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Preface

Th is book is the outcome of the two semester course of lectures that we have been de-
livering for a number of years to the fi rst year M.Sc. students at the University of Kaly-
ani, in West Bengal. Th e material contained in it is appropriate for M.Sc and advanced 
under graduate (senior level) students covering the syllabi of most of the universities of 
India and abroad.

Instead of following the historical development of quantum mechanics the theory has 
been built up starting from a number of basic postulates as described in chapter 1.

Representation theory comes next in chapter 2. It includes changes of representa-
tion and the concept of unitary transformation which is very basic in the formulation of 
the theory. Aft er considering spatial translation and momentum we go over to the time 
evolution of quantum systems which fi nally gives rise to the Schrodinger equation of 
motion. Feynman’s Path Integral formalism then follows in chapter 5. Chapter 6 contains 
the application of quantum mechanics to one dimensional problems. More realistic three 
dimensional cases are dealt with in chapter 10.

Rotation and angular momentum are discussed in great detail in chapters 7, 8, and 9.
Symmetry plays and important role in quantum mechanics, perhaps more so than in 

classical mechanics. Th is is covered in chapter 11.
Since most of the physical problems cannot be exactly solved, diff erent approximate  

methods are developed which constitute chapter 12.
Time dependent approximate methods and scattering processes are discussed 

elaborately in chapters 13, 14 and 15.
Relativistic  quantum mechanics is introduced in the last chapter ending at the 

doorstep of quantum fi eld theory.
I am undebted to Dr. G Speisman of the Florida State University, USA, whose lectures  I 

attended as a graduate student. Th ese lecture notes have been of help to me.
I would like to thank my former colleagues Professor Ratanlal Sarkar for many 

helpful discussions and Professor Siddhartha Ray for supplying me with books and other 
materials. Professor Ray also managed to fi nd time from his busy schedule to oversee the 
entire process of publication of this book. I am extremely grateful to him.

Th is book was written when we were visiting our sons Angsuman and Archisman in 
America. Th ey took care of us and provided a perfect ambience for me to fi nish the book. 
I am so proud of them.

Finally my husband Professor Prasantakumar Rudra motivated me to write this book 
and painstakingly prepared the La Tex version of the manuscript in camera ready form. 
Th is book would not have been possible without him.

 Kolkata, India Nandita Rudra
 2018
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â Unit vector along a[
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Chapter 1

Basic Concepts & Formulation

1.1 Introduction

Newtonian Mechanics, theory of Elasticity and Fluid Dynamics, together with Maxwellian, y y y , g
Electrodynamics are basically what constitute Classical Physics. Classical Physics
was developed and successfully applied to describe the motions of macroscopic bodies
like planetary systems and other every day phenomena. It also described electro-
magnetic field and its interaction with matter. The development of classical physics
was almost complete by the early twentieth century. With the discovery of sub-
atomic particles, radioactivity and X-rays and also the accumulation of data on the
spectrum of Black Body Radiation and other spectroscopic studies, it became imper-
ative to invoke new concepts and ideas. Thus Quantum Mechanics, the fundamental
theory of the physical world was formulated.

Based on the early work by Planck, Einstein, Bohr, de Broglie, Sommerfeld and
others, Quantum Mechanics was developed during 1925 - 1928 by Heisenberg, Born,
Jordan, Schrödinger, Dirac, Pauli and others. All experiments performed during the
last 80 years have indicated the correctness of Quantum Mechanics.

Quantum Mechanics has brought about profound change in our thinking about
the description of natural phnomena, particularly those of the subatomic world.
Though it is based on concepts radically different from those of classical physics,
quantum mechanics yields the laws of classical physics in the macroscopic limit.

1.2 Measurements

In classical mechanics the dynamical state of a system is determined from the knowl-
edge of the dynamical variables like the coordinates and momenta of the constituents
at every moment of time. All such variables can, in principle, be simultaneously

Newtonian Mechanics, theory of Elasticity and Fluid Dynamics, together with Maxwellian
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measured with infinite precision.
In Quantum Mechanics, on the other hand, measuremnt process itself, i.e. the

presence of the measuring apparatus between the system and the observer mod-
ifies the state of the system in an unpredictable way such that the subsequent
measurements may yield different values for the same variable. The result of the
measurement in quantum mechanics is probabilistic rather than deterministic as in
classical mechanics. This probabilistic nature of measurement is an inherent prop-
erty of quantum systems unlike statistical probability which arises due to the lack
of knowledge of all the initial values of the variables that define the state.

This means that quantum mechanics predicts the number of times n that a
particular result will be obtained, when a large number N of measurements are
carried out on a collection of identical and independent systems that are identically
prepared. Such a collection is called an Ensemble.

1.3 Basic Postulates

We shall start by enunciating and explaining the basic postulates and axioms that
are necessary for formulating the new mechanics. These postulates are self-evident
truths that cannot be proved but have to be accepted for building up any new theory.
If the theory thus built up is successful not only in explaining the known experi-
mental results but also in predicting new ones, then these postulates become laws.
Thus we have the Newton’s Laws in classical mechanics, the Maxwell’s Equaions in
classical electrodynamics. In statistical physics we similarly have the postulates of
equal a priori probability and ergodic hypothesis.

(i) Postulate 1. State of the System

We shall use the ket and bra vector notations developed by Dirac. These elegant
notations are compact, sufficiently general and extremely powerful as will become
evident as we proceed.

The physical state of a system is denoted by a ket vector |α〉 in a linear and
complex vector space which is a mathematical space with dimension depending on
the nature of the physical system under consideration. The vector space in infinite
dimension is known as Hilbert Space.The state index α denotes the set of values or
quantum numbers of the physical quantities which define the state of the system.
The ket |α〉 is postulated to contain all the informations that can be known about
the system. Also



is postulated to represent the same state |α〉. When c is zero the result is the Null
ket.

(ii) Postulate 2. Superposition of States.

This postulate is one of the corner stones of quantum mechanics. According to this
postulate if there are more than one states of the system then the linear combination
will also represent another state of the system. For instance if |α〉 and |β〉 are two
possible states, then

cα|α〉 + cβ|β〉 ≡ |γ〉, where cα and cβ are arbitrary complex numbers, (1.2)

will represent another state of the system. Thus one can add up states to gener-
ate new states by superposition. The physical vectors in Euclidian Space have the
property that they can be added up to form new vectors. Analogously we have
designated the states |α〉 as ket vectors in a complex and linear mathematical space.
Since from Eq. (1.1) c|α〉 and |α〉 are the same state when c �= 0, only the ‘direction’
and not the magnitude of the ket vector is of significance.

BRA VECTORS, BRA SPACE, INNER PRODUCT

We now introduce the bra vectors and the bra space. According to Dirac every
ket vector |α〉 is associated with a bra vector, denoted by 〈α|, by some conjugation
process. The association between |α〉 and 〈α|, we call dual correspondence. The
Bra Vectors are introduced such that the complete bracket notation 〈β|α〉 which is
defined as the inner product of a ket |α〉 and a bra 〈β| will be in general a complex
number. The inner product is postulated in analogy to the scalar product a · b,
which is a scalar quantity, of two physical vectors a and b. According to Dirac a
bra vector is completely defined when its inner product with all the kets in the ket
space is given. If this inner product of 〈β| is zero for all the kets |α〉, then 〈β| is a
Null bra vector.

If 〈β|α〉 = 0, for all |α〉, (1.3)

then 〈β| = 0, Null Bra Vector. (1.4)

Thus with every ket space there is an associated bra space spanned by bra vectors.
We write

|α〉 Dual Correspondence←− · · · · · · −→ 〈α|,
|α〉 DC←→ 〈α|, (1.5)

c|α〉 = |α〉c, c = arbitrary complex number, (1.1)

1.3. BASIC POSTULATES 3



4 CHAPTER 1. BASIC CONCEPTS & FORMULATION

which we may call Hermitian Conjugation and write

〈α| = [|α〉]† and 〈α|† = |α〉.

in general

|α〉 + |β〉 DC←→ 〈α| + 〈β|, (1.6)

cα|α〉 + cβ|β〉 DC←→ c∗α〈α| + c∗β〈β|, (1.7)

where cα and cβ are complex numbers.
Having defined the inner product

(〈β|) · (|α〉) = 〈β|α〉, (1.8)

we further postulate that

〈β|α〉 = 〈α|β〉∗ (1.9)

Thus the numbers 〈β|α〉 and 〈α|β〉 are complex conjugate of each other. Though
the inner product is analogous to scalar product of two vectors, but unlike it the
inner product is non-commutative, i.e.

〈β|α〉 �= 〈α|β〉. (1.10)

Just as a · b = axbx + ayby + azbz = ab cos θ is the overlap of the vector a with
vector b, 〈β|α〉 represents the overlap integral of 〈β| and |α〉; which will become
clear once the representation of |β〉 and |α〉 in terms of the complete set of basis is
introduced.

From Eq. (1.9) follows

〈α|α〉 = 〈α|α〉∗ = Real. (1.11)

We further postulate that

〈α|α〉 ≥ 0, (1.12)

where the equality holds if and only if |α〉 is the Null ket. We shall call
√
〈α|α〉 the

Norm of the ket |α〉 and the postulate of positive definiteness of norm is essential
for the probabilistic interpretation of quantum mechanics. Two kets |α〉 |β〉 are said
to be orthogonal if

〈α|β〉 = 0. (1.13)

The normalized ket |α̃〉 is given by

|α̃〉 =
|α〉√
〈α|α〉

. (1.14)
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The norm
√

〈α|α〉 is analogous to the magnitude [a · a]
1
2 = |a| of the vector a.

Since |α〉 and c|α〉 represent the same physical state, we shall henceforth use the
normalized kets Eq. (1.14) to describe a state. The normalized ket vectors can yet
be multiplied by a phase factor eiγ , with real γ with modulus unity, before it is
completely specified.

(iii) Postulate 3. Operators for Dynamical Variables

Every Dynamical Variable A will be represented by a linear operator Â which op-
erates on a ket |α〉 to transform it to another ket |γ〉

Â (|α〉) = Â|α〉 = |γ〉. (1.15)

Then

〈γ| = (|γ〉)† ≡ 〈α|Â†, (1.16)

where Â† defined to be Hermitian Adjoint of Â which acts on the bra 〈α| from the
right. Since Â has to be linear we have

Â [cα|α〉 + cβ|β〉] = cαÂ|α〉 + cβÂ|β〉. (1.17)

OUTER PRODUCT OF STATES.

We define the Outer Product of |β〉 and |α〉

(|β〉) · (〈α|) ≡ |β〉〈α|. (1.18)

Unlike the inner product 〈β|α〉 which is a number, it can be shown that the outer
ptoduct Eq. (1.18) is an operator. To show this we use after Dirac the associative
axiom of multiplication. Just as the multiplications between operators are asso-
ciative, Dirac postulated this property holds good for any legal multiplication (i.e.
multiplications that are allowed) among kets, bras and operators. Thus

(|β〉〈α|) |γ〉 = |β〉 · 〈α|γ〉 = cαγ|β〉, (1.19)

where cαγ = 〈α|γ〉 = a number.

It is as if |β〉〈α〉 rotated |γ〉 in the direction of |β〉. Similarly

〈γ| · (|β〉〈α|) = 〈γ|β〉 · 〈α| = 〈α|cγβ (1.20)
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HERMITIAN ADJOINT OF |β〉〈α|.

We have defined Hermitian Adjoint operator in Eq. (1.16). Let

X̂ ≡ |β〉〈α|, (1.21)

X̂|γ〉 = (|β〉〈α|) · |γ〉 = |β〉 · 〈α|γ〉
= cαγ|β〉 . (1.22)

Then

〈γ|X̂† = 〈α|γ〉∗ · 〈β| = 〈γ|α〉〈β|
= 〈γ| · (|α〉〈β|) . (1.23)

Thus

X̂† = |α〉〈β|, where X̂ = |β〉〈α|. (1.24)

X̂† is called the Hermitian Conjugate of X̂.
An operator is said to be Hermitian if it is equal to its Hermitian Conjugate.

i .e. if X̂ = X̂†, then X̂ is Hermitian.

Since

〈β|X̂|α〉 = 〈β| ·
(
X̂|α〉

)
=
[(

〈α|X̂†
)
· |β〉
]∗

, (1.25)

if X̂ = X̂†, then,

〈β|X̂|α〉 = 〈α|X̂|β〉∗ (1.26)

and, in particular

〈β|X̂|β〉 = 〈β|X̂|β〉∗ = Real

In other words the diagonal matrix elements of Hermitian Operators are real.

(iv) Postulate 4. Eigenvalues and Eigenvectors of Operators

When an operator acts on a ket |α〉 it does not, in general, give rise to the same ket
|α〉 times a constant. However, for an operator Â, there may exist a particular class
of kets known as eigenkets of Â satisfying the following equation

Â|an〉 = an|an〉, n = 1, 2, · · · , (1.27)

where {a1, a2, · · · } are just numbers, called the eigenvalues and Eq. (1.27) is
known as Eigenvalue Equation. The kets |a1〉, |a2〉, · · · , are known as Eigenkets.
The totality of the numbers {a1, a2, · · · , } is called the Spectrum of Eigenvalues.
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According to Dirac a measurement always causes the physical system to be thrown
into one of the eigen states of the dynamical variable being measured and will yield
the corrensponding eigenvalue. It is postulated that the only result of a precise
measurement of the dynamical variable A is one of the eigenvalues an of the linear
operator Â, associated with A. This postulate has to do with measurement on a
quantum system.

(v) Postulate 5. Hermitian Operator.

According to the previous postulate measurement yields eigenvalues of an operator
corresponding to a physical observable. Since physical obervables are neccessarily
real quantities we need to represent them by such operators that have real eigenval-
ues.

We shall now prove that Hermitian operators have real eigenvalues and the eigen-
kets are orthonormal for non-degenerate solutions.

The eigenvalue equation for a Hermitian operator Â is

Â |am〉 = am |am〉 so that 〈an|Â|am〉 = am〈an|am〉 (1.28)

〈an|Â† = a∗n〈an| = 〈an|Â so that 〈an|Â|am〉 = a∗n〈an|am〉, (1.29)

and thus

(am − a∗n) 〈am|an〉 = 0. (1.30)

Thus

for n = m, an = a∗n = real and for n �= m, 〈an|am〉 = 0. (1.31)

The equation in Eq. (1.31) corresponds to non-degerate case. If the solutions are
degenerate, i.e. when there are more than one distinct eigenkets for a particular
eigenvalue, then orthogonality can be achieved by taking a suitable linear combina-
tion of the degenerate kets, that we leave as an exercise. So in all cases we can write
Eq. (1.31) as follows

〈an|am〉 = δn.m. (1.32)

This is the orthonormality condition.
Thus from Eq. (1.31) we find that the eigenvalues of Hermitian operators are real.

A sufficient but not necessary condition for an operator to have real eigenvalues is
for it to be Hermitian. We postulate that the linear operators associated with
observables are Hermitian.
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(vi) Postulate 6. Basis Vectors and Completeness Condition.

We now postulate that the the eigenkets {|a1〉, |a2〉, · · · } of the Hermitian operator
Â corresponding to the observable A form a complete set spanning the whole of the
ket space, such that an arbitrary ket |α〉 of the system can be uniquely expanded
in terms of this complete set. In other words the eigenkets {|a1〉, |a2〉. · · · } form a
basis of the ket space. Then we can write for any arbitrary ket |α〉

|α〉 =
∑
n

cαn|an〉, where cαn = 〈an|α〉 (1.33)

are the expansion parameters and are in general complex numbers.
Also since

|α〉 =
∑
n

|an〉〈an|α〉 (1.34)

is true for any arbitrary ket |α〉, we have∑
n

|an〉〈an| = Î (1.35)

an unit operator. Eq. (1.35) gives the completeness criterion for the set {|a1〉, |a2〉, · · · }
and is also known as the closure property. 1

PROJECTION OPERATOR

Comparing Eq. (1.33) and Eq. (1.35) we see that the operator |an〉〈an| projects
|α〉 along |an〉 and is thus called the projection operator, defined as:

Λ̂n = |an〉〈an|, (1.36)

Λ̂2
n = Λ̂n,∑

n

Λ̂n =
∑
n

|an〉〈an| = Î (1.37)

= Totality of all projections

The unit operator so defined is extremely important as it can be inserted anywhere
in a chain of multiplication of kets, bras and operators to derive useful results. For
example

〈α|α〉 = 〈α|
(∑

n

|an〉〈an|
)
|α〉 (1.38)

=
∑
n

〈α|an〉〈an|α〉 =
∑
n

cαnc
∗
αn =

∑
n

|cαn|2

= 1, (1.39)

1See Appendix A.1 for discussion on completeness condition.

for a normalized ket |α〉.

{|a1〉, |a2〉, · · · }



MEASUREMENT OF OBSERVABLE A

We now make a useful observation relating to the measurement of the observable
A. If the state vector of the system is one of the eigenkets, i.e. if the system is
in an eigenstate |an〉 of Â, then the measurement of A will yield the eigenvalue an
with definiteness. On the other hand if the state vector is an arbitrary ket |α〉,
then the measurement of Â will yield any one of the eigenvalues a1, a2, · · · . The
probability of obtaining a particular value an is postulated to be given by |〈an|α〉|2
or |cαn|2 where cαn is the expansion parameter in Eq. (1.33). The parameter cαn is
known as the probabilty amplitude for the state |an〉 in |α〉.

WHAT IS AN OBSERVABLE ?

According to Dirac not all dynamical variables are observables. If any variable
is such that the corresponding operator does not possess a complete set of eigenkets
and a system ket is not expressible in terms of them then such a variable cannot be
called an observable in quantum mechanics.

(vii) Expectation Value

This is defined as

〈Â〉 ≡ Expectation value of Â = 〈α|Â|α〉. (1.40)

for a normalized state |α〉. It can be shown that repeated measurements of an
observable A or measurement on an ensemble of identical systems will yield the
expectation value.

〈α|Â|α〉 = 〈α|
(∑

n

|an〉〈an|
)

· Â ·
(∑

m

|am〉〈am|
)
|α〉 (1.41)

=
∑
n.m

〈α|an〉〈an|Â|am〉〈am|α〉

=
∑
n,m

〈α|an〉am〈an|am〉〈am|α〉

=
∑
n,m

〈α|an〉am δn,m〈am|α〉

=
∑
n

〈α|an〉an〈an|α〉 =
∑
n

an|〈an|α〉|2, (1.42)

1.3. BASIC POSTULATES 9
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which is the weighted average of the eigenvalues an, hence this value will be repro-
duced on repeated measurement of A when the system is in a state |α〉.

Problem 1.1 An observable A has only two normalized eigenstates |α1〉 and |α2〉
such that

A|α1〉 = α1|α1〉, and A|α2〉 = α2|α2〉.

(i). Prove that |α1〉 and |α2〉 are orthogonal to each other.

(ii). What is their completeness condition?

(iii). Obtain the expecttion value of A in the state

|φ〉 =

√
1

3
|α1〉+

√
2

3
|α2〉.

Problem 1.2 Condider the operator

Ω̂ = |φ1〉〈φ2|+ |φ2〉〈φ1|

where |φ1〉 and |φ2〉 are orthonormal.

(i). Is Ω̂ a projection operator?

(ii). What is the completeness condition of |φ1〉 and |φ2〉?

Problem 1.3 For any state |ψ〉 obtain the eigenvalue and eigenvector of the oper-
ator |ψ〉〈ψ| .

Problem 1.4 The state of a system is given by

|α〉 = C1|ε1〉+ C2|ε2〉,

where |ε1〉 and |ε2〉 are the energy eigenstates with energy eigenvalues ε1 and ε2,
C1 and C2 being constants.

(i). What is the probability of getting an energy value ε1 on a large number of
independent energy measurements in the state |α〉 ?

(ii). Obtain the expectation value of the Hamiltonian 〈α|H|α〉.



Chapter 2

Representation Theory

2.1 Elements of Representation Theory

In the first course of quantum mechanics one defines a wavefunction ψα (ξ, t) to
describe the state of the system. ψα (ξ.t) is a function of the coordinates ξ at a
particular instant of time t. The parameters α denote the quantum numbers of the
physical quantities having well-defined values which describe the state ψ.

In Dirac notations we denote the state of the system by a ket vector |α〉 defined
in a mathematical vector space which is linear and complex. This space is so con-
structed that the eigenkets {|a1〉, |a2〉, · · · } of an Hermitian operator Â form a
complete and orthonormal set spanning the whole of this space called the Hilbert
Space in general. This complete set then forms the basis vectors of the space and an
arbitrary physical state |α〉 can be expressed, as in Eq. (1.33), in the basis {|an〉}:

|α〉 =
∑
n

|an〉〈an|α〉 =
∑
n

cαn |an〉,

with cαn = 〈an|α〉 forming the ‘coordinates’ of the state |α〉 in the basis |an〉. This
set of numbers is called the wavefunction in Â-representation. For example if we
use eigenkets of position operator as basis, we shall get coordinate representation.

ψα (ξ) ≡ 〈ξ|α〉. (2.1)

(i) The Energy Representation, called the E-representatrion

We consider this as an example of discrete representation. In order to represent the
state vector |α〉 we choose the eigenfunctions of a Hamiltonian operator having a
discrete spectrum of eigenvalues as the basis functions. We denote these functions
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in coordinate representation by

φEn
(ξ) ≡ 〈ξ|En〉, (2.2)

φEn
(ξ)∗ = 〈En|ξ〉,

and

∫
dξ φEm

(ξ)∗ φEn
(ξ) = δEm,En

(2.3)

i.e.

∫
dξ 〈Em|ξ〉〈ξ|En〉 ≡ 〈Em|En〉 = δEm.En

.

(ii) Operators as Matrices

We consider any general operator X̂ and introduce the Unit Operator Eq. (1.35):

X̂ = Î · X̂ · Î =

(∑
n

|an〉〈an|
)
X̂

(∑
m

|am〉〈am|
)

(2.4)

=
∑
n,m

|an〉〈an|X̂|am〉〈am| (2.5)

The quantities 〈an|X̂|am〉 are numbers forming a square array, 〈an| are rows and
|am〉 the columns. We also know from Eq. (1.25) that

〈an|X̂|am〉 = 〈am|X̂†|an〉∗, and thus (2.6)

〈an|X̂|am〉∗ = 〈am|X̂†|an〉, (2.7)

in conformity with the definition of Hermitian Adjoint matrix elements as the com-
plex conjugate of the transposed matrix elements.

We also have

〈am|Â|an〉 = an〈an|am〉 = anδn,m. (2.8)

Thus Â is diagonal in its own representation.
We can also write

Â =
∑
n,m

|an〉〈an|Â|am〉〈am|

=
∑
m

am|am〉〈am| =
∑
m

amΛ̂m, (2.9)

Λ̂m = |am〉〈am| being the projection operator.
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Let |γ〉 = X̂|α〉. Then

〈am|γ〉 = 〈am|X̂|α〉

= 〈am|X̂
(∑

n

|an〉〈an|
)
|α〉 =

∑
n

〈am|X̂|an〉〈an|α〉, (2.10)

which shows that the product of the square matrix X̂ = 〈am|X̂|an〉 with the column
matrix 〈an|α〉 reproduces the column matrix 〈am|γ〉.

Similarly

if 〈γ| = 〈α|X̂, (2.11)

then 〈γ|an〉 =
∑
m

〈α|am〉〈am|X̂|an〉. (2.12)

In Eq. (2.12) the right hand side is the product of the row matrix 〈α|am〉 with the
square matrix 〈am|X̂|an〉 giving the row matrix 〈γ|an〉.

Thus we have the column matrix

〈am|γ〉 =⇒

⎛
⎜⎝

〈a1|γ〉
〈a2|γ〉

...

⎞
⎟⎠ , (2.13)

the square matrix

〈am|X̂|an〉 =⇒

⎛
⎜⎝

〈a1|X̂|a1〉 〈a1|X̂|a2〉 · · ·
〈a2|X̂|a1〉 〈a2|X̂|a2〉 · · ·

...
...

. . .

⎞
⎟⎠ (2.14)

and the row matrix

〈γ|am〉 =⇒
(
〈γ|a1〉 〈γ|a2〉 · · ·

)
=
(
〈a1|γ〉∗ 〈a2|γ〉∗ · · ·

)
(2.15)

Problem 2.1 Find in the basis {|a1〉, |a2〉, · · ·}
(i) the expression for the inner product 〈β|α〉,
(ii) the matrix corresponding to the outer product |β〉〈α| .

KET AND BRA MATRICES
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2.2 Change in Representation and Unitary Trans-

formation

We have seen that a particular representation is determined by the complete set of
basis kets used to describe the ket space of the system. A change of representation
can then be brought about by changing the basis set. For example, if A and B are
two incompatible i.e. non-commuting Hermitian operators, each having its distinct
set of eigenkets, then either of these sets can be chosen as basis states of the ket
space. Thus in place of Eq. (1.33) we can also write

|α〉 =
∑
n

|bn〉〈bn|α〉 (2.16)

where the expansion coefficients 〈bn|α〉 form the wavefunctions in B−representation.
The transformation in representation can be achieved by a unitary operator connect-
ing the old set of basis {|a1〉, |a2〉, · · · } with the new set {|b1〉, |b2〉, · · · } as follows

Û =
∑
n

|bn〉〈an| and Û † =
∑
k

|ak〉〈bk|. (2.17)

Û defined in Eq. (2.17) can be shown to be unitary.

Û †Û =

(∑
k

|ak〉〈bk|
)(∑

n

|bn〉〈an|
)

=
∑
k,n

|ak〉〈bk|bn〉〈an|

=
∑
k,n

δk,n|ak〉〈an| =
∑
k

|ak〉〈ak|

= Î . (2.18)

The matrix elements of U in terms of the basis |an〉 are

〈ak|Û |al〉 = 〈ak|
(∑

m

|bm〉〈am|
)
|al〉

=
∑
m

〈ak|bm〉〈am|al〉 =
∑
m

〈ak|bm〉δm,l

= 〈ak|bl〉, (2.19)

which is the inner product of the old bra and the new ket.
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Also

Û |al〉 =
∑
k

|bk〉〈ak|al〉 = |bl〉, and (2.20)

Û †|bl〉 =
∑
k

|ak〉〈bk|bl〉 = |al〉. (2.21)

We can now find out how the expansion coefficients 〈an|α〉 of an arbitrary ket
|α〉 transform from one basis to another,

|α〉 =
∑
n

|an〉〈an|α〉, (2.22)

〈bk|α〉 =
∑
n

〈bk|an〉〈an|α〉. (2.23)

From Eq. (2.20) and Eq. (2.23) follows

〈bk| = 〈ak|Û †, (2.24)

〈bk|α〉 =
∑
n

〈ak|Û †|an〉〈an|α〉. (2.25)

The left hand sides are the expansion coefficients in new basis and Eq. (2.25) shows
the transformation from old coefficient 〈an|α〉 to the new 〈bk|α〉. Since the expansion
coefficients are the wavefunctions, Eq. (2.25) shows the transformation of wavefunc-
tion under change of basis.

TRANSFORMATION OF OPERATOR

For a general operator X̂, the matrix elements transforms as follows.

〈bk|X̂|bl〉 = 〈bk|
(∑

m

|am〉〈am|
)
X̂

(∑
n

|an〉〈an|
)
|bl〉

=
∑
m.n

〈bk|am〉〈am|X̂|an〉〈an|bl〉

=
∑
m,n

〈ak|Û †|am〉〈am|X̂|an〉〈an|Û |al〉, (2.26)

or X̂new = Û †X̂oldÛ , (2.27)

which is the similarity transformation of operators under Û .
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2.3 Commuting Observables

Observables A and B are commuting if the corresponding operators Â and B̂ com-
mute with each other:[

Â, B̂
]

= ÂB̂ − B̂Â = 0. (2.28)

Since Â and B̂ are Hermitian operators, they have complete sets of eigenkets {|an〉}
and {|bn〉} respectively. If Â and B̂ commute with each other, then they have
simultaneous eigenkets.
Proof:

〈am|
[
Â, B̂

]
|an〉 = 〈am|

(
ÂB̂ − B̂Â

)
|an〉

= 〈am|ÂB̂|an〉 − 〈am|B̂Â|an〉
= a∗m 〈am|B̂|an〉 − an 〈am|B̂|an〉
= (a∗m − an) 〈am|B̂|an〉
= (am − an) 〈am|B̂|an〉 = 0. (2.29)

The last line follows from the hermiticity of Â.
For non-degenerate case, i.e. for the case when there is only one eigenket corre-

sponding to a particular eigenvalue, we have

for n �= m 〈am|B̂|an〉 = 0,

and we write 〈am|B̂|an〉 = δm.n 〈an|B̂|an〉
= δm,n bn, where bn = 〈an|B̂|an〉. (2.30)

Problem 2.2 Show that the operators Â and B̂ will commute if they have
common eigenkets.

Since the common eigenket has the eigenvalue an for Â and the eigenvalue bn for B̂
we express this fact by the notation

Â|an, bn〉 = an|an, bn〉, (2.31)

B̂|an, bn〉 = bn|an, bn〉, (2.32)

with n = 1, 2, · · ·

The operators Â and B̂ are called compatible if they have simultaneous eigenkets.
We also note that the measurement of Â and B̂ when the system is in one of the
common eigenkets will precisely yield the respective eigenvalues an and bn.
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2.4 Uncertainty Relation

From the previous discussion it is evident that two observables cannot simultane-
ously have definite values unless the corresponding hermitian operators commute. A
knowledge of their commutation relation, however, allows us to derive an inequality
which their dispersions satisfy.

The deviation can be defined as

ΔÂ = Â − 〈Â〉. (2.33)

Since the expectation value of ΔÂ, 〈ΔÂ〉 = 0, we define the dispersion of Â by the
quantity〈(

ΔÂ
)2〉

=

〈(
Â− 〈Â〉

)2〉
= 〈Â2〉 − 〈Â〉2. (2.34)

The dispersion of Â is zero in its eigenstate. The uncertainty of Â is defined by the
square root of the dispersion, which is also the mean square of the deviation of Â.

If the commutator of two Hermitian operators Â and B̂ is given by[
Â, B̂

]
= iF̂ , (2.35)

it can be shown that〈(
ΔÂ
)2〉〈(

ΔB̂
)〉2

≥ 1

4

∣∣∣〈F̂〉∣∣∣2 =
1

4

∣∣∣〈[Â, B̂]〉∣∣∣2 (2.36)

Problem 2.3 Check that F̂ in Eq. (2.35) is Hermitian.

Proof of Eq. (2.36).

We consider the expectation values of Â and B̂ in an arbitrary state |γ〉

〈Â〉 ≡ 〈γ|Â|γ〉, 〈B̂〉 ≡ 〈γ|B̂|γ〉, (2.37)

and also define the hermitian operators

ΔÂ = Â − 〈Â〉 and ΔB̂ = B̂ − 〈B̂〉 (2.38)

Then
[
ΔÂ,ΔB̂

]
= iF̂ . We now construct a ket

|η〉 =
(
cΔÂ − iΔB̂

)
|γ〉, (2.39)
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where c is an arbitrary real parameter.
Since the norm of |η〉 has to be positive definte so

〈γ|
(
cΔÂ+ iΔB̂

)(
cΔÂ− iΔB̂

)
|γ〉 ≥ 0, (2.40)

as c is real (c = c∗) and ΔÂ and ΔB̂ are Hermitian. Now(
cΔÂ+ iΔB̂

)(
cΔÂ− iΔB̂

)
= c2

(
ΔÂ
)2

+ cF̂ +
(
ΔB̂
)2

(2.41)

Taking the expectation value of Eq. (2.41) in the state |γ〉 we finally get

〈(
ΔÂ
)2〉

⎡
⎢⎢⎣c+ 〈F̂ 〉

2

〈(
ΔÂ
)2〉

⎤
⎥⎥⎦
2

+

〈(
ΔB̂
)2〉

− 〈F̂ 〉2

4

〈(
ΔÂ
)2〉 ≥ 0. (2.42)

This is true for any value of c, in particular, for c = − 〈F̂ 〉
2〈(ΔÂ)

2〉
.

Then from Eq. (2.42), we get〈(
ΔB̂
)2〉

− 〈F̂ 〉2

4

〈(
ΔÂ
)2〉 ≥ 0, or

〈(
ΔÂ
)2〉〈(

ΔB̂
)2〉

≥ 〈F̂ 〉2
4

=
1

4

∣∣∣〈[Â, B̂]〉∣∣∣2 . (2.43)

This is the famous Uncertainty Relation between two non-commuting observables.
We note that in this derivation ΔÂ and ΔB̂ are operators not numbers. When

Â and B̂ are coordinate and canonical momentum, the corresponding uncertainty
relation is Heisenberg’s Uncertainty Principle



Chapter 3

Position & Momentum Operators
and Wavefunctions

3.1 Position Operator and its Eigenkets

We define the position operator x̂ in one dimension by the eigenvalue equation

x̂|x′〉 = x′|x′〉 (3.1)

x̂ is the operator corresponding to the x-component of position coordinate of the
particle, x′ is the eigenvalue which is a number having the dimension of length.
This is the case of continuous spectrum of eigenvalues where x′ may have values
from −∞ to +∞. Since position is an observable x̂ is Hermitian, and the set of
eigenkets {|x′〉} corresponding to the continuous spectrum of eigenvalues x′ form a
complete set and can be used as the basis vectors of the ket space. The completeness
condition is given by1∫ +∞

−∞
|x′〉〈x′| dx′ = Î . (3.2)

Any arbitrary ket |α〉 can be expressed in terms of this set:

|α〉 =

∫ +∞

−∞
dx′ |x′〉〈x′|α〉. (3.3)

The expansion coefficient 〈x′|α〉 is the wavefunction ψα (x
′) in coordinate represen-

tation.

1Compare with Chapter 1 Eq. (1.35) in discrete case.
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POSITION PROBABILITY

We have already postulated in the discrete case in Chapter 1 that the probabil-
ity of obtaining a particular eigenvalue an is given by |〈an|α〉|2 where 〈an|α〉 is the
coefficient of expansion of |α〉 in the discrete basis {|an〉} of Â. Thus 〈x′|α〉 in Eq.
(3.3) can be defined as the probability amplitude of the position measurement when
the system is in the state |α〉 and |〈x′|α〉|2 dx′ is the probability of obtaining the
value of the x-coordinate between x′ and x′ + dx′, when measurement of x is per-
formed in the state |α〉 and the detector is placed between x′ and x′+dx′. The total
probability is given by∫ +∞

−∞
dx′|〈x′|α〉|2 = 1, (3.4)

which can also be written as∫ +∞

−∞
dx′|ψα (x

′) |2 = 1, (3.5)

which is the normalization of state vector |α〉.
We infer that the normalization of the wavefunction is necessary for probabilistic

interpretation of wavefunction in wave mechanics.

Problem 3.1 Find the dimension of the ψα (x
′) in Eq. (3.5).

INNER PRODUCT

〈α|β〉 =

∫ +∞

−∞
〈α|x′〉〈x′|β〉dx′ (3.6)

=

∫ +∞

−∞
dx′ψ∗

α (x
′)ψβ (x

′) , (3.7)

which is the overlap between ψα (x
′) and ψβ (x

′). This can be interpreted as the
probability amplitude of state |β〉 to be found in |α〉 and is independent of repre-
sentation.2

2Compare the scalar product a·b which is the projection of b along a.
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〈α|Â|β〉 =

∫
dx′
∫

dx′′〈α|x′〉〈x′|Â|x′′〉〈x′′|β〉

=

∫
dx′dx′′ψ∗

α (x
′) 〈x′|Â|x′′〉ψβ (x

′′) , (3.8)

where 〈x′|Â|x′′〉 is a function of x′ and x′′.
When

Â = f (x̂) (3.9)

〈x′|Â|x′′〉 = 〈x′|f (x̂) |x′′〉 = f (x′′) δ (x′ − x′′) (3.10)

POSITION EIGENKET IN THREE DIMENSIONS.

We can extend the previous formalism to three dimensions as follows.

x̂|x′〉 = x′|x′〉, (3.11)

which is equivalent to the following equations

|x′〉 = |x′
1, x

′
2, x

′
3〉, (3.12)

x̂ −→ (x̂1, x̂2, x̂3) =⇒ (x̂, ŷ, ẑ)

x̂1|x′〉
x̂2|x′〉
x̂3|x′〉

⎫⎬
⎭ =

⎧⎨
⎩

x̂|x′, y′, z′〉 = x′|x′, y′, z′〉
ŷ|x′, y′, z′〉 = y′|x′, y′, z′〉
ẑ|x′, y′, z′〉 = z′|x′, y′, z′〉

(3.13)

where x1, x2, x3 are the Cartesian components of the position vector r and (x′
1, x′

2, x′
3)

are the eigenvalues x′, y′, z′. We note that |x′
1, x

′
2, x

′
3〉 is the simultaneous eigenket

of the position coordinates x̂, ŷ, ẑ. Thus x̂, ŷ, ẑ must mutually commute with each
other, i.e

[x̂i, x̂j] = 0, for all i, j = 1, 2, 3. (3.14)

We also assume that {|x′〉} are complete i.e.∫
d3x′|x′〉〈x′| = Î . (3.15)

MATRIX ELEMENT 〈α|Â|β〉
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Also, any arbitrary ket |α〉 can be expanded in term of the complete set Eq. (3.15),
i.e.

|α〉 =

∫
d3x′|x′〉〈x′|α〉 (3.16)

=

∫
dx′dy′dz′ |x′y′z′〉〈x′y′z′|α〉.

The expansion coefficients 〈x′y′z′|α〉 = 〈r′|α〉 = ψα (r
′) is the wavefunction in

coordinate representation.

3.2 Spatial Translation and Momentum Operator

We will now find out how the position eigenkets |x′〉 behave when we spatially
translate the system. First we consider an infinitesimal translation dx′ which the
position eigenvalue x′ undergoes, so that

x′ −→ x′ + dx′.

This can be achieved either by translating the physical system itself by an amount
dx′ or shifting the origin of the coordinate system in the opposite direction, i.e. by
−dx′. We shall stick to the first approach, known as active translation. For this we
introduce a translation operator T̂ (dx′) defined as follows

T̂ (dx′) |x′〉 = |x′ + dx′〉. (3.17)

|x′ + dx′〉 is not an eigenket of T̂ (dx′) but is an eigenket of the position operator x̂
so that

x̂|x′ + dx′〉 = (x′ + dx′) |x′ + dx′〉. (3.18)

The effect of the operator T̂ (dx′) on an arbitrary state vector |α〉 can be obtained
in the coordinate representation of |α〉:

|α〉tr ≡ T̂ (dx′) |α〉 = T̂ (dx′)
∫

d3x′|x′〉〈x′|α〉

=

∫
d3x′|x′ + dx′〉〈x′|α〉, (3.19)

where we have used 3∫
d3x′|x′〉〈x′| = Î .

The spatial translation operator T̂ (dx′) should have the following properties

3〈x′|α〉 being a number is not affected by T̂ (dx′).
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(i). It has to be unitary so that the norm of |α〉 remains invariant and the proba-
bility is conserved.

〈α|α〉tr = 〈α|T̂ † (dx′) T̂ (dx′) |α〉 = 〈α|α〉
=⇒ T̂ † (dx′) T̂ (dx′) = Î . (3.20)

(ii). The effect of two successive translations by amounts dx′ and dx′′ should be a
single translation dx′ + dx′′ i.e.

T̂ (dx′) T̂ (dx′′) = T̂ (dx′ + dx′′) . (3.21)

(iii). Since

lim
dx′→0

T̂ (dx′) |x′〉 = lim
dx′→0

|x′ + dx′〉 = |x′〉, so

lim
dx′→0

T̂ (dx′) = Î , Identity. (3.22)

(iv). Inverse translation is equivalent to an infinitesimal translation in the opposite
direction

T̂ −1 (dx′) = T̂ (−dx′) , so that (3.23)

T̂ −1T̂ = Î (3.24)

Now if we define

T̂ (dx′) = 1− ik̂ · dx′ (3.25)

keeping only the first term in the infinitesimal dx′, and demand that k to be Hermi-
tian operator, then such an expression for T̂ (dx′) satisfy all the four requirements
listed above.

Problem 3.2 Show that T̂ (dx′) defined by Eq. (3.25) satisfies the four criteria
of the infinitesimal translation operator

Problem 3.3 Prove the following[
x̂, T̂ (dx′)

]
|x′〉 = dx′|x′ + dx′〉. (3.26)
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Now keeping terms up to the first order of smallness in the right hand side of Eq.
(3.26) we have[

x̂, T̂ (dx′)
]
|x′〉 ≈ dx′|x′〉. (3.27)

Using the expression for T̂ (dx′) in Eq. (3.25), Eq. (3.27) reduces to the following[
x̂,−ik̂ · dx′

]
= dx′, or (3.28)

−ix̂ (k · dx′) + i
(
k̂ · dx′

)
x = dx′ (3.29)

This is a vector equation. Equating the i-th component from both sides of Eq. (3.29)

−ix̂i

∑
j

k̂jdx
′
j + i

∑
j

k̂jdx
′
jx̂i = dx′

i =
∑
j

δi,jdx
′
j. (3.30)

Comparing both sides of Eq. (3.30) we get

x̂ik̂j − k̂jx̂i = iδi,j i.e. (3.31)[
x̂i, k̂j

]
= iδi,j. (3.32)

We have logically reached a stage when we can identify the Hermitian operator k̂.
Since all the terms of left hand side are to be dimensionless from Eq. (3.31), it is
obvious that k̂ should have the dimension of inverse of length. Also we know from
classical mechanics that translation occurs due to momentum p, we can thus write

k̂ =
p̂

�
, or k̂� = p̂, (3.33)

where � is the fundamental constant having the dimension of action and k̂ is inverse
of length as stated in Eq. (3.31).

FUNDAMENTAL COMMUTATION RELATION

Putting the expression for k̂ = p̂

�
in Eq. (3.32) we obtain the fundamental com-

mutation relations

x̂mp̂n − p̂nx̂m = [x̂m, p̂n] = i�δm,n (3.34)

The infinitesimal translation operator T̂ (dx′) becomes

T̂ (dx′) = 1− i
p̂ · dx′

�
, (3.35)

where p̂ is identified as the generator of translation.



