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Preface

There is an abundance of excellent texts and lecture notes on quantum theory
and applied quantum mechanics available to the students and researchers. The
motivation for writing this book is to present matrix mechanics as it was first
discovered by Heisenberg, Born and Jordan, and by Pauli and bring it up to
date by adding the contributions by a number of prominent physicists in the in-
tervening years. The idea of writing a book on matrix mechanics is not new. In
1965 H.S. Green wrote a monograph with the title “Matrix Mechanics” (Nord-
hoff, Netherlands) where from the works of the pioneers in the field he collected
and presented a self-contained theory with applications to simple systems.

In most text books on quantum theory, a chapter or two are devoted to
the Heisenberg’s matrix approach, but due to the simplicity of the Schrödinger
wave mechanics or the elegance of the Feynman path integral technique, these
two methods have often been used to study quantum mechanics of systems with
finite degrees of freedom.

The present book surveys matrix and operator formulations of quantum
mechanics and attempts to answer the following basic questions: (a) — why
and where the Heisenberg form of quantum mechanics is more useful than other
formulations and (b) — how the formalism can be applied to specific problems?
To seek answer to these questions I studied what I could find in the original
literature and collected those that I thought are novel and interesting. My first
inclination was to expand on Green’s book and write only about the matrix
mechanics. But this plan would have severely limited the scope and coverage of
the book. Therefore I decided to include and use the wave equation approach
where it was deemed necessary. Even in these cases I tried to choose the ap-
proach which, in my judgement, seemed to be closer to the concepts of matrix
mechanics. For instance in discussing quantum scattering theory I followed the
determinantal approach and the LSZ reduction formalism.

In Chapter 1 a brief survey of analytical dynamics of point particles is
presented which is essential for the formulation of quantum mechanics, and an
understanding of the classical-quantum mechanical correspondence. In this part
of the book particular attention is given to the question of symmetry and con-
servation laws.
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viii Heisenberg’s Quantum Mechanics

In Chapter 2 a short historical review of the discovery of matrix mechanics
is given and the original Heisenberg’s and Born’s ideas leading to the formu-
lation of quantum theory and the discovery of the fundamental commutation
relations are discussed.

Chapter 3 is concerned with the mathematics of quantum mechanics,
namely linear vector spaces, operators, eigenvalues and eigenfunctions. Here
an entire section is devoted to the ways of constructing Hermitian operators,
together with a discussion of the inconsistencies of various rules of association
of classical functions and quantal operators.

In Chapter 4 the postulates of quantum mechanics and their implica-
tions are studied. A detailed review of the uncertainty principle for position-
momentum, time-energy and angular momentum-angle and some applications
of this principle is given. This is followed by an outline of the correspondence
principle. The question of determination of the state of the system from the
measurement of probabilities in coordinate and momentum space is also in-
cluded in this chapter.

In Chapter 5 connections between the equation of motion, the Hamiltonian
operator and the commutation relations are examined, and Wigner’s argument
about the nonuniqueness of the canonical commutation relations is discussed.
In this chapter quantum first integrals of motion are derived and it is shown
that unlike their classical counterparts, these, with the exception of the energy
operator, are not useful for the quantal description of the motion.

In Chapter 6 the symmetries and conservation laws for quantum mechan-
ical systems are considered. Also topics related to the Galilean invariance, mass
superselection rule and the time invariance are studied. In addition a brief dis-
cussion of classical and quantum integrability and degeneracy is presented.

Chapter 7 deals with the application of Heisenberg’s equations of motion
in determining bound state energies of one-dimensional systems. Here Klein’s
method and its generalization are considered. In addition the motion of a par-
ticle between fixed walls is studied in detail.

Chapter 8 is concerned with the factorization method for exactly solvable
potentials and this is followed by a brief discussion of the supersymmetry and
of shape invariance.

The two-body problem is the subject of discussion in Chapter 9, where the
properties of the orbital and spin angular momentum operators and determina-
tion of their eigenfunctions are presented. Then the solution to the problem of
hydrogen atom is found following the original formulation of Pauli using Runge–
Lenz vector.

In Chapter 10 methods of integrating Heisenberg’s equations of motion
are presented. Among them the discrete-time formulation pioneered by Bender
and collaborators, the iterative solution for polynomial potentials advanced by
Znojil and also the direct numerical method of integration of the equations of
motion are mentioned.

The perturbation theory is studied in Chapter 11 and in Chapter 12 other
methods of approximation, mostly derived from Heisenberg’s equations of mo-
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tion are considered. These include the semi-classical approximation and varia-
tional method.

Chapter 13 is concerned with the problem of quantization of equations of
motion with higher derivatives, this part follows closely the work of Pais and
Uhlenbeck.

Potential scattering is the next topic which is considered in Chapter 14.
Here the Schrödinger equation is used to define concepts such as cross section
and the scattering amplitude, but then the deteminantal method of Schwinger
is followed to develop the connection between the potential and the scattering
amplitude. After this, the time-dependent scattering theory, the scattering ma-
trix and the Lippmann–Schwinger equation are studied. Other topics reviewed
in this chapter are the impact parameter representation of the scattering am-
plitude, the Born approximation and transition probabilities.

In Chapter 15 another feature of the wave nature of matter which is quan-
tum diffraction is considered.

The motion of a charged particle in electromagnetic field is taken up in
Chapter 16 with a discussion of the Aharonov–Bohm effect and the Berry phase.

Quantum many-body problem is reviewed in Chapter 17. Here systems
with many-fermion and with many-boson are reviewed and a brief review of the
theory of superfluidity is given.

Chapter 18 is about the quantum theory of free electromagnetic field with
a discussion of coherent state of radiation and of Casimir force.

Chapter 19, contains the theory of interaction of radiation with matter.
Finally in the last chapter, Chapter 20, a brief discussion of Bell’s inequal-

ities and its relation to the conceptual foundation of quantum theory is given.
In preparing this book, no serious attempt has been made to cite all of

the important original sources and various attempts in the formulation and ap-
plications of the Heisenberg quantum mechanics.

I am grateful to my wife for her patience and understanding while I was
writing this book, and to my daughter, Maryam, for her help in preparing the
manuscript.

Edmonton, Canada, 2010
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Chapter 1

A Brief Survey of
Analytical Dynamics

1.1 The Lagrangian and the Hamilton Principle

We can formulate the laws of motion of a mechanical system with N degrees of
freedom in terms of Hamilton’s principle. This principle states that for every
motion there is a well-defined function of the N coordinates qi and N velocities
q̇i which is called the Lagrangian, L, such that the integral

S =
∫ t2

t1

L (qi, q̇i, t) dt, (1.1)

takes the least possible value (or extremum) when the system occupies positions
qi(t1) and qi(t2) at the times t1 and t2 [1],[2].

The set of N independent quantities {qi} which completely defines the
position of the system of N degrees of freedom are called generalized coordinates
and their time derivatives are called generalized velocities.

The requirement that S be a minimum (or extremum) implies that L must
satisfy the Euler–Lagrange equation

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0, i = 1, · · ·N. (1.2)

The mathematical form of these equations remain invariant under a point trans-
formation. Let us consider a non-singular transformation of the coordinates from
the set of N {qi} s to another set of N {Qi} s given by the equations

Qi = Qi (q1, · · · , qN ) , i = 1, · · ·N, (1.3)

1



2 Heisenberg’s Quantum Mechanics

and its inverse transform given by the N equations

qj = qj (Q1, · · · , QN ) , j = 1, · · ·N. (1.4)

Now let F (q1, · · · , qN , q̇1, · · · , ˙qN ) be a twice differentiable function of 2N vari-
ables q1, · · · , qN , q̇1, · · · , ˙qN . We note that this function can be written as a
function of Qj s and Q̇j s if we replace qi s and q̇i s by Qj s and Q̇j s using Eq.
(1.4). Now by direct differentiation we find that(

∂

∂qi
− d

dt

∂

∂q̇i

)
F
(
qi(Qj), q̇i(Qj , Q̇j)

)
=

N∑
j=1

(
∂Qj
∂qi

)(
∂

∂Qj
− d

dt

∂

∂Q̇j

)
F
(
qi(Qj), q̇i(Qj , Q̇j)

)
, i = 1, · · ·N.

(1.5)

Thus if L(Q1, · · · Q̇N ) has a vanishing Euler–Lagrange derivative i.e.[
∂

∂Qj
− d

dt

(
∂

∂Q̇j

)]
L = 0, (1.6)

then Eq. (1.5) implies that

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0, i = 1, · · ·N. (1.7)

This result shows that we can express the motion of the system either in terms
of the generalized coordinates qi and generalized velocities q̇i or in terms of Qj
and Q̇j .

For simple conservative systems for which potential functions of the type
V (q1, · · · , qN , t) can be found, the Lagrangian L has a simple form:

L = T (q1, · · · , qn; q̇1, · · · , q̇N )− V (q1, · · · , qN , t), (1.8)

where T is the kinetic energy of the particles in the system under consideration
and V is their potential energy. However given the force law acting on the
i-th particle of the system as Fi(q1, · · · , qN ; q̇1, · · · , q̇N ), in general, a unique
Lagrangian cannot be found. For instance we observe that the Euler–Lagrange
derivative of any total time derivative of a function F of qi, q̇i i.e. d

dtF(qi, q̇i, t)
is identically zero;[

∂

∂qi
− d

dt

(
∂

∂q̇i

)]
dF(qi, q̇i, t)

dt
≡ 0, i = 1, · · ·N. (1.9)

Therefore we can always add a total time derivative dF
dt to the Lagrangian with-

out affecting the resulting equations of motion.
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The inverse problem of classical mechanics is that of determination of
the Lagrangian (or Hamiltonian) when the force law Fj(qi, q̇i, t) is known. The
necessary and sufficient conditions for the existence of the Lagrangian has been
studied in detail by Helmholtz [3]–[6]. In general, for a given set of Fj s, L
satisfies a linear partial differential equation. To obtain this equation we start
with the Euler–Lagrange equation (1.2), find the total time derivative of ∂L

∂q̇i

and then replace q̈i by Fi
mi

. In this way we obtain

∂2L

∂q̇i∂t
+
∑
j

(
Fj
mj

)(
∂2L

∂q̇i∂q̇j

)
+
∑
j

(
∂2L

∂q̇i∂qj

)
q̇iq̇j −

∂L

∂qi
= 0, i = 1, · · ·N.

(1.10)
This set of equations yield the Lagrangian function. But as was stated earlier L
is not unique even for conservative systems. The advantage of the Lagrangian
formulation is that it contains information about the symmetries of the motion
which, in general, cannot be obtained from the equations of motion alone.

For instance let us consider the Lagrangian for the motion of a free particle.
In a reference frame in which space is homogeneous and isotropic and time is
homogeneous, i.e. an inertial frame, a free particle which is at rest at a given
instant of time, always remains at rest. Because of the homogeneity of space
and time, the Lagrangian L cannot depend either on the position of the particle
r nor on time t. Thus it can only be a function of velocity ṙ. Now if the velocity
of the particle is ṙ relative to a frame S, then in another frame S ′ which is
moving with a small velocity v with respect to S the velocity is ṙ′, and the
Lagrangian is

L′
(
ṙ′2
)

= L
[
(ṙ + v)2

]
≈ L

[
ṙ2
]

+ 2ṙ · v ∂L
∂ṙ2

, (1.11)

where we have ignored higher order terms in v. Since the equation of motion
should have the same form in every frame, therefore the difference between
L′
(
ṙ′2
)

and L
(
ṙ2
)

must be a total time derivative (Galilean invariance). For a
constant v this implies that ∂L

∂ṙ2 must be a constant and we choose this constant
to be m

2 . Thus we arrive at a unique Lagrangian for the motion of a free particle.

L =
1
2
mṙ2. (1.12)

As a second example let us consider a system consisting of two particles
each of mass m interacting with each other with a potential V (|r1− r2|), where
r1 and r2 denote the positions of the two particles. The standard Lagrangian
according to Eq. (1.8) is

L1 =
1
2
m
(
ṙ2

1 + ṙ2
2

)
− V (|r1 − r2|), (1.13)

and this generates the equations of motion

m
d2ri
d t2

= −∇iV (|r1 − r2|), i = 1, 2. (1.14)
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A Lagrangian equivalent to L1, is given by [8]

L2 = m (ṙ1 · ṙ2)− V (|r1 − r2|), (1.15)

and this L2 also yields the equations of motion (1.14). However the symmetries
of the two Lagrangians L1 and L2 are different. The Lagrangian L1 is invariant
under the rotation of the six-dimensional space r1 and r2, whereas L2 is not.

The requirement of the invariance under the full Galilean group which
includes the conservation of energy, the angular momentum and the motion of
the center of mass, restricts the possible forms of the Lagrangian (apart from
a total time derivative) but still leaves certain arbitrariness. Here we want to
investigate this point and see whether by imposition of the Galilean invariance
we can determine a unique form for the Lagrangian or not.

Consider a system of N pairwise interacting particles with the equations
of motion

mj
d2rj
d t2

= −∇jV, j = 1, 2, · · · , N, (1.16)

where V depends on the relative coordinates of the particles rj − rk and hence∑
j

∇jV = 0. (1.17)

This means that the forces are acting only between the particles of the system.
Thus from (1.16) we have the law of conservation of the total linear momentum;

d

dt

∑
j

mjvj = 0, (1.18)

where vj = d
dtrj . The conservation law (1.18) also follows from the Lagrangian

L =
∑
j

1
2
mjv2

j − V. (1.19)

Now under the Galilean transformation vj → vj + v, and L will change to L′

where L′ − L is a total time derivative. Therefore the resulting equations of
motion, (1.16), will remain unchanged. Since

∑
jmjvj is constant, Eq. (1.18),

we can add any function of
∑
jmjvj to the Lagrangian without affecting the

equations of motion. If we denote this new Lagrangian which is found by the
addition of the constant term F

(∑
jmjvj

)
to L by L[F ], then we observe that

if in L[F ] we replace vi by vi + v, then L′[F ] − L[F ] will not be a total time
derivative unless F is of the form

F =
1

2µ

∑
i

(mivi)
2
, (1.20)

where µ is a constant with the dimension of mass. From this result it fol-
lows that the general form of L[F ], can be rejected on the ground that it is
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not invariant under the full Galilean group [9],[10]. With the addition of the
term 1

2µ

∑
i (mivi)

2, the resulting Lagrangian is now Galilean invariant but is
dependent on the parameter µ is [9],[10];

L(µ) =
∑
j

1
2
mjv2

j +
1

2µ

∑
i

(mivi)
2 − V. (1.21)

What is interesting about this Lagrangian is that for any two values of the
parameter µ, say µ′ and µ′′, L(µ′)−L(µ′′) is not a total time derivative, and in
this sense the two Lagrangians are inequivalent.

The equations of motion derived from (1.21) are given by

d

dt

mkvk +
mk

µ

∑
j

mjvj

 = −∇kV, k = 1, 2, · · · , N. (1.22)

Noting that d
dt

∑
jmjvj is zero, Eqs. (1.22) are the same as the equations of

motion (1.16). However the relation between the canonical momentum pk and
the velocity vk is now more complicated:

pk =
∂L

∂vk
= mkvk +

mk

µ

∑
j

mjvj , (1.23)

or solving for vk in terms of pk we have

vk =
pk
mk
−

∑
j pj

µ+
∑
jmj

. (1.24)

Velocity-Dependent Forces — If the velocity-dependent forces are such
that the system can be described by a Lagrangian of the form

L =
1
2
mv2 − V (r,v, t), (1.25)

then the generalized force Fi can be written as

Fi = − ∂V
∂xi

+
d

dt

(
∂V

∂vi

)
, (1.26)

a result which follows from the Euler–Lagrange equation. Now according to
Helmholtz for the existence of the Lagrangian such a generalized force can be
at most a linear function of acceleration, and it must satisfy the Helmholtz
identities [3]:

∂Fi
∂v̇j

=
∂Fj
∂v̇i

, (1.27)

∂Fi
∂vj

+
∂Fj
∂vi

=
d

dt

(
∂Fi
∂v̇j

+
∂Fj
∂v̇i

)
, (1.28)
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and
∂Fi
∂xj
− ∂Fj
∂xi

=
1
2
d

dt

(
∂Fi
∂vj
− ∂Fj
∂vi

)
, (1.29)

If we assume as in (1.25) that the generalized force is independent of acceleration
then from (1.28) it follows that

∂2Fi
∂vj∂vk

= 0. (1.30)

By integrating this equation once we get

∂Fi
∂vj

=
e

c

∑
k

εijkBk(r, t), (1.31)

where c and e are constants, and B(r, t) is a vector function. The symbol εijk
denotes the totally antisymmetric tensor (Levi–Civita symbol) defined by

ε123 = ε231 = ε312 = 1, (1.32)

ε321 = ε213 = ε132 = −1. (1.33)

Now we integrate (1.31) a second time and we find that the generalized force is
velocity-dependent and of Lorentz form

F(r,v, t) = eE(r, t) +
e

c
v ∧B(r, t), (1.34)

where E(r, t) is a vector function of r and t. The two vector functions E(r, t) and
B(r, t) are not independent of each other. From the three Helmholtz conditions,
Eq. (1.27) is trivially satisfied in this case since F is independent of v̇. But in
order to satisfy (1.29) we find that E and B cannot be chosen arbitrarily. To
get the connection between these two vectors we substitute (1.34) in (1.29) and
we find (

∇∧E +
1
c

∂B
∂t

)
k

= vk(∇ ·B). (1.35)

Since the velocities and coordinates are independent, each side of (1.35) must
be equal to zero, and thus we find two “Maxwell” type equations [7]

∇∧E = −1
c

∂B
∂t
, (1.36)

and

∇.B = 0. (1.37)
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1.2 Noether’s Theorem

The symmetries and the conservation laws associated with a given Lagrangian
can be found by applying Noether’s theorem to the Lagrangian of a system of
particles. Let us consider the change in the Lagrangian under an infinitesimal
transformation of the generalized coordinates

qi → qi + δqi, i = 1, · · · , N, (1.38)

which to the order of δqi is

L(qi + δqi, q̇i + δq̇i)− L(qi, q̇i)

=
∑
j

δqj
∂L(qi, q̇i)
∂qj

+
∑
j

dδqj
dt

∂L(qi, q̇i)
∂q̇j

=
∑
j

[
∂L(qi, q̇i)

∂qj
− d

dt

∂L(qi, q̇i)
∂q̇j

]
δqj +

d

dt

∑
j

δqj
∂L(qi, q̇i)
∂q̇j

. (1.39)

If the Lagrangian remains unchanged under this transformation, i.e.

L(qi + δqi, q̇i + δq̇i)− L(qi, q̇i) = 0, (1.40)

then the quantity

N =
∑
j

δqj
∂L(qi, q̇i)

∂q̇i
, (1.41)

which is called the Noether charge is conserved. Here we assumed that L satisfies
the Euler–Lagrange equation, and therefore each term in the square bracket in
(1.39) is zero.

When L (qi, q̇i, t) does not depend on a particular coordinate, say qk, then
clearly the momentum conjugate to this coordinate, pk = ∂L

∂q̇ , is conserved. This
particular coordinate is called ignorable or cyclic coordinate.

As an example let us consider the infinitesimal transformation{ r1 + ε
r2 + ε , (1.42)

that is an infinitesimal space translation with ε an arbitrary small vector. Using
the Lagrangian (1.13) we find that

N = ε ·m (ṙ1 + ṙ2) , (1.43)

is the conserved quantity. Since ε is an arbitrary small vector, therefore the total
momentum P = m (ṙ1 + ṙ2) remains constant. Now both of the Lagrangians L1

and L2, Eqs. (1.13) and (1.15) have the same Noether charge given by (1.43),
but as we mentioned earlier they have different properties under space rotation.
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1.3 The Hamiltonian Formulation

In classical mechanics the Hamiltonian is defined as a function of the canonical
coordinates and momenta which satisfies Hamilton’s principle

δ

∫ t2

t1

{
N∑
i=1

q̇ipi −H(pi, qi)

}
dt = 0, (1.44)

i.e. the integral in (1.44) between any two arbitrary times t1 and t2 for the
actual path must be minimum (or extremum) [2].

This requirement gives us 2N Hamilton’s canonical equations [1],[2]

q̇i =
∂H(pi, qi)

∂pi
, i = 1, 2, · · ·N, (1.45)

and

ṗi = −∂H(pi, qi)
∂qi

i = 1, 2, · · ·N. (1.46)

These first order differential equations for qi(t) and pi(t) determine the
position and momentum of the i-th degree of freedom as a function of time if
we assume that the initial conditions

qi(t = 0) = q0(0), and pi(t = 0) = p0(0), (1.47)

are known.
By eliminating pi s between the two sets of equations (1.45) and (1.46)

we find the Newton equations of motion

miq̈i = Fi

(
q1, q2 · · · qN ,

∂H

∂p1
· · · ∂H

∂pN

)
, i = 1, 2, · · ·N. (1.48)

If we only require that the Hamiltonian generate the correct equations of
motion in coordinate space, viz Eq. (1.48), then by differentiating (1.45) with
respect to time and substituting for q̇i, ṗi and q̈i using Eqs. (1.45), (1.46) and
(1.48) we find

q̈i =
N∑
k=1

(
∂H

∂pk

∂2H

∂pi∂qk
− ∂H

∂qk

∂2H

∂pi∂pk

)
=

1
mi

Fi

(
q1, · · · qN ,

∂H

∂pi
· · · ∂H

∂pN

)
, i = 1, 2, · · ·N. (1.49)

The solutions of this set of nonlinear partial differential equations yield the
desired Hamiltonians (H is not unique as will be shown later) and each of
these Hamiltonians generates the motion in coordinate space (1.48). In this
formulation, the canonical momenta pi s are dummy variables and are related
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to the coordinates and generalized velocities via Eqs. (1.45).
q-equivalent Hamiltonians — The complete solution of (1.49) even

for a simple one-dimensional motion with the force law F (q, q̇) is not known.
However if we assume that F is derivable from a velocity-independent potential
function, i.e.

F (q) = −
(
∂V (q)
∂q

)
, (1.50)

then we can solve Eq. (1.49) in the following way:
We write Eq. (1.49) as [11]

− 1
m

∂V

∂q
=
∂2H

∂q∂p

∂H

∂p
− ∂2H

∂p2

∂H

∂q
, (1.51)

or rearranging the terms we have

∂

∂q

{
m

2

(
∂H

∂p

)2

+ V (q)

}
= m

∂2H

∂p2

∂H

∂q
. (1.52)

We note that the quantity inside the curly bracket in (1.52) is the Hamiltonian
H0 which is also the total energy of the particle. Thus if G(H0) is an arbitrary
function of H0, we have

∂G

∂p
=

dG

dH0
mq̇

∂q̇

∂p
=

dG

dH0
m
∂2H

∂p2

∂H

∂p
. (1.53)

By substituting for m∂2H
∂p2 from Eqs. (1.52) in (1.53) it follows that

∂G

∂p

∂H

∂q
=
∂H

∂p

(
dG

dH0

∂H0

∂q

)
=
∂H

∂p

∂G

∂q
, (1.54)

and therefore

H = G

[
m

2

(
∂H

∂p

)2

+ V (q)

]
. (1.55)

The canonical momentum, p, in this case is not equal to the mechanical
momentum unless G(H0) = H0. To find the relation between p and mq̇, we
write the Lagrangian L as

L = q̇p−H(q, p), (1.56)

and then use the definition of p to find it in terms of q̇

p =
∂L

∂q̇
= p+ q̇

∂p

∂q̇
− dG

dH0
mq̇. (1.57)

Thus we have
1
m

∂p

∂q̇
=

dG

dH0
, (1.58)
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or

p =
∫

dG

dH0
mdq̇ + g(q), (1.59)

where g(q) is an arbitrary function of q. For systems with two or more degrees
of freedom or when Fi is not derivable from a potential this method does not
work (see also [12],[13].)

We can also try to determine the Hamiltonian H(pi, qi) such that the
canonical equations (1.45) and (1.46) yield the motion of the system in phase
space. In this case, pi s are not dummy variables but are directly related to the
generalized velocities, i.e. instead of (1.46) we find the solutions of (1.45) and

ṗi = −∂H(pi, qi)
∂qi

= Fi

(
q1, q2 · · · qN ,

∂H

∂p1
· · · ∂H

∂pN

)
i = 1, 2, · · ·N. (1.60)

Even this set of equations of motion will not give us a unique Hamiltonian.
Thus we can have a set of q-equivalent (or coordinate equivalent) or a smaller
set of pq-equivalent for a given set of forces Fi. For the classical description of
motion any member of either set is acceptable.
Let us consider two simple examples:

(1) - Assuming that V (q) is positive for all values of q and taking G(H0) =

H
1
2
0 , by solving (1.55) we get [11]

H(p, q) = A (V (q))
1
2 cosh

(√
2
m
λp

)
. (1.61)

(2) - If we choose H to be the inverse positive square root of energy,

G(H0) = H
− 1

2
0 we find [11]

H(p, q) =

[
1−

(
2
m

)
p2(V (q))2

V (q)

] 1
2

. (1.62)

pq-equivalent Hamiltonians — Now let us examine pq-equivalent Hamil-
tonians. For a one-dimensional case the equations of motion in coordinate space
is

m
d2q

d t2
+
∂V (q)
∂q

= 0, (1.63)

and the equations for the mechanical momentum mq̇ = p can be written as

m
d2p

d t2
+
∂2V (q)
∂q2

p = 0. (1.64)

The solution of these equations subject to the initial conditions give us q(t) and
p(t).
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The case of the harmonic oscillator V (q) = 1
2mω

2q2 is particularly simple
since the two equations uncouple, and we have

m
dq

dt
d

(
dq

dt

)
= −mω2qdq, (1.65)

and

m
dp

dt
d

(
dp

dt

)
= −mω2pdp. (1.66)

These equations can be integrated to yield

1
2

[(
∂H

∂p

)2

+ ω2q2

]
= C(H), (1.67)

1
2

[(
∂H

∂q

)2

+ ω2p2

]
= D(H), (1.68)

where C and D are arbitrary functions of H. Rather than trying to find the
most general solution of (1.67) and (1.68), let us consider a class of solutions
which we can find in the following way [14]. Let

H = Γ(H0) = Γ
(
p2

2m
+

1
2
mΩ2q2

)
, (1.69)

then by differentiating H with respect to p and q and substituting in C(H) and
D(H) we find that if

Ω =
ω
∂Γ
∂H0

, (1.70)

then
C(H) =

1
m

(ω
Ω

)2

H−1(H0), (1.71)

and
D(H) = mω2H−1(H0), (1.72)

where Ω is an energy-dependent frequency. Depending on our choice of Γ we
have an infinite set of pq-equivalent Hamiltonians. For instance we can choose
the Hamiltonian to be

H = Γ(H0) =
Hj

0

εj−1
, (1.73)

where ε is a constant with the dimension of energy.
Galilean Invariant Hamiltonians — The same type of ambiguity which

we found for the Lagrangian L(µ), Eq. (1.21), also appears in the classical
Hamiltonian formulation. Thus for a system of interacting particles when L(µ)
and pk are given by (1.21) and (1.23), the corresponding Hamiltonian obtained
from the definition H(µ) =

∑
k pk · vk − L(µ) is

H(µ) =
∑
k

p2
k

2mk
−

(∑
j pj

)2

2µ+ 2
∑
jmj

+ V. (1.74)
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1.4 Canonical Transformation

A set of transformations
pj → pj(Pi, Qi)

qj → qj(Pi, Qi)
j = 1, 2, · · ·N, (1.75)

is called canonical if the form of Hamilton’s equations of motion, Eqs. (1.45)
and (1.46), are preserved. Thus the canonical transformation is, in a way, an
extension of the point transformation of N space coordinates qi → qi(Qj) to
the transformation of 2N coordinates of (pi(Pj , Qj), qi(Pj , Qj)) space, called the
phase space and is given by (1.75). Under the point transformation the Euler–
Lagrange equations are left unchanged, whereas under the canonical transfor-
mation the form of the canonical equations (1.45) and (1.46) remain the same.
Thus if H(pi, qi) is transformed to K(Pj , Qj), then Eqs. (1.45) and (1.46) are
replaced by

Q̇i =
∂K(Pj , Qj)

∂Pi
, Ṗi = −∂K(Pj , Qj)

∂Qi
, i = 1, 2, · · ·N, (1.76)

respectively.
We can derive the connection between H and K by noting that according

to the Hamilton principle Eq. (1.44)

δ

∫
Ldt = δ

∫ ∑
j

pjdqj −H(pi, qi, t)dt

 = 0, (1.77)

and when the same principle is applied to K(Pj , Qj) we find

δ

∫
L
′
dt = δ

∫ ∑
j

PjdQj −K(Pi, Qi, t)dt

 = 0. (1.78)

As we have seen earlier the difference between L and L
′

must be a total
time derivative dF1

dt . Thus∑
i

pidqi −Hdt =
∑
i

PidQi −Kdt+ dF1, (1.79)

where F1 is called the generating function for the canonical transformation.
Rewriting (1.79) as

dF1(qi, Qi, t) =
∑
i

(pidqi − PidQi) + (K −H)dt, (1.80)



Canonical Transformation 13

we have
pi =

∂F1

∂qi
, (1.81)

Pi = −∂F1

∂Qi
, (1.82)

and
K = H +

∂F1

∂t
. (1.83)

A different but more useful case is when the generating function depends
on old coordinates qi and the new momenta Pi. By writing (1.80) as

dF2 = d

(
F1(qi, Qi, t) +

∑
i

PiQi

)
=
∑
i

pidqi + (K −H)dt, (1.84)

we obtain
pi =

∂F2

∂qi
, Qi =

∂F2

∂Pi
, K = H +

∂F2

∂t
. (1.85)

An interesting example of the generating function of this type, F2, is for
the motion of the particle in a time-dependent harmonic oscillator potential
where the Hamiltonian is

H(p, q, t) =
1

2m
[
p2 + Ω2(t)q2

]
. (1.86)

For this problem the generating function F2 is

F2 =
m

2
ρ̇(t)
ρ(t)

q2 ± q

ρ(t)

(
2P − q2

ρ2(t)

) 1
2

± P sin−1

[
q

ρ(t)
√

2P

]
+
(
n+

1
2

)
πP, (1.87)

where n is an integer and where

−π
2
≤ sin−1

[
q

ρ(t)
√

2P

]
≤ π

2
. (1.88)

In Eq. (1.87) the ± signs are taken according to whether
(
p−m ρ̇(t)

ρ(t)q
)

is
positive or negative. The function ρ(t) appearing in Eqs. (1.87) and (1.88) is a
solution of the nonlinear differential equation

m2ρ̈(t) + Ω2(t)ρ(t)− 1
ρ3(t)

= 0, (1.89)

with the boundary conditions ρ(0) = 1 and ρ̇(0) = 0. In this problem F2

depends explicitly on time, and therefore the new Hamiltonian K(P,Q, t) is
given by

K(P,Q, t) = H(p, q, t) +
∂F2

∂t
=

1
m

(
P

ρ2(t)

)
. (1.90)
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We note that

Q =
∂F2

∂q
= − tan−1 pρ

2(t)
q
−mρ(t)ρ̇(t), (1.91)

and

P =
1
2

[
q2

ρ2(t)
+ (ρ(t)p−mqρ̇(t))2

]
. (1.92)

The variable Q does not appear in K(P,Q, t), therefore Q is a cyclic coordinate,
and the momentum conjugate to it, P , is a constant of motion [15].

Let us also note that for the special generating function F3 =
∑
i gi(qj , t)Pi,

the canonical transformation reduces to the point transformation (1.3).

1.5 Action-Angle Variables

A very important property of the canonical transformation is that it leaves the
volume in phase space unchanged. We want to show this important property
of the transformation for a system with one degree of freedom. To prove this
result which is referred to as Liouville theorem, let us consider the canonical
transformation Q = Q(p, q), P = P (p, q). By taking the time derivative of Q
we have

Q̇ =
∂Q

∂p
ṗ+

∂Q

∂q
q̇ = −∂Q

∂p

∂H

∂q
+
∂Q

∂q

∂H

∂p
. (1.93)

Since the transformation is canonical and is independent of time, therefore the
new Hamiltonian is just the old Hamiltonian written in terms of Q and P ,
H(p, q) → H(P,Q). The form of the Hamilton canonical equations are the
same whether expressed in terms of (p, q) or (P, Q), Eq. (1.76). Thus

Q̇ =
∂H

∂P
=
∂H

∂q

∂q

∂P
+
∂H

∂p

∂p

∂P
. (1.94)

By comparing (1.93) and (1.94) we find that

∂q

∂P
= −∂Q

∂p
, and

∂p

∂P
=
∂Q

∂q
. (1.95)

Similarly we calculate Ṗ by differentiating P (p, q) with respect to time and
comparing the result with Ṗ = −∂H∂Q . In this way we get another pair of
equations:

∂P

∂p
=

∂q

∂Q
, and

∂P

∂q
= − ∂p

∂Q
. (1.96)

Now let us consider the transformed phase space area∫
PdQ =

∫
Jdqdp, (1.97)
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where J is the Jacobian of the transformation

J =
D(P,Q)
D(p, q)

=
[ ∂P
∂p

∂P
∂q

∂Q
∂p

∂Q
∂q

]
. (1.98)

This Jacobian J can also be written as

J =
D(P,Q)
D(P,q)

D(p,q)
D(P,q)

=

(
∂Q
∂q

)
(
∂p
∂P

) = 1, (1.99)

where in getting the last step we have used (1.95). Therefore Eq. (1.97) with
J = 1 shows that under canonical transformation the area (or volume) in phase
space is preserved.

Definition of the Action-Angle Variables — We define the action-
angle variables which we denote by {θ, I} in the following way: We first calcu-
late the area under the curve p(q, E), where E is the energy of the particle

A(E) =
∮
p(q, E)dq = 2

∫ q2

q1

[2m(E − V (q))]
1
2 dq. (1.100)

Then we find the area under the curve I(E);

A′(E) =
∮
Idθ =

∫ 2π

0

Idθ = 2πI. (1.101)

Since the transformation {p, q} to {θ, I} is canonical therefore A(E) = A′(E)
and from Eqs. (1.100) and (1.101) we have

I =
1

2π

∮
p(E, q)dq. (1.102)

Equation (1.102) defines the action variable. The conjugate of action variable is
θ which varies between −π and π. This relation can be generalized to a system
with N degrees of freedom where for the k-th degree of freedom we have

Ik =
1

2π

∮
pk(E, q1, · · · , qN )dqk. (1.103)

This action is conjugate to the angle variable θk, where θk changes between
−π < θk ≤ π. Thus all angle variables are periodic with period 2π.

For a system of two degrees of freedom, the phase space is four-dimensional
and the toroid is a two-dimensional surface lying in a three-dimensional energy
shell. We can generalize this concept to a system of N degrees of freedom in
the following way:

For the bounded motion of an integrable system we can transform the
phase space coordinates (p, q) = (p1, p2, · · · pN ; q1, q2, · · · qN ) to (I, θ) =
(I1, I2, · · · IN ; θ1, θ2, · · · θN ), where θ is an N -dimensional angle variable,
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−π ≤ θk ≤ π. By this transformation the Hamiltonian becomes a function of I,
H = H(I), i.e. all θk s become cyclic coordinates. Thus we have

θ̇k =
∂H

∂Ik
=
∂E(I)
∂Ik

= ωk(I), (1.104)

and
İk = −∂H

∂θk
= 0. (1.105)

Since I is a constant vector in N -dimensions, Eq. (1.104) can be integrated to
yield

θk = ωkt+ δk. (1.106)

In this relation ωk is a characteristic angular frequency of the motion and δk is
a phase shift. For a completely separable system ωk depends on Ik alone. Since
the motion is periodic in θk, therefore θk(q, I) s are all multi-valued functions of
the coordinates q. Now any single valued function A(p, q), when expressed in
terms of I and θ is a periodic function of the angle variables with each variable
having a period 2π. Hence we can expand the function A(I, θ) of the dynamical
variables, Ii, θi in terms of the Fourier series

A(I, θ) =
∞∑

j1=−∞
· · ·

∞∑
jN=−∞

Aj1j2···jN exp [i (j1θ1 + j2θ2 + · · ·+ jnθN )] .

(1.107)
By substituting from (1.106) in (1.107) we have

A(I, θ) =
∞∑

j1=−∞
· · ·

∞∑
jN=−∞

Aj1j2···jN exp
[
it

(
j1
∂E

∂I1
+ j2

∂E

∂I2
+ · · ·+ jn

∂E

∂IN

)]
.

(1.108)
We note that each term in this sum is a periodic function of time with the
frequency

N∑
l=1

jl
∂E

∂Il
, (1.109)

but these frequencies are not generally commensurable, therefore the sum is not
a periodic function of time. In particular we can choose A to be either pk or qk
which shows that pk and qk are also non-periodic functions of time.

For an integrable system of N degrees of freedom, the motion of a phase
point (p1, p2 · · · pN ; q1, q2 · · · qN ) in 2N -dimensional phase space will be con-
fined to an invariant toroid of N dimensions. That is this invariant toroid occupy
the whole phase space of bounded integrable motions.

If the system of N degrees of freedom is not integrable, subject to cer-
tain conditions we can still express p and q in terms of θk s. The parametric
representation of p and q as functions of N -dimensional angle variable θ

P = PT (θ) = (pT (θ), qT (θ)) , (1.110)
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Figure 1.1: The phase space point (θ1, θ2, I1, I2) for a system with two degrees of freedom is
periodic in each θ1 and θ2 and this point moves in a region which is a toroid. The two curves
C1 and C2 define the action integrals I1 and I2.

defines an N -dimensional toroid, T , in the 2N -dimensional phase space [16]–
[18]. The action in this case is

Ik =
∮
Ck

p · dq, (1.111)

where p and q are the N -dimensional vectors and Ck s are N independent closed
curves on toroid [17]. In the case of a conservative system with two degrees of
freedom such a toroid is shown in Fig. 1.1.

For the bounded motion of a system the action-angle variables makes the
description of the motion very simple [16]–[18]. Let us consider a motion of one
degree of freedom with the Hamiltonian

H(p, q) =
p2

2m
+ V (q) = E, (1.112)

where E, the total energy, is a constant. If we solve (1.112) for p(q, E) we find
the two-valued function

p(q, E) = ±
√

2m(E − V (q)). (1.113)

Since this canonical variable is multivalued, we try to find another set of con-
jugate variables (θ, I) in such a way that H becomes independent of θ, and I
and becomes a constant of motion. Suppose that we have found these variables,
then we have the canonical equations of motion

dI

dt
= 0 = −∂H(I)

∂θ
, (1.114)
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and
dθ

dt
=
∂H(I)
∂I

= constant. (1.115)

Equation (1.115) can be integrated easily with the result that θ is a linear
function of time

θ = ω(I)t+ δ. (1.116)

1.6 Poisson Brackets

The Hamilton canonical equations (1.45) and (1.46) can be written in a concise
form if we introduce the Poisson bracket of two dynamical variables u(pi, qi)
and v(pi, qi) by

{u(pi, qi), v(pi, qi)}pi,qi =
N∑
i=1

(
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

)
. (1.117)

From this definition it readily follows that

{qi, pj} = δij , {qi, qj} = {pi, pj} = 0. (1.118)

Also by direct differentiation we find

{u, v}pi,qi =
N∑
j=1

{u, v}Pj ,Qj{Qj , Pj}pi,qi . (1.119)

If the transformation

Qj → Qj(pi, qi, t), and Pj → Pj(pi, qi, t), (1.120)

is canonical then ∑
i

(pidqi − PidQi) , (1.121)

is a complete differential and we have

{Qj , Pj}pi,qi = δij . (1.122)

Thus (1.119) reduces to

{u, v}pi,qi = {u, v}Pi,Qi . (1.123)

This result shows that the Poisson bracket {u, v}pi,qi remains unchanged by
a canonical transformation of one set of canonical variables to another. To
simplify the notation we suppress the subscripts pi, qi and denote the Poisson
bracket by {u, v}.
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Some of the other properties of Poisson bracket are as follows:
(1) - Skew symmetry

{u, v} = −{v, u}. (1.124)

(2) - Linearity

{αu+ βv,w} = α{u,w}+ β{v, w}, (1.125)

where α and β are constants.
(3) - Leibniz property

{uv,w} = u{v, w}+ v{u,w}, (1.126)

where u, v and w are functions of pi and qi.
(4) - Jacobi identity

{{u, v}, w}+ {{v, w}, u}+ {{w, u}, v} = 0. (1.127)

The first three results follow directly from the definition of the Poisson bracket
and the proof of the last relation is straightforward but lengthy (see Ref. [1]).

Now let Φ be some function of the pi s and qi s and time, then its total
time derivative is given by

dΦ
dt

=
∂Φ
∂t

+
∑
j

(
∂Φ
∂qj

q̇j +
∂Φ
∂pj

ṗj

)
. (1.128)

Substituting for q̇j and ṗj from canonical equations (1.45) and (1.46) we obtain

dΦ
dt

=
∂Φ
∂t

+ {H,Φ}. (1.129)

If Φ does not explicitly depend on time and remains a constant of motion, then

{H,Φ} = 0, (1.130)

and Φ is called an integral of motion.
Written in terms of the Poisson brackets the equation of motion (1.49)

has a simple form
1
mi

Fi = {H, {H, qi}} . (1.131)

Poisson Brackets for Galilean Invariant Hamiltonian — Again it
is interesting to examine the Poisson bracket found from the Lagrangian (1.21)
and its Hamiltonian counterpart (1.74). According to Eq. (1.23) the relation
between pk and vk involves the velocity of the other particles. For simplicity let
us consider the case of two interacting particles in one dimension, where from
(1.24) we have

v1 =
p1

m1
− p1 + p2

µ+m1 +m2
, and v2 =

p2

m2
− p1 + p2

µ+m1 +m2
. (1.132)
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From these relations we can calculate the Poisson brackets

{x1, m1v1} =
(

1 +
m2

µ

)(
µ

µ+m1 +m2

)
, (1.133)

{x1, m2v2} =
(
−m2

µ

)(
µ

µ+m1 +m2

)
, (1.134)

and similar relations for {x2, m2v2} and {x2, m1v1}. Thus for an arbitrary
value of µ all the coordinates xi fail to have a vanishing Poisson bracket with all
the canonical momenta mixi. Therefore, in quantum theory, for the Hamilto-
nian H(µ), none of these quantities can be sharply measured. As (1.133) shows
the Poisson bracket of the coordinate x1 and the mechanical momentum m1v1

is zero if we choose µ = −m2. This result indicates that if the Lagrangian such
as (1.21) is used as a classical basis for the quantum mechanical formulation
then it is possible to violate the uncertainty principle ∆x∆(m1v1) [10].

1.7 Time Development of Dynamical Variables
and Poisson Brackets

Let us consider a dynamical quantity u(pi, qi) and let us assume that its initial
value u(pi(0), qi(0)) is known. We want to find the time evolution of this quan-
tity. Suppressing the canonical coordinates and momenta we write u(∆t) as a
Taylor series

u(∆t) = u(0) +
∆t
1!

(
du

dt

)
t=0

+
(∆t)2

2!

(
d2u

d t2

)
t=0

+ · · · . (1.135)

We express the derivatives of u in terms of the Poisson brackets(
du

dt

)
t=0

= {u,H}t=0 ,

(
d2u

d t2

)
t=0

= {{u,H} , H}t=0 , · · · . (1.136)

Substituting these derivatives in (1.135) we obtain

u(∆t) = u(0) +
∆t
1!
{u,H}t=0 +

(∆t)2

2!
{{u,H} , H}t=0 + · · · . (1.137)

This last relation shows that u(∆t) can be expressed in terms of the initial
values pi(0) and qi(0). For instance if we want to solve the one-dimensional
problem of a harmonic oscillator with the Hamiltonian

H =
1

2m
p2 +

1
2
mω2q2, (1.138)
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and determine the coordinate q(t) in terms of q(0) and p(0) we first find the
Poisson brackets

{q,H}t=0 =
p(0)
m

, (1.139)

{{q,H} ,H}t=0 = −ω2q(0), (1.140)

{{{q,H} ,H} ,H} = −ω
2

m
p(0), (1.141)

and so on. Then from the expansion

q(t) = q(0) +
∆t
1!
{q,H}t=0 +

(∆t)2

2!
{{q,H} ,H}t=0 + · · · , (1.142)

we get

q(t) = q(0)
[
1− ω2(∆t)2

2!
+
ω4(∆t)4

4!
− · · ·

]
+

p(0)
m

[
∆t− ω2(∆t)3

3!
+ · · ·

]
= q(0) cos(ω∆t) +

p(0)
mω

sin(ω∆t), (1.143)

a solution which is valid for all values of (∆t). We will see later that the quantum
version of (1.137) can be used to solve the Heisenberg equation of motion.

1.8 Infinitesimal Canonical Transformation

If the generator of the canonical transformation F2(pi, qi, t) is of the form

F2(Pi, qi, t) =
∑
i

Piqi + εG(Pi, qi, t), (1.144)

where ε is a very small positive number, then according to (1.85) we have

Qi =
∂F2

∂Pi
= qi + ε

∂G

∂Pi
→ qi + ε

∂G

∂pi
, (1.145)

and
pi =

∂F2

∂qi
= Pi + ε

∂G

∂qi
. (1.146)

i.e. the canonical coordinates and momenta are changed by an amount propor-
tional to ε. In this case G is called the generator of the infinitesimal transfor-
mation. We can also write (1.145) and (1.146) as

δqi = Qi − qi = ε
∂G

∂pi
, (1.147)
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and

δpi = Pi − pi = −ε∂G
∂qi

. (1.148)

The infinitesimal transformation generated by G takes a simple form if we
write it in terms of the Poisson bracket. Let us consider an arbitrary dynamical
variable Λ(pi, qi, t) and determine how it will be changed by an infinitesimal
canonical transformation. We note that after such a transformation Λ(pi, qi, t)
changes to

Λ(pi + δpi, qi + δqi, t) = Λ(pi, qi, t) +
N∑
i=1

(
∂Λ
∂qi

δqi +
∂Λ
∂pi

δpi

)

= Λ(pi, qi, t) + ε
N∑
i=1

(
∂Λ
∂qi

∂G

∂pi
− ∂Λ
∂pi

∂G

∂qi

)
= Λ(pi, qi, t) + ε{Λ, G},

(1.149)

where we have used Eqs. (1.147) and (1.148). Denoting the difference Λ(pi +
δpi, qi + δqi, t)− Λ(pi, qi, t) by δΛ(pi, qi, t), this last relation can be written as

δΛ(pi, qi, t) = ε{Λ, G}. (1.150)

In particular if we choose Λ(pi, qi, t) to be the Hamiltonian of the system, H,
then

δH = ε{H,G} = ε

(
dG

dt
− ∂G

∂t

)
. (1.151)

Here Eq. (1.129) has been used to write H in terms of the time derivatives
of G. This relation shows that if G does not depend on time explicitly, and if
H is invariant under the infinitesimal transformation, then dG

dt = 0 and G is a
constant of motion (i.e. a conserved quantity).

Among the constants of motion for a system of interacting particles the
following constants are of particular interest:

(a) - The infinitesimal generator for space translation of two interacting
particles, when the potential between them is V (|r1 − r2|) can be written as

ε ·G = ε · (p1 + p2) . (1.152)

(b) - The generator for the rotation about the axis a by an angle δθ is

δθG = δθa · (r× p). (1.153)

(c) - For the Galilean transformation of a system of n particles we have{ ri → ri + vt

pi → pi +miv
, i = 1, · · ·n, (1.154)
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and the generator for transformation by infinitesimal velocity δv is given by

δv ·N = δv ·
n∑
i=1

(pit−miri) . (1.155)

In the case of the Galilean transformation given by Eqs. (1.154) and
(1.155), the vector N for a system of n interacting particles isolated from the
rest of universe is a constant of motion

dN
dt

=
n∑
i=1

(pi −miṙi) +
n∑
i

dpi
dt

= 0. (1.156)

Let us note that while under this transformation the equations of motion remain
invariant, the Hamiltonian H will change. For example for a single particle,
H = p2

2m , changes to H ′ where

H ′ =
1

2m
(p +mδv)2

. (1.157)

Combining these transformations we obtain the most general form of in-
finitesimal transformation of space-time displacements for a system of n parti-
cles. Such a transformation is given by

εG = δε ·P + δω · J + δv ·N− δtH, (1.158)

where P =
∑n
i=1 pi is the total momentum of the system, J is its total angular

momentum, H is the total Hamiltonian, and N which is called the boost, de-
scribes the Galilean transformation.

1.9 Action Principle with Variable End Points

Earlier we discussed the standard approach for obtaining the equations of motion
from the action principle. However it is possible to perform a more general
variation, where in addition to qj(t) s we vary the time and the end points t1
and t2. The transformation of qj(t) and t are as follows:

qj(t)→ q′j(t) = qj(t) + δqj , t→ t′ = t+ δt. (1.159)

These variations generate a variation δS of the action

δS =
∫ t2+δt2

t1+δt1

L (qj + δqj , q̇j + δq̇j , t+ δt) dt−
∫ t2

t1

L (qj , q̇j , t) dt. (1.160)
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Using the usual technique of the calculus of variation we find δS to be

δS =
∫ t2

t1

N∑
j=1

(
∂L

∂qj
− d

dt

∂L

∂q̇j

)
δqjdt+

 N∑
j=1

pj δ̃qj −Hδt

t2
t1

, (1.161)

where in (1.161) H and δ̃qj are defined by

H =
N∑
j=1

pj q̇j − L, (1.162)

and

δ̃qj = q′j(t+ δt)− qj(t) = q′j(t)− qj(t) + q̇jδt

= δqj + q̇jδt. (1.163)

The first term on the right hand-side of (1.161) is zero since L satisfies the
Euler–Lagrange equation (1.2), therefore

δS = ε(G(t2)−G(t1)), (1.164)

where

εG(t) =
N∑
j=1

pj δ̃qj −Hδt. (1.165)

This quantity εG(t) is the generator of a canonical transformation, i.e. for any
dynamical variable Λ(pk, qk) the Poisson bracket Eq. (1.150) is satisfied by Λ
and εG(t).
Let us consider the following two cases:

(1) - If
qj → qj + δqj , pj → pj , and t→ t, (1.166)

then

εG(t) =
N∑
j=1

pj δ̃qj , (1.167)

and
{qj , G(t)} = δqj , and {pj , G(t)} = 0, (1.168)

as is expected.
(2) - If δ̃qj = δ̃pj = 0 and t→ t+ δt then

{qj , εG(t)} = {qj , −Hδt} = −∂H
∂pj

δt = −q̇jδt, (1.169)

and
{pj , εG(t)} = {pj , −Hδt} =

∂H

∂qj
δt = −ṗjδt. (1.170)
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Since δ̃qj = δ̃pj = 0,

δ̃qj = δqj + q̇jδt = 0, δ̃pj = δpj + ṗjδt = 0, (1.171)

we have
δqj = {qj , εG(t)} , (1.172)

and
δpj = {pj , εG(t)} . (1.173)

These results show that εG(t) is indeed the generator of infinitesimal transfor-
mation [19],[20].

Quantum Version of the Action Principle for Cases Where
{qj , q̇k} Depends on qk s — It is important to note that this formulation
of the Schwinger action principle when applied to quantum mechanical prob-
lems yields the correct result in the cases where the commutator

[qj , q̇k] , (1.174)

is a c-number, i.e.
(
ih̄
m δjk

)
. As we have seen before, for a general curvilinear co-

ordinate, the Hamiltonian is a complicated quadratic function of pj , and thus in
quantum theory the corresponding commutator, (see Eq. (1.174)), will depend
on qk and is a q-number. For these and also the problems related to dissipative
forces depending on velocity, the action integral corresponding to the classical
Hamilton’s principle should be modified.

The classical Hamiltonian function which we defined by the variation of
the action integral, Eq. (1.44), is now replaced by the quantum action integral

S
(
qi, q̇i, πi, t1, t2

)
=
∫ t2

t1

{∑
k

1
2
[
πk, q̇

k
]
+

+D
(
qi, πi

)
−H(qi, πi, t)

}
dt,

(1.175)
where [ , ]+ denotes the anticommutator[

πk, q̇
k
]
+

= πk q̇
k + q̇kπk, (1.176)

and all of the operators are assumed to be Hermitian. In Eq. (1.175) the
Hermitian operator D is introduced such that the q-number variation δ(D−H)
of (D −H) differs from

1
2

[
∂H

∂qk
, δqk

]
+

+
1
2

[
∂H

∂πk
, δπk

]
+

+
∂H

∂t
δt, (1.177)

by a total time derivative of an operator G.
This operator, D

(
qi, πi

)
, is uniquely determined by the variation δH of

the Hamiltonian. Thus if t is not varied, then the variation δt of D is such that
the relation

δtD −
dG
dt

= δtH −
1
2

∑
k

[
∂H

∂qk
, δqk

]
+

− 1
2

∑
k

[
∂H

∂πk
, δπk

]
+

, (1.178)
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holds. Furthermore just as in classical dynamics we assume that δ and d
dt

commute with each other;

d

dt
δqk = δ

(
dqk

dt

)
,

d

dt
(δt) = δ

(
dt

dt

)
= 0. (1.179)

Under these conditions the variation of S in the action integral (1.175) will
depend on the end points t1 and t2;

δS = J(t2)− J(t1). (1.180)

Now let us consider the δ variation of S [21],[22].

δS =
∫ t2

t1

d

{
1
2

∑
k

[
πk, δq

k
]
+

+ (D −H)δt

}

+
∫ t2

t1

1
2

∑
k

[
dqk − ∂H

∂πk
dt, δπk

]
+

−
∫ t2

t1

1
2

∑
k

[
dπk +

∂H

∂qk
dt, δqk

]
+

+
∫ t2

t1

(
dH − ∂H

∂t
dt

)
δt. (1.181)

By assuming that the variations δqk, δπk and δt are all independent, from
(1.181) it follows that

d

dt
qk =

∂H

∂πk
, (1.182)

d

dt
πk = −∂H

∂qk
, (1.183)

and
d

dt
H = −∂H

∂t
, (1.184)

J =
1
2

∑
k

[
πk, δq

k
]
+

+ (D −H)δt. (1.185)

Thus we have obtained Heisenberg’s equations of motion from the action integral
without assuming that

[
qj , q̇k

]
is a c-number. We note that here qk and πj are

canonically conjugate variables, i.e.[
qj , πk

]
= ih̄δjk, (1.186)

while the other commutators of qj , qk and πj , π
k vanish.

Equations (1.182)–(1.184) are Heisenberg’s equations of motion, however
unlike the c-number variation discussed earlier, (1.184) cannot be derived from
(1.182) and (1.183). Moreover the canonical commutation relation that we found
by the Schwinger variational principle cannot be obtained directly from these
equations.

Examples — Let us consider two forms of Hamiltonian for the motion of
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a particle given in the curvilinear coordinates (see Eq. (3.216)). The first one
is

H
(
qj , πj

)
=

1

2m

∑
i,j

1
√
g

(
πi
√
g gijπj

)
+ V

(
qj
)
, (1.187)

where g and gij are functions of qj s. The second form is that of the Hamiltonian

H
(
qj , πj

)
=
∑
i,j

1

2m

(
πi g

ijπj
)

+ V
(
qj
)
, (1.188)

which has been used to describe the velocity-dependent forces between two
nucleons [12]. For these Hamiltonians the velocity operator is defined by

q̇k =
∂H

∂πk
=

1

2

[
πj , g

jk
]
+
. (1.189)

Using (1.189) we can determine the commutator of qj and q̇k operator which is
defined by [

qj , q̇k
]

= ih̄gjk, (1.190)

and is not a c-number.

1.10 Symmetry and Degeneracy in
Classical Dynamics

When G(qi, pi) is a first integral of motion which does not depend explicitly on
time then from (1.151) it follows that {H,G} = 0. Now suppose that we have
found a number of independent first integrals of motion G1(qi, pi), · · · , Gn(qi, pi)
then each of these Gi s can be used to generate a group of infinitesimal canonical
transformation (1.149) and (1.150), i.e.

δqk = ε{qk, Gi}, δpi = ε{pk, Gi}. (1.191)

These continuous transformations will make a group provided that the first
integrals, Gk, satisfy the conditions

{Gk, Gm} =
∑
i

CikmGi, (1.192)

where Cikm are constants which may also depend on the total energy. In what
follows we consider three specific examples with different symmetry groups.

Isotropic Two-Dimensional Harmonic Oscillator — As a first ex-
ample consider the simple case of an isotropic harmonic oscillator given by the
Hamiltonian

H =
1

2m

(
p2

1 + p2
2

)
+

1

2
mω2

(
q2
1 + q2

2

)
. (1.193)
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There are three first integrals of motion G1, G2 and G3;

G1 =
1
2

(q1p2 − p1q2) , (1.194)

G2 =
1
4

[
1
mω

(
p2

1 − p2
2

)
+mω

(
q2
1 − q2

2

)]
, (1.195)

and

G3 =
1
2

(
1
mω

p1p2 +mωq1q2

)
. (1.196)

The first equation G1 is the angular momentum and the second one is the energy
difference between the two oscillators which is known as correlation [23], [24].

The set of functions G1, G2 and G3 is closed under the Poisson bracket
operation, i.e.

{Gi, Gj} = Gk, (1.197)

where the indices form a cyclic permutation of 1, 2 and 3. In the case of the
isotropic harmonic oscillator (1.193) we have a conserved second rank tensor
with the components

Tij =
pipj
2m

+
1
2
mω2xix. (1.198)

By differentiating Tij with respect to t and then substituting for pi and ṗi from
the equations of motion we find that this derivative is zero and Tij is a constant.
Here a second rank tensor rather than a vector is conserved since there are two
axes of symmetry, the semi-major as well as the semi-minor axes. On the other
hand in the Kepler problem which we will consider next, the conserved quantity
is a vector and there is one axis of symmetry.

Two-Dimensional Kepler Problem — For the Kepler problem in two
dimensions with the Hamiltonian

H =
1

2m
(
p2

1 + p2
2

)
− Ze2

(q2
1 + q2

2)
1
2
, (1.199)

we have the following first integrals

L3 = q1p2 − q2p1, (1.200)

R1 = − L3p2

mZe2
+

q1

(q2
1 + q2

2)
1
2
, (1.201)

and
R2 =

L3p1

mZe2
+

q2

(q2
1 + q2

2)
1
2
. (1.202)

The vector R with components R1 and R2 is the two-dimensional form of the
Runge–Lenz vector (see the next section) [2]. By calculating the Poisson brack-
ets for L3, R1 and R2 we find

{L3, R1} = R2, (1.203)
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{R2, L3} = R1, (1.204)

and
{R1, R2} =

1
mZ2e4

(−2H)L3. (1.205)

We can transform these to the standard form of (1.192) by choosing

G1 =
√
mZe2√
2|E|

R1, (1.206)

G2 =
√
mZe2√
2|E|

R2, (1.207)

and
G3 = L3, (1.208)

noting that E which is the total energy of the particle is negative.
The Runge–Lenz vector R, with the components given by (1.201) and

(1.202) can be written as a vector equation

R =
1
m

(p ∧ L)− Ze2ρ

ρ
, (1.209)

where ρ is the position vector with components q1 and q2. This vector is directed
from the focus of the orbit to its perihelion (or the point of closest approach).
By multiplying (1.209) by ρ we find

ρ ·R = ρR cosφ =
1
m
ρ · (p ∧ L)− Ze2ρ. (1.210)

Using the vector identity

(p ∧ L) · ρ = L · (ρ ∧ p) = L2, (1.211)

from Eq. (1.210) we obtain the equation of orbit

ρ(φ) =
L2

Ze2 +R cosφ
=

d

1 + ε cosφ
, (1.212)

where d = L2

Ze2 is the semi-latus rectum of the ellipse and ε = R
mZe2 is its eccen-

tricity. Note that R vanishes for a circle (ε = 0) since there is no unique major
axis.

Two-Dimensional Anisotropic Harmonic Oscillator — The prob-
lem of a special two-dimensional anisotropic oscillator provides an example
where the symmetries and the group structure of the classical motion is not
carried over to the quantized motion.

Consider the Hamiltonian of this system for the general case which is given
by

H =
(
p2

1

2m1
+

1
2
m1ω

2
1q

2
1

)
+
(
p2

2

2m2
+

1
2
m2ω

2
2q

2
2

)
. (1.213)
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If the ratio of the two frequencies (ω1/ω2) is rational then the classical orbit
closes on itself. Let us assume that there are integers m and n such that

nω1 = mω2 = τ, (1.214)

For this case we introduce two constants α1 = m1ω1 and α2 = m2ω2 and two
variables bi and b∗i

bi =
pi − iαiqi√

2αi
, b∗i =

pi + iαiqi√
2αi

, i = 1, 2, (1.215)

and write the two first integrals as

F1 =
1
2

[bn1 (bm2 )∗ + (bn1 )∗bm2 ] , (1.216)

and
F2 =

−i
2

[bn1 (bm2 )∗ − (bn1 )∗bm2 ] . (1.217)

The three Gi s which form the group (1.192) are given by [25]

G1 =
√
ω1ω2

τ
F1 (b1b∗1)−

1
2 (n−1) (b2b∗2)−

1
2 (m−1)

, (1.218)

G2 =
√
ω1ω2

τ
F2 (b1b∗1)−

1
2 (n−1) (b2b∗2)−

1
2 (m−1)

, (1.219)

and
G3 =

1
2τ

(b2b∗2 − b1b∗1) . (1.220)

We note that here G1 and G2 are not always algebraic and for some m and n
values they are multivalued functions. When any one of the Gi s is not alge-
braic, then the existence of its quantum counterpart is in doubt [25].

1.11 Closed Orbits and Accidental Degeneracy

For the three-dimensional Kepler problem in addition to the angular momentum
vector, there is the Runge–Lenz vector, R, which is conserved [24]. This vector,
R, is in the direction of the semi-major axis of the elliptic orbit, and since it is
a constant vector the orbit is closed and there is no precession of the axis. The
vector R, the angular momentum vector L and the associated elliptic orbit of the
motion are shown in Fig. 1.2. More about this vector will be mentioned when
we discuss Pauli’s method of obtaining the spectra of the hydrogen atom by the
matrix method in Sec. 9.8. First, let us consider the types of attractive central
potentials that lead to closed orbits. According to Bertrand’s theorem the
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Figure 1.2: The Runge–Lenz vector, R and the angular momentum vector L for an elliptic

orbit of the classical problem with −k
r

potential (Kepler problem).

only central forces giving closed orbits for all bound particles are the Coulomb
potential (or Kepler problem) and the three-dimensional harmonic oscillator
[26]–[28].

For noncentral forces we can have accidental degeneracy for a wide class
of potentials [29],[30]. For instance consider the two-dimensional motion of a
particle in the xy-plane when the Hamiltonian is given by

H =
1

2m
(
p2
x + p2

y

)
+

1
2
mω2x2

[
θ(x)

(1 + λ1)2
+

θ(−x)
(1− λ1)2

]
+

1
2
mω2y2

[
θ(y)

(1 + λ2)2
+

θ(−y)
(1− λ2)2

]
, (1.221)

where θ(x) is the step function

θ(x) =
{ 0 for x < 0

1 for x > 0
, (1.222)

and λ1 and λ2 satisfy the inequalities

−1 < λ1 < 1, −1 < λ2 < 1. (1.223)

We can write (1.221) in terms of the action-angle variables defined by [2]

Ix =
1

2π

∮
[2m(α− V1(x))]

1
2 dx, (1.224)

and
Iy =

1
2π

∮
[2m(E − α− V2(y))]

1
2 dy, (1.225)
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Figure 1.3: The closed orbit found from the Hamiltonian (1.221) for m = 1, ω = 1, λ1 = 0.4
and λ2 = 0.2. Apart from the energy there are no apparent symmetries or conserved quantities
for this motion.

where E is the total energy and α is the separation constant. The potentials
V1(x) and V2(x) are given by the third and fourth terms in (1.221) respectively.
By carrying out the integrations in (1.224) and (1.225) and replacing E by H
we find a simple expression for the Hamiltonian

H = ω(Ix + Iy). (1.226)

This clearly shows the degeneracy of motion since the two periods given by

νx =
1

2π
∂H

∂Ix
=

ω

2π
, νy =

1
2π

∂H

∂Jx
=

ω

2π
, (1.227)

are equal. A closed orbit for the noncentral force derived from the Hamiltonian
(1.221) is displayed in Fig. 1.3.
The example that we have just considered is for a potential which is separable in
Cartesian coordinates, but one can construct similar cases in other coordinates
[29].

As we will discuss later these classically degenerate systems may or may
not remain degenerate in quantum mechanics. In other words closed orbits in
classical motion do not necessarily imply accidental degeneracies in their quan-
tum spectra.

1.12 Time-Dependent Exact Invariants

For some time-dependent potentials, Noether’s theorem may not be an easy
way to find conserved quantities. This is the case for example, when we want to
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determine a first integral of motion which explicitly depends on time. However
we find the conserved quantity by the application of a method devised by Lewis
and Leach [31].

Let us consider the one-dimensional Hamiltonian for a particle of unit
mass

H =
1
2
p2 + V (q, t), (1.228)

and denote the invariant first integral by I(p, q, t). Since I(p, q, t) is invariant,
we have

dI

dt
=
∂I

∂t
+ {I,H} =

∂I

∂t
+
(
∂I

∂q

∂H

∂p
− ∂I

∂p

∂H

∂q

)
= 0. (1.229)

For the general solution of (1.229) when H is given by (1.228) we assume that
I(p, q, t) can be expanded as a power series in p. However this procedure, unless
the power series terminates, does not give us a simple expression for I(p, q, t).
Therefore let us limit our investigation to the possibility of obtaining a function
I(p, q, t) which is at most quadratic in p;

I(p, q, t) = p2f2(q, t) + pf1(q, t) + f0(q, t). (1.230)

By substituting (1.228) and (1.230) in (1.229) and equating the coefficients of
p3, p2, p and p0 equal to zero we find

∂f2(q, t)
∂q

= 0, (1.231)

∂f2(q, t)
∂t

+
∂f1(q, t)
∂q

= 0, (1.232)

∂f0(q, t)
∂q

+
∂f1(q, t)

∂t
− 2f2(q, t)

∂V (q, t)
∂q

= 0, (1.233)

and
∂f0(q, t)

∂t
− f1(q, t)

∂V (q, t)
∂q

= 0. (1.234)

Integrations of (1.231) and (1.232) are trivial:

f2(q, t) = 2a(t), f1(q, t) = b(t)− 2ȧ(t)q, (1.235)

where a(t) and b(t) are arbitrary functions of time and where the dot denote
differentiation with respect to time. If we substitute for f1(q, t) and f2(q, t) in
(1.233) we get

∂f0(q, t)
∂q

− 4a(t)
∂V (q, t)
∂q

+ ḃ(t)− 2ä(t)q = 0. (1.236)

This equation can easily be integrated with the result that

V (q, t) =
1

4a(t)

[
f0(q, t)− ä(t)q2 + ḃ(t)q

]
+ g(t), (1.237)
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where again g(t) is an arbitrary function of t. If we substitute (1.235) and
(1.237) in (1.233) we find

(2ȧ(t)q − b(t))
(
∂f0(q, t)
∂q

− 2ä(t)q + ḃ(t)
)

+ 4a(t)
∂f0(q, t)

∂t
= 0. (1.238)

This is a partial differential equation of first order for f0(q, t).
Using the method of characteristics we solve (1.238) to get the general

solution of this partial differential equation [32]

f0(q, t) = G

[
q√
a(t)

+
1
4

∫ t b(t′)dt′

a
3
2 (t′)

]
+

1
2a(t)

(
ȧ(t)q − 1

2
b(t)
)2

. (1.239)

In thisexpression G is an arbitrary function of its argument. It is simpler to
rewrite (1.239) in terms of ρ1(t), α(t) and G̃(z) where these functions of time
are defined by:

ρ1(t) = 2
√
a(t), (1.240)

α(t) = −ρ1(t)
8

∫ t b(t′)dt′

a
3
2 (t′)

, (1.241)

and
G̃(z) = G(2z). (1.242)

Equation (1.237) shows that the general form of the potential consists of two
parts: the fixed part which is a quadratic function of q and an arbitrary part

V (q, t) = −F (t)q +
1
2

Ω2(t)q2 +
1

ρ2
1(t)
U
(
q − α(t)
ρ1(t)

)
, (1.243)

where U is an arbitrary function of its argument.
Now comparing (1.243) with (1.237) we find that the arbitrary functions

F (t),Ω2(t), ρ1(t) and α(t) are all related by the following relations:

ρ̈1(t) + Ω2(t)ρ1(t)− K

ρ3
1(t)

= 0, (1.244)

α̈(t) + Ω2(t)α(t) = F (t). (1.245)

with K a constant. In terms of the functions α(t) and ρ1(t) we can write the
invariant function I(p, q, t) as

I(p, q, t) =
1
2

[ρ1(t) (p− α̇(t))− ρ̇1(t)(q − α(t))]2

+
1
2
K

(
q − α(t)
ρ1(t)

)2

+ U
(
q − α(t)
ρ1(t)

)
. (1.246)

For instance if the Hamiltonian is given by

H =
1
2
p2 +

1
2

Ω2(t)q2, (1.247)



Bibliography 35

and if we also choose G to be
G̃ =

1
2
x2, (1.248)

then ρ1(t) satisfies the differential equation

ρ̈1(t) + Ω2(t)ρ1(t)− 1
ρ3

1

= 0. (1.249)

A scale transformation given by

ρ1(t) =
1√
Ω0

ρ(t). (1.250)

where Ω0 is a constant, changes (1.249) to the form

ρ̈(t) + Ω2(t)ρ(t)− Ω2
0

ρ3
= 0. (1.251)

This is the form that later we will use in the corresponding quantum mechanical
problem.
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Chapter 2

Discovery of Matrix
Mechanics

Historians of science unanimously agree that the new quantum mechanics was
born on July 29, 1925 with the publication of a paper by Heisenberg under the
title of “Über quantentheoretische Umdeutung kinematischer und mechanischer
Beziehungen” [1]–[10]. The novel ideas contained in this paper paved the way
for a complete departure from the classical description of atomic physics, and
advanced a new formulation of the laws of micro-physics. First and foremost
Heisenberg thought of replacing the classical dynamics of the Bohr atom by a
formulation based exclusively on relations between quantities that are actually
observables. Thus he abandoned the idea of determining the coordinates and
momenta of the electron as functions of time, but at the same time he retained
the mathematical form of the second law of motion. Now if Bohr’s orbits are not
observables, the spectral lines and their intensities are. In the classical Larmor
formula for radiation from an accelerating electron the energy radiated by the
electron, in cgs units is [11]

P =
(

2e2

3c3

)
ẍ2, (2.1)

where e is the charge of the electron, c the speed of light and ẍ is the ac-
celeration. For a harmonically bound electron, the average power for the α-th
harmonic with amplitude xα(n) is

P =
4e2

3c3
[α ω(n)]4 |xα(n)|2. (2.2)
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For such a bound electron, the position x(n, t), where the stationary state is
labeled by n, can be written as a Fourier series

x(n, t) =
∞∑

α=−∞
aαe

iαω(n)t. (2.3)

Heisenberg observed that according to the correspondence principle, the α-th
component of the classical motion corresponds to the quantum-mechanical tran-
sition from the state n to the state n − α [7],[8]. Guided by this principle,
Heisenberg replaced the classical component

aαe
iω(n)t, (2.4)

by
a(n, n− α)eiω(n, n−α)t. (2.5)

In order to account for the transition from one stationary state n to another
(n− α), he replaced (2.3) by

x→ a(n, n− α)eiω(n, n−α)t, or xm,n → a(n,m)eiω(n, m)t, (2.6)

and rather than summing over transition components as was done in (2.3),
Heisenberg represented the position by a set of transition components, xmn.
Then he argued that the quantum mechanical analogue of (2.2) can be found
by replacing xα(n) by xmn and αω(n) by ω(n,m). In revising classical dynam-
ics, the next problem that he encountered was the question of multiplication of
transition amplitudes xmn. Such an operation was needed in the calculation of
the potential energy of the oscillator, 1

2ω
2x2, or in the solution of the problem of

anharmonic oscillator. Here Heisenberg assumed that the frequencies combine
according to the Ritz combination principle.

There were two additional assumptions advanced by Heisenberg regard-
ing the dynamics of the motion. First he proposed that the equations of motion
should have the same mathematical form as the classical Newton’s second law,
with xmn substituting for x in the equation mẍ = f(x).
The second was the modification of the old Bohr–Sommerfeld quantization rule∮

pdq =
∮
mẋ2dt = 2πh̄n. (2.7)

This equation expressed in terms of the Fourier series for x(n, t), Eq. (2.3) takes
the form

nh̄ = m
∑
α

|aα(n)|2α2ω(n). (2.8)

But how this rule can be expressed when there is a transition from the state
n to n − α. Here Heisenberg made the bold assumption that what matters is
the difference between

∮
pdq evaluated for the state n and the neighboring state

n− 1, viz, [∮
pdq

]
n

−
[∮

pdq

]
n−1

. (2.9)
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For Heisenberg the presence of the integer n in (2.8) seemed to be an arbitrary
condition, and he concluded that and Eq. (2.7) which fixes the Bohr orbit must
be replaced by a new condition and that the new condition must be about the
transition between states.

By differentiating (2.8) with respect to n Heisenberg found

h̄ = m
∑
α

α
d

dn

[
|aα(n)|2αω(n)

]
. (2.10)

This differential relation was changed to a difference relation

h̄ = 2m
∞∑
α=0

{
|a(n+ α)|2ω(n+ α, n)− |a(n− α)|2ω(n− α, n)

}
. (2.11)

This relation supplements the Planck–Bohr frequency condition, i.e. it relates
the amplitudes of different lines within an atomic spectrum.

Returning to the problem of radiation form an electron we note that the
quantum mechanical analogue of (2.2), according to Heisenberg, can be found
by replacing xα(n) by xnm and αω(n) by ω(n,m). Heisenberg also assumed that
the quantum-mechanical power can be written as the product of the transition
probability per unit time A(n,m) where

A(n,m) =
4e2

3h̄c3
[ω(n,m)]3 |xnm|2, (2.12)

times the emitted energy given by Planck–Bohr relation En − Em = h̄ω(n,m),

P (n,m) = A(n,m)h̄ω(n,m) =
4e2

3c3
[ω(n,m)]4 |xnm|2. (2.13)

This equation shows how xnm can be related to the observables P (n,m) and
ω(n,m) [1]–[7].

We note that in this formulation for the harmonic motion the set of num-
bers xnm replace the Fourier coefficients of the classical position xα(n). But
Heisenberg asked how this can be generalized to the case of the anharmonic
oscillator problem, e.g. [1]

ẍ+ ω2
0x+ λx2 = 0, (2.14)

i.e. how to express
(
x2
)

in terms of the observables xnm and ω(n,m). Here
he assumed that the frequencies combine according to the Ritz combination
principle

ω(n, j) + ω(j, n) = ω(n,m). (2.15)

Thus if one writes
xnm(t) = xnme

iωnmt. (2.16)

then (2.15) can be satisfied provided that(
x2
)
nm

(t) =
∑
j

xnj(t)xjm(t). (2.17)
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By reading the manuscript of Heisenberg’s paper Born recognized that
(2.17) is the law of multiplication of matrices. Once this discovery was made
Born and his assistant P. Jordan started to investigate how the basic laws of
matrix mechanics should be formulated.

Born considered a dynamical system with one degree of freedom and then
rather than writing the second law of motion as in (2.14) he assumed a Hamil-
tonian formulation Ĥ (p̂, q̂) when both p̂ and q̂ are time-dependent matrices
(matrices are shown by )̂

p̂ =
{
pnme

iω(n,m)t
}
, (2.18)

q̂ =
{
qnme

iω(n,m)t
}
, (2.19)

where ω(n,m) denotes the frequency of transition between two stationary states
with energies En and Em, so that

h̄ω(n,m) = En − Em. (2.20)

From this relation it follows that ω(n, n) = 0, and thus the diagonal elements of
p̂ and q̂ defined by (2.18) and (2.19) are independent of time. We know that in
the Fourier expansion of any dynamical function of time for a periodic motion
the constant term is equal to the time average value of that function. Now from
the Bohr correspondence principle (see Sec. 12.8) we may conclude that for any
dynamical variable f , the diagonal element fnn of the matrix representing f
can be interpreted as the average value of f when the system is in the state n.
The off-diagonal elements, fmn, on the other hand, account for the transition
between the states m and n. The converse of the result that the diagonal
elements are constant in time is that if the total time derivative of a matrix is
zero, then that matrix must be diagonal. Note that if dĤdt = 0, it does not follow
that Ĥ is diagonal unless the spectrum of Ĥ is non-degenerate, i.e. ω(n,m) 6= 0
for m 6= n. For a conservative system the Hamiltonian is a constant of motion
dĤ
dt = 0, therefore we can represent H as a diagonal matrix, with elements
H(n, n). This H(n, n) is the energy of the system when it is in the state n, i.e.
En. Thus Eq. (2.20) can be written as

ω(n,m) =
1
h̄

[H(n, n)−H(m,m)]. (2.21)

Following Heisenberg, Born also assumed that the Hamilton canonical equations
of motion Sec. 1.3 preserve their form, and that Ĥ, p̂ and q̂ satisfy the equations

dq̂

dt
=
∂Ĥ

∂p̂
, (2.22)

and
dp̂

dt
= −∂Ĥ

∂q̂
, (2.23)
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corresponding to the classical equations (1.45) and (1.46).
Substituting for q̂ from (2.19) we have(

∂q̂

∂t

)
nm

=
i

h̄

[
(En − Em)q(n,m)eiω(n,m)t

]
=

i

h̄

(
Ĥq̂ − q̂Ĥ

)
nm

, (2.24)

or

Ĥq̂ − q̂Ĥ = −ih̄∂Ĥ
∂p̂

. (2.25)

Thus the commutator (
f̂ q̂ − q̂f̂

)
=
[
f̂ , q̂

]
= −ih̄∂f̂

∂p̂
, (2.26)

is valid for f̂ = Ĥ and also for f̂ = q̂. But if (2.25) is valid for two matrices f̂1

and f̂2, then it is also valid for f̂ = f̂1 + f̂2 and ĝ = f̂1f̂2. Now if we solve Ĥ
for p̂, p̂ = p̂

(
q̂, Ĥ

)
, then choose p̂ to be f̂ in (2.26) we find

(p̂q̂ − q̂p̂) = −ih̄, (2.27)

which is the fundamental commutation relation in quantum mechanics [12]-[13].
The next important contribution to the matrix mechanics came with the

complete solution of the hydrogen atom problem with the help of the operator
version of the Runge–Lenz vector. Shortly after the discovery of the fundamen-
tal commutation relation, Pauli succeeded in obtaining the exact solution to the
operator equation for the motion of a charged particle in a Coulomb field (Sec.
9.9) and found the Balmer formula for the discrete spectrum of this system [14].

According to van der Waarden “Pauli’s paper convinced physicists that
Quantum Mechanics is correct” [15]. Soon after the publication of Pauli’s pa-
per Schrödinger in a series of papers introduced his famous wave equation and
applied the wave mechanics to a number of problems including the harmonic
oscillator and the hydrogen atom. While these early attempts, whether in its
matrix formulation or as a wave equation were powerful methods for producing
answers, the underlying physical principle was still missing.

The final clue to this puzzle came in a paper of Born entitled “ Zur Quan-
tenmechanik der Stoβvorgänge” [16]. In this work where Born formulated the
quantum theory of scattering, in a footnote he made the suggestion that the
square of the absolute value of the wave function, |ψ(r)|2 measures in some way
the probability of finding the particle at the point r.

As later Born observed “We free forces of their classical duty of determin-
ing directly the motion of the particles and allow them instead to determine the
probability of states” [5].

Very few books have been written on matrix mechanics [17]–[21] and
among these the charming little book by Green [18] is exceptional in its broad
coverage of the subject.
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2.1 Equivalence of Wave and Matrix Mechanics

Soon after the discovery of the wave equation, Schrödinger and independently,
Eckart proved that the two formulations are equivalent [22]–[24]. Later the
Dirac transformation theory provided a covering theory from which one or the
other formulation can be derived. The exact meaning of this equivalence has
been examined carefully, for instance by Hanson [26]. In this section we will
outline the original Schrödinger’s proof in some detail.

Consider a “well-ordered” operator F(qk, pk), Secs. 3.5–3.8, which de-
pends on qk and pk of the general form

F(qk, pk) = f(qk)prpsptg(qk)p(r′)h(qk)pr′′ps′′ · · · . (2.28)

To this F we assign the following operator

F = f(qk)(−ih̄)3 ∂3

∂qr∂qs∂qt
g(qk)(−ih̄)

∂

∂qr′
h(qk)(−ih̄)2 ∂2

∂qr′′∂qs′′
· · · , (2.29)

with the differential operators acting on all the factors to the right. In particular
the action of F on a function u(qk) yields another function of qk s, which we de-
note by (F , u). If G(qk, pk) is another well-ordered operator, in general, (FG, u)
will not be equal to (GF , u). Now let us choose a complete set of orthonormal
functions in the whole q space, q = (q1, q2 · · · , qk, · · ·):

uα(q)
√
ρ(q), uβ(q)

√
ρ(q), · · · , uµ(q)

√
ρ(q), · · · (2.30)

where the integration is over all q space and where ρ(q) is a density function
such that [25] ∫

uµ(q)uν(q)ρ(q)dq =
{

0 µ 6= ν
1 µ = ν

. (2.31)

Using this set of functions we define a matrix Fµν , from the operator F and the
complete set of orthonormal functions uµ(q), with the elements

Fµν =
∫
ρ(q)uµ(q)(F , uν(q))dq. (2.32)

We also define another operator F̄ which Schrödinger calls “gewẅallze” or
“rolled over operator” by

F̄ = (−1)τ · · · (−ih̄)2 ∂2

∂qr′′∂qs′′
h(qk)(−ih̄)

∂

∂qr′
g(qk)(−ih̄)3 ∂3

∂qr∂qs∂qt
g(qk)f(qk),

(2.33)
where τ is the number of derivatives in F . Assuming that uα(q) · · ·uµ(q) · · ·
and their derivatives vanish at the boundaries, by means of partial integration
we can show that F can also be written as

Fµν =
∫
uµ(q)(F̄ , ρ(q)uν(q))dq. (2.34)
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From this equation it follows that∑
β

FµβGβν =
∑
β

∫
uβ(q)(F̄ , ρ(q)uµ(q))dq

×
∫
ρ(q1)uβ(q1)(Ḡ, ρ(q1)uν(q1))dq1. (2.35)

By carrying out the summation over β, and using the completeness of uα(q) s
(2.35) transforms into∑

β

FµβGβν =
∫

(F̄ , ρ(q)uµ(q))(Ḡ, uν(q))dq. (2.36)

This result shows that the quantities Fµν and Gµν defined by (2.34) satisfy the
rule of product of matrices.

Now let us consider the matrices (qj)µν and (pj)µν , where pj = −ih̄ ∂
∂qj

;

(qj)µν =
∫

(qj , ρ(q)uµ(q))uν(q)dq, (2.37)

and

(pj)µν = −ih̄
∫

(qj , ρ(q)uµ(q))
∂

∂qk
uν(q)dq. (2.38)

From these equations we obtain the canonical commutation relation

(pjqk − qkpj)µν = −ih̄δjk
∫
ρ(q)uµ(q)uν(q)dq = −ih̄δµνδkj . (2.39)

This is the commutation relation (2.27), here derived using wave mechanical
formalism. We can also derive Eq. (2.25) from the wave equation:

Huµ(q) = Eµuµ(q), (2.40)

where uµ(q) is the eigenfunction of the Hamiltonian with the eigenvalue Eµ.
Using the orthogonality of {uµ(q)} s we have

Hµν = Eν

∫
ρ(q)uµ(q)uν(q)dq = Eνδµν . (2.41)

Since Hµν is a diagonal matrix, we have

(qlH)µν =
∑
β

(ql)µβHβν = Eν(ql)µν , (2.42)

(Hql)µν =
∑
β

Hµβ(ql)βν = Eµ(ql)µν . (2.43)
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These are equivalent to Eqs. (2.24) and (2.25). Similarly we can derive

ih̄

(
dpl
dt

)
αβ

= [p, H]αβ , (2.44)

from the wave equation (2.40).
Now H in (2.40) is a suitably symmetrized Hamiltonian, and according

to Schrödinger we need to show that this H is the same wave operator which
gives us the wave equation. To this end we will consider a Hamiltonian with
the general form of

H = T (qk, pk) + V (qk), (2.45)

where T is a quadratic function of pk s. Schrödinger now derives his wave
equation from the variational principle

δJ1 = δ

∫ {
h̄2T

(
qk,

∂ψ(q)

∂qk

)
+ ψ2(q)V (qk)

}
1√
∆p

dq = 0, (2.46)

subject to the subsidiary condition

δJ2 =

∫
ψ2(q)√

∆p

dq = 1, (2.47)

where ∆p is the discriminant of the quadratic form T . Multiplying (2.47) with
the Lagrange’s multiplier (−E), adding it to (2.46), and carrying out the vari-
ation he obtains∫ {

− h̄
2

2

∑
l

∂

∂ql

[
1√
∆p

Tpl

(
ql,

∂ψ(q)

∂ql

)]
+

1√
∆p

(V (ql)− E)ψ(q)

}
× δψ(q)dq = 0. (2.48)

Thus from the Euler–Lagrange equation for this problem he finds the following
partial differential equation which is the same as the Schrödinger equation;

− h̄2

2
√

∆p

∑
l

∂

∂ql

[
1√
∆p

Tpl

(
ql,

∂ψ(q)

∂ql

)]
− (V (ql)− E)ψ(q) = 0. (2.49)
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[1] W. Heisenberg, Über quantentheoretische Umdeutung kinematischer und
mechanischer Beziehungen, Z. Physik 33, 879 (1925). The English transla-
tion of this paper can be found in B.L. van der Waerden’s book Sources
of Quantum Mechanics, (Dover Publications, New York, 1967) p. 261. See
also W. Heisenberg, Collected Works, edited by W. Blum, H.-P. Dürr and
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Chapter 3

Mathematical Preliminaries

In this chapter we want to recall some of the important mathematical defini-
tions and results related to linear vector space and matrix calculus that will be
needed for the formulation of the matrix mechanics [1]–[4].

3.1 Vectors and Vector Spaces

We define a vector space as a space whose elements known as vectors satisfy the
following set of axioms:
Let F be a field of complex numbers, or a field of scalars, then the vector space
over the field F is the set of vectors {f} where the members of the set {f} must
satisfy the following axioms of addition and multiplication.
For addition we have

(1) - Closure: if f and g are vectors, then f + g is also a vector.
(2) - Associativity of addition:

f + (g + h) = (f + g) + h. (3.1)

(3) - Commutativity:
f + g = g + f. (3.2)

(4) - Existence of the null vector 0:

f + 0 = f. (3.3)

(5) - Inverse element (−f):

f + (−f) = 0. (3.4)

49
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For multiplication by scalars b and c we have
(1) - Closure: if f is a vector belonging to the vector space, then cf is

also a vector belonging to the same vector space.
(2) - Distributivity for scalar multiplication:

c(f + g) = cf + cg. (3.5)

(3) - Distributivity for scalar multiplication over vector addition:

(b+ c)f = bf + cf. (3.6)

(4) - Associativity of scalar multiplication:

c(bf) = (cb)f. (3.7)

(5) - Existence of an identity scalar element 1:

1(f) = f. (3.8)

We will denote an element f of the vector space by the symbol |f〉 which we
call a ket. We also associate with every ket |f〉 a new object which we call bra
and we denote it by 〈f |. The bra which is associated with the ket a|f〉 is a∗〈f |,
and the one associated with b|f〉 + c|g〉 is b∗〈f | + c∗〈g|. Using these notations
we can write the scalar product of 〈f | and |g〉 as 〈f |g〉.

Having defined the vector space, let us consider N vectors, f1, f2 · · · , fN
belonging to this space.

If the equation

c1f
(1) + c2f

(2) + · · ·+ cNf
(N) = 0, (3.9)

is satisfied if and only if c1 = c2 = · · · = cN = 0, then f (1), f (2) · · · f (N) form a
set of linearly independent vectors.

The vectors that we have defined so far can have finite or infinite com-
ponents. In quantum theory we are dealing with both finite- and infinite-
dimensional vector spaces. That is the number of independent vectors spanning
the space can be finite or infinite. In addition we are dealing with vectors in
Hilbert space, i.e. we assume that any pair of vectors f and g have a scalar
product 〈f |g〉 and a norm which is defined by

||f || =
√
〈f |f〉. (3.10)

The scalar product 〈f |g〉 can be a real or a complex number, and has the
following properties:

(1) - 〈f |f〉 ≥ 0 and 〈f |f〉 = 0 if and only if f = 0. (3.11)

(2) - 〈f |g(1) + g(2)〉 = 〈f |g(1)〉+ 〈f |g(2)〉. (3.12)
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(3) - 〈f |g〉 = 〈g|f〉∗, (3.13)

where 〈g|f〉∗ denotes the complex conjugate of 〈g|f〉. If c is a complex number
then 〈cf〉 = c∗〉f |g〈 and 〈f |cg〉 = c〈f |g〉.

(4) - Schwarz inequality

|〈f |g〉|2 ≤ 〈f |f〉〈g|g〉. (3.14)

If vectors f and g are represented by finite or infinite column matrices
f1

f2
...
fn
...

 ,

g1

g2
...
gn
...

 , (3.15)

where fi is the i-th component of the vector f , then

〈f |g〉 =
(
f t
)∗
g = f†g =

∑
i

f∗i gi. (3.16)

We use 〈f | to denote the complex conjugate of the row vector f and |g〉 as a
column vector g. The sum in (3.16) can run over a finite or an infinite number
of components. The superscript t on f indicates the transpose of the matrix,
and the superscript † denotes the complex conjugate of the transpose.

A set {f (k)} in a vector space is complete provided that any vector in the
same space can be written as a linear combination of the vectors from the set{
f (k)

}
. Now suppose that we have a set of independent vectors

{
f (k)

}
which

is complete, then we can always construct a set of vectors
{
e(k)
}

so that they
are orthogonal to each other, i.e.

〈
e(j)|e(k)

〉
= 0, when j 6= k. The construction

of this set is as follows:
We normalize f (1) and call it e(1)

e(1) =
f (1)

||f (1)||
, thus

〈
e(1)|e(1)

〉
= 1. (3.17)

Then we subtract from f (2) the component
〈
e(1)|f (2)

〉
e(1) and normalize the

result to get e(2);

e(2) =
f (2) −

〈
e(1)|f (2)

〉
e(1)

||f (2) −
〈
e(1)|f (2)

〉
e(1)||

. (3.18)

This vector e(2) is clearly normalized and is also orthogonal to e(1). We can
proceed in this way and find e(n) from the relation

e(n) =

[
f (n) −

∑n−1
k=1

〈
e(k)|f (n)

〉
e(k)
]

∣∣∣∣∣∣[f (n) −
∑n−1
k=1

〈
e(k)|f (n)

〉
e(k)
]∣∣∣∣∣∣ . (3.19)
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Again it can easily be shown that〈
e(n)|e(j)

〉
= 0, for j = 1, · · · , n− 1,

〈
e(n)|e(n)

〉
= 1. (3.20)

A function f(x) of a real variable x defined over a finite interval a ≤ x ≤ b
or over an infinite interval (−∞ ≤ x ≤ ∞ or 0 ≤ x ≤ ∞) is also a vector
provided cf(x) and f(x) + g(x) are also defined over the same interval. In
addition the scalar product is defined by

〈f |g〉 =

∫ b

a

f∗(x)g(x)dx. (3.21)

The set of vectors f (1)(x), f (2)(x), · · · f (N)(x) · · · are called independent if any
relation of the form

∑
i cif

(i)(x) = 0 between them implies that all the ci s are
zero. The norm (or the length) of the vector f(x) is defined by

||f || =

[∫ b

a

f∗(x)f(x)dx

] 1
2

, (3.22)

or in the matrix form with components f1, f2, · · · the norm is given by

||f || = [〈f |f〉]
1
2 =

[∑
i

f∗i fi

] 1
2

. (3.23)

If the scalar product of two non-zero vectors f and g is zero

〈f |g〉 = 0, (3.24)

we say that g is orthogonal to f .
In quantum theory we work with vectors in Hilbert space and this Hilbert

space is of crucial importance in the mathematical formulation of quantum me-
chanics. Hilbert space is the space of square integrable functions f(x), g(x) · · ·,
where each member is a complex valued function defined on the real interval
(a, b), i.e. has a finite norm, ‖ f ‖<∞. This space will be denoted by L2. The
scalar product of two vectors f(x) and g(x) in L2 is defined by Eq. (3.21) and
satisfies the properties (1)–(4) of scalar products.

We define the distance between the two functions f(x) and g(x) by

d(f, g) =‖ f(x)− g(x) ‖, (3.25)

and this makes L2 a metric space. The space L2 is complete, i.e. a space
where every Cauchy series has a limit. That is if we consider a series of vectors
|f (n)(x)〉 of L2 such that ‖ f (n) − f (j) ‖→ 0 as n, j → ∞, then there exists
a vector |f(x)〉 of L2 such that ‖ f (n) − f ‖→ 0 for n → ∞. The dimension
of a Hilbert space can be finite and equal to N , or it can be denumerably or
nondenumerably infinite.
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For the Hilbert space L2 one can find a denumerable infinite set of base
functions (or vectors) e(1)(x) which are orthogonal〈

e(k)|e(j)
〉

=
∫ b

a

e(k) ∗(x)e(j)(x)dx = δkj . (3.26)

We can expand any element of the Hilbert space L2 in terms of the set e(k)(x)
as

f(x) =
∞∑
k=1

cke
(k)(x). (3.27)

This expansion must be understood in the following sense. Consider the partial
sum

f (n)(x) =
n∑
k=1

cke
(k)(x), (3.28)

then the expansion (3.27) holds provided

‖ f(x)− f (n)(x) ‖< ε, for n > N(ε). (3.29)

We call the set {e(n)} a complete set if

∞∑
k=1

cke
(k)(x) 6= 0, for all x, (3.30)

unless all ck s are zero. The completeness of the set {e(k)(x)} can be expressed
by the relation

∞∑
k=1

e(k) ∗(x)e(k) (x′) = δ (x− x′) , (3.31)

where δ (x− x′) is the Dirac delta function (see below). In some problems the
Hilbert spaces needed do not have a denumerably infinite base, e.g. when the
range of x is infinite −∞ ≤ x ≤ ∞ or 0 ≤ x ≤ ∞. When this is the case we need
a nondenumerably infinite set of functions to expand a given function belonging
to L2. Denoting the base function by e(k, x), where k is continuous and varies
from −∞ to ∞, we can express the completeness relation by∫ ∞

−∞
e∗(k, x)e (k, x′) dk = δ (k − k′) . (3.32)

A function f(x) belonging to L2 can then be expanded as

f(x) =
∫ ∞
−∞

c(k)e(k, x)dk, (3.33)

where
c(k) = 〈e(k, x)|f(x)〉 =

∫ ∞
−∞

e∗(k, x)f(x)dx. (3.34)
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In many problems we encounter Hilbert spaces where the base is neither entirely
countable nor entirely continuous. If this is the case then the completeness
condition reads

N∑
j=1

e(j) ∗(x)e(j) (x′) +

∫ ∞
a

e∗(k, x)e (k, x′) dk = δ (k − k′) , (3.35)

where N , the number of discrete elements e(j)(x) may be finite or infinite.
Dirac’s δ-function — The Dirac δ-function that we introduced in (3.32)

is not a proper function, rather it is a distribution [5]. However for practical
purposes we may consider it a function. This δ-function :has the following
properties:

δ(x) = 0, x 6= 0, (3.36)∫ ∞
−∞

δ(x) dx = 1, (3.37)∫ ∞
−∞

f(x)δ(x) dx = f(0), (3.38)

if f(x) is a continuous function around x = 0,

δ(ax) =
1

|a|
δ(x), (3.39)

xδ′(x) = −δ(x), (3.40)

and finally

δ[f(x)] =
N∑
j=1

1

|f ′(xj)|
δ(x− xj), (3.41)

where xj s are the zeros of f(x).
Matrix Representation of an Operator — We assume that we have a

complete set of unit vectors e(j), then any vector f in this space can be expanded
as

f =
∑
j

fje
(j). (3.42)

The operator A acting on f will give us a vector g

g = Af. (3.43)

This vector can also be expanded in terms of the basis set or unit vectors e(k),
viz,

g =
∑
k

gke
(k). (3.44)

Substituting (3.42) and (3.43) in (3.44) and multiplying the result by e(n) we
obtain

gn =
∑
k

〈
e(n)|A|e(k)

〉
fk. (3.45)
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This relation shows that the operator A can be represented by its matrix element
Ank;

Ank =
〈
e(n)|A|e(k)

〉
. (3.46)

3.2 Special Types of Operators

Among the operators which we encounter in quantum mechanics the followings
are of special interest:

(1) - Projection (or Idempotent) Operator — A projection operator
is a self-adjoint operator P with the property that P 2 = P . The eigenvalues of
such an operator are either zero or one. If |n〉 is the normalized eigenfunction
of a Hermitian operator A with discrete eigenvalues λn, then

Pn|α〉 = |n〉〈n|α〉, (3.47)

is a projection operator since we have

P 2
n |α〉 = Pn|n〉〈n|α〉 = |n〉〈n|α〉 = Pn|α〉. (3.48)

(2) - Hermitian Operator — An operator A is said to be Hermitian if
A = A†, or expressed in another way for arbitrary vectors f and g in Hilbert
space we have the relation

〈Af |g〉 = 〈f |Ag〉. (3.49)

If f and g are basis vectors for the vector space then

〈ek|A|ej〉 = 〈ej |A|ek〉∗. (3.50)

or
Akj = (Ajk)∗. (3.51)

That is the two elements symmetric with respect to the diagonal elements of
the matrix are complex conjugates of each other.

An important property of the Hermitian operators is that their eigenvalues
are all real numbers. Let |n〉 be the eigenfunction of λn;

A|n〉 = λn|n〉, (3.52)

then
〈n|A|n〉 = λn〈n|n〉 = λn. (3.53)

Also from the Hermiticity property of A, i.e. A = A† we get

〈n|A† = 〈n|A = λ∗n〈n|. (3.54)

Therefore
〈n|A†|n〉 = 〈n|A|n〉 = λ∗n〈n|n〉 = λ∗n. (3.55)
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Comparing (3.53) and (3.55) we find that λ = λ∗, and thus λ is real.
(3) - Unitary Operator — We define a unitary operator U by the prop-

erty that its inverse, U−1, is equal to its adjoint U† and this implies that

U†U = UU† = 1. (3.56)

Now let us consider two arbitrary vectors |f〉 and |g〉 which under the
action of U transform to vectors |f̃〉 and |g̃〉;

|f̃〉 = U |f〉, (3.57)

|g̃〉 = U |g〉. (3.58)

The scalar product 〈f̃ |g̃〉 is given by

〈f̃ |g̃〉 = 〈f |U†U |g〉 = 〈f |g〉. (3.59)

This scalar product is preserved under unitary transformation. In particular if
g̃ = f̃ then

〈f̃ |f̃〉 = 〈f |f〉, (3.60)

i.e. the norm of a vector is also preserved.
If an operator A is Hermtian, then the operator eiA is unitary. This follows

from the fact that A† = A. Thus if U = eiA, then

U† = e−iA
†

= e−iA, (3.61)

and
U†U = e−iA

†
eiA = e−iAeiA = 1, (3.62)

where 1 denotes a unit matrix or operator. Next we consider the action of a
unitary operator on a basis set {ek} which we assume to be orthonormal. If the
unitary operator acts on |ek〉 we obtain a new vector |ẽk〉,

|ẽk〉 = U |ek〉, (3.63)

and for this new vector we find the scalar product 〈ẽj |ẽk〉 to be

〈ẽj |ẽk〉 = 〈ej |U†U |ek〉 = 〈ej |ek〉 = δjk. (3.64)

Thus the new set {ẽj} form an orthonormal set of basis vectors.
We can find the matrix representation of the operator U by defining

Ujk = 〈ej |U |ek〉, (3.65)

and this matrix Ujk is a unitary matrix since

〈ej |U†U |ek〉 =
∑
n

〈ej |U†|en〉〈en|U |ek〉 =
∑
n

δjnδnk = δjk, (3.66)
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or written in the matrix form Eq. (3.66) becomes∑
n

U†jnUnk = δjk. (3.67)

Just as infinitesimal canonical transformation Sec. 1.8 are important in
classical mechanics, infinitesimal unitary transformation play a very important
role in quantum mechanics. We write such a transformation as

U = 1 + iεG, (3.68)

where ε is a real infinitesimal number, G is a Hermitian operator and 1 represents
the unit matrix. The Hermitian conjugate of U and the inverse of U , up to the
order ε, have simple forms:

U† = 1− iεG, (3.69)

U−1 = U† = 1− iεG, (3.70)

and to this order we have
UU† = U†U = 1. (3.71)

Let A be an arbitrary operator which under the infinitesimal unitary transfor-
mation changes to A′, then A is related to A′ by

A→ A′ = (1 + iεG)A(1− iεG) = A+ iε[G, A], (3.72)

where [G, A] is the commutator of G and A, and in (3.72) only terms of order
ε have been retained. Denoting the change from the action of this unitary
transformation by δA we have

δA = A′ −A = iε[G, A]. (3.73)

This expression is the quantum analogue of the classical expression (1.150).
Baker–Campbell–Hausdorff Formula — If the commutator [A,B] is

a c-number, [A,B] = λ, then

eA+B = eAeBe−
λ
2 . (3.74)

To find this result let us consider a function f(ξ) defined by

f(ξ) = eξAeξB . (3.75)

By differentiating (3.75) with respect to ξ while preserving the order of operators
we have

1

f(ξ)

df(ξ)

dξ
= (A+B + [A,B]ξ) = (A+B + λξ). (3.76)

Now we integrate the differential equation (3.76) subject to the condition f(0) =
1, and then set ξ = 1 to obtain (3.74).
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This is a special case of the general Baker–Campbell–Hausdorff formula.
This formula can be written as

eABe−A = B + [A,B] +
1

2
[A, [A,B] ] + · · · =

∞∑
n=0

1

n!
[A, [A, [A, · · ·] ] ]B, (3.77)

or in the form of
eAeB = eC , (3.78)

where

C = A+B +
1

2
[A,B] +

1

12
[ [A,B], B] +

1

12
[ [B,A], A] + · · · . (3.79)

Note that both (3.77) and (3.79) reduce to (3.74) provided that

[A, [A,B] ] = [B, [A,B] ] = 0. (3.80)

3.3 Vector Calculus for the Operators

A number of vector identities in classical mechanics and electrodynamics will
assume different forms when the components of these vectors are linear oper-
ators. Let A and B be two non-commutative three-dimensional vectors with
components (Ax, Ay, Az) and (Bx, By, Bz) respectively, and let us write the
commutator [A, B] as a dyadic [6],[7]

[A, B] = [Ax, Bx]ii + [Ax, By]ij + · · · . (3.81)

By writing for AB−BA as well as BA−AB using Eq. (3.81) we find that

[A, B] = AB− (BA)t = AB−BA− (B ∧A) ∧ Î, (3.82)

where Î is the unit dyadic
Î = ii + jj + kk, (3.83)

and the superscript t denotes the transposed dyadics. From (3.82) we find that
in general [B, A] 6= − [A, B], but

[B, A] = − [A, B]
t
. (3.84)

Also the commutator of A with a scalar operator Q is

[Q, A] = −[A, Q] = [Q, Ax]i + [Q, Ay]j + [Q, Az]k. (3.85)

Now from (3.82) we find the formulas [7]

A · (B ∧C) = (A ∧B) ·C, (3.86)
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A ∧ (B ∧C) = B(A ·C)− (A ·B)C− [B, A] ·C
= (A ·C)B− (A ·B)C−A · [C, B], (3.87)

(A ∧B) ∧C = B(A ·C)− (A ·B)C− [B, A] ·C
= A(C ·B)−A(B ·C)−A · [C, B], (3.88)

[(A ·B), C] = A · [B, C]− [C, A] ·B, (3.89)

[(A ∧B), C] = A ∧ [B, C]− ([C, A] ∧B)t, (3.90)

and
[(A ∧B), Q] = A ∧ [B, Q] + [A, Q] ∧B. (3.91)

As an example of the application of these formulas let us determine the
commutation relations of the angular momentum with the position and momen-
tum operators. We start with the basic commutators which we write as

[r, r] = 0, [p, p] = 0, [r, p] = −[p, r] = ih̄Î. (3.92)

To find the commutator [L, r] or [L, p] we use (3.90) to get

[L, r] = [r ∧ p, r] = −ih̄r ∧ Î = [r, L]. (3.93)

and
[L, p] = [r ∧ p, p] =

(
ih̄Î ∧ p

)t
= −ih̄p ∧ Î = [p, L]. (3.94)

These follow from the fact that

A ∧ Î = Î ∧A = −
(
Î ∧A

)t
. (3.95)

Now if we set A = B = r and C = L from (3.89) we find[
r2, L

]
= r · [r, L]− [L, r] · r = −ih̄

[
r ·
(
Î ∧ r

)
−
(
r ∧ Î

)
· r
]

= 0. (3.96)

In a similar way we get [
p2, L

]
= 0. (3.97)

3.4 Construction of Hermitian and Self-Adjoint
Operators

For simple conservative systems where the classical Hamiltonian has the general
form

H =
n∑
j=1

p2
j

2mj
+ V (r1 · · · rn), (3.98)
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a Hermitian quantum mechanical operator can be constructed by the simple
rule of replacing pj by (−ih̄∇j). However there are instances where this simple
rule is inadequate. That is either the resulting operator is not Hermitian or
by different ordering of factors we may get many Hermitian operators. Among
the interesting physical problems where we encounter such a difficulty are the
formulation of velocity-dependent dissipative systems [8], the motion of a par-
ticle with position-dependent mass (or effective mass) [9]–[13], or in the theory
of nuclear forces [11],[12]. For these and similar problems we want to discuss
the rules for the construction of Hermitian operators and then investigate the
self-adjointness of the resulting operators [13].

The basic dynamical relation which will be used in our formulation are
the Cartesian coordinates and momenta which satisfy the commutation relation

pjqk − qkpj = −ih̄δjk. (3.99)

Now let us consider any classical function of the form pncF (qc), where the sub-
script c refers to the fact that pc and qc are c-numbers and not operators.
Classically the order in which we write pc and qc does not matter. However in
quantum mechanics the order that the operators enter in any dynamical observ-
able is important.

We call an operator to have the normal form if all powers of q precede all
powers of p. Making use of the commutation relation (3.99) we can write

pnF (q) =
n∑
j=0

n!

j!(n− j)!
(−ih̄)j

djF

dqj
pn−j

= exp

(
−ih̄ ∂2

∂q∂p

)
F (q)pn, (3.100)

where using (3.99) we have found (3.100) by induction [14].
In obtaining a quantum operator corresponding to a classical quantity

which is a function of pc and qc we want to satisfy the following requirements:
(a) - The resulting operator be Hermitian. If this operator can be written

as a power series in p and q, then this requirement implies that∑
j,k

αjkq
jpk =

∑
j,k

α∗jkp
kqj . (3.101)

(b) - As h̄→ 0, all coordinates and momenta commute and quantum me-
chanical operators must reduce to the corresponding classical functions.

(c) - If possible we want to have a unique Hermitian operator for a given
classical function of p and q.

There are a number of different rules proposed for the construction of
Hermitian operators, and we will discuss some of the well-known rules below.
But let us emphasize that as Margenau and Cohen have shown no rule of or-
dering can be consistently used to derive quantum operators from their classical
functions [15].
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Regarding the ambiguity of quantization the following argument has been
advanced by van Hove [16]. If we compare the group of canonical transfor-
mations of classical mechanics and the corresponding group of unitary trans-
formation of quantum mechanics, we observe that the absence of isomorphism
between these two groups is the reason for ambiguities appearing in every rule
of quantizing a classical system.

3.5 Symmetrization Rule

This is the simplest way of constructing the quantum mechanical operator from
a given classical function. Thus for a classical function qscp

r
c we write

OS(qscp
r
c) =

1

2
(prqs + qspr), (3.102)

where on the right-hand side q and p are operators. To bring O (qscp
r
c) to the

normal form we use Eq. (3.100) and find that

OS(qscp
r
c) =

1

2

[
1 + exp

(
−ih̄ ∂2

∂q∂p

)]
qspr, (3.103)

This relation shows the similarity of this rule to the Weyl’s rule which will be
considered next. It also shows that the symmetrization rule has the same defects
as the Weyl’s rule [13].

3.6 Weyl’s Rule

Let us denote the classical function by T (pc, qc) and its Fourier transform by
g(τ, θ), i.e.

g(τ, θ) =
1

2π

∫
T (pc, qc) exp[−i(τpc + θqc)] dpcdqc. (3.104)

Since the operators p and q satisfy the commutation relation, from Eq. (3.74)
we obtain

exp[i(τp+ θq)] = exp

(
i

2
h̄τθ

)
eiθqeiτp. (3.105)

Now according to Weyl the ordered quantum operator OW (T ) is given by [17]

OW (T ) =
1

2π

∫
g(τ, θ)e

i
2 h̄τθeiθqeiτpdτdθ. (3.106)
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McCoy observed that the Weyl rule can also be expressed as a differential
operator [18]. In the classical function T (pc, qc) we arrange the factors in such
a way that qc always precedes pc, then the Weyl rule can be written as

OW (T ) = exp
(
− ih̄

2
∂2

∂q∂p

)
T (p, q), (3.107)

where the exponential operator acts only on T (p, q) and that we preserve the
orders of p and q in T .

To generalize this rule to more than one degree of freedom we replace

exp
(
− ih̄

2
∂2

∂q∂p

)
, (3.108)

by

exp

(
− ih̄

2

∑
k

∂2

∂qk∂pk

)
. (3.109)

From Eqs. (3.100) and (3.107) it follows that if T is a real function then OW (T )
will be Hermitian and that in the limit of h̄ → 0 we recover the classical func-
tion.

Similar to the argument of van Hove that we cited earlier, Uhlhorn has
shown that if the classical dynamics is regarded as a theory of canonical trans-
formation in phase space, and quantum theory as a theory of unitary transfor-
mation in state-vector space, A2, then these two groups of transformations are
not isomorphic, but they contain subgroups which are isomorphic. However the
classical point transformations can also be represented by a unitary transfor-
mation in the vector space A1 (set of complex valued phase functions). Now
according to the Weyl quantization rule the vector spaces A1 and A2 are iso-
morphic and therefore can be regarded as different representations of the same
vector space A [19].

As a simple example of Weyl’s rule let us consider T (pc, qc) to be a single
term polynomial

Tr,s(pc, qc) = prcq
s
c , (3.110)

with r and s positive integers. The Weyl–McCoy rule gives us

Tr,s(p, q) =
1
2r

r∑
j=0

(
r
j

)
pr−jqspj =

1
2s

s∑
j=0

(
s
j

)
qs−jprqj . (3.111)

We can also write Tr,s(p, q) in its normal form

Tr,s(p, q) =
1
2r

r∑
j=0

(
r
j

)
pr−jqspj =

s∑
k=0

(
−ih̄

2

)k
k!
(
r
k

)(
s
k

)
qs−kpr−k.

(3.112)
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This result is different from the result of ordering suggested by Born and Jordan
which is [14];

Tr,s(p, q) =
1

r + 1

r∑
j=0

pr−jqspj . (3.113)

While the Weyl–McCoy rule of association gives us a unique operator, it
is not free of problems and sometimes we get strange and even unacceptable
results [13].

For instance consider the square of any component of angular momentum
L, say Lk (see Sec. 9.1). By applying Weyl–McCoy rule (3.107) to L2

k we have

OW (L2
k) = [OW (Lk)]2 +

1
2
h̄2, (3.114)

i.e. the Weyl ordered square of angular momentum is not the same as the square
of the ordered form of angular momentum (for the operator form of Lk see Sec.
9.1.

Even stranger result is obtained if we choose the Hamiltonian to be

H =
p2
c

2m
+

1
4
λq4
c . (3.115)

By applying the operation (3.107) to this Hamiltonian and its square we find
[13]

OW
(
H2
)

= [O(H)]2 +
3λh̄2

4m
q2. (3.116)

Thus the square of energy is not a constant of motion and does not commute
with the Hamiltonian. Since this is a serious defect of this type of ordering, one
can look into the possibility of generalization of Weyl’s rule in the form of

OW (T ) =

[∑
k

βk
∂2k

∂qk∂pk

]
T (p, q), (3.117)

so that for the simple Hamiltonian

H =
p2
c

2m
+ V (qc), (3.118)

we get the relation
OW (Hn) = [OW (H)]n , (3.119)

for all n. This equation can be satisfied for n = 1 and n = 2 provided that

β0 = 1, β1 = −1
2
ih̄, and β2 = −1

4
h̄2, (3.120)

but for n = 3 , no matter what we choose for β3 and β4 it is impossible to satisfy
(3.119) [13].
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3.7 Dirac’s Rule

If we define the Poisson bracket of the two dynamical variables u(pc, qc) and
v(pc, qc) by (1.117), then according to Dirac the commutator of u(p, q) and
v(p, q) as quantum mechanical operators is given by [20]

[u(p, q), v(p, q)] = ih̄OD
(
{u, v}pc,qc

)
, (3.121)

where the operators in (3.121) must be self-adjoint. This rule which is widely
used in quantum mechanics does not satisfy the requirement of uniqueness [13].

The non-uniqueness of ordering can be observed for the simple Hamilto-
nian for the one-dimensional motion

H =
p2
c

2m
exp(−3γqc), (3.122)

where using the Dirac rule we have

OD1

(
1

2m
p2e−3γq

)
=

1
18imγh̄

[
p3, e−3γq

]
=

1
2m

e−3γq
(
p2 + 3iγp− 3h̄2γ2

)
= H1, (3.123)

and

OD2

(
1

2m
p2e−3γq

)
=

1
6imγh̄

[
e−γqpe−γq, pe−γqp

]
=

1
2m

e−3γq
(
p2 + 3iγp− 2h̄2γ2

)
= H2. (3.124)

Thus

H2 = H1 +
1

2m
h̄2γ2 exp(−3γq), (3.125)

and from this relation it follows that

[H2,H1] =
3h̄3γ3

2m2
e−6γq(−3γh̄+ 2ip), (3.126)

i.e. either H1 or H2 may be regarded as a constant of motion but not both, and
this is not correct. We note that the operators p3, e−3γq, e−γqpe−γq and pe−γqp
are all Hermitian operators [21].

From the Dirac’s rule of association and the properties of the Poisson
brackets discussed in Sec. 1.6 we can deduce the following rules for the commu-
tators:

Properties of the Commutators — The commutators of a set of op-
erators A, B and C satisfy the following relations which correspond to the
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properties of the Poisson brackets discussed in Sec. 1.6 [20]:
(1) - Skew symmetry

[A, B] = −[B, A], [A, A] = 0. (3.127)

(2) - Linearity

[αA+ βB, C] = α[A, C] + β[B, C], (3.128)

where α and β are constants.
(3) - Leibniz property

[AB, C] = A[B, C] +B[A, C]. (3.129)

(4) - Jacobi identity

[A, [B, C] ] + [B, [C, A] ] + [C, [A, B] ] = 0. (3.130)

Commutators and Poisson Brackets — The parallelism between the
commutators and the Poisson brackets as given in the Dirac rule of association
(3.121) needs further investigation. In fact we have to define what we mean
by the Poisson bracket on the right-hand side and how we should take the
derivatives. For a function u(ξ) depending on the non-commutating set of oper-
ators ξ = (ξ1, ξ2 · · · ξ2N ) we can define a more general derivative, called Fréchet
derivative, involving a differentiable but otherwise arbitrary function v(ξ) in the
following way [22],[23]:

∂u

∂ξi
{v} ≡ lim

ε→0

1
ε

[u(ξ1 · · · ξi + εv, · · · ξ2N )− u(ξ)] , (3.131)

From this definition we find that

∂(u1u2)
∂ξi

{v} = u1
∂u2

∂ξi
{v}+

∂u1

∂ξi
{v}u2, (3.132)

and
∂(au1 + bu2)

∂ξi
{v} = a

∂u1

∂ξi
{v}+ b

∂u2

∂ξi
{v} , (3.133)

where a and b are constants. The essential result of this rule of taking derivative
is that the commutator [u, v] can be expressed as

[u, v] =
∑
i,j

∂u

∂ξj

{
∂v

∂ξi
[ξi, ξj ]

}
. (3.134)

To prove this result by induction we start with the relation∑
i

∂u

∂ξi
{[ξi, v]} = [u, v], (3.135)
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and note that this equality is true for u = a constant, and for u = ξi. Next let
us assume that (3.135) is correct for u(ξ), where u(ξ) is of the general form of
the product of various factors of ξi. We consider the Fréchet derivative,∑

j

∂(ξju)
∂ξi

{ξj , v}

= lim
ε→0

(
1
ε

[ξj + ε[ξj , v]− ξj ]u(ξ)
)

+
∑
i

ξj
∂u(ξ)
∂ξi

{[ξi, v]}

= ([ξj , v]u+ ξj [u, v]) = [ξju, v]. (3.136)

Thus if (3.135) is true for u then (3.136) shows that the same relation is also
true for ξju. Already we have noticed that u = 1 and u = ξi satisfy (3.135),
therefore for any u(ξ) which can be written as a product of factors of ξi this
relation is satisfied.

By replacing u by v and v by ξi in (3.135) we obtain∑
j

∂v

∂ξj
{[ξj , ξi]} = [v, ξi]. (3.137)

Now if we substitute this result in the right-hand side of (3.134) we have

[u, v] =
∑
i,j

∂u

∂ξi

{
∂v

∂ξj
{[ξj , ξi]}

}
. (3.138)

This identity establishes a relation between the Poisson brackets and the commu-
tators. In the special case when the set ξi s can be written as N mutually com-
muting qi s and N mutually commuting pi s, then (3.136) with [qj , pk] = ih̄δjk
becomes

[u, v] = ih̄
∑
j

[
∂u

∂qj

{
∂v

∂pj

}
− ∂u

∂pj

{
∂v

∂qj

}]
, (3.139)

where ∂v
∂pj

and ∂v
∂qj

are the usual partial derivatives. This form of the Poisson
bracket is appropriate for non-commuting operators and reduces to the standard
form when the variables commute. We observe that for the general case of non-
commuting operators we can expand the right-hand side of (3.139)

[u, v] = ih̄ {u, v}+O
(
h̄2
)
, (3.140)

i.e. in general we have terms proportional to h̄2, h̄3 etc. for the commutator.
An alternative way of writing the commutator [u, v] is by the direct use

of the definition of the Fréchet derivative. Thus for a system with one degree of
freedom we have

[u, v] = ih̄ lim
ε→0

1
ε

[
u

(
q + ε

∂v

∂p
, p

)
− u

(
q, p+ ε

∂v

∂q

)]
, (3.141)
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where it is assumed that the orders of the factors of p and q in both u and
v are known and are preserved in the right-hand side of (3.141). A simple
example of the application of (3.141) is provided by considering the case in
which u(p, q) = pq and v = v(p, q), then [23]

[u, v] = ih̄

(
p
∂v(p, q)

∂p
− ∂v(p, q)

∂q
q

)
= −[v(p, q), pq]. (3.142)

3.8 Von Neumann’s Rules

In the Heisenberg formulation of quantum mechanics the classical functions are
replaced by matrices, therefore one can argue that the following rules should be
used to find quantum mechanical operators [24]:

(a) - If OV (Ac) = A then OV [f(Ac)] = f(A).
(b) - If OV (Bc) = B and OV (Cc) = C, then OV (Bc + Cc) = B + C, B

and C may or may not commute with each other.
Von Neumann’s rules do not give us a unique operator for a given classical

function of pc and qc. For instance consider the function G(pc, qc) = p2
cq

2
c , then

OV
(
p2
cq

2
c

)
= q2p2 − 2ih̄qp− 1

4
h̄2, (3.143)

and
OV

(
p2
cq

2
c

)
= q2p2 − 2ih̄qp− h̄2. (3.144)

In addition to these basic rules there are other variants essentially with
similar defects [13]. But all these rules are linear, i.e. they satisfy condition (b)
of Von Neumann. The lack of uniqueness is of course a major defect of Von
Neumann’s and Dirac’s rules, but if we insist on linearity and uniqueness then
we must abandon Von Neumann’s first rule.

3.9 Self-Adjoint Operators

As we have seen earlier, with physically measurable quantities such as momen-
tum, angular momentum and Hamiltonian we can associate Hermitian opera-
tors. The time evolution of the state or observables of the system are given by
the unitary operator U(t) = exp(iHt). We require that U(t) be a unitary op-
erator so that the probability is conserved. However the Hermiticity of H does
not guarantee a unique solution for the dynamics of the problem. Here we want
to study this question and in particular show that only when H is self-adjoint
operator in a given domain, then the dynamics is uniquely defined. A Hermi-
tian H, in general, may lead to several motions or to none. Thus the condition
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of self-adjointness is more restrictive (and thus stronger) than the condition of
Hermiticity. That is, there are additional conditions that must be satisfied for
a Hermitian operator to be self-adjoint [25],[26].

Given a Hermitian operator there are three possible situations that we
can have:

(a) - The operator is by itself self-adjoint and no other condition is needed.
Thus Ô is self-adjoint if 〈

g, Ôf
〉

=
〈
Ô†g, f

〉
. (3.145)

For instance the momentum operator p = −ih̄ d
dx defined on the Hilbert space

(−∞, +∞) is self-adjoint since [27],[28]∫ +∞

−∞
g∗(x)(−ih̄)

df(x)
dx

dx =
∫ +∞

−∞

(
−ih̄dg(x)

dx

)∗
f(x)dx. (3.146)

(b) - Some extra conditions for self-adjointless are required, and depend-
ing on the form of these additional conditions we can have different dynamics.

(c) - There are some cases where it is impossible to make Hermitian op-
erators self-adjoint, and therefore no acceptable quantum mechanical solution
can be found for these problems [26].

To begin our discussion we need to define the concepts of self-adjointness
and self-adjoint extension of an operator.

Let us consider two linear operators Ô and P̂ defined on two dense sub-
spaces D

(
Ô
)

, D
(
P̂
)

of the Hilbert space L2. Now if D
(
P̂
)
⊃ D

(
Ô
)

and

P̂ f = Ôf for all f ∈ D
(
Ô
)

, then P̂ ⊃ Ô and P̂ is called an extension of Ô.

In addition if Ô∗ ⊃ Ô we call Ô Hermitian, and when Ô = Ô∗ then we call Ô
self-adjoint. Furthermore if Ô∗∗ = Ô∗, Ô is called essential self-adjoint.

In the case where the operator Ô is Hermitian but is not self-adjoint,
its departure from self-adjointness is measured by two numbers which we call
deficiency indices (n+, n−). These are defined as the number of independent
solutions of

Ô∗f± = ±if±, (3.147)

respectively. Let us suppose that both n+ and n− have nonzero values, then
the operator P̂ which is the extension of Ô is defined by

P̂ [f + α(f+ + f−)] = Ôf + iα(f+ − f−), (3.148)

with α being an arbitrary complex number. The deficiency indices of P̂ are then
(n+ − 1, n− − 1).

As the first example we consider the problem of self-adjointness of the
momentum operator Ô = −i ddx when it acts on a domain Ω. Equation (3.147)
for this operator has the solution

f±(x) ∼ exp (∓x) . (3.149)
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(1) - For Ω being the entire x-axis, neither f+ nor f− is square integrable.
Therefore n+ = n− = 0 and Ô is self-adjoint on this domain.

(2) - When 0 ≤ x ≤ ∞, f− = expx is not square integrable but f+ is.
Thus n+ = 1 and n− = 0 and Ô is not self-adjoint and has no self-adjoint
extension.

When the particle moves in a box of unit length 0 ≤ x ≤ 1 the condition
(3.145) becomes ∫ 1

0

[
g∗(x)

(
−i∂f(x)

∂x

)
− f(x)

(
−i∂g(x)

∂x

)∗]
dx

= −i [g∗(1)f(1)− g∗(0)f(0)] = 0, (3.150)

This relation is satisfied if

f(1) = e2πiβf(0), 0 ≤ β < 1, (3.151)

for all functions in the domain 0 ≤ x ≤ 1.
In the case of motion of a free particle in the segment 0 ≤ x ≤ 1 with

periodic boundary condition f(0) = f(1) we can choose f(x) to be the eigen-
functions of the Hamiltonian operator,

H = − h̄2

2m

d2

d x2
, (3.152)

then f(x) will be a set of twice differentiable functions given by

fn(x) =
1√
2

exp(2iπnx), n = 0,±1,±2 · · · . (3.153)

On the other hand for antiperiodic boundary condition, f(1) = −f(0), we find

fn(x) =
1√
2

exp(iπ(2n+ 1)x), n = 0,±1,±2 · · · . (3.154)

Now let us examine the self-adjointness of the Hamiltonian operator (3.152)
when the particle can move in a box of unit length 0 ≤ x ≤ 1. The condition of
the self-adjointness of H implies that

− h̄2

2m

∫ 1

0

ψ∗(x)
d2φ(x)

d x2
dx = − h̄2

2m

∫ 1

0

(
d2ψ(x)

d x2

)∗
φ(x)dx, (3.155)

or by integrating by parts this condition becomes[
ψ∗(x)

dφ(x)

dx
− dψ∗(x)

dx
φ(x)

]1

0

= 0. (3.156)

Equation (3.156) holds for an arbitrary ψ(x) and φ(x) provided[
−ψ′(1)
ψ′(0)

]
= M

[
ψ(1)
ψ(0)

]
, (3.157)
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where the minus sign in front of ψ′(1) is introduced for convenience. In (3.157)
M must be a 2 × 2 Hermitian matrix in order that (3.156) be satisfied. The
matrix M depends on four independent real quantities, and in general, we can
express it as the matrix

M =
[
ρ+ γ −ρeiθ
−ρe−iθ ρ+ β

]
, (3.158)

where ρ, β, θ and γ are all real and thus M is Hermitian i.e. Mij = M∗ji. Now
let us write the probability current j(x) associated with the wave function ψ(x)
as

j(x) =
h̄

2im

(
ψ∗(x)

dψ(x)
dx

− ψ(x)
dψ∗(x)
dx

)
. (3.159)

From this relation and (3.158) it follows that

j(0) = j(1) =
h̄ρ

2im
[
ψ∗(1)ψ(0)eiθ − ψ(1)ψ∗(0)e−iθ

]
. (3.160)

This expression shows that the probability is conserved since j(0) = j(1). How-
ever the current at the position of the walls is zero if and only if ρ = 0, and
when this happens then we have −ψ′(1) = γψ(1) and −ψ′(0) = βψ(0). There-
fore there is no possibility of current flowing from one wall to the other. Let us
consider the other limit when ρ→∞, and θ, γ and β all go to zero, then from
(3.157) and (3.158) we find ψ(1) = ψ(0) and ψ′(1) = ψ′(0). This boundary
condition means that we have no reflection at the walls, and if a wave packet
collides with one of the walls it will instantly appear at the other. For the gen-
eral case when ρ is not zero or infinity, we have partial reflection and partial
transmission of the wave packet.

Next let us study the question of the self-adjoint extension of the motion
of a particle in a box. Setting the units so that h̄2 = 2m = 1, we can find the
deficiency indices that we defined earlier from the solution of the differential
equation

− d2

d x2
f±(x) = ±if±(x). (3.161)

The solution of this equation is

f± = exp(αx), (3.162)

where α is given by
α = ±

√
±i. (3.163)

Thus we have four square integrable solutions and the deficiency indices are
(n+ = 2, n− = 2) corresponding to the reflected and transmitted waves for the
two directions. If we let one side of the box go to infinity (0 ≤ x ≤ ∞) then the
solutions with α =

√
i and α = −

√
−i will no longer be square integrable and

we have (n+ = 1, n− = 1), viz, a one parameter family of dynamics depending
on the reflection law at the wall at x = 0. If we also move the other wall to −∞,
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i.e. −∞ ≤ x ≤ ∞, then there will be no square integrable solution of (3.161).
This means that in this case (n+ = 0, n− = 0) and there are no reflections from
the boundaries [25], [29], [30].

An important point which is useful in this connection is the correspon-
dence between the classical solution of the equation of motion and the exitance
of a self-adjoint Hamiltonian or a Hamiltonian with self-adjoint extension for
the corresponding quantum problem. This connection can be used to recognize
those quantum mechanical Hamiltonians that are troublesome. Let us consider
some specific cases where we can solve the classical motion exactly, or find the
solution in the form of a quadrature. Here again we set h̄ = 1.

(1) - As a first case consider the problem of a particle of unit mass moving
in a quartic potential V (q) = 1

4q
4 and thus the Hamiltonian has the simple form

H =
1

2
p2 +

1

4
q4 = E > 0. (3.164)

Since p = q̇, we have

q̇2 = 2E − 1

2
q4, (3.165)

and by solving the differential equation (3.165) we obtain

t+ c = ±
∫ q(t) dq√

2E − 1
2q

4
. (3.166)

For this problem we have a well-defined and unique solution for all times and
the motion is periodic with an energy-dependent period T (E) [26]. Now by
solving the equation

−1

2

d2

d q2
f± +

1

4
q4f± = ±if±, (3.167)

we find that the deficiency indices are (n+ = 0, n− = 0), and therefore the
Hamiltonian is self-adjoint.

Among other physically important cases where the Hamiltonians are
self-adjoint are the problems of the harmonic oscillator

H = − 1

2m

d2

d x2
+

1

2
mω2x2, (3.168)

and that of the hydrogen atom

H = − 1

2mr2

∂

∂r

(
r2 ∂

∂r

)
− Ze2

r
+
`(`+ 1)

2mr2
, (3.169)

where the negative energy eigenvalues of H form a discrete spectrum.
Another important example is the motion of a charged particle in a uni-

form electric field E , where

H = − 1

2m

d2

d x2
+ eEx. (3.170)
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For this motion the deficiency indices are (n+ = 0, n− = 0) and therefore H is
self-adjoint.

(2) - If instead of the attractive potential in (3.164) we have a repulsive
quartic potential V (q) = − 1

4q
4, then assuming that the energy of the particle is

E, it takes a finite time for the particle to move from the classical turning point
q = q0 where its energy is E to infinity

t =
∫ ∞
q0

dq

2
√
E − V (q)

∼
∫ ∞
q0

dq

q2
<∞. (3.171)

When reflected from infinity the particle reaches q0 in a finite time, therefore the
reflection law at infinity is important in determining the dynamics. If we solve
the corresponding equation for f±(q) for this potential we find the deficiency
indices to be (n+ = 2, n− = 2). The spectrum of the self-adjoint extension of
this motion is discrete [26].

We can use the same method to consider the spectra of the operator
1
2

(
p2 − q2

)
. This operator arises in the theory of self-acceleration of charged

particles [31]. van Kampen studied the spectral decomposition of this operator
in detail and concluded that the spectrum is continuous and extends from −∞
to +∞. Just as in the previous example we find the deficiency indices for this
operator to be (n+ = 0, n− = 0) and thus H is self-adjoint.

(3) - For the classical Hamiltonian H = 2p
q , when −∞ < x ≤ 0 or

0 ≤ x < ∞ the classical equation of motion is q̇ = 2
q which can be solved for q

with the result
q2 = 4t+ c. (3.172)

This solution shows that for t < − c
4 , q(t) is imaginary and therefore there is no

classical solution for all times.
In quantum mechanical formulation of the problem we note that if we

write a Hermitian Hamiltonian of the form

H = −i
(

1
q

d

dq
+

d

dq

1
q

)
, (3.173)

then the deficiency indices are found from the solutions of

−2i
q

df±(q)
dq

+
i

q2
f±(q) = ±if±(q). (3.174)

By solving the differential equation (3.174) we find

f±(q) =
√
|q| exp

(
∓q

2

4

)
. (3.175)

Since in the domains of −∞ < x ≤ 0 or 0 ≤ x < ∞, only f+(q) is square
integrable therefore the deficiency indices are (n+ = 1, n− = 0) hence this
Hamiltonian is not self-adjoint nor has a self-adjoint extension.
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3.10 Momentum Operator in a Curvilinear
Coordinates

For a number of applications we need to find the mathematical form of the
momentum operator and the kinetic energy in curvilinear coordinates. This
problem can be formulated in different ways, for example, for the kinetic energy
we can directly transform the Laplacian operator from Cartesian to the desired
coordinate system. But here we try to find the linear and angular momentum
operators in arbitrary curvilinear coordinate systems [32]–[34].

Position and Momentum Operators in Cartesian Coordinates —
For the description of a physical system it is convenient to introduce a particular
coordinate system in Hilbert space L2, that is to choose a representation. The
representation in which r, the position operator, is diagonal is called the position
representation, but we can equally use a representation in which the linear
momentum p is diagonal. If we choose the position representation then the
state vector |ψ〉 is specified by its components 〈r|ψ〉 along the ket |r〉. The
eigenvalue in this case is

r̂|r〉 = r|r〉, (3.176)

where r̂ is the position operator with r being its eigenvalue. Here the spectrum
of the operator r̂ consists of points in three-dimensional space.

The completeness relation for the eigenvectors can be written as∫
|r〉〈r| d3r = 1. (3.177)

The form of the momentum operator p in this, i.e. position representation is
obtained from the commutation relation [pjxk − xkpj ] = −ih̄δjk, Eq. (3.99).
Thus by calculating the matrix element of this commutator we find

〈r′ |[xk, pj ]| r〉 = ih̄δkjδ (r− r′) = (x′k − xk) 〈r′ |p| r〉. (3.178)

Recalling that x d
dxδ(x) = −δ(x), we get

〈r′ |pj | r〉 = −ih̄ ∂

∂xj
〈r′|r〉. (3.179)

From this result we conclude that the momentum operator in the position rep-
resentation is given by

p = −ih̄∇. (3.180)

The Momentum Operator — We note that simple expression (3.180)
for the momentum operator is valid only in rectangular coordinates (see Eqs.
(3.220) and (3.221) below).

In a curvilinear coordinates
(
q1, q2, q3

)
with the base vectors (e1, e2, e3)

we can write a small displacement as

dr =
3∑

n=1

endq
n, (3.181)



74 Heisenberg’s Quantum Mechanics

and in this system the components of the momentum operator (3.180) can be
expressed as [32]

pn = − ih̄
2

[en · ∇+∇ · (en · · ·)]

= −ih̄
[
en · ∇+

1
2
∇ · en

]
, (3.182)

where ∇ · (en · · ·) means that ∇ operator acts on every term on its right side.
Note that since in any point transformation the new momenta depend linearly
on the old ones, therefore there is no ambiguity in constructing the Hermitian
operators, and the method of symmetrization can be used- which is what we
have done in getting Eq. (3.182).

Introducing gij as the metric tensor and g as the determinant of gij ,

g = Det gij =

∣∣∣∣∣∣
g11 g12 g13

g21 g22 g23

g31 g32 g33

∣∣∣∣∣∣ , (3.183)

we can express the divergent of a vector V as

∇ ·V =
1
J

3∑
k=1

∂
(
V kJ

)
∂qk

, J =
√
g, (3.184)

where J is the Jacobian for the volume element in the curvilinear coordinate
system and the vector V is expressed in terms of its components by

V =
3∑
k=1

V kek. (3.185)

If we choose V = en, then V k = δkn, and the divergence of en becomes

∇ · en =
∂ lnJ
∂qn

=
∑
j=1

Γjnj . (3.186)

In this relation
∑
j=1 Γjnj is the contracted Christoffel symbol, where the Christof-

fel symbol Γknj is defined by [35]

Γknj =
∑
l

1
2
gkl
(
∂gnl
∂xj

+
∂glj
∂xn

− ∂gnj
∂xl

)
. (3.187)

Now we have en · ∇ = ∂
∂qn , and therefore

pn = −ih̄
(

∂

∂qn
+

1√
J

∂

∂qn

√
J

)
= −ih̄ 1√

J

∂(
√
J · · ·)
∂qn

. (3.188)
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The self-adjointness condition for pn implies that

〈ψ1|pn|ψ2〉 − 〈ψ2|pn|ψ1〉∗

= −ih̄
∫
dq1

∫
dq2

∫
∂

∂qn
(ψ∗1Jψ2) dq3 = 0, (3.189)

where the vectors |ψ1〉 and |ψ2〉 are assumed to be in the Hermitian domain of
pn. Next we define the set of {en} s which is the set of reciprocal base vectors
by

en =
3∑
j=1

gnjej , en =
3∑
j=1

gnjen, en · ej = δnj . (3.190)

From the components pn, Eq. (3.182), we obtain p;

p = −ih̄∇ = − ih̄
2

3∑
n=1

[en(en · ∇) +∇ · (enen · · ·)] . (3.191)

To simplify this expression we take the divergence of
∑3
n=1 enen · · ·

∇ ·

(
3∑

n=1

enen · · ·

)
=

3∑
n=1

en∇ · (en · · ·) +
3∑

n=1

en · ∇ (en) . (3.192)

By substituting (3.192) in (3.191) we find p

p =
3∑

n=1

enpn −
ih̄

2

3∑
n=1

en · ∇ (en) . (3.193)

If we combine this relation with (3.187) and note that

∇ ·

(
3∑

n=1

enen
)

= 0, (3.194)

we obtain

p =
3∑

n=1

enπn, (3.195)

where from (3.188) we have an expression for πn

πn = pn + ih̄
1√
J

∂
√
J

∂qn
= −ih̄ ∂

∂qn
, (3.196)

Comparing (3.196) with (3.188) we get a simple form for πn;

πn =
√
J pn

(
1√
J

)
. (3.197)
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In a similar way we can substitute the expression

3∑
n=1

en(en · ∇) =
3∑

n=1

[en · ∇ (en · · ·)− en · ∇ (en)] , (3.198)

in (3.191) and write p as

p =
3∑

n=1

[
pnen +

ih̄

2
en · ∇ (en)

]
=

3∑
n=1

π†nen. (3.199)

where π†n which is the Hermitian adjoint of πn is given by

π†n = pn − ih̄
1√
J

∂
√
J

∂qn
. (3.200)

Again using (3.188) we can express π†n as

π†n = −ih̄
[
∂

∂qn
+

1
J

∂J

∂qn

]
= −ih̄ 1

J

∂

∂qn
(J · · ·) =

1√
J
pn
√
J, (3.201)

and this result is in agreement with (3.197).
Thus the momentum operator can be written in two different ways

p =
3∑

n=1

enπn, (3.202)

or

p =
3∑

n=1

πn †en, (3.203)

where the contravariant components of p are:

πn =
3∑
j=1

gnjπj =
√
Jpn

(
1√
J

)
, (3.204)

πn† =
n∑
j=1

πjg
jn =

1√
J
pn †
√
J, (3.205)

and

pn =
3∑
j=1

gnjpj , pn † =
3∑
j=1

pj g
jn. (3.206)
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The Kinetic Energy — Having found p, let us write the kinetic energy
of a particle of mass m in any curvilinear coordinate system

T =
p2

2m
= − h̄2

2m
∇2 =

3∑
n=1

π†nπ
n =

3∑
n=1

πn †πn

=
h̄2

2m

3∑
n=1

1√
J
pnJ p

n

(
1√
J

)

=
h̄2

2m

3∑
n=1

1√
J
pn †J pn

(
1√
J

)
. (3.207)

We can simplify the above expression for T when we deal with an or-
thogonal curvilinear coordinate system. For such a system gij s are given by
[35]

g11 = h2
1, g22 = h2

2, g33 = h2
3, gij = 0 for i 6= j. (3.208)

Also

g11 =
1
h2

1

, g22 =
1
h2

2

, g33 =
1
h2

3

, gij = 0 for i 6= j, (3.209)

where the quantity hn is the scale factor for the coordinate qn. Thus we have

J = h1h2h3, pn =
1
h2
n

pn, pn † = pn
1
h2
n

. (3.210)

and
xn = h2

nx
n, en = h2

nen. (3.211)

By substituting for gij s the expressions for linear momentum and kinetic energy
reduce to

p =
3∑

n=1

en
√
J pn

(
1√
J

)
=

3∑
n=1

en

(
1
h̄2
n

)√
J pn

(
1√
J

)
. (3.212)

and

T =
p2

2m
=

1
2m

3∑
n=1

(
1√
J

)
pn

(
J

h2
n

)
pn

(
1√
J

)
. (3.213)

In view Eq. (3.188) we can write the kinetic energy as

T = − h̄2

2m

3∑
n=1

1
J

∂

∂qn

(
J

h2
n

∂

∂qn

)
. (3.214)

For a general curvilinear coordinates with the line element

ds2 =
3∑

i,j=1

gijdx
idxj , (3.215)
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the kinetic energy can be expressed as

T =
1

2m

3∑
i,j=1

1
√
g

(
πi
√
g gij πj

)
, (3.216)

and this operator is self-adjoint with respect to integration over the volume√
g dq1dq2dq3;

〈ψ1|T |ψ2〉 = 〈ψ2|T |ψ1〉∗, (3.217)

exactly as in Eq. (3.189).
Canonical Momentum and Kinetic Energy in Spherical Polar

Coordinates — As an example let us consider expressions for p and p2

2m is
spherical polar coordinates. For this system q1 = r, q2 = θ, q3 = φ,

x1 = r, x2 = x3 = 0
. (3.218)

In addition we have

h1 = 1, h2 = r, h3 = r sin θ, J = r2 sin θ. (3.219)

Using these in (3.188) we obtain

pr = −ih̄
(
∂

∂r
+

1
r

)
, (3.220)

pθ = −ih̄
(
∂

∂θ
+

1
2

cot θ
)
, (3.221)

and

pφ = −ih̄ ∂

∂φ
. (3.222)

Also from (3.212) we find an alternative expression for p

p = err pr

(
1
r

)
+ eθ

√
sin θ pθ

(
1√

sin θ

)
+ eφpφ

=
1
r
pr r er +

1
r2

[
1√
sin θ

pθ
√

sin θ eθ +
1

sin2 θ
pφeφ

]
. (3.223)

The kinetic energy operator T can be found from (3.223);

T =
p2

2m
=

1
2m

{
1
r
pr

(
r2pr

1
r

)
+

1
2mr2

[
1

sin θ
pθ

(
sin θ pθ

1√
sin θ

)
+

1
sin2 θ

p2
φ

]
(3.224)
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Angular Momentum in Curvilinear Coordinates — We can obtain
the components of the angular momentum L = r ∧ p in the same way. Thus if
we start with

L = r ∧ p =
3∑

n,j=1

xnen ∧ ejπj , (3.225)

and substitute for πj from (3.204) we find [32]

L =
1√
j

[(
p3†x2 − p2†x3

)
e1 +

(
p1†x3 − p3†x1

)
e2 +

(
p2†x1 − p1†x2

)
e3
]
J

3
2 .

(3.226)
In particular in spherical polar coordinates we have

L =
[
− pφ

sin2 θ
eθ +

(
pθ − i

h̄

2
cot θ

)
eφ
]
r sin θ, (3.227)

where J = h1h2h3 = r2 sin θ. From this relation we can calculate L2;

L2 =
(
pθ − i

h̄

2
cot θ

)(
pθ + i

h̄

2
cot θ

)
+

1
sin2 θ

p2
φ. (3.228)

If we substitute (3.228) in the expression for the kinetic energy T we find (See
also Eq. (9.26))

T =
p2

2m
=

1
2m

(
p2
r +

L2

r2

)
. (3.229)

The expression found for the kinetic energy in curvilinear coordinates,
Eq. (3.216) is important in the formulation of the quantum theory of collective
phenomena, such as the surface oscillations of a nucleus [36].

3.11 Summation Over Normal Modes

In a number of problems, for example the quantization of free electromagnetic
field, it is convenient to formulate the problem in a large cubic box of volume L3,
and then take the limit of L going to infinity. Here by imposing the boundary
conditions such as the condition of perfect reflectivity at the walls of the box
we obtain a set of normal modes

kx =
2nxπ
L

, ky =
2nyπ
L

, and kz =
2nzπ
L

, (3.230)

where nx, ny and nz are integers. The vector n = (nx, ny, nz) represents
a normal mode in the lattice space. Let us consider a small volume located
between nx and nx + ∆nx, ny and ny + ∆ny and nz and nz + ∆nz. The
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number of lattice points which is the number of normal modes in this volume is
∆nx∆ny∆nz. From (3.230) we find

L∆kx = 2π∆nx, L∆ky = 2π∆ny, and L∆kz = 2π∆nz. (3.231)

Thus

∆nx∆ny∆nz =
L3

(2π)3
∆kx∆ky∆kz. (3.232)

In the limit of L → ∞, ∆kx,∆ky and ∆kz all go to zero and the summation
over all normal modes can be replaced by integration

∑
k

→ L3

(2π)3

∫
d3k. (3.233)
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Chapter 4

Postulates of Quantum
Theory

In this chapter we want to study the postulates of quantum mechanics. These
postulates enable us to discuss certain aspects of the motion which arise natu-
rally in classical dynamics [1]–[3]:

(1) - In classical mechanics the state of a system at a given time t0 is
given by a set of 2N dynamical variables qj s and pj s, j = 1, 2 · · ·N , where N
is the number of degrees of freedom of the system. In quantum theory we need
to know how to describe the state of the system mathematically.

(2) - Classically if all the qj s and pj s at the time t are given, then all of
the properties of the system can be determined. Moreover we can predict the
result of any measurement preformed at t with certainty. The question arises
on how we can predict the result of measurements in quantum mechanics and
if all of the observables of the motion can be determined with certainty.

(3) - The Hamilton canonical equations of motion

q̇j =
∂H

∂pj
, and ṗj = −∂H

∂qj
, (4.1)

enable us to find qj s and pj s at any given time once the initial conditions
qj(t0) s and pj(t0) s are known. We want to find the corresponding quantum-
mechanical equations which give us the state of the system at a later time if the
initial state of the system is given.

Before stating the postulates of quantum mechanics let us first consider
different ways that we can represent the state of a system. From elementary
quantum mechanics we know about the Schrödinger equation, especially in po-
sition space, and we also know about the similarities between the solutions of
the Schrödinger equation, ψn(x), and the vectors in linear vector space. This

83
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connection between ψn(x), the infinite dimensional complex vectors {cn} de-
fined by (3.28) and the bracket notation of Dirac motivates us to view all three
as simply different representation of the same quantum state vector. Thus we
use the notations

“ket” vector←→ |ψn〉 ←→ ψn(x)←→ cn, (4.2)

“bra” vector←→ 〈ψn| ←→ ψ∗n(x)←→ c∗n, (4.3)

interchangeably throughout the book.
Now let us briefly state the postulates of quantum mechanics [1]–[3].

(1) - The state of a physical system at t = t0 is defined in terms of a ket,
or a row vector |ψ0〉 belonging to the vector space of states. The space of states
is a vector space, therefore it follows that the superposition of two sates is again
a state of the system. The space of states also contains the concept of the scalar
product. As we observed in Chapter 3 This scalar product associates a complex
number to any two states |ψ〉 and |φ〉

〈φ|ψ〉 = 〈ψ|φ〉∗. (4.4)

(2) - Every measurable physical quantity is described by a self-adjoint
operator A acting on the state space.

(3) - The only possible result of the measurement of an observable A is
one of the eigenvalues an of A. A very important consequence of this postulate
is that not all physical observables can be measured simultaneously.

