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Foreword

As a teacher and researcher, nothing is more gratifying than to get your point of view 
successfully across to your students. You get immense satisfaction when students score well 
in your subject. And that is the experience of Professor Nikhil Ranjan Roy, formerly with 
Ranchi University! The book Introduction to Quantum Mechanics coming out of his forty 
years of teaching experience is highly lucid and a pleasure to read. Prof Roy has always 
been ‘to the point’, which is also one feels while going through this book of his. Learning 
quantum mechanics is not like learning a foreign language. There is no one-to-one translation 
of classical mechanics into it. This is a new concept all together and Prof Roy has introduced 
it with full passion and gravity that it deserves to arouse the interest of the reader in it. The 
book shows the necessity of using quantum mechanics while dealing with atomic and sub-
atomic particles. 

	 The book is meant for the beginners, especially for the undergraduate students of science 
and engineering. The contents of the book have been organized to cover the curricula of BSc 
(Hons) Physics of most Indian universities and those of engineering colleges. The contents 
have been arranged to emphasize the chronological evolution of the concepts, the laws and 
the basic mathematical theory of quantum mechanics—the most outstanding development 
of modern science. It is a complete book, including solved examples at the end of each 
chapter. 

	 The book should be a delight to the teachers of quantum mechanics as well, as they need 
not jump from book to book while teaching the subject and can directly refer a single book 
to serve the purpose of the students.

	 I am sure the book will prove to be stimulating and useful not only for the students 
for whom it is meant but also for those who are intending to do their post-graduation and 
beyond.

Professor B K Mathur
Department of Physics

Indian Institute of Technology, Kharagpur





Preface

Before I introduce the book to the readers I would like to share some experience of my own 
student life. After my postgraduation, when I began my researches in quantum mechanics with 
Prof H G Venkatesh at BIT, Mesra, Ranchi I had to face many difficulties, some of which were 
of serious nature—in regard to my very understanding of the basics of the subject. It took me 
quite sometime to overcome this problem.
	 Thereafter, when I had the opportunity to teach the subject at both graduate and postgraduate 
levels, which I did for a number of years, I found that a more or less similar situation prevailed 
and this continues even now. A kind of barrier is encountered by a majority of students when 
they begin studying this subject. As a result, instead of trying to go deep into the subject 
for understanding its marvels and its wide scope, students take it very casually and prepare 
themselves for merely answering a few questions in the examination. However, it is an admitted 
fact that a psychological barrier was also faced by anyone who started getting involved in the 
subject of quantum mechanics during its formative years, particularly because it was difficult 
to break away from the so well established and accepted ideas, concepts and laws of classical 
physics based on everyday experience.
	 The situation has, however, changed during the last century and quantum mechanics has 
grown to such heights as to be one of the most magnificent edifices of human thought. It has 
revealed many hidden secrets of nature on the one hand and on the other has enabled men to 
progress many steps towards the understanding of matter and radiation—the two entities of 
which the Universe is composed.
	 I have been feeling strongly for quite sometime that our students need to tunnel through the 
barrier they face in order to understand this wonderful subject to its entire width and depth.
	 The present book, I believe, will serve as an introductory volume specially written for our 
undergraduate students at honours level and those of engineering colleges with no previous 
exposure to the subject. In preparing it the curricula of different Indian universities and 
engineering colleges have been kept in mind. Attempt has been made to present the contents 
of the book in a style of classroom teaching. The main emphasis has been on the evolution of 
the subject, the underlying ideas, the concepts, the laws and the mathematical apparatus for 
the formulation of the subject in a systematic and comprehensible manner. Each chapter is 
followed by a number of solved examples and problems which are so chosen that they may 
serve as guidelines to the solutions for more complex problems and for the application of the 
basic principles of quantum mechanics to some extent.
	 I presume the book will serve as a reasonably comprehensive introduction to the subject. 
Suggestions for the improvement of the book will be highly appreciated.	

Prof N R Roy
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1.1  LaWS AND CONCEPTS OF CLASSICAL PHYSICS

The laws of nature which were discovered in the study of physical phenomena in the 
macroscopic or the observable world are the laws of classical physics.

	 One of the first and the most pioneering discoveries was due to Newton which came to 
be known as Newtonian Mechanics, the crux of which lies in the three laws of motion. These 
laws and the subsequent law of universal gravitation, also given by Newton, can describe 
precisely the motion of objects that we see around us.

	 New formulations of Newtonian mechanics which came to be known as classical or 
analytical mechanics were developed for the analysis of complex mechanical problems. 
Some brilliant mathematical works due to Euler, Lagrange, Hamilton, Poisson, Jacobi and 
many others developed this mechanics to the extent that it reached close to perfection.

	 Many universal principles in physics are enunciated. The laws of thermodynamics were 
formulated from the observations in nature. These laws were basically concerned with 
transformation of energy. The principle of conservation of energy was firmly established in 
such transformations. Carnot, Clausius, Kelvin, Planck, Rayleigh, Jeans, Stefan, Wien are 
some of the names associated with this field.

	 Significant progress in the studies in the apparently disconnected fields of electricity 
and magnetism took place through the pioneering works of Faraday, Ampere, Maxwell and 
others. These studies finally led to Maxwell’s electromagnetic theory. Importantly, light was 
seen to be the manifestation of electromagnetic theory. Nineteenth century was an era of rapid 
growth in physics and towards the end of the century there existed laws of motion, laws of 
gravitation, laws of thermodynamics, universal principle of conservation of energy, laws of 
electricity and magnetism culminated into Maxwell’s electromagnetic theory. The above laws 
of classical physics proved to be very close to perfection for the understanding and analysis 
of the phenomena in the observable world.

Concepts of Classical Physics

Like any other physical theory, the contents of classical physics are a number of concepts 
which evolved on the basis of prolonged human experience and which have stood the test of 
time. The basic concepts in classical physics are

	 (i)	 Continuous variation of physical quantities

1 Origin and Growth of quantum physics
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	 (ii)	 The principle of classical determinism, and

	 (iii)	 The analytical method of studying objects and phenomena.

	 The above concepts have the following consequences:

	 (a)	 The state of a moving object at every instant of time is completely determined from 
a knowledge of its coordinates and velocities which are continuous functions of time 
thereby leading to the concept of motion of objects along trajectories.

	 (b)	 It is possible to predict precisely the state of an object at any instant of time from 
a knowledge of the state and the forces acting on the object at any previous instant 
of time. This, in other words, means that classical physics assumes an unambiguous 
link between present and future in the same way as between past and present.

	 (c)	 Matter is considered to be made up of different parts which, though interacting with 
one another, may be investigated individually. A special consequence of the principle 
of analysis is the motion of the mutual independence of the object of observation 
and the observer. Thus classical physics considers the object of investigation and the 
investigator to be completely isolated from each other so that physical phenomena 
can be studied without interfering with their progress.

	 The above notions of classical physics are based on everyday, commonplace experience 
and are readily acceptable to our common sense, i.e., they are considered as quite natural. The 
principle of analysis is not only natural but is the only effective method of studying matter. 
The principle of determinism reflects what is called causality of phenomena in nature.

	 Towards the end of the 19th century, it was generally believed that the description of the 
laws of nature in terms of the laws of classical physics and the basic concepts in classical 
physics was in a state of completion and a final description of physical phenomena was at 
hand.

	 However, this state of affairs turned to be a mere illusion at the turn of the 20th century. 
There occurred a crisis in physics.

1.2  Origin of Quantum Physics

In order to understand the origin of quantum physics and the subsequent development of 
an altogether new and conceptually different mathematical theory of quantum mechanics, 
it is first of all necessary to understand the background of the crisis in physics which was 
witnessed in the beginning of the 20th century.

	 Towards the end of the 19th century and the beginning of the 20th century many new 
discoveries took place. The discovery of X-rays in 1895, the laws of radioactivity in 1896, 
electron in 1897, dependence of electron's mass on its velocity, the laws of photoelectric 
effect, the laws of Compton effect are a few in a very imposing list of discoveries. Many new 
experiments such as Franck and Hertz experiment, Davisson-Germer experiment, Thomson’s 
experiment were performed during the period. Many new aspects of nature were encountered 
while dealing with physical problems in the domain of small particles, namely atoms and 
subatomic particles. What was astonishing was that the new discoveries, the results of new 
experiments and the phenomena at atomic and subatomic levels could not be understood in 
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terms of the then existing laws of classical physics. The phenomena at microlevel were found 
to be quite strange and one had to lose one’s common sense in order to perceive what was 
happening at the atomic and subatomic levels. The new aspects of nature and phenomena 
that were revealed at these levels are referred to as quantum phenomena, the word “quantum” 
referring to peculiar aspects of nature that go against common sense.

	 The study of quantum phenomena has come to be known as quantum physics.

	 Like classical physics, quantum physics also has been provided with a mathematical 
apparatus. The entirely new conceptual structure for dynamics in particular and physics in 
general, has been evolved during the last century. The currently accepted structure developed 
by Schrödinger, Heisenberg, Max Born, Jordan, Dirac and many others to deal with problems 
in the microdomain, i.e., at atomic and subatomic levels is termed as quantum mechanics.

1.3  Scope of Quantum Mechanics

The laws of quantum physics that govern the elementary particles are, however, not 
unconcerned with the macroscopic world and instead represent generalization of classical 
laws including them as special cases. The laws of quantum physics have been found to be 
the most general laws of nature discovered so far.

	 We may note that just as theory of relativity extends the range of application of physical 
laws to the region of very high velocities and just as the universal constant of fundamental 
significance ‘c’ (speed of light in vacuum) characterizes relativity, so a universal constant 
of fundamental significance ‘h’ (Planck’s constant) characterizes quantum physics which 
includes classical physics as a special case.

	 It is often said that ‘revolution’ was brought about through the discovery of quantum 
mechanics. The word revolution suggests that something has been overturned completely. We 
may note that the discovery of quantum mechanics has not overturned the laws of classical 
physics in any way. The motion of a simple pendulum is described in the same way even 
today as it was done prior to the discovery of quantum mechanics. Classical ideas embodied 
in the laws of classical physics have their own limits of applicability. The classical theories of 
physics do not find universal validity in the sense that they are only good phenomenological 
laws and are unable to tell us everything even about macroscopic bodies. There exists no 
comprehensive classical theory of matter. Classical physics does not provide answers to:

	 Why the densities of materials are what they are?

	 Why the elastic constants have the values they have?

	 Why a rod breaks if the tension in the rod exceeds a certain limit?

	 Why copper melts at 1083°C?

	 Why sodium vapour emits yellow light?

	 Why copper conducts electricity but sulphur does not?

	 Why uranium atom disintegrates spontaneously releasing energy? etc.

	 We find a host of observation for which classical physics has to tell us very little or 
nothing at all. Besides, the facts of chemistry are not understood in terms of classical laws.
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	 With the advent of quantum mechanics our knowledge has expanded enormously about 
the laws of physics in the realm of small particles which has consequently enabled us to build, 
if not comprehensive, at least a good theory of matter.

	 The theory of quantum mechanics has explained all kinds of details, such as why an 
oxygen atom combines with two hydrogen atoms to make one molecule of water and so 
on. Quantum mechanics thus supplies the theory behind chemistry. It has been realized that 
fundamental theoretical chemistry is based on the theory of quantum mechanics.

1.4  Old Quantum Theory

Historically, a relatively complete quantum theory was first developed by Bohr, Sommerfeld 
and others; now called the old quantum theory. Although it has now been replaced by a much 
more satisfactory modern theory, it still represents a good means of arriving at the concepts 
of the quantum theory with a view to their understanding.

	 In the following we discuss how the old quantum theory originated. We start with a 
discussion on inadequacy of classical physics in explaining phenomena at atomic and sub-
atomic levels followed by discussions on emergence of new concepts such as quantization 
of physical quantities, particle nature of radiation, and wave nature of matter.

1.5  Inadequacy of classical physics

In the following, a few, phenomena among many observed, in the microscopic world have 
been presented which cannot be explained on the basis of the laws of classical physics.

1.5.1  Black Body Radiation

The radiation emitted by a body as a result of its temperature is called thermal radiation. 
All bodies emit such radiation to their surroundings and absorb such radiation which fall 
on them from the surroundings. At high temperatures, most bodies become self luminous 
by their emitted light, although the major part of the thermal radiation lies in the infrared 
region of the electromagnetic spectrum. When the temperature of a body is raised slowly, 
two principal effects are observed (i) the rate of emission of thermal radiation increases and 
(ii) the frequency of that part of the spectrum that radiated most intensely increases so that 
the colour of the hot body changes from red to yellow to white.

	 The amount of thermal radiation emitted per second per unit surface area and the spectrum 
of the radiation emitted by a body at a given temperature are found to depend upon (i) the 
nature of the material or the composition of the body and (ii) the nature of the surface of the 
body.

	 However, there exists one class of bodies called black bodies which emit thermal radiation 
with the same spectrum at a given temperature regardless of their individual compositions and 
surfaces. Such bodies absorb completely all thermal radiation incident on them. An object 
coated with a diffused layer of black pigment such as lamp black or bismuth black is nearly a 
black body. A hollow enclosure or cavity of any shape or size insulated from the surroundings 
and having inner walls maintained at a temperature, say, T is filled with thermal radiation 
characteristic of a black body at that temperature.
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	 Lummer and Pringsheim, Paschen, Rubens and Kurlbaum conducted detailed experimental 
studies on black body radiation over a wide frequency/wavelength range during 1899–1900. 
The general nature of the observed spectra of radiation at different temperatures are as shown 
in the Fig. 1.1. In the figure El represents the energy density of radiation at the wavelength 
l. Using classical concepts, Rayleigh and Jeans calculated the energy density of cavity 
radiation (or black body radiation) as a function of frequency and obtained the formula 

(Rayleigh–Jeans law)

		  (En)T dn = 
2

3

8
kT d

C

pn
n 	 …(1)

Fig. 1.1

	 The formula was found to agree well with experiments for low frequencies but led to 
absurd results for higher frequencies at any given temperature. The total energy emitted at 
any given temperature according to the above formula is

		
2

3
0 0

8
E E d kT d

C

• •
p= =Ú Ún
n

n n 	 …(2)

which yields infinite values of E at all temperatures other than T = 0, which is totally an 
erroneous result. (This situation was known as ultraviolet catastrophe.) Wien in the year 1896, 
studying black body radiation using the concepts of thermodynamics, derived a formula for 
energy density of radiation as a function of frequency and temperature which accounted for 
the experimental results obtained for high radiation frequencies quite accurately but not for 
low frequencies.

	 We thus find that classical theories failed to explain the black body spectrum over the 
entire range of frequency of the emitted radiation.
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1.5.2  Specific Heat of Solids

According to classical law of equipartition of energy, the average kinetic energy per degree 

of freedom of a gas molecule at the temperature T is ​ 1 __ 
2

 ​ kT. For a monatomic gas there are 

three degrees of freedom of translational motion so that the total average kinetic energy of 

a molecule is ​ 3 __ 
2

 ​ kT.

	 A solid may be supposed to consist of atoms each of which is bound to its respective 
neighbours but it resonates and vibrates freely when the solid is heated. Clearly, the mean 
kinetic energy of vibration of 1 mole of a solid at the temperature T is

		  Mean kinetic energy = NO ​ 3 __ 
2
 ​ kT = ​ 3 __ 

2
 ​ RT	 ...(3)

where NO is the Avogadro’s number and NO k = R is the universal gas constant.

		 If we consider vibration of the atoms in the solid to be simple harmonic, then for each 
atom the average potential energy is equal to the average kinetic energy so that the mean 
potential energy for 1 mole of the solid at the temperature T is

		  Mean potential energy = ​ 3 __ 
2
 ​ RT	 ...(4)

	 Thus, the total energy of 1 mole of a solid at the temperature T becomes

		  E = Kinetic energy + Potential energy = 3 RT	 ...(5)

	 By definition, we then get the molar specific heat of a solid at constant volume as

		  Cv = 
V

E

T

∂Ê ˆ
Á ˜Ë ¯∂

 = 3 R ª 6 calories /g-mole	 ...(6)

	 The classical laws thus predict:

	 Specific heat of all 
solids is the same and is 
a constant, independent 
of temperature.

	 Physicists in the 19th 
century faced a violation 
of the above classical law 
referred to as Dulong-
Petit’s law. At high 
temperatures the law 
was found to hold only 
approximately. Also, it 
completely fails for light 
elements even at low 
temperatures where we 

Fig. 1.2
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observe marked variation of specific heat with temperature as shown in the Fig. 1.2. We thus 
find that the temperature dependence of specific heat of solids could not be explained within 
the framework of classical theory.

1.5.3  Stability of Atoms and Emission of Line Spectra by Atoms

In 1908 Geiger and Marsden under the guidance of Rutherford began studies on the scattering 
of a-particles passing through thin foils of different metals. They discovered that most of 
the a-particles pass through the foil without being scattered while some a-particles, roughly 
one in ten thousand, get strongly deflected by angles greater than 90°. In 1911, Rutherford 
came to the conclusion that the strong deflection of an a-particle occurs not as a result of 
many collisions, but in a single act of collision with an atom and, consequently there must 
be a small positively charged region (nucleus) at the centre of the atom, containing almost 
the entire mass of the atom and the negatively charged electrons are distributed around the 
nucleus.

	 Since the electrons experience electrostatic forces of attraction towards the nucleus, an 
atom can be stable, according to classical mechanics, only if the electrons revolve round the 
nucleus, the force of attraction providing the necessary centripetal force for rotation. This 
was a decisive step towards the creation of the planetary model of the atom which Rutherford 
formulated in 1913.

	 The revolving electrons are, however, accelerated and hence should radiate energy in 
the form of electromagnetic waves according to classical electromagnetic theory. As a 
consequence, the energy of the revolving electrons should continuously decrease and they 
should spiral down into the nucleus. This is contradictory to the observed fact of non-
existence of electrons in the nucleus of an atom. The stable condition of an atom as observed 
experimentally is thus not explained by the laws of classical physics.

	 It is an experimental fact that when a salt of alkali metal or alkaline earth metal is heated 
to incandescence and the emitted light is examined using a spectrometer we observe the 
presence of a series of wavelengths forming what we call a line spectrum. The spectrum 
observed is a characteristic of the salt. Similarly, when a gas (in its atomic state) is discharged, 
it emits electromagnetic radiation of characteristic wavelengths, i.e., a line spectrum.

	 According to classical picture of atom outlined above, the excited atoms should, however, 
emit a continuous spectrum of wavelengths when the revolving electrons in the atoms spiral 
down to their respective nuclei.

	 We thus find that the laws of classical physics do not subscribe to the emission of line 
spectrum. 

1.5.4  Photoelectric Effect

None of the experimental results on photoelectric effect could be explained on the basis of 
classical theory of electromagnetic radiation (light), namely, the wave theory. This will be 
considered in details in a section to follow.
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1.5.5  Compton Effect

The experimental results on Compton Effect (the Compton shift) could not find explanation 
according to the classical wave theory of electromagnetic radiation. The effect will be 
discussed in details in a section to follow.

1.5.6 R emarks

Towards the end of the 19th century and the beginning of the 20th century physicists were 
faced with a situation which was rightly realized as the crisis in physics. Concepts, theories 
and the laws of classical physics were proving completely inadequate to provide explanation 
of the physical problems in the domain of small dimensions such as atoms, molecules, nuclei, 
electron and other subatomic particles.

1.6	 Discreteness of Energy: A New Idea

1.6.1	 Planck’s Quantum Hypothesis: Explanation of Black Body Radiation 
Spectrum

Max Planck in the year 1900 was able to obtain a formula for the energy density of radiation 
emitted by a black body at a given temperature as a function of the frequency of the emitted 
radiation by radically modifying the classical view and which was found to be in complete 
agreement with the experimentally obtained black body spectrum. The classical theory 
of black body radiation is based on the law of equipartition of energy. Planck asserted 
that for cavity radiation at least, the average energy of the stationary waves in the cavity 
should depend on the frequency of the waves besides the temperature and not independent 
of frequency as follows from the classical law of equipartition of energy. Considering the 
problem purely mathematically, Planck found that the desired dependence of average energy 
on frequency could be obtained if energy be considered as a discrete variable rather than a 
continuous variable as in classical physics.

	 Planck considered these discrete allowed energy values as

	 	 Œ = 0, DŒ, 2DŒ, 3DŒ	 ...(7)

where DŒ represents the uniform gap between the successive allowed values of energy.

	 The average energy was found to be

and	
= 0 if is chosen to be large

= if is chosen to be small.kT

Œ DŒ ¸
˝Œ DŒ ˛

	 ...(8)

	 Thus large differences in adjacent energies correspond to the high frequency behaviour 
of cavity radiation while small differences to the low frequency behaviour. Planck hence 
assumed that

DŒ µ n

or		  DŒ = hn	 ...(9)
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where h is the proportionality constant. The formula for the average energy ​
__

 Œ​ as obtained 
by Planck was

	 	 ​
__

 Œ​ = / – 1h kT

h

e n

n
	 ...(10)

in place of the classical formula ​
__

 Œ​ ~ kT.

	 With the above formula for ​
__

 Œ​, Planck obtained the energy density of the radiation emitted 
by a black body at temperature ‘T ’ at the frequency ‘n’ as

		
2

3 /

8
( )

– 1T h kT

h
E d

C e

p= n

n n
n n 	 ...(11)

	 Planck found that the best agreement between the above formula and experimental data 
took place when the value of h was taken to be same as the modern value

		  h = 6.63 × 10–34 Js

	 = 4.14 × 10–15 eV.s

Ever since this fundamental constant has been called the planck’s constant.

	 The experimental results shown in the Fig. 1.1 are in complete agreement with Planck’s 
formula at all temperatures within the limits of experimental uncertainties.

Physical Explanation of Planck’s Assumption

The electromagnetic waves within the cavity originate from radiation given off by electrons of 
the atoms which oscillate on the walls of the cavity due to thermal agitation. Classically, these 
atomic oscillators radiate their energies continually as the motion of the electrons gradually 
subside and the electrons fall to their respective nuclei.

	 Planck, on the other hand, conjectured that an oscillator emits energy in the form of 
radiation in spurts so that instead of decreasing continuously, its energy decreases discretely. 
For this reason, the allowed energy values of an atomic oscillator must be discrete and during 
exchange of energy with cavity radiation, the oscillator emits or absorbs radiant energy only 
in discrete amounts. Since the discrete energies that an oscillator can emit or absorb are 
directly proportional to its frequency, oscillators of low frequency can emit or absorb energy 
in small packets whereas those of high frequency absorb or emit only large energy packets. 
If the cavity wall is at a low temperature, there exists sufficient thermal energy to excite 
oscillators of low frequency but not those with high frequency. The high frequency oscillators 
need large energy to begin radiating and only a few of them are activated compared to low 
frequency oscillators. Hence the walls radiate more in the long wavelength or high frequency 
region and hardly at all in the ultraviolet region. As the temperature is raised, sufficient 
thermal energy becomes available to activate large number of high frequency oscillators 
and the emitted radiation shifts its character towards higher frequencies, i.e., towards the 
ultraviolet region.

	 From the above we find that Planck’s assumption of discreteness of energy leads to the 
experimentially observed black-body spectrum.
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	 It is instructive to note the following

	 (i)	 Under the condition ​ hn ___ 
kT

 ​ << 1, Planck’s formula reduces to the classical formula of 
Rayleigh–Jean.

	 (ii)	 Under the short wavelength or high frequency limit ​ hn ___ 
kT

 ​ >> 1, Planck’s formula takes 

the form as obtained by Wien as a fit to experiment in the high frequency end of the 
black-body spectrum.

1.6.2  Einstein’s Explanation of Variation of Specific Heat of Solids 
	 with Temperature

The idea of discreteness of energy introduced by Planck in 1900 was extended by Einstein 
in 1907 to explain the variation of specific heat of solids with temperature. Einstein in his 
theory of specific heat of solids made the following assumptions:

	 (a)	 When a solid is heated, its atoms are set into simple harmonic vibrations about their 
respective positions of equilibrium with frequency characteristic of the solid.

	 (b)	 The energy of the vibrating atoms is a discrete variable.

	 (c)	 The average energy of vibration of an atom per degree of freedom is 
/ – 1h kT

h

e n

n  as 

was used by Planck and not equal to kT according to the classical law of equipartition 
of energy.

	 (d)	 Each vibrating atom of a solid has three degrees of freedom.

		 With the above assumptions, Einstein obtained atomic heat at constant volume at the 
temperature T by

		
2/

2/
3

– 1

h kT

v
h kT

e h
C k

kTe

Ê ˆ= Á ˜Ë ¯È ˘Î ˚

n

n

n 	 ...(12)

		 The above formula is found to predict almost correctly the variation of specific heat of 
a solid with temperature excepting in the case of certain light elements such as aluminium, 
copper, etc., for which Cv is found to decrease with decrease in temperature much more 
rapidly than predicted by Einstein’s formula.

	 Debye modified Einstein’s theory by considering

	 (a)	 mutual forces acting between the atoms

	 (b)	 elastic vibrations of transverse as well as longitudinal types in different modes

	 (c)	 the existence of an upper limit of vibration frequency characteristic of the solid.

	 It is found that the formula for atomic heat obtained by Debye explains quite successfully 
the variation of heat capacity of solids with temperature which classical theories could 
not do.
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1.6.3	 Bohr’s Explanation of Stability of Atoms and 				  
	 Emission of line Spectra

Neils Bohr in 1913 gave the theory of planetary model of the hydrogen atom based on the 
concepts of quantization of energy of atomic radiations introduced by Planck. Bohr could 
resolve to some extent the difficulties encountered by classical physics in explaining the 
stability of atoms and emission of line spectra.

	 Bohr’s theory makes the following assumptions. These are known as Bohr’s postulates.

	 (a)	 Electrons in an atom move round the nucleus in circular orbits, the necessary 
centripetal force for rotation being provided by the electrostatic forces of attraction 
on them offered by the positively charged nucleus.

	 (b)	 The orbits in which the electrons move define the stationary states of the atom in 
the sense that so long as the electrons continue to move in the orbits they do not 
lose energy by emitting electromagnetic radiation. This postulate is against classical 
electromagnetic theory.

	 (c)	 The stationary orbits in which electrons can move do not have radii varying 
continuously from zero to higher values but have only certain discrete values. These 
discrete values are such that the angular mementa of rotating electrons in the orbits 

are integral multiples of ​ h ___ 
2p

 ​. It is this postulate by which Bohr introduced the idea 

of discreteness of angular momentum and hence of discreteness of energy of atoms. 
Resolutely departing from accepted concepts, Bohr ruled out any direct link between 
the frequencies of radiation emitted by an atom with the frequencies of rotation of 
electrons in stationary orbits and instead postulated that

	 (d)	 Energy is emitted or absorbed by an atom only when an electron makes discontinuous 
transition from an orbit of higher energy to an orbit of lower energy or from an orbit 
of lower energy to an orbit of higher energy.

	 Stability of an atom follows from the postulate ‘b’. It may, however, be noted that Bohr 
did not give any logical or other explanation for the existence of stationary orbits.

	 Bohr calculated the energy of the electron in a hydrogen atom rotating in the nth circular 
orbit to be

		  En = – ​ 2p2me4

 _______ 
n2h2

 ​	  ...(13)

	 In the above, ‘m’ is the mass of the electron, and e is its charge.

	 Since orbits have discrete values of energy given by Eq. (13), the energy absorbed or 
radiated, according to postulate ‘d’, is always discrete and not continuous. The frequency of 
electromagnetic radiation emitted or absorbed is obtained from Bohr's frequency rule.

		  –n m
nm

E E

h
=n 	 ...(14)
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where En and Em are respectively the energies of the electron in the nth and mth allowed orbits 
(n > m) between which the transition of the electron’s motion takes place.

	 Using Eq. (13) in Eq. (14) we obtain

		  nnm = 
2 4

2 2 2

2 1 1
–

me

h m n

p Ê ˆ
Á ˜Ë ¯

	 ...(15)

	 The experimentally observed spectral lines of hydrogen are found to fit the formula given 
by Eq. (15).

1.6.4  Experimental Evidence of Quantization of Internal Energy of Atoms: 
Franck and Hertz Experiment

James Franck and Gustav Hertz conducted experiments in 1914 which gave direct experimental 
evidence for the fact that an atom may change its energy only discretely. These were the 
famous experiments on the measurement of the electron energy spent on exciting mercury 
atoms.

	 A sectional diagram of the apparatus used by Franck and Hertz shown in the Fig. 1.3 
consisted of a quartz chamber filled with mercury vapours. Within the chamber are mounted 
a filament (cathode), which could be heated by passing an electric current through it, a plate 
anode and an accelerating grid near the plate. The filament is in the form of a wire while the 
plate and the grid are cylindrical, surrounding the filament.

Fig. 1.3

	 The current through the filament and hence the temperature of the filament is so adjusted 
that thermoelectrons are emitted from its surface with very little kinetic energy. The grid 
voltage (V) is set to accelerate the electrons emitted from the filament towards the plate.

	 A small retarding potential is set up between the plate and the grid so that the electrons 
that pass through the openings in the grid with very small kinetic energy are not able to reach 
the plate.

	 The experiment consists in gradually increasing the accelerating voltage ‘V ’ starting from 
a very small value and measuring the electron beam current passing through the plate circuit 
by means of the ammeter ‘A’.

	 The results obtained are shown in the Fig. 1.4. We find that when the accelerating voltage 
V increases from zero value, the current increases and when V reaches the value 4.9 volt, the 
current suddenly drops. This observation can be interpreted as the loss of major fraction of 
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the kinetic energy of majority of the electrons due to inelastic collisions with the mercury 
atoms in the chamber once they reach the kinetic energy 4.9 eV in front of the grid. They are 
thus left with very little kinetic energy and the retarding potential between the grid and the 
plate prevents them from reaching the plate and hence the plate current drops. The mercury 
atoms absorb the energy 4.9 eV and are said to get into an excited state.

Fig. 1.4

	 As V increases beyond 4.9 volt, the electrons near the grid gain kinetic energy and become 
able to overcome the retarding potential and reach the plate. The current thus rises again when 
V becomes large enough so that the electrons have enough kinetic energy to be able to make 
two separate inelastic collisions with mercury atoms during their passage from cathode to 
anode, the current drops again. As the voltage is increased, as expected, a series of current 
drops are observed at equal intervals of 4.9 volt as shown in the Fig. 1.4.

	 The above results indicate that the first excited state of mercury atom is 4.9 eV above its 
lowest energy state or ground state. The results further tell that mercury atoms are not able 
to absorb energy from electrons having less energy than 4.9 eV.

	 The mercury atoms which get excited after the absorption of energy are expected to 
give up this energy as they make transition to the lowest energy state. In later experiments 
Hertz observed and analysed the spectrum emitted by the mercury vapour in the chamber. It 
was observed that when accelerating voltage V was less than 4.9 volt, the spectrum was not 
emitted at all.

	 However, as the accelerating voltage reached 4.9 volt, a single spectral line was observed. 
Even if the voltage was increased somewhat beyond 4.9 volt the same line was emitted having 
wavelength 2536 Å. The wavelength of the emitted line is seen to fit Bohr’s frequency rule

8 –1 –34
–10

–19

3 10 (ms ) 6.63 10 Js
2536 10 m

4.9 1.6 10 J

c

v

È ˘¥ ¥ ¥l = = = ¥Í ˙¥ ¥Î ˚
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	 Using different grid arrangements than the one used in the first experiment, Hertz found 
other spectral lines in the spectrum emitted by the mercury vapour. These lines corresponded 
to energies 6.67 eV, 8.84 eV and 10.4 eV above the ground state energy of mercury atom.

	 We thus find that mercury atoms absorb only and exactly energies 4.9 eV, 6.67 eV, 
8.84 eV and 10.4 eV, i.e., the mercury atoms can exist only in states with a set of discrete 
values of energy.

	 Experiments of Franck and Hertz thus provided striking evidence of quantization of 
internal energies of atoms.

1.6.5  Conclusion

From Planck’s analysis of black body radiation, Einstein’s explanation of temperature 
dependence of specific heat of solids, Bohr’s planetary model of hydrogen atom explaining 
stability and emission of spectral lines from hydrogen atom and from the results of Franck 
and Hertz experiment we are faced with a conclusion that contradicts the firmly established 
concepts of classical physics when they are applied to microscopic systems. In such systems 
energy cannot be changed in a continuous way by an arbitrary amount; instead, energy of 
such systems can take only certain discrete values.

1.7  Wilson–Sommerfeld Quantization Rule

Bohr’s theory based on the quantization of angular momentum and energy of the electron 
in hydrogen atom was successful in explaining broad features of hydrogen atom and of the 
spectral lines emitted by it. The concepts used in the theory were new but of fundamental 
importance and inspired further researches in atomic physics.

	 Bohr’s theory was extended by Arnold Sommerfeld in the year 1915 by introducing 
elliptical orbits for the electrons in atoms.

	 In the same year Wilson and Sommerfeld postulated independently a more general 
statement of quantization rule for systems undergoing periodic motion.

	 If a periodic system of s degrees of freedom described by generalized coordinates q1 ... qs 
and generalized momenta p1, p2 ..., ps then phase integrals of the system are defined as

		  Ji = Ú pi dqi,  i = 1, 2, ..., s	 ...(16)

the integration being carried over one complete cycle of the variable qi. Wilson and Sommerfeld 
stated that the stationary states (allowed orbits) for the system are those for which the phase 
integrals are integral multiples of Planck’s constant h, i.e.,

		  Ji = Ú pi dqi = ni h;  ni = 0, 1, 2, ...	 ...(17)

	 In the case of motion of electron in circular orbits, the number of degrees of freedom is 
only one and the angular momentum l = mvr is a constant of motion so that the quantization 
rule given by Eq. (17) reduces to

Ú mvr df = nh
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or		  mvr 2p = nh

so that	 mvr = ​ nh ___ 
2p

 ​ 	 ...(18)

	 We may note that Eq. (18) is the quantization rule postulated by Bohr for the electron in 
hydrogen atom rotating in circular orbits.

	 The general quantization rule of Wilson and Sommerfeld was used in a number of 
problems of interest, particularly for finding out the energies that periodic systems could 
assume. In the following, we present a brief outline of some such systems in the microscopic 
domain.

1.7.1  The Harmonic Oscillator

Consider a harmonic oscillator of mass m oscillating along the x-axis about the equilibrium 
position x = 0. The displacement of the particle from the equilibrium position at any instant 
t is given by

		  x = a sin w0t	 ...(19)

where a is amplitude and w0 is the natural frequency related to the force constant according 
to

		  w0 = ​÷ 
__

 ​ k __ m ​ ​	 ...(20)

	 The potential energy of the oscillator is given by

		  = = w w2 2 2 2
0 0

1 1
sin ( )

2 2
V kx m a t 	 ...(21)

	 The kinetic energy of the oscillator is

		  T = 
2

2 2 2
0 0

1 1 1
cos ( )

2 2 2

dx
mv m ma t

dt
2Ê ˆ= = w wÁ ˜Ë ¯

	 ...(22)

	 Thus, the total energy of the oscillator becomes

		  E = T + V = ​ 1 __ 
2
 ​ m ​w​0​ 

2​ a2	 ...(23)

	 According to Wilson–Sommerfeld quantization rule, we get

Ú px dx = nh,  n = 0, 1, 2,

or		  m Ú ​ dx ___ 
dt

 ​ dx = nh.

	 Substituting for ​ dx ___ 
dt

 ​ and dx, the above equation becomes

		  ma2 ​w​0​ 
2​ ​Ú 

0
 ​ 

2p /w0

​ ​cos2(w0t) dt = nh
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	 Evaluating the integral, the above gives

		  ma2 ​w​0​ 
2​ × ​ p ___ w0

 ​ = nh	 ...(24)

	 Using Eq. (24) in Eq. (23), the energy of the oscillator is

		  E = ​ 1 __ 
2

 ​ ​ 
nhw0 _____ p  ​ = nhw0,  n = 0, 1, 2	 ...(25)

	 Thus the quantization rule applied to linear harmonic oscillator gives the energy of the 
oscillator to be zero or an integral multiple of hw0 and not continuous.

1.7.2  Particle in a Box

Consider a particle of mass m moving within a rectangular box. Let us choose a Cartesian 
coordinate system with x, y and z axes parallel to the three adjacent edges of the box. Let the 
lengths of the box parallel to the x, y and z axes be respectively, a, b and c. Let px, py and pz 
be the components of the linear momentum of the particle along x, y and z axes, respectively. 
Let us consider the motion of the particle to be force-free and the collision of the particle 
with the walls to be perfectly elastic. Under such a force-free motion px, py, pz are constants 
of motion and they only change sign on collision with the walls perpendicular to the x-axis, 
y-axis and z-axis, respectively. Further, one cycle of motion parallel to the x-axis is 2a, that 
parallel to the y-axis is 2b and that parallel to the z-axis is 2c.

	 We now have, according to the Wilson–Sommerfeld quantization rule,

		  Ú px dx = ​Ú 
0
 ​ 

2a

​ ​px dx = px2a = nxh	 ...(26)

		  Ú py dy = ​Ú 
0
 ​ 

2b

​ ​py dy = py2b = nyh	 ...(27)

		  Ú pz dz = ​Ú 
0
 ​ 

2c

​ ​pz dz = pz2a = nzh	 ...(28)

	 The total energy of the particle is given by

E = ​ 
px

2

 ___ 
2m

 ​ + ​ 
py

2

 ___ 
2m

 ​ + ​ 
pz

2

 ___ 
2m

 ​

	 (The motion being force-free, potential energy of the particle is zero). Using Eqs. (26), 
(27) and (28) in the above, it becomes

E = 
2 2 2 22 2

2 2 2

1

2 4 4 4
y zx

n h n hn h

m a b c

È ˘
+ +Í ˙

Í ˙Î ˚

or		  E = 
2 222

2 2 28
y zx

n nnh

m a b c

È ˘
+ +Í ˙

Í ˙Î ˚
	 ...(29)
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	 In the above equations, nx, ny and nz are zero or integers. Equation (29) shows that the 
energy of the particle within the box is quantized.

1.7.3  The Rigid Rotator

A rigid rotator consists of two mass points attached at the two ends of a massless rod. 
The system is capable of rotating about an axis passing through its centre of mass and 
perpendicular to the length of the rod. If the rotator is constrained to rotate in plane, it can 
be described by an angle coordinate q at any instant of time.

	 The potential energy of the rotator is zero because the masses are rigidly connected to 
the ends of the rod of constant length.

	 The kinetic energy of the rotator is given by

T = ​ 1 __ 
2

 ​ I w2 = ​ 1 __ 
2
 ​ I q

. 2

where I is the moment of inertia of the rotator about the axis of rotation and w =  q
.  

is the 
angular velocity of rotation. Clearly, the total energy of the classical rotator is

		  E = T = ​ 1 __ 
2

 ​  q
. 2 = ​ 1 __ 

2
 ​ I w2	 ...(30)

	 The phase integral of the rotator can be written in terms of the total angular momentum 
pq and the angular coordinate q as

		  J = Ú pq dq	 ...(31)

	 According to Wilson–Sommerfeld quantization rule we have

		  J = nh,  n = 0, 1, 2, ...	 ...(32)

	 Using Eq. (31) in Eq. (32) we obtain

Ú pq dq = nh

	 Since the total angular momentum pq = Iw is a constant of motion, the above equation 
gives

		  pq ​Ú 
0
 ​ 

2p

​ ​dq = nh

or		  pq = Iw = ​ nh ___ 
2p

 ​	 ...(33)

	 The above equation gives

		  w = ​ nh ____ 
2p I

 ​ = ​ nh ___ 
I
  ​	 ...(34)

	 Substituting the value of w in Eq. (30) we obtain

E = ​ 1 __ 
2
 ​ I ​ n

2h2

 ____ 
I2

 ​
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or		  E = ​ 1 __ 
2
 ​ ​ n

2h2

 ____ 
I
  ​	 ...(35)

	 We find that the energy of the rigid rotator is discrete and not continuous.

1.7.4  Stern–Gerlach Experiment

In 1921, Stern and Gerlach performed an atomic beam experiment which directly revealed 
the essential features of the vector atom model. The results of the experiment gave direct 
evidence of quantization of the directions of magnetic moment vector of an atom placed in an 
external magnetic field with respect to the direction of the applied field (space quantization). 
Besides, the results gave evidence of existence of intrinsic angular momentum or spin of 
electrun.

Principle of the Experiment

An atom can be regarded as an elementary magnet, its magnetization arising due to the orbital 
motion and spin of its electrons. If the atomic magnet is placed in a non-uniform magnetic 
field of proper description then it experiences a net translatory force as well as a torque which 
tends to set its axis along the direction of the field.

	 If such a collection of atomic magnets is projected along a direction normal to a 
non-homogeneous magnetic field then the atomic beam moves along a curved path.

Experimental Arrangement

The substance under investigation (in the original experiment it was silver) is heated in an 
electric oven O. The substance evaporates and atomic rays are emitted in all directions. Slits 
S1 and S2 collimate the emitted rays into a very narrow beam. The beam is allowed to pass 
through a non-homogeneous magnetic field produced by specially designed pole-pieces 
(knife edge type pole pieces) which make the field very intense and strongly non-uniform. 
The field is much stronger near the edge than elsewhere so that the gradient of the field is 
very large near the knife edge. After passing through the magnetic field, the atomic beam is 
made to strike a plate P where the atoms condense showing their paths.

	

S

N

O

S1 S2
P Knife-edge

piecespole

		  Fig. 1.5	 Fig. 1.6

	 The entire arrangement is enclosed in a chamber. Before the experiment is performed, 
each part of the apparatus is carefully aligned. The chamber is completely evacuated to 
prevent collision of the atoms in the beam with the atoms/molecules of the gas that may be 
present in the chamber otherwise.
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	 Displacement of the atomic rays is measured by measuring the repulsion at various points 
between the pole pieces of a thin bismuth wire mounted parallel to the edge of the knife edge 
pole-pieces. The traces of the atomic rays on the plate are then developed.

Calculations

Let an atomic magnet be of length l and pole strength p. Let ​ dB ___ 
dx

 ​ be the gradient of the 

magnetic field along the positive x-direction (direction of the magnetic field). Let the atomic 
magnet lie in the non-uniform magnetic field with its axis making an angle q with the 
direction of the field, as shown in the figure below 

	 The net force that acts on the atomic magnet along the positive x-axis is

		  Fx = p ​ dB ___ 
dx

 ​ l cos q

	 If M be the mass of the atom, its acceleration along the positive x-axis is

		  fx = ​ 
p ​ dB ___ 

dx
 ​ l cos q

  ___________ 
M

  ​

	 If t be the time taken by the atom to travel through a distance d in a direction normal to 
the field, we get the displacement of the atom along the direction of the field as

		  Dx = ​ 1 __ 
2
 ​ fx t

2

		  = ​ 1 __ 
2
 ​ fx ​​( ​ d __ n ​ )​​2​

where n is velocity of the atom at the temperature T of the oven and is given by

n = ​÷ 
____

 ​ 3 kT ____ 
M

  ​.

 ​	 Substituting for fx we obtain

Dx = ​ 1 __ 
2

 ​ ​ 
p ​ dB ___ 

dx
 ​ l cos q

  __________ 
M

  ​ ​​( ​ d __ n ​ )​​2​

or		  Dx = ​ 1 __ 
2
 ​ ​ 
m
 __ 

M
 ​ ​ dB ___ 
dx

 ​ ​​( ​ d __ n ​ )​​2​
where m = pl cos q = component of the magnetic moment of the atom in the field direction.
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Results

The traces of deposits on the plates in the case of beam of silver atoms are as shown in the 
figures below.

Plate
Double trace in
the presence of

the magnetic field

Straight line trace
in the absence of
the magnetic field

	 Fig. 1.7	 Fig. 1.8

	 A straight line trace is obtained in the absence of the magnetic field. A double trace with 
some irregularities is observed when the magnetic field is switched on. The irregularities arise 
due to irregularity of the magnetic field near the knife edge of the poles of the magnet.

	 The double trace is seen as converging. This occurs because the gradient of the field 
decreases along the transverse direction.

	 From a knowledge of d, n, ​ dB ___ 
dx

 ​ and the measured value of Dx, the value of the magnetic 

moment m can be estimated. 

	 In the case of silver atom, the magnetic moment was found to be equal to one Bohr 

magneton, i.e., equal to ​  eh _____ 
2mec

 ​.

	 The results of experiments performed with different substances were as given below:

	 (a)	 In the case of Cu, Au, H, Li, Na, K double traces were obtained. The separation Dx 
calculated corresponded to the value of m equal to + 1 and – 1.

	 (b)	 In the case of Zn, Cd, Hg, the value of Dx was found to be equal to zero which 
corresponded to m = 0.

	 (c)	 In the case of Ni, three distinct traces were obtained, one at its original position and 
the other two traces corresponded to m > 1.

	 (d)	 In case of cobalt, the separation corresponded to m = 6.

	 (e)	 In case of iron, the separation obtained corresponded to m > 6.

	 The consequences of the results were that they established the existence of spin of 
electron and space quantization of angular momentum. They can be understood from the 
following:

	 The double trace in the case of Ag indicates the values of magnetic moment m as equal 
to + 1 and – 1.
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	 If we consider the ground state of Ag atom, then neglecting the spin we get the total 
angular momentum to be J = L + S = 0 + 0 = 0. This suggests that there should not be any 
splitting (Dx = 0) so that m = mJ g = 0.

	 If on the other hand we assign electron spin and give it the value ​ 1 __ 
2

 ​ then m = mJ g 

(g = 1 for orbital motion and g = 2 for spin motion) should have two values + 1 and – 1. 
Clearly, the results confirm the existence of electron spin.

	 Classically, the atomic magnets can have their axes oriented in all possible directions 
with equal probability. If this be the correct picture, we should have obtained diffused 
trace instead of two distinctly visible traces. If we consider spin angular momentum to be 
quantized in space then all orientations of spin angular momentum are not possible. If we 
consider the atom to have one outermost electron in its ground state as in silver atom then 
we have orbital angular momentum L = 0, spin angular momentum equal to S(say) so that 
the total angular momentum of the atom becomes J = L + S = S. The number of possible 

orientations of ​
​_

 
›
 J ​ is then 2j + 1 = 2S + 1 = 2 × ​ 1 __ 

2
 ​ + 1 = 2. Thus, a double trace should be 

obtained. Thus, experimentally observed double trace conforms to space quantization of 
angular momentum.

1.7.5   Limitations of Old Quantum Theory

The quantum theory developed by Max Planck, Einstein and Bohr and which used Bohr’s 
quantum condition and Wilson–Sommerfeld quantization rule for periodic systems, provided 
explanation of black-body radiation spectrum, variation of specific heat of solids with 
temperature, and broad features of the spectrum of the hydrogen atom. It also provided 
quantitative understanding of the problems of a particle in a box, harmonic oscillator, rigid 
rotator etc. One remarkable achievement of the old quantum theory has been the realization 
of quantization of the magnitude and direction of angular momentum.

	 The theory, however, has several limitations. Some of these are–

	 (i)	 The quantization rule is not applicable to non-periodic systems

	 (ii)	 The theory cannot explain the relative intensities of the spectral lines of hydrogen 
atom

	 (iii)	 Results contrary to experiments are observed when the theory is applied to hydrogen 
molecule, helium atom, etc.

	 (iv)	 The postulate of stationary orbits by Bohr was empirical having no theoretical 
background

	 (v)	 The theory does not yield the concept of half odd integer quantum numbers and as 
such does not provide explanation of Zeeman Effect and hyperfine structure of spectral 
lines.

	 Shortcomings of the old quantum theory could not be resolved by modifications and 
extensions of the concepts and the mathematical theory used. 

	 Subsequently, an entirely new conceptual structure, for dynamics in particular and physics 
in general, was evolved due to the brilliant work of Schrödinger, Heisenberg, Born, Jordan, 
Dirac and many others which has come to be known as quantum mechanics.
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1.8  Particle Nature of electromagnetic Radiation

The idea of duality was first applied to electromagnetic radiation by Einstein.

	 Photoelectric effect, Compton effect, bremsstrahlung, pair-production and pair-annihilation 
are processes in which electromagnetic radiation interacts with matter. The first three processes 
involve absorption of radiation while the last two involve emission of radiation.

	 The experimental results of the above processes could not be explained using 
electromagnetic radiation as wave; instead, each of the processes gave evidence of radiation 
behaving as particle. 

	 In the following two sections we discuss in detail the photoelectric effect and the Compton 
effect.

1.8.1  Photoelectric Effect

The phenomenon of ejection of electrons from some metal surfaces due to incidence of light 
on them is called photoelectric effect.

	 The effect was realized from Hertz’s discovery that an electric discharge in a gas occurred 
more readily when ultraviolet radiation was allowed to be incident on one of the electrodes 
mounted in the discharge tube.

	 An experimental arrangement to study photoelectric effect is shown schematically in the  
Fig. 1.9. In the figure, B is an evacuated glass bulb, P is a metal plate mounted near one end 
of B, while C is a metallic cylinder mounted so as to enclose the plate.

V

G

B

C
P S

W

Fig. 1.9

	 By means of a potential divider arrangement, the cylinder can be kept at any desired 
positive or negative potential with respect to the plate. G is a sensitive galvanometer to 
measure any current (photoelectric current) that may pass through the circuit connected to 
the cylinder. The potential difference that may be applied between the cylinder and the plate 
is measured by the voltmeter V. Monochromatic light from a source S may be allowed to 
be incident on the plate P through a quartz window W fitted on the glass bulb and a narrow 
hole in the cylinder.
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	 The experiment consists in allowing light of a given frequency to be incident on the 
plate and measuring the photoelectric current for different potential differences between 
the plate and the cylinder (for both the cylinder positive as well as negative with respect 
to the plate). The experiment is repeated for different intensities of the incident light.

	 Results of such experiments are shown in the Fig. 1.10.

Fig. 1.10

	 We observe the following:

	 (i)	 The photoelectric current assumes different saturation (constant) values for different 
intensities at large positive potential of the cylinder with respect to the plate.

	 (ii)	 The photoelectric current has definite values even for zero potential difference between 
the cylinder and the plate at different intensities of the incident light.

	 (iii)	 The photoelectric current becomes zero at a given reverse potential difference Vs 
between the cylinder and the plate. Vs, called the stopping potential, is independent 
of the intensity of the incident light.

	 The above observations suggest the following:

	 (i)	 The photoelectrons emitted from the metal plate possess kinetic energy so that some 
of them having relatively high kinetic energy reach the cylinder giving rise to current 
even when the cylinder is at zero potential with respect to the plate being unable to 
attract electrons.

	 (ii)	 The photoelectric current becoming zero at V = –Vs means that even those 
photoelectrons which are emitted with maximum kinetic energy (Kmax) are just not 
able to overcome the strong repulsive force. We may hence write

Kmax = eVs,

e = charge of electron. Besides, Vs independent of intensity of the incident light means that 
maximum kinetic energy of the emitted photoelectrons is independent of the intensity of the 
incident light.

	 Another type of experiment on photoelectric effect consists in determining the stopping 
potential Vs for a given metal plate by allowing light of any intensity but of different 
frequencies to be incident on the plate. Results of such an experiment are shown in the 
Fig. 1.11.
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	 The results show the following:

	 (i)	 Stopping potential, though independent of intensity of incident light, depends upon 
its frequency.

	 (ii)	 At a particular frequency n0, characteristic of the metal surface, the stopping potential 
Vs becomes zero. Clearly, at the frequency n0 we have

Kmax = 0

	 The above result means that n0 is that minimum frequency of the incident light at or 
below which the photoelectric effect does not occur. For this reason n0 is called the cut-off 
frequency or threshold frequency of the metal surface under consideration.

Fig. 1.11

	 The above results of photoelectric effect are not at all consistent with the classical wave 
theory of light. The wave theory of light should give:

	 (i)	 the stopping potential Vs and hence Kmax to be dependent on the light intensity. This is 
because, with increase in the intensity of light of any frequency, the amplitude of the 
oscillating electric field increases so that the maximum force on an electron of an atom 
of the metal surface increases thereby increasing the maximum kinetic energy.

	 (ii)	 photoelectric effect to occur for any frequency of the incident light, as long as the light 
is intense enough to provide the energy needed to eject an electron from the atom, 
i.e., to provide energy to an electron in excess of its binding energy in the atom.

	 (iii)	 a definite time lag between the incidence of light on the metal surface and the ejection 
of photoelectrons particularly at small intensity of light. During this time, the electron 
should absorb energy from the incident light continuously till the energy it acquires 
is more than its binding energy in the atom.

Einstein’s Explanation of Observed Results on Photoelectric Effect

Einstein extended Planck’s concepts of quantization of energy of atomic oscillators and 
proposed that radiant energy (light energy), instead of being distributed in space like a wave, 
existed in concentrated bundles of particles which were later named photons and the energy 

of each photon in light of frequency n being hn while the momentum of the photon being ​ hn ___ c  ​. 
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In effect, Einstein proposed a granular or corpuscular structure to radiation where energy is 
distributed in space in a discontinuous way.

	 The photon hypothesis of Einstein explains all the observed results of photoelectric effect. 
This can be seen as below. When the light of frequency n is incident on a metal surface then 
a photon having energy hn transfers all its energy to an electron of an atom on the surface. 
The electron in turn, is ejected as a photoelectron having energy K given by

		  K = hn – Œ	 ...(37)

where Œ is the binding energy of that electron in the atom. Œ is different for different 
electrons in an atom and hence the emitted photoelectron possess different kinetic energies. 
In the case of electrons in the atoms having minimum binding energy, the corresponding 
photoelectrons emerge with maximum kinetic energy which is given by

Kmax = hn – Œmin

Œmin is called the work function of the metal under consideration and is usually denoted by 
the symbol f. Thus, we get

		  Kmax = hn – f 	 ...(38)

	 Increase of intensity of the incident light of a given frequency n does not change the 
energy of a photon and instead only the number of photons crossing a unit area in unit time 
increases so that the number of electron–photon interactions increases and as a result the 
number of photoelectrons emitted per second, and hence the photoelectric current, increases. 
Further, increasing intensity in no way causes change in the energy distribution of the 
electrons of the atoms of the metal surface and hence the kinetic energy given by Eq. (37) 
and maximum kinetic energy given by Eq. (38) do not change with change in the intensity 
of the incident light. f for a given metal is a constant. Clearly, for a particular frequency, say 
n0, we get

hn0 = f

or		  n0 = ​ 
f
 __ 

h
 ​	 …(39)

	 For this frequency of the incident light we get from Eq. (39)

Kmax = 0

	 Clearly, at such a frequency of the incident light irrespective of the intensity, the energy 
hn0 of a photon is just enough to free an electron from the binding of the atom but no extra 
energy to appear as kinetic energy.

	 At frequency less than n0, the individual photons, no matter how intense is the incident 

light, do not have enough energy individually to eject photoelectrons. n0 = ​ 
f
 __ 

h
 ​ is thus the 

cut-off or threshold frequency.

	 Using Eq. (39) in Eq. (38) we get

eVs = hn0 – f
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or		  Vs = ​ h __ e ​ n0 – ​ 
f
 __ e ​	 ...(40)

	 The above equation is referred to as Einstein’s photoelectric equation. The equation 
predicts a linear relationship between stopping potential Vs and frequency n as is observed 
experimentally.

	 According to Einstein, photoelectric effect is a result of particle-particle interaction 
(interaction between photon and bound electron in an atom). In such an interaction the 
exchange of momentum and energy take place instantly so that there is no time lag between 
the incidence of light and ejection of photoelectrons.

1.8.2  Compton Effect

In the year 1923, Arthur Compton performed experiments in which a beam of monochromatic 
X-rays was allowed to be incident on a graphite target. The experimental arrangement used 
is schematically shown in the Fig. 1.12.

Lead collimating
slits

Crystal
Monochromatic

X-ray beam from
X-ray tube T

T

f

X-ray
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Fig. 1.12

	 Compton measured the intensity of the 
scattered X-rays as a function of their wavelengths 
for different angles of scattering. The experimental 
results are shown in the Fig. 1.13. 

	 The following results were observed:

	 (i)	 the scattered X-rays at all angles (f) 
of scattering, expecting f = 0, to have 
intensity peaks at two wavelengths, one 
being the same as the incident wavelength, 
the other being larger by an amount Dl, 
called the Compton shift.

	 (ii)	 the Compton shift Dl to increase with the 
increase in the angle of scattering. Fig. 1.13
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	 The above results do not find explanation on the basis of classical wave theory of 
electromagnetic radiation. According to the wave picture of radiation, the free electrons in 
the scattering block (graphite block) are set into forced oscillations, by the oscillating electric 
field vector of the incident radiation, at a frequency equal to the frequency of the radiation. 
These oscillating electrons in turn radiate electromagnetic waves of frequency equal to the 
frequency of oscillation, i.e., equal to the frequency of the incident X-ray beam. Clearly, the 
scattered wave, irrespective of the angle of scattering should have the wavelength equal to 
the wavelength of the incident X-ray beam. Thus, classical wave picture of radiation cannot 
account for the observed Compton shift.

Compton’s Explanation of the Observed Results

Following Einstein’s corpuscular picture of radiation, Compton assumed the incident X-ray 
beam of frequency n to be a collection of photons, each photon having energy hv and 

momentum ​ hn ___ c  ​. Photons of the incident beam collide with free electrons of the graphite 

scatterer. The recoil photons from the scatterer constitute the scattered radiation. Since 
the incident photons in their collision with electrons transfer some of their energy to the 
electrons, the scattered photons must have lower energy and consequently lower frequency 
and hence higher wavelength. These photons of the incident beam which escape any transfer 
of their energy to electrons in case of collision with the tightly bound electrons constitute the 
scattered radiation of the same wavelength as the incident radiation. The origin of Compton 
shift is thus explained qualitatively.

	 Considering a single photon–electron collision, Compton obtained, using the principle of 
conservation of linear momentum, the shift in the wavelength to be related to the scattering 
angle f as

		  Dl = ​  h ____ m0c
 ​ (1 – cos f)	 ...(41)

where m0 is the rest mass of the electron. The above equation correctly predicts the 
experimentally observed values of Dl at different angles of scattering.

Conclusion 

Experimental results of photoelectric effect and Compton effect confirm the corpuscular 
nature of electromagnetic radiation as advocated by Einstein. It is possible for us to remark 
that radiation in its propagation, as in the phenomena of reflection, refraction, interference, 
diffraction and polarization, exhibits wave characteristics, while the same radiation has 
corpuscular character in interaction with matter.

	 We may note the following: 

	 (i)	 the factor ​  h ____ m0c ​ in the expression for Compton shift is called the Compton 
wavelength.

	 (ii)	 the value of Compton shift varies between zero for f = 0 corresponding to grazing 

collision and ​ 2h ____ m0c
 ​ for f = 180° corresponding to head-on collision.
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1.9	 Wave nature of microparticles (Matter wave): 
de-Broglie’s hypothesis

Around 1923, Louis de-Broglie suggested that the idea of duality should be extended not 
only to radiation but also to all microparticles. He hypothesized that just as a quantum of 
radiation has a wave associated with it which governs its motion in space, so also a quantity 
of matter has a corresponding wave (which may be called matter wave) that governs its 
motion in space.

	 The universe is essentially composed of only two entities namely matter and radiation. 
De-Broglie argreed that since one of the entities, namely radiation, has dual nature, the other 
entity matter must also exhibit dual character. His hypothesis is consistent with the symmetry 
principle of nature.

	 De-Broglie proposed to associate, with every microparticle, corpuscular characteristics 
namely energy E and momentum p on the one hand, and wave characteristics namely 
frequency n and wavelength l on the other hand. According to de-Broglie, the mutual 
dependence between the characteristics of the two kinds was accomplished, through the 
Planck’s constant h as

		  E = hn  and  p = ​ hn ___ c  ​ = ​ h __ 
l
 ​	 ...(42)

	 The second relation is known as de-Broglie’s equation. 

	 The wavelength l of matter wave associated with a microparticle is called de-Broglie 
wavelength of the particle. De-Broglie’s hypothesis had profound importance from the fact 
that relation (42) was assumed to be satisfied not only for photons (zero rest mass), but for 
all microparticles, particularly for those which possess rest mass and which were associated 
with corpuscles. 