HEISENBERG UNCERTAINTY RELATION

Substitution of Eq. (3.33) in Eq. (2.36) will give the inequality connecting the
dispersions of x̂ and p̂x

〈(Δx̂)2〉〈(Δp̂x)
2〉 ≥ 1

4
�
2, (3.36)

which are the uncertainties Δx and Δpx. We can write

ΔxΔpx ≥ �/2. (3.37)

This is the original Heisenberg Uncertainty Relation between the canonically conju-
gate variables x and px, whereas Eq. (2.36) is the general form connecting dispersions
of the operators Â and B̂.

FINITE TRANSLATION

A finite translation can be built up by compounding a very large number of succes-
sive infinitesimal translations in the same direction. Using property (ii) of T̂ (dx′)
of compounding successive translations, we get a finite translation a in a perticular
direction as follows.

T̂ (a) = lim
N→∞

(
1− i

p̂x
�

a

N

)N

(3.38)

= exp

(
−i

p̂xa

�

)
, (3.39)

where the exponential form of any operator is to be understood by the infinite series
while operating on any function or ket

exp X̂ = 1 + X̂ +
1

1!
X̂ +

1

2!
X̂2 + · · · . (3.40)

Since successive translations in different directions are commutative, the operators

T̂
(
âi
)

= exp

(
−i

ap̂x
�

)
(3.41)

T̂
(
b̂j
)

= exp

(
−i

bp̂y
�

)
, (3.42)

commute with each other, î and ĵ being the unit vectors along x and y directions
respectively, a and b being the respective displacements.
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Problem 3.4 Obtain the commutator of T̂
(
âi
)

and T̂
(
b̂j
)
and since they

commute with each other, show that

[p̂x, p̂y] = 0, or more generally [p̂i, p̂j ] = 0. i, j = x, y, z. (3.43)

This is one of the important differences between translation and rotation that unlike
translation, rotations about different axes do not commute with each other as we will
find out later on. This is manifested in the non-commutability of angular momentum
about different axes.

Since p̂x, p̂y, p̂z are commuting operators they are compatible and have simul-
taneous eigenkets.

|p′〉 = |p′x, p′y, p′z〉 (3.44)

and the eigenvalue equations are

p̂x|p′〉 = p̂x|p′x, p′y, p′z〉 = p′x|p′x, p′y, p′z〉,
Similarly for p̂y and p̂z. Each of the eigenvalues p′x, p′y, p′z have the dimension of
momentum. The completeness condition of the eigenkets |p′〉 is given by∫

d3p′|p′〉〈p′| = Î , (3.45)∫
dp′xdp

′
ydp

′
z |p′x, p′y, p′z〉〈p′x, p′y, p′z| = Î . (3.46)

We also observe that unlike position eigenket |x′〉, momentum eigenket |p′〉 is
also eigenket of T̂ (dx′)

T̂ (dx′) |p′〉 =

(
1− i

p̂ · dx′

�

)
|p′〉

=

(
1− i

p′ · dx′

�

)
|p′〉 (3.47)

However, the eigenvalue
(
1 − ip

′·dx′

�

)
is not real. Since T̂ (dx′) is unitary but not

Hermitian, this is not surprising.
We can now summarize the basic commutation relations

[x̂i, x̂j ] = 0, [p̂i, p̂j] = 0, [x̂i, p̂j] = i�δi.j, (3.48)

where i, j are 1, 2, 3 or equivalently x, y, z respectively.
These are called the canonical commutation relations. Instead of assuming these

relations at the outset, in analogy to the classical Poisson Bracket relations (using
the Corresponence Principle) we have derived them from the properties of unitary
infinitesimal translation operator and identifying the generator of translation.
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3.3 Momentum Operator in Position Basis

We first consider one-dimensional case, where the position eigenkets |x′〉 of x̂ form
a complete set:∫

dx′ |x′〉〈x′| = Î , (3.49)

forming the basis of ket space of the system.
Operaing T̂ (Δx′) on an arbitrary system ket |α〉

T̂ (Δx′) |α〉 =

∫
dx′ T̂ (Δx′) |x′〉〈x′|α〉 or (3.50)(

1− i
p̂xΔx′

�

)
|α〉 =

∫
dx′ T̂ (Δx′) |x′〉〈x′|α〉 (3.51)

=

∫
dx′ |x′ +Δx′〉〈x′|α〉. (3.52)

=

∫
dx′′ |x′′〉〈x′′ −Δx′|α〉 (3.53)

=

∫
dx′′ |x′′〉

[
〈x′′|α〉 − Δx′ ∂

∂x′′ 〈x
′′|α〉
]

= |α〉 − Δx′
∫

dx′′ |x′′〉 ∂

∂x′′ 〈x
′′|α〉. (3.54)

Eq. (3.53) follows from Eq. (3.52) by substituting x′′ = x′+Δx′ so that x′ = x′′−
Δx′ and dx′′ = dx′. Now comparison of both sides of Eq. (3.54) yields

p̂x|α〉 =

∫
dx′′|x′′〉

[
−i�

∂

∂x′′

]
〈x′′|α〉 and (3.55)

〈x′|p̂x|α〉 =

∫
dx′′ 〈x′|x′′〉

[
−i�

∂

∂x′′

]
〈x′′|α〉 (3.56)

=

∫
dx′′δ (x′ − x′′)

[
−i�

∂

∂x′′

]
〈x′′|α〉 (3.57)

= −i�
∂

∂x′ 〈x
′|α〉. (3.58)

We also have

〈x′|p̂x|α〉 =

∫
dx′′ [〈x′|p̂x|x′′〉] 〈x′′|α〉 (3.59)

=

∫
dx′′

[
−i�

∂

∂x′ 〈x
′|x′′〉

]
〈x′′|α〉 (3.60)

= −i�
∂

∂x′

∫
dx′′ δ (x′ − x′′) 〈x′′|α〉. (3.61)
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Comparing Eq. (3.59) and Eq. (3.61) we obtain

〈x′|p̂x|x′′〉 = − i�
∂

∂x′ δ (x
′ − x′′) . (3.62)

Using Eq. (3.55)

〈β|p̂x|α〉 =

∫
dx′ 〈β|x′〉

[
−i�

∂

∂x′ 〈x
′|α〉
]

(3.63)

=

∫
dx′ ψ∗

β (x
′)
[
−i�

∂

∂x′

]
ψα (x

′) . (3.64)

This form of the operator for p̂x is derived from the basic properties of momentum
as generator of translation in the unitary operator of T̂ (Δx) and is not a postulate.

We can obtain the matrix elements of the nth power of p̂x by repeated application
of the operator:

〈x′|p̂nx|α〉 =

(
−i�

∂

∂x′

)n

〈x′|α〉 and (3.65)

〈β|p̂nx|α〉 =

∫
dx′ ψ∗

β (x
′)
(
−i�

∂

∂x′

)n

ψα (x
′) . (3.66)

3.4 Momentum Wavefunction

The eigenvalue equation of p̂x is given by

p̂x|p′〉 = p′|p′〉, (3.67)

where the eigenkets form an orthonormal complete set∫
dp′ |p′〉〈p′| = Î . (3.68)

The orthonormality is given by

〈p′|p′′〉 = δ (p′ − p′′) , and (3.69)

|α〉 =

∫
dp′ |p′〉〈p′|α〉. (3.70)

The expansion coefficients 〈p′|α〉 can be interpreted as the probability amplitude
and |〈p′|α〉|2dp′ is the probability that a measurement of p̂x in a state |α〉 will yield
a value between p′ and p′ + dp′ and the momentum wavefunction is

〈p′|α〉 ≡ φα (p
′) . (3.71)
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For a normalized |α〉,

〈α|α〉 =

∫
dp′ 〈α|p′〉〈p′|α〉 =

∫
dp′φ∗

α (p
′)φα (p

′)

=

∫
dp′ |φα (p

′) |2 = 1. (3.72)

The connection between x-representation and p-representation can be obtained us-
ing the unitary transformation function. Unitary matrix for a transformation of basis
fromA representation toB representation is given in Eq. (2.19): 〈ak|U |al〉 = 〈ak|bl〉.
From Eq. (3.58) putting |α〉 = |p′〉

〈x′|p̂x|p′〉 = −i�
∂

∂x′ 〈x
′|p′〉, i.e. (3.73)

−i�
∂

∂x′ 〈x
′|p′〉 = p′〈x′|p′〉. (3.74)

The solution of Eq. (3.74) for 〈x′|p′〉 is

〈x′|p′〉 = N · exp
(
i
p′x′

�

)
, (3.75)

where N is the Normalization constant. Thus the momentum eigenfunction in coor-
dinate representation is a plane wave, which is also the solution of the free particle
wavefunction.

NORMALIZATION N

we have

〈x′|x′′〉 =

∫
dp′ 〈x′|p′〉〈p′|x′′〉

= |N |2
∫

dp′ exp

(
i
p′ · (x′ − x′′)

�

)
= 2π�|N |2δ (x′ − x′′) . (3.76)

The left hand side of Eq. (3.76) is δ (x′ − x′′), hence |N |2 = 1
2π�

, where N is chosen
as purely real and positive by convention. So

〈x′|p′〉 =
1√
2π�

exp

(
i
p′x′

�

)
. (3.77)
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Problem 3.5 Show that the position wavefunction ψα (x
′) and the momentum wave-

function φα (p
′) are Fourier Transforms4 of each other:

ψα (x
′) =

1√
2π�

∫
dp′ φα (p

′) exp
(
i
p′x′

�

)
, (3.78)

φα (p
′) =

1√
2π�

∫
dx′ ψα (x

′) exp
(
−i

p′x′

�

)
. (3.79)

Problem 3.6 The wavefunction of a particle is given by

ψ (x) = φ (x) exp

(
ip0x

�

)
, φ (x) being a real function.

What is the physical meaning of the quantity p0?
[Hint: Find 〈ψ (x) |p̂x|ψ (x)〉.]

3.5 Gaussian as Minimum Uncertainty Wave Packet

We have

[x̂, p̂x] = i�, and (3.80)

ΔxΔpx ≥ 1

2
�, where (3.81)

Δx =
[
〈(x̂− 〈x̂〉)2〉

] 1
2 , and (3.82)

Δpx =
[
〈(p̂x − 〈p̂x〉)2〉

] 1
2 (3.83)

are the uncertainties of x̂ and p̂x in a state |ψ〉. We recapitulate Eq. (2.40)

〈γ|
(
cΔÂ+ iΔB̂

)(
cΔÂ− iΔB̂

)
|γ〉 ≥ 0, for

Â = x̂, B̂ = p̂x, ΔÂ = x̂− 〈x̂〉, ΔB̂ = p̂x − 〈p̂x〉.

We also have Eq. (2.42)

〈
(
ΔÂ
)2
〉

⎡
⎢⎣c+ 〈F̂ 〉

2〈
(
ΔÂ
)2
〉

⎤
⎥⎦
2

+ 〈
(
ΔB̂
)2
〉 − 〈F̂ 〉2

4〈
(
ΔÂ
)2
〉

≥ 0. (3.84)

4See Appendix A.1.
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The wavefunction |ψ〉 that satisfies the equality in Eq. ( 2.40) with the c = c0 given
by

c0 = − 〈F̂ 〉
2〈
(
ΔÂ
)2
〉

(3.85)

gives the minimum uncertainty product of x̂ and p̂x. Thus |ψ〉 is the solution of the
equation

(c0Δx̂− iΔpx) |ψ〉 = 0, or (3.86)[
− � (x− 〈x̂〉)
2〈(x− 〈x〉)2〉

− i (p̂x − 〈p̂x〉)
]
|ψ〉 = 0. (3.87)

In coordinate representation Eq. (3.87) becomes

−i�
d

dx
ψ (x) =

{
〈px〉+

i�

2〈(Δx)2〉
[x− 〈x〉]

}
ψ (x) . (3.88)

On integration

ψ (x) = C exp

(
i

�
〈p̂x〉x

)
exp

(
−(x− 〈x̂〉)2

4〈(Δx)2〉

)
. (3.89)

Introducing the wavenumber k = 〈p̂〉/�, centering at the origin (i.e. 〈x̂〉 = 0) and
using the symbol d2 = 2〈(Δx)2〉 we get the Gaussian as the minimum uncertainty
wave packet with the width d

ψ (x) =
1√
πd

exp

[
−ikx− x2

2d2

]
. (3.90)

Problem 3.7

(i). Check the normalization in Eq. (3.90).

(ii). Compute the expectation values of x̂, x̂2, p̂x, p̂2x and verify the following

〈x〉 = 0, 〈x2〉 =
1

2
d2, 〈px〉 = k�, and (3.91)

〈p2x〉 =
�
2

2d2
+ k2

�
2. (3.92)

Problem 3.8 Obtain the wavefunction Eq. (3.89) in momentum
representation. You may use 〈p′|α〉 =

∫
dx′ 〈p′|x′〉〈x′|α〉.
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3.6 Extension to Three Dimension

We have

p̂|p′〉 = p′|p′〉. (3.93)

Orthonormality of |x′〉 are given by

〈x′|x′′〉 = δ (x′ − x′′) = δ (x′ − x′′) δ (y′ − y′′) δ (z′ − z′′) , (3.94)

〈p′|p′′〉 = δ (p′ − p′′) = δ (p′x − p′′x) δ
(
p′y − p′′y

)
δ (p′z − p′′z) . (3.95)

Also we have∫
d3x′ |x′〉〈x′| = Î (3.96)∫
d3p′ |p′〉〈p′| = Î (3.97)

|α〉 =

∫
d3x′ |x′〉〈x′|α〉, and (3.98)

|α〉 =

∫
d3p′ |p′〉〈p′|α〉, (3.99)

The expansion coefficients 〈x′|α〉 and 〈p′|α〉 are the respective wavefunctions in
position and momentum spaces.



Chapter 4

Time Evolution of Quantum
Systems

4.1 Time Evolution Operator

Our ultimate objective is to know the dynamics of quantum system and obtain the
equation of motion. We emphasize that time in non-relativistic mechanics is not a
dynamical variable and we have treated it like a parameter.

We introduce the time evolution operator Û (t, t0) which takes the state |α, t0〉
at a particular time t0 to a later time state |α, t0; t〉 as follows

|α, t0; t〉 = Û (t, t0) |α, t0〉, where t > t0. (4.1)

This is consistent with the principle of causality in quantum mechanics. The oper-
ator Û in Eq. (4.1) should satisfy the following:

(i). Û must be unitary. This is to conserve normalization. Thus

〈α, t0; t|α, t0; t〉 = 〈α, t0|α, t0〉, (4.2)

and we have

〈α, t0|Û † (t, t0) Û (t, t0) |α, t0〉 = 〈α, t0|α, t0〉, (4.3)

i.e. Û †Û = Î . (4.4)

(ii). We also require Û to have the composition property:

Û (t2, t0) = Û (t2, t1) Û (t1, t0) , t2 > t1 > t0. (4.5)
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From Eq. (4.1) we have for infinitesimal time evcolution

|α, t0; t0 + dt〉 = Û (t0 + dt, t0) |α, t0〉. (4.6)

Now since time is a continuous parameter we can take the following limit:

lim
dt→0

|α, t0; t0 + dt〉 = |α, t0〉. (4.7)

Thus we get

lim
dt→0

Û (t0 + dt; t0) = Î (4.8)

as the unit operator.
All the above properties of the time evolution operator follow if we define the

infinitesimal time evolution operator as

Û (t0 + dt; t0) = Î − iΩ̂dt, (4.9)

where Ω̂† = Ω̂ is Hermitian. From Eq. (4.9) we observe that Ω̂ should have the
dimension of inverse of time. We use Planck-Einstein relation E = �ω connecting
energy E and angular frequency ω and write

Ω̂ =
Ĥ

�
and (4.10)

Û (t0 + dt, t0) = Î − i
Ĥ

�
dt. (4.11)

Ĥ is the Hamiltonian of the system. This expression for Û is consistent with classical
notion that the Hamiltonian is the generator of time evolution.

We have already introduced � in the infinitesimal translation operator T̂ (dx′)
in Eq. (3.35)

T̂ (dx′) = 1− i
p̂ · dx′

�
,

In Eq. (4.11) � has to be the same � as in the Eq. (3.35), otherwise the relation like

dx

dt
=

p

m
(4.12)

cannot be obtained as the classical limit of the corresponding quantum mechanical
relation. Now in Eq. (4.5) we put t1 = t, t2 = t+ dt and get

Û (t+ dt, t0) = Û (t+ dt, t) Û (t, t0) , and also (4.13)

Û (t+ dt, t0) =

(
Î − i

Ĥdt

�

)
Û (t, t0) . (4.14)



4.2. THE SCHRÖDINGER EQUATION OF MOTION 35

Since dt is an infinitesimal we finally obtain

i�
∂

∂t
Û (t, t0) = ĤÛ (t, t0) . (4.15)

This is the Schrödinger Equation for time evolution operator Û . The solution of
Eq. (4.15) depends on the nature of time dependence of the Hamiltonian. If Ĥ is
independent of time, then the solution is

Û (t, t0) = exp

[
− i

�
Ĥ (t− t0)

]
. (4.16)

Problem 4.1 Expand the exponential operator in an infinite series and check that
Eq. (4.16) satisfies Eq. (4.15).

4.2 The Schrödinger Equation of Motion

Operating on the state ket |α, t0〉 we obtain from Eq. (4.15)

i�
∂

∂t
Û (t, t0) |α, t0〉 = ĤÛ (t, t0) |α, t0〉. (4.17)

Since

Û (t, t0) |α, t0〉 = |α, t0; t〉, (4.18)

we get

i�
∂

∂t
|α, t0; t〉 = Ĥ|α, t0; t〉, or putting t0 = 0,

i�
∂

∂t
|α, t〉 = Ĥ|α, t〉. (4.19)

In position representation the Hamiltonian being

Ĥ =
p̂2

2m
+ V (r, t) = − �

2

2m
∇2 + V (r, t) ,

we get

i�
∂

∂t
ψα (r, t) =

[
− �

2

2m
∇2 + V (r, t)

]
ψα (r, t) , (4.20)

where ψα (r, t) is the wavefunction and Eq. ( 4.20) is the famous Schrödinger Equa-
tion of motion.

This equation was originally postulated by Schrödinger in 1926. He proposed
this equation from the notion that there is some kind of canonical analogy between
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time and energy similar to position and momentum coordinate. Here the equation
is derived from the properties of the unitary time evolution operator where time is
treated like a parameter and not a dynamical variable.

INTERPRETATION OF THE WAVEFUNCTION

We recapitulate some concepts of wave mechanics in the light of the formalism
developed here. Like the state vector |α〉, |α, t〉 also is postulated to contain all the
information that can be known about the system, the wavefunction ψα (r, t) which is
a position representation of |α, t〉 will provide a quantum mechanically complete de-
scription of the dynamical behaviour of a particle. Since ψα (r, t) are the expansion
coefficients of |α, t〉 in position basis,

|α, t〉 =

∫
d3r′ |r′〉〈r′|α, t〉,

〈r|α, t〉 = ψα (r, t) ,

where |ψα (r, t) |2 is interpreted as the position probability density P :

P (r, t) d3r = |ψα (r, t) |2d3r. (4.21)

This means that P (r, t) d3r is the probability of finding a particle in the volume
element d3r about r at time t. Since the particle must be somewhere in the region
Ω1, we should have∫

Ω

|ψα (r, t) |2d3r = 1, (4.22)

which is also the normalization condition. As the normalization should be indepen-
dent of time

∂

∂t

∫
Ω

P (r, t) d3r = 0. (4.23)

Now

∂

∂t

∫
Ω

P (r, t) d3r =

∫
Ω

[
ψ∗∂ψ

∂t
+

∂ψ∗

∂t
ψ

]
d3r

=
i�

2m

∫
Ω

∇ · [ψ∗ (∇ψ)− (∇ψ∗)ψ] d3r

=
i�

2m

∫
S

[ψ∗ (∇ψ)− (∇ψ∗)ψ]n dŜn, (4.24)

1Not to be confused with Ω̂ in Eq. (4.9)
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where Eq. (4.20) with a real V is used. Here S is the bounding surface of Ω and
[· · ·]n denotes the component of the vector within the square bracket in the direction
of the outward normal to the surface element dS.

Defining the probability flux or current density as

j (r, t) =
�

2im
[ψ∗ (∇ψ)− (∇ψ∗)ψ] . (4.25)

We have
∂

∂t

∫
Pd3r = −

∫
Ω

∇ · j d3r

= −
∫
S

ĵn dSn. (4.26)

In the case of a wave packet (which is localized) ψ vanishes at large distance; thus
ψ, ∇ψ vanish on the surface at infinity and the surface integral in Eq. (4.26)
vanishes and Eq. (4.23) is satisfied.

Eq. (4.26) can be written as

∂P

∂t
+ ∇ · j = 0, (4.27)

which is known as Equation of Continuity.

4.3 Time Dependence of Expectation Values: Ehren-

fest Theorem

We consider the time development of the expectation value of x̂

d

dt
〈x̂〉 =

d

dt

∫
ψ∗ (r, t) xψ (r.t) d3r. (4.28)

Problem 4.2 Using Green’s first identity∫
Ω
[u (∇2v) + (∇u) · (∇v)] d3r =

∫
S
u (∇v) · dS

with the boundary condition, u and v → 0 on the surface at infinity, show that

d

dt
〈x〉 = − i�

m

∫
Ω

ψ∗ ∂

∂x
ψ d3r. (4.29)

So we get

d

dt
〈x̂〉 =

〈p̂x〉
m

. (4.30)

Similarly, we have

d

dt
〈p̂x〉 =

d

dt

∫
Ω

ψ∗
(
−i�

∂

∂x

)
ψ d3r. (4.31)

Ehren-fest Theorem
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Problem 4.3 Use Green’s second identity

∫
Ω

[
u
(
∇2v
)
− v
(
∇2u

)]
d3r =

∫
S

[u (∇v)− v (∇u)] · dS (4.32)

and Eq. (4.31) to show that

d

dt
〈p̂x〉 = −

〈
∂V

∂x

〉
. (4.33)

The equations Eq. (4.30) and Eq. (4.31) are analogous to the classical equations

dr

dt
=

p

m
and

dp

dt
= −∇V,

and are known as the Ehrenfest Theorem.

4.4 The Schrödinger and Heisenberg Pictures

There are many representations of state vectors and observables connected by uni-
tary transformations. We distinguish between two classes of representations which
differ in the way the time evolution of the system is achieved. These are called
pictures. In Schrödinger Picture the state vectors evolve in time, whereas operators
corresponding to dynamical variables like position and momentum are independent
of time.

|α〉 −→ |α, t〉 = Û (t) |α〉, and Â −→ Â. (4.34)

Here the initial time t0 is taken to be 0. Since the inner product remains invariant
under unitary transformation

〈α|β〉 −→ 〈α|Û †Û |β〉 = 〈α|β〉. (4.35)

Also

〈α|Â|β〉 −→ 〈α|Û †ÂÛ |β〉. (4.36)

From Eq. (4.36) it is evident that instead of state vectors transforming under Û ,
the other approach is operators transforming and state vectors remaining unchanged
under Û . This is known as Heisenberg Picture, where

Â −→ Â(H) (t) = Û−1Â(S)Û and |α〉 −→ |α〉. (4.37)
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The superscripts (H) and (S) refer to Heisenberg and Schrödinger pictures respec-
tively.

At t = 0 Â(H) (t = 0) = Â(S), (4.38)

and the state vectors in both the pictures coincide at t = 0. At a later time t, the
state vector in Schrödinger picture evolves in time by Û (t) according to Eq. (4.34),
whereas the state vector in Heisenberg picture remains frozen in time to that at
t = 0.

|α, t0 = 0; t〉H = |α, t0 = 0〉, (4.39)

and

|α, t0; t〉S = Û (t) |α, t0 = 0〉, (4.40)

|α, t0 = 0; t〉H = |α, t0 = 0〉 = Û † (t) |α, t0 = 0; t〉S
= exp

[
i

�
Ĥ (t− t0)

]
|α, t0 = 0; t〉S. (4.41)

4.5 The Heisenberg Equation of Motion

Since

Â(H) = Û−1Â(S)Û ,
d

dt
Â(H) =

d

dt

[
Û−1Â(S)Û

]
(4.42)

=

(
∂Û−1

∂t

)
Â(S)Û + Û−1Â(S)

(
∂Û

∂t

)
, (4.43)

as the operator Â in the Schródinger picture is not an explicit function of time. Also
from Eq. (4.15)

∂Û−1

∂t
=

∂Û †

∂t
= − 1

i�
Û−1Ĥ, and (4.44)

∂Û

∂t
=

1

i�
ĤÛ . (4.45)

Therefore

dÂ(H)

dt
=

1

i�
Û−1

[
Â(S)Ĥ − ĤÂ(S)

]
Û (4.46)

=
1

i�

[
Â(H), Ĥ(H)

]
. (4.47)
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In those cases where Û is given by Eq. (4.16) then Ĥ commutes with Û and

dÂ(H)

dt
=

1

i�

[
Â(H), Ĥ

]
. (4.48)

This is the Heisenberg Equation of Motion.

4.6 Operator Form of the Hamiltonian: Classical

Analogue

For a physical system having a classical analogue, we assume the Hamiltonian to be
of the same form as the classical one, with classical position and momentum compo-
nents xi and pi being replaced by the corresponding quantum mechanical operators.
If any ambiguity arises in the product operators which are non-commuting, then we
use the criterion that the Hamiltonian has to be Hermitian. Thus a classical prod-
uct xp is replaced by 1

2
(x̂p̂+ p̂x̂) to obtain the corresponding quantum mechanical

operator. While calculating the operator for commutators of xi and pi with the
functions of xi and pi, one may use the following formulas

[x̂i, F (p̂)] = i�
∂F

∂p̂i
, and (4.49)

[p̂i, G (x̂)] = −i�
∂G

∂x̂i

. (4.50)

Example 4.1 Free Particle.
For a free particle we have

Ĥ =
p2

2m
=

3∑
j=1

p̂2j
2m

. (4.51)

So
dp̂i
dt

=
1

i�

[
p̂i, Ĥ

]
= 0,

p̂i (t) = p̂i (0) , a constant of motion,

dx̂i

dt
=

1

i�

[
x̂i, Ĥ

]
=

1

i�

[
x̂i,

3∑
j=1

p̂2j
2m

]

=
1

i�

[
x̂i,

p̂2i
2m

]
=

p̂i
m

=
p̂i (0)

m
, and thus (4.52)

x̂i (t) = x̂i (0) +
p̂i (0)

m
t. (4.53)
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Thus equal time commutator of x̂i (0) and x̂j (0) is zero

[x̂i (0) , x̂j (0)] = 0. (4.54)

However, x̂i (t) and x̂i (0) does not commute, because of the presence of p̂i (0) in
x̂i (t).

Problem 4.4 Show that

[x̂i (t) , x̂i (0)] =
−i�t

m
, (4.55)

and hence from the uncertainty relation Eq. (2.43)

〈(Δx̂i (t))
2〉〈(Δx̂i (0))

2〉 ≥ �
2t2

4m2
. (4.56)

thus even if at t = 0 the particle is well localized, its position becomes more and
more uncertain as it spreads with time. This is also demonstrated in the case of
wave packet.

4.7 Time Dependence of the Base Kets

If we define the complete set of kets of Â as the basis ket vectors of the space at
time t = 0 where

Â|an〉 = an|an〉. (4.57)

Since in the Schrödinger picture the operator Â does not change with time, the
eigenvalue equation Eq. (4.57) remains the same as at t = 0 and hence |an〉 does
not depend on time. Thus unlike the state vectors, base kets do not change with
time.

However, in Heisenberg picture the situation is different. Since

Â(H) (t) = Û †Â (t = 0) Û , (4.58)

and from Eq. (4.57) we have

Û †Â (0) Û Û †|an〉 = anÛ
†|an〉, (4.59)

i.e. Â(H)Û †|an〉 = anÛ
†|an〉, (4.60)

which is the eigenvalue equation for Â(H) with eigenket changing from |an〉 at t = 0

to Û †|an〉 at time t. Thus we have to use the set
{
Û †|an〉

}
as the basis kets in
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Heisenberg picture in place of the stationary kets {|an〉} as basis in Schrödinger
picture.

We also have

Â(H) (t) = Â(H) (t)
∑
an

|an, t〉HH〈an, t| (4.61)

or Â(H) (t) =
∑
an

|an, t〉an〈an, t|

=
∑
an

Û †|an〉an〈an|Û (4.62)

= Û †Â(S)Û , (4.63)

which is the same as Eq. (4.37).
Thus we tabulate the properties of the Schrödinger versus the Heisenberg pic-

tures.

Table 4.1 The two types of description of evolution of quantum states.

Schrödinger Picture Heisenberg Picture

STATE KETS Evolve in time Stationary
OPERATORS Stationary Evolve in time
BASE KETS Stationary Evolve oppositely



Chapter 5

Propagators and Feynman Path
Integral

The path integral approach to quatum mechanics was developed by Feynman when
he was a graduate student at Princeton University. The method provides a deep
insight into quantum dynamics. Due to computational complexity the path integral
formalism is not convenient to deal problems in non-relativistic quantum mechanics.
It, however, provides an excellent method for quantizing quantum fields and has
become a powerful tool in quantum field theory, statistical physics and numerical
computation.

5.1 Propagators

In wave mechanics one way of solving the time evolution problem with a time in-
dependent Hamiltonian Ĥ is by expanding the initial state ket |α〉 in terms of the
eigenkets {|an〉} of an observable Â that commutes with Ĥ. We thus write

|α, t0; t〉 = exp

[
−i

Ĥ (t− t0)

�

]
|α, t0〉

=
∑
an

|an〉〈an|α, t0〉 exp
[
−i

En (t− t0)

�

]
(5.1)

where Â|an〉 = an|an〉
and

∑
an

|an〉〈an| = Î .
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Coordinate representation of the above equation is

〈x′|α, t0; t〉 =
∑
an

〈x′|an〉〈an|α, t0〉 exp
[
−i

En (t− t0)

�

]
(5.2)

or ψ (x′, t) =
∑
an

cn (t0)un (x
′) exp

[
−i

En (t− t0)

�

]
, (5.3)

where un (x
′) = 〈x′|an〉 (5.4)

is the eigenfunction of the operator Â with eigenvalues an. Also the expansion
coefficient cn (t0) is

cn (t0) = 〈an|α, t0〉 =

∫
d3x′〈an|x′〉〈x′|α, t0〉 (5.5)

=

∫
d3x′u∗

n (x
′)ψ (x′, t0) . (5.6)

We thus can write Eq. (5.2) as follows

〈x′′|α, t0; t〉 = ψ (x′′, t)

=

∫
d3x′

(∑
an

〈x′′|an〉〈an|x′〉 exp
[
−i

En (t− t0)

�

])
ψ (x′, t0)

=

∫
d3x′K (x′′, t;x′, t0)ψ (x′, t0) , (5.7)

where K (x′′, t;x′, t0) =
∑
an

〈x′′|an〉〈an|x′〉 exp
[
−i

En (t− t0)

�

]
(5.8)

is the kernel of the integral operator which acting on the initial wavefunction yields
the final wavefuntion. Thus, the time evolution of the wavefunction can be com-
pletely predicted if K (x′′, t;x′, t0) is known and ψ (x′, t0) is given initially. In this
sense Schrödinger wave mechanics is a perfectly causal theory, provided that the
system is left undisturbed. If, however, a measurement intervenes, the wavefunc-
tion changes abruptly in an uncontrollable way into one of the eigenfunctions of the
observable being measured.

There are two important properties of K.

(i). For t > t0, K (x′′, t;x′, t0) satisfies Schrödinger’s time-dependent wave equa-
tion in the variables x′′ and t, with x′ and t0 fixed. This is evident from Eq.

(5.8) because 〈x′′|an〉 exp
[
−iEn(t−t0)

�

]
, being the wavefunction corresponding

to Û (t, t0) |an〉, satisfies the wave equation.
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(ii). lim
t→t0

K (x′′, t;x′, t0) = δ3 (x′′ − x′) , (5.9)

which is evident from Eq. (5.8) using
∑

an
|an〉〈an| = Î.

Because of these two properties, the propagator Eq. (5.8), regarded as a function of
x′′, is simply the wavefunction at t of a particle which was localized precisely at x′

at an earlier time t0. This interpretation also follows from Eq. (5.8) if we write

K (x′′, t;x′, t0) =

〈
x′′
∣∣∣∣∣exp

[
−i

Ĥ (t− t0)

�

]∣∣∣∣∣x′
〉
. (5.10)

It is evident that the propagator is simply the Green’s function for the time
dependent wave equation satisfying[

−
(

�
2

2m

)
∇′′2 + V (x′′)− i�

∂

∂t

]
K (x′′, t;x′, t0) = −i�δ3 (x′′ − x′) δ (t− t0) ,

with the boundary condition K (x′′, t;x′, t0) = 0 for t < t0.

TRANSITION AMPLITUDE

We have

K (x′′, t;x′, t0) =
∑
an

〈x′′|an〉〈an|x′〉 exp
[
−i

En (t− t0)

�

]

=
∑
an

〈x′′| exp
[
−i

Ĥt

�

]
|an〉〈an| exp

[
i
Ĥt0
�

]
|x′〉

= 〈x′′, t|x′, t0〉, (5.11)

where |x′, t0〉 and 〈x′′, t| are to be understood as a eigenket and eigenbra of the
position operator in Heisenberg picture. We can then identify 〈x′′, t|x′, t0〉 as the
probability amplitude for the particle prepared at t0 with position eigenvalue x′ to
be found at a later time t at x′′. Or in other words 〈x′′, t|x′, t0〉 is the transition
amplitude from space-time point (x′, t0) to (x′′, t).

We use symmetric notation and write 〈x′′, t′′|x′, t′〉 as the transition amplitude.
We can also use the identity operator∫

d3x′′|x′′, t′′〉〈x′′, t′′| = Î .

We can then divide the time interval (t′, t′′′) into two parts (t′, t′′) and (t′′, t′′′) and
introduce the identity oerator in between as follows

〈x′′′, t′′′|x′, t′〉 =

∫
d3x′′〈x′′′, t′′′|x′′, t′′〉〈x′′, t′′|x′, t′〉, for t′′′ > t′′ > t′.(5.12)
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This is the composition property of the transition amplitude.
Dividing in still smaller subintervals we can have

〈x4, t4|x1, t1〉 =

∫
d3x3

∫
d3x2〈x4, t4|x3, t3〉〈x3, t3|x2, t2〉〈x2, t2|x1, t1〉
for t4 > t3 > t2 > t1,

...
...

...

〈xN , tN |x1, t1〉 =

∫
d3xN−1

∫
d3xN−2 · · ·

∫
d3x3

∫
d3x2〈xN , tN |xN−1, tN−1〉 ·

·〈xN−1, tN−1|xN−2, tN−2〉 · · · 〈x3, t3|x2, t2〉〈x2, t2〉|x1, t1〉,
for tN > tN−1 > tN−2 > · · · > t3 > t2 > t1. (5.13)

This can be visualized as in Fig. (5.1) by plotting (xj, tj) on the space-time plane
in one dimension. The initial and the final space-time points are fixed to be (x1, t1)

( x  ,  t  )

t

t

t

t

t

( x   , t    )1        1

 N     N

1

2

3

N

x

t

N 1

Figure 5.1: Schematic diagram of Feynman’s Path in one dimension.

and (xN , tN) respectively. Thus to get the transition amplitude between (x1, t1) and
(xN , tN) we have to sum over all possible paths in the space-time plane with the end
points fixed.

5.2 Feynman’s Path

In classical mechanics a definite path in (x, t) plane is associated with the motion of
the particle between two fixed end points which minimizes Action. In Feynman for-
mulation of quantum mechanics all possible paths must be included in the integrals,
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even those which do not bear any resemblance with the classical paths. We, how-
ever, have to ensure that the quantum formulation should be able to yield smoothly
the classical mechanics in the limit � → 0.

Introducing the following notation for classical Action

S (n, n− 1) =

∫ tn

tn−1

dt L (x, ẋ) , (5.14)

where L is the classical Lagrangian. Since it is a function of x and ẋ, S (n, n− 1)
is defined only after a definite path is specified, so that the integration can be
carried out. We consider a small segment along the path say between (xn−1, tn−1)
and (xn, tn). According to Dirac we are to associate exp

[
i
�
S (n, n− 1)

]
with this

segment. Then going along the definite path we successively multiply expressions of
this type to get

ΠN
n=2 exp

[(
i

�

)
S (n, n− 1)

]
= exp

[(
i

�

) N∑
n=2

S (n, n− 1)

]

= exp [iS (N, 1) /�] . (5.15)

To get 〈xN , tN |x1.t1〉, we must yet integrate over x2 x3, · · · , xN . At the same time,
using the composition property, we let the time interval between tn−1 and tn be
infinitesimally small. In some loose sense for 〈xN , tN |x1, t1〉 we may write

〈xN , tN |x1, t1〉 ∼
∑

all paths

exp [iS (n, n− 1)] . (5.16)

We now check whether the development up to Eq. (5.16) makes any sense in the
classical limit � → 0. As � → 0, the exponential oscillates very violently, so there
is a tendency for cancellation among various contributions from the neighbouring
paths. This is because exp [iS/�] for some definite path and exp [iS/�] for a slightly
different path have large difference in phases because � → 0. So most of the paths
do not contribute in the limit. However for a path along which Action is minimum,
we have

δS (N, 1) = 0, (5.17)

where the change in S is due to slight deformation of the path with the end points
fixed. We call the Action Smin which is the classical path. For any other path near
about this path with the end points same, Action is very nearly equal to Smin. As a
result, near the classical path constructive interference between neighbouring paths
is possible as the phases do not change much.
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To formulate Feynman’s conjecture more precisely we go back to 〈xn, tn|xn−1, tn−1〉,
where Δt = tn − tn−1 is assumed to be infinitesimally small and write

〈xn, tn|xn−1, tn−1〉 =

[
1

ω (Δt)

]
exp

[
iS (n.n− 1)

�

]
. (5.18)

We have to evaluate S (n, n− 1) in the limit Δt → 0. The weight factor 1/ω (Δt)
which is assumed to depend only on the time interval Δt and not on V (x). This
factor is needed from dimensional considertion, according to the way we normalized
our position eigenkets. 〈xn, tn|xn−1, tn−1〉 must have the dimension of inverse of
length.

Now we make a straight line approximation to the path joinng (xn−1, tn−1) and
(xn.tn) as follows (since Δt is small)

S (n, n− 1) =

∫ tn

tn−1

dt

[
mẋ2

2
− V (x)

]

= Δt

{
m

2

(
xn − xn−1

Δt

)2

− V

(
xn + xn−1

2

)}
. (5.19)

For free particles V = 0 and Eq. (5.18) then becomes

〈xn, tn|xn−1, tn−1〉 =

[
1

ω (Δt)

]
exp

[
im (xn − xn−1)

2

2�Δt

]
(5.20)

Problem 5.1 Use the following free particle wavefunction

〈x′′|p′〉 =
1√
2π�

exp

[
ip′x′′

�

]
, and Ĥ|p′〉 =

p′2

2m
|p′〉,

calculate the free particle propagator from Eq. (5.8) and show that

K (x′′, t; x′, t0) =

√
m

2πi� (t− t0)
exp

[
im (x′′ − x′)2

2� (t− t0)

]
. (5.21)

Thus the exponent in Eq. (5.20) is the same as that of the free particle propagator.
Since 1

ω(Δt)
is independent of V (x) it can be worked out from free particle prop-

agator and is given by

1

ω (Δt)
=

√
m

2πi�Δt
.
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Thus as Δt → 0 we have

〈xn, tn|xn−1, tn−1〉 =

√
m

2πi�Δt
exp

[
iS (n, n− 1)

�

]
. (5.22)

And finally with (tN − t1) finite

〈xN , tN |x1, t1〉 = lim
N→∞

( m

2πi�Δt

)(N−1)/2
∫

dxN−1

∫
dxN−2 · · ·

∫
dx3

∫
dx2

ΠN
n=2 exp

[
iS (n, n− 1)

�

]
, (5.23)

and the limit N → ∞ is taken with xN , tN fixed.
We can define a new kind of multidimensional (infinite dimensional) integral

operator as follows∫ xN

x1

D [x (t)] ≡ lim
N → ∞

( m

2πi�Δt

)(N−1)/2
∫

dxN−1

∫
dxN−2 · · ·

∫
dx3

∫
dx2,

together with Δt → 0 and N ·Δt = tN − t1, (5.24)

and write Eq. (5.23) as

〈xN , tN |x1, t1〉 =

∫ xN

x1

D [x (t)] exp

[
i

∫ tN

t1

dt
Lcl (x, ẋ)

�

]
. (5.25)

This expression is known as Feynman’s path integral, where the sum over all possible
paths is evident.
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Chapter 6

Application in One Dimension

Study of one dimensional problems is of interest not only because several physi-
cal situations are effectively one dimensional but also because a number of more
complicated problems can be reduced to the solutions of equations similar to one
dimensional Schrödinger equation.

The time dependent Schrödinger equation for a particle of mass m moving in a
potential V (x) is given by

i�
∂

∂t
Ψ(x, t) =

[
− �

2

2m

∂2

∂x2 + V (x)

]
Ψ(x, t) . (6.1)

If V is time independent we can look for a stationary state solution of Eq. (6.1) in
the form

Ψ (x, t) = ψ (x) exp

[
− iEt

�

]
, (6.2)

where E is the energy for the stationary state. The time-independent Schrödinger
equation is

− �
2

2m

d2ψ (x)

dx2 + V (x)ψ (x) = Eψ (x) . (6.3)

6.1 Free Particle

The time-independent Schrödinger equation is

− �
2

2m

d2ψ (x)

dx2 + V (x)ψ (x) = Eψ (x) , (6.4)

d2ψ (x)

dx2 + k2ψ (x) = 0, (6.5)

where k2 =
2mE

�2
. (6.6)
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The general solution is

ψ (x) = A exp (ikx) + B exp (−ikx) . (6.7)

For a physically acceptable solution k cannot have any imaginary part because in
that case ψ (x) will blow up either at x = ∞ or at x = −∞. In other words

E =
k2
�
2

2m
≥ 0, (6.8)

and because any non-negative value of E is allowed, the energy spectrum is contin-
uous extending from E = 0 E = ∞. This is also obvious since for a free article E is
the kinetic energy.

