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NON-HERMITIAN QUANTUM MECHANICS

Non-Hermitian quantum mechanics (NHQM) is an important alternative to the
standard (Hermitian) formalism of quantum mechanics, enabling the solution of
otherwise difficult problems. The first book to present this theory, it is useful to
advanced undergraduate and graduate students and researchers in physics, chem-
istry and engineering.

NHQM provides powerful numerical and analytical tools for the study of reso-
nance phenomena – perhaps one of the most striking events in nature. It is especially
useful for problems whose solutions cause extreme difficulties within the struc-
ture of a conventional Hermitian framework. NHQM has applications in a variety
of fields, including optics, where the refractive index is complex; quantum field
theory, where the parity-time (PT) symmetry properties of the Hamiltonian are
investigated; and atomic and molecular physics and electrical engineering, where
complex potentials are introduced to simplify numerical calculations.
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To the memory of my parents Rachel and Itzhak
who taught me to wonder



The Lively Imagination/Zelda

For the lively imagination
Holds a secret key,
Granted to the ignorant and unlettered,
That unlocks the ivory doors of science.
It enters the soaring towers,
Ambles through the equation-teeming dark –
And whistles there in wonder
Like an unruly youth.

Translated from the Hebrew by Amitai Halevi
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Preface

This is the first book ever written that presents non-Hermitian quantum mechanics
(NHQM) as an alternative to the standard (Hermitian) formalism of quantum
mechanics. Previous knowledge of the basic principles of quantum mechanics and
its standard formalism is required.

The standard formalism is based on the requirement that all observable properties
of a dynamic nature are associated with the real eigenvalues of a special class of
operators, called Hermitian operators. All textbooks use Hermitian Hamiltonians
in order to ensure conservation of the number of particles. See, for example, the
monumental book of Dirac on The Principles of Quantum Mechanics.

The motivation for the derivation of the NHQM formalism is twofold.
The first is to be able to address questions that can be answered only within this

formalism. For example:

– in optics, where complex index of refraction are used;
– in quantum field theory, where the parity–time (PT) symmetry properties of the Hamil-

tonian are investigated;
– in cases where the language of quantum mechanics is used, even though the problems

being addressed are within classical statistical mechanics or diffusion in biological
systems;

– in cases where complex potentials are introduced far away from the interaction region
of the particles. This approach simplifies the numerical calculations and avoids artificial
interference effects caused by reflection of the propagated wave packets from the edge
of the grid.

The second is the desire to tackle problems that can, in principle, also be solved
within the conventional Hermitian framework, but only with extreme difficulty,
whereas the NHQM formalism enables a much simpler and more elegant solution.
Moreover it provides the insight that is required in order to predict novel physical
phenomena and to design the corresponding experiments. It is most useful in
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xii Preface

exploration of the resonance phenomena, where particles are temporarily trapped
by the potential.

In their book on non-relativistic quantum mechanics, Landau and Lifshitz wrote
about the need for NHQM:

Until now we have always considered solutions of the Schrödinger equation with a
boundary condition requiring the finiteness of the wavefunction at infinity. Instead of this,
we shall look for solutions which represent an outgoing spherical wave at infinity; this
corresponds to the particle finally leaving the system when it disintegrates. Since such a
boundary condition is complex, we cannot assert that the eigenvalues of the energy must
be real. (Section 132 on Resonance at a quasi-discrete level).

The resonance phenomena are some of the most striking phenomena in nature.
Resonances are associated with metastable states of a system that has sufficient
energy to break up into two or more subsystems. These systems can be nuclei,
atoms, molecules, solids, nano-structured materials and condensates. The sub-
systems may contain elementary particles and/or neutral or negatively/positively
charged atomic or molecular ions. The systems whose dynamics is controlled by
the resonance phenomena can be as small as protonium (the exotic atom consisting
of a proton and an anti-proton) or a helium atom, or as large as a protein.

However, because of the exponential divergence of the asymptotes of the res-
onance solutions, the derivation of the NHQM formalism became possible only
after the derivation of the complex scaling transformation by Balslev-Combes
and by Barry Simon, with which resonance wavefunctions become square inte-
grable as bound states in the standard formalism. The non-Hermitian formalism
avoids the need to carry out complicated wave-packet-propagation calculations in
order to describe resonance phenomena, and enables the association of a given
resonance phenomenon as it appears in an atomic, molecular, nuclear or chemi-
cal system with a single square-integrable eigenfunction of the complex-scaling
Hamiltonian. Therefore, the non-Hermitian formalism, based on this kind of trans-
formation, enables the calculation of cross sections and dynamical properties of
systems controlled by their resonance states, by using computational algorithms
that were originally developed for bound states in conventional Hermitian quantum
mechanics.

Nevertheless, many questions remain unanswered. For example: what is the
solution of the time-asymmetric problem in non-Hermitian quantum mechan-
ics? It arises because the time-dependent phase factor, exp(−iEt/h̄), which
since −2Im(E), the decay rate, is necessarily positive, diverges exponentially as
t → −∞. What are the implications and physical manifestations of the incom-
plete spectrum of a non-Hermitian Hamiltonian that is obtained when two or
more eigenstates coalesce to a single self-orthogonal state? What is the physical
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interpretation of the phase of the complex probability density in non-Hermitian
quantum mechanics and how would time-dependent expectations of measurable
quantities be calculated?

The answers to these questions that are given in this book are based mainly
on my research over the last three decades. It began with my work in Madison,
Wisconsin with Phil Certain and Frank Weinhold on the properties of the complex-
scaled non-Hermitian Hamiltonian, and then through many years of research with
my PhD students and post-doctoral fellows and with my colleagues as well. (I
am fortunate to have been surrounded by so many gifted people for such a long
period of time.) Thirty years ago, in collaboration with the mathematician Shmuel
Friedland, we found that self-orthogonality, the coalescence of two or more eigen-
states, is related to the incomplete spectrum of the non-Hermitian complex-scaled
Hamiltonian. However, it was not until my most recent series of studies that it was
shown to be an observable phenomenon that may have different effects in different
fields of physical science.

Aside from presenting the non-Hermitian formalism of quantum mechanics, the
purpose of this textbook is to provide many solved problems that will provide
a better understanding of the foundations of quantum mechanics, to explain the
algorithms for calculating the resonance measurable quantities, and to illustrate
the applications of the formalism to physics, chemistry and technology. It should
be noted that many of the exercises are not included for honing the skills of the
reader, but rather for introducing him/her to additional details of the theory – which
can be skipped by readers who may not be interested or conversant with the more
technical details.

This textbook is designed for use by graduate and undergraduate students that
have already attended a basic course in quantum mechanics. However, for the sake
of coherence and in order to make the book more self-contained, the exercises also
include problems and solutions for Hermitian cases.

I am grateful to many of my students and colleagues, without whom I would
not have been able to do the scientific work that laid the groundwork for this book.
Above all, I wish to express my thanks to my student Dr Ido Gilary, who has
carefully read the manuscript and checked the solutions given in the book, and
whose cogent comments have helped me present the theory more coherently and
avoid many pitfalls. Any errors or inaccuracies that remain in the final version are
my responsibility alone.

Last but by no means least, I thank my wife Etty, my children Gilead and
Hamutal, my daughter and son-in-law Vardit and David, and my grandchildren
Noam and Jonathan for their patience, care and love, that gave me the peace of
mind needed to do science with joy and fun.





1

Different formulations of quantum mechanics

This book is dedicated to the non-Hermitian formalism of quantum mechanics.
In this chapter we wish to give the motivation and the rational for developing
a non-Hermitian formalism to quantum mechanics. Therefore this chapter will
not explain how non-Hermitian calculations are carried out or in what way the
non-Hermitian formalism is analogous to the standard (Hermitian) formalism of
quantum mechanics. It is important to emphasize that there is no (known) transfor-
mation which enables one to map results which were obtained using one formalism
to the other one. Yet, the same physical results should be obtained by studying the
same phenomenon using the two formalisms. If this is the case, why should one
bother to develop an alternative formalism to the standard Hermitian formalism of
quantum mechanics?

There are several reasons for doing this and here we shall focus on five of those
reasons.

(1) There are phenomena which can be explained in a straightforward fashion using the
non-Hermitian formalism but are very hard and often impossible to explain within the
framework of the standard (Hermitian) formalism of quantum mechanics.
In particular in Chapter 9 we will describe several physical phenomena which are
associated with the self-orthogonality where two or more degenerate resonance states
are coalesced.

(2) There are physical phenomena which one might not immediately associate with quan-
tum behavior where the quantum language can be used to describe the physics.
The studied problem may be, for example, in systems described in terms of classi-
cal statistical mechanics, diffusion in biological systems, or propagation of light in
waveguides (WG). In such cases the Hamiltonians are not Hermitian since the system
at hand is open to interaction with its environment. For example, when light is propa-
gated in an optical WG within the paraxial approximation the scalar Maxwell equation
is like the time-dependent Schrödinger equation with a time-independent Hamilto-
nian. The square of the index of refraction (with a minus sign) serves as a potential

1



2 Different formulations of quantum mechanics

energy term in quantum mechanics. The propagation axis Z serves as time in quantum
mechanics. The imaginary part of the complex index of refraction indicates the amount
of absorption loss of the propagated light when it passes through the wave guide. The
complex potential renders the Hamiltonian non-Hermitian and therefore such systems
can be only studied within the framework of the non-Hermitian formalism discussed
here.

(3) Simplification of numerical propagation of wave packets in time.
The propagation of matter waves by the Schrödinger equation and the propagation of
light in waveguides in the paraxial approximation are associated with two different
physical phenomena but they obey the same mathematical equation. The numerical
propagation of wave packets is much more simple when taken within the framework
of the non-Hermitian formalism of quantum mechanics rather than in the standard
(Hermitian) formalism. This is due to the inclusion of a reflection-free complex absorb-
ing potential (RF-CAP) in the Hamiltonian which attains non-zero values only in the
non-interacting region in the coordinate space where the physical potentials vanish.
This approach enables one to avoid the artificial reflections from the edge of the numer-
ical grid when a finite number of grid points (or a finite number of basis functions)
are used to describe a propagated wave-packet. By adding the complex non-Hermitian
potential to the Hamiltonian one can carry out numerical calculations using a finite
number of grid points or a finite number of basis functions (after all, our computers
are finite) and have a numerically exact propagated wave-packet in the region where
the RF-CAPs vanish. By numerically exact, we mean that the wave-packet which is
obtained by introducing a RF-CAP into the calculations, is exactly as the wave-packet
which would be calculated (if it were possible) by computers which are infinite (i.e.
infinite capacity, memory and computational power). The derivation of RF-CAPs by
carrying out a smooth exterior scaling transformation of the spatial coordinates is
presented in Chapter 5.

(4) Another numerical example for the advantage of the use of the non-Hermitian formalism
over the standard one is when the dynamics of a given system can be described by a
small number of resonance states.
Often it is enough to describe the dynamical process and to calculate all possible mea-
surable quantities just from a single resonance state. See, for example, in Chapter 8, the
calculations of the high-harmonic-generation (HHG) spectra (i.e. the emitted high fre-
quency radiation) and the calculations of the above-threshold-ionization (ATI) spectra
from a single quasi-energy photo-induced resonance state when atoms or molecules
interact with strong laser fields.

(5) Within the framework of the non-Hermitian formalism of quantum mechanics, one can
get a better understanding of different methods and theories developed in the standard
(Hermitian) formalism of quantum mechanics.
The first example is the Rayleigh–Schrödinger perturbation theory where the full
Hamiltonian is defined as Ĥ = Ĥ0 + λV̂ , where λ is the perturbation strength parame-
ter. The interesting non-trivial cases occur when Ĥ0 and V̂ do not commute. The radius
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of convergence of the perturbation expansion for the eigenvalues and the eigenfunctions
is |λbp|, where λbp is a complex branch point associated with a self-orthogonal state
where several (usually only two) eigenfunctions of the full Hamiltonian coalesce. The
nature of these branch points and a method to calculate them and thereby to determine
the radius of convergence of a perturbational series expansion of the eigenvalues and
eigenfunctions is described in Chapter 9. Another example is the calculations of the
poles of the scattering matrix for many-body problems. Within the framework of the
standard formalism of quantum mechanics it is very difficult, if not impossible (by
the available computational facilities), to calculate the poles of the scattering matrix
for many-electron atomic or molecular systems. This is particularly true when con-
sidering the electronic correlations which are missing in mean field approximations
(e.g. Hartree Fock calculations for fermions and Hartree calculations for bosons).
In the non-Hermitian formalism the poles of the scattering matrix can be directly
obtained by calculating the complex eigenvalues of the non-Hermitian Hamilto-
nian, as described in Chapters 4 and 5, for time-independent and time-dependent
Hamiltonians.

1.1 Hermitian operators: a brief review

A fundamental postulate in standard quantum mechanics is that any measurable
dynamical quantity is represented by a Hermitian operator. This postulate results
from another postulate in quantum mechanics which states that the quantities we
observe are the eigenvalues of operators which represent the measurable quantities.
Since measurable quantities such as the momentum of free particles or the energy of
stable atoms and molecules are real quantities, the operators which represent them
should be Hermitian operators. For example, the x-component of the momentum,
p̂x , is represented by −ih̄∂/∂x, the Hamiltonian is represented by Ĥ , etc. However,
these operators, Ô, which represent measurable dynamical quantities, are Hermi-
tian provided that they operate on functions which belong to the Hilbert space
H of square integrable functions such that if f and g are square integrable func-
tions, f, g ∈ L2(R) = H, or have asymptotes which are periodic functions, they
satisfy

〈f |Ĥ |g〉 = 〈g|Ĥ |f 〉∗ . (1.1)

As a consequence of this postulate there are a series of theorems that serve mile-
stones in the formalism of quantum mechanics. The eigenvalues of Hermitian
operators are real and expectation values of any measurable quantity are real. The
eigenfunctions of Hermitian operators can serve as a complete set in the series
expansion of any wavepacket (including time-dependent wavepackets) that repre-
sent the system under study. That is, |�〉 =∑j cj |j 〉, where Ô|j 〉 = oj |j 〉. The
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absolute value of any one of the expansion coefficients, |cj |2, is the probability of
measuring a specific quantity, oj .

Exercise 1.1

Since the standard formulation of quantum mechanics defines physical operators as
Hermitian we have to stress here that the Hermitian property of an operator is
heavily dependent on the basis set which is used to represent a dynamical variable
by matrices of infinite order. It is commonly assumed that these matrices obey the
usual laws valid for finite matrices. However, it is obvious that this is not necessarily
always true. Show that p̂3

x = (−id/dx)3 ≡ id3
x is not Hermitian when particle-in-a-box

eigenfunctions, {φn(x)}n=1,2,..., are used as a basis set. Associate it with the fact that
PP2 	= P2P, where P is an infinite order Hermitian matrix that represents the momentum
operator for a particle in a box, and its square P2 is well defined and diagonal.

We should emphasize here that the kind of non-Hermiticity of an operator
demonstrated in Ex. 1.1 which is associated with the momentum operator is not
the type which we commonly discuss in this book. All the non-Hermitian prop-
erties of the Hamiltonian which will be discussed in this book result from the
potential energy term in the Hamiltonian. There are two different types of local
potential energy term which render the Hamiltonian of the studied system non-
Hermitian. The first type are potentials that in standard (Hermitian) formalism of
quantum mechanics support a continuous spectrum. The second type of potentials
are complex local potentials.

1.2 Non-Hermitian potentials which support a continuous spectrum

The potentials of open systems describe ionization or dissociation or any other
phenomenon where the system under study breaks up into freely moving non-
interacting subsystems. When a system is in a metastable state (so called a res-
onance state) it has enough energy to break up into several subsystems. A given
system can arrive at a metastable resonance state in a full collision process where
the target and the projectiles form an “activated complex” as they collide, which
can be considered as a system that has the energy to break up into subsystems.
A more natural way to create a system in a metastable resonance state is in a
half collision process. In half collision processes the energy can be pumped into
the system by many different ways. For example, by applying a static field, by
exposing the system under study to weak or strong lasers, by using accelerators,
or by heating. The systems can be, for example: nuclei, atoms, molecules, solids,
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nano-structured materials, and condensates. The subsystems might contain elemen-
tary particles and/or neutral or negative/positive charged atomic or molecular ions.
Systems where dynamical behavior is controlled by resonances can be, for example,
as small as protonium or helium atoms or as large as proteins.

Different situations where energy is pumped into a system giving it enough
energy to break up into subsystems are described in the next chapter. We focus
in the next chapter on resonance phenomena which are associated with sys-
tems that do not break up immediately into subsystems although they have the
energy to do so, but rather remain stable for long periods of time. As time passes
the outgoing subsystems reach a detector where the energy and momenta can
be measured precisely. Since the momenta are eigenvalues of the momentum
operator it seems that the detectors measure the wave-vectors of plane waves,
{kj }j=1,2,..., where the measured momentum vector of the j -th particle/subsystem
is given by h̄kj . Therefore, it is very natural to associate the metastable res-
onance states of the system with stationary solutions of the time-independent
Schrödinger equation with outgoing asymptotes rather than with non-stationary
wavepacket solutions of the time-dependent Schrödinger equation. We will show
in the following chapters that, even when the system interacts with time peri-
odic electromagnetic fields, resonances can be associated with quasi-stationary
solutions.

Exercise 1.2

Often in experiments the detectors measure the momenta of the outgoing particles/
subsystems. Because of the uncertainty relation in quantum mechanics we know that
it is impossible to measure precisely both the positions and the momenta of the out-
going particles/subsystems. However, it is possible to build detectors (antennas) that
measure precisely the momenta of the outgoing particles/subsystems. Is there violation
of the uncertainty “principle” since we know precisely the location of the antenna that
measures the momenta of the outgoing particles/subsystems?

Here we are coming to a critical point in our discussion of the resonance phe-
nomena. By imposing outgoing boundary conditions on the eigenfunctions of the
time-independent Hamiltonian (we will extend this approach also to the time-
dependent Hamiltonian in Chapter 4) two kinds of solutions are obtained. The first
type of solution is the bound states. The second type of solution is the resonance
states which are associated with complex eigenvalues and eigenfunctions which
are not in the Hermitian sector of the domain of the physical Hamiltonian.
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Figure 1.1 The second longest living resonance state for a spherical potential,
V (r) = (r2/2 − 0.8) exp(−0.1r2), obtained by carrying out three different types
of calculation. The model potential is plotted using a full dark line.

These complex resonance eigenvalues are associated with the complex poles of
the scattering matrix derived within the framework of the standard (Hermitian)
formalism of quantum mechanics. We will explain the properties of the resonance
complex eigenvalues and eigenfunctions in detail in Chapters 4–6. As we will
show in this book, the use of the resonance states as a basis set in describing full
collision and half collision processes has both conceptual and numerical advan-
tages over the standard approach. First, in many cases the dynamical process can
be described as a linear combination of a small number of resonance eigenstates
(i.e. solutions of the time-independent Schrödinger equation obtained by impos-
ing outgoing boundary conditions). Often only one resonance state dominates the
dynamics. In such cases, even without doing any computations one can find out
what the potential parameters are which should be varied in order to control the
dynamics. The variation of potential parameters can be done by selecting different
type of atomic, molecular or mesoscopic systems, or by varying the structure of
the system as in the case of quantum dots, quantum wells and waveguides or by
varying the laser parameters when photo-induced dynamics is under study. For
instance, it is quite difficult and often impossible to explain the results of experi-
ments where the electronic and nuclear coordinates are strongly coupled to one
another, such as in the case of scattering of electrons from molecules or in the
scattering of anti-protons from atoms. As we will show in Chapters 4–9, within the
framework of the non-Hermitian formalism of quantum mechanics we can explain
the results of such experiments.

In order to illustrate the advantages in using non-Hermitian quantum mechanics
for studying the resonance phenomenon, we show here in Fig. 1.1 the metastable
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resonance states for a particle in a spherically symmetric potential barrier
given by

V (r) = (r2/2 − 0.8)e−0.1r2 {0 ≤ r ≤ ∞} . (1.2)

Note that the cross section of this potential in any given direction supports
two barriers separated by a potential well. The s-waves eigenfunctions which are
associated with the resonance phenomenon were calculated numerically by three
different approaches: (1) using the Hermitian formalism of quantum mechanics;
(2) using the non-Hermitian formalism by imposing outgoing boundary conditions
(BC) on the solutions of the time-independent Schrödinger equation; (3) using
the complex scaling method (CS) where the Hamiltonian becomes non-Hermitian
due to rotation of the coordinate into the complex plane, i.e., r → r exp(+iθ ). In
this method we calculate the square-integrable eigenfunctions which decay to zero
as r → ∞. These functions are associated with complex eigenvalues which are
θ -independent (provided that θ gets to sufficiently large values). In this case the
Hamiltonian is non-Hermitian due to the use of the complex scaling technique and
not because of the requirement of outgoing boundary conditions.

The non-Hermitian methods for the calculations of resonance energies and wave-
functions will be described briefly in this chapter and in greater detail in Chapters
4–5. The resonance phenomenon in this case is related to the fact that a wavepacket
which is initially localized inside the potential well remains localized for quite
a long period of time. The different types of physical resonance phenomenon in
nature are described in detail in the next chapter since resonances are one of the
most interesting phenomena in physical sciences.

We now closely examine the manifestation of the resonance phenomenon in
each of the approaches described above.

(1) In the first approach we calculated the s-wave continuum eigenfunctions of the Hamil-
tonian Ĥ = −0.5∂2

r + (r2/2 − 0.8) exp(−0.1r2) within the framework of the standard
formalism of quantum mechanics. In Figs. 1.1 and 1.2 we show the results obtained
by the Hermitian calculations for E = Re(Eres), where Eres are complex poles of the
scattering matrix. To avoid the relatively complicated calculations of the scattering
matrix (we discuss this approach in Chapter 3) we first evaluated the poles of the
scattering matrix using the non-Hermitian formalism of quantum mechanics. Knowing
the relevant values we proceeded to calculate the relevant continuum functions for two
energies. One case is when E = Re(Eres

1 ) = 1.784582 au and the other case is when
E = Re(Eres

2 ) = 2.455696 au. As one can see from the results presented in Fig. 1.1
for the first case, the Hermitian continuum function is localized inside the potential
well and has only very weak oscillations outside the potential barrier. However, in
the second case, shown in Fig. 1.2, the situation is very different and it is hard to
distinguish between the continuum function �QME=2.455696(r) which is obtained by the
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Figure 1.2 The third longest living resonance for a spherical potential, V (r) =
(r2/2 − 0.8) exp(−0.1r2), obtained by carrying out three different types of calcu-
lation. The top of the potential barrier is plotted using a full dark line.

standard (Hermitian) quantum mechanical calculations and any other continuum solu-
tion which typically has a larger amplitude in the external region than in the internal
region (i.e., inside the potential well). Therefore, within the Hermitian formalism of
quantum mechanics the continuum functions associated with energy-eigenvalues which
are equal to the real parts of the complex resonance poles are not necessarily localized
in the interaction region and are not necessarily very different in their nature from other
continuum functions. Note that even for the first case where the Hermitian continuum
function is localized inside the potential well there are infinitely many other contin-
uum eigenfunctions that have the same structure. Roughly speaking, any eigenfunction
which is associated with an energy-eigenvalue E of the Hermitian Hamiltonian in the
range

Re(Eres
1 ) − �res

1 /2 < E < Re(Eres
1 ) + �res

1 /2 , (1.3)

where �res
1 = 2Im(Eres

1 ) = 0.34750 au, looks similar to the Hermitian continuum func-
tion shown in Fig. 1.1. This is the reason that within the framework of the standard
formalism of quantum mechanics the resonance phenomenon is associated with the
dynamical behavior of wavepackets rather than with a single stationary solution of the
time-dependent Schrödinger equation.

(2) Now we repeat the calculations while imposing outgoing boundary conditions on
the solutions of the time-independent Schrödinger equation. That is, we demand that
ψ(r → ∞) = C exp(+ikr). As mentioned above and as will be discussed in detail in
Chapter 4, in this case the eigenfunctions are not in the Hermitian sector of the domain
of the Hamiltonian and E will attain complex discrete values, Eres

n , where here, for
example,Eres

1 = 1.784582 − 0.173750i au andEres
2 = 2.455696 − 1.111399i au. Note
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that the inverse of �res
n ≡ −2Im(Eres

n ) provides the lifetime of the nth resonance state.
As �res

n increases the lifetime of the metastable state is shorter. The calculations are
simple and straightforward. Figures 1.1 and 1.2 show the second and third longest liv-
ing resonance states obtained by the non-Hermitian quantum mechanical calculations.
Their asymptotes diverge exponentially and therefore neither of the resonance wave-
functions are embedded in the Hermitian sector of the domain of the Hamiltonian. That
is clear in spite of the fact that when outgoing boundary conditions are imposed the
resonance states are uniquely defined and can be easily evaluated for one-dimensional,
one-particle problems. However, it is hard to develop a coherent quantum mechanical
theory using functions which are not bounded and can not be expanded by orthonormal
square integrable functions (embedded in the Hilbert space).

(3) The third approach we use here, which will be described in detail in Chapter 5, is
in a sense a “trick” to change the asymptotical behavior of the non-Hermitian reso-
nance wavefunctions by rotating the coordinates into the complex plane. For example,
the simplest way to perform such a procedure is by taking r → r exp(iθ ). The com-
plex scaled resonance eigenfunction which has been obtained by imposing outgoing
boundary conditions on the solutions of the time-independent Schrödinger equation
is a square integrable eigenfunction of the complex scaled Hamiltonian. The math-
ematical justification for the use of this type of non-unitary transformation and its
limitations will be discussed in Chapter 5. At this time we wish to point out the moti-
vation for using this approach. The results presented in Figs. 1.1 and 1.2 show that
upon complex scaling both of the short-living resonance wavefunctions are square
integrable and decay exponentially to zero as r → ∞. Therefore, due to the rotation
of the coordinate into the complex plane, both of the resonances are embedded in
the generalized Hilbert space and can be expanded by a set of orthonormal square-
integrable basis functions. This property enables us to develop a non-Hermitian quan-
tum mechanical theory and computational methods for calculating resonance energies,
lifetimes and cross sections. From the results presented in Section 1.1 one might get
the (wrong) impression that in the Hermitian and non-Hermitian pictures the resonance
wavefunctions look alike. However, they are very different in their nature. The non-
Hermitian resonance eigenfunction is associated with a complex eigenvalue whereas
the Hermitian solution is associated with a real eigenvalue. The asymptote of the non-
Hermitian complex scaled resonance function decays to zero whereas the Hermitian
resonance wavefunction oscillates. The results obtained from the Hermitian and the
non-Hermitian (complex scaling) calculations for the third longest living metastable
(resonance) state in Fig. 1.2 are very different. This resonance has a very short lifetime
since 1 au = 2.419 · 10−17 s and life-time = 1/(2 × 1.111399) au in our case. While
the Hermitian wavefunction can not be distinguished from any other continuum state,
the non-Hermitian resonance function has a sharp and clear nodal structure at the
interaction region (inside the potential well), it decays exponentially to zero and there-
fore it is a square-integrable function which is embedded in the generalized Hilbert
space.



10 Different formulations of quantum mechanics

We can summarize this by stating that the resonance states are well defined in
quantum mechanics within the framework of the non-Hermitian formalism. In non-
Hermitian quantum mechanics a resonance is associated with a single eigenstate
of the Hamiltonian and not with a collection of continuum states (i.e., wavepacket)
which is the case in Hermitian quantum mechanics.

1.3 Complex local potentials

In these cases the Hamiltonian is non-Hermitian despite the fact that the eigen-
functions of the time-independent Schrödinger equation are square integrable.
The potentials are complex for different reasons. One example is when complex
absorbing potentials are introduced in the propagation of waves solving either
the Scrödinger equation (or the scalar Maxwell equation in the paraxial approx-
imation) or the vector Maxwell equations. The motivation to introduce complex
reflection-free absorbing potentials is to avoid the non-physical interferences which
are introduced in conventional calculations by the reflections of the tail of the
propagated wave packet from the edge of the grid used in the numerical compu-
tations. Physical reasons for introducing complex potentials may arise in optics
(due to a complex index of refraction), field theory, and even in cases where
the quantum language is used to describe the physics when the studied problems
are associated with classical statistical mechanics or with diffusion in biological
systems.

As an example of a non-Hermitian Hamiltonian that is not related to the res-
onance phenomena, let us mention the Hamiltonian that becomes non-Hermitian
due to the inclusion of purely imaginary external fields, e.g., igx3, where g is a real
parameter and the Hamiltonian commutes with the symmetry operator: x → −x
and i → −i. This symmetry operator, is known as the PT symmetry operator,
where P is the parity operator, i.e., PxP−1 = −x and T is the time-reversal sym-
metry operator where i → −i, i.e., T iT −1 = −i. Note in passing that T is an
anti-linear operator while the Hamiltonian is a linear operator.

Exercise 1.3

Show by using semiclassical arguments that the spectrum of non-Hermitian Hamilto-
nian Ĥ = p̂2 + igx3 is real and positive for any value of g 	= 0 provided the solution
eigenfunctions are defined on the whole real line.

In analogy to quantum-mechanical theory, quantum field theories for such
non-Hermitian Hamiltonians possess special properties. The Hamiltonians which
commute with the PT symmetry operator hold additional special properties. For
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example, although these types of Hamiltonian are non-Hermitian they support a
real eigenvalue spectrum provided that the strength parameter of the complex local
potential g has values smaller than a critical value. Above the critical value of the
complex potential strength parameter the spectrum of the non-Hermitian Hamilto-
nians which commute with the PT operator is comprised of real eigenvalues and
pairs of complex conjugate energies.

Exercise 1.4

Consider two real operatorsH0 andV such thatH0(x) = H0(−x) andV (x) = −V (−x).
The Hamiltonian H = H0 + λV commutes with the PT symmetry operator when
λ = i� and � gets real values only. That is, [H (−x, �)]∗ = H (x, �). Prove that
the eigenvalues of H (x, �) are real for � < |λbp|, where λbp is a branch point in
the complex λ-plane. Note that only inside the circle of λ < |λbp| the eigenval-
ues are analytical functions and therefore the perturbation series expansion of E(λ)
converges.

1.4 Physical interpretation of complex expectation values

In non-Hermitian quantum mechanics expectation values of dynamical variables
might attain complex values. What is the physical meaning of complex expectation
values? Can they provide any measurable quantity? Let us assume that ψ is an
eigenfunction of the complex scaled Hamiltonian. As we will explain in Chapter 6,
the expectation value of a complex scaled dynamical operator Ô is given by

Ō = 〈ψ∗|Ô|ψ〉
〈ψ∗|ψ〉 ≡ |Ō|eiα , (1.4)

where here without lost of generality we assume that the eigenfunctions of the
unscaled (real) Hamiltonian are real. We postulate here that the absolute value
of the complex expectation value of the dynamical operator Ô and its phase α
are measurable quantities. For example, in scattering experiments the peaks in the
cross sections are obtained when the projectiles have energy which is equal to |Eres|
and not Re(Eres) = Er. This feature cannot be explained within the conventional
framework of Breit–Wigner theory, and becomes evident once the real part of the
energy Er has a sufficiently small value.1

Another example for our interpretation of complex expectation values is the
complex probability density. The probability density in non-Hermitian quantum

1 Shachar Klaiman, part of a PhD thesis which has been submitted to the senate of the Technion-Israel Institute
of Technology.
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mechanics is a complex function of the vector positions of the particles, ρ(r). The
probability density is given by |ρ(r)|. Is there a physical meaning to the phase of
ρ(r) = |ρ(r)| exp(iS(r)) ? Barkay and Moiseyev2 have shown that the asymptote of
the phase of

√
ρ(r), i.e.,

√
S(r) as |r| → ∞, provides the phase, arg[t(E)], of the

measurable complex transition probability amplitude in scattering experiments.
Specifically, it has been shown that the asymptotes of the eigenfunctions of the
non-Hermitian Hamiltonian provide the complex probability amplitudes, t(E), to
get specific products in scattering experiments. We postulate that the phase of
the complex expectation values of dynamical variables are measurable quantities.
In the case that the phase is ±1 the situation is similar to standard quantum
mechanics, i.e., positive and negative momenta are associated with particles which
move in opposite directions. However, when within the non-Hermitian formulation
the phase is not nπ , where n = 0, 1, . . .; its measurement requires an interference
between two waves; for example the experiments of Heiblum and his co-workers
which are briefly discussed below.

The phases of the complex probability amplitudes play an important role in
the interference between resonance states during scattering experiments. See, for
example, the explanation for the sharp structures in cross sections which were
measured in electron hydrogen molecule scattering experiments.3 Another example
is the use of non-Hermitian scattering theory for calculating the resonant tunneling
probability amplitude in a quantum dot4 in order to explain the sharp phase change
in the transition-probability amplitude of electrons scattered through a quantum dot
as measured by Yacoby and Heiblum and co-workers.5 It is important to mention
that the phase of the complex transition probability amplitude is a measurable
quantity in electron–quantum dot scattering experiments.6

1.5 Concluding remarks

There are different origins for non-Hermitian operators.

(1) One reason is the representation of an operator Ô by square integrable functions
{φn}n=1,2,... which vanish at the interval endpoints [−L1,+L2], such that Ôφn does not
vanish at these endpoints. In such a case {φn}n=1,2,... does not belong to the domain of
Ô. This type of non-Hermitian operators are out of the scope and interest of this book.

(2) The second type of non-Hermitian operators are the Hamiltonians of open systems that
have a continuous spectrum (they may possess a discrete spectrum as well). In such

2 H. Barkay and N. Moiseyev, Phys. Rev. A 64, 044702 (2001).
3 E. Narevicius and N. Moiseyev, Phys. Rev. Lett. 81, 2221 (1998); 84, 1681 (2000); J. Chem. Phys. 113, 6088

(2000).
4 H. Barkay, E. Narevicius and N. Moiseyev, Phys. Rev. B 67, 045322 (2003).
5 A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995).
6 R. Schuster, E. Buks, M. Heiblum, D. Mahalu and V. Umansky, Nature 385, 417 (1997).
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cases the requirement from the eigenfunctions of the time-independent Schrödinger
equation to have asymptotes of outgoing waves (i.e., imposing outgoing boundary con-
ditions on the eigenfunctions) results in complex eigenvalues which are associated with
eigenfunctions which are not in the Hermitian sector of the domain of the Hamiltonian.
These types of solution are associated with resonance phenomena which are definitely
some of the most striking phenomena in physical sciences. This book will focus on the
resonance phenomena although our derivations, formulations and concepts hold also
for any other case where the system is represented by a finite non-Hermitian matrix.

(3) The third type of non-Hermitian operator we mentioned in this chapter is those which
include complex local functions which often serve as potentials which absorb light, or
particles. In this chapter we briefly mentioned these types of problem and addressed
the readers to references where they can learn more about the physical motivation
for constructing these types of non-Hermitian operator. However, as stated above, the
derivations, theorems and computational algorithms which are presented in this book
are relevant and applicable also for these types of non-Hermitian problem.

1.6 Solutions to the exercises

Answer to Exercise 1.1

The answer to this problem has been given by Alon, Moiseyev and Peres.7 The
matrix elements of P and P2 are Hermitian since it is possible to perform integra-
tion by parts, in which the boundary terms vanish. However, for particle-in-a-box
functions where

φn(x) =
√

2

L
sin
(nπx
L

)
, (1.5)

then∫ L

0
φmd3

xφndx = −
∫ L

0
φnd

3
xφmdx −

∫ L

0
dxφm · d2

xφndx −
∫ L

0
dxφn · d2

xφmdx

= −
∫ L

0
φnd

3
xφmdx + [dxφm · dxφn]

L
0 (1.6)

and the last term does not vanish. Therefore,∫ L

0
φmp̂

3
xφndx 	=

∫ π

0
φn[p̂

3
x]

∗φmdx (1.7)

and p̂3
x for a particle-in-a-box function is not Hermitian. The source of the diffi-

culty is that the domain ofP consists of functions on the interval [0, L] which vanish

7 O. E. Alon, N. Moiseyev and A. Peres, Infinite matrices may violate the associative law, J. Phys. A 28, 1765
(1995).
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at the interval endpoints. However, p̂xφn does not vanish at these endpoints, and
therefore does not belong to the domain of P: the expression p̂x(p̂xφn) is not math-
ematically defined. This does not contradict the fact that −d2

xφn = (n2π2/L2)φn.
The point is that when P is an infinite order matrix as defined above, the elements of
the infinite order matrix P2 are not the same as

∫ π
0 φmp̂

3
xφndx. The same difficulty

in another form can be written as:
∞∑
s=1

Pms(P2)sn 	=
∞∑
s=1

(P2)ms(P)sn . (1.8)

It is interesting to see that in this case this difficulty is avoided when, rather than
using infinite order matrices, we use finite ones, such that∫ L

0
φmp̂

3
xφndx = lim

N→∞

N∑
r,s

PmrPrsPsn . (1.9)

Answer to Exercise 1.2

The answer to this question is that the positions of the detectors/antennas that
measure the momenta of the outgoing particles/subsystems do not give us any indi-
cation of the positions of the particles/subsystems. The reason is very simple. The
positions of the detectors commute with the momenta of the particles/subsystems
and there is no violation of the uncertainty “principle” (relation rather than prin-
ciple). Of course in such cases where the momenta have been measured precisely
the uncertainty in the positions of the outgoing particles/susbsystems is infinitely
large.

Answer to Exercise 1.3

The eigenvalue problem we wish to solve is[
− d2

dx2
− igx3

]
ψ(x) = Eψ(x) , (1.10)

where ψ(x) → 0 as |x| → ∞. The semiclassical solution given below has been
borrowed from Bender and Boettcher.8 The Bohr–Sommerfeld quantization rule
implies that ∫ x

ctp
+

x
ctp
−

dx
√
E + igx3 = π

(
n+ 1

2

)
, (1.11)

where n is the number of bound states associated with classical periodic orbits
within the interval of E ≥ E′ > 0. The classical turning points, xctp

± , are calculated

8 C. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
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as usual (under the assumption that indeed the potential supports bound states)
from the requirement that

E = −ig
(
x

ctp
j

)3
. (1.12)

Therefore,

x
ctp
j = (E/g)1/3ei(π/2+2πj )/3 (1.13)

such that xctp
− ≡ xctp

1 and xctp
+ ≡ xctp

0 . Note that the distance between the two
classical turning points has a real value,

x
ctp
+ − xctp

− = 2(E/g)1/3 cos(π/6) . (1.14)

Since the classical periodic trajectories evolve around the mid-point x = 0 the
integral given in Eq. (1.11) can be written as∫ x

ctp
+

x
ctp
−

dx
√
E + igx3 =

∫ 0

x
ctp
−

dx
√
E + igx3 +

∫ x
ctp
+

0
dx
√
E + igx3 . (1.15)

By substituting in the first integral x = sxctp
− and in the second integral x = sxctp

+
while using the condition of Eq. (1.11) one gets that∫ x

ctp
+

x
ctp
−

dx
√
E + igx3 =

√
E(xctp

+ − xctp
− )
∫ 1

0
ds
√

1 − s3 = π
(
n+ 1

2

)
.

(1.16)

Consequently, by substituting the result of Eq. (1.14) the energies are given by

En =
[

πg1/3

2γ cos(π/6)

]6/5 (
n+ 1

2

) 6
5

; n = 0, 1, 2, . . . , (1.17)

where γ = ∫ 1
0 ds

√
1 − s3. Since the integrand in γ is positive over all the range of

integration, γ is real and positive and therefore so are the energies En.

Answer to Exercise 1.4

Since λbp is a branch point in the complex λ plane of Ĥ (λ) a perturbative expansion
of the eigenvalues and eigenfunctions of H in a power series of λ will converge
for |λ| < |λbp|. We now turn to proving that for |λ| < |λbp| the eigenvalues of
H = H0 + λV are real. That is,

(H0 + λV )�j = Ej�j , (1.18)

where Ej are real eigenvalues and �j are square integrable.
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It has been proven by Moiseyev and Friedland9 that when H0 and V are Her-
mitian operators/matrices (as in our case) then one can always find at least one
complex value of λ for which H = H0 + λV has a non-diagonalizable spectral
representation. For a matrix this implies, e.g., that the number of linearly inde-
pendent eigenvectors is smaller than the dimension of that matrix (the spectrum
becomes incomplete). The spectrum of an operator (matrix) becomes incomplete
at a branch point denoted by λbp where at least two eigenfunctions (eigenvectors)
coalesce. Here we restrict ourselves to the class of Hamiltonians for which λbp 	= 0.

The most common situation is that the energy spectrum in the neighborhood
of the branch point is associated with the coalescence of two eigenfunctions and
the two corresponding eigenvalues. For λ = i� and λbp = i�bp we can write in the
vicinity of a branch point

E(λ) = Ebp ±D
√

(λ− λbp)(λ− λ∗
bp) (1.19)

In the case of |λ| > |λbp| this gives a pair of complex conjugate eigenvalues E and
E∗, whereas for |λ| < |λbp| the system has two real eigenvalues. These eigenvalues
ofH are analytical functions of λ and can be described as a power series expansion
in λ,

Ej (|λ| < |λbp|) =
∞∑
n=0

λnE
(n)
j , (1.20)

where E(n)
j ; n = 0, 1, 2, . . . are the real energy correction terms to the Rayleigh–

Schrödinger perturbation expansion of the eigenvalues of H = H0 + λV . The
(2n+1)-rule of Wigner states that if the k-th order correction terms ψ (k)

j are known
up to the n-th order (i.e., k = 0, 1, . . . , n), then one can calculate the true eigenvalue
Ej up to the (2n+ 1) correction energy term.10 The (2n+ 1)-theorem of Wigner
implies that

Ej = 〈χ (n)
j |H0 + λV |χ (n)

j 〉 +O(λ2n+2) , (1.21)

where

χ
(n)
j (x) =

n∑
k=0

λkψ
(k)
j (1.22)

9 N. Moiseyev and S. Friedland, The association of resonance states with the incomplete spectrum of finite
complex-scaled Hamiltonian matrices. Phys. Rev. A 22, 618–623 (1980).

10 E. P. Wigner, Hungarian Academy 53, 475 (1935). Note that this paper contains Wigner’s conclusion and uses
it but does not provide the proof. In his letter to Phil R. Certain from the University of Wisconsin at Madison
on July 4th, 1972 Wigner wrote “I am afraid that when I wrote this article I was still under the impression that
everyone knows everything that can be derived in a few lines, and did not state the theorem explicitly” and
added a six-line proof.
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and 〈χ (n)
j |χ (n)

j 〉 = 1. Therefore, following the (2n+ 1)-rule of Wigner,

E
(2n+1)
j = 〈ψ (n)

j |V |ψ (n)
j 〉 , (1.23)

E
(2n)
j = 〈ψ (n)

j |V |ψ (n−1)
j 〉

where the n-th order correction to the exact eigenfunction �j is the solution of the
following equation

ψ
(n)
j (x) = G0(E(0)

j )V (x)ψ (n−1)
j −

n∑
k=1

E
(k)
j G0(E(0)

j )ψ (n−k)
j (1.24)

where

G0(E(0)
j ) =

∑
k 	=j

|ψ (0)
k 〉〈ψ (0)

k |
E

(0)
j − E(0)

k

. (1.25)

The eigenfunctions of the zero-order Hamiltonian,

ψ (0)
q (x) , where q ∈ {j, k} , (1.26)

are real eigenfunctions which have either even or odd parity due to the symmetry
of H0(x) = H0(−x). Consequently, the eigenvalues of the zero-order Hamiltonian
and also any n-th order correction energy terms, {E(n)

k }, are real.
Due to the symmetry properties of V (x) = −V (−x) and of the zero-order eigen-

functions ψ (0)
k (x) = (−1)kψ (0)

k (−x) , k = 0, 1, . . . , the n-th order eigenfunction
ψ

(n)
j is either an even or an odd parity eigenfunction (i.e., ψ (n)

j (x) = (−1)j+nψ (n)
j )

and therefore, following the (2n+ 1)-rule of Wigner,

E
(2n+1)
j = 0 . (1.27)

This is a crucial point in our proof. Regardless of the odd or even parity properties
of ψ (n)

j , [ψ (n)
j ]2 is an even function and from Eq. (1.23) it is clear that for our class

of Hamiltonians E(2n+1)
j = 0 and therefore

Ej (|λ| < |λbp|) =
∞∑
n=0

λ2nE
(2n)
j . (1.28)

Consequently, for λ = i� the series

Ej (|�| < |�bp|) =
∞∑
n=0

(−1)n�2nE
(2n)
j (1.29)
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has real values only. The physical realization of this result can be measured, for
example, by considering two coupled two-dimensional waveguides. The propaga-
tion of a light beam in a waveguide is obtained by solving the scalar Maxwell
equation which is equivalent to the solution of the time-dependent Schrödinger
equation where the time t is replaced by Z, the propagation axis of the light in
the waveguide. The time-dependent potential in the Schrödinger equation V (r, t)
is replaced by −(2π/λ)2n2

eff(X), where n2
eff(X) is the one-dimensional effective

index of refraction and λ is the wavelength of the propagated light beam in a vac-
uum. In our case −n2

eff(X) consists of two separated equivalent one-dimensional
rectangular potential wells. The light irradiated into one waveguide oscillates
between the two parallel waveguides with a period which depends on the width
and the height of the rectangular potential wells and on the distance between them.
The period of oscillation between the two coupled waveguides is inversely pro-
portional to the difference between the almost degenerate propagation constants
associated with the eigenvalues of the “Hamiltonian” where the “potential” is lin-
early proportional to −n2

eff(X). For more details see the experiment carried out by
Vorobeichik and his co-workers which is described in their paper on Electromag-
netic realization of orders-of-magnitude tunnelling enhancement in a double well
system.11

Depending on the material composing the wave guide, the effective index of
refraction can be complex where the imaginary part varies with λ. A positive
imaginary part of the index of refraction causes absorption loss when the electro-
magnetic wave propagates through the material. For example, by doping ions of
rare earth elements into silica wave guides a trapped optical mode turns into a leaky
guiding mode (a so-called resonance state). A negative imaginary part of n2

eff(X)
is obtained when an inverse electronic population occurs and the electrons in the
waveguide mostly populate a long-living electronic excited state rather than the
ground electronic state. When a laser beam is transferred via this waveguide with
a proper wavelength then a stimulated photo-emission occurs due to the electronic
relaxation from the long-living excited state into the electronic ground state. In
such a case the electric power distribution of the laser is exponentially increased
as it propagates through the waveguide.

Now we turn to the realization of the theoretical result above. Let us construct
two waveguides as described above from materials with complex index of refrac-
tion, such that in one of them the imaginary part of V (x) = −n2

eff(X) is negative,
ImV (x) = −�, while in the second one it is positive and equal to +�. Following
our proof, as � is increased the gap between the almost degenerate propagation

11 I. Vorobeichik et. al., Phys. Rev. Lett. 90, 176806 (2003).
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constants is reduced and therefore the period of the oscillations of the propagated
light beam in between the two waveguides will increase. For proposed experimental
setups based on this analysis see Klaiman et al.12
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2

Resonance phenomena in nature

Although the non-Hermitian formalism of quantum mechanics which is developed
in this book is not limited to specific examples and is applicable to problems
which are not necessarily quantum mechanical (such as problems which require
the solution of the Maxwell equation rather than of the Schrödinger equation) we
dedicate an entire chapter to resonance phenomena in nature since they are related
to a broad range of subjects and fields in physics, chemistry, molecular biology and
technology.

In this chapter we will introduce two different types of resonances, so called
shape-type and Feshbach-type resonances, as they appear in different fields of
science. The resonance phenomenon is associated with metastable states of a
system that as time passes breaks into several subsystems. That is, even though
the system has sufficient energy to break apart, this does not happen instantly but
requires quite a long time with respect to the characteristic time scale of the system.

In Table 2.1 we give several examples of resonance phenomena, where we
specify the decaying systems, the resulting subsystems, and classification in terms
of shape and Feshbach resonances. (These concepts will be explained more formally
later.)

Each of the listed systems has a typical time scale and in some of these cases
the lifetime of the system is less than one nano-second while in other cases it takes
more than several thousand years for the system to decay. The theory of resonance
states (quasi-stationary or metastable states) was first derived by Gamow1 in 1928
for α decay of heavy nuclei while studying the transition of a particle through a
potential barrier.

2.1 Shape-type resonances

Since the transition through a barrier depends on the height and width of the barrier
it is clear from simple semiclassical arguments that the life-time of a temporarily

1 G. Gamow, Zs. f. Phys. 51, 204 (1928); Zs. f. Phys. 52, 510 (1928).
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Table 2.1 Examples of resonance phenomena in nature

phenomenon system subsystems type

radioactive radiation nuclei nuclear fragments shape
Stark effect atoms/molecules in

dc & low
frequency ac fields

ions and electrons shape

photo-ionization atoms/molecules in
high frequency ac
fields

ions and electrons Feshbach

autoionization and
Auger

atoms/molecules in
excited states

ions and electrons Feshbach

predissociation molecules ions and/or radicals shape and/or
Feshbach

predesorption atoms/molecules
adsorbed on solid
surfaces

free atoms/
molecules and
solids

Feshbach

High harmonic
generation (HHG)
and above threshold
ionization (ATI)

atoms/molecules in
strong laser fields

ions and electrons
and high energy
photons

Feshbach/shape

Leaking modes in
wave guides and
optical fibers

light propagated in
WG/optical fibers

scattered light and
unpopulated
WG/optical fibers

Feshbach

trapped particle varies by many order of magnitude as the potential parameters
vary from one case to another. The type of resonance which is associated with
the shape of the potential the particle has to tunnel through is referred to as a
shape-type resonance since the shape of the potential heavily affects the rate of
decay. A simple example from molecular physics is a potential barrier induced
by the rotational motion of a diatomic molecule, AB, about its center of mass.
The Hamiltonian within the framework of the Born–Oppenheimer approximation
is given by

Ĥ
(J )
AB = − h̄

2

2µ

∂2

∂R2
+ V eff

J (R) , (2.1)

where

V eff
J (R) = h̄2J (J + 1)

2µR2
+ V (R) , (2.2)

the rotational quantum number J has values J = 0, 1, 2, . . . , and µ = MAMB/

(MA +MB) is the reduced mass of the diatomic molecule. V (R) is the electronic
energy of the diatomic molecule in the ground state as function of the intranu-
clear distance R. Usually V (R) supports one extremum point where V (R) gets a
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Figure 2.1 The ground state electronic energy of an iodine molecule, I2, as function
of the intranuclear distanceR for different values of the rotational quantum number
J potential.

minimal value at the equilibrium distance of the non-rotating molecule R = R0. It
is convenient to shift the electronic energies by a constant such that the threshold
energy is equal to zero, i.e., limR→∞ V (R) = 0. In such case the vibrational bound
states associated with the rotational quantum number J are the eigenvalues of Ĥ (J )

AB

which possess negative values (i.e., below the threshold energy).
As the value of the rotational quantum number J increases a rotational potential

barrier emerges: [h̄2J (J + 1)]/[2I (R)], where the moment of inertia of the diatomic
molecules is I = µR2. When this barrier is sufficiently large, two extremum points
where dV eff

J (R)/dR = 0 are obtained. The first extremum point is a local minimum
in the potential energy curve V eff

J (R), whereas the second extremum point is a local
maximum which is associated with the top of the potential barrier. The “classical”
dissociation energy is defined as the energy gap between the two extremum points.
This is the energy which is required to bring the molecule from the bottom of the
potential well to the top of the potential barrier. See, for example, the upper curve
in Fig. 2.1 where the ground potential energy curve of I2 is shown for two different
rotational quantum numbers. Due to the rotational excitation the vibrational states
which are now located above the threshold energy can tunnel through the potential
barrier and dissociate. The fact that the molecule dissociates in energies which
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are smaller than the “classical” dissociation energy leads to description of this
phenomenon as a predissociation.

Let us give a qualitative description of the rotational predissociation phe-
nomenon. The initial state is taken as the ν-th vibrational state of the non-
rotating (i.e., J = 0) AB molecule,�ν(t = 0). The solution of the time-dependent
Schrödinger equation for J > 0 within the Born–Oppenheimer approximation is
given by �ν(t) = exp(−iĤ (J )

AB t/h̄)�ν(0). Due to the tunneling through the barrier
the survival probability which is defined by |〈�ν(0)|�ν(t)〉|2 decays as exp(−�t/h̄)
as t → ∞. The lifetime of the resonance state is defined as

τ = h̄

�
. (2.3)

The resonance energy bandwidth �E = h̄�ω is defined by using the Fourier
transform relation, τ�ω = 1. Therefore, � is the resonance width �E.

The resonance tunneling through a potential barrier is also a characteristic
mechanism of radioactive decay. However, it should be stressed that shape-
type resonances are not necessarily associated with tunneling through potential
barriers. Consider a particle moving under the influence of an open rectangu-
lar potential well. Slowly moving particles can be temporarily trapped inside
the region −a/2 < x < +a/2 at quantized energies which are about equal to
−V0 + (nπh̄/a)2/(2M) > 0 where n = 1, 2, . . . and V0 is the depth of the rectan-
gular potential well.

The existence of metastable states associated with the shape of the potential of
interaction has technological implications. For instance, when a projectile is scat-
tered from a target where the potential of interaction is a potential well embedded
between two potential barriers one finds sharp features in the transmission cross
section. In fact, when the above mentioned shape-type resonances are narrow (i.e.,
they live for a long time) one finds that scattering the particle at the resonant energy
leads to full transmission through the barrier. This resonance tunneling mechanism
is used for constructing diodes and transistors. While the rigorous explanation
of this phenomenon is not simple within the standard (Hermitian) formalism of
quantum mechanics, as will be shown in Chapter 8 is quite straightforward to
explain this phenomenon within the framework of the non-Hermitian formulation
of quantum mechanics.

Exercise 2.1

Using semiclassical arguments calculate the lifetime of a molecule which dissociates
due to a rotational excitation. Assume that the tunneling is through a parabolic barrier
and that the potential well is harmonic.
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The problem given in Ex. 2.1 can be associated with a one-dimensional effective
potential of a two-dimensional quantum problem where the motion in one dimen-
sion varies adiabatically. For example consider a one-dimensional quantum well
which is constructed from three different semiconductor layers. The motion of the
electron in a direction perpendicular to the layers can be regarded as effectively
one dimensional.

2.2 Feshbach-type resonances

This type of resonance can be obtained for many-particle systems (even in a one-
dimensional potential) or for a single particle in an n-dimensional potential where
n > 1. The Feshbach resonance can be described as a bound state embedded in
the continuum of an unperturbed Hamiltonian which becomes metastable due to
the coupling with the embedding continuum. This state has a finite lifetime and as
time passes decays to the reaction products, as described for example in Table 2.1.
In this spirit, without loss of generality let us assume that the system under study
consists of two subsystems which interact with one another. The Hamiltonian of
the full system is described by

H (1, 2) = h1(1) + h2(2) + V (1, 2) , (2.4)

where correspondingly h1(1) and h2(2) are the Hamiltonians for the non-interacting
subsystems. The interaction potential V (1, 2) vanishes when either one of the two
particles is removed from the system (for example via ionization or dissociation).
For simplicity let’s assume that the subsystem that can be removed is subsystem
“2”. (Another possibility is of one particle in a 2D potential which vanishes as
y → ∞ when a < x < b (e.g. see Fig. 2.4).)

The threshold energies are the eigenvalues of the h2 Hamiltonian,

h2ϕn(2) = εth
n ϕn(2) . (2.5)

The α-th eigenfunction of the full Hamiltonian given in Eq. (2.4) can be expanded
in terms of the eigenfunctions of the h2 Hamiltonian,

�α(1, 2) =
N∑
n=1

χn,α(1)ϕn(2) , (2.6)

where N is the number of the eigenfunctions of h2 which serve as a basis set and
the χn,α(1) are the n-th channel functions labelled by the index α.
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As usual the exact eigenfunction �α(1, 2) of the full Hamiltonian is obtained
when N → ∞ in the variational calculations where a set of coupled secular equa-
tions are solved and are represented as an eigenvalue matrix problem,

Hχα(1) = Eαχα(1) , (2.7)

where

χα(1) =



χ1,α(1)
χ2,α(1)
.

.

χn,α(1)
.

.

χN,α(1)


. (2.8)

In the basis of the eigenstates of h2 the operators on the diagonal Hamiltonian
matrix H are given by

Hn,n = h1(1) + Veff
n (1) , (2.9)

where

Veff
n (1) = h1(1) +

∫
ϕn(2)∗V (1, 2)ϕn(2)dτ2 (2.10)

Here dτ2 represents integration over all space on the coordinates of subsystem
“2”. The bound states of the n-th closed channel for decay are associated with the
eigenvalues of Hn,n which are below the threshold energies εth

n . There are bound
states of the n-th channel which are embedded in the continuum of the Hn′,n′

effective Hamiltonian where n′ < n. The n′-th effective Hamiltonians are defined
as the open channels for decay since as the full eigenvalue problem is solved the
coupling potential terms between the closed channels and the open channelsHn,n′ =∫
ϕ∗
n(2)V (1, 2)ϕn′(2)dτ2 are taken into consideration and therefore the bound states

of the Hn,n effective Hamiltonians become metastable.
For the sake of clarity let us give two simple examples. The first example is

of a helium atom where the two electrons are excited from the ground electronic
state to the first doubly excited state. When the electronic repulsion is neglected
the ground and the excited energy levels of helium are given by the hydrogen like
expression (in au),

En,m = −2

(
1

n2
+ 1

m2

)
, (2.11)
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where the first doubly excited electronic state energy is estimated by E2,2 = −1
whereas the ground state of the ion He+ is given by EHe+ = E1,∞ = −2. We will
consider the Hamiltonian of the helium atom without the electronic repulsion term
as our H0 Hamiltonian. All the states for which En>1,m>1 ≥ En=k,m=∞ are bound
states in the continuum of the H0 Hamiltonian for the k-th channel.

The exact energy of the first doubly excited state of Helium is obtained by
including the electronic repulsion (a positive potential energy) and consequently it
is higher than E2,2. Therefore EHe(doubly-excited) > E2,2 > EHe+ . Here we have
shown by exciting helium from its ground electronic state to the first doubly excited
electronic state the following autoionization process takes place: He∗(doubly-
excited) → He+(1s) + e−. The metastable state of doubly-excited helium is a
Feshbach-type resonance since it can be described as a closed channel (bound
state) which becomes metastable due to the interaction with the open channel for
ionization (a continuum state).

The second simple example is of a non-rotating HD molecule (i.e. the angular
momentum is zero) which is scattered from a flat Pt(111) metallic surface. A
possible result of this scattering is an HD molecule that is eventually found far
from the solid surface with a rotational quantum number J which can be J = 0 but
can also get higher values of J = 1, 2, . . . By repeating the same experiment many
times or by scattering simultaneously many HD molecules which do not interact
with one another one can measure the different probabilities of rotationally exciting
the diatom to a given rotational quantum number as a function of the scattering angle
and the translational energy of the incoming molecules. The scattering experiment
can be schematically described by

HD (J = 0) + Pt (111) → [HD/Pt]# → HD (J = 0, 1, 2, . . .) + Pt (111) ,
(2.12)

where [HD/Pt]# denotes the temporarily trapped HD molecule on the flat Pt surface.
In order to simplify the explanation we treat the HD molecule as a rigid rotor
assuming that it does not get vibrationaly excited during this experiment. Using
Legendre polynomials, PJ (cos θ ) as a basis set the Hamiltonian of the molecule–
surface system is described by

ĤHD/Pt =
∞∑
J=0

HJ ′,J |PJ ′ 〉〈PJ | , (2.13)

where

HJ ′,J =
(

− h̄2

2M

∂2

∂Z2
+ BrotJ (J + 1)

)
δJ ′,J + 〈PJ ′ |VHD/Pt(R, θ, Z)|PJ 〉 .

(2.14)
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Here Brot = h̄2/[2µ/R2] is the rotational constant of the HD molecule at the equi-
librium intranuclear distance R, and VHD/Pt(R, θ, Z) is the interaction potential of
the HD molecule with the Pt (111) metallic surface. M and µ are respectively the
total mass and the reduced mass of the diatomic molecule HD.

The potentials on the diagonal channels of the Hamiltonian matrix, HJ,J , are
denoted by VJ (Z) ≡ 〈PJ |VHD/Pt(R, θ, Z)|PJ 〉 and describe the potential energy of
HD molecules as a function of the distance of their center of mass from the flat
surface. The index J implies that the molecules rotate freely in the J -th rotational
quantum state when they are high above the solid surface where the interaction
with the solid surface is negligible.

The eigenvalues of the diagonal channels of the Hamiltonian matrix given in
Eq. (2.14),

HJ,J ≡ 〈PJ |ĤHD/Pt|PJ 〉 = − h̄2

2M

d2

dZ2
+ VJ (Z) (2.15)

are the HD-Pt bound vibrational-translational states. We may consider the discrete
eigenvalues of the diagonal Hamiltonian defined in Eq. (2.14) as the vibrational-
translational modes of a “diatomic” like complex where one “atom” is the HD
molecule whereas the second “atom” is the Pt (111) surface which has an infinitely
large mass. The energy gap between two adjacent VJ (Z) and VJ−1(Z) potentials
is equal to 2JBrot and several or all bound states of the VJ (Z) potential might be
embedded in the continuum of the VJ ′<J (Z) potentials (see Fig. 2.2).

Due to the off-diagonal matrix elements HJ ′,J which couple the bound states of
the J -th diagonal HamiltonianHJ,J with the continua of the diagonal Hamiltonians
HJ ′,J ′ , where J ′ < J , the bound adsorbed HD/Pt (111) eigenstates ofHJ,J become
resonance states (i.e. metastable states). These metastable states have finite lifetimes
on the Pt (111) solid surface. During the time the HD molecules are temporarily
trapped on the Pt (111) solid surface they rotate almost freely with the rotational
kinetic energy J (J + 1)Brot, where the specific value of J > 0 depends on the
scattering experimental conditions. As the HD molecules get farther apart from the
solid surface and their interaction with it vanishes, they attain rotational kinetic
energies of J ′(J ′ + 1)Brot, where J ′ < J , which would be observed in the lab.
The adsorbed HD molecule can be trapped “forever” on the Pt (111) solid surface
(neglecting interaction with phonos) in vibrational-translational modes which are
associated with the bound states of the V0(Z) potential (i.e. J = 0 and the rotational
kinetic energy is equal to zero). However, in scattering experiments the HD-Pt (111)
bound states can not be populated. Therefore, there is no way to get adsorbed HD
molecules with infinitely long time on the solid surface by carrying out elastic
scattering experiments.
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Figure 2.2 The effective potentials of a free-rotating HD molecule as function of
the distance of its center of mass from the flat Pt (111) surface VJ (Z).BrotJ (J + 1)
is the rotational energy of HD molecule at the equilibrium intranuclear distance
R. The bound excited states of the J = 1 channel are embedded in the continuum
of the J = 0 channel and the bound states of the J = 2 channel are embedded
in the continuum of the J = 1 and J = 0 channels. The bound states embed-
ded in the continuum become resonances as the off-diagonal potential terms
〈PJ ′ 	=J |VHD/Pt(R, θ, Z)|PJ 〉, where VHD/Pt(R, θ, Z) is the interaction potential of
the HD molecule with the Pt (111) metallic surface, are taken into consideration.

The Feshbach predesorption resonances of HD adsorbed on Pt (111) are the
bound states of the J -th closed channel for desorption, that become metastable
states with finite lifetimes on the solid surface due to couplings of the closed
channel J bound states with the continua of the open channels for desorption that
are associated with the rotational quantum numbers J ′ < J .

Exercise 2.2

For the 2D potential shown in Fig. 2.4 which describes a 2D slab waveguide (WG) or a
2D quantum dot (QD) the index of refraction of the WG (or the potential energy of the
QD) is set to zero for 0 ≤ y ≤ a(x), where a(x) = [2 cosh2(x)/(cosh2(x) − 2)]1/2/π ,
and ∞ elsewhere. Calculate the adiabatic potentials assuming that the motion of the
light beam in the WG and the motion of the electrons in the QD is much more slowly
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along the x direction than along the y direction. Estimate the number of Feshbach
resonances which have one and two open channels for decay and in the case of electrons
in QD estimate the energies of the electrons which “escape” out of the 2D QD into the
leads denoted as exit/entrance in Fig. 2.4.

Yet another example of Feshbach resonance is electronic bound states in atoms
exposed to intense laser radiation. The bound states of the field-free atom have
discrete energy levels, Ek < 0, where k = 1, 2, . . . Let us assume we have a reser-
voir of an infinitely large number of photons where the energy of a single pho-
ton is given by h̄ωL. The total energy of the system which consists of an atom
and non-interacting photons is the sum of the energies, εk,n = Ek + nh̄ωL, where
n = 1, 2, . . . ,∞. Note that under this “zero-order approximation” the atom does
not interact with the photons. The threshold energies for ionization are obtained
by setting Ek = 0 in the expression for εk,n. Therefore the ionization thresholds
are εth

n = nh̄ωL, where n = Nion, Nion + 1, Nion + 2, . . . and Nion is the minimal
number of photons that the atom must absorb for ionization. The bound states
associated with the n ≥ Nion channels are embedded in the continuum of the
n < Nion channels. When the interaction between the atom and the laser field is
taken into account the bound states which are embedded in the continuum become
metastable (Feshbach-type resonances). Using energy conservation arguments the
kinetic energy of the ionized electrons which are associated with the k-th elec-
tronic state of the field-free atom gets discrete values of Ekin = h̄ωLn− Ek, where
n = Nion, Nion + 1, . . . In the experiments the peaks in the kinetic energy distribu-
tion measurements are at about the same values denoted above and they all have
about the same width which is associated with a quantity that is known as the
resonance width (which is related to the inverse of the lifetime of the electron in the
k-th energy state of the atom interacting with the ac field induced by the laser). The
kinetic energy distribution of the photo-ionized electrons is known as the above
threshold ionization (ATI) spectrum.

A more rigorous description of the ATI phenomenon which is still quite simple
is obtained by using Floquet theory. The Hamiltonian of an atom which interacts
with a strong linearly polarized cw laser can be described by

Ĥ (t) = ĤFF + ε0 cos(ωLt)
∑
j

eT
x · rj , (2.16)

where ĤFF is the Hamiltonian of the field-free atom, and ε0, ωL and ex are respec-
tively the maximum field amplitude, the laser frequency and the polarization direc-
tion. The positions of the electrons with respect to the nuclei are denoted by rj .
The quasi-energy solutions (known as Floquet solutions) of the time-dependent
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Schrödinger equation are given by

�α({rj }, t) = e−iEαt/h̄�α({rj }, t) ,

�α({rj }, t) = �α({rj }, t + T ) =
+∞∑
n=−∞

ϕ
α,n({rj })e+iωLnt , (2.17)

where T = 2π/ωL is the time period of the laser-induced oscillating electric field,
and Eα and �α({rj }, t) are respectively the eigenvalues and eigenfunctions of the
Floquet operator which is defined by

H = −i h̄
∂

∂t
+ Ĥ (t) . (2.18)

Using the functions {exp(+iωLnt)} as a basis set one gets that the column vectors
ϕα({rj }) = (. . . , ϕα,−1({rj }), ϕα,0({rj }), ϕα,+1({rj }), . . .) are the eigenfunctions of
the symmetric three-diagonal Floquet matrix where on the diagonal are the shifted
field-free atomic Hamiltonian, ĤFF + h̄ωLn, where n = 0,±1 ± 2, . . . . These
diagonal channels are coupled by the components on the two side-bands which
are equal to (ε0/2)

∑
j eT
x · rj . In Fig. 2.3 we show that the diagonal potential terms

in the Floquet Hamiltonian which can serve as a field-free effective one-electron,
one-dimensional model potentials for a xenon atom are shifted by nh̄ωL, where ωL
is the frequency of the cw laser.

2.3 Concluding remarks: on the ambiguity of the definitions
of shape- and Feshbach-type resonances

In the previous sections we have shown the differences between shape-type and
Feshbach-type resonances, but are these types of resonance uniquely defined?
Clearly the resonances associated with a one-dimensional, one-particle system are
shape-type resonances regardless of the shape of the potential energy curve and
regardless of the question as to whether it supports a potential barrier to tunnel
through or not. Shape-type resonances are an exclusively quantum phenomenon.
In the semiclassical limit of h̄→ 0 the tunneling shape-type resonances become
bound states, that is their lifetime approaches ∞. In such cases the classical particle
is trapped forever inside the potential well and does not tunnel through the potential
barrier.

On the other hand, it is more difficult to give a unique definition for a Feshbach-
type resonance. When an atom is exposed to a time-periodic electric field which is
induced by a cw laser, as described above and shown in Fig. 2.3, the bound states
of the field-free atom become Feshbach resonances as the field is turned on. This is
indeed the situation when the laser frequency ωL is much larger than the frequency
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Figure 2.3 The effective potentials for a field-free xenon atom shifted by h̄ωLn,
where n = 0,±, 1 ± 2 and ωL = 0.2 au. The 1D field-free effective potential is
an inverted Gaussian that supports two bound states that mimic the two lowest
electronic states of Xe. The bound states of the n = 2 channel are embedded in
the continuum of the n ≤ −1 (there are an infinitely large number of open chan-
nel for photo-ionization). The bound states embedded in the continuum become
resonances as the off-diagonal potential terms in the Floquet Hamiltonian matrix
are taken into consideration.

of the electron’s motion in the potential of the field-free atom (ωatom can be defined
as the electronic excitation energy from the ground state to the first excited state
divided by h̄). In the limit of ωL → ∞ the resonances return to being the field-
free bound states since the electrons oscillate very rapidly due to the driving field
with an amplitude given in atomic units by α0 = ε0/ω

2
L, where ε0 is the maximum

field amplitude. However, in the limit of ωL → 0 the ac-field which oscillates as
cos(ωLt) behaves much like a static dc-field (substitute ωL → 0 in Eq. (2.16)). In
such a case the resonances are shape-type resonances due to the tunneling through
the quasi-static potential barrier induced by the low frequency laser field. Is there a
sharp transition from a shape-type resonance to a Feshbach-type resonance as one
varies the laser frequency? The answer is no. Since the Feshbach resonances have a
classical analog one can distinguish between Feshbach and shape-type resonances
by calculating the lifetime of the particle inside a potential well as function of h̄.
If the lifetime adiabatically reduces to zero as h̄ goes to zero then one may define
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this resonance as a shape-type resonance. However, if the lifetime gets a non-zero
value even in the limit of h̄→ 0 it can be considered as a Feshbach-type resonance.
This is particularly true when the classical lifetime is very close to the quantum
value obtained for h̄ = 1 au (i.e., the physical value).

Exercise 2.3

An atom interacts with a cw linearly polarized light that induces an ac field.
All the field-free electronic states |ψFF

n 〉 become metastable states associated with
the photo-ionization decay rate which can be defined as �ac

n (ωL) = −limt→∞ d
dt

ln(|〈ψFF
n |�ac

n (t ;ωL)〉|2), where |�ac
n (t ;ωL)〉 is the solution of the time-dependent

Schrödinger equation with the time-periodic Hamiltonian that describes the atom which
interacts with the ac field as defined in Eq. (2.16). The initial condition is given by
|�ac
n (t = 0;ωL)〉 = |ψFF

n 〉. Suggest a numerical procedure which “measures” whether
the resonances have shape-type character or Feshbach-type character. How does the
character of the resonance changes with the laser frequency ωL?

2.4 Solutions to the exercises

Answer to Exercise 2.1

First we assume that V (R) describes the ground electronic energy of a diatomic
molecule as function of the intranuclear distance R. The vibrational and rotational
states are obtained by solving the Schrödinger equation within the framework of
the Born–Oppenheimer approximation:(

− h̄
2

2µ

d2

dR2
+ Veff(R; J )

)
�ν,J (R) = Eν,J�ν,J (R) ,

Veff(R; J ) = h̄2J (J + 1)

2µR2
+ V (R) . (2.19)

The effective potentialVeff(R; J ) supports a harmonic-like potential well with the
vibrational frequency ωwell. This frequency can be approximated by a Taylor series
expansion around the position of the minimum of the well, which we will label
as Rmin, where the minimum in the effective potential is Vmin = Veff(R = Rmin).
This means that the lowest energy inside the potential well is about E0 = Vmin +
h̄ωwell/2.

The approximation for the parabolic potential barrier will be derived in a sim-
ilar manner by expanding Veff(R; J ) around the top of the potential barrier Rmax

where the effective potential is Vmax = Veff(R = Rmax). Now the dissociation can
occur due the tunneling through a potential barrier which is approximated by
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Vbarr = Vmax − µω2
barr

2 (R − Rmax)2. In the semiclassical limit the transmission coef-
ficient through a barrier is given by

T (E) =
[

1 + exp

(
+2

h̄

∫ b

a

|p|dx
)]−1

=
[

1 + exp

(
+2

h̄

∫ b

a

∣∣∣√2m(E − V (x))
∣∣∣ dx)]−1

, (2.20)

where m is the mass of the tunneling particle and a and b are the classical turn-
ing points where V (x) = E and x = R − Rmax. The dissociation of the diatomic
molecule with the reduced mass µ through the parabolic potential barrier can
therefore be approximated by2

T (E) =
[

1 + exp

(
+2

h̄

∫ +xtp

−xtp

√
2µ(Vmax − µω2

barrx
2/2 − E)dx

)]−1

,

(2.21)
where the classical turning points are given by

± xtp = ±
√

2(Vmax − E)

µω2
barr

. (2.22)

The integration results in the following expression for the transmission probability
through the barrier:

T (E) =
[

1 + exp

(
2π�

h̄ωbarr

)]−1

, (2.23)

where � = Vmax − E. Now since we assume the molecule is initially situated
at the ground state of the well the appropriate energy is E0 = Vmin + h̄ωwell/2
and thus �0 = Vmax − Vmin − h̄ωwell/2. The probability of passing through the
barrier per unit time is given by the frequency of oscillations in the well, P (t) =
ωwellT (E0)/(2π ), and therefore the lifetime of the molecule inside the potential
well before it dissociates is approximately (assuming that the potential barrier is
large enough) given by

τ = 2π

ωwell
exp

(2π�0

h̄ωbarr

)
. (2.24)

As we increase the rotational quantum number J the difference between the bottom
of the well (Vmin) and the top of the barrier (Vmax) decreases, thus reducing�0 and
increasing the probability of the molecule dissociating. Eventually, as the molecule

2 L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press Ltd. (1965), Problem 4 in Section 50.



2.4 Solutions to the exercises 35

-4 -2 420
x

0

1

2

3

4

5
y

Exit / Entrance Exit / Entrance

2D-WG/QD

Figure 2.4 A 2D potential which describes a 2D slab waveguide or a 2D quantum
dot (refraction index/potential energy is set to zero for 0 ≤ y ≤ a(x), where a(x) =
π [cosh2(x)/(4 cosh2(x) − 2)]1/2 and ∓∞ elsewhere).

goes to higher rotational states, the minimum in Veff(R; J ) will disappear and the
molecule will dissociate immediately.

Answer to Exercise 2.2

In Fig. 2.4 a 2D potential is shown which can be used to model either a wave-
guide (WG) or a quantum dot (QD). Under the adiabatic approximation the light-
propagation in the 2D WG or the electrons in the 2D QD move much more slowly
along the x-direction than along the y-direction. Two coupled eigenvalue equations
are obtained. The first eigenvalue problem is of a particle in a box where the length
of the box varies adiabatically with x, which serves here as a parameter.(

−1

2

∂2

∂y2
+ V (y; x)

)
�ny (y; x) = λny (x)�ny (y; x) , (2.25)

where V (0 ≤ y ≤ a(x)) = 0 and ∞ elsewhere. The eigenvalue equation for the
motion in the x-direction is given by(

−1

2

∂2

∂x2
+ λny (x)

)
χny,nx (x) = Eny,nxχny,nx (x) , (2.26)
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where the adiabatic potential (obtained form the motion in the y-direction) is

λny (x) = n2
y

(
2 − 1

cosh2(x)

)
. (2.27)

Since this potential is, up to a constant, a 1D Rosen–Morse potential, the
adiabatic eigenvalues Eny,nx have a closed form expression: Eny,nx = 2n2

y −(√
1 + 8n2

y − 1 − 2nx
)2
/8, where nx = 0, 1, 2, . . . , Nb − 1 and the number of the

bound states in the Rosen–Morse potential is given by the largest integer Nb

satisfying the condition Nb ≤ (√1 + 8n2
y − 1

)
/2.3

Within the adiabatic approximation the lowest adiabatic channel associated with
ny = 1 supports only one bound state (i.e., Nb = 1 and nx = 0) while the first
excited adiabatic potential supports two bound states. The adiabatic potentials
λny (x) and the adiabatic energies Eny,nx are shown in Fig. 2.5. As one can see from
the results presented in Fig. 2.5, the bound state of ny = 1 is embedded below the
lowest threshold energy and it can be associated with a true 2D bound state of the
system provided that the non-adiabatic couplings can be neglected.

The other bound states, however, are embedded above the threshold energies
and become Feshbach-type resonances due to the non-adiabatic terms that couple
the various adiabatic channels. For example, the energies of the two bound states
associated with theny = 2 adiabatic potentialλ2(x) can be taken as estimates for the
positions of the Feshbach resonance which have only one open channel to decay.
The three bound states associated with the ny = 3 adiabatic potential become
Feshbach resonances when the non-adiabatic coupling is taken into account in
solving the Schrödinger equation beyond the Born–Oppenheimer approximation.
The resonance positions are about equal to Eny=3,nx=0,1,2 and they have two open
channels for decay.

Consider the decay process for an electron which is temporarily trapped in
this 2D model potential in a Feshbach resonance associated with some bound
adiabatic state. For instance, let it be the state associated with ny and nx quantum
numbers. As time passes the electron will leak out of the 2D QD and will move
outward along the x-direction. In general, we can estimate the exiting electron’s
velocity through the excess energy it holds above the threshold of the ny − k
potential curve, where k = 1, . . . , (ny − 1). This excess energy is converted to
kinetic energy as the electron leaks out, which yields an approximated velocity

of vx ∼
√

2Enx,ny − 2(ny − 1)2. When the electron has several open channels for

decay one may detect electrons with different velocities. For example, if one excites
an electron to a resonance states with quantum numbers ny = 3 and nx = 0 it can

3 N. Rosen and P. N. Morse, Phys. Rev. 42, 210 (1932). See also L. D. Landan and E. M. Lifshitz, Quantum
Mechanics, Oxford, Pergamon Press, 1965, Problem 4 in Section 23.
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Figure 2.5 The adiabatic potentialsVny (X) (defined asλny (x) in the text) for the 2D
waveguide/quantum-dot (WG/QD) which is shown in Fig. 2.4. The length of the
arrows indicates the different kinetic energies of the electrons which get out of the
2D WG/QD through the two leads (exits/entrances), due to the decay processes
of the populated resonance states, |ny = 2, nx = 0〉 → |ny = 1, x − threshold〉
and |ny = 3, nx = 0〉 → |ny = 2, x − threshold〉 and to |ny = 1, x − threshold〉.
Within the approximation of bound-state embedded in the continuum due to
conservation of energy the kinetic energy of the electrons which move freely
through the leads in the x-direction are as indicated by the length of the arrows
shown in the plot. However, the resonances being metastable states (i.e., states
with finite lifetimes) are associate with energies that have widths (that are uniquely
defined only within the framework of the non-Hermitian formalism of QM). The
variance of the kinetic energies of the electrons that get out of the 2D WG/QD
through the leads is linearly proportional to the resonance widths.

decay to the ny = 2 channel producing slow-moving electrons and also to the
ny = 1 channel which leads to fast electrons with high kinetic energy. Such decay,
however, will not induce current in the lab since the electron in such a QD structure
has an equal probability of decaying to both leads, thus one needs to create some
asymmetry in the system in order to detect the different decay products.

In a scattering experiment where an electron is transferred via the leads
(exits/entrances) through the unoccupied 2D quantum dot resonance state the trans-
mission probability will be almost equal to 100% when the energy of the incoming
electron through the lead is equal to the resonance energy which has been roughly
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estimated as Eny=2,nx=0. In different configurations than the above structure this
resonance tunnelling phenomenon can be used for the construction of diodes and
transistors.

Answer to Exercise 2.3

It is natural to assume that the field induced resonances are Feshbach-type since
they usually result from the coupling of bound states to the continuum via the
interaction with the radiation. However, if the frequency of the ac field is very
small one may think of it as quasi-static. In such a case the decay will occur due to
tunneling through the quasi-static barrier formed and the resonance can be thought
of as shape-type.

In order to eliminate the mechanism by which Feshbach-type photo-induced
resonances are formed we apply the adiabatic approximation where we treat t
(time) in the Hamiltonian defined in Eq. (2.16) as a parameter τ . By doing so we
get a time-independent Hamiltonian where an atom interacts with a static field of
strength εdc = ε0 cos(ωLτ ). The solution of the time-dependent Schrödinger equa-
tion with the adiabatic time-independent Hamiltonian is defined by |�dc

n (t ; εdc)〉,
where |�dc

n (t = 0; εdc)〉 = |ψFF
n 〉. The ionization decay rate is obtained by

calculating

�dc
n (εdc) = − lim

t→∞
d

dt
ln(|〈ψFF

n |�dc
n (t, εdc)〉|2) (2.28)

from εdc = 0 to εdc = ε0. The rate of ionization results from the tunneling of the
electrons through the adiabatic potential barrier created by the static field and
therefore can be associated with a shape-type (ST) resonance. We can now average
over all the possible field strengths over one cycle of the ac field, T = 2π

ωL
, to get

an effective decay rate which is associated with a shape-type behavior.

�ST
n (ωL) = 1

T

∫ T

0
dτ�dc

n (εdc = ε0 cos(ωLτ )) . (2.29)

We can choose the following numerical criterion for the transition from the
Feshbach-type to the shape-type resonance phenomenon as we vary ωL:

P (ωL) =
∣∣∣∣�ac
n (ωL) − �ST

n

�ac
n (ωL)

∣∣∣∣ , (2.30)

which obtains values ranging from 0 to 1 as we increase ωL. When P → 0 the
resonance can be defined as a strictly shape-type resonance since the tunneling rate
accounts for the full behavior, whereas when P → 1 it is strictly a Feshbach-type
resonance since the tunneling through the quasi-static barrier is negligible.
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Resonances from
Hermitian quantum-mechanical calculations

The study of a given system within the scope of Hermitian quantum mechanics
conserves the probability of finding a given particle in space. This makes treatment
of decaying states with finite lifetime difficult. In this chapter we will show that
within the framework of conventional Hermitian quantum mechanics the resonance
phenomenon is not a well defined concept. However it is still possible to devise
Hermitian quantum mechanical calculations which would reveal the resonant ener-
gies and their corresponding lifetimes.

3.1 Resonances as metastable states

In order to illustrate how a decaying state may be obtained in conventional quantum
mechanical calculations, we may consider a situation where the Hamiltonian is
given by

Ĥ = Ĥ0 + λV̂ . (3.1)

Let’s assume that we have a special situation where Ĥ0 supports a true bound state,
|ψb(Eb)〉 that is embedded in the continuum of Ĥ0. The bound state |ψb(Eb)〉 is a
square integrable function (part of the Hilbert space of our problem) which decays
exponentially to zero in the coordinate space. The continuum functions are energy
normalized such that 〈ψc(E′)|ψc(E)〉 = δ(E − E′), where E = 0 is the threshold
energy.

Exercise 3.1

Show that for 1D plane waves |ψc(E)〉 = N eipx/h̄, where p = h̄k is the momentum of
the free particle and the energy normalization factor is given by N = √

µ/(2πh̄p).

41
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The perturbation V̂ couples the bound state with the continuum. In this special
case we get a solution which decays exponentially in time with the decay rate �/h̄
up to a certain time which is problem dependent. This decay can be exemplified by
considering a restricted part of space bounded by a box of size L. As time passes
the propagated wavefunction leaks out of the box, which can be taken as large as
one wishes. In the limit of λ→ 0 the decay rate can be obtained from the well
known Fermi golden rule,

� → 2πλ2ρc(Eb)|〈ψb(Eb)|V̂ |ψc(Eb)〉|2 , (3.2)

where ρc is the density of states in the “white continuum” of the Ĥ0 Hamiltonian.

Exercise 3.2

Derive the Fermi golden rule from time-dependent perturbation theory.

This result shows that, unlike the situation in non-Hermitian quantum mechanics,
in conventional quantum mechanics the resonance phenomenon is not associated
with an isolated uniquely defined eigenfunction of the full Hamiltonian Ĥ . Instead
it is represented by a wavepacket of continuum states. Moreover, this wavepacket
may exhibit a non-exponential decay in time. The rate of decay is defined by the
Fermi golden rule only for small values of λ and within a certain time period which
is problem dependent. As one reduces λ this period of time increases. This point is
briefly reviewed below.

As discussed in the previous chapter, the fact that in the above example the
spectrum of the zero-order Hamiltonian consists of a bound state embedded in the
continuum implies that the resonance, which is born as the coupling potential term,
V̂ , is turned on and a wavepacket is created, is a Feshbach-type resonance. How-
ever, shape-type resonances are also associated in conventional Hermitian quantum
mechanics with wavepackets and are not uniquely defined, in particular when the
resonance decay rate is not sufficiently small. As a matter of fact, in conventional
quantum mechanics a clear direct indication of the resonance phenomenon is usu-
ally possible only when the resonances are isolated and narrow. Let us briefly
explain what we mean by narrow and isolated resonances. � can be considered as
the energy uncertainty of the resonance state which is termed the resonance width.
This statement is based on the uncertainty relationship

�ω�t = 1 (3.3)

which is based on the Fourier transformation of a signal from the time domain to
the frequency/energy domain. �t is the duration of the signal and �ω = �E/h̄ is
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Figure 3.1 The potential barrier given in Eq. (3.5).

the band width of the signal. The lifetime of the resonance state can be taken as
�t where the energy “uncertainty” is defined as the resonance width �. Therefore,
from Eq. (3.3) one gets that the resonance lifetime, τ , can be defined as the inverse
of �. That is,

τ = h̄

�
. (3.4)

A narrow resonance is one with a small width, i.e. a long lifetime. Isolated reso-
nances are those for which the difference in the energy to adjacent resonances is
much smaller than the corresponding resonance widths.

As an illustrative example for the calculations of resonance properties within
the framework of conventional Hermitian quantum mechanics, we choose a sim-
ple analytically solvable one-dimensional repulsive potential which is shown in
Fig. 3.1 and given by:

V (x) =
{

0 , 0 ≤ x ≤ L ,
−V0 , x > L .

(3.5)

We chose this potential as a case study in order to emphasize the fact that bound
states and resonances are not necessarily associated with potential wells. In this
model the interaction region can be defined in the interval where x ≤ L. Note that
this problem is the same as a spherically symmetric potential with zero angular
momentum (i.e. the eigenfunctions for the 1D Hamiltonian that we chose to study
are the s-waves in a 3D Hamiltonian with a radial potential).
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As will be shown below, the resonances are metastable states of a quantum
particle which is temporarily trapped at the step 0 < x ≤ L at energies E > 0. Up
to an energy dependent normalization constant the solution to the time-independent
Schrödinger equation for E > 0 is given by

�E(x) =
{

ψin(x) = sin(kx) , 0 ≤ x ≤ L ,
ψout(x) = A(k)e−iq(x−L) + B(k)e+iq(x−L) , x ≥ L (3.6)

where

k =
√

2ME/h̄ , q =
√

2M(E + V0)/h̄ . (3.7)

From the the continuity of the wavefunction and its derivative at x = L,

ψin(x = L) = ψout(x = L) ,

∂ψin(x)

∂x

∣∣∣∣
x=L

= ∂ψout(x)

∂x

∣∣∣∣
x=L

, (3.8)

one gets that

A(k) = 1

2

(
sin(kL) + ik

q
cos(kL)

)
= |A|e−iδ(k) (3.9)

and

B(k) = 1

2

(
sin(kL) − ik

q
cos(kL)

)
= |A|e+iδ(k) , (3.10)

where

δ(k) = arctan

(−k
q

cot(kL)

)
. (3.11)

The ratio between the amplitudes of the outgoing and the incoming waves in this
case is the so-called scattering matrix (S-matrix). In our 1D studied case there is
only one S-matrix element, S(k) = B(k)/A(k). Substituting A(k) from Eq. (3.9)
and B(k) from Eq. (3.10) we get that

S(k) = ei2δ(k) , (3.12)

which is a general property of the S-matrix.
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Exercise 3.3

A stationary state of a particle moving in one dimension behaves in the asymp-
tote (i.e. far from the potential of interaction) as a free particle ψ = [A(k)e−ikx +
B(k)e+ikx]e−iEt/h̄. Show that when the wavefunction is invariant under time reversal
the particle flux (number of particles per unit time that pass through a unit area perpen-
dicular to the direction of motion) is zero and therefore |S(k)| = |B(k)/A(k)| = 1 (i.e.
the S-matrix is unitary).

δ(k) is termed the phase shift of the unitary S-matrix. It is clear that the phase
shift is defined up to addition of an arbitrary integer multiple of π . By substituting
Eqs. (3.9) and (3.10) into Eq. (3.6) one gets that the asymptotic form of the
continuum wavefunction in our model problem is given by

ψout(x) = Aout sin

(
qx + δ(k) − 1

2
π − qL

)
, (3.13)

where

Aout = 2|A(k)| (3.14)

and A(k) is given by Eq. (3.9). The phase shift associated with the wavefunction
in the non-interacting region is defined according to Eq. (3.13) by

δout(k) = δ(k) − 1

2
π − qL . (3.15)

Note that in our studied case δ(k) → π/2 as q → 0 and therefore δout(k) → 0. This
fact will be used later when we discuss resonance to bound state transitions in slow
particle scattering experiments.

How will the resonance phenomenon be reflected in conventional Hermitian
quantum mechanics calculations? Below we present various approaches for extract-
ing the resonance positions/energies and widths, i.e. inverse lifetimes (applied to
our model problem) from conventional quantum mechanical calculations where
the Hamiltonian is Hermitian.

3.2 The poles of the S-matrix

The fingerprints of resonance states in the cross sections measured in scattering
experiments are reflected in the structure of the energy profile of the cross sections.
Narrow resonances are manifested by sharp features associated with the complex
poles of the scattering matrix.
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The poles in the S-matrix are obtained in two cases:

(1) When the amplitude of the outgoing waves, B(k), has poles. These are “false” poles
which are not associated with the resonance phenomena. “False” poles are independent
of the potential strength parameter,V = λv(�r), and exist even whenλ approaches zero.1

(2) When the amplitude of the incoming waves, A(k), vanishes. When these poles are
concentrated on the positive imaginary axis of k they are associated with bound states.
As will be shown later, the poles which are embedded in the fourth quadrant of
the complex k-plane (i.e., Re(k) > 0, Im(k) < 0) are associated with the resonance
phenomenon. Near the n-th simple isolated pole S(k) can be written as2

S(k) ∝ k − k∗
n

k − kn . (3.16)

In order to eliminate the proportionality factor dependence we take the derivative,

dlnS(k)

dk
= 1

k − k∗
n

− 1

k − kn , (3.17)

where kn is a complex pole with Re(kn) > 0, Im(kn) < 0.

In the following paragraphs we will show that these poles are associated with
the peaks in the density of states in the continuum. In non-Hermitian quantum
mechanics these poles emerge as complex eigenvalues of the Hamiltonian. In this
chapter, however, we discuss the resonance phenomenon using Hermitian quantum
mechanics formalism.

3.3 Resonances from the spectra of density of states

The resonances are associated with the peaks in the density states spectra, ρ(E).
We will show here that, under the assumption that the poles are isolated and close
to the real axis, the Lorentzian peaks in the plot of the density of continuum states
vs. the energy of the decaying particle are a fingerprint of the complex pole in the
scattering matrix.

Considering a closed contour of integration, C, in the lower half complex k-plane,
then following the residue theorem,

N = 1

2π i

∮
C

∂lnS(k)

∂k
dk , (3.18)

where N is the number of poles in the lower half of the complex k-plane. From
Eq. (3.17) one gets that the integrand is a purely imaginary function of k on the real

1 H. J. Korsch, R. Möhlenkamp and H. D. Mayer, J. Phys. B 17, 2955 (1984) and references therein.
2 See, for example, A. I. Baz’, Ya. B. Zel’dovich and A. M. Perelomov, Scattering, Reactions and Decay

in Nonrelativisitic Quantum Mechanics and V. I. Kukulin, V. M. Krasnopol’sky and J. Horáček, Theory of
Resonances: Prinicples and Applications.
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axis. When all the poles of S(k) are embedded in a bounded region in the lower half
complex k-plane (i.e., all of them are at a finite “distance” from the real k-axis) the
closed contour of integration C can be replaced by a contour along the real k-axis
(k varies from −∞ to ∞) and, consequently, the integrand divided by the 1/(2π i)
factor is a continuous real function of k which is defined as

∂N

∂k
= (2π i)−1 ∂lnS(k)

∂k
. (3.19)

Let us study the variation of ∂N/∂k as a function of real k assuming that there is
a single isolated pole very close to the real axis. The derivative of N with respect
to the energy E is interpreted as the density of states ρ close to the isolated narrow
pole (a support for this definition is the Fermi golden rule where the decay rate is
proportional to the density of states),

ρ ≡ dN

dE
=
[
∂N
∂k

] [
∂k

∂E

]
. (3.20)

Since in one-dimensional problems E = (h̄k)2/(2M),

ρ =
[

M

2π ih̄2k

]
∂lnS(k)

∂k
= 1

2π i

∂lnS(E)

∂E
. (3.21)

Near an isolated resonance we can express the scattering matrix in a similar manner
to Eq. (3.16) as

S(E) ∝ E − E∗
n

E − En , (3.22)

and by substituting this expression into Eq. (3.21) we get that the density of states
has a Lorentzian shape:

ρ(E) = 1

2π i

[
1

E − E∗
n

− 1

E − En

]
= 1

2π

−2Im(En)

(E − Re(En))2 + (Im(En))2
.

(3.23)

By substituting Eq. (3.17) into Eq. (3.21), one can see that when k = Re(kn), the
local maxima of the density of states is obtained for the value of ρ = ρmax, where

ρmax(k = Re(kn)) = M

πh̄2

[
− 1

Re(kn)Im(kn)

]
= − 1

π Im(En)
. (3.24)

The complex n-th pole of the S-matrix in the complex energy plane is given by

En = Et + (h̄kn)2

2M
(3.25)
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with Et being the threshold energy. Since the peak in the density of states is
Lorentzian due to Eq. (3.23), its width is related to the complex part of the pole by

�n ≡ −2Im(En) . (3.26)

�n = 2/(πρmax) is the full-width at half maximum of the n-th Lorenzian peak
in ρ(E) centered around E = Re(En). Only in the non-Hermitian formalism of
quantum mechanics the information regarding �n can be extracted from the energy
of the resonance manifested by the pole in the scattering matrix.

We should stress again that the peaks in the plot of the density of states are
fingerprints of the resonance phenomenon and for a “white continuum”, as in the
case of a constant potential, there is no structure in the plot of ρ(E) vs. the energy.

Exercise 3.4

Derive the expressions for the density of states of 1D, 2D and 3D particle-in-a-box
problems.

