(R3) which for
simplicity we also denote by -A. The characteristic function

< r;,1, 1 X I

XF(x) = 0, Ixl > r.,
F e (0, x), (H.48)

also has a well-defined corresponding function, again denoted by XE from *983
into {0, 1) for any infinitesimal F 0 0. Define

2

+ 2)2
(17) + g1_a + a,

at,
/J E R,

y e N1, (H.49)

which is a certain infinite number in *OB when c is infinitesimal. For any real
F00,

H,t = -A + AX, (H.50)

is a well-defined self-adjoint operator in L2(R3) bounded from below by
min 10, A }. Hence by transfer there exists a well-defined self-adjoint extension,
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denoted by 11,, in *L2(IF8') with the same lower bound (as embedded in *R)
for any infinitesimal c > 0.

Before we can state our main theorem we have to introduce some more
definitions. A bounded operator 7' in *L'(R') is called near standard if
for any J 'E *L2(R'), .f near standard (i.e.. there exists g E L2(18') such that
IIf - *gll -- 0) we have that if is near standard. A function f: *R' - *R3 is
S-continuous at a e *R iff

Vr e (0, -f-), 36 e (0, 'f ), `dx E *II : lx -- al <' =:> Ij(x) - ./(a)I < P. (H.51)

We then have

Theorem H.I. Let t: he a positive infinitesimal, and let A = Ae(a, fl, y) be
defined by (H.49). Then the operator

H, = - A + Ax, (H.52)

is a set-adjoint operator in *L2(RI) with lower bound 0 if a >- 0 and -(4rta)2
Y' x < 0. The resolvent (H2 -- z E C - R, and its
integral kernel is S-continuous outside the diagonal. Furthermore,

st[(HA,(a.#,,, - k2) '(x, x')] = (-A..0 - k2) -1(x, x'),

keC-(47raiJ1, x x', x,x'E08', (H.53)

independently of c, /3, and),. 1/' a e *R is finite, then

st[(Ha--k2)-'(x,x')]=Gk(x-x'), Imk>0, x x', x, x'eR'.
(H.54)

If x equals a positive infinite number, then

st[(HZ,t,.u.,,) - k2)-'(x, x')) = Gk(x - x'),

Link>0, x0x', x,x'eR', (H.55)

independently of e, a, /1 and y.

PR(X)I-'. We follow the decomposition of L2(P3) with respect to angular momenta
used in the proof of Theorem 1.1.1.1. 'T'hus we can split L2(68') in a rotationally
symmetric part * and its orthogonal complement .''1. Since the perturbation A.y
is rotation invariant it suffices (cf. the proof of Theorem 1.1.1.1) by transfer to study
the restriction of LfAA _ -A + ).x- to *.X;. By transfer of the unitary equivalence
(1.1. 1.8) it is enough to study

d
--

dr2 + A.0, II, )x (H.56)

in *1,'([0. x); dr) with a Dirichlet boundary condition at the origin. To this end.
we first consider

2

tt = --dr2 t- ay,, a. F E Ia, (H.57)
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in L2([0, :)o); dr) with both a and r. real. A short computation then shows

(2C k)"'mk(e, a, x)ikk(e, a, x'), x < x',

(ha - k2) t(x, x') = (2ib+k) 'Ok(s. a, x')Wk(e, a, x), x > x', (H.58)

Im k > 0, x # x', x, x' E [0, oc),

where

and

,k
Ism(v/2-ax), 0<x5e,

Wk(e, a, x)1h+ekx
+b- a ks, xe,

f,,ev'k2-ax + e-,VVk1-a-, 0 < x < e,
'k(', a, x) _ -ikx

k2 -- a ll

b = .Jk2 - at) ± `- -k - cos(,k2 - as)],

I k-:
e

,tk fVk2- a)e} = 1. -2 Jk2.-a

(H.59)

(H.60)

By transfer this also holds for x, x' a *[0, ce), x # x', a e *R, and a infinitesimal,
e > 0. Hence we infer that with the number a finite, st[(ha - k2)-`(x, x')] equals the
integral kernel of the resolvent of the Laplacian on [0, oo) with Uirichlet boundary
conditions at the origin.

If a is infinite, we need b+ finite and b, not infinitesimal to make
(ha - k2 )- `(x, x') near standard. From (H.58) we see that this requires sin(Jk2 - as)
and .. k2 - a cos(,,[k2 --as) to be finite. But then cos(Vrk2 - as) has to be
infinitesimal, which yields

r 2 --,1k --ae=(y+ 12)lt+q, ye N, (H.61)

with q infinitesimal such that

a 4a- Jk2 - a cos(Jk2 - as) (H.62)

is near standard. Using (H.61) we see that a is near standard if ",/C.2 - a sin q is
near standard which again is equivalent to qs-` being near standard. From (H.61)
we have

qa=-ty+2)2 + -2 (y+i) + k 2 -(n)2 (H.63)

Introducing

we get

= qt- ', u = st(gr - t) (H.64)

I ((y+2)If+na=st(a)=4-St - (-1)rcosL(Y+2)7r +q]

4rzstl(}'+t)-sinq-4 singJ

1

_ -- -(, + 2)eo711 ; e N. (H.65)
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Taking S E UF, we find
x l

a + D'
rzl

+ Rim ( I + k2 - '-. (H.66)

With this choice we obtain

(-11' 4iw
_

( I +
k

st((. ,) = e+0'' ''X (H.67)

and hence st[(h4 + h_)/k(h, - h )] = 1,4ita. However, this implies that

!4k(E,' , r:) 1

st

k(r, a, r) 41tx

Writing

(H.68)

(Dk(x, x) = st[Ok(r, a, x)]. '1'k(x. x) = st[/ik(r., a, x)] (H.69)

we see that they satisfy

- 4 -' k 2 (pk = (), - Y'k - k 2'Yk = 0 (H.70)

with boundary conditions

4axthk(x. 0) = Ok(a, 0), `I'k(a, x) -0. (H.71)

This proves that

st[(ha-k2)-'(x,x')]=(ho.s-k2)-'(x,x'), Imk>0. x# x', x.x'e[0,x),
(H.72)

where ho,, is defined by (1.1.1.12).

Observe that HA in the above theorem is given directly as a *-bounded
perturbation of - A in *I.2(R3), and that -A.., is obtained by taking standard
parts.

Noticing that we can obtain b(x) using nonstandard analysis as

6 AX) =
43(c3) XJx) (H.73)

(if a > 0 is real, 6, is a 6-sequence as a 0) we can rewrite H;, as

H;, = - A + A,(.c, /t, y)b,, (H.74)

where

2. («, fl, Y) =
43

[-(Y + i)2n2e + 8n2xt 2 + 11f,3]. (H.75)

As our final result in this appendix we will show how to use nonstandard
analysis to construct - A,, r with Y c R3, I YI < ac,, using the approach
advocated in Sect. I1.1.1.

Theorem H.2. Let fl'o be the self-adjoint operator defined by (11.1.1.15).
Then

k2)-'(x, x')] = (-Aa.r - k2)-t(x, x'),
Im k > 0, x-A x', x,x'e1183- Y, (H.76)
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provided w is positive infinite and

µ;(cu)-t =
2n2

+ a;, a; c- R, j = 1, ..., N. (H.77)

PROOF. Let co be positive infinite. By transfer R' is well defined in *LZ(R3) with
resolvent given by (11.1.1.16). We have

st[(Oy,,(PZ-k2)-'gy')]=GG(y,-y1), j91j', J,J'=1,...,N. (H.78)

With; (w) defined by (H.77) we get

ik
(PZ - k2) Y,)] = x; j = 1, ... , N, (H.79)

which proves (H.76).

Notes

Nonstandard analysis can be looked upon as a mathematical realization of
century-old attempts at using infinitesimal and infinite numbers in mathe-
matics, without running into contradictions. It was introduced by Robinson
at the end of the 1950s (important tools for Robinson's theory had been
developed earlier in mathematical logic, in particular, in work by Skolem).
Robinson's book [394] was very influential. A major development took place
in the mid-1970s, through Loeb's decisive introduction of a suitable non-
standard tool for measure theory and probability theory. As a consequence
the theory of stochastic processes has become one of the main domains of
applications of nonstandard analysis. The study of differential equations
and dynamical systems by techniques of nonstandard analysis was greatly
influenced by the work of Nelson [355]. The results reported in this appendix
are based on [12] and the book [14] to which we refer for additional
references.



APPENDIX I

Elements of Probability Theory

We shall collect here some basic notions of probability theory needed in
Ch. 111.5.

A probability space (Q, .rat!, P) consists of a set i2, a u-algebra d of subsets
of S2, and a u-additive probability measure P (i.e., a positive measure with total
mass one). The sets A in rah are called measurable sets or events. P(A) is the
measure or probability of the event A. A statement which holds for all points
co in the complement of a set with P-measure zero is said to hold P-almost
surely (P-a.s.) or P-almost everywhere (P-a.e.).

A random (or stochastic) variable X on (fl, .rah, P) with values in a measurable
space (S, s(S)), with S some set and s(S) a u-algebra of subsets of S, is a
measurable mapping from Q into S. In the case where S equals R and s(S) is
the Borel u-algebra one speaks of areal-valued random variable, sometimes
the same is also said when S equals 118 = I1 u { ±eo). P is called the underlying
probability measure for X. The image Px of P under X, defined by

Px(B) = P(X-'(B)), Be_V(S), (1.1)

is called the distribution (or measure, or law) of X (under P). One writes
P(X a B) for P((w a C IX(w) a B)). Thus

P(X a B) = Px(B) = P(A) (1.2)

with A = X -' (B).

Remark. If S = R one can also define the function Fx(x) = Px((-oo, x)) as
the distribution function of the random variable X. Fx(x) is thus the
396
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P-probability of the event {(o c- f IX(o)) < x}. The mapping x - Fx(x) satis-
fying Fx(-x) = 0, Fx(+oo) = 1, is monotone increasing and left continuous.
Vice versa any function with these properties uniquely determines a prob-
ability measure on (P, 81(R)), where 8(R) is the a-algebra of Borel subsets of R.

For any family tf c s4 of events let a(g) denote the smallest a-algebra
containing 9. If X is a random variable one calls a(X) the a-algebra generated
by X which is by definition the smallest a-algebra containing all preimages of
sets in 8(S) under X, thus a(X) = a{X`(B)I B E 81(S)}.

A family {AjQE1, I an index set, of events (in a probability space (0, d, P))
is called independent if for any choice of finitely many indices a I_., a. one has

n

P(AE, n .-- r)A..) = 11 P(AEE). (1.3)
k=1

A family {4,}.E, of a-algebras is independent if every family (AE)EE,,

A. e W., of events is independent.
A family {Xa}.E, of random variables is called independent if the family of

a-algebras {a(XE)}EE, is independent.

A stochastic process with index set K, state space (S, s(S)), and underlying
probability space (S2, sad, P) is a family of random variables X. on (i2, of, P)
indexed by K. Thus, for each K e K, X,, is a (0, d, P)-random variable with
values in (S, 81(S)).

If S is nice enough, e.g., a polish space (i.e., a complete, separable metric
space) we have the following: Given an independent family of random vari-
ables {XE }E E, with values in S, it is possible to find a "coordinate" ("canonical")
stochastic process {X, E, on the probability space (S', 8(S'),1') such that

I'(Sn,EB1...... a.eB.)=P(XQ,EB1,...,X..eB.)
n

= r[ P(Xak E Bk), Bk E s(S). (1.4)
k=1

Here 81(S') is the a-algebra generated by the cylinder subsets of S', i.e., by all
subsets of the form (c) E S'I(h(a1), ..., d (an)) E B1 x .. x Bn},with Bk E R(S),
ak e 1, k = 1, ..., n. (S', 81(S'), P) can be looked upon as the product space
flKE, (S., 81(SE), Pr,), where (SE, 81(SE)) is a copy of (S, s(S)) and P. = Px.. The
process (9, S', 8d(S'), P) can be viewed as a "realization" of the family {Xa}QE,
inasmuch as 1 E has the same distribution as XE, since P (B) = Px,(B), a E I,
B e 81(S). This is a simple case of a more general theorem by Kolmogorov,
see, e.g., [59].

The random variables X. in a family {XE}E, are called identically distri-
buted if their laws are identical, i.e., if Px. is independent of a. In the above
case then, if X. are independent and identically distributed, we have that P. is
independent of a.

Let {s+dn }n E N be a sequence of a-algebras of events. The tail a-algebra
(a-algebra of tail events) is by definition the a-algebra .0, defined by

a
.aw = (1 a( U aim - (1.5)

RC NJ m=n
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If .stn is generated by Xn, then

.4., = (1 of {X,,jm >_ n)). (1.6)

A well-known theorem by Kolmogorov (Kolmogorov's 0-1 law) says that
if the d,, are independent then d., is P-trivial in the sense that P(A) = 0
or P(A) = I for any A e d . In particular, if is a sequence of
independent random variables the corresponding tail events have probability
either 0 or 1.