The general solution of the Schrödinger equation in a stationary state for E > 0
is given by

Ψ (x, t) =
(
Aeikx + Be−ikx

)
exp [−iEt/�]

= Aei(kx−ωt) + Be−i(kx+ωt), (6.9)

where ω = E/� is the angular frequency. Considering the particular case B = 0,
the plane wave

Ψ (x.t) = Aei(kx−ωt) (6.10)

is the momentum eigenfunction representing an oscillatory travelling wave in a pos-
itive x−direction with a definite momentum p = k� and a phase velocity vph = ω

k
=

k�
2m

. However, the particle velocity v = p
m

= k�
m

is not equal to the phase velocity,
but is equal to the group valocity vg =

dω
dk

of the plane wave. The angular frequency
is ω = E/� and the wave number k = p

�
= 2π

λ
, λ being the de Broglie wavelength of

the particle. The probability density

P = |Ψ(x, t) |2 = |A|2 (6.11)

which is independent of time (as for any stationary state solution) and is also in-
dependent of x, so that the position of the particle on the x-axis is completely
unknown.

This is in accordance with the Heisenberg Uncertainty Principle, since the par-
ticle has a definite momentum its position cannot be localized on the x-axis.

BOX NORMALIZATION

Since the integral
∫ +∞
−∞ Ψ∗ (x, t)Ψ (x, t) dx for the Ψ of Eq. (6.10) will become
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infinity we restrict the domain of ψ (x) to an arbitrary large one dimensional ‘box’
of length L such that ψ (x) satisfies periodic boundary considerations at the walls,

ψ (x+ L) = ψ (x) . (6.12)

As a consequence k gets quantized

kn =
2π

L
n, with n = 0, ± 1, ± 2, ± 3, · · · . (6.13)

The state corresponding to n = 0 is the ground state.The energy spectrum becomes
discrete

En =
k2
�
2

2m
=

2π2
�
2

mL2
n2, (6.14)

each eigenvalue (except E = 0 corresponding to n = 0) being doubly degenerate.
The normalized eigenfunctions for the free particle is thus

ψk (x) =
1√
L
exp [ikx] (6.15)

which are also orthogonal, because we have∫ +L/2

−L/2

ψ∗
k′ (x)ψk (x) dx =

1

L

∫ +L/2

−L/2

exp [i (k − k′) x] dx = δk,k′ , (6.16)

where we have used Eq. (6.13).

DELTA FUNCTION NORMALIZATION

We can also use the definition of Delta Function1 to set up a delta function normal-
ization.

Thus using Eq. (A.28) we have∫ +∞

−∞
exp [−i (k − k′) x] dx = 2πδ (k − k′) . (6.17)

Normalized eigenfunctions are

ψk (x) =
1√
2π

exp [ikx] . (6.18)

The closure property is then given by∫ +∞

−∞
ψ∗
k (x

′)ψk (x) dk = δ (x− x′) . (6.19)

1See Chapter A.1,
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WAVE PACKETS

We have seen that the free particle plane wave is not localized. We can however
construct a wave packet by superposing plane waves given in Eq. (6.18) as follows

Ψ (x, t) =
1√
2π

∫ +∞

−∞
A (k) e+i[kx−ω(k)t] dk, (6.20)

where ω (k) =
�k2

2m
.

We take the amplitude function A (k) sharply peaked near k = k0 and integrate Eq.
(6.20) about k0:

Ψ (x, t) =
1√
2π

∫ k0+Δk

k0−Δk

A (k) exp [i (kx− ω (k) t)] dk (6.21)

Introducing the variable ξ = k − k0

ω (k) ≈ ω (k0 + ξ) = ω (k0) +

(
dω

dk

)
0

ξ = ω0 +

(
dω

dk

)
0

ξ,

we get after integration

Ψ (x, t) = A (x, t) exp [i (k0x− ω0t)] . (6.22)

The amplitude function A (x, t) of the plane wave exp [i (k0x− ω0t)] is given by

A (x, t) =
2A (k0) sin

{[
x−

(
dω
dk

)
0
t
]
Δk
}

[
x−

(
dω
dk

)
0
t
] , (6.23)

whose maximum at t = 0 occurs at the origin x = 0 and is 2A (k0)Δk. Thus at
t = 0 we get

A (x, t = 0) = A0
sin θ

θ
= A0f (θ) ,

where A0 = 2A (k0)Δk,

and θ = x ·Δk.

The amplitude function A (x, t = 0) is zero when

xn =
θn
π

=
nπ

Δk
, n = ± 1, ± 2, · · · .

The spatial extension of the packet is

Δx = (x+1)− (x−1) = 2x1 =
2π

Δk
. (6.24)
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Figure 6.1: Plot of f (θ) as a function of θ.

Since

Δk =
Δp

�
, so Δx ·Δp = 2π�. (6.25)

With passage of time the mid-point of the wave packet moves with group velocity

vg =

(
dω

dk

)
k0

=
p0
m
.

which is also the particle velocity.

6.2 Rectangular Potential Well

This potential is dfined as

V (x) =

{
0, for − a/2 < x < + a/2
V0, elsewhere

. (6.26)
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x

V( x )

a/2 +a/20

E

Rectangular Potential Well

0V V0

Region I    Region  II Region III

Figure 6.2: The rectangular potential well in 1 dimension.

(i) Bound State Solution

For bound state 0 < E < V0 the Schrödinger equation is given by

d2ψII

dx2
+ k2ψII = 0, for |x| < a/2,

d2ψI,III

dx2
− γ2ψI,III = 0, for |x| > a/2, (6.27)

where k2 =
2mE

�2
, and γ2 =

2m (V0 − E)

�2
. (6.28)

Here ψI,III refer to solutions in the Regions I and III, and ψII refers to solution in
Region II shown in Fig. (6.2).

The potential and the kinetic energies are invariant under reflection x → −x
and thus the Hamiltonian is invariant under Parity operation2. So both ψ (x) and
ψ (−x) are solutions of the Schrödinger equation. We can also show that in the case
of one dimensional bound states (i.e discrete energy spectrum) none of the energy
levels are degenerate.

Proof:
If possible let ψ1 and ψ2 are two solutions corresponding to the same energy E.

2See Chapter 11.
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Then

ψ′′
1 =

2m

�2
(V − E)ψ1

ψ′′
2 =

2m

�2
(V − E)ψ2

Here ‘prime’ refers to differentiation with respect to x. Thus

ψ′′
1

ψ1

=
ψ′′
2

ψ2

or ψ2ψ
′′
1 − ψ′′

1ψ2 = 0,

ψ2ψ
′
1 − ψ1ψ

′
2 = Constant.

Since for bound states both ψ1, ψ2 → 0 at x → ±∞, so the integration constant is
zero and we have

ψ′
1

ψ1

=
ψ′
2

ψ2

, or ψ1 = Constant × ψ2,

thus ψ1 and ψ2 turns out to be doubly-degenerate.
Now since the potential in this problem is an even function of x, the solutions of

the Schrödinger’s equation have definite parity, hence need be determined only for
positive values of x.

EVEN PARITY SOLUTIONS

Even parity solutions are given by

ψ (x) = B cos (kx) , 0 < x < a/2, (6.29)

ψ (x) = Ae−γx, x ≥ a/2.

Continuity of ψ and dψ
dx

at x ≥ a/2 yields

B cos

(
ka

2

)
= Ae−γa/2, (6.30)

−kB sin

(
ka

2

)
= −Aγe−γa/2

or tan

(
ka

2

)
=

γ

k
=

√
2mV0

�2k2
− 1. (6.31)

Now let p be largest integer in ka
2π
, then

pπ ≤ ka

2
< (p+ 1) π, i.e. 0 ≤

(
ka

2
− pπ

)
< π (6.32)
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and we also have

tan

(
ka

2

)
= tan

(
ka

2
− pπ

)
.

Now if π/2 <
(
ka
2
− pπ

)
< π, then tan

(
1
2
ka
)
is negative and Eq. (6.31) cannot hold.

Thus we must have

0 ≤
(
ka

2
− pπ

)
< π/2, or pπ ≤ 1

2
ka <

(
p+

1

2

)
π. (6.33)

The results of Eq. (6.31) and Eq. (6.33) is geometrically depicted in Fig. (6.3).
From Fig. (6.3) we have

1

0

2m
V    

/  h
 k

ka /2 −     πp

2m
V

0

h 
 k2

2
 1

Figure 6.3: Geometrical depiction of Eq. (6.31) and Eq. (6.33).

cos

(
ka

2
− pπ

)
=

k�√
2mV0

= sin

[
π/2−

(
ka

2
− pπ

)]

= sin

[(
p+

1

2

)
π − ka

2

]
.

So

(
p+

1

2

)
π − ka

2
= arcsin

k�√
2mV0

,

or ka = (2p+ 1) π − 2 arcsin
k�√
2mV0

, (6.34)

where p = 1, 2, · · · .
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Now from Eq. (6.33) the maximum value of ka
2
is
(
p+ 1

2

)
π and the minimum value

of ka
2
is pπ. The minimum value of arcsin k�√

2mV0
is 0 and the maximum value is π/2,

i.e.

0 ≤ arcsin
k�√
2mV0

≤ π/2. (6.35)

Since Eq. (6.34) will have no solution unless the argument of arcsin is ≤ 1 ı.e.

k2
�
2 ≤ 2mV0, and E =

k2
�
2

2m
< V0.

Thus we have for even solutions k
(+)
p , for p = 0, 1, 2, · · · , , p+max, corresponding to

the points of intersection of the straight line ka and the monotonically drcreasing
curves

ζ2p+1 (k) = (2p+ 1) π − 2 arcsin
k�√
2mV0

. (6.36)

Also from Eq. (6.34) putting the maximum and minimum values of arcsin k�√
2mV0

,

2pπ ≤ k+
p a ≤ (2p+ 1) π;

the + sign refers to even parity solution. Now k+
p <

√
2mV0

�
and for

√
2mV0 � k�

Eq. (6.34) takes the following form (since for small values of x, arcsin(x) ≈ x):

k+a = (2p+ 1) π, and

k+
pmax

=
π

a
(2p+ 1)

E+ =
k2
max�

2

2m
=

π2
�
2

2ma2
(2p+ 1)2 (6.37)

with p = 0, 1, 2, · · · ,

Also ψ (x) → 0 in this limit in the region x > a/2.
The normalized wavefunction is given by

ψ+ (x) =

√
2

a
cos
(π
a
(2p+ 1)x

)
, (6.38)

p = 0, 1, 2, · · ·

and 0 < arcsin
k�√
2mV0

≤ π/2.
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ψ− (x) =

{
C sin

(
1
2
kx
)
, for x < a/2

A exp (−γx) , for x > a/2
.

Then continuity of ψ and dψ
dx

at x = a/2 leads finally to the following:

cot

(
ka

2

)
= − γ

k
= −

√
2mV0

k2�2
− 1. (6.39)

Proceeding in similar way as was done in the even parity case, and remembering

cot

(
ka

2

)
= cot

(
ka

2
− pπ

)
we have if 0 ≤

(
ka
2
− pπ

)
< π/2, then cot

(
1
2
ka
)
≥ 0, so that Eq. (6.39) cannot hold.

Thus we must have(
p+

1

2

)
π ≤ ka

2
< (p+ 1) π. (6.40)

ka /2 p

2mV0

h  k
2 2

 1

1

0

2m
V

   
 / 

 h
 k

π

Figure 6.4: Geometrical depiction of Eq. (6.39) and Eq. (6.40).

From Fig. (6.4), we get

sin

[
(p+ 1) π − ka

2

]
=

k�√
2mV0

,

(p+ 1) π − ka

2
= arcsin

k�√
2mV0

,

ka = (2p+ 2)− 2 arcsin
k�√
2mV0

(6.41)

with p = 0, 1, 2, · · ·

and 0 < arcsin
k�√
2mV0

≤ π/2.
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We have odd parity solutions

k(−)
p with p = 0, 1, 2, · · · , p−max,

corresponding to the points of intersection of the straight line ka and the monoton-
ically decreasing curves

ζ2p+2 (k) = (2p+ 2) π − 2 arcsin
k�√
2mV0

. (6.42)

We see that

(2p+ 1) π ≤ k(−)
p a < (2p+ 2) π and k−

p <

√
2mV0

�
.

We can now combine Eq. (6.34) and Eq. (6.41) and write

ka = nπ − 2 arcsin
k�√
2mV0

, (6.43)

where n =

{
1, 3, 5, · · · , (2p+ 1) for even parity solutions
2, 4, 6, · · · , (2p+ 2) for odd parity solutions

.

Graphical solution of Eq. (6.43) is shown here in Fig. (6.5).
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f ( x ) = 4     arcsin ( x )

f(x) = 1    arcsin (x)
π

π

π

π

f 
( 

x 
) 

 
>

x  >

Figure 6.5: Graphical solution of Eq. (6.43). f (x) = nπ − arcsin (x)
and the straight line is f (x) = ka = mx where x = k�√

2mV0
.
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(ii) Unbound State Solution

In this case 0 < V0 < E, so the particle is not bound. Assuming that the particle
is incident upon the well from the left. the solution of the Schrödinger equation in
the external regions x < −a/2 and x > a/2 are given by

ψ (x) =

{
Ae+ikx + Be−ikx for x < −a/2
Ce+ikx for x > +a/2

, (6.44)

where

k = +

√
2m (E − V0)

�
, and A,B,C are constants.

Since there is no reflector at large positive values of x there is no reflected term
of the form e−ikx in the region x > +a/2. In the region x < −a/2, however, the
wavefunction consists of the incident wave e+ikx of amplitude A and the reflected
wave e−ikx of amplitude B, whereas in the region x > a/2, it is only the transmitted
wave of amplitude C. Inside the region −a/2 < x < +a/2 the solution is given by

ψ (x) = Fe+iαx +Ge−iαx (6.45)

where α = +

√
2mE

�
. (6.46)

Problem 6.1 Requiring that ψ and dψ
dx

are continuous at x = ±a/2 find the ex-
pressions for

(i). Reflection Coefficient

R = |B/A|2, (6.47)

(ii). Transmission Coefficient

T = |C/A|2. (6.48)

Also check that T +R = 1.

6.3 Rectangular Potential Barrier

We shall discuss this one-dimensional case in some details and introduce in an ele-
mentary way the S-matrix theory of collision.
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x
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Figure 6.6: The rectangular potential barrier in 1 dimension.

The potential is defined as

V (x) =

⎧⎨
⎩

0 for x < −a Region I
V0 for −a < x < +a Region II
0 for +a < x Region III

. (6.49)

Since the quantum mechanical barrier penetration occurs when E is less than V0,
we shall study this particularly important case here.

The particle is free for x < −a and +a < x. For this reason, the rectangular
barrier simulates schematically, the scattering of a free particle from any potential.

The general solution of the Schrödinger equation for E < V0 is

ψ (x) =

⎧⎨
⎩

Ae+ikx + Be−ikx for x < −a
Ce+κx +De−κx for −a < x < +a
Fe+ikx +Ge−ikx for +a < x

. (6.50)

where

where k� =
√
2mE, and κ� =

√
2m (V0 − E).

From the boundary conditions of continuity of ψ and dψ
dx

at x = −a we have

Ae−ika + Be+ika = Ce+κa +De−κa and

Ae−ika − Be+ika =
iκ

k

(
Ce+κa −De−κa

)
. (6.51)
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These linear homogeneous equations can also be expressed in terms of matrices.(
A
B

)
=

1

2

( (
1 + iκ

k

)
e+κa+ika

(
1− iκ

k

)
e−κa+ika(

1− iκ
k

)
e+κa−ika

(
1 + iκ

k

)
e−κa−ika

)(
C
D

)
.

Similarly the boundary conditions at x = a yield(
C
D

)
=

1

2

( (
1− ik

κ

)
e+κa+ika

(
1 + ik

κ

)
e−κa+ika(

1 + ik
κ

)
e+κa−ika

(
1− ik

κ

)
e−κa−ika

)(
F
G

)
.

Combining these two matrix equations we get(
A
B

)
=

( (
cosh 2κa+ iε

2
sinh 2κa

)
e+2ika +iη

2
sinh 2κa

− iη
2
sinh 2κa

(
cosh 2κa− iε

2
sinh 2κa

)
e−2ika

)

×
(

F
G

)
. (6.52)

where

ε =
κ

k
− k

κ
, and η =

κ

k
+

k

κ
. (6.53)

Problem 6.2 Calculate the determinant of the matrix in Eq. (6.52) and
show that it is equal to 1.

Letting G = 0 in Eq. (6.52) we obtain the particular solution which represents a
wave incident from the left and transmitted through the barrier to the right. A
reflected wave whose amplitude is B, is also present in the region x < −a.

Problem 6.3 Show that

F

A
=

e−2ika

cosh 2κa+ iε
2
sinh 2κa

. (6.54)

|F/A|2 is the transmission coefficient for the barrier. For a high and wide barrier
we have ka � 1 and

cosh 2ka = sinh 2ka ≈ 1

2
e2ka

hence T =

∣∣∣∣FA
∣∣∣∣
2

≈ 16e−4κa

(
kκ

k2 + κ2

)2

. (6.55)

The matrix which relates A and B with F and G in Eq. (6.52) has many simple
properties. We write the linear relations as(

A
B

)
=

(
α1 + iβ1 α2 + iβ2

α3 + iβ3 α4 + iβ4

)(
F
G

)
(6.56)
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and compare this with Eq. (6.52). We observe that that the eight real numbers
α, β in the matrix satisfy the conditions

α1 = α4, β1 = −β4, α2 = α3 = 0, β2 = −β3. (6.57)

Thus the matrix in Eq. (6.56) can be written as(
α1 + iβ1 iβ2

−iβ2 α1 − iβ1

)
. (6.58)

Using the result of Problem (6.2) we have

α2
1 + β2

1 − β2
2 = 1. (6.59)

Hence we have only 2 parameters that define the matrix and they are ka and κa.
It can be shown that the conditions Eq. (6.57) and Eq. (6.58) imposed on Eq.

(6.56) are consequences of the general symmetry properties of the physical system
being studied.

SYMMETRIES AND INVARIANCE PROPERTIES3.

Since the rectangular barrier, Fig. (6.6) is a real potential which is symmetrical
about the origin, the Schrödinger equation is invariant under time reversal and
space reflection. We can use these properties to derive the general form of the
matrix linking the incident wave with the transmitted wave.

We once again write the form of the general solution for ready reference

ψ (x) =

⎧⎨
⎩

Ae+ikx + Be−ikx for x < −a
Ce+κx +De−κx for −a < x < +a
Fe+ikx +Ge−ikx for +a < x

.

Instead of using the boundary conditions at x = −a and x = +a, we regard that
the wavefunction on one side of the barrier, say for x > a, as given, then this will
give linear equation expressing the coefficienta A and B in terms of F and G. Hence
we can express these relations in terms of the matrix M such that(

A
B

)
=

(
M11 M12

M21 M22

)(
F
G

)
. (6.60)

Equivalently we can express coefficients of the outgoing waves B and F in terms of
the coefficients A and G of the incoming waves which are then known(

B
F

)
=

(
S11 S12

S21 S22

)(
A
G

)
, (6.61)

3See Chapter 11
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where S is known as the scattering matrix or the S-matrix .
The Eq. (6.61) describes the scattering phenomenon when knowing the incoming

waves one can calculate the outgoing waves. The symmetry properties can be well
formulated in terms of the S-matrix.

The S and the M matrices can be simply related if conservation of probability
is invoked.

In an one dimensional stationary state, the probability current density must be
independent of x.

j =
�

2mi

[
ψ∗dψ

dx
− dψ∗

dx
ψ

]

for the stationary state4 dj
dx

= 0 and j has the same value at all point x. This gives

|A|2 − |B|2 = |F |2 − |G|2,
or |B|2 + |F |2 = |A|2 + |G|2.

This is expected since |A|2 and |F |2 measure the probability current to the right,
while |B|2 and |G|2 measure the flow in the opposite direction. In matrix notation
we can write

(B∗ F ∗)
(

B
F

)
= (A∗ G∗) S̃∗S

(
A
G

)

= (A∗ G∗)
(

A
G

)
or S̃∗S = Î , a unit matrix.

Thus S is unitary.

Problem 6.4 Use the condition S†S = SS† = Î to prove the following.

|S11| = |S22| and |S12| = |S21|, (6.62)

|S11|2 + |S12|2 = 1, (6.63)

S11S
∗
12 + S21S

∗
22 = 0. (6.64)

Since unitary matrices are extremely important in quantum mechanical formal-
ism, we start with an S of the form

S =

(
ueiα veiβ

xeiδ weiγ

)
with

0 ≤ u, v, w, x, and − π ≤ α, β, γ, δ < + π.

4from continuity condition, putting ∂ρ
∂t

= 0..
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Problem 6.5 Show that S will have only one of the following forms.

I. S =

(
eiα 0
0 eiγ

)
, or S =

(
0 eiβ

eiδ 0

)
.

II. S =

(
ueiα

√
1− u2eiβ

−
√
1− u2ei(α+γ+β) ueiγ

)
(6.65)

Since the potential is real, if ψ (x) is a solution then ψ∗ (x) is also a solution.
So in addition to the solutions Eq. (6.50) we also have the following time reversed5

solutions:

ψ1 (x) =

⎧⎨
⎩

A∗e−ikx + B∗e+ikx for x < −a
C∗e−κx +D∗e+κx for −a < x < +a
F ∗e−ikx +G∗e+ikx for +a < x

. (6.66)

Comparison with Eq. (6.59) reveals that effectively the directions of motion have
been reversed and the coefficient A has been interchanged with B∗, and F with G∗.
Hence we may make the following changes in Eq. (6.61)

A ←→ B∗ and F ←→ G∗

to obtain equally valid equation(
A∗

G∗

)
=

(
S11 S12

S21 S22

)(
B∗

F ∗

)
. (6.67)

Eq. (6.67) and Eq. (6.61) can be combined to yield the condition

S∗S = Î . (6.68)

This condition together with te unitarity of S implies that S-matrix must be sym-
metric as a consequence of the time reversal symmetry.

Problem 6.6 From the Eq. (6.60) and Eq. (6.61) using the unitarity for a sym-
metric matrix
show that the matrix M has the following form

M =

(
1

S12

S∗
11

S∗
12

S11

S12

1
S∗
12

)
. (6.69)

Also verify that detM = 1.

5
t → −t and complex conjugation
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Since the potential is an even function of x, another solution is obtained by
replacing x in Eq. (6.50) by −x

ψ2 (x) =

⎧⎨
⎩

Ae−ikx + Be+ikx for x < −a
Ce+κx +De−κx for −a < x < +a
Fe−ikx +Ge+ikx for +a < x

. (6.70)

If Ge+ikx is the wave incident on the barrier from the left, then Be+ikx is the trans-
mitted and Ae−ikx is the incident from the right. Hence if we make the replacement
A ←→ G and B ←→ F in Eq. (6.51) we obtain(

F
B

)
=

(
S11 S12

S21 S22

)(
G
A

)
.

This relation can also be written as(
B
F

)
=

(
S22 S21

S12 S11

)(
A
G

)
.

Hence invariance under reflection implies

S11 = S22 and S12 = S21. (6.71)

If the conservation of probability, time reversal and space reflection symmetries
are to be valid simultaneously then the matrixM has to be of the following structure.

M11 = M∗
22, M12 = −M21, detM = + 1.

We see that Eq. (6.57) and Eq. (6.58) are the results of very general properties,
shared by all potential that are symmetric with respect to the origin and vanish
at large values of |x|. For all such potentials that the solution of the Schrödinger
equation must be asymptotically of the form

ψ (x) ∼
{

Ae+ikx + Be−ikx as x → −∞
Fe+ikx +Ge−ikx as x → +∞ .

By virtue of the general arguments just presented, these two portions of the eigen-
functions are related by the matrix equation(

A
B

)
=

(
α1 + iβ1 +iβ2

−iβ2 α1 − iβ1

)(
F
G

)
,

with real parameters α1, β1 and β2 subjrct to the additional constraint

α2
1 + β2

1 − β2
2 = 1.
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The significance of the matrix method presented here is that it allows a clear
separation beyween the initial conditions which can be adopted to suit any particular
problem, and the matrices M and S which do not depend on any particular of the
wave packet used. Once either of the matrices are worked out as a function of
energy, all problems relating to the potential barrier have essentially been solved.

For example, the transmission coefficien T is given by |F |2
|A|2 if G = 0, and therefore

T =
1

|M11|2
= |S21|2. (6.72)

This work is in its most elementary form of the S-matrix theory of the more
sophisticated scattering matrix theory of collisions.

6.4 Delta Function Potential

Consider a particle of mass m moving in an attractive δ-function potential

V (x) = − gδ (x) , (6.73)

where g is a real positive constant. Integrating Eq. (6.73) one can verify that g has
the dimension of energy × length, or equivalently it is square of the electrostatic
charge. Though this is not a physical potential, but it serves as a useful toy model
and is known as one dimensional hydrogen atom.

The Schrödinger equation for this potential is

− �
2

2m

d2ψ (x)

dx2
− gδ (x)ψ (x) = Eψ (x) . (6.74)

Integrating Eq. (6.74) from −ε to +ε, and taking the limit ε → 0, we get

lim
ε→0

[(
dψ

dx

)
x=+ε

−
(
dψ

dx

)
x=−ε

]
+

2m

�2
gψ (0) = 0, (6.75)

since∫ +ε

−ε

Eψ (x) dx ≈ Eψ (0) 2ε → 0, as ε → 0.

This potential problem admits of both bound and continuum solutions.

(i). Bound state solution is given when E < 0 and the equation is

d2ψ (x)

dx2
− κ2ψ (x) = −2m

�2
gδ (x)ψ (x) , (6.76)

κ2 =
2m|E|
�2

.
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Since δ(x) is zero everywhere except at x = 0, ψ(x) must satisfy

d2ψ (x)

dx2
− κ2ψ (x) = 0

everywhere except at x = 0. Assuming ψ (x) → 0 at x → ±∞, we have

ψ (x) =

{
Ae+κx, when x < 0,
Be−κx when x > 0

. (6.77)

Since ψ(x) is continuous at x = 0, we have A = B, and

ψ (x) =

{
Ae+κx, when x ≤ 0,
Ae−κx when x ≥ 0

. (6.78)

Using Eq. (6.76) in Eq. (6.75),

−2κA+
2mAg

�2
= 0, or κ =

mg

�2

Since

κ =

√
2m|E|
�2

, we have
mg

�2
=

√
2m|E|
�2

and the allowed energy is

E = − mg2

2�2
. (6.79)

Energy is thus negative and there is only one bound state which can be nor-
malized as follows

1 =

∫ +∞

−∞
|ψ (x) |2dx = 2|A|2

∫ +∞

0

e−2κxdx (6.80)

or |A|2 = κ i.e. A =
√
κ.

(ii). For continuum solutions we have E > 0. We assume that a particle is incident
from the left. The solutions may be written as

ψ (x) =

{
e+ikx + re−ikx when x < 0
te+ikx when x > 0

. (6.81)
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We have already chosen the normalization so that the coefficient of the first
term is one. Here k =

√
2mE/�. Then the continuity at x = 0 and Eq. (6.75)

give

1 + r = ψ
(
0−
)

= ψ
(
0+
)

= t, (6.82)

and

(
dψ

dx

)
0+

−
(
dψ

dx

)
0−

= −2mg

�2
ψ (0) ,

or ik (t− 1 + r) = −2mg

�2
ψ (0) = − 2mg

�2
(1 + r) , (6.83)

whence r =
iα
k

1− iα
k

,

and t =
1

1− iα
k

,

with α =
mg

�2
.

The reflection and the transmission coefficients are

R = |r|2 =
α2

k2

1 + α2

k2

=
α2

α2 + k2
=

mg2

mg2 + 2E�2
,

T = |t|2 =
1

1 + α2

k2

=
k2

α2 + k2
=

2E�
2

mg2 + 2E�2
,

and we have

R + T = 1. (6.84)

6.5 Oscillator Problem by Schrödinger Method

Linear harmonic oscillator is one of the very few problems in quantum mechanics
which can be solved exactly. Its importance can hardly be over-emphasized. It has
got application in almost all branches of physics. From condense matter physics to
spectroscopy, from nuclear physics to quantum field theory we have to apply linear
harmonic oscillator in one form or other.

The Hamiltonian is given by

H = − �
2

2m

d2

dx2
+

1

2
mω2x2, (6.85)
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where ω =
√
κ/m, κ being the spring constant. And the Schrödinger equation is[

d2

dx2
− ω2m2x2

�2
+

2mE

�2

]
ψ (x) = 0. (6.86)

Changing over to dimensionless quantities

ξ = x

√
mω

�
, ε =

2E

�ω
, (6.87)

we get the second order equation[
d2

dξ2
− ξ2 + ε

]
ψ (x) = 0. (6.88)

We study the asymptotic behaviour of ψ(x) as ξ → ∞, when[
d2

dξ2
− ξ2

]
ψ∞ (x) = 0.

Thus for |ξ| → ∞ the wavefunction must have the form lim|ξ|→∞ ψ (ξ) = exp
(
± ξ2

2

)
.

Of the two solutions we retain exp
(
− ξ2

2

)
, as the other one blows up as ξ → ∞.

Then we seek a solution of Eq. (6.88) in the form

ψ (ξ) = v (ξ) exp

(
−ξ2

2

)
. (6.89)

Substituting Eq. (6.89) in Eq. (6.88) we get

v′′ − 2ξv′ + (ε− 1) v = 0, (6.90)

where primes indicate differentiation with respect to ξ. In order that Eq. (6.89) is
finite for ξ → ∞, it is necessary that the solutions v should be polynomial of finite
order in ξ. Considering the power series solution of Eq. (6.90) of the form

v =
∞∑
k=0

akξ
k, (6.91)

it is possible to show that unless the series terminates, i.e. unless ak = 0 for all
k > n where n is some integer, the function v will approach infinity more rapidly
than exp (ξ2) and hence ψ = v exp (−ξ2/2) will be infinite as ξ → ∞. We can verify
this by substituting Eq. (6.91) in Eq. (6.90) and then equating the coefficients of like
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powers of ξ to zero. We get the following recursion relationships for the coefficients
ak.

ak+2 = ak
2k − (ε− 1)

(k + 2) (k + 1)
. (6.92)

Thus once a0 and a1 are specified (and the two numbers may be chosen indepen-
dently) we can determine the rest of the coefficients from this relation. Now ak+2

ak
→ 2

k

as k → ∞. Comparing this with the limiting ratio 1
k
of two successive terms in the

expansion of

ξγ exp
(
ξ2
)

=
∞∑
k=0

1

k!
ξγ+2k,

where γ is arbitrary, we conclude that unless the series for v(ξ) terminates, v(ξ) will
approach infinity more rapidly than ξγ exp(ξ2) and ψ(ξ) will approach infinity like
exp(ξ2/2). Substituting k = n into the recursion relation Eq. (6.92), we find that

ε− 1 = 2n, n = 0, 1, 2, · · · (6.93)

is the condition that the series will terminate at k = n.
To each value of n in Eq. (6.93), there corresponds a polynomial of order n,

which is called a Hermite polynomial,

Hn (ξ) = (−1)n exp
(
ξ2
) dn

dξn
exp
(
−ξ2
)
. (6.94)

Thus the solution of Eq. (6.90), in the form of a polynomial of finite degree exact
up to a normalization constant N , is

vn (ξ) = NnHn (ξ) . (6.95)

Then the stationary states of a linear harmonic oscilletor is

ψn (ξ) = Nn exp

(
−ξ2

2

)
Hn (ξ) , (6.96)

with Nn =
(√

πn!2n
)− 1

2 ,

and

∫ +∞

−∞
ψn (ξ)ψm (ξ) dξ = δn,m.

To each state which is represented by a wavefunction of the form Eq. (6.96) there
corresponds according to Eq. (6.93), one value εn = 2n + 1 (non-degerate). Using
Eq. (6.87) we find the value of the energy of a harmonic oscillator

E = �ω

(
n+

1

2

)
. (6.97)
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The energy of the ground state

E0 =
1

2
�ω

is called the zero point energy. Since the potential energy of the oscillator is in-
variant with respect to the parity operation ξ → −ξ, the stationary states can be
divided into even and odd parity, according as n is even or odd respectively.

Even Parity Odd Parity

H0 (ξ) = 1 H1 (ξ) = 2ξ
H2 (ξ) = 4ξ2 − 2 H3 (ξ) = 8ξ3 − 12ξ
H4 (ξ) = 16ξ4 − 48ξ2 + 12 · · ·

In the general case, the parity of the wavefunction is determined from Eq. (6.94).
The Hermite polynomials satisfy the simple recursion relationships

ξHn (ξ) = nHn−1 (ξ) +
1

2
Hn+1 (ξ) , (6.98)

dHn (ξ)

dξ
= 2nHn−1 (ξ) . (6.99)

These formulas are very useful in actual calculations. The mean value of ξ in the
nth state is

〈ξ〉n =

∫ +∞

−∞
ψ2
n (ξ) · ξ dξ = 0

since te integrand is an odd function of ξ. Thus

〈(Δξ)2〉n = 〈ξ2〉n − 〈ξ〉2n = 〈ξ2〉n

=

∫ +∞

−∞
ψn (ξ) ξ

2ψn (ξ) dξ. (6.100)

Using Eq. (6.96) and Eq. (6.98), we find

ξψn =

√
n

2
ψn−1 +

√
n+ 1

2
ψn+1 , (6.101)

and hence

ξ2ψn =
1

2

√
n (n− 1)ψn−2 +

(
n+

1

2

)
ψn +

1

2

√
(n+ 1) (n+ 2)ψn+2 . (6.102)
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Substituting Eq. (6.102) in Eq. (6.100) and taking into account the orthonormality
of the wavefunctions we get

〈ξ2〉n = n+
1

2
, or 〈x2〉n =

(
n+

1

2

)
�

mω
, (6.103)

or mean value of x2 in n = 0 ground state is

〈x2〉0 =
�

2mω
.

6.6 Linear Harmonic Oscillator by Operator Method

We shall now develop Dirac’s operator method to solve the harmonic oscillator
problem. The Hamiltonian of the linear harmonic oscillator is

H =
p̂x

2

2m
+

1

2
mω2x2, (6.104)

where ω is the angular frequency of the classical oscillator which is related to the
spring constant K by the relation ω =

√
K/m.

We now define two non-hermitian operators

â± = ∓ i√
2

[
p̂x√
m�ω

± i

√
mω

�
x̂

]
. (6.105)

Problem 6.7 (i). Check that the operators in Eq. (6.105) are dimensionless.

(ii). Also show that â+ and â− are Hermitian adjoints of each other.

â†+ = â−, â†− = â+. (6.106)

(iii). Using the basic commutation relation

[x̂, p̂x] = i�,

show that

[â−, â+] = Î . (6.107)

6.6 Linear Harmonic Oscillator by Operator Method
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Now we express x̂ and p̂x in terms of â+ and â−:

x̂ =

√
�

2mω
(â+ + â−) ,

p̂x = i

√
m�ω

2
(â+ − â−) (6.108)

and the Hamiltonian is

Ĥ =
�ω

2
(â+â− + â−â+) . (6.109)

Problem 6.8 Using the commutation relation Eq. (6.107), show that

Ĥ = �ω

(
â+â− +

1

2

)
. (6.110)

We define the number operator N̂ as

N̂ = â+â−, (6.111)

so that

Ĥ = �ω

(
N̂ +

1

2

)
. (6.112)

Since

N̂ † = â†−â
†
+ = â+â− = N̂ , (6.113)

the number operator N̂ is Hermitian.

Problem 6.9 Show that[
Ĥ, â±

]
= ± �ωâ±. (6.114)

Now the eigenvalue equation of Ĥ is

Ĥ|E〉 = E|E〉. (6.115)

From Eq. (6.114)[
Ĥ, â±

]
|E〉 = ±�ωâ±|E〉,[

Ĥâ± − â±Ĥ
]
|E〉 = ±�ωâ±|E〉, (6.116)

Ĥ [â±|E〉] = â±Ĥ|E〉 ± �ωâ±|E〉
= (E ± �ω) [â±|E〉] . (6.117)
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From Eq. (6.117) we notice that the kets â±|E〉 are also eigenkets of Ĥ belonging
to the eigenvalues (E ± �ω).

Thus â+ and â− operating on |E〉 respectively raises and lowers the eigenvalue
E by �ω and are called raising and lowering operators6 Since Ĥ contains squares of
the Hermitian operators p̂x and x̂, the expectation value of Ĥ in any of its eigenkets
cannot be negative and its eigenvalues are thus non-negative. If E0 is the smallest
of the eigenvalues of Ĥ and |E0〉 is the corresponding eigenket, we must have

â−|E0〉 = 0. (6.118)

For otherwise â−|E0〉 would be an eigenket of Ĥ with values E0−�ω, which is lower
than E0, contrary to the assumption that E0 is the lowest allowed eigenvalue.

Now from Eq. (6.110) and Eq. (6.118)

(â+â−) |E0〉 = N̂ |E0〉 =

(
Ĥ − �ω

2

)
|E0〉

=

(
E0 −

�ω

2

)
|E0〉. (6.119)

Since the left hand side is 0, we get

E0 =
�ω

2
, (6.120)

i.e. the lowest energy eigenvalue of the oscillator is E0 = �ω
2
, which is the ground

state energy.
We can now operate on |E0〉 repeatedly with the raising operator â+ and obtain

the sequence of eigenkets

|E0〉, â+|E0〉, â2+|E0〉, · · · (6.121)

which are not normalized. The eigenket ân+|E0〉 has eigenvalues

En =

(
n+

1

2

)
�ω, with n = 0, 1, 2, · · · , (6.122)

positive integers starting with 0.
If |En〉 be the normalized eigenket corresponding to the eigenvalue En and |En+1〉

be that corresponding to the eigenvalue En+1, then from Eq. (6.121) we can write

|En+1〉 = cn+1â+|En〉, (6.123)

6In quantum field theoretic terminology they are called creation operator â
† and annihilation

or destruction oparor â respectively.
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where cn+1 is the normalization constant.

〈En+1|En+1〉 = |cn+1|2〈En|â†+â+|En〉 = 1, (6.124)

and since â†+ = â− from Eq. (6.106), therefore

|cn+1|2〈En|â−â+|En〉 = 1. (6.125)

Now

â−â+ =
Ĥ

�ω
+

1

2

and Ĥ|En〉 = En|En〉 =

(
n+

1

2

)
�ω|En〉,

∴ â−â+|En〉 = (n+ 1) |En〉. (6.126)

Then from Eq. (6.125) and Eq. (6.126) we have

(n+ 1) |cn+1|2 = 1. (6.127)

Taking cn+1 to be real positive, we have

cn+1 =
1√
n+ 1

. (6.128)

ENERGY REPRESENTATION OF LINEAR HARMONIC OSCILLATOR

When the orthonormal complete set of eigenkets {|En〉} is taken as the basis vectors
of the oscillator ket space then the representation is called energy representation.
This is a discrete representation and the matrix forms of Ĥ and N̂ are obviously
diagonal in this representation:

Ĥ =

⎛
⎜⎜⎜⎝

1
2

0 0 · · ·
0 3

2
0 · · ·

0 0 5
2

· · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ and N̂ =

⎛
⎜⎜⎜⎝

0 0 0 · · ·
0 1 0 · · ·
0 0 2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ (6.129)

Problem 6.10 Use Eq. (6.123) and Eq. (6.128), also orthogonality of
energy eigenkets and check the following forms of the matrices.

â+ =

⎛
⎜⎜⎜⎝

0 0 0 · · ·√
1 0 0 · · ·
0

√
2 0 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎠ and â− =

⎛
⎜⎜⎜⎝

0
√
1 0 · · ·

0 0
√
2 · · ·

0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ (6.130)
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(i) Time Evolution of Oscillator

From the Heisenberg equation of motion Eq. (4.47) we can write the following
equations for p̂x and x̂ of the linear harmonic oscillator.

dp̂x
dt

=
1

i�

[
p̂x,

p̂2x
2m

+
1

2
mω2x̂2

]
= −mω2x̂, and (6.131)

dx̂

dt
=

1

i�

[
x̂,

p̂2x
2m

+
1

2
mω2x̂2

]

=
p̂x
m
. (6.132)

Since these are coupled equations we consider the time dependence of â+ and â−:

dâ−
dt

= −iωâ−, and (6.133)

dâ+
dt

= +iωâ+, (6.134)

whose solutions are

â− (t) = â− (0) exp (−iωt) , and (6.135)

â+ (t) = â+ (0) exp (+iωt) . (6.136)

Thus from Eq. (6.105)

p̂x (t)√
m�ω

+ i

√
mω

�
x̂ (t) =

p̂x (0)√
m�ω

e+iωt + i

√
mω

�
x̂ (0) e+iωt, (6.137)

and
p̂x (t)√
m�ω

− i

√
mω

�
x̂ (t) =

p̂x (0)√
m�ω

e−iωt − i

√
mω

�
x̂ (0) e−iωt. (6.138)

Eq. (6.137) is the Hermitian conjugate of Eq. (6.138). Equating the Hermitian and
the anti-Hermitian term in either equation we get

p̂x (t) = p̂x (0) cosωt−mωx̂ (0) sinωt, and (6.139)

x̂ (t) = x̂ (0) cosωt+
p̂x (0)

mω
sinωt. (6.140)

These equations are analogous to the classical equations of motions, showing x̂ (t) , p̂x (t)
oscillating with the angular frequancy ω.
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(ii) Coherent State

Study of coherent states was pioneered by R. Glauber. We indicate some of the
features in this subsection.