1.9.1 C onfirmation of De-Broglie’s Hypothesis

Walter Elsasser, for the first time in 1926, pointed out that the wave nature of matter could be 
tested by allowing a beam of electrons of appropriate energy to be incident on a crystalline 
solid in which periodic arrangement of atoms might serve as a three-dimensional array 
of diffracting centres for the electron wave (if it at all exists), when diffraction peaks in 
characteristic directions might he observed.

	 The above idea was confirmed experimentally by Clinton Davisson and Lester Germer in 
the United States and George Thomson in Scotland. 

1.9.2 D avisson and Germer’s Experiment 

The experimental arrangement used by Davisson and Germer is schematically shown in the 
Fig. 1.14.
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Fig. 1.14

	 F is a filament which emits electrons when heated electrically.

	 The emitted electrons are accelerated through a potential V whose value can be adjusted 
as required by means of a potential divider arrangement. The accelerated electrons having 
kinetic energy E are then allowed to pass through a system of narrow slits so as to obtain a 
thin collimated beam of electrons. The beam of electrons thus obtained is then allowed to be 
incident normally on a single crystal C of nickel enclosed in a vacuum chamber. The crystal 
can be rotated about the incident beam as the axis. D is an electron detector which detects 
only elastically scattered electrons. The detector can be moved along an arc of a circle about 
the crystal so as to measure the intensity of elastic scattering in different directions in front 
of the crystal.

	 The intensities of the different beam at different angles f and for different values of 
the accelerating potential were determined. The results obtained are shown in the Fig. 1.15 
and Fig. 1.16. A peak in the intensity was observed at f = 50° for V = 54 volts. Such an 
observation does not find explanation on the basis of particle motion. However, it finds 
explanation in terms of interference phenomenon which is characteristic of wave only.

	 The wavelength of electrons impinging the crystal are given by l = ​ h __ p ​, according to 

de-Broglie’s equation. We may assume Bragg reflections for electron wave to occur from certain 
families of atomic planes as in the case of X-ray diffraction from crystals. Bragg reflection 
obeying Bragg’s equation is illustrated in the Fig. 1.17. Bragg’s equation is given by:

		  2d sin q = ml;  m = 1, 2, 3	 ...(43)

 

	 Fig. 1.15	 Fig. 1.16	 Fig. 1.17
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	 Using X-ray analysis on the crystal it is found that at f = 50°, a Bragg reflection occurs 
from atomic plane having interplanar spacing d = 0.91 Å and the corresponding Bragg angle 
of reflection or glancing angle is 65° (as indicated in the figure). Considering m = 1 we 
obtain

2 × (0.91 Å) sin 65° = l

or		  l = 1.65 Å	 ...(44)

	 For electrons having kinetic energy E = 54 eV, the de-Broglie wavelength is

	 	 l = ​  h ______ 
​÷ 

____
 2mE ​
 ​	 …(45)

	 Substituting h, m and E we obtain

		  l = 1.65 Å.	 …(46) 

	 The existence of electron wave and the validity of de-Broglie equation are thus 
established.

	 We may note that in the above calculations the value m = 1 is used. If m = 2 or more, 
then there should occur intensity peaks for different values of f. However, no such peaks are 
observed experimentally. 

1.9.3 G P Thomson’s Experiment

Thomson’s experiment is analogous to Debye-Scherrer X-ray diffraction method.

	 The experimental arrangement consisted of a glass envelope in which electrons were 
emitted from a heated filament. The emitted electrons were suitably accelerated and collimated 
to give a uni-directional, thin, monoenergetic beam of electrons. The beam thus obtained was 
allowed to fall normally on a polycrystalline material. The scattered (diffracted) electrons 
were recorded on a photographic film placed perpendicular to the incident beam. 

Fig. 1.18

	 On the photographic plate a set of concentric circles were observed. The pattern of circles 
obtained was found to be a characteristic of the crystal used.

	 On replacing the electron beam by a monochromatic X-ray beam a similar circular pattern 
was observed on the photographic plate. 
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	 From the knowledge of the wavelength of the electron beam 
2

h h

p mE

Ê ˆ
l = =Á ˜Ë ¯  it was 

possible to determine the geometry of the crystal lattice which was found to be in complete 
agreement with that obtained using X-ray diffraction analysis of the crystal. It is thus clear 
that electron beam is diffracted by a crystal in the same way as X-rays.

	 It is important to note in the experiment of Davisson and Germer and of Thomson the 
following:

•	 in the process of acceleration, an electron behaves like a particle of charge – e and mass m, 

•	 during the process of diffraction, the same electron behaves like a wave of wavelength 

l = ​ h __ p ​. 

	 Thus, the electron which shows wave-like property in one part of the experiment exhibits 
particle-like properties in two other parts of the same experiment. Clearly, for a complete 
description both the particle aspect as well as the wave aspect become necessary.

1.9.4  Conclusion

The experiments of Davisson and Germer and Thomson give clear evidence of the existence 
of wave properties of electrons. Besides, the experiments confirm the validity of de-Broglie 
equation at least for the electron.

	 Experiments on diffraction of molecular beam of hydrogen and atomic beam of helium 
by the lithium fluoride crystal were performed by Estermann, Stern and Frisch. Hydrogen 
molecule and helium atom being very much different from each other as well as from 
electron, their successful experiments led to the universality of matter waves.

	 Fermi, Marshall and Zinn performed interference and diffraction experiments with slow 
neutrons and obtained results confirming de-Broglie’s hypothesis. It is important to note 
that neutron diffraction is nowadays an important technique in crystal structure studies as a 
complement to X-ray and electron diffraction techniques.

1.9.5  Wave–Particle Duality

In classical physics, energy is transported either by particles or by waves. Some macroscopic 
phenomena can be explained using a particle model while some other using a wave model. The 
radiation and matter of the observable universe exhibit both wave and particle characteristics. 
Radiation behaves as wave in its propagation but the same radiation exhibits particle behavior 
in its interaction with matter. Similarly entities of non-zero rest mass of which matter is made 
of requires wave model for understanding their diffraction effects. We are thus compelled to 
use both particle as well wave models for the same entity. Duality is thus established. We 
may, however, note that under given experimental conditions only one model is revealed.

	 Classical physics has acquainted us with two types of motion, namely corpuscular and 
wave. Localization of objects in space and definite path or trajectory of motion of objects in 
space are the two basic characteristics of corpuscular motion. The wave motion, on the other 
hand, is characterized by delocalization in space. The phenomena in the macroscopic world 
clearly distinguish the corpuscular motion and the wave motion. These classical concepts are, 
however, not revealed in the phenomena in the domain of microparticles. The motion of a 
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microparticle shows both corpuscular as well as wave behaviours. If we consider corpuscular 
motion and wave motion as two separate cases of motion then microparticles occupy a 
place somewhere in between. They are neither purely corpuscular nor purely wave-like in 
the classical sense, instead, they are something qualitatively different. A microparticle to 
some extent is like a corpuscle and to some extent like a wave. The extents to which it is a 
corpuscle or a wave depends upon the conditions under which it is considered. In classical 
physics, corpuscle and wave are two mutually exclusive extremities, but at the level of 
microphenomena these extremities combine within the framework of a single microparticle. 
In this level we neither talk of particle nor of wave but only of microparticle. This is wave–
particle duality.

1.9.6  Principle of Complementarity

The principle of complementarity, put forth by Neils Bohr forms the logical foundation of the 
entire system of quantum mechanical ideas (the ideas not known to classical physics).

	 According to Bohr, the term “complementarity” is used in order to stress that in the 
contrasting phenomena we have to do with equally essential aspects of the well defined 
knowledge about the object.

	 The wave and particle models of an entity (radiation or matter) are complementary to 
each other in the sense that if a measurement proves the wave character of the entity then it 
is impossible to prove the particle character in the same measurement and conversely. 

1.10  The Uncertainty Principle

Equations of motion in classical mechanics (Newton’s equation, Lagrange’s equations, 
Hamilton’s canonical equations) can be solved to find exactly the position and momentum 
(the two quantities that define the state of the system) of the system at all future and past 
instants of time from a knowledge of the position and momentum of the system at some given 
instant of time. This mechanics, as we know, is quite successful in the macroscopic world to 
predict future motion of objects in terms of their initial motion. 

	 An observation or a measurement on a system involves an inherent interaction between 
the observer or the measuring instrument and the system, thereby producing disturbance 
in the system. In the case of a macroscopic system which obeys the laws of classical 
physics, disturbances, so caused are usually ignorable or controllable and can be taken into 
account accurately ahead of time by suitable calculation. The basic laws of physics are thus 
deterministic and the position and velocity (or momentum) of an object can be determined 
simultaneously with unlimited accuracy.

	 Such determinism is, however, lost in quantum physics which deals with problems in 
the domain of atomic and sub-atomic particles. The disturbances caused due to inherent 
interaction in the observations or measurements no longer remain ignorable and controllable 
irrespective of the skill of the observer and the improvements in measuring technique. Precise 
and simultaneous measurement of position and velocity of matter or of radiation by actual 
experiment becomes fundamentally impossible.

	 Heisenberg, in 1927, stated the uncertainty principle (also called indeterminacy principle) 
in two parts:
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	 (i)	 experiment cannot determine simultaneously the component of momentum say px of a 
particle and its corresponding coordinate position x with unlimited accuracy; instead, 
the precision of measurement is inherently limited by the measurement process itself, 
such that 

		  Dpx Dx ≥ ​ h __ 
2

 ​	 …(47)

		  In the above, Dpx is the uncertainty within which the momentum px is known and the 
position x in the same experiment is known within an accuracy Dx. There are exactly 
similar relations for the other two components.

		  Dpy Dy ≥ ​ h __ 
2
 ​	 ...(48)

		  Dpz Dz ≥ ​ h __ 
2
 ​	 ...(49)

	 (ii)	 The uncertainties involved in simultaneous measurement of energy and time are given 
by

		  DE Dt ≥ ​ h __ 
2

 ​	 ...(50)

		  The above relation means that an energy determination that has an uncertainty DE 

must occupy at least a time interval Dt = ​  h ____ 
2DE

 ​. Alternatively, if a system is in a given 

state for not longer than Dt, the energy of the system in that state is uncertain, at least 

by an amount DE = ​  h ___ 
2Dt

 ​.

	 It is important to note that position–momentum uncertainty relation given by the Eq. (47), 
(48), (49) and the time energy uncertainty relation given by the Eq. (50) are quite different 
because the position and momentum variables can be measured at a given time and they play 
symmetric roles, whereas energy and time play different roles, the energy being a variable 
and the time being a parameter.

1.10.1  Physical Origin of the Uncertainty Principle

Bohr proposed a thought experiment which is aimed at measuring the position of an electron 
accurately by observing it through a microscope. For viewing, the electron needs to be 
illuminated by light. In the process of illumination, the electron recoils because of Compton 
effect in a way that cannot be determined completely. Hence, the electron gets disturbed from 
its position. The disturbance can be decreased by using light of very weak intensity. The 
weakest that can be used is to assume that the electron is observable if only one scattered 
photon enters the objective lens of the microscope. The momentum of the incident photon 
for the light of frequency n is

p = ​ hn ___ c  ​ = ​ h __ 
l
 ​
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	 If 2 q be the angle subtended by the objective lens at the electron then the electron can 
be viewed provided a photon of the incident light gets scattered within the angular range 2 q 
as illustrated is the Fig. 1.19.

Fig. 1.19

	 Clearly, the x-component of the momentum of the photon can have any value from 
– p sin q to + p sin q. After scattering, the momentum becomes uncertain by an amount Dpx 
given by

Dpx = p sin q – (– p sin q) = 2p sin q

or		  Dpx = ​ 2h ___ 
l
 ​ sin q	 ...(51) 

	 In the photon-electron collision, the linear momentum remains conserved and hence the 
electron receives a recoil momentum in the x-direction equal to the x-momentum change in 
the photon. Thus, the uncertainty of the x-component of the momentum of the electron is

Dpx = 2 ​ h __ 
l
 ​ sin q.

	 It is possible to reduce Dpx by using light of longer wavelength and/or using microscope 
with an objective lens subtending a smaller angle at the electron.

	 We know that the image of a point object formed by a convex lens is not a point; instead, 
it is a diffraction pattern. It is the resolving power of the microscope which determines the 
accuracy with which the electron can be located. Thus, the uncertainty in the position of the 
electron is equal to the linear separation between two point objects just resolvable in the 
image which is given by

		  Dx = ​  l _____ 
sin q

 ​	 ...(52)
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such that the one scattered photon at our disposal must originate somewhere within this range 
of the axis of the microscope.

	 Using the above results we get the product of the uncertainties in px and x to be given 
by

		  Dpx Dx = 2 ​ h __ 
l
 ​ sin q × ​  l _____ 

sin q
 ​ = 2h > ​ h __ 

2
 ​	 ...(53)

	 If we use light of short wavelength, say gamma rays, to reduce Dx, we simultaneously 
increase the Compton recoil and hence increase the Dpx and conversely. Similarly, if we use 
a lens of small aperture to reduce q, Dpx is reduced but Dx increases and conversely. Thus 
it is not possible to simultaneously make Dpx and Dx as small as we may wish because the 
procedure that makes one small makes the other large.

	 Let us consider the electron to move freely along the x-axis, then its energy is given by

		  E = ​ 
px

2

 ___ 
2m

 ​	 ...(54)

	 If px is uncertain by D px, then the uncertainty in the energy is

		  DE = 2 ​ 
px ___ 
2m

 ​ Dpx = nx Dpx	 ...(55)

	 In the above, nx ​( = ​ 
px __ m ​ )​ is the recoil velocity of the electron along the x-axis which is 

illuminated with light. If Dt is the time interval required for the observation of the electron 
then the uncertainty in the portion of the electron is 

		  Dx = nx Dt	 ...(56)

	 From the above, we have

Dpx = ​ DE ___ nx
 ​ = ​ DEDt _____ 

Dx
  ​

or		  Dpx Dx = DE Dt	 …(57)

	 Using  Dpx Dx ≥ ​ h __ 
2

 ​, we obtain

		  DE Dt ≥ ​ h __ 
2

 ​	 …(58)

1.10.2  Discussions

Heisenberg’s uncertainty relations have their roots in experiments.

	 If uncertainty principle is considered to be the fundamental principle of nature then wave 
particle duality of matter and radiation becomes obvious as can be understood from the 
following.

	 The corpuscular description of an entity (matter or radiation) gives information about 
momentum and energy while the wave description of the same entity provides information 
about place and time. From uncertainty principle of Heisenberg we find that every 
determination of exact position carries with it large uncertainty in the momentum and vice-



	 	 Introduction to Quantum Mechanics36

versa. Similarly, every determination of exact time involves a large uncertainty in energy and 
vice-versa. Thus, an experiment that aims the radiation to reveal its wave character strongly 
suppresses its particle character. Similarly, an experiment aiming to reveal particle character 
of radiation, strongly suppresses the wave character. Thus experiments do not allow the wave 
and particle characters to come face to face under the same experimental situation which 
could make duality obvious.

	 We also see that the de-Broglie relation p = ​ h __ 
l
 ​ and Einstein’s relation E = hn which hold 

for both matter and radiation when combined with properties universal to wave give the 
uncertainty relations of Heisenberg. We can thus say that Heisenberg’s uncertainty relations 
stem from wave–particle duality.

1.11  Solved Examples

Example 1  Electrons emerging from a heated filament are accelerated by a potential V 
and collimated into a beam of diameter d. State the condition under which the beam may 
be treated (i) classically, (ii) quantum mechanically. 

Solution:  If E be the kinetic energy of an electron in the beam then we have according to 
question 

		  E = eV	 ...(i)

	 The momentum p of the electron is related to the kinetic energy as

p = ​÷ 
____

 2mE ​

	 Using Eq. (i) in the above we obtain

		  p = ​÷ 
______

 2 meV ​	 ...(ii)

	 The de-Broglie wavelength of the electrons in the beam is thus 

		  l = ​ h __ p ​ = ​  h _______ 
​÷ 

______
 2 meV ​
 ​ 	 ...(iii)

	 If V be so large that l << d, then the electrons are well located within the beam, a result 
which is in conformity with the concepts of classical physics. The beam of electrons should 
be treated classically under the above condition.

	 If V be so small that l >> d then the electrons are located outside the beam as well, a 
result which contradicts the concepts of classical physics. Under this condition the beam 
should be treated quantum mechanically.

Example 2  Experiments have shown that electrons of an atom cannot exist within the 
nucleus of the atom. Explain (using uncertainty relation).

Explanation:  Consider an atom whose nucleus has a radius R. For an electron of the atom 
to exist inside the nucleus, the uncertainty in its position would be at least of the order 2R. 
If we denote the position uncertainty by Dr then we have 
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		  Dr = 2R	 ...(i)

	 If Dp represents the uncertainty in the measured value of the momentum of the electron 
we have according to Heisenberg’s uncertainty principle

Dp Dr ª h

or		  Dp = ​ h ___ 
Dr

 ​	 ...(ii)

	 Considering the radius of the nucleus to be of the order of 10–14 m we get from eq. (ii)

		
–34

–14 –14

1.055 10 (Js)

2 10 (m) 2 10 (m)
p

¥D = =
¥ ¥
h 	

		  = 5.28 × 10–21 Ns	 ...(iii)

	 Clearly, if the electron exists within the nucleus, the momentum of the electron cannot be 
less than the uncertainty, i.e., momentum of the electron must at least be

		  p = 5.28 × 10–21 Ns	 …(iv)

	 The above momentum corresponds to a kinetic energy

E = ​ 
p2

 ___ 
2m

 ​ = ​ 
(5.28 × 10– 21)2  

  _______________  
2 × 9.1 × 10– 31 J

 ​

		  E ª 95.7 MeV	 …(v)

	 b-decay phenomena, however, have shown that the electrons emitted from nuclei have 
energy of the order of a few MeV. Thus, we can conclude that electrons cannot exist within 
the nucleus of an atom.

Example 3  The position of an electron has been measured in an experiment with an 
accuracy of 0.04 m. With what minimum percentage accuracy can its momentum be 
measured if its speed is 103 m/s?

Solution:  We have according to Heisenberg’s uncertainty Principle

Dp Dx ª h

which gives	

Dp = h/D x = ​ 6.63 × 10–34 Js  ____________ 
0.04 m

 ​  = 1.66 × 10–32 Ns

	 Momentum of the electron is

		  p = mn = 9.11 × 10–31 (ks) × 103 (ms–1)

		  = 9.11 × 10– 28 Ns
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	 Thus the percentage accuracy in the measurement of the momentum is 

		​  
Dp

 ___ p  ​ × 100 = ​ 1.66 × 10– 32

  ___________  
9.11 × 10– 28

 ​ × 100

		  = 0.18 × 10– 2

		  = 0.0018% 

Example 4  An atom undergoes transition from an excited state to the ground state 
showing the emission of a spectral line of wavelength 6000 Å. If the width of the line is 
0.012 Å, find the lifetime of the excited state. 

Solution:  Let DE be the uncertainty in the energy of the excited state (i.e., the spread in the 
energy of the excited state) and t be the lifetime of the state then we have) 

		  DEt ª h	 ...(i)

	 The central energy of the excited state above the ground state is

		  E = hn = h ​ c __ 
l
 ​	 ...(ii)

	 The above gives

DE = ​ – hc ____ 
l2

 ​  Dl.

	 or	​ | Dl |​ = ​ l
2DE _____ 
hc

  ​ = ​ l
2

 ___ 
hc

 ​ ​ h __ t ​ = ​ l
2

 __ ct ​	 ...(iii)

	 The above gives 

		  t = ​  l2

 _____ 
c​| Dl |​

 ​ = ​ 
(6000 × 10– 10)2 (m2)

   ____________________________   
3 × 108 (ms– 1) × 0.012 × 10– 10 (m)

 ​

or		  t = 10–9 s.

Example 5  Explain with examples that the position and momentum uncertainties are 
important for microscopic systems but negligible for macroscopic systems.

Explanation:  Consider a neutron (mass = 1.65 × 10–27 kg) moving at a speed of 5 × 106 
m/s.

	 Uncertainty in the momentum cannot be greater than the momentum of the neutron given 
by

p = mnnn = 1.65 × 10– 27 × 5 × 106 Ns.

	 The maximum uncertainty in the momentum of the neutron is thus 
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D p = p = 1.65 × 10– 27 × 5 × 106 Ns

	 The minimum uncertainty in the position of the neutron is thus 

(D x)min = ​  h ____ 
2Dp

 ​ = ​  h _____ 
4pDp

 ​ = ​  6.63 × 10–34 Js  _______________________   
4 × 3.14 × 8.25 × 10– 21 Ns 

 ​= 6.4 × 10–15 m

	 We find D x to be of the order of the size of a nucleus and is hence measurable. 

	 Let us now consider a body (mass 50 kg) moving at a speed 2 m/s.

	 Making calculation as given above we get the uncertainty in the position of the body to 
be given by

(D x)min = ​  h ____ 
2Dp

 ​ = ​  6.63 × 10–34 J.s  __________________  
4 × 3.14 × 50 × 2 Ns

 ​

or		  (D x)min = 5 × 10– 37 m

	 The position uncertainty of the body is thus beyond the scope of any measurement and 
can be neglected. 

Example 6  A 60 kW broadcasting antenna is emitting electromagnetic waves at a 
frequency of 4 MHz. Explain whether or not will you treat the emitted radiation quantum 
mechanically? 

Solution:  The energy emitted by the antenna per second is 

E = 60 × 1000 = 60,000 J.

	 If n be the number of photons being emitted per second, we get

E = nhn.

	 Thus, we have

n = ​ E ___ 
hn

 ​

	 Substituting the values of E, h and n, we get 

​ 
n = 60,000 (J)

  ___________________________   
6.63 × 10–34 (Js) × 4 × 106 (s– 1)

 ​ = 2.2 × 1031

	 Since n is exceedingly large, the quantum nature of the emitted radiation is not 
meaningful.



2.1  Introduction

One of the main features of an atomic-subatomic system is that it can exist in states with 
discrete values of energy. The idea of discreteness or quantization of atomic state was first 
advanced by Bohr. According to him, the quantized atomic states are stationary states in 
the sense that the system in these states can neither emit nor absorb energy. Bohr further 
postulated that energy is emitted or absorbed in the form of electromagnetic radiation only 
in discontinuous transition between stationary states, the frequency of the radiation being 
given by 

n = ​ 
Em – En _______ 

h
  ​    (Em > En).

	 The above postulates of Bohr, although in contradiction with the laws of classical 
mechanics and electrodynamics, were fully confirmed by experiments. This necessitated 
replacement of classical theory, at least for atomic systems, by a theory that would be 
logically consistent on the one hand and conform to Bohr’s principles on the other. Existence 
of states characterized by definite energy values for a system is found to be analogous to the 
problem of mathematical physics, namely, the linear operator problem and the associated 
eigenvalue problem. Quantum mechanics has substantiated this idea of quantization of energy 
and of other physical quantities of systems in atomic and subatomic domain ever since Erwin 
Schrödinger in 1926 established quantization as an eigenvalue problem. 

	 A linear operator is associated with every physical quantity and the theory of linear 
operator forms the basic mathematical apparatus of quantum mechanics. In the sections 
to follow we discuss some of the features of this mathematical apparatus which quantum 
mechanics employs.

2.2 T he Operator Concept 

Consider a function of n independent variables, q1, q2, ..., qn, such as 

		  y = y (q1, ..., qn)	 ...(1)

	 Using this function, it is possible to generate any number of other functions by a simple 
mathematical procedure, namely, the application of a mathematical operator. Such an operator 
may take any one of many forms, for example 

2 Mathematical Preliminaries
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	 Addition operator	 qi + y = fi

	 Multiplication operator	 qiy = Gi

	 Differential operator 	​   ∂ ___ 
∂qi

 ​ y = Li 

	 Integral operator	
B

i

A

dqyÚ = Wi	 etc.

	 An operator thus defines a relationship between two functions. If the function f is 
obtained from a function y then the relationship between y and f can be expressed as 

		  Ây = f	 ...(2)

	 We then say that Â is the operator representing the generation of f from y. It is important 
to note that the left hand side of Eq. (2) does not necessarily mean that the function y is 
multiplied by the operator Â, instead, it may represent addition, differentiation, integration. 
Alternatively, we can say, in view of Eq. (2) that an operator maps a given function. As 
indicated in Eq. (2), it is usual to write an operator with the symbol of cap (^) overhead. 

	 The set of functions {yi} for which Â{yi} has a meaning is called the domain of Â. 

	 The set of functions {fi} which can be expressed as fi = Âyi, is called the range of Â .

2.3 E quality of two operators 

Let us write 

		  Ây = B̂
 
y	 ...(3)

	 The above equation states that the result of operation on the function y with Â is the same 
as the result obtained by operation on y with B̂

 
. The statement 

		  Â = B̂
 
	 ...(4)

which seems to follow from Eq. (3) should be interpreted as operation with Â on some 
specified function or a set of specified functions is equivalent to operation on the same 
function or the same set of function with B̂

 
. The above can be understood from the following 

examples: 

	 If we consider a function y = x2, then we get 

2( )
d d

x
dx dx

y =  = 2x

and 
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22 2
x

x x
y =  = 2x 

	 Thus, for y = x2, we find	
2d

dx x
∫

	 If, however, we take y = x3 

	 then	 3 2( ) 3
d d

x x
dx dx

y = =

 

while 	 3 22 2
2x x

x x
y = =

	 Clearly of y = x3 we find 
2d

dx x
π

2.4  General Operators 

It is possible to define more general operators in terms of combination of simpler ones. 
However, it becomes important to outline certain limitation on the use of such combination 
operators. 

(a) Product of Two operators 
Let Â and B̂

 
 be two operators defined in the same domain of definition. It is possible to 

define two new operators

Ĉ = Â B̂ 
 

and 

D̂  = B̂
 
Â 

	 In general, it may be stated that

Ĉ y π D̂  y 

i.e.,

Â B̂
 
 y π B̂

 
Ây

or 

		  (Â B̂
 
 – B̂

 
Â)y π 0	 ...(5)

	 The above statement can be seen from the following example:

	 Let y be any function of x, Â represent multiplication by x, while B̂
 
 represent differentiation 

with respect to x. We then have

		  Â B̂
  
y = d

x
dx

y 	 ...(6) 

and
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		  B̂
 
Ây = ( )

d d
x x

dx dx

yy = + y 	 ...(7)

	 Thus 

(Â B̂
  
 – B̂

 
Â)y = – –

d d
x x

dx dx

y y y  

or

		  (Â B̂
  
 – B̂

 
Â)y = – y	 ...(8) 

	 Equation (8) can be expressed by writing 

		  (Â B̂
  
 – B̂

 
Â) = – Û	 ...(9)

where Û is the unit operator defined by 

		  Û y = y	 ...(10)

(b) Commutator of Two Operators

Let Â and B̂ be two operators defined in the same domain of definition. A useful operator 
called the commutator of Â and B̂ which is usually written as [Â, B̂ ] is defined as 

		  [Â, B̂
 
] = Â B̂

  
 – B̂

 
Â	 ...(11)

	 From the definition given by Eq. (11) it follows that 

		  [B̂, Â] = B̂
 
 Â – Â B̂

  
	 ...(12)

	 Equations (11) and (12) give 

		  [Â, B̂
 
] = – [B̂

 
, Â]	 ...(13)

	 The operators Â and B̂ are said to commute with each other or the operators Â and B̂ are 
said to be commutative, if 

		  Â B̂
  
= B̂

 
Â	 ...(14)

or

		  Â B̂
 
 – B̂

 
Â = 0	 ...(15) 

	 And hence the commutator 

		  [Â, B̂
 
] = 0	 ...(16)

	 If the operators Â and B̂
  
are such that Eq. (14) or Eq. (15) or Eq. (16) does not hold, then 

they are said to be non-commutative.

(c) Anti-commutator of Two Operators 
If Â and B̂

 
 are two operators defined in the same domain of definition then an operator called 

the anti-commutator of the operators usually written as [Â, B̂
 
]+ or {Â, B̂

 
} is defined as 

		  [Â , B̂
 
]+ ∫ {Â , B̂

 
} = Â B̂

  
+ B̂

 
Â	 ...(17)

	 The operators are said to anticommute, if 
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{Â , B̂
 
} = 0

or 

		  Â B̂
 
 + B̂

 
Â = 0	 ...(18)

(d) Inverse of an Operator 
Consider an operator Â defined in a certain domain of definition.

	 The inverse of Â is written as Â –1 and is defined such that 

		  Â Â  –1 = Â –1 Â = 1	 ...(19) 

	 It is easy to see that any operator commutes with its inverse 

		  [Â , Â –1] = Â Â –1 – Â–1 Â = 1 – 1 = 0	 ...(20)

2.5 Li near operator 

A particular class of operators is of primary interest in the mathematical formulation of 
quantum theory. These are the so-called linear operators.

	 Consider an operator Â defined in a certain domain of definition. Let y1 and y2 be any 
two arbitrary functions defined in the domain of definition of Â.

	 If on operating on the sum of the functions y1 and y2 the operator Â yields the same 
result as the sum of the operations on the two functions separately, then Â is said to be linear 
operator. Thus, for the operator Â to be linear we must have 

		  Â(y1 + y2) = Â y1 + Â y2	 ...(21)

	 For linearity of Â we must also have 

Â(cy1) = cÂ y1 

		  Â (cy2) = cÂy2	 ...(22)

where c is a number.

	 The properties of linear operator expressed by the Eqs. (21) and (22) will be useful in 
later developments of quantum mechanics.

2.5.1 E igenfunctions and Eigenvalues of a Linear Operator 

Consider a linear operator Â defined in a certain domain of definition. If y is any function 
defined in the domain of the definition of Â, then in general, we have 

		  Â y = f	 ...(23)

	 However, for every linear operator Â , there exists a set of functions y1, y2,..., yn, such that

Â y1 = a1y1

		  Ây2 = a2y2	 ...(24)

		  	
Âyn = anyn 
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where a1, a2, ..., an are constants with respect to the variables of which yi’ s (i = 1, ..., n) 
are functions. The set of functions y1, y2, ..., yn are called eigenfunctions of the operator 
Â and the constant a1, a2, ..., an are called the eigenvalues belonging to the eigenfunctions 
y1, y2, ..., yn, respectively. 

2.5.2 E igenvalue Equation 

The equation 

		  Âyi = aiyi	 (i = 1, 2, ..., n)	 ...(25)

is called the eigenvalue equation for the operator Â.

2.5.3 D iscrete and Continuous Spectra of Eigenvalues of Operators 

Consider the differential equation 

		  i ( )d x

dx

y  = ly(x)	 ...(26)

where y(x) is an arbitrary function of x, l is a constant (independent of x) real number and ​

÷ 
___

 –1 ​ = ± i.

	 Equation (26) is a special case of the general operator equation 

		  Ây(x) = ay(x)	 ...(27)

where Â is an operator and a is a real number. The general solutions of Eq. (26) are

		  y(x) = yl(x) = cle– ilx	 ...(28)

with cl as an arbitrary constant. There exists a function yl (x) for each value of l and each 
satisfies Eq. (26).

	 In a sense then, the set of functions, yl(x) characterizes the operator 

Â ∫ i 
d

dx

and are the eigenfunctions or characteristic functions of the operator. In general, from 
Eq. (27), one obtains a set of such characteristic functions yi for any operator such that 

		  Âyi = aiyi	 ...(29)

	 We thus find that, in general, an operator possesses a set of eigenfunctions, each of which 
is characterized by a number ai through Eq. (29). As has been mentioned in the beginning, 
the numbers ai are the eigenvalues or characteristic values of the operator Â. The totality of 
these numbers for a given operator is called the eigenvalue spectrum of the operator. 
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	 The spectrum of eigenvalues of an operator can be discrete, continuous or discrete- 
continuous, depending on the form of the operator and possibly on certain other requirements 
which may have to be made on the eigenfunctions for physical reasons. 

Example of an operator with a continuous spectrum of eigenvalues:

	 Consider the operator used in Eq. (26) Â ∫ i
d

dx

	 The eigenfunctions, as we have seen earlier in the section, are 

		  yl = cle – ilx	 ...(30)

	 Equation (30) defines one eigenfunction for each value of l which may vary continuously 
from a minimum to a maximum value. The spectrum of l is evidently continuous.

Example of an operator with discrete spectrum of eigenvalues:
Let us consider the second-order differential equation 

		
2

2

( )d x

dx

y
 + ly(x) = a(x)	 ...(31)

subject to conditions 

		  a(x) = 0  for 0 < x < a	 ...(32)

		  = •  for x £ 0 and x ≥ a

	 In Eq. (31), y(x) is some arbitrary function of the variable x and l is a constant real 
number.

	 In view of the condition a(x) = • for x £ 0 and x ≥ a, we obtain the solution of equation 
(31) in these two regions to be 

y(x) = 0 

	 Clearly,

		  y(x) = 0  at x = 0 	

...(33)and 

		  y(x) = 0  at x = a  

	 In the region 0 £ x £ a, Eq. (31) becomes 

2

2

( )d x

dx

y
 + ly(x) = 0

or 

		
2

2

( )
–

d x

dx

y
 = ly(x)	 ...(34)

	 The above equation can be identified as the eigenvalue equation
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		  Ây(x) = ly(x)	 ...(35)

where Â is the differential operator 

		  Â ∫ 
2

2
–

d

dx
	 ...(36)

and l is the eigenvalue of Â corresponding to the eigenfunction y(x).

	 The most general solution of Eq. (34) is 

		  y(x) = A sin ​÷ 
__

 l ​x + B cos ​÷ 
__

 l ​x	 ...(37)

where Â and B̂ are constants. 

	 Boundary condition given by Eq. (33) requires

y(x) = 0  at x = 0

	 The above when used in Eq. (37) yields 

B = 0

	 So that the solution given by Eq. (37) becomes 

		  y(x) = A sin ​÷ 
__

 l ​x	 ...(38)

	 We also have the boundary condition 

y(x) = 0  at x = a

which when used in Eq. (38) gives 

A sin ​÷ 
__

 l ​a = 0

or		  sin ​÷ 
__

 l ​a = 0    (  A π 0) 

or		  sin ​÷ 
__

 l ​a = sin np  (n = 0, ± 1, ± 2, ...)

or		​  ÷ 
__

 l ​a = np 

\		  l = 
2 2

2

n

a

p
	 ...(39)

	 The possible values of l from Eq. (39) are given as 

		  0, 
2 2 2

2 2 2

4 9
, , ,

a a a

p p p
 etc.	 ...(40)

	 We find the eigenvalues to be discrete. The eigenfunctions belonging to the possible 
eigenvalues are 
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		  y(x) = A sin ​÷ 
__

 l ​x = A sin 
n

x
a

pÊ ˆ
Á ˜Ë ¯ 	 ...(41)

2.6 H ermitian Operator 

2.6.1 D efintion

The operators which play important role in quantum mechanics can be further specialized. 
They are not only linear, they are Hermitian.

	 Before we define Hermitian operator, we need to define the complex conjugate of a linear 
operator Â. Let us suppose 

		  Ây = f	 ...(42) 

	 The operator denoted by Â* is called the complex conjugate of the operator Â if, by the 
action of Â* on the function y*(complex conjugate of the function y), we get the function f* 
(complex conjugate of the function f), i.e., we get 

		  Â*y* = f*	 ...(43) 

	 In the domain of definition V in which the operator Â is defined, let u and v be two 
functions subject to identical boundary conditions.

	 The operator Â is said to be Hermitian operator if it satisfies the condition

		  * * * *ˆ ˆ ˆ( )
V V V

u Avd Au vdt A u vdt = = tÚ Ú Ú 	 ...(44) 

	 Alternatively, the Hermitian character of the linear operator Â is made through the 

definition of transpose of the operator Â. The transpose of the operator Â is denoted by Â
~
 

and is defined according to the relation 

		  ˆ ˆ( ) ( )
v v

v Au d u Av dt = tÚ Ú  	 ...(45) 

	 The transposed operator Â
~* for the operator Â * is, according to Eq. (45), given by 

		  **ˆ ˆ( ) ( )v A u d u A v dt = tÚ Ú  	 ...(46)

		 It is usual to denote Â
~* as Â † (read as A-dagger) and is said to be the Conjugate to the 

operator Â . Now the operator Â is called Hermitian or self adjoint if 

		  Â = Â†	 ...(47)
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	 We may note that in mathematics the terms adjoint, conjugate and associate operator are 

used for Â†.

2.6.2 P roperties of Hermitian Operator 

Eigenfunctions and eigenvalues of Hermitian operator possess certain very general and useful 
properties.

(i) Eigenvalues of Hermitian operators are real numbers

Proof:
Consider a Hermitian operator Â. Let yn be an eigenfunction of Â belonging to the eigenvalue 
an. We then have the eigenvalue equation 

		  Âyn = anyn	 ...(48)

	 Taking complex conjugate of Eq. (48), we get 

		  Â*​y​ n​ 
 *​ = ​a​ n​ 

 *​​y​ n​ 
 *​	 ...(49)

	 Multiplying Eq. (48) by ​y​ n​ 
 *​ from the left and integrating over the entire domain of 

definition we obtain 

		  Ú ​y​ n​ 
 *​ Â yndt = Ú ​y​ n​ 

 *​ anyn dt = an Ú ​y​ n​ 
 *​yn dt	 ...(50) 

	 Since Â is Hermitian we may write Eq. (50) as 

		  Ú Â*​y​ n​ 
 *​yn dt = an Ú ​y​ n​ 

 *​yn dt	 ...(51)

	 Multiplying Eq. (49) by yn from the right and integrating over the entire domain of 
definition we obtain 

		  Ú Â*​y​ n​ 
 *​yndt = Ú an

*​y​ n​ 
 *​yndt = an

* Ú ​y​ n​ 
 *​yndt	 ...(52)

	 The L.H.S of Eqs. (51) and (52) are the same and hence we get 

an Ú ​y​ n​ 
 *​yndt = an

* Ú ​y​ n​ 
 *​yndt

or		  (an – an
*) Ú​ y​ n​ 

 *​yndt = 0

	 Since Ú ​y​ n​ 
 *​yndt π 0, the above gives 

an – an
* = 0

or		  an = an
*	 ...(53) 

	 Thus, the eigenvalues of the Hermitian operator Â are real.
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(ii) Any two eigenfunctions of a Hermitian operator that belong to different eigenvalues 
are orthogonal.

Proof:
Two arbitrary functions u and v defined in the same domain of definition are said to be 
orthogonal to each other if 

		  Ú u*vdt = 0	 ...(54)

where * indicates complex conjugate and the integration is carried over the entire domain 
of definition.

	 Consider a Hermitian operator Â. Let yn and ym be two eigenfunctions of Â belonging 
to eigenvalues an and am, respectively. We then have

		  Âyn = anyn	 ...(55)

		  Âym = amym	 ...(56)

	 Multiplying Eq. (55) by ym
* from the left and integrating over the entire domain of 

definition, we get

		  Ú ym
* Âyndt = Ú ym

* anyndt = an Ú ym
* yndt	 ...(57)

	 Taking complex conjugate of Eq. (56), we obtain

		  Â *ym
* = am

* ym
* = amym

*	 [since am is real]	 ...(58)

	 Multiplying Eq. (58) by ym from the right and integrating over the entire domain of 
definition, we obtain 

		  Ú Â*ym
* Ândt = am Ú ym

*yndt	 ...(59) 

	 Since Â is Hermitian, Eq. (59) can be rewritten as 

		  Ú ym
* Âyndt = am Ú ym

*yndy	 ...(60)

	 From Eqs. (57) and (60), we get 

an Ú ym
*yndt = am Ú ym

*yndt
or 

		  (an – am) Ú ym
*yndt = 0	 ...(61)

	 Since an and am are two different eigenvalues 

(an – am) π 0

and hence Eq. (61) yields 

		  Ú ym
*yndt = 0	 ...(62)

	 In view of Eq. (54), we thus find that eigenfunctions of the Hermitian operator Â belonging 
to different eigenvalues are orthogonal to each other. 



	 51Mathematical Preliminaries 

2.7  Important Theorems on Operators 

(i) If two operators have simultaneous eigenfunctions, i.e., if all the eigenfunctions of 
two operators are common, then the operators commute with each other. 

Proof:
Consider two operators Â and B̂  which have simultaneous eigenfunctions. Let yn be one 

such eigenfunction of both Â and B̂  belonging to eigenvalues an and bn respectively. We then 
have

		  Âyn = anyn	 ...(63)

and 

		  B̂ yn = bnyn	 ...(64)

	 Operating Eq. (63) by the operator B̂  from the left, we get

B̂ (Âyn) = B̂ (an yn) = an B̂
 yn

	 Using Eq. (64) the above becomes 

		  B̂ Âyn = anbnyn	 ...(65)

	 Operating Eq. (64) by the operator Â from the left, we get 

Â (B̂ yn) = Â(bnyn) = bn Âyn 

	 Using Eq. (63) in the above we get 

		  ÂB̂  yn = bnanyn	 ...(66)

	 Combining Eqs. (65) and (66) we obtain 

(Â B̂  – B̂ Â)yn = 0 

and hence we have 

		  ÂB̂  – B̂  Â = 0	 ...(67)

	 Thus the operators Â and B̂  commute with each other. 

(ii) Commuting operators have common set of eigenfunctions. 
Proof:
Consider two operators Â and B̂  which commute with each other, i.e., consider 

		  ÂB̂  = B̂ Â	 ...(68)

	 Let yi be an eigenfunction of Â belonging to eigenvalue ai. We then have the eigenvalue 
equation for Â

		  Âyi = aiyi	 ...(69)

	 Operating Eq. (69) by B̂  from the left we get
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B̂ Âyi = B̂ (aiyi) = ai B̂
 yi

	 In view of Eq. (68) the above can be written as 

		  Â(B̂ yi) = ai (B̂
 yi)	 ...(70) 

	 We find B̂ yi to be an eigenfunction of Â with the same eigenvalue ai. If Â has only 

nondegenerate eigenvalue, B̂ yi differs from yi only by a multiplicative constant, say bi, 

i.e.,

		  B̂ yi = bi yi	 ...(71)

	 Clearly, yi is also an eigenfunction of Â. In other words, yi is a simultaneous eigenfunction 

of both Â as well as B̂. 

2.8 S ome Important Theorems and Examples 

(1) If Â and B̂ are two Hermitian operators, then their product operator Â B̂ is Hermitian 
if and only if Â and B̂ commute with each other.

Proof:
Consider two operators Â and B̂ defined in a certain domain of definition. Consider two 
arbitrary functions y and f in the domain in which Â and B̂ are defined. Using the definition 
of transposed operator we can write

		  Ú y (ÂB̂)fdt = Ú yÂ (B̂ f)dt

		  = Ú (B̂ f) Â ~ydt

		  = Ú (B̂ f) (Â ~y)dt

		  = Ú (Â ~y)B̂ fdt

		  = Ú (fB̂
~

Â ~ydt	 ...(72)

	 We also have 

		  Ú y (Â B̂ )fdt = Ú f( ̂̂AB )ydt	 ...(73)

	 Comparing Eqs. (72) and (73) we get 

Ú f ( ̂̂AB )ydt = Ú f Â ~B̂
~
ydt 

	 The above gives 

		  ̂̂AB  = B̂
~

Â ~	 ...(74)

	 Taking complex conjugate of Eq. (74), we obtain 

		  ( ̂̂AB )* = (B̂
~

)* (Â ~)* 
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or		  (ÂB̂ )† = B̂  † Â†	 ...(75)

	 Since Â and B̂ are Hermitian we have 

Â† = Â  and  B̂ † = B̂ 

and Eq. (75) thus becomes 

		  (ÂB̂ )† = B̂  Â	 ...(76)

	 For the operator ÂB̂  to be Hermitian the condition that must be satisfied is

		  (ÂB̂ )† = ÂB̂ 	 ...(77)

	 In view of Eq. (76) and (77) we find that the product ÂB̂  is Hermitian if 

ÂB̂  = B̂ Â

or		  ÂB̂  – B̂ Â = 0 

or		  [Â, B̂ ] = 0

(2) If Â and B̂  are two non-commuting Hermitian operators then i(ÂB̂  – B̂ Â) is 
Hermitian. 
	 Consider two Hermitian operators defined in some domain of definition. We then have 

Â † = Â

		  B̂ † = B̂ 	 ...(78)

	 Consider the operator Ĉ = i(ÂB̂  – B̂ Â). Taking transpose, we obtain 

		  Ĉ
~

 = i(̂̂AB  – ̂̂BA ) = i ̂̂AB  – i ̂̂BA

		  = i B̂
~

Â ~ – iÂ ~B̂
~

 	 ...(79)

	 Taking complex conjugate of Eq. (79), we get 

		  (Ĉ
~

)* = – i(B̂
~

)* (Â ~)* + i(Â
~

)* (B̂
~

i)*

		  = – iB̂ †Â† + iÂ† B̂ †

or		  Ĉ† = – iB̂ †Â† + iÂ† B̂ †	 ...(80)

	 Using Eq. (78) in Eq. (80), we get 

		  Ĉ † = – iB̂  Â + iÂB̂  = i(ÂB̂  – B̂ Â)	 ...(81) 

	 In view of Eqs. (79) and (81), we find 



	 	 Introduction to Quantum Mechanics54

Ĉ † = Ĉ

	 Clearly, Ĉ = i(ÂB̂  – B̂ Â) is Hermitian. 

Examples 

(1) From two non-commuting Hermitian operators Â and B̂  construct a Hermitian 
operator. 

OR
If Â and B̂ are two non-commuting Hermitian operators, then prove that ​ 1 __ 

2
 ​ (Â B̂  + B̂ Â) 

is Hermitian. 

	 Since Â and B̂  are Hermitian, we have 

Â† = Â

		  B̂ † = B̂ 
	 ...(82)

	 Let us consider the operator Ĉ  as 

		  Ĉ  = ​ 1 __ 
2

 ​ (ÂB̂  + B̂ Â)	 ...(83)

	 Taking transpose of Eq. (83) we get

		  Ĉ ~ = ​ 1 __ 
2

 ​ ( ̂̂AB  + ̂̂BA ) = ​ 1 __ 
2
 ​ (B̂

~
Â ~ + Â ~B̂

~
)	 ...(84)

	 Taking complex conjugate of Eq. (84) we get

(Ĉ ~)* = ​ 1 __ 
2

 ​ (B̂
~

)* (Â ~)* + ​ 1 __ 
2

 ​ (Â ~)* (B̂
~

)*

or

		  Ĉ  † = ​ 1 __ 
2

 ​ B̂ †Â† + ​ 1 __ 
2
 ​ Â†B̂ †	 ...(85)

	 Use of Eq. (82) in the above gives us

		  Ĉ † = ​ 1 __ 
2

 ​ B̂  Â + ​ 1 __ 
2

 ​ ÂB̂  = ​ 1 __ 
2
 ​ (ÂB̂  + B̂  Â)	 ...(86)

	 In view of Eqs. (83) and (86) we find that 

Ĉ  = ​ 1 __ 
2

 ​ (ÂB̂  + B̂  Â) is Hermitian.

(2) The eigenvalues of the operator ( f̂  )p are equal to the pth power of the eigenvalues 
of  f̂ , p being any positive integer. 

Let yn be an eigenfunction of f̂  belonging to the eigenvalue fn. We then have the eigenvalue 
equation 



	 55Mathematical Preliminaries 

		  f̂  yn = fnyn	 ...(87)

	 Operating Eq. (87) by f̂   from the left we obtain 

f̂  (f̂  yn) = f̂ ( fnyn) = fn  f̂
 yn

or

		  f̂  2 yn = fn
2yn	 [using Eq. (87)]	 ...(88)

	 Operating Eq. (88) by f̂  from the left we get 

f̂ ( f̂  2yn) = f̂ fn
2yn = fn

2 f̂  yn

or

		  f̂  3yn = fn
3yn	 [using Eq. (87)]	 ...(89)

	 Generalizing the above procedure we obtain 

f̂  pyn = fn
pyn

(3) The operator p̂x = – i ​ ∂ ___ 
∂x

 ​ (operator corresponding to the x-component of linear 
momentum) is Hermitian.
Let the system, whose x-component of linear momentum px is being considered, be in a state 
described by the wavefunction y(x). We may note that y(x) vanishes at infinity. We have

		  * *

– –

( )
ˆ( ) ( ) ( ) –x

x
x p x dx x i dx

x

+• +•

• •

∂yÈ ˘y y = y Í ˙∂Î ˚Ú Ú 

		  = * ( )
– ( )

x
i x dx

x

∂yy
∂Ú

	 Integrating the right hand side of the above by parts we obtain

		
*

* *
–

– –

( )
ˆ( ) ( ) – { ( ) ( )} – ( )x

x
x p x dx i x x x dx

x

+• +•
+•

•
• •

È ˘∂yÍ ˙y y = y y y
∂Í ˙Î ˚

Ú Ú

		  = 
*

–

( )
( )

x
i x dx

x

+•

•

∂yy
∂Ú 	 [since y(x) = 0 at x = ± •]

		  = *

–

( ) ( )x i x dx
x

+•

•

∂Ï ¸y yÌ ˝∂Ó ˛Ú 

		  = * *

–

ˆ( ) ( )xx p x dx
+•

•

y yÚ
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	 Thus we find that

*

– –

ˆ ˆ( ) ( ) ( ) ( )x xx p x dx x p x dx
+• +•

• •

y y = y yÚ Ú
	 Clearly, 

p̂x = –i
x

∂
∂
  is Hermitian

2.9  solved Examples

Example 1  Prove that the commutator of two Hermitian operators is antihermitian.

Proof  Let Â and B̂ be two hermitian operators. Clearly 

		  Â† = Â,  B̂ † = B̂ 	 ...(i)

	 We have	 [Â, B̂ ]† = (Â B̂  – B̂ Â)† = B̂ †Â† – Â †B̂ †

	 Using Eq. (i) in the above we get 

[Â, B̂ ]† = B̂ Â – ÂB̂  = – (ÂB̂  – B̂ Â) = – [Â, B̂ ]

	 Thus [Â, B̂ ] is antihermitian.

Example 2  find the eigenvalues of the inverse of an operator.

Solution:  Let Â be an operator and Â –1 be the inverse of the operator Â . We then have 

		  Â –1Â = 1	 ...(i)

	 Let y be an eigenfunction of Â belonging to the eigenvalue a. We then have 

		  Ây = ay	 ...(ii)

	 Operating Eq. (ii) by Â–1 from the left we get

		  Â –1Â y = a Â –1y	 ...(iii) 

	 Using Eq. (i) we get 

		  Â –1Ây = y	 ...(iv)

	 In view of Eqs. (iii) and (iv) we obtain 

a Â–1 y = y
or

		  Â–1 y = ​ 1 __ a ​ y
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	 Clearly, the eigenvalue of Â–1 is ​ 1 __ a ​ which is the reciprocal of the eigenvalue of Â.

Example 3  Show that the differential operator i ​ d ___ 
dx

 ​ is a Hermitian operator.

Solution:  Consider a function of x, namely y(x) which vanishes at infinity. We get 

* *

– –

( )
( ) ( ) ( )

d d x
x i x dx i x dx

dx dx

+• +•

• •

yÊ ˆy y = yÁ ˜Ë ¯Ú Ú

	 Integrating by parts we obtain 

*
* *

–

– –

( )
( ) ( ) { ( ) ( )} – ( )

d d x
x i x dx i x x x dx

dx dx

+• +•
+•

•
• •

È ˘yÊ ˆ Í ˙y y = y y yÁ ˜Ë ¯ Í ˙Î ˚
Ú Ú  

	 Due to the boundary conditions on y(x), the first term on the right hand side of the above 
equation vanishes. Hence, we get 

		  * *

– –

( ) ( ) ( ) – ( )
d d

x i x dx x i x dx
dx dx

+• +•

• •

Ê ˆ Ê ˆy y = y yÁ ˜ Á ˜Ë ¯ Ë ¯Ú Ú

		
*

* *

– –

( ) ( ) ( ) – ( )
d d

x i x dx x i x dx
dx dx

+• +•

• •

Ê ˆ Ê ˆy y = y yÁ ˜ Á ˜Ë ¯ Ë ¯Ú Ú

		  = 
*

*

–

( ) ( )
d

i x x dx
dx

+•

•

Ê ˆ y yÁ ˜Ë ¯Ú

	 Clearly, the operator i ​ d ___ 
dx

 ​ is Hermitian.

Example 4  The commutator of two operators Â and B̂ is [Â, B̂ ] = aB̂, where a is a number. 

Show that ​e​Â​B̂ ​e​– Â​ = eaB̂ 

Solution:  We have the general identity for any two operators Â and B̂ defined in the same 
domain of definition 

		​  e​Â​ B̂ ​e​– Â​ = B̂ + [Â, B̂ ] + ​ 1 __ 
2!

 ​ [Â,[Â, B̂ ]] + ​ 1 __ 
3!

 ​ [Â, [Â, [Â, B̂ ]]] + ...	 ...(i)

	 We have	 [Â, B̂ ] = aB̂	 ...(ii)
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	 Now 

		  [Â, [Â, B̂] = [Â, a B̂] = a[Â, B̂] = a2 B̂	 ...(iii) 

		  [A, [A, [Â, B̂ ]]] = [Â, a2 B̂ ] = a2 [Â , B̂ ] = a3 B̂	 ...(iv)

	 Using the results given by Eqs. (ii), (iii) and (iv) in Eq. (i) we get 

		​  e​– Â​ B̂ ​e​– Â​ = B̂ + aB̂ + ​ a
2B̂ ____ 

2!
 ​  + ​ a

3B̂ ____ 
3!

 ​  + ...

		  = ​​[ 1 + a + ​ a
2

 ___ 
2!

 ​ + ​ a
3

 ___ 
3!

 ​ + ... ]​​B̂ 

​

or

​e​– Â​ B̂ ​ e​– Â​ = eaB̂ .

Example 5  Â and B̂  are two commuting Hermitian operators. Is the operator (Â B̂  + B̂  Â) 
also Hermitian?

Solution:  Since the operators Â and B̂  are Hermitian and they commute with each other, the 

product operators Â B̂  as well as B̂ Â are Hermitian (see Section 2.8).

	 Let ym and yn be two functions defined in the domain of definition of Â and B̂ . Since Â B̂  

is Hermitian, we have 

		  Ú ym
*  Â B̂  yndt = Ú(Â B̂ )* ym

* yndt	 ...(i)

	 Similarly, since B̂  Â is Hermitian we get 

		  Ú ym
* B̂ Âyndt = Ú (B̂ Â)* ym

* yndt	 ...(ii)

	 Now 

		  Ú ym (Â
 B̂  + B̂ Â)yndt = Ú ym

* Â B̂  yndt + Ú ym
* B̂ Âyndt 

		  = Ú (Â B̂ )*ym
*yndt + Ú (B̂ Â)*ym

* yndt

		  = Ú (Â B̂  + B̂ Â)*ym
* yndt

	 Clearly, the operator (Â B̂  + B̂ Â) is Hermitian.

Example 6  In Example 5, is the operator (Â B̂  – B̂ Â) Hermitian?

Solution:

We have	 Ú ym
* (Â B̂  – B̂ Â)yndt = Ú ym

*  Â B̂ yndt – Ú ym
* B̂ Âyndt
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	 Using Eqs. (i) and (ii) of Example 5, the above becomes 

		  Ú ym
*(Â B̂  – B̂ Â)yndt = Ú (Â B̂ )* ym

* yndt – Ú (B̂ Â)*ym
* yndt

		  = Ú (Â B̂  – B̂ Â)*ym
* yndt

	 Clearly, (Â B̂  – B̂ Â) is Hermitian. 



3.1  Introduction

The foundation of any physical theory rests on some hypotheses or postulates which are 
regarded as fundamental to the theory. The theory thus founded provides a logical as well as 
mathematical connection between the postulates and their observational consequences which 
are usually the predictions of the theory.

	 The basic elements (constructs) of the modern theory as developed by Schrödinger, 
Heisenberg, Jordan, Max Born, Dirac and many others, are (i) Physical system (ii) Observable 
(iii) Operator and (iv) State of physical system.

	 Before we state and discuss the basic postulates of quantum theory in relation to these 
elements it is desirable to discuss these elements briefly.

	 (i)	 Physical System:  A physical system will be generally defined as an object of 
interest to the experimentalist. Thus, it may be an electron, a photon, a nucleus, or any 
combination of these which can be made the object of systematic study. The results 
of such systematic study will, in general, be represented by sets of real numbers 
which have been obtained from specific measurements or operations performed on 
the system.

	 (ii)	 Observable:  The operations will have been performed to determine certain properties 
of the system, such as its mass, size, energy, momentum, position or, in general, any 
function of the coordinates and momenta. Such properties of the system are called 
its observables. In this sense, the observables of a physical system are actually more 
representative of certain operations which can be performed on the system rather than 
they are of the system itself.

	 (iii)	 Operator:  Operator has been defined and discussed in Chapter 2. 

	 (iv)	 The State of Physical System:  It is possible to prepare systems in such a way that 
there will, in general, be one or more observables which yield identical results upon 
repeated measurements. For any particular method of preparation, the observable 
which exhibits this type of behaviour is said to have sharp values. The state of a 
physical system will then be defined in terms of the observables which are sharp, 
together with their particular values. The method of preparation of the system will 
determine which of its observables are sharp. Hence, the method of preparation 
determines the state of a physical system.

3 Postulational Foundation  
of Quantum Theory
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3.2  Basic Postulates of Quantum Mechanics

The purpose of the basic postulates of the quantum theory is to correlate the constructs defined 
above in such a way that the result of the correlation becomes physically meaningful in terms 
of the results of experiments. Thus, the postulates should provide an explicit definition for 
the constructs of states, in a mathematically meaningful fashion.

 Postulate 1:  To every quantum mechanical state of a physical system of ‘s’ degree 
of freedom, there corresponds a function y, called the wave function. In general, y is a 
complex-valued function of generalized coordinates q1, q2, ......, qs and time ‘t’. The function 
y and its derivatives are single-valued, continuous and quadratically integrable over the entire 
domain of definition.

	 The representation in which the wave functions are functions of coordinates and time is 
called coordinate representation, while the representation in which the wave functions are 
functions of the momentum components and time is called the momentum representation. In 
order to extract physically meaningful information from wave functions, the second, third 
and fourth postulates have been made.

 Postulate 2:  For every observable of a physical system, there corresponds a Hermitian 
operator.

	 In the table below are given classical representations and corresponding quantum 
mechanical operators for the observables of a single particle.

Observable Classical representation Operator

x-coordinate x x

y-coordinate y y

z-coordinate z z

x-component of momentum px = mx
.

– i ​ ∂ __ 
∂x

 ​

y-component of momentum py = my
.

– i ​ ∂ __ 
∂y

 ​

z-component of momentum pz = mz
.

– i ​ ∂ __ 
∂z

 ​

Total linear momentum ​
​_
 
›
 p ​ = m​

​_
 
›
 r ​

.
– i​

​__
 
›
 —​

Total angular momentum ​
​__

 
›
 M​ – i​

​_
 
›
 r ​ × ​

​__
 
›
 —​

Kinetic energy ​  1 ___ 
2m

 ​ (​p​ x​ 
 2​ + ​p​ y​ 

 2​ + ​p​ z​ 
 2​) – ​ 

2
 ___ 

2m
 ​ —2

Potential energy V (x, y, z) V(x, y, z)

Energy E – i ​ ∂ __ 
∂t

 ​

Time t t

 Postulate 3:  The only possible result of a precise measurement of an observable A 
whose corresponding operator is Â are the eigenvalues an which are the solutions of the 
eigenvalue equation
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		  Âyn = anyn	 ...(i)

where {yn} forms a complete set of functions called eigenfuctions of Â. This means that any 
arbitrary state function can be expressed as a linear combination of the eigenfunctions. 

 Postulate 4:  When a system is in a state described by the wave function y, the expected 
mean or expectation value, of a series of measurement of an observable, say A, is

		  ·AÒ = 

*

*

Â d

d

y y t

y y t
Ú
Ú

	 ...(ii)

where Â is the operator corresponding to the observable A and the integration is carried over 
the entire domain of definition.

	 It is usual to consider any state function, namely the wave function y to be normalized,  
i.e.,

		  * dy y tÚ  = 1	 ...(iii)

	 With normalized wave function, Eq. (ii) gives

		  ·AÒ = * Â dy y tÚ 	 ...(iv)

	 To study the development of the state of a quantum system, a fifth postulate has been 
introduced.