Applying this to X = yn., A,, independent events, n E N, we then
get P(lim supnE N An) a {0, 1). In fact, by the Borel- Cantclli lemma,
P(lim sup,, E N An) = 0 holds if E, E ryP(A,) < ., P(lim supnE NA.)=1 if
Y-., N P(A,) = oo (actually for sn, N P(A,) < co P(lim supnE, An) = 0 one
does not need the independence assumption).

A random field X with index a subset K of 68' is a family of random variables
XK, K E K. If K is invariant under some subgroup of 08' and

P(XK,+K e A1, ..., XK,,. E An) = P(XK, E A1, ..., XK.. E An),

K;EK, A;E.r1, j= 1....,n, (1.7)

then {XK }K, K is called K-homogeneous (or K-stalionary).
A measurable transformation T of a probability space (S2, m', P) in itself is

called ergodic if for any A such that T `(A) = Awe have P(A) = 0 or P(A) = 1.

Notes

General references for probability theory are, e.g., [59], [109], [383]. A
classical treatise on stochastic processes is [157]. For discussions of ergodic
transformations see, e.g., [306], [312].



APPENDIX J

Relativistic Point Interactions in
One Dimension

Following the strategy in Chs. 111.2 and 111.3 we briefly sketch how to
analyze one-dimensional Dirac operators with point interactions by means of
appropriate difference equations.

Let Do denote the free Dirac operator in the Hilbert space L2(R) 0 C2

c2 d2 -icdx
Do=D, D= -icd pal+'Jc2©ag=

d c2-icdx
2

c9(Do) = H2'1 (R) OO C2,

where

al =
r1 -Ol

a3 =

are Pauli matrices in C2 and c > 0 denotes the velocity of light. The corre-
sponding free resolvent is then given by

Rk = (Do - z)-l, z e C - {(-co, -c2/2] u [c2/2, oo)} (J.3)

with integral kernel

Rk(x - x') = (i/2c)
sgn(x - x')

C(z) = [z + (c2/2)]/ck(z),

sgn(x - x') eikl:-=
r_l J

ck(z) = [z2 - (c4/4)]112,

lmk(z) - 0, zeC. (J.4)

399
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Relativistic point interactions concentrated at a point y e R can now be
constructed as follows. Define the closed, symmetric operator (cf. (I.4.1)) in
L2(R) (D C2

BY = D, ..))(D,,) e Hz. i (R) ® C21g(y) = 0}. (J.5)

Here g(y) = 0 abbreviates g, (y) _ g2(y) = 0 where

g(Y) -[9 i (Y)]

gz(Y)
a Hz. (R) ®C a

Then by has deficiency indices (2, 2) and hence a four-parameter family of
self-adjoint extensions. Similar to our treatment of 6- and X-interactions for
Schrodinger operators, we now select two special one-parameter families of
self-adjoint extensions of D,,. The first family, denoted by D.,,y, is defined as

D.,,, = D,

9(Da.r) = {g E Hz, 1(R - {y}) ® C21gi E ACIo.(R) 92 a AC,OC(R - {y});

g2(0+) - 92(0-) _ -(ia/c)y1(0)}, -co < a < ac,. (J.6)

The second family is given by

TT,,,=D,

_9(Ta.r) = {g e Hz. '(R - {y}) (D C2lg, e {y}), Yz a ACIoc(R);

g1(0+) - g,(0-) = i/3cg2(0)}, -Co < #:5 Co. (J.7)

Here AC,oJS2) denotes the set of locally absolutely continuous functions on
C cR.

To analyze the above operators it suffices to describe their resolvents. We
have

(Da,r - z)-' = Rk - [x/2c(2c + iai;)](fk(' - y), ')f,(' - y), (J.8)

(TO . - z)-1 = Rk + [/3/2(2 - i/3cC-1)](9k(' - y), .)gk(. - Y),

z e C - ((-co, -cz/2] u [cz/2, eo)}, Im k > 0, (J.9)

where

Ik(x) = I s8'(x)1 eckI=I, Ik(x) = [5g()]eikIxI,

9k(X) =
[sn(X)]eikIxII

-C-1,
4k(X) = [sg (x)] eikIxI'

z e C - {(-co, -cz/2] u [cz/2, oo)}, Im k > 0. (J.10)

Spectral properties of D., and TB,,, can now be read off directly from (J.8)
and (J.9). For instance, D.,,, has an eigenvalue iff a < 0

(cz(4cz - az)j1
, a < 0,

6P(Da,,) = 2(4cz + az) (J.11)

01 a>0, a=oo,
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and a resonance iff a 0 whereas Ta,Y has an eigenvalue iff /3 < 0

c2(#2C2 - 4)

6P(Te.Y) _
2(#1 C 2 +4) #

<
0,

(J.12)

L0, a>a /1=x,
and a resonance if /3 >- 0. Clearly, both spectra are purely absolutely contin-
uous in (-co, - c2/2] u [c2/2, oo). Given (J.8) and (J.9) the analogs of all
results in Sects. 1.3.1 and 1.3.4 (up to (1.3.4.9)) resp. those in Ch. 1.4 can now
be established in a straightforward manner.

Finally, we briefly discuss the nonrelativistic limit c - oo. Applying
the strategy of [202], [203], one proves that (D,,,Y - (c2/2) - z)-' and
(Ta,Y - (c2/2) - z)-', z e C - R, are holomorphic with respect to c-' in norm
and that

n-lim D rl Ol
( a.), - (CZ/2) - Z)-I = (-Aa.Y - Z)-l ® O O ,

e_a

rl0 0O
n-lim (Tv.Y -

(c2/2) - z)-, = (Bp, - z)-' O 'C-OD
P e P, (J.14)

In particular, the bound state energies E',,), of D',,,, a < 0, and ExY of T,,,,
/3 < 0 (with rest energy c2/2 subtracted) turn out to be holomorphic in c-2
around their respective nonrelativistic limits

Ea.Y - c2/2 = -((X2/4)[1 + (a2/4c2)]-'> a < 0,

90.Y - c2/2 = -(4//32)[1 + (4//2c2)]-'> /3 < 0.
(J.15)

Next we quickly turn to the N-center case. Obviously, the corresponding
operators are defined by

D.. D,

{geH2.'(R-Y)(D C2Ig1eAC,a, (R)>92eAC10(d8-Y);

92(Yj+) - 92(Yj-) = -(iaj/c)91(Yj),j = 1, ..., N},

a = (a1, ..., aN), -ao < a j < oo, j = 1, ..., N, (J.16)

TXY=D,

26(T,.r) = {g e H2.'(R - y) o C21g1 E ACIQ (R - Y), g2 e ACI.(R);

91(Yj+)-g1(Yj-)= -i/Jc92(Yj),j= 1,...,N),

/3=(/31,...,/3N), -oo</ij<oo, j=1,...,N, (J.17)

where Y = {yl,..., yN} c R. Their resolvents now read

N

(Da.r - z)-1 = Rk + [MM.r(k)];j'(.fk(- - -)ft(- -Yj),

z E p(DD,r), Im k > 0, (J.18)
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where

.j,=
IM..Y(k) [(4c2/aj) S33. + 2ict e"ly,-r,d),N

and

(Tp f - z)-' = Rk + Yj ), ')9k(' - Yd,
j'i'_,

where

(J.19)

zEp(Tp,Y), Imk>0, (J.20)

Mu,Y(k) = [(41/ij)bjj, - 2icC-,etklv,-v,l".=i. (J.21)

Again the analogous results of Sects. 11.2.1 and 11.2.4 (up to (11.2.4.7)) and
Ch. 11.3 can now be obtained in a straightforward manner. Obviously, also
(J. 13) and (J. 14) trivially extend to the present situation. Hence we turn to the
infinite center case. In principle, one could now follow the beginning of Sect.
111.2.1 or of Ch. 111.3 step by step but we prefer to proceed via the underlying
difference equation scheme. In fact, due to the continuity of J; in the model
D, ,,y and the continuity of f2 in the model T,# ,y we shall finally end up with
difference equations completely analogous to those used in connection with
- Ox, Y and p, Y.

Let Y = { yj e R I j e Z) be a discrete subset of R satisfying (111.2.1.1),
Y; < Y;+, , j e Z, U jE z [Yj, Y;+, ] = R. The corresponding models are then
defined by

Dx, Y = D,

fil(D..Y) _ {g c- H2,, (R - Y) 4 C2Ig, E 4C10 (R), g2 E AC,a(R - Y);

92(Yj+) - 92(Yj-) = =--00t;/c)91(Yy),J E 71},

a = -00 < ai < 00, j E 71, (J.22)

and

To- y = D,

60(T11. y) = {g c- H2, '(R - Y) O C2191 E ACS«(R - Y), 92 e AC,0jR);

9,(Yj+) - 91(Y,-) _ -i/3jc92(yi),J E Z},

P={/fj}jE7, -o0</ij<oc, jE71. (J.23)

At this point we would like to mention that the spectra of Da Y and Tp,Y are
closely related since one trivially infers that

[1 (8) 62]Da.Y[l (9) c2] _ T.1c2,Y, a = {aj}j.7, -00 < aj < 00, j E 71,

(J.24)

where

a2 = [O 0`].
(J.25)
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Following now the approach of Ch. 111.3 step by step one arrives at
the analog of Theorem 111.3.3 and a difference equation similar to (111.3.17)
resp. (111.3.20) (or the corresponding statements of Theorem 111.2.1.5 and
(111.2.1.48) resp. (111.2.1.49)). Since we cannot analyze these difference equa-
tions in general we only state the results in the special case where Y equals
the lattice A = aY, a > 0. Then one obtains

M;(k)'V;(k) = <h,+, (k), Im k >- 0, k V- mn/a, j, m e 1, (J.26)

where

E 1(k. y;)
Imk > 0, j E Z, (J.27)

and M;(k) = Mf'(k) for the operator Da.A where

M,'(k) - [(,'sin(ka' + 2 cos(ka)
lm k > 0, I e 7!, (J.28)

(D,.ni/i)(k, x) = Eiji(k, x), x e P - A, ii(k, x) _
41(k, x)],

1412(k, x)J'

iii(k, aj+) = i/ii(k, aj--), i2(k, aj+) - i/i,(k, aj-) aj),

je7/, Ec- R, Imk>0 (J.29)
in the case of model D, A and where

4,(k) = 02(k, }') IImk-2tO, j E Z, (J.30)
L1//2(k, )'i 1)

and M(k) = MT(k) for the operator Ta.A where

/3;c(_1 sin(ka) + 2 cos(ka) 1

M,'(k) = 1 01 , Imk >- 0, j E Z, (J.31)

(TO.A0)(k, x) = E,Ji(k, x), x e P - A, 0(k, x) _
0'(k, x)1'

412(k, x)J

02(k, aj+) = tb2(k, aj-), ,1(k, aj+) - /1(k, aj-) = iI c'i2(k, aj),
jE7L, EeIR, Imk - 0, (J.32)

in the case of model TR.A. Explicitly, the two difference equations read

41; F, (k) + qr, .1(k) = ((o/c) S sin(ka) + 2 cos(ka)} qi;(k),
(J.33)

4 , 1 ), Imk >- 0, k # nm/a, j, m e Z,

in the case of D, A and

(k) + O;-,(k) _ { - j3jcs-1 sin(ka) + 2 cos(ka)} qi;(k).
(J.34)

/i;(k) _ i/i2(k, aj). Im k >- 0, k 0 nm/a, j, m E Z,



404 Appendix J Relativistic Point Interactions in One Dimension

in the case of Tp.A. Thus we get completely analogous results to (111.2.1.54),
(111.2.1.55) for -A..A and to (111.3.23) and (111.3.24) for O.n-

Next we analyze the energy band spectra of Da.A and T,.A in the periodic
case where a, = a (resp. /l; = /1), j e Z. First, we introduce the reduced
operators DA (0), T.A(0) in L2((_ a12. a/2)) Qx C2 by

D,.,(0) D,

`'(D,.A(0)) _ {y(0)E a/2)- {0})®C21

-a-2+)=e,ua.9n(0,a/2-),n= 1,2;g1(0.0+)=g,(0.0-),

92(0, 0+) - 92(0, 0-) _ --(i01/c)92(0, 0)},

-oo < a < oo, 0 e [ - b/2. b/2), (J.35)

and

T.A(0) = D,

1(Tr.A(0))_ {J(0)EH2.1 ((-a/2, a/2)_- {0))OC I
ga(0,

91 (0,0+)-9.(0,0-)=i/ic92(0,0)},
--co < /< co. ;I- E [ -h/2, h/2). (J.36)

Then

ft

(11, d0

-h;2.ha)
(J.37)

h

in analogy to (111.2.3.27) and (111.3.43) where'/ is now the analog of (fII.2.3.8),
mapping 1.2(68) (8 C2 onto 1,2(A, h ' d0; L2([-a/2, a/2)) ® C2).