From the expressions Eq. (6.139) and Eq. (6.140) one might conclude that 〈x̂〉
and 〈p̂x〉 always oscillate with angular frequency ω. However, that is not correct.
For example the expectation value 〈n|x̂ (t) |n〉 with energy eigenkets |n〉 vanishes,
because x̂ (0) and p̂x (0) change n by ±1 and the states |n〉 and |n±1〉 are orthogonal.
To observe oscillations as in a classical oscillator we need to take a superposition of
energy eigenkets such as

|α〉 = c0|0〉+ c1|1〉. (6.141)

Then the expectation value 〈α|x̂|α〉 does oscillate instead of being zero.
We now ask how can we construct a superposition of energy eigenkets that most

closely resembles the classical oscillator. In other words, we want a wavepacket
that bounces back and forth without spreading in shape. A coherent state is such
a wavepacket. It is defined as the eigenfunction of the non-Hermitian annihilation
operator â−

â−|α〉 = α|α〉, (6.142)

where α is a complex number in general.
We now prove a very useful identity

eÂB̂e−Â = B +
[
Â, B̂

]
+

1

2!

[
Â,
[
Â, B̂

]]
+

1

3!

[
Â,
[
Â,
[
Â, B̂

]]]
+ · · · (6.143)

Proof:
Let f (λ) = eλÂBe−λÂ. Making a Taylor Series expansion of f (λ) and noting that

df (λ)

dλ
= Âf (λ)− f (λ) Â =

[
Â, f (λ)

]
,

d2f (λ)

dλ2
=

[
Â,

df (λ)

dλ

]
=
[
Â,
[
Â, f (λ)

]]
,

· · · = · · · ,

and since f (0) = B̂, we get

f (λ) = B̂ +
λ

1!

[
Â.B̂

]
+

λ2

2!

[
Â,
[
Â, B̂

]]
+ · · · .

from which Eq. (6.143) follows by setting λ = 1.
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Similarly it can be shown, if Â and B̂ are two operators both of which commute

with
[
Â, B̂

]
,

eÂeB̂ = eÂ+B̂+ 1
2 [Â,B̂]. (6.144)

We consider the unitary operator Ŝα = exp (αâ+ + α∗â−) and using Eq. (6.143)
we obtain

exp (αâ+ − α∗â−) â− exp (−αâ+ + α∗â−) = â− − αÎ. (6.145)

Problem 6.11 Prove Eq. (6.145).

The unitary operator Sα has the following properties

Ŝ†
α = Ŝ−1

α = Ŝ−α.

From Eq. (6.145)

Ŝαâ−Ŝ−1
α = â− − αÎ,

Ŝαâ− = â−Ŝα − αŜα, (6.146)

Ŝαâ−|0〉 = â−Ŝα|0〉 − αŜα|0〉,
a− [Sα|0〉] = α [salpha|0〉] . (6.147)

where |0〉 is the oscillator ground state. Thus Sα|0〉 is the eigenket of a− with
eigenvalue α.

∴ Ŝα|0〉 = |α〉

is called the coherent state.
Since

|α〉 = Ŝα|0〉 = exp (αâ+ − α∗â−) |0〉, (6.148)

using Eq. (6.143) and Eq. (6.145) one can show that

|α〉 = exp (αâ+ − α∗â−) |0〉

= exp

(
−|α|2

2

)
exp (αâ+) |0〉 (6.149)

= exp

(
−|α|2

2

) ∞∑
n=0

αn

n!
ân+|0〉

= exp

(
−|α|2

2

) ∞∑
n=0

αn

√
n!
|n〉. (6.150)
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Thus the probability of finding the nth state is given by

|〈n|α〉|2 = Pn ≡ e−|α|2 α
2n

√
n!

(6.151)

which is a Poisson distribution.
Again we have

â−|α〉 = exp

(
−|α|2

2

) ∞∑
n=0

αn

√
n!
â−|n〉

= exp

(
−|α|2

2

) ∞∑
n=1

αn

√
n!

√
n|n− 1〉

= exp

(
−|α|2

2

)
α

∞∑
n=0

αn

√
n!
|n〉

= α|α〉.

We shall add a note here about the notation used. The lowering operator a−
and the raising operator a+ has been used remembering that they change the state
of the system from n to n − 1 or to n + 1 respectively. In all these transition a
field quanta (phonon or photon) are created or destroyed (annihilated) respectively.
That is why in field theory the corresponding operators are called creation operator
a† or destruction (annihilation) operator a respectively.

6.7 Periodic Potential

This is the final example of one dimensional problems where we consider motion of
a particle in a periodic potential illustrated in Fig. (6.7). This is called the Kronig-
Penny potential which can be used as a model of interaction to which electrons and
ions are subjected in a crystal lattice consisting of a regular array of single atoms
separated by the distance l.

We have

V (x± l) = V (x) .

We use the unitary translation operator T defined in Chapter 3 and we have

T̂ † (l) x̂T̂ (l) = x+ l, and

T̂ (l) |x′〉 = |x′ + l〉, and (6.152)

T̂ † (l)V (x) T̂ (l) = V (x+ l) = V (x) . (6.153)
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x

V(x)

0

l
b V

0

Kronig Penny Potential

Figure 6.7: The Kronig-Penny Model of periodic potential

Since the kinetic energy does not change under translation, the Hamiltonian does
not change under specific translation l, though it is not invariant under a general
translation y. Thus we have

T̂ † (l) ĤT̂ (l) = Ĥ. (6.154)

Since T̂ (l) is unitary, i.e. T̂ † (l) = T̂ (l)−1, we get

ĤT̂ (l) = T̂ (l) Ĥ, (6.155)

i.e. Ĥ commutes with T̂ (l) and they have simultaneous eigenfunctions. Since T̂ is
unitary but not Hermitian its eigenvalue is a complex number with modulus unity.
If the barrier height between lattice sites is infinity the particle in the lattice is
completely localized as there is no penetration or tunneling. The ground state in
such a potential is one where the particle is localized at the n-th site say, |n〉, which
is eigenstate of Ĥ belonging to the ground state energy E0, i.e.

Ĥ |n〉 = E0 |n〉. (6.156)

The particle wavefunction 〈x′|n〉 is finite only in the n-th site. Similar states localized
at other sites also has the same energy. (n is the designation of the site not of energy
level.) So there are infinite number of ground states n, where n varies from −∞ to
+∞. Since

T̂ (l) |n〉 = |n+ 1〉, (6.157)
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we observe that |n〉 is not an eigenstate of T̂ (l), though it commutes with Ĥ.
Thus there is an infinite-fold degeneracy and we have to construct the simultaneous
eigenket of Ĥ and T̂ (l) by taking a linear combination of all the degerate kets |n〉
with n varying from −∞ to +∞.

We define

|Ψ〉 =
+∞∑

n=−∞
einθ|n〉, (6.158)

where θ is a real parameter in the range −π ≤ θ ≤ +π. We now demand |Ψ〉 to be
simultaneous eigenket of Ĥ and T̂ (l):

Ĥ|Ψ〉 = E0

+∞∑
n=−∞

einθ|n〉 = E0|Ψ〉, (6.159)

T̂ (l) |Ψ〉 =
+∞∑

n=−∞
einθ|n+ 1〉

=
+∞∑

n=−∞
ei(n−1)θ|n〉 = e−iθ

+∞∑
n=−∞

einθ|n〉

= e−iθ|Ψ〉. (6.160)

Thus |Ψ〉 is so constructed that it is an eigenket of T̂ (l) with an eigenvalue which
is a complex number with modulus 1. |Ψ〉 is thus parametrized by a continuous
parameter θ.

In a real situation barriers between adjacent sites are not infinitely high and there
will be quantum tunneling and therefore there will be leakage of wavefunction into
neighbouring sites. In that case the Hamiltonian is not strictly diagonal although
we have 〈n|Ĥ|n〉 = E0 and all the diagonal elements are equal. One may then
assume nearest neighbour interaction used in solid state physics, which means that
one assumes that the non-diagonal elements of Ĥ are non-zero only for immediate
neighbours, i.e.

〈n′|Ĥ|n〉 �= 0, only for n′ = n, n± 1. (6.161)

We define

〈n± 1|Ĥ|n〉 = −Δ, (6.162)

which is independent of n because of translational symmetry of Ĥ. Since |n〉 and
|n′〉 are orthogonal when n �= n′, we get

Ĥ|n〉 = E0|n〉 −Δ|n+ 1〉 −Δ|n− 1〉. (6.163)
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|n〉 is no longer an eigenket of Ĥ.
We again construct a linear combination

|Ψ〉 =
+∞∑

n=−∞
einθ|n〉. (6.164)

|Ψ〉 is clearly an eigenket of T̂ (l). To see whether |Ψ〉 is an energy eigenket, we
operate Ĥ on it:

Ĥ|Ψ〉 =
+∞∑

n=−∞
einθĤ|n〉

= E0

+∞∑
n=−∞

einθ|n〉 −Δ
+∞∑

n=−∞
einθ|n+ 1〉 −Δ

+∞∑
n=−∞

einθ|n− 1〉

= E0

+∞∑
n=−∞

einθ|n〉 −Δ
+∞∑

n=−∞

(
e−iθ + e+iθ

)
einθ|n〉

= (E0 − 2Δ cos θ) |Ψ〉. (6.165)

The energy eigenvalue now depends on the continuous parameter θ. The degen-
eracy is thus lifted as Δ is finite and we have a continuous band of energy eigenvalues
between E0 − 2Δ and E0 + 2Δ.

The energy eigenvalue equation is independent of the detailed shape of the poten-
tial as long as the nearest neighbour approximation is valid. As a result of tunneling
the denumerably infinite fold degeneracy is now completely lifted and the allowed
energy values form a continuous band between E0±2Δ, known as the Brillouin zone.
In Fig. (6.8) we show schematically the formation of energy bands in the presence
of crystal potential.

E      2

0

0

Δ

Δ

Infinitely degenerate level
in the absence of 

crystal potential

Continuous Energy Band

in the presence of

crystal potential

E
0

E    + 2

Figure 6.8: Formation of energy band in the presence of crystal potential.
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Chapter 7

Rotation and Angular Momentum

7.1 Introduction

The angular momentum operator is closely related to rotation in space. The quan-
tum mechanical definition of angular momentum differs from the classical definition
r× p of angular momentum. This expression is not sufficiently general as it cannot
yield spin angular momentum which does not have a classical counterpart without
having any coordinate representation.

We would start from the rotation of vectors in three dimensional Euclidian space
and from analogy construct the quantum mechanical rotation operator that operates
on a system ket to rotate it in its ket space. The quantum mechanical angular
momentum can then be identified as generator of this rotation in the ket space.

7.2 Rotation in Three Dimension

We note that whereas rotations about the same axis commute but unlike transla-
tions, rotations about different axes do not.

We recapitulate the rotation of a vector v in three dimensions having cartesian
components vx, vy, vz. After rotation the new components v′x, v

′
y, v

′
z which are given

as a matrix equation:⎛
⎝ v′x

v′y
v′z

⎞
⎠ = R̂

⎛
⎝ vx

vy
vz

⎞
⎠ , (7.1)

where R̂ is a 3 × 3 real orthogonal matrix which operating on a column matrix
comprising of the old components vx, vy, vz transforms it to the new column of
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elements v′x, v
′
y, v

′
z. Since the length of the vector does not change, we have

v2x + v2y + v2z = v′x
2
+ v′y

2
+ v′z

2
,

and R̂R̂T = R̂T R̂ = Î . (7.2)

Specifically we consider a rotation of the vector v about z-axis by an angle φ.
We will follow the convention of active rotation when the vector (or analogously the
system ket) is rotated, unlike passive rotation when the coordinate axes are rotated
in opposite direction. Associating the motion of a right handed screw, a positive
rotation about z-axis means that the screw is advancing in the positive z-direction.
It can then easily be shown that⎛
⎝ v′x

v′y
v′z

⎞
⎠ =

⎛
⎝ cosφ − sinφ 0

sinφ cosφ 0
0 0 1

⎞
⎠
⎛
⎝ vx

vy
vz

⎞
⎠ . (7.3)

For an infinitesimal rotation δφ about z-axis, the matrix R̂z (δφ) is given by

R̂z (δφ) =

⎛
⎜⎝ 1− (δφ)2

2
−δφ 0

+δφ 1− (δφ)2

2
0

0 0 1

⎞
⎟⎠ . (7.4)

Similarly

R̂x (δφ) =

⎛
⎜⎝

1 0 0

0 1− (δφ)2

2
−δφ

0 +δφ 1− (δφ)2

2

⎞
⎟⎠ . (7.5)

and

R̂y (δφ) =

⎛
⎜⎜⎜⎝ 1− (δφ)2

2
0 +δφ

0 1 0

−δφ 0 1− (δφ)2

2

⎞
⎟⎟⎟⎠ . (7.6)

Problem 7.1 Calculate the product matrices R̂x (δφ) R̂y (δφ) and

R̂y (δφ) R̂x (δφ) and check the following:

R̂x (δφ) R̂y (δφ)− R̂y (δφ) R̂x (δφ) =

⎛
⎝ 0 − (δφ)2 0

(δφ)2 0
0 0 0

⎞
⎠ . (7.7)
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Thus the matrices R̂x (δφ) and R̂y (δφ) commute with each other, if terms of the
order of (δφ)2 or of higher order are neglected. Now since with terms up to order
(δφ)2

R̂z

(
(δφ)2

)
=

⎛
⎝ 1 − (δφ)2 0

+ (δφ)2 1 0
0 0 1

⎞
⎠ . (7.8)

we can write Eq. (7.7) as

R̂x (δφ) R̂y (δφ)− R̂y (δφ) R̂x (δφ) = R̂z

(
(δφ)2

)
− Î (7.9)

7.3 Rotation of System Kets

We shall now consider the rotation of a physical system in quantum mechanics. As
the physical system is affected by rotation, the ket vector representing the system
will transform accordingly. We introduce an operator D (R) corresponding to every
physical rotation R̂. Just as R̂ operates on a column vector to transform it to a new
column as in Eq. (7.1), so does D (R) on a ket vector |α〉 to transform it to another
ket |α〉R:

|α〉R = D (R) |α〉. (7.10)

To obtain the explicit form of D (R) we examine the properties of infinitesimal
rotation δφ in ket space. Just as in the case of infinitesimal translation dx′, the
unitary operator T̂ (dx′) = Î − ik̂ · dx′ was invoked in Eq. (3.25), we write

D (R) = Î − iK̂ · δφ. (7.11)

D (R) should be unitary, so that the normalization of |α〉 remains unchanged. Since
terms in Eq. (7.11) should be dimensionless, we define the angular momentum
operator Ĵ such that

K̂ =
Ĵ

�
. (7.12)

Ĵn is a vector operator corresponding to an infinitesimal rotation δφ about the n-th
axis. Thus

D (n̂δφ) = Î − i
Ĵ · n̂
�

δφ (7.13)

for a rotation δφ about the unit vector n̂.
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A finite rotation can thus be built up by compounding successive infinitesimal
rotations about the same axis. Thus

Dz (φ) = lim
N→∞

[
Î − iĴz

�

(
φ

N

)]N
(7.14)

= exp

[
− iĴzφ

�

]
(7.15)

The exponential form of the operator is equivalent to an infinite series

Dz (φ) = exp

[
− iĴzφ

�

]

= Î +
1

1!

(
−iĴzφ

�

)1

+
1

2!

(
−iĴzφ

�

)2

+
1

3!

(
−iĴzφ

�

)3

+ · · · . (7.16)

Thus for every rotation R̂ in the Euclidian space, we can identify a rotation
operator D (R) analogously in the relevant ket space. We extend this correspondence
of ket rotation with the vector rotations in Section 7.2 by postulating the same group
properties for D (R) as for R̂. Thus we have:

(i). Identity:

R̂ · Î = R̂ =⇒ D (R) · Î = D (R) . (7.17)

(ii). Closure:

R̂1R̂2 = R̂3 =⇒ D (R1)D (R2) = D (R3) . (7.18)

(iii). Inverse:

R̂R̂−1 = Î =⇒ D (R)D−1 (R) = Î , (7.19)

and R̂−1R̂ = Î =⇒ D−1 (R)D (R) = Î . (7.20)

(iv). Associativity:

R̂1

(
R̂2R̂3

)
=
(
R̂1R̂2

)
R̂3 = R̂1R̂2R̂3 =⇒ D (R1) [D (R2)D (R3)] =

[D (R1)D (R2)]D (R3) = D (R1)D (R2)D (R3) .

(7.21)
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Then extending this analogy to Eq. (7.9) and making use of Eq. ( 7.13) we obtain
up to terms quadratic in δφ[

Î − i
Ĵx
�

(δφ)− Ĵ2
x

2�2
(δφ)2 + · · ·

][
Î − i

Ĵy
�

(δφ)−
Ĵ2
y

2�2
(δφ)2 + · · ·

]

−
[
Î − i

Ĵy
�

(δφ)−
Ĵ2
y

2�2
(δφ)2 + · · ·

][
Î − i

Ĵx
�

(δφ)− Ĵ2
x

2�2
(δφ)2 + · · ·

]

= Î − i
Ĵz
�2

(δφ)2 − Î . (7.22)

Equating terms of the order of (δφ) and (δφ)2 separately, we get[
Ĵx, Ĵy

]
= i�Ĵz, (7.23)

as the terms of the order of (δφ) cancel out. In general we have[
Ĵi, Ĵj

]
= i�εijkĴk, (7.24)

where Ĵi, Ĵj, Ĵk are the Cartesian components of Ĵ and εijk is the permutation
symbol defined by

εijk =

⎧⎨
⎩

+1 if i, j, k is an even permutation of 1, 2, 3
−1 if i, j, k is an odd permutation of 1, 2, 3
0 if any two indices are equal

. (7.25)

7.4 Eigenvalue and Eigenvectors of Angular Mo-

mentum

We have defined the angular momentum Ĵi as the generator of infinitesimal rotation
about the i-th axis. We now define Ĵ2 as

Ĵ2 = ĴxĴx + ĴyĴy + ĴzĴz = Ĵ2
x + Ĵ2

y + Ĵ2
z . (7.26)

Problem 7.2 Use Eq. (7.24) and show that[
Ĵ2, Ĵk

]
= 0, k = 1, 2, 3. (7.27)



92 CHAPTER 7. ROTATION AND ANGULAR MOMENTUM

Since Ĵ2 commutes with each of Ĵx, Ĵy, Ĵz but Ĵx, Ĵy, Ĵz do not commute with

each other, we can choose Ĵ2 and Ĵz and find their common eigenkets

Ĵ2|a, b〉 = a|a, b〉, (7.28)

Ĵz|a, b〉 = b|a, b〉. (7.29)

We now define the ladder operators

Ĵ± = Ĵx ± iĴy. (7.30)

Evidently Ĵ± are not Hermitian.

Problem 7.3 Show that[
Ĵ+, Ĵ−

]
= 2�Ĵz, (7.31)

Ĵ±Ĵ∓ = Ĵ2 − Ĵ2
z ± �Ĵz, (7.32)

and
[
Ĵz, Ĵ±

]
= ±�Ĵ±. (7.33)

Now we have from Eq. (7.33)

ĴzĴ+|a, b〉 = Ĵ+Ĵz|a, b〉+ �Ĵ+|a, b〉
= bĴ+|a, b〉+ �Ĵ+|a, b〉
= (b+ �) Ĵ+|a, b〉. (7.34)

Similarly

ĴzĴ−|a, b〉 = (b− �) Ĵ−|a, b〉. (7.35)

Thus Ĵ±|a, b〉 are the eigenkets of Ĵz belonging to eigenvalues (b± �). In other words
Ĵ+ (Ĵ−) raises (lowers) the eigenvalue b by �, without changing the eigenvalue a of

Ĵ2. Since Ĵ2 commutes with Ĵx and Ĵy we can write

Ĵ2
[
Ĵ±|a, b〉

]
= Ĵ±

[
Ĵ2|a, b〉

]
= a

[
Ĵ±|a, b〉

]
. (7.36)

Thus Ĵ±|a, b〉 is the simultaneous eigenket of Ĵ2 and Ĵz with eigenvalues of a and
b± � respectively. We thus have

Ĵ±|a, b〉 ∝ |a, b± �〉 = N±|a, b± �〉. (7.37)

N± is the normalization constant.
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Since Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z and because the expectation values of the squares of

Hermitian operators must be positive or zero, we have

〈Ĵ2〉 = 〈Ĵ2
x〉+ 〈Ĵ2

y 〉+ 〈Ĵ2
z 〉,

and 〈Ĵ2〉 ≥ 〈Ĵ2
z 〉,

so a ≥ b2. (7.38)

If we operate Ĵ+ on any eigenket |a, b〉 of Ĵ2 and Ĵz successively n times then we

shall get another eigenket of Ĵ2 and Ĵz with the eigenvalue of Ĵz increased by n�
but the eigenvalue of Ĵ2 remaining unchanged. But because of the inequality Eq.
(7.38) there exists an upper limit to the eigenvalue b of Ĵz, designated as bmax such
that

Ĵ+|a, bmax〉 = 0, (7.39)

Ĵ−Ĵ+|a, bmax〉 = 0. (7.40)

Since

Ĵ−Ĵ+ = Ĵ2
x + Ĵ2

y − i
(
ĴyĴx − ĴxĴy

)
= Ĵ2 − Ĵ2

z − �Ĵz, (7.41)

we have(
Ĵ2 − Ĵ2

z − �Ĵz

)
|a, bmax〉 = 0,

a− b2max − �bmax = 0. (7.42)

Similarly from the same argument there is a lower limit bmin of b such that

Ĵ−|a, bmin〉 = 0,

Ĵ+Ĵ−|a, bmin〉 = 0. (7.43)

and since

Ĵ+Ĵ− = Ĵ2 − Ĵ2
z + �Ĵz, (7.44)

we get from Eq. (7.43)

a− b2min + �bmin = 0, (7.45)

and from Eq. (7.42) and Eq. (7.45) we have

(bmax + bmin) (bmax − bmin + �) = 0. (7.46)

The equality Eq. (7.46) is satisfied for

bmax = − bmin; (7.47)
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the other solution is not physically admissible.
Thus

−bmax ≤ b ≤ bmax. (7.48)

It is then possible to attain the eigenstate |a, bmax〉 starting from |a,−bmax〉 by suc-
cessively applying Ĵ+ on |a,−bmax〉 say n times and we have

bmax = −bmax + n�, or

bmax =
n

2
�, n = 1, 2, · · · . (7.49)

Putting j = n/2,

bmax = j�, j =
1

2
, 1,

3

2
, 2, · · · , integers or half odd integers. (7.50)

From Eq. (7.42) we get

a = bmax (bmax + �) = j (j + 1) �2. (7.51)

Since −bmax ≤ b ≤ bmax we can define m such that

b = m� (7.52)

It then follows that the allowed values of m for a given value of j are

m = − j, − j + 1, · · · , j − 1, j, (7.53)

which are 2j + 1 in number. In other words for a given value of total angular
momentum quantum number j there are 2j + 1 m-states for Ĵz. The eigenvalue
equations for Ĵ2 and Ĵz are

Ĵ2|j,m〉 = j (j + 1) �2|j,m〉, (7.54)

j =
1

2
, 1,

3

2
, 2, · · · ,

Ĵz|j,m〉 = m�|j,m〉, (7.55)

m = −j, − j + 1, · · · , j + 1, j .
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7.5 Matrix Representation of Angular Momen-

tum Operator

The simultaneous eigenkets |j,m〉 of Ĵ2 and Ĵz form a orthonormal and complete
set of states and can be used as basis vectors to obtain the matrix representation of
angular momentum operators. Obviously Ĵ2 and Ĵz are diagonal in this representa-
tion:

〈j′,m′|Ĵ2|j,m〉 = j (j + 1) �2δj,j′δm,m′ , (7.56)

〈j′,m′|Ĵz|j,m〉 = m�δj,j′δm,m′ , (7.57)

To obtain matrices for Ĵx and Ĵy we use

Ĵ± = Ĵx ± iĴy.

We have from Eq. (7.37)

Ĵ±|j,m〉 = N±|j,m± 1〉, (7.58)

where N± are the normalization constants and we have

|N±|2 = 〈j,m|Ĵ †
±Ĵ±|j,m〉 (7.59)

= 〈j,m|Ĵ∓Ĵ±|j,m〉 (7.60)

= 〈j,m|
(
Ĵ2 − Ĵ2

z ∓ �Ĵz

)
|j,m〉 (7.61)

= [j (j + 1)−m (m± 1)] �2. (7.62)

N± =
√
j (j + 1)−m (m± 1)�. (7.63)

Thus

〈j′,m′|Ĵ±|j,m〉 =
√
j (j + 1)−m (m± 1)�δj′,jδm′,m±1. (7.64)

In other words(
Ĵ+

)
j′,m′;j.m

=
√

j (j + 1)−m (m+ 1)�δj′,jδm′,m+1, (7.65)(
Ĵ−
)
j′,m′;j.m

=
√

j (j + 1)−m (m− 1)�δj′,jδm′,m−1. (7.66)

And we have

Ĵx =
1

2

[
Ĵ+ + Ĵ−

]
, (7.67)

Ĵy =
1

2i

[
Ĵ+ − Ĵ−

]
. (7.68)
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We can now study the matrix elements of the rotation operator D (R). For a
rotation R̂ specified by n̂ and φ, the matrix elements can be defined by

Dj
m′,m (R) = 〈j,m′| exp

[
−i

Ĵ · n̂
�

φ

]
|j,m〉. (7.69)

These are sometimes called Wigner functions after E.P.Wigner whose contributions
to the group theoretical properties of rotations in quantum mechanics are pioneer-
ing. We notice that the matrix elements in Eq. (7.69) is diagonal in the quantum

number j. This is because D (R) |j,m〉 is still an eigenket of Ĵ2 with the eigenvalue
j (j + 1) �2:

Ĵ2 [D (R) |j,m〉] = D (R) Ĵ2|j,m〉 = j (j + 1) �2 [D (R) |j,m〉] . (7.70)

This is so because Ĵ2 commutes all Ĵk (and therefore with any function of Ĵk). In
other words rotations cannot change the total angular momentum quantum number
j, only the projection quantum numbers change.

The (2j + 1)×(2j + 1) matrixDj
m′,m (R) is referred to as the (2j + 1) dimensional

irreducible reprentation of the rotation operator D (R).

It is evident that matrices of Ĵx, Ĵy, Ĵz, Ĵ+, Ĵ− and Ĵ2 are all diaginal in the
quantum number j. We can thus construct an infinite number of representations
for these matrices corresponding to the values of j = 1

2
, 1, 3

2
, · · · and having

(2j + 1) columns and rows labelled by the values of m and m′ respectively. All these
representations can be taken together to form one single representation of infinite
rank with finite dimensional blocks for each j at the diagonal position.

7.6 Orbital Angular Momentum

In classical mechanics a particle with linear momentum p having a position coordi-
nate r has an angular momentum L about the origin

L = r× p, (7.71)

with Cartesian components

Lx = ypz − zpy, (7.72)

Ly = zpx − xpz, (7.73)

Lx = xpy − ypx. (7.74)

Since the quantum angular momentum is defined by the commutation relations
Eq. (7.24), it is pertinent to verify that Eq. (7.72), Eq. (7.73) and Eq. (7.74) satisfy
the same.

Rj .
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Problem 7.4 Use the fundamental commutation relations between p̂i and x̂j

in Eq. (3.48) to show

(i).
[
L̂i, L̂j

]
= i�εijkL̂k. (7.75)

(ii). From the relation L̂2 = L̂2
x + L̂2

y + L̂2
z, show that

[
L̂2, L̂i

]
= 0. where i = 1, 2, 3 (i.e. x, y, z). (7.76)

EIGENVALUES AND EIGENFUNCTIONS OF L̂z and L̂2.

We have

L̂z = x̂p̂y − ŷp̂x. (7.77)

We would work out in coordinate representation for p̂x and p̂y. We thus have

L̂z = − i�

(
x
∂

∂y
− y

∂

∂x

)
. (7.78)

Since

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

we may transform to spherical polar coordinates.

Problem 7.5 Use the inverse transformations

r2 = x2 + y2 + z2,

cos θ =
y

r
=

y√
x2 + y2 + z2

,

tanφ =
y

x

and obtain the following relations

(i). L̂z = i�
∂

∂φ
, (7.79)

(ii). L̂x = i�

[
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

]
, (7.80)



98 CHAPTER 7. ROTATION AND ANGULAR MOMENTUM

(iii). L̂y = i�

[
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

]
, (7.81)

(iv). and hence

L̂2 = − �
2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

(
∂

∂φ

)2
]
. (7.82)

[You may use the following relationships.]

∂r

∂z
= cos θ,

∂r

∂y
= sin θ sinφ,

∂r

∂x
= sin θ cosφ,

∂θ

∂z
= − sin θ

r
,

∂θ

∂y
=

cos θ sinφ

r
,

∂θ

∂x
=

cos θ cosφ

r
,

∂φ

∂z
= 0,

∂φ

∂y
=

cosφ

r sin θ
,

∂φ

∂x
= − sinφ

r sin θ
.

Since L̂z = i� ∂
∂φ
, the eigenvalue equation becomes

i�
∂

∂φ
Φ (φ) = lzΦ (φ) , (7.83)

where the azimuthal angle φ lies between 0 and 2π, i.e. 0 ≤ φ ≤ 2π and lz is the
eigenvalue.

The solution of Eq. (7.83) is

Φ (φ) = N · exp
(
ilzφ

�

)
(7.84)

Since Φ is to be a single valued function of φ and Φ (φ) = Φ (φ+ 2π) i.e.

exp

(
ilzφ

�

)
= exp

(
ilz (φ+ 2π)

�

)
,

so lz = m�, m = 0, ± 1, ± 2, · · · ,

Φm (φ) = N exp (imφ) , (7.85)

and |N |2
∫ 2π

0

Φ∗
m (φ) Φm (φ) dφ = 1, (7.86)

will give

|N |2 =
1

2π
.

∴ Φm (φ) =
1√
2π

exp (imφ) ,with m = 0, ± 1, ± 2, · · · . (7.87)
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The eigenvalue equation for L̂2 is given by

−�
2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

(
∂

∂φ

)2

+
L2

�2

]
Ψ(θ, φ) = 0, (7.88)

where L2 is the eigenvalue of L̂2.
We compare this with the one satisfied by the Spherical Harmonics Yl,m (θ, φ):[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

(
∂

∂φ

)2

+ l (l + 1)

]
Yl,m (θ, φ) = 0, (7.89)

where l = 0, 1, 2, · · · ; and |m| = 0, 1, 2, · · · , l.

Thus the two equations become identical if the eigenvalue L2 is set equal to

L2 = l (l + 1) �2. (7.90)

The explicit dependence of the Spherical harmonics on θ and φ for positive values
of m is given as

Yl,m (θ, φ) = Θl,m (θ)
1√
2π

exp (imφ) . (7.91)

The real valued function Θl,m can be expressed as

Θl,m (θ, φ) = (−1)m

√
(2l + 1) (l −m)!

2 (l +m)!
(sin θ)m

(
d

d cos θ

)m

Pl (cos θ)

(7.92)

where Pl (cos θ) =
1

l!

(
d

d cos θ

)l (
cos2 θ − 1

)l
(7.93)

are called the Legendre polynomials.
Spherical harmonics for the negative m = −l, − (l − 1) , · · · , − 2, − 1 are

defined by the condition

Yl,−m (θ, φ) = (−1)m Y ∗
l,m (θ, φ) . (7.94)

This particular phase of the Spherical Harmonics is called Condon-Shortley phase.
With this phase the expression of the orthonormalized Spherical Harmonics is

Yl,m (θ, φ) = (−1)
m
2
+

|m|
2

√[
2l + 1

4π

(l − |m|)!
(l + |m|)!

]
eimφ sin|m| θ

2ll!
×

(
d

d cos θ

)l+|m| (
cos2 θ − 1

)l
. (7.95)
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Since Yl,m (θ, φ) is the simultaneous eigenfunction of L̂z = −i� ∂
∂φ

and L̂2 and it is
evident that

L̂z Yl,m (θ, φ) = m� Yl,m (θ, φ) , with m = −l,−l + 1, · · · , l − 1, l,

(7.96)

L̂2 Yl,m (θ, φ) = l (l + 1) �2 Yl,m (θ, φ) , with l = 0, 1, 2, · · · , (7.97)

The Spherical harmonics are orthogonal and normalized eigenfunctions of the
commuting observables L̂z and L̂2 with orthonormality conditions∫ θ=π

θ=0

∫ φ=2π

φ=0

Y ∗
l,m (θ, φ)Yl′,m′ (θ, φ) sin θ dθdφ = δl,l′δm.m′ . (7.98)

The first few spherical harmonics are given in Table (7.1)

Table 7.1: Tables of Spherical Harmonics for l = 0, 1, 2.

Y0,0 =

√
1

4π
; (7.99)

Y1,±1 = ∓
√

3

8π
sin θ exp (±iφ) ; (7.100)

Y1,0 =

√
3

4π
cos θ; (7.101)

Y2,±2 =
1

4

√
15

2π
sin2 θ exp (±2iφ) ; (7.102)

Y2,±1 = ∓
√

15

8π
sin θ cos θ exp (±iφ) ; (7.103)

Y2,0 =

√
5

4π

(
3

2
cos2 θ − 1

2

)
. (7.104)



Chapter 8

Spin Angular Momentum

Early evidences show that elementary particles like electrons possess an intrinsic
degree of freedom which is akin to angular momentum but has no classical descrip-
tion like orbital angular momentum. This is termed spin and is denoted by s. O.
Stern and W. Gerlach demonstrated in 1922 that electron has a spin 1/2. We shall
consider this landmark experiment in the next section.

8.1 The Stern Gerlach Experiment

The Stern Gerlach experiment originally conceived by O. Stern and carried out in
collaboration with W. Gerlach, illustrates in a striking manner the necessity for a
radical departure from the concepts of classical mechanics and firmly established the
quantum nature of spin. In a sense the two-state spin 1

2
system is the least classical,

most quantum system and is often cited for its simplicity and clarity.
A schematic diagram is given in Fig. (8.1).
A beam of paramagnetic silver atom Ag47 is produced in an oven and collimated

by allowing the beam to go through a collimator. The beam is then subjected to
an inhomogeneous magnetic field by a properly shaped magnetic pole pieces. After
passing through the magnetic field the beam goes to the detector.

A silver atom is composed of 47 electrons and the nucleus. 46 of these electrons
form a spherically symmetric charge distribution having no angular momentum. The
47-th electron is a 5S electron according to spectroscopic notation having orbital
angular momentum l = 0. Thus ignoring the nuclear spin, the atom has the angular
momentum l = 0. For a magnetic field in the z-direction we would expect classically
to see a continuous distribution on the detector screen about the undeflected direc-
tion z = 0. In case of a 5S electron, no splitting should occur and there should be
one spot on the screen as is shown in Fig. (8.1) as ‘Expected from Classical Physics’.
In the experiment itself, the beam was split into two distinct components, described
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N

S

Oven Collimator

The Stern Gerlach Arrangement

Magnetic
Pole Pieces

Magnetic Field

Inhomogeneous

  Atomic   Beam

Actual Observation

Actual Observation

Expected from
Classical Physics

Detector

Figure 8.1: Schematic arrangement of Stern Gerlach Experiment.

as ‘Actual Observation’. To explain this, it was postulated that the electron, in
addition to the orbital angular momentum, possesses an intrinsic spin angular mo-
mentum, which can assume only the values +�/2 and−�/2 about an arbitrarily
chosen direction. The 47 electrons are attached to the nucleus which is very heavy
(about 2 × 105 times heavier than electron) and thus the atom as whole possesses
in Gaussian units a magnetic moment μS = gS

e
2mc

S. Here e = electronic charge
in e.s.u., m = electronic mass, c = the speed of light in vacuum, and for electron
gS = 2. The force on the electron passing through an inhomogeneous magnetic field
Bz along the z-direction is

F = −∇ (−μ ·B) ≈ μz
∂Bz

∂z
ẑ, (8.1)

ignoring the component of the magnetic field B in directions other than the z-
direction.

The beam is then expected to get split according to the values of μz. Thus the
SG apparatus ”measures” the z component of μ or equivalently the z-component of
spin S up to a proportionality factor.

The atoms coming out of the oven are randomly oriented. If the electrons were
like classical objects, we would expect all values of μz to be present between +|μ|
and −|μ|. This would have given a continuous bundle of beams coming out of
the apparatus as shown in the central position of the detector screen. Instead, we
observe that the beam coming out is split in two distinct components corresponding
to two possible values of the z-component of S: Sz up and Sz down which we call Sz↑
and Sz↓ respectively. Thus the SG experiment provides the evidence of the existence
of a spin degree of freedom of electron.
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8.2 Matrix Representation of Spin

Quantum mechanically we have already obtained the first non-trivial angular mo-
mentum quantum number j = 1

2
in § (7.4).

We shall use the the notation Ŝ for spin operator and Ŝz for its component in
place of Ĵ and Ĵz which are general notation for angular momentum defined by the
commutation relation Eq. (7.24). Similarly we shall use s in place of j and ms in
place of m. We can work out using the formalism developed in § (7.5) the matrix

forms for the various operators Ŝ
2
, Ŝz, Ŝ± accordingly for s = 1

2
. For s = 1

2
, we

have ms = +1
2
and ms = −1

2
, and accordingly the two eigenkets of Ŝ

2
and Ŝz are

|s = 1
2
,ms = +1

2
〉 and |s = 1

2
,ms = −1

2
〉. They are orthonormal column vectors.

|s = 1

2
,ms = +

1

2
〉 =

(
1
0

)
, and |s = 1

2
,ms = −1

2
〉 =

(
0
1

)
. (8.2)

Similar to Eq. (7.56) and Eq. (7.57) we now have

〈s′, s′m|Ŝ2|s, sm〉 = s (s+ 1) �2δs,s′δms,m′
s
,

〈s′,m′
s|Ŝz|s,ms〉 = ms�δs,s′δms,m′

s
,

From these we can construct the diagonal matrices for Ŝ2 and Ŝz in this basis and
obtain the matrices

Ŝ2 =
3

4
�
2

(
1 0
0 1

)
, and Ŝz =

1

2
�

(
1 0
0 −1

)
. (8.3)

Similarly from Eq. (7.65) Eq. (7.66) we can write

Ŝ+ = �

(
0 1
0 0

)
, (8.4)

Ŝ− = �

(
0 0
1 0

)
, (8.5)

It is then straightforward to obtain the matrices for

Ŝx =
1

2

(
Ŝ+ + Ŝ−

)
=

1

2
�

(
0 1
1 0

)
, (8.6)

Ŝy =
1

2i

(
Ŝ+ − Ŝ−

)
=

1

2
�

(
0 −i
i 0

)
, (8.7)
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8.3 Finite Rotations in Spin-12 Space

We have obtained the eigenvectors of Ŝ2 and Ŝz for spin 1
2
in the previous section.

The spin space is of demension 2 and the eigenkets |1
2
,+1

2
〉 and |1

2
,−1

2
〉 can be taken

as the basis kets. Any arbitrary ket in this space can be expressed as a superposition
of these two base kets. We designate the spin up ket by |+〉 and the spin doown by
|−〉. Then the completeness condition given by the identity operator according to
Eq. (1.35), which in this case is

|+〉〈+|+ |−〉〈−| = Î . (8.8)

Then

Ŝz = Ŝz [|+〉〈+|+ |−〉〈−|] implies

Ŝz =
1

2
� [|+〉〈+| − |−〉〈−|] . (8.9)

Problem 8.1 The state of a spin-1
2
particle is given by

|α〉 =
1

2
|+〉+

√
3

2
|−〉, where Sz|±〉 = ± �

2
|±〉.

(i). What is the probability that the particle has a spin −�

2
in the state |α〉?

(ii). Obtain the expectation value of Ŝz in the above state?

Problem 8.2 Show that the non-Hermitian matrices Ŝ+ and Ŝ− become

(i). Ŝ+ = �|+〉〈−|. (8.10)

(ii). Ŝ− = �|−〉〈+|. (8.11)

(iii). Using Eq. (8.10) and Eq. (8.11), show that

Ŝx =
1

2
� [|+〉〈−|+ |−〉〈+|] , (8.12)

Ŝy =
1

2i
� [|+〉〈−| − |−〉〈+|] , (8.13)

(iv). Also show that Ŝx and Ŝy are Hermitian.
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Ŝ+ and Ŝ− are the raising and lowering operators respectively that raises and lowers
the spin component by one unit of �.

We now consider a rotation of the ket |α〉 of a spin-1
2
system by a finite angle φ

about the z-axis. Then from Eq. (7.10)

|α〉R = Dz (φ) |α〉, with (8.14)

Dz (φ) = exp

(
−i

Ŝz

�
φ

)
. (8.15)

We now want to calculate how the expectation value of and operator, say Ŝx

changes due to this rotation.

〈α|Ŝx|α〉 → 〈α|Ŝx|α〉R
= 〈α|ei Ŝzφ

� Ŝxe
−i Ŝzφ

� |α〉. (8.16)

We can evaluate Eq. (8.16) in two ways.

(i). METHOD 1.
We use the expression Eq. (8.12) for Ŝx. Then

ei
Ŝzφ
� Ŝxe

−i Ŝzφ
� =

�

2
ei

Ŝzφ
� [|+〉〈−|+ |−〉〈+|] e−i Ŝzφ

�

=
�

2

[
e

iφ
2 |+〉〈−|e iφ

2 + e
−iφ
2 |−〉〈+|e−iφ

2

]
=

�

2
[(cosφ+ i sinφ) |+〉〈−|+ (cosφ− i sinφ) |−〉〈+|]

=
�

2
(cosφ [|+〉〈−|+ |−〉〈+|] + i sinφ [|+〉〈−| − |−〉〈+|])

= cosφŜx − sinφŜy. (8.17)

(ii). METHOD 2.
We can use Eq. (6.143), which follows from Baker-Campbell-Hausdorff lemma,
and get

ei
Ŝz
�
φŜxe

−i Ŝz
�
φ = Ŝx +

(
iφ

�

)[
Ŝz, Ŝx

]
+

1

2!

(
iφ

�

)2 [
Ŝz,
[
Ŝz, Ŝx

]]

+
1

3!