 Postulate 5:  The state function y(​
​_

 
›
 r ​, t) of a physical system are solutions of the 

differential equation

		  i ( , ) ˆr t
H

t

∂y = y
∂


(​
​_
 
›
 r ​, t)	 ...(v)

where the operator Ĥ corresponds to the total energy of the physical system at time t. It is, 
in general, a function of the operators for ​

​_
 
›
 r ​, ​

​_
 
›
 p ​ and time t.

3.3 C onsequences of the Postulates

The postulates stated in the last section have consequences which serve to establish the 
fundamental properties of the quantum theory. Besides, they tell us how these properties 
differ from those of classical theory. In the sub-sections which follow we discuss the general 
properties of the states of physical systems at a given instant of time (Quantum statics).

3.3.1 E igenstates

It is usual to assume any state function, say f, to be normalized. As such the expectation 
value of an observable A in that state is

		  ·AÒ = * Â df f tÚ 	 ...(1)
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	 Let us now suppose that the state function f is an eigenfunction of Â , say yn, belonging 
to eigenvalue an. Equation (1) can then be written as

		  ·AÒ = * ˆ
n nA dy y tÚ 	 ...(2)

	 But we have the eigenvalue equation

Âyn = anyn

and hence

		  ·AÒ = *
n n na dy y tÚ  = an	 …(3)

	 Thus if the state of a system is an eigenfunction of the operator corresponding to a certain 
observable of the system then the expectation value of the observable is that eigenvalue of 
the operator which belongs to the given eigenfunction.

	 The observable then exhibits a sharp value. If a system exists in a state such that an 
observable exhibits a sharp value then that state is called an eigenstate of that observable. 
For example, if a physical system exists in a state such that repeated measurement of the 
total energy yields the same value W, then the system is considered to be in an eigenstate of 
energy, or in an energy eigenstate corresponding to the sharp value W, i.e., corresponding to 
the energy eigenvalue W.

3.3.2 S uperposition States

Consider the system in a state described by the state function f in which the observable A 
dose not exhibit a sharp value. The repeated measurement of the observable A then results 
in a spectrum of values, However, the result of any one measurement remains unpredictable, 
except within certain limits. To illustrate this, let us suppose that the system is in an energy 
eigenstate, say f, and the observable to be measured be the linear momentum ​

​_
 
›
 p ​. Let the 

momentum operator ​
​_

 
›
 p ​̂  have a complete set of momentum eigenfunctions say {yn}. We can 

then express f as the linear superposition

		  f = n na yÂ 	 ...(4)

	 The expectation value of the momentum of the system in state f is, by definition, 

		  ·pÒ = * p̂ df f tÚ 

or

		  ·pÒ = 
* * ˆ
n m n m

n m

a a p dy y tÂ Â Ú 

or

		  ·pÒ = 
* *
n m m n m

n m

a a p dy y tÂ Â Ú
or
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·pÒ = 
*
n m m nm

n m

a a p dÂ Â
or

		  ·pÒ = 
2| |n m

n

a pÂ 	 ...(5)

	 The above result needs interpretation.

	 According to postulate 2, the only possible result of a measurement of the momentum 
is one of the eigenvalues of the momentum operator. Let a series of measurements of 
the momentum of the system yield the various eigenvalues pn with corresponding relative 
frequencies wn. The mean value of the momentum can then be expressed mathematically 
as

		  ·pÒ = n n
n

pwÂ 	 ...(6)

	 In view of Eqs. (5) and (6) it is reasonable to assume that |an|
2 of Eq. (5) are exactly the 

wn of Eq. (6). Since f is normalized, we have

		  * df f tÚ  = 1

	 Using Eq. (4) the above gives

		
* *
n m n m

n m

a a dy y tÂ Â Ú  = 1

whence we get

		  Â 2| |na  = 1	 ...(7)

	 Thus, |an|
2 £ 1, for all n, as they should be, if the |an|

2 are equal to wn.

	 If an observable A of a system on measurement exhibits a range of values an together with 
a given frequency distribution wn, the system is said to be in a superposition of eigenstates 
of Â or simply in a superposition state of Â.

	 It is important to note that while f represents a superposition state relative to one 
operator, it is, in general, an eigenstate of some other operator.

3.4	C ompatible Measurements:  
	Si multaneous Eigenstates

Consider a system in an eigenstate described by the state function f of the observable A 
corresponding to the sharp value an. Let another observable B of the system on measurement 
yield the sharp value bm. The above results mean

		  ·AÒ = * ˆ
nA d af f t =Ú 	 ...(8)

and
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		  ·BÒ = *B̂ df f tÚ  = bn	 ...(9)

	 We may expand f in terms of either the set of eigenfunctions {yn} of Â, or {lm} of B̂  .

We then obtain

		  ·AÒ = Â 2| |k k
k

c a  = an	 ...(10)

and

		  |ck|
2 = dkn	 ...(11)

	 Similarly, we get

		  ·BÒ = Â 2| |l l
l

d b  = bm	 ...(12)

and

		  |dl|
2 = dln	 ...(13)

	 Thus	 f = yn = lm	 ...(14)

and f is simultaneously an eigenstate of both the observables A and B.

	 Let us consider a state of a system described by the wave function f which is simultaneously 
an eigenstate of two operators Â and B̂.

	 Consider the two equations

		  Âyn = anyn	 ...(15)

and

		  B̂ lm = bmlm	 ...(16)

	 Let us assume yn = lm = fnm, then

		  Âfnm = anfnm	 ...(17)

		  B̂ fnm = bmfnm	 ...(18)

	 From Eq. (17) we obtain

		  B̂ Âfnm = B̂ anfnm = anB̂
 fnm = anbmfnm	 ...(19)

	 From Eq. (18) we similarly obtain

		  ÂB̂ fnm = Âbmfnm = bm Âfnm = bmanfnm	 ...(20)

	 Equations (19) and (20) yield

		  (ÂB̂  – B̂ Â)fnm = 0	 ...(21)

	 Equation (21) shows that if a system be in a state which is an eigenstate of Â belonging 

to an eigenvalue an and simultaneously is an eigenstate of B̂ belonging to some eigenvalue 
bn, then the operators Â and B̂ necessarily commute with each other. Conversely, if two 
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operators corresponding to two observables of a system commute then the eigenstates of Â 

are simultaneously the eigenstates of B̂ .

	 The above considerations establish the criterion for the probability of performing 
compatible measurements. If a certain preparation method provides the system in a state 
such that the observable A exhibits a sharp value, say an, it may happen that a series of 
measurement of the observable B yield a series of results, say b1, b2, ... bi, ... with appropriate 

frequencies |Cnl|2. However, if Â and B̂ commute, it is possible to vary the preparation method 

in order to prepare the system in a state such that A still exhibits the sharp value an and for 

which B also exhibits sharp value, say, bm. Thus, if Â and B̂ commute, the scatter in the 
measurements of the observable B with system in any state is independent of the scatter in 
the measurement of the observable A, and measurement of A is said to be compatible with 
that of B.

	 On the other hand, if Â and B̂ do not commute, the above result is no longer true. A state 
in which the observable A exhibits a sharp value is one for which the scatter in the measured 
value of B is so great that no definite knowledge of B can be obtained. If one attempts to 
prepare the system in states for which the scatter in the measured value of B is finite, the 
states detained are necessarily such that a non-zero scatter in the measured value of A also 

results. Thus, if Â and B̂ do not commute, it is impossible to prepare the system in states for 

which Â and B̂  together exhibit sharp values. The measurements of A and B are then said to be 
incompatible. In the next section incompatible measurement is discussed in greater detail.

3.5	G eneral Uncertainty Relation:  
	 Incompatible Measurement

For any quantum mechanical system, it is possible to prepare states such that two observables 
simultaneously exhibit sharp values. This important result will be derived in the section to 
follow as a special case of a general uncertainty relation which relates the scatter in the 
results of measurement of two observables to the commutation properties of the operators 
corresponding to the observables.

	 At the outset, however, it becomes necessary to establish some precise quantitative 
definition for the scatter (spread or uncertainty) of measured values of an observable.

3.5.1 D efinition of Uncertainty in Measured Value of an Observable

Consider a system prepared in an arbitrary state described by the wave function f. The results 
of measurements of an observable, say f , can be represented by means of a table giving the 
results fn and their relative frequencies of occurrence wn with

		  nwÂ  = 1	 ...(22)

	 The mean or the expectation value of observable · f  Ò is then given by

		  · f  Ò = n n
n

fwÂ 	 ...(23)
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	 Let us then consider the set of numbers (  fn – ·  f  Ò). These numbers are called deviation of 
the measured values from the average value. Some of these numbers are found to be positive, 
some negative and some zero. The average of these numbers is, however, zero provided the 
number of measurements made is very large. However, the number (  fn – · f Ò)2 representing 
the squares of deviation in individual measurement are all positive and as such their average, 
i.e., the number ·( fn – ·  f  Ò)2Ò is not zero.

	 If ·  f  Ò is approximately equal to say fk, then the larger the difference | fn – fk|, the greater 

becomes the magnitude of (  fn – ·  f  Ò)2. If wn now represents a fairly sharp distribution, i.e., 
if wn @ 1 for n = k and wn @ 0 for n π k there will be few terms in the sum

		  (df )2 ∫ n
n

wÂ ( fn – ·  f  Ò)2	 ...(24)

which are sensibly different from zero. Further each of the non-zero terms will be small since 
( fn – ·  f  Ò)2 is small for the contributing terms in the above sum. Thus (df)2 is small for a 
sharply peaked function. Similarly, if the distribution of wn over n is broad, or diffuse, there 
will be many terms wn which are nearly equal and of the order wk, where

		  ·  f  Ò @ fk	 ...(25)

for the distribution. In this case, many terms will contribute to (df )2, all with approximately  
equal weight wn. For n @ k, the factors ( fn – · f Ò)2 will be small and the terms {wn( fn – ·  f  Ò)2} 
contribute little to the sum (df )2. However, for n much different from k ( fn – · f Ò)2 can become 
large. The magnitude of (d f )2 then becomes correspondingly large. Thus (d f )2 is small for 
a sharp distribution and large for broad or diffuse distribution. In particular, if the state f 
considered is an eigenstate of f belonging to the eigenvalue fk , · f Ò is identically equal to fk 
with wn = dnk. Then 

		  (df )2  ∫ nk
n

dÂ (  fn – fk)
2	 ...(26)

and (df )2 vanishes identically. For the above reasons the number (d f )2 introduced above is 
defined as the statistical dispersion of the series of measurements. Its square root

		  D f = 2( )fd 	 ...(27)

is hence called the standard deviation of the series of measurements. The D f defined above 
is taken as the measure of scatter in the results of a measurement of the observable f  and 
will be considered to define the uncertainty in the observable for the system in the given 
state under consideration.

3.5.2 D erivation of the Uncertainty Relation

Let us consider two physical quantities f and g of a quantum system. Let f̂  and ĝ be the 
corresponding operators.

	 Let the system be prepared in a state described by the wave function f.
	 By definition, the uncertainties in the measured values of f and g are 
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		  D f = [·( f – ·  f  Ò)2Ò​]​​ 
1 __ 
2
 ​
​	 ...(28)

		  D g = [·(g – ·gÒ)2Ò​]​​ 
1 __ 
2
 ​
​	 ...(29)

	 Equation (28) gives

(D f )2 = ·(  f – ·  f  Ò)2Ò

or	 	   (D f )2 = * 2ˆ( – )f f Î df f tÚ , 

	 Î is a unit operator

or		  (D f )2 = * ˆ ˆ( – ) ( – )f f Î f f Î df f tÚ 	 ...(30)

	 Assuming the quantity f  to be real,  f̂  is Hermitian. The unit operator Î is always Hermitian. 
Hence, Eq. (30) may be rewritten as

(D f )2 = * *ˆ ˆ( – ) ( – )f f Î f f Î df f tÚ
or		  (D f )2 = 

2ˆ( – )f f Î df tÚ 	 ...(31)

	 Similarly, considering the quantity g to be real, we get

		  (Dg)2 = 
2

ˆ( – )g g Î df tÚ 	 ...(32)

	 From Eqs. (31) and (32) we obtain

		  (D f)2 (Dg)2 = 
2 2ˆ ˆ( – ) ( – )f f Î d g g Î df t f tÚ Ú 	 ...(33)

	 Let us now abbreviate 

		    ( f̂  – ·  f  Ò)f as u  and  (ĝ – ·gÒ)f as v	 ...(34)

	 Equation (33) then can be written as

		  (D f )2 (Dg)2 = *u udtÚ   *v vdtÚ 	 ...(35)

	 Now, consider that if h is a real number

		  * *( – )u ivhÚ (hu + iv)dt > 0	 ...(36)

in general, whence we obtain
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		  2 * * * *( – ) 0u ud i u v uv d v vdth t + h t + >Ú Ú Ú 	 ...(37)

	 The above equation is a quardratic form in the real variable h of the type

		  f (h) = ah2 + bh + c > 0	 ...(38)

	 If h be complex, there exist no real roots of the Eq. (38).

	 However, there may be real roots if

b2 < 4ac

	 We then obtain from Eq. (37)

		  *u udtÚ  *v vdtÚ  
2

* *1
( – )

4
u v uv d≥ tÚ 	 ...(39)

	 Using the definitions of u and v given by Eq. (34), we obtain from Eq. (39)

		  (D f )2 (Dg)2 ≥ 
21 ˆ ˆˆ ˆ( – )

4
f g g f df tÚ 	 ...(40)

	 For any two arbitrary and in general complex functions u and v defined in the same 
domain, the following inequality called Schwartz inequality holds

		  2| |u dtÚ  2| |v dtÚ  
2

*u vd≥ tÚ 	 ...(41)

	 In the above, the integration is carried over the entire domain of definition.

	 Abbreviating as

		  ( f̂  – ·  f  ÒÎ ) f = u  and  (ĝ – ·gÒÎ ) f = v	 ...(42)

and using the inequality given by Eq. (41), we obtain from Eq. (33)

		  (D f )2 (Dg)2 ≥ 
2

*ˆ ˆ( – ) ( – )f f Î g g Î df f tÚ 	 ...(43)

	 Since f̂  and Î are Hermitian operators, we may rewrite Eq. (43) as

		  (D f )2 (Dg)2 ≥ 
2

* ˆ ˆ( – ) ( – )f f Î g g Î df f tÚ 	 ...(44)

	 For convenience, let us define Hermitian operators â and b̂ as

		  ( f̂  – · f ÒÎ ) = â	 ...(45)

		  (ĝ – ·gÒÎ ) = b̂	 ...(46)
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	 Using Eqs. (45) and (46) in Eq. (44), we obtain

(D f )2 (Dg)2 ≥ 
2

* ˆˆ df abf tÚ

or		  (D f  )2 (Dg)2 ≥ 
2

* *1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( – )
2 2

d df ab + ba f t + f ab ba f tÚ Ú

or		  (D f )2 (Dg)2 ≥ * *1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( – )
2 2

d d
È ˘f ab + ba f t + f ab ba f tÍ ˙Î ˚Ú Ú

		  * *1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( – )
2 2

d d
È ˘¥ f ab + ba f t + f ab ba f tÍ ˙Î ˚Ú Ú

		
2 2

* *1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( – )
4 2

d d≥ f ab + ba f t + f ab ba f tÚ Ú 	 ...(47)

		  * * *1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ{ ( ) } { ( – ) }
4

d dÈ ˘+ f ab + ba f t f ab ba f tÎ ˚Ú Ú

		  * * *1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ{ ( – ) } { ( ) }
4

d dÈ ˘+ f ab ba f t f ab + ba f tÎ ˚Ú Ú
	 Using the Hermiticity properties of â and b̂ , we get

		
* *

* * * * * *ˆ ˆ ˆ ˆˆ ˆ ˆ ˆd d d dÈ ˘ È ˘ È ˘f abf t = a f bf t = afb f t = f baf tÍ ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚Ú Ú Ú Ú 	 ...(48)

	 Similarly, we have

		
* *

* * * * * *ˆ ˆ ˆ ˆˆ ˆ ˆ ˆd d dÈ ˘ È ˘ È ˘f baf t = bf af t = bf a f = f abf tÎ ˚ Î ˚ Î ˚Ú Ú Ú Ú 	 ...(49)

	 Using Eqs. (48) and (49) in Eq. (47) we obtain

		  (D f )2 (Dg) ≥ 
2 2

* *1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( – )
4 4

d df ab + ab f t + f ab ba f tÚ Ú 	 ...(50)

	 Whithout any loss of generality it is possible to consider â b̂ + b̂ â = 0, whence Eq. (50) 
gives

		  (D f )2 (Dg)2 ≥ 
2

*1 ˆ ˆˆ ˆ( – )
4

df ab ba f tÚ 	 ...(51)

	 From Eqs. (45) and (46), we get

		  â  b̂ – b̂ â = ( f̂  – ·  f  ÒÎ ) (ĝ – ·gÒÎ) – (ĝ – ·gÒÎ) (  f̂  – ·  f  ÒÎ )	

		  = f̂ ĝ – ĝ f̂ 	 ...(52)
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	 Equation (52) used in Eq. (51) gives

(D f )2 (Dg)2 ≥ 
2

*1 ˆ ˆˆ ˆ( – )
4

f g g f df f tÚ

or		  (D f ) (Dg) ≥ 

1
2 2*1 ˆ ˆˆ ˆ( – )

2
f g g f d

Ï ¸f f tÌ ˝
Ó ˛Ú

or		  (D f ) (Dg) ≥ 
1 ˆ ˆˆ ˆ( – )
2

f g g f 	 ...(53)

	 Equation (53) is the general uncertainty relation between two physical quantities under 
simultaneous measurement.

3.5.3 D iscussions

(i)	 Equation (53) tells us that if the quantities f  and g be such that the corresponding operators 
commute with each other, then

(D f ) (Dg) ≥ 0

	 which ensures both D f = 0 and Dg = 0 to be together possible. In other words, the two 
quantities can be measured simultaneously with unlimited accuracy, i.e., the measurement 
is compatible.

(ii)	 Equation (53) further tells us that if f̂  and ĝ do not commute then the product of the 
uncertainties in a simultaneous measurement of f  and g is greater than or equal to half 

the expectation value of the operator corresponding to their commutator [ f̂ , ĝ].

	   We thus observe that the measurements of two observables in a given state of a quantum 
system, whose operators do not commute, are incompatible.

(iii)	Whether or not the equality or inequality holds in Eq. (53) depends on the state of the 
system in which measurements are made. The minimum value of (D f ) (Dg) occurs 
evidently in such states for which equality holds in Eq. (53). The wave function describing 
such states is referred to as the minimum uncertainty wave packet. 

	 Heisenberg’s uncertainty relations can be seen to follow from the general uncertainty 
relation obtained above.

Position–Momentum Uncertainty Relation

Let us replace the quantity f by the coordinate x and the quantity g by the x-component of 
linear momentum px of a particle. The operators corresponding to x and px are

x̂ = x

p̂x = – i 
x

∂
∂

	 Let y(x) be an arbitrary function of x. We then get
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( ) ( )

ˆ ˆ ˆ ˆ( – ) ( ) –x x

x x
xp p x x xi xi

x x

∂y ∂yy = +
∂ ∂

   + iy(x) 

or		   ˆ ˆ ˆ ˆ( – )x xxp p x  y(x) = iy(x)

	 The above gives

		  x̂ p̂x – p̂x x̂ = i

	 Clearly,	 ˆ ˆ ˆ ˆ( – )x xxp p x  = 

	 Hence, we obtain according to Eq. (53)

		  DxDpx ≥ 
2



Time–Energy Uncertainty Relation

Let us replace f by energy E and replace g by time t. The operators corresponding to E and 
t are

		  Ê = i 
t

∂
∂

and

		  t̂  = t

	 Consider any arbitrary function f of variable t. We then get

		  (Êt̂  – t̂ Ê)f = i ( ) –t i t
t t

∂ ∂ff
∂ ∂



		  = it –i i t
t t

∂ ∂f+ f
∂ ∂

 

		  = if

	 We thus have	 (Êt̂  – t̂ Ê) = i

	 Clearly, 	 ˆ ˆˆ ˆ( – )Et tE i=   = 

	 Hence, according to the general uncertainty relation (Eq. 53), we get

		  DEDt ≥ 
2





4 Wave Mechanics of Schrödinger

4.1  Dynamical state of a Microparticle: 
	C oncept of wave function

The trajectory of a particle becomes known if the coordinate and momentum of the particle 

are known at every moment of time. In other words, the trajectory is known if x and ​ dx ___ 
dt

 ​ are 
known at all time t.

	 According to Heisenberg’s uncertainty relation, a microparticle cannot simultaneously 
possess a definite coordinate, say, x and a definite projection of momentum px. Thus, the 
concept of trajectory of a microparticle, strictly speaking, is not applicable.

	 The rejection of trajectory concept is related to the existence of wave properties in 
microparticles which do not permit us to consider a microparticle as a classical corpuscle. 
The motion of a microparticle along the x-axis cannot be associated with the differentiable 
function x(t) which is so widely used in dealing with the motion of classical objects. From 
a known value of x of the microparticle at an instant of time t, it is impossible to predict 
the value of x at the time t + dt. A microparticle is fundamentally different form a classical 
corpuscle primarily because (i) it does not have a trajectory which is an essential attribute of 
a classical corpuscle, (ii) the use of coordinate, momentum, angular momentum, energy when 
considering microparticle become restricted to the framework of uncertainty relations.

	 Wave concepts are radically different from corpuscular concepts. Hence it is not surprising 
that the striking contrast between classical corpuscles and microparticle is explained by the 
existence of wave properties in the latter. It is the wave properties which account for the 
uncertainty relations and all the consequences resulting from them. We must, however, note 
that while a microparticle is not a classical corpuscle on one hand, it is not a classical wave 
on the other hand.

	 Thus, certain questions, unknown to classical physics, arise about the state and the method 
of describing the state of a microparticle in a new light.

	 We know that a classical wave possesses a characteristic frequency (n), a wavelength (l) 
and the phase velocity (vp) related according to 

		  vp = nl (= w/k)	 ...(1)

	 Besides, any wave motion is described by a quantity which is a continuous function of 
position in space and of time. For example, an electromagnetic wave propagating along the 
x-axis is described by electric and magnetic fields varying with position and time such as
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		  E = E0 sin (wt – kx)

		  B = B0 sin (wt – kx)	 ...(2)

	 Similarly, a sound wave passing through an extended medium is described by the variation 
of pressure in the medium with position and time. By analogy, the wave belonging to a 
microparticle may be described by some entity which varies with position in space and time. 
This variable entity (function) is usually denoted as y(​

​_
 
›
 r ​, t) and is called wave displacement 

function or wave function. For generality, unlike for a classical wave motion, the wave 
function which may be used to describe the wave character and the state of a microparticle 
is taken as a complex valued function of position of space and time.

	 The wave associated with a microparticle is of infinite extent because according to 
Heisenberg’s uncertainty principle, the position of the particle becomes completely unknown 
if its momentum is taken to be well defined. 

	 The infinite plane wave corresponding to a microparticle of mass ‘m’ moving freely along 
the x-axis with a well defined momentum px can be described by the wave function y(x, t) 
given by

		  y(x, t) = Aei (kx – wt)	 ...(3)

where A is the constant amplitude,

		  k = 
22 x xp p

h

pp = =
l 

	 ...(4)

and	 w = 2pn = 
2 E E

h

p =


	 ...(5)

	 In the above, E is the energy of the particle. writing E = mc2, according to einstein’s 
mass–energy relation, we obtain

		  w = 
2mc


	 ...(6)

	 The velocity u of the de-Broglie wave is thus

		  u = nl = 
2 2

2

h mc c

mv mv v

w = ¥ =
p




	 ...(7)

	 Since c is the maximum speed that can be attained by any material particle according to 
einstein’s special theory of relativity, we must have v < c so that the speed of the de-Broglie 
wave u is greater than c and hence greater than v. The de-Broglie wave associated with the 
particle thus travels faster than the particle itself which is a contradictory result. We thus find 
that a microparticle cannot be described by a single wave train.
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4.2 C oncept of Wave Packet

An important question that arises and that needs to be settled is about a mathematical 
description of a microparticle which jointly displays particle as well as wave characteristics. 
The mathematical scheme must embody the two features simultaneously.

	 In classical physics, a particle is well localized in space by which we mean that the position 
and velocity (momentum) of the particle can be simultaneously determined with unlimited 
accuracy. As seen earlier, a microparticle is described by a wave function corresponding to 
the matter wave associated with it. A wave function, however, depends on the whole space 
and hence cannot be localized. A wave function may, however, describe the dynamical state 
of the particle if it vanishes everywhere except in the immediate neighbourhood of the particle 
or the neighbourhood of the classical trajectory. In other words, a particle which is localized 
within a certain region of space can be described by a matter wave function whose amplitude 
is large in that region and zero outside it. Such matter wave will then be localized around the 
region of space within which the particle is confined.

	 A localized wave function is called a wave packet. A wave packet representing a particle 
is formed as a result of superposition of a group of waves each having slightly different 
velocities and wavelengths, the phases and amplitudes of waves at any instant of time being 
so chosen that they interfere constructively over that small region where the particle is most 
likely to be located at that instant and destructively elsewhere so that the amplitude reduces 
to zero. This has been illustrated in Fig. 4.1.

	 Wave packets find application in describing isolated particles which are confined in a 
certain region. The concept of wave function is a mathematical representation of particle-like 
as well as wave-like behaviours of microparticles and hence provides a link between quantum 
mechanics and classical mechanics.

vg (Group velocity)

Phase velocity

Amplitude

x

Fig. 4.1

	 A one-dimensional wave packet which may describe a classical particle confined to a one-
dimensional region, say, a particle moving along the x-axis can be mathematically constructed 
by superposing an infinite number of plane waves with slightly different wave number k, all 
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moving along the x-axis, by means of Fourier transforms. The wave packet thus obtained is 
represented by the wave function y(x, t) given by

		  y(x, t) = [ – ]

–

1
( )

2
i kx tk e dk

+•
w

•

f
p Ú 	 ...(8)

where f(k) is the amplitude and the frequency w is a function of k

		  w = w(k)	 ...(9)

4.2.1  Group Velocity of a Wave Packet

Since our interest lies with localized particles, we need such superposition which leads to a 
wave group travelling without change of shape. This becomes possible if f(k) is zero for all 
values of k excepting those within a small range Dk given by

		  0 0 0– ,
2 2

k k
k k k k k

D DÊ ˆ Ê ˆ< < + D <<Á ˜ Á ˜Ë ¯ Ë ¯
	 ...(10)

	 It is then possible to expand w(k) as a power series in (k – k0) about k0 as

w(k) = 
=

wÊ ˆw + +Á ˜Ë ¯
0

0 0( ) ( – ) ... smaller terms
k k

d
k k k

dk

or		  w(k) = w0 + (k – k0) 
d

dk

w
	 ...(11)

where we have written 

		  w(k0) = w0	 ...(12)

and	
0k k

d d

dk dk=

w wÊ ˆ =Á ˜Ë ¯
	 ...(13)

	w e then obtain

		  y(x, t) = 
0 0– – ( – )

–

1
( )

2

d
ikx i i k k t

dkk e dk
+• ww

•

f
p Ú

		  = 
0 0 0 0– – – ( – )

–

1
( )

2

d
ikx ik x ik x i t i k k t

dkk e dk
+• w+ w

•

f
p Ú

		  = 

D+
w

w

D

f
p Ú

0

0 0
0 0

0

2
( – ) – ( – )( – )

–
2

1
( )

2

k
k

d
i k k x i k k ti k x t dk

k
k

k e e dk



	 77Wave Mechanics of Schrödinger 

or		  y(x, t) = ​e​i(k0x – w0t)​ F(x, t)	 ...(14)	

where	 F(x, t) = 
wÈ ˘

Í ˙Î ˚f
p Ú

0( – ) –1
( )

2

d
i k k x t

dkk e dk 	 ...(15)

	 y(x, t) given by eq. (14) which represents the wave packet is a plane wave having 
propagation constant k0, angular frequency w0, propagating along the x-axis with amplitude 

F(x, t) which varies with position x and time t through the term – .
d

x t
dk

È ˘wÊ ˆ
Í Á ˜ ˙Ë ¯Î ˚

 Clearly the 

wave packet propagates with a velocity called the group velocity given by

		  vg = 
d

dk

w
	 ...(16)

	w e may note that while the wave packet as a whole moves with group velocity vg, the 
individual waves, whose superposition makes the wave packet, travel with velocity called 
phase velocity or wave velocity.

4.2.2 E quality of Group Velocity and Particle Velocity

The group velocity is given by

		  vg = 
d

dk

w

or		  vg = 
d dp

dp dk

w
	 ...(17)

using  E = w  and  p = k  we get

		  w = and
E dp

dk
= 


	 ...(18)

so that vg becomes

		  vg = 
d E dE

dp dp
Ê ˆ =Á ˜Ë ¯




	 ...(19)

	 Let the wavepacket under consideration represent a freely moving particle of mass m 
moving with a non-relativistic velocity v. We then have

		  E = 
2

2

p

m
	 ...(20)

so that	
dE p

v
dp m

= = 	 ...(21)
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	 We find form Eqs. (19) and (21)

		  vg = v	 ...(22)

	 Let us now consider a relativistic particle of rest mass m0 moving with momentum p. 
We then have the energy E of the particle given by

		  E 2 = ​m​0​ 
2​ c4 + c2 p2	 ...(23)

	 On differentiation with respect to p, the above gives

		  22 2
dE

E c p
dp

=

or		

2 0

2

2 2

2
2

0 2

1 –

/ 1 –

m
c v

v
dE c p c
dp E v

m c
c

= =

or		
dE

dp
 = v	 ...(24)

	 In view of eqs. (19) and (24) we find that the wave packets corresponding to both relativistic 
as well as non-relativistic particles have group velocity equal to particle velocity.

4.3 T heory of Schrödinger Equation

The theory of Schrödinger equation was formulated by Erwin Schrödinger in the year 1926. 
His formulation is based on de-Broglie’s concept of matter-wave. The theory aims at setting 
up a differential equation (wave equation) for a wavefunction that can describe the detailed 
behaviour of matter wave.

	 The main assumptions made in the theory are:

	 (i)	 creation and destruction of material particles do not take place.

	 (ii)	 all material particles move with small velocities so that they can be treated non-
relativistically.

	 Inspite of the above assumptions, the theory has proved to be immensely successful when 
applied to atoms and molecules. The theory provides a quantitative formulation of some of 
the basic principles of quantum mechanics, shows how a wave theory of matter works out in 
practice, tells how physical quantities, for systems for which the laws of classical mechanics 
are not applicable, can be actually computed within the framework of the theory.

	 The Schrödinger equation for a free non-relativistic particle may be arrived at by making 
straightforward uses of the new concepts that have been obtained in the domain of microscopic 
particles.
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4.4 T ime-Dependent Schrödinger equation for a free 
	 particle: equation of motion for matter Wave

The wavelength l of the de-Broglie wave associated with a free particle of mass m moving 
along the x-axis with momentum px is given by

		  l = 
x

h

p
	 ...(25)

	 The wave-vector k is related to the wavelength l as 

		  k = 
2p
l

	 ...(26)

	 From the above two equations, we get

		  px = 
2

h hk
k= =

l p
 	 ...(27)

	 The kinetic energy E of the particle is related to the angular frequency w of the wave 
associated with it as

		  E = w	 ...(28)

	 Further, we have

		  E = 
2

2

px

m
	 ...(29)

so that Eqs. (27), (28) and (29) yield

		  w = 
2 2 2 2

2 2 2
xpE k k

m m m
= = = 
  

	 ...(30)

	 The wave function y(x, t) which describes the free particle localized in the region of the 
x-axis [refer to Eq. (8)] is given by

		  y(x, t) = ( – )

–

( ) i kx tA k e dk
+•

w

•
Ú 	 ...(31)

	 using w given by Eq. (30), the above becomes

		  y(x, t) = 

2

–
2

–

( )

k
i kx t

m
A k e dk

È ˘+• Í ˙
Í ˙Î ˚

•
Ú



	 ...(32)

	 Differentiating Eq. (32) with respect to time t, we get

		

È ˘
Í ˙
Í ˙Î ˚∂y =

∂ Ú



2

–
22( , ) –

( )
2

k
i kx t

mx t i
k A k e dk

t m
	 ...(33)
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	 Further, differentiation of Eq. (32) with respect to x gives

		

2

–
2

–

( , )
( )

k
i kx t

mx t
i k A k e dk

x

È ˘+a Í ˙
Í ˙Î ˚

a

∂y =
∂ Ú



	 The above on differentiation with respect to x gives

		

È ˘+a Í ˙
Í ˙Î ˚

a

∂ y =
∂ Ú

 2

2 –
22

2
–

( , )
– ( )

k
i kx t

mx t
k A k e dk

x
	 ...(34)

	 Multiplying Eq. (33) by i  we obtain

		

È ˘+a Í ˙
Í ˙Î ˚

a

∂y =
∂ Ú






2

2 –
22

–

( , )
( )

2

k
i kx t

mx t
i k A k e dk

t m
	 ...(35)

	 In view of Eqs. (34) and (35) we obtain

		
2 2

2

( , ) ( , )
–

2

x t x t
i

t m t

∂y ∂ y=
∂ ∂


 	 ...(36)

	 equation (36) is the one-dimensional time-dependent Schrödinger equation for a particle 
of mass m localized in the region of the x-axis and described by the wavefunction y(x, t).

	E quation (36) can be extended to three dimensions in a straightforward manner. In three 
dimensions the wavefunction that describes the state of the particle is a function of position ​

​_
 
›
 r ​ 

in space and time t. It is obtained by generalizing eq. (8), whence we get

		  y(​
​_

 
›
 r ​, t) = 

È ˘
◊Í ˙

Í ˙Î ˚ÚÚÚ
   2

–
2( )

k
i k r t

m
x y zA k e dk dk dk

		  = 
È ˘+ + + +Í ˙Î ˚ÚÚÚ

 2 2 2– ( )
2( )

x y z x y zi k x k y k z k k k t
m

x y zA k e dk dk dk 	 ...(37)

	 Differentiating Eq. (37) with respect to t we obtain

È ˘+ + + +Í ˙Î ˚∂y =
∂ ÚÚÚ


 2 2 2– ( )

2 2( , )
– ( )

2

x y z x y zi k x k y k z k k k t
m

x y z

r t i
k A k e dk dk dk

t m

	 The above gives 

		
È ˘+ + + +Í ˙Î ˚∂y =

∂ ÚÚÚ





2 2 22 – ( )
2 2( , )

( )
2

x y z x y zi k x k y k z k k k t
m

x y z

r t
i k A k e dk dk dk

t m
	 ...(38)
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	 Differentiating Eq. (37) with respect to x we get 

		

2 2 2– ( )
2( , )

( )
x y z x y zi k x k y k z k k k t

m
x x y z

r t
i A k k e dk dk dk

x

È ˘+ + + +Í ˙Î ˚∂y =
∂ ÚÚÚ



	 The above gives on differentiating with respect to x

		

È ˘+ + + +Í ˙Î ˚∂ y =
∂ ÚÚÚ

 2 2 22 – ( )
2 2

2

( , )
– ( )

x y z x y zi k x k y k z k k k t
m

x x y z

r t
k A k e dk dk dk

x
	 ...(39)

	 We similarly obtain

		
È ˘+ + +Í ˙Î ˚∂ y =

∂ ÚÚÚ
 2 2 22 – ( )

2 2
2

( , )
– ( )

x y z x y zi k x k yk z k k k t
m

y x y z

r t
k A k e dk dk dk

y
	 ...(40)

and

		
È ˘+ + + +Í ˙Î ˚∂ y =

∂ ÚÚÚ
 2 2 22 – ( )

2 2
2

( , )
– ( )

x y z x y zi k x k y k z k k k t
m

z x y z

r t
k A k e dk dk dk

z
	 ...(41)

	 Adding Eqs. (39), (40) and (41), we get

		  —2y(r, t) = 
È ˘+ + + +Í ˙Î ˚ÚÚÚ

 2 2 2– ( )
2 2– ( )

x y z x y zi k x k y k z k k k t
m

x y zk A k e dk dk dk 	 ...(42)

	E quations (38) and (42) give

		
2

2( , )
– ( , )

2

r t
i r t

t m

∂y = — y
∂


 

 	 ...(43)

	E quation (43) is the three-dimensional time-dependent Schrödinger equation for a free 
particle described by the wavefunction y(​

​_
 
›
 r ​, t). equations (36) and (43) give the causal 

development or the time evolution of the wavefunctions describing the states of one-
dimensional and three-dimensional motions of a free particle, respectively, undisturbed by 
any measurement.

4.5 O perators corresponding to energy and linear 
	 momentum

It is possible to write the one-dimensional Schrödinger equation for a free particle given by 
Eq. (36) as 

		
1

( , ) – – ( , )
2

i x t i i x t
t m x x

∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆy = yÁ ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂
   	 ...(44)

	 The energy E of the free particle is related to the momentum component px as
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		  E = 21 1
( ) ( )

2 2x x xp p p
m m

= 	 ...(45)

	 Comparison of Eqs. (44) and (45) allows us to associate differential operators with the 
energy E and the momentum component px, which operate on the wavefunction y(x, t), as

		  (E)op = Ê i
t

∂Æ
∂
 	 ...(46)

and

		  (px)op = ˆ –xp i
x

∂Æ
∂
 	 ...(47)

	 extending the above for the three-dimensional case the operators associated with the 
momentum components px, py, pz are given as

		

ˆ –

–ˆ

–ˆ

x

y

z

p i
x

p i
y

p i
z

¸∂Æ Ô∂ Ô
Ô∂Æ ˝

∂ Ô
Ô∂Æ Ǫ̂∂







	 ...(48)

	 In view of the above, the operator corresponding to the linear momentum vector ​
​_
 
›
 p ​ is

		
ˆ ˆˆ ˆˆ ˆ ˆx y zp ip jp kp= + +

i.e.		 ˆ –p iÆ —

 	 ...(49)

		  ˆˆ ˆi j k
x y z

Ê ˆ∂ ∂ ∂— = + +Á ˜∂ ∂ ∂Ë ¯


.

4.6 T ime-Dependent Schrödinger equation for 
	 a particle moving in a force Field

Let us now consider the particle to be moving in space under the influence of a force field and 
not freely. Under such a case, the particle possesses potential energy besides kinetic energy. 
Let us consider the potential energy of the particle to be a function of position ​

​_
 
›
 r ​ and time t. 

Denoting the potential energy as V(​
​_

 
›
 r ​, t), we may write the total energy of the particle

		  E = 
2

( , )
2

p
V r t

m
+ 

	 ...(50)

	 According to Schrödinger, the operators for ​
​_

 
›
 r ​ and t are respectively

		  r̂ r=  	 ...(51)

and	 t̂  = t	 ...(52)
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	 Replacing E, p, r and t by their respective operators given by Eqs. (46), (49), (50) and 
(51) in Eq. (50) we obtain

		
2

2– ( , )
2

i V r t
t m

∂ Æ — +
∂

 
 	 ...(53)

	 Allowing the operator Eq. (53) to operate on the wave function y(​
​_

 
›
 r ​, t) describing the 

state of the particle, we get

		
2

2( , ) –
( , ) ( , )

2

r t
i V r t r t

t m

È ˘∂y = — + yÍ ˙∂ Î ˚


  

 	 ...(54)

	E quation (54) is the time-dependent Schrödinger equation for a particle of mass m moving 
in space in a force field described by the potential energy function V(​

​_
 
›
 r ​, t).

	 The operator 
2

2–
( , )

2
V r t

m

È ˘
— +Í ˙

Î ˚

 
 is the operator corresponding to the total energy of the 

particle or the Hamiltonion of the particle. It is usual to denote this operator as Ĥ  so that 
the Schrödinger Eq. (54) can be written in its usual form as 

		
( , ) ˆ ( , )
r t

i H r t
t

∂y = y
∂




 	 ...(55) 	

4.7 T ime-independent Schrödinger equation 

Consider a particle of mans m moving freely in space. Let y(​
​_
 
›
 r ​, t) or y(x, y, z, t) be the 

wavefunction for the de-Broglie wave associated with the particle at the location ​
​_
 
›
 r ​ or (x, y, z) 

at the instant of time t.

	 In analogy with classical mechanics, the differential equation for the wavefunction can 
be written as 

		

2 2 2 2

2 2 2 2 2

( , , , ) ( , , , ) ( , , , ) 1 ( , , , )x y z t x y z t x y z t x y z t

x y z u t

∂ y ∂ y ∂ y ∂ y+ + =
∂ ∂ ∂ ∂

where u in the wave velocity of the de-Broglie wave. The above equation can also be written 
as 

		  —2 y(x, y, z, t) = 
2

2 2

1 ( , , , )x y z t

u t

∂ y
∂

or		  —2 y (​
​_

 
›
 r ​, t) = 

2

2 2

1 ( , )r t

u t

∂ y
∂


	 ...(56)

	 The solution of Eq. (56) in its most general form is given by 

		   y (​
​_
 
›
 r ​, t) = y (​

​_
 
›
 r ​) e– i w t	 ...(57)

where	 w = 2pn	 ...(58)
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n being the frequency of the wave and y(​
​_

 
›
 r ​) is a time-independent function and represents 

the amplitude of the wave at the location ​
​_
 
›
 r ​.

	 We get from Eq. (57) an differentiation with respect to time t 

		

–( , )
– ( ) i tr t

i r e
t

w∂y = w y
∂




	 Differentiating the above equation with respect to time t we get 

		
2

2 –
2

( , )
– ( ) i tr t

r e
t

w∂ y = w y
∂




	 ...(59)

	U sing Eq. (59) in Eq. (56) we get 

		

2
2

2( , ) – ( , )r t r t
u

w— y = y 

	 ...(60)

	 We have 

		  w = 2pn = 2p 
u

l
	 ...(61)

where l is the wavelength of the de-Broglie wave. Equation (61) gives 

		
2

u

w p=
l

	 ...(62) 

	U se of Eq. (62) in Eq. (60) gives 

		

2
2

2

4
( , ) – ( , )r t r t

p— y = y
l

 

or		
2

2
2

4
( , ) ( , ) 0r t r t

p— y + y =
l

 

or 		
2

2 – –
2

4
[ ( ) ] ( ) 0i t i tr e r ew wp— y + y =

l
 

or		
2

2
2

4
( ) ( ) 0r r

p— y + y =
l

 
	 ...(63)

	 It v the velocity of the particle, we have 

		  l = 
h

mv

	 Substituting the above in Eq. (63) we obtain

		
2 2 2

2
2

4
( ) ( ) 0

m v
r r

h

p— y + y = 
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or		  2 2
2

2( ) ( ) 0
m v

r r— y + y =


	 ...(64)

	 If E be the total energy of the particle and V be its potential energy then we have the 
kinetic energy of the particle 

		​   1 __ 
2

 ​ mv2 = E – V

so that

		  m2v2 = 2m (E – V)	 ...(65) 

	 Substituting Eq. (65) in Eq. (64) we obtain 

		  2
2

2
( ) ( – ) ( ) 0

m
r E V r— y + y = 


	 ...(66)

	E quation (66) is the time-independent Schrödinger equation for a particle of mass m, total 
energy E moving in a force field described by the potential energy function V.

	 For a freely moving particle in space, V = 0, so that Eq. (66) reduces to 

		  2
2

2
( ) ( ) 0

m
r E r— y + y = 


	 ...(67)

	 For one-dimensional motion localized in the region along the x-axis, Eq. (66) gives 

		
2

2 2

( ) 2
( ) 0

d x m
E x

dx

y + y =


	 ...(68) 

4.8 P hysical Interpretation of wave function 

Schrödinger wavefunction y(x, t) or y(​
​_
 
›
 r ​, t) is the amplitude of the de-Broglie wave for a 

particle. A rough interpretation of the wavefunction is that the particle is most likely to be 
found in those regions of space in which y(x, t) (in one dimension) or y(​

​_
 
›
 r ​, t) (in three-

dimensions) is large.

	 The wavefunction y(x, t) or y(​
​_
 
›
 r ​, t) being a complex valued function of position and time 

cannot as such have any physical existence. However, the wavefunction must, in some way, be 
related to the presence of the particle at the position x or ​

​_
 
›
 r ​ at the instant of time t. Furthermore, 

the behaviour of the particle should become completely known if the wavefunction is known 
at all possible positions at all possible instants of time.

(a) Max Born and Jordan’s probabilistic Interpretation. Max Born and Jordan in 1926 
gave a probabilistic interpretation of the wave function which is characteristic of and 
fundamental to the Schrödinger theory. This interpretation of the wavefunction is found to 
be both convenient and physically transparent enabling us to make precise computations 
regarding the behaviour of the particle. According to Max Born and Jordan, the wavefunction 
describes the probability distribution of the particle in space and time as follows. If we try 
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to locate the particle through a measurement of its position at a given instant of time t, the 
probability of finding the particle in a small region of volume d3(​

​_
 
›
 r ​) containing the position ​

​_
 
›
 r ​ 

in space is given by 

		  P(​
​_

 
›
 r ​, t) d3(​

​_
 
›
 r ​) = y*(​

​_
 
›
 r ​, t) y(​

​_
 
›
 r ​, t) d3(​

​_
 
›
 r ​)

		  = |y (​
​_

 
›
 r ​, t)|2 d3 (​

​_
 
›
 r ​)	 ...(69)

where y*(​
​_

 
›
 r ​, t) is the complex conjugate of y(​

​_
 
›
 r ​, t).

	 The probability density is thus proportional to the square modulus of the wavefunction.

(b) The Schrödinger wavefunction is a complex valued function of position and time which 
satisfies the linear Schrödinger equation [Eq. (36) in one dimension and Eq. (43) in three-
dimensions].

	E very definite wavefunction describes a definite state of motion of the particle.

	 It is important to note that if y(​
​_

 
›
 r ​, t) is a possible wavefunction then y¢(​

​_
 
›
 r ​, t) = eiq y(​

​_
 
›
 r ​, t) 

is also a possible wavefunction if q is an arbitrary real constant. The probability distribution 
defined by y and y¢ are exactly identical [  |y¢(​

​_
 
›
 r ​, t)|2 d3(​

​_
 
›
 r ​) = |eiq y(​

​_
 
›
 r ​, t)|2 d3(​

​_
 
›
 r ​) = |y(​

​_
 
›
 r ​, t)|2 

d3(​
​_
 
›
 r ​)]. This means that two wavefunctions y and y¢ describe the same state of motion of 

the particle.

	 From the above we find:

to every wavefunction there corresponds a unique state of motion of the particle. However, 
a given state of motion of the particle does not correspond to a unique wavefunction. The 
wavefunction corresponding to a given state is known only to within a constant complex 
factor (phase factor) of modulus unity.

4.9 N ormalized wave function

If the motion of the particle takes place in a space of finite extent then the total probability 
P of finding the particle in that space is unity, i.e.,

		  P = 1

or		  3( , ) ( ) 1P r t d r =Ú  

or		  3* ( , ) ( , ) ( ) 1r t r t d ry y =Ú   
 

or		  2 3| ( , ) | ( ) 1r t d ry =Ú  
	 ....(70)

	 The wave functions which satisfy Eq. (70) are called normalized wavefunctions. Equation 
(70) is usually referred to as the normalization integral. 

	 Normalization of wavefunction can be understood from the following:

	 The Schrödinger equation given by Eq. (43) is linear and homogeneous in the wavefunction 
y(​

​_
 
›
 r ​, t) and its derivatives. Hence, if the solution of Eq. (43) is multiplied by a constant the 

resulting function is also a solution. Let y¢(​
​_
 
›
 r ​, t) be a solution of the Schrödinger equation. 

We know from the discussions in the earlier section that |y¢(​
​_

 
›
 r ​, t)|2 is a positive real number 
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and hence its integral over the entire space is also a real positive number. We may hence 
write 

		  2 3 2| ( , ) | ( )r t d r Ny¢ =Ú  
	 ...(71) 

	 The number N2 is called the norm of the wavefunction y¢(​
​_
 
›
 r ​, t).

	 Let us define 

		  y(​
​_

 
›
 r ​, t) = ​ 1 __ 

N
 ​ y¢(​

​_
 
›
 r ​, t)	 ...(72)

	 Since y(​
​_

 
›
 r ​, t) is different from y¢(​

​_
 
›
 r ​, t) only by the multiplicative constant ​ 1 __ 

N
 ​, it is also a 

possible function which satisfies the Schrödinger equation. 

	 We get

		

2 3 2 3
2

1
| ( , ) | ( ) | ( , ) | ( )r t d r r t d r

N
y = y¢Ú Ú   

 

	 In view of Eq. (71), the above gives 

		  2 3| ( , ) | ( ) 1r t d ry =Ú  
	 ...(73) 

	 The wave function y(​
​_

 
›
 r ​, t) satisfies Eq. (70) and is hence a normalized wavefunction. 

Comparing Eq. (73) with Eq. (71) we find that the norm of the wavefunction y(​
​_
 
›
 r ​, t) is 

unity.

	 We can thus define a normalized wavefunction as one which has unit norm. 

	 In Eq. (72), through which normalized wavefunction is defined, N must be finite. In other 
words, normalizable wavefunctions must have finite norms. For N and hence N2 to be finite 
we get according to Eq. (71) 

		  |y¢(​
​_

 
›
 r ​, t)|2 Æ 0  as  r Æ ± •

or		  y¢(​
​_

 
›
 r ​, t) Æ 0  as  r Æ ± •	 ...(74)

	E quation (74) is the boundary condition that must be satisfied by normalizable 
wavefunctions. 

4.10 P robability Current Density

The wave function y(​
​_

 
›
 r ​, t) which describes the state of motion of a particle of mass m moving 

under a force field described by the potential energy function V(​
​_

 
›
 r ​, t) [assumed real] satisfies 

the time dependent Schrödinger equation 

		
2

2( , ) –
( , ) ( , )

2

r t
i V r t r t

t m

È ˘∂y = — + yÍ ˙∂ Î ˚


  

 	 ...(75)

	 Taking complex conjugate of Eq. (75) we get 

		
2

2* ( , ) –
*– ( , ) ( , )

2

r t
i V r t r t

t m

È ˘∂y = — + yÍ ˙∂ Î ˚


  

 	 ...(76) 
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	 Multiplying Eq. (75) by y*(​
​_

 
›
 r ​, t) from the left, and Eq. (76) by y(​

​_
 
›
 r ​, t) from the left and 

subtracting we obtain 

		

2
2 2* – *** [ – ]

2
i

t t m

∂y ∂yÈ ˘y + y = y — y y— yÍ ˙∂ ∂Î ˚




or		
2

2 2–*[ ] [ * – *]
2

i
t m

∂ y y = y — y y — y
∂




or		  2 2*[ ] [ * – *]
2

i

t m

∂ y y = y — y y — y
∂


	 ...(77)

	 Writing the Laplacian operator —2 in terms of derivatives we get according to Eq. (77),

		

2 2 2 2 2 2

2 2 2 2 2 2

** ** **[ ] * – – –
2

i

t m x y z x y z

È ˘∂ ∂ y ∂ y ∂ y ∂ y ∂ y ∂ yy y = y + y + y y y yÍ ˙∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚



or		
* *

*[ ] – – * – – *
2 2

*
*– –

2

i i

t m x x x m y y y

i

m z z z

È ˘∂ ∂ ∂y ∂y ∂ ∂y ∂yÈ ˘y y = y y y yÍ ˙Í ˙∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚ Î ˚
∂ ∂y ∂yÈ ˘y yÍ ˙∂ ∂ ∂Î ˚

 



	

...(78)

	 Let us define 

		  Jx = 
*

*–
2

i

m x x

∂y ∂yÈ ˘y yÍ ˙∂ ∂Î ˚


	 ...(79)

		  Jy = 
*

*–
2

i

m y y

È ˘∂y ∂yy yÍ ˙∂ ∂Î ˚


	 ...(80)

		  Jz = 
*

*–
2

i

m z z

∂y ∂yÈ ˘y yÍ ˙∂ ∂Î ˚


	 ...(81)

	 Then using Eqs. (79), (80) and (81) in Eq. (78) we obtain 

		  *[ ] 0y zx
J JJ

t x y z

∂È ˘∂∂∂ y y + + + =Í ˙∂ ∂ ∂ ∂Î ˚
	 ...(82)

	E quation (82) can alternatively be expressed as 

		  [ ( , )] ( , ) 0r t J r t
t

∂ r + —◊ =
∂

  
	 ...(83)
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where	 * *( , ) [ – ]
2

i
J r t

m
= y—y y —y

  
	 ...(84)

		  r(​
​_

 
›
 r ​, t) = y*y	 ...(85)

	 We have the well known equation of continuity in fluid dynamics 

		  0J
t

∂r + —◊ =
∂

 
	 ...(86)

where 

	 r	 = number of fluid particles per unit volume or particle density

	​
​_

 
›
 J ​	 = the number of fluid particles that cross unit area in unit time in a direction 

perpendicular to the area, and is called the current density.

	 Comparing Eq. (83) with Eq. (86) we may interpret r(​
​_

 
›
 r ​, t) = y * y as the position 

probability density so that y * y d3 (​
​_

 
›
 r ​) is the probability of finding the particle in the volume 

element d3 (​
​_

 
›
 r ​) about the point ​

​_
 
›
 r ​ at the instant t.

and 

		​ 
​_

 
›
 J ​ (​
​_

 
›
 r ​, t) = probability current density. 

4.11 N ormalization Integral, a constant of motion 

Integrating Eq. (77) over the entire volume of space we get

		

3 2 2 3

– –

* **( ) [ – ] ( )
2

i
d r d r

t m

+• +•

• •

∂ y y = y — y y— y
∂ Ú Ú 

or		  3 3

–

* * *( ) ( – ) ( )
2

i
d r d r

t m

+•

•

∂ y y = —◊ y —y y—y
∂ Ú Ú

   

or		  3
–

* * *( ) –
2

{ }i
d r

t m

+•
•

∂ y y = y —y y—y
∂ Ú

 
	 ...(87)

	 In most of the physical problems, the wave packet representing a particle is localized so 
that we get, (as seen earlier, Eq. (74)) 

		  y Æ 0  and  y* Æ 0   as r Æ ± •

	U sing the above result in Eq. (87) we obtain 

		

3* ( ) 0d r
t

∂ y y =
∂ Ú 

 

which gives

		  3* ( )d ry yÚ 
 = Constant in time, i.e., constant of motion.
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	 The above result is referred to as the conservation of probability. The result holds as long 
as the particle under consideration is stable and does not undergo any kind of decay or does 
not annihilate or disappear due to some reason.

4.12 E xpectation Value of a Physical Quantity

Let us consider a particle in a definite state described by the normalized wavefunction y(​
​_

 
›
 r ​, t). 

Let us make a large number of observations (measurement) of the position vector ​
​_

 
›
 r ​ of the 

particle. We know that each observation causes the wave function to undergo some change. 
let us suppose that we have at our disposal some technique to bring the wavefunction to the 
original form before any observation is made. even if we ensure that before any measurement 
the wavefunction is restored to its original form, we do not get the same result each time. 
The average of the values obtained in these measurements is called the measured value or 
the expectation value and is denoted as ·​

​_
 
›
 r ​Ò. Since y*(​

​_
 
›
 r ​, t) y(​

​_
 
›
 r ​, t) represents the probability 

with which the value ​
​_

 
›
 r ​ occurs in the measurement we get 

		  ·​
​_
 
›
 r ​Ò = 3 3* *( ) ( )r d r r d ry y = y yÚ Ú   

	 ...(88) 

	 If the wave function y(​
​_

 
›
 r ​, t) is not normalized the expectation value of ​

​_
 
›
 r ​ is given by 

		  ·​
​_
 
›
 r ​Ò = 

3

3

* ( )

* ( )

r d r

d r

y y

y y
Ú
Ú

 

 	 ...(89)

	 Generalizing, the expectation value of any quantity f (​
​_
 
›
 r ​), which is a function of ​

​_
 
›
 r ​, in the 

state described by the normalized wavefunction y(​
​_
 
›
 r ​, t) may be written as

		
3( ) ( , ) ( ) ( )f r P r t f r d r· Ò = Ú   

or		  3*( ) ( , ) ( ) ( , ) ( )f r r t f r r t d r· Ò = y yÚ     	 ...(90)

4.12.1 E xpectation Value of Total Energy E of a Particle 

Consider a particle of mass m moving in space under the action of a force field described 
by the potential energy function V (​

​_
 
›
 r ​, t). Let y(​

​_
 
›
 r ​, t) be the normalized wavefunction that 

describes the state of the particle. The time evolution of the wavefunction is given by the 
Schrödinger equation 

		

2
2( , ) –

( , ) ( , )
2

r t
i V r t r t

t m

È ˘∂y = — + yÍ ˙∂ Î ˚


  


 

	 Multiplying the above by y*(​
​_

 
›
 r ​, t) from the left and integrating over the entire space we 

get 
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2
3 2 3( , ) –

* ( , ) ( ) * ( , ) ( , ) ( , ) ( )
2

r t
r t i d r r t V r t r t d r

t m

È ˘∂yy = y — + yÍ ˙∂ Î ˚
Ú Ú


     



or	
2

3 2 3–
* ( , ) ( , ) ( ) * ( , ) ( , ) ( )

2
r t i r t d r r t r t d r

t m

È ˘∂È ˘y y = y — yÍ ˙Í ˙∂Î ˚ Î ˚
Ú Ú      



		
3* ( , ) ( , ) ( , ) ( )r t V r t r t d r+ y yÚ    

	U sing the definition of expectation value given above we obtain 

		
2

2–
( , )

2
i V r t

t m

∂ = — + · Ò
∂

 
 	 ...(91)

	 In view of Eq. (46) and Eq. (49), Eq. (91) gives 

		
2

2

p
E V

m
· Ò = + · Ò .	 ...(92)

	 Classically, the total energy is 

	 E = Kinetic energy + Potential energy 
2

2

p

m
 + V	 ...(93) 

	E quation (92) tells that the expectation value of the total energy is the sum of the 
expectation values of the kinetic energy and the potential energy. 

4.12.2  General Result

From the above discussions, we get the following important recipe for the calculation of 
expectation values of physical quantities for a system in a state described by a known wave 
function.

	 Let A be any dynamical variable of a quantum system. let the system be in a given state 

described by normalized wave function y(​
​_

 
›
 r ​, t). if Â be operator corresponding to the quantity 

Â in the domain of definition of the wave function then the expectation values of A is 

		  * 3ˆ( , ) ( , ) ( )A r t A r t d r· Ò = y yÚ   
	 ...(94)

	 Since the above integration in carried over the entire space, ·AÒ is, in general, a function 
of time only.