Spectral properties of Da.A(0) are summarized in

Theorem J. 1. Let - i < a < x), 0 e [--h/2, h/2). Then the essential spec-
trum of D,,,.A(0) is empty

c+t(Da.n(U)) = 0 (J.38)

and thus the spectrum of Da,A(0) is purely discrete. In particular, its eigen-
values Emn(0), m e Z - {0}, are given by

Emn(0) = n(0)]2c'2 + ((.4/4)112, m c- Z - {0, 1 },

E"(0) = [[k..A((I)J2c.2

+ ((.4/4)j1/2
(J.39)

where for m = 1 the branch of the square root to be chosen in (J.39) depends
on x and 0 and where kn; A(0), in a 7 - {0}, ordered with respect to their
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absolute values, are solutions of

cos(Oa) = cos(ka) + [aw(k)12c] sin(ka), Re k > 0, Im k >- 0, (J.40)

with

(k) = 5(h,') = 11 sgn(E)[k2c2 + (c4!4)]';z + (c2,'2)} (J.41)

k = k = f IE2 -- (c4'4)1112, IEI > (.2:2.
(J.42)

(E) li I (c4/4) - E21 1/2 IEI < c2 '2

For or e R - {0}, except Jr ox = - ac 2, m = I and 0 = 0, the eigenvalues
El-'(0) are simple. If a = -ae2, then E-"2-'(0) has multiplicity two.

Let a > 0. For E >- 0 we obtain

c2/2 < E,'-'(O) < Ei '(-b//2) = L(n2C2/a2) + (c4,4)],,z

< EZ A(-h,/2) < E2(O) = [(4n2c2;a2) +

E(0)A(0) < E3 A(--b/2) _ [(9ir2C.2;'a2) +

E A(0) < (J.43)

For E<0we get

Fa- (0) (.2/2 > Eo'.2(--bj2) _ -[(n2c2/a2) + ((.4/4)]12

> ha. 2"(0) >
!;'a.3 (0) _ - [(4n2(.2/a2) + (1.4,!4))1'2

> E' A h/2) > E° A(-h/2) [(yn2(.2/a2) +3 - 4

> F,' -4(0) > (J.44)

In addition,

alD«.A(())) n (- c2 /2, 0. x > 0, l e [ - b/2, h/2). (J.45)

Next let x < 0. For -c2/2 we obtain

Ei.A(0) < E'1"(-h/2) < I A(-h/2) = [(n2C2/a2) + (c'4/4)]112

< E ' Z A((1) < E ' ( 0 ) = [(4nz(.z/a2) + (c4,4)]1,2

< Ea A( b/2) < E4A(-b/2) = [(9n2c2/a2) + ((.4/4)]',2

<E'A(0)<...,
E1 .A(0) < of E R,

El (20 0. -(.2/2. a < -a('2,/

- C"'/2 < E2A(- h/2) < [(n2c2/a2) + (c4/4)]"2 at e 18,

E4;a.A(-h/2) = c-/2, E; 120co1h(ac14).A(-h/2) = 0,

El. n( h/2)
a

_ c
2/"2.

(J.46)
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For E < - we get

E"-'A (0) > Ea'i (- h/2) [(n2C2/a2) + (c4/4)]'n

> (-b/2) > Esi(0) = - [(4it2c2/a2) + (('4/4)]1/2

> E°:;(0) > -[(9n2c2/a2) + (c4/4)]u2

> F. _ A. (- h/2) > ... ,

E n(0) 1= -c2/2. -aC2 < of < 0,
< - c2 /2, a<-ac2. (J.47)

All nonconstant eigenvalues F,mn(0), fI E [-h/2, b/2), m c- 7 - {0}, are
strictly increasing with respect to a c- R. For a = 0 the eigenvalues are given
by

Em '+_'(O) = ± ([0 + 2 sgn(m)Ilml - l I7ra-']2c2 + 1;2,

in E 7/_ - {0}, 0 E [ - h/2.0]. (J.48)

They are only degenerate for 1) = -b/2, in e Z - (0} and 0 = 0, Im) >_ 2.

PROOF. Since practically all arguments parallel those used in the proof of
Theorem 111.2.3.1 and Theorem 111.3.4, respectively, we only concentrate on the
derivation of (J.40) -(J.47). Using the ansatz (111.3.35) in (1.33) yields (J.40). Concern-
ing (J.41) and (J.42) we used the resolvent (J.4). For IEI >- c2/2 and 0 = 0, -b/2,
(J.40) becomes

sin(ka/2) = 0 or cot(ka/2) = 2c/al;(k) for 0 = 0,

sin[(ka + n)/2] = 0 or cot[(ka + n)/2] = 2c1aS(k) for 0 = -b/ 2;

k >- 0. (J.49)

Since

1/5(k) = kc /{[k-c2 + (c4/4)]1;2 + (c2/2)} e [0, 1), E > c2/2,

(k) = ( - [k2c.2 + (c4/4)] i 2 + (C2 /12))/h- e (-1, 0], E:5 2,

4'(k) < 0, k > 0, (J.50)

equations (J.43) and (J.44) follow immediately in the case a > 0.
For EE [-c2/2, c2/21 and 0 = 0, - b/2, (J.40) becomes

± I = cosh(Ka) + [aq(K)/2c] sinh(Ka), 0 = {0'
b/2,

(J.51)

where

K = -1k = [(c4/4) - E2 ] 1'2/C E [0, c/2],

I1,1(K) = 1/it,(iK) = Kc/{[(c4/4) - K2C2]V2 + (C2/2)} E [0, 1], E E [0, c2/2],

II(K) = [(c4/4) - K2C2]112 + (C2/2)}/KC E [0, 1], E E [-c2/2, 0].
(J.52)

Clearly, (J.51) has no solutions for a > 0 implying (J.45). Before we turn to the case
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a <0 we first prove that a e R, has at most one cigenvalue in (-c2/2. c2/2).
For that purpose we define the closed, symmetric operator De in L2((-a'2, a,'2)) Q
C2 by

1)0 = 1),

`1(,60) = I g E Hl,'((- a/2, a/2)) (D C219,(- a/2 +) = eiea9n(a/2 - ) n = 1, 2.92(0) = 0},

0 e [-bi2, b12). (J.53)

By inspection def(D0) = (1, 1), 0 e [-h/2, b/2). Since both and D0,^(0) are
self-adjoint extensions of D0, and Do,^(0) (the decomposed free Dirac operator)
obviously has no eigenvalues in (-c2/2, for all 0 e [-h/2, b,'2), D,,^(0). x e I8,
0 E [-b/2, b/2), can have at most one eigenvalue in (-c2/2, c2/2) by Corollary I of
[494], p. 246.

Now we treat the case a < 0. Since the only nontrivial computations concern
E ^(0) and E; ^(- b/2) we confine ourselves to a detailed discussion of the latter.
We start with E; "(-b/2). For E >- c2/2, the first solution k, of

cot[(ka + n)/2] = 2c/as(k), k >- 0, (J.54)

(cf. (J.49)) is strictly decreasing from k, = n/a for a = 0 to k, = O for a = -4,a. For
E e c2/2] we have to analyze (J.51) and (J.52) in more detail. First of all,
(J.51) is equivalent to

coth(aa/2) = 2c/Ial7(K) for 0 = 0,

tanh(Ka/2) = for 0 = -b/2; E e [-c2;2, c2:2],
(J.55)

by taking into account that for 0 = 0, K = 0 is always a solution of (J.51) for all
a e i{8 whereas for 0 = -b/2, K = 0 is a solution of (J.51) iff a = -4/a. Moreover,
we note

1<0, E>0,
n'(K) >0, E < 0,

(>0, 0<K<IV /3c/4,
rI K){

<O, ,, 3c/4 < K < c/2,

1"(K)>0, E<0.

q"(J3c/4)=0, E>0,

(J.56)

Now we continue our discussion of a < 0. First, we prove that (J.55)
for 0 = -h/2 has no solutions for -4/a < a < 0. This follows from

2c/lain(K) > 2ac/4r1(K) > Ka/2 > tanh(Ka/2). (J.57)

Next we prove that (J.55) for 0 = - b/2 and E e (0, c2/2) has no solutions for
at < -(2c) coth(ac/4). In fact, by the monotonicity with respect to Jul we only need
to prove that

tanh(Ka/2) = 2c/IaoI n(K), E e (0, c2/2), a0 _ -(2c) coth(ac/4) (J.58)

has as only solutions K = 0 and K = c/2. Since [x ' tanh(x)]' < 0 for x > 0 we get
indeed

tanh(Ka/2) > (K/2c) tanh(ac/4)

> 1 + [1 - (4K2/c2)]''2 f1 -1 tanh(ac/4) = 2c/Icc0I 1(K).

0 < K < c/2. (J.59)
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In order to discuss the case E 0 we note

q(K)N==2 I + sgn(E)c3'2[((y2) - K]"2 + O([(c/2) - K]). (J.60)

Inserting (J.60) into (J.51) for 0 = -b/2 shows that

{cosh(Ka) + [al(K)12c] sinh(Ka);1,= ax,4

- I - sgn(F) K]12 + O([(c/2) - K]). (J.61)

Hence (0, r:) n a(D,o.A) = 0, [ -s. 0] c a(U,o A) for #. > 0 small enough, and
ao = - (2c) coth(ac/4). For E e [0, c2/2] and - (2c) coth(ac/4) < a < -4/a, (1.55)
for 1)= -b/2 has a unique solution as can be seen as follows. Near K = 0 we
obviously get the inequality

tanh(aa/2) > 2c/1aIq(K), K > 0 small enough, (J.62)

whereas for K c/2- we have

tanh(Ka/2) < 2c/1a1 q(K), [(c/2) - K] > 0 small enough. (J.63)

By the continuity properties of q there exists at least one solution of (J.55) for
0 = -h/2. But by the arguments following (J.53) there exists at most one solution
proving the above claim. For E e (- c2/2, 0] and a < -(2c) coth(ac/4), (J.55) for
d = -h/2 has a unique solution since 2c/1x1 q(K) is strictly decreasing from +x to
2c/1a1 and tanh(Ka/2) is strictly increasing from 0 to tanh(ac/4) as K varies from 0
to c/2. Clearly, this solution tends to zero as a -. -ro. This completes the discussion
of It remains to treat E e [0, c2/2) and - (2c) tanh(ac/4) <
a < 0, (J.55) for B = 0 has a unique solution since coth(aa/2) is strictly decreasing
from +a to coth(ac/4) and 2c/1 a1 q(K) is strictly increasing from 0 to 2c/1a1 as K
varies from 0 to Inserting (J.60) into (J.51) for 0 = 0 yields

cosh(Ka) + [aq(K)/ 2c] sinh(K(l)i Ia = -(2c)unMaa/4

= I - sgn(E) tanh(ac/4)c3''-[(c/2) - K]j2 + O([(c/2) - K]). (J.64)
h -c/2

Hence (-r:. 0) n a(D,,.,) _ 0, [0, e] c a(D,,,A) for c > 0 small enough and a,
-(2c) tanh(ac/4). For E e [_(.2 /2, 0] and -ace S a < -(2c) tanh(ac/4), (J.55) for
0 = 0 has a unique solution by the following reasoning. Near K = 0 we infer that

coth(aa/2) < 2c/1a1 q(K), K > 0 small enough, (1.65)

whereas for K -, c/2 - we get

coth(aa/2) > 2c/1a1 q(K), [(c/2) - K] > 0 small enough. (J.66)

By the continuity properties of q we obtain at least one solution of (J.55) for 0 = 0.
Again by the arguments following (J.53) this solution is unique. Since for 0 = 0,
K = 0 is a solution of (J.51) for all ac- U8 the proof is complete.

The spectral properties of Ta.A(0) now can be derived from Theorem J.1
since (cf. (J.24))

110 a2]D.,A(0)[1 0 a2I-' = -Tak2,AM,

-00 < a 500, 0 e (- b/2, b/2). (J.67)

Applying now (J.37) we get
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Theorem J.2. Let at E R and A= a7L, a > 0. Then Da, A has purely absolutel y
continuous spectrum

a(Da.A) = (7ac(Da.A) - U [a a,n+ bma,n],

me7/-(o}
ama.A < ba.A < am+),

m m
a-, > b-

m
> aa.(Am+1)+ ME N,m m+

asc(Da.A) = 01 (Tp(Da.A) = 0. (J.68)

Here.for a > 0

m odd,am = I
Em

m Em ^(- b/2), m even, m e N,

am" > [(m -- 1)27C2c2a-2 + (c4/4)]"2, ME N,

ba.n = IEm"(-b/2) = [(m2n2c2/a2) + (c4/4)]"2, m odd,
m

Em" (0) = [(m2n2c2/a2) + (c4/4)]"2, m even, m e N,

a .A =
fEa,m(0) _ -[(m - 1)2n2c2a-2 + (c4/4)]')2,

a m
Ea,m(-b/2) = -[(m - 1)2n2c2a--2 + (c4/4)]1;2

bat, A

J

h/2), m odd,
-m m even, m e N,

b°`'a" < -[(m - 1)2n2c2a-2 + (c4/4)]"2, ME N.