Exercise 3.5

Using the variational method calculate the density of states for our model Hamiltonian
forV0 = 10 andV0 = 100 within the framework of the finite box quantization condition.

In Fig. 3.2 we show the density of states for our model Hamiltonian with L = 1 au
and V0 = 10 au. For the sake of simplicity we will work with energy Ẽ in scaled
units of

Ẽ = 2ML2

h̄2π2
E . (3.27)

For these potential parameters the non-monotonic behavior of ρ(E) “pops out”
only when we calculate the third-order derivative of ρ(Ẽ). This non-monotonic
behavior of ρ(Ẽ) at Ẽ ∼ 1 is an indication to the resonance phenomenon. As
we will show later in this chapter, the resonance phenomenon is reflected in the
continuum at energies Ẽ ∼ 1 by states which are localized in the interaction region
(i.e., the step in our model potential). When a wavepacket is prepared at that
energy (when the standard deviation of the energy of the wavepacket (WP) is
smaller than �) its decay rate is �/h̄. In other words, the survival probability of the
WP is approximately given by |〈�WP(t = 0)|�WP(t)〉|2 ∼ e−�t/h̄). The difficulty of
observing the resonance phenomenon for the chosen potential parameters is due to
the large width (i.e., short lifetime) of the WP initially prepared in the interaction
region.
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Figure 3.2 Density of states, ρ(Ẽ), as function of Ẽ (given in scaled units defined
in Eq. (3.27)) for the model potential in Fig. 3.1 with the potential parameters
L = 1, V0 = 10. The structure in ρ(Ẽ) is explored by calculating the high order
energy derivatives of ρ(Ẽ).

One might expect that the resonance phenomenon will become more pronounced
in the plot of ρ(E) as the value of V0 is increased. The idea is simple. The reflection
of the quantum particle from the edge of the step in the potential given in Fig. 3.1
increases with V0. This is due to the fact that in one-dimensional problems the
density of states in the continuum is proportional to the inverse of the square root
of the kinetic energy of the particle. As V0 gets larger, the density of states at a
fixed energy above the step reduces. Therefore, from the Fermi golden rule formula
(Eq. (3.2)) the resonance width will decrease as well since � ∝ ρ(E).

The bound-continuum transition matrix element in Eq. (3.2) also reduces as V0

is increased due to the fact that the relevant continuum function (that has the same
energy as the bound state) oscillates more rapidly. Therefore, as V0 is increased
the resonance width decreases and, as we will show in the next section, in the limit
of V0 → ∞ a bound state spectrum of a particle in a box is obtained. About the
application of the Fermi golden rule to our model Hamiltonian (i.e., where only
shape-type resonances are supported) see Section 3.7.

In Fig. 3.3 we plot the density of states for the case where V0 = 100. Indeed,
now the resonance phenomenon is easily observed. Peaks in the density of states
ρ(Ẽ) are obtained at the scaled energies, Ẽ ∼ 1, 4, 9 with widths corresponding to
the lifetime of the resonances.

Here we have shown that the resonance phenomenon is associated with high
density of states in the continuum of scattering states. It is now important to show
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Figure 3.3 Density of states, ρ(Ẽ), as function of Ẽ (given in scaled units defined
in Eq. (3.27)) for the model potential given in Fig. 3.1 with the potential parameters
L = 1, V0 = 100.

that the continuum states which are associated with the resonance phenomenon are
localized in the coordinate space within the interaction region (i.e., x < L in our
case).

3.4 Resonances from the asymptotes of continuum eigenfunctions

As argued in the previous section, the structure of the scattering continuum states
changes in the vicinity of a resonant energy. Around such an energy these states
become localized in the relevant region of interaction. For example, in our model
case it will be the potential step in the region 0 < x < L. In this section we wish
to show that one can extract the information regarding the position of the resonant
energies as well as their corresponding widths from the behavior of the scattering
states.

First we normalize the solutions of the time-independent Schrödinger equation
by dividing ψE(x) as defined in Eq. (3.6) by a factor N which establishes the
degree of localization of the continuum state in the interaction region. This factor
is given by

N 2 ≡
∫ L

0
|ψE(x)|2dx . (3.28)

By doing this we keep the contribution of the particle in the interaction region con-
stant and we can study the changes in the amplitude of the scattered part. Therefore,
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Figure 3.4 The inverse of the “probability” of finding a particle in the “external
region” (i.e., out of the interaction region associated with x < L), |Aout(Ẽ)|2, as
function of the scaled energy Ẽ, when initially (when the interaction potential
is an infinite square potential well) the probability of having the particle in the
interaction region (i.e. 0 < x ≤ L in Fig. 3.1) is unity.

the normalized value of |Aout(E)|2 = |A(kE)|2/N 2 provides the maximal probabil-
ity for a particle which was initially in the interaction region to escape. In Fig. 3.4
we plot the inverse of the re-normalized amplitude outside the interaction region
|Āout(Ẽ)|2.

As one can see from the results presented in Fig. 3.4, when the scattering
amplitude is small there are continuum functions that are localized in the interaction
region. The peaks in the spectra are obtained for the scaled energies at Ẽ ∼ n2,
where n = 1, 2, 3, 4, . . . , which are associated with the resonances. In our studied
model Hamiltonian the resonances energies are very close to the bound states of a
particle-in-a-box problem where the box size is L = 1.

Exercise 3.6

Prove that in the limit of V0 → ∞ the repulsive potential shown in Fig. 3.1 supports a
bound state spectrum which is exactly that of a particle in a box of size L = 1.

The threshold energy is defined in our case asEth = −V0. In Ex. 3.6 we proved that
as V0 → ∞ the resonances become bound states. That is, the rate of the resonance
decay reduces to zero as V0 → ∞. However, we wish to stress that the effect of
the variation of the threshold energy on the resonance rate of decay is problem
dependent.
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Figure 3.5 |�E(x)|2 as given in Eq. (3.6) for two different energies: Ẽ = 1 which
is associated with a resonance state and Ẽ = (1 + 22)/2 which is embedded in
between two adjacent resonances (see Fig. 3.4). The potential parameters are
L = 1, V0 = 10,M = 1.

Exercise 3.7

Using semiclassical arguments show that the transition through a smooth potential
barrier, V (x), which is a slowly varying function of x is not effected by the position
of the threshold energy (even when V (x) is described as juxtaposition of rectangular
potential barriers). How is this result associated with Gamow’s formula for the decay
rate through a potential barrier?

In Fig. 3.4 we clearly see that as V0 is increased the peaks in the spectra become
higher and narrower, which implies that the resonances are more localized in
the interaction region. This conclusion is supported by the results presented in
Fig. 3.5 and Fig. 3.6 where we present the shape of the continuum functions at
the scaled energy Ẽ = 1 (associated with the resonance phenomenon) and at the
energy Ẽ = (12 + 22)/2 = 2.5 (which is right between two resonant energies) for
two different values of V0. The localization of the continuum states which are
associated with the resonance phenomenon can be obtained for any stationary
solutions with energy inside the width of the resonance, i.e. any energy in the
range Eres − �/2 < E < Eres + �/2. Therefore, the resonance phenomenon is
associated with a collection of continuum states (i.e., wavepacket) and not with a
single stationary solution of the Schrödinger equation.
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Figure 3.6 |�E(x)|2 as given in Eq. (3.6) for two different energies: Ẽ = 1 which
is associated with a resonance state and Ẽ = (1 + 22)/2 which is embedded in
between two adjacent resonances (see Fig. 3.4). The potential parameters are
L = 1, V0 = 100,M = 1.

The heights of the peaks of |�(Ẽ = 1)|2 outside the interaction region (i.e.,
x > L) which are shown in Figs. 3.5 and 3.6 are related to the resonance widths.
How can we get the resonance widths from the values of |Aout(Ẽ)|2? As we
will show in Chapter 8, the rate of decay is associated with the energy normalized
outgoing waves. Therefore, in the asymptote the outgoing wave defined in Eq. (3.13)
should be energy normalized to provide the probability amplitude of the particle to
escape,

Aout(E) = γ (E)

√
M

2πh̄2q
, (3.29)

where q is the wave number of the particle outside the interaction region, as defined
in Eq. (3.7).

Exercise 3.8

Derive the flux normalization constant given in Eq. (3.29).

Therefore, the rate of decay from the interaction region is given by

�(E) = |γ (E)|2 = 2πh̄2q

M
|Aout(E)|2 . (3.30)
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Figure 3.7 The resonance widths associated with the local minima of �(Ẽ) ≡
|γ (Ẽ)|2 as function of the scaled energy Ẽ (see Eq. (3.30)). The × and + symbols
stand for the resonance energies and widths that were obtained by calculating the
poles of the scattering matrix for the two potential parameters V0 = 10, V0 = 100
respectively and are given as reference values.

Only at the energies for which the corresponding continuum states are localized
in the interaction region (i.e., Ẽ ≡ Eres ∼ n2 where n = 1, 2, . . .) the resonance
width can be defined as

�(Eres) = |γ (E = Eres)|2 . (3.31)

The reason for this identity is based on a proof which will be given in Chapter 5
where we will discuss the properties of the resonance wavefunctions. See the results
presented in Fig. 3.7 where we plotted�(E) as defined in Eq. (3.30). Let us compare
the estimates of the resonance positions (i.e., energies) and widths obtained by the
conventional quantum mechanical calculations (presented in Fig. 3.7 and Fig. 3.8)
with the resonance energies and widths that are obtained by non-Hermitian quantum
mechanical calculation (presented in the next chapter). Such a comparison shows
that the correspondence between the Hermitian and the non-Hermitian results for
the resonance positions and widths is obtained when V0 reaches a sufficiently large
value and the resonance width is sufficiently narrow.

3.5 Resonances from the phase shifts

In Eq. (3.12) we show the relationship between the phase shift and the scattering
matrix elements. The scattering matrix as mentioned above provides the ratio
between the incoming and outgoing waves. The S-matrix is a unitary matrix,
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Figure 3.8 A zoom in on the first resonance in Fig. 3.7.

S(E) = eiδ(E), and can be written as

S(E) = E − E∗
c

E − Ec
= e2iδ , (3.32)

where

Ec = Er − i

2
� (3.33)

is a complex pole of the S-matrix. Here we assume that the poles are isolated. As
we will see later, this approximation holds only when the poles are embedded in the
complex “energy” plane sufficiently close to the real axis. These poles are associated
in time-independent scattering theory with the resonance positions and widths, as
will be discussed later. In non-Hermitian quantum mechanics the properties of
the complex poles can be analyzed and studied as the complex eigenvalues of the
Hamiltonian. From a comparison between Eqs. (3.32)–(3.33) and Eq. (3.12) one
gets that

tan 2δ(E) = −(E − Er)�

(E − Er)2 − �2

4

. (3.34)

As one can see from Eq. (3.34), δ(E) changes by π as E crosses the value of Er.
The analytical form of the phase shift for our studied case is given in Eq. (3.11).
Indeed, the plot of the phase shift as function of E presented in Fig. 3.9 clearly
shows a change of the phase shift by π as E passes through the resonant energies
Ẽ ∼ n2; n = 1, 2, . . . Here the change is rather slow due to the broadness of the
resonances; however, when the resonances are narrow this changes is abrupt. The
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Figure 3.9 The phase shift, δ(Ẽ), for the model potential presented in Fig. 3.1 for
V0 = 10 and V0 = 100. The resonance positions/energies are obtained when the
phase shift changes by π (denoted by crossings with the dashed lines in the plot).

sudden change of the phase shift by π seems to be a sensitive computational
procedure for calculating the resonance positions.

The resonance widths can also be evaluated from the energy-dependent phase
shift. Using Eq. (3.34) we readily get that

dE

dδ
= 4(E − Er)2 + �2

2�
. (3.35)

Therefore, the resonance width is given by

� = 2
dE

dδ
|E=Er , (3.36)

which occurs at the local minima of dE/dδ. Since in our case we derived an analyt-
ical expression for the phase shift which is given in Eq. (3.11) it is straightforward
to derive the analytical expression for the derivative of the phase shift with respect
to the energy for our studied model Hamiltonian and get that

dE

dδ
= h̄4kq

M

[
q2 sin2(kL) + k2 cos2(kL)

h̄2kq2L−MV0 sin(2kL)

]
, (3.37)

where k and q are defined in Eq. (3.6). The local minima in the plot of 2dE/dδ as a
function of Ẽ presented in Fig. 3.10 provide quite accurate values for the resonance
positions and widths for our studied case only when the resonances are sufficiently
narrow (i.e., a small value of �). Note also that these results are quite similar to
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Figure 3.10 The resonance widths for the model potential presented in Fig. 3.1
whenM = 1,L = 1 and V0 = 100 as obtained from the calculations of the energy
derivative of the phase shift. The × and + symbols stand for the values obtained
from non-Hermitian quantum mechanical calculations for the complex poles of the
scattering matrix, S(E), for the two potential parameters V0 = 10 and V0 = 100
respectively.

those presented in Fig. 3.7 due to the behavior of the denominator in Eq. (3.37). In
Hermitian quantum-mechanical calculations the resonance is not uniquely defined
as in non-Hermitian quantum mechanics and this is the source of the deviation
between the Hermitian and non-Hermitian results. Thus such a calculation will
provide meaningful values only for isolated narrow resonances.

3.6 The scattering length

When a three-dimensional Hamiltonian has a spherical symmetry the problem can
be reduced to the solution of the radial Schrödinger equation for every angular
momentum quantum number, l.[

− h̄2

2M

1

r2

∂

∂r

(
r2 ∂

∂r

)
+ V (r) + h̄

2l(l + 1)

2Mr2

]
�(r) = E�(r) . (3.38)

By substituting �(r) = χ (r)/r into Eq. (3.38) one gets an equation with a kinetic
operator in the form of a one-dimensional Schrödinger equation such that[

− h̄2

2M

∂2

∂r2
+ V (r) + h̄

2l(l + 1)

2Mr2

]
χ (r) = Eχ (r) . (3.39)
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Let us consider incoming particles along the x-axis with momentum h̄k which
are scattered from a target with a radial interaction potential. The wavefunction for
large values of r can be written as

� = e−ikx + fk(θ )
e+ikr

r
, (3.40)

where fk(θ ) is the scattering amplitude. Since we considered here a spherically
symmetric potential, the amplitude fk(θ ) depends on the direction only through
the scattering angle θ , which is the angle between the directions of the incoming
and the outgoing beams of particles. Since the amplitudes of the outgoing and
incoming waves are the same, the only effect of the scattering potential is to shift
the phase of the outgoing asymptotic wave by an amount we denote by δl where
each term is the partial wave (the l = 0 wave is termed an s-waves, l = 1 a p-wave,
etc.). In our case study problem the angular momentum is zero and only the s-wave
scattering is considered. This assumption holds also in more general cases at very
low energies. In the limit of k → 0 the scattering amplitude approaches a constant
a0 and Eq. (3.40) becomes

�(k → 0) = 1 + a0

r
. (3.41)

From Eq. (3.41) one gets that the probability of observing the scattered particles
at the target in a slow particle scattering experiment is given by 4πa2

0 (in order
to calculate the probability we multiply limk→0 |fk(θ )|2 by 4πr2). Therefore a0

can be interpenetrated as the effective impact parameter or the effective range of
interaction. Indeed, by applying the method of partial waves the total cross section
(i.e. the total number of particles scattered per second) is given by

σ = 4πa2
0 . (3.42)

From this it is clear why the effective range of interaction a0 is termed the scat-
tering length. This concept is commonly applied to different types of scattering
experiment. For example, it plays a key role in the study of Bose–Einstein conden-
sates (BEC) and in the derivation of the mean field theory for BEC (known as the
Gross–Pitaevskii non-linear Schrödinger equation).

From Eq. (3.42) one gets that for s-waves experiments (l = 0)

a0 = − lim
k→0

tan δ0(k)

k
. (3.43)

In our illustrative model Hamiltonian we considered only the s-waves and therefore
the phase shift δ0 is defined by δout (see Eq. (3.15) and Eq. (3.11)) and k in Eq. (3.43)
should be replaced by q, where q and k are as defined in Eq. (3.7). Since tan δout → 0
as q → 0, we get from Eq. (3.43) that the scattering length is associated with the
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energy derivative of the phase shift,

a0 = − lim
E→0

h̄2k

M cos2 δ0

dδ0

dE
, (3.44)

where 2dδ/dE at E = Er is the resonance width �. See, for example, in Eq. (3.37)
the analytical expression, 2dδ/dE, for our model problem. In the off-resonance
condition where the phase shift tends to zero or an integer multiple of π , the
scattering length attains a constant finite value. However, when the resonance
position is at the threshold energyE = 0 the phase shift is equal to an odd multiple
of π/2 and then tan(δout) is infinite and so is the value of the scattering length. In
our model problem there are no transitions from bound to resonance states as V0 is
varied. Thus, we modify our model Hamiltonian from a square barrier potential to
an open square well potential. The potential is then equal to −V0 when 0 < x ≤ L
and equal to 0 when x > L. In this case, as will be discussed in the next chapter,
the number of bound states depends on the depth of the potential well, V0, and by
reducing the value of V0 bound to resonance transitions occur. These transitions
are reflected in calculations of the scattering length as a function of V0.

Exercise 3.9

Derive the scattering length of particles scattered from attractive/repulsive potential
well/barrier of depth/height V0 and range L, representing the force between the pro-
jectile and the target.

The dependence of the scattering length on the depth of the well for a open square
well potential (L = 1) is presented in Fig. 3.11. From Fig. 3.11 one can see that the
scattering length exhibits a transition from +∞ to −∞ as a bound state turns into
a resonance upon changing the potential parameter V0. The number of bound states
in the potential well increases as the scattering length changes in sign from +∞ to
−∞. a0 = +∞ implies that the effective impact parameter is ∞ and the scattering
length is repulsive. At this specific value of V0 where the scattering force is +∞
the resonance position is atE = 0. The value of a0 = −∞ implies that the particle
is trapped by the short range potential. At the value of V0 where the scattering
length is −∞ a new bound state with energy E = 0 is born. In between these two
values of V0 one can observe a transition from a resonance to a bound state. As will
be shown in the next chapter, this transition can be quite complicated and can be
analyzed only within the framework of non-Hermitian quantum mechanics.

This phenomenon of transition from a resonance state to a bound state occurs
also when the resonances are Feshbach-type. Let us consider a situation where a
bound state of a singlet electronic potential curve 1V (R) (where R represents the
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Figure 3.11 The scattering length for particles scattered from an attractive square-
well potential. The depth of the potential well is V0 and the range is L = 1.

nuclear coordinates, for instance the intranuclear distance in a diatomic molecule)
is embedded in the continuum of the triplet electronic potential curve 3V (R). By
introducing a magnetic field the coupling between the singlet bound state and the
triplet continuum states is turned on and the bound state becomes a resonance
state. The resonance position and widths depend on the strength of the magnetic
field. For a particular magnetic field B = B0 the resonance position will be at the
threshold energy E = 0. Therefore, by varying the strength of the magnetic field
to cross this resonance/bound state transition the scattering length can be changed
from being repulsive to an attractive one.

3.7 Resonances from stabilization calculations

One convenient method to reveal the energies of the resonant states in Hermitian
computations is to perform a stabilization calculation. This method relies on the
high density of states in the continuum around the resonance energy. The procedure
is rather simple; the variational energy levels of a given Hamiltonian are calculated
depending on given parameter λ in the basis set. When this parameter is varied
continuously the energy levels will change but will be stable around the resonance
energies. In terms of the variational energies, Ej (λ), obtained as a function of the
parameter λ, this phenomenon is manifested by avoided crossings between adjacent
variational solutions Ej (λ) and Ej+1(λ).
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The continuum spectrum can be discretized by using a box quantization condi-
tion for calculating the energy spectra. This is achieved by confining the problem
inside a box of length Lbox and requiring that the solutions of the time-independent
Schrödinger equation vanish at the edges such that ψE(x = Lbox) = 0. The varia-
tion of Lbox will affect the discrete quasi-continuum energy spectra of our studied
Hamiltonian by lowering the discrete energies as Lbox is increased.

As discussed above and shown in Figs. 3.5 and 3.6, the stationary continuum
solutions of the time-independent Schrödinger equation which are associated with
the resonance phenomenon are localized in the interaction region. The interaction
region is determined by the shape of the potential. It is expected that as the con-
tinuum functions are more localized in the coordinate space then they will be less
affected by the variation of Lbox and thus the resonance state will be narrower (i.e.,
smaller values of �). On the other hand, the delocalized non-resonant continuum
functions (see Figs. 3.5 and 3.6) should be strongly affected by the change in Lbox

due to the large amplitude oscillatory behavior. Consequently, we expect to observe
energy level crossings in the quasi-continuum as we plot the energies as function of
Lbox. However, since it is unlikely that levels with the same symmetry will cross,
avoided crossings rather than crossings are obtained. These avoided crossings in
the so-called stabilization plots are associated with the resonance phenomenon.
The energies at which the avoided crossings occur provide the approximate values
for the resonance position in the continuum. See, for example, the stabilization plot
for our studied case presented in Fig. 3.12.

Exercise 3.10

Calculate the stabilization plot for our model potential for different values of
the potential parameters V0 and L and for different values of the mass M by using
the variational principle with

√
2/Lbox sin(nπx/Lbox), n = 1, 2, . . . , N as a basis set.

The Hamiltonian matrix elements were derived in Ex. 3.4.

The results presented in Fig. 3.12 clearly show many avoided crossings at Ẽ ≈ 1,
which is the position/energy of the narrowest (i.e., longest lived) resonance state
for this problem. For a sufficiently large basis set (assuming the basis set is close to
completeness for any selected value of Lbox) the deviation in the energy values at
which these avoided crossings occur is an indication of the lifetime of the associated
resonance state. As the lifetime is longer (� is smaller) the deviation in the energy
positions of the avoided crossings is smaller. As a matter of fact, for sufficiently
long lived resonances the resonance position is accurately obtained from the stable
plateau energy curves which appear in between two adjacent avoided crossings.
In our studied case the resonances are quite broad (i.e., � has large values in
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Figure 3.12 Stabilization plot for the model potential presented in Fig. 3.1 when
M = 1, L = 1 and V0 = 100. The energy spectrum is discrete due to the use of
the box-quantization condition where ψE(x = Lbox) = 0.

comparison to the difference in the positions of two adjacent resonances) and
therefore one can only see in the results presented in Fig. 3.12 the fingerprints of
the resonance state at Ẽ ≈ 4. It is quite impossible to observe by this method the
presence of resonances for the case where V0 = 10.

We will now show that from a stabilization plot one can get a good estimate for
the width of relatively narrow resonances such as the low-lying resonance (Ẽ ≈ 1)
in Fig. 3.12. As described above, the avoided crossings are associated with the
interaction of a bound state which is embedded in the continuum (and almost
unaffected by the variation of the box size) with a continuum state with the same
energy (which is very strongly affected by the value of the box size). From this it
is quite clear how to identify the “quasi-bound” and the “quasi-continuum” states
before or after the avoided crossing region. The “quasi-bound state” energy is hardly
affected by the variation of Lbox whereas the the energy of the “quasi-continuum
state” is strongly affected. How can they be defined in the avoided crossing region?
In the case of Feshbach resonances it is easy to define the H0 Hamiltonian of
the bound state which is embedded in the continuum. In the case of shape-type
resonances there is not a simple way to defineH0. However, since the stabilization
plots obtained for Hamiltonians that support Feshbach resonances are very similar
in their nature to the stabilization plots for Hamiltonians which support shape-type
resonances, we assume here that by taking the linear combinations of the two
stationary solutions, �E1 (x), �E2 (x), which converge to the avoided crossing we
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can select a proper relative phase to yield an approximate bound state ψb(Er),

ψb(Er) = [�E1 (x) + eiα�E2 (x)]/
√

2 . (3.45)

This state is embedded in the continuum and interacts with a state in a continuum:

ψc(Er) = [�E1 (x) − eiα�E2 (x)]/
√

2 , (3.46)

where

Er = (E1 + E2)/2 (3.47)

is the estimate of the resonance position which is taken as Eb in Eq. (3.2). Let
us assume that ψb and ψc are two degenerate eigenstates of Ĥ0 = Eb|ψb〉〈ψb| +
Eb|ψc〉〈ψc|, and thus are orthognal, i.e. 〈ψb|ψc〉 = 0. (In the case where the Hamil-
tonian supports only shape-type resonances H0 is somewhat abstract.) Therefore,
the potential that couples the bound state with the continuum is V̂ = Ĥ − Ĥ0. By
substituting Eqs. (3.45) and (3.46) in Eq. (3.2) one gets

|〈ψb(Eb)|V̂ |ψc(Eb)〉|2 = |〈ψb(Eb)|Ĥ |ψc(Eb)〉|2|E1 − E2|2/4 ≡ (�E)2/4 .
(3.48)

As shown in Ex. 3.2, in the Fermi golden rule expression the continuum is a
“white continuum” that does not contain any information regarding the resonances.
Therefore, we associated the “white continuum” with the quasi-continuum energy
levels, E = [h̄2π2/(2MLbox)2)]n2. Therefore, the density of states in this “white
continuum” is given by

ρc(E) = dn

dE
=

√
M√

2πh̄

Lbox√
E
. (3.49)

Using the Fermi golden rule we get that the estimate for the resonance width from
stabilization plots for our model problem can be taken as

� = 2πρc(Eb)|〈ψb(Eb)|V̂ |ψc(Eb)〉|2 = Lbox
(�E)2

2h̄

√
M

2(Er + V0)
, (3.50)

whereEr + V0 is the energy of the “white continuum” state,ψc(Eb) which interacts
with the bound state, ψb(Eb). For V0 = 100 we get (see Fig. 3.12) that at Lbox = 7
the energy splitting is given by �E ≈ 0.5π2/2 and Er ≈ π2/2. Using Eq. (3.50)
one gets that the estimate for the resonance width for this state is � ≈ 1.47. This
result is in remarkable agreement with the values of � = 1.37 obtained from
non-Hermitian quantum mechanical calculations and also agrees with the result
obtained in Fig. 3.8.
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3.8 Decay of resonance states

The different approaches applied in the previous sections show that for our
model problem the resonance positions are approximately at Ẽn ≈ n2 where
n = 1, 2, 3 . . . . The stationary continuum solutions at these energies are localized
in the interaction region of the potential. The resonance widths can be estimated
from the stationary solutions of the time-dependent Schrödinger equation. How-
ever, for stationary solutions we cannot demonstrate the nature of the exponential
decay of the resonance state. The resonance phenomenon should be associated in
Hermitian quantum mechanics with a wavepacket which evolves in time rather
than a stationary state which only changes its phase. A simple way to create a
wavepacket which is centered at En is by integrating over the continuum functions
in an energy range around the resonant energy:

�WP
En

(x, t) = 1

2�E

∫ En+�E

En−�E
dE�E(x)e−iEt/h̄ , (3.51)

where �E(x) is an eigenfunction of the time-independent Schrödinger equation
(Eq. (3.6) for our studied case). Let �E be so small that the energy dependence
of the amplitudes of the incoming and the outgoing waves associated with �E(x)
(for the model problem this applies to the coefficients A(E) and B(E) defined
in Eqs. (3.9) and (3.10)) can be ignored and the wave vector k = √

2ME/h̄ (see
Eq. (3.7)) can be approximated by the following expression:

k = kn + (E − En) dk

dE
|En + · · · � kn + E − En

h̄vn
, (3.52)

where h̄kn is associated with the momentum of the quantum particle.

Exercise 3.11

Show that within the approximation given in Eq. (3.52) the WP portrayed in Eq. (3.51)
moving in a constant potential travels at a velocity vn = h̄kn/M , i.e. the maximum of
|�WP
En

(x, t)|2 moves as xmax = vnt .

For the model problem the velocity of the quantum particle in the interaction region
is given by

vn = h̄kn

M
, (3.53)

whereas the velocity in the “external region” (i.e., x > L) is

vout
n = h̄qn

M
(3.54)
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and the corresponding wave vectors are given by kn = √
2MEn/h̄, qn =√

2M(En + V0)/h̄.
By using this expansion and by substituting Eqs. (3.6)–(3.13) into Eq. (3.51)

one gets the time dependence of the wavepacket,

�WP(x, t) = �WP
in (x, t) +�WP

out (x, t) , (3.55)

where

�WP
in (x ≤ L, t) = i

2

sin[(x + vnt)�in]

(x + vnt)�in
e−iknx−iEnt/h̄

− i

2

sin[(x − vnt)�in]

(x − vnt)�in
e+iknx−iEnt/h̄ , (3.56)

where �in = �E/(h̄vn) and similarly,

�WP
out (x > L, t) = B(En)

sin[(x − L− voutn t)�out]

(x − L− vout
n t)�out

e+iqn(x−L)−iEnt/h̄

+A(En)
sin[(x − L+ vout

n t)�out]

(x − L+ vout
n t)�out

e−iqn(x−L)−iEnt/h̄) , (3.57)

where�out = �E/(h̄vout
n ). Note that the wavepacket is square integrable due to its

sinc(αx) profile.
When En is a resonant energy the wavepacket �WP

En
(x, t) defined in Eq. (3.51)

is initially localized inside the interaction region. In order to show this we can
examine what happens when we construct wavepackets according to Eq. (3.51)
around any given energy in the continuum and not only for those around E = En
which are associated with the resonance phenomenon. In other words we can study
a generalized form of Eq. (3.51),

�WP
E (x, t) = 1

2�E

∫ E+�E

E−�E
dE′�E′(x)e−iE′t/h̄ . (3.58)

In order to determine which WP is a resonance state we define a localization
parameter, LP (t, E), by the ratio between the part of the wavepacket localized
inside the interaction region and the total probability.

LP (t, E) = ρin(t, E)

ρin(t, E) + ρout(t, E)
, (3.59)

where the interaction region is bounded by in the region |x| < L such that

ρin(t, E) =
∫ L

0
|�WP
E (x, t)|2dx (3.60)
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Figure 3.13 The localization parameter in Eq. (3.59) at t = 0 as a function of the
energy in the continuum constructed according to Eqs. (3.58) – (3.61).

and

ρout(t, E) =
∫ ∞

L

|�WP
E (x, t)|2dx . (3.61)

For our model problem the localization parameterLP attains local maximal values
at the resonance energies, Ẽ ≈ n2. The energy dependence of the localization
parameter at t = 0, LP (t = 0, E), presented in Fig. 3.13, clearly provides the
resonance positions. This plot, however, does not yield new information since we
have already demonstrated that the continuum solutions at the resonance energies
are localized at the interaction region.

The evolution of the wavepacket �WP
En

in time is portrayed in Fig. 3.14
where the initial wavepacket and its evolution at t = 5/v are shown. Here
v = h̄√2M(E + V0)/M is the velocity of the particle outside the interaction region.
It is evident that the wavepacket which was initially localized in the interaction
region gradually leaks out, leaving behind a small fraction in the interaction region
which diminishes as time passes.

The exponential decay of the wavepacket �WP
E (x, t) at the interaction region

can be observed only after sufficiently long time of propagation. This decay
is manifested in the decay of the localization parameter LP (En, t) in time. In
Fig. 3.14 we can see the evolution of LP (Ẽ1, t) for two different values of the
potential parameter V0.

This is the new information we get from Hermitian quantum mechanics cal-
culations. See the results presented in Fig. 3.15, where the time dependence of
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Figure 3.14 |�E(x)|2 for the intial (t = 0) and the propagated wavepacket at
t = 5/v, where v = h̄k/M . This wavepacket was constructed from the stationary
continuum states around Ẽ ≈ 1 for the studied model Hamiltonian with V0 = 10.
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Figure 3.15 The decay rate of the wavepacket constructed from continuum states
around Ẽ ≈ 1. The results are shown after smoothing the oscillations induced
by the approximations used in the evaluation of the analytical expression for the
time-dependent wavepacket. The results are given for two potential parameters,
V0 = 10 and V0 = 100, �LP (t, Ẽ = 1). After a sufficiently long period of time the
exponential decay of �(t) is exposed and is found to be in a qualitative agreement
with the exact values of the resonance widths obtained from the non-Hermitian
quantum mechanical calculations (marked by circles).
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the localization parameter associated with a continuum function which is initially
localized in the interaction energy is plotted. As time passes the exponential nature
of the decay is exposed. Assuming ρin for a resonance decays exponentially we get
that also the localization parameter decays exponentially, and thus

ln[LP (t)] = ln[LP (0)] − �LP (t)

h̄
t . (3.62)

Consequently, at long times where LP is linear on a logarithmic scale the decay
is exponential. The decay rates for V0 = 10 and V0 = 100 presented in Fig. 3.15
at t = “∞” where �LP is constant are in a qualitative agreement with the accu-
rate resonance widths obtained from non-Hermitian quantum mechanical calcu-
lations. As shown in Ex. 3.6, as V0 → ∞ the resonance widths for the step-like
potential vanish. Therefore, the difference between the estimated value of the
resonance width obtained within the standard (Hermitian) formalism of quantum
mechanics and the exact value obtained by using the non-Hermitian formalism
becomes smaller as V0 is increased. The results presented in Fig. 3.15 support this
claim.

We shall now follow the derivation of the exponential decay of a resonance state
given in some text books on scattering theory (Scattering Theory by J. R. Taylor for
example). Near an isolated resonance the energy-normalized stationary continuum
wavefunctions are given by

ψc(x, t) = (e−ikx + Se+ikx)e−iEt/h̄

= 2 cos(kx)e−iEt/h̄ + i
�

E − Er + i
2�

e+ikx−iEt/h̄ . (3.63)

Here, Er and � are the resonance position and width of the complex “energy”
associated with the complex pole of the S-matrix, as discussed above. Note that
although we associate the resonance phenomenon with the complex poles we are
still within the framework of conventional Hermitian quantum mechanics.

In Eq. (3.63) two terms appear. The first one describes a standing wave and
the second describes an outgoing wave associated with a simple single pole of
the S-matrix. Let us assume that the initial wavepacket,�(E), is initially prepared
such that it peaks at the resonance energy,E = Er, associated with the wave vector,
k = kr ≡ √

2MEr/h̄. Hence, the scattering wavepacket which is associated with
the second term in Eq. (3.63) is given by

�sc(x, t) = i�
∫ ∞

0
dE

�(E)

E − Er + i
2�

e+ikx−iEt/h̄ . (3.64)
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Using the expansion for the wave vector given in Eq. (3.52) (while replacing En,
kn and vn in that equation by Er, kr and vr = h̄kr/M correspondingly) one gets,

�sc(x, t) ≈ ie+ikrx−iErt/h̄��(Er)
∫ ∞

0
dE

e−i(E−Er)(t− x
vr

)/h̄

E − Er + i
2�

. (3.65)

Here we assumed that

|E − Er| � � (3.66)

and

[t − x/vn] (3.67)

is large at any given time t . In performing the integral in Eq. (3.65) we make
two approximations. First, we assume that �(E) is well peaked around Er and
thus since the spread of the wavepacket extends much beyond the width of the
resonance it can be taken out of the integral and replaced by �(Er). The second
approximation is that the integral in Eq. (3.65) can be extended from

∫∞
0 to

∫∞
−∞

without significantly affecting its values. This is, however, a very delicate point, as
we will discuss below. For t > x/vr the integration of Eq. (3.65) gives the following
expression:

|�sc(x, t)|2 = 2πM�2

h̄2kr
|�(kr)|2e−�t/h̄e+ �x

hvr . (3.68)

Exercise 3.12

Using contour integration derive Eq. (3.68) by showing that∫ +∞

−∞
dx

e−ixτ

x + i�/2
(3.69)

vanishes when τ ≤ 0 and equals −2π ie−�τ/2 for τ > 0.

The scattered wavepacket in Eq. (3.68) has two features: (1) an exponential decay
in time of a wavepacket that populates a metastable state at energy Er with a mean
lifetime h̄/�; (2) spatial exponential divergence of the wavefront of the scattered
wavepacket as e+�x/(h̄vr). As time passes the probability density, |�sc(x, t)|2, decays
to zero at any given point in the coordinate space. Therefore, in order to conserve
the number of particles the probability density has to diverge exponentially as
x → ∞ such that the integral of |�sc(x, t)|2 over time and coordinate space will be
preserved. The divergent behavior of |�sc(x, t)|2 implies that particles that leaked
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out from the interaction region an infinitely long time ago are accumulated at
x = ∞.

How is it possible that from a conventional quantum-mechanical analysis a non-
square integrable function which does not belong to the Hilbert space is obtained?
The answer is that in our derivation we get into the non-Hermitian domain of the
Hamiltonian when we assume that we can take an initially prepared wavepacket
�(E) out of the integration while we change the lower limit of the integral over E
in Eq. (3.65) from E = 0 to E = −∞. If, for example, one describes �(E) as a
Gaussian (2α/π )1/4e−αE2

and does not take it out of the integral as we did before,
then a wavepacket which is embedded inside the Hilbert space will be obtained.

By replacing the contour of integration to be from E = −∞ to E = +∞ while
keeping �(Er) out of the integration we avoid the interference of the resonance
complex pole with other states in the continuum and associate the wavepacket
with a single isolated complex energy pole of the S-matrix. This is how we get a
solution in the non-Hermitian domain of the operator. The fact that the wavepacket
|�sc(x, t)|2 decays exponentially with the rate of �/h̄ indicates the physical nature
of the complex poles of the S matrix, where � is associated with the imaginary part
of the complex poles. This type of analysis which associates the complex poles of
the S-matrix with the resonance phenomenon may explain the motivation to derive
a non-Hermitian quantum-mechanical formalism.

3.9 Real and complex poles of the scattering matrix from wavepacket
propagation calculations

For the sake of simplicity and without loss of generality let us first discuss the prop-
agation of a initial one-dimensional wavepacket for a time-independent Hermitian
Hamiltonian given by

φ(x, t) = e−iĤ t/h̄φ(x, 0) (3.70)

where the time-independent potential V (x) and the initial wavepacket vanish when
|x| ≥ L. For any time t, φ(x, t) is a square integrable function. However, the
wavepacket expands in time and therefore its asymptote, in the non-interacting
region |x| ≥ L, consists of outgoing plane waves only such that

φ(x ≥ L, t) =
∫ ∞

k=0
dkC+(k)e+ikx ,

φ(x ≤ −L, t) =
∫ ∞

k=0
dkC−(k)e−ikx . (3.71)

The conclusion is clear.
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After a sufficiently long time propagation (yet not too long) the time-propagated
wavepacket (WP) in the interaction region −L ≤ x ≤ L where V (x) 	= 0 can be
described quite accurately as3

φ(x, t) =
∑
n

Dn(x)e−iEnt/h̄ψn(x) , (3.72)

whereEn andψn(x) are respectively the eigenvalues and eigenfunctions of the time-
independent Hamiltonian Ĥ when we impose outgoing boundary conditions on the
solutions of the time-independent Schrödinger equation (TISE). This is a remark-
able fact since the only solutions of the TISE with zero amplitude incoming waves
are the poles of the scattering matrix. As we will show in the next chapter, the poles
of the scattering matrix are discrete and have either real values Im(En) = 0 (asso-
ciated with square integrable bound states), or complex eigenvalues Im(En) < 0
which are associated with eigenfunctions ψn(x) which are not in the Hilbert space
and have exponentially diverging asymptotes. These solutions which are embedded
in the non-Hermitian sector of the domain of the physical Hamiltonian Ĥ are the
resonance states which are associated with the finite lifetime metastable states that
will be described in Chapters 4–6.

3.10 Concluding remarks

(1) Resonances are associated with metastable states of a system which has sufficient
energy to break into two or more subsystems. The subsystems can be neutral or ionic
atoms and/or molecules, electrons, photons or other types of particle.

(2) The fingerprints of the resonances in spectroscopic and scattering experiments depend
not only on the studied system but also on the chosen measurement. It is possible that
for one kind of experiment the resonances are more pronounced (for example by sharp
Lorenzian peaks in cross section measurements) than in another type of experiment.

(3) The resonances are not well defined in Hermitian quantum mechanics and are associated
with wavepackets. Each such wavepacket is localized in the interaction region and can
be constructed from a collection of continuum eigenstates of the time-independent
Hamiltonian.

(4) The scattering matrix calculated within the framework of Hermitian quantum mechanics
has real and complex poles. The poles embedded in the fourth quadrant of the complex
energy plane are associated with the decay resonance phenomenon. We stress the fact
that the poles can be calculated from the S-matrix and therefore in principle their
calculations do not require the derivation of a non-Hermitian quantum-mechanical
formalism.

3 R. Santra, J. M. Shainline and C. H. Greene, Siegert pseudostates: completeness and time evolution, Phys. Rev.
A 71, 032703–12 (2005).
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(5) For a specific choice of the initial WP, the solution of the time-dependent Schrödinger
equation within the framework of the Hermitian formation of quantum mechanics
is equal to the longest living resonance wavefunction, which is an eigenfunction of
the non-Hermitian Hamiltonian (a non-Hermitian operator due to the requirement of
outgoing boundary conditions).

(6) Only the bound state poles (i.e. those associated with square integrable eigenfunctions)
can be obtained by Hermitian (conventional) quantum-mechanical calculations (solving
the time-independent Schrödinger equation). All the other poles (either real or complex
eigenvalues of the time-independent Hamiltonian) are associated with exponentially
divergent solutions and therefore cannot be calculated by the conventional (Hermitian)
quantum-mechanics formalism, but their calculations require the derivation of a non-
Hermitian quantum-mechanical formalism.

3.11 Solutions to the exercises

Answer to Exercise 3.1

The free particle wavefunction,

�E(x) = N exp(ikx) (3.73)

is energy normalized when

〈�E′ |�E〉 = δ(E′ − E) (3.74)

and therefore ∫ +∞

−∞
dE′〈�E′ |�E〉 = 1 . (3.75)

SinceE′ = (h̄k′)2/(2M) we can substitute in the above equation dE′ = h̄2k′dk′/M .
Using the definition of a delta function,∫ +∞

−∞
dxei(k−k′)x = 2πδ(k − k′) , (3.76)

we get that

N 2
∫ +∞

−∞
dk′h̄

2k′

M
2πδ(k − k′) = 1 (3.77)

and therefore the energy normalization factor is given by

N =
√

M

2πh̄2k
. (3.78)
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Answer to Exercise 3.2

The Fermi golden rule for the state-to-state transition probability is derived
from the first-order time-dependent perturbation theory. Consider the following
Hamiltonian,

Ĥ (t) = Ĥ0 + V̂ (t) , (3.79)

where the unperturbed (zero-order) Hamiltonian is given by

Ĥ0 =
∑
n

E(0)
n |n〉〈n| . (3.80)

Here we use a box quantization condition and therefore the continuum states are
described as discrete quasi-continuum states. By increasing the size of the box
the energy gap between adjacent continuum energy levels can be as small as one
wishes. Therefore, the quasi-continuum states are normalized as bound states. In
the limit of an infinitely large box the spectrum of Ĥ0 will have a discrete part and
a continuous part and then one needs to consider the density of states in a given
energy in the continuum.

In order to describe a decaying state we assume we start initially at some discrete
bound eigenstate |�(t = 0)〉 = |m〉 of Ĥ0 which is embedded in the continuous part
of the spectrum. Within first-order time-dependent perturbation theory the solution
of the time-dependent Schrödinger equation is given by

|�(t)〉 = |m〉e−iE(0)
m t +

∑
n

Cn(t)e
−iE(0)

n t , (3.81)

where

Cn(t) = 1

ih̄

∫ t

0
dτ 〈n|V̂ (τ )|m〉eiωnmτ (3.82)

and ωnm = (E(0)
m − E(0)

n )/h̄. The probability to be in a state |n〉 due to the transition
from |m〉 → |n〉 is thus given by

Pm→n(t) = |Cn(t)|2 . (3.83)

We now assume that the perturbation V̂ is turned on at t = 0 and remains constant
in time up to some time t = T and since∫ T

0
eiωnmτdτ = eiωnmT − 1

iωnm
= eiωnmT/2

ωnm/2

[
e+iωnmT/2 − e−iωnmT/2

2i

]
(3.84)
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we get that after the perturbation is turned off the probability to be in a statem 	= n
for t > T is

Pm→n(t ≥ T ) = |〈n|V̂ |m〉|2
h̄2(ωnm/2)2

sin2

(
ωnmT

2

)
. (3.85)

We now wish to see what happens if the perturbation is kept on. This means that
T → ∞ and since

lim
T→∞

sin2(αT )

T α2
= πδ(α) , (3.86)

for sufficiently large T ,

Pm→n(T → ∞) = T π |〈n|V̂ |m〉|2δ(ωnm/2)

h̄2 . (3.87)

From the δ(ωnm/2) term in this expression we can infer that the bound state |m〉 can
only couple to continuum states at the same energy. Note that in the limit of infinitely
large box one has to consider the density of states ρ(E) in the continuum around
the final energy E(0)

n . Now we consider the probability, δPmn, of the transition
from the |m〉 bound state to a small energy interval in the continuum from E(0)

n to
E(0)
n + dE(0)

n . If the density of states and 〈n|V̂ |m〉 vary slowly over this range then
the probability is given by

δPmn ≡
∫ E

(0)
n +dE(0)

n

E
(0)
n

Pm→n(T → ∞)ρ(E)dE

= 2π

h̄
T |〈n|V̂ |m〉|2ρ(E(0)

n = E(0)
m ) . (3.88)

For long enough times the transition probability increases linearly with the time
the perturbation is turned on and therefore we can define the probability per unit
time (i.e. the rate of transition) by

d(δPmn)

dT
= 2π

h̄
|〈n|V̂ |m〉|2ρ(E(0)

n ) . (3.89)

The transition from a bound state to a scattering state in the continuum is simply
a decay process induced by the perturbation V̂ . Thus the rate of decay of the m-th
bound state �m/h̄ due to the coupling with the continuum in the same energy is

�m

h̄
= 2π

h̄
ρ(E(0)

n )|〈n|V̂ |m〉|2 . (3.90)

This expression gives the resonance width � according to the Fermi golden rule.
Note that the density of states is of the zero-order Hamiltonian where we describe a
bound state embedded in the continuum. Therefore, ρ(E) is the density of states of
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the “white continuum” of the Ĥ0 Hamiltonian and does not contain any information
on the decay process which is taken into consideration only when the perturbation
potential term V̂ is included in the Hamiltonian. Another point which should be
emphasized is that the bound state |m〉 and the continuum function |n〉 are two
degenerate states of the zero order Hamiltonian with the energy E(0)

m .

Answer to Exercise 3.3

First we briefly derive the flux operator for a one-dimensional real Hermitian
Hamiltonian. Multiplying the time-dependent Schrödinger equation from the left by
ψ∗(x, t) and its complex conjugate by ψ(x, t) we get the following two equations:

ψ∗Ĥψ = ih̄ψ∗ ∂
∂t
ψ ,

ψĤψ∗ = −ih̄ψ
∂

∂t
ψ∗ . (3.91)

Subtracting the two equations we get the local change in probability density
ρ(x, t) = |ψ(x, t)|2, which is given by

∂

∂t
ρ(x, t) = h̄

2Mi

(
ψ∗ ∂

2

∂x2
ψ − ψ ∂

2

∂x2
ψ∗
)
. (3.92)

Since

ψ∗ ∂
2

∂x2
ψ − ψ ∂

2

∂x2
ψ∗ = ∂

∂x
W [ψ,ψ∗] , (3.93)

whereW [ψ,ψ∗] stands for the Wronskian of the two functions,

W [ψ,ψ∗] = ψ∗ ∂
∂x
ψ − ψ ∂

∂x
ψ∗ , (3.94)

this gives a continuity equation which relates the local change in density to the
current of probability at that point:

∂

∂t
ρ(x, t) = − ∂

∂x
J (x, t) , (3.95)

where the current density at a given point x is defined as

J (x, t) = h̄

2Mi
W [ψ,ψ∗] . (3.96)

The integral
∫ |ψ(t)|2dx taken over some finite interval (volume in a three-

dimensional problem) x0 −�x/2 ≤ x ≤ x0 +�x/2 is the probability of finding
the particle in this volume. Therefore, in our case J (x0, t) is the number of particles
which pass through an interval x0 −�x/2 ≤ x ≤ x0 +�x/2 per unit time. J (x0, t)



76 Resonances from Hermitian quantum-mechanical calculations

is defined as the particle flux (in 3D the flux through a surface bounding the vol-
ume is related to the change in the density in that volume through the divergence
theorem).

d

dt

∫ x0+�x/2

x0−�x/2
dx|ψ(x, t)|2 = J (x0 −�x/2, t) − J (x0 +�x/2, t) . (3.97)

The flux operator is defined such that J (x0, t) = 〈ψ |F̂x0 |ψ〉. Therefore,

F̂x0 = p̂xδ(x − x0) + δ(x − x0)p̂x
2M

, (3.98)

where p̂x is the momentum in the x-direction.
Far enough from the interaction region any stationary scattering state behaves as

a free particle ψ = [A(k)e−ikx + B(k)e+ikx]e−iEt/h̄. The Wronskian in this region
is equal to

W [ψ,ψ∗] = 2(|A(k)|2 − |B(k)|2) . (3.99)

However, for a stationary solution ρ(x, t) ≡ |ψ(x, t)|2 is a time-independent func-
tion and therefore the flux J (x0, t) is constant. Therefore,

|A(k)|2 − |B(k)|2 = const . (3.100)

If the solution is also invariant under the reversal of time it means that the motion
is symmetrical when both time and the momentum of the particle are reversed.
In terms of the wavefunction it amounts to demanding that ψ(x, t) = ψ∗(x,−t).
In other words, in the asymptote we get that A(k) = B∗(k) and thus |A(k)|2 −
|B(k)|2 = 0 and there is no flux. This proves that for stationary solutions the
S-matrix, S†S = I . This proof can be readily extended to three dimensions by
evaluating the flux through a surface bounding the volume containing the interaction
region. This flux can be related to change in the density using a similar continuity
equation which can be derived from the Schrödinger equation using the divergence
theorem.

Answer to Exercise 3.4

The kinetic energy of a free particle is E = (h̄k)2/(2M) and therefore the wave
vector is given by k = √

2ME/h̄. Therefore, dk =
√
M/(2h̄2E)dE. When the

particle is confined to a box of length Lbox its energy levels also become quantized
such that

En = h̄2

2M

(
πn

Lbox

)2

. (3.101)
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Thus, the momentum is also quantized with values k = −nπ/Lbox, . . . , nπ/Lbox.
The volume in k-space depends on the dimensionality. In an n-dimensional problem
(n = 1,2,3) V (nD) = [2π/Lbox]n. In a 1D problem (which is equivalent to the
s-waves of a 3D spherically symmetric problem) the states associated with energy
which is less than or equal to E are on a line from −k to +k and therefore
N = 2k/V (1D) = kLbox/π . The density of states ρ = dN/dE = dN/dk · dk/dE
is given by

ρ1D(E) = Lbox

h̄π

√
M

2E
. (3.102)

The density of states in the 1D problem is infinitely large at the threshold energy
E = 0. As E increases, ρ1D(E) decreases. Therefore it is expected that when
a bound state in one potential energy surface is embedded in the continuum of
another potential surface and becomes a resonance due to a coupling potential
term, the resonance width (inverse lifetime) will be larger as the bound state is
embedded closer to the threshold energy of the second potential energy surface.
This situation is relevant to the discussion regarding Feshbach-type resonances
only and will be discussed in Chapter 4. For shape-type resonances this is not the
case and the width of the resonances which are embedded closer to the threshold
energy is the smallest.

In two dimensions the number of states with energy less thanE is given similarly
by N = πk2/V (2D). Therefore

ρ2D(E) = L2
boxM

2πh̄2 . (3.103)

Thus in two dimensions the density of states is energy independent.
Along the same line of thought, in 3D the number of states associated with

energy less than E is N = 4πk3/(3V (3D), and therefore

ρ3D(E) = L3
box

2π2h̄3

√
2M3E . (3.104)

In 3D the density of states increases as the energy increases.

Answer to Exercise 3.5

Confining the problem to a finite box, we use the eigenstates of the box as a basis
set

√
2/Lbox sin(nπx/Lbox), n = 1, 2, . . . , N . The degree of quantization of space

is set by the size of the box, Lbox. Since our model potential is non-zero only for
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L ≤ x ≤ ∞ the potential matrix elements are given by

V (n′, n) = − 2V0

Lbox

∫ Lbox

L

dx sin

(
n′πx
Lbox

)
sin

(
nπx

Lbox

)
= −V0

[
sin[(n′ + n)πL/Lbox]

π (n′ + n)
+ δn′,n

Lbox − L
Lbox

]
+V0[1 − δn′,n]

[
sin[(n′ − n)πL/Lbox]

π (n′ − n)

]
. (3.105)

HereV0 is the height of the potential barrier. The Hamiltonian is now represented by
anN ×N matrix [H (n′, n) = δn′,n(nπh̄/Lbox)2/(2M) + V (n′, n)]. The variational
solutions of the Schrödinger equation are the eigenvalues of the Hamiltonian matrix.
The number of the basis functions,N , must be taken large enough to get converged
results to the desired accuracy for a given box size. The plot of the eigenvalues as
function of Lbox provides the stabilization plot presented in Fig. 3.12.

Answer to Exercise 3.6

The continuum wavefunction outside the interacting region of the potential in
Fig. 3.1 is given by Eq. (3.6). We impose on the continuum solutions outgoing
wave boundary conditions, i.e., A(k) = 0, where A(k) is defined in Eq. (3.9).
Bound states are associated with a positive imaginary wave vector kb = i|kb| (in
such cases the asymptote decays exponentially and the eigenfunction is a square
integrable function) and therefore the energies of the bound states are given by
Eb = −(h̄|kb|)2/(2M). Resonances (as will be discussed in the following chapter)
are the solutions of the equation A(k) = 0 where k has complex values. What are
the conditions under which one gets bound states for our model potential? From
Eq. (3.9) one gets that A(k) = 0 with k purely an imaginary number implies that

sin(kbL) + ikb

qb
cos(kbL) = 0 . (3.106)

As V0 → ∞ also q = √
2M(E + V0)/h̄→ ∞ and therefore bound states are

obtained when

sin(kbL) = 0 . (3.107)

Equation (3.107) is satisfied when kb = nπ/L, where n = 1, 2, . . . Here we prove
that, the repulsive potential presented in Fig. 3.1 where V0 = ∞ supports bound
states of a particle-in-a box problem. That is, Eb = [h̄2/(2M)](nπ/L)2 where
n = 1, 2, . . .These states are located, however, in the “un-physical” region of
infinitely large kinetic energies above the threshold. In the “real world” these
bound states are actually very long living (narrow) resonances. It might happen
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that their lifetime is so large that it will be hard to measure and in most types of
experiment they will behave like true bound states.

Answer to Exercise 3.7

The height of the potential barrier is V0 and its width is given by 2L (i.e.,
−L ≤ x ≤ +L). The transition probability for a free particle with the energy
E = (h̄k)2/(2M) < V0 to cross the potential barrier is equal to

|T (E)|2 =
[

1 +
(
k2 + α2

2kα

)2

sinh2(2αL)

]−1

, (3.108)

where

k =
√

2ME/h̄ and α =
√

2M(V0 − E)/h̄ . (3.109)

Let us assume that αL� 1. In such a case the semiclassical approaches are
applicable. The transmission probability given above is reduced to

|T (E)|2 ∼
(

4kα

k2 + α2

)2

exp(−4αL) . (3.110)

In the spirit of the derivation given in Ex. 3.6 it is indeed expected that |T (E)|2
vanishes as V0 → ∞ even when E is larger than V0. However, in many cases
where the pre-exponential factor is almost V0-independent the well-known quasi-
classical expression for the transmission probability through a potential barrier
is obtained (see, for example, Section 50 in Landau and Lifshitz’ text book on
Quantum Mechanics). When α ∼ (

√
5 − 2)k the pre-exponential factor is close to

unity and then

|T (E)|2 ∼ exp(−4αL) (3.111)

is V0-independent.
Therefore, if T 2 = exp(−4αL) = exp(−2α

∫ +L
−L dx) is the transmission proba-

bility of a particle to get through a potential barrier when the barrier’s width is L,
then the transmission probability to get through a potential barrier when the barrier’s
width is ηL is given by T 2η = exp(−2α

∫ +Lη
−Lη dx). When the potential barrier is a

smooth function of x, V (x), then when V (x) is varied sufficiently slowly with x one
can approximately describe V (x) by a juxtaposition of rectangular potential bar-
riers. That is, V (x) =∑j Vj (x), where Vj (x) = V (xj ) when xj−1 ≤ x < xj and
Vj vanishes elsewhere. Therefore, due to the scaling law of T 2 mentioned above,
|T |2 = exp(−2

∑
j k(xj )(xj − xj−1), where k(xj ) = √2M(V (xj−1) − E)/h̄. Here
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k(xj ) replaces α in the transmission through a single rectangular potential bar-
rier. The slowly varying condition is important in order to satisfy the semiclassi-
cal (quasi-classical) condition that k(xj )(xj − xj−1) � 1 while at the same time
replacing the summation over j by an integral to yield

|T (E)|2 ∼ exp

(
−2
∫

barrier
k(x)dx

)
, (3.112)

where k(x) = √
2M(V (x) − E)/h̄.

Gamow’s expression for the resonance decay rate for a particle in a potential
well supported by a potential barrier (as, for example, V (x) = −V0 for x ≤ x0

and V (x) = a/x for x > x0 (see Problem 2 in Section 50 in Landau and Lifshitz,
Quantum Mechanics) is given by � = h̄ω exp(−2

∫
barrier k(x)dx), where ω is the

frequency of the classical periodic motion in the well (i.e., the number of particles
colliding in unit time with the left wall of the barrier). For the example mentioned
above, ω = x0/v, where v = √

2(E + V0)/m.

Answer to Exercise 3.8

For a free particle ψ = N exp(ikx − iEt/h̄), flux normalization implies that we
normalize the current of particles such that J (x, t) = h̄

2MiW [ψ,ψ∗] = 1. Therefore
the flux normalization factor N is given by

N =
√
M

h̄k
. (3.113)

Answer to Exercise 3.9

The scattering length is associated with the phase shift. The phase shift for a
radial square-barrier potential was derived in Eq. (3.11). For a radial square-well
potential the depth of the potential well is −V0 and the threshold energy is taken
as E = 0. For E > 0 the solution in the interaction region (0 ≤ x < L) is given
by ψin = sin(kx), where k = √

2M(E + V0)/h̄ and outside the interaction region
ψout = A sin(qx + δ), where q = √

2ME/h̄ and δ is the phase shift. From the
conditions that ψin(x = L) = ψout(x = L) and dψin/dx|x=L = dψout/dx|x=L one
gets k tan(qL+ δ) = q tan(kL). Consequently (using the identity tan(x + a) =
(tan(x) + tan(a))/(1 − tan(x) tan(a))),

tan δ = q tan(kL) − k tan(qL)

k + q tan(qL) tan(kL)
. (3.114)
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Since k → k0 = √
2MV0/h̄ as q → 0 and tan(qL) → qL we can substitute into

Eq. (3.43) and get that

a0 = − lim
q→0

tan δ

q
= L− tan(k0L)

k0
. (3.115)

The tan(k0L) term is responsible for the changes in a0 from −∞ to +∞ when V0

or L is varied.

Answer to Exercise 3.10

Taking the free particle solutions of the form eikx and using the expansion in
Eq. (3.52) one gets

1

2�E

∫ En+�E

En−�E
dEei(±kx−Et/h̄)

≈ ei(±knx−Ent/h̄) 1

2�E

∫ +�E

−�E
dẼei(±x−vnt)Ẽ/(h̄vn) , (3.116)

where Ẽ = E − En. By carrying out the integration the desired result is obtained,

1

2�E

∫ En+�E

En−�E
dEei(±kx−Et/h̄) ≈ ei(±knx−Ent/h̄) sinc[(±x − vnt)�]

= ei(±knx−Ent/h̄) sinc[(x ∓ vnt)�] , (3.117)

where

� = �E

h̄vn
. (3.118)

Answer to Exercise 3.11

By assuming that the integral in Eq. (3.65) can be extended to −∞ without signif-
icantly changing its value, it takes the following form:

�sc(x, t) ≈ ie+ikrx−iEr t/h̄��(Er)
∫ ∞

−∞
dE′ e

−iE′(t− x
vr

)/h̄

E′ + i
2�

, (3.119)

where E′ = E − Er. The integral we wish to solve has the form

I =
∫ +∞

−∞

e−ixτ

x + ia
dx . (3.120)
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where a = �/2 > 0. By defining a new variable z = xτ this integral transforms to

I = ±e−aτ
∫ +∞

−∞
F (z)dz , (3.121)

where

F (z) = e−i(z+z0)

z+ z0
(3.122)

and z0 = iaτ . The “+” sign applies to τ > 0 and the “−” sign to τ > 0. In the
complex plane the functionF (z) has a pole at z = −z0 which is along the imaginary
axis, Im(z). For τ < 0 the pole is embedded on the positive side of the imaginary
part of z (i.e. Im(−z0 = a|τ |) > 0), whereas for τ > 0 the pole is on the negative
part of the imaginary axis of z, Im(−z0) < 0. This is a crucial point in our proof
since F (z) vanishes as Im(z) → −∞ and diverges exponentially as Im(z) → +∞.
Therefore, the contour of integration has to be in the lower half of the complex
z-plane. This reflects the asymmetry in time with respect to t = 0, where for a
resonant state the probability decreases when going forward in time and increases
when going backward in time. This property, which is inherent in non-Hermitian
quantum mechanics, will be discussed extensively in the following chapters.

Let us choose a closed contour, C, which consists of the real z axis from −R ≤
z ≤ +R and a half a circle z = R exp(−iα), where 0 < α < π . By taking R to ∞
all the points on the semi circle have F = 0 and thus the value of the integral over
the closed contour is the desired result of the integration on the real axis. There are
now two possibilities.

(I) τ < 0 and the pole is embedded outside the closed contour, C. In such a case I = 0.
(II) τ > 0 and the pole is embedded “inside” the closed contour, C. In such a case, due to

the residue theorem, ∮
C
F (z)dz = 2π i (3.123)

and therefore I = −2π ie−aτ . Applying this result to Eq. (3.119) and taking an energy
normalization condition one immediately obtains the results of Eq. (3.68),

|�sc(x, t)|2 = 2πM�2

h̄2kr
|�(kr)|2e−�t/h̄e+

�x
h̄vr . (3.124)

3.12 Further reading
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4

Resonances from non-Hermitian quantum
mechanical calculations

The Hermitian properties of the Hamiltonian are related not only to the operator
itself but also to the functions on which it acts. Hermitian Hamiltonians operate
on functions in the L2 Hilbert space which correspond to boundary conditions
which vanish at infinity. In this chapter, in order to move into the non-Hermitian
domain, we will impose on the solutions to the time-independent Schrödinger
equation (TISE) different boundary conditions which lead to solutions which can
be associated with different types of the complex poles of the scattering matrix.
These solutions will contain information which was not available within the scope
of functions in L2.

By imposing outgoing boundary conditions on the eigenfunctions of the time-
independent Hamiltonian complex eigenvalues, Eres = ε − (i/2)�, are obtained.
These complex energies are associated with decaying resonance states which were
discussed in the previous two chapters. The bound states (if they exist) appear as
real eigenvalues since they result from exactly such outgoing boundary conditions
which appear under the threshold energy. When incoming boundary conditions are
imposed two kind of solution are obtained. One type of solution is the complex
conjugates of the decay resonance solutions mentioned above. In scattering theory
text books (see Taylor1 for example) the physical resonance solutions are associated
with the poles of the scattering matrix which are embedded in the lower half of the
complex energy plane. However, in nuclear physics the complex poles embedded
in the upper half of the complex energy plane, so-called virtual states, are denoted
as capture resonances. The other type of solution obtained by imposing incoming
boundary conditions on the TISE is the anti-bound states which are often denoted
as virtual states. The anti-bound states are associated, similarly to bound states,
with real eigenvalues of the Hamiltonian.

1 J. R. Taylor, Scattering Theory: the Quantum Theory on Nonrelativistic Collisions, New York, John Wiley &
Sons, Inc., 1972.

84
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Resonances are obtained by imposing outgoing boundary conditions on the solu-
tions of the TISE for 1D, 2D and 3D problems, for one-body or for many-body
problems, for short and for long range potentials. The resonances can be shape-type
resonances or Feshbach-type and often it is hard to distinguish between the two.
However, there are no general analytical solutions of the TISE for all possible prob-
lems and therefore for the sake of simplicity and coherence of our representation
we will discuss the situation in specific problems. In order to emphasize the fact
that resonances appear in almost any studied problem (of course not always but
it is hard to avoid them) we have chosen to open our discussions with a simple
1D case where the potential does not support wells and the shape-type resonances
are formed due to the presence of potential barriers. The bound states are square
integrable states which belong to the L2 Hilbert space. All the other poles are
associated with wavefunctions that diverge exponentially and are not part of the
Hilbert space. Under variation of the given potential parameters the bound, anti-
bound as well as the decay and capture resonances move in the complex energy
plane. In the potential barrier problem we studied in the previous chapter there
are no bound/anti-bound states and only decay and capture resonances appear.
However, for a rectangular potential-well problem the situation is richer. As one
reduces the depth of the potential well the bound states inside the well move up
in energy and eventually become anti-bound states. As the depth of the potential
is further reduced, these poles transform into decay and capture resonances. These
resonances are born in this problem at energies below the threshold energy. These
phenomena will be discussed in this chapter.

As stated above, the resonances are associated with complex eigenvalues of the
Hamiltonian. In conventional quantum mechanics the Hamiltonian is Hermitian
and therefore the eigenvalues must be real. How can the same Hamiltonian used in
conventional (i.e., Hermitian) quantum mechanics lead to complex energies? The
explanation is simple. The non-Hermitian properties of an operator depend not only
on the operator itself but also on the properties of the wavefunctions. For the sake
of clarity let us remind the reader (without loss of generality) that, for example, in
the one-dimensional case an operator Ĥ = p̂2/(2M) + V (x) is Hermitian provided
that

Ĥ † = Ĥ , (4.1)

where Ĥ † is an operator which satisfies the following equation:

∫ +∞

−∞
f (x)Ĥ †g(x)dx =

∫ +∞

−∞
g(x)Ĥ ∗f (x)dx . (4.2)
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By carrying out the integration by parts one gets that whenV (x) is real this equation
is satisfied when [

g(x)
df (x)

dx
− f (x)

dg(x)

dx

]+∞

−∞
= 0 . (4.3)

Consequently, the Hermitian property of Ĥ depends also on the boundary condi-
tions of f (x) and g(x). When, for example, f (x) and g(x) are in the L2 Hilbert
space, then f (x = ±∞) = 0 and g(x = ±∞) = 0. In such a case Eq. (4.3) is sat-
isfied and Ĥ is an Hermitian operator. Equation (4.3) is also satisfied for periodic
functions where f (x) = f (x + L) and g(x) = g(x + L) and therefore we replace
the integration limits from ±∞ to ±NL where N is an integer. It is clear that when
f (x) and g(x) diverge exponentially the Hamiltonian is non-Hermitian, which
gives rise to complex eigenvalues. Thus, a new quantum mechanical formalism
should be developed.

4.1 Resonances for a time-independent Hamiltonian

The Hermitian quantum mechanical calculations presented in Chapter 3 explored
the association of the resonance energies and decay rates with the real and imaginary
parts of the complex poles of the scattering matrix. The poles of the S-matrix are
associated with eigenfunctions with zero incoming amplitudes. Therefore, unlike
the situation in Hermitian quantum mechanics, in the non-Hermitian formalism
these poles can be associated with discrete complex eigenvalues of the Hamiltonian.
These solutions can be obtained by solving the TISE with outgoing boundary
conditions. The solutions of any differential equation are subject to the constraints
of boundary conditions. For the TISE, imposing outgoing boundary conditions
means that, while the discrete bound state spectrum is obtained for real eigenvalues
lying below the threshold, energy resonances are obtained for complex eigenvalues
with real parts embedded in the continuum. The asymptotic form of the general
solution in the continuum for a one-dimensional problem is given by

�E(x → ∞) = A+(E)e−ik+x + B+(E)e+ik+x , (4.4)

�E(x → −∞) = A−(E)e+ik−x + B+(E)e−ik−x , (4.5)

where k± is the momentum of the free particle at ±∞ respectively. Requiring
outgoing waves only means that at the resonance energies,

A±(E = En) = 0 , (4.6)

where n is an index counting the discrete states in the continuum. If the threshold
energy as x → ∞ approaches a constant value Eth

+ then the eigenvalues of the
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Hamiltonian under this restriction attain discrete values,En = (h̄k+
n )2/(2M) + Eth

+ .
As will be shown shortly, the index n counts the number of nodes in the interaction
region of the real part of the eigenfunction which is associated with the eigenvalue
En.

There are two ways by which Eq. (4.6) can be satisfied for Re(k+) > 0.

(1) k+
n = i|k+

n | and therefore En = Eth
+ − |h̄k+

n |2/(2M). These solutions are bound states.
(Here if we set the threshold energy to 0 these eigenvalues will be negative.)

(2) k+
n = |k+

n |e−iαn . These values which correspond to the resonance solutions are complex
and are given by

En = εn − i/2�n = Eth
+ + |h̄k+

n |2e−2iαn/(2M) , (4.7)

where

α = 1

2
arctan

�n/2

εn − Eth+
. (4.8)

Note that when the threshold energy is 0 (the first threshold can always be shifted to
E = 0) then these decaying states lie in the fourth quadrant of the complex energy
plane where α ∈ [0, π/4].

When Eq. (4.6) is satisfied the 1D resonance wavefunction (also known as a
Siegert or Gamow state) has an outgoing asymptote which is given by

lim
x→∞�res(x) = B+(En)e

ik+
n x , (4.9)

where the resonance complex eigenvalueEn is defined in Eq. (4.7). In 1D problems
where the potential V (x) has different asymptotes at ±∞ the threshold energy at
x → −∞ will be labeled by Eth

− . The asymptotic behavior at −∞ in such a case is

lim
x→−∞�res(x) = B−(En)e

ik−
n x , (4.10)

where

k−
n =

√
2M(En − Eth−)/h̄ . (4.11)

Exercise 4.1

Following the definition of the complex energy En given in Eq. (4.7), show that when
the threshold energies at ±∞ are equal to zero then the decay rate of the resonance can
be expressed as

�n = −2h̄2

M
Re(kn)Im(kn) (4.12)
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and the coefficient B(kn) of the outgoing wave is given by

B(kn) = γn
√
M

h̄kn
, (4.13)

where γn is a complex constant associated with the n-th resonance eigenfunction.
Prove also that as �n → 0 then

h̄|γn|2 → �n . (4.14)

Solve this problem for a spherically symmetric potential where 0 ≤ x ≤ ∞ and the
resonance eigenfunctions vanish at x = 0.

As we have shown in Ex. 3.6 for the model Hamiltonian studied in
Chapter 3, by imposing outgoing boundary conditions on the eigenfunctions of
the time-independent Hamiltonian, bound states are obtained when the height of
the potential barrier, V0, is taken to be infinitely large. For any finite value of V0,
which can be as large as one wishes, we get narrow resonances which are “almost”
bound states in the continuum. It is possible to get bound states in the continuum
in higher dimensional problems due to special symmetry properties. It is clear,
however, that any infinitesimally weak perturbation which breaks the symmetry
of the Hamiltonian will couple between such bound states and the continuum in
which they reside and thus a resonance with finite lifetime will be created (see
the discussion on the Fermi golden rule given in Ex. 3.2 and the derivation of a
lower bound for the number of bound states in the continuum in 2D waveguides
and quantum dots2).

When we impose outgoing boundary condition on the solutions of our studied
model Hamiltonian with a potential barrier complex eigenvalues are obtained.
The height of the potential barrier is V0 and its width is labelled by L. From the
analytical solutions presented in Eqs. (3.4)–(3.8) one gets that the requirement of
zero amplitude for the incoming waves (i.e., B(k) = 0 in Eq. (3.8)) leads to the
condition

tan(kL) = i
k

q
. (4.15)

The solutions of Eq. (4.15) are discrete and can be labelled by an index n counting
the number of nodes in the interaction region.

Tables 4.1 and 4.2 list the first ten resonance positions and widths for potential
parameter V0 = 10 and V0 = 100 respectively. The quantum number n stands for
the number of nodes in the resonance wavefunction. Here the resonance positions

2 N. Moiseyev, Phys. Rev. Lett, 102, 167404 (2009).
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Table 4.1 The complex energies of the first ten resonant states of the model
potential barrier given in Chapter 3 with potential parameter V0 = 10 and L = 1.

n 0 1 2 3 4 5 6 7 8 9

ε̃n 0.89 3.68 8.50 15.35 24.22 35.11 48.01 62.92 79.84 98.76
�̃n 1.23 4.41 8.78 13.89 19.54 25.60 32.00 38.70 45.65 52.83

Table 4.2 The complex energies of the first ten resonant states of the model
potential barrier given in Chapter 3 with potential parameter V0 = 100 and
L = 1.

n 0 1 2 3 4 5 6 7 8 9

ε̃n 0.99 3.95 8.89 15.83 24.76 35.70 48.64 63.58 80.53 99.48
�̃n 0.44 1.71 3.72 6.37 9.53 13.13 17.10 21.38 25.93 30.72

are scaled by, ε̃ = ε/α and the resonance width is defined as �̃n = [−2Im(En)]/α,
where α = [(h̄π/L)2]/[2M]. As V0 → ∞ the resonance positions converge to
ε̃n = (n+ 1)2, where n = 0, 1, 2, . . . , while the resonance widths converge to
�̃n = 0 (see Ex. 3.6). Note that in this simple example �̃n grows when we move
to higher energies. However, �̃ does not always increase monotonically with the
resonance position ε and this behavior depends very much on the studied problem
at hand.

What happens to the resonances when the height of the potential barrier is
reduced and where are they accumulated in the limit of V0 → 0 when the potential
is constant throughout? Figure 4.1 shows V0-trajectory calculations which demon-
strate the motion of the decay resonances (poles of the S-matrix) in the complex
energy plane as V0 is varied. As one goes to lower values of V0 the resonance goes
down as well while the resonance width, �, increases.

For each resonance there is a critical value of V0 where it crosses the threshold
energy E = 0 and eventually they move below the second threshold energy, E =
−V0 (shown in Fig. 3.1). When V0 is small there are an infinite number of decay
resonances with energy positions above the potential barrier (E = 0) while a finite
number of resonances are embedded below at E < 0. Presumably as V0 → ∞
the resonances below the threshold energy accumulate at E = −∞ with infinitely
large widths. This phenomenon is hard to demonstrate for numerical reasons but
it is illustrated in Fig. 4.1 where we obtained converged results for V0 ≥ 10−12.
All poles in Fig. 4.1, including those located below Eth = −V0, are obtained for
outgoing boundary conditions (i.e. solutions of Eq. (4.15)). Are all of these poles
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Figure 4.1 The dependence of the first ten resonance positions and widths on the
height of the potential barrier described in Eq. (3.5). The width of the potential
barrier is L = 1 au and the mass of the particle isM = 1 au. The results presented
here are for the height of the potential barrier V0 = 1015−j where j = 0, 1, . . . ,
27. Note that for V0 → ∞ the resonances become bound states of a particle-in-
a-box problem. As we decrease V0 the decay resonance states move below the
top of the potential barrier (E = 0) and eventually move below the threshold
energyE = −V0. Presumably as V0 → ∞ they will accumulate atE = −∞ with
infinitely large width.

observable? There is no simple answer to this question. It depends heavily on the
experimental setup. For example, consider the situation where we initially inject
particles into the system at largeV0 and then by adiabatically decreasing the value of
V0 we may populate a resonance state which eventually will lie below Eth = −V0.
If we measure the number of the free particles detected far from the interaction
region it will be smaller than the number of particles initially injected into the
system due to the populated resonance state. This point will be discussed in the
next chapter more elaborately.

Decay resonances which are positioned inside a potential barrier are sometimes
referred to as barrier resonances. For example, for an Eckart potential barrier,
V (x) = V0/ cosh2(αx), this type of resonance has been analytically calculated.3

Often one might consider these resonances as non-observable poles of the S-matrix
and thus not physically interesting. However, it was shown that they can also be
used to describe the trapping of a light particle in between two heavy atoms such
as in the case of ArHCl4 (see later Ex. 4.6).

3 V. Ryaboy and N. Moiseyev, J. Chem. Phys. 98, 9618 (1993).
4 E. Narevichius and N. Moiseyev, Mol. Phys. 94, 897 (1998); Chem. Phys. Lett. 287, 250 (1998).
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4.2 Transitions of bound states to anti-bound and resonance states

We start this discussion by describing a “trick” we employed in calculating the
decay resonances for the Eckart potential barrier mentioned above. The same
method we have used there can be applied to any potential, V̂ , whose inverse,
−V̂ , provides a potential well which supports bound states that can be calculated
analytically.

Let us assume that for a given system an analytical expression for the bound
state discrete spectrum, E(n, λ), is known, where λ is some potential parameter.
The bound state spectrum is derived by solving the time-independent Schrödinger
equation while imposing outgoing boundary conditions on the solutions under the
threshold energy. This implies that the momentum is purely imaginary. Although
the distinction between the boundary conditions as outgoing or incoming depends
on the sign of the real part of the wave vector, we use it here also for com-
plex values of the momentum. Bound states are associated here with outgoing
boundary conditions with k = i|k| rather than incoming waves with k = −i|k|
in accordance with the accepted terminology in time-independent scattering
theory.

We claim that for potentials which support a finite number of bound states,
n = 0, 1, 2, . . . , N , and for which the energies have an analytical formula, by
increasing the value of n, n = N + 1, N + 2, . . . , an additional infinite num-
ber of discrete states are obtained. These states can be associated either with
anti-bound (virtual) states (i.e., the asymptotes of the solutions are incoming
waves with positive purely imaginary momentum) or with decay resonance
states.

The transition from bound to resonance states can be observed by varying the
potential parameter λ continuously. However, for the type of potential where the
energy is known analytically, by making the transformation

λ→ −λ (4.16)

one turns the potential upside down such that V̂ → −V̂ , and if V̂ had the shape
of a well it is now a potential barrier. In such a case, by analytical continuation
of the energy E(n, λ) → E(n,−λ) one gets discrete complex eigenvalues which
are associated with the decay and capture resonances. In principle also anti-bound
states can be obtained for specific values of the potential parameters.

The main conclusion from this analysis is that for a given model Hamiltonian
there is a single expression for the discrete energy spectrum associated with the
poles of the S-matrix. By varying either the quantum number n or one of the real
potential parameters (λ in our above discussion) the nature of the poles can be
changed.
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In order to demonstrate the above arguments consider the Hamiltonian of the
well-known Morse potential

V (x) = V0(1 − e−bx)2 − V0 , (4.17)

whereE = 0 is the threshold energy. The solutions with outgoing boundary condi-
tions are discrete and can be found by solving the following differential equation:

∂2ψ(x)

∂x2
+ 2MV0

h̄2

(
e−2bx − 2e−bx + E

V0

)
ψ(x) = 0 . (4.18)

By carrying out the transformations z = 2κ exp(−bx) and φ(z) = √
zψ(z), where

κ =
√

2MV0

bh̄
> 0 , (4.19)

one gets Whittaker’s equation:

∂2φ(z)

∂z2
+
(

−1

4
+ κ

z
+ 1/4 − λ2

z2

)
φ(z) = 0 , (4.20)

where

λ = i

√
2ME

h̄b
. (4.21)

The quantization is obtained for outgoing waves when 1/2 + λ− κ = −n, where
n = 0, 1, 2, . . . , which leads to the following eigenvalues:

En = −V0

(
1 − n+ 1/2

κ

)2

. (4.22)

Consequently, the eigenfunctions of the Morse potential are given by

ψn(z) = Nne−z/2zκ−n−1/2L(2κ−2n−1)
n (z) , (4.23)

where L(2κ−2n−1)
n (z) are generalized Laguerre polynomials and Nn is a normaliza-

tion factor. Since z = 2κ exp(−bx), when x → ∞, z → 0. Therefore, the asymp-
totic behavior of ψn is dominated by the zκ−n−1/2 = zλ term which means that

lim
x→∞ψn(x) ∝ e−λbx = eikx , (4.24)

where k = √
2ME/h̄ is the momentum attributed to the wavefunction. The bound

states are associated with square integrable functions (i.e., the wave vector is
equal to k = +i|k|). This condition puts a limit on the number of the bound states
located inside the Morse potential well. TheN + 1 bound states are labelled by the
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number of the nodes, n = 0, 1, 2, . . . , N , where N is the largest integer smaller
than κ − 1/2.

The ground state, |n = 0〉, is situated below the threshold energy slightly above
the bottom of the Morse potential well. The energy increases with the quantum
number n up to EN , which is the highest excited bound state which is embedded
just below the threshold energy E = 0.

What happens if we keep increasing the quantum number n? The energies of
solutions obtained for n = N + 1, N + 2, . . . in Eq. (4.22) decrease and eventually
attain values below the minimum of the potential well (up to E = −∞). These
states are associated with incoming asymptotes where k = −i|k|. Therefore, these
solutions diverge exponentially and are considered as anti-bound states which are
also known as virtual states. Often these solutions are denoted as the non-physical
poles of the S-matrix. Here we showed that the Morse potential does not support
decay and capture resonances (no states with outgoing boundary conditions with
E > 0). Note that in a very similar way it is possible to prove that the symmetric
Rozen–Morse potential V = −V0 cosh2(ax) supports only bound and anti-bound
states. In the absence of decay resonances there is no sharp structure (e.g., peaks)
in the density of states or in the cross section. However, it does not imply that these
potentials are always reflection-less potentials.

Now, when we vary the potential strength parameter V0 by carrying out the
transformation V0 → −V0 we get from Eq. (4.22) an infinite number of discrete
complex eigenvalues

En = V0

[
1 − (

n+ 1/2

κ
)2

]
± 2iV0

n+ 1/2

κ
. (4.25)

The different sign of the imaginary part of the complex energy corresponds to
the two different types of boundary conditions. The positive imaginary part corre-
sponds to incoming waves solutions associated with capture-resonances, whereas
the negative imaginary part corresponds to decay resonance solutions with outgoing
boundary conditions.

Exercise 4.2

Calculate the poles of a parabolic potential barrier (the inverse of the harmonic oscillator
potential,V = kx2/2 where the potential strength parameter is k = Mω2). Explain why
these poles can’t be considered as barrier resonances.

Other examples for analytical expressions for barrier resonances can be derived
for the potentials in the following exercises.
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Exercise 4.3

Find the energies of the barrier resonances for the inverted symmetric Rosen–Morse
potential given by V = V0/ cosh2(ax). This potential is also known as the Eckart
potential barrier in chemical reactions.

Exercise 4.4

Find the energies of the barrier resonances for an inverted non-symmetric Rosen–Morse
potential V = −V0 cosh2 b[tanh(ax − b) + tanh(b)]2 + V0 exp(−2b).

Exercise 4.5

Find the energies of the barrier resonances for the following spherically symmetric
potential: V = V0(−γ /r2 + 1/r). The solution for the bound states of such a potential
were introduced for the inverted potential by Landau and Lifshitz in their quantum
mechanics textbook.5 Such a potential provides a model Hamiltonian of an electron
scattering from negative ions).

Barrier resonances are quite often very broad ones (in particular for “Gaussian”
like potentials) and are regarded as non-physical solutions. However, as mentioned
above, this is not necessarily the situation and these resonances might be related
to observable phenomena. To further illustrate this point consider the following
exercise.

Exercise 4.6

Let A be a light particle with the mass M = 2000 au (approximately that of an hydrogen
atom), which moves freely in a plane excluding two disk areas (i.e., V = ∞, when
x2 + (z± R/2)2 ≤ r2, where x, z denote the coordinates of A in the plane). The two
disks each have a radius r with their centers separated by a distance R. The two disks
describe two heavy atoms B and C.

Evaluate the 1D effective model Hamiltonian H (x, z) by treating the x coordinate
as a slowly varying parameter. Take R = 8 au to be the distance between the centers
of mass of the two heavy atoms and their radius to be equal to r = 2.5 au. Under what
conditions is the adiabatic approximation valid in such case? Calculate the adiabatic

5 L. D. Landau and E. M. Lifshitz, Quantum Mechanics, New York, Pergamon, 1965.
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potentials,Enz (x); nz = 1, 2, . . . , 5. What are the resonance positions and widths when
the dynamical potential barriers, Enz , are approximately described by Eckart potential
barriers, V0/ cosh2(αx)? Note that by fitting Enz to an analytical smooth function, such
as the Eckart potential, we remove from the problem the artificial discontinuity of Enz
which results from the description of the two atoms as two hard disks (or spheres in
3D calculations).

4.3 Bound, virtual and resonance states for a 1D potential

To illustrate the behavior of the different poles of the scattering matrix we will now
discuss the transitions between bound and resonance states in a one-dimensional
symmetric rectangular well. We will show that as a one-dimensional symmetric
rectangular well becomes shallower, the bound states move up to the threshold
and eventually disappear, but not without leaving a trace. Shortly after a bound
state ceases to exist, a new resonance state appears above the well. In the interim
a virtual state (anti-bound state) is formed at the threshold energy which then
coalesces on its way down (along the energy axis) with another virtual state
that is moving up towards it. This coalescence gives rise to a pair of complex
energy states inside the well which eventually become a resonance above the
well and its conjugate virtual state. All this is readily deduced from the work of
H. M. Nussenzveig,6 which may be rightfully considered a quite exhaustive though
rather intricate treatment of the problem. In contrast to it the analysis we present
here,7 which is mainly a quasi-analytical study, is distinguished by its extraordi-
nary simplicity which offers an excellent visualization and a thorough grasp of the
subject.

A one-dimensional symmetric rectangular potential-well is defined by

V (x) =
{

0 (x < 0 or x > L) ,

−V0 (0 < x < L) ,

where V0, the depth of the well, is a positive number. The corresponding time-
independent Schrödinger equation is{

� ′′ + k2
0� = 0 , k0 = √

2ME/h̄ (x < 0 or x > L) ,

� ′′ + k2� = 0 , k = √
2M(E + V0)/h̄ (0 < x < L) ,

6 H. M. Nussenzveig, Nucl. Phys. 11, 499 (1959).
7 Based on R. Zavin and N. Moiseyev, J. Phys. A 37, 4619 (2004).
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and its general solution is given by
� = Ceik0x + C ′e−ik0x (x < 0) ,

� = Aeikx + Be−ikx (0 < x < L) ,

� = Deik0x +D′e−ik0x (L < x) ,

where A,B,C,C ′,D and D′ are some constants which are subject to bound-
ary conditions and the functions eik0x and e−ik0x represent waves moving to +∞
and −∞ respectively. By requiring C = D′ = 0 (or, alternatively, C ′ = D = 0)
together with the continuity of� and� ′ a transcendental equation for the outgoing
(incoming) waves is obtained.

As previously discussed, outgoing waves are represented by eik0x when x →
+∞ and by e−ik0x when x → −∞. However, real solutions of the transcendental
equation are possible only for E < 0, when k0 is pure imaginary (k0 = i|k0|), in
which case the outgoing waves become decaying exponents pertaining to the bound
states. That is, � → e−|k0|x as x → ∞.

Incoming boundary conditions stand for an inward flow and therefore are rep-
resented by e−ik0x when x → +∞ and by e+ik0x when x → −∞.

In general, the transcendental equation for the outgoing waves (associated with
the “+” sign) and for the incoming waves (associated with the “−” sign) is

2 cot kL = ±i(k2 + k2
0)

kk0
. (4.26)

The complex equation (4.26) can only be solved numerically. One way to do so
is by substituting k0 and k in Eq. (4.26) when one gets that the solution is obtained
for

�(E) = �(E) = tan(
√

2M(E + V0)L) ± 2i

√
E(E + V0)

2E + V0
= 0 . (4.27)

For bound and anti-bound states Im(E) = 0 while for decay resonance states
Im(E) < 0 and for the conjugate virtual states (so-called capture resonances)
Im(E) > 0. The “+” sign in Eq. (4.27) stands for the bound and decay resonance
states and the “−” sign is for the virtual states (including the anti-bound states and
the so-called capture resonances). For example, the bound and resonance states
in the interval of E0 < Re(E) < Ef and �f < −2Im(E) ≤ 0 can be obtained by
dividing the given complex E-plane into a finite number of grid points. For each
of the grid points the phase of�(E) is calculated. The results are divided into four
different groups according to the four possible quarters in the complex E-plane.
When different colors are associated with different quarters in the complex plane
a four color map is obtained. The desired solutions are the points where all four
colors intersect. See, for example, the results presented in Fig. 4.2.
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Figure 4.2 The error in the calculations of decay resonances, see Eq. (4.27), for
a symmetric rectangular potential well with the depth V0 = 10 and width L = 10
(h̄ = 1,M = 1). The decay resonances are obtained at the intersection points of
the four shades. Each shade is associated with the phase of the errors. All errors
which are embedded within the same quarter in the complex E-plane are assigned
the same shade.

Refined calculations and plots provide the resonance positions and widths within
a desired accuracy. Such a procedure, however, does not provide us with the mech-
anism for the transitions from bound to resonance state as the potential parameter
V0 is varied. A careful variation of V0 shows that the ground bound state never
disappears, the first excited bound state disappears at a critical value of V0 but
never returns as a decay resonance state, whereas all other excited bound states dis-
appear at critical values of V0 but reappear as resonances at smaller critical values
of V0.

4.4 The mechanism of transition from a bound state to a
resonance state

The mechanism of transition from a bound state to a resonance becomes evident
when introducing two new variables in the solution of Eq. (4.26):

α =
√

1 + E

V0
and γ =

√
2MV0L2

h̄2 , (4.28)
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Figure 4.3 The virtual, anti-bound and bound states obtained by varying the depth
of the rectangular potential well. α is defined in Eq. (4.28).

in terms of which Eq. (4.26) for the bound states is expressed as

γα = (n− 1)π + 2 cos−1 α , (n = 1, 2, . . .) . (4.29)

Exercise 4.7

Show that in the variables defined in Eq. (4.28) the bound states solutions of Eq. (4.26)
are given by Eq. (4.29).

Since the right hand side of Eq. (4.29) is independent of γ , varying the depth of
the well leaves it unaltered while the slope of the straight line on the left changes. In
Fig. 4.3 the graphical solution (solid lines) is plotted for three different γ s. Values
of α at the points of intersection of the straight line with the branches of 2 cos−1 α

give the energies of the corresponding bound states according to the formula

E = −V0(1 − α2) . (4.30)

It is immediately evident from the graph that as the well becomes shallower, the
bound states move towards the threshold where they eventually disappear, with
the exclusion of the first bound state which always remains inside the well. The
number of the bound states for a given well depth is clearly the greatest integer
contained in the quantity (γ /π + 1).
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A graphical solution for real virtual states described by Eq. (4.26) can be done
in an analogous manner to that of the bound states. Using the same definition for
α and γ , the transcendental equation for virtual states transforms to

γα = (n− 1)π + 2 cos−1
√

1 − α2 , (n = 1, 2, . . .) (4.31)

Exercise 4.8

Show that in the variables defined in Eq. (4.28) the virtual states solutions of Eq. (4.26)
are given by Eq. (4.31).

The graphical solution of this equation is portrayed in Fig. 4.3 by dashed lines. It
should be noted that the parity of the real virtual states corresponding to consecutive
branches of the right hand side of Eq. (4.31) is in reversed order to that of the bound
states. Namely, for bound states odd numbers of nodes are associated with even
quantum number n, whereas for anti-bound states even numbers of nodes are
obtained for odd values of n. The real part of the energy of complex virtual state is,
of course, identical to the real part of the corresponding conjugate resonance state
and the imaginary part has a phase equal to π relative to the resonance.

To get an insight into what happens as the depth of the well is varied, the
graphical solutions for the bound and for the real virtual states are combined on
one diagram (see Fig. 4.3). By inspecting the diagram it can be readily concluded
that every time that an nth bound state with n ≥ 3 reaches the threshold as a result
of diminishing the depth of the well, a new (n− 1)th virtual state is formed there
in addition to an already existing (n− 1)th virtual state. As the depth of the well
is further decreased these two virtual states move toward each other, coalesce and
then disappear. Solving simultaneously the complex transcendental equation for
the incoming waves, we find that right after the two real solutions merge into one,
subsequent decrease of the depth of the well makes this solution complex. At first
the new complex virtual state sits inside the well, but as the bottom of the well
is continuously pushed up, it eventually crosses the threshold. Of course, in the
moment when a new complex incoming wave state is formed its complex conjugate
appears as a new solution for the outgoing wave transcendental equation. Thus a
disappearing bound state turns into a resonance via a virtual state collision. This
is true for any n ≥ 3. Figure 4.4 shows these transitions for the n = 3 bound state.
The n = 2 bound state never becomes a resonance, consistently with the fact that
the n = 1 real virtual state is essentially different from those above it, as is apparent
from the graphical solution.

The values of the potential depths at which branch points, the points of coales-
cence of two virtual states, occur can be determined by demanding the two sides
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Figure 4.4 Disappearance of the n = 3 bound state and the formation of a new
decay (shape-type) resonance as a result of diminishing the depth of the rectangular
potential well. The parameters are given byM = 0.5, L = π,h̄ = 1.

of Eq. (4.31) to be tangent to each other at the point of their intersection. The tan-
gency requirement alone yields that the energy of the branch point’s virtual state is
independent of n and is given by

Ebp = − 2h̄2

ML2
. (4.32)

As discussed above, the branch points (bifurcation points) where the resonances are
“born” are at real energies embedded below the threshold energy of the rectangular
potential well. The transcendental equation obtained when the intersection is also
taken into account is √

γ 2 − 4 = (n− 1)π + 2 cos−1 2

γ
. (4.33)

For n = 1 this equation is very easy to solve (γ = 2) and it corresponds to −V0 =
Ebp, which means that after the n = 2 bound state turns into the n = 1 virtual
state it moves down towards the bottom of the well until it collides with it and
disappears.

It also maybe interesting to note from Fig. 4.3 that for certain well depths some
n-th bound state will have the same energy as the n-th virtual state. The relation
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that must hold between V0 and n for this to happen is

V0 = h̄2π2(n− 1
2 )2

ML2
, (4.34)

and the energy of the n-th bound and virtual states will then be

E = −1

2
V0 . (4.35)

The bound to resonance state transformation is quite vivid and rich. In the next
section we emphasize the fact that there is no way to understand or explain this
physically observable phenomenon without the use of the so-called non-physical
virtual states.

4.5 Concluding remarks on the physical and non-physical poles
of the S-matrix

(1) The so-called physical poles of the S-matrix are the eigenvalues of the time-independent
Schrödinger equation which are obtained by imposing outgoing boundary conditions
on the corresponding eigenfunctions. These solutions are embedded in the fourth
quadrant of the complex energy plane. The real eigenvalues are the bound states and
the complex ones are the decay resonance states. In principle the bound states are
associated with real eigenvalues embedded below the threshold energy of the system
(i.e., the energy where the potential vanishes). However, it might happen due to very
specific symmetry properties of the studied Hamiltonian that the bound states are
embedded in the continuum. Of course, any infinitesimal small perturbation which
does not commute with this special symmetry operator will transform the bound states
in the continuum into decay resonance states.