(4) - When a measurement of a physical quantity is made on a given state
|ψ〉, the probability of obtaining an eigenvalue an, denoted by P(an) is given by

P(an) = |〈φn|ψ〉|2, (4.5)

where |φn〉 is an eigenstate of A

A|φn〉 = an|φn〉, (4.6)

and where both |ψ〉 and |φn〉 are normalized vectors,

〈φn|φn〉 = 〈ψ|ψ〉 = 1. (4.7)

If there are degenerate states |φjn〉, j = 1, · · · l for a given an then P(an) is
given by

P(an) =
l∑

j=1

∣∣〈φjn|ψ〉∣∣2 . (4.8)

When the spectrum of A is continuous then (4.5) is replaced by

dPk = |〈φk|ψ〉|2dk, (4.9)

|φk〉 being the eigenvector corresponding to the continuous eigenvector k of the
operator A.
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(5) - If by measuring the physical quantity represented by the operator
A on the system in state |ψ〉 we find an, the state of the system just after the
measurement is the normalized eigenstate |φn〉.

(6) - The time evolution of any physical quantity described by the operator
F (p, q, t) is described by the Heisenberg equation

ih̄
dF

dt
= ih̄

∂F

∂t
+ [F, H]. (4.10)

If F (p(t), q(t)) and H(p(t), q(t)) are not explicitly time-dependent, we can
express the time development of F (t) in terms of the unitary transformation
e
iHt
h̄ as

F (t′) = exp
[
iH (t′ − t)

h̄

]
F (t) exp

[
−iH (t′ − t)

h̄

]
, (4.11)

where F (t′) = F (p (t′) , q (t′)) and F (t) = F (p(t), q(t)). We can show the equiv-
alence of (4.10) and (4.11) by setting t′ = t + dt and expanding both sides of
Eq. (4.11).

Heisenberg and Schrödinger Pictures — In the Schrödinger picture
the states are represented by time-dependent bra and ket vectors but the oper-
ators representing the observables are independent of time.

In the Heisenberg picture of quantum mechanics the state vector |ψ〉
does not change with time, but the observables satisfy the Heisenberg equation
(4.10). Now if we have an observable given by a self-adjoint operator F , and
∂F
∂t = 0, then the expectation value of F for a given state |ψ(t)〉 is given by

〈F 〉t = 〈ψ(t)|F |ψ(t)〉. (4.12)

If the Hamiltonian does not depend explicitly on time, the time-dependent state
|ψ(t)〉 satisfies the Schrödinger equation

|ψ(t)〉 = exp
(
− iHt

h̄

)
|ψ(0)〉. (4.13)

From Eqs. (4.12) and (4.13) we find that

〈F 〉t = 〈ψ(0)|e iHth̄ Fe
−iHt
h̄ |ψ(0)〉, (4.14)

therefore
F (t) = e

iHt
h̄ Fe

−iHt
h̄ . (4.15)

We observe that at t = 0, the states and the operators are the same in both pic-
tures, and both pictures give the same results for time-dependent expectation
values.

Between these two pictures, Heisenberg’s is closer to the classical descrip-
tion of motion. It has also another advantage in relation to the Schrödinger
picture when we are dealing with quantum field theory, viz, the spatial and
temporal dependence of the field operators are treated on the same footing.
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Mean Value of an Observable — As the fourth postulate implies, in
quantum theory we can only predict probabilities, i.e. we can only determine
the outcome of ensemble measurements. In other words we have to perform a
very large number of experiments on identical noninteracting systems where we
have prepared all these systems to be in the same state. To relate the result
of N identical experiments to the prediction of the theory we introduce the
idea of the mean value of the observable A in the state |ψ〉, which we denote by
〈ψ|A|ψ〉 [2]. This quantity is defined as the average of the results obtained when
N measurements of this observable is performed on systems all in the state |ψ〉.
Here again the ket or the vector |ψ〉 is assumed to be normalized. If we repeat
this experiment N times, assuming that the system each time is in the state |ψ〉
and if the eigenvalues an is found N times, then the probability is given by

P(an) =
N (an)
N

as N →∞. (4.16)

Since each member of the ensemble must exhibit one of the eigenvalues an,
therefore ∑

n

N (an) = N, (4.17)

or ∑
n

P(an) = 1. (4.18)

The mean value of an observable A is the sum of values measured divided
by the number of experiments N . If N experiments have produced the same
result an, then the mean value 〈|A|〉 is given by

〈ψ|A|ψ〉 =
1
N

∑
n

anN (an). (4.19)

As N becomes very large then according to (4.16) and (4.19) we have

〈ψ|A|ψ〉 =
∑
n

anP(an). (4.20)

For a system where A has a continuous spectrum we replace the summation in
(4.20) by integration

〈ψ|A|ψ〉 =
∫
k dP(k). (4.21)

The Density Matrix — When a system is isolated and can be described
by a Hamiltonian we can, in principle, assign a wave function to it, and then the
time dependence of this wave function can be found from the time-dependent
Schrödinger equation. Now suppose we have a system A which is interacting
with another system B, and that the total system A+B is closed, i.e. there is
no interaction between the whole system and the rest of the universe. Let us
denote the total wave function describing the system A+B by Ψ(Q, x), where
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x denotes the set of coordinates of the system A and Q the coordinates of B.
This wave function cannot be written as a product of x and of Q, otherwise
we are dealing with two noninteracting systems. Now for any physical quantity
pertaining to A, which is represented by the operator F , and this operator acts
on the coordinate x, we define the mean value by [4]

F̄ =
∫ ∫

Ψ∗(x,Q)FΨ(Q, x)dQdx, (4.22)

where dx and dQ denote integrations over the whole x-space and the whole
Q-space. We also define the density matrix ρ (x, x′) by

ρ (x, x′) =
∫

Ψ∗ (Q, x′) Ψ(Q, x)dQ. (4.23)

From the definition of ρ (x′, x) if follows that the density matrix is Hermitian
since its matrix elements satisfy the condition

ρ∗ (x, x′) = ρ (x′, x) . (4.24)

The description in terms of the density matrix is the most general form
that we can describe the properties of a system. This general form reduces to
the particular form of description in terms of the wave function when ρ (x′, x)
can be written as a simple product of two wave functions

ρ (x′, x) = Ψ∗ (x′) Ψ(x). (4.25)

States which can be described by wave functions are called “pure” states,
but the the states which can be described only by a density matrix are called
“mixed states”. Thus the probability density as a function of the coordinates x
for a mixed state can be found from the diagonal elements of the density matrix

ρ(x, x) =
∫
|Ψ(Q, x)|2dQ. (4.26)

It must be emphasized that in the case of a pure state Ψ(x) is an eigenfunction
of some operator, however for mixed states there is no operator whose eigen-
values are related to the wave function. When the wave function is properly
normalized, by setting x = x′, we have∫

ρ (x, x, ) dx = 1. (4.27)

For a pure state, the time dependence of the density matrix can be found
from the time dependent Schrödinger equation. Thus we write

ρ (x′, x, t) = Ψ∗ (x′, t) Ψ(x, t). (4.28)
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Now by differentiating (4.28) with respect to time and noting that ih̄∂Ψ
∂t = HΨ,

we find that

ih̄
∂ρ (x′, x, t)

∂t
= ih̄Ψ∗ (x′, t)

∂Ψ(x, t)
∂t

+ ih̄Ψ (x, t)
∂Ψ∗ (x′, t)

∂t
= Ψ∗ (x′, t)HΨ(x, t)−Ψ (x, t)H ′ ∗Ψ (x′ ∗, t)
= (H −H ′ ∗) ρ (x′, x, t) . (4.29)

In this relation H which is the Hamiltonian of the system acts on the function
of x, whereas H ′ which is the same Hamiltonian as H but it acts on x′.

Let ψn(x) denote the n-th time independent eigenfunction of H corre-
sponding to the eigenvalue En. We expand ρ (x′, x) in terms of this set of
eigenfunctions:

ρ (x′, x, t) =
∑
n

∑
j

cnjψ
∗
n (x′)ψn(x)e

i
h̄ (En−Ej)t. (4.30)

This expansion is valid whether the state is pure or is mixed. However when the
state is pure then cnj s can be written as a product of two factors cnj = c∗jcn.
To show this we write the wave function for the pure state as

Ψ(x, t) =
∑
j

cjψn(x)e−
i
h̄Ejt, (4.31)

and by substituting this expansion in (4.28) and comparing the result with
(4.30) we find that

cjn = c∗ncj . (4.32)

If Ψ(x, t) in (4.31) is normalized we have∫
|Ψ(x, t)|2dx =

∑
j

|cj |2 = 1. (4.33)

Using this result we calculate
(
c2
)
jn

;(
c2
)
jn

=
∑
k

cjkckn =
∑
k

c∗kcjc
∗
nck

= cjc
∗
n = cjn (4.34)

that is the square of the density matrix is equal to the density matrix itself, a
result which is valid only for pure states.

As we can see from Eq. (4.26) the diagonal elements ρ(x, x) of the density
matrix are positive, and these give us the probability distribution for coordi-
nates. Now if we write a quadratic form constructed from the coefficients cnj ,
i.e. ∑

n

∑
j

cnjz
∗
nzj , (4.35)
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where zn s are arbitrary complex quantities this quadratic form must be positive.
The well-known results of the theory of quadratic forms imposes the following
condition on the cnj [3]–[5]:

cnn ≥ 0, (4.36)

and
cnncjj ≥ |cnj |2. (4.37)

In Chapter 20 we will see an application of the density matrix in the quantum
theory of measurement.

Time Derivative in Heisenberg’s Equations — Next we want to
discuss the time derivative of an observable which we hope is itself an observable.
For a free particle of mass m and momentum p, we know the Hamiltonian is
p2

2m . The velocity of this particle can be measured by a time-of-flight experiment
[12]. If the position of the particle at t1 is r1 and at t2 is r2, then the velocity
between the two observations is

v =
dr
dt

=
r2 − r1

t2 − t1
. (4.38)

Can this definition be generalized and be applied to other quantum mechanical
operators representing observables? This question was studied in some detail by
Fulling [6]. He examined the result that one finds from the measurement at two
different times and compared it with the definition of time derivative according
to Heisenberg.

Let A(t) be an operator corresponding to an observable of the system,
then using the definition of time derivative we have

dA(t)
dt

≈ A(t+ ∆t)−A(t)
∆t

, (4.39)

where ∆t is sufficiently small time interval. When dA(t)
dt represents a conserved

quantity, then A(t) is proportional to t and (4.39) becomes exact as in (4.38).
Now consider a simple system where the Hamiltonian is given by

2ωSy, (4.40)

where Sy is the y component of the spin of a particle, Eq. (9.115). In this case
the time derivative of Sz from the Heisenberg equation, (4.10), is

dSz(t)
dt

= i[H, Sz] = 2iω[Sy, Sz] = −2ωSx. (4.41)

According to this relation dSz(t)
dt is a bounded observable taking one of the

eigenvalues of the operator −2ωSx, i.e. ±ω. If at t = 0 the particle is in the
state with spin up, | ↑〉, (see Eq. (9.114)), then at a later time the state of the
particle is given by

e−2iωSyt| ↑〉 = cosωt| ↑〉+ sinωt| ↓〉, (4.42)
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a result which can easily be found from the matrix representation of Sy, Eq.
(9.115), and the spin up and spin down states (9.116).

Now suppose we measure Sz at a very small positive time ∆t, then the
probability of finding Sz in spin down state | ↓〉 is proportional to sin2 ω∆t. In
this case the measured change in Sz per unit time is

dSz(t)
dt

≈ Sz(∆t)− Sz(0)
∆t

= − 1
∆t

. (4.43)

Since we can make ∆t as small as we please, the right-hand side of (4.43)
becomes arbitrarily large, and not equal to ±ω. The other possible result of
measurement is zero. Thus one reaches the important conclusion that “two
measurements of an observable in rapid succession do not constitute a measure-
ment of the time derivative according to Heisenberg’s equations of motion” [6].

Compatibility of Simultaneous Measurement — An important the-
orem regarding the compatibility of the measurement of two observables can be
stated in the following way:

If A and B are two operators with the same set of eigenvectors then A
and B commute. To show this let us denote the common eigenvectors of A and
B by |an, bm〉. The set |an, bm〉 form a complete set and we can expand any
ket |ψ〉 in terms of |an, bm〉. Now consider the result of AB operating on an
arbitrary ket |ψ〉

AB|ψ〉 = A

(∑
n,m

B|an, bm〉〈an, bm|ψ〉

)
= A

∑
n,m

bm|an, bm〉〈an, bm|ψ〉

=
∑
n

∑
m

anbm|an, bm〉〈an, bm|ψ〉, (4.44)

and

BA|ψ〉 = B

(∑
n,m

A|an, bm〉〈an, bm|ψ〉

)
= B

∑
n,m

an|an, bm〉〈an, bm|ψ〉

=
∑
n

∑
m

bman|an, bm〉〈an, bm|ψ〉, (4.45)

therefore
(AB −BA)|ψ〉 = 0, or [A, B] = 0. (4.46)

The converse of this result is also true, that is if two operators commute
then they possess the same eigenvector. Let |n〉 be an eigenvector of A so that



Uncertainty Principle 91

A|n〉 = an|n〉, then AB|n〉 = A(B|n〉) and B(A|n〉) = B(an|n〉). Therefore if
AB = BA we have

A(B|n〉) = an(B|n〉), (4.47)

or B|n〉 is an eigenvector of A. This can also be true if the ket B|n〉 is propor-
tional to |n〉 or

B|n〉 = bn|n〉. (4.48)

Here we have implicitly assumed that there is no degeneracy, but if there are
degenerate states the theorem remains valid.

4.1 The Uncertainty Principle

In his seminal paper of 1927, Heisenberg rejected the idea of strict observabil-
ity of the trajectory of an electron (position as well as momentum) as it was
assumed in Bohr’s model. Instead he considered the observable trajectory (e.g.
in the Wilson cloud chamber) as a discrete sequence of imprecisely defined po-
sitions. Soon after the publication of his paper, most of the physicists regarded
the uncertainty relations as an integral part of the foundation of quantum the-
ory [7].

In classical mechanics, according to Laplace, if one knows the exact po-
sition and velocity of the particle at a given time, then one can predict the
position and the velocity of the particle at any future time provided that all
of the forces acting on the particle is known precisely [8]. This is one of the
simplest and widely-accepted principles of causality in mechanics. Now the un-
certainty principle invalidates this principle and replaces it with the following
observation: In quantum theory we can calculate only a range of possibilities for
the position and velocity of the electron for later times, one of which will result
from the motion of a given electron. However, as was observed by Heisenberg,
the predictions of quantum mechanics are statistical in nature [9].

Let us consider the limitations placed on the precision of simultaneous
measurement of a pair of conjugate quantities such as position and momentum.
We denote the mean value of an observable corresponding to the self-adjoint
operator A when the system is in the state |k〉 by 〈k|A|k〉. The dispersion of the
result about 〈k|A|k〉 is found from the root-mean-square deviation, ∆A, defined
by

∆A =
[〈
k
∣∣∣(A− 〈k|A|k〉)2

∣∣∣ k〉] 1
2

=
[〈
k
∣∣A2
∣∣ k〉− 〈k|A|k〉2] 1

2 . (4.49)

Now we consider a set of self-adjoint linear operators Ar, (r = 1, · · · , n), where
the average of Ar is defined by 〈k|Ar|k〉 and the dispersion is given by

∆A2
r =

[〈
k
∣∣A2

r

∣∣ k〉− 〈k|Ar|k〉2] . (4.50)
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For a given Ar we define a vector |αr〉 by [10]

|αr〉 =
Ar − 〈k|Ar|k〉

(∆Ar)
|k〉. (4.51)

The scalar product 〈αr|αr〉 = 1 shows that |αr〉 is a unit vector and also from
(4.51) it follows that |αr〉 is orthogonal to |k〉;

〈k|αr〉 = 0, r = 1, 2 · · · , n. (4.52)

If we take any vector |v〉 which is linear combination of |αr〉 s with complex
coefficients cr s, i.e.

|v〉 =
∑
r

cr|αr〉, (4.53)

then F defined as the square of the norm of v is real and positive definite

F = 〈v|v〉 =
∑
r

∑
s

c∗scr〈αs|αr〉 ≥ 0. (4.54)

Now if we write

cr = ar + ibr, and 〈αr|αs〉 = frs − igrs, (4.55)

and note that |αr〉 is a unit vector, then we have

f11 = f22 = · · · = fnn = 1. (4.56)

By substituting for cr and 〈αr|αs〉 in (4.54) we find the following expression for
F

F =
∑
r

∑
s

{(aras + brbs)frs + (arbs − asbr)grs} , (4.57)

where from the definitions of frs and grs it is clear that f is a symmetric- and
g is an antisymmetric matrix. As Eq. (4.57) shows, F is a quadratic form of 2n
real quantities ar and br and it is also positive definite, therefore the eigenvlaues
of the 2n× 2n matrix formed from ar s and br s, i.e.[

f g
−g f

]
, (4.58)

must all be nonnegative. In other words if λ s are the roots of the determinant

D(λ) =
∣∣∣∣ f − λI g
−g f − λI

∣∣∣∣ = 0, (4.59)

then all of the eigenvalues λ are nonnegative. We can express frs and grs in
terms of the mean values of Ar and As using the scalar product 〈αr|αs〉 in
(4.55).
The matrix elements of f and g are

frs =
1
2

(
〈k|ArAs +AsAr|k〉 − 2〈k|Ar|k〉〈k|As|k〉

(∆Ar)(∆As)

)
, (4.60)
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and

grs =
i

2

(
〈k|ArAs −AsAr|k〉

(∆Ar)(∆As)

)
, (4.61)

and these quantities will be used to find the uncertainty relations for two or
more noncommuting observables.

First let us consider the uncertainty relation for a pair of self-adjoint
operators A1 and A2. In this case the determinant (4.59) becomes

D(λ) =

∣∣∣∣∣∣∣
1− λ f12 0 g12

f21 1− λ g21 0
0 −g12 1− λ f12

−g12 0 f21 1− λ

∣∣∣∣∣∣∣ . (4.62)

Noting that f12 = f21 and g12 = −g21 we can simplify (4.62)

D(λ) =
[
(1− λ)2 − f2

12 − g2
12

]2
. (4.63)

Thus the eigenvalues λ± are the roots of D(λ) = 0 and are given by

λ± = 1±
(
f2

12 + g2
12

) 1
2 = 1± |〈α1|α2〉|, (4.64)

and since λ± must be nonnegative, we have

f2
12 + g2

12 ≤ 1. (4.65)

By substituting from (4.60) and (4.61) we find the uncertainty ∆A1∆A2;

∆A2
1∆A2

2 ≥ 1
4
{〈k|A1A2 +A2A1|k〉 − 2〈k|A1|k〉〈k|A2|k〉}2

+
1
4

(i〈k|[A1, A2]|k〉)2
. (4.66)

This stronger form of the uncertainty relation was first derived by Schrödinger
[11],[12]. The usual form of the Heisenberg inequality which is the weaker form
results if we ignore the first term on the right-hand side of (4.66), i.e.

∆A2
1∆A2

2 ≥
1
4

(i〈k|[A1, A2]|k〉)2
, (4.67)

or
∆A1∆A2 ≥

1
2
|〈k|[A1, A2]|k〉|, (4.68)

An interesting feature of this approach is that we can determine the un-
certainty arising from the measurement of three or more observables at the same
time. For instance if we choose three operators A1, A2 and A3 and follow the
same argument as the one mentioned above, we obtain the Heisenberg weaker
inequality

3(∆A1)2(∆A2)2(∆A2
3) ≥ 1

4

∑
c

(∆A1)2 (i〈k| [A2, A3] |k〉)2
, (4.69)
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where
∑
c means a cyclic sum for 1, 2 and 3 [10].

Minimum Uncertainty Products — Returning back to Eq. (4.66) we
observe that the uncertainty product ∆A1∆A2 assumes its minimum value if
the first term on the right-hand side of (4.66) is zero. We can write this term as

〈k|A1A2 +A2A1|k〉 − 2〈k|A1|k〉〈k|A2|k〉 = 〈k|Ā1Ā2 + Ā2Ā1|k〉, (4.70)

where
Āi = Ai − 〈k|Ai|k〉, i = 1, 2. (4.71)

The expression (4.70) vanishes provided that for a specific state |k〉

Ā1|k〉 = βĀ2|k〉, (4.72)

where β which is a complex constant satisfies〈
k
∣∣Ā1Ā2 + Ā2Ā1

∣∣ k〉 = (β∗ + β)
〈
k
∣∣Ā2

2

∣∣ k〉 = 0, (4.73)

i.e. if β is a pure imaginary constant. Replacing Ā1 and Ā2 by A1 and A2, Eq.
(4.72) can be written as

(A1 − µ)|k〉 = iγ(A2 − ν)|k〉, (4.74)

where µ, ν and γ are all constants.
For the two fundamental conjugate quantities A1 = p and A2 = q the

Heisenberg uncertainty relation (4.66) in its weaker form becomes

(∆p)2(∆q)2 ≥ 1
4

(i〈k|[p, q]|k〉)2 =
h̄2

4
. (4.75)

Equation (4.74) for the minimum uncertainty can also be written as

(Ā1 − iγĀ2)|k〉 = η|k〉. (4.76)

Now suppose that the commutator Ā1 and Ā2 is given by[
Ā1, Ā2

]
= iC, (4.77)

where C is an operator, then from (4.68) it follows that

〈Ā2
1〉〈Ā2

2〉 ≥
1
4
〈C〉2. (4.78)

We have also the inequality[
〈Ā2

1〉
1
2 − γ〈Ā2

2〉
1
2

]2
≥ 0, (4.79)

from which we get

f(γ) = 〈Ā2
1〉+ γ2〈Ā2

2〉 − 2γ
[
〈Ā2

1〉〈Ā2
2〉
] 1

2

≥ 〈Ā2
1〉+ γ2〈Ā2

2〉 − γ〈C〉 ≥ 0. (4.80)
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The function f(γ) is quadratic in γ and has a minimum at

df(γ)
dγ

= 2γ〈Ā2
2〉 − 〈C〉 = 0. (4.81)

Thus for the minimum uncertainty product we get

〈Ā2
2〉 =

〈C〉
2γ

, (4.82)

and from (4.78) (with the equality sign) we find

〈Ā2
1〉 =

γ

2
〈C〉. (4.83)

These two relations (4.82) and (4.83) are important in investigating the classical
limit of the hydrogen atom Sec. 9.10.

Two Examples of the Position-Momentum Uncertainty Products
— For exactly solvable potentials, the wave function is known analytically, and
for these we can calculate the uncertainties for all stationary states [13],[14].
Here we consider two well-known cases and for others we refer the reader to the
paper of Nieto [13].

Uncertainty Relation for the Harmonic Oscillator — From the
exact normalized wave function for the n-th stationary state Eqs. (8.92),(8.93)
we calculate the expectation values of x, p, x2 and p2;

〈ψn(x)|x|ψn(x)〉 = 0, (4.84)

〈ψn(x)|p|ψn(x)〉 = 0, (4.85)

〈ψn(x)
∣∣x2
∣∣ψn(x)〉 =

h̄

mω

(
n+

1
2

)
, (4.86)

〈ψn(x)
∣∣p2
∣∣ψn(x)〉 = h̄mω

(
n+

1
2

)
. (4.87)

Thus

(∆x)2
n =

h̄

mω

(
n+

1
2

)
, (4.88)

and

(∆p)2
n = mωh̄

(
n+

1
2

)
. (4.89)

From thee relations we get the product of the uncertainties

(∆p)n(∆x)n = h̄ω

(
n+

1
2

)
. (4.90)

Uncertainty Relations for the Hydrogen Atom — The complete
normalized wave function for the hydrogen atom is given by Eq. (9.221). Using
these wave functions we find the matrix elements of x, px, x2, p2

x, y · · · p2
z:

〈ψn,`,m(r)|x|ψn,`,m(r)〉 = 0, (4.91)
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〈ψn,`,m(r)|px|ψn,`,m(r)〉 = 0, (4.92)

and similar relations for y, z, py and pz. For x2, · · · p2
x etc. we have the matrix

elements

〈ψn,`,m(r)
∣∣x2
∣∣ψn,`,m(r)〉 = 〈ψn,`,m(r)

∣∣y2
∣∣ψn,`,m(r)〉

=
2n2a2

0

(
`2 +m2 + `− 1

) (
5n2 − 3`2 − 3`+ 1

)
(2`− 1)(2`+ 3)

, (4.93)

〈ψn,`,m(r)
∣∣z2
∣∣ψn,`,m(r)〉 =

2n2a2
0

(
2`2 − 2m2 + 2`− 1

) (
5n2 − 3`2 − 3`+ 1

)
(2`− 1)(2`+ 3)

,

(4.94)

〈ψn,`,m(r)
∣∣p2
x

∣∣ψn,`,m(r)〉 = 〈ψn,`,m(r)
∣∣p2
y

∣∣ψn,`,m(r)〉

=
h̄2

4n2a2
0

(
`2 +m2 + `− 1

)
(2`− 1)(2`+ 3)

,

(4.95)

and

〈ψn,`,m(r)
∣∣p2
z

∣∣ψn,`,m(r)〉 =
h̄2

4n2a2
0

(
2`2 − 2m2 + 2`− 1

)
(2`− 1)(2`+ 3)

. (4.96)

A more interesting result can be found by averaging (∆x)n,`,m over ` and
m. In this way we find the product of the uncertainties as a function of the
principal quantum number n.

(∆x)2 =

∑n−1
`=0

∑`
m=−`(∆x)2

n,`,m∑n−1
`=0

∑`
m=−` 1

=
a2

0

12
(
7n2 + 5

)
, (4.97)

and
(∆p)2 =

1
3

(
h̄

a0
)2, (4.98)

Thus the uncertainty relation averaged over ` and m can be written as√
(∆x)2 (∆p)2 =

h̄

6

√
7n2 + 5. (4.99)

4.2 Application of the Uncertainty Principle for
Calculating Bound State Energies

For simple systems we can find the binding energies with the help of the position-
momentum uncertainty. Here we will consider the one-dimensional motions but
the method can be extended and applied to three-dimensional systems with
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spherically symmetric potentials, V (r) = V (r) [15].
We write the expectation value of the energy as

〈E〉 =
〈
p2

2m

〉
+ 〈V (x)〉, (4.100)

where in the following discussion we assume that V (x) is an even function of
x. For a general state we know that 〈x〉 = 〈p〉 = 0 and thus we replace

〈
p2
〉

by
(∆p)2 and

〈
x2
〉

by (∆x)2. Now we take the uncertainty relation as an equality
and write ∆p = h̄

∆x for the ground state and ∆pn = nh̄
∆xn

for the n-th excited
state. These uncertainties are exact for the harmonic oscillator, but we assume
that they are good approximation for other potentials.

For a potential of the form V (x) = λx2j , where j is an integer, from Eq.
(4.100) we get the following approximate form for En

En =
n2h̄2

2m(∆x)2
+ λ(∆x)2j . (4.101)

Now we choose ∆x so that En assumes its minimum value. By setting the
derivative dEn

d(∆x) equal to zero we obtain expressions for ∆x as well En;

∆x(0)
n =

(
n2h̄2

2mjλ

) 1
2j+2

, (4.102)

and

E(0)
n =

(
n2h̄2

2mλ

) j
j+1

(2jλ)
1
j+1

(
1 +

1
j

)
, n = 0, 1, 2 · · · (4.103)

The first term in (4.103) is the kinetic energy T
(0)
n and the second term is the

contribution of the potential energy V (0)
n , hence we have

T (0)
n = jV (0)

n . (4.104)

This result is in agreement with the classical virial theorem [16],

2〈T 〉 =
〈
x
dV (x)
dx

〉
= 2j〈V (x)〉. (4.105)

In particular for a quartic oscillator we have j = 2 and (4.103) reduces to

E(0)
n =

3
4

(
4h̄4λ

m2

) 1
3

n
4
3 ≈ 1.1905

(
h̄4λ

m2

) 1
3

n
4
3 , n = 1, 2, 3 · · · . (4.106)

If we calculate these eigenvalues using the WKB approximation (Sec. 12.1) we
find

En′ =
3

4
3π2(

Γ
(

1
4

)) 8
3

(
λh̄4

m2

) 1
3
(
n′ +

1
2

) 4
3
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≈ 1.376
(
λh̄4

m2

) 1
3
(
n′ +

1
2

) 4
3

, n′ = 0, 1, 2, · · · . (4.107)

These results should be compared with the more accurate estimates of the energy
eigenvalue [17].

4.3 Time-Energy Uncertainty Relation

Unlike the ∆p∆q uncertainty that we have studied so far, the time-energy uncer-
tainty ∆t∆E ≥ 1

2 h̄ has been and remains to be a controversial relation, not only
in its formulation, but also in its range of validity and interpretation [18],[19].
This uncertainty like the position-momentum uncertainty was considered in the
classic paper of Heisenberg for the first time [9].

Starting from the Heienberg equation of motion (4.10) we can write a
differential equation for the mean value of the observable A,

d

dt
〈A〉 =

〈
∂A

∂t

〉
+

1
ih̄
〈[A, H]〉. (4.108)

We can use this equation to derive a particular form of time-energy uncertainty
referred to as Mandelstam-Tamm time-energy uncertainty [18]–[20]. Let us
consider a system where H does not explicitly depend on time and let A denote
a time-independent observable. If |k〉 represent the states of a system at the
time t, then setting A1 = A and A2 = H in (4.68) we find

∆A∆E ≥ 1
2
〈k|[A, H]|k〉, (4.109)

where ∆E = ∆H. From Eqs. (4.108) and (4.109) we obtain

∆A∣∣∣d〈k|A|k〉dt

∣∣∣∆E ≥ 1
2
h̄. (4.110)

Now introducing ∆τA by

∆τA =
∣∣∣∣d〈k|A|k〉dt

∣∣∣∣−1

∆A (4.111)

we find the inequality

∆τA∆E ≥ 1
2
h̄. (4.112)

Thus ∆Aτ is the time characteristic of the evolution of the observable A, i.e.
the time required for the center 〈k|A|k〉 of this distribution to be displaced by
an amount equal to its width ∆A [18]. Let us emphasize that this uncertainty is
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Figure 4.1: The NH3 molecule where the three hydrogen atoms form an equilateral triangle.
The motion of the nitrogen atom is along the x-axis which is shown by the dashed line.

about the time intrinsic to the system and its evolution and is not the dispersion
of a dynamical variable t. We should also note that 〈k|A|k〉 and d〈k|A|k〉k

dt are
instantaneous expectation values and in general can depend on time. In principle
we can determine the shortest time ∆τAj among the different observables Aj of
a given system, but this ∆τAj cannot be regarded as the characteristic time of
evolution of the system itself.

As an example of the application of this uncertainty, let us consider the
case of a two level system such as ammonia molecule NH3. In this molecule the
three hydrogen atoms are at the three equilateral triangle and the nitrogen can
move up and down along the axis of the molecule [21]. The potential in which
the nitrogen atom moves has the shape of a double-well potential with the two
lowest states E0 and E1 close together and far from others, E2, E3 · · · [21]. The
location of H and N atoms are shown in Fig. 4.1. In this case the motion of
the nitrogen atom can be described by the time-dependent wave function

ψ(x, t) = ψ1(x) exp
(
−iE1t

h̄

)
+ ψ2(x)

(
−iE2t

h̄

)
, (4.113)

where the axis of the molecule to be chosen as the x axis. Thus the probability
distribution is

P (x, t) = |ψ(x, t)|2

= |ψ1(x)|2 + |ψ2(x)|2 + 2Re
[
ψ1(x)ψ2(x)e

i(E1−E2)t
h̄

]
, (4.114)

and this distribution oscillates between the two wave functions shown in Fig.
4.2. |ψR(x)|2 = |ψ1(x) − ψ2(x)|2 and |ψL(x)|2 = |ψ1(x) + ψ2(x)|2. The period
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Figure 4.2: The sum of the ground and first excited state and the difference between these
two states for the ammonia molecule.

of the oscillation can be found from Eq. (4.114) and is given by

∆τ =
h̄

|E1 − E2|
. (4.115)

Thus ∆τ represents the time for the transition of the system from one state
to the other, or the transition from one well to the other. If we measure the
probability distribution at two different times t1 and t2 and if ∆t = |t2 − t1| �
∆τ , then we will find the same probability distribution. However the physical
properties of the system will be modified over a time interval ∆t provided that

∆t∆E ≥ h̄, (4.116)

where ∆E = |E1 − E2| and ∆t = |t1 − t2|.
An important result of the Mandelstam-Tamm version of the time-energy

uncertainty relation is that it gives us a bound on the rate of decay of an unstable
state [22]. For this we consider an initial state |φ0〉 which is not an eigenstate of
the total Hamiltonian of the system H, but is expressible as an integral over the
continuous eigenstates of H. The state of the system after the time t is given
by

|φ(t)〉 = exp
(
−iHt
h̄

)
|φ0〉. (4.117)

Using this result we calculate the probability that the system remains in the
initial state |φ0〉 after a time t [21]

P(t) = |〈φ0|φ(t)〉|2. (4.118)

From (4.117) and (4.118) we can easily deduce that P(t) is an even function of
t. Next we choose the operator A to be

A(t) = |φ(t)〉〈φ(t)|. (4.119)
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By substituting A(t) in (4.110) and using the definition (4.118) we find

[P(t)(1− P(t))]
1
2∣∣∣dP(t)

dt

∣∣∣ ≥ h̄

2∆E
. (4.120)

A rearrangement of the inequality (4.120) gives us∣∣∣∣dP(t)
dt

∣∣∣∣ ≤ (2∆E
h̄

)
[P(t)(1− P(t))]

1
2 . (4.121)

We observe that the right-hand side of (4.121) takes its maximum value for
P(th) = 1

2 when ∣∣∣∣dPdt
∣∣∣∣
t=th

≤ ∆E
h̄
. (4.122)

This time, th, which is half-life of a decaying system has the property that only
for t = th Eq. (4.122) can become an equality.

Another important conclusion that we can draw from (4.122) is that no
unstable quantum system can decay completely within a time h̄

∆E [22].
By integrating (4.121) we obtain

t ≥ h̄

∆E
arccos

√
P(t), (4.123)

where we have used the initial condition P(0) = 1. By solving (4.123) for P(t)
we obtain the inequality

P(t) ≥ cos2

(
∆Et
h̄

)
, 0 ≤ t ≤ πh̄

2∆E
. (4.124)

From Eq. (4.124) we find

P(th) =
1
2
≥ cos2

(
∆E th
h̄

)
, 0 ≤ th ≤

πh̄

2∆E
, (4.125)

and by solving this inequality we get

∆E th ≥
πh̄

4
, 0 ≤ th ≤

πh̄

2∆E
. (4.126)

On the other hand for values of th > πh̄
2E , the inequality becomes

P(th) ≥ 0 > 1− 2∆Et
πh̄

, t >
πh̄

2∆E
, (4.127)

or thus

∆E th >
πh̄

4
or, th >

πh̄

2∆E
, (4.128)
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Combining (4.126) and (4.128) we have the following inequality for a decaying
quantum system [22]

∆E th >
πh̄

4
. (4.129)

As it can be seen from (4.129) the half-life, th, and the energy dispersion, ∆E
are related.

Wigner’s Time-Energy Uncertainty Relation — A different formu-
lation of time-energy relation is due to Wigner and in its simplest form it can
expressed as follows [23]:

Let ψ(x, t) be the time-dependent wave function describing a system with
the Hamiltonian H. We expand ψ(x, t) in terms of the eigenfunctions of time-
independent Hamiltonian H;

ψ(x, t) =
∫
ψ(x,E) exp

(
−iEt
h̄

)
dE. (4.130)

The uncertainties ∆t and ∆E for time and energy are defined by

(∆t)2 =

∫∞
0

(t− t̄)2 |ψ(x, t)|2dt∫∞
0
|ψ(x, t)|2dt

, (4.131)

and

(∆E)2 =

∫∞
0

(
E − Ē

)2 |ψ(x,E)|2dE∫∞
0
|ψ(x,E)|2dE

, (4.132)

where t̄ and Ē refer to the mean values of t and E. Here it is assumed that
the denominators are finite and not necessarily normalized. From these two
relations we obtain

∆t(x)∆E(x) ≥ h̄

2
. (4.133)

For the simple case of Ē = t̄ = 0 we can derive (4.133) in the following
way: Assuming that ψ(x, t) and ψ(x,E) are not normalized we write

N =
∫
|ψ(x, t)|2dt =

1
2π

∫
|ψ(x,E)|2dE, (4.134)

where the second term is found from Parseval relation noting that ψ(x,E) is
the Fourier transform of ψ(x, t). Now we write the Schwarz inequality as∣∣∣∣∫ tψ(x, t)

∂ψ(x, t)
∂t

dt

∣∣∣∣2 ≤ ∫ t2|ψ(x, t)|2dt
∫ ∣∣∣∣∂ψ(x, t)

∂t

∣∣∣∣2 dt (4.135)

By integrating the left-hand side of (4.135) by parts we get∫
tψ(x, t)

∂ψ(x, t)
∂t

dt = −1
2

∫
|ψ(x, t)|2dt = −N

2
. (4.136)
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Again from Parseval relation we have

h̄2

∫ ∣∣∣∣∂ψ(x, t)
∂t

∣∣∣∣2 dt =
1

2π

∫
E2|ψ(x,E)|2dE. (4.137)

Now if we define (∆τ)2 and (∆E)2 by Eqs. (4.131) and (4.132) then (4.135)
gives us the uncertainty relation (4.133). Since the energy spectrum has a lower
bound therefore Wigner concludes that the equality in (4.133) is not permissible
[23]. We note that this uncertainty relates the spreads of energy and time at a
fixed point x. In the case of position-momentum the uncertainty ∆p(t)∆x(t) is
given at an instant of time and t changes in one direction (increasing t only),
whereas in ∆τ(x)∆E(x), x can change in both directions i.e. from −∞ to
+∞, or from +∞ to −∞.

4.4 Uncertainty Relations for Angular
Momentum-Angle Variables

The result that we found for two Hermitian operators A1 and A2, Eq. (4.66) is
valid whenever both A1 and A2 are self-adjoint in the domains over which they
are defined, e.g. −∞ < x < +∞. However for the pair of variables, the angular
momentum Lz and its conjugate φ, where

φ = tan−1
(y
x

)
, (4.138)

and
Lz = xpy − ypx = −i ∂

∂φ
, h̄ = 1, (4.139)

there is a problem since φ in (4.138) is defined modulo 2π. Thus Lz as is given
by (4.139) is self-adjoint, i.e.

〈Lzf |g〉 = 〈f |Lzg〉, (4.140)

only if f and g are periodic functions with period 2π. If for the moment, we
assume that φ and Lz are conjugate operators

[φ, Lz] = i, (4.141)

and choose the eigenfunctions of Lz to be |`,m〉 (see Sec. 9.1) [24]

Lz|`,m〉 = m|`,m〉, m = −` · · · `, (4.142)

then
〈`,m′ |[φ, Lz]| `,m〉 = i 〈`,m′|`,m〉 . (4.143)
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Using the self-adjointness of Lz we operate to the left to obtain

(m−m′) 〈`,m′|φ|`,m〉 = iδm,m′ . (4.144)

In this relation if we set m = m′ we find that it cannot be correct.
We can introduce a periodic function of the coordinate φ by defining Φ(φ)

to be [24],[25]

Φ(φ) = φ− 2π
∞∑
n=0

θ[φ− (2n+ 1)π] + 2π
∞∑
n=0

θ[−φ− (2n+ 1)π], (4.145)

where θ(z) is the step function. This type of periodic function will also be used
later to describe the problem of a particle bouncing between two rigid walls Sec.
7.6. If we choose Φ(φ) instead of φ, the commutation relation will take the form

[Φ(φ), Lz] = i

{
1− 2π

∞∑
n=−∞

δ[φ− (2n+ 1)π]

}
. (4.146)

Rather than using Φ(φ), we can use sinφ and cosφ, both periodic functions
of φ with period 2π, to calculate the commutator. The commutation relations
for these functions of φ and Lz are:

[sinφ, Lz] = i cosφ, (4.147)

and
[cosφ, Lz] = −i sinφ. (4.148)

These results follow from the Dirac’s rule of association, Eq.(3.121). Denoting
the uncertainties (or the dispersions) by (∆Lz)2, (∆ sinφ)2 and (∆ cosφ)2, we
have according to (4.66) for self-adjoint operator Lz;

(∆Lz)2(∆ sinφ)2 ≥ 1
4
〈cosφ〉2, (4.149)

(∆Lz)2(∆ cosφ)2 ≥ 1
4
〈sinφ〉2. (4.150)

By adding (4.149) to (4.150) we find an uncertainty relation which is symmetric
in cosφ and sinφ;

(∆Lz)2
[
(∆ cosφ)2 + (∆ sinφ)2

]
〈sinφ〉2 + 〈cosφ〉2

≥ 1
4
. (4.151)

Let us now inquire about the conditions under which we can get the standard
form of the uncertainty relation

(∆Lz)2(∆φ)2 ≥ 1
4
. (4.152)
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Consider the probability distribution P (φ) which is sharply peaked at φ = φ0,
and is symmetrical about this point. We expand cosφ and sinφ about φ− φ0;

cosφ = cosφ0

[
1− 1

2
(δφ)2

]
− sinφ0δφ, (4.153)

sinφ = sinφ0

[
1− 1

2
(δφ)2

]
+ cosφ0δφ, (4.154)

where
δφ = φ− φ0. (4.155)

We choose δφ to be much smaller than 2π. Using (4.153),(4.154) we calculate
different φ-dependent terms in (4.151) remembering that odd power terms in φ
will not contribute when averaged over P (φ);

〈cosφ〉 = cosφ0

[
1− 1

2
〈
(δφ)2

〉]
, (4.156)

〈sinφ〉 = sinφ0

[
1− 1

2
〈
(δφ)2

〉]
, (4.157)

〈
cos2 φ

〉
= cos2 φ0

[
1− 1

2
〈
(δφ)2

〉]
+ sin2 φ0

〈
(δφ)2

〉
, (4.158)

and 〈
sin2 φ

〉
= sin2 φ0

[
1− 1

2
〈
(δφ)2

〉]
+ cos2 φ0

〈
(δφ)2

〉
. (4.159)

Since δφ is small we keep terms up to second order and this gives us

(∆ cosφ)2 =
〈
cos2 φ

〉
− 〈cosφ〉2 = sin2 φ0

〈
(δφ)2

〉
, (4.160)

(∆ sinφ)2 =
〈
sin2 φ

〉
− 〈sinφ〉2 = cos2 φ0

〈
(δφ)2

〉
. (4.161)

By substituting (4.157)–(4.161) in (4.151) we obtain

(∆Lz)2
〈
(δφ)2

〉
≥ 1

4
. (4.162)

Thus if we identify (∆φ) by 〈
(δφ)2

〉
= (∆φ)2, (4.163)

we obtain (4.152). This inequality is of the same form as the uncertainty for
(∆A1)2(∆A2)2 found from (4.66).

We can ask why it is impossible to measure Lz and φ at the same time.
A possible explanation can be the following [26]. Suppose we measure the total
angular momentum of a system and find that it is zero, i.e. the system is in S
state. What we have measured is the symmetry of the system under rotation,
and we have found that the system is spherically symmetric. But this implies
that we cannot measure the conjugate angle since to a spherically symmetric
system we cannot assign a privileged angle.
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4.5 Local Heisenberg Inequalities

Next we want to study simple generalizations of the uncertainty principle [27]–
[30]. We start with an analysis of the local Heisenberg inequalities. Let x and
p denote the position and the momentum of a particle, and let f(x) be some
arbitrary function of x, then from the commutator

[p, f(x)] = −if ′(x), h̄ = 1, (4.164)

we obtain
∆p ∆f ≥ 1

2
|〈f ′(x)〉| , (4.165)

Now we will study two specific cases:
(1) - Let f(x) be a step function

f(x) = θ(x− x0) =
{ 0 x < x0

1 x > x0
, (4.166)

then by calculating the average value of f(x) we get

〈
f2(x)

〉
= 〈f(x)〉 =

∫ ∞
x0

|ψ(x)|2dx = 1− P(x0), (4.167)

where ψ(x) is the wave function of the particle and P(x0) is the probability of
the localization on the half-axis (−∞ < x ≤ x0). From the definition of ∆f it
follows that

(∆f)2 =
〈
(f(x))2

〉
− |〈f(x)〉|2

= (1− P(x0))− (1− P(x0))2 = P(x0)(1− P(x0)). (4.168)

In addition since f(x) = θ(x− x0), we have

〈f ′(x)〉 = 〈δ(x− x0)〉 = |ψ(x0)|2. (4.169)

Substituting these results in Eq. (4.165) we find

|ψ(x)|2 ≤ 2∆p {P(x) [1− P(x)]}
1
2 . (4.170)

This expression relates the probability density at the point x to the probability
itself and to the momentum uncertainty. Using the fact that the maximum of
P(x) (1− P(x)) is at P(x) = 1

2 , we have

P(x) [1− P(x)] ≤ 1
4
, (4.171)

and thus we conclude that
|ψ(x)|2 ≤ ∆p. (4.172)
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From either (4.170) or (4.172) it follows that for the normalized wave func-
tion ψ(x) to be large at a certain point, it must be narrow enough so that its
momentum width is necessarily large. We also observe that the upper bound
|ψ(x)|2 = ∆p can only be reached for a unique value of x such that P(x) = 1.

(2) - For the second example let us consider the case where

f(x) =
1
x
. (4.173)

Then in the inequality

∆A1∆A2 ≥
1
2
|〈[A1, A2]〉|, (4.174)

if we choose A1 = p and A2 = x−1 we have

(∆p)2

[〈
1
x2

〉
−
(〈

1
x

〉)2
]
≥ 1

4

〈
1
x

〉2

. (4.175)

Now assuming that both
〈
x−2

〉
and

〈
x−1

〉
are finite, then from the fact that

a2

a−b ≥ 4b for a ≥ b we find that

∆p ≥
〈

1
x

〉
. (4.176)

Applying this result to the problem of hydrogen atom by setting x = r and
considering the Hamiltonian

H =
1

2m
p2
r −

e2

r
, (4.177)

we get

〈H〉 =
1

2m
〈
p2
r

〉
− e2

〈
1
r

〉
≥ 1

2m

〈
1
r

〉2

− e2

〈
1
r

〉
=

(
1√
2m

〈
1
r

〉
−
√
m

2
e2

)2

− m

2
e4 ≥ −m

2
e4. (4.178)

This result shows that in the hydrogen atom the Hamiltonian has a lower bound
and therefore the atom is stable.

Uncertainty Relations for Measurements at Different Times —
In the derivation of the general form of uncertainty principle, Eq. (4.68), we
assumed that both A1 and A2 are Hermitian operators corresponding to two
observable quantities measured at a given time, e.g. p(t) and x(t). Now we want
to obtain an expression for the uncertainty when the position of the particle x
is measured at time t while its momentum p is measured at time t+ δt. In the
Heisenberg picture we can write

p(t+ δt) = exp
(
iHδt

h̄

)
p(t) exp

(
−iHδt
h̄

)
, (4.179)
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where the Hamiltonian is assumed to be time-independent

H =
1

2m
p2 + V (x). (4.180)

Expanding (4.179) using the Baker–Campbell–Hausdorff formula (3.77) we have

p(t+ δt) = p(t)− iδt

h̄
[H, p]− (δt)2

2! h̄2 [H, [H, p]] + · · · . (4.181)

This relation can be simplified if we calculate the commutators

[H, p] = [V (x), p] = ih̄V ′(x). (4.182)

and
1
2

[H, [H, p] ] =
h̄

2

[
p2

2m
, iV ′(x)

]
=

h̄2

4m
(pV ′′ + V ′′p) . (4.183)

Substituting these in (4.181) we get

[x(t), p(t+ δt)] = ih̄

{
1− (δt)2

2m
V ′′(x) +O (δt)3

}
. (4.184)

Thus the uncertainty relation according to (4.68) is

∆x(t)∆p(t+ δt) ≥ h̄

2

{
1− (δt)2

2m
〈V ′′〉t +O (δt)3

}
. (4.185)

One of the interesting features of this relation is that it shows that for a noncon-
vex potential, the product of the uncertainties of the position and momentum
at different times can be less than h̄

2 [29].
The same method can be used to obtain momentum-momentum and

position-position uncertainties. Thus from the commutator

[p(t), p(t+ δt)] = ih̄δtV ′′ +O (δt)3
, (4.186)

we find the uncertainty relation

∆p(t)∆p(t+ δt) ≥ h̄

2
|δt 〈V ′′(x)〉t |+O (δt)3

. (4.187)

In order to determine ∆x(t)∆x(t + δt) we write the analogue of (4.182) and
(4.183) for x(t),

[H, x] = −i h̄
m
p. (4.188)

and
1
2

[H, [H, x] ] =
h̄2

2m
V ′(x). (4.189)
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Then from

x(t+ δt) = exp
(
iHδt

h̄

)
x(t) exp

(
−iHδt
h̄

)
= x(t) +

δt

m
p(t)− (δt)2

2m
V ′(x) +O (δt)3

, (4.190)

we obtain

[x(t), x(t+ δt)] =
ih̄

m
δt+O (δt)3

, (4.191)

and thus

∆x(t)∆x(t+ δt) ≥ h̄

2
|δt|
m

+O (δt)3
. (4.192)

This relation shows the well-known fact of the spreading of the wave packet for
very short times [29].

For the problem of harmonic oscillator we can find that these three in-
equalities are independent of the magnitude of δt. For instance from

p(t+ δt) = cos(ωδt) p(t)−mω sin(ωδt) x(t), (4.193)

which is the exact solution of Heisenberg’s equations for the harmonic oscillator
we obtain the uncertainty relation

∆x(t)∆p(t+ δt) ≥ h̄

2
| cos(ωδt)|. (4.194)

Similar results can be found for ∆x(t)∆x(t+ δt) and for ∆p(t)∆p(t + δt) [29].
Correlation of Position and Momentum — In probability theory and

in statistics the extent to which two random variables vary together is measured
by their covariance. Related to the covariance of two variables is their correlation
which measures their degree of independence. This is found by dividing the
covariance of two variables by the product of their standard deviation. Denoting
the variables by A1 and A2 we write the correlation ρ(A1, A2) as

ρ(A1, A2) =
cov(A1, A2)
∆A1∆A2

. (4.195)

In this relation “cov” denotes the covariance of A1 and A2 and is given by

cov(A1, A2) = 〈(A1 − 〈A1〉)(A2 − 〈A2〉)〉
= 〈A1A2〉 − 〈A1〉〈A2〉, (4.196)

where 〈A1〉 and 〈A2〉 are the mean values of A1 and A2 respectively and disper-
sion ∆Ar is defined by

∆Ar =
(〈
A2
r

〉
− 〈Ar〉2

) 1
2
, r = 1, 2. (4.197)
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From the Schwarz inequality it follows that

|ρ(A1, A2)| ≤ 1. (4.198)

Now let us consider the correlation coefficient for two physical observables of
the system. For this we replace the operator Ar by A′r, where

A′r = Ar − 〈k|Ar|k〉1, r = 1, 2, (4.199)

and 1 is the unit operator (or matrix). In this way the uncertainty ∆Ar defined
by (4.50) takes the simpler form of

∆Ar = [〈k|A′r|k〉]
1
2 . (4.200)

In general the two operators A1 and A2 do not commute with each other, there-
fore we replace A1A2 by the symmetrized operator 1

2 (A1A2 + A2A1) which is
Hermitian. But as we have seen in Chapter 3 this is one of the possible forms
of constructing a Hermitian operator. Therefore our definition of covariance for
two quantum mechanical operators is not unique. For the two operators we
define the covariance in analogy with the definition (4.196)

covk〈A1A2〉 =
1
2
〈k|(A1A2 +A2A1|k〉 − 〈k|A1|k〉〈k|A2|k〉

=
1
2
〈k |(A′1A′2 +A′2A

′
1)| k〉 . (4.201)

From this we find the quantum correlation function for the state |k〉 to be given
by [30]

ρk(A1, A2) =
cov(A1, A2)
∆A1∆A2

=
1
2

(
〈k |(A′1A′2 +A′2A

′
1)| k〉√

〈k |A′ 21 | k〉 〈k |A′ 22 | k〉

)
. (4.202)

It should be noted that if A1 and A2 are incompatible observables then they
cannot be measured simultaneously and covk(A1, A2) cannot be found from a
set of measurements of A1 and A2 separately. At the same time the Hermitian
operator A′1A

′
2 + A′2A

′
1 may not be self-adjoint or have self-adjoint extension,

and therefore may not be an observable of the system as we have seen in Chapter
3.

Next we replace the expectation value of the anticommutator A′1A
′
2+A′2A

′
1

using the generalized Heisenberg’s uncertainty relation (4.66) and we find a
simple expression for the quantum correlation function in terms of A1 and A2

ρ2
k(A1, A2) ≤ 1−

[
|〈k|[A1, A2]|k〉|

2∆A1∆A2

]2

. (4.203)

From this inequality we conclude that when [A1, A2] 6= 0, ρk(A1, A2) does not
reach unity which is its classical bound (4.198). Thus in quantum mechanics
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there is a decrease in the correlation between any two dynamical variables as
compared to the classical one, and this is particularly pronounced when the
uncertainties ∆A1 and ∆A2 are small [30].

Let us now determine the correlation coefficient ρk(x, p) for a one-
dimensional motion. In this case (4.203) reduces to

ρ2
k(x, p) ≤ 1− h̄2

4(∆x)2(∆p)2
. (4.204)

An immediate consequence of this result is that for a minimum uncertainty,
∆p∆q = h̄

2 , Eq. (4.75), ρ2
k(x, p) = 0, i.e. there is no correlation between x and

p. On the other hand for a normalized time-dependent Gaussian wave packet
of the form

ψ(x, t) =
1

π
1
4

e−iφ(t)
√
a
√
|α(t)|eik0x exp

[
−1

2
α(t)

(
x− h̄k0t

m

)]
, (4.205)

where α(t) which is the time-dependent phase is given by

α(t) =

[
a2 +

ih̄t

m

]− 1
2

, (4.206)

we find the uncertainties to be (with h̄ = 1 written explicitly)
∆x =

a√
2

(
1 + h̄2t2

m2a4

) 1
2

∆p =
h̄√
2a

. (4.207)

Here the correlation coefficient is given by

ρk(x, p) =
h̄t√

m2a4 + h̄2t2
, (4.208)

which shows that the correlation is zero at t = 0 and approaches unity as t
becomes large. Why in the case of a time-dependent wave packet we have such
a change in the value of the correlation coefficient? To explain this result we
note that the wave packet is composed of an infinite number of components
each corresponding to a different momentum in its Fourier transform. The tail
of the wave packet, which is the fastest moving part, is associated with high
Fourier components, whereas the part close to the center of the wave packet
is associated with Fourier components with slowest momenta. Thus there is a
correlation between different spatial parts and the Fourier components repre-
senting momenta.

We can also calculate the correlation coefficient for a particle in a station-
ary state for any potential V (x). Starting with the Hamiltonian

H =
1

2m
p2 + V (x), (4.209)
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with the eigenstate |n〉 we find

〈n|xp+ px|n〉 =
im

h̄
〈n
[
H, x2

]
|n〉 = 0. (4.210)

Also we know that for a stationary state

〈n|p|n〉 =
im

h̄
〈n [H, x] |n〉 = 0. (4.211)

Thus from (4.201) it follows that

covn(x, p) = 0, (4.212)

and consequently
ρn(x, p) = 0. (4.213)

Thus there is no correlation between x and p for this motion, a result which is
independent of the shape of the potential.

Finally let us calculate the correlation function for the components of
the angular momentum of a particle. Denoting the eigenstates of the angular
momentum by |k〉 = |j,m〉 (Chapter 9), then from Eq. (9.54) we have

〈j,m|MxMy +MyMx|j,m〉 =
1
2i
〈
j,m

∣∣M2
+ −M2

−
∣∣ j,m〉 = 0. (4.214)

Choosing A1 and A2 to be Mx and My respectively, then from Eqs. (4.203) and
(4.214) it follows that

ρj,m(Mx,My) = 0. (4.215)

Thus we conclude that the correlation coefficient for angular momentum oper-
ator is nonzero only for certain superposition of eigenstats [31].

4.6 The Correspondence Principle

We have observed the similarity between Heisenberg’s equations of motion and
the Hamilton canonical equation. Now let us inquire how the results found
from these two theories are related to each other. In particular we want to
know whether we can recover the classical description of a motion from the cor-
responding quantum mechanical problem or not, assuming that the quantum
theory contains the classical mechanics as a limiting case. By a close exami-
nation of various works one finds that there are at least three distinct ways of
getting classical equations from quantum formulation [32]:

The Planck Limit — As early as 1906 Planck observed that his black
body radiation formula reduces to Rayleigh–Jean result in the limit of h̄ → 0
[33],[34]
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This limit may not be well-defined for every quantum mechanical opera-
tor. For instance consider the operators P± defined by [35]

P± =
1
h̄2 M2 ± 1

h̄
Mz, (4.216)

where M2 and Mz (square and the z-component of angular momentum) are
defined by Eqs. (9.74) and (9.75). The operators M2 and Mz correspond to the
classical components of momentum in spherical polar coordinates (pr, pθ, pφ)
by

Mz = pφ, and M2 = p2
θ +

p2
φ

sin2 θ
. (4.217)

Let us also denote the conjugates of P+ and P− operators by Q±. Clearly the
operators P− and P+ do not have classical limits as h̄ → 0, even though they
are well-defined operators with the eigenvalues

P±|`,m〉 = [`(`+ 1)±m] |`,m〉, −` ≤ m ≤ `, (4.218)

where ` is a positive integer or zero. We note that all of the eigenvalues of P+

and P− are nondegenerate and nonnegative. Since [P+, P−] = 0, we can use a
representation in which both of these operators are diagonal. If here there were
connections between the classical Poisson bracket and the quantum commuta-
tor, then [P+, Q−] = 0 and thus in this representation Q− would be diagonal
too. However this is not compatible with the requirement that P− and Q− are
conjugates [35].

Bohr Correspondence Principle — According to Bohr, the prediction
of quantum mechanics approaches classical limit as the quantum number of
bound systems become large, i.e. the quantum number n tends to infinity. For
systems such as a particle in a box with rigid walls Sec. 7.5 or a rigid rotator in
the limit of large quantum numbers the classical motion is not recovered. For
instance the frequencies of the quantum spectrum ωmn = (Em − En)/h̄ do not
approach the continuous frequencies of the classical spectrum. For a detailed
account of the classical limit of quantum mechanics the reader is referred to the
papers of Makowski [32] and Liboff [34].

Correspondence Principle and the Asymptotic Form of the
Probability Density for the Harmonic Oscillator — While the frequen-
cies of the quantum oscillators do not approach the classical frequencies, we
can ask whether quantum probabilities approach the classical probabilities in
the limit of large quantum numbers. To investigate this point we consider the
example of a simple harmonic oscillator. From the normalized wave function
of the simple harmonic oscillator, (see Eq. (8.92)), we can find the probability
density ρn(x) = |ψn(x)|2. If we want to calculate this density in the limit of
n → ∞, we can write ψn(x) in terms of the Weber function or the confluent
hypergeometric function of the third kind [36]

ψn(x) = Dn(
√

2βx) = 2
n
2 exp

[
−1

2
β2x2 + iπn

]
U2

(
−1

2
n,

1
2
, β2x2

)
. (4.219)
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Introducing the dimensionless variable z = βx we can write U2

(
− 1

2n,
1
2 , β

2x2
)

as a contour integral, and then ψn becomes

ψn(x) =
β√

2nn!
√
π

2n
Γ
(
1 + 1

2n
)

2πi
exp

(
−1

2
z2

)
×

∮
exp

[
z2t−

(
1
2
n+ 1

)
ln t+

(
1
2
n− 1

2

)
ln(1− t)

]
dt,

(4.220)

where the contour in the complex t-plane consists of two straight lines one going
from −∞ to about t = 0 in the positive direction and there via a semicircle
joining another line going from about t = 0 to −∞. The saddle point for the
integral is where the derivative of the expression

z2t−
(

1
2
n+ 1

)
ln t+

(
1
2
n− 1

2

)
ln(1− t), (4.221)

is zero, viz, at the point

z2 =
1
2n+ 1− 3

2 t

t(1− t)
. (4.222)

We are interested in the limit when 2n + 1 > z2, and when this is the case
the two saddle points are symmetrically located above or below the real axis,
and we get a cosine factor for the integral. Thus the wave function for n � 1
becomes

ψn(x) ≈

√
2β
π

(2n− β2x2)
1
4

cos
[

1
2
βx
√

2n− β2x2 − 1
2
πn+ n sin−1

(
βx√
2n

)]
,

(4.223)
and this is valid when z2 < 2n.

By calculating |ψn(x)|2 and simplifying we find the probability density for
large n values

ρn(x) ≈ 2
π (A2

n − x2)
cos2

[
1
2
β2x

√
A2
n − x2 − 1

2
πn+

1
2
β2A2

n sin−1

(
x

An

)]
,

(4.224)
where x < An and

A2
n =

2n+ 1
β2

=
2En
mω2

. (4.225)

As Eq. (4.224) shows for large n, ρn(x) has a large number of nodes , and that
the separation between these nodes is approximately 2π/

(
β2An

)
. In addition

this same equation for ρn(x) reduces to the classical expression for probability,
viz,

ρcl(x) =
1

π
√
A2 − x2

, (4.226)
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where A =
√

2E
m is the classical amplitude of motion. That is ρcl(x) is not the

limit of ρn(x) as n tend to infinity (which is the Bohr correspondence principle),
but it is the average of ρn(x) over several wavelengths of oscillation. In other
words we get the classical limit if we replace cos2 in (4.224) by its average
value which is 1

2 . For other interesting examples of deviation from the Bohr
correspondence principle see [37].

Heisenberg’s Correspondence Principle — This principle can be
stated in the following way:

Let g(t) be a classical quantity related to a bound motion and G(t) be
its corresponding quantum mechanical operator in the Heisenberg picture, then
[7],[38]

〈n|G(t)|n+ s〉 = 〈n|G|n+ s〉e ih̄ (En+s−En)t ≈ Gs(n)eisω(n)t, (4.227)

where Gs(n) is the s-th Fourier component of the classical variable g(t) and ω(n)
is the classical frequency when the energy of the particle is En. The connection
between the Fourier components of the classical motion and the quantum me-
chanical eigenvalues, as is formulated by Halpern will be discussed in detail in
Chapter 7.

Ehrenfest Theorem — If quantum mechanics is to be a more general
theory of motion than classical mechanics, it must contain classical mechanics
as a limiting case. Ehrenfest’s relations express a formal connection between
the time-dependence of the mean value of the observables and the Hamilton
equations of motion of classical dynamics [39]. To show this connection we use
the time-dependent Schrödinger equation and its complex conjugate to elimi-
nate partial derivatives of |ψ〉 and 〈ψ| with respect to time from the total time
derivative of the expectation value of an arbitrary self-adjoint operator A;

d〈A〉
dt

=
d

dt
〈ψ|A|ψ〉 =

〈
ψ |A| ∂

∂t
ψ

〉
+
〈(

∂ψ

∂t

)
|A|ψ

〉
=

1
ih̄
〈ψ|AH|ψ〉 − 1

ih̄
〈ψ|HA|ψ〉+

〈
∂A

∂t

〉
=

1
ih̄
〈ψ|[H, A]|ψ〉+

〈
∂A

∂t

〉
. (4.228)

This relation shows that any quantum mechanical average obeys the correspond-
ing classical equations of motion.

If we apply (4.228) to the observables r and p when the Hamiltonian of
the system is given by

H =
1

2m
p2 + V (r), (4.229)

then we find
d〈r〉
dt

=
1
m
〈p〉, (4.230)

and
d〈p〉
dt

= −〈∇V (r)〉. (4.231)
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These two equations are referred to as Ehrenfest’s theorem. The right-hand side
of (4.231) is the average of the gradient potential and not the gradient of the
potential at 〈r〉. Consider the motion in one dimension and suppose V (x) is a
slowly varying function of x, then we can expand dV (x)

dx around x = 〈x〉;

dV (x)
dx

=
dV (〈x〉)
d〈x〉

+
d2V (〈x〉)
d〈x〉2

(x− 〈x〉)

+
1
2
d3V (〈x〉)
d〈x〉3

(x− 〈x〉)2 + · · · . (4.232)

Now noting that 〈x− 〈x〉〉 = 0, and by substituting (4.232) in (4.231) we find

d〈px〉
dt

= −dV (〈x〉)
d〈x〉

− σ2
x

2

(
d3V (〈x〉)
d〈x〉3

)
+ · · · , (4.233)

where σx = |(x−〈x〉)| is the width of the wave packet. If the higher derivatives
of V (x) are much smaller than the first derivative, then we can ignore the higher
order terms, and we have the classical equations of motion.

4.7 Determination of the State of a System

In this section we examine the question of determination of the wave function
of a state from the measurement of probabilities and currents. To this end we
consider the connection between the coordinate and momentum probabilities.

The ket |ψ〉 is a vector in Hilbert space and is a symbol of all possible
functional values. As we have seen earlier The coordinate component of this ket
is ψ(r) = 〈r|ψ〉 and represents the functional value of |ψ〉 at r. For the simple
case of free particle the momentum eigenfunction is a solution of

−ih̄∇ψp(r) = pψp(r), (4.234)

where p is the momentum eigenvalue and has the eigenfunction

ψp(r) = 〈p|r〉 =
1

(2πh̄)
3
2

exp
(
ip · r
h̄

)
. (4.235)

This eigenfunction is normalized in such a way that

1
(2πh̄)3

∫
ψ∗p(r)ψp′(r)d3r = δ (p− p′) . (4.236)

A physical state is represented by a normalizable state vector and corresponds
to a wave packet. For example a particle localized around r0 can be represented
by

|ψ〉 =
∫
f(r− r′)|r〉 d3r, (4.237)
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where f is a function which is peaked around r0. The normalization condition
on |ψ〉 is

〈|ψ〉 =
∫
|f(r)2|; d3r = 1. (4.238)

The idea of the representation of a vector in Hilbert space and its relation
to other representation of the same vector can be generalized in the following
way:
Suppose a state is specified in q representation, i.e.

|ψ〉 =
∑
q

ψ(q)|q〉, with ψ(q) = 〈q|ψ〉, (4.239)

where q denotes all labels collectively. Now if |ψ〉 is specified in another repre-
sentation say p then similar to (4.239) we have

|ψ〉 =
∑
p

φ(p)|p〉, with φ(q) = 〈p|ψ〉, (4.240)

where φ(p) and ψ(q) are related to each other. Thus by replacing |ψ〉 from
(4.239) in (4.240) we find

φ(p) =
∑
q

〈p|q〉ψ(q). (4.241)

The transition from one representation to another is achieved by means
of a unitary transformation. To show this we write (4.241) as

φ(p) = U(p, q)ψ(q), (4.242)

where U(p, q) is an operator with the matrix elements

U(p, q) = 〈p|q〉. (4.243)

The inverse of the transformation (4.242) can be written as

|ψ〉 = U−1(q, p)|φ〉, (4.244)

where

U−1(q, p) = 〈q|p〉 = 〈p|q〉∗ = U∗(p, q)
= U†(q, p). (4.245)

This last relation shows that U is a unitary transformation.
For the special and important case where q is the coordinate and p is the

momentum of the particle (4.241) becomes

φ(p) =
1

(2πh̄)
1
2

∫ ∞
−∞

exp
(
ipq

h̄

)
ψ(q)dq. (4.246)
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This is the one-dimensional form of the relation between the coordinate wave
function ψ(q) and the momentum wave function φ(p). According to Born’s
interpretation

Q(q)dq = |ψ(q)|2dq, (4.247)

measures the probability of finding the particle in the interval q and q+ dq and

P(p)dp = |φ(p)|2dp, (4.248)

measures the probability of the particle having a momentum between p and
p+ dp. If the state depends on time then

Q(q, t)dq = |ψ(q, t)|2dq, (4.249)

measures the probability of finding the particle at time t in an infinitesimal
region dq about the coordinate q.

From the definition of Q(q) = |ψ(q)|2 it is clear that in general from the
knowledge of Q(q), ψ(q) cannot be determined, since the latter is a complex
quantity. As we will see later in this section we can measure both Q(q) and
P(p), therefore we can ask whether by knowing these two quantities the two
complex functions ψ(q) and φ(p), related to each other by Eq. (4.246), can be
found uniquely or not [40],[41]. The answer to this question given by Bargmann
is no [41]. Bargmann’s argument is as follows:

Let us assume that φ(p) be an even function of p

φ(p) = φ(−p), (4.250)

and let us define K(q, p) by (we set h̄ = 1)

K(q, p) =
1√
2
eipq. (4.251)

Then

ψ(q) =
∫ ∞
−∞

K(q, p)φ(p)dp. (4.252)

Next we observe that
K(q, p) = K∗(q,−p), (4.253)

and

ψ(−q) =
∫ ∞
−∞

K(−q, p)φ(p)dp

= −
∫ ∞
−∞

K(−q,−p)φ(−p)dp

=
∫ ∞
−∞

K(q, p)φ(p)dp = ψ(q). (4.254)
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Similarly ψ∗(q) is the Fourier transform of φ∗(q);

ψ∗(q) =
∫ ∞
−∞

K∗(q, p)φ∗(p)dp

= −
∫ ∞
−∞

K∗(q,−p)φ∗(−p)dp

=
∫ ∞
−∞

K(q, p)φ∗(p)dp. (4.255)

Thus as Eq. (4.254) shows the wave function ψ(q) is an even function of q.
Therefore Q(q) and P(p) can be obtained from the pair (ψ, φ) as well as the pair
(ψ∗, φ∗). These two couples, however, lead to different probability distribution
R(u) of any other entity u.

For the three-dimensional case the probability of finding the particle in
the volume d3r is

Q(r)d3r = |ψ(r)|2d3r, (4.256)

and in momentum space the corresponding probability is P(p)d3p where

P(p) =
∣∣∣∣∫ ψ(r) exp

(
− ip · r

h̄

)
d3r

∣∣∣∣2 . (4.257)

Here also the knowledge of Q(r) and P(p) will not be sufficient to determine
ψ(r). For instance if we take

〈r|ψ〉 = ψ(r) = Rl(r)Pm
′

l (cos θ)e−im
′φ, (4.258)

then clearly Q(r) and P(p) are independent of the sign of m′, and ψ(r) cannot
be uniquely determined from (4.256) and (4.257).

However it has been shown that for an ensemble of particles in a given
state we can find ψ(x) by placing these particles in an appropriate potential
fields and then measuring the distribution of the coordinates and momenta at
different times. These times can be arbitrarily close to each other [42].
Also if in addition to Q(r) the current density j(r) is known

j(r) =
h̄

2im
[ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r)] , (4.259)

then one can find ψ(r) apart from a constant phase factor [43]–[45].
Measurement of the Probability Density — Suppose that we want

to measure ρ(r, t) at the time tM , and let us assume that ρ depends only on
the radial distance r. We repeat the measurement over an ensemble of a large
number of similarly prepared states. At t = tM we turn on a strong but short
range potential U(r) which admits only a single bound sate and at the same
time turn off the actual potential of the system V (r). The potential U1(r) has
a bound state φ1(r − rM ) and the continuum of states which we denote by
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φn(r − rM ). At a later time t, the wave function ψ(r, t) can be expanded in
terms of the eigenfunctions φn(r − rM ) and their corresponding energies En

ψ(r, t) =
∑
n

cnφn(r − rn) exp
[
− i
h̄
En(t− tm)

]
, (4.260)

where
∑
n indicates sum over the discrete and integration over the continuous

spectrum of the unbound states. After a short time all the continuum states
spread out and therefore can be ignored in the integration over n, and so only
the term n = 1 survives in (4.260). The probability amplitude for the bound
state is given by

c1 =
∫
φ∗(r − rM )ψ(r, tM )d3r, (4.261)

and the probability of trapping the particle in U(r) is

Q = |c1|2. (4.262)

If the bound state wave function of the potential U(r) has a short range com-
pared with the distance over which ψ(r, tM ) is appreciable, then we can write
(4.262) as

Q ≈ |ψ(rM , tM )|2, (4.263)

and if ψ is properly normalized we have

dQ(rM ) ≈ |ψ(rM , tM )|2d3r = ρ(rM , tM )d3r. (4.264)

Thus we can determine the probability density ρ(rM , tM ) by catching the par-
ticle in a short-range potential [46].

Regarding the measurement of P(p), Heisenberg in his well-known book
mentions that the momentum distribution of an atomic electron can be found
by suddenly turning off the atomic potential and allowing the electron wave
function to spread. From the distribution of times of arrival of electrons at a
distant detector we can obtain the momentum distribution [7].

Measurement of the Probability Current — Writing the complex
wave function ψ(r) as

ψ(r) = R(r) exp
(
i
S(r)
h̄

)
, (4.265)

where R(r) and S(r) are real functions of r, we find that ρ(r) = R2(r) and
j = 1

mρ(r)∇S(r). Thus ∇S(r) may be regarded as the average momentum of
the particle when it is at r.

To determine ρ(r) operationally we can use a short-range potential which
admits a single bound state (see Chapter 20). We assume that another particle
is the source of this potential, and that this particle is centered to within an
accuracy of ∆r of the point r0, where we want to measure the current. Ac-
cording to the uncertainty principle, the uncertainty in the momentum of the
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source particle is greater than (h̄/∆r), however we can carry out the position
measurement in such a way that 〈p〉 is zero. Suppose that we have prepared
the system so that the initial wave function is real, i.e. for t < 0, ψ(r) = R(r).
Now we turn on the potential

U(r, t) = S(r)δ(t). (4.266)

and by integrating the time-dependent Schrödinger equation

ih̄
∂ψ(r, t)
∂t

= U(r, t)ψ(r, t) = S(r)δ(t)ψ(r, t), (4.267)

with the boundary condition ψ(r, t = −ε) = R(r) we find

ψ(r, t) = R(r) exp
[
i
S(r)
h̄

]
. (4.268)

Thus whereas for t < 0, the average momentum was zero at each point, at t = 0
the impulse ∇S(r)δ(t) produces an average momentum ∇S(r) for t > 0 [44].
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[7] W. Heisenberg, Üeber den anschaulichen Inhalt der quantentheoretischen
Kinematik and Mechanik, Z. Physik 43, 172 (1927), English translation in
J.A. Wheeler and W.H. Zurek, Quantum Theory of Measurement, (Prince-
ton University Press, 1983), pp. 62-84.

[8] P.S. Laplace, A Philosophical Essay on Probabilities, (Dover, New York,
1951).



122 Heisenberg’s Quantum Mechanics

[9] W. Heisenberg, Physikalische Prinzipien der Quantentheorie, (Hirzel,
Leipzig, 1930)), English translation by C. Eckart and F.C. Hoyt, The Phys-
ical Principles of Quantum Theory, (University of Chicago Press, Chicago,
1930).

[10] J.L. Synge, Geometrical approach to the Heisenberg uncertainty relation
and its generalization, Proc. Roy. Soc. London, 325, 151 (1971).

[11] E. Schrödinger, The uncertainty principle, Abh. Press. Akad. Wiss. 19, 296
(1930).

[12] A. Messiah, Quantum Mechanics, Vol. I, (North-Holland, Amsterdam,
1970), p. 142.

[13] M.M. Nieto, Position-momentum uncertainty products for exactly solvable
potentials, Phys. Rev. A 20, 700 (1979).

[14] B. Remak, Zwei Beispiele zur Heisenbergschen Unsicherheitsrelation bei
gebundenen Teilchen, Z. Physik, 69, 332 (1931).

[15] H.A. Gersch and C.H. Braden, Approximate energy levels and sizes of
bound quantum systems, Am. J. Phys. 50, 53 (1982).

[16] H. Goldstein, C. Poole and J. Safco, Classical Mechanics, Third Edition,
(Addison-Wesley, San Francisco, 2002).

[17] F.T. Hioie and E.W. Montroll, Quantum theory of aharmonic oscillator
with positive quartic anharmonicity, J. Math. Phys. 16, 1945 (1975).

[18] For a detailed discussion of different versions of time-energy uncertainty
principle see P. Busch’s article “The time-energy uncertainty relation” in
Time in Quantum Mechanics, edited by J.G. Muga, R. Sala Mayato and
I.L. Egusquiza (Springer, Berlin, 2002).

[19] M. Bauer and P.A. Mello, The time-energy uncertainty relation, Ann. Phys.
111, 38 (1978).

[20] L. Mandelstam and I. Tamm, The uncertainty relation between energy and
time in nonrelativistic quantum mechanics, J. Phys. U.S.S.R. 9, 249 (1945).

[21] M. Razavy, Quantum Theory of Tunneling, (World Scientific, Singapore,
2003), p. 497.

[22] K. Bhattacharya, Quantum decay and the Mandelstam–Tamm time-energy
inequality, J. Phys. A 16, 2993 (1983).

[23] E.P. Wigner, On the time-energy uncertainty relation, in Aspects of Quan-
tum Theory, edited by A. Salam and E.P. Wigner, (Cambridge University
Press, London, 1972).



Bibliography 123

[24] P. Carruthers and M.M. Nieto, Phase and angle variables in quantum me-
chanics, Rev. Mod. Phys. 40, 411 (1968).

[25] D. Judge and J.T. Lewis, On the commutator [Lz φ]−, Phys. Lett. 5, 190
(1963).

[26] A. Gamba, Einstein–Podolski–Rosen paradox, hidden variables, Bell’s in-
equalities and all that, Am. J. Phys. 55, 295 (1987).
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[30] J.-M. Lévy-Leblond, Correlation of quantum theory properties and the gen-
eralized Heisenberg inequality, Am. J. Phys. 54, 135 (1986).

[31] R.A. Campos, Quantum correlation coefficient for angular momentum and
spin, Phys. Lett. A 256, 141 (1999).

[32] A.J. Makowski, A brief survey of various formulations of the correspondence
principle, Eur. J. Phys. 27, 1133 (2006).

[33] M. Planck, Theory of Heat Radiation, (Dover New York, 1959), translated
from the original German published in 1906.

[34] R.L. Liboff, The correspondence principle revisited, Phys. Today, 2, 50
(1984).

[35] A. Peres, Quantum Theory: Concepts and Methods, (Kluwer Academic
Publishers, Dordrecht 1993), p. 301.

[36] P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I,
(McGraw-Hill, New York, 1953), p. 1643.

[37] G.G. Cabrera and M. Kiwi, Large quantum-number states and the corre-
spondence principle, Phys. Rev. A 36, 2995 (1987).

[38] Q.H. Liu and B. Hu, The hydrogen atom’s quantum to classical correspon-
dence in Heisenberg’s correspondence principle, J. Phys. A 34, 5713 (2001).

[39] P. Ehrenfest, Bemerkung über die angenäherte Gültigkeit der klassischen
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Chapter 5

Equations of Motion,
Hamiltonian Operator and
the Commutation Relations

In classical mechanics the second law of motion together with the initial condi-
tions and constraints completely determine the motion. The equations of motion
for most conservative systems with holonomic constraints and for a small group
of dissipative systems can be derived from a Lagrangian or a Hamiltonian [1],[2].

In quantum mechanics we have the following set of rules for the operators
replacing the classical dynamical variables:

(1) - The generator of the infinitesimal time evolution operator of a system
is given by a Hamiltonian

H =
N∑
i=1

1
2mi

p2
i + V (q1, · · · , qN ), (5.1)

where V (q1, · · · , qN ) is the potential function.
(2) - The time derivative of any operator function of pi s and qi s is found

from the Heisenberg equation given by Eq. (4.10) or if F does not depend
explicitly on time then

ih̄
dF (pi(t), qi(t))

dt
= [F (pi(t), qi(t)),H] . (5.2)

(3) - The operators pi and qi satisfy the canonical commutation relations

[pi, qj ] = −ih̄δij , [pi, pj ] = 0, [qi, qj ] = 0, i, j = 1, · · ·N. (5.3)
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(4) - The position and momentum operators satisfy the second law of
motion

q̇j =
1
mj

ṗj , ṗj = −∂V (q1, · · · , qN )
qj

, j = 1, · · ·N. (5.4)

If we take Eqs. (5.1)–(5.3) as fundamental relations, then Eq. (5.4) follows.

5.1 Schwinger’s Action Principle and
Heisenberg’s equations of Motion

We can formally derive the quantized equations of motion from the action-
integral operator S exactly as in classical mechanics [3]–[8]. As we have seen
earlier εG(t) can be regarded as the generator of the classical transformation.
In quantum theory the operator form of ε
G(t) will be the generator of a unitary transformation. In particular if we choose

εG(t) = −Hδt
h̄
, (5.5)

where now εG(t) is a dimensionless operator, we have the analogue of Eq.
(1.150)

−δΛ = − i
h̄

[H, Λ]δt. (5.6)

Again as in classical dynamics for purely time development of a system
δΛ = −Λ̇δt and thus Eq. (5.6) becomes

Λ̇ =
i

h̄
[H, Λ]. (5.7)

This is the Heisenberg equation of motion for the dynamical operator Λ(pj , qj).
Next let us consider the spatial variation δqj when t is fixed, i.e. δt = 0.

Let
εG =

∑
j

pjδqj , (5.8)

be the generator of the transformation. Now if in (3.73) we set A = qk we find

δqk =
i

h̄

∑
j

pjδqj , qk

 . (5.9)

This transformation only produces an infinitesimal change in the coordinate
operator, therefore

δpk =
i

h̄

∑
j

pjδqj , pk

 = 0. (5.10)
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Using the operator identity

[uv, w] = [u, w]v + u[v, w], (5.11)

we can write (5.9) as

δqk =
i

h̄

∑
j

[pj , qk]δqj +
i

h̄

∑
j

pj [δqj , qk]. (5.12)

A simple solution of (5.12) is

[pj , qk] = −ih̄δjk, [δqj , qk] = 0. (5.13)

If we choose δqj to be equal to εqj then the second equation in (5.13) implies
that

[qj , qk] = 0, for all j and k. (5.14)
Next let us expand (5.10) using (5.11) to obtain

i

h̄

∑
j

[pj , pk]δqj +
i

h̄

∑
j

pj [δqj , pk] = 0. (5.15)

With δqj = εqj , this last equation becomes

i

h̄

∑
j

[pj , pk]εqj − εpk = 0, (5.16)

where we have used Eq. (5.13) to simplify the result. Equation (5.16) must be
valid for any state and in particular if we choose the state |φ〉 so that pk|φ〉 = 0,
then we find

[pj , pk] = 0. (5.17)
Thus we have shown that from the Schwinger action principle in quan-

tum mechanics we can derive the Heisenberg equations of motion and also the
commutation relations (5.13),(5.14) and (5.17). It should be pointed out that a
more general form of the commutation relation [pj , qk] can be directly derived
from the equations of motion and the Heisenberg equation (5.7).

Let us also note that this formulation of the Schwinger action principle
yields the correct result when the commutator

[qj , q̇k] , (5.18)

is a c-number, i.e. it is equal
(
ih̄
m δjk

)
. As we have seen before, for a general

curvilinear coordinate, the Hamiltonian is a complicated quadratic function of
pj s, and thus the commutator (1.174) will depend on qk and is a q-number. For
these and also the problems related to dissipative forces depending on velocity,
the action integral corresponding to the classical Hamilton’s principle should be
modified. An explicit form of admissible q-number variation for the Hamiltonian
operator of the general form

H(qi, pi, t) = T + V (qi, t), (5.19)

where T is given by (3.216) can be found which reduces to the Schwinger action
when T becomes independent of qi [9],[10].
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5.2 Nonuniqueness of the Commutation
Relations

The solution (5.13) for the fundamental commutator was obtained under the
assumption that the commutator [pj , qk] is a c-number. There we noted that
the Schwinger method has to be modified if the commutator happens to be a
q-number.

Wigner studied the possibility of deriving (5.3) from (5.1), (5.2) and (5.4)
for a one-dimensional harmonic oscillator and found that the commutator (5.3)
is not the only form of the commutation relation which can be derived from
these equations [11]. Following Wigner we consider a particle of unit mass with
the Hamiltonian

H =
1

2

(
q2 + p2

)
, (5.20)

where for the sake of simplicity we have set h̄ = ω = 1.
From Eq. (5.4) we have

p = q̇ = i[H, q], (5.21)

and
ṗ = −q = i[H, p]. (5.22)

Let us consider a representation in which H is diagonal. We note that
because of the positive-definiteness of the Hamiltonian (5.20) the diagonal ele-
ments are positive. If we denote these diagonal elements by E0, E1 · · ·, then for
the matrix elements of p and q we find

pn,m = i(En − Em)qn,m, (5.23)

and
qn,m = −i(En − Em)pn,m. (5.24)

From these equations it follows that

qn,m = (En − Em)2qn,m. (5.25)

Thus qn,m will be nonzero only if

En − Em = ±1. (5.26)

Also from (5.23) we have pn,m = 0 when qn,m = 0.
Equation(5.26) shows that En s form an arithmetical series

En = E0 + n. (5.27)

Now if En appears in the diagonal elements of H, then by means of a unitary
transformation we can decompose any system of matrices in which En occurs
repeatedly without changing H. In this way we can assume that all of the
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eigenvalues En in (5.27) are simple. From (5.25) it is clear that only the elements
qn,n+1 and qn+1,n are nonzero. Since q as an operator is Hermitian, therefore
we can take its matrix elements to be real numbers. But from (5.23) and (5.26)
it follows that all pn,m s are pure imaginary

pn,n+1 = −iqn,n+1 = −iqn+1,n, (5.28)

and
pn+1,n = iqn+1,n = −pn,n+1. (5.29)

To find the numerical values of qn,n+1 and qn,n+1 we calculate the elements of
H which is a diagonal matrix from (5.20),

En = E0n = q2
n−1,n + q2

n,n+1 n 6= 0

E0 = q2
0,1

. (5.30)

From this relation we can find successive qn,n+1 s from (5.30) qn,n+1 =
(
E0 + n

2

) 1
2 for even n

qn,n+1 =
(
n
2 + 1

2

) 1
2 for odd n

. (5.31)

Having obtained qn,n+1 we can calculate pn,n+1 from (5.29) and thus we get all
the matrix elements of q and p. Substituting these in the expression

(pq)n,m − (qp)n,m, (5.32)

we find that the commutator is diagonal and that its diagonal matrix elements
are

−2iq2
0,1,−2i

(
q2
1,2 − q2

0,1

)
,−2i

(
q2
2,3 − q2

1,2

)
· · · . (5.33)

Hence we have the result

([p, q] + i)2 = − (2E0 − 1)2
. (5.34)

If we choose E0 = 1
2 , that is the ground state energy of the harmonic oscil-

lator, then we have the standard commutation relation given by (5.3). However
as (5.34) indicates the commutation relation depends on the parameter E0 and
is not unique. This arbitrariness in the commutation relation for the harmonic
oscillator can be removed if one requires that the expansion of an arbitrary wave
function, φ(x) in terms of the energy wave functions converges absolutely and
uniformly to φ(x) [12]. Also Pauli has pointed out that if one requires that the
fundamental commutation relation be independent of the particular choice of
energy, then one gets a unique expression for [q, q̇] [13]. It can also be shown
that for any potential of the form V (x) = Aq2n+1 + B with n an integer the
Hamiltonian H = p2

2m + V (q) and Eqs. (5.2) and (5.4) imply the commutation
relation (5.3)[11]–[14].
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From the general form of the commutation relation between p and q for
the harmonic oscillator, we can find the commutator between the creation and
annihilation operators, a† and a by defining these operators by

a† =
1√
2

(q − ip), (5.35)

and

a =
1√
2

(q + ip). (5.36)

To find the matrix elements of these operators, we first note that in this
formulation we have set h̄ = ω = 1, and in these units E0 is a dimension-
less quantity which we denote by N0. Therefore for the general form of the
commutator [p, q] from (5.31) and (5.23) we get

an,n+1 = a†n+1,n =

 (2N0 + n)
1
2 for n even

(n+ 1)
1
2 for n odd

. (5.37)

Using these we can determine the matrix elements of the commutator
[
a, a†

]
;

〈
n
∣∣[a, a†]∣∣n′〉 = δn,n′


2N0 for n even

2(1−N0) for n odd
. (5.38)

Commutation relations of the type (5.38) have been used to study the
quantum field theory of particles obeying parastatistics (i.e. neither bosons nor
fermions) [15],[16]. We observe that in this case the fundamental commutation
relation is not given by two fold commutator, but by a three fold commutator
of the general form [

aj ,
[
a†j , ak

]]
= 2δijak. (5.39)

Here it is possible to bring ν particles into a single state; and this is called paras-
tatistics of degree ν. In addition to quantum field theory, parastatistics have
had applications in atomic nuclei, where for integer spin it is called parabosons
and for half-integer spin parafermions [15]–[18].

Assuming that the commutation relation must be independent of the
energy, we have the standard result〈

n
∣∣[a, a†]∣∣n′〉 = δn,n′ , or

[
a, a†

]
= 1, (5.40)

and the energy eigenvalues are given by (5.27) i.e. by

En =
(
n+

1
2

)
h̄ω, (5.41)
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where ω is the angular frequency of the oscillator.
For a more general one-dimensional problem having the Hamiltonian H =

1
2mp

2 + V
(
q2
)

with the equations of motion

q̇ =
p

m
, ṗ = −

∂V
(
q2
)

∂q
, (5.42)

we can find the general commutation relation of the form

qp− pq = i(1 + 2β), h̄ = 1 (5.43)

where we have set h̄ = 1 and β is independent of time and satisfies the following
conditions [19]

[β, p]+ ≡ βp+ pβ = 0, (5.44)
and

[βq + qβ, p]+ = 0, (5.45)
and the symbol [ , ]+ denotes the anticommutator.

[a, b]+ ≡ ab+ ba. (5.46)
One way of obtaining the commutation relation of the type (5.43) is by

introducing the Pauli matrices (Chapter 8)

σx =
[

0 1
1 0

]
, σy

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
, (5.47)

and considering the three-dimensional motion of a particle with coordinate q =
(x, y, z) and momentum p = (px, py, pz) where the components of q and p
satisfy the standard commutation relations

qipj − pjqi = iδij . (5.48)

Now let us introduce q and p in the following way:

q = q · σ = xσx + yσy + zσz, (5.49)

p = p · σ = pxσx + pyσy + pzσz. (5.50)
These relations imply that

q2 = q · q, and p2 = p · p. (5.51)

Next we define β by

β = (q ∧ p) ·σ + 1 = (ypz − zpy) + (zpx − xpy)σy + (xpy − ypx)σz + 1, (5.52)

where q∧ p is dimensionless (h̄ = 1). By substituting q and p from Eqs. (5.49)
and (5.50) in the commutator [q, p] we find

[q, p] ≡ qp− pq = i(1 + 2β), (5.53)

and
qβ + βq = pβ + βp = 0. (5.54)

For more recent works on the determination of the commutation relation from
the Heisenberg equations of motion see [20]–[26].
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5.3 First Integrals of Motion

As we observed in Sec. 1.3, we can construct an infinite number of classical
Hamiltonians, all acceptable as generators of motion in coordinate space, or in
phase space. Here we want to inquire whether it is possible to obtain similar
results in quantum mechanics, i.e. to find a general form of the Hamiltonian
(5.1) given the Heisenberg equation (5.2) and the canonical commutation rela-
tion (5.3) [25]-[30]. Again we will confine our attention to the one-dimensional
motion and we set h̄ = 1. Not to be confused with the proper Hamiltonian
which is at the same time the energy operator we denote this general form of
the Hamiltonian by K(p, q). Then from Eq. (5.2) we have

q̇ = i[K, q], and q̈ = i [K, q̇] , (5.55)

or
q̈ =

1
m
F (q) = − [K, [K, q]] . (5.56)

The last equation is the quantum analogue of the classical equation (1.49) or
(1.131), and like these classical equations, Eq. (5.56) is quadratic in the Hamil-
tonian K(p, q). Given the force law F (q), the most general solution of (5.56)
for K(p, q) is not known. However we can verify that K(p, q) ≡ H(p, q) where

H =
1

2m
p2 + V (q), F (q) = −∂V (q)

∂q
, (5.57)

is a solution of (5.56).
If in addition to (5.56) we require K(p, q) to satisfy the double commutator

[q, [q,H] ] = − 1
m
, (5.58)

i.e. assume that p = mq̇, then K(p, q) ≡ H(p, q), and we have, apart from a
multiplicative constant, a unique generator of motion.

A different solution can be found if we choose K(p, q) to be of the form
of a product of two operators

K(p, q) = R(p)S(q). (5.59)

At the first sight (5.59) seems unacceptable since K(p, q) is not a Hermitian
operator. But let us first find a solution of this type and then investigate how
the resulting solution can be made Hermitian. Substituting (5.59) in (5.56) we
obtain

q̈ = i

(
R(p)S(q)

dR(p)
dp

− dR(p)
dp

S(q)R(p)
)
S(q). (5.60)

Assuming that S(q) can be expanded as a finite or infinite sum of powers of q,
i.e.

S(q) =
∞∑
k=0

cqq
k, (5.61)
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the operator S
(
i ddp

)
R(p) can be written as [31]

S

(
i
d

dp

)
R(p) =

∞∑
n=0

(i)n

n!
dnR(p)
dpn

dnS(q)
dqn

. (5.62)

Similarly we have

S(q)
dR(p)
dp

=
∞∑
n=0

(i)n

n!
dn+1R(p)
dpn+1

dnS(q)
dqn

. (5.63)

By substituting (5.62) and (5.63) in (5.60) we find

q̈ =
1
m
F (q) =

∞∑
n=0

(i)n+1

n!

[
R(p)

dn+1R(p)
dpn+1

− dR(p)
dp

dnR(p)
dpn

]
dnS(q)
dqn

S(q).

(5.64)
Since F (q) is a real function we have the following possibilities:

(a) - The term in the square bracket in (5.64) is independent of p, viz,{[
R(p)d

n+1R(p)
dpn+1 − dR(p)

dp
dnR(p)
dpn

]
= C−n−1 for n odd integer

= 0 for n even integer
(5.65)

The solution of this equation is given by

R(p) = cosh
( p
C

+D
)
, (5.66)

where C and D are constants. From (5.64) we find that the expression for the
force is

F (q) = m
∞∑
n=0

(−1)n+1

(2n+ 1)!
d2n+1S(q)
dq2n+1

S(q)
C2n+2

. (5.67)

Thus if F (q) is known then S(q) can be found from (5.67). However it is easier
to assume a form for S(q) and determine the q-dependence of the force from
(5.67). For instance if we choose S(q) = Cωq, then F = −mω2q, a result which
is the quantum analogue of (1.61) for this force. Now if we take S(q) to be

S(q) =
(
CF0

m

) 1
2

exp
(µq

2

)
, (5.68)

where µ is a constant, we find

F = F0e
−q sin

( µ

2C

)
. (5.69)

(b) - For the motion of a free particle, F (q) = 0, then

R(p)
dn+1R(p)
dpn+1

− dR(p)
dp

dnR(p)
dpn

= 0, (5.70)
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for all values of n. The solution of (5.69) is R(p) = exp
(
p
p0

)
, and therefore

K(p, q) = exp
(
p

p0

)
S(q), (5.71)

with p0 a constant and S(q) an arbitrary function of q, K(p, q) is the generator
of motion. The other possibility is to take S(q) to be a constant. Then as (5.64)
shows that the force F (q) vanishes for any function R(p) and in particular for
K(p, q) = H(p) = p2

2m .
Once K(p, q) = R(p)S(q) has been determined we have to see whether it

is possible to construct a Hermitian operator from K(p, q) or not, and that this
operator satisfies (5.56).

In the case of harmonic oscillator where

K(p, q) = Cω cosh
( p
C

+D
)
q, (5.72)

we can find a Hermitian operator by symmetrizing K(p, q), and this symmetriza-
tion preserves its essential property, i.e. Eq. (5.56).

For separable K(p, q) operator that we have assumed, Eq. (5.59), the
relation between the velocity and the momentum operators is complicated, viz,

q̇ =
1
ih̄

[q,K(p, q)] =
1
ih̄

[q,R(p)S(q)] =
dR(p)
dp

S(q). (5.73)

We can try other forms of K(p, q) to see whether it is possible to obtain
other first integrals of motion in such a way that not only (5.56) is satisfied, but
in addition the commutator

[ [q,K(p, q)], q] = 1, (5.74)

remains valid. Again the general solution of this problem is not known, but we
can consider a special case where the classical Lagrangian function is given by
[32],[33]

L (q̇, q) = q̇

∫ q̇ D(y)
y2

dy − V (q). (5.75)

The canonical momentum p is found from (5.75) and is given by

p =
∫ q̇ D(y)

y2
dy +

D (q̇)
q̇

=
∫ q̇ 1

y

dD(y)
dy

dy. (5.76)

This equation can be inverted to give us q̇ as a function of p. But unlike (5.73)
q̇ will be only a function of p. Since the Hamiltonian function which is derived
from L (q, q̇) is the sum of two terms one depending on p and the other on q
K(p, q) is of the form

K(p, q) = D [q̇(p)] + V (q), (5.77)
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and there is no ambiguity of ordering of q and p in K(p, q) for the construction
of a Hermitian operator.

Once we have the operator K(p, q) we find the time derivative of q (writing
h̄ explicitly in the equations of motion);

q̇ =
i

h̄
[K(p, q), q] =

i

h̄
[D (q̇) , q] =

d

dp
D (q̇) =

dq̇

dp

dD (q̇)
dq̇

, (5.78)

a relation which can also be verified using (5.76). Next we consider the equation
of motion

q̈ =
i

h̄
[K(p, q), q̇] =

i

h̄
[V (q), q̇] . (5.79)

and assume that V (q) can be expanded as a power series of q;

V (q) =
∞∑
n=

cnq
n, (5.80)

where cn s are the coefficients of expansion. Now for any function of p, say
F (p), we have

i

h̄
[q, F (p)] = −dF (p)

dp
, (5.81)

therefore
i

h̄
[q, q̇] = −dq̇

dp
= − q̇(

dD(q̇)
dq̇

) ≡ −J (q̇) . (5.82)

Thus Eq. (5.82) can be used to define J (q̇). With the help of J (q̇) we can
determine the commutator [qn, q̇],

i

h̄
[qn, q̇] =

i

h̄

n−1∑
k=0

qk [q, q̇] qn−1−k = −
n−1∑
k=0

qkJ (q̇) qn−1−k. (5.83)

From (5.80) and (5.83) we find

i

h̄
[V (q), q̇] = −Ô

[
J (q̇)

dV (q)
dq

]
, (5.84)

where we have used the notation

Ô
[
J (q̇)

dqn

dq

]
=
n−1∑
k=0

qkJ (q̇) qn−1−k, (5.85)

to define the quantum mechanical ordering. Thus from (5.79), (5.80) and (5.83)
we find the equation of motion to be

q̈ = −Ô
[
J (q̇)

dV (q)
dq

]
. (5.86)
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This results shows that any Hamiltonian of the form (5.77) which satisfies the
commutators Eqs. (5.56) and (5.74), generate an equation of motion in which
the potential energy is velocity-dependent [33]. If we choose J (q̇) = 1, (5.86)
reduces to the standard Heisenberg equation. However if we choose J (q̇) = q̇

p0
,

then (5.86) can be written as

q̈ +
1

p0

(
dV (q)

dt

)
= 0. (5.87)

In this case from (5.82) we find

q̇ = ±v0 exp

(
p

p0

)
, (5.88)

where v0 is a constant. The Hamiltonian K(p, q) can be obtained by integrating
(5.87);

K(p, q) = p0q̇ + V (q) = ±p0v0 exp

(
p

p0

)
+ V (q). (5.89)

While this first integral generates both (5.55) and (5.74) it should be rejected
for violating time-reversal and Galilean invariances.
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Chapter 6

Symmetries and
Conservation Laws

We have discussed the possibility of constructing some first integrals of motion
in addition to the proper Hamiltonian from the equation of motion and the
canonical commutation relation for one-dimensional conservative systems. As
we mentioned earlier, even for a free particle, any differentiable function of mo-
mentum can be regarded as a first integral. But as we have seen in classical
mechanics the requirement of invariance under Galilean transformation elimi-
nates all but the Hamiltonian (or Lagrangian) which is quadratic in velocity.
Thus it seems that Galilean invariance, invariance under time-reversal transfor-
mation for conservative systems, and other conservation laws may be used to
limit the number of quantum mechanical first integrals which can be regarded
as generators of motion. To study the limitations that these symmetries and
invariances place on the first integral we consider the most general form of trans-
formation of space-time displacements for a system of n interacting particles.
Thus let us consider the infinitesimal translation in space by δε and the change
in time by δt, then we can write the generator as

δG = δε ·P + δω · J + δv ·N− δtH (6.1)

where δε, δω, δv and δt are all infinitesimals, P is total momentum, J the total
angular momentum, N is the boost and H is the Hamiltonian.

For the system of n interacting particles these quantities are defined by

P =
n∑
i=1

pi, (6.2)

139
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J =
n∑
i=1

(ri ∧ pi) , (6.3)

N =
n∑
i=1

(pit−miri) = Pt−MR, (6.4)

and

H =
n∑
i=1

p2
i

2mi
+ V (r1, · · · rn). (6.5)

In Eq. (6.4) M is the total mass of the system is

M =
n∑
i=1

mi, (6.6)

and R is the center of mass coordinate

R =
n∑
i=1

mi

M
ri. (6.7)

6.1 Galilean Invariance

For a system of interacting particles we will show that the requirement of the
Galilean invariance restricts the dependence of the first integral (or the generator
of motion) to a quadratic dependence on the momentum of the center of mass.

Consider two observers O and O′ the latter moving relative to O with
velocity δv, and let us denote the state of an arbitrary but isolated system
of n particles as described by the two observers O and O′ by |0, t〉 and by
|δv, t〉 respectively. Setting h̄ = 1, the unitary operator for a pure Galilean
transformation corresponding to the classical equation (1.155) in this case is [1]

Γ(δv, t) = exp {iδv · (MR− tP)} h̄ = 1. (6.8)

We first determine the development of the state of the n-particle system for the
time δt as seen by the observer O′. If the Hamiltonian of the system is H, then
the state of the system at the time t+ δt is given by

|δv, t+ δt〉 = (Hδt+ i)|δv, t〉 = (Hδt+ i)Γ(δv, t)|0, t〉. (6.9)

Since in the nonrelativistic mechanics time is absolute, the same description by
the observer O′ can be obtained by transforming the state of the system in O
at the time t + δt to O′. This is done by first operating by (Hδt + i) on |0, t〉
and then by Γ(δv, t+ δt), i.e.

|δv, t+ δt〉 = Γ(δv, t+ δt)(Hδt+ i)|0, t〉. (6.10)
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By equating (6.9) and (6.10) we find

δt(HΓ− ΓH) = i {Γ(δv, t+ δt)− Γ(δv, t)} . (6.11)

Now if we substitute for Γ from (6.8) and assume that δv is infinitesimal we
will get

[R,H]− t[P,H] = iP. (6.12)

This relation shows that for an isolated system, the total Hamiltonian, H, can-
not depend on the center of mass coordinate and that H has to be a quadratic
function of the center of mass momentum P. Thus we conclude that if we write
the Hamiltonian as the sum

H =
P2

2M
+K

(
p

(r)
i , q

(r)
i

)
, (6.13)

where p(r)
i and r(r)

i refer to the relative momenta and coordinates of the particles,
then the Galilean invariance is preserved.

6.2 Wave Equation and the Galilean
Transformation

In the following section for the sake of simplicity we consider a one-dimensional
motion and we will write the Planck’s constant explicitly in the equations. The
general proof for three-dimensional case is given in a number of books [1].

Let us consider two inertial frames S(x, t) and S′ (x′, t′), with S′ (x′, t′)
moving relative to S with a speed v. The Galilean transformation in this case
is {

x = x′ + vt′

t = t′.
(6.14)

The Schrödinger equation in the frame S is given by

− h̄2

2m

(
∂2ψ

∂x2

)
+ V ψ = ih̄

∂ψ

∂t
, (6.15)

and in S′ by

− h̄2

2m

(
∂2ψ′

∂x′ 2

)
+ V ′ψ′ = ih̄

∂ψ′

∂t′
. (6.16)

Here we impose the following condition on the potential

V ′(x− vt, t) = V (x, t). (6.17)
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We want to show that ψ(x, t) and ψ′ (x′, t′) are related to each other by a
multiplicative phase factor of the form

ψ′ (x′, t′) = e−iχ(x,t)ψ(x, t), (6.18)

i.e. the probability density is the same in S and S′ and does not depend on the
choice of the system of reference therefore

|ψ′ (x′, t′)|2 = |ψ(x− vt, t)|2 = |ψ(x, t)|2 . (6.19)

By substituting (6.18) in (6.16) and by introducing the independent variables x
and t we find

− h̄2

2m

(
∂2ψ

∂x2

)
+ ih̄

(
h̄

m

∂χ

∂x
− v
)
∂ψ

∂x

+

[
V (x, t) +

ih̄2

2m
∂2χ

∂x2
+
h̄2

2m

(
∂χ

∂x

)2

− h̄v ∂χ
∂x
− h̄∂χ

∂t

]
ψ

= ih̄
∂ψ

∂t
. (6.20)

This equation should be identical to Eq. (6.15), and for this to be true it is
necessary that χ satisfies the following relations:

h̄

m

∂χ

∂x
− v = 0, (6.21)

and
ih̄2

2m
∂2χ

∂x2
+
h̄2

2m

(
∂χ

∂x

)2

− h̄v ∂χ
∂x
− h̄∂χ

∂t
= 0. (6.22)

By integrating Eq. (6.21) first and then substituting the result in (6.22) we
obtain the function χ(x, t);

χ(x, t) =
mv

h̄
x− mv2

2h̄
t, (6.23)

where we have omitted an arbitrary constant of integration in χ. From Eqs.
(6.18) and (6.23) we find ψ(x, t) in terms of ψ′(x− vt, t);

ψ(x, t) = exp
[
i

h̄

(
mvx− m

2
v2t
)]
ψ′(x− vt, t), (6.24)

and this shows that the absolute value of these two wave functions are equal.
The momentum space wave function φ(p, t) which is defined by the Fourier

transform

φ(p, t) =
1√
2πh̄

∫ +∞

−∞
ψ(x, t) exp

(
−ipx
h̄

)
dx. (6.25)
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in the system S can be found in S′ by substituting for ψ(x, t) from (6.24);

φ(p, t) = exp
[
i

h̄

(m
2
v2 − pv

)
t

]
1√
2πh̄

×
∫ +∞

−∞
ψ′ (x′, t′) exp

[
−i
h̄

(p−mv)x′
]
dx′

= exp
[
i

h̄

(
1
2
mv2 − pv

)
t

]
φ′(p−mv, t). (6.26)

We note that in S′ the momentum is shifted by mv as is expected. Again for
the probability density in momentum space we have

|φ(p, t)|2 = |φ′(p−mv, t)|2 . (6.27)

6.3 Decay Problem in Nonrelativistic Quantum
Mechanics and Mass Superselection Rule

Let us study one of the consequences of the invariance of the wave equation
under the Galilean transformation. Following the original argument due to
Bargmann, let us consider a sequence of the transformation S1 · · ·S4 defined
by two transformations and two Galilean boosts [2],[3]. The first, S1, is a
translation of the coordinate by a distance a with the generator

T = exp
(
−ipxa
h̄

)
, (6.28)

where px is the x component of momentum. The second, S2, is a boost by
velocity v. This is followed by the third, S3, which is a translation by−a. Finally
the transformation S4 is a boost by velocity −v. Since in the nonrelativistic
theory time is not affected by the transformation we have the spatial coordinates

x1 = x− a, x2 = x1 − vt, x3 = x2 + a, and x4 = x, (6.29)

i.e. after all these transformations we end up in the original system. Now after
the first and the third translations we have the wave functions ψ1(x1) and ψ3(x3)
where

ψ1(x1) = ψ(x), ψ3(x3) = ψ2(x2). (6.30)

The two boosts will change the wave functions to ψ2(x2) and ψ4(x4);

ψ2(x2) = exp
[
− im
h̄

(
vx1 −

v2t

2

)]
ψ1(x1). (6.31)

and

ψ4(x4) = exp
[
− im
h̄

(
−vx3 −

v2t

2

)]
ψ3(x3). (6.32)
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By combining Eqs. (6.30), (6.31) and (6.32) we obtain ψ4(x4) in terms of
ψ(x);

ψ4(x4) = exp
(
im

h̄
va

)
ψ(x). (6.33)

For a state with a definite mass (or a mass eigenstate) the phase factor
exp

(
im
h̄ va

)
is of no consequence. However for the superposition of two or many

states with different masses, such as the case of the decay of an unstable nucleus,
this causes a problem. Let W denote the operator defined by its action on the
wave function changing the phase of ψm by

Wψm = exp
(
− im
h̄
va

)
ψm. (6.34)

where m is the mass of the particle. This operator, W , as we have seen earlier
is expressible in terms of the operators T and Γ

W = T †(a)Γ†(v, t)T (a)Γ(v, t). (6.35)

Consider the action of W on the linear superposition of two states of
different masses m1 and m2. For such a superposition, the result of operating
by W is

W (α1ψm1 + α2ψm2) = exp
(
−im1av

h̄

)[
α1ψm1 + α2

(
−i∆mav

h̄

)
ψm2

]
,

(6.36)

where
∆m = m2 −m1. (6.37)

Since W maps the point x into itself and does not change the time, the
superposition of states with different masses before and after the action of W
must gives us the same physical state. Now as (6.36) shows there is an ob-
servables phase shift arising from the action of W . Since this is unacceptable
result, according to Bargmann, we should demand that no observable be allowed
that have matrix elements between states of different masses. This implies the
existence of a superselection rule which forbids transitions between states of
different masses. This view has been challenged by Greenberger who has ob-
served that in nuclear physics, for a decaying system, the law of conservation
of momentum cannot be maintained unless the change in the rest mass energy
is also taken into account even when the velocities of the decaying products are
small compared to c the velocity of light [3].

Let us consider a particle of mass M at rest decaying into another particle
of mass m and a photon. For instance M can be the mass of an atom in an
excited state and m its mass when it is in the ground state. In this case the
conservation of momentum along the x axis in the rest frame S of the excited
atom gives us

mv = h̄k, (6.38)
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where k is the wave number of the emitted photon. If we look at the same decay
in the system S′ which is moving along the negative y axis with velocity u, then
in S′ the momentum conservation in the y direction gives us

Mu = mu+
h̄ku

c
. (6.39)

This result shows that

M = m+
h̄ω

c2
, (6.40)

i.e. as the atom decays, its momentum along the y direction decreases, because
the photon carries some momentum. However here the y component of the
velocity has not changed, therefore the particle must have lost mass [3].

Now let us see how this idea can be used to resolve the problem associated
with superselection rule. We define the relativistic boost by L(v) where L
represent the Lorentz transformation [1],[3]. The action of this relativistic boost
operator on the wave function can be expressed as

L(v)ψm(x, t) = ψm

(
x+ vt, t+

vx

c2

)
+O

(
v2

c2

)
. (6.41)

Thus in this case both x and t have been transformed according to the rules
of the Lorentz transformation. Next we define the analogue of W , Eq. (6.35),
with Γ(v) being replaced by L(v).

WLψm(x, t) = T †(a)L†(v)T (a)L(v)ψm(x, t) (6.42)

Operating with the operator WL on ψm(x, t) we get

T †(a)L†(v)ψm

(
x+ a+ vt, t+

v(x+ a)
c2

)
= ψm

(
x, t+

va

c2

)
. (6.43)

But the time translation operator is exp
(
iHt
h̄

)
, thus we can write WLψm(x, t)

as

WLψm(x, t) = ψm (x, t+ τ) = exp
(
iHτ

h̄

)
ψm(x, t), (6.44)

where
τ =

av

c2
. (6.45)

We are interested in the first order correction in powers of v
c and to this order

the Hamiltonian is
H = mc2 +O

(
v2
)
. (6.46)

From Eqs. (6.44) and (6.46) it follows that the operator WL produces the
same phase shift when it acts on ψm(x, t) as W does, provided that the terms
proportional to

(
v
c

)2 and higher order terms are ignored. We can attribute this
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change of phase to the change in time introduced by the Lorentz transformation.
Thus the superposition of the two state with masses m1 and m2 takes the form

WL [α1ψm1(x, t) + α2ψm2(x, t)]

=
[
exp

(
− ivaE1

h̄c2

){
α1ψm1(x, t) + α2 exp

(
− iva∆E

h̄c2

)
ψm2(x, t)

}]
,

(6.47)

where ∆E = (m2 −m1)c2 is the energy difference between the two states when
both are at rest [3].

6.4 Time-Reversal Invariance

For conservative systems the time-reversal requirement also imposes certain con-
straints on the Hamiltonian or other first integrals of motion. In classical dy-
namics we know that if we reverse the momenta of a system of particles after it
has evolved for a time δt, we find the same motion (i.e. the same coordinates
and momenta) as the one obtained by reversing the momenta at the beginning
and then allowing the system to evolve backwards for the time δt.

Let θ be the quantum mechanical time reversal transformation. If the
initial state is |ψ〉 then

θ exp (−iHδt) |ψ〉, (6.48)

is the state obtained by reversing the momenta at t = 0 and allowing the system
to evolve for the time δt. We should get the same state by first reversing the
momenta at t = 0, θ̂|ψ〉 and then moving the system backwards for δt to get

exp
(
−iH(−δt)

h̄

)
θ|ψ〉. (6.49)

These two states must be the same. Equating (6.48) and (6.49) gives us the
condition that the anticommutator of H and θ has to be zero

Hθ + θH = 0. (6.50)

Just as in classical mechanics the time-reversal invariance changes the sign
of momentum p, but leaves the position of the particle r unchanged;

r′ = θ r θ−1 = r, (6.51)

p′ = θ p θ−1 = −p. (6.52)

Under this transformation the orbital angular momentum L of the particle as
well as its spin angular momentum will also change sign [4],[5];

L′ = θ L θ−1 = −L, or σ′ = θσ θ−1 = −σ (6.53)
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S′ = θ S θ−1 = −S. (6.54)

For example Eq. (6.53) follows from the definition of L

L′ = θ (r ∧ p) θ−1 = −r ∧ p = −L. (6.55)

A very important result concerning the invariance of fundamental com-
mutation relation under the time-reversal transformation can be obtained by
noting that[

p′j , x
′
k

]
= θ [pj , xk] θ−1 = θ (−ih̄δjk) θ−1 = [−pj , xk] = ih̄δkj . (6.56)

From this result it follows that

θ i θ−1 = −i, (6.57)

and therefore
θ a|ψ(t)〉 = a∗θ|ψ(t)〉. (6.58)

Now a double reversal of time will have no physical effect, i.e. if θ2 is applied
to a state |ψ(t)〉 we get the same state back with a possible phase factor

θ2|ψ(t)〉 = β|ψ(t)〉, (6.59)

where β = eiφ, and φ is a real phase. From this result it follows that

βθ|ψ(t)〉 = β2β|ψ(t)〉 = θθ2|ψ(t)〉
= θβ|ψ(t)〉 = β∗θ|ψ(t)〉. (6.60)

Thus β = β∗ and consequently β = 1, or β = −1 depending on the nature of
the system. Now by examining the expression

〈θψ(t)|ψ(t)〉 =
〈
θψ(t)|θ2ψ(t)

〉
= β 〈θψ(t)|ψ(t)〉 , (6.61)

we find that if β = −1, then

〈θ ψ(t)|ψ(t)〉 = 0. (6.62)

From this result we conclude that for systems where β = −1 the time-reversed
states are orthogonal to the original states.

Now we want to consider a system composed of n spin 1
2 particles and

examine the result of the time-reversal transformation. We start with the θ
transformation for a single particle and then generalize the result to a system
of n particles. For a single particle we write θ as a product of two operators;

θ = UK, (6.63)

where U is a linear transformation andK is an operator which takes any complex
number z into its complex conjugate

KzK−1 = z∗, (6.64)
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Since θ is the product of a unitary operator and the complex conjugation oper-
ator, then we call it an antiunitary operator. When K acts on the spin of the
system it affects only the y component of σ, i.e.

KσxK
−1 = σx, KσyK

−1 = −σy, KσzK
−1 = σz. (6.65)

On the other hand for the unitary operator U we have

UσxU
−1 = −σx, UσyU

−1 = σy, UσzU
−1 = −σz, (6.66)

or
Uσx + σxU = 0, Uσy − σyU = 0, Uσz + σzU = 0. (6.67)

This follows from Eqs. (6.54), (6.63) and (6.64). Equation (6.67) shows that U
which is unitary must be equal to σy which is itself a unitary operator. Thus
for a single particle Eq. (6.63) becomes

θ = σyK. (6.68)

Now for a system with n particles each of spin 1
2 we have

θ = σ(1)
y σ(2)

y · · ·σ(n)
y K, (6.69)

where σ(j)
y is the y components of the spin of the j-th particle. From this result

we obtain θ2

θ2 = σ(1)
y σ(2)

y · · ·σ(n)
y Kσ(1)

y σ(2)
y · · ·σ(n)

y K = (−1)n1, (6.70)

where 1 is the identity operator. This equation implies that if there are even
number of spin 1

2 particles in the system then we are dealing with an even
state, otherwise the state is odd. As we have seen earlier under time reversal of
transformation for an odd number of spin 1

2 particles, a state |ψ〉 is transformed
into an orthogonal state. From this result we obtain Kramer’s theorem. This
theorem states that if a system is composed of an odd number of spin 1

2 particles
and has a Hamiltonian which is invariant under the time reversal transformation,
then all its stationary states are degenerate. This is the case when a spin 1

2
particle is experiencing a central field of force plus an external electric field.
However the theorem also implies that when the Hamiltonian is not invariant
under time reversal, e.g. a system in a magnetic field, then each of the levels
will split into a number of lines. This is because the magnetic field changes sign
under θ transformation.

We have experimental evidence showing that strong forces are invariant
under time-reversal transformation [5]. This invariance restricts the type of
potentials which are allowed in the theory of nuclear forces, for example in the
nucleon-nucleon interaction. Let σ1 and σ2 denote the spin of the two nucleons
and L denote their orbital angular momentum in the center of mass frame, then
a scalar potential of the form

V (r) = W (r) (σ1 ∧ σ2) · L, (6.71)

is not an admissible potential since it is not invariant under time-reversal trans-
formation [6].
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6.5 Parity of a State

In addition to the infinitesimal displacement of the coordinates given by δε in Eq.
(6.1) and infinitesimal rotation with the generator δω · J in the same equation,
we have the invariance of the Hamiltonian under the parity transformation. This
invariance does not have a classical analogue. For a closed system the inversion
transformation which is a simultaneous change of sign of all coordinates, leave
the Hamiltonian unchanged, and this leads to a conservation law.

Let P represents the inversion transformation

P

 1
1
1

 =

−1
−1
−1

 , (6.72)

i.e. the P transformation changes the right-handed coordinate system into a left-
handed one or vice-versa. Under this transformation the coordinate x changes
to −x and the momentum p changes −p, so that the commutation relation
[xj , pk] = iδjk remains unchanged.

The parity operator thus defined commutes with the Hamiltonian

[P, H] = 0, (6.73)

and with the components of the angular momentum operator

[P, Lx] = [P, Ly] = [P, Lz] = 0,
[
P, L2

]
= 0. (6.74)

The reason that Li commutes with P is that both r and p change sign under
the action of P , therefore

PL = P (r ∧ p) = r ∧ p = L. (6.75)

From the definition (6.72) it is clear that

P (P (r)) = P (−r) = r. (6.76)

Thus
P 2 = 1, (6.77)

where 1 is the unit 3×3 matrix. This last equation implies that the eigenvalues
of P are either +1 or −1, i.e. when P operates on the wave function ψ(r) we
either get either +ψ(r) or −ψ(r). In the first case we have an even state and in
the second case an odd state.

From Eq. (6.74) we infer that for a closed two-body system with the
angular quantum numbers ` and m, we have also a state of definite parity,
either odd or even. The invariance under parity transformation also implies
that all states with the same ` but different m have the same parity. To show
this we start with the relation

(Lx + iLy)P − P (Lx + iLy) = 0, (6.78)
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which follows directly from (6.74), then take its matrix element:

〈n, `,m|Lx + iLy|n, `, m− 1〉 〈n, ` m− 1|P |n′, `, m− 1〉
− 〈n, `,m|P |n′, `,m〉 〈n′, `m|Lx + iLy|n′, `, m− 1〉 = 0 (6.79)

Again since the matrix elements of Lx+iLy are independent of n or n′, therefore
we have

〈n `, m− 1|P |n′, ` m− 1〉 = 〈n, `,m|P |n′, `,m〉 , (6.80)

or the matrix elements of P are independent of m, i.e. the states of different m
have the same parity.

For the two body problem with central forces (Chapter 9), where we use
spherical coordinates, the parity transformation can be implemented by the
coordinate transformation

r → r, θ → π − θ, φ→ π + φ. (6.81)

As an application of the invariance under parity and time-reversal trans-
formations we will consider the limitations that they place on the form of the
potential [6]. The the most general phenomenological potential acting on a
particle with momentum p, orbital angular momentum L and spin S, which is
linear in these dynamical variables is of the form

V (p,L,S) = (p · L)VpL(r) + (p · S)VpS(r) + (L · S)VLS(r)
+ [p · (L ∧ S)]VpLS(r) + [S · (p ∧ L)]VSpL(r)
+ [L · (p ∧ S)]VLpS(r). (6.82)

All these terms commute with the rotation operator with the generator L + S.
The requirement of the time reversal transformation means that the last three
terms must be set equal to zero. Also the condition that the Hamiltonian should
be invariant under parity transformation requires that VpL = VpS = 0. Thus
the only remaining term will be the spin-orbit potential VLS(r).

6.6 Permutation Symmetry

In the early days of quantum mechanics Heisenberg realized the importance of
the permutation symmetry in the description of a many-particle system [8]–
[10]. A two-boson state where each particle is characterized by a complete set
of quantum numbers ν but otherwise are indistinguishable can be obtained from
the vacuum state by the action of the creation operator a†(ν) [10]

|1ν1 , 1ν2〉 = a†(ν1)a†(ν2)|0〉. (6.83)

By indistinguishability we mean that we cannot associate any other label in
addition to ν to the particle. Since the bosons ν1 and ν2 are indistinguishable
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the state (6.83) is the same as the state

|1ν2 , 1ν1〉 = a†(ν2)a†(ν1)|0〉, (6.84)

i.e. there is a unitary operator U12 which connects these two states

|1ν2 , 1ν1〉 = U12|1ν1 , 1ν2〉 =
(
U12a

†(ν1)a†(ν2)U−1
12

)
U12|0〉. (6.85)

Thus we have
U12a

†(ν1)a†(ν2)U−1
12 ) = a†(ν2)a†(ν1), (6.86)

where we have assumed that the vacuum state is invariant under U12 transfor-
mation, U12|0〉 = |0〉. By applying U12 twice we get the original state, i.e.

U2
12|1ν1 , 1ν2〉 = |1ν2 , 1ν1〉. (6.87)

From (6.87) we conclude that the eigenvalues of U12 are +1 and −1, where the
first one corresponds to the symmetric and the second one to the antisymmetric
permutations of ν1 and ν2;

U12|1ν1 , 1ν2〉 = +|1ν2 , 1ν1〉, (6.88)

and
U12|1ν1 , 1ν2〉 = −|1ν2 , 1ν1〉. (6.89)

The symmetric case is for the interchange of two bosons since from the commu-
tation relation [

a†(ν1), a†(ν2)
]

= 0, (6.90)

it follows that

U12|1ν1 , 1ν2〉 = a†(ν2)a†(ν1)|0〉 = a†(ν1)a†(ν2)|0〉 = |1ν2 , 1ν1〉. (6.91)

On the other hand for the permutation of two fermions we have the antisym-
metric case. Here we use the anticommutator[

b†(ν1), b†(ν2)
]
+

= 0, (6.92)

to get

U12|1ν1 , 1ν2〉 = b†(ν2)b†(ν1)|0〉 = −b†(ν1)b†(ν2)|0〉 = −|1ν2 , 1ν1〉. (6.93)

If we want to express these as single particle states, for the bosons we have the
symmetric form

|1ν1 , 1ν2〉S =
1√
2
|1ν1〉1|1ν2〉2 +

1√
2
|1ν2〉1|1ν1〉2, (6.94)

where the subscript S indicates the symmetric state. For fermions we write the
antisymmetric form (denoted by subscript A)

|1ν1 , 1ν2〉A =
1√
2
|1ν1〉1|1ν2〉2 −

1√
2
|1ν2〉1|1ν1〉2. (6.95)
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The perturbation symmetry can be extended to a many-boson or many-
fermion problem using the same argument that we had earlier for a two-body
indistinguishable particles. In the case of bosons the state |nν1 · · ·nνr · · ·〉 must
be symmetric under any permutation P of the particles

P|nν1 · · ·nνr · · ·〉 = |nν1 · · ·nνr · · ·〉. (6.96)

For a many-fermion state |nν1 · · ·nνr · · ·〉 is antisymmetric under permu-
tation

P|nν1 · · ·nνr · · ·〉 = δP |nν1 · · ·nνr · · ·〉, (6.97)

where
δP =

{+1 for even P
−1 for odd P . (6.98)

In general the Hamiltonian of the system commutes with U12,

HU12 − U12H = 0, (6.99)

and then the symmetry or antisymmetry of the state is preserved in time, that
is, the eigenvalues +1 or −1 will be constants of motion.

Symmetric and Antisymmetric Wave Functions — One of the re-
sults of the permutation symmetry of a system composed of fermions is the
Pauli exclusion principle. This principle states that in a system consisting of
identical particles with half-integer spin 1

2 ,
3
2 · · ·, the wave function must be

antisymmetric, and that these particles obey the Fermi-Dirac statistics. On the
other hand the wave function describing systems of identical particles with in-
teger spin 0, 1, 2 · · · must be symmetric, and these particles called bosons obey
the Bose-Einstein statistics.

Writing the two-particle wave function corresponding to the ket (6.95)
in the position space we have

ψA(1, 2) =
1√
2

[ψν1(r1)ψν2(r2)− ψν2(r1)ψν1(r2)] . (6.100)

Now if we set ν1 = ν2 in ψ(1, 2) we obtain zero for all values of r1 and r2. This
result is an expression of the Pauli exclusion principle, i.e. the two fermions
cannot occupy the same individual state. For example a three particle wave
function, properly symmetrized, can be written as

ψA(1, 2, 3) =
1√
6

[ψ(1, 2, 3)− ψ(2, 1, 3) + ψ(2, 3, 1)

− ψ(3, 2, 1) + ψ(3, 1, 2)− ψ(1, 3, 2)] . (6.101)

In the case of identical bosons we have the symmetric wave function

ψS(1, 2, 3) =
1√
6

[ψ(1, 2, 3) + ψ(2, 1, 3) + ψ(2, 3, 1)

+ ψ(3, 2, 1) + ψ(3, 1, 2) + ψ(1, 3, 2)] . (6.102)
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An important case of ψA(1, 2, 3) is the wave function for N fermions in
a constant common potential when they are not interacting with each other.
In this case the total Hamiltonian is the sum of Hamiltonians for individual
particles

H =
N∑
j=1

Hj =
N∑
j=1

{
− h̄2

2m
∇2
j + V (rj)

}
. (6.103)

Since the motion is separable, for the j-th particle we have

Hjφ(rj) = Ejφ(rj), (6.104)

and then from (6.103) it follows that the total energy of the system is

E = E1 + E2 + · · ·+ EN . (6.105)

Now if there are only two particles in the system then the antisymmetrized wave
function will be

ψA(r1, r2) =
1√
2

[φE1(r1)φE2(r2)− φE1(r2)φE2(r1)]. (6.106)

This method can easily be generalized to N particles by expressing the total
wave function as a determinant (Slater determinant) [7]

ψA(r1, · · · , rN ) =
1√
N !

∣∣∣∣∣∣∣
φE1(r1) φE1(r2) · · · φE1(rN )
φE2(r1) φE2(r2) · · · φE2(rN )
· · · · · · · · · · · ·

φEN (r1) φEN (r2) · · · φEN (rN )

∣∣∣∣∣∣∣ . (6.107)

In Chapter 18 we will discuss the theory of N interacting fermions and its
application to the pairing forces.

6.7 Lattice Translation

A very important problem in solid state physics is the motion of an electron in a
chain of regularly spaced positive ions. The potential function for such a motion
is invariant under the translation by a length equal to the lattice spacing a, i.e.

V (x+ a) = V (x). (6.108)

If we denote the translation operator (translation along the x-axis) by T(a),
then

T†(a)V (x)T(a) = V (x+ a) = V (x). (6.109)

The explicit operator form of T(a) is given in terms of the momentum operator
p;

T(a) =
∞∑
n=0

1
n!
an

dn

dxn
=
∞∑
n=0

1
n!

(
ia

h̄

)n
pn. (6.110)



154 Heisenberg’s Quantum Mechanics

175

150

125

100

75

50

0
−6 −4 −2 0 2 4 6

25

Figure 6.1: A one-dimensional periodic potential with periodicity a.

Noting that the kinetic energy part of the Hamiltonian commutes with T(a),
and that the potential energy also satisfies (6.109), we have

T†(a)HT(a) = H. (6.111)

Since the translation operator is a unitary operator, from Eq. (6.111) it follows
that

[H, T(a)] = 0. (6.112)

The vanishing of this commutator means that we can simultaneously diagonalize
H and T(a). But the unitary operator T(a) is not Hermitian, therefore its
eigenvalue is a complex number of modulus 1.

Let |n〉 denote the eigenvector which diagonalizes the Hamiltonian

H|n〉 = E0|n〉, (6.113)

and at the same time shows that the particle is localized in the n-th site. The
wave function for this situation will be completely within this site provided that
the height of the barrier between the adjacent lattice sites is infinitely high as
is shown in Fig. 6.1. The ket |n〉 however is is not an eigenket of the lattice
translation operator T(a), because if T(a) is applied to |n〉 the adjacent site
would be obtained

T(a)|n〉 = |n+ 1〉. (6.114)

Since |n〉 is not an eigenstate of H and T(a) at the same time, we try to find
a simultaneous eigenstate for these two operators. To this end we consider a
linear combination of the form

|α〉 =
+∞∑

n=−∞
einα|n〉. (6.115)
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where α is a real parameter which can take values between −π and +π. The
fact that |α〉 is an eigenstate of H follows from the relation

H|α〉 =
+∞∑

n=−∞
E0 e

inα|n〉 = E0|α〉. (6.116)

This result shows that the eigenvalue of H is independent of α. The ket |α〉 is
also an eigenstate of T(a) since

T(a)|α〉 =
+∞∑

n=−∞
einα|n+ 1〉 =

+∞∑
n=−∞

ei(n−1)α|n〉

= e−iα|n〉. (6.117)

Thus |α〉 which is the simultaneous eigenket of H and T(a) depends on the
continuous parameter α.

Now let us consider this symmetry as is reflected in the form of the wave
function. The coordinate representation of the eigenstate |α〉 can be obtained
from 〈x|α〉. The wave function for the lattice-translated state T(a)|α〉 is found
from

〈x|T(a)|α〉 = 〈x− a|α〉, (6.118)

where here T(a) has acted to the left, i.e. on 〈x|. On the other hand if in (6.118)
T(a) acts to the right we get

〈x|T|(a)|α〉 = e−iα〈x|α〉. (6.119)

By equating (6.118) and (6.119) we find

〈x− a|α〉 = e−iα〈x|α〉. (6.120)

Now let us define the function uk(x) by

ψ(x) ≡ 〈x|α〉 = e−ikxuk(x), (6.121)

where α = ka. Since for −∞ ≤ x ≤ +∞ the wave function has to be well-
defined therefore k must be a real parameter. The function uk(x) is periodic,
as can easily be verified by substituting for 〈x− a|α〉 and 〈x|α〉 in (6.120),

eik(x−a)uk(x− a) = eikxuk(x)e−ikx. (6.122)

This important result, known as Bloch’s theorem, shows that |α〉 which is an
eigenstate of T(a) can be expressed as the product of a plane wave and a periodic
function uk(x) with periodicity a. In the mathematical literature this symmetry
property of the wave function which is a solution of the Schrödinger equation
with periodic potential is called “Flouqet theorem” [11],[12].

We also note that k and k + 2πn
a both give us the same eigenvalue eika.

Therefore for k in the interval

−π
a
< k ≤ π

a
, (6.123)
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we can have all of the eigenvalues of T(a).
The technique that we used to find the symmetry of the wave function

and the properties of the lattice translation operator T can be generalized to
two- or three-dimensional systems in straight forward way [13].

6.8 Classical and Quantum Integrability

In classical dynamics a system is called completely integrable if for a system of
N degrees of freedom, in addition to the Hamiltonian, there are N − 1 globally
defined functions whose mutual Poisson bracket is zero, i.e. [14]–[18]

{Ij , Ik} = 0, j, k = 1, 2, · · · , N − 1, (6.124)

and
{Ij , H} = 0, j, k = 1, 2, · · · , N − 1. (6.125)

Since H which is a member of the set {Ij}, satisfies (6.125) therefore all {Ij}
s are constants of motion. In classical mechanics complete integrability means
that in principle the motion can be determined by quadrature [19].

Following the classical definition of an integrable system we call a quan-
tum system of N degrees of freedom integrable if there are N − 1 independent
global operators which commute with each other and with the Hamiltonian.
That is we replace the Poisson brackets by commutators and require that the
commutator for any pair of the Hermitian first integrals of motion must vanish.
If we follow the Dirac rule of association, Chapter 3, then the classical inte-
grability always imply quantum integrability. But as we have seen Dirac’s rule
for more complicated dynamical variables leads to inconsistencies, and a close
examination shows that in general the quantum integrability does not follow
from the classical one. For instance, let us consider the following Hamiltonian
describing a motion with two degrees of freedom [20]:

H =
1
2
p2

1 +
1
2
p2

2 + a

[(
q2
1 + b

)
q
− 2

3
2 +

3
4
q

4
3
2

]
. (6.126)

For this two-dimensional motion we have a second conserved quantity I which
is given by

I = 2p3
1 + 3p1p

2
2 + 3ap1

[
2
(
q2
1 + b

)
q
− 2

3
2 − 3q

4
3
2

]
+ 18ap2q1q

1
3
2 . (6.127)

There is no ambiguity in constructing a Hermitian operator corresponding to
the classical Hamiltonian H. For constructing a Hermitian operator for I Eq.
(6.127) we observe that the last two terms of I are linear in p1 and p2 and
therefore we can make the operator Î Hermitian by symmetrization, that is we
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can write it as

Î = 2p3
1 + 3p1p

2
2 +

3

2
ap1

[
2
(
q2
1 + b

)
q
− 2

3
2

]
+

3

2
a
[
2
(
q2
1 + b

)
q
− 2

3
2 p1

]
− 9aq

4
3
2 p1 + 9aq2

(
p2q

1
3
2 + q

1
3
2 p2

)
, (6.128)

where p1 = −i ∂
∂q1

and p2 = −i ∂
∂q2

. Now by calculating the commutator
[
H, Î

]
we find that it does not vanish and therefore the condition for complete inte-
grability is not satisfied [14]–[17].

Another simple example of a two-dimensional motion where a classically
conserved quantity does not have a corresponding quantum first integral will be
discussed in connection with the question of classical versus quantum degener-
acy.

6.9 Classical and Quantum Mechanical
Degeneracies

An accepted view in quantum theory is that the classical degeneracy of a motion
implies its quantum degeneracy, as the correspondence principle requires [21].
As we have already noted the example of anisotropic two-dimensional oscillator
may be an exception to this rule. Now let us study this question in some detail.
For this purpose again we consider the anisotropic two-dimensional oscillator
with the Hamiltonian given by (1.221), where we know that the classical motion
is degenerate. This example is separable we can write the Schrödinger equation
for the motion and find its eigenvalues. Since the potential has a discontinuous
derivative at x = 0 the corresponding Heisenberg equation is not easy to solve.
From the separability of the Hamiltonian it follows that the total energy of the
system can be written as [22]

E = E(ν1) + E(ν2), (6.129)

where E(νi) is the eigenvalue obtained by solving the Schrödinger equation

− h̄2

2m

d2ψi(x)

d x2
+

1

2
mω2x2

[
θ(x)

(1 + λi)2
+

θ(−x)

(1− λi)2

]
ψi(x) = E(νi)ψi(x), i = 1, 2.

(6.130)
The general solution of (6.130) which is finite at x = ±∞ is given by [23]

ψνi(x) =


NDνi

[
−
√

2mω
(1−λi)h̄ x

]
for x ≤ 0

NDνi

[
+
√

2mω
(1+λi)h̄

x
]

for x ≥ 0
(6.131)
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where N is the normalization constant and Dνi(z) is the parabolic cylinder
function

Dνi(z) = 2
νi
2 e
−z2

4

[
Γ
(

1
2

)
Γ
(

1−νi
2

) 1F1

(
−νi

2
;

1
2

;
z2

2

)

+
z√
2

Γ
(

1
2

)
Γ
(
−νi2

) 1F1

(
1− νi

2
;

3
2

;
z2

2

)]
. (6.132)

The function 1F1 is the confluent hypergeometric (or Kummer) function [24].
At x = 0 the two parts of ψνi should join smoothly

√
1− λi

D′νi(0)
Dνi(0)

=
√

1 + λi
D′βi(0)
Dβi(0)

, i = 1, 2. (6.133)

This gives us the eigenvalue equation

1 +
√

1− λi
1 + λi

Γ
(

1−νi
2

)
Γ
(
−βi

2

)
Γ
(

1−βi
2

)
Γ
(−νi

2

)
 = 0, (6.134)

where βi and νi are related to each other by(
βi +

1
2

)
(1 + λi) =

(
νi +

1
2

)
(1− λi). (6.135)

The energy eigenvalues are related to ν1 and ν2 the roots of the transcendental
Eq. (6.134) by

E(ν1, ν2) = h̄ω

[
ν1 + 1

2

(1 + λ1)
+

ν2 + 1
2

(1 + λ2)

]
. (6.136)

These energy levels are nondegenerate, so that the symmetry of the classical
motion associated with the closed orbit does not carry over to quantum me-
chanics.

Now let us consider the asymptotic form of the eigenvalues given by Eq.
(6.134). For this we first rewrite (6.134) by changing the Γ functions with nega-
tive argument in terms of Γ functions with positive argument using the relation
[24]

Γ(1− z)Γ(z) =
π

sin(πz)
. (6.137)

Then we replace Γ(z) s by their asymptotic expansion for large z, [24]

Γ(z)→ zz−
1
2 e−z

√
2π, (6.138)

to get [23]
sin
[

1
2π(βi − νi)

]
+ sin

[
1
2π(βi + νi)

]
sin
[

1
2π(βi − νi)

]
− sin

[
1
2π(βi + νi)

] = 1. (6.139)
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Figure 6.2: The classical limit of a degenerate quantum system given by the Hamiltonian
(6.142) shows no sign of degeneracy. The orbit is precessing due to the additional term ∆v(x)
in the Hamiltonian.

This equation is satisfied whenever (βi + νi) is an even integer. Combining this
result with (6.135) we find that

νi +
1
2
→ ni(1 + λi), ni an integer. (6.140)

Substituting this result in (6.136) we have the standard eigenvalues for two-
dimensional oscillator

E(n1, n2) = h̄ω(n1 + n2), (6.141)

i.e. for large quantum numbers we recover the degeneracy associated with closed
orbits as is required by the Bohr correspondence principle.

Having shown the loss of degeneracy caused by quantization, we can also
demonstrate by an example that the converse is also true. That is there are
quantum mechanical degenerate systems that will have nondegenerate classical
limits. For this let us consider the Hamiltonian operator [25],[26]

H =
p2
x

2m
+

p2
y

2m
+

1
2
mω2

(
x2 + y2

)
+
h̄2

2m
∆v(x), (6.142)

where

∆v(x) = −2g
d

dx

[
e−α

2x2

1 + g
∫ x
−∞ e−α2z2dz

]

= −2g
d

dx

[
e−α

2x2

1 + g
(√

π
α {1 + erf(αx)}

)] , (6.143)
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where g is a constant and α2 = mω
h̄ . The energy eigenvalues of this Hamiltonian

is given by
E(n1, n2) = (n1 + n2)h̄ω, (6.144)

where n1 and n2 are integers. Thus the term h̄2

2m∆v(x) changes the wave func-
tions but not the eigenvalues of H [25].

In the classical limit we can derive the canonical equations of motion from
(6.142) and solve for x(t) and y(t), and thus determine the orbit. We know that
in the absence of ∆v(x) the orbit will be an ellipse with two axes of symmetry
and the conserved quantities are given by (1.194)–(1.196). But because of the
addition of ∆v(x) the classical orbit calculated from x(t) and y(t) does not close
on itself (see Fig. 6.2).
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Chapter 7

Bound State Energies for
One-Dimensional Problems

As we noticed in Chapter 2, by a careful examination of the problem of an-
harmonic oscillator, Born, Heisenberg and Jordan were led to the discovery of
matrix mechanics. In this and later chapters we want to follow up the develop-
ment of the matrix mechanics from those early days to the present time. Here we
must emphasize that as a practical tool the Heisenberg matrix mechanics is not
a simple and straightforward method of solving quantum mechanical problems.
In particular for the approximate solution of nonseparable systems, motions
with insufficient symmetries or cases where the boundary conditions are com-
plicated, the solution of the wave equation is definitely preferable. However this
method gives us a better insight about the connection between the Hamiltonian
operator, the equations of motion and the commutation relation, a subject that
we discussed for the harmonic oscillator in Sec. 5.2. Furthermore we observe
that even for simple systems such as the motion of a particle in a box, we find
the presence of quantum forces proportional to h̄, h̄2 · · ·. As we will in this
chapter see there have been attempts by Klein et al [1]–[8], by Halpern, [9] and
others to use Heisenberg’s formulation to determine the eigenvalues of simple
systems.

The methods that we will be considered here, in principle, can yield exact
values. Approximate techniques based on matrix mechanics which will be useful
in more complicated systems will be considered later.

First let us consider some general properties for one-dimensional motion.
The ground state wave function has no nodes for the range of coordinates that
the particle is allowed to move. However this result may not be true for the
wave function of several electrons in their ground state [10]. If |ψ0〉 denotes
the ground state wave function which we can choose to be real without any
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nodes, then it follows that the wave functions for the excited states |ψn〉 must
have nodes, otherwise 〈ψ0|ψn〉 cannot vanish. The fact that |ψ0〉 has no nodes
implies that the ground state cannot be degenerate. To show this result let us
suppose that

∣∣∣ψ(1)
0

〉
and

∣∣∣ψ(2)
0

〉
are two different states corresponding to the

same eigenvalue E0. Since the wave equation is linear, it follows that if C1 and
C2 are arbitrary constants, then C1

∣∣∣ψ(1)
0

〉
+C2

∣∣∣ψ(2)
0

〉
will also be an eigenstate

with the eigenvalue E0. By choosing C1 and C2 judiciously we can make |ψ〉
zero at any given point in space, i.e. we have an eigenfunction with a node
contrary to our original assumption.

7.1 Klein’s Method

While studying certain problems related to the collective motion in nuclear
physics, Klein and collaborators discovered that the Heisenberg equations to-
gether with canonical commutation relation can be used to calculate the energy
eigenvalues. They applied this method to find the eigenvalues of the confining
quartic potential [1]–[8]

V (x) =
1
2
x2 +

1
4
λx4. (7.1)

Later the same method was used to calculate the energy levels of a particle
moving in the double well potential [11]

V (x) = −1
2
x2 +

1
4
λx4, (7.2)

and other one-dimensional systems. But before discussing these and other prob-
lems we want to show that the solution of the equation of motion and the
commutation relation for the matrix elements 〈j|x|n〉 are compatible with the
diagonal form of the Hamiltonian. This, in a way, is similar to what we discussed
regarding the connection between the Hamiltonian, the equations of motion and
the commutation relation in Sec. 5.2. First we note that for a particle of unit
mass under the action of the potential V (x) the Hamiltonian is

H =
p2

2
+ V (x), (7.3)

and we have the commutation relation,

[x,H] = ip. (7.4)

From this relation it follows that

p2 = [x,H][H,x]. (7.5)



Klein’s Method 165

The equation of motion obtained from (7.3) is given by

[ [x,H],H] = V ′(x), (7.6)

where prime denotes the derivative with respect to x. We can rewrite (7.6) also
in the following two different forms:

x [ [x,H],H] + [ [x,H],H]x = 2xV ′(x). (7.7)

and
p [ [x,H],H] + [ [x,H],H] p = pV ′(x) + V ′(x)p. (7.8)

Let us use a representation in which H is diagonal, i.e.

H|n〉 = En|n〉. (7.9)

In this representation from (7.5) we obtain the result〈
j
∣∣p2
∣∣n〉 = −

∑
k

(Ek − Ej)(En − Ek)〈j|x|k〉〈k|x|n〉, (7.10)

and from (7.4) we have

(En′ − En) 〈n |x|n′〉 = i 〈n |p|n′〉 . (7.11)

We also write Eq. (7.7) in terms of the matrix elements∑
k

{
(Ek − Ej)2 + (En − Ek)2

}
〈j|x|k〉〈k|x|n〉 = 2 〈j|xV ′(x)|n〉 . (7.12)

By multiplying (7.10) by two and adding it to (7.12) we obtain∑
k

(2Ek − Ej − En)2〈j|x|k〉〈k|x|j〉 = 2
〈
j
∣∣p2
∣∣n〉+ 2 〈j|xV ′(x)|n〉 . (7.13)

Similarly the matrix elements of (7.8) satisfy the following relation

(En − Ej)
∑
k

(2Ek − Ej − En)2〈j|x|k〉〈k|x|n〉

= −2i 〈j |V ′(x)p+ pV ′(x)|n〉+ 2(En − Ej) 〈j|(xV ′(x)|n〉 , n 6= j,

(7.14)

where we have used (7.11) to simplify (7.14).
But

i 〈j |V ′(x)p+ pV ′(x)|n〉 = 2〈j|[V (x),H]|n〉
= 2(En − Ej)〈j|V (x)|n〉, n 6= j, (7.15)
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and therefore (7.13) reduces to∑
k

(2Ek − Ej − En)2〈j|x|k〉〈k|x|j〉 = −4 〈j |V (x)|n〉

+ 2 〈j|xV ′(x)|n〉 , n 6= j. (7.16)

Now we eliminate 〈j|xV ′(x)|n〉 between (7.13) and (7.16) to get

1
2
〈
j
∣∣p2
∣∣n〉+ 〈j |V (x)|n〉 = 〈j|H|n〉 = 0, n 6= j, (7.17)

that is H is a diagonal matrix [5] as we assumed in (7.9), and this shows the
consistency of this formulation for one-dimensional problems.

7.2 The Anharmonic Oscillator

In the early works on quantum mechanics the anharmonic oscillator with cubic
nonlinearity was used as a simple system to illustrate the method of quantiza-
tion. But here we consider a potential with quartic nonlinearity. The Heisenberg
equations of motion and the commutation relation for the problem of anhar-
monic oscillator with V (x) given by (7.1) are:

[x,H] = ip, (7.18)

[p,H] = −ix− iλx3, (7.19)

and
[x, p] = i. (7.20)

Since this is a one-dimensional motion with a simple interaction, the eigenvalues
will be nondegenerate. Here again we will use a representation of matrices where
H is diagonal, and we denote the eigenstates of H by |n〉, therefore

〈n |H|n′〉 = 0, if n 6= n′. (7.21)

The commutator (7.20) in this representation becomes∑
n′′

(〈n |x|n′′〉 〈n′′ |p|n′〉 − 〈n |p|n′′〉 〈n′′ |x|n′〉) = iδnn′ . (7.22)

We also write (7.19) in its matrix form

(En′ − En) 〈n |p|n′〉 = −i 〈n |x|n′〉
− iλ

∑
n′′

∑
n′′′

(〈n |x|n′′〉 〈n′′ |x|n′′′〉 〈n′′′ |x|n′〉) . (7.23)
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Now we eliminate (En′ − En) between (7.11) and (7.23) to get the matrix ele-
ments of p in terms of the matrix elements of x;

〈n |p|n′〉2 = −〈n |x|n′〉2

− λ 〈n |x|n′〉
∑
n′′

∑
n′′′

(〈n |x|n′′〉 〈n′′ |x|n′′′〉 〈n′′′ |x|n′〉) .