(
iφ

�

)3 [
Ŝz,
[
Ŝz,
[
Ŝz, Ŝx

]]]
+ · · ·

= cosφŜx − sinφŜy. (8.18)
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Thus

〈Ŝx〉 → 〈α|Ŝx|α〉R = cosφ〈Ŝx〉 − sinφ〈Ŝy〉, (8.19)

〈Ŝy〉 → 〈α|Ŝy|α〉R = sinφ〈Ŝx〉+ cosφ〈Ŝy〉, (8.20)

〈Ŝz〉 → 〈α|Ŝz|α〉R = 〈Ŝz〉. (8.21)

The expectation value of Ŝz remains unchanged as Ŝz commutes with Dz (φ).

Eq. (8.19), Eq. (8.20) and Eq. (8.21) show that the rotation operator Eq. (8.15)
when applied to the state ket rotates the expectation value of Ŝ around the z-axis
by an angle φ. The expectation values of the spin operators behave as if they were
classical vectors under rotation.

8.4 Pauli Two Component Spinor Formalism

The two component spinor formalism introduced by Pauli in 1926 make the manip-
ulations with the state kets of spin-1/2 system very convenient. We already know
how a ket (bra) can be represented by a column (row) matrix. One has only to
arrange the expansion coefficients in terms of a certain specified set of base kets into
a column (row) matrix. In the case of Spin = 1

2
, we have

|+〉 ⇒
(

1
0

)
≡ χ+ |−〉 ⇒

(
0
1

)
≡ χ−, (8.22)

〈+| ⇒
(
1 0

)
≡ χ†

+ 〈−| ⇒
(
0 1

)
≡ χ†

−. (8.23)

for the base kets and bras and an arbitrary ket |α〉 in this space is given by

|α〉 = |+〉〈+|α〉+ |−〉〈−|α〉 ⇒
(

〈+|α〉
〈−|α〉

)
, and (8.24)

〈α| = 〈α|+〉〈+|+ 〈α|−〉〈−| ⇒
(
〈α|+〉 〈α|−〉

)
. (8.25)

The column matrix Eq. (8.24) is referred to as a two component spinor and is
written as

χ =

(
〈+|α〉
〈−|α〉

)
=

(
C+

C−

)
= C+χ+ + C−χ−, (8.26)

where C+ and C− are in general complex numbers. Similarly we have

χ† =
(
〈α|+〉 〈α|−〉

)
=
(
C∗

+ C∗
−
)
. (8.27)
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The matrix elements 〈±|Ŝk|+〉 and 〈±|Ŝk|−〉 apart from a factor of �/2 are to be
equal to those of 2× 2 matrices σk, known as Pauli matrices

〈±|Ŝk|+〉 ≡ �

2
(σk)±,+ , 〈±|Ŝk|−〉 ≡ �

2
(σk)±,− . (8.28)

Then the expectation value 〈Ŝk〉 can be written as

〈Ŝk〉 = 〈α|Ŝk|α〉 =
∑

a1=+,−

∑
a2=+,−

〈α|a1〉〈a1|Ŝk|a2〉〈a2|α〉

=
�

2
χ†σkχ. (8.29)

From the matrices for Ŝz, Ŝx and Ŝy in Eq. (8.3), Eq. (8.6), Eq. (8.7) and Eq.
(8.28) we can write the Pauli Matrices as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (8.30)

where the subscripts 1, 2, 3 refer to x, y, z respectively.
The Pauli matrices σ1, σ2, σ3 satisfy the following

σ2
i = Î , (8.31)

σiσj + σjσi = 0 for i �= j, (8.32)

where the right hand side of Eq. (8.31) is a 2 × 2 identity matrix. These relations
are equivalent to the anticommutation relations

{σi, σj} = 2δi,j . (8.33)

Also we have

[σi, σj ] = 2iεijkσk, (8.34)

which is the commutation relation. Combining Eq. (8.33) and Eq. (8.34) we get
the set of relations

σ1σ2 = −σ2σ1 = iσ3, (8.35)

σ2σ3 = −σ3σ2 = iσ1, (8.36)

σ3σ1 = −σ1σ3 = iσ2. (8.37)

We further note that

σ†
i = σi, (8.38)

det σi = −1, (8.39)

Tr (σi) = 0. (8.40)
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Now consider σ · a where a is a vector in 3 dimensions:

σ · a =
∑
i

σiai =

(
a3 a1 − ia2

a1 + ia2 −a3

)
, (8.41)

which is thus a 2× 2 matrix. We now consider a very important identity

(σ · a) (σ · b) = a · b+ iσ · (a× b) . (8.42)

Problem 8.3 Use the commutation and the anticommutation relations Eq. (8.33)
and Eq. (8.34) and prove the identity Eq. (8.42).

For real components of a we get

(σ · a)2 = |a|2. (8.43)

Problem 8.4 Also from Eq. (8.43) show that

(σ · n̂)n =

{
Î for n = even

σ · n̂ for n = odd
(8.44)



Chapter 9

Addition of Angular Momenta

9.1 Addition of Two Angular Momenta Ĵ1 and Ĵ2

We shall treat the simplest addition problem, namely that of adding two commuting
angular momenta Ĵ1 and Ĵ2. Thus

Ĵ = Ĵ1 + Ĵ2, (9.1)

where J1 and Ĵ2 are any two angular momenta corresponding respectively to the
independent subsystems S1 and S2 or sets of dynamical variables 1 and 2.

|j1,m1〉 is the normalized simultaneous eigenvector of Ĵ2
1 and Ĵ1z and we have

Ĵ2
1 |j1,m1〉 = j1 (j1 + 1) �2|j1,m1〉, (9.2)

Ĵ1z|j1,m1〉 = m1�|j1,m1〉. (9.3)

Similarly for Ĵ2
2 and Ĵ2z we have

Ĵ2
2 |j2,m2〉 = j2 (j2 + 1) �2|j2,m2〉, (9.4)

Ĵ2z|j2,m2〉 = m2�|j2,m2〉. (9.5)

A normalized simultaneous eigenvector of Ĵ2
1 , Ĵ

2
2 , Ĵ1z and Ĵ2z belonging respec-

tively to the eigenvalues j1 (j1 + 1) �2, j2 (j2 + 1) �2, m1� and m2� is then given by
the direct product

|j1, j2;m1,m2〉 = |j1,m1〉|j2,m2〉. (9.6)

For a fixed value of j1, m1 can take one of the 2j1+1 values −j1, −j1+1, · · · , j1−
1, j1 and for a fixed value of j2 the 2j2 + 1 allowed values of m2 are −j2, − j2 +
1, · · · , j2 − 1, j2. Hence for given values of j1 and j2 there are (2j1 + 1) (2j2 + 1)
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direct products Eq. (9.6) which form a complete orthonormal set, i.e. a basis in the
product space of the combined system (1 + 2).

We rewrite Eq. (9.6) in a more instructive way by denoting ψj1,m1 (1) in-
stead of |j1,m1〉 and ψj2,m2 (2) instead of |j2,m2〉. Then the normalized simul-

taneous eigenfunctions of Ĵ2
1 , Ĵ2

2 , Ĵ1z and Ĵ2z corresponding to the eigenvalues
j1 (j1 + 1) �2, j2 (j2 + 1) �2, m1� and m2� are

ψj1,j2;m1,m2 (1, 2) = ψj1,m1 (1)ψj2,m2 (2) . (9.7)

Now

Ĵzψj1,j2;m1,m2 (1, 2) =
(
Ĵ1z + Ĵ2z

)
ψj1,m1 (1)ψj2,m2 (2)

=
[
Ĵ1zψj1,m1 (1)

]
ψj2,m2 (2) + ψj1,m1 (1)

[
Ĵ2zψj2,m2 (2)

]
= m1�ψj1,m1 (1)ψj2,m2 (2) +m2�ψj1,m1 (1)ψj2,m2 (2)

= (m1 +m2) �ψj1,j2;m1,m2 (1, 2) , (9.8)

which shows that ψj1,j2;m1,m2 (1, 2) is also an eigenfunction of Ĵz corresponding to
the eigenvalue (m1 +m2) �. In abstract notation

Ĵz|j1, j2;m1,m2〉 = (m1 +m2) �|j1, j2;m1,m2〉. (9.9)

Now we consider the operator Ĵ2

Ĵ2 =
(
Ĵ1 + Ĵ2

)2
= Ĵ2

1 + Ĵ2
2 + Ĵ1 · Ĵ2 + Ĵ2 · Ĵ1

= Ĵ2
1 + Ĵ2

2 + 2Ĵ1 · Ĵ2. (9.10)

Since all the components of Ĵ1 commute with all those of Ĵ2 and

Ĵ1 · Ĵ2 = Ĵ1xĴ2x + Ĵ1yĴ2y + Ĵ1zĴ2z. (9.11)

Because Ĵ1z does not commute with Ĵ1x and Ĵ1y, Ĵ2 does not commute with Ĵ1z.

Similarly Ĵ2 does not commute with Ĵ2z. Consequently the simultaneous eigenfunc-

tions of Ĵ2 and Ĵz are eigenfunctions of Ĵ2
1 and Ĵ2

2 but not in general of Ĵ1z and Ĵ2z.
Thus there are two complete but distinct descriptions of the system

(i). In term of the eigenfunctions of Ĵ2
1 , Ĵ2

2 , Ĵ1z and Ĵ2z, given by Eq. (9.7) or

(ii). In terms of of the eigenfunctions of Ĵ2
1 , Ĵ2

2 , Ĵ2 and Ĵz. This latter we denote
by the normalized wavefunctions φj,m

j1,j2
(1, 2), and we have

Ĵ2φj,m
j1,j2

(1, 2) = j (j + 1) �2φj,m
j1,j2

(1, 2) , and (9.12)

Ĵzφ
j,m
j1,j2

(1, 2) = m�φj,m
j1,j2

(1, 2) . (9.13)
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Like the functions ψj1,j2;m1.m2 (1, 2) the functions φj,m
j1,j2

(1, 2) form a complete
orthonormal set and are another basis in the product space of the system (1 + 2).
These two basis sets are related by a unitary transformation which we discussed in
§ (2.2). Since the identity operator is defined by

Î =
∑

m1,m2

|j1, j2;m1,m2〉〈j1, j2;m1,m2|, (9.14)

∴ |j1, j2; j,m〉 =
∑

m1,m2

|j1, j2;m1,m2〉〈j1, j2;m1,m2|j1, j2; j,m〉, (9.15)

or φj,m
j1,j2

(1, 2) =
∑

m1,m2

〈j1, j2;m1,m2|j1, j2; j,m〉ψj1,j2;m1,m2 (1, 2) .

(9.16)

The elements of the transformation matrix 〈j1, j2;m1,m2|j1, j2; j,m〉 are the
Clebsch-Gordan coefficients or Vector Addition coefficients.

There are many important properties of Clebsch- Gordan coefficients (known in
short as C-G coefficients), that we are now ready to study.

First the coefficients vanish unless

m = m1 +m2. (9.17)

To prove this, we first note that(
Ĵz − Ĵ1z − Ĵ2z

)
|j1, j2; j,m〉 = 0. (9.18)

Multiplying this with 〈j1, j2;m1,m2| on the left, we obtain

(m−m1 −m2) 〈j1, j2;m1,m2|j1, j2; j,m〉 = 0, (9.19)

which proves our assertion. (The Dirac notation is admirably powerful!)
Second, the coefficients vanish unless

|j1 − j2| ≤ j ≤ j1 + j2. (9.20)

This property appears obvious from the vector model of angular momentum ad-
dition, where we may visualize J to be the vectorial sum of J1 and J2. It can
also be checked by showing that if Eq. (9.20) holds then the dimensionality of the
space spanned by {|j1, j2;m1,m2〉} is the same as that of the space spanned by
{|j1, j2; j,m〉}. For (m1,m2) way of counting we get

N = (2j1 + 1) (2j2 + 1) , (9.21)

because for given j1 there are (2j1 + 1) possible values of m1; similarly for a given
value of j2. As for (j,m) way of counting, we note that for each j, there are (2j + 1)
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m values and according to Eq. (9.20), j itself runs from j1 − j2 to j1 + j2, where we
have assumed without loss of generality, that j1 ≥ j2. We therefore obtain

N =

j1+j2∑
j=j1−j2

(2j + 1)

= 2

j1+j2∑
j=j1−j2

j +

j1+j2∑
j=j1−j2

1

= 2 · (2j2 + 1)
(
j1 + j2 + j1 − j2

)
2

+ (2j2 + 1)

= (2j1 + 1) (2j2 + 1) . (9.22)

Thus Eq. (9.20) is consistent. We thus have

j = |j1 − j2|, |j1 − j2|+ 1, · · · , j1 + j2 − 1, j1 + j2. (9.23)

The C-G coefficients form a unitary matrix whose matrix elements are taken
to be real by convention. An immediate consequence of this is that the inverse
coefficient 〈j1, j2; j,m|j1, j2;m1,m2〉 is the same as 〈j1, j2;m1,m2|j1, j2; j,m〉 itself.

A real unitary matrix is orthogonal, so we have the orthogonality condition∑
j

∑
m

〈j1, j2;m1,m2|j1, j2; j,m〉〈j1, j2;m′
1,m

′
2|j1, j2; j,m〉 = δm1,m′

1
δm2,m′

2
.(9.24)

Likewise∑
m1

∑
m2

〈j1, j2;m1,m2|j1, j2; j,m〉〈j1, j2;m1,m2|j1, j2; j′,m′〉 = δj,j′δm,m′ . (9.25)

As a special case of this we may set j′ = j, m′ = m = m1 +m2. We then obtain∑
m1

∑
m2

|〈j1, j2;m1,m2|j1, j2; j,m = m1 +m2〉|2 = 1, (9.26)

which is just the normalization condition of |j1, j2; j,m〉.
G. Racah gave an expression for the C-G coefficients which are very convenient

for actual calculations

〈j1, j2;m1,m2|j1, j2; j,m〉 = δm=m1+m2

√
(2j + 1) (j1 + j2 − j)! (j + j1 − j2)!

(j + j1 + j2 + 1)!
×

√
(j1 +m1)! (j1 −m1)! (j2 +m2)! (j2 −m2)!×√
(j +m)! (j −m)!

∑
s

(−1)s

s! (j1 + j2 − j − s)!
×
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1

(j1 −m1 − s)! (j − j2 +m1 + s)!
×

1

(j2 +m2 − s)! (j − j1 −m2 + s)!
. (9.27)

C-G coefficients can also be written in terms of Wigner 3− j symbols.
We give here the first two examples of the Clebsch-Gordan coefficients.

Table 9.1 Table of non-vanishing Clebsch-Gordan coefficients:
〈j1, 12 ;m1,m2|j1, 12 ; j,m = m1 +m2〉.

j ↓ m2 = +1
2

m2 = −1
2

j1 +
1
2

+
√

j1+m1+1
2j1+1

+
√

j1−m1+1
2j1+1

j1 − 1
2

-
√

j1−m1

2j1+1
+
√

j1+m1

2j1+1

Table 9.2 Table of non-vanishing Clebsch-Gordan coefficients:
〈j1, 1;m1,m2|j1, 1; j,m = m1 +m2〉.

j ↓ m2 = +1 m2 = 0 m2 = −1

j1 + 1 +
√

(j1+m1+1)(j1+m1+2)
(2j1+1)(2j1+2)

+
√

(j1−m1+1)(j1+m1+1)
(2j1+1)(j1+1)

+
√

(j1−m1+1)(j1−m1+2)
(2j1+1)(2j1+2)

j1 −
√

(j1+m1+1)(j1−m1)
2j1(j1+1)

+ m1√
j1(j1+1)

+
√

(j1−m1+1)(j1+m1)
2j1(j1+1)

j1 − 1 +
√

(j1−m1−1)(j1−m1)
2j1(2j1+1)

−
√

(j1−m1)(j1+m1)
j1(2j1+1)

+
√

(j1+m1)(j1+m1−1)
2j1(2j1+1)

9.2 Addition of Orbital Angular Momentum and

Spin of a Particle

As a first example, we consider a particle of spin s. Let L̂ be the orbital angular
mpmentum operator and Ŝ its spin operator. The total angular operator of the
particle is therefore Ĵ = L̂+ Ŝ. We denote by ml, ms and m the quantum numbers
corresponding to the operators L̂z, Ŝz and Ĵz respectively. In the position represen-
tation the simultaneous eigenfunctions of the operators L̂2 and L̂z are the Spherical
Harmonics Yl,ml

(θ, φ), with l = 0, 1, 2, · · · and ml = −l, − l + 1, · · · , l− 1, l.

The simultaneous eigenfunctions of the operators Ŝ2 and Ŝz are the spin functions
χs,ms

(with ms = −s, −s+1, · · · , s−1, s) which is represented by column matri-

9.2. ADDITION OF ORBITAL ANGULARMOMENTUMAND SPIN OF A PARTICLE113



114 CHAPTER 9. ADDITION OF ANGULAR MOMENTA

ces with (2s+ 1) rows with zeroes in all rows except one. Hence the simultaneous

eigenfunctions of the operators L̂2, Ŝ2, L̂z and Ŝz are represented by the product

ψl,s;ml,ms
= Yl,ml

(θ, φ)χs,ms
. (9.28)

The allowed values of the total angular momentum quantum number j of the particle
are

j = |l − s|, |l − s|+ 1, · · · , l + s− 1, l + s. (9.29)

Denoting the simultaneous normalized eigenfunctions of the operators L̂2, Ŝ2, Ĵ2

and Ĵz by Yj,m
l,s we see that

Yj,m
l,s =

∑
ml,ms

〈l, s;ml.ms|l, s; j,m〉ψl,s;ml,ms

=
∑
ml,ms

〈l, s;ml.ms|l, s; j,m〉Yl,ml
(θ, φ)χs,ms

(9.30)

For a particle of spin s = 1
2
we see from Eq. (9.29) that for a given value of

the orbital angular momentum quantum number l the total angular momentum
quantum number j can take values

j = l − 1

2
, l +

1

2
, (9.31)

except when l = 0 (S state) in which case the only allowed value is j = 1
2
. By using

the C-G coefficients in Table (9.1) we can write

Y l± 1
2
,m

l, 1
2

=

⎛
⎜⎜⎝

±
√

l±m+ 1
2

2l+1
Yl,m− 1

2
(θ, φ)

√
l∓m+ 1

2

2l+1
Yl,m+ 1

2
(θ, φ)

⎞
⎟⎟⎠ . (9.32)

9.3 Addition of Two Spins

The second example we consider is that of two particles whose spin operators are
Ŝ1 and Ŝ2 respectively. Then

Ŝ = Ŝ1 + Ŝ2, (9.33)

where Ŝ is the total spin angular momentum. If the two particles have spin 1
2
each,

then the combined spin space has 4 dimensions. The simultaneous eigenfunctions

of the operators Ŝ2
1 and Ŝ1z for the particle 1 are two basic spinors α (1) and β (1)
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corresponding respectively to ‘spin up’ (ms1 = +1
2
) and ‘spin down’ (ms1 = −1

2
) for

that particle. Similarly the eigenfunctions of Ŝ2
2 and Ŝ2z for particle 2 are the two

basic spinors α (2) and β (2) corresponding respectively to ‘spin up’ (ms2 = +1
2
) and

‘spin down’ (ms2 = −1
2
) for the second particle. The direct product eigenfunctions

ψj1,j2;m1,m2 (1, 2) are therefore in the present case the four spin functions

α (1)α (2) , α (1) β (2) , β (1)α (1) , β (1) β (2) , (9.34)

which constitute a basis in the four dimensional system. If we denote by Ms�

the eigenvalues of the operator Ŝz, we see that Ms = ms1 + ms2 , so that the four
eigenfunctions Eq. (9.34) correspond respectively to the values Ms = 1, 0, 0, − 1.
The allowed values of the total spin quantum number S are given from Eq. (9.23)

S = 0, 1. (9.35)

If we denote by χS,MS
the simultaneous normalized eigenfunctions of Ŝ2

1 , Ŝ
2
2 , Ŝ

2

and Ŝz are given by Eq. (9.15) and Eq. (9.34), for S = 0

χ0,0 =
1√
2
[α (1) β (2)− β (1)α (2)] , (9.36)

which is called singlet spin state. This has been constructed so that it is antisym-
metric in the interchange of the spin coordinates of the two particles. For S = 1,
we have

χ1,1 = α (1)α (2) , (9.37)

χ1,0 =
1√
2
[α (1) β (2) + β (1)α (2)] , (9.38)

χ1,−1 = β (1) β (2) . (9.39)

These are said to form a spin triplet state. These three states, which are symmetric
in the interchange of the spin coordinates of the two particles, are eigenstates of Ŝz

corresponding respectively to the values of MS = +1, 0, − 1.
For an example, the lowest state of the helium atom which contains two electrons

is a singlet state (S = 0) while the excited states can be either singlet or triplet states.
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Chapter 10

Applications II

In this chapter we would consider motion in three dimensions. In § (10.1) we would
study Hydrogen Atom. And in the next section we would consider motion of a
charged particle in magnetic field, including Landau Levels and Aharonov Bohm
Effect.

10.1 Hydrogen Atom

As an example of three dimensional problem we consider the hydrogen atom con-
taining an electron of charge −e interacting with a point nucleus of charge +Ze by
means of Coulomb potential

V (r) = − Ze2

r
, (10.1)

where r is the distance between the two particles. We denote the electronic mass
by m and the mass of the nucleus by M . It is convenient to use the centre of mass
coordinate system as the potential is a function of the relative coordinate. The
relative motion of the two particles is described by the Hamiltonian

H =
p2

2μ
− Ze2

r
(10.2)

in the centre of mass system (where the total momentum P of the atom equals
zero), where p is the relative momentum and μ = mM

m+M
is the reduced mass. The

Schrödinger equation is given by[
− �

2

2μ
∇

2 − Ze2

r

]
ψ (r) = Eψ (r) . (10.3)
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We separate the solution of Eq. (10.3) in radial and angular parts

ψ (r, θ, φ) = RE,l (r)Yl,m (θ, φ) (10.4)

=
uE,l (r)

r
Yl,m (θ, φ)

where uE,l (r) → 0 as r → 0. We have

d2uE,l (r)

dr2
+

2μ

�2

[
E +

Ze2

r
− l (l + 1) �2

2μr2

]
uE,l (r) = 0, (10.5)

or
d2uE,l (r)

dr2
+

2μ

�2
[E − Veff ] uE,l (r) = 0, (10.6)

where

Veff (r) = − Ze2

r
+

l (l + 1) �2

2μr2
. (10.7)

Since Veff → 0 at r → ∞, the solution uE,l (r) for positive energy is oscillatory at
infinity and will be acceptable eigenfunction. We shall have a continuous spectrum
for E > 0 for unbound scattering states. These states are important in the analysis
of collision phenomenon between electrons and ions.

Now the solution to the Eq. (10.3) has to satisfy certain boundary conditions
relevant to the physical situation.

If for exampe E < limr→∞ V (r) then the appropriate boundary condition in this
case is

ψ (r) → 0, as r → ∞. (10.8)

This means that the particle is bounded or is localized within a finite region of
space. From the theory of partial differential equations we know that the Eq. (10.3)
subject to the boundary condition Eq. (10.8) will allow non-trivial solutions only
for a discrete set of values of E. Thus the energy levels are quantized because of
the boundary condition uE.l (0) = 0, because RE,l (r) has to be finite at every point
including at the origin. We introduce the dimensionless variable

ρ =

√
8μ|E|
�2

r, (10.9)

and dimensionless energy

λ =

(
Ze2

�

)√
μ

2|E|

= Zα

√
μc2

2|E| , (10.10)

where α =
e2

�c
≈ 1

137
(10.11)
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is the fine structure constant. With these transformations we get[
d2

dρ2
− l (l + 1)

ρ2
+

λ

ρ
− 1

4

]
uE,l (ρ) = 0. (10.12)

To obtain the solution we first consider the asymptotic region ρ → 0. We can expand
the solution uE,l (ρ) in the vicinity of the origin as

uE,l (ρ) = ρs
∞∑
k=0

ckρ
k, c0 �= 0. (10.13)

Substituting Eq. (10.13) in Eq. (10.12) and equating the coefficient of the lowest
power of ρ to zero, we get the indicial equation

s (s− 1)− l (l + 1) = 0, (10.14)

so s = l + 1, or − l.

The solution s = −l does not give the right behaviour as ρ → 0. So we take s = l+1
and hence

uE,l ∼ ρl+1, as ρ → 0. (10.15)

Now for large ρ, the asymptotic equation is[
d2

dρ2
− 1

4

]
uE,l (ρ) = 0, (10.16)

as ρ → ∞, whose solutions are proportional to exp
(
±ρ

2

)
of which we retain exp

(
−ρ

2

)
.

Thus the solution is of the form

uE,l (ρ) = exp
(
−ρ

2

)
f (ρ) . (10.17)

Substituting Eq. (10.17) in Eq. (10.12) we see that f (ρ) satisfies[
d2

dρ2
− d

dρ
− l (l + 1)

ρ2
+

λ

ρ

]
f (ρ) = 0. (10.18)

We replace f (ρ) by g (ρ) such that

f (ρ) = ρl+1g (ρ) (10.19)

so that the correct boundary condition Eq. (10.15) for f (ρ) is satisfied as ρ → 0.
Then g (ρ) satisfies the following equation[
ρ
d2

dρ2
+ (2l + 2− ρ)

d

dρ
+ (λ− l − 1)

]
g (ρ) = 0. (10.20)
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Now we expand g (ρ) in an infinite series:

g (ρ) =
∞∑
k=0

Ckρ
k, C0 �= 0. (10.21)

We then have
∞∑
k=0

[
k (k − 1)Ckρ

k−1 + (2l + 2− ρ) kCkρ
k−1 + (λ− l − 1)Ckρ

k
]

= 0, or

∞∑
k=0

{[k (k + 1) + (2l + 2) (k + 1)]Ck+1 + (λ− l − 1− k)Ck} ρk = 0.

(10.22)

So the coefficients Ck must satisfy the recursion relation

Ck+1 =
(k + l + 1− λ)

(k + 1) (k + 2l + 2)
Ck. (10.23)

If the series Eq. (10.21) does not terminate then for large k

Ck+1

Ck

∼ 1

k
, (10.24)

a ratio which is the same as that of the series ρp exp (ρ) where p has a finite value.
In that case using Eq. (10.17) and Eq. (10.19) we deduce that uE,l (ρ) has large ρ
an asymptotic behaviour

lim
ρ→∞

uE,l (ρ) ∼ ρl+1+pe
ρ
2 , (10.25)

which is not acceptable, because it blows up as ρ → ∞.
The series Eq. (10.21) must therefore terminate, and g (ρ) must be a polynomial

in ρ. If the highest power of of ρ in g (ρ) be ρnr , where the radial quantum number
nr = 1, 2, · · · is a positive integer or zero, then the coefficient Cnr+1 = 0, and from
the recursion relation Eq. (10.23)

λ = nr + l + 1. (10.26)

Introducing the principal quantum number

n = nr + l + 1 (10.27)

which is a positive integer (n = 1, 2, · · · ) since both nr and l can assume positive
integral values or zero. Thus we see that the eigenvalue equation Eq. (10.12)
corresponding to the bound state energy spectrum (E < 0) are given by

λ = n. (10.28)
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Then fronm Eq. (10.10) we obtain the bound state energy eigenvalues

En = − μ

2�2
(Ze2)

n2
= − 1

2

(Ze)2

aμ

1

n2

= −1

2
μc2

(Zα)2

n2
, with n = 1, 2, · · · and (10.29)

α =
e2

�c
≈ 1

137
is the fine structure constant and

aμ =
�
2

μe2
=

m

μ
a0, (10.30)

where aμ is the modified Bohr radius for an atom of atomic number Z, and a0 is the
Bohr radius.

Thus the energy spectrum Eq. (10.29) agrees with the main feature of the ex-
perimental spectrum. This agreement is not perfect and various corrections like
fine structure due to relativistic effect and electron spin, Lamb shift and hyperfine
structure due to nuclear effects must be taken into acount in order to explain the
details of the experimental energy spectrum.

DEGENERACY.

Since the energy eigenvalues En depend only on the principal quantum number
n (Eq. (10.29)) they are degenerate with respect to the quantum numbers l and m.
Indeed, for each value of n the orbital quantum number l may take on the values
0, 1, · · · , n−1 and for each values of l the magnetic quantum number m may take
the (2l + 1) possible values −l, − l + 1, · · · , + l − 1, + l. The total degeneracy
of the bound state energy level En is given by

n−1∑
l=0

(2l + 1) = 2
n (n− 1)

2
+ n = n2. (10.31)

The (2l + 1)-fold degeneracy with respect to quantum number m is a feature for any
central potential, occurring because of rotational symmetry. On the other hand, the
degeneracy with respect to l is characteristic of the Coulomb potential and is called
accidental degeneracy.

WAVE FUNCTIONS OF THE DISCRETE SPECTRUM

The hydrogenic wave functions may be written as

ψn,l,m (r, θ, φ) = Rn,l (r)Yl,m (θ, φ) , where (10.32)

Rn,l (r) = Ne−
ρ
2ρlL2l+1

n+l (ρ) . (10.33)
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Here L2l+1
n+l (ρ) are the associated Laguerre polynomials. The normalization constant

may be found by using the generating function to evaluate the integral∫ ∞

0

e−ρρ2l
[
L2l+1
n+l (ρ)

]2
ρ2 dρ =

2n [(n+ l)!]3

(n− l − 1)!
. (10.34)

So the normalized radial functions for the bound states of Hydrogen atom are

Rn,l (r) = −
√(

2Z

naμ

)3
(n− l − 1)!

2n [(n+ l)!]3
e−

ρ
2ρlL2l+1

n+l (ρ) , with (10.35)

ρ =
2Z

naμ
r, and aμ =

�
2

μe2
. (10.36)
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Figure 10.1: Radial wavefunctions R1s (r) , R2s (r) , R2p (r) of Hydrogen.

The first three radial functions Eq. (10.35) are given by

R1,0 (r) = R1s (r) = 2

(
Z

aμ

) 3
2

exp

(
−Zr

aμ

)

R1,1 (r) = R1p (r) = 2

(
Z

2aμ

) 3
2
(
1− Zr

2aμ

)
exp

(
− Zr

2aμ

)

R1,1 (r) = R1p (r) =
1√
3

(
Z

2aμ

) 3
2
(
Zr

aμ

)
exp

(
−Zr

aμ

)
(10.37)
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and are shown in Fig. (10.1). Charge distribution within the atom is better depicted
by the functions |un,l (r) |2 from Eq. (10.4) connecting un,l (r) and Rn,l (r). These
charge distributions correspondining to the 3 radial functions of Eq. (10.37) are
shown in Fig. (10.2).
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l

2
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 0
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Figure 10.2: Charge Distributions |u1s (r) |2, |u2s (r) |2, |u2p (r) |2 of Hydrogen.

10.2 Charged Particle in Magnetic Field

(i) The Landau Levels

We consider the motion of an electron, for example in a uniform external magnetic
field B. The Hamiltonian is

Ĥ =
1

2m

(
p̂+

eA

c

)2

, (10.38)

where the electronic charge is −e. We work in Coulomb gauge also called Landau
gauge and take B = Bk̂, along te z-axis. We take

A =
(
−Byî, 0, 0

)
, (10.39)

so that ∇ ·A = 0. (Coulomb or Landau gauge.)
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Here A is the magnetic vector potential, p is the canonical momentum and
π = p+ eA

c
is the kinetic momentum. Then

Ĥ =
1

2m

[(
p̂x −

eBy

c

)2

+ p̂2y + p̂2z

]
. (10.40)

Since p̂x and p̂z commute with Ĥ, they are constants of motion:

dp̂x
dt

= 0 =
dp̂z
dt

and px and pz are c-numbers we can then write the wavefunction as

ψ (x, y, z) = eipxx/�eipzz/�φ (y) . (10.41)

Then φ (y) satisfies[
− �

2

2m

d2

dy2
+

1

2
mω2

c (y − y0)
2 − E ′

]
φ (y) = 0 (10.42)

ωc =
eB

mc
, is called the cyclotron frequency, (10.43)

E ′ = E − k2
z�

2

2m
, kz� = pz and y0 =

px
mω

.

Finally since for this one dimensional harmonic oscillator E ′ =
(
n+ 1

2

)
�ωc

En,kz =

(
n+

1

2

)
�ωc +

k2
z�

2

2m
. (10.44)

is the energy of the electron in magnetic field. These are called the Landau levels,
which are infinitely degenerate, since energy does not depend on px. In Fig. (10.3)
we have shown the formation of Landau levels.

The wave function ψ (x, y, z) is given in terms of the Hermite polynomials by

ψn,kz (x, y, z) ∝ e
i
�
(px+pzz)Hn (α (y − y0)) exp

[
−1

2
(α (y − y0))

2

]
,

(10.45)

where α =

√
mωc

�

has the dimension of the inverse of a length.
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Figure 10.3: Collapse of continuum bands into Landau levels,

(ii) The Aharanov Bohm Effect

In classical physics, only the electric and magnetic fields are of physical significance.
The vector and scalar potentials are convenient mathematical devices to calculate
the fields. The potentials can be redefined through a gauge transformation without
changing the fields and hence without changing any physical laws. The use of vector
potential in quantum mechanics has many far-reching consequences as was shown
by Aharonov and Bohm (1959, 1961).

We consider (see Fig. (10.4) a particle of charge e going above or below a
very long solenoid perpendicular to the plane of the paper carrying a current j and
is surrounded by an impenetrable cylinder. Inside the cylinder is a magnetic field
parallel to the axis of the cylinder, so the particle paths P1 and P2 enclose a magnetic
flux.

We use Feynman path integral method of calculating probability amplitude.
From classical mechanics the Lagrangian in the presence of magnetic field can be
obtained from that in the absence of the magnetic field denoted by L

(0)
cl as follows

L
(0)
cl =

m

2

(
dx

dt

)2

−→ L
(0)
cl +

e

c

dx

dt
·A. (10.46)

The corresponding change in action for some definite segment of path from (xn−1, tn−1)
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Figure 10.4: Arrangement for observing Aharonov-Bohm effect

to (xn, tn) is given by

S(0) (n, n− 1) −→ S(0) (n, n− 1) +
e

c

∫ tn

tn−1

dt
dx

dt
·A. (10.47)

Now∫ tn

tn−1

dt
dx

dt
·A =

∫ xn

xn−1

A · ds, (10.48)

where ds is the differential line element along the path segment. For the entire
contribution from x1 to xN we have the following change

N∏
2

exp

[
i
S(0) (n, n− 1)

�

]
−→

(
N∏
2

exp

[
i
S(0) (n, n− 1)

�

])
×

exp

(
i
e

�c

∫ xN

x1

A · ds
)
. (10.49)

Thus the path integral along Pi, (i = 1, 2) acquires an extra factor

exp

(
i
e

�c

∫
Pi

A · ds
)
. (10.50)

For the entire transition amplitude 〈xN , tN |x1, t1〉 (Eq. ( 5.25))∫
P1

D [x (t)] exp

[
i
S(0) (N, 1)

�

]
+

∫
P2

D [x (t)] exp

[
i
S(0) (N, 1)

�

]
−→
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∫
P1

D [x (t)] exp

[
i
S(0) (N, 1)

�

]
× exp

[(
i
e

�c

)∫ xN

x1

A · ds
]
P1

+

∫
P2

D [x (t)] exp

[
i
S(0) (N, 1)

�

]
× exp

[(
i
e

�c

)∫ xN

x1

A · ds
]
P2

. (10.51)

The probability being modulus squired of the entire transition amplitude and hence
depends on the phase difference between the contributions from the paths P1 and
P2. This phase difference due to the presence of B is then[( e

�c

)∫ xN

x1

A · ds
]
P1

−
[( e

�c

)∫ xN

x1

A · ds
]
P2

=
e

�c

∮
A · ds

=
e

�c
ΦB, (10.52)

where ΦB is the magnetic flux crossing the surface bounded by P1 and P2 and there is
a sinusoidal component in the probability for observing the particle on the detector
screen with a period equal to

2π�c

|e| = 4.135× 10−7 Gauss cm2. (10.53)

This effect is purely quantum mechanical.
This was first observed by R. G. Chambers in 1960 using magnetic one-domain

iron whiskers and also later by Tonomura et al. with the help of a superconducting
film using electron holography.
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Chapter 11

Symmetry in Quantum Mechanics

Symmetry is a quality attributed to the physical world that helps to simplify the
study of physical systems as such. Thus we have seen in the study of hydrogen
atom how symmetry consideration could reduce the number of meaningful variables
needed to describe it from seven (6 coordinates and time t) to one, simply from
symmetry considration.

11.1 Symmetry Principle and Conservation Laws

In this section we discuss the connection between symmetry principles and conser-
vation laws. We designate the infinitesimal symmetry operator by Ŝ which can be
written as

Ŝ = Î − i
ε

�
Ĝ, (11.1)

where the Hermitian operator Ĝ is the generator of the symmetry operation and
ε is the infinitesimal transformation being studied. If the Hamiltonian is invariant
under Ŝ then

ŜĤ = ĤŜ, (11.2)

and ĜĤ = ĤĜ (11.3)

or
dĜ

dt
= 0, (11.4)

from Heisenberg equation of motion. Thus Ĝ is a constant of motion. This means
that if Ĥ is invariant under translation (homogeneity of space) then linear mo-
mentum is a constant of motion. Similarly, the angular momentum is conserved
if the Hamiltonian is rotationally invariant (isotropy of space). These are geomet-
rical symmetries and finite operation can be achieved by successive infinitesimal
transformations.
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(i) Symmetry and Degeneracy

If some symmetry operator Ŝ commute with the Hamiltonian Ĥ they have common
eigenket.[

Ĥ, Ŝ
]

= 0. (11.5)

If |n〉 is an eigenket of Ĥ with eigenvalue En, then

Ĥ
[
Ŝ|n〉

]
= Ŝ

[
Ĥ|n〉

]
= En

[
Ŝ|n〉

]
. (11.6)

Thus Ŝ|n〉 is also an eigenket of Ĥ with the same eigenvalue. Thus |n〉 and Ŝ|n〉
are degenerate. If Ŝ represents a continuous transformation characterized by a
continuous parameter λ, then Ŝ (λ) |n〉 and |n〉 represent different states belonging
to the same energy En. All such states Ŝ (λ) |n〉 corresponding to the parameter λ
are degenerate with |n〉.

We shall discuss discrete symmetries in the following two sections.

11.2 Space Reflection or Parity Operation

Space reflection or parity operation is reflection through the origin of the coordinate
system. Corresponding to such an operation, there is a unitary operator say P̂ , also
called the parity operator. It is such that for a single particle (spatial) wavefunction
ψ (r)

P̂ψ (r) = ψ (−r) , (11.7)

and for several particles

P̂ψ (r1, r2, · · · , rN) = ψ (−r1,−r2, · · · ,−rN) . (11.8)

The parity operator is Hermitian (P̂† = P̂), since for any two wavefunctions ψ (r)
and φ (r) we have∫

φ∗ (r) P̂ψ (r) dr =

∫
φ∗ (r)ψ (−r) dr

r→−r
=

∫
φ∗ (−r)ψ (r) dr

=

∫ [
P̂φ (r)

]∗
ψ (r) dr (11.9)
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which can be generalized to wavefunctions of several particles. It follows from Eq.
(11.7) that

P2 = Î , (11.10)

so that the eigenvalues of P̂ are +1 or −1, and the eigenstates are said to be even
or odd respectively. Thus, if ψ+ (r) is an even eigenstate of P̂ and ψ− (r) is an odd
eigenstate, we have

P̂ψ+ (r) ≡ ψ+ (−r) = + ψ+ (r) , and (11.11)

P̂ψ− (r) ≡ ψ− (−r) = − ψ− (r) . (11.12)

We note that∫
ψ∗
+ (r)ψ− (r) dr

r→−r
=

∫
ψ∗
+ (−r)ψ− (−r) dr (11.13)

= −
∫

ψ∗
+ (r)ψ− (r) dr, (11.14)

so

∫
ψ∗
+ (r)ψ− (r) dr = 0. (11.15)

Thus the eigenstates ψ+ (r) and ψ− (r) are orthogonal, in accordance with the fact
that they belong to different eigenvalues of P̂ . They also form a complete set, since
any function can be written as

ψ (r) = [ψ+ (r) + ψ− (r)] , where (11.16)

ψ+ (r) =
1

2
[ψ (r) + ψ (−r)] , and (11.17)

ψ− (r) =
1

2
[ψ (r)− ψ (−r)] , (11.18)

Clearly ψ+ (r) has even parity and ψ− (r) has odd parity.
The action of the Parity operator P̂ on the observables r̂ and momentum p̂ is

given by

P̂ r̂P̂−1 = −r̂, and (11.19)

P̂p̂P̂−1 = −p̂, (11.20)

We recall that P̂† = P̂ = P̂−1.
The parity operation is equivalent to transforming a right-handed coordinate

system into a left-handed one. From Eq. (11.10) we know that if the parity op-
erator commutes with the Hamiltonian of the system then parity is conserved and
simultaneous eigenstates of Hamiltonian and the parity operator can be formed.
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Except for weak interaction (which is responsible, for example, for the β-decay
of nuclei) parity operator commutes with the Hamiltonians of atomic and nuclear
systems[

P̂ , Ĥ
]

= 0, (11.21)

and parity is conserved.

PARITY OF SPHERICAL HARMONICS

Since L̂ and P̂ commute, the eigenfunctions of L̂2 and L̂z are also eigenfunctions of
P̂ . The coordinate representation of the eigenfunction of L̂2 and L̂z of a particle is
given by

ψα,l,m (r) = Rα (r)Yl,m (θ, φ) . (11.22)

Since the transformation r −→ −r is equivalent in terms of the spherical polar
coordinates (r, θ, φ) to the following⎛
⎝ r

θ
φ

⎞
⎠ −→

⎛
⎝ r

π − θ
π + φ

⎞
⎠ , (11.23)

it can be shown that

Yl,m (θ, φ) −→ (−1)l Yl,m (θ, φ)

under reflection and so

P̂Yl,m (θ, φ) = (−1)l Yl,m (θ, φ) . (11.24)

11.3 Time Reversal Symmetry

This discrete symmetry operation was formulated by E. P. Wigner in a seminal
paper in 1932. The term ‘time reversal’ is a misnomer according to Wigner who
called it ‘reversal of motion’. Before we examine the effect of this transformation in
quantum mechanics, we recapitulate how time reversal invariance occurs in classical
mechanics. We start from Newton’s laws of motion for a mass point

m
d2r

dt2
= −∇V (r) . (11.25)
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Since Newton’s equation is second order in t, we can associate to every solution r (t)
of Eq. (11.25) another solution

r′ (t) = r (−t) . (11.26)

If, for example, there is a trajectory as in Fig. (11.1) and we let the particle stop
at t = 0 and reverse its motion so that the then (at t = 0) momentum p = p0 is
reversed, p0 → −p0; the particle then traverses backward along the same trajectory,
so that one cannot distinguish the two trajectories shown in Fig. (11.1). The above
reasoning is true if there is no dissipative force present.