(2) The so-called non-physical (virtual) poles are also obtained by imposing incoming
boundary conditions on the solutions of the time-independent Schrödinger equation.
These eigenvalues can be either real or complex. The real non-physical eigenvalues are
the anti-bound states. The non-physical complex eigenvalues are embedded in the first
quadrant of the complex energy plane and are the complex conjugates of the eigen-
values of the decay resonance eigenvalues. These non-physical complex eigenvalues
are associated with exponential divergent asymptotes and are referred to as “capture
resonance states”.

(3) The transition between bound and decay resonance solutions can be a complicated
phenomenon. For a square rectangular potential well it is shown that these transitions
happen via the transformation of bound states into anti-bound states. The decay and
capture resonances are created in this case upon coalescence of two anti-bound states.
It is a point of interest that the resonances are “born” while the resonance positions (i.e.,
the real part of the complex eigenvalues) are below the threshold energy and therefore
the new born resonances are not embedded in the continuous part of the spectrum.
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4.6 Resonances for a time-dependent Hamiltonian

The above introductory considerations have been focused on the resonance states
associated with the solutions of the time-independent Schrödinger equation. We
should emphasize here, however, that there is no need to limit ourselves to time-
independent Hamiltonians. The case of generally time-dependent Hamiltonians
can be treated in an entirely analogous fashion to the time-independent case using
the so-called (t, t ′) formalism. A detailed self-contained discussion of the (t, t ′)
method is beyond the scope of the present work. For more information, the reader
is referred to the fundamental work on this subject.8 Here we provide only a very
brief sketch of the underlying theory.

The solution of the time-dependent Schrödinger equation (using atomic units
where h̄ = 1, e = 1 and me = 1)

Ĥ (r, t)ψ(r, t) = i∂tψ(r, t) (4.36)

can be expressed as a special case of a more general solution

ψ(r, t) = [�(r, t ′, t)
]
t ′=t , (4.37)

where�(r, t ′, t) is the solution of the time-dependent Schrödinger equation for the
time (t) independent Hamiltonian H(r, t ′),

�(r, t ′, t) = e−iH(r,t ′)t�(r, t ′, t = 0) . (4.38)

Here the physical time-dependent Hamiltonian Ĥ (t) is replaced by the generalized
Floquet-type time-independent Hamiltonian operator where t has been replaced by
t ′:

H(r, t ′) = −i∂t ′ + Ĥ (r, t ′) . (4.39)

The incorporation of the additional coordinate t ′ enables us to obtain an analytical
expression for the time evolution operator of a time-dependent Hamiltonian. The
“trick” we are using here is based on the fact that in the time-dependent Schrödinger
equation, the energy operator i∂t is a first order derivative operator (unlike the
kinetic energy operator which is a second order derivative operator −∇2

x,y,z). This
fact enables us to use the so-called chain rule for derivatives (for the sake of clarity
we replace ∂t by d/dt in the Schrödinger equation, keeping in mind that there are
spatial variables which are held fixed):

dF (t)

dt
=
[
∂G(t, t ′)
∂t

+ ∂G(t, t ′)
∂t ′

]
t ′=t

, (4.40)

8 U. Peskin and N. Moiseyev, J. Chem. Phys., 99, 4590–4596 (1993).
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where [
G(t, t ′)

]
t ′=t = F (t) . (4.41)

It is possible to add additional auxiliary coordinates provided we require that[
G(t, t ′, t ′′, . . .)

]
t ′=t ′′=···=t = F (t) . (4.42)

The above generalized Hamiltonian H depends not only on the position and
momentum operators of different spatial degrees of freedom of the studied system,
but also on an additional coordinate t ′ and on its “canonical conjugate momentum”,
−i(∂/∂t ′) . Each particular solution of the time-dependent Schrödinger equation,

i
∂

∂t
|�(t)〉 = Ĥ (t) |�(t)〉 , (4.43)

can be then expressed in an equivalent form,

|�(t)〉 = |�(t ′ = t, t)〉 ; (4.44)

where

|�(t ′, t)〉 = e−iH(t−t0) |�(t0)〉 δ(t ′ − t0) . (4.45)

Reflections in the spatial space are due to the fact that outgoing plane waves,
e+ikx , and incoming waves, e−ikx , are degenerate states of the kinetic energy opera-
tor. Due to the potential energy operator an eigenstate of the Hamiltonian is a linear
combination of the outgoing and incoming states. For example, in 1D problems
where a particle with the momentum h̄k > 0 is scattered from a static potential bar-
rier centered at x = 0 the eigenfucntion in the asymptotic region (i.e., eigenfunction
of the kinetic energy operator) are given by �k(x < 0) = eikx − R(k)e−ikx , where
|R(k)|2 is the reflection factor. Can we have reflections along the new additional
coordinate t ′ when the potential is time dependent? The answer is no. Unlike the
situation in the spatial domain, −i ∂

∂t ′ is a first order differential operator, and there-
fore e+iωt ′ and e−iωt ′ are not two degenerate states and cannot be mixed by the
presence of a potential barrier which will appear at later times. Hence, there are
no interferences between the forward and backward time-propagated state vectors
even when the physical Hamiltonian is time dependent. This is the reason why
there are no reflections at the present time from future events. Due to the absence
of reflections along the t ′ coordinate, we can impose periodic boundary conditions
on the eigenstates of H, without distorting the given physical problem, even when
the physical Hamiltonian Ĥ (t ′) is not time periodic (e.g., when the atomic or the
molecular systems are exposed to pulsed laser fields). That is,

H |�α(t ′)〉 = Eα |�α(t ′)〉 ; (4.46)
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with

0 ≤ t ′ ≤ Tp , |�α(t ′)〉 = |�α(t ′ + Tp)〉 ; (4.47)

where the period Tp is much larger than the duration of the laser pulse. The above
eigenvalues Eα of H are termed the quasi-energies of the studied problem and are
defined modulo (2π/Tp).

In the case of time-periodic Hamiltonians, Ĥ (t) = Ĥ (t + T ), the eigenstates of
H are known as the Floquet quasi-energy states. Therefore one can chose Tp = NT ,
where N ≥ 1.

When outgoing boundary conditions are imposed on the spatial dependence of
the eigenfunctions ofH, the complex Floquet quasi-energy eigenvalues are obtained
in a similar manner to that described above for time-independent Hamiltonians.
The (t , t ′) procedure enables us to apply formalisms and methods which were
developed for time-independent problems to time-dependent problems in a quite
straightforward manner.

One common application of such time-dependent formalism is the study of
matter–radiation interaction. For instance, in systems of atoms or molecules inter-
acting with intense laser fields the complex Floquet quasi-energy eigenvalues are
associated with the photo-induced resonance phenomenon. That is,

Eα = Eα − i/2�α , (4.48)

where �α provides the rate of the photo-induced decay of the particles (e.g. elec-
trons) at the energy Eα.

4.7 Conservation of number of particles

In their book on quantum mechanics Landau and Lifshitz9 wrote “At large distances
the wavefunction of the quasi-stationary state (the outgoing wave) contains the
factor

eir
√

2m(E0− i
2�)/h̄ (4.49)

which increases exponentially as r → ∞. The imaginary part of the root
Im
√

2m(E0 − i
2�) < 0. Hence the normalization integral

∫ |ψ |2dV for these func-
tions diverges. It may be noted, incidentally, that this resolves the apparent contra-
diction between the decrease with time of |ψ |2 and the fact that the normalization
integral can be shown from the wave equation to be a constant”.

9 L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Section 132, Oxford, Pergamon Press, 1965.
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Let us explain this point in greater detail. The physical interpretation of the
divergence property of the resonance wavefunction

φres(x) → e+ikresx → ∞ (4.50)

as x → +∞ and where

Eres ≡ ε − i

2
� = (h̄kres)2

2M
(4.51)

was that at x = ∞ one observes “particles” which formed a long time ago.
However, this exponential divergence property of the resonance asymptote at

x → ∞ is balanced by the exponential decay of the resonance at long times
t → ∞. This fact made me write without giving a detailed explanation that
“due to the exponential divergence of φres the number of particles is conserved
only when both the reaction coordinate, r , and the time, t , approach the limit of
infinity”.

Here we wish to elaborate the discussion on the conservation of number of
particles in the extended coordinate–time space. Up to some normalization factor,
the asymptote of the solution of the time-dependent Schrödinger equation which
is associated with the resonance phenomenon is given by

�res(x > 0, t) = e−iErest/h̄e+ikresx (4.52)

and similarly the resonance asymptote at x → −∞ is given by

�res(x < 0, t) = e−iErest/h̄e−ikresx . (4.53)

If we think of the resonance phenomenon in terms of a wavepacket evolving
in conventional quantum mechanics, then it is initially localized in the interaction
region. Eventually this wavepacket escapes the interaction region and becomes a
free wave in the asymptotes. Thus the resonance state is confined in a region

− L(t = 0)

2
≤ x ≤ +L(t = 0)

2
. (4.54)

As the wavepacket evolves in time the confinement region expands and L(t) → ∞
as t → ∞.

If we think of the resonance in terms of a discrete eigenvalue with complex
energy which is confined in a relevant area bounded by L(t), then in order to
conserve the momentum of the free particle in the extended coordinate–time space
we should take the limit of L(t) → ∞ and t → ∞ such that

L(t)

t
= h̄kres

M
. (4.55)
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This means that the boundary L(t) is moving with velocity corresponding to the
momentum of the resonance state, i.e.L(t) = [h̄kres/M]t . Therefore, the resonance
wavefunction at the edge of the box, x = L(t)/2, at time t is given by

�res(x = L(t)/2, t) = e− it
h
Erese+ it

h

(hkres)2

2M = 1 . (4.56)

This shows that the spatial divergence of the resonance wavefunction is compen-
sated by its temporal decay, thus making its use to describe physical phenomena
possible.

This result is identical to the result which is obtained for a free particle when the
standard formalism of quantum mechanics is used. However, within the standard
formalism of quantum mechanics this result is obtained without the need to treat
time as an additional coordinate which is coupled to the spatial coordinates. In
the standard quantum mechanical formalism time serves as a parameter rather
than as an additional coordinate. However, this is not a severe problem, and by
using the (t, t ′) method which has been presented in the previous section of this
chapter, the extension of the definition of space to include also the t ′ coordinate
can be carried out in the standard quantum mechanics formalism as in the non-
Hermitian formalism of quantum mechanics. What is unique in the non-Hermitian
formalism of quantum mechanics is that the spatial and the t ′ coordinates are
coupled to one another even when the Hamiltonian is time independent. As has
been shown here this coupling is introduced in non-Hermitian quantum mechanics
when t ′(time) → ∞ and when the spatial coordinate x → ∞, in order to conserve
the number of particles in the coordinate–time extended space.

4.8 Solutions to the exercises

Answer to Exercise 4.1

When the asymptotes at both thresholds are Eth
± = 0, then

(h̄kn)2

2M
= εn − i

2
�n (4.57)

and therefore since kn = Re(kn) + iIm(kn) we get that

h̄2

2M

(
[Re(kn)]

2 − [Im(kn)]
2 + 2iRe(kn)Im(kn)

) = εn − i

2
�n . (4.58)

By comparing the imaginary part of the two sides of Eq. (4.58) we obtain that

�n = −2h̄2

M
Re(kn)Im(kn) . (4.59)



4.8 Solutions to the exercises 107

We shall now prove that the coefficient B(k) of the outgoing wave of the resonance
is associated with the flux normalization constant as appearing in the standard
formalism of quantum mechanics, although here k attains a complex value.

We start by multiplying the TISE for the resonant state by �∗
n(x) from the

left,

�∗
n(x)Ĥ�n(x) =

(
εn − i

2
�n

)
|�n(x)|2 . (4.60)

and similarly we multiply for the TISE for the complex conjugate state, �∗
n(x), by

�n(x),

�n(x)Ĥ�∗
n(x) =

(
εn + i

2
�n

)
|�n(x)|2 . (4.61)

Subtracting the two equations results in

h̄2

2M

(
�∗
n(x)

d2

dx2
�n(x) −�n(x)

d2

dx2
�∗
n(x)

)
= i�n|�n(x)|2 ,

h̄2

2M

d

dx

(
�∗
n(x)

d

dx
�n(x) −�n(x)

d

dx
�∗
n(x)

)
= i�n|�n(x)|2 ,

h̄2

2M

[
�∗
n(x)

d

dx
�n(x) −�n(x)

d

dx
�∗
n(x)

]x0

0

= i�n

∫ x0

0
|�n(x)|2dx . (4.62)

In the asymptote �n(x) has the form

�n(x ≥ x0) = γn
√
M

h̄kn
e+iknx (4.63)

and its value at the origin �n(x = 0) = 0. By substituting into Eq. (4.62) one gets
that

�n = h̄|γn|2 Re(kn)

|kn|
e−2(Im(kn))x0∫ x0

0 dx|�n(x)|2 . (4.64)

In the derivation of Eq. (4.64) we assume that γ is a constant. In order to justify
this conjecture we will prove now that

�n[Eq. (4.64)] = �n[Eq. (4.59)] . (4.65)
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Since Im(kn) < 0 the asymptote of the resonance wavefunction exponentially
diverges and therefore, as x0 → ∞,∫ x0

0
dx|�n(x)|2 =

∫ x ′

0
dx|�n(x)|2 +

∫ x0

x ′
dx|γn

√
M

h̄kn
eiknx |2

=
∫ x ′

0
dx|�(x)|2 + |γn|2 M

2h̄|kn|Im(kn)

(
e−2(Im(kn))x0 − e−2(Im(kn))x ′)

� |γn|2 M

2h̄|kn|Im(kn)
e−2(Im(kn))x0 , (4.66)

where x ′ in Eq. (4.66) divides the spatial region into two: the interaction region
where the resonance wavefunction is localized and the external region where the
resonance wavefunction reaches its asymptotic form. Since the asymptote of the res-
onance wavefunction exponentially diverges when x0 � x ′, the following approx-
imation holds:

|γn|2 M

2h̄|kn|Im(kn)
e−2(Im(kn))x0

�
∫ x ′

0
dx|�n(x)|2 − |γn|2 M

2h̄|kn|Im(kn)
e−2(Im(kn))x ′

. (4.67)

By substituting Eq. (4.66) into Eq. (4.64) one gets the equality we have proved
above and given in Eq. (4.59). QED.

The last proof of this exercise is: h̄|γn|2 → �n as �n → 0.
When �n → 0 then

Re(kn)

|kn| → 1 (4.68)

and

Im(kn) → 0 . (4.69)

Under these conditions, for a sufficiently large value of x0,∫ x0

0
|�(x)n|2dx → 1 (4.70)

and Eq. (4.64) is reduced to � = h̄|γ |2.

Answer to Exercise 4.2

In terms of the variable z = (Mω/h̄)x the eigenfunctions of the harmonic oscillator
are a product of an exponentially decaying function, exp(−z2) (for positive values
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of k the frequency ω gets real values) and Hermite polynomials Hn(z). Solutions
with outgoing boundary conditions are obtained at energies:

En = h̄ω(n+ 1/2); n = 0, 1, 2 . . . (4.71)

The inverted potential implies that k → −k and therefore ω → ±iω and the expo-
nential factor in the eigenfunctions changes to exp(±i(M|ω|/h̄)x2), where the
corresponding eigenvalues are given by

En = −ih̄ω(n+ 1/2) . (4.72)

The positions of these poles (i.e., Re(En)) are all equal to zero (note that the top of
the potential barrier is located at V = 0) whereas the −2Im(En) are given by

�n = h̄ω(2n+ 1) . (4.73)

One may think that the n = 0 pole can be associated with an activated complex
in a chemical reaction which is localized at a saddle point in the potential energy
surface and is in a transition state with the lifetime τ = h̄/�0. However, this is a
pathological case since as x → ∞, V (x) → −∞ and therefore these poles can’t
be considered as resonances. Compare these poles with the shape-type potential-
barrier resonances obtained for the Eckart potential barrier in Ex. 4.3.

Answer to Exercise 4.3

The barrier resonances for the symmetrical Eckart potential barrier
The Eckart potential is one of the most commonly used models for the description
of a chemical potential barrier. Following the strategy to obtain analytical expres-
sions for the resonance position and widths described in the text we use here the
expression for the bound-state spectra of the Rosen–Morse Hamiltonian.10

The Rosen–Morse potential is symmetric, V (x) = −V0/ cosh2(ax). By making
the transformation V0 → −V0 we get an inverted Rosen–Morse potential which
is the symmetric Eckart potential barrier. The solutions of the time-independent
Schrödinger equation for the Rosen–Morse potential well for which the asymptotes
are outgoing waves associated with an infinite number of discrete real eigenvalues
are

En = −h̄
2a2

8M

[
−(1 + 2n) +

√
1 + 8MV0

a2h̄2

]2

, (4.74)

where n = 0, 1, 2, . . .The bound states (i.e., square integrable functions) are
associated with a finite number of levels, determined by the condition n < N ,

10 N. Rosen and P. N. Morse, Phys. Rev. 42, 210 (1932).
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where the maximal number of bound states N is determined by the condi-
tion N(N + 1) = 2MV0/(ah̄)2. Note that E0 < E1 < · · · < EN , where E0 is the
ground bound state and EN is the highest excited bound state. However, the
real negative eigenvalues obtained for n > N are ordered differently. Such that
EN+1 > EN+2 > · · · > EN+m > · · · these eigenvalues are associated with anti-
bound states and the corresponding eigenfunctions have an exponentially divergent
asymptote, exp(+ikx), where k = −i

√−2MEn>N .
In order to invert this potential and create a barrier, let us carry out the transfor-

mation V0 → −V0 in Eq. (4.74). We obtain an infinite number of resonances which
can be assigned good quantum numbers n = 0, 1, . . .These are barrier resonances
and are often considered as non-physical broad resonances, although as shown in
Ex. 3.6 they might be observed in experiments. When substituting V0 by −V0 in
Eq. (4.74), provided that 8MV0 > h̄

2a2, the energy positions are given by

Re(En) = V0 − h̄
2a2

4M
(2n2 + 2n+ 1) (4.75)

and the resonance widths are given by

�n = −2Im(En) = h̄2a2

2M

[
(2n+ 1)

√
8MV0

h̄2a2
− 1

]
. (4.76)

Note again that the decay resonances of the symmetrical Eckart potential barrier
are obtained from the expressions derived for the bound and anti-bound states of
the Rosen–Morse potential well.

Answer to Exercise 4.4

The barrier resonances for the non-symmetrical Eckart potential barrier
The energies of the bound states of a non-symmetrical Rosen–Morse potential are
given by11

En = −h̄
2a2

2M

[
α − (n+ 1/2) − β/2

α − (n+ 1/2)

]2

, (4.77)

where

α =
√

2MV0 cosh2(b)

a2h̄2 + 1

4
; β = 2MV0 sinh(2b)

a2h̄2 . (4.78)

By carrying out the transformation V0 → −V0 we get a non-symmetric Eckart
potential barrier with a height which equals V0 exp(−2b). When b = 0 the sym-
metrical potential barrier which has been discussed in Ex. 4.4 is obtained. Using

11 P. M. Morse and H. Feshbach, Methods of Theoretical Physics, New York, McGraw-Hill, 1953.
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the expression in Eq. (4.77) derived for bound states we see that when inverting
the potential β → −β and when 8MV0 cosh2(b) > a2h̄2 then α → ±iα̃, where α̃
is given by

α̃ =
√

2MV0 cosh2(b)

a2h̄2 − 1

4
. (4.79)

Consequently the complex energies for the corresponding barrier resonances are

En = −h̄
2a2

2M

[
iα̃ − (n+ 1/2) + β/2

iα̃ − (n+ 1/2)

]2

, (4.80)

which gives a corresponding width of

�n = 2h̄2a2

M

α̃(n+ 1/2)
(
[(n+ 1/2)2 + α̃2]2 − β2/4

)
[(n+ 1/2)2 + α̃2]2

. (4.81)

Answer to Exercise 4.5

The barrier resonances for a model Hamiltonian of an electron scattering from a
negative ion
One of the examples which were given by Landau and Lifshitz for analytically
soluble problems is that of a particle moving in a centrally symmetric field with
potential energy V (r) = V0[γ /r2 − 1/r]. The bound state energy levels for V0 > 0
are given by

En,l = − 2V 2
0M/h̄

2

[2n+ 1 +
√

(2l + 1)2 + 8MV0γ /h̄
2]2
, (4.82)

where l = 0, 1, 2, . . . and n = 0, 1, 2, . . . are two good quantum numbers. By
making the transformation of V0 → −V0 one gets the barrier resonances provided
that V0 gets sufficiently large values such that

� ≡ 8MV0γ /h̄
2 − (2l + 1)2 ≥ 0 . (4.83)

When V0 has small values and� < 0 we get the anti-bound states (real energies but
exponentially divergent corresponded eigenfunctions). The complex eigenvalues
obtained when � > 0 are given by

En,l = −2MV 2
0

h̄2

(2n+ 1)2 −�+ 2i(2n+ 1)
√
�

[(2n+ 1)2 +�]2
. (4.84)

The real part of En,l is associated with the resonance position and is decreasing
with the quantum number n up to −∞. The imaginary part of the complex energy
which is associated with the resonance width increases with the quantum number



112 Resonances from non-Hermitian quantum mechanical calculations
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Figure 4.5 Scattering of a light atom from two heavy atoms which are depicted
by two discs.

n and thus the resonances at lower energies have decreasing lifetimes. Note that in
this special case the resonance states can decay to r → ∞ and to r → 0 due to the
nature of the potential at r → 0 which approaches ∞ as 1/r2.12

Answer to Exercise 4.6

When a light atom is temporarily trapped in between two heavy atoms it implies that
it moves much faster along its “molecular” B–C axis (which is labelled here as the
z-axis) in comparison to its motion along the perpendicular axis denoted here as the
x-axis (see the schematic picture given in Fig. 4.5). Thus by treating the x coordinate
as an adiabatic parameter we reduce the problem from a two-dimensional problem
to an effective one-dimensional particle-in-a-box problem. The length of the box
along the z-coordinate depends on x according toL(x) = R − 2(r2 − x2)1/2, when
−r ≤ x ≤ +r and L = Abox elsewhere. Abox can be large as one wishes (it stands
for the size of the box used in the numerical calculations). The adiabatic potentials
are accordingly given by

Enz(x) = h̄2π2

2ML(x)2
n2
z ; nz = 1, 2, . . . (4.85)

The adiabatic potentials, Enz(x), describe the situation where the light atom
is repelled from both heavy atoms but can be trapped between the two prior to
dissociation. As an example of a real physical problem see the calculations of
ArHCl resonance.13 These adiabatic potentials are similar in their shape to Eckart
potential barriers. Therefore let us approximate L(x) by

Leff(x) = (R − 2r) cosh(αx) . (4.86)

Since dL2/dx2|x=0 = 2/r and correspondingly dL2
eff/dx

2|x=0 = α2(R − 2r)
we define α = √

2/[r(R − 2r)]. The Eckart potential barrier (inverse of the

12 Read more about this “black hole” phenomenon in S. Klaiman, I. Gilary and N. Moiseyev, Phys. Rev. A 70,
012709 (2004).

13 E. Narevichius and N. Moiseyev, Mol. Phys. 94, 897 (1998); Chem. Phys. Lett. 287, 250 (1998).
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Rosen–Morse potential) is given by V (x) = V0 cosh2(αx), where V0 = [h̄πnz/
(R − 2r)]2/[2M]. From Ex. 4.4 one gets the resonance positions and widths as
function of the quantum numbers nz and nx ,

εnx,nz = h̄2π2

2M(R − 2r)2
n2
z − h̄2

2Mr(R − 2r)
(2n2

x + 2nx + 1) ,

�nx,nz = h̄2(2nx + 1)

2Mr(R − 2r)

√
2π2r

R − 2r
n2
z − 1 . (4.87)

In this case barrier resonances will exist when 2π2rn2
z > R − 2r .

Answer to Exercise 4.7

Graphical solution for the bound states of a symmetric rectangular well
When E < 0 then k0 = iκ , where κ = √−2ME/h̄. Using the trigonometric
identity

cot 2α = 1

2

(
cotα − 1

cotα

)
,

Eq. (4.26) transforms to

cot(ka/2) − 1

cot(ka/2)
= k

κ
− κ

k
,

which can be split in two,

cot
ka

2
= k

κ
or cot

ka

2
= −κ

k
.

The first of the two equations corresponds to the even states (cosines inside the
well) and the other one corresponds to the odd states (sines inside the well). These
equations are further transformed into

cos
ka

2
= ±

√
k2

κ2 + k2
or sin

ka

2
= ±

√
k2

κ2 + k2
,

each of which contains two spurious solutions, one for + and one for −, to be
excluded so that cot(ka/2) will have positive values in the first equation and
negative values in the second one.

From the definition of k and κ it can be readily seen that

k2

κ2 + k2
= E + V0

V0
= 1 + E

V0
.
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Therefore, by defining two new variables

α =
√

1 + E

V0
and γ =

√
2mV0a2

h̄2 ,

the above two equations can be written as

cos
γα

2
= ±α or sin

γα

2
= ±α ,

and after excluding the spurious solutions

γα

2
= cos−1 α + nπ or

γα

2
= cos−1 α + nπ + π

2
,

where n = 0, 1, 2, . . .
Finally, the two equations can be combined into one:

γα = (n− 1)π + 2 cos−1 α , (n = 1, 2, . . .) .

The bound state poles are the intersection points of the curve (n− 1)π +
2 cos−1 α, (n = 1, 2, . . .) and the straight line γα which are plotted as functions
of α.

Answer to Exercise 4.8

Graphical solution for the real virtual states (so-called anti-bound states)
To obtain the solutions for the real virtual states from the bound states equations
the transformation κ → −κ should be performed, so that the even and odd states
equations become

cot
ka

2
= − k

κ
or cot

ka

2
= κ

k
.

Similarly to the bound states, these can be written as

sin
ka

2
= ±

√
κ2

κ2 + k2
or cos

ka

2
= ±

√
κ2

κ2 + k2
,

and since

κ2

κ2 + k2
= − E

V0
= 1 − α2

these equations can be rewritten as

sin
γα

2
= ±

√
1 − α2 or cos

γα

2
= ±

√
1 − α2 ,
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and then combined into one,

γα = (n− 1)π + 2 cos−1
√

1 − α2 , (n = 1, 2, . . .) .

The anti-bound state poles are the intersection points of the curve (n− 1)π +
2 cos−1

√
1 − α2, (n = 1, 2, . . .) and the straight line γα which are plotted as

functions of α.

4.9 Further reading

A. I. Baz’, Ya. B. Zel’dovich and A. M. Perelomov, Scattering, Reactions and Decay in
Nonrelativisitic Quantum Mechanics, Jerusalem, Israel Program for Scientific
Translation, 1969.

A. M. Perelomov and Ya. B. Zel’dovich, Quantum Mechanics, Singapore World Scientific
Publishing Co., 1998.

N. Moiseyev, Quantum theory of resonances: calculating energies, widths and
cross-sections by complex scaling, Physics Reports, 302, Issue 5–6, 211–293 (1998).



5

Square integrable resonance wavefunctions

As discussed in the previous chapter, the poles of the S-matrix are identified
with discrete eigenvalues of the time-independent Schrödinger equation, where the
asymptotes of the corresponding eigenfunctions are either purely outgoing waves
or purely incoming waves. More specifically, the bound and decay resonance poles
are obtained by imposing the outgoing boundary conditions on the solutions of
the time-independent Schrödinger equation, while the anti-bound and virtual states
(sometimes referred to as capture resonances) are associated with the solutions
obtained under the requirement of the incoming boundary conditions. Except for
the bound states, all other poles of the S-matrix are associated with exponentially
divergent wavefunctions which by definition do not belong to the Hilbert space of
conventional Hermitian quantum mechanics.

This fact represents a major difficulty for the development of a non-Hermitian
quantum mechanical formalism. Consequently, one may wonder, for example, how
to properly define an inner product in non-Hermitian quantum mechanics (NHQM)
if the wavefunctions diverge asymptotically. We recall in this context that the
concept of an inner product constitutes a fundamental building block of standard
(Hermitian) quantum mechanics (QM), by means of which one defines the quantum
mechanical expectation values of physically observable quantities over the quantum
states under consideration. An inner product for NHQM is necessary in order to
accommodate the tools of conventional QM. Furthermore, one might anticipate
that an appropriate NHQM inner product would also facilitate practical numerical
calculation of the S-matrix poles for those cases where the eigenvalues of the
Hamiltonian do not possess an analytical closed form expression (unlike the cases
studied in the previous chapter). An inspiration for this comes, of course, from well-
established methods in Hermitian QM such as variational and perturbational basis
set expansion methods. Various related questions arise immediately. Are different
poles of the S-matrix orthogonal to each other? Is the spectrum of the Hamiltonian

116
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in NHQM complete? Are the expectation values of the physical quantities within
the NHQM formalism real or complex? And if they are complex, what is the
physical meaning of the real and imaginary parts? More specifically, we can ask
what is the physical interpretation of the complex density probability? All these
important questions are addressed in the current and following chapters.

The first step towards an appropriate reconciliation of the above-mentioned prob-
lems is to force the NHQM wavefunctions (i.e. the eigenfunctions associated with
the S-matrix poles) to be square integrable by carrying out a suitable mathemati-
cal transformation. As shown below, there are various different (although in fact
mutually equivalent) ways in which such a transformation can be introduced. Each
transformation of this kind converts the original exponentially divergent NHQM
wavefunction into a bounded normalizable function which can be considered as a
part of a “generalized” Hilbert space. On the other hand, it turns out that applying
this transformation to the continuum scattering states (which are not associated with
the poles of the S-matrix) leads to additional difficulties which must be overcome
by an adequate redefinition of the continuum states themselves.

It is hard to separate the discussion on these transformations of the divergent
resonance eigenfunctions from the discussion on the definition of the inner product
in NHQM. Let us first describe the source of the problem in NHQM which lies in
the exponentially divergent asymptotes of the eigenfunctions of the Hamiltonian
associated with the poles of the S-matrix. For the sake of simplicity we define
the resonance eigenfunction of a 3D spherically symmetric real Hamiltonian Ĥ
as �res(r) → Ae(ikr/r when r → ∞, where k = |k|e−iα. It is clear that �res(r) →
+∞ as r → ∞ since Im(k) < 0. For the bound states of Ĥ the norm of �bound(r)
is defined as an integral over the entire space of |�bound|2, where �∗

bound(r) and
�bound(r) are two states which are associated with the same real eigenvalue Ebound.
The “bra” and “ket” states which are used for the calculations of expectations
values of any given operator should be associated with the same eigenvalue. This is
an essential requirement from the calculations of a norm. As we will discuss later,
in linear algebra the norm is obtained by calculating the scalar product between the
left and right eigenvectors of a given matrix, where the corresponding eigenvalues
are equal.

Can we define the norm of the resonance eigenfunctions in a similar way (i.e.
〈�res|�res〉)? The answer to that question is no since �∗

res(r) and �res(r) are not
two eigenstates of the Hamiltonian which are associated with the same complex
eigenvalue. Indeed, both �∗

res(r) and �res(r) are eigenfunctions of Ĥ . However,
if Eres = E − i/2� is the corresponding complex eigenvalue of �res(r), then the
complex eigenvalue which is associated with �∗

res(r) is E∗
res. Therefore it seems

that for the functions associated with the poles of the S-matrix which are not bound
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states, the norm should be taken as the integral over the entire space of �2
res(r)

and not of �∗
res(r)�res(r). However, the integral 〈�∗

res|�res〉 = 4π
∫∞

0 r2�2
res(r)dr

is also meaningless due to the divergence of the integrand. Only after applying
one of the transformations which will be described below will the functions asso-
ciated with the divergent states become square integrable, and in this sense they
become part of the generalized Hilbert space where the definition of the norm
has been modified. Note, however, that bound states can always be described by
real functions and therefore the same definition of the norm can be applied to the
calculation of the norm of bound states as for the other poles (after applying the
suitable transformation).

Exercise 5.1

Prove that for a real and Hermitian Hamiltonian Ĥ all the eigenfunctions (including
the excited states) can be taken as real functions.

In the following sections we will discuss different similarity transformations,
Ŝ, which render the resonance wavefunctions and other exponentially divergent
solutions square integrable. That is, we look at the solutions of the following
eigenvalue equation:

ĤS�S = E�S , (5.1)

where

ĤS = ŜĤ Ŝ−1 (5.2)

and

�S = Ŝ� (5.3)

such that the asymptote of �S at r → ∞ decays to zero,

�S → 0 , (5.4)

while the asymptote of � at r → ∞ diverges exponentially,

� → ∞ . (5.5)

5.1 The Zel’dovich transformation

As explained above, the norm of a resonance state can not be defined simply
as 〈�∗

res|�res〉 = 4π
∫∞

0 r2�2
res(r)dr since the integrand diverges exponentially as

r → ∞. However, a general definition of an inner product can be of the form
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〈�∗
res|F |�res〉, where F (r) is a positive definite function (a matrix in linear alge-

bra). Since the resonance asymptotes oscillate and diverge, F (r) can be defined
such that the oscillations are suppressed and r2F (r)�2

res(r) decays exponentially
to zero, thus becoming an integrable function. Accordingly, a Gaussian function,
e−εr2

, is a good candidate forF (r) since the divergence is exponential. The problem
with such a choice for F (r) is that it reduces and even washes out physical informa-
tion which is embedded at large distances of r . To avoid this problem Zel’dovich
proposed to take the limit of the integral when ε → 0.1 This approach is analogous
to that taken in time-independent scattering theory when multiplying the station-
ary solutions of the Scrödinger equation by e−iεt in order to suppress the e−iEt

oscillations.
Is it possible to associate the Zel’dovich inner product with a similarity transfor-

mation of the type mentioned above? The answer to this question is positive and
can be achieved by defining the operator Ŝ as a multiplication by a Gaussian, e−εr2

.
Therefore, for sufficiently small value of ε,

ĤS = ŜĤ Ŝ−1 = e−εr2
Ĥe+εr2 = Ĥ + V̂zel ,

where the absorbing potential (AP) corresponding to the Zel’dovich inner product
as a result of the transformation of the kinetic energy operator is given by

V̂zel = −h̄
2ε

M

 3∑
j=1

(
ζj
∂

∂ζj
+ ∂

∂ζj
ζj

) , (5.6)

where ζ1 = x, ζ2 = y and ζ3 = z. Note that this additional potential term is non-
Hermitian. The eigenfunctions of ĤS are given by �S = e−εr2

�. When � is
associated with a sufficiently narrow resonance then�S decays to zero as r → ∞.

Exercise 5.2

Derive the absorbing potential V̂zel given in Eq. (5.6) for a general one-dimensional
problem and show that it is a non-Hermitian operator.

In the calculations of any quantity using such an inner product the limit of ε → 0
should be taken only after the integral

∫∞
0 r2�2

S(r)dr has been computed. Note that
V̂zel given in Eq. (5.6) holds for any 3D problem and not necessarily for spherically
symmetric potentials.

1 I. Baz’, Ya. B. Zel’dovich and A. M. Perelomov, Scattering, Reactions and Decay in Nonrelativistic Quan-
tum Mechanics, Moskva, Fiziko-Matematicheskoi Literatury, 1966 and translation from Russian by the Israel
Program for Scientific Translations, Jerusalem 1969.
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Exercise 5.3

For a potential with a 3D spherical symmetry the asymptote of a resonance wave-
function, �res(r) → e+ikr/r diverges exponentially since k = |k|e−iα , where Eres =
(h̄k)2/(2M) and α > 0. Prove that by using the Zel’dovich inner product the asymptote
of�res(r), i.e., e+ikr/r , is a normalizable function provided that the resonance width is
not too large. In other words the resonances should be embedded sufficiently close to
the real energy axis.

An interesting numerical result of Ex. 5.3 is that the norm of a sufficiently narrow
resonance state which is calculated by the Zel’dovich inner product approach is
obtained by calculating the indefinite integral N 2

∫
e+2ikrdr and substituting only

the lower limit of r = 0. As we will see later, this result is very typical of all the
approaches which enable us to calculate the norms of the exponentially diverged
wavefunctions which are associated with the resonance, virtual and anti-bound
poles of the scattering matrix.

5.2 The complex scaling transformation

A convenient and efficient method to divert the divergent resonance wavefunctions
into the physical domain of square integrable wavefunctions is to rotate the coor-
dinate along which the divergence occurs into the complex plane. By appropriate
rotation the divergence at the asymptotes can be negated and thus evaluation of
observables can be achieved through the resonance wavefunction.

This approach is also known as complex scaling or the complex coordinate
method. The transformations which correspond to this method scale the coordinate
x by a complex phase, x → eiθx. Similarly, the y and z coordinates are scaled by
the same complex factor such that as a whole the complex scaling transformation
amounts to

r → reiθ . (5.7)

In a more general manner one can choose where in space the scaling will begin
according to physical or numerical considerations. This can be done by using a
shifted complex scaling transformation where

r → (r − r0)eiθ + r0 . (5.8)

The parameter θ does not have to be a real number. This point becomes relevant
when the resonances are computed by carrying out complex variational calculations
based on a non-Hermitian variational principle which will be described in Chapter 6.
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For the evaluation of the exact complex scaled resonance solutions θ can be taken
as a real parameter since the imaginary part of θ implies that e−Im(θ) stretches the
coordinates (this is in fact equivalent to changing the length units). When θ attains
real values it can be defined as the rotational angle of the coordinates in the complex
plane. The motivation for applying the complex scaling transformation is obvious.
Under this transformation the resonance wavefunctions become square integrable
provided that the scaling parameter θ satisfies the condition

θ ≥ φres , (5.9)

where φres is associated with the phase of the complex resonance wavevector kres

defined as

kres = |kres|e−iφres =
√

2m(Eres − Et)

h̄
, (5.10)

where

Eres = ε − i/2� (5.11)

and Et is the threshold energy where the potential interaction vanishes and the
particle becomes embedded in the continuous part of the energy spectrum of the
unscaled Hamiltonian. Following these definitions one gets that

φres = arctan

(
�

2(ε − Et)

)
. (5.12)

By substituting Eq. (5.12) into Eq. (5.10) a critical value of the scaling param-
eter (i.e., rotational angle), θc, is obtained. For θ > θc the complex scaled res-
onance wavefunction becomes square integrable where the critical value θc is
given by

θc = arctan

(
�

2(E − Et)

)
. (5.13)

Exercise 5.4

The asymptote of a one-dimensional resonance wavefunction has the form �res(x →
∞) = γ e+ikresx . Prove that upon complex scaling this function becomes square inte-
grable when the rotational angle θ has a sufficiently large value defined in Eq. (5.13).

It is now imperative to associate the complex scaling transformation with the
family of similarity transformations discussed in Eqs. (5.1)–(5.3). For this task we
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need to define an operator which will scale any function of the coordinate by a
complex factor. A general operator scaling a coordinate x by η is given by

Ŝ = e
1
2 ln η(x ∂

∂x
+ ∂
∂x
x) = √

ηeln η(x ∂
∂x

) . (5.14)

Upon operating with the scaling operator defined in Eq. (5.14) on an analytic
function a scaled function is obtained,

Ŝ�(x) = √
η�(ηx) , (5.15)

where η can be a real, imaginary or complex factor.

Exercise 5.5

Prove that applying the scaling operator in Eq. (5.14) to an analytic function (which
can be expanded in a Taylor series), one gets the the function in the scaled coordinate
as depicted in Eq. (5.15).

When we rotate the coordinate into the complex plane we are scaling it by a
complex phase and thus η = eiθ and the scaling operator in Eq. (5.14) takes the
following form

Ŝ = ei θ2 eiθx ∂
∂x . (5.16)

For a many-particle three-dimensional (3D) system the scaling operator is defined
by the scaling of all the different spatial coordinates of all the particles:

Ŝ = �jei θ2 eiθ rj ·∇j . (5.17)

The fact that the complex scaling operator can be applied only to analytical
functions restricts the evaluation of resonances by the complex scaling method
as described above to analytical potentials. It implies that the complex scaled
Hamiltonian given in Eq. (5.2) is a well-defined operator if, and only if, the potential
V̂ is an analytic function for which all the high-order derivatives are well defined.
For this reason one may wonder whether atomic auto-ionization resonances can be
computed by this method since the Columbic potential 1/r is singular at r = 0.
This, however, is not a serious problem since the amplitude of atomic eigenfunctions
vanishes at the nucleus and also when the intra-electronic distance is small.2

2 For a rigorous mathematical study of the application of the complex coordinate method to atoms see the
fundamental works of E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280 (1971) and B. Simon,
Commun. Math. Phys. 27, 1 (1972); Ann. Math. 97, 247 (1973).
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When applying the complex scaling method to atoms, due to the nature of the
Coulombic interactions the Hamiltonian takes the following form:

Ĥatom = e−2iθ T̂e + e−iθ (V̂eN + V̂ee) , (5.18)

where T̂e is the kinetic energy operator which is scaled by e−2iθ whereas V̂eN, V̂ee are
respectively the electron–nucleus and electron–electron potential energy operators
which are both scaled by e−iθ . In a similar fashion, when applying the complex
scaling method to molecules we carry out the following transformations:

rj → eiθrj ,

Rα → eiθRα , (5.19)

where {rj } and {Rα} are respectively the electronic and the nuclear coordinates,
and consequently the complex scaled molecular Hamiltonian is given by

Ĥmol = e−2iθ (T̂e + T̂N) + e−iθ (V̂eN + V̂ee + V̂NN) , (5.20)

where T̂N, V̂NN are respectively the nuclear kinetic energy and the nuclear–nuclear
potential energy operators.

The fact that the complex scaling transformation requires the potential to be
an analytic function within the spatial region where the resonance wavefunctions
are localized raises the following question: is it possible to evaluate molecular
resonances by the complex coordinate method within the framework of the com-
monly used Born–Oppenheimer approximation? The problem lies in the coupling
between electronic and nuclear coordinates through the electron–nuclei poten-
tial energy terms which are non-analytical operators. Therefore it is not possi-
ble to obtain complex potential energy surfaces by applying the transformation
rj → eiθrj while keeping the nuclei positions {Rα} fixed and unscaled.

Exercise 5.6

Explain why within the framework of the Born–Oppenheimer approximation the
electron–nuclei potential energy terms are not analytical operators.

Exercise 5.7

The association of the non-analytical properties of a function with its singularity can
be illustrated by the following example.

The Taylor series expansion of a given function F(x) around x = 0 is equal to
1 + x + x2 + x3 + x4 + · · · . However, the value of F (x) at x = 2 is equal to F (2) =
−1. Explain this result. How is it possible that the infinite sum of positive numbers
provides a negative number?
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Nevertheless, it was shown by Moiseyev and Corcoran in 19793 that molec-
ular autoionization resonances can be calculated within the framework of the
Born–Oppenheimer approximation by carrying out analytical continuation of the
Hamiltonian matrix elements rather than by scaling the Hamiltonian by η = eiθ .
The representation of the complex scaled Hamiltonian by a matrix is based on
the complex variational principle, which will be described in Chapter 7 where the
properties of the complex scaled Hamiltonians are discussed.

There is, however, another straightforward procedure by which complex molec-
ular potential energy surfaces can be calculated by applying the complex scal-
ing transformation within the framework of the Born–Oppenheimer approxima-
tion. The motivation is to have electronic resonance complex energies which
are functions of the molecular geometry but are θ -independent. These complex
θ -independent energies must be equal to the eigenvalues of the unscaled Born–
Oppenheimer electronic Hamiltonian, provided that the outgoing boundary condi-
tions are imposed on the corresponding electronic wavefunctions. The mentioned
θ -independent complex electronic energies would then serve as complex potential
surfaces when either the time-independent or time-dependent nuclear Schrödinger
equation is solved.

Let us sketch the mathematical formulation underlying the approach just
discussed. As the first step we re-write Eq. (5.20) into

Ĥmol = e−2iθ T̂N + Ĥ BO
mol ({rj eiθ }, {Rαeiθ }) . (5.21)

Note that we scale here both the electronic and nuclear coordinates, since then all the
potential energy terms are homogenous functions of the scaling parameter. As the
second step, the complex scaled electronic molecular Hamiltonian is diagonalized
while holding the nuclear geometry fixed. That is,[

ĤBO
mol ({rj eiθ }, {Rαeiθ }) − EBOmol ({Rα})

]
�BOmol ({rj eiθ }, {Rαeiθ }) = 0 . (5.22)

Importantly, the electronic energies EBOmol ({Rα}) come out complex for two
reasons: (i) because of the analytical continuation of the electronic coordinates
which is carried out in order to suppress an exponential divergence of the elec-
tronic resonance eigenfunctions; (ii) owing to the fact that the nuclei are shifted
from the physical real domain into the complex domain.

Now we are coming to the third step of our procedure, aimed at eliminating the
effect of (ii) and thereby restoring the complex resonance energies as they would
emerge in an unscaled calculation, based upon imposing the outgoing boundary
conditions on the electrons. We shall accomplish the task just mentioned by shifting

3 N. Moiseyev and C. T. Corcoran, Autoionizing states of H2 and H−
2 using the complex scaling method. Phys.

Rev. A 20, 814–817 (1979).
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the nuclei from the complex domain back to the real domain. This back-rotational
transformation

Rα → Rα e−iθ (5.23)

can be carried out assuming thatEBOmol ({Rα}) is an analytical function of the nuclear
coordinates. Since even the broad molecular electronic resonances become square
integrable for rotational angles θ � 1 rad, a Taylor series expansion of the complex
electronic eigenvalues EBOmol ({Rα}) in the parameter x ≡ e−iθ − 1 is expected to
converge. Written explicitly, our Taylor series prescription for the back-rotation
transformation reads as

EBOmol ({Rαe−iθ }) = EBOmol ({Rα}α=1,2,...) + (e−iθ − 1)
∑
β

Rβ
∂EBOmol ({Rα}α=1,2,...)

∂Rβ

+ (e−iθ − 1)2

2

∑
βγ

RβRγ
∂2EBOmol ({Rα}α=1,2,...)

∂RβRγ
+ · · · . (5.24)

Note that for narrow electronic resonances x � −iθ and it might be enough to
include only the first two leading Taylor expansion terms. On the other hand,
we note in passing that it is not necessary to rely on convergence of the Taylor
series expansion. One may use instead other numerical techniques of analytical
continuation. In any case, one always needs to ensure that all the complex scaling
angles θ for which the electronic structure calculation is made are large enough as
to make the corresponding electronic resonance wavefunctions square integrable.
If this condition is not fulfilled, the back rotation would inevitably lead to a wrong
outcome.

We can summarize our considerations by saying that the complex scaled back-
rotation approach outlined above enables one to calculate the molecular electronic
resonances (pertaining e.g., to autoionization, Auger or inter-Coulombic-Decay
[ICD] processes) in a conceptually clean way without using complex absorbing
potentials which numerically can never be reflection-free even if they are introduced
far from the molecular region.

Since the scaling of the coordinate is essentially a technical procedure, there are
limitations on the calculations of resonances for analytical potentials by the com-
plex scaling method. These limitations restrict the maximal value of the rotational
angle (scaling factor) θ . The scaling factor eiθ is limited to values of θ < π/2,
since the kinetic operator is scaled by η = e−2iθ and we want to keep it as a pos-
itive definite operator. However, the maximal value of θ is often much smaller
than π/2. The maximal value of θ (and therefore the broadest resonances that
can be calculated by the complex scaling method as presented in this section)
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depends on the mathematical properties of the potential at hand. For example, the
potential V (x) = (x2/2 + 0.8)e−0.1x2

possesses resonances which are localized in
a parabolic-like potential well, x2, and in order to keep the (Re[xeiθ ])2 positive as
in the case of θ = 0, one should limit the calculations to the values of the rota-
tional angle for which cos(2θ ) > 0 while θ < π/2. Therefore, the resonances of
this potential that can be evaluated using the complex scaling technique are those
which become square integrable for θ < π/4. This 1D model potential served as a
test case for the study of new methods for calculating resonances. See, for example,
several publications.4

Exercise 5.8

Show that when scaling the coordinates by r → r exp(iθ ) for a bound potential behaving
as V (r) = rn the bound states remain square integrable and remain on the real energy
axis only when θ < π/(n+ 2)).

The complex scaled Hamiltonian has a discrete eigenvalue spectrum that consists
of two classes of solutions. The first class contains the real spectrum comprised of
the bound state point spectrum identical to that of the unscaled Hamiltonian. This
spectrum is obtained provided that the scaling angle, θ , is not too large, as discussed
above. The second class of solutions contains discrete complex eigenvalue spectra
which are associated with resonances.

The complex scaling transformation will expose those resonances for which
the rotation of the coordinate will compensate for the asymptotic exponential
divergence due to the complex momentum discussed in Chapter 4, that is, the
condition to observe a certain resonance is:

tan θ >
�

2ε
. (5.25)

When θ is large enough to expose all the decay resonance poles, the continuum
becomes a “white” continuum without structure and is rotated into the complex
energy plane by an angle 2θ . By white continuum we mean that the behavior is
similar to that of a free particle.

The reason for this is that in a “white” continuum the eigenfunctions, �c(x),
consist of linear combinations of incoming and outgoing waves,

�c(x) = A(k)e−ikx + B(k)eikx , (5.26)

4 N. Moiseyev, P. R. Certain and F. Weinhold, Mol. Phys. 36, 1613 (1978); N. Lipkin, N. Moiseyev and E.
Brändas, Phys. Rev. A 40, 549 (1989); N. Moiseyev, Mol. Phys. 47, 585 (1982); H. J. Korsch, H. Laurent and R.
Möhlenkamp, Mol. Phys. 43, 1441 (1981); M. Rittby, N. Elander and E. Brändas, Phys. Rev. A 24, 1636 (1981);
I. Gilary, A. Fleischer and N. Moiseyev, Phys. Rev. A 72, 012117 (2005).
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where the energy in the continuum, Ec, is related to the momentum, k, of the
particle through Ec = Eth + (h̄k)2/(2M) when Eth is the threshold energy. When
we scale the “white” continuum functions by eiθ they will be given by

�c(xeiθ ) = A(k)e−ikxeiθ + B(k)eikxeiθ
. (5.27)

The only solutions which do not diverge exponentially are those solutions for which
the corresponding wave vectors attain the values of k = |k|e−iθ . For any other value
of k one of the two terms in Eq. (5.27) will diverge. Consequently, the energy of
the continuum is given by |Ec − Eth|e−2iθ and is thus rotated into the lower half of
the complex energy plane by an angle 2θ .

In the following sections we will show how to evaluate the resonances for
non-analytic potentials.

5.3 The exterior scaling transformation

The application of the complex scaling technique encounters serious numerical
difficulty in the study of problems where the potential is not dilation analytic.
One such example is the calculations of the resonances as functions of the nuclear
coordinates which are associated with the molecular auto-ionization phenomenon.
Simpler examples are the rectangular potential well and the one-dimensional step
potential which was presented in Chapter 3 and used throughout the previous
chapters as a model problem. In an attempt to avoid the need to scale the entire
potential it was proposed to keep the coordinates unscaled in the region where
the potential is not dilation analytic (i.e., can not be expanded in the Taylor series
expansion) and rotate the coordinates into the complex plane in the external region/s
where the potential is dilation analytic.5

Such a procedure is often referred to as exterior complex scaling. The exterior
scaling method is based on the fact that the role of the similarity transforma-
tion operator Ŝ is to correct the asymptote of the resonance wavefunctions (see
Eqs. (5.1)–(5.4)), and therefore it is possible to define the exterior-scaled (ES)
operator Ŝ as a piecewise operator

ŜES(rj < r0) = 1 , (5.28)

whereas

ŜES(rj ≥ r0) = e
iθ(rj−r0) ∂

∂rj , (5.29)

5 B. Simon, Phys. Lett. A 71, 211 (1979); C. A. Nicolaides and D. R. Beck, Phys. Lett. A 65, 11 (1978);
B. Gyarmati and R. T. Vertse, Nucl. Phys. A 160, 523 (1971).
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where rj stands for the radial coordinate of the j -th particle in a many-body
problem.

Exercise 5.9

The potential energy for a given one-particle problem is V (x, y, z), where x and
y are dissociative coordinates. The asymptotic behavior of the potential at hand is
given by limx→∞ V (x, y, z) = 0, limx→−∞ V (x, y, z) = ∞, limy→±∞ V (x, y, z) = 0
and limz→±∞ V (x, y, z) = ∞. It is also known that the potential is continuous but its
first derivative is not well defined at x = x0, y = ±y0 and z = ±z0. What similarity
transformation operator Ŝ should be used in order to correct the asymptotic behavior
of the resonance wavefunction in order to obtain a square integrable function with
outgoing boundary conditions?

For cases such as the model problem presented in Chapter 3, the resonance solutions
can be obtained in an analytical form. If we apply the exterior complex scaling
transformation to these problems the same complex energies are obtained. One may
wonder why should we apply the complex scaling or the exterior scaling methods
for such problems.

It might be assumed that the only advantage of solving the complex scaled
Schrödinger equation is that the complex scaled resonance wavefunctions can be
expanded in square integrable functions of the coordinate provided that the scaling
angle is large enough. However, as we will show in the following chapters, the
application of the exterior scaling transformation is important for fundamental
reasons. It enables us to show that all poles of the scattering matrix which are
associated with the solution of the time-independent Schrödinger equation with
either incoming or outgoing boundary conditions (i.e., bound, antibound, resonance
and virtual states) form an ortho-normal set.

Exercise 5.10

Show that for a rectangular potential well the transcendental equations which yield the
resonance complex eigenvalues are invariant under the exterior scaling transformation.

Let us apply the exterior complex scaling transformation to a single-particle
one-dimensional problem (note that it is straightforward to extend this to higher
dimensional many-body problems) where the potential V (x) is a continuous piece
wise potential and its first-order derivatives are not well defined at N points, x =
xj ; j = 1, 2, . . . , N . The exterior complex scaling transformation (ES) implies that
x → x if x < x0 and x → (x − x0)eiθ + x0 if x ≥ x0, where x0 ≥ xN . Therefore,
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we can define a complex path in the complex coordinate plane, z = FES(x), such
that

z = FES(x) =
{
x if x < x0 ,

(x − x0)eiθ + x0 if x ≥ x0 .
(5.30)

The transformed Hamiltonian is given by

Ĥθ = − h̄2

2M

d2

dz2
+ V (z) . (5.31)

By substituting z = FES(x) into Eq. (5.31) one gets that

Ĥθ = − h̄2

2M

[
f 2

ES(x)
d2

dx2
+ (e−iθ − 1)δ(x − x0)

d

dx

]
+ V (FES(x)) . (5.32)

In the case where V (x ≥ x0) = 0 the potential V (FES(x)) in Eq. (5.32) is equal to
the unscaled potential V (x). The function fES(x) is given by

fES(x) ≡ dx

dz
=
{

1 if x < x0 ,

e−iθ if x ≥ x0 .

Note that for the price of using the exterior scaling transformation which is very
simple to apply to short range potentials for which V (FES(x)) ∼= V (x) the kinetic
energy operator is much more complicated than before and requires the inclusion
of another term which conserves the flux at the point x0 where the complex scaling
is introduced.

Exercise 5.11

Show how the Hamiltonian presented in Eq. (5.32) is derived from Eq. (5.31) by using
the contour z = FES(x) given in Eq. (5.30).

5.4 The smooth exterior scaling transformation

It is at times complicated to carry out the numerical calculations of resonances by
the exterior scaling method. This is especially true in three-dimensional many-body
problems. These numerical difficulties arise from the presence of a delta function
potential term in the scaled Hamiltonian (see Eq. (5.32)). An alternative approach
is to smooth out the transition from a non-scaled region to the scaled region of the
coordinate space. Applying such a smooth exterior scaling transformation is in turn
equivalent to adding a complex absorbing potential to the the Hamiltonian which
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is free of any reflections.6 The main advantage of applying such a transformation
is that under specific conditions discussed below one avoids the need to scale the
potential and thus it means that the reflection-free absorbing potential (RF-CAP)
we are adding to the Hamiltonian is universal and is problem-independent and
energy-independent.

Let us first consider a one-particle three-dimensional Hamiltonian with spherical
symmetry. When the total angular momentum is equal to zero this problem reduces
to a 1D problem and r can be replaced by x in all equations for the RF-CAP. We
begin with the Hamiltonian in the complex variable ρ:

Ĥ (ρ) = − h̄2

2M

∂2

∂ρ2
+ V (ρ) . (5.33)

Now we define the smooth exterior scaling transformation by choosing a smooth
path, F (r), in the complex ρ plane that is as close as possible to the real axis r in
the region where the interaction potential V (r) 	= 0, i.e., ρ ∼= r . However,

ρ = F (r) → reiθ as r → ∞ . (5.34)

Next, in order to simplify the expression for the volume element such that it will
be equal to dρ = dr rather than dρ = f (r)dr we carry out the transformation

Ĥf = f +1/2(r)Ĥ (ρ)f −1/2(r) , (5.35)

where

f (r) = ∂

∂r
F (r) . (5.36)

This leads to the following transformed Hamiltonian:

Ĥf = Ĥ (r) + V̂RF-CAP(r) , (5.37)

where the reflection-free absorbing potential, V̂RF-CAP(r) contains two contribu-
tions,

V̂RF-CAP = �Vf (r) + V̂ (f )
CAP . (5.38)

The first contribution�Vf (r) comes from the difference in the potentialV (ρ) along
F (r) and along the real axis,

�Vf (r) = V (F (r)) − V (r) . (5.39)

This term vanishes when we are dealing with a short-range potential and the scaling
is carried far enough from the relevant region of interaction of the potential. The
second contribution to V̂ (f )

CAP comes from the scaling of the kinetic energy operator

6 N. Moiseyev, J. Phys. B 31, 1431 (1998).



5.4 The smooth exterior scaling transformation 131

and is independent of the analyzed potential, thus producing an effective absorbing
potential given by

V̂
(f )

CAP = V0(r) + V1(r)
∂

∂r
+ V2(r)

∂2

∂r2
, (5.40)

where

V0(r) = h̄2

4M
f−3(r)

∂2f

∂r2
− 5h̄2

8M
f−4(r)

(
∂2f

∂r2

)2

, (5.41)

V1(r) = h̄2

M
f−3(r)

∂f

∂r
, (5.42)

V2(r) = h̄2

2M
(1 − f−2(r)) . (5.43)

Now we can introduce the smooth-exterior-scaling (SES) Hamiltonian as

ĤSES ≡ Ĥf = T̂r + V̂ (f )
CAP , (5.44)

where T̂r is the unscaled kinetic energy operator as defined in the standard (Her-
mitian) formalism of quantum mechanics.

Any contour F (r) for which F (r) → reiθ as r → ∞ can be used to calculate
the resonances, each contour leading to an absorbing potential which is in principal
free of reflections. For example, the RF-CAP can be constructed with the following
contour (see Fig. 5.1),

F (r) = r + (eiθ − 1)

[
r + 1

2λ
ln

(
cosh[λ(r − r0)]

cosh[λ(r + r0)]

)]
. (5.45)

So far we refer to θ as a real parameter. However, in variational calculations
which will be described in the next chapter one may define θ as a complex parameter
where the variation of Im(θ ) when a finite number of basis functions are used is
equivalent to the variation of the box-size in the box-quantization calculations.

A simple variation of this contour provides a shifted RF-CAP (SRF-CAP) which
will later be shown to be preferable for numerical evaluation of resonances. The
SRF-CAP is defined by using

F (r) = r + (eiθ − 1)

[
r − r ′ + 1

2λ
ln

(
cosh[λ(r − r ′ − r0)]

cosh[λ(r − r ′ + r0)]

)]
. (5.46)

Exercise 5.12

Show how the Hamiltonian given in Eq. (5.44) is derived from Eq. (5.33) by using a
contour ρ = F (r) in Eq. (5.45).
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Figure 5.1 The complex scaling (CS) and the smooth-exterior-scaling (SES) trans-
formations which correspondingly are defined by F (x) = xeiθ and by Eq. (5.45)
for spherically symmetric potentials. Note that for general 3D problems different
types of SES transformation can be used for the different cartesian coordinates.

It is evident that the shifted RF-CAP (SRF-CAP) reduces to the RF-CAP when
r ′ = 0.

As discussed above, when �Vf vanishes it is possible to ignore the scaling
of the potential V̂RF-CAP = V̂ (f )

CAP. This condition usually holds when short range
potentials (SRP) are considered. For piecewise potentials this condition will always
hold when |r| > r0 for given values of r0 and therefore �Vf = 0. For a general
SRP, �V is not strictly equal to zero in the neighborhood of r = r0 and there-
fore the use of the problem-independent and energy-independent CAP, denoted
above as V̂ (f )

CAP, is an approximation to the RF-CAP. However, when dealing with
long-range potentials the situation isn’t so simple and we must consider the case
where �Vf = ε, where ε can not be taken as small as one wishes. It should be
stressed here that, when solving a many-body problem, it is hard to take into con-
sideration the electronic repulsion in�Vf (r) (i.e. |f (ri) − f (rj )|−1 − |ri − rj |−1)
unless one assumes that the electronic repulsion vanishes when the molecule is
ionized.

RF-CAP is useful not only for calculating resonances but also in avoiding the
artificial reflections in the propagation of wavepackets. Such reflections result from
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the use of a finite number of basis functions or a finite number of grid points in
the numerical time-evolution calculations. For an absorbing potential to be free of
reflection it must have little or no effect on the part of the wavepacket propagating
in the relevant region of space that is of interest to us. This can be explained as
follows. Let us denote the exact propagated wavefunction by

�exact(r, t) = e−iHt/h̄�(r, 0) . (5.47)

Now we assume that the propagation is limited to the time t ≤ T where
�exact(r > L < r0, t ≤ T ) = 0, above which numerical errors start to accumulate
due to distortion resulting from the parts of the wavepacket which reach r > L.
The addition of an RF-CAP where V̂RF-CAP = 0 for r ≤ L < r0 enables us to cal-
culate �exact(r ≤ L, t) for times which exceed the limit of t = T . This is achieved
by suppressing the parts of the wavepacket which pass r = L and thus preventing
interference with the wavepacket at r ≤ L.

Exercise 5.13

Consider a wavepacket�exact(r, t) initially localized in a region bounded byL such that
�exact(r > L, 0) = 0. Show that by using the RF-CAP defined above the evolution of the
wavepacket far after the RF-CAP will behave as �RF-CAP(r � L, t) ∼= 0, while in the
interaction region where r < L it will behave as�RF-CAP(r ≤ L, t) = �exact(r ≤ L, t)
for any given time t .

5.5 Dilation of the Hamiltonian matrix elements into the complex plane

In many practical applications, one needs to represent the Hamiltonian by some
matrix either in a basis set or on a grid. The transformation of the coordinate
into the complex plane will manifest itself in the matrix elements. Without loss of
generality let us assume that the non-Hermitian operator we are dealing with is a
single-particle one-dimensional operator,

Ĥθ = − h̄2

2M

d2

dz2
+ V (z) , (5.48)

where z is a path in the complex coordinate plane, z = F (x). The simplest complex
scaling transformation is rotation by θ , F (x) = xeiθ . The smooth exterior scaling
requires that F (x) ∼ x in the interaction region where the potential is varied and
F (x) → xeiθ as x → ±∞ in the non-interaction region. Since due to the transfor-
mation x → z the bound and resonance states are associated with exponentially
decaying wavefunctions, we can describe them as linear combinations of some
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complete set of basis functions in the Hilbert space. We now expand the bound and
resonance states of the non-Hermitian Hamiltonian, denoted by �j (F (x)), by real
orthonormal basis functions, {φn(x)}, such that

�j (F (x)) =
∞∑
n=1

Cn,jφn(x) , (5.49)

whereCn,j = 〈φn|�j 〉. Since Ĥθ�j = Ej�j (whereE may attain complex values)
by substituting the series expansion of �j and by multiplying the left-hand side of
the time-independent Schrödinger equation by 〈φn| one gets the following matrix
eigenvalue equation:

HCj = EjCj , (5.50)

where the matrix elements of the Hamiltonian, H, are given by

Hn′,n = 〈φn′ |Ĥ |φn〉 (5.51)

=
∫ +∞

−∞
dxφ∗

n′(x)

[
− h̄2

2M

d2

d(F (x))2
+ V (F (x))

]
φn(x) .

When the complex scaling transformation is used where z = F (x) = xeiθ , and
the potential is an analytical function of x, then the Hamiltonian matrix can be
presented by

Hn′,n = e−iθ
∫
F

dz[φn′(z∗e+iθ )]∗
[
− h̄2

2M

d2

dz2
+ V (z)

]
φn(ze

−iθ ) . (5.52)

Since the potential is an analytical function of z we can replace the complex inte-
gration contour from F = xeiθ by integrating over the real z line: −∞ ≤ z ≤ +∞.
In this case complex scaling implies that we perform an analytical continuation of
the Hamiltonian matrix elements to the complex plane by substituting η = eiθ in
the expression we obtained for Hn′,n(η),

Hn′,n(η) =
〈
[φn′(x/η∗)]∗

∣∣∣∣− h̄2

2M

d2

dx2
+ V (x)

∣∣∣∣φn(x/η)

〉
. (5.53)

Sometimes for numerical reasons we will enable θ to be complex, or alternatively
we define the scaling parameter as η = αeiθ . The use of this option will be demon-
strated below in Ex. 5.15 for the application of the complex scaling method to the
study of molecular resonances within the framework of the Born–Oppenheimer
approximation. Under this approximation the nuclear–electron attraction integral
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can be written as

Vnuc-elec(n, n′) = −
∫

φ∗
n(r)φn′(r)√

(ηx −X)2 + (ηy − Y )2 + (ηz− Z)2
dr

≡ −η−1
∫

φ∗
n(r)φn′(r)√

(x −X/η)2 + (y − Y/η)2 + (z− Z/η)2
dr , (5.54)

where r = (x, y, z) stands for the electronic coordinates and R = (X, Y,Z) for
the nuclear coordinates. One may raise the question whether the nuclear–electron
attraction integral given above is well defined for η = eiθ , since the integrand has
a square-root branch point when the position of an electron coincides with the
position of the nucleus. Therefore the analytical continuation of η is limited to a
sphere whose radius is the distance between the electron’s position and the position
of the nucleus. To avoid this problem we carry out the analytical continuation of
the scaling parameter after taking into consideration the volume element.

Actually there are two questions we need to answer. The first one is how to
uniquely define the complex-valued integrand. Clearly, one needs to choose the
correct sign of the square root such that one obtains the standard Hermitian formula
when θ = 0. The second question concerns the singularity of the integrand at the
branch point. In fact, this singularity becomes extinguished by the spatial volume
element (as long as we are in 3D space). Thus, in summary, the formula (5.54)
is always finite and well defined. Using this approach molecular autoionization
resonances were first calculated by the analytical continuation of Hamiltonian
matrix elements.7

Exercise 5.14

Show that numerical difficulties can arise in the calculations of the nuclear attraction
integral given in Eq. (5.54) for s-type Gaussians.

The difficulty in applying the complex scaling method to non-analytic potentials
can be overcome (with some limitations) by carrying out the dilation of the Hamil-
tonian matrix elements instead of the kinetic and potential energy operators. In the
following exercise we provide an illustrative example showing that this approach
holds only for the calculations of sufficiently narrow resonances.

In the following exercise we show that one can never get the exact values of
the resonance positions and widths by this method when the potential is a piece-
wise potential and therefore it is preferable to calculate the resonances for non-
dilation analytic potentials by the exterior complex scaling or the smooth exterior

7 N. Moiseyev and C. T. Corcoran, Phys. Rev. A 20, 814 (1979).
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scaling methods. The only motivation of using this approach for estimating the
resonances for non-dilation analytic potentials is to reduce the computational effort
by using a small number of grid points or basis functions and limiting the numerical
calculations to the interaction region of the potential under study.

Exercise 5.15

(a) Calculate the resonances for our “toy” problem (presented in Fig. 3.1) where
the potential is given by V (x = 0) = ∞, V (x ≤ L) = 0 and V (x > L) = −V0 (for
the values of L = 1 and V0 = 100), by carrying out an analytical continuation of the
Hamiltonian matrix elements into the complex plane. Use the particle-in-a-box as a
basis set to construct the Hamiltonian matrix elements and carry out the analytical
continuation by replacing the size of the box Abox as it appears in the Hamiltonian
matrix elements by Aboxeiθ .

(b) Consider the solution of the same problem on equally spaced grid points
{xi}i=1,...,N . Under what conditions can the resonances obtained by carrying out analyt-
ical continuation of the Hamiltonian matrix be taken as adequate estimates for the exact
values obtained by imposing outgoing boundary conditions on the original problem? To
answer this question one should realize that the calculations of resonances by the analyt-
ical continuation of the Hamiltonian matrix elements is based on the assumption that we
can replace the discontinuous potential by some smooth potential that attains approxi-
mately the same values as the original potential at the grid points {xi}i=1,...,N . Consider,
for example, a smooth potential which is given by V (x) = −V0/(eα(L−x) + 1).

5.6 Square integrability of field induced resonances

Within the framework of the dipole approximation the Hamiltonian for an atom in
cw linearly polarized radiation can be given in four different representations: the
length gauge (LG), the velocity gauge (VG), the reduced velocity gauge (RVG)
and the acceleration representation(ACC) which is known also as the Kramers–
Henneberger representation. These four different representations describe the same
physical phenomenon where the electrons of a given system interact with the exter-
nal ac field which is induced by the laser. Indeed, one can move from one rep-
resentation of the system–laser Hamiltonian to another by carrying out a unitary
transformation. We do not present these transformations here but they can be easily
derived using the proof that the complex scaled field-induced resonance wavefunc-
tions are square integrable, which is given below. Each one of the gauge represen-
tations of the system–laser Hamiltonian has its own advantages and disadvantages.
The LG describes the system–laser interaction as a dipole which oscillates in time
and for sufficiently small laser frequencies can be regarded as a static dc field
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that is varied adiabatically. The disadvantage of the LG representation is that the
ionized electrons are not moving freely in space as long as the laser is on. Moreover
the effective system–laser interaction parameter is increased as the electrons get
farther from the nuclei of the molecular system. The RVG has the advantage that
the effective system–laser interaction parameter does not increase as the electrons
get farther from the nuclei of the molecular system. In the ACC representation
the system–laser interaction is described as oscillating electrons which move in
the field-free potential. This approach is very useful when the laser frequency is
much larger than the frequency of the oscillations of the electrons in the time-
averaged ACC potential. However, it is much less efficient in the calculations of
the photo-induced dynamics when the laser frequency is lower than the frequency
of the oscillations of the electrons in the time-averaged potential or lower than the
frequency of electronic oscillations in the field-free potential.

In the LG representation the time-dependent Hamiltonian is given by

ĤLG(t) = Ĥ0 + eε0f (t) cos(ωt)r · ez , (5.55)

where Ĥ0 is the field-free time-independent atomic, molecular or mesoscopic
Hamiltonian, ε0 is the maximum field amplitude, e is the electron charge and r
stands for the electronic atomic or molecular coordinates. The fundamental laser
frequency is ω, ez is the polarization direction of the propagating laser field and
f (t) is the laser envelope. When the duration of the laser envelope supports more
than ten optical cycles (an optical cycle is defined as T = 2π/ω) we can assume
that the system interacts with a continuous-wave (cw) laser where f (t) = 1.

In the velocity gauge representation the time-dependent Hamiltonian is given by

ĤVG(t) = Ĥ0 + (p̂ − eε0
∫ t

0 dt ′f (t ′) cos(ωt ′)ez)2

2M
− p̂2

2M
, (5.56)

where the electronic momentum operator has been replaced by the vector potential
operator.

In the reduced velocity gauge representation Eq. (5.56) is simplified to

ĤRVG(t) = Ĥ0 − eε0
∫ t

0 dt ′f (t ′) cos(ωt ′)ezp̂
M

− p̂2

2M
, (5.57)

whereas in the acceleration representation the time-dependent Hamiltonian is given
by

ĤACC(t) = Ĥ0 + V0(r + (eε0/M)ez

∫ t

0
dt ′′
∫ t ′′

0
dt ′f (t ′) cos(ωt ′)) − V0(r) ,

(5.58)
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where the atomic, molecular or mesoscopic field-free potential V0(r) has been
replaced by a time-dependent potential where the electrons are driven by the laser
field (time periodic ac field when a cw laser is applied and f (t) = 1).

As we will show below, in the LG the photo-induced resonance wavefunctions
(for any one of the complex scaling transformations presented in this chapter)
are square-integrable only for sufficiently narrow resonances or for very broad
resonances for which the resonance lifetime h̄/� is much smaller than one optical
cycle, T = 2π/ω, where ω is the cw laser frequency (i.e., � � h̄ω). However,
using the other types of representation the photo-induced resonance wavefunctions
are square integrable regardless of the magnitudes of the resonance widths. Photo-
induced resonances can be associated with the eigenfunctions of the complex scaled
Floquet operator,

Ĥ θ
F (t) = Ŝθ ĤF(t)Ŝ−1

θ , (5.59)

where Ŝθ is one of the complex scaling transformations described above. The photo-
induced decay rate {�} is associated with {−2Eres}, where {Eres} is a θ -independent
complex eigenvalue of Ĥ θ

F (t) (assuming that θ gets a sufficiently large value, as
described above). The Floquet operator is defined by

ĤF(t) = −ih̄∂t + Ĥ0 + V̂ (t) , (5.60)

where Ĥ0 is the field-free Hamiltonian. The definition of the time-dependent inter-
action term V̂ (t) = V̂ (t + T ) varies from one representation of the Floquet operator
to another. In the ACC representation it is equal to

V̂ θACC(t) = V0(rθ − α0ez cos(ωt)) − V0(rθ ) , (5.61)

where V0(rθ ) is the complex scaled field-free potential energy term in the
Hamiltonian (in atoms it is the electron–nucleus attractive potential term), and
α0 = eε0/(Mω2), where ε0 is the maximum field amplitude. Here rθ = ŜθrŜ−1

θ

stands for the complex scaled coordinate. In the RVG the interaction with the field
is given by

V̂ θRVG(t) = eε0

Mω
sin(ωt)i∂zθ . (5.62)

In the VG representation the time-dependent potential is given by

V θVG(t) = V θRVG(t) + e2ε2
0

2Mω2
sin2(ωt) . (5.63)

and in the LG it is

V θLG(t) = eε0rθ · ez cos(ωt) . (5.64)
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The resonance Floquet solutions have the following form:

|�θ (t)〉 = e−iErest/h̄|�θ (t)〉 , (5.65)

where respectively {Eres} and {|�θ (t)〉} are the complex eigenvalues and eigen-
functions of Ĥ θ

F (t). The resonance Floquet solutions are gauge variant. However,
one can transform the solution obtained in one representation to another in the
following way:8

|�RVG
θ (t)〉 = exp

(
− eε0

Mω2
cos(ωt)∂zθ

)
|�ACC
θ (t)〉 , (5.66)

|�VG
θ (t)〉 = exp

(
−i

eε0

2Mω2

∫ t

0
dt ′ sin2(ωt ′)

)
|�RVG
θ (t)〉 ,

|�LG
θ (t)〉 = exp(−ieε0zθ sinωt/ω)|�VG

θ (t)〉 .

Since V̂ACC(t) = (V0(rθ + α0ez cos(ωt)) − V0(rθ ) → 0 as |zθ | → ∞ the asymp-
totes of the resonance quasi-energy solutions obtained for the complex scaled
Floquet operator in acceleration representation are the complex scaled out going
square-integrable waves:

〈rθ , t |�ACC
θ (t)〉 → e−iErest/h̄

∑
n

γne
iωnt

√
M

h̄2kres
n eiθ

e+ikres
n zθ → 0 (5.67)

as |rθ | → ∞, where

(h̄kres
n )2

2M
= Eres + h̄ωn = Er + h̄ωn− i

�

2
(5.68)

and Er + h̄ωn > 0. Note that

kres
n = |kres

n |e−iϕres
n , (5.69)

where ϕres
n > 0. In Eq. (5.67) we assume that the electrons are ionized along the

direction where the laser induced linearly polarized electric field oscillates. The
resonances are square integrable when

θ >
1

2
arctan

�/2

h̄ωn+ Er
. (5.70)

8 U. Peskin, O. E. Alon and N. Moiseyev, The solution of the time-dependent Schrödinger equation by the (t , t ′)
method: multiphoton ionization/dissociation probabilities in different gauges of the electromagnetic potentials,
J. Chem. Phys. 100, 7310 (1994).
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Using Eqs. (5.66) one gets that the photo-induced resonance states in the RVG are
square integrable functions as well,

〈rθ , t |�RVG
θ (t)〉 →

e−iErest/h̄
∑
n

γne
iωnte−i eε0

Mω2 cos(ωt)kres
n

√
M

h̄2kres
n eiθ

e+ikres
n zθ → 0 . (5.71)

Since the transformation from the RVG to the VG resonance wavefunctions is a
multiplication of the square-integrable RVG resonance wavefunctions by a time-
dependent oscillating function, it is obvious that the complex scaled photo-induced
resonances in the VG are square-integrable functions as well. From Eq. (5.66) one
gets that the asymptote of the photo-induced resonance function in the LG is given
by

〈rθ , t |�LG
θ (t)〉 → e−iErest/h̄

∑
n

γne
iωnte−i eε0

Mω2 cos(ωt)kres
n

·
√

M

h̄2kres
n eiθ

e+i(kres
n −eε0 sinωt/ω)zθ → 0 . (5.72)

When examining the asymptotic behavior of the resonance Floquet states in the
length gauge the situation appears to be different. When t = T/2 the asymptote of
the resonance wavefunction in the LG representation is proportional to a product
of decay terms e−|kres

n | sin(θ−ϕres
n )z (note that θ − ϕres

n > 0) and when sinωt = 1 an
exponentially divergent term e+eε0 sin θz/ω. Therefore, the photo-induced resonance
wavefunction in the LG representation is a square-integrable function if:

(1) the resonance lifetime h̄/� is much smaller than a half optical cycle T/2 and therefore

� � h̄ω

π
; (5.73)

(2) the resonance lifetime is small enough to ensure that exp(−|kres
n | sin(θ −

ϕres
n )z) exp(+eε0 sin θz/ω) → 0 as z → ∞ and therefore the localization condition

(i.e., the resonance wavefunction is square integrable) when

|kres
n | sin(θ − ϕres

n )

sin θ
≥ max

[
−eε0 sin(ωt)

ω

]
= eε0

ω
. (5.74)

For sufficiently large rotational angle θ for which θ � ϕres
n then |kres

n | should be
larger than eε0/ω. The conclusion is clear: photo-induced resonances should be
calculated within the framework of the RVG (or VG and AC) where they are square-
integrable functions regardless of the resonance lifetimes. The analysis given here
is applicable not necessarily only to atoms in AC (alternating current) external field
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but for all other cases where the potential is time periodic. For example, when light
propagates in waveguides where the index of refraction varies periodically along
the light propagation axis, within the framework of the paraxial approximation the
scalar Maxwell equation reduces to an equation which is equivalent to the time-
dependent Schrödinger equation with time-periodic Hamiltonian. The resonances
in this case correspond to leaking modes of the light in the waveguide. It is important
to mention that in the analysis given above we discuss only the conditions for which
the asymptotes of the resonance functions are square integrable and therefore our
proof holds for any one of the complex scaling transformations presented above.

From AC to DC field

In an ac field, within the LG representation the interaction of an atom/molecule
system with continuous wave laser is described by eε0z cos(ωt). When the field
varies sufficiently slowly in time the trapped particles in the atomic/molecular
potential well tunnel through a quasi-static potential barrier induced by the field.
The height of this barrier decreases as the field intensity is increased. In the limit of
ω → 0 a transition form an AC-field to a DC-field occurs and ĤLG → Ĥ0 + eε0z.
We have shown that the resonance wave function induced by a AC-field is a
square-integrable function provided that the resonance lifetime τh̄/ω < T/2, where
T = 2π/ω. Since in the limit of DC-field T → ∞ following condition (1) given
above, all types of resonance (narrow, broad or overlapping) are associated with
square-integrable complex scaled wavefunctions and therefore

lim
|z|→∞

lim
ω→0

�θLG(zθ , t) = 0 . (5.75)

We proved here that in the adiabatic limit the AC resonance solution obtained
in the length gauge representation of the Hamitonians decays to zero. Our proof9

is in agreement with the proof of Herbst and Simon when the system is exposed to
a dc field.10 From condition (2) in Eq. (5.74) one gets that in the limit where

lim
ω→0+

sin(ωt)

ω
= t , (5.76)

the asymptote of the Stark resonances (dc field induced resonances) decays to zero
as long as

|kres
n | sin(θ − ϕres

n )

sin θ
≥ −eε0t . (5.77)

9 N. Moiseyev, Int. J. Quantum Chem. 63, 279–285 (1997).
10 I. W. Herbst and B. Simon, Phys. Rev. Lett. 41, 67 (1978); Commun. Math. Phys. 80, 181 (1981); I. W. Herbst,

Commun. Math. Phys. 64, 279 (1979).
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Since t ≥ 0 the resonance obtained by applying the exterior scaling transformation
is square integrable when θ ≥ ϕres

n .

5.7 Partial widths from the tails of the wavefunctions

When a resonance state decays it may generate various products, that is there are
different channels to which it can decay. Each one of the open channels defines a
product of the decay process. The products in one open channel can be very different
from the products in other open channels. They can be different atoms, molecules,
radicals or the same atomic or molecular species but in different electronic and/or
vibrational and rotational quantum states.

By analyzing the asymptotic behavior in each of the decay channels we can
deduce which of the channels is preferable. The tendency to decay to a certain
channel is portrayed in its partial width, i.e. the part of the resonance width belong-
ing to that specific channel. The partial width which is associated with a given open
channel provides the decay rate of the system which is in a metastable resonance
state into the specific products which are defined by the given open channel.

The complex scaling transformation renders the resonance wavefunction square
integrable and thus enables us to extract from the asymptotic behavior of each
channel its corresponding partial width. For example, consider a particle with
mass M which moves in a 3D potential V3D(x, y, z). The resonance states are the
solution of the 3D potential problem with outgoing boundary conditions. Let us
discuss the evaluation of the partial widths of a resonance state,� res

j (x, y, z) which
is associated with the complex eigenvalue Eres

j = εj − i/2�j , that has only m
open channels to decay. Namely, if V ±

2D(y, z) = limx→±∞ V3D(x, y, z) and
the lowest m-th bound state eigenfunctions of the 2D potential are given by
{φn(y, z)±}n=1,2,...,m and are associated with the real eigenvalues {Eth

±,n}n=1,2,...,m

then the asymptote of the j -th resonance eigenfunction is given by

lim
x→±∞�

res
j (x, y, z) =

m∑
n=1

a±
n,jφ

±
nj

(y, z)e±ik±
n,j x , (5.78)

where

k±
n,j = 1

h̄

√
2M

(
εj − i

2
�j − Eth±,n

)
(5.79)

complex values and therefore the asymptote of the resonance wavefunction diverges
exponentially. We can normalize the resonance wavefunctions by using one of the
complex scaling transformations presented in this chapter. For example, we can
scale only the dissociative x-coordinate where the particles are bounded in the other
directions, i.e., x → Fθ (x) where limx→±∞ Fθ (x) = xeiθ . The resonance functions
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can be expanded in a basis which consists of the eigenfunctions of the Hermitian
2D Hamiltonian,

�res
j (Fθ (x), y, z) =

∞∑
n=1

φ±
n (y, z)χθ±,n,j (x) , (5.80)

where we assign the labels (±, n ≤ m) to the open channels for which

lim
x→±∞χ

θ
±,n,j (x) = a±

n,je
±ik±

n,j x exp(iθ) . (5.81)

The probability of having a particle in the open channel n,± is given by

P±,n,j = |a±
n,j |2∑m

n=1 |a+
n,j |2 +∑m

n=1 |a−
n,j |2

. (5.82)

The coefficients |a±
n,j |2 are obtained by plotting

Gθ±,n,j (x) = |χθ±,n,j (x)e∓ik±
n,j x exp(iθ)|2 (5.83)

as function of x, where

χθ±,n,j (x) = 〈φ±
n (y, z)|�res

j (Fθ (x), y, z)〉y,z (5.84)

and

a±
n,j = lim

x→∞G
θ
±,n,j (x)

Therefore, one may define the partial width as

�±
n,j = P±,n,j�j , (5.85)

Following this definition, the sum of the partial widths is equal to the total width.
However, this definition for the partial widths does not necessarily associate �±,n,j
with the corresponding rates of decay to each of the open channels.

Another approach is to associate the partial widths with rates of decay to the open
channels. Under this assumption the partial width is the number of particles passing
through a unit surface area in the (y − z) plane per time unit which is associated
with the n-th open channel to decay. This number is equal to N±

n,j = |a±
n,j |2v±

n,j ,
where v±

n,j are respectively the velocities of the free particles which “escape”
to +∞ (while they are moving from left to right) and the free particles which
“escape” to −∞ (while they are moving from right to left). The velocity of a
beam of free particles in one dimension is given by the ratio F/ρ(x), where
F (x) = h̄/(2Mi)(ψ∗∂xψ − ψ∂xψ∗) is the particle flux which measures the number
of the particles per unit time through a unit area perpendicular to the direction of
motion x, and ρ(x) = |ψ(x)|2 is the probability density of the particles. In the case
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where the free particles are associated with the (±, n) open channel of the j -th
resonance state, ψ(x) = e±ik±

n,j x and therefore v±
n,j = F (x)

ρ(x) is given by

v±
n,j ≡ h̄Re(k±

n,j )

M
(5.86)

=
√

2

M

[
(εj − Eth

±,n)
2 + (�j/2)2

]1/2
cos

(
1

2
arctan

(
�j

2(εj − Eth±,n)

))
.

In order to avoid the dependence of the number of particles which are detected
per time unit on the velocity of the particles we should normalized the asymptotes
of χθ±,n,j (x) such that a±

n,j in Eq. (5.78) are defined by

a±
n,j = γ±

n,j

v±
n,j

. (5.87)

Consequently, one might expect that the partial widths should be defined as

�±
n,j /h̄ =

∣∣∣γ±
n,j

∣∣∣2 = v±
n,j lim

x→±∞ e∓ik±
n,j e

iθ xχθ±,n,j (x) , (5.88)

where the resonance wavefunction is c-normalized. However, there is no guarantee
that the sum of the partial widths as defined in Eq. (5.88) is equal to the total width.

Note that for sufficiently narrow resonances the velocity which appears in
Eq. (5.88) can be calculated by v±

n,j = (h̄k±
n,j )/M (here the velocity gets a complex

value with a very small imaginary part). This result is obtained in Chapter 8 using
the complex non-Hermitian scattering theory when the energies of the incoming
particles are taken as the resonance complex eigenvalues εj − i

2�j (an approxima-
tion which is justified only for narrow resonances which are embedded close to the
real energy axis).

We now describe another possibility for calculating partial widths, �±
n,j , associ-

ated with the j -th resonance state from the exponentially divergent wavefunction
of the unscaled resonance state.11 It is sufficient to calculate the unscaled resonance
eigenfunction in a finite volume in space which includes part of the exponentially
diverging asymptotic region. This can be achieved, for example, by carrying out
a back rotation transformation r → r exp(−iθ ) of the complex scaled square inte-
grable resonance function. The continuity equation in standard quantum mechanics
is given by

∂

∂t
|�(r, t)|2 + ∇ · J(r, t) = 0 , (5.89)

11 T. Goldzak, I. Gilary, N. Moiseyev, Phys. Rev. A (in press).
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where

J(r, t) = h̄

m
Im
[
�∗(r, t)∇�(r, t)

]
. (5.90)

Integrating Eq. (5.89) over a finite volume� in space which is bounded by a surface
S we get, using the divergence theorem, that

∂

∂t
N�(t) = −

∮
S

J(r, t) · n̂ ds . (5.91)

Here n̂ is a unit vector normal to the surface S and N�(t) is the total probability
density inside the volume �, given by

N�(t) =
∫
�

|�(r, t)|2dV . (5.92)

Now we reach the point where we introduce the difference between the stan-
dard (Hermitian) formalism of quantum mechanics and the non-Hermitian for-
malism. Within the framework of the Hermitian formalism of quantum mechan-
ics J(r, t) = 0 when �(r, t) is the stationary solution of the time-dependent
Schrödinger equation. However,within the non-Hermitian formalism of quan-
tum mechanics J(r, t) 	= 0 when �(r, t) is the resonance stationary solution of
the time-dependent Schrödinger equation which is obtained by imposing outgo-
ing boundary conditions on the solution. This is due to the exponential diver-
gence of the asymptote of the resonance wavefunction which must allow out-
going flux for the resonance to decay. The resonance stationary solution of
the (unscaled) time-dependent Schrödinger equation for a one-particle system is
given by

�res
j (x, y, z, t) = e−i(εj−i�j /2)t/h̄�res

j (x, y, z) . (5.93)

If, for the sake of simplicity of the discussion, we assume that the decay is in
the x coordinate and the resonance has the asymptotic form of Eq. (5.78) we can
consider� to be a box with length L = L+ + L− along the x coordinate. Here L±
indicates the edges of the box in the two asymptotes along the x coordinates. Since
there is no flux in y and z we can integrate over these coordinates and Eq. (5.91)
reduces to

�j =
∑
n

(
�+
n,j + �−

n,j

)
, (5.94)
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where

�±
n,j = h̄|γ±

n,j |2
e+2Im(k±

n,j )L±N±
n

ρ(−L−,+L+)
,

ρ(−L−,+L+) =
∫ +L+

−L−
dx
∫ +∞

−∞

∫ +∞

−∞
dydz|�res

j (x, y, z)|2 ,

N±
n =

∫ +∞

−∞

∫ +∞

−∞
dydz|φnj (y, z)|2 . (5.95)

Although �±
n,j depends on the values of L±, the sum of them is equal to the total

resonance width which is L±-independent. Since the branching ratios

R = �±
n′,j

�±
n,j

(5.96)

are measurable quantities which should be L±-independent, we must ensure that

Im(k±
n′,j )L± − Im(k±

n,j )L± = 0 ; (5.97)

and similarly the branching ratios

R = �±
n′,j

�∓
n,j

(5.98)

are L±-independent if

Im(k±
n′,j )L± − Im(k∓

n,j )L∓ = 0 . (5.99)

Every one of these conditions can be satisfied separately when we assume that the
surface S which bounds the volume � expands in time according to the velocities
v±
n,j in each of the channels,

L± = v±
n,j τ = h̄Re(k±

n,j )

M
τ . (5.100)

For a sufficiently large value of a τ (to ensure that L± are in the asymptotic region
of the resonance wavefunction) the branching ratios are constants, since for any
open channel

Im(k±
n,j )L± = h̄t

M
Re(k±

n,j ) Im(k±
n,j ) = h̄τ

2M
�j , (5.101)

which does not depend on the channel but only on the total width of the res-
onance. Here we have shown that the sum of the partial widths is equal to the
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total width which associated with the imaginary part of the complex resonance
eigenvalue.

Exercise 5.16

Photo-induced resonances are associated with the couplings of bound states in the
n = 0 Brillouin zone (defined as the n = 0 Fourier transform of the atom/laser
interaction potential V θ=0

ACC(t)) with the continuum of the dressed potentials in the
n-th Brillouin zones (defined as the n > 0 Fourier components of V θ=0

ACC(t), i.e.,

Vn(r) = T −1
∫ T

0 dte−iωntV θ=0
ACC(r, t). Within the Fermi golden rule approximation the

values of the partial widths, �n, are linearly proportional to the values of these coupling
matrix elements when the energy of the continuum states is equal to the energy of
the bound states. That is, if the energy of a bound state of V0 is Ebound

0 < 0 then the
energy of the continuum state of Vn>0 that is most strongly coupled to the bound state
is Econt

n = h̄ωn+ Ebound
0 .

1. Show that under the Fermi golden rule approximation the partial widths oscillate
as α0 = eε0/(Mω2) is varied.

2. Explain why there is a structure in the kinetic energy distribution of the fragmented
particles (electrons in the photo-ionization process and atoms or molecular radicals
in the case of photo-dissociation process) and explain the expected effect of the
variation of the laser parameters (frequency and intensity) on this structure.

This oscillatory behavior of the partial widths and of the kinetic energy distribution of
the fragmented particles in the photo-induced process results from the oscillations of
the electron induced by the external ac field. The phase modulation of the oscillating
electron in the bound state of the n = 0 Floquet channel (so-called Brillouin zone) is
different from the laser-induced modulation of the electron in the continuum states in
the n 	= 0 open Floquet channels for decay.

5.8 Concluding remarks

Except for the bound states, all other poles of the S-matrix are associated with
exponentially divergent wavefunctions which by definition do not belong to the
Hilbert space of the conventional Hermitian quantum mechanics. In this chapter
we presented several similarity transformations which convert the original expo-
nentially divergent resonance wavefunctions into a bound-like functions which
can be considered as part of the “generalized” Hilbert space. In the next chap-
ter we will discuss different aspects of this issue in some more details. The
Zel’dovich and complex scaling transformations are applicable to the resonance
poles only. However, in the next chapter, where we discuss the inner product in
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NHQM, we will show how the use of the exterior scaling enables the study of the
orthogonality properties of all poles of the S-matrix (i.e., in addition to the reso-
nance poles, also the anti-bound poles and poles which are associated with virtual
states).

In this chapter we have shown that the complex scaling technique can be applied
also to many electron problems, as for example to atoms, for the calculations
of autoionization resonances. We show here that the molecular autoionization
resonances can be calculated within the framework of the Born–Oppenheimer
approximation by dilation of the Hamiltonian matrix elements, instead of dilation
of the kinetic and the molecular potential operators, or alternatively by using the
smooth-exterior-scaling transformation. The smooth-exterior-scaling transforma-
tion is equivalent (under some conditions) to the inclusion of reflection-free one-
electron energy-independent and problem-independent complex absorbing poten-
tials (so-called RF-CAPs). It is a point of interest that, by introducing the RF-CAPs
into the Hamiltonian, one can propagate wavepackets for long periods of time
since the artificial reflections of the waves from the edge of the grid are suppressed.
In this context (see also Ex. 5.17 below) we would like to stress again the fact
that the complex scaled outgoing wave components of a propagated wavepacket,
�WP(x, t) → ∫∞

0 dkφ(k, t) exp(+ikeiθx) as t → ∞, are suppressed more rapidly
at a given value of x as the quantum particles move faster (i.e., k gets larger values).
Therefore the reflection-free complex absorbing potentials which were obtained by
the use of the smooth-exterior-scaling transformation are efficient for the period of
time for which the slow-moving Fourier components of the propagated wavepacket
have not yet reached to the edge of the grid which has been used in the numerical
propagation calculations. One may extend the time where the RF-CAPs are effi-
cient without increasing the number of grid points or basis functions which were
used in the numerical propagation calculations by adding a weak static electric field
in the edge of the grid in order to accelerate the slow-moving Fourier components
of the propagated wavepacket as they get close to the edge of the grid and thereby
make them decay faster to zero and avoid the artificial reflections from the edge of
the grid.