(7.24)

At this point we make the assumption that only a finite number of terms con-
tribute significantly to the sums in Eqs. (7.22) and (7.24), i.e. as |n− n′|, |n−
n
′′ |, or |n′−n′′ | become large, the matrix elements become small and negligible.

To simplify the problem further, we note that in the potentials (7.1) and
(7.2) only even powers of x appears, therefore the energy eigenstates have defi-
nite parities which alternate, viz,

〈n|x|n′〉 = 〈n|p|n′〉 = 0, |n− n′| = even integer. (7.25)

In addition because of the time-reversal invariance we have the following rela-
tions between the matrix elements

〈n|x|n′〉 = 〈n′|x|n〉 , (7.26)

and
〈n|p|n′〉 = −〈n′|p|n〉 . (7.27)

Now we change our notation and write these equations in a way that the
conditions (7.26) and (7.27) take a simple form. Let us introduce two integers
I and J by [1]

n = 2I − 2, and n′ = 2J − 1, (7.28)

and set
X(I, J) = 〈n|x|n′〉 = 〈n′|x|n〉 , (7.29)

Y (I, J) = −i 〈n|p|n′〉 = i 〈n′|p|n〉 . (7.30)

Thus I refers to even and J refers to odd parity states. The commutation
relation (7.22) now divides into two sets of equations

CE(I, I ′) ≡
∑
J

[X(I, J)Y (I ′, J) + Y (I, J)X(I ′, J)] + δII′ = 0, (7.31)

and

CO(J, J ′) ≡
∑
I

[X(I, J)Y (I, J ′) + Y (I, J)X(I, J ′)]− δJJ ′ = 0. (7.32)

In terms of the states I and J , Eq. (7.24) becomes

EM (I, J) ≡ −Y (I, J)2 +X(I, J)2

+ λX(I, J)
ν+1∑
I′

ν∑
J′

X(I, J ′)X(I ′, J ′)X(I ′, J) = 0. (7.33)
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In these equations the sum over I, J, I ′, and J
′

are all from one to infinity, but
since these sums are convergent, we have written them in truncated form. Thus
in the ν-th order of approximation we have 2ν + 1 states, ν + 1 of which have
even and ν have odd parities. If we consider the set of 2ν(ν + 1) unknowns

X(I, J), Y (I, J), 1 ≤ J ≤ ν, 1 ≤ I ≤ ν + 1, (7.34)

then by determining these unknowns, we find the 2ν+ 1 low-lying energy eigen-
values.

Having decided on the number of unknowns, 2ν(ν+1), let us examine the
number of equations. In every order of approximation we have more equations
than unknowns, viz, the total number of equations is (2ν + 1)(ν + 1). Since
the major truncation errors come from the matrix elements close to boundary
states, we omit the terms I = ν + 1, I ′ = 1, 2 · · · ν + 1 from the commutation
relation for even terms, i.e. from CE (I, I ′).

For the case of anharmonic oscillator, a simple method for the numerical
solution of Eqs. (7.31)–(7.33) was devised by Klein and collaborators. In this
method we consider the set of nonlinear equations

Gi(x1 · · ·xM ) = 0, i = 1, · · ·M. (7.35)

Assuming that for λ = λ0 the approximate solution x
(0)
j is known and that

Gi(x
(0)
1 · · ·x

(0)
M ) = −Bi, i = 1, · · ·M, (7.36)

then from (7.35) and (7.36) it follows that for the difference δx(0)
j = xj − x(0)

j ,
we have

∑
j

(
∂Gi

∂x
(0)
j

)
δx

(0)
j =

∑
j

Aijδx
(0)
j ≈ Bi, i = 1, · · ·M. (7.37)

Thus to the first order the solution to Eq. (7.35) is given by

x
(1)
j = x

(0)
j + δx

(0)
j . (7.38)

This process can be repeated and we find x
(2)
j , x

(3)
j etc. until the desired ac-

curacy is reached, i.e. the difference x(n+1)
j − x(n)

j is as small as we want. In
this way we have calculated the matrix elements X(I, J) and Y (I, J) given in
TABLE I for the parameter λ = 1.
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TABLE I: Matrix elements of the coordinate and momentum (for momentum, times

(−i)), in the first, second and third order approximation ν = 1, ν = 2 and ν = 3. Here the

value of λ = 1 has been used in the calculation.

ν = 1 ν = 2 ν = 3

X(1,1) 0.5911 0.5953 0.5953
Y(1,1) −0.8459 −0.8365 −0.8365
X(2,1) 0.8359 0.7711 0.7710
Y(2,1) 1.1963 1.2880 1.2893
X(1,2) 0.0200 0.0201
Y(1,2) −0.0993 −0.0994
X(2,2) 0.8883 0.8944
Y(2,2) −1.6809 −1.6631
X(3,1) 0.0302 0.0272
Y(3,1) 0.1596 0.1509
Y(3,2) 1.8540 1.9937
X(1,3) 0.0007
Y(1,3) −0.0064
X(2,3) 0.0323
X(3,3) 1.0674
Y(33) −2.3265
X(4,1) 0.0011
Y(4,1) 0.0105
X(4,2) 0.0410
Y(4,2) 0.2506
X(4,3) 1.2445
Y(4,3) 2.4024

Having obtained the elements X(I, J) and Y (I, J) we can calculate the
ground state energy from 〈0|H|0〉, where the diagonal elements ofH are obtained
from the expectation value H;

〈n|H|n〉 =
1
2

∑
n′

(〈n|p|n′〉 〈n′|p|n〉+ 〈n|x|n′〉 〈n′|x|n〉)

+
λ

4

∑
n′,n′′,n′′′

(〈n|x|n′〉 〈n′|x|n′′〉 〈n′′|x|n′′′〉 〈n′′′|x|n〉) .

(7.39)
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We then find the ground state energy to be

E(0) = 〈0|H|0〉 =
1
2

ν∑
J

(
Y (1, J)2 +X(1, J)2

)
+

λ

4

ν∑
J=1

ν+1∑
I=1

ν∑
J′=1

X(1, J)X(I, J)X(I, J ′)X(1, J ′). (7.40)

Once E(0) has been obtained we can determine the odd-parity-states energies
from (7.39) with the result that

E(2J − 1) = E(0)− Y (1, J)
X(1, J)

, J = 1, · · · ν. (7.41)

For the even-parity states we find a similar relation:

E(2J − 2) = E(1) +
Y (I, 1)
X(I, 1)

, I = 2, · · · ν + 1. (7.42)

The energies for the lowest level of anharmonic oscillator are tabulated in
TABLE II.

TABLE II: The energies of the low-lying states of the anharmonic oscillator ( 1
2
x2 +

1
4
x4) calculated from the Heisenberg equations are shown in this table for three orders of

approximation. The last column shows the result of the sixth order approximation which is

very close to the exact result.

ν = 1 ν = 2 A ν = 3 ν = 4 E(n)

n = 0 0.6240 0.6209 0.6209 0.6209 0.6209
1 2.0551 2.0261 2.0260 20260 20260
2 3.4863 3.6965 3.6984 3.6984 3.6984
3 5.5887 5.5577 5.5576 5.5576
4 7.3115 7.5659 7.5684 7.5684
5 9.7455 9.7092
6 11.6760 11.9645
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7.3 The Double-Well Potential

For the double-well potential, Eq. (7.2), we have similar relations except for a
change of sign of the terms quadratic in 〈n|x|n′〉 and quadratic in X(I, J) in
Eqs. (7.33), (7.39) and (7.40). Thus for this case we have

EM (I, J) ≡ Y (I, J)2 +X(I, J)2

− λX(I, J)
ν+1∑
I′

ν∑
J′

X(I, J ′)X(I ′, J ′)X(I ′, J) = 0, (7.43)

and

E(0) =
1
2

ν∑
J

(
Y (1, J)2 −X(1, J)2

)
+

λ

4

ν∑
J=1

ν+1∑
I=1

ν∑
J′=1

X(1, J)X(I, J)X(I, J ′)X(1, J ′). (7.44)

In the first order of approximation, ν = 1, and there are four unknowns,
X(1, 1), Y (1, 1), X(2, 1) and Y (2, 1), and four equations for EM (1, 1), EM (2, 1),
CE(1, 1) and CO(1, 1). By eliminating Y (1, 1), X(2, 1) and Y (2, 1) from this set
we find that X(1, 1) is a solution of the equation

[
1 + 4X(1, 1)2 − 12λX(1, 1)6

] [
1 + 4X(1, 1)4 + 4λX(1, 1)6

]
= 0. (7.45)

Of course we do not expect that in the first order of calculation the result
will be close to the exact result (see TABLE III). Also let us note that the
solution of (7.45) is not unique, and we can change the signs of X(I, J) s and
Y (I, J) s and we get a new set of solutions.

Among the possible sets of solutions only two, ν=2 A and ν=2 B are shown
in this table. Here rather than using the numerical technique that we discussed
earlier for solving these equations, we try to find different roots for the set of
equations CE(I, I ′), CO(J, J ′) and EM (I, J) without assuming any starting set
of solutions for these equations. In this way for ν = 2 we get different solutions,
two of which are shown in TABLE III, and are denoted by 2A and 2B. The first
one, 2A, is close to the solution of the first order calculation ν = 1, therefore
it is this one that we choose for the calculation of the eigenvalues [11]. The
eigenvalues obtained for 2A are shown in TABLE IV.
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TABLE III: Matrix elements of the coordinate and momentum (for momentum, times

(-i)), in the first, and second approximation ν = 1, and ν = 2 for the double-well potential,

(− 1
2
x2 + 1

4
x4).

ν = 1 ν = 2 A ν = 2 B

X(1,1) 0.7619 0.8129 0.0749
Y(1,1) −0.6562 −0.5907 −0.2642
X(2,1) 1.0776 0.8764 −0.9665
Y(2,1) 0.9280 1.0896 1.5054
X(1,2) 0.0749 −0.8129
Y(1,2) −0.2642 0.5907
X(2,2) 0.9665 0.8764
Y(2,2) −1.5054 1.0896
X(3,1) 0.0788 1.2542
Y(3,1) 0.3198 1.5745
X(3,2) 1.2542 −0.0788
Y(3,2) 1.5745 −0.3198

TABLE IV: The energies of the low-lying states of the double-well potential (− 1
2
x2 +

1
4
x4) calculated from the Heisenberg equations are shown in this table for three orders of

approximation. In the last column the same energies are calculated accurately using finite

difference method and are shown for comparison.

ν = 1 ν = 2 A ν = 3 E(n)

n=0 0.1776 0.1474 0.1474 0.1465
1 1.0389 0.8741 0.8741 0.8672
2 1.9001 2.1173 2.1173 2.0197
3 3.6748 3.5316 3.5456
4 4.9303 5.1777 5.1544
5 6.8729 6.8964
6 8.5001 8.7472

Here we can ask whether these other solutions, i.e. those not obtainable by the
iterative method have any physical significance or not. Should these solutions
be rejected as being unphysical and if so on what grounds? At present we do
not have answers to these questions.
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7.4 Chasman’s Method

A method of solving Heisenberg’s equations which is very similar to Klein’s but
applicable to the potentials of the type V (x) = λ

nx
n with n an even integer has

been suggested by Chasman [12]. Writing the Hamiltonian as

H =
1
2
p2 +

1
n
λxn, (n an even integer), (7.46)

we have the Heisenberg equations

−ip = xH −Hx, (7.47)

and
iλxn−1 = pH −Hp. (7.48)

By multiplying (7.47) by p from left and (7.48) by x from right and adding the
results we have

[xp,H] = −ip2 + iλxn. (7.49)

The diagonal elements of the left-hand side of (7.49) are zero, therefore(
p2
)
j,j

= λ (xn)j,j , (7.50)

which is just the virial theorem, (see also Eq. (12.104)). If we take the diagonal
elements of H, Eq. (7.46), and combine it with (7.50) we get

Ej =
2 + n

2n
(
p2
)
j,j
, (7.51)

where we have used a representation in which H is diagonal, 〈j|H|k〉 = Ejδk,j .
Now we consider the commutator

[x, [x, H] ] = −1, (7.52)

and take the diagonal matrix elements of this equation to find∑
k

xj,k (Ek − Ej)xk,j =
1
2
. (7.53)

Next we square Eq. (7.47) and again find its (j, j) element∑
k

xj,k (Ek − Ej)2
xk,j =

(
p2
)
j,j

=
2n

2 + n
Ej . (7.54)

Equations (7.53) and (7.54) may be used to calculate higher energy eigen-
values in terms of the ground state energy. To see how this method works, let
us consider the simple case of the harmonic oscillator, i.e. when n = 2. Then
as we have seen earlier, Eq. (5.25), the nonvanishing off-diagonal elements of x
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are xj,j±1. If we choose j = 0 in (7.53), x0,k is zero unless k = 1. Thus (7.53)
and (7.54) reduce to

x0,1(E1 − E0)x1,0 =
1
2
, (7.55)

and

x0,1(E1 − E0)2x1,0 = E0, (7.56)

and from these we get

E1 = 3E0. (7.57)

So starting from E0 we can find successive Ej s in terms of E0.
When n 6= 2, then as a first order approximation, just as in Klein’s method

we choose

xj,k = 0, for k 6= j ± 1, (7.58)

and use these matrix elements in (7.53) and (7.54) to calculate energies to the
first order. Having obtained the first order energies, we can calculate the matrix
elements xj,j±3 from these energies. We note that the matrix elements xi,i±2k

do not contribute to the sums. By substituting for p from Eq. (7.47) in the
commutation relation [x, p] = i and taking the (j, j + 2) matrix element of the
resulting expression we obtain∑

k=j±1,j±3

(Ej+2 − 2Ek + Ej)xj,kxk,j+2 = 0. (7.59)

Next we set j = 0 and substitute for xj,j+1 and Ej calculated to the first order
from (7.53) and (7.54) we get the ratios

xj,j±3 (Ej±3 − Ej)xj±3,j

xj,j+1(Ej+1 − Ej)xj+1,j
. (7.60)

We substitute these ratios in (7.53) and (7.54) and obtain xj,j±1 and Ej to the
second order, this time by summing over k = j ± 1, k = j ± 3.

For the third order approximation we use the equations∑
k=j±1,j±3,j±5

(Ej+2 − 2Ek + Ej)xj,kxk,j±2 = 0, (7.61)

and ∑
k=j±1,j±3,j±5

(Ej+4 − 2Ek + Ej)xj,kxk,j±4 = 0. (7.62)

Since (7.61) and (7.62) are coupled we must iterate them until xj,j+3 and xj,j+5

matrix elements do not change.
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The ground state energy is determined by combining Eqs. (7.47) and
(7.48) to find

xj,k(Ek − Ej)2 = λ
(
xn−1

)
j,k
, (7.63)

and then express all the quantities in this equation in terms of E0.
In TABLE V the results of the first and second order calculation are

shown and are compared with the exact result for the quartic harmonic oscilla-
tor V (x) = x4.

TABLE V: The energy eigenvalues of the quartic anharmonic oscillator V (x) = x4

in units of E0 [12].

E
(1)
j E

(2)
j Exact

j = 0 1 1 1
j = 1 3.66 3.58 3.583
j = 2 7.21 7.02 7.031
j = 3 11.25 10.97 10.980
j = 4 15.71 15.31 15.333
j = 5 20.51 20.01 20.024
j = 6 25.62 24.99 25.010
j = 7 30.99 30.24 30.259
j = 8 36.61 35.72 35.747
j = 9 42.45 41.43 41.454

7.5 Heisenberg’s Equations of Motion for
Impulsive Forces

While the analytical determination of the wave function and eigenvalues for the
problem of a particle confined in a box in wave mechanics is elementary and
simple, a close examination shows that the details of such a motion are compli-
cated. For instance the definition of the time-evolution operator for the motion
in a box, and the possibility of different self-adjoint extension of the operators
need careful examination [13],[14]. For instance, it is clear that the one possible
self-adjoint extension where a particle striking one wall and appearing at the
other wall, cannot correspond to a classical motion of a particle bouncing be-
tween two walls.
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Heisenberg’s Equations for Motion Between Fixed Walls — Let
us study the classical motion of a ball which is bouncing between two rigid walls
located at x = 0 and x = 1 respectively. If we denote the initial position and
momentum of the particle by x0 and p0 respectively, then at a later time, t, the
classical position of the particle can be expanded as a Fourier series;

xc(t) =
1
2
−

∞ ′∑
n=−∞

[
1− (−1)n

(nπ)2

]
exp[inπs(t)], (7.64)

where the prime on summation means that the term with n = 0 must be ex-
cluded, and s(t) is given by the function

s(t) =
(
p0t

m
+ x0

)
. (7.65)

Next we want to find the quantum version of the classical expression
(7.64). We note that there are different ways of ordering the operators x0 and
p0 as we have seen in Chapter 3. For instance if we utilize Weyl–McCoy’s rule
of ordering, we can write (7.65) as an operator equation for the position of the
particle

x(t) = OW {xc} =
1
2
−

∞ ′∑
n=−∞

[
1− (−1)n

(nπ)2

]
OW [exp(inπs(t))]

=
1
2
−

∞ ′∑
n=−∞

[
1− (−1)n

(nπ)2

]
exp

[(
−ih̄

2

)(
∂2

∂x0∂p0

)]
×

{
exp(inπx0) exp

(
inπp0t

m

)}
(7.66)

where OW denotes the Weyl-ordered product. In this equation the exponential
differential operator acts only on the product in the curly brackets, and the
order of terms must be preserved in differentiation. Using the commutation
relation

[x0, p0] = ih̄, (7.67)

we obtain

x(t) = OW {xc(t)} =
1
2
−

∞ ′∑
n=−∞

[
1− (−1)n

(nπ)2

]
exp

(
in2π2h̄t

2m

)
×

[
exp(inπx0) exp

(
inp0t

m

)]
. (7.68)

Once the commutation relation (7.67) is assumed then from (7.67) and
(7.68) it follows that

[x(t), p(t)] = ih̄, (7.69)
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ih̄

(
dx(t)
dt

)
= [x(t),H] , (7.70)

and

ih̄

(
dp(t)
dt

)
= [p(t),H] , (7.71)

where p(t) is the mechanical momentum operator

p(t) = m
dx(t)
dt

. (7.72)

For instance we obtain (7.70) by noting that the Hamiltonian H is given by p2

2m
and then use the identity

[A,Bn] = [A,B]Bn−1 +B [A,B]Bn−2 + · · ·+Bn−1 [A,B] (7.73)

to get

[x(t),H] = −
∞ ′∑

n=−∞

[
1− (−1)n

(nπ)2

]
OW


∞∑
j=0

(
(inπ)j

j!

)[
s(t)j ,H

]
= −

(
ih̄

m

) ∞ ′∑
n=−∞

[
1− (−1)n

(nπ)2

]
OW

{
j−1∑
k=0

s(t)kp0s(t)j−k−1

}
.

(7.74)

Also by differentiating (7.68) we find

ih̄

(
dx(t)
dt

)
= ih̄

p(t)
m

= −ih̄
∞ ′∑

n=−∞

[
1− (−1)n

(nπ)2

] ∞∑
j=0

[
(inπ)j

j!

]

× OW

{
j−1∑
k=0

s(t)kp0s(t)j−k−1

}
. (7.75)

Now if we compare (7.74) and (7.75) we obtain (7.70). Similarly we can verify
the correctness of commutation relation (7.69).

Let us also investigate the validity of (7.71) for the rate of change of
momentum of the particle. If we multiply (7.75) by m and differentiate it with
respect to t we have(

dp(t)
dt

)
=

∞ ′∑
n=−∞

[1− (−1)n]OW
{

exp(inπs(t))p2
0

2m

}

+
h̄

m

∞ ′∑
n=−∞

[1− (−1)n] (nπ)OW {exp(inπs(t))p0}

+
h̄2

4m

∞ ′∑
n=−∞

[1− (−1)n] (nπ)2OW {exp(inπs(t))} .

(7.76)
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Now we define Θ(s(t)) by

Θ(s(t)) = −iOW

{ ∞ ′∑
n=−∞

[
1− (−1)n

(nπ)

]
exp(inπs(t))

}
, (7.77)

and we observe that

Θ(s(0)) = Υ(x0)Υ(1− x0), 0 ≤ x0 ≤ 1, (7.78)

where Υ(x0) is given by

Υ(x0) =

{−1 for x0 < 0
0 for x0 = 0
+1 for x0 > 0

. (7.79)

By differentiating Θ(s(t)) with respect to x0 we obtain

dΘ(s(t))
dx0

= ∆(s(t)) = ∆(x0, p0, t)

= 2
∞∑

j=−∞
{δ[s(t)− 2j]− δ[(2j + 1)− s(t)]} . (7.80)

Thus the initial value of dp(t)
dt , Eq. (7.76), can be written as(

dp(t)
dt

)
t=0

= − 1
m

[
1
2

∆(t = 0)p2
0 − ih̄

(
d∆(t = 0)

dx0

)
p0 −

h̄2

4

(
d2∆(t = 0)

d x2
0

)]
.

(7.81)

As we note here the initial force has terms proportional to h̄ and h̄2 and the
same is true about

(
dp(t)
dt

)
. So we arrive at the interesting result that the

impulsive forces in quantum mechanics have terms not found in their classical
counterpart.

Let us note that while in classical dynamics most of the forces of constraint
can be imposed on the motion without difficulty in quantum theory this is not
the case and it is not possible to idealize stiff potentials by constraints [15].

7.6 Motion of a Wave Packet

Having determined the time dependence of the position and momentum opera-
tors for a particle in a box, we can now study the time development of the wave
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packet associated with this motion.
Let Ψ(x) represents a narrow wave packet which is localized within the

box. We want to calculate the expectation value of x(t) and p(t) with this
wave packet, i.e. 〈Ψ(x)|x(t)|Ψ(x)〉 and 〈Ψ(x)|p(t)|Ψ(x)〉. It is convenient to ex-
pand Ψ(x) in terms of the Fourier series (or the complete set of eigenfunctions)
ψn(x) =

√
2 sin(nπx)

Ψ(x) =
√

2
∞∑
n=0

Cn sin(nπx), (7.82)

and then find 〈n|x(t)|j〉. For this we first calculate

I(x, t) = exp
(
ikπp0t

m

)
sin(nπx), (7.83)

where k is an integer. By expanding the exponential and separating the result
into odd and even states we obtain

I(x, t) = cos
(
h̄tknπ2

m

)
sin(nπx) + sin

(
h̄tknπ2

m

)
cos(nπx). (7.84)

Using this result we calculate 〈j|x(t)|n〉,

〈j|x(t)|n〉 =
1
2
δj,n − 2

∞ ′∑
k=−∞

(
1− (−1)k

π2k2

)
exp

(
ih̄tk2π2

2m

)

×
∫ 1

0

eikπx
{

cos
(
h̄tknπ2

m

)
sin(jπx) sin(nπx)

+ sin
(
h̄tknπ2

m

)
sin(jπx) cos(nπx)

}
dx.

(7.85)

The integration in (7.85) can be carried out, and with further simplification we
obtain

〈j|x(t)|n〉 =
1
2
δj,n +

(
1− (−1)j+n

π2

)
×

[
1

(j + n)2
− 1

(j − n)2

]
exp

[
ih̄t
(
j2 − n2

)
π2

2m

]
. (7.86)

From this expression we can determine the position of the center of the wave
packet Ψ(x) as a function of time;

〈x(t)〉 =
1
2

∞∑
n=0

∞∑
j=0

CnCj (〈j|x(t)|n〉+ 〈n|x(t)|j〉) . (7.87)

The velocity of the center of wave packet can be found by differentiating 〈x(t)〉;

1
m
〈p(t)〉 =

d

dt
〈x(t)〉. (7.88)
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Figure 7.1: The motion of the center of wave packet as a function of time (N=10). This

time is measured in units of
(

2m
πh̄

)
.

To illustrate this type of bouncing motion we choose the wave packet

Ψ(x) =
{√

2N sin(Nπx) 0 ≤ x ≤ 1
N

0 x > 1
N

, (7.89)

and from it we can find Cn and thus calculate 〈n|x(t)|j〉. The results for 〈x(t)〉
and for d

dt 〈x(t)〉 are shown in Figs. 7.1 and 7.2. In Fig. 7.2 we observe how the
direction of velocity changes upon the collision with the well. This motion is
periodic with a period of 4m

πh̄ independent of N .
The correspondence between the classical periodicity and the quantum

mechanical periodicity for this motion has been discussed at length by Styer
[16].

As we mentioned earlier, there are different self-adjoint extensions of this
problem. The case where the particle strikes one well and appears at the other is
such an example. Again this is a periodic motion and we can write the classical
position of the particle as a Fourier series;

xc(t) ==
1
2
− 1

2πi

∞ ′∑
n=−∞

(
1
n

)
exp[2inπs(t)]. (7.90)

We note that this classical motion is discontinuous at s(t) = 1, 2, · · · and velocity
does not change sign.

Using the Weyl–McCoy rule of ordering discussed earlier we find the quan-
tum operator x(t) as
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x(t) =
1

2
− 1

2πi

∞ ′∑
n=−∞

(
1

n

)
exp

[(
− ih̄

2

)
∂2

∂x0∂p0

]
×

{
exp(2πinπx0) exp

(
inp0t

m

)}
. (7.91)

7.7 Heisenberg’s and Newton’s Equations
of Motion

We have already seen that Heisenberg’s Correspondence principle indicates a
connection between the Fourier transform of the classical solution and the quan-
tal matrix elements for large quantum numbers Sec. 4.5. We also know of the
formal similarity between the equations of motion of Heisenberg and of Newton.

This formal similarity for a one-dimensional motion of a particle of mass m
subject to a force F (x) can be seen in the equation of motion

m
d2x

d t2
= F (x). (7.92)

But whereas in classical dynamics x is a c-number in quantum mechanics it
is a matrix, or an operator. In this section we want to show that a solution
of Newton’s equation of motion can be regarded as the generating function for

Figure 7.2: The velocity of the center of wave packet as a function of time (N=10). The

velocity is in units of
(
πh̄
2m

)
.
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the matrix elements of the coordinate operator in matrix mechanics [9]. As we
have seen in Klein’s approach, the solution of the quantum mechanical problem
amounts to the determination of a pair of matrices p and x such that

(a) - the commutation relations are satisfied, and
(b) - the Hamiltonian operator written in terms of p and x is diagonal.
Here again we will consider polynomial potentials and as in Klein’s ap-

proach we make the following assumptions:
(1) - That the matrix elements of p and x decrease rapidly as the distance

from the main diagonal increases. Let us note that for a simple harmonic oscil-
lator the elements pkj and xkj become zero for |k − j| > 1.

(2) - That the matrix elements of p and x vary slowly as we move parallel
to the principal diagonal of each of the matrices. Again for harmonic oscilla-
tor the change from one element of the matrix, (k, j), to the next is slow and
the ratio of these two elements is given by

(
k+j+1
k+j

)
. With the help of these

assumptions we can simplify the matrix product considerably.
If we denote the energies of the k and j states by Ek and Ej respectively,

then the time derivative of the matrix element xkj is given by

m

(
d2x

d t2

)
kj

= −m
(
Ek − Ej

h̄

)2

xkj . (7.93)

By substituting (7.93) in (7.92) we find

−m
(
Ek − Ej

h̄

)2

xkj = [F (x)]kj . (7.94)

This is a set of coupled nonlinear equations for the matrix element xkj . For a
polynomial potential, F (x) is also a polynomial, and if we assume that F (x) =
xn then the right hand side of (7.94) can be written as

(xn)jk =
∑
l1

∑
l2

· · ·
∑
ln−1

xjl1xl1l2 · · ·xln−1k. (7.95)

Now according to assumption (1) the dependence of xjk on j and k can be
written in terms of a function ξ in the following way:

xkj = [ξ(j + k)]j−k + [ξ(j + k)]k−j ≈ ξj−k + ξk−j =
∑
r

ξr (δk,j+r + δk,j−r) .

(7.96)
If we substitute (7.96) in (7.95) we find

(xn)kj =
∑
r

(δk,j+r + δk,j−r)
∑

l1l2···ln

(ξl1ξl2 · · · ξln) δr, ±l1±l2···ln , (7.97)

where the sum is over all r and over 2n possible permutations of signs. Equation
(7.97) is not exact and there are terms which we have omitted [9]. We can write
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(7.97) in the simpler form of

[F (x)]jk = (xn)jk =
∑
r

βr (δk, j+r + δk, j−r) , (7.98)

where βr denotes the sum over li s in (7.97).
Next we introduce a function g(θ) by

g(θ) =
∑
r

ξr
(
eirθ + e−irθ

)
. (7.99)

By comparing (7.96), (7.98) and (7.99) we find the following relation

F [g(θ)] =
∑
r

βr
(
eirθ + e−irθ

)
. (7.100)

Note that the energy difference Ek − Ej depends on (k − j) as well as
(k + j). If we write Ek − Ej as

(Ek − Ej) = (k − j)∆E(k, j), (7.101)

and for the moment assume that ∆E is independent of k and j then (7.94)
becomes

−m(k − j)2

(
∆E
h̄

)2

xkj = [F (x)]kj . (7.102)

In the next step we replace xkj , [F (x)]kj and (k − j) in terms of ξr, βr and r2;

−mr2

(
∆E
h̄

)2

ξr = βr. (7.103)

By multiplying (7.103) by (eirθ + e−irθ) and summing over r we find that g(θ)
is the solution of the differental equation

m

(
∆E
h̄

)2
d2g(θ)
d θ2

= F (g). (7.104)

Changing θ to t where

t =
(

h̄

∆E

)
θ, (7.105)

we obtain Newton’s equation of motion

m
d2g

d t2
= F (g). (7.106)

This result shows that the solution of the classical equation of motion, g(θ), if
expanded as a Fourier series, Eq. (7.99), yields the coefficients ξr and these
are related to the matrix elements xkj by Eq. (7.96) (see also Heisenberg’s
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Correspondence principle Sec. 4.6. Of course we arrive at this result if the
approximations that we have made are valid. In particular the assumption that
∆E(k, j) in (7.101) is independent of k and j is crucial one in this derivation.

If we multiply (7.106) by dg
dt and integrate we obtain the law of conserva-

tion of energy;

m

2

(
dg(t)
dt

)2

+ V [g(t)] =
m

2

(
dg(t)
dt

)2

t=0

+ V [g(0)] = H(t) = H(0). (7.107)

Since H(t) = H(0), the Fourier coefficient of H(t) is H(0) and this according
to the above argument should be regarded as the matrix element of H, i.e.

Hkj = H(0)δkj . (7.108)

Hence the classical conservation of energy is equivalent to the diagonalization
of the Hamiltonian [9] (See Chapter 3 and also Sec. 12.8).

While the method of calculating the Fourier coefficients is applicable to
the equation of motion, it cannot be used in the case of the commutators,
since we are dealing with the small differences of large numbers. If we want
to approximate the commutation relation we sum the matrix elements in the
following way:

We start with the commutator

[H, [H, x] ] =
h̄

mi
[p, x] = − h̄2

2m
. (7.109)

The diagonal elements of (7.109) are given by∑
k

(Ek − Ej)(xkj)2 =
h̄2

2m
, j = 1, 2, · · · , (7.110)

where k is a nonnegative integer. We rewrite (7.110) in the form∑
r≥−j

(Ej+r − Ej)(xj+r,j)2 =
h̄2

2m
, j = 1, 2, · · · . (7.111)

In (7.111) all the terms with r > 0 are positive and for r < 0 are negative. If
we sum the two sides of (7.111) from j = 0 to j = J , then some of the negative
terms cancel some of the positive terms. Let us consider this part of the problem
in detail.

If S1 and S2 represent the partial sums

S1 =
J∑
j=0

∞∑
r=1

(Ej+r − Ej)(xj+r,j)2 > 0, (7.112)

S2 =
J∑
j=0

0∑
r=−j

(Ej+r − Ej)(xj+r,j)2 < 0, (7.113)
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so that from (7.111) we find

S1 + S2 =
h̄2

2m

J∑
j+1

1 =
h̄2

2m
(J + 1). (7.114)

We change the sign of r in S2 and write it as

S2 =
J∑
j=0

j∑
r=0

(Ej−r − Ej)(xj,j−r)2, (7.115)

and we also interchange the j and r sums and use symmetry of xkj to get

S2 =
J∑
r=0

J∑
j=r

(Ej−r − Ej)(xr−j,j)2. (7.116)

Now in this expression the sum over j runs from j = 0 to J − r, thus

S2 = −
J∑
r=0

J−r∑
j=0

(Ej+r − Ej)(xj,j+r)2. (7.117)

By adding S1 and S2 we find

S1 + S2 =
J∑
j=0

∞∑
r=J−j+1

(Ej+r − Ej)(xj,j+r)2 =
h̄2

2m
(J + 1). (7.118)

The approximate method that we discussed earlier if applied to Eq. (7.117)
yields the following result

J∑
j=0

∞∑
r=J−j+1

r∆Eξ2
r =

(
h̄2

2m

)
(J + 1). (7.119)

By inverting the order of summation in (7.119) we obtain

∞∑
r=0

r∆Eξ2
r

J∑
j=J−r+1

1 =
h̄2

2m
(J + 1), (7.120)

or by carrying out the second sum we find

(∆E)
∑
r

r2ξ2
r =

h̄2

2m
(J + 1). (7.121)

Let us note that (7.121) implies that:
(a) - ∆E be independent of J , the index parallel to the diagonal and
(b) - because of the dependence of ∆E on J ξr s also pick up some of the
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previously neglected matrix elements.
Now for a given F (x) we solve (7.106) and determine g(t). Then using (7.105)
we write the solution as g(θ) and from the Fourier coefficients of g(θ) we find
ξr according to Eq. (7.99). Finally by substituting ξr in (7.121) we find ∆E.

Next let us consider two examples where it is easy to apply this method:
(1) - First let us solve the problem of simple the harmonic oscillator

d2x

d t2
+ ω2x = 0. (7.122)

using this method. According (7.106) g(t) satisfies (7.122), i.e.

g(t) = ξ1
(
eiωt + e−iωt

)
, (7.123)

or

g(θ) = ξ1

[
exp

(
ih̄ω

∆E
θ

)
+ exp

(
− ih̄ω

∆E
θ

)]
. (7.124)

Thus in the Fourier expansion of g(θ) there is one coefficient ξ1 and the matrix
elements of x according to (7.96) are

ξ1 = xj,j+1 = xj+1,j . (7.125)

From the commutation relation (7.121) we find ξ2
1 to be

ξ2
1 =

h̄2

2m∆E
(j + 1). (7.126)

Now by comparing (7.99) and (7.124) we obtain

∆E = h̄ω, (7.127)

and therefore
ξ2
1 =

h̄

2mω
(j + 1). (7.128)

This result together with (7.125) gives us the matrix elements of the harmonic
oscillator.
(2) - As a second example let us study the motion of a particle bouncing between
two rigid walls separated by a unit length (Sec. 7.5). The classical motion xc(t)
can be written as a Fourier series over positive n values;

xc(t) = g(θ)

=
2
π2

∞∑
n=0

1
(2n+ 1)2

[
exp

{
i(2n+ 1)

np0h̄

m∆E
θ

}
+ exp

{
−i(2n+ 1)

np0h̄

m∆E
θ

}]
.

(7.129)

Comparing this relation with Eq. (7.99) we obtain ξn;

ξn =
2

π2(2n+ 1)2
. (7.130)
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Also from the commutation relation (7.121) we have

∑
n

(2n+ 1)2

[
2

π2(2n+ 1)2

]2

=
h̄2

2m∆E
(j + 1). (7.131)

By carrying out the summation in (7.131) we get the simple relation(
2
π2

)2
π2

8
=

h̄2

2m∆E
(j + 1), (7.132)

from which we conclude that

∆E =
π2h̄2

4m
(j + 1). (7.133)

Thus the matrix elements of x and p are given by

xj,j+2n = pj,j+2n = 0, (7.134)

xj,j+2n+1 =
2

π2(2n+ 1)2
, (7.135)

and
pj,j+2n+1 =

2ih̄
(2n+ 1)

(j + 1). (7.136)

The last relation is found by calculating
(
dx
dt

)
j,j+2n+1

;

pj,j+2n+1 = −mi
h̄

(Ej − Ej+2n+1)xj,j+2n+1 =
mi

h̄
(2n+ 1)∆E xj,j+2n+1

=
2ih̄(j + 1)
(2n+ 1)

. (7.137)

For large integer j these approximate results agree with the exact result
found from Eqs. (7.86) and (7.88) for |xj,j+2n+1| and |pj,j+2n+1|:

|xj,j+2n+1| =
2
π2

[
1

(2n+ 1)2
− 1

(2j + 2n+ 1)2

]
, (7.138)

and

|pj,j+2n+1| = 4ih̄
[

j(j + 2n+ 1)
(2j + 2n+ 1)(2j + 1)

]
. (7.139)

This method can be generalized to systems with N degrees of freedom,
but the results are complicated [9],[17].

Nonclassical Forces — The quantization of the motion of a particle
bouncing between two rigid walls shows us that there are forces at the boundaries
which are absent in the classical problem and that these forces are proportional
to h̄ and h̄2. Similar nonclassical forces appear in the description of the quantum
mechanics of a free particle in D dimensions [18]. The number of dimensions
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are one, two or three i.e. the dimensions for a single particle in the coordinate
space. It can also be considered as a hyperspace of the quantum state of a
single hypothetical particle having the configuration space of two or more non-
interacting (say N) particles in one, two or three dimensions. If d denotes the
dimensions of the space, then D = Nd. Here for the sake of simplicity we
consider only S wave for the state of the hypothetical particle, i.e. we assume
that the dynamical variable is r̂, where

r̂ =

√√√√ N∑
n=1

x2
n. (7.140)

We will consider the non-relativistic motion of a free particle (or a hypothetical
particle) in D dimensions for which the Hamiltonian is just the kinetic energy

H =
p2
D

m
= − h̄2

2m
∇2
D, (7.141)

where m denotes the mass and pD the momentum of the particle. The Heisen-
berg equations of motion for the coordinate operator r̂ defined by (7.140) is

m
dr̂

dt
= − ih̄

2
[
∇2
D, r̂

]
. (7.142)

In order to investigate the behavior of the derivatives of r at the origin, we
replace r by

rε =
√
ε2 + r2, (7.143)

and at the end we let ε go to zero.
By calculating the commutator in (7.142) we find

m
dr̂

dt
= −ih̄

(
D − 1

2r
+

∂

∂r

)
− ih̄D(r̂)

= −ih̄ 1

r
D−1

2

∂

∂r
r
D−1

2 − ih̄D(r̂), (7.144)

where

D(r) = lim
ε→0

1
2

[
ε2

(ε2 + r2)
3
2

]
. (7.145)

In the same way we calculate the second derivative of r̂;

d2r̂

d t2
= − 1

h̄2 [H, [H, r̂]] = − h̄2

4m2
[∇2

D, [∇2
D, r̂] ]. (7.146)

From this relation we can find the forces acting on any partial wave `

m
d2r̂

d t2
= −∂V (r̂)

∂r̂
+ Fq (r̂) + F` (r̂) , (7.147)
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where

V (r) =
h̄2

2m
(D − 1)(D − 3)

4r2
, (7.148)

Fq (r̂) = − h̄2

2m

{
2
D − 1
r

∂D
∂r

+
∂2D
∂r̂2

+
4

rD−1

∂

∂r

(
rD−1D ∂

∂r

)}
, (7.149)

and

F` (r) = lim
ε→0

{
1
m

1√
ε2 + r2

L2

r2

}
. (7.150)

In this last expression L is the angular momentum operator (Sec. 9.1). For the
s wave only the last term, F`(r), vanishes. From Eq. (7.147) it is clear that
for any partial wave there are three components to this nonclassical force. The
sum of the first two components F`(r) − ∂V (r)

∂r is nonzero for r 6= 0. The force
−∂V (r)

∂r vanishes for one- or three-dimensional spaces and is negative for D = 2,
and F`(r) is the usual centrifugal force and the term. The nonclassical force
Fq(r̂) depends on the behavior of the wave function and its derivatives at the
origin and as can be seen from the coefficient of h̄2

2m in (7.149) it has a purely
quantum-mechanical origin.
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Chapter 8

Exactly Solvable Potentials,
Supersymmetry and Shape
Invariance

The aim of this chapter is to give an introduction to a group of solvable potential
mostly found using the factorization method. This method introduced earlier
to solve the harmonic oscillator problem. For these solvable problems we can
determine all of the energy eigenvalues, and these in turn can be used to obtain
the time development of any dynamical variable that we wish to study. We will
also consider the theory of supersymmetry applied to one-dimensional quantum
mechanics and its relation to the shape invariant potentials.

Time Dependence of the Operators — The time dependence of any
operator A which does not depend explicitly on time can be expressed in terms
of the energy eigenvalues and the matrix elements of A at a given time, e.g. at
t = 0. Our starting point is the Heisenberg equation

ih̄
dA

dt
= [A,H], (8.1)

where we have assumed that that ∂H
∂t = 0 (see Eq. (4.11)). This equation can

be solved for A(t) if the initial operator A(0) is known

A(t) = exp
(
− iHt

h̄

)
A(0) exp

(
iHt

h̄

)
, (8.2)

For instance to find the matrix q(t) as a function of time, we substitute q(0) for
A(0) in (8.2) and determine q(t). This can be easily done if we use a represen-
tation in which H is diagonal. Thus the matrix elements of A(t) obtained from

191
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Eq. (8.2) are

〈j|A(t)|k〉 =
〈
j
∣∣∣e−iHth̄ A(0)e

iHt
h̄

∣∣∣ k〉 = exp
[
− i
h̄

(Ej − Ek)t
]
〈j|(A(0)|k〉. (8.3)

Once we have found 〈j|A(0)|k〉, Ek and Ej , then we have the complete solution
of the problem.

8.1 Energy Spectrum of the Two-Dimensional
Harmonic Oscillator

As we noted in the classical discussion of this problem there is a conserved
symmetric tensor Tij given by (1.198). The corresponding Heisenberg operators
for Tij are found by replacing pi and qi by the corresponding operators satisfying
the canonical commutation relations. Here we will write down the operators
corresponding to the group {Gi}, Eqs. (1.194)–(1.196).

G1 = − ih̄
2

(
q1

∂

∂q2
− q2

∂

∂q1

)
, (8.4)

G2 =
1
ω

(
− h̄2

2m
∂2

∂q1∂q2
+

1
2
mω2q1q2

)
, (8.5)

and

G3 = − 1
2ω

[(
− h̄2

2m
∂2

∂q2
1

+
1
2
mω2q2

1

)
−
(
− h̄2

2m
∂2

∂q2
2

+
1
2
mω2q2

2

)]
. (8.6)

These operators satisfy the commutation rules for the three-dimensional rotation
group

[Gi, Gj ] = −ih̄
∑
k

εijkGk. (8.7)

We can also relate these Gi s to the Hamiltonian operator by

H2 − h̄2ω2

2
= 2ω2

(
G2

1 +G2
2

)
+

1
4
[
(H + 2ωG3)2 + (H − 2ωG3)2

]
(8.8)

or
H2 = h̄2ω2 + 4ω2

(
G2

1 +G2
2 +G2

3

)
. (8.9)

The eigenvalues of G2 are identical to those of L2, i.e. h̄2n(n + 1), (Sec. 9.2),
and therefore the eigenvalues of H2 are〈

n
∣∣H2

∣∣n〉 = h̄2ω2 + 4ω2n(n+ 1) = h̄2ω2 (2n+ 1)2
, n = 0, 1, · · · . (8.10)
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(The connection between the eigenvalues of the two-dimensional isotropic har-
monic oscillator and the orbital angular momentum will be discussed in Sec.
9.5). From this we conclude that the matrix H is a diagonal matrix with the
elements

〈n|H|n〉 = h̄ω(2n+ 1), n = 0, 1, · · · , (8.11)

and that these are the energy levels of an isotropic two-dimensional oscillator.

8.2 Exactly Solvable Potentials Obtained from
Heisenberg’s Equation

Soon after the discovery of wave mechanics there were attempts to find exact
solutions for the Schrödinger equation with different potential functions. Apart
from the well-known problems of the harmonic oscillator and the hydrogen atom
(or Kepler problem), other potentials for specific physical situations were found
for which the eigenvalues and the wave function could be obtained exactly.
The first requirement for exact solvability is to find a curvilinear coordinate
system in which the wave equation can be separated into a number of ordinary
differential equations. For velocity independent forces, we know that there are
eleven coordinate systems were the Laplacian is separable [1]. From these eleven
coordinate systems, three are very important in quantum mechanics. Cartesian
system for the problems of harmonic oscillator and free particle, spherical polar
coordinates for a large number of problems having spherical symmetry, and
parabolic coordinates for solving the Stark effect and also scattering by the
Coulomb force. By separating the variables in these systems we obtain a set of
three ordinary differential equations each of the the second order. We call these
problems solvable if all three equations can be solved analytically.

Once the ordinary differential equation is obtained, then with the choice of
proper potential functions, we can find the eigenfunctions and the eigenvalues.
Among these potentials we have the Eckart potential [2] for quantum tunneling,
the Morse potential [3] for molecular vibration and the Kronig-Penny potential
for the motion of an electron in a crystal lattice [4]. A very general approach
to determine the form of exactly potentials for the Schrödinger equation was
found by Manning [5]. Recent works on the role of supersymmetry in quantum
field theory has renewed interest in solvable potentials, particularly those that
can be found by factorization method.

To obtain solvable potentials for one-dimensional motion we start with the
basic equations, viz, the canonical commutation relation (7.20) and the equation
of motion (7.6), and for simplicity we take the mass of particle m as the unit
of mass. When written in the representation in which the Hamiltonian H is
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diagonal these equations become∑
k

(2Ek − En − Ej) 〈n|x|k〉〈k|x|j〉 = δnj , (8.12)

and
(Ej − En)2 〈n|x|j〉 = 〈n|V ′|j〉. (8.13)

If the potential is not a polynomial then in general we want to change the
position coordinate from x to a function of x, say f(x). When this is done then
the equation for the commutator

[x [x,H]] = −1 (8.14)

changes to
[ [f(x),H], f(x)] = (f ′(x))2 (8.15)

and the equation of motion (7.6) becomes

[ [f(x),H],H] = − (f ′′(x)H +Hf ′′(x)) + 2f ′′(x)V (x) + f ′(x)V ′(x)− 1
4
f (4)(x).

(8.16)
Here primes denote derivatives with respect to x and f (4)(x) denotes the fourth
derivative of f(x).

We can find a set of exactly solvable potentials if the double commutator
(8.16) reduces to a linear expression in f(x). For this reduction we set [6]

2f ′′(x)V (x) + f ′(x)V ′(x) = αf(x) + β, (8.17)

and
f ′′(x) = µf(x) + ν, (8.18)

where α, β, µ and ν are all constants. Equation (8.18) is a condition that we
impose on f(x) so that f (4)(x) can be absorbed in f ′′(x). Once these equations
are satisfied then Eq. (8.17) becomes a differential equation for V (x). By
integrating (8.17) and (8.18) we find that

V (x) =
1

2 (f ′(x))2

(
αf2(x) + 2βf(x) + γ

)
, (8.19)

with
(f ′(x))2 = µf2(x) + 2νf(x) + σ. (8.20)

In these relations γ and σ are the integration constants. By substituting for
V (x) , f ′(x), f ′′(x) and f (4)(x) in (8.16) we obtain the following expression for
the double commutator which is linear in f(x);

[ [f(x),H],H] =
(
α− 1

4
µ2

)
f(x)−µ[f(x)H+Hf(x)]−2νH+β− 1

4
µν. (8.21)
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Similarly we need the double commutator [ [f(x),H], f(x)] for the determination
of the solvable potentials. This can be derived from the Hamiltonian

H =
1
2
p2 +

1
2 (f ′(x))2

(
αf2(x) + 2βf(x) + γ

)
, (8.22)

and is given by

[ [f(x),H], f(x)] = (f ′(x))2 = µf2(x) + 2νf(x) + σ. (8.23)

To obtain the general form of the solvable potentials we first integrate
(8.23) and solve for f(x) to get

f(x) =
1

4µ
e
√
µ (x+c) +

(
ν2

µ
− σ

)
e−
√
µ (x+c) − ν

µ
. (8.24)

Substituting this result in (8.22) we find the Hamiltonian and the potential.
Some of the exactly solvable potentials obtained in this way are as follows

[6]:
(1) - If we choose µ = σ = 0, ν = 2 in (8.20) and c = 0, then f(x) = x2.

Now with α = 4ω2, β = γ = 0 we find the harmonic oscillator Hamiltonian.
(2) - With the same f(x) and α as in (1) but with γ = 4h̄2`(` + 1) we

have

V (x) =
1
2
ω2x2 +

h̄2`(`+ 1)
2x2

, h̄ = 1, (8.25)

which is the effective potential for a three-dimensional isotropic harmonic oscil-
lator.

We can determine the matrix elements of the function f(x) and the eigen-
values of the Hamiltonian (8.22) when the potential is given by the general
form (8.19). Here in addition to the commutators (8.22) and (8.23) we need the
following anticommutator[

f ′(x)2,H
]
+

= [f(x),H][H, f(x)]− 1
2
f ′(x)f ′′′(x)

− 3
4

(f ′′(x))2 + 2 (f ′(x))2
V (x)

= [f(x),H][H, f(x)] +
(
α− 5

4
µ2

)
f2(x)

+ 2
(
β − 5

4
µν

)
f(x) + γ − 3

4
ν2 − 1

2
µσ.

(8.26)

Now we calculate the matrix elements of (8.21) between the states 〈n| and
|n′〉, i.e. between the eigenstates of the Hamiltonian (8.22)[

(En′ − En)2 + µ(En′ + En)−
(
α− 1

4
µ2

)]
fn,n′

= δn,n′

(
β − 1

4
µν − 2νEn

)
. (8.27)
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Because (8.21) is linear in f(x), as in the case of harmonic oscillator, the non-
vanishing matrix elements are the diagonal elements, n = n′, and those of
neighboring states n′ = n±1. From (8.27) it follows that for n′ = n+1 we have

(En+1 − En)2 + µ(En+1 + En) = α− 1
4
µ2, (8.28)

which gives us a recursion relation between the eigenvalues, but not each indi-
vidual eigenvalue. In addition the diagonal element, fn,n, is given in terms of
En by

fn,n =
β − 1

4µν − 2νEn
2µEn − α+ 1

4µ
2
. (8.29)

Noting that only fn,n and fn,n±1 are nonzero, from the matrix elements of the
commutator (8.23) we find that

[2(En+1 − En)− µ] f2
n,n+1 = [2(En − En−1) + µ] f2

n−1,n + µf2
n,n + 2νfn,n + σ.

(8.30)
For the determination of En s we also need the diagonal elements of (8.26), viz,

2En
[
µf2

n,n + 2νfn,n + σ
]

= (En+1 − En)2f2
n,n+1 + (En − En−1)2f2

n−1,n +
(
α− 5

4
µ2

)
f2
n,n

+ 2
(
β − 5

4
µν

)
fn,n + γ − 3

4
ν2 − 1

2
µσ, (8.31)

where for (f ′(x))2 we have substituted from (8.20) and where(
f2
)
n,n

=
〈
n
∣∣f2
∣∣n〉 = f2

n,n+1 + f2
n,n−1 + f2

n,n. (8.32)

By eliminating fn,n, fn,n±1, En−1 and En+1 between equations (8.28)-(8.31) we
find the energy eigenvalue En given in terms of the parameters of the potential;

En = − 1
2µ

{
Γ(α, β, γ, µ, ν, σ)−

(
n+

1
2

)2

µ

}2

+
α

2µ
. (8.33)

In this expression n is an integer which for µ > 0 must be between zero and(
Γ
µ −

1
2

)
, and Γ(α, β, γ, µ, ν, σ) is a function of the parameters of the potential

[6]

Γ(α, β, γ, µ, ν, σ)

=

1
2

(
α+

µ2

4
− µγ′

σ′

)
± 1

2

[(
α+

µ2

4
− µγ′

σ′

)2

+
4µ (β′)2

σ′

] 1
2


1
2

,

(8.34)
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with β′, γ′ and σ′ given by
β′ = β − αν

µ
, (8.35)

γ′ = γ − 2βν
µ

+
αν2

µ2
, (8.36)

and

σ′ = σ − ν2

µ
. (8.37)

Next we choose the parameters of V (x) in (8.19) as follows:

α = ν = σ = 0, and γ =
λ

8µ
, β = −λµ

4
, (8.38)

then (8.19) reduces to the Morse potential [3]

V (x) = λ
(
e−2
√
µ (x+c) − 2e−

√
µ (x+c)

)
. (8.39)

Since we want to take the limit of σ → 0, we choose the positive square root
of the term inside the curly bracket in (8.34) to get a real result. In the limit
of σ → 0 and ν → 0, we obtain Γ =

√
2λµ and then from (8.33) for the bound

states of the Morse potential we find the eigenvalues

En = −λ+
√

2λµ
(
n+

1
2

)
− 1

2
µ

(
n+

1
2

)2

, n = 0, 1, 2 · · · . (8.40)

If we want to write these eigenvalues for a particle of mass m then En becomes

En = −λ+

√
2λµ
m

(
n+

1
2

)
− 1

2m
µ

(
n+

1
2

)2

, n = 0, 1, 2 · · · . (8.41)

We can also find the eigenvalues of the Pöschl-Teller potential as a special
case of (8.19). To get this potential we choose the following set of parameters

c = α = β = 0,
1

4µ
=
(
ν2

4µ
− σ

)
, γ = − λ

8µ
, (8.42)

and with these parameters the potential V (x) becomes

V (x) =
−λµ

cosh2(
√
µx)

. (8.43)

The eigenvalues calculated from (8.33) are given by

En = −µ
2

[√
2λ+

1
4
−
(
n+

1
2

)]2

, n = 0, 1, · · · , N. (8.44)

where N is an integer smaller but closest to
(√

2λ+ 1
4 −

1
2

)
.
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8.3 Creation and Annihilation Operators

The assumption that we made to simplify Eq. (8.16), i.e. those given by Eqs.
(8.17) and (8.18), can be slightly generalized and be written in terms of time-
dependent creation and annihilation operators. This generalization also helps
us to relate the present method to the factorization technique which will be
discussed later in this chapter.

As we argued earlier we want to reduce (8.16) to a relation where the
double commutator becomes a linear function of f(x). The most general form
for the right side of (8.16) in this case is [7],[8];

[H, [H, f(x)]] = f(x)R0(H) + [H, f(x)]R1(H) +R−1(H), (8.45)

where R0, R1 and R−1 are all functions of the Hamiltonian. These functions are
related to the parameters of the potential V (x), Eq. (8.19), by

R0(H) = −2µH +
(
α− µ2

4

)
, (8.46)

R1(H) = −µ, (8.47)

and
R−1(H) = −2νH +

(
β − µν

4

)
. (8.48)

Since (8.45) is also linear in f(x), we expect the potential to be of the general
form given by (8.19). However now we are interested in the time evolution of
f(x) and in the time-dependent operators corresponding to the creation and
annihilation operators. To this end we introduce the notation

[H, [H, [H, · · · , [H︸ ︷︷ ︸
n

, f(x)] · · · ] ] = (CH)nf(x), (8.49)

and consider the Heisenberg equation

eiHtf(x)e−iHt =
∞∑
n=0

(it)n

n!
(CH)nf(x)

= [H, f(x)]
(
eiα+(H)t − eiα−(H)t

α+(H)− α−(H)

)
− R−1(H)

R0(H)

+
(
f(x) +

R−1(H)
R0(H)

)(
α+(H)eiα−(H)t − α−(H)eiα+(H)t

α+(H)− α−(H)

)
.

(8.50)

In this relation α+(H) and α−(H) are frequency like quantities and are given
by

α±(H) =
1
2

{
R1(H)±

√
(R1(H))2 + 4R0(H)

}
. (8.51)
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As the right-hand side of Eq. (8.50) has two different time-dependent factors
and also a constant term, the left-hand side can have three nonvanishing matrix
elements. Therefore 〈

φj
∣∣eiHtf(x)e−iHt

∣∣φn〉 , (8.52)

is zero unless j = n or j = n ± 1. Hence the eigenvalues must satisfy the
conditions

En+1 − En = α+(En), (8.53)

and
En−1 − En = α−(En). (8.54)

These equations will give us the same eigenvalues as (8.28). If we add a constant
number to the potential so that the ground state energy becomes zero, E0 = 0,
then we can determine E1, E2, · · · from Eq. (8.53).

Now let us write (8.50) in terms of positive and negative frequency parts;

eiHtf(x)e−iHt = a+(H, f(x))eiα+(H)t

+ a−(H, f(x))eiα−(H)t − R−1(H)
R0(H)

, (8.55)

where the creation and annihilation operators which we denote by a+(H, f(x))
and a−(H, f(x)) are defined by

a+(H, f(x)) =
[H, f(x)]−

(
f(x) + R−1(H)

R0(H)

)
α−(H)

α+(H)− α−(H)
, (8.56)

and

a−(H, f(x)) =
−[H, f(x)] +

(
f(x) + R−1(H)

R0(H)

)
α+(H)

α+(H)− α−(H)
. (8.57)

The action of annihilation operator on φn(x) gives us

a−(H, f(x))φn(x) =
−1

En+1 − En−1

×
{

[H, f(x)] + (En − En+1)f(x) +
R−1(H)
En−1 − En

}
φn(x).

(8.58)

Similarly for the creation operator we find

a+(H, f(x))φn(x) =
1

En+1 − En−1

×
{

[H, f(x)] + (En − En−1)f(x) +
R−1(H)
En+1 − En

}
φn(x).

(8.59)
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In particular for n = 0 and E0 = 0, therefore the action of a−(H, f(x)) on φ0

should yield zero,

−[H, f(x)]φ0(x) +
(
f(x)α+(0)− R−1(0)

α−(0)

)
φ0(x) = 0. (8.60)

This is the equation which defines the ground state wave function up to a
normalization constant.

A Simple Example — Consider the motion of a particle of unit mass
in the Pöschl–Teller potential

V (x) =
g(g − 1)
2 sin2 x

− g2

2
, 0 < x < π (8.61)

This potential like (8.43) is a special case of the general form given by (8.19).
It is found by setting α = β = 0, γ = g(g − 1) and f(x) = cosx in (8.19),
and then adding the constant term − g

2

2 to it. The commutators [H, f(x)] and
[H, [H, f(x)]] for this potential are

[H, f(x)] = i sinxp+
1
2

cosx, (8.62)

and

[H, [H, f(x)]] = cosx
(

2H + g2 − 1
4

)
+ [H, cosx]. (8.63)

Comparing (8.63) with (8.45) we find

R0(H) =
(

2H + g2 − 1
4

)
, (8.64)

R1(H) = 1, (8.65)

R−1(H) = 0. (8.66)

Substituting these in (8.51) we obtain α±(H);

α±(H) =
1
2
±
√

2H + g2. (8.67)

From Eqs. (8.56), (8.57), (8.62) and (8.67) we find the creation and annihilation
operators a±;

a′ ± = a±
(

2
√

2H + g2
)

= ±i sinx p+ cosx
√

2H + g2

= cosx
√

2H + g2 ± sinx
d

dx
. (8.68)

We note that a′ + is not the Hermitian adjoint of a′ − and for this reason we
have not used a† and a to denote these operators.

The eigenvalues for this problem can be found from Eqs. (8.54) and (8.67)
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and remembering that we have set E0 = 0. The recurrence relation (8.54) gives
us

En = n
(n

2
+ g
)
, n = 0, 1, 2 · · · . (8.69)

Now let us consider the action of the a′ − and a′ + on φn(x);

a′ −φn(x) = − sinx
dφn(x)

dx
+ (n+ g) cosx φn(x)

=

(
n+ g − 1

2

)
φn−1, (8.70)

and

a′ +φn(x) = sinx
dφn(x)

dx
+ (n+ g) cosx φn(x)

=
2(n+ 1)(n+ 2g)

2n+ 2g + 1
φn+1. (8.71)

These recursion relations determine the wave function to within a normalization
constant,

φn(x) = (sinx)gP
(g− 1

2 , g−
1
2 )

n (cosx), (8.72)

where P β,βn is the Jacobi polynomial [9].

8.4 Determination of the Eigenvalues by
Factorization Method

Let A be a Hermitian operator which is independent of time, and we want to
find its eigenvalues. For the ground state we write A = A1 and we express A1

as
A1 = a†1a1 + λ1, (8.73)

where a†1 is the Hermitian conjugate of a1 and λ1 is a number multiplies by a
unit operator. If we can factorize A1 in more than one way, then we choose the
way which gives us the largest λ1.

Eigenvalues and Eigenfunctions of a Simple Harmonic Oscillator
— The simplest problem that we can solve by factorization method is that of
the harmonic oscillator. Let us start with the simple example where

A = H =
1

2m

(
p2 +m2ω2q2

)
, (8.74)

that is the problem of simple harmonic oscillator. In this case we write (8.73)
as

A1 =
1

2m

(
p2 +m2ω2q2

)
=

1

2m
(p+ imωq)(p− imωq)− iω

2
(qp− pq)

=
1

2m
(p+ imωq)(p− imωq) +

h̄ω

2
, (8.75)
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i.e. we have chosen

a†1 =
1√
2

(p+ imωq), and a1 =
1√
2

(p− imωq). (8.76)

Next we define A2 by
A2 = a1a

†
1 + λ1, (8.77)

and try to write it as
A2 = a†2a2 + λ2, (8.78)

where λ2 is again a number. Using the definitions of a1 and a†1 we can write A2

as

A2 =
1

2m
(p− imωq)(p+ imωq) +

h̄ω

2

=
1

2m
(p+ imωq)(p− imωq) +

3h̄ω
2
. (8.79)

This process can be continued and in this way we can determine all of the
eigenvalues of H, viz,

λn =
(
n+

1
2

)
h̄ω. (8.80)

Let us denote the eigenvector of A by |ψ〉 and its corresponding eigenvalue
by λ, i.e. A|ψ〉 = λ|ψ〉, and define a state |φn〉 by

|φn〉 = anan−1 · · · a2a1|ψ〉. (8.81)

Then
〈φ1|φ1〉 =

〈
ψ
∣∣∣a†1a1

∣∣∣ψ〉 = (λ− λ1). (8.82)

The left-hand side of (8.82) is positive definite, therefore λ−λ1 ≥ 0, so λ cannot
be less than λ1. From the way that we have defined different Aj s it follows
that

Aj+1aj =
(
aja
†
j + λj

)
aj = aj

(
a†jaj + λj

)
= ajAj . (8.83)

Using this result and the definition of |φ2〉 we have

〈φ2|φ2〉 =
〈
ψ
∣∣∣a†1a†2a2a1

∣∣∣ψ〉 =
〈
ψ
∣∣∣a†1(A2 − λ2)a1

∣∣∣ψ〉
=

〈
ψ
∣∣∣a†1a1(A1 − λ2)

∣∣∣ψ〉 = (λ− λ2)〈φ1|φ1〉 = (λ− λ2)(λ− λ1).

(8.84)

Again this relation shows that λ ≥ λ2 unless λ = λ1. Continuing this process
we find

(λ− λn)(λ− λn−1) · · · (λ− λ1) ≥ 0. (8.85)

This relation indicates that either λ ≥ λn or otherwise we have the relation

(λ− λn−1) · · · (λ− λ1) = 0. (8.86)
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Thus λ must be equal to one of the λj s or be greater than all of them. Noting
that λj+1 ≥ λj , if the sequence {λj} is unbound then λ must coincide with one
of the λj s. On the other hand if the sequence {λj} is bound, and if λmax is its
upper bound, then λ can have one of the values λj or an unrestricted value not
less than λmax [19].

Eigenfunctions of the Simple Harmonic Oscillator — We have al-
ready discussed the problem of determination of the eigenvalues for the harmonic
oscillator using the factorization method. In order to obtain the eigenfunctions
for this problem we start with the ground state of the system. This state is
defined as the eigenfunction of the annihilation operator

a1ψ0(q) =
1√
2

(
−ih̄ d

dq
− imωq

)
ψ0(q) = 0. (8.87)

Solving the differential equation (8.87) we have

ψ0(q) = N0 exp
(
−1

2
β2q2

)
, (8.88)

where β =
√

mω
h̄ . The factor N0 is the normalization constant obtained from∫ ∞

−∞
|ψ0(q)|2dq = 1, (8.89)

and is given by N0 =
(
mω
πh̄

) 1
4 . The eigenfunction for the first excited state is

found by applying a2 = a†1 to ψ0(q);

ψ1(q) = a2ψ0(q) =
1√
2

(
−ih̄ d

dq
+ imωq

)
ψ0(q). (8.90)

This equation gives us |ψ1〉, which after being normalized can be written as

ψ1(q) =

√
2mω
h̄

(mω
πh̄

) 1
4
q exp

(
−1

2
β2q2

)
=

√
2
π
β−

3
2 q exp

(
−1

2
β2q2

)
.

(8.91)
We can continue this process and find the n-th excited state wave function

ψn(q) = NnHn(αq) exp
(
−1

2
β2q2

)
, (8.92)

where Hn(βq) is the Hermite polynomial of degree n and Nn, the normalization
constant is

Nn =
1√

2nn!

(mω
πh̄

) 1
4
. (8.93)

Finally we can find the time-dependence of the operators a1(t) and a†1(t) by
differentiating them with respect to time. Then using the Heisenberg equations
of motion

ṗ(t) = mωq(t), q̇(t) =
1
m
p(t), (8.94)
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we obtain
ȧ1(t) =

1√
2

(ṗ(t)− imωq̇(t)) = −iωa1(t). (8.95)

Thus the time-dependence of a1(t) and a†1(t) are given by

a1(t) = a1(0)e−iωt, (8.96)

and
a†1(t) = a†1(0)eiωt, (8.97)

Eigenvalues for the Motion of a Particle in a Box — As a second
example let us calculate the energy eigenvalues for a particle trapped in a box
of unit length − 1

2 ≤ x ≤ 1
2 . For this case the Hamiltonian is simple H = p2

2m ,
but we must find suitable raising and lowering operators a†j and aj so that we
can satisfy the boundary conditions. Let us define aj by

aj =
1√
2m

[p+ iγj tan(kjx)]. (8.98)

Since the motion of the particle is confined to − 1
2 ≤ x ≤ 1

2 , aj can become
infinite only at the boundaries, and thus |kj | ≤ π.

According to our formulation a†1a1, apart from the number λ1, must be
the Hamiltonian, Eq. (8.73). But first we calculate a†jaj as well as aja

†
j ;

a†jaj =
1

2m
{
p2 + γ2

j tan2(kjx) + iγj [p, tan(kjx)]
}

=
1

2m
{
p2 + γ2

j tan2(kjx) + h̄kjγj sec2(kjx)
}

=
1

2m
{
p2 + h̄kjγj + γj(γj + h̄kj) tan2(kjx)

}
, (8.99)

and
aja
†
j =

1
2m

{
p2 − h̄kjγj + γj(γj − h̄kj) tan2(kjx)

}
. (8.100)

For j = 1, Eq. (8.99) should reduce to the Hamiltonian plus a number c1, and
for this to be true we must have

γ1(γ1 + h̄k1) = 0, (8.101)

and
γ1h̄k1 + λ1 = 0. (8.102)

Solving these equations for γ1 and λ1 we find

γ1 = −h̄k1, and λ1 = −γ1h̄k1 = (h̄k1)2. (8.103)

The maximum value of λ1 is found when k1 assumes its maximum value which
is π, and thus the ground state energy is λ1 = (πh̄)2.

To calculate the energy of other states we use the relation

a†j+1aj+1 + λj+1 = aja
†
j + λj , (8.104)
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which shows that
kj+1 = kj = · · · = k1 = π, (8.105)

and
γj+1(γj+1 + h̄kj+1) = γj(γj − h̄kj). (8.106)

Thus the eigenvalues satisfy the relation

λj+1 + γj+1h̄kj+1 = λj − γj h̄kj , (8.107)

or
λj+1 − γ2

j+1 = λj − γ2
j = · · · = λ1 − γ2

1 = 0. (8.108)

Equation (8.108) shows us that λj = γ2
j and also from (8.106)

γj+1(γj+1 + πh̄) = γj(γj − πh̄). (8.109)

Solving (8.109) for γj+1 we find that either γj+1 = −γj or

γj+1 = γj − h̄π = · · · = γ1 − jh̄π = −(j + 1)h̄π. (8.110)

The first solution, i.e. γj+1 = −γj is unacceptable and thus we get

λj = γ2
j = j2h̄2π2. (8.111)

To obtain the wave function we start with the ground state. Since this is
the lowest state and we cannot produce any lower state, therefore a1|φ0〉 = 0,
where |φ0〉 denotes the ground sate. To find the wave function in coordinate
space we use a1 as defined by (8.98) and write[

−ih̄ d

dx
− ih̄π tan(πx)

]
φ0(x) = 0, (8.112)

where in (8.112) we have substituted for λ and k1 from (8.105) and (8.110).
Integrating (8.112) we find

φ0(x) = N0 cos(πx), (8.113)

where N0 is the normalization constant.
Wave functions for the excited states can be found by noting that if we

write
φj(x) = cosj(πx)φ0(x), (8.114)

then ajφj−1(x) = 0, and with the help of this relation we can find other wave
functions, ψj(x), j = 1, 2 · · · from (8.81) or from

ψj(x) = a∗1a
∗
2 · · · a∗j−1φj−1(x). (8.115)
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8.5 A General Method for Factorization

The method that we outlined in the last section to obtain the eigenvalues and
eigenfunctions can be extended to other solvable potentials [10]–[15].

Let us consider a self-adjoint operator H depending on a parameter j. We
want to determine the eigenvalues of H which is of the form [λ− L(j)];

H|λ, j〉 = [λ− L(j)]|λ, j〉. (8.116)

We assume that there exists a pair of mutually adjoint operators β+(j) and
β−(j) such that [

H,β+(j)
]

= Hβ+(j)− β+(j)H = β+(j), (8.117)

and [
H,β−(j)

]
= Hβ−(j)− β−(j)H = −β−(j). (8.118)

From Eqs. (8.116)–(8.118) we find

H
(
β+(j)|λ, j〉

)
= [λ− L(j + 1)]

(
β+(j)|λ, j〉

)
, (8.119)

and
H
(
β−(j)|λ, j〉

)
= [λ− L(j − 1)]

(
β−(j)|λ, j〉

)
. (8.120)

We may interpret these results as

β+(j)|λ, j〉 ∼ |λ, j + 1〉, (8.121)

and
β−(j)|λ, j〉 ∼ |λ, j − 1〉, (8.122)

i.e. β+(j) and β−(j) are the ladder operators changing the eigenstates of H
upwards or downwards. We note that these ladder operators are not self-adjoint
operators.

For local potentials the Hamiltonian operator is a quadratic function of the
momentum of the particle and the corresponding wave equation is a second order
differential equation. In this method of factorization we write the Hamiltonian
as the product of two operators, each linear in momentum, one being a raising
and the other a lowering operator. The two example that we have seen earlier
illustrates how this technique can be utilized to obtain the eigenvalues and the
eigenfunctions of a number of problems.

For exactly solvable potentials it is more convenient to work with real
raising and lowering operators. To this end we introduce β+ = ia, and β− =
−ia† and we write the Hamiltonian in the simple form of

H = − d2

d q2
+ V (q, j), (8.123)
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where we have used the units h̄ = 2m = 1. The constant j which is appearing
in the potential is assumed to be an integer. Under certain conditions to be
discussed later, Eq. (8.123), can be factorized and can be written as

H = β−(j)β+(j), (8.124)

or as
H = β+(j + 1)β−(j + 1), (8.125)

where β+ and β− are raising and lowering operators. They are defined by

β±(j) = W (q, j)± d

dq
. (8.126)

The function W (q, j) which depends on the form of the potential will be deter-
mined later.

Denoting the eigenfunction of H corresponding to the eigenvalue λ by
|λ, q〉 we want β+(j) and β−(j) to have the properties discussed earlier, (8.121)
and (8.122), and are properly normalized,

|λ, j + 1〉 = β−|λ, j〉, (8.127)

|λ, j − 1〉 = β+|λ, j〉. (8.128)

These relations show that if |λ, j〉 is known we can find two other eigenfunctions
|λ, j+1〉 and |λ, j−1〉, with the help of Eqs. (8.127) and (8.128). Repeating this
process we can determine a ladder of solutions for a fixed λ. Since H defined
by Eq. (8.116) can be expressed either as (8.124) or (8.125), therefore we have

β−(j)β+(j)|λ, j〉 = [λ− L(j)]|λ, j〉, (8.129)

or
β+(j + 1)β−(j + 1)|λ, j〉 = [λ− L(j + 1)]|λ, j〉. (8.130)

Substituting for β−(j), β+(j), β+(j + 1) and β−(j + 1) from (8.126) and sub-
tracting (8.129) from (8.130) we find

W 2(q, j+1)−W 2(q, j)+
dW (q, j + 1)

dq
+
dW (q, j)

dq
= [L(j)−L(j+1)]. (8.131)

This condition is both necessary and sufficient for the factorization of the Hamil-
tonian (8.123).

Next we will consider the relationship between the two functions W (q, j)
and L(j) and the potential function V (q, j) in the Hamiltonian. This is found
by substituting for β−(j) and β+(j) or for β−(j+1) and β+(j+1) from (8.126)
and comparing the result with (8.123);

V (q, j) = W 2(q, j)− d

dq
W (q, j) + L(j)

= W 2(q, j + 1) +
d

dq
W (q, j + 1) + L(j + 1). (8.132)
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Thus for a given V (q, j) we can determine W (q, j) and L(j) by solving (8.132),
which means solving a Riccati equation for W (q, j) (or W (q, j + 1)). If the
ground state wave function for the Hamiltonian (8.123), φ0(q, j), is known then
W (q, j) can be obtained from

W (q, j) = − d

dq
lnφ0(q, j). (8.133)

Note that in (8.133), φ0(q, j) has no nodes, therefore W (q, j) is well-defined. A
more convenient way is to assume a simple dependence of W (q, j) on j (or on
q) and then find V (q, j) from (8.132). Using this method we can obtain a table
of V (q, j) s and the corresponding W (q, j) s and L(j) s. Let us consider the
application of the factorization method in some detail:

(i) - The simplest case is to assume that W (q, j) is independent of q, then
L(j) = −W 2(j) and V (q, j) will be zero. This corresponds to the motion of a
free particle where the wave function is a trigonometric function.

(ii) - The next simple case is the one in which W (q, j) is a linear function
of j;

W (q, j) = v(q) + jw(q). (8.134)

By substituting (8.134) in (8.131) we observe that for L(j) to be independent
of q, v(q) and w(q) must satisfy the following relations:

dw(q)
dq

+ w2(q) = A, (8.135)

and
dv(q)
dq

+ v(q)w(q) = B, (8.136)

where A and B are constants.
(iii) - The third possible choice of W (q, j) for which makes L(j) indepen-

dent of q is when W (q, j) is proportional to 1
j

W (q, j) =
1
j
y(q) + jw(q), (8.137)

where again from Eq. (8.131) it follows that

dw(q)
dq

+ w2(q) = A′, y(q) = B′. (8.138)

In these equations A′ and B′ are constants.
By solving Eqs. (8.135), (8.136) and (8.138) with different values of the

constants A,B,A′ and B′, including zero we find the following forms for W (q, j)
and L(j):

(a) - When L(j) is a linear function of j we have two possible forms for
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W (q, j).
(1) - For L(j) = −b

(
2j − 1

2

)
, W (q, j) found from (8.134) is

W (q, j) = (j + c)
1
q

+
1
2
bq, (8.139)

and the potential V (q, j) is

V (q, j) = −1
4
b2q2 + b(j − c)− (j + c)(j + c+ 1)

q2
. (8.140)

(2) - If we choose L(j) = −2bj, then

W (q, j) = bq + d, (8.141)

and is independent of j. Substituting these in (8.132) gives us the potential

V (q, j) = −(bq + d)2 + b(2j + 1). (8.142)

(b) - Now let us examine those cases where L(j) is a quadratic function
of j:

(3) - If we choose L(j) = b2(j + c)2 we observe that the right-hand side
of (8.131) is [−2b2(j + c)− b2] and is linear in j. Therefore we take W (q, j) to
be of the form (8.134) and solve (8.135) and (8.136) to find the general form of
W (q, j) compatible with this L(j);

W (q, j) = (j + c)b cot[b(q + θ)] + d csc[b(q + θ)], (8.143)

where d and θ are constants. The potential derived from this W (q, j) is

V (q, j) =

{
b2(j + c)(j + c+ 1) + d2 + 2bd

(
j + c+ 1

2

)
cos[b(q + θ)]

}
sin2[b(q + θ)]

. (8.144)

(4) - When
L(j) = −(j + c)2, (8.145)

again W (q, j) is linear in j. Thus by solving (8.135) and (8.136) we find W (q, j)
to be

W (q, j) = −j − c+ deq, (8.146)

and the corresponding potential is

V (q, j) = d2e2q − 2d
(
j + c+

1
2

)
eq. (8.147)

With the same L(j), Eq. (8.145), but with different constants A and B in
(8.135) and (8.136) we get a different W (q, j) which is still a linear function of
j.

(5) - Choosing W (q, j) to be

W (q, j) = (j + c)b coth[b(q + α)], (8.148)
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then the solvable potential is of the form

V (q, j) =
b2(j + c)(1 + c+ j)

sinh2[b(q + α)]
. (8.149)

(6) - Alternatively we can choose

W (q, j) = (j + c)b tanh[b(q + α)], (8.150)

with the resulting potential

V (q, j) = −b
2(j + c)(1 + c+ j)
cosh2[b(q + α)]

. (8.151)

(c) - When L(j) is inversely proportional to j2, L(j) = − 1
j2 , then W (q, j)

is a solution of (8.137)

W (q, j) =
B′

j
+ jw(q), (8.152)

where w(q) is a solution of (8.138). Setting A′ in (8.138) equal to zero and
B′ = −1 we find w(q) = q−1 and

W (q, j) =
(
j

q
− 1
j

)
. (8.153)

The potential in this case is that of the Kepler problem (or hydrogen atom)

V (q, j) =
2
q
− j(j + 1)

q2
. (8.154)

We can generalize this problem by assuming that L(j) = −(q + c)−1, and then
the corresponding W (q, j) and the potential are

W (q, j) =
(

(j + c)
q

− 1
(j + c)

)
, (8.155)

and

V (q, j) =
2
q
− (j + c)(j + c+ 1)

q2
. (8.156)

respectively. A number of other local potentials for which the eigenvalues and
eigenvectors can be found are discussed in detail by Infeld and Hull [13]-[14].

Now that we have found analytical expressions for raising and lowering
operators, we want to determine the eigenvalues and the corresponding wave
functions for these solvable potentials.

When V (q, j) is such that the Eq. (8.132) is satisfied and in addition we
have L(j+ 1) > L(j), then as we will see the eigenvalues will be independent of
j. Let us consider the scalar product

〈λn, j + 1|λn, j + 1〉 = 〈λn, j|β+(j + 1)β−(j + 1)|λn, j〉
= (λn − L(j + 1))〈λn, j|λn, j〉, (8.157)
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where we have used Eqs. (8.125) and (8.130) to obtain (8.157). Since both of the
scalar products on the left and on the right of (8.157) are positive, (λn−L(j+1))
cannot be negative. Now L(j+1) increases with increasing j, consequently there
can be no eigenfunction for j larger than a certain maximum number n, i.e.

λn = L(n+ 1), n = j, j + 1, j + 2, · · · , (8.158)

and since L(j) is known therefore λn can be determined. From Eq. (8.157) it
follows that for j = n, the ket |λn, n+ 1〉 has to be zero or

β−(n+ 1)|λn, n〉 =
(
W (q, n+ 1)− d

dq

)
|λn, n〉 = 0. (8.159)

Denoting the wave function corresponding to the state |λn, n〉 by φn(q, n) we
have

β−(n+ 1)φn(q, n) =
(
W (q, n+ 1)− d

dq

)
φn(q, n) = 0. (8.160)

We can integrate (8.160) to find φn(q, n);

φn(q, n) =
e

∫ q
a
W (q′,n+1)dq′{∫ b

a
exp

[
2
∫ b
a
W (q′, n+ 1)dq′

]
dq
} 1

2
. (8.161)

Here we have normalized the wave function assuming that the coordinate q can
change continuously from a to be b (a and b can be finite or infinite) .

For other j states having the same eigenvalue, we can use the raising
operator β+(j + 1), β+(j + 2), · · · and operate on φn(q, n);

φn(q, j) = β+(j + 1)β+(j + 2) · · ·β+(n)φn(q, n). (8.162)

The wave function φn(q, j) obtained in this way is

φn(q, j) =
1√

L(n+ 1)− L(j + 1)

[
W (q, j + 1) +

d

dx

]
φn(q, j + 1). (8.163)

We note that the wave functions belonging to the same j but with two different
eigenvalues are orthogonal to each other;∫ b

a

φn(q, j)φn′(q, j)dq = δnn′ . (8.164)

If L(j + 1) < L(j), then

λn = L(n), n = j, j − 1, j − 2, · · · . (8.165)

Here as in the other case we can calculate φn(q, n) and then in turn find φn(q, j);

φn(q, n) =
e
−
∫ q
a
W (q′,n)dq′{∫ b

a
exp

[
−2
∫ b
a
W (q′, n)dq′

]
dq
} 1

2
, (8.166)
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and

φn(q, j) =
1√

L(n)− L(j)

[
W (q, j)− d

dx

]
φn(q, j − 1). (8.167)

Pöschl–Teller Potential — Consider the general form of the Pöschl–
Teller potential given by

V (q, j) =
{
b2(j + c)(1 + c+ j)

sinh2[b(q + α)]
− b2(j − c)(1− c+ j)

cosh2[b(q + α)]

}
, (8.168)

where as in (8.149) and (8.150) we have

W (q, j) = (j − c)b tanh[b(q + α)] + (j + c)b coth[b(q + α)], (8.169)

and L(j) = −4b2j2. For this potential the energy eigenvalues are:

λn = −4b2(j − n)2, n = 0, 1, · · · j − 1. (8.170)

We can write the wave function Using the results given in Eqs. (8.161) and
(8.167) we can write the wave function as

φn(q, n) =

[
2bΓ

(
n− c+ 1

2

)
Γ
(
−n− c+ 1

2

)
Γ(2n)

] 1
2

sinh−n−c[b(q + α)] cosh−n+c[b(q + α)],

(8.171)
and

φn(q, j) =
1

2b[(j + n)(j − n)]
1
2

[
W (q, j)− d

dq

]
φn(q, j − 1), (8.172)

provided that c < 1
2 − j [13].

For more recent work on the factorization method see [16],[17].

8.6 Supersymmetry and Superpotential

The method of factorization which we studied earlier has an interesting appli-
cation in supersymmetric quantum mechanics and allows one to find a large
number of exactly solvable potentials. Let us consider a one-dimensional prob-
lem with the Hamiltonian

H1 = β−β+ = − d2

d q2
+ V1(q), (8.173)

where we have set h̄ = 2m = 1. As we have seen before the raising and lowering
operators are β+ and β−;

β+ = W (q) +
d

dq
, β− = W (q)− d

dq
. (8.174)
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This is a special case of a factorizable Hamiltonian since H1 and β± do not
depend on the parameter j as we assumed in Eqs. (8.123) and (8.126). Substi-
tuting for β+ and β− from (8.174) in (8.173) we find that the potential V (q) is
related to W (q) by

V1(q) = W 2(q)− dW (q)
dq

. (8.175)

In supersymmetric quantum mechanics W (q) is known as superpotential [16].
Next we define the Hamiltonian H2 by reversing the order of β+ and β−;

H2 = β+β− = − d2

d q2
+ V2(q), (8.176)

where now from (8.174) it follows that V2(q) is given by

V2(q) = W 2(q) +
dW (q)
dq

. (8.177)

The two potentials V1(q) and V2(q) are known as supersymmetric partner po-
tentials.

If the energy eigenvalues of H1 denoted by E(1)
n are known, then the eigen-

values of H2 will be related to these E(1)
n s. To find this relationship we consider

the eigenvalue equation

H1|1, n〉 = β−β+|1, n〉 = E(1)
n |1, n〉. (8.178)

By multiplying (8.178) by β+ we have

β+β−
(
β+|1, n〉

)
= E(1)

n

(
β+|1, n〉

)
, (8.179)

or if H2 = β+β−, then

H2

(
β+|1, n〉

)
= E(1)

n

(
β+|1, n〉

)
. (8.180)

Now we observe that the eigenvalue equation for H2 is

H2|2, n〉 = β+β−|2, n〉 = E(2)
n |2, n〉. (8.181)

The same argument as the one used in getting (8.180) gives us

H2

(
β−|2, n〉

)
= β−β+

(
β−|2, n〉

)
= E(2)

n

(
β+|2, n〉

)
. (8.182)

By adding a constant to the potential we make E
(1)
0 = 0. Then from Eqs.

(8.178)–(8.180) we find that the eigenvalues and the eigenstates of H1 and H2

are related to each other by

E(2)
n = E

(1)
n+1, n = 1, 2, · · · , (8.183)

|2, n〉 =
1√
E

(1)
n+1

(
β+|1, n+ 1〉

)
, (8.184)
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and
|1, n+ 1〉 =

1√
E

(2)
n

(
β−|2, n〉

)
. (8.185)

Equation (8.184) shows that β− converts |1, n + 1〉 to |2, n〉 and (8.185)
shows that β+ converts |2, n〉 to |1, n + 1〉. At the same time the action of β−

annihilates an extra state with the energy E(1)
0 .

To establish a relation between the degeneracy of the spectra of these
two Hamiltonians and the conserved quantities we consider the supersymmetric
Hamiltonian

H =
[
H1 0
0 H2

]
, (8.186)

and instead of β+ and β− we define the operators Q+ and Q− by

Q− =
[

0 β−

0 0

]
, and Q+ =

[
0 0
β+ 0

]
. (8.187)

The operators Q− and Q+ are called supercharge operators . They com-
mute with the Hamiltonian H, and thus are constants of motion and are re-
sponsible for the degeneracies in the spectra of H1 and H2[

H,Q−
]

=
[
H,Q+

]
= 0. (8.188)

In addition they have the important property that they satisfy the following
anti-commutation relations [

Q−, Q+
]
+

= H, (8.189)

and [
Q−, Q−

]
+

=
[
Q+, Q+

]
+

= 0. (8.190)

The fact that we have both commutation and anti-commutation relations
indicates that the operators Q+ and Q− change the bosonic degrees of freedom
corresponding to the commutation relation into fermionic degrees of freedom
connected with the anti-commutation relation. To illustrate this point let us
consider the case where H is the Hamiltonian of a harmonic oscillator of mass
m = 1

2 ;

H = p2 +
1
4
q2. (8.191)

As we have seen earlier, Eq. (8.126), β+ and β− for this case are

β± = W (q)± d

dq
=

1
2
q ± d

dq
, (8.192)

and they satisfy the commutation relation[
β+, β−

]
= 1. (8.193)
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If we define the number operator N by N = β−β+, then we can relate H to N

N = β−β+ = − d2

d q2
+

1
4
q2 − 1

2
= H − 1

2
. (8.194)

This operator, N , satisfy the following commutation relations:[
N, β+

]
= −β+,

[
N, β−

]
= β−. (8.195)

We also define the fermionic creation and annihilation operators by

σ+ =
[

0 1
0 0

]
, (8.196)

and

σ− =
[

0 0
1 0

]
. (8.197)

These operators obey the anti-commutation relations

[σ+, σ−]+ = 1, [σ−, σ−]+ = 0, [σ+, σ+]+ = 0, (8.198)

and in addition we have the commutator

[σ+, σ−] = σ3 =
[

1 0
0 −1

]
. (8.199)

With the help of σ matrices the supersymmetric Hamiltonian H for this case
can be written as a 2× 2 matrix

H = Q−Q+ +Q+Q− =
(
− d2

d q2
+

1
4
q2

)
1− 1

2
σ3, (8.200)

where Q− and Q+ are defined by (8.187) and 1 is a unit 2× 2 matrix.
We can express the action of β−, β+, σ− and σ+ operators on the state

specified by the number of bosons and fermions (Fock space). To this end let
us define the number operator of fermions, Nf , by the relation

Nf = σ−σ+. (8.201)

If we square the operator Nf we find

N2
f = σ−σ+σ−σ+ = σ−(1− σ−σ+)σ+ = σ−σ+ = Nf , (8.202)

since as Eq. (8.198) shows (σ+)2 = (σ−)2 = 0. If |nf 〉 denotes the eigenstate of
Nf then

N2
f |nf 〉 = n2

f |nf 〉 = Nf |nf 〉 = nf |nf 〉. (8.203)

Thus
n2
f = nf , or nf = 0, or 1, (8.204)
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i.e. we have either one particle in a given state or none. In general the action of
β−, β+, σ− and σ+ on the state with nb bosons and nf fermions can be written
as

β+|nb, nf 〉 = |nb − 1, nf 〉, (8.205)

β−|nb, nf 〉 = |nb + 1, nf 〉, (8.206)

σ+|nb, nf 〉 = |nb, nf − 1〉, (8.207)

and
σ−|nb, nf 〉 = |nb, nf + 1〉. (8.208)

We observe that the operators Q− and Q+ acting on these states change a boson
into a fermion and vice versa without changing the energy of the state

Q−|nb, nf 〉 = |nb − 1, nf + 1〉, (8.209)

and
Q+|nb, nf 〉 = |nb + 1, nf − 1〉. (8.210)

8.7 Shape Invariant Potentials

If a pair of supersymmetric partner potentials V1(q) and V2(q) defined by (8.175)
and (8.177) are similar in shape and differ only in the parameters appearing in
them, then we call these potentials “shape invariant”. Thus V1(q) and V2(q) are
shape invariant pairs provided

V1(q, a) = V2 (q, a′) +R(a), (8.211)

where R(a) is independent of q and a denotes a single parameter or a set of
parameters. For well-known analytically solvable potentials the parameter a′ is
related to a by a simple translation

a′ = a− c. (8.212)

However we can get other solvable potentials if we choose a′ = ca1 [16],[17].
Harmonic Oscillator — As an example of shape invariant potentials let

us consider W (x, ω) = 1
2ωq − b, then from (8.175) and (8.177) we have

V1,2(q, ω) = W 2(q, ω)± dW (q, ω)
dq

=
1
4
ω2

(
q − 2b

ω

)2

± 1
2
ω. (8.213)

Therefore the shifted harmonic oscillator potential is shape invariant and for
this potential R = ω.

The Morse Potential — As a second example consider the Morse po-
tential for which the superpotential is

W (q, A) = A−
√
λe−

√
µ q. (8.214)
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From W (q, A) we calculate the partners

V1(q, A) = λe−2
√
µ q −

√
λ(2A+

√
µ)e−

√
µ q +A2, (8.215)

and
V2(q, A) = λe−2

√
µ q −

√
λ(2A−√µ)e−

√
µ q +A2, (8.216)

By choosing

A =
√
λ− 1

2
√
µ, (8.217)

V1(x,A) takes the form of the Morse potential, Eq. (8.39), apart from an
additive constant. The shape invariance follows from the fact that

V2(q, A) = V1(q, A−√µ) +A2 − (A−√µ)2. (8.218)

Calculating the Eigenvalues for Shape Invariant Potentials —
The shape invariance of the partner potentials can be used to find the complete
spectrum of the Hamiltonian algebraically. For this we can construct a series of
Hamiltonians Hn where n is an integer in such a way that Hn will have the same
set of eigenvalues as H1 except that the first (n− 1) levels of H1 will be missing
in Hn. By repeated application of the shape invariance condition (8.211) we
obtain

Hn+1 = − d2

d x2
+ V1(x, an+1) +

n∑
j=1

R(aj), (8.219)

where in this relation
aj = a0 − jc. (8.220)

If in Eq. (8.219) we substitute for R(an) from (8.211) i.e.

R(an) = V2(x, an)− V1(x, an+1), (8.221)

we find

Hn+1 = − d2

d x2
+ V2(x, an) +

n−1∑
j=1

R(aj). (8.222)

We note that Hn and Hn+1 are supersymmetric partner Hamiltonians, and have
identical bound states spectra except for the ground state of Hn. From (8.219)
and the fact that E(1)

0 = 0 it follows that the ground state for Hn is given by{
E

(1)
n =

∑n
j=1R(aj), n > 1

E
(0)
0 = 0

. (8.223)

Thus by successive application of raising and lowering operators we can find the
complete spectrum for any solvable potential.
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For a harmonic oscillator the spectrum according to (8.80) is very simple
En =

(
n+ 1

2

)
ω. For the Morse potential, R(µ) = A2− (A−√µ)2 and therefore

E(1)
n = A2− (A−n√µ)2 =

µ

4
−
√
λµ+2

√
λµ

(
n+

1
2

)
−µ

(
n+

1
2

)2

. (8.224)

This result agrees with the one found earlier Eq. (8.40) for the Morse potential
provided that in the latter equation we set m = 1

2 and calculate En−E0. Note
that in the present formulation we have set the ground state energy equal to
zero.

Generalized Hulthén Potential — Finally let us apply this method of
determination of eigenvalues to the generalized Hulthén potential. This central
potential has the form

V (r) = − V0

eαr − β
, (8.225)

where α and β are constants. If we choose β = 1 then (8.225) becomes the
standard Hulthén potential which is used as a simple model for short range
nucleon-nucleon interaction [18]–[20].
The superpotential for (8.225) is

W (r) =
A

eαr − β
+B, (8.226)

where

B =
V0 − βα2

2βα
, (8.227)

From W (r) we find the radial dependence of V1(r,A) and V2(r,A);

V1,2(r,A) = W 2(r)∓ dW (r)
dr

=

(
A2

β ±Aα
)
eαr

(eαr − β)2 − V0

(eαr − β)
+B2. (8.228)

The shape invariance of the potential V1(r,A) is evident from the relation

V2(r,A) = V1(r,A− βα) +R(A), (8.229)

where from (8.228) and (8.229) we get

R(A) =
(
A

2β
− V0

2A

)2

−
(
A− αβ

2β
− V0

2(A− αβ)

)2

. (8.230)

The energy spectrum of the Hamiltonian

H = − d2

d r2
+ V1(r, A), (8.231)
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is obtained by the repeated application of the shape invariance condition and is
given byE

(1)
n =

(
A
2β −

V0

2A

)2
−
(
A−nαβ

2β − V0

2(A−nαβ)

)2

E
(1)
0 = 0

. (8.232)

To calculate the ground state we observe that

V1(r,A = −βα) = V (r)− E, (8.233)

and this gives us

E0 = −B2 = −
(
V0 − βα2

2βα

)2

. (8.234)

For the Hulthén potential β = 1, and the ground state is given by [19]

E0 = −1
4

(
α− 1

α
V0

)2

. (8.235)

If we add (8.234) to E(1)
n , Eq. (8.232), we find the complete energy spectrum of

the generalized Hulthén potential to be

En = −1
4

[
(n+ 1)2

α2 +
V 2

0

α2β2(n+ 1)2
− 2V0

β

]
, n = 0, 1, 2 · · · . (8.236)

The Eckart Potential — This potential can be derived from the super-
potential

W (x,A) = −A coth(γx) +
B

A
, (8.237)

and has the form

V1(x,A) = W 2(x,A)− dW (x,A)
dx

=
(
B

A
−A coth(γx)

)2

− γA
(

1
sinh(γx)

)2

.

(8.238)
The partner potential V2(x) obtained from W (x) is

V2(x,A) = W 2(x,A) +
dW (x,A)

dx
=
(
B

A
−A coth(γx)

)2

+ γA

(
1

sinh(γx)

)2

.

(8.239)
The shape invariance of the Eckart potential can be established through the
transformation

R(A) = V2(x,A)−V1(x,A+ γ) = A2− (A+ γ)2− B2

(A+ γ)2
+
(
B

A

)2

. (8.240)

Thus for the complete discrete energy spectrum we have

En = A2 − (A+ nγ)2 −
(

B

A+ nγ

)2

+
(
B

A

)2

. (8.241)
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A complete list of other solvable potentials is given in references [16] and [17].
In addition to the completely solvable potentials we have quasi-solvable

potentials for which only a finite number of eigenstates and eigenvalues can be
found analytically [21].

One-Dimensional Motion with Continuous Spectra — So far we
have considered potentials having discrete energy levels. The same method
outlined in this section can be applied to the one-dimensional problems with
continuous spectra. Here the potentials V1(q) and V2(q) are finite as x → −∞
or as x→ +∞ or both. Denoting the asymptotic form of W (q) by

W (q → ±∞) = W±, (8.242)

we have
V1,2 →W 2

±, as q → ±∞. (8.243)

Suppose that a plane wave eikx is incident from x→ −∞, then we get reflected
waves R1(k)e−ikx and R2e

−ikx for the two partner potentials V1(q) and V2(q),
as well as transmitted waves T1(k)eik

′x and T2(k)eik
′x. Thus the asymptotic

form of the wave functions are

ψ1,2(k, q → −∞)→ eikx +R1,2(k) e−ikx, (8.244)

and
ψ1,2(k, q → +∞)→ T1,2(k) e−ik

′x, (8.245)

where k and k′ are related to W± by

k =
√(

E −W 2
−
)
, and k′ =

√(
E −W 2

+

)
. (8.246)

Here E is the energy associated with the incoming wave, E = k2. As in the
case of discrete spectra, H1 and H2 have the same energy. Now by applying
the operators β− and β+, Eqs. (8.127) and (8.128), to the continuum wave
functions of H1 and H2 we find two equations

eikx +R1(k)e−ikx = N
[
(W− − ik)eikx + (W− + ik)R2(k)e−ikx

]
, (8.247)

and
T1(k)eik

′x = N
[
(W+ − ik′)T2(k)eik

′
]
, (8.248)

where N is the normalization constant. We solve these equations for the reflec-
tion and transmission amplitudes for the potential V1(q):

R1(k) =
(
W− + ik

W− − ik

)
R2(k), (8.249)

and

T1(k) =
(
W− − ik′

W− − ik

)
T2(k). (8.250)
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From these expressions for R1(k) and T1(k) we deduce the following results:
(a) - The two potentials V1(q) and V2(q) have identical reflection and

transmission coefficients

|R1(k)|2 = |R2(k)|2, and |T1(k)|2 = |T2(k)|2. (8.251)

(b) - If W+ = W−, then k = k′ and T1(k) = T2(k).
(c) - When W− = 0, we have R1(k) = −R2(k).

Let us consider the following example where the superpotential is given by

W (q) = A tanh(αq). (8.252)

Then

V1(q) = A2 − A(A+ α)
cosh2(αq)

, (8.253)

V2(q) = A2 − A(A− α)
cosh2(αq)

. (8.254)

Now if we choose A = α, then V2(q) = A2 is a constant potential and the
reflection coefficient for this potential, R2(k), is zero for all k. Therefore from
(8.249) it follows that R1(k) ≡ 0, and that

V1(q) = A2

(
1− 2

cosh2(αq)

)
, (8.255)

is a reflectionless potential.

8.8 Solvable Examples of Periodic Potentials

In Chapter 6 we discussed the lattice translation operator and showed that this
operator commutes with the Hamiltonian of the system. We also found how the
symmetry associated with the periodicity is reflected in the translational sym-
metry of the wave function, Eq. (6.122). The eigenvalues and the eigenfunction
of these potentials for a few cases can be found exactly from the solution of the
Schrödinger equation. Among them we find the following potentials:

(1) - In a crystal we can assume that the potential takes the form of an
infinite series of equidistant rectangular barriers we can solve the wave equa-
tion. In the limiting case such a series of barriers reduces to an infinite array of
δ-functions located at the sites of the positive ions. In this limit we have

V (x) =
∞∑

n=−∞
V0δ(x− na). (8.256)
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Figure 8.1: The function F (β), Eq. (8.265), is plotted as a function of the dimensionless
quantity βa. The energy of the electron is proportional to β2.

To find the eigenvalue equation for this model, which is called the Kronig-
Penney model, we solve the wave equation for ψ(x). Noting that in the interval
0 < x < a the potential is zero and thus ψ(x) is given by

ψ(x) = Aeiβx +Be−iβx. (8.257)

In this relation h̄β =
√

2mE, E being the energy of the electron and A and B
are constants. From (6.121) we find uk(x) to be

uk(x) = Aei(β−k)x +Be−i(β+k)x. (8.258)

The periodicity condition (6.122) means that for x = a− ε we have

uk(a− ε) = uk(−ε), (8.259)

where ε is a very small positive number. The continuity of the wave function at
x = 0, viz,

uk(ε) = uk(−ε), (8.260)

and Eq. (8.259) gives us a relation between A and B

A+B = Aei(β−k)a +Be−i(β+k)a. (8.261)

To find a second boundary condition we observe that by integrating the
Schrödinger equation with the potential (8.256) from −ε to +ε we have

h̄2

2m

[(
dψ

dx

)
x=ε

−
(
dψ

dx

)
x=−ε

]
= V0ψ(0). (8.262)
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Substituting for ψ from (8.257), this last condition reduces to

A−B −Aei(β−k)a +Be−i(β+k)a =
2mV0

iβh̄2 (A+B). (8.263)

The two homogeneous equations (8.261) and (8.262) can have a nontrivial solu-
tion only if the determinant of the coefficients of A and B vanish, i.e. if

cos ka = cosβa+
(
mV0a

h̄2

)
sinβa
βa

. (8.264)

The quantity mV0a
h̄2 is a dimensionless constant which is a measure of the strength

of the potential. If we denote the right-hand side of (8.264) by F (β);

F (β) = cosβa+
(
mV0a

h̄2

)
sinβa
βa

, (8.265)

then the acceptable solution of the problem are those parts of βa axis which
satisfies the condition −1 ≤ F (β) ≤ 1 (see Fig. 8.1).

From the solution of the Kronig-Penney model we find the following re-
sults: If the potential barrier between adjacent sites is strong, then the energy
bands are narrow and far apart. This is the case of crystals where the electrons
are tightly bound to the ions and the wave function is well localized within a
given site. On the other hand if the barrier is weak, the energy bands are wide
and spaced close to each other. This is typically the situation for alkali metals
with weakly bound electrons.

(2) - For an oscillating potential of the form

V (x) = V0 cos
(πx
a

)
, (8.266)

the Schrödinger equation reduces to the Mathieu equation which is exactly solv-
able [3], [22].

(3) - A periodic potential for which the wave equation can be transformed
to the differential equation for the hypergeometric function and for which the
energy band can be calculated exactly is [23]

V (x) =
V0

sin2
(
πx
a

) . (8.267)

(4) - For some applications in condensed matter physics it is useful to
consider the energy band structure of an electron moving in a one-dimensional
periodic potential consisting of a lattice with two different rectangular barriers
and wells per site. A lattice with this kind of periodicity has been studied in
reference [24].
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Chapter 9

The Two-Body Problem

In classical mechanics, a system composed of two particles interacting by a
potential which depends only on the relative coordinate of the two particles is
separable and can be solved and the solution is given by a definite integral [1].
This separability is carried over to quantum mechanics where the problem is
reduced to that of the motion of a particle in a field of force. As we will see the
angular part is completely solvable and the solution for the radial part of some
potentials can be found by factorization method.

We start by writing the Hamiltonian for the two-body problem as

H =
p2

1

2m1
+

p2
2

2m2
+ V (|r1 − r2|), (9.1)

where m1 and m2 are the masses of the two particles, p1 and p2 represent their
momenta and r1 and r2 their coordinates.

We can separate the translational part of the Hamiltonian by introducing
the center of mass and relative coordinates;

(m1 +m2)R = m1r1 +m2r2, r = r1 − r2, (9.2)

and the center of mass and relative momenta

P = p1 + p2, p =
m2p1 −m1p2

m1 +m2
. (9.3)

Substituting for p1, p2 and |r1−r2| from (9.2) and (9.3) in (9.1) and simplifying
the result we find

H =
P2

2M
+

p2

2m
+ V (r). (9.4)

Here M is the total mass, M = m1 +m2, and m is the reduced mass

m =
m1m2

m1 +m2
. (9.5)
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Equation (9.4) which is identical to its classical counterpart shows that P is a
cyclic operator since it commutes with p and with r, and the Hamiltonian is
independent of the center of mass coordinate R. Thus

ih̄
dP
dt

= [P,H] = 0, (9.6)

and P is a constant of motion. For this reason P2

2M in the Hamiltonian (9.4)
which has positive eigenvalues can be replaced by a c-number multiplied by a
unit operator.

The second term in H, i.e. p2

2m , is the kinetic energy of the internal
degrees of freedom and can be split further into rotational and vibrational kinetic
energies. To this end we define the radial momentum pr conjugate to r by

rpr = r · p− ih̄, (9.7)

where −ih̄ is added to r · p to make pr Hermitian [2]. Next we observe that

rp− pr = −ih̄(r∇−∇r) = ih̄
r
r
. (9.8)

Thus from (9.7) and (9.8) we have

rpr − prr =
1
r

(rr · p− r · pr) = ih̄. (9.9)

Now taking the Hermitian conjugate of the operator relation (9.7) we get

p†rr = p · r + ih̄ = (r · p− 3ih̄) + ih̄ = rpr − ih̄ = prr. (9.10)

Here we have used
(AB)† = B†A†, (9.11)

and
r · p− p · r = 3ih̄, (9.12)

where both r and p are assumed to be Hermitian operators.
The fact that p†rr = prr does not prove that that pr is self-adjoint. Thus

if we choose φ(r) and ψ(r) to be two square integrable functions, then for the
self-adjointness of pr we must have

〈φ(r)|prψ(r)〉 = 〈prφ(r)|ψ(r)〉. (9.13)

We note that from (9.7) that we can write pr as

pr = −ih̄
(

1
r

d

dr

)
r. (9.14)

Using the differential form of pr as given by (9.14) and integrating by parts we
find that [3]

p†r = pr −
ih̄

2
δ(r). (9.15)
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Here we have used the integral∫ ∞
0

f(r)δ(r) =
1
2
f(0), (9.16)

noting that r = 0 is the end point of integration [4].
A different way of investigating the self-adjointness of pr is to find its

deficiency indices. In Sec. 3.9 we have seen that the deficiency indices of the
operator pr given by (9.14) is obtained by solving the differential equation [5]

prf±(r) = ±ih̄f±(r), (9.17)

with the result that
f±(r) =

A

r
e∓r. (9.18)

From this result it follows that while f+(r) is square integrable for the range
0 ≤ r < ∞, and the function f−(r) is not, and thus the deficiency indices are
(1, 0). We conclude that pr is not an observable, but as we will see it is a useful
operator for calculating the eigenvalues[5],[6].

Our aim is to express p2 in terms of p2
r and for this we decompose p

into components parallel and perpendicular to r. This can be done with the
well-known formula from vector calculus (see Sec. 3.3)

p =
1
r2

[r(r · p)− r ∧ (r ∧ p)]. (9.19)

Next we find the scalar product of p in (9.19) with p multiplying from the left;

p2 = p · 1
r2

[r(r · p)− r ∧ (r ∧ p)]. (9.20)

We also have
p

1
r2
− 1
r2

p =
2ih̄r
r4

. (9.21)

Thus from (9.20) and (9.21) we find

p2 =
1
r2

[(p · r)(r · p) + 2ih̄r · p− (p ∧ r) · (r ∧ p)]. (9.22)

Using the definition of L

L = (r ∧ p) = −(p ∧ r), (9.23)

we can write (9.22) as

p2 =
1
r2

[
(r · p− ih̄) r · p + L2

]
. (9.24)

In addition we have
1
r2

(r · p− ih̄)r · p =
1
r
pr(rpr + ih̄)

=
1
r

(rpr − ih̄)pr + ih̄
1
r
pr = p2

r. (9.25)
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Finally from (9.24) and (9.25) we obtain

p2 = p2
r +

L2

r2
, (9.26)

where
L = r ∧ p, (9.27)

is the angular momentum about the center of mass. The reason that we can
write the second term in (9.26) without specifying the order of L2 and r−2 is
that these two operators commute. In fact L2 commutes with p2 and with any
function of r2 (see Sec. 3.3).

9.1 The Angular Momentum Operator

The theoretical framework for calculating the eigenvalues, specifically those of
the orbital angular momentum using the algebraic technique and raising and
lowering operators was fully developed in one of the very first papers on matrix
mechanics [11]. The angular momentum L which is defined by (9.27) obeys the
commutation relation

L ∧ L = ih̄L. (9.28)

To show this we write L in terms of its components

Lx = ypz − zpy, (9.29)

Ly = zpx − xpz, (9.30)

Lz = xpy − ypx, (9.31)

and by direct calculation we find the following commutators;

[Lx, Ly] = ih̄Lz, (9.32)

[Ly, Lz] = ih̄Lx, (9.33)

[Lz, Lx] = ih̄Ly. (9.34)

We can write (9.32)–(9.34) in a compact form as

[Li, Lj ] = ih̄
∑
k

εijkLk, (9.35)

where εijk is the completely antisymmetric tensor defined by Eqs. (1.32) and
(1.33). Equation (9.28) is the vector version of (9.32)–(9.34).

Since x† = x, y† = y · · · p†x = px · · · and p†z = pz, we have

L†z = (xpy)† − (ypx)† = xpy − ypx = Lz. (9.36)
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Similarly we find
L†x = Lx, L†y = Ly. (9.37)

The fact that Lx, Ly and Lz do not commute means that they are not simulta-
neously measurable. The only exception to this is when the eigenvalue of L2 is
zero, then all of the components have simultaneously zero eigenvalues.

We can choose one of the three components of L, say Lz, and measure it
simultaneously with L2. Now we will show that L2 commutes with Lz. Consider
the commutators [

Lz, L
2
x

]
= [Lz, Lx]Lx + Lx[Lz, Lx]
= ih̄(LyLx + LxLy), (9.38)

and [
Lz, L

2
y

]
= [Lz, Ly]Ly + Ly[Lz, Ly]
= −ih̄(LxLy + LyLx), (9.39)

where in calculating (9.38) and (9.39) we have used the relation

[A,BC] = [A,B]C +B[A,C]. (9.40)

By adding (9.38) to (9.39) and noting that [Lz, L2
z] = 0 we have

[Lz,L2] = 0. (9.41)

Next we want to show that any component of the angular momentum
operator, Li, commutes with r2,p2 and r · p (see also Sec. 3.3). For this we
observe that the angular momentum commutator (9.28) will not change if we
make one of the two following replacements [2]:

(a) - If we replace r by ip and p by ir simultaneously.
(b) - If we replace r by 1

2 (r + p) and at the same time p by (p− r).
Now let us proceed with the proof that Li satisfies the following commutators
(see also Sec. 3.5) [

Li, r2
]

=
[
Li, p2

]
= [Li, r · p] = 0. (9.42)

Using the fundamental commutation relations:

[x, px] = [y, py] = [z, pz] = ih̄, (9.43)

and with the other commutators for x, y, z, px, py and pz being equal to zero we
can calculate the following commutators:[

Lz, x
2
]

= [Lz, x]x+ x[Lz, x] = 2ih̄xy, (9.44)[
Lz, y

2
]

= [Lz, y]y + y[Lz, x] = −2ih̄xy, (9.45)[
Lz, z

2
]

= 0. (9.46)
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By adding these three relations we get[
Lz, r2

]
= 0. (9.47)

Similarly we can show that[
Lx, r2

]
=
[
Ly, r2

]
= 0. (9.48)

Now if we make the replacement given by (a) and use the same argument that
we have just made, we reach the conclusion that[

Lx, p2
]

=
[
Ly, p2

]
=
[
Lz, p2

]
= 0. (9.49)

Finally if we make the substitution suggested in (b) we obtain[
Lx, (r + p)2

]
= 0. (9.50)

From this together with
[
Lz, r2

]
=
[
Lz,p2

]
= 0 and r · p− p · r = 3ih̄, we get

[Lx, (r · p)] = 0. (9.51)

We can summarize our result in this way: If F
(
r2,p2, r · p

)
is any scalar con-

structed from the operators shown in its argument, then every component of
the angular momentum vector commutes with F .

9.2 Determination of the Angular Momentum
Eigenvalues

As we noticed before Lz and L2 commute, and both are self-adjoint opera-
tors and thus observables. We will use the factorization technique to find the
eigenvalues of Lz and L2. Since the same method can be used to obtain the
eigenvalues of the spin operator, we use the symbol M for a general operator
satisfying the fundamental commutation relation (9.28),

M ∧M = ih̄M. (9.52)

Now let us introduce two non-Hermitian operators M± by

M± = Mx ± iMy. (9.53)

These are the raising and lowering operators as we will see later.
From (9.52) and (9.53) it follows that

MxMy +MyMx =
1
2i
(
M2

+ −M2
−
)
, (9.54)
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[
M±, M2

]
= 0, (9.55)

and

[Mz, M±] = [Mz, Mx]± i[Mz, My] = ih̄My ± i(−ih̄Mx)

= ±(Mx ± iMy) = ±h̄M±. (9.56)

In addition from (9.53) we find

M±M∓ = M2
x +M2

y ± h̄Mz. (9.57)

We denote the eigenvalues of Mz and M2 by mh̄ and νh̄2 respectively, i.e.

M2|m, ν〉 = νh̄2|m, ν〉, (9.58)

and

Mz|m, ν〉 = mh̄|m, ν〉. (9.59)

From the condition M2 ≥M2
z , it follows that

ν ≥ m2. (9.60)

Now we operate on (9.59) with M+;

M+Mz|m, ν〉 = mh̄M+|m, ν〉 = (MzM+ − h̄M+)|m, ν〉, (9.61)

where we have substituted for M+Mz on the left-hand side of (9.61) from the
commutator (9.56). We can rewrite Eq. (9.61) as

Mz(M+|m, ν〉) = (m+ 1)h̄(M+|m, ν〉). (9.62)

This relation shows that (M+|m, ν〉) is an eigenfunction of Mz with the eigen-
value (m + 1)h̄. Since M2 commutes with Mz, the ket (M+|m, ν〉) is also an
eigenstate of M2. As (9.60) shows ν has to be larger or equal to m2. Thus
there must be a maximum eigenvalue of Mz otherwise the inequality (9.60) will
be violated. If |µ, ν〉 is the eigenstate corresponding to the largest eigenvalue of
Mz, then we have M+|µ, ν〉 = 0, or M−M+|µ, ν〉 = 0,

M−M+|µ, ν〉 =
(
M2 −M2

z − h̄Mz

)
|µ, ν〉 = 0. (9.63)

Noting that |µ, ν〉 is an eigenstate of both M2 and Mz, from (9.63) it follows
that

ν −
(
µ2 + µ

)
= 0. (9.64)

Let us now investigate that action of the lowering operator M− on (9.59)
when m is equal to µ

MzM−|µ, ν〉 = (µ− 1)h̄M−|µ, ν〉. (9.65)
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This relation is found exactly as we obtained (9.62) but with M− rather than
M+. If we repeat this operation n times we find

Mz[(M−)n|µ, ν〉] = (µ− n)h̄[(M−)n|µ, ν〉]. (9.66)

Now by choosing n large enough we can violate (9.60) unless for some integer
n = N

(M−)N |µ, ν〉 = 0. (9.67)

We can operate on the last relation (9.67) with M+M− and use (9.57) by writing
it as

M+M− = M2 −M2
z + h̄Mz, (9.68)

to get (
M2 −M2

z + h̄Mz

)
(M−)N |µ, ν〉 = 0. (9.69)

Noting that (M−)N |µ, ν〉 is an eigenstate of Mz and M2 therefore we have the
following relation between the eigenvalues;[

ν − (µ−N)2 + (µ−N)
]

= 0, (9.70)

where µ is the largest eigenvalue of Mz. By substituting for ν from (9.64) in
(9.70) we find

µ =
N

2
≡ j, (9.71)

where N is zero or is an integer. Therefore j values are restricted to

j = 0,
1
2
, 1,

3
2
, · · · . (9.72)

From Eqs. (9.64) and (9.71) we find ν

ν = j(j + 1). (9.73)

Thus we have
M2|m, j〉 = h̄2j(j + 1)|m, j〉, (9.74)

and
Mz|m, j〉 = h̄m|m, j〉, m = −j, −j + 1 · · · j − 1, j. (9.75)

Matrix Elements of Mx and My — From the fact that M2 commutes
with M+ [

M2, M+

]
= 0, (9.76)

we find

M2 (M+|m, j〉) = M+

(
M2|m, j〉

)
= h̄2j(j + 1)M+|m, j〉. (9.77)

But as Eq. (9.62) shows while the eigenvalue of M2 has not changed, by the
action of M+ the eigenvlaue of Mz has increased by h̄. Let us assume that
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|m, j〉 is normalized, but M+|m, j〉 is not. To normalize this ket we determine
its norm; 〈

m, j
∣∣∣M†+M+

∣∣∣m, j〉 = 〈m, j|M−M+|m, j〉

=
〈
m, j

∣∣M2 −Mz(Mz + h̄)
∣∣m, j〉 = h̄2 [j(j + 1)−m(m− 1)] . (9.78)

Since |m, j〉 is normalized therefore

|m+ 1, j〉 =
[
(j −m)(j +m+ 1)h̄2

]− 1
2 M+|m, j〉, (9.79)

is the normalized eigenvector. From this and the corresponding relation for
|m− 1, j〉 we find the matrix elements of M+ and M−;

〈j,m− 1|M+|j,m〉 = [j(j + 1)−m(m+ 1)]
1
2 h̄ = [(j −m)(j +m+ 1)]

1
2 h̄,
(9.80)

and

〈j,m− 1|M−|j,m〉 = [j(j + 1)−m(m− 1)]
1
2 h̄ = [(j +m)(j −m+ 1)]

1
2 h̄.
(9.81)

In this representation where both M2 and Mz are diagonal, we have a discrete
sequences of values for quantum numbers j and m. It is convenient to write
these matrices as an infinite set of finite matrices of the form

Mα =


M

(1)
α 0 0 · · ·
0 M

(2)
α 0 · · ·

0 0 M
(3)
α · · ·

· · · · · ·

 , (9.82)

where each M
(2j+1)
α represented by a given value of j and is a (2j+1)× (2j+1)

matrix.
Suppressing the superscript (2j+1) for all M

(2j+1)
α , we note that for j = 0,

M2 and Mz are represented by null matrices of unit rank.
For j = 1

2 we obtain

Mx =
h̄

2

[
0 1
1 0

]
, My =

h̄

2

[
0 −i
i 0

]
, (9.83)

Mz =
h̄

2

[
1 0
0 −1

]
, M2 =

3h̄2

4

[
1 0
0 1

]
. (9.84)

This case will be discussed in detail later.
For the next one, j = 1, the matrices are given by

Mx =
h̄√
2

 0 1 0
1 0 1
0 1 0

 , My =
h̄√
2

 0 −i 0
i 0 −i
0 i 0

 , (9.85)
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Mz = h̄

 1 0 0
0 0 0
0 0 −1

 , M2 = 2h̄2

 1 0 0
0 1 0
0 0 1

 . (9.86)

Similar matrices can be found for j = 2, 3, · · ·.
We are thus led to the conclusion that the eigenvalues of M2 are deter-

mined by quantum numbers j = 0, 1, 2 · · ·, as is given in Eq. (9.74). Now to
each value of the quantum number j, there corresponds (2j + 1) eigenfunctions
|m, j〉 , m = −j, −j + 1, · · · j, Eq. (9.75). The fact that the eigenvalues of
M2 are not dependent on m (in other words the degeneracy of the eigenval-
ues) is associated with the invariance of the motion in a central potential under
rotations.

9.3 Matrix Elements of Scalars and Vectors and
the Selection Rules

For a two-particle system interacting with a central potential, the angular mo-
mentum vector which we define by Eqs. (9.32)–(9.34) commutes with any scalar
function of the operators p and r. This is because any rotation of the coordinate
system leaves scalar quantities unchanged. If we denote the scalar quantity by
f , we have

[f, Lx] = [f, Ly] = [f, Lz] = 0. (9.87)

Since f commutes with Lz and L2, therefore the matrix form of f will be
diagonal in a representation where Lz and L2 are diagonal matrices. If |`,m〉 is
an eigenstate of Lz and L2, and n denotes all the remaining quantum numbers
which define the state of the system, then we want to show that the matrix
elements

〈n′, `,m|f |n `,m〉 (9.88)

are independent of m. To prove this result we first note that from (9.87) we get

f(Lx + iLy)− (Lx + iLy)f = 0. (9.89)

Now we find the matrix element of this operator with the states 〈n, `,m| and
|n′, `,m− 1〉;

〈n, `,m|f |n′, `,m〉 〈n′, `,m|(Lx + iLy)|n′, `,m− 1〉
− 〈n, `,m|(Lx + iLy)|n, `,m− 1〉 〈n, `,m− 1|f |n′, `,m− 1〉 = 0,

(9.90)

where we have used the fact that Lx + iLy has nonzero elements only when
n, `,m → n, `,m− 1. We observe that the matrix elements involving Lx + iLy
do not depend on n or n′, therefore (9.90) yields the result that

〈n, `,m|f |n′, `,m〉 = 〈n, `,m− 1|f |n′, `,m− 1〉 , (9.91)
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or that the above matrix element will be the same for all allowed m values [7].
From this it follows that the nonzero elements of f are

〈n, `,m|f |n′, `,m〉 = 〈n, `|f |n′, `〉 , (9.92)

and are independent of m. Noting that the Hamiltonian H is a scalar we can
draw an interesting conclusion from (9.92), that the energy of stationary states
ofH are independent ofm, and that the energy levels are (2`+1) fold degenerate.
Now we consider the same two-body system and we assume that there is a real
vector K which corresponds to a physical quantity. An infinitesimal rotation
about the i-th axis will change the components of K and the new components
will be linear combinations of the old ones. Thus the commutator of Li with
the operator K will produce components of K. For instance if we choose K to
be the radius vector r, then

[Li, rj ] = ih̄
∑
k

εijkrk. (9.93)

On the other hand if K = p, then

[Li, pj ] = ih̄
∑
k

εijkpk. (9.94)

In general we have the commutator

[Li, Kj ] = ih̄
∑
k

εijkKk, (9.95)

a result that we will use later to solve the problem of the hydrogen atom [7].
It is convenient to set h̄ = 1 in the following derivation, and keeping this

in mind from (9.95) we find
[L2
x, Kx] = 0, (9.96)

[
L2
y, Kx

]
= Lx[Ly, Kx] + [Ly, Kx]Ly = −i(LyKz +KzLy)
= −2iLyKz −Kx, (9.97)

and [
L2
z, Kx

]
= 2iLzKy −Kx. (9.98)

By adding these three relations we obtain[
L2, Kx

]
= 2i(LzKy − LyKz)− 2Kx. (9.99)

Having found the commutator
[
L2, Kx

]
we calculate the double commutator[

L2,
[
L2, Kx

] ]
in two different ways [7]:

(1) - We can write L2 = L2
x + L2

y + L2
z and for each term calculate[

L2
i ,
[
L2, Kx

]]
=
[
L2
i , 2i(LzKy − LyKz)− 2Kx

]
, (9.100)
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using the commutation relations for different components of L and K and then
adding up the results we find[

L2,
[
L2, Kx

]]
= 2

(
L2Kx +KxL2

)
− 4Lx(L ·K). (9.101)

(2) - We can also write the double commutator as[
L2,

[
L2, Kx

]]
= L4Kx − 2L2KxL2 +KxL4. (9.102)

By equating (9.101) and (9.102) we obtain

L4Kx − 2L2KxL2 +KxL4 = 2
(
L2Kx +KxL2

)
− 4Lx(L ·K). (9.103)

The matrix element corresponding to the transition n, `,m → n′, `′, n′ (` 6= `′)
of Eq. (9.103) is[

`2(`+ 1)2 − 2`(`+ 1)`′ (`′ + 1) + `′ 2 (`′ + 1)2
]
〈n, `,m|Kx|n′, `′,m′〉

− 2 [`(`+ 1) + `′ (`′ + 1)] 〈n, `,m|Kx|n′, `′,m′〉 = 0. (9.104)

We arrive at this result by noting that

〈n, `,m|Lx(L ·K)|n′, `′,m′〉 = 0, ` 6= `′. (9.105)

This follows from the fact that the matrix representing the scalar L·K is diagonal
with respect to m and `, and the matrix Lx is diagonal with respect to ` and
n. By rearranging the terms in (9.104) we find[

(`+ `′ + 1)2 − 1
] [

(`− `′)2 − 1
]
〈n, `,m|Kx|n′, `′,m′〉 = 0, ` 6= `′. (9.106)

The first bracket in (9.106) cannot be zero, since ` and `′ are equal or greater
than zero and ` 6= `′. Therefore we have the condition

`′ − ` = ±1, (9.107)

which makes the second bracket in (9.106) zero or otherwise 〈n, `,m|Kx|n′, `′,m′〉
must vanish. In addition to (9.107) the case where

`′ − ` = 0, (9.108)

also allows for the nonzero matrix element of Kx [7],[11]. If we replace Kx either
by Ky and Kz we find the same results.

The rules (9.107) and (9.108) are called selection rules. In addition to
these rules any transition between two states with ` = 0 is forbidden. This can
easily be shown by taking the matrix elements of [Ly, Kz] = iKx;

〈n, 0, 0|LyKz −KzLy|n′, 0, 0〉 = i 〈n, 0, 0|Kx|n′, 0, 0〉 . (9.109)

The left-hand side of (9.109) is zero since Ly is diagonal with the eigenvalue
` = 0. Thus we have

〈n, 0, 0|Kx|n′, 0, 0〉 = 0. (9.110)

Similar selection rules can be found with respect to the quantum number m [7].
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9.4 Spin Angular Momentum

Some particles such as electrons and protons have intrinsic angular momentum
in addition to the orbital angular momentum L which is associated with their
motion. The spin may be compared to the angular momentum of a rigid body
about its center of mass, but it arises from the internal degrees of freedom of
the particle.

Let us denote the components of the spin angular momentum of a par-
ticle by the Hermitian operator S with the components Sx, Sy and Sz. These
components satisfy the fundamental commutation relation

S ∧ S = ih̄S. (9.111)

A trivial solution of (9.111) is found when all of the components of S are zero.
This is the case of spin zero particle such as π-meson. But particles like elec-
trons and protons are spin 1

2 particles. This means that the eigenvalues of the
components of S along a given direction can take on the values ± h̄2 . Thus for
any direction n, there are two eigenstates |n ↑〉 and |n ↓〉 corresponding to the
eigenvalues 1

2 h̄ and − 1
2 h̄. We can choose the eigenstates of Sz as the basis for

spin space. Once this choice is made the operator Sz can be written in this basis
as

Sz =
[
〈k ↑ |Sz|k ↑〉 〈k ↑ |Sz|k ↓〉
〈k ↓ |Sz|k ↑〉 〈k ↓ |Sz|k ↓〉

]
, (9.112)

where k is the unit vector in the z-direction. Now for this representation we
have

Sz|k ↑〉 =
1
2
h̄|k ↑〉; and Sz|k ↓〉 = −1

2
h̄|k ↓〉, (9.113)

and therefore the matrix (9.112) becomes

Sz =
h̄

2

[
1 0
0 −1

]
. (9.114)

The other two components, Sx and Sy, are also Hermitian 2 × 2 matrices and
these can be written as

Sx =
h̄

2

[
0 1
1 0

]
, and Sy =

h̄

2

[
0 −i
i 0

]
, (9.115)

(see Eqs. (9.83) and (9.84)). We can easily verify that these three matrices
satisfy the fundamental commutation relation (9.111).
The eigenstates | ↑,k〉 and | ↓,k〉 obtained from (9.114) are given by

| ↑,k〉 =
[

1
0

]
, | ↓,k〉 =

[
0
1

]
. (9.116)

Generally the spin operator S is expressed in terms of Pauli matrices σx, σy and
σz, where

S =
h̄

2
σ, (9.117)
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and

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
. (9.118)

Some of the properties of the Pauli spin matrices are as follows [8]:
(a) - They obey the commutation relation

σiσj − σjσi = 2i
∑
k

εijkσk, (9.119)

which is the same as (9.111) but written in terms of σ.
(b) - The square of each σi is a unit matrix

σ2
x = σ2

y = σ2
z =

[
1 0
0 1

]
= 1. (9.120)

(c) - By direct calculation we can show that when i 6= j the Pauli matrices
satisfy the anti-commutation relation

σiσj + σjσi = 0. (9.121)

We can combine (9.120) and (9.121) into a single relation

σiσj + σjσi = 2δij . (9.122)

(d) - We can also combine (9.119) and (9.122) and write

σiσj = δij + i
∑
k

εijkσk. (9.123)

(e) - If A and B are two c-number vectors we have

(A · σ)(B · σ) =
∑
ij

AiBjσiσj =
∑
ij

AiBj(δij + i
∑
k

εijkσk)

= A ·B + i(A ∧B) · σ. (9.124)

(f) - From (9.117) and (9.120) we find S2 to be

S2 =
h̄2

4
(
σ2
x + σ2

y + σ2
z

)
=

3h̄3

4
. (9.125)

(g) - The total angular momentum J of a spinning particle is the sum of
its orbital angular momentum and its spin angular momentum

J = L + S. (9.126)
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9.5 Angular Momentum Eigenvalues
Determined from the Eigenvalues of
Two Uncoupled Oscillators

An elegant way of finding the eigenvalues and eigenvectors of angular momentum
in terms of the creation and annihilation operators for the uncoupled oscillators
has been derived by Schwinger [9].

Let us consider two simple harmonic oscillators for which the creation
and annihilation operators are denoted by a†+, a+, a

†
− and a−. The number

operators for (+) and (−) oscillators are

N+ = a†+a+, N− = a†−a−, (9.127)

and these operators satisfy the commutation relations[
a±, a

†
±

]
= 1, [N±, a±] = −a±,

[
N±, a

†
±

]
= a†±, (9.128)

where in each case we have to take all plus signs or all minus signs. Since all
these oscillators are uncoupled we have[

a+, a
†
−

]
=
[
a−, a

†
+

]
= 0, (9.129)

and so forth. The two number operators N+ and N− commute, a result that
simply follows from (9.129). Hence they can be diagonalized simultaneously.
Let |n+, n−〉 represent a state where the (+) oscillator has an eigenvalue n+

and the oscillator (−) has an eiganvalue n−, then we have

N+|n+, n−〉 = n+|n+, n−〉, N−|n+, n−〉 = n−|n+, n−〉. (9.130)

The action of the creation and annihilation operators on these states will change
the numbers n+ and n−, i.e.

a†+|n+, n−〉 =
√
n+ + 1 |n+ + 1, n−〉, (9.131)

a†−|n+, n−〉 =
√
n− + 1 |n+, n− + 1〉, (9.132)

a+|n+, n−〉 =
√
n+ |n+ − 1, n−〉, (9.133)

and
a−|n+, n−〉 =

√
n− |n+, n− − 1〉. (9.134)

Next we define M+, M− and Mz by

M+ = h̄a†+a−, M− = h̄a†−a+, (9.135)

and
Mz =

h̄

2

(
a†+a+ − a†−a−

)
=
h̄

2
(N+ −N−) . (9.136)
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From the commutation relations of the operators a†+ · · · a−, N+, N− we can
verify that M± and Mz satisfy the angular momentum commutation relations;

[Mz, M±] = ±h̄M±, (9.137)

and
[M+, M−] = 2h̄Mz. (9.138)

Moreover if N denotes the sum of N+ and N−

N = N+ +N− = a†+a+ + a†−a−, (9.139)

then we have

M2 = M2
z +

1
2

(M+M− +M−M+) =
h̄2

2
N

(
N

2
+ 1
)
. (9.140)

Now using Eqs. (9.131)–(9.134) we determine the action of the operators
M+,M− and Mz on |n+, n−〉

M+|n+, n−〉 = h̄a†+a−|n+, n−〉 = h̄
√
n−(n+ + 1) |n+ + 1, n− − 1〉 (9.141)

M−|n+, n−〉 = h̄a†−a+|n+, n−〉 = h̄
√
n+(n− + 1) |n+ − 1, n− + 1〉 (9.142)

and

Mz|n+, n−〉 =
h̄

2
(N+ −N−)|n+, n−〉 =

h̄

2
(n+ − n−)|n+, n−〉. (9.143)

We note that |n+, n−〉 is an eigenstate of the operator Mz. To write these in
the notation of Sec. 9.2 we replace n+ and n− by

n+ → `+m, n− → `−m, (9.144)

then

M+|`+m, `−m〉 = h̄
√

(`−m)(`+m+ 1) |`+m+ 1, `+m− 1〉, (9.145)

M−|`+m, `−m〉 = h̄
√

(`+m)(`−m+ 1) |`+m− 1, `−m+ 1〉, (9.146)

Mz|`+m, `−m〉 = mh̄ |`+m, `−m〉, (9.147)

and
M2 |`+m, `−m〉 = h̄2`(`+ 1) |`+m, `−m〉. (9.148)

A physical picture of the connection between (+) and (−) oscillators and
the eigenvalues of angular momentum has been discussed by Sakurai [10].

An object of high ` can be visualized as a collection of spin 1
2 particles,

` + m of them with spin up and ` − m of them with spin down. Thus if we
have 2` spin 1

2 particles we can add them up in different ways to get states with
angular momenta `, ` − 1, ` − 2, · · ·. If we have just two particles each with a
spin 1

2 then we can have either a system of ` = 0 or ` = 1. The problem with
this interpretation is that

(a) - we have to start with an even number of particles, 2`, and
(b) - the (+) and (−) particles are in fact bosons and not fermions.
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9.6 Rotations in Coordinate Space and in Spin
Space

If the state of a particle in a given coordinate system is described by |r〉, and
in a rotated system the state is |r′〉, then these two are related to each other
by a unitary transformation T . Let us consider the simple case of a rotation
about the z axis by an angle ϕ, where the rotated coordinates are related to the
original coordinates by a set of linear transformation;{

x′ = x cosϕ+ y sinϕ, x = x′ cosϕ− y′ sinϕ
y′ = −x sinϕ+ y cosϕ, y = x′ sinϕ+ y′ cosϕ
z′ = z

. (9.149)

From these relations we find the following derivatives

∂x

∂ϕ
= −y, ∂y

∂ϕ
= x,

∂z

∂ϕ
= 0. (9.150)

Now let us expand the transformed state |r′〉 as a power series in ϕ

|r′〉 = |x′, y′, z′〉 = |x, y, z〉+
ϕ

1!

[
d|r〉
d ϕ

]
ϕ=0

+
ϕ2

2!

[
d2|r〉
d2ϕ2

]
ϕ=0

+ · · · . (9.151)

The coefficient of ϕ in (9.151) can be calculated in terms of the derivatives;[
∂ |r〉
∂ϕ

]
ϕ=0

=
∂ |r〉
∂x

∂x

∂ϕ
+
∂ |r〉
∂y

∂y

∂ϕ

=
(
x
∂

∂y
− y ∂

∂x

)
|r〉 =

i

h̄
Lz|r〉, (9.152)

where Lz is the z component of the angular momentum operator. In a similar
way we can determine the coefficients ϕ2, ϕ3 etc. The resulting infinite series
can be summed up as an exponential operator

|r′〉 =
∞∑
n=0

(
ϕn

n!

)(
iLz
h̄

)n
|r〉 = e

iϕLz
h̄ |r〉 . (9.153)

The result for the rotation about the z-axis can be generalized to a rotation
about a given axis n, and in this case the general form of the unitary operator
T for this rotation is

T = exp
(
i(n · L)φ

h̄

)
, (9.154)

where φ is the angle of rotation.
Rotations and Spin Space — The average value of the spin must trans-

form as a vector, therefore we expect that the averages of the components of
spin transform according to

σ̄x = sinϑ cosϕ, σ̄y = sinϑ sinϕ, σ̄z = cosϕ. (9.155)
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Let us assume that the average value of σz in a state with spin up amplitude α
and spin down amplitude β, i.e.

|a〉 =
[
α
β

]
, (9.156)

is cosϑ. Then

σ̄z = 〈a|σz|a〉 = [α∗, β∗]
[

1 0
0 −1

] [
α
β

]
= |α|2 − |β|2 = cosϑ. (9.157)

To this relation we add the normalization condition

〈a|a〉 = |α|2 + |β|2 = 1, (9.158)

By solving Eqs. (9.157) and (9.158) for α and β we find two solutions for |a〉
which we denote by |a1〉 and |a2〉 ;

|a1〉 =
[

cos ϑ2
eiχ1 sin ϑ

2

]
, and |a2〉 =

[
−eiχ2 sin ϑ

2

cos ϑ2

]
, (9.159)

where χ1 and χ2 are real phases to be determined. Again for the state |a〉 we
find 〈ai |σx| ai〉 and 〈ai |σy| ai〉 , i = 1, 2 and equate them with σ̄x and σ̄y, of
Eq. (9.155).

〈ai|σx|ai〉 = sinϑ cosϕ, (9.160)

and
〈ai|σy|ai〉 = sinϑ sinϕ. (9.161)

By substituting for |a1〉 and |a2〉 from (9.159) in (9.160) and (9.161) we find
that χ1 = χ2 = ϕ. Therefore |a1〉 and |a2〉 will be given in terms of ϑ and ϕ by
the matrices

|a1〉 =
[

cos ϑ2
eiϕ sin ϑ

2

]
, and |a2〉 =

[
−e−iϕ sin ϑ

2

cos ϑ2

]
. (9.162)

For ϑ = 0, |a1〉 becomes spin up state | ↑ k〉 and |a2〉 becomes spin down state
| ↓ k〉.

Suppose that a spinor is in the state given by |a1〉, Eq. (9.159), then a
rotation by an angle φ about the z axis changes |a1〉 to |a′1〉. In analogy with
rotation in coordinate space, Eq. (9.152), we expect that the generator of such
a transformation to be

Tφ = e
iφσ3

2 , (9.163)

i.e. the transformed state |a′1〉 be given by

|a′1〉 = Tφ|a1〉. (9.164)
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Noting that

σ3 =
[

1 0
0 −1

]
, and σ2

3 =
[

1 0
0 1

]
= 1, (9.165)

we find the expansion of Tφ in powers of φ;

Tφ =

[
1 +

1
2!

(
iφ

2

)2

+ · · ·

]
1 +

[(
iφ

2

)
+

1
3!

(
iφ

2

)3

+ · · ·

]
σ3

= cos
(
φ

2

)
1 + i sin

(
φ

2

)
σ3 =

[
e
iφ
2 0

0 e
−iφ

2

]
. (9.166)

Thus

|a′1〉 = e
iφ
2

[
cos ϑ2

ei(ϕ−φ) sin ϑ
2

]
, (9.167)

which, apart from the physically unobservable phase factor, is the same as |a1〉
except for the change in azimuthal angle ϕ→ ϕ− φ as is expected.

9.7 Motion of a Particle Inside a Sphere

The first problem that we will study is the three-dimensional motion of a particle
confined inside a sphere of radius R without the presence of any other force.
The Hamiltonian for this motion is simple;

H =
1

2m

[
p2
r +

L2

r2

]
=

1
2m

[
p2
r +

`(`+ 1)h̄2

r2

]
. (9.168)

As in the case of the motion of a particle in a box, (Sec. 8.4), we choose the
lowering operator aj as

aj =
1√
2m

[
pr + iγj cot

(πr
R

)]
, (9.169)

and a†j as the Hermitian adjoint of aj . For zero angular momentum, ` = 0, Eq.
(9.168) has exactly the same form as the Hamiltonian for a particle in a box,
H = p2

2m . In this special case, (` = 0), we can use the method of factorization
outlined Sec. 8.4 to find the eigenvalues,

γj =
(
jπh̄

R

)2

. (9.170)

When l 6= 0 we use the operator

αj =
1√
2m

[
pr +

ih̄j

r

]
. (9.171)
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The Hamiltonian (9.168) can be written in terms of this operator and α†j as

H = αjα
†
j . (9.172)

Then the eigenvalue equation is

Hψ
(j)
` (r) = E

(j)
` ψ

(j)
` , (9.173)

where E(j)
` is the energy eigenvalue.

The two operators α†j and αj have the following additional properties:

α†1α1 =
p2
r

2m
(9.174)

and
α†j+1αj+1 = αjα

†
j . (9.175)

These results can be derived directly from the definition of αj , Eq. (9.171), and
its Hermitian conjugate.

Next we determine φ(1)
l (r) which is the solution of al|φl〉 = 0 or

alφl(r) =
1√
2m

[
− ih̄
r

d

dr
(rφl(r)) + iγl cot(klr)φl(r)

]
= 0. (9.176)

If we substitute for aj and a†j from (9.169) in the Hamiltonian (9.168) and set
the coefficient of cot2(klr) equal to zero we find γj = h̄kj and

ψ
(1)
l = αlαl−1 · · ·α1φl, (9.177)

with the energy eigenvalues

E
(j)
` =

h̄2
(
k

(j)
`

)2

2m
. (9.178)

Now by eliminating pr between (9.169) and (9.171) we have

αj = aj +
ijh̄

r
− ih̄kj cot(kjr). (9.179)

From (9.177) and (9.179) we find ψ
(1)
1 (r);

ψ
(1)
1 (r) = α1φ1(r) = a1φ1(r) + ih̄

(
1
r
− k1 cot(k1r)

)
φ1(r)

= ih̄

(
1
r
− k1 cot(k1r)

)
φ1(r). (9.180)

The general form of eigenvector ψ(1)
l (r) is found from (9.177) turns out to be

ψ
(1)
` = (ih̄k1)lg`(k`r)φ`(r), (9.181)
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where gl(kr) is obtained from the recurrence relation

g`+1(x) = (`+ 1)
g`(x)
x
−
(
dg`(x)
dx

+ g`(x) cot(x)
)
. (9.182)

In the range of
0 < x < k`R, (9.183)

the term in the parenthesis in (9.182) varies between −∞ and ∞ and at the
boundary cot(k`R) becomes infinite. So at this point the coefficient of cot(k`R),
i.e. g`(k`R) has to be zero. The smallest root of g`(k`R) = 0 gives us the lowest
eigenvalue k(1)

` with the smallest energy E(1)
` given by (9.178). We note that Eq.

(9.182) in the absence of the last term, g`(x) cot(x), is the recurrence relation
for the spherical Bessel function of the the order `;

j`+1(x) = (`+ 1)
j`(x)
x
− dj`(x)

dx
. (9.184)

9.8 The Hydrogen Atom

We used the factorization method to find the eigenvalues of the Kepler problem,
Eq. (8.154). Now let us apply the same method to a system composed of a
positive charge −Ze interacting with an electron of charge e. The Hamiltonian
(9.4) in this case is

H =
P2

2M
+

p2
r

2m
+

L2

2mr2
− Ze2

r
. (9.185)

Denoting the eigenvalues of the operators L2 and P2

2M by h̄2l(l + 1) and Ec.m.
respectively we have

H − Ec.m. = Hr =
p2
r

2m
+
h̄2`(`+ 1)

2mr2
− Ze2

r
. (9.186)

As we have seen in the case of one-dimensional motion we can write Hr as

Hr = a†1a1 + λ1, (9.187)

where

aj =
1√
2

[
pr + i

(
γj +

Bj
r

)]
, (9.188)

and γj and Bj are real numbers to be determined. Similarly we can define the
operators Aj+1 and Aj by

Aj+1 = aja
†
j + λj , (9.189)
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and
Aj = a†jaj + λj . (9.190)

Next we calculate a†jaj

a†jaj =
1

2m

{
pr − i

(
γj +

Bj
r

)}{
pr + i

(
γj +

Bj
r

)}
=

1
2m

{
p2
r +

(
γj +

Bj
r

)2

+ iBj

[
pr,

1
r

]}

=
1

2m

{
p2
r + γ2

j +
2γjBj
r

+

(
B2
j −Bj h̄

)
r2

}
, (9.191)

and in a similar way we calculate aja
†
j

aja
†
j =

1
2m

{
p2
r +

(
γj +

Bj
r

)2

− iBj
[
pr,

1
r

]}

=
1

2m

{
p2
r + γ2

j +
2γjBj
r

+

(
B2
j +Bj h̄

)
r2

}
. (9.192)

By comparing a†1a1 obtained from (9.191) with the same operator found from
(9.186) and (9.187) we find

γ1B1 = −mZe2, and B1(a1 − h̄) = h̄2`(`+ 1), (9.193)

with

λ1 = − γ2
1

2m
. (9.194)

These equation have two sets of solutions:
We can either choose

B1 = −`h̄, γ1 =
mZe2

h̄`
, and λ1 = −

(
mZe2

)2
2mh̄2`2

, (9.195)

or

B1 = (`+ 1)h̄, γ1 = − mZe2

h̄(`+ 1)
, and λ1 = −

(
mZe2

)2
2mh̄2(`+ 1)2

. (9.196)

The second set gives us a larger eigenvalue and therefore we choose (9.196)
rather than (9.195). Also from (9.189) and (9.190) we have

a†j+1aj+1 + λj+1 = aja
†
j + λj . (9.197)

Similarly for the general j we choose

γj+1Bj+1 = γjBj , and Bj+1(Bj+1 − h̄) = Bj(Bj + h̄), (9.198)
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with the corresponding eigenvalue λj satisfying the relation

λj+1 +

(
γ2
j+1

2m

)
= λj +

(
γ2
j

2m

)
. (9.199)

Again for a fixed ` we choose the solution which maximizes the eigenvalue;

Bj+1 = Bj + h̄ = · · · = B1 + jh̄ = (`+ 1 + j)h̄. (9.200)

Solving for Bj , γj and λj we find

Bj = (`+ j)h̄, γj = − mZe2

(`+ j)h̄
, and λj = − m2Z2e4

2m(`+ j)2h̄2 . (9.201)

For a hydrogen atom at rest P2 = 0 and the energy eigenvalues are

El,j = − mZ2e4

2(`+ j)2h̄2 , (9.202)

where ` is a nonnegative integer and j is a positive integer.
Hydrogen Atom Eigenstates — The wave function for the Coulomb

potential can be found from Eq. (8.81) or from

ψ(j)(r) = a∗1a
∗
2 · · · a∗j−1φ

(j)(r). (9.203)

The lowest state for a given j is a solution of

ajφ
(j−1) =

1√
2m

{
pr + i

(
γj +

Bj
r

)}
φ(j−1)(r) = 0, (9.204)

where γj and Bj are given by Eq. (9.201) and

pr = −i h̄
r

∂

∂r
r, (9.205)

is the radial momentum operator. Now by integrating this first order differential
equation we find φ(j−1)(r);

rφ(j−1)(r) = N`j r
`+j exp

[
− mZe2

(`+ j)h̄2 r

]
. (9.206)

For a given ` this wave function has no nodes, i.e. it is the wave function
of the ground state which is found for j = 1 in (9.203). If we write n = ` + j
with j = 1 or ` = n− 1 then

rφ(`)
n (r) = rφ(n−1)

n (r) = Nnr
n exp

[
− Zr

na0

]
. (9.207)
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In Eq. (9.207) a0 is the Bohr radius, a0 = h̄2

me2 represents the nodeless wave
function for the principal quantum number n.

Having obtained φ
(n−1)
n (r), we can construct

φ(`=n−2)
n (r), φ(`=n−3)

n (r), · · · , (9.208)

by the following method:
Let us consider the hydrogen atom for which Z = 1. Then the normalized

φ
(n−1)
n (r) can be written as

φ(n−1)
n (r) =

(
2
na0

) 3
2
(

1√
2n(2n− 1)!