Stop
t = 0 t = 0

p = p
0

0
p =  p

 Original trajectory Time reversed trajectory

Figure 11.1: Motion and time reversed motion.

We now consider the Schrödinger equation of wave mechanics

i�
∂ψ (r, t)

∂t
=

[
− �

2

2m
∇

2 + V (r)

]
ψ (r, t) . (11.27)

If ψ (r, t) is a solution of Eq. (11.27), then ψ (r,−t) is not a solution, since the time
derivative is of the first order. However ψ∗ (r,−t) is a solution as can be verified by
complex conjugation of Eq. (11.27).

(i). SYMMETRY OPERATIONS IN GENERAL

Before we begin a systematic treatment of the time reversal operation we
consider a symmetry transformation given by

|α〉 −→ |α̃〉, |β〉 −→ |β̃〉. (11.28)

For operations like rotation, translation and even parity we require the inner
product 〈β|α〉 to remain unchanged:

〈β̃|α̃〉 = 〈β|α〉 (11.29)
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This is true in the above cases because the symmetry operators are unitary
and

〈β̃|α̃〉 = 〈β|Û †Û |α〉 = 〈β|α〉. (11.30)

(ii). ANTI-UNITARY TRANSFORMATION

This condition is too restrictive for time reversal operation (which contains
a complex conjugation as well). In this case we have to use the less restrictive
and weaker requirement of the transition amplitude

|〈β̃|α̃〉| = |〈β|α〉|. (11.31)

The above requiremrnt is, of course, satisfied by unitary transformations. How-
ever, the following criterion

〈β̃|α̃〉 = 〈β|α〉∗ = 〈α|β〉, (11.32)

which also satisfies Eq. (11.31) will define anti-unitary transformations as we
shall now see.

The transformation

|α〉 −→ |α̃〉 = θ̂|α〉, |β〉 −→ |β̃〉 = θ̂|β〉, (11.33)

is said to be anti-unitary if θ̂ satisfies the following two criteria

(a) 〈β̃|α̃〉 = 〈β|α〉∗ (11.34)

(b) θ̂ [C1|α〉+ C2|β〉] = C∗
1 θ̂|α〉+ C∗

2 θ̂|β〉, (11.35)

and θ̂ is called an anti-unitary operator.

The relation Eq. (11.35) alone defines an antilinear operator.

It can be proved that

θ̂ = ÛK̂, (11.36)

where Û is unitary and K̂ is the complex conjugation operator. The complex
conjugation operator is defined as follows

K̂ [C|α〉] = C∗
[
K̂|α〉

]
. (11.37)
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Thus

|α〉 =
∑
n

|an〉〈an|α〉 K̂−→

|α̃〉 =
∑
n

K|an〉〈an|α〉∗

=
∑
n

|an〉〈an|α〉∗, (11.38)

where K̂ acting on the base ket |an〉 does not change it since the elements of
the column matrix

|an〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

are all real.

We now show that θ̂ = ÛK̂ is anti-unitary and satisfies Eq. (11.35)

θ̂ [C1|α〉+ C2|β〉] = ÛK̂ [C1|α〉+ C2|β〉]
= Û

[
C∗

1K̂|α〉+ C∗
2K̂|β〉

]
= C∗

1 ÛK̂|α〉+ C∗
2 ÛK̂|β〉

= C∗
1 θ̂|α〉+ C∗

2 θ̂|β〉. (11.39)

So Eq. (11.35) holds.

Now |α〉 θ̂−→ |α̃〉
=

∑
n

[
ÛK̂|an〉

]
〈an|α〉∗

=
∑
n

[
Û |an〉

]
〈an|α〉∗

=
∑
n

[
Û |an〉

]
〈α|an〉, (11.40)
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and |β̃〉 = θ̂|β〉
=

∑
m

[
Û |am〉

]
〈am|β〉∗.

So by dual correspondence

〈β̃| =
∑
m

〈am|β〉〈am|Û †, and (11.41)

〈β̃|α̃〉 =
∑
m

∑
n

〈am|β〉〈am|Û †Û |an〉〈α|an〉

=
∑
n

〈α|an〉〈an|β〉

= 〈α|β〉
= 〈β|α〉∗. (11.42)

So Eq. (11.34) is satisfied.

We could not evaluate 〈β̃| by considering θ̂ acting on 〈β| from the right nor
did we define θ̂†. For that method was valid for linear operators in a ket vector
space which was also linear, whereas we are considering an anti-linear operator
here.

Time Axist0t 0  t t0
 t0 + t

Θ

0

   (t)T
   (t)T

Θ

Figure 11.2: Result of successive operations of Time Reversal Θ̂, Time evolution
T̂ (t), Time Reversal Θ̂ and Time evolution T̂ (t) on a state at time t0.

We shall now present a formal theory of time reversal symmetry and associated
invariance. We denote time reversal operator by Θ whereas θ denotes any
general anti-unitary operator

|α〉 time reversal−→ |α̃〉 = Θ̂|α〉. (11.43)
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Since Θ̂|α〉 is to be a motion reversed state, for a momentum eigenstate |p′〉,
we expect Θ̂|p′〉 = | − p′〉 up to a phase. Likewise for angular momentum
eigenstate. We now schematically show the effect of time reversal and time
evolution T (t) in Fig. (11.2). Starting with a state |α〉 at time t0, we consider
successive operations of time reversal Θ̂ and time evolution T (t) reaching
the point −t0 + t on the time axis. Then operating by Θ̂ and subsequently
operataing by T (t) we are back to the starting time t0, where the state is |α〉.
Thus

T̂ (t) Θ̂T̂ (t) Θ̂|α〉 = |α〉. (11.44)

Instead of using Eq. (11.44), we shall consider infinitesimal time evolution of
a physical state |α〉 of a system at time t = 0. Then at a slightly later time δt
the system will evolve to a state

|α, t0 = 0, t = δt〉 =

(
Î − i

Ĥδt

�

)
|α〉, (11.45)

where
(
Î − i Ĥδt

�

)
= T̂ (δt) is the infinitesimal time evolution operator. Sup-

pose we first apply Θ̂ at t = 0 and then let the system evolve in time by T̂ (δt),
then the state at t = δt would be(

Î − i
Ĥδt

�

)
Θ̂|α〉.

If the motion is symmetric under time reversal we expect that the above state
ket would be the same as

Θ̂|α, t0 = 0, t = −δt〉,

i.e. we first consider a state ket at an earlier time t = −δt and then reverse
the motion, ı.e. reverse p and J and we have

[
Î − i

Ĥδt

�

]
Θ̂|α〉 = Θ̂

[
Î − i

Ĥ (−δt)

�

]
|α〉, or (11.46)

−iĤΘ̂|α〉 = Θ̂iĤ|α〉. (11.47)
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Now if Θ̂ were unitary then in Eq. (11.47) we could have calcelled i on both
sides [because then Θ̂i = iΘ̂] and

−ĤΘ̂ = Θ̂Ĥ. (11.48)

If |n〉 is an energy eigenket of Ĥ with eigenvalue En then

Ĥ
[
Θ̂|n〉

]
= − Θ̂Ĥ|n〉 = − En

[
Θ̂|n〉

]
.

So Θ̂|n〉 would be an energy eigenket of Ĥ with energy −En. This does not
make any sense, because for a free particle for example the energy spectrum
is positive semi-definite from 0 to +∞. There is no state lower than a particle
at rest and energy spectrum ranging from −∞ to 0 is physically unacceptable.
Free particl Hamiltonian is p2

2m
, p can change sign but not p2, Eq. (11.48)

would imply

Θ̂−1 p
2

2m
Θ̂ = − p2

2m
.

Hence Θ̂ cannot be unitary and Eq. (11.48) cannot be true. Θ̂ is anti-unitary
and

Θ̂iĤ| · · ·〉 = − iΘ̂Ĥ| · · ·〉

for any arbitrary state | · · ·〉. Then we have from Eq. (11.47)

Θ̂Ĥ = ĤΘ̂[
Ĥ, Θ̂

]
= 0. (11.49)

(iii). MATRIX ELEMENTS 〈β|Θ̂|α〉

We have indicated that it is best to avoid antiunitary operator acting on the
bra vector from the right. However, 〈β|Θ̂|α〉 is always to be understood as

〈β|Θ̂|α〉 = (〈β|) ·
(
Θ̂|α〉

)
. (11.50)
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(iv). OPERATORS UNDER TIME REVERSAL

Often it is convenient to describe operators corresponding to observables which
are odd or even under time reversal. We start with an important identity:

〈β|Â|α〉 = 〈α̃|Θ̂Â†Θ̂−1|β̃〉, (11.51)

where Â is a linear operator. This identity follows solely from the anti-unitarity
of Θ̂.
Proof:
Define

|γ〉 = Â†|β〉. (11.52)

By dual correspondence

|γ〉 D.C.←→ 〈β|Â = 〈γ|, hence (11.53)

〈β|Â|α〉 = 〈γ|α〉
= 〈α̃|γ̃〉 [using Eq. (11.42)]

= 〈α̃|Θ̂Â†|β〉, or

〈β|Â|α〉 = 〈α̃|
(
Θ̂Â†Θ̂−1

)
Θ̂|β〉

= 〈α̃|Θ̂Â†Θ̂−1|β̃〉, (11.54)

which proves the identity.

Now if Â = Â†, i.e. Hermitian then

〈β|Â|α〉 = 〈α̃|Θ̂ÂΘ̃−1|β̃〉, if (11.55)

Θ̂ÂΘ̂−1 = ±Â, (11.56)

we say that the observable Â is even or odd under time reversal according to
whether we have the upper or the lower of the signs in Eq. (11.56).

The expectation value of Â is given by

〈α|Â|α〉 = ± 〈α̃|Â|α̃〉, (11.57)

where 〈α̃|Â|α̃〉 is the expectation value taken with respect to time reversed
state. As an example, we consider momentum operator under time reversal.
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Since this is motion reversal we expect that momentum operator should be
odd under time reversal.

Θ̂p̂Θ̂−1 = −p̂, so that (11.58)

p̂Θ̂ = −Θ̂p̂, and

p̂
[
Θ̂|p′〉

]
= −Θ̂p̂|p′〉

= −p′
[
Θ̂|p′〉

]
. (11.59)

Thus Θ̂|p′〉 is momentum eigenket with eigenvalue −p′.

Likewise

Θ̂x̂Θ̂−1 = x̂ and (11.60)

x̂
[
Θ̂|x′〉

]
= Θ̂x̂|x′〉

= x′
[
Θ̂|x′〉

]
. (11.61)

Thus Θ̂|x′〉 is an eigenket of the coordinate operator x̂ with eigenvalue x′.

Using the relations Eq. (11.58) and Eq. (11.60) one can check the invariance
of the fundamental commutation relations

[x̂i, p̂j] | · · ·〉 = i�δi,j| · · ·〉

under time reversal.

Similarly to preserve[
Ĵi, Ĵj

]
= i� εi,j,k Ĵk,

the angular momentum operators must satisfy

Θ̂ĴΘ̂−1 = − Ĵ. (11.62)

(v). SPIN HALF PARTICLE

We first construct the eigenket of Ŝ · n̂ with the eigenvalue �

2
. If the polar

and the azimuthal angles chracterizing n̂ be β and α respectively, we can ro-

tate the spinor

(
1
0

)
representing the spin up state first about y axis by angle
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y

z

α

x

α

β

.σConstruction of        n  eigenspinor

n β

Figure 11.3: Construction of σ · n̂ eigenspinor.

β and subsequently rotate by an angle α about z axis and obtain the eigenket
of Ŝ · n̂ with eigenvalue h

2
as indicated in Fig. (11.3). Then

|n̂; +〉 = exp

(
−i

Ŝzα

�

)
exp

(
−i

Ŝyβ

�

)
|+〉, and (11.63)

Θ̂|n̂; +〉 = Θ̂ exp

(
−i

Ŝzα

�

)
exp

(
−i

Ŝyβ

�

)
|+〉

= Θ̂ exp

(
−i

Ŝzα

�

)
Θ̂−1Θ̂ exp

(
−i

Ŝyβ

�

)
Θ̂−1Θ̂|+〉

= exp

(
−i

Ŝzα

�

)
exp

(
−i

Ŝyβ

�

)
Θ̂|+〉

= exp

(
−i

Ŝzα

�

)
exp

(
−i

Ŝyβ

�

)
|−〉

∝ |n̂;−〉 (11.64)

= η|n̂;−〉 (11.65)

(11.66)
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To obtain η we obtain |n̂;−〉 directly by the Euler rotation of spin up state
|+〉 as follows

|n̂;−〉 = exp

(
−i

Ŝzα

�

)
exp

(
−i

Ŝy [π + β]

�

)
|+〉. (11.67)

From Eq. (11.65) and Eq. (11.67), setting Θ̂ = ÛK̂, we get

Θ̂ = η exp

(
−i

Ŝyπ

�

)
K̂ (11.68)

= −iη

(
2Ŝy

�

)
K̂, (11.69)

since K̂ operating on a base ket does not change it.

Problem 11.1 Expand exp
(
−i Ŝyπ

�

)
and obtain Eq. (11.69) for spin 1

2
par-

ticles.

It can then be shown that

Θ̂2 = ± Î , (11.70)

where the upper sign is for spinless or integral spin boson states and the lower
sign is for 1

2
odd integral fermionic states. Hence

Θ̂ = (−1)2j . (11.71)

(vi). KRAMER’S DEGENERACY

If the Hamiltonian of a particle is invariant under time reversal then Θ̂ com-
mutes with Ĥ. It then leads to the degeneracy known as Kramer’s degeneracy.
Because then the energy eigenket |n〉 and its time reversed state Θ̂|n〉 belong
to the same energy eigenvalue En.
Proof:

Θ̂Ĥ|n〉 = ĤΘ̂|n〉 = En|n〉. (11.72)
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If |n〉 and Θ̂|n〉 represent the same state then they are non-degenerate differing
at most by a phase factor i.e

Θ̂|n〉 = eiδ|n〉,
∴ Θ̂2|n〉 = e−iδΘ̂|n〉 = e−iδe+iδ|n〉

= |n〉. (11.73)

But from Eq. (11.71) for 1
2
odd integral spin this is not possible for which

Θ̂2 = −1.

Thus for 1
2
odd integral spin particle, the states |n〉 and Θ̂|n〉 are distinct and

hence degenerate states. Thus considering electrons in crystals it is observed
that odd electron and even electron systems exhibit very different behaviours.
Odd electron systems exhibit this degeneracy known as Kramer’s degener-
acy which is a consequence of time reversal invariance as was pointed out by
Wigner. We have also seen for spin 1

2
system (electron) the spin up |+〉 and its

time reversed state |−〉 do not have the same energy in presence of a magnetic
field as in Stern-Gerlach experiment. Here Kramer’s degeneracy is lifted by
application of external magnetic field.
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Chapter 12

Approximate Methods

In quantum mechanics as in classical mechanics, there are a relatively few physical
problems that can be solved exactly. Thus one has to take recourse to approximate
methods. We start with semi-classical approximation in the next section.

12.1 Semiclassical Aprroximation or WKB Method

For particles moving in a sufficiently uniform fields, and for large values of momen-
tum, the equation of motion differs very little from Newton’s classical equation. We
would study the limiting transition from quantum to classical mechanics which is
formally analogous to transtion from wave optics to geometrical optics. This analogy
was used in early works that led to the formulation of quantum mechanics.

We represent the wavefunction as

ψ (r, t) = exp

[
i

�
S (r, t)

]
(12.1)

which when substituted in Schrödinger equation Eq. (4.20) will yield the following
equation

−∂S (r, t)

∂t
=

(∇S (r, t))2

2m
+ V (r)− i�

2m
∇

2S (r, t) (12.2)

for a particle of mass m moving in a potential V (r).
In the absence of the last term on the right hand side of Eq. (12.2) we have

−∂S0 (r, t)

∂t
=

(∇S0 (r, t))
2

2m
+ V (r) (12.3)
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This is a partial differential equation of the first order for the real valued action
function which is defined in terms of the Lagrangian L by the integral

S0 (r, t) =

∫ t

a

L (r, ṙ, t′) dt′.

The trajectory of motion is normal to the sutfaces of constant value of action. This is
evident from the fact that the momentum of the particle is given by p = ∇S0 (r, t).
By comparing Eq. (12.2) with Eq. (12.3) we see that the transition from the
quantum equation of motion to the classical one corresponds formally to the limit
� → 0. Since � is a constant quantity, such a limiting process is justified when the
terms containing � in Eq. (12.2) are small in comparison with the other terms in
the equation. We investigate stationary states for simplicity’s sake.

ψ (r, t) = u (r) exp

(
−i

Et

�

)
.

We can then separate out the explicit time dependence of S (r, t) as follows

S (r, t) = σ (r)− Et. (12.4)

Hence Eq. (12.2) becomes

(∇σ (r, t))2

2m
+ V (r)− E − i�

∇
2σ (r)

2m
= 0. (12.5)

Then neglecting � term we get the classical equation

(∇σ0 (r, t))
2

2m
+ V (r)− E = 0. (12.6)

for the function σ0 (r), which is related to the classical momentum

p = ∇σ (r) . (12.7)

This is possible if

(∇σ0 (r))
2 � �|∇2σ0 (r) |. (12.8)

Thus the inequality Eq. (12.8) can be regarded as the condition under which quan-
tum mechanics goes over to classical mechanics.

Using Eq. (12.7), Eq. (12.8) gives the following inequality

p2 � �|∇ · p|. (12.9)
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For one dimensional motion the inequality Eq. (12.9) becomes

1 � � (dp/dx)

p2
=

1

2π

∂λ

∂x
, or (12.10)

λ � λ

2π

∂λ

∂x
. (12.11)

In other words the variation of the wavelength over the distance λ
2π

must be much
smaller than the wavelength itself. If the characteristic size of the system is denoted
by a, then dλ

dx
∼ λ

a
and Eq. (12.10) becomes

λ � a.

We can also express Eq. (12.10) as follows

p3 � m�

∣∣∣∣dV (x)

dx

∣∣∣∣ , since (12.12)

p2 = 2m (E − V (x)) .

Thus we conclude from Eq. (12.12) that the classical description of a quantum
mechanical system is approximately justified in the case of the motion of a particle
with a large momentum in a potential with small gradient.

If Eq. (12.12) is fulfilled we can develop an approximate method of solving quan-
tum mechanical problems based on the introduction of corrections to the classical
description. This method is also known as WKB approximation after the names of
Wentzel, Kramers and Brillouin who first used this method. We would now describe
this method.

WKB APPROXIMATION

This Approximation consists of a method of solving Eq. (12.5) for σ (r) which
determines the stationary state wavefunction

u (r) = exp

[
i

�
σ (r)

]
. (12.13)

The solution of Eq. (12.5) is written as an expansion in � as follows

σ (r) = σ0 (r) +

(
�

i

)
σ1 (r) +

(
�

i

)2

σ2 (r) + · · · . (12.14)

If the conditions Eq. (12.9) for semiclassical approximation are satisfied, then the
successive terms in the above series are much smaller than the preceding ones, and
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we can make use of the method of successive approximations in soving Eq. (12.5).
Thus substituting Eq. (12.14) in Eq. (12.5) and equating the coefficients of like
powers of �, we get the following set of coupled equations.

(∇σ0)
2 + 2m [V (r)− E] = 0

(∇σ1) · (∇σ0) +
1
2
∇

2σ0 = 0

(∇σ1)
2 + 2 (∇σ0) · (∇σ2) +∇

2σ1 = 0
...

...
...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(12.15)

Then by solving σ0 (r) from the first equation and putting in the second equation we
can solve for σ1 (r) and so on. Usually only σ0 (r) and σ1 (r) are calculated. We shall
illustrate the method for one dimensional case. Then Eq.(12.15) can be written as

(σ′
0)

2
= p2, 2σ′

1 = − σ′′
0

σ′
0

, 2σ′
2 = σ′′

1 + (σ′
1)

2
, (12.16)

where p2 = 2m [E − V (x)] and prime denotes derivatives with respect to x. Then
σ′
1, σ′

2 are obtained from the zeroth order

σ′
0 = ± p (x) = ±

√
2m [E − V (x)] (12.17)

by simple differentiation. In particular we have from the second equation of Eq.
(12.16)

σ1 = − ln
√
p+ lnC. (12.18)

By integrating Eq. (12.17) we can determine σ0, and taking into account Eq. (12.18),
Eq. (12.14) and Eq. (12.13), we get the WKB wave function up to terms of the
order of �2 in the form

u (x) =
C

[E − V (x)]
1
4

exp

[
i

�

∫ x

a

√
2m [E − V (x′)]dx′

]
+

C1

[E − V (x)]
1
4

exp

[
− i

�

∫ x

a

√
2m [E − V (x′)]dx′

]
. (12.19)

The region in which E > V (x) is called classically permissible region where

k (x) =
1

�

√
2m [E − V (x)]

is real and k� is the classical momentum of the particle as a function of the coor-
dinates. In this region the wavefunction Eq. (12.19) can always be written in the
following form

u (x) =
A√
p
cos

[∫ x

a

k (x′) dx′ + α

]
, (12.20)
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where A and α are real constants. The amplitude of u (x) is proportional to the speed
of the classical particle. The turning points xi are the roots of the equation E =
V (x), where the classical particle comes to rest, i.e p (xi) = 0, after that it moves in
the opposite direction. The wavefunction Eq. (12.19) becomes infinity at the turning
points. Thus this approximation is not valid for small values of momentum of the
classical particle. Supposing x0 is a turning point, we can determine the distance
|x − x0| for which this quasi-classical approximation may still be used. Expanding
about x = x0 we have

p2 = 2m [E − V (x)] ≈ 2m

∣∣∣∣
(
dV

dx

)∣∣∣∣ |x− x0|.

Substituting in Eq. (12.12) we have

|x− x0| � 1

2

[
�
2

m|dV
dx
|

] 1
3

or (12.21)

|x− x0| � �

2p
=

λ

4π
, (12.22)

where λ is the wavelength corresponding to the momentum value at x.
The region E < V (x) is called the classically forbidden area, since k (x) becomes

imaginary. Writing

k (x) = iχ (x) ,

where χ (x) =
√
2m [V (x)− E] is a real valued function and we can write Eq.

(12.19) in the form

u (x) =
C1

[V (x)− E]
1
4

exp

[
1

�

∫ x√
2m [V (x′)− E]dx′

]
+

C

[V (x)− E]
1
4

exp

[
−1

�

∫ x√
2m [V (x′)− E]dx′

]
. (12.23)

Neither Eq. (12.19) nor Eq. (12.23) is valid near the classical turning points brcause
u (x) becomes infinity at that point. Since valid wavefunction is to be continuous
and smooth for all x, the connection formulae should be obtained which can join
the two types of wavefunctions across the turning point. The standard procedure
is:

(i). Make a linear approximation to V (x) near the turning point xi.

(ii). Solve the resulting differential equation exactly.
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(iii). Match the solution the other two solutions by choosing the various constants
of integration appropriately.

Since the calculation is rather technical and cumbersome we do not reproduce it
here. We however present the results of such an analysis for a potential well shown
in Fig. (12.1) from the standard literature. In Fig. (12.1) is shown schematically a
potential having two turning points x1 and x2. The wavefunction must behave like
Eq. (12.19) in region II and like Eq. (12.23) in regions I and III. The connection
formulae for region I and region II can be shown to be achieved by choosing the
integration constants in such a way that

V(x)

x
1

x
2

III III

E

"trig.dat" u 1:2

Figure 12.1: WKB wavefunction.

1

[V (x)− E]
1
4

exp

[
−1

�

∫ x1

x

√
2m [V (x′)− E]dx′

]
−→

2

[E − V (x)]
1
4

cos

[
1

�

∫ x

x1

√
2m [E − V (x′)]dx′ − π

4

]
(12.24)

Similarly from region III to region II we have

1

[V (x)− E]
1
4

exp

[
−1

�

∫ x

x2

√
2m [V (x′)− E]dx′

]
−→

2

[E − V (x)]
1
4

cos

[
−1

�

∫ x2

x

√
2m [E − V (x′)]dx′ +

π

4

]
(12.25)
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Since the wavefunction in region II must be unique the arguments of the cosine
function in Eq. (12.24) and Eq. (12.25) must differ at most by an integer multiple
of π [not 2π, because the signs of both sides of Eq. (12.25) can be reversed]. We
thus get a consistency condition∫ x2

x1

√
2m [E − V (x)]dx =

(
n+

1

2

)
π�, n = 0, 1, 2, · · · . (12.26)

If we ignore the factor 1
2
, then this is simply the quantum condition of old

quantum theory of A. Sommerfeld and W. Wilson written in 1915.∮
pdq = nh, (12.27)

where h is Planck’s constant h and not Dirac’s �, and the integral is evaluated over
one whole period of classical motion from x1 to x2 and back.

12.2 Rayleigh Schrödinger Perturbation

This cencerns with finding the modifications in the discrete energy levels and eigen-
functions of a system when a small disturbance (perturbation) is applied . It is
assumed that the time independent Hamiltonian can be written as

Ĥ = Ĥ0 + Ĥ ′, (12.28)

where the unperturbed Hamiltonian Ĥ0 is simple in character and the corresponding
time-independent Schrödinger equation

Ĥ0 |n(0)〉 = E(0)
n |n(0)〉 (12.29)

can be exactly solved. The other part Ĥ ′ is small enough to be regarded as a
perturbation of Ĥ0. We assume that the set of eigenfunctions

{
|k(0)〉

}
corresponding

to the set of eigenvalues
{
E

(0)
k

}
of Ĥ0 form a complete orthonormal set such that

〈k(0)|m(0)〉 = δk,m. (12.30)

|k(0)〉 or |m(0)〉 may be discrete or continuous accordingly δk,m is extended to include
this possibility (i.e. then δ (k −m)).

The eigenvalue problem we have to solve is

Ĥ|n〉 = En|n〉. (12.31)
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(i) Non-Degenerate Case

The assumption that Ĥ ′ is small suggests that we expand the perturbed eigenfunc-
tions |n〉 and eigenvalues En as a power series in Ĥ ′. To this end we introduce a real
parameter λ, replace Ĥ ′ by λĤ ′ and express |n〉 and En as a power series in λ in
Eq. (12.31). We assume that these two series are continuous and analytic functions
of λ, whose value lies between zero and one.

λ = 0 =⇒ corresponds to the unpertubed case,

λ = 1 =⇒ corresponds to full pertubed case,

The particular unperturbed energy level E
(0)
n is assumed to be non-degenerate

with eigenfunction |n(0)〉, though other unperturbed energy states may be degener-
ate. Thus we have

lim
λ→0

En = E(0)
n and (12.32)

lim
λ→0

|n〉 = |n(0)〉. (12.33)

We thus write

|n〉 = |n(0)〉 + λ|n(1)〉 + λ2|n(2)〉 + · · · , (12.34)

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · · , (12.35)

From Eq. (12.31) we get(
Ĥ0 + λ Ĥ ′

) (
|n(0)〉 + λ |n(1)〉 + λ2 |n(2)〉 + · · ·

)
=(

E(0)
n + λ E(1)

n + λ2 E(2)
n + · · ·

)
×(

|n(0)〉 + λ |n(1)〉 + λ2 |n(2)〉 + · · ·
)

. (12.36)

Since the expansion Eq. (12.36) is assumed to be valid for a continuous range of λ,
we can equate the coefficients of different powers of λ on both sides and obtain a
series of equations that represent successive orders of perturbation.(

Ĥ0 − E(0)
n

)
|n(0)〉 = 0, (12.37)(

Ĥ0 − E(0)
n

)
|n(1)〉 =

(
E(1)

n − Ĥ ′
)
|n(0)〉, (12.38)(

Ĥ0 − E(0)
n

)
|n(2)〉 =

(
E(1)

n − Ĥ ′
)
|n(1)〉 + E(2)

n |n(0)〉, (12.39)

· · · · · · · · ·(
Ĥ0 − E(0)

n

)
|n(s)〉 =

(
E(1)

n − Ĥ ′
)
|n(s−1)〉 + E(2)

n |n(s−2)〉 +

· · · + E(s)
n |n(0)〉. (12.40)
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We note that any arbitrary multiple of |n(0)〉 can be added to any of the kets |n(s)〉
without affecting the left hand side of the equations and hence without affecting the
determination of |n(s)〉 in terms of the lower order terms. We choose the multiple so
that

〈n(0)|n(s)〉 = 0, for s > 0. (12.41)

Also since Ĥ0 is Hermitian

〈n(0)|Ĥ0|n(s)〉 = 〈n(s)|Ĥ0|n(0)〉∗ = E(0)
n 〈n(0)|n(s)〉

〈n(0)|
(
Ĥ0 − E(0)

n

)
|n(s)〉 = 0. (12.42)

Thus the inner product of 〈n(0)| and the right hand side of Eq. (12.40) is zero and
we have

E(s)
n = 〈n(0)|Ĥ ′|n(s−1)〉. (12.43)

(i). FIRST ORDER PERTURBATION

From Eq. (12.43) the first order energy correction is

E(1)
n = 〈n(0)|Ĥ ′|n(0)〉. (12.44)

To calculate |n(1)〉 we expand it in terms of the complete set
{
|k(0)〉

}
of the

unperturbed Hamiltonian Ĥ0

|n(1)〉 =
∑
k

a
(1)
n,k |k(0)〉. (12.45)

Here the sum over k includes integration over continuous states, if any. Sub-
stitution of Eq. (12.45) in Eq. (12.40) for s = 1 yields(

Ĥ0 − E(0)
n

)∑
k

a
(1)
n,k|k(0)〉+

(
Ĥ ′ − E(1)

n

)
|n(0)〉 = 0, (12.46)

or
(
E

(0)
l − E(0)

n

)
a
(1)
n,l + 〈l(0)|Ĥ ′|n(0)〉 = E(1)

n δl,n.

(12.47)

For n �= l

an,l =
H ′

l,n

E
(0)
n − E

(0)
l

, where (12.48)

H ′
l,n = 〈l(0)|Ĥ ′|n(0)〉.

For n = l

E(1)
n = H ′

n,n. (12.49)
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From Eq. (12.45) and Eq. (12.48) we conclude that the perturbation calcula-
tion is valid if and only if∣∣∣∣∣ H ′

l,n

E
(0)
n − E

(0)
l

∣∣∣∣∣ � 1, for l �= n. (12.50)

Also from Eq. (12.41) and Eq. (12.45)

a(1)n,n = 〈n(0)|n(1)〉 = 0. (12.51)

(ii). SECOND ORDER PERTURBATION

The second order equation is from Eq. (12.39)

(
Ĥ0 − E(0)

n

)
|n(2)〉 =

(
E(1)

n − Ĥ ′
)
|n(1)〉 + E(2)

n |n(0)〉,

From Eq. (12.43)

E(2)
n = 〈n(0)|Ĥ ′|n(1)〉. (12.52)

Making use of Eq. (12.45) and Eq. (12.48)

E(2)
n =

∑
k �=n

〈n(0)|Ĥ ′|k(0)〉〈k(0)|Ĥ ′|n(0)〉
E

(0)
n − E

(0)
k

=
∑
k �=n

∣∣∣〈n(0)|Ĥ ′|k(0)〉
∣∣∣2

E
(0)
n − E

(0)
k

=
∑
k �=n

∣∣∣Ĥ ′
n,k

∣∣∣2
E

(0)
n − E

(0)
k

. (12.53)

The second order state ket |n(2)〉 can be obtained as follows

|n(0)〉 =
∑
k

a
(2)
n,k |k(0)〉. (12.54)

Proceeding as in the first order case and making use of Eq. (12.44) and Eq.
(12.48) we can obtain

a
(2)
n,l

(
E

(0)
l − E(0)

n

)
+
∑
k

H ′
l,ka

(1)
n,k − E(1)

n a
(1)
n,l = E(2)

n δl,n. (12.55)
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For n �= l

a
(2)
n,l =

1

E
(0)
n − E

(0)
l

[∑
k

Ĥ ′
l,ka

(1)
n,k − E(1)

n a
(1)
n,l

]

=
1

E
(0)
n − E

(0)
l

[∑
k �=n

Ĥ ′
l,kĤ

′
k,n

E
(0)
n − E

(0)
k

−
Ĥ ′

n,lĤ
′
n,n

E
(0)
n − E

(0)
l

]

=
∑
k �=n

Ĥ ′
l,kĤ

′
k,n(

E
(0)
n − E

(0)
k

)(
E

(0)
n − E

(0)
l

) −
Ĥ ′

n,lĤ
′
n,n(

E
(0)
n − E

(0)
l

)2
(12.56)

Because of our choice of a
(s)
n,n = 0, the perturbed state kets are not normalized.

From Eq. (12.34) putting λ = 1 we get up to second order in Ĥ ′:

En = E(0)
n + 〈n(0)|Ĥ ′|n(0)〉+

∑
k �=n

∣∣∣〈n(0)|Ĥ ′|k(0)〉
∣∣∣2

E
(0)
n − E

(0)
k

,

and

|n〉 = |n(0)〉+
∑
l �=n

|l(0)〉

⎡
⎢⎣ H ′

l,n

E
(0)
n − E

(0)
l

−
Ĥ ′

n,lĤ
′
n,n(

E
(0)
n − E

(0)
l

)2

+
∑
k �=n

Ĥ ′
l,kĤ

′
k,n(

E
(0)
n − E

(0)
k

)(
E

(0)
n − E

(0)
l

)
⎤
⎦ (12.57)

We note that

〈n|n〉 = 1 +
∑
k �=n

∣∣H ′
k,n

∣∣2(
E

(0)
n − E

(0)
k

)2 , (12.58)

to the second order in Ĥ ′ is not normalized. We can, however, normalize the
perturbed kets (to a given order in λ) by multiplying |n〉 by a normalization
constant N (λ), so that

|N (λ)|2 〈n|n〉 = 1. (12.59)
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EXAMPLE

We consider the case of an one dimensional anharmonic oscillator whose Hamil-
tonian is

Ĥ =
p2

2m
+

1

2
kx2 + ax3 + bx4, (12.60)

Ĥ0 =
p2

2m
+

1

2
kx2, (12.61)

and Ĥ ′ = ax3 + bx4. (12.62)

We shall assume here that b > 0 since otherwise the potewntial energy would
tend to −∞ for x → ±∞, and the energy spectrum would be continuous and
unbounded towards negative as well as positive energies.

1-st order energy correction of the n-th state is

E(1)
n = a

(
x3
)
n,n

+ b
(
x4
)
n,n

=

∫ +∞

−∞

(
ax3 + bx4

) ∣∣ψ(0)
n (x)

∣∣2 dx. (12.63)

Since the wavefunction ψn has definite parity
∣∣∣ψ(0)

n

∣∣∣2 is always even function

of x and x3 being odd ax3 term will contribute zero to the integral

E(1)
n =

∫ +∞

−∞
bx4
∣∣ψ(0)

n (x)
∣∣2 dx. (12.64)

Using oscillator wavefunction it can be shown that

(
x4
)
n,n

=
3

4α4

(
2n2 + 2n+ 1

)
(12.65)

and the first order energy shift is

E(1)
n = b

(
x4
)
n,n

=
3b

4

(
�

mω

)2 (
2n2 + 2n+ 1

)
. (12.66)

The calculation of second order correction to energy is left as an exercise.
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(ii) Perturbation Calculations for Degenerate Energy Lev-
els

In the previous calculations we have assumed the initial unperturbed energy level
E

(0)
n to be non-degerate, having one eigenket |n(0)〉. Now we consider the case when

there are two independent kets say |n(0)〉 and |m(0)〉 having the same unperturbed

energy E
(0)
n . The level is doubly degenerate. In this case

a
(1)
n,l =

〈l(0)|Ĥ ′|n(0)〉
E

(0)
n − E

(0)
l

cannot be calculated for l = m unless 〈m(0)|Ĥ ′|n(0)〉 = 0. We consider the case when
〈m(0)|Ĥ ′|n(0)〉 �= 0. The initial kets |m(0)〉 and |n(0)〉 are orthogonal to the ket |k(0)〉
with eigenvalue E

(0)
k �= E

(0)
n . Although they need not be orthogonal to each other it is

always possible to construct their linear combinations that are mutually orthogonal
and normalized to unity. We can take any such pair of linear combinations of |n(0)〉
and |m(0)〉 as the initial states. If the perturbation removes the degeneracy in some
order then for finite λ there will be two perturbed states having different energies.
Since the perturbed wavefunction |n〉 and energy En are assumed to be continuous
analytic functions of λ as λ → 0, each of the two states will approach a definite
linear combination of |n(0)〉 and |m(0)〉. Out of the infinite numbers of orthonormal
pairs of linear combinations, the particular pair can be obtained as follows. Let

Cn|n(0)〉 + Cm|m(0)〉

be the initial unberturbed state. Putting this in Eq. (12.38) we get(
Ĥ0 − E(0)

n

)
|n(1)〉 =

(
E(1)

n − Ĥ ′
) [

Cn|n(0)〉+ Cm|m(0)〉
]
. (12.67)

Taking the inner product of the above equation successively with 〈n(0)| and 〈m(0)|
we get two equations which can be written in matrix form as follows(

〈m(0)|Ĥ ′|m(0)〉 − E
(1)
n 〈m(0)|Ĥ ′|n(0)〉

〈n(0)|Ĥ ′|m(0)〉 〈n(0)|Ĥ ′|n(0)〉 − E
(1)
n

)(
Cm

Cn

)
=

(
0
0

)
(12.68)

The solutions for non-trivial Cm and Cn of these homogeneous algebraic equations
exist if and only if the secular determinant of their coefficients are is zero, namely∣∣∣∣∣ 〈m

(0)|Ĥ ′|m(0)〉 − E
(1)
n 〈m(0)|Ĥ ′|n(0)〉

〈n(0)|Ĥ ′|m(0)〉 〈n(0)|Ĥ ′|n(0)〉 − E
(1)
n

∣∣∣∣∣ = 0. (12.69)
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This is a quadratic equation in E
(1)
n having the roots

E(1)
n =

1

2

[
〈m(0)|Ĥ ′|m(0)〉+ 〈n(0)|Ĥ ′|n(0)〉

]
±

1

2

√[
〈m(0)|Ĥ ′|m(0)〉 − 〈n(0)|Ĥ ′|n(0)〉

]2
+ 4
∣∣∣〈m(0)|Ĥ ′|n(0)〉

∣∣∣2.
(12.70)

Both the roots of E
(1)
n are real, since the diagonal matrix elements of the Hermitian

operator Ĥ ′ are so. The roots are equal if and only if

〈m(0)|Ĥ ′|m(0)〉 = 〈n(0)|Ĥ ′|n(0)〉, and 〈m(0)|Ĥ ′|n(0)〉 = 0. (12.71)

and in that case the degeneracy is not removed. Then the coefficients Cn and Cm

cannot be determined in the first order calculation.
If on the other hand neither of the two equations above are stisfied then the two

values of E
(1)
n calculated from Eq. (12.70) are distinct and each can be used in turn

to calculate Cn and Cm from Eq. (12.68). We can thus obtain the desired pair of
orthonormal combination of the unperturbed wavefunction |m(0)〉 and |n(0)〉.

Now to calculate the first order wavefunctions we consider the equation Eq.
(12.38)(

Ĥ0 − E(0)
n

) ∑
l �=n,m

a
(1)
n,l |l(0)〉+

(
Ĥ ′ − E(1)

n

) (
Cn|n(0)〉+ Cm|m(0)〉

)
= 0, (12.72)

and we obtain

a
(1)
n,k

(
E

(0)
k − E(0)

n

)
= − 〈k(0)|Ĥ ′|m(0)〉Cm − 〈k(0)|Ĥ ′|n(0)〉Cn. (12.73)

This gives a
(1)
n,k for k �= n,m and also we have from Eq. (12.42) for s = 1

a(1)n,m = 0 = a(1)n,n. (12.74)

REMOVAL OF DEGENERACY IN THE SECOND ORDER

If the two values of E
(1)
n obtained in the first order calculation are equal, one must go

to the second order to check whether the degeracy is removed. For this we proceed
in the similar fashion as above and obtain from Eq. (12.39)∑

k �=m,n

〈m(0)|Ĥ ′|k(0)〉a(1)n,k − E(2)
n Cm = 0, (12.75)

∑
k �=m,n

〈n(0)|Ĥ ′|k(0)〉a(1)n,k − E(2)
n Cn = 0, (12.76)
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Again we have taken a
(1)
n,n = 0 = a

(1)
n,m.

Substituting a
(1)
n,k from Eq. (12.74)[ ∑

k �=n,m

〈m(0)|Ĥ ′|k(0)〉〈k(0)|Ĥ ′|m(0)〉
E

(0)
n − E

(0)
k

− E(2)
n

]
Cm +

∑
k �=n,m

〈m(0)|Ĥ ′|k(0)〉〈k(0)|Ĥ ′|n(0)〉
E

(0)
n − E

(0)
k

Cn = 0, (12.77)

∑
k �=n,m

〈m(0)|Ĥ ′|k(0)〉〈k(0)|Ĥ ′|n(0)〉
E

(0)
n − E

(0)
k

Cm +

[ ∑
k �=n,m

〈n(0)|Ĥ ′|k(0)〉〈k(0)|Ĥ ′|n(0)〉
E

(0)
n − E

(0)
k

− E(2)
n

]
Cn = 0. (12.78)

Again to obtain the solutions for Cm and Cn we have to equate the secular
determinant corresponding to the Eq. (12.77) and Eq. ( 12.78) to zero which will

yield roots for E
(2)
n which are of the same general form as Eq. (12.70).