Exercise 5.17

Assume that the solution of the time-independent Schrödinger equation with an outgo-
ing boundary condition is �(x). It can be either a bound or a resonance state. Discuss
under what conditions numerical instabilities resulting from the complex scaling pro-
cedure can be avoided by the use of the exterior-scaling or the smooth-exterior-scaling
similarity transformations (i.e., by the introducing the RF-CAPs).
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5.9 Solutions to the exercises

Answer to Exercise 5.1

In order to show that an eigenfunction � of an Hermitian and real Hamiltonian Ĥ
is real, let us assume first that � is a function with complex values,

Ĥ� = E� , (5.102)

where E gets real values only due to the Hermitian property of the Hamiltonian.
By taking the complex conjugate of this equation we get that

Ĥ�∗ = E�∗ . (5.103)

Therefore, by adding the two equations one gets that the real part of�, φ = Re[�],
is an eigenfunction of the Hamiltonian,

Ĥφ = Eφ . (5.104)

Similarly, also the imaginary part of function �, χ = Im�, is a real eigenfunction
of the Hamiltonian as well,

Ĥχ = Eχ . (5.105)

Thus, if there is no degeneracy in E, φ and χ are equivalent up to a constant
normalization factor. This is equivalent to the freedom of defining � up to a
constant phase factor. If there is a degeneracy in E it means that we could always
choose a linear combination of the eigenfunctions with energy E that will be real.

Answer to Exercise 5.2

Let us define the 1D Hamiltonian as

Ĥ = − h̄2

2M

d2

dx2
+ V (x) , (5.106)

where

Ĥ�res(x) = Eres�res(x) , (5.107)

and Eres = E − i/2�. Since (h̄k)2/(2M) = Eres we get that the resonance wave-
function diverges asymptotically, limx→∞�res(x) = γ exp(+ikx) → ∞.

It is clear that

ĤS�S = [e−εx2
Ĥe+εx2

]e−εx2
�res = Erese

−εx2
�res = Eres�S . (5.108)

In order to observe the effect of the transformation on the kinetic term in the
Hamiltonian we need to find the effect of the transformation on the operator
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d2/dx2,

e−εx2 d2

dx2
e+εx2 = 4ε2x2 + 2ε + 4εx

d

dx
+ d2

dx2
. (5.109)

Now since we will take ε to be infinitely small we can neglect the small term 4ε2x2,
and by using the operator equality

d

dx
x = 1 + x d

dx
(5.110)

we get that

ĤS = Ĥ − h̄
2ε

M

[
x

d

dx
+ d

dx
x

]
= Ĥ + V̂zel . (5.111)

The complex absorbing potential (CAP) term added to the Hamiltonian, which can
be termed as the Zel’dovich CAP, can be recast in the form:

V̂zel(x) = lim
ε→0

[
−h̄iε

M
(x̂ · p̂x + p̂x · x̂)

]
. (5.112)

It is clearly evident that due to the i factor in V̂zel it is an anti-Hermitian oper-
ator. Thus the transformed Hamiltonian, ĤS , is a non-Hermitian operator. The
normalization of the resonance functions implies that

lim
ε→0

∫ +∞

−∞
�2
S(x)dx = 1 . (5.113)

The fact that indeed �S is a normalizable function will be proved in Ex. 5.3.

Answer to Exercise 5.3

We denote the normalization factor of the resonance wavefunction by N . The
asymptotes of the resonance wavefunctions are considered here to be linearly
proportional to outgoing plane waves with complex wave vectors kres. This is the
case in 1D problems and also for s-waves in 3D problems with spherical symmetric
potentials when we use the transformation for which the volume element is dr
rather than r2dr . In such a case the asymptotes of the resonance wavefunctions are
exponentially divergent functions and∫ ∞

0
dr�2

res(r) =
∫ ∞

0
dr�2

res(r)e
+2ikresrdr = ∞ , (5.114)

where limr→∞�2
res(r) = 1 and kres = |kres| exp(−iαres). Note that here we use the

c-product and not the scalar product as used in the standard (Hermitian) formalism
of quantum mechanics.
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Following the Zel’dovich inner product definition,�res is a normalizable function
if

N 2 lim
ε→0

∫ ∞

0
e−εr2

�2
res(r)e

+2ikresrdr = 1 . (5.115)

In order to show that by using the Zel’dovich inner product definition �res is
indeed a normalizable function, we take here the case where �2

res(r) = 1, i.e.,
�res(x) = exp(+ikresr) is an eigenfunction of the kinetic energy operator with
complex wave vector k = kres. Then the integral given in Eq. (5.115) is associated
with the error functions12∫ ∞

0
e−εr2+2ikresrdr = 1

2

√
π

ε
e−k2

res/εerfc

(
− ikres√

ε

)
= 1 . (5.116)

It is known (see Eq. 7.4.2 in M. Abramowitz and I. A. Stegun, Handbook of
Mathematical Functions) that for the complex variable Z = |Z| exp(−iφ), where

φ < 3π/4 , (5.117)

we have

lim
Z→∞

√
πZe+Z2

erfc(Z) = 1 +
∑
m=1

(−1)m
1 · 2 · 3 · · · (2m− 1)

(2Z2)m
. (5.118)

By substituting

Z = − ikres√
ε

(5.119)

into Eq. (5.118) one gets that as ε → 0,

− ikres

√
π

ε
e−k2

res/εerfc

(
− ikres√

ε

)
→ 1 + ε

2k2
res

. (5.120)

By substituting Eqs. (5.120) and (5.116) into Eq. (5.115) the normalization factor
is found to be equal to

N 2 = −2ikres , (5.121)

provided that the phase of kres (using the condition given in Eq. (5.117))

αres <
π

4
. (5.122)

12 See, for example, Eq. 7.1.23 in M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,
New York, Dover Publications, Inc, 1972.
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For anti-bound states α = π/2 and for resonances which are embedded below
the threshold energy, αres >

π
4 and therefore they can not be normalized by the

Zel’dovich inner product approach.
For resonances, 2αres = −Im(Eres)/Re(Eres). The resonance rate of decay is

� = −2Im(Eres), where the resonance position is E = Re(Eres) (the threshold
energy is taken here as a reference point which is equal to zero). Therefore the
norm can be calculated only for resonances for which

�

E
≤ π

8
. (5.123)

It is a point of interest that the result for the norm presented in Eq. (5.121)
is obtained by calculating the indefinite integral

∫
exp(+2ikresr)dr and substitute

only the lower limit of r = 0.

Answer to Exercise 5.4

Upon complex scaling x → x exp(iθ ). Therefore in the asymptote the functional
form will be

�θres(x → ∞) = γ e+ikresxeiθ = γ ei|kres| cos(θ−φres)xe−|kres| sin(θ−φres)x , (5.124)

where φres is as defined in Eq. (5.12). The scaled resonance wavefunction decays
to zero as x → ∞ when the following condition is satisfied:

θ ≥ φres . (5.125)

There are, however, limitations on the maximal value of θ which will be discussed
later in the text. The complex scaled resonance wavefunction �res(z) can be nor-
malized to unity when we take the contour ζ = x exp(iθ ) in the complex z plane,
where x is the real part of z, ∫

ζ

�2
res(z)dz = 1 . (5.126)

When �res is non-singular at any point inside an area in the complex coordinate
plane bounded by the line x = Re(z) and the line ζ = x exp(iθ ), then the contour
of integration can be changed to be along the real axis such that∫

ζ

�2
res(z)dz = eiθ

∫ +∞

−∞
�2

res(xeiθ )dx = 1 . (5.127)

This normalization condition holds when�res is an analytical function. This result is
a hint of the difficulty in applying the complex scaling transformation to cases where
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the potential is not an analytical function and therefore the resonance wavefunctions
are non-analytical functions as well. Note that when the potential is not an analytical
function we require the eigenfunctions and their first derivatives to be continuous.
However, the higher order derivatives are not necessarily continuous.

Answer to Exercise 5.5

A general scaling operator is defined in Eq. (5.14) and is given by

Ŝ = √
ηeÂ , (5.128)

where

Â = αx ∂
∂x

(5.129)

and α = ln η. We begin by noting that the eigenfunctions and corresponding eigen-
values of the operator Â are given by

Âxn = nxn . (5.130)

We now assume that �(x) is an analytical function which can be described in
terms of the Taylor series expansion, �(x) =∑∞

n=0 Cnx
n. By expanding also the

operator Ŝ in powers of Â we get that

Ŝ�(x) = √
η

∞∑
k=0

(αÂ)k

k!

∞∑
n=0

Cnx
n . (5.131)

By applying Eq. (5.130) and changing the order of summation we get that

Ŝ�(x) = √
η

∞∑
n=0

Cnx
n

∞∑
k=0

(αn)k

k!
= √

η

∞∑
n=0

Cn(e
αx)n = √

η�(ηx) . (5.132)

Answer to Exercise 5.6

Within the framework of the Born–Oppenheimer approximation only the electronic
coordinates are complex scaled while the nuclear coordinates remain unscaled.
Therefore, within the framework of the Born–Oppenheimer approximation the
complex scaled electron–nuclei potential energy terms are given by

V̂ θeN =
∑
α,j

− zαe
2√

QT
j,α · Qj,α

, (5.133)

where α and j run over all nuclei and electrons respectively and

Qj,α = eiθrj − Rα . (5.134)
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Therefore,

QT
j,α · Qj,α = eiθ (rj − R−θ

α )T · (rj − R−θ
α ) , (5.135)

where

R−θ
α = e−iθRα . (5.136)

Consequently, one obtains that the electrons–nuclei potential energy terms are sin-
gular at the complex rotated nuclei positions R−θ

α . At these points the resonance
functions do not vanish as opposed to the nuclei positions Rα where the wave-
functions do vanish. The singular point of a function determines the radius of
convergence of the Taylor series expansion of the function. Therefore, the complex
scaled electron–nuclei potential energy terms are analytical functions only inside a
circle in the complex electronic coordinate plane where its center is the molecular
center of mass and its radius is the distance of the nuclei position from it, |Rα|.
Outside this circle V̂ θeN is not an analytical function of the electronic coordinates.
This explains why within the framework of the Born–Oppenheimer approximation
the electron–nuclei potential energy terms are non-analytical operators.

Answer to Exercise 5.7

The function F (x) should be singular at x = x0 < 2. Therefore,

F (x) = a

x0 − x . (5.137)

We know from the first term in the Taylor series expansion thatF (0) = 1. Therefore,
a = x0. The other terms in the series Taylor expansion should satisfy the following
condition:

1

n!

[
dnF

dxn

]
x=0

xn = xn (5.138)

and therefore x0 = 1 . Consequently, the non-analytical function is given by

F (x) = 1

1 − x . (5.139)

This function is an analytical function only for complex values of x inside a circle
with the radius R = |x0| = 1, which is centered at x = 0. Outside this circle the
function F (x) is not an analytical function and its Taylor series expansion (around
x = 0) does not converge. Since the application of the complex scaling operator to
the function F (x) requires it to be an analytical function which has a converging
Taylor series expansion for any value of x, it is clear that this function is not dilation
analytic (i.e., a function that can be analytically continued into the complex plane
for any value of x).
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Answer to Exercise 5.8

The solution of this problem is based on the work of Moiseyev and Katriel.13 We
examine here a bound Hamiltonian (i.e., the spectrum is discrete) of the form

Ĥ = −1

2

d2

dr2
+ rn . (5.140)

Since for large values of r we solve the problem Ĥ�±(r) = 0, the asymptotic
behavior of the eigenfunctions can be easily shown to be

lim
r→∞�±(r) = r−n/4e±23/2(n+2)−1rn/2+1

. (5.141)

Here �− are square integrable functions but �+ are not. Note that the square
integrable functions �− are associated with the discrete bound states, whereas
the non-square integrable function are not associated with resonances (which do
not exist in the case of bound potentials) and are known in scattering theory as
anti-bound or virtual states (see Chapter 3). Upon complex scaling, r → r exp(iθ ),
�+(reiθ ) and �−(reiθ ) are respectively square integrable when the expression

Re[eiθ(n/2+1)] = cos[(n/2 + 1)θ ] (5.142)

attains negative values for �+ and positive values for �−. At the critical values of
θ = θc for which cos((n/2 + 1)θc) = 0 the eigenfunctions “jumps” from one type
of boundary condition (i.e. �+ → 0) to the other type (�− → 0). These critical
angles are given by

θ (j )
c = π (2j + 1)

n+ 2
, j = 0, 1, 2, . . . (5.143)

Writing the complex scaled Hamiltonian in the form

Ĥ = e−2iθ

[
−1

2

d2

dr2
+ eiθ(n+2)rn

]
, (5.144)

we note that for

θ ≡ θj = π (j + 1)

n+ 2
; j = 0, 1, . . . , (5.145)

exp(iθ (n+ 2)) = 1 and therefore

Ĥ (θj ) = e−2iθj Ĥ (θ = 0) . (5.146)

13 N. Moiseyev and J. Katriel, Chem. Phys. Lett. 105, 194 (1984).
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Consequently, the eigenvalues of the complex scaled bound Hamiltonian when
θ = θj are given by

E(j )
m = e−iπj (n+2)Em(θ = 0) , (5.147)

where Em(θ = 0) are the discrete real eigenvalues of the unscaled Hamiltonian
associated with the real square integrable eigenfunctions.

Here we show that, for the bound V (r) = rn potential, the bound states remain
square integrable and remain on the real energy axis when r → r exp(iθ ), only
when

0 ≤ θ ≤ π

n+ 2
. (5.148)

Note that, within the range

θ (j )
c < θ ≤ θ (j+1)

c , j ≥ 1 , (5.149)

the spurious eigenvalues as defined by Eq. (5.147) are θ -dependent. The changes
in the phase factors of the eigenvalues occur abruptly at the critical angles θ (j )

c . It
is a point of interest that the spurious eigenvalues of bound systems in very special
cases were associated with measurable quantities.14

Answer to Exercise 5.9

Since the potential is not spherical symmetric we should modify the exterior scaling
operator, Eq. (5.29). The potential is dilation analytic for x > x0, |y| > y0 and
|z| > z0. Since z is not a dissociative coordinate we can keep z unscaled and
scale only the dissociative coordinates x and y. Therefore, for x < x0 we keep x as
before, x → x, while for x ≥ x0 we scale x → (x − x0) exp(iθ ) + x0. Similarly, for
−y0 < y < +y0 we keep y → y while for |y| ≥ y0, y → (y ∓ y0) exp(iθ ) ± y0.
Consequently, the Hamiltonian after the exterior complex scaling transformation
is given by

ĤES = ŜESĤ Ŝ
−1
ES = − h̄2

2M

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
+ VES(x, y, z) , (5.150)

where VES(x, y, z) = V (u, v, z) with u = x if x < x0 and u = (x − x0) exp(iθ ) +
x0 when x ≥ x0; v = y when −y0 < y < +y0; v = (y − y0) exp(iθ ) + y0 when
y ≥ y0 and v = (y + y0) exp(iθ ) − y0 when y ≤ y0.

14 R. Lefebvre and N. Moiseyev, Automerization of cyclobutadiene, J. Am. Chem. Soc. 112, 5052–5054 (1990);
R. Lefebvre and N. Moiseyev, Artificial resonance procedure for the determination of quantum mechanical rate
constants in the tunneling regime, J. Chem. Phys. 93, 7173–7178 (1990); N. Rom, V. Ryaboy and N. Moiseyev,
Thermal rate constants of multi-mode systems for the price of one: aziridine, Chem. Phys. Lett. 204, 175–182
(1993).
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Answer to Exercise 5.10

As we have shown in Chapter 3, the transcendental equations for the resonance
complex eigenvalues are obtained by requiring the continuity of � and d�/dx.
Inside the potential well, 0 < x < a, the solutions remain unscaled,

�in = Ae+ikx + Be−ikx , (5.151)

where k = √
2M(E + V0)/h̄. Outside the potential well the solutions are scaled

from the edges of the well. For x > a,

x → zR ≡ (x − a)eiθ + a , (5.152)

while for x < 0,

x → zL ≡ xeiθ . (5.153)

Accordingly, for x > a and for x < 0 one gets that

�out = C exp(±ik0zL,R) , (5.154)

where k0 = √
2ME/h̄. The continuity conditions for � imply that

�in(x = a) = �out(zR = a) = C exp(+ik0a) ,

�in(x = 0) = �out(zL = 0) = C . (5.155)

Therefore, the continuity conditions for � are identical to those obtained before
without the the use of the exterior complex scaling transformation. Similarly, the
continuity conditions for the first derivative of � imply that

∂�in

∂x

∣∣∣∣
x=a

= ∂�out

∂x

∣∣∣∣
zR=a

= ik0C exp(+ik0a) ,

∂�in

∂x

∣∣∣∣
x=0

= ∂�out

∂x

∣∣∣∣
zL=0

= ik0C. (5.156)

Therefore, also the continuity conditions for the first derivative of � are identical
to those obtained without, exterior complex scaling transformation.

Consequently, we have shown here that for a rectangular potential well the
transcendental equations for the resonance complex eigenvalues are invariant under
the exterior scaling transformation. The only net effect of this transformation is
in the behavior of the asymptotes of the corresponding wavefunctions which now
become square-integrable.
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Answer to Exercise 5.11

The exterior complex scaling transformation implies that the complex path in the
complex coordinate plane, z = FES(x), is defined as

z = FES(x) =
{
x if x < x0 ,

(x − x0)eiθ + x0 if x ≥ x0 .
(5.157)

Since

d

dz
= fES(x)

d

dx
, (5.158)

where

fES(x) ≡ dx

dz
=
{

1 if x < x0 ,

e−iθ if x ≥ x0 ,
(5.159)

then

dfES

dx
= (e−iθ − 1)δ(x − x0) (5.160)

and therefore

d2

dz2
= f 2

ES(x)
d2

dx2
+ dfES

dx
fES(x)

d

dx

= f 2
ES(x)

d2

dx2
+ (e−iθ − 1)δ(x − x0)fES(x)

d

dx
. (5.161)

Since the exterior complex scaled kinetic energy operator is defined as
−[h̄2/2M]d2/dz2, the proof of Eq. (5.32) from Eq. (5.31) has been completed.
On the basis of this proof the partial integrator exterior scaling method has been
derived.15

Answer to Exercise 5.12

The proof presented here is based on the derivation of reflection-free complex
absorbing potentials.16

We define the complex path in the one-dimensional coordinate space by ρ =
F (x) such that

ρ = F (x) → x exp(iθ ) (5.162)

15 N. Rom and N. Moiseyev, J. Chem. Phys. 99, 7703 (1993).
16 N. Moiseyev, J. Phys. B 31, 1431 (1998).
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as x → ∞. In order for the transition to be smooth, the path should be as close as
one wishes to the real axis for −x0 < x < +x0, and therefore we choose

f (x) = ∂F

∂x
= 1 + g(x)(eiθ − 1) , (5.163)

where g(x) varies smoothly but fast from 0 to 1 around the point x = x0. Since

∂

∂ρ
= f −1(x)

∂

∂x
, (5.164)

we have

∂2

∂ρ2
= −f −3(x)

∂f (x)

∂x

∂

∂x
+ f −2(x)

∂2

∂x2
. (5.165)

Therefore the smooth exterior scaling Hamiltonian is given by

ĤSES = − h̄2

2M

∂2

∂ρ2
+ V (ρ) = − h̄2

2M

∂2

∂x2
+ V (x) + V̂SES(x) = Ĥ + V̂RF-CAP(x) ,

(5.166)
where

V̂RF-CAP(x) = �VSES(x) + V̂ SES
CAP , (5.167)

�VSES(x) = V (F (x)) − V (x) (5.168)

and the reflection-free complex absorbing potential (RF-CAP) is given by

V̂ SES
CAP = V1(x)

∂

∂x
+ V2(x)

∂2

∂x2
, (5.169)

where

V1(x) = h̄2

2M
f −3(x)

∂f

∂x
, (5.170)

V2(x) = h̄2

2M
[1 − f −2(x)] . (5.171)

In order to simplify the volume element, dρ = f (x)dx, the eigenfunctions of
the SES Hamiltonian as defined in Eq. (5.166) are transformed, �SES(ρ) =
f −1/2�SES(x), such that �SES(x) is an eigenfunction of the transformed
Hamiltonian,

Ĥ trans
SES = − h̄2

2M
f + 1

2 (x)
∂2

∂z2
f − 1

2 (x) + V (ρ) . (5.172)
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After some algebraic derivations, Ĥ trans
SES can be rewritten as

Ĥ trans
SES = Ĥ + V̂ trans

RF-CAP(x) , (5.173)

where the transformed RF-CAP is defined as

V̂ trans
RF-CAP(x) = �VSES(x) + V0(x) + V̂ SES

CAP (5.174)

and V0(x) is defined as

V0(x) = h̄2

4M
f −3(x)

∂2f

∂x2
− 5h̄2

8M
f −4(x)

(
∂f

∂x

)2

. (5.175)

In the text we omit the label trans from the transformed RF-CAP and V̂ SES
CAP is

defined to include the V0(x) term. The extra V0(x) term has been obtained due to
the simplification of the expression of the volume element.

As an example we define a specific family of SES paths in the complex coordinate
space which are associated with g(x), given by

g(x) = 1 + 0.5[tanh(λ(x − x0)) − tanh(λ(x + x0))] . (5.176)

By integrating over g(x), the complex paths, F (x), are obtained:

F (x) = x + (eiθ − 1)

[
x + 1

2λ
ln

(
cosh[λ(x − x0)]

cosh[λ(x + x0)]

)]
. (5.177)

Illustrative examples for different possible SES paths are given in Fig. 5.1 for
λ = 5 when x0 = 0 and when x0 = 6. For x0 = 0 (i.e. λ = 0) the usual complex
scaling path ρ = exp(iθ ) is obtained. In Fig. 5.2 the corresponding V0(x), V1(x)
and V2(x) are presented. Note that when it is possible to define an SES path
such that �VSES(x) = 0 the RF-CAP becomes a universal (problem-independent)
energy-independent operator.

Answer to Exercise 5.13

The solution here is based on Shemer et al. studies of optimal reflection-free
complex absorbing potentials for quantum propagation of wave packets.17

The propagated wavepacket obtained when the RF-CAP has been added to the
original Hamiltonian is give by

�WP
RF-CAP(r, t) = �WP

exact(F (r), t) . (5.178)

17 O. Shemer, D. Brisker and N. Moiseyev, Phys. Rev. A 71, 032716 (2005).
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Figure 5.2 The different parts of the complex, energy-independent, problem-
independent RF-CAP which is associated with the smooth-exterior-scaling path in
the complex coordinate plane, F (x) = xeiθ , with λ = 5, x0 = 6 and θ = 0.75 rad.

Since F (r) = r for r ≤ L ≤ r0 then from a comparison between Eq. (5.178)
and Eq. (5.47) one gets that in the relevant region of interest where r < L at any
given time t ,

�WP
RF-CAP(r ≤ L, t) = �WP

exact(r ≤ L, t) . (5.179)

Using the fact that in the asymptote F (r) → r exp(iθ ) we get from Eq. (5.178) that

�WP
RF-CAP(r � L, t) = �WP

exact(re
iθ , t) . (5.180)
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The asymptote of the propagated exact wavepacket can be described as a linear
combination of outgoing waves only, since the asymptote of a propagated WP
describes outgoing particles with momentum that can be measured by a detector
(no source of incoming waves at infinity and therefore there is no incoming flux of
particles arriving from infinity):

lim
r→∞�

WP
exact(r, t) =

∫ ∞

0
dkC(k)eikr . (5.181)

By scaling the asymptote of the propagated WP one gets that

lim
r→∞�

WP
exact(re

iθ , t) =
∫ ∞

0
dkC(k)eik cos(θ)re−k sin(θ)r . (5.182)

As one can see from Eq. (5.182) for sufficiently large value of r

�exact(re
iθ , t) ∼= 0 , (5.183)

although�exact(r, t) might have a large positive or negative amplitude. On the basis
of Eq. (5.180) one gets that for r � L, �WP

RF-CAP(reiθ , t) ∼= 0.

Answer to Exercise 5.14

The solution of this problem is given by Moiseyev and Corcoran.18

The matrix element for s-type Gaussians is of the form19

Vn,n′(ηR) ∼ e−(γn+γn′ )(Rn− �Rn′ )F0[(γn + γn′)(P − ηR2] , (5.184)

where η = α exp(−iθ ), P is the weighted center of the two functions with orbital
exponents γn and γn′ and positions �Rn and Rn′ , respectively, R is the position of the
nucleus and F0 is the incoming γ function. The simplest example of the problem
occurs for γn = γn′ ≡ γ and Rn = Rn′ ≡ R 	= 0. In this case we have

Vn,n′(ηR) ∼ F0[2γR2(1 − η)2] ≡ F0(ζ ) . (5.185)

The series expansion for F0(ζ ) has a pre-factor of exp(−ζ ). Near |η| = 1 (i.e.,
α = 1), one may have Re(1 − η)2 < 0, and therefore Vn,n′(ηR) may become large
for large values of the non-linear Gaussian’s parameter, γ . When ζ has positive
values then the pre-factor exp(−ζ ) of the function F0 can become very large and
thereby introduces numerical instabilities for large values of θ . To overcome this
numerical instability one should keep α cos θ larger than unity. Since usually the

18 N. Moiseyev and C. T. Corcoran, Phys. Rev. A 20, 814 (1979).
19 I. Shavit, Method in Computational Physics (New York, Academic Press, 1963), Vol. 2.
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resonances of interest are embedded close enough to the real axis, the rotational
angle θ , which is required to transform the exponentially divergent resonance
wavefunction to the generalized Hilbert space, gets sufficiently small. In such a
case α does not have to get very large to satisfy the numerical stability condition,
α cos(θ ) > 1, and it might be sufficient to keep α only slightly larger than unity.

Answer to Exercise 5.15

(a) The solution of this problem has been given by Alon and Moiseyev.20 The basis
functions are given by

ϕn(x) =
√

2

Abox
sin

(
nπx

Abox

)
, (5.186)

where n = 1, 2, . . . , N . The Hamiltonian matrix elements are accordingly

Hn′,n = 〈ϕn′ |Ĥ |ϕn〉 (5.187)

= 2

Abox

∫ Abox

0
sin

(
n′πx
Abox

)[−h̄2

2M

d2

dx2
− V0�(x − L)

]
sin

(
nπx

Abox

)
dx .

After performing the integration this translates to the following matrix elements

Hn,n = h̄2

2M

(
nπ

Abox

)2

− V0

(
sin(2nπL/Abox)

2πn
+ Abox − L

Abox

)
,

Hn′,n = −V0

(
sin[(n+ n′)πL/Abox]

π (n+ n′)
− sin[(n− n′)πL/Abox]

π (n− n′)

)
, (5.188)

where

Abox = |Abox|eiθ . (5.189)

For the parameters of θ = 0.05, N = 1000, L = 1, Abox = 150 and V0 = 100 the
eigenvalues of the Hamiltonian matrix H presented in Fig. 5.3 are associated with
the resonances and the rotated continuum.
(b) The N grid points are given by {xi = �(i − 1)}i=1,...,N . The calculation of

resonances by analytical continuation of Hamiltonian matrix elements is based on
the assumption that the spectrum of the original non-dilation analytic potential can
often be well-approximated by the spectrum of another potential which is dilation
analytic and therefore the complex scaling transformation is applicable. Note that
for dilation analytical potentials the Hamiltonian matrix elements obtained by
analytical continuation of the scaling parameter of the basis functions by e−iθ

20 O. E. Alon and N. Moiseyev, Phys. Rev. A 46, 3807 (1992).
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Figure 5.3 The complex eigenvalues, E − i/2� obtained by the diagonalization
of the Hamiltonian matrix defined in Eqs. (5.188). In the plot the scaled energies
Ẽ = 2ML2E/(π2h̄2) are presented. The open circles stand for the exact val-
ues obtained by solving the corresponding transcendental equations (see Tables
4.1 and 4.2). The continua are rotated into the complex energy plane by the
angle 2θ = 0.1. The deviations of the calculated resonances from the exact values
are partially due to the truncation of the basis set and the artificial truncation of
space at |Abox|. However, as explained in Ex. 5.5, the calculation of resonances of
the piecewise potential is limited to narrow resonances only.

where the Hamiltonian is unscaled are identical to the matrix elements which are
calculated by using complex scaled Hamiltonian (where x → xeiθ ) and unscaled
basis functions (see Eq. (5.51) where F (x) = xeiθ and Eq. (5.53)). We assume that
the dilation analytical function is such that V (x ≤ L) � 0 and V (x > L) � −V0.
For example, we can chose a smooth potential

V (x) = − V0

eα(L−x) + 1
, (5.190)

then

V (x = L−�/2) = − V0

1 + e+α�/2 (5.191)
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and

V (x = L+�/2) = − V0

1 + e−α�/2 . (5.192)

The accuracy of our calculations depends on the value of α. As α� gets larger the
deviation of the dilation analytical potential from the piecewise potential is smaller.
This implies that for a given accuracy of the calculations

α� = C , (5.193)

where C determines the deviation of the smooth potential from the original dis-
continuous potential. However, the smooth potential has poles at x = xp when

eα(L−xp) + 1 = 0 . (5.194)

Eq. (5.194) is satisfied when

α(xp − L) = ±iπ (5.195)

and therefore

xp = L± i
π

α
= |xp|eiθp . (5.196)

Consequently, the Taylor series expansion of the potential given in Eq. (5.192)
converges only when

|x| < |xp| , (5.197)

and only within a circle in the complex coordinate plane which is centered at x = 0
and with radius is |xp| is this potential dilation analytic. The conclusion is clear.
If the complex scaled resonance wavefunctions are practically equal to zero for
x ≥ |xp| −� then we can estimate the resonance positions and widths of the
piecewise potential by carrying out analytical continuation of the Hamiltonian
matrix elements into the complex plane (which is equivalent to complex scaling
if the potential is dilation analytic). As we will show here, by this complex scal-
ing method we can never obtain the exact values of the resonance positions and
widths and therefore it is preferable to calculate the resonances for non-dilation
analytic potentials by the exterior complex scaling or by the smooth exterior scaling
methods.

Let us assume, for example, that ψres(xeiθ )|x=|xp|−� = 10−8, which within the
accuracy of the numerical calculations can be taken as equal to zero. We can
estimate the resonances for which this condition is satisfied since we know that the
asymptotic behavior of ψres(xeiθ ) is

ψres(xeiθ → ∞) ∝ e+i|kres|ei(θ−φres)x , (5.198)
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where (in au) 1
2 |kres|2e−2iφres = Eres + V0 and −2Im(Eres) = � while the threshold

energy in our case is −V0. As � gets larger φres also becomes larger and therefore
the rotational angle θ should be significantly larger to insure that the condition of
ψres(xeiθ )|x=|xp|−� ≈ 0 is satisfied. However, as will be shown below, the complex
scaling transformation is limited to θ < θc. In order to estimate the critical angle
θc we can look at the dominant term: in the expansion of the exponential potential
term:

eα(L−x) =
∞∑
n=0

(α(L− x))n

n!
. (5.199)

It is simpler to approximate at any given point x0 the logarithm of this term and
find the value nmax for which it is maximal.

∂ ln[α(L− x0)n/n!]

∂n

∣∣∣
nmax

≈ ln[α(L− x0)] − ln n = 0 . (5.200)

This means that the most dominant contribution in the expansion at x0 is

nmax ≈ α(L− x0) . (5.201)

Let x0 be just beyond the edge of the potential barrier, i.e. L− x0 = �. Conse-
quently, just beyond the edge of the potential barrier the potential can be approxi-
mated by

V ∝ − V0

xα� + 1
, (5.202)

whereC = α� defines the accuracy of our numerical calculations (see Eq. (5.193)).
Writing the complex scaled Hamiltonian we note that

θC < π (5.203)

in order to avoid the change of the phase of xC. Therefore,

θ < θc ≡ π

C
. (5.204)

However, in order to expose the resonance state Er − i
2� we must have

2θ ≥ arctan
�

2Er
. (5.205)

This means that the resonances calculated by the analytical continuation of Hamil-
tonian matrix elements can serve as adequate estimates for the resonance values
obtained by solving the original problem with outgoing boundary conditions if and
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only if

2π

C
> arctan

�

2Er
. (5.206)

Thus the resonance widths must be sufficiently narrow to satisfy

� � 2Er tan

[
2π

C

]
. (5.207)

It is clear that as C is increased and the smooth potential approaches the shape
of a piecewise potential barrier the ability of calculating resonance positions and
widths by the analytical continuation of Hamiltonian matrix elements is reduced.
The only motivation for using this approach for estimating the resonances for non-
dilation analytic potentials is to reduce the computational effort by using a small
number of grid points or basis functions and limiting the numerical calculations to
the interaction region of the potential under study.

Answer to Exercise 5.16

We will prove here that by increasing the laser field intensity, I = cε2
0/(8π ), the

rate of decay (e.g., ionization of the atom or a dissociation of a molecule) due to
the absorption of n photons oscillates with the quiver length α0 = eε0/(Mω2). This
behavior is due to the interference between the phase modulation induced by the
ac field of the electron that occupies a bound state in one Floquet channel with the
phase modulation of the electron when it occupies the continuum states of other
Floquet channels which are open for decay (see discussion in Chapter 2).

The interaction potential between the atom/molecule and a linearly polarized
cw laser field within the framework of the acceleration representation is given in
the Fourier basis set expansion by

VACC(r + ezα0 cos(ωt)) =
∫ +∞

−∞
dkv(x, y, k)eikzeikα0 cos(ωt) . (5.208)

The coupling between the eigenstates of the n′-th dressed potential (so-called n-
Floquet channel or n-th Brillouin zone) and the eigenstates of the n-th dressed
potential is thus given by an interaction potential of the form

VACC(n, n′) = 1

T

∫ T

0
dte−i(n−n′)ωtVACC(r + ezα0 cos(ωt)) . (5.209)
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Therefore, the Fourier basis set expansion of the interaction potential in the accel-
eration presentation yields

[VACC(r)]n′,n =
∫ +∞

−∞
dkv(x, y, k)eikz 1

T

∫ T

0
dteikα0 cos(ωt)−i(n−n′)ωt

=
∫ +∞

−∞
dkv(x, y, k)eikzei (n−n′)π

2 Jn−n′(α0k) . (5.210)

If n− n′ > 0 the coupling matrix element includes the coupling of the bound
states of the n-th dressed potential with the continuum states of the n′-th dressed
potentials that have the same energy as the bound states, {Eb}.

Following the Fermi golden rule, the partial width, �n, which results from the
coupling of a bound state in the n′ = 0 dressed potential, |Eb(0)〉, with the contin-
uum of the n > 0 dressed potential, |Ec(n)〉, which is approximately described as a
spatial function multiplied by δ(k − kn) exp(ikr), where kn = √

2M(Eb + h̄ωn)/h̄,
is given by the matrix element,

�n(α0, Eb) ∝ |〈Eb(0)|[VACC(r)]0,n|Ec(n)〉|2 = |anJn(α0kn)|2 , (5.211)

where Jn(α0kn) is the n-th Bessel function with the argument ζ = α0kn. Since the
Bessel functions oscillate with ζ it is clear that the partial widths oscillate with the
variation of α0 = eε0/(Mω2) as well.

The branching ratio �n(α0, Eb)/
∑
n �n(α0, Eb) provides the probability of

observing ionized electrons or fragmented particles with the kinetic energy
(h̄kn)2/(2M) as a result absorbing n-photons. Therefore, the kinetic energy dis-
tribution of the ionized electron or of the fragmented particle in the case of
molecular photo-dissociation is proportional to |Jn(α0k)|2, where (h̄kn)2/(2M) and
kn = √

2M(Eb + h̄ωn)/h̄ is the kinetic energy of the fragmented particles.
Therefore, if the dynamics are described by an n-photon process the kinetic

energy distribution of the fragmented particles will show an oscillatory behavior
determined by the zeroes of the n-th Bessel function. The effect of the variation of
the laser parameters (frequency and intensity) on the structure of the kinetic energy
distribution (i.e., the energy gaps between the fragmented particles) is similar to
the effect of the variation of α0 on the locations of the zeroes of the n-th Bessel
function.

Answer to Exercise 5.17

In order to address numerical effects of the complex scaling technique on the
resonance or bound states wavefunctions we expand �(x) in the Fourier basis set,

�(x) =
∫ +∞

−∞
dkC(k)eikx , (5.212)
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where the wave vector k is related to the momentum of the wavefunction by
p = h̄k.

Complex scaling implies that

�θ (x) =
∫ +∞

−∞
dkC(k)eik cos θxe− sin θkx . (5.213)

The probability of finding the quantum particle in a given point of the classical
phase space of {x0, p0} can be obtained from the Husimi distribution of �,

�(x0, p0) = (πh̄)−1/4
∫ +∞

−∞
dx�(x)e− (x−x0)2

2h̄ +i p0x
h̄ . (5.214)

From the Husimi distribution of the unscaled function, �(x), one can learn at
what point in phase space the product p0x0 < 0 associated with the contribution
of incoming waves to the Fourier expansion of � gets the maximal value of
�(x0, p0 < 0).

From Eq. (5.213) it is clear that when e− sin θx0k0 gets very large the numerical
calculations of the complex scaled function�θ will be very unstable. It is, therefore,
quite clear that it will be hard to compute the highly excited bound or resonance
complex scaled states due to the large amplitude far from the bottom of the potential
well which usually is chosen as the origin of the coordinates. This numerical
instability should be more pronounced in the calculations of molecular resonances
within the Born–Oppenheimer approximation where the molecular wavefunctions
might have large amplitudes far from the center of mass of the molecule. Therefore,
this kind of numerical instability is avoided when the exterior scaling method or
the smooth exterior scaling method (as for example by introducing the RF-CAPs
into the Hamiltonian) are applied and only the outgoing asymptote of� is complex
scaled (i.e., x0p0 > 0).
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6

Bi-orthogonal product (c-product)

This chapter is divided into several sections which together represent one of the
fundamental concepts in the non-Hermitian formalism of quantum mechanics
(NH QM). First we discuss the need to replace the inner product used in the
standard (Hermitian) formalism of quantum mechanics by another construct which
was termed the c-product by Moiseyev, Certain and Weinhold1 in 1978. Unlike the
standard situation where the eigenfunctions (eigenvectors) of an Hermitian opera-
tor (matrix) form a complete set which can be used to expand a wavepacket which
describes the system at a given time, in NH QM it might happen that the eigen-
functions make up an incomplete set since several (usually two) eigenfunctions
(eigenvectors) coalesce to generate a self-orthogonal state. We need completeness
and closure relations in order to develop, for example, perturbation theory and scat-
tering theories for non-Hermitian Hamiltonians and in order to be able to solve the
Schrödinger equation by numerical methods. Therefore, the second section of this
chapter is devoted to the completeness of the spectrum in NH QM. Other aspects of
the non-Hermitian formalism which stem from this issue deal with the advantages
of using a non-Hermitian formalism for a time-dependent description of a decay-
ing system as well as its application to time-periodic systems. Accordingly, the
discussion in one of the sections will encompass the propagation of wavepackets in
non-Hermitian quantum mechanics whereas another will elaborate on the benefits
of the formalism for the description of the interaction of matter with intense laser
radiation.

6.1 The c-product

One of the basic postulates of quantum mechanics is that a solution of the time-
dependent Schrödinger equation describes the studied system at any given time

1 N. Moiseyev, P. R. Certain and F. Weinhold, Resonance properties of complex-rotated Hamiltonians, Mol. Phys.
36, 1613–1630 (1978).
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and any measurable dynamical quantity can be evaluated from |�(t)〉. A dynamical
property O, such as momentum, kinetic energy, total energy etc. is represented by
the corresponding operator Ô. In the standard (Hermitian) formalism of quantum
mechanics the projection of |�(t)〉 on a specific eigenstate of an operator Ô, which
is denoted by |n〉, provides the information on the probability of measuring in
a specific experiment the corresponding eigenvalue of Ô, labelled by On. The
projection of |�(t)〉 on |n〉 is carried out by using the scalar product (often referred
to as the inner product) between any two square integrable analytical functions.
The mean value of the quantity Ō that will be measured in a series of identical
experiments is given by the expectation value,

Ō = 〈�(t)|Ô|�(t)〉
〈�(t)|�(t)〉 . (6.1)

The questions we address in this chapter are:

(1) how the information on a specific measurable quantity can be extracted from the
solution of the time-dependent Schrödinger equation within the framework of the
non-Hermitian formalism of quantum mechanics;

(2) what the advantages are of using the non-Hermitian formalism rather than the standard
quantum mechanical treatment of a given problem.

Since expectation values are evaluated through the inner product we briefly
review the relevant properties of such a functional between functions in theL2 space
of square-integrable functions. If for simplicity we look at any one-dimensional
square integrable functions f (x), g(x) and h(x) when α and β are scalars, then the
inner product is defined by

〈f |g〉 =
∫ +∞

−∞
f ∗(x)g(x)dx ,

〈h(x)|αf (x) + βg(x)〉 = α〈h|f 〉 + β〈h|g〉 ,
〈f |g〉 = 〈g|f 〉∗ = scalar ,

〈f |f 〉 ≥ 0 , (6.2)

where 〈f |f 〉 = 0 if and only if f (x) = 0.
Using this definition one can prove that all non-degenerate eigenfunctions of

a Hermitian operator Ô are orthogonal. To simplify our discussion but with-
out lost of generality we can assume that the box quantization condition, i.e.,
{ψ(x = ±L)} = 0, is applied and therefore the continuum part of the spectrum
of Ô (if it exists) is a discrete quasi-continuum that becomes denser as the
box size is increased. If a system is initially prepared as a wavepacket |�(0)〉
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then the probability of measuring the quantity On at any given time is

|an(t)|2 = |〈n|�(t)〉|2 , (6.3)

where Ô|n〉 = On|n〉. The fact that the eigenstates of a Hermitian operator form a
complete set and thus one can write the resolution of the identity by∑

n

|n〉〈n| = 1̂ (6.4)

plays a key role in the calculations of measurable quantities within the standard
formalism of quantum mechanics. Equation (6.4) is also known as the closure
relation.

Due to the importance of matrix representations for practical calculations in
quantum mechanics and since they serve here as a convenient tool for the presen-
tation of the theory in this chapter, we now review several properties of matrix
representations in the following exercises.

Exercise 6.1

Show how by using the closure relation in Eq. (6.4) the complex scaled Hamiltonian,
Ĥθ , can be represented by an infinitely large general complex matrix (i.e., a matrix of
dimensions N ×N where N → ∞).

Exercise 6.2

Prove that for a general complex matrix H which represents a linear operator Ĥ (which
is not necessarily a Hermitian operator), H† = (HT)∗.

Exercise 6.3

Prove that if Ĥ is a Hermitian operator with a spectrum bounded from below, then the
eigenvalues of theN ×N truncated Hamiltonian matrix, H = (HT)∗, are upper bounds
to the exact eigenvalues of Ĥ . This property is also known as the Hylleraas–Undheim–
McDonald linear variational theorem.

Similarly to the situation in the standard (Hermitian) formalism of quantum
mechanics, the definition of an equivalent to the inner product for eigenfunctions
of non-Hermitian operators, which is the subject of the present chapter, is essential
for the derivation of the formalism of non-Hermitian quantum mechanics. The
properties we wish to keep in the non-Hermitian formalism of quantum mechanics
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are the orthogonality of the non-degenerate eigenfunctions of the non-Hermitian
Hamiltonian and the closure relations. These properties are necessary for project-
ing from a wavepacket that describes the system the information which provides
the probability of measuring a specific dynamical quantity. Besides the necessity
for deriving quantum theory, these properties are essential for deriving new ana-
lytical and numerical computational methods. For example, in Chapter 7 we will
use these properties to derive perturbation theory for non-Hermitian operators,
while in Chapter 8 we will use them in the derivation of non-Hermitian scattering
theory.

An answer to the question of what is the equivalent to the inner product for
eigenfunctions of a non-Hermitian operator is obtained by using linear algebra
arguments (see, for example, Wilkinson2 on the use of linear operators in standard
(Hermitian) quantum mechanics and on the representation of any linear operator
by a matrix see Dirac3). In order to differentiate between the conventional scalar
product 〈· · | · ·〉 we will label the functional we define below as the c-product by
(· · | · ·). Let us associate the eigenstates of the non-Hermitian operator Ôθ as |ψθn ),
with the eigenfunctions of the differential eigenvalue problem

Ôθ |ψθn ) = λθn|ψθn ) . (6.5)

We require the c-product to satisfy the orthogonality condition for the eigenstates
of Ô,

(ψθn′ |ψθn ) = δn′,n . (6.6)

It is straightforward to define the c-product (ψθn′ |ψθn ) through the definition of left
and right eigenvectors of the matrix O representing the operator in some complete
set of orthonormal basis functions {fj }j=1,2,.... The matrix elements of O are given
by

[Oθ ]j ′,j = 〈fj ′ |Ôθ |fj 〉 . (6.7)

The key point in our definition of the c-product is the realization that the differential
eigenvalue problem can be transformed into a matrix eigenvalue problem,

OθCθn = λθnCθn ,
[Dθm]TOθ = λθm[Dθm]T ,

[Dθm 	=n]
TCθn = 0 , (6.8)

2 J. H. Wilkinson,The Algebraic Eigenvalue Problem, Oxford, Clarendon Press, 1965.
3 P. A. M. Dirac, The Principle of Quantum Mechanics, London, Oxford University Press, fourth edition, 1967.
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where Cn and [Dθm]T are respectively the right and left eigenvectors of the matrix
Oθ . Since [

[Dθm]TOθ

]T = OT
θDθm , (6.9)

the left eigenvectors of the matrix O are the right eigenvectors of OT (the transpose
of the matrix O) and

OT
θDθm = λθmDθm . (6.10)

Using the left and right eigenvectors we define the bra and ket eigenstates of the
operator Ôθ ,

(x|ψθn ) ≡
∑
j

Cj,nfj (x) ,

(ψθm|x) ≡
∑
j

Dj,mf
∗
j (x) . (6.11)

A matrix and its transpose support the same eigenvalue spectrum and therefore the
column eigenvector of O, which is denoted by Cθn, and the column eigenvector of
OT, which is denoted by Dθn, are associated with the same eigenvalue λθn. Therefore,
except for very special situations where two or more eigenvalues and eigenfunctions
of Ôθ coalesce (this special situation which is referred to as the self-orthogonality
phenomena will be discussed separately in Chapter 9) then the c-product is defined
by

(ψθm|ψθn ) =
∑
j

Dj,mCj,n = δm,n , (6.12)

where the bra and ket states are defined in Eq. (6.11). When real basis functions
{fj (x)}j=1,2... are used and the unscaled matrix Oθ=0 is represented by a real
symmetric matrix, the complex scaled matrix Oθ is a complex and symmetric
matrix and therefore (note that Dj and Cj are respectively columns vectors of the
eigenvector matrices C and D),

Dj = Cj ,

CTC = I . (6.13)

Consequently, when the unscaled operator is Hermitian and real (i.e., represented
by a real and symmetric matrix) then the non-degenerate eigenfunctions of the
complex scaled operator Ôθ are orthonormal using the c-product rather than the
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usual scalar product,

(ψθm|ψθn ) =
∫ +∞

−∞
ψθm(x)ψθn (x)dx = δm,n (6.14)

and the closure relations for non-Hermitian operators implies that∑
n

|ψθn )(ψθn | = 1̂ . (6.15)

Exercise 6.4

(a) Prove that for any general complex matrix H the left and right eigenvectors which
are associated with different eigenvalues are orthogonal.

(b) What are the number of degrees of freedom in the normalization of the N linearly
independent eigenvectors of an N ×N non-Hermitian matrix?

As an example of the use of the c-product as first proposed by Moiseyev, Certain
and Weinhold let us return to our model problem of a one-dimensional potential
barrier described in Fig. 3.1. The potential barrier depends on two parameters, the
height of the potential barrier V0 and its width L. The resonances are the solu-
tions of the time-independent Schrödinger equation with outgoing asymptotes (see
Chapter 4),

�n(x ≥ L) = B(qn)e
+iqn(x−L) → ∞ , (6.16)

where n = 1, 2, . . . denotes the discrete resonance states,Et = −V0 is the threshold
energy and therefore the outgoing complex wave-vector, qn, is given by

qn =
√

2M(En + V0) = |qn| exp(−iαn) . (6.17)

The complex resonance eigenvalue is defined as usual by

En = εn − i/2�n , (6.18)

where εn is the resonance energy and �n is the resonance width. Up to a normal-
ization factor the coefficient of the outgoing wave is given by

B(kn) = 1

2
[sin(knL) − ikn

qn
cos(knL)] , (6.19)

where the wave vector, kn, of the resonance in the interaction region is given by

kn =
√

2MEn . (6.20)
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The resonance functions can be seen to decay to zero by carrying out any of the
similarity transformations described in Chapter 5. Using, for example, the exterior
complex scaling transformation x → (x − L)eiθ + L the transformed resonance
wavefunction reads

�n(x > L; θ ) = B(qn)e
+i|qn|ei(θ−αn)(x−L) → 0 . (6.21)

Now we return to Eq. (6.12) and substitute for the two transformed resonance
wavefunctions,(

�θn |�θn′
) =

∫ ∞

0
�n(x; θ )�n′(x; θ )dx =

∫ L

0
�n(x)�n′(x)dx (6.22)

+B(qn)B(qn′)
∫ ∞

L

e+i|qn|xei(θ−αn)
e+i|qn′ |xei(θ−αn′ )

eiθdx ,

where

�n(x < L) = sin(knx) . (6.23)

Since the value of the integral at x = ∞ is equal to zero we may define the contour
of integration in the second integral as x ′ = x exp(iθ ) and substitute only the lower
bound of the integral. That is,(

�θn |�θn′
) =

∫ L

0
sin(knx) sin(kn′x)dx + B(qn)B(qn′)

∫ ∞

0
dx ′e+i(qn+qn′ )x ′

= sin[(kn − kn′)L]

2(kn − kn′)
− sin[(kn + kn′)L]

2(kn + kn′)
+ iB(qn)B(qn′)

qn + qn′
ei(qn+qn′ )L .

(6.24)

Exercise 6.5

(a) By using the c-product in Eq. (6.24) prove that any two decay resonances of
the the one-dimensional potential barrier in Fig. 3.1 are orthogonal i.e., show that
(�n|�n′) = 0.

(b) Calculate the normalization factor for the n-th resonance state.
(c) Find out what conditions should be satisfied in order for the “length” of a

resonance vector to be zero. That is, show under what conditions using the c-product
we get that (�n|�n) = 0. Later we will refer to such a vector with zero “length” as a
self-orthogonal vector.

The proof in Ex. 6.5 that the decay resonances for the one-dimensional poten-
tial barrier are orthogonal under the c-product is just an illustrative example of a
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more general property. Using the c-product, non-degenerate resonances are always
orthogonal. This theorem has been proved above (see Eq. (6.12)) by representing
the eigenfunctions of the non-Hermitian operator in a finite sized basis set which
contains square-integrable orthonormal (using the scalar product) basis functions.
However, Eq. (6.12) can be proved in an analogous manner to the proof in conven-
tional Hermitian quantum mechanics. Let�n and�m be two resonance eigenfunc-
tions of the Hamiltonian, Ĥ , associated with different complex eigenvalues. That
is,

Ĥ�n = En�n ,
Ĥ�m = Em�m , (6.25)

The resonance functions �n and �m diverge exponentially. However, as explained
above and in Chapter 5, they exponentially decay to zero under the proper trans-
formation, �r → F (�r). Using these two equations we immediately obtain that

(�m|Ĥ |�n) =
∫
�mĤ�nd[F (�r)]

= En
∫
�m�nd[F (�r)] ≡ En(�m|�n) . (6.26)

Alternatively, we can look at the effect of Ĥ on�m through the following equation:

(�n|Ĥ |�m) =
∫
�nĤ�md[F (�r)]

= Em
∫
�n�md[F (�r)] ≡ Em(�m|�n) . (6.27)

The Hamiltonian Ĥ = T̂ + V̂ consists of a kinetic energy operator T̂ and a
potential energy operator V̂ . It is clear that (�n|V̂ |�m) = (�m|V̂ |�n) since the
product of any two functions is a commutative operation. Integration by parts
shows that, since the two transformed complex resonance wavefunctions decay
exponentially, (�n|T̂ |�m) = (�m|T̂ |�n) and therefore (�n|Ĥ |�m) = (�m|Ĥ |�n).
This equality implies that

En (�m|�n) = Em (�n|�m) . (6.28)

Since (�n|�m) = (�m|�n) we get that

(En − Em) (�m|�n) = 0 . (6.29)



182 Bi-orthogonal product (c-product)

When the two resonances are non-degenerate states (i.e.,En 	= Em), then they must
be orthogonal, under the c-product,(

�m|�n 	=m
) = 0 . (6.30)

The c-product implies that the complex conjugation is applied only to the terms in
the “bra” state which are complex regardless of any complex scaling transformation.
This definition is in the spirit of the usual understanding of analytical continuation
in complex analysis. One does not take the complex conjugate of the terms in the
wavefunction which become complex only due to the rotating of the coordinate into
the complex plane. If, for example, 〈x|f 〉 = e+ikx when k is real, then the “bra” state
is 〈f |x〉 = e−ikx . The complex scaled “ket” state is 〈x|f (θ )〉 = e+ikxeiθ

, whereas
the complex scaled “bra” state is given by 〈f (−θ )|x〉 = e−ikxeiθ

. Therefore, if

〈f (θ = 0)|f (θ = 0)〉x = 1 , (6.31)

also

(f (θ )|f (θ ))xeiθ = eiθ 〈f (−θ )|f (θ )〉x = 1 . (6.32)

In the above definitions of “bra” and “ket” states the wave vector k has real
values only. However, the asymptote of a resonance state is associated with an
outgoing wave with a complex wave vector kres, such that limx→∞〈x|�res(θ )〉 ∝
〈x|fres(θ )〉 ≡ e+ikresxeiθ

. One may conclude that by carrying analytical continu-
ation of the wave vector k to the complex plane then 〈f (−θ )|x〉 = e−ikxeiθ →
〈fres(−θ )|x〉 = e−ikresxeiθ

. This conclusion, however, is wrong. 〈fres(−θ )|x〉 	=
e−ikresxeiθ

but 〈fres(−θ )|x〉 = e+ikresxe
iθ

. The mistake we have made is in our assump-
tion that the asymptote of a resonance state is an analytical continuation of the
wave vector k of an outgoing wave to the complex wave vector plane. The
square integrable complex scaled resonance wavefunctions are not associated
with analytical continuation of continuum functions (with outgoing wave com-
ponents only) to the complex plane but with analytical continuation of bound
states (which are also square integrable functions) or anti-bound states into the
complex plane. If the asymptote of a complex scaled bound state is given by
limx→∞〈x|�bound(θ )〉 ∝ 〈x|fbound(θ )〉 ≡ e−axeiθ

, where a takes real and positive
values only, then 〈fbound(−θ )|x〉 = e−axeiθ → 〈fres(−θ )|x〉 = e−aresxeiθ

when x > 0
and where ares = ikres. This association of resonances with bound states is under-
standable in view of the fact that by imposing outgoing boundary conditions on the
solutions of the time-independent Schrödinger equation only the bound and reso-
nance poles of the scattering matrix (and not the continuum part of the spectrum)
are obtained.
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The connection between bound and resonance states is natural if we look at
dependence of the analytical solutions of the time-independent Schrödinger equa-
tion on some potential parameter. For example, the exponential coefficient a in
e−ax2

for 1D problems or in e−ar for 3D problems would be a function of the poten-
tial parameters denoted here by λ (e.g., depth of the 1D potential well or the charge
of the nuclei in a 3D Coulomb potential). By reducing the value of λ the n-th bound
state will turn to be a resonance state. In such a case a will become complex. Note
that for the special case of a rectangular potential well the resonances are created
from the coalescence of anti-bound states which have the same structure as bound
states with a < 0. However, even in this case the resonances are not associated
with the analytical continuation of continuum states.

Exercise 6.6

The kinetic energy operator in one dimension in atomic units is T̂ = − 1
2

d2

dz2 , where
z = F (x) is a complex contour in the coordinate space. Prove that when real basis sets
are used the matrix which represents T̂ is a complex symmetric matrix. In other words
show that

∫
z

dzφ(x) d2

dz2χ (x) = ∫
z

dzχ (x) d2

dz2φ(x).

6.2 Completeness of the spectrum

The eigenfunctions of a Hermitian operator form a complete set which satisfies the
closure relation (see the discussion on Hermitian matrices in the introductory part
of this chapter). Similarly, in non-Hermitian quantum mechanics the eigenfunctions
of the non-Hermitian Hamiltonian form a complete set, assuming that the c-product
is used and assuming that there are no degenerate eigenfunctions which we refer
to in this book as self-orthogonal states. The situation where the spectrum is
not complete is discussed separately in Chapter 9 where the self-orthogonality
phenomenon is discussed. Here we wish to discuss the possibility that the poles of
the scattering matrix serve as a complete set, and more specifically the possibility
and the conditions for which the decay resonance states serve as an almost complete
basis in the calculations of wave packet dynamics.

As an illustrative numerical example we studied the problem of a step barrier
potential which is presented in Fig. 3.1. The width of the potential barrier is L and
its height is V0. The resonance eigenvalues,Eres = k2

res/2, and eigenfunctions were
calculated for this problem in Chapter 4 (see Eq. (4.15) and Fig. 4.1). The interaction
region is taken as 0 ≤ x ≤ L. Following our above discussion, a wavepacket which
is localized in the interaction region can be expanded to a very high accuracy by
the decay resonance eigenfunctions. For the sake of simplicity of the analytical
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calculations we have chosen a non-normalized wavepacket given by

�(x) =
∑
n

Cn sin(nπx/L) , (6.33)

where

Cn = e−(n−10)2/σ . (6.34)

As a criterion for completeness of the resonance eigenfunctions expansion for
�(x) we define S(σ ), given by

S(σ ) =
∣∣∣∣∣∣
∑
kres

(ψkres |�)2

∣∣∣∣∣∣ , (6.35)

such that

S(σ ) ∼= 1 (6.36)

when ∑
kres

|ψkres )(ψkres | ∼= 1 . (6.37)

When S(σ ) approaches unity then we can describe the whole wavepacket by
the overlap with the resonance eigenfunctions. In our case S(σ ) can be calculated
analytically (when the resonance wavevectors kres and the resonance wavefunction
normalization factors Nres were calculated as described in Chapter 5):

S(σ ) = L

2

∣∣∣∣∣∣
∑
kres

Nres

2

(∑
n

Cn

[
sin(nπ/L− kres)

2(nπ/L− kres)
− sin(nπ/L+ kres)

2(nπ/L+ kres)

])2
∣∣∣∣∣∣ .
(6.38)

In Fig. 6.1 the deviations of S(σ ) from unity as function of σ for different values
of the height of the potential barrier V0 are presented. The parameter σ determines
the degree of localization of the initial wavepacket in the interaction region. As σ
increases the initial wavepacket is more localized in the interaction region. Note
that the results presented in Fig. 6.1 were calculated for the case where the width
of the potential barrier is L = 1. Therefore V0 = V0/Lmeasures the ratio between
the height of the potential barrier and its width.

The deviation of S(σ ) from unity for small values of σ is due to the fact
that exponential localization of the wavepacket in the interaction region is not
satisfied in our case when σ does not get sufficiently large. The deviation of S(σ )
from unity for large values of σ results from the fact that for large values of σ
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Figure 6.1 σ -trajectory calculations of S(σ ) = |∑kres
(ψkres |�(σ ))2|, where a

wavepacket, �, which is defined in Eqs. (6.33)–(6.34), is projected on the 500
decay resonance eigenstates (poles of the scattering matrix) which were calcu-
lated for a one-dimensional Hamiltonian with a step-like potential barrier. The
width of the potential barrier is L = 1 and its height is V0. When the resonance
wavefunctions serve as an almost complete basis set, S(σ ) � 1.

the standard deviation for the energy is large (following the uncertainty relations
�EWP = 1/(8σ 2) when we consider �x = σ ) and the 500 resonance decay poles
which have been used for the calculations are not enough to get converged results.
The fact that even for the case where V0/L = 10−7 the 500 resonance poles we
have used as a basis set serve as a complete set for a broad interval of values of σ
is a quite remarkable result and provides an illustrative numerical support to our
claim that the decay resonances serve as a complete basis set in the expansion of
an wavepacket which is localized in the interaction region.

Exercise 6.7

From the results presented in Fig. 6.1 for the case where the ratio between the height
of the potential barrier and its width is equal to 10−7 it seems that a continuum can be
described as a collective of broad and overlapping resonances. Show how under this
approximation a Feshbach resonance is generated. Show also that this resonance can
be associated with a Lorenzian peak in the cross section. This peak is centered at the
position of the Feshbach resonance and its width is the Feshbach resonance width.
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6.3 Advantages of calculating survival probabilities by c-product

The use of the c-product as presented above within the framework of the non-
Hermitian formalism of quantum mechanics enables one to study the dynamics
of systems which at times are technically extremely hard (and even impossible
using finite sources of computational facilities) to study within the framework of
the standard formalism of quantum mechanics. As an example we wish to study
a system in which an initially prepared wavepacket, �(x, t = 0) is localized in
the interaction region (e.g., a well embedded between two potential barriers). The
lifetime of the initial wave packet can be very long and therefore the survival
probability S(t) = |〈�(0)|�(t)〉|2 might decay very slowly in time. This decay can
be in fact so slow that even for a one-particle problem in one dimension the wave
packet propagation is too difficult for numerical reasons due to the long propagation
time. If the propagated wave packet is expanded in the basis of the eigenfunctions
of the Hermitian Hamiltonian (using the finite-box approximation only discrete
eigenstates are obtained)

�(x, t) = e−iĤ t/h̄�(x, 0) =
∑
n

〈ψn|�(0)〉e−iEnt/h̄ψn(x) , (6.39)

then the calculation of the survival probability

S(t)

=
∑
n

|〈ψn|�(0)〉|4 + 2
∑
n′

∑
n<n′

|〈�(0)|ψn′ 〉|2|〈ψn|�(0)〉|2 cos

(
(En − En′)t

h̄

)
(6.40)

requires the use of a very large box in the numerical calculations for which�E�t >
1, where �t is the duration of the time propagation and �E = min|En − En′ | for
the values of n and n′ for which |〈ψn|�(0)〉|2 > 0 and |〈ψn′ |�(0)〉|2 > 0. The
requirement of �E�t > 1 in order to avoid artificial interference effects between
the outgoing components of the propagated wave and the incoming wave compo-
nents which are produced by the reflections of the tail of the propagated wavepacket
from the edges of the box is a tough numerical task within the framework of the
Hermitian formalism of quantum mechanics, even for simple problems where the
rate of decay of S(t) is sufficiently small. However, when the overlap integral of
the complex scaled initial wavepacket with a single (or several) narrow long-living
resonance state is large, then the calculation of the decay of S(t) is straightforward
and requires relatively simple numerical calculations. Let us explain this claim
in some more detail. Within the framework of the non-Hermitian formalism of
quantum mechanics we use as a basis set the eigenfunctions of the complex scaled
Hamiltonian which contains resonance states and rotated continuum states (we
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assume that the initial wavepacket does not populate the bound states, but even if
they are populated the arguments will be similar) and therefore

�θ (x, t) = e−iĤθ t/h̄�(x, 0) =
∑
n

(ψθn |�θ (0))e−iEθn t/h̄ψθn (x) , (6.41)

where Ĥθψθn (x) = Eθnψθn (x), (ψθn′ |ψθn ) = δn′,n, and the complex scaled initial
wavepacket is defined as �θ (x, 0) = e−iθ/2�(xeiθ , 0). The multiplication by
the factor of e−iθ/2 is in order to maintain normalization, 〈�(0)|�(0)〉 =
(�θ (0)|�θ (0)) ≡ 〈�−θ (0)|�θ (0)〉.

Therefore, the survival probability is given by

S(t) =
∑
n

|(ψθn |�θ (0))|4e−2ImEθn t/h̄

+2
∑
n′

∑
n<n′

e−2Im(Eθn+Eθn′ )t/h̄Re[(�θ (0)|ψθn′)(ψθn |�θ (0))]2 cos

(
(Eθn − Eθn′)t

h̄

)

−2
∑
n′

∑
n<n′

e−2Im(Eθn+Eθn′ )t/h̄Im[(�θ (0)|ψθn′)(ψθn |�θ (0))]2 sin

(
(Eθn − Eθn′)t

h̄

)
.

(6.42)

Note that

(ψθn |�θ (0)) = 〈ψ−θ
n |�θ (0)〉 . (6.43)

When the unscaled Hamiltonian is real and real basis functions are used then
(ψθn |�θ (0)) = 〈ψ−θ

n |�θ (0)〉 = ([�−θ (0)]∗|ψθn ) = 〈�−θ (0)|ψθn 〉. When the com-
plex scaled initial wavepacket populates mainly a single resonance state denoted
by n = nres (i.e., |(ψθnres

|�θ (0))|4 � 1), for which −2ImEθnres
≡ �nres , then

S(t) � e−�nres t/h̄ . (6.44)

The analysis of the decay in terms of the resonance state enables us to understand
the dynamics based on the different decay times of the resonances even when the
wavepacket survives inside the interaction region for a very long time. The survival
probability of a given wavepacket will be determined by the interference between
resonances which decay at different rates. At long times we usually have one
state which survives. This analysis is not possible within the realms of Hermitian
quantum mechanics where the resonance states are not given as eigenstates of the
Hamiltonian and we need to propagate the wavepacket to extremely long times
which is numerically cumbersome.
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Exercise 6.8

Consider a general complex matrix H which has a complete spectrum. The amplitude
of the survival probability of an initial vector v0 is given by A(t) = vT

0 · U(t)v0, where
U(t) = e−iHt . Evaluate A(t) in terms of the right and left eigenvector matrices and the
corresponding eigenvalues of H.

6.4 The c-product for non-Hermitian time-periodic Hamiltonians

In Section 5.6 we described the photo-induced resonances as complex eigenvalues
of a Floquet type operator,

H = − ih̄
∂

∂t ′
+ Ĥ (t ′) . (6.45)

The Hamiltonian is time-dependent. For example, see in Chapter 2 the presentation
of the time-dependent Hamiltonian, Ĥ (t ′), which describes the interaction of atoms
or molecules or mesoscopic systems with a linearly polarized laser field. Here we
use t ′ rather than t in order to stress that t ′ is an additional coordinate and not
a parameter (time) as in the conventional representations of the solutions of the
time-dependent Schrödinger equation.

In the case of time-periodic Hamiltonians, Ĥ (t ′) = Ĥ (t ′ + T ), the eigenstates
of H are known as the Floquet quasi-energy states. Therefore one can choose
Tp = NT , where N ≥ 1. For pulsed lasers Tp is taken as any given time which is
equal to or larger than the duration of the laser pulse. As discussed in Chapter 5, the
complex quasi-energy eigenvalues of the complex scaled Floquet-type operator,

[−ih̄
∂

∂t ′
+ Ĥθ (t ′)]f θα r, t ′) = Eαf θα (r, t ′) (6.46)

are associated with the photo-induced resonance phenomenon. That is,

Eα = Eα − i

2
�α , (6.47)

where �α provides the rate of the photo-induced decay of the particles (e.g. elec-
trons) at the energy Eα + 2πh̄n/Tp where n attains integer values associated
with the n = 0,±1,±2, . . . Floquet/Brillouin channels. Note that Eα for the non-
resonance solutions (associated with the rotated continua) are θ -dependent eigen-
values. The “ket” resonance eigenstate

(r|f θα ) = f θα (r, t ′) (6.48)
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is a function of t ′ that serves here as a coordinate and the internal degrees of freedom
of the Hamiltonian, r (such as electronic, inter-molecular and nuclear coordinates
and in case of laser cooling also the center of mass coordinates). The left resonance
eigenfunctions of H are the eigenfunctions of H†∗,

H†∗ = + ih̄
∂

∂t ′
+ Ĥθ (t ′) . (6.49)

In order to define the “bra” quasi-energy resonance states we first should carry out
the Fourier series expansion of the “ket” resonance quasi-energy eigenfunction,
which is given by

f θα (r, t ′) =
+∞∑
n=−∞

φθα,n(r)e+iωnt ′ , (6.50)

where

ω = 2π

Tp
. (6.51)

For cw lasers ω is the laser frequency. The Fourier components are square inte-
grable (i.e., their asymptotes decay exponentially to zero). Moreover, the norm
|(φθα,n|φθα,n)| is usually exponentially localized around the chosen n = 0 Flo-
quet/Brillouin zone and therefore even in strong laser fields the summation in
Eq. (6.50) can be truncated to a finite number of Fourier channels.

On the basis of Eq. (6.49) the “bra” quasi-energy resonance states are defined
by

(f θα |r) = gθα(r, t ′) , (6.52)

where

gθα(r, t ′) =
+∞∑
n=−∞

φθα,n(r)e−iωnt ′ . (6.53)

The c-product implies that

(f θα′ |f θα ) = 1

Tp

∫ Tp

0
dt ′
∫ +∞

−∞
dr gθα′(r, t ′)f θα (r, t ′)

= δα′,α

+∞∑
n=−∞

∫ +∞

−∞
dr [φθα,n(r)]2 . (6.54)

Therefore, the quasi-energy resonance states are a bi-orthonormal set of solutions
(normalization implies multiplication of the Fourier components by a factor such
that (f θα |f θα ) = 1).
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6.5 The F-product for time propagated wavepackets

The F-product is the generalization of the c-product which was derived for eigen-
states of non-Hermitian operators to wavepackets which are the solutions of the
time-dependent Schrödinger equation in order to enable the calculations of time-
dependent expectation values. The name F-product indicates that the generaliza-
tion of the c-product as introduced above for eigenfunctions of the complex scaled
Hamiltonian (or for the complex scaled Floquet operator) takes into consideration
the decay of the propagated wavepacket from a finite region in space (where the
particles do not move freely). This finite region in space can be taken as large as one
wishes. The motivation which lies behind this definition is the desire to describe
the dynamics of the decaying system through the evolution of the resonance states.
If we expand any initial state in the eigenstates of the non-Hermitian Hamiltonian
the contributions of the resonances (as well as the bound states) will dominate
the evolution of the wavepacket in time. In many cases quite accurate results are
obtained by using a relatively small number of resonance eigenfunctions as a basis
set. In Chapter 8 we will show how such-treatment of time-dependent problems
can be beneficiary for studying phenomena resulting from the interaction of high
intensity radiation with matter. For example, by using a single resonance eigen-
function of the complex scaled Floquet operator one can explain the spectrum of
high harmonics generated from atoms (or molecules).

In this spirit, if a single resonance has a distinctively longer lifetime than all oth-
ers then in the long time limit we get that the “norm” of the propagated wavepacket
decays exponentially to zero as time passes (here without loss of generality we
assume that the complex scaled Hamiltonian is represented by a complex and
symmetric matrix),

(�θ (t)|�θ (t)) → 〈e−iEnres t/h̄φ−θ
nres

|e−iEnres t/h̄)φθnres
〉 = e−�nres t/h̄ . (6.55)

In contrast to the Hermitian formalism of quantum mechanics where the norm of
the propagated wavepacket is conserved, here the number of the particles in the
interaction region, given by

N (t) = (�θ (t)|�θ (t)) , (6.56)

is not conserved.
Within the framework of the standard (Hermitian) formalism of quantum

mechanics the number of particles in the interaction region requires long time
propagations and the use of many basis functions (or grid points)

N (t) = lim
V→∞

∫
V

|�θ=0(r, t)|2dV , (6.57)
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where V is some finite volume in space which encloses the region of interaction. It
is important to compare the exponential decay of the survival probability S(t) given
in Eq. (6.44) with the exponential decay of the “norm” as defined in Eq. (6.55).
The decay of S(t) = | (�θ (0)|�θ (t)) |2 as shown in Eq. (6.44) would be obtained
even in Hermitian quantum mechanics when the “norm” of the resonance state
is conserved and (�θ (t)|�θ (t)) = 1 at any given time. On the other hand, the
requirement of the exponential decay of the “norm” of the wavepacket is the
key point behind the generalization of the c-product for wavepackets. It implies
that we take the approach where the decay of the wavepacket is from a finite
region in space which can be taken as large as one wishes. The notation for
the definition of the “inner” product for wave packets as F(finite-space)-inner
product is motivated by our wish to emphasize on the fact that the integration
over all space in non-Hermitian quantum mechanics represents the expectation
values of the localized part of the wavepacket in standard quantum mechanics.
This means that the average physical properties of the particles which remain in the
interaction region will be given in the standard (Hermitian) formalism of quantum
mechanics by

Ō(t) = |Ō(t)|eiφO (t) ≡ N−1(t) lim
V→∞

∫
V

dV [�∗
θ (r, t)Ôθ�θ (r, t)]θ=0 , (6.58)

while in non-Hermitian quantum mechanics it will be

Ō(t) = |Ō(t)|eiφO (t) ≡ N−1(t)(�θ (t)|Ôθ |�θ (t)) . (6.59)

Note that sometimes the quantity which is relevant to the experiment at hand is
not the expectation value Ō itself but ratherN (t)Ō(t) which represents an extensive
property of the system depending on the number of the particles which are yet to
decay.

As example is when the intensity of emitted radiation from an atom in a strong
laser field is measured. In such a case the intensity depends on the number
of atoms which have not been ionized. The frequency of the emitted radiation
from an atom in a strong laser field is the Fourier transform of the expectation
value of the acceleration operator Ô = ∂V̂ /∂x, where V̂ is the atomic electronic
potential which is exposed to a laser that induced an ac field which oscillates
along the x-direction. However, the intensity of the radiation depends on N (t)
which provides in this case the number of electrons which have not been ion-
ized and are still temporarily bound to the atom. Therefore the high-order har-
monic generation spectra is obtained by the Fourier transform of N (t)Ō(t) and not
of Ō(t).
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Exercise 6.9

(a) Prove that within the c-product formalism the expectation values of a given
wavepacket are the same as those obtained within the conventional Hermitian propa-
gation.
(b) In non-Hermitian numerical calculations we expand any wavepacket in a finite
number of eigenfunctions of a complex scaled Hamiltonian which are associated with
bound, resonance and rotated continuum states. Explain why numerical errors are
introduced in the non-Hermitian calculations of time-dependent expectation values
using the c-product formalism.
(c) Explain under what conditions these numerical difficulties are avoided when the
same calculations are carried out within the framework of the F-product formalism.
Explain the difference between the expectation values obtained by the c-product and
F-product formalisms.

A key point in the extension of the c-product to time-dependent calculations is
in understanding the role of the decay and capture resonances in the propagation of
wavepackets. The time-dependent state which is associated with the forward time
propagation of an initial state can be described using the Fourier representation of
the time evolution operator,

�θ (r, t > 0) = e−iĤθ t/h̄�θ (r, t = 0) =
∫ ∞

0
dEe−iEt/h̄�θ (r, E)

= +ih̄
∫ ∞

0
dEe+iEt/h̄Ĝθ (E)�θ (r, 0) , (6.60)

where, using the spectral representation of the Green’s operator,

Ĝθ (E) = 1

E − Ĥθ
=
∑
n

|ψθn )(ψθn |
E − Eθn

(6.61)

and Eθn and ψθn are correspondingly the eigenvalues and eigenfunctions of Ĥθ =
Ŝ+θ Ĥ Ŝ−θ . Note that the spectrum of Ĥθ includes the decay resonances and the
continuum states which are rotated into the fourth quadrant in the complex energy
plane.

The time-dependent state which is associated with the backward time propaga-
tion of an initial state is given by

�θ (r, t < 0) = [�θ (r, t > 0)]∗ = −ih̄
∫ ∞

0
dEe+iEt/h̄Ĝ−θ (E)[�θ (r, 0)]∗ .

(6.62)
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where

Ĝ−θ (E) = 1

E − Ĥ−θ
=
∑
n

|[ψθn ]∗)([ψθn ]∗|
E − (Eθn)∗

(6.63)

and [Eθn]∗ and [ψθn ]∗ are correspondingly the eigenvalues and eigenfunctions of
Ĥ−θ = Ŝ−θ Ĥ Ŝθ . Note that the spectrum of Ĥ−θ includes the capture resonances
and the continuum states which are rotated into the first quadrant in the complex
energy plane and not to the fourth quadrant as before.

Can we associate the forward and backward time-propagated initial states respec-
tively with the time-dependent “ket” states (i.e., right states) and “bra” states (i.e.,
left states)?

For the case where θ = 0 we know the answer since Ĥθ=0 is a Hermitian
Hamiltonian. The “ket”-right time-dependent state is defined by

�R(r, t ≥ 0) = �θ=0(r, t > 0) (6.64)

whereas the “bra”-left time dependent state is defined as

�L(r, t ≥ 0) = �θ=0(r, t < 0) . (6.65)

One may wonder whether we can generalize these definitions for the non-Hermitian
case. Let us postulate that the right-“ket” time-dependent state is the solution of
the time-dependent Schrödinger equation with the non-Hermitian Hamiltonian,

�θR(r, t ≥ 0) = �θ (r, t > 0) . (6.66)

Can we define for non-Hermitian Hamiltonians the left-“bra” time-dependent state
as

�θL(r, t ≥ 0)
?= �θ (r, t < 0) . (6.67)

The answer to this question is no. We can’t describe the “ket”-right states and
the “bra”-left states by using entirely different complex poles of the scattering
matrix. The “ket”-right states are associated with the poles of the scattering matrix
which are embedded in the fourth quadrant of the complex energy plane (where the
decay resonances are located), whereas the “bra”-left states as proposed above are
associated with the poles of the scattering matrix which are embedded in the first
quadrant of the complex energy plane (where the capture resonances are located).
We have to describe the “ket”-right states and the “bra”-left states by using the same
complex poles of the scattering matrix. How can we carry out the transformation
from one type of pole to the other?
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We propose that in order to transform from capture poles (C) to decay poles (D)
we use the following operator:

ÔD←C =
∑
n

|ψθn )([ψθn ]∗| , (6.68)

whereas in order to transform from decay poles (D) to capture poles (C) we use the
operator

ÔC←D =
∑
n

|[ψθn ]∗)(ψθn | . (6.69)

Here ψθn and [ψθn ]∗ are the eigenfunctions of Ĥθ and Ĥ−θ correspondingly.
Therefore, the “bra”-left propagated wavepacket is given by

�θL(r, t ≥ 0) = ÔD←C[e−iĤθ t/h̄]∗ÔC←D[�−θ (0)]∗

=
∑
n′n

|ψθn′)([ψθn′]∗|e+iĤ−θ t/h̄|[ψθn ]∗)(ψθn |�∗
−θ (0))

=
∑
n

aL
n e+i(Eθn )∗t/h̄aL

n |ψθn ) =
∑
n

aL
n e+iE−θ

n t/h̄ψθn (r) , (6.70)

where

aL
n = (ψθn |�∗

−θ (0)) ; (6.71)

whereas the ket-right propagated wavepacket is defined as usual:

�θR(r, t ≥ 0) = e−iĤθ t/h̄�θ (x, 0) =
∑
n

aR
n e−iEθn t/h̄ · ψθn (r) , (6.72)

where

aR
n = (ψθn |�θ (0)) . (6.73)

This establishes a formal ground for evaluating observables using the non-
Hermitian formalism. The “norm” of a time-dependent wavepacket for the most
general case is given by

N (t) ≡ (�θL(t ≥ 0)|�θR(t ≥ 0)) =
∑
n

aL
n a

R
n e−2Im[Eθn ]t/h̄ . (6.74)
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The time-dependent expectation value of any complex scaled operator Ôθ is
accordingly given by

Ō(t) = 1

N (t)

∑
n′,n

aL
n′a

R
n e−i(Eθn−E−θ

n′ )t/h̄(ψθn′ |Ôθ |ψθn )

= 1

N (t)

∑
n′,n

aL
n′a

R
n e−iRe(Eθn−Eθn′ )t/h̄e−Im(Eθn+Eθn′ )t/h̄(ψθn′ |Ôθ |ψθn ) . (6.75)

6.6 The F-product and the conservation of the number of particles

Using the F-product formalism the number of particles is not conserved, as a result
of the fact that the limits of t → ∞ and x → ∞ are taken independently from
one another. In the spirit of the discussion given in Section 4.7 we argue here that
by using the F-product the number of particles is conserved when the limits of
t → ∞ and x → ∞ are coupled through the velocity of the ionized (dissociated
or radiated) electron (atom or α-particle). If we think of the decaying particle as a
freely moving particle, this velocity depends on the ratio between the position of
the particle x and the time of propagation t and is given by

v = p

M
=
√

2Re(Eres)

M
=
√

2ε

M
. (6.76)

The idea of coupling time and space results from two facts which are closely
related:

(1) the eigenvalue of the Hamiltonian which is associated with the resonance state has a
complex eigenvalue, Eres, only due to the requirement of the outgoing boundary con-
dition, i.e., restriction on the spatial behavior of the corresponding resonance eigen-
function;

(2) the inverse of -2Im(Eres)/h̄ = �/h̄ is the resonance lifetime.

The asymptote of the complex scaled resonance wavefunction is given by

�θ (x → ∞, t → ∞) = γresŜθe
−iErest/h̄e+ikresx , (6.77)

where for sufficiently narrow resonances the resonance wave vector can be approx-
imated by the first leading term as

kres =
√

2MEres/h̄ � [
√

2Mε/h̄]

(
1 − i�

4ε

)
. (6.78)
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Using the F-product formalism for the time-dependent inner product, the asymptote
of the complex scaled probability density is defined as

ρθ (x → ∞, t → ∞) = γ 2
resŜθe

−i�t/h̄e+2ikresx . (6.79)

Therefore, by using Eq. (6.78) one gets that

ρθ (x → ∞, t → ∞) � γ 2
resŜθ

[
e+�(x/v−t)/h̄] [e+2ixMv/h̄

]
. (6.80)

By keeping the ratio x/t = v and using the identityMv = p, Eq. (6.80) reduces to

ρθ (x → ∞, t → ∞) � γ 2
res lim
x→∞ e+2ixp cos θ/h̄e−2xp sin θ/h̄ = 0 (6.81)

and consequently the integral of ρθ (x, t) over the entire space and time converges
and the number of particles in the generalized space is conserved. The F-product
formalism conserves the number of particles under the assumption that a free
particle with velocity v is obtained at long times, and provided that we apply the
scaling operator after inserting the condition x = vt and not before. The exponential
decay of the particles from a finite region in space, which can be taken as large as
one wishes, results from the application of the scaling operator without imposing
the requirement of x = vt as x → ∞.

6.7 Concluding remarks

(1) Although in this chapter non-Hermitian operators were associated with complex scaled
operators, the c-product and the F-product presented here are applicable for more gen-
eral cases, as for example when one uses complex potentials in waveguide propagations
or in the studies of the PT symmetry properties of complex Hamiltonians.

(2) Quantum mechanics deals with linear operators and any linear operator can be repre-
sented by a matrix. The unscaled operators in quantum mechanics are represented by
Hermitian matrices where H = H∗T. In the case of real and Hermitian operators (e. g.,
in the absence of magnetic fields atomic and molecular Hamiltonians are real) they
can be represented by real symmetric matrices. Complex scaled operators are repre-
sented by non-Hermitian matrices where Hθ 	= Hθ

∗T. In the cases where the unscaled
operators are represented by real symmetric matrices, upon complex scaling they are
represented by complex symmetric matrices where Hθ = HT

θ .
(3) The left and right eigenvectors of a non-Hermitian matrix which are associated with

different eigenvalues,Ej ′ 	= Ej , are orthogonal, dT
j ′ · cj = 0. Note that even in the case

of degenerate states one can always choose linear combinations of the degenerate states
which will be orthogonal to one another, as stated above.

(4) In this chapter we introduced the c-product which can be considered as a replacement
for the scalar-product used in standard (Hermitian) quantum mechanics. The c-product
enables one to use the orthonormal eigenfunctions of the non-Hermitian Hamiltonian
(as, for example, the complex scaled Hamiltonian) as a basis set in the expansion
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of a given function. As we will see in Chapter 8, the use of the c-product enables
us to derive a non-Hermitian scattering theory (also for time-dependent problems).
Moreover, in experiments where the projectiles are temporarily trapped by the target,
the wavepacket which describes the scattering process of the projectiles from the target
has very small number of dominant terms in the series expansion of the wavepacket
when the eigenfunctions of the non-Hermitian Hamiltonian are used as a basis set.
This is in contradiction to the situation when the eigenfunctions of the Hermitian
Hamiltonian (i.e., when the rotational scaling angle is zero) are used as a basis functions.
The compact expansion of the wavepacket that describes the studied system in terms
of the eigenfunctions of the complex scaled Hamiltonian is not limited to scattering
experiments but also to the half-collision process where, for example, the system is
excited to a resonance (metastable) state by a laser (read more on the above threshold
ionization and the high harmonic generation phenomena in Chapter 8).

(5) The F-product presented in this chapter is an extension of the c-product to propagated
wavepackets, emphasizing the desire to reduce the number of eigenfunctions of the
non-Hermitian (e.g., complex scaled) Hamiltonian as a basis set in the expansion of the
propagated wavepacket. The postulate which stands behind the F-product formalism
is that (�res(t)|�res(t)) decays exponentially as time passes. The F-product plays a key
role in the derivation of a theory for the high-order harmonic and the above threshold
ionization and dissociation phenomenon, as will be shown in detail in Chapter 8.

6.8 Solutions to the exercises

Answer to Exercise 6.1

The orthonormal basis functions denoted by {j} satisfy Eq. (6.4). The eigenfunc-
tions of the complex scaled Hamiltonian can be expanded in this basis set,

|�n(θ )〉 =
∑
j

Cj,n(θ )|j 〉 . (6.82)

By substituting Eq. (6.82) into the time-independent Schrödinger equation,

Ĥθ |�n(θ )〉 = En|�n(θ )〉 , (6.83)

and multiplying from the left by 〈j ′|, where j ′ = 1, 2, . . . , one gets a set of coupled
equations of the form ∑

j

〈j ′|Ĥθ |j 〉Cj,n = EnCj ′,n . (6.84)

This set of equations can be condensed to a matrix eigenvalue problem,

HθCn(θ ) = EnCn(θ ) , (6.85)
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where

[Hθ ]j ′,j = 〈j ′|Ĥθ |j 〉 . (6.86)

Here we showed that the operator Ĥθ can be represented by a matrix with infi-
nite dimension. However, it is also possible to take a finite N ×N matrix as an
approximation which will converge to the exact solution when N → ∞.

Answer to Exercise 6.2

The elements of a general complex matrix H are given by Hi,j = 〈i|Ĥ |j 〉. Sim-

ilarly, H †
i,j = 〈i|Ĥ †|j 〉. Since by definition 〈i|Ĥ †|j 〉 = [〈j |Ĥ |i〉]∗ one immedi-

ately obtains that H† = H
T∗

. Note that, only when the orthonormal basis func-
tions are real functions, the matrix elements of HT can also be expressed as
〈j |Ĥ |i〉 = 〈i|H †∗|j 〉.

Answer to Exercise 6.3

By setting θ = 0 in the solution to Ex. 6.1, and by realizing that Ĥ (θ = 0) is a
Hermitian Hamiltonian denoted by Ĥ , one gets that for a finite number of basis
functions N ,

HCn = En(N)Cn , (6.87)

where n = 1, 2, . . . , N . In a more compact way we can write

HC = CE(diag)(N) , (6.88)

where [E(diag)(N)]n′,n = δn′,nEn(N). Therefore,

(CT)∗HC = E(diag)(N) . (6.89)

Here H is an N ×N Hermitian matrix in the orthonormal basis functions for
i = 1, 2, . . . , N . We now increase the dimension of our Hamiltonian matrix by one.
The basis set we will use is N eigenvectors given in Eq. (6.87) and the (i + 1)th
original basis functions. The eigenvalues of the new matrix, M, are denoted by
E(N + 1). These eigenvalues are the solutions of secular equations for which

det[E(N + 1) · I − M] = 0 , (6.90)

where I is an (N + 1) × (N + 1) unit matrix, and M is an (N + 1) × (N + 1)
matrix with the following structure:

M(1, 1) = 〈N + 1|Ĥ |N + 1〉 ,
M(1, i + 1) = 〈N + 1|Ĥ |i〉 ; i = 1, 2, . . . , N ,

M(i + 1, 1) = [M(1, i + 1)]∗ ; i = 1, 2, . . . , N ,

M(i + 1, j + 1) = Ei(N)δi,j ; {i, j} = 1, 2, . . . , N . (6.91)
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We denote the elements of the 1 ×N row M(1, i + 1); i = 1, . . . N by MT
1 . The

1, 1 element will be labelled A and the N ×N diagonal block following A will be
denoted by B, while the 1 ×N off-diagonal block matrices will be given the labels
GT and G†.

From the equality [E · I − M][E · I − M]−1 = I, i.e.,(
E −M(1, 1) MT

1

M∗
1 EI − H

)(
A GT

G† B

)
= I , (6.92)

one immediately gets

[E −M(1, 1)]A+ MT
1 G† = I ,

M∗
1A+ [E · I − H]G† = 0 . (6.93)

Since E · I − H is a square matrix,

G† = −[E · I − H]−1M1
∗A , (6.94)

and therefore[
E −M(1, 1) − MT

1 [E · I − H]−1M1
∗]A = 1 . (6.95)

Consequently,

A = [E −M(1, 1) − MT
1 [E · I − H]−1M1

∗]−1 . (6.96)

The eigenvalues of the extended matrix M are obtained from the poles of

[E(N + 1) −M(1, 1) − MT
1 H−1M1

∗]−1 . (6.97)

Thus we proved here that the eigenvalues of M satisfy the following equation:

E −M(1, 1) = MT
1 [E · I − H]−1M1

∗ . (6.98)

By introducing Eq. (6.89) into Eq. (6.98) one gets that

E −H (1, 1) = DT∗[E · I − E(diag)]
−1

D , (6.99)

where

D = CM∗
1 . (6.100)

The left-hand side of Eq. (6.99) is a straight line in E. The right-hand side of
Eq. (6.99) has poles when E = En(N). Therefore, the intersection points between
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the straight line and the curve obtained when the right-hand side of Eq. (6.99) is
plotted as function of E are the solutions we are looking for, En(N + 1), such that

En−1(N) < En(N + 1) < En(N) . (6.101)

Answer to Exercise 6.4

(a) The multiplication of Hcj = Ejcj from the left by the vector dT
j ′ and multipli-

cation of dT
j ′H = Wj ′dT

j ′ from the right by cj provide the following two equations:

dT
j ′Hcj = EjdT

j ′cj ,

dT
j ′Hcj = Wj ′dT

j ′cj . (6.102)

By subtracting the two equations one gets that

(Ej −Wj ′)dT
j ′cj = 0 (6.103)

whenever

Ej −Wj ′ 	= 0 . (6.104)

This condition is satisfied only when

dT
j ′cj = 0 . (6.105)

Thus we established that the left and right eigenvectors are orthogonal.
The fact that this is not an inner product in the usual sense is illustrated by the

possibility (though quite a rare one) that even when Wj ′ = Ej (of course one can
reorder the eigenvalues and the eigenvectors such theWj ′ = Ej for j ′ = j ) it may
happen that dT

j cj = 0. We entitle these special eigenvectors as “self-orthogonal”
eigenvectors.

(b) The fact that a non-Hermitian N ×N matrix has N linearly independent
vectors implies that H = CEdiag

N DT, where [Ediag
N ]i,j = δi,jEj and therefore

dT
j cj = Nj = ρjeiαj 	= 0 . (6.106)

As we will show below, there is some freedom in the definition of the normalized
right and left eigenvectors. The normalized right and left eigenvectors, c̃j and d̃j ,
are respectively given by

c̃j = NR
j cj = ρR

j eiαR
j cj . (6.107)

d̃j = NL
j dj = ρL

j eiαL
j dj , (6.108)

where

NL
j N

R
j = Nj . (6.109)
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Therefore,

ρL
j ρ

R
j = ρj . (6.110)

αL
j + αR

j = αj . (6.111)

There are three degrees of freedom in the normalization of every set of left and right
eigenvectors of the non-Hermitian matrix. Two free parameters are the length and
the phase of one of the two normalization factors which can be chosen arbitrarily
and still keep the vectors normalized to unity. The third one is the global ± phase.
Note that for complex symmetric matrices one may wish to keep c̃j = d̃j and
therefore only one degree of freedom remains (the ± global phase).

Answer to Exercise 6.5

By substituting the coefficient of the out-going wavesB(qn) andB(qn′) as calculated
in Chapter 4 (see Eq. (6.19)) in Eq. (6.24) one gets

(�n|�n′) = 1

2

(
sin[(kn − kn′)L]

kn − kn′
− sin[(kn + kn′)L]

kn + kn′

)
(6.112)

+ i

4(qn + qn′)

[
sin(knL) − i

kn

qn
cos(knL)

] [
sin(kn′L) − i

kn′

qn′
cos(kn′L)

]
.

Note that when n′ = n,

lim
n′→n

sin[(kn − kn′)L]

kn − kn′
= L , (6.113)

and therefore the normalization factor of the n-th resonance state according to the
c-product is given by

Nn(kn, qn) =
[

1

2

(
L− sin(2knL)

2kn

)
+ i

8qn

[
sin(knL) − i

kn

qn
cos(knL)

]2
]−1/2

.

(6.114)

Since the functions �n(x) and �n′(x) are two decay resonances of the one-
dimensional potential barrier problem, the wave vectors associated with the n-th
resonance state should satisfy the following condition:

kn = nπ − i
L

2
ln

[
qn + kn
qn − kn

]
. (6.115)

The self-orthogonality condition is

Nn(kn, qn) = 0 , (6.116)
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where kn and qn satisfy Eq. (6.115). By varying the potential parameters, L and V0,
accidental degeneracy can be obtained (provided there is a solution to Eq. (6.116)).
By substituting Eq. (6.115) for n and n′ in Eq. (6.112) one gets that for �n(x) 	=
�n′(x)

(�n|�n′ 	=n) = 0 , (6.117)

and for the normalizable resonance wavefunctions

(�̃n|�̃n′) = δn,n′ . (6.118)

Answer to Exercise 6.6

Since the real basis functions φ(x) and χ (x) decay exponentially to zero as x →
±∞, also the asymptotes of the transformed functions,

φ̃(z) = φ(x)|x=F−1(z) (6.119)

and

χ̃ (z) = χ (x)|x=F−1(z) (6.120)

vanish at z = ±∞. Therefore the complex scaled kinetic energy matrix elements
we need to calculate are given by∫ +∞

−∞
dzφ̃(z)

d2

dz2
χ̃(z) . (6.121)

By carrying out integration by parts one gets∫ +∞

−∞
dzφ̃(z)

d2

dz2
χ̃(z) =

∫ +∞

−∞
dzχ̃ (z)

d2

dz2
φ̃(z) +

[
dφ̃

dz
χ̃ (z) − dχ̃

dz
φ̃(z)

]+∞

−∞
.

(6.122)

Since, as explained above, φ̃(z) → 0 and χ̃ (z) → 0 as |z| → ∞, we get that∫ +∞

−∞
dzφ̃(z)

d2

dz2
χ̃ (z) =

∫ +∞

−∞
dzχ̃ (z)

d2

dz2
φ̃(z) . (6.123)

Answer to Exercise 6.7

Let us consider a case where one bound state in a closed channel interacts with the
continuum of an open channel. We assume that the continuum can be represented
by broad decay resonance states only, {�nc}nc=1,2,.... Note that even for a very
shallow finite square potential well or a barrier there are an infinite number of
broad overlapping resonances. These decay resonances which are associated with



6.8 Solutions to the exercises 203

the open channel are very broad ones and are assigned a good quantum number
nc. As we will show below, the widths of these broad decay resonances play the
role of density of continuum states in the open channel in the calculations of the
width of the Feshbach resonance state which is “born” due to the interaction of the
bound state in the closed channel with the continuum state in the open channel.
Even when the open channel does not support any decay resonances one might
modify the potential of the open channel by adding a shallow rectangular potential
well/barrier with a depth/height denoted by v0. The resonance width �nc → ∞ as
v0 → 0. As we will show below, our conclusions do not dependent on the value of
v0 (or �nc ).