)(
2r
na0

)n−1

exp
[
− r

na0

]
. (9.209)

Next we introduce the raising and lowering operators by

a`n(r) =
n`√
n2 − `2

[
1
`

+ a0

(
d

dr
− `− 1

r

)]
, (9.210)

and

a` ∗n (r) =
n`√
n2 − `2

[
1
`
− a0

(
d

dr
+
`+ 1
r

)]
. (9.211)

The lowering operator a` ∗n (r) reduces the angular momentum quantum number
` by one unit [12]–[15]. Then we have

φ(`−1)
n (r) = a` ∗n (r)φ(`)

n , (9.212)

and
φ(`−2)
n (r) = a`−1 ∗

n (r)φ(`−1)
n = a`−1 ∗

n (r)b`−1 ∗
n (r)φ(`)

n . (9.213)

This lowering of the ` s can be continued up to the point where ` becomes zero.
In this way we can generate all of the wave functions of the hydrogen atom.

As an example consider the normalized φ
(1)
2 (r) which is given by

φ1
2(r) =

1√
4!

(
1
a0

) 3
2 r

a0
e−

r
2a0 , (9.214)

and the lowering operator which according to (9.211) is

a1 ∗
2 (r) =

2√
3

[
1− a0

(
2
r

+
d

dr

)]
. (9.215)

From these expressions we find φ(0)
2 (r)

φ
(0)
2 = a1 ∗

2 (r)φ(1)
2 (r) =

1

2
√

2a
3
2
0

(
−2 +

r

a0

)
r2

a2
0

e−
r

3a0 . (9.216)
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Likewise for n = 3, from (9.209) we obtain

φ
(2)
3 (r) =

(
2

3a0

) 3
2 1√

6

(
2r
3a0

)2

e−
r

3a0 , (9.217)

and from (9.211) we have

a2 ∗
3 (r) =

6√
5

[
1
2
− a0

(
d

dr
+

3
r

)]
. (9.218)

Thus

φ1
3(r) = a2 ∗

3 (r)φ(2)
3 (r) =

4

81
√

6a
3
2
0

(
r2

a2
0

− 6r
a0

)
e−

r
3a0 , (9.219)

and from φ1
3(r) and a1 ∗

3 (r) we can calculate φ(0)
3 (r),

φ0
3(r) = a1 ∗

3 (r)φ(2)
3 (r) =

2

81
√

3a
3
2
0

[
27− 18

r

a0
+

2r2

a2
0

]
e−

r
3a0 . (9.220)

Here the phase of the wave function is given by (−1)n−`−1 whereas this phase
is 1 in the standard textbooks [7].

The complete wave function which includes the angular part can be writ-
ten as

ψn`m(r, θ, φ) = φ`n(r)Y`,m(θ, φ), (9.221)

where Y`m(θ, φ) is the spherical harmonics;

Y`m(θ, φ) =

√
(2`+ 1)(`−m)!

4π(`+ 1)!
Pm` (cos θ)eimφ. (9.222)

9.9 Calculation of the Energy Eigenvalues Using
the Runge–Lenz Vector

This method is a version of the elegant solution of the hydrogen atom problem
found by Pauli within the framework of the matrix mechanics before the dis-
covery of wave mechanics [16], [17].

In the classical Kepler problem the orbit of a particle attracted by a po-
tential −e

2

r to the center of force close on themselves, i.e. the orbit does not
precess. The reason for this is the fact that the period associated with the
angular motion, i.e. the time that the polar angle θ changes from zero to 2π
is the same (or in general an integral multiple) of the period that the radial
distance goes from its minimum value to the maximum value and back. The



252 Heisenberg’s Quantum Mechanics

non-precessing orbit is also related to the conservation of the Runge–Lenz vector
(see Sec. 1.10)[18]. Let R which is defined by

R =
1
m

p ∧ L− e2

r
r, (9.223)

denote the Runge–Lenz vector. This vector, R, lies in the plane of motion of
the particle and is directed along the semi-major axis of the ellipse. Since R is
constant, the major axis of the ellipse is fixed in space and cannot precess. The
quantum mechanical operator form of the Runge–Lenz vector can be found by
writing for p and L their operator forms and symmetrizing the result to get a
Hermitian R

R =
1

2m
(p ∧ L− L ∧ p)− Ze2

r
r. (9.224)

Note that this is the only Hermitian operator for R that we can construct. This
R operator commutes with either of the Hamiltonians (9.185) or (9.186) and
therefore is a constant of motion,

[ R, Hr] = 0, (9.225)

In addition to this property the R operator is (a) - perpendicular to L,

R · L = L ·R = 0, (9.226)

and (b) - the square of its magnitude can be expressed in terms of the Hamil-
tonian [8]

R2 =
(
Ze2

)2
+

2H1

(
L2 + h̄2

)
m

. (9.227)

For bound states of the hydrogen atom, the eigenvalues of Hr are negative
numbers. When this is the case it is more convenient to work with the vector
operator K rather than R where

K =
√
−m
2Hr

R. (9.228)

This operator, K, is Hermitian provided that it acts on the bound state eigen-
states. The vector R does not commute with itself and we have the following
commutators for its components

[Ri, Rj ] = ih̄

(
−2Hr

m

)∑
k

εijkLk, (9.229)

where εijk is the totally antisymmetric matrix introduced earlier, with its nonzero
elements given by (1.32) and (1.33). When we replace R by K, Eq. (9.229)
becomes

[Ki, Kj ] = ih̄
∑
k

εijkLk. (9.230)
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In addition to (9.230) we also have the commutator of K with L, viz,

[Ki, Lj ] = ih̄
∑
k

εijkKk. (9.231)

Equations (9.229) and (9.231) can be derived by writing for Ri,Ki and Li in
terms of x, y, z, px, py and pz and use the commutators of position and momen-
tum to simplify the result, exactly as was done for the commutators of the
components of L.

By solving Eq. (9.227) for Hr, noting that K and L are constants of
motion we obtain

Hr = − mZ2e4

2
(
K2 + L2 + h̄2

) . (9.232)

Since K and L do not commute with each other we introduce two new operators
M and N by [8]

M =
1
2

(L + K), (9.233)

and
N =

1
2

(L−K). (9.234)

The commutation relations for M and N found from (9.35), (9.230) and (9.231)
are

[Mi, Mj ] = ih̄
∑
k

εijkMk, (9.235)

[Ni, Nj ] = ih̄
∑
k

εijkNk, (9.236)

and
[Mi, Nj ] = 0. (9.237)

These relations show that M and N commute with each other and that they
satisfy the commutation relations for the components of angular momentum.
Using the operators M and N, we can diagonalize the Hamiltonian together
with M2, Mz, N2 and Nz since they all commute with each other. Let us
denote the eigenstates of these four commuting operators by |M,N , µ, ν〉, then

M2|M,N , µ, ν〉 = h̄2M(M+ 1)|M,N , µ, ν〉, (9.238)

N2|M,N , µ, ν〉 = h̄2N (N + 1)|M,N , µ, ν〉, (9.239)

Mz|M,N , µ, ν〉 = h̄µ|M,N , µ, ν〉, (9.240)

and
Nz|M,N , µ, ν〉 = h̄ν|M,N , µ, ν〉. (9.241)

The eigenvaluesM2 and N 2 are the same as those of M2 discussed earlier
with no restriction for the eigenvalues to be integers

M, N = 0,
1
2
, 1,

3
2
, 2, · · · , (9.242)
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and µ and ν have the same eigenvalues as those of Mz;

µ = −M, −M+ 1, · · ·M− 1, M, (9.243)

ν = −N , −N + 1, · · · N − 1, N . (9.244)

Now from Eq. (9.226) and (9.228) we find that

K · L = L ·K = 0. (9.245)

Using these relations we have

(K + L)2 − (K− L)2 =
1
4
(
M2 −N2

)
= 0. (9.246)

Therefore for the eigenstate |M,N , µ, ν〉 we get

M2|M,N , µ, ν〉 = N2|M,N , µ, ν〉, (9.247)

or
M = N . (9.248)

This result shows that the eigenvalues corresponding to the eigenstate
|M,N =M, µ, ν〉 is given by

Hr|M, (N =M), µ, ν〉 = −
[

mZ2e4

2h̄2(2M+ 1)2

]
|M, (N =M), µ, ν〉, (9.249)

where
n = 2M+ 1 = 1, 2, 3, · · · . (9.250)

Let us examine the state |M, (N = M), µ, ν〉. This is an eigenstate of
Lz = Mz+Nz with the eigenvalue 1

2 h̄(µ+ν) which is h̄ times an integer. However
this state is not an eigenstate of L2 because it is a linear combination of the
hydrogen atom states (denoted by |n, `,m〉) with fixed n and m but different
` values. Now we want to know about the degeneracy of the system, i.e. the
number of states with different ` and m values having the same energy. We note
that the energy eigenvalue depends only on M = N , Eq. (9.249). Thus for a
fixedM there are 2M+ 1 ν values and for fixed N =M there are (2M+ 1) ν
values. Altogether there are

(2M+ 1)2 = n2, (9.251)

different levels corresponding to the same energy eigenvalue En

En = −mZ
2e4

2h̄2n2
, n = 1, 2, 3 · · · . (9.252)

Two-Dimensional Kepler Problem — In Sec. 1.9 we considered the
classical formulation of this problem. The Hamiltonian of the system has the
simple form of

H =
p2

2m
− Ze2

ρ
, (9.253)
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where ρ =
√
q2
1 + q2

2 . There we found that three conserved quantities are as-
sociated with this Hamiltonian, the Runge–Lenz vector (R1, R2) and the z
component of angular momentum which we denoted by L3. Following Pauli’s
method we can solve the quantum mechanical version of this motion for the
bound states. For the sake of simplicity we use units where Ze2 = m = h̄ = 1.
We first construct Hermitian operators for

G1 =
R1√
−2E

, G2 =
R2√
−2E

, (9.254)

by symmetrization method and then replace the Poisson brackets (1.206)-(1.208)
by the commutators

[L3, G1] = iG2, (9.255)

[L3, G2] = −iG1, (9.256)

and
[G1, G2] = iL3. (9.257)

Now we construct a three-dimensional vector operator J;

J = G + L, (9.258)

where L = L3k. The components of J satisfy the commutation relations of the
angular momentum

J ∧ J = iJ. (9.259)

We observe that G · L + L ·G = 0, therefore

J2 = (G + L)2 = G2 + L2. (9.260)

Next we find the square of the Runge–Lenz vector

4R2 =
[
(p ∧ L)− (L ∧ p)− 2ρ

ρ

]2

=
{

[2(p ∧ L)− ip]2 − 2ρ
ρ
· [2(p ∧ L)− ip]

− 2
ρ

[2(p ∧ L)− ip] · ρ+ 4
}
. (9.261)

Expanding the first term on the left-hand side of (9.261) and simplifying the
result we get

[(2p ∧ L)− ip]2 = 4(p ∧ L)2 − 2ip · (p ∧ L)− 2i(p ∧ L) · p− p2

= p2
(
4L2 + 1

)
. (9.262)

Similarly we expand other terms in Eq. (9.261)

2ρ
ρ
· [2(p ∧ L)− ip] +

2
ρ

[2(p ∧ L)− ip] · ρ =
2
ρ

(
4L2 + 1

)
. (9.263)
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By substituting (9.262) and (9.263) in (9.261) and factoring
(
4L2 + 1

)
we find

4R2 =
(

p2 − 2
ρ

)(
4L2 + 1

)
+ 4, (9.264)

or
4R2 = −8EG2 = 2H

(
4L2 + 1

)
+ 4. (9.265)

Since
[
H, J2

]
= 0, we can diagonalize H and J2 simultaneously, knowing that

the eigenvalues of J2 are j(j + 1) where j is an integer. Thus from (9.265) we
obtain

j(j + 1) = −
(

1
4

+
1
E

)
. (9.266)

Now by identifying j with the principal quantum number ln we find the eigen-
values to be [19]

En = − 1(
ln + 1

2

)2 , ln = 1, 2, · · · . (9.267)

The complete normalized wave function obtained either from the factorization
method or directly by solving the Schrödinger equation with the Coulomb po-
tential in polar coordinates is given by

ψn,`(ρ, φ) =

√
γ3(n− |`|)!
π(n+ |`|)!

(2γρ)|`|e−γρL2|`|
n−|`|(2γρ)ei`φ, (9.268)

where E = −γ2 and L
2|`|
n−|`|(2γρ) are the Laguerre polynomials.

9.10 Classical Limit of Hydrogen Atom

As we observed in our study of the correspondence principle, a basic question in
quantum theory is the way that classical mechanics can be viewed as a limit of
quantum theory. Classically the Kepler problem can be formulated as a motion
in a plane containing the Runge–Lenz vector and is perpendicular to the angu-
lar momentum vector of the particle, and in this plane we have a well-defined
elliptic orbit. Since in the classical limit we have a two-dimensional motion, it
is convenient to start with the problem of hydrogen atom in two dimensions,
the one that we solved in the preceding section.

The uncertainty ∆R1∆R2 obtained from Eq. (9.254) and the commuta-
tion relation (9.257) is given by

∆R1∆R2 ≥
1
2
|〈−2HL3〉|. (9.269)

To get the minimum uncertainty, i.e. satisfying the equality sign in (9.269) we
find the solution of the eigenvalue equation (see Eq. (4.76)) [20]

(R1 + iξR2)ψ = ηψ, (9.270)
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where ξ is a real parameter and η is an eigenvalue of the non-Hermitian operator
R1 + iξR2. Since both R1 and R2 commute with H, therefore we can find
the eigenfunctions ψξn(ρ, φ) which diagonalize H and at the same time satisfies
(9.270). The solution of the eigenvalue equation (9.270) gives us the minimum
uncertainty product ∆R1 and ∆R2, which according to (4.82) and (4.83) are:

(∆R1)2 = −Enξ 〈L3〉, (9.271)

(∆R2)2 = −En
ξ
〈L3〉, (9.272)

and these uncertainties satisfy (9.269) with the equality sign. To generate other
eigenvalues we introduce the raising and lowering operators A± by

A± = ± 1√
−2H

(ξR1 + iR2)−
√

1− ξ2 L3, (9.273)

for 0 ≤ ξ ≤ 1. By applying these operators m times we find(
A±
)m

ψn =

[
η ±m

(
−2En

√
1− ξ2

) 1
2

]
ψn, (9.274)

where m is an integer satisfying the condition

m = −`n, −`n + 1, · · · `n − 1, `n. (9.275)

The eigenvalue η is real and is related to the mean value of the eccentricity ε of
the elliptic orbit (see also Sec. 12.8)

ε = m
[
−2E

(
1− ξ2

)] 1
2 . (9.276)

We are particularly interested in the eigenstate which corresponds to the max-
imum eigenvalue m = `n. This eigenstate satisfies the condition

A+ψξn = 0. (9.277)

Now for large quantum numbers `n from equation (9.276) it follows that the
eccentricity ε depends only on ξ and is independent of `n. In fact in this limit
Eq. (9.276) shows that

ε =
√

1− ξ2 =
(
1− 2En〈Lz〉2

) 1
2 . (9.278)

We can compare this result with the classical expression for the eccentricity of
the orbit given in terms of the semi-major and semi-minor axes, a and b;

ε2
c = 1− b2

a2
= 1− 2|E|L2

m (Ze2)
2 , (9.279)

or
ε2
c = 1− 2|E|L2, (9.280)

in the units that we have chosen.
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(a)

(b)

Figure 9.1: The time-dependent wave packet obtained from Eq. (9.284) is shown for two
different times (a) for t = 0 and (b) for t = 1

2
T where T is the Kepler period for this orbit

T = 2π`30. The classical orbit for this motion is also shown in both (a) and (b). For this
calculation the eccentricity is chosen to be ε = 0.6 and the average angular momentum is
assumed to be 〈L3〉 = 32. Other parameters used in the calculation are `0 = 40 and σ2 = 3.0
[20].

Returning to the wave function ψξn(ρ, φ) we note that a general linear
superposition of these states for large quantum numbers also minimizes the
uncertainty (9.269) and therefore has minimal fluctuations in R1 and R2. In
order to solve Eqs. (9.270) and (9.277) we expand ψξn(ρ, φ) in terms of the
eigenfunctions of the Coulomb Hamiltonian and the angular momentum L3;

ψξn(ρ, φ) =
`n∑

`=−`n

Cξn,` ψn,`(ρ, φ), (9.281)
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where the coefficients Cξn,` are given by [20]

Cξn,` =
1

2`n

[
(2`n)!

(`n + `)!(`n − `)!

] 1
2 (

1− ξ2
) `n

2

(
1 + ξ

1− ξ

) `
2

. (9.282)

When `n is large, say around 40, the coefficient Cξn,` given by (9.282) can be
approximated by a Gaussian function of `

Cξn,` ≈
[π

2
`n
(
1− ξ2

)]− 1
4

exp

[
− (`− ξ`n)2

`n (1− ξ2)

]
. (9.283)

The wave function (9.281) which minimizes ∆R1∆R2 has a spatial probability
distribution which is peaked about the Kepler orbit having the eccentricity ε

To find the time evolution of this wave packet we superimpose the energy
eigenstates ψξn,`(ρ, φ) with time-dependent factor e−iEnt, i.e.

ψξ(ρ, φ, t) =
∑
n

anψ
ξ
n(ρ, φ) exp(−iEnt), (9.284)

where the coefficient an is sharply peaked about a fixed principal quantum
numbers `0. For instance we can choose

an =
(
2πσ2

)− 1
4 exp

[
− (`n − `0)2

4σ2

]
, (9.285)

and calculate ψξ(ρ, φ, t) from (9.284) and then observe the wave packet
|ψξ(ρ, φ, t)|2 at different times.

In Fig. 9.1 this wave packet is plotted at two different times. The original
wave packet is shown in (a) and the wave packet after a time equal to half of the
Kepler period is displayed in (b). The wave packet moves around the elliptic

orbit with a period of T = 2πZe2
√
m

(−2E)
3
2

. Writing this period in units that we are

using and noting that E = − 1
2`20

, the period becomes T = 2π`30. Thus the

wave packet starts its motion at the perihelion, Fig. 9.1 (a), and then it slows
down, contracts, and becomes steeper as it reaches aphelion Fig. 9.1 (b). As
it returns to perihelion it speed up and spreads faster [20]. This motion of the
wave packet is counterclockwise. For the motion in the opposite direction we
can either choose ξ to be a negative quantity or keep ξ positive but choose the
condition

A−ψ
ξ
n = 0, (9.286)

instead of (9.277).
The spreading of the wave packet as it moves around the orbit is due

to the initial uncertainty in the position and momentum as is required by the
Heisenberg principle (Sec. 4.5). But there is an additional and important quan-
tum interference effect which happens when the head of the wave packet catches
up with its tail. This causes a nonuniform varying amplitude of the wave packet
along the ellipse [20].
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9.11 Self-Adjoint Ladder Operator

The ladder operators that we have seen so far are not self-adjoint. This is be-
cause the adjoint of either of the ladder operators changes the eigenstate in the
opposite sense. It is possible to formulate the factorization method in such a
way that the ladder operators are self-adjoint [22],[23].

Let M be the self-adjoint operator that we want to determine its eigen-
values and β+

j and β−j be the non-self-adjoint raising and lowering operators for
M . We define M̂ and B̂j as the following operators:

M̂ =
[
M 0
0 −M

]
, B̂j =

[
0 β−j
β+
j 0

]
. (9.287)

Both of these operators are self-adjoint and satisfy the anti-commutation rela-
tion [

M̂, B̂j

]
+

= M̂B̂j + B̂jM̂ = −B̂j . (9.288)

The operator M̂ acts on a pair of states each of which can be represented by a
1× 2 matrix (spinor form)

|λ, j〉a =
[
|λ, j〉

0

]
, and |λ, j〉b =

[
0
|λ, j〉

]
. (9.289)

That is
M̂ |λ, j〉a = [λ− L(j)]|λ, j〉a (9.290)

and
M̂ |λ, j〉b = −[λ− L(j)]|λ, j〉b (9.291)

Upon the action of the matrix B̂ on |λ, j〉a and |λ, j + 1〉b states we get

B̂|λ, j〉a = |λ, j + 1〉b (9.292)

and
B̂|λ, j + 1〉b = |λ, j〉a (9.293)

Thus the ladder operator B̂ changes the eigenstates from one subspace to the
other and at the same time changes the eigenvalues. We observe that in this
formulation instead of having one set of eigenstates from one subspace and a
pair of mutually adjoint ladder operators, we have one ladder operator and two
subspaces.

Let us consider the example of orbital angular momentum where we choose
M to be the z component of the angular momentum, M = Lz, and β+ and β−

are given by
β± = Lx ± iLy. (9.294)
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Substituting for M and β± in (9.287) we have

M̂ =
[
Lz 0
0 −Lz

]
= σzLz, (9.295)

and

B̂ =
[

0 (Lx − iLy)
(Lx + iLy) 0

]
= σxLx + σyLy, (9.296)

where σx, σy and σz are the Pauli spin matrices, Eq. (9.118).

9.12 Self-Adjoint Ladder Operator for Angular
Momentum

We now formulate the problem of determination of the eigenvalues of angular
momentum in a space of n dimensions in terms of the self-adjoint ladder opera-
tors. In the following sections, for convenience, we set h̄ = 1 and we define L̂ij
by

L̂ij = xipj − xjpi, i = 1, 2 · · · , n. (9.297)

These L̂ij s are obvious generalization of Lx, Ly and Lz operators for the three-
dimensional space. The operator L̂ij has the following properties:

L̂ij = −L̂ji, (9.298)

L̂ij = L̂†ij , (self-adjointness), (9.299)[
L̂ij , L̂ik

]
= iL̂jk, h̄ = 1 (9.300)[

L̂ij , L̂kl

]
= 0, (9.301)

and
L̂ijL̂kl + L̂kiL̂jl + L̂jkL̂il = 0, (9.302)

where i, j, k and l are all different integers, and they all run from 1 to n.
The set {L̂} form the elements of a Lie algebra with a single Casimir

invariant [22]

L̂2
n =

n∑
i<j

L̂2
ij . (9.303)

From the properties of L̂ij we can show that L̂2
m, m = 2, 3 · · · , n form a

commuting set of operators and that the eigenvalues of L̂2
n can be determined
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from the irreducible representations of the Lie group. The eigenvalues of L̂2
n can

also be found from the equation

L̂2
n|ψ〉 = constant |ψ〉, (9.304)

by separating (9.304) in generalized spherical polar coordinates (hyperspherical
coordinates) 

x1 = r cosφ1,
x2 = r sinφ1 cosφ2
...
xn−1 = r sinφ1 sinφ2 · · · cos θ
xn = r sinφ1 sinφ2 · · · sinφn−2 sin θ

. (9.305)

However in the present case we are dealing with the representation in which the
commuting sets L̂2

m, m = 2, 3 · · ·n are simultaneously diagonal. Here we can
solve the problem by induction. That is we assume that the solution is known in
n space and the we find in (n+ 1) space. For this we can use a ladder operator
for L̂2

n which is self-adjoint of the type that we have discussed.

9.13 Generalized Spin Operators

For the construction of a self-adjoint ladder operator for L̂2
n we first need to

consider a generalized form of spin operators for n dimensions.
Let us define σij operators i, j = 1, 2, · · · , n by the following set of rela-

tions
σij = −σji, σij = σ†ij , (9.306)

σ2
ij = 1, (1 is the unit operator), (9.307)

σljσlk = iσjk, l, j, k are all different, (9.308)

[σij , σkl] = 0, i, j, k, l are all different. (9.309)

These generalized spin matrices are related to the matrices αj defined by Eq.
(9.122), i.e.

αiαj + αjαi = 2δij , (9.310)

and the relation is

σij = −
(
i

2

)
[αi, αj ]. (9.311)

From the aforementioned properties it follows that

[σij , σik]+ = 0, i, j, k are all different. (9.312)
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Since the spin and orbital angular momentum are independent operators we
have

[σij , L̂kl] = 0, for all i, j, k, l. (9.313)

An important result concerning σij and L̂kl matrices can be stated by the fol-
lowing result

n ′∑
ijk

(
σijL̂ij

)(
σkn+1L̂kn+1

)
= 0, (9.314)

where the prime on the summation sign means that i, j, k are all different inte-
gers. For the proof of this result see the paper of Joseph [22]. Also as in the
case of angular momentum in three dimensions we have

piL̂jk + pjL̂ki + pkL̂ij = 0, (9.315)

and
xiL̂jk + xjL̂ki + xkL̂ij = 0, (9.316)

when i, j and k are all different integers. From these results and Eq. (9.314) we
obtain

n ′∑
ijk

(σin+1pi)
(
σjkL̂jk

)
= 0, (9.317)

and
n′∑
ijk

(σin+1xi)
(
σjkL̂jk

)
= 0. (9.318)

Now we can find an explicit form for the ladder operator.

9.14 The Ladder Operator

The operator Ln+1 defined by

Ln+1 =
n∑
i=1

σin+1L̂in+1, (9.319)

is a self-adjoint ladder operator for the eigenstates of L̂2
n if and only if they are

also eigenstates of the self-adjoint operator

Ln =
n∑

m=2

Lm. (9.320)

This result follows from Eqs. (9.297), (9.299), (9.306) and (9.313).
Next we consider the anti-commutation relation[

Ln+1,

(
Ln +

1
2

(n− 1)
)]

+

= 0. (9.321)
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This result can be proven from the anticommutator n∑
ij

σijL̂ij

 ,

(
n∑
k

σkn+1L̂kn+1

)
+

=
n∑
ij

[(
σijL̂ij

)
,
(
σin+1L̂in+1 + σjn+1L̂jn+1

)]
+
, (9.322)

which follows from (9.314).
Now if we substitute from (9.300), (9.301) and (9.308) in (9.322) we find n∑
ij

σijL̂ij

 ,

(
n∑
k

σkn+1L̂k

)
+

= −2(n− 1)
n∑
j=1

σjn+1L̂jn+1. (9.323)

Using the definitions of Ln+1 and Ln we observe that (9.323) reduces to (9.321).
Next we want to express the total angular momentum L̂2

n in terms of Ln.
To this end we square both sides of Eq. (9.319) and use the properties of σij s
and Li s to simplify the result (note that we have set h̄ = 1);

L2
n+1 = L̂2

n+1 − L̂2
n − Ln. (9.324)

We can also obtain another expression for L2
n+1 between Eqs. (9.319) and

(9.320);
L2
n+1 = Ln+1(Ln+1 + n− 1)− Ln(Ln + n− 1). (9.325)

By eliminating L2
n+1 from (9.324) and (9.325) we find

L̂2
n+1 − Ln+1(Ln+1 + n− 1) = L̂2

n − Ln(Ln + n− 2). (9.326)

Now for n = 2 we have

L2
2 = L2

2 =
(
σ12L̂

2
12

)2

= L̂2
12 = L̂2

2, (9.327)

therefore by induction from Eq. (9.326) we get

L̂2
n − Ln(Ln + n− 2) = 0. (9.328)

Since Ln is self-adjoint we can choose a representation in which it is diagonal,
and since Ln commutes with L̂2

n we can diagonalize these two operators simul-
taneously. The common eigenstates for L and L̂2 are doubly degenerate with
respect to L̂2. As in the case of three-dimensional space we write

Ln|`n〉a = `n|`n〉a, (9.329)

and
Ln|`n〉b = −(`n + n− 2)|`n〉b. (9.330)
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From these solutions we conclude that

L2
n|`n〉 = `n(`n + n− 2)|`n〉, (9.331)

for both a and b subspaces.
Finally let us write the ladder operators for this problem

Ln (Ln+1|`n〉a) = −(`n + n− 1) (Ln+1|`n〉a) , (9.332)

Ln+1

(
Ln+1|`n+1〉b

)
= `n

(
Ln+1|`n〉b

)
. (9.333)

These relations show that

Ln+1|`an〉 ∼ |`n+1〉b, (9.334)

and
Ln+1|`n+1〉b ∼ |`n〉a. (9.335)

The matrix elements of Ln+1 can be obtained from (9.324). Apart from a phase
factor they are

b〈`n|Ln+1|`n+1〉a = [(`n+1 − `n)(`n+1 + `n + n− 1)]
1
2 . (9.336)

An interesting result of this rather long derivation is that it shows that
except in the three-dimensional space where `2 and `3 may be half-integers, the
`n s are integers and they satisfy the following relation

`n ≥ `n−1 ≥ `n−2 · · · ≥ `2. (9.337)

Here we assume, without the loss of generality, that all `m s are positive. In
order to justify this assumption we observe that since L2

m+1 is positive definite

Mm = `m+1 − `m, (9.338)

is compatible with the stepping procedure in `m only if Mm is a positive integer.
Then this guarantees that `m+1 is an upper bound to the ladder. There is also
a lower bound preventing the generation of negative `n values. Consider the
case of m = 2, then from (9.335) it follows that for the lowering operator

L3|`2〉b ∼ |`2 − 1〉a, (9.339)

for
0 < `2 < 1, (9.340)

can be interpreted as
L3|`2〉b ∼ |1− `2〉b. (9.341)

When the inequality (9.340) is satisfied we have a new set of eigenvalues (1−`2),
(2−`2) and (3−`2) which must have `3 as an upper bound. If we combine these
with (9.338) we find that `2 and `3 may have integers or half-integer values, a
result which is true when n = 3.
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Chapter 10

Methods of Integration of
Heisenberg’s Equations of
Motion

In Chapter 7 we studied methods of solving the one-dimensional problem and
of finding the eigenvalues of a particle in confining potentials. There, by solving
a set of nonlinear algebraic equations resulting from the Heisenberg equations
of motion we found the matrix elements and the eigenvalues for these problems.
Now we want to consider the integration of the operator differential equations of
motion for a wider class of potentials and thus determine the motion of a wave
packet or the tunneling of a particle through a potential barrier. The main
motivation for studying the solution to the known problems in wave mechanics
by the more difficult operator method lies in the hope that these techniques
may give us a better insight to the much more complicated but in a way similar
problems of quantum field theory.

10.1 Discrete-Time Formulation of the
Heisenberg’s Equations of Motion

A practical method of integration the operator equations of the motion advanced
by Bender and collaborators is to replace these equations by finite-difference
equations. This formulation can be used for the determination of the eigenval-
ues of confining potentials and for one-dimensional quantum tunneling [1]–[8].
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Setting h̄ = m = 1, and for simplicity considering one-dimensional motion of
the form

dq(t)
dt

=
1
i

[q(t), H] = p(t), (10.1)

and
dp(t)
dt

=
1
i

[p(t), H] = −∂V (q)
∂q

= F (q(t)), (10.2)

the object is to integrate these equations. To this end we approximate these
with a special form of difference equations so as to preserve the equal time
commutation relation [p, q] = −i. Let us replace p(t) and q(t) by pj = p(jh)
and qj = q(jh) where h is the time step, t = jh and j is an integer, and these
operators are defined at these times. Next we introduce an auxiliary momentum
πj+ 1

2
defined at half-integral time steps. Now we can write the finite difference

approximation to Eqs. (10.1) and (10.2);

qj+1 − qj
h

= πj+ 1
2
, (10.3)

and
πj+ 1

2
− πj− 1

2

h
= F (qj). (10.4)

The canonical momentum operator pj is related to πj± 1
2

by

pj =
1
2

(πj+ 1
2

+ πj− 1
2
). (10.5)

Now by eliminating the auxiliary momentum πj± 1
2

in Eqs. (10.3) and (10.4) we
obtain the coupled difference equations

qj+1 = qj + h

[
pj +

1
2
hF (qj)

]
, (10.6)

and
pj+1 = pj +

h

2
[F (qj) + F (qj+1)] . (10.7)

The operators pj and qj defined in this way satisfy the canonical commutation
relation at the discrete points j = 0, 1, 2, · · ·

[qj , pj ] = i, (10.8)

while other commutators vanish. To show that Eq. (10.8) is true for any point
j, let us assume that (10.8) is true for a given j and then prove that it is true
for j + 1. This can be demonstrated by noting that pj+1 and qj+1 are related
to pj and qj by the unitary evolution operator Uj(h);

qj+1 = U†j (h)qjUj(h), (10.9)

pj+1 = U†j (h)pjUj(h), (10.10)
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where Uj(h) is given by the discrete form of the evolution operator U(t) = U(jh)

Uj(h) = exp
[
−ih

2
V (qj)

]
exp

[
−ih

2
p2
j

]
exp

[
−ih

2
V (qj)

]
. (10.11)

First let us consider two transformations

exp
[
ih

2
p2
j

]
qj exp

[
− ih

2
p2
j

]
= qj + hpj , (10.12)

and

exp
[
ih

2
V (qj)

]
pj exp

[
− ih

2
V (qj)

]
= pj +

1
2
hF (qj), (10.13)

These equations enable us to calculate qj+1, Eq. (10.9),

qj+1 = U†j qjUj = exp
[
ih

2
V (qj)

]
[qj + hpj ] exp

[
− ih

2
V (qj)

]
= qj + h

[
pj +

1
2
hF (qj)

]
, (10.14)

and the result is the same as (10.6). Similarly for pj+1 we obtain (10.7). Since
pj+1 and qj+1 are related by unitary transformations to pj and qj , the equal
time commutation relation will remain unchanged [9].

Accuracy of Finite-Difference Equations — To test the accuracy of
the finite-difference equations (10.6) and (10.7) we will use them to find the
long time behavior of an exactly solvable problem [10]. The solvable problem is
given by the quadratic Hamiltonian

H =
1
2
(
p2 − q2

)
, (10.15)

which generates the equations of motion

dq

dt
= p,

dp

dt
= q. (10.16)

The operator equations (10.16) can be solved exactly in terms of the initial
operators q0 and p0;

q(t) = q0 cosh t+ p0 sinh t, (10.17)

and
q(t) = q0 sinh t+ p0 cosh t. (10.18)

The corresponding difference equations are found from (10.6) and (10.7) which
after rearrangement can be written as

qn+1 =
1
2

[f(h) + f(−h)]qn +
1

2
√

1 + h2

4

[f(h)− f(−h)]pn, (10.19)
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and

pn+1 =
1
2

√
1 +

h2

4
[f(h)− f(−h)]qn +

1
2

[f(h) + f(−h)]pn, (10.20)

where

f(h) = 1 + h

√
1 +

h2

4
+

1
2
h2. (10.21)

By iterating Eqs. (10.19) and (10.20) we find

qN =
1
2
{

[f(h)]N + [f(−h)]N
}
q0 +

1

2
√

1 + h2

4

{
[f(h)]N − [f(−h)]N

}
p0,

(10.22)
and a similar relation for pN . For the initial condition we choose a state given
by a Gaussian wave packet centered at the origin, then

〈q0〉 = 〈p0〉 = 0, (10.23)

and 〈
q2
0

〉
=
〈
p2

0

〉
=

1
2
. (10.24)

Now with these initial conditions we first obtain
〈
q2(t)

〉
from Eqs. (10.17) and

(10.18); 〈
q2(t)

〉
=

1
2

+ sinh2 t =
1
2

+ t2 +
1
3
t4 +O

(
t6
)
. (10.25)

Using the finite difference equations, (10.19) and (10.20), with t = hN we find
[10] 〈

q2
N

〉
=

[
1
4
{

[f(h)]2N + [f(−h)]2N
}

+
h2

32
{

[f(h)]N + [f(−h)]N
}2
](

1 +
h2

4

)−1

. (10.26)

To compare this approximate form with the exact result when t is large,
let us choose t = 10, then from (10.25) we find〈

q2(10)
〉

= 1.2191× 108. (10.27)

Now we choose N = 100 and h = 0.1 and calculate
〈
q2
100

〉
from (10.26);〈

q2
100

〉
= 1.2014× 108. (10.28)

By comparing these results we conclude that finite-difference approximation
gives reasonable results for long times.

For small t we substitute h = t
N and expand

〈
q2
N

〉
in powers of t to find〈

q2
N

〉
=

1
2

+ t2 +
1
3

(
1− 5

8N2

)
t4 + · · · . (10.29)

When N is large (e.g. N ≈ 100) (10.29) is a good approximation when it is
compared to the expansion of

〈
q2(t)

〉
given in (10.25).
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10.2 Quantum Tunneling Using Discrete-Time
Formulation

The finite difference equations (10.6) and (10.7) may be used to determine tun-
neling in a double-well potential, e.g. for the potential

V (q) =
4q2(q − β)2

β2
. (10.30)

In the neighborhood of q = 0 this potential behaves like a harmonic oscillator
V (q) ≈ 4q2, and for the initial state we choose a state given by a Gaussian wave
function located in the left well

ψ(q)→
(ω
π

) 1
4

exp
(
−ωq

2

2

)
, (10.31)

where in the present case ω =
√

8. Now if β2 > 2ω, then the height of the
potential barrier is higher than the energy associated with the wave packet and
we have tunneling between the two wells.

Since the potential (10.30) is nonlinear in q, successive iterations of qn+1

and pn+1 will have powers of q0 and p0. Thus for calculating the matrix elements
of 〈qn0 〉 we have to truncate the infinite matrix elements of

〈j|q0|k〉 =
1√
2ω

(√
j δj,k+1 +

√
k δk,j+1

)
, (10.32)

and

〈j|p0|k〉 = i

√
ω

2

(√
j δj,k+1 −

√
k δk,j+1

)
, (10.33)

and replace them by a finite but large D ×D matrices. That is to assume that
j and k are finite and 1 ≤ j, k ≤ D where D = 1

2

(
3N + 1

)
[7].

Bender and collaborators have used the finite-difference equations (10.6)
and (10.7) with the parameters β = 2.5, D = 32 and h = 0.008 and calcu-
lated the expectation value 〈0|q(t)|0〉 using the Gaussian wave packet (10.31).

The oscillation of 〈0|q(t)|0〉 as a function of time is shown in Fig. 10.1.
The period of oscillations is approximately given by

T =
2π

E1 − E0
, (10.34)

where E0 and E1 are the lowest and the first excited state eigenvalues of the
trapped particle [14]. If we calculate the two lowest eigenvalues for the potential
(10.30) we find E0 = 1.03359 and E1 = 1.44203, and these give us a period of
about 15.3838.

In this finite basis we write Eqs. (10.6) and (10.7) in terms of their matrix
elements and the potential V ′(x) = −F (x):

〈j|xn+1|k〉 = 〈j|xn|k〉+ h〈j|pn|k〉 −
1
2
h2〈j|V ′n|k〉, (10.35)
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Figure 10.1: Expectation value of q(t) with a Gaussian wave packet is displayed as a function
of time. In this calculation p0 and q0 are approximated by 32× 32 matrices and β = 2.5 and
a step size h = 0.008 have been used to obtain this plot [7].

〈j|pn+1|k〉 = 〈j|pn|k〉 −
1
2
h
{
〈j|V ′n+1|k〉+ 〈j|V ′n|k〉

}
, (10.36)

where V ′n = V ′(xn), and 1 ≤ j, k ≤ D. One way of carrying out this numer-
ical integration is to introduce a unitary matrix 〈j|Tn|α〉 at each time step to
diagonalize the coordinate matrix 〈j|x|k〉 [11], [12]

(x(tn))αδα,k =
D∑
j=1

〈α|T (tn)|j〉〈j|x(tn)|k〉. (10.37)

Here xα refers to the grid point and this together with the matrix 〈α|Tn|j〉 are
obtained from Eq. (10.37). Having found 〈α|Tn|j〉 we construct the force matrix
by writing

〈j|V ′n|k〉 =
D∑
k=1

〈j|T (tn)|α〉V ′[xα(tn)]〈α|T (tn)|k〉. (10.38)

Once 〈j|V ′n|k〉 is determined, we can advance to the next lattice time h(n + 1)
with the help of Eqs. (10.35) and (10.36).

Tunneling in an Infinite Domain — So far we have studied the solu-
tion of Heisenberg’s equations for tunneling in a confining double-well potential.
Now we want to consider an extension of this method for the solution of the
problem of tunneling in an infinite domain. Here again the discrete form of the
Heisenberg equations are given by (10.6) and (10.7). Now for the initial position
operator we use an orthonormal plane wave basis set which is of the form

〈x|j〉 =
1√
2L0

eikjx. (10.39)
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Here the wave number (or momentum) kj is given by

kj = kmin + (j − 1)∆k, j = 1, 2 · · ·D, (10.40)

where

∆k =
kmax − kmin

D − 1
, (10.41)

and 2L0 = 2π
∆k is the total length of the coordinate grid at t = 0. This coordinate

grid expands as the wave packet moves, i.e. L = L(t). In terms of this plane
wave basis set we find the matrix elements of x0 and p0:

〈j|x0|n〉 = 12L0

∫ L0

−L0

e−ikjx x eiknxdx

=


i(−1)n−j+1

(kn − kj)
j 6= n

0 n = j

, (10.42)

and

〈j|p0|k〉 =
1

2L0

∫ L0

−L0

e−ikjx
(
−i ∂
∂x

)
eiknxdx = kjδjn. (10.43)

Now we want to examine the motion of a wave packet as it tunnels through
a barrier with finite width. If |Ψ(t)〉 denotes the initial state of the system,
then from the definition of 〈α|T (tn)|j〉 it follows that the time evolution of the
position operator can be written as

〈x|Ψ(t)〉 =
D∑
j=1

〈α|T (tn)|j〉†〈j|Ψ(t0)〉, (10.44)

where T (tn) is defined by (10.37). In order to calculate the transmission and
reflection probabilities |T |2 and R|2, we first find the transmitted and reflected
wave packets

ΨT (x, t) = lim Ψ(x, t), as t→∞, x→∞, (10.45)

and

ΨR(x, t) = lim Ψ(x, t), as t→∞, x→ −∞. (10.46)

From these wave packets we calculate these probabilities:

|T |2 =

∫
|ΨT (x, t)|2dx, t→∞, (10.47)

and

|R|2 =

∫
|ΨR(x, t)|2dx, t→∞. (10.48)
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Alternatively we can project the wave packet onto the desired momentum or
energy states:

|T (pα)|2 =
1
N

(〈+|pα||Ψ(t)〉)2
, (10.49)

and
|R(pα)|2 =

1
N

(〈−pα||Ψ(t)〉)2
, (10.50)

where N is the normalization constant such that |T (pα)|2 + |R(pα)|2 = 1 is
satisfied. These projected states are calculated from the initial state by

〈pα|Ψ(t)〉 =
D∑
j=1

〈j|pα〉〈j|Ψ(t0)〉. (10.51)

For the initial state we choose a Gaussian wave packet in momentum space;

〈j|Ψ(t0)〉 = 〈kj |Ψ(t0)〉 =
1√
N

exp
[
−σ

2

2
(kj − k0)2

]
eikjx0 , (10.52)

where N is the normalization constant and σ2 is the width of the wave packet.
From Eqs. (10.44) and (10.52) we can calculate |〈x|Ψ(t)〉|2.

This method has been used to calculate the transmission (or reflection)
coefficient for tunneling through a symmetric from of the Eckart potential;

V (x) =
V0

cosh2
(
x
a

) . (10.53)

Choosing the parameters of the potential to be V0 = 0.425 eV, a = 1.0 a.u.
(atomic unit), and those of the wave packet to be σ = 1.0 a.u. and k0 =

√
2mE0

with E0 = 0.35 eV, one can follow the motion of the wave packet (10.52), when
at t = 0 it is centered to the left of the barrier. At a later time this wave
packet passes through the barrier and then it divides, with a larger wave packet
reflected and a smaller transmitted (see [12]).

We can examine the accuracy of the finite difference method by comparing
the reflection probabilities |R(k0)|2 obtained using this method with the analytic
solution which is known. The results of numerical calculation obtained from Eqs.
(10.35) and (10.36) agree very well with the exact results.

10.3 Determination of Eigenvalues from Finite-
Difference Equations

A different approach for calculating the energy eigenvalues of a particle in a
confining potential is to work with the finite difference equations (10.6) and
(10.7). Bender and Green have suggested the use of matrix representation for
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qn, n = 0, 1, 2 · · ·N to find the energy spectrum [13]. Noting that the matrix
element An = 〈0|qn(t)|1〉 form a numerical time sequence we can compute its
discrete Fourier transform by writing

Ãm =
1

N + 1

N∑
n=0

An exp
(

2πimn
N + 1

)
. (10.54)

The coefficient An can be expressed as

An = 〈0|q(t)|1〉 =
∑
j

∑
k

〈0|Ej〉〈Ej |q(t)|Ek〉〈Ek|1〉

=
∑
j

∑
k

aij exp[i(Ej − Ek)t], (10.55)

where

ajk = 〈0|Ej〉〈Ej |q(0)|Ek〉〈Ek|1〉. (10.56)

In the energy representation 〈Ej |q(0)|Ek〉 is zero unless j is even and k is odd.
If we substitute (10.55) in (10.54) and set t = nh we find that Am contains the
sum

N∑
n=0

exp [inh(Ej − Ek)] exp
(

2πimn
N + 1

)
. (10.57)

For large N this sum has a spike at the points where

h(Ej − Ek) +
2πm
N + 1

= 0, 2π, · · · . (10.58)

Thus if we plot
∣∣∣Ãm∣∣∣2, which is a real positive quantity, versus m then we

observe sudden jumps at

Eodd − Eeven =
2πm

(N + 1)h
, (10.59)

when measured from the right axis and at

Eeven − Eodd =
2π(N + 1−m)

(N + 1)h
, (10.60)

when measured from the left axis. The approximate values of level spacing
found by this method are compared with the exact values in TABLE VI.
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TABLE VI: Exact and approximate level spacing obtained for the quartic potential

V (q) = 0.885q4, using the parameters N = 1000 and D = 11 for the calculation. The

approximate values are found from the position of the spikes in the plot of
∣∣Ãm∣∣2 versus m.

These are found from Eq. (10.58) [13].

Level spacing Exact Approximate

E1 − E0 1.728 1.674
E2 − E1 2.142 2.218
E3 − E2 2.537 2.595
E4 − E3 2.790 2.846
E5 − E4 3.000 3.097
E6 − E5 3.210 3.306

10.4 Systems with Several Degrees of Freedom

The finite difference method of solving the Heisenberg equations of motion can
be extended to systems with more than one degree of freedom. Here we will
study this formulation as it is applied to a system with two degrees of freedom.
Let us assume that a particle of unit mass moves in a potential V (x, y) and that
the Hamiltonian for the motion is given by

H =
1
2
(
p2 + ℘2

)
+ V (x, y), (10.61)

where p and ℘ are the momenta conjugate to the coordinates x and y. In this
two-dimensional motion we have to verify that there is no operator ordering
problem when V (x, y) is written in terms of finite differences. In addition we
have to show that the independent degrees of freedom (p, x) and (℘, y) remain
independent at every discrete lattice point. That is the difference equations
advancing the operators by a unit time step should preserve the commutation
relation between the independent pairs of operators (x, y), (x, p), (x, ℘) etc.

The Heisenberg equations obtained from the Hamiltonian (10.61) are

ẋ = p, ẏ = ℘, ṗ = −∂V
∂x

[x, y], ℘̇ = −∂V
∂y

[x, y]. (10.62)

These operators satisfy the canonical commutation relations

[x(t), p(t)] = [y(t), ℘(t)] = i, (10.63)

with other equal time commutators like [x(t), ℘(t)] etc. being equal to zero.
Now we approximate the dynamical operators x, p, y and ℘ by linear

polynomials on the interval 0 ≤ t ≤ h and denote the operators at t = 0 and
t = h by (x1, p1, y1, ℘1) and (x2, p2, y2, ℘2) respectively. Next we introduce
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linear finite elements for these operators by

x(t) =
(

1− t

h

)
x1 +

(
t

h

)
x2, (10.64)

and

p(t) =
(

1− t

h

)
p1 +

(
t

h

)
p2, (10.65)

with similar relations for y(t) and ℘(t). The difference equations corresponding
to the operator differential equations (10.62) are found by replacing the time
derivatives with the differences divided by h, and by writing the operators on
the right-hand side of these equations by the corresponding operators at the
midpoint of the interval, t = h

2 . By these replacements we obtain the following
difference equations:

1
h

(x2 − x1) =
1
2

(p1 + p2), (10.66)

1
h

(y2 − y1) =
1
2

(℘1 + ℘2), , (10.67)

1
h

(p2 − p1) = −∂V
∂x

[
1
2

(x1 + x2),
1
2

(y1 + y2)
]
, (10.68)

and
1
h

(℘2 − ℘1) = −∂V
∂y

[
1
2

(x1 + x2),
1
2

(y1 + y2)
]
. (10.69)

Here the brackets are used to show the arguments of the partial derivatives.
These four equations give us x2, y2, p2, ℘2 at t = h in terms of x1, y1, p1, ℘1

at t = 0. We observe that in the exact equation (10.62) there is no ambiguity of
ordering of x and y since both of these operators are defined at t and that their
equal time commutator is zero. However in Eqs. (10.68) and (10.69) the pairs
(x1, y2) and (x2, y1) are defined at different times and that their commutator, in
general, does not vanish. Therefore we must first show that there is no problem
of ordering in these equations. Let us introduce two new operators σ and τ by
the relations

σ =
1
2

(x1 + x2), τ =
1
2

(y1 + y2). (10.70)

Now if σ and τ commute with each other then there is no operator-ordering
ambiguity. To demonstrate this we solve (10.66) and (10.67) for p2 and ℘2:

p2 = −p1 +
2
h

(x2 − x1), (10.71)

and
℘2 = −℘1 +

2
h

(y2 − y1). (10.72)

Then we substitute for p2 and ℘2, from Eqs. (10.71) and (10.72) in (10.68) and
(10.69). The resulting operator equations can be written as

α =
∂V

∂σ
[σ, τ ] +

4σ
h2
, (10.73)
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and

β =
∂V

∂τ
[σ, τ ] +

4τ
h2
, (10.74)

where in these relations α and β are defined by

α =
2p1

h
+

4x1

h2
, (10.75)

and
β =

2℘1

h
+

4y1

h2
. (10.76)

We note that α and β are defined in terms of the initial operators and these
commute with each other. The set of nonlinear equations (10.73) and (10.74)
can, in principle, be solved for the unknowns σ and τ , and the solution can be
written as

σ = σ(α, β), and τ = τ(α, β). (10.77)

Since α and β commute and σ and τ are functions of these operators, they
also commute. Thus we conclude that there is no problem of ordering in Eqs.
(10.68) and (10.69). Having established this fact, we now find the solutions for
p2, x2, ℘2 and y2:

p2 = −p1 −
4x1

h
+

4
h
σ(α, β), (10.78)

x2 = −x1 + 2σ(α, β), (10.79)

℘2 = −℘1 −
4y1

h
+

4
h
τ(α, β), (10.80)

and
y2 = −y1 + 2τ(α, β). (10.81)

Using these solutions we can verify the constancy of the commutation relation
in time. Thus for the two conjugate variables x2 and p2 we have

[x2, p2] =
[
−x1 + 2σ(α, β), −p1 −

4x1

h
+

4
h
σ(α, β)

]
= [x1, p1]− 4

h
[x1, σ(α, β)] + 2

[
p1 +

4x1

h
, σ(α, β)

]
= i+ [hα, σ(α, β)] = i, (10.82)

and a similar result for [y2, ℘2]. For the commutators of two coordinates or two
momenta the proof is more tedious. For instance for [x2, y2] we have

[x2, y2] = [−x1 + 2σ(α, β), −y1 + 2τ(α, β)]
= −2[x1, τ(α, β)]− 2[σ(α, β), y1]

=
4i
h

[
∂σ

∂β
− ∂τ

∂α

]
. (10.83)
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This commutator is zero provided that

∂σ

∂β
− ∂τ

∂α
= 0. (10.84)

To show that (10.84) is true we start with the definition of α and β, Eqs. (10.76)
and (10.77) and differentiate them with respect to α and β, and in this way we
find the following results:

∂2V

∂σ2

∂σ

∂α
+

∂2V

∂σ∂τ

∂τ

∂α
+

4
h2

∂σ

∂α
= 1, (10.85)

∂2V

∂σ2

∂σ

∂β
+

∂2V

∂σ∂τ

∂τ

∂β
+

4
h2

∂σ

∂β
= 0, (10.86)

∂2V

∂σ∂τ

∂σ

∂α
+
∂2V

∂τ2

∂τ

∂α
+

4
h2

∂τ

∂α
= 0, (10.87)

and
∂2V

∂σ∂τ

∂σ

∂β
+
∂2V

∂τ2

∂τ

∂β
+

4
h2

∂τ

∂β
= 1. (10.88)

Now we solve this set of equations for ∂σ
∂β and ∂τ

∂α ;

∂σ

∂β
=
∂τ

∂α
=

∂2V
∂σ∂τ

∂2V
∂σ∂τ −

[
∂2V
∂σ2 + 4

h2

] [
∂2V
∂τ2 + 4

h2

] . (10.89)

This result shows the validity of (10.84) and therefore the fact that [x2, y2] = 0.
In the same way we can prove the vanishing of other commutators.

The unitary transfer operator which advances the dynamical operators
pj , xj , · · · by one time step must have the following properties:

pj+1 = UjpjU
−1
j , xj+1 = UjxjU

−1
j , (10.90)

℘j+1 = Uj℘jU
−1
j , yj+1 = UjyjU

−1
j . (10.91)

This unitary operator can be derived just like the operator Uj , Eq. (10.11) and
is given by

Uj = exp
[
ih

4
(
p2
j + ℘2

j

)]
exp[ihAj(xj , yj)] exp

[
ih

4
(
p2
j + ℘2

j

)]
, (10.92)

where

Aj(xj , yj) =
2
h2

[
xj − σ

(
4xj
h2

,
4yj
h2

)]2

+
2
h2

[
yj − τ

(
4xj
h2

,
4yj
h2

)]2

+ V

[
σ

(
4xj
h2

,
4yj
h2

)
, τ

(
4xj
h2

,
4yj
h2

)]
. (10.93)
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A Second Way of Formulating Finite Difference Equations for
Systems with Two Degrees of Freedom — For a system with several de-
grees of freedom we can derive difference equations exactly as we found Eqs.
(10.6) and (10.7). The two-dimensional analogue of these equations are:

x2 = x1 + hp1 −
1
2
h2 ∂V

∂x
[x1, y1], (10.94)

p2 = p1 −
h

2

(
∂V

∂x
[x1, y1] +

∂V

∂x
[x2, y2]

)
, (10.95)

y2 = y1 + h℘1 −
1
2
h2 ∂V

∂y
[x1, y1], (10.96)

and

℘2 = ℘1 −
h

2

(
∂V

∂y
[x1, y1] +

∂V

∂y
[x2, y2]

)
. (10.97)

These equations preserve the canonical commutation relations and are accurate
through order h2. The unitary transfer operator in this case is

Uj = exp
[
ih

2
V (xj , yj)

]
exp

[
ih

2
(
p2
j + ℘2

j

)]
exp

[
ih

2
V (xj , yj)

]
, (10.98)

and this Uj leaves the canonical commutation relations unchanged [4].

10.5 Weyl-Ordered Polynomials and
Bender–Dunne Algebra

In Sec. 1.7 we studied the time development of a classical quantity u(q(t), p(t))
and showed that it can be written as a power series in ∆t, where the coeffi-
cients of expansion are given in terms of multiple Poisson brackets of u with
the Hamiltonian H evaluated at t = 0, Eq. (1.137). In quantum theory we can
solve the Heisenberg equations of motion

i
dq(t)
dt

= [q(t),H], i
dp(t)
dt

= [p(t),H], (10.99)

as an initial value problem, i.e. express the operator q(t) as

q(t) =
∑
m,n

cm,n(t)pm(0)qn(0), (10.100)

where q(0) and p(0) are the initial coordinate and momentum operators. Since
pm(0)qn(0) is not a Hermitian operator we replace it with a Weyl-ordered op-
erator Tm,n(0), (Sec. 3.6), which is Hermitian and is defined by [15]

Tm,n(t) =
(

1
2

)n n∑
k=0

n!
(n− k)!k!

qk(t)pm(t)qn−k(t). (10.101)
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In terms of these Tm,n(t) operators the Heisenberg equations of motion
(10.99) can be written as

i
dT0,1(t)
dt

= [T0,1, H] , (10.102)

and

i
dT1,0(t)
dt

= [T1,0, H] , (10.103)

Noting that we have set h̄ = 1. We can use the fundamental commutation
relation [q(t), p(t)] = i to rewrite Tm,n(t) as

Tm,n(t) =
(

1
2

)m m∑
j=0

m!
(m− j)!j!

pj(t)qn(t)pm−j(t). (10.104)

We can use either (10.101) or (10.104) for the integration of Eqs. (10.103). The
set Tm,n can be generalized to the cases where either m or n is negative. Thus
if m < 0 and n ≥ 0 we use (10.101) and for n < 0 and m ≥ 0 we use (10.104).
The basis elements of Tm,n(t) form an algebra (Bender–Dunne algebra) which
is closed under multiplication [15]. From the definition (10.101) or (10.104) it
follows that the product Tm,n(t)Tr,s(t) can be written in terms of Tj,k(t) by
rearranging the orders of p(t) and q(t);

Tm,nTr,s =
∞∑
j=0

(
i
2

)j
j!

j∑
k=0

(−1)j−k
(
j
k

)
n!

(n− k)!
m!

(m+ k − j)!

× r!
(r − k)!

s!
(s+ k − j)!

Tm+r−j, n+s−j , (10.105)

where m,n, r and s are all positive integers. Since the two sides of (10.105) are
defined for the same time, we have suppressed the time dependence of the T
operators. One can generalize (10.105) to the cases where one or more of these
subscripts are negative;

Tm,nTr,s =
∞∑
j=0

(
i
2

)j
j!

j∑
k=0

(−1)j−k
(
j
k

)
× Γ(n+ 1)Γ(m+ 1)Γ(r + 1)Γ(s+ 1)

Γ(n− k + 1)Γ(m+ k − j + 1)Γ(r − k + 1)Γ(s+ k − j + 1)
× Tm+r−j, n+s−j . (10.106)

From Eq. (10.106) we can determine the commutation and anti-commutation
relations between Tm,n and Tr,s and express the result as a linear expression in
Tj,k;

[Tm,n, Tr,s] = 2
∞∑
j=0

(
i
2

)2j+1

(2j + 1)!

2j+1∑
k=0

(−1)k
(

2j + 1
k

)
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× Γ(n+ 1)Γ(m+ 1)Γ(r + 1)Γ(s+ 1)
Γ(m− k + 1)Γ(n+ k − 2j)Γ(r + k − 2j)Γ(s− k + 1)

× Tm+r−2j−1, n+s−2j−1, (10.107)

and

[Tm,n, Tr,s]+ = 2
∞∑
j=0

(
i
2

)2j
(2j)!

2j∑
k=0

(−1)k
(

2j
k

)
×

× Γ(n+ 1)Γ(m+ 1)Γ(r + 1)Γ(s+ 1)
Γ(m− k + 1)Γ(n+ k − 2j + 1)Γ(r + k − 2j + 1)Γ(s− k + 1)

× Tm+r−2j, n+s−2j . (10.108)

The commutation relation (10.107) is particularly useful in the integration of
the operator differential equations. Now we observe that the Hamiltonian can
be written as a finite or infinite sum of Tm,n s. For instance if we consider the
motion of a particle in a quartic potential where

V (q) =
1
2
q2 +

λ

4
q4, (10.109)

then the Hamiltonian can be expressed as

H =
1
2
p2 +

1
2
q2 +

1
4
λq4 =

1
2
T2,0 +

1
2
T0,2 +

λ

4
T0,4. (10.110)

For this Hamiltonian the time development of Tm,n is obtained from the Heisen-
berg equation

i
dTm,n
dt

= [Tm,n, H] =
[
Tm,n,

1
2
T2,0 +

1
2
T0,2 +

λ

4
T0,4

]
= i {nTm+1,n−1 −m (Tm−1,n+1 + λTm−1,n+3)} . (10.111)

This relation shows that T0,1(t) = q(t) is coupled to all other Tj,k s. Only for
λ = 0, T0,1 and T1,0 are coupled to each other and to no other element of the
Tj,k set. In this special case we have two coupled first order operator equation
to be solved;

dT0,1

dt
= T1,0, (10.112)

and
dT1,0

dt
= −T0,1. (10.113)

Thus in the case of harmonic oscillator we find

T0,1(t) = T0,1(0) cos t+ T1,0(0) sin t, (10.114)

T1,0(t) = T1,0(0) cos t− T0,1(0) sin t. (10.115)
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Connection with a Tensor Operator in SU(2) Group — In Sec. 9.5
we studied the relation between the creation and annihilation operators for the
harmonic oscillator and the raising and lowering operators of angular momen-
tum. Now we want to consider a similar connection between the polynomials
Pmj (q, p) defined as components of a tensor operator and Weyl-ordered products
Tm,n(p, q). These Pmj (q, p) are expressible in terms of hypergeometric function
of argument −1 [17],[18].

Again setting h̄ = 1, let us consider the SU(2) generators given by

M+ = −1
2
q2, (10.116)

M− = −1
2
p2, (10.117)

and
Mz =

i

4
(qp+ pq). (10.118)

These operators satisfy the commutation relations (9.137) and (9.138) for an-
gular momentum. From q and p we can construct a tensor operator with com-
ponents Pmj (q, p), where j = 0, 1

2 , 1, · · · and m = −j, −j + 1, · · · j. These
Pmj (q, p) operators can be defined as polynomials in q and p;

Pmj (q, p) = 2m
√

(j −m)!
(j +m)!

j−m∑
s=0

(−ip)j−m−sqj+m(−ip)s

s!(j −m− s)!
. (10.119)

Alternatively we can define Pmj (q, p) by means of its commutator with M± and
Mz; [

M±, Pmj
]

=
√

(j ∓m)(j ±m+ 1) Pm±1
j , (10.120)[

Mz, Pmj
]

= mPmj . (10.121)

These relations can be derived by substituting Eqs. (10.116)–(10.119) in the
right-hand sides of Eqs. (10.120) and (10.121).

Equation (10.119) shows that Pmj (q, p) is essentially the same as Weyl
polynomials Tm,n(p, q) and the two are related to each other by

Tj−m, j+m(p, q) =
(i)−j+m

2j
√

(j −m)!(j +m)! Pmj (q,−ip). (10.122)

We can also write Tm,n in terms of qp if we introduce the operator Ẑ by

Ẑ = iqp, (10.123)

and note that this Ẑ operator satisfies the commutation relations[
Ẑ, q

]
= q, and

[
Ẑ, p

]
= −p. (10.124)
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We can then generalize Eq. (10.123) for any positive integer n by induction,
and thus we find

qnpn = (−i)n Ẑ!(
Ẑ − n

)
!
, and pnqn = (−i)n

(
Ẑ + n

)
!(

Ẑ
)

!
. (10.125)

We can also use these forms when n is a negative integer. By grouping the
factors of q and p in a special way, viz, by writing

pjqnpm−j =
(
pjqj

) (
qn−jpn−j

)
pm−n, (10.126)

we can express these factors in terms of Ẑ. Now by substituting for the first
two factors in (10.126) in terms of Ẑ, we can write Tm,n as a hypergeometric
function of argument (−1);

Tm,n(p, q) =
(−i)n

2m
Ẑ!(

Ẑ − n
)

!
2F1

[
Ẑ + 1, −m; Ẑ − n+ 1, −1

]
pm−n.

(10.127)
We note that the order of parameters in 2F1 is immaterial since Ẑ commutes
with all of the other parameters. By using the formula

pjf
(
Ẑ
)

= f
(
Ẑ + j

)
pj , (10.128)

when j is a positive or negative integer we can calculate commutators involving
Tm,n, e.g. we have

[
Tm,n, p

j
]

=
(−i)n

2m

 Ẑ!(
Ẑ − n

)
!

2F1

[
Ẑ + 1, −m; Ẑ − n+ 1, −1

]

−

(
Ẑ + j

)
!(

Ẑ − n+ j
)

!
2F1

[
Ẑ + 1 + j, −m; Ẑ − n+ 1 + j, −1

] pm−n+j .

(10.129)

The two hypergeometric functions multiplied by pm−n+j in Eq. (10.129) can be
expressed again in terms of Tm,n s. A trivial result of (10.129) is that[

Tm,0, p
j
]

= 0, (10.130)

and another simple result is given by[
T0,2, p

2
]

= 2Ẑ = 4iqp+ 2. (10.131)
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10.6 Integration of the Operator Differential
Equations

A different technique for integrating the equations of motion is to make use of
the basis set Tm,n [15]. In this approach we first try to determine the operator
which is conjugate to the Hamiltonian [16]. This operator which will be denoted
by Θ(q, p) may not be self-adjoint, but nonetheless it is useful since it has a
very simple dependence on time. Since Θ is conjugate to H, it satisfies the
commutation relation

−i [Θ(p, q), H(p, q)] =
dΘ(p, q)

dt
= 1. (10.132)

This definition does not give us a unique operator, since we can add any function
of H to it without changing Eq. (10.132).

Equation (10.132) can be trivially integrated with the result that

Θ(p(t), q(t)) = Θ(p(0), q(0)) + t. (10.133)

That is Θ is a first integral of motion which depends linearly on t. Noting that
the Hamiltonian H which does not depend on explicitly on time is a constant
of motion

H(p(t), q(t)) = H(p(0), q(0)), (10.134)

we conclude that (10.133) and (10.134) form a set of two equations for the
two unknowns p(t) and q(t), and thus we can solve them to find p(t) and q(t)
separately.

Motion of a Particle in a Constant Field — Let us examine this idea
on a very simple case, viz, the quantum problem of the motion of a particle in
a constant field of force, where

H =
1
2
p2 + gq =

1
2
T2,0(p, q) + gT0,1(p, q), (10.135)

and g is a constant. This problem was originally solved using matrix mechanics
by Born and Wiener [19]. We expand Θ(p, q) in terms of the basis set of Tm,n
s;

Θ(p, q) =
∑
m,n

αm,nTm,n(p, q), (10.136)

and we substitute (10.135) and (10.136) in (10.132) to get∑
m,n

αm,n

[
Tm,n,

1
2
T2,0 + gT0,1

]
= i, (10.137)

where we have suppressed the dependence of Tm,n on p and q. Now from the
commutator (10.107) we find

[T0,1, Tm,n] = imTm−1,n, (10.138)
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and
[T2,0, Tm,n] = −2inTm+1,n−1. (10.139)

Using these commutators we simplify (10.137)∑
m,n

αm,n (nTm+1,n−1 − gmTm−1,n) = 1. (10.140)

Now the right hand side of (10.140) is equal to T0,0 therefore∑
m,n

[(n+ 1)αm−1,n+1 − g(m+ 1)αm+1,n]Tm,n = T0,0, (10.141)

and hence αm,n is a solution of the linear difference equation

(n+ 1)αm−1,n+1 − g(m+ 1)αm+1,n = δm,0δn,0. (10.142)

The simplest solution of (10.142) is

α1,0 = −1
g
, αm,n = 0 for m 6= 1, n 6= 0. (10.143)

Thus
Θ = −1

g
p+ t, or p = g(t−Θ). (10.144)

By substituting for p in the Hamiltonian (10.135) we find the coordinate oper-
ator q(t);

q(t) =
1
g

{
H − 1

2
g2(t 1−Θ)2

}
, (10.145)

where H and Θ are constant operators and 1 is the unit operator.
Conjugate Operator for the Hamiltonian of a Simple Harmonic

Oscillator — We now consider using this technique to solve the problem of the
simple harmonic oscillator with the Hamiltonian

H =
1
2
(
p2 + q2

)
=

1
2

(T2,0 + T0,2). (10.146)

By writing Θ(p, q) as a Weyl-ordered operator, Eq. (10.136), and substituting
(10.146) and (10.136) in (10.132) we find that

∑
m,n

αm,n

[
Tm,n,

1
2

(T2,0 + T0,2)
]

= i. (10.147)

This relation can be simplified with the help of the commutation relation (10.107)∑
m,n

αm,n (nTm+1,n−1 −mTm−1,n+1) = 1 = T0,0. (10.148)
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Setting the coefficients of Tm,n equal to zero we find that αm,n satisfies the
linear difference equation

(n+ 1)αm−1,n+1 − (m+ 1)αm+1,n−1 = δm,0δn,0. (10.149)

To find the simplest solution of this equation we first note that we cannot set
all αm,n s equal to zero because of the inhomogeneous term in (10.149). To
construct this solution we start with Eq. (10.149) and with m = n = 0. Since
the difference equation relates αm−1,n+1 to αm+1,n−1 and on the integer planar
lattice, the line joining the points (m − 1, n + 1), (m + 1, n − 1) is parallel to
the diagonal line (−1, 1), (1,−1), and that this line passes through m = n = 0,
we can obtain a set of solution by putting all αm,n equal to zero except for
α−2m−1,2m+1, m = 0, 1, 2 · · ·. For this special solution we getα−2m−1,2m+1 =

(−1)m
2m+1 , m = 0, 1, 2 · · ·

αmn = 0, otherwise

. (10.150)

If we substitute these in (10.136) we obtain

Θ =
∞∑
m=0

(−1)m

2m+ 1
T−2m−1,2m+1. (10.151)

This is in fact the Weyl-ordered form of the classical function

θ = tan−1

(
q

p

)
, (10.152)

which is conjugate to the classical Hamiltonian H = 1
2

(
p2 + q2

)
.

Integration of the Heisenberg Equation for a Quartic Anhar-
monic Oscillator — The next problem that we want to consider is the motion
of a particle in a potential where the Hamiltonian is

H =
1
2
p2 +

1
4
q4 =

1
2
T2,0 +

1
4
T0,4. (10.153)

By substituting this Hamiltonian in (10.132), with Θ as given in (10.136) and
simplifying the result with the help of (10.107) we find the analogue of (10.148)∑

m,n

αm,n

[
nTm+1,n−1 −mTm−1,n+3 +

1
4
m(m− 1)(m− 2)Tm−3,n+1

]
= 1.

(10.154)

From this equation we deduce the partial difference equation for αm,n;

(n+ 1)αm−1,n+1 − (m+ 1)αm+1,n−3

+
1
4

(m+ 1)(m+ 2)(m+ 3)αm+3,n−1 = δm,0δn,0. (10.155)



290 Heisenberg’s Quantum Mechanics

For integers m < 0 and n > 0 we can find successive nonzero values of αm,n
by noting that for m = n = 0, α−1,1 = 1. Then difference equation equation
shows that for m = −2, n = 4 we have α−3,5 = − 1

5 . Similarly if we choose
m = −4 and n = 2 we find α−3,5 = 1

2 , and this infinite sequence continues. We
can simplify this partial difference equation by two successive transformations
[15]. First we introduce two independent variables M and N by

M = −1
6

(n+ 2m), N =
1
6

(n−m), (10.156)

and replace αm,n by AM,N where

AM,N = α−2N−2M−1, 4N−2N+1 = αm−1,n+1. (10.157)

The constraints m < 0 and n > 0, for the nontrivial solution of αm,n shows that
AM,N must vanish for M < 0, N < 0. BY changing αm,n to AM,N we find that
Eq. (10.155) transforms Eq. (10.155) to a first order partial difference equation

(4N − 2M + 1)AM,N + (2N + 2M − 1)AM,N−1

− 1
4

(2N + 2M − 1)(2N + 2M − 2)(2N + 2M − 3)AM−1,N−1

= δM,0δN,0. (10.158)

In the second transformation we change the dependent variables AM,N to BM,N

by defining BM,N as

BM,N =
Γ
(

1
2

)
2NΓ

(
M +N + 1

2

)AM,N . (10.159)

Replacing AM,N s by BM,N s in (10.158) yields a linear partial difference equa-
tion of first order;

(4N − 2M + 1)BM,N +BM,N−1

− (N +M − 1)BM−1,N−1 = δM,0δN,0. (10.160)

The solution of this difference equation can be written in the form of a triangular
matrix. The first few matrix elements of BM,N are tabulated in TABLE VII.
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TABLE VII: Nonzero Values of BM,N defined as the solution of Eq. (10.160) [15].

M = 0 M = 1 M = 2 M = 3 M = 4 M = 5

N = 0 1

N = 1 − 1
5

1
3

N = 2 1
45

− 11
105

1
5

N = 3 − 1
585

6
385 − 13

189
1
7

N = 4 1
9945 − 202

135135
305

27027 − 5
99

1
9

N = 5 − 1
208845

353
3357585 − 23

19305
−100
11583 − 17

429
1
11

The operator Θ(p, q) which is given as an expansion in Tm,n with coefficients
αm,n can also be written as an expansion in terms Tm,n but now with the coeffi-
cients Bm,n. This is found by replacing m and n by M and N and transforming
αm,n to Bm,n. The final form of Θ(p, q) is the infinite series

Θ(p, q) =
∞∑
N=0

N∑
M=0

2N
Γ
(
M +N + 1

2

)
Γ
(

1
2

) BM,N T−2N−2M−1,4N−2N+1(p, q).

(10.161)
The coefficients Bm,n can be obtained from a rather complicated generating
function [15].

10.7 Iterative Solution for Polynomial Potentials

An interesting method for solving the operator equation of motion which can
be used when the potential is a polynomial in q is as follows [23]:

We start with the Hamiltonian of a particle of unit mass;

H(p, q) =
1
2
p2 +

1
2
q2 +

K∑
k=2

1
k + 1

λkq
k+1. (10.162)

When we set λk = 0 for all k s then we have the harmonic oscillator problem
for which the operator solution is given by (10.114) and (10.115). We write this
solution in the compact matrix form of[

q(t)
p(t)

]
= exp(Jt)

[
T0,1

T1,0

]
, (10.163)
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where

J =
[

0 1
−1 0

]
, (10.164)

and T0,1 = q(0) and T1,0 = p(0) are the operators at t = 0. The equation of
motion for the complete system derived from (10.162) are

dq(t)
dt

= p(t), (10.165)

dp(t)
dt

= −q(t)−
K∑
k=2

λkq(t)
k
. (10.166)

These first order differential equations can be converted into a matrix integral
equation[

q(t)
p(t)

]
= exp(Jt)

[
T0,1

T1,0

]
−

K∑
k=2

λk

∫ t

0

eJ(t−τ)

[
0

[q(τ)]k

]
dτ. (10.167)

In particular if we want to find q and p as functions of time from (10.167) we
obtain

q(t) = T0,1 cos t+ T1,0 sin t−
K∑
k=2

λk

∫ t

0

sin(t− τ)qk(τ)dτ, (10.168)

and

p(t) = −T0,1 sin t+ T1,0 cos t−
K∑
k=2

λk

∫ t

0

cos(t− τ)qk(τ)dτ. (10.169)

For instance for the cubic potential

V (x) =
1
2
x2 +

λ

3
x3, (10.170)

we have
λ2 = λ, λ3 = λ4 = · · · = 0. (10.171)

Thus the operators q(t) and p(t) satisfy the following integral equations

q(t) = T0,1 cos t+ T1,0 sin t− λ
∫ t

0

sin(t− x)q2(x)dx, (10.172)

and

p(t) = −T0,1 sin t+ T1,0 cos t− λ
∫ t

0

cos(t− x)q2(x)dx. (10.173)

Assuming that for small values of λ and for short times the iterative solution
converges, we write

q(t) = q0(t) + λq1(t) + λ2q2(t) + · · · . (10.174)



Polynomial Potentials 293

0

-1.5

-1

-0.5

0

0.5

1

1 2 3 4 5

Figure 10.2: The expectation value of the position operator 〈0|q(t)|0〉 (the solid curve) and
the classical position of the particle (the dashed curve) are plotted as functions of time. The
parameters used in the calculation are: λ = 0.4, ν = 1, and q0 = 1.

Substituting (10.172) in (10.168) and equating different powers of λ we find

q0(t) = T0,1 cos t+ T1,0 sin t, (10.175)

q1(t) = −
∫ t

0

sin(t− x)q2
0(x)dx, (10.176)

q2(t) =
∫ t

0

sin(t− x) [q0(x)q1(t) + q1(x)q0(t)] dx, (10.177)

and so on. For instance for q1(t) we obtain

q1(t) = −2
3

sin2

(
t

2

)
×

[
T0,2 (2 + cos t) + 2T2,0 sin2

(
t

2

)
+ 2T1,1 sin t

]
,

(10.178)

and a much longer expression for q2(t) in terms of T3,0, T2,1 · · ·. Substituting
for q0(t), q1(t) · · · in (10.174) we get an expression for the operator q(t) in terms
of Tm,n s.
Similarly for p(t) we write

p(t) = p0(t) + λp1(t) + λ2p2(t) + · · · , (10.179)

where
p0(t) = −T0,1 sin t+ T1,0 cos t, (10.180)
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and

p1(t) = −
[

8
3
T0,2 cos

(
t

2

)
sin3

(
t

2

)
+

1
3
T2,0(sin t+ sin 2t)

− 4
3
T1,1(1 + 2 cos t) sin2

(
t

2

)]
. (10.181)

We can study this motion by taking the expectation value of q(t) with an
arbitrary localized wave packet.
Consider a normalized displaced Gaussian wave packet φ(q) given by

φ(q) =
(ν
π

) 1
4

exp
[
−1

2
ν(q − q0)2

]
. (10.182)

Using this wave packet we calculate the expectation values of Tm,n s for the first
few m s and n s;

〈0|T0,0|0〉 = 1, 〈0|T0,1|0〉 = q0, 〈0|T1,0|0〉 = 0,

〈0|T1,1|0〉 = 0, 〈0|T0,2|0〉 =
1

2ν
(
1 + 2νq2

0

)
,

〈0|T2,0|0〉 =
1
2
ν, · · · . (10.183)

Thus

〈0|q(t)|0〉 = q0 cos t− 2λ
3

sin2

(
t

2

)[
1
2ν
(
1 + 2νq2

0

)
+

1
2ν

sin2

(
t

2

)]
. (10.184)

In a similar way we can find the time-dependence of the momentum operator
which in this case is

p(t) = T1,0 cos t− T0,1 sin t

+ λ

{
8
3
T0,2 cos

(
t

2

)
sin3

(
t

2

)
+

1
3
T2,0(sin t+ sin 2t)

− 4
3
T1,1(1 + 2 cos t) sin2

(
t

2

)}
.

(10.185)

From Eq. (10.185) we calculate the expectation value of 〈0|p(t)|0〉 with the
Gaussian wave packet (10.182). In Fig. 10.2 the expectation value of the po-
sition operator calculated from (10.184) is plotted as a function of time. For
comparison the classical position is also shown. Because of the approximate
nature of this calculation the expectation values of the commutation relation
and that of the Hamiltonian of the particle will be time-dependent, i.e.

〈0|[q(t), p(t)]|0〉 = i
{

1 + λc1(t) + λ2c2(t) + · · ·
}
, (10.186)
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and 〈
0
∣∣∣∣12p2 +

1
2
q2 − λ

3
q3

∣∣∣∣ 0〉 =
{
e0 + λe1(t) + λ2e2(t) + · · ·

}
, (10.187)

where c1, c2 · · · and e0, e1, e2 · · · are functions of time. In the next section we
will consider a direct method of integration of equations of motion which leaves
these expectation values, over a finite range of time, unchanged.

10.8 Another Numerical Method for the Inte-
gration of the Equations of Motion

In our study of the iterative method of solution of the Heisenberg equations of
motion we noted that except for very short times both the energy and the com-
mutation relation between p(t) and q(t) will not remain constant particularly if
the strength of the interaction, λ, is large.

A different approach is to consider the position operator of the particle as
a function of time and try to determine the coefficients of the expansion of q(t)
in terms of the set Tm,n(0) by numerical integration [20],[21]. Let f(q) = −∂V (q)

∂q
represent the force which acts on the particle, then from Taylor expansion we
have

q(∆t) = T0,1+
∆t
1!
T1,0+

(∆t)2

2!
f(T0,1)+

1
2

(∆t)3

3!
[T1,0f

′(T0,1) + f ′(T0,1)T1,0]+· · · ,
(10.188)

where prime denotes derivative with respect to q. We can write a relation similar
to (10.188) for p(∆t).

In general if tj denotes the time j∆t with j an integer, then q(tj+1) and
p(tj+1) are expressible in terms of Tm,n(tj);

q(tj+1) = T0,1(tj) +
∆t
1!
T1,0(tj) +

(∆t)2

2!
f(T0,1(tj))

+
1
2

(∆t)3

3!
[T1,0(tj) f ′(T0,1(tj)) + f ′(T0,1(tj)) T1,0(tj)] + · · · ,

(10.189)

and

p(tj+1) = T1,0(tj) +
∆t
1!
f(T0,1(tj))

+
1
2

(∆t)2

2!
[T1,0(tj) f ′(T0,1(tj)) + f ′(T0,1(tj)) T1,0(tj)] + · · · .

(10.190)
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These relations show that if {Tm,n} s are known at tj then q(tj+1) and p(tj+1)
can be obtained. From q(tj+1) and p(tj+1) we can calculate Tm,n at a later
time, i.e. Tm,n(tj+1) using Eqs. (10.101) and (10.104)

Tm,n [q(tj+1), p(tj+1)] = Tm,n(tj+1). (10.191)

From Eqs. (10.189) and (10.190) it follows that Tm,n(tj+1) depends on
the products of the elements {Tm,n(tj)} and that we can simplify these using
the product relation (10.106). In turn the elements of {Tm,n(tj)} are given in
terms of {Tm,n(tj−1)} and so on. Therefore the result of integration will be
given as a series in Tm,n(0).

An alternative way of considering this problem is to find the equation
of motion of Tm,n(t) for the Hamiltonian of the problem. For instance let us
consider the case where the potential is cubic in q and the Hamiltonian is

H =
1
2
p2 +

1
2
q2 − 1

3
λq3

=
1
2
T2,0(t) +

1
2
T0,2(t)− λ

3
T0,3(t). (10.192)

The Heisenberg equation for Tm,n is

i
dTm,n
dt

= [Tm,n, H] =
1
2

[Tm,n, T2,0] +
1
2

[Tm,n, T0,2]− λ

3
[Tm,n, T0,3] . (10.193)

We can evaluate the commutators on the right hand side of (10.193) using Eq.
(10.107);

dTm,n
dt

= nTm+1,n−1 −mTm−1,n+1 + 3λmTm−1,n+2 −
λm!

12(m− 3)!
Tm−3,n.

(10.194)
From this last relation we find the operator equations for p = T1,0 and q = T0,1;

dT0,1

dt
= T1,0, (10.195)

and
dT1,0

dt
= −T0,1 + 3λT0,2. (10.196)

We note that T1,0 is coupled to T0,2 and T0,2 to other Tm,n s. Therefore we have
an infinite set of coupled equations. In general Tm,n(∆t) can be expanded in a
Taylor series like (10.188);

Tm,n(∆t) = Tm,n(0) +
∆t
1!

(
dTm,n
dt

)
t=0

+
(∆t)2

2!

(
d2Tm,n
d t2

)
t=0

+ · · · . (10.197)

Then from (10.193) it follows that
(
dTm,n
dt

)
t=0

can be expressed as Tm+1,n−1(0)
and other elements of the basis set. The final result can be written as an operator
equation

Tm,n(N∆t) =
∑
j,k

Cm,n;j,k(N∆t)Tj,k(0), (10.198)
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Figure 10.3: The expectation value of the position operator multiplied by λ,
〈φ(q)|λq(t)|φ(q)〉 is plotted as a function of time. Here the particle is trapped in the trough of
a cubic potential V (q) = 1

2
q2 − 1

3
λq3. The solid line shows the result for λq0 = 0.85 and the

dotted line is for λq0 = 0.9. In the first case the energy of the wave packet is slightly below
and in the second slightly above the maximum height of the barrier. Both are calculated for
λ =
√

0.1.

where the coefficients Cm,n;j,k(N∆t) are determined numerically for a given
N∆t.

From (10.197) we can calculate the expectation value of

〈T0,1〉 = 〈φ(q)|q(t)|φ(q)〉, (10.199)

with the wave packet φ(q) given by a displaced Gaussian function (10.182). The
time-dependence of 〈T0,1〉 is shown in Fig. 10.3. The expectation value of the
momentum operator p(t) = T1,0(t) can be obtained in a similar way, and this is
displayed in Fig. 10.4.

A similar formulation is possible when the potential is a polynomial in
( 1
q ). For instance if we are dealing with the radial problem with a potential of

the form

V (r) =
K∑
k=1

Ak
rk
, (10.200)

then we can determine the equation of motion for Tm,n as before. In this case
we replace Tm,n(p, q) by Sm,n(pr, r) where pr is the radial momentum operator,
(9.205), and Sm,n(t) is defined as

Sm,n(t) =
1
2n

n∑
k=0

n!
k!(n− k)!

rk
(
−i ∂
r∂r

)m
r(n−k)
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=
1
r

{
1
2n

n∑
k=0

n!
k!(n− k)!

rk
(
−i ∂
∂r

)m
r(n−k)

}
r =

1
r
Tm,n r,

(10.201)

where we have simplified Sm,n(t) using the result(
− i
r

∂

∂r
r

)(
− i
r

∂

∂r
r

)
· · ·
(
− i
r

∂

∂r
r

)
=

(−i)m

r

∂m

∂rm
r (10.202)

Noting that the commutation relation [pr, r] has the same form as [p, q], we
find that the commutation relation between the two members of the set, say
Sm,n and Sr,s is similar to (10.107) i.e.

[Sm,n, Sr,s] = 2
∞∑
j=0

(
i
2

)2j+1

(2j + 1)!

2j+1∑
k=0

(−1)k
(

2j + 1
k

)
× Γ(n+ 1)Γ(m+ 1)Γ(r + 1)Γ(s+ 1)

Γ(m− k + 1)Γ(n+ k − 2j)Γ(r + k − 2j)Γ(s− k + 1)
× Sm+r−2j−1, n+s−2j−1. (10.203)

For the potential (10.200) the Hamiltonian is

H =
1
2
S2,0 +

K∑
k=1

Ak
rk
, (10.204)

and from this Hamiltonian and the commutation relation we can find dSm,n
dt ;

i
dSm,n
dt

= [Sm,n, H] = inSm+1, n−1

+ 2
∞∑
j=0

(
i

2

)2j+1
m!

(m− 2j − 1)!(2j + 1)!

×

(
K∑
k=1

Ak
(k + 2j)!
(k − 1)!

Sm−2j−1, n−k−2j−1

)
. (10.205)

For the radial part of the Kepler problem (or the hydrogen atom) where

V (r) = −κ
r

+
l(l + 1)

2r2
(10.206)

Eq. (10.207) reduces to

i
dSm,n
dt

= [Sm,n, H] = inSm+1, n−1

+ 2
∞∑
j=0

(
i

2

)2j+1
m!

(m− 2j − 1)!

× {−κSm−2j−1, n−2j−2 + 2(j + 1)l(l + 1)Sm−2j−1, n−2j−3} .
(10.207)
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Equation (10.205) is valid for positive as well as negative integers n. But if
we consider the Taylor expansion of S0,1(∆t) which is similar to (10.197) and
express the derivatives(

dS0,1(t)
dt

)
t=0

,

(
d2S0,1(t)
d t2

)
t=0

, · · · (10.208)

in terms of the basis set Sm,n(t) we have

S0,1(∆t) = S0,1(0) +
∆t
1!
S1,0(0) +

(∆t)2

2!

∑
k

kAkS0,−(k+1)(0)

− (∆t)3

3!

∑
k

k(k + 1)AkS1,−(k+2)(0)− (∆t)4

4!

∑
k

k(k + 1)Ak

×

−(k + 2)S2,−(k+3)(0) +
∑
j

jAjS0, −(k+j+3)(0)

+ · · · .

(10.209)

This relation shows that only Sm,n s with n ≤ 1 are needed for calculating the
time development of the radial coordinate S0,1(∆t) = r(∆t).

10.9 Motion of a Wave Packet

Let us assume that the operator equation is integrated and the relation (10.198)
is found. Then the position of the particle as a function of time can be deter-
mined from the expectation value 〈φ(q)|T0,1(t)|φ(q)〉, where φ(q) is a localized
wave packet. Similarly the momentum associated with the motion of the par-
ticle is obtained from 〈φ(q)|T1,0(t)|φ(q)〉. We have already seen an example of
such a motion for a particle bouncing between two rigid walls, Sec. 7.5, where
we chose a sinusoidal wave packet confined to a small region between the wells.
When T0,1(t) can be written as a sum involving Tm,n(0) s with positive n, then
it is convenient to choose a displaced Gaussian (10.182) for the wave packet.

With this wave packet the integrals involving Tm,n s for the first few terms
of expansion of T0,1(t) can be done analytically. In particular we observe that
for a simple harmonic oscillator we can solve (10.195),(10.196) with λ = 0 and
find T0,1;

T0,1(t) = T0,1(0) cos t+ T1,0(0) sin t. (10.210)

The expectation value of T0,1(t) with the wavepacket (10.182) gives us

〈φ(q)|T0,1(t)|φ(q)〉 = q0 cos t, (10.211)
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Figure 10.4: The expectation value of the momentum operator for a particle trapped in the
potential V (q) = 1

2
q2 − 1

3
λq3 as a function of time.

i.e. the center of the wave packet oscillates about the origin with the frequency
2π and the amplitude q0.

When λ is not zero we assume that the wavepacket at t = 0 is some-
where within the potential well i.e. λq0 < 1. Then after a time t it tunnels
through the barrier, which in this case has a maximum height of 1

6λ2 and goes
to +∞. We can use Eqs. (10.195),(10.196) to determine 〈φ(q)|T0,1(t)|φ(q)〉
and 〈φ(q)|T1,0(t)|φ(q)〉 as functions of time. Figures 10.3 and 10.4 show these
expectation values for early times t < 2.5, for two different values of the ini-
tial displacement q0 (t is dimensionless). Due to the coupling between different
Tm,n s the accuracy of the numerical integration cannot be maintained for longer
times. This can be seen by evaluating

C = 〈φ(q)|[q, p]|φ(q)〉, (10.212)

and

E =
〈
φ(q)

∣∣∣∣−1
2
d2

d q2
+

1
2
q2 − λ

3
q3

∣∣∣∣φ(q)
〉
, (10.213)

at every step of integration. For λ =
√

0.1 after a time of 2.5 (dimensionless)
both C and E will start changing with time.

Since we have used a wave packet to describe the motion of a particle we
need to differentiate between the passage over the barrier and quantum tun-
neling. But we must note that this distinction is not sharply defined. For the
tunneling problem we choose q0 such that the expectation value of the energy
Eq. (10.213) is less than the maximum height of the barrier. Alternatively if
we start with the initial values q(0) = q0 and p(0) = 0 and solve the classical
equation of motion q̈ = −∂V (q)

∂q , then the classical motion will have two turning
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Figure 10.5: The normalized wave packet (10.217) is shown as a function of r.

points. That is the classical limit of quantum tunneling results in bounded os-
cillation about the equilibrium point q = q0.

The shifted Gaussian wave packet is suitable when the potential is a poly-
nomial in q. If we are considering an inverse power-law potential such as (10.200)
then the wave packet should go to zero as r → 0 fast enough so that the matrix
elements 〈ψ(r)|Sm,−n(t)|ψ(r)〉 remains finite for all n. Thus

lim
1
rn

(rψ(r))→ 0, as r → 0 for all n. (10.214)

If we calculate the matrix elements of Sm,−n with the wave packet ψ(r) we find
that

〈ψ(r)|S2m+1,−n|ψ(r)〉 = 0, (10.215)

and

〈ψ(r)|S2m,−n|ψ(r)〉 =
(−1)m

2m

2m∑
j=0

(2m)!
(2m− j)!j!

(−1)j

×
∫ ∞

0

∂j(rψ)
∂rj

1
rn
∂2m−j(rψ)
∂r2m−j dr. (10.216)

Thus all the matrix elements of Sm,n are real.
A simple and analytically tractable wave packet which satisfies (10.214),

shown in Fig. 10.5, is

rψ(r) = N exp
[
−1

2

(a
r

+ br
)]
, (10.217)
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Figure 10.6: The position of the center of mass of the wave packet plotted as a function of
time.

where a and b are constants. The normalization constant N is given in terms
of a and b

N =
1√
2

(
b

a

) 1
4 1√

K1(2
√
ab)

. (10.218)

Here K1(x) is the modified Bessel function of order 1 [25]. The center of this
wave packet is located at r0 where

r0 =
(a
b

) 1
2 K2(2

√
ab)

K1(2
√
ab)

. (10.219)

Using this wave packet we can also find the matrix elements of S0,n;

〈ψ|S0,−n|ψ〉 =
(
b

a

)n
2 Kn−1(2

√
ab)

K1(2
√
ab)

. (10.220)

For a specific example we choose V (r), Eq. (10.200), to be the sum of three
terms [22]:

V (r) =
3.877
r
− 15.488

r2
+

9.0349
r3

. (10.221)

The coefficients of V (r) are chosen in such a way that the wave packet trapped
within the potential can tunnel and escape to infinity. The position of the center
of mass of the wave packet as a function of time is shown in Fig. 10.6.

In order to compare the result of the solution of the Heisenberg equation
for 〈ψ(r)|r(t)|ψ(r)〉 and the solution of the time-dependent Schrödinger equa-
tion 〈ψ(r, t)|r|ψ(r, t)〉 we choose a Rydberg wave packet [26]. The Rydberg wave
packets are formed from the superposition of many eigenstates belonging to dif-
ferent principle quantum numbers n. The wave packets thus obtained from the
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Figure 10.7: A Rydberg wave packet ψn,`=0(r) found by superimposing different S waves.

hydrogen atom wave functions are of great interest in studying the classical limit
of the problem of interaction between atoms and the external electromagnetic
field [26]. An example of such a wave packet found from superposition a number
of S waves is displayed in Fig. 10.7.

Let us denote the radial wave function of a hydrogen-like atom by un,`(r)
where

un,`(r) =

[(
2Z
n

)3 (n− `− 1)!
2n(n+ l)!

] 1
2

exp
(
−Zr
n

)(
2Zr
n

)`
L2`+1
n−`−1

(
2Zr
n

)
,

n = 1, 2, · · · , (10.222)

and Z is the nuclear charge. In this equation L2`+1
n−`−1 denotes the associated

Laguerre polynomial and r is measured in units of the Bohr radius a0 = h̄2

Me2

[27]. To construct Rydberg wave packet we fix ` and write

ψ`(r) =
∑
n

Cnun,`(r). (10.223)

Now we want to impose the condition

limψ`(r)→ rK as r → 0, (10.224)

and for this we expand the right hand side of (10.223) in powers of r and set
the coefficients of rs, s = 0, 1, · · ·K − 1 equal to zero and the coefficient of rK

equal to unity. In this way we get a set of K + 1 linear equations for Cn s used
in Eq. (10.223). Figure 10.7 shows such a Rydberg wave packet obtained for S
wave by adding five waves with n = 1, · · · , 5.
We choose the potential in this case to be the Coulomb potential

V (r) = −Z
r

= −3
r
, (10.225)
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Figure 10.8: The position of the center of Rydberg wave packet as a function of time when
the potential is the Coulomb potential. For the range of t shown in the figure, the result of
integration of the Heisenberg equation overlaps with the result found from the solution of the
wave equation.

in atomic units. The calculation is done exactly as before. However now we
can compare our result for the motion of the center of the Rydberg wave packet
with a similar calculation using the Schrödinger equation. In the latter case the
motion of the center of the wave packet is expressible in terms of un,`(r) as

〈ψ`(r, t)|r|ψ`(r, t)〉 =
K∑
n,j

CnC
∗
j exp[i(Ej − En)t]〈uj,`(r)|r|un,`(r)〉. (10.226)

By comparing this result with

〈ψ`(r)|S0,1(t)|ψ`(r)〉 (10.227)

found by using the Rydberg wave packet and the equation of motion for the
operator S0,1(t), we observe that the two curves overlap for 0 ≤ t ≤ 7 (dimen-
sionless units) (see Fig. 10.8).

We can apply this method to other systems as well. For instance consider
the Morse potential;

V (x) = V0 [exp (−2
√
µ (x− x0))− 2 exp (−√µ (x− x0))] . (10.228)

If we change x to q where q is defined by

q = exp (−√µ (x− x0)) , (10.229)
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then the Hamiltonian becomes

H = µ

[
−1

2

(
q2 d2

d q2
+ q

d

dq

)
+B0(q2 − q)

]
, (10.230)

where B0 = V0
µ is a dimensionless constant. Next we write H in terms of the

basis set {Tm,n};

H = µ

[
1
2

(T0,2T2,0 − iT1,1) +B0(T0,2 − 2T0,1)
]
. (10.231)

With the help of the product formula (10.106) we can write H as an operator
which is linear in Tm,n s,

H = µ

[
1
2
T2,2 + iT0,1T1,0 +B0(T0,2 − 2T0,1)

]
. (10.232)

Using this Hamiltonian we can find the equations of motion for Tm,n(t);

i
dTm,n
dt

= [Tm,n, H] = µ {(i/4)mn(m− n)Tm−1, n−1

+ i(m− n)Tm,n + i(n−m)Tm+1, n+1 + 2mB0 (Tm−1,n − Tm−1, n+1)} .
(10.233)

Again we observe that we need to determine Tm,n for positive integers, only.
Thus the final result will be of the form (10.198).
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Chapter 11

Perturbation Theory

In their pioneering work on matrix mechanics, Born, Heisenberg and Jordan
among other original contributions also developed a systematic method of ap-
proximate calculation of the eigenvalues based on perturbation theory [1]. In
“three men’s paper” this perturbation theory was formulated in the following
way:

Let us write the Hamiltonian of the system which is not explicitly time-
dependent as

H = H0(p, q) + λH1(p, q) + λ2H2(p, q) + · · · , (11.1)

where λ is a small dimensionless parameter. We assume that the solution for
the unperturbed Hamiltonian H0 is known and we use a representation in which
H0(p, q) is diagonal, i.e.

〈n|H0(p0, q0)|j〉 = E
(0)
j δnj (11.2)

where p0 and q0 are matrices which make H0 diagonal. Here p0 = lim p and
q0 = lim p as λ→ 0.

In order to diagonalize H(p, q) we choose a unitary transformation U such
that

p = Up0U
−1, and q = Uq0U

−1, (11.3)

and then the Hamiltonian

H(p, q) = UH(p0, q0)U−1, (11.4)

becomes a diagonal matrix

〈n|H|j〉 = Ejδnj . (11.5)

309
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To determine the form of the transformation, U , we write it as a power series
in λ

U = 1 + λU1 + λ2U2 + · · · , (11.6)

with its inverse given by

U−1 = 1− λU1 + λ2
(
U2

1 − U2

)
+ · · · . (11.7)

Next we substitute (11.1), (11.6) and (11.7) in (11.4) and equate different powers
of λ and we obtain the following set of equations:

〈n|H0(p0, q0)|j〉 = E
(0)
j δnj , (11.8)

〈n|U1H0 −H0U1 +H1|j〉 = E
(1)
j δnj , (11.9)

〈n|U2H0−H0U2 +H0U
2
1 −U1H0U1 +U1H1−H1U1 +H2|j〉 = E

(2)
j δnj , (11.10)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

〈n|UrH0 −H0Ur + Fr(H0 · · ·Hr, U0 · · ·Ur−1)|j〉 = E
(n)
j δnj . (11.11)

In these relations all of the operators are functions of p0 and q0. The
operator Fr is found by collecting all the contributions coming from
H0, · · ·Hr;U0, · · ·Ur−1 as can be seen from (11.9) and (11.10). From the prop-
erty UU−1 = U (U∗)t = 1 and the expansion (11.6) it follows that in the first
order of approximation

U1 + (U∗1 )t = 0. (11.12)

Also to this order we have for the correction to the energy,

E(1)
n = 〈n|H1|n〉. (11.13)

The correction to the operator U to the first order is

〈n|U |j〉 =
〈n|H1|j〉
h̄ω

(0)
nj

(1− δnj), (11.14)

where
h̄ω

(0)
nj = E(0)

n − E
(0)
j = −h̄ω(0)

jn . (11.15)

From the Hermiticity of H1 it follows that (11.14) satisfies (11.12).
The second order correction to the energy eigenvalues can be found from

(11.10) and is given by

E(2)
n = 〈n|H2|n〉+

∑
k 6=n

〈n|H1k〉〈k|H1|n〉
h̄ω

(0)
nk

. (11.16)
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These results for the first and second order perturbation corrections obtained
here are identical to those found from wave mechanics [2]. In the same way
we can calculate higher order corrections to the energy. Furthermore we can
determine matrix p (and or q) as a power series in λ which can be done by
expanding either of these operators as

p = p0 + λp1 + λ2p2 + · · · , (11.17)

and
q = q0 + λq1 + λ2q2 + · · · . (11.18)

Then using (11.3) with the expanded form of U in powers of λ given by (11.6),
we obtain to the first order in λ

p1 = U1p0 − p0U1, (11.19)

and
q1 = U1q0 − q0U1. (11.20)

Now we substitute for U1 from (11.14) to get

〈n|p1|j〉 =
1
2

′∑
k

(
〈n|H1|k〉〈k|p0|j〉

h̄ω
(0)
nk

− 〈n|p0|k〉〈k|H1|j〉
h̄ω

(0)
kj

)
, (11.21)

and

〈n|q1|j〉 =
1
2

′∑
k

(
〈n|H1|k〉〈k|q0|j〉

h̄ω
(0)
nk

− 〈n|q0|k〉〈k|H1|j〉
h̄ω

(0)
kj

)
, (11.22)

where the prime on the summation sign indicates that the terms with vanishing
denominator are to be excluded from the sum.

We can calculate higher order corrections to the energy eigenvalue En for
the state |n〉 with the result that

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · · . (11.23)

If the Hamiltonian H in (11.1) consists of H0 and the perturbation λH1 =
λV (q), the latter being a function of the coordinate(s), then from (11.16) it is
clear that En can be expressed as a power series in λ. However the rate of
convergence of the power series (11.23) for a general perturbation λV (q) cannot
be determined. Now let us examine the magnitudes of the corrections E(2)

n , E
(3)
n

etc. in the series (11.23). As we have seen earlier for H2 = 0 and H1(q) = V (q),
E

(2)
n is given by

E(2)
n =

′∑
k

|〈n|V |k〉|2

h̄ω
(0)
nk

=
′∑
k

|〈n|V |k〉|2

E
(0)
n − E(0)

k

. (11.24)
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If we calculate the next term in perturbation series we find [2]

E(3)
n =

′∑
k

′∑
j

〈n|V |j〉〈j|V |k〉〈k|V |n〉
h̄2ω

(0)
jn ω

(0)
kn

− 〈n|V |n〉
′∑
j

|〈n|V |j〉|2

h̄2
(
ω

(0)
nj

)2 . (11.25)

By comparing different terms in the expansion (11.23) we observe that the
perturbation series is essentially an expansion in powers of the dimensionless
number λ〈n|V |j〉

h̄ω
(0)
nj

, i.e. for fast convergence the matrix element 〈n|V |j〉 must be

smaller than the level spacing h̄ω(0)
nj = E

(0)
n − E(0)

j .
Perturbative Calculation of the Energy Levels of a General An-

harmonic Oscillator — As an example let us calculate the approximate energy
levels of the anharmonic oscillator with the Hamiltonian

H =
1
2
p2 +

1
2
ω2x2 +

1
3
λ3x

3 +
1
4
λ4x

4

= H0 +H1 +H2, (11.26)

where in (11.26) H0 is the Hamiltonian for the harmonic oscillator, H1 is the
cubic and H2 is the quartic term. To the first order of perturbation the matrix
elements

〈
n
∣∣x3
∣∣n〉 (where |n〉 is the harmonic oscillator state) is zero. Thus

〈n|H|n〉 = h̄ω

(
n+

1
2

)
+

3
8

(
λ4

4

)(
n2 + n+

1
2

)
. (11.27)

In the second order perturbation, both H1 and H2 contribute. Using the matrix
elements of

〈
n
∣∣x3
∣∣ j〉 and

〈
n
∣∣x4
∣∣ j〉 shown in TABLE XI (Chapter 12) we find

E
(2)
n from (11.13)

E(2)
n = −

(
λ3

3

)2(
h̄

ω

)3( 15
4h̄ω

)(
n2 + n+

11
30

)
−

(
λ4

4

)2(
h̄

ω

)4( 1
8h̄ω

)(
34n3 + 51n2 + 59n+ 21

)
. (11.28)

Therefore the energy levels of the anharmonic oscillator (11.26) to the second
order are given by [3]

En ≈ h̄ω

(
n+

1
2

)
− 1
h̄ω

(
λ3

3

)2(
h̄

ω

)3

A(2)
n +

(
λ4

4

)(
h̄

ω

)2

B(1)
n

−
(
λ4

4

)2(
h̄

ω

)4

B(2)
n , (11.29)



Perturbation Theory 313

where

A(2)
n =

15
4

(
n2 + n+

11
30

)
, (11.30)

B(1)
n =

3
4
(
2n2 + 2n+ 1

)
, (11.31)

and
B(2)
n =

1
8
(
34n3 + 51n2 + 59n+ 21

)
. (11.32)

11.1 Perturbation Theory Applied to the
Problem of a Quartic Oscillator

Earlier in Chapter 7 we studied the problem of the quartic anharmonic oscillator
with the Hamiltonian

H =
1
2
p2 +

1
2
ω2q2 +

1
4
λq4, (11.33)

in connection with the Klein’s approximate calculation of the eigenvalues. In the
following discussion we set ω = 1. First we want to examine the perturbation
technique as is applied to this problem. For this we examine the classical solution
of the equation of motion

q̈(t) + q(t) + λq3(t) = 0, (11.34)

found by using the standard form of the perturbation theory [5],[6].
Assuming that λ is a small parameter the classical perturbation expansion

of (11.34) is

q(t) =
∞∑
n=0

λnqn(t), (11.35)

where qn(t) s are the coefficients of expansion of q(t). For the determination of
q(t) as a function of time, we assume that the initial conditions are

q(0) = 1, q̇(0) = 0. (11.36)

By substituting (11.35) in (11.34) and setting the coefficients of λ0 and λ equal
to zero we find

q̈0(t) + q0(t) = 0, (11.37)

and
q̈1(t) + q1(t) = −q3

0(t). (11.38)

Now by solving Eq. (11.37) with the boundary conditions (11.36) we obtain

q0(t) = cos t, (11.39)
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and by substituting q0 in (11.38) we get the solution of the forced harmonic
oscillator

q1(t) =
1
32

[cos(3t)− cos t− 12t sin t] . (11.40)

Combining (11.35) and (11.39) we find q(t) to the first order in λ

q(t) ≈
{

cos t+
λ

32
[cos(3t)− cos t− 12 t sin t]

}
. (11.41)

An examination of this result shows that even in the first order perturbation,
the solution becomes unbounded for times larger than 1

λ no matter how small
the parameter λ is. For higher orders of approximate calculation the problem of
boundedness becomes worse. Clearly these spurious solutions found in the per-
turbation expansion of q(t) is absent from the exact solution which is bounded
and is periodic. Thus the presence of the nonlinear term q3(t) in (11.34) intro-
duces many time scales whereas for λ = 0 we have just one time scale T = 2π.

Classical Anharmonic Oscillator — In the classical description of this
motion we can avoid the presence of the so called secular term, 12t sin t. This
term introduces an error which grows linearly in time and makes the solution
unacceptable. One possible method is the following:

We consider a canonical transformation

(p(t), q(t))→ (P (t), Q(t)), (11.42)

in such a way that the Hamiltonian to the order λ has the form [4]

H = H0 + αλH2
0 +O

(
λ2
)
. (11.43)

In this relation H0 is given by

H0 =
1
2
(
P 2(t) +Q2(t)

)
. (11.44)

and α is a constant to be determined. Noting that under time-reversal q(t)
remains unchanged whereas p(t) changes sign, we write q(t) and p(t) as a com-
bination of linear and cubic terms;

q(t) = Q(t)− 3λ
32

[
3P 2(t)Q(t) +

5
3
Q3(t)

]
+O

(
λ2
)
, (11.45)

and
p(t) = P (t) +

3λ
32
[
5P (t)Q2(t) + P 3(t)

]
+O

(
λ2
)
. (11.46)

The constant coefficients in (11.45) and (11.46) are obtained in such a way that
if we substitute these equations in (11.33) we recover Eq. (11.43). For this case
the parameter α in (11.43) must be equal to 3

8 . As we have seen earlier, Sec.
1.3, the Hamiltonian (11.43) up to the order λ2 is pq-equivalent to H0, therefore
P (t) and Q(t) are sinusoidal functions of time. For the initial condition on Q(t)
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Figure 11.1: The result found from perturbation, Eq. (11.41), for anharmonic oscillator
(dashed line) is compared with the exact result (thick solid line) and with the approximate
calculation, Eq. (11.45) (thin solid line). These values have been calculated for λ = 0.2.

and P (t), we choose Q(0) and P (0) so that q(0) = 1 and p(0) = 0. Thus we
have

Q(t) = Q0 cos(ωt), (11.47)

P (t) = P0 sin(ωt), (11.48)

where ω is given by

ω = 1 +
3
8
λ, (11.49)

and Q0 is a solution of
5λ
32
Q3

0 −Q0 + 1 = 0. (11.50)

Substituting (11.47) and (11.48) in (11.45) and (11.46) we find the classical
solution of the anharmonic oscillator to the first order in λ. In Fig. 11.1 the
results found from two different approximate calculations are compared with the
exact calculation. Now for solving the same problem in quantum theory we use
a multiple-scale perturbation theory which can be formulated in the following
way:

We assume the existence of a number of time scales (t, τ, τ1 · · ·) for the
nonlinear system, e.g. cubic nonlinearity [5]–[7]. For the sake of simplicity we
consider only two times t and τ = λt and assume that these two are independent
variables. The displacement q(t) will now depend on t as well as τ . Let us
consider the perturbation solution of Eq. (11.34) which we write as an expansion
in powers of λ

q(t) = q0(t, τ) + λq1(t, τ) +O
(
λ2
)
. (11.51)
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By substituting (11.51) in (11.34) then using the chain rule and the fact that
dτ
dt = λ we find that q0(t, τ) and q1(t, τ) are the solutions of the partial differ-
ential equations

∂2q0

∂t2
+ q0 = 0, (11.52)

∂2q1

∂t2
+ q1 = −q3

0 − 2
∂2q0

∂t∂τ
. (11.53)

Equation (11.52) has the general solution

q0(t, τ) = A(τ) cos t+ B(τ) sin t, (11.54)

where the amplitudes A and B are functions of τ . Next we substitute (11.54)
in (11.53) and set the coefficients of sin t and cos t equal to zero. These are the
two terms responsible for the resonant coupling between q0 and q1. In this way
we get two coupled equations for A(τ) and B(τ);

2
dB
dτ

= −3
4
A
(
A2 + B2

)
, (11.55)

and
2
dA
dτ

=
3
4
B
(
A2 + B2

)
. (11.56)

By multiplying (11.55) by B and (11.56) by A and adding the results we obtain

dC(τ)
dτ

= 0, (11.57)

where
C(τ) =

1
2
(
A2(τ) + B2(τ)

)
. (11.58)

As Eq. (11.57) shows C(τ) is a constant, therefore we set C(τ) = C(0). Next we
substitute from (11.58) in (11.55) and (11.56) and we find two linear coupled
equations

dB
dτ

= −3
4
C(0)A, (11.59)

and
dA
dτ

=
3
4
C(0)B. (11.60)

Imposing the initial conditions (11.36) we obtain the initial values A(0) = 1 and
B(0) = 0. This means that C(0) = 1

2 .
By solving (11.59) and (11.60) with this value of C(0) and by substituting

the result in Eq. (11.51) we find that to this order of perturbation we have

q(t) = cos
[(

1 +
3
8
λ

)
t

]
. (11.61)

Noting that q(t) calculated in this way is correct to the order of λ2, this result
would be valid for t� 1

λ2 .
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Now let us consider the quantum-mechanical solution of this problem
which can be found from the Heisenberg equations of motion. The equations of
motion for the nonlinear oscillator (11.34) are ṗ+ x+ λx3 = 0

p = ẋ

, (11.62)

and these equations are subject to the initial conditions

x(0) = x0, and p(0) = p0, (11.63)

where x0 and p0 are the initial operators satisfying the commutation relation
[x0, p0] = ih̄.
As in the classical case we expand the operator x(t) in powers of λ;

x(t) = X(t, τ) = X0(t, τ) + λX1(t, τ) +O
(
λ2
)
, (11.64)

where X0 and X1 are operator-valued functions. Now by substituting for x(t)
from (11.64) in (11.62) and equating the coefficients of λ0 and λ we obtain two
partial differential equations for the operators X0 and X1 and these are the
analogues of Eqs. (11.52) and (11.53);

∂2X0

∂t2
+X0 = 0, (11.65)

∂2X1

∂t2
+X1 = −X3

0 − 2
∂2X0

∂t∂τ
. (11.66)

Again we observe that (11.65) is homogeneous and linear equation with the
general solution

X0(t, τ) = Â(τ) cos t+ B̂(τ) sin t, (11.67)

and

p(t, τ) =
dx(t)
dt

= −Â(τ) sin t+ B̂(τ) cos t+O(λ). (11.68)

From the canonical commutation relation [x(t), p(t)] = ih̄ and Eqs. (11.67) and
(11.68) we find that the operators Â(τ) and B̂(τ) satisfy the relation[

Â(τ), B̂(τ)
]

= ih̄. (11.69)

Also by imposing the initial conditions (11.63) on the solutions (11.67) and
(11.68) we get

Â(0) = x0, and B̂(0) = p0, (11.70)

to the order λ. The quantum resonance coupling between X0(t, τ) and X1(t, τ)
can be removed in the same way as in the classical problem, that is by substi-
tuting for X0(t, τ) from (11.65) in (11.66) and setting the coefficients of sin t
and cos t equal to zero. Since Â and B̂ are operators we have to preserve their
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orders in the expansion of X0(t, τ). The results are similar to Eqs. (11.55) and
(11.56)

8
dB̂

dτ
= −3Â3 − B̂ÂB̂ − B̂B̂Â− ÂB̂B̂, (11.71)

and

8
dÂ

dτ
= 3B̂3 + ÂB̂Â+ ÂÂB̂ + B̂ÂÂ. (11.72)

Following the method that we used to solve the classical equations, we multiply
Eq. (11.71) once from the left and then from the right by B̂ and Eq. (11.72)
from left and then right by Â and add the resulting four equations thus found
to get

d

dτ
Ĥ(τ) = 0, (11.73)

where
Ĥ(τ) =

1
2

[
Â2(τ) + B̂2(τ)

]
. (11.74)

Now Eq. (11.73) shows that Ĥ is independent of τ , therefore

Ĥ(τ) = Ĥ(0) =
1
2
(
x2

0 + p2
0

)
. (11.75)

From the definition of Ĥ(τ), Eq. (11.74), and the commutation relation (11.69)
we can write (11.72) and (11.71) as

dB̂

dτ
= −3

8

(
ĤÂ+ ÂĤ

)
, (11.76)

and
dÂ

dτ
=

3
8

(
ĤB̂ + B̂Ĥ

)
. (11.77)

Assuming for the moment that Ĥ can be replaced by its classical value C(0),
then we can write the solutions of (11.76) and (11.77) as

Â(τ) = x0 cos
(

3
4
C(0)τ

)
+ p0 sin

(
3
4
C(0)τ

)
, (11.78)

and

B̂(τ) = p0 cos
(

3
4
C(0)τ

)
− x0 sin

(
3
4
C(0)τ

)
. (11.79)

The complete quantum mechanical result is obtained when we replace
(11.78) and (11.79) by the Weyl-ordered products of the Â and B̂ operators
with C(0) being replaced by Ĥ:

Â(τ) = OW
[
x0 cos

(
3
4
Ĥτ

)
+ p0 sin

(
3
4
Ĥτ

)]
, (11.80)



Perturbation Theory 319

and

B̂(τ) = OW
[
p0 cos

(
3
4
Ĥτ

)
− x0 sin

(
3
4
Ĥτ

)]
. (11.81)

(For Weyl-ordered operators see Sec. 3.6).
Let us consider the way that we can find the ordered products in Eqs.

(11.80) and (11.81). For this we expand f
(
Ĥτ
)

as a Taylor series in powers

of Ĥτ , where f can be cosine, sine or an exponential of the argument Ĥτ .
A typical term after the expansion will depend on Ĥn and we will use Weyl
ordering for each term, i.e.

OW
(
x0Ĥ

n
)

=
1
2n

n∑
n

(
n
j

)
Ĥjx0Ĥ

n−j . (11.82)

Now for each power of τ we reorder the operators so that they becomes symmet-
ric with respect to x0, i.e. x0 appears in front and at the end of the expanded
form:

QW (x0) = x0 =
1
2

(x0 + x0), (11.83)

QW
(
x0Ĥ

)
=

1
2

(
x0Ĥ + Ĥx0

)
=
h̄

2

[
x0

(
Ĥ

h̄

)
+

(
Ĥ

h̄

)
x0

]
, (11.84)

QW
(
x0Ĥ

2
)

=
1
4

(
x0Ĥ

2 + 2Ĥx0Ĥ + Ĥ2x0

)
=

h̄2

2

[
x0

(
Ĥ2

h̄2 −
1
4

)
+

(
Ĥ2

h̄2 −
1
4

)
x0

]
, (11.85)

QW
(
x0Ĥ

3
)

=
h̄3

2

[
x0

(
Ĥ3

h̄3 −
3
4
Ĥ

h̄

)
+

(
Ĥ3

h̄3 −
3
4
Ĥ

h̄

)
x0

]
, (11.86)

and so on.
The general form of OW

(
q0Ĥ

n
)

is given by

OW
(
x0Ĥ

n
)

=
h̄n

2

[
x0En

(
Ĥ

h̄
− 1

2

)
+ En

(
Ĥ

h̄
− 1

2

)
x0

]
, (11.87)

where En s are Euler’s polynomials shifted by 1
2 [5],[8].

Using the well-known generating function defining the Euler’s polynomials
i.e.

2 exp
[(

Ĥ
h̄ + 1

2

) (
τh̄
4

)]
e
h̄τ
4 + 1

=
∞∑
n=0

( h̄τ4 )n

n!
En

(
Ĥ

h̄
+

1
2

)
, |h̄τ | < 4π (11.88)
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we can write the Weyl-ordered product in a compact form

OW
(
x0e

Ĥτ
4

)
=
x0e

Ĥτ
4 + e

Ĥτ
4 x0

2 cosh
(
τh̄
8

) . (11.89)

From the complex exponential form of (11.89) we obtain

OW
[
x0 cos

(
3
4
Ĥτ

)]
=
x0 cos

(
3
4Ĥτ

)
+ cos

(
3
4Ĥτ

)
x0

2 cosh
(

3τh̄
8

) . (11.90)

and

OW
[
x0 sin

(
3
4
Ĥτ

)]
=
x0 sin

(
3
4Ĥτ

)
+ sin

(
3
4Ĥτ

)
x0

2 cosh
(

3τh̄
8

) . (11.91)

By substituting these ordered operators in Â(τ) and B̂(τ), Eqs. (11.80) and
(11.81) and then calculating X0(t, τ) from Eq. (11.67) we find that

X0(t, τ) =
x0 cos

(
t+ 3

4Ĥτ
)

+ cos
(
t+ 3

4Ĥτ
)
x0

2 cosh
(

3λh̄t
8

)
+

p0 sin
(
t+ 3

4Ĥτ
)

+ sin
(
t+ 3

4Ĥτ
)
p0

2 cosh
(

3λh̄t
8

)
=

x0 cos
[(

1 + 3
4Ĥλ

)
t
]

+ cos
[(

1 + 3
4Ĥλ

)
t
]
x0

2 cosh
(

3λh̄t
8

)
+

p0 sin
[(

1 + 3
4Ĥλ

)
t
]

+ sin
[(

1 + 3
4Ĥλ

)
t
]
p0

2 cosh
(

3λh̄t
8

) . (11.92)

This expression reduces to the classical result, Eq. (11.61), in the limit of h̄→ 0
provided that we set p0 = 0, x0 = 1 and the classical value of Ĥ = C(0) = 1

2 .
Having found the time-dependence of the position operator x(t), we can

determine the energy level spacing for this anharmonic oscillator. We note that
as (11.75) shows Ĥ is the Hamiltonian for a harmonic oscillator, therefore if |n〉
represents the eigenstate of Ĥ we have

Ĥ|n〉 =
1
2
(
x2

0 + p2
0

)
|n〉 =

(
n+

1
2

)
|n〉. (11.93)

Now we take the expectation value of X0(t, τ) between 〈n− 1| and |n〉

〈n− 1|X0(t, τ)|n〉

= 〈n− 1|x0|n〉
cos
(
t+ 3

4

(
n+ 1

2

)
h̄λt
)

+ cos
(
t+ 3

4

(
n− 1

2

)
h̄λt
)

2 cosh
(

3λh̄t
8

)
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+ 〈n− 1|p0|n〉
sin
(
t+ 3

4

(
n+ 1

2

)
h̄λt
)

+ sin
(
t+ 3

4

(
n− 1

2

)
h̄λt
)

2 cosh
(

3λh̄t
8

)
= 〈n− 1|x0|n〉 cos

[(
1 +

3
4
nh̄λ

)
t

]
+ 〈n− 1|p0|n〉 sin

[(
1 +

3
4
nh̄λ

)
t

]
. (11.94)

The result shows that the level spacing for the anharmonic oscillator is

∆En = En − En−1 = 1 +
3
4
nλh̄+O

(
λ2
)
. (11.95)

This result agrees with the corresponding result that we will find from the vari-
ational technique, Eq. (12.119), for En − En−1.

An extension of this method for the calculation of higher order terms
of the anharmonic oscillator has been worked out by Auberson and Capdequi
Peyranère [7].

11.2 Degenerate Perturbation Theory

By examining the expressions for E
(2)
n , E

(3)
n , Eqs. (11.24) and (11.25) it is

clear that the second and third order corrections to the energy found at the
beginning of this chapter diverge. That is the method breaks down whenever
h̄ω

(0)
nj = E

(0)
n − E(0)

j = 0, but the matrix element 〈n|V |n〉 is not zero. We can
bypass this difficulty in the following way:

Let us assume that we have a finite number of states |na〉, |nb〉 · · · |nk〉 all
eigenfunctions of H0 but with the same eigenvalue E(0)

n ,

H0|nj〉 = E(0)
n |nj〉, j = a, b · · · k. (11.96)

Now if 〈nj |V |nk〉 6= 0 for j 6= k, then we cannot use the series (11.23). Instead
we start with a state which is a linear combination of the states |nj〉 defined by
(11.96)

|nα〉 =
k∑
j=a

Aαj |nj〉, (11.97)

and choose Aαj s such that

〈nβ |V |nα〉 = 0, if α 6= β. (11.98)

But as (11.98) shows the state |nα〉 diagonalizes V within that one group of
states.
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To diagonalize V we determine the eigenvectors Aαj of the k × k matrix
〈na|V |na〉 〈na|V |nb〉 · · · · · · 〈na|V |nk〉
〈nb|V |na〉 〈nb|V |nb〉 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
〈nk|V |na〉 · · · · · · · · · · · · 〈nk|V |nk〉

 . (11.99)

The eigenvectors Aαj are the solution of the homogeneous linear equation∑
i

〈nj |V |ni〉Aαi = E(1)
nαAαj , (11.100)

where E(1)
nα is the eigenvalue and Aαj s are the normalized eigenvectors∑

i

|Aαi|2 = 1. (11.101)

Once the eigenvectors Aαj are found from (11.101) we construct the state
|nα〉 using (11.97). These eigenvectors form an orthonormal set, i.e.∑

i

A∗βiAαi = δαβ . (11.102)

Thus by multiplying (11.100) by A∗βj and summing over j we obtain

〈nβ |V |nα〉 = E(1)
nα δαβ . (11.103)

The energy E(1)
nα is the first order correction. We can obtain higher order correc-

tions as in the case of nondegenerate systems. For instance the energy eigenvalue
for the state |nα〉 to the second order is given by

Enα = E(0)
nα + λ〈nα|V |nα〉+ λ2

′∑
k

|〈k|V |nα〉|2

E
(0)
n − E(0)

k

, (11.104)

where the prime over summation sign means that the sum runs over all states
except the k states |nα〉, |nβ〉 · · ·.

The Stark Effect — A very simple yet important example of the applica-
tion of degenerate perturbation theory is provided by the Stark effect. Suppose
that a hydrogen atom is placed in a uniform electric field E which is in the z
direction and let us consider the splitting of the fourfold degenerate n = 2 levels
of the H-atom [11]. Using the spectroscopic notation, these levels are

|2S0〉, |2P1〉, |2P0〉, |2P−1〉, (11.105)

where the first level corresponds to the quantum numbers ` = 0, m = 0 and
the other three levels have the quantum numbers ` = 1 and m = 1, m = 0 and
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m = −1 respectively. Since the perturbation potential in this case is V (z) = eEz
and this perturbation commutes with Lz,

[Lz, eEz] = 0, (11.106)

thereforeLz is a conserved quantity. Taking the matrix element of this commu-
tator between 〈2P−1| and |2P1〉 we obtain

〈2P−1|[eEz, Lz]|2P1〉 = 〈2P−1|eEz(Lz|2P1〉)− (〈2P−1|Lz)eEz|2P1〉
= 2h̄〈2P−1|eEz|2P1〉 = 0. (11.107)

If we examine other matrix elements of V = eEz we find that the only nonva-
nishing off-diagonal matrix elements are 〈2S0|eEz|2P0〉 and 〈2P0|eEz|2S0〉, i.e.
the two states with m = 0. These matrix elements are equal and their value
can be evaluated with the help of the hydrogen atom wave function

〈2S0|eEz|2P0〉 = −3eEa0, (11.108)

where a0 is the Bohr radius. For the H-atom because of the symmetry under the
parity operation the diagonal elements of V are zero. Thus the matrix (11.99)
reduces to [

0 −3eEa0

−3eEa0 0

]
. (11.109)

For instance if the H atom which is originally in the |2S0〉 state is placed in
a uniform electric field then the spectral line will split and we get two perturbed
eigenstates

1√
2

(|2S0〉+ |2P0〉) , and
1√
2

(|2S0〉 − |2P0〉) , (11.110)

and the energies of these two states are

− e2

2a0

(
1
4

+
6E
e
a2

0

)
, and − e2

2a0

(
1
4
− 6E

e
a2

0

)
, (11.111)

respectively.

11.3 Almost Degenerate Perturbation Theory

Now let us consider the effect of a small perturbation on almost degenerate
levels. By “almost” we mean that the level spacing E(0)

2 −E
(0)
1 for the two levels
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Figure 11.2: Plot of the energy levels E+ and E− as functions of the strength of the
perturbation λ.

1 and 2 is comparable with the energy shift produced by the perturbation. We
write the eigenvalue equations for the two closely spaced levels as

H0

∣∣∣n(0)
1

〉
= E

(0)
1

∣∣∣n(0)
1

〉
, H0

∣∣∣n(0)
2

〉
= E

(0)
2

∣∣∣n(0)
2

〉
, (11.112)

and assume that other levels of the system are far from these two. Denoting the
perturbation by H1 = λV we write the exact eigenvalue equation as

(H0 + λV )|n〉 = En|n〉. (11.113)

We also assume that the approximate state of the system |n〉 is a linear com-
bination of

∣∣∣n(0)
1

〉
and

∣∣∣n(0)
2

〉
, i.e. we ignore the overlap between |n〉 and the

other levels of the system

|n〉 = c1

∣∣∣n(0)
1

〉
+ c2

∣∣∣n(0)
2

〉
. (11.114)

By substituting (11.114) in (11.113) and multiplying the result first by
〈
n

(0)
1

∣∣∣
and then by

〈
n

(0)
2

∣∣∣ we obtain two coupled equations for c1 and c2;(
λV11 − E + E

(0)
1

)
c1 + λV12c2 = 0, (11.115)

and
λV21c1 +

(
λV22 − E + E

(0)
2

)
c2 = 0, (11.116)

where Vij stands for 〈i|V |j〉. Setting the determinant of these two homogeneous
equations equal to zero we find a quadratic equation for E whose solutions are

E± =
1
2

(
E

(0)
1 + E

(0)
2

)
+

1
2

[
λ(V11 + V22)±

√(
λ(V11 − V2) + E

(0)
1 − E(0)

2

)2

+ 4|λV12|2
]
.

(11.117)
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Now by changing λ from zero to one, the energies E± will change, and these
changes are shown in Fig. 11.2. We observe that as we increase λ, E− ap-
proaches E+ but in general the two energies will not become equal, and the
curves shown will not cross each other [10].

11.4 van der Waals Interaction

We can use perturbation theory to derive the leading term of the potential
energy between two widely separated atoms. Let us consider two H atoms
again. At a large distance R from the first atom, the electric field will be that of
a dipole, and the second atom which may be also regarded as a dipole, interacts
with the dipole field of the first atom. We take the two protons as two fixed
points in space separated by a distance R. The electron in the first atom is at r1

from the first proton, and the electron in the second atom is at r2 relative to the
second proton (Fig. 11.3). Thus the interaction between the two atoms is the
sum of Coulomb potentials between different charges with the total potential
energy

V = e2

[
1

R
+

1

|R + r2 − r1|
− 1

|R + r2|
− 1

|R− r1|

]
. (11.118)

For large R we can expand the denominators in (11.118) in powers of r1
R and

r2
R , and keep the leading terms. In this way we find V (R) to be

V (R) = e2

[
r1 · r2

R3
− 3(r1 ·R)(r2 ·R)

R5

]
. (11.119)

It will be convenient to choose R to be in the direction of the z-axis, then
(11.119) reduces to the simple form of

V (R) =
e2

R3
(x1x2 + y1y2 − 2z1z2) . (11.120)

Assuming that the atom 1 is in the state |n1〉 and atom 2 is in the state |n2〉,
then in the absence of V , the energies of the two atoms is E1 + E2. Now if we
calculate the total energy of the system as a whole then this energy will depend
on R and to the first order it is given by

E(R) = E1 + E2 + 〈n1, n2|V |n1, n2〉. (11.121)

The last term in (11.121) represents the potential energy and is dependent on
the distance R. The potential energy can be obtained by noting that for the
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Figure 11.3: Two H atoms separated by a distance R (R � a0), where a0 is the Bohr
radius.

unperturbed system |n1, n2〉 can be written as |n1〉|n2〉, thus

〈n1, n2|V |n1, n2〉 =
e2

R3
[〈n1|x1|n1〉〈n2|x2|n2〉

+ 〈n1|y1|n1〉〈n2|y2|n2〉
− 2〈n1|z1|n1〉〈n2|z2|n2〉] . (11.122)

If we assume that the two atoms are in their ground states then (11.122)
vanishes again because of the reflection symmetry of the wave function which
we have discussed earlier. Thus the potential energy shows up as the second
order correction to E(R):

E(2)(R) =
e4

R6

′∑
j1, j2

|〈n1, n2|(x1x2 + y1y2 − 2z1z2)|j1, j2〉|2

En1 + En2 − Ej1 − Ej2
. (11.123)

Here the prime means that n1 = j1 and n2 = j2 must be excluded from the sum.
This expression shows that if |n1〉 and |n2〉 are ground states of the H atom,
E(2)(R) is negative, that is the van der Waals force in this case is attractive.
We can write E(R) as

E(R) = En1 + En2 −
e2

a0

(a0

R

)6

ζ, (11.124)

where ζ is a dimensionless number

ζ =
e2

a5
0

′∑
j1 j2

|〈n1n2|(x1x2 + y1y2 − 2z1z2)|j1j2〉|2

En1 + En2 − Ej1 − Ej2
, (11.125)

and has the value 6.5 for the ground state of the H atom [11].
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It is worth noting that at larger distances the R−6 attraction changes to
an attraction proportional to R−7 because of the retardation effect [12]. We also
note that while the hydrogen atom in its ground state does not have a perma-
nent dipole moment, the presence of the second atom induces a dipole moment
in the first. The potential shown in (11.124) which is attractive and drops off
as R−6 is the asymptotic form of the potential for large R. The short range
interaction between the atoms 1 and 2 is much more complicated to calculate,
but it is repulsive and generally behaves as R−12.

11.5 Time-Dependent Perturbation Theory

In classical mechanics if H0(p, q) represents the Hamiltonian for a solvable un-
perturbed system, and if this system is perturbed by the action of a small
time-dependent interaction λH1(p, q, t) so that the total Hamiltonian is

H(p, q, t) = H0(p, q) + λH1(p, q, t), (11.126)

then we can make a canonical transformation generated by F2(q, P, t) and change
p and q to P and Q;

(p, q)←→ (P,Q). (11.127)

Under this transformation the total Hamiltonian changes to K(P,Q, t) where
[9]

K(P,Q, t) = H0 + λH +
∂F2

∂t
. (11.128)

From this Hamiltonian we find, the equations of motion for P and Q

Ṗ = −∂K
∂Q

, and Q̇ =
∂K

∂P
. (11.129)

In quantum mechanics we can generate the effect of this type of perturbation
by a time-dependent unitary transformation. Here we replace every U(p, q) in
the formulation shown in the beginning of this chapter by a time-dependent
U(p, q, t), and this adds a term h̄

i
∂U
∂t to the Hamiltonian. In this way we can be

modify the perturbation method for application to the cases where the interac-
tions, λH1, λ

2H2 · · · are dependent on time but H0 is not. For this we need to
replace every term of the form H0Ur − UrH0 by

H0Ur − UrH0 +
h̄

i

∂Ur
∂t

. (11.130)

This replacement changes the group of equations (11.9), (11.10) · · · to the fol-
lowing set 〈

n

∣∣∣∣U1H0 −H0U1 −
h̄

i

∂U1

∂t
+H1

∣∣∣∣ j〉 = E
(1)
j δnj , (11.131)
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n

∣∣∣∣U2H0 −H0U2 −
h̄

i

∂U2

∂t

∣∣∣∣ j〉
+

〈
n

∣∣∣∣(H0U1 − U1H0 +
h̄

i

∂U1

∂t

)
+ U1H1 −H1U1 +H2

∣∣∣∣ j〉 = E
(2)
j δnj ,

(11.132)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Let us apply this form of the time-dependent perturbation theory to the impor-
tant problem of calculating the matrix elements of p and q for a charged particle
in an oscillating electric field where

H1 = eEq0 cosω0t. (11.133)

To the first order the operators p and q are:

p = p0 + λ(U1p0 − p0U1), (11.134)

and
q = q0 + λ(U1q0 − q0U1). (11.135)

If we denote the time dependence of the matrix elements such as p, q or H by

〈n|p(t)|j〉 = 〈n|p(τ)|j〉 exp[i(ωnj + τω0)t], (11.136)

then we have

〈n|H1(τ = 1)|j〉 = 〈n|H1(τ = −1)|j〉 =
eE
2
〈n|q0|j〉, (11.137)

and

〈n|U1(τ = 1)|j〉 =
eE
2h̄
〈n|q0|j〉
ω

(0)
nj + ω0

. (11.138)

by substituting 〈n|U1(1)|j〉 in (11.135) we find 〈n|q1(1)|j〉;

〈n|q1(τ = 1)|j〉 =
eE
2h̄

∑
k

(
〈n|q0|k〉〈k|q0|j〉
ω

(0)
nk + ω0

− 〈n|q0|k〉〈k|q0|j〉
ω

(0)
kj + ω0

)
. (11.139)

If q is the position of the particle in rectangular coordinates, then p = mq̇
and (11.139) can be written as

〈n|q1(1)|j〉 =
eE

2h̄im

∑
k

 〈n|q0|k〉〈k|p0|j〉 − 〈n|p0|k〉〈k|q0|j〉(
ω

(0)
nk + ω0

)(
ω

(0)
kj + ω0

)
 . (11.140)

similarly for 〈n|q1(τ = −1)|j〉 we have

〈n|q1(−1)|j〉 =
eE

2h̄im

∑
k

 〈n|q0|k〉〈k|p0|j〉 − 〈n|p0|k〉〈k|q0|j〉(
ω

(0)
nk − ω0

)(
ω

(0)
kj − ω0

)
 . (11.141)
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11.6 The Adiabatic Approximation

A special case of the time-dependent perturbation theory is the adiabatic ap-
proximation where the motion of a system can be separated into a fast moving
part and a slow time variation. This method is often used when the Hamiltonian
consists of a time independent part H0 and a small time-dependent part λH ′(t)

H(t) = H0 + λH ′(t). (11.142)

The eigenvalue equation will be time-dependent of the form

H(t)ψn(r, t) = En(t)ψn(r, t), (11.143)

where here t is considered to be a parameter. The presence of the small term
λH ′(t) in the Hamiltonian modifies the time-dependent wave function from

exp
(
− i
h̄
Ent

)
ψn(r), (11.144)

to

exp
[
− i
h̄

∫ t

0

En (t′) dt′
]
ψn(r, t), (11.145)

where En (t′) varies slowly with time. We note that (11.145) is not an exact
solution of the time-dependent Schrödinger equation

ih̄
∂Ψ(r, t)
∂t

= H(t)Ψ(r, t). (11.146)

To obtain Ψ(r, t) in terms of ψn(r, t) we can expand Ψ(r, t) in terms of ψn(r, t)
and determine the coefficients of expansion, assuming that these are slowly
varying eigenstates of the Hamiltonian, Eq. (11.143). We find the wave function
Ψ(r, t) to be

Ψ(r, t) =
∑
n

an(t)ψn(r, t) exp
[
− i
h̄

∫ t

0

En (t′) dt′
]
. (11.147)

Further we assume that at each instant t, the eigenfunctions {ψn(r, t)} form an
orthonormal set ∫

ψ∗n(r, t)ψk(r, t)d3r = δnk. (11.148)

Next by substituting (11.147) in (11.146) we find

ih̄
∑
n

[
dan(t)
dt

ψn(r, t) + an(t)
∂ψn(r, t)

∂t
− i

h̄
Enan(t)ψn(r, t)

]
× exp

[
− i
h̄

∫ t

0

En (t′) dt′
]

=
∑
n

an(t)Hψn(r, t) exp
[
− i
h̄

∫ t

0

En (t′) dt′
]
.

(11.149)
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With the help of Eq. (11.143) we can reduce (11.149) to the following equation∑
n

[
dan(t)
dt

ψn(r, t) + an(t)
∂ψn(r, t)

∂t

]
exp

[
− i
h̄

∫ t

0

En (t′) dt′
]

= 0. (11.150)

By multiplying (11.150) with

ψ∗k(r, t) exp
[
i

h̄

∫ t

0

Ek (t′) dt′
]
, (11.151)

and integrating over r we obtain

dak(t)
dt

=
∑
n

{
an(t)

〈
ψk(r, t)| ∂

∂t
ψn(r, t)

〉
exp

[
i

h̄

∫ t

0

(Ek (t′)− En (t′)) dt′
]}

.

(11.152)
This is the equation that we must solve for ak(t). Here we need to calculate the
scalar product 〈

ψk(r, t)
∂

∂t
ψn(r, t)

〉
, (11.153)

and we do it by differentiating Eq. (11.143) with respect to time ;

∂H

∂t
ψn(r, t) +H

∂ψn(r, t)
∂t

=
∂En(t)
∂t

ψn(r, t) + En(t)
∂ψn(r, t)

∂t
. (11.154)

Next we multiply this equation by ψ∗k(r, t) and integrate over r to find〈
ψk(r, t)

∣∣∣∣∂H∂t
∣∣∣∣ψn(r, t)

〉
+ Ek(t)

〈
ψk(r, t)

∣∣∣∣∂ψn(r, t)
∂t

〉
=

∂En(t)
∂t

〈ψk(r, t)|ψn(r, t)〉+ En(t)
〈
ψk(r, t)

∣∣∣∣∂ψn(r, t)
∂t

〉
. (11.155)

For k 6= n, (11.155) reduces to〈
ψk(r, t)

∣∣∣∣∂ψn(r, t)
∂t

〉
=

λ

En − Ek

〈
ψk(r, t)

∣∣∣∣∂H ′∂t

∣∣∣∣ψn(r, t)
〉
, (11.156)

since ∂H
∂t = ∂H′

∂t . But when k = n then the normalization condition

〈ψn(r, t)|ψn(r, t)〉 = 1, (11.157)

gives us 〈
ψn(r, t)|∂ψn(r, t)

∂t

〉
+
〈
ψn(r, t)|∂ψn(r, t)

∂t

〉∗
= 0, (11.158)

and hence 〈
ψn(r, t)|∂ψn(r, t)

∂t

〉
= iαn(t), (11.159)
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where αn(t) is a real function of time. Now by a judicious choice of the phase
of ψn(r, t) we can make the scalar product (11.159) equal to zero. Thus let us
write

φn(r, t) = ψn(r, t) exp
[
−i
∫ t

αn (t′) dt′
]
, (11.160)

and substitute for ψn(r, t) in (11.159) to find〈
φn(r, t)|∂φn(r, t)

∂t

〉
= 0. (11.161)

For many problems where this approximation is used this additional phase

γn(t) =
∫ t

α (t′) dt′. (11.162)

is of no physical significance and can be ignored but this is not always the case
as we will see in the discussion of Berry’s phase Sec. 16.13. Setting γn(t) = 0
and replacing the bracket 〈

ψk(r, t)|∂ψn(r, t)
∂t

〉
, (11.163)

from (11.156) in (11.152) we arrive at the following exact equation for an(t);

dak(t)
dt

= −
∑
n

λ

En − Ek

〈
ψk(r, t)

∣∣∣∣∂H ′(t)∂t

∣∣∣∣ψn(r, t)
〉

× exp
[
i

h̄

∫ t

0

(Ek (t′)− En (t′)) dt′
]
an(t). (11.164)

At this point we assume that H ′(t), En(t) and ψk(r, t) all slowly varying func-
tions of time, and that the right-hand side of (11.164) is small or that the matrix
element

λ

En − Ek

〈
ψk(r, t)

∣∣∣∣∂H ′(t)∂t

∣∣∣∣ψn(r, t)
〉
, (11.165)

is small. Let us assume that the initial state of this system is ψj(r, 0), then by
setting t = 0 in Eq. (11.147) we get

an(t) ≈ aj(0) = δjn. (11.166)

By substituting this value of aj(t) in the right-hand side of (11.164) and inte-
grating the resulting equation we find

ak(t) =
λh̄

i(Ej − Ek)2

〈
ψk(r, t)

∣∣∣∣∂H ′(t)∂t

∣∣∣∣ψj(r, t)〉
×

{
exp

[
i

h̄
(Ek − Ej)t

]
− 1
}
, j 6= k. (11.167)



332 Heisenberg’s Quantum Mechanics

For the validity of this approximation the change in the Hamiltonian over the
time 2πh̄

Ej−Ek has to be small compared to the level spacing Ej − Ek. In other
words the matrix element

λh̄

i(Ej − Ek)2

〈
ψk(r, t)

∣∣∣∣∂H ′(t)∂t

∣∣∣∣ψj(r, t)〉 , (11.168)

must be small.
An Application of the Adiabatic Approximation — As an example

of the application of the adiabatic approximation we examine the motion of an
harmonic oscillator with the Hamiltonian

H =
p2

2m
+

1
2
mω2(q − ξ(t))2, (11.169)

where ξ(t) is a function of time. The exact eigenstates of this Hamiltonian are
simply the harmonic oscillator wave functions displaced by a(t), viz,

ψn(q) = NnHn[α(q − ξ(t))] exp
[
−1

2
α2(q − ξ(t))2

]
, (11.170)

where α =
√

mω
h̄ . The eigenvalues of H(t) are En =

(
n+ 1

2

)
h̄ω. Suppose that

the oscillator is initially in the ground state, (n = 0), and we want to investigate
the condition under which the adiabatic approximation for this problem is valid.
For this example we have

H ′(t) =
1
2
mω2

[
ξ2(t)− 2ξ(t)q

]
, (11.171)

therefore
∂H ′(t)
∂t

= −mω2(q − ξ(t))dξ(t)
dt

, (11.172)

As we have seen earlier the condition for the validity of this approximation is
expressed by the smallness of the fraction (11.168) or in the present case by the
term

r =
〈

1
∣∣∣∣∂H ′∂t

∣∣∣∣ 0〉 = −dξ(t)
dt

(
mω2

√
2α

)
, (11.173)

being small. Substituting (11.172) in (11.173) we obtain

r =
dξ(t)
dt√
2h̄ω
m

. (11.174)

Noting that the denominator in (11.174) is roughly the maximum speed of hy-
pothetical classical oscillator which has only the zero point energy, we observe
that r will be small provided that the equilibrium position moves slowly relative
to the classical oscillator speed.
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11.7 Transition Probability to the First Order

In this section we will study two important cases of the time-dependent pertur-
bation theory. The first case is when the interaction H ′(t) is turned on suddenly
at t = 0,

H ′(t) =
{

0, t < 0
H ′, t > 0 . (11.175)

If we substitute from (11.175) in (11.167) and calculate |ak(t)|2 which is the
transition probability we find

Pj→k(t) = |ak(t)|2 =

∣∣∣∣∣∣∣
(
e
i(Ek−Ej)t

h̄ − 1
)

(Ek − Ej)
〈k |H ′| j〉

∣∣∣∣∣∣∣
2

=

 sin
[

(Ek−Ej)t
2h̄

]
(
Ek−Ej

2

)


2

| 〈k |H ′| j〉 |2, (11.176)

We observe that for very short times Pj→k(t) is proportional to t2. But as t
grows then the term in the curly bracket in (11.176) will have a sharper peak
about Ek ≈ Ej , and the area under this curve grows as 2πt

h̄ . Thus the curly
bracket takes the form of

2πt
h̄
δ(Ej − Ek). (11.177)

This follows from the fact that most of the contributions comes from the central
peak Ek ≈ Ej and also the total area under the rapidly oscillating function of
ωkj = (Ek−Ej)

h̄ is ∫ +∞

−∞

sin2
(
ωkjt

2

)
ω2
kj

=
πt

2
. (11.178)

Therefore the transition probability in this limit of large t is

Pj→k(t) =
2πt
h̄
| 〈k |H ′| j〉 |2δ(Ej − Ek), (11.179)

and the transition rate is

Γj→k =
Pj→k(t)

t
=

2π
h̄
| 〈k |H ′| j〉 |2δ(Ej − Ek). (11.180)

A very useful form of the transition rate can be found from (11.179) by
first summing Pj→k(t) over the final states available for the transition and then
dividing by t, i.e. calculating the transition probability per unit time. If ρ(Ek)
denotes the density of final states, or the number of states per unit energy
interval then the transition probability is∫

ρ(Ek)Pj→k(t)dEk =
2πt
h̄
〈k |H ′| j〉 |2ρ(Ek)|Ek=Ej , (11.181)
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and the transition rate once summed over a continuous group of final states
becomes

Γ =
∑
k

Γj→k =
2π
h̄
〈k |H ′| j〉 |2ρ(Ek)|Ek=Ej . (11.182)

Special Case of Oscillating Perturbation — When the Hamiltonian
is periodic in time then even a small change in H can produce a substantial
change in ak(t) over a long period of time. Thus in this case the result (11.167)
becomes invalid.

Let us consider an oscillatory perturbation that is turned on slowly. This
is the situation, for example, when light waves shine on an electron, then it
takes sometime to build up the perturbation to its steady state [11]. We assume
that in the distant past the system was in the state j. We also assume that the
perturbation applied to the system is of the form

H ′(t) = H ′eεt cos(ωt). (11.183)

In this relation ε > 0, H ′ is a constant and ω is a part of a continuum frequencies
avaiable to the system. Once we have done the calculation we set ε = 0. Thus
we substitute (11.183) in (11.164), assuming that at t = −∞, ak = δkj and then
we integrate the result over t from −∞ to t to find

ak =
eεt

2
〈k |H ′| j〉

[
e
i(Ek−Ej−h̄ω)t

h̄

Ej − Ek + h̄ω + ih̄ε
+

e
i(Ek−Ej+h̄ω)t

h̄

Ej − Ek − h̄ω + ih̄ε

]
. (11.184)

Now we define the transition probability for a system to jump from a state j
to another state k after the passage of a time t. For such a jump the transition
probability which we denote by Pj→k(t) is given by the absolute value of ak(t)

Pj→k(t) = |ak|2 =
e2εt

4
| 〈k |H ′| j〉 |2

×
{

1
(Ej − Ek + h̄ω)2 + (h̄ε)2

+
1

(Ej − Ek − h̄ω)2 + (h̄ε)2

+ 2Re
[

e−2iωt

(Ej − Ek + h̄ω + ih̄ε)(Ej − Ek − h̄ω + ih̄ε)

]}
. (11.185)

The last term in (11.185) is due to the interference between the positive and
negative frequency parts of (11.183), i.e. eiωteε and e−iωteε. The transition rate
Γj→k is defined as the rate of change of Pj→k(t) with respect to t;

Γj→k(t) =
dPj→k(t)

dt
=
e2εt

4
| 〈k |H ′| j〉 |2

×
{[

2ε
(Ej − Ek + h̄ω)2 + (h̄ε)2

+
2ε

(Ej − Ek − h̄ω)2 + (h̄ε)2

]
(1− cos 2ωt)

+ 2 sin(2ωt)
[

Ej − Ek + h̄ω

(Ej − Ek + h̄ω)2 + (h̄ε)2
− Ej − Ek − h̄ω

(Ej − Ek − h̄ω)2 + (h̄ε)2

]}
.