(J.69)

m odd,
m even, m E (V,

For a <0

-c2/2 < ad.n = Ea,A(0) < c2/2,

al,n = -c2 /2, 1:!5; -ac2, al (2c)tanh(ac/4),n = 0,

(t, A = JEm"(0) = [(m - 1)2n2c2a-2 + (c4/4)]u2, m odd,
am

Em"(-b/2) = [(m - I)27C2c2a-2 + (c4/4)]"2, m even,

m=2,3,4,...,
-c2/2 < b*,.n = A( -b/2) < [(n2c2/az) + (C4/4)]'/',

b; 4/4-' = c2/2, bi (2c) coth(aci4), A = 0,

ba.nr -- , - c'2/2,a-.-a<

1

ba.n 5EmA(-b/2), m odd,

m Em^(0), m even, m e N,

[(m - (r4/4)] u2, m = 2,3,4,...,

-c2/2, -ac2 a < 0,a"_," = Eaj (0)
< -e !2, a < -ac2,

(J.70)

(J.71)

(J.72)

aa,n = (Ea,m(0), m odd.
m 1 E° m(- h/2;, in even, m e N,

-[(m2r2c2/a2) -r (c`'/4)]:,2 in e N.
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bx n JEa-m(-h/2) = -[(m2192C2/a2) + (C114)] III,
_m =

l Ea,m(0) = -[(m2iv2c2/a2) + (c4/4)]112,
in odd,
m even, in e N.

For a E ! - {0}, D, n has infinitely many gaps in its spectrum. Except for
-ace, all possible gaps do actually occur. Only for x = -ac2 one gap

closes at E = -c2/2 since D_ac2.n(O) has -c2/2 as an eigem'alue of multi-
plicity two. For x = 0, Do,n equals the free Dirac operator Do in (J.1) with
spectrum

vlDo) = (-x0, -c2/2] u [c2/2, x) (J.73)

and due to the degeneracy of A(O), ImI >- 2, and ME Z - {O}.
all gaps in R - (-c-/2, c2/2) close. Furthermore, we note a strict mono-
tonicity of v(D,.A) with respect to a (being a consequence cQf the monotonieity
of Eaa,A(0), En; n(-b/2), me Z - {0}, with respect to or as mentioned in
Theorem J. 1)

cr(D,.n) C 0<a'<a,
-x <x (J.74)

Since (J.24) obviously applies in the present special case of periodicity, the
spectrum of Tp,n immediately follows from Theorem J.2.

Following [116] one easily proves that (Da.n - (c2/2) - z)-' and (Tp,n -
(c2/2) - z)-1, z E C - R, are holomorphic with respect to c' in norm and that

n-lint (DD,n - (c2/2) - . z) -1 = A,.n - z)_' Ox [0 0]' a E 18,

n-lim (TP,n - ((,2/2) - z) z)-1 0 /3E R.

(J.75)

Moreover, first-order relativistic corrections of energy bands with respect
to c 2 can be explicitly computed since (c2/2),

E [-h/2, b/2), in E N, turn out to be holomorphic in c-2 around their
nonrelativistic limits. In particular, the discriminant (J.40) and its analog for
Tp, n(H),

cos(Oa) = cos(ka) - [ sin(ka), Re k > 0, Im k Z 0, (J.76)

are easily seen to reproduce (111.2.3.16) and (111.3.29) as c - ao.
At this point we stop our analysis of relativistic point interactions in one

dimension. In fact, since the difference equations for D,,y and Tp,r are of the
same type as for -A,,r and Ep.r all results of Sects. 111.2.1, 111.2.3, 111.2.4,
111.2.6, and Ch. 111.3 extend to the present case. Explicitly, we mention that
the density of states (cf. (111.2.3.46) and (111.3.51)), the Saxon and Hutner
conjecture (cf. Theorems 111.2.3.6 and 111.3.5), half-crystals, defects, and
impurity scattering can now be treated by the same methods. Moreover, due
to (J.42) spectral results for Tp,y immediately follow from that of D., y.
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Notes

The entire material of this appendix is taken from Gesztesy and Seba [210].
Another type of self-adjoint extensions of A, has been discussed extensively

in the literature. Its boundary conditions read, e.g., in the case of a discrete
subset Y c R (as in (J.22) and (J.23))

g1(Yy+) = cos(Y,)g,(Y;-) - i sin(Y;)92(Y;-),

92(Yi+) = cos(Y;)92(Y;-) - i sin(Y;)91(Y;-), y, e R, j e Z.

Since in this case no linear combination of g, and g2 turns out to be continuous
at y; a Y, j e Z, our difference equation approach does not apply. Nevertheless
this model can be analyzed directly. In the finite center case this type of model
has been discussed in [232], [318], the purely periodic case in [51], [139],
[175], [213], [421], [454], [456], [465], [469], the diatomic case in [421],
[457], impurity states in [89], [139] and half-crystals and surface states in
(1381, [1751, [400a], [425], [426], [454], [466]. The Saxon and Hutner
conjecture in the special case N = 2 for this model has been proved in [465].
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APPENDIX K

Seize ans apres1

Pavel Exner2

A reliable means to judge theories is to observe the progress they make within
one or two decades. In the case of point interactions and their applications to
the description of quantum mechanical systems, there is no doubt that the field
witnesses a permanent development. The aim of this appendix is to summarize
some of the new concepts and results that appeared after the publication of
the first edition of this book - with the remarkable accomplishments of its four
authors in mind, I find it appropriate to borrow the title of this sequel from
the older Alexander Dumas. To fit into the appendix format, our list of topics
will be necessarily selective and the descriptions will be brief. In particular, we
leave out most of the problems treated in the book (32] to which we also refer
for a rather complete literature survey up to roughly 1998.

The amended bibliography here is intended to be representative rather than
comprehensive; the references are supposed to provide guidance for new devel-
opments since the appearance of the first English edition of this monograph
in 1988. Given the extensive list of references in (32], we have mainly limited
the present selection of references to some of the original works and some of
the very recent publications in the hope that the reader will easily be able to
trace publications which fall in between these extremes. For these reasons, the
bibliography for this appendix includes many references not explicitly referred
to in this appendix.

IIn the following, references in boldface denote references in the main text.
2Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences,

25068 Rez near Prague, Czech Republic.
E-Mail: exner®ujf.cas.cz
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K.1 Dimension one

K.1.1 On the meaning of S'-interactions
The approximation by Schrodinger operators with scaled potentials given by
Theorem 1.3.2.3 does not work for 5, illustrating, in particular, that the name
given to this interaction should be considered with a grain of salt. This inspired
a search for various non-potential approximations [43], [157]. It appeared, how-
ever, that one can use a potential family scaled in a non-linear way in view of
the following fact.

Theorem K.1.1 For a fixed a > 0, let -AAQ,y. be the Hamiltonian with three
6-interactions, Aa :_ {aJ}9E{-1,o,l} _ {20-1-a-1, pa 2,20-1-a-1}, localized

at Ya :_ {y3}9E{-1,o,1} = {y - a, y, y +a}. Suppose that is # -2/0 and ,Q # 0.
Then the relation

(K.1.1)lim rc2) -1 (x, x) = + r2) -1 (x, XI)ao+

holds for any x, x' E R, and consequently, -AA.,Y. 5,o,y as a - 0+ in the
norm-resolvent sense.

Sketch of the proof: The resolvent kernels are given by (11.2.1.11) and (1.4.9) so
(K.1.1) follows by direct computation; it implies that the resolvent difference tends to
zero in Hilbert-Schmidt norm. I

The convergence was discovered on a formal level in [75] and subsequently proved
in [114]. It further yields a potential-type norm-resolvent approximation to
5' if combined with Theorem 1.3.2.3 and the parameters of the corresponding
Schrodinger operator family are properly chosen - see [114] for details.

An alternative approach based on transfer matrices was suggested by the
same authors in [223] and elaborated mathematically in [34]. Similar approx-
imations can also be constructed for the whole family of general point inter-
actions [208], [418] discussed in Section K.1.4 below; in distinction to other
known methods [70], [76], the latter can be treated on the same footing as 6.

In [32], [171] it is shown how to write a Hamiltonian with a b'-interaction
as a singular divergence form operator. The interaction is then seen to formally
coincide with a projection operator, as suggested in [217]; this can be done
rigorously using the theory of f_2-interactions, see Section K.5.

K.1.2 Wannier-Stark systems
The spectrum of one-dimensional Schrodinger operator with a potential which is
a sum of a smooth periodic function and a linear one is known to be absolutely
continuous and to exhibit resonance ladders [50]. On the other hand, the spec-
tral character may change when the periodic component is strongly singular;
this can be seen in the situation where the latter is an array of b'-interactions.

Theorem K.1.2 Let H,Q,n,F = 80A - Fx, where , rp,n is given by (111.3.25).
Then
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(a) aa(H,,A,F) = 0 for any nonzero Q, F.
(b) There exists an Fo > 0 such that for each interval J C (0, Fo] there are
positive constants,60i io such that for any 77 E (0,,o) with IaI >'6071-2 one can
find a set C J such that meas(J \.F,6 ,,) < r, and v(Hp A F) is pure point
for all F E Fp,,7.
(c) oSS(H,,A,F) = {4(,3a)-' + (ma/a)2 - F(n +

2
)a I m, n E Z } if (a/7r)2Fa

is rational. Thus, in this case Q(Hp ,A,F) is nowhere dense and pure point.

Part (a) was proved in [43] (see also [96] for more general systems with back-
ground potentials unbounded from below and not necessarily periodic b' arrays)
by a trace-class perturbation technique inspired by [227]. Parts (b) and (c) were
obtained in [41] by a quantum KAM technique which required the exclusion of
the sets as they are leading to small-denominator problems. One might
conjecture, however, that the spectrum of HP,A,F will be pure point for all
nonzero F.

We also recall that the spectral character of such systems with 6-interactions,
that is, for -A,,A - Fx, represents an important and difficult open problem; on
a heuristic level it is expected to be the borderline case between the absolutely
continuous and singular spectrum [40]. For some work in this direction see [66].
The only known rigorous result refers to the analogous problem with random
coupling constants [144]. It suggests the existence of a phase transition, namely
the spectral character might be continuous for large and pure point for small
values of F, which holds in the random case with probability one.

K.1.3 Non-uniform point interaction families
Even without an unbounded background potential, one-dimensional models may
have unusual spectral properties resulting from the way in which point interac-
tions are arranged. The analysis of the operators -O,,,y in Section 111.2 was
done under the assumptions that there is a uniform lower bound on the distance
between the interactions sites, cf. (111.2.1.1), and that the coupling constants
are uniformly bounded, cf. (111.2.2.4). Violating any of these assumptions can
change the spectrum of such a point interaction Hamiltonian substantially.

Consider for simplicity a situation where the index set is J = Z and assume
that the support Y = {yJ'_,,. does not accumulate at any finite part of
the real axis, so that lim,.± y,7 = ±oo. Without loss of generality we may
suppose that the sequence Y is strictly increasing. Then we denote the adjacent
site distances by Ij := y.1+1 - y., and introduce

dy:=inf 2,=inf{Iyi-y,'IIjt
)EZ

Theorem K.1.3 Under the stated assumptions the following claims are valid:
(a) If dy > 0, the spectrum of -Da,y is not purely discrete. Moreover, the
operator is bounded from below if and only if the same is true for the sequence
{a) } jEZ of the coupling constants.
(b) Let again dy > 0. If aj - 0 as j - ±oo, then [0, oo), and
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in addition, >jeZ [aj I < oo implies Qac(-Da,y) _ [0, oo). On the other hand,
if both one-sided coupling constant subsequences are unbounded, 1%1 =
sup.,<0 Jaj I = oo, then the spectrum is purely singular.
(c) If dy = 0, the operator -Da,y is bounded from below if the same holds
for {aj}jEZ; it is unbounded from below if {a. + ej 1 + PJ 11},EZ has the same
property.

These results illustrate that spectral properties of -Da,y are similar but not
necessarily the same as those of its analogues with regular potentials. Parts (a)
and (c) were proven in [186], part (b) in [189] (see also [187], [188], [191]) using
again a trace-class technique similar to [227]. Moreover, we recall that claim (b)
remains valid if the line at the same time supports a sequence of b'-interactions
with analogous properties, and also if we add a background potential belonging
to L°°(R) (see [190]).

On the other hand, some questions concerning such Hamiltonians remain
open. For instance, if aj = a # 0 for all j and t., -+ oo as ) -4 ±oo, then
-Da,y has no discrete spectrum if the sequence t., increases exponentially with
respect to j. However, it is not known under which conditions the spectrum
becomes purely singularly continuous, cf. [73].