4.13 E hrenfest’s Theorem 

P. Ehrenfest in 1927 stated, in regard to the correspondence between the motion of a classical 
particle and the motion of a wave packet representing the particle, the following theorem:

	 The averages or the expectation values of the quantum mechanical variables satisfy the 
same equations of motion as the corresponding classical variables in the corresponding 
classical description. Specifically the theorem states that 
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		  x

d l
x p

dt m
· Ò = · Ò 	 ...(95)

		
( )

–x

d dV x
p

dt dx
· Ò = 	 ...(96)

provided that the wavefunction y(x, t) with respect to which averages are computed satisfies 
the time-dependent Schrödinger equation

		
2 2

2

( , )
( ) ( , )

2

x t
i V x x t

t m x

È ˘∂y ∂= + yÍ ˙∂ ∂Î ˚




or 

		  ( , ) ˆ ( , )
x t

i H x t
t

∂y = y
∂

 	 ...(97)

4.13.1 P roof of Ehrenfest’s Theorem 

Consider a particle of mass m moving along the x-axis under the action of a force-field 
described by the potential energy V(x) for the particle. If y(x, t) be the wave function 
describing the state of the particle at the instant t we have the expectation value of the 
coordinate x of the particle in the state given by,

		  ·xÒ = 
–

* ( , ) ( , )x t x x t dx
+ •

•

y yÚ 	 ...(98) 

	 The time derivative of ·xÒ is 

		
–

* ( , ) ( , )
d x

x t x x t dx
dt t

+ •

•

· Ò ∂= y y
∂ Ú 	 ...(99)

	 The Schrödinger equation satisfied by y(x, t) is 

		
2 2

2

( , ) –
( ) * ( , )

2

x t
i V x x t

t m x

È ˘∂y ∂= + yÍ ˙∂ ∂Î ˚


 	 ...(100)

	 The above gives 

		
2 2

2

( , ) – –
( ) * ( , )

2

x t i
V x x t

t m x

È ˘∂y ∂= + yÍ ˙∂ ∂Î ˚




	 ...(101)

	 Taking complex conjugate of Eq. (101), we get 

		
2 2

2

* ( , ) –
( ) * ( , )

2

x t i
V x x t

t m x

È ˘∂y ∂= + yÍ ˙∂ ∂Î ˚




	 ...(102) 
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	E quation (99) gives 

		
– –

* ( , ) ( , )
( , ) * ( , )

d x x t x t
x x t dx x t x dx

dt t t

+ • + • +•

• •

· Ò ∂y ∂y= y + y
∂ ∂Ú Ú

	U sing Eqs. (101) and (102) in the above, we get 

		

2 2

2
–

–
( ) * ( , ) ( , )

2

d x i
V x x t x x t dx

dt m x

+ •

•

È ˘· Ò ∂= + y yÍ ˙
∂Î ˚

Ú 


		

2 2

2
–

– –
* ( , ) ( ) ( , )

2

i
x t x V x x t dx

m x

+ •

•

È ˘∂Ê ˆ+ y + yÍ ˙Á ˜Ë ¯ ∂Î ˚
Ú 



	 Simplifying, we get 

		
2 2

2 2
–

( , ) * ( , )
* ( , ) – ( , )

2

d x i x t x t
x x t x x t dx

dt m x x

+ •

•

È ˘· Ò ∂ y ∂ y= y yÍ ˙
∂ ∂Î ˚

Ú 	 ...(103) 

	 Let 

		  I = 
2

2
–

* ( , )
( , )

x t
x x t dx

x

+ •

•

∂ yy
∂Ú

	 Integrating by parts, we get 

		  I = 
–

– –

* ( , ) * ( , )
( , ) – [ ( , )]

x t x t
x x t x x t dx

x xx

+ •+ •

•
• •

∂y ∂y ∂Ï ¸y yÌ ˝∂ ∂∂Ó ˛ Ú 	 ...(104)

	 For a localized wave packet we have the boundary conditions 

		
( , ) 0 as

( , ) * ( , )
and 0 as

x t x

x t x t
x

x x

y Æ Æ ± •¸
Ô

∂y ∂y ˝Æ Æ ± • Ô∂ ∂ ˛
	 ...(105) 

	U se of conditions given by Eqs. (105) in Eq. (104), we obtain 

		  I = 
–

* ( , )
– [ ( , )]

x t
x x t

x x

+ •

•

∂ ∂yy
∂ ∂Ú

	 Integrating once again by parts, we get 

		  I = 
2

2
–– –

– [ ( , )] * ( , ) * ( , ) [ ( , )]x x t x t x t x x t dx
x x

+ • + •+ •

•• •

∂ ∂Ï ¸y y + y yÌ ˝∂ ∂Ó ˛Ú Ú
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	U sing condition given by Eqs. (105), the above becomes 

		  I = 
2

2
–

* ( , ) [ ( , )]x t x x t dx
x

+ •

•

∂y y
∂Ú

		  = 
–

( , )
* ( , ) ( , )

x t
x t x t x dx

x x

+ •

•

∂ ∂yÈ ˘y y +Í ˙∂ ∂Î ˚Ú

		  = 
2

2
–

( , ) ( , ) ( , )
* ( , )

x t x t x t
x t x dx

x xx

+ •

•

È ˘∂y ∂ y ∂yy + +Í ˙∂ ∂∂Î ˚
Ú

or 

		  I = 
2

2
–

( , ) ( , )
* ( , ) 2

x t x t
x t x dx

x x

+ •

•

È ˘∂y ∂ yy +Í ˙∂ ∂Î ˚
Ú 	 ...(106)

	U sing Eq. (106) in Eq. (103) we obtain 

		
2 2

2 2
–

,
( , ) ( , ) ( , )

* ( , ) – 2 * ( ) – * ( , )
2

t
d x i x t x t x t

x x t x x t x dx
dt m xx x

+ •

•

È ˘· Ò ∂ y ∂y ∂ y= y y yÍ ˙∂∂ ∂Î ˚
Ú

or

		
–

( , )
–2 * ( , )

2

d x i x t
x t dx

dt m x

+ •

•

· Ò ∂y= y
∂Ú

or

		
–

1
* ( , ) – ( , )

d x
x t i x t dx

dt m x

+ •

•

· Ò ∂Ê ˆ= y yÁ ˜Ë ¯∂Ú 

or

		
–

ˆ, since * ( , ) ( , )x
x x

pd x
p x t p x t dx

dt m

+ •

•

· Ò· Ò = · Ò = y yÚ
or

		  x

d x
p m

dt

· Ò· Ò = 	 ...(107)

	 In the limiting case if the wave packet reduces to a point, i.e., the particle becomes 
completely localized, we get 

		  ·xÒ = x and · px Ò = px	 ...(108) 

so that Eq. (104) reduces to the classical definition 
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		  px = m
dx

dt
	 ...(109)

	 We have the expectation value of px in the state described by the wavefunction y(x, t) 
given by 

		
–

* ( , ) – ( , )xp x t i x t dx
x

+ •

•

∂Ê ˆ· Ò = y yÁ ˜Ë ¯∂Ú 

	 Taking time derivative of the above we obtain 

		
–

* ( , ) – ( , )xd p
x t i x t dx

dt t x

+ •

•

· Ò ∂ ∂Ê ˆ= y yÁ ˜Ë ¯∂ ∂Ú 

or		
–

* ( , ) ( , )
–xd p x t x t

i dx
dt t x

+ •

•

· Ò ∂y ∂y=
∂ ∂Ú

		
–

( , )
– * ( , )

x t
i x t dx

x t

+ •

•

∂ ∂yÊ ˆy Á ˜Ë ¯∂ ∂Ú

	 Substituting for  * ( , ) ( , )
and

x t x t

t t

∂y ∂y
∂ ∂

 from Eqs. (102) and (101) in the above we 
obtain 

		
2 2

2
–

. – ( , )
– ( ) * ( , )

2
xd p i x t

i V x x t dx
dt m xx

+ •

•

È ˘· Ò ∂ ∂y= + yÍ ˙ ∂∂Î ˚
Ú 




		
2 2

2
–

– –
– *( , ) ( ) ( , )

2

i
i x t V x x t dx

x m x

+ •

•

È ˘∂ ∂Ê ˆy + yÍ ˙Á ˜Ë ¯ ∂ ∂Î ˚
Ú 




		  = 
2 2

2
–

– ( , )
( ) * ( , )

2

x t
V x x t dx

m xx

+ •

•

È ˘∂ ∂y+ yÍ ˙ ∂∂Î ˚
Ú

		
2 2

2
–

* ( , ) ( ) ( , )
2

x t V x x t dx
m x x

+ •

•

È ˘∂ ∂+ y + yÍ ˙∂ ∂Î ˚
Ú

		  = 
2 2

2
– –

* ( , ) ( , ) ( , )
( ) * ( , )

2

x t x t x t
dx V x x t dx

m x xx

+ • + •

• •

∂ y ∂y ∂y+ y
∂ ∂∂Ú Ú

 

	
2 2

2
– –

( , )
* ( , ) – * ( , ) [ ( ) ( , )]

2

x t
x t dx x t V x x t dx

m x xx

+ • + •

• •

Ê ˆ∂ ∂ y ∂+ y y yÁ ˜∂ ∂∂Ë ¯Ú Ú
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2 2 2

2 2 2
–

( , ) * ( , ) ( , )
* ( , ) –

2

x t x t x t
x t dx

m x x x x

+ •

•

È ˘Ê ˆ∂ ∂ y ∂ y ∂y= yÍ ˙Á ˜∂ ∂ ∂ ∂Ë ¯Í ˙Î ˚
Ú

	 + 
–

( , )
( ) * ( , ) – * ( , ) [ ( ) ( , )]

x t
V x x t x t V x x t dx

x x

+ •

•

∂y ∂È y y yÍ ∂ ∂ÎÚ

		  = 
2 2 2 2 2

2 2 2 2
–

( , ) * ( , ) ( , ) * ( , ) ( , )
* ( , ) – –

2

x t x t x t x t x t
x t dx

m x xx x x x

+ •

•

È ˘Ê ˆ∂ ∂ y ∂y ∂ y ∂ y ∂ yyÍ ˙Á ˜∂ ∂∂ ∂ ∂ ∂Ë ¯Í ˙Î ˚
Ú

		  + 
–

– ( )
* ( , ) ( , )

V x
x t x t dx

x

+ •

•

∂È ˘y yÍ ˙∂Î ˚Ú

	 = 
2 2

2
–

– ( , ) * ( , ) ( , )
* ( , ) –

2

x t x t x t
x t dx

m x x x xx

+ •

•

È Ê ˆ∂ ∂ y ∂ ∂y ∂yÈ ˘yÍ Á ˜ Í ˙∂ ∂ ∂ ∂∂Ë ¯ Î ˚ÍÎ
Ú

 + 
– V

x

∂
∂

	U sing the condition given by Eqs. (105) in the above we find the first term in the above 
equation to vanish to yield 

		  – ( )xd p V x

dt x

· Ò ∂=
∂

	 ...(110) 

	 The force Fx corresponding to the potential energy function V(x) is 

		  Fx = – V

x

∂
∂

	 ...(111)

	 The above two equations give 

		  x
x

d p
F

dt

· Ò
= · Ò 	 ...(112) 

	 In the limiting case of the wave packet reducing to a point, i.e., the particle being 
completely localized we get 

		  · px Ò = px  and  ·Fx Ò = Fx

and Eq. (112) in that case takes the form

		  Fx = xdp

dt
	 ...(113) 

which is Newton’s second law of motion 
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4.14 A cceptable wave functions for a physical system

The dynamical state of a physical system, say, a particle moving in space, is defined by the 
wavefunction y(​

​_
 
›
 r ​, t) which is a complex valued function of position ​

​_
 
›
 r ​ in space and time t.

	 The quantity y*(r, t) y(​
​_
 
›
 r ​, t)d 3 (​

​_
 
›
 r ​), i.e., the quantity ​| y(​

​_
 
›
 r ​, t) |​2 d 3 (​

​_
 
›
 r ​) gives the probability 

of finding the particle within a volume element d3(​
​_

 
›
 r ​) about the position ​

​_
 
›
 r ​. In other words, ​

| y(​
​_
 
›
 r ​, t) |​2 is the probability density, i.e., the probality of finding the particle within a unit 

volume about the position ​
​_

 
›
 r ​ at the time t. This probabilistic interpretation of the wavefunction 

necessitates some conditions that must be satisfied by it for its physical acceptability. These 
conditions are:

	 (i)	 Wavefunction must be finite at all positions at all instants of time. This requirement 

stems from the fact that ​| y(​
​_

 
›
 r ​, t) |​2 d 3 (​

​_
 
›
 r ​) must lie between 0 and 1.

	 (ii)	 Wavefunction must be single valued at any position at all instants of time. This 
requirement of single valuedness arises from the fact that at any given position, the 
wavefunction must be unique so that the probability density at the position be uniquely 
defined at all instants of time. 

	 (iii)	 Wavefunction y(​
​_
 
›
 r ​, t) must be a continuous function of position ​

​_
 
›
 r ​ and time t. Further, 

the gradient of the wavefunction ​
​__

 
›
 —​y(​

​_
 
›
 r ​, t) should be continuous at all points in space. 

These requirements follow from the fact that the probability current density ​
​_
 
›
 J ​(​
​_
 
›
 r ​, t), 

which is intimately related to the probabilistic interpretation, is defined through 

y(​
​_
 
›
 r ​, t) and ​

​__
 
›
 —​y(​

​_
 
›
 r ​, t). The Schrödinger equation satisfied by the wavefunction contains 

the term —2y which can exist provided ​
​__

 
›
 —​y is a continuous function at all points in 

space. 

	 (iv)	 The wavefunction must be quadratically integrable, i.e., we must have 

		  3

–

* ( , ) ( , ) ( )r t r t d r
+ •

•

y yÚ   
 = a finite quantity

	 If the above condition is satisfied then we may define a normalized wavefunction that 
corresponds to a total probability equal to unity.

4.15 S tationary States

The time-dependent states of a quantum system are the solutions of the general time-dependent 
Schrödinger equation 

		
2

2( , ) –
( , ) ( , )

2

r t
i V r t r t

t m

È ˘∂y = — + yÍ ˙∂ Î ˚


  



		  = Ĥ y(​
​_
 
›
 r ​, t)	 ...(114) 
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the operator Ĥ being the Hamiltonian for the system. The solution of the above equation when 
Ĥ is explicitly dependent on time is generally a difficult task and is treated most commonly 
by approximate methods. for the moment, it will suffice to consider conservative systems, 
that is, systems for which Ĥ does not depend explicitly on time. If such is the case, the above 
equation becomes

		
2

2( , )
– ( ) ( , )]

2

r t
i V r r t

t m

È ˘∂y = — + yÍ ˙∂ Î ˚


  

 	 ...(115) 

	 Since the operator i
t

∂Ê ˆ
Á ˜Ë ¯∂
  on the left is independent of coordinates while the operator 

2
2–

( )
2

v r
m

È ˘
— +Í ˙

Î ˚

   on the right is independent of time, it is reasonable to use, as a trial solution 

of eq. (115), one in the separated form:

		  y(​
​_

 
›
 r ​, t) = y(​

​_
 
›
 r ​)T (t)	 ...(116) 

	 Substituting Eq. (116) in Eq. (115) we get 

		
2

2( ) –
( ) ( ) ( ) ( ) ( )

2

dT t
r i r V r r T t

dt m

È ˘
y = — y + yÍ ˙

Î ˚

   


	 Dividing throughout by y(​
​_

 
›
 r ​)T (t), we get 

		
2

21 ( ) 1 –
( ) ( ) ( )

( ) ( ) 2

dT t
i r V r r

T t dt r m

È ˘
= — y + yÍ ˙y Î ˚

   
  	 ...(117)

	 The left hand side of the above equation is a function of only time while the right hand 
side is a function of only coordinates. Hence for the above equation to hold, each side must 
be equal to some constant. Taking this constant as equal to E we obtain 

	 (a) 
( )

( )

i dT t

T t dt


 = E	 or 

( )dT t
i

dt
  = ET(t)	 ...(118)

	 (b) 
2

21 –
( ) ( ) ( )

( ) 2
r V r r

r m

È ˘
— y + yÍ ˙y Î ˚

   
  = E	 or 

2
2–

( ) ( )
2

V r r
m

È ˘
— yÍ ˙

Î ˚

  
 = E y(r)	 ...(119)

	 Solution of Eq. (118) is given by 

		  T(t) = 
– i

Et
e  	 ...(120) 

	U sing Eq. (120) in Eq. (116) we may write the solution of the Schrödinger Eq. (115) as

		  y(​
​_

 
›
 r ​, t) = y(​

​_
 
›
 r ​)

– i
Et

e  	 ...(121)
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	E quation (119) can be written as

		  Ĥ y(​
​_

 
›
 r ​) = Ey(​

​_
 
›
 r ​)	 ...(122)

 

where	 Ĥ = 
2 2

2 ˆ–
( ) ( )

2 2

p
V r V r

m m
— + = +  

	 ...(123)

i.e.,	 Ĥ =	 operator corresponding to kinetic energy + operator corresponding to potential 
energy 

or	 Ĥ =	 operator corresponding to the total energy of the system. 

	E quation (122) is the energy eigenvalue equation and the constant is thus identified as the 
energy eigenvalue. In general, Eq. (122) has a complete set of solutions yn(​

​_
 
›
 r ​) such that 

		  Ĥ yn(​
​_

 
›
 r ​) = Enyn(​

​_
 
›
 r ​)	 ...(124) 

	 En represent the possible results of energy measurement performed on the system. 
Including the time-dependent part, we have the wavefunction of the system 

		  yn(​
​_

 
›
 r ​, t) = yn(​

​_
 
›
 r ​)

–
n

i
E t

e  	 ...(125)

	E quation (125) gives the time-dependent states of the system.

	 The probability density, i.e., the probability of finding the particle, with energy eigenvalue 
En within unit volume about the position ​

​_
 
›
 r ​ at the instant t is given by 

		  Pn(​
​_

 
›
 r ​, t) = |yn(​

​_
 
›
 r ​, t)|2

		  = 
–

* *( ) ( )
n n

i i
E t E t

n nr e r ey y  

		  = |yn(​
​_

 
›
 r ​)|2	 ...(126) 

	 We find that Pn(​
​_

 
›
 r ​, t) = constant in time.		  ...(127) 

	 The states described by wavefunction such as yn(​
​_

 
›
 r ​, t) given by eq.(125) for which the 

probability density is constant in time are called stationary or steady states of the system.

	 Let us now consider an observable A for the system whose operator Â does not depend 
on time explicitly. By definition, the expectation value of A in the stationary state described 
by the wavefunction yn(​

​_
 
›
 r ​, t) is given by

		  ·AÒ = * 3

–

ˆ( , ) ( , ) ( )n nr t A r t d r
+•

•

y yÚ   

		  = 
–

* 3

–

ˆ( , ) ( ) ( )
iEn iEn

t t

n nr t e A r e d r
+•

•

y yÚ    

		  = * 3

–

ˆ( ) ( ) ( )n nr A r d r
+•

•

y yÚ    = constant in time	 ...(128) 
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	 We find that the expectation value of an observable, which is not an explicit function of 
time, in any stationary state is constant in time. 

	 We know that the equation of continuity for probability is given by 

		  ( , )
. ( , )

P r t
J r t

t

∂ + —
∂

     = 0	 ...(129) 

	 For stationary states, probability density P(​
​_

 
›
 r ​, t) is independent of time so that 

( , )P r t

t

∂
∂


 = 0. 

Clearly, for stationary states, the current density ​
​_
 
›
 J ​(​
​_

 
›
 r ​, t), according to Eq. (129), satisfies

		​ 
​__

 
›
 —​ ◊ ​

​_
 
›
 J ​(​
​_

 
›
 r ​, t) = 0

or 

		  div ​
​_

 
›
 J ​(​
​_
 
›
 r ​, t) = 0	 ...(130)

4.15.1 B ound States

Under many physical situations, we come across states of a quantum system called the bound 
states. These are essentially stationary states which are described by wavefunctions which 
vanish at infinity. Clearly, for bound states, the probability density also vanishes at infinity. 

4.15. 2 S uperposition States 

As we have seen, the particular solutions of Eq. (115) are of the form 

		  yn(​
​_

 
›
 r ​, t) = yn(​

​_
 
›
 r ​) 

– niE
t

e  	 ...(131) 

	 The general solutions of Eq. (115) are of the form 

		  yn(​
​_

 
›
 r ​, t) = 

–

( , ) ( )y = yÂ Â   niE
t

n n n n
n

a r t a r e 	 ...(132) 

where an are constants and, in particular, do not depend on time. The state of the system 
described by the wavefunction y(​

​_
 
›
 r ​, t) [eq. (132)] is called a superposition state.

	 The probability density corresponding to the superposition state is given by 

		  P(​
​_

 
›
 r ​, t) = 

2–
2| ( , )| ( )y = yÂ   niE

t

n n
n

r t a r e

		  = 
( – )

* *
ˆ ( ) ( )y yÂÂ   m ni E E

t

m n m n
m n

a a r r e 	 ...(133) 

	 Clearly, P(​
​_

 
›
 r ​, t) is not independent of time in a superposition state. Further, the expectation 

value of an observable A in a superposition state is given by 
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		  ·AÒ = 3ˆ* ( , ) ( , )r t A r t d ry yÚ   

		  = 
( – )

* * 3ˆ( ) ( ) ( )
m ni E E t

m n m n
m n

a a e r A r d ry yÂ Â Ú   
	 ...(134)

	 As we have seen earlier yn’s are the energy eigenfunctions, i.e., the eigenfunctions of the 
Hamiltonian operator Ĥ .

	 If Â commuters with Ĥ , then yn’s are also the eigenfunctions of Â . In such a case we may 
write 

		  ·AÒ = 
( – )

* * 3( ) ( ) ( )
m ni E E t

m n n m n
m n

a a e A r r d ry yÂ Â Ú   

		  = 
( – )

* dÂÂ 
m ni E E t

m n n mn
m n

a a e A

where  dmn = * 3( ) ( ) ( )m nr r d ry yÚ   
 = 1,  if m = n

		  = 0,  if m π n

	 Hence, we obtain 

		  ·AÒ = 2| |m ma AÂ 	 ...(135)

	 Clearly ·AÒ is constant in time in a superposition state provided Â commutes with Ĥ . If Â 
does not commute with Ĥ , (Â ) is time-dependent in general as indicated by Eq. (134).

4.16 S olved Examples 

Example 1  The wavefunction of a particle is given by 

		  y(x)	 = N​e​– ax2

​

		  Normalize the wavefunction if N and a are constants in the region – • £ x £ + •.

Solution:  The wavefunction is normalized if 

		
–

* ( ) ( )
+•

•

y yÚ x x dx = 1

	U sing y(x) = N​e​– ax2

​ in the above we get 

			   N 2
2– 2

–

+•
a

•
Ú xe dx  = 1

	U sing the standard integral 

			   – 2

–

+•

•

p=Ú bue du
b

,  b = a constant
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the above gives 

		  2

2

p
a

N  = 1

or 		

1

22 2aÊ ˆ= Á ˜Ë ¯p
N

or		

1

42aÊ ˆ= Á ˜Ë ¯p
N

	 The normalized wavefunction is thus 

		  y(x) = 
2

1

4 –2 aaÊ ˆ
Á ˜Ë ¯p

xe

Example 2  Based on the properties of wavefunction, explain whether y = ex is an 
acceptable quantum mechanical wavefunction or not.

Explanation:  Probability interpretation of wavefunction y makes it necessary that y should 
satisfy some general conditions. The conditions must ensure that |y|2 d t have the properties 
of a probability. This requires (i) y should be finite at each point in space, (ii) y should be 
single valued at all points in space, (iii) y should be quadratically integrable, (iv) y and its 
partial derivatives with respect to positions be continuous throughout.

	 The given wavefunction is 

		  y(x) = e x

	 We find that as x Æ ± •, y(x) Æ ± •. 

	 Furtte the total probability is 

			   P	 = 2

– –

* ( ) ( )
+• +•

• •

y y =Ú Ú xx x dx e dx

				    = 
2

–
2

+•

•

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

xe

or		  P	= •

	 thus the given function is neither finite for all value of x, nor it is quadratieally integrable. 
Hence the function ex, does not repnsent an acceptable wavefunction. 
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Example 3  Is Schrödinger equation valid for relativistic particle? Explain your answer. 

Explanation:  Consider a free particle of mass m having momentum p and kinetic energy E 
moving along the x-axis. For non-relativistic particle (n << c) we have 

			   p = mv  and  E = ​ 1 __ 
2
 ​ mv2 

	 So that the energy-momentum relation is E = ​ 
p2

 ___ 
2m

 ​. The Hamiltonian of the particle is 

H = ​ 
p2

 ___ 
2m

 ​. 

	 The Schrödinger equation obtained from the above Hamiltonian is

		
2 2

2

( , ) – ( , )

2

x t x t
i

t m t

∂y ∂ y=
∂ ∂


 	 ...(i)

	 y(x, t) being the wavefunction that describes the state of the particle.

	 If the particle travels at a speed close to that of light i.e., if the particle is a relativistic 

particle, the Hamiltonian is no longer given by ​ 
p2

 ___ 
2m

 ​. Hence the Schrödinger equation given 

by Eq. (i) is not applicable to relativistic particles.
	 We may try to obtain wave equation for a relativistic particle by considering the Hamiltonian 
which is represented by the energy E to be given by 

		  H ∫ E = [c2p2 + m2c4]1/2	 ...(ii) 

	U sing the operator corresponding to E and p namely 

E Æ , –
∂ Æ —
∂


 i p i

t
	 We obtain the wave equation

		  2 2 2 2 4–[ ]∂y = — + y
∂

 i c m c
t

	 ...(iii)

	 In the above the meaning of the operator [– 2c2—2 + m2c4]1/2 is not clear. Further, in 
relativity theory, space and time play quite symmetric roles but in the above equation space 
and time differential appear in very different ways. 

Example 4  for a one-dimensional bound particle described by the wavefunction 
y(x, t), show that

(a)	
–

* ( , ) ( , )
+•

•

y yÚd
x t x t dx

dt
 = 0 

(b)	 If the particle is in a stationary state at a given time, then it will remain in the stationary 
state at all times. 
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Solution:  (a) y(x, t) satisfies the Schrödinger equation

	 	
2 2

2

( , ) – ( , )
( ) ( , )

2

∂y ∂ y= + y
∂ ∂




x t x t
i V x x t

t m x
	 ...(i) 

	 Taking complex conjugate of Eq. (i), we get 

		
2 2

2

* ( , ) – * ( , )
– ( ) ( , )

2

∂y ∂ y= + y
∂ ∂




x t x t
i V x x t

t m x
	 ...(ii) 

	 Multiplying Eq. (i) by y*(x, t) from the left, Eq. (ii) by y(x, t) from the right and 
subtracting we obtain 

		
2– ( , ) * ( , )

[ * ( , ) ( , )] * ( , ) – ( , )
2

∂ ∂ ∂y ∂yÈ ˘y y = y yÍ ˙∂ ∂ ∂ ∂Î ˚



x t x t

i x t x t x t x t
t m x x x

	 Integrating the above for the entire region we get 

		
– –

( , ) * ( , )
* ( , ) ( , ) * ( , ) – ( , )

2

+• +•

• •

∂ ∂ ∂y ∂yÈ ˘y y = y yÍ ˙∂ ∂ ∂ ∂Î ˚Ú Úi x t x t
x t x t dx x t x t dx

t m x x x

		  = 
–

( , ) * ( , )
* ( , ) – ( , )

2

+•

•

∂y ∂yÏ ¸y yÌ ˝∂ ∂Ó ˛
i x t x t

x t x t
m x x

	 ...(iii)

	 Since y(x, t) describes a bound state of the particle we have

		  y(x, t) = 0  as x Æ ± •.

	U sing the above boundary condition in Eq. (iii), we get 

		
–

* ( , ) ( , )
+•

•

y yÚd
x t x t dx

dt
 = 0

(l)	 Let the particle be in a stationary state with energy E at t = t0. We then have 

		  Ĥ y(x, t0) = Ey(x, t0)	 ...(iv) 

	 In the above the Hamiltonian Ĥ does not depend on time explicitly. 

	 If y(x, t) is the wavefunction at the time t, we have the Schrödinger equation

		  ( , ) ˆ ( , )
x t

i H x t
t

∂y = y
∂



	 or 

		
( , ) – ˆ∂y = ∂
∂ 
x t i

H t
t
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	 Integrating over time between the limits t = t0 to t = t, (since Ĥ is not an explicit function 
of time), we get 

		
0 0

– ˆ{ln ( , )} ( – )t
t

i
x t H t ty =



	 or	 ln 0
0

( , ) – ˆ ( – )
( , )

x t i
H t t

x t

y =
y 

	 or	 y(x, t) = 
0

– ˆ ( – )

0( , )
i

H t t
e x ty 	 ...(v)

	 Multiplying both sides by Ĥ and from the left and using commutability between Ĥ and 

0
– ˆ ( – )

i
H t t

e  , the above gives 

		  0
– ˆ ( – )

0
ˆ ˆ( , ) ( , )

i
H t t

H x t e H x ty = y

	U sing Eq. (iv) the above gives 

		  0
– ˆ ( – )

0
ˆ ( , ) ( , )

i
H t t

H x t E e x ty = y

or 

		  ˆ ( , ) ( , )H x t E x ty = y 	 ...(vi)

	 In view of Eqs. (iv) and (v), we can say that the wavefunction y(x, t) repersents a 
stationary state. 

Example 5 U sing Schrödinger equation, find the potential V(x) and energy E for 

which the wavefunction y(x) = A 0– /

0

Ê ˆ
Á ˜Ë ¯

n
x xx

e
x

 is an eigenfunction (Assume that as 
x Æ •, V(x) Æ 0).

Solution:  If the wavefunction y(x) is an eingnfunction of the Hamiltonian operator 
Ĥ  belonging to the energy eigenvalue E we have 

		  Ĥ y(x) = Ey(x)	

or		
2 2

2

– ( )
( ) ( ) ( )

2

d x
V x x E x

m dx

y + y = y
	 ...(i)		

	 We have 	 y(x) = A
-Ê ˆ

Á ˜Ë ¯
0

0

n x

xx
e

x
	 ...(ii)	

	 We get on differentiating with respect to x 
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		  0 0

–1 – –

0 0 0 0

( )
–

n nx x

x xd x x i i x
An e A e

dx x x x x

Ê ˆ Ê ˆy = Á ˜ Á ˜Ë ¯ Ë ¯

	 Differentiating the above with respect to x and simplifying we get 

		
2

2 2 2
0 0

( ) ( – 1)
2 ( )

d x n n n i
x

x xdx x x

È ˘y = - + yÍ ˙
Í ˙Î ˚

	 ...(iii)

	 Substituting Eq. (iii) in Eq. (ii) we obtain 

		
2

2 2
0 0

– ( – 1) 1
–2 ( ) [ – ( )] ( )

2

n n n
x E V x x

m x xx x

È ˘
+ y = yÍ ˙

Í ˙Î ˚



	 The above gives 

		  E – V(x) = 
2

2 2
0 0

– ( – 1) 1
–2

2

n n n

m x xx x

È ˘
+Í ˙

Í ˙Î ˚


	 ...(iv)

	 Since V(x) Æ 0 as x Æ • (assumption given) the above gives 

		  E = 
2

2
0

–

2mx


	 ...(v) 

	U sing Eq. (v) in Eq. (iv) we get 

		  V(x) = 
2 2

2 2
00

( – 1) 2
–

22

n n n

m x xmx x

È ˘
+ Í ˙

Î ˚

 

or

		  V(x) = 
2

2 2 2
0 0 0

( – 1) 2 1 1
– –

2

n n n

m x xx x x

È ˘
+Í ˙

Í ˙Î ˚



or 

		  V(x) = 
2

2
0

( – 1) 2
–

2

n n n

m x xx

È ˘
Í ˙
Î ˚


	 ...(vi)

Example 6  The wavefunction for a particle in a one-dimensional potential V(x) is given 
by 

		  y(x, t) = – for 0
i t

xx e e x
g

ba >  

		  = 0	 for x < 0

where a, b and g are positive constants.

(a)	 Is the particle bound? Explain your answer. 

(b)	 Find V(x) for x > 0
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Solution:  (a) We have 

		  y(x, t) = –
i t

xx e e
g

ba 

	 Clearly Lt
xÆ•

 y(x, t) = 0 (the factor) ​e​– bx​ Æ 0)

and	 Lt
xÆ-•

 y(x, t) = 0

	 Thus, Lt
xÆ±•

 y(x, t) = 0	 ...(i)

	 Clearly, the particle is in a bound state. 

(b)	For x > 0, the Schrödinger equation is 

		
2 2

2

( , ) –
( ) ( , )

2

x t
i V x x t

t m x

È ˘∂y ∂= + yÍ ˙∂ ∂Î ˚


  

(m = mass of the particle)

or

		
2 2

– – –
2

–
( )

2

i t i t
x x xi t

i x e x e e V x x e e
t me x

g g
b b b

È ˘ È ˘∂ g ∂È ˘a = a + aÍ ˙ Í ˙Í ˙∂ ∂Î ˚ Í ˙ Í ˙Î ˚ Î ˚
 






or

		
2

– 2 – – ––
– 2 ( )

2

i t i t i t
x x x xti

i x e e e xe e V x x e e
m

g g g
b b b bgÊ ˆ È ˘a = a b b + aÁ ˜ Î ˚Ë ¯

 


or

		
2

– – 2 ––
– – 2 ( )

2

i t i t i t
x x xx e e e e x V x x e e

m

g g g
b b bÈ ˘ga = a b b + aÎ ˚

  
 

	 Dividing throughout by –
i t

xe e
g

ba   we obtain 

		  – g x = 
2

2– – 2 ( )
2

x V x x
m

È ˘b b +Î ˚


 

	 From the above the potential function V(x) for x > 0 is given by 

		  V(x) = – g + 
2

2 2
–

2m x

bÈ ˘bÍ ˙Î ˚
 	 ...(ii)

Example 7  The wavefunction of a particle is 

		  2
( ) sin for 0

x
x x L

L L

py = < <

	 and	 y(x) = 0	 for  x < 0 and x > L.

	 Find the probability of finding the particle in the region 0 < x < ​ L __ 
2
 ​
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Solution:  Probability of finding the particle in the region 0 < x < ​ L __ 
2

 ​ is given by 

		  P = 
/2

0

* ( ) ( )
L

x x dxy yÚ

	 Since	 y(x) = 
2

sin
x

L L

p
, we get 

		  P = 

/2 /2
2

0 0

2
1 – cos2 2

sin
2

L L
X

x Ldx dx
L L L

p
p =Ú Ú

		  = 
/2 /2

0 0

1 2
– cos

L L

dx x dx
L L

È ˘pÍ ˙
Í ˙Î ˚
Ú Ú

		  =

/2

0

2
sin1

2 2 /

È ˘pÏ ¸Í ˙Ô ÔÍ ˙- Ì ˝pÍ ˙Ô ÔÍ ˙Ó ˛Î ˚

L

xL L
L L

or

		  P = ​ 1 __ 
2

 ​.

Example 8  Wavefunction of a particle is given by 

		  2
( ) sin for 0

py = < <x
x x L

L L
 

and	 y(x) = 0 

	 Show that while the expectation value of momentum px is zero, that of px
2 is not zero in 

the region 0 < x < L.

Solution:  the expectation value of the momentum px in the region 0 < x < L is given by

		
0

ˆ* ( ) ( )
L

x xp x p x dx· Ò = y yÚ

		  = 
0

2
sin – sin

p ∂ pÊ ˆ
Á ˜Ë ¯∂Ú 

L
x x

i dx
L L x L

		  = 
0

2
– sin cos

p p p¥ Ú
L

x x
i dx

L L L L
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		  = 
2

0

2
sin– 2

2

p
p Ú

L
x

i L dx
L

		  = 
2

0

2
cos

– –
2 /

pÏ ¸
Ô Ôp
Ì ˝pÔ Ô
Ó ˛



L
x

i L
LL

or 

		
2

[cos 2 – cos 0]
2

p· Ò = ¥ p
p


x

i L
p

L
 

or 

		  · px Ò = 0

	 We have 

		  2 2

0

ˆ* ( ) ( )· Ò = y yÚx

L

xp x p x dx

		  = 
2

2
2

0

2
sin (– ) sin

p ∂ pÊ ˆ
Á ˜Ë ¯∂Ú 

L
x x

dx
L L Lx

		  = +
22

2

0

2
sin

p pÊ ˆ
Á ˜Ë ¯ Ú

L
x

dx
L L L

		  = 
2 2

3
0

2
1 – cos2

2

p
p Ú

L
x

L dx
L

		  = 
2 2

3
0 0

2
– cos

È ˘p pÍ ˙
Í ˙Î ˚
Ú Ú
L L

x
dx dx

LL

		  = 
2 2

3

0

2
sin

2

È ˘pÏ ¸Í ˙Ô Ôp Í ˙- Ì ˝pÍ ˙Ô ÔÍ ˙Ó ˛Î ˚



L
x

LL
L

L

	 or 

		
2 2 2 2

2
3 2

p p· Ò = ¥ = 
xp L

L L
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Example 9  If the normalized wavefunction for a particle moving along the x-axis be 

		  y(x) = 
2 2– 2x a ikxA e e

	 find ·xÒ and · px Ò.

Solution: 

	 We have	
–

* ( ) ( )
+•

•

· Ò = y yÚx x x x dx

		  = 

2 2

2 2

– –
* – –2 2

–

x x
ikx ikxa aA A e e x e e dx

+•

•
Ú

		  = 
2 22 –

–

| | x aA e x dx
+•

•
Ú

	 Clearly,	

2

2

–

0 0
x

ax e x dx
+•

-•

Ê ˆ
· Ò = =Á ˜

Á ˜Ë ¯
Ú∵	

2

2

–

0 0
x

ax e x dx
+•

-•

Ê ˆ
· Ò = =Á ˜

Á ˜Ë ¯
Ú∵

	 Since the wavefunction is normalized we have 

		  * ( ) ( ) 1x x dx
+•

-•

y y =Ú
	U sing the given wavefunction in the above, we get

		

2 2

2 2

– –
* –2 2 1

x x
ikx ikxa aA A e e e e dx

+•

-•

=Ú

	 or		

2

2

–
2 2| | 1

x

aA e dx
+•

-•

=Ú 	 ...(i)

	 Now	 * ( ) – ( )xp x i x dx
x

+•

-•

∂Ê ˆ· Ò = y yÁ ˜Ë ¯∂Ú 

		  = 

2 2

2 2

– –
* –2 2(– )

x x
ikx ikxa aA A e e i e e dx

x

+•

-•

È ˘∂ Í ˙
∂ Í ˙

Î ˚
Ú 
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		  = 

2 2 2

2 2 2

– – –
2 –2 2 2

2

–1
– | | – 2

2

x x x
ikx ikx ikxa a ai A e e e ik e e x e dx

a

+•

-•

È ˘Ê ˆÍ ˙¥ Á ˜Ë ¯Í ˙
Î ˚

Ú

		  = 

2 2

2 2

– –
2 2

2

1
– | |

x x

a ai A ik e dx e x dx
a

+• +•

-• -•

È ˘
Í ˙+
Í ˙
Î ˚
Ú Ú

or		

2 2

2 2

– –
2 2

2

1
| | – | |

x x

a a
xp k A e dx i A e x dx

a

+• +•

-• -•

· Ò = ¥Ú Ú       

	 In view of Eq. (i) and the standard integral we get · pxÒ = k.



5.1  Introduction

The formalism of quantum mechanics, in particular, the theory due to Schrödinger, has 
been extensively applied in the study of physical problems in atomic, molecular and nuclear 
physics. The main purpose of such application has been to compare the results according to 
Schrödinger’s theory with those obtained experimentally.

	 In spite of drastic assumptions involved, Schrödinger’s theory has been found to be 
immensely successful in understanding a large number of phenomena in the microscopic 
domain both qualitatively and quantitatively to a large extent.

	 In the following sections, we have considered application of the time-independent 
Schrödinger equation to some problems in which motions take place in one-dimension. The 
problems considered allow us to compare the classical results with the quantum mechanical 
results. Besides, the results illustrate some effects in the microscopic domain which may be 
called the quantum effects which are disallowed according to classical physics.

5.2	 General characteristics of 
	 one-dimensional motion 

Consider a particle of mass m having a total energy E moving in a one-dimensional potential 
V(x). The state of the particle described by the wavefunction y(x) satisfies the time-independent 
Schrödinger equation 

		
2

2 2

( ) 2
[ ( )] ( ) 0

d x m
E V x x

dx

y + - y =


 	 …(1)

	 The solutions of the above equation give the energy eigenfunctions yn(x) belonging to 
different energy eigenvalues En for the particle.

	 Equation (1) can be solved exactly only when (i) the potential function V(x) is stated 
explicitly and (ii) the boundary conditions imposed on the system, i.e., on the wavefunction 
y(x) are known exactly.

	 The nature of the states of the particle is determined completely by the energy of the 
particle and the nature of the potential function V(x). We encounter the following results with 
respect to the energy eigenvalues and states:

	 (i)	 The eigenvalues form a discrete-spectrum corresponding to bound states.

5 One-dimensional Problems
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	 (ii)	 The eigenvalues form a continuous spectrum corresponding to unbound states.

	 (iii)	 The eigenvalues form a mixed spectrum consisting of a discrete spectrum for some 
range of energy E and a continuous spectrum outside that range.

	 In the sections to follow we shall illustrate the above results by considering some important 
problems of one-dimensional motion. The problem of linear harmonic oscillator will be 
discussed in a separate chapter to follow.

	 The important properties of one-dimensional motion that we find are:

	 (i)	 in case of bound states, the energy spectrum is not only discrete but is non-degenerate 
also.

	 (ii)	 The eignfunction yn(x) for a bound state has ‘n’ number of nodes if the ground state 
corresponds to n = 0 and (n – 1) number of nodes if the ground state corresponds to 
n = 1.

5.3  free particle

By a free particle we mean a particle which moves freely in space without the influence of 
any force. Hence, for a free particle the potential energy is zero.

	 Restricting our discussion to motion in one-dimension, say, along the x-axis, we have  
V(x) = 0 for all values of x so that the wavefunction y(x) describing the state of the particle 
of mass m and a total energy E satisfies the Schrödinger equation

 
y- = y2 2

2

( )
( )

2

d x
E x

m dx

 

or		
2

2 2

( ) 2
( ) 0

d x m
E x

dx

y + y =


or		
2

2
2

( )
( ) 0

d x
k x

dx

y + y = 	  ...(2)

where	 k2 = 2

2m
E


	 ...(3)

	 The most general solution of Eq. (2) is a combination of two linearly independent plane 
wave solutions eikx and e– ikx 

		  yk (x) = Aeikx + Be–ikx  	 ...(4)

where A and B are arbitrary constants. The complete wavefunction is given by

		  yk (x, t) = Ae i(kx – wt) + Be –i(kx + wt)	 ...(5) 

where	 w = 
2

2

E k

m
= 


	 ...(6)
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	 The first term in Eq. (4) y+ (x, t) = Aei(kx – wt) is a wave travelling along the positive 
x-axis while the second term y–(x, t) = Be– i(kx + wt) represents a wave travelling along the 
negative x-axis. Both the waves y+(x, t) and y–(x, t) travelling along opposite directions are 
associated with the motion of the free partical having well defined momentum and energy. 
The momentum associated with y+(x, t) is p+ = k while that with y – (x, t) is p – = –  k. both 

y+(x, t) and y – (x, t) belong to the energy 
2 2

2

k

m

 . Since for free particle motion there are no 

boundary conditions, there exist no restrictions on the values of k and E. Clearly the states 
of the free particle are continuous or unbound.

	 It is important to discuss some of the physical subtleties present in the free particle 
motion:

	 (1)	 The probability density corresponding to the solution y+(x, t) is

2 2( , ) | ( , ) | | |P x t x t A+ += y =  = Constant independent of x and t

	 The probability density corresponding to the solution y – (x, t) is

		  2 2( , ) | ( , ) | | |P x t x t B- -= y = = Constant independent of x and t.

	 The above result is a purely quantum mechanical result having no explanation according 
to classical mechanics. Since the particle represented by the waves y+(x, t) and y–(x, t) 
have well defined momenta and energy we have the uncertainty in momentum Dp = 0 and 
uncertainty in energy DE = 0. According to Heisenberg’s uncertainty principle we get the 
uncertainty in the position Dx Æ • and the uncertainty in the time Dt Æ •. Thus there is 
complete loss of information about the position and time for any state of the particle.

	 (2)	 The speed of the plane waves y+(x, t) and y–(x, t) is given by 

		  nwave = 
2 2 / 2

2

E k m k

k k k m

w = = = 
 

	 ...(7)

	 The speed of the particle according to classical mechanics is given by

 		  nparticle = 
p k

m m
=  	 ...(8)

	 We thus observe

		  nparticle = 2nwave	 ...(9)

		 The above means that the particle travels with a speed which is double the speed of the 
waves representing the particle.

	 (3)	 The wavefunction representing the particle is not normalizable. This is because 

		
* 2( , ) ( , ) | |x t x t dx A dx

+• +•

+ +
-• -•

y y = = •Ú Ú 	 ...(10)
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and	
* 2
– ( , ) ( , ) | |x t x t dx B dx

+• +•

-
-• -•

y y = = •Ú Ú 	 …(11)

	 We may conclude from the above result that the solutions of the Schrödinger equation 
y+(x, t) and y–(x, t) do not represent physical situation because wavefunction representing 
the state of any system must be quadratically integrable. We may make a formal conclusion 
that a free particle described by the laws of quantum mechanics cannot have sharply defined 
momentum and energy. We may further conclude that a free partical cannot be represented 
by single (monochromatic) plane wave. Physically acceptable representation of a free particle 
is a wave packet as has been discussed earlier in Chapter 4. We may further conclude that 
solutions of the Schrödinger equation which are physically acceptable cannot be plane 
waves.

5.4 T he potential step

Consider a particle of mass m moving in a one-dimensional potential specified in the fig. 5.1. 
Mathematically, the potential function V(x) is of the form

		  V(x) = 0	 x < 0	 (Region I)	

			  = V0	 x > 0	 (Region II)

	 The particle moving freely in region I encounters the potential V0 at x = 0.	

I
Vo

II

V x( )

x = 0
x

Fig. 5.1  The potential step

	 The wavefunction y(x) describing the state of the particle in general satisfies the 
Schrödinger equation

2 2

2

( )
( ) ( ) ( )

2

d x
V x x E x

m dx

y- + y = y

 

or		
2

2 2

( ) 2
[ – ( )] ( ) 0

d x m
E V x x

dx

y + y =


 	 …(12)

	 In the above, E is the total energy of the particle.
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	 In the region I, if y1(x) is the wavefunction, Eq. (12) takes the form

2
1

12 2

( ) 2
( ) 0

d x m
E x

dx

y
+ y =


or		
2

21
12

( )
( ) 0

d x
k x

dx

y
+ y =

where	 k2 = 2

2m
E


	  ...(14)

	 If y2(x) be the wavefunction of the particle in region II, Eq. (12) gives

		

2
2

22 2

( ) 2
[ – ] ( ) 0o

d x m
E V x

dx

y
+ y =


or		
2

22
22

( )
( ) 0

d x
x

dx

y
+ a y = 	 ...(15)

where	 a2 = 
2

2
[ – ]o

m
E V


	 ...(16)

	 Most general solutions of Eqs. (13) and (15) can be written as 

		  y1(x) = Aeikx + Be–ikx	  ...(17)

		  y2(x) =  Ceiax + De–iax 	  ...(18)

	 In the above A, B, C and D are constants which may be determined using the boundary 
conditions on the wavefunctions. The first term in Eq. (17), y1+ (x) = Aeikx represents a plane 
wave travelling along the positive x-axis in the region I and can be considered as an incident 
wave, while the second term y1 –(x) = Be– ikx representing a plane wave in region I travelling 
along the negative x-axis can be considered as the wave reflected at the potential step at  
x = 0. The first term in Eq. (18) y2 +(x) = Ce iax represents a plane wave travelling in 
region II along the positive x-axis and can be considered as the wave transmitted 
in region II from the potential step at x = 0, while the second term y2 – (x) =  
De– iax represents a plane wave in region II travelling along the negative x-axis. Since 
throughtout the region II there exists no potential boundary from which reflection can occur, 
y2 –(x) must vanish which requires D to be equal to zero so that Eq.(18) reduces to 

		  y2(x) = C eiax 	 ...(19)

	 We have the following boundary conditions in view of single valuedness and continuity 
of wavefunction at a potential boundary:

(i)		  y1 (x) = y2(x)  at x = 0 	 ...(20)

	 Using the above we obtain from Eqs. (17) and (19)
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		  A + B = C 	 ...(21)

(ii)		 1( )d x

dx

y
 = 2 ( )d x

dx

y
  at x = 0 	 ...(22)

	 from eq. (17) we have 

		  1( ) ikx ikxd x
ikAe ikBe

dx
-y

= - 	 ...(23)

	 from Eq. (19) we have

		  2 ( ) i xd x
i Ce

dx
ay

= a  	 ...(24)

	u sing Eqs. (23) and (24) we get using Eq. (22)		

		  k (A – B) = aC	 ...(25)

	 Solving Eqs. (21) and (25) we obtain 

		  C = 
2k

A
k + a

	 ...(26)

		  B =
k

A
k

- a
+ a

	 ...(27)

	 If we consider the constant A as the amplitude of the incident wave, constants B and C can 
respectively be interpreted as the reflected and the transmitted amplitudes. We now consider 
the results on reflection and transmission in two cases, namely when E > V0 and when  
E < V0.

Case 1:  E > V0 

The wavefunction in region I is

		  y1(x) = Aeikx + Be– ikx	 ...(28)

	 We get on differentiating Eq. (28) with respect to x 

		  1( )d x

dx

y
 = ik [Aeikx – Be– ikx]	 ...(29)

	 Taking complex conjugate, Eq. (28) becomes

		  y*
1(x) = A

*
e– ikx + B

*
eikx	 ...(30)

	 Taking complex conjugate, Eq. (29) we get

		
*
1 ( )d x

dx

y
 = – ik[A

*
e– ikx – B

*
eikx] 	 ...(31)

	 The general expression for probability current density is given by 

		  J = 
– * *[ – ]
2

i

m
y —y y —y

	 ...(32)
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	 Since we are considering one-dimensional motion we get from Eq. (32) the probability 
current density in region I to be 

		  J1 = 
*

1 1*
1

( )–
( ) – ( )

2

d x di
x x

m dx dx

È ˘y yy yÍ ˙
Î ˚



	 Substituting from Eqs. (28), (29), (30), and (31) in the above we obtain 

		  2 2
1 (| | – | | )

k
J A B

m
=   	  ...(33)

	 The first term on the right hand side of Eq. (33) gives the probability current density of 
the incident wave / beam 

		  (J1)incident = 2| |
k

A
m


	 ...(34)

while the second term gives the probability current density of the reflected wave / beam

		  (J1)reflected = 2| |
k

B
m


	 ...(35)

	 Let us now consider region II in which the wavefunction is given by

		  y2(x) = C eiax	 ...(36)

	 The above gives

		  2 ( )d x

dx

y
 = ia C eidx	 ...(37)

	 Taking complex conjugate of Eq. (36) we get

		  y*
2 (x) = C

* e– iax	 ...(38)

and taking complex conjugate of Eq. (37) we get

		
*
2 ( )d x

dx

y
 = – ia C

* e– iax	 ...(39) 

	 The probability current density in region II by definition is given by

		  J2 = 
*

2 2*
2 2

–
( ) –

2

d di
x

m dx dx

È ˘y y
y yÍ ˙

Î ˚


	 ...(40)

	 Substituting from Eqs. (36), (37), (38) and (39) in Eq. (40) we obtain 

		  J2 = 2| |C
m

a
	 ...(41)

	 Since in region II, there exists only the transmitted wave we get the probability current 
density of the transmitted wave / beam

		  (J2)transmitted = 2| |C
m

a
	 ...(42)



	 119One-dimensional Problems

	 The reflectance or the reflection coefficient is, by definition, given by

		  R = 
Probability current density for reflected beam

Probability current density for incident beam

		  = 1 reflected

1 incident

( )

( )

J

J

	u sing Eqs. (34) and (35) we obtain 

		  R = 

2
2

2
2

| | | |

| || |

k B Bm
k AAm

=




	u sing Eq. (27) in the above we obtain

		  R = 
2

–k

k

Ê ˆa
Á ˜+ aË ¯

	 ...(43)

	 Similarly, the transmittance or transmission coefficient is 

		  T = 2 transmitted

1 incident

( )

( )

J

J

	u sing Eqs. (34) and (42), the above gives 

		  T = 

2
2

2
2

| | | |

| || |

C Cm
k k AAm

a
a=





	u sing Eq. (26) in the above we get 

		  T = 
2

2k

k k

Ê ˆa
Á ˜+ aË ¯

or		  T = 2

4

( )

k

k

a
+ a

	 ...(44)

	 We note the following:

	 1.	 We have k = 
2

2m
E


, a real positive quantity

		   	 a = 0
2

( – )
m

E V


, a real positive quantity under the condition E > V0 

		  Equation (43) then shows that R is a real positive quantity, meaning that a certain 
fraction of the incident particles gets reflected on encountering the potential step at 
x = 0. This result is in contrast to classical mechanics, according to which a particle 
going over a potential step, under the condition E > V0, would slow down in order to 
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conserve energy but would never be reflected. The observed result is a consequence 
of the wave properties of the particle. In other words, we can say that reflection under 
the condition E > V0 is a quantum mechanical effect. 

	 2.	F or E >> V0, that is for a Æ k from below, the ratio of the reflected flux to the 
incident flux, that is, |R|2 approaches zero. This agrees with intution which tells us 
that at very high incident energies, the presence of the step is but a small perturbation 
on the propagation of the wave.

Case 2:  E < V0

In this case, a given by a = 02

2
( – )

m
E V


 becomes imaginary. We may write 

		  a = 0 02 2

2 2
– ( – ) ( – )

m m
V E i V E i= = b

 
	 ...(45)

hence	 b = 0
2

( – )
m

V E


 is real positive	 ...(46)

	 The solution of the Schrödinger equation in region II is now given by

		  y2(x) = C eiibx = C e– bx 	 ...(47) 

	 We find that y2(x) does not blow up at x = + •
	 The reflection coefficient given by Eq. (43), in this case becomes

		  R = 
*

– – –

–

k i k i k i k i

k i k i k i k i

Ê ˆ Ê ˆ Ê ˆ Ê ˆb b b + b=Á ˜ Á ˜ Á ˜ Á ˜+ b + b + b bË ¯ Ë ¯ Ë ¯ Ë ¯
	 ...(48)

or		  R = 1 

	 Thus, when E < V0, as in classical mechanics there is total reflection.

	 It can, however, be seen that the transmission coefficient given by Eq. (44) does not 
vanish. Clearly, a part of the incident wave penetrates into the classically forbidden region, 
Such penetration phenomenon again is characteristic of waves permitting a ‘tunneling’ 
through barriers that would totally block particles in classical description.

5.5 i nfinite square-well potential

5.5.1 A symmetric Square Well

Consider a particle of mass m moving in a one-dimensional infinitely deep asymmetric 
potential well as shown in the Fig. 5.2, the potential function V(x) being of the form

		  V(x) = +  •	 for  x < 0	 [Region I]

			   = 0	 for  0 £ x £ a	 [Region II]

			   = +  •	 for  x > a	 [Region III]
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I II III

V x( )

+• +•

x = 0 x a=

0
x

Fig. 5.2

	 Classically, the particle remains confined within the well and moves with constant 
momentum back and forth as a result of repeated reflections from the walls of the well at 
x = 0 and at x = a.

	 Since V(x) = +  • for x < 0 (i.e. in region I) as well as for x > a (i.e., in region III), the 
wavefunctions of the particle in these two regions are zero, i.e.

		  y (x = 0) = 0 = y (x = a)	 ...(49)

	 If y (x) represents the wavefunction for the particle inside the well (0 £ x £ a), we have 
the Schrödinger equation 

		

2

2 2

( ) 2
( ) 0

d x m
E x

dx

y + y =


or		
2

2
2

( )
( ) 0

d x
k x

dx

y + y = 	  ...(50) 

where 	 k = 2

2m
E


	 ...(51)

	 The general solutions of eq. (50) are

		  y(x) = C eikx + De– ikx

or		  y(x) = A sin kx + B cos kx	 ...(52)

where A and B are constants.

	u sing the boundary condition given by eq. (49), namely y(0) = 0 in Eq. (52) we get

		  B = 0

so that the solution becomes

		  y(x) = A sin kx	 ...(53)

	F urther, applying the other boundary condition namely y(a) = 0, we get from Eq. (53)

		  A sin ka = 0

	 The above gives either A = 0 or sin ka = 0. However, A = 0 leads to y(x) = 0 everywhere 
which is not possible. Hence, we obtain
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		  sin ka = 0 

	 The above gives

		  ka = np;  n = a positive integer 

		  = 1, 2, 3, ...	 ... (54)

	 We may note that n cannot be 0 because that would make k = 0 so that wavefunction 
would vanish everywhere.

	F rom Eq. (54) we thus get

		  k = 
n

a

p
	 ...(55)

	u sing Eq. (55) in Eq. (53) we get the energy eigenfunctions of the particle to be given 
by

		  yn(x) = A sin 
n

x
a

pÊ ˆ
Á ˜Ë ¯

  ; n = 1, 2, ...	 ...(56)

	 Constant A can be determined from the requirement that the eigenfunctions are normalized 
i.e.

		

*

0

( ) ( ) 1
a

n nx x dxy y =Ú
	 The above gives

		

2 2

0

sin 1
a

n
A x dx

a

pÊ ˆ =Á ˜Ë ¯Ú

or		  2 1
2

a
A =

or		
2

A
a

= 	 ...(57)

	 The energy eigenfunctions are thus 

		  yn(x) = 2
sin ;

n
x

a a

pÊ ˆ
Á ˜Ë ¯

  n = 1, 2, ...	 ...(58)

	u sing Eq. (51) in Eq. (55) we get the energy eigenvalues of the particle to be given by

		
2

2
n

m n
E

a

p=

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or		  En = 
2 2

2
2

,
2

n
ma

p 
  n = 1, 2, ...	 ...(59)

	 We find the energy to be quantized, only certain values of energy are permitted. This is 
as expected because the states of a particle which are confined within a limited region of 
space are bound states and the energy eigenvalue spectrum is discrete. This result is in sharp 

contrast to the result in classical physics in which the energy of the particle given by E = ​ 
p2

 ___ 
2m

 ​ 

(p being the momentum of the particle) can assume any value continuously from a minimum 
to a maximum.

	F rom Eq. (59) we get

 		  En + 1 – En = 
2 2

2 (2 1)
2

n
ma

p +
	 ...(60)

	 Clearly, the energy levels are not equispaced. 

	 We have

		

1
2 2

– 2 1 2 1n n

n

E E n

E nn n
+ += = +

	 Clearly, in the classical limit, the above gives

		

1

2

– 2 1
Lt Lt 0n n

n nn

E E

E n n

+

Æ• Æ•

Ê ˆ Ê ˆ= + =Á ˜Á ˜ Ë ¯Ë ¯ 	 ...(61)

meaning that the levels become so close together that they become practically indistinguishable 
forming a continuum. 

	 The lowest energy state or the ground state corresponds to n = 1. The ground state energy 
is given by

		  E1 = 
2 2

22ma

p
	 ...(62)

and the ground state wavefunction is given by

		  y1(x) = 
2

sin x
a a

pÊ ˆ
Á ˜Ë ¯

	 ...(63)

	 Energy given by Eq. (62) is called the zero point energy because there exists no state with 
zero energy.

	 The plot of some of the eigenfunctions with x are shown in Fig. 5.3. We observe from 
the plots that the eigenfunction yn

 (x) has (n – 1) nodes as mentioned in Section 5.2.
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Fig. 5.3

Discussion on zero point energy 

If the particle inside the well has zero energy then it will come to rest and will be localized 
within the limited region defining the well. Heisenberg’s uncertainty relation then will 
require the particle to acquire a finite momentum and hence a minimum kinetic energy. 
Since the particle is confined in the region 0 < x < a, it has a maximum position uncertainty 

Dx = a and hence a minimum momentum uncertainty Dp ~ 
a


 which in turn corresponds to 

a minimum kinetic energy 
2 2

2

( )

2 2

p

m ma

D =   which is in qualitative agreement with the exact 

value E1 = 
2 2

22ma

p  .

	 The minimum momentum uncertainty given by Dp ~ ,
a


 is inversely proportional to the 

width of the well. Smaller the width, more the particle becomes localized, and Dp increases. 
This causes the particle to move faster thereby increasing the zero point energy. If on the 
other hand, width of the well increases, the zero point energy decreases but never becomes 
zero. Thus localization of a particle forces a minimum motion and hence a minimum energy 
to the particle.

5.5.2 S ymmetric Square-Well Potential of Infinite Depth 

A symmetric infinite square well potential is defined as

		  V(x) = + •	 for  x < – a

		  = 0	 for  – a £ x £ a

		  = + •	 for  x > a 

and is represented in the Fig. 5.4

	 Consider the motion of a particle of mass m in the one-dimensional potential described 
above.
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Fig. 5.4

	 If y(x) is the wavefunction describing the state of the particle in the region – a £ x £ a 
then it satisfies the time-independent Schrödinger equation 

		

2

2 2

( ) 2
( ) 0

d x m
E x

dx

y + y =


or		
2

2
2

( )
( ) 0

d x
k x

dx

y + y = 	 ...(64)

where	 k = 2

2m
E


	 ...(65)

	 The most general solution of Eq. (64) is given by

		  y(x) = A sin (kx) + B cos (kx)	 ...(66)

where A and B are constants.