(11.186)
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The first two terms vanish unless Ej − Ek = ±h̄ω. The last term will not be
zero, however if we average Γj→k(t) over a few cycles of H ′(t) then only the
non-oscillating terms will survive. Thus in the limit of ε→ 0 we get

Γj→k(t) =
dPj→k(t)

dt
=

π

2h̄
| 〈k |H ′| j〉 |2 [δ(Ek − Ej − h̄ω) + δ(Ek − Ej + h̄ω)] .

(11.187)
As we assumed earlier ω is a part of different frequencies applied to the system.

We note that the positive (negative) frequency part in the first order of
H ′ is responsible for an increase (decrease) of the energy of the system by an
amount h̄ω.
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Chapter 12

Other Methods of
Approximation

In addition to the perturbation theory which has a wide range of applications
in quantum mechanics, there are a number of other methods, some derived
from the approximate solution of the wave equation while others derived from
the matrix or the operator formulation. In this chapter we want to consider
methods derived mainly from the Heisenberg equations of motion and are for
time-independent problems [1]–[5]. Some of the approximate methods used for
the approximate solution to the scattering problem, or time-dependent systems
will be reviewed in later chapters.

12.1 WKB Approximation for Bound States

The semi-classical approximation well-known in wave mechanics can also be
derived from the Heisenberg equations of motion. In this section we show how
the bound state energies can be obtained for a one-dimensional motion of a
particle moving in a potential well. We write the Hamiltonian in the following
form

H =
1
2

[x,H][H,x] + V (x), (12.1)

and also assume that the classical motion in this potential is periodic and that

x(t, ω) = x(t+ T, ω), (12.2)

where T = 2π
ω is the period of oscillation.

In this semiclassical approximation we consider a method for determi-

337
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nation of the matrix elements of the equation of motion for a large quantum
number n. The equation of motion for the one-dimensional system is

[ [x,H],H] =
dV (x)
dx

, (12.3)

which in terms of the matrix elements can be written as

[E(n± ν)− En]2 〈n|x|n± ν〉 =
〈
n

∣∣∣∣dV (x)
dx

∣∣∣∣n± ν〉 , ν an integer. (12.4)

Here we want to calculate the values of 〈n|x|n±ν〉 approximately when n is large
and ν is small. This is done by the expansion of the matrix element 〈n|x|n± ν〉
in powers of ν and then by referring these matrix elements to a common matrix
element

〈
n− 1

2ν|x|n+ 1
2ν
〉
,

〈n|x|n± ν〉 =
〈
n− 1

2
ν|x|n+

1
2
ν

〉
± 1

2
ν
∂

∂n

〈
n− 1

2
ν|x|n+

1
2
ν

〉
+ · · · . (12.5)

We now observe that for the matrix elements of any operator

A(x) = xB(x), (12.6)

when n is large we have

〈n|A|n+ ν〉+ 〈n|A|n− ν〉
=

∑
ν1>0

〈n|x|n− ν1〉〈n− ν1|B|n+ ν〉

+
∑
ν1>0

〈n|x|n+ ν1〉〈n+ ν1|B|n− ν〉. (12.7)

By expanding the matrix elements of B in (12.7) we get

〈n∓ ν1|B|n± ν〉 = 〈n|B|n± (ν + ν1)〉

∓ ν1
∂

∂n

〈
n− 1

2
(ν + ν1)|B|n+

1
2

(ν + ν1)
〉
. (12.8)

Substituting (12.5) and (12.8) in (12.7) we find that because of the cancelation
of the linear terms we have

〈n|A|n+ ν〉+ 〈n|A|n− ν〉

= 2
〈
n+

1
2
ν|A|n− 1

2
ν

〉[
1 +O

(
1
n2

)]
. (12.9)

To write these relations in a more compact form let us introduce xν(n̄) which
is defined by

xν(n̄) = x−ν(n̄) =
〈
n− 1

2
|x|n+

1
2

〉
, (12.10)
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and use this relation to write the equation of motion (12.4) as

[νω(n̄)]2 xν(n̄) =
(
dV (x)
dx

)
ν

, (12.11)

where ω(n̄) is defined by

ω(n̄) =
dE(n)
dn

. (12.12)

If we write the Fourier transform of the classical motion x(t, n̄) as

x(t, n̄) =
∞∑

ν=−∞
xν(n̄) exp[iνω(n̄)t], (12.13)

then Eq. (12.11) can be associated with the Fourier transform, and
(
dV (x)
dx

)
ν

will be the ν-th component of the Fourier transform of the force exerted on the
particle. We can also obtain (12.11) from a variational principle [1],[2]. To this
end let us start with the Lagrangian L = pq̇ −H and write it as

L(n̄) =
〈
n
∣∣ẋ2
∣∣n〉− 〈n|H|n〉 = 2

∞∑
ν>0

[νω(n̄)]2x−ν(n̄)xν(n̄)

−
∞∑
ν>0

[νω(n̄)]2x−ν(n̄)xν(n̄) + V (x(t, n̄))0. (12.14)

Here V (x(t, n̄))0 is the constant term in the Fourier expansion of the potential.
The Euler–Lagrange equation for (12.14) which is

δL

δx−ν(n̄)
≡ d

dt

(
∂L(n̄)
∂ẋ−ν(n̄)

)
− ∂L(n̄)
∂x−ν(n̄)

= 0, (12.15)

gives us the equation of motion (12.11). In this variation of L(n̄), ω(n̄) is held
fixed. The next step is to vary L(n̄) with respect to n.

δL

δn
=

(
δL(n̄)
δx−ν(n̄)

)
∂x−ν(n̄)
∂n

+
(
δL(n̄)
δxν(n̄)

)
∂xν(n̄)
∂n

+
dL(n̄)
dn

=
∂L(n̄)
∂n

= 0. (12.16)

Thus if we find the partial derivative of L(n̄), defined by Eq. (12.14), with
respect to n̄ and then substitute for dE(n̄)

dn from (12.12) we get

d

dn

{
2
∑
ν>0

ν2ω(n̄)x−ν(n̄)xν(n̄)

}
= 1. (12.17)

Integrating this last relation we have

S(n̄) = 2π

{ ∞∑
−∞

ν2ω(n̄)x−ν(n̄)xν(n̄)

}
= 2π

(
n+

1
2

)
, (12.18)
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where we have chosen the constant of integration to be 1
2 .

We can easily see that S(n̄) is related to the standard phase integral of
the WKB approximation. Remembering that the period is given by

T (n̄) = 2π/ω(n̄), (12.19)

we can write (12.18) as

S(n̄) = T (n̄)
∞∑

ν=−∞
ν2ω2(n̄)x−ν(n̄)xν(n̄)

→
∫ T (n̄)

0

[ẋ(t, n)]2 dt =
∮
pẋdt =

∮
pdx. (12.20)

From the equation of motion (12.11) and the quantization rule (12.18) we can
find xν(n̄) and the energy eigenvalues [1]–[4]. Detailed calculations for the prob-
lem of anharmonic oscillator with V (x) = 1

2x
2 + 1

4x
4 show that the energy of the

ground state is off by as much as 8%, whereas the matrix elements are accurate
to about 1% of their exact values [5].

12.2 Approximate Determination of the Eigen-
values for Nonpolynomial Potentials

If we choose f(x) in such a way that the equation of motion for f(x) and (f(x)2)
and also the equation for the commutation relation are all become polynomials
in f(x), then we can use Klein’s method for polynomial potentials that we
discussed earlier and obtain the energy eigenvalues and the matrix elements
〈n|f(x)|k〉. Let us assume that we have found such a function f(x) which
makes the right-hand sides of (8.15) and (8.16) polynomials in ξ = f(x). By
changing the variable from x to ξ, we proceed to take the matrix elements of
the above operator equations. We also write

〈
n
∣∣ξ2
∣∣ j〉, 〈n ∣∣ξ3

∣∣ j〉 , · · · as matrix
products

〈n |ξm| j〉 =
∑

n1,···,nm−1

〈n |ξ|n1〉 〈n1 |ξ|n2〉 〈n2 |ξ|n3〉 · · · 〈nm−1 |ξ| j〉 . (12.21)

Using the condition that we applied to the polynomial potentials, viz, the sat-
uration of the infinite sums in (12.21), or in other words the condition

| 〈n |ξ|n± 1〉 | � | 〈n |ξ|n± 3〉 | � | 〈n |ξ|n± 5〉 | � · · · , (12.22)

we observe that we can truncate the infinite sum and get a finite number of
nonlinear algebraic equations.
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To illustrate this technique, let us consider the motion of a particle of unit
mass with the Hamiltonian

H =
p2

2
+ V (x) =

p2

2
+ λ sinh2 x, λ > 0. (12.23)

We choose
ξ = sinhx, (12.24)

and we write Eqs. (8.15) and (8.16) as [4]

[[ξ,H], ξ] = 1 + ξ2, (12.25)

[[ξ,H],H] = −(ξH +Hξ) +
(

2λ− 1
4

)
+ 4λξ3. (12.26)

We also add the equation of motion for ξ2 to these two;[[
ξ2,H

]
,H
]

= −2
{(

1 + 2ξ2
)
H +H

(
1 + 2ξ2

)}
+ 12λξ4 + (8λ− 4)ξ2 − 2.

(12.27)
The matrix elements of these three equations are given by

∑
k

(
Ek − En −

1
2

)
〈n |ξ| k〉 〈k|ξ|n〉 =

1
2
, (12.28)

[
(Ek − En)2 + Ek + En − 2λ+

1
4

]
〈n|ξ|k〉 − 4λ

〈
n
∣∣ξ3
∣∣ k〉 = 0, (12.29)

and

−
[
1 + 2

〈
n
∣∣ξ2
∣∣n〉]En + 3λ

〈
n
∣∣ξ4
∣∣n〉+ (2λ− 1)

〈
n
∣∣ξ2
∣∣n〉− 1

2
= 0, (12.30)

where (12.30) is written for the diagonal elements of the double commutator
(12.26).

An approximate method of solving the coupled set of nonlinear equa-
tions (12.28)–(12.30) can be found by keeping all the matrix elements between
neighboring eigenstates 〈n|ξ|n± 1〉 and ignoring all other matrix elements, e.g.
〈n|ξ|n ± 3〉. Using this technique we can reduce (12.28)–(12.30) for k = n + 1
to the following set:(

ωn −
1
2

)〈
n
∣∣ξ2
∣∣n+ 1

〉
−
(
ωn−1 +

1
2

)〈
n− 1

∣∣ξ2
∣∣n〉− 1

2
= 0, (12.31)

ω2
n + ωn + 2En − 4λ

[〈
n− 1

∣∣ξ2
∣∣n〉+

〈
n
∣∣ξ2
∣∣n+ 1

〉
+

〈
n+ 1

∣∣ξ2
∣∣n+ 2

〉]
− 2λ+

1
4

= 0 (12.32)
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and

3λ
[〈
n
∣∣ξ4
∣∣n+ 1

〉
+
〈
n
∣∣ξ2
∣∣n+ 1

〉 〈
n+ 1

∣∣ξ2
∣∣n+ 2

〉
+ 2

〈
n− 1

∣∣ξ2
∣∣n〉 〈n ∣∣ξ2

∣∣n+ 1
〉

+
〈
n− 1

∣∣ξ2
∣∣n〉 〈n− 2

∣∣ξ2
∣∣n− 1

〉
+
〈
n− 1

∣∣ξ4
∣∣n〉]

+ (2λ− 1)
[〈
n
∣∣ξ2
∣∣n+ 1

〉
+
〈
n− 1

∣∣ξ2
∣∣n〉]− 1

2
−

{
1 + 2

(〈
n
∣∣ξ2
∣∣n+ 1

〉
+
〈
n− 1

∣∣ξ2
∣∣n〉)}En = 0,

(12.33)

where

ωn = En+1 − En, (12.34)

and 〈
n
∣∣ξ2
∣∣ j〉 ≈ (〈n |ξ| j〉)2

,
〈
n
∣∣ξ4
∣∣ j〉 ≈ (〈n |ξ| j〉)4

. (12.35)

To introduce a cut-off and make these equations a closed set we make the addi-
tional assumption that for large N

〈N + 1|ξ|N + 2〉 ≈ 〈N |ξ|N + 1〉. (12.36)

This assumption will hardly affect the energies of the low-lying states, but will
simplify (12.31)–(12.33) considerably and reduce them to a set of 3(N + 1)
equations for 〈n|ξ|n + 1〉, ωn and En. At the first sight this method seems
to be a crude one. In order to get a better idea about the accuracy of this
approximation let us consider the case of strong potential where λ = 10. Then
from the solution of Eqs. (12.31)-(12.33) we find the following values for the
matrix elements [4]:

〈0|ξ|1〉 = 0.337, 〈1|ξ|2〉 = 0.4813, 〈2|ξ|3〉 = 0.5969. (12.37)

These should be compared with the exact results:

〈0|ξ|1〉 = 0.3343, 〈1|ξ|2〉 = 0.4739, 〈2|ξ|3〉 = 0.5821. (12.38)

For the energy eigenvalues this approximation yields the following numbers

E0 = 2.309, E1 = 7.212, E2 = 12.52. (12.39)

whereas the exact energies are

E0 = 2.355, E1 = 7.283, E2 = 12.625. (12.40)
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12.3 Generalization of the Semiclassical Approx-
imation to Systems with N Degrees of
Freedom

For a system of N degrees of freedom the eigenvalue equation (7.9) can be
written as

H|n1 · · ·nN 〉 = E(n1 · · ·nN )|n1 · · ·nN 〉, (12.41)

where nj is the quantum number for the j-th degree of freedom. Setting the
mass of each of the particles equal to one and denoting the coordinates of the
N degrees of freedom of the system by x(1), · · ·x(N), we write the Hamiltonian
H as

H =
N∑
j=1

1
2
(
pj
)2

+ V
(
x(1), · · ·x(N)

)
, (12.42)

from which we get the Heisenberg equations of motion

ẍ(j) = [ [x(j), H],H] =
∂V

∂x(j)
, j = 1, 2 · · ·N. (12.43)

In the representation in which H is diagonal, Eq. (12.41), the matrix elements
of (12.43) can be expressed as [2]

[E(n1, · · ·nN )− E(n1 + ν1, · · ·nN + νn)]2

×
〈
n1 · · ·nN

∣∣∣x(j)
∣∣∣n1 + ν1 · · ·nN + νN

〉
=

〈
n1 · · ·nN

∣∣∣∣ ∂V∂x(j)

∣∣∣∣n1 + ν1 · · ·nN + νN

〉
. (12.44)

As in the case of N = 1, we can expand (12.44) for large quantum numbers
ni, i = 1, · · ·N in powers of n−1

i about the matrix element

x
(j)
ν ≡ x

(j)
ν (n1 · · ·nN ) =

〈
n1 −

ν1

2
· · ·nN −

νN
2

∣∣∣x(j)
∣∣∣n1 +

ν1

2
· · ·nN +

νN
2

〉
,

(12.45)
and keep the first two terms in the expansion. In this way we obtain the classical
equation

(k · ω)2
x

(j)
ν (n) =

(
∂V

∂x(j)

)
ν
, (12.46)

where ωi is defined by

ωi =
∂E(n)
∂ni

. (12.47)

Equation (12.46) may be regarded as an N -dimensional Fourier transform with
N distinct times, i.e.

x(j)(ω1t1, ω2t2 · · ·ωntn,n) =
∑
ν
x

(j)
ν (n) exp

(
−i
∑
l

νlωltl

)
, (12.48)
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and since ωl s are constants we can use the dimensionless constant θl

θl = ωlt. (12.49)

Therefore (12.48) can be written as

x(j)(θ, n) =
∑
ν
x

(j)
ν (n) exp (−iν · θ) . (12.50)

By setting all tl s equal t1 = · · · = tN = t, then Eq. (12.48) reduces to the
classical expression (1.108) for A = x(j).

We now can consider a Lagrangian formulation for this system as we did
for the motion with one degree of freedom. Thus let us start with the Lagrangian
averaged over the phases θ;

L̄ =
1

(2π)N

∫ 2π

0

L
[
x(θ), ω · ∇θx(θ)

]
dθ, (12.51)

where

ω · ∇θ =
N∑
i=1

∂

∂ti
≡ d

dt
, (12.52)

and x(θ) is defined by its components x(j)(θ) as is given in (12.50). The equa-
tions of motion can be derived from L̄ by requiring that

δL̄ = 0, (12.53)

provided that the trial functions satisfy the periodicity condition

δx(j)(θ1 · · · θj + 2π, · · · θN ) = δx(j)(θ1 · · · θj , · · · θN ), (12.54)

for all j. The variation δL̄ = 0 yields the equations of motion

(ω · ∇θ)
∂L

∂ẋ(j)
=

∂L

∂x(j)
, (12.55)

which in view of (12.52) is just the familiar form of the Lagrange equation. Note
that in (12.55)

ẋ(j) = (ω · ∇θ)x(j). (12.56)

In addition Eqs. (12.46) and (12.55) are related to each other, the former being
the Fourier transform of the latter. This can be seen by substituting (12.50) in
(12.51) and averaging over θ.

We can also write the Lagrangian as

L =
1
2

N∑
j=1

ẋ(j)ẋ(j) − V (x), (12.57)
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where for ẋ(j) we substitute from (12.50). Then by averaging over θ we obtain
(compare with Eq. (12.14) which is for N = 1),

L̄ =
1
2

∑
ν

(ω · ν)2xνx−ν − V0. (12.58)

In this relation V0 ≡ V̄ is the constant term in the Fourier series expansion of
the potential. From (12.58) it follows that

∂L̄

∂x
(j)
−ν

= (ω · ν)2x
(j)
ν −

∂V0

∂x
(j)
−ν

. (12.59)

The last term in (12.59) can be calculated from the Fourier transform of V
(
x(j)

)
;

∂V0

∂x
(j)
−ν

=
∂

∂x
(j)
−ν

1
(2π)N

∫
V
(
x(j)

)
dθ

=
∂

∂x
(j)
ν

1
(2π)N

∫
V

∑
µ
x

(j)
µ eiµ·θ

 dθ

=
1

(2π)N

∫
eiν·θ

∂V

∂x(j)
dθ =

(
∂V

∂x(j)

)
ν
. (12.60)

If we substitute (12.60) in (12.59) and let

∂L̄

∂x
(j)
−ν

= 0, (12.61)

we find then Eq. (12.46).
Transformation to Action-Angle Variables — An examination of

Eq. (12.46) shows that the solution of the problem can be found if we know the
values of the N Fourier components. We can choose the set

x1 ≡
(
x

(1)
1,0,0···, x

(2)
0,1,0··· · · · x

(N)
0,0,···1

)
, (12.62)

to represent the solution x1. The complex elements x0,0···, 1, 0, ··· constitute the
2N integration constants. If we choose all elements of x1 to be real, and let δ
denote the set of N real phases δ = (δ1 δ2 · · · δN ) then the general solution will
be of the form

xν → xνeiν·δ . (12.63)

We note that L̄ and H̄, where the latter is defined by

H̄ =
1
2

∑
ν

(ν · ω)2xνx−ν + V0. (12.64)
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remain unchanged if we make the replacement shown in (12.63), therefore we
will only consider the vector xν satisfying

xν = x−ν , (12.65)

in the following discussion. Once x1, Eq.(12.62), has been determined, we can
find the vector ω in terms of x1,

ω = ω(x1). (12.66)

Similarly we can express xν in terms of ω, i.e.

xν = xν (ω), for all ν. (12.67)

By substituting xν (ω) in L̄ we find

L̄ =
1
2

∑
ν

(ω · ν)2xν · xν − V̄ , (12.68)

where the summation is over all ν with positive and negative components. From
the Lagrangian L̄ we define the action Ik by

Ik =
δL̄

δωk
, (12.69)

where the δ derivative means that we keep ωj(j 6= k) and xν fixed. We also
note that

∂L̄

∂ωk
=

δL̄

δωk
+
∑
ν

∂L̄

∂xν

∂xν
∂ωk

=
δL̄

δωk
= Ik. (12.70)

By substituting for L̄ from (12.68) in (12.69) we obtain

Ik =
∑
ν
νk(ν · ω)xνxν =

1
(2π)2N

∫ 2π

0

p ·
(
∂x
∂θk

)
dθ. (12.71)

Now if we multiply (12.71) by ωk and sum over k we find

∑
k

ωkIk =
1

(2π)N

∫ 2π

0

p ·

(∑
k

ωk
∂x
∂θk

)
dθ = p · ẋ, (12.72)

where we have used (12.52) to obtain the last term of Eq. (12.72). The average
Hamiltonian H̄ can be found by averaging (12.64) over the angles to get H(I)
which is also expressible as

H̄(I) = p · ẋ− L̄(ω) = ω · I− L̄(ω), (12.73)

and has the familiar form of

H(p, q) = p · q̇− L (q̇, q) . (12.74)
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The Hamiltonian H(I) which has been derived from L(ω) by a Legendre trans-
formation satisfies the canonical equations of motion

ωk =
∂H̄(I)
∂Ik

. (12.75)

While in this derivation of H̄(I) we have suppressed the set of quantum numbers
n, Eq. (12.75) is related to (12.47). To establish this connection we quantize
(12.75) using the Bohr–Sommerfeld quantization rule (12.93).

A Simple Example — Let us consider the motion of a system of anhar-
monic coupled oscillators given by the Lagrangian

L =
1
2
(
ẋ2 + ẏ2

)
− 1

4
κ1x

4 − 1
4
κ2y

4 − 1
2
λx2y2. (12.76)

When λ = 0, the problem is separable and we can use the WKB approximation
to find the energy levels of the system. Alternatively we can use a simple trial
function and find the average Lagrangian L̄. Thus if we set λ = 0 and choose

x(t) ≈ 2x10 cos(ω1t1), (12.77)

and
y(t) ≈ 2y01 cos(ω2t2), (12.78)

and use these in (12.51), we obtain

L̄ ≈ L̄(λ = 0) = ω2
1x

2
10 + ω2

2y
2
01 −

3
2
κ1x

4
10 −

3
2
κ2y

4
01. (12.79)

The extremum of L̄ yields the following relations

x2
10 =

ω2
1

3κ1
, (12.80)

and

y2
01 =

ω2
2

3κ2
. (12.81)

The action variables can be found from (12.70);

I1 = 2ω1x
2
10 =

2
3κ1

ω3
1 , (12.82)

and
I2 = 2ω2y

2
01 =

2
3κ2

ω3
2 . (12.83)

Writing Eq. (12.75) as

ωk =
∂E

∂Ik
, k = 1, 2, (12.84)
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we observe that from (12.82), (12.83) and (12.84) we have

ω1 =
∂E

∂I1
=
(

3κ1

2

) 1
3

I
1
3
1 , (12.85)

and

ω2 =
∂E

∂I2
=
(

3κ2

2

) 1
3

I
1
3
2 . (12.86)

By integrating (12.85) and (12.86) and adding the results we get an expression
for the energy

E(I1, I2) =
1
2

(
3
2

) 4
3 [
κ

1
3
1 I

4
3
1 + κ

1
3
2 I

4
3
2

]
. (12.87)

Having obtained the classical expression for E(I1, I2) we use the Bohr-
Sommerfeld quantization rule to calculate the approximate energy levels of the
two uncoupled oscillators:

E(n1, n2) =
1
2

(
3h̄
2

) 4
3
[
κ

1
3
1

(
n1 +

1
2

) 4
3

+ κ
1
3
2

(
n2 +

1
2

) 4
3
]
. (12.88)

Next let us determine the shift in the energy levels caused by the mixing term(
− 1

2λx
2y2
)

in (12.76) when λ is small, λ � κ1,2. Adding the average of this
term to L̄, Eq. (12.79) we get

L̄λ = L̄− 2λx2
10y

2
10. (12.89)

In this case the extremum of L̄λ will give us [2]

x2
10 =

ω2
1

3κ1
− 2λ

3κ1
y2

01, (12.90)

and

y2
01 =

ω2
2

3κ2
− 2λ

3κ2
y2

10. (12.91)

Following the previous steps, now for Eλ(n1, n2) we obtain an expression for
the quantized energy

E(n1, n2) =
1
2

(
3h̄
2

) 4
3
{
κ

1
3
1

(
n1 +

1
2

) 4
3

+ κ
1
3
2

(
n2 +

1
2

) 4
3

+
4
9

λ

κ1κ2

[
κ1

(
n1 +

1
2

)] 2
3
[
κ2

(
n2 +

1
2

)] 2
3
}
. (12.92)

Semiclassical Quantization of Nonseparable Systems — For a sep-
arable motion according to the old quantum theory, the Bohr–Sommerfeld quan-
tization condition is

Ik =
(
nk +

βk
4

)
h̄. (12.93)
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In this relation nk is a positive integer or zero, and the constant βk which is
called Maslov index is usually an integer [6].

The generalization of the Bohr–Sommerfeld quantization to nonseparable
(or non-integrable) systems is originally due to Einstein with modifications by
Brillouin and Keller [7]. Einstein proposed the following quantization rule: We
find the integral

I =
1

2π

∑
j

∮
pjdqj , (12.94)

over a closed path in phase space that makes an integral number of complete
cycles of each of the various periodicities and set this equal to nh̄.

TABLE VIII: Correspondence between Heisenberg’s matrix mechanics and the semi-classical

quantization. Here we have used the representation where the energy is diagonal.

Quantum mechanical Semi-classical

Matrix elements of x and p Fourier components of x(I, θ), p(I, θ)
〈n|x|j〉, 〈n|p|j〉 xk(I), pk(I)

Equation of motion Fourier component of
(En+k − En)2〈n+ k|x|n〉 = of the equation of motion〈

n+ k
∣∣∂V
∂x

∣∣n〉 (kω)2xk = d〈V 〉
dx−k

Commutation relations Quantization of the action
〈〈n|[x, p]|n〉 = i I =

〈
p∂x
∂θ

〉
= n+ 1

2

Diagonal elements of H Energy in terms of action
En = 〈n|H|n〉 E(I) = 〈H〉

Angular frequency Classical frequency
ωn+k, n = En+k − En ω = dE(I)

dI

Operator Dynamical variable
A(x, p) A(x(I, θ), p(I, θ))

Matrix elements Fourier coefficients
〈n|A|n+ k〉 Ak(I) = 1

2π

∫
A(I, θ) exp(−ikθ)dθ

Hamiltonian matrix is diagonal Hamiltonian independent of θ∑
k 6=0〈n|H|n+ k〉

∑
k 6=0HkH−k = 0

×〈n+ k|H|n〉 = 0
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Let us apply this method to the familiar problem of two-dimensional harmonic
oscillator Eq. (1.213),

H =
(
p2

1

2m1
+

1
2
m1ω

2
1q

2
1

)
+
(
p2

2

2m2
+

1
2
m2ω

2
2q

2
2

)
, (12.95)

if we integrate over n1 cycles of q1 and n2 cycles of q2, the integral (12.94)
becomes

I(n1, n2) =
n1E2

ω1
+
n2(E1 − E2)

ω2
= nh̄, (12.96)

where E2 and E1−E2 are the energies of the q1 and q2 coordinates respectively.
Now according to Einstein (12.96) must be satisfied for all integral values of n1

and n2. This can happen only if E2
ω1

and E1−E2
ω2

are each integral multiples of
h̄. Thus for separable systems this rule reduces to the Bohr–Sommerfeld rule.

12.4 A Variational Method Based on Heisen-
berg’s Equation of Motion

The variational method in quantum mechanics provides a powerful technique
for calculating the low-lying energy levels of a bound particle or determining
the partial wave phase shifts and the scattering amplitude in scattering theory
[8],[9]. In the matrix formulation there has been some work done mainly on the
bound state of one-dimensional problems [10],[11]. The interesting outcome of
this approach is that the variational method is closely related to the method of
finite differences used to solve operator differential equations discussed in Sec.
10.1 [12].

For a one-dimensional motion of a particle of unit mass with the Hamil-
tonian

H =
1
2
p2 + V (q), (12.97)

we can write the Heisenberg equations of motion as the limit of the finite dif-
ference equations;

qn+1 − qn
τ

= pn+1, (12.98)

and
pn+1 − pn

τ
= F (qn) = −

(
∂V (q)
∂q

)
qn

, (12.99)

as τ tends to zero. If we compare these with Eqs. (10.6) and (10.7), we observe
that for the iterative solution, the latter difference equations are better, but
Eqs. (12.98) and (12.99) are simpler for the variational calculation.
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Now let us consider an operator Q(p(t), q(t)) in the Heisenberg picture
and calculate its matrix elements between two eigenvectors |k〉 and |j〉 of the
Hamiltonian for the system H;

〈n|Q(p(t), q(t))|j〉 = exp
[
− i
h̄

(Ej − En)t
]
〈n|Q(p(0), q(0))|j〉

= 〈n|Q(p(0), q(0))|j〉
∞∑
k=0

[
− i(Ej − En)t

h̄

]k
tk

k!
.

(12.100)

This equation takes a simple form when j = n,

〈n|Q(p(t), q(t))|n〉 = 〈n|Q(p(0), q(0)|n〉. (12.101)

In particular for the operator

Q(p(t), q(t)) = q(t)p(t), (12.102)

we use Eqs. (12.98) and (12.99) to find

〈n|q(τ)p(τ)|n〉 = 〈n|q(0)p(0)|n〉+
+ τ〈n|(p(0))2 − q(0)V ′(q(0))|n〉+O

(
τ2
)
,

(12.103)

where O
(
τ2
)

denotes terms proportional to τ2. By substituting from (12.102)
in (12.103) we find that to the order τ the following condition must be satisfied,〈

n
∣∣(p(0))2 − q(0)V ′(q(0))

∣∣n〉 = 0, (12.104)

and this is the quantum mechanical statement of the virial theorem (see Secs.
4.2 and 7.4).

Next let us introduce a variational parameter η, and write [10],[11]

q(0)→ ηq, (12.105)

and
p(0)→ 1

η
p, (12.106)

where η is introduced in such a way that the canonical commutation relation
[q(0), p(0)] remains unchanged. In addition for infinitesimal τ , Eq. (12.104)
must be satisfied and thus we find〈

n
∣∣p2
∣∣n〉 = η3

n

〈
n

∣∣∣∣q ∂V (ηnq)
∂q

∣∣∣∣n〉 , (12.107)

and this is the variational condition on the virial theorem. Here we have assumed
that the parameter η is dependent on the state |n〉. The condition (12.107)
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is the same as the one obtained by minimizing the expectation value of the
Hamiltonian (12.97);

δ〈φn(ηn)|H|φn(ηn)〉

= δ

{
1
2
〈
φn(ηn)

∣∣p2
∣∣φn(ηn)

〉
+ 〈φn(ηn)|V (q)|φn(ηn)〉

}
= 0,

(12.108)

where the normalized variational wave function φn(ηn) is given by

φn(q)→ √ηnφn(ηnq). (12.109)

This technique allows us to calculate the energies of different levels. For
instance let us consider the case of the anharmonic oscillator

V (q) =
1
2
q2 +

λ

4
q4, (12.110)

for which (12.107) becomes〈
n
∣∣p2
∣∣n〉 = η3

n 〈n |qV ′(ηnq)|n〉
= η4

n

〈
n
∣∣q2
∣∣n〉+ λη6

n

〈
n
∣∣q4
∣∣n〉 . (12.111)

Now we write
An =

〈
n
∣∣p2
∣∣n〉 , Bn =

〈
n
∣∣q2
∣∣n〉 , (12.112)

and
Cn =

〈
n
∣∣q4
∣∣n〉 , (12.113)

and expand ηn as a power series in λ

ηn =
(
1 + εnλ+ δnλ

2 + · · ·
)
. (12.114)

Then by equating different powers of λ in (12.111) we find

An = Bn εn =
Cn

6An − 2Bn
, and δn = −7

2
ε2n. (12.115)

Substituting these in the expression for the diagonal elements of the Hamiltonian

〈n|H|n〉 =
1
2
η2
n

〈
n
∣∣p2
∣∣n〉+

1
2η2
n

〈
n
∣∣q2
∣∣n〉+

λ

4η4
n

〈
n
∣∣q4
∣∣n〉

=
1
2

(
Anη

2
n +

Bn
η2
n

)
+

λ

4η4
n

Cn. (12.116)

Noting that 〈
n
∣∣p2(0)

∣∣n〉 =
〈
n
∣∣q2(0)

∣∣n〉 =
(
n+

1
2

)
, (12.117)
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and 〈
n
∣∣q4(0)

∣∣n〉 =
3
2

(
n2 + n+

1
2

)
, (12.118)

we find the following expression for En in powers of λ [13]

En =
(
n+

1
2

)
+

3
2

(
n2 + n+

1
2

)
λ

4

−
2
(
n2 + n+ 1

2

)2
n+ 1

2

(
λ

4

)2

+ · · · . (12.119)

This variational method can also be used to calculate the level spacing
(or the energy differences) for potentials with many bound states. We write
the matrix elements of the Heisenberg equations for p(τ) and q(τ) where τ is
infinitesimal time

〈n |q(τ)| k〉 = 〈n |q(0)| k〉+ τ 〈n |p(0)| k〉+O
(
τ2
)
, (12.120)

〈n |p(τ)| k〉 = 〈n |p(0)| k〉+ τ 〈n |F (q(0))| k〉+O
(
τ2
)
, (12.121)

TABLE IX: Energy eigenvalues for a quartic anharmonic oscillator V (q) = q4 (see [10]).

Quantum number n Exact results Approximate eigenvalues

0 0.6680 0.6814
1 2.3936 2.4237
2 4.6968 4.6850
3 7.3367 7.2911
4 10.244 10.167
5 13.379 13.267

TABLE X: Energy differences between two adjacent levels ωn = En+1 −En, Eq. (12.124),

for a quartic anharmonic oscillator V (q) = q4 [10].

ωn Exact results Approximate values

ω0 1.7256 1.8171
ω1 2.3032 2.2894
ω2 2.6399 2.6207
ω3 2.9073 2.8845
ω4 3.1350 3.1072
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where F (q) = −∂V (q)
∂q . Now from Eqs. (12.100), (12.120) and (12.121) it follows

that
〈n |p(0)| k〉 = iωnk 〈n |q(0)| k〉 , (12.122)

and
〈n |F (q(0))| k〉 = iωnk 〈n |p(0)| k〉 , (12.123)

where ωnk = En − Ek. Now if we introduce the variational parameter η as in
(12.105) and (12.106) in Eqs. (12.122) and (12.123) we obtain

iωnk =
〈n|p(0)|k〉
〈n|q(0)|k〉

=
〈n|p|k〉
η2〈n|q|k〉

, (12.124)

and

iωnk =
〈n|F (q(0))|k〉
〈n|p(0)|k〉

= η
〈n|F (ηq)|k〉
〈n|p|k〉

. (12.125)

By dividing (12.125) by (12.124) we find that η must satisfy the condition

〈n|p|k〉
〈n|q|k〉

= η3 〈n|F (ηq)|k〉
〈n|p|k〉

, (12.126)

where η now depends on n as well as k.
The above-mentioned method can be applied to a general quantum-

mechanical system with two degrees of freedom whether it is integrable or not,
for example to the general form of the Henon-Heiles Hamiltonian [14].

12.5 Raleigh–Ritz Variational Principle

The variational principle is a powerful technique for calculating the ground state
energy of a quantum mechanical system. For the formulation of Raleigh-Ritz
variational principle we first observe that for a given Hamiltonian H with any
number of degrees of freedom and any normalized state |ψ〉, the expectation
value 〈ψ|H|ψ〉 is always greater or equal to the ground state energy of the
system, E0,

E0 ≤ 〈ψ|H|ψ〉. (12.127)

The equality is obtained if |ψ〉 is the exact ground state wave function. To prove
the inequality (12.127), let us expand |ψ〉 in terms of the eigenstates of H, viz,

|ψ〉 =
∑
n

cn|ψn〉, (12.128)

then
H|ψ〉 = H

∑
n

cn|ψn〉 =
∑
n

En|ψn〉, (12.129)
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or
〈ψ|H|ψ〉 =

∑
n

En|cn|2. (12.130)

Since E0 ≤ En, for all n > 0, we have the inequality

〈ψ|H|ψ〉 ≥ E0

∑
n

|cn|2 = E0. (12.131)

If |ψ〉 is not normalized then we write (12.131) as

E0 ≤
〈ψ|H|ψ〉
〈ψ|ψ〉

. (12.132)

Thus by finding a trial wave function which minimizes the right-hand side of
(12.132), i.e.

∣∣ψ(0)
〉
, we find an approximate value for E0. A simple example of

this method is applied for the calculation the ionization energy for helium-like
atoms that we will consider in Chapter 17.

For calculating the first excited state of the system, we choose the trial
wave function

∣∣ψ(1)
〉

to be normalized and at the same time be orthogonal to
the ground state 〈

ψ(0)|ψ(1)
〉

= 0. (12.133)

This technique can be generalized in the following way:
If
∣∣ψ(0)

〉
,
∣∣ψ(1)

〉
· · · ,

∣∣ψ(n−1)
〉

are already determined then〈
ψ(n)|ψ(n)

〉
= 1,

〈
ψ(n)|ψ(j)

〉
= 0, j = 0, 1, · · · , n− 1 (12.134)

are the conditions which must be satisfied for an acceptable trial function for
the n-th excited state. Thus by finding a trial wave function which minimizes
the right-hand side of (12.131) we find an approximate value of E0 [15].

12.6 Tight-Binding Approximation

This approximation which is useful in determining the energy band structure
in solids is applicable to the systems where the Hamiltonian is invariant under
space translation equal to the lattice spacing.

If the potential between two adjacent sites in a periodic potential is not
infinitely strong, then the wave function will not be completely localized in the
n-th site and through the mechanism of quantum tunneling it will leak to the
neighboring sites. The diagonal elements of H will be the same, independent of
the site |n〉, i.e.

〈n|H|n〉 = E0. (12.135)
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For a finite but high barriers between the sites, the matrix elements of the
Hamiltonian between well separated sites will be negligible, and to a good ap-
proximation we can ignore all but the matrix elements of the Hamiltonian be-
tween the neighboring sites. When this is the case, we use the tight-binding
approximation which can be expressed as

〈n′ |H|n〉 6= 0, for n′ − n = 0, ±1. (12.136)

Because of the translational invariance of the Hamiltonian, 〈n± 1|H|n〉 will be
constant independent of |n〉. Let us denote this matrix element by −∆,

〈n± 1|H|n〉 = −∆. (12.137)

Noting that the off diagonal elements of H are not zeros, we have

H|n〉 = E0|n〉 −∆|n+ 1〉 −∆|n− 1〉, (12.138)

and this relation shows that |n〉 is not an eigenstate of H. Now let us consider
the eigenstate of T(a), Sec. 6.7 in this approximation. For this we apply H to
the state |α〉, Eq. (6.115),

H|α〉 = H
∞∑

n=−∞
einα|n〉

= E0

∞∑
n=−∞

einα|n〉 −∆
∞∑

n=−∞
einα|n+ 1〉 −∆

∞∑
n=−∞

einα|n〉

=

{
E0

∞∑
n=−∞

einα −∆
∞∑

n=−∞

(
einα−iα + einα+iα

)}
|n〉

= (E0 − 2∆ cosα)
∞∑

n=−∞
einα|n〉. (12.139)

As this equation shows in this approximation the energy eigenvalue depends on
α and changes continuously between E0 − 2∆ and E0 + 2∆ [16].

12.7 Heisenberg’s Correspondence Principle

The idea that the quantum matrix elements can be approximately determined
from the Fourier coefficient of the expansion of classical motion goes back to
Heisenberg [17]. In this section we want to discuss the application of Heisen-
berg’s Correspondence principle mentioned earlier Sec. 4.6 for the calculation
of the matrix elements of bound states. Let us assume that for a bound classical
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motion of a particle of unit mass the position is given by q(t). We can expand
q(t) as a Fourier series

q(t) =
∑
s

qse
isωt, (12.140)

where s is an integer and ω is the classical frequency which, in general is energy-
dependent. Then the Heisenberg form of correspondence Eq. (4.227) gives us
the matrix element of the quantum mechanical q(t)

〈n|q(t)|n+ s〉 = qs, (12.141)

when n is much larger than s.
Before discussing the general case, let us examine the result that we obtain

by applying this principle to the simple harmonic oscillator. By writing

q(t) =

√
2E
ω2

cos(ωt), (12.142)

where E = 1
2ω

2q2
0 is the energy and q0 is its amplitude, and substituting (12.142)

in (12.141) we find that the only non-zero Fourier components are those with
s = ±1. Thus for the off diagonal matrix elements we obtain

〈n|q|n− 1〉 = 〈n|q(t)|n+ 1〉 =

√
h̄

2ω
n, (12.143)

where for E we have substituted h̄ω. For the exact solution of the harmonic
oscillator we have the matrix elements

〈n|q|n+ 1〉 =

√
h̄

ω

(
n+ 1

2

) 1
2

, and 〈n|q|n− 1〉 =

√
h̄

2ω

(n
2

) 1
2
, (12.144)

which shows that the amplitudes for the upward and downward transitions are
not equal, whereas (12.143) predicts that they are equal. To remedy this defect
we modify (12.144) so that for small s

n it gives the same result as (12.144). At
the same time we generalize (12.143) so that it can be used for any positive
integral power of q. To this end we write [18]

〈
n
∣∣qk∣∣n+ s

〉
=
(
h̄

2ω
nc

) k
2 k![

1
2 (k − s)

]
!
[

1
2 (k + s)

]
!
. (12.145)

Here s is restricted to

s = k − 2j, j = 0, 1, · · · k, (12.146)

and nc is given by

nc =
[

(n+ s)!
n!

] 1
s

, s 6= 0 (12.147)
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As s→ 0, by expanding the right-hand side of (12.147) we get

nc = n+
1
2
, s = 0. (12.148)

This version of Heisenberg’s Correspondence principle works very well for dif-
ferent matrix elements of the coordinate and momentum. It also satisfies Bohr’s

TABLE XI: Matrix elements of qk and pk for harmonic oscillator calculated from Heisen-

berg’s Correspondence principle, Eqs. (12.145) and (12.149). These are compared with the

exact results.

Matrix element Correspondence value Exact value

〈n|q|n+ 1〉
√

h̄
2ω (n+ 1)

√
h̄

2ω (n+ 1)

〈n|q|n− 1〉
√

h̄
2ωn

√
h̄
2ωn〈

n
∣∣q2
∣∣n+ 2

〉
h̄

2ω

√
(n+ 1)(n+ 2) h̄

2ω

√
(n+ 1)(n+ 2)〈

n
∣∣q2
∣∣n〉 h̄

ω

(
n+ 1

2

)
h̄
ω

(
n+ 1

2

)
〈
n
∣∣q3
∣∣n− 1

〉 (
h̄
ω

) 3
2

√
9n3

8

(
h̄
ω

) 3
2

√
9n3

8〈
n
∣∣q3
∣∣n− 3

〉 (
h̄
ω

) 3
2

√
1
8n(n− 1)(n− 2)

(
h̄
ω

) 3
2

√
1
8n(n− 1)(n− 2)

〈
n
∣∣q4
∣∣n〉 3h̄2

2ω2

(
n2 + n+ 1

4

)
3h̄2

2ω2

(
n2 + n+ 1

2

)
〈n|p|n+ 1〉 i

√
h̄ω
2 (n+ 1) i

√
h̄ω
2 (n+ 1)

〈n|p|n− 1〉 i
√

h̄ω
2 n i

√
h̄ω
2 n〈

n
∣∣p3
∣∣n+ 3

〉
−i
(
h̄ω
2

) 3
2
√

(n+ 1)(n+ 2) −i
(
h̄ω
2

) 3
2
√

(n+ 1)(n+ 2)
×
√

(n+ 3)〈
n
∣∣p4
∣∣n+ 2

〉
−4
(
h̄ω
2

)2
(n+ 1)(n+ 2) −4

(
h̄ω
2

)2 (
n+ 3

2

)√
(n+ 1)

×
√

(n+ 2)

〈n|p4|n− 2〉 −4( h̄ω2 )2n(n− 1) −4( h̄ω2 )2(n− 1
2 )
√
n(n− 1)
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correspondence principle and agrees with quantum mechanical calculation in
the limit s

n → 0. The momentum matrix elements can be found by noting the
symmetry in position and momentum matrix elements which is the case for the
harmonic oscillator. Thus from (12.145) we obtain

〈
n
∣∣pk∣∣n+ s

〉
= i2k−s

(
h̄ω

2
nc

) k
2 k![

1
2 (k − s)

]
!
[

1
2 (k + s)

]
!
. (12.149)

which apart from the constant factor is the same as (12.145).
From Eqs. (12.145) and (12.149) we find the following simple relation

between the matrix elements of qk and those of pk;〈
n
∣∣pk∣∣n+ s

〉
= i2k−sωk

〈
n
∣∣qk∣∣n+ s

〉
. (12.150)

TABLE XI shows the matrix elements
〈
n
∣∣qk∣∣n+ s

〉
and

〈
n
∣∣pk∣∣n+ s

〉
for inte-

gers k and s. The exact results are also shown for comparison. We observe that
for a number of matrix elements, what we find by this method agrees with the
exact results. For k ≥ 4, only the matrix elements of the form

〈
n
∣∣pk∣∣n± k〉

are identical, but other matrix elements remain close to the exact values.
The Morse Potential — The approximate calculation of the matrix

elements of the Morse potential, V (x), defined by (8.39) provides a nontrivial
example of the usefulness of this correspondence principle. The classical motion
of a particle of unit mass in this potential can be formulated in terms of the
action-angle variables I and ω [21],[20];

H = Iω

(
1− Iω

4λ

)
− λ, (12.151)

where

ω =
√

2µλ. (12.152)

If we replace I in (12.151) by
(
n+ 1

2

)
h̄ (see Eq. (12.93) we find the exact

eigenvalues of the Morse potential, Eq. (8.40). The coordinate and momentum
of the particle written in terms of the action-angle variable are:

q(t) =
1
√
µ

ln

1 +
√

E
λ cosw

1− E
λ

 , (12.153)

and

p(t) =


√
E
(√

1− E
λ

)
sinw

1 +
√

E
λ cosw

 . (12.154)
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where E is the energy of the particle and where q and p are periodic functions
of time with w = ωt. By expanding q in a Fourier series we find that the
coefficients of expansion of q are

〈n|q|n+ s〉 =
−is
√
µs

 n

2
h̄

√
2λ
µ − n

 s
2

. (12.155)

Similarly an expansion of the periodic function p shows that the coefficients of
expansion are:

〈n|p|n+ s〉 =

 is−2

(
ω√
µ

) n
2
h̄

√
2λ
µ −n

 s
2

s 6= 0

0 s = 0

. (12.156)

In order to obtain more accurate results for the matrix elements we replace n in
(12.155) and (12.156) by nc, where as before nc is related to n by (12.147) and
(12.148). The exact result found from the solution of the Schrödinger equation
is [22]

〈n|q|n+ s〉 = − 1
√
µs


[(

1
h̄

√
2λ
µ − n

)(
1
h̄

√
2λ
µ − n− s

)] 1
2(

1
h̄

√
2λ
µ − n−

1
2 −

s
2

)


×

 (n+ s)! Γ
(

2
h̄

√
2λ
µ − n− s

)
n! Γ

(
2
h̄

√
2λ
µ − n

)


1
2

. (12.157)

TABLE XII: The results found for Q(n, s), Eq. (12.158), from Heisenberg’s Correspondence

principle are compared to the exact result for the Morse potential [18].

Transition n→ n+ s Correspondence value Exact value

1→ 2 0.020408 0.020406

3→ 4 0.041667 0.041662

7→ 8 0.086957 0.086944

1→ 4 2.6203× 10−5 2.6272× 10−5

3→ 6 1.397× 10−4 1.398× 10−4

5→ 10 4.557× 10−6 4.575× 10−6
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In order to compare the result of the approximate calculation based on the
correspondence, Eq. (12.155), and the exact result given by (12.157), we first

note that the quantity 1
h̄

√
2λ
µ is a dimensionless number which is a measure of

the strength of the potential and thus the number of bound states. From the
matrix elements we find the quantity

Q(n, s) = µs2|〈n|q|n+ s〉|2, (12.158)

which depends on 1
h̄

√
2λ
µ , n and s. When the potential has a large number of

bound states, the approximate and the exact values of Q(n, s) are very close to

each other. In TABLE XII, the results are shown for 1
h̄

√
2λ
µ = 50, correspond-

ing to a Morse potential with about 48 bound states [18].

12.8 Bohr and Heisenberg Correspondence and
the Frequencies and Intensities of the Emit-
ted Radiation

In classical dynamics the orbit of a particle attracted by an inverse square law
of force, e.g. Coulomb force with the potential V (r) = −Ze

2

r is, in general, an
ellipse with the equation

r =

(
1− ε2

)
a

1 + ε cos θ
, (12.159)

in polar coordinates [23]. The semi-major axis a is inversely proportional to E,
the total energy, which is negative

a = −Ze
2

2E
, (12.160)

and the eccentricity is given by

ε =

[
1− 2|E|

m

(
`c
Ze2

)2
] 1

2

. (12.161)

In this relation m is the reduced mass of the system and lc is the classical angular
momentum. The period of motion which is given by the Kepler’s third law is

T =
2π
ω

=
2πZe2

√
m

(−2E)
3
2
. (12.162)

We can also write the classical motion in terms of the eccentricity anomaly u
which is defined by

r = a(1− ε cosu), (12.163)
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where both u and r are functions of time. In particular we have

u− ε sinu = ωt, (12.164)

with ω, the angular frequency, given by (12.162). For the two-dimensional
elliptic motion it is convenient to use coordinates ξ(t) and η(t) defined by

ξ(t) = a(cosu− ε), (12.165)

and
η(t) = a

√
1− ε2 sinu. (12.166)

These are parametric equations for the orbit. Thus if we eliminate u between
(12.165) and (12.166) we find the equation of orbit in rectangular coordinates:(

ξ

a
+ ε

)2

+
η2

a2 (1− ε2)
= 1. (12.167)

In order to apply Heisenberg’s Correspondence principle to the two-dimensional
motion we need the coefficients of the Fourier transforms of ξ(t) and η(t). If we
expand these two functions as

ξ(t) =
+∞∑
−∞

ξse
−isωt. (12.168)

and

η(t) =
+∞∑
−∞

ηse
−isωt, (12.169)

then the coefficients ξs and ηs are given by [24]
ξs =

a

s
J ′s(sε)e

−isδ |s| ≥ 1

ξ0 = −3

2
aε s0 = 0

(12.170)

and  ηs =
ia
√

1−ε2

sε Js(sε)e
−isδ |s| ≥ 1

η0 = 0 s = 0

(12.171)

These are found from the inverse Fourier transform of (12.168) and (12.169) and
by noting that [26]

Js(z) =
1

π

∫ π

0

cos(sθ − z sin θ)dθ. (12.172)

Heisenberg’s Correspondence Principle Applied to the Quantum
Theory of Dipole Transition — In classical electrodynamics, we know that
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the intensity of dipole radiation per unit time by a particle of charge e located
at r is given by [25]

I =
2e2

3c3
|r̈(t)|2 . (12.173)

When the particle is bound and the Hamiltonian is separable we can expand
r(t) in terms of multiple Fourier series

r(t) =
∑

s

rs exp(−is · θ), (12.174)

where
θ = ωt. (12.175)

The quantities rs, θ and ω are all vectors, each with x, y and z components.
Substituting for r(t) in (12.173) we find the classical intensity to be

I =
4e2

3c3
(s · ω)4|rs|2. (12.176)

Now we apply Heisenberg’s Correspondence principle to the problem of dipole
radiation in order to find an approximate quantum expression for the emitted
power. In this case the correspondence principle can be stated in the following
way [24]:

The mean quantum mechanical power associated with the transition n→
n′ is approximately equal to the mean emitted power derived by classical theory.
This is found from the Fourier components of order s and −s, where s = n−n′.
Next we want to consider the matrix elements of any classical periodic function
of r, say Fc(r). For this we express r(t) in terms of the action angle variables θ
and J and write

Fc(r) =
∑

s

Fcs(J) exp(−is · θ). (12.177)

Now according to Heisenberg’s Correspondence principle, for the expectation
value of the quantum operator F(r) which corresponds to the classical function
F(r) we have

〈n′ |F(r)|n〉 ≈ Fcs(J). (12.178)

In this relation |n〉 and |n′〉 are the eigenstates of the Hamiltonian for the bound
system

H0|n〉 = E(n)|n〉. (12.179)

The classical expression (12.176) shows that for the quantum mechanical prob-
lem of dipole radiation we need to find a mean over one or more of the quantum
numbers of the square of the matrix element. We also note that for the prob-
lem involving the Coulomb force which is a central force, the energy levels are
degenerate and the classical motion is two-dimensional. The mean value in this
case means averaging over ` and m (see Sec. 9.5). Let us first consider the
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summation over the quantum number m of the bound system. We have the
classical actions J` and Jm corresponding to quantum numbers ` and m, i.e.

Jm
J`

=
m

`
= µ = cosβ, (12.180)

where β is the angle between the z-axis and the angular momentum vector.
Thus we can replace the sum over all m by an integral

∑̀
m=−`

→ 2`
∫ 1

−1

dµ

2
. (12.181)

For a vector function of r, say F(r), we have to evaluate the sum

∑̀
m=−`

`′∑
m′=−`′

|〈n′`′m′ |F(r)|n`m〉|2 , (12.182)

approximately. From the correspondence principle (12.178), this expression can
be approximated by

∑
m

∑
∆m

(
1

2π

)6 ∫ ∫
exp

[
is ·
(
θ − θ′

)]
F(θ,J) · F∗

(
θ′,J′

)
d3θd3θ′, (12.183)

where for the vector s we have written

s = n− n′ = −(∆n,∆`,∆m). (12.184)

We can do the summation over ∆m in (12.183) with the help of the following
relation

1
2π

∑
∆m

exp [i∆m (θm − θ′m)] ≈ δ (θm − θ′m) . (12.185)

Using this relation Eq. (12.183) becomes

`

π

∫ 2π

0

dθm

∫ 1

−1

dµ

2

∣∣∣∣∣
(

1
2π

)2 ∫ ∫
exp[−i(∆n θn + ∆` θ`)] F(θ,J)dθndθ`

∣∣∣∣∣
2

.

(12.186)
For the case of the Coulomb potential, the eigenvalues are degenerate and for a
given n the individual (`,m) states are equally populated, therefore instead of
(12.182) we need the sum

1
n2

n−1∑
`=0

n′−1∑
`′=0

∑̀
m=−`

`′∑
m′=−`′

|〈n′`′m′ |F(r)|n`m〉|2 . (12.187)
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To apply Heisenberg’s correspondence principle to the hydrogen (or
Kepler) problem we write the three-dimensional analogue of (12.141) which is

∞∑
n′=1

n′−1∑
`′=0

`′∑
m′=−`′

〈n′ `′ m′ |q|n ` m〉 exp
[
i(En′ − En)

t

h̄

]

=
∞∑

s=−n+1

n+s−1∑
`′=0

`′∑
m′=−`′

〈(n+ s) `′ m′ |q|n ` m〉

 exp
[
i(En+s − En)

t

h̄

]
.

(12.188)

Now for large quantum numbers, according to Heisenberg’s Correspondence
principle, Eq. (12.188) tends to the classical function q(t). For instance let
us consider the hydrogen atom with the energy En, given by Eq. (9.252).
Associated with this motion we have a Keplerian orbit with a semi-major axis
a = n2a0 where a0 = h̄2

me2 is the Bohr radius. In addition the classical orbit is
characterized by the angular momentum L = `h̄, its projection on the z-axis,
Lz = mh̄, and on the x-axis Lx =

√
`2 −m2 h̄. For this we use Eqs. (12.165),

(12.166), (12.168)–(12.171) to obtain [38]

ξ

a
= −m

`

[
−3

2
ε+

∞ ′∑
s=−∞

1
s
J ′s(sε)e

isωt

]
, (12.189)

η

a
= −
√

1− ε2

ε

∞ ′∑
s=−∞

i

s
Js(sε)eisωt, (12.190)

and
ζ

a
=
√
`2 −m2

`

[
−3

2
ε+

∞ ′∑
s=−∞

i

s
J ′s(sε)e

isωt

]
, (12.191)

where prime on
∑

indicates the term with s = 0 should be omitted from the
summation over s.

We can establish the following connection between the exact quantum me-
chanical matrix elements (12.188) and the classical equations (12.189)–(12.191).
Suppose that we replace q by ξ in (12.188) and calculate the right-hand side
of (12.188) for n, ` and m, all very large integers, then in this limit we recover
(12.189), remembering that the selection rule allows a nonzero result only for
`′ = `± 1 and m′ = m± 1 [18]. We find a similar result, Eq. (12.190), when we
set q = η with the same conditions on `′ and m′. Finally if we take q to be ζ in
(12.188) and follow the same argument we obtain (12.191) but now for `′ = ±1
and m′ = m [18].

Quantum Theory of Oscillator Strength — As an application of the
Heisenberg correspondece principle we want to consider the semi-classical de-
termination of the oscillator strength. In classical electrodynamics the relation
between polarization P and the applied electric field E = E0 sin(ωt) is given by

P = αp E, (12.192)
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where

αp =
∑
j

e2

m

(
Fj

ω2
j − ω2

)
. (12.193)

In this relation m is the mass of the electron, e its charge and Fj is the oscillator
strength which is the number of electrons per atom in the state of angular
frequency ωj .

In quantum theory one can calculate the polarizability using the first order
perturbation theory with the result that [29].

αp =
(

2ω
h̄

)∑
j

|〈f |p|i〉|2

(ωf − ωi)2 − ω2
, (12.194)

where ωi and ωf are frequencies associated with the initial and final states of the
atom respectively and |〈f |p|i〉|2 is the expectation value of the dipole moment
of the atom,

〈f |p|i〉 = e〈f |r|i〉. (12.195)

Note that f and i refer to a set of quantum numbers e.g. (n ` m) in the case of
Coulomb potential. By comparing (12.193) and (12.194) we obtain the quantum
mechanical expression for the sum rule

〈n ` m |F|n′ `′ m′〉 =
2m
3h̄

ωn′,n

[
|〈n′ `′ m′ |r|n ` m〉|2

]
averaged over m

,

(12.196)
with h̄ωn′,n = En′ − En. In order to determine the right-hand side of (12.196)
we will use Eq. (12.186) with F, the action-angle coordinate corresponding to
the position coordinate r. Thus we write r = (ξ, η, ζ), and we express each
component in terms of the angle variables (θn, θ`, θm),

ξ(θn, θ`, θm) =
∑

s,∆`,∆m

〈n+ s `+ ∆` m+ ∆m|ξ|n `,m〉

× exp[i(s θn + ∆` θ` + ∆m θm)], (12.197)

with similar expressions for η(θn, θ`, θm) and ζ(θn, θ`, θm). The sele4ction rules
mentioned earlier implies that for ξ and η coordinates ∆` = ±1 and ∆m = ±1
and for ζ coordinate ∆` = ±1 and ∆m = 0. Now from Eqs. (12.168)–(12.171)
we find that [18]

〈n ` m|ξ|n+ s `+ ∆` m+ ∆m〉

=
∆`
4

(
1 +

∆m
∆`

m

`

)
〈n+ s `+ ∆`|R|n `〉, (12.198)

〈n ` m|η|n+ s `+ ∆` m+ ∆m〉

= −i∆m∆`
4

(
1 +

∆m
∆`

m

`

)
〈n+ s `+ ∆`|R|n `〉, (12.199)
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and

〈n ` m|ζ|n+s `+∆` m+∆m〉 = − i
2

√(
1− m2

`2

)
〈n+s `+∆`|R|n `〉. (12.200)

In these relations the matrix element 〈n+ s `+ ∆`|R|n `〉 is given by

〈n+ s `+ ∆`|R|n `〉

≈
(
n2
c∆`
2s

)[(
1 + ∆`

lc
nc

)
Js−1(sε)−

(
1−∆`

lc
nc

)
Js+1(sε)

]
,

(12.201)

where we have substituted a = n2
c (a in units of the Bohr radius). Here as in

the case of the Morse potential nc is an average of the quantum numbers n and
n′ which can be chosen either as nc = 1

2 (n+ n′) or for a better approximation
as nc = n(n+s)

n+ 1
2 s

.
In TABLE XIII we compare the results found by exact quantum mechan-

ical calculation of the dipole moment squared with its approximate value using
Heisenberg’s Correspondence principle.

TABLE XIII: Exact and approximate values for the dipole moment squared |〈n + s ` +

∆`|R|n `〉|2 with nc =
n(n+s)

n+ 1
2 s

and `c = ` [18].

Transition n→ n+ s Correspondence value Exact value

2s− 3p 9.720 9.393
4s− 5p 73.181 72.553
6s− 7p 275.25 274.19
4p− 5d 123.18 121.86
4d− 5f 200.46 197.83
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Chapter 13

Quantization of the
Classical Equations of
Motion with Higher
Derivatives

Quantum mechanical systems whose equation of motion involves higher deriva-
tives than the second have been studied in connection with field theories with
non-localized action [1] and also in the quantum theory of radiating electron [2].
These equations can be of finite order in derivatives or they can be of infinite
order. For such systems the advantage of using the Heisenberg approach, for
consistency of the formulation and as a way of determining the spectra, becomes
evident.

13.1 Equations of Motion of Finite Order

If we are interested in reversible and conservative motions, then the equation of
motion will be of the form

F (D)q = 0, D ≡ d

dt
, (13.1)

371
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where F is a polynomial of degree 2N . In this case Eq. (13.1) is derivable from
an action principle with the Lagrangian

L = −qF (D)q. (13.2)

If we can write F (D) as a product

F =
N∏
i=1

(
1 +

D2

ω2
i

,

)
. (13.3)

where ωi s are real and distinct then the solution of (13.1) is a linear combination
of oscillators with frequencies ωi, i = 1, 2, · · ·N . In this case the Hamiltonian
will be the same linear combination of the oscillator Hamiltonians and can easily
be quantized. This can be done in the following way:

Let us define N coordinates Qi by

Qi =
N ′∏
j=1

(
1 +

D2

ω2
j

)
q, (13.4)

where prime on the product sign means that the i-th factor should be deleted.
From Eqs. (13.1) and (13.4) it follows that(

D2 + ω2
i

)
Qi = 0, i = 1, 2 · · · , N. (13.5)

That is, the number of independent solutions of (13.1) is the same as (13.5).
Since the classical set (13.5) is equivalent to (13.1) and (13.3) therefore

we can replace the Lagrangian (13.2) by its equivalent

L̃ = −
N∑
j=1

ηjQj
(
D2 + ω2

j

)
Qj . (13.6)

In this expression we have to fix the N constants ηi s in such a way that L− L̃
becomes a total time derivative of a function of q and its derivatives (this is
what is meant by the equivalent Lagrangian). Substituting for Qi from (13.4)
in (13.6) we have

L̃ = −q

∑
k

ηk


′∏
j

(
1 +

D2

ω2
j

)
2 (
D2 + ω2

k

) q
+ a total time derivative. (13.7)

Next we substitute from (13.3) in (13.7) to find

L̃ = −qF 2(D)
∑
k

 ηkω
2
k

1 + D2

ω2
k

 q, (13.8)
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and this is equivalent to L in Eq. (13.2) provided that∑
k

ηkω
2
k

1 + D2

ω2
k

=
1

F (D)
. (13.9)

Since the roots of F (D) are simple, we can find a partial fraction decomposition
of F−1 where the numerators are D-independent. That is

ω4ηk =
1

F ′ (−ω2
k)
, (13.10)

where F ′
(
−ω2

i

)
is defined by

F ′
(
−ω2

k

)
=
(
dF

dD2

)
D2=−ω2

k

. (13.11)

From Eq. (13.10) we obtain the important result about the sign of ηk. Noting
that F is a single valued function of its argument, the quantities F ′

(
−ω2

k

)
and

therefore ηk in (13.10) alternate in sign. For instance if F ′
(
−ω2

1

)
is positive

then F ′
(
−ω2

2k+1

)
will be positive and F ′

(
−ω2

2k

)
will be negative. We can find

a simple relation between ηj s and ω2
j by setting D = 0 in (13.9) to get∑

j

ηjω
2
j = 1, (13.12)

and ∑
k

ηkω
2n
k = 0, n = 2, 3 · · ·N. (13.13)

The last relation, Eq. (13.13), is found by expanding both sides of (13.9) in
powers of D−2 and equating the coefficients of different powers of D−2 on the
two sides.

Returning to the Lagrangian L̃, Eq. (13.6) we observe that

L̃ =
N∑
j=1

ηj
[
(DQj)2 − ω2

jQ
2
j

]
, (13.14)

where we have preformed a partial time integration and we have omitted a total
time derivative from L̃. Having found a Lagrangian which is quadratic in DQj
and Qj we can write a Hamiltonian for this system;

H =
∑
j

[
P 2
j

4ηj
+ ηjω

2
jQ

2
j

]
. (13.15)

This Hamitonian can be transformed to the standard form of the Hamiltonian
for a set of oscillators if we make the contact transformation

Pj → Pj (2|ηj |)
1
2 , Qj →

Qj

(2|ηj |)
1
2
, (13.16)
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and note the sign properties of the ηj s. Thus H can be written as the sum of
harmonic oscillator Hamiltonians

H =
1
2

∑
j

(−1)j−1
(
P 2
j + ω2

jQ
2
j

)
, (13.17)

We can quantize (13.17) and the result is that the eigenvalues of H are given
by

En1,···,nN =
N∑
j=1

(−1)j−1

(
nj +

1
2

)
ωj , nj = 0, 1 · · · . (13.18)

As this result shows the total energy of these oscillators in not positive definite.
In recent years there have been a number of attempts to find a Hamiltonian

formulation which gives satisfactory quantized solution [3]–[5]. For simplicity
let us consider the case of a fourth-order oscillator knowing that this method
can be generalized to the case of N oscillators. Using the notation that we
introduced earlier we have the equation of motion(

D2 + ω2
1

) (
D2 + ω2

2

)
q = 0, (13.19)

or in terms of the {Qi} coordinates we have

Q1 =
(

1 +
D2

ω2
2

)
q, Q2 =

(
1 +

D2

ω2
1

)
q, (13.20)

where now Q1 and Q2 satisfy the equation of motion(
D2 + ω2

1

)
Q1 = 0,

(
D2 + ω2

2

)
Q2 = 0, (13.21)

We can write the Hamiltonian for the two oscillators (13.21) as

H =
1
2
(
P 2

1 + ω2
1Q

2
1

)
+

1
2
(
P 2

2 + ω2
2Q

2
2

)
, (13.22)

and this H differs in the sign of the second term from H given by (13.17). Upon
quantization this Hamiltonian will give us positive definite eigenvalues.

13.2 Equation of Motion of Infinite Order

Now let us consider the equations of motion of infinite order in time derivatives.
In classical dynamics one way of writing this type of motion is in the form of
an integral equation for q(t) [6];∫

K (t− t′) q (t′) dt′ = 0, (13.23)
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or what is essentially the same form [7]

mq̈(t) =
∫
K1 (t− t′) q (t′) dt′. (13.24)

Classically this type of equation arises naturally when we are considering the
motion of an extended object or when we are discussing the motion of a radiative
electron [2]. The Lagrangian for (13.23) is

L = −q(t)
∫
K (t− t′) q (t′) dt′, (13.25)

and we will use the form of the Lagrangian given in (13.25) to find the Hamil-
tonian and then proceed with the quantization. To relate this motion with the
one given by (13.1) and (13.5) we assume that K(t) can be written as a Fourier
integral

K(t) =
1

2π

∫ +∞

−∞
eiktF (ik)dk. (13.26)

Among all possible forms of F (ik) we restrict our attention to those cases where
F is an entire function in the sense of functions of complex variable [1]. Then
by the product theorem of Weierstrass we can write F (D) as [8]

F (D) = ef(D)
∏
j

(
1 +

D2

ω2
j

)
, (13.27)

i.e. we have expressed F in terms of its zeros and an exponential function. This
is permitted as long as the sum ∑

j

ω−2
j , (13.28)

is convergent. In Eq. (13.27) f(D) is again an entire function. When f(D) is
zero then we can formulate the problem as before, only in this case we have an
infinite product. As an example consider the case where

F (D) = cosh(αD), (13.29)

then using the product representation of cosh(αD) we have

F (D) = cos(αD) =
∞∏
j=1

(
1 +

D2

ω2
j

)
, ωj =

π

2α
(2j − 1). (13.30)

If we define Qj s exactly as before, Eq. (13.4), and define L̃ as in (13.6) with
N →∞ then we have the analogue of (13.9)

1
cosh(αD)

=
∞∑
k=1

ηkω
2
k

1 + D2

ω2
k

. (13.31)
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Using the partial fraction expansion of [cosh(αD)]−1 we obtain

1
cosh(αD)

=
4
π

∞∑
k=1

(−1)(k−1)

(2k − 1)
1

1 + D2

ω2
k

. (13.32)

Therefore ηk is given by

ηk =
4
π

(−1)(k−1)

(2k − 1)ω2
k

=
16α2

π3

(
(−1)(k−1)

(2k − 1)3

)
, (13.33)

and as this relation shows again that ηk s alternates in sign. For the case where
F is given by (13.27) the equivalent Lagrangian L̃ can be written in terms of
Qj s as before

L̃ =
∑
k

ηkQke
f(D)

(
1 +

D2

ω2
k

)
Qk. (13.34)

For this system the construction of the Hamiltonian from Lagrangian is not easy.
We know of a simpler way of quantizing the system without having a classical
Hamiltonian and canonical coordinates and momenta. This method which was
first advocated by Heisenberg is as follows [9]:

We start with the equations of motion and we obtain an expression for
the energy E in terms of q and its time derivatives and then attribute to E the
role of time-displacement operator, i.e.

[E, g (q, q̇, q̈, · · ·)] = −iġ, h̄ = 1, (13.35)

for any function g of q, q̇, · · ·. To this end we first obtain an expression for
the classical energy of the system in terms of q(t) and its derivatives, or as an
integral operator acting on q(t).

13.3 Classical Expression for the Energy

The energy is defined as the first integral of motion for the time displacement.
For a Lagrangian quadratic in velocity, the energy is defined as

E = q̇
∂L

∂q̇
− L. (13.36)

We can generalize this definition to the equations of infinite order by writing

E =
∞∑
n=1

(Dnq)
δL

δ (Dnq)
− L

=
∞∑
n=1

Dnq

[ ∞∑
m=0

(−1)mDm

(
∂L

∂ (Dm+nq)

)]
− L, (13.37)
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where δL
δ(Dnq) is the functional derivative of L which is defined by the expression

in the bracket in (13.37). Next let us write the Fourier transforms of q(t) and
E(t)

q(t) =
1

2π

∫ +∞

−∞
e−iktR(k)dk, (13.38)

E(t) =
1

2π

∫ +∞

−∞
e−istE(s)ds, (13.39)

and write F (D) as

F (D) =
∞∑
0

λnD
n. (13.40)

Now by substituting these in (13.37) we obtain

E(s) = − 1
2π

∞∑
n=1

∞∑
m=0

(−1)mλn+m

∫ +∞

−∞
(−ik)m[−i(s− k)]nR(k)R(s− k)dk.

(13.41)
Replacing n by p−m, we can first sum over m and then express the summation
over p in terms of F . Thus E(s) takes the form

E(s) =
1

2πs

∫ ∞
−∞

(k − s)R(k)R(s− k)[F (i(k − s))− F (ik)]dk. (13.42)

The equation of motion in Fourier transform form can be obtained from Eqs.
(13.23) and (13.26) and is given by

F (−ik)R(k) = 0. (13.43)

Thus as a consequence of the equation of motion we have

sE(s) = 0, (13.44)

and this implies the conservation of energy.
Let us consider the following simple example where

L = −qF1(D)q, F1(D) =
1
2
ef(D)

(
D2 + ω2

)
, (13.45)

then we have
q(t) = A cosωt, (13.46)

and
R(k) = π [δ(k + ω) + δ(k − ω)] . (13.47)

By substituting (13.47) in (13.43) we find that the latter equation is satisfied.
Also from (13.42) it follows that

E(s) = πA2ω2ef(iω)δ(s), (13.48)
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and the energy is conserved since sE(s) = 0. From (13.39) we have the energy
of the system which is real, since f is an even function of its argument, and this
energy can be expressed as

E =
1
2
A2ω2ef(iω). (13.49)

13.4 Energy Eigenvalues when the Equation of
Motion is of Infinite Order

The method of Heisenberg mentioned earlier will be used here to find the energy
eigenvalues when the equation of motion is of infinite order with the Lagrangian
(13.45) [1]. For this formulation it is convenient to make use of the Fourier
transform of q(t). Thus the time derivative of q is given by the integral of
(−ikR(k)) and in addition we have the commutator of R(k) and E;

[R(k), E] = kR(k). (13.50)

In the representation where E is diagonal, by taking the matrix elements of the
two sides of (13.50), we find

(E′ − E′′ − k) 〈E′|R(k)|E′′〉 = 0, (13.51)

or
〈E′|R(k)|E′′〉 = δ (E′ − E′′ − k) 〈E′|R|E′′〉 . (13.52)

The equation of motion
F1(−ik)R(k) = 0, (13.53)

implies that R(k) is zero except for k = ±ω. Therefore (13.52) can also be
written as

〈E′|R(k)|E′′〉 = δ
(
k2 − ω2

)
δ (E′ − E′′ − k) 〈E′|R0|E′′〉 . (13.54)

Having found the matrix elements of R(k) we can proceed to find the diagonal
elements of E. These diagonal elements satisfy the equation

1
2π

∫ +∞

−∞
〈E′|E(s)|E′′〉 e−istds = E′δ (E′ − E′′) , (13.55)

where E(s) is given by (13.42) with F being replaced by F1. Now if we substitute
from (13.54) in (13.42) we get

E′ =
1

16π2
ef(iω)

[
|〈E′|R0|E′ + ω〉|2 + |〈E′|R0|E′ − ω〉|

2
]
. (13.56)
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From this equation we can find the diagonal elements of E as well as the matrix
elements 〈E′|R0|E′ ± ω〉. First let us consider the case where f = 0, then we
have the ordinary harmonic oscillator for which we know the eigenvalues

E′ =
(
n′ +

1
2

)
ω, (13.57)

and the matrix elements of R0 consists of two terms:

〈E′|R0|E′′〉 = 2π
√

2
[√
n′ω δ (n′ − n′′ − 1) +

√
n′′ω δ (n′ − n′′ + 1)

]
. (13.58)

For the equation of motion F1(D)q = 0, we observe that ω is replaced by ωef(iω),
therefore (13.57) becomes

E′ =
(
n′ +

1
2

)
ωef(iω), (13.59)

while 〈E′|R0|E′′〉 is the same as for ordinary oscillator. Thus we conclude that
{qmn}, the matrix elements of q in the energy representation, for f 6= 0 is the
same as for f = 0.

The same matrix elements of q is obtained if we replace
(
D2 + ω2

)
by(

D2 + ω2
)k where k is an integer. However the presence of the exponential

factor eif(D) in Eq. (13.45) has a profound effect if our oscillator is coupled to
another system, e.g. to a simple harmonic oscillator with frequency ω0.
Let us take the Lagrangian of the coupled system to be

L = −1
2
q exp

[
λ2k

(
D2 + ω2

)k] (
D2 + ω2

)
q

− 1
2
q0

(
D2 + ω2

0

)
q0 + εqq0, (13.60)

where λ has the dimension of inverse frequency. From this Lagrangian we find
the coupled equations of motion to be exp

[
λ2k

(
D2 + ω2

)k] (
D2 + ω2

)
q = εq0(

D2 + ω2
0

)
q0 = εq

. (13.61)

To determine the normal modes of this coupled system we take

q ∼ eiνt, q0 ∼ eiνt, (13.62)

and substitute these in (13.61) to find an equation for ν

exp
[
λ2k

(
ω2 − ν2

)k] (
ω2 − ν2

) (
ω2

0 − ν2
)

= ε2. (13.63)

For ε = 0 we have the roots of ν at ±ω and ±ω0, but when ε 6= 0 and λ 6= 0
there are infinity of solutions and the problem of determination of eigenvalues
and eigenvectors becomes very complicated.
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Chapter 14

Potential Scattering

Quantum scattering is one of the most powerful methods of investigating the
structure of atoms, molecules and nuclei. The simplest way of formulating the
potential scattering, for short as well as long range forces, is to employ the
Schrödinger equation and its integral equation form [1]–[3]. However there is an
interesting determinantal formulation due to Schwinger in which discrete energy
eigenvalues and their eigenfunctions are used, and in a way this is related to the
matrix mechanics [6]. We use the wave equation formulation to define the scat-
tering amplitude and phase shifts and later we will consider the determinantal
formulation.

In a typical scattering experiment a narrow beam of monochromatic par-
ticles is directed toward a target. The intensity of the incident beam is low
enough so that there is no interaction between the particles in the beam. After
the incident beam interacts with the target the particles in the beam scatter in
all directions and these particles are observed at a great distance from the target.
The important quantity measured in a scattering experiment is the differential
scattering cross section dσ

dΩ which is defined as the ratio of the scattered particle
flux at the detector per unit solid angle and the flux in the incident beam [1]-
[3]. If we choose the origin of the polar coordinates as the scattering center (or
the center of the target) and the polar axis (z-axis) as the axis of the incident
beam then according to the definition we have

dσ

dΩ
=
I(θ, φ)
I0

. (14.1)

Here I0 denotes the incident flux and I(θ, φ) dΩ is the flux of the scattered
particles through the cone subtended by the detector. From this definition it
is clear that (a) - dσ

dΩ has the dimension of area and (b) - that the number of
particles scattered per unit time into the solid angle dΩ in the direction (θ, φ)
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is
dN = I0

dσ

dΩ
dΩ. (14.2)

The total cross section σt is obtained by integrating dσ over the solid angle dΩ;

σt =
∫

dσ

dΩ
dΩ =

∫
dσ

dΩ
sin θ dθ dφ. (14.3)

The differential cross section depends on the angles θ and φ as well as on the
energy of the particles in the incident beam.

We assume that the interaction between a particle in the beam and the
target is given by the potential V (r), and that this potential has a short range,
i.e. V (r)→ 0 faster than r−2−ε, ε > 0 as r tends to infinity, or∫

V (r)dr <∞, (14.4)

∫
V (r)rdr <

h̄2

2m
M, (14.5)

and ∫
V (r)r2dr <

h̄2

2m
N. (14.6)

In these relations M and N are constants.
The Hamiltonian for the system composed of the projectile plus the target

can be written as

H = H0 + V (r) =
p2

2m
+ V (r), (14.7)

where
m =

m1m2

m1 +m2
, (14.8)

is the reduced mass of the system composed of the target and the projectile
(incident particle). Thus we need the solution of the equation

[H0 + V (r)] |ψ〉 = E|ψ〉, (14.9)

with E which is the total energy of the system being a positive quantity. We
can write (14.9) as an integral equation

|ψ〉 = |k〉+GV (r)|ψ〉, (14.10)

where G is the Green function

G =
1

E −H0
, (14.11)

and |k〉 represents an incident plane wave and is a solution of the Schrödinger
equation

(E −H0)|k〉 = 0. (14.12)
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Multiplying (14.10) from the left by (E −H0) we get

(E −H0)|ψ〉 = (E −H0)|k〉+ V (r)|ψ〉 = V (r)|ψ〉, (14.13)

which is Eq. (14.9). Thus Eq. (14.10) is equivalent to (14.9), but in addition
it contains the initial state |k〉 which is the state of the particle when it is far
from the target.

In order to determine the state |ψ〉 we need to find the Green function
G in (14.10). If we work in the momentum representation, we have a simple
expression for G:

〈k′|G|k〉 =
〈

k′
∣∣∣∣ 1
E −H0

∣∣∣∣k〉
=

2m
h̄2

1
k2 − k′2

δ (k− k′) . (14.14)

The coordinate representation of G can be found from its momentum represen-
tation, i.e. (14.14);

〈r′|G|r′′〉 =
∫ ∫

〈r′|k′〉 〈k′ |G|k′′〉 〈k′′|r′′〉 d3k′ d3k′′

=
2m

h̄2(2π)3

∫
eik
′·(r′−r′′) d3k′

k2 − k′2
. (14.15)

The last integral in (14.15) is singular at k = k′ and in order to have a well-
defined G, we specify the path of integration by writing G as G+ where

G+ =
1

E −H0 + iε
, (14.16)

Let us define the Green function G+(r) by

G+(r) =
2m

h̄2(2π)3

∫
eiq·r

k2 − q2
d3q

= − 2m
h̄2(2π)3

∫ ∞
0

∫ π

0

∫ 2π

0

eiqr cos θ

q2 − k2
q2dq sin θ dθdφ

= − 2m
2h̄2π2r

∫ ∞
0

sin qr
(q2 − k2)

qdq = − 2m
h̄24π2r

∫ ∞
−∞

κ sinκ
κ2 − (kr)2

dκ

= −
(

2m
h̄2

)(
1

4π2r

)
×

[
1
2i

∮
κeiκdκ

(κ− kr − iε)(κ+ kr)
− 1

2i

∮
κe−iκ

(κ− kr)(κ+ kr + iε)

]
,

(14.17)

where in the last square bracket we have replaced kr by (kr + iε). Noting that
kr is a positive quantity, and if we close the contour for the first exponential
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with a large semi-circle in the upper-half plane, then only the pole at κ = kr+iε
will contribute to the integral. Thus the first contour integral gives us iπeikr.
For the second exponential we close the contour in the lower-half plane and then
only the pole at κ = −kr − iε will contribute, and the result will be −iπeikr.
Therefore G+(r) which is the sum of these contributions assumes the simple
form

G+(r) = − m

2πh̄2r
eikr, (14.18)

and for the matrix element 〈r′|G+|r′′〉 we get

〈r′|G+|r′′〉 =
2m

h̄2(2π)3

∫
eik
′·(r′−r′′) d3k′

k2 − k′2 + iε

= − m

2πh̄2 |r′ − r′′|
eik|r

′−r′′|. (14.19)

With G+, the scattered wave are outgoing waves from the center of the target.
Writing ψ(r) for 〈r|ψ〉 and eik·r for 〈r|k〉 we find the total wave function from
(14.10) to be

ψ(r) = eik·r − m

2πh̄2

∫
eik|r−r′|

|r− r′|
V (r′)ψ (r′) d3r′. (14.20)

Next we observe that the asymptotic form of ψ(r) obtained from (14.20) is

ψ(r)→ eik·r + f(θ, φ)
eikr

r
, as r →∞, (14.21)

where
f(θ, φ) = − m

2πh̄2

∫
eik
′·r′V (r′)ψ (r′) d3r′, (14.22)

and k′ = kr̂, r̂ being a unit vector along r.
Now the incident flux I0 is the probability current density of the incident

beam, Eq. (4.259), in the z-direction. For the incident beam

ψin(r) = eik·r = eikz, (14.23)

and therefore I0 is given by

I0 =
h̄k

m
. (14.24)

For the scattered particles we choose the scattered wave function as is given in
(14.21), viz,

ψs(r) = f(θ, φ)
eikr

r
, (14.25)

and from the definition of the radial component of the current density j(r), Eq.
(14.21), we obtain

jscr (r) =
h̄k

m

1
r2
|f(θ, φ)|2. (14.26)
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This is the number of particles at a distance r from the target passing through
a unit surface area per unit time. Therefore the flux per unit solid angle is

I(θ, φ) =
h̄k

m
|f(θ, φ)|2. (14.27)

By substituting from (14.24) and (14.27) in (14.1) we find the following expres-
sion for the differential cross section

dσ

dΩ
= |f(θ, φ)|2. (14.28)

Thus in order to determine the angular and the energy dependence of the differ-
ential cross section we need to solve the integral equation (14.20), for example
by iteration, and then substitute for ψ(r) in (14.22) to obtain the scattering
amplitude f(θ, φ) and consequently

(
dσ
dΩ

)
.

When the potential V is a function of the radial coordinate r only, then we
can find the contribution of different partial waves to the scattering amplitude.
The decomposition of (14.20) in partial waves can be achieved in the following
way:
Let us write eik·r and ψ(r) as

eik·r = eikz =
∞∑
`=0

i`(2`+ 1)j`(kr)P`(cos θ), (14.29)

and

ψk(r) =
∞∑
`=0

i`(2`+ 1)
(
eiδ`u`(k, r)

r

)
P`(cos θ), (14.30)

where u`(k, r) is a real function. Let us expand G+ (r− r′) in terms of P`(cos Θ)
where Θ is the angle between r and r′,

G+ (r− r′) = −
(

2m
h̄2

)
1

4π
exp [ik |r− r′| ]
|r− r′|

= −
(

2m
h̄2

)
ik

4π

∞∑
`

(2`+ 1)P`(cos Θ)g+
` (r, r′) . (14.31)

Here

g+
` (r, r′) =

 rr′j` (kr′)h`(kr) r > r′

rr′h` (kr′) j`(kr) r < r′
(14.32)

where h`(kr) is the Hankel function of the first kind [4]

h`(kr) = j`(kr) + in`(kr)→
1
kr
i−`−1eikr as r →∞, (14.33)

When we substitute G+ (r− r′) and ψ (r′) in the right-hand side of Eq. (14.20)
we encounter the following integral over the angular variables

J =
∫ ∫

P`′(cos Θ)P` (cos θ′) sin θ′dθ′dφ′. (14.34)
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This integral can be found if we note that

cos(Θ) =
r · r′

rr′
= cos θ cos θ′ + sin θ sin θ′ cos (φ− φ′) , (14.35)

and therefore P`′(cos Θ) can be written as

P`′(cos Θ) = P`′ (cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′))

=
4π

(2`′ + 1)

`′∑
m=−`′

Y ∗`′,m (θ′, φ′)Y`′,m(θ, φ), (14.36)

where

Y`′,0 (θ′, φ′) =

√
2`′ + 1

4π
P`′ (cos θ′) . (14.37)

We can simplify J in (14.34) using the orthogonality of the spherical harmonics
Y`,m (θ, φ):

J =
4π

(2`′ + 1)
P`′(cos θ)δ`′,`. (14.38)

Thus by substituting (14.29), (14.30) and (14.31) in (14.20) and performing
the angular integration we obtain the following integral equation for the partial
wave u`(k, r):

eiδ`u`(k, r) = rj`(kr)− ikeiδ`
∫ ∞

0

g+
` (r, r′) v (r′)u` (k, r′) dr′, (14.39)

where
v(r) =

2m
h̄2 V (r), (14.40)

is the potential with the dimension of length−2. The asymptotic form of (14.39)
as r → ∞ gives us two equations, one for the real part and the other for the
imaginary part of (14.39)

u`(k, r) → r cos δ` j`(kr) + krn`(kr)
∫ r

0

j` (kr′) v (r′)u` (k, r′) r′dr′

+ krj`(kr)
∫ ∞
r

n` (kr′) v (r′)u` (k, r′) r′dr′, (14.41)

and
sin δ` = −k

∫ ∞
0

j` (kr′) v (r′)u` (k, r′) r′dr′. (14.42)

From these equations, for a given `, the partial wave phase shift, δ`, and the
wave function u`(k, r) can be determined. We also note that when V (r) is only
a function of the radial distance r, f(θ, φ) does not depend on φ.

The scattering amplitude f(θ), for central potentials, can also be expressed
in terms of the phase shift δ`. Thus if we substitute the asymptotic form of
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eiδ`u`(k, r) from (14.39) and also expand eik·r as a sum over partial waves we
obtain

f(θ) = −
∞∑
`=0

(2`+ 1)P`(cos θ)eiδ`
∫ ∞

0

j` (kr′) v (r′)u` (k, r′) r′dr′

=
1
k

∞∑
`=0

(2`+ 1)P`(cos θ)eiδ` sin δ`. (14.43)

For θ = 0, since P`(1) = 1, f(θ = 0), i.e. the forward scattering amplitude,
simplifies

f(θ = 0) =
1
k

∞∑
`=0

(2`+ 1)eiδ` sin δ`. (14.44)

Now if we calculate the total cross section σt, we find

σt =
∫ π

0

|f(θ)|2dΩ =
4π
k2

∞∑
`

(2`+ 1) sin2 δ`. (14.45)

By comparing (14.44) and (14.45) we obtain

σt =
4π
k

Imf(0). (14.46)

This important result which is called the optical theorem is a direct consequence
of the conservation of probability [1]. Using the asymptotic form of j`(kr) and
n`(kr) [4]

j`(kr)→
1
kr

sin
(
kr − `π

2

)
as r →∞, (14.47)

n`(kr)→ −
1
kr

cos
(
kr − `π

2

)
as r →∞, (14.48)

in Eq. (14.41), we obtain the asymptotic form of u`(k, r) to be

u`(k, r)→ e−iδ` sin
(
kr − `π

2
+ δ`

)
as r →∞. (14.49)

We can also write (14.49) as

u`(k, r)→
exp

(
− i`2

)
2i

[
eikr − S`(k)e−ikr

]
as r →∞, (14.50)

where, S`, the scattering matrix for the `-th partial wave is defined by

S`(k) = (−1)`e−2iδ` . (14.51)

This relation shows that
S`(−k) = S−1

` (k), (14.52)
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or

exp [2iδ`(−k)] = exp [−2iδ`(k)] , (14.53)

from which it follows that

δ`(−k) = −δ`(k), (14.54)

i.e. δ`(k) is an odd function of k. Thus the partial wave scattering amplitude
f`(k) can be written as

f`(k) = |f`(k)|eiδ`(k), (14.55)

As an example of the solution of the wave equation for scattering let us
consider the S-wave scattering of the two particles when the potential between
them is given by the Eckart potential

V (r) =
h̄2

2m
v(r) = −

(
h̄2

2m

)
sλγ2e−γr

(1 + λe−γr)2 , (14.56)

where s, λ and γ are constants. If we choose s = 1 then the wave function u0(r)
satisfies the Schrödinger equation

u′′0(r) + k2u0(r) = − 2λγ2e−γr

(1 + λe−γr)2 u0(r). (14.57)

The general solution of this differential equation is given by

u0(r) = C

{
sin kr

[
1 +

γ2

γ2 + 4k2

]
y(r) +

2kγ
γ2 + 4k2

y(r) cos kr
}

− D

{
cos kr

[
1 +

γ2

γ2 + 4k2

]
y(r)− 2kγ

γ2 + 4k2
y(r) sin kr

}
,

(14.58)

where

y(r) = − 2λe−γr

(1 + λe−λr)
(14.59)

Now by requiring that u0(r = 0) = 0, then calculating the asymptotic form of
u0(r) and comparing it with (14.49) we find cot δ0(k);

k cot δ0(k) =
(1− λ)γ

4λ
+

1 + λ

λγ
k2. (14.60)

Thus the potential (14.56) gives us the effective range formula exactly (see Eq.
(14.98)).
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14.1 Determinantal Method in Potential
Scattering

Let us consider the scattering experiment that we discussed earlier in this chap-
ter and assume that the whole system (incident beam, the target and the scat-
tered wave) is enclosed in a large sphere of radius R [6]–[8]. In the absence of

the scattering potential the reduced form of the wave function u
(0)
` (k, r) for the

`-th partial wave becomes

u
(0)
` (k, r) ∼ sin

(
k(0)(`)r − `π

2

)
, (14.61)

where the (discrete) energy levels of the particle E
(0)
n are related to k

(0)
n (`) by

the familiar relation

E(0)
n =

h̄2k
(0) 2
n (`)

2m
. (14.62)

We can determine k
(0)
n (`) by imposing the boundary condition u

(0)
` (r = R) = 0,

to find

k(0)
n (`)R− π`

2
= nπ. (14.63)

In the presence of the potential V (r) we write the asymptotic form of the wave
function as in Eq. (14.49)

u`(r) ∼ e−iδ` sin

(
kn(`)r − `π

2
+ δ`(E)

)
, (14.64)

where now kn(`) is found from un(r = R) = 0 on u`(k, r), i.e.

kn(`)R− π`

2
+ δ`(E) = nπ, (14.65)

with the corresponding energy En =
h̄2k2

n(`)
2m . Thus the energy shift caused by

the presence of the potential V (r) is

∆En(`) = En(`)− E(0)
n (`) ≈ dEn(`)

dk

(
kn(`)− k(0)

n (`)
)

= −dEn(`)

dk

δ`(E)

R
. (14.66)

The last term is found from Eqs. (14.63) and (14.65). Next we find dE(`)
dk by

noting that dE(`) is the level spacing and is given by

dE(`) = E(0)
n (`)− E(0)

n−1(`) =
dE(`)

dk

(
k(0)
n (`)− k(0)

n−1(`)
)

=
dE(`)

dk

( π
R

)
. (14.67)
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By substituting for dE(`)
dk from (14.67) in (14.66) we obtain the relation between

the energy shift ∆En(`) and the phase shift δ`(E):

∆En(`) = − 1
π
δ`(E)dE(`). (14.68)

Thus as R→∞, dE → 0 and the discrete spectrum approaches the continuum.
For the rest of the present discussion we suppress the `-dependence of the eigen-
values and write En for En(`).

When we have a finite number of eigenvalues, we can find E
(0)
n and En

from the secular equations ∣∣∣H0 − E(0)
n

∣∣∣ = 0, (14.69)

and
|H − En| = 0, (14.70)

respectively. However for the problem that we are considering i.e. when there
are infinite eigenvalues, the secular equations (14.69) and (14.70) do not exist.
Rather than formulating the problem in terms of Eqs. (14.69) and (14.70) we
consider the function D(E) which is given by

D(E) =
∣∣∣∣ E −HE −H0

∣∣∣∣ =
∏
k

(
E − Ek
E − E(0)

k

)

=
∏
k

(
1− ∆Ek

E − E(0)
k

)
. (14.71)

This equation shows that if D(E) is determined from the potential and the

known eigenvalues E(0)
n = h̄2k(0)2

n

2m then the energies ∆Ek can be obtained. From
these partial wave ∆Ek s, the phase shifts δ`(E), the scattering amplitude f(θ)
or the cross section σt can be calculated. To this end we write D(E) as

D(E) =
∣∣∣∣1− V

E −H0

∣∣∣∣ = |1−G0(E)V | , (14.72)

where
G0(E) =

1
E −H0

. (14.73)

Since we have assumed that V is a function of r only, we can consider the
scattering for a fixed partial wave `. Then the Hamiltonians H0 and H are two
operators both depending on r and `;

H0 =
p2
r

2m
+
`(`+ 1)
2mr2

= − h̄2

2m
1
r2

d

dr

(
r2 d

dr

)
+
`(`+ 1)
2mr2

, (14.74)

and
H = H0 + V (r). (14.75)
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In the following we write the `-dependence explicitly when we are considering
the phase shifts and the partial wave scattering amplitudes.

The function D(E) has simple poles at the energies E = E
(0)
k , Eq.

(14.71), and is equal to unity for V = 0, therefore we can write it in the form

D(E) = 1 +
∑
E

(0)
j

r(j)

E − E(0)
j

. (14.76)

By expanding D(E) in powers of V , we find r(k);

r(k) = −
〈
E

(0)
k |V |E

(0)
k

〉
+

∞∑
n=1

(−1)n+1

n!

∑
E

(0)
1 ,···E(0)

n

n∏
j=1

(
1

E
(0)
k − E

(0)
j

)

×

∣∣∣∣∣∣∣∣∣∣∣

〈
E

(0)
k |V |E

(0)
k

〉 〈
E

(0)
k |V |E

(0)
1

〉
· · ·

〈
E

(0)
k |V |E

(0)
n

〉
〈
E

(0)
1 |V |E

(0)
k

〉 〈
E

(0)
1 |V |E

(0)
1

〉
· · ·

〈
E

(0)
1 |V |E

(0)
n

〉
...

...
...

...〈
E

(0)
n |V |E(0)

k

〉 〈
E

(0)
n |V |E(0)

1

〉
· · ·

〈
E

(0)
n |V |E(0)

n

〉

∣∣∣∣∣∣∣∣∣∣∣
.

(14.77)

This series converges for all strengths of the potential V (r) provided the zeroth
and the first moment of the potential are finite (see Eqs. (14.4) and (14.5)).
As can be seen from (14.71) at E = Ek, D(Ek) = 0, therefore

1 +
∑
E

(0)
j

r(j)

Ek − E(0)
j

= 0. (14.78)

Now as dE → 0, the denominator in (14.76) becomes very small and we need
to examine the behavior of D(E) in this limit. For this we separate from the
summation over E(0)

j the contribution from the levels E(0)
j lying within a range

∆ of E(0)
k . We choose ∆ small enough so that r

(
E

(0)
j

)
remains essentially

constant in a range of 2∆ about E(0)
k . Thus we have

∑
E

(0)
j

r
(
E

(0)
j

)
dE

Ek − E(0)
j

≈ r
(
E

(0)
k

) ∑
|E(0)
j
−E(0)

k
|<∆

dE

Ek − E(0)
j

+
∑

|E(0)
j
−E(0)

k
|>∆

r
(
E

(0)
j

)
dE

Ek − E(0)
j

. (14.79)
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Now within the range ∆ of E(0)
k there are 2N levels, where N = ∆

dE . As
dE → 0, N → ∞ so that ∆ = NdE remains finite. In this limit Eq. (14.79)
can be written as

∑
E

(0)
j

r
(
E

(0)
j

)
dE

Ek − E(0)
j

≈ r
(
E

(0)
k

)
lim
N→∞

lim
dE→0

n=N∑
n=−N

dE

Ek −
(
E

(0)
k + n dE

)
+

[∫ E
(0)
k
−∆

0

+
∫ ∞
E

(0)
k

+∆

]
r (E′) dE′

Ek − E′
, (14.80)

where in the first term we have replaced E(0)
j by E(0)

k +ndE and the summation

over E(0)
j by a summation over n. But in the second term since the relative

change of the summand is of the order 1
N , we have replaced the summation by

integration. We also note that

lim
dE→0

Ek − E(0)
k

dE
= − 1

π
δ`(E). (14.81)

Using this expression the summation over n in (14.80) can be carried out

∞∑
n=−∞

[
− 1
π
δ`(Ek)− n

]−1

= −π
∞∑

n=−∞

1
nπ + δ`(Ek)

= −π cot δ`(Ek). (14.82)

In deriving this last relation we have used a result of the residue theorem, viz,
[9]

∞∑
n=−∞

g(n) = −

 ∑
residues

π cot(πz)g(z)


at the poles of g(z)

(14.83)

Therefore in the limit of ∆→ 0, we have∑
E

(0)
j

r(j)

Ek − E(0)
j

= −πr`(Ek) cot δ`(Ek) + P
∫ ∞

0

r` (E′)
Ek − E′

dE′, (14.84)

where we have written the `-dependence of r(j) explicitly. Thus Eq. (14.78) in
this limit takes the form

πr`(Ek) cot δ`(Ek) = 1 + P
∫ ∞

0

r` (E′)
Ek − E′

dE′. (14.85)

This relation together with (14.77) form the basic equations of scattering the-

ory. Defining the wavenumber by k =
√

2mEk
h̄ , we can write the partial wave

scattering amplitude as

kf`(Ek) = eiδ`(Ek) sin δ`(Ek). (14.86)
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This amplitude, f`(Ek), can be obtained from (14.85);

kf`(Ek) =
1

cot δ`(Ek)− i
=

r`(Ek)
r`(Ek) cot δ`(Ek)− ir`(Ek)

= π lim
E→Ek+iε

(
r`(Ek)

1 +
∫∞

0
r`(E′)dE′

E−E′

)
= lim
E→Ek+iε

πr`(Ek)
D(E)

. (14.87)

From this point we omit the subscript k from Ek and write Ek = E. Using Eq.
(14.85) we find an exact expression for tan δ`(E);

tan δ`(E) =
πr`(E)

1 + P
∫∞

0
r`(E′)dE′

E−E′
. (14.88)

To the lowest order in V (r) we keep only the first term of expansion of rk, Eq.
(14.77) and write it as

r`(E) = − m

h̄2k
〈E|V (r)|E〉, (14.89)

or by introducing v(r) = 2m
h̄2 V (r) we write

r`(E) = −〈E|v|E〉 =
−k
π

∫ ∞
0

r2j2
` (kr)v(r)dr. (14.90)

Substituting (14.89) and (14.90) in (14.88) we obtain

tan δ`(E) =
−k
∫∞

0
r2j2

` (kr) v(r)dr

1− Pπ
∫∞

0
k′dE′

E−E′
∫∞

0
j` (k′r)2

v(r)r2dr
, (14.91)

where E = h̄2k2

2m and E′ = h̄2k′2

2m .
For calculating the principal value integral in Eq. (14.91) we start with

the following relation [10]:

lim
ε→o

{
2
π

∫ ∞
0

J2
µ(z)dz

z2 − (ζ + iε)2

}
= Jµ(ζ)[iJµ(ζ)−Nµ(ζ)]. (14.92)

Separating the real and imaginary parts of Eq. (14.92) and setting µ = ` + 1
2

and ζ = kr we find

2P
π

∫ ∞
0

z J2
`+ 1

2
(z)

z2 − (kr)2
dz = −J`+ 1

2
(kr) N`+ 1

2
(kr). (14.93)

Now if we write this integral in terms of spherical Bessel functions j`(kr) and
n`(kr) we have

P
π

∫ ∞
0

k′dE′

E′ − E
j2
` (k′r) = kj`(kr)n`(kr). (14.94)
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Thus to the first order in r`(E) we have a simple result for the phase shift [11]

tan δ`(E) =
−k
∫∞

0
r2j2

` v(r)dr
1− k

∫∞
0
j` (kr)n`(kr)v(r)r2dr

. (14.95)

This relation is valid when the potential energy is small compared to the energy
of the incident particle.

For low energy scattering we can find the effective range theory by ob-
serving that Eq. (14.85) can be written as

πr`(E) cot δ`(E) = 1−
∫ ∞

0

r` (E′)
E′

dE′ + E P
∫ ∞

0

r` (E′) dE′

E′ (E − E′)
. (14.96)

The last integral is nearly independent of energy for low energies, since most
of the contribution to this integral comes from higher energies. For E → 0,
the behavior of r`(E) is that of a free particle wave function for the angular
momentum `. Since

j`(kr)→
(kr)`

(2`+ 1)!!
, (14.97)

as k → 0 , from (14.90) it follows that [4]

lim
k→0

r` → O
(
k2`+1

)
, (14.98)

and in this limit, i.e. k → 0 the right-hand side of (14.96) can be expanded
about E ≈ 0 with the result that

k2`+1 cot δ`(E) = A` +B`E, (14.99)

A` and B` are energy independent constants. For S wave, (` = 0), we can write
(14.99) as

k cot δ0(E) = A0 +B0E = −1
a

+
1
2
r0k

2, (14.100)

by replacing A0 and B0 by A0 = − 1
a and B0 = m

h̄2 r0. The two constants a and r0

introduced in (14.100) have dimensions of length and are called the scattering
length and the effective range respectively. The are important quantities in
low energy nucleon-nucleon scattering, where the total cross section found from
(14.45), with ` = 0 as the only significant term in the sum, becomes

σt = 4πa2. (14.101)

This result shows that for small energies of the incident particle, E, the scat-
tering is isotropic and the cross section is independent of E.
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14.2 Two Solvable Problems

In this section we will consider two important scattering problems where the
cross section can be calculated analytically. The first is the scattering of a
particle by a hard sphere, and the second is the Rutherford scattering.

Scattering by a Hard Sphere — An exactly solvable problem is the
scattering of a particle from a hard sphere where the potential is very strong
and repulsive

v(r) =
{+∞ for r ≤ a

0 for r > a
. (14.102)

From the integral equation satisfied by the wave function u`(k, r), it follows that
this wave function is zero for r ≤ a, and for r > a, u`(k, r) is a combination of
rj`(kr) and rn`(kr);

u`(k, r) = rj`(kr) cos δ`(k)− rn`(kr) sin δ`(k). (14.103)

This wave function must be zero inside as well as at the surface of the hard
sphere. Therefore it must satisfy the boundary condition

u`(k, a) = 0. (14.104)

Thus from (14.103) and (14.104) it follows that

tan δ`(k) =
j`(ka)
n`(ka)

, (14.105)

and from this expression for tan δ`(k) we find the total cross section by substi-
tuting for sin δ`(k) in σt, Eq. (14.45)

σt =
4π
k2

∞∑
`=0

(2`+ 1)
(

j2
` (ka)

j2
` (ka) + n2

`(ka)

)
. (14.106)

For high energies when ka � 1, the contributions of the terms with ` > ka to
the sum in (14.106) can be found from the expansion [4]

j`(kr) ≈ (ka)`+1, n`(kr) ≈ (ka)−`, ` > ka (14.107)

Let us note that terms with ` > ka correspond to the classical case where the
particle pass by the sphere without hitting it (h̄` > mva where v is the speed
of the particle). By substituting from (14.107) in (14.106), and observing that
the terms with ` > ka are quite small and thus the sum is effectively is over a
finite values `, to a very good approximation we have

σt =
4π
k2

[ka]∑
`=0

(2`+ 1)
(

j2
` (ka)

j2
` (ka) + n2

`(ka)

)
, (14.108)
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where [ka] is the integer closest to ka. When ` < ka we can approximate j`(kr)
and n`(kr) by their asymptotic forms for large ka [4]

j`(kr) = sin
(
ka− `π

2

)
, n`(kr) = − cos

(
ka− `π

2

)
. (14.109)

With these approximations for j`(kr) and j`(kr), σt takes the simple form of

σt ≈
4π
k2

[ka]∑
`=0

(2`+ 1) sin2

(
ka− `π

2

)
. (14.110)

Now by expanding sin2
(
ka− `π

2

)
we find

σt =
4π
k2

sin2 ka

[ka]∑
`=0

(2`+ 1) + cos 2ka

 [ka]∑
`=odd integers

(2`+ 1)

 . (14.111)

The two sums in (14.111) can be calculated in closed form with the result that

σt =
4π
k2

{
−(ka+ 1) sin2 ka+

1
2

(ka+ 1)(ka+ 2)
}
. (14.112)

In the high energy limit only the term 1
2 (ka)2 will be important, and in this

limit we find
σt = 2πa2. (14.113)

At low energies the ratio in (14.108) becomes very small as k → 0 except
for ` = 0. That is for S wave scattering from (14.105) we find

tan δ0 =
j0(kr)
n0(kr)

= tan(ka), (14.114)

or
k cot δ0 = k cot(ka) =

1
a
− a

3
k2 +O

(
k4
)
, as k → 0. (14.115)

Comparing this relation with (14.100) we have the effective range parameters
for scattering by a hard sphere. In this limit the cross section becomes

σt =
4π
k2

tan2(ka)→ 4πa2 as k → 0. (14.116)

By calculating the terms in in (14.106) numerically we find that the total cross
section at k = 0 is 4πa2, Eq. (14.116) and then it drops monotonically to the
value of 2πa2 as k →∞, Eq. (14.113).

Rutherford Scattering — The scattering of two charged particles by
Coulomb field is also exactly solvable. In this case the potential is long range
and the conditions (14.4) and (14.5) are not satisfied. For the Coulomb potential
the Schrödinger equation is separable in spherical polar coordinates as well as
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the parabolic coordinates. The latter coordinate system gives us the entire wave
function and not the partial waves. Since we have to sum all partial waves to
find the scattering amplitude, it is preferable to find the entire wave function and
therefore we solve the wave equation in the parabolic coordinates. By choosing
the z-axis to be the direction of the incident wave, the system composed of the
projectile and the target is cylindrically symmetrical and the wave function is
not dependent on the angle φ. The transformation from spherical polar to the
parabolic coordinate is given by [4]

ξ = r + z = r(1− cos θ), η = r − z = r(1 + cos θ), φ = φ. (14.117)

In this coordinate system the Schrödinger equation with the Coulomb force

±Z1Z2e
2

r
= ±2Z1Z2e

2

ξ + η
, (14.118)

is given by the partial differential equation

4
ξ + η

[
∂

∂ξ

(
ξ
∂ψ

∂ξ

)
+

∂

∂η

(
η
∂ψ

∂η

)]
+

1
ξη

(
∂2ψ

∂φ2

)
∓ 4mZ1Z2e

2

h̄2(ξ + η)
ψ +

2mE
h̄2 ψ = 0.

(14.119)
Since ψ does not depend on φ, we drop the term 1

ξη

(
∂2ψ
∂φ2

)
in (14.119). Writing

the solution as a product

ψ(ξ, η) = f1(ξ)f2(η), (14.120)

and substituting it in (14.119), after separating the variables we obtain two
ordinary differential equations

d

dξ

[
ξ
df1(ξ)
dξ

]
+
(
mE

2h̄2 ξ + β

)
f1(ξ) = 0, (14.121)

and
d

dη

[
η
df2(η)
dη

]
+
(
mE

2h̄2 η ∓
mZ1Z2e

2

h̄2 − β
)
f2(η) = 0. (14.122)

In these equations β is the separation constant. We want to solve these questions
subject to the boundary conditions appropriate for scattering. First we note that
the wave function for the incoming particle is

ψk(z) ∼ eikz for −∞ < z < 0, as r →∞, (14.123)

where k =
√

2mE
h̄2 . In parabolic coordinates this condition translates to

ψk(z) ∼ exp
[
ik

2
(ξ − η)

]
, for all ξ as η →∞. (14.124)

To satisfy these boundary conditions we write f1(ξ) and f2(η) as

f1(ξ) = e
ikξ
2 for all ξ, (14.125)
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and
f2(η) ∼ e

−ikη
2 as η →∞. (14.126)

Now (14.125) is a solution of (14.121) if we choose β = − ik2 . To simplify Eq.
(14.122) further let us denote ±mZ1Z2e

2

h̄2 by γ and introduce a new function of
η which we denote by w(η);

f2(η) = e
−ikη

2 w(η). (14.127)

Then by substituting (14.127) in (14.122) we get the following equation for w(η);

η
d2w(η)
d η2

+ (1− ikη)
dw(η)
dη

− γw(η) = 0. (14.128)

The solution of this equation is the confluent hypergeometric function;

w(η) = 1F1

(
− iγ
k
, 1; ikη

)
. (14.129)

With this w(η) we obtain the total wave function ψk(ξ, η) to be

ψk(ξ, η) = 1F1

(
− iγ
k
, 1; ikη

)
exp

(
ik(ξ − η)

2

)
. (14.130)

Since we are interested in the asymptotic form of ψk(ξ, η) as η → ∞, we find
the asymptotic expression for 1F1 (a, c; z) for large pure imaginary z;

1F1 (a, c; z)→ Γ(c)
Γ(c− a)

(−z)−a +
Γ(c)
Γ(a)

ezza−c. (14.131)

Using this expansion, we find the wave function for large η to be

ψk(ξ, η)→

[
1

Γ
(
1 + iγ

k

) (−ikη)
iγ
k +

1
Γ
(
− iγk

)eikη(ikη)−
iγ
k −1

]
ei
k
2 (ξ−η).

(14.132)
With the help of the relation

Γ
(

1− iγ

k

)
=
iγ

k
Γ
(
− iγ
k

)
. (14.133)

we can write (14.132) as

ψk(ξ, η) → 1
Γ
(
1 + iγ

k

) exp
{
i

(
k
ξ − η

2
+
γ

k
ln(kη)− iγπ

2k

)}
− 1

Γ
(
1− iγ

k

) ( γ

k2η

)
exp

{
i

(
k
ξ + η

2
− γ

k
ln(kη)− iγπ

2k

)}
(14.134)
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Now we go back to the (r, z) coordinates and we write ψk(r, z) as

ψk(ξ, η) ' exp
[
i
(
kz +

γ

k
ln[k(r − z)]

)]
−

Γ
[
1 + iγ

k

]
Γ
[
1− iγ

k

] ( γ
k2

) exp
[
ikr − iγ

k ln[k(r − z)]
]

r − z
. (14.135)

This expression for the wave function shows the incident wave which is the first
term in (14.135) is distorted by a logarithmic term even at large distances. We
have a similar distortion for the scattered wave which is the second term in
(14.135). Writing the wave function in spherical polar coordinates with z =
r cos θ we obtain

ψk(r, θ) ' exp
[
i
(
kz +

γ

k
ln[kr(1− cos θ)]

)]
+ f(k, θ)

exp
[
ikr − iγ

k ln(kr)
]

r
, (14.136)

where the scattering amplitude is

f(k, θ) = −
∐ Γ

[
1 + iγ

k

]
Γ
[
1− iγ

k

] ( γ
k2

) exp
[
− iγk ln[k(1− cos)]

]
1− cos θ

. (14.137)

We can express the total scattering amplitude as a sum of partial wave
amplitudes by expanding (14.137) in terms of P`(cos θ)

f(k, θ) =
∞∑
`=0

(2`+ 1)
1

2ik

[
Γ
(
`+ 1 + iγ

k

)
Γ
(
`+ 1− iγ

k

) − 1

]
P`(cos θ). (14.138)

The important result found from f(k, θ) is that the exact differential cross sec-
tion found for Coulomb (or Rutherford) scattering is the same as the classical
cross section, i.e.

dσ

dΩ
= |f(k, θ)|2 =

γ2

k4 sin4
(
θ
2

) =

(
Z1Z2e

2
)2

16E2 sin4
(
θ
2

) . (14.139)

14.3 Time-Dependent Scattering Theory

A different mathematical formulation of scattering theory which is closer to the
Heisenberg idea of the time development of the motion of a particle is to consider
the evolution of the state of the projectile in the course of time and its interaction
with the target. In this formulation the incoming particle is characterized by its
momentum kin long before the scattering takes place, i.e. at t→ −∞. After its
interaction with the target, its asymptotic momentum is changed to kout. For
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elastic scattering the energy of the particle is conserved and k2
in = k2

out = k2.
Thus the projectile enters the interaction region sometime before t = 0 and
leaves it sometime after t = 0. Working in momentum representation, we denote
the time-independent basis set by |φk〉 where

H0|φk〉 = E(k)|φk〉, E(k) =
h̄2k2

2m
. (14.140)

For simplicity in this section we set h̄ = 2m = 1. The time evolution of the
system composed of the target and the projectile is governed by the Hamiltonian
(14.7) and the time-dependent wave equation

i
∂

∂t
|ψ(t)〉 = H|ψ(t)〉. (14.141)

Since H does not depend explicitly on time the formal solution of (14.141) is
given by

|ψ(t)〉 = e−iHt|ψ(0)〉. (14.142)

Similarly if |φ(t)〉 is a solution of the equation

i
∂

∂t
|φ(t)〉 = H0|φ(t)〉, (14.143)

then
|φ(t)〉 = e−iH0t|φ(0)〉. (14.144)

Next we observe that in the limit of t→ −∞ , H0 = H and therefore we expect
that the time development of the operator H0 and H be the same. Consequently
we assume that there exists a solution |φi(t)〉 of Eq. (14.144) which, in the limit
of t → −∞, equals a solution |ψi(t)〉 of the time-dependent equation (14.142)
in the same limit

lim
t→−∞

|ψi(t)〉 = lim
t→−∞

|φi(t)〉. (14.145)

Here the equality sign implies that |ψi(t)〉 converges strongly to |φi(t)〉 in the
indicated time limit [12]. Similarly using the same argument for the limit of
t→ +∞ we find

lim
t→+∞

|ψf (t)〉 = lim
t→+∞

|φf (t)〉. (14.146)

Substituting for |ψi(t)〉 and |φi(t)〉 from (14.142) and (14.144) we obtain the
following result;

lim
t→−∞

{
e−iHt|ψi(0)〉 − e−iH0t|φi(0)〉

}
= 0. (14.147)

Also in the limit of t→ +∞ we have

lim
t→+∞

{
e−iHt|ψf (0)〉 − e−iH0t|φf (0)〉

}
= 0. (14.148)
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Now we multiply these two equations by eiHt from the left and we find |ψi(0)〉
and |ψf (0)〉 in terms of |φi(0)〉 and |φf (0)〉;

|ψi(0)〉 = lim
t→−∞

eiHte−iH0t|φi(0)〉, (14.149)

and
|ψf (0)〉 = lim

t→−∞
eiHte−iH0t|φf (0)〉. (14.150)

By introducing the Møller operators Ω± and these are defined by [13],[14]

Ω± = lim
t→∓

eiHte−iH0t, (14.151)

we can write (14.149) and (14.150) as the following equations:

|ψi(0)〉 = Ω+|φi(0)〉, (14.152)

and
|ψf (0)〉 = Ω−|φf (0)〉. (14.153)

The essential property of the Møller operator which can be described as

HΩ± = Ω±H0, (14.154)

can be derived in the following way: We first observe that in the limit of t→ −∞
not only Eq. (14.147) is true, but in addition the time derivative of (14.147) in
this limit vanishes, i.e.

lim
t→−∞

{
i
∂

∂t

[
e−iHt|ψi(0)〉 − e−iH0t|φi(0)〉

]}
= lim

t→−∞

[
e−iHtH|ψi(0)〉 − e−iH0tH0|φi(0)〉

]
= 0. (14.155)

Thus by multiplying (14.155) by eiHt from the left we find

H|ψi(0)〉 = lim
t→−∞

(
eiHte−iH0t

)
H0|φi(0)〉. (14.156)

The limit of the operator product inside the parenthesis as t → −∞ is Ω+

according to Eq. (14.151). Thus

HΩ+|φi(0)〉 = Ω+H0|φi(0)〉. (14.157)

Since (14.157) is true for an arbitrary state |φi(0)〉, therefore we arrive at the
result that

HΩ+ = Ω+H0. (14.158)

In a similar way we can verify that

HΩ− = Ω−H0. (14.159)
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Noting that the initial state of the projectile is that of a free particle, we
can characterize it by its momentum k. For elastic scattering the magnitude
of the momentum k remains unchanged in the course of scattering. Now from
(14.152) and (14.153) we have ∣∣ψ±k 〉 = Ω± |φk〉 , (14.160)

that is we have used the subscript k to designate the state of the system. In the
following discussion we assume that |φk〉 and

∣∣ψ±k 〉 are normalizable eigenstates
of H0 and H respectively, as was discussed in the previous section. Once we
have reached the final result, we allow R, the radius of the sphere enclosing the
system, go to infinity. It should be emphasize that this limiting process in no
way will affect the results.

The kets defined by (14.160) are the eigenstates of H since

H
∣∣ψ±k 〉 = HΩ± |φk〉 = Ω±H0 |φk〉 = E(k)Ω± |φk〉 = E(k)

∣∣ψ±k 〉 . (14.161)

We can picture the particle entering the field of force with momentum kin and
after being scattered leaving the interaction region with momentum kout. Thus
in the course of scattering the state of the particle has changed from

∣∣ψ±kin〉 to∣∣ψ±kout〉, the former is the state at t → −∞ and the latter at t → +∞, Eqs.
(14.152)-(14.153).

14.4 The Scattering Matrix

The scattering operator (or matrix) was first introduced by Heisenberg [15]. In
this section we follow the method of Lehman Symanzik and Zimmermann (LSZ)
to obtain the scattering matrix. We define the scattering matrix in terms of its
matrix elements [17]

Skout,kin = 〈ψkout |ψkin〉 . (14.162)

This matrix element is the probability amplitude for a particle entering the
interaction region with momentum kin and emerging from this region with mo-
mentum kout. If we substitute for 〈ψ−kout | and |ψ+

kin
〉 from (14.160) we obtain

Skout,kin =
〈
φkout

∣∣∣(Ω−)†Ω+
∣∣∣φkin

〉
. (14.163)

Noting that |φkout〉 and |φkin〉 are arbitrary kets belonging to a complete set of
eigenvectors of H0, we can define the S matrix by

S =
(
Ω−
)†Ω+. (14.164)

It is convenient to denote kin and kout states by just in and out respectively
and write the matrix elements of S as

Sout,in = 〈φout|S|φin〉 =
〈
ψ−out|ψ+

in

〉
. (14.165)
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In the following discussion we omit the superscript + from Ω+ and write

Ω(t) ≡ Ω+(t) = eiHte−iH0t. (14.166)

Using this Møller operator, from (14.160), (14.164) and (14.165) we get

Sout,in = lim
t→−∞

〈
ψ−out|Ω(t)|φin

〉
= lim
t→+∞

〈
ψ−out|Ω(t)|φin

〉
−

{
lim

t→+∞
− lim
t→−∞

}〈
ψ−out|Ω(t)|φin

〉
. (14.167)

The first term in the right-hand side of (14.167) can be reduced to,

lim
t→+∞

〈
ψ−out|Ω(t)|φin

〉
= 〈φout|φin〉 = δout,in, (14.168)

since |φkin〉 and |φkout〉 are a set of normalized eigenvalues of H0. Now let us
examine the second term in (14.167), which we will write as{

lim
t→+∞

− lim
t→−∞

}〈
ψ−out|Ω(t)|φin

〉
=
∫ +∞

−∞

〈
ψ−out

∣∣∣∣ ddtΩ(t)
∣∣∣∣φin〉 dt

=
∫ +∞

−∞
i
〈
ψ−out

∣∣eiHtV e−iH0t
∣∣φin〉 dt = 2πiδ(Eout − Ein)

〈
ψ−out|V |φin

〉
,

(14.169)

where we have used the following relations:

e−iH0t|φin〉 = e−iEint|φin〉, (14.170)

and
eiHt|ψ±out〉 = eiEoutt|ψ±out〉. (14.171)

Combining (14.167), (14.168) and (14.169) we find the matrix elements of Sout,in
expressed in terms of V ;

Sout,in = δout,in − 2πiδ(Eout − Ein)
〈
ψ−out|V |φin

〉
. (14.172)

Alternatively we can write (14.167) as

Sout,in = lim
t→+∞

〈
φout

∣∣Ω†(t)∣∣ψ+
in

〉
, (14.173)

and following the same steps as before we obtain

Sout,in = δout,in − 2πiδ(Eout − Ein)
〈
φout|V |ψ+

in

〉
. (14.174)

Now if we compare (14.172) and (14.174) we find

Tout,in =
〈
ψ−out|V |φin

〉
=
〈
φout|V |ψ+

in

〉
. (14.175)

where Eq. (14.175) holds for the on-energy shell elements of the T matrix, i.e.
elements of T for which Eout = Ein.
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14.5 The Lippmann–Schwinger Equation

A very important method for the direct determination of the scattering ampli-
tude is that of the Lippmann–Schwinger equation [16]. In order to derive this
equation from the Møller operator, Ω(t), we start from Eq. (14.160) and solve
it for |φin〉,

|φin〉 = lim
t→−∞

Ω−1(t)|ψ+
in〉. (14.176)

Next we write (14.176) as

|φin〉 = lim
t→−∞

Ω−1(t)θ(−t)|ψ+
in〉, (14.177)

where θ(t) is the step function. This last relation can be written as

|φin〉 = −
{

lim
t→+∞

− lim
t→−∞

}(
Ω−1(t)θ(−t)

∣∣ψ+
in

〉)
= −

∫ +∞

−∞

d

dt

[
Ω−1(t)θ(−t)

] ∣∣ψ+
in

〉
dt. (14.178)

Using the relation
d

dt
θ(−t) = −δ(t), (14.179)

and the fact that θ(t) can be written as an integral

θ(t) =
1

2πi

∫ ∞
−∞

eitζ

ζ − iε
dζ, (14.180)

we can write (14.178) as

|φin〉 = −
∫ +∞

−∞

[
−δ(t) +

1
2πi

∫ +∞

−∞

dζ

ζ − iε
e−iζte−iH0t(−iV )e−iHt

] ∣∣ψ+
in

〉
dt

=
∣∣ψ+
in

〉
+
∫ ∞
−∞

dζ

ζ − iε
δ(ζ −H0 + Ein)V

∣∣ψ+
in

〉
=

∣∣ψ+
in

〉
+

1
H0 − Ein − iε

V
∣∣ψ+
in

〉
. (14.181)

In deriving (14.181) we have interchanged the order of integration, an operation
which is permissible for normalizable kets. We rearrange the terms in (14.181)
to get the standard form of the integral equation for

∣∣ψ+
in

〉
;∣∣ψ+

in

〉
= |φin〉+

1
Ein −H0 + iε

V
∣∣ψ+
in

〉
. (14.182)

In a similar way we can obtain the equation for
∣∣ψ−in〉;∣∣ψ−in〉 = |φin〉+

1
Ein −H0 − iε

V
∣∣ψ−in〉 . (14.183)
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The ket
∣∣ψ+
in

〉
which is the solution of the integral equation (14.182) can

be formally obtained in terms of |φin〉. As it can be seen from (14.160)∣∣ψ+
in

〉
= lim
t→−∞

Ω(t)|φin〉. (14.184)

This equation can also be written as

∣∣ψ+
in

〉
= lim
t→−∞

Ω(t)θ(−t)|φin〉 = −
{

lim
t→+∞

− lim
t→−∞

}
Ω(t)θ(−t)|φin〉. (14.185)

Again the right-hand side of (14.185) can be expressed as an integral

∣∣ψ+
in

〉
= −

∫ +∞

−∞

d

dt
[Ω(t)θ(−t)] |φin〉dt. (14.186)

By expanding the integrand in (14.186) and substituting for dθ(−t)
dt and θ(−t)

from (14.179) and (14.180) we get

∣∣ψ+
in

〉
= |φin〉+

1
Ein −H + iε

V |φin〉 . (14.187)

A similar equation, viz,∣∣ψ−in〉 = |φin〉+
1

Ein −H − iε
V
∣∣φ+
in

〉
, (14.188)

can be derived for
∣∣ψ−in〉 [17],[18].

Integral Equation for the Transition Matrix — An important equa-
tion for calculating the scattering amplitude from the Fourier transform of the
potential, is the transition matrix (or T matrix). The on-shell elements of the
T -matrix, i.e. those elements subject to the condition Eout = Ein are defined
by Eq. (14.175). But for solving the integral equation for the T -matrix we need
on-shell as well as off-shell matrix elements of T . To show this we write (14.182)
as ∣∣ψ+

kin

〉
= |φkin〉+

1
L3

∑
q

|φq〉
1

Ein − h̄2q2

2m + iε
〈φq|V

∣∣ψ+
kin

〉
, (14.189)

where we have used a complete set of eigenvalues of H0, viz, |φq〉, noting that
the eigenvalue of H for |φk〉 is given by

E(q) =
h̄2q2

2m
, (14.190)

and that
1
L3

∑
q

|φq〉〈φq|, (14.191)



406 Heisenberg’s Quantum Mechanics

is the unit operator. Now according to (3.233) we can replace the summation
by integration over d3q:

1
L3

∑
q

|φq〉 〈φq| →
1

(2π)3

∫
|φq〉 〈φq| d3q, (14.192)

is a unit operator. Next we multiply (14.189) from left by 〈φk′ |V to get

〈φk′ |V
∣∣ψ+

kin

〉
= 〈φk′ |V |φkin〉

+
1

(2π)3

∫
〈φk′ |V |φq〉

d3q
h̄2

2m (k2
in − q2) + iε

〈φq|V
∣∣ψ+

kin

〉
,

(14.193)

where Ein = h̄2k2
in

2m . We can write this equation as

T (k′,kin) = V (k′,kin) +
1

(2π)3

∫
V (k′,q)

d3q
h̄2

2m (k2
in − q2) + iε

T (q,kin) .

(14.194)
In (14.194) the matrix elements of the potential, V (k′,q), are the Fourier trans-
forms of the potential V (r);

V (k′,q) =
∫
e−i(k′−q)·r V (r)d3r (14.195)

Thus if V (r) is known, whether it is a central potential or not, we find V (k′,q)
from (14.195) and substitute the result in (14.194) and solve the integral equa-
tion for T (q,kin). Once the elements of this matrix are determined we set
q = kout to find the on-shell elements of the transition matrix.

If we multiply (14.189) with 〈r| from left and note that〈
r|ψ+

kin

〉
= ψ+

kin
(r), (14.196)

and
〈r|φkin〉 = eik·r, (14.197)

then we get an integral equation for ψkin(r)

ψ+
kin

(r) = eik·r +
∫
V (r′)ψ+

kin
(r′) d3r′

∫
d3q

(2π)3

[
e−iq·(r−r′)

h̄2

2m (k2
in − q2) + iε

]
.

(14.198)
The q integration in (14.198) gives us the Green function 〈r′ |G+| r′′〉, Eq.
(14.19), so (14.198) can be written as

ψ+
kin

(r) = eik·r −
∫

m

2πh̄2 |r− r′|
eikin|r−r′| V (r′)ψ+

kin
(r′)d3r′. (14.199)



Lippmann–Schwinger Equation 407

For r →∞ the asymptotic form of ψ+
kin

(r) is

ψ+
kin

(r)r→∞ → eik·r − m

2πh̄2r

∫
eikinreikout·r

′
V (r′)ψ+

kin
(r′)d3r′, (14.200)

with kout = kinr̂. Comparing (14.200) with (14.22) we find that f(θ, φ) is
related to the on-shell matrix elements of T (k′,kin) by

f(θ, φ) = − m

2πh̄2T (kout,kin) . (14.201)

In this way, by solving the integral equation for the T -matrix we find the total
scattering amplitude f(θ, φ).

Transition Matrix for Partial Waves — For central forces we can re-
duce the three-dimensional integral equation for T (k′,kin), Eq.(14.194), or for
ψkin(r), Eq. (14.200), to a set of one-dimensional linear integral equations each
for a given partial wave `. This can be achieved by either expanding T (k′,kin)
or expanding ψkin(r) in terms of the Legendre polynomial P`

(
k̂′ · k̂in

)
(k̂ and

k̂in are unit vectors). Here we consider the expansion ψkin(r) in terms of
u`(k, r), (kin = k) which we have already found, Eq. (14.30). In order to
calculate the partial wave T -matrix, t`(k′, k), we make use of the integral rep-
resentation of g+

` (r, r′), Eq. (14.32), which is

g+
` (r, r′) =

2irr′

πk

∫ ∞
0

j`(qr)j` (kr′)
k2 − q2 + iε

dq. (14.202)

By substituting this Green function in Eq. (14.39) we find

eiδ`(k)u`(k, r) = rj`(kr) +
2
π

∫ ∞
0

rj`(qr)
k2 − q2 + iε

dq

×
∫ ∞

0

r′j` (qr′) v (r′) eiδ`(k)u` (k, r′) dr′, (14.203)

Now we multiply the two sides of (14.203) by

rj` (k′r) v(r)dr, (14.204)

and integrate over r to find

t+` (k′, k) = v` (k′, k) +
∫ ∞

0

v` (k′, q) t+` (q, k)
k2 − q2 + iε

dq, (14.205)

where

t+` (k′, k) =
2kk′

π

∫ ∞
0

r′j` (kr′) v (r′) eiδ`(k)u` (kr′) dr′, (14.206)

and

v (k′, k) =
2kk′

π

∫ ∞
0

r′j` (kr′) v (r′) r′j` (kr′) dr′. (14.207)
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We can solve the integral equation (14.205) by iteration or by numerical meth-
ods, and find the complex quantity t+` (k′, k).

Once the integral equation (14.206) is solved, we obtain the partial wave
phase shifts from the diagonal elements of t+` (k′, k), i.e.

t+` (k, k) = −2k
π
eiδ`(k)

(
−k
∫ ∞

0

r′j` (kr′) v (r′)u` (k, r′) dr′
)

= −2k
π
eiδ`(k) sin δ`(k).

(14.208)

Here we have replaced the quantity in the parenthesis by sin δ`(k) using Eq.
(14.42).

Generalized Unitarity and the Optical Theorem — Let us write
the general T+ and T− matrices in terms of their matrix elements, i.e.

T+(q,k) =
〈
φq|V |ψ+

k

〉
, (14.209)

and
T−(q,k) =

〈
ψ−q |V |φk

〉
. (14.210)

As Eq. (14.175) shows when T+ and T− are defined for on-shell values q2 = k2,
we have the relation

T−(kout,kin) = T+(kout,kin), (14.211)

but otherwise they are not equal. We write T+(q,k) as

T+(q,k) = lim
t→−∞

〈φq|V Ω(t)|φk〉

= −
{

lim
t→+∞

− lim
t→−∞

}
〈φq|V Ω(t)|φk〉+ lim

t→+∞
〈φq|V Ω(t)|φk〉

= −
∫ +∞

−∞

〈
φq

∣∣∣∣V d

dt
Ω(t)

∣∣∣∣φk

〉
dt+ 〈φq|V |ψ−k 〉.

(14.212)

The last term in (14.212) according to (14.209) is (T−)∗ (k,q), and also

dΩ(t)
dt

= ieiHt(H −H0)e−iH0t, (14.213)

therefore we can write (14.212) as

T+(q,k)− T−∗(k,q) = −
∫ +∞

−∞

〈
φq

∣∣V eiHtiV e−iH0t
∣∣φk

〉
dt

=
−i
L3

∫ +∞

−∞
e−iEktdt

∑
p

eiEpt
〈
φq|V |ψ+

p

〉 〈
ψ+

p |V |φk

〉
. (14.214)
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In the last integral we have inserted a complete set of states

1
L3

∑
p

|ψ+
p 〉〈ψ+

p |, (14.215)

which is a unit matrix. By carrying out the integration in (14.214) we obtain

T+(q,k)− T−∗(k,q) = −2πi
L3

∑
p

T+(q,p)δ(Ep − Ek)T+∗(k,p). (14.216)

This important result is called generalized unitarity.
If we set q = k, then (14.216) reduces to

T+(k,k)− T−∗(k,k) = −2i Im T (k,k)

= −2πi
L3

∑
p

|T (k,p)|2δ(Ep − Ek), (14.217)

or simply
Im T (k,k) = − π

L3

∑
p

|T (k,p)|2δ(Ep − Ek). (14.218)

This is another way of expressing the optical theorem.
The Low Equation — A different equation for determining scattering

matrix is the Low equation [19],[20]. When the potential does not support a
bound state, this equation can be found by observing that

T+(q,k) = lim
t→−∞

〈φq|V Ω(t)|φk〉

= −
{

lim
t→+∞

− lim
t→−∞

}
〈φq|V Ω(t)θ(−t)|φk〉

= −
∫ +∞

−∞

d

dt
〈φq |V Ω(t)θ(−t)|φk〉 dt

= 〈φq|V Ω(t)|φk〉 −
∫ +∞

−∞
θ(−t)〈φq|V eiHtiV e−iEkt|φk〉dt.

(14.219)

Now we insert a complete set of states (14.215) and use Eqs. (14.179) and
(14.180) and change the order of integration in the last term of (14.219) to get

T+(q,k) = V (q,k)− 1
L3

∑
p

∫ +∞

−∞

dζ

ζ − iε

× δ(ζ − Ep + Ek)
〈
φq |V |ψ+

p

〉 〈
ψ+

p |V |φk

〉
. (14.220)

This relation can be simplified and after simplification we find the nonlinear
Low equation;

T+(q,k) = V (q,k) +
1
L3

∑
p

T+(q,p)T+∗(k,p)
Ek − Ep + iε
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→ V (q,k) +
1

(2π)3

∫
T+(q,p)T+∗(k,p)
Ek − Ep + iε

. (14.221)

Just as we expanded the integral equation for the T -matrix, we can also expand
the Low equation in terms of spherical harmonics with the result that for the
`-th partial wave we have

t+` (q, k) = v`(q, k) +
∫ ∞

0

t+` (q, p)t+∗` (k, p)
k2 − p2 + iε

dp. (14.222)

Symmetric and Antisymmetric Parts of the Transition Matrix
— In our formulation of the scattering problem up to this point we have as-
sumed that the potential is static and is local. The potential is static if it does
not depend on the relative velocity nor on the angular momentum of the two
interacting particles. The potential is local if it depends on the relative position
of the two particles, r, i.e. be of the form V (r). But both of these conditions
are not satisfied in all collisions. For instance in the case of nucleon-nucleon
scattering the T -matrix found from a local static potential, V (k,q), given by
(14.195) does not fit the empirical data. For these cases one can generalize the
concept of the potential and instead of using V (r) works with a set of inde-
pendent symmetric matrices v` (k, q) which are independent of each other for
different ` s. The Hermiticity of the Hamiltonian (and thus of the interaction)
restricts the matrix elements v` (k, q) to real symmetric matrices, with certain
asymptotic behavior as k or q go to infinity [21]. For instance we can assume
v0(k, q) for S wave scattering to be real and symmetric separable potential of
the form

v0(k, q) = − 2λγkq

π(1 + λ)
√
k2 + 1

4γ
2
√
q2 + 1

4γ
2
, (14.223)

where λ and γ are parameters. If we substitute this potential in (14.205),
(` = 0), and solve for t+0 (q, k) and then set q = k we obtain

t+0 (k, k) = −2k2

π

[
γ(1− λ)

4λ
+
(

1 + λ

γλ

)
k2 − ik

]−1

. (14.224)

The S wave phase shift found from (14.224) is

k cot δ0 =
γ(1− λ)

4λ
+

1 + λ

λγ
k2, (14.225)

which is just the effective range formula, Eq. (14.100). If we compare (14.225)
with (14.60) we notice that two different potentials (14.56) and (14.223) give
identical S wave phase shifts for all energies.

Realizing that the phase shifts for all energies (and for all angular mo-
menta) do not yield a unique interaction and that the potential is not an ob-
servable of the two-body system, we want to inquire about the possibility of
replacing the most general form of of the potential matrix v`(q, k) by some
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other matrix σ`(q, k). This matrix, σ`(q, k), should generate the scattering re-
sult and at the same time contain experimental data. In order for σ`(q, k) to
have the same information content as v`(q, k), our new interaction matrix must
also be symmetric for each partial wave `. One possible candidate for replacing
v`(q, k) is the symmetric part of t+` (q, k)eiδ`(k) matrix [22]. The diagonal of
this σ`(q, k) are given by − 2k

π sin δ`(k) and are observables. Once the form of
σ`(q, k) is assumed then we can use the properties of the T matrix to construct
the antisymmetric part and thus the complete t+` (q, k) matrix. For the sake
of simplicity in the following formulation we assume that the interaction is not
strong enough to allow for a bound state, but this approach can be extended to
include a finite number of bound states as well [23]. Here we use units where
h̄2 = 2m = 1.

Let us introduce a real matrix φ`(q, k) which is related to t+` (q, k) by

φ`(q, k) = e−iδ`(k)t+` (q, k). (14.226)

By substituting for t+` (q, k) from (14.226) into Low’s equation (14.221) we get

v`(k, q) = φ`(k, q) cos δ`(q)− P
∫ ∞

0

φ`(k, p)φ`(q, p)
q2 − p2

dp. (14.227)

Since v`(k, q) = v`(q, k), by changing k and q in (14.227) and subtracting the
resulting equation from (14.227) we find

φ`(k, q) cos δ`(q) = φ`(q, k) cos δ`(k)

− P
∫ ∞

0

φ`(k, p)φ`(q, p)
{

1
k2 − p2

− 1
q2 − p2

}
dp. (14.228)

We find another equation satisfied by φ`(k, q) from the partial wave T -matrix,
Eqs. (14.205) and (14.226). This equation can be written as

φ`(k, q) =
∫ ∞

0

v`(k, p)U`(p, q)dp, (14.229)

where

U`(p, q) = cos δ`(p)δ(p− q) + P φ`(p, q)
q2 − p2

. (14.230)

Since the transpose of (14.229) is

φ`(q, k) =
∫ ∞

0

U†` (k, p)v`(p, q)dp, (14.231)

therefore∫ ∞
0

U`(q, j)φ`(q, k)dq =
∫ ∞

0

U†` (k, p)dp
∫ ∞

0

v`(p, q)U`(q, j)dq

=
∫ ∞

0

U†` (k, p)φ`(p, j)dp, (14.232)



412 Heisenberg’s Quantum Mechanics

where

U†` (k, p) = cos δ`(k)δ(k − p) + P φ`(p, k)
k2 − p2

. (14.233)

By substituting (14.230) and (14.233) in (14.232) we find a different integral
equation for φk(q, k);

φ`(q, k) cos δ`(q)− φ`(k, q) cos δ`(k)

= P
∫ ∞

0

φ`(p, k)φ`(p, q)
{

1
k2 − p2

− 1
q2 − p2

}
dp. (14.234)

By adding and subtracting (14.228) and (14.234) we obtain the following rela-
tions

σ`(q, k)[cos δ`(k)− cos δ`(q)]

= P
∫ ∞

0

{
1

k2 − p2
− 1
q2 − p2

}
{σ`(p, k)α`(q, p)− α`(p, k)σ`(q, p)} dp,

(14.235)

and

α`(q, k)[cos δ`(k) + cos δ`(q)]

= P
∫ ∞

0

{
1

k2 − p2
− 1
q2 − p2

}
{σ`(k, p)σ`(q, p) + α`(p, k)α`(p, q)} dp.

(14.236)

In these relations σ and α are the symmetric and antisymmetric parts of the φ
matrix

σ`(q, p) =
1
2

[φ`(q, p) + φ`(p, q)], (14.237)

and
α`(q, p) =

1
2

[φ`(q, p)− φ`(p, q)]. (14.238)

Equations (14.235) for σ`(q, k) and (14.236) for α`(q, k) are both singular inte-
gral equations. To make them nonsingular we add the term

P
∫ ∞

0

α`(q, k)
[
σ`(q, q)
q2 − p2

− σ`(k, k)
k2 − p2

]
dp ≡ 0, (14.239)

to (14.235) and the integral

P
∫ ∞

0

{
1

q2 − p2
− 1
k2 − p2

}
σ`(k, k)σ`(q, q)dp ≡ 0, (14.240)

to (14.236).
The operator U`(p, q) defined by (14.230) can be decomposed into a sym-

metric and an antisymmetric part. Thus defining A`(k, p) and S`(p, q) by

A`(k, p) = P σ`(p, k)
k2 − p2

, (14.241)
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and

S`(p, q) = δ(p− q) cos δ`(q) +
α`(p, q)
q2 − p2

, (14.242)

we have
U`(p, q) = A`(p, q) + S`(p, q). (14.243)

These operators, in the absence of bound states, commute with each other;∫ ∞
0

[A`(k, p)S`(q, p)− S`(k, p)A`(p, q)] dp

=
1

k2 − q2
[σ`(q, k)(cos δ`(q)− cos δ`(k))]

+ P
∫ ∞

0

{
1

k2 − p2
− 1
q2 − p2

}
{σ`(p, k)α`(q, p)− α`(p, k)σ`(q, p)} dp = 0.

(14.244)

Similarly we can show that U`(p, q) is a unitary transformation, i.e.∫ ∞
0

[S`(k, p)S`(p, q)−A`(k, p)A`(p, q)] dp = δ(k − q). (14.245)

For the convergence of the integrals in Eq. (14.236), σ(p, q) cannot become
arbitrarily large when p or q tend to infinity or zero. Thus the integral over p
in (14.236) converges provided that

lim
p→∞

[
σ(p, q)
p

3
2 +ε

]
→ 0, (14.246)

at the upper limit and

lim
p→0

[
p

1
2σ(p, q)

]
→ a constant, (14.247)

at the lower limit. In (14.246) ε is a small positive number.
An Example — As an example of determination of the t` matrix from

its symmetric part, we consider the special case where φ`(k, q) is separable, i.e.
when it is expressible as

φ`(k, q) =
N`(k, q)
|D`(q)|

=
f`(k)f`(q)
|D`(q)|

, (14.248)

where f`, N` and |D`| are all real functions of their argument. Since N` is
symmetric we have

N`(k, q) =
√
N`(k, k)N`(q, q), if N` ≥ 0, (14.249)

and
N`(k, q) = −

√
N`(k, k)N`(q, q), if N` ≤ 0. (14.250)
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The diagonal elements of t+` (k, q) matrix in this case are given by

t+` (k, k) = eiδ`(k)N`(k, k)
|D`(k)|

. (14.251)

Furthermore from (14.248)–(14.250) we can determine φ`(k, q);

φ`(k, q) = ±
√
φ`(k, k)φ`(q, q)

√
|D`(k)|
|D`(q)|

. (14.252)

Let us remember that the denominator D`(k) in (14.251) is an analytic function
of the energy E = k2. Next we write Eq. (14.251) as

eiδ`(E)φ`(E) = t+` (E,E) =
N`(E,E)
D`(E)+

= −2
√
E

π
eiδ`(E) sin δ`(E), (14.253)

where D+
` is the denominator of t`(E,E). Noting that N`(E,E) is a real func-

tion of E, from (14.253) it follows that the complex function D+
` (E) satisfies

the relation

D+
` (E) = −πN`(E,E)

2
√
E

(cot δ`(E)− i) E = k2 ≥ 0. (14.254)

Now by equating the imaginary parts of the two sides of (14.254) and replacing
N(E,E) from (14.253) we obtain

Im D+
` (E) = −eiδ`(E) sin δ`(E) D+

` (E). (14.255)

By applying Cauchy’s theorem we find that D+
` (E) satisfies the Omnés–

Mushkhelishvili equation, and that The solution of the equation for D+
` (E) is

[1],[24],[25]

D+
` (E) = exp

[
− 2
π

∫ ∞
0

δ` (E′) dE′

E′ − E − iε

]
. (14.256)

Having found D+
` (E) we calculate |D`(q)|

|D`(q)| = exp
[
−2P
π

∫ ∞
0

δ` (p) p dp
p2 − q2

]
. (14.257)

Substituting for |D`(q)| and φ`(q, q) in (14.252) we find φ`(k, q), σ`(k, q) and
α`(k, q) to be

φ`(k, q) = ± 2
π

√
kq sin δ`(k) sin δ`(q)

× exp

[
−P
π

∫ ∞
0

(
k2 − q2

)
δ` (p) p dp

(p2 − q2) (p2 − k2)

]
, (14.258)
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σ`(k, q) = ± 2
π

√
kq sin δ`(k) sin δ`(q)

× cosh

[
−P
π

∫ ∞
0

(
k2 − q2

)
δ` (p) p dp

(p2 − q2) (p2 − k2)

]
, (14.259)

and

α`(k, q) = ± 2
π

√
kq sin δ`(k) sin δ`(q)

× sinh

[
−P
π

∫ ∞
0

(
k2 − q2

)
δ` (p) p dp

(p2 − q2) (p2 − k2)

]
. (14.260)

These relations show that for a separable φ`-matrix defined by (14.248) one
needs only to know the diagonal elements and then the off-diagonal elements
are completely determined from these diagonal elements.

14.6 Analytical Properties of the Radial Wave
Function

While we can solve the wave equation to find the phase shift δ`(k) as a function
of ` and k, it is important to find connections between the phase shift, bound
state energies and the shape of the potential. In particular we want to answer
the following questions:

(1) - If we know the phase shift δ`(k) for a fixed partial wave and for
all energies, 0 ≤ k < ∞, can we find a unique potential? At a fixed energy,
E = h̄2k2

2m , if the partial phase shifts, δ`(k), are known for all `, then is it
possible to construct a local potential? We will consider the latter question
later in this chapter.

(2) - Can we derive a relation between the phase shift at zero energy and
the phase shift at infinite energy?

(3) - What is the relation between the scattering amplitude and the bound
state energies?