The Hamiltonian in this case is given by

Ĥ = Eb|b〉〈b| +
∑
nc

(
Enc − i

2
�nc

)
|[nc]∗〉〈nc|

+
∑
nc

Vb,nc (|[nc]∗〉〈b| + |b〉〈nc|) . (6.124)

The bound state is represented by a real function. When the coupling between the
two channels is sufficiently weak it is reasonable to consider the case where the
bound state is mainly coupled to a single decay resonance state, |c〉, and Eq. (6.124)
reduces to

Ĥ = Eb|b〉〈b| +
(
Ec − i

2
�c

)
|[c]∗〉〈c| + Vb,c(|[c]∗〉〈b| + |b〉〈c|) , (6.125)

where

Ec = Eb +� . (6.126)

It is convenient to define the strength of the coupling parameter between the two
channels as

Vb,c =
√
g�c

2
. (6.127)

As will be shown below, when g � �c, g is the width of the Feshbach resonance
state which is created due to the interaction of the bound state in the closed channel
with the continuum of the open channel. The strength of the coupling between
the closed and open channels is increased as �c is increased. This result might
be expected since, within the framework of the standard formalism of quantum
mechanics, the bound state in the closed channel is mainly coupled to the continuum
states in the open channel within the energy interval Eb ± �c/2.

The time-independent Schrödinger equation we should solve is given by

H|ψ〉 = E|ψ〉 , (6.128)
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where

H =
(

Eb
√
g�c/2√

g�c/2 Eb +�− i
2�c

)
(6.129)

and

|ψ〉 =
( |b〉

|c〉
)
. (6.130)

The two eigenvalues of the 2 × 2 matrix H are given by

E± = 2Eb +�− i/2�c
2

± 1

2

√
(�− i/2�c)2 + g�c . (6.131)

For the sake of simplicity, without loss of generality, we set here the shift in the
resonance position equal to zero, � = 0. The two eigenvalues are reduced to

E± = Eb − i

4
�c ∓ i

4
�c

√
1 − 4g

�c
(6.132)

and for 4g/�c � 1 we get the first-order approximated values for the Feshbach
resonance state resulting from the interaction of the bound state in the open channel
with the continuum of the open channel (presented here by a broad resonance state)
and for the shifted continuum state of the open channel,

Eres = Eb − i

2
�res , (6.133)

where

�res = g (6.134)

and

Eshifted
c = Eb − i

2
(�c + g) . (6.135)

Let us consider now a situation where our 2 × 2 Hamiltonian describes a quan-
tum dot which is attached to two leads through the open channel in our Hamiltonian.
Using the results presented above, we can calculate the probability amplitude of
a transition from one lead to the second one through the quantum dot. Using the
Lippmann–Schwinger equation (the extension of the time-independent quantum
scattering theory to non-Hermitian Hamiltonians is presented in Chapter 8), the
probability amplitude for the scattering event where the final state is exactly as the
initial state (

0
|c〉
)

→
(

0
|c〉
)

(6.136)
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is approximately given by

t(ε) = 1 + ( 0 1 )

(
0

√
g�c/2√

g�c/2 0

)

·
(

ε −√
g�c/2

−√
g�c/2 ε + i

2�c

)−1 ( 0
√
g�c/2√

g�c/2 0

)(
0
1

)
, (6.137)

where ε = E − Eb is the deviation from the resonance condition where E is
the energy of the incoming particle in the open channel. After some algebraic
manipulation one gets that

t(ε) = 1 − �res�c(2ε + �ci)
2�res�c − 8ε2 − 4iε�c

. (6.138)

For�c � �res (as in our case) one gets that the transition probability in the scattering
experiment has a Lorenzian peak at ε = 0 (i.e., at the Feshbach resonance position),

|t(ε)|2 �
(
�c

2

)2 [
1 + (2ε/�res)

2
]−1

(6.139)

with a width at half-height of �res = g, where g is defined above as the potential
interaction between the closed and open channels divided by the density of states
in the open channels as presented here by �c.

Answer to Exercise 6.8

The Taylor series expansion of the matrix U(t) is given by

U(t) = e−iHt =
∑
n

(−it)n

n!
Hn . (6.140)

Using the closure relations and the fact that dj and cj are correspondingly the
left and right eigenvectors of H that are associated with the same eigenvalue Ej ,
Eq. (6.140) can be re-written in the spectral representation as

U(t) = CDTe−iHtCDT =
∑
j

∑
n

(−it)n

n!
Enj cj · dT

j =
∑
j

e−iEj tcj · dT
j .

(6.141)
Using Eq. (6.141), the survival probability amplitude of the initial vector v0 is
obtained,

A(t) = vT
0 · U(t)v0 =

∑
j

e−iEj t (vT
0 · cj )(dT

j · v0) . (6.142)

For Hermitian matrices {Ej } are real. For non-Hermitian matrices which represent
the complex scaled Hamiltonians Im{Ej } ≤ 0 and therefore A(t) decays to zero
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as time passes whenever the initial state vector populates eigenvectors which are
associated with the resonance states. This is essentially the F-product formalism
which was discussed in detail in this chapter.

Answer to Exercise 6.9

(a) For the sake of simplicity we assume that the Hamiltonian is real and Hermitian
within the framework of standard QM. The time-dependent expectation values of
a given operator Ô are given by

Ō(t) =
∫

all-space dr�L(r, t)Ô�R(r, t)∫
all-space dr�L(r, t)�R(r, t)

, (6.143)

where

�R(r, t) = e−iĤ t/h̄�WP(r) ,

�L(r, t) = e+iĤ t/h̄�∗
WP(r) . (6.144)

Since the initial wave packet�WP(r) is a square integrable function, also the time-
propagated WP is a square integrable function at any given time t . Consequently,
one can use orthonormal square integrable functions {gn}n=1,2,... (e.g., 3D harmonic
oscillators) as a basis set. In such a case

�R
WP(r, t) =

∑
n

Cn(t)gn(r) ,

�L
WP(r, t) =

∑
n

C∗
n(t)g∗

n(r) ,

Cn(t) = 〈gn|�R
WP(t)〉 (6.145)

and

Ō(t) =
∑
n′,n

C∗
n′(t)Cn(t)

∫
g∗
n′(r)Ôgn(r)dr . (6.146)

Here we use the normalization condition that
∑
n′,n C

∗
n′(t)Cn(t) = δn′,n. We now

use the complex scaling transformation r → reiθ (see Chapter 5) for calculating
the time-dependent expectation values:∫

�L
WP(re+iθ , t)Ôθ�

R
WP(re+iθ , t)e+3iθdr

=
∑
n′,n

C∗
n′(t)Cn(t)

∫
[gn′(re−iθ )]∗Ôθgn(re+iθ )e+3iθdr , (6.147)
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where the complex scaled operator Ô is denoted by Ôθ . Since the square integrable
basis functions are analytical functions and Ôgn(r) is an analytical function,∫

g∗
n′(r)Ôgn(r)dr =

∫
[gn′(re−iθ )]∗Ôθgn(re+iθ )e+3iθdr . (6.148)

Using this result we get that∫
�L

WP(re+iθ , t)Ôθ�
R
WP(re+iθ , t)e+3iθdr

=
∑
n′,n

C∗
n′(t)Cn(t)

∫
g∗
n′(r)Ôgn(r)dr = Ō(t) (6.149)

and the same expectation value is obtained as in standard QM. Note that in the
calculations of the l.h.s. of Eq. (6.149) we have used the c-product formalism. The
c-product is applicable since square integrable functions remain square integrable
upon complex scaling.

(b) We now discuss the situation where the use of the c-product as derived for eigen-
states of non-Hermitian operators in calculations of the time-dependent expecta-
tion values might introduce numerical difficulties, while the use of the F-product
formalism simplifies the calculations. This happens when one wishes to use the
eigenfunctions of the complex scaled Hamiltonian as a basis set in numerical cal-
culations of the complex scaled time evolution operator. Thus any state can be
expressed in terms of the solutions of the complex scaled TISE,

Ĥθψ
θ
n (r) = Eθnψθn (r) , (6.150)

where n is the index of the complex scaled bound states (if they exist), rotated
continuum states and the resonance states. Only for the bound states ψθn (r) =
ψn(reiθ ) (up to a normalization factor). For the rotated continuum and resonance
satesψθn (r) 	= ψn(reiθ ), which implies that the rotated continuum eigenfunctions of
the complex scaled Hamiltonian are not equal to the complex scaled eigenfunctions
of the unscaled Hermitian Hamiltonian. Using a finite-box quantization condition,
the spectrum of the complex scaled Hamiltonian is discrete and as the size of the
box is increased the density of the quasi-continuum states is increased as well.

The time-dependent expectation value Ō(t) is calculated using the c-product for
the calculations of time-dependent expectation values, which yields

Ō(t) =
∑
n′,n

[D−θ
n′ ]∗[Dθn]e−i(Eθn−Eθn′ )t/h̄

∫
ψθn′(r)Ôθψ

θ
n (r)dr , (6.151)
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where here we assume that for θ = 0 the eigenfunctions of the Hamiltonian are
real functions (i.e., become complex upon the complex scaling) and therefore
〈[ψ−θ

n′ ]∗|ψθn 〉 = (ψθn′ |ψθn ) = δn′,n. The linear coefficients are given by

Dθn = 〈ψ−θ
n |�θWP〉 = (ψθn |�θWP) , (6.152)

where
∑
n[D−θ

n ]∗[Dθn] = 1. The complex scaled initial wave packet is |�θWP〉 and
the integration is carried out over e+3iθdr. The motivation for using the ortho-
normal eigenfunctions of the complex scaled Hamiltonian as a basis set results
from the fact that in many physical situation the dynamics is controlled by a single
or by several resonance states. A simple case is when the initial state is already
mostly populated by a single resonance state,

|Dθnres
|2 ∼ 1 . (6.153)

In such a case it might be necessary to carry out the time-propagation calculations
for a very long period of time (longer than the lifetime of the narrowest resonance
state which is populated by the initial wavepacket). Even in the case where the dom-
inant contribution to the basis set expansion of the initial state is a resonance state
there are other non-vanishing contributions of other basis functions (resonances or
rotated continuum states). Therefore, as one can see from Eq. (6.151), due to the fact
that there are always pairs of complex eigenvalues for which Im[Eθn − Eθn′] > 0,

lim
t→∞ e−i(Eθn−Eθn′ )t/h̄ = ∞ . (6.154)

The n-th and n′-th states can be two resonances states that do not have the same
widths or one resonance state (or a bound state) and one rotated continuum state
(note that the initial wave packet can never populate exclusively one resonance
state only). This time asymmetry problem in non-Hermitian quantum mechanics
limits the ability to propagate a resonance wavefunction from the initial time t = 0
to t = −∞. However, as has been proved above, the time-dependent expectation
value Ō(t) which is calculated within the framework of the c-product formalism
is equal to to the value which is obtained within the framework of the standard
formalism of QM. Therefore, the summation over the entire eigenstates of the
complex scaled Hamiltonian introduces quantum interferences which compensate
the diverging and decaying nature of different individual terms in the basis set
expansion of the time-dependent expectation value of the operator Ô. However,
the truncation of the number of basis functions which are used in the calculations
of Ō(t) might introduce numerical difficulties which require special attention.
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The same analysis presented above for a time-independent Hamiltonian can be
implemented for a time-periodic Hamiltonian where the time-independent Hamil-
tonian Ĥ and Ĥθ are replaced respectively by the Floquet operators

HF(r, t) = −ih̄∂t + Ĥ (6.155)

and

Hθ
F(r, t) = −ih̄∂t + Ĥθ (6.156)

and t serves as an additional coordinate. Similarly En and Eθn are replaced by the
eigenvalues of the Floquet and complex scaled Floquet operators. Therefore, the
same time-asymmetry problem exists also in the calculations of time-dependent
expectation values by using the quasi-energy solutions of the TDSE when the
time-dependent Hamiltonian is complex scaled.

(c) We now have motivation for applying the F-product formalism. There are two
conditions which should be satisfied in order to justify replacing the c-product by
the F-product:

(1) the operator Ô gets non-zero values at the interaction region and vanishes elsewhere
(e.g., the acceleration operator −(1/m)∂V/∂r);

(2) as time passes the propagated wavepacket populates a single or several resonance
states.

Under such conditions we wish to normalize the resonance wavefunctions such
that they decay exponentially as time passes, and therefore Eq. (6.151) is replaced
by

Ō(t) =
∑
n′,n[D−θ

n′ ]∗[Dθn]e−i(Eθn−[Eθ
n′ ]

∗)t/h̄
∫
ψθn′(r)Ôθψθn (r)dr∑

n[D−θ
n ]∗[Dθn]e−2Im[Eθn ]t/h̄

. (6.157)

If, for example, the initial wavepacket populates mostly the lowest (i.e., long-
living) resonance state which is denoted by n = nres then the complex expectation
value is time-independent,

Ō = [D−θ
nres

]∗[Dθres]
∫
ψθnres

(r)Ôθψ
θ
nres

(r)dr . (6.158)

Note, however, that in the case that ψθnres
are the resonance eigenfunctions of

the complex scaled Floquet operator which describes the interaction of our system
with a cw laser, then ψθnres

are time-periodic functions with the period T = 2π/ωL,
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where ωL is the laser frequency and therefore the expectation values Ō are time-
dependent even when the initial wavepacket populates mostly the lowest (i.e.,
long-living) resonance state (i.e., Eq. (6.158) becomes a time-periodic function).

The conclusion is that there is no contradiction between the c-product and the F-
product. The F-product is an extension of the c-product which has been derived for
eigenstates of non-Hermitian operators as an equivalent to the inner product which
is used in the standard (Hermitian) formalism of quantum mechanics to wavepack-
ets that are involved in time and are the solutions of the time-dependent Schrödinger
equation (for time-independent Hamiltonians and also for time-dependent ones).
In this exercise we compare two different possible extension of the c-product to
wavepackets. One possibility is discussed in (b) and it is shown to be numerical
unstable, whereas the second possibility which is referred to as the F-product (decay
from a finite volume in space which can be as large as pleased) is discussed in (c)
and is the preferable approach when the dynamics is controlled by the resonance
states.
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7

The properties of the non-Hermitian Hamiltonian

The focus of this chapter is on the complex analogs to basic theorems and princi-
ples in the standard (Hermitian) formalism of quantum mechanics. These theorems
are the basis for a formalism analogous to the standard (Hermitian) formalism of
quantum mechanics. This will allow us to construct theoretical methods and tools
similar to those used to solve problems in conventional quantum mechanics, and
enable us to establish, for instance, a non-Hermitian time-independent scattering
theory for time-independent Hamiltonians which is presented in Chapter 8. More-
over, on the basis of the theorems presented in this chapter, one can observe novel
phenomena which are hard to predict or explain by using the standard formalism
of quantum mechanics. This chapter sets the ground for the derivation of computa-
tional algorithms and their applications to different problems and to study different
types of physical phenomenon.

7.1 The turn-over rule

As discussed in Chapter 4, the complex scaled Hamiltonian is defined by

Ĥθ = Ŝθ Ĥ Ŝ−1
θ , (7.1)

where

�̃(rθ ) = Ŝθ�(r) = eiθ/2�(reiθ ) (7.2)

and the complex scaled coordinate is given by

ρθ = reiθ . (7.3)

Since

Ŝ−1
θ Ŝθ = 1̂ , (7.4)

211
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it is clear that

Ŝ−1
θ = Ŝ−θ = [Ŝθ ]

∗ . (7.5)

What is Ŝ†θ ? If f (r) and g(r) are two functions in the Hilbert space then∫
all space

f (r)Ŝ†θ g(r)dr =
∫

all space
g(r)[Ŝθ ]

∗f (r)dr . (7.6)

Therefore, ∫
all space

f (r)Ŝ†θ g(r)dr =
∫

all space
g(r)e−iθ/2f (re−iθ )dr

=
∫

all space
eiθ/2g(ρ−θeiθ )f (ρ−θ )dρ−θ . (7.7)

Since the functions in the Hilbert space are analytical functions we can change the
contour of integration to be a real contour, ρ−θ → r , and consequently,∫

all space
f (r)Ŝ†θ g(r)dr =

∫
all space

eiθ/2g(reiθ )f (r)dr

=
∫

all space
f (r)[eiθ/2g(reiθ )]dr . (7.8)

Therefore, ∫
all space

f (r)Ŝ†θ g(r)dr =
∫

all space
f (r)Ŝθg(r)dr . (7.9)

Thus we have shown here that

Ŝ
†
θ = Ŝθ , (7.10)

and consequently (using Eq. (7.1)),

Ĥ
†
θ = Ĥ−θ . (7.11)

The turn-over rule implies that for any two square integrable functions in the Hilbert
space (which may be complex functions regardless of the complex scaling),∫

all space
gĤ

†
θ f dr =

∫
all space

f Ĥ ∗
θ gdr . (7.12)

Using the Dirac notation Eq. (7.12) can be written as

〈g∗|Ĥ †
θ |f 〉 = 〈f ∗|Ĥ ∗

θ |g〉 . (7.13)
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When Ĥθ=0 is a real Hermitian operator, then for the case where θ 	= 0, Ĥ ∗
θ = Ĥ−θ

and therefore (using Eq. (7.11)) one gets that

〈g∗|Ĥ−θ |f 〉 = 〈f ∗|Ĥ−θ |g〉 . (7.14)

By making the simple transformation θ → −θ one gets the turn-over rule for the
complex scaled Hamiltonians which operate on functions in the Hilbert space,

〈g∗|Ĥθ |f 〉 = 〈f ∗|Ĥθ |g〉. (7.15)

Note that in principle the functions f and g can also be eigenfunctions of any
complex scaled Hamiltonian, provided that their asymptotes decay exponentially
to zero. Specifically, they may be associated with the bound and/or resonance states
of a complex scaled Hamiltonian. Moreover, one may choose g to be the complex
conjugate of the resonance eigenfunction of a complex scaled Hamiltonian since
its asymptote also decays exponentially to zero.

It is clear from the turn-over rule that for θ 	= 0, unlike the situation in the
Hermitian case, the complex scaled Hamiltonian is not a self-adjoint operator. We
should stress again that in Eq. (7.15) the square integrable functions are in the
Hilbert space and, for example, can be associated with the eigenfunctions of the
Hermitian Hamiltonian using the box-quantization condition.

Exercise 7.1

Prove that non-degenerate states of a real Hermitian Hamiltonian are real functions.
Also show that degenerate states can always be transformed to be real functions as
well. What would be the properties of the matrix which represents the complex scaled
Hamiltonian which is constructed from real basis functions?

7.2 The complex analog of the variational principle

The complex analog of the variational principle (the so-called c-variational method)
provides the formal justification for the use of computational techniques that orig-
inally were developed for bound states in the calculation of the resonance position
and widths by the complex coordinate method.

As discussed in Chapter 5, one can assume that the eigenfunctions of Ĥ(θ ) form
a complete c-normalizable set. The possibility of an incomplete spectrum is exten-
sively discussed in Chapter 9. However, even in the case where the exact spectrum
is incomplete due to round-off errors in numerical calculations, the spectrum turns
to be a complete one. From now on in the discussions in this chapter we assume
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that the spectrum is complete.

Ē = (φ|Ĥθ |φ)

(φ|φ)
(7.16)

provides a stationary approximation to the true complex eigenvalue Ek when φ is
a c-normalizable (i.e. (φ|φ) = 1) approximation that is close to the eigenfunction
ψk of Ĥθ . In other words

φ = ψk + ∂(ε) implies E = Ek + ∂(ε2) . (7.17)

This complex variational principle is, however, a stationary principle rather than
an upper or lower bound for either the real or imaginary part of the complex
eigenvalue. As noted above, even this stationary property fails if the eigenfunctions
are not c-normalizeable (i.e. c-normalization implies that (ψk|ψk) 	= 0 for any value
of k).

7.2.1 Linear c-variational calculations

Let us expand the trial functions φ by N orthonormal basis functions, {χi}; i =
1, . . . , N ,

|φ) =
N∑
j=1

CR
j |χj 〉 ,

(φ| =
N∑
i=1

CL
i 〈χi | . (7.18)

By substituting Eqs. (7.18) into Eq. (7.16) one obtains∑
i, j

CL
i C

R
j (Hij (θ ) − Ēδij ) = 0 , (7.19)

where

Hij (θ ) = 〈χi |Ĥθ |χj 〉 . (7.20)

On the basis of the c-variational principle given in Eqs. (7.16) and (7.17) we require
that

∂Ē

∂CL
i

= 0 for i = 1, 2, . . . , N . (7.21)
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Consequently,

N∑
j=1

CR
j

(
Hij (θ ) − Ēδij

) = 0 , (7.22)

which can be recast in matrix form as

H(θ )CR = CRĒ , (7.23)

where Ē is a diagonal matrix. Here we proved that the solutions of the matrix
eigenvalue problem in Eq. (7.23) are stationary solutions in the complex variational
space, and as N → ∞ the exact solution of the time-independent complex scaled
Schrödinger equation would be obtained. This theorem sets the ground for c-
variational calculations by which auto-ionization, predissociation and other types
of resonance positions and widths can be obtained.

Exercise 7.2

This exercise is based on the Milfeld and Moiseyev application of the Lanczos algorithm
to complex and symmetric Hamiltonian matrices.1 UsingN complex orthonormal basis
functions the non-Hermitian Hamiltonian is represented by an N -dimensional non-
symmetric matrix, Hθ . The eigenvalues of Hθ are the complex variational solutions of
our problem. Derive the Lanczos recursion equations by which Hθ is transformed to a
tri-diagonal matrix Tθ . Explain why the matrix Tθ can always be made symmetric.

The c-variational principle has been derived here for a time-independent non-
Hermitian Hamiltonian. The c-variational solutions can be used for the calculations
of time-dependent expectation values when the initial state is a wavepacket which
can be described as a linear combination of the variational solutions.

7.2.2 Non-linear variational approaches

We will focus here on two different types of non-linear variational calculation. The
first type of non-linear c-variational calculation is associated with the use of non-
orthogonal basis functions where in addition to the linear variational parameters,
{C}, a set of non-linear parameters, {γ}, are also optimized. The second type of
non-linear variational calculation is considered when mean field approximations
are applied. This usually occurs when self-consistent-field (SCF) methods are used
to solve the set of pseudo-coupled variational equations.

1 K. Milfeld and N. Moiseyev, Complex resonance eigenvalues by the Lanczos recursion method, Chem. Phys.
Lett. 130, 145 (1986).
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Optimization of non-linear variational parameters

A simple example of the first type of non-linear variational calculation is the case
where the trial function φ is defined similarly to Eqs. (7.18) as

|φ) =
N∑
j=1

CR
j |χj (γj )〉 ,

(φ| =
N∑
j=1

CL
j 〈χj (γ ∗

j )| , (7.24)

where {γj } j = 1, . . . , N are the scaling parameters of the basis functions. These
non-linear parameters might get complex values when the variational energy Ē =
(φ|Ĥ |φ)/(φ|φ) is optimized to satisfy the following secular equations:[

H(γ ) − Ē(γ )S(γ )
]

CR(γ ) = 0 , (7.25)[
[H(γ )]T − Ē(γ )[S(γ )]T

]
CL(γ ) = 0 , (7.26)

where

[H(γ )]i,j = 〈χi(γ ∗
i )|Ĥ |χj (γj )〉 ,

[S(γ )]i,j = 〈χi(γ ∗
i )|χj (γj )〉 (7.27)

and

∂Ē

∂γj
= 0 j = 1, . . . , N . (7.28)

The stationary solutions of Eq. (7.28) in complex variational space are associated
with resonances. This is the generalized complex variational method as derived by
Moiseyev.2 A very special case is when one uses only a single non-linear variational
scaling parameter such that γj = η = αeiθ . The requirement for the potential to be
an analytical function of the scaling parameter results from the fact that there is an
equivalence between the dilation of the Hamiltonian and the scaling of the basis,

(φ(r)|H (r/η)|φ(r))r

(φ(r)|φ(r))r
= (φ(ηr)|H (r)|φ(ηr))r

(φ(ηr)|φ(ηr))r
. (7.29)

This equality holds for any complex value of η only when H (r) is a dilation ana-
lytic operator. Therefore, in such a situation the generalized variational method is
reduced to the linear c-variational method where one requires a stationary condi-
tion with respect to the variation of the rotation angle θ . Equation (7.29) can be

2 N. Moiseyev, Mol. Phys. 47, 585 (1982).
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extended to the cases where several non-linear variational parameters are optimized
when the potential is an analytical function. In such cases 〈χi(γ ∗

i )|Ĥ |χj (γj )〉 =
〈χi(α)|Ĥθ |χj (α)〉.

What about the cases where the potentials are not dilation analytic operators?
As discussed in Chapter 5, the complex scaling transformation is not applicable
and one should use another method for calculating the resonances, such as the
exterior scaling, smooth exterior methods, or carry out analytical continuation
of the Hamiltonian matrix elements rather than dilation of the Hamiltonian. The
generalized variational principle (in the non-linear variational approach) enables
the calculation of resonances also for non-dilation analytic operators. See, for
example, Ex. 5.15 or the use of this method for the calculation of energies and
lifetimes of auto-ionization resonances of molecules within the framework of the
Born–Oppenheimer approximation where the Coulombic electron–nuclear attrac-
tion potential is not an analytical function of the electronic coordinates.

Derivation of non-Hermitian mean field theory for Bose–Einstein condensates

The non-Hermitian mean field theory which leads to a non-Hermitian non-linear
Schrödinger equation which can be solved by an iterative self-consistent-field
method was formulated by Moiseyev and Cederbaum.3

Assuming a contact interaction between N atoms in a condensate, the full
complex scaled Hamiltonian is given by− h̄2

2M
e−2iθ

N∑
j=1

∇2
j +

N∑
j=1

Vext(e
iθrj ) + U0

N∑
j=1

∑
j ′ 	=j

δθ (rj − rj′)

�θ = E�θ

(7.30)

when the δ-function is taken as a Gaussian with vanishing width and its complex
scaled version takes on the following appearance:

δθ (rj − rj ′) = lim
σ→0

(
1

σπ

)D
2

e− ei2θ

σ
(rj−rj ′ )2

. (7.31)

D = 1, 2, 3 is the dimensionality of the BEC. Note that, in order to avoid the
mathematical complications which result from the high singularity of a multi-
dimensional δ-function, the limit of σ → 0 is taken only after the application of the
Hartree approximation which leads to the Gross–Pitaevskii (GP) non-linear equa-
tion. See, for example, the review of Pitaevskii and co-authors.4 Equation (10.27)

3 N. Moiseyev and L. S. Cederbaum, Phys. Rev. A 72, 033605 (2005).
4 F. Dalfovo, S. Giorgini and L. P. Pitaevskii, Rev. Mod. Phys. 71, 463 (1999).
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can be rewritten as

δθ (rj − rj ′) = e−iθD lim
σ̃→0

(
1

σ̃ π
)
D
2 e− (rj−r

j ′ )2

σ̃ , (7.32)

where

σ̃ = e−i2θσ (7.33)

and

0 ≤ θ < π
4
. (7.34)

The latter relation leads to Re(σ̃ ) > 0. Here we have shown that under the constrains
given in Eq. (7.34) the complex scaled δθ function is equal to

δθ (rj − rj ′) = e−iθDδ(rj − rj ′) . (7.35)

The Hermitian (i.e. θ = 0) GP non-linear equation is obtained from the full Hamil-
tonian of the system by assuming that all atoms occupy the same orbital. In analogy,
a non-linear Schrödinger equation can be derived starting from the complex scaled
full Hamiltonian in Eq. (7.30) by assuming that the c-variational solution is given
by

�θ (r1, . . . , rj , . . . , rN ) =
N∏
j=1

φθ (rj ) . (7.36)

The complex variational solution of the time-independent Schrödinger equation
implies that for j = 1, 2, . . . , N ,

δE
δφθ (rj )

= 0 . (7.37)

Equation (7.37) is satisfied when for any value of j = 1, 2, . . . , N ,

Heff(rj )φθ (rj ) = µ(N)φθ (rj ) , (7.38)

where

Heff(rj ) = − h̄2

2M
e−2iθ∇2

j + Vext(e
iθrj ) + V θeff(rj ) (7.39)

and

V θeff(rj ) = U0(�j ′ 	=jφθ (rj ′)|
∑
j ′ 	=j

δθ (rj − rj ′)|�j ′ 	=jφθ (rj ′))

= U0(N − 1)e−iθDφ2
θ (rj ) . (7.40)
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The chemical potential µ(N) is given by

µ(N) = E + U0(N − 1)

2
e−iθD

∫
φ4
θ (rj )drj . (7.41)

Note that since all atoms occupy the same orbital φθ it is possible to drop the
subscript j from the vector position of the j -th atom when the non-linear GP
Schrödinger equation is solved.

The complex energy, E , of the BEC is the expectation value,

E = (�θ |Hθ |�θ ) ≡ 〈�∗
θ

∣∣Hθ |�θ 〉 . (7.42)

Here we use the c-product rather the conventional scalar product since �θ is
a complex function only due to the rotation of the internal coordinates of the
Hamiltonian into the complex coordinate plane (see Chapter 4). E is associated
with the complex chemical potential as follows:

E
N

≡ E(N) − i

2
�(N) = µ(N) − U (N)

2
e−iθD

∫
φ4
θdr . (7.43)

The complex chemical potential µ is defined by Eq. (7.38). The quantity E in
Eq. (7.43) provides the GP complex mean-field energy of the condensate. Of
course, this quantity is only an approximation to the exact energy in Eq. (7.30)
which is associated with a complex eigenvalue of the full Hamiltonian (i.e. beyond
the GP approximation).

Exercise 7.3

Explain why the complex scaled non-linear Schrödinger equation given in Eq. (7.38)
differs from the direct application of the complex scaling transformation, r → eiDθr,
to the D-dimensional GP equation which results in(

− h̄2

2M
e−2iθ∇2 + Vext(e

iθr) + U0(N − 1)φ2
θ

)
φθ = µ(N )φθ . (7.44)

The non-Hermitian mean field theory for fermions: the Hartree–Fock method

Let us first discuss the non-Hermitian mean field theory for a system ofN electrons.
The corresponding wavefunction is �(r1, . . . , rN ) with rj ∈ R3. According to
the Pauli exclusion principle, �(r1, . . . , rN ) must switch its sign whenever an
interchange of coordinates rj ↔ rj ′ (and also an analogical interchange of spins)
is made for any pair (j, j ′) of electrons. The simplest mean field wavefunction
ansatz satisfying this basic anti-symmetry requirement is given by the so-called
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Slater determinant,

�HF(r1, . . . , rN ) = A
N∏
j=1

φj (rj )

= 1√
N!

∣∣∣∣∣∣∣∣
φ1(r1) φ2(r1) · · · φN (r1)
φ1(r2) φ2(r2) · · · φN (r2)
· · · · · · · · · · · ·
φ1(rN ) φ2(rN ) · · · φN (rN )

∣∣∣∣∣∣∣∣ . (7.45)

Here, the one-electron orbitals {φj (r)}Nj=1 are functions of the electron positions
and their spins and therefore they are called spin-orbitals. Specifically, φj (r) =
ϕj (r)sj , where ϕj is a spatial function and sj is a spin function α or β. The spin-
orbitals are required to be linearly independent to guarantee that the determinant in
Eq. (7.45) is non-zero. The symbol A stands for the anti-symmetrizer, which
converts an ordinary product

�HF(r1, . . . , rN ) =
N∏
j=1

φj (rj ) (7.46)

into the corresponding determinant (Eq. (7.45)). Clearly,

A = (1/
√
N!)

∑
℘

ε℘ ℘ , (7.47)

where ℘ determines a particular permutation of spins and spatial variables
(r1, . . . , rN ), and ε℘ stands for parity of the permutation ℘ (equal to ±1 for even
and odd permutations, respectively). We recall that the number of such distinct
permutations equals N!.

Variational optimization of Eq. (7.45) forms the basis for the well-known
Hartree–Fock–Roothaan method. Let us briefly describe the underlying theoret-
ical formulation for the case when the studied N-electron system is either an atom
or a quantum dot described by a scaled Hamiltonian

Ĥη =
N∑
j=1

(
− h̄2

2me
η−2∇2

j + V (ηrj )
)

+
∑
j<j ′

e2η−1

|rj − rj ′ | . (7.48)

where η represents for now a real scaling parameter. For an atom or ion V (rjη) =
−η−1e2Z/|rj |, where eZ is the positive charge of the nucleus. For a molecular
system or an array of multiple center quantum dots the scaled Hamiltonian is
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given by

Ĥη =
N∑
j=1

(
− h̄2

2me
η−2∇2

j +
M∑
α=1

Vα(rjη)

)
+
∑
j<j ′

e2η−1

|rj − rj ′ | +
∑
α>α′

VMOL
α,α′ ,

(7.49)

where VMOL
α,α′ = 0 for quantum dots and VMOL

α,α′ = +e2ZαZα′/|Rα − Rα′ | for
molecules, where e{Zα}Mα=1 are the charges of the M nuclei in the molecule. For
molecules Vα(rjη) = −e2Zα/|ηrj − Rα|.

An implementation of the variational method is similar in spirit to the bosonic
theory treated in the previous section. Again, we shall search for a stationary point
of the energy functional, which is given by the standard formula

E[�HF] = 〈�HF|Ĥη|�HF〉
〈�HF|�HF〉 . (7.50)

For the sake of clarity, we recall in this context that we use the Hermitian scalar
product since the scaling factor is treated as a real parameter. We also note in
passing that not only the spatial coordinates, but also the discrete spin variables of
the electrons are integrated over.

Importantly, the Hamiltonian in Eq. (7.48) treats all the electrons on a sym-
metric equal footing, hence ĤηA�HF = A Ĥη �HF. Moreover, for any two square
integrable N-electron functions ψ1(r1, . . . , rN ) and ψ2(r1, . . . , rN ), be they per-
mutationally anti-symmetric or not, one has 〈Aψ1|Aψ2〉 = 〈ψ1|Aψ2〉. The just-
mentioned properties may be exploited to express the energy functional (7.50)
as

E[�HF] = 〈A�HF|Ĥη|A�HF〉
〈A�HF|A�HF〉 = 〈�HF|Ĥη|A�HF〉

〈�HF|A�HF〉 . (7.51)

Consequently, one may substitute Eq. (7.46) and express E[�HF] directly in terms
of the one-electron spin-orbitals.

After this is done, we are ready to carry out the variational optimization of
E[�HF]. Specifically, we wish to find such linearly independent spin-orbitals
{φj (r)}Nj=1 for which the energy functionalE[�HF] is stable relative to infinitesimal
changes φj (r) → φj (r) + δφj (r). Let us expand the spatial orbital functions in a
square integrable one-electron basis set, {χk(r)}Nb

k=1 such that the j = 1, 2, . . . , N
spin-orbitals are given by

φj (r; η) =
Nb∑
k=1

ck,j (η)χk(r)sj . (7.52)
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By substituting Eq. (7.52) into Eq. (7.46) and afterwards into Eq. (7.51), the
energy functional is converted into an ordinary function of variables {ck,j ; k =
1, . . . , Nb; j = 1, . . . , N}.

The optimized variational coefficients are obtained by solving the following set
of coupled equations: [

∂EHF(c)

∂ck,j

]
copt

= 0 , (7.53)

where j = 1, . . . , N and k = 1, . . . , Nb. The coefficients for which the set of the
coupled equations presented in Eq. (7.53) are satisfied are functions of the scaling
parameter η. Therefore the Hartree–Fock orbitals and the variational energy are
also functions of the scaling parameter η.

Here we come to a delicate point in our derivation. So far η was treated as a
real parameter. When the Hamiltonian matrix elements are analytical functions of
η (e.g. when one uses the Gaussian basis functions) we can carry out an analytical
continuation of the energy functional as defined in Eq. (7.51) into the complex plane
by making a substitution η → |η|eiθ . In the case of atoms or single center quantum
dots, such an analytical continuation is equivalent to the basis set representation of
the energy functional of the complex scaled Hamiltonian. However, for molecules
the electron–nuclei attractive potential energy operators are not dilation analytic
operators and therefore the molecular Hamiltonian can not be scaled by a complex
factor. The “trick” we use here is to scale the molecular Hamiltonian matrix ele-
ments as explained above rather than the Hamiltonian itself. The resonances are
the stationary solutions in the non-linear complex variational space for which[

∂EHF(c(η))

∂|η|

]
η=ηopt

= 0 ,

[
∂EHF(c(η))

∂θ

]
η=ηopt

= 0 , (7.54)

where ηopt = |ηopt|eiθopt .
We address the reader to Section 5.5 where we describe in more detail how reso-

nances can be calculated by carrying out analytical continuation of the Hamiltonian
matrix elements into the complex plane.

The requirement of linear independence of the spin-orbitals is usually incorpo-
rated by imposing a set of orthonormality constraints,

(φj |φj ′) = δjj ′ . (7.55)
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We note in this context that the rows or columns of any Slater determinant
(Eq. (7.45)) can be linearly combined without affecting the overall outcome �HF.
Hence, the orthonormality constraints in Eq. (7.55) can always be assumed to apply
for any Hartree–Fock ansatz �HF, without loss of generality. Due to the presence
of the aforementioned constraints, the problem of stationarity of E[�HF] becomes
more involved, and must be treated using the method of Lagrange multipliers.
However, in order to simplify the representation of the non-Hermitian mean field
theory for fermions we take here another approach where we do not use the method
of Lagrange multipliers.5 Let us briefly explain this non-traditional approach. We
assume that at the beginning of the calculation we have an initial guess for all the
coefficients ck,j appearing in Eq. (7.52) for j = 1, 2, . . . , N . We wish to systemat-
ically correct this initial guess in an iterative fashion. Consider an iteration aimed
at improving a given orbital j (where j can be any one of the N spin-orbitals).
We substitute the basis set expansion in Eq. (7.52) of this particular spin orbital
j (and not for other spin-orbitals j ′ 	= j ) into Eq. (7.51). After straightforward
manipulations one arrives at a set of coupled equations,

Nb∑
k′=1

ck′,j (η)
Nb∑
k=1

ck,j (η)
(
H

(j )
k′,k(η) − ĒHF(η)S(j )

k′,k(η)
)

= 0 . (7.56)

Here,

H
(j )
k′,k(η) =

[(
�

(j )
k′ (η)

∣∣∣∣Ĥη∣∣∣∣A�(j )
k (η)

)]
η=|η|eiθ

, (7.57)

S
(j )
k′,k(η) =

[(
�

(j )
k′ (η)

∣∣∣∣A�(j )
k (η)

)]
η=|η|eiθ

, (7.58)

where

�
(j )
k (r1, . . . , rN ; η) =

j−1∏
i=1

φi(ri , η)[χk(rj )sj ]
N∏

i=j+1

φi(ri , η) . (7.59)

Next, we take a derivative of Eq. (7.56) with respect to ck′,j (k′ fixed but arbitrary),
and consequently incorporate the variational requirement of Eq. (7.53). This yields
a set of coupled secular equations,

Nb∑
k=1

ck,j (η)
(
H

(j )
k′,k(η) − ĒHF(η)S(j )

k′,k(η)
)

= 0 ; k′ = 1, . . . , Nb , (7.60)

5 N. Moiseyev and J. Katriel, The continuity dilemma and Hartree–Fock instabilities. Chem. Phys. Lett. 29, 69
(1974).
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which can be summarized in a matrix form as[
H(j )(η) − ĒHF(η)S(j )(η)

]
cj (η) = 0 . (7.61)

This equation should be solved numerically in order to get an improved guess for
the considered spin-orbital j . After this is done, we proceed along similar lines
further and correct iteratively all the other spin-orbitals. This procedure is repeated
until convergence is achieved.

So far we did not specify which particular eigensolution of Eq. (7.61) should be
taken as an outcome of a given iteration. For the sake of simplicity let us explain
this point for the case when one wishes to calculate the lowest lying electronic
state (which can be either a bound state or a resonance). The complex eigen-
values obtained in each of the diagonalizations, {ĒHF

ν (η)}Nν=1 are ordered such that
|ĒHF

1 (η)| ≤ |ĒHF
2 (η)| ≤ |ĒHF

3 (η)| ≤ · · · ≤ |ĒHF
N (η)|. The approach is based upon

the requirement that each spin orbital may accommodate either one electron or two
electrons with opposite spins.

Therefore, if we order the eigenvalues obtained by solving the general eigenvalue
problems given in Eq. (7.61) from the highest to the highest absolute value of the
eigenvalues then the j = 1, 3, . . . = 2ν − 1; ν = 1, 2, 3 . . . orbitals are obtained
by solving the following eigenvalue problems:[

H(j=2ν−1)(η) − ĒHF
ν (η)S(j )(η)

]
cj,ν(η) = 0 ; (7.62)

and similarly the {φj ; j = 2, 4, . . . = 2ν; ν = 1, 2, 3, . . .} orbitals are associated
with the solutions of the set of general eigenvalue problems given by[

H(j=2ν)(η) − ĒHF
ν (η)S(j )(η)

]
cj,ν(η) = 0 . (7.63)

For example, the most inner spatial orbital ϕj=1 is associated with the eigenvector
cj,ν=1(η), where j = 1 (spin α) and also j = 2(spin β). Generally speaking, the
{ϕj=2ν−1; ν = 1, 2, . . .} and the {ϕj=2ν ;α = 1, 2, . . .} spin-orbitals are associated
with the ν lowest absolute values of the complex eigenvalues. Note that upon
convergence

εHF − i

2
�HF ≡ ĒHF

1 (η) = ĒHF
2 (η) = · · · = ĒHF

ν (η) = · · · (7.64)

The resonance width as obtained within the framework of the non-Hermitian mean
field theory, �HF, is expected to be a good approximation to the exact value when
the resonances are shape-type resonances (as for example in N−

2 ) and less accurate
when they are Feshbach-type resonances (as for example in He (2s)2).
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Exercise 7.4

Derive the set of coupled equations that provide the solution for the singlet and triplet
spin adapted resonance functions for a two-electron system within the framework of the
non-Hermitian mean field theory. Explain why in this case the energies and lifetimes
of auto-ionization, Auger and ICD type resonances can be calculated.

7.3 The complex analogs of the virial and hypervirial theorem

From the turn-over rule for the complex-scaled Hamiltonian, it follows immediately
that commutators of Ĥθ and any given operator  ̂ have vanishing c-expectation
values in any eigenstate ψk, (

ψk|
[
Ĥθ ,  ̂

]|ψk) = 0 . (7.65)

This complex analog of the hypervirial theorem holds for a wide class of operators
 ̂, whether Hermitian or not. In particular, if  ̂ is chosen to be r · � (or a sum of
such terms in a many-particle system), and if the potential V is a homogeneous
function of coordinates of degree m, Eq. (7.65) reduces to the complex virial
theorem where T̂θ is the scaled kinetic energy operator,(

ψk|T̂θ |ψk
) = m

2

(
ψk|V̂θ |ψk

)
. (7.66)

Thus we have a relation between the average (complex) kinetic and potential
energies.

Exercise 7.5

Consider the scattering of particles by a central field potential, V (r). The l-th partial
wave satisfies ∫ ∞

0
ψl,k(r) [2V (r) + rdV/dr]ψl,k(r)dr = E dηl

dk
, (7.67)

where E = k2/2 is the eigenvalue of the radial Schrödinger equation and ηl is the
corresponding phase shift. Derive the bound, virtual and resonance states on the basis
of the virial theorem for the l-th partial wave. A delicate point here lies in the fact that
in our derivation for the virial theorem for the poles of the scattering matrix we do not
take the complex conjugate of the scattering function, assuming that it is a real function
for real values of E.
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7.4 The complex analog of the Hellmann–Feynman theorem

In quantum mechanics, the Hellmann–Feynman theorem relates the derivative of
the total energy with respect to a given parameter to the expectation value of the
derivative of the Hamiltonian with respect to that same parameter. That is,

dE

dλ
= 〈�(λ)|∂Ĥ

∂λ
|�(λ)〉 , (7.68)

where�(λ) is the normalized eigenfunction of the Hamiltonian and λ is a parameter
in the Hamiltonian (e.g., a potential parameter or a mass of one of the particles).

The proof is extended below for a non-Hermitian Hamiltonian and shows that
the Hellmann–Feynman theorem holds (both for Hermitian and non-Hermitian
Hamiltonians) either for the eigenfunctions of the Hamiltonian or for the linear
variational solutions. Suppose a trial function � depends on a set of variational
parameters {Ci}. Variationally optimal values of these parameters must satisfy the
relation

∂Ē

∂Ci
= 0, i = 1, 2, . . . , N , (7.69)

where

Ē = (�|Ĥθ |�)

(�|�)
(7.70)

and Hθ contains an embedded parameter ζ ,

Hθ = Hθ (ζ ) . (7.71)

For example, ζ can be the scaling factor, η = eiθ , or a physical parameter such as
a nuclear charge, intra-molecular distance in the Born–Oppenheimer Hamiltonian,
etc. However, for c-normalized � (i.e. (�|�) = 1),

dĒ

dζ
=
(
�|∂Hθ
∂ζ

|�
)

+
M∑
j=1

(
∂Ē

∂Cj

)(
∂Cj

∂ζ

)
. (7.72)

Thus, if � is variationally optimal for any given value of ζ , Eq. (7.69) is satisfied
and therefore Eq. (7.72) reduces to

dĒ

dζ
=
(
�|∂Hθ
∂ζ

|�
)
. (7.73)

Equation (7.73) is the complex form of the Hellmann–Feynman theorem. When
ζ = eiθ the requirement of dĒ/dθ = 0 (the resonance solution satisfies this condi-
tion following the Balslev–Combes theorem) leads to another derivation of the virial
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theorem in Eq. (7.66). Within the framework of the finite basis set approximation
({Ci} are the linear variational parameters) the resonance stationary condition

dĒ

dθ

∣∣∣∣∣
θopt

= 0 (7.74)

(ζ ≡ θ in Eq. 7.73) leads to an iterative procedure for calculating the resonances.
In order to describe the iterative procedure for calculating the resonances by the

Hellmann–Feynman theorem let us first assume without loss of generality that the
non-Hermitian Hamiltonian is given by

Hθ = e−2iθT + Vθ ; [Hθ ]ij = 〈χi |Ĥ (reiθ )|χj 〉 , (7.75)

where {χj } are orthonormal basis functions and the resonances are associated with
specific eigenvalues of the complex scaled Hamiltonian matrix (or of its transpose),

HθCR
k = ĒkCR

k ,

HT
θCL

k = ĒkCL
k . (7.76)

On the basis of the complex analog of the Hellmann–Feynman theorem we proved
above one gets that

e−2iθ =
(
CL
k

)T ∂Vθ
∂θ

CR
k

2i
(
CL
k

)T
TCR

k

. (7.77)

Note that following the Cauchy–Riemann conditions the θopt for which
Eqs. (7.73)–(7.77) are satisfied will usually be complex The imaginary part of
(θopt) can be either negative or positive, that is, the absolute value of the complex
scaling parameter, η = eiθopt , can be either smaller or larger than unity. For atomic
Coulombic potentials Eq. (7.73) reduces to the c-virial theorem. This iterative
algorithm enables the calculations of energies and lifetimes of resonances. In some
cases, as in the calculations of molecular auto-ionization within the framework of
the Born–Oppenheimer approximation, numerical difficulties can be avoided by
enabling θ to be complex (see the solution of Ex. 5.15).

7.5 Cusps and θ -trajectories

A graphical method of solving Eq. 7.72 is known as θ -trajectory. In this method
Ē(θ ) is plotted as function of Re(θ ), holding Im(θ ) fixed. The stationary points
along the trajectories which provide the minimal (not necessarily zero value) of
|dĒ/dθ | give us estimates for the resonance positions and widths. As proved by
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Moiseyev, Friedland and Certain,6 the stationary solutions where dĒ/dθ = 0 at
θ = θ0 are associated with a cusp in the θ -trajectory plot. This can be shown by
considering the neighborhood of a stationary point of the complex energy, Ē, where
it can be expanded in powers of (η − η0)µ (Puiseux expansion). The first two terms
are

Ē = E0 + a(η − η0)µ + · · · , (7.78)

where

η = eiθ = αeiθR ; η0 = eiθ0 = α0eiθ (0)
R ;

θ = θR + iθI ; θ0 = θ (0)
R + iθ (0)

I ;

α = e−θI ; α0 = e−θ (0)
I (7.79)

and µ is a positive rational number. For small enough (η − η0) along the
θ -trajectory,

η = α0eiθR (7.80)

and therefore we can write

η − η0 = iη0x , (7.81)

where

x = θR − θ (0)
R . (7.82)

Consequently, for x ≥ 0 (i.e. approaching the cusp from “above”)

Ē+ = E0 + a(iη0)µ|x|µ + · · · , (7.83)

while for x ≤ 0 (i.e. approaching the cusp from “below”)

x = −|x| = |x|eiπ (7.84)

and

Ē− = E0 + a(iη0)µ|x|µeiπµ . . . (7.85)

Thus, one observes that a cusp exists between the two branches Ē+ and Ē− at the
stationary point, θ = θ0, with a cusp angle πµ. A smooth curve (cusp angle = π )
will be observed at the stationary point when µ is an odd integer (3, 5, 7, . . . ).

A schematic representation of such an example is given in Fig. 7.1(a), where
we see that the θR-trajectory “slows down” at the stationary point, but no cusp
is apparent. It should be remembered, however, that the θR-trajectories for non-
optimum |η0| (i.e. non-optimal value of Im(θ0)) are also smooth. A zero cusp angle

6 N. Moiseyev, S. Friedland and P. R. Certain, J. Chem. Phys. 74, 4739 (1981).
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(a)

(b)

(c)

E (θ)

Γ (θ)

Figure 7.1 θR trajectory when α is held fixed at α = α0. The arrows show the
motion of complex “energies” as θ is varied. The open circles denote the stationary
solutions which are obtained for η = θR = θ (0)

R , see Eqs. (7.78)–(7.80), (a) µ =
3, 5, 7, . . . (b) µ = 2, 4, 6, . . . (c) µ = 3

2 ,
7
2 , . . .

will be observed at the stationary point when µ is an even integer (2, 4, 6, . . .).
This case, which is shown schematically in Fig. 7.1(b), is the most common case.

An interesting case occurs for rational µ = n/m > 1, where n and m are prime
numbers, since here the cusp angle is neither zero nor π . A fractional π angle
in the cusp is the result of the coalescence of at least m eigenvalues (and also
their corresponding eigenvectors!) of the complex Hamiltonian matrix at the
stationary point θ = θ0. As discussed in Chapter 9, Ē(θ0) in such a case is a
defective eigenvalue (so-called exceptional point in the spectrum of the complex
scaled Hamiltonian). This case, which is shown schematically in Fig. 7.1(c), for
µ = 3/2, apparently has not been observed so far in resonance calculations. Pre-
sumably, this is due to the very special conditions at which a defective eigenvalue is
obtained.

These cusp conditions can be generalized for other cases where stationary solu-
tions of complex variables are calculated. After all, any physical measurable quan-
tity should be θ -independent! For example, when one uses complex absorbing
potentials (even non-formally justified ones) for calculating resonances the reso-
nance energy should be associated with the stationary solutions in the potential’s
parameter space. Another example is the calculation of the optimal scattering
transition probability amplitude, Tscatt(θ ).7 The optimal condition

∂Tscatt

∂θ

∣∣∣∣
θopt

= 0 (7.86)

7 U. Peskin and N. Moiseyev, J. Chem. Phys. 97, 6443 (1992).
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has been found to be the key point in the successful application of the complex-
coordinate scattering theory (see Chapter 8) to long-range potentials.

7.6 Upper and lower bounds of the resonance positions and widths

One of the most important results of the linear variational principle in the standard
formalism of quantum mechanics is that the n-th eigenvalue of the Hamiltonian
matrix (when they are ordered from the smallest value to the largest one) is an upper
bound to the exact eigenvalue. When the Hamiltonian is non-Hermitian and the
eigenvalues are complex numbers the conventional theorems for upper and lower
bounds of the energy levels are not applicable. The c-variational principle presented
above is a stationary principle rather than an upper or lower bound for either the real
or imaginary part of the complex eigenvalue. In this section, however, we will show
how one can calculate upper and lower bounds of the real and imaginary parts of
the complex eigenvalues of the non-Hermitian Hamiltonian from the calculations
of complex expectation values of the non-Hermitian Hamiltonian. In the following
derivation we will outline regions in the complex energy plane where the exact
complex eigenvalues lie based on the Hermitian representation of the solutions of
the non-Hermitian time-independent Schrödinger equation.

7.6.1 The Hermitian representation of the solutions of the non-Hermitian
time-independent Schrödinger equation

Even though the complex coordinate method (as well as other methods discussed in
this book) involves the solution of the Schrödinger equation with a non-Hermitian
Hamiltonian, one can still represent the problem in Hermitian form and show that8

|Eex − Ē| ≥ λ , (7.87)

where Eex is the exact eigenvalue, Ē is the variational energy and λ2 is the
lowest real and positive eigenvalue of the complex, yet Hermitian, operator Ĥ2,
given by

H2(Ē, Ē∗)� = λ2�, (7.88)

H2 ≡ (Ĥθ − Ē)∗ (Ĥθ − Ē) (7.89)

and

Ē ≡ ε̄ − i

2
�̄ . (7.90)

8 N. Moiseyev, J. Chem. Phys. (Lett.) 99, 364 (1983).
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Here Ĥθ stands for any non-Hermitian Hamiltonian and not necessarily for the
complex scaled Hamiltonian (the subscript θ is used here as a symbolic notation
for “non-Hermitian”).

Proof of Eq. (7.87) |Eex − Ē| ≥ λ The exact resonance eigenfunction ψex and the
its energy Eex satisfy the following eigenvalue problem for Ĥθ ,

Ĥθψex = Eexψex . (7.91)

H2(Ē, Ē∗) is a Hermitian operator andλ2 is its lowest, real, and positive eigenvalue.
Therefore, following the conventional variational principle,

〈ψex|H2(Ē, Ē∗)|ψex〉
〈ψex|ψex〉 ≥ λ2 . (7.92)

Since

〈ψex|H2|ψex〉 = 〈χ |χ〉, (7.93)

where

χ = (Hθ − Ē)ψex = (Eex − Ē)ψex , (7.94)

therefore,

〈ψex|H2|ψex〉 = |Eex − Ē|2〈ψex|ψex〉 . (7.95)

By substituting Eq. (7.95) into Eq. (7.92) one gets that

|Eex − Ē|2 ≥ λ2 . (7.96)

λ2 = 0 if and only if the function � is the exact eigenfunction of the non-
Hermitian Hamiltonian with the eigenvalue Ē. If � is a given trial function, then
by using the Hellman–Feynman theorem we get that

dλ

dĒ∗ = 0 (7.97)

when

Ē = 〈�|Ĥθ |�〉
〈�|�〉 (7.98)
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and� is the conventional variational solution of the time-independent Schrödinger
equation with the Hermitian Hamiltonian H2.

By carrying out an iterative calculation, Ē obtained from Eq. (7.98) is substituted
in Eq. (7.88) to get a new estimate for�. Here we assume that the ground state of the
Hermitian operator H2 can be accurately evaluated from numerical computations.
Equation (7.87) can be used as an error estimate for Ē obtained from c-variational
calculations,

Ē = (�|Hθ |�)

(�|�)
≡ 〈�∗|Hθ |�〉

〈�∗|�〉 . (7.99)

Note that in Eq. (7.99) the c-product is used rather than the scalar product which
was used in Eq. (7.98). In such a case, by combining Eq. (7.87) with the bounds to
resonance eigenvalues evaluated by Davidson, Engdahl and Moiseyev we get that
Eex is embedded in an annular ring centered at Ē, where the inner and outer radii
are respectively the lowest eigenvalue of H2(Ē, Ē∗) and the complex-variance of
H2(Ē, Ē∗),

|σC| ≥ |Eex − Ē| ≥ λ , (7.100)

where

σ 2
C =

(
�|(Hθ − Ē)2|�)

(�|�)
. (7.101)

It is interesting to mention that

|σC| ≤ σH |〈�|�〉|1/2 , (7.102)

where

σ 2
H = 〈�|H2(Ē, Ē∗)|�〉

〈�|�〉 , (7.103)

provided |〈�|ψex〉|2 > 1
2 , and 〈�|�〉 = 1. Note that � is a complex normalized

function, (�|�) = 1, and therefore 〈�|�〉 > 1. An illustrative numerical example
for a 1D model Hamiltonian used in previous chapters is given in Fig. 7.2.
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Figure 7.2 Bounds on the estimated complex resonance eigenvalues Ē, for
Ĥ = −0.5d2/dx2 + ( x

2

2 − 0.8) exp(−0.1x2) + 0.8 obtained for N even-parity
harmonic oscillator basis functions. Ē are indicated by the signs “+” and the
exact value of E by a dot. The dashed areas give an optimal estimate of the reso-
nance location. The upper and lower bounds (as calculated by using Eq. (7.100)) of
the estimated shape-type complex-coordinate resonance eigenvalue were obtained
forN = 2, 3, 4 even-parity harmonic oscillator basis functions. See N. Moiseyev,
P. Froelich and E. Watkins, J. Chem. Phys. 80, 3623 (1985).

Proof of Eq. (7.100) |Eex − Ē| ≤ |σC| Here we shall use the Lanczos recursion
procedure to construct a three-diagonal complex-scaled Hamiltonian matrix,

Hθ =


α0 β0

β0 α1 β1

β1 α2 β2
. . . . . . . . .

 , (7.104)

where χ0 ≡ � is a given wavefunction which describes well enough the exact
eigenfunction ψ , and

α0 ≡ Ē = (�|Ĥθ |�
)
,

β0 ≡ σ 2
C = (χ1|χ1)1/2 ,

χ1 = (Ĥθ − α0
)
�0 . (7.105)
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Similarly for n ≥ 1,

αn = (χn|Ĥθ |χn) ,
βn = (χn+1|χn+1)1/2 ,

χn+1 = (Ĥθ − αn
)
χn − βn−1χn−1 . (7.106)

By diagonalizing the three-diagonal Hamiltonian matrix Hθ , the exact eigenfunc-
tion is obtained:

ψ =
∞∑
n=0

Cnχn(x) , (7.107)

where C is an eigenvector of Hθ satisfying

HθC = EexC (7.108)

and χn are the Lanczos recursive functions

(χn|χn′) = δn, n′ (7.109)

defined in Eq. (7.106). By substituting Eq. (7.104) into Eq. (7.108) one gets

α0C0 + β0C1 = EexC0 . (7.110)

Since α0 = Ē (see Eq. (7.105)) and β0 = σ 2
C (Eq. (7.105)) then from Eq. (7.110)

one immediately obtains that

|Eex − Ē|2 = |σC|2
∣∣∣∣C1

C0

∣∣∣∣2 . (7.111)

If χ0 = � is the dominant function in the Lanczos basis set expansion such that∣∣∣∣C1

C0

∣∣∣∣2 < 1 , (7.112)

then from Eq. (7.111) we obtain the following inequality:

|Eex − Ē|2 ≤ |σC|2 . (7.113)

Exercise 7.6

Explain under what conditions the resonance position (energy) and width (inverse
lifetime) can be estimated by solving the following equation system:

λ1

|E − Ē1| = λ2

|E − Ē2| = λ3

|E − Ē3| , (7.114)
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where {λn}n=1,2,3 are the lowest eigenvalues of (Ĥθ − Ēn)∗(Ĥθ − Ēn) and {Ēn}n=1,2,3

are estimated values for the complex resonance eigenvalues. One may estimate the
position of the resonances from stabilization calculations for θ = 0 (see Chapter 3).
The imaginary parts of {Ēn}n=1,2,3 can be set equal to zero or can be estimated by one
of the methods described in Chapter 3.

7.7 Perturbation theory for non-Hermitian Hamiltonians

The application of time-independent perturbation theory to non-Hermitian Hamil-
tonians is straightforward provided that the zero-order non-Hermitian Hamiltonian,
Ĥ θ

0 , and the full Hamiltonian, Ĥ θ , have a complete spectrum. Here we assign the
label θ to the non-Hermitian operators although the zero-order and full Hamilto-
nians can be non-Hermitian, not only due to one of the complex scaling trans-
formations described in Chapter 5. On the possibility of having a non-complete
spectrum and using the algebraic expansion in the perturbation strength parameter,
λ, of the eigenvalues and eigenfunctions, read Chapter 9. For the sake of clarity we
will briefly sketch here how the the n-th order corrections to the eigenvalues and
eigenfunctions of Ĥ θ can be calculated. Following the (2n+ 1) rule of Wigner,
E

(2n+1)
j , the n-th correction terms to the eigenvalues of Ĥ θ , can be calculated from

the corrections to the eigenfunctions up to the n-th order, {ψ (k)
j }k=0,1,...,n.

The scheme presented here holds also when the full non-Hermitian Hamiltonian
and the non-Hermitian zero-order Hamiltonian are represented by matrices (using a
finite number of orthonormal basis functions). In such a case the zero-order eigen-
values are the c-variational solutions of Ĥ θ

0 . The j -th c-variational eigenfunction
of the full Hamiltonian is given by

ψθj =
M∑
i=1

Cθijψ
(0)
i =

∞∑
n=0

λnψ
(n)
j , (7.115)

where Cθj are the variational linear parameters and {ψ (0)
i }i=1,...,M are the eigenfunc-

tions of Ĥ θ
0 ordered by the Re[E(0)

i ]. Using these states as a basis set the n-th order
correction to variational function is given by

ψ
(n)
j =

M∑
i=1

C
(n)
ij ψ

(0)
i (7.116)

and the n-th order correction to the variational j -th energy level is given by

E
(n)
j =

M∑
k=1

Hθ
jkC

(n−1)
kj , (7.117)
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where

Hθ
jk =

(
ψ

(0)
j

∣∣Ĥ θ − Ĥ θ
0

∣∣ψ (0)
k

)
≡ 〈[ψ (0)

j ]∗|Ĥ θ − Ĥ θ
0 |ψ (0)

k 〉 . (7.118)

Following the (2n+ 1) rule of Wigner, when the zero-order and full Hamilto-
nians are represented by finite complex symmetric matrices and C(n)

j are the n-th
order components of the j -th exact eigenvector such that

Cθj =
∞∑
n=0

λnC(n)
j , (7.119)

then

E
(2n+1)
j = [C(n)

j ]TVθ [C(n)
j ] , (7.120)

where

Vθ = [Hθ − Hθ
0] . (7.121)

Note that we do not take the complex conjugates of [C(n)
j ]T since we use here the

c-product rather than the standard scalar product. In order to simplify the calcula-
tions we do not use the (2n+ 1) rule of Wigner for the calculations of C(n)

j . From
the Rayleigh–Schrödinger perturbation theory we get that for k = 1, 2, . . . ,M ,[(

E
(0)
k − E(0)

j

)
C

(n)
kj +

M∑
i=0

C
(n−1)
ij

(
Hθ
ki − E(1)

j δki

)]
=

n∑
m=2

E
(m)
j C

(n−m)
kj

(7.122)
and

E
(n)
j = Hθ

jj , (7.123)

C
(n)
jj = δn0 . (7.124)

By re-ordering the summation on the l.h.s. of Eq. (7.122) (using as a running index
n−m rather than m) and using the fact that for j 	= k, C(0)

kj = 0 one gets that the

components of C(n)
j are given by

C
(n)
k,j 	=k =

∑M
i=0 C

(n−1)
ij

(
Hθ
ki − E(1)

j δki

)
−∑n−2

m=1E
(n−m)
j C

(m)
kj

E
(0)
j − E(0)

k

. (7.125)

The values of E(n)
j are used for the calculations of the radius of convergence as

described in Chapter 9. Also, in Ex. 9.4 we show how one gets Eq. (7.125) from
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Eq. (7.122). It is possible, however, to increase the radius of convergence by
redefining Hθ

0. Let us define the new zero-order matrix Hamiltonian as

[Hθ
0]ij = δijE(0)

j {i, j = 1, . . . , N < M} , (7.126)

[Hθ
0]ij = δij [Hθ ]ii {i, j = N + 1, . . . ,M} , (7.127)

where M is the dimension of the square, complex and symmetric matrix Hθ and
{E(0)
j }j=1,...,N are the eigenvalues of [Hθ ]ij {i, j = 1, . . . , N < M}, associated

with the complex c-normalized eigenvectors {Dj }j=1,...,N (the N ×N eigenvec-
tor matrix is denoted by D). The perturbation matrix is given by

[Vθ ]ij = 0 {i, j = 1, . . . , N} , (7.128)

[Vθ ]ij = [Hθ ]ij − δij [Hθ ]ii {i, j = N + 1, N + 2, . . . ,M} , (7.129)

[Vθ ]ij =
N∑
k=1

Dki[Hθ ]kj {i = 1, . . . , N ; j = N + 1, N + 2, . . . ,M} . (7.130)

The full Hamiltonian matrix is given here as Hθ = Hθ
0 + λVθ .

Exercise 7.7

Using the 1/Z perturbation theory for an atom with nuclear charge Z where the zero-
order Hamiltonian is a separable complex scaled hydrogen-like Hamiltonian, show that
the resonance position and width E = ε − i/2� are respectively given by

ε = Z2E(0) + ZE(1) + Re(E(2)) + Z−1Re(E(3)) +O(Z−2) ,

� = −2Im(E(2)) − 2Z−1Im(E(3)) +O(Z−2) , (7.131)

where E(n) are the coefficients in the 1/Z expansion of Z−2E.

7.8 Concluding remarks

(1) The complex analog of the variational principle provides a powerful tool for the
numerical calculations of resonances of problems for which the analytical solutions
are not known. In principle, by extending the number of basis functions in linear
variational calculations numerically exact resonance solutions can be obtained. The
c-variational method enables the calculations of resonances for many body systems.
The variational solutions are stationary solutions in the complex variational space.
However, it is possible to evaluate the upper and lower bounds of the resonance position
and widths which were obtained from variational calculations. The c-virial theorem
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and the complex analog to the Hellmann–Feynman theorem aid the calculations of
resonances and their dependence on the physical parameters of the studied problem.

(2) Perturbation theory for non-Hermitian Hamiltonians is quite a straight-forward exten-
sion from the Hermitian case but one should be aware of the importance of using the
correct inner product. In the non-Hermitian case we use the c-product rather than the
scalar product used in the standard formalism of quantum mechanics. In many-body
problems the mean field theory simplifies the numerical calculations of the eigenvalues
(including resonances). However, when resonance phenomena result from the elec-
tronic correlation often one needs to go beyond the mean field approach. Nevertheless,
even in such cases, the Hartree–Fock orbitals can be used as a basis set just as in the
standard configuration interaction calculations of bound states. We described here the
application of the mean field approach to Bose–Einstein condensates which leads to
the Gross–Pitaevskii equation. The derivation of mean field theories and beyond for
such systems enables the calculations of resonances associated with the fragmentation
of the condensate.

(3) The proofs which were given in this chapter for time-independent non-Hermitian
Hamiltonians can be extended to time-dependent problems by using the (t ,t ′) method
where a Floquet-type operator replaces the Hamiltonian and t ′ serves as an additional
coordinate. Most of the complex analogs presented in this chapter were proved by
Moiseyev, Certain and Weinhold.9 The extension of perturbation theory and almost
degenerate perturbation to non-Hermitian formalism of QM is based on the work
of Moiseyev and Certain.10 The upper and lower bounds of the resonance positions
and widths were proved on the basis of the Hermitian representation of the complex
coordinate method (complex scaling)11 and on the non-Hermitian Lanczos recursion
method.12 The application of these properties of the non-Hermitian Hamiltonians and
the methods presented in this chapter enable the study the resonance phenomena in
very different fields in atomic, molecular, mesoscopic and optical sciences.

7.9 Solutions to the exercises

Answer to Exercise 7.1

The eigenvalues of a Hermitian Hamiltonian are real. Therefore, [Ĥ�]∗ =
[E�]∗ = E�∗. If Ĥ is a real Hamiltonian then Ĥ�∗ = E�∗. In the absence
of degeneracy this means that �∗ = � and � must be a real function. In the case
of degeneracy any linear combination of the degenerate states,� and�∗, is also an
eigenfunction of Ĥ . Therefore Re(�) = (� +�∗)/2 and Im(�) = (� −�∗)/(2i)
are two real degenerate eigenfunctions of Ĥ . Following Eq. (7.15) it is clear that

9 N. Moiseyev, P. R. Certain and F. Weinhold, Mol. Phys. 36, 1613 (1978).
10 N. Moiseyev and P. R. Certain, Mol. Phys. 37, 1621 (1979).
11 N. Moiseyev, Chem. Phys. Lett. 99, 364 (1983).
12 E. Davidson, E. Engdahl and N. Moiseyev, Phys. Rev. A 33, 2436 (1985).
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the matrix which represents the complex scaled Hamiltonian (when the unscaled
Hamiltonian is a real Hermitian operator) is a complex symmetric matrix.

Answer to Exercise 7.2

The given matrix Hθ can be a general complex matrix. We are looking for a
transformation Uθ (for which ŨT

θUθ = I) such that

ŨT
θHθUθ = Tθ ,

HθUθ = UθTθ . (7.132)

Uθ can be described as a matrix of column vectors {�i}i=1,...,n such that

HθUθ = (�1,�2,�3, . . . ,�n)



α1 β1 0
β1 α2 β2

β2 α3
. . .

. . . . . . βn−2

βn−2 αn−1 βn−1

0 βn−1 αn


,

(7.133)

where {αi ;βi}i=1,...,n are the elements of the tri-diagonal matrix Tθ . Since the
eigenvalues of a tri-diagonal matrix are obtained by solving a polynomial equation
where the coefficients contain only the diagonal Tii elements and the product of the
off-diagonal elements [Ti,i+1Ti+1,i], it is clear that the most general representation
of T is when

Ti,i+1 = Ti+1,i ≡ βi . (7.134)

Since any matrix can be transformed to a tri-diagonal matrix, it implies that any
matrix can be transformed into a symmetric matrix. For any value of n that is not
on the extreme we get that

Hθ�n = βn−1�n−1 + αn�n + βn�n+1,

(Hθ − αnI) �n − βn−1�n−1 = βn�n+1 . (7.135)

and similarly

HT
θ �̃n = βn−1�̃n−1 + αn�̃n + βn�̃n+1 ,(

HT
θ − αnI

)
�̃n − βn−1�̃n−1 = βn�̃n+1 . (7.136)
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Let us now define

�n+1 ≡ (Hθ − αnI) �n − βn−1�n−1 ,

�̃n+1 ≡ (HT
θ − αnI

)
�̃n − βn−1�̃n−1 , (7.137)

and therefore

β2
n = �̃

T
n+1�n+1 ;

�n+1 = �n+1

βn
; �̃n+1 = �̃n+1

βn
. (7.138)

To start the Lanczos recursion procedure one should define the first Lanczos recur-
sion state �1 = �̃1. For the calculations of the scattering matrix (see Chapter 8)
it is recommended to carry out the Lanczos recursions twice, first when �1 is the
initial state in the scattering process multiplied by the complex scaled potential
and a second time when �1 is the complex scaled final state multiplied by the
complex scaled potential. For the calculations of a specific resonance state one can
choose a crude guess for the resonance wavefunction as obtained from stabiliza-
tion calculations within the framework of the standard (Hermitian) formalism of
quantum mechanics. In principle one can take �1 to be a random c-normalized
vector.

Another point we wish to emphasize is that β1 is the complex standard deviation
of the expectation of the energy as obtained from the first Lanczos recursion
function(vector), �1. That is,

β2
1 = [�̃T

1 H2
θ�1

]− [�T
1 Hθ�1

]2
. (7.139)

The proof is based on the fact that
∑
n�n�̃

T
n = I. This leads to

�T
1 H2

θ�1 =
∑
n

[
�T

1 H2
θ�n

][
�̃

T
nH2

θ�1
]

= [�T
1 Hθ�1

]2 + [�T
1 Hθ�2

][
�̃

T
2 H2

θ�1
]

= [�T
1 Hθ�1

]2 + β2
1 . (7.140)

Note that although the Lanczos vectors are supposed to be c-orthogonal in
numerical calculations they fail to be so due to round-off errors. There are three
types of Lanczos eigenvector: “good”, “bad” and “ghost” eigenvectors. The “bad”
ones are those for which the first components of the corresponding eigenvectors
are equal to zero. These solutions are not related to the spectrum of T since the
projection of the initial (first) Lanczos vector on the exact eigenvector of T is equal
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to zero. The “ghost” eigenvectors are degenerate eigenvalues within the numerical
accuracy of the computer. The rest are the “good” ones. The j -th eigenvector of H
is defined as �j =∑n Cnj�n where Cj is the “good” j -th eigenvector of T, and

Cj =
(∑
k∈G

[C̃k]T[Ck]

)1/2

, (7.141)

where the summation is over the ghost eigenvectors of T.

Answer to Exercise 7.3

The difference between the complex scaled non-linear GP equations given in
Eq. (7.38) and Eq. (7.44) results from different normalization conditions. In the
derivation of Eq. (7.38) the c-product has been used to normalize the complex
scaled Hartree function, ∫

dr[φθ (r)]2 = 1 , (7.142)

while in the direct application of the complex scaling transformation to the
D-dimensional GP equation the following normalization condition is applied:∫

d(eiDθr)[φ̃θ (r)]2 = 1 . (7.143)

From a comparison between Eq. (7.142) and Eq. (7.143) one gets

φ̃θ (r) = e−iDθ/2φθ (r) . (7.144)

By substituting Eq. (7.144) into Eq. (7.44) the non-Hermitian non-linear
Schrödinger equation in Eq. (7.38) is obtained.

Answer to Exercise 7.4

The solution of this problem is an extension of the derivation13 to non-Hermitian
Hamiltonians. For a two-electron system the complex scaled Hamiltonian is

Ĥθ = ĥθ1 + ĥθ2 + e−iθ

r12
(7.145)

and the open-shell spin adapted Hartree–Fock function can be expressed as

1,3�θ (1, 2) = [1,3φθ1 (1)][1,3φθ2 (2)] ± [1,3φθ2 (1)][1,3φθ1 (2)] , (7.146)

13 N. Moiseyev and J. Katriel, Chem. Phys. Lett. 29, 69 (1974).
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where the plus and minus signs refer to the singlet and triplet states respectively.
Note that, while the triplet state is associated with a single determinant, the singlet
spin state is a linear combination of two determinants. In the case of open-shell
excited state calculations two different orbitals can be obtained by the spin-adapted
mean field computations such that the electronic correlation which is needed for the
Auger and interatomic Coulombic decay (ICD) resonance phenomena is partially
included in the mean field calculations. The one-electron Hamiltonians ĥ1 and
ĥ2 consist of the complex scaled kinetic operator and the complex scaled one-
electron potential which is problem dependent (i.e. for atoms and molecules it
is the Coulomb electron–nuclei attractive potential and for quantum dots it is an
effective potential that can often be described by a Gaussian potential well). The
two orbitals are expanded in a primitive basis set (usually Gaussians for which the
Hamiltonian matrix elements can be calculated analytically)

1,3φθi (j ) =
Ni∑
α=1

[1,3Cθαi]χαi(j ) , (7.147)

where the two orbitals are denoted by i = 1, 2 and j = 1, 2 is the index of the
electronic coordinates. For different orbitals different basis functions can be used,
but this is not a necessary condition. The variational energy is given by

1,3Ēθ =
∑
αα′
∑
ββ ′[1,3Cθα1][1,3Cθα′1][1,3Hθ

αα′ββ ′][1,3Cθβ2][1,3Cθβ ′2]∑
αα′
∑
ββ ′[1,3Cθα1][1,3Cθα′1][1,3Sθαα′ββ ′][1,3Cθβ2][1,3Cθβ ′2]

(7.148)

and is obtained under the requirements that[
∂[1,3Ēθ ]

∂[1,3Cθαi]

]
α=1,...,Ni ; i=1,2

= 0 , (7.149)

where

1,3Hθ
αα′ββ ′ = 〈χα1(1)χβ2(2)|Ĥθ |χα′1(1)χβ ′2(2) ± χβ ′2(1)χα′1(2)〉 (7.150)

and

1,3Sθαα′ββ ′ = 〈χα1(1)χβ2(2)|χα′1(1)χβ ′2(2) ± χβ ′2(1)χα′1(2)〉 . (7.151)

Equation (7.149) is satisfied when the two coupled sets of pseudo-secular equations
are solved: (

[1,3Hθ
1] − [1,3Ēθ ][1,3Sθ1]

) = 0 , (7.152)(
[1,3Hθ

2] − [1,3Ēθ ][1,3Sθ2]
) = 0 , (7.153)
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where [
1,3Hθ

1

]
αα′ =

∑
ββ ′

[1,3Hθ
αα′ββ ′][1,3Cθβ2][1,3Cθβ ′2] , (7.154)

[
1,3Hθ

2

]
ββ ′ =

∑
αα′

[1,3Hθ
αα′ββ ′][1,3Cθα1][1,3Cθα′1] , (7.155)

[
1,3Sθ1

]
αα′ =

∑
ββ ′

[1,3Sθαα′ββ ′][1,3Cθβ2][1,3Cθβ ′2] , (7.156)

[
1,3Sθ2

]
ββ ′ =

∑
αα′

[1,3Sθαα′ββ ′][1,3Cθα1][1,3Cθα′1] . (7.157)

The coupled equations in Eq. (7.152) and Eq. (7.153) can be solved by an iterative
self-consistent-field (SCF) method. For the calculations of atomic and molecular
auto-ioniozation and Auger resonances the two electrons should be in excited states.
Therefore, during the iterative procedure the n-th excited state is calculated in the
solution of Eq. (7.152), whereas them-th excited state is calculated in the solution of
Eq. (7.153). Therefore, in the spin adapted mean field approach the resonances are
assigned two good quantum numbers (n,m). By choosing different types of sym-
metry basis functions one can calculate different types of resonance with the same
good quantum numbers (n,m). For example, in the calculations of the 1S resonances
of helium during the iterative SCF calculations one should keep n = m = 1 (first
excited state) and the basis functions for the two orbitals are spherically symmet-
ric. Different resonances can be calculated by replacing the spherically symmetric
basis functions with other type of symmetry functions (for examplep-type orbitals)
while keeping n = m = 1 in the SCF calculations. In ICD calculations (see Chapter
2) the most common situation is where n = 0 (ground state) when Eq. (7.152) is
solved, butm = 1 when Eq. (7.153) is solved. For sufficiently narrow quantum-dot
effective potentials the repulsion between the two electrons can be large enough
to render the ground state metastable and the resonance energy and lifetime of
the ground state of the two-electron quantum dot is obtained when in the SCF
calculations n = m = 0.

The resonance solutions are obtained for the optimal scaling angle for which[
∂[1,3Ēθ ]

∂θ

]
θopt

= 0 . (7.158)

Answer to Exercise 7.5

The solution of this exercise is based on Moiseyev.14 From scattering theory
we can relate the derivative of the phase shift ηl to the eigenfunction ψl,k

14 N. Moiseyev, Phys. Rev. A 24, 2824 (1981).
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through

dηl
dk

= 1

k2
lim
r→∞W [ψl,k,�] , (7.159)

where W stands for the Wronskian of two functions, W [ψl,k,�] = ψl,k∂�/∂r −
�∂ψl,k/∂r , and � is

�(r) = r ∂ψl,k
∂r

− k ∂ψl,k
∂k

. (7.160)

We can express the scattering eigenfunction ψl,k(r) by

ψl,k(r) = i

2

[
fl(k)χ

−
l,k − fl(−k)χ+

l,k(r)
]
, (7.161)

in whichfl(k) is the amplitude of the scattering state andχ±
l,k(r) satisfy the condition

lim
r→∞χ

±
l,k(r) = h±

l (kr) = nl(kr) ± ijl(kr) , (7.162)

where nl(kr) and jl(kr) are respectively the Neumann and Bessel functions. Note
that since for real values ofE the scattering functions are real, the amplitudes fl(k)
might have complex values since χ±

l,k(r) are complex functions when k has real
values. By substituting Eq. (7.161) into Eq. (7.160) one obtains

�(r) = k

4

(
∂lf (+k)
∂k

χ−
l,k(r) + ∂lf (−k)

∂k
χ+
l,k(r)

)
(7.163)

and consequent substitution of Eqs. (7.162) and (7.163) into Eq. (7.159) yields

E
∂ηl

∂k
= k

8
W [h+

l (kr), h−
l (kr)]

(
fl(k)

∂fl(−k)
∂k

+ fl(−k)∂fl(+k)
∂k

)
. (7.164)

From conventional scattering theory we know that W [jl, nl] = −k and conse-
quently W [h+

l , h
−
l ] = −2ik. It is also well established that the bound, resonance

and virtual states are associated the zeros of the amplitude of the scattering wave-
function (which are the poles of the scattering matrix). In other words we are
looking for the solution for which

fl(k0) = 0 (7.165)

and therefore

ψl,k0 (r) = − i

2
fl(−k)χ+

l,k0
(r) . (7.166)
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We will now prove that at the poles of the S-matrix where E0 = k2
0/2

E0
dηl
dk

|k0 = −2iE0fl(−k0)
dfl(k)

dk
|k0 . (7.167)

The derivative of the amplitude of the scattering eigenfunction at the poles of the
S-matrix is given by

dfl(k)

dk
= −2

∫ ∞

0
χ+
l,k0

(r)ψl,k0 (r)dr = i
∫ ∞

0
ψl,k0 (r)ψl,k0 (r)dr . (7.168)

It is a point of interest that here the c-product is obtained from our derivation. At
the poles of the S-matrix Eq. (7.167) reduces to

E0
dηl
dk

|k0 = 2E0

∫ ∞

0
ψl,k0 (r)ψl,k0 (r)dr (7.169)

and from the virial theorem for the scattering of particles by a central field potential,∫∞
0 ψl,k(r) (2V (r) + rdV/dr)ψl,k(r)dr = Edηl/dk, we get the following virial

theorem for the resonance, virtual, and bound states:

E0 =
∫∞

0 ψl,k0 (r)
(
V (r) + r

2
dV
dr

)
ψl,k0 (r)dr∫∞

0 ψl,k0 (r)ψl,k0 (r)dr
, (7.170)

where E0 = k2
0/2. For bound states E0 attains real values (k0 are pure imaginary

numbers) andψl,k0 are square integrable functions. For the resonance and the virtual
states, Im(E0) < 0 and ψl,k0 (r) diverges in the asymptotic limit. As discussed in
Chapter 5, upon complex scaling the resonance eigenfunctions become square
integrable and

lim
r→∞ψl,k0 (re

iθ ) = h+
l (kreiθ ) ∈ L2 , (7.171)

where now

k2
0/2 ≡ Eres = k2

res/2 . (7.172)

Therefore, by complex scaling of the radial Schrödinger equation, similarly to
Eq. (7.169), the complex virial theorem is obtained,

Eres =
∫∞

0 ψθl,kres
(r)
(
V (r) + r

2
dV
dr

)
ψθl,kres

(r)dr∫∞
0 [ψθl,kres

(r)]2dr
, (7.173)
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where

ψθl,kres
(r) = ψl,kres (re

iθ ) ∈ L2 . (7.174)

Answer to Exercise 7.6

The solution of this exercise is based on Engdahl and Moiseyev.15 Assuming
existence of “perfect” correlation between the error estimate of the resonance
position and width, |En − Ēn|, and the corresponding λn which is defined as the
lowest eigenvalue of (Ĥθ − Ēn)∗(Ĥθ − Ēn),

λn(θ ) = C(θ ) · |En − Ēn| (7.175)

for n = 1, 2, 3.
Since the constant C(θ ) depends only on the value of the rotational angle (or

more generally speaking on the parameters of the contour of integration in the
complex plane or of the used complex absorbing potential) and not on the chosen
trial energy Ēn, the unknowns Re[En], Im[En] andC(θ ) can be obtained by solving
the equation system given in Eq. (7.114). Therefore the answer to this problem is
that the proposed procedure for calculating an accurate value for the resonance
position and width holds under the following assumptions:

(1) we have a “perfect” correlation between the error estimate of the resonance position
and the error estimate of the width;

(2) the proportionality factor C depends on θ only and not on the differnet trial energies
{Ēn}n=1,2,3.

Answer to Exercise 7.7

The resonance position ε and width � of an auto-ionizing state is associated
with a complex energy E = ε − i/2� of the complex scaled Hamiltonain Ĥθ (r) =
Ĥ (reiθ ),

Ĥθ (r)ψθ (r) = Eψθ (r) (7.176)

with square integrable eigenfunctionψθ . By scaling r in Eq. (7.176) by 1/Z, where
Z is the atom’s nuclear charge, one gets that

Ĥθ (r/Z)ψθ (r/Z) = Eψθ (r/Z) . (7.177)

We can express the scaled Hamiltonian Ĥθ (r/Z) as

Z−2Ĥθ (r/Z) = Ĥ (0)
θ (r) + Z−1Ĥ

(1)
θ (r) , (7.178)

15 E. Engdahl and N. Moiseyev, J. Chem. Phys. 84, 1379 (1986).
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where

Ĥ
(0)
θ (r) = e−2iθ

∑
i

(
−1

2
∇2
i

)
− e−iθ

∑
i

1

ri
,

Ĥ
(1)
θ (r) = e−iθ

∑
i<j

1

|ri − rj| . (7.179)

The perturbed complex eigenvalue up to the order N is

[ε − i/2�](N) = Z2
N∑
n=0

E(n)

Zn
, (7.180)

where E(n) are the n-th order perturbation correction terms of the eigenvalue
of Ĥ (0)

θ (r) + λĤ (1)
θ (r), which can be calculated by Eq. (7.117). Since Ĥ (0)

θ (r) is
separable into hydrogen-like Hamiltonians both E(0) (bound states of Ĥ (0)

θ (r)) and
the first order correction terms E(1) are real and therefore

ε = Z2E(0) + ZE(1) + Re(E(2)) + Z−1Re(E(3)) +O(Z−2) ,

� = −2Im(E(2)) − 2Z−1Im(E(3)) +O(Z−2) . (7.181)

The first-order correction to the energy is real, although the perturbation is the
complex scaled electronic repulsion potential term since the zero-order functions
are bound states, and one can carry out a back rotational transformation such that
the contour of integration becomes dr1dr2 rather than the complex scaled one. Thus
the integral is over a real function which gives only real-valued correction to the
the energy.

This approach has been used by Moiseyev and Weinhold for calculations of
electron-correlation effects in positions and widths of two-electron auto-ionizing
resonances.16
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8

Non-Hermitian scattering theory

We begin by considering the following scattering experiment. A projectile, e.g.,
an atom A in a given electronic state, collides with a target which we will take as
a diatomic molecule BC in its ground electronic, vibrational and rotational state.
For a short period of time an activated complex [ABC]# is generated. As time
passes the activated complex can break into different products. For instance, in our
example these products will beA+ BC, B + AC, C + AB andA+ B + C. Each
one of the possible products can be in different electronic, vibrational and rotational
quantum states. The total energy which is originally the sum of the electronic and
translational energies of the projectile A and the electronic, vibrational, rotational
and translational energies of target BC is conserved during the scattering process.

Time-independent scattering theory enables one to calculate the probability of
obtaining the specific products in given quantum states and the kinetic energy
distribution of the products as a function of the total energy of the system without
the need to solve the time-dependent Schrödinger equation. The time-independent
formulation of scattering theory is based on the ability to propagate analytically an
initial given wavepacket, �(0), to infinite times. That is, we need to get a closed-
form expression for limt→±∞ e−iĤ t/h̄|�(t = 0)〉. To quote from the introduction of
the excellent book on scattering theory written by Taylor:1 “The most important
experimental technique in quantum physics is the scattering experiment. That this
is so is clear from even the briefest review of modern physics.” The rational behind
this statement is that one of the best ways to extract information on the structure of
matter is via scattering experiments.

Calculations based on time-independent scattering theory within the Hermitian
formalism of quantum mechanics require the ability to obtain quite accurately the
continuum of a given Hamiltonian. For instance, in the above example it is the
continuum of all possible dissociation products of the Hamiltonian of the ABC

1 J. R. Taylor, Scattering Theory, New York, John Wiley & Sons, Inc., 1972.
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complex. This is quite often a tough computational task since the density of states
in the continuum does not vary monotonically with the energy (read about the
calculations of resonances in the continuum by the standard formalism of quantum
mechanics in Chapter 3).

The non-Hermitian formalism of quantum mechanics enables us to split the
continuum into two parts. One part contains the resonances which are represented
by square integrable functions2 whereas the other part of the spectrum contains
a continuum of functions with monotonically varying density of states (so-called
“white” continuum). The use of non-Hermitian scattering theory simplifies the cal-
culations of cross sections, transition probabilities and the probability of obtaining
specific products since often one can disregard the “white” continuum and consider
only the contribution of the resonances to the process under study.3

The complex coordinate (i.e., non-Hermitian) time-independent scattering the-
ory enables one to calculate cross sections, partial widths and state-to-state transi-
tion probabilities even for time-dependent Hamiltonians. The transition from some
initial state, φi, to a final state, φf , is given by the matrix element (known as the
Lippmann–Schwinger equation).

T (E) = 〈φf|V̂ + V̂ Ĝ(E)V̂ )|φi〉 , (8.1)

where φi and φf are two eigenfunctions with the same energy E of the unperturbed
Hamiltonian Ĥ0 = Ĥ − V̂ and Ĝ(E) is the outgoing Green’s operator given by

Ĝ(E) = lim
ε→0+

1

E − Ĥ + iε
. (8.2)

The initial and final states are embedded in the continuum of the unperturbed
Hamiltonian and therefore are energy normalized functions. The interacting poten-
tial V̂ vanishes as the projectiles move far from the target. It should be stressed
here that T (E) is not the probability of getting the final state (i.e., product) from
the initial state (i.e., reactants) in a scattering collision experiment. We will address
this point later in this chapter.

The motivation for deriving a complex-coordinate scattering theory has been
explained above. The manner in which it is implemented is by evaluating the state-
to-state transition probability amplitude by integration along a complex contour in
coordinate space.

For example, the complex spatial contour can be obtained by scaling the carte-
sian coordinates by a complex factor eiθ . Conversely, it may be numerically advan-
tageous to scale only the “reaction coordinate” by a complex factor, while all

2 See the different types of complex scaled transformations presented in Chapter 5 which should be used to
associate the resonances with square integrable functions.

3 Note that even if there is a need to include the “white” continuum in the calculations one can replace it with
quasi-continuum functions which are obtained by applying the finite box approximation.
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other coordinates will remain unscaled. The “reaction coordinate” may be con-
sidered as the distance between the center of mass of the scattered particle and
the center of mass of the target. Therefore, as x → xeiθ , 〈φf(x)| → 〈φf(xe−iθ | and
|φi(x)〉 → |φi(xeiθ 〉. The interaction potential is also scaled by the same factor,
V (x) → V (xeiθ ), and so is the Green’s operator, Ĝ(E) → Ĝθ (E). In principle one
can use any one of the complex scaling transformations which were introduced and
discussed in Chapter 5. More generally speaking, any transformation x → F (x, θ )
for whichF (x, θ ) → xeiθ as |x| → ∞ will be encompassed by the derivation which
follows below.

The complex scaled Green’s operator, Ĝθ (E), is defined by

Ĝθ (E) = 1

E − Ĥθ
, (8.3)

where Ĥθ is the complex scaled Hamiltonian of the system. Since the outgoing
boundary conditions are already embedded in the complex scaled Hamiltonian
there is no need now to introduce the +iε factor which appears in the Green’s
operator in Eq. (8.2). Consequently, the energy contour of integration becomes
complex when Ĝ is in the spectral representation. Since this is a crucial point in
the derivation of the complex coordinate scattering method, we shall discuss it
in some more detail. First we discuss the spectral representation of the Green’s
operator within the framework of the standard (Hermitian) formalism of quantum
mechanics (i.e., the Hamiltonian is Hermitian since θ = 0). The Green’s function
provides us with the probability amplitude to get from x to x′ at a given energy E.
In the spectral representation Gθ=0

E is given by

Gθ=0
E

(
x′, x

) = 〈x′|Ĝθ=0(E)|x〉 =
∑∫

dE′ψE′(x′)ψE′(x)

E − E′ , (8.4)

where !
∫

stands for summation over the bound states of the unscaled Hamilto-
nian Ĥ and integration over the energy normalized continuum eigenfunctions, i.e.,
〈ψE′ |ψE〉 = δ(E − E′). Note that the non-degenerate eigenfunctions of a Hermi-
tian and real Hamiltonian have to be real, and that degenerate eigenfunctions can
always be transformed to be real, and therefore we do not take here the complex
conjugate of ψE′(x′).

As one can see from Eq. (8.4),Gθ=0
E has a branch cut along the real energy axis.

Consequently, large numerical errors are expected in a brute force application of
Eq. (8.4), due to the vanishing of the energy denominator. This is a very serious
technical problem which is taken care of in the Hermitian formalism of quantum
mechanics by adding −iε to the Hamiltonian where in the final step of the cal-
culations the limit of ε → 0 is taken. However, this technical problem is avoided
in the non-Hermitian formalism of quantum mechanics by rotating the energy
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contour of integration from the real axis into the complex plane. The energy con-
tour of integration becomes complex when the relevant spatial contour is rotated
into the complex plane, as discussed in Chapter 5. The wavefunctions ψE′ and
the energy E′ in Eq. (8.4) are replaced by the eigenfunctions and eigenvalues of
the complex scaled Hamiltonian Hθ . The eigenfunctions of the complex scaled
Hamiltonian are associated with the discrete spectrum of real bound state energies,
En(bound), and with the complex resonance spectrum,En(res) = εn − i

2�n, where
ψnres , nres = 1, 2, . . . , are square integrable functions. The spectrum consists also
of a rotated continua, ψ

E
j

θ
where Ejθ = εe−2iθ + Eth

j , and ε varies from 0 to ∞
while Eth

j , j = 1, 2, . . . , are the (real) threshold energies. The complex scaled
Green’s function in the spectral representation is given by

GθE(x′, x) =
∑
n

ψn(x′)ψn(x)

E − En +
∑
j

∫
dEjθ

ψ
E

(j )
θ

(x′)ψ
E

(j )
θ

(x)

E − E(j )
θ

. (8.5)

Here we assume that the wavefunctions are complex only due to the complex
scaling. When the eigenfunctions of the complex scaled Hamiltonian are varia-
tionally obtained with complex basis functions one should use the left and right
eigenstates of Hθ as defined in Chapter 5.