Analogous to Eq. (12.71) we have as the conditions for the roots in the second
order being equal the equations

∑
k �=n,m

∣∣∣〈m(0)|Ĥ ′|k(0)〉
∣∣∣2

E
(0)
n − E

(0)
k

=
∑

k �=n,m

∣∣∣〈n(0)|Ĥ ′|k(0)〉
∣∣∣2

E
(0)
n − E

(0)
k

(12.79)

and
∑

k �=n,m

〈m(0)|Ĥ ′|k(0)〉〈k(0)|Ĥ ′|n(0)〉
E

(0)
n − E

(0)
k

= 0. (12.80)

Thus unless both of Eq. (12.79) and Eq. (12.80) are satisfied, the degeneracy is
removed in the scond order.

All the foregoing calculations can be similarly extended and generalized to higher
orders and also for the case in which the initial state is more than doubly degenerate.

12.3 The Variational Method

The variational method that we now discuss is very useful for estimating the ground
state energy E0 when unlike the perturbation calculation, we do not have any knowl-
edge of the exact solutions to a problem whose Hamiltonian is sufficiently similar.

In this method an arbitrary trial function |φ〉 is used to calculate the expectation
value of Ĥ

〈Ĥ〉 = 〈φ|Ĥ|φ〉. (12.81)
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|φ〉 can be expressed in terms of the complete set of eigenfunctions {|n〉} of Ĥ:

|φ〉 =
∑
n

An|n〉, where Ĥ|n〉 = En|n〉. (12.82)

∴ 〈φ|Ĥ|φ〉 =
∑
n

∑
m

A∗
nAm〈n|Ĥ|m〉

=
∑
n

|An|2 En. (12.83)

Replacing En in Eq. (12.83) by the lowest eigenvalue E0

〈φ|Ĥ|φ〉 =
∑
n

|An|2 En ≥ E0

∑
n

|An|2 (12.84)

If |φ〉 is normalized

〈φ|φ〉 =
∑
n

|An|2 = 1

then

〈Ĥ〉 ≥ E0. (12.85)

However, if |φ〉 is not normalized, then

E0 ≤ 〈φ|Ĥ|φ〉
〈φ|φ〉 . (12.86)

In actual application of the method one uses a trial function φ that depends on
a number of parameters. These parameters are varied until the expectation value is
minimum. This will give an upper limit for the ground state energy of the system.
The fit of the energy will be closer, the closer is the trial function to the eigenfunction.

GROUND STATE OF HELIUM

Problem 12.1 The Helium atom consists of nucleus of charge +2e surrounded by
two electrons. Use a Hamiltonian

Ĥ = − �
2

2m

(
∇

2
1 +∇

2
2

)
− 2e2

(
1

r1
+

1

r2

)
+

e2

r12
, (12.87)

where r1 and r2 are the radial distances of the two electrons from the nucleus, and

r12 = |r1 − r2| is the distance between the two electrons.
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Choose a trial function

ψ (r1, r2) =
Z3

πa30
exp

[
−Z

a0
(r1 + r2)

]
,

with Z as the variation parameter, to minimize 〈Ĥ〉 and obtain value of Z and the low-
est upper limit for the ground state of Helium.

Hints:

(i). The expectation value of each kinetic energy operators can be taken as Z2e2

2a0
.

(ii). Each of the potential energy term will yield −2Ze2

a0
.

(iii). You can take the expectation value of the interaction energy term to be 5Ze2

8a0
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Chapter 13

Methods for Time Dependent
Problems

When the Hamiltonian of the system depends on time, the solutions of the Schrödinger
equation are non-stationary. Thus the concept of bound states with discrete energy
levels and stationary eigenstates should be modified. There are three ways to make
these modifications corresponding to the particular kind of approximations, depend-
ing on the nature of time dependence of the Hamiltonian. They are:

(i). the time dependent perturbation,

(ii). the harmonic approximation,

(iii). the adiabatic approximation,

(iv). the sudden approximation.

We discuss them in subsequent sections.

13.1 Time Dependent Perturbation

In this case we have to work with the Hamiltonian

Ĥ (t) = Ĥ0 + Ĥ ′ (t) (13.1)

having a simple part which is independent of time and is exactly solvable. The
eigenvalues and eigenfunctions of Ĥ0

Ĥ0|n〉 = En|n〉 (13.2)
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are completely known. Ĥ ′ is the smaller part which depends on time and is the
perturbing Hamiltonian. If initially one of the eigenkets |i〉 of Ĥ0 is populated at
time t = 0, (when Ĥ ′ (t = 0) = 0,) Ĥ ′ (t) causes transition between eigenkets as
time goes on, so that states other than |i〉 become populated as this is no longer a
stationary problem.

The time-dependent Scrödinger equation is given by

i�
∂

∂t
|α, t0; t〉 = Ĥ|α, t0; t〉 (13.3)

where |α〉 is the state vector at time t. |α〉 can be expressed in terms of the complete
set
{
|n〉 exp

(
−iEn

�
t
)}

as follows

|α〉 =
∑
n

Cn (t) |n〉e−iEn
�

t (13.4)

with the expansion coefficient Cn depending on time. Substituting of Eq. (13.4) in
Eq. (13.3) yields∑

n

i�
dCn

dt
|n〉e−iEn

�
t +
∑
n

CnEn|n〉e−iEn
�

t =
∑
n

Cn

(
Ĥ0 + Ĥ ′ (t)

)
|n〉 ×

e−iEn
�

t. (13.5)

Using Eq. (13.2) in the right hand side of Eq. (13.5) and taking inner product of
the equation with |k〉 one gets

i�
dCk (t)

dt
e−i

Ek
�

t =
∑
n

Cn (t) e
−iEn

�
t〈k|Ĥ ′|n〉, (13.6)

where the orthonormality of |n〉 has been used.
Introducing Bohr’s angular frequency

ωk,n =
Ek − En

�
, (13.7)

Eq. (13.6) reduces to the following

dCk (t)

dt
= (i�)−1

∑
n

〈k|Ĥ ′ (t) |n〉Cn (t) exp (iωk,nt) . (13.8)

The group of Eqs. (13.8) is equivalent to the Schrödinger time dependent Eq. (13.3).



We notice that the time evolution of the coefficients and hence of the system
is happening through Ĥ ′, the perturbing Hamiltonian. We have discussed time
evolution in Table 4.1 of Chapter 4. In the interaction picture, the time evolution of
quantum system happens through the time evolution of state vector and dynamical
variables. We define the interaction picture state ket as follows

|α, t0; t〉I = eiĤ0t/�|α, t0; t〉S, (13.9)

which coincides with |α, t0; t〉S at t = 0. For observables represented by operators
we define

ÂI (t) = eiĤ0t/�ÂSe
−iĤ0t/�. (13.10)

Thus

Ĥ ′
I (t) = eiĤ0t/�Ĥ ′ (t) e−iĤ0t/�, (13.11)

where Ĥ ′ (t) is the perturbing Hamiltonian in the Schrödinger picture. We already
know the connection between the Schrödinger and the Heisenberg picture:

|α〉H = eiĤt/�|α, t0; t〉S (13.12)

and ÂH (t) = eiĤt/�ÂSe
−iĤt/�. (13.13)

The basic difference between the pair of Eq. (13.9) and Eq. ( 13.10) defining the
interaction picture and the pair Eq. ( 13.12) and Eq. (13.13) defining the Heisenberg
picture is that Ĥ0 appears in the former and Ĥ appears in the latter exponentials.

Thus the time evolution of the state ket in interaction picture is given as follows.

i�
∂

∂t
|α, t0; t〉I = i�

∂

∂t

[
eiĤ0t/�|α, t0; t〉S

]
= −Ĥ0e

iĤ0t/�|α, t0; t〉S + eiĤ0t/�
(
Ĥ0 + Ĥ ′ (t)

)
|α, t0; t〉S

= eiĤ0t/�Ĥ ′ (t) |α, t0; t〉S (13.14)

=
[
eiĤ0t/�Ĥ ′ (t) e−iĤ0t/�

] [
eiĤ0t/�|α, t0; t〉S

]
= Ĥ ′

I (t) |α, t0; t〉I , (13.15)

which is a Schrödinger like equation with the total Hamiltonian Ĥ being replaced
by Ĥ ′

I (t).
Also from Eq. (13.10) we get

d

dt
ÂI = (i�)−1

[
ÂI , Ĥ0

]
, (13.16)

where ÂI does not depend explicitly on time.

INTERACTION PICTURE
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Table 13.1 The three types of description of evolution of quantum states.

Heisenberg
Picture

Interaction
Picture

Schrödinger
Picture

State Vectors No change Evolve by Ĥ ′ Evolve by Ĥ

Observables Evolves by Ĥ Evolve by Ĥ0 No change

FIRST ORDER PERTURBATION

Now we return to Eq. (13.8), replace Ĥ ′ by λĤ ′ and express the coefficients Cn-s
as power series in λ:

Cn (t) = C(0)
n (t) + λC(1)

n (t) + λ2C(2)
n (t) + · · · . (13.17)

We assume, as in the time-independent case, the series is a continuous analytic
function of λ, for λ between zero and 1. From Eq. (13.17) and Eq. (13.8), equating
coefficients of corresponding powers of λ and setting λ = 1, in the final results we
obtain

d

dt
C

(0)
k (t) = 0,

d

dt
C

(s+1)
k (t) = (i�)−1

∑
n

〈k|Ĥ ′ (t) |n〉C(s)
n (t) eiωk,nt. (13.18)

These sets of equations can in principle be integrated successively to obtain
approximate solutions to any desired order in the perturbation.

The first equation of Eq. (13.18) shows that to the zeroth order all the coeffients

C
(0)
k are constant in time. These values are the initial conditions of the problem

specifying the state of the system before the perturbation is applied. We shall
assume that all except one of the coefficients C

(0)
k are zero, so that the system

is in a definite unperturbed energy state. This need not violate the uncertainty
principle since the infinite lapse of time before the perturbation is applied makes
the determination of the original energy of the system possible with great precision.
We can then put

C
(0)
k = 〈k|m〉 =

{
δ (k −m) for a continuum energy spectrum
δk,m for a discrete energy spectrum

(13.19)

Then from Eq. (13.18) using Eq. (13.19) we get in the first order

d

dt
C

(1)
k (t) = (i�)−1 〈k|Ĥ ′ (t) |m〉eiωk,mt, (13.20)



13.2. HARMONIC PERTURBATION 167

where ωk,m = (Ek − Em) /�. The solution is

C(1)
m (t) = (i�)−1

∫ t

−∞
〈m|Ĥ ′ (t′) |m〉dt′ (13.21)

and C
(1)
k (t) = (i�)−1

∫ t

−∞
〈k|Ĥ ′ (t′) |m〉eiωk,mt′dt′, (13.22)

where we have taken the initial time t0 in Eq. (13.3) as −∞. The integration

constant is so chosen that C
(1)
m (t) and C

(1)
k (t) vanish at t = −∞.

Thus to the first order in the perturbation, the transition probability correspond-
ing to a transition m → k, namely, the probability that the system initially in the
state m be found at time t in the state k �= m is

P
(1)
k,m (t) = |C(1)

k |2 = �
−2

∣∣∣∣
∫ t

−∞
H ′

k,m (t′) eiωk,mt′dt′
∣∣∣∣
2

. (13.23)

We also have

C(1)
m (t) ≈ C(0)

m + C(1)
m (t)

≈ 1 + (i�)−1

∫ t

t0

〈m|Ĥ ′ (t′) |m〉dt′

≈ exp

[
− i

�

∫ t

t0

H ′
m,m (t′) dt′

]
. (13.24)

So that |C(1)
m (t) |2 ≈ 1 and perturbation principally changes the phase of the initial

state.

13.2 Harmonic Perturbation

This is the case when Ĥ ′ (t) depends harmonically on time except being turned
on at one time and off at a later time. We designate these two times as 0 and t0
respectively and assume

〈k|Ĥ ′ (t′) |m〉 = 2 〈k|Ĥ ′|m〉 sinωt′. (13.25)

〈k|Ĥ ′|m〉 is independent of time and ω is positive. From Eq. (13.25) and Eq. (13.22)
we can obtain the first order amplitude at a time t ≥ t0:

C
(1)
k (t ≥ t0) = − 〈k|Ĥ ′|m〉

i�

[
ei(ωk,m+ω)t0 − 1

ωk,m + ω
− ei(ωk,m−ω)t0 − 1

ωk,m − ω

]
. (13.26)
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The first term is important when ωk,m ≈ −ω or Ek ≈ Em − �ω and the second
term is important when ωk,m ≈ ω or Ek ≈ Em + �ω. Thus the first order effect of
a perturbation that varies sinusoidally in the time with angular frequency ω is to
transfer to or receive from the system the quantum of energy �ω on which it acts.

We now consider the situation when the initial state m is a discrete bound state
and the final state k is one of the continuum set of dissociated or ionized states
so that Ek > Em and only the second term in Eq. (13.26) needs to be taken into
account. The first order transition probability to the state k after the perturbation
is removed is given by

P
(1)
k,m (t ≥ t0) =

∣∣∣C(1)
k (t ≥ t0)

∣∣∣2

=
t20

∣∣∣〈k|Ĥ ′|m〉
∣∣∣2

�2

sin2
[
1
2
(ωk,m − ω) t0

]
[
1
2
(ωk,m − ω) t0

]2 . (13.27)

The function sin2 θ
θ2

where θ = 1
2
(ωk,m − ω) t0 is plotted in Fig. 13.1 as a function of

θ.

θ/π

θ

0 1 3123 2

Si
n

2
θ

2

Figure 13.1: Plot of f (θ) = sin2 θ
θ2

where θ = 1
2
(ωk,m − ω) t0.

The height of the main peak increases in proportion to t20 and its breadth de-
creases inversely as t0, so that the area under the curve is proportional to t0. Thus
if there is a group of states k having energies nearly equal to Em+�ω and for which
〈k|Ĥ ′|m〉 is roughly independent of k then the probability of finding the system in
one or another of these states is proportional to t0.

We are interested to calculate Wk,m transition probability per unit time and this
implies that a transition has taken place after the perturbation has been on for a
time t0 is proportional to t0.



13.2. HARMONIC PERTURBATION 169

(i) Fermi’s Golden Rule

The spread of energy of the final state to which transitions occur is connected with
energy uncertainty in the following way. Ĥ ′ can be looked upon as a device that
measures the final energy of the system by transferring it to one of the state k.
The time available for measurement is t0, so that the uncertainty in energy is ∼ �

t0
.

Also the energy conservation is given by Ek ≈ Em + �ω and suitably modified by
uncertainty in principle is a mutual consequence of the calculation and need not be
inserted as a separate assumption.

If now ρ (k) is the density of final states such that ρ (k) dEk is the number of
final states with energies between Ek and Ek + dEk, then the transition probability
per unit time is given by integrating Eq. (13.27) over k and dividing by t0:

Wk,m =
1

t0

∫ ∣∣∣C(1)
k (t > t0)

∣∣∣2 ρ (Ek) dEk. (13.28)

Since the breadth of the main peak in Fig. 13.1 becomes small as t0 becomes large
and regarding 〈k|Ĥ ′|m〉 and ρ (k) as quantities independent of Ek so that they are
taken outside the integration sign of Eq. (13.28). Then substituting Eq. (13.27) in
Eq. (13.28) and changing the integration variable to x ≡ 1

2
(ωk,m − ω) t0 from Ek

and extending the limits of integration to x = ±∞ to obtain

Wk,m =
2π

�
ρ (k)

∣∣∣〈k|Ĥ ′|m〉
∣∣∣2 , (13.29)

where we have used the standard integral value∫ +∞

−∞

sin2 x

x2
dx = π.

This expression of Wk,m is independent of t0 as expected.
The equation Eq. (13.29) is the Fermi Golden Rule of probability of transition.
If there are several different groups of final states k1, k2, · · · , having about

the same energy Em + �ω, but for which 〈ki|Ĥ ′|m〉 ρ (ki) although nearly constant
within each group, but differ from one group to another, then Eq. ( 13.29) with k
replaced by ki, gives the transition probability per unit time t0 for the ith group.

(ii) Ionization of Hydrogen Atom

We now consider how the first order perturbation theory as discussed above can be
applied to calculate the probability of ionization of a hydrogen atom initially in its
ground state, when placed in an electric field which varies harmonically with time,

E (t) = 2E0 sinωt. (13.30)
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and the perturbing Hamiltonian is

Ĥ ′ (t) = er · E (t) = eE (t) r cos θ, (13.31)

where the polar axis and E are in the direction of positive z axis, and θ is the angle
between the position vector r of the electron and E .

The initial ground state of Hydrogen atom is given as follows

〈r|m〉 ≡ u100 (r) =
1√
πa30

e
− r

a0 . (13.32)

The final states should correspond to the motion of a positive energy electron
in the Coulomb field of proton which is a scattering state. For simplicity’s sake the
final states are taken to be free particle plane wave states given by

〈r|k〉 =
1√
L3

e−ik·r, (13.33)

using box normalization, �k being the momentum of the ejected electron.

DENSITY OF FINAL STATES ρ (k)

The number of states between k and k + dk

dn =
L3

(2π)3
k2dk sin θdθdφ

dEk = d

(
�
2k2

2μ

)
=

�
2kdk

μ

ρ (k) =
dn

dEk

=
μL3

8π3�2
k sin θdθdφ. (13.34)

We have expressed the polar angles θ, φ of k with respect to some fixed direction
which for convenience is taken to be that of the electric field E .

The matrix element is then given by using Eq. (13.25) and Eq. ( 13.31) and
relevant equations

〈k|Ĥ ′|m〉 =
eE0√
πa30L

3

∫
e−ikr cos θ′r cos θ′′e−

r
a0 d3r. (13.35)

We plot the coordinates and angles for the integration of matrix element in Fig.
13.2, where θ′ is the angle between r and k and θ′′ is the angle between r and E

while θ denotes the angle between k and the electric field E .
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Figure 13.2: Coordinates and angles between k, r and E

Since

cos θ′′ = cos θ′ cos θ + sin θ′ sin θ cos (φ′ − φ) (13.36)

and d3r = r2dr d (cos θ′) dφ′. (13.37)

Putting these values in Eq. (13.35) and integrating over φ′ gives zero for the second
term in Eq. (13.36). Then from the first term of Eq. (13.36) one gets

〈k|Ĥ ′|m〉 = − i
32πeE0ka50 cos θ√
πa30L

3 (1 + k2a20)
3 . (13.38)

This equation, together with Eq. (13.34) for ρ (k) finally gives the probability
per unit time that the electron of the Hydrogen atom from the 1S state is ejected
into the solid angle dΩ = sin θdθdφ, from the extression Eq. (13.29).

W =
256μk3e2E2

0a
7
0

π�3 (1 + k2a20)
6 cos

2 θ sin θdθdφ. (13.39)

13.3 Adiabatic Approximation

This approximation is applicable when the Hamiltonian is slowly varying with time.
In this case, we expect that that the solutions of the Schrödinger equation can be ap-
proximated by the stationary eigenfunctions of the instaneous Hamiltonian, so that
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a particular eigenfunction at one time goes over continuously into the corresponding
eigenfunction at a later time. Thus if the eigenvalue equation

Ĥ (t)un (t) = En (t)un (t) (13.40)

can be solved at each instant of time it is expected that that a system that is in a
discrete non-degenerate state um (0) with energy Em (0) at t = 0 is likely to be in the
state um (t) with energy Em (t) at time t, provided that Ĥ (t) changes very slowly
with time. The wave function ψ satisfies the time dependent Schrödinger equation

i�
∂

∂t
ψ (t) = Ĥ (t)ψ (t) . (13.41)

We expand ψ in terms of the un (t)s in Eq. (13.40) which form a complete set:

ψ (t) =
∑
n

Cn (t)un (t) exp

[
(i�)−1

∫ t

0

En (t
′) dt′

]
. (13.42)

un (t)s are assumed to be orthonormal, discrete and non-degenerate. From Eq.
(13.42) and Eq. (13.40)∑

n

[
dCn (t)

dt
un (t) + Cn (t)

∂un (t)

∂t

]
exp

[
(i�)−1

∫ t

0

En (t
′) dt′

]
= 0, (13.43)

where Eq. (13.40) has been used. Then

dCn (t)

dl
=
∑
n

Cn (t) 〈k|ṅ〉 exp
[
(i�)−1

∫ t

0

(En (t
′)− Ek (t

′)) dt′
]

(13.44)

with 〈k|ṅ〉 ≡
∫

u∗
k

∂un

∂t
d3r.

We also get from Eq. (13.40)

∂Ĥ (t)

∂t
un (t) + Ĥ (t)

∂un (t)

∂t
=

∂En (t)

∂t
un (t) + En (t)

∂un (t)

∂t
.

Then

〈k|∂Ĥ (t)

∂t
|n〉 = (En (t)− Ek (t)) 〈k|ṅ〉. (13.45)

CHOOSING PHASES

Since the un-s are normalized

〈n|n〉 = 1, =⇒ 〈ṅ|n〉+ 〈n|ṅ〉 = 0.
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Since the two terms on the left hand side of the second equation are complex con-
jugate of each other, each is purely imaginary. We can thus write

〈n|ṅ〉 = iα (t) ,

where α is real.
Since the phases of the eigenfunctions are arbitrary at each instant of time we can

change the phase of un by amount γ (t). For the new eigenfunction u′
n ≡ un exp [iγ (t)],

〈u′
n|u̇′

n〉 = 〈un|u̇n〉+ iγ̇ = i (α + γ̇) .

Thus choosing

γ (t) = −
∫ t

α (t′) dt′

will make 〈u′
n|u̇′

n〉 = 0. We can assume that all phases have been chosen in this
way and omit the primes.

Then substituting Eq. (13.45) in Eq. 13.44) we obtain

dCk (t)

dt
= =

∑
n �=k

Cn (t)

�ωk,n

〈
k

∣∣∣∣∣∂Ĥ∂t
∣∣∣∣∣n
〉
exp

[
i

∫ t

ωk,n (t
′) dt′

]
. (13.46)

This group of equations Eq. (13.46) is equivalent to the time dependent Schrödinger
equation Eq. (13.41).

To estimate the value dCk(t)
dt

, we assume that all the quantities (Cn, ωk,n, un (t) ,
∂Ĥ
∂t
)

that appear on the right hand sise of Eq. (13.46) which are expected to be slowly
varying in time are actually constants in time. I, further, the system is assumed to
be in state m at t = 0, we can put Cn (t) ≈ δn,m. Thus

dCk (t)

dt
≈ (�ωk,m)

−1

〈
k

∣∣∣∣∣∂Ĥ∂t
∣∣∣∣∣m
〉
eiωk,mt. for k �= m,

which can readily be integrated and we obtain

Ck (t) ≈
(
i�ω2

k,m

)−1

〈
k

∣∣∣∣∣∂Ĥ∂t
∣∣∣∣∣m
〉(

eiωk,mt − 1
)
. for k �= m. (13.47)

Eq. (13.47) shows that the probability amplitude for a state other than the initial
state oscillates in time and does not increase steadily with the long periods of time
even though Ĥ changes by finite amount.
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13.4 The Sudden Approximation

In this section we shall consider the case for which the Hamiltonian Ĥ changes very
rapidly. Let us first consider the situation in which the Hamoltonian Ĥ changes
instantaneously at t = 0 from Ĥ0 to Ĥ1 where both Ĥ0 and Ĥ1 are independent of
time. Thus for t < 0 we have Ĥ = Ĥ0 with

Ĥ0ψ
(0)
k = E

(0)
k ψ

(0)
k . (13.48)

For t > 0, Ĥ = Ĥ1 and we have

Ĥ1φ
(1)
n = E(1)

n φ(1)
n . (13.49)

The subscripts emphasize which Hamiltonians we are dealing with. The sets of

eigenfunctions
{
ψ

(0)
k

}
abd

{
φ
(1)
n

}
can be assumed to form complete orthonormal

sets (which need not be only discrete), so that we can express the general solution
of the time dependent Schrödinger equation in terms of them as follows

ψ (t) =
∑
k

c
(0)
k ψ

(0)
k exp

[
−i

E
(0)
k t

�

]
, for t < 0 (13.50)

and ψ (t) =
∑
n

d(1)n φ(1)
n exp

[
−i

E
(1)
n t

�

]
, for t > 0, (13.51)

where summation implies sum over the entire set (discrete plus continuous) of eigen-

functions. The time independent coefficients c
(0)
k and d

(1)
n for a normalized ψ are re-

spectively the probability amplitude of finding the syatem in the state ψ
(0)
k at t < 0

and in the state φ
(1)
n at t > 0.

Now, since Eq. (13.41) is first order in time, the wavefunction ψ (t) must be a
continuous function of t and is thus true particularly at t = 0. We therefore equate
the two solutions Eq. (13.50) and Eq. (13.51) at t = 0 and obtain∑

k

c
(0)
k ψ

(0)
k =

∑
n

d(1)n φ(1)
n , (13.52)

or d(1)n =
∑
k

c
(0)
k

〈
φ(1)
n | ψ(0)

k

〉
. (13.53)

This relation is an exact one for the ideal case of an Hamiltonian Ĥ changing instan-
taneously at t = 0. In practice, however the change in Ĥ happens during a finite
time interval τ . If this time τ is very short then we may in the first approximation
set τ = 0 and continue to use Eq. (13.53) to obtain the probability amplitude d

(1)
n ;

this procedure is known as the sudden approximation.
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We can derive a simple criterion of the validity of the sudden approximation as
follows. We assume that Ĥ = Ĥ0 for t < 0, Ĥ = Ĥ1 for t > τ and that during the

period 0 < t < τ we have Ĥ = Ĥi where Ĥi is also time independent. If
{
χ
(i)
l

}
denotes a complete, orthonormal set of eigenfunctions of Ĥi, such that

Ĥiχ
(i)
l = E

(i)
l χ

(i)
l (13.54)

and ψ (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k c

(0)
k ψ

(0)
k e−i

E
(0)
k

t

� , for t < 0,∑
l a

(i)
l χ

(i)
l e−i

E
(i)
l

t

� for 0 < t < τ,∑
n d

(0)
n φ

(1)
n e−i

E
(1)
n t

� , for τ < t,

(13.55)

where a
(i)
l -s are also time independent. Using continuity of wavefunction at t = 0

we get∑
k

c
(0)
k ψ

(0)
k =

∑
l

a
(i)
l χ

(i)
l (13.56)

or a
(i)
l =

∑
k

c
(0)
k

〈
χ
(i)
l | ψ(0)

k

〉
. (13.57)

Similarly, the continuity of ψ (t) at t = τ yields

∑
l

a
(i)
l χ

(i)
l e−i

E
(i)
l

τ

� =
∑
n

d(1)n φ(1)
n e−i

E
(1)
n τ

� . (13.58)

From which we obtain

d(1)n =
∑
l

a
(i)
l

〈
φ(1)
n | χ(i)

l

〉
ei
(E(1)

n −E
(i)
l )τ

� , (13.59)

and using Eq. (13.57) we can write

d(1)n =
∑
k

∑
l

c
(0)
k

〈
φ(1)
n | χ(i)

l

〉〈
χ
(i)
l | ψ(0)

k

〉
ei
(E(1)

n −E
(i)
l )τ

� . (13.60)

This exact relation Eq. (13.60) reverts to sudden approximation Eq. (13.53) if
τ is small compared to �

|E(1)
n −E

(i)
l

| .

We now return to Eq. (13.53). If the syatem is initially for t < 0 in a particular

stationary state ψ
(0)
a exp

[
−iE

(0)
a t
�

]
where ψ

(0)
a is an eigenstate of Ĥ0. Then c

(0)
k = δk,a,

so that the probability amplitude of finding the system in the eigenstate φ
(1)
n of Ĥ1

after the sudden change in the Hamiltonian has occurred is

d(1)n =
〈
φ(1)
n |ψ(0)

a

〉
. (13.61)
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EXAMPLE

We consider a charged linear harmonic oscillator acted upon by a spatially uniform
time dependent electric field E (t). The Hamiltonian is therefore

Ĥ (t) = − �
2

2m

d2

dx2
+

1

2
kx2 − qE (t) x (13.62)

= − �
2

2m

d2

dx2
+

1

2
k [x− a (t)]2 − 1

2
ka (t)2 , (13.63)

with a (t) =
qE (t)

k
.

At t = 0 the electric field is switched on suddenly, i.e in a time τ much shorter than
ω−1, where ω is the angular frequency of the oscillator, and afterwards it assumed
to have the constant value E0. Thus

Ĥ = Ĥ0 = − �
2

2m

d2

dx2
+

1

2
kx2, when t < 0, (13.64)

Ĥ = Ĥ1 = − �
2

2m

d2

dx2
+

1

2
k (x− a)2 − 1

2
a2, when t > τ, (13.65)

where a =
qE0
k

=
qE0
mω2

. (13.66)

The Hamiltonian Ĥ0 is that of a linear hatmonic oscillator.

Problem 13.1 Assume that the oscillator is initially (at t ≤ 0) in its ground state
ψ0 (x).

(i). Show that E
(1)
n =

(
n+ 1

2

)
�ω − q2E2

0

2mω2 , n = 0, 1, 2, · · ·.

(ii). Calculate d
(1)
n from Eq. (13.61)



Chapter 14

Scattering Theory I

Introduction

In a collision problem, the energy of the incident particle is specified in advance,
unlike the bound state case where the boundary conditions on the wavefunctions at
large distances give rise to the quantization of energy into discrete energy levels of
the system. In the scattering problems the behaviour of the wavefunction at large
distances is obtained in terms of the energy of the incident particle. We discuss
some of the simpler theories in this chapter, deferring some of the formal theories
for the next chapter.

14.1 Scattering Experiments: Cross Section

We shall be concerned primarily with collision in three dimensions in which a particle
collides with a fixed force field or two particles collide with each other.

We consider an incident beam of monoenergetic particles from a source which is
collimated by a slit so that all the particles in the beam move in the same direction.
The beam is scattered by the target and the number of particles scattered per unit
time in the direction specified by polar angles (θ, φ) is measured. Thus to study
the interaction between protons and nuclei of atoms of gold, a proton beam is
allowed to interact with a target consisting of of a thin film of scatterer to ensure
single collisions. Since quantum mechanics does not allow the concept of a well
defined trajectory the angle of scattering cannot be calculated precisely and only
the probability, of scattering into a certain direction can be predicted. To count the
scattered particles in a collision experiment a detector is placed outside the path of
the incident beam. If the detector subtends a solid angle dΩ at the scattering centre
in the direction (θ, φ), the number of particles NdΩ entering the detector per unit
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time is proportional to the incident flux F , defined as the number of particles per
unit time crossing a unit area placed normal to the direction of incidence. Assuming
that the beam is uniform and that the density of particles in the beam is uniform
and is sufficiently small so as to avoid interference between the beam particles, the
differential scattering cross section dσ

dΩ
can be defined as

dσ

dΩ
=

N

F
. (14.1)

The total scattering cross section is defined as the integral of dσ
dΩ

over all solid angles

σtotal =

∫ (
dσ

dΩ

)
dΩ =

∫ 2π

0

dφ

∫ π

0

(
dσ

dΩ

)
sin θdθ. (14.2)

Since N is the number of particles per unit time, while F is the number of particles
per unit area per unit time, the dimensions of dσ

dΩ
and of σtotal are those of area.

RELATIONS BERWEEN ANGLES IN THE LABORATORY AND
THE CENTRE OF MASS SYSTEMS

The relations between the scattering angles in the laboratory system and in the
centre of mass system can be obtained from the definitions of the co-ordinate sys-
tems translating the laboratory frame in the direction of the incident particle with
speed so as to bring the centre of mass to rest. In Fig. 14.1 we show a particle of

Laboratory Frame

v′ = m1v
m1+m2

.

mass m1 and initial speed v to the right colliding with a particle of mass m2 that is

Figure 14.1: Laboratory Frame: in which the incident particle m1 has velocity v,
the target particle m2 is initially at rest, and the centre of mass (c.m) has speed
v′ = m1v

m1+m2
.

mass m1 and initial speed v to the right colliding with a particle of mass m2 that is

Laboratory Frame
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initially at rest in the laboratory frame. The centre of mass then moves to the right
with the speed v′ = m1v

m1+m2
, according to the law of momentum consevation.

Then in Fig. (14.2) we show that in the the centre of mass system the particles
of masses m1 and m2 approach the centre of mass with speeds

Figure 14.2: Centre of Mass Frame: in which the two particle of masses m1 m2

approach the stationary centre of mass with speeds m2v
m1+m2

and m1v
m1+m2

respectively.
After the collision they recede from the stationary centre of mass again with the
same speeds but in an spherical angle (θ, φ) from the original line of approach.

v′′ = v − v′ =
m2v

m1 +m2

and v′ =
m1v

m1 +m2

respectively. For elastic collision which we take to be the case here, the particles
recede from the centre of mass after collision with the same speeds as is depicted in
the figure. From the vector diagram in Fig. (14.3) we obtain

v′′ cos θ + v′ = v1 cos θL, (14.3)

v′′ sin θ = v1 sin θL,

φ = φL.

From the first two of Eq. (14.3) we get

tan θL =
sin θ

τ + cos θ
, τ =

v′

v′′
=

m1

m2

, (14.4)

Centre of Mass Frame
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θ
θ

v

v1 v

L

Laboratory to Centre of mass frame transformation

Figure 14.3: Laboratory to the Centre of mass frame transformation: in which we
show the vector addition of velocity v′ of the canter of mass in the laboratory frame
to the the velocity v′′ of the observed scattered particle in the centre of mass frame
to give the velocity v1n the laboratry frame.

CROSS SECTIONS

The relation between the scattering cross sections in the laboratory and the centre of
mass frames is obtained by equating the number of particles scattered in dΩ about
(θ, φ) and in dΩL about (θL, φL):(

dσ

dΩ

)
L

sin θLdθL =

(
dσ

dω

)
sin θdθ. (14.5)

Problem 14.1 Use Eq. (14.3) Eq. (14.4) and Eq. (14.4) to obtain

(
dσ

dΩ

)
L

=
[1 + τ 2 + 2τ cos θ]

3
2

|1 + cos θ|

(
dσ

dΩ

)
. (14.6)

14.2 Potential Scattering

We now consider the scattering of a beam of particles by a fixed centre of force. The
Schrödinger equation

i�
∂

∂t
ψ (r, t) =

[
− �

2

2m
∇

2 + V (r)

]
ψ (r, t) (14.7)
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describes the motion, m being the mass of the particle. Since V (r) does not depend
on time, we look for stationary solutions

ψ (r, t) = u (r) exp

(
−i

Et

�

)
. (14.8)

Here u (r) satisfies[
− �

2

2m
∇

2 + V (r)

]
u (r) = Eu (r) , (14.9)

where E, the energy of the incident particle has definite value

E =
p2

2m
=

1

2
mv2, (14.10)

v being the incident velocity and p the momentum of the incident particle.
We write Eq. (14.9) as[
∇

2 + k2 − Veff (r)
]
u (r) = 0, (14.11)

where k =
p

�

is the wavenumber of the particle and

Veff (r) =
2m

�2
V (r) (14.12)

is the effective potential.
We shall consider short range potential Veff (r) which either goes to zero beyond

a certain distance or decreases exponentially with r, in which case for large r, Veff (r)
can be neglected in Eq. (14.11) and it reduces to the free particle equation[

∇
2 + k2

]
u (r) = 0. (14.13)

In the asymptotic region r → ∞ u (r) must describe both the incident wave and
also the scattered particles, so that

lim
r→∞

u (r) −→ uinc (r) + usc (r) . (14.14)

We take the direction of the incident beam as the z-axis and the incident wave
can be represented by a plane wave

uinc (r) = exp (ikz) . (14.15)

Since uinc (r) is normalized to unity, it represents a ‘beam’ with one particle per unit
volume which travels with a velocity v = p

m
and the incident flux F is

F = v. (14.16)
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Now, far away from the scattering centre the wave function usc (r) should be a
outward moving spherical wave having the form

usc (r) = f (k, θ, φ)
eikr

r
, (14.17)

where (r, θ, φ) are the spherical polar coordinates of the scattered particle. Thus for
large r, u (r) must satisfy the asymptotic boundary condition

u (r) −→ eikz + f (k, θ, φ)
eikr

r
. (14.18)

f (k, θ, φ) is called the scattering amplitude .
Now, the probability current density for the stationary state Eq. (14.8) is given

by

j (r) = − i
�

2m
[u∗ (r)∇u (r)− (∇u∗ (r)) u (r)] . (14.19)

For large r, the radial current of the scattered particles in the direction of (θ, φ) can
be obtained from Eq. (14.19) and Eq. ( 14.18) and is given by

jr =
k�

m

|f (k, θ, φ)|2
r2

. (14.20)

The number of particles entering the detector per unit time, NdΩ is then

NdΩ =
k�

m
|f (k, θ, φ)|2 dΩ, (14.21)

and the differential scattering cross section is given by

dσ

dΩ
=

N

F
=

N

v
= |f (k, θ, φ)|2 . (14.22)

14.3 The Method of Partial Waves

When the scattering potential is central, i.e. V (r) = V (r), there is complete sym-
metry about the direction of incidence (which is taken as the z-axis) so that the
wavefunction and hence the scattering amplitude depend on θ but not on φ, the
azimuthal angle. Then u (r, θ) and f (k, θ) can be expanded in terms of Legendre
polynomials, which form a complete set in the interval of cos θ between +1 and −1,
i.e.

−1 ≤ cos θ ≤ + 1.
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Thus

u (r, θ) =
∞∑
l=0

Rl (k, r)Pl (cos θ) , (14.23)

and f (k, θ) =
∞∑
l=0

fl (k)Pl (cos θ) . (14.24)

Each term of Eq. (14.23) is called a partial wave, which is a simultaneous eigenfunc-

tion of the orbital angular momentum operators L̂2 and L̂z belonging to eigenvalues
l (l + 1) �2 and 0 respectively. In spectroscopic notation l = 0, 1, 2, 3, · · · partial
waves are known as s, p, d, f, · · · waves.

The partial wave amplitudes fl (k) in Eq. (14.24) are determined by the radial
function Rl (k, r) as will be known now.

The radial wavefunction Rl (k, r) satisfies the equation[
d2

dr2
+

2

r

d

dr
− l (l + 1)

r2
− Veff (r) + k2

]
Rl (k, r) = 0, (14.25)

where Veff (r) =
2m

�2
V (r) and E =

k2
�
2

2m
.

For potential less singular than r−2 at the origin, the behaviour of Rl (k, r) near
r = 0 can be determined by the power series expansion

Rl (k, r) = rs
∞∑
n=0

anr
n. (14.26)

Indicial equation gives two solutions with s = l and s = − (l + 1). Since the
wavefunction u (r, θ) must be finite everywhere including the origin r = 0, the
solution with s = l is the correct one to keep. In the other case for s = − (l + 1) the
wavefunction blows up at r = 0. For sufficiently large r, say for r > d, the potential
Veff (r) can be neglected and the equation satisfied by Rl (k, r) is given by[

d2

dr2
+

2

r

d

dr
− l (l + 1)

r2
+ k2

]
Rl (k, r) = 0. (14.27)

The linearly independent solutions of Eq. (14.27) are the spherical Bessel and
spherical Neumann functions jl (kr) and ηl (kr). The general solution will be a
linear combination of these functions, so that the radial function Rl (k, r) in the
region r > d(where Veff (r) can be neglected) is given by

Rl (k, r) = Bl (k) jl (kr) + Cl (k) ηl (kr) , for r > d. (14.28)
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Using the asymptotic expressions for jl (kr) and ηl (kr) we can write

lim
r→∞

Rl (k, r) −→ 1

kr

[
Bl (k) sin

(
kr − lπ

2

)
− Cl (k) cos

(
kr − lπ

2

)]
, (14.29)

which can be re-written as

lim
r→∞

Rl (k, r) −→ Al (k)
1

kr
sin

(
kr − lπ

2
+ δl (k)

)
(14.30)

where Al (k) =
√
B2

l (k) + C2
l (k), (14.31)

and δl (k) = − arctan

[
Cl (k)

Bl (k)

]
. (14.32)

The real constants δl (k) are called phase shifts and characterize the strength of the
scattering in the l-th partial wave by Veff at energy E = k2�2

2m
. This is so, because if

Veff is zero, the physical solution of Eq. (14.25), that is the solution which behaves
like rl at the origin. is the function jl (kr) which has the asymptotic form Eq. (14.30)
with δl (k) = 0.

Since f is independent of φ, the asymptotic form of u (r, θ) for latge r is

lim
r→

u (r, θ) −→ eikz + f (k, θ)
eikr

r
, (14.33)

and expanding eikz in terms of Pl (cos θ)

eikz =
∞∑
l=0

(2l + 1) iljl (kr)Pl (cos θ) (14.34)

−→
∞∑
l=0

(2l + 1) il
1

kr
sin

(
kr − lπ

2

)
Pl (cos θ) . (14.35)

Thus

lim
r→∞

Rl (k, r) −→ (2l + 1) il
1

kr
sin

(
kr − lπ

2

)
+

1

r
fl (k) . (14.36)

Equating Eq. (14.36) with Eq. (14.30) we have

(2l + 1) il
1

kr
sin

(
kr − lπ

2

)
+

1

r
fl (k) exp (ikr) =

Al (k)
1

kr
sin

(
kr − lπ

2
+ δl (k)

)
. (14.37)
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Problem 14.2 From Eq. (14.37) show the following

Al (k) = (2l + 1) il exp [iδl (k)] (14.38)

fl (k) = (2l + 1)
1

k
eiδl(k) sin [δl (k)] . (14.39)

Hint: Extress Sine terms as complex exponentials and equate separately coef-
ficints of e+ikr and e−ikr from both sides.

Thus we have

f (k, θ) =
∞∑
l=0

fl (k)Pl (cos θ)

=
1

2ik

∞∑
l=0

(2l + 1) {exp [2iδl (k)− 1]}Pl (cos θ) , (14.40)

which depends only on the phase shifts δl (k) and not on the normalization of the
radial function given by Al (k) in Eq. (14.38).