	 Since V(x) = • for x < – a and x > a, the wavefunctions in these two regions vanish 
giving 

		  y(– a) = 0  and  y (+ a) = 0	 ...(67)

	 Using the conditions given by Eq. (67) in Eq. (66) we get

		  A sin ka + B cos ka = 0	 ...(68)

and

		  – A sin ka + B cos ka = 0	 ...(69)

	F or the above two equations to hold simultaneously we must have

		  A sin ka = 0	 ...(70) 

and	 B cos ka = 0	 ...(71)

	 In view of Eqns. (70) and (71) we may have A = 0 and B = 0 but these are physically 
unacceptable because y(x) given by Eq. (66) would then vanish.

	 Since B π 0, we have from Eq. (71), 
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		  cos ka = 0 = cos , 1, 3, 5, ...
2

n
n

p =

or		  ka = or
2 2

n n
k

a

p p=  	 ...(72)

	 Using Eq. (65) in the above we obtain the energy eigenvalues 

		  En = 
2 2 2 2 2

2
2 2 ,

2 8

n
n

m a ma

p p= 
  n = 1, 3, 5, ...	 ...(73)

	 The energy eigenfunctions corresponding to the above energy eigenvalues are

		  yn(x) = B cos kx = cos ,
2

n
B x

a

pÊ ˆ
Á ˜Ë ¯

  n = 1, 3, 5	 ...(74)

	 The condition given by Eq. (70) gives

		  sin ka = 0 = sin np	 (since A π 0)

or		  ka = np  or  k = ​ np ___ a ​;  n = 2, 4, 6	  ...(75)

	 using the above value of k in Eq. (65) we get the energy eigenvalues

		  En = 
2 2 2 2

2
2 ,

2 8

n
k

m ma

p= 
  n = 2, 4, 6, ...	 ...(76)

	 The corresponding energy eigenfunctions are 

		  yn (x) = A sin ,
2

n x

a

pÊ ˆ
Á ˜Ë ¯

  n = 2, 4, 6, ...	 ...(77)

	 The normalization conditions of the wavefunctions 

		

*

–

( ) ( ) 1
a

n n

a

x x dx
+

y y =Ú

lead to 

		  A = ​ 1 ___ 
​÷ 

__
 a ​
 ​, B = ​ 1 ___ 

​÷ 
__

 a ​
 ​	 ...(78)

	 We can thus write the set of energy eigenfunctions for the particle in the symmetric 
infinite square well potential as

		  yn(x) = 
1

sin ,
2

n
x

aa

pÊ ˆ
Á ˜Ë ¯

  n = 2, 4, ...	 ...(79) 

		  yn(x) = 
1

cos ,
2

n
x

aa

pÊ ˆ
Á ˜Ë ¯

  n = 1, 3, 5, ...	 ...(80) 
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and the discrete set of energy eigenvalues as

		  En = 
2 2

2
2 ,

8
n

ma

p 
  n = 1, 2, 3, ...	 ...(81)

Discussion 

The wavefunctions corresponding to n = 1, 3, 5, ... i.e., corresponding to odd quantum 
numbers are symmetric, y(– x) = y(x)

	 The wavefunctions corresponding to n = 2, 4, 6, ... i.e., corresponding to even quantum 
numbers are antisymmetric, y(– x) = – y(x) 

	 In other words, for symmetric potentials V(– x) = V(x), the wavefunctions of bound states 
are either even (symmetric) or odd (antisymmetric).

	 The energy spectrum for the particle is discrete and non-degenerate.

	 The ground state energy or the zero point energy is 

		  E1 = 
2 2

28ma

p 

corresponding to the eigenfunction

		  y1(x) = 
1

cos
2

x

aa

p

5.5.3 S ymmetric Square-Well Potential of Finite Depth 

A symmetric square well potential of finite depth is described by potential function V(x) of 
the form 

		  V(z) = V0	 for  x < – a	 (Region I)

		  = 0	 for  – a £ x £ a 	 (Region II)

		  = V0	 for  x > a 	 (Region III)

	 The potential function is shown in the Fig. 5.5

Fig. 5.5
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	 Consider the motion of a particle of mass m in the potential well described above.

	 The Schrödinger equation in regions I and III is 

		

2 2

02

– ( )
( ) ( )

2

d x
V x E x

m dx

y + y = y

 

or		
2

02 2

( ) 2
( – ) ( )

d x m
E V x

dx

y + y


 = 0	 ...(82)

	 In region II the Schrödinger equation is 

		

2

2 2

( ) 2
( ) 0

d x m
E x

dx

y + y =


which can be put in the form 

		

2
2

2

( )
( ) 0

d x
k x

dx

y + y =
	 ...(83) 

where	 k = 2

2m
E


	 ...(84)

	 Let us consider the cases where: E < V0,  and  E > V0

Case  E < V0: We may write Eq. (82) in the form

		
2

2
2

( )
– ( ) 0

d x
x

dx

y a y = 	 ...(85)

where	 a = 02

2
( – ) is real positive

m
V E


	 ...(86)

	 The most general solution of Eq. (85) is

		  y(x) = Ae+ ax + Be– ax,  A and B are constants	 ...(87)

	 Specific solution in region I	 y1 (x) = A eax	 ...(88)

	 Specific solution in region III	 y3(x) = B e– ax	 ...(89)

	 Solution of Eq. (83) gives the wavefunction in region II	

		  y2 (x) = C sin (kx) + D cos (kx)	 ...(90)

y2(x) is either symmetric or antisymmetric about x = 0. The first term in Eq. (90) is 
antisymmetric because sin (kx) = – sin (– kx). The second term is symmetric because 
cos (kx) = cos (– kx).
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	F or the symmetric function in region II, the coefficient C = 0 so that we may write the 
symmetric wavefunction in region II as 

		  (y2(x))symmetric = D cos (kx)	 ...(91)

	 At x = ± a, we have, using the single valuedness of wavefunction

		  Ae – aa = D cos ka	 ...(92)

		  Be– aa = D cos ka	 ...(93)

	 Similarly, using the continuity of wavefunction at x = ± a gives 

		  a A e– aa = + D k sin (ka)	 ...(94)

		  + a B e– aa = D k sin (ka)	 ...(95)

	 The above equations give

		  A = B	 ...(96)

and 	  k tan ka = a	 ...(97)

	 Let us now consider the antisymmetric wavefunctions in region II. In the case D = 0 so 
that we may write the antisymmetric wavefunction in region II as

		  (y2(x))antisymmetric = C sin (kx)	 ...(98)

	 Using the single valuedness and continuity of wavefunction at the boundaries at x = ± a 
we get

		  A e– aa = – C sin (ka)	 ...(99)

		  B e– aa = C sin (ka)	 ...(100)

		  a A e– aa = – C k cos (ka)	 ...(101)

		  – a Be– aa = C k cos (ka)	 ...(102)

	F rom the above four equations, we obtain

		  A = – B 	 ...(103)

and

		  k cot ka = – a	 ...(104)

	 The energy eigenvalues for the particle can be obtained by solving Eqs. (97) and (104) 
graphically as explained in the following:

	 Let us put	 ka = x	 ...(105)

		  aa = y	 ...(106)

	F rom the above we get
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		  x2 + y2 = (k2 + a2) a2

	 Substituting for k and a from Eqs. (84) and (86), the above becomes 

		  x2 + y2 = 2
02 2

2 2
( – )

m m
E V E a

È ˘+Í ˙Î ˚ 

or		  x2 + y2 = 
2

02

2ma
V


	 ...(107)

	 Substituting Eqs. (105) and (106) in Eqs. (97) and (104), respectively, we obtain 

		  x tan x = y	 ...(108)

		  – x cot x = y	 ...(109)

	 We plot x tan x against x, x cot x against x and x2 + y2 for different values of V0 a
2 (which 

are circles of different radii). Since both x and y can take only positive values, the sections 
of the circles have been shown in the first quadrant only (Fig. 5.6)

y a= a

o
p
2

p
2

3p 2p x ka=

Fig. 5.6

	 In the figure	

	F ull line curves Æ x tan x against x plots

	 Dashed curves Æ – x cot x against x plots

	 Circular sections Æ different values of V0 a
2	

	 The energy levels and the energy eigenvalues for the symmetric wavefunction are given 
by the intersections of the x tan x against x curves and the circular sections. Similarly, the 
energy eigenfunctions and the energy eigenvalues when the wavefunction in the well is 
antisymmetric are given by the intersections of – x cot x against x curves and the circular 
sections.

	 If the intersections of x tan x against x curves and circles occur at values of x equal to 
x1, x2, ..., xn, ... then we get

		​  x​n​ 
2​ = k2a2 = 2

2

2 nm E
a


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or		  En = 
2

2
2 ,

2 nx
ma

   n = 1, 3, 5, ...

	 Similarly, if the intersections of – x cot x against x curves and the circles occur at values 
of x equal to x1¢, x2¢, ... xn¢ …, then we get

		​  x​
n     ¢​ 
 2 ​ = 2 2 2

2

2 nmE
k a a¢=


 

or		  En¢ = 
2

2
2 ;

2 nx
ma ¢


  n¢ = 2, 4, 6, ...

	 The number of bound states are seen to depend upon the height V0 and the width a of the 
well through the factor V0 a

2. From the figure we find the following 

	 (i)	 Only one energy level of symmetric type, if 0 < V0 a
2 < 

2 2

8m

p 

	 (ii)	 Two energy levels of which one is of symmetric type and the other of antisymmetric 

type, if 
2 2 2 2

2
0

4

8 8
V a

m m

p p< < 

	 (iii)	 Three energy levels of which two are of symmetric type and one of antisymmetric 

type, if 
2 2 2 2

2
0

4 9

8 8
V a

m m

p p< <   and so on.

	 Some of the energy eigenfunctions corresponding to bound states are shown in the 
Fig. 5.7.

V0V0

V x( )

n = 3

n = 2

n = 1

–a o a
x

Fig. 5.7

	 Unlike in the case of infinite potential well, both the symmetric as well as the antisymmetric 
eigenfunctions extend beyond the well, i.e., in the regions x < – a and x > a which define the 
classical turning points. Clearly, there exists finite probability of finding the particle outside 
the well. This is a quantum mechanical effect. 

Case  E > V0:
The Schordinger equation in regions I and III is given by
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2

02 2

( ) 2
( – ) ( ) 0

d x m
E V x

dx

y + y =


	 Since E is greater than V0, 02

2
( – )

m
E V


 is a real positive quantity. As such the solution 

of the above equation is sinusoidal in nature. The probability density for the particle is 
distributed over all space in regions I and III. It is also distributed in region II, i.e., within 
the well. Thus we do not get bound state for the particle.

5.6  potential barrier problem 

A one-dimensional potential barrier of height V0 and width a is defined by potential function 
V(x) given by

		  V(x) = 0	 for  x < 0

		  = V0	 for  0 < x < a

		  = 0	 for  x > a 

	 The above potential function is shown in the Fig. 5.8.

Fig. 5.8

	 Let us consider a particle of mass m moving from the left, encounter the barrier at x = 0 
with energy E. We limit our discussion to energies of the particles such that E < V0, that is, 
energies such that no penetration of the barrier would occur according to classical physics.

	 In the region I (x < 0) the Schrödinger equation is 

		

2
1

12 2

( ) 2
( ) 0

d x m
E x

dx

y + y =


or		
2

21
12 2

( ) 2
( ) 0,

d x m
k x k E

dx

y
y = =


	 ...(111)

	 In the region II, i.e., inside the barrier we have the equation 

		

2
2

0 22 2

( ) 2
( – ) ( ) 0

d x m
E V x

dx

y + y =

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	 Putting

		  02

2
( – )

m
V E = a


 (a positive quantity)	 ...(112)

	 The above equation becomes 

		
2

22
22

( )
– ( ) 0

d x
x

dx

y a y = 	 ...(113)

	 In the region III (x ≥, a), we have the equation

		
2

23
32

( )
( ) 0

d x
k x

dx

y
+ y = 	 ...(114)

	 The general solutions of Eqs. (111), (113) and (114) are given respectively by

		  y1(x) = A1 e
ikx + B1 e

– ikx	 ...(115) 

		  y2(x) = A2 e
ax + B2 e

– ax	 ...(116) 

		  y3(x) = A3 e
ikx + B3 e

– ikx	 ...(117) 

	 In the above A1, A2, A3, B1, B2, B3 are constants.

	 The first term in Eq. (115) which represents a plane wave travelling along the positive 
x-axis in region I can be considered as the wave incident an the barrier at x = 0. The second 
term representing a wave travelling along the negative x-axis in the region can be interpreted 
as the wave reflected from the barrier at x = 0. 

	 The first and second terms in Eq. (116) can similarly be interpreted as the wave transmitted 
into the barrier at x = 0 and the wave reflected from the barrier at x = a. In Eq. (117) the first 
term can be interpreted as the wave transmitted into the region III from the barrier at x = a. In 
this region the only wave that can exist is a wave travelling along the positive x-axis. Hence, 
the coefficient B3 in the second term of the Eq. (117) is identically zero.

	 Considering the amplitude of the incident wave as unity we may write the solutions in 
the three regions as

		  y1(x) = eikx + B1 e
– ikx	 ...(118) 

		  y2(x) = A2 e
ax + B2 e

– ax	 ...(119) 

		  y3(x) = A3 e
ikx	 ...(120)

	 Single valuedness and continuity of the wavefunctions at the boundaries at x = 0 and at 
x = a give the following boundary conditions:
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and	

y1(0) = y2(0)

1 2( ) ( )
at 0

x x
x

x x

∂y ∂y= =
∂ ∂

y2(a) = y3(a)

32 ( )( )
at –

xx
x a

x x

∂y∂y = =
∂ ∂

	

...(121)

	 Using these boundary conditions we obtain

		  I + B1 = A2 + B2	 ...(122)

		  ik (I – B1) = a (A2 – B2)	 ...(123)

		  A2 e
aa + B2 e

– aa = A3 e
ika	 ...(124)

		  a [A2 e
aa – B2 e

– aa] = ik A3 e
ika	 ...(125)

	 Solving the simultaneous equations (122 to 125) we obtain

		  A3 = 
–

2 2

2

( – ) sin ( ) – 2 cos ( )

ikaik e

k h a i k h a

a
a a a a

	 …(126)

	 A3 being the amplitude of wave transmitted into the region III. We get the transmission 
coefficient under the condition E < V0 as

		  T = A3 A*
3 = |A3|

2 = 
–

2 2

2 2

2

( – ) sin ( ) – 2 cos ( )

– 2

( – ) sin ( ) 2 cos ( )

ika

ika

ik e

k h a i k h a

ik e

k h a i k h a

a
a a a a

a¥
a a + a a

		

or		  T = 
2 2

2 2 2 2 2 2 2

4

( – ) sin ( ) 4 cos ( )

k

k h a k h a

a
a a + a a

	 ...(127)

	 Since both k as well as a are real quantities, the transmission coefficient has a finite 
value.

	 When E Æ 0, k Æ 0 and hence T Æ 0.

	 As the energy E of the incident particle increases, remaining less than V0, both k as well 
as a increase and the transmission coefficient increases.

	 Under the condition E Æ V0, a Æ 0, we obtain from Eq. (127)

		  T = 
2 2

4 2 2 2 2 2

4 1

4
1

2

k

k a k ka

a =
a + a Ê ˆ+ Á ˜Ë ¯

 	 …(128)
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	 Under the condition of the barrier height V0 large and the barrier width a also large we 
get aa large, so that 

		  sin h (aa) = 
1

2
aea

		  cos h (aa) = 
1

2
aea

	 The transmission coefficient given by Eq. (127) then yields

		  T = 
2 2

– 2
2 2 2 2

16

( – ) 4
ak

e
k k

aa
a + a

or		  T = 
2 2

– 2
2 2 2

16

( )
ak

e
k

aa
a +

 

	 Using the values of k and a in the above we obtain for such a barrier 

		  T = 

1/2

02

2
– 2 ( – )

0
2

0

16 ( – )
m

V E aE V E
e

V

È ˘
Í ˙Î ˚ 	 ...(129)

	 We observe that transmission does occur even though the energy lies below the top of 
the barrier. This is a wave phenomenon and in quantum mechanics it is also one exihibited 
by the particle. This tunneling of a particle through a barrier is frequently encountered. We 
note that when aa is large, the ratio of the transmitted flux to incident flux is 

		

2

– 4
2 2

2 ak
T e

k
aÊ ˆaª Á ˜a +Ë ¯

	 ...(130)

	 We find the flux ratio to be an extremely sensitive function of the width a of the barrier, 
and of the amount by which the barrier height V0 exceeds the incident energy.

	 The phenomenon of particle tunneling is quite common in atomic and nuclear physics. 
Some examples are thermionic emission, field emission, a-particle emission from a heavy 
nucleus.

5.6.1 A lpha-Particle Emission 

It is observed that some radioactive nuclei disintegrate by the emission of alpha (a) particle 
which is the nucleus of a helium atom having charge of +2e and a mass 4 units.

	 An a-particle remains bound within the nucleus by a strong, attractive, short range nuclear 
force. This attractive nuclear force acts upto a distance which is approximately equal to the 
radius of the nucleus. When the a-particle comes out of the nucleus then it experiences a 
long range coulomb repulsive force due to the residual nucleus (the nucleus that remains after 
the emission of the a-particle). The variation of the potential energy of the a-particle with 
distance from the centre of the nucleus is qualitatively as shown in the Fig. 5.9.
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	 If r0 be the radius of the nucleus and Ze be the change of the residual nucleus then the 
coulomb potential energy of the a-particle just beyond the surface of the nucleus becomes 

2

0 1

1 2

4

Ze

rp Œ
. For the a-emitting nuclides this energy is several times larger than the energy 

of the a-particles. The question thus arises how the a-particles of energy much less than 
the potential barrier cross the barrier? The answer is provided by the quantum mechanical 
tunneling of a particle through a potential barrier as discussed in the previous section.

V r( )

O r0 r1
r

E

Fig. 5.9

	 Let E be the energy of the a-particle emitted from the nucleus. Let the repulsive coulomb 
potential energy of the nucleus be equal to E at a distance r1 from the centre of the nucleus. 
We then have 

		  E = 
2

0 1

1 2

4

Ze

rp Œ
	 ...(131)

or 		 r1 = 
2

0

1 2

4

Ze

Ep Œ
	 ...(132)

	 We may, for some qualitative understanding of the phenomenon of a-emission, consider 
the potential V(r) in the region r0 £ r £ r1 as a one-dimensional square potential barrier and 
use the result of the last section to write the transmission coefficient from the barrier as

		  T = 
0 1 02

8
– ( – ) ( – )

0
2

0

16 ( – )
m

V E r rE V E
e

V

È ˘
Í ˙
Í ˙Î ˚ 	 ...(133)

where	 V0 = 
2 2

0 0 0 1

1 2 1 2

4 4

Ze Ze

r r
=

p Œ p Œ
 	 ...(134) 

	 A rigorous treatment yields the transmission coefficient to be 
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		  T = 
1

0

– 2 2 ( ( )– )
r

r
m V r E dr

e
Ú


or 		 T = 

2
1

00

1 2– 2 2 –
4

r

r

ze
m E dr

r
e

È ˘
Í ˙pŒÍ ˙Î ˚

Ú
 	 ...(135)

	 The speed of an a-particle in a heavy nucleus has been estimated to be of the order of 
107 ms– 1. Considering the nucleus’s radius to be 10– 14 m we find that the time taken by the 
a-particle to move once across the nucleus to be 10– 21. Clearly the a-particle strikes the 
coulomb barrier at the surface of the nucleus 1021 times per second. The probability that the 
a-particle crosses the barrier and comes out of the nucleus per sec is 

		  P = T × 1021

	 The reciprocal of P gives the life time t of the a-decaying nucleus, i.e.

		  t = 21

1 1

10P T
=

¥
 	 ...(136)

	 If l be the disintegration constant of the nucleus we get

		  l = ​ 1 __ t ​ 

2
1

00

1 2– 2 2 –
421 2110 10

r

r

ze
m E dr

r
T e

È ˘
Í ˙pŒÍ ˙Î ˚= ¥ =

Ú
  

	 Taking its logarithm we get from the above

		  log l = A + BE,  A and B constants	 ...(137) 

which is the well-known Geiger-Nuttal law.

5.7 S olved Examples 

Example 1  Calculate the zero point energy in an infinite potential well for 

	 (a)	 a 10 g ball confined to a 10 m long line

	 (b)	 an electron confined to an atom (atomic size 10– 10 m)

	 (c)	 an oxygen atom confined to a 2 × 10– 10 m lattice.

Solution:  (a) The zero point energy is given by 

		  E0 = 
2 2 –68

2 –3

10 10
J

2 2 10 10 100ma

p ¥ª
¥ ¥ ¥



		  = 
–69

–69 – 50
–19

5 10
5 10 J 3.1 10 eV

1.6 10

¥¥ = ¥
¥


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	 E0 is too small to be measured. 

(b) The zero point energy for the electron is

		  E0 = 
–68

–18
–31 – 20

10 10
5 10 J

2 9 10 10

¥ = ¥
¥ ¥ ¥

		  = 
–18

–19

5 10
31eV

1.6 10

¥ ª
¥

	 E0 is measurable (binding energy of electron in the ground state of hydrogen atom is 
13.6 eV) 

(c) Mass of the oxygen atom is 

		  m ~ 16 × 1.6 × 10– 27 kg

	 The zero point is 

		  E0 = 
2 2 –68

2 – 27 – 20

10 10

2 2 16 1.6 10 4 10ma

p ¥=
¥ ¥ ¥ ¥ ¥



		  ª 5 × 10– 23 J = 
– 23

– 4
–19

5 10
3.1 10 eV

1.6 10

¥ = ¥
¥

	 E0 is measurable.

Example 2  A particle of mass m moves in a potential V(x) given by

		  V(x) = •  for  x < 0 

		  = 0   for  0 £ x £ a

		  = V0  for  x > a

	 Show that the bound state energies (E < V0 ) are given by the equation 

		
1/2

0

2
tan –

–

mE E
a

V E

È ˘ È ˘
=Í ˙ Í ˙

Î ˚Î ˚

Solution:  The Schrödinger equation in the region 0 £ x £ a is given by 

		

2
1

12 2

( ) 2
( ) 0

d x m
E x

dx

y + y =


or		
2

21
12

( )
( ) 0

d x
k x

dx

y + y = 	 ...(i)

where	 k = 2

2m
E


	 …(ii)
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	 Considering E < V0, the Schrödinger equation in the region x > a is 

		

2
2

0 22 2

( ) 2
– ( – ) ( ) 0

d x m
V E x

dx

y y =


or		
2

2
22

( )
– ( ) 0

d x
x

dx

y a y = 	 ...(iii)

where	 a = 02

2
( – )

m
V E


	 ...(iv)

	 We have the boundary conditions

		  y1(0) = 0,  y2(•) = 0	 ...(v)

	 In view of the above boundary conditions we get the solutions of Eqs. (i) and (iii) as

		  y1(x) = A sin kx = A sin 
2

2mE
x


	 ...(vi)

		  y2(x) = B e– ax = B 
02

2
– ( – )

m
V E x

e  	 ...(vii)

	 We also have the boundary conditions

		  y1(a) = y2(a)

and	 1 2

x a x a

d d

dx dx= =

y yÊ ˆ Ê ˆ=Á ˜ Á ˜Ë ¯ Ë ¯

	 Using the above conditions we obtain from Eqs. (vi) and (vii)

		  A sin 
02

2
– ( – )

2

2
m

V E amE
a B e

Ê ˆ
=Á ˜Ë ¯





and	
02

2
– ( – )

02 2 2

2 2 2
cos – ( – )

m
V E amE mE mE

A a V E B e
Ê ˆ

=Á ˜Ë ¯


  
 

	 Dividing we obtain from the two equations

		

2

02 2

2
tan

–1

2 2
( – )

mE
a

mE m
V E

Ê ˆ
Á ˜Ë ¯

=


 
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or 		

1/22

2 2
0 0

2 2
tan – –

2 ( – ) –

mE mE E
a

m V E V E

Ê ˆ È ˘
= ¥ = Í ˙Á ˜Ë ¯ Î ˚


 

Example 3  A one-dimensional wavefunction for a particle of mass m is

		  y(x) = 0

–

0

n x

xx
A e

x

Ê ˆ
Á ˜Ë ¯

where A, n and x0 are constants. Using Schrödinger equation, find the potential 
function V(x) and energy E such that above wavefunction is an energy eigenfunction 
(Take V(x) Æ 0 as x Æ •).

Solution

		  y(x) = 0

–

0

n x

xx
A e

x

Ê ˆ
Á ˜Ë ¯

 	 ...(i) 

	 Differentiating Eq. (i) with respect to x we get 

		

0 0

–1 –
–

0 0 0 0

( ) 1
–

n nx x

x xd x n x x
A e A e

dx x x x x

Ê ˆ Ê ˆy = Á ˜ Á ˜Ë ¯ Ë ¯

	 Differentiating the above equation with respect to x we get

		

0 0

– 2 –1 –2 –

2 2 2
0 00 0

( ) ( – 1)
–

n nx x

x xd x n n x n x
A e A e

x xdx x x

Ê ˆ Ê ˆy = Á ˜ Á ˜Ë ¯ Ë ¯

		

0 0

–1 –
–

2 2
0 00 0

1
–

n nx x

x xn x x
A e A e

x xx x

Ê ˆ Ê ˆ
+Á ˜ Á ˜Ë ¯ Ë ¯

		  = 0

2–
0 0

2 2 2 2
0 0 0 0

( – 1) 2 1
–

n x

x x xx n n n
A e

x xx x x x

È ˘Ê ˆ
+Í ˙Á ˜Ë ¯ Î ˚

or		
2

2 2 2
0 0

( ) ( – 1) 2 1
– ( )

d x n n n
x

x xdx x x

È ˘y = + yÍ ˙
Î ˚

 	 ...(ii)

	 We have the Schrödinger equation 

		
2

2 2

( ) 2
– [ – ( )] ( )

d x m
E V x x

dx

y = y


 	 ...(iii)
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	 Substituting Eqs. (i) and (ii) in Eq. (iii) we obtain 

		
2 2 2

0 0

( – 1) 2 1 2
– ( ) – [ – ( )] ( )

n n n m
x E V x x

x xx x

È ˘
+ y = yÍ ˙

Î ˚ 

or		  E – V(x) = 
2

2 2
0 0

– ( – 1) 2 1
–

2

n n n

m x xx x

È ˘
+Í ˙

Î ˚


	 ...(iv)

	 Using the given condition, namely V(x) Æ 0 as x Æ •, in the above equation we get

		  E = 
2 2

2 2
0 0

– 1 –

2 2m x mx
¥ = 

	 ...(v)

	 Substituting Eq. (v) in Eq. (iv) we obtain 

		  V(x) = 
2

2 2
0 0

( – 1) 2 1
–

2

n n n
E

m x xx x

È ˘
+ +Í ˙+Î ˚



or		  V(x) = 
2

2
0

( – 1) 2
–

2

n n n

m x xx

È ˘
Í ˙
Î ˚


	 ...(vi)

Example 4  A particle of mass m moves inside an infinite square well of width a. The 
energy eigenfunctions and energy eigenvalues are given by

		  yn(x) = 
2

sin
n

x
a a

pÊ ˆ
Á ˜Ë ¯

		  En = 
2 2

2
22

n
ma

p 

	 Calculate the expectation values (a) ·xÒn, (b) ·pÒn, (c) ·x2Òn and (d) ·p2Òn and compare 
them with their classical values.

Solution:

(a)		 ·xÒn = 2*

0 0

2
( ) ( ) sin

a a

n n

n
x x x dx x x dx

a a

pÊ ˆy y = Á ˜Ë ¯Ú Ú

	  	 = 
0

2
1 – cos

2

2

a
n

x
a

x dx
a

È ˘pÊ ˆ
Á ˜Í ˙Ë ¯Í ˙

Í ˙
Í ˙Î ˚

Ú
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		  = 
0 0

1 2
– cos

a a
n

x dx x x dx
a a

È ˘pÊ ˆÍ ˙Á ˜Ë ¯Í ˙Î ˚
Ú Ú

	 The second integral is zero and hence we get 

		  ·xÒn = ​ a __ 
2

 ​

(b) ·pÒn = * *

0 0

( )
ˆ( ) ( ) – ( )

a a
n

n n n

d x
x p x dx i x dx

dx

y
y y = yÚ Ú .  yn(x) is a real function and so is 

( )nd x

dx

y
 and as such the integral *

0

( )
( )

a
n

n

d x
x dx

dx

y
yÚ  is also real. Hence, we get ·pÒn to be 

imaginary. But the expectation value of the momentum must be real. Hence we find

		  ·pÒn = 0

(c)		 ·x2Òn = 2*

0

( ) ( )
a

n nx x x dxy yÚ

		  = 2 2 2

0 0

2 1 2
sin 1 – cos

a a
n n

x x dx x x dx
a a a a

È ˘p pÊ ˆ Ê ˆ= Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚Ú Ú

		  = 2 2

0 0

1 1 2
– cos

a a
n

x dx x x dx
a a a

pÊ ˆ
Á ˜Ë ¯Ú Ú

	 Integrating the second integral by parts we get

		  ·x2Òn = 

2
2

2
sin

1 2
– – sin 2

23 2

a

a

o

o

n
x x

a a na
x dx

na n a
a

È ˘Ï ¸pÊ ˆÍ ˙Á ˜Ô ÔË ¯ pÊ ˆÔ ÔÍ ˙Ì ˝ Á ˜Í ˙p Ë ¯pÔ ÔÍ ˙
Ô ÔÍ ˙Ó ˛Î ˚

Ú

or		  ·x2Òn = 
2 2

2 2–
3 2

a a

np

(d)		 ·p2Òn = 
2

2*
2

0

( )
( ) (– )

a
n

n

d x
x dx

dx

y
yÚ 

		  = 
2 2

2
2

0

2 2
sin sin

a
n n n

x x dx
a a a aa

p p pÊ ˆ Ê ˆ+ Á ˜ Á ˜Ë ¯ Ë ¯Ú
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		  = 
2 2

2 2
2

0

2
sin

a
n n

x dx
a aa

p pÊ ˆ
Á ˜Ë ¯Ú

		  = 
2 2

2 2
2

0

| ( ) |
a

nn x dx
a

p yÚ

or		  ·p2Òn = 
2 2

2
2 n

a

p 

	 We may also express the above result as 

		  ·p2Òn = 2m En.

	 Classical average values are 

		  xav = ​ a __ 
2
 ​

		  pav = 0

		​  x​av​ 
2
 ​ = ​ a

2

 __ 
3

 ​

		​  p​av​ 
2
 ​ = 2mE

	 We observe that in the limit of large quantum number (n large) 

		  ·x2Òn = ​ a
2

 __ 
3

 ​ = ​x​av​ 
2
 ​

Example 5  A particle of mass m moves inside an infinite square well of width a. The 
energy eigenfunctions and energy eigenvalues are given by

		  yn(x) = 
2

sin
n

x
a a

pÊ ˆ
Á ˜Ë ¯

		  En = 
2 2

2
22

n
ma

p 

	 Calculate (a) the uncertainty product Dxn Dpn and (b) estimate the zero point energy.

Solution:  As shown in the previous example (example 4) we have

		  ·xÒn = 
2 2

2
2 2, –

2 3 2n
a a a

x
n

· Ò =
p

		  ·pÒn = 0 
2 2

2 2
2np n

a

p· Ò = 
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	 We get, by definition, the uncertainty in the measured value of xn 

		  Dxn = 
2 2 2

2 2
2– ( ) – –

3 42n n
a a a

x x
n2· Ò · Ò =

p

		  = 
2 2

1 1
–

12 2
a

np

	 Similarly, the uncertainty in the measured value of pn is

		  Dpn = 
2 2

2 2 2 2
2– ( ) – 0n np p n n

aa

p p· Ò · Ò = = 

	 We thus get

		  Dxn Dpn = 2 2

1 1
–

12 2
n a

a n

p
p



		  = 2 2

1 1
–

12 2
n

n
p

p


(b) We have obtained

		  Dpn = n
a

p

	F or the ground state (n = 1) we get

		  (Dp)ground state = 
a

p

	 Clearly, in the ground state the particle possesses kinetic energy which is the minimum 
kinetic energy, also called the zero point energy. We get,

		  Zero point energy = 
2

ground state[( ) ]

2

p

m

D

		  = 
2 2

22ma

p 
 



Quantum mechanical treatment of a linear harmonic oscillator is of considerable importance. 
Many physical systems in the microscopic domain can be approximated as linear harmonic 
oscillator and hence quantum mechanical behaviour of a linear harmonic oscillator becomes 
a necessity for a thorough understanding of such systems. As for example, we can understand 
vibrations of diatomic and polyatomic molecules and hence vibrational spectra of molecules, 
vibrations in solids, electronic specific heats of solids, detailed theory of emission/absorption 
of radiation, etc., on the basis of the results of quantum mechanical treatment of a linear 
harmonic oscillator.

6.1  Linear Harmonic Oscillator in 
	Cl assical Mechanics

Consider a particle of mass m undergoing simple harmonic oscillation along the x-axis with 
a frequency n0 (angular frequency w0 = 2pn0). If x0 is the amplitude of the oscillator, its 
displacement x from the mean or the equilibrium position varies with time according to

		  x = x0 sin w0t	 ...(1)

	 The force constant k (restoring force acting on the particle per unit displacement) is 
related to the frequency w0 as

		  k = m ​w​0​ 
2​	 ...(2)

	 The kinetic energy of the oscillator is

		  T = 
2

2 2 2
0 0 0

1 1
cos

2 2

dx
m m x t

dt
Ê ˆ = w wÁ ˜Ë ¯

		  = 2 2 2
0 0 0

1
(1 – sin )

2
m x tw w

or		  T = 2 2 2
0 0

1
( – )

2
m x xw 	 ...(3)

	 The potential energy of the oscillator is

		  V(x) = 2 2 2
0

1 1

2 2
kx m x= w 	 ...(4) 

6 Linear Harmonic Oscillator Problems 
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	 We may note that the potential energy of the oscillator is not a constant and instead varies 
parabolically with the displacement x of the oscillator.

	 The total energy E of the oscillator is

		  E = T + V

	 Using the expressions for T and V given respectively by Eq. (3) and (4) we obtain

		  E = 2 2
0 0

1

2
m xw 	 ...(5)

	 We find for an oscillator of given frequency and given amplitude the total energy to be a 
constant.

6.2 T ime-Independent SchrÖdinger Equation 
	 for An Oscillator

In the following we treat the oscillator described in the preceding section using the quantum 
mechanical concepts.

	 Let y(x) represent the time-independent wave function which describes the state of the 
oscillator at some given instant of time. y(x) then satisfies the time-independent Schrödinger 
equation

		
2

2 2

( ) 2m
[ – ( )] ( ) 0

d x
E V x x

dx

y + y =


	 ...(6)

	 Using the expression for V(x) given by Eq. (4), Eq. (6) becomes

		
2

2 2
02 2

( ) 2m 1
– ( ) 0

2

d x
E m x x

dx

y È ˘+ w y =Í ˙Î ˚
	 ...(7)

	 For the convenience of solving Eq. (7), we define a new variable y and a new parameter 
l as

		  y = 

1

20m
x

wÊ ˆ
Á ˜Ë ¯

	 ...(8)

and 

		  l = 
0

2E

w
	 ...(9)

	 In view of the definition of the variable y in terms of the variable x, we may consider the 
wave function for the oscillator to be a function of y and write the wave function as y(y).

	 Now,

		
1/2

0( ) ( ) ( )md x d y dy d y

dx dy dx dy

wy y yÊ ˆ= = Á ˜Ë ¯
	 [using Eq. (8)]
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and

		

1/22
0

2

( ) ( ) ( )md x d d x d d y

dx dx dx dydx

È ˘wy y yÊ ˆ= = Í ˙Á ˜Ë ¯Í ˙Î ˚

		  = 

1

20 ( )m d d y dy

dx dy dx

Ê ˆw yÊ ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

or		
2 2

0
2 2

( ) ( )md x d y

dx dy

wy y=


	 ...(10)

	 Using Eqs. (8), (9) and (10) in Eq. (7) we get

		

2
2 20
02 2 2

0

( ) 2 2 1
– ( ) 0

2

m d y m m
E m y y

mdy

È ˘w y + ¥ w y =Í ˙wÎ ˚


  

or		
2

2
2

0

( ) 2
– ( ) 0

d y E
y y

dy

È ˘y + y =Í ˙wÎ ˚

or		
2

2
2

( )
[ – ] ( ) 0

d y
y y

dy

y + l y = 	 ...(11)

	 Equation (11) is the time independent Schrödinger equation for the oscillator.

	 The solution of Eq. (11) yields y(y) and hence the wave function y(x) for the 
oscillator.

6.3 S olution of the wave equation

6.3.1 A symptotic Solution

Asymptotic solution of the wave equation is the solution of Eq. (11) in the limit y Æ • or 
x Æ •. In this limit

		  l – y2 Æ – y2 

so that Eq. (11) reduces to

		
2

2

( )d y

dy

y  – y2 y(y) = 0

or		
2

2

( )d y

dy

y
 = y2 y(y)	 ...(12)

	 The general solution of Eq. (12) may be taken as

		  y(y) = 

2

2

y

e
+

 and y(y) = 

2

2

y

e
-
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i.e., as

		  y(y) = 

2

2

y

e
±

	 ...(13)

	 The above can be easily seen. We get from eq. (13):

		

2 2 2
2

2 2 22 2 2
2

( ) ( )
, ( 1) ( )

y y yd y d y
y e y e y e y y

dy dy

± ± ±y y= ± = + = = y

because y is being considered large tending to infinity. One of the asymptotic solutions 

namely y(y) = 

2

2

y

e
+

 is not physically acceptable because it diverges as |y| and hence |x| Æ •. 
We thus have the asymptotic solution for the oscillator

		  y(y) = 

2

–
2

y

e 	 ...(14)

	 In terms of the variable x, the asymptotic solution can be expressed as 

		  y(x) = 
20–

2

m
x

e
w
 	 ...(15)

6.3.2 E xact Solution: Recursion Formula

In view of the asymptotic solution given by Eq. (14), we may express the exact solution of 
the wave equation for the oscillator given by Eq. (11) as

		  y(y) = 

2

–
2

y

e  H(y)	 ...(16)

where H(y) is a function of y such that the product 

2

–
2

y

e  H(y) tends to zero as |y| Æ • or 
|•| Æ • as is required by the asymptotic solutions given by Eq. (14) or Eq. (15).

	 From Eq. (16) we obtain

		

2 2– –

2 2
( ) ( )

– ( )
y yd y dH y

e y e H y
dy dy

y =

		  = 

2–

2( )
– ( )

y
dH y

y H y e
dy

È ˘
Í ˙
Î ˚

and 

		

2 2 2 2 2– – – – –2 2
22 2 2 2 2

2 2

( ) ( ) ( ) ( )
– ( ) – – ( )

y y y y yd y d H y dH y dH y
e y e y H y e y e H y e

dy dydy dy

y = +

or		

2–2 2
2 2

2 2

( ) ( ) ( )
– 2 ( – 1) ( )

yd y d H y dH y
y y H y e

dydy dy

È ˘y = +Í ˙
Î ˚

	 ...(17)
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	 Substituting Eqs. (16) and (17) in Eq. (11) we get

		

2 2– –2
2 22 2

2

( ) ( )
– 2 ( – 1) ( ) ( – ) ( ) 0

y yd H y dH y
y y H y e y H y e

dydy

È ˘
+ + l =Í ˙

Î ˚

or		
2

2

( ) ( )
– 2 ( – 1) ( ) 0

d H y dH y
y H y

dydy
+ l = 	 ...(18)

	 We find that the function H(y) in the exact solution of the Schrödinger equation for the 
oscillator given by Eq. (16) satisfies the Hermite differential equation.

Power series solution

We now assume a power series solution of Eq. (18) of the type

		  H(y) = 
0

s r
r

r

a y
•

+

=
Â 	 ...(19)

where r takes integral values including zero. Equation (19) gives

		  –1

0

( )
( ) s r

r
r

dH y
a s r y

dy

•
+

=

= +Â 	 ...(20)

and 

		
2

–2
2

0

( )
( ) ( – 1) s r

r
r

d H y
a s r s r y

dy

•
+

=

= + +Â 	 ...(21)

	 Substituting Eqs. (19), (20) and (21) in Eq. (18) we obtain

		

–2

0 0 0

( ) ( – 1) – 2 ( ) ( – 1) 0s r s r s r
r r r

r r r

a s r s r y a s r y a y
• • •

+ + +

= = =

+ + + + l =Â Â Â

	 Dividing throughout by ys – 2, the above becomes

		

2

0 0

( ) ( – 1) – (2 2 – 1) 0r r
r r

r r

a s r s r y a s r y
• •

+

= =

+ + + l + =Â Â

or	 a0 s(s – 1) y0 + a1 s(s + 1) y1 + 
2r

•

=
Â  [ar (s + r) (s + r – 1) – ar – 2 (2s + 2r – 3 – l)] yr = 0

...(22)

	 For Eq. (22) to hold for all values of y, it is necessary that the coefficients of different 
powers of y must separately be equal to zero. We hence obtain

		  a0 s (s – 1) = 0	 ...(23)

		  a1 s (s + 1) = 0	 ...(24)
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		  ar (s + r) (s + r – 1) – ar – 2 (2s + 2r – 3 – l) = 0	 ...(25)

	 Equation (25) gives

		  ar = –2
2 2 – 3 –

; ( 2)
( ) ( – 1) r

s r
a r

s r s r

+ l ≥
+ +

	 ...(26)

	 Equation (26) is called the recurrence relation.

	 As a0 π 0, we have according to Eq. (23)

		  s = 0  or  s = 1	 ...(27)

	 According to Eq. (24) we may have

		  a1 = 0  or  s = 0  or  s = – 1	 ...(28)

	 Since s π – 1 we get either a1 = 0  or  s = 0 or both.

	 The recurrence relation given by Eq. (26) allows us to calculate all the even coefficients 
in terms of a0 and all odd coefficients in terms of a1. Equation (19) will have only odd 
coefficients if a0 = 0 and only even coefficients if a1 = 0. We thus have two independent 
solutions of Eq. (19). A linear combination of these two solutions gives the most general 
solution of Eq. (19).

	 Considering the root s = 0, Eq. (26) gives

		  ar = –2
2 – 3 –

( 2)
( – 1) r

r
a r

r r

l ≥ 	 ...(29)

	 The above equation yields the even coefficients as

		

2 0 0

04 2

1 – 1 –

2 1 21

5 – (5 – ) (1 – )

4 3 4!

a a a

aa a

l l ¸= = Ô¥ Ô
˝

l l l Ô= = Ô¥ ˛
etc.	 ...(30)

and the odd coefficients as

		

3 1 1

1 15 3

3 – 3 –

3 2 3!
(7 – ) (3 – )7 – (7 – ) (3 – )

5!5 4 5 4 3!

a a a

a aa a

l l ¸= = Ô¥ Ô
˝l ll l l Ô== = Ô¥ ¥ ¥ ˛

 etc.	 ...(31)

	 With s = 0, the solution given by Eq. (19) becomes

		  H(y) = 
0

r
r

r

a y
•

=
Â

	 The above can be written conveniently as 

		  H(y) = (a0 + a2 y
2 + a4 y

4 + ...) + (a1 y + a3 y
3 + a5 y

5 + ...)

	 Using the results given by Eqs. (30) and (31), the above gives
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H(y) = 2 4 3 5
0 1

1 – (5 – ) (1 – ) 3 – (7 – ) (3 – )
1 ... ...

2! 4! 3! 5!
a y y a y y y

l l l l l lÈ ˘ È ˘+ + + + + + +Í ˙ Í ˙Î ˚ Î ˚
	

...(32)

	 An inspection of Eq. (32) shows the following:

	 (1)	 for l = 1, 5, 9, etc., the first series in eq. (32) becomes a polynomial while the second 
series remains an infinite series.

	 (ii)	 for l = 3, 7, 11, etc., while the first series is an infinite series, the second one reduces 
to a polynomial. From the above we can conclude that when

		  l = (2n + 1),  n = 0, 1, 2, ...	 ...(33)

one of the solutions is a polynomial.

6.4 E nergy Eigenvalues of the Oscillator

Equation (29) gives for large r

		  ar = –2 –22

2 – 3 – 2

( – 1) r r
r r

a a
r r r

l Æ

or		
–2

2r

r

a
a r

Æ 	 ...(34)

	 From the above we obtain

		
– 2

Lt 0r

r r

a

aÆ•
= 	 ...(35)

	 Thus under the condition given by Eq. (33), both the infinite series in Eq. (32) converage 
for all values of y.

	w e have the Taylor series expansion of ​e​y
2

​ as

		  ​e ​y
2

​ = 
4 6

21 ...
2! 3!

y y
y+ + + +

		  = 
0,2,4...

1

( /2)!
r

r

y
r=

Â
Writing 

		  br = 
1

...
( /2)!r

	 ...(36)

we get

		  ​e ​y
2

​ = 
0,24,...

r
r

r

b y
=
Â 	 ...(37)

	 The ratio of the coefficients of the successive terms in Eq. (37) is
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–2

1
– 1 !

22( / 2)!
1

!
2– 1 !

2

r

r

r
b r

rb r
r

Ê ˆ
Á ˜Ë ¯

= = =
Ê ˆ
Á ˜Ê ˆ Ë ¯

Á ˜Ë ¯

	 ...(38)

	 In view of Eqs. (34) and (38) we may write

		
–2 –2

r r

r r

a b

a b
=  (for large r)	 ...(39)

	 We find that for large values of r, the wave function y(y) = ​e​– y2/2​ H(y) will behave like ​
e ​y

2/2​ if H(y) is given by the first (or even) series in Eq. (32) while it will behave like y ​e​y
2/2​ 

if H(y) is given by the second (or odd) series in Eq. (32). This is not physically acceptable. 
This unrealistic situation is resolved if the infinite series in eq. (19) terminates after a certain 
number of terms so that y(y) Æ 0 as y Æ ±  • because of the factor ​E ​– y2/2​. Thus for the 
wave function of the oscillator to satisfy the boundary condition, the infinite series must be 
terminated by selecting l in such a way that (2r + 1 – l) vanishes for r = n. Thus one of the 
series becomes a polynomial and the other can be eliminated by setting the first coefficient 
to zero. Thus, we obtain

		  2n + 1 – l = 0

or		  l = 2n + 1,		 n = 0, 1, 2, ...	 ...(40)

	 Using l given by Eq. (9) in Eq. (40) we get

		
0

2E

w
 = 2n + 1

or		  E = 0 0
2 1 1

2 2

n
n

+ Ê ˆw = + wÁ ˜Ë ¯
  	 ...(41)

	 We observe that integral values of n including 0 value leads to a discrete set of energy 
values for the oscillator. It is important to note that the oscillator possesses equi-spaced 
energy levels, the spacing between successive energy levels being w0.

6.5 E nergy eigenfunctions of the oscillator

As seen in the last section, for the wave function of the oscillator to satisfy the boundary 
conditions (y(y) Æ 0 as y Æ ± •), the parameter l should take the value (2n + 1) where n 
is a positive integer including zero.

	 When l = (2n + 1), H(y) in Eq. (18) can be conveniently replaced by Hn(y) to get

		

2

2

( ) ( )
– 2 (2 1 – 1) ( ) 0n n

n

d H y dH y
y n H y

dydy
+ + =
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or		
2

2

( ) ( )
– 2 2 ( ) 0n n

n

d H y dH y
y n H y

dydy
+ = 	 ...(42)

	 The solution of Eq. (42) is the well known Hermite polynomial of degree n given by

		  Hn(y) = (– 1)n ​e​y
2

​ 
n

n

d

dy
 (​e​– y2

​)	 ...(43)

	 We may note the following recurrence relation that holds between Hn – 1(y), Hn(y) and 
Hn + 1(y)

		  Hn + 1(y) = 2y Hn(y) – 2n Hn – 1(y)	 ...(44)

	 Hermite polynomials of different degrees may be obtained from Eq. (43)

		  n = 0,	 H0(y) = 1

		  n = 1,	 H1(y) = 2y

		  n = 2,	 H2(y) = 4y2 – 2

		  n = 3,	 H3(y) = 8y3 – 12y  etc.	 ...(45)

	 We may obtain the Hermite polynomials of higher degrees using Eqs. (45) and the 
Eq. (44).

	 The energy eigenfunctions of the oscillator given by Eq. (14) can now be expressed in 
the most general form as

		  yn(y) = Nn Hn(y) ​e​– y2/2​	 ...(46)

or		  yn(x) = 
20–

02

m
x

n n

m
N e H x

w Ê ˆw
Á ˜Ë ¯




	 ...(47)

	 In the above, Nn is the normalization constant which can be evaluated from the 
normalization condition

		  *

–

( ) ( ) 1n nx x dx
+•

•

y y =Ú

or		
1/2

2

0–

| ( ) | 1n y dy
m

+•

•

Ê ˆ
y =Á ˜wË ¯Ú 

	 Using Eq. (46) in the above we get 

		
2

1/2

2 2 –

0 –

| | ( ) 1y
n nN H y e dy

m

+•

•

Ê ˆ
=Á ˜wË ¯ Ú

or		
1/2

2 1/2

0

| | 2 ( !) 1n
nN n

m

Ê ˆ
p =Á ˜wË ¯





	 	 Introduction to Quantum Mechanics154

	 The above gives

		  Nn = 

1
1 2
20 1

2 ( !)n

m

n

È ˘
wÊ ˆÍ ˙

Á ˜Í ˙Ë ¯p
Í ˙Î ˚


	 ...(48)

	 Using Nn given by Eq. (48) in Eq. (47), we obtain the normalized energy eigenfunctions 
of the oscillator to be given as

		  yn(x) = 
20

1/21/2 –
0 021

2 ( !)

m
x

nn

m m
e H x

n

wÈ ˘ Ê ˆw wÊ ˆÍ ˙Á ˜ Á ˜Ë ¯p Ë ¯Í ˙Î ˚


 
	 ...(49)

	 In the following table are given the energy eigenfunctions, representing the quantized 
states of the oscillator and the corresponding energy eigenvalues

State Energy eigenfunctions Energy eigenvalue

Ground state
y0(x) = 

w
wÊ ˆ

Á ˜Ë ¯p




20
1 –
40 2

m
xm

e
w 0

1
2

First excited state
y1(x) = 

wÈ ˘w
Í ˙

pÍ ˙Î ˚




20
1/4 –2 2

0 2
2

4
m

xm
x e

w 0
3
2

Second excited state y2(x) 

- w
w wÈ ˘ Ê ˆ= Í ˙ Á ˜Ë ¯pÎ ˚


 

20 0
1
4 20 0 2

3/2
41

– 2
2

m
xm m

x e

w 0
5
2

, etc.

	 Some of the energy eigenfunctions yn(x), the corresponding energy eigenvalues En, the 
potential energy function V(x) are shown in the Fig. 6.1.

n = 3

n = 2

n = 1

n = 0

En Yn( )x
V x( )

w0
7
2

w0
5
2

w0
3
2

w0
1
2

0 x

Fig. 6.1  Normalized wave functions yn(x) for n = 0, 1, 2, 3
Energy eigenvalues En for n = 0, 1, 2, 3

The potential energy function V(x)
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	 The probability of finding the oscillating particle between x and x + dx when the oscillator 
is in the nth state described by the wavefunction yn(x) and according to the definition is given 
by

		  Pn(x) dx = y*
n (x) yn (x) dx = |yn (x)|2 dx	 ...(50)

	 Using Eq. (49) in Eq. (50) we can find the probability Pn(x). The plots of probability 
density [yn (x)2] for some of the states along with that of the potential energy function are 
shown in Fig. 6.2.

n = 3

n = 2

n = 1

n = 0

| ( )|yn x
2

V x( )

0 x

Fig. 6.2  Probability density |yn(x)2| for n = 0, 1, 2, 3.
Potential energy function v(x)

Fig. 6.3

6.6 D iscussions

From the wave mechanical treatment of linear harmonic oscillator presented in the preceeding 
sections we observe the following:

(i)	 while a harmonic oscillator treated classically possesses constant total energy depending 
upon the frequency and the amplitude, a wave mechanical treatment of the oscillator yields 
a discrete set of equispaced energy eigenvalues given by
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		  En = 0 , 2, ...
1

, 0, 1
2

n n
Ê ˆ+ w =Á ˜Ë ¯

 	 ...(51)

	 In the lowest or the ground state, which corresponds to n = 0, the oscillator has the finite 
energy

		  E0 = 0
1

2
w 	 ...(52)

	 which is called the zero-point energy.

	 According to old quantum theory, the energy values of the oscillator are given by 

		  En = n  w0,  n = 0, 1, 2, ...	 ...(53)

	 A comparison of the result given by Eq. (53) with that given by Eq. (51) shows that each 
of the equispaced energy levels obtained in the old quantum theory are raised by an amount 
equal to half the energy gap between the successive energy levels, i.e., by an amount equal 
to the zero point energy to give the energy levels of the oscillator in wave mechanical 
treatment. According to classical mechanics and old quantum theory, while the harmonic 
oscillator possesses zero energy in the lowest state corresponding to the state at absolute 

zero (0K), the oscillator when treated wave mechanically possesses the energy 0
1

2
w  

even at absolute zero.

	 The existence of zero point energy is in agreement with experiments and is found to be 
consistent with the uncertainty principle also.

(ii) the function ​e​– y2/2​ is always an even function, Hn(y) is an even function for n even and 
an odd function for n odd, we find the oscillator energy eigenfunctions given by Eq. (49) 
are even function for n even and odd functions for n odd.

(iii) Since the oscillator energy eigenfunctions yn(x) do not become zero at the classical 
turning points x = ± x0, the oscillator can be found outside the parabolic potential barrier 

21

2
V kx

Ê ˆ=Á ˜Ë ¯
. The oscillator in all its quantum state is thus able to penetrate the potential 

barrier. This fact becomes evident form Fig. 6.1.

(iv) The total energy of the oscillator at the position corresponding to the displacement ± x 
from the mean position is

		  E = 2 21 1

2 2
mv kx+

	 We obtain form the above, the velocity of the oscillator at the position ± x to be

		  v = 

1/222 –E kx

m

È ˘
Í ˙
Î ˚

	 ...(54)
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| ( )|yn x
2

xo

Fig. 6.4  Solid curve represents the variation of |y10(x)|2 with x. Dotted curve represents the probability 
density of a classical oscillator of the same total energy.

	 Classically, the probability of finding the oscillator at the position ± x is inversely 
proportional to the velocity, i.e.

		  Pcl (x) µ 22 –

m

E kx
	 ...(55)

	 We find the probability to be the minimum at the mean position (x = 0) and maximum at 

the two extreme positions 0
2E

x
k

Ê ˆ
= ±Á ˜Ë ¯

. This is shown by the dotted curve in Fig. 6.3. 

Quantum mechanically, for the ground state of the oscillator (n = 0), the probability density 
given by |y0(x)|2 is maximum at x = 0 and becomes zero at positions outside the classical 
turning points (x = ± x0). This result is shown by full line curve in Fig. 6.3. Figure 6.2 
shows the plot of |yn(x)|2 against x for different values of n corresponding to different 
quantum states of the oscillator.

(v) As we move towards higher and higher excited states (n increasing), the maximum value 
of probability density moves towards the extreme positions as illustrated in the Fig. 6.4 
by the full line curve. The dotted curve in this figure shows the variation of classical 
probability density with position for the same energy.

	 It is important to remark that though the classical and quantum mechanical probability 
distributions become closer and closer for larger and larger n, the theory of oscillator described 
above cannot take account of the rapid oscillations of |yn(x)|2.

6.7 Al ternative Approach for linear Harmonic 
	 oscillator Problem

Abstract Operator Method

The Schrödinger method for solving the energy eigenvalue problem of linear harmonic 
oscillator as presented in the previous sections consists in replacing the position x and 
the linear momentum p in the expression for total energy by the corresponding Hermitian 

operator x̂  ∫ x and p̂  = –
d

i
dx
 , respectively to obtain the Hamiltonian operator Ĥ  for the 

oscillator and then to solve for the energy eigenvalue equation
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		  Ĥ y = Ey
	 We may, however, note that one of the fundamental features of quantum mechanics is that 
operators x̂  = x and p̂  satisfy the commutation relation

		  [ x̂ , p̂ ] = i 	 ...(56)

	 There exist many problems which can be exactly and elegantly solved using the method 
of abstract operator algebra, i.e., using the commutation relations between operators without 
considering specific forms for the operators.

	 In the following, we use this method to solve the energy eigenvalue problem for linear 
harmonic oscillator. As we shall see, the method allows us to find, with simplicity not only 
the expectation values of various physical quantities for the oscillator but also the energy 
eigenfunctions of the oscillator.

	 The Hamiltonian operator of a harmonic oscillator of mass m oscillating along the x-axis 
under a force constant k is

		
2

2ˆ 1ˆ
2 2

p
H k x

m
= + 	 ...(57) 

	 Let us introduce two operators â  and â † according to

		  â  = 0

0

1
ˆ

2 2

m
x i p

m

w
+

w 
	 ...(58)

and

		  â † = 0

0

1
ˆ–

2 2

m
x i p

m

w
w 

	 ...(59) 

	 In the above â † is the Hermitian adjoint of â  and w0 is the natural angular frequency of 
the oscillator. From Eqs. (58) and (59) we obtain

		  ˆ ˆaa † = 0 0

0 0

1 1
ˆ ˆ–

2 2 2 2

m m
x i p x i p

m m

Ê ˆ Ê ˆw w
+Á ˜ Á ˜w wË ¯ Ë ¯   

		  = 2 20

0

1
ˆ ˆ ˆ( – )

2 2 2

m i
x p px xp

m

w
+ +

w  

	 Using Eq. (56) in the above we obtain

		  ˆ ˆaa† = 2 20

0

1
ˆ (– )

2 2 2

m i
x p i

m

w
+ +

w


  

or		  ˆ ˆaa † = 
2

2 2
0

0

ˆ1 1 1

2 2 2

p
m x

m

È ˘
+ w +Í ˙w Î ˚

or		  ˆ ˆaa† = 
0

ˆ 1

2

H +
w

  [using Eq. (57)]	 ...(60)
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	 Similarly, we obtain

		  â † â  = 
0

ˆ 1
–

2

H

w
	 ...(61)

	 Adding Eqs. (60) and (61) we obtain

		
0

ˆ
2

H

w
 = ˆ ˆaa † + â † â

or
		

† †
0

1ˆ ˆ ˆ ˆ ˆ( )
2

H aa a a= w +
	 ...(62)

	 Subtracting Eq. (61) from Eq. (60) we get

		  ˆ ˆaa † – â † â  = 1

	 Clearly, the operators â  and â† satisfy the commutation relation

		  [ â , â†] = 1	 ...(63)

	 We may also express the Hamiltonian operator Ĥ  as

		  Ĥ  = †
0

1
ˆ ˆ

2
a a

Ê ˆw +Á ˜Ë ¯
 	 ...(64)

	 We observe that the Hamiltonian operator Ĥ  and the operator â† â  are related to each other 

by numbers only. Clearly, the eignvalues Ĥ and that of â† â  bear the same relationship. 

Eigenvalues of â† â

We have

		  [ â† â , a] = â† ˆ ˆaa  – ˆ ˆaa † â  = ( â† â  – ˆ ˆaa†) â  = – ( ˆ ˆaa † – â† â) â  

	 Using the result given by Eq. (63) in the above we obtain

		  [ â† â , â] = – â 	 ...(65)

	 Also we have

		  [ â† â , â†] = â† ˆ ˆaa † – â† â† â  = â† ( ˆ ˆaa † – â† â) = â†	 ...(66)

	 Let y be an eigenfunction of the operator â† â  belonging to eigenvalue l, i.e.