K.1.4 General point interactions
The general point interactions3 mentioned in Section K.1.1 (see also [208],
[418]) in the one-center case correspond to the four-parameter family of self-
adjoint extensions of the operator Hy given by (1.4.1). As in the particular
case of a b or b'-interaction, they can be characterized by appropriate boundary
conditions. They are either of the "connected type"

f (y+) f (Y-)
f,(y+) = wA f,(y-) , (K.1.2)

where Jw[ = 1 and A is a real matrix with det A = 1, or of the "separated type"

f'(y±) = ht f (y±), hf E R U {oo}. (K.1.3)

Naturally they can also be rewritten in various equivalent forms [11], [64], [105],
[233] suitable for different purposes. As a function of the parameters, the spec-
trum of such a one-center Hamiltonian has nontrivial topological properties
[233]. A description in terms of singular potentials (resp. densities or gauge
fields) has been given in [17], [18], [32], [171], [172]. This approach extends also
to higher-order differential operators [173]. Moreover, a periodic array of gen-
eral point interactions [172] can have band spectrum with a behavior different
from that described in Sections 111.2.3 and 111.3. Indeed, in distinction to the
b- and b'-cases, for some parameter values the band-to-gap ratio has a nonzero

3We use the term "general point interactions" in place of "generalized point interactions"
since the latter name has been reserved for point interactions associated with generalized
resolvents (see Section K.5).
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limit as the band index tends to infinity [105]. In [172] it was shown that the
parameters of the point interaction can be reconstructed from the asymptotics
up to a natural unitary equivalence corresponding to a singular gauge field.
The anomalous spectral asymptotics in the presence of b'-interactions can be
understood in terms of operators with singular densities [171], [172].

Another four-parameter family of point interactions can be constructed for
one-dimensional Dirac operators, or the radial part of the three-dimensional
Dirac operator, extending the results in Appendix J [51], [52], [88[, [89], [145];
this is related to operators associated with (K.1.2) via the non-relativistic limit.

K.2 Dimensions two and three

K.2.1 Point interactions in regions with boundaries
The definition of point interactions by means of domain restrictions and sub-
sequent self-adjoint extensions has a local character because it uses only the
behavior of the function in the vicinity of the support of the interaction. This is
why it can also be applied to particles confined to a region St C Rd for d < 3, as
long as the interaction site is located in its interior. Of course, to define the free
Hamiltonian Ho properly, one has to determine in this case the boundary con-
ditions at o t, for instance, if the walls confining the particles to the region n are
supposed to be "hard", this operator is identified with the Dirichlet Laplacian
-Do, cf. [391], Section XIII.15.

The self-adjoint extensions are conveniently characterized by boundary con-
ditions. While for d = 1 they are again given by (11.2.1.5) and similar expres-
sions, in the cases d = 2,3 one has to cast (1.1.1.12) and (1.5.10) into a form
which does not require rotational symmetry. This can be done using generalized
boundary values [115] introduced by

Lo(&,y) lira 4aIx - yI l(y)> L1(t&>y) :_ lira lip x () -
Lo(0,y)

IxVI-0 Ix-YI-,o 41rlx - y[
(K.2.1)

in the case d = 3, while for d = 2 we replace the divergent factor (4irlx - yI)-1
in (K.2.1) by -- In Ix - yI; we note that the resolvent singularities involved
in these definitions are the same as in the situation without boundary, where
St = Rd. A one-center point interaction is then specified by the boundary
conditions

L1(t,b, a) - aLo(1l d) = 0, a E R U {oo}. (K.2.2)

In other words, the corresponding Hamiltonian Hav acts as (Ha ,*) (x) =
-(O*)(x) for x # y and its domain consists of all ti E H2"1(St \ {y}) with
Dip E L2(f) which satisfy (K.2.2) together with appropriate boundary con-
ditions at 811 (see [32] for a detailed discussion of the relation between the
parameter a in the heuristic expansion for a point interaction at the origin, a8,
and the parameter in the boundary condition). In the same way one defines
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many-center point interaction Hamiltonians Hay for Y finite or countably in-
finite. As in the case ci = Rd we restrict our attention to local interactions only
which are characterized by (K.2.2) with a coupling constant a,, at each y. E Y;
the formal relation ago = oo means again the absence of the interaction at y.0.

What is most important in dealing with such systems is that the appro-
priate Krein formulas (such as (11.1.1.33) for finitely many three-dimensional
interactions) hold again; the only difference is that Gk is now replaced by
Gk = (Ho - k2)-1, the resolvent of the free operator, which now depends
on Q. In particular, the kernel of this operator for ci # Rd is a function of
both arguments, not only of their difference, and it is no longer an elementary
function. In cases where it is computable, spectral and scattering properties of
systems described by H v can be completely determined. Corresponding ex-
amples are various configurations of point interactions in a straight planar strip
or a flat layer in R3 [103], [115], where in the associated free system one can
separate variables and consequently express Gk in the form of a series.

Another important class of examples concerns the Seba billiards [38], [53],
[218] in which a single point interaction is placed at the point y of a hard-
wall rectangle St = (0, a) x (0, b) C R2. Such a system can be regarded as the
limiting case of a Sinai billiard with the circular obstacle squeezed to zero. In
the classical case such a limit restores integrability of the system, the quantum
dynamics, however, is different. Since Gk can be written as a series over the
explicitly known eigenvalues and eigenfunctions of Hon, the spectrum of H
can be computed numerically. It appears that the distribution of the eigenvalue
spacings is peaked away from zero similarly to that of the GOE ensemble of
random matrices; this property is typical for quantum chaotic systems. Similar
results were also derived for circular billiards [211]. We also recall that Seba
billiards provide a simple example of a system exhibiting a Berry phase [74].

Billiards with attached leads have been investigated in [23].

K.2.2 Geometrically induced properties
The spectrum of d-dimensional straight polymers with d = 2,3 was shown in
Sections 111.1.5 and III.4 to be purely absolutely continuous. This may change
if the point interaction chain has a nontrivial geometry. As an illustration, let
Y = {y_, }3Ez be a sequence in Rd for d = 2, 3, with the following properties: (1)
there is ana>0suchthat Iy,-y,,+1I =aand

cialj-ill <-Iy,-y_,'I:aIi-j') (K.2.3)

holds for any integers j, j' and some cl E (0, 1); (ii) Y is asymptotically straight:
there are positive constants c2, A > 2, and w E (0, 1) such that the inequality

1- yj - Y."I < c.2[1+Ij+j'I2µ]-1/2
Ij -ill

holds in the sector S,,, := {(j, j') I j, j' # 0, w < (j/j') <W-1 } of Z2. Let H«,y
be the Hamiltonian with the array of point interactions supported by Y, all of
them with the same coupling a E R. Then we have the following result.
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Theorem K.2.1 (a) vess(H,,,y) coincides with that of the straight polymer,
that is, -A,,A,, being given by (111.4.66) and (111.1.5.46) for d = 2,3, respec-
tively.

(b) If the second inequality in (K.2.3) is sharp for some j, j' E Z, j j', then
H,,,y has at least one isolated eigenvalue below E°'nl for any a E R.

Sketch of the proof: By Krein's formula the problem is reduced to finding the null
space of r,,,Y (k) on l2. One can treat it as a perturbation of I'O,A1(k) corresponding
to the straightened polymer, which is sign-definite because G,,(-) is monotone on R+,
and by (ii) it is Hilbert-Schmidt; for details see [101]. I

Similar curvature-induced bound states can be found in geometrically more
complicated point interaction configurations with infinitely extended compo-
nents which are asymptotically straight at large distances [116), and also in
other systems with singular interactions (cf. Section K.4.1 below).

K.2.3 Periodically arranged point interactions
The discussion of point interaction crystals in Sections 111. 1.4 and 111.4 concerns
mostly the situation with a single perturbation in each period cell. A more
detailed analysis together with methods used to prove the Bethe-Sommerfeld
conjecture for regular potentials [228) yield the following result [21).

Theorem K.2.2 Let -Oa,y+r in L2(Rd), d = 2,3, correspond to a finite set
Y C f wih any coupling parameter family a = {a3}, then its spectrum has a
band structure with a finite number of open gaps.

On the other hand, the question about absolute continuity of the spectrum
for such point interaction crystal models is nontrivial. If nonlocal interactions
coupling different sites within a cell are considered, examples exist in which this
property is violated [21], but the physically most interesting case of local point
interactions remains an open problem.

Spectral properties of periodic point interaction systems may be modified
by the presence of a boundary, that is, in the situation where the configuration
space is a proper subset fl in Rd. For instance, if the two-dimensional straight
polymer, which has at most one spectral gap by Theorem 111.4.11, is placed into
a straight strip of a fixed width b with Dirichlet boundary conditions, any finite
number of open gaps can be achieved if the ratio of the period a to b is large
enough, cf. [103]. On the other hand, while the Bethe-Sommerfeld conjecture
is expected to be valid in this setting, a corresponding proof is missing thus far.

K.2.4 Point interactions and magnetic fields
Consider point interaction perturbations of the Landau Hamiltonian defined as
HB = (-iV - A)2 in L2(R2) with a vector potential corresponding to a constant
magnetic field B perpendicular to the x1,x2-plane; they are defined again by
the boundary conditions (K.2.2). It is well-known that a(HB) = {IBI(2n + 1) 1
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n = 0, 1,... } consists of infinitely degenerate Landau levels. If there is a finite
number N of point interactions, they give rise to at most N eigenvalues in
each spectral gap of HB. The case N = I is explicitly solvable [139]: the a-
dependence of the eigenvalues generated by the point interaction is given by the
reciprocal of the digamma function.

The situation is more complicated in the case of an infinite number of point
interactions arranged periodically as a crystal. The first important difference
from the non-magnetic case of Section III.4 is that while physical states of
the system are invariant tinder translations, the Hamiltonian HB is not and
thus the group of translations used to derive the Floquet decomposition in
Theorem 111.4.5 has to be replaced by the non-commutative Zak group in which
translation by v acts in L2(R2) as f (x) H exp(-rri x A v) f (x - v) (cf. [134],
(235]). Here l; is the number of flux quanta through the unit area of the x1,x2-
plane. This fact implies that the spectrum depends substantially on the value
of the magnetic flux rt = a JBIJa1 A a2[ through the period cell f measured in
flux-quantum units; for a detailed discussion see the review paper [134].

Any finite family of Landau levels is preserved in the spectrum if 17 is large
enough, because then one can find eigenfunctions with zeros at the lattice points
(91], [136]; a similar statement holds for families of point interactions in a mag-
netic field which are not necessarily periodic, as long as the magnetic field is
sufficiently strong (42]. If r7 is rational, the point interaction lattice gives rise to
a band type spectrum in the gaps between Landau levels. In the particular case
of an integer 17 and a monoatomic lattice, these bands are absolutely continuous
(for local point interactions), while in the general case some of them may be
degenerate [134]. One of the most remarkable features of the spectrum is that
its shape depends on number-theoretic properties of 77. If the latter equals N/M
with N, M relatively prime, there are typically M subbands in each Landau gap.
Hence, as a function of 77, the spectrum has a fractal form [143] reminiscent of
the classical Hofstadter butterfly [246].

Apart from the shape of the spectrum, little is known about its character for
irrational values of i7. On the other hand, it is known that magnetic transport
through such a crystal is destroyed independently of 77 when the point interaction
couplings in the lattice become independent, identically distributed random
variables over a fixed interval: for fixed \ > 0 and [B[ sufficiently large, the
spectrum is pure point in (-oo, A) and eigenfunctions, with possible exception
of those referring to Landau levels, are exponentially localized, see [91].

For a magnetic version of the straight-polymer model, that is, HB perturbed
by a periodic point interaction array, all the Landau levels remain preserved in
the spectrum for any nonzero B. In addition, the perturbation generates in each
gap exactly one absolutely continuous spectral band [107] with the generalized
eigenfunctions localized in the vicinity of the polymer; their transverse size is of
the order of the classical cyclotron radius for the given B. In this respect they
are similar to the usual edge states [179], however, in contrast to these, they
have no classical analogue. For a similar effect see [72] where persistent currents
along a locally periodic point interaction loop are investigated.

While the spectrum of a planar point interaction crystal with magnetic field
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has infinitely many open gaps, the situation is entirely different in three di-
mensions due to motions parallel to the field. Such models are analyzed in the
paper [135], in particular, there it is shown that for an integer flux 71 through
the period cell the spectrum is absolutely continuous and has at most one gap.
The "intermediate" case of a point interaction crystal in a layer, with Dirichlet
boundaries and the magnetic field perpendicular to them, is discussed in [117].

K.2.5 Other results
In stationary scattering theory, one can associate a vector field of probability
current 3(x) = 2 Im(T,,,y (kw, x), V %a,y (kw, x)) with the generalized eigenfunc-
tions (1.1.5.1) and ask whether it can exhibit vortex-type singularities. These
obviously correspond to curves at which the function 4)a,y(kw, ) vanishes.
Such a behavior is not exceptional, for instance, it occurs even if N = 1 and
a/k < 2.68 x 10-2, see [126]. Another recent scattering result concerns the
flux-across-surface theorem [200].

A particle subject to a point interaction can be confined in configuration
space not only by a domain boundary but also by a potential which tends to
infinity at large distances. Such a "quantum dot" with a point perturbation
was analyzed in [62]. In particular, if the confinement is due to an isotropic
harmonic potential, one can recover its frequency from the dependence of the
ground state eigenvalue on the position of the point interaction.