Usually we can describe two main types of scattering event. In full collision
scattering experiments using the non-Hermitian formalism the transition proba-
bility amplitude, T (E), is calculated, whereas in half collision experiments (i.e.,
the system is initially prepared in a state where it has enough energy to ionize or
dissociate) T (E) represents the amplitude of probability of obtaining a given set
of products resulting from an ionization and/or dissociation process. T (E) either
in a full scattering experiment or in a half collision process is complex. Being a
measurable quantity, T (E) is in principle θ -independent. In the numerical calcu-
lations when finite grid or finite basis set methods are used T (E) is θ -dependent.
The optimal values of T are associated with the stationary solutions for which
dT/dθ = 0. Since T is complex, θ should be allowed to have complex values and
to be optimized to satisfy the two Cauchy–Riemann conditions:

∂ReT (θ )

∂Reθ

∣∣∣∣
θopt

= 0 and
∂ImT (θ )

∂Reθ

∣∣∣∣
θopt

= 0

or

∂ReT (θ )

∂Im(θ )

∣∣∣∣
θopt

= 0 and
∂ImT (θ )

∂Imθ

∣∣∣∣
θopt

= 0 . (8.6)
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The fact that the optimal rotational angle θopt may have complex values can be
introduced as the result of using a complex scaling factor

η = eiθ = αeiθ ′
, (8.7)

where α and θ ′ are real. The optimal values of α and θ ′ are those for which
∂T /∂α = 0 and ∂T /∂θ ′ = 0. The optimization of the complex scaling factor η (i.e.
θ ′ = θopt, α = αopt) enables the application of the complex coordinate scattering
theory to long-range potentials, and avoids the serious singularities and convergence
problems due to the exponential asymptotic divergence of the complex scaled
incoming (|φi〉) or outgoing (〈φf|) states.

8.1 Full collision processes for time-independent systems

Full collision processes cover the types of experiment described in the introduction
to this chapter. Examples include electron scattering from atoms and molecules
where the electron is temporarily trapped by the atom/molecule and scattering of
atoms and molecules from solid surfaces where the projectiles are temporarily
trapped by the solid. These types of scattering experiment can be described by
p + T → [p − T ]# → p + T ∗, where p is the projectile and T is the target (an
atom, a molecule or a solid surface in our examples) where [p − T ]# stands for the
so-called activated complex produced during the scattering process. This activated
complex has a finite lifetime and will eventually break up and decay. T ∗ stands
for the final quantum state of the target which is not necessarily equal to the
initial quantum state. The theory presented in this section is applicable to more
complicated situations where, for example, the products obtained as [p − T ]#

breaks apart and can also include fragments of the target or new molecular ions and
radicals. Of course, our association of the projectiles, the target and the products
with electrons, atoms, molecules and solids is for illustration purposes only, and
the theory presented here is applicable to other fields in physics and not necessarily
to molecular or surface physics.

The probability of getting from an initial state φi to a final state φf is given by
the corresponding S-matrix element,

Pf←i = |Si,f|2 , (8.8)

where the scattering matrix element is given by

Sf,i = δf,i − iTf,i . (8.9)

Tf, i is the complex scaled T-matrix element (the asymptotic plane waves in the
T-matrix elements are re-normalized such that the flux along the scattering
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coordinate is independent of the initial wavevector, as mentioned above). When the
initial and final states are energy normalized the T-matrix elements are given by

Tf, i(E) = (φf|V + V ĜEV |φi) , (8.10)

where (· · | · ·) stands for the complex inner product discussed in detail in Chapter 6.
ĜE = (E −H )−1 and V̂ (x, r) = V describes the interaction potential of the scat-
tered particle and the target where {x} are the internal (or target) coordinates and
r is the reaction coordinate. In general three-dimensional problems r should be
considered as a vector, however, for the scattering of S-waves this becomes a
one-dimensional coordinate which varies from 0 to ∞. This is in contrast to one-
dimensional scattering problems where the scattering coordinate varies from −∞
to +∞. The Hamiltonian Ĥ is given by

Ĥ = Ĥ0 + V̂ , (8.11)

where

Ĥ0 = − h̄
2

2µ
�r + ĥ(x) . (8.12)

�r stands for the Laplacian operator with respect to the coordinates of the scattered
particle and ĥ(x) is the Hamiltonian of the target. In this stage of the representation
we will carry out an analytical continuation ofH, V, φi, φf, H0 and Ĝ by scaling
the reaction coordinate by a complex factor. That is,

r → reiθ , (8.13)

where r has real values only and

Vθ = V (x, reiθ
)
,

Hθ = Ĥ (x, reiθ
)
,

Ĝθ (E) = 1

E − Ĥθ
. (8.14)

The energy normalized initial and final states are eigenfunctions of the complex
scaled Hθ

0 Hamiltonian,

φi(x, r) =
√

µ

h̄2|kmi |eiθ
e+ikmi e

iθ r · χmi (x) (8.15)

and

φf(x, r) =
√

µ

h̄2|kmf |eiθ
e−ikmf eiθ r · χ∗

mf
(x) , (8.16)
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where χm are solutions of the Hamiltonian of the target given by

ĥ(x)χmi (x) = Eth
mi
χmi (x ) ,

ĥ(x )χmf (x) = Eth
mf
χmf (x ) . (8.17)

The complex scaling of the flux normalization factor results from the standpoint of
numerical convenience where we wish to keep the integration volume as dr rather
than dr eiθ . If the reaction coordinate is radial, −2i sin(keθ r) replaces the e−ikeiθ r in
Eqs. (8.15) and (8.16). The initial and final wave vectors are defined such that the
total energy of the “particle-target” system is conserved:

E = h̄2k2
mi

2µ
+ Eth

mi
= h̄2k2

mf

2µ
+ Eth

mf
. (8.18)

Upon complex scaling both the initial stateφmi (re
θ , x) and the final stateφmf (x, re

θ )
are not eigenfunctions of Hθ

0 = Hθ − Vθ since the initial ki and the final kf are real
wave vectors.

In the calculation of the complex scaled T-matrix element we first evaluate the
right and left eigenfunctions of the full complex scaled Hamiltonian, Ĥθ .

The right and left eigenfunctions of the complex scaled Hamiltonian can be
obtained by the diagonalization of the Hamiltonian matrix Hθ when {χm} are used
as a basis function:

ψR
n =

∑
m

ϕR
m, n(r)χm(x) , (8.19)

ψL
n =

∑
m

ϕL
m, n(r)χm(x) , (8.20)

where

Hθϕ
R
n = EnϕR

n ,

HT
θ ϕ

L
n = EnϕL

n ,

[Hθ ]m′,m = (χm′ |Ĥ (x, reiθ )|χm) . (8.21)

Note that when the Hermitian unscaled full Hamiltonian Ĥ is real then HT
θ = Hθ

and the left-states (labeled by L) and the right-states (labeled by R) are equal. By
using the complex eigenvalues and eigenfunctions given in Eqs. (8.20)–(8.21) to
construct the complex scaled Green’s operator (see Eq. (8.5)), the complex scaled
T-matrix element is obtained by substituting in Eq. (8.10), leading to

Tf, i(E) = T direct
f, i + T indirect

f, i , (8.22)
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where the direct part is due to a single scattering event and the indirect part is due
to multiple scattering processes. These scattering matrix elements are given by

T direct
f, i = µ

h̄2√|ki||kf|
∫ ∫

dr dxχ∗
mf

(x) e−ikfrV (x, r)χmi (x) e+ikir ,

T indirect
f, i = eiθ

∑
n

aL(kf) aR(ki)

E − En . (8.23)

The summation over n in the indirect term runs over all bound, resonance and
rotated continua solutions which are associated with a discrete spectrum due to
the use of a finite number of basis functions. En are the eigenvalues of the non-
Hermitian Hamiltonian which are real for bound states and complex for resonances
and rotated continuum states. The multiple scattering coefficients aL(kf) and aR(ki)
are defined by

aL(kf) =
∫ ∫

dr dxχ∗
mf

(x) e−ikfeiθ r V (x, eiθ r)ψR
n (r, x) ,

aR(ki) =
∫ ∫

dr dxχmi (x) e+ikieiθ r V (x, eiθ r)ψL
n (r, x) . (8.24)

The following paragraph with some more technical detail is addressed to the
readers who wish to carry out scattering calculations within the framework of the
non-Hermitian formalism of quantum mechanics. The indirect (multiple scattering)
term in Eq. (8.22) is multiplied by the complex factor eiθ since the integration in
the Lippmann–Schwinger equation along a complex contour requires maintaining
the normalization of the eigenfunctions of the complex scaled Hamiltonian,∫ ∫

dxeiθdr ψL
n (x, r)ψR

n (r, x) = 1 , (8.25)

whereas we required instead that∫ ∫
dx dr ψL

n (x, r)ψR
n (r, x) = 1 (8.26)

and therefore the second term in Eq. (8.22) should be multiplied by eiθ in order to
keep the contour of integration as xeiθ . Note that the 2π in the energy normalization
factor of the continuum functions cancels out when the T-matrix elements are
multiplied by −2π i in the calculations of the scattering matrix elements.

Since the integral in the first term of Eq. (8.22) is unaffected by the value of θ
(provided V (r, x) is an analytical function) we choose here to carry this integral
along the real r axis.

Note in passing that Eq. (8.22) can be simplified if the exterior scaling procedure
is used rather than the commonly used uniform complex scaling. If r = r when
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r ≤ r0; r → (r − r0)eiθ + r0 when r > r0 and V (x, r > r0) = 0, then the initial
and final states and the interaction potential V remain unscaled. The only complex
functions used in this case in Eq. (8.22) are the left and right eigenfunctions of
the exterior-complex-scaled Hamiltonian Hθ , and the only complex numbers in
Eq. (8.22) are the corresponding complex eigenvalues of Hθ .

Equation (8.22) provides an expression for the T-matrix element that does not
suffer from the numerical disadvantages of T (θ = 0). The continuous spectrum
of Ĥ is discretizised and the complex eigenvalues, Eθn , avoid the vanishing of the
energy denominators in the Green’s operator (see Eq. (8.4)), such that the energy
integral in Eq. (8.5) for summation in Eq. (8.22) converges. Another benefit is the
inclusion of the resonance states (poles of the S-matrix) in the spectrum of Ĥ ,
where one resonance eigenstate represents a large number of scattering eigenstates
of the non-scaled Hamiltonian. The price we pay for these benefits is the need to
confirm the stability of the calculated complex T-matrix in terms of the size of the
basis set and the need to look for the optimal value of the scaling parameter η = eiθ ,
for which Eq. (8.6) is satisfied.

8.1.1 The complex coordinate scattering theory and
the Kohn variational principle

On the basis of the c-variational principle proved in Chapter 7, the eigenfunctions
of the complex scaled Hamiltonian can be expanded in terms ofN square integrable
basis functions, �n,

|ψα) =
N∑
n=1

Cn,α|�n) ; (ψα| =
N∑
n=1

Dn,α(�n| . (8.27)

The linear variational parameters Cα and Dα are respectively the right and left
eigenvectors of the complex scaled Hamiltonian matrix Hθ , corresponding to the
eigenvalue Eα (real for bound states and complex for resonances and rotated
continua).

HθCα = EαCα ,

HT
θDα = EαDα , (8.28)

where [
Hθ
θ

]
n′, n = (�n′ |Ĥθ |�n) (8.29)

and

Ĥθ = Ĥ (x, reiθ ) . (8.30)
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Since the Hamiltonian is non-Hermitian (due to the complex scaling) the
c-product should be used as an inner product rather than the usual scalar prod-
uct. Consequently,

DTC = 1 . (8.31)

The spectral representation of the Green’s operator in terms of the variational
eigenfunctions of the complex scaled Hamiltonian matrix

Ĝθ (E) =
∑
α

|ψα) (ψα|
E − Eα (8.32)

is valid if and only if the eigenfunctions of Ĥθ form a complete set. As discussed
in Chapter 6, for any given finite number of basis functions, N , one can always
find well-defined complex values of θ for which the spectrum is incomplete. In
such cases the number of non-linear dependent (i.e. “orthogonal”) eigenvectors
of Hθ is smaller than N . However, under very small variation of θ the spectrum
becomes complete (see the relevant discussion on the generalized inner prod-
uct for non-Hermitian Hamiltonians and the self-orthogonality phenomenon in
Chapter 9).

By substituting Eqs. (8.27)–(8.32) into Eq. (8.10) one can get that

T = (φf|V̂ |φi) + e+2iθνT
f (CA−1DT )νi, (8.33)

where A is a diagonal matrix defined by

Aα, α′ = (E − Eα) δα, α′ (8.34)

and the elements of the vectors νf and νi are given by

[νf]n = (φf|V̂θ |�n) ,
[νi]n = (�n|V̂θ |φi) , (8.35)

where

V̂θ = V̂(x, r eiθ ) . (8.36)

Since

A = DT[E − H(θ )]C , (8.37)

by using Eqs. (8.32), (8.33) and (8.37), we get that

T = (φf|V̂ |φi) + e+2iθνT
fGθ (E)νi , (8.38)
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where

Gθ (E) = 1

E − Hθ

. (8.39)

This is exactly the result obtained from the Kohn T-matrix variational principle by
Nuttall and Cohen.4

8.1.2 Resonance scattering: partial widths

Partial widths represent the probability per unit time of obtaining a specific reaction
product in a well-defined quantum state in full scattering or half-collision experi-
ments. Resonance scattering theory enables the calculations of partial widths from
the “tail” (i.e. asymptote) of a single, time-independent, square integrable reso-
nance wavefunction. This method has been used, so far, in the calculations of the
rotational distribution of a diatom in specular and non-specular scattering of the
diatom from a solid surface; the rotational distribution of a diatom obtained in a
photodissociation of a van der Waals complex; and the probability of ionizing an
atom or dissociating a diatom resulting from the absorption of n photons in the
presence of very strong electromagnetic fields.

Within the framework of the resonance-scattering-theory, as developed by
Moiseyev and Peskin,5 one assumes that the dynamics of the studied system is
controlled by a single intermediate isolated narrow resonance state (i.e., � is much
smaller than the gap between the resonance position, Er, and the position of any
other resonance state). Under this condition the transition probability from the
initial state to the final state is given by

Pf←i = |T θf, i(E)|2 , (8.40)

where the direct transition probability amplitude is zero. By using Eq. (8.22) the
complex scaled T-matrix element is approximately given by

Tf, i(E) = (φf|Vθ + VθĜθ (E)Vθ |φi) � (φf|Vθ |ψres) (ψres|Vθ |φi)

E − Eres
, (8.41)

where

|ψres) ∼ [1 + Ĝθ (E)Vθ ]|φi) ,

Hθ |ψres) = Eres|ψres) ,

Eres = Er − i

2
� ,

Er −� ≤ E ≤ Er +� (8.42)

4 J. Nuttall and H. L. Cohen, Phys. Rev. 188, 1542 (1969).
5 N. Moiseyev and U. Peskin, Phys. Rev. A 42, 255 (1990).
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and � should be smaller than the difference between the real part of Eres and
the nearest resonance position. Note that when E = Eres the denominator in the
term on the left-hand side of Eq. (8.41) gets very small (as the resonance width is
smaller and the resonance lifetime is larger the denominator gets smaller) and the
contribution of the single resonance term to calculated T-matrix elements becomes
more dominant.

It is important to notice that the initial state φθi and the final state φθf in Eq. (8.41)
are the complex scaled degenerate eigenfunctions of the unscaled, unperturbed Ĥ0

Hamiltonian which are associated with the real energyE and therefore they are not
eigenfunctions of the complex scaled unperturbed Hamiltonian

Ĥ θ
0 = Ĥθ − V̂θ . (8.43)

The approximation given in Eq. (8.41) holds provided that the contribution of
the direct scattering event to the cross section is small relative to the contri-
bution of the multiple-scattering events. In other words, the V̂θ Ĝ(E)V̂θ term is
associated with the multiple-scattering events through the Born series expansion
where Ĝθ (E) = Ĝθ0(E) + Ĝθ0(E) V̂θ Ĝθ0(E) + Ĝθ0(E) V̂θ Ĝθ0(E) V̂θ Ĝθ0(E) + · · ·
and Ĝθ0(E) = (E − Ĥ θ

0 )−1 . To avoid interference with the rotated continuum,
θ should be large enough to satisfy the following condition:

2
(
Er − Eth

m

)
tan(2θ ) � � , (8.44)

where Eth
m is the m-th threshold energy which is defined as the discrete m-th real

bound state energy of the Ĥ θ
0 Hamiltonian given in Eq. (8.12). The index m can

stand for the initial or one of the possible final states which are all degenerate
states of Ĥ θ

0 . This is one of the main advantages of the non-Hermitian formalism
of quantum mechanics which enables us to split the contribution of the “white”
continuum (by “white” we mean without any specific information that characterizes
the studied system and the interaction between the projectiles and the target).

Since the denominator in Eq. (8.41) varies with E much more slowly than the
numerator we may keep the energy of the initial and final states (which appear in
the calculation of the numerator) fixed at the value of E = Re(Eres) = Er. This
implies that the initial state is associated with a free particle with the real wave
vector

ki =
√

2µ(Er − Eth
i )

h̄
(8.45)

whereas the final state is a free particle associated with the real wave vector

kf =
√

2µ(Er − Eth
f )

h̄
. (8.46)
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However, in order to get analytical closed-form expressions for the resonance partial
widths we make another approximation. We assume that the resonance widths are
sufficiently small to enable us to replace the real initial and final values of the wave-
vectors by complex values. Specifically, rather than imposing the conservation
condition in Eq. (8.18) the initial and final state complex wave-vectors are obtained
under the requirement that in the complex-coordinate resonance scattering theory
the complex energy is conserved and therefore

Eres = Er − i

2
� = (h̄ki)2

2µ
+ Ethres

i = (h̄kf)2

2µ
+ Ethres

f . (8.47)

There is no physical justification for the requirement of complex energy conser-
vation! It is an approximation which holds only for sufficiently narrow resonances
which provides a simple expression for the transition probability of a particle
through a resonance state. The simple formula which will be derived on the basis
of this approximation explains the amazing phenomenon of resonance tunneling
where a particle passes through a potential barrier at almost 100% probability even
though it possesses a much smaller energy than necessary to penetrate the barrier.
Consequently, under the approximation that the complex energy is conserved, the
initial complex wave vector is defined by

kres
i =

√
2µ(Er − Eth

i − i�/2)

h̄
(8.48)

such that the original energy normalized physical initial state is replaced by

(x, r|φi) = χ∗
i (x)

√
µ

h̄2kres
i eiθ

e−ikres
i re

iθ
. (8.49)

where χi(x) is an eigenfunction of the target while the incoming plane wave
describes the projectile before it hits the target (under the approximation that
the real wave vector is replaced by the complex resonance wave-vector). Similarly,
the final complex wave vector is defined by

kres
f =

√
2µ(Er − Eth

f − i�/2)

h̄
(8.50)

such that the original energy normalized physical final state is replaced by

(φf|x, r) = χf(x)

√
µ

h̄2kres
f eiθ

e−ikres
f re

iθ
. (8.51)
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The complex scaling parameter eiθ appears in the denominators of the energy
normalized factors since we keep the integration contour on r rather than eiθ r as
we should.

In the radial case where r ∈ [0,∞] the functions φi,f(x, reiθ ) vanish at r = 0 and
therefore the exponent e+ikireiθ

in Eq. (8.49) is replaced by 2i sin(kireiθ ). Similarly,
the exponent in Eq. (8.51) is replaced by −2i sin(kfreiθ ).

The conservation of the complex energy implies that the initial and final states
and also the asymptotes of the resonance states are all eigenfunctions of the com-
plex scaled non-interacting Hamiltonian Hθ

0 which is defined in Eq. (8.43). The
asymptotes of the resonance eigenfunctions of the complex scaled full Hamilto-
nian are eigenfunctions of Hθ

0 since the interaction potential V̂ vanishes when the
projectiles are at an infinitely large distance from the target. For example, the target
can be a diatomic molecule and the projectile could be an atom or an electron.
In another type of experiment the target can be an atom, a molecule or a meso-
scopic system like nanotubes where the incoming “particles” could be low-energy
photons and the scattered particles are high-energy photons. Following this reason-
ing, let us consider a case where a resonance state has a several open channels to
decay (in more than one dimension it is possible to have more open channels for
decay and therefore the number of degenerate states would be larger than two). For
example,

|ψ res) →


|φi)
|φf)
|φf′)
|φf′′)

. (8.52)

The conservation of complex energy implies that we get that:

(Eres − Ĥ θ
0 )|φi) = 0 ,

(Eres − Ĥ θ
0 )|φf) = 0 ,

(Eres − Ĥ θ
0 )|φf′) = 0 ,

(Eres − Ĥ θ
0 )|φf′′) = 0 ,

(Eres − Ĥ θ )|ψres) = 0 , (8.53)

where the energy-normalized incoming particles are associated with φi and the
outgoing scattered particles with φf, φf′, φf′′, . . . It should be stressed that all the
eigenfunctions ofHθ

0 in Eq. (8.53) are associated with complex-scaled free-particle
functions with complex wavevectors, and therefore by rotating the contour of inte-
gration backward by θ one gets that the outgoing exponentially diverging unscaled
functions are the eigenfunctions of the unscaled H0 Hamiltonian. This is a proof
that the complex scaled free particle functions with complex wave vectors are not in
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the Hermitian sector of the domain of the complex scaled Hamiltonian, unlike the
rotated continuum of the complex scaled non-interacting HamiltonianHθ

0 given by
|E − Eth|e−i2θ for Eth ≤ |E| ≤ ∞ which are associated with bounded continuum
functions that are exactly equal (up to a factor which depends of the normalization
conditions) to the solutions of the unscaled non-interacting Hamiltonian H0 (see
Chapter 5).

Under the assumption that the dynamics are controlled by a single complex-
scaled resonance state, and under the approximation made above where the initial
and the final states are associated with the complex wave-vectors which conserve
the complex resonance energy Eres = Er − i�/2 we will calculate the different
probabilities of getting from the same initial state to different final states. We will
prove that the probability of transition from the initial state to one of the possible
final states at the resonance condition where E = Er is approximately given by

Pf←i � 4
�f�i

�2
, (8.54)

where � = −2Im(Eres) is the total rate of decay of the resonance state whereas
the partial widths �f and �i are respectively the rate of decay of the resonance
state into the entrance open channel i and into the exit open channel f. Note these
are only two open channels out of many others that might exist. The sum of all
partial widths (i.e., partial decay rates) is equal to the total resonance width (i.e.,
total decay rate). That is, � = �i + �f + �f′ + �f ′′ + · · ·. From this we can infer
that when the resonance state that controls the dynamics of the scattering process
has more than two open channels to decay it is not possible to design a simple
scattering experiment where Pf←i = 1, and the deviation of Pf←i from unity will
be very large when the sum of the partial widths associated with the entrance and
the exit channels is much smaller than the total rate of decay �. When there are
two open channels for decay where one of them serves as the entrance channel and
the second one as the exit channel, then when the energy E of projectiles is in the
interval Er − � < E < Er + � it is possible to get very close to Pf←i = 1 when
the total rate of decay is sufficiently small (the resonance state has a long lifetime).

The probability of obtaining from a given initial state which is on the resonance
energy condition two different products (i.e., to get from the same entrance open
channel into two different exit channels) one should calculate the branching ratio
given by

Pf←i

Pf′←i
=
∣∣∣∣∣ (φf|V̂θ |ψres)

(φf′ |V̂θ |ψres)

∣∣∣∣∣
2

= �f

�f′
. (8.55)

This is done by evaluating the matrix elements (φm|V̂θ |ψres) where m stands for
f, f′, f′′, . . . for all the open channels. Integration of these matrix elements by parts
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leads leads to

(φm|V̂θ |ψres) = (φm|Ĥθ − Ĥ θ
0 |ψres) = (φm|Eres − Ĥ θ

0 |ψres) . (8.56)

Since by integration by parts fg′′ = gf ′′ + [fg′]′ − [gf ′]′, where in our case f =
ψres (right eigenstate of Ĥθ ) and g = φm (left eigenstate of Ĥ θ

0 ), one gets that

(φm|Eres − Ĥ θ
0 |ψres)

= (ψres|Eres − Ĥ θ
0 |φm) − h̄

2e−2iθ

2µ
lim
r→∞

∫ +∞

−∞
dx
[

dφL
m

dr
ψR

res − dψR
res

dr
φL
m

]
.

(8.57)

Assuming that for sufficiently narrow resonances we can take Ĥ θ
0 |φm) = Eres|φm),

one obtains

(φm|V̂θ |ψres) = −h̄
2e−2iθ

2µ
lim
r→∞

∫ +∞

−∞
dx
[

dφL
m

dr
ψR

res − dψR
res

dr
φL
m

]
. (8.58)

Note that only the upper limit has to been taken in Eq. (8.58) for two reasons. The
first is that in 3D problems the eigenfunctions of the full Hamiltonian and of the non-
interacting Hamiltonian vanish at the origin. The second reason is that when r stands
for the “reaction” coordinate (e.g., the distance of the projectile from the center
of mass of the target) the flux-like term oscillates very rapidly when r → −∞
and vanishes upon local averaging. In such a case where the flux is oscillating,

limr→−∞ is replaced by limr
′′→−∞

∫ r ′′+�r
r
′′−�r dr . We now get to the final part of the

proof of Eq. (8.55). The asymptote of the “ket” resonance state (eigenfunction of
Ĥθ ) is a linear combination of the products of target eigenstates with the outgoing
waves of the projectile which possess complex resonance wave vectors,

lim
r→∞ψ

R
res(x, r) =

∑
m′
γ res
m′ φm′(x, r) =

∑
m′
γ res
m′ χm′(x)

√
µ

h̄2km′eiθ
e+ikm′ reiθ

,

(8.59)

where the coefficients γ res
m′ have energy units and m′ stands for the different open

channels for decay (one of them serves as the incoming channel and all the others
as outgoing open channels).

By substituting Eq. (8.59) into Eq. (8.58) while using the orthonormality
condition

(χm′ |χm) = δm′,m , (8.60)

one gets that

(φm|V̂θ |ψres) = iγ res
m . (8.61)



266 Non-Hermitian scattering theory

Therefore by defining the m-th partial width as

�m = |γ res
m |2 . (8.62)

we proved that

|(φm|V̂θ |ψres)|2 = �m (8.63)

and we arrived at Eq. (8.55). Accordingly, if we sum over all possible channels we
get that

− 2Im(Eres) ≡ � =
∑
m

�m . (8.64)

It is interesting to point out that using our proof that the coefficients {γ res
m′ } are the

partial width amplitudes one can calculate the partial widths from the tail of the
complex scaled square integrable resonance wavefunction from the following ratio
as function of r:

γ res
m =

∫
dxχ∗

m(x)ψθres(x, r)√
µ

h̄2kmeiθ e+ikmreiθ
. (8.65)

The complex value of this ratio which is invariant to the variation of r is the partial
width amplitude γ res

m .6 Formally, this should happen in the limit of r → ∞, while
in numerical calculations this is true at the tail of the complex scaled resonance
wavefunction.

Exercise 8.1

Using Eq. (8.41) and Eq. (8.61) derive the conditions under which a particle that is
almost completely reflected from a single potential barrier will transfer almost com-
pletely through two potential barriers. Specifically, by adding another identical potential
barrier along the scattering direction the reflection is almost entirely suppressed. This
resonance tunneling phenomenon is used in the construction of resonance tunneling
diodes and transistors.

8.2 Half collision processes for time-independent systems

In the introduction to this chapter we described the scattering of an atom A from
a diatomic molecule BC where an activated complex [ABC]# which has a finite
lifetime is generated. As time passes this complex breaks apart into the final

6 Recently it has been proved by T. Goldzak, I. Gilary and N. Moiseyev, Phys. Rev. A 82, 05215 (2010), that the
complex momentum h̄km in the flux normalization coefficient should be replaced by Re(h̄km).
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products. As discussed above, in many physical situations the scattering process is
controlled by a single resonance state of the metastable complex [ABC]#. In such
a case we may consider the dynamical process as a half collision process where
the system has been initially prepared at the resonance state without the need to
discuss how this situation has occurred. Here we will extend this approach to the
situation where a bound system such as an ABC molecule is suddenly exposed
to an external perturbation. Such a scenario creates a wavepacket |�0) which may
populate several resonance states,

|�0) =
∑
n(res)

cn|ψ res
n ) . (8.66)

Using the c-product discussed in Chapter 6, the coefficients cn can be calculated
by their overlap with the original bound state, φi, (usually the ground state) of the
unperturbed Hamiltonian (i.e., the Hamiltonian of the stable ABC molecule).

cn = (ψ res
n |φi) . (8.67)

The products obtained from the decay of the perturbed system in this so-called
half collision process can be obtained through analytical time propagation of |�0)
to infinite time. The physical situation where a system is exposed to an external
perturbation where energy is suddenly “pumped” into it can occur for instance
when a molecule is suddenly exposed to a source of high power radiation (such as
high intensity lasers) or when it suddenly collides with high energy particles.

First we will focus here on the calculation of the kinetic energy distribution of an
ionized electron obtained from an electronically excited molecule, i.e. the result of
the processM∗ → M+ + e. This ionization might be due to an auto-ionization pro-
cess, Auger process or inter-Coulombic decay (ICD) process. Often the electronic
and nuclear motions are strongly coupled and therefore within the framework of
the standard (Hermitian) formalism of quantum mechanics the Born–Oppenheimer
approximation is not applicable. A clear-cut situation where the adiabatic approx-
imation in the standard formalism of quantum mechanics breaks down is when
the ionization is accompanied by molecular dissociation. This situation may arise
when a molecular ion is exposed to a high-power external source of energy (e.g.,
accelerators or free electron lasers) such that M+ → [M+]# where the molecu-
lar positive charged ion [M+]# has enough energy to ionize to [M++] + e−, then
the ionization process occurs along with a Coulombic explosion of the doubly posi-
tive charged molecular ion [M++] → [M+

1 ] + [M+
2 ]. For example, [M++] could be

Na++
2 and the Coulombic explosion results in 2Na+. Unlike the situation when the

standard formalism of quantum mechanics is applied, within the framework of the
non-Hermitian formalism of quantum mechanics the complex adiabatic approach
(i.e., the Born–Oppenheimer approximation) holds and takes into consideration the
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coupling between the ionization and dissociation processes. In the first step of such
calculations the complex eigenvalues of the adiabatic molecular electronic Hamil-
tonian are evaluated as functions of the geometry of the molecule. The imaginary
part of the complex eigenvalues of the non-Hermitian electronic Hamiltonian pro-
vides the ionization rate of decay as a function of the geometry of the molecule. In
the second step of the calculations the nuclear time-independent Schrödinger equa-
tion is solved where one of the complex energies of the non-Hermitian electronic
Hamiltonian serves as a complex potential term.

The ability to maintain such an adiabatic picture even when a conventional quan-
tum treatment of this type breaks down leads us towards deriving the non-Hermitian
scattering theory for half collision processes within the adiabatic approximation.
We begin with a molecular system containingN electrons for which the full Hamil-
tonian is described by

H = Tnuc(R) +Helec({rj ; j = 1, 2, . . . , N}, R) , (8.68)

where R stands for the nuclear coordinates and {rj } for coordinates of the N
electrons. The electronic Hamiltonian is defined as

Helec(r1, . . . , rN,R) ≡ H (N)
elec = H f

elec(r1, . . . , rN,R) + V , (8.69)

where V is defined such that H f is the Hamiltonian for a molecular ion consisting
of N − 1 electrons and a free electron. Specifically, H f describes the molecular
Hamiltonian after ionization has been completed. That is,

H f
elec(r1, . . . , rN,R) = Helec(r1, . . . , rN−1, R) + T̂N . (8.70)

Within the framework of the Born–Oppenheimer approximation

H
(N)
elecϕn(r1, . . . , rN,R) = E(N)

n (R)ϕn( r1, . . . , rN,R) ,

[Tnuc + E(N)
n (R)]χn,α(R) = ε(N)

n,α χn,α(R) ,

ψn,α(r1, . . . , rN,R) = ϕn(r1, . . . , rN,R)χn,α(R) , (8.71)

where discrete bound states of the N-electron molecule are obtained when

E(N)
n (R) < E(N)

th (R) (8.72)

and E(N)
th (R) is the threshold energy which depends on the nuclear coordinate.

Quasi-continuum states are obtained when

E(N)
n (R) > E(N)

th (R) . (8.73)
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In such a case, by imposing outgoing boundary conditions on the solutions of the
electronic Hamiltonian within the framework of the Born–Oppenheimer approx-
imation and by using one of the complex scaling transformations described in
Chapter 5, one renders the molecular resonance eigenstates square integrable.
These state are associated with complex potential energy surfaces (CPES). The
imaginary part of the CPES describes the rate of ionization (auto-ionization, Auger
or ICD) as a function of the geometry of the molecule.

We are interested in the situation where the molecule has enough energy to
ionize. The final state ψ f

n0,α0
(r1, . . . , rN,R) is given by

ψ f
n0,α0

(r1, . . . , rN,R) = fn0 (r1, . . . , rN,R; k)χ f
n0,α0

(R) , (8.74)

where

fn0 (r1, . . . , rN,R; k) = Aϕn0 (r1, . . . , rN−1, R)φf(rN ) (8.75)

andA is the anti-symmetrizer operator andφf(rN ) is the flux-normalized wavefunc-
tion of the free electron. Within the framework of the mean field approximation,
the Coulombic potential is replaced by a Yukawa-like potential and then

φf(rN ) =
√
me

h̄k
[eikrN + Re−ikrN ] , (8.76)

where R is the reflection coefficient and ϕn0 (r1, . . . , rN−1, R) is a bound state of
the (N − 1)-electron molecular ion Hamiltonian,H (N−1)

elec and fn0 (r1, . . . , rN,R; k)
is the eigenfunction of the “final” Hamiltonian H f

elec defined in Eq. (8.70),

[Te(rN ) +Helec(r1, . . . , rN−1, R)]fn0 (r1, . . . , rN,R; k)

= [E(N−1)
n0

(R) + Ekin]fn0 (r1, . . . , rN,R; k) , (8.77)

where the kinetic energy of the ionized electron is given by

Ekin = h̄2|k|2
2me

. (8.78)

The nuclear wavefunction of the molecular ion is given by

[Tnuc + E(N−1)
n0

(R)]χ f
n0,α0

(R) = ε(N−1)
n0,α0

χ f
n0,α0

(R) . (8.79)

Note thatE(N−1)
n0

(R) can be a repulsive potential energy surface while, for example,
E(N)
n0

(R) supports a potential well.
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Following the Lippmann–Schwinger derivation, an eigenfunction of H that has
the asymptote of |ψ f

n0,α0
) with energy E = ε(N−1)

n0,α0
+ Ekin is given by

|�n0,α0 ) = [1 +G(E)V ]|ψ f
n0,α0

)

= |ψ f
n0,α0

) + lim
η→0+

∑
n,α

(ψn,α|V |ψ f
n0,α0

)

ε
(N−1)
n0,α0 + Ekin − ε(N)

n,α + iη
|ψn,α) . (8.80)

Exercise 8.2

The Hamiltonian of a given system is defined as Ĥ = Ĥ0 + V (r) where limr→∞ V (r) =
0. Prove that if Ĥ0φ = Eφ and Ĥ� = E� then � = (1 + Ĝ(E)V )φ, where the
Green’s operator is defined as Ĝ(E) = limη→0+ (E − Ĥ + iη)−1. Explain why for the
most general case both � and φ are respectively embedded in the continuum parts of
the spectra of Ĥ and Ĥ0.

In the derivation of Eq. (8.80) we have used the spectral representation of
the Green’s operator in the Born–Oppenheimer approximation and by using the
box-quantization condition as mentioned above. We also assume that the ionized
electron is described by an s-wave function where k · r = kr .

Equation (8.80) can be rewritten since the inner product involves integration
over both the electronic and nuclear coordinates and thus

(ψn,α|V |ψ f
n0,α0

)r1,...,rN ,R = (χn,α|γn,n0 (R; k)|χ f
n0,α0

)R , (8.81)

where

γn,n0 (R; k) = (ϕn(R)|V |fn0 (R; k))r1,...,rN . (8.82)

Accordingly, Eq. (8.80) rearranges to

|�n0,α0 ) = |ψ f
n0,α0

) + lim
η→0+

∑
n,α

(χn,α|γn,n0 (R; k)|χ f
n0,α0

)R

ε
(N−1)
n0,α0 + Ekin − ε(N)

n,α + iη
|ψn,α) . (8.83)

Now in Eq. (8.83) the integration is taken only over the nuclear coordinates.
Using this derivation we can tackle the problem of the kinetic energy distribution
of the ionized electron. This distribution results from the preparation of the system
at a reference time t = 0 in an initial wavepacket which is mainly localized on the
α#-th electronic potential energy surface. That is,

|�0(t = 0)) =
∑
n

ξn(t = 0, R)|ϕn(R)) , (8.84)
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where ξn(t = 0, R) are obtained by projecting the initial wavepacket (determined
by the experiment) on the eigenfunctions of the non-Hermitian adiabatic electronic
Hamiltonian, {ϕn(r, R)}. Since the adiabatic molecular electronic eigenfunctions
are c-normalized,

∑
n(ξn(t = 0)|ξn(t = 0)) = 1. The situation we considered is

that the dominant contribution to this expansion is of the n#-th term such that
(ξn# (t = 0)|ξn# (t = 0)) � 1.

The kinetic energy distribution of the ionized electron can be evaluated by
projecting the initial state of the electronically excited molecular system |�0(t =
0)) on the eigenfunctions of the full Hamiltonian |�n0,α0 ) which are associated with
the final statesψ f

n0,α0
that describe a free electron with the kinetic energyEkin. That

is,

σ (Ekin) =
∑
n0,α0

|(�(t = 0)|�n0,α0 )|2

�
∑
n0,α0

| lim
η→0

∑
n,α

(χn,α|γn,n0 (R; k)|χ f
n0,α0

)

ε
(N−1)
n0,α0 + Ekin − ε(N)

n,α + iη
(ξn(t = 0)|χn,α)|2 . (8.85)

We are now in a position to repeat the derivation presented above when we carry
out the integration along a complex contour in the spatial electronic space, rj =
Fθ (r′

j ) for j = 1, 2, . . . , N , where r′
j is a real vector and as rj → ∞, rj → eiθr′

j .
In our derivation we use the smooth exterior complex scaling transformation and
we do not label the real vectors by r′

j but keep using the notation of rj . It is a
crucial point in our derivation to carry out this transformation before the use of the
spectral representation of the Green’s operator. That is,ψn0,α are the eigenfunctions
of the complex scaled full Hamiltonian andE(N)

n,α are the corresponding eigenvalues
of the scaled Hamiltonian. If the eigenfunctions ψn,α get complex values, only
because of use of the smooth exterior complex scaling transformation, then the
scalar product should be replaced by the c-product, as explained in Chapter 6.
However, fn0 (r1, . . . , rN ;R, k, θ ) are obtained by applying the smooth exterior
complex scaling transformation on the unscaled functions which were labeled
above as fn0 (r1, . . . , rN ;R, k), where k has real values. Consequently, after the
application of the smooth-exterior complex scaling transformation Eq. (8.100), that
was derived within the standard (Hermitian) formalism of quantum mechanics, is
replaced by

σ (Ekin) �
∑
n0,α0

|
∑
n,α

(χ∗
n,α|γn,n0 (R; k)|χ f

n0,α0
)

ε
(N−1)
n0,α0 + Ekin − ε(N)

n,α

(ξn(t = 0)|χn,α)|2 , (8.86)

where ε(N−1)
n0,α0

is a real eigenvalue of the molecular ionic Hamiltonian H f and ε(N)
n0,α

is a complex eigenvalue of the smooth-exterior complex scaled neutral molecular
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Hamiltonian Ĥ . Within the Born–Oppenheimer approximation ε(N−1)
n0,α0

is an eigen-
value of Tnuc + E(N−1)

n0
(R), where E(N−1)

n0
(R) is a real eigenvalue of the molecu-

lar ion of the complex scaled electronic molecular ionic Hamiltonian associated
with a complex scaled bound electronic state, ϕf

n0
(�r1, . . . , �rN−1, R; θ ). E(N−1)

n0
(R)

serves as a potential energy surface (PES) in the nuclear equation of motion of
the molecular ion. Similarly, within the Born–Oppenheimer approximation ε(N)

n,α

is a complex eigenvalue of Tnuc + E(N)
n (R), where E(N)

n (R) is a complex eigen-
value associated with an electronic eigenfunction of the complex scaled electronic
molecular Hamiltonian, ϕn(r1, . . . , rN ;R, θ ). E(N)

n (R) serves as a complex PES in
the molecular dynamics calculations. The complex valued function γ complex

n0 (R; k)
in Eq. (8.86) is defined as

γn,n0 (R; k)

=
∑
j 	=N

∫
dr1, . . . , drNϕn(r1, . . . , rN ;R, θ )

e−iθ

|rj − rN |fn0 (r1, . . . , rN,R; k, θ ) ,

(8.87)

where (assuming a Yukawa-like potential)

fn0 (r1, . . . , rN,R; k, θ )

= Aϕfn0
(r1, . . . , rN−1, R; θ )

√
me

h̄k

(
eikrN eiθ + Re−ikrN eiθ

)
. (8.88)

The next step in the derivation is to distinguish between the localized square-
integrable resonance states which are associated with θ -independent eigenvalues of
the smooth-exterior complex scaled molecular Hamiltonian, and the non-localized
quasi-continuum states which are square-integrable only due to the use of the
box-quantization condition and are associated with θ -dependent eigenvalues of the
smooth exterior complex scaled molecular Hamiltonian. The narrow resonances
are embedded close to the real axis and the θ -independent rate of decay �n(R) =
−2Im[E(N)

n (R)] is much smaller than |Re[E(N)
n (R) − E(N)

n′ (R)]| for any value of
n′ 	= n and for any value of R. In such a case the resonances are isolated.

Since, due to the initial setup, max|(ξn(t = 0)|χn,α)| is the largest for n = n# and
since the n#-th electronic resonance state is an isolated one Eq. (8.86) is reduced to

σ (Ekin) �
∑
n0,α0

∣∣∣∣∑
α

(χ∗
n#,α

|γn#,n0 (R; k)|χ f
n0,α0

)

ε
(N−1)
n0,α0 + Ekin − ε(N)

n#,α

(ξn# (0)|χn#,α)

∣∣∣∣2 . (8.89)

Another simplification of the calculation of the kinetic energy distribution of
the ionized electron can be achieved by making use of the fact that γn#,n0 (R; k =√

2meEkin) varies much slower with Ekin in comparison with [ε(N−1)
n0,α0

+ Ekin −
ε(N)
n#,α

]−1. Therefore, one can ignore the dependence of γn#,n0 (R; k = √
2meEkin)
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on Ekin in the calculation of σ (Ekin) by substituting in γn#,n0 the complex wave
vector,

kres =
√

2me[E
(N)
n# (R) − E(N−1)

n0 (R)]. (8.90)

Using this approximation for Yukawa-like potentials (the extension to
Coulombic potential is possible but is avoided here in order to keep the derivation
as simple as possible), we get that

γn#,n0 (R, k) → γ res
n#,n0

(R) ≡
∫

dr1 . . . drNϕn# (R)V (Fθ (r1), . . . , Fθ (rN ))

· [Aϕn0 (Fθ (r1), . . . , Fθ (rN−1), R)

√
me

h̄kres
e+ikreseiθ rN ] . (8.91)

Note that in Eq. (8.91) we set the reflection coefficient R to zero since the
resonance state is associated with outgoing boundary conditions. In Eq. (8.62) we
have shown that |γ res

n#,n0
(R)| is the partial width for the ionization of an electron

from the n#-th molecular resonance state to the n0 open channel and therefore

�n# (R) =
∑
n0

|γ res
n#,n0

(R)|2 . (8.92)

Consequently, under the condition that the ionization process is controlled by a
single narrow isolated resonance state and there is only one open channel for
ionization (i.e., n0 = 0), then the kinetic energy distribution of the ionized electron
can be calculated by

σn# (Ekin) �
∑
α0

∣∣∣∣∣∑
α

(ξn# (t = 0)|χn#,α)(χ∗
n#,α

|√�n# (R)|χ f
0,α0

)

ε
(N−1)
0,α0

+ Ekin − ε(N)
n#,α

∣∣∣∣∣
2

. (8.93)

A short summary

In the above derivation we have shown that when the ionization process is controlled
by a single narrow electronic resonance state the kinetic energy distribution of the
ionized electron from an electronic excited molecular system can be obtained when
we know the following properties.

(1) A complex potential energy surface, En# (R) which is associated with a molecule in an
electronic metastable(resonance) state. The ionization rate of decay as a function of
the nuclear coordinates is given by, �n# (R) = −2Im[En# (R)].

(2) The initial wavepacket in the nuclear coordinate which is localized on the n#-th
metastable electronic state is given and defined as ξn# (t = 0, R).

(3) The potential energy surface of the molecular ion in its ground electronic state,
En0=0(R).
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(4) The solution of the nuclear equation of motion for the complex potential energy surface
which is associated with the n#-th molecular electronic resonance state,

Ĥ #χn#,α(R) = εn#,αχn#,α(R) ,

Ĥ # = Tnuc + E(N)
n#

(R) . (8.94)

(5) The solution of the nuclear equation of motion for the real potential energy surface
which is associated with the ground state of the molecular ion (i.e, final product),

Ĥ fχ0,α0 (R) = ε0,α0χ0,α0 (R) ,

Ĥ f = Tnuc + E(N−1)
0 (R) . (8.95)

The spectrum of Ĥ f is discrete not only for the bound states but also for the continuum
states due to the use of the box-quantization boundary condition.

8.2.1 Wave packet propagation on complex potential energy surfaces

The calculation of the kinetic energy distribution of the ionized electron by the
expression given in Eq. (8.93) is equivalent to the result obtained from solving the
following time-dependent Schrödinger equation (for a proof see Moiseyev et al.7

or see the solution of Ex. 8.3):( |ξ #(t))
|ξf (t))

)
= e−iHt/h̄

( |ξ #(0))
0

)
, (8.96)

where

H =
(

Ĥ # 0√
�(R) Ĥ f + Ekin

)
. (8.97)

In the formulation of Eq. (8.96) we assume that at t = 0 the excitation creates an
initial wavepacket, ξ #(R, 0), which propagates via Ĥ # on the intermediate complex
potential surface of the decaying state

ξ #(R, t) = e−iĤ #t/h̄ξ #(R, 0) . (8.98)

Note that in order to simplify the notation we replace the subscript n# that
appears in the expressions presented in the pervious section by the super script #.
Another assumption in the formulation of Eq. (8.96) is that at every small time step
dt the initial wavepacket loses a part which decays to the final state and adds to its
wave packet ξ f(R, t). �(R) is the rate of decay and −i�(R)/2 is the imaginary part
of the complex potential as it appears in the Hamiltonian Ĥ #. Ekin is the energy

7 N. Moiseyev, S. Scheit and L. S Cederbaum, J. Chem. Phys. 121, 722 (2004).
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carried away by the emitted particle (electron) when it arrives on the final potential
energy surfaces such that(

−i
∂

∂t
+ Ĥ f + Ekin

)
ξ f(R, t) = −

√
�(R)ξ #(R, t) . (8.99)

The resulting electron kinetic energy distribution is given by the norm of the
final state, ξ f(R, t), at the limit of t → ∞:

σ (Ekin) = lim
t→∞(ξ f(t)|ξ f(t)) . (8.100)

Exercise 8.3

Prove that Eq. (8.100) reduces to Eq. (8.93) when the wavepacket which propagates
on the final potential energy surface of the molecular ion is expanded in terms of the
eigenfunctions of Ĥ f + Ekin.

8.3 Time-independent scattering theory for time-dependent systems

The interaction of photons with an atom, molecule or nanostructure can be described
either as a photo-ionization process,

nh̄ω + A→ A+m +me− , (8.101)

where n is the number of absorbed photons, or as a full collision process where the
atom/molecule serves as a catalyst. That is,

nh̄ω + A→ [A/photons]# → A+mh̄� ;m = 1, 2, . . . , n (8.102)

and

� = n

m
ω . (8.103)

When the field intensity is very large (i.e., the flux of photons is very large)
rather than using quantum electrodynamics to describe the interaction of the
system with the photons one can describe the quantum system which interacts
with the classical electromagnetic field which is produced by the laser. In such
a case the Hamiltonian is time-dependent. For the sake of coherence of the rep-
resentation of the time-independent scattering theory for time-dependent Hamil-
tonians, let us remind the reader that within the dipole approximation the inter-
action of the (continuous wave) cw laser with the system under study (atom,
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molecule etc.) is given by Ĥ (t) = Ĥsystem + ε0
∑
j eT
xrj cos(ωt), where the polar-

ization direction is x and ε0 and ω are respectively the maximum field ampli-
tude and the frequency of the cw laser. In such a case the quasi-stationary solu-
tions of the time-dependent Schrödinger equation are �(t) = e−iEQEt/h̄�(t), where
the quasi-energies EQE and the corresponding time-periodic quasi-energy states
�(t) = �(t + 2π/ω) are respectively the eigenvalues and eigenfunctions of the
Floquet operator Ĥ(t) = −ih̄∂t + Ĥ (t), where t serves as an additional coordinate
rather than a parameter. The (t, t ′) method enables us to use a similar formalism for
pulsed lasers where f (t) is the envelope of the laser pulse and the time-dependent
Hamiltonian is Ĥ (t) = Ĥsystem + ε0f (t)

∑
j eT
xrj cos(ωt) (see Section 4.6). Fol-

lowing the (t, t ′) method rather than solving the time-dependent Schrödinger
equation, �(t) = Û (t ← 0)�(t = 0), where the time evolution operator for time-
dependent Hamiltonians is

Û (t ← 0) = T̂ e−i
∫ t

0 dt ′Ĥ (t ′)/h̄ (8.104)

and T̂ is a time ordering operator which orders the terms in the Taylor series
expansion of the exponents chronologically8, we use as the time evolution operator

Û (t ′, t ← 0) = e−iĤ(t ′)t/h̄ , (8.105)

where

Ĥ(t ′) = −ih̄∂t ′ + Ĥ (t ′) (8.106)

and the Hamiltonian does not have to be time periodic, and in the case where the
duration of the laser pulse is T one can impose t ′ periodic boundary conditions
of �(t ′, t) = �(t ′ +mT, t) (where m ≥ 1). The reason we can impose this t ′

periodic behavior results from the fact that the energy operator of the additional
coordinate t ′ is a first-order derivative rather than a second-order derivative. The
only reason there are reflections in a scattering process from the potential barriers
and wells is the fact that the kinetic energy operator is a second-order derivative
operator where the incoming and outgoing plane waves are degenerate solutions.
Since the additional energy term is −ih̄∂t ′ there are no reflections from the t ′

potential f (t ′) cos(ωt ′) and therefore we can impose periodic boundary conditions
on the propagated wavepacket. We may say that we apply a train of laser pulses
rather than a single pulse where the time interval between the laser pulses is
determined by the value of mT . It was proved by Peskin and Moiseyev that the
propagated wavepacket obtained by the (t, t ′) method reduces to the solution of the

8 See, for example, the discussion in section 9.3 of Introduction to Quantum Mechanics – a Time Dependent
Perspective by David J. Tannor, Sausalito, CA, University Science Books (2007).
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time-dependent Schrödinger equation with time-dependent Hamiltonian when we
take the cut t ′ = t , i.e. �(t) = [Û (t ′, t ← 0)�(t = 0)]t ′=t . The fact that the (t, t ′)
evolution operator is as in the cases where the Hamiltonian is a time (t) independent
operator enables us to derive here a time-dependent scattering theory for a time-
dependent Hamiltonian. The advantage of using the non-Hermitian formalism in
the cases where the Hamiltonian is time-dependent is similar to the advantages in
the cases where the Hamiltonian is time-independent. The light induced process is
often described by a single or small number of Feshbach-type resonances that are
all square integrable functions and can be calculated by well-established computa-
tional methods that originally were developed for the calculations of bound states.
Moreover, even in the cases that in the calculations of cross sections we need to take
into consideration the interference of the resonances with the rotated continuum, it
does not require heavy numerical calculations as in the standard formalism since
the rotated continuum is a “white continuum” which has a monotonic variation in
the density of states and therefore can be represented as standing waves calculated
within the framework of the finite-box quantization approximation.

Before getting into the derivation of the non-Hermitian time-independent scat-
tering theory for time-dependent systems, we wish to emphasize two points. The
first is a technical one. H is the Floquet operator when the Hamiltonian is time-
periodic and its use simplifies the calculations based on our theory, and for this
reason we will discuss the properties of the Floquet operator, although as stressed
above the use of the (t, t ′) formalism enables us to derive time-independent scat-
tering theory even for the cases where pulsed lasers are used. The second point
we wish to emphasize here is the ability to use the theory presented in this chap-
ter to derive simple expressions for the high-harmonic generation (HHG) spectra
and above-threshold ionization (ATI) spectra (both briefly described in Chapter 2).
These expressions can be used to explain and to predict different features and prop-
erties in the HHG and ATI spectra even without the need to carry out numerical
calculations. Yet, they also simplify the numerical calculations of the HHG and ATI
spectra in comparison to any other ab-initio method within the standard formalism
of quantum mechanics.

The study of photo-induced dynamics in strong laser fields within the framework
of the standard (Hermitian) formalism of quantum mechanics requires the time-
dependent propagation of an initial given wavepacket. Wavepacket propagation
calculations are carried out by solving the time-dependent Schrödinger equation
(TDSE) with a time-dependent Hamiltonian Ĥ (t) which describes the field-free sys-
tem (atom, molecule, cluster, solid or nano-structured material) which interacts with
strong laser fields. When the strong field induces ionization then, even when Ĥ (t) is
a time-periodic operator, as in the case of a system which interacts with a cw laser,
one cannot describe the photo-induced dynamics by calculating a single Floquet
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state since the spectrum of the Floquet operator, Ĥ = −ih̄∂t + Ĥ (t), is continuous.
This limitation is removed when the time-dependent Schrödinger equation is solved
with the restriction of outgoing boundary conditions which do not conserve the flux
of the electrons and result in a non-Hermitian Floquet-type operator. By applying
one of the complex scaling transformations r → Fθ (r) which are described in
Chapter 5, the photo-induced resonance eigenstates of the complex scaled Floquet
operator become square integrable and are in the generalized Hilbert space.

This approach holds many benefits. Beside the numerical advantages due to
the fact that the solution of the complex scaled TDSE is often dominated by a
single resonance Floquet state, analytical expressions can be derived for many
observable quantities. These include, for example, the cross sections, the coher-
ent high-frequency emitted radiation and the kinetic energy distributions of the
photo-induced ionized electrons (read about the high-harmonic generation (HHG)
phenomenon and the above-threshold-ionization phenomenon in Chapter 2). These
analytical expressions for the cross sections provide insight into the photo-induced
process without the need to carry out heavy numerical calculations. For example,
it enables one to derive selection rules for the HHG spectra, design experiments by
which the HHG and ATI processes can be controlled and explain other experimental
observations which are often hard to explain by standard QM formalism. One such
example is the observation of odd-order harmonics in the high-harmonics spectra
generated from an atom under intense laser radiation even when the duration of the
laser pulse is short and supports a very small number of optical cycles (an optical
cycle is defined as T = 2π/ω, where ω is the fundamental laser frequency).

8.3.1 Resonance photo-induced ionization decay rates by the non-Hermitian
formalism of quantum mechanics

As explained above, the derivation of time-independent scattering theory for time-
periodic Hamiltonians is based on Floquet theory. More specifically, on the non-
Hermitian (complex scaled) Floquet theory and its extension by the (t, t ′) method
to general time-dependent problems (read about (t, t ′) in Chapter 4). Since the
spectral representation of the complex scaled Green’s operator is carried out when
the eigenfunctions of the complex scaled Floquet operator are used as a basis set,
we will devote this subsection to the eigenvalues of the non-Hermitian complex
scaled Floquet operator which are associated with the photo-induced resonance
phenomenon. In what follows we will prove that the complex scaled photo-induced
resonance wave functions are square integrable.

The time-dependent Hamiltonian of the atom or molecule interacting with the
electromagnetic field consists of two terms. The first term is of the field-free
Hamiltonian which describes the system under study, ĤS. The second term
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describes the interaction of the system which consists of N charged particles
(electrons and nuclei) with the strong electromagnetic field. Within the framework
of the dipole approximation this interaction is given by

V̂ (t) =
N∑
j=1

qjrj · E(t) , (8.107)

where qj is the charge of the j -th particle, rj is its position in the atomic/
molecular center of mass frame and the electric field vector is given by E(t) =
(Ex(t), Ey(t), Ez(t)). When z is taken as the light propagation axis then Ez(t) = 0.
For circularly polarized light E2

x(t) + E2
y(t) = ε2

0 , where ε0 is a time-independent
maximum field amplitude. The interaction of a linearly polarized field with an atom
can be written within the dipole approximation as

V̂ (t) = ε0e
∑
j

xelec
j f (t) cos(ωLt − kLZ) , (8.108)

where ε0 is the maximum field amplitude of the ac field which oscillates along
the x-axis, e is the charge of the electrons which interact with the laser field, ωL

is the laser field frequency, kL = ωL/c is the wave vector, Z is the center of mass
coordinate of the particle and f (t) is the envelope of the laser field. Often it is
approximated as f (t) = sin(ωLt/Nopt) = sin(2πt/(NoptT ), where 0 ≤ t ≤ T and
the duration of the laser field is about equal to Nopt optical cycles. The duration of
one optical cycle is given by T = 2π/ωL.

The complex scaled Floquet-type operator is denoted here by ĤF = −ih̄∂t +
ĤS + V̂ (t), where the coordinates of the charged particles which can ionize (elec-
trons) and/or are dissociate (nuclei), rj , are transformed to Fθ (rj ), where F is a
complex vector in three-dimensional space which depends on the selected contour
of integration. Following the non-Hermitian variational principle derived in Chap-
ter 7, the eigenvalues of the complex scaled Floquet-type operator can be obtained
by calculating the eigenvalues of the Floquet matrix which is constructed by using
a direct product of spatial basis functions denoted by φk(r), where k = 1, 2, . . . , Nr
(these can be, for example, the eigenfunctions of the field-free Hamiltonian) and a
periodic time-dependent basis set. A convenient basis for this analysis is a Fourier
basis set eiωnt , where n = 0,±1,±2, . . . , Nt and ω = 2π/T . The value of T is
a problem-dependent parameter. In the case of cw lasers where the field is time
periodic, i.e., E(t) = E(t + T ) then, as stated above, T = 2π/ωL and ωL is the cw
laser frequency. In this case T is the period of one oscillation of the electromag-
netic field (see the relevant discussion and Fig. 2.3). When the setup of the problem
involves multiple color cw lasers with frequencies ωq, where q = 1, 2, . . . , then
we use for the construction of the basis functions T = 2π/ω.
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The resonance eigenvalues of the complex scaled Floquet matrix (which do not
have to be complex and symmetric) are the θ -independent eigenvalues which are
assigned two quantum numbers since the real parts of the Floquet operator are
defined up to modulo h̄ω, where ω is the frequency used in the construction of
the time-dependent Fourier basis functions. That is, the resonance quasi-energy
eigenvalue of the Floquet-type operator is given by

Eα,n = [εα + h̄ωn] − i

2
�α , (8.109)

where α = 1, 2 . . . , n = 0,±1,±2, . . . and �α is the photo-induced ionization
decay rate of the α-th resonance state. It is clear from this discussion that the
α-th quasi-energy resonance state is associated with multi-copies of the same
eigenvalues defined modulo h̄ω. Therefore, it is more reasonable to calculate the
eigenvalues of the time-evolution Floquet-type operator U (T ← 0) = e−iĤ(x,t ′)T/h̄

which are defined as λα, rather than the eigenvalues of the Floquet-type matrix.
The relationship between the eigenvalues of the time-evolution operator and the
eigenvalues of the Floquet-type operator is given by

λα = e−i Eα,nT
h̄ , (8.110)

exactly like the relationship between the eigenvalues of e−iĤ t/h̄ and the eigenvalues
of the time-independent Hamiltonian Ĥ . The eigenstates of the time-evolution
operator in the (t, t ′) representation e−iĤT/h̄ are the eigenfunctions of the complex-
scaled non-Hermitian Floquet operator at t = 0 (note that the eigenfunctions of ĤF

are time-periodic functions). The rate of photo-ionization decay associated with
the α-th QE resonance state is obtained from Eq. (8.110),

�α = −2h̄

T
ln |λα| . (8.111)

In variational calculations where a finite Floquet matrix is diagonalized the
dependence of the resonance eigenvalues on θ decreases as the basis set becomes
more complete (for the use of the cusp condition to obtain stationary variational
complex resonance eigenvalues see Chapter 7).

Exercise 8.4

Consider a system which interacts with a linearly polarized cw laser with frequency
ωL. Derive an expression for the complex scaled time-evolution operator,

U (0 → T ) = exp(−iĤ(t ′)T/h̄) , (8.112)

by using as basis functions the direct product of the field-free eigenstates of the system
and t ′-dependent Fourier functions, where Ĥ(t ′) is the Floquet operator. Note that here,
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Figure 8.1 The real vs. the imaginary parts of the eigenvalues,Eα , of the complex
time-evolution matrix as obtained by the (t, t ′) method (see Eq. (8.245)) applied to
a 1D model Hamiltonian of a xenon atom which interacts with a linear polarized
laser field. All quantities are given in au.

in order to distinguish between time in the complex scaled Floquet operator, which is
used as an additional coordinate, and the physical time appearing in the time evolution
operator we have used the (t, t ′) notation as originally defined by Peskin and Moiseyev.
Derive the expression for U (0 → T ) on a grid of points for t . Explain the numerical
advantage of calculating the photo-induced resonances when the laser field is strong
by the diagonalization of the complex time-evolution matrix over the calculation of
the resonance positions and widths by the diagonalization of the Floquet Hamiltonian
matrix.

In Fig. 8.1 we show the complex eigenvalues, Eα, of the complex scaled time-
evolution matrix for the same 1D model Hamiltonian of a xenon atom in a strong
laser field which was used for the calculations of the resonances by the diago-
nalization of the complex scaled Floquet Hamiltonian matrix. The resonances are
associated with the isolated points inside the unit circle in the complex Eα plane.
As the resonance solution is located closer to the center of the circle its lifetime
is smaller. The rotated continuum is represented by a spiral where the threshold
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energy is located close to the edge of the unit circle. Since there are two open chan-
nels for decay for a symmetric 1D potential the spiral of rotated continuum appears
twice (i.e., degenerate rotated continua). Any deviation from a complete degener-
acy results from the use of a non-complete basis set in the numerical calculations
and the use of box quantization.

8.3.2 The complex-scaled resonance wave functions of atoms/molecules
in intense time-periodic laser fields

For the sake of simplicity we will associate the field-free system (e.g., an atom or a
molecule) which interacts with an intense time-periodic electromagnetic field with
an effective one-dimensional, single electron model Hamiltonian,

ĤFF = p̂2
x

2µ
+ V̂ (x) . (8.113)

The extension of the derivations given below to many-electron systems is quite
straightforward and we avoid it here in order to simplify the notation. We assume
that the field-free potential vanishes asymptotically,

lim
x→∞ V̂ (x) = 0 , (8.114)

and thus as x → ∞ a free particle is obtained. This means that we refer to short-
range potentials and exclude the case of the “pure Coulombic” potential. However,
on the basis of the works of Balslev–Combes and Simon9 the conclusions will hold
also for a “pure Coulombic” potential.

The most direct proof that the photo-induced complex scaled resonance functions
are square integrable is when one uses the acceleration representation, since only
in this representation, even for cw lasers, the ionized electrons are free outgoing
particles.

In this representation the origin of the coordinates oscillates with the same fre-
quency, ωL, as the electromagnetic field, E(t) = E(t + T ), where T = 2π/ωL.
From the “point of view” of the oscillating electron(s) the field-free potential oscil-
lates in time. The time-dependent complex scaled Hamiltonian in the acceleration
gauge is given by

Ĥ ac(t) = e−2iθ p̂
2
x

2µ
+ V

(
xeiθ − 1

µ

∫ t

0
A(t ′)dt ′

)
, (8.115)

9 E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatation-analytic
interactions, Comm. Math. Phys. 22, 280–294 (1971); B. Simon, Resonances in n-body quantum systems with
dilatation analytic potentials and the foundation of time-dependent perturbation theory. Ann. Math. 97, 247–274
(1973).
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where, following Maxwell’s equations, the time average of the periodic electro-
magnetic vector potential A(t) has to vanish, i.e.,

∫ T
0 A(t)dt = 0. The time-

oscillating electric field, E(t), is defined by

E(t) = − d

dt
A(t) . (8.116)

In Gaussian units E(t) = − 1
c

d
dt A(t), where c is the speed of light in vacuum. For

the sake of clarity let us assume here that the field-free Hamiltonian does not
support any resonance states and that the eigenvalues of the non-Hermitian field-
free Hamiltonian ĤFF(xeiθ ) consist of discrete real bound state energy levels and
complex continuous eigenvalues which are associated with the rotated continuum,
Ec = |Ec|e−2iθ , where 0 ≤ |Ec| ≤ ∞. The photo-induced resonances are associ-
ated with the discrete solutions of the time-dependent complex-scaled Schrödinger
equation (to simplify the notation we drop the θ dependence from the complex
scaled Hamiltonian, complex scaled Floquet operator etc.),

Ĥ ac(x, t)�res
j (x, t) = ih̄

∂

∂t
�res
j (x, t) , (8.117)

which are often referred to as the quasi-energy solutions such that

�res
j (x, t) = e−iEres

j t/h̄�res
j (x, t) , (8.118)

where �res
j (x, t) = �res

j (x, t + T , θ ) are the time-periodic eigenfunctions of the
complex scaled Floquet operator in the acceleration gauge,

Ĥac-gauge(x, t) = −ih̄∂t + Ĥ ac(x, t) (8.119)

associated with the resonance complex quasi-energy eigenvalues

Eres
j = εj − i

2
�j , (8.120)

such that

Ĥac-gauge(x, t)[eiωLnt�res
j (x, t)] = [(εj + h̄ωLn) − i

2
�j ][e

iωLnt�res
j (x, t)] ,

(8.121)
where

n = 0,±1,±2,±3, . . . (8.122)

The resonance positions, (εj + h̄ωLn), and widths, �k, are θ -invariant values
when θ exceeds certain values for which the corresponding resonance eigenfunc-
tions,�res

j (x, t), are square integrable functions. This becomes evident by analyzing
the asymptotes of �res

j (x, t) which possess outgoing boundary conditions and are
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solutions of the potential-free Floquet Hamiltonian,

Ĥac-gauge(x → ∞, t) = −ih̄∂t + e−2iθ p̂
2
x

2µ
, (8.123)

since V (xeiθ − µ−1
∫ t

0 A(t ′)dt ′) → 0 as x → ∞. Therefore, the asymptotes of
�res
j (x, t) are given by

lim
x→∞�

res
j (x, t) = Ajeikres

j eiθ x , (8.124)

where the complex discrete values of the momentum h̄kj (when j = 1, 2, . . .) are
associated with the complex resonance eigenvalues of the complex scaled Floquet
operator,

h̄kj =
√

2µ
(
εj − i

2
�j

)
. (8.125)

Note that in the calculation of the complex momentum of the resonance we have
taken into consideration the fact that the threshold energies are h̄ωLn. By substi-
tuting the polar representation of the complex momentum, h̄kres

j = h̄|kres
j |e−iαres

j ,
where

αres
j = arctan

(
�j

2εj

)
, (8.126)

into Eq. (8.124) one gets that the asymptotes of �res
j (x, t) can be expressed by

lim
x→∞�

res
j (x, t) = Ajei|kres

j |ei(θ−αres
j

)
x = Ajei|kres

j | cos(θ−αres
j )xe−|kres

j | sin(θ−αres
j )x ,

(8.127)

From the second exponent in this expression it is clear that as x → ∞ the function
vanishes provided that θ − αres

j ≥ 0. Thus we can safely assume that the periodic
resonance eigenfunctions of the complex scaled Floquet operator (in the acceler-
ation gauge) are square integrable. This proof is very similar to the proof given
in Chapter 5 for the resonances associated with a time-independent Hamiltonian.
However, it is not self-evident that such a proof holds for a time-dependent
Hamiltonian. As we will show below, on the basis of the proof presented above
for the acceleration representation of the time-dependent Hamiltonian we will
prove that the complex scaled photo-induced resonances are square integrable
functions when other representations are used (such as the momentum (velocity)
and the length gauges). First we will transform the square integrable complex
scaled photo-induced resonance function as obtained above for the acceleration
presentation of the time-periodic Hamiltonian, to another function which will be
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proved below to be the square integrable complex scaled photo-induced resonance
function obtained in the momentum (velocity) gauge. The proof is as follows.

By carrying out the Krammers–Henneberger transformation �res
j (x, t) can be

expressed as

�res
j (x, t) = exp

[
− i

h̄

∫ t

0
dt ′
(

e−iθ p̂x
A(t ′)
µ

− A2(t ′) − C
2µ

)]
φres
j (x, t) ,

(8.128)
where

C = 1

T

∫ T

0
dt ′A2(t ′) . (8.129)

The insertion of the parameter C into the transformation is necessary in order to
ensure the periodicity of φres

j (x, t).
The transformed resonance function φres

j (x, t) is a square integrable function
since

lim
x→∞φ

res
j (x, t) = exp

[
− i

h̄

∫ t

0
dt ′
(

e−iαj |kj |A(t ′)
µ

− A2(t ′) − C
2µ

)]
·

·Aj lim
x→∞ ei|kres

j | cos(θ−αres
j )x · e−|kres

j | sin(θ−αres
j )x = 0 . (8.130)

By substituting Eq. (8.128) into Eq. (8.121) one gets that the square integrable
resonance functions φres

j (x, t), where j = 1, 2, . . . are the eigenfunctions of the
complex scaled p-gauge Floquet operator,

Ĥp-gauge(x, t)[eiωLntφres
j (x, t)] =

[
(εj + h̄ωLn) − i

2
�j

]
[eiωLntφres

j (x, t)] ,

(8.131)
where

Ĥp-gauge(x, t) = −ih̄∂t + Ĥ p(x, t) (8.132)

and the complex scaled time-dependent Hamiltonian in the momentum gauge is
given by

Ĥ p(x, t) = [e−iθ p̂x − A(t)]2

2µ
+ V (xeiθ ) . (8.133)

By carrying out another time-periodic transformation we will obtain the reso-
nance eigenfunctions of the complex scaled Floquet operator in the length gauge
which we will show are also square integrable functions. This will be accomplished
by expressing φres

j (x, t) as

ϕres
j (x, t) = e− i

h̄
xeiθA(t)φres

j (x, t) . (8.134)
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Since φres
j (x, t) → 0 and e− i

h̄
xeiθA(t) → 0 as x → ∞ it is clear that for any value

of j , ϕres
j (x, t) decays to zero at the asymptotes. By substituting Eq. (8.134) into

Eq. (8.131) one gets that the square integrable resonance functions ϕres
j (x, t) are

eigenfunctions of the complex scaled Floquet operator in the length gauge,

Ĥl-gauge(x, t)[eiωLntϕres
j (x, t)] = [(εj + h̄ωLn) − i

2
�j ][e

iωLntϕres
j (x, t)] ,

(8.135)
where

Ĥl-gauge(x, t) = −ih̄∂t + Ĥ l(x, t) (8.136)

and the complex scaled time-dependent Hamiltonian in the length gauge is given
by

Ĥ l(x, t) = e−i2θ p̂
2
x

2µ
+ V (xeiθ ) +

[
d

dt
A(t)

]
xeiθ . (8.137)

This completes the proof that the complex scaled photo-induced resonance
wavefunctions are square integrable regardless of the gauge which is used.

Exercise 8.5

(1) Derive an expression for the resonance quasi-energy position and widths for a
many-electron atom which interacts with a cw laser within the framework of
non-Hermitian perturbation theory up to second order. Use the time-dependent
Hamiltonian in the acceleration gauge as a basis for the analysis and explain why
the first-order correction term vanishes.

(2) The zero-order resonance quasi-energies obtained in (1) depend on the amplitude
of the quiver motion of the free electron which is given by α0 = eε0

µω2
L
. Find a

transformation for which the eigenvalues of the zero-order transformed Floquet
operator depends explicitly on two parameters, the laser frequency ωL and the
maximum field amplitude ε0. This is in contrast to (1) where only one parameter
α0 effects the zero-order Hamiltonian. Such a transformation was first introduced
by Gilary and Moiseyev.10

8.3.3 The non-Hermitian adiabatic theorem for time-dependent open systems

The question we address here is whether the adiabatic theorem can apply to the
cases where the Hamiltonian is time-dependent. In particular, when the laser field
amplitude is described as e f (t) cos(ωLt), where e is the electron charge, f (t) is

10 I. Gilary and M. Moiseyev, Phys. Rev. A 66, 063415 (2002).
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the envelope of the laser field which describes the on and off switching of the laser
and ωL is the fundamental laser frequency. When the field-free system is bound
the applicability of adiabatic theory to time-dependent systems can be studied in
a very similar manner to that used in applying adiabatic theory to bound eigen-
states of time-independent Hamiltonians. The situation is very different for the
case that the field-free Hamiltonian has, besides bound states, also a continuous
energy spectrum. For such an open system the adiabatic theorem is not applicable
within the framework of the standard (Hermitian) formalism of quantum mechanics
(see the work of Kohn and co-workers from 199711). However, within the frame-
work of the non-Hermitian formalism of quantum mechanics the photo-induced
resonance eigenfunctions of the complex scaled Floquet operator are square inte-
grable and therefore the adiabatic theorem is applicable. The non-Hermitian adi-
abatic theorem is based on the assumption that f (t) varies sufficiently slowly in
time in order to justify the assumption that the photo-induced resonance solutions
adiabatically follow the variation of f (t). This variation in the envelope is in fact
equivalent to variation of the maximum field amplitude as the laser is turned on and
off. As we see, there are two different characteristic time scales in our problem.
The slow time scale is associated with the change of f (t) in time, whereas the fast
time scale is the oscillations of the field amplitude with time which is given by
cos(ωLt). Therefore, we will derive the non-Hermitian adiabatic theorem when the
interaction of the open system with the laser is described as e f (t ′) cos(ωLt

′′).
We will now proceed to present a derivation of the adiabatic theorem for general

time-dependent open systems given by Fleischer and Moiseyev.12 In this deriva-
tion there are no bound states and the resonances aren’t necessarily narrow. We
will use the non-Hermitian Floquet formalism which allows us to describe the
dynamics in term of resonance quasi-energy eigenfunctions of the non-Hermitian
complex scaled Floquet-type operator. The non-Hermitian derivation of the adia-
batic theorem will show us that often the photo-induced dynamics is controlled by
a single resonance quasi-energy state even when the laser field intensity is high
and the duration of the laser pulse is short and supports a small number of optical
cycles.

The derivation of the adiabatic theorem for time-dependent open systems is
based on the the extended (t, t ′) formalism. Therefore the reader is advised to
refresh his knowledge by reading the brief review of the (t, t ′) method which is
given in Chapter 4. On the physical motivation for using two different characteristic
time scales for this problem see the introduction to this subsection.

11 D. W. Hone, R. Ketzmerik and W. Kohn, Time-dependent Floquet theory and absence of an adiabatic limit,
Phys. Rev. A 56, 4045–4054 (1997).

12 A. Fleischer and N. Moiseyev, Adiabatic theorem for non-Hermitian time-dependent open systems. Phys. Rev.
A 72, 032103 (2005).
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By the term “extended” (t, t ′) formalism we mean that, in the same manner
presented, one may add any number of time “coordinates” to the Schrödinger
equation as one wishes, if by this a better understanding or an easier solution
of the problem is achieved. Here we will show that by addition of two time
“coordinates” to the time-dependent Schrödinger equation (TDSE) the derivation
of the adiabaticity criteria for photo-induced dynamical systems is simplified. In
this sense, we are using here a (t, t ′, t ′′) formalism.

For the sake of simplicity and without loss of generality, the dynamics of a single
active electron in an atom or molecule subjected to a pulse of strong monochromatic
linearly polarized laser radiation is studied here. The Hamiltonian is given by

Ĥ(r, t)�R(r, t) = ih̄
∂

∂t
�R(r, t) , (8.138)

where

Ĥ(r, t) = H0(r) − er · f(t) cos(ωLt) (8.139)

and

f(t) ≡ ε0ekf (t) . (8.140)

Here f (t) is the function which describes the envelope of the laser pulse and
f(t) is a vector as defined in Eq. (8.140); ε0 is the laser’s amplitude, ek is a unit
vector in the direction of the electric component of the laser field, ωL is the laser’s
frequency, with T = 2π/ωL the optical period. H0(r) is the field-free Hamiltonian
and the vector operator r describes the internal degrees of freedom (the coordinates
are complex-scaled throughout).

Since dF (t)/dt = [∂tG(t, t ′, t ′′) + ∂t ′G(t, t ′, t ′′) + ∂t ′′G(t, t ′, t ′′)]t ′=t ′′=t , where
G(t, t ′ = t, t ′′ = t) = F (t),

Ĥ(r, t ′, t ′′) ≡ H̃ (r, t ′, t ′′) − ih̄
∂

∂t ′
− ih̄

∂

∂t ′′
, (8.141)

where

H̃ (r, t ′, t ′′) ≡ H0(r) − er · f(t ′′) cos(ωLt
′) (8.142)

and t ′, t ′′ should be regarded as additional coordinates. The t ′′ coordinate is asso-
ciated with the envelope function which describes how fast the laser field is turned
on and off while the t ′ coordinate is associated with the oscillating electric field
which is induced by the running laser waves.
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Upon complex scaling of the spatial coordinates Ĥ(r, t ′, t ′′) becomes non-
Hermitian. Therefore the inner c-product should be used. The quasi-energy solu-
tions of this complex-scaled Floquet-type operator are:

Ĥ(r, t ′, t ′′)ψR
k (r, t ′, t ′′) = EkψR

k (r, t ′, t ′′) , (8.143)

Ĥ†∗(r, t ′, t ′′)ψL
k (r, t ′, t ′′) = EkψL

k (r, t ′, t ′′) , (8.144)

where the symbol Ĥ†∗ doesn’t stand for an operator but for the transpose of the
matrix representing the operator Ĥ. The eigenfunctions form a complete set in the
extended Hilbert space of functions in r, t ′, t ′′.

Say we want to solve the following TDSE with the initial state �̃(r, t ′, t ′′, t = 0):

Ĥ(r, t ′, t ′′)�̃R(r, t ′, t ′′, t) = ih̄
∂

∂t
�̃R(r, t ′, t ′′, t) . (8.145)

The solution to this equation is

�̃R(r, t ′, t ′′, t) = e− i
h
Ĥ(r,t ′,t ′′)t �̃R(r, t ′, t ′′, t = 0) =

∑
k

cke
− i
h
EktψR

k (r, t ′, t ′′) .

(8.146)

This solution has a corresponding function �̃L(r, t ′, t ′′, t), which is not a solution
of any Schrödinger equation, which is defined by

�̃L(r, t ′, t ′′, t) =
∑
k

cke
+ i
h
E∗
k tψL

k (r, t ′, t ′′) . (8.147)

By taking the cut t ′ = t ′′ = t = 0 on Eq. (8.146) it is immediately evident that we
have a solution of the original TDSE where the expansion coefficients are

ck = (ψL
k (r, t ′, t ′′)|t ′=t ′′=0|�̃R(r, t ′, t ′′, t)|t ′=t ′′=t=0)r . (8.148)

This is true since any of the eigenstates of Eq. (8.143) on the cut t ′ = t ′′ = t , (i.e.
e− i

h̄
EktψR

k (r, t ′, t ′′)|t ′=t ′′=t ) is a solution of the original time-dependent Schrödinger
equation and therefore any linear combination of these solutions is also a solution.

We now return to the derivation of the adiabatic theorem for non-Hermitian
open systems. We would like to treat t ′′ as an adiabatic coordinate. This is the
“coordinate” associated with the envelope of the pulse which usually varies much
slower than the carrier frequency of the field. This would be done in the same
way that the electronic motion is separated from the nuclear one in the treatment
of molecules within the Born–Oppenheimer approximation. First we define the
following operator:

Had(r, t ′, t ′′) ≡ H̃ (r, t ′, t ′′) − ih̄
∂

∂t ′
, (8.149)
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where t ′′ should be regarded as a parameter for now. This means that this Hamil-
tonian is a Floquet Hamiltonian describing the interaction of the atom with a cw
laser of strength ε1, where, following Eq. (8.140),

ε1 = |f(t)| = ε0f (t) . (8.150)

The eigenstates of this operator form a complete basis (in the r − t ′ function
space) for every value of the parameter t ′′:

Had(r, t ′, t ′′)ψad,R
α (r, t ′, t ′′) = εad

α (t ′′)ψad,R
α (r, t ′, t ′′) . (8.151)

Notice that, due to the complex scaling, Ek and εad
α (t ′′) are complex.

We can now expand each eigenstate of the complete problem (Eq. (8.143)) in
this basis:

ψR
k (r, t ′, t ′′) =

∑
α′
ψ

ad,R
α′ (r, t ′, t ′′)χα′,k(t

′′) . (8.152)

By substituting Eq. (8.152) into Eq. (8.143), multiplying the obtained equation
from the left-hand side by ψad,L

α′ (r, t ′, t ′′) and integrating over r and t ′, one gets the
following equality in matrix notation,[

−ih̄
∂

∂t ′′
I + (Ead(t ′′) + V(t ′′))

]
χk(t

′′) = Ekχk(t ′′) , (8.153)

where

[Ead(t ′′)]α,α′ = εad
α (t ′′)δα,α′ ,[

V(t ′′))
]
α,α′ = ((ψad,L

α (r, t ′, t ′′)| − ih̄
∂

∂t ′′
|ψad,R
α′ (r, t ′, t ′′)))r,t ′ ,[

χk(t
′′)
]
α

= χα,k(t ′′) . (8.154)

Notice that in the case that the matrix on the left-hand side of Eq. (8.153) is diagonal,
a homogeneous systems of uncoupled equations is obtained. In such a case one
should solve each equation separately. Therefore, the sum in Eq. (8.152) reduces
to a single product. This is exactly analogous to the adiabatic approximation in the
context of the Born–Oppenheimer approximation. The next step in our derivation
is to represent the matrix (Ead(t ′′) + V(t ′′)) by its spectral decomposition,

[Ead(t ′′) + V(t ′′)]DR(t ′′) = DR(t ′′)W(t ′′) , (8.155)

[Ead(t ′′) + V(t ′′)]tDL(t ′′) = DL(t ′′)W(t ′′) , (8.156)

The matrix of eigenvalues W(t ′′) is diagonal and the right and left eigenvectors
are normalized with respect to each other in order to maintain the correct inner
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product:

[DL(t ′′)]tDR(t ′′) = I . (8.157)

In the case that the matrix (Ead(t ′′) + V(t ′′)) is not strictly diagonal we can use
first-order perturbation theory to find the first-order deviation from diagonal. If we
treat the matrix V(t ′′) as perturbation, we get that

[DR(t ′′)]α′,α = δα′,α + [V(t ′′)]α′,α

εad
α (t ′′) − εad

α′ (t ′′)
. (8.158)

This matrix will be diagonal to a good approximation if

Aα(t ′′) ≡
∑
α′ 	=α

|[DR(t ′′)]α′,α| � 1 , (8.159)

which produces the following adiabaticity criterion:

Aα(t ′′) ≡
∑
α′ 	=α

∣∣∣∣∣ ((ψad
α (r, t ′, t ′′)| − ih̄ ∂

∂t ′′ |ψad
α′ (r, t ′, t ′′)))r,t ′

εad
α′ (t ′′) − εad

α (t ′′)

∣∣∣∣∣� 1 . (8.160)

Using the specific form of the Hamiltonian of the problem given in Eq. (8.139)
and the Hellman–Feynman theorem one gets the adiabatic condition for time-
dependent open systems:

|e|h̄ε0

∣∣∣∣df (t ′′)
dt ′′

∣∣∣∣∑
α′ 	=α

∣∣∣∣∣ ((ψad,L
α (r, t ′, t ′′)|r · ek cos(ωLt

′)|ψad,R
α′ (r, t ′, t ′′)))r,t ′

(εad
α′ (t ′′) − εad

α (t ′′))2

∣∣∣∣∣� 1 .

(8.161)

The index α is a super-index since in Eq. (8.151) it is easily seen that not only
is ψad,L/R

α (r, t ′, t ′′) a solution of the eigenvalue equation, with eigenvalue εad
α (t ′′),

but also eiωLmt
′
ψ

ad,L/R
α (r, t ′, t ′′) is a solution, with the eigenvalue εad

α (t ′′) + h̄ωLm,
for any integer m. Let us take all the states whose corresponding eigenvalues lie
in the interval [0,h̄ωL] (the first Brillouin zone) and define them to have an index
m = 0; we call these states φad,L

j (r, t ′, t ′′), φad,R
j (r, t ′, t ′′), and the corresponding

eigenvalues Ead
j (t ′′), and accordingly all of the solutions are given by:

ψad,R
α (r, t ′, t ′′) ≡ φad,R

j (r, t ′, t ′′)eiωLmt
′
, (8.162)

ψad,L
α (r, t ′, t ′′) ≡ φad,L

j (r, t ′, t ′′)eiωLmt
′
, (8.163)

εad
α (t ′′) ≡ Ead

j (t ′′) + h̄ωLm, (8.164)

where

0 ≤ Ead
j (t ′′) ≤ h̄ωL . (8.165)
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Thus, the index α actually counts both the position of the quasi-energy within the
first Brillouin zone (the index j ) and the Brillouin zone itself (the index m). With
respect to the generalized inner product, two states with one or more of the indices
(j,m) different are orthogonal.

Going back to Eq. (8.161) now, it is evident that the probability of coupling an ini-
tial adiabatic state ψad

α=(j,0)(r, t
′, t ′′) to any other adiabatic state ψad

α′=(j ′,m′)(r, t
′, t ′′)

is given by

A(j,0)(t
′′) = F (t ′′) ·

∑
j ′ 	=j

a
(j )
(j ′)(t

′′) , (8.166)

where

F (t ′′) = |e|h̄ε0

∣∣∣∣df (t ′′)
dt ′′

∣∣∣∣ (8.167)

and

a
(j )
(j ′)(t

′′) =
∑
m 	=0

|c(j,0)
(j ′,m)(t

′′)| . (8.168)

The functions c(j,0)
(j ′,m)(t

′′), that will be termed here from now on as “adiabatic cross
terms”, are given by

c
(j,0)
(j ′,m)(t

′′) = ((φad,L
j (r, t ′, t ′′)|r · ek cos(ωLt

′)eiωLmt
′ |φad,R
j ′ (r, t ′, t ′′)))r,t ′

(Ead
j ′ (t ′′) − Ead

j (t ′′) + h̄ωLm)2
.

(8.169)

Since the energies Ead
j ′ (t ′′) are complex (the Hamiltonian is non-Hermitian) then

for j 	= j ′ it is most unlikely thatEad
j ′ = Ead

j . It is clear that the denominator hardly
ever vanishes even when m = 0. This holds true even when j = j ′ but m 	= 0.

Therefore, the criterion for a pulse to be considered adiabatic is that the following
condition will be fulfilled:

A(j,0)(t
′′) � 1 . (8.170)

Which is the adiabatic state ψad
α=(j,0)(r, t

′, t ′′) whose couplings to all other states
ψad
α′=(j ′,m′)(r, t

′, t ′′) should remain small in the adiabatic limit? Assuming that before
the action of the field the system is initially in a stationary state of the field-free
problem ϕj (r) (relying on the superposition principle of the solutions of the TDSE
that generality is not lost by this assumption) and provided that the field is switched
on and off adiabatically, this Floquet resonanace state ψad

α=(j,0)(r, t
′, t ′′) is the state

which is “born” from the stationary state ϕj (r) as the field is switched on. If the
process is not done adiabatically many Floquet resonance states will be populated,
resulting in considerable couplings with ψad

α=(j,0)(r, t
′, t ′′) leading to the collapse
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of the adiabatic condition in Eq. (8.170). The only adiabatic criteria which is
physically meaningful is one in which α denotes a resonance state. However, α′

stands for both resonances and rotated continuum states.
One should notice that the derivation of the adiabatic theorem presented above

holds even for many-electron systems where the symbol r can stand for the coor-
dinates of all electrons. The same arguments will also hold for a polychromatic
radiation, where the cw field is a collection of monochromatic fields with different
frequencies ωi and phases ϕi .

Notice that for a given problem (given spectral profile of the cw field and a
given field-free potential), the sum over the absolute value of the adiabatic cross
terms should be calculated as a function of the effective cw-field intensity (which
is characterized here through t ′′) only once. The adiabatic cross terms should then
be converted to some functions of time, through the explicit time-dependence of
the pulse envelope, and then the sum of their absolute values should be multiplied
by the slope of the pulse envelope and by the maximal field intensity to obtain the
final expression which indicates whether the adiabatic criteria are fulfilled or not.

It is easily seen in Eq. (8.167) that for a given system, the shape and intensity
of the laser pulse determine its adiabaticity since these parameters influence the
shape-derivative term. Accordingly, a short pulse which is switched on and off
abruptly and has a high maximal intensity will most likely be not adiabatic.

In the case that the adiabaticity criteria are fulfilled, the sum over different
channels in Eq. (8.152) can be reduced to a single product:

ψR
k,j (r, t

′, t ′′) ∼= φad,R
j (r, t ′, t ′′)χj,k(t ′′) (8.171)

and the adiabatic states are assigned two good quantum numbers k and j . The
solution to the eigenvalue equation of Eq. (8.153) is now ([V(t ′′)]α,α′ ≈ 0):

χj,k(t
′′) = e+ i

h
Ekt

′′
e− i

h̄

∫ t ′′ dτEad
j (τ ) . (8.172)

By using Eq. (8.146), Eq. (8.171) and Eq. (8.172) we get that the adiabatic solution,
in the (t, t ′, t ′′) formalism, is given by

�̃R(r, t ′, t ′′, t) =
[∑

k

cke
− i
h̄
Ek(t−t ′′)

]
φ

ad,R
j (r, t ′, t ′′)e− i

h

∫ t ′′ dτEad
j (τ ) . (8.173)

Now, applying the cut t ′′ = t while eliminating the phase factor
∑
k ck in order to

obtain the physical solution of Eq. (8.138) one gets:

�R(r, t) = �̃R(r, t ′, t ′′, t)|t ′′=t ′=t = e− i
h̄

∫ t dτEad
j (τ )φ

ad,R
j (r, t ′, t ′′)|t ′′=t ′=t .

(8.174)

This is the adiabatic solution of the TDSE associated with an initial state ϕj (r).
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Let us recap and clarify the procedure which determines if a given pulse is
adiabatic or not. This determination relies on the calculation of the factors A(j,0)(t)
which sum over the adiabatic cross terms. The steps in procedure are as follows.

(1) Perform a non-Hermitian adiabatic Floquet calculation (via Eq. (8.151)) with a cw
field, for a range of intensities ε1 which covers all intensities between zero and the
maximal intensity ε0 of the pulse. The adiabatic Floquet Hamiltonian for this purpose
is

Had(r, t ′, ε1) ≡ H0(r) − er · ε1 cos(ωLt
′) − ih̄

∂

∂t ′
. (8.175)

From the corresponding eigenvalue equation,

Had(r, t ′, ε1)φad,R
j (r, t ′, ε1) = Ead

j (ε1)φad,R
j (r, t ′, ε1) (8.176)

obtain the quasi-energy spectrum Ead
j (ε1) and all the adiabatic cross terms c(j,0)

(j ′,m)(ε1)
as a function of the intensities based on Eq. (8.169) and Eq. (8.176). This step is done
only once, for a given system under study.

(2) For a given laser pulse f (t) with a maximal intensity ε0, evaluate the effective cw-
field intensity as function of time, ε0f (t) (Eq. (8.140)). Then, convert the adiabatic
cross terms to time-dependent functions through the equality ε1 = ε0f (t) (Eq. (8.150)
while using c(j,0)

(j ′,m)(ε1) obtained in the first step of the procedure). Consequently the

time-dependent adiabatic cross terms are given by c(j,0)
(j ′,m)(t) = c(j,0)

(j ′,m)(ε0f (t))).
(3) For each resonance state α = (j, 0) calculate

A(j,0)(t) = F (t) ·
∑
j ′ 	=j

∑
m	=0

|c(j,0)
(j ′,m)(t)| (8.177)

using the time-dependent adiabatic cross terms from the previous step. Notice that here
t ′′ in Eqs. (8.166)–(8.169) is replaced by t . If for a given resonance state α = (j, 0)
the corresponding expression A(j,0)(t) is much smaller than unity at every time instant,
it is guaranteed that the system, initially at the corresponding bound state, will evolve
adiabatically to that specific resonance state. In this case the high-order harmonic
generation spectra that will be discussed in detail in the next section will show only
odd harmonics as for the cw case.

8.3.4 Non-Hermitian quantum mechanical theory of high
order harmonic generation

High-order harmonic generation spectra of atoms and molecules in intense laser
fields usually show a wide plateau of odd harmonics, with photon energies high up
to the soft X-ray regime. The phenomenon can be treated using the standard (Hermi-
tian) formalism of quantum mechanics through the solution of the time-dependent
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Schrödinger equation when the initial state at t = 0 is the field-free ground state.
The probability of obtaining high-energy photons can be obtained from the time-
dependent solution of the Schrödinger equation by studying the acceleration of the
driven electrons. In other words we need to evaluate the time-dependent expec-
tation of the electronic acceleration operator, a(t). The Fourier transform of a(t)
provides the amplitudes of the probabilities of high-harmonic generation process
and thereby the intensity of the high-frequency emitted radiation. This will give the
probability that an atomic or molecular system which interacts with a laser with
a fundamental frequency ωL will emit frequencies �� ωL. Besides the heavy
numerical task of the involved calculations which require the solution of the time-
dependent Schrödinger equation of a many-electron atomic or molecular system,
there are difficulties in qualitatively analyzing the expression for the amplitude of
the probability of emitting high frequency, σ (�). In order to get, for example, the
conditions where only odd harmonics are obtained or under what condition also
hyper-Raman lines (side bands for which�/ωL is not an integer) would be observed
in the experiments we must be able to analyze σ (�) based on some perturbative
analysis or by using some symmetry considerations. The main difficulty in apply-
ing perturbation theory in the conventional formalism of quantum mechanics is in
the fact that the spectrum of a Hermitian Floquet operator is not discrete, as well
as the fact that the laser field is too strong for any perturbational analysis of σ (�)
to be effective. This, however, is not the case when σ (�) is derived by the non-
Hermitian formalism of quantum mechanics. The spectrum of the non-Hermitian
complex scaled Floquet operators consists of a discrete resonance spectrum associ-
ated with square-integrable states and often σ (�) is dominated by the contribution
of a single resonance eigenfunction of the non-Hermitian complex-scaled Floquet
operator.