For the sake of simplicity we consider the solution of the wave equation
for zero angular momentum, but as we will see later, the results that we have
found can be extended to other partial waves. Let us denote the regular solution
of the Schrödinger equation for S wave by u0(k, r),

d2u0(k, r)
d r2

+ k2u0(k, r) = v(r)u0(k, r), (14.261)

where v(r) = 2m
h̄2 V (r). We assume that the potential v(r) is of short range and

that its first and second moment are finite (see Eqs. (14.5) and (14.6)).
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If we solve the differential equation (14.261) with the boundary conditions

u0(k, 0) = 0, and
(
du0(k, r)

dr

)
r=0

= 1, (14.262)

then the wave function u0(k, r) is real and is dependent on k2, i.e. u0(k, r) is
an even function of k. Since the boundary conditions (14.262) do not depend
on k2 and the coefficient of u0(k, r) in (14.261) is an entire function of k2, then
the solution φ0(k, r) is an entire function of k2. In other words u0(k, r) is an
analytic nonsingular function in the complex k-plane for all values of r (Poincaré
theorem). To prove this result we first find the Green function for the differential
operator d2

dr2 + k2 subject to the boundary condition (14.262)

Gk(r − r′) =


sin k(r − r′)

k
r′ < r

0 r > r′.
(14.263)

Using this Green function we write the solution of (14.261) as an integral equa-
tion

u0(r) =
1
k

sin kr +
∫ ∞

0

Gk (r − r′) v (r′)u0 (k, r′) dr′

=
1
k

sin kr +
∫ r

0

sin k (r − r′)
k

v (r′)u0 (k, r′) dr′. (14.264)

This inhomogeneous integral equation with the upper limit r is a Volterra inte-
gral equation which can be solved by iteration. The iterative solution of (14.264)
can be written as

u0(k, r) =
∞∑
n=0

u
(n)
0 (k, r), (14.265)

where
u

(0)
0 (k, r) =

1
k

sin kr, (14.266)

and

u
(n)
0 (k, r) =

∫ r

0

sin k (r − r′)
k

v (r′)u(n−1)
0 (k, r′) dr′. (14.267)

First we note that the kernel of the integral equation satisfies the inequality∣∣∣∣ sin k (r − r′)
k

∣∣∣∣ ≤ r. (14.268)

This inequality allows us to find an upper bound to
∣∣∣u(n)

0 (k, r)
∣∣∣. Thus if we

define q(r) by

q(r) =
∫ r

0

v (r′) r′dr′, (14.269)
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then by successive iterations we have

1
r

∣∣∣u(1)
0 (k, r)

∣∣∣ ≤ q(r), (14.270)

1
r

∣∣∣u(2)
0 (k, r)

∣∣∣ ≤ ∫ r

0

v (r′) q (r′) r′dr′ =
∫ q(r)

0

qdq =
1
2!
q2(r), (14.271)

1
r

∣∣∣u(3)
0 (k, r)

∣∣∣ ≤ ∫ r

0

v (r′)
1
2!
q2 (r′) r′dr′ =

1
3!
q3(r), (14.272)

and so on. After the n-th iteration we obtain

1
r

∣∣∣u(n)
0 (k, r)

∣∣∣ ≤ qn(r)
n!
≤ Mn

n!
, (14.273)

where we have used Eq. (14.5) in writing the last term in (14.273). By substi-
tuting for for u(n)

0 (k, r) in (14.265) we find an upper bound for u0(k, r);

|u0(k, r)| ≤ r
∞∑
n=0

Mn

n!
= reM . (14.274)

The condition (14.268) is valid when the argument of the sine function is small.
For larger arguments we can use the inequality

| sin ζ| ≤ 1, ζ = k (r − r′) . (14.275)

We can combine (14.268) and (14.275) and write an inequality which is valid
for all values of ζ;

| sin ζ| ≤ B ζ

ζ + 1
, ζ ≥ 0. (14.276)

In this inequality B is a constant whose numerical value is immaterial. In order
to extend these results to complex values of k, we replace ζ by z, and we note
that sin z grows with increasing z as exp[|Imz|]. Thus instead of (14.276) we
shall consider the inequality

| sin z| ≤ B |z|
|z|+ 1

exp[|Imz|]. (14.277)

The convergence of the wave function for complex k can be proven in the same
way as we proved the convergence for real nonnegative values of k. That is the
inequality (14.277) guarantees the uniform convergence of (14.265) for arbitrary
k, viz, after the n-th iteration we get∣∣∣u(0)

n (k, r)
∣∣∣ ≤ B r

1 + |kr|
exp [|Im (kr)|]M

n

n!
. (14.278)

Then the analyticity of u0(k, r) follows from the analyticity of each of the indi-
vidual terms of u(n)

0 (k, r). For the zero iteration the approximate solution

u
(0)
0 (k, r) =

sin kr
k

, (14.279)
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is an analytic function of k. Using this we can prove the analyticity of u(1)
0 (k, r),

u
(2)
0 (k, r), · · · by induction. Thus we have shown that the solution of the

Schrödinger equation is analytic in the open complex k-plane for all values of r
[3].

14.7 The Jost Function

So far we have studied the analyticity of the solution of the wave equation when
the initial conditions are independent k. Now let us first examine the ` = 0,
or the S-wave and introduce a different solution of the Schrödinger equation,
f0(k, r), but with the boundary condition [26]–[28]

lim
r→∞

eikrf0(k, r) = 1. (14.280)

From this relation it is clear that the asymptotic form of f0(k, r) at infinity is

f0(k, r)→ e−ikr, r →∞. (14.281)

We want to show that f0(k, r) is an analytic function of complex k for Im k < 0,
and that it is continuous along the real axis (Im k = 0). Again we start with
the integral equation for f0(k, r)

f0(k, r) = e−ikr +
∫ ∞
r

sin k (r′ − r)
k

v (r′) f0 (k, r′) dr′. (14.282)

This function satisfies the radial Schrödinger equation for the S-wave;

d2f0(k, r)
d r2

+ k2f0(k, r) = v(r)f0(k, r), (14.283)

provided that we can differentiate under the integral sign (this is permitted
when the solution converges uniformly for all r).

We now introduce a function g0(k, r) which is related to f0(k, r) by

g0(k, r) = f0(k, r)eikr, (14.284)

and substitute from this relation in Eq. (14.282) to find an integral equation
for g0(k, r);

g0(k, r) = 1 +
∫ ∞
r

Dk (r′ − r) v (r′) g0 (k, r′) dr′, (14.285)

where

Dk(r′ − r) =
1
k
eikr sin k(r′ − r)e−ikr

′
=

1
2ik
{1− exp[−2ik(r′ − r)]},

(14.286)
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Again we attempt to solve (14.285) by iteration and to this end we write

g0(k, r) =
∞∑
n=0

g
(n)
0 (k, r), (14.287)

where
g

(0)
0 (k, r) = 1, (14.288)

and

g
(n)
0 (k, r) =

∫ ∞
r

Dk (r′ − r) v (r′) g(n−1)
0 (k, r′) dr′. (14.289)

Now we shall prove the convergence of the series (14.287) for Im k < 0. From
the inequality

|Dk (r′ − r)| ≤ r′ − r ≤ r′, (14.290)

it follows that

g
(1)
0 (k, r) ≤

∫ ∞
r

|v (r′)| r′dr′, (14.291)

or in general for the n-th iteration∣∣∣g(n)
0 (k, r)

∣∣∣ ≤ 1
n!

[∫ ∞
r

|v (r′)| r′dr′
]n

≤ 1
n!

[∫ ∞
0

|v (r′)| r′dr′
]n
≤ Mn

n!
. (14.292)

The series (14.287) therefore converges as a consequence of the upper bound
(14.292).

As we can see from the radial wave equation (14.261) and the boundary
condition (14.281), in the region where f0(k, r) is analytic including the real
axis, the Jost function satisfies the condition

f∗0 (−k∗, r) = f0(k, r). (14.293)

Now we want to see how the real solution of the Schrödinger equation, u0(k, r),
is related to its complex solution f0(k, r). By calculating the Wronskian of
f0(k, r) and f0(−k, r) we find

W [f0 (k, r) , f0 (−k, r)] = 2ik. (14.294)

This Wronskian is not zero, therefore f0(k, r) and f0(−k, r) are two independent
solutions of (14.261). So any solution of (14.261) can be written as a linear com-
bination of f0(k, r) and f0(−k, r). In particular we can write the real solution,
u0(k, r), which we defined earlier, as

u0(k, r) =
1

2ik
[f0(k)f0(−k, r)− f0(−k)f0(k, r)] , (14.295)
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where the Jost function, f0(k), is related to f0(k, r) by

f0(k) = f0(k, 0), and f0(−k) = f0(−k, 0). (14.296)

We can also define f0(k) by means of the Wronskian W [f0(k, r), u0(k, r)]. Thus
with the help of (14.294), we have

W [f0(k, r), u0(k, r)] = f0(k). (14.297)

Finally we can write the asymptotic form of u0(k, r) as r →∞ in terms of the
Jost function

u0(k, r)→ −f0(−k)
2ik

{
e−ikr − f0(k)

f0(−k)
eikr

}
, r →∞. (14.298)

By comparing (14.298) with (14.50) we obtain an important relation between
the Jost function and the scattering matrix S0(k);

S0(k) =
f0(k)
f0(−k)

. (14.299)

Generalization to Higher Partial Waves — The results that we have
found for the S wave, (` = 0), can be extended to higher partial waves by
observing that the radial wave equation (14.261) will now have the additional
singular term `(`+1)

r2 , or u`(k, r) satisfies the partial wave equation

d2u`(k, r)
d r2

+
[
k2 − `(`+ 1)

r2
− v(r)

]
u`(k, r) = 0. (14.300)

The presence of this term, `(`+1)
r2 changes the behavior of u`(k, r) at r = 0. Here

we also assume that the first and second moments of the potential, Eqs. (14.5)
and (14.6), are finite. Very close to the origin the centrifugal energy term in
(14.300) is much larger than k2 − v(r), and therefore we can ignore these two
terms. In this limit (14.300) reduces to

d2u`(k, r)
d r2

− `(`+ 1)
r2

u`(k, r) = 0. (14.301)

The two independent solutions of (14.301) are

u`(k, r)→ r`+1 as r → 0, (14.302)

u`(k, r)→ r−` as r → 0, (14.303)

and thus the regular solution of (14.300) satisfies the boundary condition (14.302)
as r → 0. We choose this boundary condition together with the boundary con-
dition

lim
r→∞

f`(k, r)→ e−ikr, (14.304)
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to define the Jost solution for the `-th partial wave. This solution satisfies a
relation similar to (14.293),

f∗` (−k∗, r) = f`(k, r). (14.305)

Now for the `-th partial wave the real solution of the Schrödinger equation can
be expressed as

u`(k, r) =
1

2ik
[f`(k)f`(−k, r)− f`(−k)f`(k, r)] , (14.306)

where
f`(k) = f`(k, 0), and f`(−k) = f`(−k, 0). (14.307)

Alternatively we can define f`(k) by the Wronskian

f`(k) = W [f`(k, r), u`(k, r)] . (14.308)

Equation (14.306) now shows us that the scattering matrix, S`(k), for the `-th
partial wave is

S`(k) = (−1)`
f`(k)
f`(−k)

. (14.309)

14.8 Zeros of the Jost Function and Bound Sates

As we have seen in earlier chapters the stationary states of a system are as-
sociated with discrete energy states, and these states are related to the square
integrable solutions of the Schödinger equation. We want to show that the zeros
of the Jost function f`(k) in the lower half of the complex k-plane correspond
to bound states. Denoting these zeros by kn, n = 1, 2 · · ·, we can write the
eigenvalue equation for the bound states as

f`(kn) = 0. (14.310)

By substituting k = kn in u`(k, r), noting that f`(kn) = 0, we find

u`(kn, r) =
1
γn
f`(kn, r), (14.311)

where γn is a constant. This wave function vanishes at r = 0, and decreases
exponentially for large r (remembering that Im k < 0). Therefore u`(kn, r) is
a square integrable function and describes a bounded motion, i.e. the particle
cannot go far away from the center of force (see below). To relate these kn s
to the binding energies we need to show that all k2

n s are real and negative.
Writing the differential equation for u`(kn, r), Eq. (14.300), and for its com-
plex conjugate, we find that the Wronskian so obtained satisfies the following
equation

d

dr
W [u`(kn, r), u∗` (kn, r)] = 2i Im

(
k2
n

)
|u`(kn, r)|2. (14.312)
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Since u∗` (k∗, r) = u`(k, r) we have

u∗` (kn, r) =
1
γ∗n
f` (−k∗n, r) , (14.313)

and this shows that when Im k < 0, then u∗` (kn, r) decreases exponentially as
r →∞. Using the fact that both u` (kn, r) and u∗` (kn, r) are zero at r = 0 and
at r =∞ we integrate (14.312) to obtain

Im
(
k2
n

) ∫ ∞
0

|u`(kn, r)|2dr = 0. (14.314)

From this equation it follows that

Im k2
n = 0, (14.315)

and ∫ ∞
0

|u`(kn, r)|2dr ≤ ∞. (14.316)

Thus k2
n is real and u`(kn, r) is a square integrable function of r. Now if kn is real

then f`(kn) cannot be equal to zero since f`(−kn) will also be zero according to
(14.305), since the vanishing of both f`(kn) and f`(−kn) implies that u`(kn, r)
is zero everywhere, a result that follows from Eq. (14.308). Thus f`(kn) can be
zero only if k2

n < 0, i.e. the zeros of the Jost function f`(k) are in the lower half
of k-plane on the imaginary axis

kn = −iκn, κn > 0. (14.317)

We can also relate the bound state to the root of S matrix for k = −iκn
by writing the square integrability condition for the wave function u`(−iκn, r)
for Eqs. (14.306) and (14.309). Thus for large r we must have∫ ∞ ∣∣(−1)`e−κnr − S`(−iκn)e+κnr

∣∣2 dr <∞, κn > 0. (14.318)

This condition can be satisfied provided that

S`(−iκn) = 0, κn > 0, (14.319)

i.e. is the zeros of the S`(k) matrix located on the imaginary k-axis correspond-
ing to the square integrable function describing the bound state. The symmetry
property of the S`(k) matrix which we found earlier, Eq. (14.52), implies that
S`(k) possesses simple poles at k = iκn. However S`(k) matrix also vanishes at
the points where f`(−k) has poles [27]. These extra zeros of the S`(k) matrix
do not represent bound states and they disappear whenever the Jost function
is regular in the whole k-plane. For this to happen the potential must go faster
to zero than any exponential∫ ∞

0

eµrv(r)dr <∞ for any real positive µ. (14.320)
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Thus if the potential is identically zero for r > R, no matter how large R is,
there will be no redundant poles of the S`(k) matrix.

For long range forces, e.g. the Coulomb force, we can find the bound
state energies from the poles of the scattering amplitude, where this amplitude
is given by (14.138). These poles are located at the points where

Γ
(
`+ 1− iγ

k

)
=∞, (14.321)

i.e. where

`+ 1− iγ

k
= zero or negative integer. (14.322)

Calculating k from this condition and substituting it in E = h̄2k2

2m gives us the
bound state energies for hydrogen like atoms when we set Z ′ = 1.

14.9 Dispersion Relation

Since f`(k) ia an analytic function in the lower half k-plane, we can find a
relation between Re f`(k) and Im f`(k). In Sec. 14.8 we proved that f`(k) is an
entire function of k in the lower half of k-plane including the real axis, and on
the real axis it satisfies the boundary condition (14.304). Noting that f`(k)− 1
approaches zero as k →∞ everywhere in the lower half of k-plane including the
real axis, we can apply Cauchy’s theorem and write for any value of k in the
lower half plane

f`(k)− 1 =
1

2πi

∮
C

f` (k′)− 1
k′ − k

dk′. (14.323)

The contour C consists of a path on the real axis from −kc to +kc, and a semi-
circle of radius kc in the lower half-plane where k lies within this closed contour.
In the limit of kc going to infinity, the contribution from the semi-circle vanishes
and we have

f`(k) = 1− 1
2πi

∫ ∞
−∞

f` (k′)− 1
k′ − k

dk′. (14.324)

If k approaches the real axis from below, then from (14.324) we obtain

f`(k) = 1− P
πi

∫ ∞
−∞

f` (k′)− 1
k′ − k

dk′. (14.325)

Taking the real part of the two sides of (14.325) we find

Re f`(k) = 1− P
π

∫ ∞
−∞

Im f` (k′)
k′ − k

dk′. (14.326)
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This is the dispersion relation connecting Re f`(k) to Im f`(k).
Now using the rule

lim
ε→0+

1
x+ iε

= P 1
x
− iπδ(x), (14.327)

we can add i Im f`(k) to the two sides of Eq. (14.326) and obtain f`(k) as an
integral over Im f`(k)

f`(k) = 1− 1
π

∫ ∞
∞

Im f` (k′)
k′ − k + iε

dk′. (14.328)

To convert (14.328) into an integral equation for f`(k) we note that according
(14.55) we can write

Im f`(k) = |f`(k)| sin δ`(k) = f`(k) sin δ`(k)e−iδ`(k). (14.329)

Now if we Substitute for Im f`(k) in (14.328) we find the integral equation
satisfied by f`(k);

f`(k) = 1− 1
π

∫ ∞
∞

f` (k′) sin δ` (k′) e−iδ`(k
′)

k′ − k + iε
dk′. (14.330)

Having obtained this integral equation for f`(k) we ask supposing that δ`(k) is
known for all k, then is it possible to solve this integral equation and find f`(k)?
The answer is, in general, no. The information about the phase shift δ`(k) is not
sufficient to determine f`(k), and we have to specify bound state energies. Let
En = − h̄

2κ2
n

2m , ( n = 1, 2 · · ·N) represent bound state energies, then these give
us the location of the zeros of f`(k) in the lower half k-plane. Having this set of
information enables us to find f`(k), from the solution of the singular integral
equation known as Omnés-Mushkhelishvili type equation [1], [24], [25];

f`(k) =
N∏
n=1

(
1− κ2

n

k2

)
exp

[
− 1
π

∫ ∞
−∞

δ` (k′)
k′ − k + iε

]
. (14.331)

14.10 Central Local Potentials having Identical
Phase Shifts and Bound States

Returning to the first question posed at the beginning of this section, we want
to show by an explicit example that a central local potential cannot be uniquely
determined by the phase shifts and bound state energies for a given ` state.
For our example we choose the Eckart potential which we defined earlier and
which is solvable for the S-wave, Eq. (14.56). We will consider the following
two potentials:



Equivalent Potentials 425

(a) - We set s = 6 in (14.56) and choose λ = 1 so that the potential
becomes

v(6, r) = − 6γ2 e−γr

(1 + e−γr)2 = − 3γ2

2 cosh2
(

1
2γr
) . (14.332)

The Jost solution f
(6)
0 (k, r) obtained from the wave equation is

f
(6)
0 (k, r) = eikr

4k2 + 6iµ(r)k + γ2 − 3(µ(r))2

(2k − iγ)(2k − 2iγ)
, (14.333)

where µ(r) is given by

µ(r) = γ
e−γr − 1
e−γr + 1

. (14.334)

From the last two equations we find the Jost function to be

f
(6)
0 (k) =

4k2 + γ2

(2k − iγ)(2k − 2iγ)
=

2k + iγ

2k − 2iγ
. (14.335)

(b) - We now choose s = 2 and λ1 = 3, and the potential becomes

v(2, r) = − 6γ2
1 e
−γ1r

(1 + e−γ1r)2 . (14.336)

The Jost solution for this potential is

f
(2)
0 (k, r) = eikr

2k + iµ1(r)
(2k − iγ1)

, (14.337)

where

µ1(r) = γ1
λ1e
−γ1r − 1

λ1e−γ1r + 1
. (14.338)

Again we find that the Jost function is given by

f
(2)
0 (k) =

2k + iµ1(0)
2k − iγ1

=
2k + i

2γ1

2k − iγ1
. (14.339)

Therefore if we choose γ1 = 2γ, f
(6)
0 (k) and f

(2)
0 (k) become identical. Thus

the two potentials (14.332) and

v(2, r) = − 24γ2 e−2γr

(1 + 3e−2γr)2 = − 2γ2

cosh2 [γ(r − a)]
, a =

ln 3
2γ

(14.340)

are phase and bound state equivalent potentials [29]. The bound state for the
two potentials are at the zero of f0(k), and this root is located at

k = − iγ
2
, (14.341)
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and thus the bound state energy is

E0 = − h̄2

2m

(
γ2

4

)
. (14.342)

The phase shifts for both potentials are identical and satisfy the effective range
formula exactly;

k cot δ0(k) = −1
3
γ +

2
3γ
k2. (14.343)

We observe that the force
(
−∂v(6,r)

∂r

)
is attractive for all r, whereas

(
−∂v(2,r)

∂r

)
is attractive for r < a and is repulsive for r > a.

14.11 The Levinson Theorem

This theorem relates the difference between the scattering phase shifts at zero
and at infinite energy to the number of bound states of the system. We use
the analytic properties of the Jost function to prove this theorem. For a given
partial wave, `, from the definition of the scattering matrix in terms of the phase
shift (14.51) we find the logarithmic derivative of S`(k) to be

1
S`(k)

dS`(k)
d k

= 2i
dδ`(k)
d k

. (14.344)

Noting that δ`(k) is an odd function of of k, δ(k) = −δ(−k), we write the
integral of the left-hand side of (14.344) as

I =
∫ ∞
−∞

1
S`(k)

dS`(k)
d k

= 4i
∫ ∞

0

dδ`(k)
d k

dk

= 4i {δ`(∞)− δ`(0)} (14.345)

where we have regarded the phase shift as a continuous function of k in the
range 0 ≤ k <∞. We can also write I in terms of the Jost function f`(k), Eq.
(14.309)

I =
∫ ∞
−∞

d

d k
{ln f`(k)− ln f`(−k)} dk

= 2
∫ ∞
−∞

d

d k
ln f`(k)d k. (14.346)

The last integral can be evaluated by contour integration. We choose the contour
to consist of the following parts: (a) a semi-circle C1 of radius kc in the lower
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half of k-plane and (b) a line extending from k = −kc− ε to k = kc + ε, and (c)
a semi-circle of radius ε centered at the origin. Thus

1
2πi

∮
C

d

d k
(ln f`(k)) d k =

1
2πi

∫ kc

−kc

d

d k
(ln f`(k)) d k

+
1

2πi

∫
C1

d

d k
(ln f`(k)) d k +

1
2πi

∫
ε

d

d k
(ln f`(k)) d k. (14.347)

In the limit of kc →∞, the contour C will include all of the N` simple isolated
zeros at the points kn(`) = −iκn(`), n = 1, · · ·N`, and these are the poles of
the integrand d

dk ln f`(k). The first integral on the right-hand side of (14.347) is
(2πi)−1 × I

2 . The second integral (along the semi-circle C1) goes to zero as the
radius of the semi-circle goes to infinity. The last integral along the semi-circle
ε contributes an amount πi provided that f`(0) = 0, and this can happen only
if ` = 0. Thus from Eqs. (14.345)–(14.347) we find

δ`(0)− δ`(∞) =

π
(
N0 + 1

2

)
, ` = 0, f0(0) = 0

πN` ` 6= 0
. (14.348)

If the potential has a finite range then δ`(∞) = 0, and δ`(0) is determined by
the number of bound states [30].

14.12 Number of Bound States for a Given Par-
tial Wave

If the potential between two particles is attractive and is given by V (r) =
h̄2

2mv(r), then the reduced wave function, u`(r), can be chosen as a real function
of r and is given by the solution of the Schödinger equation. If we replace v(r)
by sv(r) where 0 ≤ s ≤ 1 and denote the number of bound states for the `-th
partial wave by N`(s), then N`(s) is an increasing function of s [31].

Consider the Schödinger equation for the potential sv(r);

u′′` (r) +
(
k2 − `(`+ 1)

r2

)
u`(r) = −s|v(r)|u`(r), (14.349)

where −s|v(r)| is the attractive potential, and where primes denote derivatives
with respect to r. Differentiating (14.349) with respect to s we find

∂u′′` (r)
∂ s

+
∂k2

∂ s
u`(r)+

[
k2 − `(`+ 1)

r2
+ s|v(r)|

]
∂u`(r)
∂ s

= −|v(r)|u`(r). (14.350)
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By substituting for the terms in the square bracket in (14.350) from (14.349)
and multiplying the result by u`(r) we get(

u`(r)
∂u′′` (r)
∂ s

− ∂u`(r)
∂ s

u′′` (r)
)

= −
(
∂k2

∂ s

)
u2
`(r)− |v(r)|u2

`(r)

=
∂

∂r

(
u`(r)

∂u′`(r)
∂ s

− ∂u`(r)
∂ s

u′`(r)
)
. (14.351)

Now we integrate (14.351) from zero to infinity, and use the boundary conditions
appropriate for the bound state, viz, u`(r) and ∂u`(r)

∂ s must vanish at r = 0 and
at r =∞. In this way we obtain

∂k2

∂s
= −

∫∞
0
|v(r)|u2

`(r)dr∫∞
0
u2
`(r)dr

< 0. (14.352)

This result shows that that the bound state energy is a decreasing function of
s. As s decreases, the level with the least binding energy tends to zero, and by
a further decrease of s this bound state disappears and N`(s) will be reduced
by one. Hence the total number of bound states is equal to the number of zero
energy bound states which we get as we vary s from 0 to 1. For this reason we
want to determine the zero energy bound states for a fixed s.

The Schrödinger equation for k = 0 is (see Eq. (14.20))

ψ(r, 0) = −2m
h̄2 s

∫
V (r′)

1
4π |r− r′|

ψ (r′, 0) d3r′. (14.353)

Since in this case we are considering bound states, there is no incoming wave and
(14.20) becomes the homogeneous integral equation (14.353). We can decom-
pose (14.353) in terms of partial waves exactly as we did for scattering problem.
Thus we get

u`(r, 0) = s

∫ ∞
0

|v (r′)| g` (r, r′)u` (r′, 0) dr′, (14.354)

where

g (r, r′) =
1

2`+ 1


r`+1

r′ `
, r < r′

r′ `+1

r`
, r > r′

. (14.355)

The kernel of the integral equation (14.354) is not symmetric, but we can make
it symmetric by introducing a new kernel

g̃ (r, r′) =
√
|v(r)| |v (r′)| g (r, r′) , (14.356)

and a new unknown
ũ`(r, 0) =

√
|v(r)| u`(r, 0), (14.357)

and writing (14.354) for the n-th eigenvalue as

ũ
(n)
` (r, 0) = sn

∫ ∞
0

g̃` (r, r′) ũ(n)
` (r′, 0) dr′. (14.358)



Principle of Causality 429

From this eigenvalue equation we can find the eigenfunctions ũ(n)
` (r, 0) as well as

the eigenvlaue sn. A well-known result of the theory of integral equation states
that if all the eigenvalues of (14.358) are known then g̃ (r, r′) can be written as
[32]

g̃ (r, r′) =
∞∑
n=1

ũ
(n)
` (r, 0)ũ(n)

` (r′, 0)
sn

. (14.359)

By setting r = r′ and integrating over r, then using the orthonormal properties
of ũ(n)

` (r, 0) s we obtain∫ ∞
0

g̃ (r, r) dr =
∞∑
n=1

1
sn

=
1

2`+ 1

∫ ∞
0

r|v(r)|dr. (14.360)

From the fact that sn < 1, we find an inequality for the number of bound states
N`;

N` ≤
N∑̀
n=1

1
sn
≤
∞∑
n=1

1
sn

=
1

2`+ 1

∫ ∞
0

r|v(r)|dr. (14.361)

This result due to Bargmann [31] gives an upper bound for the number of bound
states for a given partial wave.

For the two Eckart potentials v(6, r) and v(2, r), Eqs. (14.332) and
(14.336), the integral ∫ ∞

0

r|v(r)|dr, (14.362)

can be evaluated exactly. The result for v(2, r) is 2 ln 4 and for v(6, r) is 6 ln 2.
Thus N1 is less than 1 and N1 is about 1.38. We conclude that we can have a
bound state for ` = 1 for v(6, r) but not for v(2, r).

For bounds on the number of bound states for oscillating potentials see
the work of Chadan and Grosse [34].

14.13 Analyticity of the S-Matrix and the Prin-
ciple of Casuality

The analytic properties of the S-matrix that we have studied in preceding sec-
tions are closely associated with the principle of causality, i.e. to the fact that
cause must precede the effect [35]. To demonstrate this connection we consider
the scattering matrix for a potential having a finite range R and study the ana-
lytic properties of the S-matrix in the complex energy plane and for ` = 0. For
this case we can write the time-dependent wave function for r > R as

ψ0(E, r, t) =
1
r

{
e−ikr − S0(E)eikr

}
exp

(
− iEt

h̄

)
, (14.363)
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where E is related to k by the usual relation E = h̄2k2

2m . The first term in
(14.363) is the incident wave and the second one is the scattered wave. Now we
construct a wave packet which is localized both in space and in time

ψ0(r, t) =
∫ ∞

0

A (E′)ψ0 (E′, r, t) dE′, (14.364)

where the coefficient A (E′) in the integrand determines the shape and the range
of the localization. By substituting (14.364) in (14.363) we find that ψ0(r, t) can
be written as the difference between two localized wave packets

ψ0(r, t) = ψinc0 (r, t)− ψsc0 (r, t), (14.365)

where

ψinc0 (r, t) =
∫ ∞

0

A (E′)
1
r

exp
[
−ik′r − i

h̄
E′t

]
dE′, (14.366)

and

ψsc0 (r, t) =
∫ ∞

0

A (E′)
1
r
S0 (E′) exp

[
−ik′r − i

h̄
E′t

]
dE′. (14.367)

Since the scattered wave is linearly related to the incident wave, (the linearity
of the Schrödinger equation), there must be a linear relationship between the
wave packets ψinc0 (r, t) and ψsc0 (r, t). To state this linearity assumption mathe-
matically, we express ψsc0 (r, t) at time t as a linear combination of the incoming
wave at all previous times

ψsc0 (r, t) =
∫ ∞

0

K(τ) ψinc0 (r, t− τ)dτ. (14.368)

Here the form of K(τ) is determined by the properties of the system. If we
multiply (14.368) by exp

(
i
h̄Et

)
and integrate from −∞ to ∞ we obtain

S0(E) e2ikr =
∫ ∞

0

K(τ) exp
(
i

h̄
Eτ

)
dτ. (14.369)

Let us examine Eq. (14.369) when E is complex. This relation shows that the
scattering matrix S0(E) is finite and single-valued in the upper half E-plane
and does not go to infinity. For Im E > 0, the integrand in (14.369) contains
the factor exp

[
− Im (E)τ

h̄

]
, τ > 0 and since K(τ) is finite for 0 ≤ τ ≤ ∞, the

integral in (14.369) is convergent. The region of analyticity of S0(E) can be
extended to the lower half plane by analytic continuation of (14.369). It should
be emphasized that the analyticity of S0(E) follows only from the principle of
causality and is not dependent on the nature of the interaction.

From the analytic properties of S0(E) in the E plane and the relation
between E and k, we find that S0(k) is analytic in the first quadrant of the
k-plane. Using the symmetry property of S0(k) matrix, Eq. (14.52) and also
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Figure 14.1: The effective potential, veff (r), Eq. (14.372) plotted as a function r. The
resonance energy Er is positive and is below the maximum of the potential barrier.

S∗0 (k∗) = S−1
0 (k), the analyticity region can be extended to the whole k plane

except for the isolated poles.
For other partial waves similar analytic properties can be deduced from

the principle of causality.

14.14 Resonance Scattering

In many scattering problems in atomic, nuclear and particle physics we en-
counter cases where the cross section for a given partial wave i.e.

σ`(k) = 4π(2`+ 1)|f`(k)|2, (14.370)

exhibits a sharp peak which we call a resonance. This happens when the po-
tential is attractive close to the origin but becomes repulsive for large r. For
` = 0, the potential itself must have both the attractive- and the repulsive part.
However for ` 6= 0 the potential V (r) can be completely attractive, and the
centripetal force `(`+1)

r2 will provide the repulsive tail for the effective potential

veff (r) = v(r) +
`(`+ 1)
r2

. (14.371)

In Fig. 14.1 such an effective potential which is

veff (r) = v(6, r) +
`(`+ 1)
r2

, (14.372)

is plotted as a function of r, where v(6, r) is given by Eckart potential, Eq.
(14.340), and ` = 1. In such a potential the particle can be trapped inside
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Figure 14.2: The partial wave phase shift shown as a function of the energy E, Eq. (14.377).

the well, when E > 0, say E = Er, but such a trapped state has a finite
lifetime, since the particle can escape to infinity by quantum tunneling [36].
If we calculate the scattering phase shift for this partial wave we find that δ`
reaches the value of π

2 as the incident energy approaches the value E = Er. In
Fig. 14.2, the phase shift δ`(E) is plotted versus the energy E. Here we observe
the very rapid change of δell(E) as E passes through Er.

For ` > 0 a resonance occurs when cot δ`(E) vanishes, and this happens
when

δ`(E) =
(
n+

1
2

)
π, n an integer. (14.373)

Near the resonance we can expand cot δ`(E) in powers of E;

cot δ`(E) = cot δ`(Er)−
2
Γ

(E−Er) +O
(
(E − Er)2

)
' − 2

Γ
(E−Er), (14.374)

where Γ is a constant and is given by

− 2
Γ

=
[
d

dE
cot δ`(E)

]
E=Er

. (14.375)

From this expanded form of cot δ`(E) we find the partial wave scattering am-
plitude near the resonance to be

f`(E) =
1

k cot δ`(E)− i k
=

1
k

1[
− 2

Γ (E − Er)− i
]

= −
1
2Γ

k
[
(E − Er) + iΓ

2

] . (14.376)

We also find that δ`(E) near Er to be of the form

δ`(E) =
π

2
+ tan−1

(
E − Er

Γ
2

)
. (14.377)
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Substituting (14.376) in (14.370) we find the partial cross section to be

σ`(E) =
4π
k2

(2`+ 1)
(

Γ
2

)2
(E − Er)2 + 1

4Γ2
. (14.378)

We note that as (14.374) shows the slope of δ`(E) ar E = Er is equal to 2
Γ .

Thus the sharper the change in δ`(E), the sharper is the resonance.

14.15 The Born Series

The simplest way of solving the integral equation (14.194) is by iterative-
perturbation technique [4]. Using subscripts to indicate the order of the iteration
we have

T+
1 (kout,kin) = V (kout,kin), (14.379)

T+
2 (kout,kin) = V (kout,kin) +

2m
(2π)3h̄2

∫
V (kout,q)V (q,kin)

k2
in − q2 + iε

d3q, (14.380)

T+
3 (kout,kin) = T+

2 (kout,kin)

+
(

2m
h̄2

)2( 1
(2π)6

)∫
V (kout,q)V (q,p)V (p,kin)

(k2
in − q2 + iε)(k2

in − p2 + iε)
d3qd3p,

(14.381)

and similar equations for T+
4 (kout,kin), T+

5 (kout,kin) etc.
Once Tn(kout,kin) is determined the scattering amplitude to the n-th

order of iteration can be obtained from (14.201);

fBn(θ, φ) = − m

2πh̄2Tn(kout,kin). (14.382)

The rate of convergence of the series shown in (14.379)–(14.381), that is the
Born series depends on the strength of the potential.

Let us consider the first term in the Born approximation fB1 which is
given by

fB1(θ, φ) = − m

2πh̄2V (kout,kin) = − m

2πh̄2

∫
e−i(kin−kout)·r V (r)d3r. (14.383)

We can write fB1(θ, φ) in terms of the momentum transfer vector ∆ which we
define as

∆ = kin − kout =
1
h̄

(pin − pout). (14.384)

For elastic scattering |kin| = |kout| = k, therefore

∆2 = 2k2 − 2k2 cos θ = 4k2 sin2 θ

2
, (14.385)
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or
∆ = 2k sin

θ

2
. (14.386)

Thus we find a simple expression for fB1(θ, φ)

fB1(θ, φ) = − m

2h̄2

∫
e−i∆·r V (r)d3r (14.387)

Now if the potential is central V (r) = V (r), then we can choose ∆ to be in the
direction of the polar axis. By carrying out the integration over the angular
coordinates of r we obtain

fB1(k, θ) = − 2m
∆h̄2

∫ ∞
0

r sin[∆(k, θ)r] V (r)dr. (14.388)

This result shows that for central potentials fB1 is independent of the azimuthal
angle φ.

We can expand fB1(k, θ) in terms of P`(cos θ) noting that ∆2 = 2k2(1−
cos θ);

fB1(k, θ) = −2m
h̄2

∫ ∞
0

r2
∞∑
`=0

(2`+ 1)P`(cos θ) j2
` (kr)V (r)dr

=
∞∑
`=0

(2`+ 1)P`(cos θ)
tan δB`
k

, (14.389)

where
tan δB` = −k

∫ ∞
0

j2
` (kr)v(r)r2dr, (14.390)

and where we have replaced V (r) by v(r), Eq. (14.40). We can obtain the
same result from the integral equation for the partial wave function, (14.41), by
noting that for a weak potential the solution of the Schrödinger equation can
be approximated by

u`(k, r) ≈ r cos δ` j`(kr). (14.391)

Now if we substitute (14.391) in (14.42) we find Eq. (14.390).
Convergence of the Born Series — Conditions for the convergence

of the Born series can be obtained from the theory of the Fredholm integral
equation of the second kind [32]. The inhomogeneous Fredholm equation is of
the form

f(x) = g(x) + λ

∫ b

a

K(x, y)f(y)dy, (14.392)

where g(x) and K(x, y) are both square integrable functions in the range a ≤
x ≤ b, and where λ is a parameter. The perturbative solution of (14.392) is
given by Liouville-Neumann series [5]

f(x) = g(x) + λg1(x) + λ2g2(x) + · · · , (14.393)
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where

gn(x) =
∫ b

a

[K(x, y)]ng(y)dy, (14.394)

provided that

|λ|

[∫ b

a

dx

∫ b

a

|K(x, y)|2dy

]
< 1. (14.395)

When this condition is satisfied then the series (14.393) converges absolutely
and uniformly in x in the interval a ≤ x ≤ b [32].

Let us apply this result to the the integral equation (14.20) for the wave
function. We note that this equation in its present form is not of Fredholm type.
To make it a Fredholm equation we multiply it by

√
|V (r)| and introduce Ψ(r)

and Φ(r) by
Ψ(r) =

√
|V (r)|ψ(r), (14.396)

and
Φ(r) =

√
|V (r)|eik·r. (14.397)

Then Eq. (14.20) changes to

Ψ(r) = Φ(r) +
∫
K (r, r′) Ψ (r′) d3r. (14.398)

In this equation both Φ(r) and K (r, r′) are square integrable functions, and
(14.398) is a Fredholm equation of the second kind. Therefore we can use the
criterion for the convergence of the Born (or Liouville–Neumann) series which
is [∫

|K (r, r′)|2 d3rd3r′
] 1

2

< 1, (14.399)

to find the condition that the potential, V (r), has to satisfy. For real wave
number k, this condition can also be written as

1
4π

[∫
|V (r)| |V (r′)| 1

|r− r′|
d3r d3r′

] 1
2

< 1, (14.400)

By defining B to be the maximum of the integral

B = max
1

4π

∫
|V (r′)|
|r− r′|

d3r′, (14.401)

when r is varied, we find that the inequality (14.400) simplifies to

B < 1, for all r. (14.402)

For a central potential this inequality reduces to∫ ∞
0

r|V (r)|dr < 1. (14.403)
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But this is exactly Bergmann’s condition derived in Sec. 14.12 for the nonexis-
tence of a bound state. Thus we conclude that the Born series [37],[38] converges
for all energies provided that −|V (r)| does not support any bound state.

Second Born Approximation — As an example let us calculate the
first and the second Born approximation for the Yukawa potential [4]

V (r) = V0
eµr

µr
, (14.404)

where V0 and µ are constants. By substituting this potential in (14.383) and
evaluating the integral we find

fB1(k, θ) = − mV0

2µh̄2 (µ2 + ∆2(k, θ))
= − mV0

2µh̄2
(
µ2 + 4k2 sin2 θ

2

) . (14.405)

We find the second order of iteration from Eq. (14.380) and the Fourier trans-
form of the potential (14.379);

T+
2 (kout,kin) = V (kout,kin)

+
4mV 2

0

πµ2

∫
d3q

[µ2 + (q− kin)2] [µ2 + (q− kout)2] (k2
in − q2 + iε)

= V (∆) +
4mV 2

0

πµ2h̄2M(∆, k), (14.406)

where

M(∆, k) =
π2

∆
√
µ4 + 4k2 (µ2 + ∆2)

×

{
tan−1

[
µ∆√

µ4 + 4k2 (µ2 + ∆2)

]

+
i

2
ln

[√
µ4 + 4k2 (µ2 + ∆2) + 2∆2√
µ4 + 4k2 (µ2 + ∆2)− 2∆2

]}
. (14.407)

Substituting (14.407) in (14.201) gives us the scattering amplitude to the second
order of the T -matrix.

For the scattering of a particle of charge Ze from a center of charge Z ′e,
i.e. Rutherford scattering we can derive the scattering amplitude by observing
that the Coulomb potential can be written as

Vc = lim
µ→0

[
ZZ ′e2µ

(
e−µr

µr

)]
. (14.408)

Thus by replacing V0
µ by ZZ ′e2 in (14.405) and then taking the limit of µ→ 0

we find the scattering amplitude fB1(θ) to be

fB1(θ) = − mZZ ′e2

2h̄2k2 sin2 θ
2

= − ZZ ′e2

4E sin2 θ
2

, (14.409)
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and from fB1(θ) we obtain the cross section

dσ

dΩ
= |fB1(θ)|2 =

(
ZZ ′e2

4E sin2 θ
2

)2

. (14.410)

This result is identical with the classical cross section for scattering of a charged
particle in the Coulomb field (Rutherford formula) [39]. It is also identical with
the exact quantum mechanical result found by solving the Schrödinger equation
in parabolic coordinates, Eq. (14.139) [40].

14.16 Impact Parameter Representation of the
Scattering Amplitude

For high energy scattering a large number of phase shifts contribute to the
scattering amplitude. Rather than calculating a large number of phase shifts
and adding the partial wave scattering amplitudes, we use a different approach
and replace the summation over partial waves by integration over the impact
parameter [41]. Let us start with the integral equation for the T -matrix

T+(p,k) = V (p,k)− 1
(2π)3

∫
V (p,q)T+(q,k)
q2 − k2 − iε

d3q, (14.411)

where we have set h̄2 = 2m = 1. We choose our coordinate system such that

k̂ = (0, 0 1), (14.412)

p̂ = (sin θ cosφ, sin θ sinφ, cos θ), (14.413)

and
q̂ = (sinβ cosα, sinα sinβ, cosβ), (14.414)

therefore

cos Θ = q̂ · p̂ = sin θ sinβ cos(φ− α) + cos θ cosβ. (14.415)

Now we define
y = sin

θ

2
, (14.416)

and introduce two new functions H+ and B by the relations [42]

T+(p, y, k) = −4π
∫ ∞

0

J0(2pby)H+(p, b, k)bdb, (14.417)

V (p, y, k) = −4π
∫ ∞

0

J0(2pby)B(p, b, k)bdb, (14.418)
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where J0(z) is the cylindrical Bessel function of order zero. By substituting
(14.417) and (14.418) in (14.411) we have∫ ∞

0

J0

(
2pb sin

θ

2

)
[H+(p, b, k)−B(p, b, k)]bdb

=
1

2π2

∫ ∞
0

q2dq

q2 − k2 − iε

∫ ∞
0

∫ ∞
0

B(p, b′, q)H+(q, b′′, k)

×
{∫

J0

(
2pb′ sin

Θ
2

)
J0

(
2qb′′ sin

β

2

)
dΩq

}
b′ db′ b′′ db′′. (14.419)

Now let us consider the integral

I =
1

4π

∫
J0

(
2pb′ sin

Θ
2

)
J0

(
2qb′′ sin

β

2

)
dΩq. (14.420)

We can simplify this integral by noting that [43]∫ π

0

J0

[√
z2 + Z2 − 2zZ cosφ

]
dφ = πJ0(z)J0(Z) (14.421)

and∫ 2π

0

J0

(
2pb sin

Θ
2

)
dα = 2πJ0

(
2pb′ sin

θ

2
cos

β

2

)
J0

(
2pb′ sin

β

2
cos

θ

2

)
.

(14.422)
By substituting these two integrals in (14.420) we obtain

I(p, y, q) =
1
2

∫ 1

−1

J0

(
2qb′′ sin

β

2

)
J0

(
2pb′ sin

θ

2
cos

β

2

)
× J0

(
2pb′ sin

β

2
cos

θ

2

)
d cosβ.

(14.423)

This last relation can also be written as

I(p, y, q) =
1
π

∫ π

0

J1(2β)
β

dφ, (14.424)

where

β2 = p2b′2 + q2b′′2 − 2pqb′b′′ cos
θ

2
cosφ. (14.425)

Next if we define the propagator G (p, q, b′, b′′; b) by

G (p, q, b′, b′′; b) =
2p2

π

∫ π

0

dφ

∫ π

0

sin
θ

2
cos

θ

2
J0

(
2pb sin

θ

2

)
J1[2β(θ, φ)]
β(θ, φ)

dθ,

(14.426)
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and use

∫ ∞
0

J0

(
2pb sin

θ

2

)
J0

(
2pb sin

θ′

2

)
b db =

δ
(

sin θ
2 − sin θ′

2

)
4p2 sin θ

2

, (14.427)

we can write I(p, y, q) as

I(p, y, q) =
∫ ∞

0

G (p, q, b′, b′′; b) J0(2pby)b db. (14.428)

Finally by substituting for I in Eq. (14.419) and using (14.427) we find

H+(p, b, k) = B(p, b, k) +
2
π

∫ ∞
0

q2dq

q2 − k2 − iε

×
∫ ∞

0

∫ ∞
0

B (p, b′, q)G (p, q, b′, b′′; b)H+ (q, b′′, k) b′ db′ b′′ db′′.

(14.429)

This is the integral equation for H+(p, b, k) with G given by (14.429). In the
high energy limit, Eq. (14.423) for I can be reduced to

I(p, y, q) =
1
2

∫ 1

−1

J0

(
2qb′′ sin

β

2

)
J0

(
2pb′ sin

θ

2
cos

β

2

)
× J0

(
2pb′ sin

β

2
cos

θ

2

)
d(cos θ)

→ J0

(
2pb′ sin

θ

2

) δ
(
b′′ − p

q b
)

2qpb′
as p or q →∞. (14.430)

Therefore in the high energy limit the kernel G becomes

G (q, p, b′, b′′; b) ≈ 1
2pqb′b

δ (b− b′) δ
(
b′′ − p

q
b′
)
. (14.431)

Substituting for G from (14.431) in (14.429), we can simplify the integral equa-
tion (14.429)

H+(p, b, k) = B(p, b, k)+
1
π

∫ ∞
0

dq

q2 − k2 − iε
B(p, b, q)H+

(
q,
p

q
b, k

)
. (14.432)

Noting that
1

q2 − k2 − iε
= P 1

q2 − k2
+ iπδ

(
q2 − p2

)
, (14.433)

and in the high energy limit the contribution from the principal value integral
is small compared with the contribution from the δ-function, we can evaluate
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the integral in (14.432) in this limit. Thus for the diagonal elements of H+ we
find [44]

H+(k, b, k) =
B(k, b, k)

1− i
2kB(k, b, k)

. (14.434)

While B(k, b, q) can be determined from the inverse Bessel transform of (14.418)
it is convenient to obtain it directly from the potential. For this we write v(p,k)
for a central force in the expanded form;

v(k, k cos θ) = 4π
∞∑
`=0

(2`+ 1)P`(cos θ)v`(k, k), (14.435)

where v`(k, k) is defined by (14.207)

v`(k, k) =
2k2

π

∫ ∞
0

j2
` (kr)v(r)r2dr = k

∫ ∞
0

J2
`+ 1

2
(kr)v(r)rdr. (14.436)

Next we replace P`(cos θ) in (14.435) by [4]

P`
(
1− 2y2

)
=
∫ ∞

0

J2`+1(x)J0(xy)dx, y = sin
θ

2
, (14.437)

to get

v(k, y) =
2π2

k2

∫ ∞
0

J0(2kby)kdb
∞∑
`=0

(2`+ 1)v`(k, k)J2`+1(2kb). (14.438)

By comparing (14.418) with (14.438) we find B(k, b, k),

B(k, b, k) = − π

2kb

∞∑
`=0

(2`+ 1)v`(k, k)J2`+1(2kb). (14.439)

In order to express B(k, b, k) in terms of the potential v(r) we substitute for
v`(k, k) in (14.439),

v`(k, k) =
2k2

π

∫ ∞
0

r2j2
` (kr)v(r)dr, (14.440)

and in addition we replace j`(kr) by J`+ 1
2
(kr) in (14.440)

j2
` (kr) =

π

2kr
J2
`+ 1

2
(kr), (14.441)

to get

B(k, b, k) = −π
b

∫ ∞
0

v(r)rdr

{ ∞∑
`=0

(2`+ 1)J2`+1(2kb)J2
`+ 1

2
(kr)

}
. (14.442)
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Figure 14.3: The sum in Eq. (14.443) is shown as a function of r, for k = 10 and b = 1.
The dashed line in this figure is a plot of the right-hand side of Eq. (14.443).

For high energies, i.e. large k we have the asymptotic relation{ ∞∑
`=0

(2`+ 1)J2`+1(2kb)J2
`+ 1

2
(kr)

}
→ bθ(r − b)

π
√
r2 − b2

, (14.443)

where θ(r− b) is the step function. The validity of this approximation for large
value of k is shown in Fig. 14.3. Substituting for the sum in (14.442) we find a
simple expression for B(k, b, k);

B(k, b, k) = −
∫ ∞
b

rv(r)√
r2 − b2

= −
∫ ∞

0

v
(√

z2 + b2
)
dz. (14.444)

The diagonal elements of the T+-matrix in high energy limit are obtained
by substituting (14.444) in (14.434) and (14.417). To simplify the resulting
T -matrix let us define the impact parameter phase shift δ(b) by

tan δ(b) = − 1
2k

∫ ∞
0

v
(√

z2 + b2
)
dz, (14.445)

then H+(k, b, k), Eq. (14.434), becomes

H+(k, b, k) = −ik
[
e2iδ(b) − 1

]
. (14.446)

Having obtained H+(k, b, k) from (14.417) we find the energy- and the angular-
dependence of the diagonal elements of the T -matrix

T+

(
k, sin

θ

2

)
= 4πik

∫ ∞
0

J0

(
2kb sin

θ

2

)[
e2iδ(b) − 1

]
bdb. (14.447)

Finally we get the scattering amplitude from Eq. (14.201). Writing the factors
m and h̄ explicitly we have

f(θ, k) = −ik
∫ ∞

0

J0

(
2kb sin

θ

2

)[
e2iδ(b) − 1

]
bdb. (14.448)
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14.17 Determination of the Impact Parameter
Phase Shift from the Differential Cross
Section

For elastic scattering, we can find the scattering amplitude from σ(θ) when f
is a function of θ only. We write Eq. (14.28) as

f(θ) = |f(θ)|eiν(θ) =

√
dσ(θ)
dΩ

eiν(θ), (14.449)

where ν(θ) which is the phase of f to be determined. From the unitarity con-
dition, Eq. (14.216), written in terms of f , i.e.

1
2i

[f(kout,kin)− f∗(kin,kout)] =
k

4π

∫
f∗(p,kout)f(p,kin)dΩp (14.450)

and Eq. (14.449) we obtain an integral equation for ν(θ) [45]√
dσ(θ)
dΩ

sin ν(θ) =
k

4π

∫ √
dσ (θ′)
dΩ′

dσ (θ′′)
dΩ′′

cos [ν (θ′)− ν (θ′′)] dΩp, (14.451)

where cos θ = k̂out · k̂in, cos θ′ = p̂ · k̂in and cos θ′′ = p̂ · k̂out and again we
have set 2m = h̄ = 1. The integral in (14.451) is over all possible directions of
the vector p. From Eqs. (14.448) and (14.449) it follows that√

dσ(θ)
dΩ

sin ν(θ) = k

∫ ∞
0

J0

(
2kb sin

θ

2

)
[1− 2 cos(2δ(k, b))]bdb. (14.452)

Next we change the variable from the scattering angle θ to the momentum
transfer ∆ = 2k sin θ

2 ,√
dσ

dΩ
(∆) sin ν(∆) = k

∫ ∞
0

J0 (b∆) [1− 2 cos(2δ(k, b))]bdb. (14.453)

For high energies ∆ can be regarded as a variable changing from zero to infinity.
In this limit we can invert Eq. (14.453) and find δ(k, b) in terms of dσ

dΩ (∆)

2 sin2 δ(k, b) =
1
k

∫ ∞
0

J0 (b∆)

√
dσ

dΩ
(∆) sin ν(∆)∆d∆, (14.454)

where we have used the Fourier–Bessel integral∫ ∞
0

Jn(b∆)b db
∫ ∞

0

Jn (b′∆)F (b′) b′ db′ = F (b). (14.455)
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Thus from the measurement of dσ(θ)
dΩ for high energy scattering we obtain δ(k, b).

Now we want to see how we can determine the interaction potential v(r)
if δ(k, b) is known. The simplest way is to start with Eq. (14.445),

tan δ(k, b) = − 1
2k

∫ ∞
0

v
(√

b2 + z2
)
dz = − 1

2k

∫ ∞
b

v(r)dr√
r2 − b2

. (14.456)

Here the left side of (14.456) is assumed to be known and we want to find v(r).
Thus (14.456) is an integral equation of Abel type for v(r). The solution of
(14.456) is given by [46]

v(r) =
4k
πr

d

dr

∫ ∞
0

tan δ
[
k,
√
r2 + x2

]
dx. (14.457)

The potential found from (14.457) is not static but is energy-dependent. An
alternative method is to use the Born approximation for the partial wave phase
shift, Eq. (14.390), to determine the potential v(r). Thus using the sum

∞∑
`=0

(−1)`(2`+ 1)j2
` (kr) = j0(2kr), (14.458)

we have
∞∑
`=0

(−1)`(2`+ 1) tan δB` = −k
∫ ∞

0

v(r)r2dr
∞∑
`=0

(−1)`(2`+ 1)j2
` (kr)

= −
∫ ∞

0

v(r)r2j0(2kr)dr. (14.459)

Now (14.459) is an integral equation for v(r) which can be solved by the inverse
Fourier–Bessel transform;

v(r) = − 8
πr

∫ ∞
0

{ ∞∑
`=0

(−1)`(2`+ 1) tan δB` (k)

}
sin(2kr)dk. (14.460)

We can also write (14.460) in terms of the phase shift δ(k, b) by replacing the
sum by an integral. To this end we change ` to ρ where ρ = kb = `+ 1

2 ;

v(r) = − 16
πr

∫ ∞
0

sin(2kr)dk
∫ ∞

0

ρ sin(πρ) tan δB` (ρ, k)dρ. (14.461)

A better way of inverting (14.456) is to use the sum

∞∑
`=0

(−1)``(`+ 1)(2`+ 1)j2
` (kr) = −kj1(2kr), (14.462)

and again replace the summation by integration to obtain

v(r) =
16
πr

∫ ∞
0

j1(2kr)dk
∫ ∞

0

ρ

(
ρ2 − 1

4

)
sin(πρ) tan δB` (ρ, k)dρ. (14.463)
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We note that in (14.463) the phase shifts for higher partial waves are weighed
more in the integral over ρ. Now the phase shifts for higher partial waves are
determined more accurately in the Born approximation, and therefore we expect
that v(r) obtained from (14.463) to be closer to the actual potential than the
one found from (14.460).

For a detailed account of the inversion of the empirical data to determine
the potential the reader is referred to the excellent monograph by Chadan and
Sabatier [47].

14.18 Elastic Scattering of Identical Particles

In this section we consider the scattering of two identical particles when (a) -
the target and projectile are bosons, and (b) - the two particles are fermions.
For scattering of two particles, since we can only observe the particles far from
the scattering region, we have situations shown in Fig. 14.4 (a) and (b), where
detectors D1 and D2 detect the scattered particles. In the case of identical
particles we do not know which detector registers which particle. As we will see
we have different cross sections depending whether the particles are fermions or
bosons.

Exchange Effects in the Case of Bosons — If r1 and r2 denote the
coordinates of the two particles and r is defined by r = r1 − r2, then the
asymptotic form of the wave function according to Eq. (14.21) is

ψ(r)r→∞ → eikr cos θ +
f(θ)
r
eikr. (14.464)

For the case of two bosons we have to symmetrize this wave function so that
by interchanging r1 and r2, ψ(r1, r2) should remain unchanged. Now in this
permutation of r1 and r2, r will change sign and becomes −r. This vector in
polar coordinates has the coordinates by (r, π − θ). Therefore the asymptotic
form symmetric wave function ψs(r) becomes

lim
r→∞

ψs(r) = lim
r→∞

[ψ(r) + ψ(−r)]

→
[
eikr cos θ + e−ikr cos θ +

f(θ) + f(π − θ)
r

eikr
]
.

(14.465)

The first two terms in (14.465) represent incoming particles one along the pos-
itive and the other along the negative z-axis. The scattered wave eikr

r has the
coefficient f(θ) + f(π − θ), and thus the cross section will be

dσs
dΩ

= |f(θ) + f(π − θ)|2. (14.466)
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(a)

(b)

Figure 14.4: Scattering of two particles in their center of mass system. (a) - Particle 1 is
detected in D1 and 2 in the detector D2. (b) - Particle 2 is detected in the detector D1 and
particle 1 is detected in D2. For two identical particles (a) and (b) are indistinguishable.

For the case of two distinguishable particles the differential cross section for
observing one of the two particles at θ, would be the sum of the two cross
sections

dσ

dΩ
= |f(θ)|2 + |f(π − θ)|2. (14.467)

The difference between the two cross sections (14.466) and (14.467) which is
given by

2Re {f∗(θ)f(π − θ)} , (14.468)
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is the effect of exchange symmetry and it arises from the symmetrization of the
wave function.

If we consider the scattering of two charged particle by Coulomb force, e.g.
for α−α scattering, from f(θ) for Rutherford scattering (14.409) and (14.466),
we obtain

dσs
dΩ

=
(
Z2e2

2mv2

)2
 1

sin4 θ
4

+
1

cos4 θ
4

+
2 cos

[(
Z2e2

h̄v

)
ln tan2 θ

2

]
sin2 θ

2 cos2 θ
2

 , (14.469)

where v is the relative speed of the two particles and m is their reduced mass,
m = 1

2mα, where mα is the mass of each α particle. This scattering of identical
bosons is called Mott scattering [48]. The last term in (14.469) is the exchange
effect, and is a purely quantum mechanical effect. This can be seen by consider-
ing the limit of the last term in (14.469) as h̄→ 0. In this limit Z2e2

h̄v →∞, and
the last term oscillates rapidly, and if we average this term over a small angle
it will vanish.

Exchange Effect for Scattering of Identical Fermions — If two spin
1
2 particles scatter off each other, then the total spin of the system is either zero
(for singlet state) and one (for triplet state). Now the total wave function which
is a product of a spin part and a space part must be antisymmetric, therefore
for singlet spin state the coordinate wave function must be symmetric. As we
have seen before for a symmetric coordinate wave function the total cross sec-
tion dσs

dΩ is given by (14.466). On the other hand for the triplet state the spins
are parallel and thus the coordinate wave function must be antisymmetric, and
thus the asymptotic form of ψt(r) becomes

lim
r→∞

ψt(r) = lim
r→∞

[ψ(r)− ψ(−r)]

→
[
eikr cos θ − e−ikr cos θ +

f(θ)− f(π − θ)
r

eikr
]
.(14.470)

From this asymptotic wave function we get the cross section dσt
dΩ where

dσt
dΩ

= |f(θ)− f(π − θ)|2. (14.471)

For the Coulomb scattering of two fermions in singlet state, the wave
function being symmetric, we get the same cross section as the one we found for
two bosons, that is (14.469). On the other hand for triplet state from (14.471)
we have

dσt
dΩ

=
(
Z2e2

2mv2

)2
 1

sin4 θ
4

+
1

cos4 θ
4

−
2 cos

[(
Z2e2

h̄v

)
ln tan2 θ

2

]
sin2 θ

2 cos2 θ
2

 . (14.472)

When both the particles in the target and in the beam are unpolarized then we
must find the average of the singlet and triplet cross sections. Noting that there
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is one spin state for singlet and three for triplet, therefore this average is

dσ

dΩ
=

1
4
dσs
dΩ

+
3
4
dσt
dΩ

=
(
Z2e2

2mv2

)2
 1

sin4 θ
4

+
1

cos4 θ
4

−
cos
[(

Z2e2

h̄v

)
ln tan2 θ

2

]
sin2 θ

2 cos2 θ
2

 .

(14.473)

Here we have assumed that each spin state has the same probability.

14.19 Transition Probability

The transition between the initial state |in〉 = |i〉 and the final state |out〉 = |f〉
is given by Eq. (14.175) which we write as

Sfi = δfi − 2πiδ(Ef − Ei)Tfi. (14.474)

From this expression we can find the transition probability per unit time which
is physically an important observable quantity. We observe that the transition
takes place between different states, i.e. i 6= f , and thus the term δfi will not
contribute to Sfi, but as long as Ef = Ei, and the energy is conserved, the
second term will contribute. We also note that in the case of transition into
continuum, the energy eigenstates can be highly degenerate.

Let us first define the transition amplitude Sfi(T ) for a long but finite
time, which we will denote by T ,

Sfi(T ) = −Tfi
(
i

h̄

)∫ 1
2T

− 1
2T

e
i
h̄ (Ei−Ef )tdt, (14.475)

so that
Sfi = lim

T→∞
Sfi(T ). (14.476)

Since Sfi(T ) is the transition amplitude over a period T of observation, the
transition probability is |Sfi(T )|2 over the same period, and the transition prob-
ability per unit time is

wi→f = lim
T→∞

|Sfi(T )|2

T
. (14.477)

Now for the limit of large T we have

lim
T→∞

sin2
[

1
2h̄ (Ei − Ef )T

](
1

2h̄

)2 T (Ei − Ef )2
→ 2πh̄δ(Ei − Ef ). (14.478)
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By substituting (14.478) in (14.477) we find a simple expression for wi→f

wi→f =
2π

h̄
δ(Ei − Ef )|Tfi|2, i 6= f. (14.479)

The singularity seen in (14.479) originates from the assumption that transition
is into a sharp state in continuum. In fact we want to calculate the transition
from the initial state i into a group of states centered about Ei = Ef . If we
denote the density of final states in the neighborhood of Ef by ρf (E), then
the transition probability into this group of states can be expressed in a simple
form:

wi→f =
2π

h̄

∫ Ef+ 1
2dE

Ef− 1
2dE

δ(Ei − Ef )|Tfi|2ρf (E)dE =
2π

h̄
ρf (E)|Tfi|2. (14.480)

This relation is the well-known Fermi’s golden rule.

14.20 Transition Probabilities for Forced
Harmonic Oscillator

Under the action of a time-dependent force an initial stationary state may pass
to another stationary state. Here we want to determine the probability of this
transition using the Heisenberg equations of motion. A very simple but in-
structive example of using the S- matrix discussed earlier in this chapter is to
calculate the transition probabilities for an oscillator coupled to a force which is
only a function of time [49]–[51]. For instance if we have a particle with charge
q bound by a harmonic force and placed in an electric field Ex(t) parallel to the
x-axis then its total Hamiltonian is

H =
p2

2m
+

1

2
mω2x2 − xF (t), (14.481)

where the force F (t) = qEx is only a function of time. We assume that F (t)
goes to zero as t→ ±∞ and that its time Fourier transform

f(ω) =

∫ ∞
−∞

F (t)eiωtdt, (14.482)

is well-defined. We now write H in terms of creation and annihilation operators,
Eqs. (5.35) and (5.36);

H = ωa†a− 1√
2α

(
a† + a

)
F (t), (14.483)

where α =
√
mω and we have set h̄ = 1. The Heisenberg equation for a(t) is

i
da(t)

dt
= [a(t), H] (14.484)
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or by calculating the commutator we can write it as(
−i d
dt

+ ω

)
a(t) =

1√
2α
F (t). (14.485)

Next let us define the in- and out- operators from the Heisenberg equation
(14.485) by a limiting procedure. We have assumed that F (t)→ 0 as t→ ±∞,
therefore asymptotically a(t) → a(0)e−iωt and a†(t) → a†(0)eiωt. With these
asymptotic conditions we define aout and ain by

lim
t→+∞

[
〈out|a(t)|in〉eiωt

]
= 〈out|aout|in〉, (14.486)

and
lim

t→−∞

[
〈out|a(t)|in〉eiωt

]
= 〈out|ain|in〉. (14.487)

Similarly for a†out we have

lim
t→+∞

[〈
out

∣∣a†(t)∣∣ in〉 e−iωt] =
〈
out

∣∣∣a†out∣∣∣ in〉 , (14.488)

and the corresponding relation for a†(t) for the limit of t → −∞. From the
properties of the creation and annihilation operators it follows that

a†out|n, out〉 =
√
n+ 1 |n+ 1, out〉, (14.489)(

a†out

)n
|0, out〉 =

√
n! |n, out〉, (14.490)

aout|n, out〉 =
√
n |n− 1, out〉, (14.491)

and
aout|0, out〉 = 0, (14.492)

with a similar set of equations for in-states.
Next we define the unitary S-matrix by

S =
∑
j

|j, in〉〈j, out| (14.493)

with its inverse which is

S−1 =
∑
k

|k, out〉〈k, in|. (14.494)

We can easily verify that

S†S = SS† =
∑
k

|k, out〉〈k, out| = 1, (14.495)
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where 1 is the unit matrix. The matrix elements of S can be determined from
(14.494);

Sk,j = 〈k, out|S|j, out〉 =
∑
i

〈k, out|i, in〉〈i, out|j, out〉

=
∑
i

δij〈k, out|i, in〉 = 〈k, out|j, in〉. (14.496)

From this S-matrix we find the transition probability from the initial state k to
the final state j;

Pk→j = |〈j, out|k, in〉|2. (14.497)

In order to calculate Pk→j we start by evaluating the matrix element Sj,0;

Sj,0 = 〈j, out|0, in〉. (14.498)

With the help of Eqs. (14.486) and (14.491) we write Sj,0 as

Sj,0 =
1√
j
〈j − 1, out|aout|0, in〉

=
1√
j

lim
t→+∞

[
〈j − 1, out|a(t)|0, in〉eiωt

]
. (14.499)

This matrix element can also be written as an integral over a(t), i.e.

Sj,0 =
√
j

∫ +∞

−∞

d

dt

[
〈j − 1, out|a(t)|0, in〉eiωt

]
dt

+
√
j lim
t→−∞

[
〈j − 1, out|a(t)|0, in〉eiωt

]
. (14.500)

Since
lim

t→−∞
a(t)|0, in〉 = ain|0, in〉 = 0, (14.501)

the last term in (14.500) will not contribute to Sj,0. By taking the derivative of
the integrand in (14.500) and substituting for da(t)

dt from the Heisenberg equation
(14.485) we obtain

Sj,0 =
i√
2jα

∫ +∞

−∞
eiωt〈j − 1, out|F (t)|0, in〉dt. (14.502)

The force F (t) is a c-number, and can be taken out of the expression for the
expectation value, then the integral in (14.502) gives us the Fourier transform
of F (t);

Sj,0 =
i√
2jα

f(ω)〈j − 1, out|0, in〉. (14.503)

By comparing (14.503) with (14.498) we observe that Sj,0 can be expressed in
terms of Sj−1,0;

Sj,0 =
i√
2jα

f(ω)Sj−1,0. (14.504)
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Now repeating this process j − 1 times we arrive at

Sj,0 = [if(ω)]j
1√
j!

(
√

2α)−jS0,0. (14.505)

Thus the probability for j → 0 transition becomes

Pj→0 = |Sj,0|2 =
1

(2α2)j
1
j!
|f(ω)|2j |S0,0|2. (14.506)

Let us introduce the dimensionless quantity ξ by

ξ =
1

2α2
|f(ω)|2, (14.507)

and observe that the sum of probabilities for transition from j = 0, 1, 2 · · · to
the ground state 0 must be equal to unity;

∞∑
j=0

Pj→0 = |S0,0|2
∞∑
j=0

ξj

j!
= |S0,0|2eξ = 1. (14.508)

Using this argument we find that |S0,0|2 = e−ξ. By substituting this result in
(14.506) we obtain Pj→0 in terms of the known quantity ξ;

Pj→0 =
(
ξj

j!

)
e−ξ. (14.509)

As (14.509) shows the transition probability between an excited level j and the
ground state 0 has the form of a Poisson distribution.

Having found the transition from a higher level to the ground state we
now proceed to find the transition probability from one excited level j to a lower
level k, (j ≥ k). In this case we start with

Sj,k = 〈j, out|k, in〉 =
1√
k

〈
j, out

∣∣∣a†in∣∣∣ k − 1, in
〉

=
1√
k

lim
t→−∞

(〈
j, out

∣∣a†(t)∣∣ k − 1, in
〉
e−iωt

)
. (14.510)

Again we write (14.510) as an integral over a†(t)

Sj,k = − 1√
k

∫ +∞

−∞
e−iωt

〈
j, out

∣∣∣∣[da†(t)dt
− iωa†(t)

]∣∣∣∣ k − 1, in
〉
dt

+
1√
k

lim
t→+∞

(〈
j, out

∣∣a†(t)∣∣ k − 1, in
〉
e−iωt

)
, (14.511)

and we can simplify and write it as

Sj,k =
i√
2kα

∫ +∞

−∞
e−iωtF ∗(t)dt 〈j, out|k − 1, in〉
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+

√
j

k
〈j − 1, out|k − 1, in〉

=
i√
2kα

f∗(ω)Sj,k−1 +

√
j

k
Sj−1,k−1. (14.512)

This relation is a recurrence relation connecting Sj,k to both Sj,k−1 and Sj−1,k−1.
By iterating the recurrence relation (14.512) we arrive at the result [49]

Sj,k =
k∑
l=0

k!
(k − l)!l!

[if∗(t)]l
1√
2α

[
j!

k!(j − k + l)!

] 1
2

Sj−k+l,0. (14.513)

We have already determined Sj−k+l,0, Eq. (14.505), with j → j − k − l. If we
substitute from that equation in (14.513) we find

Sj,k =
√
k!j!

(
√

2α)j−k
ij−k(f(ω))j−ke−

ξ
2

k∑
l=0

(−ξ)l

(j − k + l)!(k − l)!l!
. (14.514)

Thus the probability for j → k transition is

Pj→k = |Sj,k|2 = k!j!ξj−ke−ξ
[

k∑
l=0

(−ξ)l

(j − k + l)!(k − l)!l!

]2

. (14.515)

The sum in (14.515) can be written in terms of Laguerre polynomials [43];

Pj→k =
k!
j!
ξj−ke−ξ

[
Lj−kk (ξ)

]2
, j ≥ k. (14.516)

For j < k we simply interchange the integers j and k in (14.516);

Pj→k =
j!
k!
ξk−je−ξ

[
Lk−jj (ξ)

]2
, j < k. (14.517)

From this expression we can determine the mean-energy transform ∆Ek;

∆Ek = ω
∞∑
j=0

(j − k)Pj→k

= ω
∞∑
j=k

(j − k)Pj→k + ω
k−1∑
j=0

(k − j)Pk→j . (14.518)

Using the properties of the Laguerre polynomials we can write the last factor
in (14.516) as [

Lj−kk (ξ)
]2

=
j!
k!

k∑
l=0

ξ2lLj−k+2l
k−l (2ξ)

(j − k + l)!l!
. (14.519)
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Substituting for Pj→k and Pk→j in (14.518) we obtain

∆Ek
ω

=
∞∑
n=0

ne−ξξn
k∑
l=0

ξ2lLn+2l
k−l (2ξ)

(n+ l)!l!

−
k∑

n=1

ne−ξξn
k−n∑
l=0

ξ2lLn+2l
k−n−l(2ξ)

(n+ l)!l!
. (14.520)

Next we set n = j − k in (14.516) and n = k − j in (14.520), and also change
the indices

l→ l + n, n→ −n. (14.521)

These changes allow us to combine the second sum in (14.520) with the first
with the result that

∆Ek
ω

= e−ξ
k∑
l=0

∞∑
n=−l

nξn+2lLn+2l
k−l (2ξ)

(n+ l)!l!
. (14.522)

One more change, viz, n→ n+ l gives us

∆Ek
ω

= e−ξ
k∑
l=0

∞∑
n=0

(n− l)ξn+lLn+l
k−l(2ξ)

n!l!
. (14.523)

The Laguerre polynomials can be obtained from the Rodrigues representation
[43]

Lβn =
eξξ−β

n!
dn

dξn
(
e−ξξn+β

)
, (14.524)

and if we use this expression in (14.522) we find

∆Ek
ω

= eξ
k∑
l=0

∞∑
n=0

(n− l)
n!l!(k − l)!2n+l

dk−l

duk−l
(
e−uuk+n

)
, (14.525)

where u = 2ξ. We observe that from the sum

∞∑
n=0

(n− l)
(
u
2

)n
n!

= e
u
2

(u
2
− l
)
, (14.526)

and (14.522) we obtain

∆Ek
ω

e−ξ =
k∑
l=0

2−l−1

l!(k − l)!
dk−l

duk−l
(
e−

u
2 uk+1

)
−

k∑
l=0

2−l

(l − 1)!(k − l)!
dk−l

duk−l
(
e−

u
2 uk

)
. (14.527)
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Making use of the binomial expansion and a shift of the index in the second
term we find

e−ξ
∆Ek
ω

=
1
k!

(
1 +

d

dξ

)k (
e−ξξk+1

)
− 1

(k − 1)!

(
1 +

d

dξ

)k−1 (
e−ξξk

)
. (14.528)

Noting that (
1 +

d

dξ

)(
e−ξxk

)
= ke−ξξk−1, (14.529)

equation (14.523) can be reduced to

∆Ek
ω

= ξ =
1

2mω
|f(ω)|2. (14.530)

Classical Expression for the Transfer of Energy — The result that
we have found for ∆Ek

ω is identical to the classical expression for the energy
transfer and is independent of the Planck constant h̄. Consider the classical
forced oscillator with the natural frequency ω

ẍ(t) + ω2x(t) =
1
m
F (t), (14.531)

with F (t)→ 0 as t→ ±∞. Let us assume that initially the oscillator is at rest
with zero velocity x(−∞) = ẋ(−∞) = 0, and thus its total energy is zero. In
order to integrate (14.531) we introduce z(t) by

z(t) = ẋ(t)− iωx(t). (14.532)

Using the variable z(t) we write (14.531) as

ż(t) + iωz(t) =
1
m
F (t). (14.533)

For integrating this first order differential equation we multiply it by eiωt and
integrate it ∫ t

−∞
(ż(t) + iωz(t)) eiωtdt =

1
m

∫ t

−∞
F (t)eiωtdt. (14.534)

By integrating the left-hand side of (14.534) by parts we find

lim
t→+∞

(
z(t)eiωt

)
=

1
m

∫ t

−∞
F (t)eiωtdt =

1
m
f(ω). (14.535)

The total energy of the oscillator as t→ +∞ becomes

E(t→ +∞) =
m

2
(
ẋ2 + ω2x2

)
=
m

2
|z(t→ +∞)|2. (14.536)
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Noting that the oscillator initially has zero energy, therefore the energy transfer
is

∆E = E(t→ +∞)− E(t→ −∞) =
m

2
|z(t→ +∞)|2 =

1
2m
|f(ω)|2, (14.537)

which is the same as the quantum mechanical result (14.530).
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Chapter 15

Quantum Diffraction

How a wave train representing an incident particle propagates in space and time
and how sharply the wave front can be defined for such a wave? These ques-
tions arise naturally in studying a number of phenomena including the problem
of the decay of an unstable state through tunneling [1],[2]. This problem which
is related to the energy-time uncertainty relation, mathematically resembles the
problem of Fraunhofer diffraction in optics. For this reason it is generally re-
ferred to as diffraction in time [3],[4]. In the first part of this chapter we study
the simple and exactly solvable case of a beam of particles which is incident on
a completely absorbing shutter and this shutter opens suddenly. We want to
determine the profile of the probability density after the shutter opens.

In the second part we consider the time-independent aspect of scatter-
ing of an incident wave, again by a completely absorbing sphere. In nearly
all scattering processes diffraction patterns are present and in particular when
the scatterer is a composite system which may be regarded as a homogeneous
structureless body then the target can be approximated by an absorptive (imagi-
nary) potential. This pattern show up in the angular distribution of the particles
undergoing the diffraction scattering of Fraunhofer type where there is a pro-
nounced maximum in the forward direction when the scattering angle θ satisfies
the inequality

θ ≤ λ

R
. (15.1)

In this relation λ is the de Broglie wavelength of the particle, λ = 2π
k , and R

is the radius of the absorptive target. Quantum diffraction of this type has
been observed in the scattering of hadrons by atomic nuclei [5]. In this case if
the energy of the projectile (hadron) is large enough to satisfy the inequality
λ � R, then the nuclei become strongly absorptive. The scattering caused by
the strongly absorptive nucleus for short wavelengths of the incident particles
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is analogous to the diffraction of light by a black disk in optics.

15.1 Diffraction in Time

In this section we study the problem of propagation of a beam of particles each
of unit mass m = 1 and with momentum k (h̄ = 1) coming from x→ −∞ and
impinging on a completely absorbing shutter located at x = 0. The shutter can
be partially or perfectly reflecting or completely absorbing, but the nature of
shutter will not affect the state at the other side of the shutter. The initial wave
function for the incident beam is given by

φ(x) =
{
eikx x ≤ 0
0 x > 0

. (15.2)

Let us consider the time evolution of this wave function if at t = 0 we remove
the shutter. Thus for t > 0 we solve the time-dependent Schrödinger equation

i
∂ψ(x, t)
∂t

= −1
2
∂2ψ(x, t)
∂x2

, (15.3)

with the initial condition

ψ(x, 0) = eikxθ(−x), (15.4)

assuming for the moment that the shutter is completely absorbing. This can be
done with the help of the Green function

G (x− x′, t) =
1√
2πt

e
−iπ

4 exp

[
i (x− x′)2

2t

]
. (15.5)

This Green function is the solution of the inhomogeneous wave function

i
∂G

∂t
+

1
2
∂2G(x, t)
∂x2

= −δ (x− x′) δ (t− t′) . (15.6)

By the standard technique of solving an inhomogeneous differential equation
with the aid of the Green function from Eqs. (15.3), (15.4) and (15.6) we find
that ψ(x, t) is given by

ψ(x, t) = 2M(x, k, t) =
∫ ∞
−∞

G (x− x′, t) eikx
′
θ (−x′) dx′

=
1√
2
e−

iπ
4 exp

(
ikx− i

2
k2t

)∫ t

−∞
exp

(
iπ

2
u2

)
du,

(15.7)
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Figure 15.1: The probability density |ψ(x, k, t)|2 for fixed time, t = 2, plotted as a function
of x showing the diffraction pattern to the right of the shutter.

where M(x, k, t) is the Moshinsky function [4] and u is defined by

u =
1√
πt

(x′ − x) + k

√
t

π
. (15.8)

The function M(x, k, t) can also be written in terms of the error function, erfc,

M(x, k, t) = exp
[
i

(
kx− k2t

2

)]
erfc

[
(1− i)

(
x− kt√

4t

)]
. (15.9)

If the shutter is not a perfect absorber but it partially reflects the wave, then
ψ(x, k, t) in (15.3) must be replaced by

ψ(x, k, t) =
{

2
{
eikx +R(k)e−ikx

}
x ≤ 0

0 x > 0
(15.10)

where R(k) is the reflection amplitude for the surface at x = 0. In this case the
time-dependent wave function becomes

ψ(x, k, t) = M(x, k, t) +R(k)M(x,−k, t). (15.11)

For simplicity we choose the special case of R(k) = 1. Now if we close the
shutter at t = T we want to determine the spread in energy associated with the
wave function

ψ(x, k, t) = M(x, k, t) +M(x,−k, t), (15.12)

defined in the interval 0 ≤ x ≤ ∞. The time-dependent probability density
associated with ψ(x, k, t) is plotted at a fixed time in Fig. 15.1. Now we con-
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sider a complete set of eigenfunctions for 0 ≤ x ≤ ∞ satisfying the boundary
condition φ (k′, x) = 0. This set is given by

φ (E′, x) =

√
2
πk′

sin (k′x) , E′ =
1
2
k′ 2, (15.13)

and the members of this set form an orthonormal group of functions:∫ ∞
0

φ(E, x)φ (E′, x) dx = δ (E − E′) . (15.14)

We expand the wave function ψ(x, t) in terms of the set {φ (k′, x)}∫ ∞
0

ψ(x, k, t)φ (k′, x) dx = B (k, k′, t) , (15.15)

where B (k, k′, t) measures the overlap between ψ(x, k, t) and φ (k′, x).

B (k, k′, t) =

√
2k′

π

[
−1

k2 − k′ 2
M0(k, t)

+
1

2k′ (k − k′)
M0 (k′, t)− 1

2k′ (k + k′)
M0 (−k′, t)

]
,

(15.16)

with M0(k, t) defined by

M0(k, t) = M(x = 0, k, t) = e−i
k2t
2 erfc

[
−(1− i)k

√
t

2

]
. (15.17)

Now suppose that we open the shuttered at t = 0 and close it at t = T , then
we want to find the spread energy of the state (15.12) which is defined in the
interval 0 ≤ x ≤ ∞. We find this energy spread by calculating P (E,E′, T ) =
|B (k, k′, T )|2;

P (E,E′, t) =
2k′

π

(
1

k2 − k′ 2

)2

|[M0(k, T ) +M0(−k, T )]

− [M0 (k′, T ) +M0 (−k′, T )]|2 . (15.18)

Since

erfc(z) + erfc(−z) =
2√
π

∫ ∞
−∞

e−u
2
du = 2, (15.19)

therefore from (15.17) we have

M0(k, T ) +M0(−k, T ) = 2 exp
(
− ik

2T

2

)
. (15.20)



Absorptive Scatterer 463

By substituting for M0(k, T ) and M0(−k, T ) from (15.20) in (15.18) we simplify
P (k, k′, T ) and now we write it in terms of E and E′;

P (E,E′, t) =
8

π

√
2E′

1

(E − E′)2 sin2

[
(E − E′)T

2

]
. (15.21)

This is yet another version of the time-energy uncertainty relation that we have
discussed earlier.

15.2 High Energy Scattering from an
Absorptive Target

The high energy scattering of a beam of particles from a composite system can
be described by a complex (or an optical) potential

v(r) = vR(r) + ivI(r), (15.22)

where the imaginary part of the potential is negative definite function of r

vI(r) ≤ 0 for all r. (15.23)

Due to the presence of vI(r) which is an absorptive potential, the conservation
of current and hence the conservation of the number of scattered particles is
violated since some of the incoming particles are absorbed by the target.

A simple way of formulating the high energy scattering of particles is to
use the impact parameter approximation discussed in the previous chapter. In
this approach we find that the scattering amplitude when the interaction v(r)
is complex, Eq. (14.445) changes to

tan[δ(b) + iη(b)] = − 1

2k

∫ ∞
0

{
vR

(√
z2 + b2

)
+ ivI

(√
z2 + b2

)}
dz. (15.24)

That is the phase shift also becomes a complex function of b and k. Noting
that for high energies the phases are small we can replace tan[δ(b) + iη(b)] by
δ(b) + iη(b) in (15.24). Substituting for these phase in Eq. (14.447) for f(θ, k)
we obtain

f(θ, k) = −ik
∫ ∞

0

J0

(
2kb sin

θ

2

)[
e−2iδ(b)−2η(b) − 1

]
b db. (15.25)

A simple model of high energy scattering illustrates the phenomenon of
diffraction in quantum theory [6],[7]. Suppose that the potential is confined to
a sphere of radius a which and has a large negative imaginary part which makes
it absorptive.

V (r) =

{
−i∞ r < a
0, r > a

. (15.26)
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Figure 15.2: The angular dependence of the differential cross section is shown for scattering
from an absorptive sphere.

We also assume that the incident particles have high energies so that Eqs.
(14.445) and (14.448) are valid for the description of scattering. From Eqs.
(15.26) and (14.445) we obtain

e2iδ(b) =
{

0 b < a
1, b > a

. (15.27)

Using (15.27) we find the scattering amplitude analytically

f(θ) = −ik
∫ a

0

J0

(
2kb sin

θ

2

)
bdb = ia

J1

(
2ka sin θ

2

)
2 sin θ

2

. (15.28)

The diffraction cross section found from (15.28) is

dσ(θ)
dΩ

= |f(θ)|2 =
∣∣∣∣−ik ∫ a

0

J0

(
2kb sin

θ

2

)
bdb

∣∣∣∣2
=

(
ka2
)2 J2

1

(
2ka sin θ

2

)(
2ka sin θ

2

)2 , (15.29)

and this has the form of a well-known result of Fraunhofer diffraction scattering
by a sphere (see Fig. 15.2. By integrating (15.29) we find that the total cross
section is

σtotal =
4π
k

Imf(θ = 0) = 2
∫ [

1− Re
(
e2iδ(b)

)]
2πbdb

= 2πa2. (15.30)
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Chapter 16

Motion of a Charged
Particle in Electromagnetic
Field and Topological
Quantum Effects for
Neutral Particles

Among the fundamental forces of nature that we encounter in quantum domain
none is better known and understood than the electromagnetic interaction. The
Maxwell equations and the Lorentz force law give us a complete picture of the
classical electrodynamics. However as we will see there are some features in
quantum description which do not have classical analogues. We will have a
detailed discussion of these features later.

We want to set up the problem of interaction of charged particles with an
external electromagnetic field, not by postulating the minimal coupling rule as
is usually done, but follow a method originally due to Feynman in which two of
the Maxwell’s equations, together with the Lorentz force are derived from the
Heisenberg equations of motion [1].

Let us consider a single particle of mass m and charge e with position
r = (x1, x2, x3) obeying the Heisenberg equation

m
dẋk
dt

= Fk (r, ṙ, t) , (16.1)
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where Fk is the k-th component of the force. Among the components of velocity
and position we have the canonical commutation relations which we write as

[xj , xk] = 0, (16.2)

and
m [xj , ẋk] = ih̄δjk. (16.3)

Now from (16.1) and (16.3) it follows that

[xj , Fk] +m [ẋj , ẋk] = 0. (16.4)

According to the rules governing these operators, the Jacobi identity must be
satisfied (see Eq. (3.130));

[xl, [ẋj , ẋk] ] + [ẋj , [ẋk, xl] ] + [ẋk, [xl, ẋj ] ] = 0. (16.5)

In this relation if we put m[xl, ẋj ] = ih̄δlj , and for [ẋj , ẋk] we substitute from
(16.4) we get

[xl, [xj , Fk] ] = 0. (16.6)

In addition Eq. (16.4) implies that

[xj , Fk] = −[xk, Fj ]. (16.7)

This property of the commutator [xi, Fk] allows us to express it in terms of εjkl,
the completely antisymmetric tensor (Levi–Civita symbol) defined by (1.32) and
(1.33), with all other components being equal to zero. Thus we have

[xj , Fk] = − ieh̄
m

∑
l

εjklBl, (16.8)

where e is the charge of the electron, c is the velocity of light and B is a function
of r and t (all equations are given in cgs units). This vector, B, cannot be a
function of ṙ since then Eq. (16.6) cannot be satisfied. At this point we want
to inquire about the most general form of Fk which satisfies (16.8) and can be
dependent on r and ṙ. Clearly F can be a function of r and t, but can also
depend linearly on ṙ. Solving Eq. (16.8) for Fj we find the general solution to
be

Fj = e

[
Ej +

1
2c

∑
kl

εjkl (ẋkBl +Blẋk)

]
, (16.9)

where Ek depends on r and t and not ṙ. We have also made use of the Weyl’s
rule or symmetrization rule (Secs. 3.5 and 3.6) to write the operator ẋkB` is
symmetrized form.

From Eqs. (16.4) and (16.8) it follows that

Bl = − im
2c

2h̄e

∑
j,k

εjkl [ẋj , ẋk] . (16.10)
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If we calculate the commutator [xj , Bl] we find

[xj , Bl] = − im
2c

2h̄c

∑
j,k

εjkl [xi, [ẋj , ẋk] ]

= − im
2c

2h̄c

∑
j,k

εjkl {[ [xi, ẋj ] , ẋk] + [ẋj , [xi, ẋk] ]} = 0,

(16.11)

where we have used the Jacobi identity to simplify (16.11. This result shows
that Bl cannot be a function of ṙ. Again by writing the Jacobi identity for the
components of ṙ as ∑

j,k

εjkl [ẋl, [ẋj , ẋk] ] = 0, (16.12)

and combining it with (16.10) we obtain∑
l

[ẋl, Bl] = 0. (16.13)

Thus Eq. (16.13) with

mẋl = −ih̄ ∂

∂xl
, (16.14)

leads to the Maxwell equation;∑
l

∂Bl
∂xl

= ∇ ·B = 0. (16.15)

Next we take the time derivative of B, Eq. (16.10), to find

dB
dt

=
∂B
∂t

+OS (ṙ · ∇B)

= − im
2c

h̄e
(r̈ ∧ ṙ− ṙ ∧ r̈) = − imc

2h̄e
(F ∧ ṙ + ṙ ∧ F)

= − imc
h̄
{(E ∧ ṙ− ṙ ∧E) +OS (ṙ ∧B) ∧ ṙ− ṙ ∧ OS (ṙ ∧B)} ,

(16.16)

where OS denotes that the operators are symmetrized Sec. 3.5,

[OS (ṙ ∧∇B)]j =
1
2

∑
k

(
ẋk
∂Bj
∂xk

+
∂Bj
∂xk

ẋk

)
. (16.17)

Thus the l-th component of dB
dt obtained by differentiating Bl, Eq. (16.16) is

dBl
dt

= − im
2c

h̄c

∑
j,k

εjkl [ẋj , ẍk] . (16.18)
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We also note that E (like B) cannot depend on ṙ, since

[xl, Ei] =
1
e

[xl, Fi]−
1
c

∑
j,k

εijkOS ([xl, ẋj ]Bl + ẋj [xl, Bl])

= − ih̄

mc

∑
k

εlikBk −
ih̄

mc

∑
k

εijkδljBk = 0. (16.19)

Returning to Eq. (16.16) we observe that the expression in the first parenthesis
of (16.16) is simply the curl of E;

− im
2h̄

(E ∧ ṙ− ṙ ∧E) = −∇ ∧E. (16.20)

For the other two terms we write the i-th component as

[OS (ṙ ∧B) ∧ ṙ− ṙ ∧ OS (ṙ ∧B)]i =
∑
jk

εijk [rj , (O (ṙ ∧B))k]

=
1
2

∑
jk

∑
ln

εijkεkln [ẋj , ẋlBn +Bnẋl]

=
1
2

∑
j

[ẋj , ẋiBj +Bj ẋi − ẋjBj −Biẋj ]

=
1
2

∑
j

{[ẋj , ẋi]Bj +Bj [ẋj , ẋi]− ẋj [ẋj , Bi]− [ẋj , Bi] ẋj} .

(16.21)

We can simplify this last equation by observing that with the help of (16.5)∑
j

{[ẋj , ẋi]Bj +Bj [ẋj , ẋi]} ∼
∑
jk

εijk (BkBj +BjBk) = 0, (16.22)

so that the first two terms of (16.21) do not contribute. Now by examining the
last two terms of (16.21) we find

−1
2

∑
j

{ẋj [ẋj , Bi] + [ẋj , Bi] ẋj} =
ih̄

2m

∑
j

(
ẋj
∂Bj
∂xj

+
∂Bj
∂xj

ẋj

)
. (16.23)

By substituting (16.20)–(16.23) in (16.16) we obtain the Faraday law:

1
c

∂B
∂t

= −∇ ∧E. (16.24)

Having found two of Maxwell’s equations (16.15) and (16.20) we observe that
the other two of the Maxwell equations (in cgs units)

∇ ·E = 4πρ, (16.25)
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and
−1
c

∂E
∂t

+∇∧B =
4π
c

j, (16.26)

define the charge and the current density respectively [1].
To conclude our discussion, it is worthwhile to make the following obser-

vations:
(1) - Whether the two Maxwell equations (16.25) and (16.26) can be used

to define ρ and j has been the subject of discussion by some authors [2]–[5]. It is
well-known that the Maxwell equations are invariant under Lorentz transforma-
tion, whereas Newton’s second law is invariant under Galilean transformation.
We can ask how it is possible to obtain a truly relativistic set of Maxwell’s
equation from the non-relativistic law of motion. The fact is that the two equa-
tions that we have found Eqs. (16.15) and (16.24) are indeed compatible with
the Galilean invariance, whereas the other two equations (16.25) and (16.26)
are not. One can show that a Galilean invariant theory of electromagnetism
requires keeping (16.25) but replacing (16.26) by [5],[6]

∇∧B =
4π
c

j. (16.27)

(2) - While Feynman derived the Maxwell equations starting with the
Heisenberg equations of motion (16.1), one can find the same result using the
Poisson formulation of classical dynamics [3],[4]. Classically it can be shown
that any acceleration-independent generalized force for which the equation of
motion can be derived from a Lagrangian must be of the form given by (16.9)
[3].
If we write Eqs. (16.1) and (16.9) as vector equations

m
dṙ
dt

= m[ [r, H], H] = eE +
e

2c
[v ∧B−B ∧ v]. (16.28)

The Hamiltonian which gives us this equation of motion is

H =
1

2m

(
p− e

c
A
)2

. (16.29)

The Heisenberg’s equation of motion is local since the force on the electron only
depends on electric and magnetic fields at the position of the electron. However
since r and H in (16.28) do not commute with each other, we can have nonlocal
effects such as Aharonov–Bohm effect which we will discuss next.

16.1 The Aharonov–Bohm Effect

The Heisenberg equation (16.28) shows that the observables for the motion of
a charged particle in an electric- or magnetic field or both are dependent on
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Figure 16.1: The magnetic field B is confined inside a cylinder of radius ρ = a and the
electron can move in the space between the two cylinders, a < ρ < b. While the electron does
not feel the magnetic force yet its energy eigenvalues depend on the flux Φ of this field.

these fields and not on the electromagnetic potentials A and φ. But if we try
to calculate the average force acting on the particle or calculate the expectation
values of r or v, then from (16.28) we have

m
d

dt
〈ψ|v|ψ〉 = e〈ψ|E|ψ〉+

e

2c
〈ψ[v ∧B−B ∧ v]ψ〉. (16.30)

This expression shows that the wave function of the problem |ψ〉 which is de-
pendent on the potentials A and φ through the Hamiltonian (16.29) will have
an effect on the average force felt by the particle [9],[10]. Thus the motion of the
charged particle is affected by the presence of the electromagnetic field in the
regions where the particle does not enter. This is counterintuitive particularly
when we accept the Heisenberg equation (16.28) as the equation of motion of
the charged particle, since the force appears to be local. The Aharonov–Bohm
effect can be observed in bound states as well as scattering processes. First
let us consider the exactly solvable example which shows the Aharonov–Bohm
effect in bound state problems.

Aharonov–Bohm Effect in Bound States — An electron of charge e
is constrained to move between two concentric cylinders of radii a and b shown
in Fig. 16.1. An external magnetic flux Φ goes up along the axis of the inner
cylinder and returns uniformly along the surface of the outer cylinder i.e. B is
nonzero for ρ < a. Thus the electron is not exposed to the external magnetic
field. The problem has cylindrical symmetry, therefore we use cylindrical coor-
dinates (ρ, φ, z) to solve the problem. For a < ρ < b the magnetic potential A
satisfies two conditions:

(a) - B = ∇∧A = 0.
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(b) - For any closed path C that encircles the inner cylinder according to
the Stokes theorem we have∮

C

A · dl =
∫
S

∇∧A · dS =
∫
S

B · dS = Φ, (16.31)

where Φ is the flux through the inner cylinder. The components of A satisfying
these conditions are given by

Aρ = Az = 0, Aφ =
Φ

2πρ
. (16.32)

In the space between the cylinders, the Hamiltonian for the motion of the
electron according to (16.29) is

H = − h̄2

2m
∇2 +

ih̄e

2mc
[2A · ∇+ (∇ ·A)] +

e2

2mc2
A ·A. (16.33)

This Hamiltonian expressed in cylindrical coordinates (ρ, φ, z) is of the form

H = − h̄2

2m

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2
+

∂2

∂z2

)
+

ih̄eΦ
2mρ2c

∂

∂φ
+

e2Φ2

8π2mc2ρ2
. (16.34)

From this Hamiltonian we find the solution to the time-dependent Schrödinger
equation

Hψn,m,kz (ρ, φ, z) = E(n,m, kz)ψn,m,kz (ρ, φ, z), (16.35)

is separable and can be written as

ψn,m,kz (ρ, φ, z) = Rn(ρ)eimφeikzz, (16.36)

where m is an integer and h̄kz is the momentum of the electron in the z direction.
Substituting (16.34) and (16.36) in (16.35) we find that Rn(ρ) is the solution of
the differential equation

d2Rn
d ρ2

+
1
ρ

dRn
dρ

+
(
β2 − µ2

ρ2

)
Rn = 0, (16.37)

where β and µ are defined by

βn =
[

2mE(n,m, kz)
h̄2 − k2

z

] 1
2

, and µ = m− eΦ
ch̄
. (16.38)

The solution of (16.37) is a combination of the Bessel function Jµ and the
Neumann function Nµ [15]

Rn(ρ) = AnJµ

(
ρ

βn

)
+BnNµ

(
ρ

βn

)
. (16.39)
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Now we impose the condition that the wave function must be zero at the surfaces
of the inner and outer cylinders. In this way we find the eigenvalue equation

Jµ

(
b

βn

)
Nµ

(
a

βn

)
− Jµ

(
a

βn

)
Nµ

(
b

βn

)
= 0. (16.40)

Thus for a given set of Φ, m and kz we can solve the eigenvalue equation
(16.40) for βn(µ, a, b), and then from (16.38) find the discrete set of eigenval-
ues E(n,m, kz). These energies will depend on Φ through µ which appears in
(16.38).

If the concentric cylinders are of finite length L and they are covered at
the top and bottom, and the wave function must vanish at z = 0 and z = L,
then kz = jπ

L , j = 0, 1, 2 · · · and βn becomes a function of the quantum number
j.

A simpler case is the one where the electron is constrained to move on a
circle of radius R, where the Hamiltonian H, Eq. (16.34), reduces to [11]–[14]

H ′ = − 1
2mR2

(
Lz +

eΦ
2πc

)2

. (16.41)

In this relation
Lz = −ih̄ ∂

∂φ
, (16.42)

where Lz is the z component of the angular momentum operator. The eigen-
values of H ′ are

− h̄2µ2

2mR2
= − h̄2

2mR2

(
m′ +

eΦ
2πh̄c

)2

= − h̄2

2mR2

(
m′ +

Φ
Φ0

)2

, (16.43)

where m′ is an integer and Φ0 is the quantum of flux Φ0 = 2πh̄c
e . For the present

case we do not need to use the single-valuedness of the wave function to show
that m′ is an integer. Since h̄µ is the eigenvalue of the operator Lz + eΦ

2πc , if we
denote its eigenkets by |µ〉 then we have(

Lz +
eΦ
2πc

)
|µ〉 = h̄µ|µ〉. (16.44)

Now if
|µ〉 = a1|µ1〉+ a2|µ2〉, (16.45)

is a superposition of two eigenvectors of Lz + eΦ
2πc , then rotation by 2π about

the z axis must yield the same |µ〉 with a possible phase factor,

R̂(2π)|µ〉 = e2πiµ1a1|µ1〉+ e2πiµ2a2|µ2〉. (16.46)

This state must be the same as (16.45) multiplied by a phase factor, therefore

e2πi(µ2−µ1) = 1, (16.47)
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or µ2−µ1 = m′ must be an integer. The fact that m′+ Φ
Φ0

in (16.43) is observable
and m′ is an integer implies that the eigenvalues of H ′ are dependent on the
flux modulo Φ0 where

Φ0 =
2πh̄c
e

=
∮

A · dl. (16.48)

According to Yang, in quantum mechanics, the force

−e
[
E +

1
2c

(v ∧B−B ∧ v)
]
, (16.49)

underdescribes electromagnetism, since the magnetic potential, A, has observ-
able effects. On the other hand ∮

A · dl = Φ0 (16.50)

overdescribes it because the result of Aharonov–Bohm effect depends on Φ mod-
ulo Φ0. Only the quantity

exp
[
−
(
ie

h̄c

)∫
A · dl

]
, (16.51)

gives a complete description of the physics [7],[8].
Aharonov–Bohm Effect in Scattering — Let us consider a two-slit

experiment where a beam of electrons from a source S reach the point O on the
screen by going through the first or the second slit. The superposition of these
two waves will produce an interference pattern. Just behind the slits we have
a shielded homogeneous magnetic field coming out of the plane of the diagram.
The magnetic field is cylindrically symmetric and therefore we formulate the
problem by writing the wave equation in cylindrical coordinates. To simplify
the calculation we consider the limit where the diameter of the solenoid tends to
zero while the total flux remains finite. The wave equation for the Hamiltonian
(16.34) can be written as

Hψ = − h̄2

2m

(
∇− ie

h̄c
A
)2

ψ

= − h̄2

2m

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

(
∂

∂φ
+ iα

)2

+
∂2

∂z2

]
ψ = Eψ,

(16.52)

where
α =

Φ
Φ0

= − eΦ
2πh̄c

. (16.53)

For the sake of simplicity we consider a weak magnetic field such that 0 ≤ α < 1,
but the same method can be modified and used when α > 1 [18]. Again we write
the wave function as the product of three terms:

ψ(ρ, φ, z) = ψm′(ρ)eim
′φeikzz. (16.54)
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By substituting (16.54) in (16.52) we find[
d2

d ρ2
+

1
ρ

d

dρ
− (m′ + α)2

ρ2
+ k2

]
ψm′(ρ) = 0, (16.55)

where (
k2 + k2

z

)
=

2mE
h̄2 , (16.56)

and
m′ = 0, ±1, ±2 · · · . (16.57)

The regular solution of (16.55), i.e. the solution which is finite at ρ = 0 is the
Bessel function of order m′ + α, therefore the solution of (16.52) is

ψ(ρ, φ, z) =
∞∑

m′=−∞
eim

′φeikzzJ|m′+α|(kρ). (16.58)

Assuming that the wave enters from +x direction and moves towards −x direc-
tion, the scattering takes place at x = 0. An idealized arrangement for verifying
the Aharonov–Bohm effect is shown in Fig. 16.2. Since the coordinate z does
not play a role in this scattering, we will suppress the z-dependence and consider
ψ to be a function of ρ and φ.

The incident wave which can be written as

ψinc = e−ikxe−iαφ, x ≥ 0. (16.59)

is single valued (φ = 0 is a line along the direction of the incoming wave). The
reason that we have distorted e−ikx by a factor e−iαφ is because in the present
case the scattering potential does not vanish as ρ → ∞. This is a consequence
of the fact that the interaction is between the beam of electrons and the field
of infinitely long solenoid.

The total wave function ψ(ρ, φ, α), Eq. (16.58), which reduces to (16.59)
for φ = 0 (or for x ≥ 0) is given by [9]

ψ(ρ, φ, α) =
∞∑

m′=−∞
(−i)|m

′+α|J|m′+α|(kρ)eim
′φ. (16.60)

Now we want to find the asymptotic form of ψ(ρ, φ, α) when ρ → ∞. For this
we first carry out the summation over m′. The wave function (16.60) can be
written as the sum of three terms:

ψ(ρ, φ, α) =
∞∑

m′=1

(−i)|m
′+α|J|m′+α|(kρ)eim

′φ

+
∞∑

m′=1

(−i)|m
′−α|J|m′−α|(kρ)e−im

′φ + (−i)|α|J|α|(kρ).

(16.61)



Aharonov–Bohm Effect 477

Figure 16.2: Schematic double-slit experiment to verify the Aharonov–Bohm effect. The
electron beam coming from x > 0 passes through two slits and produces interference pattern
on the screen to the left. The solenoid is located just behind the screen as is shown in the
figure. The interference pattern formed on the screen is dependent on the magnetic flux
through the shielded cylinder.

Let us denote the first sum by ψ1(ρ, φ, α), then from (16.61) it is clear that the
second sum ψ2(ρ, φ) can be found from ψ1(ρ, φ);

ψ2(ρ, φ, α) = ψ1(ρ,−φ,−α). (16.62)

The asymptotic expansion of the first term ψ1(ρ, φ, α), in powers of (kρ)−
1
2 can

be calculated, and the leading term in this expansion is [9]

ψ1(ρ, φ, α)→
√
−i

2
√

2π

[
(−1)α

eikρ√
kρ

1 + eiφ

1 + cosφ
+ i

e−ikρ√
kρ

1− eiφ

1− cosφ

]
. (16.63)

Once the two parts ψ1(ρ, φ, α) and ψ2(ρ, φ, α) are added together, then in the
limit of ρ→∞ we have

ψ1(ρ, φ, α) + ψ2(ρ, φ, α) →
√
−i√
2π

[
i
e−ikρ√
kρ

+
eikρ√
kρ

cos
(
πα− 1

2φ
)

cos φ2

]
+ e−i(kρ cosφ+αφ). (16.64)

The last term in (16.61) has the asymptotic behavior of the Bessel function [15]

(−i)|α|J|α|(kρ)→ (−i)|α|
(

2
πkρ

) 1
2

cos
(
kρ− 1

4
π − 1

2
|α|π

)
. (16.65)
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By using this result and collecting all the terms we find the asymptotic form of
ψ(ρ, φ, α) for large ρ to be

ψ(ρ, φ, α)→ e−i(αφ+kρ cosφ) +
eikρ√
2πikρ

sin(πα)
e−i

φ
2

cos φ2
. (16.66)

The first term in (16.66) is the incident wave, Eq. (16.59), and the second one
is the scattered wave.

If we write ψ(ρ, φ, α) as [16]

ψ(ρ, φ, α)→ ψinc(ρ, φ, α) +
f(φ)
√
ρ
eikρ as ρ→∞, (16.67)

where f(φ) is the scattering amplitude, then by comparing (16.66) and (16.67)
we find f(φ)

f(φ) =
e−i

φ
2

√
2ikπ

(
sin(πα)
cos φ2

)
. (16.68)

The differential cross section for this scattering found from (16.68) is

dσ(φ)
dΩ

= |f(φ)|2 =
1

2πk

 sin2(πα)

cos2
(
φ
2

)
 . (16.69)

Equation (16.66) clearly shows that on the line φ = π this asymptotic formula
breaks down. In the exact solution of (16.60) which can be found directly, the
second term which is multi-valued around φ = π, combines with the multi-
valued first term and the result is a single-valued wave function.

When α = n + 1
2 , then the summation in (16.60) can be done exactly.

Using the integral representation of the Bessel function [17]

Jm′+ 1
2
(z) =

2
(
z
2

)m′+ 1
2

√
πΓ (m′ + 1)

∫ 1

0

(
1− t2

)m′
cos(zt)dt, (16.70)

we can sum over m′ in (16.60) and obtain the simple result [9]

ψ(ρ, φ, n+
1
2

) =

√
i

2
e−i(

φ
2 +kρ cosφ)

∫ √kρ(1+cosφ)

0

exp
(
iz2
)
dz. (16.71)

This wave function which is independent of n can also be written in terms of
the Fresnel integrals S and C [15]

ψ(ρ, φ, n+
1
2

) =

√
πi

4
e−i(

φ
2 +kρ cosφ)

×

[
C

(√
2
π
kρ(1 + cosφ)

)
+ iS

(√
2
π
kρ(1 + cosφ)

)]
.

(16.72)
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As (16.72) shows ψ
(
ρ, φ, n+ 1

2

)
is single-valued and vanishes on the line φ = π.

A simpler way of finding the scattering amplitude is by the method of
partial wave expansion which we discussed in detail in Chapter 14. Noting that
the regular solution of the Schrödinger equation (16.52) is given by Eq. (16.58)
and expressing the Bessel function in terms of the Hankel functions H(1)

|m′+α|(kρ)

and H
(2)
|m′+α|(kρ), we have

ψ(ρ, φ, α) =
1
2

∞∑
m′=−∞

am′e
im′φ

[
H

(1)
|m′+α|(kρ) +H

(2)
|m′+α|(kρ)

]
. (16.73)

The asymptotic forms of the Hankel functions as kρ→∞ are given by [15]

H
(1)
|m+α|(kρ)→

√
2
πkρ

exp
[
i

(
kρ− (m+ α)π

2
− π

4

)](
1 +O

(
1
kρ

))
,

(16.74)
and

H
(2)
|m+α|(kρ)→

√
2
πkρ

exp
[
−i
(
kρ− (m+ α)π

2
− π

4

)](
1 +O

(
1
kρ

))
.

(16.75)
Using these asymptotic forms we can express the total wave function ψ(ρ, φ, α)
as kρ→∞ by

ψ(ρ, φ, α) =
1
2

∞∑
m′=−∞

am′e
im′φ

×
{

exp
[
i
(
kρ− |m′ + α|π

2
− π

4

)]
+ exp

[
−i
(
kρ− |m′ + α|π

2
− π

4

)]}
×

(
1 +O

(
1
kρ

))
. (16.76)

To find the scattering amplitude we write the asymptotic form of ψ(ρ, φ, α) as

ψ(ρ, φ, α) = ψinc + ψs = e−ikρ cosφ−iαφ + ψs(ρ, φ, α)

→ e−ikρ cosφ−iαφ +
eikρf(φ)
√
ρ

e−iαφ
(

1 +O
(

1
kρ

))
,(16.77)

where for the incident wave we have added an extra factor e−iαφ to account for
the distortion of the incoming wave caused by the long range effect of an infinite
solenoid. Expanding the incident wave e−ikρ cosφ in terms of the Bessel function
we have

e−ikρ cosφ =
∞∑

n=−∞
(−i)nei nφJn(kρ)

→
∞∑

n=−∞
(−i)nei nφ

(
2
πkρ

)
cos
(
kρ− nπ

2
− π

2

)
. (16.78)
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By substituting (16.78) in (16.77) and comparing the coefficients of different
terms with those of (16.76) we obtain

am′ = exp
[
− iπ

2
|m′ + α|

]
. (16.79)

We also find

f(φ) =
1√

2π ik

∞∑
m=−∞

eim(φ−π)
(
e2iδm − 1

)
, (16.80)

where δm is the partial wave phase shift which depends on α

δm = −π
2
|m+ α|+ π

2
|m|. (16.81)

In the Aharonov–Bohm formulation of this scattering problem the sum over
m was carried out before taking the limit of kρ → ∞, whereas in the partial
wave expansion this order was reversed. The result found by the partial wave
decomposition for f(φ) is

f(φ) =
1√

2πik

[
−2πδ(φ− π)(1− cosπα)− i sinπα e

−iφ
2 cos

φ

2

]
. (16.82)

But the cross section obtained from the two methods are identical [18].
For experimental confirmation of the Aharonov–Bohm effect see [19] and

[20].

16.2 Time-Dependent Interaction

The nonrelativistic motion of a charged particle in an external electromagnetic
field where the scalar potential is zero and the vector potential is given by

A =
1
2
B(t)k ∧ r, (16.83)

can be reduced to the equation of motion for a harmonic oscillator for complex
q and p. Here B(t)k is the time-dependent magnetic field which is assumed to
be along the z-axis and r is the position of the particle.

The Hamiltonian for the motion of the charged particle is

H =
1

2m

(
p− e

c
A
)2

=
1

2m
(
p2
x + p2

y + p2
z

)
+

e2B2(t)
8mc2

(
x2 + y2

)
+
eB(t)
2mc

(ypx − xpy). (16.84)

In this case z is an ignorable coordinate, i.e. it does not appear in the Hamilto-
nian. Therefore we only need to consider the motion in the xy plane. Then this
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Hamiltonian for the two-dimensional motion can also be written in cylindrical
polar coordinates:

H =
1

2m

[
p2
r +

p2
θ

r2

]
+
e2B2(t)
8mc2

r2 − eB(t)
2mc

pθ, (16.85)

where pr is the radial momentum and pθ is the angular momentum of the
particle.

A transformation of x, y, px and py of the form{
Q(t) = (x+ iy) exp{ ie

2mc

∫ t
B(t′)dt′}

P (t) = c
e (px + ipy) exp{ ie

2mc

∫ t
B(t′)dt′},

(16.86)

together with the Hamiltonian (16.84) give us the equations of motion for P (t)
and Q(t);

Q̇ =
e

mc
P, (16.87)

Ṗ = − e

4mc
B2(t)Q. (16.88)

By eliminating P between (16.87) and (16.88) we obtain the equation of
motion for the time-dependent harmonic oscillator:

Q̈+ Ω2(t)Q = 0, (16.89)

with

Ω2(t) =
e2

4m2c2
B2(t), (16.90)

This transformation is not canonical since the Poisson bracket {Q,P} is zero.

16.3 Harmonic Oscillator with Time-Dependent
Frequency

We studied the classical formulation of this problem earlier in Sec. 1.12. Here
we present a different formulation of the same problem which is based on the
expansion of the operator I(p(t), q(t), t) in terms of of the basis set Tm,n s. Let
the operator I(p(t), q(t), t) be a first integral of the equation of motion

q̈(t) + Ω2(t)q(t) = 0, (16.91)

then by the definition of a first integral

dI

dt
=
∂I

∂t
+ i[H(t), I], (16.92)
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where
H(t) =

1
2
p2 +

1
2

Ω2(t)q2. (16.93)

Now we write H(t) and expand I(p(t), q(t), t) in terms of the basis set Tm,n(t);

H(t) =
1
2
T2,0 +

1
2

Ω2(t)T0,2, (16.94)

and
I =

∑
m,n

Im,n(t)Tm,n(t). (16.95)

By substituting (16.94) and (16.95) in (16.92) and equating the coefficients of
Tm,n we find a set of linear differential-difference equation;

dIm,n
dt

+ (n+ 1)Im−1,n+1 − (m+ 1)Ω2(t)Im+1,n−1 = 0. (16.96)

Next we use the method of generating function to solve (16.96) [21]. Let
us assume that we know the initial value Im,n(t = 0) of Im,n. Let us define
G(x, y, t) by

G(x, y, t) =
∑
m,n

Im,nx
myn, (16.97)

then by multiplying (16.96) by xmyn and summing over m and n we obtain a
first order partial differential equation;

∂G

∂t
+ x

∂G

∂y
− Ω2(t)y

∂G

∂x
= 0. (16.98)

The characteristic equation for (16.98) is [22]

dt = − dx

Ω2(t)y
=
dy

x
. (16.99)

This equation can be written as a matrix equation;

d

dt

[
y
x

]
=
[

0 1
−Ω2(t) 0

] [
y
x

]
. (16.100)

The general solution of (16.100) can be expressed in terms of the initial operators
q0 and p0 x ≡ p(t) = g1(t)p0 + f1(t)q0

y ≡ q(t) = g(t)p0 + f(t)q0

. (16.101)

By substituting (16.101) in (16.100) we find the matrix differential equation

d

dt

[
g(t) f(t)
g1(t) f1(t)

]
=
[

0 1
−Ω2(t) 0

] [
g(t) f(t)
g1(t) f1(t)

]
. (16.102)

This matrix equation shows that g(t) and f(t) are independent solutions of the
the classical motion of the harmonic oscillator with time-dependent frequency
(see the next section).
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16.4 Heisenberg’s Equations for Harmonic
Oscillator with Time-Dependent Frequency

Let us suppose that the classical equation of motion for the particle is given by
(16.89) and we want to solve it using the Heisenberg method, i.e. take (16.89)
and write it as an operator equation

q̈ + Ω2(t)q = 0. (16.103)

Equation (16.103) together with the canonical commutation relation [p, q] = −i
must be solved to find the eigenvalues (we have set m = 1 and h̄ = 1). Note
that here the momentum p is different from P defined in (16.86), and is given
by p = q̇, which is the mechanical momentum of the particle.
Since (16.103) is linear in q, the general solution of this operator equation is

q(t) = f(t)q0 + g(t)p0, (16.104)

where f(t) and g(t) are functions of t satisfying the differential equations

f̈(t) + Ω2(t)f(t) = 0, g̈(t) + Ω2(t)g(t) = 0, (16.105)

and q0 and p0 are the initial coordinate and momentum operators with the
commutation relation [q0, p0] = i. The initial conditions for f and g are

f(0) = ġ(0) = 1, ḟ(0) = g(0) = 0, (16.106)

and the Wronskian of these two scalar functions f(t) and g(t) is

f(t)ġ(t)− g(t)ḟ(t) = 1. (16.107)

These together with the equation for p(t),

p(t) = q̇(t) = ḟ(t)q0 + ġ(t)p0, (16.108)

imply the constancy of the commutation relation

[q(t), p(t)] = [q0, p0] = i. (16.109)

The Hamiltonian which generates the equation of motion for this system is

H(t) =
1
2
p2(t) +

1
2

Ω2(t)q2(t), (16.110)

and this Hamiltonian is not a constant of motion. If we substitute for q(t) and
p(t) we find

H(t) =
1
2

[(
ḟ2 + Ω2(t)f2

)
q2
0 +

(
ġ2 + Ω2(t)g2

)
p2

0

+
(
ḟ ġ + Ω2(t)fg

)
(q0p0 + p0q0)

]
. (16.111)
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Next we find the expectation value of H(t) between the states of the oscillator
at time t, i.e. we define |n〉 by

H(t = 0)|n〉 = En|n〉 = Ω0

(
n+

1
2

)
|n〉, (16.112)

where in this relation we have denoted Ω(t = 0) by Ω0. Using any of these
states, |n〉, we first calculate the expectation values of q2

0 , p
2
0, and (p0q0 + q0p0);

〈
n
∣∣q2

0

∣∣n〉 =
1

Ω0

(
n+

1
2

)
, (16.113)

〈
n
∣∣p2

0

∣∣n〉 =
〈
n

∣∣∣∣− ∂2

∂q2
0

∣∣∣∣n〉 = Ω0

(
n+

1
2

)
, (16.114)

and
〈n |p0q0 + q0p0|n〉 = 0. (16.115)

Substituting for these terms in the expectation value of H(t), we find

〈n |H(t)|n〉 =
1
2

Ω0

(
n+

1
2

)[(
ġ2 + Ω2(t)g2

)
+

1
Ω2

0

(
ḟ2 + Ω2(t)f2

)]
.

(16.116)
We want to show that the time-dependence of (16.116) can be written in terms
of a single function of time ρ(t) where

ρ(t) =
(
f2(t) + Ω2

0g
2(t)

) 1
2 . (16.117)

By differentiating ρ(t) twice and substituting from Eqs. (16.105) and (16.107)
we find that ρ(t) which is a dimensionless quantity is the solution of the nonlinear
equation

ρ̈(t) + Ω2(t)ρ(t)− Ω2
0

ρ3(t)
= 0, (16.118)

and that the initial conditions for this differential equation are

ρ(0) = 1, ρ̇(0) = 0. (16.119)

In order to express the expectation value of the Hamiltonian in terms of ρ(t) we
use Eq. (16.117) to get

(ρ(t)ρ̇(t))2 + Ω2
0 =

(
f2 + Ω2

0g
2
) (
ḟ2 + Ω2

0ġ
2
)

= ρ2(t)
(
ḟ2 + Ω2

0ġ
2
)
. (16.120)

Thus

1
ρ2(t)

[
(ρ(t)ρ̇(t))2 + Ω2

0

]
+ Ω2(t)ρ2(t) =

(
ḟ2 + Ω2(t)f2

)
+ Ω2

0

(
ġ2 + Ω2(t)g2

)
.

(16.121)
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By comparing (16.116) and (16.121) we find the desired result, i.e. the diagonal
elements of the Hamiltonian [23]

〈n|H(t)|n〉 =
1

2Ω0

(
n+

1
2

)[
ρ̇2(t) +

Ω2
0

ρ2(t)
+ Ω2(t)ρ2(t)

]
. (16.122)

There is another way of finding the energy eigenvalues of H(t). In this
method we find a first integral of motion, I(p, q, t), which is also a conserved
quantity for a harmonic oscillator with time-dependent frequency [24]–[27].
Since we want I(p, q, t) to be a constant of motion, therefore its total time
derivative must be zero

dI

dt
=
∂I

∂t
+

1
i
[I,H] = 0, h̄ = 1. (16.123)

We assume that this first integral is a homogeneous quadratic function of p and
q and in addition we want it to be Hermitian. Let us write this operator as

I(t) =
1
2
[
α(t)q2 + β(t)p2 + γ(t)(pq + qp)

]
, (16.124)

and note that I(p, q, t) is a self-adjoint operator

I(p, q, t) = I†(p, q, t). (16.125)

We also write the Hamiltonian in a slightly different form

H(t) =
1

2m
[
p2 +m2Ω2(t)q2

]
. (16.126)

This is similar to H(t) defined by (16.110) with the mass m introduced in its
definition. From (16.123), (16.124) and (16.126) it follows that

1
2

[(
α̇(t)− 2mΩ2(t)γ(t)

)
q2 +

(
β̇(t) +

2
m
γ(t)

)
p2

+
(
γ̇(t) +

1
m
α(t)−mΩ2(t)β(t)

)
(pq + qp)

]
= 0. (16.127)

Equation (16.127) must be satisfied by all matrix elements of I, therefore the
following relations must be true:

α̇(t) = 2mΩ2(t)γ(t), (16.128)

β̇(t) = − 2
m
γ(t), (16.129)

and
γ̇(t) = mΩ2(t)β(t)− 1

m
α(t). (16.130)

Now let us introduce a function σ(t) by the relation

σ2(t) = β(t), (16.131)
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then Eq. (16.129) can be written as

γ(t) = −mσ(t)σ̇(t). (16.132)

By substituting (16.131) and (16.132) in (16.130) we find α(t)

α(t) = m2
[(
σ̇2(t) + σ(t)σ̈(t)

)
+ Ω2(t)σ2(t)

]
. (16.133)

The two functions γ(t) and α(t) found in (16.132) and (16.133) must
satisfy Eq. (16.128). Thus we get a differential equation for σ(t);

σ(t)
d

dt

[
m2
(
σ̈(t) + Ω2(t)σ(t)

)]
+ 3m2

[
σ̇(t)

(
σ̈(t) + Ω2(t)σ(t)

)]
= 0. (16.134)

This equation can be integrated to yield

m2σ̈(t) +m2Ω2(t)σ(t)− c

σ3(t)
= 0, (16.135)

where c is the constant of integration and is real. We now make a scale change
by writing

σ(t) =
c

1
4 ρ(t)√
mΩ0

, (16.136)

and by substituting this expression in (16.135) we find Eq. (16.118). Written
in terms of ρ(t), the invariant operator I(p, q, t) becomes

I(p, q, t) =
1
2

{
1

ρ2(t)
q2 + [ρ(t)p−mρ̇(t)q]2

}
. (16.137)

Having found the explicit form of I(p, q, t) we can use it to determine the eigen-
values of H(t) by the method of factorization of Sec. 8.4.

Here we use a representation in which I(p, q, t), and not H(p, q, t), is di-
agonal. Let |n〉 be a state such that

I(p, q, t)|n〉 = n|n〉 (16.138)

and
〈n′|I(p, q, t)|n〉 = δn,n′ . (16.139)

Since I(p, q, t) depends on time, we will show that the eigenvalue n is time-
independent. We first find the partial derivative of (16.138) with respect to
t;

∂I

∂t
|n〉+ I

∂

∂t
|n〉 =

∂n

∂t
|n〉+ n

∂

∂t
|n〉. (16.140)

At the same time from Eq. (16.123) we have

i
∂I

∂t
|n〉+ I(p, q, t)H|n〉 − nH|n〉 = 0. (16.141)
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Also we find that the scalar product of (16.141) with 〈n′| is

i

〈
n′
∣∣∣∣∂I∂t

∣∣∣∣n〉+ (n′ − n) 〈n′|H|n〉 = 0, (16.142)

and therefore 〈
n

∣∣∣∣∂I∂t
∣∣∣∣n〉 = 0. (16.143)

Now we observe that from the scalar product of (16.140) with 〈n| it follows that

∂n

∂t
= 0. (16.144)

Thus the eigenvalues of I(p, q, t) do not depend on time.
For the calculating the matrix elements of I(p, q, t) we introduce the low-

ering and the raising operators, a and a†, by

a =
1√
2

[
1
ρ(t)

q + i (ρ(t)p−mρ̇(t)q)
]
, (16.145)

and

a† =
1√
2

[
1
ρ(t)

q − i (ρ(t)p−mρ̇(t)q)
]
. (16.146)

We note that these operators satisfy the canonical commutation relation[
a, a†

]
= 1, (16.147)

and that
aa† = I(p, q, t) +

1
2
. (16.148)

The ground state of the system is defined by

a|0〉 = 0, (16.149)

and the other states can be obtained from the ground state by applying the
raising (or creation operator),

|n+ 1〉 =
1√
n+ 1

a†|n〉, n = 0, 1, · · · . (16.150)

Since n does not depend on time from (16.150) we have

∂

∂t
|n+ 1〉 =

1√
n+ 1

∂

∂t
a†|n〉, n = 0, 1, · · · . (16.151)

Also Eq. (16.149) can be used to obtain the ground state wave function

ψ0(q, t) =
eiδ0(t)

(πρ2(t))
1
4

exp
{
− q2

2ρ2(t)
(1− imρ̇(t)ρ(t))

}
, (16.152)
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and from this result with the aid of (16.146) and (16.150) we can construct the
excited state wave functions.

We can use the definition of a† and a, Eqs. (16.145) and (16.146) and
write the diagonal elements of the Hamiltonian as

〈n|H|n〉 =
m

2

(
ρ̇2(t) + Ω2(t)ρ2(t) +

1
m2ρ2(t)

)〈
n
∣∣aa† + a†a

∣∣n〉
=

m

4

(
n+

1
2

)(
ρ̇2(t) + Ω2(t)ρ2(t) +

1
m2ρ2(t)

)
, (16.153)

which has the same form as Eq. (16.122).
In addition using this method enables us to calculate the off-diagonal

elements of H as well [27];

〈n′|H|n〉 =
1
4

{[
m
(
ρ̇2(t)− ρ(t)ρ̈(t)

)
− 2i

(
ρ̇(t)
ρ(t)

)]
[n(n− 1)]

1
2 δn′+2,n

+
[
m
(
ρ̇2(t)− ρ(t)ρ̈(t)

)
+ 2i

(
ρ̇(t)
ρ(t)

)]
[(n+ 1)(n+ 2)]

1
2 δn′,n+2

}
, n′ 6= n.

(16.154)

When Ω(t) is constant and is equal to Ω0, then ρ(t) = ρ(0) = 1 and
(16.153) and (16.154) reduce to a single equation

〈n′|H|n〉 = Ω0

(
n+

1
2

)
δn′,n, (16.155)

which is the diagonal matrix elements for the Hamiltonian of a simple harmonic
oscillator with frequency Ω0. This problem can also be solved by the method of
integration of the operator differential equation of Sec. 16.3 which we applied
to solve the problem of simple harmonic oscillator. For this we expand the
operator conjugate to the Hamiltonian operator, Θ(p, q, t), in terms of the basis
set of Tm,n(p, q) operators,

Θ(p, q, t) =
∑
m,n

αm,n(t)Tm,n(p, q). (16.156)

In Sec. 16.3 we showed how we can calculate the time-dependent coefficients
αm,n(t). These coefficients are given in terms of σ(t) as follows [28]

α0, 0 =
√
c Ω0

σ2(t)
tan−1

[
− σ2(t)√

c Ω0

d

dt
lnσ(t)

]
, (16.157)

α−1−2m, 1+2m =
(−1)m

(1 + 2m)

(√
c Ω0

σ2(t)

)2+2m

× 2F1

[
−1

2
−m,−m, 1

2
,−σ

4(t)
c Ω2

0

(
d

dt
lnσ(t)

)2
]
,

(16.158)
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and

α−2−2m, 2+2m = (−1)m
(
d

dt
lnσ(t)

)(√
c Ω0

σ2(t)

)2+2m

× 2F1

[
−1

2
−m,−m, 3

2
,−σ

4(t)
c Ω2

0

(
d

dt
lnσ(t)

)2
]
,

(16.159)

where m = 0, 1, 2 · · · and 2F1 is the hypergeometric function. For the special
case of Ω(t) = constant, only the coefficients α−1−2m, 1+2m are nonzero and are
given by (−1)m

(2m+1) which is the same as (??).

16.5 Neutron Interferometry

The close mathematical analogy between the Schrödinger equation describing
the low energy (or thermal) neutrons on one hand, and the propagation of light
waves as is formulated by Maxwell’s equation on the other, suggests that one
can find quantum analogues for most of the phenomena occurring for the light
waves. This is true although photons are bosons whereas neutrons are fermions.

Neutrons are electrically neutral particles each having a mass of mn =
1.67 × 10−27 Kg. and a magnetic moment of µn = −1.913

(
eh̄

2mnc

)
. In this

section we show how neutron interferometry can be used to test the spinor
nature of neutrons. Later we will show how by splitting a beam of neutrons
into two parts and then recombining the two beams we can detect the presence
of the classical gravitational potential.

As is shown in Fig. 16.3, a neutron beam at S is split into two beams.
The lower beam passes through a magnetic field which causes a precession of
the magnetic moment of the neutron and thus a change in the phase of the wave
function. When the two beams are combined at S, the intensity will depend
on this change of phase as will be shown below (see Eq. (16.166)). First let
us consider the passage of a neutron through a uniform magnetic field. The
precession of the magnetic moment after a very short time dt is given by

dφ = ωLdt =
µnB

h̄
dt. (16.160)

Integrating this expression, assuming a constant speed vn for the neutrons we
get

φ =
µn
h̄

∫
Bdt =

µn
h̄vn

∫
path

B · dl. (16.161)

If the neutron beam is unpolarized then the neutrons reaching the observation
point O through the path SAO will have no change in phase and the wave
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Figure 16.3: The neutron beam at S is split into two beams, and then these beams are
recombined at O. The lower beam passes through a magnetic field, and this results in the
interference pattern at O.

function is

ψSAO = ψA =
1√
2

[
1
1

]
. (16.162)

On the other hand the beam passing through the lower arm SBO interacts
with the magnetic field over a length l in its path and this causes a change in
the phase of the wave function

ψSBO = ψB =
1√
2

[
e
iφ
2

e
−iφ

2

]
. (16.163)

This is found from the action of the operator Tφ, Eq. (9.166) on ψA where
φ is given by (16.161). When the two beams recombine at O, the total wave
function is the sum of ψA and ψB ;

ψtotal = ψA + ψB =
1√
2

[
1 + e

iφ
2

1 + e
−iφ

2

]
, (16.164)

and this gives us the following probability density

|ψtotal|2 =
1
2

(∣∣∣1 + e
iφ
2

∣∣∣2 +
∣∣∣1 + e

−iφ
2

∣∣∣2) = 2
(

1 + cos
φ

2

)
. (16.165)

Denoting the intensity of the beam by I(φ) and the intensity in the absence of
the magnetic field by I(0), we have

I(φ)
I(0)

=
|ψtotal|2(φ)
|ψtotal|2(0)

=
1
2

(
1 + cos

φ

2

)
. (16.166)
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If we keep the length of the field l fixed and vary B, then φ and consequently
I(φ) will change. But I(φ) has maxima at φ = 0, 4π · · ·, i.e. we get the same
intensity, not by a rotation by 2π, but by a rotation through 4π for spin 1

2
particles.

16.6 Gravity-Induced Quantum Interference

Another example where the potential has an observable effect in quantum me-
chanics is the gravity-induced quantum interference. For the formulation of this
problem let us first consider the motion of a particle in a constant field of grav-
ity.

For the motion of a falling body the classical equation of motion is

mnr̈ = −mn∇Vg = −mngk̂. (16.167)

In this case the motion does not depend on the mass mn since it drops out
of the two side of the equation. This is a consequence of the equality of the
gravitational and inertial masses. But in quantum mechanics the analogue of
(16.167) is the Schrödinger equation(

− h̄2

2mn
∇2 +mnVg

)
ψ = ih̄

∂ψ

∂t
, (16.168)

and this shows that the wave function is dependent on the combination h̄/m
[40]. Now let us study a remarkable phenomena where the motion of a particle
such as a neutron shows observable quantum phase differences [41].

Let us consider an arrangement shown in Fig. 16.4. The upper and the
lower arms SABO and SCDO have the same path lengths for the neutrons.
The experiment is done by splitting a beam of neutrons at the source point S
into two beams, and allowing them to recombine at the point O in Fig. 16.4.

If the particles are thermal neutrons, the size of the wave packet for each
particle will be much smaller than the macroscopic dimensions of the two arms,
and thus we can consider a classical trajectory for the motion, i.e. we can use
the WKB approximation. Thus the wave function for a neutron passing through
the upper arm is

ψ1(xO) = ψ(xS) exp
(
− i
h̄

∫ xO

xS

pu(x)dx
)
, (16.169)

and for a particle reaching the point O through lower arm is

ψ2(xO) = ψ(xS) exp
(
− i
h̄

∫ xO

xS

pl(x)dx
)
, (16.170)
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Figure 16.4: At the point S a beam of neutrons is split into two beams one travelling along
SABO and the other along SCDO. At the point O the two beams are recombined. By
rotating the loop about the SO axis one observes an interference pattern when the intensity
at O is plotted as a function of the angle of rotation of the loop.

where in these relations pu(x) and pl(x) are defined by

pu(x) =
√

2mn[E − Vu(x)], (16.171)

and
pl(x) =

√
2mn[E − Vl(x)], (16.172)

where mn is the mass of a single neutron. Since the potential energy Vu,l(x) is
small relative to the total energy of the neutrons, we have

pu(x) ≈
√

2mnE

(
1− Vu(x)

2E
+ · · ·

)
, (16.173)

and

pl(x) ≈
√

2mnE

(
1− Vl(x)

2E
+ · · ·

)
. (16.174)

When the two arms lie in a horizontal plane, Vu is the same as Vl, and since
the potentials are the same and the path lengths are identical we have coherent
waves arriving at S. By rotating the loop about the horizontal axis through
an angle δ, the potential Vu becomes larger than Vl by an amount mngl2 sin δ,
where l2 is the length AC = BD of the arms. Thus from Eqs. (16.169),(16.170)
and (16.173) and (16.174) it follows that the wavepacket arriving at O via the
upper arm suffers a phase change

exp
(
− imngl2T sin δ

h̄

)
, (16.175)

relative to that of the wavepacket reaching O by the lower arm. Here T is the
time that takes for the wavepacket to move from A to B (or from C to D).
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We can write the phase difference between the neutrons going through the path
SABO and those going by SCDO as

∆φ = φSABO − φSCDO = −m
2
ngl1l2λ sin δ

h̄2 , λ =
2πh̄
mnv

, (16.176)

where we have replaced the time T by

T =
l1

vwavepacket
=
l12πλm

h̄
. (16.177)

That is we have expressed time in terms of the length l1 of the arm and λ̄,
the de Broglie wavelength of the neutron. With the thermal neutrons with
the wavelength λ̄ = 8.92 Å and the surface area of the loop l1l2 = 10 cm2 we
get ∆φ = 55.6 radians. By rotating the loop about the SO axis we find that
because of the interference between the two beams we have a pattern similar
to the interference pattern in optics, exhibiting a series of maxima and minima.
Thus we expect to see 55.6

2π ≈ 9 oscillations [41], [42]. Experimentally this
pattern with these oscillations have been observed [43]. That this phenomenon
is of purely quantum mechanical origin can be seen from the limit of h̄ → 0,
where the pattern disappears. This experiment also shows that in quantum
mechanics gravity is not purely a geometric factor since the result depends on
(mn/h̄)2.

16.7 Quantum Beats in Waveguides with Time-
Dependent Boundaries

Another nonclassical feature of quantum particles, that is those obeying the
Schrödinger equation, is their interference, as we observed in connection with
the Aharonov–Bohm effect and also in connection with the observability of the
gravitational potential. An interesting and important example of the interfer-
ence occurs when two waves, with frequencies close to each other interfere. The
classical example of two tuning forks, or two weakly coupled harmonic oscilla-
tors have their analogues in quantum mechanics [29].

Let us consider a beam of particles, e.g. cold neutrons, split in two parts,
the two parts are passed through identical waveguides and then brought back
together at the position of the detector where they can interfere constructively.
If the boundaries of one of the two waveguides starts moving while the other
remains stationary, the wave arriving at the detector will have different fre-
quencies, and the absolute value of the total wave function at the terminal
point oscillates in time and shows the presence of interference and quantum
beats. There are two factors responsible for this change of phase:
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(a) - As the walls of the waveguide expands, the eigenvalues of the Hamil-
tonian will change, and so the time-dependent factor

exp

(
−i
∫
E(t)dt

h̄

)
, (16.178)

in the Schrödinger equation causes a “dynamical” phase shift [30],[31].
(b) - In addition the center of each eigenfunction along the direction of

motion will change, (the center still remains at the middle of the waveguide),
thus the eigenfunctions will acquire additional phase, this time “geometrical
phase”.

Let us consider a waveguide formed from surfaces at x = −a, x = a,
y = −L(t) and y = L(t), where a is a constant and L(t) is a smooth function
of time. A monoenergetic beam of identical particles which is incident from the
negative z-axis, travels parallel to the z-axis and emerges in the direction of the
positive z-axis. Denoting the mass of each particle by mn, and setting h̄ = 1, we
can find the wave function from the solution of the time-dependent Schrödinger
equation

i
∂ψ

∂t
= − 1

2mn
∇2ψ, (16.179)

but now with the time-dependent boundary conditions:

ψ(x = ±a, y, z, t) = 0, (16.180)

and
ψ(x, y = ±L(t), z, t) = 0. (16.181)

The symmetry of the boundary condition shows that there is no mixing between
even and odd parity states. Therefore we will just consider the solutions of Eq.
(16.179) for even parity states;

ψ(x, y, z, t) = ψ(−x, y, z, t), (16.182)

and
ψ(x, y, z, t) = ψ(x, −y, z, t). (16.183)

A wave traveling in this waveguide in the direction of positive z axis and satis-
fying the symmetry conditions (16.182) and (16.183) is given by

ψ(x, y, z, t) =
∞∑
n=0

∞∑
m=0

cos

[(
n+

1

2

)
πy

L(t)

]
cos

[(
m+

1

2

)
πx

a

]
× exp [−ik3(nm)z]φnm(k3, t), (16.184)

where k3(mn) s are wave numbers for the propagating modes.
To find the time-dependent coefficients φnm(k3, t) we substitute (16.184)

in (16.179), multiply the result by

cos

[(
j +

1

2

)
πy

L(t)

]
cos

[(
m+

1

2

)
πx

a

]
, (16.185)
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and integrate over x from −a to a and over y from −L(t) to L(t). The re-
sult shows that φnm(k3, t) satisfies the following coupled ordinary differential
equations

i
dφjm(t)
dt

+
(
i

2π

)(
d

dt
lnL(t)

) ∞∑
n=0

A(j, n)φnm(t)

+
1

2mn

{(
j +

1
2

)2
π2

L2(t)
+ k2

m + k2
3

}
φjm(t) = 0,

(16.186)

where A(j, n) is a dimensionless matrix with elements A(j, n) = −A(n, j) =
(−1)j−n+1π(2j + 1)(2n+ 1)

(j − n)(j + n+ 1)
j 6= n

A(n, n) = π

, (16.187)

and

k2
m =

(
m+ 1

2

)2
π2

a2
. (16.188)

To simplify Eq. (16.186) further we first suppress the index m in the equation
for φnm. Then we change φj(t) to θj(t), and study the solution for a fixed m,
φj(t) ≡ φjm(t) to θj(t) where the latter is defined by

φj(t) =
1√
L(t)

exp
[

i

2mn

(
k2

3 + k2
m

)
t

]
θj(t). (16.189)

With this change we get a simpler equation for θj(t);

i
dθj(t)
dt

+
(

1
2mn

)[(
j + 1

2

)2
π2

L2(t)

]
θj(t) +

(
i

2π

)
d

dt
lnL(t)

∑
n6=j

A(j, n)θn(t) = 0.

(16.190)
Now we calculate

θ∗j (t)
dθj(t)
dt

+ θj(t)
dθ∗j (t)
dt

, (16.191)

using (16.190) and its complex conjugate we find a simple form for the conser-
vation of flux

d

dt

∞∑
j=0

|θj(t)|2 = 0, (16.192)

Next we want to determine θj(t) by solving (16.190) and for integrating this
equation we need to know the initial conditions. These conditions depend
on the way that L(t) behaves as t → ∞. Here we only consider those cases
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where L(−∞) tends to a finite nonzero value and in the same limit of t →
∞, (d lnL(t)/dt) goes to zero. Thus for large negative values of t we write

ψm,j,k3(x, y, z, t) = cos

[(
j +

1

2

)
πy

L(t)

]
cos

[(
m+

1

2

)
πx

a

]
× exp(−ik3z) exp[−iE(−∞)t]. (16.193)

By substituting (16.193) in (16.179) we find E(−∞)

E(−∞) =
1

2mn

{
k2

3 +

(
j +

1

2

)2
π2

L2(−∞)
+

(
m+

1

2

)2
π2

a2

}
. (16.194)

For propagating modes k2
3 must be positive, therefore E(−∞) must satisfy the

inequality

2mnE(−∞)−

{(
j +

1

2

)2
π2

L2(−∞)
+

(
m+

1

2

)2
π2

a2

}
> 0. (16.195)

Obviously when E(−∞) is finite, only a finite number of modes can propagate.
In order to have any propagating mode at all the energy E(−∞) has to satisfy
the inequality

E(−∞) >
π2

8mn

(
1

L2(−∞)
+

1

a2

)
. (16.196)

For finite L(−∞) we observe that there will be j modes for which θ(−∞) s are
not zero. That is as t→∞ we have θj(−∞) = 1√

J
, for j = 0, 1, 2 · · · J − 1

θj(−∞) = 0, for j = J, J + 1, · · ·
. (16.197)

Quantum Beats — Suppose that a beam of identical monoenergetic
particles, (e.g. ultracold neutrons with wavelength of the order 103 Å and
average speed of 5 m/s) is split up into two parts. These two beams pass
through two rectangular waveguides with identical geometries and then they
are brought together at the position of the detector by identical passages as is
shown in Fig. 16.5. In this case we have constructive interference between the
two waves. Now if the two boundaries at y = ±L(t) of one of the waveguides
start moving smoothly then the wave function of the waves arriving at the
detector from the two waveguides will have the same amplitude but different
phases:

ψS(y, z, t) =
J−1∑
j=0

exp(−ik3z) cos

[(
j + 1

2

)
πy

L(−∞)

]
exp[−iE(−∞)t], (16.198)

and

ψM (y, z, t) =
N−1∑
n=0

exp(−ik3z) cos

[(
n+ 1

2

)
πy

L(t)

]
θn(t), (16.199)
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Figure 16.5: Sketch of an experiment demonstrating the change of phase of a wave passing
through a waveguide with moving boundaries. Here the walls of the upper waveguide is moving
in the y direction and their displacements are given by ±L(t). The lower waveguide has fixed
walls.

for stationary and moving boundary waveguides respectively. For simplicity in
these equations we have suppressed the x dependence and the index m. Having
found the waves arriving by two different paths, we can determine the total
wave function at the detector;

ψ(y, z, t) = ψM (y, z, t) + ψS(y, z, t). (16.200)

The z component of the velocity of the particle is given by h̄k3/mn, where
k3 is related to the initial energy E(−∞) by Eq. (16.194). If l denotes the
length of the waveguide and T denotes the traversal time of the particles, then
T = lmn

h̄k3
. Let ν be a frequency such that for an integer N , L

(
−Nν

)
− L(−∞)

and L
(
N
ν

)
− L(−∞) are small quantities, now if 2NνT < 1 then the particles

passing through the waveguide with moving walls will experience the full force
due to the complete transverse motion of these walls. For example we can choose

L(t) = L1(t) = π

[
1 +

sin2 νπt

cosh 2νt

]
, (16.201)

or
L(t) = L2(t) = π

[
1 + sin2 νπt

]
, 0 ≤ t ≤ N

ν
, (16.202)

then L
(
±Nν

)
−L(−∞) is zero. To find the partial wave projection of ψ(y, z, t)

we multiply (16.200) by cos
[(
j + 1

2

)
πy/L(−∞)

]
and integrate from −L(−∞)

to L(−∞). If L(−∞) = L(∞), then we have the simple result

ψ(j, z, t) = exp(−ik3z)L(−∞)
{
e−iE(−∞)t + θj(t)

}
. (16.203)
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Figure 16.6: The probabilities obtained at the point O Fig. 16.5 from the waves arriving
from the two identical waveguides: (a) - PS(0, t) is the probability when both are stationary
and (b) - PM (0, t) is the probability when one waveguide is stationary and the other has
moving walls with L(t) = L1(t).

From these partial waves we can calculate the probability of finding particles at
the position of the detector.

For simplicity let us choose E(−∞) so that only one propagating mode,
j = m = 0, is allowed, i.e. E(−∞) can have any value between

π2

8mn

[
1

L2(−∞)
+

1

a2

]
, (16.204)

and
9π2

8mn

[
1

L2(−∞)
+

1

a2

]
. (16.205)

Then by integrating (16.190) and substituting for θj in (16.203) we can calculate
ψ(j, z, t)). Finally PM (0, t) can be found from normalized ψ(j, z, t));

PM (0, t) =
1

4
|ψ(j, z, t)|2 ==

1

4

∣∣∣exp(−ik3z)L(−∞)
{
e−iE(−∞)t + θj(t)

}∣∣∣2 .
(16.206)

The probability PM (0, t) shows a typical interference pattern, indicating a
change in the phase of the wave caused by the motion of the walls. This proba-
bility is shown in Fig. 16.6 when the wall boundaries are ±L(t) = ±L1(t), Eq.
(16.201).

Forces Generated by the Motion of the Boundaries — The change
of the phase of the wave can be attributed to the action of a rather complicated
time-dependent force. Let us inquire if it is possible to find a potential which
simulates the effect of the motion of the boundaries [32]. For this we exam-
ine Eq. (16.190) for θj(t). This equation simplifies if the two time-dependent
coefficients d

dt [lnL(t)] and L−2(t) are proportional to each other, that is
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d

dt
lnL(t) =

ωL2
0

2L2(t)
, (16.207)

where ωL2
0/2 is the constant of proportionality. By integrating this equation we

find
L2(t) = L2

0(ωt+ δ), (16.208)

with δ being the constant of integration.

If we change the variable t to τ , where τ defined by

τ =
1
ω

ln
(
ωt+ δ

δ

)
, (16.209)

we obtain the following set of linear differential equations for θj(τ),

i
dθj(τ)
dτ

+
(

π2

2mnL2
0

)(
j +

1
2

)2

θj(t)

+
iω

4π

∑
n6=j

A(j, n) θn(t). (16.210)

This is a linear homogeneous differential equation with constant coefficients.
We use the trial solution

θj(t) = θj(0)eiΩτ , (16.211)

to find the following eigenvalue equation for Ω;

det

[{
Ω−

(
j +

1
2

)2
π2

2mnL2
0

}
− iω

4π
A(j, n)(1− δnj)

]
= 0. (16.212)

Since the matrix [
− iω

4π
A(j, n)(1− δnj)

]
, (16.213)

is Hermitian, the eigenvalues, Ωα are real. Thus if the walls are moving ac-
cording to (16.208), the eigenvalues change from

(
j + 1

2

)2 π2

2mnL2
0

to Ωα. The
change in the eigenvalues can be attributed to a potential U(y) acting on par-
ticles trapped within the interval −L0 ≤ y ≤ L0.