Among various resonance situations, attention was paid to the model in-
troduced in [381] in connection with the quantum Hall effect; namely, point
interaction perturbations of the operator HB - Ex, describing a charged par-
ticle in crossed magnetic and electric fields. In the asymptotic regime of weak
electric fields, that is, E --> 0, the resonances were shown to be exponentially
narrow [147], while in general the resonance poles exhibit a nontrivial behav-
ior as functions of E, see [166]. Resonance scattering in analogous Stark-type
systems, that is, those with B = 0 and E 0, was investigated in [71].

Point interactions can also be combined with point magnetic fluxes. With
a natural separation of variables, this is a reasonable model for systems with
straight ferromagnetic whiskers which can be regarded as singular magnetic-flux
lines. The usual Aharonov-Bohm (AB) Hamiltonian HAB(¢) with a single flux
[214] is the operator (-iV - A)2 in L2(R2) corresponding to the vector potential
A = 0(yr-2, -xr-2) which gives rise to a magnetic field vanishing away from
the origin. Without loss of generality we may suppose ¢ E (0,1) because a
nonzero integer part of the flux can always be removed by a gauge transforma-
tion. Such operators have nontrivial scattering properties which constitute the
AB effect [9], and the same applies to systems with multiple fluxes [230], [231].
Restricting the domain of HAB(4) with a fixed ¢ to functions which vanish in
the vicinity of the origin, we get a symmetric operator with deficiency indices
(2, 2), because the restriction is now nontrivial for angular momentum values
f = 0, 1. Properties of the corresponding four-parameter family of self-adjoint
extensions are analyzed in [5], [79], more general systems with magnetic fluxes
and a background homogeneous magnetic field are discussed in [127], [194]. An
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extension in a different direction, concerning the Pauli operator with a pair of
Aharonov-Bohm fluxes, can be found in [144]. A study of decoherence phenom-
ena in a system with a point interaction was done in [92].

We also mention that Dell'Antonio and Panati [85] have constructed a point
interaction Hamiltonian with three centers which admits a zero-energy bound
state (see also the erratum concerning Theorem 1.1.4 on page 116).

K.3 More about point interactions
K.3.1 Various approximations
Approximations of point interactions by scaled families of regular potentials
were investigated thoroughly throughout the book. Approximations by regular
rank-one interactions were studied in [23] and [32]. As for recent results in this
direction, families of three-dimensional point interactions were used to approxi-
mate Schrodinger operators with singular interactions supported by surfaces in
the strong resolvent sense in [58]; for a two-dimensional analogue with numerical
illustrations see [116]. The opposite question about the convergence of sphere
interaction Hamiltonians to Ha,y (in the norm resolvent sense) is discussed in
[225]. Similar approximations can be constructed for AB Hamiltonians with
point interactions which we have discussed above. This was done in [56] for
the particular case of a two-parameter family of these operators, namely those
which commute with the angular momentum operator. The approximating fam-
ilies consisted of Pauli operators with the magnetic field supported by a surface
of a circular tube, being scaled in an appropriate way.

K.3.2 Time evolution
The resolvent determines the propagator of a point interaction Hamiltonian,
exp(-iHa,yt) with t E R, as an integral operator with integral kernel obtained
by an inverse Laplace transform in combination with analytic continuation.
Since the resolvent is expressed by Krein's formula, the resulting expression is a
sum of the free propagator with an additional term induced by the perturbation;
a survey of these formulas for one-center Hamiltonians in dimensions two and
three, as well as for the one-dimensional general point interactions discussed in
Section K.1.4 can be found in [11], [12]. A path-integral approach to express
the propagator in the general one-dimensional case is discussed in [145].

The situation is more complicated if the point interactions are allowed to
move. In such a case even the fact that the corresponding Cauchy problem
has a weak global solution is nontrivial; for n point interactions in R3 with
fixed couplings aj moving on smooth non-intersecting trajectories t i-4 y3 (t),
j = 1, ... , n, this claim is proved in [82], [83]. Some specific results can also be
derived. For instance, consider a two-dimensional charged particle interacting
with a magnetic field and a confining potential. For an isolated eigenvalue of
this system perturbed by a single point interaction which moves adiabatically
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along a smooth loop the Berry phase can be calculated [104]; the analogous
result is also valid if the configuration space is the Lobachevsky plane [15].

Another example in which properties of moving point interactions can be
determined concerns the circular motion, t -+ y(t), of a point rotating on the
circle of radius Iyo I with a fixed angular velocity w. For simplicity, let us consider
the two-dimensional situation. In analogy with the regular potential case [93],
it is convenient to pass to the rotating coordinate frame determined by the
point interaction. The evolution operator Uinert(t, s) associated with Ha,y(t)
in the inertial frame is unitarily equivalent to e-iK-o(`) with the generator
Kayo equal to the appropriate fixed one-center perturbation of the operator
H,,, := Ho - wJ, where J is the angular momentum operator.

Theorem K.3.1 (a) Qac(Ka,yo) = o,(H,,,) = R and vsing(Ka,yo) _ 0.
(b) In the rapid rotation limit one has s-lim,,,_,,. Uinert(t, s) = e''H.,.C(t-s),

where H.,,C is the Hamiltonian with singular interaction supported by the circle
C of radius Iyol and coupling

'Y = y(a, Iyol) = f [(1
22

2 + 21 ] Jo(kyol) kdk. (K.3.1)
o +e )Ik +iI k +i

An analogous result holds for a rotating point interaction in three dimensions
(in that case J is the third component of the angular momentum operator and
the expression for the effective coupling constant y is appropriately modified)
and for blades, that is, singular interactions supported by a rotating segments.
For details and proofs we refer to [77].

K.4 More general singular couplings
K.4.1 Interactions supported by lower-dimensional sets
The models studied in this book represent a particular case of interactions sup-
ported by singular subsets of the configuration space, typically of Lebesgue
measure zero. If the configuration space dimension is larger than one, there are
many more such sets than just families of isolated points. In some cases the
corresponding interactions can be interpreted as measure-type perturbations of
the free Hamiltonian [19], [57]; in other situations they can be even more sin-
gular [204], [206]. A case of particular interest concerns situations where the
interaction support E is a manifold or a family of manifolds, and there is a close
relation to point interactions in normal hyperplanes to E.

First we briefly describe a perturbation by a positive Radon measure m on
Rd associated with a Borel function a : Rd --' R which corresponds to the
heuristic operator -A+a(x)m(x). Suppose that for some a E (0, 1) and b > 0,
the inequality

J
(I+ a(x)2) IV)(x)I2 dm(x) < a

J
)V '(x)I2 dx + bj dx (K.4.2)

n n n
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is valid for all 0 E Co (St). This holds, for instance, if a is bounded and m
belongs to the generalized Kato class [57]. A density argument then implies that
there is a unique bounded operator I,,, : H2"" (Rd) - L2(1, dm) such that I,,, V) =
rp holds for all i E CO '(Q). Abusing notation we can then write (I,,,r/i)(x) =
Vi(x) for x E supp m. Next, we define the following quadratic form,

tam[] f dx + f rx(x) I('))(x)I2 dm(x) (K.4.3)
sz z

with domain H2"1(Rd). The form ta,,, is closed and bounded from below in
view of (K.4.2). By the KLMN theorem it thus gives rise to a unique self-
adjoint operator Ha,,,. If, in particular, nt is the Dirac measure supported by
a C'-smooth compact manifold E C Rd with codim E = 1, then Ha,,, can be
defined alternatively as -0 but with an altered domain: one keeps continuity
of the elements in the domain of Ham in a neighborhood of E but replaces the
smoothness by a jump of the normal derivative,

av, art,
= a(x)r/i(x), x E E ; (K.4.4)

an+ an_

the same can be done also for non-compact manifolds and under weaker regu-
larity assumptions [57]. A comparison with (1.3.1.9) justifies the interpretation
of Ham as a Hamiltonian with 5-interaction supported by E. Similarly, more
singular perturbations with codim E = 2, 3 can be defined by boundary condi-
tions of the type (K.2.2) in the normal hyperplanes to E, see, for instance, [108]
for curves in R3.

The analysis simplifies considerably if E has a symmetry which allows one to
separate variables and to reduce the task to a point interaction problem for re-
duced Hamiltonians. Following [42], various systems with rotational symmetry
were investigated, both non-relativistic and relativistic, including those with
Coulomb potentials, see, for instance, [48], [88], [89], 1901, [119], [152], [153],
[220], [221], [222], and [224].

In the absence of such a symmetry the problem is more difficult. Fortunately,
one can derive for the operator Ham a resolvent expression analogous to Krein's
formula using trace maps of the free resolvent Gk. Let u, v be positive Radon
measures without a discrete component, then we denote by Rk,,,, the integral
operator from L2(p) := L2(Rd, dµ) to L2(v) with integral kernel Gk(', . ).

Theorem K.4.1 I + has a bounded inverse in L2(711.) for all K > 0
larye enough. If I + aR,r`,, as invertible for link > 0 and the operator

Rk := Gk - Rm,dx(I + ORr.m)-laRdx.m (K.4.5)

is defined on L2(Rd), then k2 E p(Ha,,,) and (H«,,, -k2)-1 = Rk. In particular,
dirn Ker (Ha,,, - k2) = dim Ker (I + (kRn,,m) holds for any k with Iin k > 0. If
aR,k,,,,,,0 then O(x) = fit, y)o(y)dy is a non-normalized eigen-
fu,nction of Ha,,m corresponding to the eagenvalue -K2.
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A proof is given in [57], a more general result of this type covering singular
interactions which are not of measure type can be found in [204], [206], [209].
We recall that such a resolvent formula was derived for the first time for smooth
curves in R3 in [178]. The last claim of the theorem is an analogue of (1.1.1.54).
The interaction term in (K.4.5) can also be written in a symmetrized way [113]
which underlines the fact that we here deal with a generalization of the Birman-
Schwinger integral kernel to such singular interactions. As in the regular case,
one can find information about the discrete spectrum of Ham using Schatten-
von Neumann ideal properties of the integral operator Rm,m [57], [59], [113).

A particular case of interest concerns the situation where a is constant and
negative, and m is a Dirac measure on E, so Ham can be formally written as
-A + a5(x - E) with a < 0. We denote such operators as Ha,E and use the
same notation for their counterparts with codim E = 2,3 defined by boundary
conditions. The negative part of a(HH,E) corresponds to states coupled to E
in analogy with quantum graphs (which will be described in the next section),
taking into account possible tunneling between different parts of E.

For simplicity, consider the case where E is a curve or a family of curves
in R2. If E is a straight line, o(Ha,E) [-4a2, oo) by separation of variables
and the spectrum is purely absolutely continuous. On the other hand, if E is
not straight we have a result analogous to Theorem K.2.1. Let E : R -> R2 be
a continuous, piecewise C'-smooth curve, parameterized by its arc length with
the following properties: (i) there is a c1 E (0, 1) such that

cl Is - s'1 < IE(s) - E(s')[ <_ Is - s'[ (K.4.6)

holds for any parameter values s, s' E R, and (ii) E is asymptotically straight:
there are positive c2, µ > 2, and w E (0,1) such that the inequality

1 - Ps) - E(s')I < c2 [1 + IS + s'I2µ]-1/2 (K.4.7)
IS-S11 -

holds in the sector S,, {(s, s') I s, s' # 0, w < (s/s') < w-1 } of R2.

Theorem K.4.2 (a) Qess(Ha E) = [-4a2,oo) holds for any a < 0.
(b) If the second inequality in (K.4.6) zs sharp for some s, s' E R, s 54 s', then
Ha,E has at least one isolated eigenvalue below -4a2 for any a < 0.

See [106] for the proof and [108], [109] for analogous results in higher dimensions.
Since Ha,E < Ha,E, holds if E C E' and a < 0 by (K.4.3), this result can also be
used to prove the existence of isolated eigenvalues for more complicated sets E as
long as inf aess(Ha,E) = inf aess(Ha cf. [116]. Furthermore, a perturbation
expansion of the eigenvalues of Ha,E with respect to removing a small part of a
C2-smooth E has been derived in [130] for codim E = 1 and any dimension.

Another question is how the geometry of E will influence the discrete spec-
trum of Ha,E if the lateral coupling is strong and the eigenfunctions are closely
concentrated around E. We have the following asymptotic result.
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Theorem K.4.3 Let E: I R2 be a C4 -smooth curve without self-intersec-
taons and free ends, that is, either infinite and asymptotically straight or a closed
loop, then the jth eigenvalue of HQ.,E behaves in the limit a -oo as

A,(a) _ -Ia2+tc'7 +O(Ia1-1lnlal), (K.4.8)

d' 1 s 2 on L2 I with swhere µj is the jth eigenvalue of the operator - 4_Y(S) () 7( )
being the curvature of E at the point s E I.