When the evolution is controlled by resonance states, then the integration over
energy (or summation over the discrete continuum energy terms) is replaced by
the summation over the resonance poles of the Floquet operator which upon
complex scaling are associated with square-integrable functions. The interference
effects with the rotated continuum states can be neglected since the photo-induced
dynamics is dominated by the narrow quasi-energy resonances. As already dis-
cussed in this chapter, this possibility to separate between resonances and “white”
continuum states does not exist in conventional (Hermitian) quantum mechanics.
Unlike the situation in non-Hermitian quantum mechanics, in conventional quan-
tum mechanics, a resonance state is not associated with a single eigenstate of the
Hamiltonian, so that we cannot distinguish between the contribution to the photo-
emission cross section of resonance states and the contribution of other states in the
continuum.
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Let us briefly discuss this situation where we do not take the “bra” state as
the complex conjugate of the “ket” state when we calculate expectation values
in non-Hermitian quantum mechanics, and the so-called left eigenstates are equal
to the right eigenstates of the Floquet matrix. The QE states |�k(t)) are time-
periodic functions. We expand them in the Fourier basis set fn(t) ≡ eiωLnt , where
n = 0,±1,±2, . . . , i.e. |�k(t)) =∑n fn(t)|φn,k). The Fourier components are
spatial functions. They are the components of the right eigenvector of the Floquet
Hamiltonian matrix,

Hn′,n = 1

T

∫ T

0
dt(fn′(t))∗

[
−ih̄

∂

∂t
+ Ĥ (r̂jeiθ , t)

]
fn(t) . (8.178)

Here, Ĥ (r̂jeiθ , t) = Ĥ θ
0 + eF0e+iθ∑

j ẑj cos(ωLt). Note that in the calculation of
the Floquet matrix elements we used the usual scalar product. From linear algebra
we know that the most general representation of a matrix is a complex and symmet-
ric one. Therefore, without loss of generality we consider the case where the Floquet
matrix is equal to its transpose (i.e., H is a complex symmetric matrix). In such a
case the “left” eigenvectors of H are equal to the “right” eigenvectors. Therefore,
we should not take the complex conjugate of the spatial Fourier components when
we calculate expectation values. This means that the inner product is defined such
that, for example,

(
φn′,k′ |∑j ẑj |φn,k

) = 〈φ∗
n′,k′ |∑j ẑj |φn,k〉, where 〈· · ·〉 stands for

the usual definition of the scalar product. This inner product, which is known as the
c-product, has been discussed extensively in Chapter 6. Consequently, the Floquet
eigenstates are orthonormal functions under the definition

1

T

∫ T

0
dt

(∑
n′
fn′(t)φn′,k′

∣∣∑
n

fn(t)φn,k

)
= δk′,k . (8.179)

The time period is T = 2π/ωL. In other words, we calculate the inner product as an
integral over the spatial coordinates and over time where we do not take the complex
conjugate of quantities that are complex merely due to complex scaling. This means
that we conjugate the time-dependent functions fn but not the spatial functions φn,k.
From Eq. (8.179), it follows that

∑
n(φn,k′ |φn,k) = δk′,k. Furthermore, when we take

into account the fact that the states |�k) and eiNωt |�k) are orthogonal eigenstates
of the Floquet operator forN 	= 0, we find that

∑
n(φn+N,k|φn,k) = δN,0 and finally

(
∑
n′ fn′(t)φn′,k|

∑
n fn(t)φn,k) = 1 for all times.

The probability of detecting an electron somewhere in space is equal to one
at any given time since the number of particles in the entire space is conserved.
However, the high-energy photons are generated only due to the interaction of the
electrons with the nuclei. Free electrons oscillating in the presence of the elec-
tromagnetic field do not emit high-energy photons. Therefore, the high harmonics
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are generated only within the lifetime of the resonance state. On the basis of this
physical argument, we conclude that the number of electrons should not be con-
served inside a finite box where the electrons interact with the nuclei. As time
passes, the electrons escape from the finite box. Outside the box, we assume that
the electron–nuclei interaction is equal to zero. The size of the box can be as large
as one wishes. Within the framework of this box-quantization formalism, the num-
ber of electrons inside the box decays exponentially to zero as time passes. The
norm of the decaying wavepacket is reduced in time due to the “loss” of electrons.
This is the main motivation behind the derivation of the F-product introduced in
Chapter 6. However, since we use this definition for the norm of a wavepacket
in the derivation of the non-Hermitian expressions for the probability of getting
high-harmonic when an atom or a molecule interacts with a strong laser field, we
will briefly repeat it in this context.

We impose this time-dependent normalization on the quasi-energy resonance
solutions by introducing the following complex phase factors:

e−iEkres t/h̄ = e−iEkres t/h̄e− 1
2�kres t/h̄ (8.180)

for the “ket” Floquet states, and

e+iE∗
kres
t/h̄ = e+iEkres t/h̄e− 1

2�kres t/h̄ (8.181)

for the “bra” states. Thus, within the framework of the box quantization, we obtain
for the state |�(t)) = e−iEkres t/h̄|�kres (t)) the normalization

(�(t)|�(t)) =
(

e−iEkres t/h̄
∑
n′
fn′(t)φn′,kres

∣∣e−iEkres t/h̄
∑
n

fn(t)φn,kres

)
= e−�kres t/h̄. (8.182)

This means that the probability of detecting the system in a given atomic/molecular
quasi-energy resonance state decays exponentially in time with the decay rate
�kres/h̄. To obtain this result we used the norm conservation for the states |�kres (t))
(i.e., (�L

kres
(t)�R

kres
(t)) =∑+∞

n=−∞(φn,kres |φn,kres ) = 1).
Following this discussion, in non-Hermitian quantum mechanics, Eq. (8.100) is

replaced by the following expression:

σ (�) = |tres(�) + tnon-res(�)|2 . (8.183)

This means that we have two contributions to σ (�). The main contribution is that of
the resonant states and an additional contribution from the background continuum.
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The resonance contribution to the photo-emission cross section is given by

tres(�) =
∑
k′

res,kres

CL
k′

res
CR
kres

+∞∑
n=−∞

+∞∑
n′=−∞

[(Ekres − E∗
k′

res
)/h̄+ ω(n′ − n))]2

�− [(Ekres − E∗
k′

res
)/h̄+ ω(n′ − n)]

×
(
φn′,k′

res

∣∣∣∑
j

ẑj

∣∣∣φn,kres

)
, (8.184)

where the resonance Fourier components φn,kres are θ -dependent spatial functions,
whereas the resonance complex quasi-energies are invariant with respect to θ .

An important point in the derivation of Eq. (8.184) is the time integration over the
range 0 < t <∞. Physically, this is reasonable for laser pulses which are switched
on at t = 0 and last longer than the lifetimes of the QE states. The correction for
short pulses will be given below.

In order to calculate the complex coefficients CR
k and CL

k in the expansions of
the right and left wave functions

�R
0 (t = 0) =

∑
n,k

CR
k φn,k , (8.185)

�L
0 (t = 0) =

∑
n,k

CL
k φn,k , (8.186)

we should first explain how the complex-scaled initial state is projected on these
resonances. Here we consider the general case that the atom, before being exposed
to the external laser field, is not in an eigenstate but in a linear combination of the
field-free eigenstates. The unscaled initial wave packet is denoted by �FF

0 (rj ). If
the field is suddenly turned on to its maximal field amplitude (the envelope of the
laser field amplitude is a Heavyside function), then

CR
kres

=
∑
n

(φn,kres |�FF,θ
0 ) , (8.187)

CL
kres

=
∑
n

([�FF,−θ
0 ]∗|φn,k), (8.188)

where �FF,θ
0 (rj ) = �FF

0 (rjeiθ ). The other possibility is to turn the field on during
several optical cycles. Let us assume that this time is equal toMT , whereM is an
integer and an optical cycle is T = 2π/ω. The wavepacket is propagated by solving
the conventional time-dependent Schrödinger equation from t = −MT to t = 0,
yielding �0(rj , t=0), which is different from �FF

0 (rj ). The coefficients follow by
projection of the complex-scaled wave function �θ0(rj , t = 0) on the complex QE
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Floquet solutions, i.e.,

CR
kres

=
∑
n

(φn,k|�θ0(t = 0)) , (8.189)

CR
kres

=
∑
n

([
�−θ

0 (t = 0)
]∗∣∣φn,k). (8.190)

If the laser is turned on adiabatically, then the coefficients are given by

CR
kres

= e−i
∫ 0
−MT E

ad
kres

(t ′)dt ′/h̄CFF
kres
, (8.191)

CL
kres

= e+i
∫ 0
−MT (Ead

kres
(t ′))∗dt ′/h̄(CFF

kres
)
∗
, (8.192)

where the coefficients CFF
kres

are obtained by projection of �FF
0 on the field-free

eigenstates, and Ead
kres

are the adiabatic quasi-energies. Clearly, this approach is
valid only as long as there is no significant ionization during the turn-on period,
i.e., as long as the peak intensity is below the saturation intensity.

By substituting these coefficients into Eq. (8.184) we obtain the spectrum for
emission of high harmonics. When the interference between different populated QE
states is ignored, the double summation over k′

res and kres in Eq. (8.184) is replaced
by a single sum over kres. Then, following the dynamical symmetry properties of
the Floquet Hamiltonian for atoms,(

φn′,kres

∣∣∣∑
j

ẑj

∣∣∣φn,kres

)
= 0 (8.193)

if

n′ − n 	= 2m+ 1 , (8.194)

where m is an integer, i.e. only odd No = 2m+ 1 harmonics are generated. The
intensity of the high-order harmonic lines is then given by

σ
(
� = NoωL

)
�
∣∣∣∣∣∣
∑
kres

CL
kres
CR
kres

(�− i�kres/h̄)2

�kres/h̄

+∞∑
n=−∞

(
φn+No,kres

∣∣∣∑
j

ẑj

∣∣∣φn,kres

)∣∣∣∣∣∣
2

. (8.195)

Equation (8.196) suggests that the odd high-order harmonic generation spectrum
is controlled by the narrowest populated QE resonance state. Let us explain this
important result for the simple case where only one resonance QE state is populated,
i.e., we have no summation over kres in Eq. (8.196). In such a case, if h̄�� �kres ,
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then

(�− i�kres/h̄)2

�kres/h̄
� �2

�kres/h̄
(8.196)

and, consequently, the signal from state kres,

σ
(
� = NoωL

) �
(
�2

�kres/h̄

)2
∣∣∣∣∣∣

+∞∑
n=−∞

(
φn+No,kres

∣∣∣∑
j

ẑj

∣∣∣φn,kres

)∣∣∣∣∣∣
2

, (8.197)

is proportional to 1/(�kres )
2. The assumption that only the narrowest (i.e, longest-

lived) quasi-energy (QE) resonance state controls the photo-induced dynam-
ics probably holds when one QE resonance state (usually associated with the
field-free ground state) is narrower than all other resonance states by sev-
eral orders of magnitude. Perhaps this is the reason why, for example, the
experimental high-order harmonic generation spectra of helium fit so well with
the results obtained from complex-scaling ab-initio calculations carried out by
Moiseyev and Weinhold.13 In that study it was assumed that σ (� = Noω) ∼∣∣∑+∞

n=−∞�
2(φn+No,k0 |

∑
j ẑj |φn,k0 )

∣∣2 although the short high-intensity laser pulses
used in the experiments should populate more than one quasi-energy state. Note
in passing that in their ab-initio calculations the electronic correlations were taken
into consideration, which provided the first indication that the odd high-harmonic
generation spectrum is produced by the photo-induced resonance state of the neutral
atom in the strong laser field and not by the helium ion as one might think. However,
one should be aware of the fact that the value of σ (� = Noω) does not only depend
on the resonance width but also on the matrix elements (φn+No,kres |

∑
j ẑj |φn,kres ).

Due to this dependence, it may happen that although �kres < �k′
res

, the contribution
of a state kres will be smaller than the contribution of a state k′

res. This is possible
when the difference between the resonance widths is not large, and when the two
resonance wavefunctions have very different “lengths of localization” in Fourier
space. Let us explain the last statement more carefully. The Fourier components
satisfy the normalization condition

∑
n(φn,kres |φn,kres ) = 1. The localization length

measures the number of dominant components in the Fourier expansion of the
resonance complex-scaled wavefunction. By plotting the value of (φn,kres |φn,kres )
versus n, the localization length in Fourier space can be obtained. It is clear that
higher harmonic orders are obtained for a resonance state with a longer localization
length. We note in passing that quasi-energy states that are associated with classical
chaotic dynamics are less localized in Fourier space than the quasi-energy states

13 N. Moiseyev and F. Weinhold, Phys. Rev. Lett. 78, 2100 (1997).
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which are associated with a quasi-periodic regular classical photo-induced dynam-
ics.14 Without going too deep into this matter we can conclude that a situation
can arise where a quasi-energy state with a short lifetime will generate high-order
harmonics more efficiently than another, longer-lived, resonance state. Yet, we still
may expect that if a populated resonance quasi-energy state is narrower by several
orders of magnitude than the other resonances, this narrow resonance quasi-energy
state will control the photo-induced dynamics.

So far we have discussed the harmonic generation spectra for cw lasers or for
the case where the duration of the laser pulse supports many optical cycles, which
justifies the use of Floquet theory. Before proceeding to discuss the conditions for
the appearance of side-bands, let us generalize the derivation of Eqs. (8.196) and
(8.197) to the case of short laser pulses. Using the (t, t ′) formalism, the derivation
of of the high-harmonic generation spectrum presented above holds also for non-
periodic time-dependent Hamiltonians.

In such instances, ωL is not the cw laser frequency. Instead we replace ωL in
the above expressions by the frequency ω = 2π/τ , where τ , is any finite time
which is larger than the duration of the pulse. However, when the dominant Fourier
component of the laser pulse is the fundamental frequency of the laser, we may
use the Floquet QE states as a basis set in the calculations of the time-dependent
dipole moment, dres(t). In such a case, ω in our expansion is the laser frequency as
before.

Under the assumption that the high-order harmonics are generated only during
the period of time that the laser field is turned on (the possibility that the laser field
generates an electronic wavepacket which generates the high harmonics long after
the laser has been turned on is excluded here) then the the Fourier transform of
dres(t) should be taken from 0 to τp rather than 0 to ∞, where τp is the duration
of the laser pulse. Therefore, when short laser pulses are applied, the term 1/�kres

in Eqs. (8.196) and (8.197) should be replaced by (1 − e−�kres τp/h̄)/�kres . For suf-
ficiently short pulses, (1 − e−�kres τp/h̄)/�kres � τp/h̄. This shows that for ultrashort
pulses, the generation of high-order harmonics does not depend directly on the res-
onance width but rather on the matrix elements

∑+∞
n=−∞(φ∗

n+2m+1,kres
|∑j ẑj |φn,kres )

which appear in Eqs. (8.196) and (8.197). Thus, when short laser pulses are applied,
the resonance QE state making the dominant contribution to the HG spectrum will
not necessarily be the one with the longest lifetime. Clearly, in this case, the matrix
elements must be evaluated for the system of interest in order to make a prediction
of which QE states are dominant. In this respect, our general analysis is only the

14 V. Averbukh and N. Moiseyev, Cutoff in molecular harmonic-generation spectra resulting from classical
chaotic dynamics, Phys. Rev. A. 51, 3911–3915 (1995); V. Averbukh, N. Moiseyev, B. Mirbach and H. J.
Korsch, Dynamical tunneling through a chaotic region – a continuously driven rigid rotor. Z. Physik D – Atoms,
Moleculers and clusters 35, 247–256 (1995).
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first step. We should stress again that this discussion holds for the cases where there
is a dominant contribution of a single resonance state to the photo-induced dynam-
ics. When an electronic wavepacket is generated one should calculate the complex
time-dependent expectation value of the acceleration and use it as a source term in
the Maxwell equation in order to calculate the emitted high-frequency radiation.

We return now to discussion on the conditions which are required for the obser-
vation of side-bands (hyper-Raman lines). From Eq. (8.184), it follows that the
hyper-Raman lines in the emission spectra are obtained at

� = Re[(Ekres − E∗
k′

res
)/h̄] + ω(n′ − n) = (Ekres − Ek′

res
)/h̄+ ω(n′ − n),

(8.198)

where n′ − n = 2m+ 1 (i.e. odd values) or n′ − n = 2m (i.e. even values), and
kres 	= k′

res. The result of even or odd values of n′ − n depends on the dynamical
symmetry properties of the complex-scaled QE resonance states. Let us explain
this point. For atoms (the potential is spherical symmetric) in a time-periodic field
within the dipole approximation, the Floquet operator satisfies the symmetry con-
dition Ĥ(r, t) = Ĥ(−r, t + T/2), where T = 2π/ωL. Therefore, the right and left
eigenfunctions of the Floquet operator are also eigenfunctions of this dynami-
cal symmetry operator, �R,L(−r, t + T/2) = ±�R,L(−r, t + T/2). This symme-
try property of the eigenfunctions holds for Hermitian Floquet operators and for
non-Hermitian ones. However, only within the framework of the non-Hermitian
formalism where outgoing boundary conditions are imposed, the photo-induced
resonance Floquet eigenfunctions are obtained. Only within this framework can we
assume that the photo-induced dynamics is controlled solely by a single resonance
Floquet state that becomes square integrable by complex scaling. Consequently,
the high-harmonic generation spectra can be associated with the Fourier transform
of the acceleration,

σHG(NωL) � |T −1
∫ T

0
dt
∫

dr a(r, t)|2 , (8.199)

where

a(r, t) = �L(r, t)ÔN (r, t)�R(r, t) (8.200)

and

ÔN (r, t) = eiNωLt [−∂xVatom/me] . (8.201)

The integration over the two coordinates, r and t , is not equal to zero if and only if

Ô(r, t) = ÔN (−r, t + T/2) , (8.202)
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which implies that

eiNωLT/2 = −1 . (8.203)

Therefore, for m = 0, 1, 2, . . . ,

NωLT/2 = (2m+ 1)π,

N = 2m+ 1, (8.204)

only odd harmonics should be obtained.
Note that even orders are allowed when the parity with respect to the dynamical

symmetry of the two resonances is different. Here we showed that the hyper-
Raman lines in the emission spectra are comprised of a series of shifted odd and
even high-order harmonics. The intensity of the hyper-Raman lines at frequencies
� = (Ekres − Ek′

res
)/h̄+NωL, resulting from the interference between two different

resonance QE states kres 	= k′
res, is given by

σ (�) �
∣∣∣∣∣∣CL
k′

res
CR
kres

[�− i
2h̄ (�kres + �k′

res
)]2

(�kres + �k′
res

)/h̄

+∞∑
n=−∞

(
φn+N,k′

res

∣∣∣∑
j

ẑj

∣∣∣φn,kres

)∣∣∣∣∣∣
2

.

(8.205)

We now apply the dynamical symmetry properties of the Floquet operator to
Eq. (8.205). When the two QE states have the same parity with respect to the
dynamical symmetry operator the matrix elements vanish unless No = 2m+ 1
This means that the hyper-Raman lines are shifted odd harmonics. When the two
QE states have different generalized parity then the matrix elements vanish unless
Ne = 2m. If these two resonance QE states are degenerate eigenstates of the Floquet
operator, even high-order harmonics will be obtained. If they are non-degenerate
eigenstates of the Floquet operator, shifted even harmonics will be generated.

As one can see from Eq. (8.205), the intensity of the hyper-Raman lines in the
emission spectra depends on the probability of populating two QE resonance states
which can have different energies but should possess similar narrow widths.

This is a crucial point for possible experiments that would show the fingerprints
of the hyper-Raman lines in the emission spectra: if �k′

res
� �kres , the cross terms in

Eq. (8.205) are negligible compared to the direct term in Eq. (8.196) associated with
state kres, and only significant odd harmonics will be observed. The hyper-Raman
lines will be obtained only when �k′

res
∼ �kres .

As discussed above for the direct terms, the situation is drastically different for
very short pulses. Then, the harmonic intensities are not directly controlled by
the widths of the resonance states. In this case, hyper-Raman lines may even be
obtained when the populated QE states have significantly different lifetimes.
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8.3.5 Non-Hermitian theory of above threshold ionization (ATI) spectra

Due to the interaction of an atom or a molecule with the induced electromagnetic
field, ionization or dissociation may occur. In the former case, the measurement of
the kinetic energy of the photo-induced ionized electron is known as ATI (above-
threshold-ionization) spectroscopy. In the latter case the measurement of the relative
kinetic energy of the dissociated particles due to the molecule–field interaction is
known as ATD (above-threshold-dissociation) spectroscopy. In both cases the spec-
trum shows a series of isolated peaks separated by the integer multiples of photon
energy h̄ω. These peaks are observed due to multi-photon absorption processes.

In the description below, in order to simplify the notation we assume that the
field-free Hamiltonian is an effective single electron Hamiltonian. The extension
to many-electron systems is quite straightforward as we indicate below. The one-
electron coordinate x stands for the complex scaled coordinate, for example, the
function ψb(x) stands for the complex scaled bound state of the field-free com-
plex scaled Hamiltonian, similarly ϕf(x) is the complex scaled outgoing plane
wave which describes the ionized electron of the system when it interacts with a
time-periodic electromagnetic field. As a reference frame we choose here the accel-
eration gauge. The reason is simple. Only in this representation the time-periodic
Hamiltonian reduces in the asymptote to the Hamiltonian of free electrons which
is essential for the derivation of non-Hermitian time-independent scattering theory
for a time-dependent Hamiltonian.

In the case of a many-electron system ϕf(x) represents a many-electron wave-
function which is anti-symmetric with respect to permutation and consists of a
product of the complex scaled ground state of the atomic (molecular) ion with the
outgoing complex scaled waves which describes the single ionized electron. The
initial state which describes a system which is suddenly exposed to a cw laser is
given by

�(x, t ′, t = 0) = ψb(x)δ(t ′) =
∑
n

eiwnt ′ψb(x) , (8.206)

whereψb(x) is a complex scaled bound-state eigenfunction of the field-free Hamil-
tonian. Therefore, the initial state�(x, t ′, t = 0) in the Fourier basis set is defined
as

|ψ0) =


...

ψb(x)
ψb(x)

...

 . (8.207)
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The complex scaled final state obtained when the Hamiltonian is represented in the
acceleration gauge and Re(x) → ∞ is given by

ψ(x, t ′, tf) =
√
µ

h̄2k
eikx ≡ ϕf(x) , (8.208)

where

Ef = (h̄k)2

2µ
(8.209)

is the real kinetic energy of the photo-ionized electron. Therefore, when Fourier
basis functions, eiωLnt

′
, where n = . . . , 1, 0,−1, . . . are used as a basis set then

n = 0 is the only non-zero component,

|ψ f(t = 0)) =


...
0

ϕf (x)
0
...

 . (8.210)

The free electron propagation is given by

ψ f(t) = e− iEf t/h̄ϕf(x) = e−iĤfinal
F t/h̄ψ f(0) , (8.211)

where Hfinal
F is a matrix representation of the complex scaled Floquet operator for

the final state where a free electron is obtained (i.e, the Floquet operator for the final
state is obtained by taking the limit of Re(x) → ∞ where the interacting potential
vanishes).

In a similar fashion the propagation of the initial states is given by

ψ0(t) = e−iĤFt/h̄ψ0(0) , (8.212)

where ĤF is the complex scaled Floquet matrix obtained by using the time-
dependent Fourier functions as a basis set.

The transition probability from a bound state of the field-free Hamiltonian to
a free electron with the kinetic energy Ef is obtained by evaluating the overlap
integral,

P (Ef) = | lim
t→∞(ψ f(t)|ψ0(t))|2 , (8.213)

where (. . .) stands for the c-product in the generalized Hilbert space where in the
Floquet operator time is used as an additional coordinate.

By using the fact that the limit of t → ∞ can be analytically carried out, the
closed-form expression for the state-to-state transition in a half-collision process
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is obtained (here we used the Lippmann–Schwinger equation for the Floquet
operator):

P (Ef) = ∣∣(ψ0(0)
∣∣1 + G+(Ef)V

∣∣ψf (0))
∣∣2, (8.214)

where

V ≡ ĤF − Ĥfinal
F . (8.215)

Here Ĥfinal
F is obtained by eliminating from ĤF the matrix Fourier matrix elements

of the interaction potential termV (x + α0 cosωLt
′) and the complex scaled Green’s

operator is defined as

Ĝ
+

(Ef) = 1

EI − ĤF(x, t ′)
. (8.216)

Similarly to the notation in the standard (Hermitian) scattering theory (where −iε
is added to the Hamiltonian where ε > 0 to impose outgoing boundary conditions
on the propagated wavepacket) also in the non-Hermitian formalism of scattering
theory the “+” sign on the Green’s operator indicates the fact that the imaginary
part of the eigenvalues of the complex scaled Floquet matrix are negative and thus

1

EI − ĤF(x, t ′)
= 1

EI − Re[ĤF(x, t ′)] + iIm[ĤF(x, t ′)
. (8.217)

An important non-trivial fact is that only the n = 0 Fourier component ofψf (i.e. the
n = 0 component in the vector ψ f(0)(t = 0)) is non-zero, whereas all the Fourier
components of the initial state ψ0 are identical and equal to the bound state of the
field-free Hamiltonian.

Using Eq. (8.214) under the assumption that the photo-induced dynamics is
controlled by a single QE resonance state we will prove that the peaks in the ATI
spectra have the same width. The relative height of these peaks can be associated
with the ratios of the partial widths of the resonance state. On the basis of the
analysis of the expression we will obtain for the ATI spectra it is possible to explain,
without the need to carry out any numerical calculations, why as the lifetime of the
QE resonance state which controls the photo-induced process increases, the height
of the peaks in the ATI spectra decreases and the peaks become narrower.

In the first step of the derivation we use the spectral representation of the Green’s
operator associated with the complex scaled Floquet operator. Using the Fourier
functions eiωLnt

′
, where n = 0,±1,±2, . . . (ordered from the smallest value to the

largest one) as a basis set, the eigenvectors of the complex-scaled Floquet matrix
(i.e., the spatial components of the eigenfunctions of the complex scaled Floquet
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operator) are given by

|�α) =


...

ϕn+1,α(x)
ϕn,α(x)
ϕn−1,α(x)

...

 , (8.218)

where α = 0 is assigned to the longest-living resonance state associated with the
quasi-energy eigenvalue ε0 − i�0/2. This is the state which usually has the largest
overlap with the complex-scaled field-free ground state ψb. Let us denote the
complex overlap integral by Sα =∑n(ψb|�n,α). As already discussed, the quasi-
energies are defined modulo h̄ωL. Therefore we have QE solutions which are
associated with the complex eigenvalues, ε0 + h̄ωLm− i�0/2, where the spatial
Fourier components of the corresponding QE eigenvectors are shifted by m.

That is,�n,α(x) → �n+m,α(x) ≡ �mn,α(x). Since we assume that
∣∣S0

∣∣� ∣∣Sα 	=0

∣∣,
Eq. (8.214) reduces to

P (Ef) ∼
∣∣∣∣∣S0

∞∑
m=1

(�m
0 |V∣∣ψ f(t = 0))

(Ef − ε0 − h̄ωLm) + (i/2)�0

∣∣∣∣∣
2

, (8.219)

where here we assume that the system can be ionized even by absorbing one photon
(m = 1). Our result shows that in principle when a cw laser is used there are an
infinitely large number of peaks in the ATI spectra. When the absorption of mp

photons is required to ionize the system then the summation in Eq. (8.219) starts at
m = mp. Note that the resonance position has a negative value since it is associated
with the m = 0 Floquet channel. It is closely related to the ground bound state of
the field-free Hamiltonian which has a negative energy value. Due to the interaction
of the atom/molecule with the laser field this state becomes a resonance state. From
Eq. (8.219) it is evident that the peaks in the ATI spectra are obtained when

Ef = h̄ωLm− |ε0| . (8.220)

Therefore the kinetic energy of the photo-ionized electron is quantized. The shape
of the Lorenzian m-th ATI peak is given by

P (Ef = h̄ωLm− |ε0| +�Ef) ∼
∣∣∣∣S0

(�m
0 |V|ψ f(t = 0))

�Ef + (i/2)�0

∣∣∣∣2. (8.221)

Since the nominator varies slowly with Ef we can make another approximation
by associating the final state ψ f(t = 0) = ϕf(x) with free electrons which pos-
sess the kinetic energy in the m-th peak in the ATI spectrum. As a result of this
approximation all the ATI peaks have about the same width which is equal to the
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photo-induced resonance width �0. Moreover, since even for strong laser fields
and in particular when the system can ionize even by absorbing a single photon,
the dominant Fourier spatial component of the resonance quasi-energy state

∣∣�m
0 )

is the one associated with the m-th Floquet channel. Moreover, (ϕm±n,0
∣∣ϕm±n,0)

increases with n. Bearing in mind that the integral in the numerator is dominated
by the lowest m-th Fourier components of [V]m,0, then the typical situation where
|ϕm,0) is the dominant spatial Fourier component of the QE resonance state explains
why usually (but not necessarily always) the height of the ATI peaks decreases as
m increases.

It is possible to associate the nominator in Eq. (8.221) with the amplitudes of the
partial widths γn,0, where |γm,0|2 = �m,0 are the partial widths which sum up to the
photo-induced resonance width�0. The ratio of�m,0/�0 provides the probability of
ionizing the atomic or molecular system by absorbingm-photons. The replacement
of
∣∣(�m

0 |V|ψ f(t = 0))
∣∣2 in Eq. (8.221) by�m,0 is justified by carrying out an analyt-

ical continuation of the momentum of the final state appearing in the nominator to
the complex momentum space, h̄k = √

2µEf → √
2µ(Ef − (i/2)�0). By this ana-

lytical continuation, which is similar to the derivation of the Lippmann–Schwinger
equation in Section 9.1, one gets that∣∣(�m

0 |V|ψ f(t = 0))
∣∣2 = ∣∣(�m

0 |ĤF − Ĥfinal
F |ψ f(t = 0))

∣∣2. (8.222)

Since |ψ f(t = 0)) is an eigenfunction of Ĥfinal
F , and |�m

0 ) is an eigenfunction of
ĤF, and since both of them are associated with the same complex eigenvalue
Ef − (i/2)�0, where Ef = h̄ωLm− |ε0|,∣∣∣∣ h̄2

2µ
W [ψ f(t = 0),�m

0 ]

∣∣∣∣2 = h̄�m,0/2 , (8.223)

whereW stands for the Wronskian defined by

W [g, f ] = gdf

dx
− f dg

dx
. (8.224)

The result of �m,0/2 in Eq. (8.223) is due to the fact that the Coulombic potential
is symmetric and therefore electrons can equally ionize to the +|Re(x)| direction
and the −|Re(x)| direction. By substituting Eq. (8.223) into Eq. (8.221) one gets a
simple approximate expression for the ATI spectra:

P (Ef) � |S0|2
∑
m

h̄�m,0/2

|Ef − (h̄ωLm− |ε0|) + (i/2)�0|2 . (8.225)

The ratio between the maximum heights of them-th peak and them′-th ATI peak is
the branching ratio �m,0/�m′,0. Since

∑
m �m,0 = �0 it is clear that as �0 → 0 the
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widths of the ATI peaks reduces to zero while the heights of the ATI peaks depend
on the ratios between the partial widths and the total width.

Note that since the resonance position is slightly below the ground bound state
energy of the field-free system, as θ → 0 the resonance state is rotated backward
to the real axis. That is, ε0 = Eb −�, where � is the shift of the resonance
position from the ground bound state energy of the field-free system. Therefore,
the maximum of the Lorenzian ATI peaks are at the resonance positions which are
red shifts with respect to the bound state energy of the field free Hamiltonian.

8.4 Solutions to the exercises

Answer to Exercise 8.1

A potential V that consists of two potential barriers separated by a potential well
supports shape-type resonances which are localized inside the potential well and
decay through the potential barriers. Let us denote the resonance complex “energy”
by Eres

n = εn − i/2�n, where n = 1, 2, . . . are ordered according to their energy
position εn. When the barriers are sufficiently large the resonances which lie deep
below the top of the barriers are narrow and isolated and consequently |εn −
εn±1| � �n. In one-dimensional problems with two potential barriers separated by
a potential well there are two open channels to decay. One open channel to decay is
tunneling through the left potential barrier where the second open channel to decay
is tunneling out through the right potential barrier. In two- and three-dimensional
problems there are more open channels to decay.

Let us denote the partial widths associated with the rate of decay through two
possible open channels as �n,i = |γ res

n,i |2 and �n,j = |γ res
n,j |2. In 1D problems �n =

�n,i + �n,j , whereas in 2D and 3D problems �n < �n,i + �n,j . When the mean
energy of the particles which are scattered from the potentialV is equal to one of the
resonance positions, e.g., E = εn0 , and the standard deviation of the energy of the
incoming particles is less than �n0 , the transition probability through the potential
V is controlled by the single resonance tunneling mechanism and the transition
probability amplitude in Eq. (8.41). Following Eqs. (8.41)–(8.61) the transition
probability from the initial (i = initial) to the final (f = final) state through a
resonance state then is given by

Ti→f =
∣∣∣∣γn0,iγn0,f

+i�n0/2

∣∣∣∣2 = 4�n0,i�n0,f

�2
n0

. (8.226)

Without loss of generality we now proceed to discuss here the situation of a 1D
problem where there are only two open channels to decay and therefore

�n0 = �n0,i + �n0,f . (8.227)



310 Non-Hermitian scattering theory

By substituting Eq. (8.227) into Eq. (8.226) one gets that the transition probability
on resonance is equal to

Ti→f = 4

2 + R−1 + R , (8.228)

where R is the branching ratio given by

R = �n0,f

�n0,i
. (8.229)

When the two partial widths are equal (e.g., when the two potential barriers are
identical) then the branching ratio is equal to one and Ti→f = 1. It is obvious that
when there are more than two open channels, as in the 2D and 3D cases, the
transmission is smaller than unity since the sum of the two partial widths is smaller
than the total width.

Answer to Exercise 8.2

Let us define� = φ + χ and use the fact that� is an eigenfunction of Ĥ = Ĥ0 + V̂
and φ is eigenfunction of Ĥ0. This leads to the following results:

[Ĥ0 + V̂ ](φ + χ ) = E(φ + χ ) ,

[Ĥ0 − E]φ + V̂ φ + [Ĥ0 + V̂ ]χ = Eχ ,
V̂ φ + [Ĥ0 + V̂ ]χ = Eχ ,
(E − Ĥ )χ = V̂ φ ,
χ = Ĝ(E)V̂ φ ,

ψ = φ + χ = [1 + Ĝ(E)V̂ ]φ . (8.230)

For a given Ĥ0 and Ĥ it might happen that ψ and φ are associated with the
same eigenvalue. For example, by adding a constant to Ĥ we can always shift the
spectrum of Ĥ such that at least one of the discrete eigenvalues will be equal to
a discrete eigenvalue of Ĥ0. However, it is very unlikely that the constant is equal
to zero for our original Hamiltonians. The use of the Gel’fand–Levitan equation
makes possible an easy evaluation of a perturbation V such that two different
Hamiltonians support the same discrete energy spectrum.15 For example, when

V = −2
d2

dx2
ln

(
1 −

∫ x

−∞
ψ2
n (z)dz

)
(8.231)

15 I. M. Gel’fand and B. M. Levitan, Am. Math. Soc. Transl. 1, 253 (1951).
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Ĥ0 will have the same energy spectrum of Ĥ except for one eigenvalue of Ĥ which
is associated with ψn. For the use of this method to “remove” one resonance state
from the original spectrum see Moiseyev and Goscinski.16 This example shows
how special the perturbation should be in order for two different Hamiltonians to
share the same discrete spectrum. Only when bothψ and φ are continuum functions
is it possible to satisfy the condition that Ĥ0φ = Eφ and Ĥ� = E� for the most
general case.

Answer to Exercise 8.3

The eigenfunctions and eigenvalues of Ĥ f are defined in Eq. (8.95). Here we omit
the index n = 0 to simplify the notation. The time-dependent wavepacket which
propagates onto the final potential energy surface of the molecular ion is expanded
in the basis set of the eigenfunctions of Ĥ f + Ekin,

ξ f(R, t) =
∑
α

Cα0 (t)e
−i(εf

α0
+Ekin)t/h̄

χ f
α0

(R) , (8.232)

where (χ f
α|χ f

α0
) = δα,α0 and Cα0 (0) = 0 satisfies the initial condition. Therefore,

σ (Ekin) = lim
t→∞(ξ f(t)|ξ f(t)) =

∑
α0

|Cα0 (∞)|2 . (8.233)

By substituting Eq. (8.232) and Eq. (8.98) into Eq. (8.99) and multiplying from the
left by (χ f

α0
|, one gets

∂Cα0 (t)

∂t
= i(χ f

α0
|
√
�(R)|e+i(Ekin+Ef

α0
−Ĥ #)t/h̄

ξ #(0)) . (8.234)

Using the c-product, the orthonormal eigenfunctions of Ĥ # form a complete set.
That is, ∑

α

|χ#
α)(χ#

α | = 1 . (8.235)

The self-orthogonality phenomenon is excluded here since it is an ill-condition
situation which can be removed in numerical calculations due to the infinitesi-
mally small round-off errors when Ĥ # is represented by a finite matrix. By using
Eq. (8.235) the time evolution operator is described as

e+i(Ekin+Ef
α0

−Ĥ #)t/h̄ =
∑
α

e+i(Ekin+εf
α0

−ε#
α)t/h̄|χ#

α)(χ#
α | (8.236)

16 N. Moiseyev and O. Goscinski, Chem. Phys. Lett. 120, 520 (1985).
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and consequently,

∂Cα0 (t)

∂t
= i
∑
α

(χ f
α0

|
√
�(R)|χ#

α)(χ#
α |ξ #(0))e+i(Ekin+εf

α0
−ε#

α)t/h̄
. (8.237)

By integrating over time (while keeping in mind that εf
α0

is real and Im[ε#
α] < 0 and

the initial condition of Cα(0) = 0) one gets that

Cα(∞) =
∑
α

(χ f
α0

|√�(R)|χ#
α)(χ#

α |ξ #(0))

Ekin + εf
α0

− ε#
α

. (8.238)

By substituting Eq. (8.238) in Eq. (8.233) one gets the same expression as obtained
from non-Hermitian scattering theory which is given in Eq. (8.93).

Answer to Exercise 8.4

The field-free (FF) electronic eigenfunctions are denoted here by |ψj ). The associ-
ated eigenvalues are EFF

j . The t ′ periodic basis functions are denoted by |n), where

(t ′|n) = (1/T ) eiωnt ′ . The basis functions of the full problem are thus denoted by
|j, n), where j = 1, . . . , NFF, n = 0,±1,±2, . . . ,±(Nf − 1)/2 and the number
of the Fourier channels of the field is Nf ≥ 3. The notation ([. . .]) stands for the
calculation of the scalar product (when the field-free Hamiltonian is an unscaled
Hermitian operator) where the integration is over the electronic coordinates and
over the the t ′ coordinate (from t ′ = 0 to t ′ = T ). When the field-free Hamiltonian
is complex-scaled then one should use the c-product rather than the scalar product
for the integration over the spatial coordinates, while there is no effect in the inte-
gration over the t ′ coordinate. For the sake of simplicity we assume here that the
spatial basis functions are the eigenfunctions of the complex scaled non-Hermitian
Hamiltonian and therefore the c-product is used in the calculations of the Floquet
Hamiltonian matrix. Note that in order to further simplify the notation here we
assume that the eigenfunctions of the field-free non-Hermitian Hamiltonian, Ĥ θ

S ,
are complex functions only due to the complex similarity transformation which has
been used for the construction of Ĥ θ

S . Here we assume that the electronic coordi-
nates were scaled by eiθ . The elements of the Floquet matrix are given accordingly
by

HF(jn, j ′n′) = 1

T

∫ T

0
dt ′e−iωLnt

′
(ψj | − ih̄∂t ′ + Ĥ θ

S + V̂θ (t ′)|ψj ′)e+iωLn
′t ′

= [EFF
j + h̄ωL]δn,n′δj,j ′ + 1

T

∫ T

0
dt ′e+iωL(n′−n)t ′(ψj |V̂θ (t ′)|ψj ′)

(8.239)
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The eigenvalues EFF
j are real for the energies which are associated with the bound

states of the field-free complex-scaled Hamiltonian. On the other hand the eigen-
values are complex θ -independent values for the shape or Feshbach resonances
of the field-free system (e.g., auto-ionization or Auger or ICD resonances), and
complex θ -dependent eigenvalues which are associated with the rotated continua.
The rotated continua become discrete due to the use of a finite number of field-free
basis functions.

For a cw linearly polarized laser

V̂θ (t
′) = eε0eiθ

∑
i

xelec
i cos(ωLt

′) (8.240)

and therefore

Hθ
F(jn, j ′n′) = [EFF

j + h̄ωL]δn,n′δj,j ′ + ε0

2
dj,j ′δn±1,n′ , (8.241)

where the electronic dipole transition matrix elements are given by

dj,j ′ = eiθ (ψj |e
∑
i

xelec
i |ψj ′) . (8.242)

The complex non-unitary time evolution operator Û (t ← 0) is defined as

Û (t ← 0) =
∑
j,j ′

∑
n,n′

|j, n)(j, n|e−iĤFt/h̄|j ′, n′)(j ′, n′|

=
∑
j,j ′

∑
n,n′

[e−iHθ
Ft/h̄]jn,j ′n′ |j, n)(j ′, n′| . (8.243)

Since the initial state is a time-independent function we may choose it to be also
a t ′-independent function for which the only non-vanishing Fourier component
is associated with the n′ = 0 Fourier component. Therefore the time evolution
operator can be rewritten as

Û (t ← 0) =
∑
n

∑
j,j ′

[e−iHθ
Ft/h̄]jn,j ′0|j, n)(j ′, 0| . (8.244)

By using the field-free eigenfunctions of the complex-scaled non-Hermitian Hamil-
tonian as a basis set, the eigenfunctions of the time evolution complex scaled non-
Hermitian Floquet operator at t = nT , where n = 0, 1, . . . , are associated with the
eigenvectors of the time-evolution matrix U(T ← 0) which can be decomposed to
many small time steps dt :

U(T ← 0) = U(T ← T − dt)U(T − dt ← T − 2dt) . . .U(2dt ← dt)U(dt ← 0),
(8.245)
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where T = Ntdt and Nt is the number of time steps during the propagation from
t = 0 to t = T . The dimension of the complex time-evolution matrix isNFF ×NFF,
whereNFF is the number of eigenfunctions of the complex scaled field-free Hamil-
tonian which have been used as a basis set in our calculations. Note that for
molecules we may not use the complex scaling transformation but must apply the
smooth-exterior-scaling (SES) transformation instead since the attraction Coulom-
bic potential energy of an electron j and a nuclei α is inversely proportional to
|rj − Rα|, which is not a dilation analytic function and complex scaling is not
applicable. However, by using the SES transformation or the exterior scaling trans-
formation, as described in Chapter 5, the transformation into the complex coordi-
nate plane takes place when the electron–nuclei attractive potential term attains a
sufficiently small value which within the accuracy of the numerical calculations
can be regarded as zero. The propagator for a short time interval is calculated by

[U(t0 + dt ← t0)]j,j ′ =
∑
n,n′

e+iωLn(t0+dt)[e−iHθ
Fdt/h̄]jn,j ′n′e−iωLn

′t ′δn′,0

=
∑
n

e−iωLn(t0+dt)[e−iHθ
Fdt/h̄]jn,j ′0 , (8.246)

where t0 = kdt and k = 0, 1, 2, . . . , (Nt − 1). Here we use the fact that within
the framework of the (t, t ′) formalism the Floquet operator is t-independent (t ′

serves as additional coordinate) and therefore the time evolution operator has an
analytical expression just like the time-independent Hamiltonian. We see that the
evolution relies on the matrix A = [e−iHθ

Fdt/h̄] which has dimensions which depend
on the number of eigenfunctions of the field-free Hamiltonian that are used as a
basis set and the number of Fourier channels accounted for. For small values of dt
the matrix A = [e−iHθ

Fdt/h̄] can be calculated using a Taylor series expansion. For
a sufficiently small value of dt an expansion up to the linear term will be enough
and thus A � 1 − iHθ

Fdt/h̄. In the case of linearly polarized light the Floquet
Hamiltonian matrix is a tridiagonal matrix and therefore

[A]jn,j ′0 = [1 − idt(EFF
j /h̄+ ωL)]δn,0δj ′,j + ε0

2
dj ′,j δn,±1 (8.247)

and it is sufficient to construct the Floquet Hamiltonian matrix from just three
Fourier basis functions e−ωLnt

′
; n = −1, 0,+1 even for a very strong laser field.

This is quite a surprising result. For strong laser fields the photo-ionized (dis-
sociated) resonance positions (energies) and widths (inverse lifetimes) can be
obtained from a direct diagonalization of the complex scaled Floquet matrix Hθ

F

only when a very large number of Fourier components is used (i.e., eiωLnt
′
; n =

0,±1,±2, . . . ,±(Nf − 1)/2, whereNf should become very large). See, for exam-
ple, the results presented in Fig. 8.2 which were obtained from the diagonalization
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Figure 8.2 The real (energy) vs. the imaginary (inverse lifetime) parts of the
eigenvalues of the complex scaled Floquet matrix which has been calculated for a
1D model Hamiltonian of xenon (a Gaussian potential that supports three bound
states where the two lowest ones provide respectively the ionization energies of
xenon in its ground and first excited electronic states) which interacts with a linear
polarized laser field. All quantities are given in au.

of the complex scaled Floquet matrix for a 1D model Hamiltonian of xenon in a
strong laser field.

The resonances are associated with cusps in the θ -trajectory calculations and
become less and less affected by the rotational angle as the basis set approaches
completeness. The resonances appear as isolated points in the complex energy
plane. The non-resonance solutions are the rotated continua that are affected by θ .
As the basis set is increased the solutions which are associated with the continua
become more dense since the continuous spectrum is discretizised by the use of
a finite number of basis functions. As the basis set is increased the eigenvalues
of the complex Floquet Hamiltonian matrix which are associated with the rotated
continuum fall onto straight lines with a slope of tan 2θ . The same results where
obtained by a much smaller computational effort by the diagonalization of the
time-evolution complex matrix (the relations between the complex eigenvalues
of the complex scaled Floquet matrix and the eigenvalues of the complex scaled
time-evolution matrix are presented in Eq. (8.110). The reason for the reduction
of the computational efforts when we diagonalize the complex time-evolution
matrix rather than the complex Floquet matrix is as follows: although only three
t ′-Fourier basis functions might be sufficient for the construction of A and of



316 Non-Hermitian scattering theory

[U(t0 + dt ← t0)] the construction of the full time-evolution matrix [U(T ← 0)]
is by using 3Nt Fourier basis set. Specifically, in every time step of propagation
from t to t + dt we use only three Fourier basis functions, but due to Eq. (8.245)
the number of Fourier basis functions which construct the propagated function is
3Nt , and this is the “secret” which stands behind the astonishing ability of the
(t, t ′) method to calculate very accurately the photo-induced resonance positions
and widths from the diagonalization of [U(T ← 0)] despite of the fact that the
Floquet matrix has been constructed from three t ′-Fourier basis functions only.

Answer to Exercise 8.5

(1) An electric field of a linearly polarized cw laser is given by

E(t) = e
N∑
j=1

xjε0 cosωLt , (8.248)

where ε0 is the maximum field amplitude, ωL is the laser frequency, e is the charge
of an electron and {xj } are the x-components of the vector positions of the N
electrons in the system. Therefore, the complex scaled Floquet operator in the
acceleration gauge is given by

Ĥac({rj }, t ; θ ) = −ih̄∂t − e−2iθTe + V̂eN({eiθr j + α0 cosωLtex}) + e−iθ V̂ee .

(8.249)

Here {rj } represent the coordinates of all electrons, where j = 1, 2, . . . , N . T̂e

is the unscaled kinetic energy operator of all the electrons, V̂eN is the complex
scaled electron–nuclei attractive Coulombic potential term in the acceleration rep-
resentation and V̂ee is the unscaled electron–electron repulsion term between all
electrons. α0 = eε0/(µω2

L) is the free-electron quiver motion amplitude and ex is
a unit vector along the polarization axis. The n-th order of the resonance quasi-
energies (eigenvalues of Ĥac) can be evaluated using time-independent perturbation
theory (extended to the non-Hermitian case) when time is treated as a additional
coordinate. The zero-order complex scaled Floquet operator in this case is defined
by

Ĥ(0)
ac ({rj }; θ ) = −ih̄∂t + e−2iθ T̂e + V ac

0 ({rj }; θ ) + e−iθ V̂ee , (8.250)

where V ac
0 is the temporal average over one optical cycle of the electron–nuclei

potential energy operator,

V ac
0 ({rj }; θ ) = 1

T

∫ T

0
dt V̂eN({eiθrj + α0 cosωLtex}) . (8.251)
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This leaves the rest of the potential as a time-dependent perturbation given by

V̂ ac
pert({rj }, t ; θ ) = V̂eN({eiθ r j + α0 cosωLtex}) − V ac

0 ({rj }; θ )

=
∑
m 	=0

V ac
m ({rj }; θ )eimωLt , (8.252)

where

V ac
m ({rj }; θ ) = 1

T

∫ T

0
dte−imωLt V̂eN({eiθrj + α0 cosωLtex}) . (8.253)

Note that the zeroth Fourier component is subtracted from the perturbation since
it is included in the zero-order Hamiltonian. The zero-order photo-induced reso-
nance positions and widths are associated with the θ -independent eigenvalues of
Ĥ(0)

ac ({rj }, t ; θ ),

Ĥ(0)
ac [eiωLnt�

(0)
j ({rj }; θ )] =

[
(ε(0)
j + h̄ωLn) − i

2
�

(0)
j

]
[eiωLnt�

(0)
j ({rj }; θ )] .

(8.254)

It is important to notice that �(0)
j ({rj }; θ ), where j = 1, 2, . . . , N , are the time-

independent eigenfunctions of the time-independent operator,

Ĥ (0)
ac ({rj }; θ ) = e−2iθ T̂e + V ac

0 ({rj }; θ ) + e−iθ V̂ee , (8.255)

which satisfy

Ĥ (0)
ac �

(0)
j ({rj }; θ ) =

[
ε

(0)
j − i

2
�

(0)
j

]
�

(0)
j ({rj }; θ ) . (8.256)

The zero-order photo-induced resonance positions and widths depend only on one
field parameter, α0, which is the free-electron quiver motion amplitude.

The first-order corrections to the resonance quasi-energies eigenvalues of the
complex scaled Floquet operator vanish because of the integration over the addi-
tional “time” coordinate,

ε
(1)
j − i

2
�

(1)
j = 1

T

∫ T

0
dt
∫ N∏

j=1

drj�
(0)
j ({rj }; θ )V̂ ac

pert({rj }, t ; θ )�(0)
j ({rj }; θ )

=
∑
m 	=0

[ 1

T

∫ T

0
dt eimωLt

] ∫ N∏
j=1

drj [�
(0)
j ({rj }; θ )]2V ac

m ({rj }; θ )

=
∑
m 	=0

[ 1

T

∫ T

0
dteimωLt

]
(�(0)

j (θ )|V ac
m (θ )|�(0)

j (θ )) = 0 , (8.257)
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since [ 1
T

∫ T
0 dteimωLt ] = 0 for m 	= 0. Note that in the integration over space we

have used here the c-product. The second-order corrections to the resonance quasi-
energies for a many-electron system are given by

ε
(2)
j − i

2
�

(2)
j =

∑
m 	=0

∑
k

((�(0)-res
k (θ )|V ac

m (θ )|�(0)-res
j (θ )))2

[ε(0)
j − i

2�
(0)
j ] − [ε(0)

k + h̄ωLm− i
2�

(0)
k ]
. (8.258)

(2) The Gilary–Moiseyev (GM) transformation implies that the eigenfunctions of
the complex scaled Floquet operator in the acceleration gauge can be written as

�res
j ({rj }, t ; θ ) = e

i
h̄

∫ t
0 dt ′V̂ ac

pert({rj };θ)χ res
j ({rj }; θ ) . (8.259)

By substituting Eq. (8.259) into

Ĥac�res
j ({rj }, t ; θ ) =

[
εj − i

2
�j

]
�res
j ({rj }; θ ) , (8.260)

where Ĥac is defined in Eq. (8.249) one gets that the transformed square integrable
resonance wavefunctions, χ res

j ({rj }; θ ), are eigenfunctions of the transformed com-
plex scaled Floquet operator,

ĤGM = Ĥ(0)
ac + V̂ GM

pert , (8.261)

where

V̂ GM
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∑
n 	=0
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j=1

∂
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(8.262)

andfn({rj }; θ ), wheren = ±1,±2, . . . , are the Fourier components of the complex
scaled force:

fn({rj }; θ ) = −e−iθ
N∑
j=1

∂

∂xj
V ac
n ({rj }; θ ) . (8.263)
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9

The self-orthogonality phenomenon

In the standard (Hermitian) formalism of quantum mechanics, usually when a
potential parameter is varied the crossing of energy levels with the same symmetry
is avoided. However, within the framework of the non-Hermitian formalism it is
possible that two (or even more) complex eigenvalues with the same symmetry will
cross. At the crossing point the eigenvalues are degenerate and this is accompanied
by the coalescence of the eigenfunctions (or eigenvectors). Therefore, we may
term this special situation as a non-Hermitian degeneracy. This special situation is
associated with a branch point in the complex energy plane which is commonly
termed an “exceptional point” in the spectrum of the non-Hermitian Hamiltonian.
With respect to the c-product defined for non-Hermitian operators (matrices) in
Chapter 6, the degenerate eigenstate is self-orthogonal. Since a branch point in the
spectrum is removed by any infinitesimally small external perturbation, it seems to
be inaccessible experimentally and may be considered just as a mathematical object
rather than a physical one. However, as we will show here, by varying the potential
parameters the existence of a branch point is reflected in the measurement of the
geometrical phases also known as Berry phases. It should be stressed here that while
in our case the geometrical phase results from a coalescence of eigenfunctions of
a non-Hermitian Hamiltonian, the so-called Berry phase phenomenon occurs also
within the Hermitian formalism of quantum mechanics when the eigenvalues of the
molecular Hamiltonian in the Born–Oppenheimer approximation are degenerate
for specific geometry of the poly-atomic molecule.1 Moreover, sufficiently close to
the branch point the eigenfunctions of the coalescing eigenvalues are nearly self-
orthogonal. By normalizing these nearly degenerate states to unity the amplitudes
of the wavefunction might attain enormously large values. This is due to the use of
the c-product rather than the scalar product as in the standard formalism of quantum

1 See, for example, W. Domcke, D. R. Yarkony and H. Koppel, Conical Intersections: Electronic Structure,
Dynamics and Spectroscopy, Singapore, World Scientific, 2004.
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mechanics. Of course, in the cases when the potentials are complex, as, for example,
when the scalar Maxwell equation is solved in the paraxial approximation for a light
beam that is propagated in a wave guide with complex index of refraction, it is a must
to use the c-product, and the enormously large amplitude of the two modes which are
almost coalesced can be observed in principle in the lab, as we have first predicted.2

However, when the Hamiltonian is non-Hermitian only due to the requirement of the
eigenfunctions of the Hamiltonian to have outgoing asymptotes, then one may use
the conventional scalar product and not the c-product, and the normalized almost-
degenerate eigenfunctions (i.e., the functions that are almost coalesced) would not
get a very large amplitude. We advise the reader to read again Section 3.9 where we
describe the propagation of a wavepacket φ(x, t) such that for a certain period of
time (which is problem-dependent) in the interaction region −L ≤ x ≤ +L where
the potential is not equal to zero the propagated wavepacket can be described as
φ(x, t) � e−iErest/h̄ψres(x), whereEres and ψres(x) are correspondingly the complex
eigenvalue and eigenfunction of the unscaled Hamiltonian, which are obtained
under the requirement of an outgoing boundary condition (the so-called Siegert
boundary condition3). We should stress here that since the propagation is carried out
within the framework of the Hermitian formalism of quantum mechanics (although
often a complex absorbing potential is introduced in the non-interacting region in
order to simplify the numerical calculations) the time-dependent expectation values
of operators which are localized in the interaction region (e.g., the acceleration
operator −(1/m)dV/dx) are calculated by using the scalar product and not by the
c- or F-product as described in Chapter 6. Yet, regardless of the reason why the
Hamiltonian is non-Hermitian, the situation where two or more eigenfunctions of
a non-Hermitian Hamiltonian are coalesced can have a strong effect on measurable
quantities such as, for instance, the appearance of unexpected sharp peaks in the
cross section of scattering experiments.

9.1 The phenomenon of self-orthogonality

When we introduced the c-product in Chapter 6 we proved that any two non-
degenerate decay resonances are orthogonal provided we apply the proper trans-
formation which brings them into the generalized Hilbert space where they decay
asymptotically to zero. It is easy to extend this proof to the eigenstates of the non-
Hermitian time-dependent Hamiltonians (using Floquet for time-periodic problems
or the (t, t ′) method for general time-dependent problems). Specifically, for the

2 S. Klaiman, U. Gunther and N. Moiseyev, Phys. Rev. Lett. 101, 080402-4 (2008).
3 A. F. J. Siegert, Phys. Rev. 56, 750–752 (1939).
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eigenfunctions of the non-Hermitian Hamiltonian, e.g., �n and �m,(
�m|Ĥ |�n

) = (�n|Ĥ |�m
)

(9.1)

and therefore when (En − Em) 	= 0,(
�m|�n 	=m

) = 0 . (9.2)

As we will show in this chapter, for very special parameters in the Hamiltonian
denoted by λ (e.g., mass or potential parameter) at least two of the orthogonal
eigenfunctions of the non-Hermitian Hamiltonian coalesce. For reasons which will
be clarified later we do not normalize these two functions to unity via the c-product.
Instead we choose some other normalization condition. For example, if we assign
the labels �1 and �2 to the two orthogonal eigenfunctions which coalesce when
λ = λbp where the label “bp” stands for a branch point, we can choose the condition
that |�1|2 = 1 and |�2|2 = 1 at the points where they attain their maximal values
(when the two functions are square integrable). When we vary λ inside a sphere with
a radius of ρ = |λbp| then the eigenfunctions vary analytically with the parameters
and therefore

lim
λ→λbp

[E1(λ) − E2(λ)] = 0 ,

lim
λ→λbp

[�1(r; λ) −�2(r; λ)] = 0 . (9.3)

At the coalescence point (a branch point in the complex energy plane)

�1(r; λbp) = �2(r; λbp) ≡ �bp(r) ,(
�bp|�bp

) = 0 . (9.4)

The eigenfunction�1(r; λbp) for which Eq. (9.4) is satisfied is referred to by us as
a self-orthogonal state. Often this coalescence phenomenon, which can occur only
in non-Hermitian quantum mechanics, is also termed an exceptional point (EP) in
the spectrum of the non-Hermitian Hamiltonian. We should re-emphasize here that
self-orthogonality (SO) and EPs are different names for the same phenomenon. The
term EP emphasizes the appearance of a branch point in the complex eigenvalue
(complex “energy”) plane where the spectrum becomes incomplete. The term SO
emphasizes the coalescence of two (or more) orthogonal eigenfunctions of the
non-Hermitian Hamiltonian such that Eq. (9.4) is satisfied.

An infinitesimal change in one of the parameters in the Hamiltonian will remove
this degeneracy and Eq. (9.4) will not be satisfied. However, when one gets suffi-
ciently close to the values of the parameters in the Hamiltonian for which Eq. (9.4)
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is satisfied then

(�1|�1) = ε1 ,

(�2|�2) = ε2 , (9.5)

where ε1 and ε2 vanish as λ→ λbp. Now we reach the point in our discussion where
we require the eigenfunctions of the non-Hermitian Hamiltonian to be square inte-
grable. We do so only when the non-Hermitian Hamiltonian has a complete spec-
trum and we are not at the situation where two (or more) eigenfunctions coalesce.
The normalization of the eigenfunctions (see Chapter 5) is necessary to the defini-
tion of the closure relations which we use, for example, in the spectral representation
of the Green’s operator. By normalizing the two almost degenerate functions,

�1(r; λ) = ε−1/2
1 �1(r; λ) ,

�2(r; λ) = ε−1/2
2 �2(r; λ) , (9.6)

then

(�1|�1) = 1 ,

(�2|�2) = 1 . (9.7)

It is clear from Eq. (9.6) that upon this kind of normalization the amplitudes of
the wavefunctions �1 and �2 become extremely large as the system’s parameters
approach the SO-EP situation. We will show in this chapter that this situation is
not rare. Moreover, it has dramatic effects on the experimental measurements that
so far have not been predicted by using the standard (Hermitian) formalism of
quantum mechanics.

9.1.1 The self-orthogonal eigenvectors of non-Hermitian matrices

In the case of Hermitian matrices the two eigenvalues can attain the same value by
varying the Hamiltonian parameters, but the corresponding eigenvectors are differ-
ent and orthogonal vectors. These two eigenvectors are referred to as degenerate
vectors. For Hermitian matrices degeneracy can occur only when the matrix can
be transformed to diagonal blocks which are decoupled from each other. Crossing
of two eigenvalues as a parameter in the Hamiltonian matrix is varied implies that
there is a “hidden” symmetry and at the crossing point the Hamiltonian splits to
decoupled subspaces. Note, however, that although the eigenvalue structures of Her-
mitian and non-Hermitian degeneracies are very different – conical (“diabolic”)
points versus branch points – the degree of accidentalness is exactly the same.
For real Hermitian matrices which are symmetric and for non-Hermitian matrices



9.1 The phenomenon of self-orthogonality 327

(symmetric or non-symmetric), two parameters are required to capture a degener-
acy. However, for complex Hermitian matrices (i.e., non-symmetric), three param-
eters are necessary.4

Exercise 9.1

The possible accidental crossing of two levels of the same symmetry is not excluded
by the non-crossing rule, as proved by von Neumann, Wigner, Teller, Longuet-Higgins
and others.5 However, this is a very rare phenomenon and unlikely event in Hermitian
quantum mechanics. As an illustrative example we can consider the following matrix:

H(x) =
 a (1 − a)/2 1/4

(1 − a)/2 x −(1 + a)/2
1/4 −(1 + a)/2 −a

 , (9.8)

where a = 1/
√

2. Solve for the eigenvalues of this matrix as a function of x and discuss
the following points.

1. At what value of x is a crossing of two eigenvalues obtained and what are the
corresponding eigenvalues, Ei ; i = 1, 2, 3 at the crossing point?

2. What is the behavior of |E3 − E2| as function of x?
3. What is the difference in the behavior of |E3(x) − E2(x)| when we change a slightly

to a = 1/
√

2.001?
4. Show that the crossing at a = 1/

√
2 is an accidental one due to a hidden symmetry

in the problem, and under a unitary transformation U the Hermitian Hamiltonian
matrix, H(x), shifted by 0.25 I, can be transformed to the matrix

M =
 0 1 0

1 0 0
0 0 1

 , (9.9)

which has eigenvalues −1, 1, 1. Here we wish to emphasize the fact that eigenvalue
crossing for a Hermitian matrix is an accidental phenomenon which is associated
with a hidden symmetry in the problem that is often hard to discover. Moreover, they
are usually symmetries in a merely formal sense, with no physical significance. See,
for example, the non-symmetric triangular billiards with degenerate eigenvalue.6

For the sake of clarity and before continuing the discussion for general finite
sized matrices we wish to give an illustrative simple example. In our example the
matrix is complex and symmetric since any matrix, including non-diagonalizable

4 M. V. Berry, Czech. J. Phys. 54 1039–1047 (2004).
5 J. von Neumann and E. P. Wigner, Z. Physik 30, 467 (1929); F. Hund, Z. Physik 40, 742 (1927); E. Teller,

J. Phys. Chem. 41, 109–116 (1937); H. C. Longuet-Higgins, Proc. R. Soc. Lond. Ser. A 344, 147–156 (1975).
6 M. V. Berry and M. Wilkinson, Proc. R. Soc. A 392, 15–43, (1984).
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matrices (e.g.,H11 = H22 = 0 ; H12 = 1; H21 = 0), can be transformed to be sym-
metric.7 Therefore, although we will discuss symmetric matrices in our examples
we do not restrict ourselves to symmetric matrices. On the definition of inner
products for symmetric and non-symmetric matrices see Chapter 6. It should be
mentioned here that for quantum problems where the Hamiltonian is non-Hermitian
when we impose outgoing boundary conditions and real and Hermitian otherwise
(i.e., when the eigenfunctions are in the Hilbert space), there is no physical motiva-
tion to represent the non-Hermitian operator (usually complex scaled as explained
in Chapter 5) by non-symmetric matrices. However, there are other cases where the
non-symmetric non-Hermitian matrices are important in applications. For example,
the Hamiltonian of an atom in a uniform magnetic field (leading to the so-called
Zeeman effect) is presented by a Hermitian complex matrix, i.e., HT = H∗. There-
fore, by studying the resonance phenomenon for atoms in electromagnetic fields one
of the complex scaling transformations presented in Chapter 5 is applied, yielding
a non-Hermitian non-symmetric matrix. Another example for a case where non-
symmetric non-Hermitian matrices are important is in optics of absorbing chiral
anisotropic crystals.8

Exercise 9.2

Calculate the Lanczos recursion vectors which transform a diagonalizableN ×N non-
symmetric matrix to a symmetric tri-diagonal matrix. A key point in the derivation
is that the eigenvalues of a tri-diagonal matrix T are the roots of a polynomial with
coefficients which depend only on Tn,n and on the product of the off-diagonal matrix
elements Tn,n+1Tn+1,n. Therefore, any tri-diagonal matrix where the product of the off-
diagonal matrix elements results in the same vector {βn = √Tn,n+1Tn+1,n}n=1,...,N−1

has the same eigenvalue spectrum.

Let us consider the complex symmetric 2 × 2 Hamiltonian matrix

H =
(

1 λ

λ −1

)
. (9.10)

The two eigenvalues of this matrix are given by

E± = ±
√

1 + λ2 . (9.11)

7 R. Santra, L. S. Cederbaum, Phys. Rep. 368, 1 (2002) and references therein.
8 M. V. Berry and M. R. Dennis, Proc. R. Soc. Lond. A 459, 1261–1292 (2003). For an early appreciation of

non-Hermitian phenomena associated with crystal singular axes see S. Pancharatnam, Proc. Ind. Natl. Sci.
Acad. 42, 86–109, (1955); and 235–248, (1955); M. V. Berry, Pancharatnam, virtuoso of the Poincaré sphere:
an appreciation, Current Sci. 67, 220–223 (1994).
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The corresponding eigenvectors are given by

c± =
(

λ
E±−1

1

)
. (9.12)

These two eigenvectors are orthogonal for any value of λ provided we use the
c-product,

cT
∓ · c± = ( λ

E∓−1 , 1) ·
(

λ
E±−1

1

)
= 0 . (9.13)

From Eq. (9.11) we get that the two eigenvalues converge when 1 + λ2 = 0. Specif-
ically, coalescence occurs for λ = ±i. Here λ is a branch point in the complex
λ-plane and therefore it is also denoted often by λbp.

From Eq. (9.12) one immediately gets that in our case the coalescence is not
only a coalescence of the eigenvalues but also a coalescence of the correspond-
ing eigenvectors. The two orthogonal vectors c± which are associated with two
eigenvalues E± coalesce at λ = ± i (i.e., the coalescence of the eigenvalues and
of the corresponding eigenvectors happens either when λ = i or when λ = −i).
This implies that, by definition, upon this kind of coalescence a self-orthogonal
eigenvector is obtained at a branch point,

Ebp ≡ E+(λ = ± i) = E−(λ = ± i) = 0 , (9.14)

and the corresponding eigenvector is equal to

cbp ≡ c+ = c− =
(∓ i

1

)
. (9.15)

The self-orthogonality can be easily verified,

cT
bp · cbp = ( ∓ i , 1 ) ·

(∓ i
1

)
= 0 . (9.16)

In numerical calculations, due to round off errors the eigenvectors are normalized
and the closure relations can always be satisfied. This implies that in numerical
calculations the zero value in Eq. (9.16) is replaced by a small number ε which
depends on the accuracy of the machine we use for the diagonalization. In order
to normalize the eigenvectors to unity, the components of the so-called defective
vectors associated with cbp are divided by

√
ε and thus get extremely large. This

is easily seen in our simple case of a 2 × 2 matrix. The two eigenvectors given in
Eq. (9.12) can be c-normalized. The normalized eigenvectors are given by

c± = ± 1√
2(λ2 + 1 − E±)

(
λ

E± − 1

)
. (9.17)
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From Eq. (9.17) one can see that when λ is at its critical value the two eigenvalues
merge into the value of E± = 0, and then the components of the normalized vector
c± get infinitely large. In numerical diagaonalization calculations two normalized
eigenvectors with extremely large components will be obtained. Specifically, the
coalescence of the eigenvectors when two degenerate eigenvalues are obtained
is reflected by two c-product normalized eigenvectors, cT

± · c± = 1, whereas the
conventional scalar product between these two vectors becomes extremely large,
cT∗
± · c± = 1/ε where ε → 0 as the accuracy of the calculation improves.

The self-orthogonality phenomenon occurs whenever there is no similarity trans-
formation which reduces a given non-Hermitian matrix to diagonal form, i.e., there
is no invertible matrix A which gives a diagonal matrix A−1HA. AnN ×N (N ≥ 2)
matrix which cannot be reduced to diagonal form must include at least one subma-
trix called a simple Jordan matrix of order r, where N ≥ r ≥ 2. Note that A−1HA
is the direct sum of the simple Jordan submatrices. A simple Jordan matrix of
order r > 1 is a matrix which is composed of 0 elements everywhere except for
the diagonal where all the elements have the same value λ and the super-diagonal
(second upper diagonal) where all the values are 1.9

Exercise 9.3

Show that by an appropriate similarity transformation of the complex symmetric matrix

H =
(

1 i
i −1

)
(9.18)

H can be reduced to a simple Jordan block.

The fact that self-orthogonality only occurs for specific parameters of a given
Hamiltonian might lead us to wonder whether it is an accidental phenomenon in
non-Hermitian quantum mechanics which is very specific to a limited number of
problems which are of no general interest? The answer to this question is negative.
If, for example, A and B are two Hermitian matrices which do not commute, i.e.,
[A , B] 	= 0, then the matrix H,

H = A + λB , (9.19)

has an incomplete spectrum for at least one critical value of λ for which as least
one self-orthogonal eigenvector (so-called defective eigenvector) is obtained.10 If
H stands for the complex symmetric matrix which represents the complex scaled
Hamiltonian, Ĥ (θ ), then A = Re[H(θ )] and B = Im[H(θ )].

9 J. H. Wilkinson,The Algebraic Eigenvalue Problem, Oxford, Oxford University Press, 1965.
10 For a proof see N. Moiseyev and S. Friedland, Phys. Rev. A 22, 618 (1980).
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The critical values ofλ for whichp ≥ 2 eigenvalues and also thep corresponding
eigenvectors merge (p = 2 in our studied problem), are branch points for these
eigenvalues. This implies that for these eigenvalues there is no Taylor expansion in
(λ− λbp) around the branch points, λbp. This is an important point which explains
the validity of perturbation theory in quantum mechanics within the framework of
the standard (Hermitian) formalism as well.

The Rayleigh–Schrödinger perturbation expansion of H in Eq. (9.19) con-
verges for λ < |λbp|. Here A serves as the zero-order self-adjoint Hamiltonian (i.e.
Hermitian Hamiltonian), λ is the perturbational strength parameters and B is the
perturbation. The radius of convergence is |λbp| where λbp is a branch point in the
complex λ plane which has the minimal distance to the origin at λ = 0 (i.e. |λbp|
has a minimal value among all branch points). Let us illustrate it for our model
problem, Eq. (9.10). The branch points are λbp = ± i. Therefore, the eigenvalues
of H can be expanded in the Taylor series expansion around λ = 0,

E±(λ) = ±
√

1 + λ2 = ±
[

1 + λ2

2
− λ4

8
+ λ6

32
+ · · ·

]
(9.20)

only inside a circle in the complex plane where |λ| < 1.
AlthoughE±(λ) = ±√

1 + λ2 do not have Taylor expansions around the branch
points λbp = ±i, it is possible to make algebraic expansions in (λ− λbp)1/2. In
the more general case when p eigenvalues Ej (λ), j = 1, . . . , p and eigenvectors
coalesce they can be expanded in (λ− λbp)1/p (the so-called Puiseux series):

Ej (λ) =
∞∑
k=0

αjk(λ− λbp)
k
p . (9.21)

In the case where λ∗
bp is also a branch point (such is the case of decay resonances

and capture resonances) then

Ej (λ) =
∞∑
k=0

αjk[(λ− λbp)(λ− λ∗
bp)]

k
p . (9.22)

In our model problem around λ = ± i Eq. (9.22) is immediately satisfied,

E±(λ) = ±
√

1 + λ2 = ±
√

(λ− i)(λ+ i) = ±[(λ− λbp)(λ− λ∗
bp)]1/2 . (9.23)

How can one find the branch points for an N ×N Hamiltonian matrix H in
Eq. (9.19)?
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We introduce here a method proposed by Byers Brown.11 In the neighborhood
of the branch point,

λbp = ρce
−iφc , (9.24)

the eigenvalue, Ej , of the matrix H can be expanded in the algebraic series of
Eq. (9.22). Let us concentrate on the leading term of this expansion (for the sake
of simplicity we omit the subscript “j” and denote the eigenvalue by E): when
|λ− λbp| gets sufficiently small while |λ| < |λbp|,

E(λ) = α1[(λ− λbp)(λ− λ∗
bp)]1/2 +W (λ) . (9.25)

On one hand, the singularity which determines the radius of convergence of the
Rayleigh–Schrödinger perturabtion theory,

E(λ) =
∑
n=0

λnE(n) , (9.26)

determines the behavior of the high-order perturbation eigenvalues, E(n). This
perturbational series expansion converges for values of λ for which |λ| < |λbp|. As
λ attains values which are closer to the critical value λbp the rate of the convergence
of the perturbational series expansion becomes slower and one should calculate
higher-order terms (i.e., n is large) in order to get converged result to a given
accuracy. On the other hand, when λ is close to the critical value λbp then

[(λ− λbp)(λ− λ∗
bp)]γ = [ρ2

c − 2λρc cosφc + λ2]γ

= ρ2γ
c

∑
n=0

(
λ

ρc

)n
C(−γ )
n (cosφc), |λ| < ρc , (9.27)

where the coefficients C(−γ )
n (cosφc) are the Gegenbauer (or ultraspherical) poly-

nomials and for γ = 1/2,

C(−1/2)
n (cosφc) = [Pn−2(cosφc) − Pn(cosφc)]/(2n− 1) , (9.28)

wherePn(cosφc) are Legendre polynomials. Therefore, for sufficiently large values
of n (under the assumption that the branch point results from the coalescence of
two eigenstates),

E(n) = [Pn−2(cosφc) − Pn(cosφc)]/[(2n− 1)ρn−1
c ] + R(n) , (9.29)

whereR(n) is a remainder term which we assume is negligible in the calculations of
the high-order perturbation eigenvalues. Now the Gegenbauer polynomials satisfy

11 W. Byers Brown, published in 1971 as a technical report of TCI-University of Wisconsin at Madison and
briefly described in N. Moiseyev and P. R. Certain, Mol. Phys. 37, 1621 (1979).
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a three-term recurrence relation for all values of γ :

C(−γ )
n (cosφc) = 2(n− 1 − γ ) cosφcC

(−γ )
n−1 (cosφc) − (n− 2 − 2γ )C(−γ )

n−2 (cosφc) ,
(9.30)

where C(−γ )
0 (cosφc) = 1 and polynomials of negative degree vanish. This three-

term recurrence relation reduces for γ = 1/2 to the recurrence relations of the
Legendre polynomials, and by putting them to use one gets that E(n) satisfy

ρ2
cE

(n) − 2ρc cosφc

(
1 − 3

2n

)
E(n−1) +

(
1 − 3

n

)
E(n−2) = 0 . (9.31)

Introducing the ratio between consecutive corrections,

rn ≡ E(n)

E(n−1)
, (9.32)

we solve Eq. (9.31) for cosφc(n→ ∞),

cosφc =
[

n

2n− 3

]
(ρcrn) +

[
n− 3

2n− 3

]
(ρcrn−1)−1 . (9.33)

Eliminating cosφc by substituting in this equation for two successive values of n
gives

ρ2
c = lim

n→∞
(n− 4)(2n− 3)r−1

n−2 − (n− 3)(2n− 5)r−1
n−1

n(2n− 5)rn − (n− 1)(2n− 3)rn−1
. (9.34)

If the three ratios rn, rn−1, rn−2 are consistent with this analysis, Eq. (9.34) will
be positive and lead to a real value of ρc. By substituting ρc back into Eq. (9.33) a
value for cosφc can be found, and should be in the range between −1 and +1.

Exercise 9.4

For a given Hamiltonian matrix H = H0 + λV, where H0 is a diagonal matrix with
valuesE(0)

k ; k = 1, . . . , N , calculate the values of the matrix elements of C(n) for which
the n-th order terms in the perturbation expansion of the eigenvalues are given for n ≥ 2
by E(n)

k = [V(C(n−1))
T
]k,k .

Exercise 9.5

Show that the Hamiltonian of an atom/molecule in a combination of strong and weak
linearly polarized laser pulses,

Ĥ (r, t) = Ĥsystem(r) + f (t)ex · r[ε0 cos(ω0t) + ε1 cos(ω1t)] , (9.35)
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can be represented by the Hamiltonian matrix as described in Section 2.2 with a real
value of εbp

1 when the intensity I0 = ε2
0 � ε2

1 . Here we assume that the duration time
of the laser pulse, f (t), is τ > N0T0, where T0 = 2π/ω0 and N0 is a large number of
optical cycles of the strong laser supported by the envelope of the laser pulse. Similarly,
τ > N1T1, where T1 = 2π/ω1 andN1 is the number of optical cycles of the weak laser
which is supported by f (t). Use the rotating wave approximation in order to derive
conditions under which two photo-induced resonance states can coalesce and a self-
orthogonal resonance state is obtained. The derivation will be simplified by the use of
the (t, t ′) formalism which was briefly presented in Chapter 4.

9.2 On self-orthogonality and the closure relations

The spectrum of an N ×N complex symmetric matrix H(λ) is complete when the
closure relation is satisfied. λ is a real or complex parameter and it is given that for
λ 	= λbp, N orthonormal eigenvectors are obtained,

H(λ)cj (λ) = Ejcj (λ) (9.36)

such that

[C(λ)CT(λ)]N×N =
N∑
j=1

|cj )(cj | = IN×N , (9.37)

where C(λ) = (c1(λ), c2(λ), . . . , cj (λ) . . . , cN (λ)) is the eigenvector matrix of
H(λ). At the critical value of λ = λbp the spectrum is not complete since at least two
linearly independent eigenvectors reduce to one. Let us assume that Nbp eigenvec-
tors of H(λ) coalesce at λ = λbp. The number of linearly independent eigenvectors
of the N ×N matrix H(λbp) is

M = N −Nbp , (9.38)

such that for the {ci=1,2,...,M} eigenvectors that are associated with the eigenvalues
{Ei(λbp)}i=1,...,M ,

(ci |ci) = ci(λbp)Tci(λbp) = 1 , (9.39)

while for the [M = N −Nbp] self-orthogonal eigenvector which is associated with
the eigenvalue Ebp,

(cM+1|cM+1) = [cM+1(λbp)]T[cM+1(λbp)] = 0 . (9.40)
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In order to emphasize the fact that cM+1(λbp) is a self-orthogonal vector we may
re-label it as

cbp(λbp) ≡ cM+1(λbp) . (9.41)

It is clear that for λ = λbp Eq. (9.37) is not satisfied and

C(λbp)CT(λbp) 	= IN×N . (9.42)

As we will show below, it is possible to construct the closure relations by adding
Nbp − 1 vectors {ci(λbp)}i=M+2,...,N to theM + 1 eigenvectors of H(λbp). Let us first
explain how these additionalNbp − 1 vectors can be computed and only afterwards
we will explain why these vectors enable the calculations of the closure relations.

The desired N vectors construct an N ×N matrix

BN×N = (c1(λbp), . . . , cM (λbp), cbp(λbp), cM+2(λbp), . . . , cN (λbp)) (9.43)

which can be used to decompose H(λbp) into two blocks, AM×M and JNbp×Nbp . The
first matrix is a diagonal matrix whereas the second matrix is non-diagonalizable.
That is,

BH(λbp)B−1 =
(

A 0
0 J

)
. (9.44)

The diagonal matrix A contains the eigenvalues of H while the non-diagonalizable
matrix J has only two non-zero diagonals. The main diagonal Ji,i = Ebp and the
elements on the upper-diagonal are equal to 1, Ji,i+1 = 1. The closure relations for
the whole N-dimensional space are given by

IN×N = B[BTB]−1BT = (c1, . . . , cN )U(c1, . . . , cN )T =
N∑

i,j=1

Ui,j |ci)(cj | .

(9.45)

Note that for the Hermitian case BT = B−1.
The question now is: how can we calculate the additional Nbp − 1 vectors

{cM+r (λbp)}r=2,...,Nbp? This can be done by solving the following linear set of equa-
tions:

[H(λbp) − EbpI]cM+2(λbp) = cbp(λbp) ,

[H(λbp) − EbpI]cM+3(λbp) = cM+2(λbp) ,

...

[H(λbp) − EbpI]cN−1(λbp) = cN (λbp) (9.46)
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such that all the Nbp vectors {cM+r (λbp)}r=1,...,Nbp are degenerate eigenvectors of
the same N ×N matrix,

[H(λbp) − EbpI]NbpcM+r (λbp) = 0 · cM+r (λbp) , (9.47)

where

r = 1, 2, . . . , Nbp . (9.48)

Note that for the block associated with the almost self-orthogonal vectors
limλ→λbp [H(λbp) − EbpI]Nbp = 0 and therefore we should multiply the [H(λbp) −
EbpI] matrices one by one by the vectors cM+r (λbp).

The orthonormal eigenvectors of H(λbp), denoted above as {ci=1,2,...,M}, are also
eigenvectors of the N ×N matrix [H(λbp) − EbpI]Nbp ,

[H(λbp) − EbpI]Nbpci(λbp) = [Ei − Ebp]Nbp · ci(λbp) , (9.49)

where

i = 1, 2, . . . , N . (9.50)

We show here that B = (c1(λbp), . . . , cN (λbp)) is an N ×N eigenvector matrix of
theN ×N matrix [H(λbp) − EbpI]Nbp . Since the non-degenerate eigenvectors of the
matrix are orthogonal it is clear that the additional vectors {cM+r (λbp)}r=2,...,Nbp are
orthogonal to {ci(λbp)}i=1,...,M . Therefore, if we prove that {cM+r (λbp)}r=2,...,Nbp are
linearly independent it implies that the spectrum of [H(λbp) − EbpI]Nbp is complete
while the spectrum of H(λbp) is not. The proof is simple. If cM+2 = αcbp then
from the first linear equation in Eq. (9.46) one gets the impossible result that
cbp = 0. So, cM+2 and cbp are two linearly independent vectors. Moreover, we can
conclude also that cM+2 is not an eigenvector of [H(λbp) − EbpI]. This conclusion
together with the second linear equation in Eq. (9.46) leads us to another conclusion
that cM+3 	= αcM+2. From similar arguments one can reach the conclusion that
indeed {cM+r (λbp)}r=2,...,Nbp are linearly independent and therefore one can use
the eigenvectors of [H(λbp) − EbpI]Nbp to construct the closure relations (identity
operator when the operator is represented by a finite matrix). On the basis of the
derivation given above the closure relations in theNbp-dimensional subspace of the
self-orthogonal vectors are given by

INbp×Nbp =
N∑

i=M+1

|ci+1(λbp))(ci(λbp)|
(ci+1(λbp)|ci(λbp))

. (9.51)
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For the case where two eigenstates coalesce as λ→ λbp it is easy to see that for
Nbp = 2,

INbp×Nbp = |cbp)(c∗
bp| + |c∗

bp)(cbp|
(c∗

bp|cbp)
(9.52)

since cbp is an eigenvector of a Hermitian matrix

H = (H(λbp) − EbpI)∗(H(λbp) − EbpI) (9.53)

and therefore the scalar product should be used. Specifically,

H|cbp) = 0|cbp) ,

(c∗
bp|H = 0(c∗

bp| . (9.54)

Exercise 9.6

(a) Show how the eigenvectors of the 2 × 2 matrix given in Eq. (9.10) which has an
incomplete spectrum when λ = i, can be used to construct the identity matrix I2×2.
(b) Similarly, show how the two linearly independent eigenvectors of the 3 × 3 matrix

H =
 6 i −1

i 5 2i
−1 2i 1

 (9.55)

can be used to construct the identity matrix I3×3.

It should be mentioned here that in numerical diagonalization calculations, due
to round-off errors, the eigenvectors obtained are only nearly degenerate and can
always be normalized to unity. Thus the spectrum of the matrix is always complete
and there is no need to use the special closure relations given in Eq. (9.46) even
when two or more eigenvectors coalesce. The same derivations and formulas which
are given above for the closure relations hold for operators and are not limited to
linear algebra where the operators are represented by finite matrices.

9.2.1 On self-orthogonality for complex potentials

Let us continue our discussion here by using a simple illustrative analytically
soluble problem of a particle in a one-dimensional box with lengthL, where within



338 The self-orthogonality phenomenon

the interval 0 < x < a, (a < L) a complex potential V0 is introduced. That is,

V (R) =

V0 = v0 − i� , 0 < R ≤ a ,

0 , a < R ≤ L ,
∞ , otherwise .

(9.56)

v0 and � are real parameters that model the electronic resonance’s position and
width. In this model the eigenvalues of the complex Hamiltonian are a function of
three parameters, Eν(a, v0, �).

This simple 1D model potential shows how the original n-th particle-in-a-box
wavefunction is deformed to be a self-orthogonal state when the complex V0

potential parameter is varied. We will show here how the values of V0 = v0 − i�
for which a self-orthogonal state is obtained vary with the potential parameter a.
It is a point of interest that this simple model problem can be associated with the
propagation of light in a waveguide with a complex index of refraction. Last but not
least, we will show here how the existence of a self-orthognal state effects different
measurable quantities.

In Chapter 3 we solved this problem for real V0. However, for the sake of
coherence we remind the reader that due to the continuity condition at x = a,

sin(ka) = A sin(q(a − L)) , (9.57)

and the flux continuity condition at x = a,

k cos(ka) = Aq cos(q(a − L)) , (9.58)

where

(h̄k)2

2M
= E − v0 + i� (9.59)

and

(h̄q)2

2M
= E . (9.60)

Let us prove that for given potential parameters a, L and v0, when we change
� from zero to ∞ then the spectrum of the one-dimensional particle in a box of
length L transforms to a linear combination of two independent spectra associated
with a particle in a box with length L− a and a particle in another box with length
a. That is, as � changes from 0 to ∞ then the energies

En = 1

2M

(
h̄nπ

L

)2

; n = 1, 2, . . . (9.61)



9.2 On self-orthogonality and the closure relations 339

0 5 10 15 20
−100

−80

−60

−40

−20

0

Re E

Im
 E

0 10 20
−3

−2

−1

0

Figure 9.1 The �-trajectory of the first four eigenvalues of the model potential
(solutions of Eq. (9.63)) with L = π/√2 and a = L/√3. Atomic units are used
throughout.

change to

En′,n′′ = 1

2M

(
h̄n′π
L− a

)2

+ 1

2M

(
h̄n′′π
a

)2

+ v0 − i� ; n′, n′′ = 1, 2, . . .

(9.62)

This can be easily shown by substituting Eqs. (9.59) and (9.60) into the following
transcendental equation:

q

k
tan(ka) = tan(q(a − L)) (9.63)

and taking the limit � → ∞, which yields the equality

e−iπ/4

√
E

�
tan(ka) = tan(q(a − L)) . (9.64)

As � → ∞ the left-hand side of Eq. (9.64) vanishes (assuming that ka 	=
π (n+ 1/2), where n = 0, 1, 2, . . .) and therefore tan(q(a − L)) = 0. Conse-
quently, q(L− a) = n′′π and En′ = (h̄q)2/(2M) = [(h̄n′)/(L− a)]2/[2M]. By
substituting this result into Eq. (9.57) one gets that sin(ka) = 0 and therefore
ka = n′′π . Consequently, En′′ = (h̄k)2/(2M) = (h̄n′′)2/(2Ma2) + v0 − i� and we
have the two contributions in Eq. (9.64).

Let us visualize this result by solving Eq. (9.63) for the case where a = L/√3
and v0 = 0. Figure 9.1 shows the changes in the complex eigenvalues with the
variation in � obtained for L = π/√2. For � = 0 the eigenvalues of our model
Hamiltonian are the energies of a particle in a box of size L. As � is increased the
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Figure 9.2 The �-trajectory of the first four eigenvalues of the model potential
(solutions of Eq. (9.63)) with L = π/√2 and a = L/2. Atomic units are used
throughout. The inset shows the formation of branch points as � is varied.

eigenvalues depart from the real axis and penetrate into the complex energy plane.
For sufficiently large values of � some of the eigenvalues form a loop and return to
the real axis, while others move almost tangentially to straight lines parallel to the
imaginary axis. In complete agreement with the analysis given above, in the limit of
� → ∞ the spectrum of our model Hamiltonian is a superposition of two spectra
where each of them is associated with a different problem. One spectra is that of
a Hamiltonian of a particle in a box of size a, which is shifted into the complex
energy plane by an imaginary constant −i�. The corresponding eigenfunctions are
given by

�n(x) = e−�t
h̄ e

− i
h̄

[
(h̄nπ )2

2Ma2 − v0

]
t
√

2

a
sin
(nπx
a

)
. (9.65)

The eigenfunctions have a nodal structure and their amplitudes decay to zero with
the same rate as time passes. The other spectrum is that of a particle in a box
of size L− a. Specifically, Em = (h̄mπ/(L− a))2/(2M) and the corresponding
eigenfunctions are stationary solutions given by

�m(x) = e
− i
h̄

[
(h̄mπ )2

2M(L−a)2

]
t
√

2

L− a sin

(
mπx

L− a
)
. (9.66)

In Fig. 9.2 we present the result of �-trajectory calculations for the case where
a = L/2 and v0 = 0. In this special case each pair of initial eigenvalues (obtained
for� = 0) associated with the quantum numbers (n, n+ 1), wheren = 1, 3, 5, . . . ,
coalesce in the complex energy plane as � is increased. Each pair of eigenstates
merges at a different critical value of �bp

(n,n+1). Each time � exceeds such a critical



9.2 On self-orthogonality and the closure relations 341

value a new pair of solutions is obtained. One of every pair of the new-born
eigenvalues returns to the real energy axis as � → ∞ whereas the other solution
approaches a complex value with the same real part and an imaginary part which
approaches −i�. In the more general case where a 	= L/2 branch points are not
obtained for v0 = 0 and only for very critical values of v0 (and �) the spectrum
become incomplete and two eigenvalues and their corresponding eigenfunctions
coalesce. The values of v0 = vbp

0 for which branch points are obtained due to the
coalescence of two eigenfunctions were calculated by using the method of Byers
Brown presented in the solution of Ex. 9.4 and in Section 9.1.1. Let us re-emphasize
that, as � → �bp,

‖E1 − E2‖ → 0 (9.67)

and also

‖�1(x) −�2(x)‖ → 0 , (9.68)

where E1 and E2 are the solutions of Eq. (9.63) obtained by using the definitions
for k and q as given respectively in Eqs. (9.59) and (9.60). The wavefunctions
�1(x) and �2(x) are obtained from Eq. (9.71).

In Fig. 9.3 we show how the two eigenfunctions change with the increase in �.
At the branch point the two orthogonal eigenfunctions become equal to one another
and they reduced to a single self-orthogonal state. We can use this property, i.e.,

(�bp|�bp) =
∫ L

0
dx�2(x;E = Ebp) = 0 , (9.69)

to derive a condition which must be satisfied at the branch points. By substituting
the eigenfunctions of our model Hamiltonian which are given by (see Chapter 3)

�(0 ≤ x < a) = sin(
√

2M(E − v0 + i�)x) ,

�(a ≤ x ≤ L) =
[

sin(
√

2M(E − v0 + i�)a)

sin(
√

2ME(a − L))

]
sin(

√
2ME(x − L)) (9.70)

into Eq. (9.69) and using the value of A2 given in Eq. (9.57), one gets that self-
orthogonal states which are associated with a branch point in the complex energy
plane are the solutions of the following equation:

(�bp|�bp)

=
[
L− a

2
− sin(2q(L− a))

4q

](
k

q

)2 ( cos2(ka)

cos2(q(L− a))

)
+ a

2
− sin(2ka)

4k
= 0 .

(9.71)
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Figure 9.3 The absolute value of the first two eigenfunctions of the model
potential, �1 (full line) and �2 (dashed line) as a function of � =
0, 1, 2, 3, 3.25, 3.5, 3.58, 3.6, 3.62 and 3.627. �bp = 3.627 586 692 482 452 . . .
Note how the functions start to resemble one another as � approaches �bp. Note
that as � → �bp, �1 → �2 and a self-orthogonal state is obtained (see how the
dashed and the full lines, which are very different when � � �bp, become almost
identical in the limit of � → �bp).

This equation can be simplified by taking the value of A2 from a combination of
Eq. (9.57) and Eq. (9.58) and substituting into Eq. (9.72), yielding the following
equation:

(�bp|�bp) = q2

[
1 − sinc(2ak)

sinc(2ak)

]
− k2

[
1 − sinc(2(L− a)q)

sinc(2(L− a)q)

]
= 0 , (9.72)

where sinc(ζ ) = sin(ζ )/ζ .
What kind of information can be obtained from the calculations of the branch

points in the complex energy plane? Below we list several consequences of the
self-orthogonality phenomenon.

9.3 Calculations of the radius of convergence of perturbational expansion
of the eigenvalues in V0

Although we have already briefly mentioned in this chapter the relevance of self-
orthogonality to the radius of convergence of the Taylor series expansion of a
given function, for the sake of coherence and clarity let us extend our discussion
on this subject. In the case that the eigenvalues and eigenfunctions of the full
problem are calculated by the Rayleigh–Schrödinger perturbation theory where
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V0 is the perturbational expansion parameter, the radius of convergence, Rc, is
the smallest value of the absolute value of V0(bp) at which branch points in the
complex energy plane are obtained. Note that this is also the radius of convergence
of perturbational expansion of the eigenvalues within the framework of standard
quantum mechanics when V0 is real and the Hamiltonian is Hermitian. The Taylor
expansions of the eigenvalues and eigenfunctions in V0 are converged for the
real and complex values of V0 which are inside a circle of radius Rc around
V0 = 0.

9.4 The effect of self-orthogonality on c-expectation values

The potential parameters of a non-Hermitian Hamiltonian are denoted by the vec-
tor λ. The square integrable eigenfunctions are associated with complex non-
degenerate eigenvalues. Without loss of generality we assume that the non-
Hermitian Hamiltonian is a complex scaled Hamiltonian and that the square inte-
grable non-degenerate eigenfunctions are the resonance wavefunctions,

Ĥθ (λ)|�j (λ)) = Ej (λ)|�j (λ)) ,

(�j ′(λ)|�j (λ)) = δj ′,j . (9.73)

The vector of potential parameters can include, for example, the laser parameters
(intensity and frequency) when the interaction with a laser field is taken into
consideration. In such a case Ĥθ (λ) stands for the complex scaled Floquet type
operator (one should used the (t, t ′) method when the laser field is not time-
periodic).