In order to find U(y) we observe that the matrix elements of U obtained

with the unperturbed wave function
(

cos (n+ 1
2 )πy
L0

)
must be the same as the

off-diagonal elements in (16.212), i.e.

− iω
4π
A(j, n)(1− δnj) =

∫ L0

L0

cos

[(
j + 1

2

)
πy

L0

]
U(y) cos

[(
n+ 1

2

)
πy

L0

]
dy,

(16.214)
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where A(j, n) is given by (16.187). Solving this integral equation for U(y) we
find that U(y) is given by the Hermitian operator

U(y) = − iω

2L0

(
2y

∂

∂y
+ 1
)

=
ω

2L0
(ypy + pyy). (16.215)

A more general form of the motion of the walls, viz,

L2(t) = L2
0

(
αt2 + ωt+ δ

)
, (16.216)

also gives us a solvable form of differential equation for θj(t) [33].

16.8 Spin Magnetic Moment

A classical particle with charge e and mass m having an angular momentum L
has a magnetic moment

µL =
e

2mc
L. (16.217)

This relation is also true in quantum mechanics except that since Li s do not
commute, (µL)i s also have nonvanishing commutators. Now for a particle with
spin S there is an additional contribution to the magnetic moment which we
denote by µS

µS =
ge

2mc
S, (16.218)

where g is called the Landé g factor. For an electron e is negative and

g − 2 =
α

2π
+O

(
α2
)
, (16.219)

where α is the fine structure constant

α =
e2

h̄c
≈ 1

137.04
. (16.220)

In this relation for g the terms on the right-hand side of (16.219) are corrections
coming from relativistic quantum electrodynamics. These corrections will be
ignored in our non-relativistic discussion. Thus for an electron

µtotal = µL + µS =
−|e|
2mc

(L + S) , (16.221)

where m is the mass of the electron. For protons and neutrons we have

µS(proton) =
5.59|e|
2mpc

S, (16.222)
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and

µS(neutron) =
−3.83|e|

2mnc
S. (16.223)

In these relations mp and mn denote the masses of proton and neutron respec-
tively.

If we place an electron with magnetic moment µS in a magnetic field
B(r, t) then the Hamiltonian will have an additional term which expresses the
interaction between S and B

HS = −µS ·B(r, t). (16.224)

By adding this additional term to the Hamiltonian of a charged particle in a
Coulomb field (e.g. the problem of hydrogen atom) we get

H =
1

2m

(
p− e

c
A
)2

− e2

r
− e

mc
S ·B. (16.225)

Assuming a weak magnetic field, we can expand H in (16.225) in powers of B
and retain only the terms linear in B

H = H0 −
e

2mc
(p ·A + A · p)− e

mc
S ·B

= H0 −
eB
2mc

· (L + 2S) = H0 − µtotal ·B

= H0 +H ′, (16.226)

where H0 is the Hamiltonian for the electron in the Coulomb field

H0 =
1

2m
p2 − e2

r
. (16.227)

If we choose the magnetic field to be along the positive z axis then H ′ simplifies;

H ′ = H ′L +H ′S = − eB

2mc
(Lz + 2Sz). (16.228)

In the absence of spin the energy levels will split due to the contribution of H ′L,
i.e.

(∆E)no spin = 〈n, `, m̄ |H ′L|n, `, m̄〉 = − eh̄

2mc
m̄B = −µBm̄B. (16.229)

Here we have denoted the eigenvalues of Lz by m̄ and where µ(B) is the Bohr
magneton,

µB =
∣∣∣∣ eh̄2mc

∣∣∣∣ . (16.230)

This perturbation removes the (2`+1)-fold degeneracy of the eigenvalues which
is common to all central force problems. Thus the spectral lines of an atom
placed in a magnetic field will split and this splitting is called the Zeeman
effect. Such a splitting is shown in Fig. 16.7.

There is a further splitting of the levels caused by the spin of the electron.
Again to the first order perturbation theory from (16.228) we have
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µBB

Figure 16.7: Removal of the degeneracy of the P state of the hydrogen atom in the presence
of the magnetic field when the spin is neglected (Zeeman effect).

Figure 16.8: Same as in Fig. 16.7 but the coupling of the magnetic field to the spin is not
neglected (anomalous Zeeman effect).

∆E = 〈n, `, m̄, sz |H ′|n, `, m̄, sz〉 = µBB

(
m̄+

2sz
h̄

)
, (16.231)

where sz is the eigenvalue of Sz. We note here that each m̄ level is split into
two levels, depending on the direction of the electron spin. In our discussion we
have used the first order perturbation theory to calculate the shift in the energy
levels caused by an external magnetic field. This splitting, shown in Fig. 16.8,
is called anomalous Zeeman effect. For an exact formulation of the problem we
can write the Schrödinger equation for the motion of a spinning electron in a
magnetic field. In this situation the wave function has two components ψ↑ and
ψ↓ depending on whether the spin is up or is down. In this case the Schrödinger
equation becomes a matrix equation

ih̄
∂

∂t

[
ψ↑
ψ↓

]
=

[
1

2m

(
−ih̄∇− e

c
A(r, t)

)2

· 1
] [

ψ↑
ψ↓

]
−

(
geh̄

4mc
σ ·B(r, t)

)[
ψ↑
ψ↓

]
+ V (r, t) · 1

[
ψ↑
ψ↓

]
. (16.232)
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In this equation V (r, t) is the potential energy and 1 is the unit 2 × 2 matrix.
The coupling between ψ↑ and ψ↓ is provided by the term

σ ·B =
[

Bz Bx − iBy
Bx + iBy Bz

]
, (16.233)

in (16.232). Equation (16.232) is known as the Pauli equation [34].

16.9 Stern–Gerlach Experiment

The Stern–Gerlach experiment may be regarded as one of the most important
experiments in the development of quantum mechanics [35]. In this experiment
a beam of hydrogen atoms is sent through an inhomogeneous magnetic field, as
is shown in Fig. 16.9. The atoms are in the ground state, i.e. the electrons
are in singlet S state with zero orbital angular momentum. However because of
the spin magnetic moment, the beam is split into two parts of equal intensity.
This splitting shows that all electrons have a magnetic moment with the same
absolute value, but with two possible orientations, parallel and antiparallel to
the magnetic field. Denoting the spin magnetic moment by µS , the force felt
by the electron because of the inhomogeneous magnetic field is

F = −∇(−µS ·B) == (µS · ∇)B, (16.234)

For the magnetic field in the Stern–Gerlach experiment we consider a field with
two components Bx(r) and Bz(r), i.e.

B(r) = iBx(r) + kBz(r). (16.235)

The magnetic field must satisfy the Maxwell equation ∇ ·B = 0 and this con-
dition is satisfied if B(r) is derived from the vector potential

A(r) = jB0(y)a(r), (16.236)

since then

B(r) = ∇∧A(r) =
(
−i

∂a

∂z
+ k

∂a

∂x

)
B0(y), (16.237)

and ∇ ·B = 0. Now the Hamiltonian for a neutral particle interacting with the
magnetic field B is

H =
1

2m
p2 + µ σ ·B(r), (16.238)

where µ = −µ σ is the magnetic moment of the atom, (Eq. 16.224). Since the
spin is coupled to the magnetic field, σ will be changing as a function of time.



504 Heisenberg’s Quantum Mechanics

Figure 16.9: A beam of spin 1
2

particles passing through an inhomogeneous magnetic field
B(r) is split into two components.

From the Hamiltonian operator we find the Heisenberg equations of motion for
the three vectors r, p and σ

drj
dt

=
i

h̄
[H, rj ] =

1
m
pj , (16.239)

dpj
dt

=
i

h̄
[H, pj ] = −µ

∑
k

σk
∂Bk
∂rj

, (16.240)

dσj
dt

=
i

h̄
[H, σj ] = µ[σ ∧B(r)]j . (16.241)

To simplify these equations further, we choose a symmetric field where a(r) and
B are given by

a(r) = xz, and B(r) = B0(y) (−ix+ kz) . (16.242)

With this simple form of B(r) we find nine equations for position, momentum
and the spin of the particle;

ẋ =
1
m
px, ẏ =

1
m
py ż =

1
m
pz, (16.243)

ṗx = µB0(y)σx, ṗy = (−µσxx+ µσzz)
∂B0(y)
∂y

, ṗz = −µB0(y)σz, (16.244)

σ̇x = −µ
h̄
B0(y)σyz, σ̇y =

µ

h̄
B0(y)(σxz + σzx), σ̇z =

µ

h̄
B0(y)σyx. (16.245)
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The complete integration of these coupled equations is difficult. To simplify the
problem, let us assume that the field B0 is nonzero only over a small interval
0 ≤ y ≤ l and write

B0(y) = b∆(y), (16.246)

where ∆(y) is a sharply peaked function of unit amplitude. Here we assume that
the field B0(y) is small while its gradient is large enough to cause significant
deflection.

Now we write the equations of motion in the frame attached to and moving
with the atom, taking the velocity in the y direction to be constant [36]. In this
frame we have

d

dt
=

∂

∂t
+ v

∂

∂y
. (16.247)

Writing Eqs. (16.245) in this frame we have

v
∂

∂y
σx(y) = −µ

h̄
B0(y)σy(y) z, (16.248)

v
∂

∂y
σy(y) =

µ

h̄
B0(y)[σx(y) z + σz(y) x], (16.249)

v
∂

∂y
σz(y) =

µ

h̄
B0(y)σy(y) x. (16.250)

Since B0(y) is sharply peaked around y = 0, ∆(y) simulates a delta function
and for this choice we can integrate Eqs. (16.248)–(16.250). Expressing the
final result in terms of t = y

v , we have for t > 0;

σx(t) = σx(0)− µb

vh̄
σy(0) z(0), (16.251)

σy(t) = σy(0) +
µb

vh̄
(σx(0) z(0) + σz(0) x(0)) , (16.252)

σz(t) = σz(0) +
µb

vh̄
σy(0) x(0). (16.253)

Having found σ(t), we now proceed to determine p(t). For this we substitute
Eqs. (16.251)–(16.253) in (16.244) to obtain

px(t) = px(0) +
µb

v

[
σx(0)− µb

h̄v
σy(0) z(0)

]
, (16.254)

and

pz(t) = pz(0)− µb

v

[
σz(0)− µb

h̄v
σy(0) x(0)

]
, (16.255)

all for t > 0. The momentum in the y direction in this approximation remains
constant. Finally from (16.243), (16.254) and (16.255) we find x(t) and z(t)

x(t) = x(0) +
px(0)t
m

+
µbt

mv

[
σx(0)− µb

vh̄
σy(0) z(0)

]
, (16.256)
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z(t) = z(0) +
pz(0)t
m

− µbt

mv

[
σz(0) +

µb

vh̄
σy(0) x(0)

]
. (16.257)

If µb
v � 1, then we can keep the first order contribution in µb

v and write the
solution of the Heisenberg’s equations as

x(t) = x(0) +
px(0)t
m

+
µbt

mv
σx(0), (16.258)

z(t) = z(0) +
pz(0)t
m

− µbt

mv
σz(0). (16.259)

Now we calculate the expectation value of these equations with the spinor |a〉 =[
α
β

]
,

〈x(t)〉 = 〈x(0)〉+
〈px(0)〉t
m

+
µbt

mv
〈a|σx(0)|a〉, (16.260)

〈z(t)〉 = 〈z(0)〉+
〈pz(0)〉t
m

− µbt

mv
〈a|σz(0)|a〉. (16.261)

Equation (16.261) shows that for a spin up particle |a〉 =
[

1
0

]
will be deflected

in the −z direction by a distance
(
−µbtmv

)
. However 〈↑ |σx(0)| ↑〉 = 0, and

therefore there is no deflection in the x direction. It should be noted that here
the average x deflection is zero, but a spin up particle will be deflected along
the x axis with equal probabilities for −x and +x directions [36].

For other accounts of this important experiment the reader is referred to
[37]–[39].

16.10 Precession of Spin Magnetic Moment in a
Constant Magnetic Field

The coupling between the magnetic moment of the particle the electromagnetic
field causes the spin to precess, and this precession of spin is of fundamental
importance in the applied aspects of quantum theory. The Hamiltonian for the
spinning particle in a magnetic field is

HS = −g
2
e

mc
S ·B = −g

4
eh̄

mc
σ ·B. (16.262)
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From this Hamiltonian we obtain the Heisenberg equation of motion for the i-th
component of the spin

ih̄
dSi(t)
dt

= [Si(t), HS ] =
∑
j

−
( ge

2mc

)
[Si(t), Sj(t)]Bj

= − igeh̄
2mc

∑
j,k

εijkSkBj . (16.263)

We can write (16.263) as a vector equation

dS(t)
dt

=
ge

2mc
S(t) ∧B = µS(t) ∧B. (16.264)

For a magnetic field which is time-independent we can integrate the equation
of motion (16.264). Assuming that the magnetic field is in the direction of the
positive z axis, then Eq. (16.264) simplifies to

dSx(t)
dt

=
geB

2mc
Sy, (16.265)

dSy(t)
dt

= −geB
2mc

Sx, (16.266)

and
dSz(t)
dt

= 0. (16.267)

These are linear and coupled equations which can be solved easily to yield

Sx(t) = Sx(0) cosωt+ Sy(0) sinωt, (16.268)

Sy(t) = −Sx(0) sinωt+ Sy(0) cosωt, (16.269)

and

Sz(t) = Sz(0), (16.270)

where

ω =
geB

2mc
. (16.271)

The time-dependence of the ket |ψ(t)〉 can be found from Eq. (4.11):

|ψ(t)〉 = exp
(
− iHSt

h̄

)
|ψ(0)〉 = exp

(
iωtSz
h̄

)
|ψ(0)〉. (16.272)
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16.11 Spin Resonance

We have seen how the magnetic moment of a particle precesses around the
direction of a static magnetic field. Now if in addition to this field we apply
a time-dependent magnetic field at right angle to the original static magnetic
field, then we can have a resonance condition that we will discuss now.

As it can be seen from Fig. 16.10 the magnetic moment of the particle
denoted by µ precesses around B0. The alternating B′(t) in general will have
little effect on the precession of µ since the torque that it generates will average
out to zero. However if the magnetic field rotates with the angular frequency

ω = ωprecession =
gµB

h̄
, (16.273)

i.e. if it stays in phase with the frequency of the precession, the torque will act
continuously and it will have a dramatic effect on the rotational motion of the
particle. As we can see from Eq. (16.231)

(∆E)S =
gµszB

h̄
= ±gµB

2
, (16.274)

where we have replaced µB by µ. Therefore the splitting between the parallel
and antiparallel configurations of spin is given by

∆E = (∆E)+ − (∆E)− = gµB. (16.275)

Thus electromagnetic radiation of angular frequency

ω =
∆E
h̄

=
gµB

h̄
, (16.276)

can be absorbed by this system. To find the condition for resonance in the setup
shown in Fig. 16.10 we solve the equation of motion for the spinning particle.

Let us write B0 and B′ in terms of their components

B0 = (0, 0, B0), (16.277)

and
B′ = (B′ cosωt, −B′ sinωt, 0) . (16.278)

The spin Hamiltonian (16.262) for this case is

HS = −gµ
2

B · σ = −gµ
2
(
B′xσx +B′yσy +B′zσz

)
+B0σz

= −gµ
2

[
B0 B′eiωt

B′e−iωt −B0

]
. (16.279)
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Figure 16.10: Precession of the magnetic moment of a particle around the static field B0

and an additional small rotating magnetic field.

The time-development of the components of the spin can be found from the
Schrödinger equation

ih̄
d

dt

[
α+(t)
α−(t)

]
= HS

[
α+(t)
α−(t)

]
=
−h̄
2

[
ω0 ω′eiωt

ω′e−iωt −ω0

] [
α+(t)
α−(t)

]
, (16.280)

where ω0 and ω′ are defined by

ω0 =
gµB0

h̄
and ω′ =

gµB′

h̄
, (16.281)

and ω is the frequency of the external field which varies sinusoidally. The matrix
equation (16.280) gives us two coupled first order differential equations for α+

and α−; −2idα+(t)
dt = ω0α+(t) + ω′eiωtα−(t)

−2idα−(t)
dt = −ω0α−(t) + ω′e−iωtα+(t)

. (16.282)

For the initial conditions we assume that the spinor is pointing up, i.e.[
α+(0)
α−(0)

]
=
[

1
0

]
. (16.283)

We are looking for periodic solutions for the spin components, i.e. we want to
have

α+(t) = A+e
iω+t and α−(t) = A−e

iω−t. (16.284)



510 Heisenberg’s Quantum Mechanics

In these relations A+, A−, ω+ and ω− are constants to be determined. Substi-
tuting (16.284) in (16.282) we obtain the following equations

2ω+A+ = ω0A+ + ω′A− exp[i(ω + ω− − ω+)t], (16.285)

and
2ω−A− = −ω0A− + ω′A+ exp[−i(ω + ω− − ω+)t]. (16.286)

These equations show that for A+ and A− to be constants we must have

ω = ω+ − ω−. (16.287)

Using (16.287) the two equations (16.285) and (16.286) become coupled homoge-
neous linear equations in A+ and A−. For a nontrivial solution the determinant
of the coefficients must be zero;∣∣∣∣ 2ω+ − ω0 −ω′

−ω′ 2ω− + ω0

∣∣∣∣ = 0. (16.288)

If we eliminate ω+ between this equation and Eq. (16.287) we find a quadratic
equation for the unknown frequency ω−. Solving this equation we obtain ω−
and ω+:

ω− = −ω
2
±∆ω = −ω

2
± 1

2

√
(ω − ω0)2 + ω′ 2, (16.289)

and
ω+ =

ω

2
±∆ω. (16.290)

From (16.284) and (16.289) we obtain the general solution for α−(t);

α−(t) = A exp
(
− iωt

2
+ i∆ωt

)
+B exp

(
− iωt

2
− i∆ωt

)
, (16.291)

where A and B are constants. By imposing the initial conditions (16.283) on
α−(t) and α+(t) we finally find α−(t) to be

α−(t) =
iω′

2∆ω
sin(∆ωt) exp

(
− iωt

2

)
. (16.292)

Thus the probability for the spin flip from the initial condition |α−(0)|2 = 0 to
|α−(t)|2 is given by [3]

P↓(t) = |α−(t)|2 =
[

ω′ 2

ω′ 2 + (ω − ω0)2

]
sin2(∆ωt). (16.293)

For a very sharp resonance, ω′ must be very small compared to ω0 and
this means that B′ must be small. An examination of Eq. (16.293) shows that
P↓(t) reaches its maximum when ∆ω t = π

2 , however this maximum probability
is very small. When the condition of resonance is reached, i.e. when ω = ω0,
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then P↓
(
π

∆ω

)
= 1 and the spin has flipped with certainty. Now let us consider

the case of the free or unpaired protons which is of great interest in the nuclear
magnetic resonance (NMR). The parameters for having a resonance in this case
when the magnetic field is 1 Tesla, are

f ′ ≈ 40 MHz, λ = 7 m and ∆E = 2× 10−7 eV, (16.294)

Here f ′ is the resonant frequency, λ is the wavelength and ∆E is the photon
energy. The value of f ′ shows that the time-dependent magnetic field must have
a frequency in the range of radio waves.

16.12 A Simple Model of Atomic Clock

Another interesting application of spin resonance condition is in the operation
of an atomic clock. The principle used in making of an atomic clock is a tunable
cavity (or cavities) which can be tuned for a maximum microwave amplitude.

There are many different types of atomic clocks some more accurate than
others [44]–[46]. A simple model of such a clock consists of two resonant cavities
aligned along the y axis and separated from each other as is shown in Fig. 16.11.
In this model a beam, consisting of particles with their spin along the positive
z axis, enters the first cavity in the direction of the y axis and emerges on the
right hand side of the second cavity [34],[47]. Inside each cavity there is the same
radio frequency field B1 cosωt in the x direction. In addition there is a uniform
static field B0 along the positive z axis, and this field acts inside the cavities as
well as in the space between them. We want to calculate the probability of a
particle entering the first cavity with spin up to emerge from the second cavity
with spin down. The spin wave function of the system satisfies the Schrödinger
equation

ih̄
d

dt
|ψ(t)〉 = − eh̄

2mc
[B0σz +B′(t)σx] |ψ(t)〉. (16.295)

Now we introduce a new wave function |ψ1(t)〉 by the relation

|ψ(t)〉 = exp
(
iω0tσz

2

)
|ψ1(t)〉, (16.296)

where ω0 = eB0
mc . Substituting for |ψ(t)〉 from (16.296) in (16.295) we find

i
d|ψ1(t)〉
dt

= −eB
′(t)

2mc
exp

(
−iω0tσz

2

)
σx exp

(
iω0tσz

2

)
|ψ1(t)〉

= −eB
′(t)

2mc
σx exp (iω0tσz) |ψ1(t)〉. (16.297)

We assume that at the time t = 0 a spinor enters the first cavity and
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Figure 16.11: The cavities shown in this figure form a part of an atomic clock. Particles
with spin up enter the first cavity in the direction of the arrow and emerge from the second
cavity with their spins aligned in either positive or negative z axis.

therefore the initial condition for the differential equation (16.297) is

|ψ(0)〉 = |ψ1(0)〉 = |k ↑〉, (16.298)

where k is a unit vector in the positive z axis. With the initial condition (16.298)
we can integrate Eq. (16.297). Because of the smallness of B′(t) we only need
the solution of |ψ−(t)〉 to the first order in B′(t);

|ψ1(t)〉 = |ψ1(0)〉+
ie

2mc

∫ t

0

B′ (t′)σx exp (iω0t
′σz) |ψ1(0)〉. (16.299)

At a later time t = t2 when the spinor leaves the second cavity the component
of its wave function with spin down will be

〈k ↓ |ψ1(t2)〉 =
ie

2mc

∫ t2

0

B′(t)eiω0tdt. (16.300)

Let us denote the time that the particle leaves the first cavity by τ and the
time when it emerges from the second cavity by t2 = T + τ , then the integral
in (16.300) can be written as the sum of two terms∫ t2

0

B′(t)eiω0tdt =
∫ τ

0

B′ cos(ωt)eiω0tdt+
∫ τ+T

T

B′ cos(ωt)eiω0tdt. (16.301)

The main contribution to these integrals come from the neighborhood of ω ≈ ω0,
thus we can ignore the contributions of the terms of the type ei(ω0+ω)t in the
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Figure 16.12: The probability of spin flip for the particles emerging from the second cavity
of Fig. 16.11. This probability is plotted as a function of the frequency of the applied r.f.
field.

integrated. Using this approximation we find the transition amplitude to be

〈k ↓ |ψ1(τ + T )〉 =
eB′

4mc

(
ei(ω0−ω)τ − 1

ω0 − ω

)(
1 + ei(ω0−ω)T

)
. (16.302)

The amplitude in (16.302) consists of two parts, one which is proportional
to ei(ω0−ω)T is the amplitude for the spin flip in the second cavity. The other
term shows the amplitude for spin flip in the first cavity. From Eq. (16.302) we
find the probability for the spin flip to be

P(ω) =
(
eB′

2mc

)2
(

sin (ω0−ω)τ
2

ω0−ω
2

)2(
1 + cos(ω0 − ω)T

2

)
. (16.303)

Let us examine this equation for constant values of τ and T , assuming that
τ is much smaller than T . We observe that P consists of two ω-dependent fac-
tors, the first is the enveloping curve and has the form of a single-slit diffraction
pattern, while the second term [1 + cos(ω0 − ω)T ] represents a rapidly oscillat-
ing function of ω. This rapidly oscillating term has a maximum at ω = ω0

where the probability for spin flip is also maximum. The dependence of P(ω)
on ω is displayed in Fig. 16.12. By observing the rapid oscillations of P(ω) one
can accurately tune ω to ω0. The spin of the particle in the two cavities feels
the r.f. (radio frequency) field, and the difference in the phase of this r.f. field
which the spin feels give rise to the interference pattern.

For accurate atomic clock the spin of an electron in caesium atom is used
instead of the molecular beam. The applied constant field in this case is the
internal field of the electron and

ω0 =
1
h̄

(Espin up − Espin down), (16.304)
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is a constant and thus we have a very accurate measurement of the frequency
and of the time.

16.13 Berry’s Phase

In our formulation of the adiabatic approximation of Sec. 11.6 we found a
phase γn(t) which was defined by Eq. (11.162) and it appeared through the
dependence of H on time

dγn(t)
dt

= i

∫
ψ∗n(r, t)

∂

∂t
ψn(r, t)d3r. (16.305)

There we argued that in most applications we can ignore this phase. But for
nonholonomic systems, viz the systems that do not return to their original state
when transported adiabatically around a closed path, the phase γn(t), cannot
be ignored. Now let us consider the case where the time-dependence of the
Hamiltonian arises from its dependence on a set of k parameters R1(t), · · ·Rk(t).
These parameters can be considered as a vector R with k components

R(t) = (R1(t), R2(t) · · ·Rk(t)). (16.306)

We assume that R(t) varies slowly with time and that it satisfies the condition
for the validity of the adiabatic approximation, viz,∣∣∣∣ 1

Rj(t)
dRj(t)
dt

∣∣∣∣� ∣∣∣∣ 1
En(t)

dEn(t)
dt

∣∣∣∣ , (16.307)

where En s are the instantaneous eigenvalues of H(t), Eq. (11.143). We also
assume that R is a periodic function of time with period T ;

R(0) = R(T ). (16.308)

Since the Hamiltonian depends on time through R(t), the time-dependence of
the wave function also will be determined by its dependence on this vector.
Thus we can write (16.305) as

dγn(t)
dt

= i

∫ k∑
j=1

{
ψ∗n(r, Rj(t))

d

dRj
ψn(r, Rj(t))

dRj(t)
dt

}
d3r. (16.309)

This equation can also be written in the ket notation as

dγn(t)
dt

= i 〈n,R|∇R|n,R〉 ·
dR(t)
dt

. (16.310)
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According to Berry, this phase, γn(t), is observable for a nonholonomic
system, when the time evolution brings the parameter R(t) back to the starting
point R(0) defined by (16.308) [48]. We can write the phase for a complete
cycle γn(T ) as

γ̇n(T ) = α(t) = i

∫ T

0

〈n,R|∇R|n,R〉 ·
dR(t)
dt

= i

∮
C

〈n,R|∇R|n,R〉 · dR. (16.311)

The line integral in (16.311) is around a closed curve C in the parameter space.
Let us define a vector An(R) by

An(R) = i 〈n,R|∇R|n,R〉 , (16.312)

so that
γn(T ) =

∮
An(R) · dR. (16.313)

This An(R) is similar to the vector potential in electrodynamics, but in a k-
dimensional space. If we redefine the phase of the eigenstate by

|n,R〉 → exp[iϕn(R)] |n,R〉, (16.314)

then we have
An(R)→ An(R)−∇Rϕn(R), (16.315)

which is analogous to the gauge transformation. Now we want to show that the
observable Berry’s phase does not depend on the choice of gauge ϕn(R). Con-
sider the generalized form of the Stokes theorem for a vector with k components,
and let us apply it to the right-hand side of (16.313)

γn(T ) =
∫ T

0

An · dR =
∫
S

(∇R ∧An(R)) · dS

→
∫
s

∇R ∧ (An(R)−∇Rϕn(R)) · dS

=
∫
S

∇R ∧An · dS, (16.316)

where S is a smooth surface that is bounded by a simple closed curve in the
parameter space. Therefore γn(T ) which is the geometric phase is just the flux
of the vector field

Vn(R) = ∇R ∧An, (16.317)

through the surface s and does not depend on ϕn(R).
As in the case of electromagnetic field Vn(R) will have nontrivial struc-

ture in the presence of a source. This will be the case if two or more of the
fast eigenvalues En(R) become degenerate for some values of R. To show this
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connection between the degeneracy and the presence of the Berry’s phase we
first introduce the notations

∇R|n,R〉 = |∇R(n,R)〉, (16.318)

and
∇R〈n,R| = 〈∇R(n,R)|, (16.319)

where for the sake of simplicity we have suppressed the time dependence of R(t).
Now we express Vn(R) which is a real vector as

Vn(R) = i∇R ∧ 〈n,R|∇R|n,R〉
= i 〈∇R(n,R)| ∧ ∇R(n,R)〉
= −Im 〈∇R(n,R)| ∧ ∇R(n,R)〉 . (16.320)

By introducing a complete a set of states we write (16.320) as

Vn(R) = −Im
∑
k

{〈∇R(n,R)|k,R〉 ∧ 〈k,R|∇R(n,R)〉} , (16.321)

We note that the normalization of the wave function

〈n,R|n,R〉 = 1, (16.322)

has the gradient

〈n,R|∇R(n,R)〉+ 〈∇R(n,R)|n,R〉 = 2Re 〈n,R|∇R(n,R)〉 = 0. (16.323)

Thus the term with k = n in the intermediate states is real and does not
contribute to the sum.

The time-dependent eigenvalue equation (11.143) for this case takes the
form

H(R)|n,R〉 = En(R)|n,R〉. (16.324)

By taking the gradient of this expression we find

(∇R)H(R)|n,R〉 + H(R)∇R|n,R〉 = (∇R(En(R))|n,R〉
+ En(R)∇R|n,R〉. (16.325)

Now we multiply (16.325) by 〈k,R| with k 6= n and use (16.318) (16.319) to get

〈k,R|∇RH(R)|n,R〉 = (En(R)− Ek(R))〈k,R|∇R(n,R)〉. (16.326)

If we substitute this relation in Eq. (16.321) we find the following expression
for Vn(R);

Vn(R) = −Im
∑
k 6=n

〈n,R|∇RH(R)|k,R〉 ∧ 〈k,R|∇RH(R)|n,R〉
(Ek(R)− En(R))2

. (16.327)
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Now if for a given time t

Ek(R(t))− En(R(t)) = 0, (16.328)

then Vn(R) diverges and this means that a field source exists.
Berry’s Phase for a Particle with Spin in a Slowly Varying Mag-

netic Field — A simple system which exhibits the geometrical phase in its
motion is that of a spinning particle in a time-dependent magnetic field B(t)
[48]–[50]. The Hamiltonian for the system is given by Eq. (16.224) which we
write as

HS(B) = −µS ·B. (16.329)

The eigenfunctions and the eigenvalues for a fixed value of the magnetic field
are

[HS(B)− Em̄(B)] |m̄B〉 = 0, (16.330)

where

Em̄(B) = −µm̄B, m̄ = `, `− 1 · · · − `, ` an integer. (16.331)

For the time-dependent magnetic field the wave function is the solution
of the Schrödinger equation[

i
∂

∂t
−H(B(t))

]
|m̄,B(t)〉 = 0, h̄ = 1, (16.332)

and this equation is subject to the initial condition

|m̄,B(0)〉 = |m̄,B〉. (16.333)

The time-dependence of the wave function comes only through its dependence
on B(t), therefore

d

dt
|m̄,B(t)〉 =

dB(t)
dt

· |∇B(m̄,B(t))〉. (16.334)

As we discussed earlier the Berry’s phase is given by γm̄(T ) = γm̄(C) where C
is the closed curve

γm̄(T ) = γm̄(C) =
∮
C

〈m̄,B(t)|∇B(m̄,B(t))〉 · dB, (16.335)

and the flux Vm̄(B) according to (16.327) has the form

Vm̄(B) = −Im
∑
n̄6=m̄

〈m̄,B|∇BH(B)|n̄,B〉 ∧ 〈n̄,B|∇BH(B)|m̄,B〉
(Em̄(B)− En̄(B))2

. (16.336)

We can simplify this expression by substituting from Eqs. (16.329)–(16.331) in
it;

Vm̄(B) = − 1
B2

Im
∑
n̄6=m̄

〈m̄,B|S|n̄,B〉 ∧ 〈n̄,B|S|m̄,B〉
(m̄− n̄)2

, (16.337)
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where m̄ and n̄ are the eigenvalues of 1
B (S ·B). The nonzero matrix elements of

1
B (S ·B) are n̄ = m̄± 1, therefore (m̄− n̄)2 = 1. To the sum in (16.337) we add
the term m̄ = n̄ since 〈m̄|S|m̄〉 ∧ 〈m̄|S|m̄〉 is zero. Hence we can write Vm̄(B)
as

Vm̄(B) = − 1
B2

Im 〈m̄,B|S ∧ S|m̄,B〉

= − 1
B2
〈m̄,B|S|m̄,B〉. (16.338)

Here we have used S ∧ S = iS, (h̄ = 1), Eq. (9.111). If we rotate the axes
so that the z axis is in the direction of B, then Vm̄(B) will also be in the z
direction. Then the expectation value shown in (16.338) can be easily evaluated
and the result is

Vm̄(B) = −m̄B
B3

. (16.339)

For the special case of spin 1
2 particle the Hamiltonian HS(B) takes the

simple form

HS(B) = −µS ·B = −µ
2
σ ·B

= −µ
2

[
Bz Bx − iBy

Bx + iBy −Bz

]
. (16.340)

By diagonalizing this Hamiltonian we find that its eigenvalues are given by

E± = ±µ
2
[
B2
x +B2

y +B2
x

] 1
2 = ±µ

2
|B|. (16.341)

Thus we have a degeneracy when B = 0. The Berry phase found from this flux
is

γm̄(T ) = −m̄
∫
s

B · ds
B3

= −m̄Ω(C), (16.342)

where Ω(C) is the solid angle subtended by the closed curve C as seen from the
origin of the vector B. This result also indicates the geometrical nature of the
Berry’s phase, since γm̄(T ) does not depend on the magnitudes of S and B, but
only on the eigenvalue m̄.

By changing the closed curve C we can change the phase exp[iγm̄(T )], and
this phase can be made observable by superimposing two beams, one passed
through the magnetic field and the other not. This superposition produces an
observable interference pattern of the form Im̄ = 1

2 (1 + cos γm̄(T )). For the
choice of a curve C to be a circle around the cone of angle ϑ, we find the
intensity pattern to be

Im̄(ϑ) = cos2

[
m̄π

(
1− cos

ϑ

2

)]
. (16.343)

The state of a spinor aligned with the R direction which is specified by
the angles ϑ and ϕ is

| ↑,R〉 =
[

cos ϑ2
eiϕ sin ϑ

2

]
(16.344)
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as is given by (9.162). The flux Vn(R), Eq. (16.320) in this case is

V↑(R) = ∇R ∧A↑(R), (16.345)

where
A↑(R) = i〈↑,R|∇R| ↑,R〉 = −ϕ̂ 1

R sinϑ
sin2 ϑ

2
. (16.346)

By substituting (16.346) in (16.345) we find the flux

V↑(R) = ∇R ∧A↑(R) =
R̂

R sinϑ
∂

∂ϑ
(sinϑAϕ) = − R̂

2R2
. (16.347)

The flux can be viewed as the flux produced by a magnetic monopole of “charge”
− 1

2 located at the origin. We can calculate the Berry phase from A↑(R);

γ↑(C) =
∮

A↑(R) · dR = 2πR sinϑAϕ = ±π(1− cosϑ). (16.348)

In this case the solid angle swept out by this trajectory is

Ω↑(C) =
∫ ϑ

0

sinϑ′dϑ′
∫ 2π

0

dϕ = 2π(1− cosϑ), (16.349)

i.e. the Berry’s phase in this instance is

γ↑(C) = ±1
2

Ω↑(C). (16.350)

Connection with the Aharonov–Bohm Effect — Let us consider a
magnetic field with a simple flux line of magnitude Φ

Φ =
∮

A(R) · dR, (16.351)

and a quantum mechanical system consisting of a particle with charge e confined
to a box located at R and not penetrated by the flux line (Fig. 16.13). In
the absence of the flux, the Hamiltonian of the system depends on r, and its
conjugate momentum p = −ih̄∇r

H = H (−ih̄∇r, r−R) . (16.352)

The eigenfunction is ψn(r − R) and the eigenvalues En s are independent of
R. The state |n,R〉 are solutions of

H
[(
−ih̄∇r −

e

c
A(r)

)
, (r−R)

]
|n,R〉 = En|n,R〉. (16.353)

This equation has an exact solution and the resulting wave function is

〈r|n,R〉 = exp
[
ie

h̄c

∫ r

R

A (r′) · dr′
]
ψn(r−R). (16.354)
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Figure 16.13: A charged particle is confined in a box. When the box is transported round
a flux line the wave function of the particle will acquire a geometrical phase.

These wave functions are single valued functions of r. Now if the box is trans-
ported around a curve C which encloses the flux line, then we have

〈n,R|∇R|n,R〉

=

∫
ψ∗n(r−R)

{
− ie
h̄c

A(R)ψn(r−R) +∇Rψn(r−R)

}
d3r

=
−ie
h̄c

A(R). (16.355)

Thus according to Eq. (16.311) the Berry phase for this case is

γn(C) =
e

h̄c

∮
C

A(R) · dR =
e

h̄c
Φ, (16.356)

and is independent of the quantum number n. In this example the analogy
between Im 〈n,R|∇R|n,R〉 and the magnetic potential becomes evident.
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Chapter 17

Quantum Many-Body
Problem

In this chapter we want to study the physical properties of a system with N
particles, where these particles interact through two-body forces. It is well-
known that in classical mechanics, there are no known exactly solvable problems
for a system of N interacting particles. Even the general case of the three-
body problem cannot be solved exactly. Similarly in quantum mechanics there
is hardly an interesting problem with realistic interaction which is solvable.
Therefore we have to seek approximate solutions which preserves the essential
features of the whole problem or, alternatively we should be able to demonstrate
the validity of the approximation. An outstanding feature of the latter case is
the Hartree self-consistent field [1], in which every electron in an atom has its
own wave function and eigenvalue.

We start this chapter with the study of the important problem of the
two-electron atom which is a three-body problem. Using perturbation theory
and also variational method we find the ground state energy for helium-like
atoms. Then we study the Hartree–Fock method when the number of particles,
N , is finite and not very large, e.g. for atoms or atomic nuclei [2],[3]. Then we
use the technique of second quantization to study the problems of many-bosons
and many-fermion.

525
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17.1 Ground State of Two-Electron Atom

We will now consider “helium-like” atom where two electrons move in the
Coulomb field of the nucleus with a charge −Ze. The spectra of an atom with
two electrons was first obtained by Heisenberg in 1926, and was considered as
a great success of the new quantum theory [9]. Among the examples of such a
system we have the helium atom and singly ionized lithium, Li+, and doubly
ionized beryllium Be++ atoms. All these atomic problems can be described by
the Hamiltonian

H(1, 2) = H0(1, 2) + V (r1 − r2). (17.1)

where

H0(1, 2) = − h̄2

2m
(
∇2

1 +∇2
2

)
− Ze2

(
1
r1

+
1
r2

)
, (17.2)

is the Hamiltonian for the two electrons in the Coulomb field of the nucleus and

V (r1 − r2) =
e2

|r1 − r2|
, (17.3)

is the Coulomb potential between the two electrons. The ground state energy
of H0(1, 2) is twice that of the ground state of a hydrogen like atom (see Eq.
(9.252))

E0 = −Z
2e2

a0
, (17.4)

where a0 is the Bohr radius, a0 = h̄2

me2 , and m is the mass of the electron. The
ground state wave function for H0 is

ψ0(r1, r2) = φ1s(r1)φ1s(r2)→ 1
π

(
Z

a0

)2

exp
[
− Z
a0

(r1 + r2)
]
. (17.5)

Here φ1s denotes the ground state of the hydrogen-like atom, Eq. (9.207), and
1 stands for the principle quantum number. We observe that in (17.5) the
space part of the wave function is symmetric, therefore the spin part must be
antisymmetric, or the total spin must be zero, i.e. n = 1. This state has a lower
energy than the one where the spins of the two particles are parallel. From the
first order perturbation theory we have

EP0 = E0 + 〈φ0|V |ψ0〉, (17.6)

where

〈φ0|V |ψ0〉 =
∫
φ2

1s(r1)
e2

|r1 − r2|
φ2

1s(r2)d3r1d
3r2. (17.7)
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To evaluate (17.7) we expand |r1 − r2|−1 as

1
|r1 − r2|

=


4π
r1

∑
`,m

1
(2`+ 1)

(
r2

r1

)`
Y ∗`,m(θ1, φ1)Y`,m(θ2, φ2) if r1 > r2

4π
r2

∑
`,m

1
(2`+ 1)

(
r1

r2

)`
Y ∗`,m(θ1, φ1)Y`,m(θ2, φ2) if r2 > r1.

(17.8)
In this expression θ1, φ1 and θ2, φ2 are the polar angles of the radius vectors
r1 and r2 respectively. Since apart from |r1 − r2|−1 there are no other terms in
the integrand of (17.7) which depend on θ s and φ s, therefore after integration
over angular variables only the term with ` = m = 0 will survive and (17.7)
becomes

〈ψ0|V |ψ0〉 =
4e2

π

(
Z

a0

)6

×
∫ ∞

0

e−
2Zr1
a0

[
1
r1

∫ r1

0

e−
2Zr2
a0 r2

2dr2 +
∫ ∞
r1

e−
2Zr2
a0 r2dr2

]
r2
1dr1

=
5Ze2

8a0
. (17.9)

By substituting (17.4) and (17.9) in (17.6) we find the result of the first order
perturbation theory to be

EP0 = −Ze
2

a0

(
Z − 5

8

)
. (17.10)

A more accurate result can be found by using the variational method
outlined in Chapter 12. For the trial wave function we choose the same wave
function as (17.5) but now we replace Z by the variational parameter ζ,

ψ0(r1, r2) =
1
π

(
ζ

a0

)3

exp
[
−ζ(r1 + r2)

a0

]
. (17.11)

By substituting (17.11) in the Hamiltonian (17.1) using (17.2) and (17.3) and
following the same steps that led us to (17.10) we obtain

EV0 (ζ) =
e2

a0

[
ζ2 −

(
2Z − 5

8

)
ζ

]
, (17.12)

a result which reduces to (17.10) when we choose ζ = Z. But now we minimize
E(ζ) with respect to ζ, i.e. we set

dEV0 (ζ)
dζ

= 0, (17.13)

and we obtain the only root of this equation which is

ζ = ζ0 = Z − 5
16
. (17.14)



528 Heisenberg’s Quantum Mechanics

If we replace ζ by this value in (17.12) we find the ground state energy of the
system to be

EV0 = −
(
e2

a0

)(
Z2 − 5

8
Z +

25
256

)
. (17.15)

The number ζ0 = Z − 5
16 is called the effective nuclear charge for the two elec-

tron atom.
In order to compare these quantum mechanical results with the exper-

imental measurements we calculate the ionization energy, Eion, which is the
energy required to remove one electron from the atom. This is equal to the dif-
ference of the energy −Z

2e2

2a0
of the remaining electrons in the field of the charge

−Ze and E0. Here we can either use E0 = EP0 , Eq. (17.10) or E0 = EV0 , given
by (17.15). If we use EP0 from the variational method we get

EPion = −EP0 −
Z2e2

a0
=
Ze2

2a0

(
Z − 5

4

)
. (17.16)

On the other hand using our variational calculation we find EVion to be

EVion = −EV0 −
Z2e2

a0
=

e2

2a0

(
Z2 − 5

4
Z +

25
128

)
. (17.17)

Correlation Effects — In our variational calculation leading to Eq.
(17.17) we did not take into account the fact the motion of one of the elec-
trons affects the other electron and therefore the simple wave function given
by (17.5) cannot give an accurate description of the system. In general we can
have two types of correlation, the angular and the radial. The former which is
harder to use in variational calculation reflects the fact that the electrons are
more likely to be found on opposite sides of the nucleus rather than the same
side. The radial correlation, on the other hand, implies that if one electron
comes nearer to the nucleus, the other is forced to move out. Here we consider
only the radial correlation. Assuming that the two electrons shield each other
differently, we write the effective nuclear charge as seen by the electron nearer
to the nucleus by (1 + ν)ζ and the one further away by (1− ν)ζ. For zero total
spin (spin singlet) the spatial variational wave function has to be symmetric,
and as we argued it has to depend on the two parameters ν and ζ.

ψ0(r1, r2) = N
{

exp
[
−(1 + ν)ζ

(r1

a

)
− (1− ν)ζ

(r2

a

)]
+ exp

[
−(1− ν)ζ

(r1

a

)
− (1 + ν)ζ

(r2

a

)]}
, (17.18)

where N is the normalization constant. Using this wave function in place of
(17.11) we find that the minimum value of energy occurs when

ζ =
16Z − 4δ − δ2 + 16Zδ3 − 5δ3

8 (2− δ + δ4)
, (17.19)
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where δ = 1− ν2. The ground state energy found from this value of ζ is

E = −
(
e2

a0

)[(
16Z − 4δ − δ2 + 16Zδ3 − 5δ3

)2
128 (1 + δ3) (2− δ + δ4)

]
. (17.20)

The last column of TABLE XIV shows results of the variational calculation
when the radial correlation effect is included.

TABLE XIV: Ionization energies for helium-like atoms calculated from first order

perturbation and by simple variational method and these are compared with the observed

values. All energies are in the unit of e2

a0
.

Atom Experimental value EPion EVion Radial correlation

He 0.903 0.75 0.85 0.875
Li+ 2.7798 2.62 2.72 2.75

Be++ 5.6560 5.50 5.60 5.625
C+++ 14.4070 14.25 14.35

17.2 Hartree and Hartree–Fock Approximations

In the last section we showed how the ground state energy of a two-electron
atom can be obtained by perturbation and or by variational methods. For
larger atoms, we assume a model where an electron feels the Coulomb force of
the nucleus plus some average field due to the distribution of all other electrons.
Now we want to determine the average field and the wave function for an electron
moving in the combined fields of the nucleus and this average field [1]–[4]. We
observe that the average force felt by the j-th electron depends on the states
of other electrons, and this in turn is dependent on the average field in which
these electrons are moving.

The simplest N -body wave function for the system is the product of one
electron wave functions

ψ(1, 2, · · · , N) = φ(r1, s1)φ(r2, s2) · · ·φ(rN , sN ). (17.21)

We can allow for the exclusion principle by imposing the condition that the
single particle wave functions be orthogonal to each other and we will suppress
the spin quantum numbers, s1, s2 · · · sN . In this way we guarantee that no two
electrons will be in the same state. If we know the wave function φj(r), then the
average charge density at a point r′ due to the j-th electron will be e|φj(r′)|2.
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This charge density produces a field at the point r with the potential energy∫
e2

|r− r′|
|φj (r′) |2d3r′. (17.22)

Now for any other electron, say k-th, the average potential energy is the sum of
two terms

Vk(r) =
∫

e2

|r− r′|
∑
j 6=k

|φj (r′) |2d3r′ − Ze2

r
. (17.23)

where the first term on the right-hand side arises from all of the other electrons
and the last term is the Coulomb potential of the nucleus. Thus the wave
equation for the motion of the k-th particle is given by[

−∇
2

2m
+ Vk

]
φk(r) = Ekφk(r), h̄ = 1, (17.24)

where Ek is the energy associated with the motion of the k-th particle.
If we start with the N -particle Hamiltonian and find its expectation value

with the wave function ψ(1, 2, · · · , N), Eq. (17.21), we find

〈ψ|Hψ〉 = −
∑
k

∫ [
|∇φk(r)|2

2m
+
Ze2

r
|φk(r)|2

]
d3r′

+
1
2

∑
j,k

∫ ∫
e2

|r− r′|
|φj (r′) |2|φk (r) |2d3rd3r′. (17.25)

Now by minimizing (17.25) with respect to φk(r) subject to the condition that
φk(r) s must remain orthogonal to each other, we obtain the nonlinear equation
for φk(r);(
−∇

2

2m
− Ze2

r

)
φk(r) +

∫
e2

|r− r′|
∑
j

φj (r′)
[
φ∗j (r′)φk(r)

]
d3r = Ekφk(r)d3r′.

(17.26)
Here the parameter Ek is introduced as a Lagrange multiplier for the subsidiary
condition that the wave function is normalized,

〈ψ|ψ〉 = 1. (17.27)

Thus the Hartree equation, (17.24), can be found from a variational principle.
The nonlinear integro-differential equation (17.26) can be solved by iteration.
The iterative scheme is designed in such a way that the resulting equations in
any order of iteration are linear differential equations. For this linear set we
write (17.26) as(

−∇
2

2m
− Ze2

r

)
φ

(α+1)
k (r) +

∫
e2

|r− r′|
∑
j

∣∣∣φ(α)
j (r′)

∣∣∣2 φ(α+1)
k (r) d3r′

= E(α+1)
k φ

(α+1)
k (r), α = 0, 1, · · · . (17.28)
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By starting with a set of trial wave functions φ(0)
k (r), j = 1, 2 · · ·N , we calculate

φ
(1)
k (r), j = 1, 2 · · ·N and E(1)

k and continue this iteration until the desired
accuracy is reached. From Eq. (17.26) it follows that

Ek =
∫
φ∗k(r)

(
−∇

2

2m
− Ze2

r

)
φk(r)d3r

+
∑
k 6=j

∫
φ∗k(r)

e2

|r− r′|
∑
j

φj (r′)φ∗j (r′)φk(r)d3rd3r′. (17.29)

Now the total energy of all the particles in the system is

E =
N∑
k=1

Ek −
1
2

∑
k,j 6=k

∫
φ∗k(r)φj (r′)

e2

|r− r′|
φ∗j (r′)φk(r)d3rd3r′, (17.30)

since in the sum
∑N
k=1 Ek, the electrostatic interaction is taken into account

twice.
The Hartree–Fock Approximation — In the Hartree approximation

the symmetric wave function (17.21) is used. In order to include the exchange
effect we replace the symmetric wave function with the antisymmetrized wave
function of the type given by Slater determinant (6.107) [2]–[4]

ψA(r1, · · · , rN ) =
1√
N !

∣∣∣∣∣∣∣
φ1(r1) φ1(r2) · · · φ1(rN )
φ2(r1) φ2(r2) · · · φ2(rN )
· · · · · · · · · · · ·

φN (r1) φN (r2) · · · φN (rN )

∣∣∣∣∣∣∣ . (17.31)

By calculating 〈ψ|Hψ〉 using (17.31) we find that in this case the expectation
value of the Hamiltonian is

〈ψ|Hψ〉 = −
∑
k

∫ [
|∇φk(r)|2

2m
+
Ze2

r
|φk(r)|2

]
d3r′

+
1
2

∑
j,k

∫ ∫
e2

|r− r′|
|φj (r′) |2|φk (r) |2d3rd3r′

− 1
2

∑
j,k

δsj ,sk

∫ ∫
e2

|r− r′|
φ∗j (r)φj (r′)φ∗k (r′)φk (r) d3rd3r′.

(17.32)

The term δsj ,sk in the last term of this equation means that the sum over j
should have the same spin as the sum over k. Also note that the term j = k
does not appear in the right-hand side. The nonlinear wave equation derived
by minimizing the functional (17.32) subject to the orthogonality of φk (r) s is(

−∇
2

2m
− Ze2

r

)
φk(r) +

∫
e2

|r− r′|
∑
j

φ∗j (r′)

×
[
φk(r)φj (r′)− δsj ,skφk(r′)φj (r)

]
d3r′ = Ekφk(r). (17.33)
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The sum of the two terms in the bracket in (17.33) is the amplitude that the
electrons with the same spin and in the states j and k can be found at r and r′.

Hartree–Fock Method Applied to the Helium Atom — As an
example of the application of the Hartree–Fock method let us calculate the
energy levels of the ground and the first excited states of the helium atom. For
the ground state the two electrons have opposite spins, so, as we see from Eq.
(17.32) there is no exchange term. Thus for the ground state of the electron in
the 1S state we write (17.32) as

E1Sφ1S(r) =

[
− h̄2

2m
∇2 − 2e2

r
+ e2

∫
|φ1S (r′)|2

|r− r′|
d3r′

]
φ1S(r). (17.34)

This nonlinear equation can be solved by numerical iteration.
The more interesting case of the first excited state of helium atom is the

one where one electron is in 1S state and the other is in 2S state. In this case
the interaction consists of three potentials, two direct and one exchange

V1S(r) = e2

∫
[φ1S (r′)]2

d3r′

|r− r′|
, (17.35)

V2S(r) = e2

∫
[φ2S (r′)]2

d3r′

|r− r′|
, (17.36)

and

V ex(r) = e2

∫
φ2S (r′)φ1S (r′)

d3r′

|r− r′|
. (17.37)

Considering the spin states of the system we observe that we can have spin
singlet (or opposite spins) for the two electrons or spin triplet (when spin are
parallel). In the first case of spin singlet we have parahelium and for this atom
the exchange term is positive. For this situation the Hartree–Fock equations
are:

E1Sφ1S(r) =
[
− h̄2

2m
∇2 − 2e2

r
+ V2S(r)

]
φ1S(r) + V ex(r)φ2S(r), (17.38)

E2Sφ1S(r) =
[
− h̄2

2m
∇2 − 2e2

r
+ V1S(r)

]
φ2S(r) + V ex(r)φ1S(r). (17.39)

For the spin triplet state or orthohelium the exchange term is negative and the
corresponding equations become

E1Sφ1S(r) =
[
− h̄2

2m
∇2 − 2e2

r
+ V2S(r)

]
φ1S(r)− V ex(r)φ2S(r), (17.40)

E2Sφ1S(r) =
[
− h̄2

2m
∇2 − 2e2

r
+ V1S(r)

]
φ2S(r)− V ex(r)φ1S(r). (17.41)
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To find the energies of the ortho- and para-states we can use perturbation theory
and calculate the average value of the Hamiltonian in these states. Thus for the
energy of the parahelium we have

ES = 〈ψS |H|ψS〉 = E1S + E2S +Q+A. (17.42)

In the same way for the energy of the orthohelium we get

EA = 〈ψA|H|ψA〉 = E1S + E2S +Q−A. (17.43)

In these expressions Q and A represent the following integrals:

Q =
∫
|φ1S(r)|2 e2

|r− r′|
|φ2S(r′)|2d3rd3r′, (17.44)

and

A =
∫
φ1S(r)φ2S(r′)

e2

|r− r′|
φ1S(r′)φ2S(r)d3rd3r′. (17.45)

From these results it follows that EA < ES , or the orthohelium has the lower
energy. We note that this triplet state cannot decay to the ground state by
emitting a photon because of the conservation of total spin. As we can see
from Eq. (17.28), for helium and other heavier atoms, we can find an effective
potential

∫
e2

|r− r′|
∑
j

∣∣∣φ(α)
j (r′)

∣∣∣2 φ(α+1)
k (r) d3r′ (17.46)

and the eigenvalue equation (17.28) and in this way we can calculate the total
energy as the sum of one-electron eigenvalues. If we take this effective poten-
tial to be spherically symmetric, then we can write the wave function in terms
of a radial function and spherical harmonics with quantum numbers ` and m,
and just like any central force problem with a principal quantum number n.
The valence electrons, i.e. those in the outermost shell, determine the physical
and chemical properties of the elements. The results of the Hartree–Fock ap-
proximation for valence energy levels of some elements are tabulated in TABLE
XV.
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TABLE XV: Valence energy levels calculated by the Hartree–Fock method (in electron-

volts). For comparison the ionization potentials for these elements are also shown.

n ` Valence Energy Levels (eV) Ionization Potential (eV)

Na 3 0 −4.96 5.14
Mg 3 0 −6.89 7.64
Al 3 1 −5.71 5.98
Si 3 1 −7.59 8.15
P 3 1 −9.54 10.48
S 3 1 −11.60 10.36
Cl 3 1 −13.78 13.01
Ar 3 1 −16.08 15.75

Hartree–Fock Method for Calculating Nuclear Energy Levels — This
method can also be used to find the energies of the nucleons in the nucleus. In
this case, unlike the problem of electrons in the atom, there is no central poten-
tial, however we can assume that each nucleon moves in an average potential
created by other nucleons. This single particle potential should be determined
in a way to best reproduce the empirical data. Thus we write the Hamiltonian
for the motion of A nucleons in a nucleus as

H =
A∑
i=1

− h̄2

2m
∇2
i +

1
2

A∑
i,j=1

V (ri, rj). (17.47)

For this Hamiltonian, just as in the atomic Hartree–Fock problem we have a set
of wave functions ψk(r) satisfying the nonlinear integro-differential equation

−∇
2

2m
ψk (r) +

A∑
j=1

V (r− r′)ψ∗j (r′) [ψj (r′)ψk (r)− ψk (r′)ψj (r)] d3r′

= Ekψk(r). (17.48)

Now we define the local Hartree potential as

U(r) =
∫
V (r− r′)

A∑
j=1

|ψj (r′)|2 d3r′, (17.49)

and the much weaker nonlocal or exchange potential which is

Uex (r, r′) = −V (r− r′)
A∑
j=1

ψ∗j (r′)ψj(r). (17.50)
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Noting that the force felt by a nucleon in a nucleus goes to zero for distances
larger than the radius of the nucleus, a realistic choice of U(ri) must have a short
range. However in calculating bound state energies, for the sake of simplicity,
we choose a harmonic oscillator potential as the first approximation for U(ri).
If we ignore the nonlocal interaction, then we obtain the eigenvalue equation[

− h̄2

2m
∇2 + U (0)(r)

]
ψ

(0)
i (r) = E(0)

i ψ
(0)
i (r), (17.51)

which can be solved exactly if U (0)(r) is a slvable potential. Next using ψ(0)
i (r)

we can include not only the contribution of the residual interaction U(r)−U (0)(r)
but also the contribution of the exchange interaction. Adding this potential to
U (0)(r) we find a new wave equation

− h̄2

2m
∇2 + U (1)(r)ψ(1)

i (r)

+
1
2

∑
i,j

U (0)
ex (r, r′)ψ(1)

i (r′) d3r′ = E(1)
i ψ

(1)
i (r). (17.52)

We continue this iteration process until a stable solution is found. In general
if |U (0)(r)| � |U (1)(r)|, only a few iterations are needed to find an accurate
solution. We can include the exchange part of the Hartree–Fock formulation as
we did for the problem of electrons in atoms.

Testing the Accuracy of the Hartree–Fock Approximation — We
can test the accuracy of the nuclear Hartree–Fock approximation in a simple
model. This model consists of two identical harmonic oscillators interacting
through harmonic forces. Setting the mass of each oscillator equal to unity and
taking h̄ = 1, the Hamiltonian of the system can be written as [5]–[7]

H =
1
2
(
p2

1 + r2
1

)
+

1
2
(
p2

2 + r2
2

)
+ κ

[
1√
2

(r1 − r2)
]2

=
1
2
(
P2 + R2

)
+

1
2
[
p2 + (2κ+ 1)r2

]
, (17.53)

where r1 and r2 denote the coordinates of the two particles and p1 and p2 are
their momenta. The center of mass and the relative coordinates introduced here
are defined by

R =
1√
2

(r1 + r2) , r =
1√
2

(r1 − r2) , (17.54)

with P and p are their conjugate momenta. The coupling constant for the
interaction between the two oscillators is denoted by κ. For the ground we find
the wave function and the energy of the Hamiltonian (17.53) to be

ψ =
1
π

3
2

(2κ+ 1)
3
8 exp

[
−1

2
R2

]
exp

[
−1

2
√

2κ+ 1 r2

]
, (17.55)
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and

E =
(

3
2

)[
1 +
√

2κ+ 1
]
. (17.56)

Now let us apply the Hartree–Fock approximation to this problem. The ground
state wave function is symmetric and is given by

ψ′(r1, r2) = φ(r1)φ(r2), (17.57)

where φ(r1) is the solution of the integro-differential equation

Eφ(r1) =
1
2
(
p2

1 + r2
1

)
φ(r1) +

[∫
κφ∗(r2)

{
1√
2

(r1 − r2)
}2

φ(r2)d3r2

]
φ(r1)

=
1
2
(
p2

1 + (κ+ 1)r2
1

)
φ(r1) +

κ

2

[∫
φ∗(r2)r2

2φ(r2)d3r2

]
φ(r1),

(17.58)

where we have simplified the result noting that due to parity symmetry, the
term r1 · r2 in the integrand will not contribute to the integral.

The exact solution of φ(r1) can be found by solving ( 17.58)

φ(r1) = π−
3
4 (κ+ 1)

3
8 exp

[
−1

2
√
κ+ 1 r2

1

]
, (17.59)

where the eigenvalue E is given by

E =
3
2
√
κ+ 1

(
3κ+ 2
2κ+ 2

)
. (17.60)

By rewriting the Hamiltonian as

H =
1
2
[
p2

1 + (κ+ 1)r2
1

]
+

1
2
[
p2

2 + (κ+ 1)r2
2 − κr1 · r2

]
, (17.61)

we calculate the expectation value with φ(r1) given by (17.59) to find the ap-
proximate value of the energy

E′ = 〈φ(r1)φ(r2)|H|φ(r1)φ(r2)〉 = 3
√

1 + κ. (17.62)

Comparing E and E′, Eqs. (17.56) and (17.62) we observe that for small κ,

E ≈ E′ ≈ 3 +
3
2
κ. (17.63)

Even for strong coupling between the two oscillators κ ≈ 1 the approximate
energy is 0.96 of the exact value. In addition in this simple model we can
determine the overlap between the exact and the approximate wave functions
and this gives us a measure of the accuracy of the approximate wave function.
Thus from Eqs. (17.55) and (17.57) we find 〈ψ|ψ′〉 to be



Second Quantization 537

0

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5

Figure 17.1: The square of the overlap between the exact and Hartree–Fock wave functions
is shown as a function of the strength of the coupling constant.

〈ψ|ψ′〉 =
(κ+ 1)

3
4 (2κ+ 1)

3
8[

1
2

{√
κ+ 1 +

√
2κ+ 1

}] 3
2
[

1
2

(
1 +
√
κ+ 1

)] 3
2
. (17.64)

The square of 〈ψ|ψ′〉 as a function of κ is plotted in Fig. 17.1. As this figure
shows for a wide range of the strength of the coupling constant the approximate
wave function is accurate, viz, 〈ψ|ψ′〉 ≈ 1

For other solvable examples of the Hartree–Fock method see [8]–[10].

17.3 Second Quantization

Our approach to the approximate solution of the many-body problem will be
based on the method of second quantization. This method has the advantage
that it incorporates the statistics of the particles, i.e. whether they are bosons
or fermions. The basis set that we will use here is the vector space composed
of the abstract state vectors of the form

|nk1 , nk2 · · ·nk∞〉, (17.65)

and this space is usually referred to as Fock space. In this space k denotes the
set of quantum numbers, e.g. energy or momentum of the particle, nk1 is the
number of particles in the eigenstate k1, nk2 particles in the eigenstate k2 and
so on.

The basis set is assumed to be complete and orthogonal, i.e. these states
satisfy the following orthogonality and completeness conditions〈

n′k1
, n′k2

· · ·n′k∞ |nk1 , nk2 · · ·nk∞
〉

= δn′
k1
nk1

δn′
k2
nk2
· · · δn′

k∞
nk∞

, (17.66)
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and ∑
nk1 ,nk2 ···nk∞

|nk1 , nk2 · · ·nk∞〉〈nk1 , nk2 · · ·nk∞ | = 1, (17.67)

where the sum (17.67) is over all possible occupation numbers nk1 , nk2 · · ·nk∞ ,
and 1 is the unit matrix or operator.

17.4 Second-Quantized Formulation of the Many-
Boson Problem

We now introduce the set of creation and and annihilation operators,
{
a†ki(t)

}
,

and {aki(t)} for bosons, and by the following relations (see for example Eqs.
(9.131) and (9.133) of Chapter 9)

a†ki |nk1 , nk2 · · · , nki , · · ·nk∞〉 =
√
nki + 1 |nk1 , nk2 · · ·nki+1, · · ·nk∞〉, (17.68)

and

aki |nk1 , nk2 · · · , nki , · · ·nk∞〉 =
√
nki |nk1 , nk2 · · ·nki − 1, · · ·nk∞〉. (17.69)

Using these two relations we define the number operator for the state ki

n̂ki = a†kiaki , (17.70)

with the property that

a†kiaki |nk1 , nk2 · · · , nki , · · ·nk∞〉 = nki |nk1 , · · ·nki · · ·nk∞〉,
nki = 0, 1, · · ·∞. (17.71)

The fact that nki is greater or equal to zero follows from the scaler product

nki =
〈
nk1 , nk2 · · · , nki , · · ·nk∞

∣∣∣a†kiaki∣∣∣nk1 , nk2 · · · , nki , · · ·nk∞
〉

=
∑〈

nk1 , nk2 · · · , nki , · · ·nk∞
∣∣∣a†ki∣∣∣nk′1 , nk′2 · · · , nk′i , · · ·nk′∞〉

×
〈
nk′1 , nk′2 · · · , nk′i , · · ·nk′∞ |aki |nk1 , nk2 · · · , nki , · · ·nk∞

〉
=

∑∣∣∣〈nk′1 , nk′2 · · · , nk′i , · · ·nk′∞ |aki |nk1 , nk2 · · · , nki , · · ·nk∞
〉∣∣∣2

≥ 0, (17.72)

where the summation is over all integers n′k1
, nk′2 , · · ·nk′∞ . From the commuta-

tion relations [
aki , a

†
kj

]
= δkikj ,

[
a†ki , a

†
ki

]
= 0,

[
aki , akj

]
= 0, (17.73)
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we get [
a†kiaki , akj

]
= −akiδkikj , (17.74)

and using this we can easily show that the operator aki acting on an eigenstate
|nk1 , nk2 · · ·nk∞〉 produces a new eigenstate but now with the eigenvalue
(nki − 1)

a†kiaki (aki |nk1 , nk2 · · · , nki , · · ·nk∞〉)

= aki

(
a†kiaki

)
|nk1 , · · ·nki · · ·nk∞〉,

+
[
a†kiaki , aki

]
|nk1 , · · ·nki · · ·nk∞〉

= (nki − 1) (aki |nk1 , · · ·nki · · ·nk∞〉) . (17.75)

In exactly the same way we can show that from the commutation relation[
a†kiaki , a

†
kj

]
= a†kiδkikj , (17.76)

we can construct an eigenstate(
a†ki |nk1 , nk2 · · · , nki , · · ·nk∞〉

)
, (17.77)

for which the eigenvalue is nki + 1.
A state like (17.65) is related to the vacuum state

|0, 0, · · · 0, 0〉 (17.78)

by the action of the creation operators

|nk1 , nk2 · · · , nk∞〉 = [nk1 !, nk2 ! · · · , nk∞ !]−
1
2

×
[(
a†k1

)nk1
(
a†k2

)nk2 · · ·
(
a†k∞

)nk∞ ]
|0, · · · , 0〉 .

(17.79)

In fact if we choose (17.79) as the definition of the state |nk1 , nk2 · · · , nk∞〉, then
using the commutation relations we can verify Eqs. (17.68) and (17.69).

Now we want to see how we can express quantum mechanical operators
in Fock space. In the many-body systems that we will be studying we assume
that the operators involve the coordinates of one or two particles. Let us first
consider an operator which acts only on a single particle.

A typical example is provided by the kinetic energy operator

T̂ =
∑
n

p̂2
n

2m
, (17.80)

where p̂n is the momentum operator acting on the n-th particle. Let Ô1 repre-
sents a one-body operator which we assume is diagonal in the basis |k〉

Ô1 =
∑
i

Oki |ki〉〈ki|, (17.81)
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where
Oki =

〈
ki

∣∣∣Ô1

∣∣∣ ki〉 . (17.82)

In this representation we have〈
n′k1

, n′k2
· · · , n′ki , · · ·n

′
k∞

∣∣∣Ô1

∣∣∣nk1 , nk2 · · · , nki , · · ·nk∞
〉

=
∑
i

Okinki
〈
n′k1

, n′k2
· · · , n′ki , · · ·n

′
k∞ |nk1 , nk2 · · · , nki , · · ·nk∞

〉
=

〈
n′k1

, n′k2
· · · , n′ki , · · ·n

′
k∞

∣∣∣∣∣∑
i

Okia
†
ki
aki

∣∣∣∣∣nk1 , nk2 · · · , nki , · · ·nk∞

〉
.

(17.83)

This relation is true for any set of states, therefore it must be true for the second
quantized form of O1;

O1 =
∞∑
k=0

Okn̂k =
∞∑
k=0

〈
k
∣∣∣Ô1

∣∣∣ k〉 a†kak. (17.84)

The one-body operator Ô1 in (17.84) which is written in the diagonal representa-
tion shows that this operator can be written as to the product of the eigenvalue
of one-body operator in the state |k〉 times the number of the particles in that
state.

We can also write (17.84) in a representation where Ô1 is not diagonal.
In this representation O1 is

O1 =
∞∑

k=0,j=0

〈
k
∣∣∣Ô1

∣∣∣ j〉 a†kaj . (17.85)

This is a straightforward generalization of (17.84) and reduces to it when Ô1 is
diagonal.

Next let us consider the operator Ô2, or the two-body operator in the
Fock space. The operator Ô2 which is acting on states in the two-particle space
has the form

Ô2 =
∑
i,j

|kikj〉〈kikj |O2|`i`j〉〈`i`j |. (17.86)

Using (17.86) we find that the action of Ô2 on the state of the many-body
system is expressible as

Ô2|k1, · · · ki · · · kj · · · k∞〉

=
∑
`i`j

〈`i`j |O2|kikj〉 |k1, · · · `i · · · `j · · · k∞〉. (17.87)

We also observe that the matrix elements of Ô2 do not depend on which pair of
particles it is acting upon, i.e. the matrix elements 〈`i`j |O2|kikj〉 are the same
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for any pair of the particles as long as the same quantum numbers k and ` are
involved. Summing Ô2(i, j) over all pairs i 6= j we have∑

i>j

Ô2(i, j)|k1, · · · ki · · · kj · · · k∞〉

=
1
2

∑
i6=j

∑
`i,`j

〈`i`j |O2|kikj〉 |k1, · · · `i · · · `j · · · k∞〉. (17.88)

As in the case of Ô1, we will show that the second quantized form of Ô2 is

O2 =
1
2

∑
k,`,m,n

〈k, ` |O2|m,n〉 a†ka
†
`aman. (17.89)

To show this we calculate the following commutator[
Ô2, a

†
ki

]
=

1
2

∑
k,`,m,n

〈k, ` |O2|m,n〉 a†ka
†
`

[
aman, a

†
ki

]
=

∑
k,`,n

〈k, ` |O2| ki, n〉 a†ka
†
`an

=
∑

`i,`j′ ,kj′

〈`i`j′ |O2| ki, kj′〉 a†`ia
†
`j′
aki . (17.90)

In arriving at Eq. (17.90) we have used the symmetry of the matrix elements
of O2

〈k`|O2|mn〉 = 〈mn|O2|k`〉. (17.91)

Next we note that

Ô2|k1, · · · ki · · · kj · · · k∞〉 = Ô2

(
a†k1

, a†k2
· · · a†k∞

)
|0〉

=
∑
i

(
a†k1
· · ·
[
Ô2, a

†
ki

]
· · · a†k∞ |0〉

)
=

∑
i

∑
`i,`j′ ,kj′

〈`i`j′ |O2| kikj′〉
(
a†k1
· · · a†`ia

†
`j′
, akj′a

†
ki+1
· · · a†k∞ |0〉

)
.

(17.92)

We can reduce Eq. (17.92) by noting that for any function F(`i′ , ki′)∑
`i′ ,ki′

F(`i′ , ki′)
[
a†`i′a

†
ki′
, aki

]
=
∑
`i′

F(`i′ , ki)a
†
`i′
, (17.93)

with the result

Ô2|k1, · · · ki · · · kj · · · k∞〉 =

=
∑
i

∑
i<j

∑
`i,`j

〈`i`j |O2| kikj〉
(
a†k1
· · · a†`i · · · a

†
`j
· · · a†k∞ |0〉

)
,

(17.94)
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and this is the same as (17.88) for an arbitrary many-body state

|k1 · · · `i · · · `j · · · k∞〉. (17.95)

Having found the operator forms of Ô1 and Ô2 we can write the Hamiltonian
for a many-boson system as

Ĥ =
∑
k`

〈k |T | `〉 a†ka` +
1
2

∑
k`mn

〈k`|V |mn〉a†ka
†
`aman. (17.96)

17.5 Many-Fermion Problem

Fermions are particles which obey the Pauli exclusion principle (Sec. 6.6).
According to this principle no two particles can occupy the same quantum state.

Let us consider a state |n〉 in which all fermions are in the lowest level
of the system with spin up. There are two such states: the state with one
particle is shown by |1〉, and the state with no particle is denoted by |0〉. Now
we introduce the creation and annihilation operators for fermions for the lowest
level, b†0 and b0, by the following relations:

b0|0〉 = 0, b0|1〉 = |0〉, (17.97)

b†0|0〉 = |1〉, b†0|1〉 = 0. (17.98)

Matrix representations of b0 and b†0 can be found from (17.97) and (17.98), and
these have the same forms as σ+ and σ− which we introduced earlier, Eqs.
(8.196) and (8.197). We note that b†0|1〉 = 0 means that two fermions cannot
occupy the same state and b0|0〉 = 0 means that we cannot remove a particle
from vacuum state. From Eqs. (17.97) and (17.98) it follows that

b0b
†
0 + b†0b0 ≡

[
b0, b

†
0

]
+

= 1, (17.99)

where
[
b0, b

†
0

]
+

= 1 is the anti-commutator. In addition, from these definitions

it follows that

b20 = 0,
(
b†0

)2

= 0. (17.100)

These relations imply that it is impossible to remove two fermions from the
same state and it is also impossible to have two fermions in the same level.
The general form of the anti-commutation relations for other quantum levels of
the system are: [

bk, b
†
j

]
+

= δjk, [bk, bj ]+ =
[
b†k, b

†
j

]
+

= 0. (17.101)
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As in the case of bosons for a system with n0 particles in the ground
state, n1 particles in the first excited state, etc. we write the state of the system
as

|n0, n1 · · ·〉. (17.102)

This state can be obtained from the vacuum |0〉 = |0, 0, 0 · · ·〉 by the action of
the operator b†k;

|n0, n1, n2 · · ·〉 = · · ·
(
b†2

)n2
(
b†1

)n1
(
b†0

)n0

|0〉, (17.103)

with no factorials since nk! = 1 for nk = 0 or nk = 1. For fermions just like
bosons we define the number operator in the state k by (see Eq. (9.127))

N̂k = b†kbk. (17.104)

Using this operator we write the one-body operator Ô1 in the second quantized
form as

Ô1 =
∑
k

〈k|Q|k〉N̂k =
∑
k

〈k|O1|k〉 b†kbk, (17.105)

or we write it as
Ô1 =

∑
k,j

〈k|O1|j〉 b†kbj . (17.106)

To find the second quantized representation of Ô2 we follow exactly the
same procedure as the one we used for interacting bosons, but now we replace
the commutation relations by anti-commutation relations. The final result for
the Hamiltonian of an interacting system of fermions is similar to (17.96), viz,

Ĥ =
∑
k`

〈k |T | `〉 b†kb` +
1
2

∑
k`mn

〈k`|V |mn〉b†kb
†
`bmbn. (17.107)

The time evolution of b†k and bk can be found from the Heisenberg equa-
tion. If we consider a system of noninteracting fermions with the Hamiltonian
H =

∑
k Ekb

†
kbk, then

ih̄
dbn
dt

= [bn, H] =

[
bn,

∑
k

Ekb
†
kbk

]
=

∑
k

Ek

(
bnb
†
kbk − b

†
kbkbn

)
=
∑
k

Ek

[(
δnk − b†kbn

)
bk − b†kbkbn

]
= Enbn +

∑
k

Ek

(
−b†kbnbk − b

†
kbkbn

)
= Enbn. (17.108)

Let us remind ourselves that fermion operators do not satisfy the conditions of
skew symmetry, Leibnitz property and Jacobi identity, Eqs. (3.127), (3.129),
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(3.130), that the boson operators satisfy. Thus we do not have any correspon-
dence between the Poisson bracket and the anticommutators for fermion opera-
tors. In the case of fermions, those operators that are linear in bk and b†k cannot
be measured classically whereas operators bilinear in creation and annihilation
operators have classical limits and are measurable.

Noninteracting Fermions — As an introduction to the physics of many-
body we want to calculate some of the physical properties of a simple system of
fermions. For this we consider a system of spin 1

2 fermions enclosed in a large
cubical box with sides of length L. At the end of the calculation we will take
the limit of L→∞. In such a uniform infinite medium, the physical properties
must remain invariant under spatial transformation. Therefore we choose single
particle wave functions satisfying the periodic boundary condition and we write
them as

φp(r) =
1
L

3
2
eip·r, h̄ = 1, (17.109)

where
px =

2πnx
L

, nx = 0, ±1, ±2 · · · , (17.110)

and similar forms for py and pz. Let us denote the creation operator for a
particle of momentum p and spin s by b†ps and the annihilation operator by
bps The amplitude at the point r for finding the particle created by the action
of b†ps is L

−3
2 eip·r. Thus by superposition of momentum states we obtain the

amplitude for adding a particle of spin s to the point r to be

ψ†s(r) =
∑
p

1
L

3
2
e−ip·rb†ps. (17.111)

The Hermitian adjoint of ψ†s(r) i.e.

ψs(r) =
∑
p

1
L

3
2
eip·rbps. (17.112)

is the amplitude for removing a particle of spin s from the point r. The operators
ψ†s(r) and ψs(r) defined by (17.111) and (17.112) satisfy the anti-commutation
relations

ψs(r)†ψ†s′ (r
′) + ψ†s′ (r

′)ψ†s(r) = 0, (17.113)

ψs(r)ψs′ (r′) + ψs′ (r′)ψs(r) = 0, (17.114)

and

ψs(r)ψ†s′ (r
′) + ψ†s′ (r

′)ψs(r)

=
∑
p

∑
p′

1
L3
eip·re−ip

′·r′ (bpsbp′s′† + bp′s′†bps
)

=
∑
p

∑
p′

1
L3
eip·r−ip

′·r′δpp′δss′ , (17.115)



Many-Fermion Problem 545

where in arriving at (17.113)–(17.115) we have used the anti-commutation re-
lation (17.101) for fermions. By replacing the summation by integration, i.e.
taking the limit of L→∞, we obtain

ψs(r)ψ†s′ (r
′) + ψ†s′ (r

′)ψs(r) = δ (r− r′) δss′ , h̄ = 1. (17.116)

From the operators ψ†s (r) and ψs(r) we can define the density operator by

ρ(r) =
∑
s

ρs(r) =
∑
s

ψ†s(r)ψs (r) . (17.117)

Now if we integrate ρ(r) over the large box of volume L3 we find the number
operator N̂

N̂ =
∫
ρ(r)d3r. (17.118)

In order to relate N̄ to the creation and annihilation operators we substitute for
ψ†s(r) and ψs (r) from (17.111) and (17.112) in (17.117) and (17.118) to obtain

N̂ =
1
L3

∑
s

∑
pp′

b†psbp′s

∫
ei(p′−p)·rd3r. (17.119)

Since ∫
ei(p′−p)·rd3r = L3δpp′ , (17.120)

we find
N̂ =

∑
p

b†psbps, (17.121)

and this is the sum of Nk s defined by (17.104).
Now let us consider a gas of noninteracting spin 1

2 particles. For such a
system the ground state |Φ0〉 is a state where different momentum states are
filled up to some maximum momentum pF , called the Fermi momentum. Thus
we find the expectation value of the number operator of the state |Φ0〉 to be

np =
〈

Φ0

∣∣∣b†p↑bp↑ + b†p↓bp↓

∣∣∣Φ0

〉
=

{
2 for |p| ≤ pF
0 for |p| ≥ pF

. (17.122)

The total number of the particles in this case is

N =
∑
p

np =
∑
|p|≤pF

2, (17.123)

where the sum is over all states within the sphere |p| ≤ pF (Fermi sphere).
Replacing the summation (17.123) by integration we get

2L3

∫ pF

0

d3p

(2π)3
=

p3
F

3π2
L3. (17.124)
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If n denotes the average particle density n = N
L3 , then from (17.124) we have

p3
F = 3π2n. (17.125)

We can also calculate the expectation value of the density operator ρ(r),
Eq. (17.117), with the ground state |Φ0〉

〈Φ0|ρ(r)|Φ0〉 =
1
L3

∑
pp′s

exp [−i (p− p′) · r]
〈
Φ0

∣∣b†psbp′s∣∣Φ0

〉
=

1
L3

∑
p

np = n. (17.126)

i.e. the density of such a fermion gas is uniform and is equal to n. The energy
of the system is found by noting that

E0 =
∑
ps

p2

2m
〈
Φ0

∣∣b†psbps∣∣Φ0

〉
=
∑
ps

p2

2m
np

→ 2L3

∫ pF

0

p2

2m
d3p

(2π)3
=

3
5

(
p2
F

2m

)
N. (17.127)

A weakly interacting many-fermion system has a ground state |Φ′0〉 which
differs slightly from |Φ0〉 defined by (17.122). Because of the weak interaction
between the fermions the original state |Φ0〉 changes and some of the occupied
levels inside the Fermi sphere (|p| < pF ) will be emptied and these particles fill
the same number of levels with energies greater than EF = p2

F

2m . Thus we can
characterize the state of this many-fermion system by indicating which states
above the Fermi level are occupied and which states with energies lower than
EF are unoccupied. These unoccupied states are called “holes” and such a
description of the states of fermions is referred to as “hole representation”.

Starting with the ground state |Φ0〉 with the energy E0, Eq. (17.127), we
observe that any excitation of the system corresponds to a creation of a pair
of particles: a particle with the energy Ek > EF and a “hole” with the energy
Ek < EF . Other excited states are generated by the creation of a number of
pairs of particles and holes. On the other hand the transition from a higher to
a lower energy state of the system is possible by the mechanism of annihilation
of pairs. In order to describe the creation or annihilation of holes we introduce
two new operators βk,s and β†k,s for Ek < EF . If the state k has a momentum
pk and the state −k is associated with momentum −pk, then the hole creation
and annihilation operators are related to bk,s and b−k,−s by

β†k,s = b−k,−s, and βk,s = b†−k,−s, Ek ≤ EF . (17.128)

These hole operators also satisfy the anti-commutation relations[
β†k,s, βk,s′

]
+

= δknδss′ , Ek ≤ EF

[βk,s, βk,s′ ]+ =
[
β†k,s, β

†
k,s′

]
+

= 0. (17.129)
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In this representation the ground state is determined by the conditions
bk,s|Φ0〉 = 0 if Ek > EF

βk,s|Φ0〉 = 0 if Ek < EF

. (17.130)

We note that in the hole representation the particles and holes are always created
and annihilated in pairs [11]–[13].

17.6 Pair Correlations Between Fermions

The state of a single particle in a many fermion system influences the state
of all of the other particles in the system, i.e. there is a tendency for the
particles with the same quantum numbers to avoid each other as is implied by
the exclusion principle. This tendency which is the cause of correlation between
the particles is present whether the particles are interacting with each other or
not. Thus we do have correlations between noninteracting fermions which is
the result of exchange effects. In principle we can have correlations between
any number of interacting or noninteracting particles, however we confine our
attention to the simplest case and the lowest order, viz, correlations between a
pair of noninteracting fermions.

Pair Correlation Function for Fermions — The density operator for
a particle having spin s and the diagonal element ρs(r), Eq. (17.117), is given
by

ρ̂s (r, r′) = ψ†s(r)ψs (r′) . (17.131)

This operator has the symmetry property

ρ̂s (r, r′) = ρ̂†s (r′, r) (17.132)

In order to determine the ground state expectation values of ρ̂ (r, r′) we employ
the expansion of ψ†s(r) and ψs(r) (17.111) and (17.112). Anticipating that at
the end we want to take the limit as L tends to infinity, we write b†s(p) and
bs(p) for b†ps and bps respectively. And in this limit we replace the summation
by integration. In this way we obtain

ρs (r, r′) = 〈Φ0 |ρ̂s (r, r′)|Φ0〉

=
1

(2π)6

∫
exp (−ip · r + ip′ · r′)

〈
Φ0

∣∣b†s(p)bs (p′)
∣∣Φ0

〉
.

(17.133)

We can evaluate the matrix element
〈
Φ0

∣∣b†s(p)bs (p′)
∣∣Φ0

〉
in (17.133) by noting

that this matrix element is nonzero only if p = p′ and at the same time |p| ≤ pF .
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Thus we have

ρs (r, r′) =
1

(2π)3

∫
exp (−ip · (r− r′)) θ(pF − |p|)d3p

=
p3
F

3π2

(sin ζ − ζ cos ζ)
ζ3

=
(

3n
2

)(
j1(ζ)
ζ

)
, (17.134)

where j1(ζ) is the spherical Bessel function, ζ = pF |r− r′|, and n, the average
particle density is defined by Eq. (17.125). By setting r = r′ (17.134) reduces
to (17.126);

〈Φ0 |ρ(r)|Φ0〉 = 2 lim
ζ→0

[(
3n
2

)
j1(ζ)
ζ

]
= n. (17.135)

Now let us calculate the probability amplitude of finding a particle with spin s
at the point r (inside the Fermi sphere) when another particle with spin s′ is
at the point r′. In the case of a homogeneous free gas of fermions, this pair-
correlation function which here is denoted by Css′ is a function of the relative
distance between two particles |r− r′|. We normalize this function of |r− r′|
by requiring that when s 6= s′

Css′ (|r− r′|) = 1, (17.136)

i.e. the particles with opposite spin can approach each other closely, and Css′
is independent of |r− r′|. However if the spin of the two particles are equal,
s = s′, then from the exclusion principle we expect that

Css′ (|r− r′|)→ 0 as |r− r′| → 0, (17.137)

i.e. the probability of finding two particles having the same set of quantum
numbers at the same point is zero. In addition if the two particles are far apart,
then their motions are uncorrelated and

Css′ (|r− r′|)→ 1 as |r− r′| → ∞. (17.138)

Subject to these conditions we want to determine the spatial dependence of Css′ .
Now the field operators ψs(r) and ψs′ (r′) annihilate two particles with spins
s and s′ and at the positions r and r′. If the ground state

∣∣ΦN0 〉 consists of
N particles, then the transition amplitude for

∣∣ΦN0 〉 changing into an (N − 2)

particle state
∣∣∣ΦN−2
β

〉
is given by〈

ΦN−2
β |ψs′ (r′)ψs (r)|ΦN0

〉
. (17.139)

By summing over all possible final states we find the total probability for the
annihilation of the two particles to be;∑

β

∣∣∣〈ΦN−2
β |ψs′ (r′)ψs (r)|ΦN0

〉∣∣∣2
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=

〈
ΦN0

∣∣∣∣∣∣ψ†s (r′)ψ†s′ (r)
∑
β

∣∣∣ΦN−2
β

〉〈
ΦN−2
β

∣∣∣ψs′ (r′)ψs (r)

∣∣∣∣∣∣ΦN0
〉

=
〈

ΦN0
∣∣∣ψ†s (r′)ψ†s′ (r)ψs′ (r′)ψs (r)

∣∣∣ΦN0 〉 . (17.140)

Another way of formulating this problem is to remove a particle with spin s at
r from the system, leaving N − 1 particles in the state

∣∣ΦN−1
s

〉
= ψs(r)

∣∣ΦN0 〉.
The density distribution of particles with spin s′ in this new state is〈

ΦN−1
s

∣∣∣ψ†s′ (r′)ψ†s′ (r′)∣∣∣ΦN−1
s

〉
=

〈
ΦN0

∣∣∣ψ†s (r′)ψ†s′ (r)ψs′ (r′)ψs (r)
∣∣∣ΦN0 〉

=
(n

2

)2

Css′ (|r− r′|) (17.141)

and by definition this is the pair-correlation function Css′ (|r− r′|). The multi-
plicative constant

(
n
2

)2 guarantees the correct normalization for Css′ . We can
use either (17.140) or (17.141) to determine the pair correlation function. Here
we start with (17.140) and substitute for ψ†s(r) and ψs(r) using Eqs. (17.111)
and (17.112) to obtain the following expression for

(
n
2

)2 Css′ (|r− r′|)(n
2

)2

Css′ (|r− r′|) =
∫ 〈

ΦN0
∣∣∣b†s(p)b†s′(q)bs′ (q′) bs (p′)

∣∣∣ΦN0 〉
×

[
e−i(p−p′)·rei(q−q′)·r

] d3p

(2π)3

d3q

(2π)3

d3p′

(2π)3

d3q′

(2π)3
. (17.142)

Now the anticommutation relations between the fermion operators are[
b†s(p), b†s′ (p

′)
]

+
= [bs(p), bs′ (p′)]+ = 0, (17.143)

and [
b†s(p), bs′ (p′)

]
+

= (2π)3δss′δ (p− p′) . (17.144)

The factor (2π)3 on the right-hand side of Eq. (17.144) comes from the ex-
pression d3p

(2π)3 which is the volume element in momentum space. Using these
operators we calculate the matrix element

K(p,q,p′,q′) =
〈

ΦN0
∣∣∣b†s(p)b†s′(q)bs′ (q′) bs (p′)

∣∣∣ΦN0 〉 . (17.145)

For calculating K we observe that for s = s′, the operators bs (q′) bs (q′) and
b†s (p) b†s (p) are zero, and we conclude that K vanishes unless p 6= p′ and q 6= q′.
Thus we consider the terms with p = q′ and q = p′ in our calculation.

From these results and from the commutator (17.144) for q and p′ we find

K(p,q,p′,q′) = −(2π)3δss′δ (p′ − q)
〈
ΦN0

∣∣b†s (p) bs′ (q′)
∣∣ΦN0 〉
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+
〈

ΦN0
∣∣∣b†s (p) bs (p′) b†s′ (q) bs′ (q′)

∣∣∣ΦN0 〉
= (2π)6δ (p′ − p) δ (q′ − q)

〈
ΦN0

∣∣b†s (p) bs (p′)
∣∣ΦN0 〉

×
〈

ΦN0
∣∣∣b†s′ (q) bs′ (q′)

∣∣∣ΦN0 〉
− (2π)6δss′δ (q′ − p) δ (p′ − q)

〈
ΦN0

∣∣b†s (p) bs (p)
∣∣ΦN0 〉 .

(17.146)

By substituting for the matrix element K(p,q,p′,q′), Eq. (17.146), in (17.142),
we note that in the latter equation we get two contributions, one from the first
term of K(p,q,p′,q′) and the other from the second term. The first term makes
the exponentials in (17.142) equal to one and the second term makes them equal
to exp [−i(p + q) · (r− r′)]. Thus

(n
2

)2

Css′ (|r− r′|) =
∫
θ(pF − |p|)

d3p

(2π)3

∫
θ(pF − |q|)

d3q

(2π)3

−δss′
∫
e−ip·(r−r′) θ(pF − |p|)

d3p

(2π)3

∫
e−iq·(r−r′) θ(pF − |q|)

d3q

(2π)3
.

(17.147)

By carrying out the integrations over p and q we find Css′ in terms of ρs (r, r′),
Eq. (17.134); (n

2

)2

Css′ (|r− r′|) =
(n

2

)2

δss′ |ρs (r, r′) |2. (17.148)

If we combine (17.148) with the value of Css′ when s 6= s′, Eq. (17.136), we
obtain the general form of Css′ ;

Css′ (|r− r′|) = 1− δss′
(

3j1(ζ)
ζ

)2

, (17.149)

where ζ = pF |r− r′|.
As this equation shows Css′ (|r− r′|) oscillates between zero and one and

asymptotically approaches unity as |r− r′| → ∞, i.e. Eq. (17.137) is satisfied.
Css′ also goes to zero as |r− r′| → 0. The latter result shows that for relative
distances shorter than the inverse Fermi momentum, the probability of finding
two fermions with parallel spins is reduced since we have

Css′ ≤ 1; for 0 ≤ |r− r′| ≤ π

4pF
. (17.150)

A plot of Css(ζ) versus zeta is shown in Fig. 17.2. The part of this graph be-
tween ζ = 3 and ζ = 7 is oscillatory, but the oscillations have small amplitudes.
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Figure 17.2: Correlation function Css(ζ) for two identical fermions plotted as a function of
dimensionless number ζ = kF |r− r′|, r− r′ being their relative distance.

17.7 Uncertainty Relations for a Many-Fermion
System

For a system of noninteracting fermions we found that the Fermi momentum is
related to the number of particles per unit volume, Eq. (17.125), or

p3
FV = 3π2N. (17.151)

If we denote the average interparticle spacing by d̄, then V = 4π
3 d̄

3, and thus
we get

pF d̄ =
(

9π
4

) 1
3

≈ 1.919N
1
3 h̄, (17.152)

where we have written the Planck constant in the equation. The average mo-
mentum for the system can be found from

p̄2 =

∫ pF
0

p2d3p∫ pF
0

d3p
=

3
5
p2
F . (17.153)

From Eqs. (17.152) and (17.153) we have

p̄d̄ =

√
5
3

(
9π
4

) 1
3

≈ 2.4775N
1
3 h̄. (17.154)

This is a special form of the uncertainty relation for the noninteracting fermions.
Now let us consider the same problem for a system of interacting fermions.
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A many fermion system for which the exact solution is known for any number
of identical particles each of unit mass is described by the Hamiltonian

H =
N∑
j=1

1
2
p2
j +

∑
j

∑
i<j

1
2
ω2 (ri − rj)

2
. (17.155)

Let us denote the total momentum by P =
∑N
i pi and the position of the center

of mass by R = 1
N

∑N
i=1 ri, then using the identity

N∑
j=1

N∑
i<j

(ri − rj)
2 = N

N∑
i=1

r2
i −N2R2, (17.156)

we can write the Hamiltonian of the system as

H = H0 +
1

2N
P2, (17.157)

where

H0 =
N∑
i=1

(
1
2
p2
i +

1
2
Nω2r2

i

)
−
(

1
2N

P2 +
1
2
N2ω2R2

)
. (17.158)

This relation shows that we have a system of uncoupled oscillators moving in
a common central field. As is well-known in the theory of nuclear shell model
there is a difficulty related to the motion of the center of the potential well. We
note that the potential is an average over the motion of the particles and as
such its center has no fundamental physical significance, but coincides with the
center of mass. If we fix the center of the potential to be at the origin, then the
center of mass oscillates about the origin and there is energy associated with
this motion, but this energy is fictitious since in reality it is the center of mass
that is fixed [15].

The Hamiltonian H0, Eq. (17.158), consists of two commuting parts, and
this Hamiltonian can be diagonalized without any difficulty with the result that

E(nk) = ω
√
N

[
N∑
k=1

(
nk +

1
2
D
)
−
(
N +

1
2
D
)]

, h̄ = 1. (17.159)

In this relation D denotes the dimension of space, and the quantum number N
is fixed by the choice of the quantum number nk. For a system of interacting
bosons, the ground state corresponds to the state where all nk s are zero and
N is also zero and therefore the energy of the ground state for a D dimensional
boson system is

EDG (bosons) =
1
2
Dω
√
N(N − 1). (17.160)
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In the case of a system of interacting fermions in one dimension the ground
state can be found by setting nk = k − 1, with k = 1, 2 · · ·N and with N = 0.
Thus we have

EDG (fermions) =
1
2
ω
√
N
(
N2 − 1

)
, (D = 1). (17.161)

For a three-dimensional system of fermions we have to account for the accidental
degeneracy of the one-particle state. In a three-dimensional harmonic oscillator
the total degeneracy at the level n is 1

2 (n + 1)(n + 2). Thus the total number
of particles filling up the levels up to K is

K∑
n=0

1
2

(n+ 1)(n+ 2) =
(K + 1)(K + 2)(K + 2)

6
. (17.162)

Now if the level K is filled but K+ 1 is not (K is the last one-particle oscillator
level to be filled), then the total number of particles N lies between the two
integers

1
6

(K + 1)(K + 2)(K + 3) ≤ N <
1
6

(K + 2)(K + 3)(K + 4). (17.163)

The ground state energy for this three-dimensional system is

ED=3
G (fermions)

= ω
√
N

[(
K +

5
2

)
N − 1

24
(K + 1)(K + 2)(K + 3)(K + 4)− 3

2

]
.

(17.164)

In the limit of large N from Eq. (17.163) it follows that K ≈ (6N)
1
3 , and in

this limit ED=3
G becomes

ED=3
G (fermions) ≥ αωN 4

3

(
N − 1

2

) 1
2

, (17.165)

where

α =
(

34

25

) 1
3

≈ 1.36. (17.166)

Having found the energy of this N fermion system, we consider two useful
quantities: the mean squared momentum p̄ which is defined by

p̄2 =
1
N

〈∑
i

p2
i

〉
, (17.167)

and the mean two particle distance d̄ defined by

1
2
N(N − 1)d̄2 =

〈∑
j

∑
i<j

(ri − rj)
2

〉
. (17.168)
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Now according Raleigh-Ritz variational principle we have

EDG (N) ≤ 〈H〉 =
1

2
Np̄2 +

1

4
ω2N(N − 1)d̄2, (17.169)

where EDG (N) is the ground state energy. For either D = 1 or D = 3, EDG (N) is
a linear function of ω, therefore the inequality (17.169) is a quadratic function
of ω. In order to preserve these inequalies the quadratic form should have no
real roots, i.e. the discriminant must be negative. Thus for D = 1 we have

∆ = N
(
N2 − 1

)2 − 2N2(N − 1)
(
d̄p̄
)2 ≤ 0, (17.170)

and for D = 3 we get

∆ = α2N
8
3N − 1

2
N2(N − 1)

(
d̄p̄
)2 ≤ 0. (17.171)

From these inequalities we deduce that

p̄d̄ ≥ 1√
2
Nh̄, D = 1, (17.172)

and
p̄d̄ ≥

√
2αN

1
3 h̄, D = 3. (17.173)

Here we have explicitly written the Planck’s constant h̄. The first inequality
shows that a system of N one-dimensional fermions the average length is larger
that N times the average de Broglie length h̄

p̄ . The second equality shows that
one cannot put more than one fermion in a phase space cell of the volume of the
order h̄3. This result supports the standard interpretation of the Pauli exclusion
principle [14].

17.8 Pair Correlation Function for
Noninteracting Bosons

Consider an ideal system of bosons, i.e. a collection of identical particles with
spin zero or integer spin enclosed in a cubic box of volume L3 satisfying the
periodic boundary conditions Eq. (17.110). For this system we define the cor-
relation function C (|r− r|) exactly the same way as we did for fermions, Eq.
(17.141). We denote the state of the system by |Φ〉, where

|Φ〉 = |np0 , np1 , np2 · · ·〉, (17.174)

and observe that the density of this state is given by〈
Φ|ψ†(r)ψ(r)|Φ

〉
=

1

L3

∑
p

np = n. (17.175)
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Figure 17.3: Correlation function C (|r− r′|) for two identical bosons as a function of their
separation |r− r′|.

Writing C (|r− r|) in terms of boson operators ψ†(r) and ψ(r), we have(n
2

)2

C (|r− r|) =
〈
Φ|ψ†(r)ψ† (r′)ψ (r′)ψ (r) |Φ

〉
, (17.176)

where ψ†(r) and ψ†(r) are defined by relations similar to those of ψ†s(r) and
ψ†s(r), Eqs. (17.111) and (17.112);

ψ† (r) =
1
L

3
2

∑
p

e−ip·ra†(p), (17.177)

and

ψ (r) =
1
L

3
2

∑
p

eip·ra(p). (17.178)

Here the creation and annihilation operators satisfy the commutation re-
lation [

a†(p), a† (p′)
]

= [a(p), a (p′)] = 0, (17.179)

and [
a†(p), a (p′)

]
= (2π)3δ (p− p′) . (17.180)

By substituting (17.179) and (17.180) in (17.176) we find the expectation value
of the products of four operators.

Let us consider a typical term like
〈
Φ
∣∣a†(p)a†(q)a (q′) a (p′)

∣∣Φ〉. This
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term does not vanish only if p = p′, q = q′ or if p = q′, q = p′. But if p = q′

these are not distinct cases. Now we write p′ and q′ in terms of p and q to get〈
Φ
∣∣a†(p)a†(q)a (q′) a (p′)

∣∣Φ〉
= (1− δpq)

{
δpp′δqq′

〈
Φ
∣∣a†(p)a†(q)a (q) a (p)

∣∣Φ〉
+ δpp′δqq′

〈
Φ
∣∣a†(p)a†(q)a (p) a (q)

∣∣Φ〉}
+ δpqδpp′δqq′

〈
Φ
∣∣a†(p)a†(p)a (p′) a (p)

∣∣Φ〉
= (1− δpq) (δpp′δqq′ + δpq′δqp′)npnq

+ δpqδpp′δqq′np(np − 1). (17.181)

Thus from (17.176)–(17.178) we obtain(n
2

)2

C (|r− r|) =
〈
Φ|ψ†(r)ψ† (r′)ψ (r′)ψ (r) |Φ

〉
= n2 +

∣∣∣∣∣ 1
L3

∑
p

np e
−ip·(r−r′)

∣∣∣∣∣
2

− 1
L6

∑
p

np(np + 1).

(17.182)

If we compare this pair correlation function with the corresponding correlation
function for fermions, Eq. (17.149), we find that they differ from each other in
two ways:

(a) - The sign of the second term for fermions is negative, indicating an
effective repulsion from the exchange symmetry of fermions, whereas in the
case of bosons, as Eq. (17.182) shows the exchange symmetry is positive and
attractive.

(b) - There is an additional term in (17.182) for the boson pair correlation
function, but this term is smaller than the other two by a factor of 1

L3 .
In the limit of L→∞ we can write this equation for C as(n

2

)2

C (|r− r|) = n2 +
∣∣∣∣ 1
(2π)3

∫
n(p) e−ip·(r−r′)

∣∣∣∣2 d3p. (17.183)

Now let us calculate the pair correlation function for a beam of noninteracting
bosons, e.g. a photon beam. We choose n(p) to be a smoothly varying function
of p. For instance a Gaussian function

n(p) = αe−
β
2 (p−p0)2

, (17.184)

represents a beam of particles of momentum centered about p0. By substituting
n(p) in (17.183) we find(n

2

)2

C (|r− r|) = n2
(

1 + e−
1
β |r−r′|2

)
, (17.185)

where in the parenthesis the second term shows the effect of exchange. This re-
sult shows that the probability for two bosons to be close together is increased
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due to the exchange effect (see Fig. 17.3), and that this probability for two
bosons to be next to each other is twice the value of the probability for the two
to be far apart [16],[17] .

17.9 Bogoliubov Transformation for a
Many-Boson System

The many boson system described by the second quantized Hamiltonian (17.96)
is solvable only for a very few special cases. For instance for a Hamiltonian
containing only pairing-forces of the form

HR =
∑
p

p2

2m
a†pap +

λ

2

∑
pp′

θ(p)θ (p′) a†pa
†
−pa−p′ap′ , (17.186)

where θ(p) is the step function

θ(p) =
{

1 for 0 ≤ p ≤ P
0 for p > P

, (17.187)

can be diagonalized exactly [18].
A simpler model, that of Bassichis and Foldy which is described by the

Hamiltonian [19]

HBF = a†+a+ + a†−a− + g
[
a†0a0

(
a†+a+ + a†−a−

)
+ a†20 a+a− + a2

0a
†
+a
†
−

]
+ Fga†+a

†
−a+a−,

(17.188)

can be obtained from (17.96) for N particles occupying +, − and 0 momentum
states [19]. The exact solution for this model will be considered later.

An approximate way of obtaining the energy eigenvalues of this Hamilto-
nian is by the method of Bogoliubov transformation. This method is of consid-
erable interest in the theory of superfluidity of 4He. The helium four atoms are
bosons with zero spin and at very low temperature they exhibit the properties
of a superfluid. The interaction between two 4He atoms i and j, V (i, j), is weak

V (i, j) = V (|ri − rj |), (17.189)

and this weakness of the potential is essential in developing the following ap-
proximate method for the solution of the problem. For the complete set of states
we choose plane waves L−3/2eip·r with periodic boundary conditions with

px =
2nxπ
L

, py =
2nyπ
L

, pz =
2nzπ
L

, (17.190)
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where each nx, ny and nz can take positive or negative integers or zero.
In order to evaluate the potential matrix element in (17.96) using plane

waves we write

〈k`|V |mn〉 =
1
L6

∫ ∫
eipk·reip`·r

′
V (|r− r′|) e−ipm·re−ipn·r

′
d3rd3r′. (17.191)

By changing the variables in (17.191) from r and r′ to ρ = r − r′ and R =
1
2 (r + r′) and carrying out the integration over R we find

〈k`|V |mn〉 =
1
L3
δpk+p`−pm−pn Ṽ (|p` − pn|), (17.192)

where Ṽ (|p` − pn|) is the Fourier transform of V (ρ)

Ṽ (|p` − pn|) =
∫
V (ρ)ei(p`−pn)·ρd3ρ

=
4π

|p` − pn|

∫
V (ρ)ρ sin(|p` − pn|ρ)dρ. (17.193)

The sum in (17.96) over pk,p`, pm and pn shows that the total momentum
of the two particles is conserved, as indicated by the Kronecker δ in (17.192)
and that the annihilation of the pair of bosons with momenta pm and pn is
accompanied by the creation of a pair with momenta pk and p`. For the first
term in (17.96) we note that using plane waves we have

∑
pk,p`

〈k|T |`〉a†kak →
∑
k

p2
k

2m
a†kak. (17.194)

Thus we can write (17.96) as

Ĥ =
∑
k

p2
k

2m
a†kak +

1
2L3

( ∑
pk+p`=pm+pn

Ṽ (|p` − pn|)a†ka
†
`aman

)
. (17.195)

The Hamiltonian Ĥ commutes with the number operator N̂ =
∑
k a
†
kak,

a result which can be verified using the commutation relations (17.73). When
V = 0, the ground state of the system corresponds to the condensation of all
particles in the state of lowest energy, i.e. p = 0. But when V is a weakly
repulsive force as in the case of liquid helium, 4He, most of the particles will be
in the lowest state. If the total number of particles in the system is N , then the
number of atoms in the zero momentum state n0 is very close to N .

If we denote the eigenvalue of the operators a†0a0 by n0, then the eigenvalue
of a0a

†
0 is given by n0 + 1. Now let us arrange the contributions to the potential

energy in (17.195) when most of the particles are in the ground state. Expanding
the sum in (17.195) in terms of the number of factors of a0 and a†0 we have typical
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terms like

E0 = a†0a
†
0a0a0

V1 = a†0a
†
0aka−k V2 = a†ka

†
−ka0a0 V3 = a†0a

†
kaka0 V4 = a†ka

†
0aka0

V5 = a†ka
†
jak+ja0 V6 = a†0a

†
k+jakaj

V7 = a†ka
†
janak+j−n, (17.196)

where k, j, and n denote the momenta pk, pj and pn all different from zero.
The first term E0 is proportional to n2

0, and the other contributions from V1 to
V4 are all of the order n0. Of the remaining terms V5 and V6 are of the order√
n0. Now in the limit of large L3, the contributions from a†0a0 and a0a

†
0 to the

potential energy will be proportional to n0
L3 and n0+1

L3 respectively. Thus

a0a
†
0

L3
− a†0a0

L3
≈
(

1
L3

)
L→∞

→ 0. (17.197)

This result shows that in the limit of large L, a0 and a†0 commute with each
other and thus can be regarded as c-numbers.

Following Bogoliubov we introduce a new set of operators Ak and A†k by
the following relations [20],[21]

Ak = a†0
1
√
n0
ak, A†k = a†k

1
√
n0
a0, (17.198)

and write the Hamiltonian Ĥ in terms of Ak and A†k;

Ĥ =
N2

2L3
Ṽ (0) +

∑
k6=0

h̄2k2

2m
A†kAk

+
n0

2L3

∑
k6=0

Ṽ (k)
[
A†kA

†
−k +AkA−k + 2A†kAk

]
+ Ĥ ′, (17.199)

where as we have indicated the sum is over states with nonzero momenta, and
the Fourier transform of the potential Ṽ (k) is an even function of k. From the
definitions of A†k and Ak it follows that∑

k6=0

A†kAk =
∑
k6=0

a†kak = N − n0, (17.200)

and thus the operators A†k and Ak are small (of the order of N−1 [24]). The
operator Ĥ ′ which includes the products of three or four A†k and Ak opera-
tors can be neglected compared with the other terms in (17.199). Using this
approximation we can write Ĥ as

Ĥ =
N2Ṽ (0)

2L3
+

1
2

∑
k6=0

Ĥk, (17.201)
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where

Ĥk =
(
h̄2k2

m
+
V (k)n0

L3

)
A†kAk +

Ṽ (k)n0

L3

(
A†kA

†
−k +AkA−k

)
. (17.202)

We observe that Ĥk is quadratic in A†k, Ak, A
†
−k and A−k, and this allows us

to diagonalize this Hamiltonian with the help of the canonical transformation

α1(k) = Ak coshφ(k) +A†−k sinhφ(k), (17.203)

α2(k) = A†k sinhφ(k) +A−k coshφ(k). (17.204)

The coefficients of the transformations (17.203) and (17.204) are real and are
spherically symmetric. That these transformations are canonical can be verified
by calculating the commutators:[

α†1(k), α1(k′)
]

= δk,k′ , (17.205)

and
[α1(k), α1(k′)] =

[
α†1(k), α†1(k′)

]
= 0. (17.206)

From Eqs (17.203) and (17.204) it follows that for φ(k) to be an even function of
k then α2(k) = α1(k). Substituting from (17.203) and (17.204) in (17.202) and
setting the coefficients of α2(k)α1(k) and α†2(k)α†1(k) equal to zero we obtain

sinhφ(k) =
D(k)

[1−D2(k)]
1
2
, coshφ(k) =

1

[1−D2(k)]
1
2
, (17.207)

where

D(k) =
L3

n0Ṽ (k)

[
h̄2k2

2m
+
n0Ṽ (k)
L3

− E(k)

]
, (17.208)

and E(k) is given by the following relation

E(k) =

[(
h̄2k2

2m

)2

+
h̄2k2n0Ṽ (k)

mL3

] 1
2

. (17.209)

The diagonal form of Ĥ then becomes

Ĥ =
n2Ṽ (0)

2L3
+
∑
k6=0

E0(k) +
∑
k 6=0

E(k)α†1(k)α1(k), (17.210)

where

E0(k) =
D2(k)E(k)
D2(k)− 1

. (17.211)
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Thus for low-lying excited states of helium atoms the Hamiltonian Ĥ represents
a collection of noninteracting “quasi-particles” each with the energy E(k) and
this energy is given by

E(k) =

[(
h̄2k2

2m

)2

+
h̄2k2NṼ (k)

mL3

] 1
2

, (17.212)

where we have replaced n0 in (17.209) by N . When |k| is very small we can
expand (17.212) in powers of |k| and keep the linear term in |k|;

E(k) =

[
NṼ (0)
mL3

] 1
2

h̄|k|+ · · · . (17.213)

We note that for the stability of the ground state energy, E0(k) must be real,
therefore as (17.211) shows E(k) is real too and this implies that

Ṽ (0) =
∫
V (ρ)d3ρ > 0. (17.214)

From this result we conclude that for the stability of the ground state at low |k|
the interaction energy between 4He atoms must be positive or the interaction
force on the whole must be repulsive.

While (17.213) gives us the low momentum behavior of E(k), for large |k|
from (17.209) we get

E(k) ≈ h̄2k2

2m
+
NṼ (k)
L3

. (17.215)

The velocity with which these quasi-particles at very low temperatures move is
the group velocity which is given by

vs =
1
h̄

(
∂E(k)
∂k

)
k=0

=

(
NṼ (0)
mL3

) 1
2

. (17.216)

Thus whereas the quasi-particle energy at low momenta is linear in k

E(k) ≈ vs|k|, (17.217)

this energy becomes a quadratic function of k for large k. In this limit the
energy is just the kinetic energy of bosons. The dependence of E(k) on the
momentum h̄k for a repulsive force, Ṽ (0) > 0, is plotted in Fig. 17.4.

From the energy E(k) we can define a critical velocity vcr by the relation

minimum of
E(k)
h̄k

≡ vcr > 0. (17.218)

Now according to Landau’s theory, the state of superfluidity can occur only if
the quasi-particles are moving with velocities less that the critical velocity vcr
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Figure 17.4: The energy spectrum of a quasi-particle in a superfluid. The dashed line shows
the kinetic energy of the particles (e.g. 4He).

which in this case is nonzero [22].
For the liquid helium at very low temperatures the critical speed (which

is the speed of the first sound) is about vs = 238 m/s. In addition to the linear
dependence near k = 0 as shown in Fig. 17.4, E(k), has a minimum in the
middle near k0. The excitations near this dip are called rotons [12].

Accuracy of the Bogoliubov Approximation for Many-Boson
Problem — To test the accuracy of the Bogoliubov transformation for bosons,
Bassichis and Foldy have solved the model given by (17.188). In addition to the
Hamiltonian ĤBF , this model possesses two other constants of motion

N̂ = a†+a+ + a†−a− + a†0a0, (17.219)

and
D̂ = a†+a+ − a†−a−. (17.220)

The state of the system |Ψ〉 will depend on the constants N , D, the eigenvalues
of N̂ and D̂ and also on the number of the particles n, which is the eigenvalue
of a†−a−. For simplicity we set D = 0, and for this special case we solve the
eigenvalue equation for ĤBF

ĤBF |Ψ〉 = E|Ψ〉. (17.221)

Here |Ψ〉 depends on N , n and D and also on the coefficient of expansion Cn;

|Ψ〉 =

1
2N∑
n=0

Cn|N,D = 0, n〉, (17.222)

i.e. the state |Ψ〉 depends on the total number of particles and the number of
particles in (+) or (−) states n, and these are equal since we have chosen D = 0.
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By substituting (17.222) in (17.221) we find that Cn s are the roots of the
linear difference equation

g
[
(N − 2n+ 2)(N − 2n+ 1)n2

] 1
2 Cn−1

+
[
2n+ g(N − 2n)2n− Fgn2 − E

]
Cn

+ g(n+ 1) [(N − 2n− 1)(N − 2n)]
1
2 Cn+1 = 0. (17.223)

Our choice of D = 0 means that the maximum number of particles either in (+)
or in (−) levels is 1

2N . Therefore

C−1 = C 1
2N+1 = 0, (17.224)

and in addition we have the normalization conditions

1
2N∑
n=0

C2
n = 1. (17.225)

All of the eigenvalues En are obtained by diagonalizing the tri-diagonal matrix
formed from the coefficients of Cn s in (17.223).

Let us now apply the Bogoliubov approximation to this solvable model.
For this we replace both a†0 and a0 in (17.188) by

√
n0 and keep the terms

proportional to n0 and n;

ĤBF ≈ a†+a+ + a†−a− + gn0

(
a†+a+ + a†−a− + a+a− + a†+a

†
−

)
. (17.226)

We note that in this reduced Hamiltonian the term Fga†+a+a
†
−a− does not

appear and thus the approximation can be valid only for a certain range of
values of F . Also as a result of this approximation N is no longer a constant
of motion, but D̂ still is. Since (17.226) is quadratic in a s and a† s, we can
diagonalize it by the transformation

a+ = coshφ α+ − sinhφ α†−, a− = coshφ α− − sinhφ α†+, (17.227)

a†+ = coshφ α†+ − sinhφ α−, a†− = coshφ α†− − sinhφ α+, (17.228)

where

coshφ =
[

1 + gn0 + E0

2E0

] 1
2

, sinhφ =
[

1 + gn0 − E0

2E0

] 1
2

, (17.229)

E0 = (1 + 2gn0)
1
2 , (17.230)

and
coshφ sinhφ =

gn0

2E0
. (17.231)
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With these substitution ĤBF becomes

ĤBF = E0 − 1− gn0 + E0

(
α†+α+ + α†−α−

)
. (17.232)

From (17.232) it is clear that the ground state energy of this Hamiltonian is

EG = E0 − 1− gn0 = (1 + 2gn0)
1
2 − 1− gn0. (17.233)

In order to determine n0, the number of particles in the ground state, we note
that

〈
Ψ
∣∣∣a†+a+ + a†−a− + a†0a0

∣∣∣Ψ〉 = n0 +
〈

Ψ
∣∣∣a†+a+ + a†−a−

∣∣∣Ψ〉
= n0 + 2 sinh2 φ = N. (17.234)

By substituting for sinhφ from (17.229) in (17.234) we find that n0 is related
to N by

N = n0 − 1 +
1 + gn0√
1 + 2gn0

. (17.235)

In TABLES XVI and XVII we have compared the results obtained from the
solution of the exact eigenvalue equation with those found from the Bogoliubov
approximation for a range of g and N values [23]. The probability amplitudes
for finding the particles in the ground and in the first excited states, |C0| and
|C1| are also given in the following two tables:

TABLE XVI: The energies of the ground and the first excited states given as a
function of N (F = 0, g = 0.01).

N E0(exact) |C0| E0(Bog) E1(exact) |C1| E1(Bog)

20 −0.0162 0.9966 −0.0168 2.32 0.083 2.35
100 −0.2668 0.9634 −0.268 3.19 0.258 3.20
200 −0.7625 0.9242 −0.764 3.70 0.353 3.71
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TABLE XVII: The energies of the ground and the first excited states calculated as

a function of the coupling constant g (F = 0, N = 64).

g E0(exact) |C0| E0(Bog) E1(exact) |C1| E1(Bog)

0.01 −0.1291 0.9792 −0.1300 2.875 0.199 2.89
0.1 −3.653 0.8195 −3.685 3.807 0.467 3.745
1 −51.923 0.5828 −53.642 −25.94 0.457 30.93
5 −278.09 0.4928 −295.68 −193.45 0.402 −245.05

The results shown in these two tables indicate that the Bogoliubov approxi-
mation works well for a range of N and g values particularly for larger N and
smaller g. Not only the ground state is accurately determined by this approxi-
mation, but for the first excited state we have also acceptable results provided
that g � 1. When the coupling Fg is not zero the approximation breaks down
as F approaches FT , where FT is a number which depends on N and g. For
instance when N = 64 and g = 0.01, then for F = 6.25634, C0 = 0.9781 whereas
for F = 6.25635, C0 becomes very small, C0 ∼ 10−6.

17.10 Scattering of Two Quasi-Particles

In the previous sections of this chapter we mentioned that an exact solution of
a many-boson or a many-fermion for realistic type of forces cannot be found.
But as a first approximation the interacting many-body system may be replaced
by a system of non-interacting quasi-particles.

For the many-boson systems the quasi-particles have one attribute, that
is, their energy E(k). We write the Hamiltonian in the second quantized form
as

H =
∑
k

(ε(k)− µ)a†kak +
1

2L3

∑
jlmn

δj+l,m+nṼ (j−m)a†ja
†
l aman, (17.236)

where εk = p2
k

2m and µ is the chemical potential. In principle we can diagonalize
this Hamiltonian and write it as

H =
∑
k

εkNk +
∑
kj

εkjNkNj + · · · , (17.237)

where Nk is the number of quantum particles in the state k. Evidently εk ’s
are the exact single particle energies, but the system is not completely specified
in terms of εk ’s alone. For a complete dynamical description of the system
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the quantities εjk, εijk, etc. are needed. In other words the usual description
of quasi-particles as a system of non-interacting excitations of the bosons is
approximate in nature. But we can write the exact Hamiltonian (17.236) as the
Hamiltonian for quasi-particles plus residual terms representing the interaction
between these quasi particles. As far as the potential V (r) is concerned, we
assume that it is composed of an attractive tail and a strong short range repulsive
part.

The creation and annihilation for the bosons and for quasi-particles are
given by [

ak, a
†
j

]
= δk,j, (17.238)

and [
βk, β

†
j

]
= δk,j. (17.239)

To the lowest order, we write ak as a linear combination of βk and β†−k for all
values of k including k = 0 momentum state [24], ak = h(k)βk + g(k)β†−k

a†−k = h(k)β†−k + g(k)βk

, (17.240)

where h(k) and g(k) are real functions of k and

h(k) = h(−k), and g(k) = g(−k). (17.241)

Also from (17.238) and (17.239) we have the following relation between h(k)
and g(k)

h2(k)− g2(k) = 1. (17.242)

Denoting the vacuum state of quasi-particles by |0〉 we find the number
of particles in the state k to be

nk =
〈

0
∣∣∣a†kak

∣∣∣ 0〉 = g2(k). (17.243)

Thus the total number of the particles, N , is

N =
∑
k

n2
k =

∑
k

g2(k), (17.244)

and this last relation fixes the chemical potential µ. Next we substitute for ak

and a†−k from (17.240) in (17.236) and arrange all the terms in normal order
and then we equate the coefficient of the term β†kβ

†
−k +βkβ−k to zero. Thus we

obtain the following relation

[εk − µ+A(k)]h(k)g(k) +
1
2

∆(k)
[
h2(k) + g2(k)

]
= 0, (17.245)
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where
A(k) =

1
L3

∑
j

[
Ṽ (0) + Ṽ (k− j)

]
g2(j) = A(−k), (17.246)

and
∆(k) =

1
L3

∑
j

Ṽ (k− j)h(j)g(j) = ∆(−k). (17.247)

We can write the Hamiltonian in terms of the quasi-particle operators as

H = E +
∑
k

Ekβ
†
kβ−k +HI , (17.248)

where

E =
∑
k

{[
εk − µ+

1
2
A(k)

]
g2(k) +

1
2

∆(k)h(k)g(k)
}
, (17.249)

and

Ek = [εk − µ+A(k)]
[
h2(k) + g2(k) + 2∆(k)h(k)g(k)

]
, (17.250)

or

Ek =
{

[εk − µ+A(k)]2 −∆2(k)
} 1

2
. (17.251)

This last relation is found by substituting (17.245) and (17.242) in (17.249).
The residual Hamiltonian, HI , when expressed in terms of βk and β†k

contains quartic terms of the form

HI =
1

2L3

∑
jlmn

δj+l,m+n

[
F1β

†
j β−lβmβn + F2β

†
j β
†
l βmβn

+ F3β
†
j β
†
l β
†
−nβm + F4β

†
j β
†
l β
†
−mβ

†
−n + F5β

†
−jβ
†
−lβmβn

]
.

(17.252)

In this residual Hamiltonian HI , F1 · · ·F5 are all dependent on the variables
j, l, m and n through the functions Ṽ , g and h. For example F2 is given by

F2 = 2
[
Ṽ (j−m) + Ṽ (j + l)

]
h(j)g(l)h(m)g(n)

+ Ṽ (j−m)[h(j)h(l)h(m)h(n) + g(j)g(l)g(m)g(n)]. (17.253)

The Scattering Matrix — To determine the scattering matrix let us
find the Heisenberg equation of motion for β†q. In what follows we set h̄ = 1.

dβ†q(t)
dt

= i
[
H, β†q(t)

]
= iEqβ

†
q(q) + iI [q, βq(t)] , (17.254)
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where

I [q, βq(t)] =
1
L3

∑
jlm

δj+q,m+lṼ (q− l)

× ON
[
h(q)a†l a

†
maj + g(q)a†−ja−la−m

]
. (17.255)

In this relation the symbol ON denotes the normal ordering of operators, i.e.
after substituting for ak and a−k† from (17.240), we rearrange the operators so
that the creation operators are to the left of annihilation operators.

Now let p and q be the initial and m and n be the final momenta of
the two quasi-particles. As we have seen before the scattering matrix can be
written as

Sm,n; p,q = 〈m,n out|q,p in〉 =
〈
m,n out

∣∣β† inq

∣∣p out
〉

= lim
t→−∞

〈
m,n out

∣∣β† inq (t)
∣∣p out

〉
e−iEqt. (17.256)

Using the method of LSZ discussed in Chapter 14 we find the matrix elements
of the S matrix to be [26],[27]

(S − 1)m,n; p,q = −
∫ ∞
−∞

〈
m,n out

∣∣∣∣∣dβ†q(t)
dt

− iEqβ
†
q(t)

∣∣∣∣∣p out

〉
e−iEqtdt.

(17.257)

Substituting for dβ†q(t)

dt from (17.254) in(17.257) we get

(S − 1)m,n; p,q = −i
∫ ∞
−∞
〈m,n out |I[q, βq(t)]|p out〉 e−iEqtdt. (17.258)

To the lowest order the contribution to the scattering matrix comes from
I
[
q, βoutq (t)

]
in (17.258). This functional is found by iterating (17.254) once,

i.e. since
dβ† outq (t)

dt
= iEqβ

† out
q (t), (17.259)

we have
dβ†q(t)
dt

≈ iEqβ
†
q(t) + iI

[
q, β† outq (t)

]
. (17.260)

Using this approximate form we can calculate the matrix element in (17.258)
and after carrying out the integration we get

(S − 1)m,n; p,q = −2πiδ(Em + En − Eq − Ep)Ṽ (m,n; p,q), (17.261)

where
Ṽ (m,n; p,q) =

1

L3δm+n,p+q

{
Ṽ1 + Ṽ2 + Ṽ3

}
.(17.262)

The interaction terms Ṽ1, Ṽ2 and Ṽ3 are given by

Ṽ1 = Ṽ (q− n)[h(q)h(m) + g(p)g(n)][h(p)h(n) + g(p)g(n)], (17.263)
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Ṽ2 = Ṽ (q− n)[h(q)h(n) + g(q)g(n)][h(p)h(m) + g(p)g(m)], (17.264)

and

Ṽ3 = Ṽ (q + p) {g(p)h(q)[g(m)h(n) + h(m)g(n)]
+ h(p)g(q)[h(m)g(n) + g(m)h(n)]} . (17.265)

Thus the Ṽ matrix is just the Born term for the elastic scattering of two quasi-
particles.

The G-Matrix — The S matrix that we studied in the previous section
is expressible in powers of the potential Ṽ of which (17.262) is the first term. If
the two quasi-particles interact strongly with each other, e.g. at short distances
the repulsive force can be very large, then we can consider the scattering of two
quasi-particles in the average field of force produced by the presence of other
quasi-particles. For this we consider a system composed of two quasi-particles
and assume that the Hamiltonian (17.236) can be written as

H = E +
∑
k

ωkα
†
kαk, (17.266)

where in writing (17.266) we have omitted higher order terms such as∑
ij

εijα
†
iα
†
jαiαj + · · · . (17.267)

Thus as before, the quasi-particles are characterized by their energy-momentum
relation ωk. We write the total Hamiltonian H as the sum of two terms

H = H0 +HI , (17.268)

where
H0 = E +

∑
k

Ekβ
†
kβk. (17.269)

Here the quantities E , Ek and HI are given by Eqs. (17.248) , (17.252) and
(17.252). Since E and E are c-numbers, they can be absorbed in H and H0

respectively. For a state of momentum k the difference measures the energy shift
caused by the interaction, but Ek is known and at this stage ωk is unknown.

Consider the expansion of the product of two annihilation operator αpαq

in terms of βpβq;

αpαq = βpβq +
∑

u,v 6=p,q

K(p,q; u,v) βuβv + · · · . (17.270)

Noting that both H and H0 are diagonal operators, the former in αk ’s and the
latter in βk ’s we find the following commutation relations

[H, αpαq] = −(ωp + ωq)αpαq, (17.271)
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and
[H0, βuβv] = −(Eu + Ev)βuβv. (17.272)

If we substitute (17.270) in (17.271) we get

[HI , αpαq] = [H −H0, αpαq] = (Ep + Eq − ωp − ωq)βpβq

+
∑

u,v 6=p,q

K(u,v; p,q)(Eu + Ev − ωp − ωq)βuβv. (17.273)

We can find the kernel K(u,v; p,q) by taking the matrix element of (17.273)
between the states 〈0| and βxβy|0〉 where x and y are assumed to be different
from p and q;

K(u,v; p,q) =

〈
0
∣∣[HI , αpαq]β†uβ

†
v

∣∣ 0〉
(Eu + Ev − ωp − ωq)

. (17.274)

Substituting (17.274) in (17.270) we have the operator equation

αpαq = βpβq +
1
2

∑
u,v 6=p,q

〈
0
∣∣[HI , αpαq]β†uβ

†
v

∣∣ 0〉
(Eu + Ev − ωp − ωq)

βuβv. (17.275)

Let us note that we sum over all values of u and v not equal to p and
q and thus we count each pair twice and to compensate for this we have the
factor 1

2 in front of the sum.
Now we define the matrices Ṽ and G by their matrix elements〈

m,n
∣∣∣Ṽ ∣∣∣p,q〉 = −

〈
0
∣∣[HI , βpβq]β†mβ

†
n

∣∣ 0〉 , (17.276)

and
〈m,n |G|p,q〉 = −

〈
0
∣∣[HI , αpαq]β†pβ

†
q

∣∣ 0〉 . (17.277)

From these relations and (17.275) we find the following integral equation for the
G matrix

〈m,n |G|p,q〉 =
〈
m,n

∣∣∣Ṽ ∣∣∣p,q〉
+

1
2

∑
u,v 6=p,q

〈
m,n

∣∣∣Ṽ ∣∣∣u,v〉 〈u,v |G|p,q〉
(ωp + ωq − Eu − Ev)

βuβv.

(17.278)

The integral equation (17.278) relates the G-matrix to the effective interaction
between quasi-particles Ṽ . By substituting the explicit form ofHI , Eq. (17.252),
in (17.276) we find the matrix elements of Ṽ which is the same as the one given
in (17.262).

Next we want to determine the energies ωp and ωq in (17.278). For this
we first calculate

[αpαp, H] = 2ωpαpαp =

[
αpαp,

∑
k

Ekβ
†
kβk +HI

]
. (17.279)
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Then we find the matrix elements of (17.279) between the state 〈0| and |β†pβ†p|0〉,
i.e.

2ωp

〈
0
∣∣αpαpβ

†
pβ
†
p

∣∣ 0〉 =

〈
0

∣∣∣∣∣
[
αpαp,

∑
k

Ekβ
†
kβk

]
β†pβp

∣∣∣∣∣ 0
〉

−
〈
0
∣∣[HI , α

†
pαp

]
β†pβ

†
p

∣∣ 0〉 . (17.280)

Now from Eq. (17.275) we obtain〈
0
∣∣αpαqβ

†
pβ
†
q

∣∣ 0〉 = 2, (17.281)

and 〈
0

∣∣∣∣∣
[
αpαp,

∑
k

Ekβ
†
kβk

]
β†pβp

∣∣∣∣∣ 0
〉

= 4Ep. (17.282)

If we substitute these results in (17.280) we find that ωp is related to the diagonal
elements of G;

ωp = Ep +
1

4
〈p,p|G|p,p〉. (17.283)

17.11 Bogoliubov Transformation for Fermions
Interacting through Pairing Forces

For a system of N interacting fermions the second quantized Hamiltonian is
given by (17.107) where each of the quantum numbers, say k denotes the mo-
mentum pk as well as the spin s. Now we write the spin of particles explicitly
and define the number operator as

N̂ =
∑
k,s

b†k,sbk,s. (17.284)

This number operator commutes with the Hamiltonian and is a constant of
motion. We choose N , the number of particles in the system, to be very large
and at the same time allow the volume tend to infinity, L3 →∞, in such a way
that the average particle density n = N

L3 stays finite. In this limit we assume
that the wave function is a plane wave, Eq. (17.112), and just as we have seen for
a system of bosons, Eq. (17.195), the corresponding Hamiltonian for fermions
can be written as

Ĥ =
∑
k,s

p2
k

2m
b†k, sbk, s

− 1

2L3

∑
pk+p`=pm+pn

Ṽ (|p` − pn|)b†k, sb
†
`, s′bm, s′′bn, s′′′ , (17.285)
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where

Ṽ (|pk − pn|) =
−4π

|pk − pn|

∫ ∞
0

V (ρ)ρ sin(|pk − pn|ρ)dρ. (17.286)

Note that for an attractive potential V (ρ) < 0 and therefore Ṽ (|pk − pn|) will
be a positive function. For the approximate diagonalization of (17.285) we want
to keep the number of particles, N , fixed. For this we introduce the chemical
potential µ by adding a term −µ

∑
k b
†
k, sbk, s to the above Hamiltonian. We

also assume that the interaction between fermions depends only on their relative
distance between the particles i.e. |ri − rj |. With these assumptions (17.285)
can be written as

Ĥ =
∑
k,s

(
p2
k

2m
− µ

)
b†k sbk s−

1
2L3

∑
pk+p`=pm+pn

Ṽ (|p`−pn|)b†k s1b
†
` s2

bm s2bn s1 ,

(17.287)
To simplify (17.287) further we note that when Ṽ (|p` − pn|) has a range

shorter than the average wavelength of the relative motion of a pair of fermions.
Here we assume that the interaction between fermions with parallel spins is
weak since they do not come close to each other and thus in this approximation,
the interaction will be between fermions with opposite spins, i.e. in (17.287) we
set s2 = −s1. At the same time we isolate those terms in the interaction for
which the relative momentum is conserved.

pk + pl = pm + pn 6= 0. (17.288)

Since the contribution from s1 = 1
2 is the same as that of s1 = − 1

2 , we can write
(17.287) as

Ĥ = Ĥ0 + Ĥ ′, (17.289)

where

Ĥ0 = 2
∑
k

e(pk)b†
k, 1

2
bk, 1

2
− 1
L3

∑
k,n

Ṽ (|pk − pn|)b†k, 1
2
b†−n, − 1

2
b−k, − 1

2
bn, 1

2
,

(17.290)
and

e(pk) =
p2
k

2m
− µ, (17.291)

where in (17.290) k and −k refer to the momenta pk and −pk respectively.
The Hamiltonian Ĥ0, Eq. (17.290), in which fermions with opposite momenta
appear in the potential is called pairing Hamiltonian. The operator Ĥ ′ contains
all of the other terms in the potential which are not included in Ĥ0.

We can diagonalize Ĥ0 by a Bogoliubov transformation by introducing
quasi-particle operators Bk, 0, Bk, 1, B

†
k, 0 and B†k, 1:

bk, 1
2

= u(k)Bk, 0 + v(k)B†k, 1, (17.292)
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and
b−k, − 1

2
= u(k)Bk, 1 − v(k)B†k, 0, (17.293)

where u(k) and v(k) are real even functions of k which will be determined later.
For the transformation (17.292),(17.293) to be canonical when Bk0 and Bk1

satisfy the anti-commutation relations,[
B†k, 0, Bk, 0

]
+

=
[
B†k, 1, Bk, 1

]
+

= 1, (17.294)

[Bk, 0, Bk, 1]+ =
[
B†k, 0, B

†
k, 1

]
+

= 0, (17.295)

we find that u(k) and v(k) must satisfy the condition

u2(k) + v2(k) = 1. (17.296)

By replacing the fermion creation and annihilation operators

bk, 1
2
, b†−k, − 1

2

· · · , (17.297)

by
Bk, 0, B†−k, −1 · · · , (17.298)

rearranging the Hamiltonian Ĥ0 so that the creation operators are to the left of
annihilation operators, we obtain

Ĥ0 = E0(pk) + Ĥ
(0)
0 + Ĥ

(1)
0 + Ĥ

(2)
0 , (17.299)

where E0(pk) is a c-number multiplied by the unit operator.

E0(pk) = 2
∑
k

e(pk)v2(k)− 1

L3

∑
k,n

Ṽ (|pk − pn|)u(n)v(n)u(k)v(k). (17.300)

The operator Ĥ
(0)
0 is diagonal in the number representation

Ĥ
(0)
0 =

∑
k

{
e(pk)

(
u(k)2 − v(k)2

)
+

2u(k)v(k)

L3

∑
n

Ṽ (|pk − pn|)u(n)v(n)

}
×

(
B†k,0Bk,0 +B†k,1Bk,1

)
, (17.301)

and Ĥ
(1)
0 has the non-diagonal part, but this operator is also quadratic in Bk s

Ĥ
(1)
0 =

∑
k

{
2e(pk)u(k)v(k)− u2(k)− v2(k)

L3

∑
n

Ṽ (|pk − pn|)u(n)v(n)

}
×

(
B†k,0B

†
k,1 +Bk,1Bk,0

)
. (17.302)
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Finally the operator Ĥ(2)
0 contains products of four of the quasi-fermion opera-

tors, and requires more elaborate techniques for its inclusion in this formulation.
As we mentioned earlier u(k) and v(k) are arbitrary except for the con-

straint (17.296). Now we choose u(k) and v(k) so that the coefficient of the
non-diagonal operators in Ĥ

(1)
0 vanishes, i.e.

2e(pk)u(k)v(k)− u2(k)− v2(k)
L3

∑
n

Ṽ (|pk − pn|)u(n)v(n) = 0. (17.303)

This condition is the same as the one found by requiring E0(k), Eq. (17.300), be
a minimum. Rather than working with u(k) and v(k), we introduce a function
∆(k);

∆(k) =
1
L3

∑
n

u(n)v(n)Ṽ (|pk − pn|), (17.304)

and using Eqs. (17.296) and (17.303) we can write u(k) and v(k) in terms of
∆(k);

u2(k) =
1
2

[
1 +

e(pk)√
∆2(k) + e2(pk)

]
, (17.305)

and

v2(k) =
1
2

[
1− e(pk)√

∆2(k) + e2(pk)

]
. (17.306)

By substituting (17.305) and (17.306) in (17.304) we find that ∆(k) satisfies the
nonlinear integral equation (called BCS gap equation) [25]

∆(k) =
1

2L3

∑
n

Ṽ (|pk − pn|)∆(n)√
∆2(n) + e2(pn)

. (17.307)

In terms of ∆(k) the Hamiltonian Ĥ
(0)
0 can be written as

Ĥ
(0)
0 =

∑
k

√
∆2(k) + e2(pk)

(
B†k,0Bk,0 +B†k,1Bk,1

)
, (17.308)

and from this relation it is evident that the energy of excitation of a quasi-
fermion is

E0(pk) =
√

∆2(k) + e2(pk). (17.309)

Let us consider the elementary excitation of a fermion with momentum
pk. There are two kinds of excitation: one defined by B†k,0Bk,0 and the other
by B†k,1Bk,1;

B†k,0Bk,0|nk0 , nk1〉 = nk0 |nk0 , nk1〉, (17.310)

and
B†k,1Bk,1|nk0 , nk1〉 = nk1 |nk0 , nk1〉. (17.311)
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Now the difference between the energy of excitation of a particle and a quasi-
particle is given by

E(pk)− e(pk) =
√
e2(pk) + ∆2(k)− e(pk). (17.312)

The trivial solution of Eq. (17.307) is obtained if we set ∆(k) = 0 for all k, and
this implies u(k)v(k) = 0, a result which follows from Eq. (17.304). In this case
we consider the following possibilities:u(k) = 1, v(k) = 0 if e(pk) =

p2
k

2m−µ > 0

u(k) = 0, v(k) = 1 if e(pk) =
p2
k

2m−µ < 0

. (17.313)

To interpret this result we find the inverse of the canonical transformations
(17.292) and (17.293), viz,

Bk,0 = u(k)bk, 12 − v(k)b†−k,− 1
2

, (17.314)

and
Bk,1 = u(k)b−k,− 1

2
+ v(k)b†

k, 12
, (17.315)

When Eq. (17.313) is satisfied, we observe that for |p| > pF , or outside the Fermi
sphere u(k) = 1, v(k) = 0 and e(pk) > 0, and both of the operators Bk,0 = bk, 12
and Bk,1 = b†

k, 12
annihilate fermions (or spin 1

2 particles) with quantum numbers

(pk,
1
2 ) and (−pk, − 1

2 ) respectively. Inside the Fermi sphere u(k) = 0, v(k) = 1

and e(pk) < 0, and the operators Bk,0 = −b−k,− 1
2

and Bk,1 = −b†
k, 12

annihilate

holes (or creates fermions) in the states (−pk,− 1
2 ) and (pk,

1
2 ). These results

are for the trivial solution of the gap equation, i.e. for ∆(k) = 0.
Now let us suppose that the force Ṽ (pk − pn) is attractive and strong so

that we have the inequality

1

2L3

∑
n

Ṽ (|pk − pn|)
|e(pn)|

> 1. (17.316)

To find the approximate solution of the gap equation we first write the chemical
potential µ as

µ =
h̄2k2

0

2m
, (17.317)

and this defines the momentum h̄k0. Then we consider the special case where
Ṽ (|pk − pn|) is a constant, Ṽ (pk − pn) = Ṽ when |pk| and |pn| lie within
h̄(k0 − q) and h̄(k0 + q). For this special case Eq. (17.307) for ∆ becomes

Ṽ

2L3

∑
h̄(k0−q)≤|pk|≤h̄(k0+q)

1√
e2(pn) + ∆2

= 1. (17.318)
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Since we have assumed a strong potential, ∆ is larger than the spacing between
the levels of e(pk) and we replace the summation in (17.318) by integration

∑
pk

→ L3

8π3

∫
d3k. (17.319)

In addition we can approximate d3k by

d3k = 4πk2
0dk, (17.320)

and we also use the approximate form of e(pk);

e(pk) ≈ h̄k0(pk − h̄k0)
m

, (17.321)

in (17.318). By substituting these approximate terms Eq. (17.318), this equa-
tion becomes

Ṽ k2
0

4π2

∫ q

−q

dk[
∆2 +

(
h̄2k0k
m

)2
] 1

2
= 1. (17.322)

By carrying out the integration in (17.322) and then solving the resulting ex-
pression for ∆ we obtain

∆ =
(

2h̄2k0q

m

) exp
(
−D
Ṽ

)
1− exp

(
−D
Ṽ

) , (17.323)

where D is defined by

D =
2π2h̄2

mk0
. (17.324)

We note that the dependence of ∆ on Ṽ shows that this solution cannot be
found by the perturbation theory, since this amounts to an expansion of e−

D
Ṽ

in powers of Ṽ around Ṽ = 0.
The ground state energy E0(pk) can be expressed in terms of ∆(k) and

e(pk) by substituting for u(k) and v(k) in (17.300) and after simplifying the
result we get

E0(pk) =
∑
pk

e(pk)
[√

e(pk)2 + ∆2(k)− e(pk)
]
− 1

2∆2(k)√
e(pk)2 + ∆2(k)

. (17.325)

The result of the exact solution for the function u2(k) and v2(k) are shown by
solid curves in Fig. 17.5, when ∆(k) 6= 0. The dashed lines show these solutions
for the trivial case of ∆(k) = 0, Eq. (17.313).
For the trivial solution of this equation if ∆(k) = 0, then E0(pk) = 0, however
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Figure 17.5: Plots of u2(k) and v2(k) as functions of the energy e(pk). For ∆ = 0, u2(k)
and v2(k) are shown by dashed lines.

if ∆(k) 6= 0, E0(pk) is negative. Thus the non-trivial solution has a lower
energy and is the more favorable state of the system. For ∆ 6= 0 the energy of
a quasi-particle is given by (17.309) which in terms of k0 can be written as

E(pk) =

[{
h̄2

2m

(
k2 − k2

0

)}2

+ ∆2(k)

] 1
2

. (17.326)

This energy, E(pk) for large |pk| = h̄k tends to h̄2k2

2m , but as pk tends to the
Fermi momentum , pF , i.e. as k → k0, E(pk) approaches a finite value

limE(pk)→ ∆(k0) as |pk| → h̄k0. (17.327)

We observe that the difference in the energy of the ground state and the
first excited state is ∆(k0), and when ∆(k0) 6= 0 then there is an energy gap in
the excitation of this system of fermions. Since the creation and annihilation of
quasi-particles are superpositions of fermion and hole states, therefore excita-
tions with ∆ 6= 0 correspond to a collective motion of the system.

The only unknown parameter which is left in the expressions for E0(pk)
and E(pk) is the wave number k0 which is related to the chemical potential µ

by µ =
h̄2k2

0

2m . We can find k0 from the number of fermions per unit volume, N
L3 .

If N denotes the total number of particles in the system, and |Φ0〉 is the ground
state wave function corresponding to the absence of quasi-particles, then

N =
〈

Φ0

∣∣∣N̂ ∣∣∣Φ0

〉
=

〈
Φ0

∣∣∣∣∣∣
∑
k,s

b†k,sbk,s

∣∣∣∣∣∣Φ0

〉
. (17.328)

Therefore the action of the operators Bk,0 and Bk,1 on |Φ0〉 yield the following
results

Bk,0|Φ0〉 = 0, (17.329)

and
Bk,1|Φ0〉 = 0. (17.330)
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Now if we substitute for bk,s and b†k,s from (17.292) and (17.293) and sum over
s we find

N̂ =
∑
k

[
2v2(k) +

(
u2(k)− v2(k)

) (
B†k,0Bk,0 +B†k,1Bk,1

)
+ 2u(k)v(k)

(
B†k,0B

†
k,1 +Bk,0Bk,1

)]
. (17.331)

Next we substitute N̂ from (17.331) in (17.328) and then use (17.329) and
(17.330) and express the final result in terms of ∆(k), Eqs. (17.305) and
(17.306);

N = 2
∑
k

v2(k) =
∑
k

1− k2 − k2
0√

(k2 − k2
0)2 +

(
2m
h̄2 ∆(k)

)2
 . (17.332)

Finally by replacing the summation by integration as indicated in Eq. (17.319)
we get

N

L3
=

1
2π2

∫ ∞
0

1− k2 − k2
0√

(k2 − k2
0)2 +

(
2m
h̄2 ∆(k)

)2
 k2dk. (17.333)

From this equation we can determine k2
0 in terms of the density of fermions N

L3 .

17.12 Damped Harmonic Oscillator

One of the exactly solvable systems with an infinite degrees of freedom is that
of the motion of a particle linearly coupled to a heat bath. The heat bath can
consist of a collection of oscillators or a vector or a scalar field. This coupling
results in the damping motion of the particle which is of great interest in the
quantum theory of radiation and the theory of the natural line width [28],[29].
There are a number of models of this type for which the Heisenberg equations
of motion are exactly solvable. In this section we will study a model originally
discussed by Unruh and Zurek [30] and was later solved by Harris [31] using
Heisenberg’s equations of motion. Other problems such as the motion of a
harmonically bound radiating electron has the same mathematical structure
and can be solved in the same way [32].

The Harris model is given by the Lagrangian

Lq =
∫ L

L

L
(
Q, Q̇,

∂y

∂t
,
∂y

∂x

)
dx, (17.334)

where the Lagrangian density L is

L
(
Q, Q̇,

∂y

∂t
,
∂y

∂x

)
=

1
2

[(
∂y

∂t

)2

−
(
∂y

∂x

)2
]
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+
1
2
δ(x)

[
Q̇2 − ω2

0Q
2 − 2εQ

(
∂y

∂t

)]
.

(17.335)

In writing this Lagrangian we have assumed that a particle of unit mass is
coupled to a string of length 2L and that the string is fixed at the two ends, i.e.

y(−L, t) = y(L, t) = 0. (17.336)

Next we expand y(x, t) in the interval −L < x < L as a Fourier series

y(x, t) =
∑
k

1√
L
Qk(t) cos(kx), (17.337)

where to satisfy the boundary conditions k must take the values

k =
(
n+

1
2

)
π

L
, n = 0, 1, 2 · · · . (17.338)

Terms involving sin(kx) do not couple to the motion of the of the oscillator and
therefore are not included in the sum. By substituting for y(x, t) from (17.337)
in (17.335) and (17.334) we find the Lagrangian to be

Lq =
1
2

(
Q̇2 − ω2

0Q
2
)

+
1
2

∑
k

(
q̇2
k − k2q2

k

)
− ε√

L

∑
k

q̇kQ. (17.339)

From this Lagrangian we find the Hamiltonian for this coupled system

H =
1
2
(
P 2 + ω2

0Q
2
)

+
1
2

∑
k

[(
pk +

εQ√
L

)2

+ k2q2
k

]
, (17.340)

where P, Q, pk and qk are operators satisfying the canonical commutation
relations

[Q, P ] = [qk, pk] = ih̄. (17.341)

From these relations with the help of the Heisenberg equation of motion

ih̄Q̇ = [Q, H], ih̄Ṗ = [P, H], (17.342)

ih̄q̇k = [qk, H], ih̄q̇k = [qk, H], (17.343)

we find the operator differential equations for qk and Q:

Q̈+ ω2
0Q = − ε√

L

∑
k

q̇k, (17.344)

and
q̈k + k2qk =

ε√
L
Q̇. (17.345)
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These coupled equations are linear in the operators Q and qk and can be solved
analytically. The solution of Eq. (17.343) with the initial conditions qk(0) and
pk(0) is given by

qk(t) =
ε√
L

∫ t

0

cos [k (t− t′)]Q (t′) dt′ +
(
qk(0) cos(kt) + pk(0)

sin(kt)
k

)
.