Sketch of the proof: Take a neighborhood U. of a fixed half width a = 6Ia1-' In frxl
around E, then a two-sided estimate is obtained by imposing Dirichlet and Neumann
conditions at BU.. The exterior of UQ does not contribute to the negative part of
a(HQ,E). In the interior of the strip one uses the natural curvilinear coordinates and
an estimate by operators with separated variables; for details see [129]. 1

If E is infinite and periodic, a similar asymptotic expansion can be derived
for each Floquet component of H,,,E, with the error term uniform with respect
to the quasimomentum [128]. This implies the absolute continuity of any finite
part of the spectrum provided the coupling parameter -a is sufficiently large
[49]. We note that while the absolute continuity is established globally for a
periodic E of any dimension and codim E = 1 as long as the period cell is
compact [55J, the question remains open for a single periodic curve. In a similar
way one can treat singular perturbations of magnetic Schrodinger operators
corresponding formally to (-iV - A(x))' +ab(x - E); for -a sufficiently large,
a given eigenvalue is non-constant as a function of the magnetic flux, so such a
system exhibits persistent currents [72], [119], [131], [1511.

Modifications of the expansion (K.4.8) for higher dimensions can be found
in 11091, [111], in particular, for a surface in 1R3 the reference operator of Theo-
rem K.4.3 is replaced by -01,11 + K - M2, where -01,n is the Laplace-Beltrami
operator on E and K, M, respectively, are the corresponding Gauss and mean
curvatures.

In comparison to spectral properties, much less is known about scattering
for operators H,,,E beyond models with symmetry where separation of variables
is possible, see [42] or [152]. The case of an arbitrary finite smooth curve E is
discussed in [59]. If E is non-compact and a < 0 there may exist propagating
states in the negative part of the spectrum; resonance scattering was analyzed
for the case where E consists of a line and finitely many points [1101.

Interesting spectral and scattering behavior is observed also if the manifold
E is geometrically trivial but the coupling varies along it. For instance, a pair of
parallel straight waveguides separated by a semitransparent barrier, modelled
by a 6-interaction supported by a line with coupling a : R -> R, has a nonempty
discrete spectrum if lim,;.± a(x) = ao and ],,(a(x) - ao) dx < 0, cf. [112],
[1131. Another example consists of two parallel lines in the plane supporting
a periodically modulated 6-interaction which give rise to propagating modes of
positive energy localized in the vicinity of the lines [1831. Finally, we mention
that also more general systems were studied where a manifold supports not only
a singular potential but a kinetic term as well (cf. [1561, [159]).
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K.4.2 Quantum graphs
So far we have considered models where the configuration space was the space
Rd or an open subset thereof. Next we will say a few words about a natural
generalization of one-dimensional point interactions in which the configuration
space is a graph r consisting of at most countable families V = {v,} of vertices
and E = {e,} of edges connecting them. The number of edges emanating from
a given v, is called degree of the vertex. In general there may not be a bijection
between E and a subset of V x V if r contains loops and multiple edges between
a pair of vertices, however, one can always restore bijectivity by splitting such
edges by additional vertices of degree two. The graphs we consider are supposed
to have a metric structure, that is, each e., is isometric to a segment (0, 1j) with
h>0.

Sometimes this structure is induced by a global metric. For instance, this is
the case if r is embedded into some Rd, but in general such an assumption is not
needed. On the other hand, one usually assumes that "infinite ends" of possible
semi-infinite edges are of degree one, so that these play the role of external
"leads." Furthermore, it is supposed that each vertex has a finite degree and
that inf, 1. > 0, which is automatically satisfied if r is finite. The state space
of a quantum graph will be L2(I') identified with the orthogonal sum of all
L2(e,); in a similar way one introduces Sobolev spaces on r. In the simplest
case where the particle "living" on r is free, the corresponding Hamiltonian H
acts as H f = -f" at each edge; the nontrivial part of the model is to choose
the boundary conditions at vertices which make it a self-adjoint operator.

To describe them we need boundary values. Given a vertex v E V of de-
gree d and functions f j at adjacent edges, we introduce the notation F(v) =
If, (v),(v),.. . , fd(v) } for the vector of limit values at the vertex, and analogously
F(v) for the vector of the derivatives, taken all in the outgoing direction.

Theorem K.4.4 Suppose that for any v E V there are d x d matrices A, B
such that rank (A, B) = d and AB* is self-adjoint. The operator H f = -f"
with the domain H2,2(I') is then self-adjoint provided the boundary conditions

AF(v) + BF'(v) = 0 (K.4.9)

are satisfied at each vertex v E V. Conversely, any self-adjoint operator mapping
f to -f" at the edges can be characterized in this way by a family of matrix
pairs with the indicated properties.

The way to construct such a self-adjoint family on r follows the point interaction
scheme. One starts, say, with a family of Dirichlet Laplacians at the edges and
restricts their domains to functions which vanish in the vicinity of the vertices;
a vertex of degree d contributes by (d, d) to the deficiency indices. Then one
constructs all local self-adjoint extensions, that is, those coupling functions at
a single vertex only. This procedure was already used in (124], [138] but it was
only in [161], (177] that the natural form (K.4.9) of the boundary conditions
was found (see also [148], [168], [199] for various equivalent descriptions of this
operator family).
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We also mention that the same boundary conditions can be used to couple
more general Schrodinger operators acting as - d + vj on the jth edge pro-
vided the potentials v, are regular enough. Notice that graph edges can also
support magnetic Schrodinger operators [164] or Dirac operators [65] for which
the boundary conditions have to be appropriately modified.

If d = 2, there is a bijective correspondence between (K.4.9) and the general-
ized point interactions of Section K. 1.4. Also for d > 3 one can find analogues of
one-dimensional point interactions. The simplest among them is the 5-coupling
which is described by the boundary conditions

d

f 1(v) _ = fd(v) E f,'(v) = a f (v) with a E R. (K.4.10)
7=1

The case a = 0 corresponds to the free Hamiltonian for d = 2 and was used
already long time ago [213]; one sometimes speaks about Kirchhoff boundary
conditions. Similarly to Theorem 1.3.2.3 the 5-coupling can be approximated
by scaled short-ranged interactions: if we take a = 0 and put the potential

v, (£) with v, E L1(e.,) at the jth edge, then the resulting operator converges
in the norm-resolvent sense as a - 0 to the operator with no potential and the
boundary conditions (K.4.9) with a:= rj= fey ve(x) dx, see [98].

On the other hand, the b'-interaction has two possible extensions. A straight-
forward generalization is characterized by the boundary conditions

d

fj(v) = 0, fj(y) - fk(y) = 2f3(fj(y) - fk(v))
?=1

(K.4.11)

with j, k = 1, ... , n, among which there are n independent ones; we speak about
5'-coupling. There is also a direct counterpart to (K.4.9), namely

d

f'(v) := fl '(v) _ ... = ff(v) , E fi (v) = Of(v) with 13 E R, (K.4.12)
J=1

called 6'-coupling; transport properties of junctions with both these couplings
can be simulated by those of complicated geometric scatterers [43], 1991.

Applications of quantum graph models date back to more than half a century
ago. Following the idea of Pauling, spectra of aromatic hydrocarbon molecules
were calculated using such a model in [213]. However, it was only by the end
of the eighties that this concept became realistically applicable. The reason
was a rapid progress in fabrication techniques which allows one to create tiny
structures of the form devised by an experimentalist in which quantum effects
(coherent interference) can be observed. A prominent role among them is played
by quantum wires which are strips of a pure semiconductor material, typically
tens to hundreds nanometers thin. Recently a possibility of fabricating graph-
type structures based on carbon nanotubes appeared in [202]. Another applica-
tion concerns photonic crystals [133] which are described by pseudodifferential
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operators closely related to quantum graph Hamiltonians with a 6-coupling, see
also [169]. Graphs are also well suited to study adiabatic transport in networks
[44], quantum chaos [46], [165], and numerous other problems; for a review of
these topics with an extensive bibliography see [167].

The limited size of this appendix allows us to mention only briefly what
is known about quantum graphs. To find their spectral properties one has to
solve the Schrodinger equation on the edges and to match solutions using the
boundary conditions (K.4.9) defining the Hamiltonian. In analogy with Theo-
rem III.2.1.5 one needs in fact only the values of the solutions and their deriva-
tives at the vertices. This duality between the original graph problem and an
appropriate difference equation was established in [100] and makes it possible to
reduce the spectral problem to the investigation of a suitable determinant [10].

Since conductivity in networks of quantum wires is one the main applications
of quantum graphs, it is not surprising that a lot of attention was paid early on
to the scattering theory for graph Hamiltonians [8], [124], [138]. For r consist-
ing of a finite graph to which a finite number of semi-infinite leads is attached,
the existence and completeness of wave operators are easily established by the
Birman-Kuroda trace class theory, because the corresponding Hamiltonian dif-
fers from that of a fully disconnected graph by a finite-rank perturbation of the
resolvent. For a general star graph of d half-lines joined at a single vertex we
have the following result.

Theorem K.4.5 Let the edge coupling at the vertex be given by the boundary
conditions (K.4.9), then the on-shell S-matrix at energy k2 is given by

SA,B(k) = -(A+ikB)-1(A- ikB)
= -(A* - ikB*)(AA* + k2BB*)-1(A - ikB). (K.4.13)

is unitary and real-analytic as a function of k E (0, co).

For more general graphs the scattering can be studied using a decomposition
of r into subgraphs and a corresponding factorization of the S-matrix [161],
[163]. In some cases it is possible to express the S-matrix explicitly in terms
of its constituents, for instance, for a finitely periodic array of subgraphs [120].
For scattering on graphs in the presence of potentials see [232]; statistics of
resonances in graph scattering and its relations to classical diffusion is discussed
in [47].

Band spectra of periodic graphs are obtained conventionally by solving the
spectral problem for the period cell of I' with Bloch boundary conditions; graphs
periodic in one direction only can very effectively be studied by transfer-matrix
methods [69]. In distinction to one-dimensional periodic point interaction sys-
tems, however, the spectrum may not be absolutely continuous: in some cases
there are eigenvalues of infinite multiplicity, typically at band edges, associated
with localized eigenfunctions [168]. Asymptotic behavior of bands and gaps
depends on the coupling at vertices. In particular, for the boundary condi-
tions (K.4.10)-(K.4.12) it has properties similar to (111.2.3.36) and (111.3.47)
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as illustrated in [97], [99], [102] for rectangular lattice graphs. These exam-
ples also illustrate another difference to one-dimensional point interactions of
Section 111.2.3, namely that the spectrum may have no open gaps above the
threshold of the essential spectrum. Local perturbations of such graphs are
studied in [185]. A possible mechanism to open spectral gaps is to "decorate" a
periodic r by attaching copies of a compact graph to each vertex in analogy with
the result of [216] for discrete Schrodinger operators on graphs; the simplest ex-
ample is an infinite comb graph [120]. We also mention the spectral similarities
between periodic graphs and tree graphs discussed in [67], [94], (195], (229].

Various other questions about quantum graphs have been addressed. Inverse
problems in this context mean reconstruction of either the graph topology or
the vertex coupling from spectral and scattering data, see [68], [137], [162],
[177]. In [146] the famous question of Mark Kac4 was rephrased for graphs and
answered affirmatively for graphs with incommensurate edges; it is obvious that
without this condition in general uniqueness cannot be guaranteed. A search for
a physically motivated choice of the coupling inspired studies of Laplacians on
shrinking families of branched manifolds: the graph limit in which the transverse
size of the manifold branches tends to zero was proved for Neumann boundary
conditions in [170], [212], [215] and for manifolds without boundaries in [118].
However, the physically important Dirichlet case remains an open problem.
Finally we also recall that models with "fat graphs" have been discussed recently
in [192], [193], [205].

K.4.3 Generalized graphs
One can also treat systems with components of the configuration space which are
not necessarily one-dimensional, and possibly of different dimensions; one then
speaks of generalized graphs. Naturally, the construction based on restriction
and subsequent self-adjoint extension makes sense if the codimension of the
"interfaces" involved does not exceed three.

An archetypical example of such a system consists of a plane and a half-line
joined by a point contact with the state Hilbert space N = L2(R_) ® L2(R2).
Hamiltonians describing quantum dynamics on such a configuration space map

0:= 101 I to HqS := (-2) being defined on functions which belong locally

to the domain of the Laplacian and satisfy the boundary conditions

0'(0-) = a0i (0-) + cLo(4 2) , L1(F2) = c¢i (0-) + bLo(4'2) (K.4.14)

with a, b E R and c E Cat the junction, where L., (4i2), j = 0,1, are the two-
dimensional generalized boundary values analogous to (K.2.1). These conditions
describe most of the self-adjoint extensions [122]; to get all of them one can write
them in a way similar to (K.4.9). Similar boundary conditions can be used for
a point contact between two planes [121]; since they are local, it is possible to
use them even if the manifolds constituting the generalized graph are compact.