For specific values of the real potential parameters, λ = λbp, a branch point in
the complex energy plane is obtained where the two corresponding eigenfunctions
coalesce,

E1(λbp) = E2(λbp) ≡ Ebp ,

|�1(λ)) = |�2(λ)) ≡ |�bp) . (9.74)

The degeneracy of the two c-orthogonal functions implies that at the branch point
a self-c-orthogonal (SO) state is obtained,

(�bp|�bp) = 0 . (9.75)

We assume that the eigenfunctions of the Hermitian Hamiltonian Ĥθ=0 are real
and therefore for θ 	= 0 the c-product implies in this case that (�j ′(λ)|�j (λ)) =
〈[�j ′(λ)]∗|�j (λ)〉 and (�bp|�bp) = 〈[�bp]∗|�bp〉.
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By varying one of the potential parameters when all the others are held
fixed at λ = λbp, the degeneracy is removed from the spectrum and so is the
SO phenomenon. Being sufficiently close to the SO conditions (i.e., |(λ− λbp)/
λbp| � 1),

E1(λ) = Ebp + α√λ− λbp + β(λ− λbp) + · · ·
E2(λ) = Ebp − α√λ− λbp + β(λ− λbp) + · · · , (9.76)

where

|�1(λ)) = N1[ |�bp) +√λ− λbp |χ ) + (λ− λbp)|ξ ) + · · · ]

|�2(λ)) = N2[ |�bp) −√λ− λbp |χ ) + (λ− λbp)|ξ ) + · · · ] . (9.77)

It is important to realize that in the above algebraic expansion the coefficient α
and the function |χ ) are correspondingly a λ-independent parameter and function.
Let us give a graphic representation of the coalescence of the two almost degenerate
eigenvalues E1(λ) and E2(λ) defined in Eq. (9.76), assuming that the coefficient α
is complex. Sufficiently close to the branch point (the so-called exceptional point)
the two complex almost-degenerate eigenvalues are

E1(λ) � Ebp + α√λ− λbp ,

E2(λ) � Ebp − α√λ− λbp . (9.78)

Assuming that the coefficient α is complex and both λ and λbp are real parameters,
for a specific value of λ = λ0 which satisfies λ0 − λbp > 0 we get that E1(λ0) and
E2(λ0) are two points on a line in the complex energy plane where the branch point,
Ebp, lies on the mid-point (see Fig. 9.4). As λ is increased the two eigenvalues move
along the straight line towards the mid-pointEbp and at the value of λ = λbp the two
coalesce. When λ− λbp < 0 the coefficient α is multiplied by i = exp(iπ/2) and
therefore as λ is further reduced below λbp the two almost-degenerate eigenvalues
move along a line which is perpendicular to the previous line (see Fig. 9.4). We
now move to examine the behavior of the corresponding eigenfunctions. Since the
two almost-degenerate eigenfunctions are orthogonal,

(�1(λ))|�2(λ)) ∼= N1N2[ λ− λbp][(χ |χ ) + 2(�bp|ξ )] = 0 , (9.79)
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Figure 9.4 A schematic representation of the coalescence of two almost-
degenerate eigenvalues given in Eq. (9.78) as a real parameter in the Hamilto-
nian λ is varied. The full circles stand for E±(λ0) = λbp + δ, the open circles for
E±(λ0) = λbp − δ, where δ > 0, and the meeting-point of the arrows stands for
Ebp. Note that for a real or imaginary value of the coefficient α the two almost-
degenerate eigenvalues move along the two perpendicular lines such that for one of
them Re(E1(λ)) = Re(E2(λ)) whereas for the second line Im(E1(λ)) = Im(E2(λ)).

which implies that (χ |χ ) ∼= −2(�bp|ξ ). For sufficiently small values of |λ− λbp|
the complex normalization factors are chosen to be

N 2
1

∼= [2(λ− λbp)1/2(χ |�bp)]−1 ,

N 2
2 = −N 2

1 , (9.80)

such that

(�1(λ)|�1(λ)) = 1 ,

(�1(λ)|�1(λ)) = 1 . (9.81)

Therefore, as (λ− λbp) → 0, N1 = iN2 → ∞. As we will see later, this fact plays
an important role in the large sensitivity of expectation values (using the c-product)
to the potential parameters as the system approaches the SO conditions.

It is straightforward to see from Eq. (9.76)–(9.77) that the first derivatives of the
resonance energy and the resonance widths which are associated with the almost-
degenerate states�1(λ) and�2(λ) get infinitely large as λ→ λbp. It is of particular
interest to realize that sufficiently close to the SO conditions the decay rates of the
resonance �1 = −2Im(E1) and �2 = −2Im(E2) associated with these states will
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show contrasting cusp-like behavior with respect to variation in λ. �1 will exhibit
a sharp peak whereas �2 will show a dip near the branch point.

It is also clear that the c-product expectation value of a complex scaled operator
Ôθ which does not commute with the non-Hermitian Hamiltonian in one of the
almost SO states will be very large, such that

Ō1 = (�1(λ)|Ôθ |�1(λ))

(�1(λ)|�1(λ))
→ ∞ ,

Ō2 = (�2(λ)|Ôθ |�2(λ))

(�2(λ)|�2(λ))
→ ∞ (9.82)

as λ→ λbp.
The conclusion is that by adiabatically varying the potential parameters λ, one

can keep the system in one eigenstate and remain sufficiently close to the SO
situation such that the expectation values of any operator that does not commute
with the Hamiltonian will be very large. It implies, for example, that the standard
deviation of any property which is represented by such an operator would be
extremely large under these conditions. This means that one must vary the potential
parameters sufficiently slowly to maintain the propagated wavepacket at a large
overlap with one of the almost-SO states but almost orthogonal to the other SO
state. Of course, at the branch point the adiabatic approach breaks down regardless
of how slowly the potential parameters are varied.

Note, however, that although the resonance width has a finite value �bp =
−2Im(Ebp), when λ = λbp the first derivative of the resonance width, which is
obtained by adiabatically varying the potential parameters, is increased as one gets
closer the SO conditions since from Eq. (9.76) one gets that∣∣∣∣∂�1,2

∂λ

∣∣∣∣
λ=λbp

=
∣∣∣∣∣∂(�bp ∓ 2Im[α

√
λ− λbp])

∂λ

∣∣∣∣∣
λ=λbp

= ∞ . (9.83)

Here we vary only one real parameter λ out of many potential parameters
which are the components of λ, where all other parameters are held fixed at the
values at which the two eigenfunctions coalesce. This approach simplifies the
representation and the analysis of the effects of being near the SO situation on
measurable quantities.

Since near the branch point the two nearly degenerate states have similar wave-
functions, an important question is what the effect will be of the SO phenomenon
on measurable quantities when the system is prepared in a wavepacket that pop-
ulates both of them. That is, we what to see what happens if instead of popu-
lating one state we study a an initial complex scaled wavepacket, |�0), of the
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form:

|�0) =
∑
j=1

aj |�j (λ)) ,

aj = (�j (λ)|�0) . (9.84)

We use here the closure relation
∑
j=1 |�j (λ))(�j (λ)| which holds even when λ

is very close to λbp where the spectrum is incomplete. When the complex scaled
initial state is normalized to unity, (�0|�0) = 1, then

∑
j=1 a

2
j = 1 although both

a1 and a2 have very large complex values which increase as |λ− λbp| decreases.
Indeed, using Eqs. (9.76) and (9.80) one can see that

a2
1 + a2

2 = 2
(�bp|�0)(χ |�0)

(χ |�bp)
(9.85)

is a λ-independent parameter. With the help of Eq. (9.89) we see that the leading
term in the expansion of the expectation value of the mean energy of the wavepacket
(WP) in (λ− λbp) is given by

ĒWP(λ) = (�0|Ĥθ |�0) =
∑
j=1

(�j (λ)|�0)2Ej (λ)

� 2(�bp|�0)(χ |�0)

(χ |�bp)
Ebp + α(�bp|�0)2

(χ |�bp)
+ α(λ− λbp)(�bp|�0)2

(χ |�bp)

+
∑
j 	=1,	=2

(�j (λ)|�0)2Ej (λ) . (9.86)

Here Ĥθ stands for any non-Hermitian Hamiltonian and not necessarily for the
complex scaled Hamiltonian. Note that, even when the last term in Eq. (9.86) can
be neglected the third term in Eq. (9.86) is explicitly λ-dependent for any case
which is close to the SO situation, while the rest of the terms in the last expression
can be λ-independent. From Eq. (9.86) we conclude that the value of the complex
mean energy is not very sensitive to the value of the potential parameters even
when the system is very close to the SO situation. It is important to stress that here
we assume that the initial state �0 is λ-independent. The situation, of course, is
very different when �0 changes adiabatically with λ, as explained above.

The effect of the SO phenomenon on time-dependent measureable quantities. The
discussion below is restricted to the cases where the time-dependent Schrödinger
equation is solved for a complex potential (the situation where the physical potential
is real and complex absorbing potentials are introduced to simplify the numerical
calculations is excluded from this discussion).
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The evolution in time of the complex scaled initial wavepacket, �0, is given by

|�0(t)) =
∑
j=1

aje
−iEj (λ)t/h̄|�j (λ)) , (9.87)

where the coefficients {aj }j=1,2,... are given in Eq. (9.84). Using the F-product
formalism presented in Chapter 6 we can calculate the probability of observing
particles in the interaction region (in any finite volume in space) as a function of
time,

ρ(t) =
∣∣∣∣∣∣
∑
j=1

a2
j e

−�j t/h̄

∣∣∣∣∣∣ , (9.88)

where �j = −2Im(Ej ). When |λ− λbp| is sufficiently large such that the system is
far from the SO situation, then it is expected that the envelope of ρ(t) will decay to
zero, and when the initial WP mainly populates the longest living resonance state,
�1, then d[lnρ(t)]/dt � �1. As we will see below, the situation is very different
when |λ− λbp| is small so the system is very close to the SO situation. When λ
gets sufficiently close to λbp then E1 and E2 are two almost-degenerate states (see
Eq. (9.76)). Then �1 and �2 are orthonormal functions which have the form given
in Eq. (9.77). Using Eqs. (9.76) and (9.80) one can see that

a2
1e−�1t/h̄ + a2

2e−�2t/h̄

= F−(t)

[
(�bp|�0)2

2
√
λ− λbp(χ |�bp)

+ (λ− λbp)(χ |�0)2

2(χ |�bp)

]
+ F+(t)

(�bp|�0)(χ |�0)

(χ |�bp)
,

(9.89)

where

F±(t) = e−�bpt/h̄
[
e−Im(α

√
λ−λbp)t/h̄ ± e+Im(α

√
λ−λbp)t/h̄

]
. (9.90)

At t = 0 a [λ− λbp]-independent result as given in Eq. (9.89) is obtained. As
time passes more terms are involved in the dynamics and the dominant one is

(�bp|�0)2

2(χ |�bp)
√
λ− λbp

[
e−�1t/h̄ − e−�2t/h̄

]
. (9.91)

It is quite clear that as the system is closer to the SO situation, although
limt→∞ ρ(t) = 0 there is a time interval T1 < t < T2 for which

ρ(t) � ρ(t = 0) (9.92)

and therefore as time passes presumably more particles have been created than
initially introduced into the interaction region. How is it possible that when the
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system is close to the branch point the number of particles embedded inside the
interaction region is increased? The answer to this question depends on the answer
to another question. Are ρ(t) and |�j ) observable quantities? When the problem
we solve is the scalar Maxwell equation within the paraxial approximation, where
t in the time-dependent Schrödinger equation plays the role of the propagation axis
Z of light in a waveguide and the potential energy term plays the role of the square
of the spatial dependent index of refraction of the material, then ρ(t = Z) is the
power of the propagated light as function of Z. In such a case the 2 × 2 matrix

H =
(
ε − i 1

1 +i

)
(9.93)

(which is equal to the matrix which has an incomplete spectrum and is given in
Eq. (9.18) at time −i when ε = 0 in Eq. (9.93)) is a model Hamiltonian of two
coupled single-mode waveguides. One waveguide is constructed from a material
which absorbs the propagated light and the rate of the loss of light power is
+2 = −2Im(ε − i), whereas in the second waveguide there is a gain of power
of the propagated light beam with a rate which is equal to −2 = −2Im(+i). The
off-diagonal Hamiltonian matrix elements stand for the couplings between the two
optical modes. The calculations of ρ(t) for an initial vector (1, 1) will show that
for sufficiently small values of ε where two almost SO states are obtained one can
find a time interval T1 < t < T2 for which ρ(t = Z) > ρ(0).

However, when the time-dependent Schrödinger equation is solved both ρ(t) and
|�j ) are not measurable quantities. Only expectation values stand for measurable
quantities. Let us assume we wish to find the probability of detecting particles
inside a box of volume L3 as a function of time. When the initial (complex scaled)
wavepacket is �0, by using the F-product formalism this measurable quantity,
which we denote by PL(t), is given by

PL(t) =
∣∣∣∣∣
∑
j ′,j aj ′aje

−i(Ej−[E
j ′ ]

∗)t/h̄ ∫ +L/2
−L/2 dr�j ′(r)�j (r)∑

j ′,j aj ′aje
−i(Ej−[E

j ′ ]
∗)t/h̄ ∫ +∞

−∞ dr�j ′(r)�j (r)

∣∣∣∣∣
=
∣∣∣∣∣
∑
j ′,j aj ′aje

−i(Ej−[E
j ′ ]

∗)t/h̄ ∫ +L/2
−L/2 dr�j ′(r)�j (r)∑

j a
2
j e

−2Im(Ej )t/h̄

∣∣∣∣∣ , (9.94)

where {aj }j=1,2,... are defined in Eq. (9.84) and the non-measurable quantity ρ(t)
is given by

ρ(t) =
∣∣∣∣∣∣
∑
j

a2
j e

−2Im(Ej )t/h̄

∣∣∣∣∣∣ . (9.95)
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Although ρ(t) may grow in time, PL(t = 0) > PL(t > 0) and the probability of
finding the particles inside the box decays at all times, as it should.

9.5 Zero resonance contribution to the cross section

From the time-independent scattering theory presented in Chapter 8 we see that
when a single resonance state controls the dynamics, the probability of a projectile
with an energy E in an initial state denoted by |i〉 passing through a target to a
specific final state denoted by |f〉 is approximately given by

Tf,i(E) �
∣∣∣∣ γ res

i γ
res
f

E − Eres + i�/2

∣∣∣∣2 , (9.96)

where up to phase factors, eiαi and eiαf , the coefficients γ res
i and γ res

f are the square
roots of the partial widths. For the sake of simplicity let us discuss here the case
where the system has two open channels for the decay and both of them have the
same threshold energies. In such a case the two partial widths are identical,

γ res
i = γ res

f = eiϕ/2
√
�/2 . (9.97)

On the basis of the full transmission at resonance whenE = Eres, i.e., T (Eres) = 1,
resonance tunneling diodes and transistors are produced. When the system is close
to the condition for self-orthogonality, two resonances are nearly degenerate and
thus, unlike the single resonance case, we get that

T (E) �
∣∣∣∣ γ 2

+
E − Eres+ + i�+/2

+ γ 2
−

E − Eres+ + i�−/2

∣∣∣∣2
= 1

2

∣∣∣∣ �+/2
E − Eres− + i�+/2

+ ei(ϕ−−ϕ+) �−/2
E − Eres+ + i�−/2

∣∣∣∣2 . (9.98)

The two resonance eigenvalues are given according to Eq. (9.76) by

Eres
± = Re[Ebp] ± Re[α

√
λ− λbp] ,

�± = −2Im[Ebp] ∓ 2Im[α
√
λ− λbp] , (9.99)

whereEbp is the exceptional point in the spectrum which is associated with a branch
point where two resonances coalesce with the change in the potential parameter λ
up to λbp. A crucial point in our derivation is that the value of the relative phase
factor ei(ϕ−−ϕ+) is equal to −1. Another crucial point in our derivation is approaching
the limit of λ→ λbp when λ ≤ λbp, which is within the radius of convergence of
the perturbational expansion in λ. The reason for it is as follows. The partial width
amplitudes, γ 2

± = exp(iϕ±)�±/2, can be obtained by calculating the expectation
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values of the flux operator, γ 2
± = (�±|F̂ |�±), where the two nearly degenerate

functions are given as in Eq. (9.77). That is,�+ ≡ �1(λ) and similarly�− ≡ �2(λ).
From Eq. (9.77) one can see that as λ→ λbp,�− → i�+ and therefore γ 2

− = −γ 2
+,

which implies that indeed ei(ϕ−−ϕ+) = −1. By substituting this result and Eqs. (9.99)
into Eq. (9.98) one gets that

T (E, ε)

�
∣∣∣∣ Im(Ebp + ε)
E − Re(Ebp + ε) − iIm(Ebp + ε) − Im(Ebp − ε)

E − Re(Ebp − ε) − iIm(Ebp − ε)
∣∣∣∣2 ,

(9.100)

where ε = α√λ− λbp. From Eq. (9.100) one gets that the transition probability
vanishes, T (E, ε) = 0, when E = E0(ε), which is given by

E0(ε) = Im(Ebp + ε)Re(Ebp − ε) − Im(Ebp − ε)Re(Ebp + ε)
Im(Ebp + ε) − Im(Ebp − ε)

= Re(Ebp) − Im(Ebp)
Re(ε)

Im(ε)
. (9.101)

Since the limit of ε → 0 is obtained by taking the limit of λ− λbp ≤ 0,
limε→0E0(ε) = Re(Ebp) − Im(Ebp)Im(α)/Re(α) and consequently, for the cases
where Im(α) (without loss of generality we assume here that λ and λbp get real
values only) or Im(Ebp) gets sufficiently small,

T (E = Re(Ebp), λ � λbp) � 0 . (9.102)

For the special cases where α is real, Re(ε) = Im(α) = 0 and the transition proba-
bility vanishes at the branch point.

9.6 Geometric phases (Berry phases)

The fact that for a certain set of potential parameters two (in principle it can be more
than two) eigenfunctions coalesce is associated with a branch point in the complex
energy plane (which is also known as an exceptional point). As discussed above,
by holding fixed all the potential parameters except one (denoted by λ) the branch
point is obtained at λ = λbp, such that E± = Ebp ± α√λ− λbp for a real value of

λbp or E± = Ebp ± α
√

(λ− λbp)(λ− λ∗
bp) when λbp is complex. Note that we can

always extend the λ-space to include the real and imaginary parts of the potential
parameters separately (i.e., rather than N complex parameters in the vector λ there
can be 2N real parameters) so that without lost of generality we can study here the
case where λbp is a set of real parameters. We vary one parameter in the complex
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parameter space in a circle with radius R which is centered around λ = λbp. That
is, we change λ such that

λ− λbp = Reiφ . (9.103)

We now wish to study how the energy and the corresponding eigenfunction change
when φ is adiabatically varied from φ = 0 to φ = 2nπ , where n = 1, 2, . . . If
the circle is centered such that there are no branch points inside the circle then
E±(φ = 0) = E±(φ = 2nπ ) and�±(φ = 0) = �±(φ = 2nπ ). As we will see, the
situation is very different when the path we choose encircles a branch point. By
substituting Eq. (9.103) into Eqs. (9.76), (9.77) and (9.80) one gets that the energies
are given by

E±(φ) ≡ E±(λbp + Reiφ) = Ebp ± αR1/2eiφ/2 (9.104)

and the wavefunctions (assuming that the matrix is symmetric and therefore
(�bp|�bp) = 〈�∗

bp|�bp〉 = 0) are

|�+(φ)) ≡ |�+(λbp + Reiφ))

= R−1/4e−iφ/4[2(χ |�bp)]−1/2[ |�bp) + R1/2eiφ/2|χ ) ] ,

|�−(φ)) ≡ |�−(λbp + Reiφ))

= iR−1/4e−iφ/4[2(χ |�bp)]−1/2[ |�bp) − R1/2eiφ/2|χ ) ] . (9.105)

From Eqs. (9.104) and (9.105) one can see that after one loop of 2π there is an
exchange between the two almost-SO states,

E±(2π ) = E∓(0) ,

|�±(2π )) = ∓|�∓(0)) , (9.106)

while after two loops the energy returns to its original value while the corresponding
almost-degenerate eigenfunction accumulates a phase of π ,

E±(4π ) = E±(0) ,

|�±(4π )) = −|�±(= 0)) . (9.107)

Only after four loops do both the energy and the corresponding almost-SO eigen-
functions return to the initial energy and eigenfunction,

E±(8π ) = E±(0) ,

|�±(8π )) = |�±(= 0)) . (9.108)
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Figure 9.5 Adiabatic φ-trajectory in the parameter space (�, a) for the complex
eigenvalue of our model problem which is defined in Eq. (9.56) (v0 = 0). The
trajectory starts at φ = 0 and ends at φ = 2π . The loop (�, a) is parameterized
by the angle φ, where � = �bp + R� cosφ and a = abp + Ra sinφ. R� = 1.5,
the branch point is at �bp = 3.627 586 69 . . . and abp = L/2;Ra = L/4 . As one
can see, the loop around the branch point shows a transition from one state to
another. This happens when we are quite far from the branch point (the so-called
exceptional point, EP).

The geometrical phases (known also as Berry phases) are the signs in Eqs. (9.107)
and (9.108). Note that the situation is the same in the non-symmetric case since
the transition from the symmetric to the non-symmetric is possible by carrying
out the proper transformation (see, for example, the use of the Lanczos recursion
method as described in Ex. 9.2). Note also that we discuss here the non-Hermitian
degeneracy (i.e., self-orthogonality) which occurs when exploring one complex
parameter, while in many cases (i.e., optics and laser physics) the non-Hermitian
degeneracy typically occur when exploring two real parameters.

This important result can be verified for the illustrative model potential given in
Eq. (9.56) without the need for R to be small.

In Fig. 9.5 we show the adiabatic φ-trajectory for the complex eigenvalue of our
model problem.

Figure 9.6 shows the projection of �+(x;R, φ) for 0 ≤ φ ≤ 4π on the initial
state �+(x;R, 0) (one of the almost self-orthogonal eigenfunctions). The pro-
jection has been carried out by the c-product where (�+(x;R, 0)|�+(x;R, φ) =
〈�∗

+(x;R, 0)|�+(x;R, φ)〉. As one can see, after one-loop the projection is equal
to zero. It implies that after one-loop �+ → �−. After two loops �+ → −�+ as
we obtained from our analytical analysis. Only after four loops does �+ → �+.

Let us consider a closed loop in the space of complex V0. This is to be distin-
guished from the previous calculations presented above for a loop in the parameter
space (�, a).
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Figure 9.6 The projection of an eigenfunction where φ varies adiabatically (in
(�, a) parameter space) on the initial eigenfunction (obtained at φ = 0) of our
model potential which is defined in Eq. (9.56). The trajectory starts at φ = 0 and
ends at φ = 8π . As one can see, after one-loop the projection is equal to zero.
It implies that after one-loop �+ → �−. After two loops �+ → −�+ as we
obtained from our analytical analysis. Only after four loops does �+ → �+.
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Figure 9.7 Adiabatic φ-trajectory in V0 complex parameter space for the complex
eigenvalue of our model problem. The trajectory starts at φ = 0 and ends at
φ = 2π . As one can see, the loop around the branch point shows a transition from
one state to another. This happens when we are quite far from the branch point.

In Fig. 9.7 we portray the variation of the eigenvalues in a loop V0(φ) = Vbp +
R exp(iφ), where a is constant. The transition from a solid to a dashed line reflects
the adiabatic transition from one eigenvalue to another as we complete the loop
around the branch point at V0 = Vbp.

Similarly, we show in Fig. 9.8 the variation of the eigenfunction, which corre-
sponds to the eigenvalue in Fig. 9.7, as the phase φ is varied such that V0(φ) forms
a loop around the branch point �bp. The purpose of Fig. 9.7 and Fig. 9.8 is to show
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Figure 9.8 The projection of the eigenfunction on the initial eigenfunction of
our model potential which is defined in Eq. (9.56), obtained for φ = 0 where φ
is varied adiabatically (in V0 complex parameter space). The trajectory starts at
φ = 0 and ends at φ = 8π .

that the transition from one eigenstate to another takes place whenever an adiabatic
variation in parameter space occurs in a closed loop around a branch point. This is
regardless of the parameter space where the adiabatic variation calculations were
performed.

Can we get an estimate for the SO state from the two states we obtain near the
branch point? From Eqs. (9.80) and (9.77) we get that when |λ− λbp| is sufficiently
small

|�1) − i|�2) = 2N1|�bp) ≡ |�̃bp) . (9.109)

Since �bp is a self-orthogonal state of the Hamiltonian Ĥ (λbp) then so is |�̃bp)
and (�̃bp|�̃bp) = 0. Note that one can use different normalization conditions for
the almost-SO states. For example, when the calculations are carried out by using
a finite number of basis functions (based on the c-linear variational principle in
Chapter 7) then |�1) and |�2) are normalized such that the largest dominant
component in the basis set expansion is equal to unity. In such a case,

|�1) − |�2) = |�̃bp) (9.110)

such that

(�̃bp|�̃bp) = 0 . (9.111)

The conclusion is that a linear superposition of the two c-normalizable almost-
SO eigenstates that are obtained for λ 	= λbp converges to the SO state as λ→ λbp

faster than each of these states. Consider the situation when two parameters, λ1
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and λ2, should be varied in order to obtain an SO situation. For example, when
an atom, a molecule or a nanostructure system interacts with a laser field the two
parameters can be the laser field intensity and frequency. There are many ways to
find the branch point (if it exists). Here we describe one method which is simple to
implement and requires the calculations of the eigenvalues of the non-Hermitian
Hamiltonian only. First carry out adiabatic calculations when the two parameters
are varied along a circle with radius R centered at λc

1 and λc
2. That is,

λ1 = λc
1 + R sinϕ ,

λ2 = λc
2 + R cosϕ , (9.112)

where 0 ≤ ϕ ≤ 2π . Let us assume that for a sufficiently large value of R only
a single branch point is embedded somewhere inside this circle. In such a case,
when the adiabatic variation of ϕ starts with the almost-degenerate eigenvalue
E1(ϕ0) then by the end of the loop the second almost-degenerate eigenvalue will
be obtained,

E1(ϕ0) = E2(ϕ0 + 2π ) , (9.113)

and similarly,

E2(ϕ0) = E1(ϕ0 + 2π ) . (9.114)

The next step in the calculations of λbp
1 and λbp

2 is to gradually reduce the radius
such that for R > Rc Eqs. (9.113) and (9.114) are satisfied but not for R ≤ Rc.
It implies that the branch point is located somewhere on a circle that is centered
around (λc

1, λ
c
2) in the 2D parameter plane with radius isR = Rc. One should repeat

these steps of the calculation where now the contour of the ϕ-adiabatic calculations
is a circle centered at (λc2

1 , λ
c2
2 ) = (λc

1 + Rc sinϕ0, λ
c
2 + Rc cosϕ0) (the value of ϕ0

can be taken arbitrarily between 0 and 2π ) and its radius R ≤ 2Rc is gradually
reduced to a value Rc2 such that for R > Rc2 Eqs. (9.113) and (9.114) are satisfied
but not for R ≤ Rc2. One of the two intersection points of the two circles is the
desired branch point (λbp

1 , λ
bp
2 ). Namely, λbp

1 and λbp
2 are one pair out of the two

pairs of solutions of the two coupled equations,

(λbp
1 − λc

1)2 + (λbp
2 − λc

2)2 = R2
c ,

(λbp
1 − λc2

1 )2 + (λbp
2 − λc2

2 )2 = R2
c2 . (9.115)
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Figure 9.9 The projection of two almost-degenerate eigenstates and a linear com-
bination (LC) of them on the self-orthogonal eigenstate (obtained for R = 0) of
our model potential as defined in Eq. (9.56).

Exercise 9.7

For the model Hamiltonian given in Eq. (9.10) show that a superposition of the two
non-normalized almost-SO eigenvectors given in Eq. (9.12)

cLC(λ) ≡ c+(λ) + c−(λ)√
2

→ cbp (9.116)

as λ→ i, where cbp is a self-orthogonal vector which is associated with a branch point
where the two eigenvectors merge. Moreover, prove that{

∂

∂λ

∣∣∣cT
bpcLC(λ)

∣∣∣2}
λ=i

= 0 , (9.117)

while {
∂

∂λ

∣∣∣cT
bpc±(λ)

∣∣∣2}
λ=i

= 2 . (9.118)

For the simple analytical solvable problem with the complex 1D potential which
is given in Eq. (9.56) we calculated the almost-SO states as functions of the potential
parameter � = �bp + R. � is the potential parameter λ that appears above in our
discussion for the most general case and λbp = �bp, and therefore λ− λbp = R is
the small parameter in our problem which determines how far the two almost SO
states are from the branch point where they coalesce.

The results presented in Fig. 9.9 show clearly that for a broad range of val-
ues of R a linear combination of two eigenstates provides the self-orthogonal
eigenfunctions (in a very good approximation). Moreover, the first derivative
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d[(�bp|�LC(R ≡ λ− λbp))]/dR = 0 at R = 0. Note that here we omit the label
“res” from the two almost-SO states and from the SO solution since the non-
Hermitian Hamiltonian in this case results from the use of a complex potential and
because of the use of one of the complex scaling transformations that are applied
for the calculation of the square integrable resonance states.

Exercise 9.8

Consider a system interacting with a laser field with frequency ωL and a maximum
field amplitude of ε0. Assume that for specific values of the field parameters εbp

0 and
ω

bp
L two resonance eigenvalues, E±, and their corresponding eigenvectors coalesce.

(1) Prove that the functional dependence close to the branch point of the two nearly
degenerate resonance eigenvalues is given by

E± = Ebp ±
√
a(ωL − ωbp

L ) + b(ε0 − εbp
0 ) . (9.119)

(2) Now consider a straight line ε0(ωL) = εbp
0 + α(ωL − ωbp

L ), where α = − Im(a)
Im(b) ,

which passes through the branch point (ωbp
L , ε

bp
0 ) in the laser parameters’ space. Show

that close to the branch point along this line either the widths of the two resonance
states E± are equal, i.e. Im(E+) = Im(E−), or their energy positions are equal, i.e.
Re(E+) = Re(E−). At the branch point both of these conditions are satisfied and the
two resonances are degenerate.

(3) Show that along the above-mentioned line in the (ωL, ε0) parameter space, when
ωL ≥ ωbp

L , the resonance widths of E± are identical, i.e., Im(E+ − E−) = 0, while
when ωL ≤ ωbp

L , Re(E+ − E−) = 0.
(4) Show that the condition that [Re(E+ − E−)]2 = [Im(E+ − E−)]2 is satisfied on

the straight line ε0(ωL) = εbp
0 + α̃(ωL − ωbp

L ), where α̃ = −Re(a)
Re(b) .

9.7 Concluding remarks

(1) The self-orthogonality (SO) condition implies that for specific and unique parameters
two or more orthogonal eigenfunctions of the non-Hermitian Hamiltonian coalesce and
(�SO|�SO) = 0, where the c-product is used. The coalescence happens at a branch point
in the complex energy plane where the spectrum of the non-Hermitian Hamiltonian
becomes incomplete. This branch point is considered as an exceptional point in the
energy spectrum.

(2) When the Hamiltonian is represented by a non-Hermitian finite N ×N matrix, upon
coalescence the number of linearly independent eigenvectors is smaller than N .

(3) The closure relations can be reconstructed from the SO state and the other eigen-
functions (eigenvectors) of the non-Hermitian Hamiltonian which has an incomplete
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spectrum by adding additional Nbp − 1 functions (vectors). Nbp stands for the number
of eigenfunctions (eigenvectors) which coalesce.

(4) The fingerprints of the SO phenomenon appear when the Hamiltonian has a complete
spectrum but is sufficiently close to the SO situation that several (usually two) eigen-
functions (eigenvectors) are almost-SO states. Being almost-SO states implies that they
are very much alike although they are orthogonal. By normalizing these states to unity
their amplitudes (components of eigenvectors) become extremely large as one nears
the SO situation.

(5) The self-orthogonal state can be recovered even when the non-Hermitian Hamiltonian
has a complete spectrum and all eigenfunctions (eigenvectors) are normalizable.

(6) The effects of the SO phenomenon on observable quantities is measurable even when
the spectrum of the non-Hermitian is complete and there is no SO eigenstate. These
effects are hard or even impossible to predict by carrying out calculations within the
framework of the Hermitian formalism of quantum mechanics.

9.8 Solutions to the exercises

Answer to Exercise 9.1

This problem has been taken from a paper published by Moiseyev, Kventsel and
Katriel.12

The eigenvalues of the given matrix are obtained by taking det(H − EI) = 0,
which leads to the the following cubic equation for the characteristic polynomial:

E3 − xE2 −
(

3a2

2
+ 9

16

)
E +

(
x + 7

8

)
a2 + x + 2

16
= 0 . (9.120)

The solutions of the cubic equation

E3 + a1E
2 + a2E + a3 = 0 (9.121)

depend on the discriminant, D = Q3 + R2, whereQ and R are given by

Q = 3a2 − a2
1

9
; R = 9a1a2 − 27a3 − 2a3

1

54
. (9.122)

For a = 1/
√

2 we find that the coefficients of the cubic equation are a1 = −x,
a2 = −21/16 and a3 = 9(x + 1)/16.

(1) A crossing of two eigenvalues is obtained when the discriminant is equal to zero.
Substituting in the discriminant leads to a polynomial for x with a root at x = 1/4.
Substituting x = 1/4 in the characteristic polynomial in Eq. (9.120) gives a1 = −1/4,

12 N. Moiseyev, G. F. Kventsel and J. Katriel, Chem. Phys. Lett. 57, 477 (1978).
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a2 = −21/16 and a3 = 45/64. The solutions to the cubic equation are given by

E1 = S + T − a1/3 , (9.123)

E2,3 = (S + T )/2 − a1/3 ± i
√

3(S − T )/2 , (9.124)

where

S = 3
√
R +D1/2 ; T = 3

√
R −D1/2 . (9.125)

Since D = 0, in this case we get that S = T = −2/3. Accordingly, the eigenvalues at
the crossing point are E1 = −5/4, E2 = 3/4 and E3 = 3/4.

(2) The plot of |E3(x) − E2(x)| as function of x exhibits a cusp at the point of crossing
since the two eigenvalues at this point are equal.

(3) Any infinitesimally small change in the values of the matrix elements (as for example
by changing a to a = 1/

√
2.001) will change the cusp behavior of |E3(x) − E2(x)| to

an analytical function with a minimum.
(4) By adding 1/4 to the diagonal of H we get the same eigenvalues as for the matrix M.

Therefore,

UTMU = H(x = 0.25) + 0.25I (9.126)

and the unitary matrix U is given by

U = CDT , (9.127)

where C and D are correspondingly the eigenvector matrices of M and H(x = 0.25) +
0.25I which have the same eigenvalue spectra. That is, CTMC = DT[H(x = 0.25) +
0.25I]D. The matrix U is obtained from Eq. (9.127),

U =
 1/2 a 1/2
a 0 −a

1/2 −a 1/2

 , (9.128)

where a = 1/
√

2.

Answer to Exercise 9.2

TheN ×N non-symmetric matrix is denoted by H and the transformed tri-diagonal
symmetric matrix by T. The right and left Lanczos recursion vectors are defined

as UL,R =
(

UL,R
1 ,UL,R

2 , . . . ,UL,R
N

)
such that

[UL]TUR = I ,

[UL]THUR = T ,

H
[
UL

1 ,U
L
2 , . . . ,U

L
N

] = [UR
1 ,U

R
2 . . . ,U

R
N

]
T , (9.129)
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where I is an n×N unit matrix and

Tn,n ≡ αn ,
Tn,n+1 ≡ Tn+1,n = βn . (9.130)

By considering the sequence of vector multiplications UL,R
1 ,UL,R

2 , . . . ,UL,R
N onto

H and T in Eq. (9.129) it is easy to see that

HUR
n = βR

n−1UR
n−1 + αnUR

n + βR
nUR

n+1 ,

HTUL
n = βn−1UL

n−1 + αnUL
n + βnUL

n+1 . (9.131)

Apart from initial left and right eigenvectors which must be supplied (and can
be taken to be equal, e.g, UL

i,1 = UR
i,1 = 1/

√
N ) the recursions involve only two

adjacent UL,R at a time. Rearrangements of Eqs. (9.131) give the residue vectors
ρL,R
n and the operational recursion formula,

ρR
n+1 = [H − αn] UR

n − βn−1UR
n−1 ,

ρL
n+1 = [HT − αn

]
UL
n − βn−1UL

n−1 , (9.132)

from which each successive off-diagonal matrix element βn = Tn,n+1 = Tn+1,n and
vectors UL,R

n+1 are constructed:

βn =
(

[
(
ρL
n+1

)T · ρR
n+1

]1/2
,

UL,R
n+1 = ρL,R

n+1/βn . (9.133)

The diagonal matrix elements, αn = Tn,n, are obtained from the projection

αn = (UL
n+1

)T
HUR

n+1 . (9.134)

Note that in principe it is possible that
(
UL
n

)T
UR
n = 0 and UL,R

n 	= 0 for a bi-
orthogonal vector. However, rounding errors in the computations will always allow
a normalization such that

(
UL
n

)T
UR
n = 1.13

Answer to Exercise 9.3

Let us carry a similarity transformation of H,

L = A−1HA , (9.135)

13 On the use of the Lanczos recursion method for calculating complex resonance eigenvalues see K. F. Milfeled
and N. Moiseyev, Chem. Phys. Lett. 130, 180–186 (1986).
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where

A =
(
a b

c d

)
(9.136)

and

A−1 = 1

det(A)

(
d −b

−c a

)
. (9.137)

Therefore,

L = 1

ad − bc
(
ad + bc + i(cd − ab) 2bd + i(d2 − b2)

−2ac + i(a2 − c2) −(ad + bc) + i(ab − cd)

)
.

(9.138)

Since the matrix is one Jordan block we are left with the following equations:

− 2ac + i(a2 − c2) = 0 , (9.139)

2bd + i(d2 − b2) = ad − bc , (9.140)

ad + bc + i(cd − ab) = λ(ad − bc) , (9.141)

−(ad + bc) + i(ab − cd) = λ(ad − bc) , (9.142)

where λ is the eigenvalue of the matrix. From Eqs.(9.141) and (9.142) it is imme-
diately evident that λ = 0, which is indeed the eigenvalue of this matrix. Thus the
transformed matrix L is

L =
(

0 1
0 0

)
(9.143)

and we have proved here that the matrix H is a Jordan matrix of order 2.
Similarly, one can show that the matrix

L =
(
α 0
γ β

)
(9.144)

can be transformed into a symmetric non-Hermitian matrix, H, by using the trans-
formation matrix

A =
(±ia −a

−b ∓ib

)
(9.145)

and the exceptional point associated with the self-orthogonal eigenvector is
obtained when α = β.

Answer to Exercise 9.4

The zero-order eigenvector matrix of the diagonal matrix H0 is C(0) = I. We set
the diagonal elements of C(n>0) to be equal to zero. That is, C(n)

k,k = δn,0. As usual
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in the Rayleigh–Schrödinger perturbation theory, the first-order correction term to
the k-th eigenvalue of H is given by

E
(1)
k = H (0)

k,k (9.146)

and the components of the corresponding first-order correction vector to the k-th
eigenvector of H are given by

C
(1)
k,i = Vi,k

E
(0)
k − E(0)

i

, {k, i} = 1, 2, . . . , N . (9.147)

Let us denote the (n > 1)-order correction terms to the eigenvalues as

E
(n+1)
k =

N∑
i=0

Vk,iC
(n)
k,i . (9.148)

We will prove that

C
(n)
k,i 	=k =

∑N
j=0(Vi,j − E(1)

k δi,j )C
(n−1)
k,j −∑n−2

p=1E
(n−p)
k C

(p)
k,i

E
(0)
k − E(0)

i

, (9.149)

where {k, i} = 1, 2, . . . , N .

Proof of Eq. (9.149)
The Rayleigh–Schrödinger perturbation equation is given by

(H(0) − E(0)
k )C(n)

k −
n∑
q=1

E
(q)
k C(n−q)

k + VC(n−1)
k = 0 . (9.150)

Let us multiply on the left-hand side of Eq. (9.150) by [C(0)
i ]T, where i 	= k,

(E(0)
i − E(0)

k )C(n)
k,i −

n∑
q=1

E
(q)
k C

(n−q)
k,i +

N∑
j=0

C
(n−1)
k,j Vi,j = 0 . (9.151)

By defining q = n− p, where p = 1, . . . , (n− 1), one gets that

n∑
q=1

E
(q)
k C

(n−q)
k,i =

n−1∑
p=1

E
(n−p)
k C

(p)
k,i . (9.152)

By substituting Eq. (9.152) into Eq. (9.151) one gets Eq. (9.149).

Answer to Exercise 9.5

The time-dependent Hamiltonian for the interaction of an atom/molecule with an
intense linearly polarized laser field and an additional weak field is given within
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the dipole approximation by

Ĥ (r, t) = Ĥsystem(r) + f (t)ex · r[ε0 cos(ω0t) + ε1 cos(ω1t)] , (9.153)

where f (t) is the envelope of the laser pulse. The solution of the time-dependent
Schrödinger equation (using atomic units where h̄ = 1, e = 1 and me = 1),

Ĥ (r, t)ψ((r, t) = i∂tψ((r, t) , (9.154)

can be expressed as a special case of a more general solution:

ψ(r, t) = [�(r, t ′, t)
]
t ′=t . (9.155)

�(r, t ′, t) is the (t, t ′) solution for the t-independent Hamiltonian H(r, t ′),

H(r, t ′) = −i∂t ′ + Ĥ (r, t ′) , (9.156)

and

�(r, t ′, t) = e−iH(r,t ′)t�(r, t ′, t = 0) . (9.157)

The use of the (t, t ′) method enables us to evaluate an analytical expression for the
time-evolution operator for the time-dependent Hamiltonian. The reason is clear
since t ′ serves as an additional coordinate. The duration of the two laser pulses is τ
and thus we look for quasi-stationary solutions of the time-dependent Schrödinger
equation of the form

�(r, t ′, t) = exp(−iEt)�E(r, t ′) ,

�E(r, t ′) = �E(r, t ′ + τ ) . (9.158)

By substituting Eq. (9.158) into Ĥ (t)�(r, t) = i∂t�(r, t) one gets

H(r, t ′)�E(r, t ′) = E�E(r, t ′) , (9.159)

where {E + (2π/τ )n}n=±1,±2,... are also eigenvalues ofH(r, t) which are associated
with the eigenfunctions exp[i(2π/τ )n]�E(r, t). For this reason we refer to the
eigenvalues of the Floquet-type operator H(r, t) as quasi-energies (QE). When r is
a contour in the complex coordinate plane (read in Chapter 5 on the complex scaling
transformations for which the resonance eigenfunctions are square integrable),
the eigenvalues E get complex discrete values. Therefore Eq. (9.159) should be
replaced by

H(rθ , t ′)�θEα (r, t
′) = Eθα�θEα (r, t ′) , (9.160)

where α = 1, 2, . . . and rθ is one of the contours in the complex coordinate
plane described in Chapter 5. The resonance solutions are associated with square
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integrable eigenfunctions, i.e., limr→∞�θEα (r, t
′) = 0, provided that θ exceeds a

certain value (see Chapter 5), and the corresponding photo-induced resonance
eigenvalues,

Eθα = Eα − i

2
�α , (9.161)

are θ -independent (as long as�θEα is square integrable). We can add additional coor-
dinates to the problem by using a similar procedure to that used in the formulation
of the (t, t ′) method. That is,

H(rθ , t ′, t ′′, t ′′′) = −i∂t ′ − i∂t ′′ − i∂t ′′′ + Ĥsystem(rθ )

+ f (t ′′′)ex · rθ [ε0 cos(ω0t
′) + ε1 cos(ω1t

′′)] . (9.162)

Since the envelope of the laser pulse, f (t), is a slowly varying function we can
apply the adiabatic theorem (read more on it in Chapter 8) where −i∂t ′′′ is the
non-adiabatic coupling potential,

Had(rθ , t ′, t ′′) = −i∂t ′ + Ĥsystem(rθ )

+ f (t ′′′)ex · rθ [ε0 cos(ω0t
′) + ε1 cos(ω1t

′′)] . (9.163)

We will take a laser pulse which supports many optical cycles and thus we can set
f (t ′′′) = 1, assuming that the envelope of the laser pulse has a trapezoidal shape
such that most of the time the laser pulse is at its maximal field amplitude. The
adiabatic Floquet-type operator can be further simplified:

Had(rθ , t ′, t ′′) = −i∂t ′′ + Had
0 (rθ , t ′) + ε1Had

1 (rθ , t ′′) ,

Had
0 (rθ , t ′) = −i∂t ′ + Ĥsystem(rθ ) + ε0ex · rθ cos(ω0t

′) ,

Had
1 (rθ , t ′′) = ex · rθ cos(ω1t

′′) . (9.164)

When

ε1 � ε0 (9.165)

we can simplify the calculations of the spectrum of Had(rθ , t ′, t ′′) by assuming that
the second weak laser couples the two resonance quasi-energy states, α = 1, 2,
which are associated with the ground and first excited electronic states of the field-
free system (e.g., an atom). These states are solutions of Had

0 (rθ , t ′) and are given
by

Had
0 (rθ , t ′)�θα(r, t ′) = Ead

α �
θ
α(r, t ′) ,

Ead
α = Eα − 1

2
�α . (9.166)
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Using these photo-induced ionizing resonance states as a basis set the 2 × 2 Hamil-
tonian matrix of an atom (or a molecule) which interacts with a combined strong
and weak laser fields is given by

Had(t ′′) =
( −i∂t ′′ + Ead

1 ε1d12 cos(ω1t
′′)

ε1d12 cos(ω1t
′′) −i∂t ′′ + Ead

2

)
, (9.167)

where

d12 = ω1

2π

∫ 2π/ω1

0
dt ′′〈�−θ1

1 (t ′′)|rθ · ex |�θ2
2 (t ′′)〉r = 〈�−θ

1 (0)|rθ · ex |�θ2(0)〉r .

(9.168)

Since Had(t ′′) = Had(t ′′ + 2π/ω1) the eigenfunctions of Had(t ′′) are periodic
functions and can be expanded in a Fourier series of {exp(iω1nt

′′)}n=0,±1,±2,.... The
Hamiltonian Had(t ′′) is thereby recast as

Had(t ′′) =
∑
n′,n

|e+iω1n
′t ′′ 〉〈e−iω1n

′t ′′ |Had(t ′′)|e+iω1nt
′′ 〉t ′′ 〈e−iω1nt

′′ | . (9.169)

The Hamiltonian matrix elements are defined accordingly by

[Had]n′,n = 〈e−iω1n
′t ′′ |Had(t ′′)|e+iω1nt

′′ 〉t ′′

= ω1

2π

∫ 2π/ω1

0
dt ′′e−iω1n

′t ′′ Had(t ′′)e+iω1nt
′′

=
(
ω1n+ Ead

1 0
0 ω1n+ Ead

2

)
δn,n′ + ε1

(
0 d12/2

d12/2 0

)
δn,n′±1 .

(9.170)

Since the second laser intensity is too weak to support multi-photon processes, we
can restrict ourselves to effective one-photon processes where n′, n = 0,±1. In
such a case, the Hamiltonian matrix is given by

Had =



Ead
2 + ω1 ε1d12/2 0 0 0 0
ε1d12/2 Ead

1 + ω1 ε1d12/2 0 0 0
0 ε1d12/2 Ead

2 ε1d12/2 0 0
0 0 ε1d12/2 Ead

1 ε1d12/2 0
0 0 0 ε1d12/2 Ead

2 − ω1 ε1d12/2
0 0 0 0 ε1d12/2 Ead

1 − ω1

 .

When Ead
2 − ω1 � Ead

1 and ε1 is sufficiently small then it is a good approximation
to take into consideration only the coupling between the two almost-degenerate
quasi-energy (photo-induced) ionizing resonance states. Under this approximation
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(which is equivalent to the rotating wave approximation),

Had =
(

Ead
1 ε1d12/2

ε1d12/2 Ead
2 − ω1

)
= Ead

1 I +
(

0 ε1d12/2
ε1d12/2 �E

)
, (9.171)

where

�E = Ead
2 − ω1 − Ead

1 = [E2 − E1 − ω1] − i

2
[�2 − �2] . (9.172)

This expression is identical to that of

H = H0 + ε1V ,

H0 =
(

0 0
0 �E

)
,

V =
(

0 d/2
d/2 0

)
(9.173)

up to the addition ofEad
1 I which is equivalent to adding a constant to the eigenvalues.

The time-independent Schrödinger equation is

HC± = λ±C± . (9.174)

The two eigenvalues of H are given by

λ± = �E

2
± 1

2

√
(�E)2 + ε2

1d
2 . (9.175)

The two corresponding (c-product) orthogonal vectors are given by

C± = N±

(
1

[ε1d/2]/[�E − λ±]

)
. (9.176)

The pre-factors can be taken (with some caution, as will be explained soon) as
the normalization factors for which

[C±]TC± = I (9.177)

and therefore for �E 	= 0 and ε1d 	= 0,

N± =
√

1

1 + ε2
1d

2/(�E − λ±)2
. (9.178)

When

�E = iε1d . (9.179)

degenerate eigenvalues are obtained:

λ+ = λ− = �E

2
. (9.180)
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Here we proved that for non-zero off-diagonal matrix element ε1d degenerate
eigenvalues can be obtained for a non-Hermitian matrix (note that any matrix can
be transformed to be complex and symmetric ). It is, however, immediately seen
that as the two eigenvalues coalesce also the corresponding eigenvectors coalesce.
When we denote the value of ε1 for which Eq. (9.179) is satisfied by

ε
bp
1 = −i

�E

d
, (9.181)

then Eq. (9.176) is reduced

C+ = C− = N±

(
1
i

)
. (9.182)

Using the c-normalization condition for ε1 	= εbp
1 as given in Eq. (9.178) one gets

that the components of the unit normalized eigenvectors for which [C±]TC± = I
become large and go to ∞ as ε1 approaches the value of εbp

1 .
Only for very special values of the Hamiltonian matrix elements is the branch

point, where a single self-orthogonal eigenvector obtained, associated with a real
value of ε1,

ε
bp
1 = Re(�E)

Im(d)
= Im(�E)

Re(d)
. (9.183)

The requirement of a real value for εbp
1 results from a a physical realization of this

case where an atom or a molecule interacts with a combination of strong and weak
laser fields. The intensity of the strong laser field I0 is much larger than the intensity
of the weak almost monochromatic laser field, [εbp

1 ]2 � I0 with the fundamental
frequency ωbp (using Eq. (9.183)) which is defined by

h̄ωbp = Re(EQE
2 − EQE

1 ) − Im(EQE
2 − EQE

1 )
Im(d)

Re(d)
, (9.184)

where EQE
1 and EQE

2 are the two complex resonance quasi-energy states that are
coupled by the weak laser field.

Answer to Exercise 9.6

(a) Following the explanation in the text, if c is a defective (self-orthogonal) eigen-
function (eigenvector) of an operator (complex symmetric matrix) H,

(H − EI)c = 0 , (9.185)

where

cT · c = 0 , (9.186)
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we get for the 2 × 2 matrix in Eq. (9.10) that when λ = i then Ebp = 0 and the
self-orthogonal vector is

c =
(

1
i

)
. (9.187)

Since we have only one eigenvector we can correct the closure relations by
adding an additional state d satisfying

(H − EI)d = c , (9.188)

which can be easily solved to yield

d =
(

1/2
−i/2

)
. (9.189)

Note that the two non-orthogonal vectors c and d are associated with the same
eigenvalue E and satisfy cT · d = 1. It is easy to see that in our case (due to
the absence of other orthonormal vectors) we can express the closure relation
using these two vectors only and verify that indeed we obtain a unit operator:

I = c · dT + d · cT

cT · d
. (9.190)

(b) Another illustrative example is the 3 × 3 matrix which is given in Eq. (9.55)
for which

BHB−1 =
3 1 0

0 3 0
0 0 6

 , (9.191)

where

B =

 0 − 1
7 −3

i − 3i
7 −i

−1 2i 1

 (9.192)

The first column, B1, is the self-orthogonal state with eigenvalue of E1 = 3 ≡
Ebp. The third column, B3, is the regular state with eigenvalue E3 = 6. For the
second column B2, we find:

(B2|B3) = BT
2 B3 = 0 ,

(B2|B1) = BT
2 B1 	= 0 ,

B1 = (H − E1I)B2 (9.193)

and one can see that B1 and B2 are mixed.
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For this specific case of Eq. (9.45), BUBT = I, which is satisfied when

U = 1

9

 8 −21 0
−21 0 0

0 0 1

 . (9.194)

Answer to Exercise 9.7

We consider the Hamiltonian

H =
(+1 λ

λ −1

)
. (9.195)

Here λ is a complex parameter. The eigenvalue problem of H is written as

H c± = E± c± . (9.196)

An explicit calculation gives

E± = ±
√
λ2 + 1 ,

c± =
(

λ
E±−1

1

)
. (9.197)

Note that we prefer to keep the eigenvectors un-normalized. The case of λ = i
corresponds to the branch point, where both the eigenvalues and eigenvectors are
degenerate. At the branch point,

Ebp = 0 ,

cbp =
( −i

+1

)
. (9.198)

Moreover, the branch point eigenvector is self-orthogonal, that is, c T
bp cbp = 0. This

explains why we did not implement the usual unit c-normalization.
It is instructive to see how the branch point eigenvector bifurcates into two

distinct linearly independent eigenvectors when λ is close to i. By expanding the
factor (E± − 1)−1 into power series one finds after straightforward manipulations
that

c± = cbp ± √
λ− i

(
1 − i

0

)
+ (λ− i)

(
1
0

)
+ O[(λ− i)3/2] . (9.199)

Consequently,

cbp = (c+ + c−)

2
+ O[(λ− i)] . (9.200)

Equation (9.200) shows that the branch point eigenvector can actually be deter-
mined quite accurately by combining the two non-degenerate eigenvectors for λ
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close to i. While the difference between cbp and c± is of the order O[(λ− i)1/2], the
combination in Eq. (9.200) approximates cbp much better, with an error estimate
O[(λ− i)1]. Let us elaborate this point in an alternative way, without directly using
the power series expansion of Eq. (9.199). For any λ 	= 0 we have

cLC = (c+ + c−)

2
=
(
λ−1

1

)
. (9.201)

Hence the projection

c T
bp cLC = 1 − i λ−1 . (9.202)

On the other hand, the projection

c T
bp c± = 1 − i λ

E± − 1
. (9.203)

It is convenient to set

λ = i + R eiϕ , (9.204)

where the parameters R ≥ 0 and ϕ ∈ [0, 2π ] characterize the deviation of λ from
the branch point. Equation (9.202) then boils down to

c T
bp cLC = R eiϕ

i + R eiϕ
= O(R) , (9.205)

whereas the expression in Eq. (9.203) becomes

c T
bp c± = ∓

√
R eiϕ (2 i + R eiϕ) + O(R) . (9.206)

This implies that

∂

∂R

{∣∣∣ c T
bp cLC

∣∣∣2}
R=0

= 0 , but
∂

∂R

{∣∣∣ c T
bp c±

∣∣∣2}
R=0

= 2 > 0 , (9.207)

demonstrating once again that the linear combination cLC is a much better approx-
imation to cbp than c± itself.

Answer to Exercise 9.8

(1) The coalescence of two resonance eigenvalues implies that E±(ε0, ωL) are not
analytical functions and thus the Taylor expansions of these functions at the
branch point are not applicable. However, the functions (E±(ε0, ωL) − Ebp)2

are analytical functions, and when the laser parameters attain values which
are sufficiently close to the branch point then the Taylor expansion approach
is applicable and the leading term of (E±(ε0, ωL) − Ebp)2 is a(ωL − ωbp

L ) +
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b(ε0 − εbp
0 ). Consequently we can express the two eigenvalues near the branch

point by

E± = Ebp ± √
a�ω + b�ε , (9.208)

where

�ω = ωL − ωbp
L ,

�ε = ε0 − εbp
0 . (9.209)

(2) The condition we wish to fulfill is either

Re(E+ − E−) = 0 (9.210)

or

Im(E+ − E−) = 0. (9.211)

At least one of this conditions must be fulfilled when

Re(E+ − E−)Im(E+ − E−) = 0 . (9.212)

On the basis of Eq. (9.208) one gets that this last condition is satisfied to the
leading order in expansion whenever

�ε

�ω
= −a − a∗

b − b∗ = − Im(a)

Im(b)
. (9.213)

Therefore,

ε0(ω) = εbp
0 + α(ωL − ωbp

L ) , (9.214)

where α = − Im(a)
Im(b) . Along this line we get that

E+ − E− = 2�ω1/2

(
Re(a)Im(b) − Re(b)Im(a)

Im(b)

)1/2

. (9.215)

(3) Assuming that [Re(a)Im(b) − Re(b)Im(a)]/Im(b) > 0 it is immediately evi-
dent from Eq. (9.215) that when ωL > ω

bp
L then �ω > 0 and thus E+ − E−

is real. Thus the only condition which we can satisfy in this case is Im(E+ −
E−) = 0, leading to equal widths for the two resonances. On the other hand,
when ωL < ω

bp
L the behavior changes since E+ − E− becomes imaginary. In

this regime the only condition which can be satisfied is Re(E+ − E−) = 0 and
the two resonance have the same energy position. At the branch point both
conditions are satisfied and E+ − E− = 0.
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(4) A substitution of Eq. (9.208) into [Re(E+ − E−)]2 = [Im(E+ − E−)]2 leads
to[√a�ω + b�ε + √

a∗�ω + b∗�ε
2

]2
=
[√a�ω + b�ε − √

a∗�ω + b∗�ε
2i

]2
,

a�ω + b�ε + a∗�ω + b∗�ε = −[a�ω + b�ε + a∗�ω + b∗�ε] .

This rearranges to

�ε = −Re(a)

Re(b)
�ω . (9.216)

This is just a straight line in the (ε0, ωL) parameter space given by

ε0 = εbp
0 + α̃(ωL − ωbp

L ) , (9.217)

where

α̃ = −Re(a)

Re(b)
. (9.218)
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The point where QM branches into two formalisms

Although the standard formalism of quantum mechanics is based on the require-
ment of the physical operators to be Hermitian, the use of non-Hermitian operators
in the study of different types of phenomena is not uncommon. One of the most
well-known non-Hermitian potentials is the optical potential where for any given
choice of N channels the exact eigenvalue is a solution of a single-channel prob-
lem. The optical potential is a non-Hermitian, non-local and energy-dependent
operator. In his book on scattering theory Taylor writes: “In practice, the opti-
cal potential is far too complicated for exact use in actual calculations”.1 It is
often believed that the complex energies which are obtained by the use of optical
potentials result from the approximations in the calculations. However, this is not
true. The complex energy obtained by solving the one-channel problem with an
optical potential is the exact eigenvalue of the original N-channel problem which
is obtained by imposing outgoing boundary conditions on the eigenfunctions of
the time-independent Schrödinger equation. In this chapter we wish to show that
the study of the resonances in multi-channel problems (so-called Feshbach reso-
nances) can be considered as the point where quantum mechanics branches into
the standard (Hermitian) and non-standard (non-Hermitan) formalisms.

10.1 Feshbach resonances

Quite a long time ago Feshbach showed that the exact energy spectrum of the full
physical problem can be obtained by solving two different self-energy problems.
In spite of the fact that the two effective Hamiltonians are derived in a similar
manner, in one case the exact energy spectrum of the full problem can be either
real or complex (depending on the boundary conditions), whereas the exact energy
spectrum associated with the second effective Hamiltonian has to be complex

1 J. R. Taylor, Scattering Theory, New York, John Wiley & Sons, Inc., p. 385, 1972.

375
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(excluding bound states in the continuum). The focus of this chapter is on the
fact that in both cases the complex eigenvalues result from the same requirement
of an out-going boundary condition. The branching of quantum mechanics into
standard (Hermitian) formalism and non-Hermitian formalism is associated with
the decision to express the exact energy spectrum for one of the two possible
self-consistent-like problems where the use of the Green’s operator imposes out-
going boundary condition on the solutions of the time-independent Schrödinger
equation. Our analysis is made here for the case where an ABC molecule
has sufficient energy to dissociate only to A+ BC but not to A+ B + C or
AB + C or AC + B.

In this chapter we will focus on the association of the pre-dissociation resonances
with the solutions obtained by applying the Feshbach formalism to the closed
channels and not to the open ones as is usually done in molecular physics studies.
The idea to apply the Feshbach formalism to the closed channels is not new
and has been explored before by Feshbach himself for nuclear physics problems.
Here we apply this approach to molecular physics problems, emphasizing the
role of the Green’s function in imposing the outgoing boundary conditions on
the solutions which are associated with the open channels and emphasizing the
fact that by doing so we get into the non-Hermitian sector of the domain of the
Hamiltonian. The derivation and discussion presented here will demonstrate the
branching of quantum mechanics into Hermitian and non-Hermitian formalisms
when the Feshbach effective Hamiltonians are derived. We stress here the fact
that complex eigenvalues are obtained not only by solving the time-independent
Schrödinger equation for the closed channel’s Feshbach effective Hamiltonian
but also for the full physical Hamiltonian when outgoing boundary conditions
are imposed on the solutions which are embedded in the continuous part of the
spectrum.

In spite of the requirement of physical operators to be Hermitian, non-Hermitian
Hamiltonians appear in the standard quantum mechanics formalism when effective
Hamiltonians are derived. Let us briefly describe how these are obtained and
what the significant results of such a derivation are, and its relevance to a broad
range of general physical phenomena known as Feshbach resonances for a multi-
dimensional system.

The Hermitian Hamiltonian Ĥ of the ABC molecular system depends on two
types of coordinates: r which describes the position of the atom B with respect to
the atom C in the diatom and the second coordinate R which gives the position of
the atom A with respect to the center of mass of the diatom BC. Upon dissociation
where |R| → ∞ we get that the Hamiltonian behaves as

lim
|R|→∞

Ĥ = T̂R + Ĥfinal(r) , (10.1)
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where

Ĥfinal(r) = T̂r + lim
|R|→∞

V (r,R) . (10.2)

T̂R and T̂r are the kinetic energy operators associated respectively with the
“dissociative” coordinate R and the internal coordinate of the diatom r. The BC
diatom which is obtained as the molecule ABC dissociates is associated with the
Hamiltonian Ĥfinal that has a discrete spectrum such that

Ĥfinal(r)χn(r) = Eth
n χn(r) , (10.3)

where n = 0, 1, 2, . . . , and Eth
0 < E

th
1 ≤ Eth

2 ≤ · · · and the corresponding eigen-
functions χn(r) are the vibrational–rotational bound states of the diatomic molecule
BC. The superscript “th” means that these bound states of the diatom BC are the
threshold energies in the spectrum of the full Hamiltonian.

The atom A is temporarily trapped by the diatom BC due to the potential of
interaction V (r,R). The time-independent Schrödinger equation we solve here is
given by

Ĥ�(R, r) = E�(R, r) , (10.4)

where E is in the continuous part of the spectrum of Ĥ which describes the three-
atomic system ABC. We can expand the eigenfunction of the full Hamiltonian
�(R, r) which depends on the energy E in the continuum by using the eigenfunc-
tions of Ĥfinal as a basis set,

�(R, r) =
∑
n

φn(R)χn(r) . (10.5)

We can split the summation in Eq. (10.5) into two parts based on the fact that from
some channel nc all the channels above n > nc are closed for “dissociation” since
E < Eth

n>nc
and the ABC molecule does not have the energy which is required for

the dissociation to the atom A and a diatom BC in the vibrational–rotational quan-
tum state n > nc. However, n ≤ nc are channels which are open for “dissociation”
since E > Eth

n≤nc
. Following the Feshbach formalism we now divide the problem

into two subspaces. One subspace {Q} will contain the closed channels, and a
second subspace {P } will contain the open channels. Therefore, {Q} ∼= {χn>nc},
and {P } ∼= {χn≤nc}. Using χn(r) which are associated with the closed and the open
channels as a basis set, Eq. (10.4) can be represented in the following matrix form:(

HQQ HQP

HPQ HPP

)(
φQ(R)
φP(R)

)
= E

(
φQ(R)
φP(R)

)
, (10.6)
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where

[HQQ]n′,n(R) = 〈χn′>nc |Ĥ |χn>nc〉r ,

[HPP]n′,n(R) = 〈χn′≤nc |Ĥ |χn≤nc〉r ,

[HQP]n′,n(R) = 〈χn′>nc |Ĥ |χn≤nc〉r ,

[HPQ]n′,n(R) = [HQP]∗n,n′(R) . (10.7)

The functions φQ(R) and φP(R) are the projections of the total wavefunction into
each of the subspaces given by

[φQ(R)]n = φn>nc (R) ,

[φP(R)]n = φn≤nc (R) . (10.8)

The subscript r denotes integration over this variable only. Since the eigenfunctions
of HQQ(R) are bound states they have outgoing boundary conditions with purely
imaginary positive valued wavevectors. However, the eigenfunctions of HPP(R) are
continuum functions. Within the Hermitian formalism of quantum mechanics they
have components of outgoing waves as well as components of incoming waves.
Therefore, as [|R| → ∞] the asymptotes of the open channels should be scattering
states of the form

[φP(R)]n ≡ φn>nc (R) →
√
M

h̄kn
e−iknR −

∑
n′>nc

Sn,n′(E)

√
M

h̄kn′
e+ikn′ R , (10.9)

where for m > nc (m stands for n or n′)

(h̄km)2

2M
= E − Eth

m (10.10)

and the incoming and outgoing waves are flux normalized.
The requirement for the continuum functions [φP(R)]n to behave only as outgo-

ing waves in the asymptotes implies that Sn,n′>nc (E) = ∞. However, the S-matrix
elements get infinitely large either when E is equal to the bound state energy of
the molecule ABC (this is not the case here since ABC has been prepared in a
metastable state where it has sufficient energy for dissociation) or when E is com-
plex. The values for which the S-matrix elements are infinitely large are defined as
the poles of the scattering matrix. In the case where the pole of the S-matrix has a
complex value, by definition [φP(R)]n for n > nc are not in the Hilbert space and
can be obtained only by using the non-Hermitian formalism of quantum mechanics.



10.2 The point where QM branches into two formalisms 379

10.2 The point where QM branches into two formalisms

We are now at a delicate point in our analysis. The system defined by the Hamil-
tonian in Eq. (10.6) can be reduced to two types of effective Hamiltonians. One is
derived only in terms of the φP components when we eliminate the closed chan-
nels from the problem, while in the other approach an effective Hamiltonian is
derived in terms of the φQ components by eliminating the open channels from the
problem. In both cases the elimination of one set of channels from the problem is
not an approximation and the exact energy spectrum of the problem is obtained.
In the discussion given below we demonstrate how the choice of one of the above
basis sets for a derivation of an effective theory leads to the standard formalism of
quantum mechanics, while the choice of the other set leads to the formulation of
non-Hermitian quantum mechanics where metastable-resonance states are associ-
ated with complex eigenvalues of the time-independent Schrödinger equation as
given in Eq. (10.4).

The reduction of the Hamiltonian given in Eq. (10.6) to the first type of effective
Hamiltonian is achieved by reducing the two coupled equations in Eq. (10.6) to the
following self-consistent eigenvalue problem:(

HPP + HPQG+
QQ(E)HQP

)
φP(R) = EφP(R) , (10.11)

where

G+
QQ(E) = lim

ε→0+

1

EI − HQQ + iε
. (10.12)

In the transition from Eq. (10.6) to Eq. (10.11) we expressed φQ in terms of φP:

φQ = ϕQ + G+
QQ(E)HQPφ

P , (10.13)

where ϕQ is the homogenous solution such that

(EI − HQQ)ϕQ = 0 . (10.14)

Since E is a continuous variable while the spectrum of HQQ is discrete, we have
chosen as the homogenous solution ϕQ = 0. Note that φQ is a square integrable
function which implies that φQ has an outgoing boundary condition with purely
imaginary momentum, and consequently, by taking the homogenous solution as
zero, we do not change the boundary condition of φQ. The term +iε in the Green’s
operator ensures that in Eq. (10.13) only outgoing waves will be present in the closed
channels φQ (see Eq. (10.8) for the definition of the closed and open channels).
The requirement on φQ to have outgoing wave asymptotes does not cause any
problem since the asymptotes of bound states are indeed outgoing waves, eikR with
Re(k) = 0 and Im(k) > 0.
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The self-energy Hamiltonian given in Eq. (10.11) contains a non-local, energy-
dependent, non-Hermitian operator which is known as the optical potential,2

VP
opt(R, E) = HPQG+

QQ(E)HQP . (10.15)

The physical meaning of the optical potential is clarified by replacing the full
Hamiltonian by an effective Hamiltonian for the open channels only. The optical
potential introduces processes by which particles in the closed channels, φQ, are
scattered onto one or several open channels.

Exercise 10.1

Explain how the term iε in the Green’s operator, Ĝ+(E) = limε→0+(E + iε − Ĥ )−1,
introduces outgoing wave boundary conditions into � = Ĝ+(E)φ.

Let us now return to the self-energy problem in Eq. (10.11). This equation can be
solved by an iterative procedure where in every step of the iteration an eigenvalue
problem is solved for a non-Hermitian Hamiltonian. Since the original Hamiltonian
Ĥ is a Hermitian operator, the energy E is gets real. Therefore,

Ĥ P
eff(E)φP(R) = EφP(R) , (10.16)

where E is real although the effective Hamiltonian is non-Hermitian,

Ĥ P
eff = HPP + VP

opt(R, E) . (10.17)

Since in the Hermitian formalism of quantum mechanics the amplitude of the
incoming waves has non-zero values, the spectrum of Ĥ P

eff within the framework
of the standard formalism of quantum mechanics is real, just like the spectrum
of the full Hamiltonian. The key point in this derivation is in the fact that within
the framework of the Feshbach formalism3 the non-Hermitian optical potential has
been derived for the open channels where the +iε in the denominator of the Green’s
operator imposes outgoing boundary conditions on φQ which are associated with
the closed channels.

We can summarize the Feshbach formalism by stating that the derivation of the
first type of self-energy effective Hamiltonian eliminated the closed channels from
the problem. The price we pay for this is that now we do not solve an eigenvalue
problem but instead we solve for a non-Hermitian, energy dependent and non-local
Hamiltonian. However, since the boundary conditions are kept identical to the
original problem, i.e., square integrable bound states are associated with the closed

2 See, for example, J. R. Taylor, Scattering Theory, New York, John Wiley & Sons, Inc., 1972.
3 See Feshbach 1958, in Section 10.5.
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channels and scattering states are associated with the open channels, the real energy
E and the eigenfunctions of the full Hermitian Hamiltonian are obtained. As we
will show below, in contradiction to the derivation of the first type of Feshbach
effective Hamiltonian, in the derivation of the second type of a effective Feshbach
Hamiltonian when the open channels are eliminated then complex energies E (i.e.,
complex poles of the scattering matrix) are obtained. These complex energiesE can
be obtained by solving Eq. (10.16), but not within the framework of the standard
formalism of quantum mechanics as we did above, but by imposing outgoing
boundary conditions on φP(R).

Let us briefly review here how the resonances associated with the poles of
the S-matrix are obtained in nuclear systems in a simple approach described by
Feshbach.4 In the process we will emphasize the fact that the outgoing boundary
condition are imposed by the Green’s function.

Instead of deriving the effective Hamiltonian for the open channels as described
above (Feshbach, 1958), the effective Hamiltonian for the closed channels (φQ)
will be derived (Feshbach, 1962). As we will show below, this is a crucial point
in explaining why complex energies are obtained by solving the self-consistent
problem for the effective Hamiltonian of the closed channels. The self-consistent
problem for the effective Hamiltonian of the closed channels is given by

Ĥ
Q
eff(E)φQ(R) = EφQ(R) . (10.18)

where the effective Hamiltonian is

Ĥ
Q
eff = HQQ + VQ

opt(R, E) . (10.19)

The non-local energy-dependent operator which is associated with the effective
Hamiltonian of the closed channels is defined as

VQ
opt(R, E) = HQPG+

PP(E)HPQ , (10.20)

where the Green’s operator is now associated with the Hamiltonian of the open
channels’ Hamiltonian and not with the that of the closed channels,

G+
PP(E) = lim

ε→0+

1

EI − HPP + iε
. (10.21)

Here we come to the subtle point in our derivation. In the transformation of the
original full problem in Eq. (10.4) into Eq. (10.18) we used the following identity:

φP = G+
PP(E)HPQφQ . (10.22)

4 See Feshbach, 1962, in Section 10.5.
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In writing Eq. (10.22) we set the homogenous solution ϕP which is an eigen-
function of HPP to be equal to zero although the eigenvalue of HPP is a continuous
variable E and its corresponding eigenfunction can be taken as the homogeneous
solution. This is the point where we have to choose between adhering to the standard
formalism or digressing to the non-Hermitian formalism of quantum mechanics.
As we proved in Ex. (9.1), if

lim
x→∞�(x) =

∫ +∞

−∞
dk′[A(k′)eik′x + B(k′)e−ik′x] (10.23)

then the limit of Ĝ(E = k2/2)�(x) as x → ∞ is an outgoing wave,

lim
x→∞ Ĝ(E)�(x) ∝ eikx . (10.24)

Consequently, as will be explained below, by taking the homogenous solution of φP

that has incoming and outgoing wave components to be equal to zero, we impose
on the non-homogeneous solution of φP outgoing boundary conditions which
imply complex values of E, and thereby making φP an exponentially divergent
function which is in the non-Hermitian sector of the domain of the Hamiltonian.
Note, however, that by keeping the homogeneous solution, φP, just as defined in
standard quantum mechanics we get that the non-homogeneous solution φP also
has incoming and outgoing wave components. In such a case the self-consistent
solutions of Eq. (10.19) get only real values just as in the standard formalism of
quantum mechanics.

The explanation above for the point of bifurcation of quantum mechanics into
an Hermitian formalism and a non-Hermitian formalism is based on the fact that
the term iε in the Green’s operator, Ĝ+(E) = limε→0+(E + iε − Ĥ )−1 introduces
outgoing wave boundary conditions on |�〉 = Ĝ+(E)|�〉 for any wavepacket |�〉
which can be described as a linear combination of incoming and outgoing waves.
Let us explain this in detail. The term +iε appearing in Eq. (10.21) ensures that
in Eq. (10.22) only outgoing waves will be represented in φP. The problem from
the point of view of the Hermitian formulation of quantum mechanics is that φP

is associated with the open channels (see Eq. (10.8)). The requirement of φP to
have outgoing wave asymptotes implies that the amplitudes of the incoming waves
vanish and therefore Sn,n′(E) = ∞ (see Eq. (10.9)). The scattering state conditions
which are needed to conserve the flux (see Eq. (10.9)) are not satisfied. Thus,
imposing outgoing wave boundary conditions on φP(R) implies that the flux is
not conserved any more. Therefore, when we disregard the possibility of bound
states in the continuum, Sn,n′(E) = ∞ for a complex value of E = Eres, where
Re(Eres) is in the continuum of the spectrum. Since E for which Eq. (10.18) is
satisfied is the eigenvalue of the original full problem, Eq. (10.4), this means
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that E = Eres = Er − i/2� is a resonance solution of our problem. We should
re-emphasize the fact that the complex resonance eigenvalue E = Eres is obtained
here by solving Eq. (10.18) where the complex resonance eigenvalue is associated
with an eigenfunction embedded in the generalized Hilbert space (i.e., (φQ)2 is
integrable rather than |φQ|2 in the Hilbert space).

We can summarize the above discussion in the following points.

(1) The term +iε appearing in Eq. (10.21) ensures that the continuum functions φP(E)
defined in Eq. (10.22) have outgoing waves only and therefore are associated with
complex eigenvalues E. The only situation in which this kind of solution may come
about within the framework of standard quantum mechanics is when there are true
bound states in the continuum and E has real values only.

(2) Instead of deriving an effective Hamiltonian for the open channels we derive an effec-
tive Hamiltonian for the closed channels by eliminating the open channels from our
problem. By doing so we change the wave boundary conditions of the original full
problem. The obtained continuum states which are associated with the open channels
are not scattering states and have outgoing wave boundary conditions which are the
same boundary conditions for the bound states associated with the closed channels.
This gives a convincing explanation for the text-book result that an optical potential
becomes a complex function for energies above the threshold.5

If one wishes to define a point where the formulation of quantum mechanics
branches into the standard Hermitian formulation and the non-Hermitian formu-
lation, it is the point in our derivation where we decide to construct the effective
Hamiltonian for the closed channels rather than for the open channels.

The question now is can the energyE which solves Eq. (10.18) attain a complex
value E = Er − i

2� as proposed above?
The answer to this question is positive. E = Er − i

2� is a simple pole of the
optical potential. Let us prove this claim. The spectral representation of HPP is

HPP =
∫ +∞

0
dEcEcρ(Ec)|φP

Ec
〉〈φP

Ec
| , (10.25)

where Ec stands for the continuum energy spectrum of the open channels and
ρ(Ec) is the density of states in the continuum. When the continuum states are
energy normalized such that 〈E|E′〉 = δ(E − E′) there is no need to introduce
ρ(Ec) into the integration over Ec. We introduce here ρ(Ec) since we assume that
the continuum eigenfunctions were calculated using the box-quantization condition
while taking the limit of the box-size to infinity. The use of the box-quantization
condition helped us in the derivation of the Fermi golden rule for the calculations
of the resonance widths (see Chapter 3).

5 See, for example, J. R. Taylor, Scattering Theory, New York, John Wiley & Sons, Inc., 1972.
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By using the spectral representation of HPP, one gets that

E = 〈φQ|ĤQQ|φQ〉 + 〈|φQ|Vopt(R, E)|φQ〉

= 〈ĤQQ〉 + lim
ε→0+

∫ +∞

0
dEcρ(Ec)

〈φQ|HQP|φP
Ec

〉〈φP
Ec

|HPQ|φQ〉
E − Ec + iε , (10.26)

assuming that all poles of the Green’s function are at a finite “distance” from the
real Ec axis so that the contour of integration along the real Ec (Ec varies from 0
to ∞) can be replaced by a closed contour of integration in the complex Ec plane
with radius |E0

c |. Thus we integrate along the real axis from 0 to 2|E0
c |, and return

to the origin on a semi-circle on the lower half of the energy plane centered around
|E0

c |. The replacement of the contour of integration from the real axis to a closed
contour in the complex plane is possible when the integrand is exponentially small
in the lower half complex plane of Ec where |Ec| > |E0

c |.
By using the definition of a delta function as the limit of a function which

exhibits a sharp peak about E, while its integral over all space is equal to 1, one
gets that

lim
ε→0+

1

E − Ec + iε
= PV

[
1

E − Ec

]
∓ iπδ(E − Ec) , (10.27)

where PV stands for the (Cauchy) principal value.
By substituting Eq. (10.27) into Eq. (10.26) one obtains

E = 〈φQ|ĤQQ|φQ〉 + PV
∫ ∞

0
dEcρ(Ec)

|〈φQ|HQP|φP
Ec

〉|2
E − Ec

(10.28)

− iπρ(E)〈φQ|HQP|φP
E〉〈φP

E|HPQ|φQ〉 .
Note in passing that since E becomes complex,

〈φP
E|HPQ|φQ〉 	= [〈φQ|HQP|φP

E〉]∗ (10.29)

and one should carry out analytical continuation of E from the real axis (where
the equality holds) to the complex E plane in order to evaluate the third term in
Eq. (10.28).

Exercise 10.2

Solve Eq. (10.18) for a two-channel problem where the potential in the closed channel
(Q) is defined as V1(x) = V0 − V1δ(x), the potential in the open channel (P) is given
by V2(x) = 0 and the coupling between the two (Q and P) channels is given by
V1,2 = λδ(x). Obtain a transcendental equation for the complex energy E which is
associated with the Feshbach resonance positions, Er, and widths, �. Use the fact that
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a delta potential well, −αδ(y), supports a single outgoing wave eigenstate which is
associated with an eigenvalue E = −α2/2.

Since Eq. (10.27) holds only for real values of E it implies that in the deriva-
tion of Eq. (10.28) we make an approximation where in the right-hand side of
Eq. (10.28) we have to introduce the real part of E. Another approximation we can
apply in order to simplify Eq. (10.28) is by assuming that:

(1) there is only one closed channel which supports a single bound state, |Eb〉 and in
the right-hand side of Eq. (10.28) we can replace E by Eb since E is embedded close
enough to the real axis (the resonance state is a narrow resonance which has sufficiently
long lifetime to justify this approximation);

(2) there is only one open channel with the threshold energyEth
1 = 0, and ĤPQ = V̂coup. We

also assume here that the continuum of the open channel is structure-less. Specifically,
the density of states, ρ(Ec), varies monotonically with Ec > 0.

Under these assumptions Eq. (10.28) reduces to

E = Er − i

2
� , (10.30)

where the resonance position is defined as Er = Eb +� and the shift from the
bound energy value is given by

� = PV
∫ ∞

0
dEc ρ(Ec)

|〈φQ|V̂coup|φP
Ec

〉|2
Eb − Ec

. (10.31)

The resonance width � is given by

� = 2πρ(Eb)|〈φQ|V̂coup|φP
Eb

〉|2 , (10.32)

where ρ(Eb) is the density of states in the open channel. Here we neglect the shift
of the resonance position from Eb. In the case of one-dimensional problems or
in the case of three-dimensional problems with s-wave symmetry, or when photo-
ionization is induced by a linearly polarized laser which takes place primely along
one direction, then ρ(Eb) � 1/

√
Eb. Therefore, as the bound state in the closed

channel approaches the threshold energy of the open channel �(Feshbach) → ∞
(provided |〈φQ|V̂coup|φP

Eb
〉|2 does not decay to zero faster or as fast as ρ(Eb)

when Eb → 0) . This behavior is very different from the behavior of shape-type
resonances where the tunneling through the potential barrier is suppressed as the
position of the resonance state approaches the threshold energy.

We can have a better estimate for the value of the decay rate � of the Feshbach
resonance when Eb is varied as it approaches the threshold energy of the open
channel from above (just before it becomes a bound state) by calculating the
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value of Eb for which Eb +� = 0. Using the approximate expression for the
Feshbach resonance position given in Eq. (10.57) we can estimate the value of Eb

for which the resonance coincides with the threshold energy of the open channel.
For example, for α = 1 the resonance position is at the threshold energy when
Eb = Eth

b = 0.28309. Since ρ(Eth
b ) has a finite value then �(Feshbach) → finite

value as well when the resonance position approaches the threshold energy of the
open channel. The expression in Eq. (10.32) we obtained for the resonance decay
rate � is identical to that of the Fermi golden rule expression (see the derivation of
the Fermi golden rule in Ex. 3.2).

It is important to realize that the complex energies E obtained by solving
Eq. (10.18) with the non-Hermitian effective Hamiltonian given in Eq. (10.19)
are also eigenvalues of the physical Hamiltonian given in Eq. (10.4). It implies that
the corresponding eigenfunctions are not in the Hilbert space as in the conventional
formulation of quantum mechanics. The change of the boundary conditions in the
solutions of the time-independent Schrödinger equation is “responsible” for the
non-Hermitian property of the physical Hamiltonian. We may say that the solutions
obtained in conventional quantum mechanics calculations are embedded in the
Hermitian sector of the domain of the operator, whereas the resonance solutions are
embedded in the non-Hermitian sector of the domain of the same physical operator.

It is a point of interest that the resonance solutions which are embedded in the
non-Hermitian sector of the domain of the Hamiltonian are obtained from a very
common application of the Green’s function method to the Hermitian formulation
of quantum mechanics where the outgoing boundary conditions are imposed by
the Green’s operator.

Exercise 10.3

One-dimensional model Hamiltonians for atoms in laser fields are commonly used in
the literature since the oscillating field breaks the spherical symmetry of the atom and
the electrons are ionized along a direction determined by the ac field.

Calculate the value of the shift in the resonance position from the bound state
energy in the closed channel for the case where the density of states in the continuum
of the open channel is ρ(Ec) = √

1/Ec, the free electron functions are flux normal-
ized, the bound state in the closed channel is the ground state of a one-dimensional
harmonic potential, and V̂coup = E0xe−(x/σ )2

, where σ is much larger than the size of
the system under consideration (e.g., an atom or a molecule, or an artificial mesoscopic
structure).

In this model V̂coup is the coupling between the bound state of the atom and the
continuum due to the effective absorption of one photon (no multi-photon absorption
processes) when a weak ac field of linearly polarized light is applied. Therefore, by
using the dressed picture formalism one gets that E0 is the maximum field amplitude
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of the laser field divided by 2. The Gaussian window function introduces into the
calculations the fact that the laser beam has a finite width σ and therefore the dipole
introduced by the laser field is effective only in a finite spatial region.

10.3 Concluding remarks

We have shown here that the Hamiltonian becomes non-Hermitian by imposing out-
going boundary conditions resulting from the use of the Green’s operator G+(E).
We showed that Feshbach resonances are associated with complex eigenvalues of
an effective Hamiltonian which is non-Hermitian while the associated eigenfunc-
tions of the closed channels are square integrable and are in the Hilbert space.
However, the corresponding open channel functions are not in the Hilbert space.
The derivation of an effective Hamiltonian provides a method for calculating Fesh-
bach resonances which avoids the need to overcome the computational difficulties
due to the exponential divergence of the open channel functions. In addition it
shows that the non-Hermitian formulation of quantum mechanics comes about in
a very natural way. It is very important to notice that the complex eigenvalues are
are not only associated with the effective Hamiltonian but they are also those of the
full problem and are not obtained by a truncation of the number of channels which
are taken into consideration.

10.4 Solutions to the exercises

Answer to Exercise 10.1

The spectral representation of the Green’s operator is given by

Ĝ+(E) = 1

E − Ĥ + iε
=
∫

dE′ |�E′ 〉〈�E′ |
E − E′ + iε

, (10.33)

where ε → 0+ (we omit the use of limε→0+ for brevity) and

Ĥ |�E′ 〉 = E′|�E′ 〉 . (10.34)

The continuum functions are energy normalized and therefore the density of states
does not appear in the integration over the energy as it would in the case when the
box-quantization is applied.

The asymptote of the energy normalized eigenfunctions�E′ consists of incoming
and outgoing waves, 1√

2πk
e±ikx , which are respectively associated with negative

and positive momentum p = h̄k. The energy is related to the momentum through
E′ = (h̄k)2/2 (here we use for simplicity a one-dimensional Hamiltonian for non-
interacting particles). We will use the atomic units where me = h̄ = 1. Since we
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wish to show that the asymptote of � = Ĝ+(E)φ is an outgoing wavepacket we
will calculate

lim
x→∞�(x) = Ĝ+

∞(E)φ∞(x) , (10.35)

where φ∞(x) = limx→∞ φ(x), Ĝ+
∞(E) = (E+ + 1

2
d2

dx2 )−1, and E+ = E + iε.
Therefore,

lim
x→∞�(x) =

∫ +∞

−∞
dx ′G+

E (x, x ′)φ∞(x ′) , (10.36)

where

G+
E (x, x ′) = 1

2π

∫ +∞

−∞
dk

eik(x−x ′)

E+ − k2/2

= 1

2π

∫ +∞

−∞
dk eik(x−x ′) 1√

2E+

[
1√

2E+ − k + 1√
2E+ + k

]
.

(10.37)

Next we will employ the residue theorem (note that E′ = k2/2 and E is a free
parameter in our derivation, where E′ = E + iε such that Im(E′) > 0),∫ +∞

−∞
dk

eik(x−x ′)
√

2E+ ± k = −2π ie∓i
√

2E+(x−x ′) . (10.38)

Notice that e−i
√

2E+(x−x ′) → 0 when x < x ′ and diverges exponentially when x >
x ′. Conversely, e+i

√
2E+(x−x ′) → 0 when x > x ′ and diverges exponentially when

x < x ′. Consequently, by applying the Green’s operator on φ(x),

lim
x→∞�(x) = 1

i
√

2E

[
e+i

√
2Ex
∫ x

−∞
dx ′ei

√
2E+x ′

φ∞(x ′)

+ e−i
√

2Ex
∫ ∞

x

dx ′e−i
√

2E+x ′
φ∞(x ′)

]
. (10.39)

Since as x → ∞ the second term in the r.h.s of Eq. (10.39) vanishes,

lim
x→∞�(x) = 1

i
√

2E

[∫ +∞

−∞
dx ′ei

√
2Ex ′
φ∞(x ′)

]
e+i

√
2Ex . (10.40)

Equation (10.40) shows that the wavepacket � = Ĝ+(E)φ is indeed constructed
of outgoing waves only. This completes the proof that the +iε in the Green’s
operator, Ĝ+(E) = limε→0+(E + iε − Ĥ )−1, introduces outgoing wave boundary
conditions on � = Ĝ+(E)φ.
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Answer to Exercise 10.2

Following Eq. (10.18), the resonance state of our problem is the complex solution
of the self-consistent equation[
−1

2
∂2
x + V0 − V1δ(x)

]
�Q(x) + λ2δ(x)

∫
dx ′GPP

E (x, x ′)δ(x ′)�Q(x ′) = E�Q(x) ,

(10.41)

where GPP
E (x, x ′) is the Green’s’s function of a free particle which satisfies(

E + 1

2
∂2
x

)
GPP
E (x, x ′) = δ(x − x ′) . (10.42)

It is straightforward to show that

GPP
E (x, x ′) = − i

k
eik|x−x ′| . (10.43)

The proof is as follows.
By defining a new variable y = x − x ′ and substituting the ansatz that

GPP
E (x, x ′) = Aeik|y| into Eq. (10.41), it is clear that for positive values of ε∫ +ε

−ε
dy

[(
E + 1

2
∂2
y

)
GPP
E (y) − δ(y)

]
= 0 ,

1

2

[
∂yG

PP
E

∣∣∣
y=+ε

− ∂yGPP
E

∣∣∣
y=−ε

]
− 1 = 0 .

1

2

[
ikAeik|ε| − (−ikA)eik|ε|]− 1 = 0 . (10.44)

By taking the limit of ε → 0, Eq. (10.44) reduces to the condition

ikA− 1 = 0 (10.45)

and therefore A = −i/k, as given in Eq. (10.43).
The next step in our calculations is to substitute Eq. (10.43) into Eq. (10.41)

which leads to

λ2δ(x)
∫

dx ′GPP
E (x, x ′)δ(x ′)�Q(x ′) = −λ2δ(x)

i

k
eik|x|�Q(0) . (10.46)

Since δ(x) = 0, for x 	= 0 we can replace eik|x|�Q(0) in the above equation by
eik0�Q(x). Therefore, Eq. (10.41) can be rewritten as[

− 1

2
∂2
x − αδ(x)

]
�Q(x) = (E − V0)�Q(x) , (10.47)
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where we define E = k2/2, E − V0 = q2/2 and

α = V1 + i
λ2

k
. (10.48)

The resonance state for our two-coupled-channel problem is the solution of the
effective self-consistent equation given above.

Using the given information that a delta potential well, −αδ(x), supports a
single outgoing wave eigenstate which is associated with an eigenvalue for which
q2 = −α2, and thus q = iα, we obtain that the resonance complex energyE = k2/2
is a solution of the following transcendental equation:

kq(k) − ikV1 + λ2 = 0 . (10.49)

The resonance solution to this transcendental equation can be found using graph-
ical or numerical methods. For a graphical solution, one method is to plot the
absolute value of Y:

Y = k
√
k2 − 2V0 − ikV1 + λ2 , (10.50)

as a function of the complex k where the solutions are the values for |Y | = 0.
For the sake of completeness of our representation we prove below that indeed

the solution of Eq. (10.47) with outgoing asymptote is associated with an eigen-
value E = −α2/2. For real values of α the wavevector q is purely imaginary, i.e.,
q = i|q|, and �Q(x) is a bound state, whereas for complex values of α complex
eigenvalues (decay resonance poles of the scattering matrix) are obtained. We sub-
stitute the anzatz that�Q(x) = Aeiq|x| in Eq. (10.47) and integrate over x from −ε
to +ε. Resulting from this integration one gets

− 1

2

[
d�Q

dx

∣∣∣
x=ε

− d�Q

dx

∣∣∣
x=−ε

]
− α�Q(0) = 0 . (10.51)

After the integration we substitute our anzatz for the solution and take the limit of
ε → 0. This mathematical operations yields the following equation:

− 1

2

[
2iq�Q(0)

]− α�Q(0) = 0 , (10.52)

which is reduced to the final result q = iα and consequently to

E = q2

2
= Er − i

2
� , (10.53)

where

Er = −Re(α2)

2
,

� = Im(α2) . (10.54)
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Answer to Exercise 10.3

For convenience in solving this problem we use atomic units with me = h̄ = 1 =
a0, where the mass of the electron is me and and the Bohr radius is defined as
a0 = h̄2/(mee

2) = 1. Therefore, Ec = k2
c/2, where kc is the wave vector of the

continuum function of a free particle in the open channel. The threshold energy
of the open channel is taken here as 0. Accordingly, the bound state energy in
the closed channel is positive, i.e. Eb > 0. Since the singularity in the expression
for the resonance shift given in Eq. (10.31) is at Ec = E, the PV of the divergent
integral is obtained by calculating the limit of the integral outside the interval
(Eb − ε, Eb + ε) as ε → 0. Specifically, the shift in the resonance position from
the bound state energy in the closed channel, Eb, is defined as

� = lim
ε→0

[ ∫ Eb−ε

0
dEc

|〈φQ
bound|V̂coup|φP

Ec
〉|2√

Ec(Eb − Ec)
+
∫ ∞

Eb+ε
dEc

|〈φQ
bound|V̂coup|φP

Ec
〉|2√

Ec(Eb − Ec)

]
.

(10.55)

The ground state in the closed channel is defined by φQ
bound(x) = (α/π )1/4e−αx2/2.

Within the interval −L/2 < x < +L/2, whereL > 1/α is the size of the system
under consideration, V̂coup � E0x. The matrix element 〈φQ

bound|V̂coup|φP
Ec

〉 (where the
continuum functions are fluxed normalized) is equal to

〈φQ
bound|V̂coup|φP

Ec
〉 = E0

∫ +∞

−∞
dxe− αx2

2 xe+ikcxk−1/2
c = iE0

√
2π

α3/2

√
kce− k2c

2α kc .

(10.56)

Therefore (note that
√
Ec = kc/

√
2)

� � E2
0

2π
√

2

α3
lim
ε→0

[∫ Eb−ε

0
dEc

e− 2Ec
α

Eb − Ec
+
∫ ∞

Eb+ε
dEc

e
−2Ec
α

Eb − Ec

]

= E2
0

4π
√

2

α3
e− Eb

α Ei(Eb/α), (10.57)

where Ei is the second exponential-integral function.6
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H. Baumgärtel, Analytic Perturbation Theory for Matrices and Operators, Berlin,
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P. A. M. Dirac, The Principles of Quantum Mechanics, 4th edn., Oxford, Clarendon Press,
1958.
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tions, Inc., 1970.



392 The point where QM branches into two formalisms

H. Feshbach, Theoretical Nuclear Physics, New York, John Wiley & Sons, Inc., 1992.
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H. Feshbach, Unified theory of nuclear reactions: II, Ann. Phys. 19, 287–313 (1962).
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