(17.346)
Summing (17.346) over all k s and noting that

1
L

∑
k

cos [k (t− t′)] = δ (t− t′) , (17.347)

we obtain

ε√
L

∑
k

qk(t) = λQ(t) +
ε√
L

∑
k

(
qk(0) cos(kt) + pk(0)

sin(kt)
k

)
, (17.348)

where λ = 1
2ε

2. Next we try to eliminate all qk s from the equation (17.344) and
for this we differentiate (17.348) and we substitute for

∑
k q̇k(t). In this way we

find

Q̈+ λQ̇(t) + ω2
0Q =

ε√
L

∑
k

[qk(0)k sin(kt)− pk(0) cos(kt)] . (17.349)

As the commutation relation

[qk(0), pk(0)] = ih̄, (17.350)

shows we cannot set the right-hand side of (17.349) equal to zero, therefore
(17.349) will be an inhomogeneous differential equation for Q(t). Let us write
the general solution of the operator equation (17.349) as

Q(t) = Q(0)f1(t)+P (0)f2(t)+
ε√
L

∑
k

[qk(0)f3(k, t)− pk(0)f4(k, t)] , (17.351)

and then the equation for the momentum operator P (t) can be obtained by
differentiating Q(t);

P (t) = Q̇(t). (17.352)

The time-dependent functions f1(t), f2(t), f3(k, t) and f4(k, t) will be deter-
mined later.

If we assume that at t = 0 all of the oscillators qk are in the ground state,
then we can find the average of Q(t) and P (t) over the ground state of the scalar
field. If |0〉 denotes this ground state we have

〈0|qk(0)|0〉 = 〈0|pk|0〉 = 0, (17.353)

then by averaging over the state |0〉 we find

d

dt
〈0|P (t)|0〉+ λ〈0|P (t)|0〉+ ω2

0〈0|Q(t)|0〉 = 0, (17.354)
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and
d

dt
〈0|Q(t)|0〉 = 〈0|P (t)|0〉. (17.355)

From Eq. (17.351) it follows that

〈0|Q(t)|0〉 = 〈0|Q(0)|0〉f1(t) + 〈0|P (0)|0〉f2(t), (17.356)

and by substituting this in Eqs. (17.354) and (17.355) we find that both f1(t)
and f2(t) are solutions of the differential equation

f̈i + λḟi + ω2
0fi = 0, i = 1, 2, (17.357)

but with the boundary conditions

f1(0) = 1, ḟ1(0) = 0, (17.358)

and
f2(0) = 0, ḟ2(0) = 1. (17.359)

For small coupling λ < ω0 the solution of (17.357) with the boundary conditions
(17.358) and (17.359) are damped sinusoidal motions:

f1(t) = e−
λt
2

[
cos(ωt) +

λ

2ω
sin(ωt)

]
, (17.360)

and
f2(t) =

1
ω
e−

λt
2 sin(ωt), (17.361)

with the shifted frequency ω;

ω =
(
ω2

0 −
λ2

4

) 1
2

. (17.362)

The other two functions f3(k, t) and f4(k, t) can be determined by substituting
(17.351) in (17.349) and matching the coefficients of qk(0) and pk(0) on the two
sides. In this way we find that these two functions are the special solutions of
the inhomogeneous differential equations

f̈3(k, t) + λḟ3(k, t) + ω2
0f3(k, t) = k sin(kt), (17.363)

and
f̈4(k, t) + λḟ4(k, t) + ω2

0f4(k, t) = cos(kt). (17.364)

The solutions of these equations are given by

f3(k, t) =
k2es+t

(s+ − s−)(s2
+ + k2)

+
ikeikt

2(k + is+)(k + is−)

+
k2es−t

(s− − s+)(s2
− + k2)

− ike−ikt

2(k − is−)(k − is+)
, (17.365)
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and

f4(k, t) =
s+e

s+t

(s+ − s−)(s2
+ + k2)

+
eikt

2(k + is+)(k + is−)

+
s−e

s−t

(s− − s+)(s2
− + k2)

+
e−ikt

2(k − is−)(k − is+)
, (17.366)

where s± = λ
2 ± iω are the roots of the quadratic equations

s2 + λs+ ω2
0 = 0. (17.367)

From Eqs. (17.355) and (17.356) we can determine the commutator of the
averages of Q(t) and P (t);

[〈0|Q(t)|0〉, 〈0|P (t)|0〉] = [〈0|Q(0)|0〉, 〈0|P (0)|0〉]

×
(
f1(t)ḟ2(t)− ḟ1(t)f2(t)

)
= [〈0|Q(0)|0〉, 〈0|P (0)|0〉] e−λt.

(17.368)

This relation shows that when the motion of the particle is averaged over qk(0)
and pk(0), the commutator [〈0|Q(t)|0〉, 〈0|P (t)|0〉] decreases exponentially in
time. The reason for the time-dependence of the commutation relation (17.365)
is the fact that we have not included the contribution of the commutator
[qk(0), pk(0)] = ih̄ in our calculation. If we calculate [Q(t), P (t)] using the
exact relations (17.351) and (17.352) we obtain

[〈0|Q(t)|0〉, 〈0|P (t)|0〉] = [〈0|Q(0)|0〉, 〈0|P (0)|0〉]

×
{
f1(t)ḟ2(t)− ḟ1(t)f2(t)

}
− ε2

L

∑
k

[qk(0), pk(0)]

×
{
f3(k, t)ḟ4(k, t)− ḟ3(k, t)f4(k, t)

}
, (17.369)

Using f3(k, t) and f4(k, t) we calculate the coefficient of [qk(0), pk(0)] in (17.369)

ε2

L

∑
k

{
f3(k, t)ḟ4(k, t)− ḟ3(k, t)f4(k, t)

}
= −

(
1− e−λt

)
. (17.370)

By substituting (17.370) in (17.369) we find

[Q(t), P (t)] = ih̄. (17.371)

i.e. the exact commutator remains a constant of motion.
Next let us calculate the expectation values of Q2(t) and P 2(t) over the

ground state of the string. These are given by〈
0
∣∣Q2(t)

∣∣ 0〉 =
〈
0
∣∣Q2(0)

∣∣ 0〉 f2
1 (t) +

〈
0
∣∣P 2(0)

∣∣ 0〉 f2
2 (t)

+ 〈0|Q(0)P (0) + P (0)Q(0)|0〉f1(t)f2(t) +
λ

2π
g1(t),

(17.372)



Damped Harmonic Oscillator 583

〈
0
∣∣P 2(t)

∣∣ 0〉 =
〈
0
∣∣Q2(0)

∣∣ 0〉 ḟ2
1 (t) +

〈
0
∣∣P 2(0)

∣∣ 0〉 ḟ2
2 (t)

+ 〈0|Q(0)P (0) + P (0)Q(0)|0〉ḟ1(t)ḟ2(t) +
λ

2π
g2(t),

(17.373)

and

〈0|Q(t)P (t) + P (t)Q(t)|0〉 =
d

dt

〈
0
∣∣Q2(t)

∣∣〉 . (17.374)

where

g1(t) = h̄

∫ ∞
0

k

[
1
k2
f2

3 (k, t) + f2
4 (k, t)

]
dk, (17.375)

and

g2(t) = h̄

∫ ∞
0

k

[
1
k2
ḟ2

3 (k, t) + ḟ2
4 (k, t)

]
dk. (17.376)

The last two equations are found by taking the limit of L→∞ and in this limit
replace the summation over k by integration, i.e.∑

k

→ L

2

∫ ∞
−∞

dk. (17.377)

As we can see from Eq. (17.376) g2(t) is logarithmically divergent and
thus

〈
0
∣∣P 2
∣∣ 0〉 is infinite, and this is a defect of the model. We can remedy

this defect by making ε a function of k in such a way that the high frequency
oscillators decouple from the motion of the particle. This has been done in van
Kampen’s model [32] and in Ullersma’s model [33]. For a detailed discussion of
this and other models the reader is referred to the book “Classical and Quantum
Dissipative Systems” and references therein [34].

The Schrödinger–Langevin Equation — We have found the equations
of motion for damped harmonic oscillator, (17.354),(17.355), in the Heisenberg
picture. What is the form of the Schrödinger equation for this damped motion?
To find the answer to this question we first simplify the notation and define the
operators P̄ and Q̄ by

P̄ (t) = 〈0|P (t)|0〉, and Q̄(t) = 〈0|O(t)|0〉. (17.378)

Then the operator equations (17.354),(17.355) become

d

dt
P̄ (t) + λP̄ (t) + ω2

0Q̄(t) = 0, (17.379)

and
d

dt
Q̄(t) = P̄ (t). (17.380)

These equations are given in the Heisenberg picture where the operators are
time-dependent. To find the corresponding Schrödinger equation we will use
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the well-known result of the connection between the Heisenberg picture and the
Schrödinger picture, (see Eq. (4.12)); and

〈P̄ 〉 = 〈ψ(Q̄, t)|P̄ |ψ(Q̄, t)〉, (17.381)

where ψ(Q̄, t) is the time-dependent wave function and P̄ is the momentum
operator. Noting that in the Schrödinger picture P̄ = −ih̄ ∂

∂Q̄
, we have

〈P̄ 〉 = 〈ψ(Q̄, t)|P̄ψ(Q̄, t)〉 = 〈P̄ψ(Q̄, t)|ψ(Q̄, t)〉

=
h̄

2i

∫ [
∂ψ(Q̄, t)
∂Q̄

ψ∗(Q̄, t)− ∂ψ∗(Q̄, t)
∂Q̄

ψ(Q̄, t)
]
dQ̄. (17.382)

Now we ask wether it is possible to write 〈P̄ 〉 which is present in the Heisen-
berg equation, as a potential term in the Schrödinger equation. Assuming the
existence of such a potential term VL(Q̄, t) we can write the time-dependent
Schrödinger equation as

ih̄
∂ψ

∂t
= − h̄2

2m
∂2ψ

∂Q̄2
+

1
2
Q̄2ψ + VL(Q̄, t)ψ = 0. (17.383)

Now if we differentiate (17.382) with respect to time we have

d
〈
P̄ (t)

〉
dt

=
〈
∂ψ

∂t
P̄ψ

〉
+
〈
ψP̄

∂ψ

∂t

〉
. (17.384)

By substituting from Eq. (17.383) in (17.384) we obtain

d
〈
P̄ (t)

〉
dt

= −ω2
0

〈
Q̄(t)

〉
−
〈
∂VL(Q̄, t)

∂Q̄

〉
. (17.385)

Comparing Eq. (17.385) with the expectation value of the operator equation
(17.379) we find that 〈

∂VL(Q̄, t)
∂Q̄

〉
= λ〈P̄ (t)〉. (17.386)

Writing this solution in the expanded form and substituting for 〈P̄ 〉 from (17.382)
we get ∫

ψ∗(Q̄, t)
∂VL(Q̄, t)

∂Q̄
ψ(Q̄, t)dQ̄

=
λh̄

2i

∫ [
∂ψ(Q̄, t)
∂Q̄

ψ∗(Q̄, t)− ∂ψ∗(Q̄, t)
∂Q̄

ψ(Q̄, t)
]
dQ̄. (17.387)

This equation must be true for any acceptable wave function ψ(Q̄, t), therefore
we conclude that VL(Q̄, t) is of the form

VL(Q̄, t) =
λh̄

2i
ln
[
ψ(Q̄, t)
ψ∗(Q̄, t)

]
+W (t), (17.388)
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where W (t) is a function of time. This function can be determined by requiring
that the expectation value of the energy

〈
ψ(Q̄, t) |E(t)|ψ(Q̄, t)

〉
be equal to the

sum of the expectation values of the kinetic energy, the potential energy 1
2ω

2
0Q̄

2,
and the potential VL(Q̄, t) [35]. The essential feature of this equation is its non-
linearity. Thus while the whole system satisfies the linear Schrödinger equation,
for a subsystem, i.e. the central oscillator, the wave equation is nonlinear. This
is an important point in the discussion of decoherence in the measurement pro-
cess.

Removal of High Frequency Divergence for Many-Body
Problems — In most of the solvable models the Hamiltonian is a quadratic
function of pk s and qk s as in the case of Harris’s model or Ullersma’s model
[34]. Any one of these Hamiltonians can be diagonalized and cast in the form
of the Hamiltonian of an infinitely many non-interacting harmonic oscillators.
This is achieved by a series of canonical transformations [32]. The final result
is of the general form

H =
1
2

∞∑
k=1

(
p2
k + ω2

kq
2
k

)
, (17.389)

where ωk is determined by the natural frequencies of the oscillators in the system
and the coupling between them. If ωk → 0 as k → ∞ then the energy of the
system will be finite. Otherwise the energy eigenvalues will be infinite. An
example of the latter case is provided by considering the zero-point energy of
the wave in a string which is given by

E(0) =
∞∑
k=1

1
2
h̄ωk. (17.390)

If the string is of length L and is fixed at both ends then ωk = kπc
L and therefore

E(0) =
∞∑
k=1

(
h̄πc

2L

)
k →∞. (17.391)

In most of the problems this zero-point energy is omitted since the energy dif-
ferences are observables of interest.

We noted earlier that at least for the harmonic oscillator the commutation
relation cannot be uniquely determined from the equations of motion and the
Hamiltonian. One can ask whether this lack of uniqueness of the commutator
may be used to eliminate some of the divergencies occurring in the quantum
theory of systems with infinite degrees of freedom. This question has been stud-
ied by Schweber for a simple quantized scalar field theory [36].

Let us write the general form of the commutation relation (5.34) with h̄
appearing explicitly;

([pk, qk] + ih̄)2 = −h̄2w2
k. (17.392)

In this commutator wk is given by

w
(n)
k = (−1)n

[(
2E(0)

k (ωk)
h̄ωk

)
− 1

]
, (17.393)
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where E
(0)
k (ωk) is the zero point energy of the k-th oscillator. We can choose

E
(0)
k (ωk) as we like, as long as it is greater than zero and less than 1

2 h̄ωk. Now
the energy eigenvalues of the Hamiltonian (17.389) are given by

∞∑
k=1

E
(n)
k =

∞∑
k=1

(
nh̄ωk + E

(0)
k (ωk)

)
. (17.394)

The eigenvalues for finite number of excitations remain finite provided that for

a given oscillator E
(0)
k (ωk) goes to zero as ωk →∞. For instance we can choose

E
(0)
k (ωk) to be

E
(0)
k (ωk) =

1

2
h̄Ωk exp

(
−ω

2
k

Ω2
k

)
, (17.395)

where Ωk is a constant with the dimension of angular frequency. For this par-

ticular choice of E
(0)
k (ωk) the result of calculation of the matrix elements of qk,

can be found analytically, e.g.

〈0k|qk|1k〉 = 〈1k|qk|0k〉 =

√
E

(0)
k (ωk)

ω2
k

=

√
h̄Ωk
2ω2

k

exp

(
− ω2

k

2Ω2
k

)
. (17.396)

This result shows a cut-off for high frequencies and hence the removal of some
of the divergent quantities from the problem.
The problem with this idea is that the relativistic invariance prevents such a
cut-off in quantized field theory [36].
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Chapter 18

Quantum Theory of Free
Electromagnetic Field

The free electromagnetic field can be described by the electric and magnetic
fields E and B satisfying Maxwell’s equations (16.24)–(16.26) but with no charge
or current present ρ = 0 and J = 0. Alternatively we can write these fields in
terms of the electromagnetic potentials A and φ, related to E and B by

E = −1
c

∂A
∂t
−∇φ, (18.1)

and
B = ∇∧A. (18.2)

Since there are no sources present, we choose the Coulomb gauge for φ and A;

φ = 0, ∇ ·A = 0. (18.3)

From Eqs. (16.24)–(16.26) and (18.1)–(18.3) we find that A is the solution of
the wave equation

∇2A− 1
c2
∂2A
∂t2

= 0. (18.4)

We can write the classical Hamiltonian for this field in terms of E and B or in
terms of A:

H =
1

8π

∫ (
E2 + B2

)
d3r =

1
8π

∫ {
1
c2

∣∣∣∣∂A
∂t

∣∣∣∣2 + |∇ ∧A|2
}
d3r. (18.5)

To quantize this Hamiltonian we want to express the field in terms of a set of
discrete variables. To this end we assume a large cubical box of volume L3 and
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impose periodic boundary conditions on the magnetic potential A

A(0, y, z, t) = A(L, y, z, t), (18.6)

A(x, 0, z, t) = A(x, L, z, t), (18.7)

A(x, y, 0, t) = A(x, y, L, t), (18.8)

Next we write A as a Fourier series;

A(r, t) =
∑

k,kz>0

2∑
σ=1

(
2πh̄c2

L3ωk

) 1
2

uk,σ

{
akσ(t)eik·r + a∗kσ(t)e−ik·r

}
. (18.9)

In this expression the factor
(

2πh̄c2

L3ωk

) 1
2

is the normalization coefficient and uk,1

and uk,2 are two orthogonal vectors denoting the polarization of A. Now in
order to satisfy Eq. (18.3) we need to impose the condition that

uk,1 · k = uk,2 · k = 0. (18.10)

In addition to satisfy the boundary conditions (18.6)–(18.8) the components of
the vector k must be of the form

(nx, ny, nz)
2π
L
, (18.11)

where nx, ny and nz are integers. We note that A is a real vector and since
both eik·r and e−ik·r are included in each term of (18.9) we have restricted the
summation over k to the one-half of the k space, and therefore the condition
kz > 0. If we substitute (18.9) in (18.4) we find that the Fourier components
ak,σ(t) satisfy the equations of motion

d2ak,σ(t)
d t2

+ ω2
kak,σ(t) = 0, (18.12)

where ωk = ck is the angular frequency. We can write the general solution of
(18.12) in terms of complex exponentials

ak,σ(t) = a
(1)
k,σ(0)e−iωkt + a

(2)
k,σ(0)eiωkt. (18.13)

To get rid of the condition kz > 0 we extend the definition of ak,σ(t) to include
positive as well as negative kz s ak,σ(0) = a

(1)
k,σ(0) for kz > 0

ak,σ(0) = a
(1)
−k,σ(0) for kz < 0

, (18.14)

and write A(r, t) as a sum over all k s

A(r, t) =
∑
k,σ

(
2πh̄c2

L3ωk

) 1
2

uk,σ

{
akσ(t)eik·r + a∗kσ(t)e−ik·r

}
, (18.15)
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where
ak,σ(t) = ak,σ(0)e−iωkt, (18.16)

Next we substitute the last expression that we have found for A(r, t) in the
Hamiltonian (18.5) and carry out the integration over the volume using the
integral ∫

L3
ei(k−k′)·rd3r = L3δk,k′ , (18.17)

and we get a simple form for the Hamiltonian operator

H =
1
2

∑
k,σ

h̄ωk
(
ak,σa

∗
k,σ + a∗k,σak,σ

)
. (18.18)

In obtaining (18.18) we have used the orthogonality condition of ukσ;

ukσ · uk,σ′ = δσ,σ′ . (18.19)

The Energy Associated with the Electromagnetic Field — The
quantum mechanical Hamiltonian correspondig to (18.18) is found by taking
ak,σ to be the annihilation operator for a photon of momentum h̄k and frequency
ωk. Its adjoint which is a†k,σ replaces a∗k,σ in (18.18). These two operators satisfy
the canonical commutation relations[

ak,σ, a
†
k′,σ′

]
= δk,k′δσ,σ′ , (18.20)

[ak,σ, ak′,σ′ ] =
[
a†k,σ, a

†
k′,σ′

]
= 0. (18.21)

Rearranging the second term in (18.18) using the commutation relation we find
the quantized Hamiltonian for the free electromagnetic field to be

H =
∑
k,σ

h̄ωk

(
a†k,σak,σ +

1
2

)
. (18.22)

The Momentum of Electromagnetic Field — The momentum of the
electromagnetic field can be found from the classical expression for the Poynting
vector S [1]

P =
∫
L3

E ∧B
4πc

d3r =
1
c2

S. (18.23)

By substituting for E and B in terms of the magnetic potential A, as is given
in Eqs. (18.1) and (18.2) and by integrating over the volume L3 we obtain

P =
∑
k,σ

h̄ka†k,σak,σ. (18.24)

We can interpret the results of Eqs. (18.22) and (18.24) in the following way:
In the representation where a†k,σak is diagonal, i.e.

a†k,σak,σ|nk,σ〉 = nk,σ|nk,σ〉, (18.25)
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the electromagnetic field consists of nk,σ photons each with the energy h̄ωk,
momentum h̄k and polarization σ. The operators a†k,σ and ak,σ are the creation
and annihilation operators for photons with these properties.

In quantum field theory the equations of motion are in the form of wave
equations, and they are obtained by the variation of the Hamiltonian density
operator. From these two, i.e. the wave equation and the Hamiltonian den-
sity, we can derive the commutation relation between the wave field and the
corresponding momentum density. This can be done in a way similar to the
Wigner’s derivation of the commutator for the harmonic oscillator. Here again
we observe that the commutator cannot be obtained uniquely. But if we impose
the requirement of the Lorentz invariance, then the resulting commutator found
in this way will depend on a parameter, and by varying this parameter nothing
interesting will result [2].

Uncertainty Principle for the Quantized Electromagnetic Field
— In the classical electromagnetic theory the momentum density of the field is
given by

dp
dV

=
1

4πc
(E ∧B), (18.26)

For a small volume δV , the x component of momentum is [1]

∆px
δV
∼ 1

4πc
(E ∧B)x =

1
4πc

(EyBz − EzBy). (18.27)

Now assuming that the uncertainty in ∆px will be of the same order as the
uncertainties in the values of the field components, we have

∆px∆x ∼ δV

4πc
∆Ey∆Bz∆x ≥

h̄

2
. (18.28)

Writing Eq. (18.28) as

∆Ey∆Bz ≥ 2πch̄
(

1
∆xδV

)
. (18.29)

we have the products of the uncertainties in Ey and Bz fields or Ez and By. This
result and similar results for ∆Ex∆By and ∆Ez∆Bx indicate that by trying to
measure E and B fields on increasingly smaller distances, the values of these
fields become increasingly uncertain.

Now the energy per unit volume of the electromagnetic field is equal to
1

8π

(
E2 + B2

)
, therefore the energy contained in this field fluctuates widely at

short distances [3].

18.1 Coherent State of the Radiation Field

Coherent state of a field describes a quantized oscillating field which is closest to
a classical wave. Since the classical electromagnetic fields E and H can be char-
acterized by their amplitudes as well as their phases, we need to find quantum
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states where the expectation values of these field exhibit these characteristics
[4],[5]. From Eq. (18.9) for A we can determine E for the radiation field where
the scalar potential φ is zero. For simplicity we consider a single mode for the
field

E = −1
c

∂A
∂t

= −i
(

2πh̄ω
L3

) 1
2

u
[
aeik·r − a†e−ik·r

]
, (18.30)

where L3 is the volume of the space under consideration. Here we have dropped
the subscripts k and σ from u, and a and a† stand for a(t) and a†(t). The
summation over these indices can easily be reintroduced. Supposing that there
are n photons in the field, then from 〈n|a|n〉 =

〈
n
∣∣a†∣∣n〉 = 0 it follows that

〈n|E|n〉 = 0. (18.31)

But in the photon number description |n〉, the expectation value of the E2 is
not zero 〈

n
∣∣E2
∣∣n〉 =

4πh̄ω
L3

(
n+

1
2

)
. (18.32)

Equation (18.31) shows that when n photons are present in the field and they
have random phases, then the average of E over the field is zero.

The “uncertainties” of the electric and magnetic fields for a state in which
n photons are present can be found from the expectation values of E, E2, H,
and H2. These are

∆E =
{〈
n
∣∣E2
∣∣n〉− 〈n|E|n〉2} 1

2

=
(

4πh̄ω
L3

) 1
2

√(
n+

1
2

)
, (18.33)

∆H =
{〈
n
∣∣H2

∣∣n〉− 〈n|H|n〉2} 1
2

=
(
h̄ωc2

4πL3

) 1
2

√(
n+

1
2

)
, (18.34)

and

∆E∆H =
h̄ωc

L3

(
n+

1
2

)
. (18.35)

Now to introduce the coherent states we first need to define the phase
operator. The phase operator, ϕ̂, is given by [6]–[8]

eiϕ̂ =
(
N̂ + 1

)− 1
2
a, (18.36)

and

e−iϕ̂ = a†
(
N̂ + 1

)− 1
2
, (18.37)
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where N̂ is the number operator N̂ |n〉 = n|n〉. From the relation aa† = N̂ + 1
it follows that

eiϕ̂e−iϕ̂ = 1. (18.38)

It is important to note that the order of operations in Eqs. (18.36) and (18.37)
are important, since e.g. eiϕ̂ as defined by (18.36) is not a unitary operator, but
it is “one-sided” unitarity [8]. To show this result let us calculate eiϕ̂|n〉 and
e−iϕ̂|n〉,

eiϕ̂|n〉 =
(
N̂ + 1

)− 1
2
a|n〉 =

(
N̂ + 1

)− 1
2 √

n |n− 1〉 = |n− 1〉, (18.39)

and

e−iϕ̂|n〉 = a†
(
N̂ + 1

)− 1
2 |n〉 = a† (n+ 1)−

1
2 |n〉 = |n+ 1〉. (18.40)

Thus the only nonvanishing matrix elements of eiϕ̂ and e−iϕ̂ are〈
n− 1

∣∣∣eiϕ̂∣∣∣n〉 = 1, (18.41)〈
n+ 1

∣∣∣e−iϕ̂∣∣∣n〉 = 1, (18.42)

and from these it follows that [8]〈
k
∣∣∣eiϕ̂e−iϕ̂∣∣∣n〉 = δkn, (18.43)

and 〈
k
∣∣∣e−iϕ̂eiϕ̂∣∣∣n〉 = δkn − δk0δn0. (18.44)

As we have seen in Sec. 4.4 it is possible to introduce two Hermitian operators
sin ϕ̂ and cos ϕ̂ by

cos ϕ̂ =
1
2

[
eiϕ̂ + e−iϕ̂

]
, (18.45)

and
sin ϕ̂ =

1
2i

[
eiϕ̂ − e−iϕ̂

]
, (18.46)

and these have nonzero matrix elements

〈n− 1 |cos ϕ̂|n〉 = 〈n |cos ϕ̂|n− 1〉 =
1
2
, (18.47)

and
〈n− 1 |sin ϕ̂|n〉 = −〈n |sin ϕ̂|n− 1〉 =

1
2i
. (18.48)

Again for cos ϕ̂ and sin ϕ̂ we find the uncertainties

∆ cos ϕ̂ = ∆ sin ϕ̂ =
1√
2
, (18.49)
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∆ cos ϕ̂ ∆ sin ϕ̂ =
1
2
. (18.50)

Next we define the phase state |ϕ〉 by [9],[10]

|ϕ〉 = lim
s→∞

1√
s+ 1

s∑
n=0

einϕ|n〉. (18.51)

From the orthonormal properties of the number state |n〉 it is easy to show that
|φ〉 is normalized

〈ϕ|ϕ〉 = 1. (18.52)

Let us now consider the state cos ϕ̂|ϕ〉

cos ϕ̂|ϕ〉 =
1
2

lim
s→∞

1√
s+ 1

{
s∑

n=0

einϕeiϕ̂|n〉+
s∑

n=0

einϕe−iϕ̂|n〉

}

=
1
2

lim
s→∞

1√
s+ 1

{
s∑

n=0

einϕ|n− 1〉+
s∑

n=0

einϕ|n+ 1〉

}
,

(18.53)

where we have used (18.39) and (18.40) to get the last term. We can simplify
(18.53) by writing it as

cos ϕ̂|ϕ〉 =
1
2

lim
s→∞

1√
s+ 1

{
eiϕ

s−1∑
k=0

eikϕ|k〉+ e−iϕ
s+1∑
k=1

eikϕ|k〉

}

= cosϕ|ϕ〉+
1
2

lim
s→∞

1√
s+ 1

{
eisϕ|s+ 1〉 − ei(s+1)ϕ|s〉 − e−iϕ|0〉

}
,

(18.54)

From this relation we conclude that |ϕ〉 is not an exact eigenfunction of cos ϕ̂,
but asymptotically may be regarded as its eigenfunction with the eigenvalue
cosϕ. The diagonal elements of cos ϕ̂ and sin ϕ̂ are given by

〈ϕ |cos ϕ̂|ϕ〉 = cosϕ
[
1− lim

s→∞

1
s+ 1

]
→ cosϕ, (18.55)

and

〈ϕ |sin ϕ̂|ϕ〉 = sinϕ
[
1− lim

s→∞

1
s+ 1

]
→ sinϕ, (18.56)

respectively.
Now using Eq. (18.51) let us calculate the probability of finding n photons

in a state of well-defined phase |ϕ〉:

Pn = |〈n|ϕ〉|2 = lim
s→∞

1
s+ 1

. (18.57)
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This result shows there is an equal but very small probability of any number of
photons to be in the field, and that the magnitudes of E and H are completely
undetermined when the phase is exactly known.

Coherent States of Photons — In quantum theory the coherent state
is defined as a state whose dynamics is as close to the dynamics of the classical
motion as possible. As we will see below, the coherent state of a harmonic
oscillator can be described by the motion of a Gaussian wave packet where the
center moves exactly as the classical harmonic oscillator.

The eigenstate of the annihilation operator for a photon having a wave
number k and polarization σ is defined as the coherent state |αk,σ〉 for the
quantized electromagnetic field,

ak,σ|αk,σ〉 = αk,σ|αk,σ〉. (18.58)

Since ak,σ is not a Hermitian operator αk,σ, in general, is a complex number.
Again we will consider a single mode of the field and we will omit the subscripts
k and σ. From the definition of the cohrrent state it follows that

〈n|a|α〉 = α〈n|α〉, (18.59)

or
〈n|α〉 =

α√
n
〈n− 1|α〉 =

αn√
n!
〈0|α〉. (18.60)

Introducing the complete set of states

∞∑
n=0

|n〉〈n| = 1, (18.61)

where 1 is the unit operator, we have

|α〉 =
∞∑
n=0

|n〉〈n|α〉 = 〈0|α〉
∞∑
n=0

αn√
n!
|n〉. (18.62)

Now we normalize the eigenket |α〉 using (18.62)

〈α|α〉 = 〈α|0〉〈0|α〉
∞∑
n=0

α∗ nαn

n!

= 〈α|0〉〈0|α〉 exp
(
|α|2

)
= 1. (18.63)

Thus we have

〈α|0〉 = 〈0|α〉 = exp
(
−1

2
|α|2

)
. (18.64)

By substituting (18.64) in (18.62) we find the normalized coherent state |α〉 to
be

|α〉 = exp
(
−1

2
|α|2

) ∞∑
n=0

αn√
n!
|n〉. (18.65)
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From (18.65) we find a useful expression which is the scalar product of two
coherent states 〈α′| and |α〉;

〈α′|α〉 = exp
(
−1

2
|α|2 − 1

2
|α′|
) ∞∑
n=0

∞∑
j=0

αnα′ j√
n!
√
j!
〈n|j〉

= exp
(
−1

2
|α− α′|2

)
. (18.66)

We can write Eq. (18.65) as

|α〉 = exp
(
−1

2
|α|2

)
eαa

†
|0〉, (18.67)

where we have used the fact that (see Eq. (16.150))

|n〉 =

(
a†
)n

√
n!
|0〉. (18.68)

From the expression of |α〉 in terms of |n〉, Eq. (18.65), we can calculate
the wave packet associated with the motion of a simple harmonic oscillator. The
scalar product 〈x|n〉 = ψn(x) is the wave function in the coordinate space when
the quantum number is n, which is given by Eq. (8.92). Thus the wave packet
associated with the time-dependent coherent state is

〈x|α(t)〉 = ψα(x, t) =
(
β

π

) 1
4

exp
(
−1

2
|α(t)|2

) ∞∑
n=0

× exp
(
−1

2
β2x2

)
αn(t)√

2n
1
n!
Hn(βx). (18.69)

We can simplify this expression by noting that: (a)

∞∑
n=0

ξk

k!
Hk(βx) = exp

[
−ξ2 + 2βξx

]
. (18.70)

(b) That the time-dependence of α(t) is the same as a(t), Eq. (8.96),

α(t) =

√
β

2
Ae−iωt, β =

mω

h̄
, (18.71)

where A is the amplitude of the oscillation. We have also introduced the factor√
β
2 to make α(t) a dimensionless function of time and the resulting wave finction

〈x|α〉 normalized. Now if we substitute (18.70) and (18.71) in (18.69), and
calculate the square of |〈x|α(t)〉|, we get a time-dependent Gaussian wave packet
whose center moves according to laws of classical mechanics;

|ψα(x, t)|2 = 〈x|α(t)〉|2 =
β√
π

exp
[
−β2(x−A cosωt)2

]
. (18.72)
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Returning to our coherent state formulation of the photon field, from Eq.
(18.58) it follows that for a single mode of the field

〈α|a|α〉 = α, (18.73)

and also 〈
α
∣∣a†∣∣α〉 = α∗. (18.74)

Similarly straightforward calculations show that〈
α
∣∣∣N̂ ∣∣∣α〉 =

〈
α
∣∣a†a∣∣α〉 = |α|2, (18.75)

〈
α
∣∣∣N̂ ∣∣∣α〉+ 1 =

〈
α
∣∣aa†∣∣α〉 = |α|2 + 1, (18.76)〈

α
∣∣∣N̂2

∣∣∣α〉 =
〈
α
∣∣a†aa†a∣∣α〉 = |α|4 + |α|2, (18.77)〈

α
∣∣a2
∣∣α〉 = α2, (18.78)

and 〈
α
∣∣a† 2

∣∣α〉 = α∗ 2. (18.79)

To find the uncertainty in the number of photons in the state |α〉, from Eqs.
(18.75)–(18.77) we calculate ∆N ;

∆N =
〈
α

∣∣∣∣(N̂ − 〈α ∣∣∣N̂ ∣∣∣α〉)2
∣∣∣∣α〉 1

2

=
(〈

α
∣∣∣N̂2

∣∣∣α〉− 〈α ∣∣∣N̂ ∣∣∣α〉2
) 1

2

=
(
|α|4 + |α|2 − |α|4

) 1
2 = |α| =

〈
α
∣∣∣N̂ ∣∣∣α〉 1

2
. (18.80)

The relative uncertainty calculated from (18.80) is inversely proportional to |α|;

∆N〈
α
∣∣∣N̂ ∣∣∣α〉 =

1〈
α
∣∣∣N̂ ∣∣∣α〉 1

2
=

1
|α|

. (18.81)

This uncertainty becomes very small when there are a large number of photons
in the same mode of the field. Now in the limit of large number of photons the
expectation value of E (or H) behaves like a classical field.

We note that α is a complex number and can be written as

α = |α|eiθ. (18.82)

Thus using 〈α|a|α〉 and 〈α|a†|α〉 as given by Eqs. (18.73) and (18.74) and
calculating the expectation value of E, Eq. (18.30), we find

〈α|E|α〉 = −2

√
2πh̄ω
L3

u |α| sin(k · r− ωt+ θ), (18.83)
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Figure 18.1: The electric field of a single-mode coherent state, Eq. (18.83), with
〈
α
∣∣N̂∣∣α〉 =

25 shown here as a solid line. The uncertainty in the electric field is a band with constant
width, ∆E, Eq. (18.85) shown by dashed lines.

which is very similar to its classical counterpart.
We can also calculate the probability of finding n photons in a given

coherent state |α〉. This is obtained from the amplitude 〈n|〉;

P = |〈n|α〉|2 =
|α|2n

n!
e−|α|

2
, (18.84)

Finally the uncertainty in the electric field when the field is given in the
coherent state representation can be found from

∆E =
[〈
α
∣∣E2
∣∣α〉− 〈α|E|α〉2] 1

2 =
(

2πh̄ω
L3

) 1
2

, (18.85)

As expected ∆E in the classical limit of h̄→ 0, goes to zero. Now ∆E is indepen-

dent of
〈
α
∣∣∣N̂ ∣∣∣α〉, while 〈α|E|α〉, Eq. (18.83), depends on |α| =

〈
α
∣∣∣N̂ ∣∣∣α〉−1

,
therefore as the number of photons increases the uncertainty in 〈α|E|α〉 de-
creases and the electric (magnetic) field behaves more and more like a classical
wave (see Fig. 18.1).

18.2 Casimir Force

We begin this section by solving a simple problem of the zero-point energy
density of a one-dimensional wave (e.g. a longitudinal wave in an elastic rod).

A One-Dimensional Model Exhibiting the Casimir Force — Let
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us first consider a model which exhibits Casimir effect [11]. The characteristics
(angular) frequencies for a one-dimensional resonator of length L are

ωn(L) =
(cπ
L

)
n, n = 1, 2 · · · , (18.86)

where c is the velocity of light. The zero-point energy density which is

u(L) =
π

L

∞∑
n=1

h̄ωn, (18.87)

becomes infinite. However the difference between the zero-point energy densities
of a resonator of length L and a resonator of infinite length

∆u(L) = uL − lim
L′→∞

∆u (L′) , (18.88)

remains finite. To show this we use a cut-off factor exp
(
−αωn(L)

ω1(L)

)
and write

∆u(L) = πh̄ lim
α→0

[
1
L

∞∑
n=1

ωn(L)e−α
ωn(L)
ω1(L) − lim

L′→∞

1
L′

∞∑
n=1

ωn (L′) e
−αωn(L′)

ω1(L′)

]

=
πh̄c

2L2
lim
α→0

{ ∞∑
n=1

ne−αn −
∫ ∞

0

ne−αndn

}
. (18.89)

The quantity in the curley bracket can be written as an infinite series involving
Benoullis’s numbers Bj (see below)

∆u(L) = − πh̄

2L2
lim
α→0

 d

dα

∞∑
j=1

Bj
j!
αj−1


= −B2

8
2πh̄c
L2

= − π

24
h̄c

L2
, (18.90)

where in the last step the value of B2 = 1
6 has been used. Thus the presence of

the two boundaries at x = 0 and x = L changes the zero point energy of this
simple system by an amount

∆E = L∆u(L) = − π

24
h̄c

L
. (18.91)

In this case the force which is attractive and is directed inside the cavity is given
by

F = − d

dL
(∆E) = − πh̄c

24L2
. (18.92)
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18.3 Casimir Force Between Parallel
Conductors

The last term in the Hamiltonian (18.22) represents the zero point energy of
the field in vacuum and is a divergent quantity

H =
h̄

2

∑
k,σ

ωk →∞. (18.93)

While it can be argued that the absolute value of energy is of no significance, and
can be subtracted from the result, this argument is not always true. According
to Casimir the zero point energy exists and has observable effects [12],[13]. We
have already studied the quantization of the electromagnetic field in a cubical
box of volume L3. Now we want to see if there is a change in the energy if
we put a conducting plane at x = R, keeping R finite while letting L tend to
infinity. Let us denote the energy in the volume L3 by EL. When the conducting
plane is placed at x = R we have the energy ER for the volume between x = 0
and x = R and the energy EL−R for the volume limited to R ≤ x ≤ L. Each of
these zero point energies are divergent. As L→∞ we have

EL = 2
h̄

2

∑
k

ck → h̄c
L3

(2π)3

∫ ∫ ∫ √
k2
x + k2

y + k2
z dkxdkydkz, (18.94)

EL−R = 2
h̄

2
c
L2

(2π)3
(L−R)

∫ ∫ ∫ √
k2
x + k2

y + k2
z dkxdkydkz, (18.95)

and

ER = 2
h̄

2
c
L2

(2π)2

∞∑
n=−∞

∫ ∫ ∫ √(
2πn
R

)2

+ k2
y + k2

z dkydkz, (18.96)

where we have accounted for the two degrees of polarization by the factor 2 in
these equations and in the last relation we have kept R large but finite. While
each of these energies are infinite the difference

∆E = ER + EL−R − EL, (18.97)

is finite. We write this difference ∆E as

∆E =
h̄cL2

(2π)2

∫ ∫

×


∞∑

n=−∞

√(
2πn
R

)2

+ k2
y + k2

z −
R

2π

∫ ∞
−∞

√
k2
x + k2

y + k2
z dkx

 dkxdky.

(18.98)
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Next we write the integral over ky and kz in polar coordinates with

dkydkz = 2πk⊥dk⊥, (18.99)

and
k2
⊥ = k2

y + k2
z . (18.100)

With these changes we obtain

∆E
L2

=
h̄c

2π

∫ ∞
0

{
+∞∑
n=1

√
k2
⊥ +

n2π2

R2
−
∫ ∞

0

√
k2
⊥ + k2

x dkx

}
k⊥dk⊥. (18.101)

To simplify the result further we replace k⊥ by z = k⊥R
π and thus we find the

energy per unit area ∆E/L2 to be

∆E
L2

=
h̄c

2π

( π
R

)3
{

1
2
E(0) +

∞∑
n=1

E(n)−
∫ ∞

0

E(n) dn

}
, (18.102)

where
E(n) =

∫ ∞
0

√
z2 + n2 z dz. (18.103)

Since this integral is divergent we introduce a cut-off Λ to make it finite and at
the end of calculation we let Λ go to infinity. Thus we write

E(n,Λ) =
∫ Λ

0

√
z2 + n2 z dz =

1
3

[(
Λ2 + n2

) 3
2 − n3

]
. (18.104)

Now that we have a convergent sum and a convergent integral we can evaluate
the quantity given in the bracket in (18.102). We note that from trapezoidal
approximation∫ b

a

f(x) dx ≈ FN (a, b) = h

(
1
2
f(a) +

N−1∑
n=1

f(a+ nh) +
1
2

)
, (18.105)

where h = (b−a)
N , we have the Euler-Maclaurin formula∫ b

a

[f(x)− FN (a, b)] dx = −B2

2!
h2 [f ′(x)]ba −

B4

4!
h4 [f ′′′(x)]ba + · · · . (18.106)

Here Bn’s are Bernoulli’s numbers [14]

B0 = 1, B2 =
1
6
, B4 = − 1

30
· · · . (18.107)

Using this formula we calculate the terms in bracket Eq. (18.102)

1
2
E(0,Λ) +

+∞∑
n=1

E(n,Λ)−
∫ +∞

0

E(n,Λ) d n

= − 1
6 · 2!

[
dE(n,Λ)

dn

]
n=0

+
1

30 · 4!

[
d3E(n,Λ)

dn3

]
n=0

+ · · · ,

(18.108)
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with all higher derivatives of E(n,Λ) being zero independent of the value of Λ.
From Eqs. (18.104) and (18.108) we calculate the derivatives of E(n,Λ);

E′(0,Λ) = 0, E′′′(0,Λ) = −6. (18.109)

Finally we find ∆E
L2 to be

∆E
L2

= − π2

720
h̄c

R3
, (18.110)

for the energy per unit surface area between the two conducting planes. The
force between the two plates is found by differentiating (18.110) with respect to
R and this gives us

∆F
L2

= − π2

240
h̄c

R4
, (18.111)

a result which was first derived by Casimir [12].
For the experimental evidence of the existence of this force see [15] and

[16].

18.4 Casimir Force in a Cavity with Conducting
Walls

An interesting and solvable case where we can find the Casimir force exactly
is in a cavity with conducting walls bounded by 0 ≤ x ≤ L1, 0 ≤ y ≤ L2 and
0 ≤ z ≤ L3. This problem has been solved by Lukosz using the method outlined
earlier for a one-dimensional cavity. In this way one finds the shift in the energy
density ∆u(L1, L2, L3) to be

∆u(L1, L2, L3) = − h̄c

16π2

{ ∞ ′∑
m1=−∞

∞ ′∑
m2=−∞

×
∞ ′∑

m3=−∞

1

(m2
1L

2
1 +m2

2L
2
2 +m2

3L
2
3)2

− π3

3
1

L1L2L3

(
1
L1

+
1
L2

+
1
L3

)}
,

(18.112)

where
∑∞ ′
mi=−∞ indicates summation over all integers except mi = 0 . From

the shift in the energy density we find the shift in the zero point energy to be

∆E = L1L2L3∆u(L1, L2, L3), (18.113)

and thus the force per unit area is

Fi(L1, L2, L3) = − ∂

∂Li
[Li∆u(L1, L2, L3)] . (18.114)
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Now let us consider the following special cases of this problem:
(1) - If R = L1 � L2 = L3 = L, then we have

∆u(R) = − h̄cπ2

720R4
(18.115)

where we have used the summation formula

ζ(4) =
∞∑
m=1

1
m4

=
π4

90
(18.116)

From this result we find that the force per unit area is

− ∂

∂R
(R∆u(R)) = − h̄cπ2

240R4
(18.117)

which is the same as (18.111).
(2) - When L3 � L1 = L2 = R, then the cavity becomes a long cylinder

along the z-axis with square cross section. Here we make use of the Epstein ζ
function [11]

+∞ ′∑
m1=−∞

+∞ ′∑
m2=−∞

1

(m2
1 +m2

2)2 = 4G ζ(2), (18.118)

where G is a numerical constant

G =
∞∑
n=0

(−1)n

(2n+ 1)2
= 0.91596, (18.119)

and

ζ(2) =
∞∑
n=1

1
n2

=
π2

6
. (18.120)

Thus for ∆u(R,R) we obtain

∆u(R,R) = − h̄G

24R4
(18.121)

In this case again we find that the energy density is negative.
(3) - Finally for a cubical cavity with L1 = L2 = L3 = R the energy

density assumes the simple form

∆u(R,R,R) = − 2πh̄c
32R4

[
−1 +

1
π3

+∞ ′∑
m1=−∞

+∞ ′∑
m2=−∞

+∞ ′∑
m3=−∞

1

(m2
1 +m2

2 +m2
3)2

]
.

(18.122)
The Epstein ζ function which is the sum over m1,m2 and m3 in this equation
has the numerical value of

+∞ ′∑
m1=−∞

+∞ ′∑
m2=−∞

+∞ ′∑
m3=−∞

1

(m2
1 +m2

2 +m2
3)2 = 16.5323. (18.123)



Bibliography 605

Thus the energy density for a cubical cavity is

∆E = R3∆u(R) ≈ 0.0916
(
h̄c

R

)
, (18.124)

and this leads to a repulsive force, i.e. the zero-point energy fluctuations of the
electromagnetic field tends to expand the cube [11].
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Chapter 19

Interaction of Radiation
with Matter

In this chapter we consider the interaction of an atom with quantized electro-
magnetic field. For a collection of charged particles and atoms interacting with
each other and with an external field we can follow a similar method, but here
for the sake of simplicity we consider a single atom. For such a system the
Hamiltonian is the sum of the Hamiltonians for the particle, the radiation field,
and the interaction between these two. Thus we write

∆H = Hatom +Hrad +Hint, (19.1)

where

∆Hatom =
1

2m
p2 + V (r), (19.2)

Hrad =
1

8π

∫ (
E2 + H2

)
d3r, (19.3)

and

Hint = − e

mc
p ·A(r) +

e2

2mc2
A2(r). (19.4)

The interaction Hamiltonian is the same found by coupling the magnetic po-
tential A to the momentum of the particle that we have seen in Chapter 16.
(Note that here e denotes the charge of electron, and m its mass). For a weak
external field the second term in (19.4) is small compared to the first term. This
is usually the case when the fields described by A are small compared to the
atomic field of e

a2
0

, where a0 is the Bohr’s radius. Keeping just the first term

607
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in (19.4) and substituting for A from (18.9) we find the perturbation H ′;

H ′ = − e

mc
p ·A(r) = − e

mc

∑
k,σ

(
2πh̄c2

Ωωk

) 1
2

p · uk,σ

[
ak,σe

ik·r + a†k,σe
−ik·r

]
.

(19.5)
Thus in this approximation we have the simplified Hamiltonian

H = Hatom +Hrad +H ′ = H0 +H ′. (19.6)

Now the eigenstates of the unperturbed Hamiltonian, H0, is of the form

| atom+ rad 〉 = | i〉| · · ·nk,σ · · ·〉, (19.7)

where i denotes the initial quantum numbers of the atom and nk,σ is the number
of photons with the momentum h̄k and polarization σ at t = 0. The perturba-
tion H ′ contains one creation and one annihilation operator, only transitions
in which the number of photons changes by +1 or −1 will be induced. Had we
included the term with A2 in the perturbation, then either two photons would
be emitted or two absorbed, or one would be emitted and one absorbed [1],[2].

Emission of Light — We assume that initially the atom is in the state
| i〉 and the perturbation H ′ causes it to decay to a state | f〉 with the emission
of a photon of momentum h̄k and polarization σ. Thus the initial state of the
system, |I〉, is

|I〉 = | i〉atom| · · ·nk,σ, · · ·〉rad, (19.8)

and finally the system will be in the state |F 〉 where

|F 〉 = |f〉atom| · · ·nk,σ + 1, · · ·〉rad. (19.9)

The matrix element of the perturbation H ′ between 〈F | and |I〉 is

〈F |H ′| I〉 = − e

mc

√
nk,σ + 1

∑
k,σ

(
2πh̄c2

L3ωk

) 1
2 〈
f
∣∣p · uk,σe

−ik·r∣∣ i〉
atom

,

(19.10)
where we have used

a†k,σ | · · ·nk,σ · · ·〉 =
√
nk,σ + 1 | · · ·nk,σ + 1 · · ·〉. (19.11)

From Eq. (11.180) we can calculate the transition rate between the initial and
final states of the atom for emission

Γi→f =
2π
h̄
|〈F |H ′| I〉|2 δ(EF − EI)

=
2π
h̄

( e

mc

)2
(

2πh̄c2

L3ωk

)
(nk,σ + 1)

∣∣〈f ∣∣p · uk,σ e
−ik·r∣∣ i〉∣∣2

× δ(Ef − Ei + h̄ω), (19.12)
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where Ei and Ef refer to the initial and final energies of the atom which, by
the law of conservation of energy is,

EF − EI = Ef − Ei + h̄ω. (19.13)

We observe that even when nk,σ = 0, the transition rate Γi→f is not zero. This
special case, viz, nk,σ = 0 is called “spontaneous” emission of light. Otherwise
we call it “stimulated” emission.

Let us first consider the case of spontaneous emission. For this we write
Γi→f as

Γi→f =
4π2e2

m2L3

∑
k,σ

1
ωk

∣∣〈f ∣∣p · uk,σ e
−ik·r∣∣ i〉∣∣2 δ(Ef − Ei + h̄ω). (19.14)

Now we sum over the polarization vectors of the photons. These are shown by
the two unit vectors uk,1 and uk,2. We choose the plane formed by the two
vectors k and p as the xy-plane, and take uk,1 to be along the z axis. Then in
the xy-plane uk,2 will be perpendicular to k (see Eq. (18.10)). If θ denotes the
angle between p and k, we have∑

σ=1,2

∣∣〈f ∣∣p · uk,σ e
−ik·r∣∣ i〉∣∣2 =

∣∣〈f ∣∣p e−ik·r
∣∣ i〉∣∣2 sin2 θ. (19.15)

Next we replace the summation over k by integration∑
k

→ L3

(2π)3

∫
d3k, as Ω→∞, (19.16)

and also expand the exponential in (19.15)

e−ik·r = 1− ik · r +
1
2

(k · r)2 + · · · . (19.17)

This expansion converges rapidly for atomic decays since the eigenket |i〉 cor-
responds to a bound state and has a range of the order of Bohr radius, a0 =
h̄2

me2 = 5×10−11cm. Thus r is of the order of magnitude k ·r ≈ ka0 ≈ 0.5×10−3

for a visible light of wavelength λ = 6× 10−9m. By retaining just the first term
of expansion in (19.17) we have the so called “ electric dipole” approximation
as it will be explained later. The next order term which is the matrix element
of (k · r) (p · uk,σ) can be written as

(k · r)(p · uk,σ) =
1
2

(uk,σ · p k · r + uk,σ · r p · k)

+
1
2

(uk,σ · p k · r− uk,σ · r p · k)

=
1
2

(uk,σ · p k · r + uk,σ · r p · k)

+
1
2

(k ∧ r) · (r ∧ p), (19.18)
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The first term is called the electric quadrupole and the second which is related
to L · B is called the magnetic dipole [3]. These are Ze2

h̄c ≈
Z

137 times smaller
than the electric dipole for an atom with the nuclear charge Z. Thus for small
Z we need to consider the electric dipole radiation only.

In the electric dipole approximation, (19.14) reduces to

Γi→f =
e2

2πm2

∫
|〈f |p| i〉|2 sin2 θ δ(Ej − Ek + h̄ωk)

d3k

ωk
. (19.19)

In order to carry out the integration, we choose spherical coordinates for the
k-space, taking kz to be in the direction of 〈f |p|i〉. The element of volume in
this space is

d3k = k2dk sin θdθdφ→ sin θdθ
ω2
kdωk
c3

dφ. (19.20)

In the k-space (or ωk-space) we can carry out the integration over θ, φ and ωk
with the result that

Γi→f =
4e2

3m2c3h̄
ωif |〈f |p| i〉|2 , (19.21)

where Γi→f has the dimension of (time)−1 and

ωif =
Ei − Ef

h̄
. (19.22)

Now we will show the how in Eq. (19.21) the matrix element e 〈f |p| i〉 is related
to the expectation value of the dipole moment. Noting that p is the mechanical
momentum of the electron we have

〈f |p|i〉 =
〈
f

∣∣∣∣mdr
dt

∣∣∣∣ i〉 = − im
h̄
〈f |rH −Hr|i〉

=
im

h̄
(Ei − Ef )〈f |r|i〉 = im ωif 〈f |r|i〉. (19.23)

Substituting for 〈f |p|i〉 from (19.23) in (19.21) we obtain

Γi→f =
4ω3

if

3h̄c3
|〈f |er| i〉|2 . (19.24)

Here −er is the dipole moment of the radiating electron and as (19.24) shows
the transition rate is proportional to the square of the matrix element of the
dipole moment.

Assuming that the electron is harmonically bound, i.e.

d2r
d t2

= −ω2
ifr, (19.25)

we can substitute for r from (19.25) in (19.24) to get

h̄ωifΓi→f =
4e2

3c3

∣∣∣∣〈f ∣∣∣∣ d2r

d t2

∣∣∣∣ i〉∣∣∣∣2 . (19.26)
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This relation is similar to the classical formula of Larmor, Eq. (2.1), which
states that the total power radiated by an accelerated (non-relativistic) electron
is [4]

P =
dE
dt

=
2e2

3c3

∣∣∣∣ d2r
d t2

∣∣∣∣2 . (19.27)

Absorption and Stimulated Emission of Light — Since for the
absorption of light we must have photons present in the field we take nk,σ 6= 0
in the initial state, | · · ·nk,σ, · · ·〉rad, of Eq. (19.8). The annihilation operator
in H ′, Eq. (19.5), removes a photon from the field, therefore the final state is
given by

| F 〉 = |f〉atom| · · ·nk,σ − 1 · · ·〉rad. (19.28)

Following the method that we used earlier to calculate the transition rate for
the spontaneous emission, when applied to the present problem gives us

Γi→f =
4π2e2

m2L3ωk
nk,σ

∣∣〈f ∣∣p · uk,σ e
+ik·r∣∣ i〉∣∣2 δ(Ei − Ef + h̄ω). (19.29)

For this case we can determine the cross section for absorption of a photon by an
atom by observing that the flux of photons of momentum h̄k and polarization
σ is

Φ =
nk,σc

L3
. (19.30)

By dividing (19.29) by the flux Φ we obtain the cross section for this process:

σi→f (k, σ) =
4π2e2

m2c ωk

∣∣〈f ∣∣p · uk,σ e
+ik·r∣∣ i〉∣∣2 δ(Ei − Ef + h̄ω). (19.31)

This relation should be integrated over a narrow frequency range of h̄ωk =
Ef − Ei.

By a similar argument we find that the rate of a downward transition
induced by the incident beam from initial state |f 〉 to the final state |i 〉 is
given by

Γind emf→i = Γabsi→f . (19.32)

As we will see later neither in the emitted nor in the absorbed light the
spectral lines are infinitely sharp as it seems to be indicated by the δ-functions
in (19.14) and (19.31).

19.1 Theory of Natural Line Width

The emitted light from an atom is a wave train of finite duration. A Fourier
analysis of the finite wave train shows that the spectral line has a finite width.
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This means that the delta function appearing in (19.14) and (19.29) is a result of
the approximation used in the calculation. Exactly solvable models for emission
and absorption like the Wigner–Weisskopf model exhibit a decay for the initial
state which is approximately exponential [5],[6].

Consider a simple case where there is no photon in the initial state and
only one photon of momentum h̄k in the final state. Thus the initial and final
states are:

| I〉 = | 0 〉photon|i 〉atom = | 0; i〉. (19.33)

| F 〉 = | 1k,σ〉photon|f 〉atom = | k, σ; f〉. (19.34)

The time evolution of the state of this system is given by

ih̄
∂

∂t
|ψ(t)〉 = (H0 +H ′(t)) |ψ(t)〉, (19.35)

where H ′(t) is given by (19.5). We write the ket |ψ(t)〉 in terms of the time-
dependent coefficients Ci0(t) and Cfk,σ(t) , i.e.

|ψ(t)〉 = Ci0(t)| 0; i〉+
∑
k,σ

Cfk,σ(t)| k, σ; f〉. (19.36)

Substituting (19.36) in (19.35) and equating the coefficients of | 0; i〉 and |k, σ; f〉
we find

ih̄
dCi0(t)
dt

= EiCi0 +
∑
k,σ

〈0; i |H ′|k, σ; f〉Cfk,σ(t), (19.37)

and

ih̄
dCfk,σ(t)

dt
= (Ef + h̄ω)Cfk,σ − 〈k, σ; f |H ′| 0; i〉Ci0(t). (19.38)

The initial conditions for these differential equations are:

Ci0(0) = 1, Cfk,σ(0) = 0. (19.39)

To find the solutions of the coupled equations (19.37) and (19.38) we write the
Fourier series for Ci0(t) and Cfk,σ(t)

Ci0(t) =
∑
ω

p(ω)C0(ω) exp[−i(Ei + h̄ω)t], (19.40)

Cfk,σ(t) =
∑
ω

p(ω)Ck,σ(ω) exp[−i(Ei + h̄ω)t], (19.41)

where p(ω) is given by

p(ω) = C∗0 (ω)Ci0(t = 0) +
∑
k,σ

C∗fk,σ(ω)Ck,σ(t = 0) = C∗0 (ω). (19.42)
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Now we substitute (19.40) and (19.41) in (19.37) and (19.38) to find a coupled
algebraic equations:

h̄ωC0(ω) =
∑
k,σ

〈0; i |H ′|k, σ; f〉Ck,σ(ω), (19.43)

h̄ωCk,σ(ω) = (Ef + h̄ωk − Ei)Ck,σ(ω)− 〈k, σ; f |H ′| 0; i〉C0(ω). (19.44)

By eliminating Ck,σ(ω) between (19.44) and (19.43) we find the eigenvalue equa-
tion for ω;

h̄ω = −
∑
k,σ

|〈k, σ; f |H ′| 0; i〉|2

Ef − Ei + h̄(ωk − ω)

→ − 2Ω
(2π)3

∫
|〈k, σ; f |H ′| 0; i〉|2

Ef − Ei + h̄(ωk − ω)
d3k

= −gh̄
∫

|〈f |p|i|〉|2

Ef − Ei + h̄(ωk − ω)
ωkdωk, (19.45)

where g is a constant;

g =
4e2

3πc3m2
. (19.46)

We normalize C0(ω) and Ck,σ(ω) by requiring that

C∗0 (ω)C0 (ω′) +
∑
k,σ

C∗k,σ(ω)Ck,σ (ω′) = δω,ω′ . (19.47)

Setting ω = ω′ in (19.47) and substituting for Ck,σ(ω) from (19.44) we find
C0(ω)

C0(ω) =
{

1 + gh̄

∫
|〈f |p|i〉2ωk

Ef − Ei + h̄ωk − h̄ω
dωk

}− 1
2

. (19.48)

Now if we define ∆(ω) by

∆(ω) = ω +
(
Ef − Ei

h̄

)
+ g

∫ ∞
0

|〈f |p|i〉|2ωkdωk
Ef − Ei + h̄(ωk − ω)

, (19.49)

then

C0(ω) =
[
d∆(ω)
dω

]− 1
2

. (19.50)

From Eq. (19.44) we get Ck,σ(ω);

Ck,σ(ω) = −
(
| 〈0; i |H ′|k, σ; f〉

Ef − Ei + h̄ωk − h̄ω

)[
d∆(ω)
dω

]− 1
2

. (19.51)
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We also obtain Ci0(t) by substituting C0(ω) from (19.50) in (19.40);

Ci0(t) =
∑
ωj

|C0(ωj)|2e−iωjt =
∑
ωj

e−iωjt(
d∆(ω)
dω

)
ωj

, (19.52)

where ωj s are the roots of ∆(z);

∆(z) = z +
(
Ef − Ei

h̄

)
+ g

∫ ∞
0

|〈f |p|i〉|2ωkdωk
Ef − Ei + h̄(ωk − z)

= 0. (19.53)

Equation (19.52) has a form that enables us to express Ci0(t) as a contour
integral

Ci0(t) =
1

2πi
exp

(
− iEf t

h̄

)∮
C

e−izt

∆(z)
, (19.54)

where the contour contains all roots ωj of ∆(z) = 0. The residues at the poles
of z = ωj of the integrand in (19.52) are

2πi
e−iωjt(
d∆(ω)
dω

)
ωj

, (19.55)

and these are the same as those given by (19.52), Thus we can use (19.54) to
determine Ci0(t).

In order to evaluate Ci0(t) and Cfk,σ(t) by the method of contour inte-
gration we first define ∆I(z) and ∆I(z) by the analytic continuation of ∆(z)

∆(z) =

∆I(z) for 0 < arg z < 2π

∆II(z) for − 2π < arg z < 0
, (19.56)

then we find that as z → x− iε the two parts are connected by

∆II(z) = ∆I(z) +
2igπ
h̄

z |〈f |p|i〉|2. (19.57)

For the sake of simplicity we assume that ∆II(z) has only one root [7],[8]

∆II(z0) = 0, for z0 =
1
h̄

(
Er − Ef −

ih̄

2
Γ
)
, (19.58)

where Er and Γ are constants to be determined. By substituting (19.58) in
(19.53) and equating the real and imaginary parts of ∆II(z0) we find two equa-
tions for Er and Γ;

Er − Ei + gh̄

∫ ∞
0

(h̄ωk + Ef − Er)|〈f |p|i〉|2ωk
(h̄ωk + Ef − Er)2 + 1

4 h̄
2Γ2

dωk

+
gh̄Γ

2
|〈f |p|i〉|2z0 = 0, (19.59)
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and

h̄

2
Γ

{
1 + gh̄

∫ ∞
0

|〈f |p|i〉|2ωk
(h̄ωk + Ef − Er)2 + 1

4 h̄
2Γ2

dωk

}
=

πg

2h̄
(Er − Ef ) |〈f |p|i〉|2z0 , (19.60)

These two equations can be solved for Γ and the shift in the energy of the initial
state Er. An approximate solution can be found by expanding Eqs. (19.59)
and (19.60) by assuming that the coupling constant g is small. Thus expanding
these equations in powers of g and retaining terms proportional to g we obtain

Er − Ei ≈ −gh̄ P
∫ ∞

0

|〈f |p|i〉|2ωk
(h̄ωk + Ef − Er)

dωk, (19.61)

and

Γ ≈ πg

h̄2 (Ef − Ei)|〈f |p|i〉|2z0 ≈
4e2

3m2c3h̄
ωif |〈f |p|i〉|2z0 , (19.62)

where ωrf ≈ ωif is the frequency of the emitted photon. The second equation is
the same as Γi→f , Eq. (19.21), found from the first order perturbation theory.

Once the root of ∆II(z) in the second Riemann sheet is determined, we
can calculate Ci0(t) and Cfk,σ by contour integration. Thus we write Ci0(t) as

Ci0(t) =
1

2πi
exp

(
−iEf

h̄

){∫
C1

+
∫
C2

}
e−izt

∆(z)
, (19.63)

where the contour C1 is composed of the following parts:
(a) - A straight line in the upper half z plane in the first Riemann sheet

extending from R+ iε to −ε+ iε where it bends, crosses the x axis and joins the
line in the lower half of z plane extending from −ε+ iε to −R− iε. A semi-circle
of radius R in the second Riemann sheet completes the contour C1.

(b) - The contour C2 consists of two straight lines, one in the first sheet
extending from −∞ + iε to −δ + iε and in the second sheet from −δ − iε to
−∞−iε. These two lines are joined at x = −δ. The quantities δ and ε are small
positive numbers whereas R is a very large positive quantity. The denominator
∆(z) in (19.63) is either ∆I(z) or ∆II(z) depending on whether the contour is
on the first or second Riemann sheet. Evaluating the integrals in (19.63) we
find

Ci0(t) =
exp

(
−iErth̄ −

1
2Γt
)(

d∆II(z)
dz

)
z0

− g

∫ 0

−∞
exp

(
−iEf t

h̄

)
|〈f |p|i〉|2x e−ixt

∆I(x)∆II(x)
dx. (19.64)

with a similar relation for Cfk,σ(t).
A simple approximate form of Ci0(t) can be obtained by noting that in
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the limit of small g or e2 we have(
d∆II(z)
dz

)
z0

≈ 1 +O(g), (19.65)

and thus we get

Ci0(t) ≈ exp
[
−iErt

h̄
− Γt

2

]
+O(g). (19.66)

Now by substituting (19.66) in (19.38) and integrating the inhomogeneous differ-
ential equation with the boundary condition (19.39) we obtain the approximate
form of Cfk,σ(t);

Cfk,σ(t) ≈ −〈kσ; f |H ′| 0; i〉

(
e
−iErt
h̄ e−

Γt
2 − e−ih̄ (Ef+h̄ωk)t

Ef − Er + h̄ωk + i
2 h̄Γ

)
+O(g). (19.67)

The exponential decay of the probability of the atom to be in the state i, i.e.
|Ci0(t)|2 is a result of the approximations that we have made. In general these
decays are nonexponential [7]–[9].

Calculation of the Lifetime of a Decaying State — In order to have
an idea about the lifetime of an unstable atomic system let us calculate this
lifetime, Γ−1 for the 2P0 state of the hydrogen atom when it decays to the
ground state 1S0 [10]. The wave functions for these states are given by (see
Eqs. (9.221) and (9.222))

ψ100(r, θ, φ) =
1√
πa3

0

exp
(
− r

a0

)
, (19.68)

and

ψ210(r, θ, φ) =
√

2
8
√
πa3

0

(
r

a0

)
exp

(
− r

2a0

)
cos θ. (19.69)

The frequency of the emitted photon is given by

h̄ωif = h̄ω1S,2P = E1S − E2P =
me4

2h̄2

(
1− 1

4

)
=

3e2

8a0
. (19.70)

The angular integration leaves the z component of r as the only nonzero part
of the matrix element. Thus Eq. (19.29) (or (19.62)) reduces to

Γ =
4
3

(
3
8

)3(
c

a3
0

)(
e2

h̄c

)4

|〈ψ210(r, θ)|r cos θ|ψ100〉|2 , (19.71)

The matrix element in (19.71) can be evaluated easily

〈ψ210(r, θ)|r cos θ|ψ100(r)〉

=
√

2
8πa3

0

∫ (
r

a0

)
e

r
2a0 cos θ(r cos θ)e−

r
a0
r2

dr sin θdθdφ

= 4
√

2
(

2
3

)5

a0. (19.72)



Lamb Shift 617

Substituting this result in (19.71) we obtain

Γ =
4
3

(
3
8

)3(
e2

h̄c

)4

25

(
2
3

)10(
c

a0

)
. (19.73)

Thus the lifetime for this unstable state is

1
Γ

=
(

3
2

)8(
h̄c

e2

)4(
c

a0

)
≈ 1.6× 10−8s. (19.74)

19.2 The Lamb Shift

As we seen earlier, Eq. (19.61), the coupling of electron to the electromagnetic
field causes a shift of the spectral line. This shift is observable e.g. the energy
difference in the 2S and 2P 1

2
levels of the hydrogen atom which, as we have seen

must be degenerate. These levels are also degenerate in the Dirac’s relativistic
theory of H atom. The beautiful experiment of Lamb and Retherford showed
that there is a small energy difference of 1057 megacycle between the 2S and
2P 1

2
states [11]. A non-relativistic account of the Lamb shift is given by Bethe,

which we will discuss in this section [12].
Let us consider an electron in the state |n〉 with energy En. Again we

assume that the interaction between the electromagnetic field and the electron
is given by (19.5) and again we ignore the term which is quadratic in A. By
the coupling to the field A(r), the electron can emit spontaneously a photon
by making transition to the state |j〉 and then absorbing the same photon and
coming back to the state |n〉. The second order contribution to the energy En
caused by this emission and absorption is (see Eq. (11.24))

∆E(2)
n =

∑
j

∑
k,σ

〈n; 0 |H ′|k, σ; j〉 〈k, σ; j |H ′|n; 0〉
En − Ej − h̄ωk

. (19.75)

Here |i; 0〉 denotes the initial state with electron in in the state |n〉 when there
is no photon and |k, σ; j〉 is the intermediate state with the electron in state |j〉
when a single photon of momentum h̄k and polarization σ is present. Thus the
energy of this intermediate state is given by Ej + h̄ωk. The matrix elements of
H ′ in the dipole approximation are given by Eq. (19.10),

〈n; 0 |H ′|k, σ; j〉 = − e

mc

(
2πh̄c2

Ωωk

) 1
2

〈n|p · uk,σ|j〉. (19.76)

By integrating over the angular variable θ and φ as we did earlier, Eq. (19.20),
and summing over σ we find∫ ∑

σ

|〈n|p · uk,σ|j〉|2 2π sin θdθ =
8π
3
|〈n|p|j〉|2. (19.77)
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Substituting (19.76) and (19.77) in (19.75) we find

∆E(2)
n =

2e2h̄

3πm2c3

∫ ∞
0

ωkdωk
∑
j

|〈n|p|j〉|2

En − Ej − h̄ωk
. (19.78)

We notice that the integral in (19.78) is divergent, i.e. there is an infinite shift in
the energy of electron. Bethe observed that if we make a similar calculation for
a free electron, again the result is infinite. Consider the emission and absorption
of a photon by a free electron where in the dipole approximation we find the
energy shift to be

∆E(2)
p = − 2e2

3πm2c3

∑
q

|〈q|p|p〉|2
∫ ∞

0

dωk, (19.79)

and this shift can be written as

∆E(2)
p = − 2e2

3πm2c3
∣∣〈q ∣∣p2

∣∣p〉∣∣ ∫ ∞
0

dωk = − 2e2

3πm2c3
p2

∫ ∞
0

dωk. (19.80)

The energy shift is proportional to p2 and thus it can be combined with the
(zero order) kinetic energy and the sum can be written as

Ep ≈ Ep + ∆E(2)
p =

1
2
p2

(
1
m0
− 4e2

3πm2c3

∫ ∞
0

dωk

)
=

1
2m

p2. (19.81)

We can interpret this result in the following way: The mass m0 in the expression
of the kinetic energy of the electron,

E(0)
p =

p2

2m0
, (19.82)

refers to the “bare” mass of the electron, i.e. the mass when there is no coupling
to the electromagnetic field. But this is a fictitious quantity since there is no
way that we can turn off the interaction. So what is measured as the mass of
the electron is m which is given by (19.81) and we know that this is a finite
quantity. This change of mass from m0 to m is called “mass renormalization”.

When the electron is bound then the expectation value of p2 in the
eigenstate |p〉 should be replaced by

∆E(2)
n = − 2e2h̄

3πm2c3

∑
j

∫ ∞
0

|〈j |p|n〉 2

h̄ωk
ωkdωk. (19.83)

We can attribute the divergence of Eq. (19.78) to the infinite change that we
have found in the observed mass of the electron. For example if we write the
Hamiltonian of the hydrogen atom as

H =
1

2m0
p2 − e2

r
− e

m0c
p ·A, (19.84)
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then we can substitute for p2

2m0
from (19.81) and write the Hamiltonian as

H =
1

2m
p2 − e2

r
+
{
− e

m0c
p ·A +

2p2e2

3π m2c3

∫
dωk

}
. (19.85)

The last term in the curly bracket is the effective interaction of an electron
of renormalized mass m with the radiation field. In this formulation we have
included the electromagnetic interaction (19.80) in H and also in m as defined
by (19.81). In order to avoid counting this interaction twice, we subtract ∆Ep,
Eq. (19.81), from ∆En, Eq. (19.78) to obtain the shift in the energy level δE(2)

n ;

δE(2)
n =

2e2h̄

3πm2c3

∫ ∞
0

∑
j

|〈j|p|n〉|2

En − Ej − h̄ωk
+

〈
n
∣∣p2|n

∣∣〉
h̄ωk

ωkdωk, (19.86)

where in getting the last term of this relation we have used the completeness
relation 〈

n
∣∣p2
∣∣n〉 =

∑
j

|〈j|p|n〉|2. (19.87)

Writing (19.86) as

δE(2)
n =

2e2

3πm2c3

∑
j

|〈j|p|n〉|2
∫ ∞

0

(En − Ej)
En − Ej − h̄ωk

dωk, (19.88)

we observe that the last integral over ωk is still divergent, but now logarithmi-
cally. In the relativistic formulation of the problem δE

(2)
n turns out to be a finite

number. To get a finite result for the non-relativistic formulation, Bethe argued
that the upper limit of the integral in (19.88) should be mc2

h̄ , which corresponds
to a photon energy equal to the rest mass energy of the electron,

h̄ωk = mc2. (19.89)

Using this upper limit cut-off we find δE
(2)
n to be

δE(2)
n =

2e2

3πh̄ m2c3

∑
j

|〈j|p|n〉|2(En − Ej) ln
∣∣∣∣ mc2

Ej − En

∣∣∣∣ , (19.90)

where we have neglected (Ej−En) compared to mc2. To evaluate the right-hand
side of (19.90) we first define the average excitation energy by

{ln |Ej − En|}ave =

∑
j |〈j|p|n〉|2(Ej − En) ln |Ej − En|∑

j |〈j|p|n〉|2(Ej − En)
, (19.91)

and then we write δE(2)
n as

δE(2)
n =

2e2

3πh̄ m2c3

(
ln
∣∣∣∣ mc2

Ej − En

∣∣∣∣)
ave

∑
j

|〈j|p|n〉|2(Ej − En). (19.92)
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The sum over j in this relation can be calculated by noting that;∑
j

|〈j|p|n〉|2(Ej − En) = 〈n|p(H0 − En) · p|n〉

= −1
2
〈n| [p, [p, H0] ] |n〉, (19.93)

where H0 is the hydrogen atom Hamiltonian. Using the commutator

H0p− pH0 = ih̄∇V = ih̄∇
(
−e

2

r

)
, (19.94)

we calculate the right-hand side of (19.93)

h̄2

2

〈
n

∣∣∣∣∇2

(
−e

2

r

)∣∣∣∣n〉 = −e
2h̄2

2

∫
|ψn(r)|2 1

r
d3r = 2πe2h̄2|ψn(0)|2. (19.95)

By substituting (19.95) in (19.92) we find the final form for δE(2)
n

δE(2)
n =

4e4h̄

3m2c3
|ψn(0)|2

(
ln
∣∣∣∣ mc2

Ej − En

∣∣∣∣)
ave

. (19.96)

The wave function ψn(0) vanishes for states with ` 6= 0. For S states we have

|ψn(0)|2 =
1
π

(
1
na0

)3

, (19.97)

where a0 = h̄2

me2 is the Bohr radius.
From the numerical calculation of (Ej − En)ave, Bethe found an approx-

imate value of 1040 megacycle for the 2S wave in good agreement with the
experimental result of 1057 megacycle.

Let us note that the two assumptions used in Bethe’s approximate calcu-
lation are not compatible with each other. In the first place he had assumed the
validity of the dipole approximation, exp(−ik ·r) ≈ 1, Eqs. (19.17) and (19.76).
The second approximation in Bethe’s approach was the high frequency cut-off
introduced by assuming that the maximum photon energy is equal to the rest
mass of the electron, mc2 = h̄ω = h̄kc and this was used to derive (19.90). Now
the electron is localized within the Bohr radius, a0, therefore the assumption
that k · r is much less than one is violated since

max (k · r) = kmaxa0 =
mc

h̄

(
h̄2

me2

)
h̄c

e2
≈ 137. (19.98)

The correct relativistic calculation with the inclusion of the vacuum polarization
effect gives us an accurate value of the Lamb shift which agrees very well with
the empirical result [13].
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19.3 Heisenberg’s Equations for Interaction of
an Atom with Radiation

In our formulation of the problem of interaction of an atom with electromag-
netic field we discussed the mechanism for the transition from an initial state
to a final state with the emission or absorption of a single photon. Now we
want to study a model where an atom with 2M + 1 quantum levels interacts
with the electromagnetic field, and that this interaction is accompanied with
the emission or absorption of a number of photons. Thus the two-state atom
considered earlier will corresponds to the special case where M = 1

2 and emis-
sion or absorption of a single photon. In the present problem we assume that
photons of unit energy (h̄ = ω = 1) are being absorbed or emitted by the atom,
therefore the Hamiltonian for the field is simply given by the number operator
a†a. The atomic system in this model has 2M + 1 equally spaced energy levels
with the level spacing ε. We assume that the Hamiltonian for the atom alone
is given by εMz, where Mz is the z component of the angular momentum oper-
ator. In addition we choose the coupling between the atom and the quantized
electromagnetic field, in the dipole approximation to be of the form

λ

2
(
M+a+M−a

†) , (19.99)

where M+ and M− are raising and lowering operators given by (9.53). Thus the
total Hamiltonian for the atom, the radiation field and the interaction between
them is

H = a†a+ εMz +
λ

2
(
M+a+M−a

†) , (19.100)

where M± and Mz satisfy the commutation relation (9.56).
There are two constants of motion associated with this Hamiltonian:

M2 =
1
2

(M+M− +M−M+) +M2
z , (19.101)

and
C = a†a+Mz. (19.102)

These two operators commute with the total Hamiltonian (19.100) and also
commute with each other, [

M2, C
]

= 0. (19.103)

In the absence of interaction, i.e. when λ = 0, the eigenstates of the Hamiltonian
for the atom are given by

Mz|m〉 = m|m〉, m = −j, −j + 1 · · · j − 1, j, (19.104)

and for the field, one has the eigenstates |n〉, and the eigenvalue equation for
the number operator

a†a|n〉 = n|n〉, n = 0, 1, 2 · · · . (19.105)
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We can express the eigenstates of the total Hamiltonian in terms of states with
definite m and n;

|E, γ〉 =
∑
m,n

δγ,m+nB(m,n)|m〉|n〉, (19.106)

where |m〉|n〉 denotes the state m of the atom and n of the radiation field. In
Eq. (19.106), γ = m+ n is the eigenvalue of the operator C, and B(m,n) is the
coefficient of expansion. The standard method of solving this problem for the
energy E of the atom at a given time t can be formulated in terms of the initial
wave function |ψ(0)〉. Thus expanding |ψ(0)〉 in terms of the states |E, γ〉 we
have

|ψ(0)〉 =
∑
E,γ

α(E, γ)|E, γ〉. (19.107)

The time development of |ψ(0)〉 can be easily found since |E, γ〉 is an eigenstate
of H,

|ψ(t)〉 = e−iHt|ψ(0)〉 =
∑
E,γ

α(E, γ)e−iEt|E, γ〉. (19.108)

Using this time-dependent wave function, we calculate the expectation value of
εMz which is the energy of atom, E(t):

E(t) = ε〈ψ(t)|Mz|ψ(t)〉 = ε
∑
E,E′,γ

α∗ (E′, γ)α(E, γ)

× exp [i (E′ − E) t] 〈E′, γ|Mz|E, γ〉 . (19.109)

Now in the Heisenberg picture we first determine the operator Mz(t) where

Mz(t) = eiHtMz(0)e−iHt, (19.110)

and then calculate the matrix element

E(t) = ε 〈ψ(0)|Mz(t)|ψ(0)〉 . (19.111)

This relation shows that we can obtain E(t) if we have the Heisenberg equation
for Mz(t). It is convenient to define a parameter β

β = ε− 1 (19.112)

which measures detuning from the resonance. Furthermore we introduce three
operators A, B and D by

A = H − C, (19.113)

B =
λ

2
[
M+a−M−a†

]
, (19.114)

and

D =
λ

2
[
M+a+M−a

†] = A− βMz. (19.115)
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The operator C is a constant of motion, and so is A. From the definition of M+

and M− we have

M+M− = M2 −M2
z +Mz and M−M+ = M2 −M2

z −Mz. (19.116)

From these operators and the Heisenberg equation iḞ = [F, H] we find the
following equations for the time derivatives of Mz and B;

i
dMz(t)
dt

= B, (19.117)

i
dB(t)
dt

= Ω̂2Mz(t)−
λ2

2
[
3M2

z −M2
]
− βA. (19.118)

In the last equation Ω̂ which is a frequency operator and is a constant of motion
is defined by

Ω̂2 = β2 + λ2

(
C +

1
2

)
, (19.119)

By differentiating (19.117) with respect to t and substituting for dB(t)
dt from

(19.118) we obtain

d2Mz(t)
d t2

+ Ω̂2Mz(t) =
λ2

2
(
3M2

z (t)−M2
)

+ βA, (19.120)

In this equation Ω̂2, M2 and A are all constant operators. The operators Ω̂2 and
M2 commute with Mz(t) and B(t) for all times, whereas the operator A = H−C
does not. Equation (19.120) is a nonlinear differential equation for Mz. This
equation can be solved analytically for some special cases [14].

Two-Level Atom — When j = 1
2 , then M2 = 3

4 and M2
z = 1

4 for all
times. Then Eq. (19.120) reduces to

d2Mz(t)
d t2

+ Ω̂2Mz(t) = βA. (19.121)

This is a linear differential equation for the operator Mz for which the general
solution is a sinusoidal function of time

Mz(t) =
[
Mz(0)− β

Ω̂2
A
]

cos
(

Ω̂t
)
− iB(0)

Ω̂
sin
(

Ω̂t
)

+
β

Ω̂2
A. (19.122)

Let us consider the time-dependence of Mz(t) when the two level system in-
teracts with coherent radiation. For simplicity we discuss the case of exact
resonance by setting the detuning parameter β given by (19.112) equal to zero.
Then Eq. (19.122) reduces to

Mz(t) = Mz(0) cos Ω̂t− iB
Ω̂

sin Ω̂t, (19.123)
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Figure 19.1: Expectation value ofMz for a two-level atom using coherent state wave function
plotted as a function of time. Here the collapse of the initial matrix element is shown. This
result has been found from Eq. (19.125) for N̄ = 16 and under the resonance condition β = 0.

Here Ω̂ for Mz(0) = − 1
2 is given by

Ω̂2 = λ2

(
C +

1
2

)
= λ2

(
a†a+Mz +

1
2

)
= λ2j, (19.124)

where j is the eigenvlaue of a†a. In a two level system Mz(0) = ± 1
2 , therefore we

can use the notations of up ↑ and down ↓ of spin matrices to denote the state of
the atom. For the initial condition we choose the atomic state to be M0 = | ↓〉,
and the coherent field |α〉 given by (18.67). The mean photon number in the
initial state according to (18.75) is N̄ =

〈
α
∣∣a†a∣∣α〉 = |α|2. By imposing these

initial conditions on the solution of Eq. (19.123), the expectation value of the
Mz(t) becomes (see Eqs. (18.65) and (19.124)) [14],[15]

〈↓, α|Mz(t)| ↓, α〉 = −1
2
e−N̄

∞∑
j=0

(
N̄
)j
j!

cos
(
λt
√
j
)
. (19.125)

The time-dependence of this matrix element is shown for short times in Fig.
19.1 and for longer times in Fig. 19.2. This calculation is done with the coupling
constant λ = 1 with an average number of photons N̄ = 16. The first figure
shows that the matrix element 〈↓, α|Mz(t)| ↓, α〉 oscillates initially and then
collapses. For much longer times there is a revival of the matrix elements and
this revival happens periodically but each time with a slightly smaller amplitude.
This phenomenon of collapse and revival can be seen in Fig. 19.2. A detailed
discussion of this topic with analytical approximation to the sum in (19.125)
can be found in the work of Eberly and collaborators [16].

Multilevel Atom Interacting with Radiation — As we have seen
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Figure 19.2: Plot of the matrix elements 〈↓, α|Mz(t)| ↓, α〉 for larger t showing the revival
of this quantity after its initial collapse.

above, the solution for a two-level atom or molecule for the case of resonance,
β = 0, can easily be found. For m > 2, the problem is more complicated.
We first derive the Heisenberg equations for Mz(t) in general case and then
discuss the three-level problem. Again our starting point is Eq. (19.120). We
differentiate this equation twice to get a fourth order differential equation for
Mz(t) [14]

d4Mz

d t4
+ Ω̂2 d

2Mz

d t2
=

3
2
λ2 d

2Mz

d t2

=
3
2
λ2 d

dt

(
Mz

dMz

dt
+
dMz

dt
Mz

)
=

3
2
λ2

{[
Mz,

d2Mz

d t2

]
+

− 2B2

}
, (19.126)

where [ , ]+ denotes the anticommutator. Here we have used (19.117) to simplify
the result. We also note that the anticommutator in this relation can be written
in terms of Mz with the help of Eq. (19.120). From Eqs. (19.114) and (19.115)
we obtain

B2 = D2 − λ2

2
(
M+M−aa

† +M−M+a
†a
)
. (19.127)

Using (19.116) and D = A− βMz, this equation takes the form

B2 = Ω̂2M2
z − β [A, Mz]+ + λ2Mz

(
M2 −M2

z −
1
2

)
− Γ, (19.128)

where Γ is a constant operator

Γ = λ2

(
C +

1
2

)
M2 −A2. (19.129)
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By substituting the anticommutator and B2 in Eq. (19.126) we find the differ-
ential equation for the operator Mz(t);

d4Mz

d t4
+ 5Ω̂2 d

2Mz

d t2
+ 4Ω̂4Mz

− 3
2
λ2
{
λ2Mz

(
5M2

z − 3M2 + 1
)

+ 3β [A, Mz]+
}

=
{

4βΩ̂2A+ λ2
(

Ω̂2 − 3β2
)

M2 − 3λ2A2
}
, (19.130)

where the terms on the right-hand side of this equation add up to a constant
operator. This equation has a cubic nonlinearity, M3

z , and at first sight seems
more complicated than the original equation Eq. (19.120). However, in its
present form it is suitable for solving the problem of radiation from three-level
atom or molecule. The reason being that when the quantum number m takes
the values (−1, 0, 1) corresponding to the three levels, then the operator Mz

satisfies the equation M3
z = Mz. Thus Eq. (19.130) is in fact a linear differential

equation for Mz. The same technique of differentiation and elimination can be
used when we have systems with more than three levels. Again the three-level
atom in resonance with the field has a simpler solution than the non-resonant
case.

Setting M2
z = Mz, M2 = 0 and β = 0 in (19.130) reduces this equation

to an inhomogeneous linear fourth-order differential equation for Mz;

d4Mz

d t4
+ 5Ω̂2 d

2Mz

d t2
+ 4Ω̂4Mz

= λ2
(

2Ω̂2 − 3A2
)
, (19.131)

where Ω̂2 is given by (19.119) with β = 0. Now introducing a new operator Nz
by

Nz(t) = Mz(t)−
λ2

4Ω̂4

(
2Ω̂2 − 3A2

)
, (19.132)

and replacing Mz(t) by Nz(t), we find that Nz(t) satisfies a homogeneous dif-
ferential equation:

d4Nz
d t4

+ 5Ω̂2 d
2Nz
d t2

+ 4Ω̂4Nz = 0. (19.133)

We can find the characteristic frequencies of Nz(t) by writing

Nz(t) = Nz(0)eiωt, (19.134)

where upon substitution of (19.134) in (19.133) we obtain a quartic equation
for ω

ω4 − 5Ω̂2ω2 + 4Ω̂2 = 0. (19.135)

This equation has four roots:

ω = ±Ω̂, and ω = ±2Ω̂. (19.136)
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From this result we conclude that the time-dependence of Mz(t) may be ex-
pressed in terms of harmonic functions of ωt with ω given by (19.136) where
the coefficients are linear combinations of the values of Mz(0),

(
dMz

dt

)
t=0

,(
d2Mz

d t2

)
t=0

and
(
d3Mz

d t3

)
t=0

. These coefficients are found from Eq. (19.131) and

from Eq. (19.120) and its derivative [14].
The Jaynes–Cummings Model — The model that we just studied

above is a variant of the Jaynes–Cummings model which we will discuss now.
Setting h̄ = 1 and choosing the energy of the photon h̄ω to be the unit of energy,
we write the Hamiltonian as [17],[18],

H = Hfield +Hatom +Hint

= εσz + a†a+
λ

2
(
σ+a+ σ−a

†) . (19.137)

We will divide this Hamiltonian into two parts H1 and H2;

H = H1 +H2 =
(
a†a+ σz

)
+

[
βσz +

λ

2
(
σ+a+ σ−a

†)] . (19.138)

In this relations σ± = σx±σy where σx, σy and σz are Pauli matrices introduced
in Sec. 9.4, and β = ε − 1 is the detuning parameter introduced earlier, Eq.
(19.112). As is evident from (19.137) the atom in this model has two levels,
spin up | ↑〉, and spin down, | ↓〉. The two parts of H1 and H2 commute with
each other

[H1, H2] = 0, (19.139)

and this result enables us to write the time evolution operator U(t) as a product

U(t) = exp(−iHt) = exp(−iH1t) exp(−iH2t). (19.140)

We can easily diagonalize the first part, i.e. U1(t) where

U1(t) = exp(−iH1t) = exp
(
−ia†at

) [ e−it2 0
0 e

it
2

]
. (19.141)

For the second part, exp(−iH2t), we expand the operator U2(t);

U2(t) = exp(−iH2t) =
∞∑
n=0

(−it)n

n!
(H2)n

=
∞∑
n=0

(−it)n

n!

[ 1
2β

λa
2

λa†

2 − 1
2β

]n
. (19.142)

Let j be an integer, then[ 1
2β

λa
2

λa†

2 − 1
2β

]2j

=
[

Λj 0
0 ϕj

]
, (19.143)
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where

ϕ =
λ2

4
a†a+

1
4
β2, (19.144)

and

Λ = ϕ+
λ2

4
, (19.145)

Also from (19.143) we obtain[
1
2β

λ
2a

λ
2a
† − 1

2β

]2j+1

=
[ β

2 Λj λ
2 Λja

λ
2a
†Λj −β2ϕ

j

]
. (19.146)

Now substituting (19.143) and (19.146) in (19.142) we get U2(t) in the form of
a 2× 2 matrix cos

(√
Λ t
)
− iβ

2

sin(
√

Λ t)√
Λ

−iλ2
sin(
√

Λ t)√
Λ

a

−iλ
2a
† sin(

√
Λ t)√
Λ

cos
(√
ϕ t
)

+ iβ
2

sin(√ϕ t)√
ϕ

 . (19.147)

The unitary matrix U(t) is found from the product U(t) = U1(t)U2(t) and is
given bye
it(a†a+ 1

2 )

{
cos
(√

Λ t
)
− iβ

2

sin(
√

Λ t)√
Λ

}
−iλ2 e

it(a†a+ 1
2 ) sin(

√
Λ t)√

Λ
a

−iλ2 e
it(a†a− 1

2 )a†
sin(
√

Λ t)√
Λ

eit(a
†a− 1

2 )

{
cos
(√
ϕ t
)

+ iβ
2

sin(√ϕ t)√
ϕ

}
.

(19.148)

Let us note that ϕ and Λ defined by operators, Eqs. (19.144) and (19.145), and
these operators have the following properties which we can easily verify [2]:

sin
(√

Λ t
)

√
Λ

a = a
sin
(√
ϕ t
)

√
ϕ

, (19.149)

and
cos
(√

Λ t
)
a = a cos (

√
ϕ t) . (19.150)

We also find similar results for their Hermitian conjugates. Using these relations
we can directly prove the unitariy of U(t). From the time evolution operator,
(19.148), we can determine any specific property of the system that we want.
For instance we can find

σz(t) = U(t)σz(0)U†(t), (19.151)

and then calculate 〈α, ↓ |σz(t)|α, ↓〉 as before but now with the detuning param-
eter β 6= 0.

There are a number of other exactly solvable problems for the interaction
of an atom with strong electromagnetic field where any number of photons can
be emitted or absorbed. These have solvable Heisenberg equations for the state
of the atom [19],[20].



Bibliography 629

Bibliography

[1] E.G. Harris, A Pedestrian Approach to Quantum Field Theory, (Wiley-
Interscience, New York, 1972), Chapter 3.

[2] S. Stenholm, Quantum theory of electromagnetic fields interacting with
atoms and molecules, Phys. Rep. 6, 1 (1973).

[3] H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One- and Two-
Electron Atoms, (Springer-Verlag, Berlin, 1957) p. 280.

[4] J.D. Jackson, Classical Electrodynamics, (John Wiley & Sons, New York,
1998).

[5] V. Weisskopf and E. Wigner, Berechnung der natürlichen Linenbreite auf
Grund der Diracschen Lichttheorie, Z. Physik, 63, 54 (1930).

[6] M. Razavy, Classical and Quantum Dissipative Systems, (Imperial College
Press, 2006).

[7] M.L. Goldberger and K.M. Watson, Collision Theory, (John Wiley & Sons,
New York, 1964), Chapter 8.

[8] M. Razavy and E.A. Henley, Model for γ decay of atomic or nuclear sys-
tems, Can J. Phys. 48, 2399 (1970).

[9] M. Levy, On the validity of the exponential law for the decay of an unstable
particle, Nuovo Cimento, 13, 115 (1959).

[10] W. Greiner Quantum Mechanics, Special Chapters, (Springer, Berlin,
1998).

[11] W.E. Lamb and R.C. Retherford, Fine structure of the hydrogen atom by
a microwave method, Phys. Rev. 72, 241 (1947).

[12] H.A. Bethe, The electromagnetic shift of energy levels, Phys. Rev. 72, 339
(1947).

[13] This inconsistency has been mentioned in a number of references, e.g. in
W. Greiner Quantum Mechanics, Special Chapters, (Springer, Berlin, 1998)
p.156.

[14] B. Buck and C.V. Sukmar, Solution of the Heisenberg equations for an
atom interacting with radiation, J. Phys. A 17, 877 (1984).

[15] B. Buck and C.V. Sukmar, Exactly soluable model of atom-phonon cou-
pling showing periodic decay and revival, Phys. Lett., 81 A, 132 (1981).

[16] N.B. Narozhny, J.J. Sanchez-Mondragon and J.H. Eberly, Coherence versus
incoherence: Collapse and reviaval in a simple quantum model, Phys. Rev.
A 23, 236 (1981).



630 Heisenberg’s Quantum Mechanics

[17] E.T. Jaynes and F.W. Cummings, Comparison of quantum and semiclassi-
cal radiation theories with application to beam maser, Proc. IEEE, 51, 89
(1963).

[18] V. Vlatko, Modern Foundations of Quantum Optics, (Imperial College
Press, London, 2005), Chapter 10.

[19] M. Sebawe Abdalla, M.M.A. Ahmed and A-S.F. Obada, Dynamics of a
non-linear Jayens-Cummings model, Physica, A 162, 215 (1990).

[20] H. Iwasawa and K. Matsuo, Exact solutions of Heisenberg equations for
multiphoton Jayens-Cummings model, J. Math. Phys. 36, 2720 (1995).



Chapter 20

Bell’s Inequality

In 1935 in a celebrated paper, Einstein, Podolsky and Rosen, (EPR), discussed
the subtle and paradoxical nature of quantum measurement and the conflict
between the quantum theory and a realistic local theory of the physical world
[1]–[22]. The publication of this paper generated a much needed debate about
the meaning of completeness and objectivity in quantum theory. It also raised
questions regarding the physical and philosophical interpretation of the theory,
i.e. whether or not observations come about from some underlying deterministic
and objective physical process, knowing well that the final predictions are prob-
abilistic. Let us consider the reasoning of EPR regarding the incompleteness
of quantum theory. The gedanken experiment advanced by EPR is about the
correlation of coordinates and momenta of two particles that have interacted in
the past and then separated to such an extent that they can considered as inde-
pendent systems at the time that a measurement is performed on them. They
suggested that a measurement of one of these variables for one of the particles
of the pair can be done without disturbing the state of the second particle, then
one can deduce the corresponding variable with 100% certainty.

20.1 EPR Experiment with Particles

Consider the following one-dimensional model which illustrate the gedanken
EPR experiment. A system is composed of two particles and that these particles
are allowed to interact between 0 ≤ t ≤ T , but after t > T there is no interaction
between them. We assume that the states of the these particles were known for
t < 0, and from this initial information we calculate the wave function of the

631



632 Heisenberg’s Quantum Mechanics

system;

Ψ(x1, x2) =
∑
n=1

ψn(x2)un(x1), (20.1)

where un(x1) is an eigenstate of a Hermitian operator A

Aun(x1) = anun(x1). (20.2)

If the spectra of A is continuous, then (20.1) is replaced by

Ψ(x1, x2) =

∫ ∞
−∞

ψα(x2)uα(x1)dα, (20.3)

where α denotes the continuous eigenvalues of A. In particular for free un-
bounded motion of two particles we have the wave function

Ψ(x1, x2) =

∫ ∞
−∞

exp

[
i(x1 − x2 + x0)p

h̄

]
dp. (20.4)

We can express Ψ(x1, x2) in two different forms:

Ψ(x1, x2) =

∫ ∞
−∞

exp

[
−i(x2 − x0)p

h̄

]
exp

[
ix1p

h̄

]
dp, (20.5)

or

Ψ(x1, x2) =

∫ ∞
−∞

{∫ ∞
−∞

exp

[
i(x− x2 + x0)p

h̄

]
dp

}
δ(x1 − x)dx

= 2πh̄

∫ ∞
−∞

δ(x− x2 + x0)δ(x1 − x)dx. (20.6)

By comparing (20.5) with (20.3) we find that

up(x1) = exp

(
ix1p

h̄

)
, (20.7)

that is up(x1) is an eigenfunction of the linear momentum operator

p1 = −ih̄ ∂

∂x1
, (20.8)

with the eigenvalue p. The same relation, (20.5), shows that

p2 = −ih̄ ∂

∂x2
, (20.9)

is the momentum operator for particle 2 with the eigenfunction exp
[
− i(x2−x1)p

h̄

]
and the eigenvalue −p. Hence if we measure p1 and we find p, then we can infer
without disturbing the system that the momentum of particle 2 is −p. Note
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that after such a measurement Ψ(x1, x2) is reduced to ψp(x2)up(x1). On the
other hand by writing (20.3) as

Ψ(x1, x2) =
∫ ∞
−∞

ψx(x2)ux(x1)dx, (20.10)

we observe that
ux(x1) = δ(x1 − x), (20.11)

is the eigenfunction of the position operator x1 for the particle 1 with the cor-
responding eigenvalue x1 = x. In the same way we find the function ψx(x2),

ψx(x2) = 2πh̄δ(x− x2 + x0), (20.12)

is the eigenfunction of the position operator x2 (multiplied by 2πh̄) and has
the eigenvalue x2 = x + x0. If we examine the wave function just before the
measurement on 1 is performed, we find that there is no certainty regarding mo-
mentum of particle 2 because the wave function is a superposition of multiple
momentum eigenstates of 1 and 2 as is evident from Eq. (20.4). Therefore the
particle 2 must be in a definite state before the measurement of 1 takes place.
However from the wave function description of 2 we cannot determine what its
momentum is. We conclude that 2 has a definite momentum even though we
cannot find this momentum from quantum mechanics. Using this simple two
particle model, EPR made the following statements:

“If, without in any way disturbing the system (i.e. with a probability
equal to unity) we can predict the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical quantity”.
They also put forward the criterion for completeness of a physical theory.

“A theory is complete if every element of the physical reality has a counter
part in the physical theory”.

EPR’s gedanken experiment has been criticized for a number of reasons
(see Jammer’s book [3]), among them one which is mathematical rather than
physical or philosophical is the argument by Cooper about the question of the
self-adjointness of the operators [2]. Let us examine whether the operator A in
(20.2) is self-adjoint or not, a condition which is necessary for the validity of
the expansions (20.2) and (20.3). In EPR’s model the assumption of the sepa-
ration between the particles after the interaction implies that the domain of the
operator p1 in (20.8) is not −∞ ≤ x ≤ +∞, rather it is from some point, say
x = 0 to +∞. As we have seen in Sec. 3.9 in this domain the momentum op-
erator is not self-adjoint. Thus the argument of separated system breaks down,
either because in quantum-mechanical description these two systems cannot be
completely separated, or if we assume that they are separated their momenta
cannot be represented by self-adjoint operators. This objection can be bypassed
if instead of measuring positions and momenta of the two particles we use some
other dynamical variable such as spin degrees of freedom.

EPR Experiment with Spinors — A variation of the EPR gedanken
experiment was proposed by Bohm and Aharonov in which the components of
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spin of a pair of particles, instead of momentum or position, were measured [4].
By studying this system we can make the argument much simpler, and may also
extend it to the measurement of the polarization of a pair of photons, and in
this way provide the simplest realization of the EPR experiment. In our dis-
cussion of Bell’s inequality we will use Bohm’s model to illustrate the difference
between the results found from the quantum theory and those obtained from
hidden variable theories.

In Chapter 4 we reviewed the concept of “state” of a system in classical
mechanics. There, we considered measurable quantities of interest like pi(t)
and qi(t), specify the state as they evolve in time. Thus in our classical de-
scription we have a one-to-one correspondence between dynamical properties of
the objects as they are observed in the physical world and their mathematical
representation in the theory. Furthermore, in classical dynamics we can enlarge
the number of physical variables of the system, e.g. pi, qi, Li · · · by perform-
ing an arbitrary number of measurements of these additional quantities without
perturbing the state of the system. However in quantum theory a state of the
system will be simultaneous eigenstates of a small set of observables associated
with Hermitian commuting operators. Therefore even under ideal conditions we
can determine only a few definite properties of the system. Additional measure-
ments will disturb the system unless the observable happens to coincide with
the eigenstate of the system before measurement.

Entanglement — If the state of two quantum systems cannot be ex-
pressed as the product of two separate states then we call that system “entan-
gled” [5]. The concept of entanglement is central to the understanding of the
theory of measurement in quantum mechanics. Consider a system with two
degrees of freedom A and B. If the state vector can be written as

|ψ〉 = |α〉 |β〉, (20.13)

then each part or subsystem, |α〉 for A and |β〉 for B, corresponds to two well-
defined states. However once the two systems A and B interact, then the
general state of a two part system cannot be written in this factorized form.
The entangled form of the state vector, as we have seen for two spinors, is of
the form

|ψ〉 =
1√
2

(|α1〉 |β1〉 ± |α2〉 |β2〉) , (20.14)

In this entangled state there are strong correlations between A and B and this
entangled state often embodies entirely new physical properties of the composite
system that are not present in any of the two individual states A and B. Hence
we can say that the states A and B have lost their individuality, or in other
words the quantum-mechanical whole is different from the sum of its parts. If
we measure each of these degrees of freedom separately we find that:

(a) - The probability that A is in |α1〉 and B is in |β1〉 is 1
2 , and this is

the same probability that A would be in |α2〉 and B in |β2〉.
(b) - The probability that B is in |β1〉 and A is in |α2〉 is zero, the same as

the probability of A to be in |α1〉 and B to be in |β2〉. From these observations
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we conclude that a measurement of A destroys the entangled state, and the
aforementioned correlation is 100% regardless of the distance between the two
systems A and B.

Decoherence — An important step in understanding the collapse of the
wave function was taken when it was realized that the time-dependent linear
wave equation is valid only for closed systems (see the discussion of the nonlinear
Schrödinger–Langevin equation Sce. 17.12). Now in the process of measurement
we are not dealing with an isolated closed quantum system, since the system
under observation is coupled to the “classical” measuring apparatus. By assum-
ing that the measuring apparatus plus the system are parts of a larger system,
and that quantum mechanics is a valid theory for all systems, then the open-
ness of the system that we want to measure is crucial to the understanding of
quantum-to-classical transition [5]–[7].

For an analysis of the measurement process let us consider the simplest
case of an entangled system which is composed of two spin 1

2 particles one with
spin up and the other down. We perform a Stern–Gerlach experiment on this
system. We assume that the particle enters the magnetic field with the initial
spin |αx〉;

|αx〉 =
1√
2

[
1
1

]
=

1√
2

(| ↑〉+ | ↓〉) =
1√
2

(|αz〉+ |βz〉〉). (20.15)

Now if we measure the spin of this particle we would find that either

|αx〉 =
1√
2

(| ↑〉+ | ↓〉)after measurement → | ↑〉 = |αz〉, (20.16)

or

|αx〉 =
1√
2

(| ↑〉+ | ↓〉)after measurement → | ↓〉 = |βz〉. (20.17)

As we mentioned earlier, we want to treat the whole experimental set up, i.e.
the system to be measured and the detector as a large quantum system, which
can be described by the Schrödinger equation. When the particle with spin
up, | ↑〉, passes through the positive channel of the Stern–Gerlach magnet then
its passage is recorded by a detector which we want to describe by a wave
function. Again for the sake of simplicity we assume that the wave function for
the detector has only two parts, before the particle is detected the wave function
is represented by |γ0〉 and after, if the spin of the particle is +1

2 then it is |γ+〉.
Denoting the spin state of the particle by |αz〉, the total wave function of the
whole set up before the passage is

|ψ0〉 = |αz〉|γ0〉. (20.18)

After the passage of the particle, the wave function becomes

|ψ+〉 = |αz〉|γ+〉. (20.19)
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If the initial state of the particle is |βz〉, then nothing is registered and the wave
function before and after the measurement would be the same

|ψ0〉 = |βz〉|γ0〉. (20.20)

So far we have assumed that the spin of the particle is an eigenstate of Sz. Now
we ask that what happens if the particle has a spin state |αx〉. If this is the case
then the initial state of the whole system, particle plus measuring instrument is

|ψ0〉 = |αx〉|γ0〉 =
1√
2

(|αz〉+ |βz〉) |γ0〉. (20.21)

After a time t this initial state evolves and because of the interaction, becomes
entangled. From (20.19)–(20.21) we find that the wave function after measure-
ment is

|ψ〉 =
1√
2

(|αz〉|γ+〉+ |βz〉|γ0〉) . (20.22)

This result contradicts what we found earlier Eqs. (20.16),(20.17), since (20.18)
implies that the wave function should collapse into either |αz〉|γ+〉 or |βz〉|γ0〉,
and the pointer does not show one of these two possibilities. The explanation lies
in the complexity of the many-body wave function representing the measuring
apparatus. Rather than what is given in Eq. (20.22) we should have a wave
function which collapses either into one or the other of these states.

A Solvable Model Exhibiting Decoherence — Let us now consider
in some detail the way that decoherence works. For this we start with a time-
dependent formulation using a simple and solvable model very similar to the
problem of the damped harmonic oscillator, Sec. 17.12. As we have seen in
Sec. 18.1 the best approximation for a “classical” state is the coherent state.
Therefore we will formulate the problem using the coherent state formalism.
Keeping |α〉 and |γ〉, notation but replacing |α〉|γ〉 by a more descriptive notation
of |α; {γk}〉 representing the many degrees of freedom of the measuring device
we write the many-body wave function |Ψ0〉 as

|Ψ0〉 = C| α1(0); {γk} = 0〉+D |α2; {γk} = 0〉, (20.23)

where
|{γk}〉 ≡ |γ1, γ2 · · · γj · · ·〉, (20.24)

represent the many-body coherent state which becomes coupled to the entangled
state (|α1〉, |α2〉) when the measurement is taking place. Since (20.23) which
represents the state vector of the entangled particles at t = 0 is not coupled
to the many-body system, i.e. the measuring apparatus, we assume that this
latter system is in its ground state, and we set all its excitations {γk} equal to
zero. Now by imposing the normalization condition on |ψ0〉 we find

〈ψ0|ψ0〉 = |C|2 + |D|2 = 1. (20.25)

Next we inquire about the selection of a suitable many-body Hamiltonian for
the measuring apparatus. Since a general many-body problem cannot be solved
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exactly, we make two assumptions: First for the system that we want to measure,
we choose a simple harmonic oscillator with the angular frequency Ω. Second we
assume that this oscillator is linearly coupled to a large number of noninteracting
oscillators. Setting h̄ = 1 we write the total Hamiltonian as

H = Ωa†a+
∑
k

ωkc
†
kck +

∑
k

(
λka

†ck + λ∗ac†k

)
, (20.26)

where a† and a are creation and annihilation operators for the coherent states
of the particle and c†k and ck are the corresponding operators for the particles
forming the apparatus. The advantage of this Hamiltonian which is quadratic in
these operators is that it can be diagonalized by a principal axis transformation,
and the equations of motion for these operators are linear and thus exactly
solvable [8]. Hamiltonians similar to (20.26) have been used where the many-
body system is a general heat bath, or a one-dimensional scalar field [8],[9].
We have seen the latter model in our study of the damped harmonic oscillator.
In order to determine the time evolution of the initial wave function |Ψ0〉, Eq.
(20.23), we write both parts of |Ψ0〉 in terms of coherent states:

|α; {γk}〉 = exp
(
−1

2
|α|2

)
eαa

†
∞∏
k=1

exp
(
−1

2
|γk|2

)
eγkc

†
k |0, {0}〉. (20.27)

Since |α〉 as well as |{γk〉} are coherent states, their eigenvalues α and γk are
complex numbers, and for each of these we can write the eigenvalue in terms
of a phase and an amplitude. If the coupling between the two parts is weak,
then the amplitude changes very slowly with time and we can assume that |α|2
and |γk|2 are constants. In this approximation the time-dependent Schrödinger
equation is

i
∂

∂t
|α; {γk}〉 = i

(
a†
∂α

∂t
+
∑
k

c†k
∂γk
∂t

)
|α; {γk}〉 = H|α; {γk}〉

=

{
Ωa†a+

∑
k

ωkc
†
kck +

∑
k

(
λka

†ck + λ∗ac†k

)}
|α; {γk}〉

=

[
Ωαa† +

∑
k

{
ωkγkc

†
k + λγka

† + λ∗kαc
†
k

}]
|α; {γk}〉.

(20.28)

By comparing the coefficients of a†|α; {γk}〉 and c†k|α; {γk}〉 on the two sides of
(20.28) we find two linear coupled equations for α and γk;

i
dα

dt
= Ωα+

∑
k

λkγk, (20.29)

and
i
dγk
dt

= ωkγk + λ∗kα. (20.30)
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There is a conservation law associated with these coupled equations. Thus if
we write the complex conjugate of Eq. (20.29), multiply the result by another
solution, say α′(t), then write (20.29) for α′(t) and multiply it by α∗(t) and add
the resulting equations we obtain

d

dt
[α′(t)α∗(t)] =

∑
k

[λkα
∗(t)γ′k(t)− λ∗kα′(t)γ∗k(t)] . (20.31)

Similarly from (20.30) we obtain

d

dt
[γ′k(t)γ∗k(t)] = [λ∗kα

′(t)γ∗k(t)− λkα∗(t)γ′k(t)] . (20.32)

By summing (20.32) over all k s and then combining the result with (20.31) we
obtain the conservation law

d

dt

[
α′(t)α∗(t) +

∑
k

γ∗k(t)γ′k(t)

]
= 0. (20.33)

Equations (20.29) and (20.30) are similar to Eqs. (19.37) and (19.38) of the
theory of natural line width, Sec. 19.1, and we can solve them exactly the same
way. By writing α(t) and γk(t) as Fourier transforms like Eqs. (19.41) and
(19.42) we find

ωα(ω) =
∑
k

λkγk(ω), (20.34)

and
(ω + Ω)γk(ω) = ωkγk(ω) + λ∗kα(ω). (20.35)

Next we replace the summation over k by integration and for this purpose we
introduce a density function n(ω) which is the average number of oscillators per
unit frequency and thus this replacement takes the form of∑

k

→
∫
n(ω)dω. (20.36)

Following the method of contour integration of Sec. 19.1, we find α(t) and γk(t)
to be

α(t) = α(0) exp

[
−i (Ω + ∆ω) t− 1

2
Γt

]
, (20.37)

and

γk(t) = −λ∗k

{
exp

[
−i (Ω + ∆ω) t− 1

2Γt
]
− exp(−iωkt)

Ω + ∆ω − ωk − i
2Γ

}
, (20.38)

where Γ and ∆ω are given by

Γ = 2π|λ(Ω)|2n(Ω), (20.39)
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and

∆ω = P
∫ ∞

0

|λ(ω)|2n(ω)
Ω− ω

dω. (20.40)

For a detailed discussion of the range of validity of the approximations that we
have used here the reader is referred to the book of Omnès [10].

The Density Operator — The state of the whole system at time t can
be described by the ket

|Ψ(t)〉 = |α(t), {γk(t)}〉. (20.41)

However a much more interesting case is the one where the initial state of the
oscillator is a linear superposition of two macroscopically different states. We
assume that these two states have different position with zero average velocity.
Thus at t = 0 we have the total wave function

|Ψ(0)〉 = C|α1(0), {γk(0) = 0}〉+D|α2(0), {γk = 0}〉. (20.42)

The reduced density operator for this initial state with no coupling to the group
of oscillators {γk} is

ρ(0) = |C|2|α1(0)〉〈α1(0)|+ |D|2|α2(0)〉〈α2(0)|
+ CD∗|α1(0)〉〈α2(0)|+DC∗|α2(0)〉〈α1(0)|, (20.43)

and this relation clearly shows the presence of quantum superposition. At a
later time t, the density matrix can be written as a sum of two parts

ρ(t) = ρd(t) + ρnd(t), (20.44)

where ρd(t) represents the diagonal part and ρnd(t) the nondiagonal part of ρ(t).
Once we average ρ(t) over the states of the oscillators {γk(t)}, we find that

ρd(t) = |C|2 |α1(t)〉〈α1(t)|+ |D|2 |α2(t)〉〈α2(t)|, (20.45)

where we have used the result (see Eq. (18.63))

〈{γk(t)} | {γk(t)}〉 = 1. (20.46)

For the nondiagonal part, when we average over {γk(t)} s we get the scalar
products of different coherent states. Consider the scalar product

〈{γk1(t)} | {γk2(t)}〉 =
∏
k=1

〈γk1(t)|γk2(t)〉 , (20.47)

which can be calculated with the help of Eq. (18.66)

∏
k=1

〈γk1(t)|γk2(t)〉 = exp

(
−
∑
k

1
2
|γk1(t)− γ2(t)|2

)
. (20.48)
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We can simplify (20.48) using the conservation law (20.33), noting γk(0) = 0,
and after simplification we have∏

k=1

〈γk1(t)|γk2(t)〉 = exp
(
−1

2
|α1(0)− α2(0)|2 − |α1(t)− α2(t)|2

)
. (20.49)

With the help of this equation we find the time-dependence of the nondiagonal
elements of the density matrix ρnd(t);

ρnd(t) = {CD∗ |α1(0)〉〈α2(0)|+DC∗|α2〉〈α1(0)|}

× exp
[
−1

2
|α1(0)− α2(0)|2

(
1− e−Γt

)]
. (20.50)

In order to relate α1 and α2 to the positions of oscillator we recall the definition
of the coherent state operator in terms of x and p;

α =
1√
2

(Ωx+ ip) , (20.51)

Assuming that the average momentum is zero, for the nondiagonal density ma-
trix we have

ρnd ∼ exp
[
−1

2
|α1(0)− α2(0)|2

(
1− e−Γt

)]
= exp

[
−mΩ2

4h̄
(x1(0)− x2(0))2 (1− e−Γt

)]
, (20.52)

where in this relation m is the mass of the oscillator with the angular frequency
Ω, and where we have written h̄ explicitly. In order to have an idea about
the order of magnitude of the quantum-to-classical transition time, which is
the time that ρnd becomes vanishingly small, we consider the following extreme
example. Let us take m = 10−3 Kg, t = 2π

Ω = 1 s, Γ−1 = 1800 s, and
x2(0)− x1(0) = 10−6 m, then the decoherence time which is

τ =
4h̄

mΩΓ(x1(0)− x2(0))2
, (20.53)

is of the order of 10−8 seconds [10].

20.2 Classical and Quantum Mechanical Opera-
tional Concepts of Measurement

In his original paper on the new mechanics Heisenberg advanced the view that
the atomic theory should deal only with the experimentally observable quanti-
ties. Later in his well-known book on quantum theory. Heisenberg considered
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the question of how the position and momentum can be measured. He sug-
gested a gedanken experiment using a gamma ray microscope. Two years later
in his lecture at the University of Chicago he expanded this ideas and also he
discussed the measurement of the momentum of a particle [12]. He proposed
that for the measurement of the distribution of momentum values of an elec-
tron in an atom, one may turn off the Coulomb force between the electron and
the nucleus suddenly, and by a time-of-flight study made on the free electrons
one can determine its momentum. By repeating the measurements one can de-
termine the momentum distribution for an ensemble of atoms. In this section
we examine this idea of Heisenberg about the measurement of momentum by
turning on and off the interaction and expand it so that it can be used to get
the desired initial wave function [13].

State Preparation in Classical Mechanics — In classical dynamics
the initial state of a system is completely specified by the values of coordinates
and momenta of all of the particles in the system given at t = 0, qi(0) and
pi(0), i = 1, 2 · · · , N , Eq. (1.47). Using these initial values we can integrate
the Hamilton equations of motion (1.45) and (1.46) and thus obtain the future
of the system qi(t) and pi(t). The preparation of the initial state in classical
mechanics is trivial. For sake of simplicity we consider a one-dimensional mo-
tion, where we place a particle at q(0) and give it a momentum p(0). To bring
the particle to the initial position q(0) we set up a potential well U1(q) which
has a minimum at q = q(0), catch the particle in this potential and allow it
to reach this minimum with the help of a small friction. Once the particle is
in this position we subject it to an impulsive force derived from the potential
U2(q)δ(t). This force changes the momentum of the particle to p(0) without
affecting its position. After preparing the initial conditions in this way we turn
on the potential V (q) corresponding to the actual potential of the problem, turn
off U1(q) and observe the evolution of the motion in time.

Preparing the State in a Quantum Mechanical System — Having
considered the classical preparation, we now follow the same procedure for the
quantum mechanical case. Let us assume that we want to prepare the initial
state so that the initial wave function is of the form

ψ(q, 0) = R(q) exp
(
i
S(q)
h̄

)
, (20.54)

where R(q) and S(q) are both real functions of q. First, for the real wave
function R(q) consider the wave equation

ER(q) =
(
− h̄2

2m
d2

dq2
+ U1(q)

)
R(q), (20.55)

and since R(q) is known we find U1(q);

U1(q) = E +
1

R(q)

(
h̄2

2m
d2R(q)
dq2

)
. (20.56)
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We observe that R(q) must be the wave function of a bound particle, and that
it should have no nodes, i.e. it should be the ground state wave function of
the potential U1(q). Therefore to prepare a real wave function we need to trap
the particle in the potential U1(q) and let it reach the ground state by a small
frictional force. Then apply an impulse of the form

U2(q) = −S(q)δ(t), (20.57)

to the particle to get the wave function

ψ(q) = R(q) exp
(
iS(q)
h̄

)
, (20.58)

for t > 0.
Once this initial state is prepared, we turn off the potential U1(q), turn

the actual potential V (q), and follow how the wave function evolves in time
[13].

A Gaussian Initial State — To illustrate this way of preparing the
initial state let us consider a free particle which, at t = 0, can be represented
by a Gaussian wave packet

ψ(q, 0) =
1

(2π)
1
4

1√
∆q0

exp
[
−1

4
q2

(∆q0)2

]
. (20.59)

By solving the time-dependent Schrödinger equation

ih̄
∂ψ(q, t)
∂t

= − h̄2

2m
∂2ψ(q, t)
∂q2

, (20.60)

with the initial condition (20.59) we obtain the following wave function after a
time T

ψ(q, T ) =
1

(2π)
1
4

1√
∆q0 + ih̄T

2m∆q0

exp

[
−1

4

(
q2

(∆q0)2 + ih̄T
2m

)]
. (20.61)

Thus while the wave packet has retained its Gaussian shape, its width, ∆q0 has
increased according to the relation

(∆q)2 = (∆q0)2 +
h̄2T 2

4m2(∆q0)2
. (20.62)

The probability density at t = T is also given by a Gaussian function

ρ(q, T ) = |ψ(q, T )|2 =
1

(2π)
1
2

1√
(∆q0)2 + h̄2T 2

4m2(∆q0)2

× exp

[
−1

2

(
q2

(∆q0)2 + h̄2T 2

4m2(∆q0)2

)]
. (20.63)
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Now we ask whether it is possible to start with a broad wave packet of the
form (20.63) and prepare a Gaussian wave packet with a much smaller width
∆q0 by applying an impulsive force to it. In order to avoid the problem of
time-reversal, we consider the broad wave packet having the initial form

ψ(q,−T ) = ψ∗(q, T ). (20.64)

Following the method that we outlined in this section we write ψ(q,−T ) in
terms of two real functions

ψ(q,−T ) = R(q) exp
[
iS(q)
h̄

]
. (20.65)

where R(q) and S(q) are given by

R(q) =
1

(2π)
1
4

1√
∆q0

exp
[
−1

4
q2

(∆q)2

]
. (20.66)

and

S(q) = − h̄T
8m

q2

(∆q2
0)(∆q)2

. (20.67)

We note that R(q) is the ground state wave function for a simple harmonic
oscillator, with the potential U1(q) in Eq. (20.56) given by

U1 =
h̄2q2

2m(∆q0)2(∆q)2
. (20.68)

For a broad wave packet the spring constant

K = m
h̄2

(∆q0)2(∆q)2
, (20.69)

will be very small. From (20.67) we can determine the impulsive potential which
in this case is a quadratic function of q;

U1(q) = −S(q)δ(t) =
1
8
Kq2δ(t), (20.70)

and thus both U1(q) and U2(q) are harmonic oscillator type potentials, each
with a small spring constant K.

20.3 Collapse of the Wave Function

In our discussion of the postulates of quantum mechanics (Chapter 4) and the
comparison of these with the corresponding postulates of classical dynamics we
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noted that:
(a) - In classical mechanics each event can be determined from the laws

of motion and the initial conditions.
(b) - In contrast, in quantum mechanics, one can make predictions about

the relative probabilities of the occurrence of different events.
For instance suppose that in the Stern–Gerlach experiment we know that a spin
1
2 particle which enters the inhomogeneous magnetic field is known to be an
eigenstate Sx and when it leaves the field we measure Sz. Then the particle
is deflected up or down, but we cannot predict which deflection will occur. If
we have detectors in each of the channels of the Stern–Gerlach experiment, it
is uncertain which of the two detectors will register the passage of an atom.
This uncertainty can be traced back to the fourth postulate, or the measure-
ment postulate, where we defined relative probabilities of different outcomes of
measurements. According to postulate number 6 (Chapter 4) the evolution of
operators in time (or evolution of the time-dependent wave function) between
the measurements is completely deterministic, but it is the act of measurement
that introduces the indeterminancy. In the Stern–Gerlach experiment, the wave
function of the spin 1

2 particle which was initially an eigenstate of Sx, after pas-
sage through the magnetic field splits into two parts, one corresponding to the
spin up and the other to the spin down particles. Up to this point the motion
is deterministic. However as soon as we proceed with the measurement of the
arrival of a particle at the position of the counter, the particle interacts with the
counter and then indeterminancy occurs. Here only one of the counters register
the arrival of the particle, and the wave function becomes the eigenfunction of
the spin up (or down). This process is known as the reduction or collapse of the
wave function [10],[11].

Local Deterministic Description of Events — In quantum mechan-
ics predictions are given in terms of probabilities as we have seen in postulate
4 of Chapter 5. One can inquire whether it is possible that some yet unknown
and more fundamental theory, called “hidden variable” theory might be able to
predict all dynamical quantities precisely, as ideally we can in classical dynam-
ics. Our classical theories are founded on two basic assumptions:

(1) - Definite state of an object determines all measurable quantities such
as position and momentum.

(2) - If two observers A and B are sufficiently far apart, a measurement
made by A cannot influence the measurement made by B since local action
cannot travel faster than the velocity of light.
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20.4 Quantum versus Classical Correlations

If we examine correlations between the result of observations made by two ob-
servers we find that the prediction of classical mechanics can be different from
that of quantum theory. To show this we discuss the simpler version of the
EPR thought experiment which is due to Bohm and where one considers the
measurement of the spin degree of freedom. Here the system that we observe
consists of two spin 1

2 particles which we label by i and j, and we assume that
these two particles are in the singlet S state, i.e.

|ψ〉 =
1√
2

(|i, ↑〉|j, ↓〉 − |i, ↓〉|j, ↑〉) . (20.71)

Now suppose that this system breaks up and one of the particles moves one
way and the other moves in the opposite direction. The two observers A and B
measure the spin of these particles along any one of the directions specified by
the unit vector n̂j (j = 1, 2, 3), and let us denote the angle between n̂i and n̂j
by θ;

n̂j · n̂i = cos θ. (20.72)

The spin operators for these three directions are:

S · n̂j =
h̄

2
σ · n̂j , (20.73)

where the components of σ are the Pauli matrices. We can measure the eigen-
states of the spin up and spin down of the particles |j, ↑〉 and |j ↓〉 along any
three axes of detectors. In this way we obtain the probabilities Pj↑ i↑, Pj↑ i↓,
Pj↓ i↑, and Pj↓ i↓ for the particles having spins up and down. To calculate
these probabilities it will be convenient to choose n̂j to be along the z axis,
n̂j = (0, 0, 1).
Since

σ · n̂j = σz, (20.74)

the up and down spin eigenstates are given by

|j, ↑〉 =
[

1
0

]
, (20.75)

|j, ↓〉 =
[

0
1

]
. (20.76)

For any other direction, say n̂i, the unit vector n̂i is given by

n̂i = (sin θ cosφ, sin θ sinφ, cos θ). (20.77)

With this unit vector n̂i having the components shown in (20.77) we calculate
σ · n̂i;

σ · n̂i =
[

cos θ e−iφ sin θ
eiφ sin θ − cos θ

]
. (20.78)
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This matrix has two eigenvalues ±1 with the eigenstates

|i, ↑〉 =

[
e−i

φ
2 cos θ2

ei
φ
2 sin θ

2

]
, (20.79)

and

|i, ↓〉 =

[
ei
φ
2 sin θ

2

e−i
φ
2 cos θ2

]
. (20.80)

By a judicious choice of the coordinates we can make the azimuthal angle for
n̂i, i.e. φ equal to zero. Now if the measurement of the spin of the particle j
yields the value h̄

2 , then the particle i has to have a spin of − h̄2 , i.e. it has to

be in the state
[

0
1

]
. By expanding

[
0
1

]
in terms of the eigenstates (20.79) and

(20.80) with φ = 0 we obtain[
0
1

]
= sin

(
θ

2

)[
cos θ2
sin θ

2

]
+ cos

(
θ

2

)[
− sin θ

2

cos θ2

]
. (20.81)

The probability that the second measurement will give us a positive value for
the spin is therefore

P↑↑(θ) = sin2

(
θ

2

)
. (20.82)

Similarly we find the other probabilities to be

P↑↓(θ) = cos2

(
θ

2

)
, P↓↑(θ) = cos2

(
θ

2

)
, (20.83)

and

P↓↓(θ) = sin2

(
θ

2

)
. (20.84)

These relations give us the predictions of quantum mechanics for measuring the
spin component Sθj of the particle j at an angle θ relative to the z-axis, having
previously measured the spin components Szi of the particle i.

Let us consider a source which emits pairs of correlated particles, for ex-
ample a pair with zero total spin. One particle is sent to the observer A and the
other to the observer B. Each observer independently chooses between various
settings of the detector and then preforms an independent measurement of the
particle’s spin. Suppose that observers A and B can measure the components
of spin along the three axes n1, n2 and n3 (which may not be mutually or-
thogonal). If the system obeys the rules of the hidden-variable theory, then
these measurements cannot affect each other. As a result of such measurements
the observer A finds out N1 events where the components of spin are all up
(1 ↑, 2 ↑, 3 ↑), where we have denoted the directions of n1, n2, n3 by (1, 2, 3)
respectively. But since the total spin of the pair is zero, B finds N1 particles
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with spin down (1 ↓, 2 ↓, 3 ↓). Similarly A measures N2 particles with com-
ponents of spin along the axes 1 and 2 up and along 3 down or (1 ↑, 2 ↑, 3 ↓)
and so on. In TABLE XVIII we have listed the complete set of results for eight
nonoverlapping groups defined by the three components.

TABLE XVIII: Components of spin along the three axes (1, 2, 3) when the total

spin is zero. Here it is assumed that three hidden variable are associated with each particle

pair when these particles are emitted from the source, and these hidden variables do not

change afterwards.

A B Frequency

1 ↑ 2 ↑ 3 ↑ 1 ↓ 2 ↓ 3 ↓ N1

1 ↑ 2 ↑ 3 ↓ 1 ↓ 2 ↓ 3 ↑ N2

1 ↑ 2 ↓ 3 ↑ 1 ↓ 2 ↑ 3 ↓ N3

1 ↑ 2 ↓ 3 ↓ 1 ↓ 2 ↑ 3 ↑ N4

1 ↓ 2 ↑ 3 ↑ 1 ↑ 2 ↓ 3 ↓ N5

1 ↓ 2 ↑ 3 ↓ 1 ↑ 2 ↓ 3 ↑ N6

1 ↓ 2 ↓ 3 ↑ 1 ↑ 2 ↑ 3 ↓ N7

1 ↓ 2 ↓ 3 ↓ 1 ↑ 2 ↑ 3 ↑ N8

Because the total spin is zero, for a particular value observed by B would mean
the opposite result for the particle observed by A for that component. Thus
we have found a way of measuring two components of spin for the particle A
while we have disturbed it once. Let us use this fact to find the total number
of particles observed by A and B for the case when A measures spin up along
1 and B measures spin up along axis 2, i.e. (A 1 ↑, B 2 ↑). Then as was stated
above the observer A will have information about the two components of the
spin of the particle that he has detected, viz, (A 1 ↑, A 2 ↓). Denoting the
number of particles with these components by N (A 1 ↑, A 2 ↓), from TABLE
XVIII we find

N (A 1 ↑, A 2 ↓) = N3 +N4. (20.85)
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Similarly for N ( 1 ↑, 3 ↓) and N ( 2 ↑, 3 ↓) we have

N ( 1 ↑, 3 ↓) = N2 +N4. (20.86)

and
N ( 2 ↑, 3 ↓) = N2 +N6, (20.87)

where we have suppressed references to the observer A in (20.86) and (20.87).
From these three relations we find

N ( 2 ↑, 3 ↓) +N ( 1 ↑, 2 ↓)−N ( 1 ↑, 3 ↓) = N3 +N6 ≥ 0. (20.88)

If we divide (20.88) by N we find the average of these quantities

C( 2 ↑, 3 ↓) + C( 1 ↑, 2 ↓)− C( 1 ↑, 3 ↓) ≥ 0. (20.89)

This inequality is a simple version of Bell’s inequality.
Let us emphasize that this relation is found on the assumption that the

measurement by the observer B does not affect the result found by A, and that
the value of the component of spin found for the particle observed by A must
have existed prior to the measurement carried out by B.

A different and a more general method of deriving this inequality can be
given in the following way [18]:

For this formulation we introduce the correlation coefficient C(θ) defined
as the value of the product SziSθj averaged over a great number of measurements
of such a pair of particles. From the definition of C(θ) it follows that

C(θ) =
h̄2

8
[P↑↑(θ)− P↑↓(θ)− P↓↑(θ) + P↓↓(θ)]

=
h̄2

4

[
sin2

(
θ

2

)
− cos2

(
θ

2

)]
= − h̄

2

4
cos θ, (20.90)

where we have used Eqs. (20.82) and (20.84) to write C(θ). Now let us for-
mulate these probabilities in a way which is similar to the description given by
classical statistical mechanics. Here the assumption is that |ψ〉 does not give a
complete description of the system but there are some hidden variables collec-
tively denoted by λ such that a complete description of the system by |ψ, λ〉 is
possible. This classical theory will be deterministic and local. By being deter-
ministic we we mean that the particles have a definite state which determines
all of the properties of the motion in the course of time. The theory is also
assumed to be local, i.e. the result of an experiment by the observer B does not
depend on what observer the A measures.

The hidden variables are distributed with a classical probability density
ρ(λ), where ρ(λ)dλ is the fraction of pairs of spin 1

2 particles with λ lying be-
tween λ and λ+ dλ. Thus∫

ρ(λ)dλ = 1, ρ(λ) > 0. (20.91)
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If the total spin of the system is not zero we can derive a similar inequality
for the correlation coefficient [18]. Let a be the component of spin of the particle
i along the direction n1 and b be the component of the particle j along the
direction n2. Consider the mean value of a obtained from a large number of
individual measurements. This mean value which we denoted by C(n1,n1), Eq.
(20.90), can now be written as an integral over λ

C(n1,n2) =
∫
〈a(λ,n1)〉〈b(λ,n2)〉ρ(λ)dλ. (20.92)

Now we make the following assumptions :
(a) - That the hidden variables appearing in the integral are independent

of the directions n1 and n2 and
(b) - That the average of the product is equivalent to the product of the

averages, or that the mean values of a and b over hidden variables are uncor-
related. The existence of a correlation implies that an individual measurement
giving a could depend upon the hidden variables related to n2. Now the re-
sult of measurements of a and b can be either h̄

2 or − h̄2 , and thus we have the
inequalities

|〈a(λ,n1)〉| ≤ h̄

2
, |〈b(λ,n2)〉| ≤ h̄

2
. (20.93)

Let us introduce the third unit vector n3 and use (20.92) to write an expression
for C(n1,n3). Subtracting C(n1,n3) from C(n1,n2) we arrive at a result which
is similar to (20.92);

C(n1,n2)− C(n1,n3)

=
∫

[〈a(λ,n1)〉〈b(λ,n2)〉 − 〈a(λ,n1)〉〈b(λ,n3)〉] ρ(λ)dλ.

(20.94)

By introducing a new unit vector n and adding and subtracting the same quan-
tity we can write (20.94) as

C(n1,n2)− C(n1,n3)

=
∫
〈a(λ,n1)〉〈b(λ,n2)〉

[
1± 4

h̄2 〈a(λ,n)〉〈b(λ,n3)〉
]
ρ(λ)dλ

−
∫
〈a(λ,n1)〉〈b(λ,n3)〉

[
1± 4

h̄2 〈a(λ,n)〉〈b(λ,n2)〉
]
ρ(λ)dλ.

(20.95)

From the inequalities (20.93) and Eq. (20.95) we obtain

|C(n1,n2)− C(n1,n3)|

≤
∫ [

h̄2

4
± 〈a(λ,n)〉〈b(λ,n3)〉

]
ρ(λ)dλ

+
∫ [

h̄2

4
± 〈a(λ,n)〉〈b(λ,n2)〉

]
ρ(λ)dλ. (20.96)
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Figure 20.1: The function f(α) is plotted as a function of α. The solid line shows f(α) and
the dashed line is a curve f(α) ≤ 1, the latter is predicted by the hidden-variable theory.

This inequality and the fact that
∫
ρ(λ)dλ = 1 gives us

|C(n1,n2)− C(n1,n3)| ≤ h̄2

2
± [C(n,n3) + C(n,n2)] , (20.97)

In obtaining this inequality which was first derived by Clauser, Horn, Shimony
and Holt, (CHSH inequality) we have not assumed that the total spin of the
system is zero. For the special case of zero spin, the two components of the
spins of the two particles along the same direction are exactly opposite, so that

C(n,n) = − h̄
2

4
. (20.98)

Setting n = n3 in (20.97) and using (20.98) we find Bell’s inequality

|C(n1,n2)− C(n1,n3)| ≤ h̄2

4
+ C(n2,n3). (20.99)

Now if we choose the three vectors n1, n2 and n3 to be in the same plane, and
denote the angle between n1 and n2 by α, and those between n1 and n3 by θ
and θ − α respectively, we can write (20.99) as

|C(θ)− C(α)| − C(θ − α) ≤ h̄2

4
. (20.100)

This inequality is a consequence of any local deterministic hidden variable the-
ory. To see whether (20.100) is compatible with the prediction of quantum
mechanics, let us study the special case where θ = 2α. The quantal correlation
functions are given by (20.90)

C(α) = − h̄
2

4
cosα, C(θ) = − h̄

2

4
cos θ. (20.101)
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Now the hidden-variable theory is consistent with quantum mechanics if

f(α) = (| cos(α)− cos(2α)|+ cosα) ≤ 1. (20.102)

In Fig. 20.1 f(α) is plotted as a function of α and shows that the Bell inequality
is satisfied for π

2 < α < π, but is violated for 0 < α < π
2 .

The correlation function has been measured in two-photon correlation ex-
periment, e.g. those by Aspect and collaborators [19]-[20] (see also [21]). These
are difficult experiments to perform, but they all to seem to indicate that Bell’s
inequality is indeed violated. These violations do not rule out the possibility of
some sort of hidden variable theory, but then the theory must include nonlocal
effects. Except for the standard quantum theory, so far, no other theory has
been able to explain so accurately and so beautifully the structure and the be-
havior of atoms, molecules and radiation.

For a detailed discussion of the conceptual and philosophical problems of
quantum mechanics the reader is referred to [10],[22].
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Berry’s phase, 331, 514, 516–519
Bertrand’s theorem, 30
black body radiation, 112
Bloch’s theorem, 155
Bogoliubov transformation, 562
Bogoliubov approximation, 563, 564
Bogoliubov transformation, 557, 572

bosons, 557, 559
Bohr correspondence principle, 42

Bohr magneton, 501
Bohr radius, 250, 323, 326, 365, 607,

609
Bohr–Sommerfeld quantization con-

dition, 348
Bohr–Sommerfeld quantization rule,

40, 347, 350
boost, 23, 139, 143

relativistic, 145
Born approximation, 433, 436
Born interpretation, 118
Born series, 433
Bose-Einstein statistics, 152
boson, 150, 151, 444, 446, 538, 543,

552
bosonic degrees of freedom, 214
bosons, 130, 216, 242, 537

canonical transformation, 12, 14, 15,
560

Casimir effect, 600
Casimir force, 601, 603
Casimir invariant, 261
center of mass coordinate, 227, 228
Chasman method, 173
chemical potential, 572
CHSH inequality, 650
coherent states, 592, 596
collapse of the wave function, 643,

644
commutation relation, 59, 125, 129,

131, 164, 184, 214, 215, 282,
283, 287, 295, 317, 468, 539,
591

commutation relations, 543, 558
commutator, 58, 59, 64–66, 73, 156,

653
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195, 196, 541
continuous group, 27
convergence

strong, 400
correspondence

Heisenberg, 356, 358, 361
correspondence principle, 40, 159,

367
Bohr, 113, 115, 359
Heisenberg, 115, 181, 184, 360,

362, 363, 365
Planck, 112

Coulomb field, 526
creation operator, 215, 241, 448, 449,

487, 538, 544, 546, 568, 573,
608, 637

cross section
total, 394

current density, 119
curvilinear coordinates, 73
cyclic coordinate, 7, 14, 16

de Broglie length, 554
decoherence, 585
deficiency indices, 72
deficiency indices, 68, 72, 229
degeneracy, 236
degenerate perturbation theory, 321
differential cross section, 381, 385
diffraction

Fraunhofer, 459
quantum, 459

dipole moment, 367
dipole radiation, 363
Dirac’s rule of association, 64, 104,

156

eccentricity anomaly, 361
effective nuclear charge, 528
effective range, 394
Ehrenfest theorem, 115, 116
electric dipole, 610
electric dipole approximation, 609
emission

light, 608, 611

energy band, 223
equation of motion

Heisenberg, 181
Newton, 181

Euler–Lagrange derivative, 2
Euler–Lagrange equation, 1, 7, 12
exchange effect, 446
exclusion principle, 152, 529, 542,

547

factorization method, 201
Fermi momentum, 545, 577
Fermi sphere, 545, 546, 575
Fermi-Dirac statistics, 152
Fermi’s golden rule, 448
fermion, 151, 215, 444, 446, 542, 543,

548, 549, 552, 553
fermionic degrees of freedom, 214
fermionic operators, 215
fermions, 130, 216, 242, 446, 537,

546, 571, 572, 575
finite-difference approximation, 269
first integral, 27, 28, 30, 481
Flouqet theorem, 155
Fock space, 215, 537, 539, 540
Fréchet derivative, 65, 66
Fraunhofer diffraction, 459

Galilean group, 4
Galilean invariance, 3, 139, 141
Galilean invariant, 5
Galilean transformation, 4, 22, 23,

141, 143
Gaussian wave packet, 276, 294, 642
generalized unitarity, 409
generating function, 13, 482
gravity-induced interference, 491
Green function, 382, 383, 460

Hamilton’s principle, 1, 8
Hamiltonians

pq-equivalent, 10, 11
q-equivalent, 10

harmonic oscillator, 201, 203
forced, 448
two-dimensional, 192



Index 655

Hartree approximation, 529
Hartree–Fock approximation, 525, 529,

535, 536
Hartree–Fock method, 532
Heisenberg equation, 125
Heisenberg picture, 85
helium atom, 532
Hermite polynomial, 203
Hermitian conjugate, 228
Hermitian operator, 129
Hilbert space, 50, 52, 53, 55, 68, 117
holonomic constraints, 125

identical particles, 552
impact parameter, 437
inertial frame, 3
infinitesimal transformation

generator, 22
integrable system, 15, 16, 156
integral of motion, 19, 33, 132, 134
invariant toroid, 16
inverse problem, 3
ionization energy, 355, 528

Jacobi identity, 19, 65, 468, 469, 543
Jaynes–Cummings model, 627
Jost function, 415, 418–422, 425, 426

Kepler problem, 30, 210, 247, 251
two-dimensional, 28

kinetic energy in curvilinear coordi-
nates, 77

Klein’s method, 164, 340
Kramer’s theorem, 148
Kronig-Penney model, 222, 223
Kronig-Penny model, 193

Lagrangian, 1
Laguerre polynomials, 452, 453
Lande g factor, 500
Larmor formula, 39, 611
lattice translation, 153
Legendre transformation, 347
Leibniz property, 19, 65
Levi–Civita symbol, 6, 468
Levinson theorem, 426

Lie algebra, 261
Liouville theorem, 14
Lippmann–Schwinger equation, 404
Lorentz transformation, 146
Low equation, 409–411
lowering operator, 487

many fermion problem, 547
many-body problem, 525
many-boson problem, 152, 525, 565
many-fermion problem, 152, 525, 565
Maslov index, 349
mass renormalization, 618
Mathieu equation, 223
Maxwell equations, 469
mean value of an observable, 86
Møller operator, 401, 403, 404
momentum operator

curvilinear coordinates, 75
Mott scattering, 446

natural line width, 611
Noether charge, 7
Noether’s theorem, 7, 32
nonholonomic systems, 514, 515

Omnés–Mushkhelishvili equation, 414
operator

annihilation, 241, 544
creation, 241, 544
cyclic, 228
Hermitian, 55, 57, 68, 228
lowering, 204
normal form, 60
number, 215
projection, 55
raising, 204
self-adjoint, 60, 67–69, 71, 72,

103, 104, 110, 232, 485
supercharge, 214
unitary, 56, 67
Weyl-ordered, 282

optical theorem, 387, 409
orthohelium, 532
oscillator strength, 365
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pair correlation
bosons, 554, 556
fermions, 547, 548

pairing Hamiltonian, 572
parabolic cylinder function, 158
parabosons, 130
parafermions, 130
parastatistics, 130
parahelium, 532
parastatistics, 130
partial wave, 390
partial wave phase shift, 386
Pauli exclusion principle, 554
Pauli matrices, 131, 239
permutation symmetry, 150
perturbation theory

degenerate, 323
multiple-scale time, 313
time-dependent, 327

phase integral, 340
phase operator, 593
phase shift, 391

impact parameter, 441, 442
phase space, 12, 14
phase state, 595
Poincaré theorem, 416
point transformation, 1, 14
Poisson bracket, 18–20, 24, 28, 64–

66, 113, 255, 282, 481, 544
Poisson Brackets, 65
Poisson brackets, 20, 21, 66, 156
Poisson distribution, 451
potential

confining, 269
Coulomb, 256, 303, 304, 325,

364, 396, 436, 529, 530
Eckart, 193, 219
generalized Hulthén, 218
Hulthén, 219
Morse, 193, 197, 216, 218
oscillating, 223
Pöschl–Teller, 197, 200, 212
periodic, 221
quartic, 164
reflectionless, 221

separable, 410
solvable, 210
spin-orbit, 150

potential scattering, 381
potentials

shape invariant, 216
precession of the orbit, 251
principal quantum number, 96, 250,

533
principle of causality, 91, 429, 430
principle quantum number, 526

quantization of electromagnetic field,
589

quantization rule
Bohr–Sommerfeld, 349
Einstein, 349

quantum beats, 493, 496
quasi-particle, 561

radial momentum operator, 228
raising operator, 487
Raleigh-Ritz variational principle, 354
Rayleigh–Jean formula, 112
reduced mass, 227
representation

coordinate, 383
momentum, 383

resonance scattering, 431
Ritz combination principle, 40
rotons, 562
rules of ordering

Weyl–McCoy, 63, 176, 180
Runge–Lenz vector, 28–30, 251, 252,

255, 256
Rutherford formula, 437
Rutherford scattering, 399, 436, 446
Rydberg wave packet, 302–304

S-matrix, 402, 409, 420–422, 426,
429, 449, 450, 567, 568

scattering
by a hard sphere, 395
Rutherford, 395

scattering amplitude, 385, 387, 391,
392, 405, 436, 437, 442
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partial wave, 385
scattering length, 394
scattering matrix, 387
Schrödinger picture, 85
Schrödinger–Langevin equation, 583,

585
Schwinger’s action principle, 126, 127
selection rule, 238, 365
self-acceleration, 72
self-adjoint extension, 68, 69, 72
self-adjoint operators, 67
self-consistent field, 525
simultaneous measurement, 90
spherical harmonics, 410
spin angular momentum, 239
spinor form, 260
spontaneous emission, 609, 617
Stark effect, 322
states

mixed, 87
pure, 87

Stern–Gerlach, 635
Stern–Gerlach experiment, 503, 644
stimulated emission, 609
superfluid, 557
superpotential, 212, 221
superselection rule, 144
supersymmetric Hamiltonian, 214,

215
supersymmetry, 212

T -matrix, 403, 405, 407, 436, 437,
441

tight-binding approximation, 355, 356
time reversal, 148
total cross section, 387
transition matrix, 405
transition probability, 447, 448, 451

two-body problem, 227
two-dimensional harmonic oscillator

anisotropic, 29
isotropic, 27

two-level atom, 623

uncertainty
electromagnetic field, 592, 593

uncertainty principle, 20, 107
uncertainty relation, 91, 94, 108

angular momentum-angle, 103
position-momentum, 94
time-energy, 98

unitarity
one-sided, 594

unitarity condition, 442
unitary transformation, 57

van der Waals interaction, 325, 326
vector spaces, 49
velocity-dependent force, 5
virial theorem, 97, 173
Von Neumann’s rule of association,

67

wave packet, 116
Weyl polynomials, 285
Weyl’s rule of association, 61
Weyl–McCoy rule of association, 62,

63
Weyl-ordered operator, 282
Weyl-ordered products, 176, 285, 318,

320
Wigner–Weisskopf model, 612
WKB approximation, 337, 340

Zeeman effect, 501
anomalous, 502
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