To understand the significance of the phase shifts we write the asymptotic form
of Rl (k, r) given by Eq. (14.25)

lim
r→∞

Rl (k, r) −→ 1

2ik
Al (k) e

−iδl(k)

[
e−i(kr− lπ

2 )

r
− Sl (k)

e+i(kr− lπ
2 )

r

]

(14.41)

where Sl (k) = exp [2iδl (k)] (14.42)

The first term on the right hand side in Eq. (14.41) represents an incoming
spherical wave and the second term an outgoing spherical wave. Sl (k) is called the
S-matrix element whose modulus is unity in the present case. This is so, because
in the elastic scattering the number of particles entering the scattering region per
second must be equal to the number of particles leaving the region per second. As a
result the effect of the potential is to produce a phase difference between the ingoing
and the outgoing spherical waves. The S-matrix can be generalized to describe non-
elastic scattering process as well. Then the conservation of probability is expressed
by requiring S-matrix to be unitary.

THE TOTAL CROSS SECTION

This can be calculated integrating the differential cross section Eq. (14.22)

σtot =

∫
dσ =

∫
|f (k, θ)|2 dΩ = 2π

∫ +1

−1

d (cos θ) f ∗ (k, θ) f (k, θ) . (14.43)
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Using Eq. (14.40) and the orthogonality of the Legendre polynomials:∫ +1

−1

d (cos θ)Pl (cos θ)Pl′ (cos θ) =
2

2l + 1
δl,l′ . (14.44)

we get

σtot =
∞∑
l=0

σl (14.45)

where σl =
4π

2l + 1
|fl (k)|2

=
4π

k2
(2l + 1) sin2 δl. (14.46)

Problem 14.3 Use Eq. (14.39), Eq. (14.40) Eq. (14.43) and Eq. (14.44) to prove
Eq. (14.45) and Eq. (14.46).

14.4 The Optical Theorem

We shall now show that the total scattering cross section is related to the forward
angle scattering amplitude f (k, θ = 0).

From the generating function of Legendre polynomial it follows that Pl (1) = 1
for all l; so from Eq. (14.40) we have

f (k, θ = 0) =
1

2ik

∞∑
l=0

(
e2iδl − 1

)
Now

2π

ik
[f (k, θ = 0)− f ∗ (k, θ = 0)] =

4π

k2

∞∑
l=0

(2l + 1) sin2 δl = σtot.

(14.47)

∴ σtot =
4π

k
�f (k, θ = 0) . (14.48)

where � denotes the imaginary part of the argument. This relation Eq. (14.48) is
known a optical theorem that connects the total cross section to the forward angle
scattering amplitude.

To understand the physical significance of Eq. (14.48) we observe that in order
for scattering to take place, particles must be removed by an amount proportional
to σ from the incident beam, so that its intensity is smaller behind the scattering
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region (θ ≈ 0) than in front of it. This occurs only by interference between the
two terms in the asymptotic expression Eq. (14.18). It can be shown by actual cal-
culation of this interference term that optical theorem holds much more generally,
namely when f (k) depends on φ as well as on θ and σ includes inelastic scattering
and absorption as well as elastic scattering.

CONVERGENCE OF PARTIAL WAVE SERIES

The expression of σtot in Eq. (14.45) or that of f (k, θ) are useless unless the series in
l converges rapidly. We see in Eq. (14.25) that as l increases the centrifugal barrier
becomes more important than Veff (r), so for sufficiently large l, Veff can be neglected
and the corresponding phase shift δl or the partial wave amplitude fl is negligible.
If lmax is the maximum of l which contributes to the series then lmax increases as the
energy increases. We can estimate the number of important partial waves following
a semiclassical arguments as follows. If the range of potential is a, beyond which it
vanishes then an incident particle having an impact parameter ‘b’ will be deflected
or not according to whether b < a or b > a.

o
z

a

Unscattered Beam

Scattered Beam

Impact parameter
b

Range of Field

Figure 14.4: Geometrical depiction of Impact Parameter b and range a of scattering
potential.

The magnitude of angular momentum L in classical mechanics of a particle of
linear momentum p is L = p · b, so that if L > p · a then the particle will be
undeflected. In the limit of large l, L can be set equal to l�, and setting p = k�, we
see that scattering in the l-th partial wave is expected to be small if

b > ka. (14.49)

It can also be shown that in the limit of k → 0 only l = 0 wave is of importance.
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Scattering length may be defined as

α = − lim
k→0

1

k
tan δ0, (14.50)

and lim
k→0

f −→ −α, (14.51)

dσ

dΩ
= α2, σtot = 4πα2. (14.52)



Chapter 15

Scattering Theory II

15.1 The Lippmann Schwinger Equation

In this chapter we deal with formal theory of scattering. We start with the scattering
process in a time independent formulation. The Hamiltonian is assumed to be given
as usual by

Ĥ = Ĥ0 + V̂ . (15.1)

where Ĥ0 is the kinetic energy operator

Ĥ0 =
p̂2

2m
. (15.2)

In the absence of the scatterer, V̂ would be zero and the energy eigenstates would
just be the free particle states |p〉. The presence of V̂ causes eigenstates to be
different from free particle states. For elastic scattering there is no change in energy
and we are interested in obtaining a solution to the full Hamiltonian Schrödinger
equation with the same energy eigenvalue. Thus if |φ〉 be the energy eigenket of Ĥ0

Ĥ0|φ〉 = E|φ〉, (15.3)

then the basic Schrödinger equation we wish to solve is(
Ĥ0 + V̂

)
|ψ〉 = E|ψ〉. (15.4)

Here, we denote the eigenstate of Ĥ0 by |φ〉 instead of |p〉, because we may later
be interested in free spherical wave rather than plane wave state. |φ〉 may stand for
either. Both Ĥ0 and Ĥ0 + V̂ exhibit continuous energy spectra and we look for a
solution to Eq. (15.4) such that |ψ〉 → |φ〉 as V̂ → 0, where |φ〉 is the solution of
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the free particle Schrödinger equation Eq. (15.3) with the same energy. Formally,
we may argue that the desired solution is

|ψ〉 =
1

E − Ĥ0

V̂ |ψ〉+ |φ〉, (15.5)

if for the time being we ignore the fact that the operator 1

E−Ĥ0
is of singular nature.

We note that
(
E − Ĥ0

)
, applied to Eq. (15.5) immediately yields Eq. (15.4). To

obtain the right equation one makes E slightly complex and the correct equation is
given by

|ψ±〉 = |φ〉+ 1

E − Ĥ0 ± iε
V̂ |ψ±〉. (15.6)

This is known as the Lippmann Schwinger equation. The physical meaning of
the ± sign will become evident by looking at 〈x|ψ±〉 at large distances. Eq. (15.6)
in position representation becomes

〈x|ψ±〉 = 〈x|φ〉+
〈
x

∣∣∣∣ 1

E − Ĥ0 ± iε
V̂

∣∣∣∣ψ±
〉

= 〈x | φ〉+
∫

d3x′
〈
x

∣∣∣∣ 1

E − Ĥ0 ± iε

∣∣∣∣x′
〉〈

x′
∣∣∣V̂ ∣∣∣ψ±

〉
, (15.7)

where we introduced the unit operator
∫
d3x′|x′〉〈x′|. This is an integral equation

for scattering because the unknown ket |ψ±〉 appears under the integral sign. If |p〉
stands for a plane wave state with momentum p, we can write

〈x|φ〉 =
eip·x/�

(2π�)
3
2

. (15.8)

Unlike the bound states, the plane wave states Eq. (15.8) are not normalizable and
are not really a vector in Hilbert space. We have delta function normalization in
this case given by∫

d3x〈p′|x〉〈x|p〉 = δ3 (p− p′) . (15.9)

However, in momentum basis the Lippmann-Schwinger equation takes the form

〈p|ψ±〉 = 〈p|φ〉+ 1

E − p2

2m
± iε

〈p|V̂ |ψ±〉. (15.10)
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We now proceed to evaluate the kernel of the integral equation Eq. ( 15.7) defined
by

G± (x,x′) ≡ �
2

2m

〈
x

∣∣∣∣ 1

E − Ĥ0 ± iε

∣∣∣∣x′
〉
. (15.11)

It can be shown that

G± (x,x′) = − 1

4π

e±ik|x−x′|

|x− x′| , (15.12)

where E =
k2
�
2

2m
.

To evaluate Eq. (15.11) we proceed as follows:

�
2

2m

〈
x

∣∣∣∣ 1

E − Ĥ0 ± iε

∣∣∣∣x′
〉

=
�
2

2m

∫
d3p′

∫
d3p′′ 〈x | p′〉 ×〈

p′
∣∣∣∣∣ 1

E − p′2

2m
± iε

∣∣∣∣∣p′′
〉
〈p′′ | x′〉 , (15.13)

where Ĥ0 has acted on 〈p′|.
Now〈
p′
∣∣∣∣∣ 1

E − p′2

2m
± iε

∣∣∣∣∣p′′
〉

=
δ3 (p′ − p′′)

E − p′2

2m
± iε

, (15.14)

〈x|p′〉 =
eip

′·x/�

(2π�)3/2
, 〈p′′|x′〉 =

e−ip′′·x′/�

(2π�)3/2
. (15.15)

Then the right hand side of Eq. (15.13) becomes

�
2

2m

∫
d3p′

(2π�)3

exp
[
ip

′·(x−x′)
�

]
E − p′2

2m
± iε

.

We write E = k2�2

2m
and set p′ ≡ q� to obtain

1

(2π)3

∫ ∞

0

q2dq

∫ 2π

0

dφ

∫ +1

−1

d (cos θ)
exp [iq |x− x′| cos θ]

k2 − q2 ± iε
=

− 1

8π2

1

|x− x′|

∫ +∞

−∞
dq

q
[
e+iq|x−x′| − e−iq|x−x′|]

−k2 + q2 ∓ iε
= I.

(15.16)
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R

C
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C
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k

+kr
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Figure 15.1: The contour in the complex q-plane for evaluating Eq. ( 15.16).

To evaluate the integral in Eq. (15.16) we note that that the integrand has poles in
the complex q-plane at

q = − k − iε, and q = k + iε. (15.17)

We choose a contour as in Fig. 15.1. Since the integrals on C1, C2 and C can be
shown to be zeroes in the limit R → ∞ and r → 0, we have from the method of
residues I in Eq. 15.16 becomes

I = − 1

4π

exp [±ik |x− x′|]
|x− x′| . (15.18)

Thus the kernel G± in Eq. (15.11) is the same as the Green’s function for the
Helmholtz equation(

∇
2 + k2

)
G± (x,x′) = δ3 (x− x′) . (15.19)

Finally we get from Eq. (15.7)

〈x|ψ±〉 = 〈x|φ〉 − 2m

�2

∫
d3x′ exp [±ik |x− x′|]

4π |x− x′| 〈x′|V̂ |ψ±〉. (15.20)

The wavefunction 〈x|ψ±〉 in the presence of the scatterer can thus be written as
the sum of the incident wave and a term representing the effect of the scattering
through V̂ .

At large distances the spatial dependence of the second term can be shown to
be exp(±ikr)

r
provided that the potential is of finite range. This means that the

positive solution (negative solution) corresponds to the plane wave plus an outgoing
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(incoming) spherical wave. We are here interested in the positive solution. If the
potential is local which means it is diagonal in x-representation, then

〈x′|V̂ |x′′〉 = V (x′) δ3 (x′ − x′′) (15.21)

and 〈x′|V̂ |ψ±〉 =

∫
d3x′′〈x′|V̂ |x′′〉〈x′′|ψ±〉 = V (x′) 〈x′|ψ±〉. (15.22)

Eq. (15.20) now becomes

〈x|ψ±〉 = 〈x|φ〉 − 2m

�2

∫
d3x′ exp (±ik |x− x′|)

|x− x′| V (x′) 〈x′|ψ±〉. (15.23)

We try to understand the physical content of the equation. The vector x is
naturally directed towards observation point where the wavefunction is evaluated.
The source point x′ is confined in the bounded region for a finite range potential,
where potential is non-zero. The detector is placed always very far away from the
scatterer at r which is greatly larger than the range of the potential.

k = p / h
O

α

xSource Point

x
P

Observation Point

x  x

Figure 15.2: The geometry of scattering. We have r = |x|, r′ = |x′| and r � r′. α
is the angle between x and x′.

Thus for r � r′

|x− x′| =
√
r2 − 2rr′ cosα + r′2

= r

(
1− 2

r′

r
cosα− r′2

r2

) 1
2

= r − r′ cosα

= r − x̂ · x′, (15.24)

where x̂ ≡ unit vector along x =
x

|x| . (15.25)

Also we define k′ ≡ kx̂ so that for large r

e±ik|x−x′| = e±ikr · e∓ik′·x′

. (15.26)
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Replacing 1
|x−x′| by

1
r
we use |k〉 instead of |p〉 where k = p

�
.

Because |k〉 is normalized as 〈k|k′〉 = δ3 (k− k′) we have

〈x|k〉 =
eik·x

(2π)
3
2

.

Finally at r → ∞

〈x|ψ+〉 −→ 〈x|k〉 − 1

2π

2m

�2

eikr

r

∫
d3 (x′) e−ik′·x′

V (x′) 〈x′|ψ+〉

=
1

(2π)
3
2

[
eik·x +

eikr

r
f (k,k′)

]
, (15.27)

where the amplitude of the outgoing spherical wave is

f (k,k′) = − 1

4π

2m

�2
(2π)3

∫
d3 (x′)

e−ik′·x′

(2π)
3
2

V (x′) 〈x′|ψ+〉

= − 1

4π
(2π)3

2m

�2
〈k′|V |ψ+〉. (15.28)

Similarly it can readily be shown that 〈x|ψ−〉 corresponds to the original plane
wave in the direction of k plus an incoming spherical wave with

spatial dependence
e−ikr

r
and amplitude − 1

4π
(2π)3

2m

�2
〈k′|V |ψ−〉.

The differential scattering cross section dσ
dΩ

is defined as follows

dσ

dΩ
dΩ =

No. of particles scattered in dΩ per unit time

No. of incident particle crossing unit area per unit time

(15.29)

=
r2|jsc|dΩ
|jinc|

= |f (k,k′) |2dΩ (15.30)

where jsc and jinc can be calculated from the definition of probability flux

j =
�

2im
[ψ∗

∇ψ − (∇ψ∗)ψ] (15.31)

using the scattered and incident wavefunctions respectively from Eq. ( 15.27).
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15.2 The Born Approximation

The expression for the scattering amplitude in Eq. (15.28) is not useful as it contains
the unknown ket |ψ+〉. If the scattering is not very strong, we can replace 〈x′|ψ+〉
appearing under the integral sign by 〈x′|φ〉 as follows

〈x′|ψ+〉 −→ 〈x′|φ〉 =
eik·X

′

(2π)
3
2

. (15.32)

The first order Born approximation is given by

f (1) (k,k′) = − 1

4π

2m

�2

∫
d3x′ei(k−k′)·x′

V (x′) . (15.33)

The integral is the three dimensional Fourier transform of the potential V with
respect to q and q = |k − k′|. For elastic scattering |k′| = |k| and q ≡ |k − k′| =
2k sin θ/2. The angular integration can be carried out explicitly and

k

k

θ
q

q = 2 Sin θ /2

Figure 15.3: Transfer of momentum in a scattering through angle θ. q = k− k′.

f (1) (θ) = −1

2

2m

�2

1

iq

∫ ∞

0

V (r)

r

[
eiqr − e−iqr

]
r2dr

= −2m

�2

1

q

∫ ∞

0

rV (r) sin qr dr. (15.34)

15.3 The Higher Order Born Approximation

We use the transition operator T defined by the following

V̂ |ψ+〉 = T̂ |φ〉. (15.35)
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Multiplying the Lippmann-Schwinger’s Eq. (15.6) by V̂ ,

T̂ |φ〉 = V̂ |ψ+〉 = V̂ |φ〉+ V̂
1

E − Ĥ0 + iε
T̂ |φ〉. (15.36)

Since |φ〉-s are momentum eigenstates which form complete set, Eq. (15.36) can be
written in operator form

T̂ = V̂ + V̂
1

E − Ĥ0 + iε
T̂ . (15.37)

We now write the scattering amplitude f (k,k′) from Eq. (15.28) and Eq. (15.35)
with |φ〉 as momentum eigenkets

f (k,k′) = − 1

4π

2m

�2
(2m)3 〈k′|T̂ |k〉. (15.38)

Now the iterative solution for T̂ is

T̂ = V̂ + V̂
1

E − Ĥ0 + iε
V̂ + V̂

1

E − Ĥ0 + iε
V̂

1

E − Ĥ0 + iε
V̂ + · · ·

=

( ∞∑
n=1

[
V̂

1

E − Ĥ0 + iε

]n−1
)
V̂ (15.39)

and correspondingly the expansion of f (k,k′) is

f (k,k′) =
∞∑
n=1

f (n) (k,k′)

with f (n) (k,k′) = − 1

4π

2m

�2
(2π)3

〈
k′
∣∣∣∣∣V̂
[

1

E − Ĥ0 + iε
V̂

]n−1
∣∣∣∣∣k
〉
.

(15.40)

where n is the number of V̂ operators appearing in the expression and also denotes
the order of Born approximation. Thus

f (1) (k,k′) = − 1

4π

2m

�2
(2π)3

〈
k′
∣∣∣V̂ ∣∣∣k〉

f (2) (k,k′) = − 1

4π

2m

�2
(2π)3

〈
k′
∣∣∣∣V̂ 1

E − Ĥ0 + iε
V̂

∣∣∣∣k
〉

· · · = · · · (15.41)
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Introducing the identity operator
∫
d3|x′〉〈x′| at relevant points and using the locality

of V̂ we can write

f (2) (k,k′) = − 1

4π

2m

�2
(2π)3

∫
d3x′

∫
d3x′′ 〈k′ | x′〉V (x′)×〈

x′
∣∣∣∣ 1

E − Ĥ0 + iε

∣∣∣∣x′′
〉
V (x′′) 〈x′′ | k〉

= − 1

4π

2m

�2

∫
d3x′

∫
d3x′′e−ik′·x′

V (x′)
[
2m

�2
G+ (x′,x′′)

]
×

V (x′′) e+ik·x′′

(15.42)

k

k

x

x

Second Born Approximation

Figure 15.4: Schematic description of 2nd order Born scattering process.

Physically Eq. (15.42) can be interpreted using Fig. 15.4 as follows. The incident
wave interacts at x′′ since V (x′′) is appearing, and then propagates to x′ via the
Green’s function G+ (x′,x′′) and subsequently a second interaction occurs at x′,
because of V (x′). Finally the wave is scattered in the direction of k′. Thus f (2) is
a two step process, likewise f (3) and so on.
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Chapter 16

Relativistic Wave Equations

16.1 Introduction

A relativistic wave equation describes the motion of a particle that has speed ap-
proaching that of light. A characteristic feature of relativistic wave equation is that
the spin of the particle is built into the theory from the start and cannot be added
afterwards as Pauli added electron spin to Schrödinger non-relativistic equation. In
the next section is described a spin zero particle known as Klein Gordon equation.
The subsequent section will deal with Dirac equation describing spin 1/2 particles.
We shall continue to use three dimensional vector notations rather than the the
four dimensional notation of special relativity theory. However, the invariance of an
equation under Lorentz transformation can usually be inferred from its symmetry
between the space coordinate and time.

16.2 The Klein Gordon Equation

This equation follows from the relativistic energy expression for a free particle of
mass m.

E2 = p2c2 +m2c4. (16.1)

Using the operators

E = i�
∂

∂t
and p = − i�∇, (16.2)

Eq. (16.1) becomes

−∂2ψ

∂t2
= − �

2c2∇2ψ +m2c4ψ. (16.3)
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Eq. (16.3) has plane wave solutions of the form

ψ (r, t) = A exp [i (k · r− ωt)] , (16.4)

which are eigenfunctions of the operators E and p in Eq. (16.2) with eigenvalues
�ω and �p respectively.

Now Eq. (16.4) satisfies Eq. (16.3) if

�ω = ±
√

�2c2k2 +m2c4. (16.5)

The ± in Eq. (16.5) is due to the ambiguity in the sign of the energy resulting from
the classical expressiom Eq. (16.1)

The continuity equation

∂P (r, t)

∂t
+∇ · S (r, t) = 0 (16.6)

is invariant under Lorentz transformation. Eq. (16.6) results if we define

P (r, t) =
i�

2mc2

[
ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

]

and S (r, t) =
�

2im
[ψ∗

∇ψ − ψ∇ψ∗] .

(16.7)

However, P (r, t) defined in Eq. (16.7) is not necessarily positive definite and
hence cannot be interpreted as position probability density. But it, when multiplied
by the charge e, can be interpreted as charge density, since charge density can have
either sign so long as it is real.

The Klein Gordon equation suffers from two defects: lack of existence of a posi-
tive definite probability density, and occurrence of negative energy states. For a free
particle, whose energy is constant, the latter difficulty may be avoided by choosing
only positive energy for the particle and simply ignoring the negative energy states.
But an interacting particle may exchange energy with its environment, and there
would then be nothing to stop it cascading down to negative energy states emitting
an infinite amount of energy in the process. This, of course, is not observed, and so
poses a problem for the single particle Klein Gordon equation. For this reason Klein
Gordon equation was discarded and Dirac looked for an equation to replace it.
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16.3 The Dirac Relativistic Equation

Dirac started with the wave equation

i�
∂ψ (r, t)

∂t
= Ĥψ (r, t) = Eψ (r, t) . (16.8)

The classical relativistic Hamiltonian for a free particle should be the positive square-
root of the right hand side of Eq. (16.1). Dirac modified the classical relativistic
expression for energy and hence for the Hamiltonian in such a way as to make it
linear in space derivative (i.e. linear in momentum). Thus the free particle Dirac
Hamiltonian is

Ĥ = cα · p+ βmc2. (16.9)

One can justify the linearity of p and mc2 in the expression for Ĥ as follows. In
the relativistic limit, m2c4 term in Eq. ( 16.1) can be neglected and E ∼ pc. In the
non-relativistic limit the momentum term can be neglected and E ∼ mc2. Thus the
Hamiltonian can be a linear combination of pc and mc2 in regions away from both
the limits.

From Eq. (16.9) and Eq. (16.8) one gets the wave equation(
E − cα · p− βmc2

)
ψ (r, t) = 0, (16.10)

i.e.

(
i�

∂

∂t
− cα · p− βmc2

)
ψ (r, t) = 0, (16.11)

We note that the wave equation is justly linear in space and time derivatives.
Since we are considering the motion of a free particle, all points in space time

must be equivalent, i.e. the Hamiltonian should not contain terms that depends on
the space coordinate or time, as such terms would give rise to force. Also, the space
and time derivatives are to appear only in p and E. We thus conclude that α and
β are independent r, t,p and E and hence commute with them. However this does
not neccessarily mean that α and β are numbers, since they need not commute with
each other.

We now require that any solution ψ of Eq. (16.11) shall also be solution of the
Klein Gordon relativistic Eq. (16.3), We therefore multiply Eq. (16.10) on the left
by (

E + cα · p+ βmc2
)

and get{
E2 − c2

[
α2
xp

2
x + α2

yp
2
y + α2

zp
2
z

]
−m2c4β2

−c2 [(αxαy + αyαx) pxpy + (αyαz + αzαy) pypz + (αzαx + αxαz) pzpx]

−mc3 [(αxβ + βαx) px + (αyβ + βαy) py + (αzβ + βαz) pz]}ψ = 0,

(16.12)
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where E and p are differential operators given by Eq. (16.2). Eq. (16.11) agrees
with Eq. (16.3) if α, β satisfy the relations

α2
x = α2

y = α2
z = β2 = Î ,

αxαy + αyαx = αyαz + αzαy = αzαx + αxαz = 0,

αxβ + βαx = αyβ + βαy = αzβ + βαz = 0.

(16.13)

MATRICES FOR α AND β

It can be shown that they are even dimensional and there are no set of four mutualy
anti-commuting 2-dimensional operators. So the minimum dimension is 4. Since
the squares of all the four matrices are unity, their eigenvalues are 1 and −1. Thus
choosing β arbitrarily diagonal in a particular representation we write

β =

(
Î 0

0 −Î

)
=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (16.14)

It can then be shown using the properties of α and β given Eq. (16.13) that

α =

(
0 σ

σ 0

)
(16.15)

where σ-s are the 2× 2 Pauli spin matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Thus

αx =

(
0 σx

σx 0

)
=

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ , (16.16)

αy =

(
0 σy

σy 0

)
=

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠ , (16.17)
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αz =

(
0 σz

σz 0

)
=

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ . (16.18)

(16.19)

Problem 16.1 Verify that the four matrices in Eq. (16.14) to Eq. (16.17 ) sat-
isfy Eq. (16.13).

FREE PARTICLE SOLUTIONS

We now consider the wave equation Eq. (16.11) where α and β are 4×4 matrices
which operate on ψ. Thus the wave function ψ itself has to be a column matrix
with four rows, namely

ψ (r, t) =

⎛
⎜⎜⎝

ψ1 (r, t)
ψ2 (r, t)
ψ3 (r, t)
ψ4 (r, t)

⎞
⎟⎟⎠ . (16.20)

The free particle wave function Eq. (16.11) is then equivalent to four simultaneous
first order partial differential equations that are linear and homogeneous in the four
ψ-s.

Plane wave solutions of the form

ψj (r, t) = uj exp [i (k · r− ωt)] , j = 1, 2, 3, 4. (16.21)

can be obtained where uj-s are numbers. These are eigenfunctions of energy and
momentum with eigenvalues �ω and k� respectively. Substitution of Eq. (16.20)
and the matrices for α, β in Eq. (16.11) give the following equations for the uj-s,
where E = �ω and p = k� are now numbers:(

E −mc2
)
u1 + 0 · u2 − cpzu3 − c (px − ipy)u4 = 0,

0 · u1 +
(
E −mc2

)
u2 − c (px + ipy)u3 + cpzu4 = 0,

−cpzu1 − c (px − ipy) u2 +
(
E −mc2

)
u3 + 0 · u4 = 0,

−c (px + ipy) u1 + cpzu2 + 0 · u3 +
(
E −mc2

)
u4 = 0,

(16.22)

These algebraic equations are homogeneous in the uj-s, and hence have non-zero
solutions only if the secular determinant of the coefficients is zero.
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Problem 16.2 (i). Show that the secular determinant is [E2 −m2c4 − p2c2] where
E and p are numbers.

(ii). Choose E+ = +
√
p2c2 +m2c4 for any momementum p and show that the two lin-

early independent solutions are given by

I. u1 = 1, u2 = 0, u3 =
cpz

E+ +mc2
, u4 =

c (px + ipy)

E+ +mc2
,

(16.23)

II. u1 = 0, u2 = 1, u3 =
c (px − ipy)

E+ +mc2
, u4 =

−cpz
E+ +mc2

,

(16.24)

Similar solutions can be obtained for negative energy E− = −
√

c2p2 +m2c4.
These are given by

III. u1 =
cpz

E− −mc2
, u2 =

c (px + ipy)

E− −mc2
, u3 = 1, u4 = 0,

(16.25)

IV. u1 =
c (px − ipy)

E− −mc2
, u2 =

−cpz
E− −mc2

, u3 = 0, u4 = 1

(16.26)

We have ψ†ψ = A2
± with

A± =

√
1 +

c2p2

(E± ±mc2)2

(the upper set of signs corresponds to cases I and II and the lower set of signs
corresponds to the cases III and IV) where ψ† is the Hermitian adjoint of ψ, and
is a row matrix with four columns. Thus the four solutions can be normalized by
dividing them by the corresponding A.

We now define three new spin matrices σ′
x, σ

′
y, σ

′
z as the 4× 4

σ′ =

(
σ 0
0 σ

)
. (16.27)

We shall very soon see that 1
2
�σ′ can be interpreted as the operator that represents

spin angular momentum.
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We can obtain a conservation equation by multiplying Eq. (16.11) on the left by
ψ†, the Hermitian adjoint equation

−i�
∂ψ†

∂t
− i�c

(
∇ψ†) ·α− ψ†βmc2 = 0

on the right by ψ, and taking the difference of the two results. We then obtain

∂

∂t

(
ψ†ψ
)
+ c∇ ·

(
ψ†αψ

)
= 0 (16.28)

or
∂P

∂t
+∇ · S (r, t) = 0, (16.29)

which is the continuity equation Eq. (16.6) with

P = ψ†ψ, S = c
(
ψ†αψ

)
. (16.30)

Since P is never negative, it can be interpreted as position probability density.
The second of Eq. (16.30) indicate that cα can be interpreted as a particle

velocity. To verify this we calculate the time derivative of position vector r in the
Heisenberg picture, using Eq. (16.10)

dx

dt
=

1

i�

(
xĤ − Ĥx

)
= αx. (16.31)

SPIN ANGULAR MOMENTUM IN CENTRAL FIELD

We consider the motion of an electron in a central field. The Hamiltonian is

Ĥ = cα · p+ βmc2 + V (r) , (16.32)

and i�
∂ψ

∂t
= Ĥψ.

We might expect that the orbital angular momentum L = r × p would be a
constant of motion. However it turns out that the total angular momentum rather
than the orbital angular is a constant of motion.

Problem 16.3 (i). From Heisenberg equation of motion calculate
[
Lx, Ĥ

]
to show that

i�
dLz

dt
=
[
Lx, Ĥ

]
= − i�c (αzpy − αypz) . (16.33)

CHARGE AND CURRENT DENSITIES
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(ii). Show that

[σ′
x, αy] = 2iαz

and [σ′
x, αz] = −2iαy,

so that

i�
dσ′

x

dt
=
[
σ′
x, Ĥ
]

= 2ic (αzpy − αypz) . (16.34)

Thus Lx + �

2
σ′
x and similarly all the three components commute with Ĥ and are

constants of motion. Identifying �

2
σ′ as the spin angular momentum we observe

that the total angular momentum J = L+ S is a constant of motion where

S =
�

2
σ′ (16.35)

is the spin angular momentum.

16.4 Conclusion

We have seen that in Dirac theory of electron the position probability density is
positive.

Also Dirac electrons have negative energy states. Dirac’s solution to this problem
relies on the fact that electrons have spin 1/2 and therefore obey Pauli’s exclusion
principle. Dirac assumed that the negative energy states are already completely
filled up and the exclusion principle prevents any more electron being able to enter
the ‘sea’ of negative energy states. This ‘Dirac sea’ is the vacuum; so on Dirac’s
theory, the vacuum is not ‘empty’, but an infinite sea of negative energy electrons,
protons, neutrinos, neutrons and all other spin 1/2 particles!

Now this ingeneous theory makes an important prediction. For suppose there
occurs one vacancy in the electron sea - a ‘hole’ - with energy −|E|. An electron
with energy E may fill this hole, emitting energy 2E.

e− + hole −→ energy, (16.36)

so the ‘hole‘ effectively has charge +e and positive energy and is called a positron,
the antiparticle of electron. This theory thus predicted the existence of antiparticles
for all spin 1/2 particles, and in time e+, p̄, n̄, ν̄ were observed.

Despite the resolution of negative energy states, Dirac equation is no longer a
single particle equation, since it describes both particles and antiparticles. It is then
only consistent to regard the spinor ψ as a field such that ψ†ψ gives a measure of
the number of particles at a particular space-time point. This field is obviously a
quantum field!
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Appendix

A.1 Expansion in a Series of Orthonormal Func-

tions

We consider a free particle in a bounded volume of space Ω, whose orthonormal
wavefunctions are

ψk (r) =
1√
Ω
exp [i (k · r)] . (A.1)

Suppose we wish to approximate a function f (r) by a linear combination of
ψk (r) with |k| < k0, i.e we wish to find complex numbers ak such that in some
sense

f (r) ≈
∑
k

akψk (r) for r within Ω

and where |k| < k0. We consider t as fixed and omit it for the present from
argument of ψk.

Define

Δ ≡
∫
Ω

∣∣∣∣∣∣f −
∑
|k|<k0

akψk

∣∣∣∣∣∣
2

d3r, (A.2)

where
√

Δ
Ω
is the root mean square error.

Δ is obviously a good measure of the precision to which f is approximated by∑
k akψk.
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We minimize Δ with respect to ak to get “least” values of ak.

Δ =

∫
Ω

⎛
⎝f −

∑
|k|<k0

akψk

⎞
⎠

∗⎛
⎝f −

∑
|k′|<k0

ak′ψk′

⎞
⎠ d3r

=

∫
Ω

|f |2d3r−
∑
|k|<k0

a∗k

∫
Ω

ψ∗
kfd

3r−
∑

|k′|<k0

ak′

∫
Ω

f ∗ψk′d3r

+
∑

|k|,|k′|<k0

a∗ka
′
k

∫
Ω

ψ∗
kψk′d3r

=

∫
Ω

|f |2d3r−
∑
|k<k0

[
a∗k

∫
Ω

ψ∗
kfd

3r+ ak

∫
Ω

f ∗ψkd
3r

]

+
∑

|k|,|k′|<k0

a∗kak′δk,k′

=

∫
Ω

|f (r) |2d3r−
∑
|k|<k0

∣∣∣∣
∫
Ω

f (r)ψ∗
k (r) d

3r

∣∣∣∣
2

+
∑
|k|<k0

∣∣∣∣ak −
∫
Ω

ψ∗
k (r) f (r) d3r

∣∣∣∣
2

(A.3)

Δ will be minimum for

ak =

∫
Ω

ψ∗
k (r)) f (r) d3r, for all |k| < k0. (A.4)

and its minumum value is

Δmin =

∫
Ω

|f (r)|2 d3r−
∑
|k|<k0

∣∣∣∣
∫

ψ∗
k (r) f (r) d3r

∣∣∣∣
2

(A.5)

Now let k0 → ∞, then the “best” value for ak for |k| < k0 is when
ak =

∫
Ω
ψ∗
k (r) f (r) d3r, which is unchanged as k0 → ∞.

Since Δmin ≥ 0 we get

∑
k

|ak|2 ≤
∫
Ω

|f (r) |2d3r Bessel Inequality. (A.6)

If
∑

k akψk (r) is a continuous function of r, then

Δmin = 0, if and only if f (r) =
∑
k

akψk (r) .
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Also

Δmin = 0, ⇐⇒
∑
k

|ak|2 =

∫
|f (r) |2d3r.

Thus

f (r) =
∑
k

akψk (r) , ⇐⇒
∑
k

|ak|2 =

∫
|f (r) |2d3r. (A.7)

We say that ψk (r, t) is a complete orthonormal set ⇐⇒ for any continuous absolute
square integrable function f (r) for which

∑
k akψk (r) is continuous.

f (r) =
∑
k

akψk (r, t) , where

ak (t) =

∫
ψ∗
k (r, t) f (r) d3r.

If the functions ψk (r, t) of Eq. (A.1) are a complete set, then taking f (r) = ψ (r, t),
the wavefunction, we have

ψ (r, t) =
∑
k

akψk (r, t) , where (A.8)

ak (t) =

∫
ψ∗
k (r, t)ψ (r) d3r. (A.9)

Then for a normalized wavefunction ψ (r, t) we have

∑
k

|ak|2 =

∫
|ψ (r) |2d3r = 1, (A.10)

which is the criterion for Eq. (A.1) to be a complete set.

A.2 Fourier Series

Consider a single-valued, periodic function f (x) defined in the interval −π ≤ x ≤ π
and determined outside this interval by the condition f (x+ 2π) = f (x), so that
f (x) has the period of 2π. The Fourier Series corresponding to f (x) is defined to
be

f (x) =
1

2
A0 +

∞∑
n=1

[An cos (nx) +Bn sin (nx)] . (A.11)
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Provided f (x) and f ′ (x) are piecewise continuous in the interval (−π, π), this series
converges. The constants A0, A1, · · · , An, · · · are determined by multiplying
both sides of Eq. (A.11) by cos (mx) and integrating over the interval −π to +π.
We find

Am =
1

π

∫ +π

−π

f (x) cos (mx) dx, m = 0, 1, 2, · · · . (A.12)

Similarly by multiplying Eq, (A.11) throughout by sin (mx) and integrating, we find

Bm =
1

π

∫ +π

−π

f (x) sin (mx) dx, m = 1, 2, · · · . (A.13)

Since cos (nx) and sin (nx) can be written as complex exponentials exp (±inx), the
Fourier expansion Eq. (A.11) can also be written in the following form

f (x) =
1√
2π

+∞∑
−∞

Cn exp (inx) . (A.14)

The coefficients Cn can be found directly using the relation

1

2π

∫ +π

−π

exp [i (n−m) x] dx = δn,m, (A.15)

where δn,m is the Kronecker Delta Symbol defined as

δn,m =

{
1 if m = n
0 if m �= n

. (A.16)

Thus multiplying both sides of Eq. (A.14) by 1√
2π

exp (−imx), integrating over x

and using Eq. (A.15), we get

Cm =
1√
2π

∫ +π

−π

f (x) exp (−imx) dx, (A.17)

where m is a positive or negative integer or zero.
A function f (x) defined in some other interval (−L,+L) and periodic with

pertodicity 2L, so that f (x+ 2L) = f (x) can also be expanded in a Fourier
Series by making change of variable x → πx/L. We then have

f (x) =
1√
2π

+∞∑
n=−∞

Cn exp [inπx/L] , where (A.18)

Cm =
1√
2π

∫ +L

−L

f (x) exp [−imπx/L] dx. (A.19)
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A.3 Fourier Transforms

Frequently, the functions with which we have to deal are not periodic, but are defined
for all real values of x, −∞ < x < +∞. Such functions can also be expressed
in terms of complex exponentials by taking the limit L → ∞ in Eq. (A.18) and
Eq. (A.19). As L increases in value the difference between successive terms in the
series Eq. (A.18) becomes smaller and smaller, and the sum over n can be replaced
by an integral:

f (x) =
1√
2π

∫ +∞

−∞
Cn exp [inπx/L] dn. (A.20)

Letting

k = nπ/L (A.21)

and defining a new function

g (k) = LCn/π, (A.22)

the integral Eq. (A.20) can be written as

f (x) =
1√
2π

∫ +∞

−∞
g (k) exp [ikx] dk. (A.23)

By taking the limit L → ∞ in Eq. (A.19) we find

g (k) =
1√
2π

∫ +∞

−∞
f (x) exp [−ikx] dx. (A.24)

The integrals Eq. (A.23) and Eq. (A.24) are known as Fourier Integrals. And
g (k) and f (x) are Fourier Transforms of each other. A function f (x) can only be
expressed as a Fourier Transform if the infinite integrals Eq. (A.23) and Eq. ( A.24)
converge. This will be the case if f (x) and g (k) are square integrable functions,
which means that∫ +∞

−∞
|f (x) |2 dx < ∞ and

∫ +∞

−∞
|g (k) |2 dk < ∞. (A.25)
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A.4 The Dirac Delta Function

By inserting g (k) from Eq. (A.24) in Eq. (A.23) we get

f (x) =
1

2π

∫ +∞

−∞

{∫ +∞

−∞
f (x′) exp [−ikx′] dx′

}
exp [ikx] dk (A.26)

or f (x) =

∫ +∞

−∞
f (x′) δ (x− x′) , (A.27)

where in Eq. (A.27) the order of the integrals has been reversed and the function
δ (x− x′) has been defined by

δ (x− x′) =
1

2π

∫ +∞

−∞
exp [ik (x− x′)] dk. (A.28)

This procedure is open to question since integral in Eq. (A.28) does not converge.
However, P.A.M, Dirac introduced this function attaching a meaning to it and it is
known as Dirac delta function.

The main properties of the Dirac delta function are the following:

(i).

∫ b

a

f (x) δ (x− x0) dx =

{
f (x0) , if a < x0 < b
0 if x0 < a or x0 > b

. (A.29)

(ii). δ (x) = δ (−x) . (A.30)

(iii). xδ (x) = 0. (A.31)

Actually the Delta function is defined by these properties. Any function that satisfies
these properties is defined as Delta function. From these properties follow others.

δ (ax) =
1

|a|δ (x) , a �= 0. (A.32)

f (x) δ (x− a) = f (a) δ (x− a) . (A.33)∫
δ (a− x) δ (x− b) dx = δ (a− b) . (A.34)

δ [g (x)] =
∑
i

1

|g′ (xi) |
δ (x− xi) (A.35)

where g (xi) = 0, but g′ (xi) �= 0.

lim
a→+∞

af (ax) = δ (x) , if

∫ +∞

−∞
f (x) dx = 1. (A.36)
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Example A.1

δ [(x− a) (x− b)] =
1

|a− b| [δ (x− a) + δ (x− b)] , (A.37)

for a �= b

Example A.2

δ
(
x2 − a2

)
=

1

2|a| [δ (x− a) + δ (x+ a)] . (A.38)

Example A.3 Since 1√
π

∫ +∞
−∞ exp [−x2] = 1, so

lim
a→+∞

a√
π
exp
[
−a2x2

]
= δ (x) . (A.39)

The derivative of the delta function

δ′ (x) =
d

dx
δ (x) , (A.40)

can also be given a meaning, since∫ b

a

f (x) δ′ (x) dx = [f (x) δ (x)]ba −
∫ b

a

δ (x) f ′ (x) dx

= −f ′ (0) , (A.41)

where the x = 0 point is assumed to lie in the interval (a, b). Otherwise∫ b

a

f (x) δ′ (x− x0) dx = − f ′ (x0) , a < x0 < b. (A.42)

We have further properties of Fourier transforms from Eq. (A.23)∫ +∞

−∞
|f (x) |2dx =

1

2π

∫ +∞

−∞
dx

[∫ +∞

−∞
g∗ (k) exp (−ikx) dk

]
×

×
[∫ +∞

−∞
g (k′) exp (ik′x) dk′

]

=

∫ +∞

−∞
g∗ (k) dk

∫ +∞

−∞
g (k′) dk′

[
1

2π

∫ +∞

−∞
exp (i (k − k′) x) dx

]

=

∫ +∞

−∞
g∗ (k) dk

∫ +∞

−∞
g (k′) δ (k − k′) dk′

=

∫ +∞

−∞
|g (k) |2dk. (A.43)
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This result is known as Parseval’s theorem.
One can generalize Fourier’s transforms to functions in three dimensions:

f (r) =
1

(2π)3/2

∫
g (k) exp [ik · r] d3k

g (k) =
1

(2π)3/2

∫
f (r) exp [−ik · r] d3r (A.44)
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