		  â† ây = ly	 ...(67)

	 We now have

		  ( â† â) ( ây) = ( ˆ ˆaa † – 1) ( ây)	 [using Eq. (63)]

		  = ˆ ˆaa † ây – ây

		  = âly – ây	 [using Eq. (67)]

or		  ( â† â) ( ây) = (l – 1) ây	 ...(68)
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	 Similarly, we get

		  ( â† â) ( â†y) = (l + 1) â†y	 ...(69)

	 Equations (68) and (69) show

	 (i)	 ây is an eigenfunction of â† â  belonging to the eigenvalue (l – 1)

	 (ii)	 â†y is an eigenfunction of â† â  belonging to the eigenvalue (l + 1)

	 From the above, we find that given the eigenfunction y of â† â  it is possible to construct 
eigenfunctions â†y, ( â†)2 y, ( â†)3 y, etc., belonging respectively to eigenvalues (l + 1), 
(l + 2), (l + 3), etc. Similarly, we can construct eigenfunctions ây, ( â)2 y, ( â)3 y, etc. 
belonging to eigenvalues (l – 1), (l – 2), (l – 3), etc.

	 Now â† â  is self-adjoint irrespective of whether â  is self-adjoint or not. The expectation 
value of â† â  is positive in all states, i.e., the operator does not possess negative eigenvalues. 
Hence the sequence of eigenvalues (l – 1), (l – 2), ... must terminate before the negative 
value is reached and also the sequence ây, â2y, ... must terminate.

	 Denoting the limiting eigenfunction (the last of the eigenfunctions) in the sequence as y0 
we obtain

		  ây0 = 0	 ...(70)

	 The above gives

		  â† ây0 = 0 = 0 × y0	 ...(71)

indicating that y0 is an eigenfunction of the operator â† â  belonging to the eigenvalue 0.

	 In view of Eq. (69) we then obtain 

		  â+ â  ( â†y0) = 1 × ( â†y0)

		  â† â  [( â†)2 y0] = 2 × ( â†)2 y0

		  â† â  [( â†)3 y0] = 3( â†)3 y0,  etc.	 ...(72)

or generalizing, we get

		  â† â  [( â†)n y0] = n( â†)n y0	 ...(73)

	 We observe that the eigenvalue spectrum of the operator â† â  consists of a set of positive 
integers n. Equation (73) when applied to Eq. (64) gives

		  Ĥ [( â†)n y0] = † † †
0 0 0 0

1 1
ˆ ˆ ˆ ˆ( ) ( )

2 2
n na a a n a

Ê ˆ Ê ˆÈ ˘w + y = w + yÁ ˜ Á ˜Î ˚Ë ¯ Ë ¯
 

	 Thus the energy eigenvalues of the oscillator are

		  En = 0
1

,
2

n
Ê ˆ+ wÁ ˜Ë ¯

   n = 0, 1, 2, ...	 ...(75)

	 The operator â† and â  are respectively called the raising and lowering operators. Further, 
since the eigenvalues of â† â  are positive integers it is usual to call the operator â† â  as the 
number operator. The lowest energy eigenvalue is 

		  E0 = 0
1

2
w

which is the zero point energy of the oscillator.
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	 Replacing p̂  by – i  
d

dx
 in Eqs. (58) and (59) we obtain

		  â  = 01/2
0

1

(2 )

d
m x

dxm

Ê ˆw +Á ˜Ë ¯w




		  â† = 01/2
0

1
–

(2 )

d
m x

dxm

Ê ˆwÁ ˜Ë ¯w




	 Using the above in Eq. (70) we obtain

		
0 01/2

0

1
0

(2 )

d
m x

dxm

Ê ˆw + y =Á ˜Ë ¯w




or		  mw0x y0 + 0 0
d

dx

y
=

or		  0 0

0

–d m x
dx

y w
=

y 

	 Integrating we obtain

		  y0 = N0 

2
0–

2

m x

e
w
 ,  N0 = a constant	 ...(76)

	 The above is the energy eigenfunction of the oscillator belonging to the lowest energy 

eigenvalue 0
1

2
w . The eigenfunction corresponding to the first excited state belonging to 

energy eigenvalue 0
3

2
w  is 

		  y1 = â†y0 = 

2
0–

2
0 01/2

0

1
–

(2 )

m x
d

m x N e
dnm

wÊ ˆwÁ ˜Ë ¯w




or		  y1 = 

2
0–

0 2
01/2

0

–
(2 )

m xN d
m x e

dxm

wÊ ˆwÁ ˜Ë ¯w




		  = 

2
0–

2
1 0 –

m x
d

N m x e
dx

wÊ ˆwÁ ˜Ë ¯
  	 ...(77)

	 The eigenfunction corresponding to the second excited state belonging to the energy 

eigenvalue 0
5

2
w  is

		  y2 = â†y1 = 

2
02 –

1 2
01/2

0

–
(2 )

m x
N d

m x e
dxm

wÊ ˆwÁ ˜Ë ¯w




or	 	 y2 = 
2

02 –

2
2 0 –

m x
d

N m x e
dx

wÊ ˆwÁ ˜Ë ¯

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	 Repeating the operation by â† from the left we get the energy eigenfunction belonging 

to energy eigenvalue 0
1

2
n

Ê ˆ+ wÁ ˜Ë ¯
  as

		  yn = 

2
0–

2
0 –

n m x

n
d

N m x e
dx

wÊ ˆwÁ ˜Ë ¯
 	 ...(78)

	 yn given by Eq. (78) is the same as the eigenfunction for the oscillator obtained using the 
previous method.

6.8 S olved examples

Example 1  Find the probability density at the position x of a linear harmonic oscillator 
of mass m and natural angular frequency w0 if the oscillator is in its ground state. Find 
also the position at which the probability density is the maximum. What is the maximum 
probability density?

Solution:  The ground state of the given oscillator is described by the wavefunction

		  y0(x) = 
201/4 –

0 2

m
xm

e
wwÊ ˆ

Á ˜Ë ¯p




	 The probability density at the position x is given by

		  P(x) = 
201/2 –

0*
0 0( ) ( )

m
xm

x x e
wwÊ ˆy y = Á ˜Ë ¯p




	 We find P(x) to be a function of x. Hence, for P(x) to be maximum we have

		  ( )dP x

dx
 = 0

or		
201/2 –

0 0–
2 0

m
xm m

e x x
ww wÊ ˆ Ê ˆ =Á ˜ Á ˜Ë ¯ Ë ¯p


 

	 The above gives x = 0. Thus the probability density is the maximum at the mean position 
(x = 0). The maximum probability density is clearly

		  Pmax = P(0) = 
1/2

0mwÊ ˆ
Á ˜Ë ¯p

Example 2  A linear harmonic oscillator is described at some instant of time by the 
wavefunction y = a y0 + b y1, where y0 and y1 are respectively the real, normalized 
ground state and first excited state energy eigenfunctions of the oscillator with a and b 
real numbers.

	 (a)	 Show that the average value of position x is in general different from zero.

	 (b)	 Find the values of a and b for which ·xÒ is maximum

	 (c)	 Find the values of a and b for which ·xÒ is minimum.
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Solution:  (a) The normalization condition of the wavefunction gives

		
* 1dxy y =Ú

or		  2
0 1( ) 1a b dxy + y =Ú

or		  2 2 2 2
0 1 0 12 1a dx b dx ab dxy + y + y y =Ú Ú Ú

	 The above gives 

		  a2 + b2 = 1	 ...(i)

since 2 2
0 1 0 11; 1and 0dx dx dxy = y = y y =Ú Ú Ú  (y0 and y1 being orthogonal)

	 Now

		  ·xÒ = 0 1 0 1( ) ( )a b x a b dxy + y y + yÚ
		  = 

2

0 1( )x a b dxy + yÚ
or		  ·xÒ = 0 12ab x dxy yÚ 	 ...(ii)

	 Since a and b are not zero, in general, we get ·xÒ π 0.

(b) We may write the result given by Eq. (ii), in view of Eq. (i) as

		  ·xÒ = [1 – (a2 + b2 – 2ab)] 0 1x dxy yÚ
or		  ·xÒ = [1 – (a – b)2] 0 1x dxy yÚ 	 ...(iii)

	 From the above we find for ·xÒ to be the maximum

		  a – b = 0

or		  a = b = ​ 1 ___ 
​÷ 

__
 2 ​
 ​  (using eq. (i))

(c) From eq. (iii) we find for ·xÒ to be the minimum

		  a = – b = ​ 1 ___ 
​÷ 

__
 2 ​
 ​.

Example 3  A particle of rest mass 0.51 eV undergoes harmonic oscillation of angular 
frequency w0 along the x-axis. If the particle is confined to the ground state of the oscillator 

such that ​÷ 
_________

 ·(x – ·xÒ)2Ò ​ = 0, find the energy required to excite it to its first excited state.

Solution:  For a one-dimensional harmonic oscillator the average kinetic energy ·T Ò is equal 
to the average potential energy ·V Ò. Thus the total energy of the oscillator is 
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		  E = ·TÒ + ·VÒ = 2·VÒ = 2 × ​ 1 __ 
2
 ​ m0 ​w​0​ 

2​ ·x2Ò	 ...(i)

Since the particle is confined in the ground state we have

		  E = 0
1

2
w 	 ...(ii)

	 From (i) and (ii) we have

		  0
1

2
w  = m0 ​w​0​ 

2​ ·x2Ò

or		  w0 = 2
02m x· Ò


	 ...(iii)

	 We know that for the harmonic oscillator ·xÒ = 0. We have according to the problem

		  2 2 2 2( – ) –x x x x x· · Ò Ò = · Ò · Ò = · Ò  = 10– 10 m	 ...(iv)

	 The energy difference between the ground state and the first excited state is  w0. Clearly, 
the energy required to excite the particle from the ground to the first excited state is 

		  DE = w0 = 
2

2 2
0 02 2m x m x

=
· Ò · Ò
 



		   = 
–16 2 2

–20 2
0

(6.58 10 )

2 10

c

m c

¥ ¥
¥

		   = 
–16 2 8 2

– 20

(6.58 10 ) (3 10 )

2 0.51 10

¥ ¥ ¥
¥ ¥

		   = 3.8 eV.

Example 4  A particle of mass m undergoes simple harmonic motion along the x-axis 

with an angular frequency w. Considering the uncertainty relation Dx Dp = 
2


, where

		  (Dx)2 = ·(x – ·xÒ)2Ò and (Dp)2 = ·(p – ·pÒ)2Ò,

find the minimum energy of the oscillator.

Solution:  We know that for the linear harmonic oscillator

		  ·xÒ = 0 and ·pÒ = 0	 ...(i)

	 We hence get

		  (Dx)2 = ·x2Ò and (Dp)2 = ·p2Ò	 ...(ii)



	 165Linear Harmonic Oscillator Problems 

	 The Hamiltonian of the oscillator is given by

		  H = kinetic energy (T) + potential energy (V)

	 Clearly

		  ·HÒ = ·T Ò + ·V Ò

		  = 
2

2 21

2 2

p
m x

m
+ w

		  = 2 2 21 1

2 2
p m x

m
· Ò + w · Ò 	 ...(iii)

	 Since both terms on the right hand side of Eq. (iii) are real and positive, we get

		  ·H Ò = 2 2 2 2 2 21 1 1 1
2

2 2 2 2
p m x p m x

m m
· Ò + w · Ò ≥ · Ò ¥ w · Ò

or		  ·H Ò ≥ 2 2 2 2 21
2 ( ) ( )

4
p x x pw · Ò · Ò = w D D 	 (using eq. (iii))

or		  ·H Ò ≥ w Dx Dp

or		  ·H Ò ≥ 
2

w

	 Clearly, the minimum energy is given by

		  ·H Òmin = 
1

2
w  

Example 5  A particle of mass m is undergoing harmonic oscillation of angular frequency 
w. If the wavefunction describing the state of the particle be

		  y = 
2–

2

m
x

x e
w


find the energy of the particle.

Solution:  The wavefunction y satisfies the Schrödinger equation

		
2

2 2

2
[ – ] 0

d m
E V

dx

y + y =


	 ...(i)

	 In the above, E is the energy eigenvalue in the state under consideration, V is the potential 
energy given by

		  V = ​ 1 __ 
2
 ​ mw2 x2	 ...(ii)
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	 We have

		  y = 
2–

2

m
x

x e
w


	 Clearly, 

		

2 2– –

2 2– 2
2

m m
x xd m

e x x e
dx

w wy w=  



		  = 
2–

22 1 –
m

x m
e x

w wÈ ˘
Í ˙Î ˚




	 Further, we get

		

2 2– –2
22 2

2
– 2 – 1 – 2

2

m m
x xd m m m

e x x x e
dx

w wy w w wÈ ˘ È ˘= ¥Í ˙ Í ˙Î ˚ Î ˚
 

  

or		
2–2 2 2

32
2 2

– –
2

m
xd m m m

e x x x
dx

w È ˘y w w + w= Í ˙
Î ˚



  

or		
2–2

22
2 2

– 3
m

xd m x m
e x

dx

wy w wÈ ˘= Í ˙Î ˚


 
	 ...(iii)

	 Substituting Eqs. (ii) and (iii) in Eq. (i) we get

		

2 2– –
2 2 22 2

2 2

2 1
– 3 – 0

2

m m
x xm m m

x e x E m x x e
w ww wÈ ˘ È ˘+ w =Í ˙ Í ˙Î ˚ Î ˚
 

  

or		
2– 2 2

2 22
2

2 1 3
– – 0

2 2 2

m
xm m x

x e E m x
w È ˘ww + w =Í ˙

Î ˚
 


	 The above gives

		  E 
3

0
2

- w =

or		  E = 
3

2
w .

Example 6  Find the probability of finding a particle undergoing simple harmonic 
oscillations outside the classical limits if the oscillator is in its ground state.

Solution:  Consider a linear harmonic oscillator of mass m and angular frequency w.

	 If a be the amplitude of oscillation, the total energy of the particle when we treat the 
oscillator classically is

		  E = 2 21

2
m aw 	 ...(i)
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	 According to the problem, the oscillator is in its ground state and hence its energy is 

		  E = 
1

2
w 	 ...(ii)

	 Thus, we have

		

2 21 1

2 2
m aw = w

or		  a2 = 
mw


or		  a = 
mw


	 ...(iii)

	 The wavefunction describing the ground state of the oscillator is given by

		  y0 = 

2 21/2 –

2

x

e
aÊ ˆa

Á ˜Ë ¯p
	 ...(iv)

where

		  a = 
1m

a

w =


	 ...(v)

	 The probability of finding the oscillator within the classical limits (x = – a to x = + a) is 
given by

		  p = *
0 0

–

a

a

dx
+

y yÚ

		  = 
2 2–

–

a
x

a

e dx
+

aa
pÚ

		  = 
2 2

1

–

1
–

xe dx

+
a

a

a

a
pÚ

	 Let us introduce a new variable y as

		  y = ax

	 We then get

		  p = 
2

1
–

–1

1 ye dy
+

pÚ

		  = 
2

1
–

0

1
2 ye dy

pÚ
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or		  p = 
1 1 1 14 6

2

0 0 0 0

2
– – ...

2! 3!

y y
dy y dy dy dy

È ˘
Í ˙+ +

p Í ˙Î ˚
Ú Ú Ú Ú

or		  p = 
2 1 1 1

1 – – ...
3 10 42

È ˘+ +Í ˙p Î ˚

or		  p = 0.84

	 Thus, the probability of finding the oscillator within the classical limits is 0.84 or 84% 
when the oscillator is in its ground state. Clearly in the ground state the probability of finding 
the particle outside the classical limits of the oscillator is (1 – 0.84)  0.16 or 16%

Example 7  Show that the existence of zero point energy of a linear harmonic oscillator 
is a consequence of the uncertainty principle.

Solution:  Consider a harmonic oscillator of mass m capable of oscillating along the x-axis 
with an angular frequency w. If at any time t, x be the displacement and p the linear momentum, 
the Hamiltonian of the oscillator is given by 

		
2

2ˆ 1ˆ
2 2

p
H kx

m
= + 	 ...(i)

where k is the force constant equal to mw2. Classically, the average displacement and the 
average linear momentum of the oscillator are zero, i.e., 

		  ·xÒ = 0  and  ·pÒ = 0	 ...(ii)

	 According to Ehrenfest’s theorem, Eq. (ii) also holds for the quantum mechanical oscillator. 
If Dx and Dp be the uncertainties in the measured values of x and p then by definition we 
get

		  (Dx)2 = ·x2Ò – ·xÒ2

and

		  (Dp)2 = ·p2Ò – ·pÒ2

	 Using Eq. (ii), the above become

		

(Dx)2 = ·x2Ò

(Dp)2 = ·p2Ò 	 ...(iii)

	 The average value of the total energy is given by

		  ·E Ò = 2 21 1

2 2
p k x

m
· Ò + · Ò

	 Hence, using Eq. (iii) we get

		  ·E Ò = 2 21 1
( ) ( )

2 2
p k x

m
D + D 	 ...(iv)
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	 We have the uncertainty relation

		  Dp Dx ≥ 
2



or		  (Dp)2 (Dx)2 ≥ 
2

4


	 ...(v)

	 Using Eq. (5), Eq. (4) can be written as

		  ·E Ò ≥ 
2

2
2

1
( )

28 ( )
k x

m x
+ D

D


	 ...(vi)

	 For ·EÒ to be the minimum we must have

		  2( )

d E

d x

· Ò
D

 = 0

or		
2

4
min

– 1

28 ( )
k

m x
+

D


 = 0

or		  (Dx​)​min​ 
4
  ​ = 

2 2

24 4mk m m
=

w
 

or		  (Dx​)​min​ 
2
  ​ = 

2mw


	 ...(vii)

	 Clearly

		  ·EÒmin = 
2

2 2
min2

min

1
( )

28 ( )
m x

m x
+ w D

D


		  = 
2

22 1

8 2 2

m
m

m m

w + w
w

 


or		  ·EÒmin = 
1

2
w 	 ...(viii)

Example 8  A particle of mass m undergoes simple harmonic motion along the x-axis 
with an angular frequency w. The wavefunction describing the state of the particle at t = 
0 is given by

		  y(x, 0) = 
1

( )
2

n

n
n

A x
Ê ˆ yÁ ˜Ë ¯Â
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where yn(x) are the energy eigenfunctions of the oscillator belonging to eigenvalues ​

( n + ​ 1 __ 
2

 ​ )​. Find

	 (a)	 the normalization constant A

	 (b)	 an expression for y(x, t).

	 (c)	 expectation value of the energy at t = 0 and

	 (d)	 show that the probability density |y(x, t)2| is a periodic function of time.

Solution:  (a) The normalization condition of the wavefunction is 

		  *( , 0) ( , 0) 1x x dxy y =Ú
	 Using the expression for y(x, 0) in the above we get

		  2 *1 1
| | ( ) ( ) 1

2 2

n m

n m
n m

A x x dx
Ê ˆ Ê ˆy y =Á ˜ Á ˜Ë ¯ Ë ¯Â ÂÚ

or		  2 *

,

1
| | ( ) ( ) 1

2

n m

n m
n m

A x x dx
+Ê ˆ

y y =Á ˜Ë ¯ÂÚ 	 ...(i)

	 The orthonormality property of eigenfunctions gives

		  * ( ) ( )n mx x dxy yÚ  = dnm

	 Using the above in Eq. (i) we get

		
2

2 1
| |

2

n

n

A
Ê ˆ
Á ˜Ë ¯Â  = 1 

or		

2

22 1
| |

2

n

n

A
Ê ˆ
Á ˜Ë ¯Â  = 1

or		  |A|2 2 = 1

or		  |A| = 
1

2
	 ...(ii)

(b) y(x, t) and y(x, 0) are related according to

		  y(x, t) = y(x, 0) 
ˆ– iHt

e 

		  = 

1
–

21 1
( )

2 2

i n t
n

n
n

x e

Ê ˆw +Á ˜Ë ¯Ê ˆ yÁ ˜Ë ¯Â



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or		  y(x, t) = 
11

–
21

( )
2

n
i n t

n
n

e x
Ê ˆ+ w +Á ˜Ë ¯Ê ˆ yÁ ˜Ë ¯Â 	 ...(iii)

(c) By definition, the expectation value of energy at t = 0 is given by

		  ·EÒ = ˆ*( , 0) ( , 0)x H x dxy yÚ

		   = 
1

2
*

,

1
( ) ( )

2

n m

n m
n m

x x dx

+ +Ê ˆ y yÁ ˜Ë ¯Â Ú

		  = 
1

2

,

1 1

2 2

n m

nm
n m

n

+ +Ê ˆ Ê ˆ+ w dÁ ˜ Á ˜Ë ¯ Ë ¯Â 

		  = 
1

0

1 1

2 2

n

n

n
+•

=

Ê ˆ Ê ˆ+ wÁ ˜ Á ˜Ë ¯ Ë ¯Â 

		  = 1

1 1

22n n+
Ê ˆ+ wÁ ˜Ë ¯Â 

		  = 
1 2

1

2 2n n

n
+ +w + wÂ Â 

		  = 
1

1
2

¥ w + w 

or		  ·E Ò = 
3

2
w

(d) The probability density is given by

		  |y(x, t)|2 = y*(x, t) y(x, t)

		  = 
1

2 – ( – ) *

,

1
( ) ( )

2

n m

i t n m
n m

n m

e x x

+ +
wÊ ˆ y yÁ ˜Ë ¯Â

	 The time factor, namely e– iw(n – m) t is a function of time with period 
2

( – )n m

p
w

.

Example 9  The Hamiltonian operator for a harmonic oscillator of angular frequency w 
in terms of raising and lowering operators â+ and â  is given by

		  1ˆ ˆ ˆ
2

H a a+Ê ˆ= w +Á ˜Ë ¯
 .

where	 â  = 

1
1/2

2 1
ˆ

2 2

m
x i p

m

wÊ ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯w 
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		  â† = 

1
1/2

2 1
ˆ–

2 2

m
x i p

m

wÊ ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯w 

	 Unnormalized energy eigenfunction of the oscillator is 

		  y = (2x3 – 3x) ​e​
​ – x2

 ____ 
2

 ​
​

Considering dimensionless units (m = 1, w = 1,  = 1), find the eigenfunctions which are 
closest to y in energy.

Solution:  If we take m = 1, w = 1 and  = 1 we get

		

†

1
ˆ ˆ( )

2
1

ˆ ˆ( – )
2

a x ip

a x ip

¸= + ÔÔ
˝
Ô= Ǫ̂ 	 ...(i)

	 Let yn be an energy eigenfunction of the oscillator belonging to the energy eigenvalue

		  En = 
1 1

,
2 2

n n
Ê ˆ Ê ˆ+ w = +Á ˜ Á ˜Ë ¯ Ë ¯

  n = 0, 1, 2, ...	  ...(ii)

	 We have

		  âyn = ​÷ 
__

 n ​ yn – 1

and	 â† yn = ​÷ 
_____

 n + 1 ​ yn + 1

so that

		  ˆ ˆaa † yn = â(​÷ 
_____

 n + 1 ​) yn + 1 = (n + 1) yn	 ...(iii)

	 Using Eqs. (i) we have

		  ˆ ˆaa † y = 
1

ˆ ˆ( ) ( – )
2

x ip x ip+ y

	 Replacing ˆ by – – ,
d d

p i i
dx dx

=  the above becomes

		  ˆ ˆaa † y = 
1

2

d d
x x

dx dx
Ê ˆ Ê ˆ+ - yÁ ˜ Á ˜Ë ¯ Ë ¯

	 Using y given in the problem we get

		  ˆ ˆaa † y = 

2–
3 21

– (2 – 3 )
2

x
d d

x x x x e
dx dx

Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯

or		  ˆ ˆaa † y = 4(2x3 – 3x) ​e​
​ – x2

 ____ 
2
 ​
​ = (3 + 1) y	 ...(iv)

	 Comparing Eq. (iv) with Eq. (iii) we get
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		  n = 3

	 Hence, the eigenfunctions closest in energy to y belong to n = 2 and n = 4. 

	 The eigenfunction corresponding to n = 2 is

		  y2 = 

2–
3 21 1 1

ˆ (2 – 3 )
3 3 2

x
d

a x x x e
dx

Ê ˆy = +Á ˜Ë ¯

or		  y2 = 

2–
3 21

(2 – 3 )
6

x
d

x x x e
dx

Ê ˆ+Á ˜Ë ¯

	 The eigenfunction corresponding to n = 4 is

		  y4 = 
2–

† 3 2
1 1

ˆ – (2 – 3 )
2 2 2

xd
a x x x e

dx
Ê ˆy = Á ˜Ë ¯

Example 10  The ground state eigenfunction and the first excited state eigenfunction of 
a linear harmonic oscillator along the x-axis are given respectively by

		  y0(x) = 

2 21/2 –

2

x

e
aÈ ˘a

Í ˙pÎ ˚

and	 y1(x) = 

2 21/2 –

22
2

x

x e
aÈ ˘a aÍ ˙pÎ ˚

	Find the expectation value of the energy of the oscillator if its state is described by the 
wavefunction

		  y(x) = ​ 1 ___ 
​÷ 

__
 2 ​
 ​ [y0(x) + y1(x)]

Solution:  Let Ĥ  be the Hamiltonian operator for the oscillator. We then have according 
to the problem

		  Ĥ y0(x) = ​ 1 __ 
2

 ​ w y0(x)	 ...(i)

		  Ĥ y1(x) = ​ 3 __ 
2
 ​ w y1(x)	 ...(ii)

	 We also have the following orthonormal properties of y0(x) and y1(x)

		

* 2 2
0 0 0 0

– – –

( ) ( ) | ( ) | ( ) 1x x dx x dx x dx
+• +• +•

• • •

y y = y = y =Ú Ú Ú
	

...(iii)

		

* 2 2
1 1 1 1

– – –

( ) ( ) | ( ) | ( ) 1x x dx x dx x dx
+• +• +•

• • •

y y = y = y =Ú Ú Ú
	

...(iv)
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*
0 1 0 1

–

( ) ( ) ( ) ( ) 0x x dx x x dx
+•

•

y y = y y =Ú Ú
	

...(v)

	 The expectation value of energy in the state described by the wavefunction y(x) is given 
by

		  ·EÒ = 
–

ˆ* ( ) ( )x H x dx
+•

•

y yÚ

		  = *
0 1 0 1

–

1 1ˆ{ ( ) ( )} { ( ) ( )}
2 2

x x H x x dx
+•

•

È ˘
y + y y + yÍ ˙

Î ˚Ú

		  = 0 1 0 1

–

1 ˆ{ ( ) ( )} { ( ) ( )}
2

x x H x x dx
+•

•

È ˘
Í ˙y + y y + y
Í ˙Î ˚
Ú

or		   0 0 1 1

– –

0 1 1 0

– –

1 ˆ ˆ( ) ( ) ( ) ( )
2

ˆ ˆ( ) ( ) ( ) ( )

x H x dx x H x dxE

x H x dx x H x dx

+• +•

• •

+• +•

• •

È
Í y y + y y· Ò =
ÍÎ

˘
˙+ y y + y y
˙̊

Ú Ú

Ú Ú

	 Using Eqs. (i) and (ii) the above becomes

		  ·EÒ = 2 2
0 1

– –

1 0 1 00
–

1 1 3( ) ( )
2 2 2

3 1( ) ( ) ( ) ( )
2 2

x dx x dx

x x dx x x dx

+• +•

• •
+• +•

-• •

È
Í w y + w y
ÍÎ

˘
˙+ w y y + w y y
˙̊

Ú Ú

Ú Ú

 

 

	 Using Eqs. (iii), (iv) and (v) the above gives

		  ·E Ò = 
1 1 3

2 2 2
È ˘w + w = wÍ ˙Î ˚
  



7 Three-dimensional Problems: 
Spherically Symmetric Potentials

7.1  SCHRÖDINGER EQUATION FOR MOTION UNDER  
	 SPHERICALLY SYMMETRIC POTENTIAL

Consider a particle of mass m moving under a central force, i.e., a force whose magnitude 
depends only on the distance of the particle from a fixed point and whose the direction is 

always towards or away from the fixed point. Such a force ​
​_

 
›
 F ​(r) can always be derived from 

a potential function V according to

		​ 
​_
 
›
 F ​(r) = 

–dV

dr
	 ...(1)

	 It is evident that the potential function depends only on the distance r and can be 
expressed as

		  V = V(r)	 ...(2)

	 Such a potential depending only on the distance from a fixed point (centre of the force) is 
referred to as a spherically symmetric potential. Examples of spherically symmetric potential 
are: gravitational potential due to a mass point, electrostatic potential due to a point change 
etc.

	 The wavefunction y which is a function of the coordinates of the particle in space and 
which describes the state of the particle satisfies the Schrödinger equation

		  2
2

2
[ – ( )] 0

m
E V r— y + y =


	 ...(3)

	 For motion under spherically symmetric potential, it is advantageous to express the 
Schrödinger equation in terms of spherical polar coordinates r, q, f instead of Cartesian 
coordinates x, y, z because the potential is independent of the angular coordinates q and f.

	 The operator —2 in spherical polar coordinates is given by

		  —2 = 
2

2
2 2 2 2 2

1 1 1
sin

sin sin
r

r rr r r

∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ q +Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂q ∂qq q ∂f
	 ...(4)

which when used in Eq. (3) gives the Schrödinger equation in spherical polar coordinates 
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		  2
2 2

1 ( , , ) 1 ( , , )
sin

sin

r r
r

r rr r

∂ ∂y q f ∂ ∂y q fÊ ˆ Ê ˆ+ qÁ ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂q ∂qq

		  + 
2

2 2 2 2

1 ( , , ) 2
[ – ( )] ( , , ) 0

sin

r m
E V r r

r

∂ y q f + y q f =
q ∂f 

	 ...(5)

	 The above equation can be separated into three independent equations corresponding to 
the three independent variables r, q and f using the well known method of separation of 
variables. The method consists in writing

		  y(r, q, f) = R(r) Q(q) F(f)	 ...(6)

where R(r), Q(q) and F(f) are respectively functions of only r, only q and only f.

	 Substituting Eq. (6) in Eq. (5) we obtain

2
2

2 2 2 2 2 2

1 1 1 2
sin [ – ( )] 0

sin sin

d dR d d d m
r R R E V r R

dr dr d dr r r d

Q FÊ ˆ Ê ˆQF + F + Q + QF =Á ˜ Á ˜Ë ¯ Ë ¯q qq q f   

	 Multiplying throughout by 
2 2sinr

R

q
QF

, the above equation gives

		
2 2

2 2 2
2 2

sin sin 1 2
sin [ – ( )] sin 0

d dR d d d m
r E V r r

R dr dr d d d

q q Q FÊ ˆ Ê ˆ+ q + + q =Á ˜ Á ˜Ë ¯ Ë ¯Q q q F f 

or		
2 2

2 2 2
2 2

sin sin 2 –1
sin [ – ( )] sin

d dR d d m d
r E V r r

R dr dr d d d

q q Q FÊ ˆ Ê ˆ+ q + q =Á ˜ Á ˜Ë ¯ Ë ¯Q q q F f
	 ...(7)

	 Since the left hand side of the above equation is a function of r and q while the right hand 
side is a function of only f, we must have each side equal to some constant. For convenience 
let the constant be put equal to m2. We then get

		
2 2

2 2
2 2

1
– or 0

d d
m m

d d

F F= + F =
F f f

	 ...(8)

	 We also get

		
2

2 2 2 2
2

sin sin 2
sin [ – ( )] sin

d dR d d m
r E V r r m

R dr dr d d

q q QÊ ˆ Ê ˆ+ q + q =Á ˜ Á ˜Ë ¯ Ë ¯Q q q 

	 Dividing the above equation by sin2 q we obtain 
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		  2 2 2 2
2

1 2 1
[ – ( )] sin /sin 0

sin

d dR m d d
r E V r r m

R dr dr d d

- QÊ ˆ Ê ˆ+ = q + q =Á ˜ Á ˜Ë ¯ Ë ¯Q q q q
	 ...(9)

	 In the above equation the left hand side is a function of only r while the right hand side is 
a function of q only. Hence each side of the equation must be equal to a constant. Considering 
the constant to be l, we get

(i)	 – 2 21
sin sin

sin

d d
m

d d

QÊ ˆ + q = lÁ ˜Ë ¯Q q q q

or		
2

2

1
sin – 0

sin sin

d d m

d d

Ê ˆQÊ ˆq + l q =Á ˜ Á ˜Ë ¯q q q qË ¯
	 ...(10)

and 	 2 2
2

1 2
[ – ( )]

d dR m
r E V r r

R dr dr
Ê ˆ + = lÁ ˜Ë ¯ 

	 Multiplying by ​ R __ 
r2

 ​, the above gives

		  2
2 2 2

1 2
[ – ( )]

d dR m R
r E V r R

dr drr r

lÊ ˆ + =Á ˜Ë ¯ 

or		  2
2 2 2

1 2
[ – ( )] 0

d dR m
r E V r R R

dr drr r

lÊ ˆ + = =Á ˜Ë ¯ 
	 ...(11)

	 Equation (11) is usually referred to as the radial wave equation. We have thus been able to 
separate the three-dimensional Schrödinger equation given by Eq. (5) into three independent, 
one-dimensional equations involving the independent coordinate r, q and f given by Eqs. (8), 
(10) and (11), respectively.

	 It is important to note that the equation involving the angular co-ordinates namely q and 
f do not contain the potential function and hence these two equations hold for all three-
dimensional problems involving spherically symmetric potentials. The radial wave equation 
given by Eq. (11), however, involves the potential function V(r) and hence it takes different 
forms for different types of V(r) as in hydrogen atom problem, three-dimensional oscillator 
problem, rigid rotator problem, etc.

7.2  SOLUTION OF THE Schrödinger EQUATION

Solutions of the eqs. (8), (10) and (11) respectively give the functions R(r), Q(q), F(f). We 
can then obtain the solution of the Schrödinger equation given by Eq. (5) in terms of R(r), 
Q(q) and F(f) as

		  y(r, q, f) = R(r) Q(q) F(f)
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7.2.1  Solution of the F-equation

The function F(f) satisfies Eq. (8)

		
2

2

d

d

F
f

 + m2F = 0

	 The general solution of the above second-order differential equation is given by

		  F(f) = Ae ± imf	 ...(12)

	 For F(f) to be a factor of acceptable wavefunction y(r, q, f), it must be single valued, 
i.e., it must satisfy the condition

		  F(f) = F(f + 2p)

or		  Ae ± imf = Ae ± im(f + 2p) = Ae ± imf e± i2pm 

	 The above holds if

		  e ± i2pm = 1

or

		  cos 2pm ± i sin 2pm = 1

	 The above requires m to be equal to 0 or an integer, i.e.,

		  m = 0, 1, 2,	 ...(13)

m is called the magnetic quantum number.

	 Further, the function F(f) must be normalized requiring 

		
2

0

* ( ) ( ) 1d
P

F f F f f =Ú
	 Using Eq. (12) in the above we obtain

		
2

2

0

| | 1A d
P

f =Ú

or		  2 1 1
| | or

2 2
A A= =

p p
	 ...(14)

	 The normalized solution of the F-equation is thus

		  F(f) = 
1

, 0, 1, 2,...
2

ime mf = ± ±
p

	 ...(15)

	 We find that the function F(f) is, in general, a complex function which can be decomposed 
into a real part and an imaginary part, i.e.,
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	 Real form	 F(f) = 
1

2p
 cos mf	 ...(16)

	 Imaginary from	 F(f) = 
1

2p
 sin mf	 ...(17)

7.2.2  Solution of the Q-equation 

We have the Q-equation given by Eq. (10)

		
2

2

1
sin –

sin sin

d d m

d d

Ê ˆQÊ ˆq + l QÁ ˜ Á ˜Ë ¯q q q qË ¯
 = 0

	 Let us introduce a new variable x as

		  x = cos q	 ...(18)

	 We then get

		  –sin
d d d d

d d d d

Q Q x Q= = q
q x q x

	 ...(19)

	 Further

		  sin q = 2 21 – cos 1 –q = x 	 ...(20)

	 Using Eq. (20) in Eq. (19) we get

		  2– 1 –
d d

d d
= x

q x
	 ...(21)

	 Using Eqs. (19), (20) and (21), the Q equation becomes

		
2

2
2

( )
(1 – ) – ( )

1 –

d d m

d d

È ˘È ˘Q xx + l Q xÍ ˙Í ˙x x xÎ ˚ Î ˚
 = 0	 ...(22)

	 Equation (22) is the well known associated Legendre equation. Since x = cos q, the above 
equation is physically meaningful only for values of x lying between –1 and +1. Physically 
acceptable solutions of Eq. (22) give

		  l = l(l + 1);  l = 0, 1, 2,...	 ...(23)

		  m = 0, ± 1, ±  2,... ±  l	 ...(24)

	 When m = 0, Eq. (22) reduces to the well known Legendre differential equation whose 
solution is the Legendre polynomial

		  Pl(x) = Pl(cos q)	 ...(25)

	 For m π 0, the solutions are associated Legendre polynomials 

		​  P​ l​ 
 |m|​(x) = ​P​ l​ 

 |m|​(cos q)	 ...(26)
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	 The normalized solutions of eq. (22) are given by

		
2 1 ( – | |)!

( ) (–1) (cos ), 0
2 ( | |)!

m m m
l l

l l m
P m

l m

+Q q = q >
+

	 ...(27)

		  2 1 ( – | |)!
( ) (cos ), 0

2 ( | |)!
m m
l l

l l m
P m

l m

+Q q = q £
+

	 ...(28)

Normalized Angular Part of the Wavefunction 

The normalized angular part of the wavefunction is the product of Q(q) given by Eq. (27) 
and F(f) given by Eq. (15)

		
1 2 1 ( – | |)!

( , ) (–1) (cos ),
2 ( | |)!2

m m im
l

angular

l l m
P e

l m
f+y q f = q

+p
	 ...(29)

where

		  l = 0, 1, 2,...;  m = 0, ± 1, ± 2, ..., ± l	 ...(30)

	 The angular part of the wavefunction is called spherical harmonic and written as Ylm (q, f). 
We get

		  Ylm(q, f) = 
2 1 ( – | |)!

(cos ),
2 ( | |)!

m im
l

l l m
P e

l m
f+Œ q

+
	 ...(31)

	 We observe that the angular part of the wavefunction neither depends upon the total 
energy E nor upon the potential function V(r).

7.2.3  Solution of the Radial Wave Equation

The radial wave equation is given by Eq. (11)

		  2
2 2 2

1 2
[ – ( )] –

d dR m
r E V r R R

dr drr r

lÊ ˆ +Á ˜Ë ¯ 
 = 0

	 The above equation can be solved exactly provided the potential function V(r) is stated 
explicitly. It is thus clear that the radial wavefunction R(r) depends upon the nature of the 
problem under consideration.

	 For solving the radial wavefunction it is usual to introduce a function u(r) according to

		  u(r) = rR(r)	 ...(32)

	 The above gives,

		
2

– 1dR u du

dr r drr
= + 	 ...(33)
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	 Using Eqs. (32) and (33) and l = l(l + 1) in the radial wave equation and simplifying we 
obtain 

		
2 2

2 2 2

2 ( 1)
– ( ) –

2

d u m l l
E V r

dr mr

È ˘++ Í ˙
Î ˚




u = 0	 ...(34)

	 The term 
2

2

( 1)

2

l l

mr

+ 
 is called the centrifugal potential because its first derivative with 

respect to r gives the classical centrifugal force when we use ​÷ 
_______

 l(l + 1) ​ as the orbital 

angular momentum. Since centrifugal force is a repulsive force, the term 
2

2

( 1)

2

l l

mr

+ 
 represents 

a repulsive potential. We may note that the spherically symmetric potential V(r) may be 
attractive or repulsive. We may write Eq. (34) as

		  +


2

2 2

2
[ – ]eff

d u m
E V u

dr
 = 0	 ...(35)

where Veff which may be called the effective potential under which the particle moves is 
given as

		  Veff = V(r) + 
2

2

( 1)

2

l l

mr

+ 
	 ...(36)

	 Equation (35) has the form of one-dimensional Schrödinger equation and can be solved 
from a knowledge of the spherically symmetric potential V(r).

7.3  GENerAL THREE-DIMENSIONAL HARMONIC OSCILLATOR 

A general three-dimensional harmonic oscillator consists of a particle, of mass say m, bound 
to the origin O of a rectangular coordinate system (XYZ) by a restoring force ​

​_
 
›
 F ​ = – k​

​_
 
›
 r ​ where ​

​_
 
›
 r ​ 

is the position vector of the particle with respect to the origin O and k is the force constant. 

We may consider the force ​
​_
 
›
 F ​ to have cartesian components

		  Fx = – kxx,  Fy = – kyy,  Fz = – kzz	 ...(37)

where x, y, z are respectively the components of ​
​_

 
›
 r ​ along x, y and z axes. For generality, the 

force constants kx, ky and kz along the three axes have been considered to be different.

	 If nx, ny, nz be respectively the components of the natural frequency n0 of the oscillator 
along the x, y and z axes then we have 

		  kx = m​w​ x​ 
 2​ = m(2pnx)

2 = 4p2 m​n ​x​ 
 2​

		  ky = m​w​ y​ 
 2​ = m(2pny)

2 = 4p2 m​n ​y​ 
 2​ 

		  kz = m​w​ z​ 
 2​ = m(2pnz)

2 = 4p2 m​n ​z​ 
 2​	 ...(38)
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		  k = m​w​ 0​ 
 2​ = m(2pn0)

2 = 4p2 m​n ​0​ 
 2​ 	 ...(39)

	 The potential energy function of the oscillator is spherically symmetric and is given by

		  V = V(r) = 2 2 2
0

1 1

2 2
kr m r= w 	 ...(40)

	 Alternatively, we may write the potential energy function as

		  V(x, y, z) = 2 2 2 2 2 21
( )

2 x y zm x y zw + w + w 	 ...(41)

	 The Schrödinger equation for the oscillator given by

		  —2y + 
2

2
[ – ( )] 0

m
E V r y =


	 can be expressed in Cartesian coordinates as 

2 2 2
2 2 2 2 2 2

2 2 2 2

( , , ) ( , , ) ( , , ) 2
[ – ( )] ( , , ) 0x y z

x y z x y z x y z m
E m x y z x y z

x y z

∂ y ∂ y ∂ y+ + + w + w + w y =
∂ ∂ ∂ 

...(42)

Solution of the Schrödinger equation

Equation (42) can be solved using the method of separation of variables as in Section 7.1. 
We write y(x, y, z) as a product of a function of only x, a function of only y, and a function 
of only z 

		  y(x, y, z) = X(x) Y(y) Z(z)	 ...(43)

	 Using Eq. (43) in Eq. (42) we get

		
2 2 2

2 2 2 2 2 2
2 2 2 2

2
[ – ( )]x y z

d X d Y d Z m
YZ XZ XY E m x y z XYZ

x y z
+ + + w + w + w

∂ ∂ ∂ 
 = 0

	 Dividing by XYZ and rearranging the terms the above becomes 

		
2 2 2 2 2 2

2 2 2 2 2 2
2 2 2 2 2 2 2

1 2 1 2 1 2 2
– – – –x y z

d X m d Y m d Z m mE
x y z

x y zdx dy dz

È ˘ È ˘ È ˘
w + w + w =Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚   
  ...(44)

	 We find 

(i)	 the sum of the three terms on the left hand side of eq. (44) is a constant because the total 
energy E of the harmonic oscillator is a constant.

(ii)	the first term in the left hand side of eq. (44) is a function of only x, the second term is 
a function of only y while the third term is a function of only z.

	 These facts require each term on the left hand side of Eq. (44) to be equal to a separate 
constant, we put
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2 2

2 2
2 2 2

1 2 –2
– x

d X m m
x

X dx
w =

 
 Ex,  Ex = a constant

or		
2 2

2 2
2 2

1 2
–x x

d X m
E m x

X dx
È ˘+ wÎ ˚

 = 0

or		
2 2

2 2
2 2

2
–x x

d X m
E m x X

dx
È ˘+ wÎ ˚

 = 0 	 …(45)

	 Similarly, writing the second term and the third term on the left hand side of Eq. (44) 

equal to 
2 2

–2 –2
andy

m m
E

 
 Ez respectively, we obtain 

		
2

2 2
2 2

2
[ – ]y y

d Y m
E m y Y

dy
+ w


 = 0	 ...(46)

		
2

2 2
2 2

2
[ – ]z y

d Z m
E m y Z

dz
+ w


 = 0	 ...(47)

	 We also find

		
2 2 2 2

2 2 2 –2
–x y z

m m m m
E E E E- - =

   
or

		  Ex + Ey + Ez = E	 ...(48)

	 Equations (45), (46) and (47) are mathematically identical with the time-independent 
Schrödinger equation for linear harmonic oscillator given by Eq. (11) in Section 6.2.

	 As in Sections 6.2, 6.3, 6.4 and 6.5 we get the results (A) and (B) as below:

	

(A)	

	

1

2

1

2

1

2

x x x

y y y

z z z

E n

E n

E n

¸Ê ˆ= + wÁ ˜ ÔË ¯ Ô
ÔÊ ˆ Ô= + w ˝Á ˜Ë ¯ Ô
ÔÊ ˆ= + w ÔÁ ˜Ë ¯ Ǫ̂







	 ...(49)

where nx, ny, nz are positive integers including zero.

	 In view of the results given by Eqs. (48) and (49) we get the energy eigenvalues of the 
three-dimensional harmonic oscillator to be

		
1 1 1

2 2 2x y z
x y z x x y y z z

n n n
E E E E n n n

È ˘Ê ˆ Ê ˆ Ê ˆ= + + = + w + + w + + wÍ ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚
 	 ...(50)
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	 (B) The normalized solutions of Eqs. (45), (46) and (47) to be given respectively by

		

2

–
2( ) ( )

x x xn n nX x N H e
x

= x

or		

21/2
–

2( ) ( )
2 !x xx

k
n nn

x

X x H e
n

xÈ ˘g
= xÍ ˙

pÍ ˙Î ˚
	 ...(51)

where	 gx = andx
x

m
x

w
x = g


	 ...(52)

		
2

1/2

2( ) ( )
2 !

-h
È ˘g
Í ˙= h
Í ˙pÎ ˚

y yy

y
n nn

y

Y y H e
n

	 ...(53)

where	 gy = and
w

h = g


y
y

m
y 	 ...(54)

and 

		

1/2

3( )
2 !

È ˘g
= Í ˙

pÍ ˙Î ˚
z zz

n nn
z

Z z H
n

(z)​e​
– z2/2​	 ...(55)

		  gz = zmw


  and  z = gz z	 ...(56)

	 Substituting Eqs. (51), (53) and (55) in Eq. (43) we get the normalized eigenfunctions of 
the three-dimensional oscillator to be given by

		

1/2

3/2
( , , ) ( ) ( )

2 ! ! !

È ˘g g g
y = x hÍ ˙

pÍ ˙Î ˚
x y z x y z

x y z
n n n n n nn

x y z

x y z H H H
n n n

(z) × ​e​
 – ​ 1 __ 

2
 ​(x2 + h2 + z2)

​	 ...(57)

	 In the above,

		  n = n1 + n2 + n3 	 ...(58)

Special Case 

In the following we consider a three-dimensional harmonic oscillator for which the natural 
frequencies of oscillations nx, ny, nz along X, Y and Z axes respectively are equal. The angular 
frequencies wx, wy, and wz then are also equal. Let us assume 
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		  wx = wy = wz = w0	 ...(59) 

	 Equation (50) then gives the energy eigenvalues of the oscillator to be

		  0 0
3

( )
2

È ˘= + + w + wÍ ˙Î ˚


x y zn n n x y zE n n n

or 

		  En = 
3

2
n

Ê ˆ+Á ˜Ë ¯
 w0;  n = nx + ny + nz = 0, 1, 2,...	 ...(60)

	 In view of eq. (59) we find 

		  gx = gy = gz 
0mw


	 ...(61)

		  x = 0 0 0; ;
w w w

h = z =
  

m m m
x y z 	 ...(62)

	 Substituting Eqs. (61) and (62) in Eq. (57) we get the eignfunctions of the oscillator to 
be given by

1/23
0

( ) 3/2
( , , ) ( ) ( )

2 ! ! !
+ +

È ˘wÊ ˆÍ ˙Á ˜Ë ¯Í ˙y = x hÍ ˙pÍ ˙
Í ˙Î ˚


x y z x y zx y z

n n n n n nn n n
x y z

m

x y z H H H
n n n

(z) × ​​e​
 – ​ 1 __ 

2
 ​ ​ 
mw0 ____ 

  ​
​​
 (x2 + y2 + z2)

​

...(63)

	 The ground state of the oscillator corresponds to

		  nx = ny = nz = 0	 ...(64)

	 From Eq. (60) we get the energy of the ground state to be given by

		  E0 = ​ 3 __ 
2
 ​ hw0

and the ground state eigenfunction from Eq. (63) to be		

		  y000(x, y, z) = 
03/2 1

– 2 2 20 2
1/2

( )
wwÊ ˆ + +Á ˜Ë ¯p




mm
e x y x 	 ...(65)

	 The first excited state corresponds to

		  n = 1

so that we may have

		

= 1, = 0, = 0

= 0, = 1, = 0

= 0, = 0, = 1

¸
ÔÔ
˝
Ô
Ǫ̂

x y z

x y z

x y z

n n n

n n n

n n n

	 ...(66)



	 	 Introduction to Quantum Mechanics186

	 Equation (60) gives the energy eigenvalues corresponding to this state to be

		  E1 = 0

5

2
w 	 ...(67)

	 The corresponding eigenfunctions are 

		  y010,  y010  and  y001 

	 We find that there are 3 different eigenfunctions corresponding to the same energy 

eigenvalue 0

5

2
w .

	 Consider the first excited state of the three-dimensional isotropic oscillator to be 3-fold 
degenerate.

	 The second excited state of the oscillator corresponds to

		  n = 2

so that we may have the following sets of values of nx, ny, and nz 

		

= 2, = 0, = 0

= 0, = 2, = 0

= 0, = 0, = 2

= 1, = 1, = 0

= 1, = 0, = 1

= 0, = 1, = 1

x y z

x y z

x y z

x y z

x y z

x y z

n n n

n n n

n n n

n n n

n n n

n n n

¸
Ô
Ô
Ô
Ô
˝
Ô
Ô
Ô
Ǫ̂

	 ...(68)

	 The energy eigenvalue for this state from eq. (60) is given by

		  E2 = 0

7

2
w 	 …(69)

	 Corresponding to this energy eigenvalue there exist 6 different energy eigenfunctions, 
namely

		  y200,  y020,  y002,  y110,  y101,  y011

	 Thus the second excited state is six-fold degenerate.

	 In general, the degeneracy of the energy eigenstate of the three-dimensional isotropic 
oscillator is

		  degree of degeneracy = ​ 1 __ 
2
 ​ (n + 1) (n + 2)	 ...(70)
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7.4  PROBLEM OF RIGID ROTATOR

Rigid rotator is a system of two spherical particles separated by a fixed distance. The system 
can rotate about an axis through the centre of mass and perpendicular to the plane containing 
the particles. If the plane containing the particles can take any arbitrary orientation, the axis 
of rotation can assume any orientation in space and the system is then referred to as a rigid 
rotator with free axis. On the other hand, if the particles are confined within a given plane 
then the axis of rotation has a fixed direction in space and the system is then referred to as 
a rigid rotator with fixed axis.

	 A quantum mechanical treatment of rigid rotator with free axis is helpful in understanding 
the behaviour of a diatomic molecule which can be considered as a rigid rotator with free 
axis at least as a first approximation.

7.4.1  Schrödinger Equation for a Rigid Rotator with Free-axis

In order to arrive at the Schrödinger equation, let us first calculate the total energy of the 
oscillator which is the sum of the kinetic energies of the two particles constituting the rotator 
and the potential energy of the system.

	 Let the rotator consist of two particles of masses m1 and m2 separated by a fixed distance 
ro. Let the system of particles rotate with an angular velocity ‘w’ about the axis XY passing 
though the centre of mass O and normal to the line joining the particles as shown in the 
Fig. 7.1. 

Fig. 7.1

	 Let for any arbitrary position of the plane containing the particles, i.e., for an arbitrary 
orientation of the axis XY in space, the cartesian coordinates of m1 and m2 with respect 
to O which is considered as the origin of a rectangular coordinate system be respectively 
(x1, y1, z1) and (x2, y2, z2). Let (r1, q, f) and (r2, q + p, f + p) be respectively the spherical 
polar coordinates of m1 and m2. We then have the transformation equations given by

		
1 1

1 1

1 1

= sin cos

= sin sin

= cos

q f¸
Ôq f ˝
Ôq ˛

x r

y r

z r

	 ...(71)

and
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2 2 2

2 2 2

2 2 2

= sin ( + ) cos ( + ) = sin cos

= sin ( + ) sin ( + ) = sin sin

= cos ( + ) = – cos

q p f p q f¸
Ôq p f p q f ˝
Ôq p q ˛

x r r

y r r

z r r

	 ...(72)

	 The kinetic energy of the particle of mass m1 is 

		  T1 = 2 2 2
1 1 1 1

1
( )

2
m x y z+ +   	 ...(73)

	 Obtaining the time derivatives x
.
1, y

.
1 and z

.
1 from Eq. (71), substituting them in Eq. (73) 

and simplifying we obtain

		  T1 = 2 2 2 2
1 1

1
( sin )

2
m r q + q f  	 ...(74)

	 Similarly, the kinetic energy of the particle of mass m2 is found to be

		  T2 = 2 2 2 2 2 2 2
2 2 2 2 2 2

1 1
( ) ( sin )

2 2
m x y z m r+ + = q + qf    	 ...(75)

	 The total kinetic energy of the rotator is thus

		  T = T1 + T2 = 2 2 2 2 2
1 1 2 2

1 1
( sin )

2 2
m r m r

Ê ˆ+ q + q fÁ ˜Ë ¯
  	 ...(76)

	 Since for the rigid rotator the distance r0 between the two particles is fixed (r0 = constant), 
we can say that there exists no mutual force between the particles. As a consequence, the 
potential energy of the rotator is zero (V = 0).

	 The total energy of the rotator is thus

		  E = T = 2 2 2 2 2
1 1 2 2

1
( ) ( sin )

2
m r m r q + q f 

		  E = 2 2 21
( sin )

2
I q + q f   	 ...(77)

where	 I = m
.
1r1

2 + m2r 2
2	 ...(78)

is the moment of inertia of the rotator about the axis of rotation XY.

	 To gain physical insight into the rotator problem, we now express Eq. (77) in a different 
form using the definition of centre of mass of a system of particles. Let with respect to the 
origin O, ​

​_
 
›
 r ​1 and ​

​_
 
›
 r ​2 be respectively the position vectors of the particles of masses m1 and m2. 

The position vector of the centre of mass with respect to the origin is then given by

		​ 
​_
 
›
 r ​ = 1 1 2 2

1 2

m r m r

m m

+
+

 
	 ...(79)



	 189Three-dimensional Problems: Spherically Symmetric Potentials 

	 Since the origin has been chosen as the centre of mass itself we have 

		​ 
​_
 
›
 r ​ = 0, ​

​_
 
›
 r ​1 and ​

​_
 
›
 r ​2 oppositely directed

	 We thus obtain from Eq. (79)

		  O = 1 1 2 2

1 2

–m r m r

m m+
	 The above gives

		  m1r1 = m2r2	 …(80)

	 We may write Eq. (80) as

		  m1r1 = m2 (r0 – r1)

or		  r1 = 2
0

1 2+
m

r
m m

	 ...(81)

	 Similarly, we obtain 

		  r2 = 1
0

1 2+
m

r
m m

	 ...(82)

	 Substituting Eqs. (81) and (82) in Eq. (78) we get

		  I = m1

2 2

2 22 1
0 2 0

1 2 1 2

Ê ˆ Ê ˆ
+Á ˜ Á ˜+ +Ë ¯ Ë ¯

m m
r m r

m m m m

or

		  I = 21 2
0

1 2

m m
r

m m+
or

		  I = m​r​ 0​ 
 2​	 ...(83)

where  m = 21 2
0

1 2

m m
r

m m+
 in the reduced mass of the two particles.

	 Using Eq. (83) in Eq. (77) we get the total energy of the rotator as

		  E = 2 2 2 2
0

1
( sin )

2
rm q + qf  	 ...(84)

	 If for convenience, we set the distance between the particles equal to unity, i.e., r0 = 1, 
we get 

		  m​r​ 0​ 
 2​ = m = I0(say)	 ...(85)

	 We can then write the total energy of the rotator as
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		  E = 2 2 2
0

1
( sin )

2
I q + qf  	 ...(86)

which is the kinetic energy of a particle of mass m = I0 moving on the surface of a sphere 
of radius unity.

	 Thus the motion of the rigid rotator is the same as that of a single particle of mass I0, 
equal to the reduced mass of the two particles forming the rotator, over the surface of a sphere 
of radius unity.

	 The wavefunction y(x, y, z) describing the state of a particle of mass m having a total 
energy E moving in a potential field V satisfies the Schrödinger equation 

		  —2 y (x, y, z) + 
2

2
[ – ] ( , , ) 0

m
E V ry q f =


	 ...(87)

	 In spherical polar coordinates the above becomes 

		  2
2 2

1 ( , , ) 1 ( , , )
sin

sin

r r
r

r rr r

∂ ∂y q f ∂ ∂y q fÊ ˆ Ê ˆ+ qÁ ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂q ∂qq

		  2 2 2 2

1 ( , , ) 2
[ – ] ( , , ) 0

sin

r m
E V r

r

∂y q f+ + y q f =
q ∂f 

	 ...(88)

	 As seen above, the rigid rotator behaves as a single particle of mass m = I0 over a sphere 
of unit radius. We thus have r = 1 so that we get

		  2
2 2

1 ( , , )r
r

rr

Ê ˆ∂ ∂y q f
Á ˜∂ ∂fË ¯

 = 0	 ...(89)

	 Equation (88) then becomes

		
2

0
2 2 2

21 1
sin [ – ]

sin sin

I
E V

Ê ˆ∂ ∂y ∂ yq + + yÁ ˜q ∂q ∂fË ¯ q ∂f 
 = 0	 ...(90)

	 Further for the rigid rotator V = 0, so that Eq. (90) reduces to

		
2

0
2 2 2

21 1
sin

sin sin

I
E

∂ ∂y ∂ yÊ ˆq + + yÁ ˜Ë ¯q ∂q ∂q q ∂f 
 = 0	 ...(91)

	 In the above, y is a function of only q and f since r = constant i.e., y = y(q, f)

7.4.2	 Solution of the Wave Equation: 
	 Energy Eigenvalues and Energy Eigenfunctions for the Rotator

The wave equation given by Eq. (91) can be solved using the method of separation of 
variables. We do this by writing

		  y(q, f) = Q (q) F (f)	 ...(92)
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where Q and F are respectively functions of q alone and f alone.

	 Using Eq. (92) in Eq. (91) we obtain 

		
2

0
2 2 2

21 1
sin

sin sin

∂ Q FÊ ˆF q + Q + QFÁ ˜Ë ¯q ∂q q q f 
I Ed d

d d
 = 0

	 Dividing the above throughout by 
2sin

QF
q

, we get

		
2

20
2 2

21 1
sin sin sin –

Q FÊ ˆq q + q =Á ˜Ë ¯Q q q F f
I Ed d d

d d d
	 ...(93)

	 The left hand side of Eq. (93) depends only on q while the right hand side depends only 
on q. Hence for the Eq. (93) to be valid, each side of it must separately be equal to a constant. 
For convenience we set 

		
2

2

1
–

d

d

F
F f

 = m2 (m = constant)

or		
2

2

d

d

F
f

 + m2F = 0	 ...(94)

	 Let us call it F equation.

	 We also have 

		  20
2

21
sin sin sin

I Ed d

d d

QÊ ˆq q + qÁ ˜Ë ¯Q q q 
 = m2

	 Dividing the above by 
2sin q

Q
 we obtain 

		
2

0
2 2

21
sin

sin sin

I Ed d m

d d

QÊ ˆq + Q = QÁ ˜Ë ¯q q q q
or

		
2

0
2 2

21
sin –

sin sin

I Ed d m

d d

Ê ˆQÊ ˆq + QÁ ˜ Á ˜Ë ¯q q q qË ¯
= 0	 ...(95)

	 Let us call it Q equation.