4 "Can one hear the shape of a drum?," Amer. Math. Monthly 73 (1966), No. 4, part II,
1-23.
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A general scattering theory on such graphs was formulated in [61]. Fur-
thermore, various examples were worked out in detail. For a sphere with two
semi-infinite leads it was found in [157] that apart from numerous resonances
such a system has properties similar to a 6'-interaction, being less transparent at
high energies, see [63], [120]; this fact is also reflected in the asymptotic behavior
of the spectral gaps of periodic systems of spheres coupled by line segments or
point contacts [60]. A related system of a periodic antidot lattice in a magnetic
field was treated in [142]. Applications of generalized graph models include sys-
tems of a different physical nature, for instance, the point contact spectroscopy
[123] or resonance statistics in a microwave resonator [125]. We also recall also
that the components of the generalized graph may in fact be copies of the true
configuration space labelled, for instance, by internal states of the particle with
different energies, as in various resonance models [39], 1951, or by different spin
orientations, as in the description of the spin-orbit coupling in a semiconductor
film [219].

K.5 Other results
Finally, we briefly mention some other extensions of the point interaction con-
cept. The book [32] contains, in particular, a unified treatment of point interac-
tions using the theory of 11-2-interactions. This extends ideas of [29], (31), [86),
[149], [150], [158], [160], [174]. Reference [32] also discusses generalized point
interactions (corresponding to generalized resolvents describing extensions of
symmetric operators to larger spaces).

As in the first edition we leave out applications of point interactions to many-
body problems. This gap is partially filled by [32, Chaps. 6, 7, and Sec. A.4],
which can serve as a guide to further reading, see also the appendix by Makarov
to the Russian translation of the first edition [20], and [17], [33]. Besides the
results concerning Hamiltonians for systems of N particles interacting through
point interactions discussed in [32), we also mention the study in [92] on N
harmonic oscillators each interacting with a particle via a point interaction (in
dimensions d = 1, 2, 3). This is a model first discussed by Fermi [179]. In partic-
ular in [92] (and the Ph.D. Thesis by Finco mentioned therein) it is shown, using
the method of quadratic forms, that in one space dimension the Hamiltonian
is well-defined and bounded from below. In this case integral representations
for the resolvent and the unitary group as well as convergent perturbation ex-
pansions in powers of the coupling constant in front of the point interaction
are derived. In space dimension d = 2, respectively, d = 3, after a suitable
"renormalization", a well-defined quadratic form describing the Hamiltonian is
obtained. The form is proven to be closed and bounded from below for d = 2
and all N E N, respectively, for d = 3 and N = 1. (The problem is open for
d = 3 and N > 2.) We also mention the study of a system of N particles
moving in dimension one and interacting by two-body point interactions in the
limit where N goes to infinity, approaching a Schrodinger equation with a cubic
nonlinearity [2]. Point interactions amended by an "internal structure" state



space were investigated in the papers listed in [32, Sec. A.2.2]; in particular, a
simple field theoretic model with a point interaction in the space L2(R3) coupled
to a one-dimensional "vacuum" vector was discussed in [234]. The interaction
supported by a single point in dimensions two and three is nontrivial only in
the subspace of spherically symmetric functions. By using indefinite metric
(Pontryagin space) techniques [430], [431) one manages to get interactions sup-
ported by a single point which are nontrivial and are not necessarily spherically
symmetric [86], [171]. Relations with renormalizations in quantum field theory
are investigated in [1761.

A class of nonlinear evolution equations with interactions concentrated in a
single point has been discussed in dimension one in [6], [7] (relating also to, e.g.,
[1541) and in dimension three in [3J (where a unique global solution in time is
obtained) and in [1], [4] (where blow up solutions are constructed).

Singular perturbations can also be applied to systems with other than quan-
tum dynamics - examples are the heat or wave equation, see [12], [54], or various
acoustic systems, see the references in [32, Sec. A.5.5J. Non-selfadjoint point
interactions described by complex boundary conditions were considered by vari-
ous authors. For recent one-dimensional results see [451, and also [16] where the
particular case of the so-called PT-symmetric interactions was analyzed. Point
interactions can also be defined in a nonlinear way which formally means that
the coupling depends on the vector to which the Hamiltonian is applied [1] in
analogy with the usual nonlinear Schrodinger equation.
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Errata and Addenda

Page 76. The line following equation (3.1.8) should read:
"If 8 varies in [0, 3-7r/2) U (31r/2, 27r), a varies in IR (8 1 3ir/2 corresponds to
a T +oo) and from ..."

Page 94. In equation (4.21) replace "(-(3/8)1/2» by «(_2/,3)1/2'+

Page 115. In equation (1.1.44) it should read "¢k(yy)".

Page 116. Equation (1.1.52) should read "op(-L1a,y) C (-oo, 0]". Indeed, if
ko = 0 in equation (1.1.61) one cannot conclude in general that ¢k L2 (R3).

An explicit example of a point interaction Hamiltonian with three centers,
which admits a zero-energy bound states with corresponding eigenfunction of
the form 1/,o(x) cj Go(x-y3) for appropriate (cl i c2, c3) E R3, has been
constructed in G. F. Dell'Antonio, G. Panati, "A remark on the existence of
zero-energy bound states for point interaction Hamiltonians", unpublished
manuscript.

Page 117. In the line following equation (1.1.61) replace "Eo = ko > 0" by
"Eo=ko>0".

11 -

Page 175. In equation (1.2.14) replace "I f (x") I2" by " 1 f (x") I2J ".

Page 177. In line 12 replace "1023 nuclei" by 111023 nuclei per cm3".

Page 182. In equation (1.4.35) it should read "Y = {y1, ... , yN}".

Page 188. In line 3 from the bottom "gk( - y3'O)" should be replaced by
"9k(' - yj,9)"
In line 8 from the bottom "F_ ,," should be replaced by "F k,Y,,".

Page 199. Three lines before Theorem 1.4.10 replace "bands" by "gaps".

Page 202. In the line following equation (1.5.13) it should read "L2(1R2 x I'1)".

Page 205. In the line following equation (1.5.33) it should read "... the solutions
of (1.5.33) are".

485
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Page 209. In line 2 of the formula for Fi(k,x) in equation (1.5.61) drop at

the right end.
In lines 2 and 3 from the bottom replace "k3(9)" by "k2(9)".

Page 210. In equation (1.5.66) replace "dx"' by "d3x"'.

Page 214. In the line preceding equation (1.6.29) replace "(4.36)" by "(1.4.37)".

Page 220. In the line following equation (1.7.24) "solves" should be displayed
as "solves".

Page 221. Equation (1.7.35) should end with

Page 227. In line 1 it should read "Theorem 1.4.5".
In line 4 it should read ". . . the density of states dp«,A(E)/dE, formally ...
The left-hand side in equation (1.8.2) should read dp«,A(E)/dE.

Page 243. In the first inequality in equation (1.9.34) replace "d" by "d".

Page 244. In the line following equation (1.9.37) replace "Eo'n(0)" by "Eo ,n(0)".

Page 246. In equation (1.9.53) replace 'T ,y(k2)" by "r(k2)".

Page 247. In the line preceding equation (1.9.68) replace " IYj" by " Ifl".
In equation (1.9.69), it should read "y1 + A Y".
Equation (1.9.70) should read "Ell < Ei < EN < EN -< Ey'+1".
In line 6 from the bottom replace "N2 + 1" by "N2".

Page 248. In equation (1.9.75) replace "E«2'n(0)" by "Eo2'n(0)".
In equation (1.9.78) replace by

Page 249. Equation (1.9.85) should read

'Yi'A'Y (k, 0) YZ 'n'y (k, 0) < Ys 'n'y (k, 0).

In the last line in Figure 34 rep lace "En " by "En " "En 77 by "E", "EA "g P 12 Y 1 02 of 11

b "En 71 and "EA01 Y oz" b "EA ", respectively. In addition, the line segmentY 1z ,

"E02(1, 2)", "Eo2(1, 2)" near the center of Figure 34 should read "Eo2(1, 2)",
AE12(1, 2)

Page 250. Equation (1.9.90) should read
«Or(-0«

Y)
9 [E«,A,1', Eo j,A(0o)]

U [Eoi, E12] U [Eo 3rn(0), E+'A' '] U [0, oo)"

Page 255. In equation (2.1.21) replace "Jo,," by "J".

Page 257. In line 6 from the bottom read "K 0 -cr /2".

Page 261. In equation (2.2.6) replace "Q«,y" by "QE,y" and "q« y," by "qr,y,".
In Theorem 2.2.1 add the assumption lA,(e)/el < C < oo for all j E J.

Page 262. In equation (2.2.11) replace "77(x)" by "7,(x)" in the next to last
inequality.
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Page 266. In the first line of the proof of Theorem 2.3.1 it should read "Since
a is finite, ... ".

Page 272. In line 6 from the bottom replace "(2.3.36)" by "(2.3.35)".

Page 273. In equation (2.3.47) replace "-1ao,A" by "-Da,A".

Page 275. In Figure 40 put "(d) N = 8" under the next to last graph.

Page 293. In the line following equation (2.6.20) replace "O(k, x)" by
Y,Z(k, x)".

Page 306. In line 5 replace "Ixi - foo" by "x --+ ±oo".

Page 321. In line 9 from the bottom it should read "Lemma 2.3.8".

Page 328. In equation (4.32) it should read "e-I7+BI2/4v".
In equation (4.35) replace "dw" by dw2".

Page 329. In the line preceding equation (4.41) replace "kn,^(9)" by "kn"^(9)".

Page 331. In the line preceding equation (4.57) replace "(4.49)" by "(4.56)".

Page 332. The right-hand side of equation (4.60) should read

lim E (2a) [l'' + 912 - k2] -1/2 - (21r)-1 ln(w/2)
'YEr,, I-r+el <w

The line above equation (4.61) should read "... of Theorem 1.4.3 we find
The right-hand side of quation (4.62) should read

lim
W--+00

E (2a)-1 [1-Y + 912 - k2] -1/2 - (21r)-1 ln(2iw/k)
7Er,,17+oi<W

Page 333. The right-hand side of equation (4.67) should read

21rT(1)+W00 (2a)-' -y - (ir/a)I-1 - (27r)-l ln(w/2)
ryEr,, I7-(ir/")I<<-W

Page 340. In line 2 from the bottom replace "0" by

Page 342. Two lines before equation (5.2.4) replace "A E F" by "A E 13(R)".

Page 348. In line 6 replace "(1.4.116)" by "(1.4.126)".
In equation (5.2.50) replace "Eo'"(0)" by ,Eo'A(0)".

Page 349. In equation (5.2.56) replace "XA = 0" by "X,\(w) = 0".

Page 352. In equation (5.3.22) replace "Um-1" by "U°O=1".
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Page 353. In line 7 from the bottom replace "Theorem 3.5.3" by "Theorem
5.3.3".

Page 358. In equation (A.7) it should read "m = 1, ... , M".

Page 364. On line 4 from the bottom replace "Theorem B.4" by "Lemma B.4".

Page 369. The assumption la, I < C < oo for all j E J should be added to
equation (C.30).
As discussed in V. A. Mikhailets, "Point interactions on the line", Rep. Math.
Phys. 33 (1993) 131-135 and in "The one-dimensional Schrodinger operator
with point interactions", Russ. Acad. Sci. Dokl. 49 (1994) 345-349, -0c,}l
is bounded from below if and only if "inf, E J (a,) > -00"-

Page 387. In line 1 replace "*R" by "RN".
In the line preceding (H.9) replace "r E R" by "r > 0".

Page 389. Item (ii) should read "... f is continuous at x E I if * f (x) * f (y)
for all... ".

Page 392. In equation (H.51) replace "*R" by "*R311

Page 393. In the second line following equation (H.60) it should read "...the
number a finite ... ".

Page 400. In (J.6) it should read: "g2(y+) - g2(y-) = -(ia/c)g1(y)".
In (J.7) it should read: "gl(y+) - gl(y-) = ifcg2(y)".

Page 419. Reference [116]: Add "Lett. Math. Phys. 15 (1988) 313-324".

Page 421. Reference [151]: An English translation appeared as Zero-Range Po-
tentials and Their Applications in Atomic Physics. Plenum Press, New York,
1988.

Page 423. Reference [181]: Add "J. Stat. Phys. 51 (1988), 205--214."
Reference [183]. Add "In: Hydrodynamic Behavior and Interacting Particle
Systems. Edited by G. Papanicolaou. Springer, New York, 1987, pp. 45-55".

Page 424. Reference [204]: Add "Addendum 132 (1988), 309".
Reference [206]: Add "134 (1988), 9-29".

Page 425. Reference [228]: Add "Chinese J. Phys. 25 (1987), 129-139".

Page 435. Reference [419]: Add "24 (1986), 111-120".

Page 436. In reference [450] it should read "Elektronentheorie".

Page 437. In reference [458b] it should read "Steslicka".

Page 439. In reference [511] it should read "Schrodinger".

Page 445. It should read "Shabani, J. [42], [424]".

We are indebted to G. F. Dell'Antonio, P. Exner, W. Karwowski, P. Kurasov,
K. A. Makarov, K. Nemcova, and G. Panati for supplying us with lists of
corrections.
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