Solution of the  Equation

The most general solution of Eq. (94) is given by

		  F = Ae±imf	 ...(96)

where A is an arbitrary constant, and can be evaluated using the requirement of the 
normalization of F 
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p

F F fÚ
2

0

* d  = 1

	 Using Eq. (96) in the above we obtain

		
p

fÚ
2

2

0

| |A d  = 1

or

		  |A|2 2p = 1

or

		  |A|2 = 
p
1

2
or

		  A = 
p

1

2
	 ...(97)

	 For F to be a factor in the total wavefunction of the rotator, the single valuedness of F 
demands 

		  F(f) = F(f + 2p)

	 Using Eq. (96) in the above we get 

		  Ae± imf = Ae± im(f + 2p) 

or

		  e± imf = e± imf e± 2p mi

or

		  e± 2p mi = 1

or

		  cos 2pm ± i sin 2pm = 1

	 The above demands m to be zero or an integer positive as well as negative, i.e.,

		  m = 0, ± 1, ± 2,...	 ...(98)

	 Using the results given in Eqs. (97) and (98), we obtain from Eq. (96)

		  F(f) = 
1

2
ime f

p
	 ...(99)

	 The integer m can be identified as the magnetic quantum number.

Note:  The Lagrangian function L for the rigid rotator is by definition given by

		  L = T – V.
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or		  L = E 	 (  V = 0 and E = T )

	 Using the expression for the total energy E given by eq. (77) we get

		  L = 2 2 21
( sin )

2
I q + q f 

	 We observe that f does not appear explicitly in the Lagrangian function and hance f is a 
cyclic or ignorable coordinate.

Solution of the Q equation

Putting	 l = 0
2

2I E


	 ...(100)

the Q equation which is given by Eq. (95) becomes 

		
2

2

1
sin –

sin sin

d d m

d d

Ê ˆQÊ ˆq + l QÁ ˜ Á ˜Ë ¯q q q qË ¯
 = 0	 ...(101)

	 Let us introduce a new variable x as

		  x = cos q	 ...(102)

	 Now

		  –sin
d d d d

d d d d

Q Q x Q= = q
q x q x

	 (using eq.102)

or

		  –sin
d d

d d
= q

q x
	 ...(103)

	 Using Eqs. (102) and (103) in Eq. (101) we get

		
2

2
2

– –(1 – ) –
1 –

d d m

d d

È ˘È ˘Qx + l QÍ ˙Í ˙x x xÎ ˚ Î ˚
 = 0

or

		
2 2

2
2 2

(1 – ) –2 –
1 –

d d m

dd

È ˘Q Qx x + l QÍ ˙xx xÎ ˚
 = 0	 ...(104)

	 For mathematical convenience let us substitute

		  Q = (1 – x2​)​
​ m __ 
2
 ​
​ X(x)	 ...(105)

where X(x) is a function of only x.
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	 Substituting for 
2

2
and

d d

d d

Q Q
x x

 as obtained from Eq. (105) in Eq. (104) and simplifying we 
obtain

		  x + x + l +
xx

2
2

2
(1 – ) –2 ( 1) [ – ( 1)]

d X dX
m m m X

dd
= 0	 ...(106)

	 Equation (106) can be solved using power series method. For this we express the function 
X as a power series in x as 

		  X = 
•

=

xÂ
0

,n
n

n

a   n = 0, 1, 2,...	 ...(107)

	 The above gives

		  –1

0

n
n

n

dX
n a

d

•

=

= x
x Â 	 ...(108)

and

		
2

–2
2

2

( – 1) n

n

d X
n n

d

•

=

= x
x Â 	 ...(109)

	 Substitution of Eqs. (107), (108) and (109) in Eq. (106) yields

 
µ • •

= = =

x x + xÂ Â Â–2

2 2 1

( – 1) – ( – 1) – 2( 1)n n n
n n n

n n n

n n a n n a m n a  
•

=

+ l + xÂ
0

[ – ( 1)] n
n

n

m m a  = 0

...(110)

	 For Eq. (110) to be valid for all possible values of x, the coefficients of the individual 
powers of x must separately vanish. 

	 Thus we obtain, in general, for the coefficient of xn 

(n + 1) (n + 2)an + 2 – n (n – 1)an – 2 (m + 1)nan + [l – m(m + 1)] an = 0

or

		  an + 2 = 
( – 1) 2 ( 1) ( 1) –

( 1) ( 2)

n n n m m m

n n

+ + + + l
+ +

 an

or

		  2 ( – 1) 2 ( 1) ( 1) –

( 1) ( 2)
n

n

a n n n m m m

a n n
+ + + + + l=

+ +
	 ...(111)

	 Equation (110) is referred to as the Recursion formula for the coefficients of the series for 
X(x). In order that the polynomial X represents a satisfactory part of the total wavefunction 
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of the rotator, the series for X must break off (terminate) after a finite number of terms 
(otherwise it diverges). Considering that polynomial breaks off after the nth term we get

		  an + 2 = 0

and hence Eq. (111) gives

		  n(n – 1) + 2n (m + 1) + m(m + 1) – l = 0

or		  l = (n + m) (n + m + 1)	 ...(112)

	 In Eq. (112) m = 0, 1, 2, ... and n = 0, 1, 2,..., Hence we may write

		  n + m = l is an integer including 0	 ...(113)

	 We can thus write Eq. (112) as

		  l = l(l + 1)	 ...(114)

	 Using the above values of l, Eq. (104) becomes 

		
2 2

2
2 2

(1 – ) –2 ( 1) –
1 –

d d m
l l

dd

È ˘Q Qx x + + QÍ ˙xx xÎ ˚
 = 0	 ...(115)

	 It is well known that the associated Legendre function pl
|m|(x) of degree l and order |m| 

where l = 0, 1, 2,... and m = 0, 1, 2,..., l is defined in terms of Legendre polynomial Pl(x) 
as

		  Pl 
|m|(x) = 

| | | |
2 2

| |
(1 – ) ( )

m m

lm

d
P

d
x x

x
	 ...(116)

	 Pl(x) satisfies the Legendre differential equation

		  2 ( )
(1 – ) ( 1) ( )l

l

dPd
l l P

d d

È ˘x
x + + xÍ ˙x xÎ ˚

 = 0	 ...(117)

	 Differentiating Eq. (117) |m| times with respect to x and using Eq. (116) we obtain

		
2 | | | | 2

2 | |
2 2

( )
(1 – ) –2 ( 1) – ( )

1 –

m m
ml l

l

d P d P m
l l P

dd

Ï ¸x Ô Ôx x + + xÌ ˝xx xÔ ÔÓ ˛
 = 0	 ...(118)

	 Comparing Eqs. (115) and (118) we identify

		  Q(q) = Pl
|m|(x) = Pl

|m|(cos q)	 ...(119)

	 Thus we can express the general solution of the Q equation as

		  Q(q) = B Pl
|m| (cos q)	 ...(120)

	 In the above the constant B is determined by requiring Q(q) to be normalized, i.e.,
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0

* ( ) ( ) sin d
p

Q q Q q q qÚ  = 1

	 Using Eq. (120) in the above we obtain

		

1
2 | | * | |

–1

{ (cos )} { (cos )} (cos )m m
l lB P P d

+

q q qÚ  = 1

or

		  2 2( | |)!

2 ( – | |)!

l m
B

l l l m

+
+

 = 1

	 The above gives

		  B = 
2 ( | |)!

2( | |)!

l l l m

l m

+ -
+

	 ...(121)

	 Thus the general solution of the Q equation given by Eq. (120) becomes

		  | |2 ( | |)!
( ) (cos )

2( | |)!
m

l

l l l m
P

l m

+ -Q q = q
+

	 ...(122)

	 In view of Eq. (99) and Eq. (122) we can now write the wavefunction y for the rigid 
rotator with free axis as

		  | |
,| |

1 2 ( | |)!
( ) ( ) (cos )

2( | |)!2
m im

l m l

l l l m
P e

l m
f+ -y = Q q F q = q

+p
	 ...(123)

	 Set of values of l and |m| give the different energy eigenfunctions for the rotator.

	 The corresponding energy eigenvalues are obtained from 

		  l = l(l + 1)

or

		  0
2

2 lI E


 = l(l + 1)

or

		   
2

0

[ ( 1)]
2lE l l

I
= +

	 ...(124)

7.4.3  Rigid Rotator with Fixed Axis

For a rigid rotator with fixed axis, q becomes 90° so that the Schrödinger equation for the 
rotator given by Eq. (91) becomes
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2

0
2 2

2I
E

∂ y + y
∂f 

 = 0	 ...(125)

	 Writing 0
2

2I


 E = m2 as before, Eq. (125) becomes 

		
2

2
2

m
∂ y + y
∂f

 = 0	 ...(126)

	 The general solution of Eq. (126) is given by 

		  y(f) = Ae± imf	 ...(127)

	 As has been shown earlier, the requirement of normalization of y(f) gives 

		  A = 
1

2
ime f

p
	 ...(128)

and the requirement of single valuedness property y(f) demands m to be zero or a positive 
or negative integer. Thus the normalized eigenfunctions of a rigid rotator with fixed axis are 
given by

		  ym(f) = 
1

2
ime f

p
,  m = 0, ±1, ± 2,...	 ...(129)

and the corresponding energy eigenvalues are

		  Em = 
2

2

02
m

I


	 ...(130)

Note: 	 The total wave function describing the state of a rigid rotator with free axis as 
obtained above is

		  y = Ql, ± m(q) F±m(f) = Yl, ± m(q, f)

	 The functions Ye, ±m(q, f) are called spherical harmonics. They are the simultaneous 
eigenfunctions of angular momentum operators L̂ 

z and L̂ 2, being solutions of the eigenvalue 
equations

		  L̂2 Yl, ± m(q f) = l(l + 1) 2 Yl, ± m 

		  L̂ 
z Yl, ± m(q f) = ± m  Yl, ± m.

	 We find that the quantum mechanical problems of rigid rotator and angular momentum 
are directly related.

7.5  HYDROGEN atom AND HYDROGEN-LIKE ATOM

A hydrogen atom consists of an electron of charge – e, mass me and a nucleus having a proton 
of charge + e and mass mp. By hydrogen-like atom we mean a one electron atom having a 
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nucleus with Z protons (e.g. a singly ionized helium atom, a doubly-ionized lithium atom, 
etc.) For generality we consider a hydrogen-like atom.

	 If r be distance between the nucleus and the electron then the potential energy function 
V(r) is given by

		  V(r) = 
2 2

0 0

1 1
–

4 4

Ze Ze
k k

r r

È ˘- = =Í ˙p Œ p ŒÎ ˚
	 ...(131)

	 If E be the total energy of relative motion between the nucleus and the electron then the 
time independent Schrödinger equation for the atom in the centre of mass coordinate system 
is given by 

		  2
2

2
( ) [ – ( )] ( )— y + y 


m

r E V r r  = 0	 ...(132)

where

		  m = 
( )

( )
e p

e p

m Zm

m Zm+
 is the reduced mass.

	 Equation (132) expressed in spherical polar coordinate (r, q, f) is

   
2

2
2 2 2 2 2 2

1 1 1 2
sin [ – ( )]

sin sin

∂ ∂y ∂ ∂y ∂ yÊ ˆ Ê ˆ+ q + + yÁ ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂q ∂qq q ∂f 
m

r E V r
r rr r r

 = 0	 ...(133)

	 In the above,

		  y = y(r, q, f).

	 Using the method of separation of variables we may write

		  y = y(r, q, f) = R(r) Q (q) F (f)	 ...(134)

and as shown in Section 7.2 we obtain the following three equations

	 (i) F equation:	
2

2

d

d

F
f

 m2F = 0	 ...(135)

	 (ii) Q equation:	
2

2

1
sin –

sin sin

d d m

d d

Ê ˆQÊ ˆq + l QÁ ˜ Á ˜Ë ¯q q q qË ¯
 = 0	 ...(136)

	 (iii) R (radial) equation:	 2
2 2 2

1 2
[ – ( )] –

d dR m
r E v r R

dr drr r

lÊ ˆ +Á ˜Ë ¯ 
R = 0	 ...(137)

	 In the above, l = l(l + 1)		  ...(138)

	 Solution of the F equation was obtained in Section 7.2.1 and is given by
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		  Fm(f) = 
1

2
ime f

p
,  m = 0, ±1, ± 2,...	 ...(139)

	 Solution of the Q equation was obtained in Section 7.2.2 and is given by

		  Qlm(q) = 
2 1 ( – | |)!

(–1) (cos ); 0
2 ( | |)!

+ q >
+

m m
l

l l m
P m

l m
	 ...(140)

		  Qlm(q) = 
2 1 ( – | |)!

(cos ); 0
2 ( | |)!

+ q £
+

m
l

l l m
P m

l m
	 ...(141)

	 In the above, 

		  l = 0, 1, 2,...	 ...(142)

		  m = 0, ±1, ±2, ..., ± l	 ...(143)

	 The normalized angular part of the wavefunction is given by

		
1 2 1 ( – | |)!

( , ) ( ) ( ) (–1) (cos )
2 ( | |)!2

f+y q f = Q q F f = q
+p

m m im
m l

lmlm

l l m
P e

l m
	 ...(144)

7.5.1  Solution of the Radial Equation 

Substituting for V(r) given by Eq. (131) and l given by Eq. (138) the radial wave equation 
(137) becomes

		
2 2

2
2 2 2

1 2 ( 1)
–

2

d dR m l l Ze
r E k R

dr dr rr mr

È ˘+Ê ˆ + +Í ˙Á ˜Ë ¯ Î ˚




= 0	 ...(145)

	 For solving Eq. (145) let us introduce a dimensionless variable r as

		  r = gr	 ...(146)

	 The parameter g is chosen as

		  g = 2

–8mE


	 ...(147)

	 Further let us introduce a constant l as

		  l = 
2

–2

k Ze m

E
	 ...(148)

	 We may note that E is negative for bound states of the atom under consideration and hence 
both r and l are real.
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	 In terms of r and l, Eq. (145) becomes

		
2

2 2

2 1 ( 1)
– –

4

d R dR l l
R

dd

È ˘l ++ + Í ˙r r rr rÎ ˚
 = 0	 ...(149)

	 Let us first find the asymptotic solution of Eq. (149). It is the solution in the limit 
r (and hence r) Æ •. In this limit Eq. (149) reduces to

		
2

2

1
–

4

d R
R

dr
= 0	 ...(150)

	 The two independent solutions of the above equation are

		  R = e – r/2

and

		  R = e + r/2

	 The second solution is not acceptable because as r Æ • R Æ •. Hence the acceptable 
asymptotic solution is

		  R(r) = e– r/2 

	 In view of the above asymptotic solution, we may write the exact solution of Eq. (149) 
as

		  R(r) = F(r)e – r/2	 ...(151)

where F(r) is some function of r.

	 Using Eq. (151) in Eq. (149) we obtain

		
2

2
2

( ) ( )
(2 – ) [ – – ( 1)] ( )

d R dF
l l F

dd

r rr + r r + rl r + r
rr

= 0	 ...(152)

	 We find that when r = 0

		  l(l + 1) F(0) = 0

or

		  F(0) = 0, l π 0	 ...(153)

	 Clearly, a power series solution for F(r) must not contain a constant term. Hence, we may 
write the power series solution as

		  F(r) = 
0

•
+

=

rÂ s k
k

k

C 	 ...(154)

	 The above gives 
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		  –1( )
( ) +r = + r

r Â s k
k

dF
C s k

d
	 ...(155)

		
2

– 2
2

( )
( ) ( – 1) +r = + + r

r Â s k
k

d F
C s k s k

d
	 ...(156)

	 Substituting Eqs. (154), (155), (156) in Eq. (152) we obtain 

		
–1 2 2 2( – 1 – ) ( 2 – – )+ +l + r + + + + + rÂ Âs k s k

k k
k k

C s k C s sk k s k l l  = 0	 ...(157)

	 For the above equation to be valid for all value of r, the coefficient of each power of r 
must separately vanish. Equating the coefficient of rs to zero we get

		  C0(s
2 + s – l2 – l) = 0 

	 Since C0 π 0, we get

		  s2 + s – l2 – l = 0 

or 

		  (s – l) (s + l + 1) = 0

	 The above gives

		  s = l  or  s = – (l + 1)	 ...(158)

	 If s = – (l + 1), the first term in F(r) given by Eq. (154) becomes C0 r
– (l + 1)k = 0

( 1)+r l k

C
 

which tends to infinity as r and hence r tends to zero. We hence get s = l. Equating the 

coefficient of rS + k + 1 = rl + k + 1 in Eq. (157) to zero we obtain the recurrence relation

		  Ck + 1 = 
1 –

( 1) ( 2 2)

+ + l
+ + +
l k

k k l
Ck	 ...(159)

	 Using the above relation we can find the coefficients C1, C2, C3, etc., in terms of the 
coefficient C0.

	 For large values of k, Eq. (159) gives

		  Ck + 1 = 
2

k

k
Ck 

or

		
1 1k

k

C

C k

+
= 	 ...(160)

	 We have

		
0 0

1

!

• •
r

= =

= r = rÂ Âk k
k

k k

e b
k

	 ...(161)
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where	 bk = 
1

!k

	 Clearly	 bk + 1 = 
1

( 1)!+k

	 So that	
1 ! 1

( 1)! 1

+
= =

+ +
k

k

b k

b k k

	 For large k we get

		
1 1+

=k

k

b

b k
	 ...(162)

	 F(r) given by Eq. (154) can be written as 

		  F(r) = 
0 0

µ µ

= =

r r = r rÂ Âs k l k
k k

k k

C C 	 ...(163)

	 Using Eq. (161) we obtain 

		  rl er = r rÂl k
kb 	 ...(164)

	 In view of the results given by Eqs. (160), (162), (163) and (164) we get

		  F(r) = rl er

	 So that

		  R(r) = rlere– r/2 = rler/2	 ...(165)

	 R(r) given by eq. (165) is not acceptable because R(r) Æ • as r and hence r Æ •. Thus 
the series governed by the recursion relation given by Eq. (159) does not lead to an acceptable 
radial wavefunction unless the series breaks off after a finite number of terms.

7.5.2  Energy Eigenvalues 

Let us assume the series to break off after the kth term so that Ck + 1 becomes zero. The 
recursion formula given by Eq. (159) then gives

		  l + k + 1 + l = 0

or

		  l = l + k + 1 = n (say)	 ...(166)

	 In Eq. (166), the number k is called the radial quantum number which can take values 
0, 1, 2, 3,... . The number n is called the total or principal quantum number which can take  
the values 1, 2, 3,...
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	 From Eq. (148) we get

		  l2 = 
2 2 4

2 (–2 )
k Z e m

E

	 Using Eq. (166) in the above equation we obtain the energy eigenvalues for a hydrogen-
like atom to be

		  En = 
2 2 4 4 2

2 2 2 2 2 2
0

–
–

2 32 p Œ 
k mZ e me Z

n n
	 ...(167)

	 The energy eigenvalues for a hydrogen atom are obtained by putting Z = 1 in Eq. (167). 
We get

		  En = 
4

2 2 2 2
0

–

32 p Œ 
me

n
	 ...(168)

	 Substituting the values of m, e, Œo and  we obtain the energy eigenvalues of hydrogen 
atom to be

		  E1 = –13.6 eV,  E2 = – 3.4 eV,  E3 = –1.51 eV, etc.

	 The above values are the same as obtained by Bohr on the basis of old quantum theory.

7.5.3  Radial Wave Function

The infinite series for F(r) becomes a polynomial due to the requirement of the series to 
break off after a finite number of terms.

	 Let us write

		  F(r) = rlL(r)	 ...(169)

	 We then get

		  –1( ) ( )
( )l ldF dL

l L
d d

r r= r + r r
r r

	 ...(170)

		
2 2

–1 –1 – 2
2 2

( ) ( ) ( ) ( )
( – 1) ( )l l l ld F d L dL dL

l l l l L
d dd d

r r r r= r + r + r + r r
r rr r

		  = 
2

–1 –2
2

( ) ( )
2 ( – 1) ( )

r rr + r + r r
rr

l l ld L dL
l l l L

dd
	 ...(171)

	 Substituting Eqs. (169), (170) and (171) in Eq. (152) and simplifying we get

		
2

2

( ) ( )
(2 2 – ) ( – – 1) ( )

d L dL
l n l L

dd

r rr + + r + r
rr

 = 0	 ...(172)
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	 If ​L​ q​ 
 p​(r) be the associated Laguerre polynomial of the order p and degree (q – p) then it 

satisfies the differential equation

		
2

2

( ) ( )
( 1 – ) ( – ) ( )

p p
q q p

q

d L dL
p q p L

dd

r r
r + + r + r

rr
 = 0	 ...(173)

	 If we consider q = n + l and p = 2l + l then Eq. (172) becomes identical with Eq. (173) 
and we can identify L(r) as the associated Laguerre polynomial of the order (2l + 1) and 

degree (n + l), i.e., as ​L​ n + l​ 
 2l +1​ (r).

	 We thus obtain the radial wavefunction to be of the form 

		  Rnl(r) = 
2 1 – /2( )ll
n lL e+ r

+r r

	 The normalized radial wavefunction is then

		  Rnl(r) =  2 1 – /2( )ll
nl n lN L e+ r

+r r 	 ...(174)

	 The normalization constant Nnl can be obtained from the normalized integral

		  2 2

0

( )
•

Ú nlR r r dr = 1	 ...(175)

	 Using Rnl(r) given by Eq. (174) and the orthogonal properties of associated Laguerre 
polynomials we obtain 

		  Nnl = 
È ˘Ê ˆÍ ˙± Á ˜Í ˙+Ë ¯Î ˚

1/232

2 3

2 ( – – 1)!

2 [( )!]

Zmke n l

n n n l
	 ...(176)

	 Using the result given by Eq. (176) in Eq. (174) we obtain

		  Rnl(r) = r +
+

È ˘Ê ˆÍ ˙ r rÁ ˜Ë ¯Í + ˙Î ˚

1/23

– /2 2 1
3

H

2 ( – – 1)!
– ( )

2 [( )!]
l l

n l

Z n l
e L

na n n l
	 ...(177)

where 

		  aH = 
2

0
2

4

me

p Œ 
 	 ...(178)

	 Since the reduced mass m is almost the same as the electron mass me (for both hydrogen 
and hydrogen-like atoms), we get

		  aH = 
2

0
2

4

em e

p Œ 
 = a0 (a constant)	 ...(178)
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a0 is identified as the radius of the first circular orbit for the electron in the hydrogen atom 
called the Bohr radius.

	 In view of Eq. (178), the radial wavefunction becomes

		  Rne(r) = r +
+

È ˘Ê ˆÍ ˙ r rÁ ˜Í ˙+Ë ¯Î ˚

3

– /2 2 1
3

0

2 ( – – 1)!
– ( )

2 [( )!]
l l

n l

Z n l
e L

na n n l
	 ...(179)

	 The negative sign for N has been used to make R10 positive.

	 r and r are related according to r = gr = 
2

–8mE
r

	 Substituting for E given by Eq. (167) we get

		  r = 
0

2Z

na
 r	 ...(180)

	 Equation (180) used in Eq. (177) gives the radial wavefunction for hydrogen-like atom 
as 

		  Rnl(r) = – +
+

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜+Ë ¯ Ë ¯ Ë ¯

0

3 –

2 1
13

0 0 0

2 ( – – 1)! 2 2

2 [( )!]

lZ
r

na l
n

Z n l Zr Zr
e L

na na nan n l
	 ...(181)

	 Putting Z = 1 in the above, the radial wavefunction for hydrogen atom is found to be

		  Rnl(r) = – 0

3 –

2 1
3

0 0 0

2 ( – – 1)! 2 2

2 [( )!]

lr

na l
n l

n l r r
e L

na na nan n l
+
+

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜+Ë ¯ Ë ¯ Ë ¯

	 ...(182)

7.5.4  Complete Wavefunction

The complete wavefunction is given by

		  ynlm(r, q, f) = Rnl(r) Qlm(q) Fm(f)

where	 Qlm(q) = 
(2 1) ( – | |)!

(cos )
2( | |)!

m
l

l l m
P

l m

+ q
+

		  Fm(f) = 
1

2
ime f

p

and	 Rnl(r) = 0

3 –

2 1
3

0 0 0

2 ( – – 1)! 2 2

2 [( )!]

lZr

na l
n l

Z n l Zr Zr
e L

na na nan n l
+
+

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜+Ë ¯ Ë ¯ Ë ¯
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	 In the above 

		  n	 = 1, 2, 3,...

		  l	 = 0, 1, 2,... (n – 1)

		  m	 = 0, ±1, ±2,... ± l.

	 The explicit forms of the complete wavefunctions ynlm, for some of the values of n, l, m 
which describe stationary states of the hydrogen-like atom are given below along with the 
spectroscopic designations of the states.

n l m Spectroscopic designation Wave function ynlm 

1 0 0 1s y100 = ​ 1 ___ 
​÷ 

__
 p ​
 ​ ​​( ​ Z __ a0

 ​ )​​3/2
​ ​e​

​ – Z ___ a0
 ​ r

​

2 0 0 2s y200 = ​ 1 ___ 
​÷ 

__
 p ​
 ​ ​​( ​  Z ___ 

2a0
 ​ )​​3/2

​ ​( 2 – ​ Zr __ a0
 ​ )​ ​e ​

​ – Z ___ 
2a0

 ​ r
​

2 1 0 2p y210 = ​ 1 ___ 
​÷ 

__
 p ​
 ​ ​​( ​  Z ___ 

2a0
 ​ )​​5/2

​ r ​e ​
​ – Z ___ 
2a0

 ​ r
​ cos q

2 1 +1 2p y211 = ​  1 ____ 
8​÷ 

__
 p ​
 ​ ​​( ​ Z __ a0

 ​ )​​5/2
​ r ​e ​

​ – Z ___ 
2a0

 ​ r
​ sin q eif

2 1 –1 2p y21 – 1 = ​  1 ____ 
8​÷ 

__
 p ​
 ​ ​​( ​ Z __ a0

 ​ )​​​ 
5 __ 
2

 ​
​ r ​e​

​ – Zr ___ 
2a0

 ​
​ r sin q e– if 

	 Putting Z = 1 in the above, we obtain the wavefunctions for the hydrogen atom.

7.5.5  Degeneracy of the Energy Levels

The energy eigenvalues for the hydrogen-like or hydrogen atom depend only on the principal 
quantum numbers n as is seen from the equations (167) and (168). The energy eigenfunctions, 
however, depend on the quantum numbers n, l and m. We have seen that for a given value 
of n, l can take values 0 to n – 1 and for each of these l values there are 2l + 1 values of the 
m from – l to + l. Clearly the energy level defined by the energy eigenvalue En is degenerate. 
The degeneracy is given by

		  D = 
–1

0

(2 1)
n

l

l
=

+ =Â n2	 ...(183)

	 The ground state, i.e., the minimum energy state for which n = 1 is clearly non-degenerate 
(n2 = 1). The first excited state for which n = 2 is 4-fold degenerate and so on.
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7.5.6  Probability Distribution Function

Let us consider the atom in the state described by the wavefunction ynlm(r, q, f). The 
probability of finding the electron in the volume element dt = r2 dr sin q dq df about the 
point (r, q, f) is then given by

		  Pnlm dt = |ynlm|2 dt = |ynlm|2 r2dr sin q dq df 

		  = |Rnl(r)|2 |Ylm(q, f)|2 r2dr sin q dq df 

	 Clearly, the probability of finding the electron within a spherical shell of radius r and 
thickness dr from the nucleus irrespective of its angular position is given by

		  Pnl(r)dr = 
2

2 2

0 0

| ( )| sinnlR r r dr d d
p p

q q fÚ Ú

or		  Pnl(r) dr = 4p |Rnl (r)|2 r2dr	 ...(184)

	 In this case, the atom is in the ground state described by the wavefunction

		  y100 = 0

–

3 1/2
0

1

( )

r

ae
ap

	 The probability of finding the electron at the distance r from the nucleus is according to 
Eq. (184) given by

		  P10(r) = 0 0

–2 –2

2 2
3 3
0 0

4 4

( )

r r

a ae r e r
a a

p =
p

	 ...(185)

	 For P10(r) to be the maximum we have 

		  10 ( )d P r

dr
 = 0

or

		  0

–2

2
3
0

4
r

ad
e r

dr a

È ˘
Í ˙
Í ˙Î ˚

 = 0

or

		  0 0

–2 –2

2

0

2
2 –

r r

a ae r r e
a

 = 0

or

		  2r – 
2

0

2r

a
 = 0

or 
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		  1 – 
0 0

0 or
r r

a a
=  = 1

or

		  r = a0	 ...(186)

	 Thus the electron of the hydrogen atom in the ground state is found with maximum 
probability at a distance equal to the Bohr radius which is about 0.5 Å from the nucleus.

	 Equation (185) shows that P10 = 0 at r = 0 and also at r = •. We thus find from the theory 
of hydrogen atom based on Schrödinger wave mechanics that the position of the electron in 
the atom is not certain as opposed to Bohr’s theory and instead we can say that the electron is 
found for most of the time around the Bohr radius. The result is consistent with Heisenberg’s 
uncertainty principle.

7.5.7  Properties of the Radial Wave Function of Hydrogen Atom

The radial wavefunctions of the hydrogen atom have the properties shown in the Fig. 7.2. 
We observe the following:

	 (i)	 They behave like r l for small r 

	 (ii)	 They decrease exponentially for large value of r since ​L​ n + l​ 
 2l +1​ is dominated by the 

highest power rn – l – 1.

Fig. 7.2
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	 (iii)	 The radial function Rnl (r) has n – l – 1 radial nodes since  2 1

0

2l
n l

r
L

na
+
+

Ê ˆ
Á ˜Ë ¯

 is a polynomial 

of degree n – l – 1.

7.6  Solved Examples

Example 1  A rigid rotator which rotates freely in the x–y plane has a moment of inertia 
I about the axis of rotation. f is the angle between the x-axis and the axis of rotation. 
Find (a) the energy eigenvalues and the corresponding eigenfunctions. (b) If at t = 0, the 
rotator is described by the wavefunction y(0) = A sin2 f, find the wavefunction at the 
time t (t > 0).

Solution:
	 (a) For the given rotator, the Hamiltonian is given by

		  Ĥ = 
2 2

2

–

2

d

I df


	 ...(i)

	 If y be the energy eigenfunction belonging to the energy eigenvalue E, we have the 
eigenvalue equation

		  Ĥ y = Ey 

or

		
2 2

2

–

2

d

I d

y
f

  = Ey 

or

		
2

2 2

2d I

d

y +
f 

 Ey = 0

or

		
2

2

d

d

y
f

 + m2y = 0	 ...(ii)

where

		  m2 = 
2

2I


E	 ...(iii)

	 The general solution of Eq. (ii) is

		  y(f) = Aeimf	 ...(iv)

where A is an arbitrary constant.

	 Single valuedness of y(f) requires

		  y(f) = y(f + 2p)	 ...(v)

	 Using Eq. (iv) in Eq. (v) we get
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		  m = 0, ±1, ±2,...	 ...(vi)

	 Thus, we may write the solution given by Eq. (iv) as

		  y(f) = Aeimf, m = 0, ±1, ±2,...	 ...(vii)

	 Normalization of y(f) gives

		
2

0

* ( ) ( )d
p

y f y f fÚ  = 1

or

		  |A|2 = 
1 1

or
2 2

A =
p p

	 ...(viii)

	 We thus get energy eigenvalues, using Eq. (iii), as

		  Em = 
2

2I


 m2,  m = 0, ±1, ±2,...	 ...(ix)

and the energy eigenfunctions, using Eq. (viii) in Eq. (vii), as

		  ym(f) = 
1

2p
eimf,  m = 0, ±1, ±2,...	 ...(x)

	 (b) We have

		  y(0) = A sin2 f 

	 We may express the above as

		  y(0) = f =[1 – cos 2 ] –
2 2 4

A A A
 (ei2f + e– i2f)	 ...(xi)

	 The first term corresponds to m = 0.

	 The term ​ A __ 
4

 ​ ei2f corresponds to m = +2

	 The term ​ A __ 
4

 ​ e– i2f corresponds to m = – 2 

	 Now we get y(t) from y(0) as

		  y(t) = 2–2– –
2 4 4

i E tiA A A
e ef e– i2f​e​– iE2 t​

or		  y(t) = 

2 2– 2 – 2
2 – 2– –

2 4 4

i i
t ti iI I

A A A
e e e ef f

 

or		  y(t) = 

2 2

2 – –2 –

– –
2 4 4

i t i t
I IA A A

e e

Ê ˆ Ê ˆ
f fÁ ˜ Á ˜Ë ¯ Ë ¯
 

	 ...(xii)
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Example 2 	 For a rigid hydrogen molecule (H2) calculate the energies of the stationary 
states corresponding to l = 1 and l = 2. Find the bond length of the molecule in terms of 
the energy difference between the states.

Solution:  A rigid hydrogen molecule can be considered as a rigid rotator with free axis. As 
such the energy eigenvalues are given by

		  El = 
2( 1)

,
2

l l

I

+ 
  l = 0, 1, 2,...	 ...(i)

where	 I = the moment of inertia of the molecule

		  = ma2 = ​  mm ______ m + m  ​ a
2 = ​ m __ 

2
 ​ a2	 ...(ii)

	 In the above m is the mass of each atom and a is the bond length.

	 We have from Eq. (i)

	 the energy corresponding to l = 1 as E1 = 
2

I



	 the energy corresponding to l = 2 as E2 = 
23

I



	 We get	 E2 – E1 = 
22

I



which gives	 I = 
2

2 1

2

–E E


	 ...(iii)

	 From Eq. (ii) we have the bond length given by

		  a = 
2I

m
 

	 Using Eq. (iii) in the above we get

		  a = 
2

2 1 2 1

2 2 1
2

( – ) ( – )E E m m E E

¥ =
 	 ...(iv)

Example 3  A particle of mass m is moving in a three-dimensional potential given by

		  V(x, y, z) = ​ 1 __ 
2

 ​ mw2z2  for 0 < x < a,  0 < y < a

		  = • elsewhere.

Write down (a) the total energy (b) the wavefunction for the particle.
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Solution:  The given three-dimensional potential essentially consists of

	 (i)	 an infinite potential well along the x-axis

	 (ii)	 an infinite potential well along the y-axis

	 (iii)	 a harmonic oscillator potential along the z-axis.

	 The energy due to the potential well along the x-axis = 
2 2

2
22

xn
ma

p 

	 The energy due to the potential well along the y-axis = 
2 2

2
22

yn
ma

p 

	 The energy due to the harmonic oscillator potential = 
Ê ˆ+ wÁ ˜Ë ¯


1

2zn

	 (a) Clearly, the total energy of the particle is 

		​  E​nx ny nz
​ = 

2 2
2 2

2

1
( )

22
x y zn n n

ma

p Ê ˆ+ + + wÁ ˜Ë ¯


  

	 (b) The total wavefunction of the particle is 

		
2

( , , ) sin sin ( )
x y z z

yx
n n n n

nn
x y z x y Z z

a a a

pÊ ˆpÊ ˆy = Á ˜ Á ˜Ë ¯ Ë ¯

	 where Znz
 is given is terms of Hermite polynomial as 

		

2

0

–

2 2
1/2

00

1
( )

[ 2 ! ]z zz

z

z
n nn

z

z
Z z e H

zn z

Ê ˆ
= Á ˜Ë ¯p

		  z0 = 
n

p
w


Example 4  Determine the expectation values for r and r2 when a hydrogen atom is in 
its ground state, r being the distance of the electron from the nucleus. 

Solution:  The wavefunction for the hydrogen atom in its ground state is 

		  y100 = 0

–

3 1/2
0

1

( )

r

ae
ap

	 By definition we have the expectation value of r irrespective of its angular position with 
respect to the nucleus as given by 

		
µ p p

· Ò = y y t = y q q fÚ Ú Ú Ú
2

* 2 2
100 100 100

0 0 0

| | sinr r d r r dr d d
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		  = 4p 0

–22
3

3
00

1
r

ae r dr
a

p

pÚ
or 

		
4

0
03

0

4 3
3!

2 2

a
r a

a

Ê ˆ· Ò = =Á ˜Ë ¯

	 The expectation value of r2 is similarly given by 

		  0

–2

2 4
3
00

1
4

r

ar e r dr
a

µ

· Ò = p
pÚ

		  = 
5

0
3
0

4
4!

2

a

a

Ê ˆ
Á ˜Ë ¯

or 

		  2 2
03r a· Ò =

Example 5  Obtain the expectation value of the potential energy v(r) of the electron in a 
hydrogen atom in its ground state. 

Solution: 
The normalized wavefunction for the hydrogen atom in its ground state is 

		  y100 = 0

–

3 1/2
0

1

( )

r

ae
ap

	 The potential energy of the electron in the Coulomb field of the nucleus is given by 

		  V(r) = –
2

0

1

4

e

rpŒ

	 By definition, we get

		
2

2
100

0

1
( ) | | –

4

e
V r d

r

Ê ˆ
· Ò = y tÁ ˜p ŒË ¯Ú

		  = 
• p pÊ ˆ

y q q fÁ ˜p ŒË ¯Ú Ú Ú
22

2 2
100

00 0 0

1
| | – sin

4

e
r dr d d

r

		  = 
•

p ¥
p Œ p Ú 0

–22

3
0 0 0

1
– 4

4

r

ae
e r dr

a
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		  =
22 2
0

3 2 3
0 0 0 0

0

1
– –

42

ae e

a a

a

¥ = ¥
p Œ p ŒÊ ˆ

Á ˜Ë ¯

or		
2

0 0

1
( ) –

4

e
V r

a
· Ò =

p Œ

Example 6  Calculate 
1

r
 for a singly-charged helium ion in its ground state.

Solution:  The radial part of the wavefunction of a hydrogen-like atom in the ground state 
is 

		  R10(r) = 0

3/2
–

0

2
Z

r
aZ

e
a

Ê ˆ
Á ˜Ë ¯

	 For Hc
+ we have Z = 2 so that the radial wavefunction becomes 

		  R10(r) = 0

3/2 2
–

0

2
2

r
ae

a

Ê ˆ
Á ˜Ë ¯

		  = 0

2
–

3/2
0

4 2 r
ae

a

	 The radial probability density is then given by 

		  P10(r) = 0

– 4

2 2 3
10 3

0

32
| ( )|

r

ar R r r e
a

=

	 We thus get 

		  0

– 4

3
3
00 0

1 1 1 32
( )

r

aP r dr r e dr
r r r a

• •

= =Ú Ú

		  = 
•

Ú 0

– 4

3
0 0

32
r

ae r dr
a

		  = 
2
0

3
0

32

16

a

a
¥

or 

		
0

1 2

r a
=  	  
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Example 7  Obtain the effective potential energy of the electron in a hydrogen atom. 
Under what condition does the bound state for the atom occur?

Solution:  The radial wave equation for hydrogen atom is given by

		  2
2 2 2

1 2 ( 1)
[ – ( )] –

d dR m l l
r E V r R R

dr drr r

+Ê ˆ +Á ˜Ë ¯ 
 = 0	 ...(i)

	 where R = R (r) is the radial wavefunction for the atom.

	 We can write Eq. (i) as

		
2

2
2

2
[ – ( )] – ( 1)

d dR mr
r E V r R l l R

dr dr
Ê ˆ + +Á ˜Ë ¯ 

 = 0	 ...(ii)

	 Let us introduce a function of r, namely u(r) as 

		  u(r) = r R(r)	 ...(iii) 

	 The above gives 

		  R(r) = ​ 
u(r)

 ____ r  ​	 ...(iv)

	 Using Eq. (iv) in Eq. (ii) we get 

		
2

2 2
2 2

1 ( ) 1 2 ( ) ( )
– ( ) [ – ( )] – ( 1)

d du r mr u r u r
r r u r E V r l l

dr r dr r rr

È ˘¥ ¥ + +Í ˙Î ˚ 
 = 0

or

		  2
2

( ) 2 ( )
– ( ) [ – ( )] ( ) – ( 1)

d du r m u r
r u r r E V r u r l l

dr dr r
È ˘ + +Í ˙Î ˚ 

 = 0 

or 

		
2

2 2

( ) ( ) ( ) 2 ( 1)
– [ – ( )] ( ) – ( )

d u r du r du r m l l
r E V r ru r u r

dr dr rdr

++ +


 = 0 

	 Dividing throughout by r, we get 

		
2

2 2 2

( ) 2 ( 1)
[ – ( )] ( ) – ( )

d u r m l l
E V r u r u r

dr r

++


 = 0

or

		
2 2

2 2 2

( ) 2 ( 1)
– ( ) – ( )

2

d u r m l l
E V r u r

dr mr

È ˘++ Í ˙
Î ˚




 = 0
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or 		
2

effective2 2

( ) 2
[ – ] ( )

d u r m
E V u r

dr
+


 = 0	 ...(v)

	 where	 Veffective = V(r) + 
2

2

( 1)

2

l l

mr

+ 
	 ...(vi) 

	 Equation (v) is the Schrödinger equation for a particle of mass m and total energy E 
moving in a potential field given by the potential energy function Veffective defined by eq. (vi).

	 The first term in eq. (vi) is the Coulomb potential energy given by 

		  V(r) = –
2

0

1

4

e

rpŒ

	 The second term can be recognized as the centrifugal potential energy function because its 
first derivative with respect to r gives the centrifugal force if we take the angular momentum 

of the electron as  ( 1)l l +  .

	 The plot of Veffective against r is as shown in the Fig. 7.3. 

 

Fig. 7.3

	 For total energy positive, Veffective is positive corresponding to repulsive force and hence 
positive energy cannot correspond to bound state. On the other hand if the total energy is 
negative say – E, the effective potential remains negative corresponding to attractive force in 
the range r1 < r < r2. The state of the particle is clearly a bound state. 

Example 8  A hydrogen atom is in its ground state. Find the root mean square deviation 
in the measurement of r (distance of the electron from the nucleus).

Solution:  The root mean square deviation in the measurement of r is by definition given by 

		  Dr = 2 2–r r· Ò · Ò  
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	 In the ground state of hydrogen atom, we have seen is Example 4

		  0
3

2
r a· Ò =  

and	 2 2
03r a· Ò =

	 We hence obtain 

		  Dr = 2 2
0 0 0

3
3 –

4 4

a
a a a= .



One of the important properties of a physical system is the angular momentum which is found 
to play an important role in the problems of collision and scattering. In quantum systems, 
particularly in bound state problems, angular momentum concept is used with advantage. 
In the studies of atomic, molecular and nuclear spectroscopy, a thorough understanding of 
angular momentum is found to be essential. Besides, angular momentum is found to bear 
intimate relation with rotation of a system. Such relations find important uses in problems 
which, for mathematical convenience, require to be described in rotating coordinate frame.

8.1  Classical Definition of angular momentum 

Let us first consider the angular momentum classically. For this, let us consider a particle of 
mass m moving along a path AB about some fixed point O as shown in the Fig. 8.1. Let at some 
instant of time, the particle be at the position P. The position P of the particle with respect to 

the point O is defined by the position vector ​
​___

 
›
 OP​ or ​

​_
 
›
 r ​. Let the linear momentum of the particle 

at the position P be ​
​_

 
›
 p ​. The direction of ​

​_
 
›
 p ​ is along the tangent to the path AB at P.

Fig. 8.1

	 Classically, the angular momentum (which is a vector quantity) of the particle about the 
point O when it is at P is defined as

		  ​
​_
 
›
 L ​ = ​

​_
 
›
 r ​ × ​

​_
 
›
 p ​	 …(1)

	 With the point O as the origin, let us consider a rectangular coordinate system (XYZ). If 
x, y, z be the coordinates of the point P then

		  ​
​_

 
›
 r ​ = îx + j ̂y + k̂z	 …(2)

	 Further, if px, py and pz be respectively the components of ​
​_
 
›
 p ​ along X, Y and Z axes then

8 Angular Momentum in 
Quantum Mechanics
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		​ 
​_

 
›
 p ​ = îpx + ĵ py + k̂pz	 …(3)

	 If Lx, Ly and Lz be respectively the X, Y and Z components of ​
​_

 
›
 L ​, then using equations (2) 

and (3) in Eq. (1), we get

		

ˆˆ ˆ

ˆˆ ˆ
x y z

x y z

i j k

iL jL kL x y z

p p p

Ê ˆ
Á ˜+ + = Á ˜
Á ˜Ë ¯

	 Evaluating the r.h.s of the above equation and comparing the coefficients of î , ĵ  and k̂ on 
both sides we obtain 

		  Lx = ypz – zpy	 …(4)

		  Ly = zpx – xpz	 …(5)

		  Lz = xpy –ypx	 …(6)

8.2  Quantum mechanical description of 
angular momentum

In order to treat angular momentum quantum mechanically, we replace the physical 
quantities ​

​_
 
›
 L ​, ​

​_
 
›
 r ​, ​

​_
 
›
 p ​, Lx, Ly, Lz, x, y, z, px, py and pz by corresponding linear Hermitian 

operators

		  x Æ x̂ = x 

		  y Æ ŷ = y

		  z Æ ẑ = z

		  px Æ p̂x = – ih ​ ∂ ___ 
∂x

 ​

		  py Æ p̂y = – ih ​ ∂ ___ 
∂y

 ​

		  pz Æ p̂z = – ih ​ ∂ __ 
∂z

 ​	 …(7)

	 Substituting the above in Eqs. (1), (4), (5) and (6) we obtain the quantum mechanical 

operators corresponding to the quantities ​
​_
 
›
 L ​, Lx, Ly, Lz as

		  ​
​_

 
›
 L ​

ˆ
 = – ih​

​_
 
›
 r ​ × ​

​__
 
›
 —​	 …(8)

		  L̂x = – th ​( y ​ ∂ __ 
∂z

 ​ – z ​ ∂ ___ 
∂y

 ​ )​	 …(9) 

		  L̂y = – th ​( z ​ ∂ ___ 
∂x

 ​ – x ​ ∂ __ 
∂z

 ​ )​	  …(10)
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		  L̂z = – th ​( x ​ ∂ ___ 
∂y

 ​ – y ​ ∂ ___ 
∂x

 ​ )​	 …(11)

8.3  Commutation Relation between 
angular momentum operators

Consider an arbitrary function y defined in the domain of definition of the angular momentum 
operators. We then have,

		​  [ L̂ 
x, L̂

 
y ]​ y = L̂ xL̂

 
yy – L̂ y L̂

 
xy

	 Using Eqs. (9) and (10) in the above we get

		  2 2ˆ ˆ[ , ] – – – – –x yL L y z z x z x y z
z y x z x z z y

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆy = y + yÁ ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯
h h

		  2 2– – – – –y z z x z x y z
z y x z x z z y

Ê ˆ Ê ˆ∂ ∂ ∂y ∂y ∂ ∂ ∂y ∂yÊ ˆ Ê ˆ= +Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯
h h

		

2– – –y z y x z z z x
z x z z y x y z

È ˘∂ ∂y ∂ ∂y ∂ ∂y ∂ ∂yÊ ˆ Ê ˆ Ê ˆ Ê ˆ= +Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚
h

		

È ˘Ê ˆ Ê ˆ∂ ∂y ∂ ∂y ∂ ∂y ∂ ∂yÊ ˆ Ê ˆ+ +Í ˙Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯Î ˚
h2 – –z y z z x y x z

x z x y z z z y

		

2 2 2 2
2

2
– – –y z y z z z z x

z x x y x y zz

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ∂ y ∂y ∂ y ∂ y ∂ y= + +Í ˙Á ˜ Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂∂Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
h

		

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ∂ y ∂ y ∂ y ∂ y ∂y+ + +Í ˙Á ˜ Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂∂Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
h

2 2 2 2
2

2– –z y z z x y x z x
x z x y z y yz

		   2 2– y x
x y

∂y ∂y= +
∂ ∂

h h

		   2 –x y
y x

Ê ˆ∂y ∂y= Á ˜∂ ∂Ë ¯
h
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		  ˆ ˆ ˆ[ , ] (– ) –x y zL L i i x y i L
y x

È ˘∂ ∂y = ¥ y = yÍ ˙∂ ∂Î ˚
h h h

	 The above thus gives 

		​  [ Lx
ˆ , L̂ 

y ]​ = ihL̂ z	 …(12)

	 Proceeding as above we obtain

		​  [ L̂   

y, L̂
  
z ]​ = ihL̂ x	 …(13)

and 

		​  [ L̂ z, L̂ 
x ]​ = ihL̂ 

y	 …(14)

	 The commutation relations given by Eqs. (12), (13) and (14) can be written collectively 
as

		​  [ L̂ 
i, L̂

 
j ]​ = ihL̂ 

k	 …(15)

i, j and k being respectively x, y and z taken in a cyclic manner.

	 We observe that the components of angular momentum operators do not commute with 
each other and as a consequence, the operators do not possess simultaneous eigenfunctions. 
Clearly, any pair of the three components of angular momentum cannot be simultaneously 
measured with unlimited accuracy, a result which follows from the general uncertainty 
relation.

	 The commutation relation given by Eqs. (12), (13) and (14) can be written in a compact 
form as

		  ​
​_

 
›
 L ​̂   × ​

​_
 
›
 L ​

ˆ
  = ih​

​_
 
›
 L ​

ˆ
	 …(16)

Note:  In the usual sense the vector product of a vector with itself is zero. Hence we have to 

consider ​
​_

 
›
 L ​ 

ˆ 
as a vector operator and not as a vector in the usual sense. The left hand side has 

to be considered as a determinant and has to be expanded before the term-by-term comparison 
with the right hand side.

8.4 Sq uare angular momentum operator (L̂
2
) and 

commutation Relations 

	 (i)	 L̂ 2 and L̂ 
x

	 (ii)	 L̂ 2 and L̂ y

	 (iii)	 L̂ 2 and L̂ z
	 Since angular momentum ​

​_
 
›
 L ​ is an observable L2 is also an observable given by 
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		  L2 = ​
​_

 
›
 L ​ ◊ ​

​_
 
›
 L ​ = ​L​ x​ 

2​ + ​L​y​ 
2​ + ​L​z​ 

2​	 …(17)

	 The operator corresponding to the quantity L2 is a scalar operator (unlike the operator 
corresponding to ​

​_
 
›
 L ​ which is a vector operator) and can be expressed as

		  L̂ 2 = L​̂ ​x​ 
2
​ + L​̂ ​y​ 

2
​ + L​̂ ​z​ 

2
​	 …(18)

	 We have using Eq. (18)

	 (i)	​ [ L̂ 2, L̂x ]​ = ​[ ​( L​̂ ​x​ 2
​ + ​L̂​

y
​ 

2
​ + ​L̂​z​ 

2
​ )​, L̂x ]​

			   = ​[ ​L̂​x​ 
2 
​, L̂x ]​ + ​[ ​L̂​y​ 

2
​, L̂ 

x ]​ + ​[ ​L̂​z​ 
2
​, L̂ 

x ]​

		  = ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,x x x x x x y x y y y x z x z z z xL L L L L L L L L L L L L L L L L LÈ ˘ È ˘ È ˘ È ˘ È ˘ È ˘+ + + + +Î ˚ Î ˚ Î ˚ Î ˚ Î ˚ Î ˚

			   = 0 + 0 – i   L̂ 
z L̂

 
y – i   L̂y L̂z + i   L̂ 

y  L̂
 
z + i   L̂ 

z L̂
 
y	

or	​ [ L̂ 2, L̂x ]​ = 0	 [using Eq. (15)]  …(19)

	 (ii)	 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ, ( ),y x y z yL L L L L LÈ ˘ È ˘= + +Î ˚ Î ˚

		  2 2 2ˆ ˆ ˆ ˆ ˆ ˆ, , ,x y y y z yL L L L L LÈ ˘ È ˘ È ˘= + +Î ˚ Î ˚ Î ˚

		  = ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,x y x x x y y y y y y y z y z z z yL L L L L L L L L L L L L L L L L LÈ ˘ È ˘ È ˘ È ˘ È ˘ È ˘+ + + + +Î ˚ Î ˚ Î ˚ Î ˚ Î ˚ Î ˚

		  = – i   L̂ zL̂ x + i   L̂xL̂z + 0 + 0 – i   L̂ xL̂ z – i   L̂ z L̂ x 	

or	 2̂ ˆ, 0yL LÈ ˘ =Î ˚
	 ...(20)

	 (iii)	 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ, ( ),z x y z zL L L L L LÈ ˘ È ˘= + +Î ˚ Î ˚

	 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ, , ,x z y z z zL L L L L LÈ ˘ È ˘ È ˘= + +Î ˚ Î ˚ Î ˚ 	

		  = ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,x z x x x z y z y y y z z z z z z zL L L L L L L L L L L L L L L L L LÈ ˘ È ˘ È ˘ È ˘ È ˘ È ˘+ + + + +Î ˚ Î ˚ Î ˚ Î ˚ Î ˚ Î ˚

	 = – ihL̂ 
y L̂

 
x – ihL̂x L̂y + ihL̂ 

x L̂
 
y + ihL̂ 

y L̂
 
x + 0 + 0

or	 2̂ ˆ 0zL LÈ ˘ =Î ˚ 	 …(21)
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8.5  Conclusion

Results expressed by Eqs. (19), (20) and (21) show that L̂2 commutes with all the three 

component operators L̂x, L̂ 
y and L̂ 

z. As a consequence, the square of angular momentum 
can be measured simultaneously with any of the three components with unlimited accuracy. 
However, as the component operators among themselves are non-commuting, it is not possible 

to measure L2 and all the three componets Lx, Ly and Lz simulataneously. Thus we cannot have 
a representation in which all the four operators (namely, L̂ 2, L̂ 

x, L̂
  
y, L̂

 
z) have simultaneous 

eigenfunctions. It is usual to consider the eigenvalue problem in such a way that L̂2 and one of 
the components usually L̂z have simultaneous eigenfunctions. The selection of L̂z is however, 
completely arbitrary.

8.6	E xpression for angular momentum operators in 
spherical polar coordinates 

Transformation equations between the cartesian coordinates x, y, z and the spherical polar 
coordinates r, q, f of a point in space are

		  x = r sin q cos f

		   = r sin q sin f	 ...(22)

		  z = r cos q

	 The reverse transformation relations are

		  r2 = x2 + y2 + z2

		  tan f = ​ 
y
 __ x ​	 ...(23)

		  tan q = ​ 
​÷ 

______

 x2 + y2 ​
 _______ z  ​

	 We have from Eq. (11)

		  L̂z = – ih ​( x ​ ∂ ___ 
∂y

 ​ – y ​ ∂ ___ 
∂x

 ​ )​	
	 In units of h the above becomes

		  L̂z = – i ​( x ​ ∂ ___ 
∂y

 ​ – y ​ ∂ ___ 
∂x

 ​ )​	 ...(24)

	 We may write Eq. (24) as
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		  L̂z = – i ​[ x​( ​ ∂ __ 
∂r

 ​ ​ ∂r ___ 
∂y

 ​ + ​ ∂ ___ 
∂q

 ​ ​ ∂q ___ 
∂y

 ​ + ​ ∂ ___ 
∂f

 ​ ​ 
∂f

 ___ 
∂y

 ​ )​ – y ​( ​ ∂ __ 
∂r

 ​ ​ ∂r ___ 
∂x

 ​ + ​ ∂ ___ 
∂q

 ​ ​ ∂q ___ 
∂x

 ​ + ​ ∂ ___ 
∂f

 ​ ​ 
∂f

 ___ 
∂x

 ​ )​ ]​	 ...(25)

	 We have

		  r 2 = x 2 + y2 + z2	 ...(26)

	 Differentiating Eq. (26) with respect to x we get

		  2r ​ ∂r ___ 
∂x

 ​ = 2x  or ​  ∂r ___ 
∂x

 ​ = ​ x __ r ​	 ...(27)

	 Similarly, we get on differentiating Eq. (26) with respect to y and z  

		​   ∂r ___ 
∂y

 ​ = ​ 
y
 __ r ​	 …(28)

		​   ∂r __ 
∂z

 ​ = ​ 
z
 _ r ​	 …(29)

	 Further, we have

		  tan f = ​ 
y
 __ x ​	 …(30)

	 Differentiating the above with respect to x we get

		  sec2 f ​ 
∂f

 ___ 
∂x

 ​ = – ​ 
y
 __ 

x2
 ​

or 

		​  
∂f

 ___ 
∂x

 ​ = – ​ 
y
 ________ 

x2 sec2 f
 ​	 …(31)

	 Similarly, differentiating Eq. (30) with respect to y we get

		  sec2 f ​ 
∂f

 ___ 
∂

 ​ = ​ 1 __ x ​

 

or		​  
∂f

 ___ 
∂y

 ​ = ​ 
1
 ________ 

x sec2 f
 ​	 …(32)

	 The last of Eq. (23) gives

		  tan2 q = ​ 
x2 + y2

 ______ 
z2

 ​	  …(33)

	 Differentiating Eq. (33) with respect to x we obtain

		  2 tan q sec2 q ​ ∂q ___ 
∂x

 ​ = ​ 2x ___ 
z2

 ​
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or		​   ∂q ___ 
∂x

 ​ = ​  x ____________  
z2 tan q sec2 q

 ​	 …(34)

	 Similarly, we get

		​   ∂q ___ 
∂y

 ​ = ​ 
y
 ____________  

z2 tan q sec2 q
 ​	 …(35)

	 Substituting Eqs. (27), (28), (31), (32), (34) and (35) in Eq. (25), we get

		

ˆ – – –z

r r
L i x x x y y y

r y y y r y y y

È ˘Ê ˆ Ê ˆÊ ˆ Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂q ∂ ∂f ∂ ∂ ∂ ∂q ∂ ∂f= + + +Í ˙Á ˜ Á ˜ Á ˜ Á ˜Á ˜ Á ˜∂ ∂ ∂q ∂ ∂f ∂ ∂ ∂ ∂q ∂ ∂f ∂Ë ¯ Ë ¯ Ë ¯ Ë ¯Ë ¯ Ë ¯Î ˚

	 = – – – –
r r

i x y x y x y
r y x y x y x

È ˘Ï ¸ Ï ¸ Ï ¸∂ ∂ ∂ ∂ ∂q ∂q ∂ ∂f ∂f+ +Ì ˝ Ì ˝ Ì ˝Í ˙∂ ∂ ∂ ∂q ∂ ∂ ∂f ∂ ∂Ó Ó Ó˛ ˛ ˛Î ˚

	 = 2 2 2 2

2

2 2 2

– – –
tan sec tan sec

sec sec

y x y x
i x y x y

r r r z z

x y

x x

È Ê ˆ∂ ∂Ê ˆ +Í Á ˜ Á ˜Ë ¯∂ ∂q q q q qË ¯ÍÎ
˘Ê ˆ∂+ + ˙Á ˜∂f f fË ¯ ˙̊

or	

		  L̂z = – i ​ ∂ ___ 
∂f

 ​ [cos2 f + tan2 f cos2 f]

or		  L̂z = – i ​ ∂ ___ 
∂f

 ​	 …(36)

	 Proceeding as above we can show that

		  L̂2 = –​[  ​  1 _____ 
sin2 q

 ​ ​ ∂
2

 ___ 
∂f2

 ​ + ​  1 _____ 
sin q

 ​ ​ ∂ ___ 
∂q

 ​ ​( sin q ​ ∂ ___ 
∂q

 ​ )​ ]​	 …(37)

	 We may note that the expressions for L̂z and L̂2 were derived using h = 1. To be exact, the 
expressions for L̂z and L̂ 2 are

		  L̂ 
z = – ih ​ ∂ ___ 

∂f
 ​	 …(36a)

and 

		  L̂2 = – h2 ​[  ​  1 _____ 
sin2 q

 ​ ​ ∂
2

 ___ 
∂f2

 ​ + ​  1 _____ 
sin q

 ​ ​ ∂ ___ 
∂q

 ​ ​( sin q ​ ∂ ___ 
∂q

 ​ )​ ]​	 …(37a) 
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8.7 E igenvalues and eigenfunctions of L̂z 

Angular momentum ​
​_

 
›
 L ​ is a vector quantity. Hence, the eigenvalues of angular momentum 

operator ​
​_

 
›
 L ​

ˆ
 are defined along specific directions. It is customary to define (and hence to mea 

sure) angular momentum along the Z-direction. We are thus interested in determining the 

eigenvalues and also the eigenfunctions of L̂z .

	 Let y(r, q, f) be an eigenfunction of L̂ 
z belonging to an eigenvalue Lz. We then have the 

eigenvalue equation given by

		  L̂ 
z y(r, q, f) = Lz y (r, q, f)	 …(38)

	 The operator L̂ 
z (in spherical polar coordinates) is given by Eq. (36)

		  L̂ 
z = – i ​ ∂ ___ 

∂f
 ​so that Eq. (38) takes the form

		  – i ​ 
∂y(r, q, f)

 _________ 
∂f  

 ​  = Lzy(r, q, f)

or 
		​  

∂y(r, q, f)
 _________ 

y(r, q, f)  
 ​ = iLz∂f

	 Integrating the above we obtain

		  ln y(r, q, f) = iLzf + constant	 …(39)

	 The constant in the above equation is independent of f and hence it can be taken as a 
function of r and q. Considering the constant as 1n f (r, q), Eq. (39) yields

		  y(r, q f) = f(r, q) ​e​itzf​	 …(40)

	 For y(r, q, f), given by Eq. (40), to be an acceptable eigenfunction it must be single 
valued. This condition requires

		  y(r, q, f) = y(r, q, f + 2p)	 …(41)

	 Using Eq. (41) in Eq. (40) we obtain

		  f(r, q) ​e​iLzf​ = f(r, q) ​e​iLz​(f + 2p)	 ...(42)

	 The above gives

		  ​e​iLz2p​ = 1 = ei2pm	 …(42)

where	 m = 0, ± 1, ± 2,.........	 …(43)

	 Equation (42) thus gives	 Lz = m	 …(44)
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	 We find that the eigenvalues L̂ 
z are 0, + ve, as well as –  ve integers. The possible values 

of Lz are thus

		  Lz = 0, ± 1, ± 2,......	 …(45) 

	 Eigenfunction y(r, q, f) of L̂ 
z given by Eq. (40) can be rewritten as

		  y(r, q, f) = f (r, q) eimf

or

		  y(r, q, f) = f (r, q) Fm(f)	 …(46)

where we have written 

		  Fm(f) = eirhf	 …(47)

	 Since the acceptable wavefunction must be normalized, we have

		​  Ú 
0
 ​ 

2p

​ ​y*(r, q, f) y(r, q, f) df = 1

or		  Ú f *(r, q) e– imf f(r, q) eimf df = 1

or		​  Ú 
0
 ​ 

2p

​ ​ ​​| f (r, q) |​​2​ df = 1

or		​​  |  f (r, q) |​​2​ 2p = 1

or		​​  |  f (r, q) |​​2​ = ​ 1 ___ 
2p

 ​	

	 The above gives 

		  f (r, q) = ​| f (r, q) |​ = ​  1 ____ 
​÷ 

___
 2p ​
 ​	 ...(48)

	 The eigenfunctions of L̂ 
z are thus

		  y( , q, f) = ​  1 ____ 
​÷ 

___
 2p ​
 ​ eimf

	 Since the rhs does not contain r and q, we may write the eigenfunctions of L̂ 
z as y(f)

		  y(f) = ​  1 ____ 
​÷ 

___
 2p ​
 ​ eimf	 ....(49)
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8.8 E igenvalues and Eigenfunctions of L̂ 2

Denoting by Y(q, f) the eigenfunction of L̂ 2 belonging to eigenvalues lh2 we may write the 

eigenvalue equation for L̂2 as

		  L̂2Y(q, f) = lh2Y(q, f)

	 Using the expression for L̂2, given by Eq. (37a), the above becomes 

		

2
2 2

2 2

1 1
– sin ( , ) ( , )

sinsin
Y Y

È ˘∂ ∂ ∂Ê ˆ+ q q f = l q fÍ ˙Á ˜Ë ¯q ∂q ∂qq ∂fÎ ˚
h h

or 

		

2

2 2

1 1
sin ( , ) ( , ) 0

sinsin
Y Y

È ˘∂ ∂ ∂Ê ˆ+ q q f + l q f =Í ˙Á ˜Ë ¯q ∂q ∂qq ∂fÎ ˚

	 The solution of the above equation gives

		  l  = l(l + 1),  l = 0, 1, 2	 …(50) 

		  Y(q, f) = Yim(q, f) = e 

1

2
| |

1
2 1 ( – | |)!

(cos )
4 ( | |)!

m iml l m
P e

l m
fÈ ˘+ qÍ ˙p +Î ˚

	 ....(51)

where e = (–1)m for m > 0 and e = 1 for m £ 0. ​P ​l​ 
|m|​ (cos q) are the associated Legendre 

polynomials.

	 We thus find the eigenvalues of L̂2 to be l(l + 1) h2.

	 We may note that the spherical harmonic functions Ylm(q, f) are also the eigenfunctions 
of L̂z belonging to eigenvalue mh. Thus we may write the eigenvalue equation for L̂ 

z as

		  L̂ 
zYlm(q, f) = mhYlm(q, f)

8.9 A ngular momentum and Rotation

Consider a point P in space having Cartesian coordinates x, y, z with respect to the coordinate 
system (X, Y, Z). Let the coordinate frame be rotated about the Z-axis by a small angle 

Dq anti-clockwise. The positions of the new axes X ¢, Y ¢, Z¢ are then as indicated in the 
Fig. 8.2

	 The coordinates of the point P with respect to the rotated coordinate system are
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Fig. 8.2

		  x¢ = x cos (Dq) + y sin (Dq)

		  y¢ = – x sin(Dq) + y cos(Dq)	 …(52)

		  z¢ = z

	 Considering Dq to be infinitesimally small, we get 

		  cos(Dq) = 1,  sin Dq = Dq
and hence Eq. (52) gives

		  x ¢ = x + yDq

		  y¢ = – xDq + y	 ...(53)

		  z ¢ = z

	 Let us now consider an arbitrary function y(x, y, z). Let us denote the operator 
corresponding to the above rotation by R̂z(Dq). The effect of the rotation yields a new function 
y(x ¢, y ¢, z ¢) and we may express this effect as

		  R̂z(Dq) y(x, y, z) = y(x ¢, y ¢, z ¢)
or 

		  R̂z(Dq) y(x, y, z) = y(x + yDq, – xDq + y, z)

	 Making a Taylor expansion of the right hand side of the above equation and retaining only 
the first term (which is justified because Dq is small) we obtain

		  ,( , ) ( , , )ˆ ( ) ( , , ) ( , , ) –z

zx y x y z
R x y z x y z y x

x y

∂y ∂yDq y = y + Dq Dq
∂ ∂

	 ...(54)

	 We have the operator corresponding to the Z-component of angular momentum given by 
Eq. (11)
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		  L̂ 
z = – ih ​( x ​ 

∂
 ___
 ∂y ​ – y ​ 

∂
 ___
 ∂x ​ )​ 	 …(55)

	 Using Eq. (55) we may write Eq. (54) as

		  R̂z(Dq) y(x, y, z) = y(x, y, z) + ​ Dq ___ 
ih
 ​ L̂ 

zy(x, y, z)	

or 

		  R̂z(Dq) y(x, y, z) = ​[ 1 + ​ Dq ___ 
ih
 ​ L̂ 

z ]​ y(x, y, z)	 …(56)

	 Since the above relation should hold for all arbitrary functions y(x, y, z) we obtain

		  R̂z(Dq) = 1 + ​ Dq ___ 
ih
 ​ L̂z	 …(57)

	 Considering rotations by an infinitesimal angle Dq about the X-axis, and Y-axis, we obtain 
the operators affecting the rotations as

		  R̂x(Dq) = 1 + ​ Dq ___ 
ih
 ​ L̂x	 …(58)

and

		  R̂y(Dq) = 1 + ​ Dq ___ 
ih
 ​ L̂y	 …(59) 

	 In view of Eqs. (57), (58) and (59) we can interpret the angular momentum operators L̂x, 
L̂y, L̂

 
z  as generators for infinitesimal rotations about X, Y and Z axes, respectively. 

	 Let R̂z (q) represent the rotational operator corresponding to a rotation by a finite angle q 
about the Z-axis. If we increase the rotation angle from q to q + Dq, we may write the operator 
corresponding to rotation by the angle q + Dq as

		  R̂z(q + Dq) = R̂z(Dq) R̂z(q) = ​[ 1 + ​ Dq ___ 
ih
 ​ L̂ 

z ]​ R̂z(q)	 …(60)

	 We have

		
0

ˆ ˆ ˆ( ) ( ) – ( ) 1 ˆ ˆ ˆ ˆ( ) – ( )z z z
z z z z

dR R R i
Lt L R L R

d iDqÆ

q q + Dq q
= = q = q

q Dq h h
	 …(61)

	 Integrating Eq. (61) between the limits q = 0 to q = q we obtain

		
0 0

ˆ ( ) ˆ–ˆ (0)
z

z
z

dR i
L d

R

q qq
= qÚ Ú h

or
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0

ˆ ˆ1n ( ) –{ }z z

i
R L

qq = q
h

or		

ˆ ( ) ˆ1n –ˆ (0)
z

z
z

R i
L

R

q
= q
h

or		  R̂z(q) = R̂z(0) ​e​– ​ 
i
 __ h ​
 qL̂ 

z​

or		
ˆ–ˆ ( )

z
i

L

zR e
q

q = h 	 ...(62)

	 In the above we have taken R̂ 
z(0) as a unit operator.

	 The above procedure can be used to obtain the most general operator corresponding to a 
rotation by an angle say a about an axis specified by a unit vector n̂. The result is  

		  R̂n̂(0, a) = e– ia​
​_
 
›

 
L ​
ˆ  ◊ n̂

	 An operator Ô which depends on the variables r, q and f satisfying the condition

		  ˆ
ˆ ˆ[ , (0, )] 0nO R a =

is said to be a rotationally invariant operator. The condition for rotational invariance of the 
operator Ô is satisfied if the following commutation relations hold

		

ˆ ˆ[ , ] 0;
ˆ ˆ[ , ] 0;

ˆ ˆ[ , ] 0

x

y

z

O L

O L

O L

=

=

=

8.10 S tep-Up (raising) and Step-Down (lowering) 
	O perators or Ladder Operators

Instead of L̂x and L̂y it is often convenient and more instructive to use their complex 

combinations L̂x ± iL̂ 
y.

The operator 	 L̂ 
+ = L̂x + iL̂ 

y 	 …(63)

is called the step-up operator.

The operator	 L̂ 
– = L̂ 

x – iL̂ 
y	 …(64)

is called the step-down operator.

	 We find	 L̂ 
zL̂

 
+ = L̂ 

z(L̂x + iL̂ 
y) = L̂ 

zL̂x + iL̂ 
zL̂

 
y	 …(65)
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	 Using the commutation relations given by Eqs. (13) and (14), Eq. (65) becomes 

		  L̂ 
zL̂

 
+ = L̂ 

xL̂
 
z + iL̂ 

y + i(L̂ 
yL̂

 
z – iL̂ 

x)

		  = (L̂ 
x + iL̂ 

y) L̂
 
z + (L̂ 

x + iL̂ 
y)

		  = L̂ 
+L̂ 

z + L̂ 
+

or 

		  L̂ 
zL̂ + = L̂ 

+ (L̂ 
z + 1)	 …(66)

	 Similarly, we obtain

		  L̂ 
zL̂

 
– = L̂ 

– (L̂
 
z + 1)	 …(67)

Let Yim be a simultaneous eigenfunction of L̂2 and L̂ 
z belonging to eigenvalue m of L̂ 

z. We 
obtain

		  L̂ 
zL̂

 
+Ylm = L̂ 

+(L̂ 
z + 1) Ylm	 [using eq. (66)]

		  = L̂ 
+L̂ 

zYlm + L̂ 
+Ylm

		  = L̂ 
+mYlm + L̂ 

+Ylm

or 

		   L̂ 
z(L̂

 
+Ylm) = (m + 1) (L̂ 

+Ylm)	 …(68)

	 Similarly, we get

		   L̂ 
z(L̂

  
–Ylm) = (m – 1) (L̂  

–Ylm)	 …(69)

	 Equation (68) shows that L̂  
+Ylm is an eigenfunction of L̂  

z belonging to eigenvalue (m + 1), 

i.e., an eigenvalue one unit greater while Eq. (69) shows that L̂  
–Ylm is an eigenfunction of L̂  

z 
with eigenvalue (m – 1), i.e., an eigenvalue one unit less than the eigenvalue m belonging to 

the eigenfunction Ylm. For the above reasons, the operators L̂  
+ and L̂  

– are respectively called 
the step-up and step-down operators or ladder operators. 

8.11 S olved Examples

Example 1  Evaluate the following commutators

(i) [x̂, L̂x]  (ii) [x̂, L̂y]  (iii) [x̂, L̂ 
z]  (iv) [p̂x, L̂x]  (v) [p̂y, L̂y]  (vi) [p̂z, L̂z]

Solution:  (i) We have

		  [x̂, L̂x] y = xL̂xy – L̂xxy 

		  = – ih x​( y ​ ∂ __ 
∂z

 ​ – z ​ ∂ ___ 
∂y

 ​ )​ y + ih ​( y ​ ∂ __ 
∂z

 ​ – z ​ ∂ ___ 
∂y

 ​ )​ xy

		  = –ih xy ​ 
∂y

 ___ 
∂z

 ​ + ih xz ​ 
∂y

 ___ 
∂y

 ​ + ih yx ​ 
∂y

 ___ 
∂z

 ​ – ih zx ​ 
∂y

 ___ 
∂y

 ​

	 Clearly	 [x̂, L̂x] = 0
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(ii) [x̂, L̂y] y = x  L̂yy – L̂ 
yxy

		  =  – ih x​( z​ ∂ ___ 
∂x

 ​ – x ​ ∂ __ 
∂z

 ​ )​ y + ih ​( z ​ ∂ ___ 
∂x

 ​ – x ​ ∂ __ 
∂z

 ​ )​ xy

		  = –ih xz ​ 
∂y

 ___ 
∂x

 ​ + ih x2 ​ 
∂y

 ___ 
∂z

 ​ + ihzy + ihzx ​ 
∂y

 ___ 
∂x

 ​ – ih x2 ​ 
∂y

 ___ 
∂z

 ​

		  = ihzy

	 Clearly, 

		  [x̂, L̂y] = ihz = ihẑ .

(iii) [x̂, L̂z] y = xL̂ 
z y – L̂ 

z xy 

		  = – ihx ​( x ​ ∂ ___ 
∂y

 ​ – y ​ ∂ ___ 
∂x

 ​ )​ y + ih ​( x ​ ∂ ___ 
∂y

 ​ – y ​ ∂ ___ 
∂x

 ​ )​ xy

		  = –ih x2 ​ 
∂y

 ___ 
∂y

 ​ + ih xy ​ 
∂y

 ___ 
∂x

 ​ + ihx2 ​ 
∂y

 ___ 
∂y

 ​ – ih yy – ihyx ​ 
∂y

 ___ 
∂x

 ​

		  = – ihyy

	 Clearly,	

		  [x̂, L̂ 
z] = ihy = –ihŷ

(iv) [px
ˆ  , L̂x] y = p̂x L̂xy – L̂x p̂xy

		  = – ih ​ ∂ ___ 
∂x

 ​ (– ih) ​( y ​ ∂ __ 
∂z

 ​ – z ​ ∂ ___ 
∂y

 ​ )​ y + ih ​( y ​ ∂ __ 
∂z

 ​ – z ​ ∂ ___ 
∂y

 ​ )​ × – ih ​ ∂ ___ 
∂x

 ​ Y

		  = – h2 ​ ∂ ___ 
∂

 ​ ​( y ​ 
∂y

 ___ 
∂z

 ​ – z ​ 
∂y

 ___ 
∂y

 ​ )​ + h2 ​( y ​ ∂ __ 
∂z

 ​ – z ​ ∂ ___ 
∂y

 ​ )​ ​ ∂y
 ___ 

∂x
 ​

		  = – h2 
2 2 2 2

2– –
x

y z y z
x z y z x y x

È ˘ È ˘∂ y ∂ y ∂ y ∂ y+Í ˙ Í ˙∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚ Î ˚
h

		  = 0

	 Thus	 [p̂x, L̂x] = 0 
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(v) ,
ˆˆ[ ] – (– ) – – (– )x yp L i i z x i z x i

x x z x z x

∂ ∂ ∂ ∂ ∂ ∂yÊ ˆ Ê ˆy = y + ¥Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂
h h h h

		  = – h2 ​ ∂ ___ 
∂

 ​ ​( z ​ 
∂y

 ___ 
∂x

 ​ – x  ​ 
∂y

 ___ 
∂z

 ​ )​ + h2 ​( z ​ ∂ ___ 
∂x

 ​ – x ​ ∂ __ 
∂z

 ​ )​ ​ ∂y
 ___ 

∂x
 ​

		  = –h 2z ​ 
∂2y

 ____ 
∂x2

 ​ + h2  ​ 
∂y

 ___ 
∂z

 ​ + h2x ​ 
∂2y

 ____ 
∂x∂z

 ​ + h 2z ​ 
∂2y

 ____ 
∂x2

 ​ – h2x ​ 
∂2y
 _____ 

∂z∂x2
 ​

		  = h2 ​ 
∂y

 ___ 
∂z

 ​ = ih ​( – ih ​ ∂ __ 
∂z

 ​ )​ y = ih p̂zy

	 Thus 

		   [p̂x, L̂y] =  h p̂z

(vi) [p̂x, L̂z] y = p̂x L̂zy – L̂z p̂x y

		  = – (– ) – – (– ) .i i x y i x y i
x y x y x x

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂y + ¥ yÁ ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯
h h h h

		  2 2– – –x y x y
x y x y x x

Ê ˆ Ê ˆ∂ ∂y ∂y ∂ ∂ ∂y= +Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯
h h

		
2 2 2 2

2 2 2 2 2
2 2

– – –x y x y
y x y y xx x

∂y ∂ y ∂ y ∂ y ∂ y= + +
∂ ∂ ∂ ∂ ∂∂ ∂

h h h h h

		  = 2– – –i i
y y

Ê ˆ∂y ∂= Á ˜∂ ∂Ë ¯
h h h y

	 Thus	 [p̂x, L̂
 
z] = – ih p̂y.  

Example 2  Find the cammutator [L̂z, cos f], f being the azimuthal angle. 

Solution:  In spherical polar coordinates (r, q, f), L̂z is given by

		  L̂z = – ih ​ ∂ ___ 
∂f

 ​.

	 Consider a function y = y (r, q, f). We get 

		  [L̂z, cos f] y = L̂z cos f y – cos f Lz y

		  = – ih ​ ∂ ___ 
∂f

 ​ (cos f y) + ih cos f ​ ∂ ___ 
∂f

 ​ (y)
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		  = ih sin f y – ih cos f ​ 
∂y

 ___ 
∂f

 ​ + ih cos f ​ 
∂y

 ___ 
∂f

 ​ 

		  = ih sin f y

	 Thus

		  [L̂z, cos f] = ih sin f. 

Example 3  Evaluate the commutator [L̂z, sin 2f].  

Solution: We have

		  [L̂z, sin 2f] y = L̂z sin 2f y – sin 2f L̂ 
z y 

		  = – ih ​ ∂ ___ 
∂f

 ​ (sin 2f y) + ih sin 2f ​ 
∂y

 ___ 
∂f

 ​

		  = – ih cos 2f y – ih sin 2f ​ 
∂y

 ___ 
∂f

 ​ + ih sin 2f ​ 
∂y

 ___ 
∂f

 ​

or		  [L̂z, sin 2f] y = – ih cos 2f y

	 Thus 	 [L̂z, sin 2f] = – ih cos 2f = ih (sin2f – cos2 f)

Example 4 	 In the common eigenfunction y, L̂2 and L̂z have eigenvalues given respectively 
by l(l + 1) h2 and mh. Calculate the expectation values of (a)Lx and (b) ​L​x​ 

2​ in the state 
described by the eigenfunction y.

Solution:

(a) Given, L̂2y = l(l + 1) h2 y		  ...(i)

	 L̂zy = mhy		  ...(ii)

Since L̂ 
z is Hermitian, we get 

		  L̂z
*y* = mhy*	 ...(iii)

We have by definition 

		  ·Lx Ò = Ú y*L̂x y dt	 ...(iv)    

Using the commutation relation

		  [L̂y, L̂z] = ih L̂x	 ...(v)

we may write the above as

		  ·Lx Ò = Ú y* ​ 1 __ 
ih
 ​ [L̂y, L̂z] y dt
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		  = ​ 1 __ 
ih
 ​ Ú y*L̂ 

y L̂z y dt – ​ 1 __ 
ih
 ​ Ú y*L̂zL̂y y dt 	 ...(vi)

	 Since L̂ 
z is Hermitian, we get

	 	 Ú y* Lz
ˆ  L̂y y dt = Ú L̂z y

*L̂y y dt	 …(vii)

		  = mh Ú y*L̂y ydt

	 Using Eqs. (ii) and (vii) in Eq. (vi) we obtain

		  ·LxÒ = ​ mh ___ 
ih
 ​ Ú y*L̂ 

y y dt – ​ mh ___ 
ih
 ​ Ú y*L̂y y dt = 0	 …(viii)

	 (b)	 Since the choice of X and Y axes does not have any restriction we may write 

		  2 2 2 2 2 21 1
–

2 2x y x y zL L L L L L· Ò = · Ò = · + Ò = · Ò 	 …(ix)

	 By definition, we have

		

2 * 2 * 2 21ˆ ˆ ˆ( – )
2x x zL L d L L d· Ò = y y t = y y tÚ Ú

		
* 2 * 21 ˆ ˆ–

2 zL d L dtÈ ˘= y y t y yÎ ˚Ú Ú . 

	 Using the result given by Eqs. (i) and (ii) in the above we obtain

		

2 2 * 2 2 *1
( 1) –

2xL l l d m dÈ ˘· Ò = + y y t y y tÎ ˚Ú Úh h

	 Since the eigenfunction y is normalized we obtain 

		  2 2 21
[ ( 1) – ]

2xL l l m· Ò = +h .

Example 5  If Ĵ , Ĵ x, Ĵ y, Ĵ z and Ĵ  2 respectively represent the operators corresponding to 

the total angular momentum ​
​_

 
›
 J ​, the three Cartesian components of ​

​_
 
›
 J ​ and the square angular 

momentum J 2, then find

(a) ·JxÒ,    (b) ·JyÒ,    (c) ·​J​x​ 
2​Ò,    (d) ·​J​x​ 

2​Ò,    (e) DJx DJy

where 2 2 2 2– and –  x x x y yJ J J Jy J JD = · Ò · Ò D = · Ò · Ò  

Solution:  We know that Ĵ 2 and Ĵ z commute with each other so that they have a common 
set of eigenfunctions. Let y be one such common eigenfunction. The eigenvalue equations 
are given by



	 237Angular Momentum in Quantum Mechanics

		  Ĵ2y = J(J + 1) h2y	 ...(i)

and	  Ĵ z y = mhy	 ...(ii)

	 Since Ĵ z is Hermitian according to Eq. (ii) we have

		​ 
​_
 
›
 J ​

ˆ
z
*y* = mh y*	 ...(iii)

(a)	By definition, we get 

		  * ˆ
x xJ J d· Ò = y y tÚ

	 Using the commutation relation

		
ˆ ˆ[ , ]y z xJ J i J= h

	 we may write the above equation as

		  *1 ˆ ˆ[ , ]x y zJ J J d
i

· Ò = y y tÚh
		  = * *1 1ˆ ˆ ˆ–y z z yJ J d J J d

i i
y y t y y tÚ Úh h

		  = * * *1 1ˆ ˆ ˆ ˆ–y z z yJ J d J J d
i i

y y t y y tÚ Úh h

		  = * *ˆ ˆ–y y

m m
J d J d

i i
y y t y y tÚ Úh h

h h

(using Eqs. (ii) and (iii))

	 Clearly 

		  · Jx Ò = 0	 ...(iv)

(b)	By an exactly similar procedure we get

		  · Jy Ò = 0	 ...(v)

(c)	Since the choice of x and y axes is completely arbitrary we must have

		  2 2 2 2 2 21 1
–

2 2x y x y zJ J J J J J· Ò = · Ò = · + Ò = · Ò

(Since ​J​x​ 
2​ + ​J​y​ 

2​ + ​J​z​ 
2​ = J2)

	 Thus	 2 2 21 1
–

2 2x zJ J J· Ò = · Ò · Ò

		

* 2 * 21 1ˆ –
2 2 zJ d J d= y y t y y tÚ Ú
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	 Using the eigenvalue equations (i) and (ii) in the above equation we obtain 

		

2 2
2 2 * *1

( 1) –
2 2x

m
J j J d d· Ò = + y y t y y tÚ Úhh

	 or 

		

2 2 21
[ ( 1) – ]

2xJ J J m· Ò = + h
	 ...(vi)

(d)		 2 2 2 21
[ ( 1) – ]

2y xJ J J J m· Ò = · Ò = + h 	 ...(vii)

(e)		 DJx = 2 2–xJ Jx· Ò · Ò

	 Using the results given by equations (iv) and (vi) in the above we get

		  DJx = 2 21
[ ( 1) – ] – 0

2
J J m+ h

	 or

		  DJx = h 
2( 1)

–
2 2

J J m+ 	 ...(viii)

	 Similarly, using the results given by equations (v) and (vii) in

		  DJy = 2 2–y yJ J· Ò · Ò

	 we obtain 

		  DJy = h 
2( 1)

–
2 2

j J m+

	 Thus, we get

		  D Jx D Jy = h2 
2( 1) –

2

j J mÈ ˘+
Í ˙
Î ˚



9 Dirac’s Formulation of Quantum  
Mechanics: Dirac’s Bra Ket Notation

9.1  Introduction

According to the Schrödinger formulation of quantum mechanics, the physical state at any 
time t, say, of a particle of mass m moving in one dimension in a potential field V(q), q being 
the coordinate of the particle which can take values from – • to + •, is described, in general 
by a complex valued function y (q, t) called the wave function in the position or coordinate 
representation. Schrödinger postulated that if the particle is undisturbed by any measurement 
its state develops with time in a completely causal manner according to the equation

		
2 2

2

( , )
( ) ( , )

2

q t
i V q q t

t m q

È ˘∂y - ∂= + yÍ ˙∂ ∂Î ˚


 	 …(1)

	 According to Max Born and Jordan, ​| y(q, t) |​2 dq gives the probability of finding the 
particle between the position q and q + dq if a measurement is made.

	 It is possible to define a function f(p, t) called the wave function in the momentum 
representation (p representing the momentum of the particle) according to the Fourier 
transform

		
-+•

-•
f = y

p Ú 


21

( , ) ( , )
2

ipq

p t q t e dq  	 …(2)

f(p, t) which is completely determined by y (q, t) describes the state of the particle as does 
y(q, t). In other words, f(p, t) represents the same dynamical state as y(q, t) while the 

expression ​| f (p, t) |​2 dp gives the probability that a measurement of momentum yields a 
value lying between p and p + dp. 

	 Schrödinger theory has been developed in position as well as momentum representation 
in entirely equivalent way.

	 We know that problems in ordinary geometry may be solved using vectors without the 
necessity of using any coordinate system. A question thus arises—can quantum mechanics 
be formulated without using any particular representation? If the answer is yes, the results 
would then be independent of representation on the one hand, while on the other the obvious 
advantages of using a representation in such a formulation would not be lost. To carry out 
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calculations we would be free to use any convenient representation, just like in geometry a 
coordinate system may be conveniently chosen when vectors are used.

	 In Dirac’s formulation, quantum mechanics is developed without using any specific 
representation and instead it uses the concept of vectors in a space that may have a finite or 
an infinite dimension.

	 In the sections to follow a brief account of the essentials of Dirac’s formulation is 
presented.

9.2  Wavefunction as vector; ket vector

Let y(q) be the wavefunction that describes the state of a particle moving in one dimension 
at the time t. For each specific value of q (in the range – • to + •), say q1, q2 etc., the wave 
function is y(q1), y(q2), etc. respectively.

		 Let us imagine an infinite dimensional space having mutually perpendicular axes each 
labeled by one of the values of q. Let us now consider a vector in this space at the time  
t such that its projection on the qi axis is y(q1), that on the q2-axis is y(q2) and so on. The 
vector thus considered then represents the state of the particle just as its components along 
the different axes do.

	 Since y's are, in general, complex valued functions, the vector representing the state is 
not an ordinary vector in real space.

	 Following Dirac, we call such a state-vector in a complex vector-space a ket vector or 
simply a ket and denote it by the symbol ​| Ò ​​. The particular vector whose components are 
y(q1), y(q2), etc., is called ket y and is written as ​| y ​​Ò.
		 In the fig. 9.1 is shown the ket vector ​| y ​​Ò and its components y(q1), y(q2), etc., along 
the different axes (it is possible to show only three components).

y ( )q3

|y
Ò

y
(

)

q 1

y ( )q2 q2

q3

q1

Fig. 9.1  Ket vector |yÒ and three of its coordinate representatives.

	 If Ax, Ay, Az be the components of an ordinary vector ​
​_

 
›
 A ​ along the axes of a Cartesian 

coordinate system XYZ, then the vector ​
​_

 
›
 A ​ can be represented completely by these components, 

i.e., ​
​_
 
›
 A ​ = [Ax, Ay, Az]. Likewise, |y   Ò may be completely represented by its components along 

the orthogonal q-axes, i.e., ​| y ​​Ò = [y(q1), y(q2), …]. The vector ​| y ​​Ò thus represented is said 
to be given in the position representation.
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	 If we now consider another Cartesian co-ordinate system X¢Y¢Z¢ rotated with respect to the 
system XYZ then the same vector ​

​_
 
›
 A ​ may equally well be represented by its new components 

Ax¢, Ay¢ and Az¢ and we may write ​
​_

 
›
 A ​ = [Ax¢, Ay¢, Az¢]. Exactly similarly, we may express ​| y ​​Ò  

in another representation, namely the momentum representation as ​| y ​​Ò = [f(p1), f(p2), ….]. 
We may visualize f(p1), f(p2), etc., as the components of ​| y ​​Ò on a rotated orthogonal set 
of axes p1, p2…. as shown in the fig. 9.2. The relation between the new p-axes and the old 
q-axes is given by Fourier transform.

Fig. 9.2  Ket vector |yÒ and three of its momentum representatives.

	 We note that by introducing the above concept of vector in complex vector space to describe 
physical state of a quantum system it is possible to visualize the possibility of an infinite 
number of equivalent representations in which quantum mechanics can be formulated.

9.3  More About Ket-vector

With each state of a dynamical system is associated a ket vector. A general ket is denoted by 
the symbol ​| Ò ​​. The ket vectors with labels inside such as ​| aÒ ​​, ​| bÒ, ​​ etc., designate particular 
states.

	 The state ket is postulated to contain complete information about the physical state.

	 The ket vector space is a linear vector space by which we mean that if C1 and C2 are 
two complex numbers and ​| aÒ ​​ and ​| bÒ ​​ are two ket vectors in a given space, the linear 
combination 

		​  | aÒ ​​ = C1 ​| aÒ ​​ + C2 ​| bÒ ​​ 	 …(3)

is also a ket vector in the space of ​| aÒ ​​ and ​| bÒ ​​ and represents a state of the system.

	 If a ket depends on a parameter q¢ which may take any value in the range q1¢ < q ¢ < q2¢ 
then we may generalize Eq. (3) as

		​  | bÒ ​​ = 
2

1

( ) |
q

q
C q q dq

¢

¢
¢ ¢Ò ¢Ú 	 …(4)

when C(q¢) is a complex function of q¢ and the vector ​| bÒ ​​ is in ket space.
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	 Kets ​| aÒ ​​ and ​| bÒ ​​ defined by Eqs. (3) and (4) respectively are said to be linearly dependent 

on ​| aÒ ​​ and ​| bÒ ​​ and on ​| q¢Ò ​​.

	 When C1​| aÒ ​​ and C2 ​| aÒ ​​ are added, the result is 

		  C1​| aÒ ​​ + C2​| aÒ ​​ = (C1 + C2)​| aÒ ​​	 …(5)

	 In the above, C1 ​| aÒ ​​, C2​| aÒ ​​ and (C1 + C2)​| aÒ ​​ represent the same dynamical state of the 
system. If, however, C1 + C2 = 0, the result is no state at all.

	 From the above, it follows that dynamical state of a system is specified entirely by the 
direction of the ket vector representing the state in the ket space. In other words, there exists 
a one-to-one correspondence between the state of a system and a direction in ket vector space. ​

| aÒ ​​ and – ​| aÒ ​​ represents the same state.

	 The above also shows that classical and quantum superposition principles are different. 
Quantum mechanically, there exists nothing that corresponds to classical amplitude. Instead, 
only the direction of ket is significant. Further, in quantum mechanics there is no state 
corresponding to no motion (C1 + C2 = 0 in Eq. 5); no motion is nothing at all. However, 
classically the state of rest (no motion) is a state of the system. 

	 The dimensionality of ket space is determined by the number of linearly independent kets 
in the space, i.e., the number of independent states of the system under consideration.

9.4 SC alAr product, Bra vector

With each ket ​| aÒ ​​, a complex number f  is associated. The set of numbers associated with 

different ​| aÒ ​​'s is a linear function of ​| aÒ ​​. This means that the number associated with  

​( ​| a1Ò ​​ + ​| a2Ò ​​ )​, where ​| a1Ò ​​ and ​| a2Ò ​​ are two kets, is the sum of the numbers associated with ​

| a1Ò ​​ and ​| a2Ò ​​ separately. Similarly, the number associated with C ​| aÒ ​​, where C is a complex 

number, is C times the number associated with ​| aÒ ​​. The above results may be written as

		  f ​( ​| a1Ò ​​ + ​| a2Ò ​​ )​ = f ​( ​| a1Ò ​​ )​ + f ​( ​| a2Ò ​​ )​	 …(6)

		  f (C |aÒ) = C f  | aÒ	 …(7)

	 The number f  associated with all the kets in ket space may be visualized as defining a 
vector in another space (dual space) denoted, following Dirac, by the symbol · ​​ f  |​. and called 
the bra vector.

	 The scalar product of ​​ ·  f  |​ and ​| aÒ ​​ is written as · f ​| aÒ ​​ and it is a complex number.

	 In view of the above, we may re-write Eqs. (6) and (7) as

		​  ​ · f |​ ​( ​| a1Ò ​​ + ​| a2Ò ​​ )​ = · f |a1Ò + ·  f a2Ò	 …(8)

		​  ​ · f  |​​( C ​| aÒ ​​ )​ = C ·  f ​| aÒ ​​	 …(9)
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	 If ·b ​| aÒ ​​ = 0 for all ​| aÒ ​​, we may conclude that ​​ ·b |​ = 0, i.e., ​​ ·b |​ is a null bra.

	 If,	 ·b1​| aÒ ​​ = ·b2 ​| aÒ ​​ for all ​| aÒ ​​ 	 …(10)

then	​ ​ ·b1 |​ = ​​ ·b2 |​	 …(11)

	 The sum of two bras ​​ ·b1 |​ and ​​ ·b2 |​ is defined by its scalar product with ​| aÒ ​​. Thus 

		​  ( ​​ ·b1 |​ + ​​ ·b2 |​ )​​| aÒ ​​ = ·b1​| aÒ ​​ + ·b2� ​| aÒ ​​	 …(12)

	 It is assumed that each ket is associated with a single bra in a unique way. Hence bra is 
given the same status as the ket to which it is associated. ·a | is the bra associated with the 

ket ​| aÒ ​​.
	 Consider the ket

		​  | aÒ ​​ = ​| aÒ ​​ + ​| bÒ ​​	 …(13)

	 The bra associated with ​| aÒ ​​ is then

		​  ​ ·a |​ = ​​ ·a |​ + ​​ ·b |​	 …(14)

	 With the ket

		​  | bÒ ​​ = C ​| aÒ ​​,  C = a complex number	 …(15)

is associated the bra

		​  ​ ·b |​ = C* ​​ ·a |​,  C* = complex conjugate of C	 …(16)

	 From the above, it is reasonable to call the bra ​​ ·a |​ associated with a ket ​| aÒ ​​ as the 

hermitian adjoint of ​| aÒ ​​ and vice-versa, i.e.,

		​  ​ ·a |​ = (|aÒ)†, ​ | aÒ ​​ = (​​ ·a |​)†	 …(17)

	 Since there exists unique correspondence between bras and kets, the direction of a bra 
vector represents the state of a quantum system as does the direction of the associated ket. 
Hence, they are said to be dual of one another.

Norm of a ket

Consider two kets ​| aÒ ​​ and ​| bÒ ​​ and the bras ​​ ·a |​ and ​​ ·b |​ associated with them, respectively. 
We can form four numbers, namely 

		  ·a |aÒ,  ·a |bÒ,  ·b |bÒ  and  ·b | aÒ

	 In general, ·a |bÒ and ·b | aÒ are complex, and it is assumed that they are related as 

		  ·a |bÒ = ·b |aÒ*	 …(18)

	 Replacing ​| bÒ ​​ by ​| aÒ ​​ in Eq. (18) we get
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		  ·a|aÒ = ·a|aÒ*	 …(19)

	 Clearly, ·a |aÒ is real and is called the length or norm of ​| aÒ. ​​
	 It is assumed that the norm of a ket vector is either positive or zero, i.e.,

		  ·a |aÒ ≥ 0	 …(20)

	 Equality sign holds in the above if ​| aÒ ​​ = 0.

	 The assumption given by equations (18) and (20) are motivated from a consideration of 
wave function y(q, t) and its complex conjugate y*(q, t). As seen earlier, y(q, t) is visualized 

as components of ​| yÒ ​​ in ket space. Likewise, we may visualize y*(q, t) as the components 
of ​​ ·y |​ in the bra space. We know from wave mechanics that the complex numbers y*(q, t)  
c(q, t) and c*(q, t) y(q, t) are related as 

		  y*(q, t) c(q, t) = [c*(q, t) y(q, t)]*	 …(21)

	 We also know that

		  Ú |y(q, t) |2 dq ≥ 0	 …(22)

	 Since bras and kets are intimately related to wave functions, relations similar to 
those given by eqs. (21) and (22) should hold also for them. Such relations are given by 
eqs. (18) and (20).

Orthogonality of Kets and Bras

In wave mechanics, the wave functions y(q) and f(q) are orthogonal, if

		  *yÚ (q) f(q) dq = 0	 …(23)

	 In the case of kets and bras, the vectors ​| aÒ ​​ and ​| bÒ ​​ are orthogonal if their scalar product 
is zero, i.e., if 

		  ·a|bÒ = 0	 …(24)

	 The orthogonality involved with ket/bra vector is different from the orthgonality of two 

ordinary vectors, say, ​
​_

 
›
 A ​ and ​

​_
 
›
 B ​ in the real space. If ​

​_
 
›
 A ​ and ​

​_
 
›
 B ​ are orthogonal, i.e., if ​

​_
 
›
 A ​.​
​_

 
›
 B ​ = 0,  

​
​_

 
›
 A ​ and ​

​_
 
›
 B ​ are at right angles to each other and they lie in the same vector space. In the 

orthogonality condition given by eq. (24), we may note that ​​ ·a |​ and ​| bÒ ​​ are in different vector 

spaces. Further, if ·a|bÒ = 0 we may say that not only ​| aÒ ​​ and ​| bÒ ​​ are orthogonal but also ​​ ·a |​ and 

​​ ·b |​ are orthogonal. When ·a|bÒ = 0 it may also be said that the associated quantum states of 
the system they represent are orthogonal.

9.5 Li near Operators in the Space of 
	K et and bra vectors 

If with each ket ​| aÒ ​​ in the ket space we can associate another ket ​| bÒ ​​, then this association 
may be used to define an operator say â which we may write in the form
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		​  | bÒ ​​ = â | aÒ	 …(25)

â in the above might mean multiplication, differentiation, integration, etc., operations.

	 An operator always appears to the left of the ket on which it operates.

	 A class of operators used extensively in the formulation of quantum mechanics is the 

linear operators. A linear operator in ket space is defined as given in the following; if ​| a1Ò ​​, ​

| a2Ò ​​ and ​| a Ò ​​ are any three kets in the space and C is a number then an operator â is said to 
be linear if 

		  â ​( ​| a1Ò ​​ + ​| a2Ò ​​ )​ = â ​| a1Ò ​​ + â ​| a2Ò ​​	 …(26)

and	 â (C | aÒ) = C â ​| aÒ ​​	 …(27)

Equal Linear Operators 

A linear operator is completely defined when its effect on every ket in the ket space is known. 
Hence, two linear operators â1 and â2 are equal (â1 = â2) if

		  â1​| aÒ ​​ = â2 ​| aÒ ​​  for all ​| aÒ ​​	 …(28)

Null operator
A linear operator a is a null operator if

		  â ​| aÒ ​​ = 0  for all ​| aÒ ​​	 …(29)

Identity operator
A linear operator â is said to be an identity operator if

		  â ​| aÒ ​​ = ​| aÒ ​​  for all ​| aÒ ​​	 …(30)

Algebra of linear operators 
(i)	 Sum of two linear operators â1 and â2, i.e., (â1 + â2) is defined according to

		  (â1 + â2) ​| aÒ ​​ = â1 ​| aÒ ​​ + â2 ​| aÒ ​​	 …(31) 

(ii)	Product of two linear operators a1 and â2, i.e., (â1 â2) is defined according to

		  (â1 â2) ​| aÒ ​​ = â1 (â2 ​| aÒ ​​)	 …(32)

	 From eq. (32) it is possible to define powers of a linear operator.

	 We further find the following relations to hold

		  (â1 + â2) ​| aÒ ​​ = (â2 + â1) ​| aÒ ​​	 …(33)

		  [(â1 + â2) + â3] ​| aÒ ​​ = [â1 + (â2 + â3)] ​| aÒ ​​	 …(34)

		  [â1 (â2 + â3)] ​| aÒ ​​ = â1 â2 ​| aÒ ​​ + â1 â3 ​| aÒ ​​	 …(35)
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(iii) Commutator of two linear operators â1 and â2 is written as [â1, â2] and is defined as

		  [â1, â2] = â1 â2 – â2 â1	 …(36)

	 The operator â1 and â2 are said to be non-commutative if

		  â1 â2 π â2 â1  i.e. [â1, â2] π 0 	 …(37)

	 We may note that the above properties hold with matrices.

	 It is seen that the algebra of N-dimensional square matrices is the same as the algebra of 
linear operators.

	 We may further note that the algebra of quantum mechanics is a non-commutative 
algebra.

	 Multiplication by a constant is linear operation. A constant operator commutes with all 
linear operators.

(iv) inverse of an operator If two linear operators â1 and â2 satisfy the equation

		  â1 â2 = â2 â1 = Î  (identity operator)	 …(38)

then â2 is said to be the inverse of â1 and vice-versa, provided the inverse exists and we 
write

		  â2 = â1
–1,  â1 = â2

–1	 …(39)

	 The inverse of a product of operators (â1, â2, â3) is 

		  (â1 â2 â3)
–1 = â3

–1 â2
–1 â1

–1
	 …(40)

	 As mentioned earlier, the above properties of linear operators are common to finite square 
matrices. This fact allows us to represent operators by matrices.

Operation of Linear Operator on Bra

By operating a linear operator (say â ) on a bra (say ​​ ·c |​) we obtain, in general, another bra 
(say ​​ ·d |​) in the same bra space. It is a convention to write the operator to the right of the bra 
on which it operates. Hence we write 

		​  ​ ·d |​ = ​​ ·c |​â	 …(41)

	 The operation is defined through the equation

		​  ​ ·c |​ (â ​| aÒ ​​) = (​​ ·c |​ â) ​| aÒ ​​. 	 …(42)

	 Thus, â may first operate on ​​ ·c |​ and the result applied to ​| aÒ ​​ or vice-versa.

	 We may note that operator properties given above are equally valid whether they are 
applied to kets or to bras.
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An Example of a Linear Operator

A simple example of a linear operator that occurs frequently in quantum theory is

		​  | aÒ ​​ ​​ ·b |​ = P̂	 …(43)

	 P̂ may operate as a ket, say, ​| cÒ ​​ to give

		  P̂ ​| cÒ ​​ = ​| aÒ ​​ ·b|cÒ

	 The above is the ket ​| aÒ ​​ multiplied by the number ·b|cÒ

	 P̂ may operate on the bra ​​ ·c |​ to give

		  ·c|P̂ = ·caÒ ·b. 	 …(44)

	 The above is the bra ​​ ·b |​ multiplied by the number ·c|aÒ.

	 The operator P̂ defined above is seen to satisfy the requirements of a linear operator.

Hermitian Operators

As discussed is Chapter 2, the linear operators which represent dynamical variables of a 
quantum system are real linear operators. Such operators are said to be hermitian. In the 
following we define hermitian operator in the space of ket and bra vectors.

	 Consider the ket ​| qÒ ​​ to be the result of operation of the linear operator â on a ket ​

| pÒ ​​, i.e. 

		​  | qÒ ​​ = â ​| pÒ ​​

	 The bra associated with ket ​| qÒ ​​ is then given by 

		​  ​ ·q |​ = ​​ ·p |​ â† = â † ​| pÒ† ​​ = ​( ​| qÒ ​​ )​†

	 The symbol â † is called the hermitian adjoint of â . Thus, the bra ​​ ·q |​ which is hermitian 

adjoint of ​| qÒ ​​ may be considered as the result of some linear operator operating on ​​ ·p |​ which 

is designated by â†. 

	 If in eq. (18) we take ​​ ·a |​ = ​​ · p |​ â † and ​| aÒ ​​ = â ​| pÒ ​​, then we get

		​  ​ · p |​ â† ​| bÒ ​​ = ​​ ·b |​ â ​| pÒ ​​
*	 …(45)

	 Equation (45) is a general result that applies to any two kets ​| pÒ ​​ and ​| bÒ ​​ and any linear 
operator â .

	 We may replace â by â† in eq. (45) to obtain 

		​  ​ · p |​ â††  bÒ = ​​ ·b |​ â†   pÒ*	 …(46)

	 Let us now replace |aÒ in eq. (18) by ​| aÒ ​​ = â† ​| pÒ ​​
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	 and ​​ ·a |​ = ​​ · p |​ â. We then get

		​  ​ · p |​ â ​| bÒ ​​ = ·b| â† ​| pÒ ​​
* 	 …(47)

	 Comparing Eqs. (46) and (47) we obtain

		​  ​ · p |​ â† ​| bÒ ​​ = ​​ · p |​ â ​| bÒ ​​.	 …(48)

	 Since in Eq. (48) ket ​| bÒ ​​ and bra ​​ · p |​ are arbitrary, we find that

		  â †† = â	 …(49)

	 If the linear operator â is self adjoint, i.e., if

		  â = â †

then â is said to be hermitian. From Eq. (45) we find that if â is hermitian, it must satisfy

		​  ​ · p |​ â † ​| bÒ ​​ = ​​ ·b |​ â ​| pÒ ​​
* 	 …(50)

for arbitrary ​| bÒ ​​ and ​| pÒ ​​.

9.6	Ei genvalue Problem for operators in Ket  
and Bra Space

Let us consider a linear operator â. In general, â operating as a ket gives another ket in the 
same space.

	 However, for every linear operator there exists a set of kets such that the result of 

operation of the operator on any such ket is the same ket multiplied by a number. If ​| aÒ ​​ be 
such a ket for the operator â then we obtain

		  â ​| aÒ ​​ = aa ​| aÒ ​​	 …(51)

aa being a number.

	 Equation (51) is referred to as the eigenvalue problem for the operator â , ​| aÒ ​​ is said to 

be the eigen ket of â and aa the associated eigenvalue.

	 It is customary to label an eigenket with the associated eigenvalue. With this convention, 
we may rewrite the eigenvalue problem (eigenvalue equation) as

		  â | aa Ò = aa | aa Ò  	 …(51a)

	 If ​| aa Ò ​​ is an eigenket of â, then by Eq. (52) any constant c times ​| aaÒ ​​ is also an eigenket 

of â with the same eigenvalue aa. The states represented by ​| aaÒ ​​ and c​| aaÒ ​​ are one and the 
same state.

	 Eigenvalue problem formulated in terms of bras is 

		  ·b​​ a |​ b̂ = ba ·b​​ a |​. 	 …(51b)

	 In the above ​​ ·ba |​ is an eigenbra of the linear operator b̂ belonging to the eigenvalue ba.
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Theorems Valid for All Linear Hermitian Operators

In Chapter 4 we discussed the following two theorems related to linear hermitian operators. 
We once again state the theorems and prove them using Dirac’s bra and ket notations.

Theorem 1  The eigenvalues of a linear hermitian operator are real.

Proof:  Consider a linear hermitian operator â. The eigenvalues of â satisfy the equation

		  â ​| akÒ ​​ = ak ​| akÒ ​​

	 Forming scalar product of both sides of the above equation with ​​ ·ak |​, we get

		​  ​ ·ak |​ â ​| akÒ ​​ = ak ·ak ​| akÒ ​​	 …(52)

	 Taking complex conjugate of both sides we obtain

		​  ​ ·ak |​ â ​| akÒ ​​
* = ​​ ·ak |​ â  † ​| akÒ ​​ = ak

* ·ak ​| akÒ ​​	 …(53)

	 But since â † = â and ·ak | akÒ π 0, comparing Eqs. (52) and (53) we get

		  ak = ak
*	 …(54)

	 Clearly the eigenvalue ak is real.

Theorem 2.	  Two eigenvectors of a linear hermitian operator belonging to different 
eigenvalues are orthogonal.

Proof:  Consider a linear hermitian operator â .

	 Let | aj Ò be the eigenvector of â  belonging to eigenvalue aj and |ak Ò be the eigenvector 
of â belonging to eigenvalue ak.

	 We then have according to our considerations

		
†

* *

ˆ ˆ

;j j k k

¸a = a Ô
˝

a = a a = a Ǫ̂
	 ...(56)

	 Let ​​ ·ak |​ be the eigenbra associated with the eignket ​| akÒ ​​.
	 We then have the eigenvalue equations

		  â ​| ajÒ ​​ = aj ​| ajÒ ​​ 	 …(56)

		​  ​ ·ak |​ â = ak ​​ ·ak |​	 …(57)

	 Forming scalar product of Eq. (56) with ​​ ·ak |​, we get

		​  ​ ·ak |​ ​​ â   |​ ajÒ = aj ·ak ​| ajÒ ​​	 …(58)
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	 Similarly, forming scalar product of Eq. (57) with |ajÒ we obtain 

		  ·ak | â ​| aj ​​Ò = ak ​​ ·ak |​ajÒ 	 …(59)

	 Subtracting Eq. (59) from Eq. (58), we get

		  (aj – ak) ·ak ​| ajÒ ​​ = 0	 …(60)

	 Since aj and ak are two different eigenvalues, Eq. (60) gives

		  ·ak ​| aj Ò ​​ = 0	 …(61)

	 Clearly, the eigenvectors ​| aj Ò ​​ and ​| akÒ ​​	 are orthogonal to each other.

	 We may note from Eqs. (56) and (57) that the eigenvalues associated with eigenkets are 
the same as those associated with the corresponding bras.

9.7 P hysical Interpretation to Eigenvalues;  
	C ompleteness, Expansion in Eigenkets 

Any dynamical variable of a system that can be measured is called an observable of that 
system.

	 According to a basic postulate of quantum mechanics, with every observable there 
is associated a hermitian operator and the result of measurement of an observable is an 
eigenvalue of the corresponding operator (Refer to chapter 5).

	 Consider an observable â of a quantum system. Let â be the corresponding hermitian 

operator. If the system is in a particular eigen state of â , say ​| akÒ, ​​ then if we measure a we 
obtain the value ak. We assume that if we measure a and in each measurement we obtain the 
value ak with certainty, that is, if we measure a for a large number of systems each prepared 
in an identical way and always get the value ak, then we say that the system is in the state ​

| akÒ ​​.
	 Furthermore, when a single measurement of a is made on the system in an arbitrary state, 
we obtain one of the eigen values of â . In such a measurement the measurement process 
disturbs the system and causes it to jump into one of the eigen states of â .

	 The eignekets of the operator â corresponding to the observable a form an 
orthonormal set

		  · l1 | lj Ò = dij	 …(62)

where dij is the Kronecker delta

		
0 if

1 if

ij i j

i j

d = π Ô̧
˝

= = Ǫ̂
	 …(63)

	 It is postulated that any state of the system is linearly dependent on the eigenkets ​| ak ​​ Ò. 
In after words eigenkets of â form a complete set. Any arbitrary state described by the ket ​

| PÒ ​​ can thus be written in terms of the eigenkets of â as
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		​  | P Ò ​​ = ​S 
k
 ​ 

 

 ​   ​ak ​| akÒ ​​	 …(64)

	 If a measurement of a is made in the state described by ​| P Ò ​​ then |ak|
2 gives the probability 

of obtaining the value ak.

	 If the system is in a state described by the normalized ket

		​  | PÒ ​​ = a1​| a1Ò ​​ + a2 ​| a2 ​​	 …(65)

then a measurement of a gives either the value a1 with probability |a1|
2 or the value a2 with 

probability |a2|
2. Since ·P |P Ò = 1, we obtain

		  |a1|
2 + |a2|

2 = 1. 	 …(66)

	 We know that the eigenkets of â form an orthonormal set so that

		  ·ai ​| ajÒ ​​ = dij

	 We have

		  ·ai ​| PÒ ​​ = ​S 
k
 ​ 

 

 ​   ​Ck ·ai ​| akÒ ​​ = ​S 
k
 ​ 

 
 ​   ​Ck dik = Ci 	 …(67)

	 Thus,	​ | PÒ ​​ = Â ​| akÒ ​​ Ck = ​{ ​S 
k
 ​ 

 

 ​   ​​| akÒ ​​ ·ak }​​| PÒ ​​

(  Ck = ​​ ·ak |​ PÒ from Eq. (67))

	 Since the above result holds for all arbitrary kets we must have

		​  S 
k
 ​ 

 

 ​   ​​| akÒ ​​ ​​ ·ak |​ = 1. 	 …(68)

	 The above equation is referred to as the completeness condition of eigenkets of the 
operator corresponding to an observable of a quantum system.

9.8  Illustrative Examples

Example 1  Solution of eigenvalue problems.

The solution of a particular simple eigenvalue problem (in many cases, the solution is 
complicated) is presented with the purpose of illustrating the method.

	 Consider a linear hermitian operator ŝz.

	 Let us assume ŝz to satisfy the auxiliary condition

		  s2
z = Î	 …(69)

where Î is an identity operator.

	 Our problem is to solve the eigenvalue problem
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		  ŝz ​| SÒ ​​ = S ​| S Ò ​​	 …(70)

	 According to theorem 1 (refer to Section 9.6), the eigenvalue S is real while from theorem 2, 

if ​| S1Ò ​​ and ​| S2Ò ​​ be two eigenkets of ŝz belonging to different eigenvalues S1 and S2 then

		  ·S1​| S2Ò ​​ = 0	 …(71)

	 Multiplying both sides of Eq. (70) by ŝz from the left and using Eq. (69) we obtain 

		  ŝ 2
z ​| S Ò ​​ = Î  ​| S Ò ​​ = ​| S Ò ​​	 …(72)

	 Also, from (70) we get

		  ŝ 2
z ​| S Ò ​​ = ŝz ŝz ​| S Ò ​​ = S ŝz ​| S Ò ​​ = S 2 ​| S Ò ​​	 …(73)

	 Equations (72) and (73) give 

		  S 2 ​| S Ò ​​ = ​| S Ò ​​

or		  (S 2 – 1) ​| S Ò ​​ = 0	 …(74)

	 Forming scalar product of Eq. (74) with bra ​​ ·S |​ we get		

		  (S 2 – 1) ·S ​| S Ò ​​ = 0	 …(75)

	 Since ·S ​| S Ò ​​ is positive and not equal to zero we obtain from Eq. (75)

		  S 2 – 1 = 0

	 The above yields

		  S = +1 and S = – 1	 …(76)

	 According to our assumption there can be no degeneracy (two eigenvalues are same) and 
hence there are only two eigenvalues given by Eq. (76) and we may write Eq. (70) as

		​  ​ ŝz |​+1Ò = +1 ​| +1Ò ​​ and ŝz ​| –1Ò ​​ = –1​| –1Ò ​​	 …(77)

	 According to the theorem 2 (Section 9.6) we have

		​  ​ ·+1 |​ –1Ò = 0 = ·–1​| +1Ò ​​	 …(78)

	 Equations (78) are the orthogonality relations obeyed by eigenkets belonging to different 
eigenvalues.

	 We know that an eigenket multiplied by a constant gives an eigeket that belongs to the 
same eigenvalue. This allows us to choose the constant such that the norm of the eigenkets 
be unity and to write
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		​  ​ ·+1  |​ +1Ò = 1 = ·–1​| –1Ò ​​	 …(79)

	 Equations (79) are the normalization conditions of the eigenkets of ŝz.

	 It is important to see that normalization does not specify the eigenkets uniquely. If we 

multiply ​| +1Ò ​​ and ​| –1Ò ​​ by eia(a real) then the corresponding bras will be multiplied by e–1a 

so that we once again get

		​  ​ ·+1  |​ +1Ò = 1 + ·–1​| –1Ò ​​

	 Thus eigenkets and eigenbras are known only within a phase factor.

	 The phase factor, however, does not have any physical significance and hence it is usual 
to choose a = 0.

Example 2  If ​| aÒ ​​ and ​| bÒ ​​ are two arbitrary ket vectors and ​{ ​| kÒ ​​ }​ forms a complete set 
of kets then prove that

		  ·a​| b ​​Ò = ​S 
k
 ​ 

 
 ​   ​·a​| kÒ ​​ ·k​| bÒ ​​

Solution:  Since {​| kÒ ​​} forms a complete set, we may expand ​| aÒ ​​ and ​| bÒ ​​ in terms of {​| kÒ ​​} 
as

		​  | aÒ ​​ = ​S 
k
 ​ 

 

 ​  ​ak ​| kÒ ​​	 …(i)

		​  | bÒ ​​ = ​S 
j
 ​ 

 
 ​   ​bj ​|  jÒ ​​ 	 …(ii)

	 Taking scalar product of Eq. (i) with ​​ · k |​ we get

		  ·k​| aÒ ​​ = ·k (S ak​| kÒ ​​) = ak	 …(iii)

	 Similarly, taking scalar product of eq. (ii) with​​  ·  j |​

		  · j ​| bÒ ​​ = ·  j (​S 
j
 ​ 

 
 ​   ​bj ​| jÒ ​​) bj	 …(iv)

	 We have,

		​  ​ ·a |​ = ​S 
k
 ​ 

 
 ​   ​​​ ·k |​ ak

* =  ​S 
k
 ​ 

 
 ​   ​·a|kÒ ​​ ·k |​	 …(v)

		  (using eq. (iii))
	 Now, we get

		  ·a​| bÒ ​​ = ​S 
k, j

​ 
 
 ​   ​·a​| kÒ ​​ ·k​| jÒ ​​ · j​| bÒ ​​

		  = ​S 
k, j

​ 
 
 ​   ​·a​| kÒ ​​ dkj j|bÒ

		  ·a​| bÒ ​​ = ​S 
k
 ​ 

 
 ​   ​·a​| kÒ ​​ ·k​| bÒ ​​
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Example 3  Show that

		​ 
______

 ​| aÒ ​​ ​​ ·b |​​ = ​| bÒ ​​ ​​ ·a |​
  where bar (—) denotes complex conjugate.

Solution:

		​  | aÒ ​​ ​​ ·b |​ = c (say).  (c being a complex number)	 …(i)

	 Let the ket ​| aÒ ​​ be equal to c multiplied by a ket ​| b Ò ​​
i.e.

		​  | aÒ ​​ = c ​| b Ò ​​
	 Using Eq. (i) in Eq. (ii) we get

		​  | aÒ ​​ = ​[ ·b ​| b Ò ​​ ]​ ​| aÒ ​​

	 The bra associated with ​| aÒ ​​ is then,

		​  ​ ·a |​ = ​
_____

 ·b​| b Ò ​​​ ​​ ·a |​ = ·b​| bÒ ​​ ​​ ·a |​ 	 …(iii)

	 We, however, have

		​  ​ ·a |​ = ​​ ·b |​ ​
_
 c​	 …(iv)

	 From Eqs. (iii) and (iv) we obtain

		​ 
_
 c​ = ​| bÒ ​​ ​​ ·a |​.	 …(v)

	 From Eq. (i) we get

		​ 
_
 c​ = ​

______
 ​| aÒ ​​ ​​ ·b |​​	 …(vi)

	 Equating the right hand sides of Eqs. (v) and (vi) we get

		​ 
______

 ​| aÒ ​​ ​​ ·b |​​ = ​| bÒ ​​ ​​ ·a |​.
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